Martha's Dry Cleaner Savannah, Chatham County, Georgia February 17, 2016 Terracon Project No. ES117125

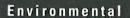


# **ELECTRONIC COPY CERTIFICATION**

I certify that the electronic copy is complete and identical to the paper copy submitted. This electronic copy is also virus free

Name:

Title:


Signature:

Date:

Terracon Consultants, Inc.

2201 Rowland Avenue P (912) 629 4000 F (912) 629 4001 terracon.com/savannah

Savannah, Georgia 31404





# Voluntary Remediation Program Compliance Status Report

Martha's Dry Cleaners 4608 Skidaway Road Savannah, Chatham County, Georgia EPD HSI No. 10764

> February 17, 2016 Terracon Project No. ES117125

# **Prepared for:**

Bible Baptist Church Savannah, Georgia

# Prepared by:

Terracon Consultants, Inc. Savannah, Georgia

terracon.com



Environmental Facilities Geotechnical Materials



February 17, 2016

Georgia Department of Natural Resources Environmental Protection Division Response and Remediation Program 2 Martin Luther King, Jr. Drive, SE Suite 1462 Atlanta, Georgia 30334-9000

Attn: Ms. Robin Futch, P.G., PMP

Re: Voluntary Remediation Program Compliance Status Report

Martha's Dry Cleaners EPD HSI No. 10764 4608 Skidaway Road

Savannah, Chatham County, Georgia Terracon Project No. ES117125

Dear Ms. Futch:

Terracon Consultants, Inc. (Terracon) is pleased to submit the enclosed Voluntary Remediation Program Compliance Status Report (CSR) for the Martha's Dry Cleaners Site, HSI No. 10764, 4608 Skidaway Road, Savannah Chatham County, Georgia on behalf of Bible Baptist Church. Assessment and corrective action has been conducted on the site to bring it into compliance with the VRP, and subsequently, removal from the HSI.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, please contact us at your earliest convenience.

Sincerely,

Terracon Consultants, Inc.

Stewart A. Dixon, P.G. Senior Project Geologist

Enclosures

cc: 1 - Client (PDF)

William S. Anderson, III, P.E. Senior Principal / Office Manager

# **TABLE OF CONTENTS**

| Secti | on                                      |                                             | Page |  |  |  |  |  |
|-------|-----------------------------------------|---------------------------------------------|------|--|--|--|--|--|
| REGI  | STERE                                   | D PROFESSIONAL CERTIFICATION                | i    |  |  |  |  |  |
| CER   | TIFICAT                                 | FION OF COMPLIANCE STATEMENT                | ii   |  |  |  |  |  |
| 1.0   | INTR                                    | ODUCTION                                    | 1    |  |  |  |  |  |
| 2.0   |                                         |                                             |      |  |  |  |  |  |
| _     |                                         |                                             |      |  |  |  |  |  |
| 3.0   | PROPERTY SETTING                        |                                             |      |  |  |  |  |  |
|       | 3.2                                     | Site Specific Geology                       |      |  |  |  |  |  |
|       | 3.3                                     |                                             |      |  |  |  |  |  |
|       |                                         | 3.3.1 Stratigraphy                          |      |  |  |  |  |  |
|       |                                         | 3.3.2 Local Hydrogeology                    |      |  |  |  |  |  |
| 4.0   | REG                                     | ULATED SUBSTANCES                           | 11   |  |  |  |  |  |
| 5.0   | VIRP                                    | VIRP ASSESSMENT ACTIVITIES                  |      |  |  |  |  |  |
|       | 5.1                                     | Soil Data                                   |      |  |  |  |  |  |
|       | 5.2                                     | VIRP Groundwater Data                       | 12   |  |  |  |  |  |
| 6.0   | POTE                                    | POTENTIAL RECEPTORS and EXPOSURE PATHWAYS13 |      |  |  |  |  |  |
|       | 6.1                                     |                                             |      |  |  |  |  |  |
|       | 6.2                                     | Groundwater Usage                           |      |  |  |  |  |  |
|       | 6.3                                     |                                             |      |  |  |  |  |  |
|       | 6.4                                     | · · · · · · · · · · · · · · · · · · ·       |      |  |  |  |  |  |
|       | 6.5                                     | Risk Reduction Standards                    |      |  |  |  |  |  |
|       |                                         | 6.5.1 Soil Criteria                         |      |  |  |  |  |  |
|       |                                         | 6.5.2 Groundwater Criteria                  | 15   |  |  |  |  |  |
| 7.0   | VRP CORRECTIVE ACTIONS                  |                                             |      |  |  |  |  |  |
|       | 7.1                                     | Engineering Controls                        |      |  |  |  |  |  |
|       |                                         | 7.1.1 Soil Removal                          |      |  |  |  |  |  |
|       | 7.2                                     | Institutional Controls                      | 16   |  |  |  |  |  |
| 8.0   | GROUNDWATER FATE AND TRANSPORT MODELING |                                             |      |  |  |  |  |  |
|       | 8.1                                     | Model Parameters and Assumptions            |      |  |  |  |  |  |
|       |                                         | 8.1.1 Seepage Velocity                      |      |  |  |  |  |  |
|       |                                         | 8.1.2 Dispersivity                          |      |  |  |  |  |  |
|       |                                         | 8.1.3 Retardation Factor                    |      |  |  |  |  |  |
|       |                                         | 8.1.4 Fraction of Organic Carbon            |      |  |  |  |  |  |
|       |                                         | 8.1.5 Source Data Input Parameters          |      |  |  |  |  |  |
|       | 8.2                                     | BIOCHLOR Model Simulations                  |      |  |  |  |  |  |
|       | 0.2                                     | 8.2.1 Model Calibration                     |      |  |  |  |  |  |
|       |                                         | 8.2.2 Sensitivity Analysis                  |      |  |  |  |  |  |
|       |                                         | •                                           |      |  |  |  |  |  |

|      | 8.2.3        | BIOCHLOR Model Results                                       | 23 |
|------|--------------|--------------------------------------------------------------|----|
| 9.0  | SUMMARY O    | F COMPLIANCE STATUS                                          | 24 |
| 10.0 | SELECTED R   | REFERENCES                                                   | 26 |
|      |              |                                                              |    |
|      |              | APPENDICES                                                   |    |
| LIST | OF TABLES    |                                                              |    |
|      | Table 1:     | Groundwater Elevation Data                                   |    |
|      | Table 2:     | Groundwater Analytical Data - VOCs                           |    |
|      | Table 3:     | Groundwater Analytical Data – Natural Attenuation Parameters |    |
| LIST | OF FIGURES   |                                                              |    |
|      | Figure 1:    | Site Vicinity / Topographic Map                              |    |
|      | Figure 2:    | Site Plan                                                    |    |
|      | Figure 3:    | Potentiometric Surface Map – January 2014                    |    |
|      | Figure 4:    | Potentiometric Surface Map – February 2015                   |    |
|      | Figure 5:    | Groundwater Quality Map – January 2014                       |    |
|      | Figure 6:    | Groundwater Quality Map – February 2015                      |    |
|      | Figure 7:    | Geologic Cross Section – A-A'                                |    |
|      | Figure 8:    | Geologic Cross Section – B-B'                                |    |
| APPE | NDICES       |                                                              |    |
|      | Appendix A – | Warranty Deed with Legal Description and Tax Plat Map        |    |
|      | Appendix B – | Executed Uniform Environmental Covenant                      |    |
|      | Appendix C - | Laboratory Analytical Results                                |    |
|      | Appendix D – | BIOCHLOR Model Data – Calibration                            |    |
|      | Appendix E – | BIOCHLOR Model Data - Sensitivity Analysis                   |    |
|      | Appendix F – | BIOCHLOR Model Data – Simulated Concentrations               |    |
|      | Appendix G - | BIOCHLOR Natural Attenuation Screening Protocol Worksheet    |    |
|      | Appendix H – | Summary of Professional Engineer Hours                       |    |
|      |              |                                                              |    |

# REGISTERED PROFESSIONAL CERTIFICATION

"I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.

Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring, I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division.

The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Name:

Signature:

Date: 17 FE6 7016

Georgia Stamp

# CERTIFICATION OF COMPLIANCE STATEMENT

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate that information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gather the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, included the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the risk reduction standards of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that the soil at this site/property is in compliance with Type 1 risk reduction standards and the groundwater at the site is in compliance with the Type 1 risk reduction standards with an executed Uniform Environmental Covenant in place for the property.

Signature

Trasdar Hors Hubb

Typed / Printed Name

SENIOR Proder

Title

02-18-16

**Date** 

## COMPLIANCE STATUS REPORT

MARTHA'S DRY CLEANER
HSI Site No. 10764
4608 Skidaway Road
Savannah, Chatham County, Georgia

Terracon Project No. ES147018 February 12, 2016

# 1.0 INTRODUCTION

This Voluntary Remediation Program (VRP) Compliance Status Report (CSR) is being submitted on behalf of Bible Baptist Church, Inc. (Bible Baptist Church) for the former Martha's Dry Cleaner site (HSI No 10764) located at 4608 Skidaway Road, Savannah, Georgia (property) as shown in Figure 1. The subject property is an approximately 1.5-acre parcel of land, previously identified on the Chatham County Tax Assessor's website as Tax Parcel ID 2-0120-01-001C, which is currently a portion of Tax Parcel ID 2-0120-01-004 and makes up the campus of Bible Baptist Church. Bible Baptist Church, Inc. acquired the subject property in October 2004. The Chatham County tax map and warranty deed information are provided in Appendix A. A copy of the Executed Uniform Environmental Covenant is provided in Appendix B.

Bible Baptist submitted a Voluntary Investigation and Remedial Plan (VIRP) Application to the Georgia Environmental Protection Division (EPD) in October 2011. The EPD approved the application and accepted Bible Baptist Church as a participant in the Georgia VRP in a letter dated February 17, 2012.

Based on conversations between Terracon Consultants, Inc. (Terracon) and EPD in May 2015, the EPD agreed that the submission of the Environmental Covenant mechanism, a revised BIOCHLOR model, and a CSR would be appropriate to achieve site closure. As such, this CSR serves to document Bible Baptist Church's compliance with Type 1 Risk Reduction Standards (RRS) for soil and Type 1 RRS for groundwater with an Executed Uniform Environmental Covenant in place for the site. This CSR submission therefor requests delisting the property from the Georgia Hazardous Site Inventory (HIS).

## 2.0 BACKGROUND

The former Martha's Dry Cleaner site (HSI No 10764) is located at 4608 Skidaway Road, Savannah, Georgia (property) as shown in Figure 1. The property is bound to the north by a church building and parking lot owned by Bible Baptist Church. The property is bound to the

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



east by LaRoche Avenue and Savannah State University, which is located beyond LaRoche Avenue. The property is bound to the south by the Bible Baptist Church campus and a residential property owned by Thomas and Gretchen Alnutt. The property is bound to the west by Skidaway Road and residential properties. The property is located in an area of mixed land use with mostly residential, commercial, and retail properties.

According to the Corrective Plan Addendum dated September 22, 2006, issued by S&ME, historically, the property was developed and operated from 1986 to 2000 as a small shopping center that included Martha's Dry Cleaner which rented the space until July 31, 2000. A number of environmental assessments had been conducted on the property between 1996 and 2008, which revealed the presence of PCE and TCE as contaminants of concern in soil and groundwater. The property was listed on the Hazardous Site Inventory on May 2003 as site number 10764.

The following previous assessments and remediation efforts have been conducted at the subject site:

- Phase II Subsurface Investigation, prepared by Allied Environmental Consultants, Inc., dated July 2, 1996
- Phase II Environmental Site Assessment, prepared by LAW Engineering, dated April 29, 2002
- Memorandum from Michael Medlock of Georgia Environmental Protection Division (EPD) on HSI Listing Recommendation for Martha's Dry Cleaner dated May 5, 2003.
- Soil Delineation Report, prepared by EMC, Inc., dated March 15, 2005.
- Corrective Action Plan, prepared by S&ME. Inc., dated December 2005.
- Corrective Action Plan Addendum, prepared by S&ME, Inc., dated September 22, 2006.
- Remediation Activities Report, prepared by WPC, dated November 14, 2008
- Administrative Order No. EPD-HSR-559 issued by the Georgia EPD to Discount Auto Parts, LLC and cc to Bible Baptist Church, Inc., dated July 8, 2011.
- Voluntary Remediation Plan Application, dated October 27, 2011, prepared on behalf of Bible Baptist Church by Terracon.
- 2012 Voluntary Investigation and Remediation Plan Field Activities Summary, dated September 10, 2012, prepared on behalf of Bible Baptist Church by Terracon.
- Voluntary Investigation and Remediation Plan and Application comment response letter, dated February 20, 2014, prepared on behalf of Bible Baptist Church by Terracon.
- Semi-Annual Status Report, dated February 20, 2014, prepared on behalf of Bible Baptist Church by Terracon.

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



 Annual Status Report, dated February 27, 2015, prepared on behalf of Bible Baptist Church by Terracon.

The following paragraphs summarize the previous work completed at the subject site.

On March 31, 2003, Mr. J. Cary Lester of Discount Auto Parts issued a release notification for concentrations of PCE in soil and groundwater that exceeded the reportable quantities. PCE contamination at the property is believed to be related to the dry cleaning operations at the former Martha's Dry Cleaner located on the property. On May 5, 2003, Mr. Michael Medlock of the Georgia EPD issued a memorandum recommending HSI listing for Martha's Dry Cleaner. On May 30, 2003, Mr. Harold F. Reheis of the Georgia EPD issued a letter stating that property was listed on the HSI.

EMC Engineering (EMC) conducted an assessment to delineate the soil on the property. The results of this assessment were presented in a report dated March 15, 2005 for Bible Baptist Church. EMC delineated the PCE contaminated soil at the site with respect to the Georgia EPD Type 1 Risk Reduction Standard for PCE (0.5 mg/kg). EMC determined that the horizontal extent of PCE contamination was approximately 0.4 acres.

S&ME conducted additional soil and groundwater assessment in October 2005. The results of this assessment were presented in a report dated December, 2005. Five (5) soil borings were advanced using direct-push Geoprobe™ technology. Groundwater samples were collected from these soil boring locations and analyzed for Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), and Resource Conservation and Recovery Act (RCRA) Metals. S&ME recommended that additional soil and groundwater investigation were to be conducted to determine if metal contaminants were present in the soil and groundwater at the property.

S&ME collected groundwater samples from seventeen (17) groundwater monitoring wells on May 22 and 23, 2006. The sampling event showed that seven (7) volatile organic compounds (PCE, TCE, toluene, cis-1,2-DCE, trans-1,2-DCE, 1,1,2-trichlorethane, and xylenes) were detected in the groundwater samples. Soil samples were also collected from four (4) soil boring locations. The only VOC compound detected in the soil was acetone, which was known as a common laboratory contaminant. The four soil samples were also analyzed for RCRA metals. Arsenic, barium, chromium, lead, mercury, and silver were detected in the soil samples collected. Type 3 and 4 Risk Reduction Standards (RRSs) were calculated for all regulated constituents detected in groundwater and soil samples collected. The results of this assessment identified PCE and TCE as the primary contaminants of concern at the subject site. In addition, the assessment also recommended that the soils exceeding the established RRSs be delineated. Results of S&ME's assessment were provided to the Georgia EPD.

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



According to the Remediation Activities Report dated November 14, 2008, prepared by WPC, soil delineation and removal activities were performed at the subject property on June 18, 2008 until July 2, 2008. A total of 1,764.5 tons of contaminated soil was removed from the property and were disposed of at a permitted Subtitle D landfill. During the soil excavation activities, three (3) continuous air monitoring stations were set up to sample for contaminant vapors emanating from the soil excavation. The report concluded that the confirmation soil sampling showed that the soils located on the subject property had been effectively remediated to levels below the Type 1 risk reduction standards (RRSs). The results of these investigations were provided to the Georgia EPD. The Georgia EPD issued a letter dated April 20, 2010 concurring that the on-site soils met the residential Type 1 RRSs cleanup standards.

On October 2011, a Voluntary Investigation and Remediation Plan (VIRP) and Application was submitted to the Georgia EPD for the site. The site was accepted into the Voluntary Remediation Program (VRP) by the Georgia EPD based on the VIRP acceptance letter dated February 17, 2012. EPD granted the property owner a one (1) year extension to fulfill the requirements detailed in their February 17, 2012 letter. Because of the one (1) year extension, Terracon submitted a summary letter dated September 10, 2012 to Georgia EPD that included the most recent groundwater sampling data and a site plan with the location of the newly installed groundwater monitoring well (MW-24).

Terracon Consultants, Inc. (Terracon) submitted a Voluntary Remediation Program Semi-Annual Status Report to the Georgia EPD on February 20, 2014. This report documented field work conducted at the site from August 2012 through January 2014. A site-wide groundwater sampling event was conducted on January 27, 2014 through January 29, 2014. The groundwater samples were analyzed for carbon disulfide, trans-1,2-DCE, cis-1,2-DCE, TCE, 1,1,2-trichloroethane, and PCE. The groundwater samples were also analyzed for natural attenuation parameters in order to determine the rate of biotransformation at the site and to ensure that monitored natural attenuation (MNA) was a viable option for remediation at the site.

Laboratory analysis of the groundwater samples indicated that all VOC concentrations were either below the reporting limit of 1  $\mu$ g/L or below the approved Type 1 RRS of 5  $\mu$ g/L, with the exceptions of PCE concentrations in MW-21-S and MW-24. Although above the Type 1 RRS, PCE concentrations were shown to be stable or decreasing. The natural attenuation parameter results indicated limited evidence of anaerobic biodegradation (reductive dechlorination) of the chlorinated organics at the site.

A revised BIOCHLOR fate and transport model utilizing site specific parameters was included in the 2014 Voluntary Remediation Program Semi-Annual Status Report. The objective of this model was to understand the fate and transport of the groundwater plume in the absence of a source, since the source area soils have been previously remediated. This model was also used to determine whether MNA was a valid method of corrective action. The revised BIOCHLOR model indicated that PCE concentrations at the Type 1 RRS of 5  $\mu$ g/L will travel

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



300 to 320 feet (approximately 56 feet beyond the property boundary) downgradient from the source area in the next 20 years.

Comments from the Georgia EPD in reference the above-mentioned report were submitted to Bible Baptist Church, Inc. (BBC) in a letter dated March 21, 2014. A brief summary of this comment letter is presented below:

- BBC may switch to annual sampling and reporting for wells MW-19, MW-21-S, and MW-24 beginning in January 2015. Collection of MNA parameters during subsequent sampling events will be no longer required.
- Vertical delineation has been satisfied by the installation and sampling of MW-21D.
   Horizontal delineation is complete except for the area of MW-24, which is slightly above the PCE Type 1 RRS. BBC may defer delineation to evaluate future monitoring results.
- A Uniform Environmental Covenant (UEC) to restrict the use of groundwater on the affected parcel will be required as part of the final site remedy.

In a letter dated January 27, 2015, the Georgia EPD stated that the UEC submitted for the former Martha's Dry Cleaners site had been approved and the fully executed original was enclosed with the letter. In accordance with O.C.G.A. 44-16-8, the executed UEC was filed with the Superior Court of Chatham County and recorded in the clerk's deed records on February 12, 2015. A copy of the executed UEC is included in Appendix B.

The February 2015 groundwater monitoring event was conducted in accordance with the Georgia EPD letter dated March 21, 2014 and the provisions outlined in the executed UEC. The entire monitoring well network was gauged for depth to water data pursuant to the development of a potentiometric surface map. Groundwater samples were collected from monitoring wells MW-19, MW-21-S, and MW-24 and submitted to the laboratory for analysis.

The laboratory analytical data indicated the presence of PCE in the groundwater samples collected from MW-19, MW-21-S, and MW-24. PCE concentrations exceeded the Type 1 RRS in MW-21-S (163  $\mu$ g/L) and MW-24 (5.27  $\mu$ g/L). No other constituents were detected at concentrations in excess of the Type 1 RRS.

PCE concentrations exceed the Type 1 RRS in two (2) wells (MW-21-S and MW-24). The PCE concentrations in MW-21-S and MW-24 have steadily decreased since the September 2011 monitoring event. Since the January 2014 monitoring event, the PCE concentration in MW-21-S has reduced from 188  $\mu$ g/L to 163  $\mu$ g/L (13.3% decrease). The PCE concentration in MW-24 has reduced from 6.82  $\mu$ g/L to 5.27  $\mu$ g/L (22.7% decrease). No other constituents were detected at concentrations in excess of the Type 1 RRS.

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



The fate and transport model revised utilizing the February 2015 data and comments provided by the Georgia EPD. Based on the model results, PCE concentrations in excess of the Type 1 RRS should not impact off-site residential properties across Skidaway Road.

# 3.0 PROPERTY SETTING

Protection and remediation of groundwater resources require an understanding of processes that affect fate and transport of contaminant in the subsurface environment. This understanding ultimately allows the development of efficient remediation of the property. The complex factors that control the movement of contaminants in groundwater would require an understanding of the property setting.

# 3.1 Physical Setting

The site topography is relatively flat with the exception of two dry retention ponds located on the eastern portion of the property. The property is bound to the north by a church building and parking lot owned by Bible Baptist Church. The property is bound to the east by LaRoche Avenue and Savannah State University, which is located beyond LaRoche Avenue. The property is bound to the south by the Bible Baptist Church campus and a residential property owned by Thomas and Gretchen Alnutt. The property is bound to the west by Skidaway Road and residential properties. The property is located in an area of mixed land use with mostly residential, commercial, and retail properties.

## 3.2 Site Specific Geology

The Bible Baptist Church campus lies in the Coastal Plain Province of Georgia, an area underlain by a wedge of unconsolidated sediments beginning at the fall line and thickening to the southeast. The Coastal Plain is relatively level topographically and is highly dissected by streams. The area is underlain by a sequence of Cretaceous and younger sedimentary rocks resting on a basement of much older igneous, metamorphic and/or sedimentary rocks.

The borings completed at the property identified the shallow subsurface material as very stiff sand to clayey sand to an approximate elevation of 10 feet underlain by silty sands to an approximate elevation of -20 feet. The shallow geologic cross section is presented in Figures 4 and 5.

# 3.3 Site Specific Hydrology

The below subsections contain a summary of geomorphic, stratigraphic, and hydrogeologic information pertaining to a 25 mile radius of the subject site. Geologic data for this area are

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



based on numerous published reports, on observations made during our field investigation, and discussions with other researchers familiar with the geology and hydrogeology of the area.

# 3.3.1 Stratigraphy

The stratigraphy of the Coastal Plain of Georgia and Chatham County has been described by numerous authors (e.g., Herrick, 1961; Herrick and Vorhis, 1963; Counts and Donsky, 1963; Furlow, 1969; Chowns and Williams, 1983; Clarke et al., 1990; Weems and Edwards, 2001; Williams and Gill, 2010; and Clarke et al., 2011) and is summarized in the following paragraphs. The area stratigraphic units are discussed in ascending order, from the deepest Paleocene units to the surficial Holocene deposits. Cretaceous and pre-Cretaceous rock units are typically found at depths of several thousand feet below ground surface in the area, and therefore only a general description of the lithologic character is included.

# 3.3.1.1 Cretaceous and pre-Cretaceous Stratigraphy

Pre-Cretaceous strata underlying the area are considered "basement" rocks. These "basement" rocks consist of igneous intrusive rocks and low-grade metamorphic rocks of Paleozoic age, and sedimentary rocks and volcanic rocks of Triassic to Early Jurassic Age (Chowns and Williams, 1983). Upper Cretaceous sediments consist of inter-bedded sands and clayey silts at depths of 1,600 feet below ground surface (Herrick, 1961).

## 3.3.1.2 Paleocene Stratigraphy

Paleocene units in the area mark the beginning of a regional transgression of the sea that lasted through the late Eocene (Clarke et al., 1990). Paleocene units unconformably overlie strata of Late Cretaceous age. The Clayton Formation and the Cedar Keys Formation make up the Paleocene units in the area. The upper portion of the Clayton Formation is a hard, sandy glauconitic, fossiliferous limestone, while the remaining portion of the formation consists of glauconitic sand, argillaceous sand, and small amounts of medium-to-dark gray clay (Clarke et al., 1990). The Cedar Keys Formation is a Paleocene carbonate-evaporite facies. The Cedar Keys Formation consists of thick beds of anhydrite and dolomite (Clarke et al., 1990).

## 3.3.1.3 Eocene Stratigraphy

The early Eocene Oldsmar Formation unconformably overlies the Paleocene Clayton Formation (Clarke et al., 1990). Glauconitic limestone and dolomite are characteristic lithologies of the Oldsmar Formation (Miller, 1986; Clarke et al., 1990). The Oldsmar Formation may also contain an upper layer of sand in some areas (Clarke et al., 1990).

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



The middle Eocene Avon Park Formation unconformably overlies the Oldsmar formation (Miller, 1986; Clarke et al., 1990). The Avon Park, a glauconitic dolomite and limestone, has a thickness in the range of 700 to 500 feet in the Chatham County area.

The Ocala Limestone is a massive, fossiliferous limestone. Fossils identified in the Ocala include bryozoan remains, foraminiferal tests, and mollusk shells (Furlow, 1969; Miller, 1986; Clarke et al., 1990). The Ocala Limestone unconformably overlies the dolomite and limestone of the Avon Park Formation (Furlow, 1989; Krause and Randolph, 1989; and Clarke et al., 1990). The thickness of the Ocala is more than 200 feet thick, and in some areas exceeds 400 feet (Clarke et al., 1990).

# 3.3.1.4 Oligocene Stratigraphy

Buff-colored, porous fossiliferous (foraminiferal tests, micrite, and non-particulate ubiquitous phosphate) limestone describe the sediments of Oligocene age (Clarke et al., 1990). Huddleston (1988) named these sediments the Lazaretto Creek Formation and the Tiger Leap Formation. Weems and Edwards (2001) refined the descriptions of the two formations. The Lazaretto Creek Formation includes the lower Oligocene sediments in the study area and the Tiger Leap Formation includes the upper Oligocene sediments marked by an increase in phosphate. The abundance of miliolid foraminifera in the Oligocene sediments is used to differentiate the unit from the underlying Ocala Limestone, and the absence of particulate phosphate is used to differentiate the overlying Miocene carbonate sediments.

## 3.3.1.5 Miocene Stratigraphy

There are three units of Miocene age in Chatham County. These units have been described lithologically and by geophysical markers by several authors (Furlow, 1969; Huddleston, 1988; Clarke et al., 1990; Weems and Lewis, 2001). The three (3) layers are lithologically similar and are only differentiated based on stratigraphic position, geophysical characteristics, and limited paleontologic evidence (Clarke et al., 1990).

The lowermost Miocene unit in the Chatham County area was designated as Unit C by Clarke and others (1990). Unit C is correlative to the Parachucla Formation of Huddleston (1988) and the Tampa Limestone Equivalent of Furlow (1969). Typically, only the lower portion of Unit C is found in the area, which is generally a sandy, phosphatic dolomite or limestone (Clarke et al., 1990). The middle clay and upper sandy layers have been removed by erosion (Clarke et al., 1990).

The middle Miocene unit has been designated as Miocene Unit B (Miller, 1986, and Clarke et al., 1990). Unit B is correlative to the Hawthorn Formation of Counts and Donsky (1963) and Miller (1986); the Marks Head Formation of Woolsey (1977) and Huddlestun (1988). The Marks Head Formation name has been used for this study after the work of Weems and Edwards

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



(2001). The basal carbonate layer on Unit B typically consists of olive-green dolomite and limestone that contains very fine to coarse quartz sand, shiny brown to black phosphatic sand, and contains some fossils, typically mollusk molds and shark teeth. (Furlow, 1969; Clarke et al., 1990). Distinguishing the basal layer of Unit B from Unit C is difficult because both Unit C and Unit B are lithologically similar, therefore requiring paleontological evidence and/or borehole geophysical logs (Clarke et al., 1990). The two (2) basal units are juxtaposed because the middle and upper clastic layers of Unit C have been eroded away (Clarke et al., 1990). The middle layer of Unit B typically consists of olive-green phosphatic silty clay and clayey silt and grades upward to the upper sandy layer (Furlow, 1969; and Clarke et al., 1990). The upper sandy unit of Unit B typically consists of poorly sorted, very fine to coarse sand and locally a thin very dense dolomite layer (Furlow, 1969; and Clarke et al., 1990). Unit B (Hawthorn Formation) ranges in thickness from 20 to 55 feet thick (Furlow, 1969).

Miocene Unit A overlies Unit B and is included in the Hawthorn Formation of Counts and Donsky (1963) and Miller (1986), and correlates with the Coosawhatchie Formation of Woolsey (1977) and Huddleston (1988). The name Coosawhatchie Formation is adopted for this study based on the work of Weems and Edwards (2001). The Coosawhatchie Formation contains two (2) members. The basal layer, which is the Tybee Phosphorite Member, consists of a sandy phosphatic limestone and dolomite with some fossils (Clarke et al., 1990). In Chatham County, clay is the matrix material surrounding most of the phosphate grains instead of dolomite (Clarke et al., 1990). The sand in the basal unit generally consists of very fine to coarse quartz and brown to black phosphate. The middle clay layer consists of fossiliferous clay and silt laminae and the upper sand unit consists of a very fine to coarse, poorly sorted sand (Clarke et al., 1990). The upper portion of this unit is equivalent to the Berryville Clay Member. Unit A is about 20 feet thick in the Savannah Area.

## 3.3.1.6 Pliocene, Pleistocene, and Holocene Stratigraphy

Sediments of Pliocene age are generally accepted as absent in Chatham County, with Pleistocene sediments unconformably overlying Miocene sediments (Herrick, 1965; Furlow, 1969; and Clarke et al., 1990). Pleistocene sediments typically consist of arkosic sand and gravel with discontinuous clay beds. Basal Pleistocene sediments contain reworked olive-green clay from the underlying Miocene units (Furlow, 1969). Lignitic and fossiliferous clay and micaceous sandy sediment ranging in thickness from 10 to 60 feet are typical of Pleistocene sediments. The Penholoway Formation is the principal surficial Pleistocene deposit in Chatham County (Weems and Edwards, 2001. The Penholoway is one of many remnants of former shoreline complexes through the area, which were the result of numerous transgressions and regressions of the sea, the result of extensive glaciations in North American during the Pleistocene Epoch.

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



# 3.3.2 Local Hydrogeology

Hydrologic units in Chatham County, Georgia include (in descending order), the surficial aquifer system, consisting of the water-table zone, upper confined zone, and lower confined zone (Clarke, 2003); the Brunswick aquifer system, consisting of the upper Brunswick and lower Brunswick aquifers (Clarke et al., 1990); and the Upper Floridan aquifer (Miller, 1986).

At the subject site, the surficial aquifer system is present from land surface to 120 feet below land surface (BLS) (Edwards and Weems, 2001). For this study, the surficial aquifer is undifferentiated; however the surficial aquifer is typically informally divided into a water-table zone, an upper confined zone, and a lower confined zone. These water-bearing zones are separated by clay confining units. The "water-table" zone is the zone that is intersected by onsite groundwater monitoring wells. The confined zones are present below 40 feet BLS and consist mostly of fine to coarse sand, interbedded with clay and silt. The thickness of the upper confined zone is approximately 80 feet. The confining unit underlying the surficial aquifer system is identified on natural-gamma radiation logs by the A-marker horizon, which is present just above the upper Brunswick aquifer (Clarke et al., 1990).

The undifferentiated Miocene aquifer extends from 160 to 215 feet bls and consists of poorly sorted, fine to coarse, slightly phosphatic and dolomitic, quartz sand and micritic limestone with partially cemented, mostly fine to medium grained, sandy limestone. The bottom of the aquifer was determined by the location of the C-marker horizon, which coincides with the top of the Upper Floridan aguifer (Clarke et al., 1990).

The principal source for all drinking water uses in the coastal area of Georgia is the Floridan aquifer system. The Floridan aquifer system is composed of carbonate rocks of varying permeability (Clarke et al., 1990; Clark et al., 2011). There are several water-bearing zones within the Floridan aquifer system that are separated by layers of relatively dense limestone and dolostone that act as semi confining units (Krause and Randolph, 1989; Clarke et al., 1990; Williams and Gill, 2010).

The Chatham County area, the two shallowest water bearing zones of the five that comprise Floridan aquifer system are part of the upper Floridan aquifer (McCollum and Counts, 1964; Krause and Randolph, 1989; Clark et al., 1990; Williams and Gill, 2010). The upper Floridan aquifer is overlain by a confining unit consisting of layers of silty clay and dense phosphatic Oligocene dolomite identified by a distinct response on gamma-ray logs (Clarke et al., 1990). Clarke and others (1990) identified the base of the confining unit as the C-marker horizon. The C-marker is approximately the top of the upper Floridan aquifer in the project area and is present at a depth of 235 feet (Clarke et al., 1990). The C-marker horizon is present near the top of the Suwannee Limestone in the study area; while the D-marker horizon is present at the top of the Ocala Limestone at a depth of 300 feet in the study area.

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



# 4.0 REGULATED SUBSTANCES

Results of past soil and groundwater assessment activities indicated the presence of substances regulated under the Hazardous Site Response Act (HSRA) in soil and groundwater at the property. The regulated substances identified in groundwater at the property include: carbon disulfide (CAS No. 75-15-0), 1,1,2-trichloroethane (CAS No. 79-00-5), trichloroethene (CAS No. 79-01-6), trans-1,2-dichloroethene (CAS No. 156-60-5), cis-1,2-dichloroethene (CAS No. 156-59-2), and tetrachloroethene (PCE) (CAS No. 127-18-4).

# 5.0 VIRP ASSESSMENT ACTIVITIES

Assessment and/or remediation activities have been conducted from 2006 through 2015. The data collected during these investigations and the hydrogeology and receptor surveys have been summarized in various submittals to the HSRA program and include the documents referenced in Section 2.

## 5.1 Soil Data

The soil contamination at the site was documented in the March 2005 EMC Engineering (EMC) assessment of the subject site. The results of this assessment were presented in a report dated March 15, 2005 for Bible Baptist Church. EMC delineated the PCE contaminated soil at the site with respect to the Georgia EPD Type 1 Risk Reduction Standard for PCE (0.5 mg/kg). EMC determined that the horizontal extent of PCE contamination was approximately 0.4 acres.

Additional assessment was conducted by S&ME October 2005. The results of this assessment were presented in a report dated December, 2005. Five (5) soil borings were advanced using direct-push Geoprobe™ technology. Groundwater samples were collected from these soil boring locations and analyzed for Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), and Resource Conservation and Recovery Act (RCRA) Metals. S&ME recommended that additional soil and groundwater investigation were to be conducted to determine if metal contaminants were present in the soil and groundwater at the property.

The impacted soils were been delineated and remediated in 2006 to 2008. The remaining soils located on the subject property have levels below the Type 1 RRSs for the constituents of concern. According to the Remediation Activities Report dated November 14, 2008, prepared by WPC, soil delineation and removal activities were performed at the subject property on June 18, 2008 until July 2, 2008. A total of 1,764.5 tons of contaminated soil was removed from the property and were disposed of at a permitted Subtitle D landfill. During the soil excavation activities, three (3) continuous air monitoring stations were set up to sample for contaminant vapors emanating from the soil excavation. The report concluded that the confirmation soil

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



sampling showed that the soils located on the subject property had been effectively remediated to levels below the Type 1 risk reduction standards (RRSs). The results of these investigations were provided to the Georgia EPD. The Georgia EPD issued a letter dated April 20, 2010 concurring that the on-site soils met the residential Type 1 RRSs cleanup standards.

## 5.2 VIRP Groundwater Data

Terracon Consultants, Inc. (Terracon) submitted a Voluntary Remediation Program Semi-Annual Status Report to the Georgia EPD on February 20, 2014. This report documented field work conducted at the site from August 2012 through January 2014. A site-wide groundwater sampling event was conducted on January 27, 2014 through January 29, 2014. The groundwater samples were analyzed for carbon disulfide, trans-1,2-DCE, cis-1,2-DCE, TCE, 1,1,2-trichloroethane, and PCE. The groundwater samples were also analyzed for natural attenuation parameters in order to determine the rate of biotransformation at the site and to ensure that monitored natural attenuation (MNA) was a viable option for remediation at the site.

Laboratory analysis of the groundwater samples indicated that all VOC concentrations were either below the reporting limit of 1  $\mu$ g/L or below the approved Type 1 RRS of 5  $\mu$ g/L, with the exceptions of PCE concentrations in MW-21-S and MW-24. Although above the Type 1 RRS, PCE concentrations were shown to be stable or decreasing. The natural attenuation parameter results indicated limited evidence of anaerobic biodegradation (reductive dechlorination) of the chlorinated organics at the site.

The February 2015 groundwater monitoring event was conducted in accordance with the Georgia EPD letter dated March 21, 2014 and the provisions outlined in the executed UEC. The entire monitoring well network was gauged for depth to water data pursuant to the development of a potentiometric surface map. Groundwater samples were collected from monitoring wells MW-19, MW-21-S, and MW-24 and submitted to the laboratory for analysis. The potentiometric surface maps for the January 2014 and February 2015 monitoring events are included as Figures 3 and 4, respectively.

PCE concentrations exceed the Type 1 RRS in MW-21-S (163  $\mu$ g/L) and slightly exceed Type 1 RRS in MW-24 (5.27  $\mu$ g/L). The PCE concentrations in MW-21-S and MW-24 have steadily decreased since the September 2011 monitoring event. Since the January 2014 monitoring event, the PCE concentration in MW-21-S has reduced from 188  $\mu$ g/L to 163  $\mu$ g/L (13.3% decrease). The PCE concentration in MW-24 has reduced from 6.82  $\mu$ g/L to 5.27  $\mu$ g/L (22.7% decrease). No other constituents were detected at concentrations in excess of the Type 1 RRS. The groundwater quality maps for the January 2014 and February 2015 monitoring events are included as Figures 5 and 6, respectively. Laboratory results are included in Appendix C.



# 6.0 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS

# 6.1 Surface Water Pathway

Typical surface water bodies that could be impacted include streams, rivers, lakes, canals, wetland areas, and detention/retention ponds. There are no streams, rivers, ponds, canals, wetland areas that are connected to the property and therefore have not been impacted. There are two storm water retention ponds located on the subject site. Both areas are dry with the exception during heavy rain events. Since the site is partially paved with asphalt and concrete and the contaminated soil has been removed, storm water flowing to the retention ponds will not come in contact with contamination. Therefore there is no potential exposure to regulated constituents in the surface water and the pathway is considered incomplete.

# 6.2 Groundwater Usage

The subject property is zoned commercial. Nearby property uses along Skidaway Road and LaRoche Avenue consist of various structures that include retail, commercial, and residential properties. The Savannah State University campus is located beyond LaRoche Avenue. Unauthorized access to the property is controlled through an enclosure provided by a fence surrounding the property.

In accordance with the Groundwater Pollution Susceptibility Map of Georgia, the subject site is located in an "Average or Higher Groundwater Pollution susceptibility Area". A groundwater site inventory performed by the USGS and a site reconnaissance have established the location of withdrawal points for public drinking water wells within a 2-mile radius and private drinking water wells within a 0.5-mile radius of the site. Twenty (20) public drinking water wells and no private drinking water wells were identified within the defined radii.

The 20 public drinking water supply wells were presented in Figure 8 of the VIRP application documentation, dated October 27, 2011. The current groundwater flow direction is to the southwest. Therefore, the closest down gradient point of exposure (City of Savannah Well #2) is located approximately 2,880 feet southwest of the point of demonstration well (MW-24).

As discussed in Section 3.3.2 above, the property is located in a hydrogeologic setting where the groundwater consists of the unconfined surficial aquifer, underlain by the upper confining unit and the upper Floridan aquifer. Drinking water wells in the coastal area are not hydraulically connected to the on-site surficial aquifer and as such the impacts to groundwater on the property do not constitute a potential groundwater receptor for human consumption and is therefore considered an incomplete pathway.

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



There are no wells onsite for either potable, industrial or irrigation purposes. Properties near the subject site are connected to municipal water supplies for potable water. A water bill from the City of Savannah demonstrating that the site is supplied with municipal water was included in Appendix C of the October 2011 VIRP. Based on the groundwater flow direction to the southwest, no drinking water wells exist in the down gradient direction that are connected to the surficial aquifer.

In addition to the human consumption pathway, commercial, industrial, and/or residential workers will not come in contact with the impacted groundwater, because of the prohibition against the use or extraction of groundwater beneath the subject property for drinking water or for any other use as evidence by the Executed Uniform Environmental Covenant for subject property, dated January 27, 2015. Therefore the exposure pathway of any worker is considered incomplete.

# 6.3 Potential Vapor Intrusion Pathway

The contaminated soil has been removed from the property and the groundwater is not contaminated in the area of any buildings located on-site, which would potentially result with contamination within the building through vapor intrusion. The direction of groundwater flow is in a direction opposite of the existing building located on-site. Bible Baptist has no activities planned or expected to take place within the plume area that would result in a vapor intrusion pathway into a future new building. Therefore, there is no potential exposure to regulated constituents by way of vapor intrusion and the pathway is considered incomplete. However, should development plans change the Executed Uniform Environmental Covenant for subject property, dated January 27, 2015 requires that an assessment of the potential for vapor intrusion be performed if development or potential development of enclosed structures occurs at the site.



# 6.4 Risk Reduction Standards and Comparison to Analytical Results

## 6.5 Risk Reduction Standards

## 6.5.1 Soil Criteria

Additional soils assessment was implemented during the VIRP implementation. No residual detections of COCs in soils were identified above the laboratory detection limits and the Type 1 RRS during VIRP implementation activities. As such, soils are in compliance with Type 1 RRS.

## 6.5.2 Groundwater Criteria

The groundwater criteria shall be the Type 1 RRS. The concentrations for all the COCs evaluated as part of the VIRP process are shown in Table 1. The laboratory analytical data indicated the presence of PCE in the groundwater samples collected from MW-19 (1.29  $\mu$ g/L), MW-21-S (163  $\mu$ g/L), and MW-24 (5.27  $\mu$ g/L). Monitoring well MW-21-S also contained a detectable concentration of TCE (1.29  $\mu$ g/L). None of the other constituents were detected at concentrations in excess of the laboratory reporting limits.

PCE concentrations exceed the Type 1 RRS in MW-21-S (163  $\mu$ g/L) and slightly exceed Type 1 RRS in MW-24 (5.27  $\mu$ g/L). The PCE concentrations in MW-21-S and MW-24 have steadily decreased since the September 2011 monitoring event. Since the January 2014 monitoring event, the PCE concentration in MW-21-S has reduced from 188  $\mu$ g/L to 163  $\mu$ g/L (13.3% decrease). The PCE concentration in MW-24 has reduced from 6.82  $\mu$ g/L to 5.27  $\mu$ g/L (22.7% decrease). No other constituents were detected at concentrations in excess of the Type 1 RRS.

# 7.0 VRP CORRECTIVE ACTIONS

# 7.1 Engineering Controls

## 7.1.1 Soil Removal

The impacted soils were been delineated and remediated in 2006 to 2008. The remaining soils located on the subject property have levels below the Type 1 RRSs for the constituents of concern. According to the Remediation Activities Report dated November 14, 2008, prepared by WPC, soil delineation and removal activities were performed at the subject property on June 18, 2008 until July 2, 2008. A total of 1,764.5 tons of contaminated soil was removed from the property and were disposed of at a permitted Subtitle D landfill. The report concluded that the confirmation soil sampling showed that the soils located on the subject property had been effectively remediated to levels below the Type 1 risk reduction standards (RRSs). The results

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



of these investigations were provided to the Georgia EPD. The Georgia EPD issued a letter dated April 20, 2010 concurring that the on-site soils met the residential Type 1 RRSs cleanup standards.

## 7.2 Institutional Controls

Institutional controls through the use of an UEC has been used to ensure continued compliance with Type 1 RRS for soil and Type 1 RRS for groundwater and to ensure that there is no potential future risk due to consumption of groundwater, Bible Baptist Church submitted a Uniform Environmental Covenant (UEC) to the Georgia EPD in December 2014. The UEC was approved and executed by the Georgia EPD in January 2015 based on the EPD letter, dated January 27, 2015. Upon receipt of the fully executed UEC, Bible Baptist filed the covenant with the clerk of the Superior Court of Chatham County and the covenant was recorded in the clerk's deed records pursuant to O.C.G.A 44-16-8. A copy of the UEC is included in Appendix C.

The UEC includes the following Activity and/or Use Limitation(s):

- The Owner of the Property must give thirty (30) days' advance written notice to EPD of the Owner's intent to convey any interest in the Property. No conveyance of title, easement, lease, or other interest in the Property shall be consummated by the Owner without adequate and complete provision for continued monitoring, operation, and maintenance of Corrective Action. The Owner of the Property must also give thirty (30) days' advance written notice to EPD of the Owner's intent to change the use of the Property, apply for building permit(s), or propose major site work that would affect the Property. The notification shall include a certification that that requirements of the UEC were adhered to.
- Each instrument conveying an interest in the Property subject to the UEC shall contain a
  notice of the Activity and Use Limitations set forth in the UEC and shall cross-reference
  the Deed Book and Page number of the recording location of the UEC in the Chatham
  County deed records.
- The Owner will inspect the property and applicable property instruments at least annually to ensure compliance with the UEC. Annually, by no later than March 1<sup>st</sup> following the effective date of the UEC, the Owner shall complete and submit to EPD the Annual Property Evaluation Form. The report should include photographs of the property and will document maintenance and inspection activities and whether or not the activity and use limitations in the UEC are being abided by.
- Should the development or potential development of enclosed structure(s) occur at the
  property the Owner shall assess the potential for vapor intrusion with tools/methods
  approved by the Georgia EPD. If the vapor intrusion assessment indicates that the
  potential risk is above the current Georgia EPD regulatory guidance/thresholds, a vapor

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



mitigation system or barrier shall be installed and maintained in any enclosed structures built on the affected area.

- The use or extraction of groundwater beneath the Property for drinking water or for any other use shall be prohibited until HSRA regulated substances are treated to below the applicable RRS for groundwater. Any extracted groundwater from construction or utility work dewatering activities should be managed and disposed of in accordance with applicable rules and regulations. Should any dewatering of groundwater for construction or utility work purpose be necessary, a sanitary sewer system discharge permit should be acquired from the appropriate agency (City of Savannah and/or Chatham County). The extracted water should be pretreated to the City of Savannah and/or Chatham County requirements prior to discharge into the sanitary sewer system. Extracted groundwater should not be discharged into the storm water system or surface waters. All management of extracted groundwater should be done in accordance with all applicable local, state, and federal rules and regulations. All construction and dewatering workers that may be exposed to groundwater must have appropriate HAZWOPER training and the work must be conducted in accordance with a Health and Safety plan prepared by a qualified professional.
- Groundwater monitoring maybe required for up to two (2) years or a lesser period if approved by EPD unless the Director determines that further monitoring is necessary to protect human health and the environment at wells MW-19, MW-21S, and MW-24. The results are to be submitted by March 1<sup>st</sup> of each year.

## 8.0 GROUNDWATER FATE AND TRANSPORT MODELING

The BIOCHLOR fate and transport model submitted with the VIRP (October 2011) was revised in 2014 based on both the Georgia EPD review comments received in a letter dated February 17, 2012 and the collection of additional groundwater and on-site soil quality data. The objective in using the BIOCHLOR model was to understand the fate and transport of the groundwater plume in the absence of a source, since the source area soils have been previously remediated and to help determine whether Monitored Natural Attenuation is a valid method of corrective action. The BIOCHLOR model has been further revised based on the February 2015 monitoring data and comments provided by the Georgia EPD.

The following sections provide a summary of the revised model parameters, assumptions, and the BIOCHLOR modeling procedures. Results and conclusions are presented at the end of this section. Documentation of calculations and calibration model results is contained in Appendix D (Calibration), Appendix E (Sensitivity Analysis results), and Appendix F (Simulated Concentrations).



# 8.1 Model Parameters and Assumptions

A summary of the preliminary contaminant transport calculations necessary for fulfilling the data input requirements of the BIOCHLOR model is presented in Table 8.1. Actual aquifer specific data collected from the site was used to calculate the majority of the parameters discussed in the following sections.

**Table 8.1: BIOCHLOR Model Input Parameters** 

| Data Type         | Parameter                                           | Value                                                                                       | Source of Data                                                                                                                                                                                                |  |
|-------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | Hydraulic Conductivity (K)                          | 3.3x10-3 cm/sec                                                                             | Slug test results                                                                                                                                                                                             |  |
| Hydrogeology      | Hydraulic Gradient (i)                              | 0.006 ft/ft                                                                                 | September 2011 static water level data                                                                                                                                                                        |  |
|                   | Effective Porosity                                  | 0.10                                                                                        | BIOCHLOR User's Manual v1.0                                                                                                                                                                                   |  |
| Dispersion        | Longitudinal Dispersivity                           | 13.971 ft                                                                                   | Calculated based on 300 ft plume length in BIOCHLOR using the equation from (Xu and Eckstein, 1995; Al-Suwaiyan, 1996)                                                                                        |  |
| Dispersion        | Transverse Dispersivity                             | 0.10                                                                                        | 0.1 x longitudinal dispersivity (Gelhar et al., 1992)                                                                                                                                                         |  |
|                   | Vertical Dispersivity                               | 0.00                                                                                        | Assume vertical dispersivity is zero                                                                                                                                                                          |  |
|                   | Individual Retardation<br>Factors                   | PCE - 3.07<br>TCE - 2.33<br>DCE - 1.87<br>VC - 1.65<br>ETH - 7.59                           | Calculated from R=1+K <sub>oc</sub> *f <sub>oc</sub> *(ρ <sub>b</sub> /n)                                                                                                                                     |  |
|                   | Common Retardation Factor                           | 2.33                                                                                        | Median Value                                                                                                                                                                                                  |  |
| A .l ti           | Aquifer Matrix Bulk Density                         | 1.5 kg/L                                                                                    | Estimated                                                                                                                                                                                                     |  |
| Adsorption        | foc                                                 | 0.00145                                                                                     | On-site total organic carbon soil sample results.                                                                                                                                                             |  |
|                   | Koc                                                 | PCE - 94.94 L/kg<br>TCE - 60.7 L/kg<br>DCE - 39.6 L/kg<br>VC - 21.73 L/Kg<br>ETH - 302 L/kg | koc USEPA Region 3 Regional Screening<br>Level Tables, dated November 2013.<br>The Koc value used for ethene was the<br>default value from the BIOCHLOR User's<br>Manual v1.0.                                |  |
| Biotransformation | Biotransformation Rate Coefficient (1/yr)           |                                                                                             | Based on calibration to field data using a simulation time of 16 years. Started with literature values and then adjusted model to fit field data                                                              |  |
| Diotransionnation | PCE> TCE                                            | 1.20                                                                                        |                                                                                                                                                                                                               |  |
|                   | Model Area Length                                   | 500 Feet                                                                                    | Based on area of affected groundwater                                                                                                                                                                         |  |
| General           | Model Area Width                                    | 400 Feet                                                                                    |                                                                                                                                                                                                               |  |
|                   | Simulation Time                                     | 16 years                                                                                    | From 1996 (first release) to 2012                                                                                                                                                                             |  |
|                   | Source Thickness                                    | 13 feet                                                                                     | Based on geologic logs and monitoring data                                                                                                                                                                    |  |
| Course Date       | Source Width                                        | 10 feet                                                                                     | A source width of 10 feet was selected given the extensive volume of excavated soil and recent laboratory analytical data.                                                                                    |  |
| Source Data       | Source Concentrations                               | PCE - 5.2 mg/L<br>(1996)                                                                    | An exact release date for the Martha's Dry Cleaner facility is not known. Terracon extrapolated backwards from the source decay rate (k <sub>s</sub> ) plot, resulting in a source concentration of 5.2 mg/L. |  |
| Actual Data       | Distance from Source                                | See Table 8.2.1 in text                                                                     |                                                                                                                                                                                                               |  |
| Outsut            | Centerline Concentration                            | on See Figures in Appendix D and F                                                          |                                                                                                                                                                                                               |  |
| Output            | Array Concentration See Figures in Appendix D and F |                                                                                             |                                                                                                                                                                                                               |  |



8.1.1 Seepage Velocity

The velocity of groundwater movement through the surficial aquifer, or seepage velocity, was calculated using the following equation from Fetter (2001):

$$v_{x} = -\frac{Ki}{\eta}$$

Where

v<sub>x</sub> is the seepage velocity (ft/yr)

K is the hydraulic conductivity (ft/yr)

i is the hydraulic gradient (ft/ft)

η is the effective porosity (dimensionless)

The hydraulic conductivity data was presented in the VIRP indicated that the average site hydraulic conductivity is 2.8x10<sup>-3</sup> cm/sec or 7.82 ft/day, which was used in the original BIOCHLOR model presented in the VIRP (October 28, 2011). However, to be conservative the highest hydraulic conductivity value measured on-site of 3.3x10<sup>-3</sup> cm/sec or 9.27 ft/day was used for the revised BIOCHLOR model.

Based on the groundwater elevation data collected during the September 2011 monitoring event, the hydraulic gradient (i) was calculated at 0.006 ft/ft. An effective porosity ( $\eta$ ) of 0.1 was selected based on values found in the BIOCHLOR User's Manual v1.0. As such, the seepage velocity was calculated at 204.9 ft/yr.

# 8.1.2 Dispersivity

Dispersivity values used in the model were based on guidance found in the BIOCHLOR User's Manual v1.0 based on the length of the plume from the field data. The plume length for the subject site was estimated to be 300 feet based on the February 2015 groundwater sampling data. The Longitudinal dispersivity ( $\alpha_x$ ) was calculated in BIOCHLOR using the equation from (Xu and Eckstein, 1995; Al-Suwaiyan, 1996) as follows:

$$\alpha_x = 3.28 * 0.82 * \left[ log_{10} \left( \frac{L_p}{3.28} \right) \right]^{2.446}$$

Where

L<sub>p</sub> is the plume length (ft)

Based on high reliability points from Gelhar et al (1992), transverse dispersivity ( $\alpha_y$ ) is calculated below:

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



$$\alpha_{\gamma} = 0.1\alpha_{\chi}$$

Vertical dispersivity ( $\alpha_z$ ) is generally approximated at  $1x10^{-99}$  feet, based on conservative estimates.

#### 8.1.3 Retardation Factor

Concentration of dissolved contaminates can be reduced by adsorption to the aquifer media thereby retarding the flow of this contaminant through the subsurface. The retardation factor is the ratio of the groundwater seepage velocity to the rate that organic chemicals migrate in the groundwater. The adsorption to the aquifer media and resultant retardation of contaminant transport is controlled by the soil bulk density, effective porosity, organic carbon-water partition coefficient ( $K_{oc}$ ), distribution coefficient, and fraction of organic carbon ( $f_{oc}$ ) on uncontaminated soil.

As directed by the Georgia EPD in their letter, dated February 17, 2012 the following values and/or sources were used to for following input parameters:

Soil bulk density – 1.5 kg/L

K<sub>oc</sub>

Tetrachloroethene
94.94 L/kg
Trichloroethene
Dichloroethene (1,2-cis and 1,2-trans)
Vinyl Chloride
21.73 L/kg

The  $k_{oc}$  values were taken from the U.S. Environmental Protection Agency (USEPA) Region 3 Regional Screening Level Tables, dated November 2013. The  $K_{oc}$  value used for ethene was the default value from the BIOCHLOR User's Manual v1.0.

# 8.1.4 Fraction of Organic Carbon

Three (3) total organic carbon (TOC) samples were collected from the surficial aquifer matrix on January 27, 2014. The laboratory analytical results confirmed the TOC samples were collected from an uncontaminated region of the site's surficial aquifer matrix. The samples contained TOC concentrations as follows: SS-1 - 2,200 mg/kg, SS-2 - 679 mg/kg, and a laboratory J-Flagged TOC estimated value for SS-3 of 295 mg/kg. Because the samples were collected within close proximity to each other and at the same relative depth, the J-Flagged estimated concentration 295 mg/kg was determined to be an outlier The TOC concentrations from SS-1 and SS-2 were averaged to represent the site resulting in a  $f_{\rm OC}$  of 0.00145.

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



# 8.1.5 Source Data Input Parameters

As previously indicated, dry cleaning operations occurred at the site from 1986 through 2000. PCE was detected in soil and groundwater during an investigation in 2002. During investigations conducted by S&ME in May 2006, PCE was detected at a concentration of 870  $\mu$ g/L in the vicinity of source area monitoring well MW-21S. In 2008, 1,764.5 tons of contaminated media were removed from the source area. Confirmation soil sampling indicated that PCE concentrations in excess of the Type 1 RRS had been removed. The first groundwater monitoring event post-remediation was conducted in 2011. A groundwater sample collected in 2011 from source area well MW-21-S exhibited a PCE concentration of 270  $\mu$ g/L.

The source area was modeled as a decaying single planar source, because the groundwater monitoring data since 2011 has showed evidence of a decaying source concentration and based on the past source soil remediation activities conducted at the site in the vicinity of MW-21-S. The source decay constant was calculated using the guidance in BIOCHLOR User's Manual Addendum v2.2 (March 2002). The source decay rate constant was calculated by plotting temporal aqueous concentrations in the source area well (MW-21-S) on a semi-log plot and determining the slope (concentration plot included in Appendix E). Because Excel will calculate a slope in units of 1/days, the calculated slope value was converted to units of 1/years as required by BIOCHLOR 2.2, which results in a  $k_{\rm s}$  of 0.1825/years.

An exact release date for the Martha's Dry Cleaner facility is not known. As such, Terracon assumed a release date of 1996 – 10 years following the beginning of dry cleaning operations. In order to determine an estimated source concentration, Terracon extrapolated backwards from the source decay rate plot discussed above, resulting in a source concentration of 5.2 mg/L.

A source width of 10 feet was selected given the extensive volume of excavated soil and recent laboratory analytical data. Using the historic shallowest depth to groundwater of approximately 7 feet below grade and the deepest screened interval depth of 20 feet below grade, a source vertical thickness (Z) of 13 feet was selected. A plume length of 300 feet was calculated based on the distance between MW-21-S and MW-24 along the potentiometric surface.

# 8.1.6 Natural Attenuation Screening Protocol

The Natural Attenuation Screening Protocol is a tool within the BIOCHLOR model that can aid in determining the likelihood of anaerobic biodegradation of chlorinated organics and the applicability of a 1<sup>st</sup> order decay coefficient. Natural attenuation data from the 2012, 2014, and 2015 sampling events indicates limited evidence for anaerobic biodegradation (score of 12). A copy of the Natural Attenuation Screening Protocol worksheet is included in Appendix G.



#### 8.2 BIOCHLOR Model Simulations

## 8.2.1 Model Calibration

The parameters described above, along with the groundwater analytical data from the 2006 (10 years following release) through 2015 (19 years following release) sampling events were input to the BIOCHLOR model. Although there is limited evidence of anaerobic degradation of the contaminant plume, the sequential 1<sup>st</sup> order decay curve was found to best represent site conditions. The no degradation (plug flow) model grossly over-estimated downgradient concentrations and the adjustment of site hydrogeologic conditions was deemed inappropriate. Adjusting the PCE half-life to 0.58 years resulted in model calibration.

Table 8.2.1: Summary of BIOCHLOR Calibration Results

|                | Distance                 |                  | V Aft                             | Tetrachlo                        | roethene                         |                  |
|----------------|--------------------------|------------------|-----------------------------------|----------------------------------|----------------------------------|------------------|
| Well<br>Number | from<br>Source<br>(feet) | Calendar<br>Year | Years After<br>Release<br>(Years) | Field<br>Concentration<br>(mg/L) | Model<br>Concentration<br>(mg/L) | Percent<br>Error |
|                | 0                        | 2011             | 15                                | 0.270                            | 0.3366                           | -19.79%          |
| MW-21-S        |                          | 2012             | 16                                | 0.253                            | 0.2805                           | -9.80%           |
| 10100-21-3     |                          | 2014             | 18                                | 0.188                            | 0.195                            | -3.59%           |
|                |                          | 2015             | 19                                | 0.163                            | 0.162                            | 0.62%            |
|                | 255                      | 2012             | 16                                | 0.00782                          | 0.017                            | -54.00%          |
| MW-24          |                          | 2014             | 18                                | 0.00682                          | 0.012                            | -43.17%          |
|                |                          | 2015             | 19                                | 0.00527                          | 0.010                            | -47.30%          |

The model was found to predict source area (MW-21S) concentrations within an acceptable level of accuracy. The model over-predicted concentrations within downgradient well MW-24 in each of the years used for calibration. The model calibration input and centerline results are contained in Appendix D.

# 8.2.2 Sensitivity Analysis

Sensitivity analysis was conducted to illustrate the response of the BIOCHLOR model to changes in the input parameters. Sensitivity analysis was conducted for the common retardation factor and the first order decay coefficient. Input and output information from the BIOCHLOR sensitivity analysis are contained in Appendix G.

The calibrated BIOCHLOR model utilized a common retardation factor of 2.33. Sensitivity analysis was conducted by running the model with half of the retardation factor value (1.17) and twice of this value (4.66). The predicted concentrations indicated that the 1<sup>st</sup> order decay model is moderately



sensitive to changes in the common retardation factor. The centerline concentrations of PCE at 255 feet downgradient from the source are shown in Table 8.2.2-A on the next page for each simulation.

Table 8.2.2-A: Sensitivity Analysis Results - Retardation Factor

|             | Concentrations |            |               |  |  |
|-------------|----------------|------------|---------------|--|--|
| Constituent | (mg/L)         |            |               |  |  |
| Constituent | 2X Baseline    | Baseline   | 0.5X Baseline |  |  |
|             | (R = 4.66)     | (R = 2.33) | (R = 1.17)    |  |  |
| PCE         | 0.016          | 0.010      | 0.008         |  |  |

The calibrated BIOCHLOR model also utilized a half-life of 0.58 years, which is the lowest acceptable value for PCE. As such, sensitivity analysis was conducted by multiplying this value by 2 (1.16 years) and 5 (2.90 years). The predicted concentrations indicated that the 1st order decay model was very sensitive to changes in the half-life value. The centerline concentrations of PCE at 255 feet downgradient from the source are shown in Table 8.2.2-B on the next page for each simulation.

Table 8.2.2-B: Sensitivity Analysis Results - Rate Factor

|             | Concentrations |              |              |  |  |
|-------------|----------------|--------------|--------------|--|--|
| Constituent | (mg/L)         |              |              |  |  |
| Constituent | 2X Half-life   | Baseline     | 5X Baseline  |  |  |
|             | (1.16 years)   | (0.58 years) | (2.90 years) |  |  |
| PCE         | 0.020          | 0.010        | 0.030        |  |  |

## 8.2.3 BIOCHLOR Model Results

The BIOCHLOR model was used to simulate PCE concentrations 20 years (2016), 25 years (2021), 30 years (2026), 35 years (2031), and 40 years (2036) after the assumed release date of 1996. The results of the BIOCHLOR model simulations are presented in Table 8.2.3 on the following page. As previously indicated the 1<sup>st</sup> order decay BIOCHLOR model over-predicts concentrations within well MW-24 and is thus a conservative estimate of downgradient concentrations. The model indicates that by 2021 (25 years following the assumed release date), PCE concentrations in excess of the MCL (5  $\mu$ g/L) do not extend off-site. The model predicts that PCE in the source area (MW-21S) is reduced to concentrations below the MCL within approximately 20 years (i.e. 2036; within 40 years following the release).

Based on the model results and the 2015 laboratory results from MW-24, PCE concentrations in excess of the Type 1 RRS should not extend off the subject property and impact the off-site residential properties across Skidaway Road.

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



Table 8.2.3: BIOCHLOR Model Simulation PCE Concentration Summary

| Distance from Source           | Calendar Years After Release |         | Tetrachloroethene                    |  |
|--------------------------------|------------------------------|---------|--------------------------------------|--|
| Distance from Source<br>(feet) | Calendar<br>Year             | (Years) | Model Predicted Concentration (mg/L) |  |
|                                | 2006                         | 10      | 0.8383                               |  |
|                                | 2011                         | 15      | 0.3366                               |  |
|                                | 2012                         | 16      | 0.2805                               |  |
|                                | 2014                         | 18      | 0.195                                |  |
| 0                              | 2015                         | 19      | 0.162                                |  |
| 0                              | 2016                         | 20      | 0.135                                |  |
|                                | 2021                         | 25      | 0.0543                               |  |
|                                | 2026                         | 30      | 0.0218                               |  |
|                                | 2031                         | 35      | 0.0087                               |  |
|                                | 2036                         | 40      | 0.0035                               |  |
|                                | 2012                         | 16      | 0.017                                |  |
|                                | 2014                         | 18      | 0.012                                |  |
|                                | 2015                         | 19      | 0.010                                |  |
| 255                            | 2016                         | 20      | 0.008                                |  |
| 255                            | 2021                         | 25      | 0.003                                |  |
|                                | 2026                         | 30      | 0.001                                |  |
|                                | 2031                         | 35      | 0.001                                |  |
|                                | 2036                         | 40      | <0.001                               |  |

## 9.0 SUMMARY OF COMPLIANCE STATUS

This Voluntary Remediation Program Compliance Status Report for the former Martha's Dry Cleaner site (HSI No 10764) is located at 4608 Skidaway Road, Savannah, Georgia, is submitted on behalf of Bible Baptist Church, Inc., the responsible party under the VRP.

During the course of addressing the release of dry cleaner constituents under the HSRA Program and VRP, Bible Baptist Church removed a total of 1,764.5 tons of contaminated soil was removed from the property and were disposed of at a permitted Subtitle D landfill in 2008. During the soil excavation activities, three (3) continuous air monitoring stations were set up to sample for contaminant vapors emanating from the soil excavation. Confirmation soil sampling showed that the soils located on the subject property had been effectively remediated to levels below the Type 1 risk reduction standards (RRSs). The results of these investigations were provided to the Georgia EPD. The Georgia EPD issued a letter dated April 20, 2010 concurring that the on-site soils met the residential Type 1 RRSs cleanup standards.

As part of the assessment of the release under the VRP, the horizontal and vertical extent of the groundwater has been completed under the VRP. The most recent set of groundwater data collected in February 2015 and is depicted on Figure 6. The plume extends west/southwest from the source area in the vicinity of MW-21S to the property boundary at MW-24. Groundwater concentrations of PCE in the source area in February 2015

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



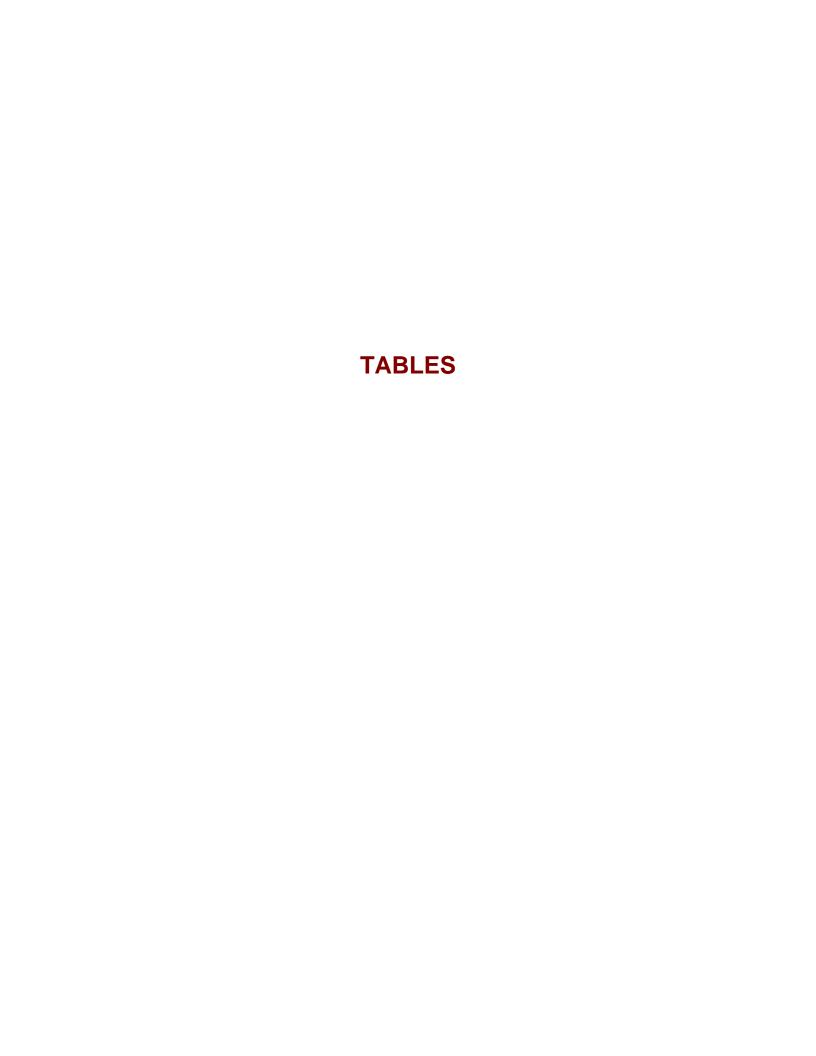
Vertical delineation has been satisfied by the installation and sampling of MW-21D. Horizontal delineation is complete except for the area of MW-24 (5.27  $\mu$ g/L), which is slightly above the PCE Type 1 RRS. A Uniform Environmental Covenant (UEC) to restrict the use of groundwater on the affected parcel will be required as part of the final site remedy.

In a letter dated January 27, 2015, the Georgia EPD stated that the UEC submitted for the former Martha's Dry Cleaners site had been approved and the fully executed original was enclosed with the letter. In accordance with O.C.G.A. 44-16-8, the executed UEC was filed with the Superior Court of Chatham County and recorded in the clerk's deed records on February 12, 2015.

The fate and transport model revised utilizing the February 2015 data and comments provided by the Georgia EPD. The model predicts that PCE in the source area (MW-21S) is reduced to concentrations below the MCL within approximately 20 years (i.e. 2036; within 40 years following the release). Based on the model results, PCE concentrations in excess of the Type 1 RRS should not extend off-site and impact residential properties across Skidaway Road.

Given the executed UEC, the trend of decreasing PCE concentrations, and the results of fate and transport modeling, Terracon recommends that the Martha's Dry Cleaner facility (EPD HSI No. 10764) be removed from the HSI. Please refer to Appendix H for details concerning the hours worked and the costs associated with the property in 2015.




## 10.0 SELECTED REFERENCES

- Chowns, T.M., and Williams, C.T., 1983, Pre-Cretaceous rocks beneath the Georgia Coastal Plain- Regional Implications: *in* Gohn, G.S., *ed.*, Studies related to the Charleston, South Carolina Earthquake of 1886-tectonics and seismicity: U.S. Geologic Survey Professional Paper, p. L1- L42.
- Clarke, J.S., Hacke, C.M., and Peck, M.F., 1990, Geology and Ground-Water Resources of the Coastal Area of Georgia: Georgia Geologic Survey Bulletin 113, 106 pages.
- Clarke, J.S., Cherry, G.C., and Gonthier, G.J., 2011, Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia: U.S. Geological Survey Scientific Investigations Report, 2011–5065, 59 p.
- Clarke, W.Z., and Zisa, A.C., 1976, *Physiographic Map of Georgia*: Georgia Department of Natural Resources, 1 Plate.
- Daniels, D.L., Zietz, I., and Popenoe, P., 1983, Distribution of Subsurface Lower Mesozoic rocks in the Southeastern United States, As interpreted from Regional Aeromagnetic and Gravity Maps: *in* Gohn, G.S., *ed.*, Studies related to the Charleston, South Carolina Earthquake of 1886-tectonics and seismicity: U.S. Geologic Survey Professional Paper, p. K1-L24.
- Faye, R.E., and Prowell, D.C., 1982, Effects of late Cretaceous and Cenozoic faulting on the geology and hydrology of the coastal plain near the Savannah River, Georgia and South Carolina: U.S. Geological Survey Open-File Report 82-156.
- Georgia Department of Natural Resources (GDNR), 1976, Geologic Map of Georgia, Atlanta, Georgia.
- Hays, W.W., and Geri, P.L., eds., 1983, A workshop on the Charleston, South Carolina, earthquake and its implications for today, in Proceedings of Conference 20: U.S. Geological Survey Open-File Report 83-843, 502 p.
- Herrick, S.M., 1961, Well Logs of the Coastal Plain of Georgia: Georgia Geologic Survey Bulletin 70, 426 p.
- Herrick, S.M., 1965, A subsurface study of Pleistocene deposits in coastal Georgia: Georgia Dept. of Natural Resources, Division of Mines, Mining, and Geology Information Circular 31, 8 p.

Martha's Dry Cleaner ■ Savannah, Chatham County, Georgia February 12, 2016 ■ Terracon Project No. ES117125



- Herrick, S.M., and Vorhes, R.C., 1963, Subsurface Geology of the Georgia Coastal Plain, Georgia: State Division Conservation, Department of Mines, Mining and Geology, Geological Survey Information Circular 25, 79 p.
- Huddlestun, P.F., 1988, A revision of the Lithostratigraphic Units of the Coastal Plain of Georgia, the Miocene through Holocene: Georgia Geologic Survey Bull 104, 162 p.
- Huddlestun, P.F., 1993, A Revision of the Lithostratigraphic Units of the Coastal Plain of Georgia: Georgia Geologic Survey Bulletin 105, p. 152.
- Krause, R.E., and Randolph, R.B., 1989, Hydrology of the Floridian Aquifer System in Southeast Georgia and Adjacent Parts of Florida and South Carolina: U.S. Geologic Survey Professional Paper 1403-D, 65 pages.
- Prowell, D.C., 1988, Cretaceous and Cenozoic tectonism on the Atlantic coastal margin, in Sheridan, R.E., and Grow, J.A., eds., The Atlantic Continental Margin; The Geology of North America: Geological Society of America, v. 1-2, p. 557-564.
- Prowell, D.C., and O'Connor, B.J., 1978, Belair fault zone; evidence of Tertiary fault displacement in eastern Georgia: Geology, v. 6, p. 681-684.
- Weems, R.E., and Edwards, L.E., 2001, Geology of Oligocene, Miocene, and Younger Deposits in the Coastal Area of Georgia: Georgia Geologic Survey Bulletin 131, 124 p.
- Williams, L.J., and Gill, H.E., 2010, Revised hydrogeologic framework of the Floridan aquifer system in the northern coastal area of Georgia and adjacent parts of South Carolina: U.S. Geological Survey Scientific Investigations Report 2010–5158, 103 p., 3 plates.



# Martha's Dry Cleaner

4608 Skidaway Road Savannah, Chatham County, Georgia HSI Site No. 10764

## Table 1: SUMMARY OF WATER LEVEL DATA

| Well Number | Date Measured | Top of Casing Elevation (feet) | Depth to Water<br>(feet) | Groundwater Elevation (feet) |
|-------------|---------------|--------------------------------|--------------------------|------------------------------|
|             | 18-Oct-2011   | 99.45                          | 9.20                     | 90.25                        |
| MW-19       | 1-Aug-2012    |                                | 10.56                    | 88.89                        |
| 10100-19    | 27-Jan-2014   | 99.40                          | 8.15                     | 91.30                        |
|             | 6-Feb-2015    |                                | 6.49                     | 92.96                        |
|             | 18-Oct-2011   |                                | 7.67                     | 91.41                        |
| MW-20       | 1-Aug-2012    | 99.08                          | 8.59                     | 90.49                        |
| 10100-20    | 27-Jan-2014   | 99.06                          | 7.62                     | 91.46                        |
|             | 6-Feb-2015    |                                | 5.80                     | 93.28                        |
|             | 18-Oct-2011   |                                | 9.28                     | 90.72                        |
| MW-21-S     | 1-Aug-2012    | 100.00                         | 10.65                    | 89.35                        |
| 10100-21-5  | 27-Jan-2014   | 100.00                         | 8.56                     | 91.44                        |
|             | 6-Feb-2015    |                                | 6.88                     | 93.12                        |
|             | 18-Oct-2011   | 100.13                         | 12.67                    | 87.46                        |
| MW-21-D     | 1-Aug-2012    |                                | 13.82                    | 86.31                        |
| IVIVV-2 I-D | 27-Jan-2014   |                                | 11.60                    | 88.53                        |
|             | 6-Feb-2015    |                                | 9.97                     | 90.16                        |
|             | 18-Oct-2011   | 98.90                          | 7.31                     | 91.59                        |
| MW-22       | 1-Aug-2012    |                                | 8.63                     | 90.27                        |
| 10100-22    | 27-Jan-2014   |                                | 7.32                     | 91.58                        |
|             | 6-Feb-2015    |                                | 5.53                     | 93.37                        |
|             | 18-Oct-2011   |                                | 8.96                     | 90.15                        |
| MW-23       | 1-Aug-2012    | 99.11                          | 10.43                    | 88.68                        |
| IVIVV-23    | 27-Jan-2014   | 99.11                          | 7.93                     | 91.18                        |
|             | 6-Feb-2015    |                                | 6.15                     | 92.96                        |
|             | 1-Aug-2012    |                                | 11.94                    | 88.31                        |
| MW-24       | 27-Jan-2014   | 100.25                         | 9.27                     | 90.98                        |
|             | 6-Feb-2015    |                                | 7.56                     | 92.69                        |

| Prepared by | R. Luke Bragg          | Date | 2/23/15 |  |
|-------------|------------------------|------|---------|--|
| Reviewed by | Stewart A. Dixon, P.G. | Date | 2/23/15 |  |
|             |                        |      |         |  |

## NOTES:

On-site benchmark of 100.00 feet

#### Martha's Dry Cleaner

4608 Skidaway Road Savannah, Chatham County, Georgia HSI Site No. 10764

#### Table 2 - SUMMARY OF GROUNDWATER TESTING DATA

| Well Number           | Date Sampled | Carbon disulfide<br>μg/L | trans-1,2-Dichloroethene<br>µg/L | cis-1,2-Dichloroethene<br>μg/L | Trichloroethene<br>μg/L | 1,1,2-Trichloroethane<br>μg/L | Tetrachloroethene<br>μg/L | Vinyl Chloride<br>μg/L |
|-----------------------|--------------|--------------------------|----------------------------------|--------------------------------|-------------------------|-------------------------------|---------------------------|------------------------|
| MW-19                 | 9/23/2011    | <1.0                     | <1.0                             | 10.2                           | 1.86                    | <1.0                          | 16.6                      | NT                     |
|                       | 8/1/2012     | <1.0                     | <1.0                             | 1.96                           | <1.0                    | <1.0                          | 3.39                      | NT                     |
| 10100-19              | 1/27/2014    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | 1.46                      | NT                     |
|                       | 2/6/2015     | NT                       | <1.0                             | <1.0                           | <1.0                    | <1.0                          | 1.29                      | <1.0                   |
|                       | 9/23/2011    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | <1.0                      | NT                     |
| MW-20                 | 7/31/2012    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | <1.0                      | NT                     |
|                       | 1/27/2014    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | <1.0                      |                        |
|                       | 9/23/2011    | <2.0                     | <2.0                             | 7.96                           | 4.28                    | <2.0                          | 270                       | NT                     |
| MW-21-S               | 8/1/2012     | <2.0                     | <2.0                             | 7.56                           | 6.35                    | <2.0                          | 253                       | NT                     |
| IVIVV-21-5            | 1/27/2014    | <1.0                     | <1.0                             | <1.0                           | 1.51                    | <1.0                          | 188                       | NT                     |
|                       | 2/6/2015     | NT                       | <1.0                             | <1.0                           | 1.29                    | <1.0                          | 163                       | <1.0                   |
| D-MW-21-S*            | 9/23/2011    | <2.0                     | <2.0                             | 9.08                           | 5                       | <2.0                          | 324                       | NT                     |
|                       | 9/23/2011    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | 10.5                      | NT                     |
| MW-21-D               | 8/1/2012     | <0.1                     | <0.1                             | <0.1                           | <0.1                    | <0.1                          | <0.1                      | NT                     |
|                       | 1/27/2014    | 3.57                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | 1.57                      | NT                     |
|                       | 9/23/2011    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | <1.0                      | NT                     |
| MW-22                 | 8/1/2012     | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | <1.0                      | NT                     |
|                       | 1/27/2014    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | <1.0                      | NT                     |
| DUP 1 (MW-22)*        | 1/27/2014    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | <1.0                      | NT                     |
|                       | 9/23/2011    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | <1.0                      | NT                     |
| MW-23                 | 8/1/2012     | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | <1.0                      | NT                     |
|                       | 1/27/2014    | <1.0                     | <1.0                             | <1.0                           | <1.0                    | <1.0                          | 2.29                      | NT                     |
|                       | 8/1/2012     | <1.0                     | <1.0                             | 1.87                           | 1.55                    | <1.0                          | 7.82                      | NT                     |
| MW-24                 | 1/27/2014    | <1.0                     | <1.0                             | 6.2                            | 1.24                    | <1.0                          | 6.82                      | NT                     |
|                       | 2/6/2015     | NT                       | <1.0                             | <1.0                           | <1.0                    | <1.0                          | 5.27                      | <1.0                   |
| DUP-1 (MW-24)*        | 8/1/2012     | <1.0                     | <1.0                             | 1.65                           | 1.36                    | <1.0                          | 6.61                      | NT                     |
| Applicable Standard** |              | 4,000                    | 100.00                           | 70                             | 5                       | 5                             | 5                         | 2                      |

NOTES: < = Parameter not detected above the associated reporting limit

BOLD = Concentration is above the Type I Risk Reduction Standard for the Site

\* = Duplicate sample

\*\* = Georgia EPD HSRA Appendix III

NT = Parameter Not Tested

Prepared by: Reviewed by:

R. Luke Bragg Stewart A. Dixon, P.G.

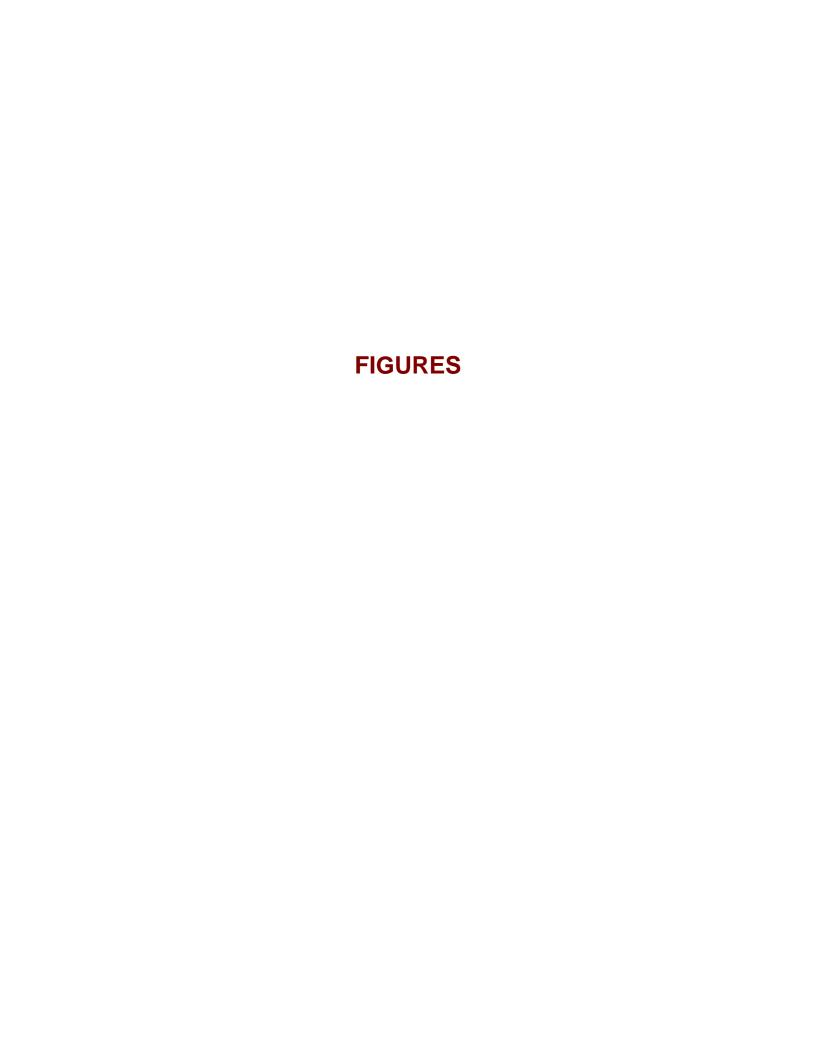
Date: 02/23/2015 Date: 02/23/2015

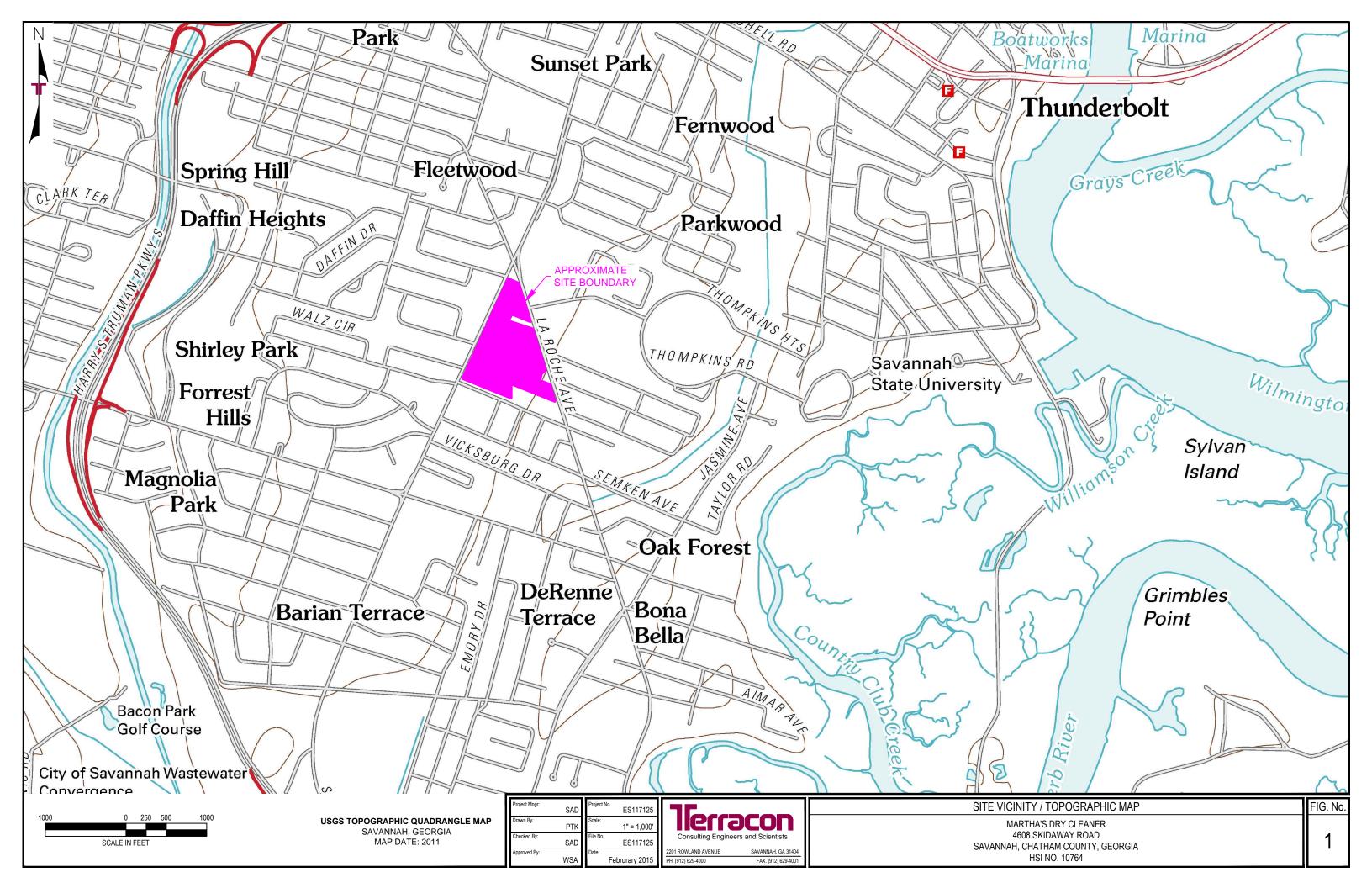
#### Martha's Dry Cleaner

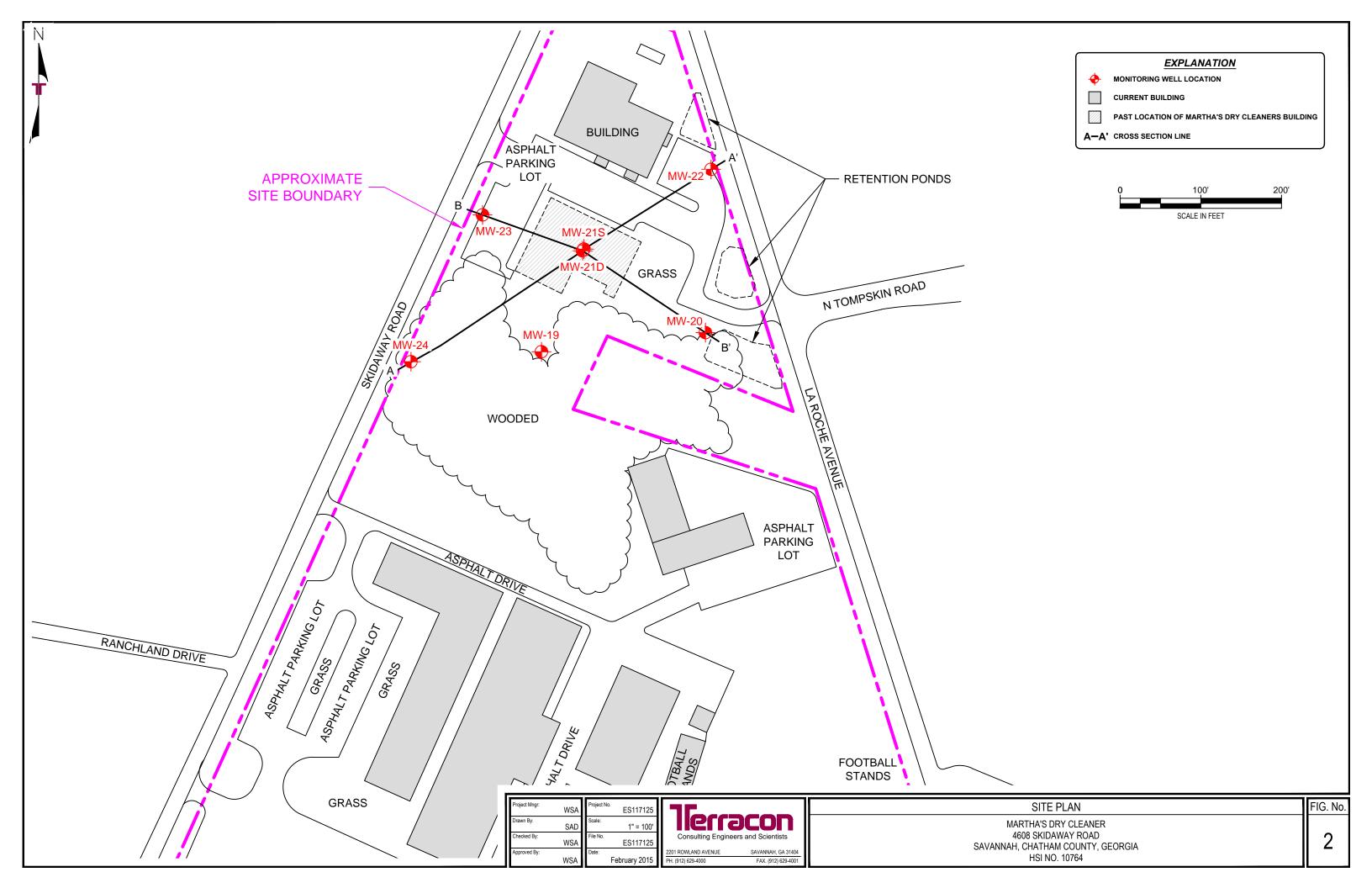
4608 Skidaway Road Savannah, Chatham County, Georgia HSI Site No. 10764

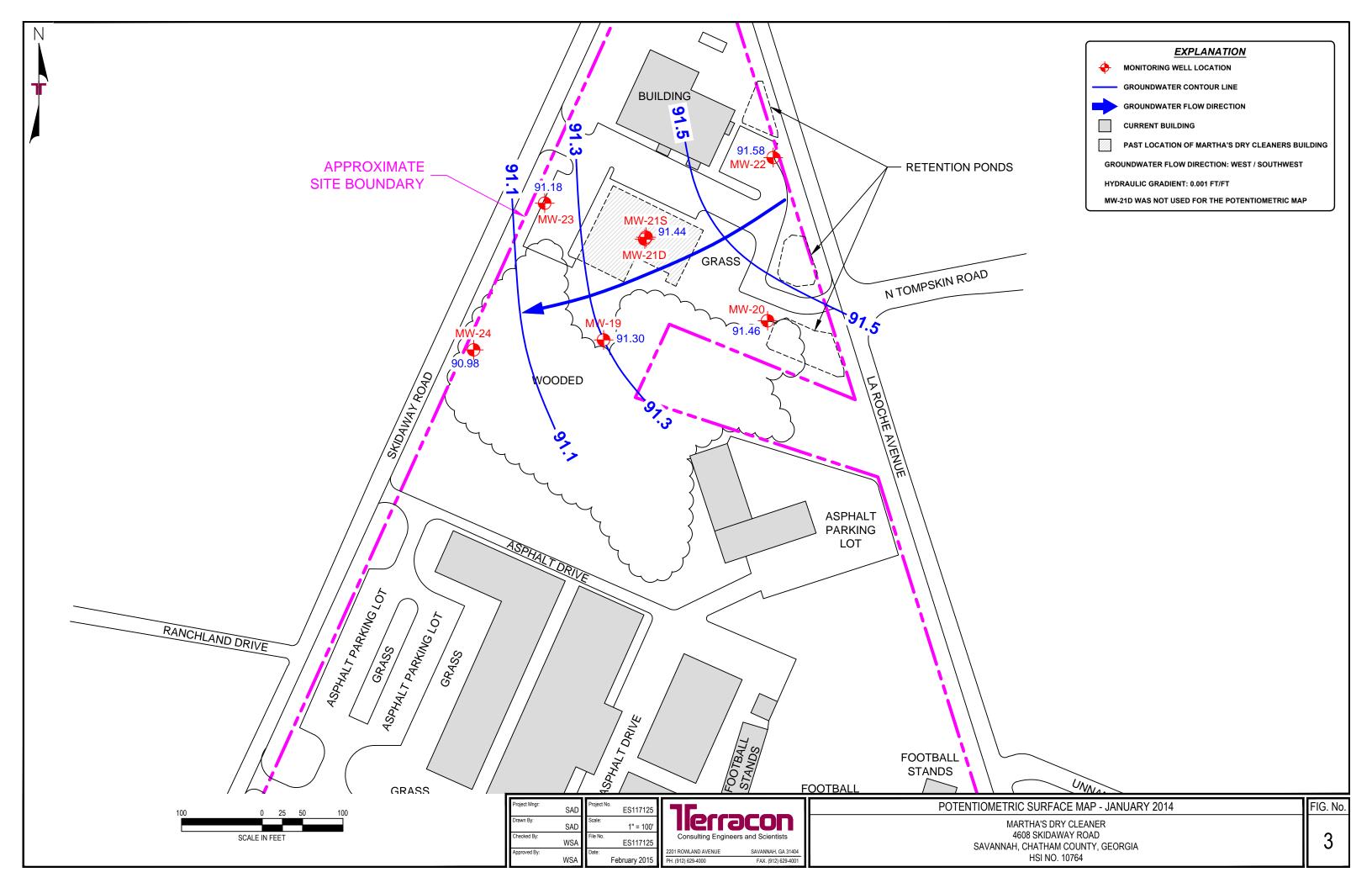
#### Table 3 - SUMMARY OF NATURAL ATTENUATION PARAMETERS ANALYTICAL DATA

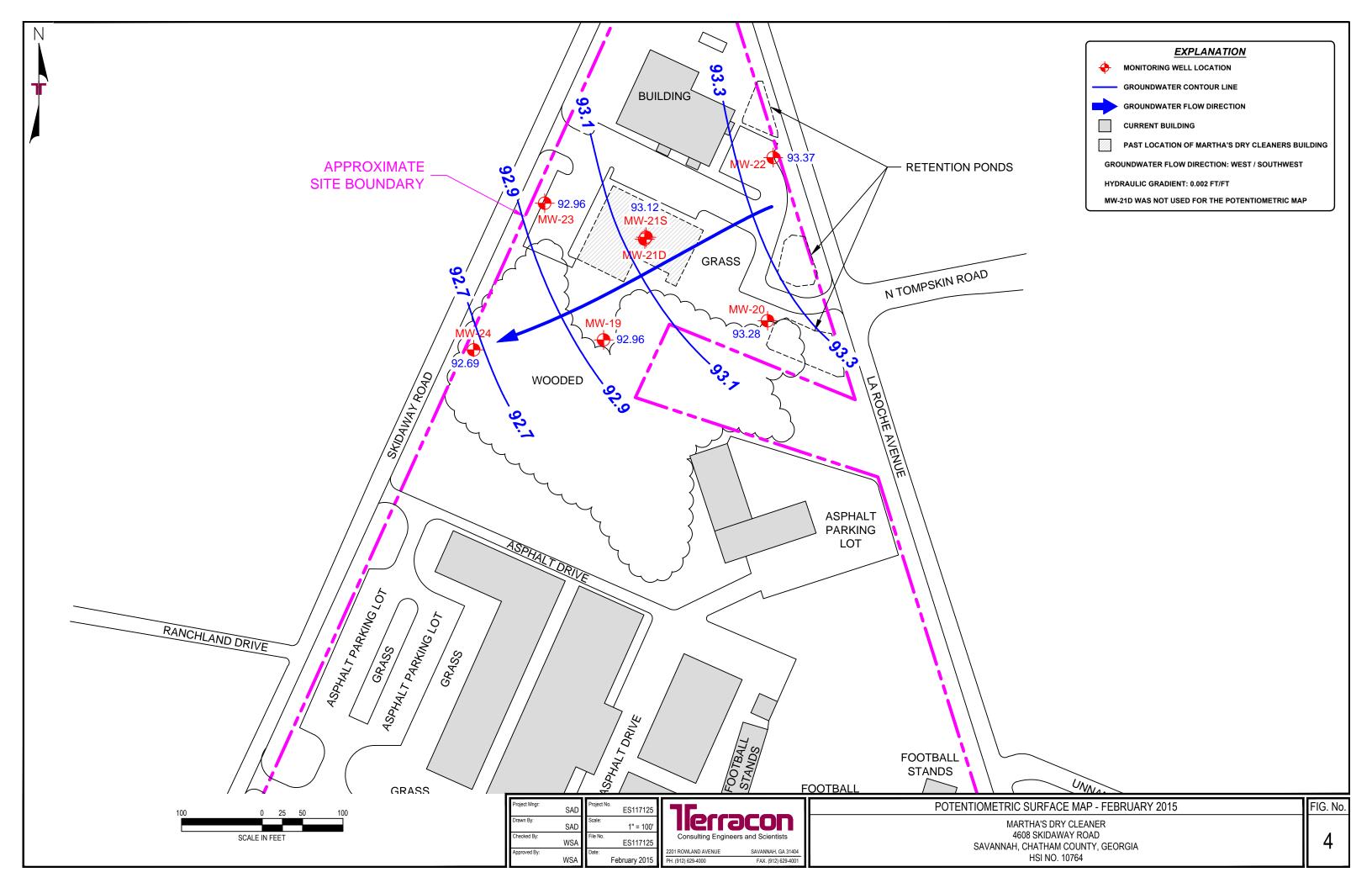
| Well Number    | Date Sampled | Alkalinity<br>mg/L | Carbon<br>Dioxide<br>mg/L | Chloride<br>mg/L | Nitrate<br>(Nitrate as N)<br>mg/L | Nitrite<br>(Nitrite as N)<br>mg/L | Sulfate<br>mg/L | Sulfide<br>mg/L | Ethane<br>µg/L | Ethene<br>μg/L | Methane<br>μg/L | Dissolved Oxygen<br>mg/L | Iron II<br>mg/L | ORP<br>±mV |
|----------------|--------------|--------------------|---------------------------|------------------|-----------------------------------|-----------------------------------|-----------------|-----------------|----------------|----------------|-----------------|--------------------------|-----------------|------------|
| MW-19          | 8/1/2012     | <20                | 232                       | 3.52             | <0.5                              | <0.02                             | 3.39            | 0.800 J         | <0.02          | 3.39           | 64              | 0.51                     | 0.24            | 144.7      |
|                | 1/27/2014    | <20                | <20                       | 13               | <0.5                              | <0.02                             | 19.3            | <1.1            | <1.0           | <1.0           | 2.2             | 1.43                     | 0.06            | -29.0      |
|                | 2/6/2015     | NT                 | NT                        | NT               | NT                                | NT                                | NT              | NT              | <2.0           | <1.0           | NT              | 0.93                     | NT              | -42.1      |
| MW-20          | 7/31/2012    | <20                | 173                       | 2.61             | <0.5                              | <0.02                             | <2.5            | 4.00            | <2.0           | <1.0           | 40              | 0.51                     | 0.11            | 171.5      |
|                | 1/27/2014    | <20                | 111                       | 3.08             | 0.543                             | <0.02                             | <5.00           | <1.1            | <1.1           | <1.0           | 0.76            | 1.02                     | 0.09            | -64.6      |
| MW-21-S 1/27/2 | 8/1/2012     | 35.6               | 333                       | 15.0             | <0.5                              | <0.02                             | 16.2            | <2.0            | <2.0           | <1.0           | 11              | 0.54                     | 0.14            | -20.3      |
|                | 1/27/2014    | 26.8               | 338                       | 13.7             | 0.695                             | <0.02                             | 30.5            | <1.1            | <1.1           | <1.0           | 0.88            | 1.20                     | 0.09            | -59.1      |
|                | 2/6/2015     | NT                 | NT                        | NT               | NT                                | NT                                | NT              | NT              | <2.0           | <1.0           | NT              | 2.84                     | NT              | -41        |
| MW-21-D        | 8/1/2012     | 25.1               | 178                       | 3.53             | <0.5                              | <0.02                             | <2.5            | 2.40            | <2.0           | <1.0           | 1,300           | 0.09                     | 0.49            | -116.1     |
|                | 1/27/2014    | 23.4               | 296                       | 3.58             | <0.5                              | <0.02                             | <5.00           | <1.1            | <1.1           | <1.0           | 320             | 0.17                     | 0.54            | -64.8      |
| MW-22          | 8/1/2012     | 21.2               | 137                       | 6.63             | 2.11                              | <0.02                             | 7.00            | 0.600 J         | <2.0           | <1.0           | 51              | 0.4                      | 0.36            | 64.1       |
| 10100-22       | 1/27/2014    | 27.6               | 215                       | 3.87             | <0.5                              | <0.02                             | 7.65            | <1.1            | <1.1           | <1.0           | 0.59            | 0.26                     | 0.06            | -73.5      |
| MW-23          | 8/1/2012     | <20                | 318                       | 10.7             | <0.5                              | <0.02                             | 140             | 0.600 J         | <2.0           | <1.0           | 6               | 0.17                     | 1.35            | 93.8       |
| MW-23          | 1/27/2014    | <20                | 231                       | 10.7             | <0.5                              | <0.02                             | 118             | <1.1            | <1.1           | <1.0           | 0.63            | 0.21                     | 0.41            | -66.9      |
| MW-24          | 8/1/2012     | 22.9               | 151                       | 7.39             | <0.5                              | <0.02                             | 16              | <2.0            | <2.0           | <1.0           | 29              | 2.22                     | 0.17            | 121.1      |
|                | 1/27/2014    | <20                | 231                       | 22.9             | <0.5                              | <0.02                             | 45.5            | 1.2             | <1.1           | <1.0           | 6.3             | 1.00                     | 0.09            | -60.5      |
|                | 2/6/2015     | NT                 | NT                        | NT               | NT                                | NT                                | NT              | NT              | <2.0           | <1.0           | NT              | 0.37                     | NT              | -59.1      |

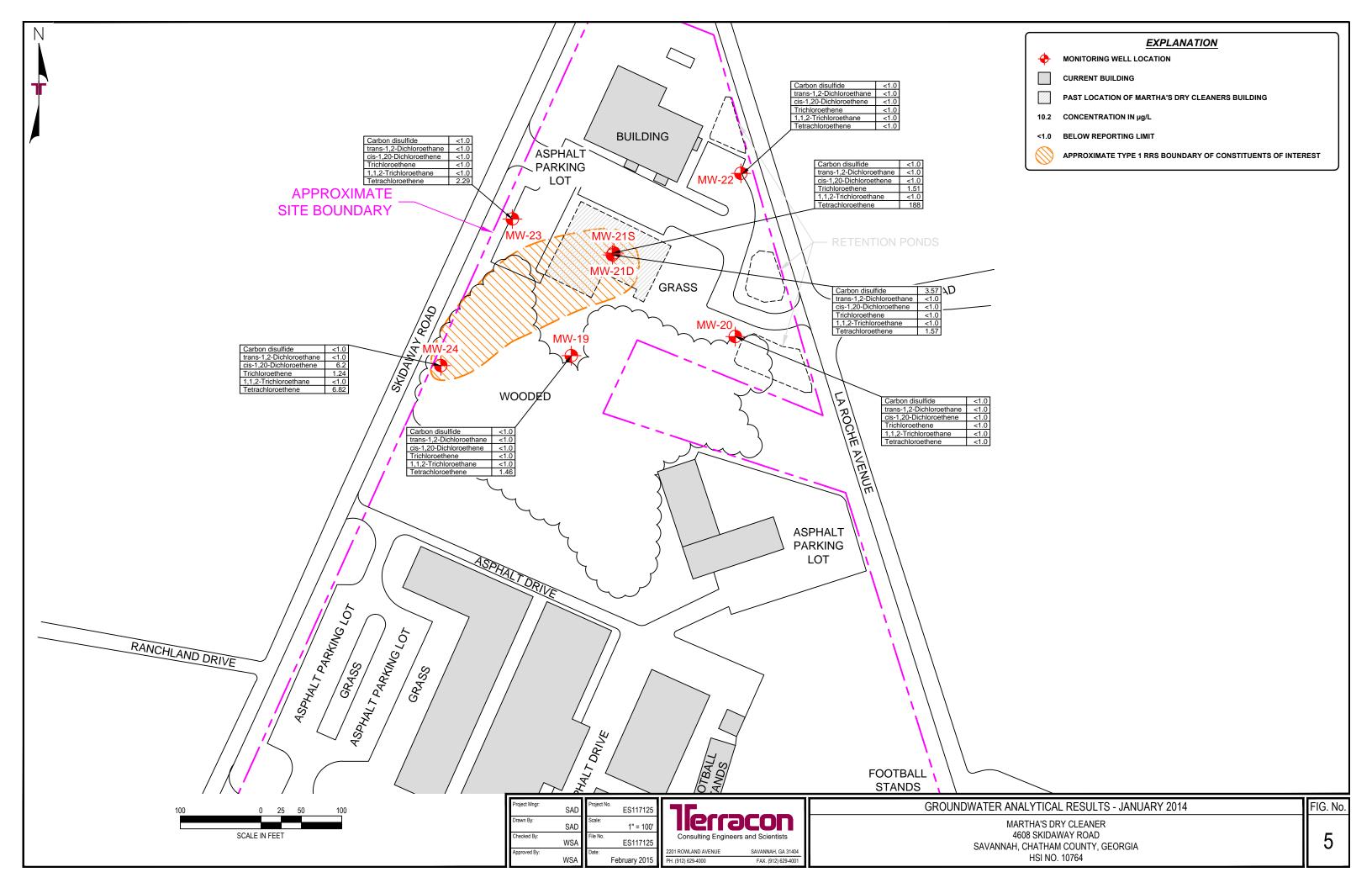

#### NOTES:

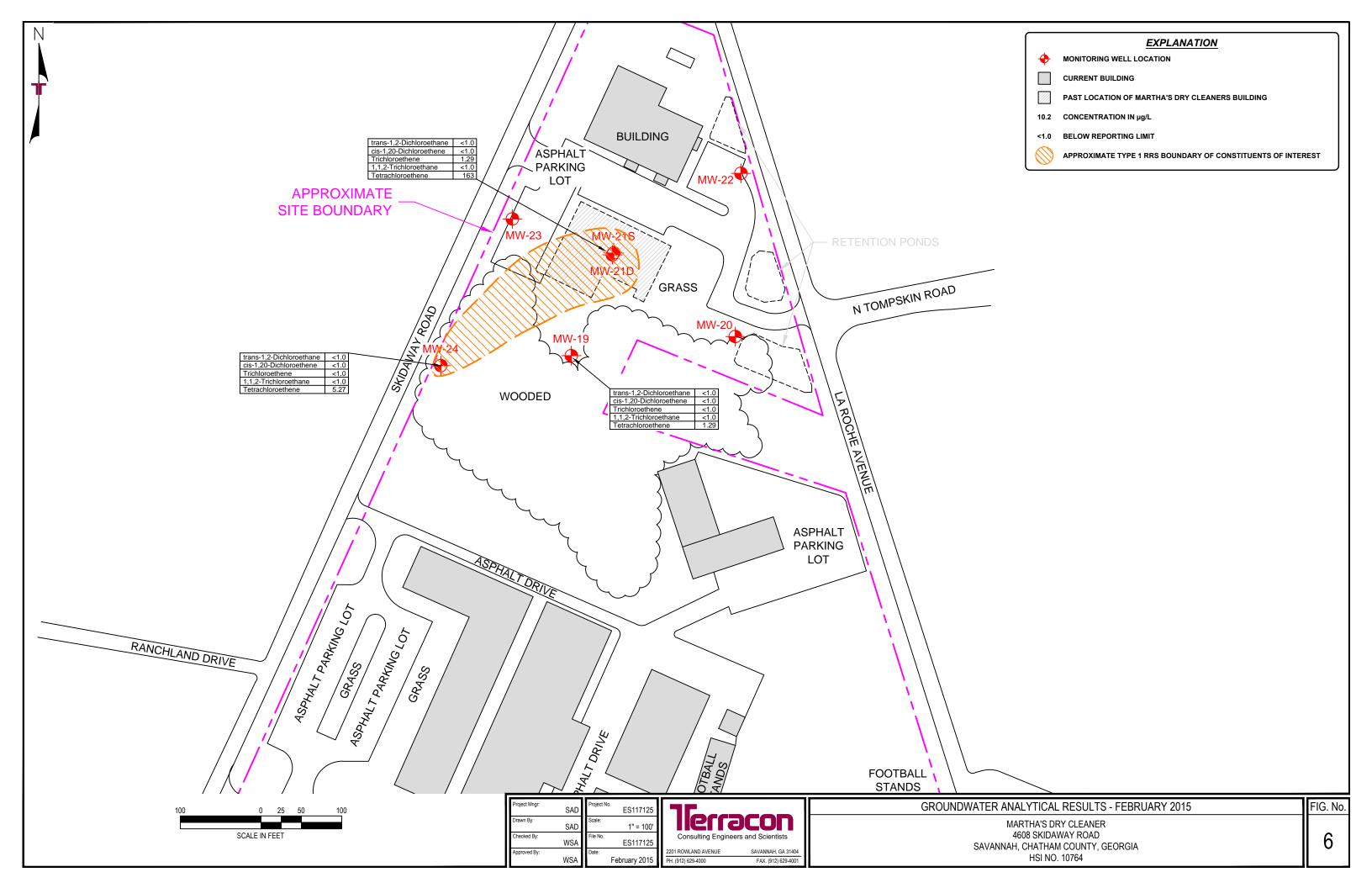

< = Parameter not detected above the associated reporting limit

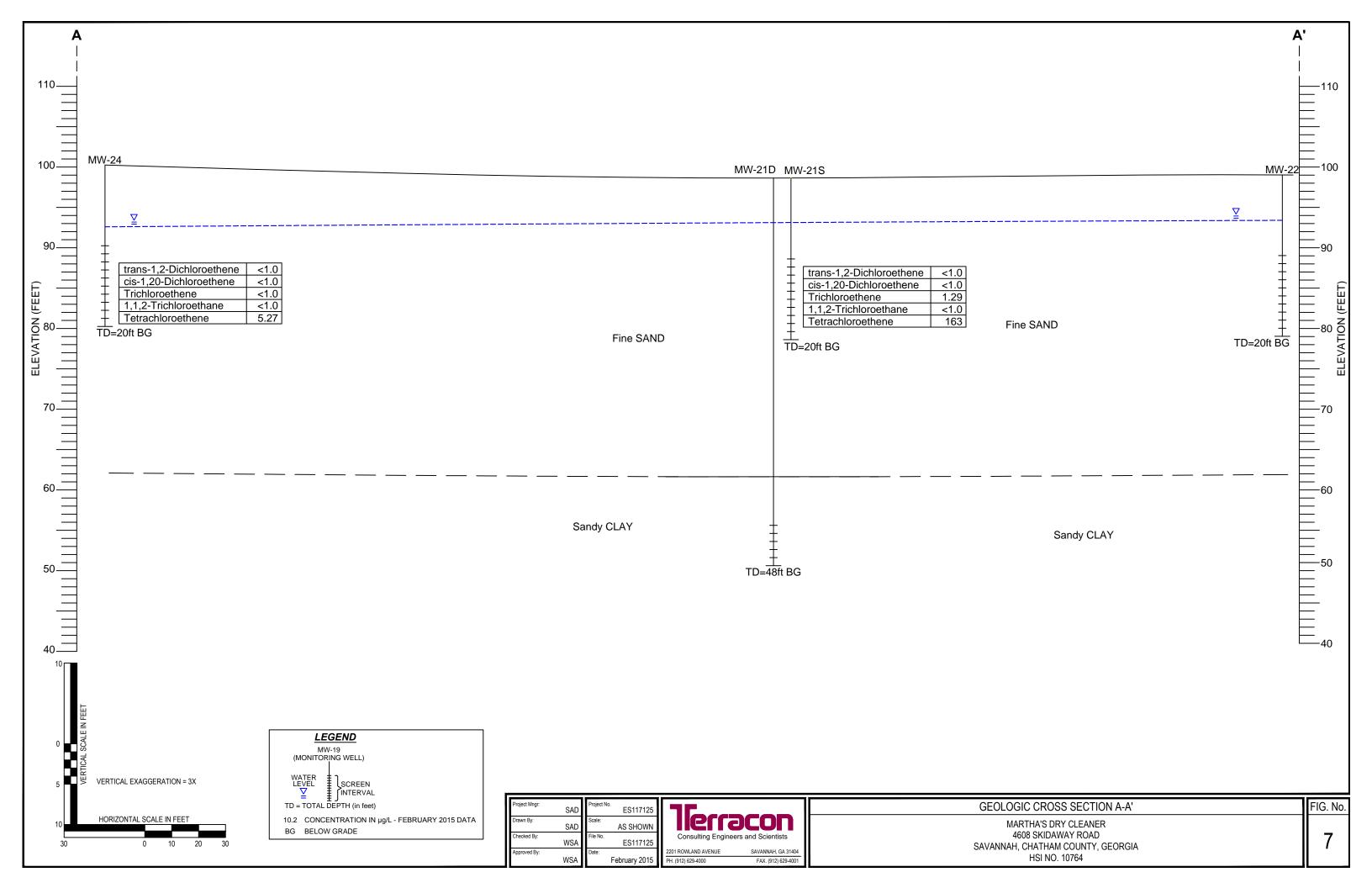

NT = Parameter Not Tested

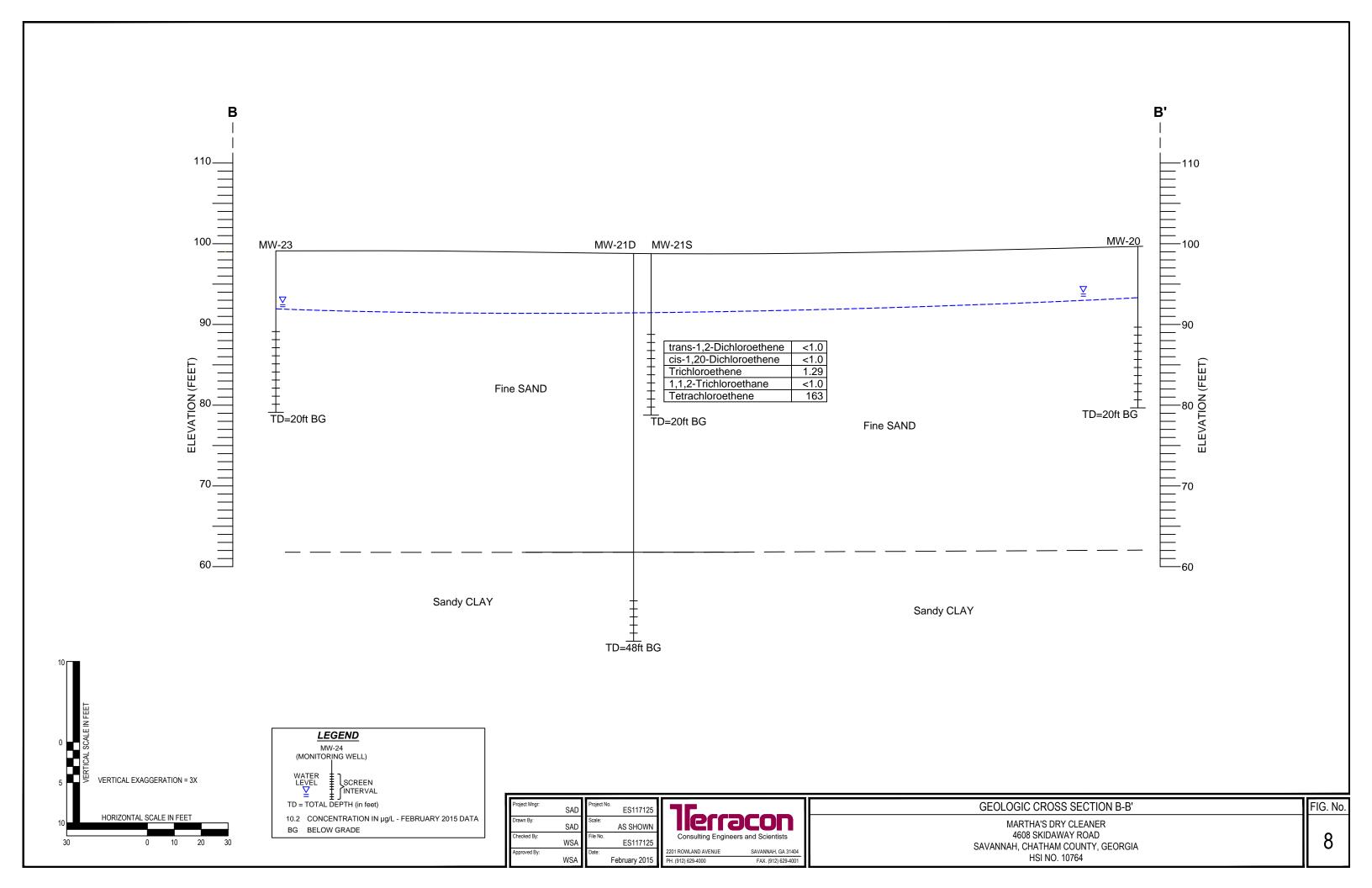

 Prepared by:
 R. Luke Bragg
 Date: 02/23/2015


 Reviewed by:
 Stewart A. Dixon, P.G.
 Date: 02/23/2015














| APPENDIX A                                            |
|-------------------------------------------------------|
| WARRANTY DEED WITH LEGAL DESCRIPTION AND TAX PLAT MAP |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |
|                                                       |

Clock#: 589807 FILED FOR RECORD

10/18/2004 04:34pm

PAID: 14.00

Susan D. Prouse, Clerk Superior Court of Chatham County Chatham County, Georgia

Real Estate Transfer Tax

PAID \$\*450\_00

For Clerk of Superior Court

RETURN TO: Charles Donnie Gatch, P.C. Attorney at Law P.O. Box 14415 Savannah, GA 31416-1415

STATE OF GEORGIA

COUNTY OF CHATHAM

LIMITED WARRANTY DEED

THIS INDENTURE, made this 14 day of October, 2004, between

DISCOUNT AUTO PARTS, INC., a Florida Corporation, as Party of the First Part, and BIBLE BAPTIST CHURCH, INC., a Georgia Corporation, as Party of the Second Part.

#### WITNESSETH:

That the said Party of the First Part, for and in consideration of the sum of Ten and no/100 (\$10.00) Dollars in hand paid, the receipt and sufficiency of which is hereby acknowledged, and before the sealing and delivery of these presents, has granted, bargained, sold and conveyed and by these presents does grant, bargain, sell and convey unto the said Party of the Second Part, its' successors, representatives and assigns, the following described tract or parcel of land lying and being in Savannah, Chatham County, Georgia described as follows:

277 A

162

All that certain lot, tract or parcel of land situate, lying and being in the City of Savannah, Cook Ward, Chatham County, Georgia, and being the southern portion of the southwest portion of LOT NUMBER EIGHT OF THE PLACENTIA TRACT, as shown in total on the plat recorded in Plat Record Book Q, Page 196, in the Office of the Clerk of the Superior Court of Chatham County, Georgia, and also being known as Lot 2 of the S.W. Placentia Tract 8 Subdivision, being shown on that certain minor subdivision map of S.W. Placentia Tract 8 Subdivision recorded in the Office of the Clerk of the Superior Court of Chatham County, Georgia in Subdivision Map Book 3-S, Page 63 (PIN 2-0120-01-001C/land only).

TOGETHER with all improvements thereon (PIN 2-0120-01-001L/improvements only). SUBJECT to all valid restrictive covenants, easements and rights-of-way of record.

SUBJECT TO: 1) The use of the property for the primary purpose of the sale of automobile parts and accessories, including, but not limited to, tires, batteries and wheels for a period of twenty (20) years following the date of recordation is prohibited; and 2) The property is sold and/or assigned to Grantee and Grantee hereby acknowledges and accepts the property in its' "AS IS" condition, including, but not limited to, the environmental condition of the property.

TO HAVE AND TO HOLD the said bargained premises, together with all and singular the rights, members and appurtenances thereof, to the same being, belonging or in anywise appertaining, to the only proper use, benefit and behoof of the said Party of the Second Part, its' successors, representatives and assigns forever, IN FEE SIMPLE.

And Party of the First Part will warrant and forever defend the right and title to that tract or parcel of land unto Party of the Second Part against the claims of all persons owning, holding or claiming by, through or under the said Party of the First Part.

IN WITNESS WHEREOF, the said Party of the First Part, by and through its' duly authorized corporate officer, has hereunto affixed its' name and seal the day and year above written.

DISCOUNT AUTO PARTS, INC.

By:

Jimmie L. Wade, President

Attest:

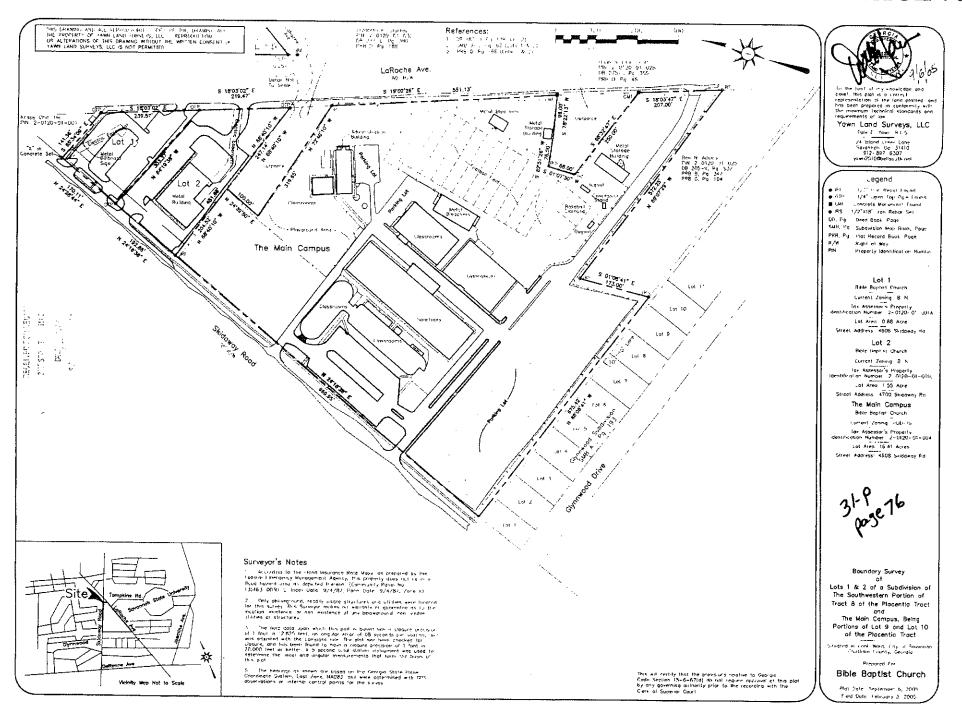
Eric M. Margolin, Vice President/

Secretary

[Corporate Seal]

ji jimi

Notary Public


Signed, sealed and delivered

in the presence of:

My Commission Expires October 31, 2007

NOTARY

### PLAT BOOK 31P PAGE 76



### **APPENDIX B**

EXECUTED UNIFORM ENVIRONMENTAL COVENANT

### Georgia Department of Natural Resources

**Environmental Protection Division** 

JAN 27 2015

Noc 1D: 028616840014 Type: AFF Recorded: 02/12/2015 at 02:56:08 PM Fee Amt: \$38.00 Page 1 of 14 Chatham, Ga. Clerk Superior Court Daniel Massey Clerk Superior Court

2 Martin Luther King, Jr. Dr., Suite 1456, Atlanta, Georgia 30334 Judson H. Turner, Director Phone (404) 656-4713

## CERTIFIED MAIL RETURN RECEIPT REQUESTED

Bible Baptist Church, Inc. c/o Ms. Monique Grier 4700 Skidaway Road Savannah, Georgia 31404

Re:

Executed Uniform Environmental Covenant Martha's Dry Cleaners, HSI Site No. 10764

4608 Skidaway Road, Savannah, Chatham County

Tax Parcel: 2-0120-01-004

Dear Ms. Grier:

The Georgia Environmental Protection Division (EPD) has approved the Uniform Environmental Covenant (UEC) submitted for the former Martha's Dry Cleaners site. The fully executed original is enclosed. Within thirty (30) days of receipt, this covenant is to be filed with the clerk of the Superior Court of Chatham County and recorded in the clerk's deed records pursuant to O.C.G.A. 44-16-8.

Within thirty (30) days of recording, please submit a file-stamped copy of the covenant to EPD. The submittal should include a certification that the parties named in Item 10 of the covenant have also been sent a file-stamped copy. If you have any questions, please contact Robin Futch, PG, PMP of the Response and Remediation Program at (404) 657-8686.

Sincerely,

Judson H. Turner

Director

Encl: Fully executed UEC - Parcel ID No. 2-0120-01-004

File: HSI# 10764

Jan St.

The state of the s

### Georgia Department of Natural Resources

**Environmental Protection Division** 

2 Martin Luther King, Jr. Dr., Suite 1456, Atlanta, Georgia 30334 Judson H. Turner, Director Phone (404) 656-4713

# CERTIFIED MAIL RETURN RECEIPT REQUESTED

JAN 27 2015

Bible Baptist Church, Inc. c/o Ms. Monique Grier 4700 Skidaway Road Savannah, Georgia 31404

Re:

Executed Uniform Environmental Covenant Martha's Dry Cleaners, HSI Site No. 10764

4608 Skidaway Road, Savannah, Chatham County

Tax Parcel: 2-0120-01-004

Dear Ms. Grier:

The Georgia Environmental Protection Division (EPD) has approved the Uniform Environmental Covenant (UEC) submitted for the former Martha's Dry Cleaners site. The fully executed original is enclosed. Within thirty (30) days of receipt, this covenant is to be filed with the clerk of the Superior Court of Chatham County and recorded in the clerk's deed records pursuant to O.C.G.A. 44-16-8.

Within thirty (30) days of recording, please submit a file-stamped copy of the covenant to EPD. The submittal should include a certification that the parties named in Item 10 of the covenant have also been sent a file-stamped copy. If you have any questions, please contact Robin Futch, PG, PMP of the Response and Remediation Program at (404) 657-8686.

Sincerely,

Judson H. Turner

Director

Encl: Fully executed UEC - Parcel ID No. 2-0120-01-004

File: HSI# 10764

Georgia Department of Natural Resources Land Protection Branch Response and Remediation Program 2 Martin Luther King Jr. Dr., SE E-1054 Atlanta, Georgia 30334



Supplied the supplied to the s

Georgia Environmental Protection Division Response and Remediation Program 2 Martin Luther King, Jr. Drive, SE Suite 1054 East Atlanta, Georgia 30334 CROSS-REFERENCE: Deed Book: 277R

Page: 0165

#### **Environmental Covenant**

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1, et seq. This Environmental Covenant subjects the Property identified below to the activity and/or use limitations specified herein below. The effective date of this Environmental Covenant shall be the date upon which a fully executed original of this Environmental Covenant has been recorded in the deed records maintained by the Clerk of the Superior Court of Chatham County, Georgia in accordance with O.C.G.A. § 44-16-8(a).

Fee Owner of Property/Grantor:

Bible Baptist Church, Inc. (BBC)

c/o Mr. Alan Tanner 4700 Skidaway Road Savannah, Georgia 31404

Grantee/Holder:

Bible Baptist Church, Inc.

c/o Mr. Alan Tanner 4700 Skidaway Road Savannah, Georgia 31404

Grantee/Entity with

State of Georgia

express power to enforce:

Department of Natural Resources

Environmental Protection Division ("EPD")

2 Martin Luther King Jr. Drive, SE

Suite 1456 East Tower Atlanta, Georgia 30334

Parties with interest in the Property:

Chatham County Public Works

Georgia Power Atlanta Gas Light

AT&T Comcast

City of Savannah Utility Services

#### **Property:**

The property subject to this Environmental Covenant (hereinafter "Property") consists of one (1) parcel of land, consisting of approximately 18.82 acres and located in Land Lot 2 of the S.W. Placentia Tract 8 Subdivision of the City of Savannah, Cook Ward, Chatham County, Georgia. A complete legal description of the Property and Permitted Exceptions is attached hereto as Exhibit A and a map of the area is attached hereto as Exhibit B.

#### Tax Parcel Number:

Tax Parcel: 2-0120-01-004

#### Name and Location of Administrative Records:

The corrective action at the Property that is the subject of this Environmental Covenant is described in the following document[s]:

- Voluntary Investigation and Remediation Plan and Application dated October 27, 2011
- First VRP Semiannual Progress Report, dated February 20, 2014

These documents are available at the following locations:

Georgia Environmental Protection Division Response and Remediation Program 2 Martin Luther King Jr. Drive, SE, Suite 1054 East Tower Atlanta, Georgia 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

Bible Baptist Church, Inc. 4700 Skidaway Road Savannah, Georgia 31404

#### **Description of Contamination and Corrective Action:**

This Property has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.

This Environmental Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 et seq. by Grantor against the Property and in favor of BBC as Grantee/Holder and EPD as Grantee/Entity with express power to enforce the covenants set forth herein, and burdens and runs with the Property and is binding on the Grantor, the Grantees, and their respective successors and assigns. This Environmental Covenant is required because of the presence of volatile organic compounds ("VOCs") on the Property, including tetrachloroethene, trichloroethene, and cis-1,2-dichloroethene. These VOCs are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 et

seq., and the rules promulgated thereunder (hereinafter "HSRA" and "Rules", respectively). The Corrective Action consists of institutional controls (limitation on use of groundwater and vapor intrusion evaluation) to protect human health and the environment. Accordingly, this Environmental Covenant imposes such limitations upon the use of the Property.

Grantor hereby declares that the uses to which the Property may be put shall be restricted as expressly set forth below under "Activity and/or Use Limitations," and such covenant shall run with the land and be binding upon Grantor, its successors and assigns in title to the land; further, Grantor hereby grants to BBC and EPD the express right and power to enforce said Activity and/or Use Limitations, together with such other rights as are expressly set forth herein in favor of such parties. EPD shall have full right of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 et seq., and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the Activity and/or Use Limitations contained herein by any person or entity shall not bar subsequent enforcement by such person or entity and shall not be deemed a waiver of the person's or entity's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from exercising any authority under applicable law.

Grantor makes the following declaration as to limitations, restrictions, and uses to which the Property may be put and specifies that such declaration: (i) shall constitute covenants to run with the land, pursuant to O.C.G.A. § 44-16-5(a); (ii) is perpetual, unless modified or terminated pursuant to the terms of this Environmental Covenant and pursuant to O.C.G.A. § 44-16-9; and (iii) shall be binding on all parties and all persons claiming under or through Grantor, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property or any interest therein occur before such time as this Environmental Covenant has been amended or revoked, then this Environmental Covenant shall be binding on the transferee(s) or purchaser(s).

This Environmental Covenant shall inure to the benefit of BBC, EPD, and their respective successors and assigns and shall be enforceable by the Director of EPD ("Director") or his agents or assigns, as well as BBC or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

#### Activity and/or Use Limitation(s)

- 1. <u>Registry.</u> Pursuant to O.C.G.A. § 44-16-12, this Environmental Covenant and any amendment or termination thereof may be contained in EPD's registry for environmental covenants.
- 2. Notice. The Owner of the Property must give thirty (30) days' advance written notice to EPD of the Owner's intent to convey any interest in the Property. No conveyance of title, easement, lease, or other interest in the Property shall be consummated by the Owner without adequate and complete provision for continued monitoring, operation, and maintenance of the Corrective Action. The Owner of the Property must also give thirty (30) days' advance written notice to EPD of the Owner's intent to change the use of the Property, apply for building permit(s), or propose any major site work that would affect the Property. The notification shall include a certification that the requirements of this Environmental Covenant were adhered to.

- 3. <u>Notice of Limitation in Future Conveyances.</u> Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the Activity and Use Limitations set forth in this Environmental Covenant and shall cross-reference the Deed Book and Page number of the recording location of this Environmental Covenant.
- 4. <u>Periodic Reporting.</u> The Owner shall inspect the property and applicable property instruments at *least annually* to ensure compliance with this document. Annually, by no later than March 1<sup>st</sup> following the effective date of this Environmental Covenant, the Owner shall complete and submit to EPD the Annual Property Evaluation Form attached to this document as Exhibit C. This report should include photographs of the property and will document maintenance and inspection activities and whether or not the activity and use limitations in this Environmental Covenant are being abided by.
- 5. Activity and Use Limitation(s). Should the development or potential development of enclosed structure(s) occur the holder of this UEC shall assess the potential for vapor intrusion with tools/methods approved by the Georgia EPD. Should it be concluded through these tools/methods that the potential risk is above then current Georgia EPD regulatory guidance/thresholds, a vapor mitigation system or barrier shall be installed and maintained in any enclosed structures built on the affected area shown in Exhibit B.
- 6. Groundwater Limitation. The use or extraction of groundwater beneath the Property for drinking water or for any other use shall be prohibited until HSRA regulated substances are treated to below the applicable RRS for groundwater. Any extracted groundwater from construction or utility work dewatering activities should be managed and disposed of in accordance with applicable rules and regulations. Should any dewatering of groundwater for construction or utility work purposes be necessary, a sanitary sewer system discharge permit should be acquired from Chatham County. The extracted water should be pretreated to Chatham County requirements prior to discharge into the sanitary sewer system. Extracted groundwater should not be discharged into the storm water system or surface waters. All management of impacted groundwater should be done in accordance with all applicable local, state and federal rules and regulations governing the management of such material. Prior to conducting construction or subsurface utility work that may result in exposure to groundwater, a worker must have appropriate HAZWOPER training per OSHA's Hazardous Waste Operations and Emergency Response Standard 29 CFR 1910.120, and perform the work in accordance with a Health and Safety Plan prepared by a qualified safety professional. All management of impacted soil or groundwater performed in the execution of work should be done in accordance with this section.
- 7. <u>Groundwater Monitoring.</u> The Owner shall sample and analyze the following wells annually: MW-19, MW-21S, and MW-24 for up to two (2) years or a lesser period if approved by EPD unless the Director determines that further monitoring is necessary to protect human health and the environment. Test results shall be submitted to EPD on March 1<sup>st</sup> of each year.
- 8. <u>Right of Access.</u> In addition to any rights already possessed by EPD and/or BBC, the Owner shall allow authorized representatives of EPD and BBC the right to enter the Property at reasonable times for the purpose of determining compliance with this Environmental Covenant.
- 9. Recording of Environmental Covenant and Proof of Notification. Within thirty (30) days after the date of the Director's signature, the Owner shall file this Environmental Covenant with the Clerk of the Chatham County Superior Court, and send a file stamped copy of this Environmental Covenant to EPD within thirty (30) days after recording (subject to Owner's receipt of such copy from the Clerk within such time period). Within that time period, the Owner shall also send a file-stamped copy to each of the following: (1) each person holding a recorded interest in the Property subject to the covenant, (2) each person in possession of the real

property subject to the covenant, (3) each municipality, county, consolidated government, or other unit of local government in which real property subject to the covenant is located, and (4) each owner in fee simple whose property abuts the property subject to the Environmental Covenant.

- 10. <u>Termination or Modification</u>. The Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-5-60, unless and until the Director determines that the Property is in compliance with the Type 1, 2, 3, or 4 Risk Reduction Standards, as defined in Rules Section 391-3-19-.07, whereupon this Environmental Covenant may be amended or revoked in accordance with Section 391-3-19-08(7) of the Rules and O.C.G.A. § 44-16-1 *et seq*. This Environmental Covenant may also be modified upon approval of the Director.
- 11. <u>Severability</u>. If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.
- 12. No Property Interest Created in EPD. This Environmental Covenant does not in any way create any interest in favor of EPD in the Property that is subject to the Environmental Covenant, it being acknowledged and agreed that EPD's interest is limited to that of a third party with right of enforcement. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest in favor of EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

#### Representations and Warranties.

Grantor hereby represents and warrants to the other signatories hereto:

- a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
- b) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered except as set forth on <u>Exhibit A</u>, attached hereto and incorporated herein by reference;
- c) That to Grantor's knowledge, the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;
- d) That to Grantor's knowledge, this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- e) That the Grantor has served each of the people or entities referenced in numbered Activity and/or Use Limitation (9) above with a true and complete copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-4(d).
- f) That to Grantor's knowledge, this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- g) That to Grantor's knowledge, this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over this Environmental Covenant.

#### Notices.

Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

Georgia Environmental Protection Division Branch Chief Land Protection Branch 2 Martin Luther King Jr. Drive SE Suite 1054 East Tower Atlanta, Georgia 30334

Bible Baptist Church, Inc. (BBC) c/o Ms Monique Grier 4700 Skidaway Road Savannah, Georgia 31404

Grantor has caused this Environmental Covenant to be executed pursuant to The Georgia Uniform Environmental Covenants Act on the  $\frac{\partial \mathcal{L}^{rd}}{\partial x^{rd}}$  day of  $\frac{\partial \mathcal{L}^{rd}}{\partial x^{rd}}$ , 2014.

[REMAINDER OF PAGE INTENTIONALLY LEFT BLANK; SIGNATURES APPEAR BEGINNING ON FOLLOWING PAGE]

### [CORPORATE ACKNOWLEDGMENT]

| COUNTY OF Chatham                                                                             |                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| personally appeared before me, acknowledged corporation that executed the within and fore     | going instrument, and signed said instrument by tion, for the uses and purposes therein mentioned,                                                                                       |
| WENDA LYNN MAXEY Notary Public, Bulloch County, Georgia My commission expires August 4, 2017  | Notary Public in and for the State of Georgia, residing at Buccoch.  My appointment expires (2004, 2017)                                                                                 |
| STATE OF Charles (R)                                                                          | EPRESENTATIVE ACKNOWLEDGEMENT]                                                                                                                                                           |
| HOINT [type of authorities]                                                                   | that he/she signed this instrument on oath stated ais instrument, and acknowledged it as the prity] of 12/15/2015/fluch Instrument of untary act and deed of such party for the uses and |
| WENDA LYNN MAXEY  Notary Public, Bulloch County, Georgia My commission expires August 4, 2017 | Notary Public in and for the State of Georgia, residing at Bucoch.  My appointment expires Qua. 4, 2017                                                                                  |

### BIBLE BAPTIST CHURCH, INC.

| Monigue AGriun - Bisiness ad<br>[Name of Signatory]<br>[Title] | m Algert                                                                                          |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Dated: 12/22/2014                                              | e*                                                                                                |
| WITNESS: By: Name: Marilyn Braid Dated: 12-22-14               |                                                                                                   |
| BIBLE BAPTIST CHURCH, INC.                                     | WENDA LYNN MAXEY<br>Nobey Public, Eriloch County, Georgia<br>My commission expires August 4, 2017 |
| [Name of Porson Acknowledging Receipt] [Title]                 | Im/Quent                                                                                          |
| Dated: 12/22/2014                                              |                                                                                                   |
| WITNESS: By: Name: Marilyn Brand Dated:  12-22-14              |                                                                                                   |
| STATE OF GEORGIA<br>ENVIRONMENTAL PROTECTION DIVISION          |                                                                                                   |
| Judson H. Jan                                                  | Notary Public, Bořech Covnity, Goorgia<br>Ny commission explines August 4, 2017                   |
| Name: Judson H. Turner Title: Director                         |                                                                                                   |
| Dated: January 22, 2015                                        |                                                                                                   |

### [REPRESENTATIVE ACKNOWLEDGEMENT]

| COUNTY OF FUNDS                                                           |                                                                                            |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| COUNTY OF FW TON                                                          |                                                                                            |
| - 14 M                                                                    |                                                                                            |
| On this 22 day of garage personally appeared before me, acknowledged that | t he/she signed this instrument, on oath stated that                                       |
| he/she was authorized to execute this                                     | instrument, and acknowledged it as the                                                     |
| [type of authority]                                                       | of <u>EPD</u> [name of party being                                                         |
|                                                                           | ed of such party for the uses and purposes mentioned                                       |
| in the instrument.                                                        |                                                                                            |
| STAL SALLORING                                                            | Notary Public in and for the State of Georgia, residing at My appointment expires 1/22/17. |

Acorsia Feldon

Topacers.

Cisto Sectors

Palders

Judan H. Times 1

rato siki

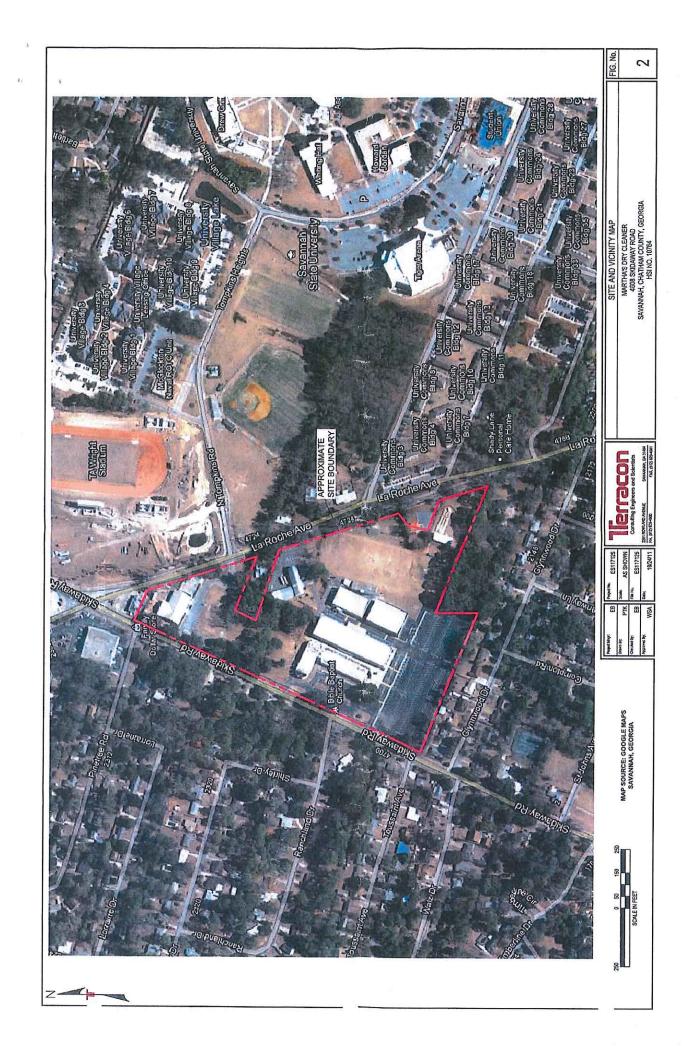
# Exhibit A

Legal Description of Property

#### Legal Description Bible Baptist Church

All that tract or parcel of land, lying and being in Cook Ward, City of Savannah, Chatham County, Georgia, being portions of Lots 8, 9, and 10 of the Placentia Tract, and being more particularly described as follows:

Commence at the intersection of the northeasterly right of way line of Glynwood Drive and the southeasterly right of way line of Skidaway Road; said point being the southwesterly corner of Lot 1, Glynwood Subdivision, as recorded in Subdivision Map Book A, page 193 of the records of the Clerk of Superior Court for Chatham County; thence proceed along the southeasterly right of way line of Skidaway Road N 21°51'19" E a distance of 130.29 feet to a point; said point being the POINT OF BEGINNING; thence continue with said right of way N 24°16'38" E a distance of 969.95 feet to an iron rebar, thence N 24°16'38" E a distance of 192.86 feet to an open top pipe; thence N 24°28'44" E a distance of 170.11 feet to an "X" in concrete; thence leave the southeasterly right of way line of Skidaway Road and run S 65°34'09" E a distance of 141.36 feet to an open top pipe on the westerly right of way line of LaRoche Avenue; thence with the westerly right of way line of LaRoche Avenue thence S 18°03'02" E a distance of 239.57 feet to an open top pipe; thence S 18°03'02" E a distance of 219.47 feet to an open top pipe; thence leave the westerly right of way line of Laroche Avenue and run the following courses and distances; N 68°40'10" W a distance of 247.14 feet to a point; thence S 24°39'50" W a distance of 100.00 feet to a point; thence S 72°40'10" E a distance of 319.65 feet to an iron rebar on the westerly right of way line of Laroche Avenue; thence along the westerly right of way of LaRoche Avenue S 19°02'26" E a distance of 551.13 feet to a concrete monument; thence leave the westerly right of way line of Laroche Avenue and run the following courses and distances: S 78°22'13" W a distance of 96.00 feet to a point; thence S 82°51'26" W a distance of 76.50 feet to an iron rebar; thence S 01°07'30" W a distance of 68.00 feet to an iron rebar; thence S 68°32'47" E a distance of 250.00 feet to a concrete monument on the westerly right of way line of LaRoche Avenue; thence along the westerly right of way line of LaRoche Avenue S 18°03'47" E a distance of 207.00 feet to an iron rebar; thence N 69°07'29" W a distance of 572.25 feet to an iron rebar; thence S 01°08'41" E a distance of 173.00 feet to an iron rebar; thence N 68°08'41" W a distance of 675.42 feet to the POINT OF BEGINNING; said tract or parcel of land having an area of 820,606 square feet, or 18.84 acres, more or less.




| , |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

### Exhibit B

Map Showing Location of Property





|  |  |  |  | :<br>-<br>-<br>- |
|--|--|--|--|------------------|
|  |  |  |  | :                |
|  |  |  |  |                  |
|  |  |  |  |                  |
|  |  |  |  |                  |

## **APPENDIX C**

GROUNDWATER LABORATORY ANALYTICAL DATA

Ref No: G 439101065



## LABORATORY ANALYSIS REPORT

Job ID: 15020901

Avery Laboratories & Environmental Services, LLC

■2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Project ID:

Martha Dry Cleaners

Report To: Client Name: Terracon Attn: Stewart Dixon

Client Address: 2201 Rowland Ave. P.O.#.:

City, State, Zip: Savannah, GA, 31404

Dear Stewart Dixon

The following test results meet all NELAP requirements for analytes for which certification is available. Any deviations from these quality systems will be noted in this case narrative. All analyses performed by Avery Laboratories & Environmental Services, LLC unless noted. Parameters not perfromed by Avery Laboratories will be listed on the Sample Summary section of the report.

For questions regarding this report, contact Robert Paul Grimm at (912)944-3748.

Sincerely,



This Laboratory is NELAP accredited.

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

Date: 02/20/2015 14:04 Primary Accreditation State and Number: Florida E87941



## **CLIENT SAMPLE RESULTS**

Job ID: 15020901

Avery Laboratories & Environmental Services, LLC

■2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stewart Dixon

Project ID: Marthas Dry Cleaners Date: 02/20/2015

Job ID:15020901Sample Matrix:AqueousClient Sample ID:MW-19Date Collected:02/06/2015Job Sample ID:15020901.01Time Collected:16:42

Other Information:

| Test Method  | Parameter                  | Result | Units | DF | RL       | Q | Date/Time Analyzed | Analyst |
|--------------|----------------------------|--------|-------|----|----------|---|--------------------|---------|
| SW-846 8260B | 1,1,2-Trichloroethane      | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 17:44   | RPG     |
| SW-846 8260B | Tetrachloroethylene        | 1.29   | ug/L  | 1  | 1        |   | 02/16/2015 17:44   | RPG     |
| SW-846 8260B | Trichloroethylene          | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 17:44   | RPG     |
| SW-846 8260B | Vinyl Chloride             | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 17:44   | RPG     |
| SW-846 8260B | 1,1-Dichloroethylene       | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 17:44   | RPG     |
| SW-846 8260B | cis-1,2-Dichloroethylene   | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 17:44   | RPG     |
| SW-846 8260B | trans-1,2-Dichloroethylene | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 17:44   | RPG     |
| SW-846 8260B | Dibromofluoromethane(surr) | 114    | %     | 1  | 72.2-136 |   | 02/16/2015 17:44   | RPG     |
| SW-846 8260B | p-Bromofluorobenzene(surr) | 118    | %     | 1  | 79.2-137 |   | 02/16/2015 17:44   | RPG     |
| SW-846 8260B | Toluene-d8(surr)           | 120    | %     | 1  | 84-136   |   | 02/16/2015 17:44   | RPG     |



## **CLIENT SAMPLE RESULTS**

Job ID: 15020901

Avery Laboratories & Environmental Services, LLC

■2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stewart Dixon

Project ID: Marthas Dry Cleaners Date: 02/20/2015

Job ID:15020901Sample Matrix:AqueousClient Sample ID:MW-21SDate Collected:02/06/2015Job Sample ID:15020901.02Time Collected:12:33

Other Information:

| Test Method  | Parameter                  | Result | Units | DF | RL       | Q | Date/Time Analyzed | Analyst |
|--------------|----------------------------|--------|-------|----|----------|---|--------------------|---------|
| SW-846 8260B | 1,1,2-Trichloroethane      | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 18:10   | RPG     |
| SW-846 8260B | Tetrachloroethylene        | 163    | ug/L  | 1  | 1        |   | 02/16/2015 18:10   | RPG     |
| SW-846 8260B | Trichloroethylene          | 1.29   | ug/L  | 1  | 1        |   | 02/16/2015 18:10   | RPG     |
| SW-846 8260B | Vinyl Chloride             | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 18:10   | RPG     |
| SW-846 8260B | 1,1-Dichloroethylene       | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 18:10   | RPG     |
| SW-846 8260B | cis-1,2-Dichloroethylene   | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 18:10   | RPG     |
| SW-846 8260B | trans-1,2-Dichloroethylene | BRL    | ug/L  | 1  | 1        |   | 02/16/2015 18:10   | RPG     |
| SW-846 8260B | Dibromofluoromethane(surr) | 119    | %     | 1  | 72.2-136 |   | 02/16/2015 18:10   | RPG     |
| SW-846 8260B | p-Bromofluorobenzene(surr) | 107    | %     | 1  | 79.2-137 |   | 02/16/2015 18:10   | RPG     |
| SW-846 8260B | Toluene-d8(surr)           | 117    | %     | 1  | 84-136   |   | 02/16/2015 18:10   | RPG     |



## **CLIENT SAMPLE RESULTS**

Job ID: 15020901

Avery Laboratories & Environmental Services, LLC

■2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stewart Dixon

Project ID: Marthas Dry Cleaners Date: 02/20/2015

Job ID:15020901Sample Matrix:AqueousClient Sample ID:MW-24Date Collected:02/06/2015Job Sample ID:15020901.03Time Collected:14:40

Other Information:

| Test Method  | Parameter                  | Result | Units | DF | RL       | Q | Date/Time Analyzed | Analyst |
|--------------|----------------------------|--------|-------|----|----------|---|--------------------|---------|
| SW-846 8260B | 1,1,2-Trichloroethane      | BRL    | ug/L  | 1  | 1        |   | 02/17/2015 13:08   | RPG     |
| SW-846 8260B | Tetrachloroethylene        | 5.27   | ug/L  | 1  | 1        |   | 02/17/2015 13:08   | RPG     |
| SW-846 8260B | Trichloroethylene          | BRL    | ug/L  | 1  | 1        |   | 02/17/2015 13:08   | RPG     |
| SW-846 8260B | Vinyl Chloride             | BRL    | ug/L  | 1  | 1        |   | 02/17/2015 13:08   | RPG     |
| SW-846 8260B | 1,1-Dichloroethylene       | BRL    | ug/L  | 1  | 1        |   | 02/17/2015 13:08   | RPG     |
| SW-846 8260B | cis-1,2-Dichloroethylene   | BRL    | ug/L  | 1  | 1        |   | 02/17/2015 13:08   | RPG     |
| SW-846 8260B | trans-1,2-Dichloroethylene | BRL    | ug/L  | 1  | 1        |   | 02/17/2015 13:08   | RPG     |
| SW-846 8260B | Dibromofluoromethane(surr) | 121    | %     | 1  | 72.2-136 |   | 02/17/2015 13:08   | RPG     |
| SW-846 8260B | p-Bromofluorobenzene(surr) | 105    | %     | 1  | 79.2-137 |   | 02/17/2015 13:08   | RPG     |
| SW-846 8260B | Toluene-d8(surr)           | 119    | %     | 1  | 84-136   |   | 02/17/2015 13:08   | RPG     |



## **QUALITY CONTROL DATA**

Job ID: 15020901



■ 2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Volatile Organic Compounds Method: SW-846 8260B Reporting Units: ug/L

**Samples in this QC Batch:** 15020901,01,02,03

Sample Preparation PB15021706 SW5030b PGrimm

| QC Type: Me  | thod Blank                  |           |        |       |    |     |     |      |
|--------------|-----------------------------|-----------|--------|-------|----|-----|-----|------|
|              | Parameter                   | CAS       | Result | Units | DF | RL  | MDL | Qual |
| Method Blank | 1,1,2-Trichloroethane       | 79-00-5   | BRL    | ug/L  | 1  | 1.0 |     |      |
| Method Blank | 1,1-Dichloroethylene        | 75-35-4   | BRL    | ug/L  | 1  | 1.0 |     |      |
| Method Blank | cis-1,2-Dichloroethylene    | 156-59-2  | BRL    | ug/L  | 1  | 1.0 |     |      |
| Method Blank | Tetrachloroethylene         | 127-18-4  | BRL    | ug/L  | 1  | 1.0 |     |      |
| Method Blank | trans-1,2-Dichloroethylene  | 156-60-5  | BRL    | ug/L  | 1  | 1.0 |     |      |
| Method Blank | Trichloroethylene           | 79-01-6   | BRL    | ug/L  | 1  | 1.0 |     |      |
| Method Blank | Vinyl Chloride              | 75-01-4   | BRL    | ug/L  | 1  | 1.0 |     |      |
| Method Blank | Dibromofluoromethane (Surr) | 1868-53-7 | 57.8   |       | 1  |     |     |      |
| Method Blank | Toluene-d8 (Surr)           | 2037-26-5 | 60.9   |       | 1  |     |     |      |
| Method Blank | p-Bromofluorobenzene (Surr) | 460-00-4  | 58.3   |       | 1  |     |     |      |

| QC Type: LCS/LCSD           |         |            |       |          |        |           |      |           |           |      |
|-----------------------------|---------|------------|-------|----------|--------|-----------|------|-----------|-----------|------|
|                             | LCS Spk |            | LCS % | LCSD Spk | LCSD   |           |      | RPD       | % Rec     |      |
| Parameter                   | Amt     | LCS Result | Rec   | Amt      | Result | LCS % Rec | RPD  | CtrlLimit | CtrlLimit | Qual |
| 1,1,2-Trichloroethane       | 50      | 53.6       | 107.0 | 50       | 51.9   | 104.0     | 3.20 | 30        | 83.6-124  |      |
| 1,1-Dichloroethylene        | 50      | 48.8       | 97.6  | 50       | 46.7   | 93.4      | 4.40 | 30        | 56.5-137  |      |
| cis-1,2-Dichloroethylene    | 50      | 48         | 96.0  | 50       | 45.1   | 90.2      | 6.20 | 30        | 63-127    |      |
| Tetrachloroethylene         | 50      | 50         | 100.0 | 50       | 51.1   | 102.0     | 2.20 | 30        | 74.2-124  |      |
| trans-1,2-Dichloroethylene  | 50      | 50.5       | 101.0 | 50       | 48.6   | 97.2      | 3.80 | 30        | 64.4-126  |      |
| Trichloroethylene           | 50      | 48.3       | 96.6  | 50       | 48.1   | 96.2      | 0.40 | 30        | 77.4-121  |      |
| Vinyl Chloride              | 50      | 50.3       | 101.0 | 50       | 49.1   | 98.2      | 2.40 | 30        | 47.1-140  |      |
| Dibromofluoromethane (Surr) | 50      | 61         | 122.0 | 50       | 57.6   | 115.0     |      |           | 72.2-136  |      |
| Toluene-d8 (Surr)           | 50      | 58.3       | 117.0 | 50       | 59.2   | 118.0     |      |           | 84-136    |      |
| p-Bromofluorobenzene (Surr) | 50      | 60.7       | 121.0 | 50       | 61.7   | 123.0     |      |           | 79.2-137  |      |

| QC Ty | pe: MS/MSD   |                             |                  |               |              |             |               |               |              |      |                  |                    |      |
|-------|--------------|-----------------------------|------------------|---------------|--------------|-------------|---------------|---------------|--------------|------|------------------|--------------------|------|
|       | QC Sample ID | Parameter                   | Sample<br>Result | MS Spk<br>Amt | MS<br>Result | MS %<br>Rec | MS Spk<br>Amt | MSD<br>Result | MSD %<br>Rec | RPD  | RPD<br>CtrlLimit | % Rec<br>CtrlLimit | Qual |
| MS    | 15021002.01  | 1,1,2-Trichloroethane       | 0                | 50            | 54.1         | 108.0       | 50            | 52.8          | 106.0        |      | 30               | 83.6-124           |      |
| MS    | 15021002.01  | 1,1-Dichloroethylene        | 0                | 50            | 48.4         | 96.8        | 50            | 45.7          | 91.4         |      | 30               | 56.5-137           |      |
| MS    | 15021002.01  | cis-1,2-Dichloroethylene    | 0                | 50            | 48.4         | 96.8        | 50            | 44.8          | 89.6         |      | 30               | 63-127             |      |
| MS    | 15021002.01  | Tetrachloroethylene         | 0                | 50            | 51.7         | 103.0       | 50            | 50.5          | 101.0        |      | 30               | 74.2-124           |      |
| MS    | 15021002.01  | trans-1,2-Dichloroethylene  | 0                | 50            | 52.4         | 105.0       | 50            | 47.8          | 95.6         |      | 30               | 64.4-126           |      |
| MS    | 15021002.01  | Trichloroethylene           | 0                | 50            | 48.5         | 97.0        | 50            | 48.6          | 97.2         |      | 30               | 77.4-121           |      |
| MS    | 15021002.01  | Vinyl Chloride              | BRL              | 50            | 47.5         | 95.0        | 50            | 45.6          | 91.2         | 4.10 | 30               | 47.1-140           |      |
| MS    | 15021002.01  | Dibromofluoromethane (Surr) |                  | 50            | 62.1         | 124.0       | 50            | 59.3          | 119.0        |      |                  | 72.2-136           |      |



## **QUALITY CONTROL DATA**

Job ID: 15020901



■ 2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Volatile Organic Compounds Method: SW-846 8260B Reporting Units: ug/L

**Samples in this QC Batch:** 15020901,01,02,03

| QC Ty | pe: MS/MSD   |                                |        |        |        |       |        |        |       |     |           |           |      |
|-------|--------------|--------------------------------|--------|--------|--------|-------|--------|--------|-------|-----|-----------|-----------|------|
|       |              |                                | Sample | MS Spk | MS     | MS %  | MS Spk | MSD    | MSD % |     | RPD       | % Rec     |      |
|       | QC Sample ID | Parameter                      | Result | Amt    | Result | Rec   | Amt    | Result | Rec   | RPD | CtrlLimit | CtrlLimit | Qual |
| MS    | 15021002.01  | Toluene-d8 (Surr)              |        | 50     | 58.6   | 117.0 | 50     | 59.5   | 119.0 |     |           | 84-136    |      |
| MS    | 15021002.01  | p-Bromofluorobenzene<br>(Surr) |        | 50     | 65     | 130.0 | 50     | 61.9   | 124.0 |     |           | 79.2-137  |      |

Refer to the Definition page for terms.

Date: 02/20/2015 14:04 Page 7 of 13



## **CASE NARRATIVE**

Job ID: 15020901



■2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon

Project ID: Martha Dry Cleaners

Date Received: 02/06/2015
Collected By: JHC

There were no analytical problems encountered. All results and quality control were within the laboratory's established limits.

Released By: PGrimm

Title: Technical Director



## **TERM AND QUALIFIER DEFINITION**

Job ID: 15020901



■2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

General Term Definition

Conc. Concentration

DF Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content

ND Non Detect - Not Detected at or above adjusted reporting limit

J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit

RL adjusted Reporting Limit (QL – Quantification Limit)

MDL adjusted Method Detection Limit (LOD – Limit of Detection)

Regulatory Limit RegLimit Milligrams per Liter mg/l Milligrams per Kilogram mg/kg Parts per Million ppm Micrograms per Liter μg/L Micrograms per Gram μg/g ppb Parts per Billion Grains per Gallon gr/gal SU Standard Units CCU Cobalt Color Units

NTU Nephelometric Turbidity Units µS/cm Microsiemens per cm at 25C

P/A Presence/Absence
CFU Colony Forming Units
MPN Most Probable Number

RB Reagent Blank MB Method Blank

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LFM Laboratory Fortified Matrix (MS – Matrix Spike)

LFMD Laboratory Fortified Matrix Duplicate (MSD – Matrix Spike Duplicate)

DUP Sample Duplicate

RPD Relative Percent Difference %Rec Percent Recovery

TNTC Too numerous to count

NC Not Calculable
SG Silica Gel - Clean-Up
BRL Below Reporting Limit
BDL Below Detection Limit

**Qualifier Definition** 

J1 Estimated value-The reported value failed the established quality control criteria for accuracy and /or precision.



## **SAMPLE SUMMARY**

Job ID: 15020901

Avery Laboratories & Environmental Services, LLC

■2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■Tel: (912) 944-3748 ■Fax: (912) 234-9294 ■

Client Project ID:

Martha Dry Cleaners

Report To: Client Name: Terracon Attn: Stewart Dixon

Client Address: 2201 Rowland Ave. P.O.#.:

City, State, Zip: Savannah, GA, 31404

The laboratory has analyzed the following samples:

Client Sample ID Matrix Sample ID Date Received **Date Collected** Collected by MW-19 Aqueous 15020901.01 2/6/2015 17:08 2/6/2015 16:42 JHC MW-21S Aqueous 15020901.02 2/6/2015 17:08 2/6/2015 12:33 JHC MW-24 Aqueous 15020901.03 2/6/2015 17:08 2/6/2015 14:40 JHC



## **SAMPLE PREPARATION INFORMATION**

Job ID: 15020901

Avery Laboratories & Environmental Services, LLC

■ 2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

| Client Name:  | Terracon            |             |                  | Attn: Stewa | art Dixon     |
|---------------|---------------------|-------------|------------------|-------------|---------------|
| Project Name: | Martha Dry Cleaners |             |                  | Date: 02/20 | )/2015        |
| Sample ID     | Test                | Prep Method | Date Prepared    | Analyst     | Prep Batch ID |
| 15020901.01   | VOC                 | SW5030b     | 02/16/2015 09:45 | PGrimm      | PB15021706    |
| 15020901.02   | VOC                 | SW5030b     | 02/16/2015 09:45 | PGrimm      | PB15021706    |
| 15020901.03   | VOC                 | SW5030b     | 02/16/2015 09:45 | PGrimm      | PB15021706    |



## **SAMPLE CONDITION CHECKLIST**

Avery Laboratories & Environmental Services, LLC

Job ID: 15020901

| Client Name : Terracon            |                                  | Contact :       | Stewart Dixon |
|-----------------------------------|----------------------------------|-----------------|---------------|
| Client Address: 2201 Rowland Ave. |                                  | Contact Phone : | 912 629-4000  |
| <b>JobID</b> : 15020901           | <b>Date Received:</b> 02/06/2015 | Time Received : | 05:08 PM      |
| Temperature: 4.0                  | Sample pH:                       |                 |               |
| ThermometerID: 15953              | pHPaperID:                       |                 | _             |

| Co | omments : Include actions taken to resolve discrepancies/problem: |
|----|-------------------------------------------------------------------|
|    |                                                                   |
|    |                                                                   |

|    | Check Points                                                        | Yes | No | N/A |
|----|---------------------------------------------------------------------|-----|----|-----|
| 1  | Bottle count on C-O-C matches bottle found.                         | ~   |    |     |
| 2  | C-O-C signed and dated.                                             | · · |    |     |
| 3  | Cooler seal present and signed.                                     | V   |    |     |
| 4  | If requested, sample(s) received with signed sample custody seal    |     |    | ~   |
| 5  | Sample amount is sufficient for analyses requested                  | · · |    |     |
| 6  | Sample containers arrived in tact. (if no, comment)                 | · · |    |     |
| 7  | Sample ID lables Match C-O-C ID's                                   | ·   |    |     |
| 8  | Sample received at 6°C or Less                                      | ·   |    |     |
| 9  | Sample(s) in a cooler.                                              | ·   |    |     |
| 10 | Sample(s) were received at the proper pH.                           | ·   |    |     |
| 11 | Sample(s) were received in appropriate contatiner. (If no, comment) | ·   |    |     |
| 12 | Samples accepted.                                                   | ·   |    |     |
| 13 | Samples received within holding time for analysis requested         | ~   |    |     |
| 14 | Zero headspace in liquid VOA vials                                  | ~   |    |     |

CheckIn By: Elizabeth Grimm CheckIn Date: 02/09/2015



## **COMMERCIAL LABORATORY STIPULATION**

Georgia Rules for Commercial Environmental Laboratory Accreditation Chapter 391-3-26

Job ID: 15020901



■2720 Gregory St. Unit 200 ■ Savannah, Georgia 31404 ■ Tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

**Laboratory:** Avery Laboratories and Environmental Services, LLC

**Accreditor:** NELAC: State of Florida, Department of Health, Bureau of Laboratories

**Accreditation ID:** E87941

NON-POTABLE WATER - EXTRACTABLE ORGANICS, NON-POTABLE WATER - GENERAL CHEMISTRY, NON-POTABLE WATER - METALS, NON-POTABLE WATER

- PESTICIDES-HERBICIDES-PCB'S, NON-POTABLE WATER - VOLATILE

**Scope:** ORGANICS, SOLID AND CHEMICAL MATERIALS - EXTRACTABLE ORGANICS,

SOLID AND CHEMICAL MATERIALS - GENERAL CHEMISTRY, SOLID AND CHEMICAL MATERIALS - METALS, SOLID AND CHEMICAL MATERIALS -

**VOLATILE ORGANICS** 

**Effective Date:** July 1, 2014 **Expiration Date:** July 1, 2015

As per the Georgia EPD Rules and Regulations for Commercial Laboratories, Avery Laboratories and Environmental Services - Savannah is accredited by the Florida Department of Health under the National Environmental Laboratory Approval Program (NELAP). If you have any further questions regarding accreditation status for Avery Laboratories and Environmental Services, please contact: Paul Grimm.

Avery Laboratories and Environmental Services, LLC 101B Estus Drive Savannah, GA 31404 Phone: (912) 944-3748

Fax: (912) 234-9294

Date: 02/20/2015 14:04 Primary Lab Certification # NELAP: FL-E87941

## ANALYTICAL ENVIRONMENTAL SERVICES, INC.



February 13, 2015

Robert Paul Grimm Avery Laboratories & Environmental Services, LLC 101 B Estus Dr. Savannah GA 31404

TEL: (912) 944-3748 FAX: (912) 234-9294

RE: Martha's Dry Cleaners

Dear Robert Paul Grimm: Order No: 1502886

Analytical Environmental Services, Inc. received 3 samples on 2/10/2015 3:45:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

- -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/14-06/30/15.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/15.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Nicole Jessup

Project Manager

Mich 2. Jessup

502886

|                       |                                        | <del></del>                                      | ·····        |              | ···               |                  |                  |                            |             |          |           |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              | Serial N       | umber:      | <u>oy</u> : | <u>5 Т 5</u> |          |
|-----------------------|----------------------------------------|--------------------------------------------------|--------------|--------------|-------------------|------------------|------------------|----------------------------|-------------|----------|-----------|----------------|----------|-----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------|--------------|----------------|-------------|-------------|--------------|----------|
|                       |                                        |                                                  | SI           | hip T        | o: 101            | BE               | Est              | us ]                       | Dr          | . S2     | ava       | nn             | ah.      | G               | a. 3          | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )4             |                 |         |              | 1              | 00          |             |              |          |
| Ayer                  | Laboratories &<br>mental Services, LLC |                                                  |              |              | 912 9             |                  |                  |                            |             |          | 912       |                |          |                 |               | 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7              |                 |         |              |                | LAB N       |             |              |          |
| Environ               | mental Services, LLC                   |                                                  |              | •            | •                 |                  |                  |                            |             |          |           |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              | $\neg$   |
|                       | 288                                    |                                                  |              |              | email             | : p              | gri              |                            | Ц(а         | yav      | ery       | /lai           | D.C      | om              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              |          |
| Customs               | Client Information                     | Page 1                                           |              |              |                   |                  |                  |                            | ****        |          | Subcontra | ct Labor       | atory    |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              |          |
| Customer: , Address:  | zzoi Rowland Aug                       | Sampler:                                         |              |              |                   | Pro              | iect ]           | Nimel                      | er:         | 7.7      | ルプし       | <u> 4</u> 2    |          | .,              | State v       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ginated         | :GA     | -            |                | Name / A    | ddress/     | Phone        | $\dashv$ |
| City/State/Zip:       | Savamah, GA 31404                      |                                                  | Around Ti    | me (Place    | X below)          | Tetrachbroethene | Trehbouethy leng | Cis-1,2 dichlemedhe        | s/ 3        | 뮑ㅣ       |           | 剃,             | ethylen  |                 |               | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                 |         | T            | N              |             |             |              |          |
| Contact:              | Stemant Dixon                          | 24 Hours                                         |              |              |                   | -                | ǯ                | ¥ 7                        | - ابغ       | ·        |           | 1,12-Therbooth |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              | İ        |
| Phone:                | (9R) 629-4000                          | 48 Hours                                         |              | <del></del>  | ·                 | - B              | 丰                | 3                          | <u></u> 되=  | ر اجُ    | -         | 일:             | 3        |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ì              |                 |         |              | Α              |             |             |              |          |
| Email:                | Sadixon Oterra con, com                | 72 Hours                                         |              |              |                   | اقِ ا            | 5                | <del>\(\frac{1}{2}\)</del> | <b>5</b> 3  | 등 등      | 9         | 2              |          |                 |               | ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                 |         |              |                |             |             |              |          |
| Purchase Order #:     | ES 117125                              | 5 Working l                                      |              |              | ۸                 | - 3              | -2               | ~]-                        |             | 93       | ٠.        | 5];            | 5        |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              |          |
| Project Manager:      | Stewart Dixon                          | 7 Working I<br>Other:                            | Days         |              | \                 | [종]              | ايغ              |                            | 3           | ethylene | ethéne    | <u>'</u>       | Van St   |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              | Р              |             |             |              |          |
|                       |                                        | Outer.                                           | <del></del>  | r            | T                 | 1                |                  | - ان<br>احج                |             |          |           |                | 2        |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>       |                 |         | -            |                |             | ·           |              |          |
| _                     | -                                      |                                                  |              |              |                   | -                |                  | <u>-1</u>                  | 4-6         |          | ===       | <u> </u>       | 4)       | Ϋ́              |               | 되니                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ¥              | <del></del>     | ┥-      |              |                |             |             |              |          |
|                       | Sample Identification                  | Date                                             | Time         | Matrix       | # of Container    | s                |                  |                            |             |          |           |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                | Rei         | marks       |              |          |
|                       | MW-19                                  | 21612                                            | 1642         | w            | 3                 | X                | X                | ×                          | X X         | , ,      | x :       | <b>,</b>       | ,        |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              |          |
|                       | MW-ZIS                                 | 1                                                | }            | 1            | 1                 |                  | _                |                            |             | 7 1      |           |                |          |                 | <del> -</del> | - -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | $\dashv$        |         | <del> </del> | ····           |             |             |              | $\dashv$ |
|                       |                                        | <del>                                     </del> | )233         |              |                   | X                | <u> </u>         | <u> </u>                   | 42          | 44       | <u>`</u>  | 식              | <u> </u> |                 |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | _               | _       |              |                |             |             |              |          |
|                       | WW-24                                  | A                                                | 1440         | 1            |                   | X                |                  | <u> </u>                   | <u> </u>    | x k      | ×         | ×              | <u> </u> |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              |          |
|                       |                                        | -                                                |              |              | ~                 |                  |                  |                            |             | 1 ]      |           |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                | **          |             |              | _        |
|                       |                                        |                                                  |              |              |                   | $\dagger$        |                  | +-                         | +-          | +-+      |           | +              | -        |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | _               |         | +            |                | ··········· |             |              |          |
|                       |                                        | <u> </u>                                         |              | <u> </u>     |                   | -                | $\downarrow$     |                            | ┦           | -        |           |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              | i        |
|                       |                                        |                                                  |              |              |                   |                  |                  |                            |             |          |           |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              |          |
|                       |                                        |                                                  |              |              |                   | 11               | _                |                            | +           | †        |           | _              | +-       | <del>├</del> ┈┤ |               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ╅              |                 | -       |              |                |             |             |              |          |
|                       |                                        | <del> </del>                                     |              | <del> </del> |                   | $\vdash$         |                  | -                          |             |          |           | -              | <u> </u> | $\sqcup$        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | _               |         |              |                |             |             |              |          |
|                       |                                        |                                                  |              |              |                   |                  |                  |                            |             |          |           | -              |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              |          |
|                       |                                        |                                                  |              |              |                   | П                |                  |                            |             |          |           |                |          |                 |               | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | П              | _               |         |              | <del></del>    |             |             |              | -        |
|                       |                                        | <del> </del>                                     |              | <del> </del> |                   | +                | +                |                            | +-          | +-+      |           |                | +-       | ┝┤              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -               |         |              |                |             |             |              |          |
| Matrix Type:          | A = Air W = Water S= Solid             | N = N'                                           |              | <u> </u>     | <u></u>           |                  | 12.55 50.00      |                            |             |          |           | $\perp$        |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | $\perp$ |              |                |             |             |              |          |
|                       | 1 - Att W - Water S= 5000              | N = Nonac                                        | queous (solv | ent, acid,   | etc.)             | ]  -             |                  | 300                        |             |          |           | *******        |          | -               |               | DATE OF THE OWNER, THE | 11:10:20:00:00 | A. 200 (M. 200) |         |              |                |             |             |              | 200      |
| Instructions or Speci | ial Requirements:                      |                                                  |              |              |                   | i i              | resc             | ervati                     | ve: '       | 1= No    | ne 2      | = H2           | 2504     | 3 =             | HN03          | 4=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HCL            | 5 ≒             | MeO     | H 6:         | = NAHSC        | 4 7 = W     | ater 8      | = Other      |          |
|                       |                                        |                                                  |              |              |                   |                  |                  |                            |             |          |           |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              | $\neg$   |
|                       |                                        |                                                  |              |              |                   |                  |                  |                            |             |          |           |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              |          |
|                       |                                        |                                                  |              | _            | •                 |                  |                  |                            |             |          |           |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              |                |             |             |              |          |
| <b>T</b> emperature:  | <u>4.8</u>                             | Custody                                          | Seals:       | Yes          | No                | -                |                  |                            |             | eu       | stoc      | Iv S           | Seal     | s in            | tact          | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /es            |                 | No      |              |                |             |             |              |          |
| Relinquished by:      | Sel lall                               | Date/Time:                                       |              |              | <b>MANAGEMENT</b> | I                | Recei            | ved by                     | y: <b>4</b> |          |           | γ <u> </u>     | 0 -      | ~~              |               | ۲.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                 | 110     |              | The 4 = /Trime |             |             | ···          |          |
| Re inquished to       | Je come                                | 1 8-4                                            | ~! る は       | 760          |                   | I                | Recei            | ved b                      | A           |          | */        |                |          | <u> </u>        | <b>-</b>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              | Date/Tim       | 160         | <u> </u>    |              | 의?       |
|                       | knen                                   | Date/Time:                                       |              |              |                   |                  |                  | ,                          | _           |          | M         | ///            |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         |              | Date/Tim       | ie: 2/16    | 2/15        | 3:45         |          |
| Relinquished by:      |                                        | Date/Time:                                       |              |              |                   | F                | Recei            | ved b                      | y:          |          | 7         | يسرز.<br>/     |          | **              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | ··      |              | ·              | - ~ /10     | · ( (~)     |              | [        |
|                       |                                        | Date, Lime:                                      |              |              |                   |                  |                  |                            |             |          | $\Box U$  |                |          |                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |         | ļ            | Date/Tim       | e:          |             |              |          |

Client: Avery Laboratories & Environmental Services, LLC Client Sample ID: MW-19

**Project Name:** Martha's Dry Cleaners **Collection Date:** 2/6/2015 4:42:00 PM

**Lab ID:** 1502886-001 **Matrix:** Aqueous

| Analyses                       | Result      | Qual | MDL | Reporting<br>Limit | Units | BatchID | DF | Date Analyzed    | Analyst |
|--------------------------------|-------------|------|-----|--------------------|-------|---------|----|------------------|---------|
| GC Analysis of Gaseous Samples | SOP-RSK 175 |      |     | (                  | RSK17 | 5)      |    |                  |         |
| Ethane                         | BRL         |      | 2   | 9                  | ug/L  | 202980  | 1  | 02/10/2015 18:50 | JM      |
| Ethylene                       | BRL         |      | 1   | 7                  | ug/L  | 202980  | 1  | 02/10/2015 18:50 | JM      |

Date:

13-Feb-15

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value < Less than Result value

Narr See case narrative

Client: Avery Laboratories & Environmental Services, LLC Client Sample ID: MW-21S

**Project Name:** Martha's Dry Cleaners Collection Date: 2/6/2015 12:33:00 PM

Lab ID: 1502886-002 Matrix: Aqueous

| Analyses                       | Result      | Qual | MDL | Reporting<br>Limit | Units | BatchID | DF | Date Analyzed    | Analyst |
|--------------------------------|-------------|------|-----|--------------------|-------|---------|----|------------------|---------|
| GC Analysis of Gaseous Samples | SOP-RSK 175 |      |     | (1                 | RSK17 | 5)      |    |                  |         |
| Ethane                         | BRL         |      | 2   | 9                  | ug/L  | 202980  | 1  | 02/10/2015 18:13 | JM      |
| Ethylene                       | BRL         |      | 1   | 7                  | ug/L  | 202980  | 1  | 02/10/2015 18:13 | JM      |

Date:

13-Feb-15

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value
Narr See case narrative

4 of 8

Client: Avery Laboratories & Environmental Services, LLC Client Sample ID: MW-24

**Project Name:** Martha's Dry Cleaners **Collection Date:** 2/6/2015 2:40:00 PM

Lab ID: 1502886-003 Matrix: Aqueous

| Analyses                       | Result      | Qual | MDL | Reporting<br>Limit | Units | BatchID | DF | Date Analyzed    | Analyst |
|--------------------------------|-------------|------|-----|--------------------|-------|---------|----|------------------|---------|
| GC Analysis of Gaseous Samples | SOP-RSK 175 |      |     | (                  | RSK17 | 5)      |    |                  |         |
| Ethane                         | BRL         |      | 2   | 9                  | ug/L  | 202980  | 1  | 02/10/2015 18:18 | JM      |
| Ethylene                       | BRL         |      | 1   | 7                  | ug/L  | 202980  | 1  | 02/10/2015 18:18 | JM      |

Date:

13-Feb-15

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative

## Sample/Cooler Receipt Checklist

| Client Avery Wh                                               |              | Work Order | r Number       | 1502886   |
|---------------------------------------------------------------|--------------|------------|----------------|-----------|
| J                                                             | e/10/15      |            |                |           |
| Carrier name: FedExUPS Courier Client U                       | S Mail Other | r          | _              |           |
| Shipping container/cooler in good condition?                  | Yes          | No         | Not Present    |           |
| Custody seals intact on shipping container/cooler?            | Yes          | No         | Not Present /  |           |
| Custody seals intact on sample bottles?                       | Yes          | No         | Not Present    |           |
| Container/Temp Blank temperature in compliance? (0°≤6°C)      | * Yes        | No         |                |           |
| Cooler #1 Cooler #2 Cooler #3                                 | Cooler #4    | Coo        | oler#5 C       | `ooler #6 |
| Chain of custody present?                                     | Yes _        | No         |                |           |
| Chain of custody signed when relinquished and received?       | Yes _        | No         |                |           |
| Chain of custody agrees with sample labels?                   | Yes _        | No         | •              |           |
| Samples in proper container/bottle?                           | Yes          | No         |                |           |
| Sample containers intact?                                     | Yes          | No         |                |           |
| Sufficient sample volume for indicated test?                  | Yes _        | No         |                |           |
| All samples received within holding time?                     | Yes          | No         |                |           |
| Was TAT marked on the COC?                                    | Yes _        | No         |                |           |
| Proceed with Standard TAT as per project history?             | Yes          | No _       | Not Applicable |           |
| Water - VOA vials have zero headspace? No VOA vials su        | abmitted     | Yes _      | No _           |           |
| Water - pH acceptable upon receipt?                           | Yes _        | No _       | Not Applicable | ····      |
| Adjusted?                                                     | Chec         | cked by    | <u>.</u>       |           |
| Sample Condition: Good Other(Explain)                         |              |            |                |           |
| (For diffusive samples or ATHA lead) Is a known blank include | ded? Ves     | λ          | Jo             |           |

See Case Narrative for resolution of the Non-Conformance.

\\Aes\_server\l\Sample Receipt\\My Documents\COCs and pH Adjustment Sheet\Sample\_Cooler\_Recipt\_Checklist\_Rev1.rtf

<sup>\*</sup> Samples do not have to comply with the given range for certain parameters.

**Client:** 

Avery Laboratories & Environmental Services, LLC Martha's Dry Cleaners **Project Name:** 

Workorder: 1502886

## ANALYTICAL QC SUMMARY REPORT

Date:

13-Feb-15

BatchID: 202980

B Analyte detected in the associated method blank

R RPD outside limits due to matrix

Holding times for preparation or analysis exceeded

| Sample ID: <b>MB-202980</b> | Client ID:   |                       |               |             | Uni  | U            |            |                     |        | Run No: 285583         |
|-----------------------------|--------------|-----------------------|---------------|-------------|------|--------------|------------|---------------------|--------|------------------------|
| SampleType: MBLK            | TestCode: GO | C Analysis of Gaseous | Samples SOP-F | RSK 175     | Bat  | chID: 202980 | Ana        | alysis Date: 02/1   | 0/2015 | Seq No: <b>6059435</b> |
| Analyte                     | Result       | RPT Limit             | SPK value     | SPK Ref Val | %REC | Low Limit    | High Limit | RPD Ref Val         | %RPD   | RPD Limit Qua          |
| Ethane                      | BRL          | 9                     |               |             |      |              |            |                     |        |                        |
| Ethylene                    | BRL          | 7                     |               |             |      |              |            |                     |        |                        |
| Methane                     | BRL          | 4                     |               |             |      |              |            |                     |        |                        |
| Sample ID: LCS-202980       | Client ID:   |                       |               |             | Uni  | its: ug/L    | Prej       | p Date: 02/1        | 0/2015 | Run No: <b>285583</b>  |
| SampleType: LCS             | TestCode: GO | C Analysis of Gaseous | Samples SOP-F | RSK 175     | Bat  | chID: 202980 | Ana        | alysis Date: 02/1   | 0/2015 | Seq No: <b>6059436</b> |
| Analyte                     | Result       | RPT Limit             | SPK value     | SPK Ref Val | %REC | Low Limit    | High Limit | RPD Ref Val         | %RPD   | RPD Limit Qual         |
| Ethane                      | 138.2        | 9                     | 200.0         |             | 69.1 | 41.2         | 115        |                     |        |                        |
| Ethylene                    | 89.86        | 7                     | 200.0         |             | 44.9 | 26.5         | 115        |                     |        |                        |
| Methane                     | 144.2        | 4                     | 200.0         |             | 72.1 | 45.1         | 115        |                     |        |                        |
| Sample ID: LCSD-202980      | Client ID:   |                       |               |             | Uni  | its: ug/L    | Prej       | p Date: 02/1        | 0/2015 | Run No: <b>285583</b>  |
| SampleType: LCSD            | TestCode: GO | C Analysis of Gaseous | Samples SOP-F | RSK 175     | Bat  | chID: 202980 | Ana        | alysis Date: 02/1   | 0/2015 | Seq No: <b>6059437</b> |
| Analyte                     | Result       | RPT Limit             | SPK value     | SPK Ref Val | %REC | Low Limit    | High Limit | RPD Ref Val         | %RPD   | RPD Limit Qual         |
| Ethane                      | 139.6        | 9                     | 200.0         |             | 69.8 | 41.2         | 115        | 138.2               | 1.05   | 20                     |
| Ethylene                    | 90.66        | 7                     | 200.0         |             | 45.3 | 26.5         | 115        | 89.86               | 0.887  | 20                     |
| Methane                     | 144.9        | 4                     | 200.0         |             | 72.5 | 45.1         | 115        | 144.2               | 0.482  | 20                     |
| Sample ID: 1502655-005BMS   | Client ID:   |                       |               |             | Uni  | its: ug/L    | Pre        | p Date: <b>02/1</b> | 0/2015 | Run No: 285583         |
| SampleType: MS              | TestCode: GO | C Analysis of Gaseous | Samples SOP-F | RSK 175     | Bat  | chID: 202980 | Ana        | alysis Date: 02/1   | 0/2015 | Seq No: <b>6059449</b> |
| Analyte                     | Result       | RPT Limit             | SPK value     | SPK Ref Val | %REC | Low Limit    | High Limit | RPD Ref Val         | %RPD   | RPD Limit Qual         |
| Ethane                      | 136.9        | 9                     | 200.0         |             | 68.4 | 40.5         | 115        |                     |        |                        |
| Ethylene                    | 90.22        | 7                     | 200.0         |             | 45.1 | 25.1         | 115        |                     |        |                        |
| Methane                     | 140.3        | 4                     | 200.0         |             | 70.1 | 40.4         | 115        |                     |        |                        |

Less than Result value

N Analyte not NELAC certified

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

BRL

Greater than Result value

Estimated value detected below Reporting Limit

Below reporting limit

Rpt Lim Reporting Limit

Qualifiers:

Client: Avery Laboratories & Environmental Services, LLC

**Project Name:** Martha's Dry Cleaners

Workorder: 1502886

## ANALYTICAL QC SUMMARY REPORT

Date:

13-Feb-15

BatchID: 202980

| Sample ID: 1502655-005BMSD<br>SampleType: MSD | Client ID:<br>TestCode: GC A | nalysis of Gaseous | Samples SOP-R | SK 175      | Uni<br>Bate | ts: ug/L<br>chID: 202980 |            | Date: <b>02/</b> 2 lysis Date: <b>02/</b> 2 | 10/2015<br>10/2015 | Run No: <b>285583</b><br>Seq No: <b>6059450</b> |
|-----------------------------------------------|------------------------------|--------------------|---------------|-------------|-------------|--------------------------|------------|---------------------------------------------|--------------------|-------------------------------------------------|
| Analyte                                       | Result                       | RPT Limit          | SPK value     | SPK Ref Val | %REC        | Low Limit                | High Limit | RPD Ref Val                                 | %RPD               | RPD Limit Qual                                  |
| Ethane                                        | 131.1                        | 9                  | 200.0         |             | 65.5        | 40.5                     | 115        | 136.9                                       | 4.34               | 20                                              |
| Ethylene                                      | 86.45                        | 7                  | 200.0         |             | 43.2        | 25.1                     | 115        | 90.22                                       | 4.28               | 20                                              |
| Methane                                       | 134.4                        | 4                  | 200.0         |             | 67.2        | 40.4                     | 115        | 140.3                                       | 4.29               | 20                                              |

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix



THE LEADER IN ENVIRONMENTAL TESTING

## ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-98243-1

Client Project/Site: Martha's Dry Cleaners

#### For:

Avery Laboratories & Env. Services LLC PO BOX 5340 Savannah, Georgia 31414

Attn: Mr. Paul Grimm

Bernon Kinken

Authorized for release by: 2/10/2014 9:26:14 PM

Bernard Kirkland, Manager of Project Management

(912)354-7858 e.3238

bernard.kirkland@testamericainc.com

LINKS

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Avery Laboratories & Env. Services LLC Project/Site: Martha's Dry Cleaners

TestAmerica Job ID: 680-98243-1

# **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     |    |
| Case Narrative        | 3  |
| Sample Summary        | 4  |
| Method Summary        | 5  |
| Definitions           | 6  |
| Client Sample Results | 7  |
| QC Sample Results     | 10 |
| QC Association        | 11 |
| Chain of Custody      | 12 |
| Receipt Checklists    | 13 |
| Certification Summary | 14 |

2

Δ

5

6

8

9

10

11

#### **Case Narrative**

Client: Avery Laboratories & Env. Services LLC

Project/Site: Martha's Dry Cleaners

TestAmerica Job ID: 680-98243-1

Job ID: 680-98243-1

Laboratory: TestAmerica Savannah

Narrative

#### **CASE NARRATIVE**

Client: Avery Laboratories & Env. Services LLC

**Project: Martha's Dry Cleaners** 

Report Number: 680-98243-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

#### RECEIPT

The samples were received on 01/31/2014; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.0 C.

#### **DISSOLVED GASES**

Samples MW-19 (680-98243-1), MW-24 (680-98243-2), MW-23 (680-98243-3), MW-21D (680-98243-4), MW-21S (680-98243-5), MW-22 (680-98243-6), MW-20 (680-98243-7), Dup-1 (680-98243-8) and Field Blank (680-98243-9) were analyzed for dissolved gases in accordance with RSK-175. The samples were analyzed on 02/10/2014.

The field blank associated with analytical batch 314606 has a detection for methane above the method detection limit. Re-analysis was conducted, confirming the detection; the data have been reported.

No difficulties were encountered during the dissolved gases analysis.

All quality control parameters were within the acceptance limits.

#### **SULFIDE**

Samples MW-19 (680-98243-1), MW-24 (680-98243-2), MW-23 (680-98243-3), MW-21D (680-98243-4), MW-21S (680-98243-5), MW-22 (680-98243-6), MW-20 (680-98243-7), Dup-1 (680-98243-8) and Field Blank (680-98243-9) were analyzed for sulfide in accordance with EPA Method 376.1. The samples were analyzed on 02/03/2014.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP).

No difficulties were encountered during the sulfide analysis.

All quality control parameters were within the acceptance limits.

TestAmerica Savannah 2/10/2014

3

Δ

5

6

8

4.0

11

12

## **Sample Summary**

Client: Avery Laboratories & Env. Services LLC

Project/Site: Martha's Dry Cleaners

TestAmerica Job ID: 680-98243-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 680-98243-1   | MW-19            | Water  | 01/27/14 15:20 | 01/31/14 15:10 |
| 680-98243-2   | MW-24            | Water  | 01/27/14 16:40 | 01/31/14 15:10 |
| 680-98243-3   | MW-23            | Water  | 01/27/14 17:40 | 01/31/14 15:10 |
| 680-98243-4   | MW-21D           | Water  | 01/28/14 15:55 | 01/31/14 15:10 |
| 680-98243-5   | MW-21S           | Water  | 01/28/14 17:00 | 01/31/14 15:10 |
| 680-98243-6   | MW-22            | Water  | 01/29/14 14:40 | 01/31/14 15:10 |
| 680-98243-7   | MW-20            | Water  | 01/29/14 16:00 | 01/31/14 15:10 |
| 680-98243-8   | Dup-1            | Water  | 01/29/14 14:45 | 01/31/14 15:10 |
| 680-98243-9   | Field Blank      | Water  | 01/29/14 16:40 | 01/31/14 15:10 |

•

4

7

8

9

10

. .

## **Method Summary**

Client: Avery Laboratories & Env. Services LLC

Project/Site: Martha's Dry Cleaners

TestAmerica Job ID: 680-98243-1

| Method  | Method Description   | Protocol | Laboratory |
|---------|----------------------|----------|------------|
| RSK-175 | Dissolved Gases (GC) | RSK      | TAL SAV    |
| 376.1   | Sulfide              | MCAWW    | TAL SAV    |

#### **Protocol References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

#### Trev. 0, 0/11/04, OOLI /Tresculon Le

#### Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

4

5

8

4.6

4 4

11

15

## **Definitions/Glossary**

Client: Avery Laboratories & Env. Services LLC

Method Detection Limit

Minimum Level (Dioxin)

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Not Calculated

**Quality Control** 

Relative error ratio

Project/Site: Martha's Dry Cleaners

TestAmerica Job ID: 680-98243-1

#### **Qualifiers**

#### **GC VOA**

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected.                                                       |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

#### **General Chemistry**

| Qualifier | Qualifier Description                                    |
|-----------|----------------------------------------------------------|
| U         | Indicates the analyte was analyzed for but not detected. |

#### **Glossary**

MDL

ML

NC

ND

PQL

QC RER

RL

RPD TEF

TEQ

| These commonly used abbreviations may or may not be present in this report.                                 |
|-------------------------------------------------------------------------------------------------------------|
| Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| Percent Recovery                                                                                            |
| Contains no Free Liquid                                                                                     |
| Duplicate error ratio (normalized absolute difference)                                                      |
| Dilution Factor                                                                                             |
| Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| Decision level concentration                                                                                |
| Minimum detectable activity                                                                                 |
| Estimated Detection Limit                                                                                   |
| Minimum detectable concentration                                                                            |
|                                                                                                             |

5

6

Q

9

10

11

12

**Matrix: Water** 

**Matrix: Water** 

Matrix: Water

Client: Avery Laboratories & Env. Services LLC

Project/Site: Martha's Dry Cleaners

Client Sample ID: MW-19 Lab Sample ID: 680-98243-1

Date Collected: 01/27/14 15:20 Matrix: Water

Date Received: 01/31/14 15:10

| Method: RSK-175 - Dissolved | Gases (GC) |           |      |      |      |   |          |                |         |
|-----------------------------|------------|-----------|------|------|------|---|----------|----------------|---------|
| Analyte                     | Result     | Qualifier | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Methane                     | 2.2        |           | 0.58 | 0.29 | ug/L |   |          | 02/10/14 14:24 | 1       |
| Ethylene                    | 1.0        | U         | 1.0  | 0.50 | ug/L |   |          | 02/10/14 14:24 | 1       |
| Ethane                      | 1.1        | U         | 1.1  | 0.55 | ug/L |   |          | 02/10/14 14:24 | 1       |
| General Chemistry           |            |           |      |      |      |   |          |                |         |
| Analyte                     | Result     | Qualifier | RL   | RL   | Unit | D | Prepared | Analyzed       | Dil Fac |

Sulfide as H2S 1.1 1.1 U 1.1 mg/L 02/03/14 13:22

Client Sample ID: MW-24 Lab Sample ID: 680-98243-2

Date Collected: 01/27/14 16:40

Date Received: 01/31/14 15:10

| Analyte           | Result | Qualifier | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|-------------------|--------|-----------|------|------|------|---|----------|----------------|---------|
| Methane           | 6.3    |           | 0.58 | 0.29 | ug/L |   |          | 02/10/14 14:37 | 1       |
| Ethylene          | 1.0    | U         | 1.0  | 0.50 | ug/L |   |          | 02/10/14 14:37 | 1       |
| Ethane<br>—       | 1.1    | U         | 1.1  | 0.55 | ug/L |   |          | 02/10/14 14:37 | 1       |
| General Chemistry |        |           |      |      |      |   |          |                |         |
| Analyte           | Result | Qualifier | RL   | RL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Sulfide as H2S    | 1.2    |           | 1.1  | 1.1  | mg/L |   |          | 02/03/14 13:22 | 1       |

Client Sample ID: MW-23 Lab Sample ID: 680-98243-3

Date Collected: 01/27/14 17:40

Date Received: 01/31/14 15:10

| Method: RSK-175 - Dissolved | Gases (GC) |           |      |      |      |   |          |                |         |
|-----------------------------|------------|-----------|------|------|------|---|----------|----------------|---------|
| Analyte                     | Result     | Qualifier | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Methane                     | 0.63       |           | 0.58 | 0.29 | ug/L |   |          | 02/10/14 14:49 | 1       |
| Ethylene                    | 1.0        | U         | 1.0  | 0.50 | ug/L |   |          | 02/10/14 14:49 | 1       |
| Ethane                      | 1.1        | U         | 1.1  | 0.55 | ug/L |   |          | 02/10/14 14:49 | 1       |
| General Chemistry           |            |           |      |      |      |   |          |                |         |
| Analyte                     | Result     | Qualifier | RL   | RL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Sulfide as H2S              | 1.1        | U         | 1.1  | 1.1  | mg/L |   |          | 02/03/14 13:22 | 1       |

Client Sample ID: MW-21D Lab Sample ID: 680-98243-4

Date Collected: 01/28/14 15:55

Date Received: 01/31/14 15:10

| Analyte                | Result | Qualifier | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fa |
|------------------------|--------|-----------|------|------|------|---|----------|----------------|--------|
| Methane                | 320    |           | 0.58 | 0.29 | ug/L |   |          | 02/10/14 15:02 |        |
| Ethylene               | 1.0    | U         | 1.0  | 0.50 | ug/L |   |          | 02/10/14 15:02 |        |
| Ethane<br>-            | 1.1    | U         | 1.1  | 0.55 | ug/L |   |          | 02/10/14 15:02 |        |
| -<br>General Chemistry |        |           |      |      |      |   |          |                |        |
| Analyte                | Result | Qualifier | RL   | RL   | Unit | D | Prepared | Analyzed       | Dil Fa |
| Sulfide as H2S         | 1.1    | U         | 1.1  | 1.1  | mg/L |   |          | 02/03/14 13:22 |        |

TestAmerica Savannah

**Matrix: Water** 

Project/Site: Martha's Dry Cleaners

Client Sample ID: MW-21S Lab Sample ID: 680-98243-5

Date Collected: 01/28/14 17:00 Matrix: Water

Date Received: 01/31/14 15:10

| Method: RSK-175 - Dissolv | ved Gases (GC) |           |      |      |      |   |          |                |         |
|---------------------------|----------------|-----------|------|------|------|---|----------|----------------|---------|
| Analyte                   | Result         | Qualifier | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Methane                   | 0.88           |           | 0.58 | 0.29 | ug/L |   |          | 02/10/14 15:15 | 1       |
| Ethylene                  | 1.0            | U         | 1.0  | 0.50 | ug/L |   |          | 02/10/14 15:15 | 1       |
| Ethane                    | 1.1            | U         | 1.1  | 0.55 | ug/L |   |          | 02/10/14 15:15 | 1       |
|                           |                |           |      |      |      |   |          |                |         |

 General Chemistry

 Analyte
 Result
 Qualifier
 RL
 RL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Sulfide as H2S
 1.1
 U
 1.1
 1.1
 mg/L
 02/03/14 13:22
 1

Client Sample ID: MW-22 Lab Sample ID: 680-98243-6

Date Collected: 01/29/14 14:40

Date Received: 01/31/14 15:10

| Result | Qualifier       | RL                      | MDL                    | Unit                                                                            | D                                                                                                         | Prepared                                                                          | Analyzed                                                      | Dil Fac                                                                                                                         |
|--------|-----------------|-------------------------|------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 0.59   |                 | 0.58                    | 0.29                   | ug/L                                                                            |                                                                                                           |                                                                                   | 02/10/14 15:28                                                | 1                                                                                                                               |
| 1.0    | U               | 1.0                     | 0.50                   | ug/L                                                                            |                                                                                                           |                                                                                   | 02/10/14 15:28                                                | 1                                                                                                                               |
| 1.1    | U               | 1.1                     | 0.55                   | ug/L                                                                            |                                                                                                           |                                                                                   | 02/10/14 15:28                                                | 1                                                                                                                               |
|        |                 |                         |                        |                                                                                 |                                                                                                           |                                                                                   |                                                               |                                                                                                                                 |
|        | <b>0.59</b> 1.0 | Result Qualifier   0.59 | 0.59 0.58<br>1.0 U 1.0 | 0.59         0.58         0.29           1.0         U         1.0         0.50 | 0.59         0.58         0.29         ug/L           1.0         U         1.0         0.50         ug/L | 0.59         0.58         0.29 ug/L           1.0 U         1.0         0.50 ug/L | 0.59     0.58     0.29 ug/L       1.0 U     1.0     0.50 ug/L | 0.59         0.58         0.29 ug/L         02/10/14 15:28           1.0 U         1.0         0.50 ug/L         02/10/14 15:28 |

 Sulfide as H2S
 1.1
 U
 1.1
 1.1
 mg/L
 Description
 Prepared
 Analyzed
 Bill Pac

Client Sample ID: MW-20

Lab Sample ID: 680-98243-7

Date Collected: 01/29/14 16:00

Matrix: Water

Date Received: 01/31/14 15:10

| Method: RSK-175 - Dissolved<br>Analyte | · ,    | Qualifier | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------------------------|--------|-----------|------|------|------|---|----------|----------------|---------|
| Methane                                | 0.76   |           | 0.58 | 0.29 | ug/L |   |          | 02/10/14 15:41 | 1       |
| Ethylene                               | 1.0    | U         | 1.0  | 0.50 | ug/L |   |          | 02/10/14 15:41 | 1       |
| Ethane<br>-                            | 1.1    | U         | 1.1  | 0.55 | ug/L |   |          | 02/10/14 15:41 | 1       |
| General Chemistry                      |        |           |      |      |      |   |          |                |         |
| Analyte                                | Result | Qualifier | RL   | RL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Sulfide as H2S                         | 1.1    | U         | 1.1  | 1.1  | mg/L |   |          | 02/03/14 13:22 | 1       |

Client Sample ID: Dup-1 Lab Sample ID: 680-98243-8

Date Collected: 01/29/14 14:45 Date Received: 01/31/14 15:10

| Method: RSK-175 - Dissolved | Gases (GC) |           |      |      |      |   |          |                |         |
|-----------------------------|------------|-----------|------|------|------|---|----------|----------------|---------|
| Analyte                     | Result     | Qualifier | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Methane                     | 0.67       |           | 0.58 | 0.29 | ug/L |   |          | 02/10/14 15:53 | 1       |
| Ethylene                    | 1.0        | U         | 1.0  | 0.50 | ug/L |   |          | 02/10/14 15:53 | 1       |
| Ethane                      | 1.1        | U         | 1.1  | 0.55 | ug/L |   |          | 02/10/14 15:53 | 1       |
| General Chemistry           |            |           |      |      |      |   |          |                |         |
| Analyte                     | Result     | Qualifier | RL   | RL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Sulfide as H2S              | 1.1        | U         | 1.1  | 1.1  | mg/L |   |          | 02/03/14 13:22 | 1       |

TestAmerica Savannah

Matrix: Water

## **Client Sample Results**

Client: Avery Laboratories & Env. Services LLC

Project/Site: Martha's Dry Cleaners

**Client Sample ID: Field Blank** 

TestAmerica Job ID: 680-98243-1

Lab Sample ID: 680-98243-9

Matrix: Water

Date Collected: 01/29/14 16:40 Date Received: 01/31/14 15:10

| Method: RSK-175 - Dissolved | Gases (GC) |           |      |      |      |   |          |                |         |
|-----------------------------|------------|-----------|------|------|------|---|----------|----------------|---------|
| Analyte                     | Result     | Qualifier | RL   | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Methane                     | 0.50       | J         | 0.58 | 0.29 | ug/L |   |          | 02/10/14 16:06 | 1       |
| Ethylene                    | 1.0        | U         | 1.0  | 0.50 | ug/L |   |          | 02/10/14 16:06 | 1       |
| Ethane                      | 1.1        | U         | 1.1  | 0.55 | ug/L |   |          | 02/10/14 16:06 | 1       |
| General Chemistry           |            |           |      |      |      |   |          |                |         |
| Analyte                     | Result     | Qualifier | RL   | RL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Sulfide as H2S              | 1.1        | U         | 1.1  | 1.1  | mg/L |   |          | 02/03/14 13:22 | 1       |

0

10

11

15

Client: Avery Laboratories & Env. Services LLC

Project/Site: Martha's Dry Cleaners

#### Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 680-314606/7 **Matrix: Water** 

Analysis Batch: 314606

Analyte

Methane

Ethylene

Ethane

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв Result Qualifier RL Dil Fac MDL Unit D Prepared Analyzed 0.58 0.58 U 0.29 ug/L 02/10/14 11:30 1.0 U 1.0 0.50 ug/L 02/10/14 11:30 02/10/14 11:30 1.1 U 1.1 0.55 ug/L

Lab Sample ID: LCS 680-314606/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 314606

|          | Spike | LCS    | LCS       |        |      | %Rec.    |  |
|----------|-------|--------|-----------|--------|------|----------|--|
| Analyte  | Added | Result | Qualifier | Unit D | %Rec | Limits   |  |
| Methane  | 154   | 151    |           | ug/L   | 98   | 75 - 125 |  |
| Ethylene | 269   | 286    |           | ug/L   | 106  | 75 - 125 |  |
| Ethane   | 288   | 298    |           | ug/L   | 103  | 75 - 125 |  |

Lab Sample ID: LCSD 680-314606/4 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 314606

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Methane 154 152 ug/L 99 75 - 125 30 Ethylene 269 286 75 - 125 ug/L 106 30 Ethane 288 300 ug/L 104 75 - 125 30

Method: 376.1 - Sulfide

Lab Sample ID: MB 680-313985/1

**Matrix: Water** 

Analysis Batch: 313985

|                | MB     | МВ        |     |     |      |   |          |                |         |  |
|----------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|--|
| Analyte        | Result | Qualifier | RL  | RL  | Unit | D | Prepared | Analyzed       | Dil Fac |  |
| Sulfide as H2S | 1.1    | U         | 1.1 | 1.1 | mg/L |   |          | 02/03/14 13:22 | 1       |  |

Lab Sample ID: LCS 680-313985/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 313985

|                | Spike | LCS    | LCS       |      |   |      | %Rec.    |  |
|----------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte        | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Sulfide as H2S | 10.0  | 11.0   |           | ma/l | _ | 110  | 75 - 125 |  |

Lab Sample ID: LCSD 680-313985/3 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 313985

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Analyte D Limits RPD Limit Unit %Rec Sulfide as H2S 10.0 11.1 mg/L 111 75 - 125

TestAmerica Savannah

Client Sample ID: Method Blank

Prep Type: Total/NA

2/10/2014

## **QC Association Summary**

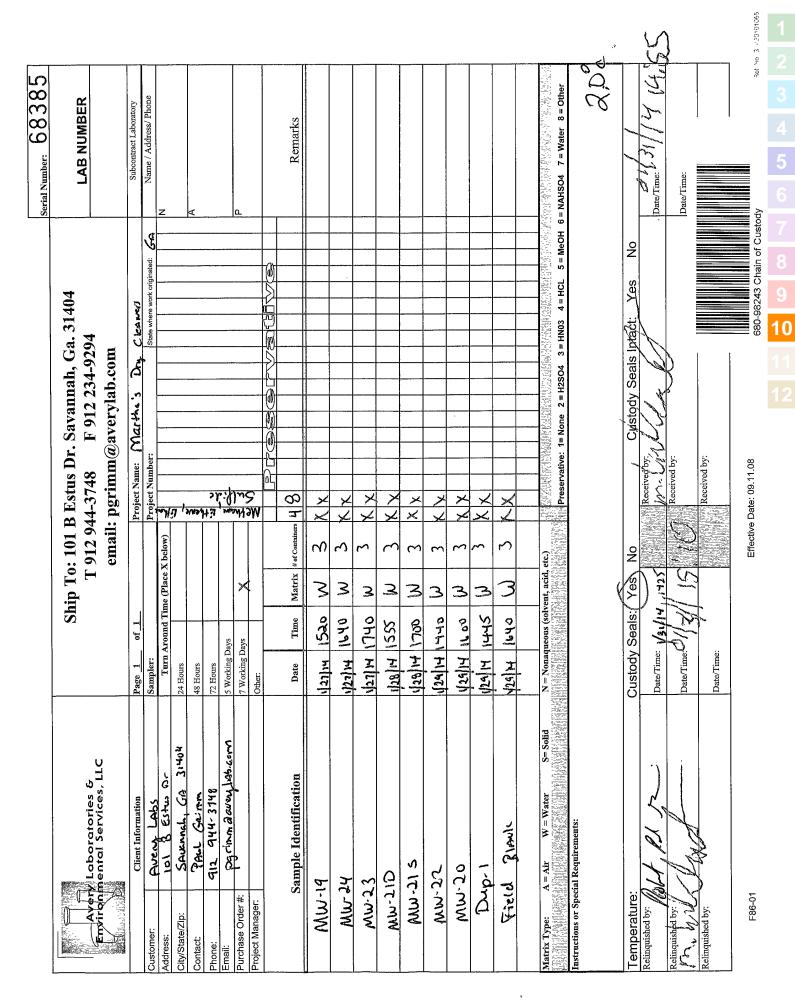
Client: Avery Laboratories & Env. Services LLC

Project/Site: Martha's Dry Cleaners

TestAmerica Job ID: 680-98243-1

#### **GC VOA**

## Analysis Batch: 314606


| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method  | Prep Batch |
|-------------------|------------------------|-----------|--------|---------|------------|
| 680-98243-1       | MW-19                  | Total/NA  | Water  | RSK-175 | _          |
| 680-98243-2       | MW-24                  | Total/NA  | Water  | RSK-175 |            |
| 680-98243-3       | MW-23                  | Total/NA  | Water  | RSK-175 |            |
| 680-98243-4       | MW-21D                 | Total/NA  | Water  | RSK-175 |            |
| 680-98243-5       | MW-21S                 | Total/NA  | Water  | RSK-175 |            |
| 680-98243-6       | MW-22                  | Total/NA  | Water  | RSK-175 |            |
| 680-98243-7       | MW-20                  | Total/NA  | Water  | RSK-175 |            |
| 680-98243-8       | Dup-1                  | Total/NA  | Water  | RSK-175 |            |
| 680-98243-9       | Field Blank            | Total/NA  | Water  | RSK-175 |            |
| LCS 680-314606/3  | Lab Control Sample     | Total/NA  | Water  | RSK-175 |            |
| LCSD 680-314606/4 | Lab Control Sample Dup | Total/NA  | Water  | RSK-175 |            |
| MB 680-314606/7   | Method Blank           | Total/NA  | Water  | RSK-175 |            |

## **General Chemistry**

## Analysis Batch: 313985

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 680-98243-1       | MW-19                  | Total/NA  | Water  | 376.1  |            |
| 680-98243-2       | MW-24                  | Total/NA  | Water  | 376.1  |            |
| 680-98243-3       | MW-23                  | Total/NA  | Water  | 376.1  |            |
| 680-98243-4       | MW-21D                 | Total/NA  | Water  | 376.1  |            |
| 680-98243-5       | MW-21S                 | Total/NA  | Water  | 376.1  |            |
| 680-98243-6       | MW-22                  | Total/NA  | Water  | 376.1  |            |
| 680-98243-7       | MW-20                  | Total/NA  | Water  | 376.1  |            |
| 680-98243-8       | Dup-1                  | Total/NA  | Water  | 376.1  |            |
| 680-98243-9       | Field Blank            | Total/NA  | Water  | 376.1  |            |
| LCS 680-313985/2  | Lab Control Sample     | Total/NA  | Water  | 376.1  |            |
| LCSD 680-313985/3 | Lab Control Sample Dup | Total/NA  | Water  | 376.1  |            |
| MB 680-313985/1   | Method Blank           | Total/NA  | Water  | 376.1  |            |

TestAmerica Savannah



## **Login Sample Receipt Checklist**

Client: Avery Laboratories & Env. Services LLC Job Number: 680-98243-1

Login Number: 98243 List Source: TestAmerica Savannah

List Number: 1

Creator: Banda, Christy S

| Creator. Banda, Offisty 3                                                                                 |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | True   |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time.                                                                 | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

Page 13 of 14

2/10/2014

TestAmerica Job ID: 680-98243-1

Client: Avery Laboratories & Env. Services LLC

Project/Site: Martha's Dry Cleaners

### **Laboratory: TestAmerica Savannah**

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

| Authority                       | Program             | EPA Region   | Certification ID     | Expiration Date |
|---------------------------------|---------------------|--------------|----------------------|-----------------|
|                                 | AFCEE               |              | SAVLAB               |                 |
| A2LA                            | DoD ELAP            |              | 399.01               | 02-28-15        |
| A2LA                            | ISO/IEC 17025       |              | 399.01               | 02-28-15        |
| Alabama                         | State Program       | 4            | 41450                | 06-30-14        |
| Arkansas DEQ                    | State Program       | 6            | 88-0692              | 02-01-15        |
| California                      | NELAP               | 9            | 3217CA               | 07-31-14        |
| Colorado                        | State Program       | 8            | N/A                  | 12-31-14        |
| Connecticut                     | State Program       | 1            | PH-0161              | 03-31-15        |
| Florida                         | NELAP               | 4            | E87052               | 06-30-14        |
| GA Dept. of Agriculture         | State Program       | 4            | N/A                  | 06-30-14        |
| Georgia                         | State Program       | 4            | N/A                  | 06-30-14        |
| Georgia                         | State Program       | 4            | 803                  | 06-30-14        |
| Guam                            | State Program       | 9            | 09-005r              | 04-17-14        |
| Hawaii                          | State Program       | 9            | N/A                  | 06-30-14        |
| Illinois                        | NELAP               | 5            | 200022               | 11-30-14        |
| Indiana                         | State Program       | 5            | N/A                  | 06-30-14        |
| lowa                            | State Program       | 7            | 353                  | 07-01-15        |
| Kentucky (DW)                   | State Program       | 4            | 90084                | 12-31-14        |
| Kentucky (UST)                  | State Program       | 4            | 18                   | 06-30-14        |
| Louisiana                       | NELAP               | 6            | LA100015             | 12-31-14        |
| Maine                           | State Program       | 1            | GA00006              | 08-16-14        |
| Maryland                        | State Program       | 3            | 250                  | 12-31-14        |
| Vassachusetts                   | State Program       | 1            | M-GA006              | 06-30-14        |
| Michigan                        | State Program       | 5            | 9925                 | 06-30-14        |
| Mississippi                     | State Program       | 4            | N/A                  | 06-30-14        |
| Montana                         | State Program       | 8            | CERT0081             | 01-01-15        |
| Nebraska                        | State Program       | 7            | TestAmerica-Savannah | 06-30-14        |
| New Jersey                      | NELAP               | 2            | GA769                | 06-30-14        |
| New Mexico                      | State Program       | 6            | N/A                  | 06-30-14        |
| New York                        | NELAP               | 2            | 10842                | 03-31-14        |
| North Carolina DENR             | State Program       |              | 269                  | 12-31-14        |
| North Carolina DHHS             | State Program       | 4            | 13701                | 07-31-14        |
| Oklahoma                        | State Program       | 6            | 9984                 | 08-31-14        |
| Pennsylvania                    | NELAP               |              | 68-00474             | 06-30-14        |
| Puerto Rico                     | State Program       | 2            | GA00006              | 01-01-14 *      |
| South Carolina                  | State Program       | 4            | 98001                | 06-30-14        |
|                                 | <del>.</del>        | <del>.</del> | TN02961              | 06-30-14        |
| Tennessee<br>Texas              | State Program NELAP | 4<br>6       | T104704185-08-TX     | 11-30-14        |
|                                 |                     | O            |                      |                 |
| JSDA<br>Virginia                | Federal             |              | SAV 3-04             | 04-07-14        |
| Virginia<br>Washington          | NELAP               | 3            | 460161               | 06-14-14        |
| Washington                      | State Program       | 10           | C1794                | 06-10-14        |
| West Virginia DEP               | State Program       | 3            | 94                   | 06-30-14        |
| West Virginia DHHR<br>Wisconsin | State Program       | 3            | 9950C                | 12-31-13 *      |
|                                 | State Program       | 5            | 999819810            | 08-31-14        |

TestAmerica Savannah

4

3

6

8

10

4 4

12

<sup>\*</sup> Expired certification is currently pending renewal and is considered valid.

| i |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

| Date/Time:                   | Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                      | Date/Time:     | Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date/Time:                   | Keceived by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                      | Date/Time:     | Keinquisned by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Date/Time: 0 1/30/14 0913    | Robert Ret re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>               | 1/50/14 913                          | Date/Time:     | Relinguished by: Clowell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | Custody Seals Intact: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es No                  | Seals: (Yes                          | Custody Seals: | Temperature: 2.75°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                      |                | Instructions or Special Requirements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| = NAHSO4 7 = Water 8 = Other | Preservative: 1= None 2=H2SO4 3=HN03 4=HCL 5=MeOH 6=NAHSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | acid, etc.)            | N = Nonaqueous (solvent, acid, etc.) | N = Nonaqu     | Matrix Type: A = Air W = Water S = Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                      | 1640                                 | 11/24/14       | Field Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                      | 1445                                 |                | DUP-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                      | 1600                                 | 1)29/14        | MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                      | 1440                                 | 1/29/14        | MW - 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                      | 1700                                 | 1/28/14        | NW -218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                      | 1555                                 | h1(82(1        | MW-21D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                      | 1740                                 | 1)27/14        | Mw-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                      | 1640                                 | 11/27/14       | MW-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                      | 1520 1                               | 1/27/14        | MW-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Remarks                      | 4444445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Matrix # of Containers | Time Mi                              | Date           | Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | Tree O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | -                                    | Other:         | Project Manager: Stevenst Dixon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| τ                            | Shi<br>Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                      | ys                                   | 7 Working Days | 52121153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | -1; hle chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | ys                                   | 5 Working Days | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | 2-Did<br>Did<br>Did<br>Did<br>Did<br>Did<br>Did<br>Did<br>Did<br>Did                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                      | 72 Hours       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A                            | . =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                      | 48 Hours       | Contact: Stewart Dixon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              | this source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                      | 24 Hours       | City/State/Zip: Savannah, GA 31404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Z                            | Then then the the then the | Place X below)         | Turn Around Time (Place X below)     | Turn A         | Address: 2201 Rowland Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Name / Address/ Phone        | Project Number: £5 1) 7 25 State where work originated: 6 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                                      | Sampler:       | Customer: Terror con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Subcontract Laboratory       | Project Name: Marthas Dry Cleaners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | of <u>1</u>                          | Page 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14013007                     | email: pgrimm@averylab.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | email:                 |                                      |                | RP14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LAB NUMBER                   | B Estus Dr. Savannah, Ga. 31404<br>)44-3748 F 912 234-9294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | To: 101<br>T 912 9     | Ship                                 |                | 02110 Contact |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



### LABORATORY ANALYSIS REPORT

JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Project ID: Martha Dry Cleaners

Report To: Client Name: Terracon Attn: Stuart Dixon

Client Address: 2201 Rowland Ave. P.O.#.: ES117125

City, State, Zip: Savannah, GA, 31404

Dear Stuart Dixon

The following test results meet all NELAC requirements for analytes for which certification is available. Any deviations from these quality systems will be noted in this case narrative. All analyses performed by Avery Laboratories & Environmental Services, LLC unless noted. Parameters not perfromed by Avery Laboratories will be listed on the Sample Summary section of the report.

For questions regarding this report, contact Robert Paul Grimm at (912)944-3748.

Sincerely,

Robert Paul Grimm
Discusses Signed by Robert Paul Grimm
Discusses Signed by Robert Paul Grimm
Discusses Signed By Robert Paul Grimm
Discusses Signed By Robert Paul Grimm
Laboratories, Oli-Robert Paul Grimm
Discusses Signed By Robert Paul Grimm
Discusses Signed

[Robert Paul Grimm] Technical Director



This Laboratory is NELAP accredited.

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.



JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project Name: Martha Dry Cleaners Date: 02/11/2014

Job ID :14013007Sample Matrix:AqueousClient Sample ID:MW-19Date Collected:01/27/2014Job Sample ID:14013007.01Time Collected:15:20

| Test Method  | Parameter/Test Description | Result | Units | DF | Rpt Limit | Reg Limit | Q | Date/Time Analyzed | Analyst |
|--------------|----------------------------|--------|-------|----|-----------|-----------|---|--------------------|---------|
| ASTM D516-90 |                            |        |       |    |           |           |   |                    |         |
|              | Sulfate                    | 19.3   | mg/L  | 1  | 5.00      |           |   | 02/06/2014 09:33   | JK      |
| EPA 310.2    |                            |        |       |    |           |           |   |                    |         |
|              | Alkalinity, as CaCO3       | BRL    | mg/L  | 1  | 20        |           |   | 02/03/2014 10:33   | JK      |
| EPA 310.2    |                            |        |       |    |           |           |   |                    |         |
|              | Carbon Dioxide             | BRL    | mg/L  | 1  | 20        |           |   | 02/11/2014 11:04   | RPG     |
| SM4500-CL e  |                            |        |       |    |           |           |   |                    |         |
|              | Chloride                   | 13.0   | mg/L  | 1  | 2.00      |           |   | 02/07/2014 08:16   | JK      |
| SM4500-NO2 b |                            |        |       |    |           |           |   |                    |         |
|              | Nitrite-N                  | BRL    | mg/L  | 1  | 0.02      |           | Н | 01/30/2014 15:33   | JK      |
| SM4500-NO3 h |                            |        |       |    |           |           |   |                    |         |
|              | Nitrate-N                  | BRL    | mg/L  | 1  | 0.500     |           |   | 01/31/2014 15:24   | JK      |
| SW-846 8260B | Volatile Organic Compounds |        |       |    |           |           |   |                    |         |
|              | 1,1,2-Trichloroethane      | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:32   | BM      |
|              | Carbon disulfide           | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:32   | BM      |
|              | cis-1,2-Dichloroethylene   | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:32   | BM      |
|              | Tetrachloroethylene        | 1.46   | ug/L  | 1  | 1         |           |   | 02/03/2014 18:32   | BM      |
|              | trans-1,2-Dichloroethylene | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:32   | BM      |
|              | Trichloroethylene          | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:32   | ВМ      |
|              | Dibromofluoromethane(surr) | 112    | %     | 1  | 63.4-152  |           |   | 02/03/2014 18:32   | ВМ      |
|              | p-Bromofluorobenzene(surr) | 116    | %     | 1  | 78.7-145  |           |   | 02/03/2014 18:32   | ВМ      |
|              | Toluene-d8(surr)           | 113    | %     | 1  | 66.4-153  |           |   | 02/03/2014 18:32   | ВМ      |
|              |                            |        |       |    |           |           |   |                    |         |



JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project Name: Martha Dry Cleaners Date: 02/11/2014

Job ID: 14013007 Sample Matrix: Aqueous
Client Sample ID: MW-24 Date Collected: 01/27/2014
Job Sample ID: 14013007.02 Time Collected: 16:40

| Test Method  | Parameter/Test Description | Result | Units | DF   | Rpt Limit | Reg Limit | Q | Date/Time Analyzed | Analyst |
|--------------|----------------------------|--------|-------|------|-----------|-----------|---|--------------------|---------|
| ASTM D516-90 |                            |        |       |      |           |           |   |                    |         |
|              | Sulfate                    | 45.5   | mg/L  | 2.00 | 10        |           |   | 02/06/2014 10:29   | JK      |
| EPA 310.2    |                            |        |       |      |           |           |   |                    |         |
|              | Alkalinity, as CaCO3       | BRL    | mg/L  | 1    | 20        |           |   | 02/03/2014 10:33   | JK      |
| EPA 310.2    |                            |        |       |      |           |           |   |                    |         |
|              | Carbon Dioxide             | 231    | mg/L  | 1    | 20        |           |   | 02/11/2014 11:04   | RPG     |
| SM4500-CL e  |                            |        |       |      |           |           |   |                    |         |
|              | Chloride                   | 22.9   | mg/L  | 1    | 2.00      |           |   | 02/07/2014 08:16   | JK      |
| SM4500-NO2 b |                            |        |       |      |           |           |   |                    |         |
|              | Nitrite-N                  | BRL    | mg/L  | 1    | 0.02      |           | Н | 01/30/2014 15:33   | JK      |
| SM4500-NO3 h |                            |        |       |      |           |           |   |                    |         |
|              | Nitrate-N                  | BRL    | mg/L  | 1    | 0.500     |           |   | 01/31/2014 15:24   | JK      |
| SW-846 8260B | Volatile Organic Compounds |        |       |      |           |           |   |                    |         |
|              | 1,1,2-Trichloroethane      | BRL    | ug/L  | 1    | 1         |           |   | 02/03/2014 18:58   | BM      |
|              | Carbon disulfide           | BRL    | ug/L  | 1    | 1         |           |   | 02/03/2014 18:58   | BM      |
|              | cis-1,2-Dichloroethylene   | 6.20   | ug/L  | 1    | 1         |           |   | 02/03/2014 18:58   | ВМ      |
|              | Tetrachloroethylene        | 6.82   | ug/L  | 1    | 1         |           |   | 02/03/2014 18:58   | ВМ      |
|              | trans-1,2-Dichloroethylene | BRL    | ug/L  | 1    | 1         |           |   | 02/03/2014 18:58   | ВМ      |
|              | Trichloroethylene          | 1.24   | ug/L  | 1    | 1         |           |   | 02/03/2014 18:58   | ВМ      |
|              | Dibromofluoromethane(surr) | 108    | %     | 1    | 63.4-152  |           |   | 02/03/2014 18:58   | ВМ      |
|              | p-Bromofluorobenzene(surr) | 113    | %     | 1    | 78.7-145  |           |   | 02/03/2014 18:58   | ВМ      |
|              | Toluene-d8(surr)           | 109    | %     | 1    | 66.4-153  |           |   | 02/03/2014 18:58   | BM      |



JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project Name: Martha Dry Cleaners Date: 02/11/2014

Job ID: 14013007 Sample Matrix: Aqueous
Client Sample ID: MW-23 Date Collected: 01/27/2014
Job Sample ID: 14013007.03 Time Collected: 17:40

| Test Method  | Parameter/Test Description | Result | Units | DF   | Rpt Limit | Reg Limit | Q | Date/Time Analyzed | Analyst |
|--------------|----------------------------|--------|-------|------|-----------|-----------|---|--------------------|---------|
| ASTM D516-90 |                            |        |       |      |           |           |   |                    |         |
|              | Sulfate                    | 118    | mg/L  | 5.00 | 25        |           |   | 02/06/2014 10:29   | JK      |
| EPA 310.2    |                            |        |       |      |           |           |   |                    |         |
|              | Alkalinity, as CaCO3       | BRL    | mg/L  | 1    | 20        |           |   | 02/03/2014 10:33   | JK      |
| EPA 310.2    |                            |        |       |      |           |           |   |                    |         |
|              | Carbon Dioxide             | 231    | mg/L  | 1    | 20        |           |   | 02/11/2014 11:04   | RPG     |
| SM4500-CL e  |                            |        |       |      |           |           |   |                    |         |
|              | Chloride                   | 10.7   | mg/L  | 1    | 2.00      |           |   | 02/07/2014 08:16   | JK      |
| SM4500-NO2 b |                            |        |       |      |           |           |   |                    |         |
|              | Nitrite-N                  | BRL    | mg/L  | 1    | 0.02      |           | Н | 01/30/2014 15:33   | JK      |
| SM4500-NO3 h |                            |        |       |      |           |           |   |                    |         |
|              | Nitrate-N                  | BRL    | mg/L  | 1    | 0.500     |           |   | 01/31/2014 15:24   | JK      |
| SW-846 8260B | Volatile Organic Compounds |        |       |      |           |           |   |                    |         |
|              | 1,1,2-Trichloroethane      | BRL    | ug/L  | 1    | 1         |           |   | 02/03/2014 19:24   | BM      |
|              | Carbon disulfide           | BRL    | ug/L  | 1    | 1         |           |   | 02/03/2014 19:24   | BM      |
|              | cis-1,2-Dichloroethylene   | BRL    | ug/L  | 1    | 1         |           |   | 02/03/2014 19:24   | BM      |
|              | Tetrachloroethylene        | 2.29   | ug/L  | 1    | 1         |           |   | 02/03/2014 19:24   | BM      |
|              | trans-1,2-Dichloroethylene | BRL    | ug/L  | 1    | 1         |           |   | 02/03/2014 19:24   | BM      |
|              | Trichloroethylene          | BRL    | ug/L  | 1    | 1         |           |   | 02/03/2014 19:24   | BM      |
|              | Dibromofluoromethane(surr) | 107    | %     | 1    | 63.4-152  |           |   | 02/03/2014 19:24   | BM      |
|              | p-Bromofluorobenzene(surr) | 112    | %     | 1    | 78.7-145  |           |   | 02/03/2014 19:24   | ВМ      |
|              | Toluene-d8(surr)           | 116    | %     | 1    | 66.4-153  |           |   | 02/03/2014 19:24   | ВМ      |
|              |                            |        |       |      |           |           |   |                    |         |



JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project Name: Martha Dry Cleaners Date: 02/11/2014

Job ID :14013007Sample Matrix:AqueousClient Sample ID:MW-21DDate Collected:01/28/2014Job Sample ID:14013007.04Time Collected:15:55

| Parameter/Test Description | Result                                                                                                                                                                                                                                                                                           | Units                                                                                                                                                                                                                                                                                                                                                               | DF                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rpt Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reg Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date/Time Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sulfate                    | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/06/2014 12:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Alkalinity, as CaCO3       | 23.4                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 10:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Carbon Dioxide             | 296                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/11/2014 11:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chloride                   | 3.58                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/07/2014 08:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Nitrite-N                  | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01/30/2014 15:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Nitrate-N                  | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01/31/2014 15:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Volatile Organic Compounds |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1,2-Trichloroethane      | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 19:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Carbon disulfide           | 3.47                                                                                                                                                                                                                                                                                             | ug/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 19:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| cis-1,2-Dichloroethylene   | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 19:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tetrachloroethylene        | 1.57                                                                                                                                                                                                                                                                                             | ug/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 19:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| trans-1,2-Dichloroethylene | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 19:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Trichloroethylene          | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 19:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dibromofluoromethane(surr) | 109                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63.4-152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 19:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| p-Bromofluorobenzene(surr) | 113                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78.7-145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 19:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Toluene-d8(surr)           | 114                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66.4-153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02/03/2014 19:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            | Sulfate  Alkalinity, as CaCO3  Carbon Dioxide  Chloride  Nitrite-N  Nitrate-N  Volatile Organic Compounds 1,1,2-Trichloroethane Carbon disulfide cis-1,2-Dichloroethylene Tetrachloroethylene trans-1,2-Dichloroethylene Trichloroethylene Dibromofluoromethane(surr) p-Bromofluorobenzene(surr) | Sulfate BRL  Alkalinity, as CaCO3 23.4  Carbon Dioxide 296  Chloride 3.58  Nitrite-N BRL  Volatile Organic Compounds 1,1,2-Trichloroethane BRL Carbon disulfide 3.47 cis-1,2-Dichloroethylene BRL Tetrachloroethylene 1.57 trans-1,2-Dichloroethylene BRL Trichloroethylene BRL Trichloroethylene BRL Dibromofluoromethane(surr) 109 p-Bromofluorobenzene(surr) 113 | Sulfate BRL mg/L  Alkalinity, as CaCO3 23.4 mg/L  Carbon Dioxide 296 mg/L  Chloride 3.58 mg/L  Nitrite-N BRL mg/L  Volatile Organic Compounds 1,1,2-Trichloroethane BRL ug/L  Carbon disulfide 3.47 ug/L  cis-1,2-Dichloroethylene BRL ug/L  Tetrachloroethylene 1.57 ug/L  trans-1,2-Dichloroethylene BRL ug/L  Trichloroethylene BRL ug/L  Trichloroethylene BRL ug/L  Dibromofluoromethane(surr) 109 % p-Bromofluorobenzene(surr) 113 % | Sulfate BRL mg/L 1  Alkalinity, as CaCO3 23.4 mg/L 1  Carbon Dioxide 296 mg/L 1  Chloride 3.58 mg/L 1  Nitrite-N BRL mg/L 1  Nitrate-N BRL mg/L 1  Volatile Organic Compounds 1,1,2-Trichloroethane BRL ug/L 1  Carbon disulfide 3.47 ug/L 1  cis-1,2-Dichloroethylene BRL ug/L 1  Tetrachloroethylene 1.57 ug/L 1  trans-1,2-Dichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Dibromofluoromethane(surr) 109 % 1  p-Bromofluorobenzene(surr) 113 % 1 | Sulfate       BRL       mg/L       1       5.00         Alkalinity, as CaCO3       23.4       mg/L       1       20         Carbon Dioxide       296       mg/L       1       20         Chloride       3.58       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.02         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       3.47       ug/L       1       1         cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       1.57       ug/L       1       1         trans-1,2-Dichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       109       %       1       63.4-152         p-Bromofluorobenzene(surr)       113       %       1       78.7-145 | Sulfate       BRL       mg/L       1       5.00         Alkalinity, as CaCO3       23.4       mg/L       1       20         Carbon Dioxide       296       mg/L       1       20         Chloride       3.58       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.02         Volatile Organic Compounds       I,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       3.47       ug/L       1       1         Carbon disulfide       3.47       ug/L       1       1         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       1.57       ug/L       1       1         trans-1,2-Dichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       109       %       1       63.4-152         p-Bromofluorobenzene(surr)       113       %       1       78.7-145 | Sulfate       BRL       mg/L       1       5.00         Alkalinity, as CaCO3       23.4       mg/L       1       20         Carbon Dioxide       296       mg/L       1       20         Chloride       3.58       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.02         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       3.47       ug/L       1       1         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       109       %       1       63.4-152         p-Bromofluorobenzene(surr)       113       %       1       78.7-145 | Sulfate       BRL       mg/L       1       5.00       02/06/2014 12:19         Alkalinity, as CaCO3       23.4       mg/L       1       20       02/03/2014 10:33         Carbon Dioxide       296       mg/L       1       20       02/11/2014 11:04         Chloride         Nitrite-N       BRL       mg/L       1       0.02       01/30/2014 15:33         Nitrate-N       BRL       mg/L       1       0.500       01/31/2014 15:25         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1       02/03/2014 19:50         Carbon disulfide       3.47       ug/L       1       1       02/03/2014 19:50         cis-1,2-Dichloroethylene       BRL       ug/L       1       1       02/03/2014 19:50         Tetrachloroethylene       BRL       ug/L       1       1       02/03/2014 19:50         Trichloroethylene       BRL       ug/L       1       1       02/03/2014 19:50         Trichloroethylene       BRL       ug/L       1       1       02/03/2014 19:50         Trichloroethylene       BRL       ug/L       1       1       02/03/2014 19:50 |



JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project Name: Martha Dry Cleaners Date: 02/11/2014

Job ID :14013007Sample Matrix:AqueousClient Sample ID:MW-21SDate Collected:01/28/2014Job Sample ID:14013007.05Time Collected:17:00

| Test Method  | Parameter/Test Description | Result | Units | DF | Rpt Limit | Reg Limit | Q | Date/Time Analyzed | Analyst |
|--------------|----------------------------|--------|-------|----|-----------|-----------|---|--------------------|---------|
| ASTM D516-90 |                            |        |       |    |           |           |   |                    |         |
|              | Sulfate                    | 30.5   | mg/L  | 1  | 5.00      |           |   | 02/06/2014 10:29   | JK      |
| EPA 310.2    |                            |        |       |    |           |           |   |                    |         |
|              | Alkalinity, as CaCO3       | 26.8   | mg/L  | 1  | 20        |           |   | 02/03/2014 10:33   | JK      |
| EPA 310.2    |                            |        |       |    |           |           |   |                    |         |
|              | Carbon Dioxide             | 338    | mg/L  | 1  | 20        |           |   | 02/11/2014 11:04   | RPG     |
| SM4500-CL e  |                            |        |       |    |           |           |   |                    |         |
|              | Chloride                   | 13.7   | mg/L  | 1  | 2.00      |           |   | 02/07/2014 08:16   | JK      |
| SM4500-NO2 b |                            |        |       |    |           |           |   |                    |         |
|              | Nitrite-N                  | BRL    | mg/L  | 1  | 0.02      |           |   | 01/30/2014 15:33   | JK      |
| SM4500-NO3 h |                            |        |       |    |           |           |   |                    |         |
|              | Nitrate-N                  | 0.695  | mg/L  | 1  | 0.500     |           |   | 01/31/2014 15:25   | JK      |
| SW-846 8260B | Volatile Organic Compounds |        |       |    |           |           |   |                    |         |
|              | 1,1,2-Trichloroethane      | BRL    | ug/L  | 1  | 1         |           |   | 02/04/2014 20:12   | BM      |
|              | Carbon disulfide           | BRL    | ug/L  | 1  | 1         |           |   | 02/04/2014 20:12   | BM      |
|              | cis-1,2-Dichloroethylene   | BRL    | ug/L  | 1  | 1         |           |   | 02/04/2014 20:12   | ВМ      |
|              | Tetrachloroethylene        | 188    | ug/L  | 1  | 1         |           |   | 02/04/2014 20:12   | ВМ      |
|              | trans-1,2-Dichloroethylene | BRL    | ug/L  | 1  | 1         |           |   | 02/04/2014 20:12   | ВМ      |
|              | Trichloroethylene          | 1.51   | ug/L  | 1  | 1         |           |   | 02/04/2014 20:12   | ВМ      |
|              | Dibromofluoromethane(surr) | 103    | %     | 1  | 63.4-152  |           |   | 02/04/2014 20:12   | ВМ      |
|              | p-Bromofluorobenzene(surr) | 110    | %     | 1  | 78.7-145  |           |   | 02/04/2014 20:12   | ВМ      |
|              | Toluene-d8(surr)           | 115    | %     | 1  | 66.4-153  |           |   | 02/04/2014 20:12   | ВМ      |
|              |                            |        |       |    |           |           |   |                    |         |



JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project Name: Martha Dry Cleaners Date: 02/11/2014

Job ID: 14013007 Sample Matrix: Aqueous
Client Sample ID: MW-22 Date Collected: 01/29/2014
Job Sample ID: 14013007.06 Time Collected: 14:40

| Parameter/Test Description | Result                                                                                                                                                                                                                                                                                           | Units                                                                                                                                                                                                                                                                                                                                                       | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rpt Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reg Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date/Time Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sulfate                    | 7.65                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/06/2014 09:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Alkalinity, as CaCO3       | 27.6                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 10:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Carbon Dioxide             | 215                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/11/2014 11:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chloride                   | 3.87                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/07/2014 08:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nitrite-N                  | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01/30/2014 15:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nitrate-N                  | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01/31/2014 15:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Volatile Organic Compounds |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,1,2-Trichloroethane      | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 20:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Carbon disulfide           | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 20:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| cis-1,2-Dichloroethylene   | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 20:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tetrachloroethylene        | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 20:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| trans-1,2-Dichloroethylene | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 20:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trichloroethylene          | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 20:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dibromofluoromethane(surr) | 109                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.4-152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 20:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| p-Bromofluorobenzene(surr) | 112                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78.7-145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 20:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Toluene-d8(surr)           | 117                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66.4-153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02/03/2014 20:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            | Sulfate  Alkalinity, as CaCO3  Carbon Dioxide  Chloride  Nitrite-N  Nitrate-N  Volatile Organic Compounds 1,1,2-Trichloroethane Carbon disulfide cis-1,2-Dichloroethylene Tetrachloroethylene trans-1,2-Dichloroethylene Trichloroethylene Dibromofluoromethane(surr) p-Bromofluorobenzene(surr) | Sulfate 7.65  Alkalinity, as CaCO3 27.6  Carbon Dioxide 215  Chloride 3.87  Nitrite-N BRL  Nitrate-N BRL  Volatile Organic Compounds 1,1,2-Trichloroethane BRL Carbon disulfide BRL cis-1,2-Dichloroethylene BRL Tetrachloroethylene BRL trans-1,2-Dichloroethylene BRL Trichloroethylene BRL Dibromofluoromethane(surr) 109 p-Bromofluorobenzene(surr) 112 | Sulfate 7.65 mg/L  Alkalinity, as CaCO3 27.6 mg/L  Carbon Dioxide 215 mg/L  Chloride 3.87 mg/L  Nitrite-N BRL mg/L  Volatile Organic Compounds 1,1,2-Trichloroethane BRL ug/L  Carbon disulfide BRL ug/L  Cis-1,2-Dichloroethylene BRL ug/L  Tetrachloroethylene BRL ug/L  Trichloroethylene BRL ug/L  Trichloroethylene BRL ug/L  Trichloroethylene BRL ug/L  Trichloroethylene BRL ug/L  Dibromofluoromethane(surr) 109 % p-Bromofluorobenzene(surr) 112 % | Sulfate 7.65 mg/L 1  Alkalinity, as CaCO3 27.6 mg/L 1  Carbon Dioxide 215 mg/L 1  Chloride 3.87 mg/L 1  Nitrite-N BRL mg/L 1  Volatile Organic Compounds 1,1,2-Trichloroethane BRL ug/L 1  Carbon disulfide BRL ug/L 1  Tetrachloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  trans-1,2-Dichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Dibromofluoromethane(surr) 109 % 1  p-Bromofluorobenzene(surr) 112 % 1 | Sulfate       7.65       mg/L       1       5.00         Alkalinity, as CaCO3       27.6       mg/L       1       20         Carbon Dioxide       215       mg/L       1       20         Chloride       3.87       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.500         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       109       %       1       63.4-152         p-Bromofluorobenzene(surr)       112       %       1       78.7-145 | Sulfate       7.65       mg/L       1       5.00         Alkalinity, as CaCO3       27.6       mg/L       1       20         Carbon Dioxide       215       mg/L       1       20         Chloride       3.87       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.500         Volatile Organic Compounds       1       0.500         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       109       %       1       63.4-152         p-Bromofluorobenzene(surr)       112       %       1       78.7-145 | Sulfate       7.65       mg/L       1       5.00         Alkalinity, as CaCO3       27.6       mg/L       1       20         Carbon Dioxide       215       mg/L       1       20         Chloride       3.87       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.02         Nitrate-N         BRL       mg/L       1       0.500         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       109       %       1       63.4-152         p-Bromofluorobenzene(surr)       112       %       1       78.7-145 | Sulfate       7.65       mg/L       1       5.00       02/06/2014 09:35         Alkalinity, as CaCO3       27.6       mg/L       1       20       02/03/2014 10:33         Carbon Dioxide       215       mg/L       1       20       02/11/2014 11:04         Chloride         BRL       mg/L       1       0.02       01/30/2014 15:33         Nitrate-N       BRL       mg/L       1       0.500       01/31/2014 15:35         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1       02/03/2014 20:16         Carbon disulfide       BRL       ug/L       1       1       02/03/2014 20:16         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1       02/03/2014 20:16         Tetrachloroethylene       BRL       ug/L       1       1       02/03/2014 20:16         Trichloroethylene       BRL       ug/L       1       1       02/03/2014 20:16         Trichloroethylene       BRL       ug/L       1       1       02/03/2014 20:16         Trichloroethylene       BRL       ug/L       1       1       02/03/2014 20:16         Dibromofluoroben |



JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project Name: Martha Dry Cleaners Date: 02/11/2014

Job ID :14013007Sample Matrix:AqueousClient Sample ID:MW-20Date Collected:01/29/2014Job Sample ID:14013007.07Time Collected:16:00

| Parameter/Test Description | Result                                                                                                                                                                                                                                                                                           | Units                                                                                                                                                                                                                                                                                                                                                        | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rpt Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reg Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date/Time Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sulfate                    | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/06/2014 09:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Alkalinity, as CaCO3       | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 10:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Carbon Dioxide             | 111                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/11/2014 11:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chloride                   | 3.08                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/07/2014 08:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nitrite-N                  | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01/30/2014 15:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nitrate-N                  | 0.543                                                                                                                                                                                                                                                                                            | mg/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01/31/2014 15:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Volatile Organic Compounds |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1,1,2-Trichloroethane      | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Carbon disulfide           | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| cis-1,2-Dichloroethylene   | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tetrachloroethylene        | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| trans-1,2-Dichloroethylene | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Trichloroethylene          | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dibromofluoromethane(surr) | 106                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63.4-152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| p-Bromofluorobenzene(surr) | 114                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78.7-145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Toluene-d8(surr)           | 115                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66.4-153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02/03/2014 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            | Sulfate  Alkalinity, as CaCO3  Carbon Dioxide  Chloride  Nitrite-N  Nitrate-N  Volatile Organic Compounds 1,1,2-Trichloroethane Carbon disulfide cis-1,2-Dichloroethylene Tetrachloroethylene trans-1,2-Dichloroethylene Trichloroethylene Dibromofluoromethane(surr) p-Bromofluorobenzene(surr) | Sulfate BRL  Alkalinity, as CaCO3 BRL  Carbon Dioxide 1111  Chloride 3.08  Nitrite-N BRL  Nitrate-N 0.543  Volatile Organic Compounds 1,1,2-Trichloroethane BRL Carbon disulfide BRL cis-1,2-Dichloroethylene BRL Tetrachloroethylene BRL trans-1,2-Dichloroethylene BRL Trichloroethylene BRL Dibromofluoromethane(surr) 106 p-Bromofluorobenzene(surr) 114 | Sulfate BRL mg/L  Alkalinity, as CaCO3 BRL mg/L  Carbon Dioxide 1111 mg/L  Chloride 3.08 mg/L  Nitrite-N BRL mg/L  Nitrate-N 0.543 mg/L  Volatile Organic Compounds 1,1,2-Trichloroethane BRL ug/L Carbon disulfide BRL ug/L cis-1,2-Dichloroethylene BRL ug/L Tetrachloroethylene BRL ug/L trans-1,2-Dichloroethylene BRL ug/L Trichloroethylene BRL ug/L  Trichloroethylene BRL ug/L Dibromofluoromethane(surr) 106 % p-Bromofluorobenzene(surr) 114 % | Sulfate BRL mg/L 1  Alkalinity, as CaCO3 BRL mg/L 1  Carbon Dioxide 111 mg/L 1  Chloride 3.08 mg/L 1  Nitrite-N BRL mg/L 1  Nitrate-N 0.543 mg/L 1  Volatile Organic Compounds 1,1,2-Trichloroethane BRL ug/L 1  Carbon disulfide BRL ug/L 1  Tetrachloroethylene BRL ug/L 1  Tetrachloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Dibromofluoromethane(surr) 106 % 1  p-Bromofluorobenzene(surr) 114 % 1 | Sulfate       BRL       mg/L       1       5.00         Alkalinity, as CaCO3       BRL       mg/L       1       20         Carbon Dioxide       111       mg/L       1       20         Chloride       3.08       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.500         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       106       %       1       63.4-152         p-Bromofluorobenzene(surr)       114       %       1       78.7-145 | Sulfate       BRL       mg/L       1       5.00         Alkalinity, as CaCO3       BRL       mg/L       1       20         Carbon Dioxide       111       mg/L       1       20         Chloride       3.08       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.500         Volatile Organic Compounds       1       0.500         Volatile Organic Compounds       1       1       1         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       106       %       1       63.4-152         p-Bromofluorobenzene(surr)       114       %       1       78.7-145 | Sulfate       BRL       mg/L       1       5.00         Alkalinity, as CaCO3       BRL       mg/L       1       20         Carbon Dioxide       111       mg/L       1       20         Chloride       3.08       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.500         Volatile Organic Compounds       1       0.500         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       106       %       1       63.4-152         p-Bromofluorobenzene(surr)       114       %       1       78.7-145 | Sulfate       BRL       mg/L       1       5.00       02/06/2014 09:35         Alkalinity, as CaCO3       BRL       mg/L       1       20       02/03/2014 10:49         Carbon Dioxide       111       mg/L       1       20       02/11/2014 11:04         Chloride       3.08       mg/L       1       2.00       02/07/2014 08:16         Nitrite-N       BRL       mg/L       1       0.02       01/30/2014 15:35         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1       02/03/2014 20:42         Carbon disulfide       BRL       ug/L       1       1       02/03/2014 20:42         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1       02/03/2014 20:42         Tetrachloroethylene       BRL       ug/L       1       1       02/03/2014 20:42         Trichloroethylene       BRL< |



JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project Name: Martha Dry Cleaners Date: 02/11/2014

Job ID :14013007Sample Matrix:AqueousClient Sample ID:DUP 1Date Collected:01/29/2014Job Sample ID:14013007.08Time Collected:14:45

| Parameter/Test Description | Result                                                                                                                                                                                                                                                                                           | Units                                                                                                                                                                                                                                                                                                                                        | DF                                                                                                                                                                                                                                                                                                                                                                                                                               | Rpt Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reg Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sulfate                    | 6.71                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/06/2014 09:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Alkalinity, as CaCO3       | 21.6                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 10:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Carbon Dioxide             | 168                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/11/2014 11:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RPG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chloride                   | 3.97                                                                                                                                                                                                                                                                                             | mg/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/07/2014 08:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nitrite-N                  | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01/30/2014 15:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Nitrate-N                  | BRL                                                                                                                                                                                                                                                                                              | mg/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01/31/2014 15:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Volatile Organic Compounds |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1,1,2-Trichloroethane      | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 21:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Carbon disulfide           | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 21:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| cis-1,2-Dichloroethylene   | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 21:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Tetrachloroethylene        | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 21:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| trans-1,2-Dichloroethylene | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 21:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trichloroethylene          | BRL                                                                                                                                                                                                                                                                                              | ug/L                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 21:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dibromofluoromethane(surr) | 105                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 63.4-152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 21:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| p-Bromofluorobenzene(surr) | 114                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 78.7-145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 21:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Toluene-d8(surr)           | 115                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.4-153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/03/2014 21:08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ВМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                            | Sulfate  Alkalinity, as CaCO3  Carbon Dioxide  Chloride  Nitrite-N  Nitrate-N  Volatile Organic Compounds 1,1,2-Trichloroethane Carbon disulfide cis-1,2-Dichloroethylene Tetrachloroethylene trans-1,2-Dichloroethylene Trichloroethylene Dibromofluoromethane(surr) p-Bromofluorobenzene(surr) | Sulfate 6.71  Alkalinity, as CaCO3 21.6  Carbon Dioxide 168  Chloride 3.97  Nitrite-N BRL  Volatile Organic Compounds 1,1,2-Trichloroethane BRL Carbon disulfide BRL cis-1,2-Dichloroethylene BRL Tetrachloroethylene BRL trans-1,2-Dichloroethylene BRL Trichloroethylene BRL Dibromofluoromethane(surr) 105 p-Bromofluorobenzene(surr) 114 | Sulfate 6.71 mg/L  Alkalinity, as CaCO3 21.6 mg/L  Carbon Dioxide 168 mg/L  Chloride 3.97 mg/L  Nitrite-N BRL mg/L  Volatile Organic Compounds 1,1,2-Trichloroethane BRL ug/L  Carbon disulfide BRL ug/L  cis-1,2-Dichloroethylene BRL ug/L  Tetrachloroethylene BRL ug/L  Trichloroethylene BRL ug/L  Trichloroethylene BRL ug/L  Trichloroethylene BRL ug/L  Dibromofluoromethane(surr) 105 % p-Bromofluorobenzene(surr) 114 % | Sulfate 6.71 mg/L 1  Alkalinity, as CaCO3 21.6 mg/L 1  Carbon Dioxide 168 mg/L 1  Chloride 3.97 mg/L 1  Nitrite-N BRL mg/L 1  Volatile Organic Compounds 1,1,2-Trichloroethane BRL ug/L 1  Carbon disulfide BRL ug/L 1  Tetrachloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  trans-1,2-Dichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Trichloroethylene BRL ug/L 1  Dibromofluoromethane(surr) 105 % 1  p-Bromofluorobenzene(surr) 114 % 1 | Sulfate       6.71       mg/L       1       5.00         Alkalinity, as CaCO3       21.6       mg/L       1       20         Carbon Dioxide       168       mg/L       1       20         Chloride       3.97       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.500         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         trans-1,2-Dichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       105       %       1       63.4-152         p-Bromofluorobenzene(surr)       114       %       1       78.7-145 | Sulfate       6.71       mg/L       1       5.00         Alkalinity, as CaCO3       21.6       mg/L       1       20         Carbon Dioxide       168       mg/L       1       20         Chloride       3.97       mg/L       1       2.00         Nitrite-N       BRL       mg/L       1       0.02         Nitrate-N       BRL       mg/L       1       0.500         Volatile Organic Compounds       1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       105       %       1       63.4-152         p-Bromofluorobenzene(surr)       114       %       1       78.7-145 | Sulfate       6.71       mg/L       1       5.00         Alkalinity, as CaCO3       21.6       mg/L       1       20         Carbon Dioxide       168       mg/L       1       20         Chloride       3.97       mg/L       1       2.00         Nitritate-N       BRL       mg/L       1       0.02         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1         Carbon disulfide       BRL       ug/L       1       1         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1         Tetrachloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Trichloroethylene       BRL       ug/L       1       1         Dibromofluoromethane(surr)       105       %       1       63.4-152         p-Bromofluorobenzene(surr)       114       %       1       78.7-145 | Sulfate       6.71       mg/L       1       5.00       02/06/2014 09:35         Alkalinity, as CaCO3       21.6       mg/L       1       20       02/03/2014 10:49         Carbon Dioxide       168       mg/L       1       20       02/11/2014 11:04         Chloride       3.97       mg/L       1       2.00       02/07/2014 08:16         Nitrite-N       BRL       mg/L       1       0.02       01/30/2014 15:35         Volatile Organic Compounds         1,1,2-Trichloroethane       BRL       ug/L       1       1       02/03/2014 21:08         Carbon disulfide       BRL       ug/L       1       1       02/03/2014 21:08         Cis-1,2-Dichloroethylene       BRL       ug/L       1       1       02/03/2014 21:08         Tetrachloroethylene       BRL       ug/L       1       1       02/03/2014 21:08         Trichloroethylene       BRL       ug/L       1       1       02/03/2014 21:08         Trichloroethylene       BRL       ug/L       1       1       02/03/2014 21:08         Dibromofluoromethane(surr)       105       %       1       63.4-152       02/03/2014 21:08         P-Bromofluorobenzene(s |



JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project Name: Martha Dry Cleaners Date: 02/11/2014

Job ID :14013007Sample Matrix:AqueousClient Sample ID:FIELD BLANKDate Collected:01/29/2014Job Sample ID:14013007.09Time Collected:16:40

| Test Method  | Parameter/Test Description | Result | Units | DF | Rpt Limit | Reg Limit | Q | Date/Time Analyzed | Analyst |
|--------------|----------------------------|--------|-------|----|-----------|-----------|---|--------------------|---------|
| ASTM D516-90 |                            |        |       |    |           |           |   |                    |         |
|              | Sulfate                    | BRL    | mg/L  | 1  | 5.00      |           |   | 02/06/2014 12:04   | JK      |
| EPA 310.2    |                            |        |       |    |           |           |   |                    |         |
|              | Alkalinity, as CaCO3       | BRL    | mg/L  | 1  | 20        |           |   | 02/03/2014 10:49   | JK      |
| EPA 310.2    |                            |        |       |    |           |           |   |                    |         |
|              | Carbon Dioxide             | BRL    | mg/L  | 1  | 20        |           |   | 02/11/2014 11:04   | RPG     |
| SM4500-CL e  |                            |        |       |    |           |           |   |                    |         |
|              | Chloride                   | BRL    | mg/L  | 1  | 2.00      |           |   | 02/07/2014 08:21   | JK      |
| SM4500-NO2 b |                            |        |       |    |           |           |   |                    |         |
|              | Nitrite-N                  | BRL    | mg/L  | 1  | 0.02      |           |   | 01/30/2014 15:35   | JK      |
| SM4500-NO3 h |                            |        |       |    |           |           |   |                    |         |
|              | Nitrate-N                  | BRL    | mg/L  | 1  | 0.500     |           |   | 01/31/2014 15:35   | JK      |
| SW-846 8260B | Volatile Organic Compounds |        |       |    |           |           |   |                    |         |
|              | 1,1,2-Trichloroethane      | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:05   | BM      |
|              | Carbon disulfide           | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:05   | BM      |
|              | cis-1,2-Dichloroethylene   | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:05   | BM      |
|              | Tetrachloroethylene        | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:05   | ВМ      |
|              | trans-1,2-Dichloroethylene | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:05   | BM      |
|              | Trichloroethylene          | BRL    | ug/L  | 1  | 1         |           |   | 02/03/2014 18:05   | ВМ      |
|              | Dibromofluoromethane(surr) | 112    | %     | 1  | 63.4-152  |           |   | 02/03/2014 18:05   | ВМ      |
|              | p-Bromofluorobenzene(surr) | 114    | %     | 1  | 78.7-145  |           |   | 02/03/2014 18:05   | ВМ      |
|              | Toluene-d8(surr)           | 113    | %     | 1  | 66.4-153  |           |   | 02/03/2014 18:05   | ВМ      |

JobID: 14013007





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: SM4500-NO3 h Reporting Units: mg/L

**Samples in This QC Batch:** 14013007.01,02,03,04,05,06,07,08,09

| QC Type: Method Blank |       |        |       |      |          |      |
|-----------------------|-------|--------|-------|------|----------|------|
| Parameter             | CAS # | Result | Units | D.F. | RptLimit | Qual |
| Nitrate-N             |       | BRL    | mg/L  | 1    | 0.50     |      |

| QC Type:  | LCS and LCSI | )         |        |        |           |        |        |        |           |           |      |
|-----------|--------------|-----------|--------|--------|-----------|--------|--------|--------|-----------|-----------|------|
| Dawamataw |              | LCS       | LCS    | LCS    | LCSD      | LCSD   | LCSD   | 0/ DDD | RPD       | %Recovery | 01   |
| Parameter |              | Spk Added | Result | % Rec  | Spk Added | Result | % Rec  | %RPD   | CtrlLimit | CtrlLimit | Qual |
| Nitrate-N |              | 2.5       | 2.735  | 109.40 | 2.5       | 2.699  | 107.96 | 1.32   | 20        | 80-120    |      |

| QC Type: MS a | QC Type: MS and MSD |           |        |       |           |        |       |      |           |           |      |  |
|---------------|---------------------|-----------|--------|-------|-----------|--------|-------|------|-----------|-----------|------|--|
| QC Sample ID: | 14013007.06         |           |        |       |           |        |       |      |           |           |      |  |
|               | Sample              | MS        | MS     | MS    | MSD       | MSD    | MSD   |      | RPD       | %Rec      |      |  |
| Parameter     | Result              | Spk Added | Result | % Rec | Spk Added | Result | % Rec | %RPD | CtrlLimit | CtrlLimit | Qual |  |
| Nitrate-N     | BRL                 | 2.5       | 2.637  | 93.60 | 2.5       | 2.662  | 94.60 | 1.06 | 20        | 80-120    |      |  |

Refer to the Definition page for terms.

Date: 02/11/2014 13:00 Page 12 of 25

JobID: 14013007





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: SM4500-NO2 b Reporting Units: mg/L

QC Batch ID : Qb14013117 Created Date : 01/31/2014 Created By : JKitchings

**Samples in This QC Batch:** 14013007.01,02,03,04,05,06,07,08,09

| QC Type: Method Blank |       |        |       |      |          |      |
|-----------------------|-------|--------|-------|------|----------|------|
| Parameter             | CAS # | Result | Units | D.F. | RptLimit | Qual |
| Nitrite-N             |       | BRL    | mg/L  | 1    | 0.020    |      |

| QC Type:  | LCS and LCSE | )         |        |        |           |        |        |      |           |           |      |
|-----------|--------------|-----------|--------|--------|-----------|--------|--------|------|-----------|-----------|------|
|           |              | LCS       | LCS    | LCS    | LCSD      | LCSD   | LCSD   |      | RPD       | %Recovery |      |
| Parameter |              | Spk Added | Result | % Rec  | Spk Added | Result | % Rec  | %RPD | CtrlLimit | CtrlLimit | Qual |
| Nitrite-N |              | 1.0       | 1.024  | 102.40 | 1.0       | 1.053  | 105.30 | 2.79 | 20        | 80-120    |      |

| QC Type: MS ar | QC Type: MS and MSD |           |        |        |           |        |        |      |           |           |      |  |
|----------------|---------------------|-----------|--------|--------|-----------|--------|--------|------|-----------|-----------|------|--|
| QC Sample ID:  | 14013007.06         |           |        |        |           |        |        |      |           |           |      |  |
|                | Sample              | MS        | MS     | MS     | MSD       | MSD    | MSD    |      | RPD       | %Rec      |      |  |
| Parameter      | Result              | Spk Added | Result | % Rec  | Spk Added | Result | % Rec  | %RPD | CtrlLimit | CtrlLimit | Qual |  |
| Nitrite-N      | BRL                 | 1.0       | 1.056  | 105.60 | 1.0       | 1.074  | 107.40 | 1.69 | 20        | 80-120    |      |  |

Refer to the Definition page for terms.

Date: 02/11/2014 13:00 Page 13 of 25

JobID: 14013007





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: EPA 310.2 Reporting Units: mg/L

QC Batch ID: Qb14020305 Created Date: 02/03/2014 Created By: JKitchings

**Samples in This QC Batch:** 14013007.01,02,03,04,05,06,07,08,09

| QC Type: Method Blank |       |        |       |      |          |      |
|-----------------------|-------|--------|-------|------|----------|------|
| Parameter             | CAS # | Result | Units | D.F. | RptLimit | Qual |
| Alkalinity, as CaCO3  |       | BRL    | mg/L  | 1    | 20       |      |

| QC Type: LCS and LCSI | )         |        |       |           |        |       |        |           |           |      |
|-----------------------|-----------|--------|-------|-----------|--------|-------|--------|-----------|-----------|------|
| Dava washay           | LCS       | LCS    | LCS   | LCSD      | LCSD   | LCSD  | 0/ DDD | RPD       | %Recovery | 0    |
| Parameter             | Spk Added | Result | % Rec | Spk Added | Result | % Rec | %RPD   | CtrlLimit | CtrlLimit | Qual |
| Alkalinity, as CaCO3  | 50        | 49.3   | 98.51 | 50        | 49.0   | 97.99 | 0.52   | 20        | 80-120    |      |

| QC Type: MS and MSD  | QC Type: MS and MSD<br>QC Sample ID: 14013007.07 |           |        |       |           |        |       |      |           |           |      |  |  |
|----------------------|--------------------------------------------------|-----------|--------|-------|-----------|--------|-------|------|-----------|-----------|------|--|--|
| QC Sample ID: 14013  | Sample                                           | MS        | MS     | MS    | MSD       | MSD    | MSD   |      | RPD       | %Rec      |      |  |  |
| Parameter            | Result                                           | Spk Added | Result | % Rec | Spk Added | Result | % Rec | %RPD | CtrlLimit | CtrlLimit | Qual |  |  |
| Alkalinity, as CaCO3 | BRL                                              | 50        | 56.6   | 97.85 | 50        | 55.2   | 95.18 | 2.76 | 20        | 80-120    |      |  |  |

Refer to the Definition page for terms.

Date: 02/11/2014 13:00 Page 14 of 25

JobID: 14013007





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: SM4500-CL e Reporting Units: mg/L

QC Batch ID: Qb14020701 Created Date: 02/07/2014 Created By: JKitchings

**Samples in This QC Batch:** 14013007.01,02,03,04,05,06,07,08,09

| QC Type: Method Blank |       |        |       |      |          |      |
|-----------------------|-------|--------|-------|------|----------|------|
| Parameter             | CAS # | Result | Units | D.F. | RptLimit | Qual |
| Chloride              |       | BRL    | mg/L  | 1    | 2.00     |      |

| QC Type:  | LCS and LCSE | )         |        |        |           |        |        |        |           |           |      |
|-----------|--------------|-----------|--------|--------|-----------|--------|--------|--------|-----------|-----------|------|
|           |              | LCS       | LCS    | LCS    | LCSD      | LCSD   | LCSD   | 0/ 000 | RPD       | %Recovery | 0 1  |
| Parameter |              | Spk Added | Result | % Rec  | Spk Added | Result | % Rec  | %RPD   | CtrlLimit | CtrlLimit | Qual |
| Chloride  |              | 25        | 25.681 | 102.72 | 25        | 26.085 | 104.34 | 1.56   | 20        | 80-120    |      |

| QC Type: MS a | QC Type: MS and MSD |           |        |       |           |        |       |      |           |           |      |  |  |
|---------------|---------------------|-----------|--------|-------|-----------|--------|-------|------|-----------|-----------|------|--|--|
| QC Sample ID: | 14013007.01         |           |        |       |           |        |       |      |           |           |      |  |  |
|               | Sample              | MS        | MS     | MS    | MSD       | MSD    | MSD   |      | RPD       | %Rec      |      |  |  |
| Parameter     | Result              | Spk Added | Result | % Rec | Spk Added | Result | % Rec | %RPD | CtrlLimit | CtrlLimit | Qual |  |  |
| Chloride      | 13.0                | 25        | 35.725 | 90.90 | 25        | 36.663 | 94.65 | 4.04 | 20        | 80-120    |      |  |  |

Refer to the Definition page for terms.

Date: 02/11/2014 13:00 Page 15 of 25

JobID: 14013007





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: ASTM D516-90 Reporting Units: mg/L

QC Batch ID: Qb14020702 Created Date: 02/07/2014 Created By: JKitchings

**Samples in This QC Batch:** 14013007.01,02,03,04,05,06,07,08,09

| QC Type: Method Blank |       |        |       |      |          |      |
|-----------------------|-------|--------|-------|------|----------|------|
| Parameter             | CAS # | Result | Units | D.F. | RptLimit | Qual |
| Sulfate               |       | BRL    | mg/L  | 1    | 5.0      |      |

| QC Type:  | LCS and LCSI | )         |        |       |           |        |       |      |           |           |      |
|-----------|--------------|-----------|--------|-------|-----------|--------|-------|------|-----------|-----------|------|
|           |              | LCS       | LCS    | LCS   | LCSD      | LCSD   | LCSD  |      | RPD       | %Recovery |      |
| Parameter |              | Spk Added | Result | % Rec | Spk Added | Result | % Rec | %RPD | CtrlLimit | CtrlLimit | Qual |
| Sulfate   |              | 20        | 17.944 | 89.72 | 20        | 18.625 | 93.13 | 3.72 | 20        | 80-120    |      |

| QC Type: MS ar | QC Type: MS and MSD |           |        |       |           |        |       |      |           |           |      |  |
|----------------|---------------------|-----------|--------|-------|-----------|--------|-------|------|-----------|-----------|------|--|
| QC Sample ID:  | 14013007.04         |           |        |       |           |        |       |      |           |           |      |  |
|                | Sample              | MS        | MS     | MS    | MSD       | MSD    | MSD   |      | RPD       | %Rec      |      |  |
| Parameter      | Result              | Spk Added | Result | % Rec | Spk Added | Result | % Rec | %RPD | CtrlLimit | CtrlLimit | Qual |  |
| Sulfate        | 7.65                | 20        | 17.803 | 80.11 | 20        | 17.415 | 78.17 | 2.45 | 20        | 80-120    | 31   |  |

Refer to the Definition page for terms.

Date: 02/11/2014 13:00 Page 16 of 25

JobID: 14013007





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Volatile Organic Compounds Method: SW-846 8260B Reporting Units: ug/L

QC Batch ID: Qb14021009 Created Date: 02/10/2014 Created By: BMullis

**Samples in This QC Batch:** 14013007.01,02,03,04,05,06,07,08,09

| QC Type: Method Blank          |           |        |       |      |          |      |
|--------------------------------|-----------|--------|-------|------|----------|------|
| Parameter                      | CAS #     | Result | Units | D.F. | RptLimit | Qual |
| 1,1,2-Trichloroethane          | 79-00-5   | BRL    | ug/L  | 1    | 1.0      |      |
| Carbon disulfide               | 75-15-0   | BRL    | ug/L  | 1    | 1.0      |      |
| cis-1,2-Dichloroethylene       | 156-59-2  | BRL    | ug/L  | 1    | 1.0      |      |
| Tetrachloroethylene            | 127-18-4  | BRL    | ug/L  | 1    | 1.0      |      |
| trans-1,2-Dichloroethylene     | 156-60-5  | BRL    | ug/L  | 1    | 1.0      |      |
| Trichloroethylene              | 79-01-6   | BRL    | ug/L  | 1    | 1.0      |      |
| Dibromofluoromethane (Surr)    | 1868-53-7 | 54.3   | %     | 1    | 63.4-152 |      |
| Toluene-d8 (Surr)              | 2037-26-5 | 56.8   | %     | 1    | 66.4-153 |      |
| p-Bromofluorobenzene<br>(Surr) | 460-00-4  | 56.6   | %     | 1    | 78.7-145 |      |

| QC Type: LCS and LCS           | D         |        |        |           |        |        |      |           |           |      |
|--------------------------------|-----------|--------|--------|-----------|--------|--------|------|-----------|-----------|------|
|                                | LCS       | LCS    | LCS    | LCSD      | LCSD   | LCSD   |      | RPD       | %Recovery |      |
| Parameter                      | Spk Added | Result | % Rec  | Spk Added | Result | % Rec  | %RPD | CtrlLimit | CtrlLimit | Qual |
| 1,1,2-Trichloroethane          | 50        | 45.2   | 90.40  | 50        | 54.8   | 109.60 | 19.2 | 30        | 79.4-119  |      |
| Carbon disulfide               | 50        | 56.2   | 112.40 | 50        | 46.5   | 93.00  | 18.9 | 30        | 57.1-177  |      |
| cis-1,2-Dichloroethylene       | 50        | 61.3   | 122.60 | 50        | 51.5   | 103.00 | 17.4 | 30        | 67.2-132  |      |
| Tetrachloroethylene            | 50        | 50.2   | 100.40 | 50        | 52.6   | 105.20 | 4.7  | 30        | 63.8-141  |      |
| trans-1,2-Dichloroethylene     | 50        | 54.5   | 109.00 | 50        | 49.6   | 99.20  | 9.4  | 30        | 63.7-119  |      |
| Trichloroethylene              | 50        | 59.1   | 118.20 | 50        | 47.4   | 94.80  | 22   | 30        | 60.9-128  |      |
| Dibromofluoromethane (Surr)    | 100       | 74.9   | 74.90  | 100       | 102    | 102.00 |      |           | 63.4-152  |      |
| Toluene-d8 (Surr)              | 100       | 90     | 90.00  | 100       | 98.9   | 98.90  |      |           | 66.4-153  |      |
| p-Bromofluorobenzene<br>(Surr) | 100       | 116    | 116.00 | 100       | 109    | 109.00 |      |           | 78.7-145  |      |

| QC Type: MS and MSD            | C Type: MS and MSD        |                 |              |             |                  |               |              |      |                  |                   |      |  |
|--------------------------------|---------------------------|-----------------|--------------|-------------|------------------|---------------|--------------|------|------------------|-------------------|------|--|
| QC Sample ID: 140130           | QC Sample ID: 14013007.04 |                 |              |             |                  |               |              |      |                  |                   |      |  |
| Parameter                      | Sample<br>Result          | MS<br>Spk Added | MS<br>Result | MS<br>% Rec | MSD<br>Spk Added | MSD<br>Result | MSD<br>% Rec | %RPD | RPD<br>CtrlLimit | %Rec<br>CtrlLimit | Qual |  |
| 1,1,2-Trichloroethane          |                           | 50              | 55           | 110.00      | 50               | 54            | 108.00       | 2    | 30               | 79.4-119          |      |  |
| Carbon disulfide               |                           | 50              | 48.3         | 89.66       | 50               | 48.1          | 89.26        | 0.4  | 30               | 57.1-177          |      |  |
| cis-1,2-Dichloroethylene       |                           | 50              | 45.6         | 91.20       | 50               | 45.9          | 91.80        | 0.7  | 30               | 67.2-132          |      |  |
| Tetrachloroethylene            |                           | 50              | 56.3         | 109.46      | 50               | 54.1          | 105.06       | 4.1  | 30               | 63.8-141          |      |  |
| trans-1,2-Dichloroethylene     |                           | 50              | 45.2         | 90.40       | 50               | 44.9          | 89.80        | 0.7  | 30               | 63.7-119          |      |  |
| Trichloroethylene              |                           | 50              | 45.6         | 91.20       | 50               | 46.9          | 93.80        | 2.8  | 30               | 60.9-128          |      |  |
| Dibromofluoromethane (Surr)    |                           | 100             | 101          | 101.00      | 100              | 102           | 102.00       |      |                  | 63.4-152          |      |  |
| Toluene-d8 (Surr)              |                           | 100             | 110          | 110.00      | 100              | 107           | 107.00       |      |                  | 66.4-153          |      |  |
| p-Bromofluorobenzene<br>(Surr) |                           | 100             | 111          | 111.00      | 100              | 112           | 112.00       |      |                  | 78.7-145          |      |  |

Date: 02/11/2014 13:00

JobID: 14013007





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis : Volatile Organic Compounds Method : SW-846 8260B Reporting Units : ug/L

QC Batch ID: Qb14021009 Created Date: 02/10/2014 Created By: BMullis

**Samples in This QC Batch:** 14013007.01,02,03,04,05,06,07,08,09

Refer to the Definition page for terms.

Date: 02/11/2014 13:00 Page 18 of 25



## TERM AND QUALIFIER DEFINITION

Avery Laboratories & Environmental Services, LLC

precision.

JobID: 14013007

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

|                  | ■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■                          |
|------------------|--------------------------------------------------------------------------------------------------------------------|
| General Term     | Definition                                                                                                         |
| Conc.            | Concentration                                                                                                      |
| DF               | Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content |
| ND               | Non Detect - Not Detected at or above adjusted reporting limit                                                     |
| J                | Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit           |
| RL               | adjusted Reporting Limit (QL – Quantification Limit)                                                               |
| MDL              | adjusted Method Detection Limit (LOD – Limit of Detection)                                                         |
| RegLimit         | Regulatory Limit                                                                                                   |
| mg/l             | Milligrams per Liter                                                                                               |
| mg/kg            | Milligrams per Kilogram                                                                                            |
| ppm              | Parts per Million                                                                                                  |
| μg/L             | Micrograms per Liter                                                                                               |
| µg/g             | Micrograms per Gram                                                                                                |
| ppb              | Parts per Billion                                                                                                  |
| gr/gal           | Grains per Gallon                                                                                                  |
| SU               | Standard Units                                                                                                     |
| CCU              | Cobalt Color Units                                                                                                 |
| NTU              | Nephelometric Turbidity Units                                                                                      |
| μS/cm            | Microsiemens per cm at 25C                                                                                         |
| P/A              | Presence/Absence                                                                                                   |
| CFU              | Colony Forming Units                                                                                               |
| MPN              | Most Probable Number                                                                                               |
| RB               | Reagent Blank                                                                                                      |
| MB               | Method Blank                                                                                                       |
| LCS              | Laboratory Control Sample                                                                                          |
| LCSD             | Laboratory Control Sample Duplicate                                                                                |
| LFM              | Laboratory Fortified Matrix (MS – Matrix Spike)                                                                    |
| LFMD             | Laboratory Fortified Matrix Duplicate (MSD – Matrix Spike Duplicate)                                               |
| DUP              | Sample Duplicate                                                                                                   |
| RPD              | Relative Percent Difference                                                                                        |
| %Rec             | Percent Recovery                                                                                                   |
| TNTC             | Too numerous to count                                                                                              |
| NC               | Not Calculable                                                                                                     |
| SG               | Silica Gel - Clean-Up                                                                                              |
| BRL              | Below Reporting Limit                                                                                              |
| BDL              | Below Detection Limit                                                                                              |
| Qualifier Defini |                                                                                                                    |
| Н                | The parameter was analyzed outside the method specified holding time.                                              |
| J1               | Estimated value-The reported value failed the established quality control criteria for accuracy and /or            |
|                  |                                                                                                                    |

Date: 02/11/2014 13:00 Primary Lab Certification # NELAP: FL-E87941



### **CASE NARRATIVE**

JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon

Project Name: Martha Dry Cleaners

Date Received: 01/30/2014,01/30/2014,01/30/2014,01/30/2014,01/30/2014,01/30/2014,01/30/2014,01/30/2014

Collected By: JC

Nitrite was analyzed outside the method holding requirements per client request.

#### Matrix Spikes

Method ASTM D516-90: The matrix spike/ matrix spike duplicate recoveries were outside the established laboratory control limits. The lab spike recoveries were inside acceptable limits, so the data was reported. The matrix spikes have been qualified accordingly.

Carbon Dioxide is not an analyte certified by The NELAC Institute (TNI).

Methane, Ethene, Ethane, and sulfide were subcontracted to Test America-Savannah. The data is on a separate report.

Released By: Robert Paul Grimm

Title: Technical Director

Date: 02/11/2014 13:00 Primary Lab Certification # NELAP: FL-E87941 Page 20 of 25



### **SAMPLE SUMMARY**

JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

**Client Project ID:** Martha Dry Cleaners

**Report To:** Client Name: Terracon Attn: Stuart Dixon

Client Address: 2201 Rowland Ave. P.O.#.: ES117125

City, State, Zip: Savannah, GA, 31404

The laboratory has analyzed the following samples:

| Client Sample ID | Matrix  | Sample ID   | Date Received | Date Collected | Collected by |
|------------------|---------|-------------|---------------|----------------|--------------|
| MW-19            | Aqueous | 14013007.01 | 01/30/2014    | 01/27/2014     | JC           |
| MW-24            | Aqueous | 14013007.02 | 01/30/2014    | 01/27/2014     | JC           |
| MW-23            | Aqueous | 14013007.03 | 01/30/2014    | 01/27/2014     | JC           |
| MW-21D           | Aqueous | 14013007.04 | 01/30/2014    | 01/28/2014     | JC           |
| MW-21S           | Aqueous | 14013007.05 | 01/30/2014    | 01/28/2014     | JC           |
| MW-22            | Aqueous | 14013007.06 | 01/30/2014    | 01/29/2014     | JC           |
| MW-20            | Aqueous | 14013007.07 | 01/30/2014    | 01/29/2014     | JC           |
| DUP 1            | Aqueous | 14013007.08 | 01/30/2014    | 01/29/2014     | JC           |
| FIELD BLANK      | Aqueous | 14013007.09 | 01/30/2014    | 01/29/2014     | JC           |



## **SAMPLE PREPARATION INFORMATION**

JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

| Client Name:  | Terracon             |              |                     | Attn:      | Stuart Dixon  |
|---------------|----------------------|--------------|---------------------|------------|---------------|
| Project Name: | Martha Dry Cleaners  |              |                     | Date:      | 02/11/2014    |
| Sample ID     | Test                 | Prep method  | Date Prepared       | Analyst    | Prep Batch ID |
| 14013007.01   | Alkalinity           | EPA 310.2    | 02/03/2014 10:00 AM | JKitchings | PB14020305    |
| 14013007.01   | Carbon Dioxide, Free | EPA 310.2    | 02/03/2014 09:45 AM | PGrimm     | PB14021101    |
| 14013007.01   | Chloride             | SM4500-CL e  | 02/07/2014 08:00 AM | JKitchings | PB14020701    |
| 14013007.01   | Nitrate              | SM4500-NO3 h | 01/31/2014 03:00 PM | JKitchings | PB14013117    |
| 14013007.01   | Nitrite              | SM4500-NO2 b | 01/30/2014 03:30 PM | JKitchings | PB14013118    |
| 14013007.01   | Sulfate              | ASTM D516-90 | 02/06/2014 09:00 AM | JKitchings | PB14020702    |
| 14013007.01   | VOC                  | SW5030b      | 02/03/2014 12:00 PM | BMullis    | PB14021010    |
| 14013007.02   | Alkalinity           | EPA 310.2    | 02/03/2014 10:00 AM | JKitchings | PB14020305    |
| 14013007.02   | Carbon Dioxide, Free | EPA 310.2    | 02/03/2014 09:45 AM | PGrimm     | PB14021101    |
| 14013007.02   | Chloride             | SM4500-CL e  | 02/07/2014 08:00 AM | JKitchings | PB14020701    |
| 14013007.02   | Nitrate              | SM4500-NO3 h | 01/31/2014 03:00 PM | JKitchings | PB14013117    |
| 14013007.02   | Nitrite              | SM4500-NO2 b | 01/30/2014 03:30 PM | JKitchings | PB14013118    |
| 14013007.02   | Sulfate              | ASTM D516-90 | 02/06/2014 09:00 AM | JKitchings | PB14020702    |
| 14013007.02   | VOC                  | SW5030b      | 02/03/2014 12:00 PM | BMullis    | PB14021010    |
| 14013007.03   | Alkalinity           | EPA 310.2    | 02/03/2014 10:00 AM | JKitchings | PB14020305    |
| 14013007.03   | Carbon Dioxide, Free | EPA 310.2    | 02/03/2014 09:45 AM | PGrimm     | PB14021101    |
| 14013007.03   | Chloride             | SM4500-CL e  | 02/07/2014 08:00 AM | JKitchings | PB14020701    |
| 14013007.03   | Nitrate              | SM4500-NO3 h | 01/31/2014 03:00 PM | JKitchings | PB14013117    |
| 14013007.03   | Nitrite              | SM4500-NO2 b | 01/30/2014 03:30 PM | JKitchings | PB14013118    |
| 14013007.03   | Sulfate              | ASTM D516-90 | 02/06/2014 09:00 AM | JKitchings | PB14020702    |
| 14013007.03   | VOC                  | SW5030b      | 02/03/2014 12:00 PM | BMullis    | PB14021010    |
| 14013007.04   | Alkalinity           | EPA 310.2    | 02/03/2014 10:00 AM | JKitchings | PB14020305    |
| 14013007.04   | Carbon Dioxide, Free | EPA 310.2    | 02/03/2014 09:45 AM | PGrimm     | PB14021101    |
| 14013007.04   | Chloride             | SM4500-CL e  | 02/07/2014 08:00 AM | JKitchings | PB14020701    |
| 14013007.04   | Nitrate              | SM4500-NO3 h | 01/31/2014 03:00 PM | JKitchings | PB14013117    |
| 14013007.04   | Nitrite              | SM4500-NO2 b | 01/30/2014 03:30 PM | JKitchings | PB14013118    |
| 14013007.04   | Sulfate              | ASTM D516-90 | 02/06/2014 09:00 AM | JKitchings | PB14020702    |
| 14013007.04   | VOC                  | SW5030b      | 02/03/2014 12:00 PM | BMullis    | PB14021010    |
| 14013007.05   | Alkalinity           | EPA 310.2    | 02/03/2014 10:00 AM | JKitchings | PB14020305    |
| 14013007.05   | Carbon Dioxide, Free | EPA 310.2    | 02/03/2014 09:45 AM | PGrimm     | PB14021101    |
| 14013007.05   | Chloride             | SM4500-CL e  | 02/07/2014 08:00 AM | JKitchings | PB14020701    |
| 14013007.05   | Nitrate              | SM4500-NO3 h | 01/31/2014 03:00 PM | JKitchings | PB14013117    |
| 14013007.05   | Nitrite              | SM4500-NO2 b | 01/30/2014 03:30 PM | JKitchings | PB14013118    |
| 14013007.05   | Sulfate              | ASTM D516-90 | 02/06/2014 09:00 AM | JKitchings | PB14020702    |
| 14013007.05   | VOC                  | SW5030b      | 02/04/2014 12:00 PM | BMullis    | PB14021010    |
|               |                      |              |                     |            |               |



## **SAMPLE PREPARATION INFORMATION**

JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

| Client Name:  | Terracon             |              |                     | Attn:      | Stuart Dixon  |
|---------------|----------------------|--------------|---------------------|------------|---------------|
| Project Name: | Martha Dry Cleaners  |              |                     | Date:      | 02/11/2014    |
| Sample ID     | Test                 | Prep method  | Date Prepared       | Analyst    | Prep Batch ID |
| 14013007.06   | Alkalinity           | EPA 310.2    | 02/03/2014 10:00 AM | JKitchings | PB14020305    |
| 14013007.06   | Carbon Dioxide, Free | EPA 310.2    | 02/03/2014 09:45 AM | PGrimm     | PB14021101    |
| 14013007.06   | Chloride             | SM4500-CL e  | 02/07/2014 08:00 AM | JKitchings | PB14020701    |
| 14013007.06   | Nitrate              | SM4500-NO3 h | 01/31/2014 03:00 PM | JKitchings | PB14013117    |
| 14013007.06   | Nitrite              | SM4500-NO2 b | 01/30/2014 03:30 PM | JKitchings | PB14013118    |
| 14013007.06   | Sulfate              | ASTM D516-90 | 02/06/2014 09:00 AM | JKitchings | PB14020702    |
| 14013007.06   | VOC                  | SW5030b      | 02/03/2014 12:00 PM | BMullis    | PB14021010    |
| 14013007.07   | Alkalinity           | EPA 310.2    | 02/03/2014 10:00 AM | JKitchings | PB14020305    |
| 14013007.07   | Carbon Dioxide, Free | EPA 310.2    | 02/03/2014 09:45 AM | PGrimm     | PB14021101    |
| 14013007.07   | Chloride             | SM4500-CL e  | 02/07/2014 08:00 AM | JKitchings | PB14020701    |
| 14013007.07   | Nitrate              | SM4500-NO3 h | 01/31/2014 03:00 PM | JKitchings | PB14013117    |
| 14013007.07   | Nitrite              | SM4500-NO2 b | 01/30/2014 03:30 PM | JKitchings | PB14013118    |
| 14013007.07   | Sulfate              | ASTM D516-90 | 02/06/2014 09:00 AM | JKitchings | PB14020702    |
| 14013007.07   | VOC                  | SW5030b      | 02/03/2014 12:00 PM | BMullis    | PB14021010    |
| 14013007.08   | Alkalinity           | EPA 310.2    | 02/03/2014 10:00 AM | JKitchings | PB14020305    |
| 14013007.08   | Carbon Dioxide, Free | EPA 310.2    | 02/03/2014 09:45 AM | PGrimm     | PB14021101    |
| 14013007.08   | Chloride             | SM4500-CL e  | 02/07/2014 08:00 AM | JKitchings | PB14020701    |
| 14013007.08   | Nitrate              | SM4500-NO3 h | 01/31/2014 03:00 PM | JKitchings | PB14013117    |
| 14013007.08   | Nitrite              | SM4500-NO2 b | 01/30/2014 03:30 PM | JKitchings | PB14013118    |
| 14013007.08   | Sulfate              | ASTM D516-90 | 02/06/2014 09:00 AM | JKitchings | PB14020702    |
| 14013007.08   | VOC                  | SW5030b      | 02/03/2014 12:00 PM | BMullis    | PB14021010    |
| 14013007.09   | Alkalinity           | EPA 310.2    | 02/03/2014 10:00 AM | JKitchings | PB14020305    |
| 14013007.09   | Carbon Dioxide, Free | EPA 310.2    | 02/03/2014 09:45 AM | PGrimm     | PB14021101    |
| 14013007.09   | Chloride             | SM4500-CL e  | 02/07/2014 08:00 AM | JKitchings | PB14020701    |
| 14013007.09   | Nitrate              | SM4500-NO3 h | 01/31/2014 03:00 PM | JKitchings | PB14013117    |
| 14013007.09   | Nitrite              | SM4500-NO2 b | 01/30/2014 03:30 PM | JKitchings | PB14013118    |
| 14013007.09   | Sulfate              | ASTM D516-90 | 02/06/2014 09:00 AM | JKitchings | PB14020702    |
| 14013007.09   | VOC                  | SW5030b      | 02/03/2014 12:00 PM | BMullis    | PB14021010    |



## **SAMPLE CONDITION CHECKLIST**

JobID: 14013007

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

| Client Name :         | Terracon          |                                  | Contact :       | Stuart Dixon |
|-----------------------|-------------------|----------------------------------|-----------------|--------------|
| Address :             | 2201 Rowland Ave. |                                  | Contact Phone : | 912 629-4000 |
| <b>JobID</b> : 140130 | 07                | <b>Date Received:</b> 01/30/2014 | Time Received : | 9:13AM       |
| Temperature :         | 2.75              | Sample pH: OK                    | ·               |              |
| ThermometerID         | <b>:</b> 159553   | pH Meter :                       |                 |              |

| Comments : Include actions taken to resolve discrepancies/Problem : |  |
|---------------------------------------------------------------------|--|
|                                                                     |  |
|                                                                     |  |

|    | Check Points                                                        | Yes | No | N/A |
|----|---------------------------------------------------------------------|-----|----|-----|
| 1  | Cooler seal present and signed.                                     | ~   |    |     |
| 2  | Sample(s) in a cooler.                                              | ~   |    |     |
| 3  | Sample received at 6°C or Less                                      | ~   |    |     |
| 4  | C-O-C signed and dated.                                             | ~   |    |     |
| 5  | Sample containers arrived in tact. (if no, comment)                 | ~   |    |     |
| 6  | Sample(s) were received in appropriate contatiner. (If no, comment) | ~   |    |     |
| 7  | Samples received within holding time for analysis requested         | ~   |    |     |
| 8  | Zero headspace in liquid VOA vials                                  | ~   |    |     |
| 9  | Sample(s) were received at the proper pH.                           | ~   |    |     |
| 10 | Sample ID lables Match C-O-C ID's                                   | ~   |    |     |
| 11 | Bottle count on C-O-C matches bottle found.                         | ~   |    |     |
| 12 | Sample amount is sufficient for analyses requested                  | ~   |    |     |
| 13 | If requested, sample(s) received with signed sample custody seal    |     |    | ~   |
| 14 | Samples accepted.                                                   | ~   |    |     |

Check In By : PGrimm Check in date : 01/30/2014 12:00 AM

Date: 02/11/2014 13:00 Primary Lab Certification # NELAP: FL-E87941



## **COMMERCIAL LABORATORY STIPULATION**

Georgia Rules for Commercial Environmental Laboratory Accreditation Chapter 391-3-26

JobID: 14013007



Avery Labs, ■ 101B Estus Road

■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ www.greenwayeng.com ■

**Laboratory:** Avery Laboratories and Environmental Services, LLC

**Accreditor:** NELAC: State of Florida, Department of Health, Bureau of Laboratories

Accreditation ID: E87941

NON-POTABLE WATER - EXTRACTABLE ORGANICS, NON-POTABLE WATER -Scope:

> GENERAL CHEMISTRY, NON-POTABLE WATER - METALS, NON-POTABLE WATER - PESTICIDES-HERBICIDES-PCB'S, NON-POTABLE WATER - VOLATILE ORGANICS, SOLID AND CHEMICAL MATERIALS - EXTRACTABLE ORGANICS, SOLID AND CHEMICAL MATERIALS - GENERAL CHEMISTRY, SOLID AND CHEMICAL MATERIALS - METALS, SOLID AND CHEMICAL MATERIALS -

**VOLATILE ORGANICS** 

**Effective Date:** July 1, 2013 **Expiration Date:** July 1, 2014

As per the Georgia EPD Rules and Regulations for Commercial Laboratories, Avery Laboratories and Environmental Services – Savannah is accredited by the Florida Department of Health under the National Environmental Laboratory Approval Program (NELAP). If you have any further questions regarding accreditation status for Avery Laboratories and Environmental Services, please contact: Paul Grimm.

> Avery Laboratories and Environmental Services, LLC 101B Estus Drive Savannah, Georgia 31404

> > Phone: (912) 944-3748 FAX: (912) 234-9294

Date: 02/11/2014 13:00 Primary Lab Certification # NELAP: FL-E87941

| è |   | 5 |
|---|---|---|
|   | • |   |
|   |   |   |
|   |   |   |
|   |   |   |
|   |   | > |
|   |   |   |
|   |   |   |

|                                         |                                      |                                                              | Serial Number: 68384.          |
|-----------------------------------------|--------------------------------------|--------------------------------------------------------------|--------------------------------|
| 0                                       | Ship To: 101                         | Ship To: 101 B Estus Dr. Savannah, Ga. 31404                 | (46/2811                       |
| Environmental Services, LLC             | T 912 9                              | T 912 944-3748 F 912 234-9294 email: pgrimm@averylab.com     | LAB NUMBER                     |
| Client Information                      | Page 1 of 1                          | Project Name: New Alba C Day Cleans                          | Subcontract Laboratory         |
| Customer: Tenacon                       |                                      | r: State wher                                                | Name / Address/ Phone          |
| Address: 220; Rowland Auf               | Ar                                   |                                                              | Z                              |
| City/State/Zip: Savannah, 64 31404      | 24 Hours                             |                                                              |                                |
| Contact: Stewart Dix on                 | 48 Hours                             |                                                              | A                              |
| 4- 629 (214)                            | 72 Hours                             | 7                                                            |                                |
|                                         | 5 Working Days                       | 0:<br>0:                                                     |                                |
|                                         | 7 Working Days                       | 1.                                                           | а.                             |
| Project Manager: Stewnort Dix GA        | Other:                               |                                                              |                                |
| Sample Identification                   | Date Time Matrix # of Containers     |                                                              | Remarks                        |
| 1-55                                    | H S S1:11 11/22/11                   | × × ×                                                        |                                |
| 5.55                                    | 12:00                                | × × ×                                                        |                                |
| 5-55                                    | 63.55                                | × × × × ×                                                    |                                |
|                                         |                                      |                                                              |                                |
|                                         |                                      |                                                              |                                |
|                                         |                                      |                                                              |                                |
|                                         |                                      |                                                              |                                |
|                                         |                                      |                                                              |                                |
|                                         |                                      |                                                              |                                |
| Matrix Type: A = Air W = Water S= Solid | N = Nonaqueous (solvent, acid, etc.) |                                                              |                                |
| Instructions or Special Requirements:   |                                      | Preservative: 1= None 2 = H2SO4 3 = HN03 4 = HCL 5 = MeOH 6: | 6 = NAHSO4 7 = Water 8 = Other |
|                                         |                                      |                                                              |                                |
| Temperature: 2.5                        | Custody Seals: (Yes No               | Custody Seals Intact: Yes No                                 |                                |
| Relinquished by:                        | Date/Time: 1/28/4 13 U[              | Received by:                                                 |                                |
| Relinquished by:                        | Date/Time:                           | Received by:                                                 | Date/Time:                     |
| Relinquished by:                        | Date/Time:                           | Received by:                                                 |                                |
|                                         |                                      |                                                              |                                |

Effective Date: 09.11.08



### LABORATORY ANALYSIS REPORT

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

**Client Project ID:**Martha Dry Cleaners

Report To: Client Name: Terracon Attn: Stuart Dixon

Client Address: 2201 Rowland Ave. P.O.#.:

City, State, Zip: Savannah, GA, 31404

Dear Stuart Dixon

The following test results meet all NELAC requirements for analytes for which certification is available. Any deviations from these quality systems will be noted in this case narrative. All analyses performed by Avery Laboratories & Environmental Services, LLC unless noted. Parameters not perfromed by Avery Laboratories will be listed on the Sample Summary section of the report.

For questions regarding this report, contact Robert Paul Grimm at (912)944-3748.

Sincerely,

[Robert Paul Grimm] Technical Director



This Laboratory is NELAP accredited.

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

Date: 02/11/2014 16:22 Primary Lab Certification # NELAP: FL-E87941

#### LABORATORY TEST RESULTS

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon Project ID: Martha Dry Cleaners Date 02/11/2014

Client Sample ID: SS-1 Date Collected: 01/28/14 Time Collected: 11:15 Other Information:

14012811.01 Sample Matrix Soil % Moisture 25.0

Job Sample ID:

| Test Method | Parameter/Test Description  | Result | Units    | DF    | Rpt Limit | Reg Limit | Q | Date Time      | Analyst |
|-------------|-----------------------------|--------|----------|-------|-----------|-----------|---|----------------|---------|
| M2540b      |                             |        |          |       |           |           |   |                |         |
|             | Moisture                    | 25     | %        | 1     |           |           |   | 01/30/14 10:00 | JK      |
| W-846 8260B |                             |        |          |       |           |           |   |                |         |
|             | 1,1,1,2-Tetrachloroethane   | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | ВМ      |
|             | 1,1,1-Trichloroethane       | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,1,2,2-Tetrachloroethane   | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,1,2-Trichloroethane       | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,1-Dichloroethane          | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,1-Dichloroethylene        | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,1-Dichloropropene         | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | ВМ      |
|             | 1,2,3-trichlorobenzene      | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | ВМ      |
|             | 1,2,3-Trichloropropane      | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,2,4-Trichlorobenzene      | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,2,4-Trimethylbenzene      | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,2-Dibromo-3-chloropropane | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,2-Dibromoethane           | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,2-Dichlorobenzene         | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,2-Dichloroethane          | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,2-Dichloropropane         | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,3,5-Trimethylbenzene      | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,3-Dichlorobenzene         | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 1,4-Dichlorobenzene         | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 2,2-Dichloropropane         | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 2-Chlorotoluene             | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 2-Hexanone                  | BRL    | mg/kg dw | 0.838 | 0.011     |           |   | 01/30/14 16:31 | BM      |
|             | 4-Chlorotoluene             | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | 4-Isopropyltoluene          | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Acetone                     | BRL    | mg/kg dw | 0.838 | 0.056     |           |   | 01/30/14 16:31 | BM      |
|             | Benzene                     | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Bromobenzene                | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Bromochloromethane          | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |

#### LABORATORY TEST RESULTS

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon Project ID: Martha Dry Cleaners Date 02/11/2014

Client Sample ID: SS-1 Date Collected: 01/28/14 Time Collected: 11:15 Other Information:

14012811.01 Sample Matrix Soil % Moisture 25.0

Job Sample ID:

| est Method  | Parameter/Test Description    | Result | Units    | DF    | Rpt Limit | Reg Limit | Q | Date Time      | Analyst |
|-------------|-------------------------------|--------|----------|-------|-----------|-----------|---|----------------|---------|
| N-846 8260B |                               |        |          |       |           |           |   |                |         |
|             | Bromodichloromethane          | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Bromoform                     | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Bromomethane                  | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Carbon disulfide              | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Carbon tetrachloride          | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Chlorobenzene                 | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Chloroethane                  | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Chloroform                    | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Chloromethane                 | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | cis-1,2-Dichloroethylene      | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | cis-1,3-Dichloropropene       | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Dibromochloromethane          | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Dibromomethane                | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Dichlorodifluoromethane       | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Ethylbenzene                  | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Hexachlorobutadiene           | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Isopropylbenzene              | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | MEK (2-Butanone)              | BRL    | mg/kg dw | 0.838 | 0.011     |           |   | 01/30/14 16:31 | BM      |
|             | Methylene chloride            | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | MIBK (Methyl Isobutyl Ketone) | BRL    | mg/kg dw | 0.838 | 0.011     |           |   | 01/30/14 16:31 | BM      |
|             | MTBE                          | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Naphthalene                   | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | n-Butylbenzene                | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | n-Propylbenzene               | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | sec-Butylbenzene              | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Styrene                       | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | t-butylbenzene                | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Tetrachloroethylene           | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | Toluene                       | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | trans-1,2-Dichloroethylene    | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |
|             | trans-1,3-Dichloropropene     | BRL    | mg/kg dw | 0.838 | 0.00559   |           |   | 01/30/14 16:31 | BM      |

#### LABORATORY TEST RESULTS

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

Dibromofluoromethane(surr)

p-Bromofluorobenzene(surr)

Toluene-d8(surr)

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project ID: Martha Dry Cleaners Date 02/11/2014

Client Sample ID: SS-1 Job Sample ID: 14012811.01

Date Collected: 01/28/14 Sample Matrix Soil

Date Collected: 01/28/14 Sample Matrix Soil
Time Collected: 11:15 % Moisture 25.0
Other Information:

81

117

114

%

%

%

Test Method DF Rpt Limit Reg Limit Q Parameter/Test Description Result Units Date Time Analyst SW-846 8260B Trichloroethylene **BRL** mg/kg dw 0.838 0.00559 01/30/14 16:31 BM Trichlorofluoromethane BRL mg/kg dw 0.838 0.00559 01/30/14 16:31 BM Vinyl Chloride BRL 01/30/14 16:31 mg/kg dw 0.838 0.00559 BM BRL ВМ xylene-o mg/kg dw 0.838 0.00559 01/30/14 16:31 BRL xylenes (m&P) mg/kg dw 0.838 0.011 01/30/14 16:31 BM xylenes (total) BRL mg/kg dw 0.838 0.017 01/30/14 16:31 ВМ

0.838

0.838

0.838

62.1-137

47.0-155

64.0-143

01/30/14 16:31

01/30/14 16:31

01/30/14 16:31

BM

BM

ВМ

#### LABORATORY TEST RESULTS

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project ID: Martha Dry Cleaners Date 02/11/2014

Client Sample ID: SS-2
Date Collected: 01/28/14
Time Collected: 12:00

Other Information:

Sample Matrix Soil % Moisture 22.9

14012811.02

Job Sample ID:

| Test Method | Parameter/Test Description  | Result | Units    | DF    | Rpt Limit Reg Limit Q | Date Time      | Analyst |
|-------------|-----------------------------|--------|----------|-------|-----------------------|----------------|---------|
| M2540b      |                             |        |          |       |                       |                |         |
|             | Moisture                    | 22.9   | %        | 1     |                       | 01/30/14 10:00 | JK      |
| W-846 8260B |                             |        |          |       |                       |                |         |
|             | 1,1,1,2-Tetrachloroethane   | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,1,1-Trichloroethane       | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | 1,1,2,2-Tetrachloroethane   | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,1,2-Trichloroethane       | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,1-Dichloroethane          | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,1-Dichloroethylene        | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,1-Dichloropropene         | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,2,3-trichlorobenzene      | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | 1,2,3-Trichloropropane      | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,2,4-Trichlorobenzene      | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,2,4-Trimethylbenzene      | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,2-Dibromo-3-chloropropane | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,2-Dibromoethane           | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,2-Dichlorobenzene         | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | 1,2-Dichloroethane          | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,2-Dichloropropane         | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | 1,3,5-Trimethylbenzene      | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 1,3-Dichlorobenzene         | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | 1,4-Dichlorobenzene         | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | 2,2-Dichloropropane         | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | 2-Chlorotoluene             | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | ВМ      |
|             | 2-Hexanone                  | BRL    | mg/kg dw | 0.824 | 0.011                 | 01/30/14 16:56 | BM      |
|             | 4-Chlorotoluene             | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | 4-Isopropyltoluene          | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | Acetone                     | BRL    | mg/kg dw | 0.824 | 0.053                 | 01/30/14 16:56 | BM      |
|             | Benzene                     | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | Bromobenzene                | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |
|             | Bromochloromethane          | BRL    | mg/kg dw | 0.824 | 0.00534               | 01/30/14 16:56 | BM      |

#### LABORATORY TEST RESULTS

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project ID: Martha Dry Cleaners Date 02/11/2014

Client Sample ID: SS-2
Date Collected: 01/28/14
Time Collected: 12:00
Other Information:

Sample Matrix Soil % Moisture 22.9

14012811.02

Job Sample ID:

Test Method Units DF Rpt Limit Reg Limit Q Parameter/Test Description Result Date Time Analyst SW-846 8260B Bromodichloromethane BRL mg/kg dw 0.824 0.00534 01/30/14 16:56 BM Bromoform BRL 0.00534 01/30/14 16:56 ВМ mg/kg dw 0.824 BRL Bromomethane BM mg/kg dw 0.824 0.00534 01/30/14 16:56 BRL Carbon disulfide mg/kg dw 0.824 0.00534 01/30/14 16:56 BM Carbon tetrachloride **BRL** mg/kg dw 0.824 0.00534 01/30/14 16:56 BM Chlorobenzene BRL 0.00534 ВМ mg/kg dw 0.824 01/30/14 16:56 Chloroethane **BRL** mg/kg dw 0.824 0.00534 01/30/14 16:56 BM Chloroform **BRL** mg/kg dw 0.824 0.00534 BM 01/30/14 16:56 Chloromethane **BRL** mg/kg dw 0.824 BM 0.00534 01/30/14 16:56 BRL cis-1,2-Dichloroethylene mg/kg dw 0.824 0.00534 01/30/14 16:56 BM BRL BM cis-1,3-Dichloropropene ma/ka dw 0.824 0.00534 01/30/14 16:56 Dibromochloromethane BRL mg/kg dw 0.824 0.00534 01/30/14 16:56 BM Dibromomethane BRL ВМ mg/kg dw 0.824 0.00534 01/30/14 16:56 BRL Dichlorodifluoromethane mg/kg dw 0.824 0.00534 01/30/14 16:56 BM BRL Ethylbenzene mg/kg dw 0.824 0.00534 01/30/14 16:56 BM Hexachlorobutadiene BRL mg/kg dw 0.824 0.00534 01/30/14 16:56 BM BRL Isopropylbenzene mg/kg dw 0.824 0.00534 01/30/14 16:56 BM MEK (2-Butanone) **BRL** mg/kg dw 0.824 0.011 01/30/14 16:56 BM BRL 0.00534 BM Methylene chloride mg/kg dw 0.824 01/30/14 16:56 **BRL** MIBK (Methyl Isobutyl Ketone) mg/kg dw 0.824 0.011 01/30/14 16:56 BM **MTBE BRL** mg/kg dw 0.824 0.00534 01/30/14 16:56 BM Naphthalene **BRL** mg/kg dw 0.824 0.00534 01/30/14 16:56 BM n-Butylbenzene **BRL** mg/kg dw 0.824 0.00534 01/30/14 16:56 BM n-Propylbenzene **BRL** mg/kg dw 0.824 0.00534 01/30/14 16:56 BM BRL sec-Butylbenzene BM mg/kg dw 0.824 0.00534 01/30/14 16:56 **BRL** Styrene mg/kg dw 0.824 0.00534 01/30/14 16:56 BM BRL t-butylbenzene mg/kg dw 0.824 0.00534 01/30/14 16:56 BM BRL BM Tetrachloroethylene mg/kg dw 0.824 0.00534 01/30/14 16:56 Toluene BRL mg/kg dw 0.824 0.00534 01/30/14 16:56 BM BRL 01/30/14 16:56 trans-1,2-Dichloroethylene mg/kg dw 0.824 0.00534 BM BRL ВМ trans-1,3-Dichloropropene mg/kg dw 0.824 0.00534 01/30/14 16:56

#### LABORATORY TEST RESULTS

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project ID: Martha Dry Cleaners Date 02/11/2014

Client Sample ID: SS-2 Job Sample ID: 14012811.02

Date Collected: 01/28/14 Sample Matrix Soil
Time Collected: 12:00 % Moisture 22.9

| Trichlorofluoromethane         BRL         mg/kg dw         0.824         0.00534         01/30/14 16:56         BM           Vinyl Chloride         BRL         mg/kg dw         0.824         0.00534         01/30/14 16:56         BM           xylene-o         BRL         mg/kg dw         0.824         0.00534         01/30/14 16:56         BM           xylenes (m&P)         BRL         mg/kg dw         0.824         0.011         01/30/14 16:56         BM           xylenes (total)         BRL         mg/kg dw         0.824         0.016         01/30/14 16:56         BM           Dibromofluoromethane(surr)         80.5         %         0.824         62.1-137         01/30/14 16:56         BM           p-Bromofluorobenzene(surr)         120         %         0.824         47.0-155         01/30/14 16:56         BM | Test Method  | Parameter/Test Description | Result | Units    | DF    | Rpt Limit | Reg Limit | Q | Date Time      | Analyst |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|--------|----------|-------|-----------|-----------|---|----------------|---------|
| Trichlorofluoromethane         BRL         mg/kg dw         0.824         0.00534         01/30/14 16:56         BM           Vinyl Chloride         BRL         mg/kg dw         0.824         0.00534         01/30/14 16:56         BM           xylene-o         BRL         mg/kg dw         0.824         0.00534         01/30/14 16:56         BM           xylenes (m&P)         BRL         mg/kg dw         0.824         0.011         01/30/14 16:56         BM           xylenes (total)         BRL         mg/kg dw         0.824         0.016         01/30/14 16:56         BM           Dibromofluoromethane(surr)         80.5         %         0.824         62.1-137         01/30/14 16:56         BM           p-Bromofluorobenzene(surr)         120         %         0.824         47.0-155         01/30/14 16:56         BM | SW-846 8260B |                            |        |          |       |           |           |   |                |         |
| Vinyl Chloride         BRL         mg/kg dw         0.824         0.00534         01/30/14 16:56         BM           xylene-o         BRL         mg/kg dw         0.824         0.00534         01/30/14 16:56         BM           xylenes (m&P)         BRL         mg/kg dw         0.824         0.011         01/30/14 16:56         BM           xylenes (total)         BRL         mg/kg dw         0.824         0.016         01/30/14 16:56         BM           Dibromofluoromethane(surr)         80.5         %         0.824         62.1-137         01/30/14 16:56         BM           p-Bromofluorobenzene(surr)         120         %         0.824         47.0-155         01/30/14 16:56         BM                                                                                                                               |              | Trichloroethylene          | BRL    | mg/kg dw | 0.824 | 0.00534   |           |   | 01/30/14 16:56 | ВМ      |
| xylene-o       BRL       mg/kg dw       0.824       0.00534       01/30/14 16:56       BM         xylenes (m&P)       BRL       mg/kg dw       0.824       0.011       01/30/14 16:56       BM         xylenes (total)       BRL       mg/kg dw       0.824       0.016       01/30/14 16:56       BM         Dibromofluoromethane(surr)       80.5       %       0.824       62.1-137       01/30/14 16:56       BM         p-Bromofluorobenzene(surr)       120       %       0.824       47.0-155       01/30/14 16:56       BM                                                                                                                                                                                                                                                                                                                         |              | Trichlorofluoromethane     | BRL    | mg/kg dw | 0.824 | 0.00534   |           |   | 01/30/14 16:56 | BM      |
| xylenes (m&P)       BRL       mg/kg dw       0.824       0.011       01/30/14 16:56       BM         xylenes (total)       BRL       mg/kg dw       0.824       0.016       01/30/14 16:56       BM         Dibromofluoromethane(surr)       80.5       %       0.824       62.1-137       01/30/14 16:56       BM         p-Bromofluorobenzene(surr)       120       %       0.824       47.0-155       01/30/14 16:56       BM                                                                                                                                                                                                                                                                                                                                                                                                                           |              | Vinyl Chloride             | BRL    | mg/kg dw | 0.824 | 0.00534   |           |   | 01/30/14 16:56 | BM      |
| xylenes (total)       BRL       mg/kg dw       0.824       0.016       01/30/14 16:56       BM         Dibromofluoromethane(surr)       80.5       %       0.824       62.1-137       01/30/14 16:56       BM         p-Bromofluorobenzene(surr)       120       %       0.824       47.0-155       01/30/14 16:56       BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | xylene-o                   | BRL    | mg/kg dw | 0.824 | 0.00534   |           |   | 01/30/14 16:56 | BM      |
| Dibromofluoromethane(surr)         80.5         %         0.824         62.1-137         01/30/14 16:56         BM           p-Bromofluorobenzene(surr)         120         %         0.824         47.0-155         01/30/14 16:56         BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | xylenes (m&P)              | BRL    | mg/kg dw | 0.824 | 0.011     |           |   | 01/30/14 16:56 | BM      |
| p-Bromofluorobenzene(surr) 120 % 0.824 47.0-155 01/30/14 16:56 BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | xylenes (total)            | BRL    | mg/kg dw | 0.824 | 0.016     |           |   | 01/30/14 16:56 | BM      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Dibromofluoromethane(surr) | 80.5   | %        | 0.824 | 62.1-137  |           |   | 01/30/14 16:56 | BM      |
| T. I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | p-Bromofluorobenzene(surr) | 120    | %        | 0.824 | 47.0-155  |           |   | 01/30/14 16:56 | BM      |
| Toluene-d8(surr) 115 % 0.824 64.0-143 01/30/14 16:56 BM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Toluene-d8(surr)           | 115    | %        | 0.824 | 64.0-143  |           |   | 01/30/14 16:56 | BM      |

# RP14021105

#### LABORATORY TEST RESULTS

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project ID: Martha Dry Cleaners Date 02/11/2014

Client Sample ID: SS-3
Date Collected: 01/28/14
Time Collected: 13:05

Other Information:

Job Sample ID: 14012811.03 Sample Matrix Soil % Moisture 21.3

| Test Method  | Parameter/Test Description  | Result | Units    | DF    | Rpt Limit | Reg Limit | Q | Date Time      | Analyst |
|--------------|-----------------------------|--------|----------|-------|-----------|-----------|---|----------------|---------|
| SM2540b      |                             |        |          |       |           |           |   |                |         |
|              | Moisture                    | 21.3   | %        | 1     |           |           |   | 01/30/14 10:00 | JK      |
| SW-846 8260B |                             |        |          |       |           |           |   |                |         |
|              | 1,1,1,2-Tetrachloroethane   | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | 1,1,1-Trichloroethane       | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | 1,1,2,2-Tetrachloroethane   | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,1,2-Trichloroethane       | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | 1,1-Dichloroethane          | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | 1,1-Dichloroethylene        | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | 1,1-Dichloropropene         | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | 1,2,3-trichlorobenzene      | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,2,3-Trichloropropane      | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,2,4-Trichlorobenzene      | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,2,4-Trimethylbenzene      | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | 1,2-Dibromo-3-chloropropane | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,2-Dibromoethane           | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,2-Dichlorobenzene         | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,2-Dichloroethane          | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,2-Dichloropropane         | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,3,5-Trimethylbenzene      | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,3-Dichlorobenzene         | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 1,4-Dichlorobenzene         | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 2,2-Dichloropropane         | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 2-Chlorotoluene             | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | 2-Hexanone                  | BRL    | mg/kg dw | 0.813 | 0.01      |           |   | 01/30/14 17:47 | ВМ      |
|              | 4-Chlorotoluene             | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | 4-Isopropyltoluene          | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | Acetone                     | BRL    | mg/kg dw | 0.813 | 0.052     |           |   | 01/30/14 17:47 | ВМ      |
|              | Benzene                     | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | Bromobenzene                | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | ВМ      |
|              | Bromochloromethane          | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |

# RP14021105

#### LABORATORY TEST RESULTS

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project ID: Martha Dry Cleaners Date 02/11/2014

Client Sample ID: SS-3
Date Collected: 01/28/14
Time Collected: 13:05

Other Information:

Job Sample ID: 14012811.03 Sample Matrix Soil

% Moisture 21.3

| Test Method  | Parameter/Test Description    | Result | Units    | DF    | Rpt Limit Reg Limit Q | Date Time      | Analyst |
|--------------|-------------------------------|--------|----------|-------|-----------------------|----------------|---------|
| SW-846 8260B |                               |        |          |       |                       |                |         |
|              | Bromodichloromethane          | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Bromoform                     | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Bromomethane                  | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Carbon disulfide              | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Carbon tetrachloride          | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Chlorobenzene                 | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Chloroethane                  | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Chloroform                    | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Chloromethane                 | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | cis-1,2-Dichloroethylene      | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | cis-1,3-Dichloropropene       | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Dibromochloromethane          | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Dibromomethane                | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Dichlorodifluoromethane       | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Ethylbenzene                  | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Hexachlorobutadiene           | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Isopropylbenzene              | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | MEK (2-Butanone)              | BRL    | mg/kg dw | 0.813 | 0.01                  | 01/30/14 17:47 | BM      |
|              | Methylene chloride            | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | MIBK (Methyl Isobutyl Ketone) | BRL    | mg/kg dw | 0.813 | 0.01                  | 01/30/14 17:47 | BM      |
|              | MTBE                          | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Naphthalene                   | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | n-Butylbenzene                | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | n-Propylbenzene               | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | sec-Butylbenzene              | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Styrene                       | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | t-butylbenzene                | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Tetrachloroethylene           | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | Toluene                       | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | trans-1,2-Dichloroethylene    | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |
|              | trans-1,3-Dichloropropene     | BRL    | mg/kg dw | 0.813 | 0.00517               | 01/30/14 17:47 | BM      |

# RP14021105

#### LABORATORY TEST RESULTS

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon Attn: Stuart Dixon
Project ID: Martha Dry Cleaners Date 02/11/2014

Client Sample ID: SS-3 Job Sample ID: 14012811.03

Date Collected: 01/28/14 Sample Matrix Soil 13:05 Sample Matrix Soil 21.3

Other Information:

| Test Method  | Parameter/Test Description | Result | Units    | DF    | Rpt Limit | Reg Limit | Q | Date Time      | Analyst |
|--------------|----------------------------|--------|----------|-------|-----------|-----------|---|----------------|---------|
| SW-846 8260B |                            |        |          |       |           |           |   |                |         |
|              | Trichloroethylene          | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | Trichlorofluoromethane     | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | Vinyl Chloride             | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | xylene-o                   | BRL    | mg/kg dw | 0.813 | 0.00517   |           |   | 01/30/14 17:47 | BM      |
|              | xylenes (m&P)              | BRL    | mg/kg dw | 0.813 | 0.01      |           |   | 01/30/14 17:47 | BM      |
|              | xylenes (total)            | BRL    | mg/kg dw | 0.813 | 0.015     |           |   | 01/30/14 17:47 | BM      |
|              | Dibromofluoromethane(surr) | 78     | %        | 0.813 | 62.1-137  |           |   | 01/30/14 17:47 | BM      |
|              | p-Bromofluorobenzene(surr) | 117    | %        | 0.813 | 47.0-155  |           |   | 01/30/14 17:47 | BM      |
|              | Toluene-d8(surr)           | 110    | %        | 0.813 | 64.0-143  |           |   | 01/30/14 17:47 | BM      |

JobID: 14012811





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: SW-846 8260B Reporting Units: mg/kg dw

QC Batch ID : Qb14013114 Created Date : 01/31/2014 Created By : PGrimm

**Samples in This QC Batch:** 14012811.01,02,03

| Parameter                 | CAS #      | Result | Units    | D.F. | RptLimit |  |
|---------------------------|------------|--------|----------|------|----------|--|
| 1,1,1,2-Tetrachloroethane | 630-20-6   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,1,1-Trichloroethane     | 71-55-6    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,1,2,2-Tetrachloroethane | 79-34-5    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,1,2-Trichloroethane     | 79-00-5    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,1-Dichloroethane        | 75-34-3    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,1-Dichloroethylene      | 75-35-4    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,1-Dichloropropene       | 563-58-6   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,2,3-trichlorobenzene    | 87-61-6    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,2,3-Trichloropropane    | 96-18-4    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,2,4-Trichlorobenzene    | 120-82-1   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,2,4-Trimethylbenzene    | 95-63-6    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,2-Dibromo-3-            | 96-12-8    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| chloropropane             |            |        |          |      |          |  |
| 1,2-Dibromoethane         | 106-93-4   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,2-Dichlorobenzene       | 95-50-1    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,2-Dichloroethane        | 107-06-2   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,2-Dichloropropane       | 78-87-5    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,3,5-Trimethylbenzene    | 108-67-8   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,3-Dichlorobenzene       | 541-73-1   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 1,4-Dichlorobenzene       | 106-46-7   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 2,2-Dichloropropane       | 594-20-7   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 2-Chlorotoluene           | 95-49-8    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 2-Hexanone                | 591-78-6   | BRL    | mg/kg dw | 1    | 0.010    |  |
| 1-Chlorotoluene           | 106-43-4   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| 4-Isopropyltoluene        | 99-87-6    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Acetone                   | 67-64-1    | BRL    | mg/kg dw | 1    | 0.050    |  |
| Benzene                   | 71-43-2    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Bromobenzene              | 108-86-1   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Bromochloromethane        | 74-97-5    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Bromodichloromethane      | 75-27-4    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Bromoform                 | 75-25-2    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Bromomethane              | 74-83-9    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Carbon disulfide          | 75-15-0    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Carbon tetrachloride      | 56-23-5    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Chlorobenzene             | 108-90-7   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Chloroethane              | 75-00-3    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Chloroform                | 67-66-3    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Chloromethane             | 74-87-3    | BRL    | mg/kg dw | 1    | 0.0050   |  |
| cis-1,2-Dichloroethylene  | 156-59-2   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| cis-1,3-Dichloropropene   | 10061-01-5 | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Dibromochloromethane      | 124-48-1   | BRL    | mg/kg dw | 1    | 0.0050   |  |
| Dibromomethane            | 74-95-3    | BRL    | mg/kg dw | 1    | 0.0050   |  |

JobID: 14012811





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: SW-846 8260B Reporting Units: mg/kg dw

QC Batch ID : Qb14013114 Created Date : 01/31/2014 Created By : PGrimm

**Samples in This QC Batch:** 14012811.01,02,03

| OC Tymes Method Plants           |                   |         |          |      |          |  |
|----------------------------------|-------------------|---------|----------|------|----------|--|
| QC Type: Method Blank            |                   |         |          |      |          |  |
| Parameter                        | CAS #             | Result  | Units    | D.F. | RptLimit |  |
| Dichlorodifluoromethane          | 75-71-8           | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Ethylbenzene                     | 100-41-4          | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Hexachlorobutadiene              | 87-68-3           | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Isopropylbenzene                 | 98-82-8           | BRL     | mg/kg dw | 1    | 0.0050   |  |
| MEK (2-Butanone)                 | 78-93-3           | BRL     | mg/kg dw | 1    | 0.010    |  |
| Methylene chloride               | 75-09-2           | 0.00551 | mg/kg dw | 1    | 0.010    |  |
| MIBK (Methyl Isobutyl<br>Ketone) | 108-10-1          | BRL     | mg/kg dw | 1    | 0.010    |  |
| MTBE                             | 1634-04-4         | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Naphthalene                      | 91-20-3           | BRL     | mg/kg dw | 1    | 0.0050   |  |
| n-Butylbenzene                   | 104-51-8          | BRL     | mg/kg dw | 1    | 0.0050   |  |
| n-Propylbenzene                  | 103-65-1          | BRL     | mg/kg dw | 1    | 0.0050   |  |
| sec-Butylbenzene                 | 135-98-8          | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Styrene                          | 100-42-5          | BRL     | mg/kg dw | 1    | 0.0050   |  |
| t-butylbenzene                   | 98-06-6           | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Tetrachloroethylene              | 127-18-4          | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Toluene                          | 108-88-3          | BRL     | mg/kg dw | 1    | 0.0050   |  |
| trans-1,2-Dichloroethylene       | 156-60-5          | BRL     | mg/kg dw | 1    | 0.0050   |  |
| trans-1,3-Dichloropropene        | 10061-02-6        | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Trichloroethylene                | 79-01-6           | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Trichlorofluoromethane           | 75-69-4           | BRL     | mg/kg dw | 1    | 0.0050   |  |
| Vinyl Chloride                   | 75-01-4           | BRL     | mg/kg dw | 1    | 0.0050   |  |
| xylene-o                         | 95-47-6           | BRL     | mg/kg dw | 1    | 0.0050   |  |
| xylenes (m&P)                    | 108-38-3&106-42-3 | BRL     | mg/kg dw | 1    | 0.010    |  |
| xylenes (total)                  | 1330-20-7         | BRL     | mg/kg dw | 1    | 0.015    |  |
| Dibromofluoromethane<br>(Surr)   | 1868-53-7         | 0.0420  | %        | 1    | 62.1-137 |  |
| p-Bromofluorobenzene<br>(Surr)   | 460-00-4          | 0.0580  | %        | 1    | 47.0-155 |  |
| Toluene-d8 (Surr)                | 2037-26-5         | 0.0550  | %        | 1    | 64.0-143 |  |

| QC Type: LCS and LCS      | QC Type: LCS and LCSD |               |              |                   |                |               |        |                  |                        |      |  |  |  |  |  |
|---------------------------|-----------------------|---------------|--------------|-------------------|----------------|---------------|--------|------------------|------------------------|------|--|--|--|--|--|
| Parameter                 | LCS<br>Spk Added      | LCS<br>Result | LCS<br>% Rec | LCSD<br>Spk Added | LCSD<br>Result | LCSD<br>% Rec | %RPD   | RPD<br>CtrlLimit | %Recovery<br>CtrlLimit | Qual |  |  |  |  |  |
| 1,1,1,2-Tetrachloroethane | 0.05                  | 0.0580        | 116.00       | 0.05              | 0.0520         | 104.00        | 10.9   | 30               | 56.1-146               |      |  |  |  |  |  |
| 1,1,1-Trichloroethane     | 0.05                  | 0.0460        | 92.00        | 0.05              | 0.0450         | 90.00         | 2.19   | 30               | 69.4-139               |      |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane | 0.05                  | 0.0550        | 110.00       | 0.05              | 0.0520         | 104.00        | 5.60   | 30               | 52.6-147               |      |  |  |  |  |  |
| 1,1,2-Trichloroethane     | 0.05                  | 0.0560        | 112.00       | 0.05              | 0.0550         | 110.00        | 1.80   | 30               | 67.7-138               |      |  |  |  |  |  |
| 1,1-Dichloroethane        | 0.05                  | 0.0450        | 90.00        | 0.05              | 0.0450         | 90.00         | 0.0000 | 30               | 66.9-136               |      |  |  |  |  |  |
| 1,1-Dichloroethylene      | 0.05                  | 0.0450        | 90.00        | 0.05              | 0.0440         | 88.00         | 2.24   | 30               | 52.5-139               |      |  |  |  |  |  |
| 1,1-Dichloropropene       | 0.05                  | 0.0510        | 102.00       | 0.05              | 0.0510         | 102.00        | 0.0000 | 30               | 64.1-137               |      |  |  |  |  |  |
| 1,2,3-trichlorobenzene    | 0.05                  | 0.0500        | 100.00       | 0.05              | 0.0480         | 96.00         | 4.08   | 30               | 64.2-129               |      |  |  |  |  |  |

JobID: 14012811





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: SW-846 8260B Reporting Units: mg/kg dw

QC Batch ID : Qb14013114 Created Date : 01/31/2014 Created By : PGrimm

**Samples in This QC Batch:** 14012811.01,02,03

|                                     | LCS       | LCS    | LCS    | LCSD      | LCSD   | LCSD   |        | RPD       | %Recovery |     |
|-------------------------------------|-----------|--------|--------|-----------|--------|--------|--------|-----------|-----------|-----|
| Parameter                           | Spk Added | Result | % Rec  | Spk Added | Result | % Rec  | %RPD   | CtrlLimit | CtrlLimit | Qua |
| 1,2,3-Trichloropropane              | 0.05      | 0.0700 | 140.00 | 0.05      | 0.0650 | 130.00 | 7.40   | 30        | 55.0-150  |     |
| 1,2,4-Trichlorobenzene              | 0.05      | 0.0500 | 100.00 | 0.05      | 0.0450 | 90.00  | 10.5   | 30        | 67.8-129  |     |
| 1,2,4-Trimethylbenzene              | 0.05      | 0.0570 | 114.00 | 0.05      | 0.0510 | 102.00 | 11.1   | 30        | 61.4-145  |     |
| 1,2-Dibromo-3-                      | 0.05      | 0.0490 | 98.00  | 0.05      | 0.0480 | 96.00  | 2.06   | 30        | 25.0-147  |     |
| chloropropane                       |           |        |        |           |        |        |        |           |           |     |
| 1,2-Dibromoethane                   | 0.05      | 0.0540 | 108.00 | 0.05      | 0.0550 | 110.00 | 1.83   | 30        | 65.0-138  |     |
| 1,2-Dichlorobenzene                 | 0.05      | 0.0570 | 114.00 | 0.05      | 0.0560 | 112.00 | 1.76   | 30        | 68.6-129  |     |
| 1,2-Dichloroethane                  | 0.05      | 0.0500 | 100.00 | 0.05      | 0.0490 | 98.00  | 2.02   | 30        | 71.4-133  |     |
| 1,2-Dichloropropane                 | 0.05      | 0.0620 | 124.00 | 0.05      | 0.0620 | 124.00 | 0.0000 | 30        | 65.9-151  |     |
| 1,3,5-Trimethylbenzene              | 0.05      | 0.0560 | 112.00 | 0.05      | 0.0510 | 102.00 | 9.34   | 30        | 59.1-144  |     |
| 1,3-Dichlorobenzene                 | 0.05      | 0.0600 | 120.00 | 0.05      | 0.0550 | 110.00 | 8.69   | 30        | 64.9-138  |     |
| 1,4-Dichlorobenzene                 | 0.05      | 0.0600 | 120.00 | 0.05      | 0.0560 | 112.00 | 6.89   | 30        | 65.7-145  |     |
| 2,2-Dichloropropane                 | 0.05      | 0.0470 | 94.00  | 0.05      | 0.0460 | 92.00  | 2.15   | 30        | 72.5-137  |     |
| 2-Chlorotoluene                     | 0.05      | 0.0590 | 118.00 | 0.05      | 0.0550 | 110.00 | 7.01   | 30        | 45.8-147  |     |
| 2-Hexanone                          | 0.1       | 0.102  | 102.00 | 0.1       | 0.100  | 100.00 | 1.98   | 30        | 39.8-174  |     |
| 4-Chlorotoluene                     | 0.05      | 0.0620 | 124.00 | 0.05      | 0.0580 | 116.00 | 6.66   | 30        | 66.6-140  |     |
| 4-Isopropyltoluene                  | 0.05      | 0.0570 | 114.00 | 0.05      | 0.0530 | 106.00 | 7.27   | 30        | 64.6-150  |     |
| Acetone                             | 0.1       | 0.0580 | 58.00  | 0.1       | 0.0550 | 55.00  | 5.30   | 30        | 46.5-142  |     |
| Benzene                             | 0.05      | 0.0440 | 88.00  | 0.05      | 0.0430 | 86.00  | 2.29   | 30        | 60.5-139  |     |
| Bromobenzene                        | 0.05      | 0.0600 | 120.00 | 0.05      | 0.0570 | 114.00 | 5.12   | 30        | 67.0-135  |     |
| Bromochloromethane                  | 0.05      | 0.0470 | 94.00  | 0.05      | 0.0470 | 94.00  | 0.0000 | 30        | 57.4-142  |     |
| Bromodichloromethane                | 0.05      | 0.0560 | 112.00 | 0.05      | 0.0570 | 114.00 | 1.76   | 30        | 65.5-140  |     |
| Bromoform                           | 0.05      | 0.0250 | 66.00  | 0.05      | 0.0420 | 84.00  | 24.0   | 30        | 26.0-148  |     |
| Bromomethane                        | 0.05      | 0.0360 | 72.00  | 0.05      | 0.0360 | 72.00  | 0.0000 | 30        | 47.5-174  |     |
| Carbon disulfide                    | 0.05      | 0.0390 | 78.00  | 0.05      | 0.0380 | 76.00  | 2.59   | 30        | 26.6-186  |     |
| Carbon tetrachloride                | 0.05      | 0.0460 | 92.00  | 0.05      | 0.0450 | 90.00  | 2.19   | 30        | 64.0-139  |     |
| Chlorobenzene                       | 0.05      | 0.0550 | 110.00 | 0.05      | 0.0530 | 106.00 | 3.70   | 30        | 71.6-130  |     |
| Chloroethane                        | 0.05      | 0.0490 | 98.00  | 0.05      | 0.0480 | 96.00  | 2.06   | 30        | 37.5-156  |     |
| Chloroform                          | 0.05      | 0.0470 | 94.00  | 0.05      | 0.0470 | 94.00  | 0.0000 | 30        | 69.3-139  |     |
| Chloromethane                       | 0.05      | 0.0520 | 104.00 | 0.05      | 0.0520 | 104.00 | 0.0000 | 30        | 57.3-125  |     |
| cis-1,2-Dichloroethylene            | 0.05      | 0.0320 | 88.00  | 0.05      | 0.0320 | 84.00  | 4.65   | 30        | 68.7-136  |     |
| cis-1,3-Dichloropropene             | 0.05      | 0.0600 | 120.00 | 0.05      | 0.0590 | 118.00 | 1.68   | 30        | 58.8-144  |     |
| Dibromochloromethane                | 0.05      | 0.0500 | 100.00 | 0.05      | 0.0500 | 100.00 | 0.0000 | 30        | 51.4-148  |     |
| Dibromomethane                      | 0.05      | 0.0600 | 120.00 | 0.05      | 0.0590 | 118.00 | 1.68   | 30        | 68.0-144  |     |
| Dichlorodifluoromethane             | 0.05      | 0.0680 | 136.00 | 0.05      | 0.0590 | 134.00 | 1.48   | 30        | 58.8-147  |     |
| Ethylbenzene                        | 0.05      | 0.0590 | 118.00 | 0.05      | 0.0540 | 108.00 | 8.84   | 30        | 71.6-135  |     |
| Euryppenzene<br>Hexachlorobutadiene | 0.05      | 0.0590 | 106.00 | 0.05      | 0.0540 | 94.00  | 12     | 30        |           |     |
|                                     |           |        |        |           |        |        |        |           | 59.6-142  |     |
| Isopropylbenzene                    | 0.05      | 0.0580 | 116.00 | 0.05      | 0.0540 | 108.00 | 7.14   | 30        | 66.3-131  |     |
| MEK (2-Butanone)                    | 0.1       | 0.0720 | 72.00  | 0.1       | 0.0710 | 71.00  | 1.39   | 30        | 45.8-147  |     |
| Methylene chloride                  | 0.05      | 0.0590 | 118.00 | 0.05      | 0.0560 | 112.00 | 5.21   | 30        | 54.3-138  |     |
| MIBK (Methyl Isobutyl<br>Ketone)    | 0.10      | 0.118  | 118.00 | 0.10      | 0.114  | 114.00 | 3.44   | 30        | 42.3-157  |     |
| MTBE                                | 0.05      | 0.0440 | 88.00  | 0.05      | 0.0440 | 88.00  | 0.0000 | 30        | 53.0-133  |     |

RP14021105

JobID: 14012811



■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: SW-846 8260B Reporting Units: mg/kg dw

QC Batch ID : Qb14013114 Created Date : 01/31/2014 Created By : PGrimm

**Samples in This QC Batch:** 14012811.01,02,03

| QC Type: LCS and LCSD          |           |        |        |           |        |        |        |           |           |      |  |  |  |
|--------------------------------|-----------|--------|--------|-----------|--------|--------|--------|-----------|-----------|------|--|--|--|
| QC Type: LCS and LCS           | ע         |        |        |           |        |        |        |           |           |      |  |  |  |
|                                | LCS       | LCS    | LCS    | LCSD      | LCSD   | LCSD   |        | RPD       | %Recovery |      |  |  |  |
| Parameter                      | Spk Added | Result | % Rec  | Spk Added | Result | % Rec  | %RPD   | CtrlLimit | CtrlLimit | Qual |  |  |  |
| Naphthalene                    | 0.050     | 0.0480 | 96.00  | 0.050     | 0.0440 | 88.00  | 8.69   | 30        | 38.7-133  |      |  |  |  |
| n-Butylbenzene                 | 0.05      | 0.0610 | 122.00 | 0.05      | 0.0560 | 112.00 | 8.54   | 30        | 58.7-150  |      |  |  |  |
| n-Propylbenzene                | 0.05      | 0.0620 | 124.00 | 0.05      | 0.0560 | 112.00 | 10.1   | 30        | 60.4-145  |      |  |  |  |
| sec-Butylbenzene               | 0.05      | 0.0600 | 120.00 | 0.05      | 0.0550 | 110.00 | 8.69   | 30        | 62.0-141  |      |  |  |  |
| Styrene                        | 0.05      | 0.0570 | 114.00 | 0.05      | 0.0530 | 106.00 | 7.27   | 30        | 73.0-131  |      |  |  |  |
| t-butylbenzene                 | 0.05      | 0.0580 | 116.00 | 0.05      | 0.0530 | 106.00 | 9.00   | 30        | 71.6-124  |      |  |  |  |
| Tetrachloroethylene            | 0.05      | 0.0540 | 108.00 | 0.05      | 0.0520 | 104.00 | 3.77   | 30        | 76.6-136  |      |  |  |  |
| Toluene                        | 0.05      | 0.0550 | 110.00 | 0.05      | 0.0530 | 106.00 | 3.70   | 30        | 69.6-141  |      |  |  |  |
| trans-1,2-Dichloroethylene     | 0.05      | 0.0440 | 88.00  | 0.05      | 0.0430 | 86.00  | 2.29   | 30        | 61.1-134  |      |  |  |  |
| trans-1,3-Dichloropropene      | 0.05      | 0.0630 | 126.00 | 0.05      | 0.0620 | 124.00 | 1.6    | 30        | 54.4-149  |      |  |  |  |
| Trichloroethylene              | 0.05      | 0.0570 | 114.00 | 0.05      | 0.0560 | 112.00 | 1.76   | 30        | 65.8-141  |      |  |  |  |
| Trichlorofluoromethane         | 0.05      | 0.0530 | 106.00 | 0.05      | 0.0520 | 104.00 | 1.90   | 30        | 58.2-147  |      |  |  |  |
| Vinyl Chloride                 | 0.05      | 0.0530 | 106.00 | 0.05      | 0.0530 | 106.00 | 0.0000 | 30        | 63.8-124  |      |  |  |  |
| xylene-o                       | 0.05      | 0.0610 | 122.00 | 0.05      | 0.0560 | 112.00 | 8.54   | 30        | 67.5-131  |      |  |  |  |
| xylenes (m&P)                  | 0.1       | 0.123  | 123.00 | 0.1       | 0.112  | 112.00 | 9.36   | 30        | 63.8-147  |      |  |  |  |
| xylenes (total)                | 0.15      | 0.184  | 122.67 | 0.15      | 0.169  | 112.67 | 8.49   | 30        | 63.8-147  |      |  |  |  |
| Dibromofluoromethane (Surr)    | 0.050     | 0.0420 | 84.00  | 0.050     | 0.0420 | 84.00  |        |           | 62.1-137  |      |  |  |  |
| p-Bromofluorobenzene<br>(Surr) | 0.050     | 0.0600 | 120.00 | 0.050     | 0.0590 | 118.00 |        |           | 47.0-155  |      |  |  |  |
| Toluene-d8 (Surr)              | 0.050     | 0.0550 | 110.00 | 0.050     | 0.0550 | 110.00 |        |           | 64.0-143  |      |  |  |  |

| QC Type: MS and MSD       |        |           |        |        |           |        |       |      |           |           |      |
|---------------------------|--------|-----------|--------|--------|-----------|--------|-------|------|-----------|-----------|------|
| QC Sample ID: 140128      | 310.04 |           |        |        |           |        |       |      |           |           |      |
|                           | Sample | MS        | MS     | MS     | MSD       | MSD    | MSD   |      | RPD       | %Rec      |      |
| Parameter                 | Result | Spk Added | Result | % Rec  | Spk Added | Result | % Rec | %RPD | CtrlLimit | CtrlLimit | Qual |
| 1,1,1,2-Tetrachloroethane |        | 0.043     | 0.0360 | 83.72  |           |        |       |      |           | 56.1-146  |      |
| 1,1,1-Trichloroethane     |        | 0.043     | 0.0360 | 83.72  |           |        |       |      |           | 69.4-139  |      |
| 1,1,2,2-Tetrachloroethane |        | 0.043     | 0.0370 | 86.05  |           |        |       |      |           | 52.6-147  |      |
| 1,1,2-Trichloroethane     |        | 0.043     | 0.0360 | 83.72  |           |        |       |      |           | 67.7-138  |      |
| 1,1-Dichloroethane        |        | 0.043     | 0.0340 | 79.07  |           |        |       |      |           | 66.9-136  |      |
| 1,1-Dichloroethylene      |        | 0.043     | 0.0350 | 81.40  |           |        |       |      |           | 52.5-139  |      |
| 1,1-Dichloropropene       |        | 0.043     | 0.0400 | 93.02  |           |        |       |      |           | 64.1-137  |      |
| 1,2,3-trichlorobenzene    |        | 0.043     | 0.0270 | 62.79  |           |        |       |      |           | 64.2-129  | J1   |
| 1,2,3-Trichloropropane    |        | 0.043     | 0.0430 | 100.00 |           |        |       |      |           | 55.0-150  |      |
| 1,2,4-Trichlorobenzene    |        | 0.043     | 0.0260 | 60.47  |           |        |       |      |           | 67.8-129  | J1   |
| 1,2,4-Trimethylbenzene    |        | 0.043     | 0.0370 | 86.05  |           |        |       |      |           | 61.4-145  |      |
| 1,2-Dibromo-3-            |        |           |        |        |           |        |       |      |           |           |      |
| chloropropane             |        | 0.043     | 0.0310 | 72.09  |           |        |       |      |           | 25.0-147  |      |
| 1,2-Dibromoethane         |        | 0.043     | 0.0360 | 83.72  |           |        |       |      |           | 65.0-138  |      |
| 1,2-Dichlorobenzene       |        | 0.043     | 0.0360 | 83.72  |           |        |       |      |           | 68.6-129  |      |
| 1,2-Dichloroethane        |        | 0.043     | 0.0320 | 74.42  |           |        |       |      |           | 71.4-133  |      |

JobID: 14012811





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: SW-846 8260B Reporting Units: mg/kg dw

QC Batch ID : Qb14013114 Created Date : 01/31/2014 Created By : PGrimm

**Samples in This QC Batch:** 14012811.01,02,03

|                          | Sample | MS        | MS     | MS     | MSD       | MSD    | MSD   |      | RPD       | %Rec      |     |
|--------------------------|--------|-----------|--------|--------|-----------|--------|-------|------|-----------|-----------|-----|
| Parameter                | Result | Spk Added | Result | % Rec  | Spk Added | Result | % Rec | %RPD | CtrlLimit | CtrlLimit | Qua |
| 1,2-Dichloropropane      |        | 0.043     | 0.0460 | 106.98 |           |        |       |      |           | 65.9-151  |     |
| 1,3,5-Trimethylbenzene   |        | 0.043     | 0.0380 | 88.37  |           |        |       |      |           | 59.1-144  |     |
| 1,3-Dichlorobenzene      |        | 0.043     | 0.0380 | 88.37  |           |        |       |      |           | 64.9-138  |     |
| 1,4-Dichlorobenzene      |        | 0.043     | 0.0360 | 83.72  |           |        |       |      |           | 65.7-145  |     |
| 2,2-Dichloropropane      |        | 0.043     | 0.0360 | 83.72  |           |        |       |      |           | 72.5-137  |     |
| 2-Chlorotoluene          |        | 0.043     | 0.0410 | 95.35  |           |        |       |      |           | 45.8-147  |     |
| 2-Hexanone               |        | 0.086     | 0.0700 | 81.40  |           |        |       |      |           | 39.8-174  |     |
| 4-Chlorotoluene          |        | 0.043     | 0.0410 | 95.35  |           |        |       |      |           | 66.6-140  |     |
| 4-Isopropyltoluene       |        | 0.043     | 0.0390 | 90.70  |           |        |       |      |           | 64.6-150  |     |
| Acetone                  |        | 0.086     | 0.0420 | 48.84  |           |        |       |      |           | 46.5-142  |     |
| Benzene                  |        | 0.043     | 0.0310 | 72.09  |           |        |       |      |           | 60.5-139  |     |
| Bromobenzene             |        | 0.043     | 0.0390 | 90.70  |           |        |       |      |           | 67.0-135  |     |
| Bromochloromethane       |        | 0.043     | 0.0300 | 69.77  |           |        |       |      |           | 57.4-142  |     |
| Bromodichloromethane     |        | 0.043     | 0.0420 | 97.67  |           |        |       |      |           | 65.5-140  |     |
| Bromoform                |        | 0.043     | 0.0140 | 32.56  |           |        |       |      |           | 26.0-148  |     |
| Bromomethane             |        | 0.043     | 0.0260 | 60.47  |           |        |       |      |           | 47.5-174  |     |
| Carbon disulfide         |        | 0.043     | 0.0290 | 67.44  |           |        |       |      |           | 26.6-186  |     |
| Carbon tetrachloride     |        | 0.043     | 0.0340 | 79.07  |           |        |       |      |           | 64.0-139  |     |
| Chlorobenzene            |        | 0.043     | 0.0380 | 88.37  |           |        |       |      |           | 71.6-130  |     |
| Chloroethane             |        | 0.043     | 0.0360 | 83.72  |           |        |       |      |           | 37.5-156  |     |
| Chloroform               |        | 0.043     | 0.0330 | 76.74  |           |        |       |      |           | 69.3-139  |     |
| Chloromethane            |        | 0.043     | 0.0380 | 88.37  |           |        |       |      |           | 57.3-125  |     |
| cis-1,2-Dichloroethylene |        | 0.043     | 0.0300 | 69.77  |           |        |       |      |           | 68.7-136  |     |
| cis-1,3-Dichloropropene  |        | 0.043     | 0.0400 | 93.02  |           |        |       |      |           | 58.8-144  |     |
| Dibromochloromethane     |        | 0.043     | 0.0320 | 74.42  |           |        |       |      |           | 51.4-148  |     |
| Dibromomethane           |        | 0.043     | 0.0400 | 93.02  |           |        |       |      |           | 68.0-144  |     |
| Dichlorodifluoromethane  |        | 0.043     | 0.0540 | 125.58 |           |        |       |      |           | 58.8-147  |     |
| Ethylbenzene             |        | 0.043     | 0.0410 | 95.35  |           |        |       |      |           | 71.6-135  |     |
| Hexachlorobutadiene      |        | 0.043     | 0.0340 | 79.07  |           |        |       |      |           | 59.6-142  |     |
| Isopropylbenzene         |        | 0.043     | 0.0420 | 97.67  |           |        |       |      |           | 66.3-131  |     |
| MEK (2-Butanone)         |        | 0.086     | 0.0480 | 55.81  |           |        |       |      |           | 45.8-147  |     |
| Methylene chloride       |        | 0.043     | 0.0320 | 74.42  |           |        |       |      |           | 54.3-138  |     |
| MIBK (Methyl Isobutyl    |        |           |        |        |           |        |       |      |           |           |     |
| Ketone)                  |        | 0.086     | 0.0910 | 105.81 |           |        |       | 1    |           | 42.3-157  |     |
| MTBE                     |        | 0.043     | 0.0270 | 62.79  |           |        |       | 1    |           | 53.0-133  |     |
| Naphthalene              |        | 0.043     | 0.0300 | 69.77  |           |        |       | 1    |           | 38.7-133  |     |
| n-Butylbenzene           |        | 0.043     | 0.0420 | 97.67  |           |        |       | 1    |           | 58.7-150  |     |
| n-Propylbenzene          |        | 0.043     | 0.0430 | 100.00 |           |        |       |      |           | 60.4-145  |     |
| sec-Butylbenzene         |        | 0.043     | 0.0420 | 97.67  |           |        |       | 1    |           | 62.0-141  |     |
| Styrene                  |        | 0.043     | 0.0370 | 86.05  |           |        |       | 1    |           | 73.0-131  |     |
| t-butylbenzene           |        | 0.043     | 0.0400 | 93.02  |           |        |       |      |           | 71.6-124  |     |

JobID: 14012811





■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Analysis: Method: SW-846 8260B Reporting Units: mg/kg dw

QC Batch ID : Qb14013114 Created Date : 01/31/2014 Created By : PGrimm

**Samples in This QC Batch:** 14012811.01,02,03

| QC Type: MS and MSD            | QC Type: MS and MSD |           |        |        |           |        |       |        |           |           |      |  |
|--------------------------------|---------------------|-----------|--------|--------|-----------|--------|-------|--------|-----------|-----------|------|--|
| QC Sample ID: 140128           | 10.04               |           |        |        |           |        |       |        |           |           |      |  |
|                                | Sample              | MS        | MS     | MS     | MSD       | MSD    | MSD   | 0/ 888 | RPD       | %Rec      |      |  |
| Parameter                      | Result              | Spk Added | Result | % Rec  | Spk Added | Result | % Rec | %RPD   | CtrlLimit | CtrlLimit | Qual |  |
| Tetrachloroethylene            |                     | 0.043     | 0.0410 | 95.35  |           |        |       |        |           | 76.6-136  |      |  |
| Toluene                        |                     | 0.043     | 0.0410 | 95.35  |           |        |       |        |           | 69.6-141  |      |  |
| trans-1,2-Dichloroethylene     |                     | 0.043     | 0.0320 | 74.42  |           |        |       |        |           | 61.1-134  |      |  |
| trans-1,3-Dichloropropene      |                     | 0.043     | 0.0410 | 95.35  |           |        |       |        |           | 54.4-149  |      |  |
| Trichloroethylene              |                     | 0.043     | 0.0440 | 102.33 |           |        |       |        |           | 65.8-141  |      |  |
| Trichlorofluoromethane         |                     | 0.043     | 0.0410 | 95.35  |           |        |       |        |           | 58.2-147  |      |  |
| Vinyl Chloride                 |                     | 0.043     | 0.0410 | 95.35  |           |        |       |        |           | 63.8-124  |      |  |
| xylene-o                       |                     | 0.043     | 0.0410 | 95.35  |           |        |       |        |           | 67.5-131  |      |  |
| xylenes (m&P)                  |                     | 0.086     | 0.0870 | 101.16 |           |        |       |        |           | 63.8-147  |      |  |
| xylenes (total)                |                     | 0.130     | 0.128  | 98.46  |           |        |       |        |           | 63.8-147  |      |  |
| Dibromofluoromethane           |                     |           |        |        |           |        |       |        |           |           |      |  |
| (Surr)                         |                     | 0.043     | 0.0330 | 76.74  |           |        |       |        |           | 62.1-137  |      |  |
| p-Bromofluorobenzene<br>(Surr) |                     | 0.043     | 0.0480 | 111.63 |           |        |       |        |           | 47.0-155  |      |  |
| Toluene-d8 (Surr)              |                     | 0.043     | 0.0520 | 120.93 |           |        |       |        |           | 64.0-143  |      |  |

Refer to the Definition page for terms.

Date: 02/11/2014 16:23 Page 17 of 22



# **SAMPLE PREPARATION INFORMATION**

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

| Client Name:  | Terracon            |             |                     | Attn:      | Stuart Dixon  |
|---------------|---------------------|-------------|---------------------|------------|---------------|
| Project Name: | Martha Dry Cleaners |             |                     | Date:      | 02/11/2014    |
| Sample ID     | Test                | Prep method | Date Prepared       | Analyst    | Prep Batch ID |
| 14012811.01   | Percent Solids      | SM2540b     | 01/28/2014 02:00 PM | JKitchings | PB14013001    |
| 14012811.01   | VOC-Terracon Soil   | SW5035      | 01/30/2014 08:15 AM | BMullis    | PB14013115    |
| 14012811.02   | Percent Solids      | SM2540b     | 01/28/2014 02:00 PM | JKitchings | PB14013001    |
| 14012811.02   | VOC-Terracon Soil   | SW5035      | 01/30/2014 08:15 AM | BMullis    | PB14013115    |
| 14012811.03   | Percent Solids      | SM2540b     | 01/28/2014 02:00 PM | JKitchings | PB14013001    |
| 14012811.03   | VOC-Terracon Soil   | SW5035      | 01/30/2014 08:15 AM | BMullis    | PB14013115    |



# **TERM AND QUALIFIER DEFINITION**

JobID:

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

General Term Definition

Conc. Concentration

DF Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content

ND Non Detect - Not Detected at or above adjusted reporting limit

J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit

RL adjusted Reporting Limit (QL – Quantification Limit)
MDL adjusted Method Detection Limit (LOD – Limit of Detection)

RegLimit Regulatory Limit Milligrams per Liter mg/l Milligrams per Kilogram mg/kg Parts per Million ppm Micrograms per Liter μg/L μg/g Micrograms per Gram Parts per Billion ppb Grains per Gallon gr/gal SU Standard Units CCU Cobalt Color Units

NTU Nephelometric Turbidity Units µS/cm Microsiemens per cm at 25C

P/A Presence/Absence
CFU Colony Forming Units
MPN Most Probable Number

RB Reagent Blank MB Method Blank

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LFM Laboratory Fortified Matrix (MS – Matrix Spike)

LFMD Laboratory Fortified Matrix Duplicate (MSD – Matrix Spike Duplicate)

DUP Sample Duplicate

RPD Relative Percent Difference

%Rec
 Percent Recovery
 TNTC
 Too numerous to count
 NC
 Not Calculable
 SG
 Silica Gel - Clean-Up
 BRL
 Below Reporting Limit
 BDL
 Below Detection Limit

Qualifier Definition

J1 Estimated value-The reported value failed the established quality control criteria for accuracy and /or

precision.



#### **CASE NARRATIVE**

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

Client Name: Terracon

Project Name: Martha Dry Cleaners

Date Received: 01/28/2014,01/28/2014,01/28/2014

Collected By: JHC

#### Matrix Spikes

Method SW8260b: The matrix spike/ matrix spike duplicate recoveries were outside the established laboratory control limits for several analytes. The lab spike recoveries were inside acceptable limits, so the data was reported. The matrix spikes have been qualified accordingly.

Total Organic Carbon was subcontracted to AES. The data is on a separate report.

Released By: Robert Paul Grimm

Title: Technical Director

Date: 02/11/2014 16:21 Primary Lab Certification # NELAP: FL-E87941



### **SAMPLE SUMMARY**

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

**Client Project ID:** 

Martha Dry Cleaners

Report To: Client Name: Terracon Attn: Stuart Dixon

Client Address: 2201 Rowland Ave. P.O.#.:

City, State, Zip: Savannah, GA, 31404

The laboratory has analyzed the following samples:

| Client Sample ID | Matrix | Sample ID   | Date Received | Date Collected | Collected by |
|------------------|--------|-------------|---------------|----------------|--------------|
| SS-1             | Soil   | 14012811.01 | 01/28/2014    | 01/28/2014     | JHC          |
| SS-2             | Soil   | 14012811.02 | 01/28/2014    | 01/28/2014     | JHC          |
| SS-3             | Soil   | 14012811.03 | 01/28/2014    | 01/28/2014     | JHC          |



### **SAMPLE CONDITION CHECKLIST**

JobID: 14012811

Avery Laboratories & Environmental Services, LLC

■ 101B Estus Road ■ Savannah, Georgia 31404 ■ tel: (912) 944-3748 ■ Fax: (912) 234-9294 ■

| Client Name :           | Terracon          |                                  | Contact :       | Stuart Dixon |  |  |  |
|-------------------------|-------------------|----------------------------------|-----------------|--------------|--|--|--|
| Address :               | 2201 Rowland Ave. |                                  | Contact Phone : | 912 629-4000 |  |  |  |
| <b>JobID</b> : 14012811 |                   | <b>Date Received:</b> 01/28/2014 | Time Received : | 1:41PM       |  |  |  |
| Temperature :           | 2.5               | Sample pH:                       |                 |              |  |  |  |
| ThermometerID           | <b>:</b> 15953    | pH Meter :                       |                 |              |  |  |  |

| Comments : Include actions taken to resolve discrepancies/Problem : |  |
|---------------------------------------------------------------------|--|
|                                                                     |  |
|                                                                     |  |

|    | Check Points                                                        | Yes | No | N/A |
|----|---------------------------------------------------------------------|-----|----|-----|
| 1  | Cooler seal present and signed.                                     | V   |    |     |
| 2  | Sample(s) in a cooler.                                              | V   |    |     |
| 3  | Sample received at 6°C or Less                                      | V   |    |     |
| 4  | C-O-C signed and dated.                                             | V   |    |     |
| 5  | Sample containers arrived in tact. (if no, comment)                 | V   |    |     |
| 6  | Sample(s) were received in appropriate contatiner. (If no, comment) | V   |    |     |
| 7  | Samples received within holding time for analysis requested         | V   |    |     |
| 8  | Zero headspace in liquid VOA vials                                  |     |    | ~   |
| 9  | Sample(s) were received at the proper pH.                           | V   |    |     |
| 10 | All samples were logged or labeled.                                 | V   |    |     |
| 11 | Sample ID lables Match C-O-C ID's                                   | V   |    |     |
| 12 | Bottle count on C-O-C matches bottle found.                         | V   |    |     |
| 13 | Sample amount is sufficient for analyses requested                  | V   |    |     |
| 14 | If requested, sample(s) received with signed sample custody seal    |     |    | ~   |
| 15 | Samples accepted.                                                   | V   |    |     |

Check In By : EGrimm Check in date : 01/28/2014 12:00 AM

Date: 02/11/2014 16:23 Primary Lab Certification # NELAP: FL-E87941

# ANALYTICAL ENVIRONMENTAL SERVICES, INC.



February 10, 2014

Robert Paul Grimm Avery Laboratories & Environmental Services, LLC 101 B Estus Dr. Savannah GA 31404

TEL: (912) 944-3748 FAX: (912) 234-9294

RE: Marthas Dry Cleaners

Dear Robert Paul Grimm: Order No: 1402270

Analytical Environmental Services, Inc. received 3 samples on 2/4/2014 12:40:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

- -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/13-06/30/14.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) effective until 09/01/15.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Nicole Jessup

Project Manager

Mich 2. Jessup

| Serial Number: 68384 [46] 28                                                                                          | Subcontract Laboratory | Name / Address/ Phone             | √                                    | A V S      |                              | Δ.                               | Remarks                          |                       |                | Transfer of the state of the st |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |                                           | 6 = NAHSO4 7 = Water 8 = Other                              |                              | Date Time: ,—SS -14 B. 14                  | Date/Time:                                                         | 1                | 12/2/ 6//4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ret No G                 |
|-----------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|--------------------------------------|------------|------------------------------|----------------------------------|----------------------------------|-----------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|-------------------------------------------|-------------------------------------------------------------|------------------------------|--------------------------------------------|--------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| /අයායට<br>Ship To: 101 B Estus Dr. Savannah, Ga. 31404<br>T 912 944-3748 F 912 234-9294<br>email: pgrimm@averylab.com | Monthas Day Cleaners   | State where work originated: C.A. |                                      |            |                              |                                  |                                  |                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |                                           | Preservative: 1= None 2 = H2SO4 3 = HN03 4 = HCL 5 = MeOH 6 | Custody Seals Intact: Yes No |                                            | d by:                                                              |                  | Trach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>8</del> 0.          |
| Ship To: 101 B Estus<br>T 912 944-3748<br>email: pgrimu                                                               |                        | Sample: The Kroject Number:       | 24 Hours                             |            | S Working Days               | 7 Worlding Days Other:           | Date Time Matrix # of Containers | 1/27/14 11:15 5 4 × × | - 33.51<br>- X |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  | N = Nonaqueous (solvent, acid, etc.)      | Preserv                                                     | Custody Seals: (Yes No       | Date Time: 1/28/14 ] 3 4.(                 | Date/Time: $\eta   \mathcal{L}   \mathcal{L}   \mathcal{L}_{IJ}  $ | Date/Time:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Effective Date: 09.11.08 |
| Aven Laboratories & Environmental Services, LLC                                                                       | Client Information     | 224: 02:12                        | Oth/State/Zip: Savennah, 64 3 j 40 y | Struck Dix | Email: Sabiyen & Tenacon Com | Project Manager: Stewoort Dix Co | Sample Identification            | 1-S.S                 | 55.2           | \$5:8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Addition and the control of the cont | Trans Trans Advisor - Advisor |  |  | Matrix Type: A = Air W = Water ; S= Solid | Instructions or Special Requirements:                       | Temperature: $\beta.5$       | Relinquished by: \ ( \alpha \in \lambda \) | Keinquisheroy: //                                                  | Relinquished by: | The state of the s | . F86-01                 |

Client: Avery Laboratories & Environmental Services, LLC Client Sample ID: SS-1

**Project Name:** Marthas Dry Cleaners Collection Date: 1/27/2014 11:15:00 AM

**Lab ID:** 1402270-001 **Matrix:** Soil

| Analyses                              | Result | Qual | MDL | Reporting<br>Limit | Units     | BatchID   | DF | Date Analyzed    | Analyst |
|---------------------------------------|--------|------|-----|--------------------|-----------|-----------|----|------------------|---------|
| Total Organic Carbon SW9060A Modified |        |      |     |                    | (SW9060   | ) Modifie | d) |                  |         |
| Total Organic Carbon (TOC)            | 2220   |      | 102 | 500                | mg/Kg-dry | 186796    | 1  | 02/07/2014 12:40 | GR      |

Date:

10-Feb-14

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative

Client: Avery Laboratories & Environmental Services, LLC Client Sample ID: SS-2

**Project Name:** Marthas Dry Cleaners Collection Date: 1/27/2014 12:00:00 PM

**Lab ID:** 1402270-002 **Matrix:** Soil

| Analyses                              | Result | Qual | MDL | Reporting<br>Limit | Units     | BatchID   | DF | Date Analyzed    | Analyst |
|---------------------------------------|--------|------|-----|--------------------|-----------|-----------|----|------------------|---------|
| Total Organic Carbon SW9060A Modified |        |      |     |                    | (SW9060   | ) Modifie | d) |                  |         |
| Total Organic Carbon (TOC)            | 679    |      | 102 | 500                | mg/Kg-dry | 186796    | 1  | 02/07/2014 13:39 | GR      |

Date:

10-Feb-14

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative

Client: Avery Laboratories & Environmental Services, LLC Client Sample ID: SS-3

**Project Name:** Marthas Dry Cleaners Collection Date: 1/27/2014 1:05:00 PM

**Lab ID:** 1402270-003 **Matrix:** Soil

| Analyses                              | Result | Qual | MDL | Reporting<br>Limit | Units     | BatchID   | DF | Date Analyzed    | Analyst |
|---------------------------------------|--------|------|-----|--------------------|-----------|-----------|----|------------------|---------|
| Total Organic Carbon SW9060A Modified |        |      |     | (                  | SW9060    | ) Modifie | d) |                  |         |
| Total Organic Carbon (TOC)            | 295    | J    | 102 | 500                | mg/Kg-dry | 186796    | 1  | 02/07/2014 14:48 | GR      |

Date:

10-Feb-14

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Not detected at MDL

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

NC Not confirmed

E Estimated value above quantitation range

S Spike Recovery outside limits due to matrix

J Estimated value detected below Reporting Limit

> Greater than Result value

< Less than Result value

Narr See case narrative

# Sample/Cooler Receipt Checklist

| Client Avery                                                  |               | Work Order Number | 1402270      |
|---------------------------------------------------------------|---------------|-------------------|--------------|
| Checklist completed by Signature Date                         | 214/14        | <del></del>       |              |
| Carrier name: FedEx UPS Courier Client US                     | S Mail Other  |                   |              |
| Shipping container/cooler in good condition?                  | Yes           | No Not Present    |              |
| Custody seals intact on shipping container/cooler?            | Yes           | No Not Present    |              |
| Custody seals intact on sample bottles?                       | Yes           | No Not Present    |              |
| Container/Temp Blank temperature in compliance? (4°C±2)*      | Yes _         | No                |              |
| Cooler #1 Cooler #2 Cooler #3                                 | _ Cooler #4 _ | Cooler#5          | Cooler #6    |
| Chain of custody present?                                     | Yes _         | No                |              |
| Chain of custody signed when relinquished and received?       | Yes _         | No                |              |
| Chain of custody agrees with sample labels?                   | Yes _         | No                |              |
| Samples in proper container/bottle?                           | Yes 🗹         | No                |              |
| Sample containers intact?                                     | Yes           | No                |              |
| Sufficient sample volume for indicated test?                  | Yes           | No                |              |
| All samples received within holding time?                     | Yes           | No                |              |
| Was TAT marked on the COC?                                    | Yes           | No                |              |
| Proceed with Standard TAT as per project history?             | Yes           | No Not Applicable | e            |
| Water - VOA vials have zero headspace? No VOA vials so        | ubmitted      | Yes No            |              |
| Water - pH acceptable upon receipt?                           | Yes           | No Not Applicable | le <u>/</u>  |
| ,                                                             |               | cked by           |              |
| Sample Condition: Good Other(Explain)                         |               |                   | <del>-</del> |
| (For diffusive samples or AIHA lead) Is a known blank include | ded? Yes      | No/               |              |

See Case Narrative for resolution of the Non-Conformance.

\L\Quality Assurance\Checklists Procedures Sign-Off Templates\Checklists\Sample Receipt Checklists\Sample\_Cooler\_Receipt\_Checklist

<sup>\*</sup> Samples do not have to comply with the given range for certain parameters.

Avery Laboratories & Environmental Services, LLC **Client:** 

Marthas Dry Cleaners **Project Name:** 

Workorder: 1402270

### ANALYTICAL QC SUMMARY REPORT

Date:

10-Feb-14

BatchID: 186796

| Sample ID: <b>MB-186796</b> | Client ID:    |                       |                |             | Uni  |              | •          | p Date:      | 02/05/2014 | Run No: 260887         |
|-----------------------------|---------------|-----------------------|----------------|-------------|------|--------------|------------|--------------|------------|------------------------|
| SampleType: MBLK            | TestCode: To  | tal Organic Carbon SV | V9060A Modifie | ed          | Bat  | chID: 186796 | Ana        | alysis Date: | 02/07/2014 | Seq No: <b>5483904</b> |
| Analyte                     | Result        | RPT Limit             | SPK value      | SPK Ref Val | %REC | Low Limit    | High Limit | RPD Re       | f Val %RPI | O RPD Limit Qua        |
| Total Organic Carbon (TOC)  | BRL           | 500                   |                |             |      |              |            |              |            |                        |
| Sample ID: LCS-186796       | Client ID:    |                       |                |             | Uni  | ts: mg/Kg-o  | dry Pre    | p Date:      | 02/05/2014 | Run No: 260887         |
| SampleType: LCS             | TestCode: To  | tal Organic Carbon SV | V9060A Modifie | ed          | Bat  | chID: 186796 | Ana        | alysis Date: | 02/07/2014 | Seq No: <b>5483907</b> |
| Analyte                     | Result        | RPT Limit             | SPK value      | SPK Ref Val | %REC | Low Limit    | High Limit | RPD Re       | f Val %RPI | O RPD Limit Qua        |
| Total Organic Carbon (TOC)  | 2385          | 500                   | 2610           |             | 91.4 | 70           | 130        |              |            |                        |
| Sample ID: 1402270-001ADUP  | Client ID: SS | -1                    |                |             | Uni  | ts: mg/Kg-o  | dry Pre    | p Date:      | 02/05/2014 | Run No: 260887         |
| SampleType: <b>DUP</b>      | TestCode: To  | tal Organic Carbon SV | V9060A Modifie | ed          | Bat  | chID: 186796 | Ana        | alysis Date: | 02/07/2014 | Seq No: <b>5483951</b> |
| Analyte                     | Result        | RPT Limit             | SPK value      | SPK Ref Val | %REC | Low Limit    | High Limit | RPD Re       | f Val %RPI | O RPD Limit Qua        |
| Total Organic Carbon (TOC)  | 2222          | 500                   |                |             |      |              |            | 2224         | 0.090      | 0 50                   |

Qualifiers: Greater than Result value

> BRL Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

S Spike Recovery outside limits due to matrix

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

# **APPENDIX D**

**BIOCHLOR MODEL DATA - CALIBRATION** 

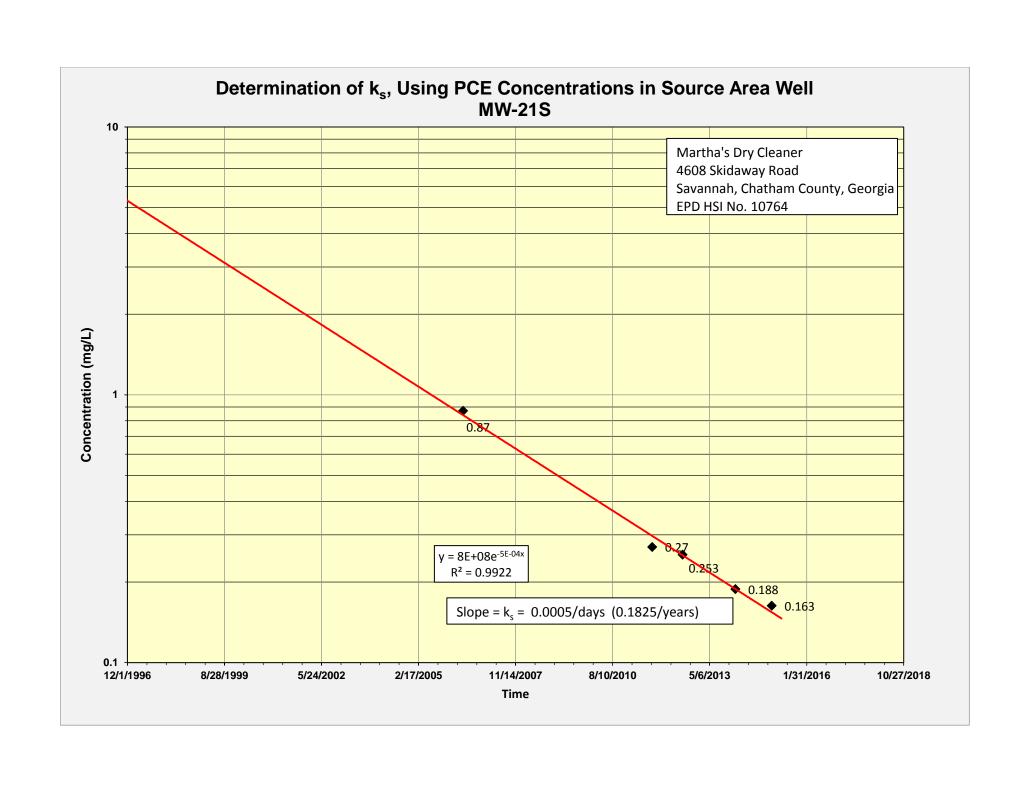



FIGURE D-1: CALIBRATION - 10 YEAR INPUT DATA

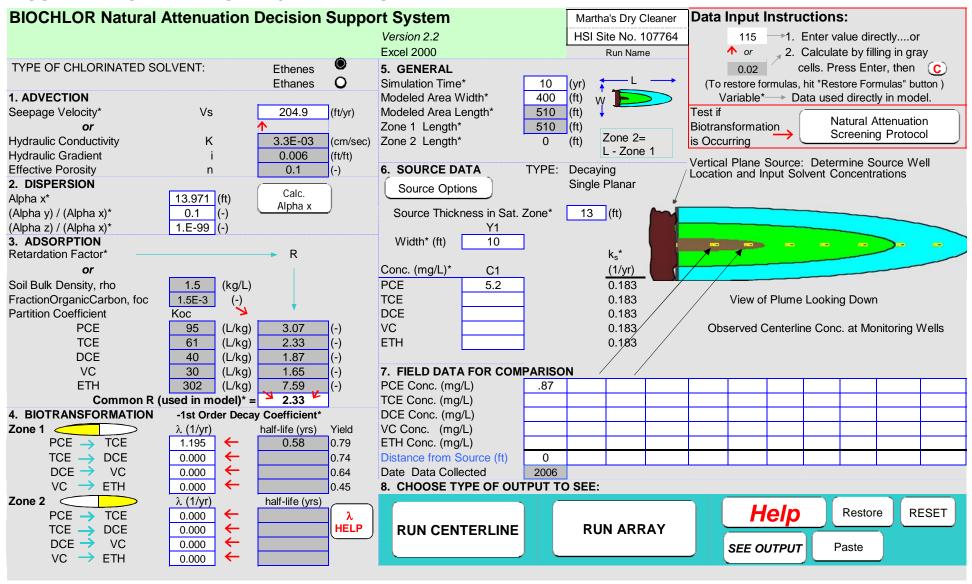



FIGURE D-2: CALIBRATION - 10 YEAR CENTERLINE DATA

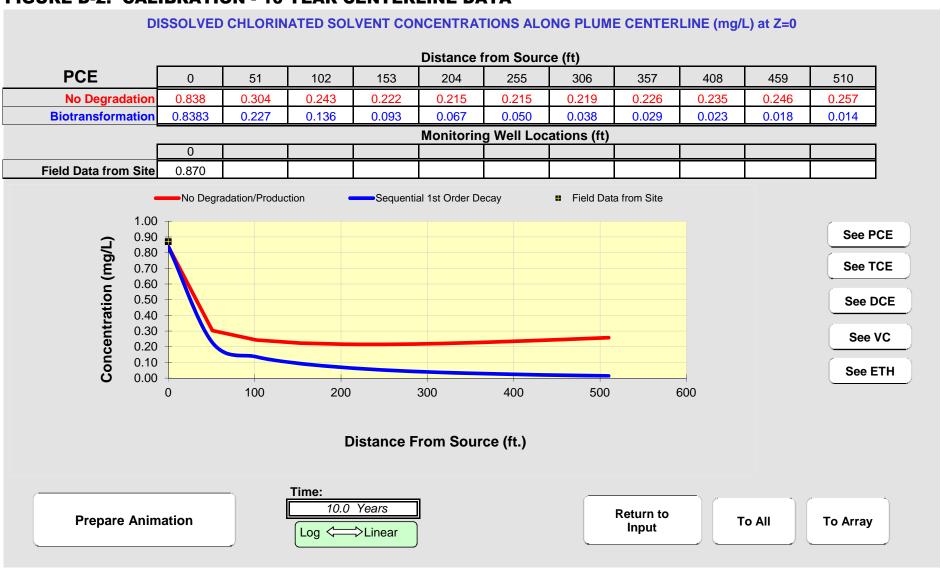
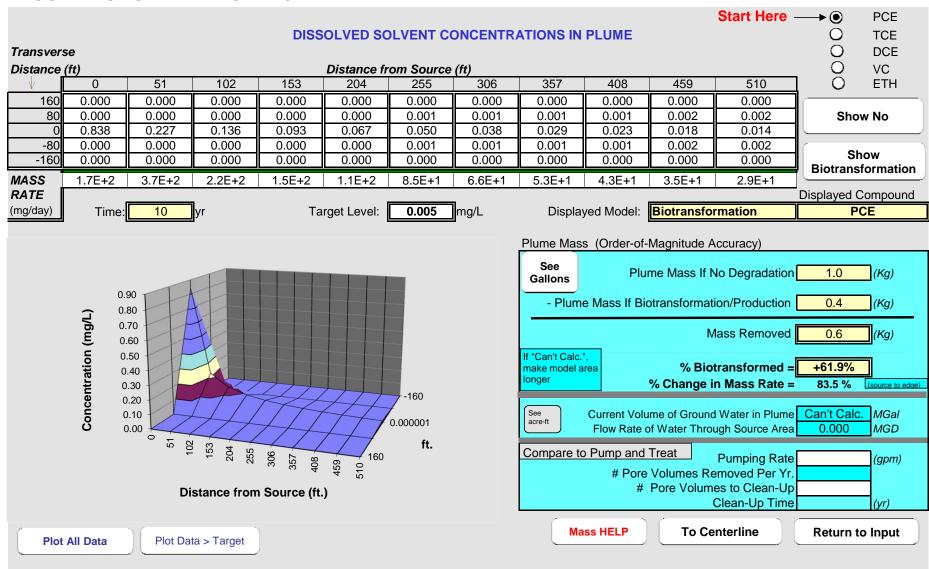




FIGURE D-3: CALIBRATION - 10 YEAR ARRAY DATA



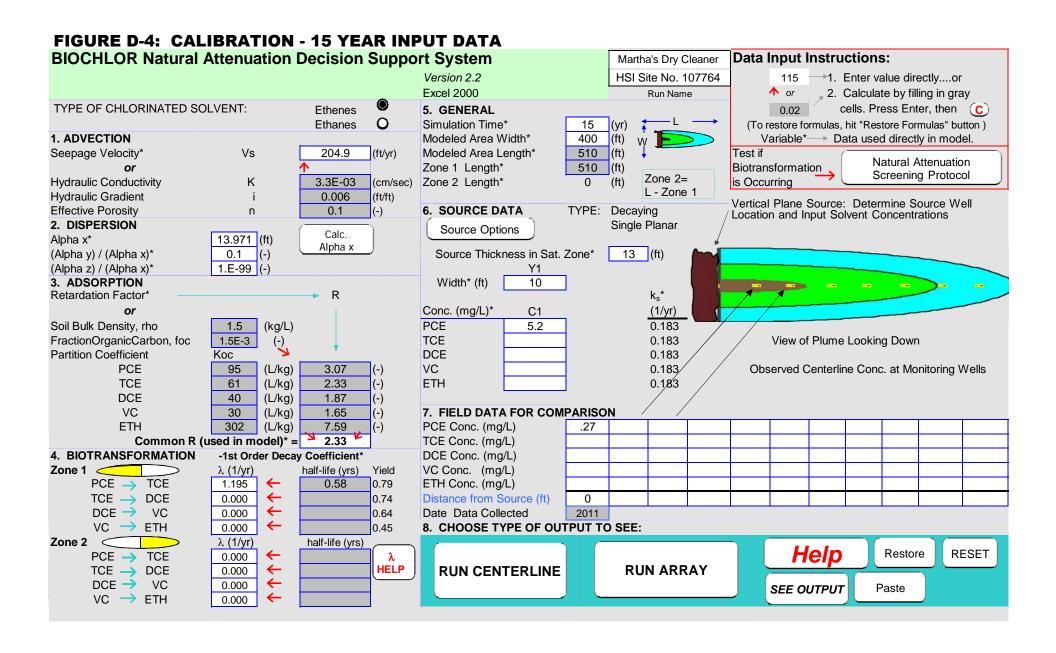



FIGURE D-5: CALIBRATION - 15 YEAR CENTERLINE DATA

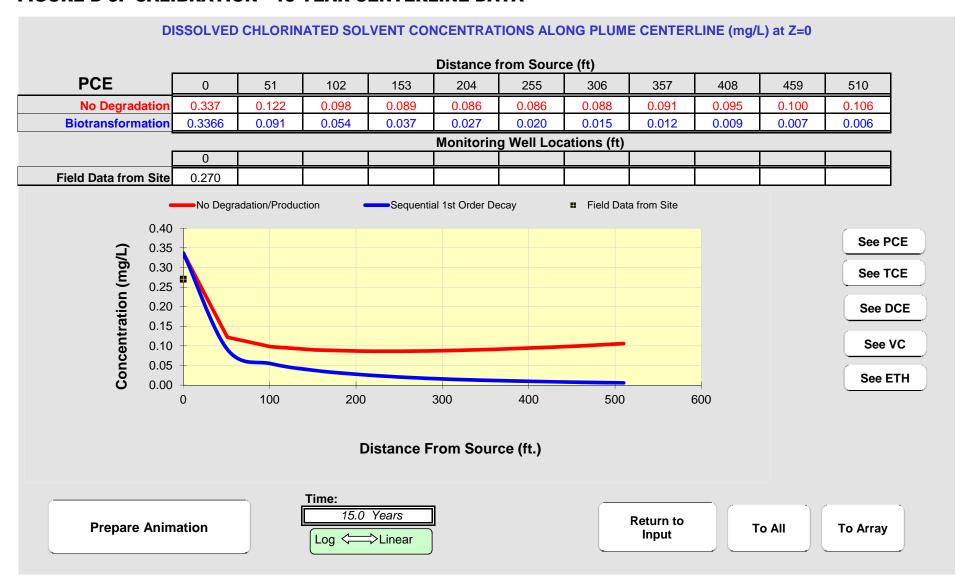
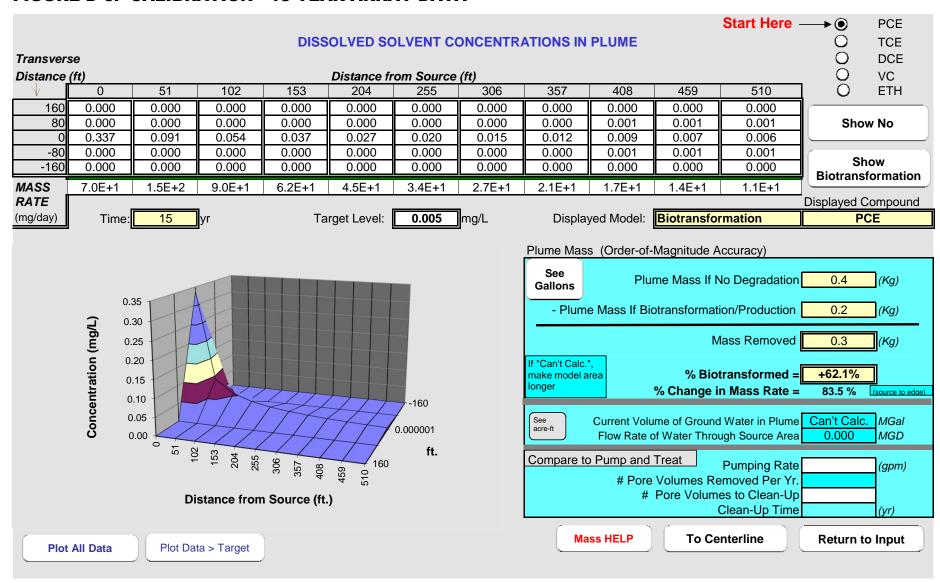




FIGURE D-6: CALIBRATION - 15 YEAR ARRAY DATA



#### FIGURE D-7: CALIBRATION - 16 YEAR INPUT DATA **BIOCHLOR Natural Attenuation Decision Support System** Data Input Instructions: Martha's Dry Cleaner Version 2.2 HSI Site No. 107764 115 —1. Enter value directly....or Excel 2000 2. Calculate by filling in gray Run Name TYPE OF CHLORINATED SOLVENT: cells. Press Enter, then (C) 5. GENERAL **Ethenes** 0 Ethanes Simulation Time\* 16 (yr) (To restore formulas, hit "Restore Formulas" button) 1. ADVECTION Variable\* → Data used directly in model. Modeled Area Width\* 400 (ft) Seepage Velocity\* Vs 204.9 Modeled Area Length\* 510 (ft) Test if (ft/yr) Natural Attenuation Biotransformation Zone 1 Length\* 510 (ft) Screening Protocol Zone 2= Hydraulic Conductivity K 3.3E-03 Zone 2 Length\* 0 is Occurring (cm/sec) (ft) I - Zone 1 Hydraulic Gradient 0.006 (ft/ft) Vertical Plane Source: Determine Source Well Effective Porosity 6. SOURCE DATA TYPE: Decaying n 0.1 Location and Input Solvent Concentrations 2. DISPERSION Single Planar Source Options Calc. 13.971 (ft) Alpha x\* Alpha x Source Thickness in Sat. Zone\* 13 (ft) (Alpha y) / (Alpha x)\* 0.1 (-) (Alpha z) / (Alpha x)\* 1.E-99 (-) Y1 3. ADSORPTION Width\* (ft) 10 Retardation Factor\* ks\* Conc. (mg/L)\* C1 (1/yr) PCE Soil Bulk Density, rho 1.5 (kg/L) 5.2 0.183 FractionOrganicCarbon, foc TCE 0.183 View of Plume Looking Down 1.5E-3 (-) DCE 0.183 Partition Coefficient Koc PCF VC 0.183/ Observed Centerline Conc. at Monitoring Wells 95 (L/kg) 3.07 TCE (L/kg) 0.183 61 2.33 ETH DCE 40 (L/kg) 1.87 VC 30 1.65 7. FIELD DATA FOR COMPARISON (L/kg) **ETH** 302 (L/kg) 7.59 PCE Conc. (mg/L) .253 .008 Common R (used in model)\* = 2.33 TCE Conc. (mg/L) .007 .002 4. BIOTRANSFORMATION -1st Order Decay Coefficient\* DCE Conc. (mg/L) .076 .002 VC Conc. (mg/L) Zone 1 $\lambda$ (1/yr) half-life (yrs) Yield PCE → TCE ETH Conc. (mg/L) 1.195 0.58 0.79 255 TCE → DCE 0.000 0.74 Distance from Source (ft) 0 DCE → VC $\leftarrow$ Date Data Collected 0.000 0.64 2012 8. CHOOSE TYPE OF OUTPUT TO SEE: VC → ETH 0.000 0.45 Zone 2 $\lambda$ (1/yr) half-life (yrs) Help Restore RESET PCE → TCE 0.000 λ TCE → DCE HELP **RUN CENTERLINE RUN ARRAY** 0.000 $\leftarrow$ DCE -> VC 0.000 SEE OUTPUT Paste VC → ETH 0.000

FIGURE D-8: CALIBRATION - 16 YEAR CENTERLINE DATA

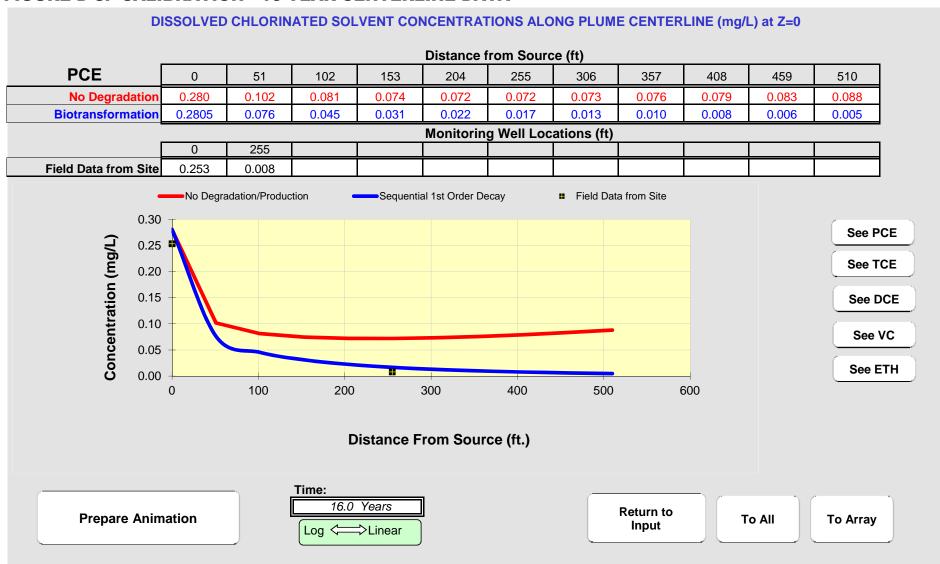
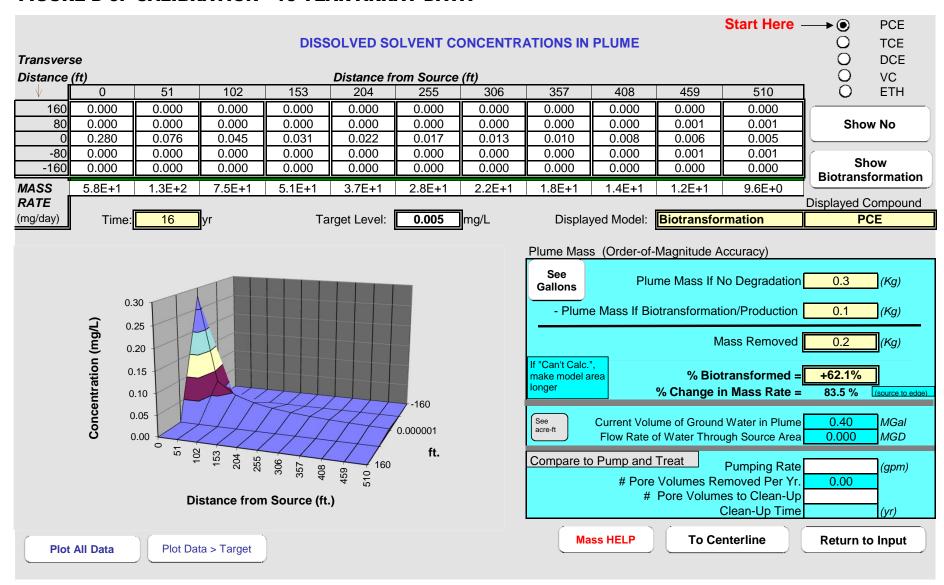




FIGURE D-9: CALIBRATION - 16 YEAR ARRAY DATA



#### FIGURE D-10: CALIBRATION - 1, YEAR INPUT DATA

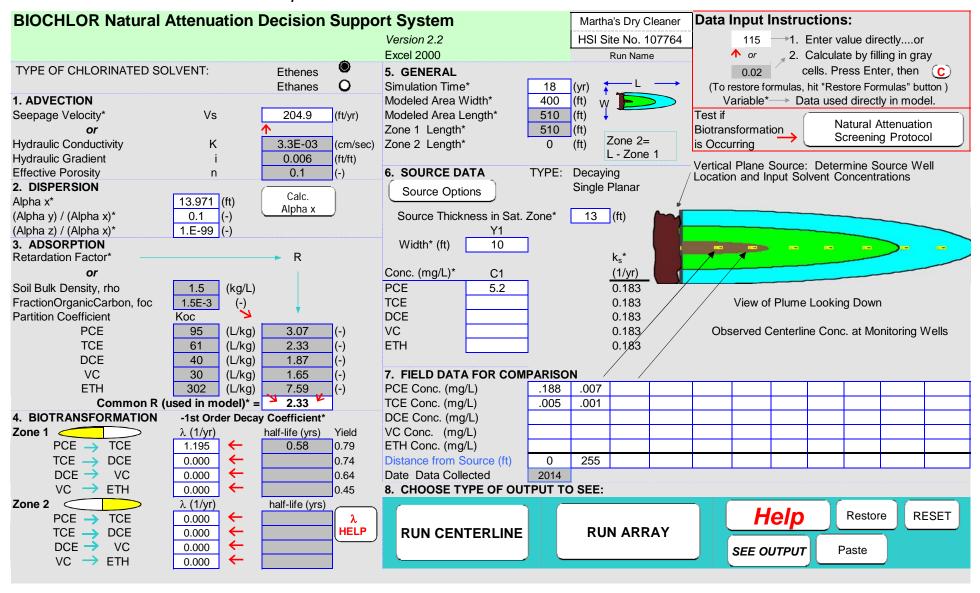



FIGURE D-11: CALIBRATION - 18 YEAR CENTERLINE DATA

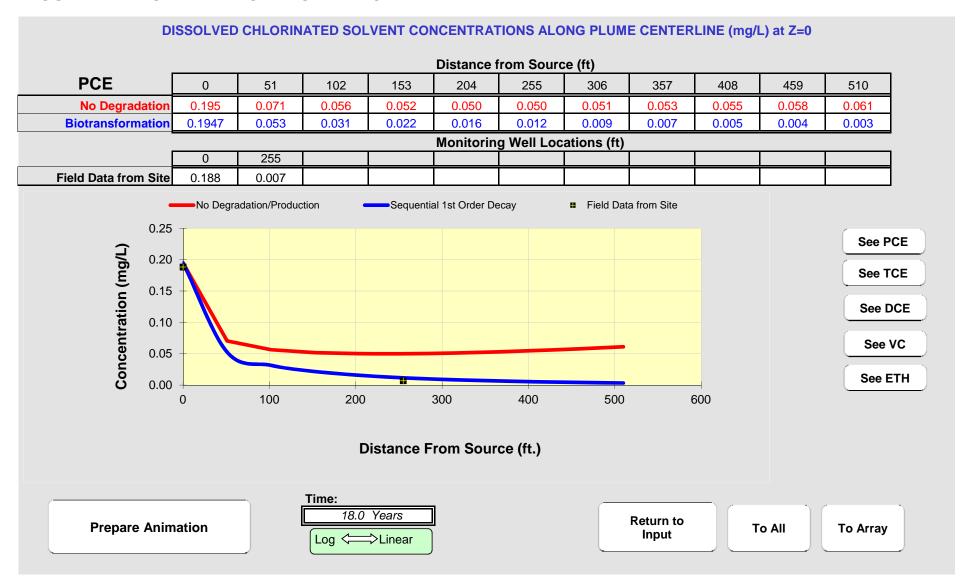
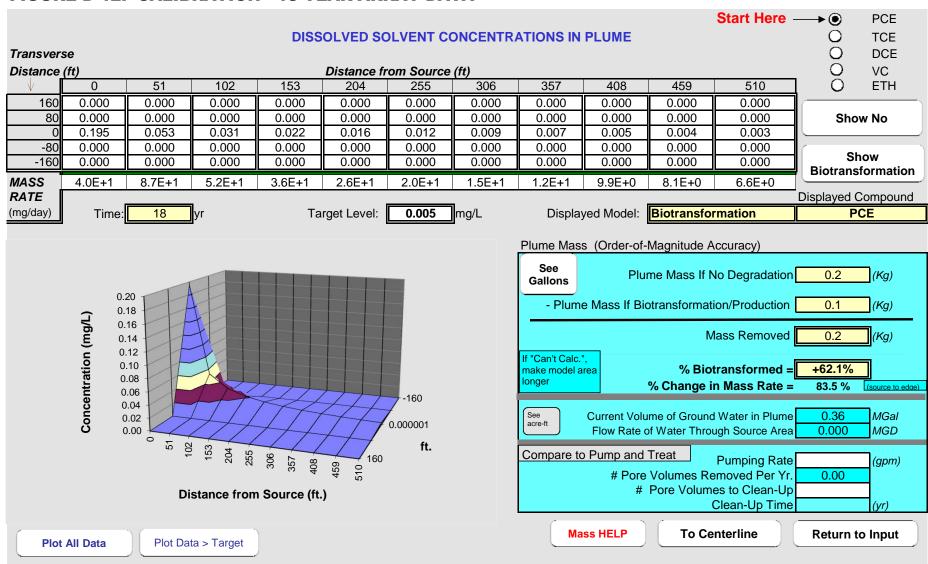




FIGURE D-12: CALIBRATION - 18 YEAR ARRAY DATA



#### FIGURE D-13: CALIBRATION - 19 YEAR INPUT DATA

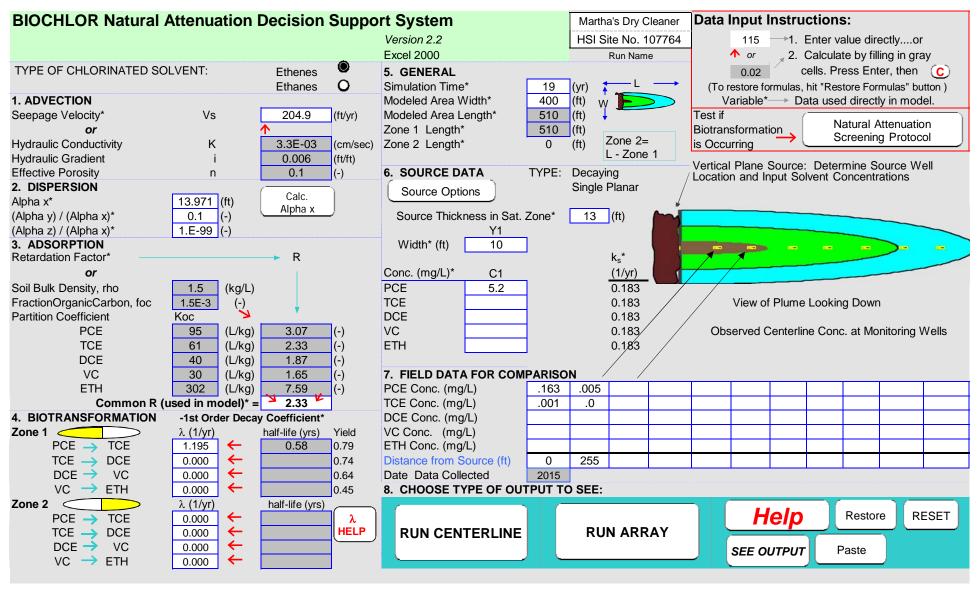



FIGURE D-14: CALIBRATION - 19 YEAR CENTERLINE DATA

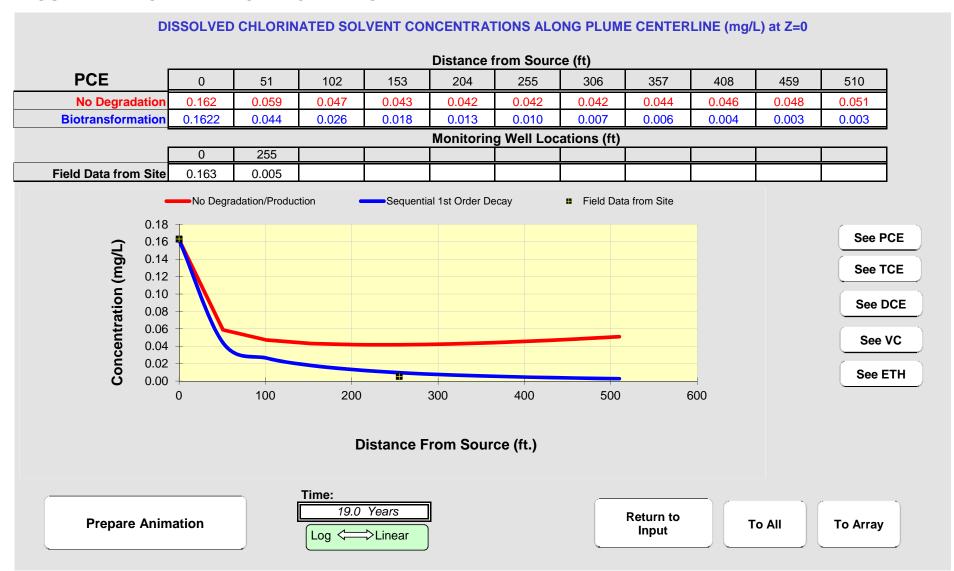
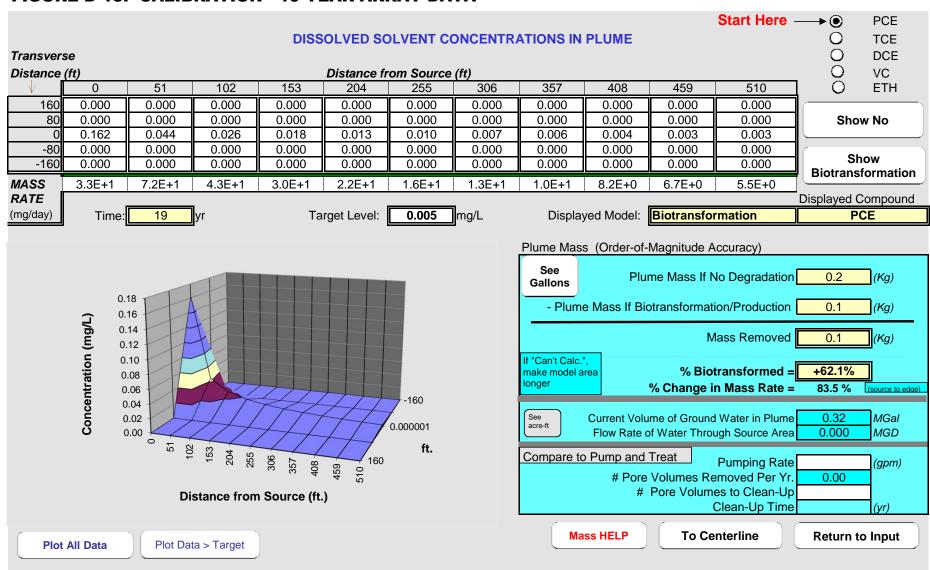




FIGURE D-15: CALIBRATION - 19 YEAR ARRAY DATA



# **APPENDIX E**

BIOCHLOR MODEL DATA – SENSITIVITY ANALYSIS

FIGURE E-1: SENSITIVITY ANALYSIS - 2X HALF-LIFE INPUT DATA

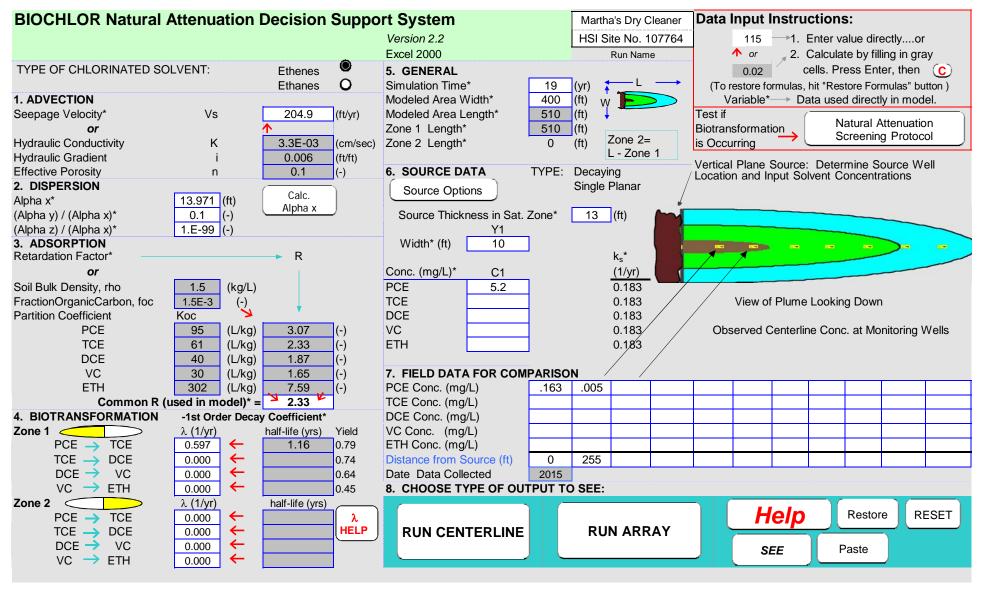



FIGURE E-2: SENSITIVITY ANALYSIS - 2X HALF-LIFE CENTERLINE DATA

# DISSOLVED CHLORINATED SOLVENT CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0

### **Distance from Source (ft) PCE** 60 120 180 240 300 360 420 480 540 600 **No Degradation** 0.159 0.054 0.044 0.041 0.041 0.041 0.043 0.045 0.048 0.052 0.056 **Biotransformation** 0.1591 0.046 0.031 0.024 0.020 0.017 0.015 0.013 0.012 0.010 0.009 **Monitoring Well Locations (ft)** 255

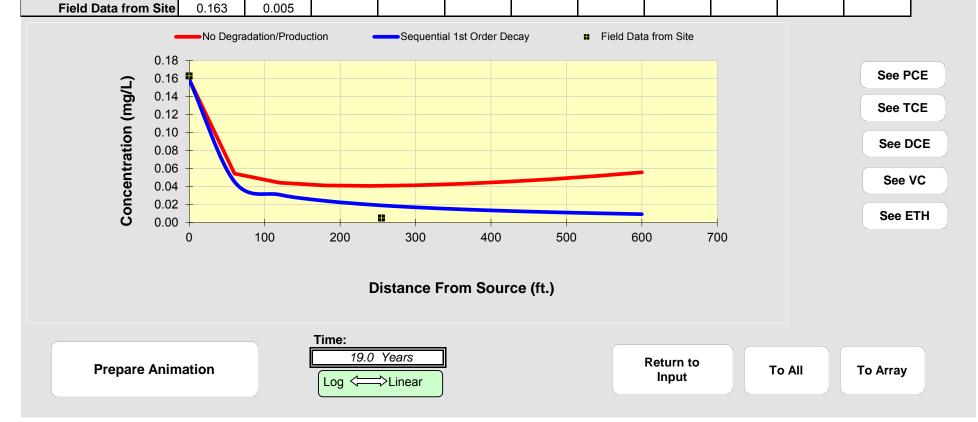



FIGURE E-3: SENSITIVITY ANALYSIS - 5X HALF-LIFE INPUT DATA

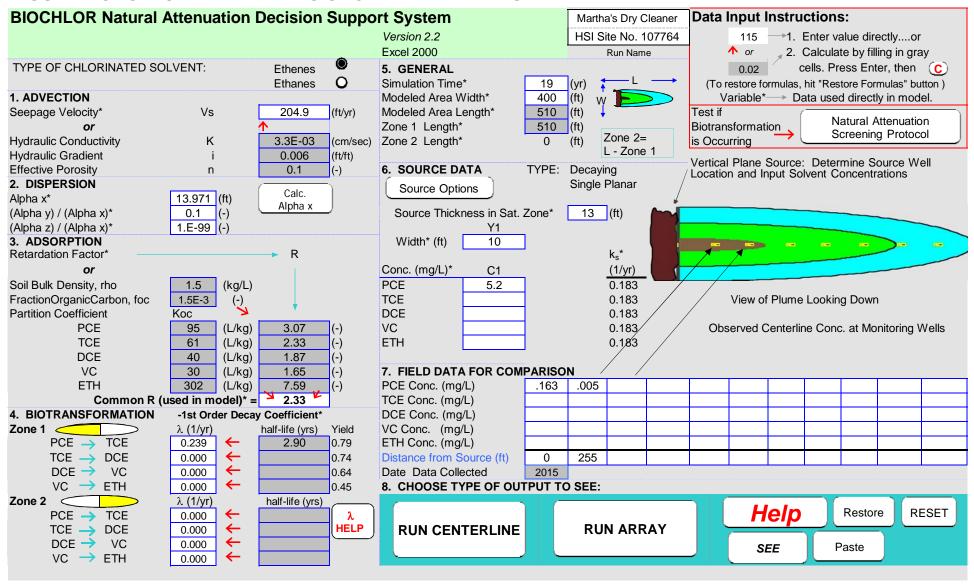



FIGURE E-4: SENSITIVITY ANALYSIS - 5X HALF-LIFE CENTERLINE DATA

### DISSOLVED CHLORINATED SOLVENT CONCENTRATIONS ALONG PLUME CENTERLINE (mg/L) at Z=0 **Distance from Source (ft) PCE** 0 60 120 180 240 300 360 420 480 540 600 **No Degradation** 0.159 0.054 0.044 0.041 0.041 0.041 0.043 0.045 0.048 0.052 0.056 0.029 **Biotransformation** 0.1591 0.051 0.038 0.033 0.030 0.028 0.027 0.027 0.027 0.027 **Monitoring Well Locations (ft)** 255 Field Data from Site 0.163 0.005 No Degradation/Production Sequential 1st Order Decay Field Data from Site 0.18 See PCE 0.16 Concentration (mg/L) 0.14 See TCE 0.12 0.10 See DCE 0.08 0.06 See VC 0.04 0.02 See ETH 0.00 400 500 300 0 100 200 600 700 **Distance From Source (ft.)** Time: 19.0 Years Return to **Prepare Animation** To Array To All Input Log ⇐⇒Linear

FIGURE E-5: SENSITIVITY ANALYSIS - 0.5X RETARDATION FACTOR INPUT DATA

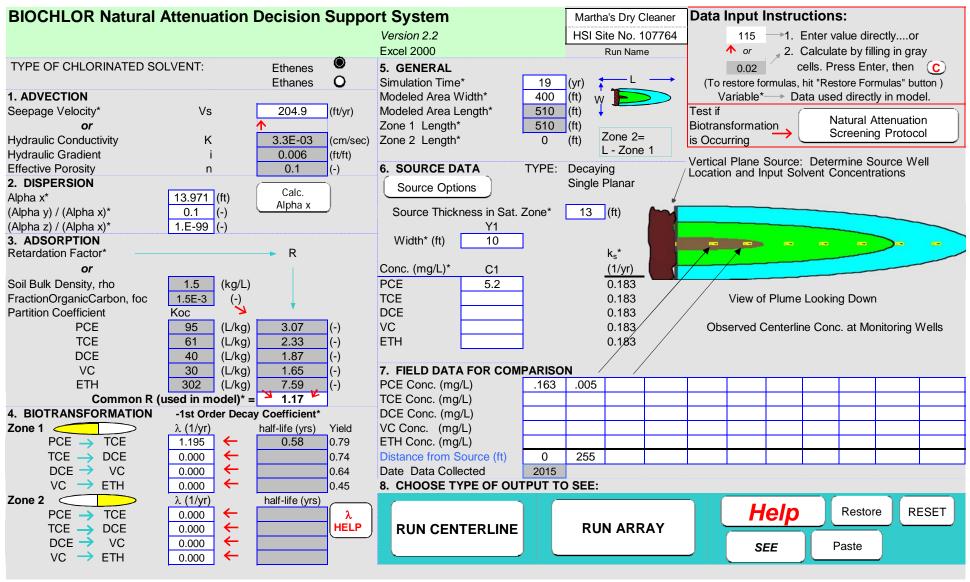



FIGURE E-6: SENSITIVITY ANALYSIS - 0.5X RETARDATION FACTOR CENTERLINE DATA

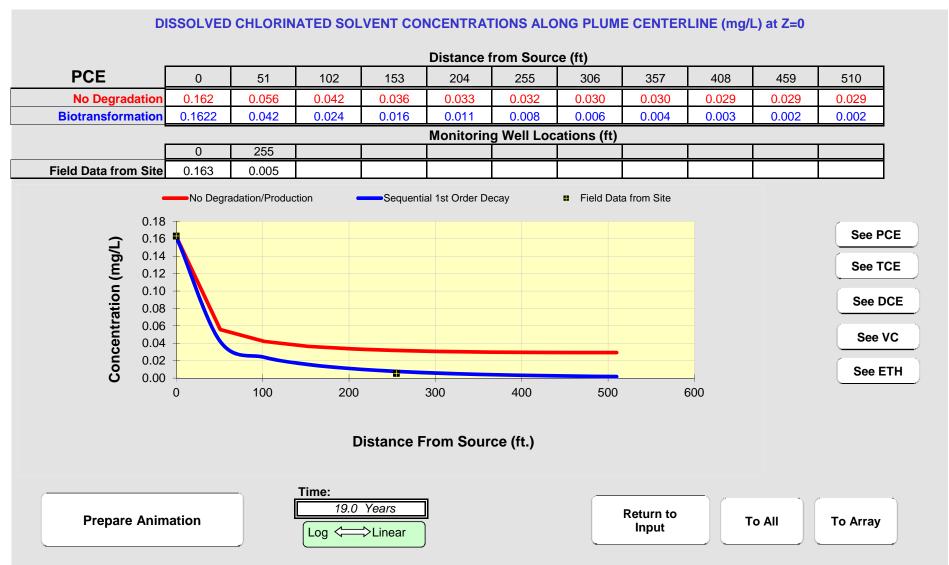



FIGURE E-7: SENSITIVITY ANALYSIS - 2X RETARDATION FACTOR INPUT DATA

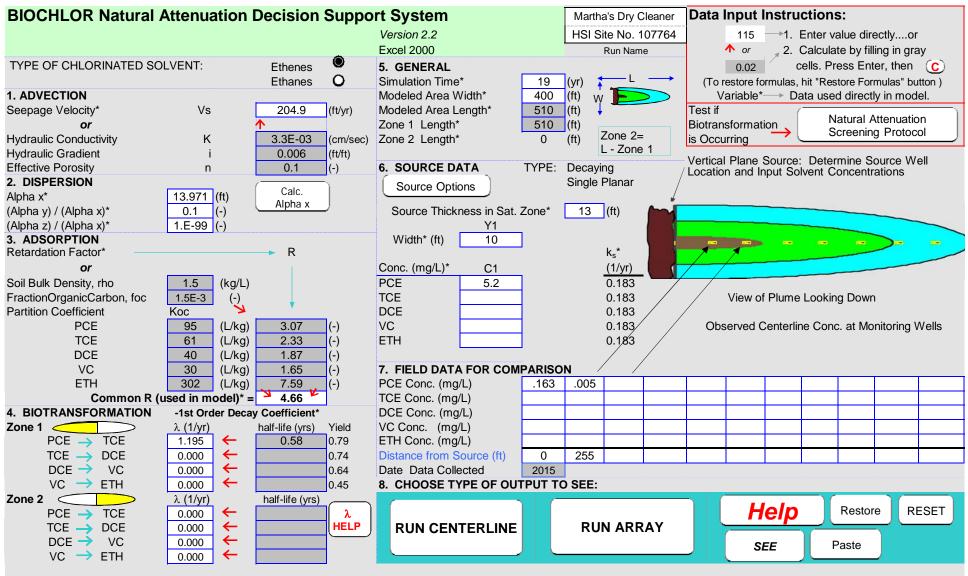
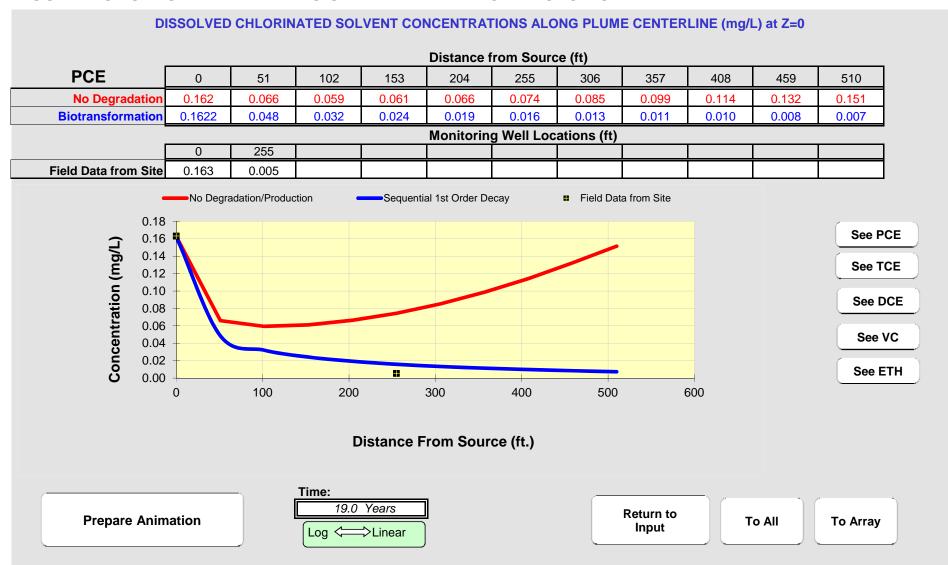




FIGURE E-8: SENSITIVITY ANALYSIS - 2X RETARDATION FACTOR CENTERLINE DATA



# APPENDIX F BIOCHLOR MODEL DATA – PROJECTED CONCENTRATIONS

FIGURE F-1: 20 YEAR MODEL SIMULATION INPUT DATA

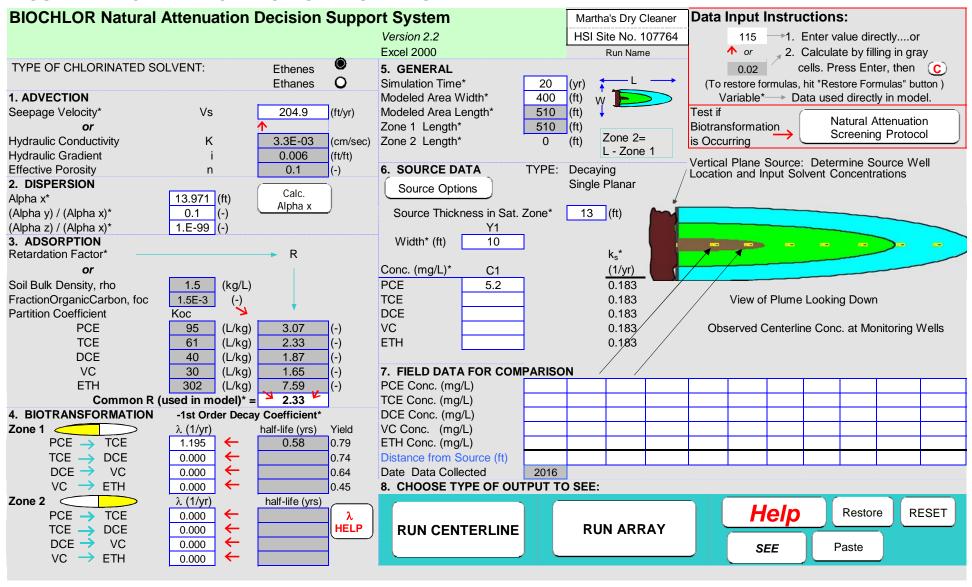



FIGURE F-2: 20 YEAR MODEL CENTERLINE DATA

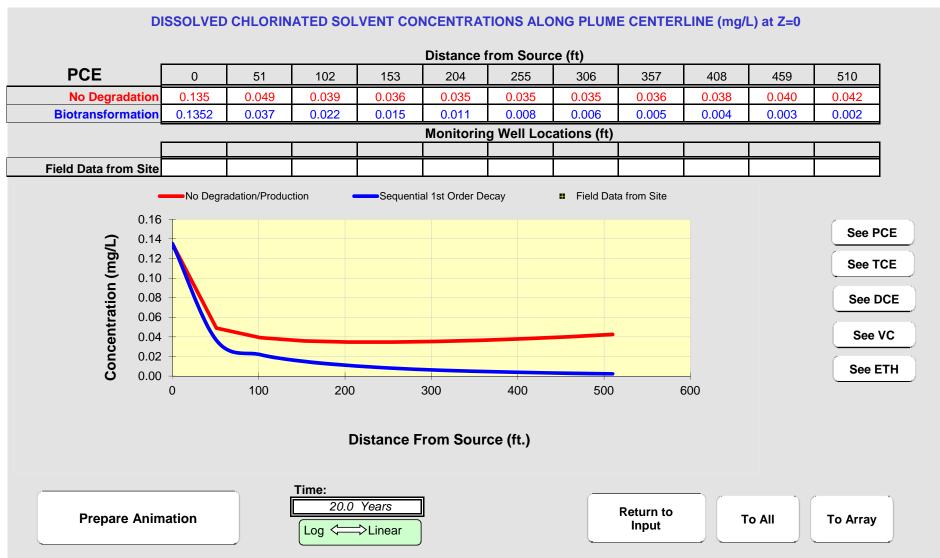



FIGURE F-3: 20 YEAR ARRAY DATA

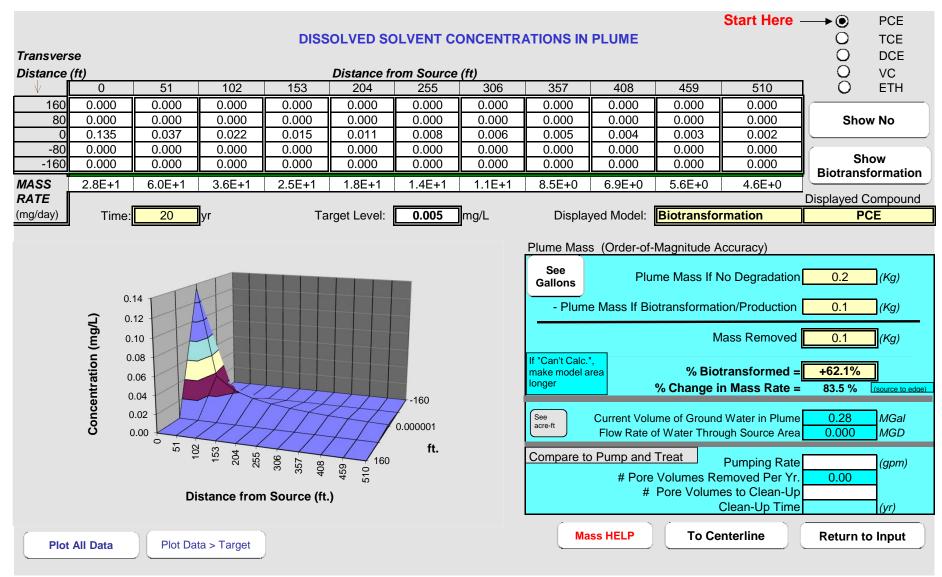



FIGURE F-4: 25 YEAR SIMULATION INPUT DATA

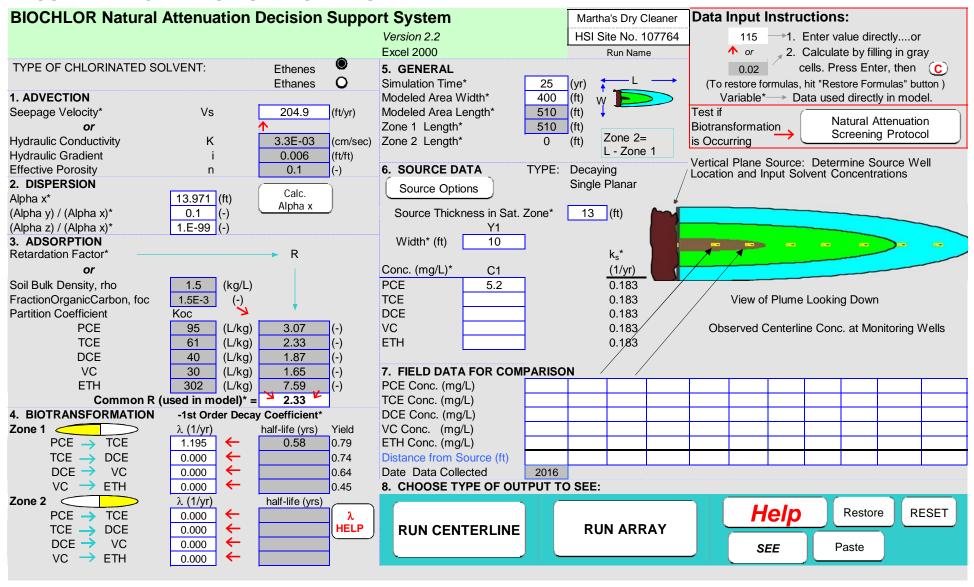



FIGURE F-5: 25 YEAR SIMULATION CENTERLINE DATA

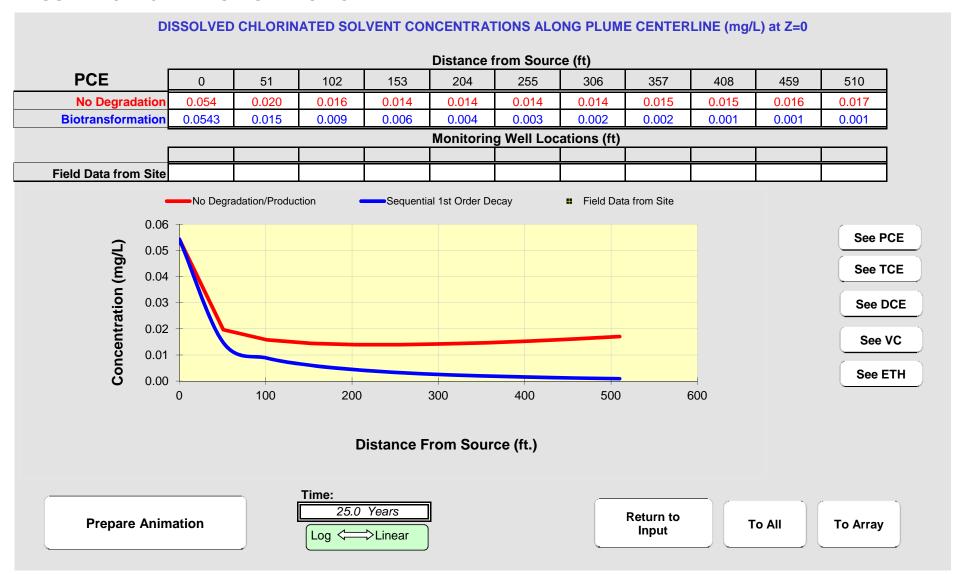



FIGURE F-6: 25 YEAR SIMULATION ARRAY DATA

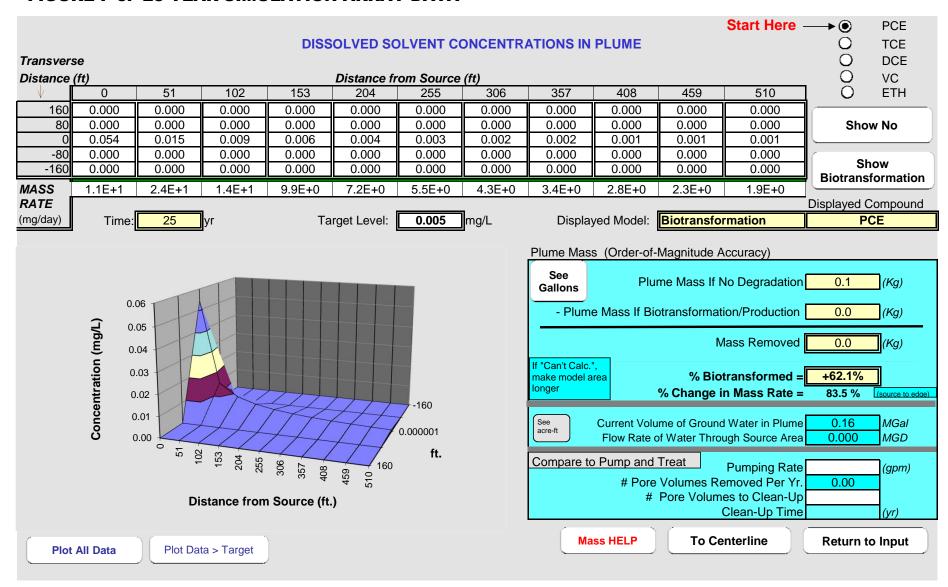



FIGURE F-7: 30 YEAR SIMULATION INPUT DATA

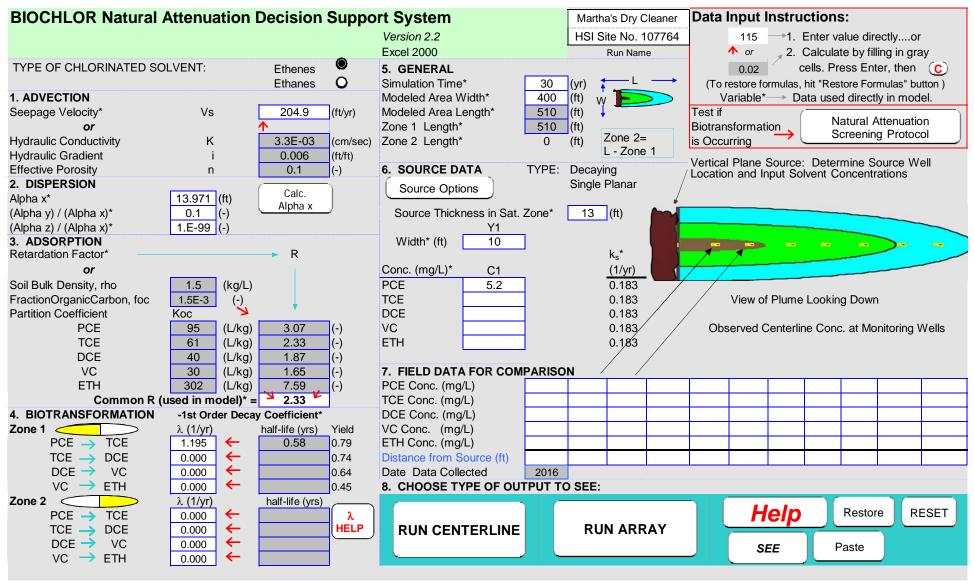



FIGURE F-8: 30 YEAR SIMULATION CENTERLINE DATA

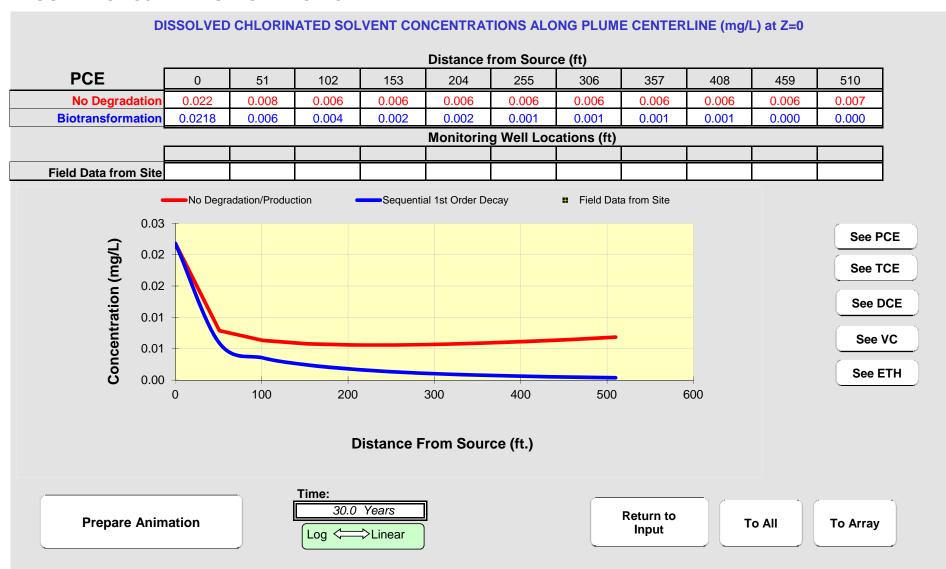
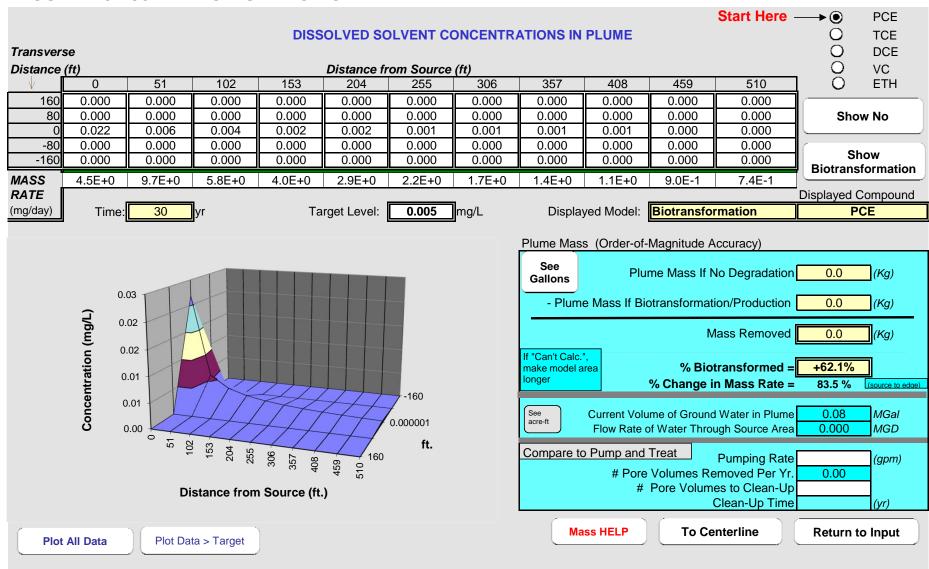




FIGURE F-9: 30 YEAR SIMULATION CENTERLINE DATA



### FIGURE F-10: 35 YEAR SIMULATION INPUT DATA

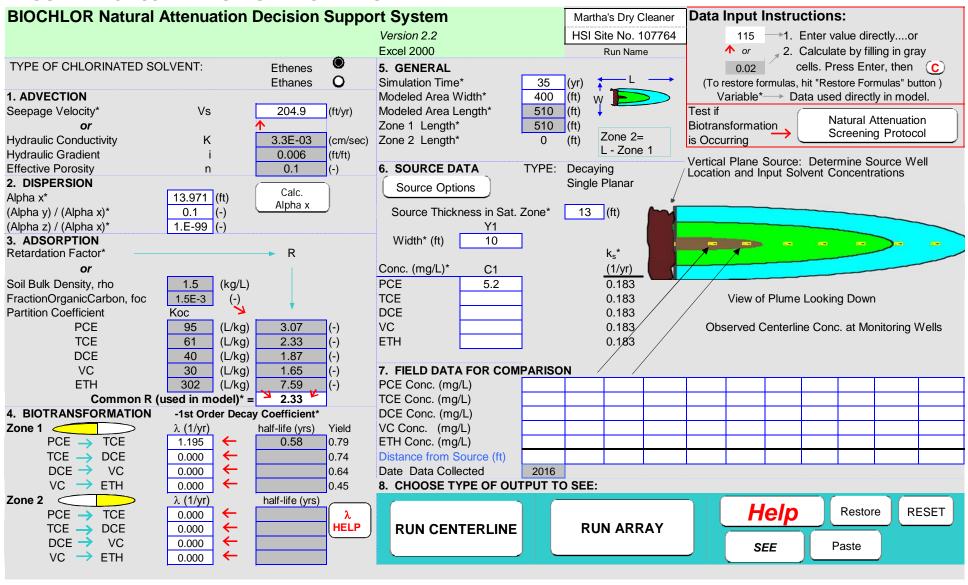



FIGURE F-11: 35 YEAR SIMULATION CENTERLINE DATA




FIGURE F-12: 35 YEAR SIMULATION ARRAY DATA

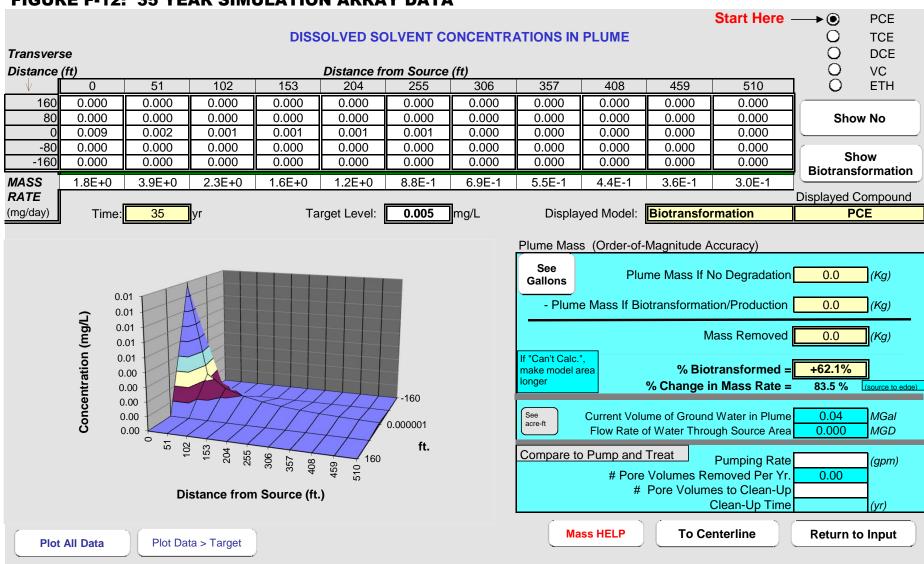



FIGURE F-13: 40 YEAR SIMULATION INPUT DATA

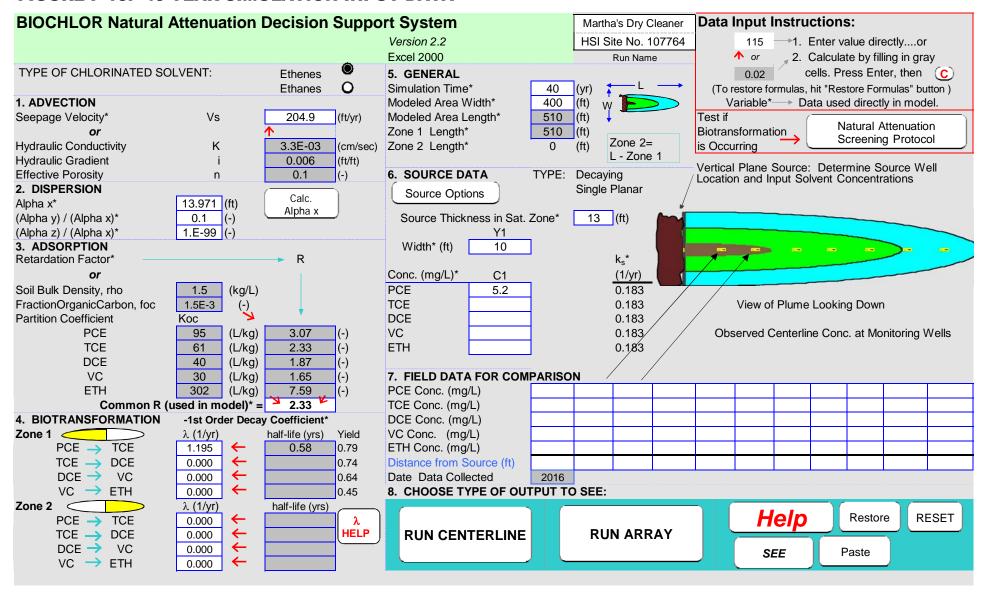



FIGURE F-14: 40 YEAR SIMULATION CENTERLINE DATA

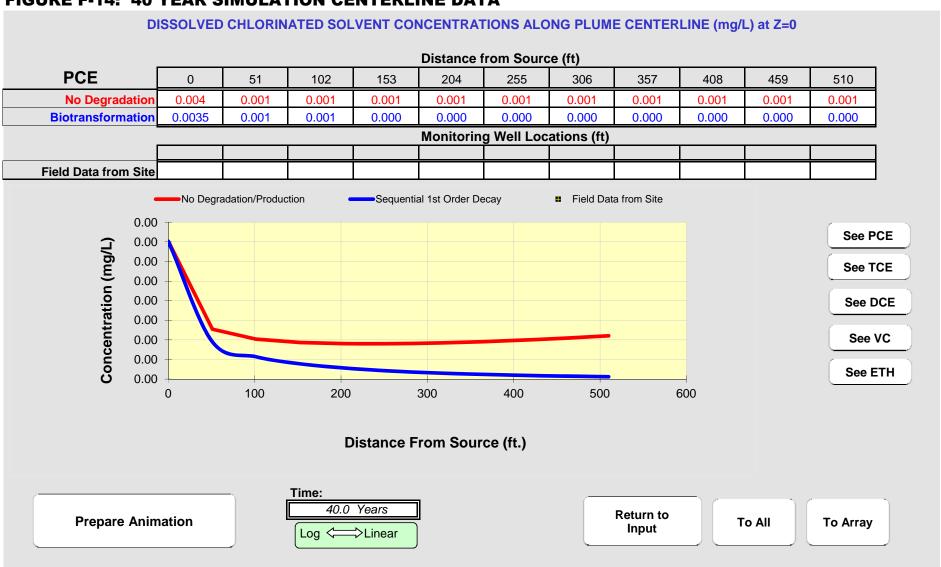
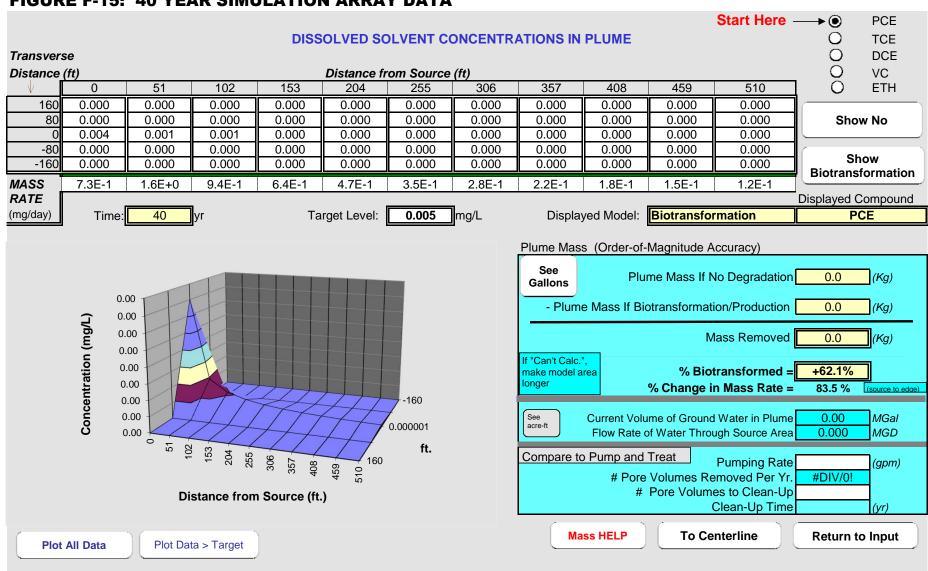




FIGURE F-15: 40 YEAR SIMULATION ARRAY DATA



# **APPENDIX G**

BIOCHLOR NATURAL ATTENUATION SCREENING PROTOCOL WORKSHEET

# **Natural Attenuation Screening Protocol**

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

| Interpretation                                                            | Score    |
|---------------------------------------------------------------------------|----------|
| Inadequate evidence for anaerobic biodegradation* of chlorinated organics | 0 to 5   |
| Limited evidence for anaerobic biodegradation* of chlorinated organics    | 6 to 14  |
| Adequate evidence for anaerobic biodegradation* of chlorinated organics   | 15 to 20 |
| Strong evidence for anaerobic biodegradation* of chlorinated organics     | >20      |

12 Score:

Scroll to End of Table

|                                           |                     | Strong evidence for anaerobic biodegradation of chilomhated organics                                                                                                    | >20 | SCIOII to LII | J UI Table        |
|-------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|-------------------|
| Concentration i Analysis Most Contam. Zon |                     | * reductive dechlorination                                                                                                                                              | Yes | No            | Points<br>Awarded |
| Oxygen*                                   | <0.5 mg/L           | Tolerated, suppresses the reductive pathway at higher concentrations                                                                                                    | 0   | •             | 0                 |
|                                           | > 5mg/L             | Not tolerated; however, VC may be oxidized aerobically                                                                                                                  | 0   | 0             |                   |
| Nitrate*                                  | <1 mg/L             | At higher concentrations may compete with reductive pathway                                                                                                             | •   | 0             | 2                 |
| Iron II*                                  | >1 mg/L             | Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions                                                                                        | 0   | •             | 0                 |
| Sulfate*                                  | <20 mg/L            | At higher concentrations may compete with reductive pathway                                                                                                             | 0   | •             | 0                 |
| Sulfide*                                  | >1 mg/L             | Reductive pathway possible                                                                                                                                              | 0   | •             | 0                 |
| Methane*                                  | >0.5 mg/L           | Ultimate reductive daughter product, VC Accumulates                                                                                                                     | •   | 0             | 3                 |
| Oxidation<br>Reduction                    | <50 millivolts (mV) | Reductive pathway possible                                                                                                                                              | •   | 0             | 1                 |
| Potential* (ORP)                          | <-100mV             | Reductive pathway likely                                                                                                                                                | 0   | •             | 0                 |
| рН*                                       | 5 < pH < 9          | Optimal range for reductive pathway                                                                                                                                     | •   | 0             | 0                 |
| TOC                                       | >20 mg/L            | Carbon and energy source; drives dechlorination; can be natural or anthropogenic                                                                                        | 0   | •             | 0                 |
| Temperature*                              | >20°C               | At T >20°C biochemical process is accelerated                                                                                                                           | 0   | •             | 0                 |
| Carbon Dioxide                            | >2x background      | Ultimate oxidative daughter product                                                                                                                                     | 0   | •             | 0                 |
| Alkalinity                                | >2x background      | Results from interaction of carbon dioxide with aquifer minerals                                                                                                        | 0   | •             | 0                 |
| Chloride*                                 | >2x background      | Daughter product of organic chlorine                                                                                                                                    | •   | 0             | 2                 |
| Hydrogen                                  | >1 nM               | Reductive pathway possible, VC may accumulate                                                                                                                           | 0   | •             | 0                 |
| Volatile Fatty Acids                      | >0.1 mg/L           | Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source                                                                             | 0   | •             | 0                 |
| BTEX*                                     | >0.1 mg/L           | Carbon and energy source; drives dechlorination                                                                                                                         | 0   | •             | 0                 |
| PCE*                                      |                     | Material released                                                                                                                                                       | •   | 0             | 0                 |
| TCE*                                      |                     | Daughter product of PCE a/                                                                                                                                              | •   | 0             | 2                 |
| DCE*                                      |                     | Daughter product of TCE.  If cis is greater than 80% of total DCE it is likely a daughter product of TCE <sup>al</sup> ; 1,1-DCE can be a chem. reaction product of TCA | •   | 0             | 2                 |
| VC*                                       |                     | Daughter product of DCE <sup>a/</sup>                                                                                                                                   | 0   | •             | 0                 |
| 1,1,1-<br>Trichloroethane*                |                     | Material released                                                                                                                                                       | 0   | •             | 0                 |
| DCA                                       |                     | Daughter product of TCA under reducing conditions                                                                                                                       | 0   | •             | 0                 |
| Carbon<br>Tetrachloride                   |                     | Material released                                                                                                                                                       | 0   | •             | 0                 |
| Chloroethane*                             |                     | Daughter product of DCA or VC under reducing conditions                                                                                                                 | 0   | •             | 0                 |
| Ethene/Ethane                             | >0.01 mg/L          | Daughter product of VC/ethene                                                                                                                                           | 0   | •             | 0                 |
|                                           | >0.1 mg/L           | Daughter product of VC/ethene                                                                                                                                           | 0   | •             | 0                 |
| Chloroform                                |                     | Daughter product of Carbon Tetrachloride                                                                                                                                | 0   | •             | 0                 |
| Dichloromethane                           |                     | Daughter product of Chloroform                                                                                                                                          | 0   | •             | 0                 |

(i.e., not a constituent of the source NAPL).

<sup>\*</sup> required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

# **APPENDIX H**

INVOICES, HOURS WORKED, AND COST ESTIMATE

## Compliance Status Report Cost Estimate Voluntary Investigation and Remediation Plan Former Martha's Dry Cleaners Savannah, Georgia Terracon Project No. ES117125

| Item                                                         | Unit | Unit Rate | Quantity                 | Cost       | Subtotal   |  |  |  |  |  |
|--------------------------------------------------------------|------|-----------|--------------------------|------------|------------|--|--|--|--|--|
| TASK: Preparation of Compliance Status Report                |      |           |                          |            |            |  |  |  |  |  |
| Professional Services (Compliance Status Report Preparation) |      |           |                          |            |            |  |  |  |  |  |
| Senior Registered Engineer                                   | hour | \$125.00  | 2                        | \$250.00   |            |  |  |  |  |  |
| CADD Technician                                              | hour | \$65.00   | 1                        | \$65.00    |            |  |  |  |  |  |
| Project Engineer                                             | hour | \$95.00   | 12                       | \$1,140.00 |            |  |  |  |  |  |
| Administrative Personnel                                     | hour | \$45.00   | 1                        | \$45.00    |            |  |  |  |  |  |
|                                                              |      |           | _                        | Subtotal   | \$1,500.00 |  |  |  |  |  |
|                                                              |      | (         | Compliance Status Report |            |            |  |  |  |  |  |