Drought Indicators Report

Georgia Environmental Protection Division
June 2018
Background

Pursuant to the Rules for Drought Management, Section 391-3-3-.04 Drought Indicators and Triggers, the Director of EPD monitors climatic indicators and water supply conditions to assess drought occurrence and severity, and its impact upon the ability of public water systems to provide adequate supplies of water. These indicators and conditions may include, but not be limited, to the following:

- U.S. Drought Monitor;
- Precipitation;
- Streamflow;
- Groundwater;
- Reservoir levels;
- Short term climate predictions;
- Soil moisture; and
- Water supply conditions.
Background

• The Rules require EPD to report on current climatic indicators at least semi-annually or monthly when any part of the state has experienced at least two consecutive months of severe drought.

• This reports compare current conditions to historical levels (and/or reservoir rule curves) for each of the following indicators:
 – Precipitation during the prior 3, 6, and 12 months;
 – Streamflow at the select United States Geological Survey gages;
 – Groundwater levels at select United States Geological Survey monitoring wells; and
 – Reservoir levels at Allatoona Lake, Lake Hartwell, Clarks Hill Lake, and Lake Lanier.

• The following sections of this presentation provide the data and information sources analyzed by EPD in developing this drought indicators report for conditions as of June 7, 2018.
Drought Indicator Analysis Summary (slide 1 of 2)

• **U.S. Drought Monitor** — On the latest US Drought Monitor map, the entire State of Georgia is free of drought conditions.

 — Key changes from last month: On the May 8, 2018 US Drought Monitor, there was wide-spread “Abnormally Dry” or “Moderate Drought” conditions in central Georgia. There was also an area of “Severe Drought” in parts of southeast Georgia. Such dryness has completely disappeared over the past month.

• **Precipitation** — Three-month precipitation has exceeded 100% of normal for most of the State, with northeast-southwest orientated bands of over 150% of normal precipitation amounts. Six-month precipitation has exceeded 100% of normal for most of the State, with the exception of a narrow band in south Georgia (from the southwest corner to Savannah area) and a few counties along the Georgia-Alabama border showing some moderate amount of deficit from 100% normal. Twelve-month precipitation has exceeded 100% of normal for most of the State, with the exception of pockets of moderate deficit in southwest Georgia and northwest Georgia.

• **Soil Moisture** — Soil moisture conditions across the State are either wetter than normal or normal.
Drought Indicator Analysis Summary (slide 2 of 2)

• **Streamflow** – Of the thirty-four gages used to monitor stream flow conditions, twenty-four have monthly average flows in the wetter half of the hydrologic spectrum (higher than median). The other ten recorded flows that are between 20th and 50th percentile (lower than median but near normal).

• **Reservoir Levels** – All federal reservoirs are above full pool levels or close to full.

• **Short-term Climate Prediction** – Above normal precipitation statewide. Above normal temperature statewide.

• **Water Supplies** – No known issues with any systems
US Drought Monitor

Data Source:
http://droughtmonitor.unl.edu/
June 5, 2018
(Released Thursday, Jun. 7, 2018)
Valid 8 a.m. EDT

Drought Conditions (Percent Area)

<table>
<thead>
<tr>
<th></th>
<th>None</th>
<th>D0-D4</th>
<th>D1-D4</th>
<th>D2-D4</th>
<th>D3-D4</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Last Week</td>
<td>99.17</td>
<td>0.83</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>05-29-2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Months Ago</td>
<td>29.66</td>
<td>70.34</td>
<td>37.36</td>
<td>2.07</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>03-06-2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of Calendar Year</td>
<td>12.14</td>
<td>87.86</td>
<td>40.66</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>01-02-2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of Water Year</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>09-26-2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Year Ago</td>
<td>59.69</td>
<td>40.31</td>
<td>21.10</td>
<td>7.20</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>06-06-2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intensity:
- **D0** Abnormally Dry
- **D3** Extreme Drought
- **D1** Moderate Drought
- **D2** Severe Drought
- **D1** Moderate Drought
- **D4** Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

Author:
Anthony Artusa
NOAA/NWS/NCEP/CPC

http://droughtmonitor.unl.edu/
3, 6, and 12 Month Percent of Normal Precipitation

Data Source:
http://climate.ncsu.edu/drought
3 Month Percent of Normal Precipitation

90 day Percent of Normal Precipitation for June 06, 2018
6 Month Percent of Normal Precipitation

6 month Percent of Normal Precipitation for June 06, 2018
12 Month Percent of Normal Precipitation
Soil Moisture Conditions

Data Source:
http://www.hydro.washington.edu/forecast/monitor/curr/con us.mexico/east.vic.sm_qnt.gif
Current (daily updated) percentiles for soil moisture (SWE) with respect to the climatological period (1916-2004).
Streamflow Conditions

Data Source: USGS
Streamflow Monitoring

• As shown on the following slide, EPD Monitors 34 USGS stream gages in 13 of the State’s major river basins to assess drought conditions.

• These gages were selected because each has:
 – Long-term and relatively complete records for recent decades; and
 – Relatively low consumptive water use implications and streamflows are not heavily influenced by dams.

• Note: Hydrologic conditions of major rivers with streamflows that are heavily influenced by dams can be assessed by reviewing status of major storage reservoirs
<table>
<thead>
<tr>
<th>GAGE#</th>
<th>BASIN</th>
<th>GAGE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TENNESSEE</td>
<td>LOOKOUT CREEK NEAR NEW ENGLAND</td>
</tr>
<tr>
<td>2</td>
<td>TENNESSEE</td>
<td>NOTTELY RIVER NEAR BLAIRSVILLE</td>
</tr>
<tr>
<td>3</td>
<td>COOSA</td>
<td>CHATTOOGA RIVER AT SUMMERTON</td>
</tr>
<tr>
<td>4</td>
<td>COOSA</td>
<td>TALKING ROCK CREEK NEAR HINTON</td>
</tr>
<tr>
<td>5</td>
<td>COOSA</td>
<td>ETOWAH RIVER AT CANTON</td>
</tr>
<tr>
<td>6</td>
<td>CHATTahoochee</td>
<td>CHATTahoochee RIVER AT CORNELIA</td>
</tr>
<tr>
<td>7</td>
<td>CHATTahoochee</td>
<td>CHESTATEE RIVER NEAR DAHLONEGA</td>
</tr>
<tr>
<td>8</td>
<td>CHATTahoochee</td>
<td>NEW RIVER AT GA 100 NEAR CORINTH</td>
</tr>
<tr>
<td>9</td>
<td>CHATTahoochee</td>
<td>UPATOI CREEK AT COLUMBUS</td>
</tr>
<tr>
<td>10</td>
<td>FLINT</td>
<td>FLINT RIVER AT GA 26 NEAR MONTEZUMA</td>
</tr>
<tr>
<td>11</td>
<td>FLINT</td>
<td>FLINT RIVER AT ALBANY</td>
</tr>
<tr>
<td>12</td>
<td>FLINT</td>
<td>ICHAWAYNOCHAWAY CREEK AT MILFORD</td>
</tr>
<tr>
<td>13</td>
<td>FLINT</td>
<td>SPRING CREEK NEAR IRON CITY</td>
</tr>
<tr>
<td>14</td>
<td>OCMULGEE</td>
<td>ALCOVY RIVER ABOVE COVINGTON</td>
</tr>
<tr>
<td>15</td>
<td>OCMULGEE</td>
<td>OCMULGEE RIVER AT MACON</td>
</tr>
<tr>
<td>16</td>
<td>OCMULGEE</td>
<td>TOBESOFKEE CREEK NEAR MACON</td>
</tr>
<tr>
<td>17</td>
<td>OCMULGEE</td>
<td>TUCSAWHATCHEE CREEK NEAR HAWKINSVILLE</td>
</tr>
<tr>
<td>18</td>
<td>OCONEE</td>
<td>MIDDLE OCONEE RIVER NEAR ATHENS</td>
</tr>
<tr>
<td>19</td>
<td>OCONEE</td>
<td>LITTLE RIVER NEAR EATONTON</td>
</tr>
<tr>
<td>20</td>
<td>OCONEE</td>
<td>OCONEE RIVER AT DUBLIN</td>
</tr>
<tr>
<td>21</td>
<td>ALTAMAHNA</td>
<td>OHOOPEE RIVER NEAR REIDSVILLE</td>
</tr>
<tr>
<td>22</td>
<td>SAVANNAH</td>
<td>CHATTOOGA RIVER NEAR CLAYTON</td>
</tr>
<tr>
<td>23</td>
<td>SAVANNAH</td>
<td>BROAD RIVER NEAR BELL</td>
</tr>
<tr>
<td>24</td>
<td>SAVANNAH</td>
<td>BEAVERDAM CREEK NEAR SARDIS</td>
</tr>
<tr>
<td>25</td>
<td>SAVANNAH</td>
<td>BRIER CREEK AT MILLHAVEN</td>
</tr>
<tr>
<td>26</td>
<td>Ogeechee</td>
<td>CANOOCHEE RIVER NEAR CLAXTON</td>
</tr>
<tr>
<td>27</td>
<td>Ogeechee</td>
<td>Ogeechee RIVER NEAR EDEN</td>
</tr>
<tr>
<td>28</td>
<td>OCHLOCKONEE</td>
<td>OCHLOCKONEE RIVER NEAR THOMASVILLE</td>
</tr>
<tr>
<td>29</td>
<td>SUWANEE</td>
<td>WITHLACOOCHEE RIVER NEAR PINETTA FL</td>
</tr>
<tr>
<td>30</td>
<td>SUWANEE</td>
<td>ALAPAHA RIVER AT STATENELLE</td>
</tr>
<tr>
<td>31</td>
<td>SUWANEE</td>
<td>SUWANEE RIVER AT US 441, AT FARGO</td>
</tr>
<tr>
<td>32</td>
<td>SATILLA</td>
<td>SATILLA RIVER NEAR WAYCROSS</td>
</tr>
<tr>
<td>33</td>
<td>SATILLA</td>
<td>LITTLE SATILLA RIVER NEAR OFFERMAN</td>
</tr>
<tr>
<td>34</td>
<td>ST MARY</td>
<td>ST MARYS RIVER NEAR MACCLENNY FL</td>
</tr>
</tbody>
</table>
Streamflow Graphs

• For each of the 34 gages, EPD has prepared a graph that shows monthly average streamflow from January, 2018 through May, 2018;

• To help put these streamflow conditions into perspective, for comparison purposes, each graph also shows:
 – Monthly average streamflows for the years 2007 and 2011 when streamflows were at or near recorded low levels across much of the state; and
 – A statistical composite of historical conditions showing the “driest” 50, 20, 10, and 5 percent of all recorded monthly average stream flows at the same gage.
How to Read the Streamflow Graphs

Example #1: Etowah River at Canton

The streamflow graph for Gage #5, USGS Etowah River gage at Canton shows:

- Average stream flow for May 2018 was 1,339 cfs. The statistical composite of all historical data for this gage shows that average streamflow in May has historically been lower than May 2018 about 40% of the time; about 60% of the time in May it has been higher.

- Average stream flow in May 2011 was 726 cfs. The statistical composite of all historical data for this gage shows that average streamflow for May has historically been lower than May 2011 only 10% of the time; 90% of the time in May it has been higher.

- Average stream flow in May 2007 was 512 cfs. The statistical composite of all historical data for this gage shows that average streamflow for May has historically been lower than May 2007 only 5% of the time; 95% of the time in May it has been higher.
How to Read the Streamflow Graphs

Example #2: **Flint River at Albany**

The streamflow graph for Gage #11, [USGS Flint River gage at Albany](https://waterdata.usgs.gov/usa/nwis/gw?site_no=02434500) shows:

- Average stream flow for May 2018 was 5,785 cfs. The statistical composite of all historical data for this gage shows that average streamflow in May has historically been lower than May 2018 about 65% of the time; about 35% of the time in May it has been higher.

- Average stream flow in May 2011 was 1,575 cfs. The statistical composite of all historical data for this gage shows that average streamflow for May has historically been lower than May 2011 about 3% of the time; about 97% of the time in May it has been higher.

- Average stream flow in May 2007 was 1,291 cfs. The statistical composite of all historical data for this gage shows that average streamflow for May has historically been lower than May 2007 about 1% of the time; about 99% of the time in May it has been higher.
Gage #4, USGS #02382200, Coosa Basin,
TALKING ROCK CREEK NEAR HINTON, GA

Monthly Average Flow (cfs)

- Driest 50%
- Driest 20%
- Driest 10%
- Driest 5%
- Minimum

Yr2007
Yr2011
Yr2018
Gage #6, USGS #02331600, Chatthoochee Basin, CHATTAHOOCHEE RIVER AT CORNELIA, GA

Monthly Average Flow (cfs)

- Driest 50%
- Driest 20%
- Driest 10%
- Driest 5%
- Minimum

Year:
- Yr2007
- Yr2011
- Yr2018

Back to Map
Gage #9, USGS #02341800, Chattahoochee Basin, UPATOI CREEK NEAR COLUMBUS, GA

Monthly Average Flow (cfs)

- Driest 50%
- Driest 20%
- Driest 10%
- Driest 5%
- Minimum

Yr2007
Yr2011
Yr2018
Gage #10. USGS #02349605, Flint Basin, FLINT RIVER AT GA26 NEAR MONTEZUMA, GA

Driest 50%
Driest 20%
Driest 10%
Driest 5%
Minimum
Yr2007
Yr2011
Yr2018
Gage #12. USGS #02353500, Flint Basin, Ichawaynochaway Creek at Milford, GA

Monthly Average Flow (cfs)

- Driest 50%
- Driest 20%
- Driest 10%
- Driest 5%
- Minimum

Years:
- Yr2007
- Yr2011
- Yr2018

Back to Map
Gage #16. USGS #02213500, Ocmulgee Basin,
TOBESOFKEE CREEK near MACON, GA

Monthly Average Flow (cfs)

Driest 50%
Driest 20%
Driest 10%
Driest 5%
Minimum

Yr2007
Yr2011
Yr2018

Back to Map
Gage #21. USGS #02225500, Altamaha Basin,
OHOOPpee River near Reidsville, GA

Monthly Average Flow (cfs)

Back to Map
Gage #25. USGS #02198000, Savannah Basin, BRIER CREEK at MILLHAVEN, GA

Monthly Average Flow (cfs)

- Driest 50%
- Driest 20%
- Driest 10%
- Driest 5%
- Minimum

Year: Yr2007, Yr2011, Yr2018

Back to Map
Gage #26. USGS #02203000, Ogeechee Basin, CANOOCHIEE RIVER near CLAXTON, GA

Monthly Average Flow (cfs)

- Driest 50%
- Driest 20%
- Driest 10%
- Driest 5%
- Minimum

Yr2007
Yr2011
Yr2018

Back to Map
Gage #28. USGS #02327500, Ochlockonee Basin, OCHLOCKONEE RIVER near THOMASVILLE, GA

Monthly Average Flow (cfs)
Gage #29. USGS #02319000, Suwanee Basin, WITHLACOCHEE RIVER near PINETTA, FL

Monthly Average Flow (cfs)

Driest 50%
Driest 20%
Driest 10%
Driest 5%
Minimum
Yr2007
Yr2011
Yr2018

Back to Map
Groundwater Levels

Data Source: USGS
Rationale for Choosing USGS Monitoring Wells

EPD monitors 17 groundwater USGS monitoring wells shown on the following slide to assess drought conditions. These wells were selected for monitoring because they have:

• Long-term monitoring records consisting of three decades or more of data; and
• Real-time monitoring that represents the most up-to-date conditions.
USGS Wells Monitored

Chattahoochee Basin
1. 16MM03

Flint Basin
2. 11AA01
3. 13L180
4. 12M017
5. 08K001
6. 11K003
7. 12K014
8. 13J004
9. 08G001
10. 10G313
11. 09F520
12. 21T001
13. 03PP01

Oconeee Basin
14. 19E009
15. 35P094
16. 11J011

Tennessee Basin
17. 27E004
Groundwater Level Graphs

• For each of the 17 groundwater wells, EPD has prepared a graph that shows monthly average groundwater levels from January, 2018 through May, 2018;

• To help put these levels into perspective, for comparison purposes, each graph also shows:
 – Monthly average levels at that same well for the years 2007 and 2011 when groundwater levels were at or near recorded low levels across much of the state; and
 – And a statistical composite of historical conditions at that same gage showing the “lowest” 50, 20, 10, and 5 percent of all recorded monthly average levels at the same well.
How to Read the Groundwater Level Graphs

Example: **Well #11, 09F520, Flint River Basin**

The groundwater level graph for Well #11, USGS 09F520 shows:

- The average monthly groundwater level for May 2018 was 49ft below land surface. The statistical composite of all historical data for this well shows that monthly average groundwater levels in May have historically been lower than May 2018 about 20% of the time; about 80% of the time in May they have been higher.

- The average monthly groundwater level in May 2011 was 52ft below land surface. The statistical composite of all historical data for this well shows that monthly average groundwater levels in May have historically been lower than May 2011 about 2% of the time; about 98% of the time in May they have been higher.

- The average monthly groundwater level in May 2007 was 53.4ft below land surface. The statistical composite of all historical data for this well shows that monthly average groundwater levels in May have historically been lower than May 2007 about 0.1% of the time; about 99.9% of the time in May they have been higher.
Well #2, 11AA01, Surficial Aquifer in Flint Basin,
Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)

Lowest 5%
Lowest 10%
Lowest 20%
Below Median
Above Median
Yr2007
Yr2011
Yr2018
Well #3, 13L180, Floridan Aquifer in Flint Basin,
Monthly Average Depth Below Land Surface

- Depth below Land Surface (ft.)

- Yr2007
- Yr2011
- Yr2018

- Yr2007
- Yr2011
- Yr2018

- Lowest 5%
- Lowest 10%
- Lowest 20%
- Below Median
- Above Median

Back to Map
Well #6, 11K003, Floridan Aquifer in Flint Basin, Monthly Average Depth Below Land Surface

- Lowest 5%
- Lowest 10%
- Lowest 20%
- Below Median
- Above Median

Yr2007
Yr2011
Yr2018
Well #7, 12K014, Floridan Aquifer in Flint Basin,
Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)

Lowest 5%
Lowest 10%
Lowest 20%
Below Median
Above Median

Yr2007
Yr2011
Yr2018

Back to Map
Well #8, 13J004, Floridan Aquifer in Flint Basin, Monthly Average Depth Below Land Surface

- Depth below Land Surface (ft.)
- Well #8, 13J004, Floridan Aquifer in Flint Basin, Monthly Average Depth Below Land Surface
- Lowest 5%
- Lowest 10%
- Lowest 20%
- Below Median
- Above Median
- Yr2007
- Yr2011
- Yr2018

Back to Map
67
Well #9, 08G001, Floridan Aquifer in Flint Basin,
Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)

Lowest 5%
Lowest 10%
Lowest 20%
Below Median
Above Median
Yr2007
Yr2011
Yr2018

Back to Map
Well #10, 10G313, Floridan Aquifer in Flint Basin, Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)

Lowest 5%
Lowest 10%
Lowest 20%
Below Median
Above Median
Yr2007
Yr2011
Yr2018
Well #11, 09F520, Floridan Aquifer in Flint Basin, Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)

-54 ft
-53 ft

Lowest 5%
Lowest 10%
Lowest 20%
Below Median
Above Median
Yr2007
Yr2011
Yr2018

Back to Map
Back to Interpretation
Well #12, 21T001, Floridan Aquifer in Oconee Basin,
Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)

Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

Lowest 5%
Lowest 10%
Lowest 20%
Below Median
Above Median
Yr2007
Yr2011
Yr2018

Back to Map
Well #13, 03PP01, Valley and Ridge Aquifer in Tennessee Basin,
Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)

-25
-20
-15
-10
-5
0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Well #13, 03PP01, Valley and Ridge Aquifer in Tennessee Basin,
Monthly Average Depth Below Land Surface

Lowest 5%
Lowest 10%
Lowest 20%
Below Median
Above Median
Yr2007
Yr2011
Yr2018

Back to Map
Well #14, 19E009, Floridan Aquifer in Suwanee Basin, Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)

Below Median
Above Median
Yr2007
Yr2011
Yr2018
Well #16, 11J011, Caliborne Aquifer in Flint Basin,
Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)
Well #16, 11J011, Caliborne Aquifer in Flint Basin, Monthly Average Depth Below Land Surface

Lowest 5%
Lowest 10%
Lowest 20%
Below Median
Above Median
Yr2007
Yr2011
Yr2018

Back to Map
Well #17, 27E004, Floridan Aquifer in Suwanee Basin,
Monthly Average Depth Below Land Surface

Depth below Land Surface (ft.)

-78
-76
-74
-72
-70
-68
-66
-64
-62
-60
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Lowest 5%
Lowest 10%
Lowest 20%
Below Median
Above Median
Yr2007
Yr2011
Yr2018

Back to Map
Reservoir Levels

Data Source:
US Army Corps of Engineers
Coosa Basin
1. Carters
2. Allatoona

Chattahoochee Basin
3. Lanier
4. West Point
5. W.F. George

Savannah Basin
6. Hartwell
7. Thurmond

EPD monitors the water levels of seven reservoirs to assess drought conditions.
Reservoir Elevation Graphs

- The following graphs show the reservoir elevation curves for January, 2018 through May, 2018.
- Each graph also shows the Action Zone Divides (or Levels) for each reservoir:
 - Zone 1 is the top layer of the conservation pool
 - Zone 2 is the layer below Zone 1
 - Zone 4 is the lowest layer in the conservation pool
 - There is no conservation storage below the bottom of Zone 4
- To put 2018 reservoir elevations into perspective, elevations for 2007 and 2011 are also shown.
W.F. GEORGE ELEVATION

Elevation (ft)

Top of conservation
Top of zone 2
Top of Zone 3
Top of zone 4
Y2007
Y2011
Yr 2018

Zone 1
Zone 2
Zone 3
Zone 4

Back to Map
2018 ACF Basin Composite Conservation and Flood Storage

Top of Conservation
Composite Zone 1
Composite Zone 2
Composite Zone 3
Composite Zone 4
Drought Zone

George Conservation
West Point Conservation
Lake Lanier Conservation

George Flood Storage
West Point Flood Storage
Lake Lanier Flood Storage

Add value of 1,856,000 acre-ft to include inactive storage.

Actual data thru 6-4-2018

Compiled by USACOE.
LAKE CLARK HILL (THURMOND) ELEVATION

Elevation (ft)

Top of Conservation Pool
Level 1
Level 2
Level 3
Level 4

Y2007
Y2011
Y2018
Climate Prediction Center
3-month Temperature and Precipitation Probability Outlook
and Seasonal Drought Outlook

Data Source:
http://www.cpc.ncep.noaa.gov/
U.S. Seasonal Drought Outlook
Drought Tendency During the Valid Period
Valid for May 17 - August 31, 2018
Released May 17, 2018

Depicts large-scale trends based on subjectively derived probabilities guided by short- and long-range statistical and dynamical forecasts. Use caution for applications that can be affected by short lived events. "Ongoing" drought areas are based on the U.S. Drought Monitor areas (intensities of D1 to D4).

NOTE: The tan areas imply at least a 1-category improvement in the Drought Monitor intensity levels by the end of the period, although drought will remain. The green areas imply drought removal by the end of the period (D0 or none).

Author:
Adam Allgood
NOAA/NWS/NCEP/Climate Prediction Center

http://go.usa.gov/3eZ73