

Suite 550 Atlanta, Georgia 30338

(404) 315-9113 Telephone (404) 315-8509 Fax

February 12, 2016

Nicole Vermillion Response and Remediation Program 2 Martin Luther King, Jr. Drive, S.E. Suite 1052, East Tower Atlanta, GA 30334

Re: VRP Compliance Status Report

TLC Cleaners

2060 Lower Roswell Road Marietta, GA 30068

Dear Ms. Vermillion:

Enclosed is a Compliance Status Report Addendum for the above-referenced property with respect to vapor mitigation system operation and corresponding soil gas and indoor air sampling. This confirms that the operation of the sub-slab depressurization system is protective of indoor air quality while post-remediation PCE soil concentrations, which are already below both residential and non-residential soil Risk Reduction Standards as per the November 2015 Compliance Status Report, continue to reduce through the operation of this system. IPTV-B-C14, LLC as the owner of the property is committed to the continued operation of this system until subsequent air monitoring demonstrates that such operation is no longer necessary to maintain indoor air quality results below the guidance-based Non-Residential Target Indoor Air Concentration.

Justin Vickery, P.G.

(678) 336-8538 Direct Line

jvickery@envplanning.com

Associate

In light of the Voluntary Remediation Program Act compliance documented by the November 2015 CSR, we request that you issue a letter concurring with such compliance as soon as possible.

Sincerely.

Justin Vickery Associate

Attachment: VRP Compliance Status Report Addendum

cc: Dewayne Bailey, IPTV-B-C14, LLC

Prepared for:

IPTV-B-C14, LLC 8401 North Central Expressway, Suite 910 Dallas, TX 75225

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT ADDENDUM TLC Cleaners 2060 Lower Roswell Road Marietta, GA 30068

Prepared by:

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338 Tel: 404-315-9113

February 2016

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT ADDENDUM

TLC CLEANERS 2060 LOWER ROSWELL ROAD MARIETTA, GA 30068

Prepared For:

IPTV-B-C14, LLC

8401 North Central Expressway, Suite 910 Dallas, TX 75225

Prepared By:

EPS

1050 Crown Pointe Parkway, Suite 550 Atlanta, GA 30338 Tel: 404-315-9113

Justin Vickery, P.G.

February 2016

VOLUNTARY REMEDIATION PROGRAM COMPLIANCE STATUS REPORT ADDENDUM TLC Cleaners Marietta, Georgia

February 2016

TABLE OF CONTENTS

1	INTRO	ODUCTION	1
	1.1	Summary	1
	1.2	Background	1
2	VAPO	OR INTRUSION ASSESSMENT	2
	2.1	Sampling Description	2
		2.1.1 Overview	2
		2.1.2 December 2015 Field Investigation	2
		2.1.3 January 2016 Field Investigation	
	2.2	Sampling Results	
		2.2.1 Overview	3
		2.2.2 December 2015 Sampling Results	3
		2.2.3 January 2016 Sampling Results	4
3	Cond	CLUSIONS	5
4	REFE	RENCES	6

LIST OF FIGURES

Figure 1 Site Location Ma

- Figure 2 Site Plan Facility Layout
- Figure 3 Indoor Air and Soil Gas Sampling Locations

LIST OF TABLES

- Table 1 Summary of Indoor and Ambient Air Analytical Results
- Table 2 Summary of Soil Gas Analytical Results

LIST OF APPENDICES

Appendix A Laboratory Analytical Reports

DCN: TLC0000004 i February 2016

VOLUNTARY REMEDIATION PROGRAM VAPOR INTRUSION MITIGATION PROGRESS ANALYSIS TLC Cleaners Marietta, Georgia

GROUNDWATER SCIENTIST STATEMENT

I certify that I am a qualified ground water scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering, and have sufficient training and experience in ground water hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by me or by a subordinate working under my direction.

	The same of the sa	
	THE D. VICA	
	310000000000000000000000000000000000000	
55	000	
A	1 0/3	1
P S	1 // 136	4
A GEORGIA	No. 1745	
100	188	7
67	No. 1745 Je & &	3
1000	000000000000000000000000000000000000000	
39	Hollman Horas	
-	17	_
linetin !	X/10VOTU D (2	

Certified by:

Associate No. 1745

Date: 2-12-16

1 Introduction

1.1 Summary

This Voluntary Remediation Program (VRP) Compliance Status Report Addendum (CSR Addendum) is being submitted on behalf of IPTV-B-C14, LLC (IPTV) to document sub-slab soil gas and indoor air sampling activities conducted at the former TLC Cleaners (the Site). The former dry cleaning tenant space (the Facility) is the western-most tenant space located in the New Market Center shopping center, Cobb County Parcel ID 16124400330, which is located at 2060 Lower Roswell Road in Marietta, Georgia and is 4.805 acres. A Site Location Map is included as Figure 1 (all figures are included in the Figures attachment), and Figure 2 is a Site Plan showing the layout of the Facility.

1.2 Background

The Site was undeveloped until 1973 when construction of the current building was initiated and has been used as a shopping center since development. The shopping center is currently occupied by a restaurant, a grocer, a physical fitness facility, and a church. The Facility and the adjacent tenant space are currently vacant. The Facility had been occupied by a dry cleaning business from as early as 1989 until vacated in early 2015.

As shown on Figure 2, the former dry cleaning machines and drum storage areas were located toward the front of the Facility near a floor drain. The floor drain connected to a drain line which ran to the back of the Facility to a four foot deep sump, or grit trap, where solids could settle, allowing the water to continue to the sanitary sewer line. Based on the soil and groundwater data, the source of the soil and groundwater impact appears to be the dry cleaning operations with the highest soil concentrations at the base of the grit trap.

In August 2015, in accordance with the July 2015 VRP Progress Report, soils exhibiting the highest tetrachloroethene (PCE) concentrations were excavated, and sodium permanganate, as a supplemental remedial agent, was allowed to soak into the base of the excavation. Following this remediation, a sub-slab depressurization system, as described in the November 2015 CSR, was installed at the Facility to address any residual risk associated with potential vapor migration through the slab from any remaining PCE concentrations in the subsurface. The extent of the excavation and the location of the sub-slab depressurization system are shown on Figure 2. The sub-slab depressurization operations were initiated in early September 2015.

DCN: TLC0000004 1 February 2016

2 VAPOR INTRUSION ASSESSMENT

2.1 Sampling Description

2.1.1 Overview

In December 2015 and January 2016, sampling was conducted to assess the vapor intrusion potential of volatile organic compounds (VOCs) migrating from the below the floor slab into the indoor air and the effect of the sub-slab depressurization system thereon. Indoor air, ambient air (outdoor), and sub-slab soil gas sampling was conducted in order to collect multiple lines of evidence as recommended in the EPA vapor intrusion guidance (EPA, 2015).

2.1.2 December 2015 Field Investigation

In December 2015, indoor air, ambient air, and sub-slab soil gas samples were collected at the locations shown on Figure 3 to test VOC concentrations in these media under normal operation of the sub-slab depressurization system. The indoor air sampling was conducted prior to the sub-slab sampling to minimize the potential of sub-slab vapors cross contaminating the indoor air samples (sub-slab sampling requires drilling through the concrete slab). During the sampling event, the back door of the Facility was left open (there was no working HVAC system in the Facility), and the HVAC system was operated in the adjacent tenant space to attempt to simulate conditions during a typical work day.

On December 7, 2015, two indoor air samples (IA-1 through IA-2) and one ambient air sample (IA-3) were collected. Sample IA-1 was collected from inside the Facility, and IA-2 was collected from the adjacent tenant space. Sample IA-3 was collected from outside to the north of the Facility. The samples were collected using laboratory-supplied negatively pressurized 6 liter Summa canisters. The intake for the Summa canisters were placed approximately 3-4 feet above the floor/ground and were restricted by laboratory-supplied regulators that allowed the samples to be composited over an 8 hour period.

On December 8, 2015, four sub-slab soil gas samples (SG-4 through SG-7) were collected immediately beneath the floor slab. SG-4 was collected near the former drum storage area, SB-5 was collected in the central portion of the Facility, SG-6 was collected near the former grit trap, and SG-7 was collected in the adjacent suite (Figure 3). Vapor sampling probes were first installed at these locations by drilling through the concrete slab and into the surficial soil beneath the slab. The probes were then set just below the slab, a sand pack was placed around the probes, and tubing was extended from the probes to just below the surface of the floor. Threaded valves were installed on top of the tubing, and the hole in the slab was sealed. Once the seal cured, a helium leak test was performed for each of the vapor probes to determine the seal integrity. The Interstate Technology & Regulatory Council's Vapor Intrusion Pathway guidelines for collecting representative soil gas samples state that the concentration of helium observed in the soil vapors within an implant during a helium leak test must be less than 10% of the temporary concentrations

generated within a shroud placed over the implant. The leak test results for each of the implants were significantly less than 1%, and therefore, each of the implants passed the leak test. The soil gas samples were collected from the vapor probes using laboratory-supplied negatively pressurized 400 milliliter Summa canisters.

The indoor air, ambient air, and soil gas samples were labeled, logged under standard chain of custody procedures, shipped to H&P Mobile Geochemistry (H&P) in Carlsbad, CA, screened by Method H&P 8260SV, and analyzed by US EPA Compendium Method TO-15.

2.1.3 January 2016 Field Investigation

A second round of sampling was performed in January 2016 following a 30-day intentional shut down of the sub-slab depressurization system to determine the potential indoor air concentrations without the operation of the system. Indoor air, ambient air, and soil gas samples were collected in the same locations as the December 2015 samples. Indoor and ambient air samples were collected on January 8, and soil gas samples were collected on January 11 using the methods described in Section 2.1.2. The samples were shipped to H&P for analysis and first screened by Method H&P 8260SV. Indoor and ambient air samples were then analyzed by EPA Compendium Method TO-15. Screening of the soil gas samples indicated the presence high VOC concentrations, and therefore, further laboratory testing was deemed irrelevant.

2.2 Sampling Results

2.2.1 Overview

Sampling results are summarized in Tables 1 and 2 (included in the Tables Attachment) for indoor/ambient air and soil gas, respectively. PCE results are shown on Figure 3. Laboratory reports, along with H&P's accreditation for Method 8260SV, are included in Appendix A.

2.2.2 December 2015 Sampling Results

During the December 2015 sampling event conducted while the sub-slab depressurization system was operating, PCE was detected in indoor air samples IA-1 (inside Facility) at 30 micrograms per cubic meter ($\mu g/m^3$) and IA-2 (inside adjacent tenant space) at 87 $\mu g/m^3$, which are well below the Non-Residential Target Indoor Air Concentration (TIAC) for both non-carcinogenic and carcinogenic risk (180 $\mu g/m^3$ and 470 $\mu g/m^3$, respectively). Other VOCs were detected in the indoor air samples at concentrations below the TIACs, and several of these constituent detections are similar to the ambient air concentrations, indicating that these constituents were present in the surrounding air and did not migrate through the floor slab into the indoor air.

PCE was detected in ambient air sample IA-3 at $2.2~\mu g/m^3$, which is much lower than the indoor air results, indicating the PCE detections in the indoor air are not likely from an outdoor source. Furthermore, PCE concentrations in sub-slab soil gas samples SB-4 through SG-7 ranged from $190~\mu g/m^3$ to $4{,}000~\mu g/m^3$, indicating that the PCE concentrations in soil gas are likely contributing to the indoor air concentrations. The PCE concentrations in these soil gas samples are below the

Non-Residential Target Sub-Slab Soil Gas Concentration (TSSSGC). The TSSSGC is a threshold established by the EPA for the purposes of calculating potential indoor air concentrations based on standard attenuation factors applied to sub-slab soil gas concentrations.

2.2.3 January 2016 Sampling Results

During the January sampling event conducted after the sub-slab depressurization system was shut down for 30 days, PCE was detected in both indoor air samples IA-1 and IA-2 at $1,100~\mu g/m^3$, which exceeds the Non-Residential TIAC for both non-carcinogenic and carcinogenic risk. Other VOCs were detected in the indoor air samples at concentrations below the TIACs, and several of these constituent detections are similar to the ambient air concentrations, indicating that these constituents were present in the surrounding air and did not migrate through the floor slab into the indoor air.

PCE was detected in ambient air sample IA-3 at $2.2~\mu g/m^3$, which is much lower than the indoor air results, indicating the PCE detections in the indoor air are not likely from an outdoor source. Furthermore, PCE concentrations in sub-slab soil gas samples SB-4 through SG-7 ranged from $10,000~\mu g/m^3$ to $710,000~\mu g/m^3$, indicating that the PCE concentrations in soil gas are likely contributing to the indoor air concentrations. It is also of value to note that the January 2016 sub-slab soil gas PCE concentrations exceeded the TSSSGC. However, the TSSSGC appears to be overly conservative for this Site (for example, a sub-slab soil gas concentration of $710,000~\mu g/m^3$ results in a calculated indoor air concentration of $21,300~\mu g/m^3$, which is nearly 20x higher than the actual indoor air concentrations of $1,100~\mu g/m^3$), and it appears that vapors are migrating through the floor slab to a much lower degree than that assumed by the default attenuation factor established by the EPA (EPA, 2015).

3 CONCLUSIONS

Indoor air, ambient air, and sub-slab soil gas samples were collected while the sub-slab depressurization system was operating and after a system shut down of 30 days to allow the subsurface and the indoor air to equilibrate. The sampling conducted during system operation indicates that the system is effectively preventing indoor air PCE concentrations from exceeding the carcinogenic and non-carcinogenic Non-Residential TIACs. The sampling conducted after the 30-day shut down period indicates that currently, without the use of the system, the indoor air concentrations would exceed the carcinogenic and non-carcinogenic Non-Residential TIACs.

Over time, as the system continues to remove VOCs from the subsurface, the potential indoor air concentrations are expected to decrease, eventually to levels below the TIACs.

4 REFERENCES

EPA, 2015. OSWER Technical Guide for Assessing and Mitigation the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. US Environmental Protection Agency Office of Solid Waste and Emergency Response.

FIGURES

SG-4 (Soil Gas Sampling Location) Dec.- 30 (Month - PCE Concentration µg/m³)

Building Outline

Marietta, GA 30068

TABLES

Table 1
Summary of Indoor and Ambient Air Analytical Results
TLC Cleaners
Marietta, Georgia

		සි 1,2,4-Trimethylbenzene යී	க் த் ஆ ஆ	hg/m ³)	(hg/w _s)	රි ක් Carbon Tetrachloride රූ	m/b/h Сhloroform (_s	கி அ Chloromethane ஆ	ரி அ Dichlorodifluoromethane கூ	ர் தி Ethylbenzene ஆ	ති මූ Methylene Chloride මූ	රි ක් ක් Styrene	ர் த் த ஆ	(µg/m³)	ர் தி Trichlorofluoromethane ஆ	ர் m,p-Xylenes ஆ	(ba) bay o-Xylenes (°c
	ential (NC) TIAC	31	22,000	140,000	130	440	430	390	440	4,400	2,600	4,400	180	22,000	N/A	440	440
	ential (C) TIAC*	N/A	N/A	N/A	16	20	5.3	N/A	N/A	49	12,000	N/A	470	N/A	N/A	N/A	N/A
Sample Location	Sample Date	1471	1471	1471	.0		0.0	1471	1471		12,000	1471		1471	1471	1477	1471
IA-1	12/07/15	1.4	1.3	11	1.4	0.39	BDL	1.1	1.7	0.91	0.53	BDL	30	3.7	1.2	3.3	1.2
	01/08/16	BDL	0.61	3.8	0.38	BDL	BDL	0.91	2.4	BDL	0.44	BDL	1,100	0.90	1.1	BDL	BDL
IA-2	12/07/15 01/08/16	1.6 BDL	0.90 BDL	9.6 4.4	1.7 0.42	0.43 0.32	0.29 BDL	1.0 0.98	2.3 3.0	1.3 BDL	0.84 0.51	0.90 BDL	87 1,100	5.1 BDL	2.2 2.1	4.6 BDL	1.6 BDL
IA-3	12/07/15	1.3	0.92	9.0	1.4	0.43	BDL	1.0	1.7	1.0	0.51	BDL	2.2	4.3	1.2	3.8	1.3 BDL
(ambient)	01/08/16	BDL	BDL	3.4	0.93	BDL	BDL	0.80	1.5	BDL	BDL	BDL	0.83	2.2	1.0	1.1	

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

TIAC = Target Indoor Air Concentration

NC = Non-Carcinogenic

C = Carcinogenic

* = Non-Residential Cancer Target Risk of 10⁻⁵

= Exceeds Non-Residential TIAC

Table 2
Summary of Soil Gas Analytical Results
TLC Cleaners
Marietta, Georgia

			රි 3 3 3 3 3	රි 3 3 3 3 3	රි දූ 3 දූ	க் Jacetone ஆ	(Б) Вenzene Э	ට් වූ Dichlorodifluoromethane දූ	රි S Ethylbenzene ෙ	င်္က နှ နွ	(mg/m ³)	(hg/m,p-Xylenes (m,p-Xylenes	(mg/m) o-Xylenes
	Non-Resid	ential TSSSGC*	1,000	N/A	N/A	4,500,000	520	15,000	1,600	5,800	730,000	15,000	15,000
Sample	Sample	Sample Depth											
Location	Date	(ft-bgs)											
SG-4	12/08/15	0.5	14	BDL	BDL	50	17	91	15	4,000	BDL	52	20
	01/11/16	0.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	26,000	BDL	BDL	BDL
SG-5	12/08/15	0.5	7.6	BDL	BDL	32	BDL	97	BDL	190	BDL	BDL	BDL
	01/11/16	0.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	10,000	BDL	BDL	BDL
SG-6	12/08/15	0.5	BDL	BDL	BDL	33	BDL	14	BDL	1,100	BDL	BDL	BDL
	01/11/16	0.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	460,000	BDL	BDL	BDL
SG-7	12/08/15	0.5	18	5.5	15	69	12	BDL	18	680	85	83	38
	01/11/16	0.5	BDL	BDL	BDL	BDL	BDL	BDL	BDL	710,000	BDL	BDL	BDL

Notes:

ft-bgs = feet below the ground surface

 μ g/m³ = micrograms per cubic meter

TSSSGC = Target Sub-Slab Soil Gas Concentration

* = Non-Residential Cancer Target Risk of 10⁻⁵

= Exceeds non-residential TSSSGC

APPENDIX A Laboratory Analytical Reports

Mr. Justin Vickery EPS, Inc. 1050 Crown Pointe Parkway, Suite 550 Atlanta, GA 30338

H&P Project: MC121615-13

Client Project: TLC Cleaners / Marietta, GA

Dear Mr. Justin Vickery:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 16-Dec-15 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- · Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- · Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

Janis Villarreal

H&P Mobile Geochemistry, Inc. is certified under the California ELAP, the National Environmental Laboratory Accreditation Conference (NELAC) and the Department of Defense Accreditation Programs.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
15341-IA-1	E512096-01	Vapor	07-Dec-15	16-Dec-15
15341-IA-2	E512096-02	Vapor	07-Dec-15	16-Dec-15
15341-IA-3	E512096-03	Vapor	07-Dec-15	16-Dec-15
15342-SG-4	E512096-04	Vapor	08-Dec-15	16-Dec-15
15342-SG-5	E512096-05	Vapor	08-Dec-15	16-Dec-15
15342-SG-6	E512096-06	Vapor	08-Dec-15	16-Dec-15
15342-SG-7	E512096-07	Vapor	08-Dec-15	16-Dec-15

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

DETECTIONS SUMMARY

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	1.7	1.0	ug/m3	EPA TO-15	
Chloromethane	1.1	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15	
Acetone	11	1.2	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.53	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	1.3	0.60	ug/m3	EPA TO-15	
Benzene	1.4	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.39	0.32	ug/m3	EPA TO-15	
Toluene	3.7	0.76	ug/m3	EPA TO-15	
Tetrachloroethene	30	0.69	ug/m3	EPA TO-15	
Ethylbenzene	0.91	0.44	ug/m3	EPA TO-15	
m,p-Xylene	3.3	0.44	ug/m3	EPA TO-15	
o-Xylene	1.2	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	1.4	0.50	ug/m3	EPA TO-15	
le ID: 15341-IA-2	Laboratory ID: E51	2096-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	2.3	1.0	ug/m3	EPA TO-15	
Chloromethane	1.0	0.21	ug/m3	EPA TO-15	
		0.21			
Trichlorofluoromethane (F11)	2.2	0.56	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11) Acetone	2.2 9.6		ug/m3 ug/m3	EPA TO-15 EPA TO-15	
· · ·		0.56	· ·		
Acetone	9.6	0.56 1.2	ug/m3	EPA TO-15	
Acetone Methylene chloride (Dichloromethane)	9.6 0.84	0.56 1.2 0.35	ug/m3 ug/m3	EPA TO-15 EPA TO-15	
Acetone Methylene chloride (Dichloromethane) 2-Butanone (MEK)	9.6 0.84 0.90	0.56 1.2 0.35 0.60	ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15	
Acetone Methylene chloride (Dichloromethane) 2-Butanone (MEK) Chloroform	9.6 0.84 0.90 0.29	0.56 1.2 0.35 0.60 0.25	ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15	
Acetone Methylene chloride (Dichloromethane) 2-Butanone (MEK) Chloroform Benzene	9.6 0.84 0.90 0.29 1.7	0.56 1.2 0.35 0.60 0.25 0.16	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15	
Acetone Methylene chloride (Dichloromethane) 2-Butanone (MEK) Chloroform Benzene Carbon tetrachloride	9.6 0.84 0.90 0.29 1.7 0.43	0.56 1.2 0.35 0.60 0.25 0.16	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15 EPA TO-15	
Acetone Methylene chloride (Dichloromethane) 2-Butanone (MEK) Chloroform Benzene Carbon tetrachloride Toluene	9.6 0.84 0.90 0.29 1.7 0.43	0.56 1.2 0.35 0.60 0.25 0.16 0.32 0.76	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15	
Acetone Methylene chloride (Dichloromethane) 2-Butanone (MEK) Chloroform Benzene Carbon tetrachloride Toluene Tetrachloroethene	9.6 0.84 0.90 0.29 1.7 0.43 5.1	0.56 1.2 0.35 0.60 0.25 0.16 0.32 0.76 0.69	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15	
Acetone Methylene chloride (Dichloromethane) 2-Butanone (MEK) Chloroform Benzene Carbon tetrachloride Toluene Tetrachloroethene Ethylbenzene	9.6 0.84 0.90 0.29 1.7 0.43 5.1 87	0.56 1.2 0.35 0.60 0.25 0.16 0.32 0.76 0.69 0.44	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	EPA TO-15	
Acetone Methylene chloride (Dichloromethane) 2-Butanone (MEK) Chloroform Benzene Carbon tetrachloride Toluene Tetrachloroethene Ethylbenzene m,p-Xylene	9.6 0.84 0.90 0.29 1.7 0.43 5.1 87 1.3	0.56 1.2 0.35 0.60 0.25 0.16 0.32 0.76 0.69 0.44	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13
1050 Crown Pointe Parkway, Suite 550 Project Number: TLC Cleaners / Marietta, GA Reported:
Atlanta, GA 30338 Project Manager: Mr. Justin Vickery 29-Dec-15 10:49

Sample ID: 15341-IA-3	Laboratory ID:	E512096-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	1.7	1.0	ug/m3	EPA TO-15	
Chloromethane	1.0	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.2	0.56	ug/m3	EPA TO-15	
Acetone	9.0	1.2	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.51	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	0.92	0.60	ug/m3	EPA TO-15	
Benzene	1.4	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.43	0.32	ug/m3	EPA TO-15	
Toluene	4.3	0.76	ug/m3	EPA TO-15	
Tetrachloroethene	2.2	0.69	ug/m3	EPA TO-15	
Ethylbenzene	1.0	0.44	ug/m3	EPA TO-15	
m,p-Xylene	3.8	0.44	ug/m3	EPA TO-15	
o-Xylene	1.3	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	1.3	0.50	ug/m3	EPA TO-15	
ample ID: 15342-SG-4	Laboratory ID:	E512096-04			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	91	10	ug/m3	EPA TO-15	
Acetone	50	48	ug/m3	EPA TO-15	
Benzene	17	6.5	ug/m3	EPA TO-15	
Toluene	23	7.6	ug/m3	EPA TO-15	
Tetrachloroethene	4000	14	ug/m3	EPA TO-15	
Ethylbenzene	15	8.8	ug/m3	EPA TO-15	
m,p-Xylene	52	18	ug/m3	EPA TO-15	
o-Xylene	20	8.8	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	14	10	ug/m3	EPA TO-15	
sample ID: 15342-SG-5	Laboratory ID:	E512096-05			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	97	5.0	ug/m3	EPA TO-15	
Acetone	32	24	ug/m3	EPA TO-15	
Tetrachloroethene	190	6.9	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	7.6	5.0	ug/m3	EPA TO-15	
Sample ID: 15342-SG-6	Laboratory ID:	E512096-06			
		Reporting			
Analyte	Result		Units	Method	Notes

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13
1050 Crown Pointe Parkway, Suite 550 Project Number: TLC Cleaners / Marietta, GA Reported:
Atlanta, GA 30338 Project Manager: Mr. Justin Vickery 29-Dec-15 10:49

ample ID: 15342-SG-6	Laboratory ID: E5	12096-06			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	14	5.0	ug/m3	EPA TO-15	
Acetone	33	24	ug/m3	EPA TO-15	
Toluene	6.0	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	1100	6.9	ug/m3	EPA TO-15	
tample ID: 15342-8G-7	Laboratory ID: E5	12096-07			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Acetone	69	24	ug/m3	EPA TO-15	
Benzene	12	3.2	ug/m3	EPA TO-15	
Toluene	85	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	680	6.9	ug/m3	EPA TO-15	
Ethylbenzene	18	4.4	ug/m3	EPA TO-15	
m,p-Xylene	83	8.8	ug/m3	EPA TO-15	
o-Xylene	38	4.4	ug/m3	EPA TO-15	
4-Ethyltoluene	15	5.0	ug/m3	EPA TO-15	
1,3,5-Trimethylbenzene	5.5	5.0	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	18	5.0	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

H&P Mobile Geochemistry Inc.

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

				iemistry,					
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15341-IA-1 (E512096-01) Vapor Sampled: 07-D	ec-15 Receive	d: 16-Dec-15							
Dichlorodifluoromethane (F12)	1.7	1.0	ug/m3	1	EL52109	20-Dec-15	21-Dec-15	EPA TO-15	
Chloromethane	1.1	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
Acetone	11	1.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.53	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	1.3	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	1.4	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.39	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	3.7	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	0.86	"	"	"	"	"	"	
Tetrachloroethene	30	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.91	0.44	"	"	"	"	"	"	
m,p-Xylene	3.3	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

H&P Mobile Geochemistry Inc.

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

Analyte	R	esult	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15341-IA-1 (E512096-01) Vapor	Sampled: 07-Dec-15	Receive	ed: 16-Dec-15							
o-Xylene		1.2	0.44	ug/m3	1	EL52109	20-Dec-15	21-Dec-15	EPA TO-15	
Bromoform		ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene		ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		1.4	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene		ND	2.7	"	n .	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			97.2 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8			95.9 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene			101 %	77-1		"	"	"	"	
15341-IA-2 (E512096-02) Vapor	Sampled: 07-Dec-15	Receive	ed: 16-Dec-15							
`										
Dichlorodifluoromethane (F12)		2.3	1.0	ug/m3	1	EL52109	20-Dec-15	21-Dec-15	EPA TO-15	
				ug/m3	1	EL52109	20-Dec-15	21-Dec-15	EPA TO-15	
Dichlorodifluoromethane (F12)		2.3	1.0							
Dichlorodifluoromethane (F12) Chloromethane		2.3 1.0	1.0 0.21	"	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114)		2.3 1.0 ND	1.0 0.21 0.71	"	"	"	"	"	" "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride		2.3 1.0 ND ND	1.0 0.21 0.71 0.13	"	"	" "	" "	"	" "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane		2.3 1.0 ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27	"	"	" "	" "	"	" "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane		2.3 1.0 ND ND ND ND ND ND	1.0 0.21 0.71 0.13 0.39	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)		2.3 1.0 ND ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone		2.3 1.0 ND ND ND ND ND 2.2 9.6	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113))	2.3 1.0 ND ND ND ND ND 2.2 9.6 ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	.) ane) O	2.3 1.0 ND ND ND ND ND 2.2 9.6 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40		" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichlorometh	o) nane) O	2.3 1.0 ND ND ND ND 2.2 9.6 ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35			11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " "			
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113 Methylene chloride (Dichloromethane) Carbon disulfide	o) nane) O	2.3 1.0 ND ND ND ND 2.2 9.6 ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77			11 11 11 11 11 11 11 11 11 11 11 11 11				
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113 Methylene chloride (Dichlorometh) Carbon disulfide trans-1,2-Dichloroethene	·) ane) O	2.3 1.0 ND ND ND ND 2.2 9.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41			11 11 11 11 11 11 11 11 11 11 11 11 11				
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	o) ane) O	2.3 1.0 ND ND ND ND 2.2 9.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41			11 11 11 11 11 11 11 11 11 11 11 11 11				
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	o) ane) O	2.3 1.0 ND ND ND ND 2.2 9.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40							
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	.) (ane) 0 0	2.3 1.0 ND ND ND ND 2.2 9.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25							
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	o) nane) O O	2.3 1.0 ND ND ND ND 2.2 9.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55							
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	o) nane) O O	2.3 1.0 ND ND ND ND 2.2 9.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

				Dil di	, me.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15341-IA-2 (E512096-02) Vapor	Sampled: 07-Dec-15 Receive	ed: 16-Dec-15							
Trichloroethene	ND	0.55	ug/m3	1	EL52109	20-Dec-15	21-Dec-15	EPA TO-15	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	5.1	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	0.86	"	"	"	"	"	"	
Tetrachloroethene	87	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	1.3	0.44	"	"	"	"	"	"	
m,p-Xylene	4.6	0.44	"	"	"	"	"	"	
Styrene	0.90	0.43	"	"	"	"	"	"	
o-Xylene	1.6	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.6	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.1 %	76	i-134	"	"	"	"	
Surrogate: Toluene-d8		96.8 %		2-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %		7-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

H&P Mobile Geochemistry Inc.

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15341-IA-3 (E512096-03) Vapor Sampled: 07-	Dec-15 Receive	ed: 16-Dec-15							
Dichlorodifluoromethane (F12)	1.7	1.0	ug/m3	1	EL52109	20-Dec-15	21-Dec-15	EPA TO-15	
Chloromethane	1.0	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.2	0.56	"	"	"	"	"	"	
Acetone	9.0	1.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.51	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	0.92	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	1.4	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.43	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	4.3	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	0.86	"	"	"	"	"	"	
Tetrachloroethene	2.2	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	1.0	0.44	"	"	"	"	"	"	
m,p-Xylene	3.8	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15341-IA-3 (E512096-03) Vapor Samp	ed: 07-Dec-15 Receive	d: 16-Dec-15							
o-Xylene	1.3	0.44	ug/m3	1	EL52109	20-Dec-15	21-Dec-15	EPA TO-15	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.3	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.7 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8		95.8 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	77-1		"	"	"	"	
				27					
	led: 08-Dec-15 Receive				EL 50010	22 D 15	22 D 15	ED. 70.15	
Dichlorodifluoromethane (F12)	91	10	ug/m3	2	EL52213	22-Dec-15	22-Dec-15	EPA TO-15	
Dichlorodifluoromethane (F12) Chloromethane	91 ND	10 4.1	ug/m3	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114)	91 ND ND	10 4.1 14	ug/m3	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	91 ND ND ND	10 4.1 14 5.2	ug/m3	" "	" "	" "	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	91 ND ND ND ND	10 4.1 14 5.2 32	ug/m3	"	" "	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	91 ND ND ND ND ND	10 4.1 14 5.2 32 16	ug/m3	" " "	" "	" " " "	" " " " " " " " " " " " " " " " " " " "	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	91 ND ND ND ND ND	10 4.1 14 5.2 32 16 11	ug/m3	" " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone	91 ND ND ND ND ND ND	10 4.1 14 5.2 32 16 11 48	ug/m3	" " "	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	91 ND ND ND ND ND ND	10 4.1 14 5.2 32 16 11 48 8.0	ug/m3	" " " " "	" " " " " " " " "	" " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	91 ND ND ND ND ND ND 50 ND	10 4.1 14 5.2 32 16 11 48 8.0	ug/m3	" " " " "	" " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	" " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	91 ND ND ND ND ND ND ND ND ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1	ug/m3	" " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " "			
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	91 ND ND ND ND ND ND ND ND ND ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1	ug/m3 " " " " " " " " " "	" " " " "	" " " " " " " " " " " " " "		" " " " " " " " " " " " " " " " " " " "	" " " " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	91 ND ND ND ND ND ND ND ND ND ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1 13	ug/m3 " " " " " " " " " " "						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	91 ND ND ND ND ND ND ND ND ND ND ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1 13 16 8.2	ug/m3 " " " " " " " " " " " "						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	91 ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1 13 16 8.2 60	ug/m3 " " " " " " " " " " " "						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	91 ND ND ND ND ND ND ND ND ND ND ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1 13 16 8.2	ug/m3 " " " " " " " " " " " " "						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	91 ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1 13 16 8.2 60 8.0 9.9	ug/m3 " " " " " " " " " " " "						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	91 ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1 13 16 8.2 60 8.0 9.9 11	ug/m3 " " " " " " " " " " " " "						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	91 ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1 13 16 8.2 60 8.0 9.9 11 8.2	ug/m3 " " " " " " " " " " " " " " "						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	91 ND	10 4.1 14 5.2 32 16 11 48 8.0 15 7.1 13 16 8.2 60 8.0 9.9 11	ug/m3						

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15342-SG-4 (E512096-04) Vapor	Sampled: 08-Dec-15 Receiv	ed: 16-Dec-1	5						
Trichloroethene	ND	11	ug/m3	2	EL52213	22-Dec-15	22-Dec-15	EPA TO-15	
1,2-Dichloropropane	ND	19	"	"	"	"	"	"	
Bromodichloromethane	ND	14	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.2	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	17	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	9.2	"	"	"	"	"	"	
Toluene	23	7.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	17	"	"	"	"	"	"	
Dibromochloromethane	ND	17	"	"	"	"	"	"	
Tetrachloroethene	4000	14	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	16	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	14	"	"	"	"	"	"	
Chlorobenzene	ND	9.4	"	"	"	"	"	"	
Ethylbenzene	15	8.8	"	"	"	"	"	"	
m,p-Xylene	52	18	"	"	"	"	"	"	
Styrene	ND	8.6	"	"	"	"	"	"	
o-Xylene	20	8.8	"	"	"	"	"	"	
Bromoform	ND	21	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	14	"	"	"	"	"	"	
4-Ethyltoluene	ND	10	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	10	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	14	10	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	75	"	"	"	"	"	"	
Hexachlorobutadiene	ND	110	"	"	"	"	н	"	
Surrogate: 1,2-Dichloroethane-d4		115 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		104 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.9 %		127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15342-SG-5 (E512096-05) Vapor Sampled: 08	R-Dec-15 Receiv					•			
Dichlorodifluoromethane (F12)	97	5.0	ug/m3	1	EL52213	22-Dec-15	22-Dec-15	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	32	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	ND	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	190	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
~,,	140	₹.0							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15342-SG-5 (E512096-05) Vapor Sampl	led: 08-Dec-15 Receive	d: 16-Dec-15	5						
o-Xylene	ND	4.4	ug/m3	1	EL52213	22-Dec-15	22-Dec-15	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	7.6	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		116 %	76-1	34	"	"	"	"	
Surrogate: Toluene-d8		99.9 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.0 %	77-1		"	"	"	"	
15342-SG-6 (E512096-06) Vapor Sampl	led: 08-Dec-15 Receive	d: 16-Dec-15	5						
15342-SG-6 (E512096-06) Vapor Sampl Dichlorodifluoromethane (F12)	led: 08-Dec-15 Receive	d: 16-Dec-15	ug/m3	1	EL52213	22-Dec-15	22-Dec-15	EPA TO-15	
				1 "	EL52213	22-Dec-15	22-Dec-15	EPA TO-15	
Dichlorodifluoromethane (F12)	14	5.0	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane	14 ND	5.0 2.1	ug/m3	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114)	14 ND ND	5.0 2.1 7.1	ug/m3	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	14 ND ND ND	5.0 2.1 7.1 2.6	ug/m3	"	" "	" "	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	14 ND ND ND ND	5.0 2.1 7.1 2.6 16	ug/m3	"	" "	" "	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	14 ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0	ug/m3	"	" " "	" " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	14 ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6	ug/m3	"	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone	14 ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24	ug/m3	"	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	14 ND ND ND ND ND ND 33 ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7	ug/m3	"	0 0 10 10 10 10	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	14 ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5	ug/m3	"	0 0 0 0 0	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	14 ND ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3	ug/m3		0 0 0 0 0 0	11 11 11 11 11 11			
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	14 ND ND ND ND ND ND ND ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	14 ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	14 ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	14 ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	14 ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	14 ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0	ug/m3						
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	14 ND	5.0 2.1 7.1 2.6 16 8.0 5.6 24 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5	ug/m3						

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15342-SG-6 (E512096-06) Vapor	Sampled: 08-Dec-15 Receive		5						
Trichloroethene	ND	5.5	ug/m3	1	EL52213	22-Dec-15	22-Dec-15	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	6.0	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	1100	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		114 %		-134	"	"	"	"	
Surrogate: Toluene-d8		99.6 %		-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		78.9 %	77-	-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15342-SG-7 (E512096-07) Vapor Sampled: 0	8-Dec-15 Receiv								
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EL52213	22-Dec-15	22-Dec-15	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	69	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	12	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	85	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	680	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	18	4.4	"	"	"	"	"	"	
m,p-Xylene	83	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
15342-SG-7 (E512096-07) Vapor	Sampled: 08-Dec-15 Receiv								
o-Xylene	38	4.4	ug/m3	1	EL52213	22-Dec-15	22-Dec-15	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	15	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	5.5	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	18	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		116 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.3 %	77-	127	"	"	"	"	

Analyte

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

Limit

Notes

EPS, Inc. Project: MC121615-13

Result

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Reporting

Limit

Volatile Organic Compounds by EPA TO-15 - Quality Control

H&P Mobile Geochemistry, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Blank (EL52109-BLK1)				Prepared: 20-Dec-15 Analyzed: 21
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	
Chloromethane	ND	0.21	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	
Vinyl chloride	ND	0.13	"	
Bromomethane	ND	0.39	"	
Chloroethane	ND	0.27	"	
Trichlorofluoromethane (F11)	ND	0.56	"	
Acetone	ND	1.2	"	
1,1-Dichloroethene	ND	0.40	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	
Carbon disulfide	ND	0.32	"	
rans-1,2-Dichloroethene	ND	0.40	"	
1,1-Dichloroethane	ND	0.41	"	
2-Butanone (MEK)	ND	0.60	"	
cis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.25	"	
,1,1-Trichloroethane	ND	0.55	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	
Benzene	ND	0.16	"	
Carbon tetrachloride	ND	0.32	"	
Trichloroethene	ND	0.55	"	
1,2-Dichloropropane	ND	0.47	"	
Bromodichloromethane	ND	0.68	"	
cis-1,3-Dichloropropene	ND	0.46	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	
trans-1,3-Dichloropropene	ND	0.46	"	
Toluene	ND	0.76	"	
1,1,2-Trichloroethane	ND	0.55	"	
2-Hexanone (MBK)	ND	0.83	"	
Dibromochloromethane	ND	0.86	"	
Tetrachloroethene	ND	0.69	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery29-Dec-15 10:49

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL52109 - TO-15	result	Zmit		20.01	1100011	,,,,,,	2		2,1111	1.000
				Drangrad: 1	00 Dec 15 /	Analyzed: 2	1 Dec 15			
Blank (EL52109-BLK1)	ND	0.47	/ 2	ricpareu: 2	LU-DEC-13 F	maiyzeu. 2	1-000-13			
Chlorobenzene	ND	0.47	ug/m3							
Ethylbenzene	ND	0.44	,,							
m,p-Xylene	ND	0.44	.,							
Styrene	ND	0.43	.,							
o-Xylene	ND	0.44								
Bromoform	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	0.70	"							
4-Ethyltoluene	ND	0.50	"							
1,3,5-Trimethylbenzene	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	"							
1,3-Dichlorobenzene	ND	0.61	"							
1,4-Dichlorobenzene	ND	0.61	"							
1,2-Dichlorobenzene	ND	0.61	"							
1,2,4-Trichlorobenzene	ND	1.9	"							
Hexachlorobutadiene	ND	2.7	"							
Surrogate: 1,2-Dichloroethane-d4	41.9		"	42.9		97.7	76-134			
Surrogate: Toluene-d8	37.8		"	41.4		91.2	78-125			
Surrogate: 4-Bromofluorobenzene	70.8		"	72.9		97.1	77-127			
LCS (EL52109-BS1)				Prepared &	. Analyzed	20-Dec-15				
Dichlorodifluoromethane (F12)	21	1.0	ug/m3	20.2		106	70-130			
Vinyl chloride	9.4	0.13	"	10.4		90.7	70-130			
Chloroethane	9.4	0.13	"	10.7		87.7	70-130			
Trichlorofluoromethane (F11)	9. 4 25	0.56	"	22.6		110	70-130			
1,1-Dichloroethene	15	0.40	"	16.2		95.3	70-130			
1,1,2-Trichlorotrifluoroethane (F113)	33	0.40	"	31.0		107	70-130			
Methylene chloride (Dichloromethane)	13	0.35	"	14.2		92.6	70-130			
trans-1,2-Dichloroethene	15	0.40	"	16.2		95.2	70-130			
1,1-Dichloroethane	16	0.40	,,	16.5		95.6	70-130			
cis-1,2-Dichloroethene	15	0.40	,,	16.0		91.7	70-130			
Chloroform	19	0.40	,,	19.8		97.8	70-130			
1,1,1-Trichloroethane			,,	22.2		97.8 101	70-130			
* *	23	0.55	,,							
1,2-Dichloroethane (EDC)	16	0.41		16.5		96.6	70-130			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Lillit	Ollits	Level	Result	70KEC	Lillits	KFD	Liiiit	Notes
Batch EL52109 - TO-15										
LCS (EL52109-BS1)				Prepared &	Analyzed:	20-Dec-15				
Benzene	11	0.16	ug/m3	13.0		85.6	70-130			
Carbon tetrachloride	27	0.32	"	25.6		106	70-130			
Trichloroethene	20	0.55	"	21.9		89.8	70-130			
Toluene	14	0.76	"	15.4		88.1	70-130			
1,1,2-Trichloroethane	21	0.55	"	22.2		92.5	70-130			
Tetrachloroethene	27	0.69	"	27.6		97.9	70-130			
1,1,1,2-Tetrachloroethane	29	0.70	"	28.0		103	70-130			
Ethylbenzene	16	0.44	"	17.7		88.7	70-130			
m,p-Xylene	32	0.44	"	35.4		91.2	70-130			
o-Xylene	16	0.44	"	17.7		89.9	70-130			
1,1,2,2-Tetrachloroethane	24	0.70	"	28.0		86.7	70-130			
Surrogate: 1,2-Dichloroethane-d4	42.4		"	42.9		98.9	76-134			
Surrogate: Toluene-d8	39.5		"	41.4		95.3	78-125			
Surrogate: 4-Bromofluorobenzene	75.4		"	72.9		103	77-127			
LCS Dup (EL52109-BSD1)				Prepared: 2	20-Dec-15 A	Analyzed: 2	1-Dec-15			
Dichlorodifluoromethane (F12)	21	1.0	ug/m3	20.2		106	70-130	0.493	25	
Vinyl chloride	9.5	0.13	"	10.4		91.4	70-130	0.684	25	
Chloroethane	9.5	0.27	"	10.7		88.4	70-130	0.765	25	
Trichlorofluoromethane (F11)	25	0.56	"	22.6		109	70-130	0.888	25	
1,1-Dichloroethene	15	0.40	"	16.2		93.1	70-130	2.33	25	
1,1,2-Trichlorotrifluoroethane (F113)	32	0.77	"	31.0		102	70-130	5.21	25	
Methylene chloride (Dichloromethane)	13	0.35	"	14.2		94.1	70-130	1.65	25	
trans-1,2-Dichloroethene	15	0.40	"	16.2		92.8	70-130	2.52	25	
1,1-Dichloroethane	15	0.41	"	16.5		93.6	70-130	2.13	25	
cis-1,2-Dichloroethene	15	0.40	"	16.0		91.6	70-130	0.0823	25	
Chloroform	19	0.25	"	19.8		96.3	70-130	1.49	25	
1,1,1-Trichloroethane	22	0.55	"	22.2		99.9	70-130	1.45	25	
1,2-Dichloroethane (EDC)	16	0.41	"	16.5		95.1	70-130	1.59	25	
Benzene	11	0.16	"	13.0		84.8	70-130	0.967	25	
Carbon tetrachloride	27	0.32	"	25.6		104	70-130	2.00	25	
Trichloroethene	19	0.55	"	21.9		88.6	70-130	1.31	25	
Toluene	13	0.76	"	15.4		87.0	70-130	1.22	25	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery29-Dec-15 10:49

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EL52109 - TO-15										*
LCS Dup (EL52109-BSD1)				Prepared: 2	0-Dec-15 A	Analyzed: 2	1-Dec-15			
1,1,2-Trichloroethane	20	0.55	ug/m3	22.2		90.9	70-130	1.73	25	
Tetrachloroethene	27	0.69	"	27.6		96.1	70-130	1.85	25	
1,1,1,2-Tetrachloroethane	28	0.70	"	28.0		101	70-130	1.39	25	
Ethylbenzene	16	0.44	"	17.7		88.5	70-130	0.253	25	
m,p-Xylene	31	0.44	"	35.4		89.0	70-130	2.39	25	
o-Xylene	16	0.44	"	17.7		88.8	70-130	1.34	25	
1,1,2,2-Tetrachloroethane	24	0.70	"	28.0		85.6	70-130	1.27	25	
Surrogate: 1,2-Dichloroethane-d4	42.0		"	42.9		98.0	76-134			
Surrogate: Toluene-d8	39.9		"	41.4		96.3	78-125			
Surrogate: 4-Bromofluorobenzene	75.3		"	72.9		103	77-127			
Batch EL52213 - TO-15										
Blank (EL52213-BLK1)				Prepared &	: Analyzed:	22-Dec-15				
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3							
Chloromethane	ND	2.1	"							
Dichlorotetrafluoroethane (F114)	ND	7.1	"							
Vinyl chloride	ND	2.6	"							
Bromomethane	ND	16	"							
Chloroethane	ND	8.0	"							
Trichlorofluoromethane (F11)	ND	5.6	"							
Acetone	ND	24	"							
1,1-Dichloroethene	ND	4.0	"							
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"							
Methylene chloride (Dichloromethane)	ND	3.5	"							
Carbon disulfide	ND	6.3	"							
trans-1,2-Dichloroethene	ND	8.0	"							
1,1-Dichloroethane	ND	4.1	"							
2-Butanone (MEK)	ND	30	"							
cis-1,2-Dichloroethene	ND	4.0	"							
Chloroform	ND	4.9	"							
1,1,1-Trichloroethane	ND	5.5	"							
1,2-Dichloroethane (EDC)	ND	4.1	,,							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery29-Dec-15 10:49

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EL52213-BLK1)				Prepared & Ana	lyzed: 22-Dec-15		
Benzene	ND	3.2	ug/m3				
Carbon tetrachloride	ND	6.4	"				
Trichloroethene	ND	5.5	"				
1,2-Dichloropropane	ND	9.4	"				
Bromodichloromethane	ND	6.8	"				
cis-1,3-Dichloropropene	ND	4.6	"				
4-Methyl-2-pentanone (MIBK)	ND	8.3	"				
trans-1,3-Dichloropropene	ND	4.6	"				
Toluene	ND	3.8	"				
1,1,2-Trichloroethane	ND	5.5	"				
2-Hexanone (MBK)	ND	8.3	"				
Dibromochloromethane	ND	8.6	"				
Tetrachloroethene	ND	6.9	"				
1,2-Dibromoethane (EDB)	ND	7.8	"				
1,1,1,2-Tetrachloroethane	ND	7.0	"				
Chlorobenzene	ND	4.7	"				
Ethylbenzene	ND	4.4	"				
n,p-Xylene	ND	8.8	"				
Styrene	ND	4.3	"				
o-Xylene	ND	4.4	"				
Bromoform	ND	10	"				
1,1,2,2-Tetrachloroethane	ND	7.0	"				
4-Ethyltoluene	ND	5.0	"				
1,3,5-Trimethylbenzene	ND	5.0	"				
1,2,4-Trimethylbenzene	ND	5.0	"				
1,3-Dichlorobenzene	ND	12	"				
1,4-Dichlorobenzene	ND	12	"				
1,2-Dichlorobenzene	ND	12	"				
1,2,4-Trichlorobenzene	ND	38	"				
Hexachlorobutadiene	ND	54	"				
Surrogate: 1,2-Dichloroethane-d4	247		"	214	115	76-134	
Surrogate: Toluene-d8	203		"	207	98.0	78-125	
Surrogate: 4-Bromofluorobenzene	290		"	364	79.7	77-127	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery29-Dec-15 10:49

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EL52213 - TO-15						
LCS (EL52213-BS1)				Prepared & Ana	alyzed: 22-Dec-15	
Dichlorodifluoromethane (F12)	120	5.0	ug/m3	101	119	70-130
Vinyl chloride	56	2.6	"	52.0	107	70-130
Chloroethane	50	8.0	"	53.6	93.0	70-130
Trichlorofluoromethane (F11)	120	5.6	"	113	104	70-130
1,1-Dichloroethene	79	4.0	"	80.8	97.2	70-130
1,1,2-Trichlorotrifluoroethane (F113)	150	7.7	"	155	96.7	70-130
Methylene chloride (Dichloromethane)	67	3.5	"	70.8	94.8	70-130
trans-1,2-Dichloroethene	74	8.0	"	80.8	91.4	70-130
1,1-Dichloroethane	80	4.1	"	82.4	97.4	70-130
cis-1,2-Dichloroethene	75	4.0	"	80.0	93.7	70-130
Chloroform	99	4.9	"	99.2	100	70-130
1,1,1-Trichloroethane	110	5.5	"	111	100	70-130
1,2-Dichloroethane (EDC)	85	4.1	"	82.4	103	70-130
Benzene	60	3.2	"	64.8	92.8	70-130
Carbon tetrachloride	130	6.4	"	128	102	70-130
Trichloroethene	100	5.5	"	110	93.5	70-130
Toluene	72	3.8	"	76.8	94.0	70-130
1,1,2-Trichloroethane	100	5.5	"	111	94.0	70-130
Tetrachloroethene	120	6.9	"	138	87.2	70-130
1,1,1,2-Tetrachloroethane	120	7.0	"	140	82.4	70-130
Ethylbenzene	72	4.4	"	88.4	81.7	70-130
m,p-Xylene	140	8.8	"	177	78.5	70-130
o-Xylene	73	4.4	"	88.4	82.7	70-130
1,1,2,2-Tetrachloroethane	110	7.0	"	140	80.7	70-130
Surrogate: 1,2-Dichloroethane-d4	238		"	214	111	76-134
Surrogate: Toluene-d8	207		"	207	99.9	78-125
Surrogate: 4-Bromofluorobenzene	332		"	364	91.0	77-127
•						

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery29-Dec-15 10:49

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

		Reporting		Spike	Source		/ortec		KrD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EL52213 - TO-15										
LCS Dup (EL52213-BSD1)				Prepared &	k Analyzed:	22-Dec-15				
Dichlorodifluoromethane (F12)	120	5.0	ug/m3	101		118	70-130	1.26	25	
Vinyl chloride	56	2.6	"	52.0		107	70-130	0.232	25	
Chloroethane	32	8.0	"	53.6		60.6	70-130	42.2	25	QL-1L
Trichlorofluoromethane (F11)	120	5.6	"	113		102	70-130	2.13	25	
1,1-Dichloroethene	76	4.0	"	80.8		94.5	70-130	2.91	25	
1,1,2-Trichlorotrifluoroethane (F113)	150	7.7	"	155		94.5	70-130	2.29	25	
Methylene chloride (Dichloromethane)	65	3.5	"	70.8		92.4	70-130	2.50	25	
trans-1,2-Dichloroethene	74	8.0	"	80.8		91.5	70-130	0.109	25	
1,1-Dichloroethane	78	4.1	"	82.4		94.8	70-130	2.70	25	
cis-1,2-Dichloroethene	74	4.0	"	80.0		92.4	70-130	1.35	25	
Chloroform	97	4.9	"	99.2		97.8	70-130	2.46	25	
1,1,1-Trichloroethane	110	5.5	"	111		97.4	70-130	2.71	25	
1,2-Dichloroethane (EDC)	84	4.1	"	82.4		102	70-130	0.970	25	
Benzene	59	3.2	"	64.8		91.4	70-130	1.52	25	
Carbon tetrachloride	130	6.4	"	128		101	70-130	0.934	25	
Trichloroethene	99	5.5	"	110		90.5	70-130	3.30	25	
Toluene	69	3.8	"	76.8		89.6	70-130	4.76	25	
1,1,2-Trichloroethane	100	5.5	"	111		89.8	70-130	4.53	25	
Tetrachloroethene	120	6.9	"	138		83.9	70-130	3.85	25	
1,1,1,2-Tetrachloroethane	110	7.0	"	140		81.3	70-130	1.34	25	
Ethylbenzene	72	4.4	"	88.4		81.5	70-130	0.244	25	
m,p-Xylene	140	8.8	"	177		78.5	70-130	0.0634	25	
o-Xylene	72	4.4	"	88.4		81.7	70-130	1.27	25	
1,1,2,2-Tetrachloroethane	110	7.0	"	140		79.1	70-130	2.06	25	
Surrogate: 1,2-Dichloroethane-d4	238		"	214		111	76-134			
Surrogate: Toluene-d8	201		"	207		97.3	78-125			
Surrogate: 4-Bromofluorobenzene	333		"	364		91.2	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: MC121615-13

1050 Crown Pointe Parkway, Suite 550 Project Number: TLC Cleaners / Marietta, GA Reported:

Atlanta, GA 30338 Project Manager: Mr. Justin Vickery 29-Dec-15 10:49

Notes and Definitions

QL-1L The LCS and/or LCSD recoveries fell below the established control specifications for this analyte. Any result for this compound is

qualified and should be considered biased low.

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP and the ISO 17025 programs, certification number L11-175.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE:	12	2/08	12015
Page _	1	of	1

	La	b Client an	d Project	Information										Sampl	e Rec	eipt (L	ab Us	e Only	()	
Lab Client/Consultant: EPS Inc.	eremala incide		ha nadin	Project Name / #:	TLC Cleane	ecs	To The		i Rien	in the second		Date F	Rec'd:	2/14	15	Contro	ol #: (510	78	01
Lab Client Project Manager: Justin Lab Client Address: 1050 Crown Po	When	Y	12	Project Location:	hrietta, G	A	M-M-18	genari	J2 (+6)	ar a r	3-11						-13			Ŭ.
Lab Client Address: 1050 Crown Po	inte Play S	vite 550		Report E-Mail(s):	1 Daniels	nine on							/ork Ord				09			
Lab Client City, State, Zip: AHanta	· /-A 303	38	1002.000	Juick	ff@enuplan	inc.co	m m			s in th		Samp	le Intac	and the same of the		CONTRACTOR OF THE PARTY OF THE		Notes Be	elow	
Phone Number: 404 - 315 - 9	3113	-		ATESTO.	4 Garaham									e ID: l				Temp:	and the	
Reporting Requireme		Т	urnaroun	d Time	Sar	npler Info	ormatio	n			231.08 1	The state of the s	le Lab:	•						
Standard Report Level III Standard Report Level III Can Geotracker Global ID:	Level IV	5-7 da 3-day 48-Hr	Rush	24-Hr Rush Mobile Lab Other:	Sampler(s): Al. Signature: Ole Date: 12/6	1 Jet 9/2015	h		16 9	Shows Single Shows Show Shows Shows Shows Shows Shows Shows Shows Shows Shows		Receip 12	ot Notes 93T	T'GE	ng#: 90 L	£73	580	908	r.	ım
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10111	rtuori		1010	1/2013)										Lat	PIW INIU	als.P	111
Additional Instructions to Labora ☐ Check if Project Analyte List is * Preferred VOC units (please che ☐ µg/L µg/m³ ☐ ppbv	Attached oose one):	e o Tetra o n-anely (North northern) Le	a ie tyko Scrykony Savora Stat	Proping 15.1 Opensions on 1 oversional 15.1000	e me to to take to sell		i Wasan Selatan	ard Full List X TO-15	VOCs Short List / Project List	☐ TO-15	ohthalene 8260SV ☐ TO-15 ☐ TO-17m	□ TO-15m	TPHv as Diesel (sorbent tube) ☐ TO-17m	latic Fractions ☐ TO-15m	mpound A \square He	A 8015m	y ASTM D1945		٤	
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tedlar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List ☐ 8260SV X TO-15	VOCs Short Lis	Oxygenates 8260SV	Naphthalene ☐ 8260SV ☐	TPHv as Gas ☐ 8260SVm	TPHv as Diesel □TO-17m	Aromatic/Aliphatic Fractions ☐ 8260SVm ☐ TO-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by A			
15341-IA-1		12/07/15	16:00	IA	GL	312	-2.67	X							15				1112	
15341-IA-2		12/07/15	16:05	IA	6 L	STO18	-1.44	X						do in				ys. 3		
15341-IA-3		12/07/15	16:09	AA	6L	299	-1.32	X							W - 1					
15342-86-4		12/08/15		SS	400 ML	226	-1.24	X												
15342-56-5		12/08/15	16:45	SS	400 AL	069	-1.00	\times							- 2					
15342-56-6	No. 1	12/08/15	16:57	SS.	400 mL	053	-96	X			1		3				1 2		124	
15342-86-7		12/08/15	17:15	22	400 ML	386	-93	\times												
																		- A		
Approved/Relinquished by: Alex Tester Approved/Relinquished by:)	ES Loc. Company:		12 Date: 15	Time: 30	Received by:	Jon	llus	WO	H		Company:	P		Date:	4/1	5	Time:	00 p	m
Approved/Relinquished by:		Company:		Date:	Time:	Received by:						Company:		Justin L	Date:			Time:		

Mr. Justin Vickery EPS, Inc. 1050 Crown Pointe Parkway, Suite 550 Atlanta, GA 30338

H&P Project: EPS011316-14

Client Project: TLC Cleaners / Marietta, GA

Dear Mr. Justin Vickery:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 13-Jan-16 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

Janis Villarreal

H&P Mobile Geochemistry, Inc. is certified under the California ELAP, the National Environmental Laboratory Accreditation Conference (NELAC) and the Department of Defense Accreditation Programs.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
16008-IA-1	E601051-01	Vapor	08-Jan-16	13-Jan-16
16008-IA-2	E601051-02	Vapor	08-Jan-16	13-Jan-16
16008-IA-3	E601051-03	Vapor	08-Jan-16	13-Jan-16
16011-SG-4	E601051-04	Vapor	11-Jan-16	13-Jan-16
16011-SG-5	E601051-05	Vapor	11-Jan-16	13-Jan-16
16011-SG-6	E601051-06	Vapor	11-Jan-16	13-Jan-16
16011-SG-7	E601051-07	Vapor	11-Jan-16	13-Jan-16
16011-SG-DUP	E601051-08	Vapor	11-Jan-16	13-Jan-16

Due to the presence of elevated Tetrachloroethene concentrations, the following samples were analyzed using H&P 8260SV rather than EPA Method TO-15:

16011-SG-4

16011-SG-5

16011-SG-6

16011-SG-7

16011-SG-DUP

The following EPA Method TO-15 analytes are not reported by H&P 8260SV:

Dichlorotetrafluoroethane

4-Ethyltoluene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

DETECTIONS SUMMARY

ample ID: 16008-IA-1	Laboratory ID:	E601051-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)	2.4	1.0	ug/m3	EPA TO-15	
Chloromethane	0.91	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	1.1	0.56	ug/m3	EPA TO-15	
Acetone	3.8	1.2	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.44	0.35	ug/m3	EPA TO-15	
2-Butanone (MEK)	0.61	0.60	ug/m3	EPA TO-15	
Benzene	0.38	0.16	ug/m3	EPA TO-15	
Toluene	0.90	0.76	ug/m3	EPA TO-15	
Tetrachloroethene	1100	14	ug/m3	EPA TO-15	
ample ID: 16008-IA-2	Laboratory ID:	E601051-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Note
Dichlorodifluoromethane (F12)	3.0	1.0	ug/m3	EPA TO-15	
Chloromethane	0.98	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	2.1	0.56	ug/m3	EPA TO-15	
Acetone	4.4	1.2	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)	0.51	0.35	ug/m3	EPA TO-15	
Benzene	0.42	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride	0.32	0.32	ug/m3	EPA TO-15	QL-11
Tetrachloroethene	1100	14	ug/m3	EPA TO-15	
ample ID: 16008-IA-3	Laboratory ID:	E601051-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Note
Dichlorodifluoromethane (F12)	1.5	1.0	ug/m3	EPA TO-15	
Chloromethane	0.80	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)	0.98	0.56	ug/m3	EPA TO-15	
Acetone	3.4	1.2	ug/m3	EPA TO-15	
Benzene	0.93	0.16	ug/m3	EPA TO-15	
Toluene	2.2	0.76	ug/m3	EPA TO-15	
Tetrachloroethene	0.83	0.69	ug/m3	EPA TO-15	
m,p-Xylene	1.1	0.44	ug/m3	EPA TO-15	
ample ID: 16011-SG-4	Laboratory ID:	E601051-04			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. 1050 Crown Pointe Parkway, Suite 550 Atlanta, GA 30338	Reported: 21-Jan-16 09:42								
Sample ID: 16011-SG-4	nple ID: 16011-SG-4 Laboratory ID: E601051-04								
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Tetrachloroethene	26000	100	ug/m3	H&P 8260SV					
Sample ID: 16011-SG-5	Laboratory ID:	E601051-05							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Tetrachloroethene	10000	100	ug/m3	H&P 8260SV					
Sample ID: 16011-SG-6	Laboratory ID:	E601051-06							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Tetrachloroethene	460000	1000	ug/m3	H&P 8260SV					
Sample ID: 16011-SG-7	Laboratory ID:	E601051-07							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Tetrachloroethene	710000	1000	ug/m3	H&P 8260SV					
Sample ID: 16011-SG-DUP	Laboratory ID:	E601051-08							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Tetrachloroethene	34000	1000	ug/m3	H&P 8260SV					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

H&P Mobile Geochemistry Inc.

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by EPA TO-15

	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16008-IA-1 (E601051-01) Vapor Sampled: 08	8-Jan-16 Receive	d: 13-Jan-16							
Dichlorodifluoromethane (F12)	2.4	1.0	ug/m3	1	EA61506	15-Jan-16	15-Jan-16	EPA TO-15	
Chloromethane	0.91	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	1.1	0.56	"	"	"	"	"	"	
Acetone	3.8	1.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	0.44	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	0.61	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.38	0.16	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	0.90	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	0.86	"	"	"	"	"	"	
Tetrachloroethene	1100	14	"	20	"	"	18-Jan-16	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	1	"	"	15-Jan-16	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.70	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	ND ND	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by EPA TO-15

Analyte	I	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16008-IA-1 (E601051-01) Vapor	Sampled: 08-Jan-16	Receive	d: 13-Jan-16							
o-Xylene		ND	0.44	ug/m3	1	EA61506	15-Jan-16	15-Jan-16	EPA TO-15	
Bromoform		ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene		ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene		ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			112 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8			106 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene			97.5 %	77-		"	"	"	"	
16008-IA-2 (E601051-02) Vapor	Sampled: 08-Jan-16	Receive	d: 13-Jan-16							
, , ,										
Dichlorodifluoromethane (F12)		3.0	1.0	ug/m3	1	EA61506	15-Jan-16	15-Jan-16	EPA TO-15	
Dichlorodifluoromethane (F12) Chloromethane		3.0 0.98		ug/m3	1 "	EA61506	15-Jan-16	15-Jan-16	EPA TO-15	
` '	-		1.0	_						
Chloromethane		0.98	1.0 0.21	"	"	"	"	"	"	
Chloromethane Dichlorotetrafluoroethane (F114)	-	0.98 ND	1.0 0.21 0.71	"	"	"	"	"	"	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	-	0.98 ND ND	1.0 0.21 0.71 0.13 0.39	"	"	" "	" "	" "	" "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	-	0.98 ND ND ND	1.0 0.21 0.71 0.13	"	"	" "	" " "	" " " " " " " " " " " " " " " " " " " "	" "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	-	0.98 ND ND ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56	" " "	" " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	-	0.98 ND ND ND ND ND 2.1 4.4	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2	"""""""""""""""""""""""""""""""""""""""	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone		0.98 ND ND ND ND 2.1 4.4 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	11 11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11)	13)	0.98 ND ND ND ND 2.1 4.4 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	11 11 11 11	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	13)	0.98 ND ND ND ND 2.1 4.4 ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " "	
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichlorometh	13)	0.98 ND ND ND ND 2.1 4.4 ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32		" " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11		
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	13)	0.98 ND ND ND ND A.4 ND ND O.51 ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40		"""""""""""""""""""""""""""""""""""""""	11 11 11 11 11 11 11 11 11 11 11 11 11				
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	13)	0.98 ND ND ND ND VD 2.1 4.4 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41			11 11 11 11 11 11 11 11 11 11 11 11 11				
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	13)	0.98 ND ND ND ND 2.1 4.4 ND ND 0.51 ND ND ND ND ND ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	13)	0.98 ND ND ND ND 4.4 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	13)	0.98 ND ND ND ND 2.1 4.4 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	13)	0.98 ND ND ND ND 2.1 4.4 ND ND 0.51 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25 0.55							
Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	13) thane)	0.98 ND ND ND ND 2.1 4.4 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41 0.60 0.40 0.25							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16008-IA-2 (E601051-02) Vapor	Sampled: 08-Jan-16 Received	ed: 13-Jan-16							
Trichloroethene	ND	0.55	ug/m3	1	EA61506	15-Jan-16	15-Jan-16	EPA TO-15	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	ND	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	0.86	"	"	"	"	"	"	
Tetrachloroethene	1100	14	"	20	"	"	18-Jan-16	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	1	"	"	15-Jan-16	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	ND	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	ND	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		114 %	76	.134	"	"	"	"	
Surrogate: Toluene-d8		105 %		.125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.2 %		.123	"	"	"	"	
Surroguie. 4-Bromojiuorobenzene		93.4 70	//-	12/					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

H&P Mobile Geochemistry Inc.

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16008-IA-3 (E601051-03) Vapor Sampled: 08-	Jan-16 Receive	ed: 13-Jan-16							
Dichlorodifluoromethane (F12)	1.5	1.0	ug/m3	1	EA61506	15-Jan-16	15-Jan-16	EPA TO-15	
Chloromethane	0.80	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	0.98	0.56	"	"	"	"	"	"	
Acetone	3.4	1.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	"	"	"	"	"	
Carbon disulfide	ND	0.32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	"	"	"	"	"	"	
2-Butanone (MEK)	ND	0.60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	ND	0.25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"	"	"	"	"	
Benzene	0.93	0.16	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Toluene	2.2	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"	
Dibromochloromethane	ND	0.86	"	"	"	"	"	"	
Tetrachloroethene	0.83	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.1	0.44	"	"	"	"	"	"	
Styrene	ND	0.43	"	"	"	"	"	"	
~	110	0.10							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16008-IA-3 (E601051-03) Vapor	Sampled: 08-Jan-16 Receiv	ed: 13-Jan-16							
o-Xylene	ND	0.44	ug/m3	1	EA61506	15-Jan-16	15-Jan-16	EPA TO-15	
Bromoform	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.9	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.7	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		101 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		105 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.3 %		127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16011-SG-4 (E601051-04) Vapor Sampled: 11-Ja	an-16 Receive	ed: 13-Jan-16							
Acetone	ND	5000	ug/m3	0.05	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV	
2-Butanone (MEK)	ND	2500	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	2500	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	2500	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	500	"	"	"	"	"	"	
Chloromethane	ND	500	"	"	"	"	"	"	
Vinyl chloride	ND	50	"	"	"	"	"	"	
Bromomethane	ND	500	"	"	"	"	"	"	
Chloroethane	ND	500	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	500	"	"	"	"	"	"	
1,1-Dichloroethene	ND	500	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	500	"	"	"	"	"	"	
Carbon disulfide	ND	500	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	500	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	500	"	"	"	"	"	"	
1,1-Dichloroethane	ND	500	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	500	"	"	"	"	"	"	
Chloroform	ND	100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	500	"	"	"	"	"	"	
Carbon tetrachloride	ND	100	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	100	"	"	"	"	"	"	
Benzene	ND	100	"	"	"	"	"	"	
Trichloroethene	ND	100	"	"	"	"	"	"	
1,2-Dichloropropane	ND	500	"	"	"	"	"	"	
Bromodichloromethane	ND	500	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	500	"	"	"	"	"	"	
Toluene	ND	1000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	500	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	500	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	500	"	"	"	"	"	"	
Tetrachloroethene	26000	100	"	"	"	"	"	"	
Dibromochloromethane	ND	500	"	"	"	"	"	"	
Chlorobenzene	ND	100	"	"	"	"	"	"	
Ethylbenzene	ND	500	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	500	"	"	"	"	"	"	
m,p-Xylene	ND	500	"	"	"	"	"	"	
o-Xylene	ND	500	"	"	"	"	"	"	
Styrene	ND	500	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by H&P 8260SV

			CT WIODIN		icillisti y	, 11100				
Analyte	I	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16011-SG-4 (E601051-04) Vapor	Sampled: 11-Jan-16	Receive	d: 13-Jan-16							
Bromoform		ND	500	ug/m3	0.05	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV	
1,1,2,2-Tetrachloroethane		ND	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	500	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	500	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	500	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	500	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	500	"	"	"	"	"	"	
Hexachlorobutadiene		ND	500	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			102 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			107 %		125	"	"	"	"	
Surrogate: Toluene-d8			108 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			104 %		125	"	"	"	"	
16011-SG-5 (E601051-05) Vapor	Sampled: 11-Jan-16	Receive	d: 13-Jan-16							
Acetone		ND	5000	ug/m3	0.05	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV	
2-Butanone (MEK)		ND	2500	"	"	"	"	"	n .	
2-Hexanone (MBK)		ND	2500	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)		ND	2500	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)		ND	500	"	"	"	"	"	"	
Chloromethane		ND	500	"	"	"	"	"	"	
Vinyl chloride		ND	50	"	"	"	"	"	"	
Bromomethane		ND	500	"	"	"	"	"	"	
Chloroethane		ND	500	"	"	"	"	"	"	
Trichlorofluoromethane (F11)		ND	500	"	"	"	"	"	"	
1,1-Dichloroethene		ND	500	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F11)	3)	ND	500	"	"	"	"	"	"	
Carbon disulfide	- /	ND	500	"	"	"	"	"	"	
Methylene chloride (Dichlorometha	ane)	ND	500	"	"	"	"	"	"	
trans-1,2-Dichloroethene	,	ND	500	"	"	"	"	"	"	
1,1-Dichloroethane		ND	500	"	"	"	"	"	"	
cis-1,2-Dichloroethene		ND	500	"	"	"	"	"	"	
Chloroform		ND	100	"	"	"	"	"	"	
1,1,1-Trichloroethane		ND	500	"	"	"	"	"	"	
Carbon tetrachloride		ND	100	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)		ND	100	"	"	"	"	"	"	
Benzene		ND	100	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16011-SG-5 (E601051-05) Vapor	Sampled: 11-Jan-16 Receive	ed: 13-Jan-16	i						
Trichloroethene	ND	100	ug/m3	0.05	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV	
1,2-Dichloropropane	ND	500	"	"	"	"	"	"	
Bromodichloromethane	ND	500	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	500	"	"	"	"	"	"	
Toluene	ND	1000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	500	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	500	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	500	"	"	"	"	"	"	
Tetrachloroethene	10000	100	"	"	"	"	"	"	
Dibromochloromethane	ND	500	"	"	"	"	"	"	
Chlorobenzene	ND	100	"	"	"	"	"	"	
Ethylbenzene	ND	500	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	500	"	"	"	"	"	"	
m,p-Xylene	ND	500	"	"	"	"	"	"	
o-Xylene	ND	500	"	"	"	"	"	"	
Styrene	ND	500	"	"	"	"	"	"	
Bromoform	ND	500	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	500	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	500	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	500	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	500	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	500	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		100 %	75-12		"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	75-12		"	"	"	"	
Surrogate: Toluene-d8		104 %	75-12	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	75-12	25	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16011-SG-6 (E601051-06) Vapor Sampled:	11-Jan-16 Receiv	ed: 13-Jan-16	:						
Acetone	ND	50000	ug/m3	0.5	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV	
2-Butanone (MEK)	ND	10000	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	10000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	10000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	5000	"	"	"	"	"	"	
Chloromethane	ND	5000	"	"	"	"	"	"	
Vinyl chloride	ND	500	"	"	"	"	"	"	
Bromomethane	ND	5000	"	"	"	"	"	"	
Chloroethane	ND	5000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	5000	"	"	"	"	"	"	
Carbon disulfide	ND	5000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	5000	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
Chloroform	ND	1000	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5000	"	"	"	"	"	"	
Carbon tetrachloride	ND	1000	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	1000	"	"	"	"	"	"	
Benzene	ND	1000	"	"	"	"	"	"	
Trichloroethene	ND	1000	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5000	"	"	"	"	"	"	
Bromodichloromethane	ND	5000	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
Toluene	ND	10000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5000	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5000	"	"	"	"	"	"	
Tetrachloroethene	460000	1000	"	"	"	"	"	"	
Dibromochloromethane	ND	5000	"	"	"	"	"	"	
Chlorobenzene	ND	1000	"	"	"	"	"	"	
Ethylbenzene	ND	5000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
m,p-Xylene	ND	5000	"	"	"	"	"	"	
o-Xylene	ND	5000	"	"	"	"	"	"	
Styrene	ND	5000	"	"	"	"	"	"	
Stylene	ND	3000							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16011-SG-6 (E601051-06) Vapor Sampled: 11-Jan-	16 Receiv	ed: 13-Jan-16							
Bromoform	ND	5000	ug/m3	0.5	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV	
1,1,2,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5000	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5000	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5000	"	"	"	"	"	II .	
Surrogate: Dibromofluoromethane		112 %	75-1	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		114 %	75-1		"	"	"	"	
Surrogate: Toluene-d8		106 %	75-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		111 %	75-1	125	"	"	"	"	
16011-SG-7 (E601051-07) Vapor Sampled: 11-Jan-	16 Receive	ed: 13-Jan-16							
Acetone	ND	50000	ug/m3	0.5	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV	
2-Butanone (MEK)	ND	10000	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	10000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	10000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	5000	"	"	"	"	"	"	
Chloromethane	ND	5000	"	"	"	"	"	"	
Vinyl chloride	ND	500	"	"	"	"	"	"	
Bromomethane	ND	5000	"	"	"	"	"	"	
Chloroethane	ND	5000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	5000	"	"	"	"	"	"	
Carbon disulfide	ND	5000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	5000	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
Chloroform	ND	1000	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5000	"	"	"	"	"	"	
Carbon tetrachloride	ND	1000		"	"	"	"	"	
	ND	1000	,,	,,	,,	"	"	"	
1,2-Dichloroethane (EDC)	[71]	1111111							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16011-SG-7 (E601051-07) Vapor				racioi	Butch	7 repared	7 mary 200	Method	
				0.5	EA (1504	15.1 16	15.116	116 D 02/00M	
Trichloroethene	ND	1000	ug/m3	0.5	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV	
1,2-Dichloropropane	ND	5000	"	,,	,,	,,	,,	"	
Bromodichloromethane	ND	5000		,,	,,	,,	,,	"	
cis-1,3-Dichloropropene	ND	5000	"	"	,,	"	"	"	
Toluene	ND	10000		"	,,	"	"	"	
trans-1,3-Dichloropropene	ND	5000	"						
1,1,2-Trichloroethane	ND	5000	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5000	"	"	"	"	"	"	
Tetrachloroethene	710000	1000	"	"	"	"	"	"	
Dibromochloromethane	ND	5000	"	"	"	"	"	"	
Chlorobenzene	ND	1000	"	"	"	"	"	"	
Ethylbenzene	ND	5000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
m,p-Xylene	ND	5000	"	"	"	"	"	"	
o-Xylene	ND	5000	"	"	"	"	"	"	
Styrene	ND	5000	"	"	"	"	"	"	
Bromoform	ND	5000	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5000	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5000	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5000	"	"	"	"	"	"	
Compositor Dibnomofluore and and		106 %	75	: 125	,,	"	"	"	
Surrogate: Dibromofluoromethane		106 % 102 %		i-125 i-125	"	"	,,	"	
Surrogate: 1,2-Dichloroethane-d4					"	"	"	"	
Surrogate: Toluene-d8		105 %		i-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		116 %	75	i-125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16011-SG-DUP (E601051-08) Vapor	Sampled: 11-Jan-16 Rec	ceived: 13-Jai	1-16						
Acetone	ND	50000	ug/m3	0.5	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV	
2-Butanone (MEK)	ND	10000	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	10000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	10000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	5000	"	"	"	"	"	"	
Chloromethane	ND	5000	"	"	"	"	"	"	
Vinyl chloride	ND	500	"	"	"	"	"	"	
Bromomethane	ND	5000	"	"	"	"	"	"	
Chloroethane	ND	5000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	5000	"	"	"	"	"	"	
Carbon disulfide	ND	5000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	5000	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5000	"	"	"	"	"	"	
Chloroform	ND	1000	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5000	"	"	"	"	"	"	
Carbon tetrachloride	ND	1000	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	1000	"	"	"	"	"	"	
Benzene	ND	1000	"	"	"	"	"	"	
Trichloroethene	ND	1000	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5000	"	"	"	"	"	"	
Bromodichloromethane	ND	5000	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
Toluene	ND	10000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5000	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5000	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5000	"	"	"	"	"	"	
Tetrachloroethene	34000	1000	"	"	"	"	"	"	
Dibromochloromethane	ND	5000	"	"	"	"	"	"	
Chlorobenzene	ND	1000	"	"	"	"	"	"	
Ethylbenzene	ND	5000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"	
m,p-Xylene	ND	5000	"	"	"	"	"	"	
o-Xylene	ND	5000	"	"	"	"	"	"	
Styrene	ND	5000	"	"	"	"	"	"	
~-y v	ND	3000							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery21-Jan-16 09:42

Volatile Organic Compounds by H&P 8260SV

The Mobile Geochemistry, Inc.													
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes				
16011-SG-DUP (E601051-08) Vapor	Sampled: 11-Jan-16 Rec	eived: 13-Jar	ı-16										
Bromoform	ND	5000	ug/m3	0.5	EA61504	15-Jan-16	15-Jan-16	H&P 8260SV					
1,1,2,2-Tetrachloroethane	ND	5000	"	"	"	"	"	"					
1,3,5-Trimethylbenzene	ND	5000	"	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	5000	"	"	"	"	"	"					
1,3-Dichlorobenzene	ND	5000	"	"	"	"	"	"					
1,4-Dichlorobenzene	ND	5000	"	"	"	"	"	"					
1,2-Dichlorobenzene	ND	5000	"	"	"	"	"	"					
1,2,4-Trichlorobenzene	ND	5000	"	"	"	"	"	"					
Hexachlorobutadiene	ND	5000	"	"	"	"	"	"					
Surrogate: Dibromofluoromethane		118 %	75-1.	25	"	"	"	"					
Surrogate: 1,2-Dichloroethane-d4		112 %	75-1.	25	"	"	"	"					
Surrogate: Toluene-d8		105 %	75-1.	25	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		116 %	75-1.	25	"	"	"	"					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number:TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager:Mr. Justin Vickery21-Jan-16 09:42

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EA61506-BLK1)				Prepared & Anal
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3	
Chloromethane	ND	0.21	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	
Vinyl chloride	ND	0.13	"	
Bromomethane	ND	0.39	"	
Chloroethane	ND	0.27	"	
Trichlorofluoromethane (F11)	ND	0.56	"	
Acetone	ND	1.2	"	
1,1-Dichloroethene	ND	0.40	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	
Methylene chloride (Dichloromethane)	ND	0.35	"	
Carbon disulfide	ND	0.32	"	
rans-1,2-Dichloroethene	ND	0.40	"	
,1-Dichloroethane	ND	0.41	"	
2-Butanone (MEK)	ND	0.60	"	
eis-1,2-Dichloroethene	ND	0.40	"	
Chloroform	ND	0.25	"	
,1,1-Trichloroethane	ND	0.55	"	
,2-Dichloroethane (EDC)	ND	0.41	"	
enzene	ND	0.16	"	
Carbon tetrachloride	ND	0.32	"	
richloroethene	ND	0.55	"	
,2-Dichloropropane	ND	0.47	"	
Bromodichloromethane	ND	0.68	"	
is-1,3-Dichloropropene	ND	0.46	"	
-Methyl-2-pentanone (MIBK)	ND	0.83	"	
rans-1,3-Dichloropropene	ND	0.46	"	
Toluene	ND	0.76	"	
1,1,2-Trichloroethane	ND	0.55	"	
2-Hexanone (MBK)	ND	0.83	"	
Dibromochloromethane	ND	0.86	"	
Tetrachloroethene	ND	0.69	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	
,1,1,2-Tetrachloroethane	ND	0.70	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA61506 - TO-15										
Blank (EA61506-BLK1)				Prepared &	Analyzed:	15-Jan-16				
Chlorobenzene	ND	0.47	ug/m3							
Ethylbenzene	ND	0.44	"							
m,p-Xylene	ND	0.44	"							
Styrene	ND	0.43	"							
o-Xylene	ND	0.44	"							
Bromoform	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	0.70	"							
4-Ethyltoluene	ND	0.50	"							
1,3,5-Trimethylbenzene	ND	0.50	"							
1,2,4-Trimethylbenzene	ND	0.50	"							
1,3-Dichlorobenzene	ND	0.61	"							
1,4-Dichlorobenzene	ND	0.61	"							
1,2-Dichlorobenzene	ND	0.61	"							
1,2,4-Trichlorobenzene	ND	1.9	"							
Hexachlorobutadiene	ND	2.7	"							
Surrogate: 1,2-Dichloroethane-d4	46.9		"	42.9		109	76-134			
Surrogate: Toluene-d8	42.6		"	41.4		103	78-125			
Surrogate: 4-Bromofluorobenzene	68.2		"	72.9		93.5	77-127			
Y 60 (T.) (4 2 0 (D 04)				Drangrad &	: Analyzed:	15 Ian 16				
LCS (EA61506-BS1)	0.4	4.0	/2	•	Allalyzcu.		70 120			
Dichlorodifluoromethane (F12)	21	1.0	ug/m3	20.2		104	70-130			
Vinyl chloride	9.1	0.13	"	10.4		88.0	70-130			
Chloroethane	9.4	0.27	"	10.7		87.3	70-130			
Trichlorofluoromethane (F11)	23	0.56	"	22.6		104	70-130			
1,1-Dichloroethene	15	0.40	"	16.2		94.1	70-130			
1,1,2-Trichlorotrifluoroethane (F113)	32	0.77	"	31.0		102	70-130			
Methylene chloride (Dichloromethane)	14	0.35	"	14.2		99.4	70-130			
trans-1,2-Dichloroethene	15	0.40	"	16.2		91.0	70-130			
1,1-Dichloroethane	16	0.41	"	16.5		97.2	70-130			
cis-1,2-Dichloroethene	13	0.40	"	16.0		79.6	70-130			
Chloroform	18	0.25		19.8		88.6	70-130			
1,1,1-Trichloroethane	20	0.55	"	22.2		88.6	70-130			
1,2-Dichloroethane (EDC)	14	0.41	"	16.5		85.8	70-130			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Analas	D14	Reporting	T.I	Spike	Source	0/DEC	%REC	DDD	RPD	Nistan
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA61506 - TO-15										
LCS (EA61506-BS1)				Prepared &	Analyzed:	15-Jan-16				
Benzene	10	0.16	ug/m3	13.0		80.6	70-130			
Carbon tetrachloride	20	0.32	"	25.6		78.1	70-130			
Trichloroethene	17	0.55	"	21.9		78.8	70-130			
Toluene	12	0.76	"	15.4		77.1	70-130			
1,1,2-Trichloroethane	17	0.55	"	22.2		75.2	70-130			
Tetrachloroethene	20	0.69	"	27.6		73.7	70-130			
1,1,1,2-Tetrachloroethane	23	0.70	"	28.0		82.3	70-130			
Ethylbenzene	13	0.44	"	17.7		74.5	70-130			
m,p-Xylene	28	0.44	"	35.4		80.3	70-130			
o-Xylene	14	0.44	"	17.7		79.3	70-130			
1,1,2,2-Tetrachloroethane	19	0.70	"	28.0		68.6	70-130			QL-11
Surrogate: 1,2-Dichloroethane-d4	47.9		"	42.9		112	76-134			
Surrogate: Toluene-d8	40.7		"	41.4		98.2	78-125			
Surrogate: 4-Bromofluorobenzene	70.7		"	72.9		97.0	77-127			
LCS Dup (EA61506-BSD1)				•	Analyzed:					
Dichlorodifluoromethane (F12)	20	1.0	ug/m3	20.2		97.0	70-130	6.65	25	
Vinyl chloride	9.2	0.13	"	10.4		88.3	70-130	0.396	25	
Chloroethane	9.5	0.27	"	10.7		88.3	70-130	1.22	25	
Trichlorofluoromethane (F11)	22	0.56	"	22.6		99.2	70-130	4.49	25	
1,1-Dichloroethene	15	0.40	"	16.2		95.4	70-130	1.42	25	
1,1,2-Trichlorotrifluoroethane (F113)	30	0.77	"	31.0		96.4	70-130	5.42	25	
Methylene chloride (Dichloromethane)	13	0.35	"	14.2		95.0	70-130	4.48	25	
trans-1,2-Dichloroethene	15	0.40	"	16.2		91.7	70-130	0.763	25	
1,1-Dichloroethane	16	0.41	"	16.5		95.2	70-130	2.10	25	
cis-1,2-Dichloroethene	13	0.40	"	16.0		80.9	70-130	1.69	25	
Chloroform	17	0.25	"	19.8		84.4	70-130	4.86	25	
1,1,1-Trichloroethane	19	0.55	"	22.2		85.6	70-130	3.36	25	
1,2-Dichloroethane (EDC)	14	0.41	"	16.5		84.0	70-130	2.08	25	
Benzene	10	0.16	"	13.0		78.9	70-130	2.13	25	
Carbon tetrachloride	17	0.32	"	25.6		67.7	70-130	14.2	25	QL-11
Trichloroethene	18	0.55	"	21.9		81.8	70-130	3.78	25	-
Themoreculene										

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA61506 - TO-15										
LCS Dup (EA61506-BSD1)				Prepared &	k Analyzed:	15-Jan-16				
1,1,2-Trichloroethane	17	0.55	ug/m3	22.2		78.0	70-130	3.56	25	
Tetrachloroethene	21	0.69	"	27.6		75.8	70-130	2.80	25	
1,1,1,2-Tetrachloroethane	23	0.70	"	28.0		83.5	70-130	1.47	25	
Ethylbenzene	13	0.44	"	17.7		74.9	70-130	0.632	25	
m,p-Xylene	28	0.44	"	35.4		78.6	70-130	2.13	25	
o-Xylene	14	0.44	"	17.7		78.2	70-130	1.39	25	
1,1,2,2-Tetrachloroethane	19	0.70	"	28.0		67.1	70-130	2.27	25	QL-1L
Surrogate: 1,2-Dichloroethane-d4	45.3		"	42.9		106	76-134			
Surrogate: Toluene-d8	42.1		"	41.4		102	78-125			
Surrogate: 4-Bromofluorobenzene	66.9		"	72.9		91.8	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EA61504 - EPA 5030				
Blank (EA61504-BLK1)				Prepared & Analyzed: 15-Jan-16
Acetone	ND	5000	ug/m3	
2-Butanone (MEK)	ND	2500	"	
2-Hexanone (MBK)	ND	2500	"	
4-Methyl-2-pentanone (MIBK)	ND	2500	"	
Dichlorodifluoromethane (F12)	ND	500	"	
Chloromethane	ND	500	"	
Vinyl chloride	ND	50	"	
Bromomethane	ND	500	"	
Chloroethane	ND	500	"	
Trichlorofluoromethane (F11)	ND	500	"	
1,1-Dichloroethene	ND	500	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	500	"	
Carbon disulfide	ND	500	"	
Methylene chloride (Dichloromethane)	ND	500	"	
trans-1,2-Dichloroethene	ND	500	"	
1,1-Dichloroethane	ND	500	"	
cis-1,2-Dichloroethene	ND	500	"	
Chloroform	ND	100	"	
1,1,1-Trichloroethane	ND	500	"	
Carbon tetrachloride	ND	100	"	
1,2-Dichloroethane (EDC)	ND	100	"	
Benzene	ND	100	"	
Trichloroethene	ND	100	"	
1,2-Dichloropropane	ND	500	"	
Bromodichloromethane	ND	500	"	
cis-1,3-Dichloropropene	ND	500	"	
Toluene	ND	1000	"	
trans-1,3-Dichloropropene	ND	500	"	
1,1,2-Trichloroethane	ND	500	"	
1,2-Dibromoethane (EDB)	ND	500	"	
Tetrachloroethene	ND	100	"	
Dibromochloromethane	ND	500	"	
Chlorobenzene	ND	100	"	
Ethylbenzene	ND	500	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Reporting

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EA61504 - EPA 5030										
Blank (EA61504-BLK1)				Prepared &	Analyzed:	15-Jan-16				
1,1,1,2-Tetrachloroethane	ND	500	ug/m3							
m,p-Xylene	ND	500	"							
o-Xylene	ND	500	"							
Styrene	ND	500	"							
Bromoform	ND	500	"							
1,1,2,2-Tetrachloroethane	ND	500	"							
1,3,5-Trimethylbenzene	ND	500	"							
1,2,4-Trimethylbenzene	ND	500	"							
1,3-Dichlorobenzene	ND	500	"							
1,4-Dichlorobenzene	ND	500	"							
1,2-Dichlorobenzene	ND	500	"							
1,2,4-Trichlorobenzene	ND	500	"							
Hexachlorobutadiene	ND	500	"							
Surrogate: Dibromofluoromethane	2610		"	2500		105	75-125			
Surrogate: 1,2-Dichloroethane-d4	2670		"	2500		107	75-125			
Surrogate: Toluene-d8	2670		"	2500		107	75-125			
Surrogate: 4-Bromofluorobenzene	2670		"	2500		107	75-125			
LCS (EA61504-BS1)				Prepared &	z Analyzed:	15-Jan-16				
Dichlorodifluoromethane (F12)	3500	500	ug/m3	5000	,	70.7	70-130			
Vinyl chloride	6200	50	"	5000		123	70-130			
Chloroethane	5200	500	"	5000		105	70-130			
Trichlorofluoromethane (F11)	5200	500	"	5000		104	70-130			
1,1-Dichloroethene	5600	500	"	5000		112	70-130			
1,1,2 Trichlorotrifluoroethane (F113)	6200	500	"	5000		123	70-130			
Methylene chloride (Dichloromethane)	5400	500	"	5000		109	70-130			
trans-1,2-Dichloroethene	5900	500	"	5000		118	70-130			
1,1-Dichloroethane	5300	500	"	5000		107	70-130			
cis-1,2-Dichloroethene	5800	500	"	5000		116	70-130			
Chloroform	5800	100	"	5000		116	70-130			
1,1,1-Trichloroethane	5200	500	"	5000		103	70-130			
Carbon tetrachloride	6000	100	"	5000		121	70-130			
1,2-Dichloroethane (EDC)	5600	100	"	5000		112	70-130			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EA61504 - EPA 5030										
LCS (EA61504-BS1)				Prepared &	Analyzed:	15-Jan-16				
Benzene	5300	100	ug/m3	5000		106	70-130			
Trichloroethene	5700	100	"	5000		115	70-130			
Toluene	5200	1000	"	5000		105	70-130			
1,1,2-Trichloroethane	5900	500	"	5000		117	70-130			
Tetrachloroethene	6300	100	"	5000		126	70-130			
Ethylbenzene	5400	500	"	5000		107	70-130			
1,1,1,2-Tetrachloroethane	6400	500	"	5000		128	70-130			
m,p-Xylene	12000	500	"	10000		120	70-130			
o-Xylene	5400	500	"	5000		109	70-130			
1,1,2,2-Tetrachloroethane	4200	500	"	5000		84.7	70-130			
Surrogate: Dibromofluoromethane	2880		"	2500		115	75-125			
Surrogate: 1,2-Dichloroethane-d4	2620		"	2500		105	75-125			
Surrogate: Toluene-d8	2790		"	2500		112	75-125			
Surrogate: 4-Bromofluorobenzene	2440		"	2500		97.8	75-125			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS011316-14

1050 Crown Pointe Parkway, Suite 550Project Number: TLC Cleaners / Marietta, GAReported:Atlanta, GA 30338Project Manager: Mr. Justin Vickery21-Jan-16 09:42

Notes and Definitions

QL-1L The LCS and/or LCSD recoveries fell below the established control specifications for this analyte. Any result for this compound is

qualified and should be considered biased low.

QL-1L The LCS and/or LCSD recoveries fell below the established control specifications for this analyte. Any result for this compound is

qualified and should be considered biased low.

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP and the ISO 17025 programs, certification number L11-175.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 1-11-2016
Page 1 of 1

Lab Client and Project Information													Sampl	e Rec	eipt (L	ab Us	e Only)		
Lab Client/Consultant: EPS Inc.	in the sing the		tris edicar	Project Name / #:	TLC Clear	חנו	- Vet v	Toleran	110			Date F	Rec'd:	1/13	116	Contro	ol#: \V	002	1.01	
Lah Client Project Manager:	Vickery			Project Location:			ALC: CA	J. 197 (1)	(8,812)	e pe si		H&P I	Project a	# EF	SE	113	516-	-14		
Lab Client Address: 1050 Crown Po	Note Phore	Suite	550	Report E-Mail(s):	Marietta, ry Bemplum				20.00				Vork Ord				05			
Lab Client City, State, Zip:		30338		Jucke	ryGemplan	ning.a	m					Samp	le Intac] See N		low	
Discount of the second of the	9113	0-300													074			Temp:		
Reporting Requireme			Turnaround Time Sampler				rmatio	n			Ushrut		de Lab:	/([•	019	08				
KIM 1/3/2010 Excel EDD Other EDD:	Level IV	☐ 3-da		Testal	e h	185 3		# 04 100 27 104 28		Receip 17	ot Notes	T6	ng#: 187	502		Lab PM Initials: SUZ				
CA Geotracker Global ID:		<u> </u> 48-1	ar Rush	Rush Other: Date: 1-11-2016													Lab	PM Initi	als: $\bigcirc \mathcal{M}$	1
Check if Project Analyte List is A * Preferred VOC units (please cho	Check if Project Analyte List is Attached Samples were analyzed Samples							st / Project List	□ 10-15	Naphthalene ☐ 8260SV ☐ TO-15 ☐ TO-17m	TPHv as Gas □ 8260SVm □ TO-15m	(sorbent tube)	natic Fractions ☐ TO-15m	ompound A	A 8015m	y ASTM D1945 02 □ N2				
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tedlar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short Lis ☐ 8260SV [Oxygenates 8260SV	Naphthalene □ 8260SV □	TPHv as Gas ☐ 8260SVm	TPHv as Diese ☐ TO-17m	Aromatic/Aliphatic Fractions ☐ 8260SVm ☐ TO-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945 ☐ CO2 ☐ O2 ☐ N2			
16008- IA-1		01/08/1	15:55	IA	GL	484	-2.12	X										1		
16008-IA-Z		01/08/11	15.57	IA	6L	483	-89	X												
16008- IA-3		01/08/10	15:59	AA	62	278	-1.76	X						¥						
16011-56-4 @		orhille	10:06	SS	400 26	386	.56	X												
16011-56-5 (8)		01/11/16	10;22	55	400 mL	016	.18	X										Propring		
16011-56-6		01/11/16	10:35	55	400 mL	275	:78	X											4 3	
16011-86-7 (4)		01/11/16	10:50	55	YounL	149	.22	X												
16011 - SG-DUP		oilili	12:00	55	400 mb	324	.40	X												
																		1		
Approved/Relinquished by		Compa	Inc.	01/11/16	Time: 2:00	Received by:	Jou	'Uhu	un	the		Company:	>		Date:	3/16		Time:	pm	
Approved/Relinquished by:		Compa		Date:	Time:	Received by:	7000	0.000		7		Company:			Date:	110		Time:		
Approved/Relinquished by:		Compa	ny:	Date: Time: Received by:						Company:			Date:			Time:				

PERRY JOHNSON LABORATORY ACCREDITATION, INC.

Certificate of Accreditation

Perry Johnson Laboratory Accreditation, Inc. has assessed the Laboratory of:

H&P Mobile Geochemistry, Inc.

2470 Impala Drive, Carlsbad, CA 92010

and

Mobile Laboratory VIN# 1FDKE37G3RHA65885 (SB1)

Mobile Laboratory VIN# 1FDKE37G8NHB50666 (SB2)

Mobile Laboratory VIN 2GCHG31K1N4152184 (Lab 3)

Mobile Laboratory VIN# 1GBKH32K6P3316436 (Lab 4)

Mobile Laboratory VIN# 1GBKH32K8R3323391 (Lab 6)

Mobile Laboratory VIN# 1FDKE37G0JHC23992 (A1)

Mobile Laboratory VIN# 1FDKE30GXSHB60220 (A2)

(Hereinafter called the Organization) and hereby declares that Organization has met the requirements of ISO/IEC 17025:2005 "General Requirements for the competence of Testing and Calibration Laboratories" and the DoD Quality Systems Manual for Environmental Laboratories Version 5.0 July 2013 and is accredited is accordance with the:

United States Department of Defense Environmental Laboratory Accreditation Program (DoD-ELAP)

This accreditation demonstrates technical competence for the defined scope:

Environmental Testing

(As detailed in the supplement)

Accreditation claims for such testing and/or calibration services shall only be made from addresses referenced within this certificate. This Accreditation is granted subject to the system rules governing the Accreditation referred to above, and the Organization hereby covenants with the Accreditation body's duty to observe and comply with the said rules.

For PJLA:

Initial Accreditation Date:

Issue Date:

Expiration Date:

October 31, 2011

August 12, 2015

October 31, 2017

Tracy Szerszen

Accreditation No.: 69070

Certificate No.:

President/Operations Manager

70 L15-279

Perry Johnson Laboratory Accreditation, Inc. (PJLA) 755 W. Big Beaver, Suite 1325 The validity of this certificate is maintained through ongoing assessments based on a continuous accreditation cycle. The validity of this certificate should be

Page 1 of 27

Certificate of Accreditation: Supplement ISO/IEC 17025:2005 and DoD-ELAP

H & P Mobile Geochemistry Inc.

2470 Impala Drive, Carlsbad, CA 92010 Contact: Janis Villarreal Phone: 760-804-9678

Accreditation is granted to mobile laboratory to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Air	H&P 8260SV	VOC	1,1-Difluoroethane (LCC)
Air	H&P 8260SV	VOC	1,1,1,2-Tetrachloroethane
Air	H&P 8260SV	VOC	1,1,1-Trichloroethane
Air	H&P 8260SV	VOC	1,1,2,2-Tetrachloroethane
Air	H&P 8260SV	VOC	1,1,2-Trichloroethane
Air	H&P 8260SV	VOC	1,1,2-Trichlorotrifluoroethane (F113)
Air	H&P 8260SV	VOC	1,1-Dichloroethane
Air	H&P 8260SV	VOC	1,1-Dichloroethene
Air	H&P 8260SV	VOC	1,1-Dichloropropene
Air	H&P 8260SV	VOC	1,2,3-Trichlorobenzene
Air	H&P 8260SV	VOC	1,2,3-Trichloropropane
Air	H&P 8260SV	VOC	1,2,4-Trichlorobenzene
Air	H&P 8260SV	VOC	1,2,4-Trimethylbenzene
Air	H&P 8260SV	VOC	1,2-Dibromo-3-chloropropane
Air	H&P 8260SV	VOC	1,2-Dibromoethane (EDB)
Air	H&P 8260SV	VOC	1,2-Dichlorobenzene
Air	H&P 8260SV	VOC	1,2-Dichloroethane (EDC)
Air	H&P 8260SV	VOC	1,2-Dichloropropane
Air	H&P 8260SV	VOC	1,3,5-Trimethylbenzene
Air	H&P 8260SV	VOC	1,3-Dichlorobenzene
Air	H&P 8260SV	VOC	1,3-Dichloropropane
Air	H&P 8260SV	VOC	1,4-Dichlorobenzene
Air	H&P 8260SV	VOC	2,2-Dichloropropane
Air	H&P 8260SV	VOC	2-Butanone (MEK)
Air	H&P 8260SV	VOC	2-Chlorotoluene
Air	H&P 8260SV	VOC	2-Hexanone (MBK)
Air	H&P 8260SV	VOC	4-Chlorotoluene
Air	H&P 8260SV	VOC	4-Methyl-2-pentanone (MIBK)
Air	H&P 8260SV	VOC	Acetone
Air	H&P 8260SV	VOC	Benzene
Air	H&P 8260SV	VOC	Bromobenzene
Air	H&P 8260SV	VOC	Bromodichloromethane
Air	H&P 8260SV	VOC	Bromoform
Air	H&P 8260SV	VOC	Bromomethane

Certificate of Accreditation: Supplement ISO/IEC 17025:2005 and DoD-ELAP

H & P Mobile Geochemistry Inc.

2470 Impala Drive, Carlsbad, CA 92010 Janis Villarreal Phone: 760-804-9678

Accreditation is granted to the facility to perform the following testing:

Matrix	Standard/Method	Technology	Analyte
Air	H&P 8260SV	VOC	Carbon tetrachloride
Air	H&P 8260SV	VOC	Chlorobenzene
Air	H&P 8260SV	VOC	Chloroethane
Air	H&P 8260SV	VOC	Chloroform
Air	H&P 8260SV	VOC	Chloromethane
Air	H&P 8260SV	VOC	cis-1,2-Dichloroethene
Air	H&P 8260SV	VOC	cis-1,3-Dichloropropene
Air	H&P 8260SV	VOC	Dibromochloromethane
Air	H&P 8260SV	VOC	Dibromomethane
Air	H&P 8260SV	VOC	Dichlorodifluoromethane (F12)
Air	H&P 8260SV	VOC	Diisopropyl ether (DIPE)
Air	H&P 8260SV	VOC	Ethyl tertiary-butyl ether (ETBE)
Air	H&P 8260SV	VOC	Ethylbenzene
Air	H&P 8260SV	VOC	Hexachlorobutadiene
Air	H&P 8260SV	VOC	Isopropylbenzene (Cumene)
Air	H&P 8260SV	VOC	m,p-Xylene
Air	H&P 8260SV	VOC	Methyl tertiary-butyl ether (MTBE)
Air	H&P 8260SV	VOC	Methylene chloride (Dichloromethane)
Air	H&P 8260SV	VOC	Naphthalene
Air	H&P 8260SV	VOC	n-Butylbenzene
Air	H&P 8260SV	VOC	n-Propylbenzene
Air	H&P 8260SV	VOC	o-Xylene
Air	H&P 8260SV	VOC	p-Isopropyltoluene
Air	H&P 8260SV	VOC	sec-Butylbenzene
Air	H&P 8260SV	VOC	Styrene
Air	H&P 8260SV	VOC	tert-Butylbenzene
Air	H&P 8260SV	VOC	Tertiary-amyl methyl ether (TAME)
Air	H&P 8260SV	VOC	Tertiary-butyl alcohol (TBA)
Air	H&P 8260SV	VOC	Tetrachloroethene
Air	H&P 8260SV	VOC	Toluene
Air	H&P 8260SV	VOC	trans-1,2-Dichloroethene
Air	H&P 8260SV	VOC	trans-1,3-Dichloropropene
Air	H&P 8260SV	VOC	Trichloroethene
Air	H&P 8260SV	VOC	Trichlorofluoromethane (F11)
Air	H&P 8260SV	VOC	Vinyl chloride