Draft

Total Maximum Daily Load Evaluation

for

Two Stream Segments in the St. Mary’s River Basin for Bacteria

Submitted to: The U.S. Environmental Protection Agency
Region 4
Atlanta, Georgia

Submitted by: The Georgia Department of Natural Resources
Environmental Protection Division
Atlanta, Georgia

August 2022

TMDL Action ID: GAR4_22_08_02
Table of Contents

EXECUTIVE SUMMARY.. iv
1.0 INTRODUCTION... 1
 1.1 Background .. 1
 1.2 Watershed Description .. 1
 1.3 State Water Planning .. 2
 1.4 Water Quality Standard .. 2
2.0 WATER QUALITY ASSESSMENT ... 10
3.0 SOURCE ASSESSMENT .. 11
 3.1 Point Source Assessment ... 11
 3.1.1 Wastewater Treatment Facilities ... 11
 3.1.2 Regulated Stormwater Discharges ... 13
 3.1.3 Concentrated Animal Feeding Operations ... 14
 3.2 Nonpoint Source Assessment .. 14
 3.2.1 Wildlife .. 15
 3.2.2 Agricultural Livestock .. 15
 3.2.3 Urban Development .. 16
4.0 ANALYTICAL APPROACH ... 20
 4.1 Loading Curve Approach ... 20
5.0 TOTAL MAXIMUM DAILY LOAD .. 23
 5.1 Wasteload Allocations .. 23
 5.1.1 Wastewater Treatment Facilities ... 23
 5.1.2 Regulated Stormwater Discharges ... 24
 5.1.3 Concentrated Animal Feeding Operations ... 25
 5.2 Load Allocations ... 26
 5.3 Seasonal Variation ... 26
 5.4 Margin of Safety ... 26
 5.5 Total Fecal Coliform Load ... 26
6.0 RECOMMENDATIONS ... 29
 6.1 Monitoring ... 29
 6.2 Fecal Coliform Management Practices .. 29
 6.2.1 Point Source Approaches ... 30
 6.2.2 Nonpoint Source Approaches ... 30
 6.3 Reasonable Assurance .. 32
 6.4 Public Participation ... 32
7.0 INITIAL TMDL IMPLEMENTATION PLAN .. 33
 7.1 Impaired Segments ... 33
 7.2 Potential Sources ... 35
 7.3 Management Practices and Activities .. 35
 7.4 Monitoring .. 36
 7.5 Future Action ... 36
REFERENCES ... 39
List of Tables
Table 1: Bacterial Loads and Required Bacterial Load Reductions
Table 2: Stream Segments Listed on the 2022 303(d) List for Bacteria in the St. Mary’s River Basin
Table 3: St. Mary’s River Basin Land Coverage
Table 4: Sampling Stations and Dates – St. Mary’s River Basin
Table 5: NPDES Facilities Discharging Fecal Coliform in the St. Mary's River Basin
Table 6: Estimated Agricultural Livestock Populations in Counties Containing the 303(d) Listed Segment Watershed in the St. Mary’s River Basin
Table 7: Estimated Number of Septic Systems in Counties Containing the Watershed of the 303(d) Listed Segment in the St. Mary’s River Basin
Table 8: Permitted Land Application Systems in the St. Mary’s River Basin
Table 9: Permitted Landfills in the Suwannee River Basin
Table 10: USGS Flow Gauge Located on the 303(d) Listed Segment in the St. Mary's River Basin
Table 11: Bacteria Loads and Required Load Reductions
Table 12: Waterbodies Listed on the 2022 303(d) List for Bacteria in the St. Mary’s River Basin
Table A-1: Water Quality Monitoring Stations
Table A-2: Clay Branch at Gibson Post Road Water Quality Monitoring Data
Table A-3: Clay Branch at Okefenokee Road Water Quality Monitoring Data
Table A-4: Long Branch Water Quality Monitoring Data

List of Figures
Figure 1: St. Mary’s River Basin and the River Basins of Georgia
Figure 2: Major Political Boundaries, Water Features, and U.S.G.S. 12-digit HUC
Figure 3: Impaired Stream Segments of Clay Branch and Long Branch in Lower Spanish Creek Sub-basin
Figure 4: Boundaries of the Regional Water Planning Councils and the Metropolitan North Georgia Water Planning District
Figure A-1: Clay Branch Fecal Coliform Geometric Mean Loads and Summer and Winter TMDL Curves for both Sampling Stations
Figure A-2: Long Branch Fecal Coliform Geometric Mean Loads and Summer and Winter TMDL Curves

List of Appendices
Appendix A: 30-day Geometric Mean Fecal Coliform Monitoring Data
EXECUTIVE SUMMARY

The State of Georgia assesses its waterbodies for compliance with water quality standards criteria established for their designated uses as required by the Federal Clean Water Act (CWA). Assessed waterbodies are placed into one of three categories, supporting designated use, not supporting designated use, or assessment pending, depending on water quality assessment results. These waterbodies are found on Georgia’s 2022 305(b) list as required by that section of the CWA that defines the assessment process and are published in *Water Quality in Georgia 2020-2021* (GAEPD, 2022). This document is available on the Georgia Environmental Protection Division (GAEPD) website.

The subset of the water bodies that do not meet designated uses on the 305(b) list are also assigned to Georgia’s 303(d) list, named after that section of the CWA. Although the 305(b) and 303(d) lists are two distinct requirements under the CWA, Georgia reports both lists in one combined format called the Integrated 305(b)/303(d) List, which is found in Appendix A of *Water Quality in Georgia 2020-2021* (GAEPD, 2022). Water bodies on the 303(d) list are denoted as Category 5, and are required to have a Total Maximum Daily Load (TMDL) evaluation for the water quality constituent(s) in violation of the water quality standard.

The TMDL formulations in this document are based on impaired segments contained in the 2022 305(b)/303(d) list. The TMDL process establishes the allowable pollutant loadings or other quantifiable parameters for a water body based on the relationship between pollutant sources and instream water quality conditions. This allows water quality-based controls to be developed to reduce pollution and restore and maintain water quality.

Every waterbody in the State has one or more designated uses, and each designated use has water quality criteria established to protect it. Waterbodies in Georgia are assessed based on the 305(b)/303(d) Listing Assessment Methodology included in Appendix A of *Water Quality in Georgia 2020-2021*, as such GAEPD has placed two (2) stream segments in the St. Mary’s River Basin on the 303(d) list of impaired waters because it was assessed as “not supporting” its designated use of “Fishing” due to violation of the fecal coliform water quality criteria. The current water quality criteria are as follows:

For the months of May through October, when water contact recreation activities are expected to occur, fecal coliform not to exceed a geometric mean of 200 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. Should water quality and sanitary studies show fecal coliform levels from non-human sources exceed 200 counts per 100 mL (geometric mean) occasionally, then the allowable geometric mean fecal coliform shall not exceed 300 counts per 100 mL in lakes and reservoirs and 500 counts per 100 mL in free flowing freshwater streams. For the months of November through April, fecal coliform not to exceed a geometric mean of 1,000 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours and not to exceed a maximum of 4,000 counts per 100 mL for any sample. The State does not encourage swimming in these surface waters since a number of factors which are beyond the control of any State regulatory agency contribute to elevated levels of bacteria.

A waterbody is assessed as “not supporting” its use if geometric means are greater than their seasonal and waterbody specific criteria or if more than the single sample criteria at any given time. In January 2022, the Georgia DNR Board adopted new bacteria criteria for fishing and drinking water designated uses using the bacterial indicator *E. coli* and enterococci. These bacteria are better indicators for human health illnesses. The adopted criteria have the same estimated illness rate (8 per 1000 swimmers) as the previously established fecal coliform criteria. Following EPA’s approval of the proposed *E. coli* and enterococci criteria, this TMDL will use both fecal coliform and *E. coli* bacteria indicators. The current *E. coli* load cannot be determined, but
the TMDL will use a 0.63 conversion factor to convert from fecal coliform to \(E. \ coli \), based on the 30-day geometric mean water quality standard. The water quality criteria pending approval are as follows:

For the months of May through October, when primary water contact recreation activities are expected to occur, culturable \(E. \ coli \) not to exceed a geometric mean of 126 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an \(E. \ coli \) statistical threshold value (STV) of 410 counts per 100 mL in the same 30-day interval. For the months of November through April, culturable \(E. \ coli \) not to exceed a geometric mean of 265 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an \(E. \ coli \) statistical threshold value (STV) of 861 counts per 100 mL in the same 30-day interval.

A waterbody is assessed as “not supporting” its use if geometric means are greater than their seasonal criteria or if more than 10% of the samples exceeded the STV water quality criteria cited above. An important part of the TMDL analysis is the identification of potential source categories. Sources are broadly classified as either point or nonpoint sources. A point source is defined as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Nonpoint sources are diffuse, and generally, but not always, involve accumulated fecal coliform bacteria that wash off land surfaces following storm events.

The process of developing fecal coliform bacteria TMDLs for listed segments in the St. Mary’s River Basin the determination of the following:

- The current critical bacterial load to the stream under existing conditions;
- The TMDL for similar conditions under which the current critical load was determined; and
- The percent reduction in the current critical bacterial load necessary to achieve the TMDL.

The calculation of the bacterial load at any point in a stream requires the bacterial concentration and stream flow. The availability of water quality and flow data varies considerably among the listed segments. The Loading Curve Approach was used to determine the current fecal coliform load and TMDL. The bacterial loads and required reductions for each of the listed segments are summarized in Table 1 below.

Management practices that should be used to help reduce fecal coliform source loads include:

- Compliance with NPDES (wastewater, construction, industrial stormwater, and/or MS4) permit limits and requirements;
- Implementation of recommended Water Quality management practices in the Suwannee-Satilla Regional Water Plan (GAEPD, 2017);
- Implementation of Georgia’s Best Management Practices for Forestry (GFC, 2009);
- Adoption and implementation of the Georgia Stormwater Management Manual (ARC, 2016) and the Coastal Stormwater Supplement to the Georgia Stormwater Management Manual (CWP, 2009) to facilitate water quality treatment of stormwater runoff, including bacteria removal, through structural stormwater BMP installation.
The amount of fecal coliform bacteria delivered to a stream is difficult to determine. However, the use of these management practices should improve stream water quality, and future monitoring will provide a measurement of TMDL implementation.
Table 1: Bacterial Loads and Required Bacterial Load Reductions

<table>
<thead>
<tr>
<th>Stream Segment</th>
<th>Description</th>
<th>Bacterial Indicator</th>
<th>Current Load (counts/30 days)</th>
<th>TMDL Components</th>
<th>Reduction Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>WLA (counts/30 days)$^{(1)}$</td>
<td>WLAsw (counts/30 days)</td>
<td>LA (counts/30 days)</td>
</tr>
<tr>
<td>Clay Branch (GAR030702040305)</td>
<td>Headwaters to Spanish Creek</td>
<td>E. coli</td>
<td>1.12E+11</td>
<td>--</td>
<td>1.03E+12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.26E11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.26E12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fecal coliform</td>
<td>3.97E+12</td>
<td>1.77E+11</td>
<td>1.63E+12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.01E11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.01E12</td>
</tr>
<tr>
<td>Long Branch (GAR030702040803)</td>
<td>Headwaters to Spanish Creek</td>
<td>E. coli</td>
<td>--</td>
<td>--</td>
<td>1.91E12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.91E11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.72E12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fecal coliform</td>
<td>6.61E+12</td>
<td>--</td>
<td>2.73E12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.04E11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.04E12</td>
</tr>
</tbody>
</table>

Notes:
1. The assigned bacterial load from the NPDES permitted facility for WLA was determined as the product of the permitted flow and bacteria permit limit.
2. Sample was not analyzed for *E. coli*, therefore critical load calculation not possible.
3. Percent reduction could not be determined due to absence of current load calculation.
1.0 INTRODUCTION

1.1 Background

The State of Georgia assesses its waterbodies for compliance with water quality standards criteria established for their designated uses as required by the Federal Clean Water Act (CWA). Assessed waterbodies are placed into one of three categories, supporting designated use, not supporting designated use, or assessment pending, depending on water quality assessment results. These waterbodies are found on Georgia’s 2022 305(b) list as required by that section of the CWA that defines the assessment process and are published in Water Quality in Georgia 2020-2021 (GAEPD, 2022). This document is available on the Georgia Environmental Protection Division (GAEPD) website.

The subset of the water bodies that do not meet designated uses on the 305(b) list are also assigned to Georgia’s 303(d) list, named after that section of the CWA. Although the 305(b) and 303(d) lists are two distinct requirements under the CWA, Georgia reports both lists in one combined format called the Integrated 305(b)/303(d) List, which is found in Appendix A of Water Quality in Georgia 2020-2021 (GAEPD, 2022). Water bodies on the 303(d) list are denoted as Category 5, and are required to have a Total Maximum Daily Load (TMDL) evaluation for the water quality constituent(s) in violation of the water quality standard.

The TMDL formulations in this document are based on impaired segments contained in the 2022 305(b)/303(d) list. The TMDL process establishes the allowable pollutant loadings or other quantifiable parameters for a water body based on the relationship between pollutant sources and instream water quality conditions. This allows water quality-based controls to be developed to reduce pollution and restore and maintain water quality.

The 303(d) list identifies the stream segments that are not supporting its designated use classification due to exceedances of water quality standards for bacteria. Fecal coliform and E. coli bacteria are used as indicators of the potential presence of pathogens in a stream. Table 2 presents the stream segments in the St. Mary’s River Basin included on the 2022 303(d) list for exceedances of the fecal coliform standard criteria.

Table 2: Stream Segments Listed on the 2022 303(d) List for Bacteria in the St. Mary’s River Basin

<table>
<thead>
<tr>
<th>Stream Segment</th>
<th>Location</th>
<th>Segment Length (miles)</th>
<th>Designated Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Branch (GAR030702040305)</td>
<td>Headwaters to Spanish Creek</td>
<td>4</td>
<td>Fishing</td>
</tr>
<tr>
<td>Long Branch (GAR030702040803)</td>
<td>Headwaters to Spanish Creek</td>
<td>6</td>
<td>Fishing</td>
</tr>
</tbody>
</table>

1.2 Watershed Description

The St. Mary’s River Basin is in the southeastern part of Georgia, occupying an area of approximately 1500 square miles with approximately 765 square miles of the basin in Georgia. The St. Mary’s River Basin is comprised of one USGS Hydrologic Code (HUC), 03070204. Figure 1 shows the location of the...
St. Mary’s River Basin and Figure 2 shows the sub-basins of the St. Mary’s River Basin. Figure 3 shows the location of the listed bacteria segments in the St. Mary’s River Basin.

The basin lies within the Coastal Plain physiographic province, which extends throughout the southeastern United States. The headwaters of the St. Mary’s river originate in the southeast portion of the Okefenokee Swamp in Ware County, in southeast Georgia. Cities in the St. Mary’s River Basin include Folkston, Homeland, Kingsland, and St. Marys. The river flows east and eventually drains into the Atlantic Ocean near St. Marys.

The land use characteristics of the St. Mary’s River Basin watersheds were determined using data from the Georgia Land Use Trends (GLUT) for Year 2015. This raster land use trend product was developed by the University of Georgia – Natural Resources Spatial Analysis Laboratory (NARSAL) and follows land use trends for years 1974, 1985, 1991, 1998, 2001, 2005, 2008 and 2015. Some of the NARSAL land use types were reclassified, aggregated into similar land use types, and used in the final watershed characterization. Table 3 lists the watershed land use distribution for the drainage areas of the two stream segments.

1.3 State Water Planning

The Georgia Legislature enacted the Metropolitan North Georgia Water Planning District Act in 2001 to create the Metropolitan North Georgia Water Planning District (MNGWPD) to preserve and protect water resources in the 15-county metropolitan Atlanta area. The MNGWPD is charged with the development of comprehensive regional and watershed specific water resource management plans to be implemented by local governments in the metropolitan Atlanta area. The MNGWPD issued its first water resource management plan documents in 2003.

In 2004, the Georgia Legislature enacted the Comprehensive State-wide Water Management Planning Act to ensure management of water resources in a sustainable manner to support the state’s economy, to protect public health and natural systems, and to enhance the quality of life for all citizens on a state-wide level. GAEPD later developed the 2008 Comprehensive State-wide Water Management Plan, which established Georgia’s ten Regional Water Planning Councils (RWPCs) and laid the groundwork for the RWPCs to develop their own Regional Water Plans. Figure 4 shows the boundaries of the RWPCs and the MNGWPD. The two listed water bodies are located within the boundaries of the Suwannee-Satilla Water Planning Region.

In 2011, each RWPC finished development of individualized Regional Water Plans, which were later adopted following GAEPD review. These Regional Water Plans (RWP) identify a range of actions or management practices to help meet the state’s water quality and water supply challenges. The MNGWPD and each RWPC subsequently updated and revised their respective management plan documents in 2017. Implementation of these RWPs is critical to meeting Georgia’s water resource challenges. The RWPs appropriate to this TMDL are discussed in Sections 6 and 7.

1.4 Water Quality Standard

The water use classification for the listed stream segments in the St. Mary’s River Basin is Fishing. The criterion violated is listed as fecal coliform. The potential causes listed include urban runoff and nonpoint sources. The current fishing bacteria water quality standards as approved by US EPA Region 4 on January 20, 2021, is as follows:
(c) Fishing: Propagation of Fish, Shellfish, Game and Other Aquatic Life; primary contact recreation in and on the water for the months of May – October, secondary contact recreation in and on the water for the months of November – April; or for any other use requiring water of a lower quality.

(i) Bacteria:

1. For the months of May through October, when water contact recreation activities are expected to occur, fecal coliform not to exceed a geometric mean of 200 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. Should water quality and sanitary studies show fecal coliform levels from non-human sources exceed 200 counts per 100 mL (geometric mean) occasionally, then the allowable geometric mean fecal coliform shall not exceed 300 counts per 100 mL in lakes and reservoirs and 500 counts per 100 mL in free flowing freshwater streams. For the months of November through April, fecal coliform not to exceed a geometric mean of 1,000 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours and not to exceed a maximum of 4,000 counts per 100 mL for any sample. The State does not encourage swimming in these surface waters since a number of factors which are beyond the control of any State regulatory agency contribute to elevated levels of bacteria.

2. For waters designated as shellfish growing areas by the Georgia DNR Coastal Resources Division, the requirements will be consistent with those established by the State and Federal agencies responsible for the National Shellfish Sanitation Program. The requirements are found in National Shellfish Sanitation Program Guide for the Control of Molluscan Shellfish, 2007 Revision (or most recent version), Interstate Shellfish Sanitation Conference, U.S. Food and Drug Administration.

In January 2022, the Georgia DNR Board adopted new bacteria criteria for fishing and drinking water designated uses using the bacterial indicators *E. coli* and enterococci. These bacteria are better indicators for human health illnesses. The adopted criteria have the same estimated illness rate (8 per 1000 swimmers) as the previously established criteria. As this TMDL is being written during the process of EPA approving new bacteria criteria, the TMDL will be written using both bacterial indicators. The use classification water quality standards for fecal coliform bacteria, as stated in the *State of Georgia’s Rules and Regulations for Water Quality Control*, Chapter 391-3-6-.03(6)(c)(iii) (GA EPD, 2022), are:

(c) Fishing: Propagation of Fish, Shellfish, Game and Other Aquatic Life; primary contact recreation in and on the water for the months of May – October, secondary contact recreation in and on the water for the months of November – April; or for any other use requiring water of a lower quality.

(i) Bacteria:

1. Estuarine waters: For the months of May through October, when primary water contact recreation activities are expected to occur, culturable enterococci not to exceed a geometric mean of 35 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an enterococci statistical threshold value (STV) of 130 counts per 100 mL the same 30-day interval.

 For the months of November through April, culturable enterococci not to exceed a geometric mean of 74 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an enterococci statistical threshold value (STV) of 273 counts per 100 mL in the same 30-day interval.

2. All other fishing waters: For the months of May through October, when primary water contact recreation activities are expected to occur, culturable *E. coli* not to exceed a geometric mean of 126 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an *E. coli* statistical threshold value (STV) of 410 counts per 100 mL in the same 30-day interval.

For the months of November through April, culturable *E. coli* not to exceed a geometric mean of 265 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an *E. coli* statistical threshold value (STV) of 861 counts per 100 mL in the same 30-day interval.
3. The State does not encourage swimming in these surface waters since a number of factors which are beyond the control of any State regulatory agency contribute to elevated levels of bacteria.

4. For waters designated as shellfish growing areas by the Georgia DNR Coastal Resources Division, the requirements will be consistent with those established by the State and Federal agencies responsible for the National Shellfish Sanitation Program. The requirements are found in National Shellfish Sanitation Program Guide for the Control of Molluscan Shellfish, 2007 Revision (or most recent version), Interstate Shellfish Sanitation Conference, U.S. Food and Drug Administration.
Figure 1: St. Mary’s River Basin and the River Basins of Georgia
Figure 2: Major Political Boundaries, Water Features, and U.S.G.S. 12-digit HUCs
Figure 3: Impaired Stream Segments of Clay Branch and Long Branch in Lower Spanish Creek Sub-basin
Figure 4: Boundaries of the Regional Water Planning Councils and the Metropolitan North Georgia Water Planning District
Table 3: St. Mary’s River Basin Land Coverage

<table>
<thead>
<tr>
<th>Stream/Segment</th>
<th>Open Water</th>
<th>Developed, Low Intensity</th>
<th>Developed, Medium Intensity</th>
<th>Developed, High Intensity</th>
<th>Rock Outcrop, Sand, Clay</th>
<th>Quarries, Strip Mines, Gravel pits</th>
<th>Clearcut / Sparse</th>
<th>Forest</th>
<th>Row Crops</th>
<th>Pasture, Hay</th>
<th>Other Grasses (Developed Open Space, Utility Swaths, Golf Courses)</th>
<th>Forested Wetlands</th>
<th>Non-Forested Wetlands</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Branch</td>
<td>22.7</td>
<td>355.9</td>
<td>126.1</td>
<td>89.4</td>
<td>0</td>
<td>0</td>
<td>194.2</td>
<td>1469.1</td>
<td>20.7</td>
<td>577.2</td>
<td>706.4</td>
<td>757.1</td>
<td>17.8</td>
<td>4336.6</td>
</tr>
<tr>
<td>(GAR030702040305)</td>
<td>0.52%</td>
<td>8.21%</td>
<td>2.91%</td>
<td>2.06%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>4.48%</td>
<td>33.9%</td>
<td>0.48%</td>
<td>13.31%</td>
<td>16.3%</td>
<td>17.46%</td>
<td>0.41%</td>
<td>100%</td>
</tr>
<tr>
<td>Long Branch</td>
<td>0</td>
<td>55.8</td>
<td>8.9</td>
<td>2.9</td>
<td>0</td>
<td>0</td>
<td>224.9</td>
<td>5196.2</td>
<td>52.1</td>
<td>429.8</td>
<td>338.6</td>
<td>1341.2</td>
<td>16.7</td>
<td>7667.1</td>
</tr>
<tr>
<td>(GAR030702040803)</td>
<td>0.00%</td>
<td>4.42%</td>
<td>0.12%</td>
<td>0.04%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>2.93%</td>
<td>15.1%</td>
<td>52.1%</td>
<td>5.61%</td>
<td>1.00%</td>
<td>17.49%</td>
<td>0.22%</td>
<td>100%</td>
</tr>
</tbody>
</table>
2.0 WATER QUALITY ASSESSMENT

Stream segments are placed on the 303(d) list as not supporting their water use classification based on water quality sampling data. Currently, a stream is placed on this list if calculated geometric means exceed their water quality criteria or if any samples exceed the single sample criteria. Water quality samples collected within a 30-day period that have a fecal coliform geometric mean in excess of 200 counts per 100 milliliters during the period May through October, or in excess of 1000 counts per 100 milliliters during the period November through April, are in violation of the bacteria water quality standard. There is also a single sample criterion (4000 counts per 100 milliliters) not to be exceeded at any given time.

Fecal coliform data used for development of the TMDL in this document were collected during calendar years 2017 and 2020 by GAEPD as part of the trend monitoring program. A summary of sampling station locations and sampling dates is given in Table 4. The raw data are presented in Appendix A.

Table 4: Sampling Stations and Dates – St. Mary’s River Basin

<table>
<thead>
<tr>
<th>Stream Segment</th>
<th>Location</th>
<th>GAEPD Monitoring Station No.</th>
<th>GPS Coordinates</th>
<th>Monitoring Station Description</th>
<th>Sample Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Branch (GAR030702040305)</td>
<td>Headwaters to Spanish Creek</td>
<td>RV_08_16769</td>
<td>30.840673, -82.014125</td>
<td>Clay Branch at Okefenokee Dr.</td>
<td>2017</td>
</tr>
<tr>
<td>Long Branch (GAR030702040803)</td>
<td>Headwaters to Spanish Creek</td>
<td>RV_08_16770</td>
<td>30.813087, -82.069331</td>
<td>Long Branch at Sardis/Spanish Creek Rd.</td>
<td>2017</td>
</tr>
</tbody>
</table>
3.0 SOURCE ASSESSMENT

An important part of the TMDL analysis is the identification of potential source categories. Sources are broadly classified as either point or nonpoint sources. A point source is defined as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Nonpoint sources are diffuse, and generally, but not always, involve accumulation of bacteria on land surfaces that wash off due to storm events.

3.1 Point Source Assessment

Title IV of the Clean Water Act establishes the National Pollutant Discharge Elimination System (NPDES) permit program. There are two basic kinds of NPDES permits: 1) municipal and industrial wastewater treatment facilities, and 2) regulated stormwater discharges.

3.1.1 Wastewater Treatment Facilities

Generally, municipal and industrial wastewater treatment facilities have NPDES permits with effluent limits. These permit limits are either based on federal and state effluent guidelines (technology-based limits) or on water quality standards (water quality-based limits).

The United States Environmental Protection Agency (USEPA) has developed technology-based guidelines, which establish a minimum standard of pollution control for municipal and industrial discharges without regard for the quality of the receiving waters. These are based on Best Practical Control Technology Currently Available (BPT), Best Conventional Control Technology (BCT), and Best Available Technology Economically Achievable (BAT). The level of control required by each facility depends on the type of discharge and the pollutant.

The USEPA and the states have also developed numeric and narrative water quality standards. Typically, these standards are based on the results of aquatic toxicity tests and/or human health criteria and include a margin of safety. Water quality-based effluent limits are set to protect the receiving stream. These limits are based on water quality standards that have been established for a stream based on its intended use and the prescribed biological and chemical conditions that must be met to sustain that use.

Discharges from municipal and industrial wastewater treatment facilities can contribute bacteria to receiving waters. There are two (2) NPDES permitted discharges identified in the watershed of the listed segments in the St. Mary’s River Basin that could potentially impact streams on the 2022 303(d) list for fecal coliform bacteria. Typically, the contributing watershed for a 303(d) listed segment is defined as the area upstream of the segment, however the two (2) NPDES permitted discharges are downstream of sampling stations used to classify the listed stream segment, so they are not considered a contributor to the bacteria listing.

Table 5 provides the monthly average discharge flow and fecal coliform concentrations for these facilities that currently have bacteria permit limits. These data were obtained from calendar years 2015 through 2020 Discharge Monitoring Reports (DMR). The current permitted flow and fecal coliform concentrations are also included in this table. Table 5 provides a list of existing industrial discharges without bacteria permit limits. It is possible these facilities could contribute bacteria to receiving water because the type of treatment processes they employ.
Table 5: NPDES Facilities Discharging Fecal Coliform to Listed Streams in the St. Mary's River Basin

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>NPDES Permit Number</th>
<th>Receiving Stream</th>
<th>303(d) Listed Segment</th>
<th>Actual Discharge</th>
<th>NPDES Permit Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Monthly Flow</td>
<td>Monthly fecal coliform</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(MGD)</td>
<td>(#/100mL)</td>
</tr>
<tr>
<td>City of Folkston (Folkston Pond WPCP)</td>
<td>GA0027189</td>
<td>Clay Branch</td>
<td>Clay Branch (GAR030702040305)</td>
<td>0.20</td>
<td>21.6 (1.0-237)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.06-0.35)</td>
<td>(2015-2020)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.28</td>
<td>200</td>
</tr>
<tr>
<td>City of Folkston (Folkston Wetlands WPCP)</td>
<td>GA0037613</td>
<td>Spanish Creek</td>
<td>Clay Branch (GAR030702040305)</td>
<td>0.41</td>
<td>9.3 (1.0-81.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.2-0.5)</td>
<td>(2017-2020)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: GAEPD – Discharge Monitoring Report (DMR) data from ICIS-NPDES

Notes:

- Values shown are the average of the monthly average flows reported in DMRs, followed by the monthly average ranges, and range of dates.
- Values shown are the annual average of the monthly geometric means and the monthly average ranges.
- From GAPDES self-reported spill monitoring system.
Combined sewer systems convey a mixture of raw sewage and stormwater in the same conveyance structure to the wastewater treatment plant. These are considered a component of municipal wastewater treatment facilities. When the combined sewage exceeds the capacity of the wastewater treatment plant, the excess is diverted to a combined sewage overflow (CSO) discharge point. There are no permitted CSO outfalls in the St. Mary’s River Basin.

3.1.2 Regulated Stormwater Discharges

Some stormwater runoff is covered under the NPDES Permit Program as a point source. Some industrial facilities included under the program will have limits similar to traditional NPDES-permitted dischargers, whereas others establish controls to limit pollution: “to the maximum extent practicable” (MEP). Currently, regulated stormwater discharges that may contain bacteria, consist of those associated with industrial activities and large, medium, and small municipal separate storm sewer systems (MS4s) that serve populations of 10,000 or more.

3.1.2.1 Industrial General Stormwater NPDES Permit

Stormwater discharges associated with industrial activities are currently covered under the 2017 NPDES General Permit for Stormwater Discharges Associated with Industrial Activity (GAR050000) also called the Industrial General Permit (IGP). This permit requires visual monitoring of storm water discharges, site inspections, implementation of Best Management Practices (BMPs), preparation of a Storm Water Pollution Prevention Plan (SWPPP), and annual reporting. The IGP requires that stormwater discharging into an impaired stream segment or within one linear mile upstream of, and within the same watershed as, any portion of an impaired stream segment identified as “not supporting” its designated use(s), must satisfy the requirements of Appendix C of the 2017 IGP, if the pollutant(s) of concern for which the impaired stream segment has been listed may be exposed to stormwater as a result of industrial activity at the site. If a facility is covered under Appendix C of the IGP, then benchmark monitoring for the pollutant(s) of concern is required. Delineations of both supporting and not supporting waterbodies are provided on the GAEPD website, and are available in ESRI ArcGIS shapefile format or in KMZ format for use in Google Earth. Interested parties may evaluate their proximity to not supporting waterbodies by utilizing these geospatial files.

3.1.2.2 MS4 NPDES Permits

The collection, conveyance, and discharge of diffuse stormwater to local water bodies by a public entity is regulated in Georgia by the NPDES MS4 permits. These MS4 permits have been issued under two phases. Phase I MS4 permits cover medium and large cities, and counties with populations over 100,000. Each individual Phase I MS4 permit requires the prohibition of non-storm water discharges (i.e., illicit discharges) into the storm sewer systems and controls to reduce the discharge of pollutants to the maximum extent practicable, including the use of management practices, control techniques and systems, as well as design and engineering methods (Federal Register, 1990). A site-specific Storm Water Management Plan (SWMP) outlining appropriate controls is required by and referenced in the permit. A program to monitor and control pollutants in storm water discharges from industrial facilities, construction sites, and highly visible pollutant sources that exist within the MS4 area must be implemented under the permit. Additionally, monitoring of not supporting streams, public education and involvement, post-construction storm water controls, low impact development, and annual reporting requirements must all be addressed by the permittee on an ongoing basis. As of 2017, fifty-seven (57) counties and municipalities are covered by Phase I MS4 permits in Georgia.
Small MS4s serving urbanized areas are required to obtain a storm water permit under the Phase II storm water regulations. An urbanized area is defined as an area with a residential population of at least 10,000 people and an overall population density of at least 1,000 people per square mile. As of 2015, Seventy-three (73) municipalities, thirty-five (35) counties, five (5) Department of Defense facilities, and the Georgia Department of Transportation (GDOT) are permitted under the Phase II storm water regulations in Georgia. All municipal Phase II permittees are authorized to discharge under Storm Water General Permit GAG610000. Department of Defense facilities are authorized to discharge under Storm Water General Permit GAG480000. GDOT owned or operated facilities are authorized to discharge under Storm Water General Permit GAR041000. Under these general permits, each permittee must design and implement a SWMP that incorporates BMPs that focus on public education and involvement, illicit discharge detection and elimination, construction site runoff control, post-construction storm water management, and pollution prevention in municipal operations. Urbanized areas include land uses identified as lawns, parks, and greenspace, as well as residential, commercial, industrial, and transportation facilities. There are no Phase 1 or Phase 2 MS4 permitted counties or communities in the St Mary’s River Basin.

3.1.3 Concentrated Animal Feeding Operations

Under the Clean Water Act, Concentrated Animal Feeding Operations (CAFOs) are defined as point sources of pollution and are therefore subject to NPDES permit regulations. From 1999 through 2001, Georgia adopted rules for permitting swine and non-swine liquid manure animal feeding operations (AFOs). Georgia rules required medium size AFOs with more than 300 animal units (AU), but less than 1,000 AU, to apply for a non-discharge state land application system (LAS) waste disposal permit. Large operations with more than 1000 AU were required to apply for an NPDES permit (also non-discharge) as a CAFO. The USEPA CAFO regulations were successfully appealed in 2005. They were revised to comply with the court’s decision that NPDES permits only be required for actual discharges. Georgia’s rules were amended on August 7, 2012, to reflect the USEPA revisions. The revised state rules will continue LAS permitting of medium size liquid manure AFOs and extend LAS permitting to large liquid manure AFOs with more than 1,000 AU, unless they elect to obtain an NPDES permit. There are no known liquid manure CAFOs located in the St. Mary’s River Basin that have NPDES or land application permits.

In 2002, the USEPA promulgated expanded NPDES permit regulations for CAFOs that added dry manure poultry operations larger than 125,000 broilers or 82,000 layers. In accordance with the Georgia rule amendment discussed above, the general permit covering these facilities has been terminated and they are no longer covered under any permit. Georgia is consistently among the top three states in the U.S. in terms of poultry operations. Most poultry farms are dry manure operations where the manure is stored for a time and then land applied. Freshly stored litter can be a nonpoint source of bacteria. However, land-applied litter previously stored for an extended length of time typically exhibits very low bacteria levels. There are no known dry manure poultry operations located in the St. Mary’s River Basin.

3.2 Nonpoint Source Assessment

In general, nonpoint sources cannot be identified as entering a waterbody through a discrete conveyance at a single location. Typical nonpoint sources of bacteria include:

- Wildlife
- Agricultural Livestock
 - Animal grazing
In urban areas, a large portion of stormwater runoff may be collected in storm sewer systems and discharged through distinct outlet structures. For large urban areas, these storm sewer discharge points may be regulated as described in Section 3.1.2.

3.2.1 Wildlife

The significance of wildlife as a source of bacteria in streams varies considerably depending on the animal species present in the watershed. Based on information provided by the Wildlife Resources Division (WRD) of GA DNR, the greatest wildlife sources of bacteria are the animals that spend a large portion of their time in or around aquatic habitats. Of these, waterfowl, especially ducks and geese, are considered to be the most significant source, because when present, they are typically found in large numbers on the water surface. Other animals regularly found around aquatic environments include racoons, beavers, muskrats, and to a lesser extent, river otters and minks. Recently, rapidly expanding feral swine populations have become a substantial presence in the floodplain areas of the major rivers in Georgia.

White-tailed deer populations are also abundant throughout the St. Mary’s River Basin. Bacteria contributions to waterbodies from deer are generally considered to be less significant than that of waterfowl, racoons, and beavers. This is because a greater portion of their time is spent in terrestrial habitats. This also holds true for other terrestrial mammals such as squirrels and rabbits, and for terrestrial birds (GA WRD, 2007). However, feces deposited on the land surface can result in the introduction of bacteria to streams during runoff events. Between storm events, considerable decomposition of the fecal matter might occur, resulting in a decrease in the associated bacteria numbers.

3.2.2 Agricultural Livestock

Agricultural livestock are a potential source of bacteria to streams in the St. Mary’s River Basin. The animals grazing on pastureland deposit their feces onto land surfaces, where it can then be transported during storm events to nearby streams. Animal access to pastureland varies monthly, resulting in varying bacteria loading rates throughout the year. Beef cattle spend all their time in pastures, while dairy cattle and hogs are periodically confined. In addition, agricultural livestock will often have direct access to streams that pass through their pastures and can thus impact water quality in a more direct manner (USDA, 2002).

Commercial chickens are raised indoors, and their litter is periodically disposed of. The litter can be aged or composted. This results in a decomposition of the litter into a soil amendment that can be used as a fertilizer. The stockpiled manure should be kept in a sheltered area. Proper composting should generate temperatures of 140°F to 160°F, which destroys bacteria. Aging the manure and litter reduces populations of microbes by providing unfavorable growing conditions causing the bacteria to gradually die off due to changes in moisture content and temperature. Table 6 provides the estimated number of beef cattle, dairy cattle, goats, horses, swine, sheep, and chickens reported by county.
Table 6: Estimated Agricultural Livestock Populations in Counties Containing the 303(d) Listed Segment Watershed in the St. Mary’s River Basin

<table>
<thead>
<tr>
<th>County</th>
<th>Beef Cattle</th>
<th>Dairy Cattle</th>
<th>Swine</th>
<th>Sheep</th>
<th>Horses</th>
<th>Goats</th>
<th>Chickens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Broilers</td>
</tr>
<tr>
<td>Camden</td>
<td>634</td>
<td>-</td>
<td>150</td>
<td>-</td>
<td>137</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Charlton</td>
<td>737</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ware</td>
<td>3,466</td>
<td>800</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>700</td>
<td>1,559,149</td>
</tr>
</tbody>
</table>

Source: Center for Agribusiness and Economic Development, UGA 2022

3.2.3 Urban Development

Bacteria from urban areas are attributable to multiple sources including domestic animals, leaks and overflows from sanitary sewer systems, illicit discharges, leaking septic systems, runoff from improper disposal of waste materials, and leachate from both operational and closed landfills.

Urban runoff can contain high concentrations of bacteria from domestic animals and urban wildlife. Bacteria enter streams by direct wash off from the land surface, or the runoff may be diverted to a stormwater collection system and discharged through a discrete outlet structure. For large, medium, and small urban areas (populations greater than 10,000), the stormwater outlets are regulated under MS4 permits (see Section 3.1.2). For smaller urban areas, the stormwater discharge outlets currently remain unregulated.

In addition to urban animal sources of bacteria, there may be illicit connections to the storm sewer system. As part of the MS4 permitting program, municipalities are required to conduct dry-weather monitoring to identify and then eliminate these illicit discharges, but this may not occur in unpermitted storm sewer systems. Bacteria may also enter streams from leaky sewer pipes, or during storm events when inflow and infiltration can cause sewer overflows.

3.2.3.1 Leaking Septic Systems

A portion of the bacteria contributions in the St. Mary’s River Basin may be attributed to failure of septic systems and illicit discharges of raw sewage. Table 7 below presents the number of septic systems existing at the end of 2015 and the number existing at the end of 2020 in the counties located in the St. Mary’s River Basin. These data are based on data provided by the Georgia Department of Public Health and information obtained from the U.S. Census. In addition, an estimate of the number of septic systems installed and repaired during the period from 2015 through 2020 is given. These data show an increase in the number of septic systems in all counties. Often, this reflects population increases outpacing the expansion of sewage collection systems.
Table 7: Estimated Number of Septic Systems in Counties Containing the Watershed of the 303(d) Listed Segment in the St. Mary’s River Basin

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Camden</td>
<td>7,911</td>
<td>8,162</td>
<td>251</td>
<td>117</td>
</tr>
<tr>
<td>Charlton</td>
<td>3,874</td>
<td>4,015</td>
<td>141</td>
<td>45</td>
</tr>
<tr>
<td>Ware</td>
<td>9,843</td>
<td>10,111</td>
<td>268</td>
<td>117</td>
</tr>
</tbody>
</table>

Source: The Georgia Dept. of Public Health, Environmental Health Section, 2022

3.2.3.2 Land Application Systems

Some communities and industries use land application systems (LAS) for wastewater disposal. These facilities are required through LAS permits to dispose of their treated wastewater by land application, and to operate as non-discharging systems that do not contribute wastewater effluent runoff to surface waters. However, sometimes the soil’s percolation rate is exceeded when applying the wastewater, or encountering excess precipitation, resulting in runoff. This runoff could contribute bacteria to nearby surface waters. Runoff of storm water might also carry surface residual containing bacteria. Listed in Table 8 below are the permitted LAS systems identified in the St. Mary’s River Basin and the permitted LAS that could potentially impact the stream segments in this TMDL are identified.

Table 8: Permitted Land Application Systems in the St. Mary’s River Basin

<table>
<thead>
<tr>
<th>LAS Name</th>
<th>303(d) Listed Stream Segment</th>
<th>County</th>
<th>Permit No.</th>
<th>Type</th>
<th>Flow (MGD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Folkston WPCP</td>
<td>Clay Branch</td>
<td>Charlton</td>
<td>GA0037613</td>
<td>Municipal</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Source: Wastewater Regulatory Program, GA EPD, Atlanta, Georgia, 2022

3.2.3.3 Landfills

Leachate from landfills may contain bacteria that could at some point reach surface waters. Sanitary (or municipal) landfills are the most likely to serve as a source of bacteria. These types of landfills receive household wastes, animal manure, offal, hatchery and poultry processing plant wastes, dead animals, and other types of wastes. Older sanitary landfills were not lined, and most have been closed. Those that remain active and have not been lined operate as construction/demolition landfills. Currently active sanitary landfills are lined and have leachate collection systems. All landfills, excluding inert landfills, are now required to install environmental monitoring systems for groundwater and methane sampling. Table 9 provides the landfills located in the St Mary’s River Basin. There are no known operating landfills located in the watersheds of listed segments in the St. Mary’s River Basin.
<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Permit Number</th>
<th>County</th>
<th>Interest Type</th>
<th>Operating Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayer Cropscience, LP</td>
<td></td>
<td>Camden</td>
<td>SW- Private Industrial Landfill</td>
<td></td>
</tr>
<tr>
<td>Camden Co - Vacuna Rd Ph 2 (SL)</td>
<td>020-012D(SL)</td>
<td>Camden</td>
<td>SW- Municipal Solid Waste Landfill</td>
<td>Closed/PCC</td>
</tr>
<tr>
<td>Camden Co-Gilman Paper Co, Sr 110 (PISWL)</td>
<td></td>
<td>Camden</td>
<td>SW- Private Industrial Landfill</td>
<td></td>
</tr>
<tr>
<td>Camden Co-Pet Cremation Services</td>
<td>PBR-020-08COL;TS</td>
<td>Camden</td>
<td>SW- Collection</td>
<td>Operating</td>
</tr>
<tr>
<td>Camden Co-Sr110 MSWL</td>
<td>020-017D(MSWL)</td>
<td>Camden</td>
<td>SW- Municipal Solid Waste Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Camden County Solid Waste Department</td>
<td>020-019D(C&D)</td>
<td>Camden</td>
<td>SW- Construction & Demolition Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>City Of Kingsland Refuse Rd./Louis Williams Ave. Inert LF</td>
<td>PBR-020-03IL</td>
<td>Camden</td>
<td>SW- Inert Landfill</td>
<td>Closed</td>
</tr>
<tr>
<td>Cumberland Services, LLC</td>
<td>PBR-020-07COL</td>
<td>Camden</td>
<td>SW- Collection</td>
<td>Operating</td>
</tr>
<tr>
<td>Gilman Paper - St Marys Ph 2 (LI)</td>
<td></td>
<td>Camden</td>
<td>SW- Private Industrial Landfill</td>
<td></td>
</tr>
<tr>
<td>Gilman Paper - St Marys Ph 3 (LI)</td>
<td></td>
<td>Camden</td>
<td>SW- Private Industrial Landfill</td>
<td></td>
</tr>
<tr>
<td>Luther Marion Lambert Old Jefferson Road Inert LF</td>
<td>PBR-020-04IL</td>
<td>Camden</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Mark Dunning Industries, Inc.</td>
<td>PBR-020-05COL</td>
<td>Camden</td>
<td>SW- Collection</td>
<td>Operating</td>
</tr>
<tr>
<td>Refuse Road Inert Landfill</td>
<td>PBR-020-08IL</td>
<td>Camden</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Rhone-Poulene Ag Company Inert LF</td>
<td>PBR-020-02IL</td>
<td>Camden</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Southeast Energy Group (LI)</td>
<td></td>
<td>Camden</td>
<td>SW- Private Industrial Landfill</td>
<td></td>
</tr>
<tr>
<td>Sub-Base Kings Bay Inert Landfill</td>
<td>PBR-020-01IL</td>
<td>Camden</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Timothy Norton</td>
<td>PBR-020-06IL</td>
<td>Camden</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Us Navy - King Bay Ph 1 (L)</td>
<td>020-007D(L)</td>
<td>Camden</td>
<td>SW- Construction & Demolition Landfill</td>
<td>Closed/PCC</td>
</tr>
<tr>
<td>Us Navy - Kings Bay Ph 3 (L)</td>
<td>020-014D(L)</td>
<td>Camden</td>
<td>SW- Construction & Demolition Landfill</td>
<td>Closed/PCC</td>
</tr>
<tr>
<td>CDs Transport Company, Inc. Collection</td>
<td>PBR-024-03COL</td>
<td>Charlton</td>
<td>SW- Collection</td>
<td>Operating</td>
</tr>
<tr>
<td>CDs Transport Company, Inc. Transfer Station</td>
<td>PBR-024-04TS</td>
<td>Charlton</td>
<td>SW- Transfer Station</td>
<td>Operating</td>
</tr>
<tr>
<td>Charlton Co - Sr 23 Folkston (SL)</td>
<td>024-003D(SL)</td>
<td>Charlton</td>
<td>SW- Municipal Solid Waste Landfill</td>
<td>Closed/PCC</td>
</tr>
<tr>
<td>Charlton Co - Sr 23 Folkston (SL)</td>
<td>024-004D(L)</td>
<td>Charlton</td>
<td>SW- Construction & Demolition Landfill</td>
<td>Closed/PCC</td>
</tr>
<tr>
<td>Charlton Co - Sr 23 St George (L)</td>
<td>024-005D(L)</td>
<td>Charlton</td>
<td>SW- Construction & Demolition Landfill</td>
<td>Closed/PCC</td>
</tr>
<tr>
<td>Charlton County - Folkston</td>
<td>PBR-024-07IL</td>
<td>Charlton</td>
<td>SW- Inert Landfill</td>
<td>Closed</td>
</tr>
<tr>
<td>Chesser Island Road Landfill, Inc. MSWL</td>
<td>024-006D(SL)</td>
<td>Charlton</td>
<td>SW- Municipal Solid Waste Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>City Of Folkston</td>
<td>PBR-024-06IL</td>
<td>Charlton</td>
<td>SW- Inert Landfill</td>
<td>Closed</td>
</tr>
<tr>
<td>Facility Name</td>
<td>Permit Number</td>
<td>County</td>
<td>Interest Type</td>
<td>Operating Status</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>--------</td>
<td>--------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Intern'l Paper (Union Camp) Corporation, Folkston Sawm</td>
<td>PBR-024-05IL</td>
<td>Charlton</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Virgil Kelly</td>
<td>PBR-024-01IL</td>
<td>Charlton</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Walter And Mary McLain-River Bluff Road Inert LF</td>
<td>PBR-024-02IL</td>
<td>Charlton</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Conrad Thornton-Dorothy Street Inert LF</td>
<td>PBR-148-02IL</td>
<td>Ware</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Dixie Roadbuilders, Inc. Inert Landfill</td>
<td>PBR-148-05IL</td>
<td>Ware</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>International Paper Co.</td>
<td>PBR-148-12OSP</td>
<td>Ware</td>
<td>SW- Other-PBR</td>
<td>Operating</td>
</tr>
<tr>
<td>J. Dan Lott City Boulevard Inert LF</td>
<td>PBR-148-03IL</td>
<td>Ware</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Lamar J. Johnson Inert Landfill</td>
<td>PBR-148-06IL</td>
<td>Ware</td>
<td>SW- Inert Landfill</td>
<td>Closed</td>
</tr>
<tr>
<td>Sattilla Regional Medical Center</td>
<td>PBR-148-08OSTT</td>
<td>Ware</td>
<td>SW- Other-PBR</td>
<td>Closed</td>
</tr>
<tr>
<td>Security Disposal, Inc</td>
<td>PBR-148-13COL,TS</td>
<td>Ware</td>
<td>SW- Collection</td>
<td>Operating</td>
</tr>
<tr>
<td>Sunbelt Waste Service, Inc. Collection</td>
<td>PBR-148-07COL</td>
<td>Ware</td>
<td>SW- Collection</td>
<td>Operating</td>
</tr>
<tr>
<td>Union Camp Corp.-Lavely Woodyard-Hwy 84 Inert LF</td>
<td>PBR-148-04IL</td>
<td>Ware</td>
<td>SW- Inert Landfill</td>
<td>Closed</td>
</tr>
<tr>
<td>Ware Co - Us 82 Waresboro (SL)</td>
<td>148-003D(SL)</td>
<td>Ware</td>
<td>SW- Municipal Solid Waste Landfill</td>
<td>Closed/PCC</td>
</tr>
<tr>
<td>Ware Co- Mixon Inert Landfill</td>
<td>PBR-148-14IL</td>
<td>Ware</td>
<td>SW- Inert Landfill</td>
<td>Closed</td>
</tr>
<tr>
<td>Ware Co- Republic Services Dba Southland Waste Systems Of Georgia, Inc. Collection</td>
<td>PBR-148-10COL</td>
<td>Ware</td>
<td>SW- Collection</td>
<td>Operating</td>
</tr>
<tr>
<td>Ware Co- Republic Services Dba Southland Waste Systems Ware Co, Inc.</td>
<td>PBR-148-09TS</td>
<td>Ware</td>
<td>SW- Transfer Station</td>
<td>Operating</td>
</tr>
<tr>
<td>Ware County - Tri-County Namco MSWL</td>
<td>148-009D(MSWL)</td>
<td>Ware</td>
<td>SW- Municipal Solid Waste Landfill</td>
<td>Permit Expired</td>
</tr>
<tr>
<td>Ware County Airport Inert Landfill</td>
<td>PBR-148-01IL</td>
<td>Ware</td>
<td>SW- Inert Landfill</td>
<td>Closed</td>
</tr>
<tr>
<td>Ware County High School</td>
<td>PBR-148-121IL</td>
<td>Ware</td>
<td>SW- Inert Landfill</td>
<td>Operating</td>
</tr>
<tr>
<td>Waycross - Blackwell/Common St (SL)</td>
<td>148-006D(SL)</td>
<td>Ware</td>
<td>SW- Municipal Solid Waste Landfill</td>
<td>Closed/PCC</td>
</tr>
</tbody>
</table>
4.0 ANALYTICAL APPROACH

The process of developing bacteria TMDLs for the St. Mary’s River Basin listed segments includes the determination of the following:

- The current critical bacteria load to the stream under existing conditions;
- The TMDL for similar conditions under which the current load was determined; and
- The percent reduction in the current critical bacteria load necessary to achieve the TMDL.

The calculation of the bacteria load at any point in a stream requires the bacteria concentration and stream flow. The Loading Curve Approach was used to determine the current bacteria load and the TMDL. For the listed segments, fecal coliform sampling data were sufficient to calculate at least one 30-day geometric mean to compare with the regulatory criteria (see Appendix A).

4.1 Loading Curve Approach

For those segments in which sufficient water quality data were collected to calculate at least one 30-day geometric mean above the regulatory standard, the loading curve approach was used. This method involves comparing the current critical load to summer and winter seasonal TMDL curves.

The available field measurements and water quality data used to develop the TMDL for this document were calculated using data from a nearby downstream USGS gauge. The nearby stream gauge had relatively similar watershed characteristics, including land use, slope, and drainage area. The stream flows were estimated by multiplying the gauged flow by the ratio of the listed stream drainage area to the gauged stream drainage area. The drainage areas of each listed segment is given in Table A-1. One stream gauge, located on North Prong St. Mary’s River, was used to estimate the flow. Table 10 below provides the USGS stream gauge used to estimate the flow for the listed stream segment.

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Station No.</th>
<th>USGS Station Name</th>
<th>Flow Gauge Drainage Area (sq miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Prong St. Mary’s River</td>
<td>Latitude 30.51773125, Longitude -82.23039535</td>
<td>02228500</td>
<td>North Prong St. Mary’s River at Monic, GA</td>
<td>160</td>
</tr>
</tbody>
</table>

The current critical loads were determined using fecal coliform data collected within a 30-day period to calculate the geometric means and multiplying these values by the arithmetic means of the flows measured at the time the water quality samples were collected. Georgia’s instream bacteria standards are based on a geometric mean of samples collected over a 30-day period, with samples collected at least 24 hours apart. To reflect this in the load calculation, the bacteria loads are expressed as 30-day accumulated loads with units of counts per 30 days. This is described by the equation below:
\[L_{\text{critical}} = C_{\text{geomean}} \times Q_{\text{mean}} \]

Where:
- \(L_{\text{critical}} \) = current critical bacteria load
- \(C_{\text{geomean}} \) = bacteria concentration as a 30-day geometric mean
- \(Q_{\text{mean}} \) = stream flow as an arithmetic mean

The current estimated critical load is dependent on the fecal coliform concentrations and stream flows measured during the sampling events. The number of events sampled is usually 16 per year. Thus, these loads do not represent the full range of flow conditions or loading rates that can occur. Therefore, it must be kept in mind that the current critical loads used only represent the worst-case scenario that occurred during the sampling period.

The maximum bacteria load at which the instream bacteria criteria will be met can be determined using a variation of the equation above. By setting \(C \) equal to the seasonal, instream bacteria standard, the load will equal the TMDL. However, the TMDL is dependent on stream flow. Figures in Appendix A graphically illustrate that the TMDL is a continuum for the range of flows (\(Q \)) that can occur in the stream over time. There are two TMDL curves shown in these figures. One represents the summer TMDL for the period May through October when the 30-day geometric mean standard is 200 counts/100 mL. The second curve represents the winter TMDL for the period November through April when the 30-day geometric mean standard is 1,000 counts/100 mL. The equations for these two TMDL curves are:

\[TMDL_{\text{summer}} = 200 \text{ counts/100 mL (as a 30-day geometric mean)} \times Q \]
\[TMDL_{\text{winter}} = 1,000 \text{ counts/100 mL (as a 30-day geometric mean)} \times Q \]

The graphs show the relationship between the current critical load \((L_{\text{critical}}) \) and the TMDL. The TMDL for a given stream segment is the load for the mean flow corresponding to the current critical load. This is the point where the current load exceeds the TMDL curve by the greatest amount. This critical TMDL can be represented by the following equation:

\[TMDL_{\text{critical}} = C_{\text{standard}} \times Q_{\text{mean}} \]

Where:
- \(TMDL_{\text{critical}} \) = critical bacteria TMDL load
- \(C_{\text{standard}} \) = seasonal bacteria standard (as a 30-day geometric mean)
 - summer - 200 counts/100 mL as fecal coliform
 - winter - 1,000 counts/100 mL as fecal coliform
- \(Q_{\text{mean}} \) = stream flow as an arithmetic mean

A 30-day geometric mean load that plots above the respective seasonal TMDL curve represents an exceedance of the instream bacteria standard. The difference between the current critical load and the TMDL curve represents the load reduction required for the stream segment to meet the appropriate instream bacteria standard. There is also a single sample maximum criterion of 4,000 counts per 100 milliliters for fecal coliform. If a single sample exceeds the maximum criterion, and the seasonal geometric mean criteria is also exceeded, then the TMDL is based on the criteria exceedance requiring the largest load reduction.

For future \(E. \text{coli} \) TMDLs, one will represent the summer TMDL for the period May through October when the 30-day geometric mean standard is 126 counts/100 mL. The second curve will represent
the winter TMDL for the period November through April when the 30-day geometric mean standard is 265 counts/100 mL. The equations for these two TMDL curves are:

\[
\text{TMDL}_{\text{summer}} = 126 \text{ counts/100 mL (as a 30-day geometric mean)} \times Q
\]

\[
\text{TMDL}_{\text{winter}} = 265 \text{ counts/100 mL (as a 30-day geometric mean)} \times Q
\]

The graphs show the relationship between the current critical load \((L_{\text{critical}})\) and the TMDL. The TMDL for a given stream segment is the load for the mean flow corresponding to the current critical load. This is the point where the current load exceeds the TMDL curve by the greatest amount. This critical TMDL can be represented by the following equation:

\[
\text{TMDL}_{\text{critical}} = C_{\text{standard}} \times Q_{\text{mean}}
\]

Where:

- \(\text{TMDL}_{\text{critical}}\) = critical bacteria TMDL load
- \(C_{\text{standard}}\) = seasonal bacteria standard (as a 30-day geometric mean)
 - summer – 126 counts/100 mL as *E. coli*
 - winter – 265 counts/ 100 mL as *E. coli*
- \(Q_{\text{mean}}\) = stream flow as an arithmetic mean

A 30-day geometric mean load that plots above the respective seasonal TMDL curve represents an exceedance of the instream bacteria standard. The difference between the current critical load and the TMDL curve represents the load reduction required for the stream segment to meet the appropriate instream bacteria standard. There is also a statistical threshold value (STV) maximum criterion for the months of May through October (410 counts per 100 milliliters for *E. coli*) and November through April (861 counts per 100 milliliters for *E. coli*). If a single sample exceeds the STV maximum criterion, and the seasonal geometric mean criteria is also exceeded, then the TMDL is based on the criteria exceedance requiring the largest load reduction.

For a TMDL written with either bacterial indicator, the percent load reduction can be expressed as follows:

\[
\text{Percent Load Reduction} = \frac{L_{\text{critical}} - \text{TMDL}_{\text{critical}}}{L_{\text{critical}}} \times 100
\]

The current critical loads and the TMDLs are expressed as equations that show the loads as a function of the total flow at any given time. The general equations for the critical load and the TMDL are:

\[
L_{\text{critical}} = Q_{\text{total}} \times C_{\text{geomean}}
\]

Where:

- \(L_{\text{critical}}\) = current critical bacteria load
- \(C_{\text{geomean}}\) = bacteria concentration as a 30-day geometric mean
- \(Q_{\text{total}}\) = stream flow

\[
\text{TMDL} = C_{\text{criterion}} \times Q_{\text{total}}
\]

Where:

- \(\text{TMDL}\) = total maximum daily load
- \(C_{\text{criterion}}\) = criterion
- \(Q_{\text{total}}\) = estimated instantaneous flow
5.0 TOTAL MAXIMUM DAILY LOAD

A Total Maximum Daily Load (TMDL) is the amount of a pollutant that can be assimilated by the receiving waterbody without exceeding the applicable water quality standard. In this case, it is the seasonal fecal coliform bacteria standard. A TMDL is the sum of the individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources, as well as natural background (40 CFR 130.2) for a given waterbody. The TMDL must also include a margin of safety (MOS), either implicitly or explicitly, that accounts for the uncertainty in the relationship between pollutant loads and the water quality response of the receiving waterbody. TMDLs can be expressed in terms of either mass per time, toxicity, or other appropriate measures. For fecal coliform bacteria, the TMDLs are expressed as counts per 30 days as a geometric mean.

A TMDL is expressed as follows:

\[
\text{TMDL} = \sum \text{WLAs} + \sum \text{LAs} + \text{MOS}
\]

The TMDL calculates the WLAs and LAs with a margin of safety to meet the stream’s water quality standards. The allocations are based on estimates that use the best available data and provide the basis to establish or modify existing controls so that water quality standards can be achieved. In developing a TMDL, it is important to consider whether adequate data are available to identify the sources, and to understand the fate and transport of the pollutant(s) to be controlled.

TMDLs may be developed using a phased approach. Under a phased approach, the TMDL includes: 1) WLAs that confirm existing limits and controls or lead to new limits, and 2) LAs that confirm existing controls or include implementing new controls (USEPA, 1991). A phased TMDL requires additional data be collected to determine if load reductions required by the TMDL are leading to the attainment of water quality standards.

Watershed-based plans may be developed to address and assess both point and nonpoint sources. These plans establish a schedule or timetable for the installation and evaluation of source control measures, data collection, and assessment of water quality standard attainment. Future monitoring of the listed segments water quality may be used to evaluate this phase of the TMDL, and if necessary, to reallocate the loads.

The existing fecal coliform loads calculated for each listed stream segment are based on sampling data and measured or estimated flows and represent the sum of the total loads from all point and nonpoint sources for the segment. In situations where two or more adjacent segments are listed, the fecal coliform loads to each segment are individually evaluated on a localized watershed basis. The following sections describe the various bacteria TMDL components.

5.1 Wasteload Allocations

5.1.1 Wastewater Treatment Facilities

The wasteload allocation (WLA) is the portion of the receiving water’s loading capacity that is allocated to existing or future point sources. WLAs are provided to the point sources with flows from municipal and industrial wastewater treatment systems with NPDES end-of-pipe effluent limits established to meet the applicable water quality standard. In addition, the permits include routine monitoring and reporting requirements.
For facilities that currently have a bacteria effluent limit, the permit information, receiving stream, impaired stream and WLAs are provided in Table 11. This information is provided for facilities that discharge into or within 25 miles upstream of a listed segment. In most cases, the WLAs are calculated based on permitted or design flow and permitted bacteria concentration. However, for those facilities whose wastewater is reused, the bacteria limit to discharge into surface waters may be overly restrictive and for these facilities the WLA is calculated using the permitted flow and bacteria concentration required to meet the water quality standard. This was expressed as an accumulated load over a 30-day period and presented in units of counts per 30 days. If a facility expands its capacity and the permitted flow increases, the wasteload allocation for the facility would increase in proportion to the flow. If there is a new facility or a facility expands its capacity and the permitted flow increases, the wasteload allocation for the facility would be the permitted flow times the appropriate water quality criteria, either 200 counts/100 mL for fecal coliform or 126 counts/100 mL for E. coli as a 30-day geometric mean.

Table 11: WLAs for the Facilities that Currently have Bacteria Limits in the St. Mary’s River Basin

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Permit No.</th>
<th>Receiving Stream</th>
<th>Listed Stream Segment</th>
<th>Bacterial Indicator</th>
<th>WLA (counts/30 days)</th>
<th>30 Day Geometric Mean Concentration (counts/100mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folkston Pond WPCP</td>
<td>GA0027189</td>
<td>Clay Branch</td>
<td>Clay Branch</td>
<td>Fecal coliform</td>
<td>6.36E+10</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(GAR030702040305)</td>
<td>E. coli</td>
<td>4.01E+10</td>
<td></td>
</tr>
<tr>
<td>Folkston WPCP</td>
<td>GA0037613</td>
<td>Spanish Creek</td>
<td>Clay Branch</td>
<td>Fecal coliform</td>
<td>1.14E+11</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(GAR030702040305)</td>
<td>E. coli</td>
<td>7.15E+10</td>
<td>126</td>
</tr>
</tbody>
</table>

Industrial facilities that discharge sanitary wastewater directly or sanitary waste streams commingled with other waste streams will be given a bacteria effluent limit in their permit. For these facilities, it is not known if their discharge contains any bacteria at levels that would exceed the instream water quality criteria because the type of treatment processes employed. Therefore, all existing industrial facilities will be required to submit bacteria data with their NPDES permit renewal application. Industrial discharges must collect, analyze, and submit bacteria data from at least 4 samples collected 24 hours apart within a 30-day period. GAEPD will evaluate these data and determine if a permit limit for bacteria is needed. There are currently no known existing industrial discharges without bacteria permit limits in the contributing watersheds.

5.1.2 Regulated Stormwater Discharges

State and Federal Rules define stormwater discharges covered by NPDES permits as point sources. However, stormwater discharges are from diffuse sources and there are multiple stormwater outfalls. Stormwater sources (point and nonpoint) are different than traditional NPDES permitted sources in four respects: 1) they do not produce a continuous (pollutant loading) discharge; 2) their pollutant loading depends on the intensity, duration, and frequency of rainfall events, over which the permittee has no control; 3) the activities contributing to the pollutant loading may include the various allowable activities of others, and control of these activities is not solely within the discretion of the permittee; and 4) they do not have wastewater treatment plants that control specific pollutants to meet numerical limits.
The intent of stormwater NPDES permits is not to treat the water after collection, but to reduce the exposure of stormwater to pollutants by implementing various controls. It would be infeasible and prohibitively expensive to control pollutant discharges from each stormwater outfall. Therefore, stormwater NPDES permits require the establishment of controls or BMPs to reduce the pollutants entering the environment.

The wasteload allocations from stormwater discharges (WLA_{sw}) associated with MS4s are estimated based on the percentage of urban area in each watershed covered by the MS4 stormwater permit. At this time, the portion of each watershed that goes directly to a permitted storm sewer or is non-permitted sheet flow or diffuse runoff has not been clearly defined. Thus, it is assumed that approximately 70 percent of stormwater runoff from the regulated urban area is collected by the MS4s. This can be represented by the following equation:

\[
WLA_{SW} = Q_{WLAsw} \times C_{standard}
\]

where:
- \(WLA_{SW}\) = Wasteload Allocation for permitted storm water runoff from all MS4 urban areas
- \(Q_{WLAsw}\) = Runoff from all MS4 urban areas conveyed through permitted storm water structures
 - \(Q_{WLAsw} = \Sigma Q_{urban} \times 0.7\)
 - \(\Sigma Q_{urban} = \text{Sum of all storm water runoff from MS4 urban}\)
- \(C_{standard}\) = seasonal fecal coliform standard (as a 30-day geometric mean)
 - summer – 200 counts/100 mL as fecal coliform
 - winter – 1000 counts/100 mL as fecal coliform
 - summer – 126 counts/100 mL as \(E.\ coli\)
 - winter – 265 counts/100 mL as \(E.\ coli\)

For stormwater permits, compliance with the terms and conditions of the permit is effective implementation of the WLA to the Maximum Extent Practicable (MEP) and demonstrates consistency with the assumptions and requirements of the TMDL. GAEPD acknowledges that progress with the assumptions and requirements of the TMDL by stormwater permittees may take one or more permit iterations. Achieving the TMDL reductions may constitute compliance with a storm water management plan (SWMP) or a storm water pollution prevention plan (SWPPP), provided the MEP definition is met, even where the numeric percent reduction may not be achieved so long as reasonable progress is made toward attainment of water quality standards using an iterative BMP process.

5.1.3 Concentrated Animal Feeding Operations

Wet manure facilities are either included under a State-issued LAS General Permit or an NPDES General Permit. A small number of wet manure operations have an individual NPDES permit. Dry manure facilities are not required to obtain permits. None of the wet manure or dry manure facilities have discharges. Presently, there are no wet or dry manure CAFOs located in the watersheds of the listed segments in the St. Mary’s River Basin, and therefore they were not provided a WLA.
5.2 Load Allocations

The load allocation is the portion of the receiving water’s loading capacity that is attributed to existing or future nonpoint sources or to natural background sources. Nonpoint sources are identified in 40 CFR 130.6 as follows:

- Residual waste;
- Land disposal;
- Agricultural and silvicultural;
- Mines;
- Construction;
- Saltwater intrusion; and
- Urban stormwater (non-permitted).

The LA is calculated as the remaining portion of the TMDL load available, after allocating the WLA, WLAsw, and the MOS, using the following equation:

$$LA = TMDL - (\sum WLA + \sum WLAsw + MOS)$$

As described above, there are two types of load allocations: loads to the stream independent of precipitation, including sources such as failing septic systems, leachate from landfills, animals in the stream, leaking sewer system collection lines, and background loads; and loads associated with bacteria accumulation on land surfaces that is washed off during storm events, including runoff from saturated LAS fields. At this time, it is not possible to partition the various sources of load allocations. In the future, after additional data has been collected, it may be possible to partition the load allocation by source.

5.3 Seasonal Variation

The Georgia bacteria criteria are seasonal. One set of criteria applies to the summer season, while a different set applies to the winter season. To account for seasonal variations, the critical loads for each listed segment were determined from sampling data obtained during both summer and winter seasons, when possible. The TMDL and percent reduction for each listed segment is based on the season in which the critical load occurred. The TMDLs for each season, for any given flow, are presented as equations in Section 5.5.

5.4 Margin of Safety

The MOS is a required component of TMDL development. There are two basic methods for incorporating the MOS: 1) implicitly incorporate the MOS using conservative modeling assumptions to develop allocations; or 2) explicitly specify a portion of the TMDL as the MOS and use the remainder for allocations. For this TMDL, an explicit MOS of 10 percent of the TMDL was used.

5.5 Total Bacteria Load

The bacteria TMDL for the listed stream segment is dependent on the time of year, the stream flow, and the applicable state water quality standard. In January 2022, the Georgia DNR Board adopted new bacteria criteria for fishing and drinking water designated uses using the bacterial
indicators *E. coli* and enterococci. These bacteria are better indicators for human health illnesses. The adopted criteria have the same estimated illness rate (8 per 1000 swimmers) as the previously established fecal coliform criteria. Pending EPA approval of the proposed criteria, this TMDL will use fecal coliform as the bacterial indicator; upon EPA's approval of the proposed *E. coli* and enterococci criteria, future TMDLs will use these more appropriate bacteria indicators.

The total maximum daily seasonal fecal coliform loads for Georgia are given below:

\[
\text{TMDL}_{\text{summer}} = 200 \text{ counts/100 mL (as a 30-day geometric mean)} \times Q
\]
\[
\text{TMDL}_{\text{winter}} = 1000 \text{ counts/100 mL (as a 30-day geometric mean)} \times Q
\]
\[
\text{TMDL} = 4000 \text{ counts/100 mL (instantaneous)} \times Q
\]

The total maximum daily seasonal *E. coli* loads for Georgia are given below:

\[
\text{TMDL}_{\text{summer}} = 126 \text{ counts/100 mL (as a 30-day geometric mean)} \times Q
\]
\[
\text{TMDL}_{\text{winter}} = 265 \text{ counts/100 mL (as a 30-day geometric mean)} \times Q
\]
\[
\text{TMDL} = 410 \text{ counts/100 mL (10% of samples over STV)} \times Q
\]

For purposes of determining necessary load reductions required to meet the instream water quality criteria, the current critical TMDL was determined. This load is the product of the applicable seasonal fecal coliform standard and the mean flow used to calculate the current critical load. It represents the sum of the allocated loads from point (WLA and WLA$_{sw}$) and nonpoint (LA) sources located within the immediate drainage area of the listed segment, and a margin of safety (MOS). For these calculations, the fecal load contributed by a permitted facility to the WLA was not the maximum presented, but rather was the product of the fecal coliform permitted limit and the average monthly discharge at the time of the critical load. The current critical loads and corresponding TMDLs, WLAs (WLA and WLA$_{sw}$), LAs, MOSs, and percent load reductions for the St. Mary's River Basin listed stream segment is presented in Table 12.

The relationships of the current critical loads to the TMDLs are shown graphically in Appendix A. The vertical distance between the two values represents the load reductions necessary to achieve the TMDLs. Because of the localized nature of the load evaluations, the calculated bacterial load reductions pertain to point and nonpoint sources occurring within the immediate drainage area of the listed segment. These current critical values represent a worst-case scenario for the limited set of data. Thus, the load reductions required are conservative estimates, and should be sufficient to prevent exceedances of the instream bacteria standard for a wide range of conditions.

Evaluation of the relationship between instream water quality and the potential sources of pollutant loading is an important component of TMDL development and is the basis for later implementation of corrective measures and BMPs. For the current TMDLs, the association between bacterial loads and the potential sources occurring within the sub-watershed of each segment was examined on a qualitative basis.
Table 12: Bacteria Loads and Required Load Reductions

<table>
<thead>
<tr>
<th>Stream Segment</th>
<th>Description</th>
<th>Bacterial Indicator</th>
<th>Current Load (counts/30 days)</th>
<th>TMDL Components</th>
<th>Reduction Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WLA (counts/30 days) (1)</td>
<td>WLAsw (counts/30 days)</td>
</tr>
<tr>
<td>Clay Branch (GAR030702040305)</td>
<td>Headwaters to Spanish Creek</td>
<td>E. coli</td>
<td>1.12E+11</td>
<td>--</td>
<td>1.03E+12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fecal coliform</td>
<td>3.97E+12</td>
<td>--</td>
<td>1.77E+11</td>
</tr>
<tr>
<td>Long Branch (GAR030702040803)</td>
<td>Headwaters to Spanish Creek</td>
<td>E. coli</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fecal coliform</td>
<td>6.61E+12</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:
1. The assigned bacterial load from the NPDES permitted facility for WLA was determined as the product of the bacteria permit limit and the facility average monthly discharge at the time of the critical load.
2. Sample was not analyzed for E. coli, therefore critical load calculation not possible.
3. Percent reduction could not be determined due to absence of current load calculation.
6.0 RECOMMENDATIONS

The TMDL process consists of an evaluation of the sub-watersheds for each 303(d) listed stream segment to identify, as best as possible, the sources of the bacteria loads causing the stream to exceed instream standards. The TMDL analysis was performed using the best available data to specify WLAs and LAs that will meet bacteria water quality criteria to support the use classification specified for the listed segment.

This TMDL represents part of a long-term process to reduce bacteria loading to meet water quality standards in the St. Mary’s River Basin. Implementation strategies will be reviewed and the TMDL will be refined, as necessary, in the next phase (next five-year cycle). The phased approach will support progress toward water quality standards attainment in the future. In accordance with USEPA TMDL guidance, the TMDL may be revised based on the results of future monitoring and source characterization data efforts. The following recommendations emphasize further source identification and involve the collection of data to support the current allocations and subsequent source reductions.

6.1 Monitoring

Water quality monitoring is conducted at a number of locations across the State each year. Sampling is conducted statewide by GAEPD personnel in Atlanta, Augusta, Brunswick, Cartersville, and Tifton. Additional monitoring sites are added as necessary.

In the case where a watershed-based plan has been developed for a listed stream segment, an appropriate water quality monitoring program will be outlined. The monitoring program will be developed to help identify the various bacteria sources. The monitoring program may be used to verify the 303(d) stream segment listings. This will be especially valuable for those segments where limited data resulted in the listing.

6.2 Bacteria Management Practices

Based on the findings of the source assessment, NPDES point source bacteria loads from wastewater treatment facilities usually do not significantly contribute to the impairment of the listed stream segments. This is because most facilities are required to treat to levels corresponding to instream water quality criteria. Sources of bacteria in urban areas include wastes that are attributable to domestic animals, leaks and overflows from sanitary sewer systems, illicit discharges of sanitary waste, leaking septic systems, runoff from improper disposal of waste materials, and leachate from both operational and closed landfills. In agricultural areas, potential sources of bacteria may include CAFOs, animals grazing in pastures, dry manure storage facilities and lagoons, chicken litter storage areas, and direct access of livestock to streams. Wildlife, especially waterfowl and mammals living close to or in water environments, can be a significant source of bacteria.

Management practices are recommended to reduce bacteria source loads to the listed 303(d) stream segments, with the result of achieving the instream bacteria standard criteria. These recommended management practices include:

- Compliance with NPDES (wastewater, construction, industrial stormwater, and/or MS4) permit limits and requirements;
- Ensure storm water management plans are in place and being implemented by the local governments located in the watershed;
- Implementation of recommended Water Quality management practices in the Suwannee-Satilla Water Planning Region;
- Implementation of Georgia’s Best Management Practices for Forestry (GFC, 2009);
- Adoption and implementation of the Georgia Stormwater Management Manual (ARC, 2016) and the Coastal Stormwater Supplement to the Georgia Stormwater Management Manual (CWP, 2009) to facilitate water quality treatment of stormwater runoff, including bacteria removal, through structural stormwater BMP installation.

6.2.1 Point Source Approaches

The NPDES permit program provides a basis for municipal, industrial, and stormwater permits, monitoring and compliance with permit limitations, and appropriate enforcement actions for violations. In accordance with GAEPD rules and regulations, all discharges from point source facilities are required to follow the conditions of their NPDES permit at all times. Municipal and industrial wastewater treatment facilities with the potential for bacteria in their discharge are given end-of-pipe limits to meet the applicable water quality standard. In addition, the permits include routine monitoring and reporting requirements.

Achieving the TMDL reductions may constitute compliance with a SWMP or SWPPP, provided the MEP definition is met, even where the numeric percent reduction may not be achieved so long as reasonable progress is made toward attainment of water quality standards using an iterative BMP process.

6.2.2 Nonpoint Source Approaches

GAEPD is the lead agency for implementing the State’s Nonpoint Source Management Program, as described in Georgia’s Statewide Nonpoint Source Management Plan (GAEPD, 2019). GAEPD will continue to work with local governments, agricultural, and forestry agencies such as the Natural Resources Conservation Service, the Georgia Soil and Water Conservation Commission, and the Georgia Forestry Commission to foster the implementation of BMPs that address nonpoint source pollution. The following sections describe programs in place and recommendations which should result in reducing nonpoint source loads of bacteria in Georgia’s surface waters.

6.2.2.1 Agricultural Sources

GAEPD should coordinate with other agencies that are responsible for agricultural activities in the state to address issues concerning bacteria loading from agricultural lands. It is recommended that information such as livestock populations by sub-watershed, animal access to streams, manure storage and application practices be periodically reviewed so that watershed evaluations can be updated to reflect current conditions. It is also recommended that BMPs be utilized to reduce the amount of bacteria transported to surface waters from agricultural sources to the maximum extent practicable.
The following three organizations have primary responsibility for working with farmers to promote soil and water conservation, and to protect water quality:

- University of Georgia (UGA) - Cooperative Extension Service;
- Georgia Soil and Water Conservation Commission (GSWCC); and
- Natural Resources Conservation Service (NRCS).

UGA has faculty, County Cooperative Extension Agents, and technical specialists who provide services in several key areas relating to agricultural impacts on water quality. GAEPD designated the GSWCC as the lead agency for agricultural Nonpoint Source Management in the State. The GSWCC develops nonpoint source management programs and conducts educational activities to promote conservation and protection of land and water devoted to agricultural uses.

The NRCS works with federal, state, and local governments to provide financial and technical assistance to farmers. The NRCS develops standards and specifications for BMPs that are to be used to improve, protect, and/or maintain our state’s natural resources. In addition, every five years, the NRCS conducts the National Resources Inventory (NRI). The NRI is a statistically-based sample of land use and natural resource conditions and trends that covers non-federal land in the United States.

The NRCS is also providing technical assistance to the GSWCC and the GAEPD with the Georgia River Basin Planning Program. Planning activities associated with this program will describe conditions of the agricultural natural resource base once every five years. It is recommended that the GSWCC and the NRCS continue to encourage BMP implementation, education efforts, and river basin surveys with regard to river basin planning.

6.2.2.2 Urban Sources

Both point and nonpoint sources of bacteria can be significant in the St. Mary’s River Basin urban areas. Urban sources of bacteria can best be addressed using a strategy that involves stormwater management, public participation, and intergovernmental coordination to reduce the discharge of pollutants to the maximum extent practicable. Management practices, control techniques, public education, and other appropriate methods and provisions may be employed. The following activities and programs conducted by cities, counties, and state agencies are recommended:

- Implement stormwater BMPs that incorporate water quality treatment and/or pollutant removal
- Uphold requirements that all new and replacement sanitary sewerage systems be designed to minimize discharges into storm sewer systems;
- Further develop and streamline mechanisms for reporting and correcting illicit connections, breaks, surcharges, and general sanitary sewer system problems;
- Continue efforts to increase public awareness and education towards the impact of human activities in urban settings on water quality, ranging from the consequences of industrial and municipal discharges to the activities of individuals in residential neighborhoods.
6.3 Reasonable Assurance

GAEPD is responsible for administering and enforcing laws to protect the waters of the State. Reasonable assurance ensures that a TMDL's wasteload and load allocations are properly distributed to meet the applicable water quality standards. Without such distribution, a TMDL’s ability to serve as an effective guidepost for water quality improvement is significantly diminished. Federal regulations implementing the CWA require that effluent limits in permits be consistent with “the assumptions and requirements of any available [WLA]” in an approved TMDL [40 CFR 122.44(d)(1)(vii)(B)]. NPDES point source permits will be given effluent limits in the permit consistent with the individual WLAs specified in the TMDL.

The GA EPD is the lead agency for implementing the State’s Nonpoint Source Management Program. Regulatory responsibilities that have a bearing on nonpoint source pollution include establishing water quality standards and use classifications, assessing and reporting water quality conditions, and regulating land use activities that may affect water quality. Georgia is working with local governments, agricultural and forestry agencies, such as the Natural Resources Conservation Service, the Georgia Soil and Water Conservation Commission, and the Georgia Forestry Commission, to foster the implementation of best management practices to address nonpoint sources. In addition, public education efforts will be targeted to individual stakeholders to provide information regarding the use of best management practices to protect water quality.

6.4 Public Participation

A thirty-day public notice is being provided for this TMDL. During that time, the TMDL will be available on the GAEPD website, a copy of the TMDL will be provided on request, and the public will be invited to provide comments on the TMDL.
7.0 INITIAL TMDL IMPLEMENTATION PLAN

This plan identifies applicable State-wide programs and activities that may be employed to manage point and nonpoint sources of bacteria loads for the segment in the St. Mary’s River Basin. Local watershed planning and management initiatives will be fostered, supported, or developed through a variety of mechanisms. Implementation may be addressed by Watershed-Based Plans or other assessments funded by Section 319(h) grants, the local development of watershed protection plans, or “Targeted Outreach” initiated by GAEPD. These initiatives will supplement or possibly replace this initial implementation plan. Implementation actions should also be guided by the recommended management practices and actions contained within each applicable Regional Water Plan developed as part of Georgia’s Comprehensive State-wide Water Management Plan implementation (Georgia Water Council, 2008).

7.1 Impaired Segments

This initial plan is applicable to the following waterbody that was added to Georgia’s 2022 Integrated 305(b)/303(d) list of not supporting waters in Water Quality in Georgia 2020-2021 (GAEPD, 2022) available on the GAEPD website. The following table summarizes the descriptive information provided in the 303(d) list.

<table>
<thead>
<tr>
<th>Stream Segment</th>
<th>Location</th>
<th>Segment Length (miles)</th>
<th>Designated Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Branch</td>
<td>Headwaters to Spanish Creek</td>
<td>4</td>
<td>Fishing</td>
</tr>
<tr>
<td>(GAR030702040305)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Branch</td>
<td>Headwaters to Spanish Creek</td>
<td>6</td>
<td>Fishing</td>
</tr>
<tr>
<td>(GAR030702040803)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The water use classification for the listed stream segments in the St. Mary’s River Basin is Fishing. The criterion violated is listed as fecal coliform. The potential cause listed include urban runoff and nonpoint sources. The current fishing bacteria water quality standards as approved by US EPA Region 4 on January 20, 2021, is as follows:

(c) Fishing: Propagation of Fish, Shellfish, Game and Other Aquatic Life; primary contact recreation in and on the water for the months of May – October, secondary contact recreation in and on the water for the months of November – April; or for any other use requiring water of a lower quality.

(i) Bacteria:

1. For the months of May through October, when water contact recreation activities are expected to occur, fecal coliform not to exceed a geometric mean of 200 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. Should water quality and sanitary studies show fecal coliform levels from non-human sources exceed 200 counts per 100 mL (geometric mean) occasionally, then the allowable geometric mean fecal coliform shall not exceed 300 counts per 100 mL in lakes and reservoirs and 500 counts per 100 mL in free flowing freshwater streams. For the months of November through April, fecal coliform not to exceed a geometric mean of 1,000 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours and not to exceed a maximum of 4,000 counts per 100 mL for any sample. The State does not encourage swimming in these surface waters since a number of
factors which are beyond the control of any State regulatory agency contribute to elevated levels of bacteria.

2. For waters designated as shellfish growing areas by the Georgia DNR Coastal Resources Division, the requirements will be consistent with those established by the State and Federal agencies responsible for the National Shellfish Sanitation Program. The requirements are found in National Shellfish Sanitation Program Guide for the Control of Molluscan Shellfish, 2007 (Revision or most recent version), Interstate Shellfish Sanitation Conference, U.S. Food and Drug Administration.

In January 2022, the Georgia DNR Board adopted new bacteria criteria for fishing and drinking water designated uses using the bacterial indicators *E. coli* and enterococci. These bacteria are better indicators for human health illnesses. The adopted criteria have the same estimated illness rate (8 per 1000 swimmers) as the previously established fecal coliform criteria. As this TMDL is being written during the process of EPA approving new bacteria criteria, the TMDL will be written using both bacterial indicators. The use classification water quality standards for fecal coliform bacteria, as stated in the *State of Georgia’s Rules and Regulations for Water Quality Control*, Chapter 391-3-6-.03(6)(c)(iii) (GA EPD, 2022), are:

(c) Fishing: Propagation of Fish, Shellfish, Game and Other Aquatic Life; primary contact recreation in and on the water for the months of May – October, secondary contact recreation in and on the water for the months of November – April; or for any other use requiring water of a lower quality.

(i) Bacteria:

1. Estuarine waters: For the months of May through October, when primary water contact recreation activities are expected to occur, culturable enterococci not to exceed a geometric mean of 35 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an enterococci statistical threshold value (STV) of 130 counts per 100 mL the same 30-day interval.

 For the months of November through April, culturable enterococci not to exceed a geometric mean of 74 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an enterococci statistical threshold value (STV) of 273 counts per 100 mL in the same 30-day interval.

2. All other fishing waters: For the months of May through October, when primary water contact recreation activities are expected to occur, culturable *E. coli* not to exceed a geometric mean of 126 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an *E. coli* statistical threshold value (STV) of 410 counts per 100 mL in the same 30-day interval.

 For the months of November through April, culturable *E. coli* not to exceed a geometric mean of 265 counts per 100 mL based on at least four samples collected from a given sampling site over a 30-day period at intervals not less than 24 hours. There shall be no greater than a ten percent excursion frequency of an *E. coli* statistical threshold value (STV) of 861 counts per 100 mL in the same 30-day interval.

3. The State does not encourage swimming in these surface waters since a number of factors which are beyond the control of any State regulatory agency contribute to elevated levels of bacteria.

4. For waters designated as shellfish growing areas by the Georgia DNR Coastal Resources Division, the requirements will be consistent with those established by the State and Federal agencies responsible for the National Shellfish Sanitation Program. The requirements are found in National Shellfish Sanitation Program Guide for the Control of Molluscan Shellfish, 2007 Revision (or most recent version), Interstate Shellfish Sanitation Conference, U.S. Food and Drug Administration.
7.2 Potential Sources

An important part of the TMDL analysis is the identification of potential source categories. A source assessment characterizes the known and suspected bacteria sources in the watershed. Sources are broadly classified as either point or nonpoint sources. A point source is defined as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Point sources of bacteria include NPDES permittees discharging treated wastewater and storm water. Nonpoint sources of bacteria are diffuse sources that cannot be identified as entering the waterbody at a single location. These sources generally involve land use activities that contribute bacteria to streams during a rainfall runoff event.

NPDES point source bacteria loads from wastewater treatment facilities usually do not contribute to impairments. This is because these facilities are required to treat to levels corresponding to instream water quality criteria. However, point sources can and do fail, which may contribute to bacteria loads through leaks and overflows from sanitary sewer systems, CAFOs, or leachate from operational landfills.

Nonpoint sources of bacteria in urban areas include wastes that are attributable to domestic animals, illicit discharges of sanitary waste, leaking septic systems, runoff from improper disposal of waste materials, and leachate from closed landfills. In non-urban areas, potential sources of bacteria may include animals grazing in pastures, dry manure storage facilities and lagoons, chicken litter storage areas, and direct access of livestock to streams. Wildlife, especially waterfowl and mammals living close to or in water environments, can be a significant source of bacteria.

7.3 Management Practices and Activities

GAEPD is responsible for administering and enforcing laws to protect the waters of the State and is the lead agency for implementing the State’s Nonpoint Source Management Program. Georgia is working with local governments, agricultural and forestry agencies such as the Georgia Department of Agriculture, the Natural Resource Conservation Service (NRCS), the Georgia Soil and Water Conservation Commission (GSWCC), and the Georgia Forestry Commission (GFC) to foster implementation of BMPs that address nonpoint source pollution. The following management practices are recommended to reduce bacteria loads to stream segments:

- Sustain compliance with NPDES treated wastewater permit requirements;
- Sustain compliance with NPDES MS4 permit requirements, where applicable;
- Compliance with future NPDES Industrial General Permit requirements, including where applicable, achieving benchmark levels for monitored constituents;
- Ensure storm water management plans are in place and being implemented by the local governments, and by the industrial facilities located in the watershed;
- Adoption and implementation of the Georgia Stormwater Management Manual (ARC, 2016) to facilitate water quality treatment of stormwater runoff, including bacteria removal, through structural stormwater BMP installation;
- Further develop and streamline mechanisms for reporting and correcting illicit discharges, breaks, surcharges, and general sanitary sewer system problems;
- Uphold requirements that all new and replacement sanitary sewage systems be designed to minimize discharges into storm sewer systems;
- Adoption of local ordinances (i.e. septic tanks, storm water, etc.) that address local water quality;
• Continue efforts to increase public awareness and education regarding the impact of human activities on water quality, ranging from industrial and municipal discharges to individual’s activities in residential neighborhoods;
• Continue working with Federal, State, and local agencies and owners of sites where cleanup measures are necessary, and in developing control measures to prevent future releases of constituents of concern;
• Implementation of recommended Water Quality management practices in the Suwannee-Satilla Regional Water Plan (GAEPD, 2017);
• Adoption of NRCS Conservation Practices for primarily agricultural lands;
• Application of Best Management Practices (BMPs) appropriate to both urban and rural land uses, where applicable; and
• Ongoing public education efforts on the sources of bacteria and common-sense approaches to lessen the impact of this contaminant on surface waters.

7.4 Monitoring

GAEPD encourages local governments and municipalities to develop and continue water quality monitoring programs. These programs can help pinpoint various bacteria sources, as well as verify the 303(d) stream segment listings. This will be particularly valuable for those segments where listing was based on limited data. In addition, regularly scheduled sampling will determine if there has been some improvement in the water quality of the listed stream segments. GAEPD would like to particularly commend and encourage downgradient sampling on the LAS system and supports expanding monitoring to quarterly or monthly sampling schedules. GAEPD is available to assist in providing technical guidance regarding the preparation of monitoring plans and Sampling Quality Assurance Plans (SQAP).

7.5 Future Action

This Initial TMDL Implementation Plan includes a general approach to pollutant source identification, as well as management practices to address pollutants. In the future, GAEPD will continue to determine and assess the appropriate point and non-point source management measures needed to achieve the TMDLs and to protect and restore water quality in impaired waterbodies.

For point sources, any wasteload allocations for wastewater treatment plant facilities will be implemented in the form of water quality-based effluent limitations in NPDES permits. Any wasteload allocations for regulated stormwater will be implemented in the form of best management practices in the NPDES permits. Contributions of bacteria from regulated communities may also be managed using permit requirements such as watershed assessments, watershed protection plans, and long-term monitoring. These measures will be directed through current point source management programs.

GAEPD will work to support watershed restoration, improvement and protection projects that address nonpoint source pollution. This is a process whereby GAEPD and/or Regional Commissions or other agencies or local governments, under a contract with GAEPD, will develop a Watershed Management Plan intended to address water quality at the small watershed level (HUC 10 or smaller). These plans will be developed as resources and willing partners become available. The development of these plans may be funded via several grant sources, including, but not limited to: Clean Water Act Section 319(h), Section 604(b), and/or Section 106 grant funds. These plans are intended for implementation upon completion.
Any Watershed Management Plan that specifically addresses a waterbody contained within this TMDL will supersede this Initial TMDL Implementation Plan for that waterbody once GAEPD accepts and/or approves the plan. Watershed Management Plans intended to address this TMDL and other water quality concerns, prepared for GAEPD, and for which GAEPD and/or the GAEPD Contractor are responsible, will contain at a minimum the US EPA’s 9 Elements of Watershed Planning:

1) An identification of the sources or groups of similar sources contributing to nonpoint source pollution to be controlled to implement load allocations or achieve water quality standards. Sources should be identified at the subcategory level with estimates of the extent to which they are present in the watershed (e.g., X numbers of cattle feedlots needing upgrading, Y acres of row crops needing improved bacteria control, or Z linear miles of eroded streambank needing remediation);

2) An estimate of the load reductions expected for the management measures;

3) A description of the NPS management measures that will need to be implemented to achieve the load reductions established in the TMDL or to achieve water quality standards;

4) An estimate of the sources of funding needed, and/or authorities that will be relied upon, to implement the plan;

5) An information/education component that will be used to enhance public understanding of and participation in implementing the plan;

6) A schedule for implementing the management measures that is reasonably expeditious;

7) A description of interim, measurable milestones (e.g., amount of load reductions, improvement in biological or habitat parameters) for determining whether management measures or other control actions are being implemented;

8) A set of criteria that can be used to determine whether substantial progress is being made towards attaining water quality standards and, if not, the criteria for determining whether the plan needs to be revised; and;

9) A monitoring component to evaluate the effectiveness of the implementation efforts, measured against the criteria established under item 8.

The public will be provided an opportunity to participate in the development of Watershed Management Plans that address impaired waters and to comment on them before they are finalized.

GAEPD will continue to offer technical and financial assistance (when and where available) to complete Watershed Management Plans that address the impaired water bodies listed in this and other TMDL documents. Assistance may include but will not be limited to:

- Assessments of pollutant sources within watersheds;
- Determinations of appropriate management practices to address impairments;
- Identification of potential stakeholders and other partners;
- Developing a plan for outreach to the general public and other groups;
• Assessing the resources needed to implement the plan upon completion; and
• Other needs determined by the lead organization responsible for plan development.

GAEPD will also make this same assistance available, if needed, to proactively address water quality concerns. This assistance may be in the way of financial, technical, or other aid and may be requested and provided outside of the TMDL process or schedule.
REFERENCES

GAEPD, 2017. Solid Waste Facility Information, State of Georgia, Department of Natural Resources, Environmental Protection Division, Land Protection Branch.

GAEPD, 2022. State of Georgia Rules and Regulations for Water Quality Control, Chapter 391-3-6, State of Georgia, Department of Natural Resources, Environmental Protection Division, Water Protection Branch, amended February 2022.

GAEPD, 2022. Water Quality in Georgia 2020-2021, Georgia Department of Natural Resources, Environmental Protection Division, Watershed Protection Branch.

UGA, 2015. Animal Inventory, Center for Agribusiness and Economic Development, College of Agriculture and Environmental Sciences, University of Georgia, 304A Lumpkin House, Athens, Georgia 30605.

Appendix A

30-day Geometric Mean Fecal Coliform Monitoring Data
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Drainage Area (square miles)</th>
<th>USGS Station ID</th>
<th>USGS Description</th>
<th>USGS Drainage Area (sq miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Branch (GAR030702040305)</td>
<td>Clay Branch at Confluence with Spanish Creek</td>
<td>8.0</td>
<td>02228500</td>
<td>North Prong St. Mary’s River at Monic, GA</td>
<td>160</td>
</tr>
<tr>
<td>Long Branch (GAR030702040803)</td>
<td>Long Branch at Confluence with Spanish Creek</td>
<td>12.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-2: Clay Branch at Gibson Post Road Water Quality Monitoring Data

<table>
<thead>
<tr>
<th>Collection Date</th>
<th>Observed Fecal Coliform (MPN/100 mL)</th>
<th>Estimated Flow (cfs)</th>
<th>Fecal Coliform Geometric Mean (MPN/100 mL)</th>
<th>Mean Flow (cfs)</th>
<th>Geometric Mean Load (MPN/30 days)</th>
<th>Fecal Coliform Criteria (MPN/100 mL)</th>
<th>Fecal Coliform TMDL Load (MPN/30 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/09/2017</td>
<td>20</td>
<td>0.145</td>
<td>93.10</td>
<td>0.41</td>
<td>2.80E+10</td>
<td>1000</td>
<td>3.01E+11</td>
</tr>
<tr>
<td>01/24/2017</td>
<td>130</td>
<td>0.759</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/30/2017</td>
<td>170</td>
<td>0.484</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/07/2017</td>
<td>170</td>
<td>0.252</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/03/2017</td>
<td>40</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/11/2017</td>
<td>30</td>
<td>0.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/25/2017</td>
<td>80</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/07/2017</td>
<td>70</td>
<td>1.363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/17/2017</td>
<td>800</td>
<td>14.482</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/19/2017</td>
<td>220</td>
<td>30.762</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/01/2017</td>
<td>800</td>
<td>8.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/02/2017</td>
<td>300</td>
<td>10.037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/11/2017</td>
<td>500</td>
<td>5.144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/16/2017</td>
<td>140</td>
<td>3.690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/18/2017</td>
<td>80</td>
<td>7.041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection Date</td>
<td>Observed Fecal Coliform (MPN/100 mL)</td>
<td>Estimated Flow (cfs)</td>
<td>Fecal Coliform Geometric Mean (MPN/100 mL)</td>
<td>Mean Flow (cfs)</td>
<td>Geometric Mean Load (MPN/30 days)</td>
<td>Fecal Coliform Criteria (MPN/100 mL)</td>
<td>Fecal Coliform TMDL Load (MPN/30 days)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------------</td>
<td>----------------------</td>
<td>--</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>01/09/2017</td>
<td>20</td>
<td>0.145</td>
<td>28.72</td>
<td>0.41</td>
<td>8.64E+09</td>
<td>1000</td>
<td>3.01E+11</td>
</tr>
<tr>
<td>01/24/2017</td>
<td>170</td>
<td>0.759</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/30/2017</td>
<td>20</td>
<td>0.484</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/07/2017</td>
<td>10.00</td>
<td>0.252</td>
<td>28.28</td>
<td>0.02</td>
<td>3.21E+08</td>
<td>1000</td>
<td>1.14E+10</td>
</tr>
<tr>
<td>04/03/2017</td>
<td>20</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/11/2017</td>
<td>10.00</td>
<td>0.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/18/2017</td>
<td>40</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/25/2017</td>
<td>80</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/10/2017</td>
<td>40</td>
<td>1.363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/17/2017</td>
<td>363</td>
<td>14.482</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/19/2017</td>
<td>1300</td>
<td>30.762</td>
<td>395.79</td>
<td>13.66</td>
<td>3.97E+12</td>
<td>200</td>
<td>2.01E+12</td>
</tr>
<tr>
<td>08/01/2017</td>
<td>1300</td>
<td>8.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/02/2017</td>
<td>75</td>
<td>10.037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/11/2017</td>
<td>270</td>
<td>5.144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/16/2017</td>
<td>40</td>
<td>3.690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/18/2017</td>
<td>1500</td>
<td>7.041</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure A-1: Clay Branch Fecal Coliform Geometric Mean Loads and Summer and Winter TMDL Curves for both Sampling Stations

% Reduction = 49%
Table A-4: Long Branch Water Quality Monitoring Data

<table>
<thead>
<tr>
<th>Collection Date</th>
<th>Observed Fecal Coliform (MPN/100 mL)</th>
<th>Estimated Flow (cfs)</th>
<th>Fecal Coliform Geometric Mean (MPN/100 mL)</th>
<th>Mean Flow (cfs)</th>
<th>Geometric Mean Load (MPN/30 days)</th>
<th>Fecal Coliform Criteria (MPN/100 mL)</th>
<th>Long Branch (GAR030702040803)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/09/2017</td>
<td>300</td>
<td>0.220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/24/2017</td>
<td>500</td>
<td>1.150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/30/2017</td>
<td>200</td>
<td>0.733</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02/07/2017</td>
<td>230</td>
<td>0.382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/03/2017</td>
<td>80</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/11/2017</td>
<td>10</td>
<td>0.067</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/18/2017</td>
<td>40</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04/25/2017</td>
<td>50</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/10/2017</td>
<td>80</td>
<td>2.065</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/17/2017</td>
<td>300</td>
<td>21.931</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07/19/2017</td>
<td>3000</td>
<td>46.585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08/01/2017</td>
<td>500</td>
<td>12.176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/02/2017</td>
<td>500</td>
<td>15.201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/11/2017</td>
<td>230</td>
<td>7.789</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/16/2017</td>
<td>170</td>
<td>5.589</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/18/2017</td>
<td>300</td>
<td>10.663</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure A-2: Long Branch Fecal Coliform Geometric Mean Loads and Summer and Winter TMDL Curves