

Hydrogeologic Field Characterization at Twin Pines Mine

Twin Pines Minerals, LLC

HYDROGEOLOGIC FIELD CHARACTERIZATION AT TWIN PINES MINE

Prepared For:

TWIN PINES MINERALS, LLC PROPOSED HEAVY MINERALS MINE ST. GEORGE, CHARLTON COUNTY, GEORGIA

Prepared By:

Robert M. Holt Professor of Geology and Geological Engineering The University of Mississippi Department of Geology and Geological Engineering

> J. Mark Tanner, PG James R. Smith, P.G. Austin C. Patton, Zachary B. Lepchitz

TTL, Inc. 3516 Greensboro Avenue Tuscaloosa, Alabama 35401 Project No. 000180200804.00, Phase 0400

October 31, 2019

3516 Greensboro Avenue (35401) # P.O. Drawer 1128 (35403) # Tuscaloosa, Alabama # Telephone 205.345.0816 # Fax 205.345.0992

Table of Contents

INTRODUCTION1	
AQUIFER PUMPING TESTS1	
Pumping Well Installations1	
Observation Well Installation2	
Aquifer Pumping Tests	
Slug and Bail Tests	
RESULTS4	
Pumping Test Results4	
Pumping Test PWA	
Pumping Test PWB	
Slug and Bail Tests	
REFERENCES CITED	

Figures

- Figure 1: Location of the Proposed Twin Pines Mine
- Figure 2: Project Study Area & Proposed Permit Area
- Figure 3: Pumping Well Location Map
- Figure 4: Pumping Well "A" Location Map
- Figure 5: Pumping Well "B" Location Map
- Figure 6: Slug and Bail Test Piezometer Location Map
- Figure 7: Hydraulic Conductivity (Slug Tests)
- Figure 8: Hydraulic Conductivity (Bail Tests)

Tables

- Table 1:Sumary of Observation Well Cosntruction Depths and Distances from Pumping Wells
PWA and PWB
- Table 2:Well Construction Summary Table
- Table 3:Slug and Bail Test Location Summary
- Table 4:
 PWA Aquifer Test Hydraulic Parameter Estimates
- Table 5:
 PWB Aquifer Test Hydraulic Parameter Estimates
- Table 6:Slug and Bail Test Results Summary

Appendices

- Appendix A Boring Logs
- Appendix B Hydro Geo Chem, Inc Report
- Appendix C Slug and Bail Test Interpretations

INTRODUCTION

On July 3, 2019, Twin Pines Minerals (TPM) submitted an individual permit application to the U.S. Army Corps of Engineers for impacts to waters of the United States to develop a heavy mineral sand mine along Trail Ridge in Charlton County, Georgia (Figure 1). The proposed mine is located 3.2 miles west of St. George, Georgia, along Georgia State Highway Route 94. Trail Ridge is a 0.6 to 1.2 mile wide and 99 mile long topographic ridge that separates the Okefenokee Basin and Swamp from the coastal plain of Georgia (Force and Rich, 1979). It represents the crest of a former beach complex and was formed as inland sand dunes near the proposed Twin Pines Mine (e.g., Pirkle et al. 1993). The ridge is underlain by a shallow aquifer, locally known as the surficial aquifer, which forms a hydrologic divide between the Okefenokee swamplands to the west and the Saint Mary's River to the east. At the proposed mine site, the water table is very shallow with water depths of only a few feet. The surficial aquifer is perched on the clays of the upper Hawthorn Group, which is considered to be the upper confining unit to the Floridian Aquifer in the region (e.g., Williams and Kuniansky, 2016).

The proposed permit area is approximately 2,414-acres, located southeast of the Okefenokee National Wildlife Refuge (ONWR) boundary; however, TPM will only mine an approximate 1,268-acre area located about 2.7 miles from the ONWR boundary (Figure 2). The portion of the proposed permit area extending from the western mining boundary to the edge of the permit boundary will be avoided and will provide a buffer to the ONWR.

The project study area consists of approximately 12,000-acres of land located near St. George, Charlton County, Georgia. This area is comprised of five (5) contiguous tracts identified as Loncala, Dallas Police & Fire, Keystone, TIAA, and Adirondack. Reference to "project study area" in this report refers to activities conducted within the proposed mining area and adjacent tracts.

This report is being submitted to document field activities performed to characterize the hydraulic properties of the surficial aquifer beneath the project study area. As part of these field activities, TTL conducted two 24-hour pumping tests along the crest of Trail Ridge and 24 slug and bail tests at piezometers across the project study area.

AQUIFER PUMPING TESTS

TTL contracted with Hydro Geo Chem, Inc. (HGC) of Phoenix, Arizona for assistance in design, data collection for the two pumping tests, and analysis of the pumping test data. Included in this report are figures depicting the location of each pumping test area, boring logs and well construction diagrams for pumping/ observation wells, and HGC's report analyzing the pumping tests.

Pumping Well Installations

In December 2018, TTL subcontracted Partridge Well Drilling Company, Inc. (Partridge) of Jacksonville, Florida to install two (2) pumping wells (PWA and PWB) within the project study area (Figure 3). The northernmost pumping well on the eastern crest of Trail Ridge was designated PWA and the southernmost well on the western crest of Trail Ridge was designated PWB. The logic for the pumping test locations along Trail Ridge was that the ridge represents a hydrologic divide between drainage to the Okefenokee Swamp to the west and drainage to the St. Mary's River to the east. Exploratory borings (OWAEB and OWBEB) were advanced near the proposed pumping well locations to confirm target depths to the top of the Hawthorn Group. Each pumping well was installed to a depth of approximately 115 feet below ground surface (bgs). TTL's on-site geologist was present during the drilling activities to supervise well installations for PWA and PWB. Prior to initiating drilling, a mud pit for storing and circulating drilling mud was excavated near each pumping well boring. The soils excavated from the pits were temporarily stockpiled adjacent to each pit. The dimensions of each mud pit were approximately 8 feet wide by 10 feet long by 4 feet deep. On December 10, 2018 drilling commenced utilizing a truck-mounted mud-rotary drilling rig equipped with a 12-inch diameter roller/tri-cone drill bit. Once each borehole was drilled to a depth of 115 feet bgs, 60 feet of 6-inch diameter, 0.020-inch machine slotted PVC screen was installed from 55 feet to 115 feet bgs. A 6-inch diameter solid PVC casing was installed from the top of the screen to land surface. All screen and solid casing were flush-thread scheduled 40 PVC. A 16/30 silica sand was then placed from the bottom of the borehole to five feet above the top of the well screen (50 feet bgs). A five-foot bentonite plug was placed on top of the sand pack, and the remainder of the borehole annulus from the top of the bentonite seal to land surface was grouted with a cement/bentonite mixture. After grouting, the cement/bentonite mixture was allowed to cure for a minimum of twenty-four (24) hours. Next, each well was initially an partially developed by Partridge at an approximate rate of 150 gallons per minute (gpm) using an air-lift method. Once installation of the pumping wells was completed, the drilling mud was pumped from the mud pits and each pit was backfilled with the nearby stockpiled soils. Following the initial development efforts, each pumping well was subsequently redeveloped by Donald Smith Company using a submersible pump at pumping rates ranging from 150 to 300 gpm.

Observation Well Installation

During November 2018 through January 2019, Betts provided drilling services for the installation of 22 observations wells at the site. Eleven (11) observation wells were constructed adjacent to pumping wells PWA and PWB, respectively. These observation wells were installed to depths and distances from the pumping wells listed in Table 1.

The observation wells were installed using a Terra-Sonic Rig equipped with 6-inch diameter outer casing and a 4-inch diameter 10-foot long core barrel. Soil samples were collected continuously from each borehole for the observation wells. TTL's on-site geologist was present during drilling activities to describe soils recovered from each boring and supervise well installations.

With the exception of OWA3BS, OWA4BS, OWA5BS, OWB3BS, OWB4BS, and OWB5BS, each observation well was constructed with 10-foot sections of 2-inch diameter 0.010-inch slotted PVC screen with attached PVC riser. A natural sand pack was allowed to cave-in around the annulus between the PVC screen and the borehole wall from termination depth to two feet above the top of screen. A 2-foot bentonite plug was placed on top of natural sand pack and a Portland cement/bentonite mixture was placed from the top of the bentonite plug up to about 0.5-foot bgs. Permanent flush-mount protective covers and concrete pads were installed for surface protection at each observation wells. Observation well construction details are provided in Table 2.

Observation wells OWA3BS, OWA4BS, OWA5BS, OWB3BS, OWB4BS, and OWB5BS were constructed with five-foot sections of 2-inch diameter, 0.010-inch slotted PVC screen with attach PVC riser. A natural sand pack was allowed to cave-in around the annulus between the PVC screen/riser and the borehole wall from termination depth to ground surface. A flush-mounted, steel, protective cover was installed at the surface of each piezometer in a 2-foot by 2-foot concrete pad, and a locking, water-tight cap was placed in the top of each 2-inch casing. Pumping wells and observation are shown on Figures 4 and 5. Boring logs for pumping and observation wells are provided in Appendix A.

Following installation activities, each observation well was developed using a 12-volt submersible pump. Each observation well was developed until its turbidity was less than 10 nephelometric turbidity units (NTU) and/or until the extracted groundwater appeared to be relatively free of sediment. A cumulative of about 1,673 gallons and 2,019 gallons of groundwater were developed from the observation wells at pump areas A and B, respectively.

Aquifer Pumping Tests

In order to further evaluate surficial aquifer characteristics at the Twin Pines site, two independent pumping tests were performed within the project area. On February 14 and 15, 2019, Level-Troll 700 pressure transducers were installed at the pumping wells and observation wells for continuous monitoring of water-level data prior to and during the pumping tests. In addition to the transducers installed in the wells, BaroTroll transducers were placed near each pumping well to constantly record barometric pressure at land surface prior to and during the pumping tests.

Between February 19 and 22, 2019, two 24-hour pumping tests were conducted at Pumping Well A and Pumping Well B (Figure 3). Each pumping test was comprised of three steps:

Pump Test A	Pump Rate (gallons per minute)	Pump Test B	Pump Rate (gallons per minute)		
Step 1 (2 hours)	75	Step 1 (2 hours)	50		
Step 2 (2 hours)	150	Step 2 (2 hours)	75		
Step 3 (20 hours)	250	Step 3 (20 hours)	120		

At each pumping well, Donald Smith Company installed an electric-submersible pump connected to metal discharge piping. The discharge piping at the wellhead was equipped with a flow meter and gate valve. An 8-inch diameter 1,000-foot long flexible hose was attached to the metal discharge piping at each wellhead. These discharge hoses were used to direct groundwater away from the pumping wells and minimize impacts to the pumping tests from infiltrating discharge water. The discharge line for the pumping well PWA was oriented to the east-northeast and the discharge line for the pumping well PWB was oriented to the northwest.

Personnel with TTL and HGC were on-site for the full duration (24 hours per day) of each pumping test. Additionally, field verification of water-level monitoring using tape-down measurements was also performed by TTL personnel as backup for the transducer measurements. Upon completion of the tests, the transducer data was downloaded and submitted, along with the field verification of water-level monitoring data, to HGC for analysis. A complete copy of HGC's pumping test report is included in Appendix B.

Slug and Bail Tests

To estimate the horizontal hydraulic conductivity of the surficial aquifer, slug and bail tests were performed in the 24 piezometers within the project study area (Figure 6 and Table 3). Slug and bail tests were conducted by creating an instantaneous change in water level in the piezometer and recording the rate of groundwater recovery relative to the initial measured water level. The following testing equipment was rented from In-Situ, Inc. in Fort Collins, Colorado for performance of each test:

- SLG 3-segment thermoplastic mandrel with known displacement values for each segment was used to displace water during the slug and bail tests.
- Level-Troll 700 pressure transducers were employed to record changes in water levels during the slug and bail tests.

Upon completion of the tests, the test data was downloaded from the transducers and submitted to HGC in Phoenix, Arizona for calculation of the horizontal hydraulic conductivity and specific storage values. HGC evaluated the data using AQTESOLV® Pro software. The rate of recovery versus time data was evaluated using the *Hyder et al.* (1994) Solution of a Slug Test in an Unconfined Aquifer (KGS Model) and the Bower and Rice (1976) solution for a Slug Test in an Unconfined Aquifer.

RESULTS

Pumping Test Results

Pumping test results are summarized in Table 4 (Pumping Well A) and Table 5 (Pumping Well B). HGC's interpretation of pumping test data indicated that the results of both qualitative and quantitative analyses are consistent with the following observations/conclusions:

- Results of quantitative analysis indicate that both pumping wells are efficient and properly designed and developed (negligible skin effects or non-linear losses).
- Transmissivity (T) estimates are generally higher at the pumping well PWA compared to the pumping well PWB site, consistent with the larger achievable pumping rates at pumping well PWA site. Except for a few outliers, horizontal hydraulic conductivity (Kh) estimates computed from T estimates generally range from several ft/day to nearly 20 ft/day for pumping well PWA, and from a few ft/day to as much as 11 ft/day for pumping well PWB, with some values exceeding 50 ft/day. HGC considered these high values to be unreliable; however, they are close to values determined from slug and bail tests conducted in the project study area (values of up to 75.1 ft/day, see below).
- Heterogeneity possibly resulting from non-horizontal structure within the sands may be present within the pumped aquifer. Such heterogeneity may result in more direct connection between the pumping and shallow observation wells at larger distances from the pumping wells.
- Such heterogeneity would be consistent with the substantial increase in the ratio of shallow observation well drawdowns to deep observation well drawdowns with distance from the pumping wells, and the unexpected increase in this ratio above 1.0 at the more distant observation well nests.
- Flattening of pumping well and shallow observation well drawdowns is consistent with another (presumably shallow) source of water, either local wetlands or vertical leakage from the shallowest groundwater through the shallow 'black sand', or both. Substantially less flattening of the deep observation well drawdowns indicates that the deeper portion of the aquifer is less impacted by the additional source of water.

Pumping Test PWA

For pumping test PWA, estimates of T and storage coefficient (S) from pumping well PWA data range from 1,490 ft²/day to 1,967 ft²/day and from 3.5 x 10⁻⁴ to 1.1 x 10⁻². Although estimates of T from observation well data range from approximately 1 ft²/day to 2,288 ft²/day, the majority of estimates are lower than for the pumping well and average 875 ft²/day. Estimates of S from observation well data range from approximately 1.6 x 10⁻⁵ to 1.7 x 10⁻²; estimates of Kh range from <1 to 20 ft/day; estimates of Kv range from 0.06 ft/day to 1.8 ft/day; and estimates of aquitard Kv range from 2.4 x 10⁻⁶ ft/day to 0.75 ft/day. The lowest T of 1 ft²/day was derived from one interpretation of data from OWA-3D, where, due to non-uniqueness, T estimates from alternate interpretations ranged from 1 ft²/day to 1700 ft²/day.

Pumping Test PWB

For pumping test PWB, estimates of T and S from pumping well PWB data range from 530 ft²/day to 697 ft²/day and from 2.4 x 10⁻³ to 0.11. T estimates from the shallowest water table well data that range from 5,455 ft²/day to 9,500 ft²/day. Excluding these estimates, observation well data yield T estimates ranging from approximately 53 ft²/day to 1,100 ft²/day; however, the majority of the estimates are lower than for the pumping well and average 432 ft²/day. Estimates of S from observation well data range from approximately 1 x 10⁻¹⁰ to 5 x 10⁻³; estimates of Kh range from <1 to 11 ft/day; estimates of Kv range from 8.6 x 10⁻⁵ ft/day to 1.5 ft/day; and estimates of aquitard Kv range from 1.1 x 10⁻⁶ ft/day to 0.3 ft/day.

Slug and Bail Tests

The slug and bail tests were interpreted by HGC (Appendix C). Slug test data were analyzed using the Kansas Geological Survey (KGS) method (Hyder et al., 1994) and the Bouwer-Rice method (Bouwer and Rice, 1976). The results from the 24 slug and bail tests performed in the study area are shown in Table 6 and Figures 7 and 8. Both methods produced similar estimates of hydraulic conductivity. Hydraulic conductivities estimated using the KGS method range from 0.2 to 75.1 ft/day and average 12.2 ft/day. The Bouwer-Rice method yields a hydraulic conductivity range of 0.24 to 54.7 ft/day and an average of 13.5 ft/day. Estimates of aquifer specific storage from the KGS method range from 3.8 x 10^{-20} to 2.2×10^{-3} 1/ft and average specific storage of 1.6×10^{-4} 1/ft.

The averages of the hydraulic conductivity estimated from a slug test and corresponding bail test at each well show a distinct vertical pattern, with lower hydraulic conductivities found below an elevation of 120 ft amsl and much higher hydraulic conductivities found above 120 ft amsl.

Holt et al. (2019) showed that the subsurface lithology is dominated by unconsolidated sands. They also found that humate-cemented sands are more common above 120 ft amsl and that silty-clayey sand, clayey sand, and clay are more common below 120 ft amsl. The vertical distribution of hydraulic conductivity estimated from slug tests reflects the occurrence of clays below 120 ft amsl. The data

presented here suggest that there are two distributions of hydraulic conductivity: one for elevations above 120 ft amsl and another for elevations below 120 ft amsl.

The log of the averaged (slug and bail) hydraulic conductivity for both the upper and lower elevations appears to be log normal for both types of estimates (KGS and Bouwer Rice). The geometric means for the upper elevations are 9.4 and 7.9 ft/day for hydraulic conductivities estimated using the KGS and Bouwer-Rice methods, respectively. In the lower elevations, the geometric means are 2.1 and 1.8 ft/day for the KGS and Bouwer-Rice methods, respectively. Note: only the results for hydraulic conductivities determined using the Bouwer-Rice method are shown, as the results for hydraulic conductivities determined using the Bouwer-Rice method are similar.

REFERENCES CITED

- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Force, E.R. and F.R. Rich. 1989. Geologic Evolution of the Trail Ridge Eolian Heavy-Mineral Sand and Underlying Peat, Northern Florida. U.S. Geological Survey Professional Paper, 1499.
- Holt, R. M., J.M Tanner, J.R. Smith, A.C. Patton, and Z.B. Lepchitz, 2019, Geologic Characterization at Twin Pines Mine, prepared for Twin Pines Minerals LLC by TTL Incorporated, Tuscaloosa Alabama.
- Hyder, Z., J.J. Butler, Jr., C.D. McElwee and W. Liu, 1994. Slug tests in partially penetrating wells, Water Resources Research, vol. 30, no. 11, pp. 2945-2957.
- Pirkle, F.L., E.C. Pirkle, J.G. Reynolds, W.A. Pirkle, J.A. Henry, and W.J. Rice, 1993, The Folkston West and Amelia Heavy Mineral Deposits of Trail Ridge, Southeastern Georgia, Economic Geology, vol.88, p. 961-971.

Williams, L.J., and Kuniansky, E.L., April 2015 (Revised March 2016), Revised Hydrogeologic Framework of the Floridan Aquifer System in Florida and Parts of Georgia, Alabama, and South Carolina: U.S.G.S, Professional Paper 1807, Version 1.1

FIGURES

TABLES

Table 1. Summary of Observation	Well Construction Depths and Distances from Pumping V	Vells PWA and PWB. Hydrologic Field
Characterization at Twin Pines Mir	ne; Twin Pines Minerals, LLC; St. George, Charlton County	, Georgia. TTL Project No. 000180200804.00
	Pumping Well PWA	
Observation Well	Distance from PWA (feet)	Well Depth (ft bgs)
OWA1BS	50	12
OWA1S	50	35
OWA1D	50	90
OWA3BS	50	12
OWA4BS	50	12
OWA2BS	100	12
OWA2S	100	35
OWA2D	100	90
OWA5BS	100	12
OWA3S/PZ39S	300	35
OWA3D/PZ39D	300	90
	Pumping Well PWB	
Observation Well	Distance from PWB (feet)	Well Depth (feet bgs)
OWB1BS	50	12
OWB1S	50	35
OWB1D	50	90
OWB3BS	50	12
OWB4BS	50	12
OWB2BS	100	12
OWB2S	100	35
OWB2D	100	90
OWB5BS	100	12
OWB3S	300	35
OWB3D	300	90

 Table 2.
 Well Construction Summary Table; Hydrologic Field Characteristics at Twin Pines Mine; Twin Pines Minerals, LLC; St. George, Charlton County, Georgia. TTL Project

 No. 000180200804.00

Well I.D.	Installation Start Date	Screened Interval (feet bgs ¹)	Natural Fill Sand Pack (feet bgs)	Bentonite Plug (feet bgs)	Portland Cement Grout (feet bgs)	Construction Depth of Piezometer (feet bgs)	Total Boring Depth (feet bgs)
			Pumping	& Observation Wells			
OWA1S	11/9/2018	35-25	35-22	22-20	20-0.5	35	35
OWA1D	11/9/2018	90-80	90-76	76-74	74-0	90	90
OWA1BS	12/11/2018	12-2	12-1	1-0.5		12	12
OWA2S	11/14/2018	35-25	35-22	22-20	20-0.5	35	35
OWA2D	11/13/2018	90-80	90-76	76-74	74-0	90	90
OWA2BS	12/7/2018	12-2	12-1	1-0.5		12	12
OWA3BS	1/30/2019	12-7	12-0			12	12
OWA4BS	1/30/2019	12-7	12-0			12	12
OWA5BS	1/30/2019	12-7	12-0			12	12
PWA	12/20/2018	115-55	115-45	45-40	40-0	115	115
OWB1S	11/27/2018	35-25	35-22	22-20	20-0.5	35	35
OWB1D	11/27/2018	90-80	90-76	76-74	74-0	90	90
OWB1BS	12/7/2018	12-2	12-1	1-0.5		12	12
OWB2S	1130/18	35-25	35-22	22-20	20-0.5	35	35
OWB2D	11/28/2018	90-80	90-76	76-74	74-0	90	90
OWB2BS	12/7/2018	12-2	12-1	1-0.5		12	12
OWB3S	12/5/2018	35-25	35-22	22-20	20-0.5	35	35
OWB3D	12/5/2018	90-80	90-76	76-74	74-0	90	90
OWB3BS	1/30/2019	12-7	12-0			12	12
OWB4BS	1/30/2019	12-7	12-0			12	12
OWB5BS	1/30/2019	12-7	12-0			12	12
PWB	12/10/2018	115-55	115-45	45-40	40-0	115	115

¹ Below ground surface

² Not applicable or missing data

³ Undisturbed sample borings converted to piezometers for downhole geophysical survey

Piezometer	Date of Test
PZ01S	10/10/18
PZ04	10/10/18
PZ06	10/10/18
PZ10	10/10/18
PZ13	10/10/18
PZ16S	10/11/8
PZ17D	10/11/18
PZ20D	10/11/18
PZ24	10/11/18
PZ28D	10/10/18
PZ29S/D	5/16/19
PZ30S/D	5/16/19
PZ31S/D	5/16/19
PZ33S/D	5/16/19
PZ55S/D	5/16/19
PZ57S/D	5/16/19
PZ58S/D	5/16/19

S/D = Shallow and Deep Piezometer

TABLE 4 PWA Aquifer Test Hydraulic Parameter Estimates

Observation Well (s)	Bottom of Screen Depth (ft)	Solution	T (ft²/day)	S	Specific Yield	Kv (ft/day)	K∨ aquitard (ft/day)	b (ft)	Kh (ft/day)	recom- mended	Comment
PW-A	115	Neuman Unconfined	1967	3.5E-04	2.9E-03	0.2	NA	115	17.1	х	
PW-A	115	Vert. Anisotropic Leaky	1490	1.1E-02	NA	1.0	0.40	115	13.0	х	analysis using WHIP
OWA-1D	90	Neuman Unconfined	1475	8.5E-03	0.50	0.3	NA	115	12.8	х	
OWA-2D	90	Neuman Unconfined	1319	4.8E-03	2.9E-02	0.3	NA	115	11.5	х	
OWA-3D	90	Neuman Unconfined	2288	1.7E-02	0.03	1.08	NA	115	19.9	х	
OWA-1S	35	Neuman Unconfined	1351	4.3E-03	0.50	1.8	NA	115	11.7	х	
OWA-2S	35	Neuman Unconfined	1820	3.4E-03	0.50	1.6	NA	115	15.8		
OWA-3S	35	Neuman Unconfined	680	5.5E-05	2.2E-02	0.06	NA	115	5.9	х	
OWA-1D	90	¹ Neuman-Witherspoon	914	2.2E-03	NA	NA	3.7E-06	100	9.1		T2=1.44e8 ft ² /d; S2=1e-10
OWA-1D	90	¹ Neuman-Witherspoon	356	7.3E-05	NA	NA	4.4E-01	100	3.6	х	T2=4170 ft2/d; S2=0.0149; improved fit
OWA-2D	90	¹ Neuman-Witherspoon	1017	1.2E-03	NA	NA	4.1E-06	100	10.2		T2=1.44e8 ft ² /d; S2=1e-10
OWA-2D	90	¹ Neuman-Witherspoon	422	8.8E-04	NA	NA	0.152	100	4.2	х	T2=4850 ft2/d; S2=1.01e-10; improved fit
OWA-3D	90	¹ Neuman-Witherspoon	1700	7.0E-03	NA	NA	6.8E-06	100	17.0		T2=1.44e8 ft ² /d; S2=2.7e-5
OWA-3D	90	¹ Neuman-Witherspoon	331	3.4E-03	NA	NA	0.383	100	3.3	х	T2=4272 ft2/d; S2=9.91e-3; improved fit
OWA-3D	90	¹ Neuman-Witherspoon	1.3	1.0E-04	NA	NA	0.396	100	0.013		T2=4520 ft ² /d; S2=0.005
OWA-1D	90	Vert. Anisotropic Leaky	360	1.6E-05	NA	0.70	0.68	100	3.6	Х	analysis using WHIP; Ss aqt = 5.39e-3
OWA-1D	90	Vert. Anisotropic Leaky	543	1.4E-03	NA	1.01	0.32	100	5.4	х	fit recovery w/WHIP; Ss aqt = 5.04e-3
OWA-2D	90	Vert. Anisotropic Leaky	337	1.6E-05	NA	0.29	0.24	100	3.4	х	analysis using WHIP; Ss aqt = 2.01e-3
OWA-2D	90	Vert. Anisotropic Leaky	665	9.8E-04	NA	0.19	0.13	100	6.7	х	fit recovery w/WHIP; Ss aqt = 1.85e-3
OWA-3D	90	Vert. Anisotropic Leaky	323	1.6E-05	NA	0.17	0.17	100	3.2	х	analysis using WHIP; Ss aqt = 2.10e-3
OWA-1S	35	Vert. Anisotropic Leaky	592	1.6E-05	NA	0.8	0.73	100	5.9	х	analysis using WHIP; Ss aqt = 1.77e-3
OWA-2S	35	Vert. Anisotropic Leaky	354	1.6E-05	NA	0.4	0.67	100	3.5	х	analysis using WHIP; Ss aqt = 9.54e-4
OWA-3S	35	Vert. Anisotropic Leaky	326	1.6E-05	NA	0.11	0.05	100	3.3	х	analysis using WHIP; Ss aqt = 2.76e-5
OWA-1D/3D	90/90	Neuman Unconfined	946	1.2E-02	0.06	1.27	NA	115	8.2	х	
OWA-1D/3D	90/90	¹ Neuman-Witherspoon	596	9.8E-04	NA	NA	2.4E-06	100	6.0	х	T2=1.44e8 ft ² /d; S2=1e-10
OWA-1S/D	35/90	Neuman Unconfined	1136	1.1E-02	0.5	0.8	NA	115	9.9	х	
OWA-1S/D	35/90	Neuman Unconfined	1154	1.0E-02	0.25	0.8	NA	115	10.0		alt interp
OWA-1S/D	35/90	Neuman Unconfined	926	1.1E-02	0.50	1.6	NA	115	8.1		early time interp
OWA-2S/D	35/90	Neuman Unconfined	866	5.3E-03	3.3E-02	0.8	NA	115	7.5		
OWA-2S/D	35/90	Neuman Unconfined	1141	5.8E-03	0.50	1.0	NA	115	9.9		early time interp
OWA-2S/D	35/90	Neuman Unconfined	1319	4.8E-03	0.029	0.29	NA	115	11.5	х	alt interp
OWA-2S/D	35/90	Neuman Unconfined	1800	2.0E-03	0.50	1.6	NA	115	15.7		alt interp
OWA-1S/D	35/90	Vert. Anisotropic Leaky	355	1.6E-05	NA	0.5	0.75	100	3.6	х	analysis using WHIP; Ss aqt = 5.12e-3
OWA-2S/D	35/90	Vert. Anisotropic Leaky	329	1.6E-05	NA	0.1	0.30	100	3.3	x	analysis using WHIP; Ss aqt = 2.05e-3
OWA-1D/2D/3D	90/90/90	Neuman Unconfined	1307	7.7E-03	0.50	0.43	NA	115	11.4	x	
OWA-1D/2D/3D	90/90/90	¹ Neuman-Witherspoon	718	1.3E-03	NA	NA	2.9E-06	100	7.2	х	T2=1.44e8 ft ² /d; S2=1e-10

Notes:

¹ = leaky aquifer; partial penetration of wells not represented

T = Transmissivity in feet squared per day (ft2/day)

T2 = Transmissivity of unpumped aquifer

S = Storage coefficient

S2 = Storage coefficient of unpumped aquifer

Ss = Specific storage of aquitard (storage per foot of thickr

Kh = horizontal hydraulic conductivity in feet per day (ft/day) calculated as T/b

Kv =vertical hydraulic conductivity in feet per day (ft/day)

b = Assumed aquifer thickness in feet

C:\Work\Twin Pines\Hydrogeo report\Report\02 Individual Reports\01 HYDROLOGIC FIELD CHARACTERIZATION AT TWIN PINES MINE\Tabels\ Table 4._PWA_HydraulicParameters: PWA Table 1

TABLE 5 **PWB Aquifer Test Hydraulic Parameter Estimates**

Observation Well (s)	Bottom of Screen Solution Depth (ft)		T (ft²/day)	S	Specific Yield	Kv (ft/day)	Kv aquitard (ft/day)	b (feet)	Kh (ft/day)	recom- mended	Comment
PW-B	115	Neuman Unconfined	697	2.42E-03	1.00E-03	0.61	NA	115	6.1	Х	
PW-B	115	Vert. Anisotropic Leaky	530	0.11	NA	0.55	0.10	115	4.6	х	analysis using WHIP; Ss aqt = 0.01
OWB-1D	90	Neuman Unconfined	478	2.92E-03	1.00E-03	1.42	NA	115	4.2		
OWB-1D	90	Neuman Unconfined	530	4.96E-03	1.00E-03	0.47	NA	115	4.6		alternate interp; improved fit
OWB-1D	90	Neuman Unconfined	901	3.20E-03	1.00E-03	9.29E-03	NA	115	7.8	х	alternate interp; additionally improved fit
OWB-2D	90	Neuman Unconfined	442	2.95E-03	1.00E-03	0.88	NA	115	3.8		
OWB-2D	90	Neuman Unconfined	808	4.78E-03	0.25	1.79E-02	NA	115	7.0	х	alternate interp; improved fit
OWB-3D	90	Neuman Unconfined	475	1.32E-03	0.50	4.34E-02	NA	115	4.1	х	
OWB-3D	90	Neuman Unconfined	674	3.43E-03	0.25	9.20E-03	NA	115	5.9		alternate interp; poorer fit
OWB-1S	35	Neuman Unconfined	224	1.19E-04	4.58E-03	2.12E-02	NA	115	1.9	х	
OWB-2S	35	Neuman Unconfined	221	2.96E-05	1.13E-03	5.17E-03	NA	115	1.9	х	
OWB-3S	35	Neuman Unconfined	246	3.09E-05	1.00E-03	4.88E-03	NA	115	2.1	х	
OWB-2BS	12	Neuman Unconfined	5455	1.37E-04	1.78E-02	1.02E-02	NA	115	47.4		unreasonably high T
OWB-3BS	12	Neuman Unconfined	6148	5.00E-05	2.00E-03	3.50E-03	NA	115	53.5		unreasonably high T
OWB-4BS	12	Neuman Unconfined	6918	4.84E-05	0.25	3.50E-03	NA	115	60.2		unreasonably high T
OWB-5BS	12	Neuman Unconfined	9499	3.75E-05	0.25	3.50E-03	NA	115	82.6		unreasonably high T
OWB-1D	90	¹ Neuman-Witherspoon	445	1.79E-03	NA	NA	5.41E-03	100	4.5	х	T2=1.44e8 ft ² /d; S2=1.0
OWB-2D	90	¹ Neuman-Witherspoon	405	2.34E-03	NA	NA	7.70E-03	100	4.1	х	T2=1.44e8 ft ² /d; S2=1.0
OWB-3D	90	¹ Neuman-Witherspoon	285	1.32E-03	NA	NA	1.14E-06	100	2.9		T2=1.44e8 ft ² /d; S2=6.03e-9
OWB-3D	90	¹ Neuman-Witherspoon	211	1.11E-03	NA	NA	1.40E-02	100	2.1	х	alt. interp; T2=1050 ft ² /d; S2=1.0e-10
OWB-3D	90	¹ Neuman-Witherspoon	52.9	1.38E-04	NA	NA	2.88E-02	100	0.5	Х	alt. interp.; T2=671 ft ² /d; S2=1.39e-3
OWB-3BS	12	¹ Neuman-Witherspoon	1100	4.23E-04	NA	NA	0.309	100	11.0		T2=5.7e4 ft ² /d; S2=0.011, high T
OWB-4BS	12	¹ Neuman-Witherspoon	204	1.16E-05	NA	NA	2.16E-03	100	2.0	х	T2=2.56e5 ft ² /d; S2=1.19e-5
OWB-5BS	12	¹ Neuman-Witherspoon	206	1.16E-05	NA	NA	1.97E-03	100	2.1	х	T2=3.67e5 ft ² /d; S2=1.9e-5
OWB-1D	90	Vert. Anisotropic Leaky	201	1.05E-05	NA	0.367	6.16E-02	100	2.0	Х	analysis using WHIP; Ss aqt = 0.0115
OWB-2D	90	Vert. Anisotropic Leaky	134	1.06E-05	NA	0.477	7.25E-02	100	1.3	х	analysis using WHIP; Ss aqt = 1.88e-3
OWB-3D	90	Vert. Anisotropic Leaky	67	3.56E-05	NA	8.92E-02	1.61E-02	100	0.7	Х	analysis using WHIP; Ssaqt = 4.30e-4
OWB-1S	35	Vert. Anisotropic Leaky	121	1.05E-05	NA	0.955	0.299	100	1.2	х	analysis using WHIP; Ss aqt = 1.42e-3
OWB-2S	35	Vert. Anisotropic Leaky	174	1.00E-05	NA	1.00	8.26E-02	100	1.7	х	analysis using WHIP; Ss aqt = 5.84e-4
OWB-3S	35	Vert. Anisotropic Leaky	312	1.07E-10	NA	0.252	1.77E-03	100	3.1	х	analysis using WHIP; Ss aqt = 5.04e-4
OWB-1D/-2D	90/90	Neuman Unconfined	960	3.31E-03	1.00E-03	8.62E-05	NA	115	8.3	Х	
OWB-1D/-3D	90/90	Neuman Unconfined	924	3.01E-03	0.25	3.00E-03	NA	115	8.0	х	
OWB-1S/-1D	35/90	Neuman Unconfined	593	1.00E-03	1.00E-03	1.51	NA	115	5.2	х	
OWB-1S/-1D	35/90	Neuman Unconfined	575	1.30E-03	1.00E-03	1.51	NA	115	5.0	х	alternate interp
OWB-2S/-2BS	35/12	¹ Neuman-Witherspoon	517	1.13E-03	NA	NA	1.80E-02	100	5.2	Х	T2=5.03e4 ft ² /d; S2=2.59e-3
OWB-1S/-1D	35/90	Vert. Anisotropic Leaky	120	1.05E-05	NA	0.958	0.276	100	1.2	х	analysis using WHIP; Ss aqt = 2.04e-3

Notes:

¹ = leaky aquifer; partial penetration of wells not represented T = Transmissivity in feet squared per day (ft2/day) T2 = Transmissivity of unpumped aquifer S = Storage coefficient

S2 = Storage coefficient of unpumped aquifer

Ss = Specific storage of aquitard (storage per foot of thickness [1/ft])

Kh = horizontal hydraulic conductivity in feet per day (ft/day) calculated as T/b

Kv =vertical hydraulic conductivity in feet per day (ft/day)

b = Assumed aquifer thickness in feet

C:\Work\Twin Pines\Hydrogeo report\Report\02 Individual Reports\01 HYDROLOGIC FIELD CHARACTERIZATION AT TWIN PINES MINE\Tabels\ Table 5_PWB_ HydraulicParameters: PWB Table 2

Table 6. Slu Project No.	ug and Ba 0001802	il Test Results Su 200804.00	ummary Table; H	ydrologic Field C	haracteristics	at Twin Pines	s Mine; Twi	n Pines Mine	rals, LLC; St.	. George, Cha	Irlton Count	y, Georgia. TTL
Sample	Type			Top of Casing	Well Depth	Screen	Screen Depth	Screen Depth	Screen Depth	KG Meti	iS nod	Bouwer-Rice Method
Location	Test	Easting	Northing	Elevation (ft. amsl)	(ft. bgs)	Depth Top (ft. bgs)	Bottom (ft. bgs)	Top (ft. amsi)	Bottom (ft. amsl)	Kh (ft/d)	Ss (1/ft)	Kh (ft/d)
PZ01S	1S Bail 664792.9515		213145.725	123.04	14.0	4.0	13.5	119.04	109.54	1.24E+00	3.30E-05	9.82E-01
PZ01S	Slug	664792.9515	213145.725	123.04	14.0	4.0	13.5	119.04	109.54	1.65E+00	2.60E-06	1.14E+00
PZ04	Bail	663720.3298	205447.0841	123.89	14.0	4.0	13.5	119.89	110.39	1.99E+00	4.40E-05	1.66E+00
PZ04	Slug	663720.3298	205447.0841	123.89	14.0	4.0	13.5	119.89	110.39	1.74E+00	1.67E-03	1.38E+00
PZ06	Bail	662436.2138	201256.8347	124.26	14.0	4.0	13.5	120.26	110.76	3.71E+00	2.41E-05	2.95E+00
PZ06	Slug	662436.2138	201256.8347	124.26	14.0	4.0	13.5	120.26	110.76	3.51E+00	1.26E-04	2.22E+00
PZ10	Bail	667689.3258	206292.4778	145.97	25.0	15.0	24.5	130.97	121.47	3.91E+00	1.11E-03	3.91E+00
PZ10	Slug	667689.3258	206292.4778	145.97	25.0	15.0	24.5	130.97	121.47	6.39E+00	5.49E-05	4.22E+00
PZ13	Bail	668652.4560	196413.6877	157.63	30.0	20.0	29.5	137.63	128.13	5.16E+01	1.61E-12	3.91E+01
PZ13	Slug	668652.4560	196413.6877	157.63	30.0	20.0	29.5	137.63	128.13	5.24E+01	1.61E-12	39.8 (middle time) 12.0 (late time)
PZ16S	Bail	668683.7808	189192.1062	160.42	20.0	10.0	19.5	150.42	140.92	4.10E+01	3.34E-05	3.41E+01
PZ16S	Slug	668683.7808	189192.1062	160.42	20.0	10.0	19.5	150.42	140.92	3.99E+01	5.09E-05	2.94E+01
PZ17D	Bail	670005.1448	212015.6518	161.01	45.0	35.0	44.5	126.01	116.51	4.14E+01	8.55E-13	3.44E+01
PZ17D	Slug	670005.1448	212015.6518	161.01	45.0	35.0	44.5	126.01	116.51	4.27E+01	8.55E-13	2.95E+01
PZ20D	Bail	670360.6665	205134.8784	168.46	40.0	30.0	39.5	138.46	128.96	1.84E+01	8.18E-06	1.53E+01
PZ20D	Slug	670360.6665	205134.8784	168.46	40.0	30.0	39.5	138.46	128.96	1.84E+01	2.17E-04	1.53E+01
PZ24	Bail	672562.2118 196807.95		169.54	20.0	10.0	19.5	159.54	150.04	1.48E+01	2.19E-05	1.18E+01
PZ24	Slug	672562.2118	196807.9532	169.54	20.0	10.0	19.5	159.54	150.04	4.40E+01	3.19E-06	3.05E+01
PZ28D	Bail	672470.6111	191101.7018	173.99	30.0	20.0	29.5	153.99	144.49	2.34E+00	6.99E-05	2.04E+00
PZ29D	Bail	667975.5644	193583.6283	153.88	50.0	40	49.5	113.88	104.38	1.45E+00	1.32E-04	1.45E+00
PZ29D	Slug	667975.5644	193583.6283	153.88	50.0	40	49.5	113.88	104.38	1.25E+00	2.28E-04	1.19E+00
PZ29S	Bail	667981.0292 193588.0244		154.035	19.0	9.0	18.5	145.04	135.54	8.23E+00	7.00E-06	6.24E+00
PZ29S	Slug	667981.0292	67981.0292 193588.0244		19.0	9.0	18.5	145.04	135.54	5.44E+00	5.13E-04	5.70E+00
PZ30D	Bail	666484.959 189997.8257		138.02	50.0	40.0	49.5	98.02	88.52	1.09E+00	1.14E-05	9.89E-01
PZ30D	Slug	666484.959	666484.959 189997.8257		50.0	40.0	49.5	98.02	88.52	1.38E+00	2.23E-05	1.21E+00
PZ30S	Bail	666491.4469	190004.5697	137.65	10.0	5.0	9.5	132.65	128.15	8.68E-01	1.07E-05	6.86E-01
PZ30S	Slug	666491.4469	190004.5697	137.65	10.0	5.0	9.5	132.65	128.15	1.09E+00	1.97E-16	1.43E+00
PZ31D	Bail	665327.2418	192381.7249	135.90	50.0	40.0	49.5	95.90	86.40	1.57E+00	5.94E-05	1.50E+00
PZ31D	Slug	665327.2418	192381.7249	135.90	50.0	40.0	49.5	95.90	86.40	1.98E+00	1.22E-04	1.98E+00
PZ31S	Bail	665331.907	192374.4898	135.92	12.0	7.0	11.5	128.92	124.42	1.42E+00	2.69E-05	1.08E+00
PZ31S	Slug	665331.907	192374.4898	135.92	12.0	7.0	11.5	128.92	124.42	1.36E+00	2.34E-06	1.03E+00
PZ33D	Bail	661249.6461	192704.3174	123.91	50.5	41.0	50.5	82.91	73.41	2.77E+00	8.22E-06	1.75E+00
PZ33D	Slug	661249.6461	192704.3174	123.91	50.5	41.0	50.5	82.91	73.41	2.23E+00	2.55E-05	1.48E+00
PZ33S	Bail	661258.6777	192703.2169	123.73	13.0	7.0	11.5	116.73	112.23	2.66E+00	5.85E-06	1.93E+00
PZ33S	Slug	661258.6777	192703.2169	123.73	13.0	7.0	11.5	116.73	112.23	2.63E+00	7.72E-06	1.99E+00
PZ55D	Bail	663504.9654	187429.6642	174.92	50.0	40.0	49.5	134.92	125.42	2.03E+01	1.16E-05	1.85E+01
PZ55D	Slug	663504.9654	187429.6642	174.92	50.0	40.0	49.5	134.92	125.42	2.20E+01	6.23E-05	2.10E+01
PZ55S	Bail	671858.651	188474.3774	174.83	20.0	14.0	19.5	160.83	155.33	9.46E-01	1.40E-06	7.18E-01
PZ55S	Slug	671858.651	188474.3774	174.83	20.0	14.0	19.5	160.83	155.33	2.40E-01	1.63E-05	1.99E-01
PZ57D	Bail	675314.5224	192314.0733	165.89	50.0	39.0	48.5	126.89	117.39	5.47E+01	3.79E-20	6.58E+01
PZ57D	Slug	675314.5224	192314.0733	165.89	50.0	39.0	48.5	126.89	117.39	3.59E+01	2.03E-04	7.51E+01
PZ57S	Bail	675311.1832	192310.6915	165.68	14.0	9.0	13.5	156.68	152.18	6.77E+00	6.37E-05	5.38E+00
PZ57S	PZ57S Slug 67		192310.6915	165.68	14.0	9.0	13.5	156.68	152.18	7.26E+00	5.75E-05	5.78E+00
PZ58D	Bail	676850.4859	196491.6367	139.98	50.0	40.0	49.5	99.98	90.48	5.10E+00	2.24E-04	5.10E+00
PZ58D	258D Slug 6768		196491.6367	139.98	50.0	40.0	49.5	99.98	90.48	3.55E+00	2.18E-03	5.38E+00
PZ58S	Bail	676849.7667	196495.5787	140.02	15.0	10.0	14.5	130.02	125.52	2.66E+01	7.87E-05	2.11E+01
PZ58S	Slug	676849.7667	196495.5787	140.02	15.0	10.0	14.5	130.02	125.52	2.42E+01	8.67E-05	1.92E+01

Bouwer-Rice = Unconfined Bouwer-Rice solution method in Aqtesolv™

ft/d = feet per day

Kh = hydraulic conductivity

KGS = Unconfined KGS solution method in Aqtesolv™

Ss = specific storage

ft bgs = feet below ground surface

ft amsl = feet above mean sea level

APPENDIX A

Attached Documents: Boring Logs APPENDIX A BORING LOGS

PUMPING TEST AREA A

SAINT GEORGE GEORGIA CONSTRUCTION ODD/802000400 Semiclocompany A Particip Semiclocompany Particip Well Co. Costing Darlies 0.000-pch BILLING METHOD Handy States Costing Darlies 0.000-pch BIRLING METHOD SAMPLE LITHOLOGIC DESCRIPTION WATER ELEVATION To applie States SAMPLIE LITHOLOGIC DESCRIPTION WATER ELEVATION To applie States SAMPLIE SAMPLIE SAMPLIE LITHOLOGIC DESCRIPTION To applie States SAMPLIE SAMPLIE S	7			//		T		LOG OF PUMP WELL PW A & PUMP WELL			
PROJECT NUMBER 000302000400 PROFESSIONAL A Pairs DORLING COMPANY Pairs() Secondaria 12202018 12202018 DRULING COMPANY Pairs() Secondaria 12202018 12202018 DRULING COMPANY Pairs() Secondaria 0500 Colorade allica 111202101 1630 Colorade allica 111202101 PRULING METHOD Doday 000101:ELEVATION 111202101 111202101 111202101 REMARKS SAMPLE							SAINT GEORGE,		CONSTRUCTION		
LOCATION Set design DATE(s) RelLeB 12020018 DRULING COMPARISON OF THE PRIVATION PRIVAT	PROJ	ECT NU	MBER	000	180200	804.00		PROFESSIONAL	A. Patton		
DIRLLING COMPANY PARAGE Mate CASHO DIATYPE 2*PVC Ready State Screen SLOWN Screen SLOWN <t< th=""><th>LOCA</th><th>TION</th><th></th><th>Sai</th><th>nt Geor</th><th>ge, Georgia</th><th>1</th><th>DATE(S) DRILLED</th><th>12/20/2018</th><th></th><th></th></t<>	LOCA	TION		Sai	nt Geor	ge, Georgia	1	DATE(S) DRILLED	12/20/2018		
DRILLING METHOD DRILLING METHOD REMARKS Sample Social content of the	DRILL	ING CO	MPANY	Pat	ridge W	ell Co.		CASING DIA./TYPE	6" PVC		
DRULING METHOD Rolar Plane	DRILL	DRILLER Randy Baker						SCREEN SLOT/TYPE	0.020-inch		
REMARKS 17/2 /E AMSL GROUND ELEVATION 17/2 /E AMSL 17/2 /E AMSL 17/2 /E AMSL	DRILL	RILLING METHOD Rotary						FILTER PACK TYPE	16/30 Colorad	o silic	а
REMARKS SetUPADELEVATION 1715/E1-AMSL Deprint OwnEre WATER ELEVATION Deprint OwnEre WATER ELEVATION PUMP WELL DIAGRAM Image: Deprint of the setUp of the s								TOP OF CASING	174.74 Ft. AM	SL	
DEPTH TO WATER WATER LEVATION PUMP WELL DIAGRAM Hugge B SAMPLE B LITHOLOGIC DESCRIPTION WATER LEVATION PUMP WELL DIAGRAM Hugge B SP SAMD. light brown to tan, med; addround DATE PUMP WELL DIAGRAM -5 SP SP SAND. light brown to tan, med; addround Image: addround <t< th=""><th>REMA</th><th>RKS</th><th></th><th></th><th></th><th></th><th></th><th>GROUND ELEVATION</th><th>171.56 Ft. AM</th><th>SL</th><th></th></t<>	REMA	RKS						GROUND ELEVATION	171.56 Ft. AM	SL	
WATER ELEVATION Variable Variable<	1							DEPTH TO WATER			
Number SAMPLE UITHOLOGIC DESCRIPTION WATER & DATE PUMP WELL DIAGRAM 01/03/07 01/07 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>WATER ELEVATION</th> <th></th> <th></th> <th></th>								WATER ELEVATION			
Note: SAMPLE NATER PUMP WELL DIAGRAM 1 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>											
Home		0		:	SAMP	LE					PUMP WELL DIAGRAM
Here Add Add Add Add DATE -5 SP SP SAND: light brown to tan; med; subround DATE -5 SP SP SAND: light brown to tan; med; subround SAND: light brown to tan; med; subround -10 SP SP SAND: light brown to tan; med; subround SAND: light brown to tan; med; subround SAND: light brown to tan; med; subround -10 SP SP SAND: light brown, tan; yelowish grey; med; dean SAND: light brown, tan; yelowish grey; med; dean -20 SP SAND: dark brown, tan; yelowish grey; med; dean SAND: dark brown, tan; yelowish grey; med; dean -26 SP SAND: dark brown, tan; yelowish grey; med; dean SAND: dark brown, tan; yelowish grey; med; dean -36 SP SAND: dark brown, tan; yelowish grey; med; dean SAND: dark brown, tan; yelowish grey; med; dean -40 SP SAND: dark brown (SYR 3/2); fine; well sorted; subround SAND: darker brown (SYR 3/2); fine; well sorted; subround -40 SAND: darker brown (SYR 3/2); fine; well sorted; subround SAND: darker brown (SYR 3/2); fine; well sorted; subround	ΗĘ	Ξυ	S S	_	7				LEVEL		
1 3 0 10	EP (fee	LC &	S.	RVA et)	% VER	۵Ê	LITHOLOGIC DESC	RIPTION	&		
Image: state in the state i	i i	U U U		ITEF (fe	ECO	Id dj			DATE		
SAND: light brown, tan, yellowish grey, med SAND: dark brown (SYR 3/2), fine, well sorted; subround -Bentonite Seal		•••		≤	R		SAND: light brown to tap; med; subrou	Ind			
-5 SP -10 SM -10 SM -15 SM -16 SM -20 SP -20 SP -35 SP -35 SP -40 SAND: darker brown (SYR 3/2); fine; well sorted; subround -40 SAND: darker brown (SYR 3/2); fine; well sorted; subround		-					SAND. light brown to tail, med, subrot				
SAND: sity: black (quartz); fine; argillaceous; hardpan SAND: sity: black (quartz); fine; argillaceous; hardpan SAND: light brown, tan, yellowish grey; med: clean SAND: dark brown, tan, yellowish grey; med SAND: dark brown, tan, yellowish grey; med -30 SP -30 SP	;										
- 5 - SP SP SAND, sity: black (quartz); fine, argiliaccous; hardpan - 10 SM - 15 SM - 15 SM - 20 SP - 20 SAND: light brown, tan, yellowish grey; med, clean - 20 SAND: dark brown, tan, yellowish grey; med - 25 SP - 30 SP - 35 SP - 40 SAND: darker brown (5YR 3/2); fine; well sorted; subround - 40 SAND: darker brown (5YR 3/2); fine; well sorted; subround											
SAND. sity: black (quartz); fire; argitaceous; hardpan -10 -15 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5		-									
-10 SAND, silty: black (quartz); fine; argillaceous; hardpan -15 SM -15 SM -20 SP -20 SP -30 SP -30 SP -30 SP -30 SP -30 SP -30 SP -31 SAND: darker brown (SYR 3/2); fine; well sorted; subround -40 SAND: darker brown (SYR 3/2); fine; well sorted; subround	- 5 -		SP								
10 SAND, silty: black (quartz); fine; argillaceous; hardpan -15 SM -20 SP -20 SAND: dark brown, tan, yellowish grey; med; clean -25 SP -30 SP -30 SP -30 SP -31 SAND: darker brown (GYR 32); fine; well sorted; subround -40 SAND: darker brown (GYR 32); fine; well sorted; subround	8										
10 SM -15 SM -20 SAND: light brown, tan, yellowish grey; med. clean -20 SAND: dark brown, tan, yellowish grey; med -25 SAND: dark brown, tan, yellowish grey; med -30 SP -31 SP -32 SP -34 SAND: darker brown (SYR 3/2); fine; well sorted; subround -40 SAND: darker brown (SYR 3/2); fine; well sorted; subround											
10 SAND, silty: black (quartz); fine; argiliaceous; hardpan -15 SM -15 SM SP SAND. light brown, tan, yellowish grey; med, clean -20 SAND: dark brown, tan, yellowish grey; med -25 SAND: dark brown, tan, yellowish grey; med -30 SP -30 SP -31 SAND. darker brown (SYR 3/2); fine; well sorted; subround -36 SAND. darker brown (SYR 3/2); fine; well sorted; subround -36 SAND. darker brown (SYR 3/2); fine; well sorted; subround											
SAND: sily: black (quartz); fine; argillaceous; hardpan SAND: light brown, tan, yellowish grey; med; clean SAND: dark brown, tan, yellowish grey; med SAND: dark brown, tan, yellowish grey; med SAND: dark brown, tan, yellowish grey; med SAND: dark brown (SYR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page	_10_										
SAND: light brown, tan, yellowish grey; med; clean SAND: light brown, tan, yellowish grey; med; clean SAND: dark brown, tan, yellowish grey; med SAND: dark brown, tan, yellowish grey; med SAND: dark brown, tan, yellowish grey; med SAND: dark brown (SYR 3/2); fine; well sorted; subround Bentonite Seal							SAND, silty: black (quartz); fine; argilla	aceous; hardpan			
SAND: light brown, tan, yellowish grey, med, dean SAND: light brown, tan, yellowish grey, med Grout SAND: dark brown, tan, yellowish grey, med SAND: darker brown (5YR 3/2); fine; well sorted; subround SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal											
SAND: light brown, tan, yellowish grey; med; clean SAND: light brown, tan, yellowish grey; med Grout Grout SAND: dark brown, tan, yellowish grey; med SAND: dark brown, tan, yellowish grey; med SAND: dark brown, tan, yellowish grey; med SAND: darker brown (SYR 3/2); fine; well sorted; subround SAND: darker brown (SYR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page											
SP SAND: light brown, tan, yellowish grey; med; clean SAND: light brown, tan, yellowish grey; med; clean SAND: dark brown, tan, yellowish grey; med SAND: dark brown (SYR 3/2); fine; well sorted; subround Grout SAND: darker brown (SYR 3/2); fine; well sorted; subround Continued Next Page	2		SM								
SAND: light brown, tan, yellowish grey; med; clean SAND: dark brown, tan, yellowish grey; med Grout Grou	-15-										
SAND: light brown, tan, yellowish grey; med; clean SAND: dark brown, tan, yellowish grey; med Grout Grou											
SAND: dark brown, tan, yellowish grey; med; clean SAND: dark brown, tan, yellowish grey; med Grout Gro											
SAND: darker brown (5YR 3/2); fine; well sorted; subround SAND: darker brown (5YR 3/2); fine; well sorted; subround Continued Next Page		111					SAND: light brown, tan, vellowish grev	: med: clean	_		
SAND: dark brown, tan, yellowish grey; med			SP								
SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal	-20–						SAND: dark brown, tan, yellowish grey	r; med	_		Grout -
-25- -30- -30- -35- -40- -40- -40- -40- -40- -40- -40- -4											
-25- 											
-25- -30- -35- -40 -40 -40 -40 -40 -40 -40 -40 -40 -4											
SAND: darker brown (5YR 3/2); fine; well sorted; subround SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page											
SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page	25										
SAND: darker brown (5YR 3/2); fine; well sorted; subround SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page	L .										
SAND: darker brown (5YR 3/2); fine; well sorted; subround	L .										
-30 - SP 											
	-30-		SP								-
- 35											
-35- 											
-35	·								1		
SAND: darker brown (5YR 3/2); fine; well sorted; subround SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page	-35-								1		
SAND: darker brown (5YR 3/2); fine; well sorted; subround SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page									1		
SAND: darker brown (5YR 3/2); fine; well sorted; subround SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page											
SAND: darker brown (5YR 3/2); fine; well sorted; subround SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page											
SAND: darker brown (5YR 3/2); fine; well sorted; subround SAND: darker brown (5YR 3/2); fine; well sorted; subround Bentonite Seal Continued Next Page											
Bentonite Seal	-40-						SAND: darker brown (5YR 3/2); fine; v	vell sorted; subround	1		-
Bentonite Seal											
Continued Next Page											Bentonite Seal
Continued Next Page											
							Continu	ed Next Page			

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

TWIN PINES MINERALS SAUNDERS-LONCALA RESERVE

LOG OF PUMP WELL PW A & PUMP WELL CONSTRUCTION

3

SAINT GEORGE, GEORGIA

PROJECT NUMBER

000180200804.00 Saint George, Georgia PROFESSIONAL DATE(S) DRILLED A. Patton 12/20/2018

						Continued from Previous Page		
EPTH feet)	APHIC -OG	SAMPLE Si SAMPLE LITHOLOGIC DESCRIPTION						PUMP WELL DIAGRAM
	GR GR	 	INTER (feei	RECOV	udd) JId		DATE	
- - - - - - - - - - - - - - - - - - -		SP						Filter Pack Sand
- 5 - - - - - - - - - - - - - - - - - -								
						SAND: darker brown (5YR 3/2); fine; well sorted; subround		
- 65- - - -		SP						
		CI				CLAY, sandy: dark yellowish brown (10YR 4/2); fine to med; saturated	-	
- 			-			SAND: well sorted		
- 80- 80-		0						
- - 		58						Screened Interval . (0.01-inch PVC)
- - - - - - 90-						CLAY: dark green; fat	-	
- - - - - - - - - - - - - - - - - - -		СН					-	
-						Continued Next Page		

PAGE 2 OF This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

TWIN PINES MINERALS SAUNDERS-LONCALA RESERVE

LOG OF PUMP WELL PW A & PUMP WELL CONSTRUCTION

SAINT GEORGE, GEORGIA

PROJECT NUMBER LOCATION

GRAPHIC LOG

DEPTH (feet)

ort: ENV LOG - WELL

U.S.C.S.

INTERVAL (feet)

000180200804.00 Saint

PROFESSIONAL

A. Patton

i	nt Georg	ge, Georgia	DATE(S) DRILLED	12/20/2018	
			Continued from Previous Page		
	SAMP	LE		WATER	PUMP WELL DIAGRAM
	% RECOVERY	(mqq) DIG	LITHOLOGIC DESCRIPTION	LEVEL & DATE	

-001 Geb 					- - - -
- 4 RESTORE).GP 	CL				 - - -
					- -
					-
0 FROM 8-7/80			BORING TERMINATED AT 116 FEET.		
IGS RESTORE					
RVICES/804-LC					
ERMITTING SE					
S MINERALS P					
00 - TWIN PINE					
000180200804.1					
COJECTS/2018/					
M:\PF					

2	1		//		Т	WIN PINES MINERALS SAUND	ERS-LONCALA RESE	ERVE	LOG OF OBSV. WELL OWA1BS & OBSV. WELL
					CONSTRUCTION				
PROJ LOCA DRILI DRILI REMA	PROJECT NUMBER LOCATION DRILLING COMPANY DRILLER DRILLING METHOD REMARKS			0180200 nt Geor tts Pendarv nic me as C)804.00 rge, Georgia vis DWA-1S for	a 0-12	PROFESSIONAL DATE(S) DRILLED CASING DIA./TYPE SCREEN SLOT/TYPE FILTER PACK TYPE TOP OF CASING GROUND ELEVATION DEPTH TO WATER WATER ELEVATION	T. Hall 12/11/2018 172.16 Ft. AMSL 171.78 Ft. AMSL	
DEPTH (feet)	GRAPHIC LOG	U.S.C.S.	TERVAL (feet)	SAMP		LITHOLOGIC DES	CRIPTION	WATER LEVEL & DATE	OBSV. WELL DIAGRAM
		SP SM SP SM		60 60		No recovery SAND: (quartz); fine (20%); med (40 sorted; subround; unconsolidated; dr roots) SAND, silty: very dark brown (quartz) silt (<5%); well sorted; subround; uncon granic (fibrous) material SAND, silty: dark yellowish brown (qu (45%); silt (<5%); well sorted; subround; uncons SAND; light brown (quartz); fine coarse (10%); silt (<5%); well sorted; semi-consolidated; FBG (<1%) BORING TERMINATED	%); coarse (40%); well y; organic (wood and); fine (75%); med (20%); consolidated; moist; uartz); fine (50%); med ind; unconsolidated; 6); med (25%); coarse solidated; moist a (60%); med (25%); ; subround; AT 12 FEET.		Grout Bentonite Seal Filter Pack Sand - (20/40) Screened Interval (0.01-inch PVC) - Well Tip

PROJECT NUMBER 000180200804.00 PROFESSIONAL I. Hell LOCATION Saint George, Georgia DATE(5) DRILLED 1192018 DRILLING COMPANY Betts C. Pendarvis C. Pendarvis C. Pendarvis DRILLING METHOD Sonic FILTER PACK TYPE 0.010/in.slot 172.23 FLAM DRILLING METHOD Sonic GROUND ELEVATION 172.23 FLAM 172.27 FLAM REMARKS SAMPLE UTHOLOGIC DESCRIPTION 172.27 FLAM C. Pendarvis SAMPLE UTHOLOGIC DESCRIPTION WATER L. SAM 0.00 No recovery SAMD gray (quartz) fine (d9%); coarse (40%); coarse (4		& OBSV. WELL CONSTRUCTION	
Head SAMPLE LITHOLOGIC DESCRIPTION WATER LEVEL DATE 1 0 0-10 60 No recovery 5 SP SM 0-10 60 No recovery 5 SM SM SMD: grey (quartz); fine (20%); med (40%); coarse (40%); well sorted; subround; unconsolidated; organics (wood notes) SAND: grey (quartz); fine (20%); med (40%); coarse (40%); well sorted; subround; unconsolidated; mods; -10 SM SM SMD: grey (quartz); fine (20%); med (40%); coarse (40%); well sorted; subround; unconsolidated; mods; -10 SM SM SMD: grey (quartz); fine (20%); med (40%); coarse (40%); well sorted; subround; unconsolidated; mods; -10 SM SMD SMD: gity, date velowish brown (quartz); fine (50%); med (20%); sorted; subround; unconsolidated; mods; -10 SM SMD To-20 100 SMD: gity, date velowish brown (quartz); fine (50%); med (20%); subround; well sorted; subround; unconsolidated; modst -10 SC-SM SMD, gity, dayey: black (quartz); fine (75%); med (20%); subround; well sorted; subround; unconsolidated; modst -20 SMD SMD, gity, dayey: black (quartz); fine (75%); med (20%); sull (c3%); well sorted; subround; well sorted; subround; unconsolidated; modst -20 SMD SMD, gity, dayey: black (quartz); fine (75%); med (20%); sill (c3%); well sorted; subround; well sorted; subround; unconsolidated; modst -20 SMD	T. Hall 11/9/2018 2" PVC 0.010-in. slotted PVC 172.23 Ft. AMSL 171.97 Ft. AMSL		
image:	OBS	OBSV. WELL I	DIAGRAM
-40			

7

LOG OF OBSV. WELL

2

LOG OF OBSV. WELL OWA1D & OBSV. WELL CONSTRUCTION

SAINT GEORGE, GEORGIA

PROJECT NUMBER

000180200804.00 Saint George, Georgia

DATE(S) DRILLED

PROFESSIONAL T. H

T. Hall 11/9/2018

						Continued from Previous Page			
I	Ę	ى. ن		SAMP	PLE		WATER	OBS	W. WELL DIAGRAM
DEPTI (feet)	GRAPH LOG	U.S.C.	INTERVAL (feet)	% RECOVERY	(mqq)	LITHOLOGIC DESCRIPTION	LEVEL & DATE		
		2 2 2 2 2 2				well sorted; subround; well consolidated; moist SAND: (quartz); fine (50%); med (25%); coarse (25%); well sorted; subround; unconsolidated; moist; increase in fine black grains (>1%)			
-50			50-60	80					
- 55— - -		SP							
- 60— -		2 2 2 2	60-70	80					
- 65— -		SC-SM				SAND, silty, clayey: dark brown; fine (80%); med (15%); silt (<5%); well sorted; subround; semi-consolidated; moist	-		
- - 70—		SP CL				SAND: brown (quartz); fine (75%); med (25%); well sorted; subround; unconsolidated; moist; FBG (<1%) CLAY, sandy: dark brown; fine	-		
		SC-SM	70-80	70		(<5%); well sorted; subround; semi-consolidated; FBG (<1%)			
75— - -		•				CLAY, sandy: dark grey; fine			Bentonite Seal
- 80— -		CL							(20/40)
- - 35						CLAY: dark grey; fat			Screened Inter (0.01-inch PVC
-		CH SP				SAND: dark grey (quartz); fine (75%); med (25%); well sorted;			
90—		СН				CLAY: dark grey; fat BORING TERMINATED AT 90 FEET.			·····
						BORING TERMINATED AT 90 FEET.			

77	L I	WIN PINES MINERALS SAUNDERS-LONCALA RESE SAINT GEORGE, GEORGIA	RVE	LOG OF OBSV. WELL OWA1S & OBSV. WELL CONSTRUCTION	
PROJECT NUMBER LOCATION DRILLING COMPANY DRILLER DRILLING METHOD	000180200804.00 Saint George, Georgi Betts C. Pendarvis Sonic	PROFESSIONAL a DATE(S) DRILLED CASING DIA./TYPE SCREEN SLOT/TYPE FILTER PACK TYPE TOP OF CASING GROUND ELEVATION DEPTH TO WATER WATER ELEVATION	T. Hall <u>11/9/2018</u> <u>2" PVC</u> <u>0.010-in. slotted I</u> <u>172.12 Ft. AMSL</u> <u>171.93 Ft. AMSL</u>	PVC	
7/2/19 ReportENVLOG DEPTH (feet) (feet) GRAPHIC LOG U.S.C.S.	SAMPLE ((eet)) BID (bm)	LITHOLOGIC DESCRIPTION	WATER LEVEL & DATE	OBSV. WELL DIAGRAM	
The service with the service service of the service		No recovery SAND: (quartz); fine (20%); med (40%); coarse (40%); well sorted; subround; unconsolidated; dry; organic (wood and icots) SAND: very dark brown (quartz); silty; fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FSG (<1%)		Grout Bentonite Seal Filter Pack Sand (20/40) Screened Interval (0.01-inch PVC) Well Tip	

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

2				,	T	ERVE	LOG OF OBSV. WELL OWA2BS & OBSV. WELL CONSTRUCTION		
						SAINT GEORGE, G	Eorgia		CONSTRUCTION
PRO.	JECT NU ATION	IMBER	_000 	180200 nt Geor	0804.00 ge, Georgia	P	ROFESSIONAL ATE(S) DRILLED	T. Hall 12/12/2018	
DRIL	LING CO	MPANY	Bet	ts		c	ASING DIA./TYPE	2" PVC	
DRIL	LER		<u> </u>	Pendarv	vis	S	CREEN SLOT/TYPE	0.010-in. slotted	PVC
DRIL	LING ME	THOD	Sor	IIC		F	ILTER PACK TYPE	172 27 Ft AMSI	
REM	ARKS					G	ROUND ELEVATION	172.04 Ft. AMSL	
L L						D	EPTH TO WATER		
۵ و						V	VATER ELEVATION		
				<u> </u>	. –				
	l ₽ ,,	vi		SAMP	PLE			WATER	OBSV. WELL DIAGRAM
DEPT DEPT (feet	GRAPI	U.S.C	ITERVAL (feet)	ECOVERY	(mqq)	LITHOLOGIC DESCR	RIPTION	DATE	
			≤ 0-10	60		No Recovery			
	_		0 10	00					Grout
		B				SAND: grey (quartz); fine (50%); med (4	0%); coarse (10%);	_	-Bentonite Seal
		SP				well sorted; subround; unconsolidated; d organic material (roots)	lry; FBG (<1%);		
									Filter Pack Sand
						SAND, silty: very dark brown (quartz); fir silt (<5%); well sorted; subround; uncons	ne (75%); med (20%); solidated; moist		
- -	-								
0 0 1	-	SM							Screened Interval
-10-	-								(0.01-inch PVC)
1 0 10		•							Well Tip
						BORING TERMINATED AT	12 FEET.		
L L L L L L L L L L L L L L L L L L L									
N XEN									
J4-LOC									
0 N									
0 1									
IERAL									
- 00.40									
120021									
00180									
0181.02									

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

7	1			,	τv	WIN PINES MINERALS SAUND	LOG OF OBSV. WELL OWA2D & OBSV. WELL CONSTRUCTION				
						SAINT GEURGE,					
PROJE		MBER	000	180200	804.00		PROFESSIONAL	T. Hall			
LOCA.			Sai	nt Georg	ge, Georgia		DATE(S) DRILLED	11/13/2018			
DRILL		MPANY	Bet	ts			CASING DIA./TYPE	2" PVC			
DRILL	ER		<u> </u>	Pendarv	/IS		SCREEN SLOT/TYPE	0.010-in. slotted PVC			
DRILL	ING ME	IHOD	Sor	าเต			FILTER PACK TYPE				
DEMA								172.34 Ft. AMS			
REMA	KN9							172.10 Ft. AMS	DL		
							WATEN ELEVATION				
_	U			SAMP	LE				OBSV. WELL DIAGRAM		
et)	Ηg	C.S	Ł	ž				LEVEL			
DEF GRA CRA LC LC			INTERV/ (feet)	RECOVEF	(mqq) DIA	LITHOLOGIC DES		& DATE			
			0-10	60		No Recovery					
-											
-											
-											
-	•••••					SAND arev (quartz) fine 50% mod 4	10% coarse 10% woll	-			
- 5		SP				sorted, subround, unconsolidated, dr	y, FBG (<1%), organics				
-						(roots)					
					[SAND, silty: very dark brown (quartz) silt (<5%); well sorted: subround: unc	; fine (75%); med (20%);				
_							enconduced, molet				
-											
-											
-10		<u>.</u>	10.00								
-		SM	10-20	80							
_											
_											
-15		SC-SM				SAND, silty, clayey: black (quartz); fir	ne (75%); med (20%);				
-						slit/clay (<5%); well sorted; subround; SAND_slity; dark brown (quartz); fine	; well consolidated; moist	\neg			
-						coarse (10%); silt (<5%); well sorted;	subround;				
-						unconsoliuateu, moist					
-		SM									
-20											
_			20-30	80							
-											
						SAND: yellowish brown (quartz); fine coarse (25%); well sorted; subround:	(50%); med (25%); unconsolidated: moist:				
-		SP				FBG (<1%)	anoonoonaalea, muist,				
-											
-25						SAND: (quartz); fine (60%); med (30	%); coarse (10%); well	\dashv			
-						sorted; subround; unconsolidated; mo	pist				
_		SP									
_											
_											
~ ~		SC-SM			[SAND, silty, clayey: black (quartz); fir	ne (75%); med (20%); ; well consolidated: moist				
-30-			30-40	100		SAND: dark yellowish brown (quartz);	; fine (50%); med (25%);				
· _						coarse (25%); well sorted; subround;	unconsolidated; FBG				
-		еD				(170)					
		37									
						Contin	und Novt Page				

LOG OF OBSV. WELL OWA2D & OBSV. WELL CONSTRUCTION

3

SAINT GEORGE, GEORGIA

PROJECT NUMBER

000180200804.00 Saint George, Georgia PROFESSIONAL1DATE(S) DRILLED1

T. Hall 11/13/2018

PTH set)	PHIC DG	C.S.	AL	SAMP ≩		LITHOLOGIC DESCRIPTION		OBSV. WELL DIAGRAM
G - WELL DE	0 GRV GRV	U	INTERV (feet)	RECOVE	OId	SAND, collegists because (quarter) find (500/), and (500/), coll	DĂTE	
7/2/19 ReportENV LO		SP				sorted; subround; unconsolidated; moist; FBG (<1%)		Grout
TH WELLS (TUSCOM RESTORE). 6PJ		SP	40-50	90		SAND: yellowish brown (quartz); fine (50%); med (25%); coarse (25%); well sorted; subround; unconsolidated; FBG (<1%)		
VICES004-LOGS RESTORED FROM 8-7804-LOGS WI		SC-SN SC-SN SC-SN	50-60	70		SAND, silty, clayey: very dark brown (quartz); fine (80%); med (15%); silt/clay (<5%); well sorted; subround; semi-consolidated; moist SAND: yellowish brown (quartz); fine (50%); med (25%); coarse (25%); well sorted; subround; unconsolidated; FBG (<1%) SAND, silty, clayey: very dark brown (quartz); fine (50%); med (45%); silt (<5%); well sorted; subround; semi-consolidated; moist SAND, silty: (quartz); fine (50%); med (25%); coarse (25%); well sorted; subround; unconsolidated; moist; FBG (<1%)		
00 - TWIN PINES MINERALS FERMITTING SERV 		SM SC-SM SC-SM SC-SM	60-70	80		SAND, silty: very dark brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated SAND, silty, clayey: dark brown (quartz); fine (95%); silt/clay (>5%); well sorted; subround; semi-consolidated SAND: grayish brown (quartz); fine (75%); med (25%); well sorted; subround; unconsolidated; FBG (<1%) SAND, silty, clayey: dark grayish brown (quartz); fine (95%); silt/clay (<5%); well sorted; subround; semi-consolidated; moist SAND: light grey (quartz); fine (75%); med (25%); well sorted; subround; unconsolidated; moist; FBG (<1%)		
		SP SC-SN	-			SAND: grey (quartz); fine (50%); med (25%); coarse (25%); well sorted; subround; unconsolidated; moist; FBG (<1%) SAND, silty, clayey: light grayish brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; FBG (<1%); organic material (wood fragments)		

LOG OF OBSV. WELL OWA2D & OBSV. WELL CONSTRUCTION

PROJECT NUMBER

000180200804.00

SAINT GEORGE, GEORGIA

PROFESSIONAL T DATE(S) DRILLED 1

T. Hall 11/13/2018

LOCA	TION	Saint George, Georg				DATE(S) DRILLED	11/13/2018		
						Continued from Previous Page			
DEPTH (feet)	GRAPHIC LOG	U.S.C.S.	NTERVAL (feet)	SAMP	LE (mdd)	LITHOLOGIC DESCRIPTION	WATER LEVEL & DATE	OBS	/. WELL DIAGRAM
		SC-SM	INTERVAL 06-08	% Teconed	(mqq)	SAND, silty, clayey: dark grayish brown (quartz); fine (60%); med (35%); silt/clay (<5%); well sorted; subround; semi-consolidated; moist; FBG (<1%) SAND: white (quartz); fine (50%); med (50%); FBG (<1%) SAND: dark grey (quartz); fine (50%); med (25%); coarse (25%); well sorted; subround; unconsolidated; moist; FBG (<1%); fat clay nodules CLAY: dark grey; fat SAND: dark grey (quartz); fine (50%); med (25%); coarse (25%); well sorted; subround; unconsolidated; moist; FBG (<1%); fat clay nodules SAND: dark grey (quartz); fine (50%); med (25%); coarse (25%); well sorted; subround; unconsolidated; moist; FBG (<1%) BORING TERMINATED AT 90 FEET.			E Bentonite Seal

7	/	1			,	TWIN PINES MINERALS SAUNDERS-LONCALA RESERVE SAINT GEORGE, GEORGIA					LOG OF OBSV. WELL OWA2S & OBSV. WELL CONSTRUCTION		
				000	180200	0904 00	SAINT GEORGE					JUNSTRUCTION	
	CAT		WIDER	<u> </u>	nt Geor	0804.00 rae Georais		PROFESSIONAL	1. Hall				
DRI		NG CO	MPANY	Bet	ts	ige, Ocorgie	4	CASING DIA./TYPE	2" PVC				
DRI	ILLE	ER		C. 1	Pendar	vis		SCREEN SLOT/TYPE	YPE 0.010-in. slotted PVC				
DRI	ILLI	NG ME	THOD	Sor	nic								
								TOP OF CASING	172.01 Ft. AM	SL			
REM	MAF	rks						GROUND ELEVATION	171.91 Ft. AM	SL			
ÆLL								DEPTH TO WATER					
- 5								WATER ELEVATION					
<u>лго</u>													
		<u>ں</u>	<i>i</i>		SAMF	PLE			WATER	0	OBSV	. WELL DIAGRAM	
DEPTH DEPTH	(teet)	GRAPH LOG	U.S.C.9	INTERVAL (feet)	% RECOVERY	PID (ppm)	LITHOLOGIC DES	CRIPTION	LEVEL & DATE				
				0-10	70		No Recovery						
- GB -													
RE).(+						SAND: grey (guartz): fine (50%): me	d (40%): coarse (10%):	_				
- STC	-		SP				well sorted; subround; unconsolidate	d; dry; FBG (<1%);					
≌ — 5 ≊							organic material (roots)					-	
	-						SAND, silty: very dark brown (quartz); fine (75%); med (20%);					
E L	-												
	-											Orest	
10	רי		SM									Grout _	
85- -]												
001-t	4												
- 1/807	-												
∞_—15	5-		SC-SM				SAND, silty, clayey: black (quartz); fi	ne (75%); med (20%);	_			-	
D FRO	1						silt/clay (<5%); well sorted; subround SAND_silty: dark brown (quartz): fine	l; well consolidated; moist					
- OREI	4						coarse (10%); silt (<5%); well sorted	; subround;					
-	-		SM				unconsolidated, moist						
^{لل} ان الم)											— Bentonite Seal –	
=S/80	_		0.5				SAND: yellowish brown (quartz); fine coarse (25%); well sorted; subround:	(50%); med (25%); unconsolidated; moist;			-	-Filter Pack Sand	
	-		SP				FBG (<1%)				=	(20/40)	
ij —25	5-						SAND: (quartz); fine (60%); med (30	%); coarse (10%); well		E		-	
Ň L			SP				sorted: subround: unconsolidated; m	oist; FBG (<1%)		E			
-	4		01							E			
LS PE	+	ا المرمو	SC-SM				SAND. siltv. clavev: black (quartz): fi	ne (75%): med (20%):	_	E	╉┤	— Screened Interval . (0.01-inch PVC)	
₩ -30)						silt/clay (<5%); well sorted; subround	; well consolidated; moist	-	E		(0.01 mont vo) _	
۲ WIN]						coarse (25%); well sorted; subround;	; unconsolidated; FBG		E			
ŰN-	-		SP				(<1%)			E			
N N										<u></u>	*	—Well Tip	
– 35 – 35 – 35	5	· · ·					BORING TERMINATED	AT 35 FEET.				-	
C1S/2018/000													
M:\PROJE													

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

7					т	WIN PINES MINERALS SAUNDEF	LOG OF OBSV. WELL OWA3BS & OBSV. WELL				
						SAINT GEORGE, G	EORGIA		CONSTRUCTION		
PROJ LOCA DRILI	IECT NUI	MBER MPANY	<u>000</u> Sai	0180200 nt Geor ts	0804.00 ge, Georgia	F	PROFESSIONAL DATE(S) DRILLED CASING DIA./TYPE	A. Wiggins 1/30/2019 2 " PVC 0.010-in_slotted PV/C			
	LING ME ARKS	THOD	Sor 		//5	F	FILTER PACK TYPE FOP OF CASING FOUND ELEVATION	Natural 172.35 Ft. AMSL 172.11 Ft. AMSL 1 03 Ft. BMP			
						v	VATER ELEVATION				
EPTH eet) APHIC .0G S.C.S.			AL	SAMP ≿			RIPTION	WATER	OBSV. WELL DIAGRAM		
	GRA	U.S	INTERV (feet)	RECOVE	UI4	SAND, black (40VD 0/4), positiv gradad	mode optimated	DATE	Well Cover		
		SP	0-5	100		SAND. Diack (10 TK 2/1), poorly graded,	meu, saturateu		Natural Sand		
- 5 -		SP SP	5-10	100		SAND: light reddish grey (2.5YR 7/1); m organics (5.5-6) SAND: weak red (2.5YR 5/2); poorly gra	ned; saturated; nded; med; saturated				
		SP				SAND: very dark brown (2.5YR 2.5/2); p saturated	boorly graded; med;				
		SP	10-15	100		SAND: very dark brown (2.5YR 2.5/2); p saturated	ooorly graded; med;		Screened Interval (0.01-inch PVC)		
						BORING TERMINATED AT	15 FEET.				

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

2				,	TWIN PINES MINERALS SAUNDERS-LONCALA RESERVE						G OF OBSV. WELL OWA4BS & OBSV. WELL CONSTRUCTION
						SAINT GEORGE,	GEORGIA				
		MBER	_000 	180200 nt Geor)804.00 ge, Georgia	a	PROFESSIONAL DATE(S) DRILLED	A. Wiggins 1/30/2019 2" P\/C			
DRILI			<u> </u>	Pendary	vis		SCREEN SLOT/TYPE	0.010-inch.			
DRILI		THOD	Son	IIC			TOP OF CASING	Natural 172.44 Ft. AMSL			
REMA	ARKS						GROUND ELEVATION DEPTH TO WATER	<u>172.16 Ft. AM</u> <u>1.25 Ft. BMP</u>	SL	SL	
I.	알	ю.	ŝ	SAMF	PLE			WATER	0)DBS	/. WELL DIAGRAM
DEPT (feet	GRAPI LOG	U.S.C.	ITERVAL (feet)	% ECOVERY	(mqq)	LITHOLOGIC DES	CRIPTION	LEVEL & DATE			
			<u>Z</u>	100		SAND: black (10R 2/1); poorly grade	d: med: moist				Well Cover
	-	SP	0-5	100			d, mod, molec		<u>)</u>)		
	-								<u> </u>		⊢—Natural Sand
	-	SP SP	5-10	100		SAND: reddish grey (2.5YR 7/1); poor SAND: weak red (2.5YR 5/2); poorly organics (5.5-6 feet)	orly graded; med; moist graded; med; moist;				
		SP				SAND: very dark brown (2.5YR 2.5/2 moist	?); poorly graded; med;				
-10-			10-15	100		SAND: black (10R 2/1); poorly grade	d; med; saturated	_			— Screened Interval (0.01-inch PVC)
	-	SP									— Well Tip
- 								_			
						BORING TERMINATED	AT 15 FEET.				
•											

7/2/19 Report:ENV LOG - WELL

SAMI GEORGE, JELOKIA MODEL A. Wagne PROJECT NUMBER LOCATION 001102/0010-00 A. Wagne DEILUNG COMPANIE BELLING COMPANIE PRILLING COMPANIE PRILLING METHOD Bettisk Companie Sonie Companie Pricesson Companie Pricesson Priceson Priceson Pricesson Pricesson Pricesson Pricesson Pricesson Price		TTL						TWIN PINES MINERALS SAUNDERS-LONCALA RESERVE LOG OF OBSV. WELL SAINT GEORGE GEORGIA CONSTRUCTION						
PROJECT NUMER 000103020024.00 PROFESSIONAL A. Wagans DOCATION Baint Company Dates (b) NATYPE 2PVC DRILLING COMPANY Bets C. Pendavis Sonte 2PVC DRILLING NETHOD Sonte PILTER PACK TYPE Moluni 1/2202 H. AMSL REMARKS GOROND ELEVATION 1/2202 H. AMSL GOROND ELEVATION 1/2202 H. AMSL REMARKS GOROND ELEVATION 1/2202 H. AMSL GOROND ELEVATION 1/2202 H. AMSL REMARKS GOROND ELEVATION 1/2204 H. AMSL GOROND ELEVATION 1/2204 H. AMSL REMARKS GO G G G G FE REMARKS GO G G G G FE REMARKS G G G G G G FE REMARKS G G G G G G FE Matter ELEVATION VATER ELEVATION VATER ELEVATION REMARKS S G G G G G								SAINT GEORGE, GEO	ORGIA					
LOCATION Settility Country Detailung Country in Setting Parliane Country in Setting P	PF	ROJE	ECT NUI	MBER	000	0180200	0804.00	PR0	OFESSIONAL	A. Wiggins				
DRILLIR C.P. Pendavis C.P. Pendavis C.P. Pendavis Softee NAME (NTYPE 2/PVC DRILLIR Softe Softee NAME (NTYPE 0.010.n. Maturel Maturel DRILLIRS METHOD Softee NAME (NTYPE 0.010.n. Maturel Maturel REMARKS GROUND ELEVATION 172.02 FLAMSL 0.07 FLAMSL 0.07 FLAMSL REMARKS GROUND ELEVATION VATER ELEVATION VATER 0.07 FLAMSL REMARKS GROUND ELEVATION VATER 0.05 V. WELL DIAGRAM REMARKS SP 5400.000 (Gr (% 0° (1); pooly graded; med 0.05 V. WELL DIAGRAM REMARKS SP 5410 SAMD: data (s0/R 2.51); pooly graded; med Well Cover SP 541 100 SAMD: data (s0/R 2.51); pooly graded; med regains Well Cover SP 541 100 SAMD: data (s0/R 2.51); pooly graded; med regains Second interval (0.01-nin PVC) SP 540 SAMD: data (s0/R 2.51); pooly graded; med regains Second interval (0.01-nin PVC) SP 540 SAMD: data (s0/R 2.51); pooly graded; med regains/ Second interval (0.01-nin	LC	DCA	TION		Sai	nt Geor	ge, Georgia		TE(S) DRILLED	1/30/2019				
DRILLING C. Pendamine SOREN SLOTT/THE OLOCAL DRILLING Same FILTER PACK TYPE Maximum REMARKS Same T228 FLAMSL T228 FLAMSL REMARKS SAMPLE GROUND ELEVATION T228 FLAMSL REMARKS SAMPLE GROUND ELEVATION T228 FLAMSL REMARKS SAMPLE UTHOLOGIC DESCRIPTION WATER LEVEL DATE OBSV. WELL DIAGRAM REMARKS 9 8 100 SAMD. Hox (SYR 251); poorly graded, med DATE WATER LEVEL DATE OBSV. WELL DIAGRAM SP 9 8 100 SAMD. Hox (SYR 251); poorly graded, med DATE Well Cover SP 9 8 100 SAMD. Hox (SYR 251); poorly graded, med Sample for f11; poorly graded, med DATE SP 100 SAMD. Hox (SYR 251); poorly graded, med Sample for f11; poorly graded, med Sample for f10; poorly graded, med SP 101 SAMD. Hox (SYR 251); poorly graded, med Sample for f11; poorly graded, med Sample for f10; poorly graded, med SP 101 SAMD. Hox (SYR 251); poorly graded, med Sample for f10; poorly graded, med Sample for f10; poorly gra	D	RILL	ING CO	MPANY	Bet	tts		CAS	SING DIA./TYPE	2" PVC				
DRILLING METHOD Sonc FILTER PACK TYPE Natural TOP OF CASING TOP OF CASING TOP OF CASING TOP OF CASING REMARKS GROUND ELEVATION TOP OF CASING TOP OF CASING WATER ELEVATION WATER ELEVATION UNATER REMARKS SAMPLE LITHOLOGIC DESCRIPTION WATER ELEVATION REMARKS SAMPLE LITHOLOGIC DESCRIPTION WATER ELEVATION REMARKS SAMD resc (SYR 2.5/1) poorly graded; med WATER ELEVATION Well Cover REMARKS SP 5-10 SAMD resc (SYR 2.5/1) poorly graded; med Water elevation SP 5-10 SAMD resc (SYR 2.5/1) poorly graded; med; cognitics Natural Sand SP 5-10 SAMD resc (SYR 2.5/1) poorly graded; med; cognitics Schemed Interval SP 5-10 SAMD resc (SYR 2.5/1) poorly graded; med; cognitics Schemed Interval SP 5-10 SAMD resc (SYR 2.5/1) poorly graded; med; cognitics Schemed Interval SP 5-10 SAMD resc (SYR 2.5/1) poorly graded; med; cognitics Schemed Interval SP 5-10 SAMD resc (SYR 2.5/1) poorly graded; med; cognitics Schemed Interval SP 5-10 Son Schemed Interval Schemed Interval SP 10 SAMD resc (SYR 2.5/1) poorly graded;	D	RILL	ER		<u> </u>	Pendar	/is	SCI	REEN SLOT/TYPE	0.010-in.				
FEMARKS TOP OF CASING GROUND ELEVATION TOP OF CASING GROUND ELEVATION TOP OF CASING SOFT ANSL. TOP OF CASING SOFT ANSL. <thtop ansl.<="" casing="" of="" soft="" th=""> <thtop casingr<="" of="" td=""><td>DI</td><td>RILL</td><td>ING ME</td><td>THOD</td><td>Sor</td><td>nic</td><td></td><td> FIL</td><td>TER PACK TYPE</td><td>Natural</td><td></td><td></td></thtop></thtop>	DI	RILL	ING ME	THOD	Sor	nic		FIL	TER PACK TYPE	Natural				
REMARKS GROWN ELEVATION 172.09 FLASSL 071.00 FLASSL UP 100 SAMPLE UTHOLOGIC DESCRIPTION UNATER LEVATION 071.00 FLASSL Image: Strate in the strate in								TOP	P OF CASING	172.28 Ft. AMS	L			
Depth II O WATER O/F Bap Image: Solution of the second s		EMA	RKS					GR(172.09 Ft. AMS	_			
NULL PLANING	WEL									0.7 Ft. BMP				
Image: Section of the section of t	9 0							WA	TER ELEVATION					
Image: Solution of the soluti							. –							
B E C C C C C C C C C C C DATE A O O C C C C C C DATE A O O S TO SAND: black (GYR 2.5/1); poorly graded; med DATE Natural Sand S SP S-100 SAND: grey (Sr G*1); poorly graded; med; organica Natural Sand S SP SAND: grey (Sr G*1); poorly graded; med; organica SanD: Grey (Sr G*1); poorly graded; med; organica SP SP SAND: grey (Sr G*1); poorly graded; med; organica Screened Interval O/T SP SAND: black (OYR 2.5'1); poorly graded; med; selurabled Screened Interval O/T SP SAND: black (OYR 2.5'1); poorly graded; mod; selurabled Screened Interval O/T SP SAND: black (OYR 2.5'1); poorly graded; mod; selurabled Screened Interval O/T SAND: black (OYR 2.5'1); poorly graded; mod; selurabled Screened Interval O/T SP SAND: black (OYR 2.5'1); poorly graded; mod; selurabled Screened Interval O/T SP SAND: black (OYR 2.5'1); poorly graded; mod; selurabled Screened Interval O SP Screened Interval Screened Interval	n ortiel	_	₽	S.		SAMP	'LE			WATER	OBS	OBSV. WELL DIAGRAM		
B C C S E S R C OATE 0 0 0 100 SAND: black (5YR 2.5'1); poorly graded; med DATE Natural Sand 1 5 SP 100 SAND: grey (5yr 6'1); poorly graded; med; gravita; Natural Sand 1 SP 100 SAND: grey (5yr 6'1); poorly graded; med; gravita; Solution (10YR 1 SP 100 SAND: grey (5yr 6'1); poorly graded; med; gravita; Solution (10YR 10 SP SP Solution (10YR 7/5) and grey failed Solution (10YR 7/5) and grey failed Solution (10YR 7/5) and grey failed 10 10.15 100 SAND: black (5YR 2.5'1); poorly graded; med; saturaled Well Tip 11 SP 100 SAND: black (5YR 2.5'1); poorly graded; med; saturaled Well Tip	PT PT	eet	4PF 0G	Ú.) AL	RY	- 7	LITHOLOGIC DESCRIP	PTION					
S Image: S <td>¹⁹</td> <td>l f</td> <td>GR</td> <td>U.9</td> <td>ſfeet</td> <td>%O</td> <td>DIA</td> <td></td> <td></td> <td>DATE</td> <td></td> <td></td>	¹⁹	l f	GR	U.9	ſfeet	%O	DIA			DATE				
SAND black (SYR 2.51); poorly graded; med SP	7/2				۲.	RE					I I I I	 Well Cover 		
SP 5 SP 5.10 100 SAND: gray (5)r 611; poorly graded; med. organics SAND: dry gladed display and brown (10/R 4/3); poorly graded is med. organics SAND: very plat brown (10/R 5/2); poorly graded is med. saturated SP 10 10-15 100 SAND: black (9/R 2.5/1); poorly graded, med; saturated SP 10 SAND: SAND: black (9/R 2.5/1); poorly graded, med; saturated SP 10 SAND: SA		_			0-5	100		SAND: black (5YR 2.5/1); poorly graded; m	ned					
SADL dat yellowith brown (10/R 7/3) and grey/sh brown (10/R SAND. dat yellowith brown (10/R 7/3) and grey/sh brown (10/R SAND. very pale brown (10/R 7/3) and grey/sh brown (10/R 7/3) and	GP.													
5 SP 5-10 100 SAND: gray (5yr 611); poorly graded; med; organica 5 SP SMD: dat yallowide horwn (10YR 3/6) and brown (10YR SMD: yary graded 10 SP SMD: yary grade SAND: yary graded; med; saturated 10 10-15 100 SAND: black (BYR 2.5'1); poorly graded; med; saturated 11 10-15 100 SAND: black (BYR 2.5'1); poorly graded; med; saturated 15 SP SP SOND: black (BYR 2.5'1); poorly graded; med; saturated	ORE			SP							<i>.</i> /			
5 SP 5-10 100 SAND: drs. yellowish brown (10YR 3/6) and provided (10Y	EST	_										⊢_Natural Sand		
5 Sp 5-10 100 SAND: gray (Syr 6/1); poorly graded; med; organics 3 SAD SAND: sery paie brown (10YR 3/6) and brown (10YR SAND: sery paie brown (10YR 7/3) and greyish brown (10YR 10 SP 10-15 100 SAND: black (SYR 2.5/1); poorly graded; med; saturated 10 SP 10-15 100 SAND: black (SYR 2.5/1); poorly graded; med; saturated 11 SP 10-15 100 SAND: black (SYR 2.5/1); poorly graded; med; saturated 11 SP 10 SAND: black (SYR 2.5/1); poorly graded; med; saturated 115 SP SP Sent Sent Sent Sent Sent Sent Sent Sent	MO M	_												
SP SP SND: daty velocide torown (10VR 3/6) and brown (10VR 4/3); poorly graded SAND: back (5VR 2.5/1); poorly graded; med; saturated 10 10-15 100 SAND: black (5VR 2.5/1); poorly graded; med; saturated SP SP SAND: black (5VR 2.5/1); poorly graded; med; saturated	- Insc	5 —	•••••	SP	5-10	100		SAND: grey (5yr 6/1); poorly graded; med;	organics			-		
And Participation And Participation SP SAND: way pateroom (10/R 7/3) and greyish brown (10/R 7/3) 10 10-15 SP SAND: black (SYR 2.5/1); poorly graded SP SP SP SAND: black (SYR 2.5/1); poorly graded SP SP SP SP <	E-	-		SP				SAND: dark yellowish brown (10YR 3/6) an	nd brown (10YR		<u>Л</u>			
SP S	VELL	-						4/3); poorly graded	ovish brown (10VP	-				
SP Screened Interval (0.01-inch PVC) 10 SAND: black (5YR 2.5/1); poorly graded; med; saturated SP SP 15 BORING TERMINATED AT 15 FEET.	É-	-		<u>с</u> п				5/2); poorly graded						
10 10-15 100 SAND: black (5YR 2.5/1); poorly graded; med; saturated 10 SP 0.01-inch PVC) Well Tip 15 BORING TERMINATED AT 15 FEET. Well Tip	SS- N	-		32										
SPRUE Diack (PTR 2.51); poory gladed, field, sauraed	9 –1	10—						CAND: block (EVD 2 5/4); poorty gradad, m	and naturated			(0.01-inch PVC) _		
SP 10 10 10 10 10 10 10 10 10 10	1804	_			10-15	100		SAND: black (5YR 2.5/1); poorly graded; m	nea; saturated					
	-8 U	_										—Well Tip		
	FRO	_		SP										
00 15	RED													
	STO	16												
	S RE	15-							5 FFFT			_		
	LOG							BORING TERMINATED AT IS	JILLI.					
	\804-													
	CES													
	ERV													
	S DZ													
	Ē													
	ERN													
	LSP													
	IERA													
	MIN													
W:PROJECTS/20180200804.000-1	NE													
	VIN F													
	- -													
	04.00													
	2008													
	0180.													
	8/00(
	s\201													
	ECTS													
	ROJ													
	M:\F													

PUMPING TEST AREA B

7					т	WIN PINES MINERALS SAUND		LOG OF PUMP WEL PW B			
		7				SAINT GEORGE		& PUMP WELL CONSTRUCTION			
BPO I		IRED	000	180200	1804 00		PROFESSIONAL	A Patton			
			0	nt Geor	ne Ceordia			12/10/2018 4	12/11/201		
			Oal	ridge M	ge, Georgia All Co			6" P\/C	2/ 14/20		
		VIT AIN I									
			_Rar	iay Bak	er		SUREEN SLUI/IYPE				
DRILL	ING ME	HOD	Rot	ary			FILTER PACK TYPE	16/30 Colorado silica			
							TOP OF CASING	174.41 Ft. AM	SL		
REMA	RKS						GROUND ELEVATION	172.46 Ft. AM	SL		
							DEPTH TO WATER				
							WATER ELEVATION				
	O	.	:	SAMP	LE				PL	IMP WELL DIAGRAM	
ΗĘ	Ξo	S.	_	~							
EP (fee	LOAP	S.	et)	VER.	۵Ê	LITHOLOGIC DES	SCRIPTION	&			
	ß		ITEF (fee	°0%	Id dd			DATE			
<u>ا</u>			≤	RE		SAND: light brown to block					
, 						SAND. IIGHT DIOWH TO DIACK					
j											
- 1											
- 5 -		SP									
						SAND, sandy: black; med to fine; co	nsolidated; hardpan at 15'				
- 										N .	
-15-		SM								<u> </u>	
2											
-20-	111					SAND: very dark brown to almost bl	ack: few organics			Grout –	
						Shind, very dark brown to annost bla	aon, iew organico				
- 1											
-25-											
- T											
Ē											
-30-		SP									
- 1											
-35											
-40-						SAND, sandv: light brown to tan (vel	lowish brown): fine to				
						med; well sorted; subround	,			-	
										-	
- 1						Contir	nued Next Page			-	
	≬` ∳ ` •"				1	Sonta		1			

LOG OF PUMP WEL PW B & PUMP WELL CONSTRUCTION

SAINT GEORGE, GEORGIA

PROFESSIONAL

DATE(S) DRILLED

PROJECT NUMBER

000180200804.00 Saint George, Georgia A. Patton 12/10/2018 - 12/14/2018

							Continued from Previous Page				
	–	<u>ں</u>	<i>i</i> č		SAMP	LE		WATER	PUMP WELL DIAGRAM		
	EPTH feet)	LOG	S.C.S	tVAL	/ERY	ر آ	LITHOLOGIC DESCRIPTION	LEVEL &			
- WELL		В). J	INTEF (fee	RECO/	IId)		DATE			
N LOG										-	
eport:EN										-	
/19 Re	 50		SM							– — Filter Pack Sand —	
7/2										(16/30) ₋	
E).GPJ										-	
ESTORE										-	
COM RE										-	
S (TUS										-	
H WELL	- 60						SAND, clayey: medium bluish grey to medium dark grey; fine; well sorted; argillaceous			-	
GS WIT		, , , , , , , , , , , , , , , , , , ,								-	
804-LO	 65									-	
OM 8-7										-	
RED FR										-	
RESTO	—70— 		SC							-	
-LOGS										-	
CES\804										-	
SERVIC										-	
ITTING										-	
S PERN	80			-			SAND, clayey: black; no reaction	-		_	
INERAL										-	
INES M										-	
TWIN P										<pre>— Screened Interval (0.01-inch PVC)</pre>	
304.00 -										-	
1802005	 90	, , , , , , , , , , , , , , , , , , ,	SC							-	
18\000										-	
ECTS/2(-	
:\PROJE	—95— -						Continued Nevt Page			-	
Σ		1 / / 1		1			Continued Next Faye	I			

LOG OF PUMP WEL PW B & PUMP WELL CONSTRUCTION

3

SAINT GEORGE, GEORGIA

M:\PROJECTS\20

PROJECT NUMBER	000180200804.00		PROFESSIONAL	A. Patton	
LOCATION	Saint George, Georgi	a	DATE(S) DRILLED	12/10/2018 - 1	12/14/2018
		Continued from Pro	evious Page		
DEPTH (feet) (feet) GRAPHIC LOG U.S.C.S.	SAMDLE (feet) covery PID (ppm)	LITHOLOGIC DESC	CRIPTION	WATER LEVEL & DATE	PUMP WELL DIAGRAM
100 -105 		SAND: black BORING TERMINATED A	AT 115 FEET.		Well Tip

PROJECT NUMBER OCISION DOLLATION SAIN I GEORGE PROFESSIONAL T. Hall LOCATION Same as CWB-18 and DWB-10 C. Bendania C. Bendania </th <th>7</th> <th></th> <th></th> <th>//</th> <th></th> <th>Т</th> <th>WIN PINES MINERALS SAUNI</th> <th>DERS-LONCALA RES</th> <th>ERVE</th> <th>LOG OF OBSV. WELL OWB1BS & OBSV. WELL CONSTRUCTION</th>	7			//		Т	WIN PINES MINERALS SAUNI	DERS-LONCALA RES	ERVE	LOG OF OBSV. WELL OWB1BS & OBSV. WELL CONSTRUCTION
PROJECT NUMBER Option20000100 PROFESSIONAL T. Hell DRULICATION Sam Group, Gorgin OATES) DRUL NO 1272/016 DRULING COURANY Editer, Gorgin OATES) DRUL NO 2000 DRULING THO Some OCTOBENDATION 00000 DRULING THO Some OCTOBENDATION 00000 REMARKS Sam Group, Gorgin OATES) DRULE NO 172.38 FLAMSL REMARKS Sam Group, Gorgin OFFIN TO WATER 172.38 FLAMSL REMARKS Sam Group, Gorgin OFFIN TO WATER 172.17 FLAMSL Ligging Group, Gorgin Mathematic resonance OBSV. WELL DIAGRAM Ligging Group, Gorgin Mathematic resonance DATE Group, Gorgin Sam Group, Gorgin S							SAINT GEORGE	, georgia		CONSTRUCTION
LOCATION DEILING COMPANY DEILLER DRI	PRO	JECT NU	MBER	000	0180200	0804.00		PROFESSIONAL	T. Hall	
DRILLING COMPANY DRILLING DRILLING DRILLING METHOD Definition CASH data/re states CASH data/re states CPC/C PRILLING METHOD Same as OWB-15 and OWB-10 for D-12 Same as OWB-15 and OWB-10 for D-12 DEFINITION TZ3 2F1 AMSL TZ3 ZF1 AMSL TZ3 ZF1 AMSL REMARKS Same as OWB-15 and OWB-10 for D-12 DEFINITION DEFINITION TZ3 ZF1 AMSL T22 VF1 AMSL DEFINITION DEFINITION TZ3 ZF1 AMSL T22 VF1 AMSL DEFINITION DEFINITION TZ3 ZF1 AMSL T22 VF1 AMSL DEFINITION TZ3 ZF1 AMSL DEFINITION T23 ZF1 AMSL DEFINITION WATER USA DEFINITION DEFINITION T24 VF1 AMSL DEFINITION WATER USA DEFINITION WATER USA DEFINITION T32 VF1 AMSL DEFINITION WATER USA DEFINITION WATER USA DEFINITION T33 SM1 DEFINITION WATER USA DEFINITION WATER USA DEFINITION WATER USA DEFINITION T33 SM1 DEFINITION SAND, Sity distribution (unconsidiated, molt of galaxie) (DFN), sit (cSN), sit distribution (unconsidiated, molt of galaxie) (DFN), sity distrest abacand, unconsidiated, molt of galaxie) (DFN),	LOC	ATION		Sai	nt Geor	rge, Georgia	a	DATE(S) DRILLED	12/7/2018	
DRILLING METHOD C. Pendatole Scotte Control Soutic THITE PACK Soutic T22 3F1.AMSL T22 7F1.AMSL Same as OWB.1S and OWB.1D for D-12 OROUND ELEVATION T22 3F1.AMSL T22 7F1.AMSL UPUED SAMPLE LITHOLOGIC DESCRIPTION WATER ELEVATION DBSV. WELL DIAGRAM. Hung Berlin David SAMPLE LITHOLOGIC DESCRIPTION WATER ELEVATION DBSV. WELL DIAGRAM. Hung Berlin David SAMPLE LITHOLOGIC DESCRIPTION WATER ELEVATION DBSV. WELL DIAGRAM. Hung Berlin David SAMPLE LITHOLOGIC DESCRIPTION WATER ELEVATION DBSV. WELL DIAGRAM. Hung Berlin David SM SM SAMPLE SM Sectorery SM SM SM Sectorery Sectorery Sectorery SM SM SM Sectorery Sectorery Sectorery SM SM Sectorery	DRIL	LING CC	MPANY	Bet	tts			CASING DIA./TYPE	2" PVC	
DRILING METHOD Same PLICE PACK TYPE TOP OF CASH NO. TT2.3 F1. AMSL REMARKS Same as OWB-15 and OWB-10 for 0-12 DEPTH TO WATER TT2.3 F1. AMSL DEPTH TO WATER WITER Deptember 2000 TT2.3 F1. AMSL DEPTH TO WATER DEPTH TO WATER DEPTH TO WATER WITER Deptember 2000 TT2.3 F1. AMSL DEPTH TO WATER DEPTH TO WATER DEPTH TO WATER WITER Deptember 2000 TT2.3 F1. AMSL DEPTH TO WATER DEPTH TO WATER DEPTH TO WATER WITER Deptember 2000 TT2.3 F1. AMSL DEPTH TO WATER DEPTH TO WATER DEPTH TO WATER DEPTH TO WATER WITER Deptember 2000 TT2.3 F1. AMSL DEPTH TO WATER DEPTH TO WATER DEPTH TO WATER DEPTH TO WATER WITER Deptember 2000 TT2.3 F1. AMSL DEPTH TO WATER	DRIL	LER		C.	Pendar	vis		SCREEN SLOT/TYPE	0.010-in. slotted	PVC
REMARKS Same as OWB-1S and OWB-1D for 0-12 OP C CASING GROUND ELVENTON DEPTH TO WATER WITH ELEVATION T2:38 FL AMSL H SAMPLE WITH TO WATER WITH ELEVATION T2:37 FL AMSL H SAMPLE WITH CLEARING SAMPLE WITH ELEVATION H SAMPLE UTHOLOGIC DESCRIPTION WATER DATE OBSV. WELL DIAGRAM. H SS SAMPLE UTHOLOGIC DESCRIPTION WITH Plants DATE H SS SS SS SS SS SS SS SS	DRIL	LING ME	THOD	So	nic			FILTER PACK TYPE		
REMARKS Same as OWE:13 and OWB:10 for 0-12 GROUND ELEVATION IT2:17 FLAMSL PLOOD 9 9 9 0 0 0 0 PLOOD 9 9 9 0 0 0 0 PLOOD 9 9 9 0 0 0 0 0 PLOOD 9 9 9 0 0 0 0 0 PLOOD 9 9 9 0 0 0 0 0 PLOOD 9 9 9 0 0 0 0 0 PLOOD 9 9 9 0 0 0 0 0 PLOOD 9 9 9 0 0 0 0 0 PLOOD 9 9 9 0 0 0 0 0 SMD 1 1 0 0 0 0 0 0 SMD 1 1 1 0 0 0 0 0 SMD 1 1 1 0 0 0 0 0 10 1 1 1 0								TOP OF CASING	172.38 Ft. AMS	L
DEPTH TO WATER WATER LEVATION	REM	ARKS		Sa	me as C	OWB-1S an	d OWB-1D for 0-12	GROUND ELEVATION	172.17 Ft. AMS	L
WATER ELEVATION Lithologic DESCRIPTION WATER Laboration Lithologic DESCRIPTION Viewer ADTE OBSV. WELL DIAGRAM ADTE 0-10 SMM No Recovery SMM SMM SMM SMM <td>H</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DEPTH TO WATER</td> <td></td> <td></td>	H							DEPTH TO WATER		
Head SAMPLE LITHOLOGIC DESCRIPTION WATER LEVEL ADTE OBSV. WELL DIAGRAM Image: State of the	100 -							WATER ELEVATION		
The set of	2									
The Bill of t		0			SAMF	PLE				OBSV. WELL DIAGRAM
Bit Bit Sol Sol Sol Bit Sol Sol Date Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Image: Sol Sol Image: Sol Image: Sol Image: Sol Image: Sol Sol	HL 🗊	Ξυ	S.		~				WATER	
D D D E * 3 C D D E S - - - - - - D Bonnoite Sal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	(fee	. L Å I	S.O	RVA et)	VER.	۵Ê	LITHOLOGIC DES	SCRIPTION	&	
Image: constraint of the second se		5		(fe	EC %	d d			DATE	
SAND ally dark grav(tuartz) fine (0%); and (35%); all (3046); ally dark grav(tuartz) fine (0%); mod (35%); all (3046); ally dark grav(tuartz) fine (0%); all (3046); all fine (0%); a				≤	<u></u>		No Becovery		_	
SAND, silty: dark grey (quart2): fine (60%); med (35%); silt (-5%); well sorted: subround; unconsolidated; molet (4%%); silt (-5%); well sorted: subround; unconsolidated; molet (0.01-inch PVC) BORING TERMINATED AT 12 FEET.	-	4		0-10	80					Bentonite Seal
SMU. Bitly, dark grey (quart2), fine (0%); med (35%); ell (-5%); well sorted: subround; unconsolidate; mist; erginica (001-inch PVC); med (45%); ell (-5%); well sorted: subround; unconsolidated; most (001-inch PVC); med (001-i	5	.								Filter Pack Sand
SAND, silly, dark grayish brown (quartz); fine (50%); med (45%); sill (-5%); well sorted; subround; unconsolidated; moist -10	5		•				SAND, silty: dark grey (quartz); fine (<5%); well sorted: subround: uncor	(60%); med (35%); silt		
SAND. silty: dark grayish brown (quart2): fine (50%); med (45%); alt (-5%); well sorted: subround; unconsolidated; molet 0.01-inch PVC) BORING TERMINATED AT 12 FEET. BORING TERMINATED AT 12 FEET.	2	7.00	SM				(wood/roots)	ioonaatoa, moiot, oiganico		
SMD silv dark graph brown (quark); fare (69%); med (45%); silt (45%); well sorted; aubround; unconsektialad; molet SM -10 -10 -10 -10 -10 -10 -10 -10			•							
(45%) sit (-5%), well sorted, subround; unconsolidated; moist	- 5 –						SAND, silty: dark grayish brown (qu	artz); fine (50%); med		
SM -10 -10 -10 -10 -10 -10 -10 -10	-	+	,				(45%); silt (<5%); well sorted; subro	und; unconsolidated; moist		
SM -10 -10 -10 -10 -10 -10 -10 -10		-								Screened Interval
BORING TERMINATED AT 12 FEET.	\$ ⊑_	_	•							
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10 Well Tip BORING TERMINATED AT 12 FEET. BORING TERMINATED AT 12 FEET. Image: Image	N -		SM							
	ژ 0 10-10-									
BORING TERMINATED AT 12 FEET.	-10-		•							
BORING TERMINATED AT 12 FEET.	- 20	111	•							
	-	+-111.								
							BORING TERMINATEI	O AT 12 FEET.		
	0									
	2									
	۲ ۲									
	9/00/0									
	2									
	0									
	_									
	р Г									
	1 ALS									
	≥ 0									
	-									
	04.0(
	2008									
	1007									
	20									

M:PROJECTS/2018/000180200804.00 - TWIN PINES MINERALS PERMITTING SERVICES/804-LOGS RESTORED FROM 8-7/804-LOGS WITH WELLS (TUSCOM RESTORE).GPJ

This well log shall not be separated from of Service; no third party may rely upon this well logor ent of Service a ent a written TTL Secondary Client Agreement. the corresp ding Insti ng the correspo

7					T	WIN PINES MINERALS SAUNDER	RS-LONCALA RESP	ERVE		LOG OF OBSV. WELL OWB1D & OBSV. WELL	
						SAINT GEORGE, G	EORGIA			CONSTRUCTION	
PROJ LOCA DRILL DRILL DRILL	ect Nu Tion .ing Co .er .ing Me .rks	MBER MPANY THOD	_000 _Saii 	180200 nt Geor ts Golden nic)804.00 ge, Georgia	A C C C C C C C C C C C C C C C C C C C	PROFESSIONAL DATE(S) DRILLED CASING DIA./TYPE SCREEN SLOT/TYPE FILTER PACK TYPE TOP OF CASING GROUND ELEVATION DEPTH TO WATER WATER ELEVATION	T. Hall <u>11/27/2018</u> <u>2" PVC</u> <u>0.010-in. slotte</u> <u>172.49 Ft. AM</u> <u>172.36 Ft. AM</u>	7/2018 /C D-in. slotted PVC 49 Ft. AMSL 36 Ft. AMSL		
	U			SAMP	LE				0	DBSV. WELL DIAGRAM	
DEPTH (feet)	GRAPHI	U.S.C.S	NTERVAL (feet)	% RECOVERY	(mqq) DIG	LITHOLOGIC DESC	RIPTION	LEVEL & DATE			
			= 0-10	80		No Recovery					
		SM	10-20	80		SAND, silty: dark grey (quartz); fine (60 (<5%); well sorted; subround; unconsoli material (wood/roots/shoots) SAND, silty: dark grayish brown (quartz (45%); silt (<5%); well sorted; subround moist; FBG (<1%)	%); med (35%); silt idated; moist; organic ;; fine (50%); med ;; unconsolidated;				
 15 		SM				SAND, silty: black (quartz); fine (75%); well sorted; subround; well consolidated SAND, silty: brown (quartz); fine (60%); well sorted; subround; semi-consolidated	med (20%); silt (<5%); ł; moist ; med (35%); silt (<5%); łd; moist; FBG (<1%)	_			
20 		SM	20-30	80		SAND: light gravish hrown (guartz): fine	s (50%), med (50%),				
25 		SM				well sorted; subround; unconsolidated; if SAND, silty: dark brown (quartz); fine (7 coarse (5%); silt (<5%); well sorted; sub moist; FBG (<1%)	moist; FBG (<1%) 70%); med (20%); pround; unconsolidated;				
			30-40	70							
		SC-SN				SAND, silty, clayey: black (quartz): fine	(95%); sitt/clay (<5%); od Next Page				

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

7					т	WIN PINES MINERALS SAUNDERS-LONCALA RESE	RVE	LOG OF OBSV. WELL OWB1D & OBSV. WELL
						SAINT GEORGE, GEORGIA		CONSTRUCTION
PRO.		MBER	000	180200	0804.00	PROFESSIONAL	T. Hall	
LOCA	ATION		_Sai	nt Geor	ge, Georgia	DATE(S) DRILLED	11/27/2018	
						Continued from Previous Page		
-	<u>U</u>			SAMP	νLE		WATER	OBSV. WELL DIAGRAM
EPTH feet)	APHI OG	0.C.0	VAL ()	ERY	⊂	LITHOLOGIC DESCRIPTION	LEVEL	
	GR	Ū.	NTER (fee	RECOV	JI4		DATE	
- <u> </u>			_			well sorted; subround; well consolidated; moist		
						(20%); slitt (<5%); med (20%); slitt (<5%); med (20%); slitt (<5%); well sorted; subround; unconsolidated; FBG (<1%)		Grout
L L	-							
2/19	-							
-40-	-		40-50	80				
- -								
	_	SM						
A RES	-							
0 	-							
L) S	-							
	_							
						SAND: gravish brown (guartz); fine (50%); med (40%); coarse	-	
1	-		50-60	80		(10%); well sorted; subround; unconsolidated; moist; FBG (<1%)		
R - YOM	-							
АЕ С Т Т	-	00						
		5P						
200	-							
1-LC	-							
						SAND: dark grayish brown (quartz); fine (50%); med (25%);	-	
SERV - 20	-					coarse (25%); well sorted; subround; unconsolidated; moist; FBG (<1%)		
9 60 - Z L -		SP	60-70	80				
-	-							
ALS F						CLAY, sandy: gravish brown; fine; FBG (<1%)	-	
MINE								
SE - 65-		CL						
- 00:-						SAND, clayey: light brownish grey (quartz); fine (95%); clay (5%); well sorted; subround; moist; FBG (<1%)		
-								
001 00 00 00 00 00 00 00 00 00 00 00 00			70-80	60				
018/00		SC						
CTS/2								
- ROJE								Bentonite Seal
M:\P						Continued Next Page		Sentenne oour

3

PAGE 2 OF This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

LOG OF OBSV. WELL OWB1D & OBSV. WELL CONSTRUCTION

3

SAINT GEORGE, GEORGIA

PROJECT NUMBER LOCATION

000180200804.00 Saint George, Georgia PROFESSIONAL DATE(S) DRILLED

T. Hall 11/27/2018

						Continued from Previous Page			
I	Ч	S		SAMP	LE		WATER	OBS	/. WELL DIAGRAM
DEPT (feet)	GRAPH	U.S.C.	INTERVAL (feet)	% RECOVERY	(mqq) DIA	LITHOLOGIC DESCRIPTION	LEVEL & DATE		
7/2/19 ReportENV LOG		SP				SAND: fine (60%) med (30%); coarse (10%); well sorted; subround; unconsolidated; moist; FBG (<1%)	-		└── Filter Pack Sand (20/40)
STORE).GPJ		· · ·	80-90	80		SAND: fine (50%); med (50%); well sorted: subround:			
= - WOOSO - 85 -		SP				SAND, silty, clayey: (quartz); fine (75%); med (20%); silty/clay	_		Screened Interval _ (0.01-inch PVC)
		SC-SM				(<5%); well sorted; subround; moist; FBG (<1%) SAND: (quartz); fine (75%); med (25%); well sorted; subround; unconsolidated; moist; FBG (<1%)	_		
UECTS'2018/000180200804.00 - TWIN PINES MINERALS PERMITTING SERVICES\804-LOGS RESTORED FROM 8-7/804-LOG:						BORING TERMINATED AT 90 FEET.			— Well Tip

7					т	WIN PINES MINERALS SAUND	DERS-LONCALA RESI	ERVE	L	OG OF OBSV. WELL OWB1S & OBSV. WELL	
						SAINT GEORGE	, GEORGIA			CONSTRUCTION	
PRO		MBER	_000	018020	0804.00		PROFESSIONAL	T. Hall			
			<u>Sai</u>	nt Geo	rge, Georgi	a		<u>11/2//2018</u> 2" P\/C			
				Golden	1		SCREEN SLOT/TYPE	0.010-in slotter	d PVC		
DRIL	LING ME	THOD	Sor	nic			FILTER PACK TYPE				
							TOP OF CASING	172.43 Ft. AMS	SL		
REM	ARKS						GROUND ELEVATION	172.34 Ft. AMS	SL		
VELL							DEPTH TO WATER				
۲- ۵							WATER ELEVATION				
	1	1	1								
	<u></u>	v		SAMF	PLE	_		WATER	OB	SV. WELL DIAGRAM	
EPTI eet)	APH	U U	()	ERY	- Ê	LITHOLOGIC DES	CRIPTION	LEVEL			
01 ⁹	GR	⊂ ∣	TER) (feet	%OO	DId (bbu			DATE			
			Z	8		No Recovery					
2-	-		0-10	80		Nonecovery				-	
E).GF		,	-			SAND, silty: dark grey (quartz); fine	(60%); med (35%); silt				
TOR		SM				(vood/roots)	solidated, moist, organics			-	
≝ - 5 -		•	-			SAND silty: dark gravish brown (gua	artz): fine (50%): med	\neg			
		•				(45%); silt (<5%); well sorted; subrou	und; unconsolidated; moist			-	
L US		•									
- ELLS		•								-	
≥ ±10-		SM				-				Grout [–]	
- N		•								-	
 100		•									
1		•									
≥ -15-		•	-			SAND, silty: black (quartz); fine (75%	%); med (20%); silt (<5%);	\neg			
- -		SM				well sorted; subround; well consolida	ited; moist			-	
L L		•	-								
-	-					SAND, silty: brown (quartz); fine (60' well sorted; subround; semi-consolid	%); med (35%); silt (<5%); lated; moist; FBG (<1%)			-	
^ഷ ഗ്ല ഗല്ല് — 20 -										×	
4-LO		SM								Bentonite Seal	
- -								[· ·	
- NICE		SM	-			SAND silty: light gravish brown (gua	artz): fine (50%): med			Filter Pack Sand (20/40)	
ற்—25−			-			(50%); well sorted; subround; uncon	solidated; moist; FBG				
						SAND, silty: dark brown (quartz); find	e (70%); med (20%);				
-						coarse (5%); silt (<5%); well sorted; moist; FBG (<1%)	subround; unconsolidated;				
- PE	-	SM									
-08− EK										(0.01-inch PVC)	
- NEG	-										
NN-		SC-SM				SAND. siltv. clavev: black (guartz): fi	ne (95%): silt/clav (<5%):	-			
⊢–35- g	<u> </u>		1			well sorted; subround; well consolida	ited; moist	-			
804.0						BORING TERMINATED	AT 35 FEET.				
80200											
00018											
018/0											
CTS/2											
OJEC											
A:\PR											
- 6		•									

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

2				,	T	WIN PINES MINERALS SAUN	DERS-LONCALA RESI	ERVE	LOG OF OBSV. WELL OWB2BS & OBSV. WELL CONSTRUCTION
PROJ LOCA		MBER	_000 	180200 nt Geor	0804.00 rge, Georgia		E, GEORGIA PROFESSIONAL DATE(S) DRILLED	T. Hall 12/7/2018	
DRILI DRILI DRILI	LING CO LER LING ME	MPANY THOD	Bet C. I Sor	ts Pendarv nic	vis		CASING DIA./TYPE SCREEN SLOT/TYPE FILTER PACK TYPE	2" PVC 0.010-in. slotted	PVC
	ARKS		_Sar	ne as (OWB-2S and	d OWB-2D for 0-12 interval	TOP OF CASING GROUND ELEVATION DEPTH TO WATER WATER ELEVATION	<u>172.47 Ft. AMSL</u> 172.59 Ft. AMSL	
DEPTH (feet)	GRAPHIC LOG	U.S.C.S.	TERVAL (feet)	SAMF		LITHOLOGIC DE	SCRIPTION	WATER LEVEL & DATE	OBSV. WELL DIAGRAM
		SM SM	10-20	80 80		No Recovery SAND, silty: dark yellowish brown ((35%); silt (<5%); well sorted; subr	iquartz); fine (60%); med ound; unconsolidated; moist uartz); fine (75%); med ound; semi-consolidated; ne (50%); med (40%); silt onsolidated; moist		Bentonite Seal Filter Pack Sand (20/40) Screened Interval (0.01-inch PVC) Well Tip
									PAGE 1 OF

M:PROJECTS/2018/000180200804.00 - TWIN PINES MINERALS PERMITTING SERVICES/804-LOGS RESTORED FROM 8-7/804-LOGS WITH WELLS (TUSCOM RESTORE).GPJ

This well log shall not be separa en TTL Seco dary Client Agreement. ated f e; no: third party ay rely this ogo ۱g

PR	ROJE											& OBSV. WELL
PR	ROJE						SAINT GEORGE, G	EORGIA			C	CONSTRUCTION
		ect nui Tion Ing coi Er Ing me Rks	MBER MPANY THOD	_000 _Sai _Bet _C.1 	0180200 nt Geor ts Pendary hic)804.00 'ge, Georgia vis	P C C S F F G M V V	ROFESSIONAL ATE(S) DRILLED ASING DIA./TYPE CREEN SLOT/TYPE ILTER PACK TYPE OP OF CASING ROUND ELEVATION EPTH TO WATER VATER ELEVATION	11/28/2018 - 11/29/2018 2" PVC 0.010-in. slotted PVC 172.76 Ft. AMSL 172.75 Ft. AMSL			
TH	et)	oHIC G	SAMPLE SAMPLE S.C.S. C.S. SVERVAL SVERVAL					WATER	(OBS∖	/. WELL DIAGRAM	
DEF	(fe	GRAF	U.S.U	INTERVA (feet)	% RECOVER	(mqq) DIG	LITHOLOGIC DESCR	IPTION	& DATE			
_	_			0-10	80		No Recovery					
5 -	-		SM				SAND, silty: dark yellowish brown (quart:	z); fine (60%); med	-			
			5.01				(35%); silt (<5%); well sorted; subround; SAND, silty; dark gravish brown (quartz)	unconsolidated; moist	1			
- 5	5 —						(20%); silt (<5%); well sorted; subround;	semi-consolidated;				
-	-		SM				moloc					
-												
-	-						SAND silty: dark brown (quartz): fing (5)	2%): mod (40%): silt	_			
-1	0-		·	10-20	80		(<5%); well sorted; subround; unconsolic	dated; moist				
			SM	10-20	00							
-	-							750();	-			
-	_						sand: silty; clayey: black (quartz); fine (silt/clay (<5%); well sorted; subround; se	r5%); med (20%); mi-consolidated				
-1	5—											
Ē.			50-510									
-	-											
-	, -	· / / 111					SAND: grayish brown (quartz); fine (50%	b); med (50%); well	-			
-2	.0			20-30	80		sorted; subround; unconsolidated; moist	; FBG (<1%)				
-	_											
-	-											
-	5_		SP									
- 2												
-	-											
Í	-											
-3	0-						SAND, silty: (quartz); fine (75%); med (2 sorted; subround; unconsolidated; moist	20%); silt (<5%); well ; FBG (<1%)				
-	-		SM	30-40	80		. , , ,	. /				
			SM				SAND, silty: very dark brown (quartz); fir	ne (60%); med (35%);				
							SIIT (<5%); well sorted; subround; well co SAND, silty: (quartz); fine (75%); med (2	nsolidated; moist				
-3	5—						sorted; subround; unconsolidated; moist	; FBG (<1%)				
	-		CV4									Grout
-			SIVI									Giout
-	-											
-4	0-			40-50	80							
							SAND: dark yellowish brown (quartz); fin coarse (10%); well sorted subround: moi	e (60%); med (30%); ist: FBG (<1%)]			
-	-							,				
ŀ	-						Continued	d Next Page				

PAGE 1 OF 2 This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

LOG OF OBSV. WELL OWB2D & OBSV. WELL CONSTRUCTION

SAINT GEORGE, GEORGIA

PROFESSIONAL

PROJECT NUMBER

000180200804.00 Saint George, Georgia <u>T. Hall</u> 11/28/2018 - 11/29/2018

LOCA	TION		Sa	int Geor	ge, Georgia	DATE(S) DRILLED	11/28/2018 -	11/29/2	2018	
						Continued from Previous Page				
ΗĘ	UHIC UHIC	S.S.		SAMF	PLE		WATER	0	DBS∖	. WELL DIAGRAM
- well DEP (fee	GRAP LOC	U.S.U	INTERVAI (feet)	% RECOVERV	(mqq) DIA	LITHOLOGIC DESCRIPTION	A DATE			
	-									
	-	SP	50-60	80						
	-									
		<u> </u>	60-70	80		SAND, silty: grayish brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; FBG (<1%)	_			
		Sivi				CLAY: dark grayish brown; sandy; fine	_			
		CL								
		SM				SAND, silty: grayish brown (quartz); fine (75%); med (20%);	_			
	-		70-80	0		No Recovery				
	-									Pontonito Soci
	-									- Bentonite Seal
	-								•	— Filter Pack Sand (20/40)
- 80 2- 	-	00	80-90	70		SAND: (quartz); fine (50%); med (50%); well sorted; subround; unconsolidated FBG (<1%)				-
		32								
- σ5- - · ·		SC-SM				SAND, silty, clayey: (quartz); fine (75%); med (20%); silt/clay (<5%); well sorted; subround; moist; FBG (<1%)				(0.01-inch PVC)
		SP				SAND: light grayish brown (quartz); find (75%); med (25%);				— Well Tip
3000						BORING TERMINATED AT 90 FEET.				··-·· • • • • •

PROJECT NUMBER DOD/B0200024 00 DRULING COMPARENCE DATES DRULED DRULING COMPARENCE C. Fredrands DRULING COMPARENCE C. Fredrands DRULING COMPARENCE SCREEN SLOTTINE DRULING SLOTTINE SCREEN SLOTTINE	2				,	יד	WIN PINES MINERALS SAUND SAINT GEORGE	DERS-LONCALA RES	ERVE		LOC	G OF OBSV. WELL OWB2S & OBSV. WELL ONSTRUCTION		
DRILLING COMPANY DRILLER Dett	PRO	JECT NU	IMBER	000 Sai)180200	0804.00		PROFESSIONAL	<u>T. Hall</u>					
DRILLIR C. Pendanies SCREEN SLOTTPPE OUIDEL added PVC DRILLING METHOD Solic TO P CASING T27.9 FLAMSL <	DRIL	LING CC	MPANY	Bet	ts		<u>a</u>	CASING DIA./TYPE	2" PVC					
DRULING METHOD Sonic FLETE PACK TYPE REMARKS TOP OF CASH T72 TER LANSL REMARKS DEPTH TOWARTER T72 TER LANSL REMARKS DEPTH TOWARTER T72 TER LANSL REMARKS DEPTH TOWARTER T72 TER LANSL REMARKS SAMP-LE LITHOLOGIC DESCRIPTION WATER ELEVATION REMARKS 0 ro TO Mo Resovery Resovery Mo Resovery Resovery SM SM SAMP data proph hours (part); fire (75%); med (45%); still COS SM SM SAMP data proph hours (part); fire (75%); med (45%); still COS SM SM SAMP data proph hours (part); fire (75%); med (45%); still COS SM SM SAMP data proph hours (part); fire (75%); med (45%); still COS SM SM SAMP data proph hours (part); fire (75%); med (45%); still COS SM SM SAMP data proph hours (part); fire (75%); med (45%); still COS SM SMAP data proph hours (part); fire (75%); med (45%); still Grout COS SM SMAP data proph hours (part); fire (75%); med (45%); still Grout COS SM SMAP data proph hours (part); fire (75%); med (65%); med (26%); med (26%); still data proph hours (part); fire (75%); med (26%); still data proph hours (part); fire (75%); med (26%); med (26%); still data proph hours (part); fire (75%); med (26%); still data proph hours	DRIL	LER		<u>C</u> .	Pendar	vis		SCREEN SLOT/TYPE	0.010-in. slott	ed PV	C			
PREMARKS TOP OF CASING TZZ MPL AMSL. GROUND ELEVIATION CROUND ELEVIATION TZZ MPL AMSL. UP of Casing of	DRIL	LING ME	THOD	Sor	nic			FILTER PACK TYPE						
Image: Second	DEM								172.79 Ft. AN					
WATER ELEVATION Edge Colspan="2">Good Colspan="2">Good Colspan="2">Colspan="2"Colsp		AKNO						DEPTH TO WATER	172.00 FL AIV	ISL				
End SAMPLE LITHOLOGIC DESCRIPTION WATER DATE OBSV. WELL DIAGRAM EVEL Edge 0.90 70 No Recovery DATE OBSV. WELL DIAGRAM -5	- WE							WATER ELEVATION						
Aug SAMPLE UTHOLOGIC DESCRIPTION WATER LEVEL DATE OBSV. WELL DIAGRAM	LOG													
1 1 0		<u>u</u>			SAMF	PLE			WATER		OBSV	. WELL DIAGRAM		
B B B B B DATE	Repo PTF	PH	0.0	AL	ïRΥ		LITHOLOGIC DES	CRIPTION	LEVEL					
Z B Z B Z D 5 4 70 No Recovery SAND, ally cark grayeth brown (guart2). The (79%), med (29%), all (25%), well sorted; subround; semi-consolidated; moist SAND, ally cark brown (guart2). The (79%), med (25%), all (25%), all (25%), all (25%), well sorted; subround; semi-consolidated; moist 10 4 SM SAND, ally clark brown (guart2). The (79%), med (25%), all (25%), all (25%), all (25%), well sorted; subround; semi-consolidated; moist - 10 4 SM SAND, ally clark brown (guart2). The (79%); med (25%), all (25%), all (25%), well sorted; subround; unconsolidated; moist - 15 SC-SM SAND, ally clark brown (guart2). The (75%); med (25%), well sorted; subround; unconsolidated; moist - 20 SAND, ally clark brown (guart2). The (75%); med (25%); well (25%); well sorted; subround; unconsolidated; moist - -25 SP SAND, ally brown (guart2). The (75%); med (25%); well (25%); well sorted; subround; unconsolidated; moist, FEG (1%) Screened Interval ((0.1-inch PVC)) 35 SM SAND, ally brown (guart2). The (75%); med (25%); well (25%); well sorted; subround; unconsolidated; moist, FEG (1%) Screened Interval ((0.1-inch PVC)) 35 SM SAND, ally brown (guart2). The (75%); well (25%); well sorted; subround; unconsolidated; moist	DE DE	CR CR	U.S	rERV (feet)	cove	DIA			DATE					
	212			Ξ	RE									
SMD SAND, alty: dark provint brown (quartz): fine (75%): med (q0%); set (<5%); well sorted; subround; semi-consolidated; moist	-	-		0-10	70		No Recovery							
SAND, sity, dark graysh brown (quartz); fine (75%); med (25%); med (25%	י <u>ס</u> <u>ה</u>	-												
5	HOL	_					SAND, silty: dark grayish brown (qua (20%): silt (<5%): well sorted: subrou	artz); fine (75%); med und: semi-consolidated:						
SMD SMD, silly, dark krown (quartz), fme (50%), med (45%), sill SMD SMD, silly, dark krown (quartz), fme (50%), med (20%); sill -13 SAND, silly, dark krown (quartz), fme (50%), med (20%); sill -13 SC-SM -20 SAND, silly, dark brown (quartz), fme (50%), med (50%); well sorted; subround; semi-consolidated; moist -20 SAND, silly, dark brown (quartz), fme (50%), med (50%); well sorted; subround; unconsolidated; moist, FBG (<1%)	л 2 – 5 –	-					moist	,				-		
10 SAAD, sity: dark brown (quart2); fine (50%); med (45%); sitt 110 SM 115 SAAD, sity: dark brown (quart2); fine (50%); med (20%); sitt 115 SAAD, sity: dark brown (quart2); fine (50%); med (20%); sitt 115 SAAD, sity: dark brown (quart2); fine (50%); med (20%); sitt 120 SAAD, sity: dark brown (quart2); fine (50%); med (20%); well sorted; subround; unconsolidated; molst 120 SAAD, sity: dark brown (quart2); fine (50%); med (20%); well sorted; subround; unconsolidated; molst; FBG (<1%)	0-	-	SM											
SAND, silty: dark brown (quartz); fine (55%); med (20%); silt SAND, silty: darkey: black (quartz); fine (75%); med (20%); silt SAND, silty: darkey: black (quartz); fine (75%); med (20%); silt SAND, silty: darkey: black (quartz); fine (55%); med (20%); silt SAND, silty: darkey: black (quartz); fine (55%); med (20%); silt SAND, silty: darkey: black (quartz); fine (55%); med (20%); silt SAND, silty: darkey: black (quartz); fine (55%); med (20%); silt (45%); well sorted; subround; unconsolidated; most; FBG (<1%)]	•											
-10 SMU, sing dark down (quartz), fine (xx)s, fi	ELLS -		•	-			CAND silts deals because (suggester) for	- (FO0()); ===================================	_					
SAND. Sand. <td< td=""><td>≷ ±—10-</td><td></td><td>•</td><td></td><td></td><td></td><td>(<5%); well sorted; subround; uncon</td><td>solidated; moist</td><td></td><td></td><td></td><td>— Grout –</td></td<>	≷ ±—10-		•				(<5%); well sorted; subround; uncon	solidated; moist				— Grout –		
-15 SAND, silly, clayey, black (quartz), fine (75%); med (20%); sill (c5%); well sorted; subround; semi-consolidated; moist -20 SAND: grayish brown (quartz); fine (50%); med (50%); well sorted; subround; unconsolidated; moist; FBG (<1%)	- ×		SM											
SAND, silty, clayey: black (quartz), fine (75%), med (20%); silt/day (<%); well sorted; subround; semi-consolidated; moist SAND: gray(sh brown (quartz); fine (50%); med (50%); well sorted; subround; unconsolidated; moist: FBG (<1%) SAND: silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist: FBG (<1%) SAND: silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist: FBG (<1%) SAND: silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist: FBG (<1%) SAND: silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist: FBG (<1%) SAND: silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist: FBG (<1%) Well Tip BORING TERMINATED AT 36 FEET.				-										
-15 BC-SM -20 SAND: gravish brown (quartz): fine (50%); well sorted; subround; unconsolidated; moist; FBG (<1%)	- 1	-					SAND, silty, clayey: black (quartz); fi silt/clay (<5%); well sorted; subround	ne (75%); med (20%); d; semi-consolidated; moist						
SAND: grayish brown (quartz); fine (50%); med (50%); well sorted; subround; unconsolidated; moist; FBG (<1%)	∞15-											-		
SAND: grayish brown (quartz); fine (50%); med (50%); well sorted; subround; unconsolidated; moist; FBG (<1%)	- FRO		SC-SM											
SAND: grayish brown (quartz): fine (50%); well sorted; subround; unconsolidated; moist; FBG (<1%)														
-20- sorted; subround; unconsolidated; moist; FBG (<1%)	- EST			-			SAND: gravish brown (guartz): fine (50%): med (50%): well	_					
SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FEG (<1%) SAND, silty: very dark brown (quartz); fine (60%); med (35%); silt (<5%); well sorted; subround; unconsolidated SAND, silty: trown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated SAND, silty: trown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated BORING TERMINATED AT 35 FEET.	ະ ທີ່ງ ບ	-	•				sorted; subround; unconsolidated; m	noist; FBG (<1%)				-		
SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%) SAND, silty: very dark brown (quartz); fine (60%); med (35%); silt (<5%); well sorted; subround; unconsolidated SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%) BORING TERMINATED AT 35 FEET.]										Bentonite Seal		
SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%) SAND, silty: very dark brown (quartz); fine (60%); med (35%); silt (<5%); well sorted; subround; well consolidated SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%) Well Tip BORING TERMINATED AT 35 FEET.		-	•									Filter Deals Cand		
SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%) SAND, silty: very dark brown (quartz); fine (60%); med (35%); silt (<5%); well sorted; subround; unconsolidated SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%) BORING TERMINATED AT 35 FEET.		-	SP									(20/40)		
30 SM 30 SM SM SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%)	೫ —25- უ		•									-		
30 SM 30 SM SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%)]	•											
30 SM 30 SM SM SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%)	<u>М</u> Ш	-								E				
30 SM well sorted; subround; unconsolidated; moist; FBG (<1%)	L N N			-			SAND, silty: brown (quartz); fine (75	%); med (20%); silt (<5%);	_					
SM SAND, silty: very dark brown (quartz); fine (60%); med (35%); silt (<5%); well sorted; subround; well consolidated	⊴30- Z=Z-		SM				well sorted; subround; unconsolidate	ed; moist; FBG (<1%)		E	<u> </u>	(0.01-inch PVC)		
SAND, silty, very dark brown (quartz), fine (05%), med (35%), SAND, silty: brown (quartz), fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%) BORING TERMINATED AT 35 FEET.	S -			-			CAND eithe yene derk brown (guert	1) fine (60%); mod (25%);	_					
SAND, silty: brown (quartz); fine (75%); med (20%); silt (<5%); well sorted; subround; unconsolidated; moist; FBG (<1%) BORING TERMINATED AT 35 FEET.			SM	-			silt (<5%); well sorted; subround; we	ll consolidated	-	E				
BORING TERMINATED AT 35 FEET.		-	SM				SAND, silty: brown (quartz); fine (75 well sorted; subround; unconsolidate	%); med (20%); silt (<5%); ed; moist; FBG (<1%)		Ę				
	°,35- 8							ΔT 35 FEET						
	0804						BOINING TERMINATEE	AT STELT.						
	18020													
	0001													
	V2018													
	C I S													
	KOJE													
	M:N													

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

2					т	WIN PINES MINERALS SAUND	ERS-LONCALA RESI GEORGIA	ERVE		LO	G OF OBSV. WELL OWB3BS & OBSV. WELL CONSTRUCTION
						SAINT GEORGE,	GEURGIA				
PRO	JECT NU	MBER	000	0180200	0804.00		PROFESSIONAL	A. Wiggins			
LOC	ATION		Sai	int Geor	rge, Georgia	а	DATE(S) DRILLED	1/30/2019			
DRIL	LING CO	MPANY	Bet	tts			CASING DIA./TYPE	2" PVC			
DRIL	LER		C.	Pendar	cis		SCREEN SLOT/TYPE	0.010-in.			
DRIL	LING ME	THOD	So	nic			FILTER PACK TYPE	Natural			
								172 84 Ft AM	ISI		
DEM	ADKG							172.57 Et AM			
	ANNO								IOL		
							DEPTH TO WATER	0.3 Ft. BMP			
5							WATER ELEVATION				
									-		
Z L	0			SAMF	PLE					OBS	/. WELL DIAGRAM
E H L	· Ξυ	S.		×							
έ Έρει (fee	LC&	S.C	et)	L R	۵Ê	LITHOLOGIC DES	CRIPTION	&			
	5		TEF (fee	0%	l d			DATE			
<u> </u>			Z	R R					Ţ	.	Well Cover
			0-5	100		SAND: black (10R 2/1); poorly graded	d; med; saturated				
2											
- - -	-	SP								/	
5_	-									1.	
Ш Ц	_										Matural Sand
Š.											
- 5 -		SP	5-10	100		SAND: grey (5YR 6/1); poorly graded	l; med; organics				
-		0.0				SAND: dark vellowish brown (10YR 3	3/6) and brown (10YR	_			
Т –		5P				4/3); poorly graded		_		_	
						SAND: very pale brown (10YR 7/3) a	nd greyish brown (10YR		E	=	
\sim	7	SP				5/2); poorly graded			ĿΕ		
- 9	-								ĿΕ	≼	
-10-						SAND: black (5VR 2 5/1): poorly grad	ded: med: saturated	_	LE		(0.01-inch PVC)
- 1804	_		10-15	100		GAND. Black (STITZ.S/T), poorly grad	ded, med, saturated		l E	=	
1 8-1											
	7	SP									
⊥ _	-										
<u>Ч</u>	-										
							ΔT 15 FEFT				
201						BOINING TERMINATED	AT ISTEET.				
504-1											
و z											
-											
2											
(AL:											
≥ 0											
Ŭ Z											
Z											
- 00											
804.											
2002											
180											
0.10											
201											
JEC											
D Y											
V. V											

7					т	WIN PINES MINERALS SAUNDERS	S-LONCALA RESE	ERVE	LO	G OF OBSV. WELL OWB3D & OBSV. WELL CONSTRUCTION	
PROJ LOCA DRILL DRILL DRILL	ECT NU ITION LING CO LER LING ME	MBER	000 Sai C. Soi	0180200 int Geor tts Pendary nic)804.00 ge, Georgia /is	SAINT GEORGE, GE PR DA CA CA SC FIL TO GR	ROFESSIONAL ATE(S) DRILLED ASING DIA./TYPE CREEN SLOT/TYPE LTER PACK TYPE OP OF CASING ROUND ELEVATION	T. Hall 12/5/2018 2" PVC 0.010-in. slotted 172.13 Ft. AMS 172.09 Ft. AMS	1 PVC		
						DE	EPTH TO WATER ATER ELEVATION				
H ()	u S T S	Ņ		SAMP	LE		WATER	OBSV	OBSV. WELL DIAGRAM		
DEPT (feet	GRAPI LOG	U.S.C	INTERVAL (feet)	*ECOVERY	OId (mqq)	LITHOLOGIC DESCRIPTION					
	-		0-10	80		No Recovery					
		SM SP SM SM	10-20	80		SAND, silty: light grayish brown (quartz); fi (45%); silt (<5%); well sorted; subround; u moist; FBG (<1%); organics (roots/grass) SAND, silty: dark brown (quartz); fine (60%) (<5%); well sorted; subround; unconsolidat SAND: light grayish brown (quartz); fine (5 well sorted; subround; unconsolidated; mo SAND, silty: dark yellowish brown (quartz) (35%); silt (<5%); well sorted; subround; u SAND, silty: (quartz); fine (75%); med (20' sorted; subround; unconsolidated; moist	ine (50%); med inconsolidated; %); med (35%); silt ited; moist 50%); med (50%); jsit; FBG (<1%) ; fine (60%); med inconsolidated; moist %); silt (<5%); well				
- 15		SM				SAND, silty: black (quartz); fine (75%); me well sorted; subround; well consolidated SAND, silty: very dark brown (quartz); fine silt (<5%); well sorted; subround; semi-cor SAND, silty: dark gravish brown (guartz); fi	ed (20%); silt (<5%); e (75%); med (20%); nsolidated; moist fine (60%); med				
20 25 		SM	20-30	60		(35%); silt (<5%); well sorted; subround; u	inconsolidated; moist				
		SP	30-40	80		SAND: grayish brown (quartz); fine (60%); sorted; subround; unconsolidated; FBG (<	; med (40%); well :1%)				
		SM				SAND, slity: dark brown (quartz); fine (50% coarse (5%); silt (<5%); well sorted; subro moist; FBG (<1%0 SAND: dark yellowish brown (quartz); fine	%); med (40%); pund; unconsolidated; (50%): med (40%);				

PAGE 1 OF 3 This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

LOG OF OBSV. WELL OWB3D & OBSV. WELL CONSTRUCTION

3

PROJECT NUMBER

M:\PROJECTS\2018\000180200804

SP

70-80

0

000180200804.00

SAINT GEORGE, GEORGIA PROFESSIONAL

T. Hall 12/5/2018

And the second state of th	Continued from Previous Page	WATER LEVEL & DATE	SV. WELL DIAGRAM
ATTENDE ATT	LITHOLOGIC DESCRIPTION se (10%); well sorted; subround; moist; FBG (<1%)	WATER LEVEL & DATE	SV. WELL DIAGRAM
-40	se (10%); well sorted; subround; moist; FBG (<1%)		
-45 			
SAN SAN SAN SAN Coar SP SP SP SP SP SP SP SP SP SAN Coar SAN SAN Coar SAN SAN Coar SAN SAN Coar	D, silty: very dark brown (quartz); fine (75%); med (20%); <5%); well sorted; subround; moist; well consolidated D: dark yellowish brown (quartz); fine (50%); med (40%); se (10%); well sorted; subround; moist; FBG (<1%) D, silty: very dark brown (quartz); fine (75%); med (20%); <5%); well sorted; subround; moist; well consolidated D: yellowish brown (quartz); fine (60%); med (35%); se (5%); well sorted; subround; unconsolidated; moist; (<1%)		
-65	Y, sandy: grayish brown; fine; well sorted; subround; t; FBG (<1%)		

Continued Next Page

No Recovery

LOG OF OBSV. WELL OWB3D & OBSV. WELL CONSTRUCTION

SAINT GEORGE, GEORGIA

PROJECT NUMBER

000180200804.00

PROFESSIONAL

T. Hall

LOCA	OCATION Saint George, Georgia				ge, Georgia	DATE(S) DRILLED	12/5/2018	12/5/2018		
						Continued from Previous Page				
:PTH eet)	GRAPHIC LOG	C.S.	AL	SAMP ≿	LE	LITHOLOGIC DESCRIPTION	WATER	OBS'	V. WELL DIAGRAM	
Ш¥)		Ŭ.S.	INTERV (feet)	RECOVE	DIA DIA		DATE			
-										
-										
-80			80-90	80		SAND: light grayish brown (quartz); fine (75%); med (25%); well sorted: subround: unconsolidated: moist: FBG (<1%)				
_										
-										
85		SP								
_										
- 90—							_			
						BORING TERMINATED AT 90 FEET.				

2					LOG OF OBSV. WELL OWB3S & OBSV. WELL CONSTRUCTION						
PROJECT NUMBER LOCATION DRILLING COMPANY DRILLER DRILLING METHOD REMARKS			000 Sain C. F Sor	180200 nt Geor s Pendarv ic	9804.00 ge, Georgia ris	a	T. Hall 12/5/2018 2" PVC 0.010-in. slotted PVC 171.76 Ft. AMSL 171.69 Ft. AMSL				
DEPTH DEPTH (feet) (feet) LOG U.S.C.S.		INTERVAL (feet)	SAMP	LE (Ind (Ind	LITHOLOGIC DESC	WATER LEVEL & DATE		OBSV. WELL DIAGRAM			
		SM SM SM SM SM SM SP SP	0-10	70 80 200		No Recovery SAND, silty: dark brown (quartz); fine (<5%); well sorted; subround; unconsolidated SAND; light grayish brown (quartz); fir well sorted; subround; unconsolidated SAND, silty: brown (quartz); fine (75%) well sorted; subround; unconsolidated SAND, silty: very dark brown (quartz); silt (<5%); well sorted; subround; well consolidated SAND, silty: very dark brown (quartz); silt (<5%); well sorted; subround; sem SAND, silty: dark grayish brown (quartz); silt (<5%); silt (<5%); well sorted; subround; sem SAND, silty: dark grayish brown (quartz); silt (<5%); silt (<5%); well sorted; subround; unconsolidated SAND, silty: dark grayish brown (quartz); silt (<5%); silt (<5%); well sorted; subround; sem SAND, silty: dark grayish brown (quartz); SAND, silty: dark grayish brown (quartz); SAND, silty: dark brown (quartz); silty; fil well sorted; subround; unconsolidated SAND, silty: dark brown (quartz); silty; fil BORING TERMINATED / BORING TERMINATED /	(60%); med (35%); silt Didated; moist re (50%); med (50%); ; moist; FBG (<1%) art2; fine (60%); med Didated; moist); med (20%); silt (<5%); ; moist ; moist fine (75%); med (20%); i-consolidated; moist tz); fine (60%); med (d; unconsolidated; moist tz); fine (60%); med (40%); ; moist; FBG (<1%) (50%); med (40%); silt ound; unconsolidated; silty; fine (50%); med round; unconsolidated; AT 35 FEET.				— Grout — Bentonite Seal — Filter Pack Sand (20/40) — Screened Interval (0.01-inch PVC) — Well Tip

PAGE 1 OF 1 This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

	7			//		LOG OF OBSV. WELL OWB4BS & OBSV. WELL CONSTRUCTION						
							SAINT GEORGE,		CONSTRUCTION			
P	PROJECT NUMBER				0180200	0804.00		A. Wiggins				
L	LOCATION				nt Geor	ge, Georgia	a	DATE(S) DRILLED	1/30/2019			
D	DRILLING COMPANY			' Bet	tts	• •		CASING DIA./TYPE	2" PVC			
D	DRILLER				Pendarv	vis		SCREEN SLOT/TYPE	0.010-in.			
D	DRILLING METHOD			Sor	nic			FILTER PACK TYPE	Natural			
R	FMΔ	RKS						GROUND ELEVATION	172 40 Ft AMSI			
∃									1 Ft BMP			
- WE								WATER ELEVATION				
90												
N N							1					
ц Ц	-	l L L L	Ś		SAIVIP		-		WATER	OBSV. WELL DIAGRAM		
PT Rep	eet	APF OG	U.S.	(AL	≣RY	- F	LITHOLOGIC DES	CRIPTION				
¹⁰	۲£	GR/	Ū.	'ER\ (feet	%SOU			DATE				
7121				N N	REC	-				Well Cover		
				0-5	100		SAND: black (10R 2/1); poorly grade	d; med; saturated				
GPJ	-								·			
RE).	-		SP									
STC	-								· · ·	Natural Sand		
A RE	-											
0 	- 5						SAND: vollowich brown (10VP 2/6)	and brown $(10VP 1/2)$	_			
SUT -				5-10	100		poorly graded; med; moist	ind brown (101R 4/3),				
LLS	_											
N H			SP									
ΤΝ	-											
SB	-									Screened Interval		
-14-LO	-10		10-15	0		No Recovery		- [.:	(0.01-inch PVC) _			
-7/80			10 10			-						
- M8									Well Tip			
L FRO	-	-										
REC	_	-										
STC	15_											
SR	15											
LOG						BOINING TERMINATED	AT ISTEET.					
804-												
CES												
RV												
D S												
2 E												
RMI'												
БП												
RAL:												
AINE												
ES N												
NIL												
NM												
L - 00												
804.(
0200												
0180												
18/00												
S\201												
ECT(
ROJ												
M:\P							<u> </u>					
										PAGE 1 OF		

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

		TWIN PINES MINERALS SAUNDERS-LONCALA RES SAINT GEORGE, GEORGIA								LOG OF OBSV. WELL OWB5BS & OBSV. WELL CONSTRUCTION	
							SAINT GEORGE	, georgia			
PF LC	ROJI	ECT NUI TION	MBER	_000 	0180200 int Geor)804.00 ge, Georgia	a	PROFESSIONAL DATE(S) DRILLED	A. Wiggins 1/30/2019		
DF	RILL	ING CO	MPANY	Bet	tts			CASING DIA./TYPE	2" PVC		
DF	DRILLER			C.	Pendar	vis		SCREEN SLOT/TYPE	0.010-in.		
DF	DRILLING METHOD			So	nic			FILTER PACK TYPE	Natural		
								TOP OF CASING	172.80 Ft. AMSL		
RE	EMA	RKS						GROUND ELEVATION	172.56 Ft. AMSL		
H								DEPTH TO WATER	0.8 Ft. BMP		
~								WATER ELEVATION			
LOG											
H	DEPTH (feet) GRAPHIC LOG U.S.C.S.			SAMF	PLE	LITHOLOGIC DESCRIPTION		WATER	OBSV. WELL DIAGRAM		
			ITERVAL (feet)	scovery	(mqq)			LEVEL & DATE			
÷		• • • • •		Z	8		SAND: black (10VP 2/1): poorly grad	lad: mad: saturated		Well Cover	
	_			0-5	100		SAND. DIACK (1011(2/1), poorly grad	deu, meu, saturateu			
d D O	_										
OKE			SP								
EST	-									Natural Sand	
¥ -	-										
- sco	5 —		SD	5 10	100		SAND: grey (5YR 6/1); poorly graded	d; med; organics	-	-	
Ê-	_		35	5-10							
	SP						4/3); poorly graded				
₹							SAND: very pale brown (10YR 7/3);				
μ	SP						5/2), poony graded				
- DGS									Screened Interval		
	- 10		10-15	0		No Recovery		- 1			
- 7/8(
₩ 20	-									Well Tip	
L L	-										
STORE	-										
Щ—1 S90	5—						BORING TERMINATED) AT 15 FEET.		-	
S\804-L											
RVICE											
TING SE											
PERMIT											
ERALS											
VES MIN											
LWIN PII											
04.00											
1802005											
018/000											
JECTS											
M:/PRO.											
										PACE 1 OF	

This well log shall not be separated from the corresponding Instrument of Service; no third party may rely upon this well logor the corresponding Instrument of Service absent a written TTL Secondary Client Agreement.

APPENDIX B HYDRO GEO CHEM, INC REPORT

September 11, 2019 Via Email: <u>mtanner@ttlusa.com</u>

Mark J. Tanner, P.G. TTL, Inc. Senior Principal Geologist 3516 Greensboro Avenue Tuscaloosa, AL 35401

Re: Analysis of Pumping Tests at Twin Pines Site, Charlton County, Georgia

Dear Mr. Tanner:

This report describes the analysis of pumping rate and drawdown data collected during February 2019 from two pumping tests at the Twin Pines Site in Charlton County, Georgia. Testing was performed by TTL with oversight by Hydro Geo Chem, Inc. (HGC).

Introduction

Pumping tests were conducted at two production wells (PW-A and PW-B) installed by TTL along the approximately north-south oriented linear feature known as the 'Trail Ridge'. The Trail Ridge essentially bounds the east side of the Okefenokee Swamp.

The testing focused on saturated materials (the aquifer) extending from the water table (a few feet below land surface [ft bls] over most of the Site) to approximately 120 ft bls where a relatively impermeable unit is present. Both production wells were screened between approximately 55 and 115 ft bls and therefore partially penetrated the aquifer. Although the aquifer is generally considered unconfined, a 'black sand' present at depths between approximately 10 and 20 ft bls (5 and 15 feet below the water table) may act as a partial hydraulic barrier. Under these conditions the aquifer below the 'black sand' may be considered leaky confined.

Observation well nests were installed by TTL at distances of approximately 50, 100 and 300 feet from each production well. Observation wells in the two closest nests were completed at depths of approximately 12, 35 and 90 ft bls (designated BS, S, and D, respectively); the farthest (300 foot) nests contained only 35 and 90 ft bls completions (S and D, respectively).

The shallower wells (BS and S) were completed above the screened interval of the associated pumped well whereas the deep well (D) was completed within the screened interval of the associated pumped well. The shallowest wells (BS-series) were screened near or across the water table and above the 'black sand'. Test A nests were designated OWA-1 BS/S/D (50 ft distant); OWA-2 BS/S/D (100 feet distant); and OWA-3 S/D (300 feet distant). Test B nests were

Mark J. Tanner September 11, 2019 Page 2

designated OWB-1 BS/S/D (50 ft distant); OWB-2 BS/S/D (100 feet distant); and OWB-3 S/D (300 feet distant).

Additional shallow (BS-series) wells were installed at distances of 50 and 100 feet at both test locations. For test A these were designated OWA-3BS and OWA-4BS (50 feet distant) and OWA-5BS (100 feet distant); For test B these were designated OWB-3BS and OWB-4BS (50 feet distant) and OWB-5BS (100 feet distant). Maps showing the locations of observation wells in relation to the pumping well for each test are provided in Appendix A.

Tests consisted of pumping each production well (PW-A and PW-B) at three rates (pumping steps) over a 24-hour period while monitoring water levels in the pumped wells and in the observation wells located (as described above) at distances of up to 300 feet. Water levels were continuously monitored using In-Situ LevelTroll 700 pressure transducer/data loggers supplied by TTL. Pumping rates were periodically monitored using in-line flow meters installed on the pump discharge lines. Pumped water was discharged at locations remote from the pumped wells (approximately 1000 feet away) to ensure that the discharge would not impact the tests. Rainfall occurred during a portion of the testing but did not appear to have a measurable impact on the water level data.

Upon cessation of pumping, data loggers remained within the monitored installations until sufficient water level recovery data were collected.

Pumping Test Data Reduction

Water level data collected from each monitored well during each pumping test were converted to water level displacements (drawdowns) by subtracting the measured depths to water from the depths to water measured immediately prior to each test.

Automatically-logged data collected by TTL at 5-second intervals (using the In-Situ pressure transducers/data loggers) were reduced in number to be compatible with software input requirements and to allow for reasonably rapid automatic parameter estimation. The first 10 measurements from each pumping step (or recovery period) were retained. Subsequently, the time interval between retained measurements was systematically increased. Figure 1 compares all automatically-logged data from observation well OWA-1D to the reduced data set for that well. As shown, the reduced data set adequately represents the complete data set, in particular, changes in the data at times that pumping rates changed.

Automatically-logged drawdown data were plotted and analyzed for quality and to determine if corrections were needed based on any background trends observed or for correlation with changes in atmospheric pressure. In some cases when behavior was not as expected automatically-logged data were compared with hand-collected data. For example, drawdowns at OWB-1S and OWB-2S appeared nearly identical even though OWB-2S is located twice as far from pumping well PW-B. However, as shown in Figures 2 and 3, automatically-logged and hand-collected data for OWB-1S and OWB-2S are nearly identical. Where comparisons were made, the automatically-logged data were judged sufficiently similar to the hand-collected data that there was no need to analyze the hand-collected data independently. However, should

Mark J. Tanner September 11, 2019 Page 3

significant differences have been present, the hand-collected data would have served as an independent back-up for the automatically-logged data.

In general, drawdowns obtained from all but the shallowest (water table) wells required no correction for trends or changes in barometric pressure, primarily because drawdowns were orders of magnitude larger than any 'noise' attributable to other factors. Data from PW-A test water table wells (OWA-1BS through OWA-5BS) showed either no responses to pumping or responses that were too small to be detected due to noise. However, data from PW-B test water table wells OWB-2BS, OWA-3BS, OWB-4BS, and OWB-5BS, although noisy, showed unambiguous responses to pumping, and were corrected for background trends prior to quantitative analysis as shown in Figure 4.

Pumping Test Analysis and Results

Qualitative analysis of water level drawdown data indicated that quantitatively analyzable data were obtained from PW-A, PW-B, and all observation wells equipped with In-Situ data loggers/pressure transducers except for water table wells OWA-1BS through OWA-5BS, and OWB-1BS, which, as discussed above, showed either no responses to pumping, or responses that were too small to be detected due to noise. Figures 5 and 6 plot drawdowns from test A and test B observation well nests, respectively, but do not include drawdowns from the water table wells.

Important results of the qualitative analysis are:

- 1. The ratio of shallow observation well drawdowns to deep observation well drawdowns increases substantially with distance from the pumping wells. This ratio is generally expected to approach 1.0 at large distance from the pumping well, but unexpectedly exceeds 1.0 at the more distant observation well nests at both test locations. This behavior contradicts expectation because the deep observation wells are completed within the screened depth of the pumping well, and the shallow observation wells are completed above the screened depth of the pumping well. At 50 and 100 feet from PW-A, the deep observation well drawdowns exceed the shallow observation well drawdowns as expected; however, at 300 feet from PW-A (OWA-3 nest), the shallow drawdowns consistently exceed the deep drawdowns. At 50 feet from PW-B, the deep observation well drawdowns exceed the shallow observation well drawdowns as expected; however at 100 feet from PW-B (OWB-2 nest), the early shallow drawdowns exceed the deep drawdowns; and at 300 feet (OWB-3 nest), the shallow drawdowns consistently exceed the deep drawdowns. The data suggest non-horizontal structure within the aquifer which may violate the assumption of horizontal flow used in the analytical solutions. In all cases, however, the shapes of the shallow drawdowns are similar, and flatten substantially during each step; likewise, the shapes of the deep drawdowns are similar, but flatten less than the shallow drawdowns. These characteristic shapes demonstrate that shallow and deep drawdown data did not get accidentally 'mixed up' at any of the nests.
- 2. Flattening of pumping and observation well drawdowns occur late in each pumping step. Flattening is consistent with another source of water: either local wetlands; vertical leakage from the shallowest groundwater through the underlying 'black sand'; or both. A

substantial amount of water appears to be available for vertical leakage. Smaller flattening of the deep observation well drawdowns indicating that the deeper portion of the aquifer is less impacted by the additional source of water suggests a shallow source.

Quantitative analysis of pumping rate and water level drawdowns included use of AQTESOLVE (HydroSolve, 2000) and WHIPTM (HGC, 1988), a well hydraulics interpretation program developed and marketed by HGC. PW-A and PW-B pumping rates used as input in analyzing the test data are displayed in Figure 7.

Analytical solutions used in AQTESOLVE included the Neuman unconfined and Neuman-Witherspoon leaky confined solutions. Because small drawdowns were detectable at the water table during test B, and could not definitively be ruled out during test A, the aquifer can be considered unconfined. However, because the 'black sand' at depths between approximately 5 and 15 feet below the water table appears to be a partial hydraulic barrier, the aquifer may also be considered leaky confined. Assuming leaky confined conditions, the black sand is considered an 'aquitard', and the portions of the saturated zone above and beneath this layer are considered the 'unpumped' and 'pumped' aquifers, respectively. Under all conditions, the base of the aquifer was assumed to be 120 feet below land surface (bls), or approximately 115 feet beneath the water table.

The Neuman unconfined solution accounts for partial penetration of both pumping and observation wells within the aquifer. Although the Neuman-Witherspoon leaky aquifer solution cannot account for partial penetration of wells, it can compute drawdowns in both the pumped and unpumped aquifers.

The analytical solution used in WHIP was the vertically anisotropic leaky aquifer solution. This solution allows for automatic parameter estimation, accounts for wellbore storage at pumping wells, for partial penetration of both pumping and observation wells within the pumped aquifer, and for vertical leakage from the unpumped aquifer through an aquitard assuming constant head in the unpumped aquifer.

In performing the analyses, when assuming unconfined conditions, the pumped aquifer was taken to be 115 feet thick (water table to 120 feet bls); and when assuming leaky confined conditions the pumped aquifer was taken to be 100 feet thick (base of aquitard to 120 feet bls). In performing leaky confined analyses the shallow (screened approximately 25-35 feet bls [20 to 30 feet below the water table]) and deep (screened approximately 80-90 feet bls [75 to 85 feet beneath the water table]) observation wells were taken to be completed within the pumped aquifer; and the shallowest water table wells were taken to be completed within the shallow unpumped aquifer above the aquitard.

Estimates of transmissivity (T) and storage coefficient (S) were obtained by analyzing data from pumping and observation wells separately, and by considering pairs of observation wells. Because by design both pumping and observation wells partially penetrated the aquifer, analyses were sensitive to the vertical hydraulic conductivity of the aquifer, and estimates of vertical hydraulic conductivity were also obtained.

Good fits between measured and simulated water level drawdowns at pumping and observation wells could not be obtained using only one set of hydraulic parameters, consistent with heterogeneity. Likewise, at individual observation well nests, one set of hydraulic parameters could not provide good fits to both deep and shallow well drawdowns; a good fit to either a deep or shallow well drawdown generally means a poor fit to the drawdown at the other well.

Tables 1 and 2 provide the results of the analyses. Appendices B through E show the quality of fit between measured and simulated drawdowns, and reproduce the parameters used in each analysis. Appendices B and C provide fits for test A data using AQTESOLVE and WHIP, respectively; likewise Appendices D and E provide fits for test B data using AQTESOLVE and WHIP, respectively. T (and horizontal hydraulic conductivity [Kh]) estimates for test A are generally larger than for test B, consistent with the larger pumping rates achievable for test A. Estimates of aquifer vertical hydraulic conductivity (Kv) and aquitard vertical hydraulic conductivity (Kv) and aquitard vertical hydraulic conductivity (Kv aqt) range over several orders of magnitude, are nearly always lower than the corresponding Kh estimates, and are generally lower for test B than for test A. What appear to be unreasonably large transmissivity and storage coefficient (T2 and S2) estimates for the unpumped aquifer in some cases are consistent with flattening of drawdowns and a substantial source of water available for vertical leakage.

In general, when analyzing wells separately, good agreement between measured and simulated data at both pumping and observation wells can be obtained (Appendices B through E). The generally good agreement between measured and simulated data at both pumping wells PW-A and PW-B suggest that the hydraulic parameters obtained are representative of average aquifer conditions near the pumping wells. Good fits were obtained without specifying a well efficiency correction, indicating that the wells were properly designed, reasonably efficient and well developed.

For test A (Table 1), estimates of T and S from pumping well PW-A data range from 1490 ft^2/day to 1967 ft^2/day and from 3.5 x 10^{-4} to 1.1 x 10^{-2} . Although estimates of T from observation well data range from approximately 1 ft^2/day to 2288 ft^2/day , the majority of estimates are lower than for the pumping well and average 875 ft^2/day . Estimates of S from observation well data range from approximately 1.6 x 10^{-5} to 1.7 x 10^{-2} ; estimates of Kh range from <1 to 20 ft/day; estimates of Kv range from 0.06 ft/day to 1.8 ft/day; and estimates of Kv aqt range from 2.4 x 10^{-6} ft/day to 0.75 ft/day. The lowest T of 1 ft^2/day was derived from one interpretation of data from OWA-3D, where, due to non-uniqueness, T estimates from alternate interpretations ranged from 1 ft²/day to 1700 ft²/day.

For test B (Table 2), estimates of T and S from pumping well PW-B data range from 530 ft²/day to 697 ft²/day and from 2.4 x 10^{-3} to 0.11. T estimates from the shallowest water table well data that range from 5455 ft²/day to 9500 ft²/day based on Neuman unconfined analysis are considered unreasonably large and unreliable. Excluding these estimates, observation well data yield T estimates ranging from approximately 53 ft²/day to 1100 ft²/day; however, the majority of the estimates are lower than for the pumping well and average 432 ft²/day. Estimates of S from observation well data range from approximately 1 x 10^{-10} to 5 x 10^{-3} ; estimates of Kh range from <1 to 11 ft/day; estimates of Kv range from 8.6 x 10^{-5} ft/day to 1.5 ft/day; and estimates of Kv aqt range from 1.1 x 10^{-6} ft/day to 0.3 ft/day.
Mark J. Tanner September 11, 2019 Page 6

As discussed above, solutions to individual wells may be highly non-unique; for example at OWB-1D (Table 2), T estimates from alternate interpretations using the Neuman unconfined solution vary from 478 to 901 ft²/day and Kv estimates from 9.3 x 10^{-3} to 1.42 ft/day even though acceptable fits are obtained in each case (Appendix D). An extreme example from test A is OWA-3D (Table 1) where acceptable fits (Appendix B) using Neuman-Witherspoon are obtained with a T and Kv aqt of 1700 ft²/day and 6.8 x 10^{-6} ft/day; and with a T and Kv aqt of 1.3 ft²/day and 0.4 ft/day. Analyses incorporating multiple observation wells, which are presumably more constrained, need to be considered in deciding which of the alternate interpretations of individual well drawdowns are the most reasonable.

In addition, the Kh estimates obtained from the pumping well drawdowns are expected to be representative of overall 'average' behavior of the pumped aquifer. Furthermore, generally higher T estimates from pumping well data appear consistent with heterogeneity that results in a non-horizontal conductivity tensor. Such heterogeneity could be caused by non-horizontal structure within the sands. Pumping well drawdowns may be less impacted by any non-horizontal structure because water could be supplied mainly along (rather than across) such structure; and observation well drawdowns, which would result from flow across such structure, could be controlled by some average of the conductivities along and perpendicular to the structure.

Conclusions

The results of the both qualitative and quantitative analyses are consistent with the following observations/conclusions:

- 1. Results of quantitative analysis (Tables 1 and 2) indicate that both pumping wells are efficient and properly designed and developed (negligible skin effects or non-linear losses).
- 2. T estimates are generally higher at the test A site compared to the test B site, consistent with the larger achievable pumping rates at the test A site. Except for a few outliers, Kh estimates computed from T estimates generally range from several ft/day to nearly 20 ft/day for test A, and from a few ft/day to as much as 11 ft/day for test B, with some outliers exceeding 50 ft/day. These test B Kh outliers were computed based on data from the shallowest (water table) observation wells using the Neuman unconfined solution and are not considered reliable.
- 3. Heterogeneity possibly resulting from non-horizontal structure within the sands may be present within the pumped aquifer. Such heterogeneity may result in more direct connection between the pumping and shallow observation wells at larger distances from the pumping wells.
- 4. Such heterogeneity would be consistent with the substantial increase in the ratio of shallow observation well drawdowns to deep observation well drawdowns with distance from the pumping wells, and the unexpected increase in this ratio above 1.0 at the more distant observation well nests.

Mark J. Tanner September 11, 2019 Page 7

- 5. Due to such heterogeneity, the assumption that flow would be strictly horizontal were it not for partial penetration of pumping wells, is likely violated. Kh and Kv estimates from observation well data will represent some average of Kh along the structure and Kv perpendicular to the structure. However, analyses of observation well data likely yield the 'effective' horizontal conductivity that will control eastward migration of groundwater from the area of the Okefenokee swamp through Trial Ridge.
- 6. Flattening of pumping well and shallow observation well drawdowns is consistent with another (presumably shallow) source of water, either local wetlands or vertical leakage from the shallowest groundwater through the shallow 'black sand', or both. Substantially less flattening of the deep observation well drawdowns indicates that the deeper portion of the aquifer is less impacted by the additional source of water.

Although heterogeneity potentially resulting from non-horizontal structure may be present, eastward flow from the area of the Okefenokee swamp through Trail Ridge is expected to be sub-horizontal, and to be governed by the 'effective' horizontal conductivities yielded through analysis of pumping test observation well data.

References

HGC. 1988. WHIP. Well Hydraulics Interpretation Program. Version 3.22. User's Manual. July 1988.

HydroSOLVE, Inc. 2000. AQTESOLV for Windows. User's Guide.

Please feel free to call me at (520) 293-1500 Ext. 122 or by email at <u>stewarts@hgcinc.com</u> if you have any questions.

Sincerely, HYDRO GEO CHEM, INC.

Stewart J. Smith, P.G. Associate Hydrogeologist

Attachments: Tables 1 and 2 Figures 1 through 7 Appendix A: Observation Well Locations Appendix B: AQTESOLVE PWA Test Plots Appendix C: WHIP PWA Test Plots Appendix D: AQTESOLVE PWB Test Plots Appendix E: WHIP PWB Test Plots TABLES

TABLE 1
PW-A Aquifer Test Hydraulic Parameter Estimates

Observation Well (s)	Bottom of Screen Depth (ft)	Solution	T (ft²/day)	S	Specific Yield	Kv (ft/day)	Kv aquitard (ft/day)	b (ft)	Kh (ft/day)	recom- mended	Comment
PW-A	115	Neuman Unconfined	1967	3.5E-04	2.9E-03	0.2	NA	115	17.1	х	
PW-A	115	Vert. Anisotropic Leaky	1490	1.1E-02	NA	1.0	0.40	115	13.0	Х	analysis using WHIP
OWA-1D	90	Neuman Unconfined	1475	8.5E-03	0.50	0.3	NA	115	12.8	х	
OWA-2D	90	Neuman Unconfined	1319	4.8E-03	2.9E-02	0.3	NA	115	11.5	х	
OWA-3D	90	Neuman Unconfined	2288	1.7E-02	0.03	1.08	NA	115	19.9	х	
OWA-1S	35	Neuman Unconfined	1351	4.3E-03	0.50	1.8	NA	115	11.7	х	
OWA-2S	35	Neuman Unconfined	1820	3.4E-03	0.50	1.6	NA	115	15.8		
OWA-3S	35	Neuman Unconfined	680	5.5E-05	2.2E-02	0.06	NA	115	5.9	х	
OWA-1D	90	¹ Neuman-Witherspoon	914	2.2E-03	NA	NA	3.7E-06	100	9.1		T2=1.44e8 ft ² /d; S2=1e-10
OWA-1D	90	¹ Neuman-Witherspoon	356	7.3E-05	NA	NA	4.4E-01	100	3.6	х	T2=4170 ft2/d; S2=0.0149; improved fit
OWA-2D	90	¹ Neuman-Witherspoon	1017	1.2E-03	NA	NA	4.1E-06	100	10.2		T2=1.44e8 ft ² /d; S2=1e-10
OWA-2D	90	¹ Neuman-Witherspoon	422	8.8E-04	NA	NA	0.152	100	4.2	х	T2=4850 ft2/d; S2=1.01e-10; improved fit
OWA-3D	90	¹ Neuman-Witherspoon	1700	7.0E-03	NA	NA	6.8E-06	100	17.0		T2=1.44e8 ft ² /d; S2=2.7e-5
OWA-3D	90	¹ Neuman-Witherspoon	331	3.4E-03	NA	NA	0.383	100	3.3	х	T2=4272 ft2/d; S2=9.91e-3; improved fit
OWA-3D	90	¹ Neuman-Witherspoon	1.3	1.0E-04	NA	NA	0.396	100	0.013		T2=4520 ft ² /d; S2=0.005
OWA-1D	90	Vert. Anisotropic Leaky	360	1.6E-05	NA	0.70	0.68	100	3.6	х	analysis using WHIP; Ss aqt = 5.39e-3
OWA-1D	90	Vert. Anisotropic Leaky	543	1.4E-03	NA	1.01	0.32	100	5.4	х	fit recovery w/WHIP; Ss aqt = 5.04e-3
OWA-2D	90	Vert. Anisotropic Leaky	337	1.6E-05	NA	0.29	0.24	100	3.4	х	analysis using WHIP; Ss aqt = 2.01e-3
OWA-2D	90	Vert. Anisotropic Leaky	665	9.8E-04	NA	0.19	0.13	100	6.7	х	fit recovery w/WHIP; Ss aqt = 1.85e-3
OWA-3D	90	Vert. Anisotropic Leaky	323	1.6E-05	NA	0.17	0.17	100	3.2	х	analysis using WHIP; Ss aqt = 2.10e-3
OWA-1S	35	Vert. Anisotropic Leaky	592	1.6E-05	NA	0.8	0.73	100	5.9	х	analysis using WHIP; Ss aqt = 1.77e-3
OWA-2S	35	Vert. Anisotropic Leaky	354	1.6E-05	NA	0.4	0.67	100	3.5	х	analysis using WHIP; Ss aqt = 9.54e-4
OWA-3S	35	Vert. Anisotropic Leaky	326	1.6E-05	NA	0.11	0.05	100	3.3	х	analysis using WHIP; Ss aqt = 2.76e-5
OWA-1D/3D	90/90	Neuman Unconfined	946	1.2E-02	0.06	1.27	NA	115	8.2	х	
OWA-1D/3D	90/90	¹ Neuman-Witherspoon	596	9.8E-04	NA	NA	2.4E-06	100	6.0	х	T2=1.44e8 ft ² /d; S2=1e-10
OWA-1S/D	35/90	Neuman Unconfined	1136	1.1E-02	0.5	0.8	NA	115	9.9	х	
OWA-1S/D	35/90	Neuman Unconfined	1154	1.0E-02	0.25	0.8	NA	115	10.0		alt interp
OWA-1S/D	35/90	Neuman Unconfined	926	1.1E-02	0.50	1.6	NA	115	8.1		early time interp
OWA-2S/D	35/90	Neuman Unconfined	866	5.3E-03	3.3E-02	0.8	NA	115	7.5		
OWA-2S/D	35/90	Neuman Unconfined	1141	5.8E-03	0.50	1.0	NA	115	9.9		early time interp
OWA-2S/D	35/90	Neuman Unconfined	1319	4.8E-03	0.029	0.29	NA	115	11.5	х	alt interp
OWA-2S/D	35/90	Neuman Unconfined	1800	2.0E-03	0.50	1.6	NA	115	15.7		alt interp
OWA-1S/D	35/90	Vert. Anisotropic Leaky	355	1.6E-05	NA	0.5	0.75	100	3.6	х	analysis using WHIP; Ss aqt = 5.12e-3
OWA-2S/D	35/90	Vert. Anisotropic Leaky	329	1.6E-05	NA	0.1	0.30	100	3.3	х	analysis using WHIP; Ss aqt = 2.05e-3
OWA-1D/2D/3D	90/90/90	Neuman Unconfined	1307	7.7E-03	0.50	0.43	NA	115	11.4	х	
OWA-1D/2D/3D	90/90/90	¹ Neuman-Witherspoon	718	1.3E-03	NA	NA	2.9E-06	100	7.2	х	T2=1.44e8 ft ² /d; S2=1e-10

Notes:

Notes: ¹ = leaky aquifer; partial penetration of wells not represented T = Transmissivity in feet squared per day (ft2/day) T2 = Transmissivity of unpumped aquifer S = Storage coefficient S2 = Storage coefficient of unpumped aquifer Ss = Specific storage of aquitard (storage per foot of thickness [1/ft]) Kh = horizontal hydraulic conductivity in feet per day (ft/day) calculated as T/b Kv =vertical hydraulic rounductivity in feet per day (ft/day) b = Assumed aquifer thickness in feet

b = Assumed aquifer thickness in feet

TABLE 2 **PW-B Aquifer Test Hydraulic Parameter Estimates**

Observation Well (s)	Bottom of Screen Depth (ft)	Solution	T (ft ² /day)	S	Specific Yield	Kv (ft/day)	Kv aquitard (ft/day)	b (feet)	Kh (ft/day)	recom- mended	Comment
PW-B	115	Neuman Unconfined	697	2.42E-03	1.00E-03	0.61	NA	115	6.1	х	
PW-B	115	Vert. Anisotropic Leaky	530	0.11	NA	0.55	0.10	115	4.6	х	analysis using WHIP; Ss aqt = 0.01
OWB-1D	90	Neuman Unconfined	478	2.92E-03	1.00E-03	1.42	NA	115	4.2		
OWB-1D	90	Neuman Unconfined	530	4.96E-03	1.00E-03	0.47	NA	115	4.6		alternate interp; improved fit
OWB-1D	90	Neuman Unconfined	901	3.20E-03	1.00E-03	9.29E-03	NA	115	7.8	х	alternate interp; additionally improved fit
OWB-2D	90	Neuman Unconfined	442	2.95E-03	1.00E-03	0.88	NA	115	3.8		
OWB-2D	90	Neuman Unconfined	808	4.78E-03	0.25	1.79E-02	NA	115	7.0	х	alternate interp; improved fit
OWB-3D	90	Neuman Unconfined	475	1.32E-03	0.50	4.34E-02	NA	115	4.1	х	
OWB-3D	90	Neuman Unconfined	674	3.43E-03	0.25	9.20E-03	NA	115	5.9		alternate interp; poorer fit
OWB-1S	35	Neuman Unconfined	224	1.19E-04	4.58E-03	2.12E-02	NA	115	1.9	х	
OWB-2S	35	Neuman Unconfined	221	2.96E-05	1.13E-03	5.17E-03	NA	115	1.9	х	
OWB-3S	35	Neuman Unconfined	246	3.09E-05	1.00E-03	4.88E-03	NA	115	2.1	х	
OWB-2BS	12	Neuman Unconfined	5455	1.37E-04	1.78E-02	1.02E-02	NA	115	47.4		unreasonably high T
OWB-3BS	12	Neuman Unconfined	6148	5.00E-05	2.00E-03	3.50E-03	NA	115	53.5		unreasonably high T
OWB-4BS	12	Neuman Unconfined	6918	4.84E-05	0.25	3.50E-03	NA	115	60.2		unreasonably high T
OWB-5BS	12	Neuman Unconfined	9499	3.75E-05	0.25	3.50E-03	NA	115	82.6		unreasonably high T
OWB-1D	90	¹ Neuman-Witherspoon	445	1.79E-03	NA	NA	5.41E-03	100	4.5	Х	T2=1.44e8 ft ² /d; S2=1.0
OWB-2D	90	¹ Neuman-Witherspoon	405	2.34E-03	NA	NA	7.70E-03	100	4.1	х	T2=1.44e8 ft ² /d; S2=1.0
OWB-3D	90	¹ Neuman-Witherspoon	285	1.32E-03	NA	NA	1.14E-06	100	2.9		T2=1.44e8 ft ² /d; S2=6.03e-9
OWB-3D	90	¹ Neuman-Witherspoon	211	1.11E-03	NA	NA	1.40E-02	100	2.1	х	alt. interp; T2=1050 ft ² /d; S2=1.0e-10
OWB-3D	90	¹ Neuman-Witherspoon	52.9	1.38E-04	NA	NA	2.88E-02	100	0.5	х	alt. interp.; T2=671 ft ² /d; S2=1.39e-3
OWB-3BS	12	¹ Neuman-Witherspoon	1100	4.23E-04	NA	NA	0.309	100	11.0		T2=5.7e4 ft ² /d; S2=0.011, high T
OWB-4BS	12	¹ Neuman-Witherspoon	204	1.16E-05	NA	NA	2.16E-03	100	2.0	х	T2=2.56e5 ft ² /d; S2=1.19e-5
OWB-5BS	12	¹ Neuman-Witherspoon	206	1.16E-05	NA	NA	1.97E-03	100	2.1	х	T2=3.67e5 ft ² /d; S2=1.9e-5
OWB-1D	90	Vert. Anisotropic Leaky	201	1.05E-05	NA	0.367	6.16E-02	100	2.0	х	analysis using WHIP; Ss aqt = 0.0115
OWB-2D	90	Vert. Anisotropic Leaky	134	1.06E-05	NA	0.477	7.25E-02	100	1.3	х	analysis using WHIP; Ss aqt = 1.88e-3
OWB-3D	90	Vert. Anisotropic Leaky	67	3.56E-05	NA	8.92E-02	1.61E-02	100	0.7	х	analysis using WHIP; Ssaqt = 4.30e-4
OWB-1S	35	Vert. Anisotropic Leaky	121	1.05E-05	NA	0.955	0.299	100	1.2	х	analysis using WHIP; Ss aqt = 1.42e-3
OWB-2S	35	Vert. Anisotropic Leaky	174	1.00E-05	NA	1.00	8.26E-02	100	1.7	х	analysis using WHIP; Ss aqt = 5.84e-4
OWB-3S	35	Vert. Anisotropic Leaky	312	1.07E-10	NA	0.252	1.77E-03	100	3.1	х	analysis using WHIP; Ss aqt = 5.04e-4
OWB-2D/-3D	90/90	Neuman Unconfined	960	3.31E-03	1.00E-03	8.62E-05	NA	115	8.3	Х	
OWB-1D/-3D	90/90	Neuman Unconfined	924	3.01E-03	0.25	3.00E-03	NA	115	8.0	х	
OWB-1S/-1D	35/90	Neuman Unconfined	593	1.00E-03	1.00E-03	1.51	NA	115	5.2	х	
OWB-1S/-1D	35/90	Neuman Unconfined	575	1.30E-03	1.00E-03	1.51	NA	115	5.0	х	alternate interp
OWB-2S/-2BS	35/12	¹ Neuman-Witherspoon	517	1.13E-03	NA	NA	1.80E-02	100	5.2	Х	T2=5.03e4 ft ² /d; S2=2.59e-3
OWB-1S/-1D	35/90	Vert. Anisotropic Leaky	120	1.05E-05	NA	0.958	0.276	100	1.2	х	analysis using WHIP; Ss aqt = 2.04e-3

Notes:

 $T^{1} =$ leaky aquifer; partial penetration of wells not represented T = Transmissivity in feet squared per day (ft2/day) $T^{2} =$ Transmissivity of unpumped aquifer S = Storage coefficient

S2 = *Storage coefficient of unpumped aquifer*

Ss = Specific storage of aquitard (storage per foot of thickness [1/ft])

Kh = horizontal hydraulic conductivity in feet per day (ft/day) calculated as T/b

Kv =vertical hydraulic conductivity in feet per day (ft/day)

b = Assumed aquifer thickness in feet

FIGURES

H:\2018033.20 TTL Twin Pines Additional Reporting\Figures 1 thru 7.xlsx: Figure 1

H:\2018033.20 TTL Twin Pines Additional Reporting\Figures 1 thru 7.xlsx: Figure 3

H:\2018033.20 TTL Twin Pines Additional Reporting\Figures 1 thru 7.xlsx: Figure 4

H:\2018033.20 TTL Twin Pines Additional Reporting\Figures 1 thru 7.xlsx: Figure 7

APPENDIX A

OBSERVATION WELL LOCATIONS

APPENDIX B

AQTESOLV PWA TEST PLOTS

 $T2 = 1.44E + 8 \text{ ft}^2/\text{day}$

 $\beta/r = 0.002419$ ft⁻¹ S2 = 1.0E-10

APPENDIX C

WHIP PWA TEST PLOTS

APPENDIX D

AQTESOLV PWB TEST PLOTS

APPENDIX E

WHIP PWB TEST PLOTS

APPENDIX C

Attached Documents: Slug and Bail Test Interpretations

SLUG AND BAIL TEST INTERPRETATIONS

