Prepared for:

CAPITAL CITY BANK

1301 Metropolitan Boulevard Tallahassee, FL 32308

VOLUNTARY REMEDIATION PROGRAM PROGRESS REPORT #2 Grantville Mill 41 Industrial Way Grantville, GA 30220

Prepared by:

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338 Tel: 404-315-9113

July 2016

VOLUNTARY REMEDIATION PROGRAM PROGRESS REPORT #2

Grantville Mill Grantville, Georgia

Prepared For:

CAPITAL CITY BANK

1301 Metropolitan Boulevard Tallahassee, FL 32308

Prepared By:

EPS

1050 Crown Pointe Parkway, Suite 550 Atlanta, GA 30338 Tel: 404-315-9113

> Kirk J. Kessler Principal

VOLUNTARY REMEDIATION PROGRAM PROGRESS REPORT #2 GRANTVILLE MILL 41 Industrial Way Grantville, GA 30220

July 2016

TABLE OF CONTENTS

PRO	FESSION	NAL GEOLOGIST CERTIFICATION	. 1						
1	Intr	ODUCTION	. 2						
	1.1	Overview	. 2						
	1.2	Site Location and Description							
2	VRP	VRP PROJECT MANAGEMENT							
	2.1	Professional Geologist Oversight	. 4						
	2.2	Milestone Schedule							
1	RECI	RECENTLY COMPLETED ACTIVITIES							
	3.1	Overview	. 5						
	3.2	On-Site Vapor Intrusion Assessment	. 5						
	3.3	Off-Site Vapor Intrusion Assessment	. 5						
		3.3.1 Soil Gas Sampling	. 5						
		3.3.2 Indoor Air Sampling	. 6						
	3.4	On-Site Soil Assessment	. 6						
	3.5	On-Site Groundwater Assessment	. 7						
4	Risk	RISK ASSESSMENT UPDATE							
	4.1	On-Site Receptors	. 8						
	4.2	Off-Site Receptors							
5	PLAN	PLANNED ACTIVITIES FOR NEXT REPORTING PERIOD							
	5.1	Groundwater Vertical Delineation	. 9						
	5.2	Groundwater Horizontal Delineation	. 9						
	5.3	Comprehensive Groundwater Sampling Event	. 9						

DCN: CCBGMPR002

6 UPDA	TES TO THE PRELIMINARY CONCEPTUAL SITE MODEL (CSM)	10
6.1	Overview	10
6.2	Groundwater Flow	10
6.3	Hydrogeologic Cross-section	10
6.4	Compliance Status of Regulated Constituents	
	6.4.1 Groundwater	11
	6.4.2 Soil	
6.5	Soil and Groundwater COPC for the Site	
6.6	Potential Receptors and Exposure Pathways	
	6.6.1 On-Site Receptors and Exposure Pathways	
	6.6.2 Off-Site Receptors and Exposure Pathways	11
7 REFE	RENCES	12
TABLES		
Table 1	Soil Gas Volatile Organic Compounds	
Table 2	Off-Site Indoor Air Volatile Organic Compounds	
Table 3	Soil Volatile Organic Compounds	
Table 4	Summary of Detected VOCs in Groundwater	
FIGURES		
Figure 1	Site Location	
Figure 2	VRP Properties, Adjacent Land Use and Ownership	
Figure 3	Soil Gas and Indoor Air Test Results	
Figure 4A	Soil VOC Assessment Results, Shallow Soil (<5 ft)	
Figure 4B	Soil VOC Assessment Results, Deep Soil (>5 ft)	
Figure 5	Monitoring Well Network and Cross Section Transects	
Figure 6	Groundwater Results Summary	
Figure 7	Site Potentiometric Surface and Groundwater Flow	
Figure 8A	Hydrogeologic Profile A-A'	
Figure 8B	Hydrogeologic Profile B-B'	
APPENDICE	ES .	
Appendix A	Professional Geologist Summary of Hours	
Appendix B	Milestone Schedule	
Appendix C	Soil Boring Logs	
Appendix D	Monitoring Well Sampling Forms	
Appendix E	Groundwater Laboratory Analytical Reports	

PROFESSIONAL GEOLOGIST CERTIFICATION

"I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.

Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring, I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division.

The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Kirk Kessler GA000685	7/28/2016
Printed Name and GA PE/PG Number	Date
Luf Kenl	
Signature and Stamp	

DCN: CCBGMPR002 1 July 2016

1 Introduction

1.1 Overview

This Voluntary Remediation Program ("VRP") Progress Report is submitted on behalf of Capital City Bank ("CCB") for the Grantville Mill site comprised of two parcels as listed on the Hazardous Site Inventory ("HSI"), Site Number 10912. The Site's Voluntary Investigation and Remediation Plan ("VIRP") (EPS, 2015) was approved by the Georgia Environmental Protection Division ("GaEPD") on July 22, 2015 (GaEPD, 2015). The purpose of this Progress Report is to describe the activities accomplished during the current reporting period, January 2016 through June 2016, and to discuss planned activities for the next reporting period. It includes activities completed through July 1, 2016 associated with on-Site and off-Site vapor intrusion ("VI") assessment and testing of on-Site soil and groundwater for volatile organic compounds ("VOCs").

Specifically, this Progress Report includes: 1) VI testing of an adjacent off-Site property 2) VI testing of the on-Site building presumed to house the former dry cleaner operation and at the Site property boundary, 3) results of an on-Site soil assessment, 4) results of additional on-Site groundwater testing, 5) an update to the Conceptual Site Model ("CSM") and 6) discussion of the planned activities to be completed for the next Site progress report.

1.2 Site Location and Description

The CCB property is located in the City of Grantville, Georgia, Coweta County (Figure 1). The CCB property is listed as Coweta Country Parcel ID G050008008 and totals 13.48 acres (Figure 2), and has the physical address of 41 Industrial Way, Grantville, Georgia (Figure 2). The other parcel comprising HSI Site Number 10912, Coweta County Parcel ID G050008008A, is owned by Grantville Mill, LLC and was brought into the VRP as an additional qualifying property (Figure 2). Together these two property parcels constitute the "Site". The Site is approximately 0.2 miles northeast of the City of Grantville, GA.

The Property was first developed in the early 1900s as a cotton mill to make uniforms and canvas during World War I. The mill later became West Point Peppermill's Grantville Mill, operating into the early 1980s when the mill was closed. Since that time, buildings within the facility have been leased to various companies. One of the tenants, Tropic Formals, Ltd., operated a formals clothing business in one of the former mill buildings, at the southwest portion of the mill complex, between 1980 and 1993. Tropic Formals was a RCRA listed handler of the VOC tetrachloroethene ("PCE") for the purpose of dry cleaning until it changed its registration status to a non-waste generator on December 31, 1993. The Site is listed on the basis of a documented PCE release to groundwater. The Property is now unoccupied and no intention to occupy the Property or the building previously occupied by Tropic Formals, Ltd. is planned.

Properties bordering the Site are shown on Figure 2 and include:

- to the Northeast wooded vacant land (Grantville Mill LLC parcel);
- to the East CSX rail line and Grantville City Cemetery;
- to the South and Southwest residences; and
- to the West and Northwest residences and a City park complex.

2 VRP PROJECT MANAGEMENT

2.1 Professional Geologist Oversight

This Progress Report includes a certification by Kirk Kessler, the Professional Geologist ("PG") specified in the VRP application. Appendix A contains a monthly summary of hours invoiced by the PG.

2.2 Milestone Schedule

The milestone schedule is included in Appendix B.

3 RECENTLY COMPLETED ACTIVITIES

3.1 Overview

This section discusses activities accomplished during the current reporting period including on-Site and off-Site VI testing, additional on-Site groundwater assessment and on-Site soil testing in the presumed PCE release area.

3.2 On-Site Vapor Intrusion Assessment

Six on-Site soil gas samples were collected during the current reporting period, five from beneath the Site building (*i.e.* sub-structure) presumed to house the former on-Site dry cleaner operation and one from shallow soil down-gradient from the presumed release area (Figure 3). Three of the five sub-structure samples were collected from soil beneath the wooden floor of the structure (SG-5 to SG-7) and two samples were collected from beneath the concrete slab floor of the structure's partial basement (SSSG-1 and SSGS-2). The exterior soil gas sample (SG-8) was collected at the Site property line. Each soil gas sample probe was allowed to equilibrate for a minimum of 24 hours after installation before sampling. All soil gas samples were collected from a depth of three feet below ground surface ("ft-bgs"). An attempt to collect a deeper exterior soil gas sample at the Site property line nearer to the water table was unsuccessful as insufficient soil gas was available (*i.e.* the soil strata surrounding the soil gas probe was highly impermeable to soil gas transport) to fill the sample collection vessel. Samples were collected following Environmental Protection Agency ("EPA") Method TO-15.

A summary of soil gas results is provided on Table 1. Twelve VOCs were detected in on-Site soil gas including: 1,2,4-trimethylbenzene (23 micrograms per cubic meter [" μ g/m³"]), acetone (210 μ g/m³), benzene (37 μ g/m³), chlorobenzene (9.5 μ g/m³), chloroform (410 μ g/m³), ethyl benzene (4.4 μ g/m³), Freon-11 (8.8 - 600 μ g/m³), m&p-xylene (16 μ g/m³), o-xylene (8.7 μ g/m³), PCE (2,500 – 720,000 μ g/m³), toluene (22 μ g/m³) and trichloroethene ("TCE") (60 μ g/m³). Of the constituents detected in on-Site soil gas, only acetone and PCE are reported in the sub-structure soil (Section 3.4), and only Freon-11 and PCE are reported in groundwater (Section 3.5).

3.3 Off-Site Vapor Intrusion Assessment

3.3.1 Soil Gas Sampling

Four soil gas samples were collected from the nearest off-Site property (45 Grady Smith Street) on February 9th, 2016 (Figure 3). The four soil gas samples were collected adjacent to the residential house, with one sample to each side of the house. Each soil gas probe was set approximately 3 feet below the approximate grade of the structure's basement. The probes were

installed on February 8th, 2016 and allowed to equilibrate for 24 hours prior to sampling. Each probe was sampled according to EPA Method TO-15.

A summary of soil gas testing results is provided on Table 1. The range of soil gas constituents reported on the off-Site property is more extensive in comparison to the on-Site soil gas results and includes several aromatic hydrocarbons including benzene (4.3 - 88 μ g/m³), toluene (33 - 250 μ g/m³), ethylbenzene (7.8 - 8.6 μ g/m³), m&p-xylene (20 - 51 μ g/m³), o-xylene (6.3 - 24 μ g/m³) and 1,2,4-trimethylbenzene (5.3 - 6.7 μ g/m³), and common organic ketone compounds including 2-butanone (40 μ g/m³) and 4-methyl-2-pentanone (9.8 - 40.0 μ g/m³). These constituents are not reported in on-Site groundwater and therefore not expected to be associated with the Site release. Additional VOCs detected in off-Site soil gas include: 1,2-dichloropropane (32 - 170 μ g/m³), acetone (26 - 49 μ g/m³), carbon disulfide (6.5 μ g/m³), chloroform (5.4 - 9 μ g/m³) and chloromethane (2.1 μ g/m³). These constituents with the exception of chloroform are not reported in on-Site groundwater and therefore not expected to be associated with the Site release. PCE is reported in two of the four off-Site soil gas samples, SG-1 at 210 μ g/m³ and SG-2 at 10 μ g/m³. PCE is the reported constituent released from the Site, detected in on-Site soil and groundwater, and therefore is reasonably determined to be associated with the on-Site release.

3.3.2 Indoor Air Sampling

Two indoor air samples were collected from the off-Site property following testing of the exterior soil gas (Figure 3). The indoor air samples were collected from opposite ends of the house basement with suma canisters fitted with 24 hour regulators following EPA Method TO-15. The residence was unoccupied at the time of sample collection and without operation of heating or cooling equipment (*i.e.* passive air exchange only).

Seven VOCs were detected in indoor air as summarized in Table 2 including 2-butanone (0.49 – 0.54 $\mu g/m^3$), acetone (11 – 12 $\mu g/m^3$), chloromethane (0.48 – 0.52 $\mu g/m^3$), dichloromethane (0.31 – 0.86 $\mu g/m^3$), Freon-12 (0.38 – 0.39 $\mu g/m^3$) tetrahydrofuran (0.99 – 1.1 $\mu g/m^3$) and toluene (0.23 – 0.24 $\mu g/m^3$). VOC constituents associated with the PCE release on the Grantville Mill property, specifically PCE and PCE degradation products, were not detected in off-Site indoor air and therefore the VOCs in the house are not expected to be associated with the Site. All detected indoor VOCs are below residential screening values (10⁻⁶ target cancer risk) developed by the EPA for human health protection (VISL, June 2015).

3.4 On-Site Soil Assessment

Sixteen soil boring were advanced beneath and adjacent to the Site structure presumed to contain the former on-Site dry cleaner operation (Figure 4A & 4B). Each soil boring was advanced with direct push technology to the water table, typically 10 to 14 ft-bgs, with the soil core preserved in an acetate liner for screening. Field screening of each core was performed with a Photo Ionization Detector ("PID") to assess for potential VOCs and guide sample selection for laboratory testing. Two soil samples from each boring were selected for VOC analysis with the depth of the sample selected based PID response (*i.e.* the soil segments with highest PID readings were selected for

analysis). If no substantial PID reading of a core was reported, two samples were collected from the core at prescribed depths. Soil boring logs and PID reading are provided in Appendix C.

The results of the soil testing are summarized in Table 3. Except for two detections of acetone (0.07 and 0.081 milligrams per kilogram ["mg/kg"]), PCE is the only VOC detected in soil. Soil PCE detections ranged from 0.0034 mg/kg to 10.0 mg/kg, with the highest reported concentrations located beneath the northwest portion of the structure presumed to house the former on-Site dry cleaner operation (Figures 4A & 4B). Beneath the structure, the highest reported soil PCE concentration is reported at SB-11 at 2 ft-bgs indicating the PCE release in this area likely occurred from a surface release. Soil PCE concentrations rapidly decrease with distance from SB-11, with soil PCE concentrations ranging from 1.0 to 3.0 mg/kg to the immediate north of SB-11 beneath the structure. Soil samples at the perimeter of the assessment area are all below 1.0 mg/kg, with a majority of perimeter soil samples reporting less than 0.1 mg/kg or non-detect.

In comparison to soil Risk Reduction Standards (RRS), PCE is delineated to the non-residential RRS (0.89 mg/kg) horizontally and vertically (Figures 4A & 4B). With respect to the residential RRS (0.5 mg/kg), PCE is delineated with the exception of deep sub-structure soil (samples SB-10 [13.5 ft-bgs] and SB-11 [13.5 ft-bgs]) to the southeast of the presumed release area.

3.5 On-Site Groundwater Assessment

Two additional groundwater monitoring wells were installed during the current reporting period. Monitoring well (MW-16) was installed at the approximate midpoint between the presumed on-Site release area and the nearest off-Site property (Figure 5). The objective of the monitoring well was to further delineate the VOC plume and potential transport of VOCs onto off-Site property. The monitoring well was completed to a depth of 45 ft-bgs, consistent with the depth reported for the highest on-Site PCE concentration in nearby monitoring well MW-5. The other monitoring well, a temporary monitoring well (TW-1), was installed in boring SB-11 beneath the Grantville Mill structure to assess the presumed PCE release area and groundwater below the building (Figure 5).

MW-16 and TW-1 were sampled on June 22, 2016 and tested for VOCs. A summary of groundwater VOC detections for all wells (sampling back to April 2014) is provided in Table 4. PCE was the only VOC detected in both wells, TW-1 reporting 3,400 micrograms per liter (" μ g/L") and MW-16 reporting 18,000 μ g/L. An updated depiction of the inferred groundwater VOC plume is provided on Figure 6. The horizontal delineation of constituents associated with the Site release to non-detect is compete; however, additional investigation to refine the horizontal extent onto adjoining properties is ongoing.

4 RISK ASSESSMENT UPDATE

4.1 On-Site Receptors

The tenant that leased the primary building on the Site (where sub-structure VI sampling was performed) has vacated the building and relocated its business. All on-Site structures are currently unoccupied and no plans to occupy the property exist.

4.2 Off-Site Receptors

The tenant living in the off-Site residence assessed for VI vacated the residence on or around February 2016. The residence is currently unoccupied. Results of the off-Site VI testing were submitted to the property owner on June 16, 2016. As outlined in Section 3, testing of the off-Site property indoor air found all detected VOCs below residential screening values (10⁻⁶ target cancer risk) developed by the EPA for human health protection (VISL, June 2015).

5 PLANNED ACTIVITIES FOR NEXT REPORTING PERIOD

5.1 Groundwater Vertical Delineation

Two deep groundwater monitoring wells are proposed to assess the vertical distribution of VOCs during the next reporting period. One deep monitoring well will be installed in the general vicinity of MW-16. This area of the Site exhibits the highest groundwater VOC condition. A second deeper monitoring well will be placed further down-gradient of MW-16 in line with the VOC plume. Each deep groundwater monitoring well is anticipated to have a total depth of approximately 100 ft.

5.2 Groundwater Horizontal Delineation

Two additional groundwater monitoring wells are proposed adjacent to the western boundaries of the VRP properties to assess for potential transport of VOCs off-Site and refine the horizontal extent of the plume. One well is proposed west of MW-14 and a second west-northwest of MW-8 on an adjoining off-Site property. Installation of an off-Site well west of MW-8 will be subject to attaining an access agreement for the vacant parcel. In the event access cannot be attained, placement of the well near the property line will be evaluated. The two additional horizontal delineation wells will be advanced to auger refusal (*i.e.* the inferred PWR interface) consistent with prior well installation practices.

5.3 Comprehensive Groundwater Sampling Event

Post installation of the proposed delineation wells, a comprehensive groundwater sampling event will be performed for all wells with testing for VOCs. Sampling will be performed following low flow/low stress sampling protocols and tested for VOCs with EPA method 8260C.

6 UPDATES TO THE PRELIMINARY CONCEPTUAL SITE MODEL (CSM)

6.1 Overview

The CSM is intended to establish a common knowledge base about the Site and its environmental condition to facilitate the development of remedial action objectives, and to allow an informed decision regarding possible remedial action measures. For this report, a refinement of the Site lithology (*i.e.* boring logs) and updated geologic cross sections have been prepared. In addition, this update to the CSM refines the hydrogeologic model (potentiometric surface) for the Site and potential receptor and exposure pathways.

6.2 Groundwater Flow

An update to the Site hydrogeologic model has been performed to improve assessment of groundwater flow direction. The new monitoring well (MW-16) was surveyed by a registered land surveyor to an established datum (*i.e.* mean sea level) and one prior well survey elevation was corrected (MW-8). Groundwater depths at each monitoring well were assessed on June 22, 2016 and a potentiometric surface map for the Site was developed for the overburden. As illustrated on Figure 7, groundwater from the suspected release area flows northeast approximately 400 ft, before turning more northerly, consistent with Site topography and surface drainage. Groundwater flow is expected to continue in a northerly direction beyond MW-2 following the axis of the valley floor. Depth to groundwater across the monitoring well network ranged from 5.41 ft-bgs (MW-15) to 28.2 ft-bgs (MW-14).

6.3 Hydrogeologic Cross-section

Figures 8A and 8B provide updated hydrogeologic cross sections for the Site. Cross-section A-A' is oriented from southwest to northeast along the direction of groundwater flow across the Site (Figure 3) and cross section B-B' is oriented northwest to southwest spanning the local valley feature immediately northeast of the presumed PCE release. Monitoring well installation details (*i.e.* screened intervals) and VOC detections are shown on the cross sections. In general, PCE concentrations down-gradient of the assumed release area trend higher in monitoring wells set at the point of drill auger refusal, which characteristically marks the onset of partially weathered rock (*e.g.*, MW-18, MW-8 and MW-14), with nearby shallower wells exhibiting lesser concentrations (*e.g.*, MW-6 and MW-2).

6.4 Compliance Status of Regulated Constituents

6.4.1 Groundwater

Past sampling detected six constituents regulated under Georgia's HSRA in groundwater at the Site: (i) PCE, (ii) TCE, (iii) cis-1,2-dichloroethene, (iv) Freon-11, (v) chloroform, and (vi) bromodichloromethane. Sampling performed in 2016 confirmed the occurrence PCE.

6.4.2 Soil

Soil sampling during the current reporting period detected two constituents regulated under Georgia's HSRA in soil, acetone and PCE. The two detections of acetone (0.07 and 0.081 mg/kg) are well below RRS. PCE is reported above the non-residential RRS (0.89 mg/kg) in 9 of 32 samples.

6.5 Soil and Groundwater COPC for the Site

The 1st Semi-Annual Report identified three VOCs as constituents of potential concern ("COPC") for the Site groundwater including: PCE, TCE and cis-DCE. Groundwater COPCs are conserved for this report. Based on testing performed during the current reporting period PCE is the sole COPC in soil (Section 3.4).

6.6 Potential Receptors and Exposure Pathways

6.6.1 On-Site Receptors and Exposure Pathways

The receptors and exposure pathways presented in the VIRP are conserved for this report submission, however, the Site is currently unoccupied and no plans to occupy the Property exist. Assessment of the VI pathway, the pathway considered most likely to permit exposure, was assessed through collection of soil gas samples from beneath the facility presumed to house the former dry cleaner operation. Based on soil gas concentrations reported beneath the facility and facility construction (*i.e.* wooden flooring) VI is conserved as a potential exposure pathway.

6.6.2 Off-Site Receptors and Exposure Pathways

As presented in the VIRP, the primary potential exposure pathway for off-Site receptors is for VOC vapor intrusion as no drinking water supply wells are known to exist for the presumed downgradient plume area. The results of the 2015 and 2016 groundwater sampling, which reported higher VOC concentrations than previously found, indicated the potential for off-Site vapor intrusion. Accordingly, the nearest off-site property was assessed though soil gas and interior air sampling. Indoor air test results (Section 3.3.2) found no exposure to COPC to potential occupants in the nearest off-Site residence. The tested residence is also currently unoccupied.

7 REFERENCES

- GaEPD (2015). HSI Site Number 10912, Voluntary Investigation and Remediation Plan Approval Letter, Dated July 22, 2015.
- EPS (2015). Voluntary Investigation and Remediation Plan, Grantville Mill, Grantville, Georgia. March 26, 2015.

VISL (2015). Vapor Intrusion Screening Level Calculator, Version 3.4. November 2015.

.

TABLES

Table 1.
Soil Gas Volatile Organic Compounds

		Off-Site I	Property*		Grantville Mill Property							
Paramter	SG-1	SG-2	SG-3	SG-4	SG-5	SG-6	SG-7	SG-8	SSSG-1	SSSG-2		
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2,4-Trimethylbenzene	ND	6.7	ND	5.3	ND	ND	ND	23	ND	ND		
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,2-Dichloropropane	170	77	32	95	ND	ND	ND	ND	ND	ND		
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2-Butanone (MEK)	ND	ND	ND	40	ND	ND	ND	ND	ND	ND		
2-Hexanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4-Ethyltoluene	ND	ND	ND	ND	NM	NM	ND	ND	NM	ND		
4-Methyl-2-pentanone	ND	21	9.8	40	ND	ND	ND	ND	ND	ND		
Acetone	26	49	ND	ND	ND	ND	210	ND	ND	ND		
Benzene	16	9.6	4.3	88	ND	ND	ND	37	ND	ND		
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Bromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Carbon disulfide	6.5	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	9.5	ND	ND		
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Chloroform	ND	ND	5.4	9	ND	410	ND	ND	ND	ND		
Chloromethane	ND	2.1	ND	ND	ND	ND	ND	ND	ND	ND		
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Dichlorobromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Dichloromethane (Methylene chloride)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Ethyl benzene	7.8	ND	ND	8.6	ND	ND	ND	4.4	ND	ND		
Freon-11	ND	ND	ND	ND	ND	ND	ND	8.8	600	62		
Freon-113	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Freon-114	ND	ND	ND	ND	NM	NM	ND	ND	NM	ND		
Freon-12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
m&p-Xylene	20	ND	ND	51	ND	ND	ND	16	ND	ND		
o-Xylene	6.3	ND	ND	24	ND	ND	ND	8.7	ND	ND		
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Tetrachloroethene	210	10	ND	ND	270,000	720,000	8,900	2,500	72,000	14,000		
Toluene	130	66	33	250	ND	ND	22	25	ND	ND		
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	60	ND		
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		

Units: μg/m³ ND: Non-detect

NM: Not measured (not included in std TO-15 testing)

Table 2.
Off-Site* Indoor Air Volatile Organic Comounds

ii-site indoor Air volatile O		
Parameter	IA-1	IA-2
1,1,1-Trichloroethane	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND
1,1,2-Trichloroethane	ND	ND
1,1-Dichloroethane	ND	ND
1,1-Dichloroethene	ND	ND
1,2,4-Trichlorobenzene	ND	ND
1,2,4-Trimethylbenzene	ND	ND
1,2-Dibromoethane	ND	ND
1,2-Dichlorobenzene	ND	ND
1,2-Dichloroethane	ND	ND
1,2-Dichloropropane	ND	ND
1,3,5-Trimethylbenzene	ND	ND
1,3-Butadiene	ND	ND
1,3-Dichlorobenzene	ND	ND
1,4-Dichlorobenzene	ND	ND
1,4-Dioxane	ND	ND
2-Butanone (MEK)	0.49	0.54
2-Hexanone	ND	ND
4-Ethyltoluene	ND	ND
4-Methyl-2-pentanone	ND	ND
Acetone	11	12
Allyl chloride	ND	ND
Benzene	ND	ND
Benzyl chloride	ND	ND
Bromoform	ND	ND
Bromomethane	ND	ND
Carbon disulfide	ND	ND
Carbon tetrachloride	ND	ND
Chlorobenzene	ND	ND
Chloroethane	ND	ND
Chloroform	ND	ND
Chloromethane	0.48	0.52
cis-1,2-Dichloroethene	ND	ND
cis-1,3-Dichloropropene	ND	ND
Cyclohexane	ND	ND
Dibromochloromethane	ND	ND
Dichlorobromomethane	ND	ND
Dichloromethane (Methylene chloride)	0.86	0.31
Ethyl acetate	ND	ND
Ethyl benzene	ND	ND
Freon-11	ND	ND ND
Freon-113	ND	ND
Freon-114	ND 0.20	ND 0.20
Freon-12	0.39	0.38
Heptane	ND	ND
Hexachlorobutadiene	ND	ND
Isooctane	ND	ND
m&p-Xylene	ND	ND
Methyl tertbutyl ether (MTBE)	ND	ND
n-Hexane	ND	ND
o-Xylene	ND	ND
Propylene	ND	ND
Styrene	ND	ND
Tetrachloroethene	ND	ND
Tetrahydrofuran	1.1	0.99
Toluene	0.23	0.24
trans-1,2-Dichloroethene	ND	ND
trans-1,3-Dichloropropene	ND	ND
Trichloroethene	ND	ND
Vinyl acetate	ND	ND
Vinyl bromide (bromoethene)	ND	ND
· · · · · · · · · · · · · · · · · · ·	ND	ND
Vinyl chloride	עוו ן	

Units: μg/m³ ND: Non-detect

Table 3. Soil Volatile Organic Compounds

	1,1,1- Trichlor oethane	1,1,2,2- Tetrachloroethane	1,1,2- Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4- Trichlor obenzene	1,2-Dibromo-3- chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Butanone (MEK)	2-Hexanone	4-Methyl-2- pentanone	Acetone	Benzene	Bromoform	Bromomethane	Carbon disulfide
Residential RRS non-Residential RRS SB-1																					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-2										5		5	5			5					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-3																					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-4																					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 ft SB-5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-6																					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-7																					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-8 2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.081	ND	ND	ND	ND
13.5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-10																					
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13.5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-11																					
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07	ND	ND	ND	ND
12 ft SB-12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13.5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-13																					
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-14																					
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-15 2 ft	ND	ND	ND	ND	NID	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2 π 12 ft	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
SB-16	טאו	NU	טאו	ND	ND	ND	NU	NU	ND	ND	ND	ND	ND	ND	ND	ND	טאו	ND	שוו	ND	ND
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Units: mg/kg ND: Non-detect

ft: feet

RRS: Risk Reduction Standard

Blue: > Residential RRS
Yellow: > non-Residential RRS

Table 3. Soil Volatile Organic Compounds

	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2- Dichloroethene	cis-1,3- Dichloropropene	Cyclohexane	Dibromochlorometh ane	Dichlorobromometh ane	Dichloromethane (Methylene chloride)	Ethyl benzene	Freon-11	Freon-113	Freon-12	Isopropylbenzene	m&p-Xylene	Methyl acetate	Methyl tertbutyl ether (MTBE)	Methylcyclohexane	o-Xylene
Residential RRS																					
non-Residential RRS																					
SB-1																					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-2 5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-4																					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-5																					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-6																					
5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-7																					
5 ft 10 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-9	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	ND	110	110	110	110	110
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13.5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-10																					
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13.5 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-11																					
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
13.5 ft SB-13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-14											5							.10			
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-15																					
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-16																					
2 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 ft	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Units: mg/kg ND: Non-detect

ft: feet

RRS: Risk Reduction Standard

Blue: > Residential RRS Yellow: > non-Residential RRS

Table 3. Soil Volatile Organic Compounds

	Styrene	Tetrachloroethene	Foluene	trans-1,2- Dichloroethene	trans-1,3- Dichloropropene	Trichloroethene	Vinyl chloride
Residential RRS non-Residential RRS	S	0.50 0.89		<u> </u>	<u> </u>		
SB-1							
5 ft	ND	0.01	ND	ND	ND	ND	ND
8 ft	ND	0.047	ND	ND	ND	ND	ND
SB-2 5 ft	ND	ND	ND	ND	ND	ND	ND
10 ft	ND ND	ND	ND	ND	ND	ND	ND
SB-3	ND	ND	ND	ND	ND	ND	ND
5 ft	ND	0.96	ND	ND	ND	ND	ND
10 ft	ND	0.11	ND	ND	ND	ND	ND
SB-4							
5 ft	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND
SB-5	ND	0.02	NID	ND	ND	ND	ND
5 ft 10 ft	ND ND	0.02 0.082	ND ND	ND ND	ND ND	ND ND	ND ND
SB-6	ND	0.062	ND	ND	ND	ND	ND
5 ft	ND	0.0092	ND	ND	ND	ND	ND
9 ft	ND	0.041	ND	ND	ND	ND	ND
SB-7							
5 ft	ND	ND	ND	ND	ND	ND	ND
10 ft	ND	ND	ND	ND	ND	ND	ND
SB-8 2 ft	ND	3.0	ND	ND	ND	ND	ND
14 ft	ND ND	2.3	ND	ND	ND	ND	ND
SB-9	ND	2.3	ND	ND	ND	ND	ND
2 ft	ND	1.1	ND	ND	ND	ND	ND
13.5 ft	ND	1.3	ND	ND	ND	ND	ND
SB-10							
2 ft	ND	0.0044	ND	ND	ND	ND	ND
13.5 ft	ND	0.67	ND	ND	ND	ND	ND
SB-11 2 ft	ND	10.0	ND	ND	ND	ND	ND
12 ft	ND	1.4	ND	ND	ND	ND	ND
SB-12		2			5		.,,
2 ft	ND	0.051	ND	ND	ND	ND	ND
13.5 ft	ND	0.64	ND	ND	ND	ND	ND
SB-13							
2 ft	ND	ND	ND	ND	ND	ND	ND
12 ft SB-14	ND	ND	ND	ND	ND	ND	ND
2 ft	ND	0.0034	ND	ND	ND	ND	ND
12 ft	ND	0.0034	ND	ND	ND	ND	ND
SB-15			-		-	-	-
2 ft	ND	ND	ND	ND	ND	ND	ND
12 ft	ND	0.013	ND	ND	ND	ND	ND
SB-16							
2 ft	ND	1.1	ND	ND	ND	ND	ND
12 ft	ND	1.3	ND	ND	ND	ND	ND

Units: mg/kg ND: Non-detect

ft: feet

RRS: Risk Reduction Standard

Table 4. Summary of Detected VOCs in Groundwater

	Chloroform	cis-1,2-Dichloroethene	Dichlorobromomethane	Freon-11	Tetrachloroethene	Trichloroethene
esidential RRS	80	70	80	4,700	19	5
on-Residential RRS	80	200	80	31,000	98	5.2
MW-1						
04/18/14	1.6	ND	0.42	ND	3.9	ND
11/02/15	25	ND	ND	ND	ND	ND
MW-2						
04/18/14	ND	0.95	ND	11.3	28.7	3.3
11/03/15	ND	ND	ND	31	39	ND
MW-3						
05/22/14	ND	ND	ND	ND	2.3	ND
11/02/15	ND	ND	ND	ND	ND	ND
MW-4						
04/18/14	6	ND	1.5	ND	11.8	ND
11/03/15	ND	ND	ND	ND	ND	ND
MW-5						
04/18/14	ND	ND	ND	ND	598	ND
11/04/15	ND	ND	ND	ND	8,000	ND
MW-5D						
05/22/14	12.1	ND	ND	ND	9.8	6.9
06/30/14	5.3	ND	ND	ND	0.79	3.7
11/02/15	ND	ND	ND	ND	ND	ND
11/03/15	ND	ND	ND	ND	ND	ND
MW-6						
05/22/14	1.1	ND	ND	ND	379	ND
11/03/15	ND	ND	ND	ND	1,600	ND
MW-7						
11/03/15	ND	ND	ND	ND	ND	ND
MW-8						
11/03/15	ND	85	ND	ND	5,100	67
MW-9			_			
11/03/15	ND	ND	ND	ND	ND	ND
MW-10						
11/02/15	ND	ND	ND	ND	ND	ND
MW-11						
11/02/15	ND	ND	ND	ND	ND	ND
MW-12						
11/02/15	ND	ND	ND	ND	ND	ND

Units: μg/L ND: Non-detect

RRS: Risk Reduction Standard

Blue: > Residential RRS Yellow: > non-Residential RRS

Table 4. Summary of Detected VOCs in Groundwater

	Chloroform	cis-1,2-Dichloroethene	Dichlorobromomethane	Freon-11	Tetrachloroethene	Trichloroethene
Residential RRS	80	70	80	4,700	19	5
non-Residential RRS	80	200	80	31,000	98	5.2
MW-13						
01/12/16	ND	ND	ND	ND	ND	ND
MW-14						
01/12/16	ND	ND	ND	ND	510	ND
MW-15						
01/12/16	ND	ND	ND	ND	ND	ND
MW-16						
6/22/2016	ND	ND	ND	ND	18,000	ND
TW-1						
6/22/2016	ND	ND	ND	ND	3,400	ND

Units: μg/L ND: Non-detect

RRS: Risk Reduction Standard

FIGURES

Figure 8A Cross Section A-A'

Figure 8B Cross Section B-B'

APPENDIX A Professional Geologist Summary of Hours

Appendix A Professional Geologist Hours Period: January 2016 - June 2016

Period	Hours
January 2016	5
February 2016	4
March 2016	1.5
April 2016	0
May 2016	0
June 2016	1.5
Total:	12

APPENDIX B Milestone Schedule

Appendix B Project Milestone Schedule Grantville Mill, GA HSI Site

ID Task Name	Year 1		Year 2		Year 3		Year 4		Year 5	
1D Task Name	6mo	12mo	18mo	24mo	30mo	36mo	42mo	48mo	54mo	60mo
1 VIRP Approval										
2 Semi-Annual Progress Reports										
3 Source Area Investigation / Soil Delineation										
4 On-site Horizontal Groundwater Delineation										
5 Off-site Horizontal Groundwater Delineation (if necessary)										
6 Vertical Groundwater Delineation (if necessary)										
7 Updated CSM, Final Remdiation Plan, and Cost Estimate										
8 Remedial Activities										
9 Compliance Status Report		_		_						

APPENDIX C Boring Logs

PROJ	ECT:			Grantv	ille Mill	L	Log of I	Boring N	lo.	M	W-7
SITE L	.OCAT	TON:		Crontvillo	C A	Т	OP OF C	ASING ELE	EVATION (ft):		N/A
DRILL	ING C	ONTRACTO)B·	Grantville, GeoLab	GA	D	ATE STA	RTED:	40/0/0045	DATE FINISHED:	
		IETHOD:		Hollow Ste	om Auger	TO	OTAL DE	PTH (ft.):	10/6/2015	SCREEN INTERVA	/2015 L (ft.):
		QUIPMENT			an Augei			WATER A	T TIME	CASING (ft.):	24-34
		METHOD:	-	Geoprobe	w/ Acetate Liner	В	F BORIN	E	~24	WELL	0-24
LOGG						D	IAMETER	R (In.):	4.25	DIAMETER (In.):	2
	S	AMPLES		Alex Testo					WELL O	NOTOLICTION	
DEPTH (feet)	Sample No.	Lasatian	PID Reading		DESCRIPTION				DETA	ONSTRUCTION ILS AND/OR IG REMARKS	
0 _	Sar	Location	~ ~	Ground Surface	Elevation (ft): N/A Top soil				DRILLII	NG REIVIARNS	
-					Red-orange cl	lay					
5-			0		Red-orange clay w/s	saprolite					
-					White saprolite w/ oran	ge-red clay	,				
10-			0		White, pink saprolite v	w/ tan clay					
-					White, tan, pink sa	aprolite					
15-			1.1								
-	ОС				White, gray sapr	rolite					
20-	15279-MW-7-NOD		0		White, pink saprolite w/ quari	tz (wet at ~	·24 ft.				
25-			0								
-					White, pink sapr	rolite					
30-			0.1	<i>401/10/10/10/10/10/10/10/10/10/10/10/10/1</i>					bgs. Adv	sh refusal at ~29.5 anced to ~34 ft. bo	5 ft gs
-										llow stem auger.	
35-									Hollow s	tem auger refusal : s.	at
-											
40-											
-											
45-											
-											
50-											
-											
- -											
55-											
E	PS	\mathbf{S}									

PROJ	ECT:			Grantv	ille Mill		Log of	Boring No.		MW-8
SITE L	OCAT	ION:		Crontvillo	<u> </u>		TOP OF C	ASING ELEVA	ATION (ft):	N/A
DRILL	ING C	ONTRACTO	` P∙	Grantville, GeoLab	GA		DATE STA	RTED:	77/0045	DATE FINISHED:
		ETHOD:	JIX.		m Augor		TOTAL DE		0/7/2015	SCREEN INTERVAL (ft.):
				Hollow Ste	an Auger		DEPTH TO) WATER AT	29.5	19.5-29.5 CASING (ft.):
		QUIPMENT	:	Geoprobe		_	OF BORIN	IG (ft.):	~5	0-19.5
		METHOD:			w/ Acetate L	iner	DIAMETER		4.25	DIAMETER (In.): 2
LOGG	SED BY	: AMPLES		Alex Testo	off					1
DEPTH (feet)		AIVIFELO	PID Reading		DESCRIPTI	ION				ONSTRUCTION ILS AND/OR
DEI (fe	Sample No.	Location	Rea	Ground Surface	Elevation (ft):	N/A				IG REMARKS
0 _	-8-NOD					Topsoil				
-	15280-MW-8-NOD				F	Red-orange clay				
5-			0		S	aturated tan clay				
10-			0		Tan	saprolite with clay				
-					Т	Гап, orange clay				
-					Gra	y, orange saprolite				
15— - - -			0		Fine whit	te saprolite with tan c	clay			
20-			0		Wh	nite, gray saprolite			bgs. Adv	ish refusal at ~25 ft anced to ~29.5 ft. bgs llow stem auger.
30-									Hollow st	tem auger refusal at ogs.
35-										
40-										
45— -										
50-										
55-										
E	PS	3								

PROJ	ECT:		Grantv	ille Mill	L	og of Boring	No.	MW-9
SITE L	OCA	TION:	Grantville,	GA	ТС	P OF CASING E	ELEVATION (ft):	N/A
DRILL	ING C	CONTRACTOR:	GeoLab	- C/ (DA	TE STARTED:	10/5/2015	DATE FINISHED:
DRILL	ING M	METHOD:	Hollow St	em Auger	ТО	TAL DEPTH (ft.)	39.5	SCREEN INTERVAL (ft.):
DRILL	ING E	QUIPMENT:	CME 55			PTH TO WATER BORING (ft.):		CASING (ft.):
SAMP	LING	METHOD:	Split Spoo	on	ВС	REHOLE AMETER (In.):		WELL DIAMETER (In.): 2
LOGG	ED B	Y:	Alex Testo			WE 1 21 (III.).	20	Dirawie rent (iii.).
I	SAMPI			DESCRIPTION			WELL CO	ONSTRUCTION
DEPTH (feet)	Sample No.	Blow Count					DETA	ILS AND/OR NG REMARKS
0	S		Ground Surface	Elevation (ft): N/A Topsoil				
5-		4-11-13		Red-orange micad				
10—		4-5-8		tan micaceous clay with	h pink saprolite	e		
-		6-9-13		Light brown, tan mic	caceous clay			
15-		8-14-17		Light brown, tan micac saprolite				
- - - 25—	15278-MW-9-NOD	5-5-8		Light brown micaceous c	lay with saprol	ite		
-		18-22-26		(wet at ~25 ft				
30-				White, tan sap	prolite			
-		14-24-24		Saturated gray s	saprolite			
35-		5-20-52		White, gray sa	aprolite			
40-							Hollow s ~39.5 ft	tem auger refusal at bgs.
45—								
E	P	S						

PROJ	ECT:		Grantv	rille Mill	Log	g of Boring I	No.	MW-10
SITE L	_OCA	ΓΙΟΝ:	Grantville	CΛ	TOP	OF CASING EL	EVATION (ft):	N/A
DRILL	ING C	ONTRACTOR:	GeoLab	, GA	DATE	STARTED:	40/5/0045	DATE FINISHED:
		METHOD:		om Augor	TOTA	AL DEPTH (ft.):	10/5/2015	SCREEN INTERVAL (ft.):
				em Auger	DEP1	TH TO WATER	39.5 AT TIME	CASING (ft.):
		QUIPMENT:	CME 55			ORING (ft.): EHOLE	~22	WELL -
		METHOD:	Split Spoo		DIAM	METER (In.):	4.25	DIAMETER (In.): 2
LOGG	SAMPI		Alex Test	off				
DEPTH (feet)			nt .	DESCRIPTION				DNSTRUCTION ILS AND/OR
DEF (fe	Sample No.	Location Blow Con	Ground Surface	e Elevation (ft): N/A				NG REMARKS
0				Topsoil	I			1
5-		3-5-7		Red-orange	e clay	Ш		
- - 10—		3-3-4		Gray cla	ıy			
- - -		4-3-4		Gray micaceo	us clay	Ш		
15—	15278-MW-10-NOD	4-4-5		Gray, tan saprolit	e with clay			
- - - 25—		4-4-6		Saturated gray, white sa mica flak	aprolite with gold es			
-		4-8-10		Red-orange				
30-				Coarse grain s	aprolite			
-		13-17-22		Gray, tan sa	prolite			
35-		28-29-50	4	Tan sapro	olite			
40-							Hollow s ~39.5 ft l	tem auger refusal at ogs.
45-								
E	P	S						

PROJ	ECT:		Granty	ille Mill	Log	of Boring N	0.	М	W-11
SITE L	OCAT	LIUN.			TOP C	OF CASING ELE	VATION (ft):	•••	
			Grantville,	GA		STARTED:		DATE FINISHED:	
		ONTRACTOR:	GeoLab		TOTAL	. DEPTH (ft.):	10/6/2015	10/ SCREEN INTERV	6/2015 AL (ft.):
		METHOD:	Hollow St	em Auger		TO WATER A	35	CASING (ft.):	25-35
DRILL	ING E	QUIPMENT:	CME 55		OF BO	RING (ft.):	~14.5		0-25
SAMP	LING	METHOD:	Split Spoo	on	BORE! DIAME	HOLE TER (In.):	4.25	WELL DIAMETER (In.):	2
LOGG			Alex Testo	off					
	Sample No.			DESCRIPTION			DETA	ONSTRUCTION ILS AND/OR IG REMARKS	
0	ιχ	9	Ground Surface	Elevation (ft): N/A Topso	il				
5—		4-7-9		Red cla					
10—	QOI	4-4-5		Tan sandy	r clay				
15—	15279-MW-11-NOD	2-3-3							
				Saturated light brown	micaceous clay				
20-		3-6-9		Tan saprolite w/ mi	icaceous clay				
-				Tan, brown s	aprolite				
- - 25—		7-17-30		White, gray s	aprolite				
-				Red, brown mica	aceous clay				
30-		16-18-23		Tan, brown s	aprolite				
-				Red, brown s	aprolite				
35—		23-50-R		White, gray s	aprolite		Hollow s	tem auger refusa	ıl at
40—							~35 π bg	5.	
E	P	<u>S</u>							

PROJ	ECT:			Grantv	ille Mill		Log of	Boring No).	M	W-12
SITE L	_OCAT	ION:		Grantville,	GA		TOP OF C	ASING ELE\	/ATION (ft):		N/A
DRILL	ING C	ONTRACTO	DR:	GeoLab	<u> </u>		DATE STA	RTED:	0/0/2015	DATE FINISHED:	
		ETHOD:		Hollow Ste	am Διιαρή		TOTAL DE		0/6/2015	SCREEN INTERV	6/2015 'AL (ft.):
		QUIPMENT			Augei		DEPTH TO	WATER AT	29	CASING (ft.):	19-29
		METHOD:	•	Geoprobe	/ A t - t - 1 !		OF BORIN BOREHOL		~7.5	WELL	0-19
					w/ Acetate Lin	ier	DIAMETER	R (In.):	4.25	DIAMETER (In.):	2
LOGG	SED BY	AMPLES		Alex Testo							
DEPTH (feet)			PID Reading		DESCRIPTIO	N			DETA	ONSTRUCTION ILS AND/OR	
	Sam	Location	Re R	Ground Surface	Elevation (ft):	N/A			DRILLIN	IG REMARKS	
0 _	5279-MW-12-NOD				G	Topsoil ray, pink clay		Ш			
5-	15279-M		0		Gray, pi	ink clay with quartz					
-					Gra	y, tan saprolite					
10-			0		Saturated white	e saprolite with gray s	sandy				
15-			0		Gray clay	with gold mica flake	S				
-	-				White, gray sap	orolite with gold mica	flakes				
20-	-		0		White, brown, g	gray saprolite w/ golo flakes	I mica				
25-			0			v, white saprolite aprolite w/ gold mica	flakes				
30-	-		0		Pinkis	sh white saprolite e, brown saprolite			Hollow si ~29 ft bg	tem auger refusa s.	l at
35-	-										
40-	-										
45-	-										
50-											
55-	-										
E	PS	S									

PROJI	ECT:			Grantv	ille Mill	Log	g of Boring I	No.	MW-13
SITE L	OCATIO	ON:		Grantville,	GA	ТОР	OF CASING EL	EVATION (ft):	N/A
DRILL	ING CC	NTRACTO	R:	GeoLab		DATE	E STARTED:	12/18/2015	DATE FINISHED: 12/21/2015
DRILL	ING ME	THOD:		Hollow Ste	em Auger	ТОТА	AL DEPTH (ft.):	53.5	SCREEN INTERVAL (ft.):
DRILL	ING EQ	UIPMENT:	:	Geoprobe		DEP ⁻	TH TO WATER BORING (ft.):		CASING (ft.): 0-43.5
SAMP	LING M	IETHOD:		·	w/ Acetate Liner	BOR	EHOLE METER (In.):		WELL DIAMETER (In.): 2
LOGG	ED BY:			Alex Testo	off	1200			12.0.000
et)		MPLES	D		DESCRIPTION				ONSTRUCTION LS AND/OR
DEPTH (feet)	Sample No.	Location	PID Reading	Ground Surface	Elevation (ft): N/A				IG REMARKS
0 _					Red clay				
5— - - 10—			0.1		Red, gray micaceou	eous clay			
-					White saprolite	9			
15-			0		Brown, white, pink sa	aprolite	_		
20-			0		Gray, brown, pink sa	aprolite			
25—			0		Brown, white sapr	rolite			
30-			0.1		White, gray sapro	blite			
35-			0		Dark gray, white sa	prolite		Direct pu	sh refusal at ~36 ft
40-								bgs. Adv using ho	anced to ~53.5 ft. bgs low stem auger.
45— -									
50-								11-11	
55—								~53.5 ft k	tem auger refusal at ogs.
E	PS	5	<u>, </u>	'			1	,	

PROJ	ECT:			Grantv	ille Mill	L	og of	Borin	g No		MW-14
SITE L	OCAT	ION:		Grantville,	GA	T	OP OF (CASING	ELEV	ATION (ft):	N/A
DRILL	ING C	ONTRACTO	DR:	GeoLab	<u> </u>	DA	ATE STA	ARTED:	12	/17/2015	DATE FINISHED: 12/21/2015
DRILL	ING M	ETHOD:		Hollow Ste	em Auger	TC	OTAL DE	PTH (ft		48.5	SCREEN INTERVAL (ft.): 38.5-48.5
DRILL	ING E	QUIPMENT	:	Geoprobe			EPTH TO		ER AT		CASING (ft.): 0-38.5
SAMP	LING N	METHOD:		· ·	w/ Acetate Liner	В	BORIN	_E			WELL DIAMETER (In.): 2
LOGG	ED BY	<u>'</u>		Alex Testo		וטן	IAMETE	K (IN.):		4.20	DIAMETER (In.):
	S	AMPLES		Alox Tosto						WELL CO	DNSTRUCTION
DEPTH (feet)	Sample No.	Location	PID Reading		DESCRIPTION					DETAI	LS AND/OR IG REMARKS
0 _	Sa	Location	<u>~</u>	Ground Surface	Elevation (ft): N/A					DIVILLIN	TO REWARKS
5—			0		Red, pink clay with	saprolite					
-					Brown, pink saprolite	with clay			ш		
-			0		White, pink saprolite w	rith red clay			ш		
10-					Brown, pink sap	rolite			ш		
-			0		White, brown sap				ш		
15-					Brown, pink, white sap				ш		
-			0		White, brown, pink s	saprolite			ш		
20-					Brown, white sap	orolite					
25-			0		White, pink sap	rolite			ш		
-			0		White, pink, dark gray	y saprolite					
30-			0		Brown, white saprolite with	gold mica fla	akes				
35-					Dark gray, white saprolite flakes	with gold mi	ica				
-			0		Gray, white sap	rolite		_			sh refusal at ~45 ft
40-					Gray, pink sapr	olite				using hol	anced to ~48.5 ft. bgs low stem auger.
45-			0		Brown, white saprolite with e	gold mica fla	akes	-			
50-										Hollow st ~48.5 ft b	em auger refusal at ogs.
55—											
E	PS	5						•		-	

PROJ	ECT:			Grantv	ille Mill	Log o	f Boring No.		M\	<i>N-</i> 15
SITE L	OCAT	ION:				TOP OF	CASING ELEVA	TION (ft):		N/A
		ONTRACTO)D·	Grantville, GeoLab	GA	DATE ST	ARTED:	40/0045	DATE FINISHED:	
		ETHOD:)IX.		om Augor	TOTAL D	12/ DEPTH (ft.):	18/2015	SCREEN INTERV	1/2015 AL (ft.):
				Hollow Ste	m Auger	DEPTH 1	ΓΟ WATER AT 1	38 IME	CASING (ft.):	28-38
		QUIPMENT		Geoprobe		OF BORI	ING (ft.):	~20	WFII	0-28
		METHOD:			w/ Acetate Liner	DIAMETI		4.25	DIAMETER (In.):	2
LOGG	SED BY	: AMPLES		Alex Testo	ıff					
DEPTH (feet)			PID Reading		DESCRIPTION			DETA	ONSTRUCTION ILS AND/OR	
	Sample No.	Location	Rea	Ground Surface				DRILLIN	NG REMARKS	
0 _					Topsoil		-			
_			0		Red clay					
5-										
-			0		Red, gray white saprolite (f	ine grained)				
10-										
-			0		Saprolite with red micace	nous clay				
15-					Saprolite with red micace	eous clay				
-			0				_			
20-					Gray, red saproli	te	-			
-			0.1		Brown, red saprol	ite				
25-										
-					Tan, white saprolite (fine	grained)	- [
30-			0.2		Brown, red saprol	ite				
-										
-			0		Brown, white saprolite with b	lack mottling				
35-			0.1							
-				95911081051111 <i>8</i>				Hollow st	tem auger refusal s.	at
40-										
-										
45										
-										
50-										
_										
55-										
-		_								
E	PS	3								

PROJI	ECT:			Grantv	ille Mill	Lo	og of I	Boring	No		M۱	<i>N</i> -16
SITE L	.OCATI	ON:		Grantville,		то	P OF C	ASING E	LEV	ATION (ft):		N/A
DRILL	ING CC	ONTRACTO	DR:		-Sampling	DA	TE STA	RTED:	F	/47/2046	DATE FINISHED:	7/2016
		THOD:			sh/Hollow Stem Auger	TO	TAL DE	PTH (ft.):	5/	<u>/17/2016/</u> 45	SCREEN INTERV	AL (ft.): 35-45
DRILL	ING EC	UIPMENT	:		verProbe 9510	DEI	PTH TC	WATER	AT		CASING (ft.):	0-35
		IETHOD:			e w/ Acetate Liner	ВО	BORIN REHOL	E			WELL DIAMETER (In.):	2
LOGG	ED BY	:		Alex Test		DIF	METER	i (III.).		4.20	DIAMETER (III.).	
_		MPLES	б	7110% 1001	DESCRIPTION					WELL CO	ONSTRUCTION	
DEPTH (feet)	Sample No.	Location	PID Reading							DETAI	ILS AND/OR IG REMARKS	
0	SS _			Ground Surface	Elevation (ft): N/A Topsoil							
5—			0.2		Red micaceous c	lay						
10-			0.4		Orange, brown clayey	saprolite		ш				
-			0.7									
15— - - -			0		Pink, red saproli	te						
20-			1.2		White, tan, gray, pink s	saprolite						
25-			0.9					Ш				
-			0.9		Fine-grain tan, pink saprol mottling	ite w/ black		Ш				
30-			1.1		Fine-grain. Clayey tan	saprolite						
35—			0.9		Fine-grain tan, gray claye	ey saprolite				Direct pu	ish refusal @ ~37 anced to ~45 ft. b	ft.
40-					No lithology collec	ted.				using hol	anced to ~45 it. it.	yyə
45— -										Boring te	erminated @ ~45	ft.
E	PS	3										

PROJ	ECT:			Grantv	ille Mill	L	Log of Boring No.			
SITE L	OCAT	ION:		Grantville,	GΔ	TC	P OF CASING ELEV	ATION (ft):		N/A
DRILL	ING C	ONTRACTO	DR:		-Sampling	DA	TE STARTED:	/17/2016	DATE FINISHED:	/2016
		ETHOD:		Direct Pus	· · ·	ТО			SCREEN INTERVAL	
		QUIPMENT	:		erProbe 9510		PTH TO WATER AT	TIME	CASING (ft.):	N/A
		METHOD:			BOREHOLE			10	WFII	
				Alex Testo		DIA	AMETER (In.):	2.25	DIAMETER (In.):	N/A
	SAMPLES							\\/_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NOTOLIOTION	
eet) D. D. DID					DESCRIPTION			DETA	ONSTRUCTION ILS AND/OR	
	Cround Surf				Elevation (ft): N/A			DRILLIN	IG REMARKS	
-					Topsoil					
-			0		Red micaceous o	clay				
-										
5-	SB-1-5									
5-	SB.		0.4		Red micaceous clay w/ ta					
=										
-	SB-1-8									
-					Orange, tan clay w/ brown, v	white capro	lito			
10-			0.9		(wet ~10 ft. bgs		inte			
_										
_			0.2		Red, tan clay w/ white sap	prolite (wet))			
15-										
-										
-					•	Pr. (A)				
			0.1		Orange, white clayey sap	orolite (wet)				
20-								Boring te bgs.	erminated @ ~20 ft.	
_										
-										
-										
25										
25-										
-										
-										
	D	7								
E	P:	>								

PROJE	ECT:			Grantv	ille Mill	Lo	og of Boring No).	SB-2
SITE L	OCAT	ION:		Grantville,	GA	то	P OF CASING ELEV	'ATION (ft):	N/A
DRILLI	NG C	ONTRACTO	R:		-Sampling	DAT	TE STARTED:	/17/2016	DATE FINISHED: 5/17/2016
DRILLI	NG M	ETHOD:		Direct Pus	sh	ТОТ	TAL DEPTH (ft.):	20	SCREEN INTERVAL (ft.): N/A
DRILLI	NG E	QUIPMENT:	:	AMS Pow	erProbe 9510	PTH TO WATER AT BORING (ft.):		CASING (ft.): N/A	
SAMPL	ING I	METHOD:		Macrocore	e w/ Acetate Liner	ВО	REHOLE METER (In.):		WELL DIAMETER (In.): N/A
LOGG	ED B	/ :		Alex Testo	off		,		
Ε		AMPLES	_ gu		DESCRIPTION				ONSTRUCTION
DEPTH (feet)	Sample No.	Location	PID Reading	Ground Surface	Elevation (ft): N/A		_		ILS AND/OR IG REMARKS
0	0)			Ground Surface	Topsoil				
- -			0		Red, tan micaceous	s clay			
5— - -	SB-2-5		0.1		Orange, red micaceous cl saprolite	ay w/ white			
10-	SB-2-10		0.5		Orange, red clay w/white				
-	S		0.4		Tan, brown clayey saprolite (v	wet ~11 ft. b	ogs)		
15—			0.4		Tan, white, brown sapro	olite (wet)			
- - -			0.3		Gray, white saprolite	e (wet)		Boring te	erminated @ ~20 ft.
20-				<u> </u>				bgs.	
25-									
E	PS	S							

PROJ	ECT:			Grantv	ille Mill	Lo	g of Boring No.	SB-3
SITE L	OCAT	ION:		Grantville,	GA	TOF	P OF CASING ELEVATION (ft):	N/A
DRILL	ING C	ONTRACTO	DR:	Atlas Geo		DAT	E STARTED: 5/17/2016	DATE FINISHED:
DRILL	ING M	ETHOD:		Direct Pus		тот	TOTAL DEPTH (ft.): SCREEN IN	
DRILL	ING E	QUIPMENT	:		erProbe 9510		TH TO WATER AT TIME	CASING (ft.):
SAMP	LING N	METHOD:			e w/ Acetate Liner	BOF	REHOLE	WELL N/A
LOGG	ED BY	/:		Alex Testo		DIAI	METER (In.): 2.25	DIAMETER (In.):
SAMPLES					DESCRIPTION		WELLC	ONSTRUCTION
DEPTH (feet)	Sample No.	Location	PID Reading				DETA	AILS AND/OR NG REMARKS
0	Sa	Location	<u> </u>	Ground Surface	Elevation (ft): N/A Concrete		Druze.	
-			0		Brown micaceous	s clay		
5	SB-3-5		0		Red clay w/ tan, white saprolite			
10-	SB-3-10		0		Brown, red clay w/ white sap ft. bgs)	orolite (wet ~1	11	
15— - -			0				Boring t bgs.	erminated @ ~16 ft.
20-								
25-								
E	PS	S						

PROJ	ECT:			Grantv	ille Mill	Log	g of Boring No.		SB-4
SITE L	OCAT	TON:		Grantville,	GA	ТОР	OF CASING ELEVA	TION (ft):	N/A
DRILL	ING C	ONTRACTO	R:		-Sampling	DATE	E STARTED:	18/2016	DATE FINISHED: 5/18/2016
DRILL	ING M	ETHOD:		Direct Pus	sh	TOTA	AL DEPTH (ft.):	16	SCREEN INTERVAL (ft.):
DRILL	ING E	QUIPMENT	:	AMS Pow	erProbe 9510	TH TO WATER AT T BORING (ft.):		CASING (ft.): N/A	
SAMP	LING I	METHOD:		Macrocore	e w/ Acetate Liner	BOR	REHOLE METER (In.):		WELL DIAMETER (In.): N/A
LOGG	SED BY	/ :		Alex Testo	off	'			
Ε÷		AMPLES	ing		DESCRIPTION				ONSTRUCTION
DEPTH (feet)	Sample No.	Location	PID Reading	Ground Surface	Elevation (ft): N/A				LS AND/OR IG REMARKS
0	0,			Greatia Gariae	Concrete				
-			0.7		Red, orange micaceo	us clav			
5-	SB-4-5		1.3		Tred, Grange micaceo	us clay			
10-	SB-4-10		3.2		Brown clay w/ red, white	saprolite			
15—			2.7		Red, brown saprolite w/ micac ~12 ft. bgs)	eous clay (w	vet	Boring te	rminated @ ~16 ft.
20-									
25-									
E	PS	S							

PROJE	ECT:			Grantv	ille Mill	Lo	g of Boring No.		SB-5	
SITE LO	OCAT	ION:		Grantville,	GA	TOP	P OF CASING ELEVA	TION (ft):	N/A	
DRILLI	NG C	ONTRACTO	R:	Atlas Geo		DATI	E STARTED:	18/2016	DATE FINISHED: 5/18/2016	
DRILLI	NG M	ETHOD:		Direct Pus		TOTA	AL DEPTH (ft.):	16	SCREEN INTERVAL (ft.): N/A	
DRILLI	NG E	QUIPMENT:	:	AMS Pow	erProbe 9510	DEP	TH TO WATER AT T		CASING (ft.):	
SAMPL	ING N	METHOD:			BOREHOLE				WELL DIAMETER (In.): N/A	
LOGGI	ED BY	/ :		Alex Testo	off		().			
DEPTH (feet)	Sample No.	AMPLES Location	PID Reading		DESCRIPTION			WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS		
0	Sa	Location	~	Ground Surface	Elevation (ft): N/A Concrete					
5—	SB-5-5				No recovery					
10—	SB-5-10		2.2		Orange micaceous clay Orange, brown micaceous clay					
-	S				Orange, tan clay (wet ~1	1 ft. bas)				
-			3.5							
15—			2.8		Orange, tan clay w/ white (saturated)	saprolite		Boring te	rminated @ ~16 ft.	
-										
20-										
25— - -										
E	PS	8								

PROJ	ECT:			Grantv	ille Mill		Log of Boring No.					
SITE L	.OCAT	ION:		Grantville,	GA		TOP OF C	CASING ELEVA	TION (ft):		N/A	
DRILL	ING C	ONTRACTO	R:		-Sampling		DATE STA	RTED:	18/2016	DATE FINISHED: 5/18	/2016	
DRILL	ING M	ETHOD:		Hand Aug	er	•	TOTAL DE		10	SCREEN INTERVA		
DRILL	ING E	QUIPMENT:	:	Hand Aug			DEPTH TO	O WATER AT T		CASING (ft.):	N/A	
SAMP	LING N	METHOD:		Hand Aug			BOREHOL DIAMETER	-E		WELL DIAMETER (In.):	N/A	
LOGG	ED BY	/ :		Alex Testo		I	<i>517</i> ((V))			D		
I		AMPLES	б	DESCRIPTION					WELL CC	NSTRUCTION		
DEPTH (feet)	Sample No.	Location	PID Reading	0	Ground Surface Elevation (ft): N/A			DETAILS AND/OR DRILLING REMARKS				
0	S			Ground Surface	` ,							
_			1.8		Topsoil Red micaceous clay							
5-	SB-6-5		2.1		Red micaceous clay w/ white saprolite							
10-	SB-6-9		1.2		White, orange saprolit ft.	te w/ red clay (w bgs)	et ~10		Boring te bgs.	rminated @ ~10 fl	:.	
15—												
20-												
25—												
E	PS	S										

PROJ	ECT:			Grantv	ille Mill	1	Log of Boring No. SB-7				B-7
SITE L	.OCAT	ION:		Grantville,	GA	Т	OP OF CA	ASING ELEVA	TION (ft):		N/A
DRILL	ING C	ONTRACTO	DR:	Atlas Geo		D	ATE STAF	RTED:	18/2016	DATE FINISHED:	3/2016
DRILL	ING M	ETHOD:		Hand Aug		T	TOTAL DEPTH (ft.): SCREEN INTERV			SCREEN INTERVA	NL (ft.): N/A
DRILL	ING E	QUIPMENT	:	Hand Aug		D	EPTH TO	WATER AT 1		CASING (ft.):	N/A
		METHOD:		Hand Aug		В	F BORING	<u> </u>		WELL	N/A
LOGG	FD BY	/·		Alex Testo		טן	IAMETER	(In.):	2.23	DIAMETER (In.):	111/7
	S	AMPLES							WELLOC	METRICTION	
DEPTH (feet)	Sample No.	Location	PID Reading		DESCRIPTION		WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS				
0	Sal	Location	ı œ	Ground Surface	Elevation (ft): N/A Topso	nil			DIVILLIN	IO ILMAINO	
-			0.8		Red micaceous clay w/ v		prolite				
5	SB-7-5		1.5		White, pink, red saprolite						
10-	SB-7-10		1.2		White, tan, red saprolite	e (wet ~10.5 ft.	bgs)		Boring te bgs.	rminated @ ~10.5	5 ft.
15-											
20-											
25— - -											
E	PS	5							J		

PROJI	ECT:			Grantv	ille Mill	Lo	Log of Boring No. SB-8			
SITE L	OCAT	ION:		Grantville,	GΔ	то	P OF CASING ELEVA	ATION (ft):		N/A
DRILL	ING C	ONTRACTO	DR:	•	-Sampling	DA	DATE STARTED: 5/18/2016		DATE FINISHED:	3/2016
DRILL	ING M	ETHOD:		Direct Pus	· · ·	TO	TOTAL DEPTH (ft.): SCREEN INTE			N/A
DRILL	ING E	QUIPMENT			erProbe 9100-VTR	DEF	DEPTH TO WATER AT TIME OF BORING (ft.):			N/A
SAMP	LING I	METHOD:			e w/ Acetate Liner	ВО	REHOLE		WELL DIAMETER (In.):	N/A
LOGG	ED B	/:		Alex Testo		DIA	METER (In.):	2.20	DIAMETER (In.):	11//
_		AMPLES		71102 1031	DESCRIPTION			WELL CO	ONSTRUCTION	
Sample No. O. PIDE PTH No. O. No. PID Reading							WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS			
0	Sa	Location	~	Ground Surface	Elevation (ft): N/A Wood floor					
-					Fill material					
-	SB-8-2		16.4							
-										
5-					Orange, brown micace	eous clay				
-			14.9							
=					White, tan clayey saprolite					
_										
40			04.0		Too become alconomic					
10-			21.3		Tan, brown clayey sa	aprome				
_										
-	4									
=	SB-8-14		215		Brown, tan saprolite (wet -	~15.5 ft. bgs)			
15—								Boring te	erminated @ ~16 f	t.
_								bys.		
_										
_										
20-										
=										
25-										
_										
-										
F	PS	3								

PROJ	ECT:			Grantv	ille Mill	Log	Log of Boring No.			
SITE L	OCAT	TON:		Grantville,	GA	ТОР	OF CASING ELEVATION (ft):	N/A		
DRILL	ING C	ONTRACTO	DR:	Atlas Geo		DATE	DATE STARTED: DATE FINISHE 5/18/2016 5			
DRILL	ING M	IETHOD:		Direct Pus		TOTA	TOTAL DEPTH (ft.): SCREEN INTE			
DRILL	ING E	QUIPMENT	:		erProbe 9100-VTR		TH TO WATER AT TIME	CASING (ft.):		
SAMP	LING I	METHOD:			e w/ Acetate Liner	BORI	EHOLE	WELL DIAMETER (In.): N/A		
LOGG	SED BY	Y:		Alex Testo		DIAN	METER (In.): 2.25	DIAMETER (In.):		
		AMPLES		71107 1031	DESCRIPTION		WELLCO	DNSTRUCTION		
DEPTH (feet)	Sample No.	Location	PID Reading				DETA	LS AND/OR IG REMARKS		
0	Sa	Location	<u>~</u>	Ground Surface	Elevation (ft): N/A Wood floor		J. C.			
=					Fill material					
-	SB-9-2		4.5		Orange, brown micace	ous clay				
5-			13.2		Tan, brown micaceous clay w/ black mottling					
10-			6.4		Orange, tan micaceous classaprolite	ay w/ white				
- - 15—	SB-9-13.5		31.7		Orange, tan micaceous clay v (wet ~15 ft. bgs	w/ tan saprolii)		rminated @ ~16 ft.		
20-										
- 25- - -										
E	PS	S								

PROJ	ECT:			Grantv	ille Mill	Log	Log of Boring No.			
SITE L	OCAT	TON:		Grantville,	GA	ТОР	OF CASING ELEVATION (ft):	N/A		
DRILL	ING C	ONTRACTO	DR:		-Sampling	DATE	STARTED: 5/18/2016	DATE FINISHED:		
DRILL	ING M	IETHOD:		Direct Pus	· · ·	TOTA	3/10/2010 AL DEPTH (ft.):	SCREEN INTERVAL (ft.):		
DRILL	ING E	QUIPMENT	 :		erProbe 9100-VTR	DEPT	TH TO WATER AT TIME	CASING (ft.):		
		METHOD:			e w/ Acetate Liner	BORI	EHOLE	WELL DIAMETER (In.): N/A		
LOGG	ED BY	Y:		Alex Test		DIAM	METER (In.): 2.25	DIAMETER (In.):		
	S	AMPLES			DESCRIPTION		WELLCO	ONSTRUCTION		
DEPTH (feet)	Sample No.	Location	PID Reading				DETA	ILS AND/OR IG REMARKS		
0	Sa	Location	<u>~</u>	Ground Surface	Elevation (ft): N/A Wood floor		DITIEL	TO REWARKS		
-	2				Fill material					
5-	SB-10-2		2.7		Red micaceous c	lay				
10-			6.8		Orange, brown micaced	ous clay				
15—	SB-10-13.5		16.7		Orange, tan micaceous clay w (wet ~15 ft. bgs	u/ tan saprolit)		erminated @ ~16 ft.		
20-										
25-										
E	PS	S								

PROJ	ECT:			Grantv	ille Mill	I	Log of	Boring No).	SB-11/7	「W-1
SITE L	OCAT	ΓΙΟΝ:		Grantville,	GΔ	Т	OP OF C	ASING ELEV	'ATION (ft):		N/A
DRILL	ING C	ONTRACTO	DR:		-Sampling	D.	DATE STARTED:			DATE FINISHED:	
		IETHOD:		Direct Pus		T	OTAL DE	PTH (ft.):	/19/2016	SCREEN INTERV	
		QUIPMENT) WATER AT	TIME	CASING (ft.):	15-25
			•		erProbe 9100-VTR		F BORIN		13	WELL	0-15
		METHOD:			e w/ Acetate Liner		IAMETER		2.25	DIAMETER (In.):	0.75
LOGG	SED B	Y: SAMPLES		Alex Testo	off						
DEPTH (feet)			PID Reading		DESCRIPTION				DETA	ONSTRUCTION ILS AND/OR	
DE (fe	Sample No.	Location	Rea	Ground Surface					DRILLIN	IG REMARKS	
0 _	1-2				Wood floor Fill material		/				
_	SB-11-2		22.3		Orange, brown micac	eous clay					
5-			25		Orange, tan micaced	-					
10-	SB-11-12		27.8		Orange micaceous clay w/ tan saprolite						
15—	SB-		29.1		Tan, dark brown, micaceous clayey saprolite (wet ~13 ft. bgs)				Pre-pack	ked screen.	
- - 20-	-		40.2 50.9		Tan, brown sapr	rolite				ısh refusal @ ~20) ft.
-	-								bgs.		
25— -	-										
30-											
35—											
40-											
45—	-										
E	PS	S									

PROJ	ECT:			Grantv	ille Mill	Lo	Log of Boring No. SB-12			B-12
SITE L	.OCAT	ION:		Grantville,		TC	P OF CASING ELEVA	TION (ft):		N/A
DRILL	ING C	ONTRACTO)R·		-Sampling	DA ⁻	TE STARTED:	40/0040	DATE FINISHED:	
		ETHOD:		Direct Pus		TO.	TAL DEPTH (ft.):	19/2016	SCREEN INTERVAL	/2016 - (ft.):
		QUIPMENT				DEI	PTH TO WATER AT 1	16 TME	CASING (ft.):	N/A
		METHOD:	-		erProbe 9100-VTR		BORING (ft.):	15	WFII	N/A
					e w/ Acetate Liner	DIA	AMETER (In.):	2.25	DIAMETER (In.):	N/A
LOGG		r: AMPLES		Alex Testo						
PTH ple ple plo					DESCRIPTION			DETAI	NSTRUCTION LS AND/OR	
	Sam	Location	Reg	Ground Surface				DRILLIN	IG REMARKS	
0					Wood floor Fill material					
_	SB-12-2		0		Orange micaceou	ıs clay				
5	SB-12-13.5		7.9		Orange, brown micaceous clay			Boring te	rminated @ ~16 ft.	
20-								bgs.		
25-										
E	PS	S						•		

PROJ	ECT:			Grantv	ille Mill	Log	g of Boring No.	SB-13			
SITE L	OCAT	TON:		Grantville,	GA	ТОР	OF CASING ELEVATION (ft):	N/A			
DRILL	ING C	ONTRACTO	R:		-Sampling	DATE	STARTED: 5/19/2016	DATE FINISHED: 5/19/2016			
DRILL	ING M	IETHOD:		Direct Pus		TOTA	AL DEPTH (ft.): 16	SCREEN INTERVAL (ft.):			
DRILL	ING E	QUIPMENT	:	AMS Pow	erProbe 9100-VTR	DEP ⁻	DEPTH TO WATER AT TIME OF BORING (ft.): OF BORING (ft.): 13				
SAMP	LING I	METHOD:		Macrocore	e w/ Acetate Liner	BOR	FHOI F	WELL DIAMETER (In.): N/A			
LOGGED BY: Alex Testoff							<u> </u>	DI WILL TELL (III.).			
PTH	Samble Sample No. PID Pocation			DESCRIPTION			ONSTRUCTION LS AND/OR				
DEI (fe	0, 0,0			Ground Surface				IG REMARKS			
0					Wood floor Fill material						
-	SB-13-2		0.3		Orange, red micaceou	ıs clay					
5			0.5								
10-	SB-13-12		0.9		Red, orange, tan micace	ous clay					
15— -			1.2		Brown, red, tan micaceous cla bgs)	y (wet ~13 f		rminated @ ~16 ft.			
20-											
25-											
E	PS	S									

PROJ	ECT:			Grantv	ille Mill	Log	of Boring No.	SB-14
SITE L	OCAT	TON:		Grantville,	GA	ТОР	OF CASING ELEVATION (ft):	N/A
DRILL	ING C	ONTRACTO	DR:		-Sampling	DATE	STARTED: 5/19/2016	DATE FINISHED:
DRILL	ING M	ETHOD:		Direct Pus	· · ·	ТОТА	L DEPTH (ft.):	SCREEN INTERVAL (ft.):
DRILL	ING E	QUIPMENT	:	AMS Pow	erProbe 9100-VTR	DEPT OF BO	TH TO WATER AT TIME DRING (ft.): 13	CASING (ft.):
SAMP	LING I	METHOD:			e w/ Acetate Liner	BORE	HOLE	WELL DIAMETER (In.): N/A
LOGG	LOGGED BY: Alex Testoff							Junual Per (m.).
oTH et)	SAMPLES			DESCRIPTION			ONSTRUCTION ILS AND/OR	
DEF (fe	Cheet No. Pocation Reading Reading Page 1		Ground Surface	e Elevation (ft): N/A		DRILLII	NG REMARKS	
0					Wood floor Fill material			
-	SB-14-2		1.6		Orange micaceous	clay		
5-			0.8		Orange, tan micaceo	us clay		
10-	SB-14-12		1.5		Orange micaceous clay w/ ta 12 ft. bgs	ın saprolite @		
- - 15—	SB-1		1.3		Tan, pink, white clayey saprol bgs)	ite (wet ~13 f		erminated @ ~16 ft.
20-								
- 25— - -								
E	PS	S						

PROJ	ECT:			Grantv	ille Mill	Lo	og of	Boring No.		SB-15	
SITE L	OCAT	ION.				то	P OF C	CASING ELEVA	TION (ft):	N/A	
			ND:	Grantville,				RTED: DATE FINISHED:			
		ONTRACTO)K:		-Sampling	TOT	ΓAL DE	5/ PTH (ft.):	19/2016	5/19/2016 SCREEN INTERVAL (ft.):	
		IETHOD:		Direct Pus				O WATER AT 1	16	CASING (ft.):	
DRILL	ING E	QUIPMENT		AMS Pow	erProbe 9100-VTR	OF	BORIN	IG (ft.):	13	N/A	
SAMPLING METHOD: Macrocore w/ Acetate Liner					e w/ Acetate Liner	DIA	REHOL METE	R (In.):	2.25	WELL DIAMETER (In.): N/A	
LOGG	ED B			Alex Testo	off			T			
SAMPLES Building			ing		DESCRIPTION					DNSTRUCTION LS AND/OR	
Sample (feet) (No. Or			PIE	Ground Surface	e Elevation (ft): N/A		-			IG REMARKS	
0	,				Wood floor						
-	2				Fill material						
5— -	SB-15-2		1.5		Red, orange micaced	ous clay					
10-	SB-15-12		2.7		Red micaceous clay w/ wh	nite saprolite)				
15			3.1		Tan, orange micaceous clay ((wet ~13 ft. I	ogs)		Boring te bgs.	rminated @ ~16 ft.	
20-											
25— 											
E	PS	S			1				<u> </u>		

PROJ	ECT:			Grantv	ille Mill	Lo	og of Boring No.		SE	3-16
SITE L	OCAT	TON:		Grantville,	GA	то	P OF CASING ELEV	ATION (ft):		N/A
DRILL	ING C	ONTRACTO	R:		-Sampling	DAT	TE STARTED:	19/2016	DATE FINISHED: 5/10	/2016
DRILL	ING M	IETHOD:		Direct Pus	_	TOT	TAL DEPTH (ft.):	16	SCREEN INTERVA	L (ft.): N/A
DRILL	ING E	QUIPMENT	:	AMS Pow	erProbe 9100-VTR	DEF	PTH TO WATER AT BORING (ft.):		CASING (ft.):	N/A
SAMP	LING I	METHOD:			e w/ Acetate Liner	ВО	REHOLE METER (In.):		WELL DIAMETER (In.):	N/A
LOGGED BY: Alex Testoff									DIV UNIE 1 ETC (III.):	
TH et)	SAMPLES (feet) Sample No. No Location BID Reading				DESCRIPTION				ONSTRUCTION ILS AND/OR	
DEF (fe	or Ground Surface			Ground Surface	e Elevation (ft): N/A				IG REMARKS	
0					Wood floor Fill material					
5—	SB-16-2		21.3		Orange, tan micaced	ous clay				
10-	SB-16-12		29.4		Orange, tan micaceous clay	w/ tan sapro	blite			
15— - -					Red, pink, white saprolite (w	vet ~14 ft. bç	gs)	Boring te	rminated @ ~16 ft	
20-										
25-										
E	PS	S								

MW-50

				BORING LOG		GENERAL DATA
DEPTH FT.	BLOWS PER 6"	'N' VALUE	SAMPLE NO.	DESCRIPTION OF MATERIAL 4" pvc	% RECOVER	FILE NO. 14-40-1081 CLIENT: C.C.B.G. SITE: Gantville Ga HOLE NO. MW SSHEET 1 OF LOCATION OF BORING per plant?
10	233		(1) (2) (3)			CASING: INSIDE DIAMETER
20	2 5 7	12	5			GWL: DATE 1st DATE 2nd ACTUAL ELEVATION DRILLING CREW: JDT TBC 5M4
30	33,34	7	3			REMARKS:

A0154B (1/92)

ARDAMAN & ASSOCIATES, INC.

Geotechnical, Environmental and Materials Consultants

FILE NO.	14-40-1081	BORI	NG NO.	m	W-50	SHEET 2 OF
DEPTH FT. BLOWS PER 6" 'N' VALUE SAMPLE NO.	DESCRIPTION OF MATERIAL	% RECOVERY	DEPTH FT. BLOWS PER 6"	'N' VALUE	SAMPLE NO.	DESCRIPTION OF MATERIAL
15 29 9						
40 0 32			75			
50 5" (1)	- harddrilling @42		80		,	
	- softer Qyb'				, a	
50 6 11			85			
10 55 14 26 (13	· · · · · · · · · · · · · · · · · · ·	ă.	20			
55 4 26 (13			90			
60 20 35 1)	W .	95			
			30	A A A		
65			100			
70			105		19.5	

APPENDIX D Monitoring Well Sampling Forms

Monitoring Well Sampling Form

38,10

EPS Project	: Grantville l	VIiII			_			Date: 6-1	21-16
Well ID: Sampling Perf	MW-	Alex Testoff				Fie	eld Conditions:		
Well Construct		The Annual Control of the Control of	1 arount				General Condi	tion of Well:	
Well Labeled:	NU	Well Cap:	TO ONE	yes	Well Locked:	10	Condition of s	urrounding are	a:
Well depth from		45,16			*		Depth to Water	r from TOC:	10.70
Well Diameter	(in):		2"	24		Metho	d of measure:		eter
		Vell depth from				ı	34	.46	
		(.16 for 2")(.653			5.5				′olumes (gal): โ๒-5Ч
Purging Metho		On	flow, low	-tress			Start of Purge:	1100	
Sample Method	d:	(ownale	2007 - 2007 - 100		Samp	ole Parameters:	well	development
	Volume		· · · · · · · · · · · · · · · · · · ·		Cond.	Turbidity		Depth to	
Time	(gal)	Temp (°C)	pН	ORP (mV)	(mS/cm)	(NTU)	DO (mg/L)	Water (ft)	Comments
14:13	15.0	27.69	5.63	346	0.06	16.8	5.36	38.10	
14:25	13.75	94.15	5.84	327	0.057	27.7	5.90	37.9	38.4
14:35	16.25	25.65	5.81	330	0.058	17.9	5.61	38.35	
14:45	16.75	24.37	5.83	335	0.056	16.5	0.41	38.40	
14:53	17.25	24.0+	5.75	330	0.057	17.2	6.14	38.8	
15:05	17.75	23.61	5.51	343	0.056	3.76	5.97	40.90	39.6
15:15	18.25	24.78	5.83	310	0.061	4.77	0.34	40.90	
	- 10 to 10 t		W/W			<u> </u>			
	222-22-23								
							ge 120 - 110 - 110 - 11		
					 	e			
			L						

Sample ID:_____

Time Collected:_____

Technician Signature_____

Monitoring Well Sampling Form

EPS Project:	Grantville N	Viill				Date: 6-21-16					
Well ID:	TW-1					Fie	eld Conditions:	indeop			
Sampling Perfo	ormed By:	Alex Testoff				75	Å.				
Well Construct	tion:	1	lush mount		SW 22		General Condit	-	9000		
Well Labeled:	No	Well Cap:		401	Well Locked:		Condition of su				
Well depth fron		20,12		1		Depth to Water from TOC: 12.39					
Well Diameter ((in):		3/4"			Metho	d of measure:		eter		
Height (Ht) of w	water in well (W	Vell depth from	TOC - Static le	vel from TOC):		· V	7.73				
Volume of water	er in well (Ht. x	(.16 for 2")(.653	for 4")(1.469 t	for 6"):	0.18	gal '		Three Well Vo	olumes (gal): () 53		
Purging Metho		low ft	w. lov st	resu		Time @	Start of Purge:		427 %		
Sample Method			nhale direct			Samp	le Parameters:		development		
	Valores				Cond.	Turbidita		Donth to			
	Volume			000 /	-0.00 KINDOON 1000A	Turbidity	DC / "	Depth to	0		
Time	(gal)	Temp (°C)	рН	ORP (mV)	(mS/cm)	(NTU)	DO (mg/L)	Water (ft)	Comments		
10:4)	10-45	22.38	5.10	93	0.057	2,03	4.47				
11:55	2.00	21,05	4.78	105	0.045	1.29	3.38				
12,02	7.75	20 35	4.69	126	0.043	0.82	3,70				
500 AND ALL AN	2-50	20.35	4.69	176	0.043	0.83	3.70				
12:13	2.50	20,23	4.64	134	0.043	0.47	3.64				
	2.75	20.12	4.59	141	0.043	0.48	3.64				
\$											
	1							<u> </u>			
					<u> </u>						
	<u> </u>						—				
	!				\vdash		\vdash				
	<u> </u>										
											
		-					 				
	—						 				
									L		

Sample ID:_____

Time Collected:_____

Monitoring Well Sampling Form

EPS Project: Grantville l	Лill		Date: 6-22-16					
Well ID:			Field Conditions: ~80°F, overcast partly cloudy					
Sampling Performed By:	Alex Testoff							
Well Construction:	flosh one on t		General Condition of Well: 4000					
Well Labeled: No	Well Cap: Yes	Well Locked:	d: no Condition of surrounding area: '9(ass					
Well depth from TOC:	45.16		Depth to Water from TOC: 1(,06	_				
Well Diameter (in):	2"		Method of measure: Water Level Meter	\neg				
Height (Ht) of water in well (W	ell depth from TOC - Static level from TOC	C):	34.10					
Volume of water in well (Ht. x	(.16 for 2")(.653 for 4")(1.469 for 6"):		Three Well Volumes (gal): 16-37	_				
Purging Method:	low flow low volume		Time @ Start of Purge: 0:23					
Sample Method:	1		Sample Parameters: VCs	_				
5				_				

Time	Volume (gal)	Temp (°C)	рН	ORP (mV)	Cond. (mS/cm)	Turbidity (NTU)	DO (mg/L)	Depth to Water (ft)	Comments
1050	1.25	28-70	5.62	374	0-096	150	5.40	16.98	purging @ slovest possible rate
1055	1.5	28.33	5.80	364	0-080	135	5.20		* cleaned out Heriba after
1110	1.75	26-21	6-15	795	0.054	57.4	4.86	17.00	10:55 reading
1120	2.0	26-34	6.06	309	0.054	46.9	4.48	16-96	,
1130	2.5	2219	6.08	305	0.056	35.6	4-17	17.01	
1140	3.0	24-09	6.06	303	0.055	29.5	4.00	17.50	
150	3.25	23.03	6.09	300	6-057	10.9	3.24	17-45	
ATT 1200	3.5	22-99	6.08	297	0.057	9.11	3.59	17.38	
1210	3.75	24.16	6-08	298	0.057	7.68	3.50	17-34	

Sample ID: 16(73-M4-16

Time Collected: 12:15

Technician Signature_

alex Telf

Monitoring Well Sampling Form

									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
EPS Project	: Grantville l	VIII		- 4-		Date: (0/27/2016)								
Well ID:	TW-1		2.60	4		Field Conditions: Indo								
Sampling Performed By: Alex Testoff						- Cond								
Well Construction:						General Condition of Well:								
Well Labeled: VO Well Cap: Ves Well Locked:														
Well depth from TOC: 20.12						Depth to Water		12.4						
Well Diameter (in): 2/4						Metho	d of measure:	Water Level Me	eter '\					
Height (Ht) of water in well (Well depth from TOC - Static level from TOC):							7.7 Market 1970							
Volume of wat	er in well (Ht. x	(.16 for 2")(.653	for 4")(1.469	for 6"):	0018	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			olumes (gal): 0.53					
Purging Metho	od:	Low flow	~ 102/1	10/Line	136年与2016年	(Start of Purge:	12:37	\$12.					
Sample Metho	d:	direct 1	Strow		1. The second se	Samp	le Parameters:	VOCS	V					
					1914			1.38						
	Volume				Cond.	Turbidity		Depth to						
T!	TOTAL PROPERTY OF THE PARTY OF	Tamm (°C)	ьU	ORP (mV)	(mS/cm)	(NTU)	DO (mg/L)	Water (ft)	Comments					
Time	(gal)	Temp (°C)	pH					Water (It)						
12:37	20.15	30.00	534	94	0.035	339	3.17		+ Cleaned out Horrha					
12-51	0.5	ZU.]]	5-8)	127	0.042	10.3	292		after 12:37 reading					
12:68	0.75	1972	5.28	137	0.042	3.23	213	*						
1303	6.875	19.60	5.24	139	0.042	3.49	2.10							
1308	1-0	19,54	5.27	144	0.042	2.92	2.07							
1313	1.125	19.47	5.27	150	0.043	2.68	2-07	12.70	\$ DTW measured after purgel					
							I	51	comple sucher local sucher					

12:37	20.12	30.00	534	94	0.035	639	5.1+		+ Clean Wort Horrba
12-51	0.5	70.11	5.8)	127	0.042	10.3	292		after 12:37 reading
12:68	0.75	19 72	5.28	137	0.042	3.23	213		
1303	6.875	19.60	5.24	139	0.042	3.49	2.10		
1308	1-0	19,54	5.27	144	0.042	2.92	2.07		A
1313	1.125	19.47	5.27	150	0.043	2.68	2-07	12.70	& DTW measured after purgel
							_		sample water level nutur
	377								to wide to fix down
1 to 12.				- Was - 181					wall we tubing
								V	, ,
					1 1				
					2.4	1.			
					40				
1 1								His exercise	
	¥.								

Sample ID: [6173-TW-1

Time Collected: 315

Technician Signature__

alefteth

APPENDIX E Groundwater Laboratory Analytical Reports

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

May 26, 2016

Aaron Williams
Environmental Planning Specialists, Inc.
1050 Crown Pointe Parkway, Suite 550
Atlanta GA 30338

TEL: (404) 315-9113 FAX: (404) 315-8509

RE: Grantville Mill

Dear Aaron Williams: Order No: 1605G05

Analytical Environmental Services, Inc. received 2 samples on 5/19/2016 4:20:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Air & Emissions for Volatile Organics effective 07/01/15-06/30/16.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Chantelle Kanhai

CKAnhav

Project Manager

APPENDIX

Compound	CAS#	Alternate Name	ТО-	ТО-	SOP
			14A	15	
Acetone	67-64-1				X
Allyl chloride	107-05-1	3-Chloropropene		X	
Benzene	71-43-2		X	X	
Benzyl chloride	100-44-7		X	X	
Bromodichloromethane	75-27-4	Dichlorobromomethane			X
Bromoform	75-25-2	Tribromomethane		X	
Bromomethane	74-83-9	Methyl bromide	X	X	
1,3-Butadiene	106-99-0			X	
Carbon disulfide	75-15-0			X	
Carbon tetrachloride	56-23-5		X	X	
Chlorobenzene	108-90-7		X	X	
Chloroethane	75-00-3	Ethyl chloride	X	X	
Chloroform	67-66-3	,	X	X	
Chloromethane	74-87-3	Methyl chloride	X	X	
Cyclohexane	110-82-7				X
Dibromochloromethane	124-48-1	Chlorodibromomethane			X
1,2-Dibromoethane	106-93-4	EDB/Ethylene dibromide	X	X	
1,2-Dichlorobenzene	95-50-1	o-Dichlorobenzene	X	X	
1,3-Dichlorobenzene	541-73-1	<i>m</i> -Dichlorobenzene	X	X	
1,4-Dichlorobenzene	106-46-7	p-Dichlorobenzene	X	X	
Dichlorodifluoromethane	75-71-8	Freon-12	X		
1,1-Dichloroethane	75-34-3		X	X	
1,2-Dichloroethane	107-06-2		X	X	
1,1-Dichloroethene	75-35-4	1,1-Dichloroethylene	X	X	
cis-1,2-Dichloroethene	156-59-2	cis-1,2-Dichloroethylene	X	X	
trans-1,2-Dichloroethene	156-60-5	<i>trans</i> -1,2-Dichloroethylene		X	
1,2-Dichloropropane	78-87-5	,	X	X	
cis-1,3-Dichloropropene	10061-01-5		X	X	
trans-1,3-	10061-02-6		X	X	
Dichloropropene					
1,2-Dichloro-1,1,2,2-	76-14-2	Freon-114	X		
tetrafluoroethane					
1,4-Dioxane	123-91-1	1,4-Diethylene oxide		X	
Ethyl acetate	141-78-6	Acetic acid, ethyl ester			X
Ethylbenzene	100-41-4	, ,	X	X	
4-Ethyltoluene	622-96-8		 		X
n-Heptane	142-82-5	Heptane			X
Hexachlorobutadiene	87-68-3	Hexachloro-1,3-butadiene	X	X	

n-Hexane	110-54-3	Hexane		X	
Compound	CAS#	Alternate Name	TO-	ТО-	SOP
_			14A	15	
2-Hexanone	591-78-6	Methyl butyl ketone			X
Methylene chloride	75-09-2	Dichloromethane	X	X	
Methyl tert-butyl ether	1634-04-4	MTBE		X	
Methyl ethyl ketone	78-93-3	MEK/2-Butanone		X	
Methyl isobutyl ketone	108-10-1	4-Methyl-2-pentanone		X	
2-Propanol	67-63-0	Isopropanol/Isopropyl alcohol			X
Propene	115-07-1	Propylene			X
Styrene	100-42-5			X	
1,1,2,2-Tetrachloroethane	79-34-5		X	X	
Tetrachloroethene	127-18-4	Tetrachloroethylene	X	X	
Tetrahydrofuran	109-99-9				X
Toluene	108-88-3			X	
1,2,4-Trichlorobenzene	120-82-1			X	
1,1,1-Trichloroethane	74-55-6			X	
1,1,2-Trichloroethane	79-00-5			X	
Trichloroethene	79-01-6	Trichloroethylene		X	
Trichlorofluoromethane	75-69-4	Freon-11	X		
1,1,2-Trichloro-1,2,2-	76-13-1	Freon-113	X		
Trifluoroethane					
1,2,4-Trimethylbenzene	95-63-6		X	X	
1,3,5-Trimethylbenzene	108-67-8		X	X	
2,2,4-Trimethylpentane	540-84-1	Isooctane		X	
Vinyl acetate	108-05-04			X	
Vinyl bromide	593-60-2	Bromoethene		X	
Vinyl chloride	75-01-4	Chloroethene	X	X	
Xylenes, Total	1330-20-7		X	X	
m/p-Xylene	179601-23-1		X	X	
o-Xylene	95-47-6		X	X	

VAPOR/AIR CHAIN OF CUSTODY

Work Order #: 1605605

3080 Presidential Drive, Atlanta GA 30340-3704

TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

Page 1 of 2

Com	pany:	Address:				Bottle O	bedon #.			1							
	ipany: EPS Dhc.	1050	Cous	Pointe Pl	ويبتأ	1				Turnarou	nd II	me (Cire	ele One	<i>à</i>):	Stan	ndard	3 Day Rush
		Siz- 5	550		_	1 44	1017										
Phor	1P'	AHan-	m, GA	<i>3</i> 0338	~		- 7								2 Da	ay Rush	Other
0	ne: 404 315 9113		· · · · · · · · · · · · · · · · · · ·						Canister	Canister	. 1	ANALY	SIS RJ	EQUES	STED	<u> </u>	
Samp	pled by: Alex Testoft				Sample Capister Flow Press				Pressure	;			T				
#	Sample ID	Samp	ole Start '	Sample	e Finish	Matrix*	Serial #	Controller ID	In Field ("Hg)	In Field ("Hg)	TO-15					R	Remarks
	Sumple 115	Date	Time (24hr)	Date	Time (24 hr)				Start	Stop	T						
I	16139-IA-1	5-18-1L		5-19-16	1612	IA	17458	01158	>30	4	X			+++			
2	16139-IA-2	5-18-16	1017	5-19-16			18892	01151	>30	6.5	X		+	+++			
3							100 12		750								
4													+-	++			
5													+				
6												_					w
7											\vdash			-		<u></u>	
8													_	+			
9								\vdash		<u> </u>			_	-			#
10											\vdash						
	L INSTRUCTIONS/COMMENTS:	RELINQUISH	TED BA		E/TIME:	25050 (22				<u></u> !	Ш						
f special	lized list is required, list analytes here:	1.60 64		5-19-	JIIME:	RECEIVED E	****		E/TIME:	PROTECTNA	3.677		PRO.	JECT INF	FORMATION	N	
		1004 Jst 2:	TV_	[620		L JANN	an Ahu	Uiz 5/19/	lo 4:20	PROJECT NA	G!	artuil	le 1	1111			·
		2: I			ļ	2: (V	·	PROJECT#:							
	ļ	3:				3:				SITE ADDRES	ss: /	STAN		/_ A			
	3.						ŀ			2!Alfy	1511~1	<u>し</u> た		<u>-</u>			
	SHIPMENT METHOD							SEND REPOR	TTO:	aville	MS(C)	erupla	11/19.co.	<u>~ &</u>	***************************************		
		i	OUT /	/ /	J	VIA;		INVOICE TO: (IF DIFFEREN	√T FRO	M ABOVE) 	Benv	planning	room			
			IN /	1	-> <u>-</u> -	VIA:			Į,	PO#:							
CCIENT FedEx UPS				COURIER		f	STATE PROGI	RAM (i	f any):		E-	-mail? Y/N	Fax? Y				
AMPLES RECEIVED AFTER 3PM OR SATURDAY ARE CONSIDERED AS RECEIVED ON THE N							lo	OUOTE#:						GE: I II			
isit ou	r website www.aesatlanta.com to chec	JAY ARE CO	NSIDERED A	AS RECEIVE	D ON THE N	JEXT BUSIN	ESS DAY; IF N	O TAT IS MAR	CKED ON CO	C, AES WILI	. PROC	EED AS S'	TANDAR	d TAT.		*	*
	to care a control to chec	.K on the sta	tus of your	resuits, place	è bottle ord	ers, etc.											

Work	Order #:	100

ANALYTICAL ENVIRONMENTAL SERVICES, INC VAPOR/AIR FIELD TEST DATA SHEET 3080 Presidential Drive, Atlanta GA 30340-3704 TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188 Company: Address: Project Name:

E	PS Inc.		our Pointe	- Plevy	Site Address: of Industrial Way Grantville, GA								Project Number:			
		Ste 330	a ,64 <i>3</i> 03	338	Site Addr	ess: 41	Indust	dal Wa	بر د	ce of sil	a (- 1		 ,	····		
Phor	e: 404 315 9113	Fax:		11		*		- 1	SAM	PLING	NFORM	ATIO	N	-		
Samı	oled by: Alex Testalt	Signature	alex 13	洲	Sample Start									Sample Stop		
			Flow	T-76			Canister	Flow	Temp	erature		T T	Canister	Flow	Temp	erature
#	Sample ID	Canister Serial #	Controller ID#	Cert. ID#	1	Time (24hr)	Pressure in Field ("Hg)	Control Readout (mL/min)	Interior (°F)	Ambient (°F)	Date	Time (24hr)	Pressure in Field ("Hg)	Readout	Interior (°F)	
1	16139- IA-1	17458	01158	223)156	5-18-16	1012	>30	24 hr.	68		5-19-16	1012	(Hg) 식	(mL/min) 24 hr	68	
2	16139- IA-Z	18892	01151	221285	5-18-16	1017	>30	2740	68		5-19-16			24 hr	68	
3															***	
4																
5																
6																
7		· · - · · ·														
8															··	
9								-								
10																
Date	Shipped Out From Lab: Oly	+ FAH) 16z 5-19.	E	Field Note	es:								•		
Date	Received Back To Lab:	a thil			Client				1864 			WW.	****			
	her Conditions Lr ent Temp Avg:	door	V		-	<u></u> -								****		
Ambi	ent Temp High/Low: or Air Temp Avg:				-											
Baror	netric Pressure: Speed/Direction:				_	***		•						78.		
Other																

Client: Environmental Planning Specialists, Inc.

Project: Grantville Mill
Lab ID: 1605G05

Case Narrative

Date:

26-May-16

Volatiles Organic Compounds Analysis by Method TO-15:

Benzene was detected in Method Blank 224402 at 0.29 ppbv which was above reporting limit of 0.2 ppbv resulting in "B" qualified data for the Batch QC samples. Associated sample values were less than reporting limit and data is reportable with high bias.

TO-15 Report

Date:

26-May-16

Client: Environmental Planning Specialists, Inc. Client Sample ID: 16139-IA-1

Project Name: Grantville Mill Collection Date: 5/19/2016 10:12:00 AM

Lab ID: 1605G05-001 **Matrix:** Air

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Toxic Organic Compounds in Air by GCMS	TO-15			(TO)-15)			
1,1,1-Trichloroethane	BRL	1.1		ug/m3	224402	2	05/25/2016 15:15	MD
1,1,2,2-Tetrachloroethane	BRL	1.4		ug/m3	224402	2	05/25/2016 15:15	MD
1,1,2-Trichloroethane	BRL	1.1		ug/m3	224402	2	05/25/2016 15:15	MD
1,1-Dichloroethane	BRL	0.81		ug/m3	224402	2	05/25/2016 15:15	MD
1,1-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 15:15	MD
1,2,4-Trichlorobenzene	BRL	1.5		ug/m3	224402	2	05/25/2016 15:15	MD
1,2,4-Trimethylbenzene	BRL	0.98		ug/m3	224402	2	05/25/2016 15:15	MD
1,2-Dibromoethane	BRL	1.5		ug/m3	224402	2	05/25/2016 15:15	MD
1,2-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 15:15	MD
1,2-Dichloroethane	BRL	0.81		ug/m3	224402	2	05/25/2016 15:15	MD
1,2-Dichloropropane	BRL	0.92		ug/m3	224402	2	05/25/2016 15:15	MD
1,3,5-Trimethylbenzene	BRL	0.98		ug/m3	224402	2	05/25/2016 15:15	MD
1,3-Butadiene	BRL	0.44		ug/m3	224402	2	05/25/2016 15:15	MD
1,3-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 15:15	MD
1,4-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 15:15	MD
1,4-Dioxane	BRL	0.72		ug/m3	224402	2	05/25/2016 15:15	MD
2,2,4-Trimethylpentane	BRL	0.93		ug/m3	224402	2	05/25/2016 15:15	MD
2-Butanone	1.4	0.59		ug/m3	224402	2	05/25/2016 15:15	MD
2-Hexanone	BRL	0.82		ug/m3	224402	2	05/25/2016 15:15	MD
4-Ethyltoluene	BRL	0.98		ug/m3	224402	2	05/25/2016 15:15	MD
4-Methyl-2-pentanone	BRL	0.82		ug/m3	224402	2	05/25/2016 15:15	MD
Acetone	26	0.48		ug/m3	224402	2	05/25/2016 15:15	MD
Allyl chloride	BRL	0.63		ug/m3	224402	2	05/25/2016 15:15	MD
Benzene	BRL	0.64		ug/m3	224402	2	05/25/2016 15:15	MD
Benzyl chloride	BRL	1.0		ug/m3	224402	2	05/25/2016 15:15	MD
Bromodichloromethane	BRL	1.3		ug/m3	224402	2	05/25/2016 15:15	MD
Bromoform	BRL	2.1		ug/m3	224402	2	05/25/2016 15:15	MD
Bromomethane	BRL	0.78		ug/m3	224402	2	05/25/2016 15:15	MD
Carbon disulfide	BRL	0.62		ug/m3	224402	2	05/25/2016 15:15	MD
Carbon tetrachloride	BRL	1.3		ug/m3	224402	2	05/25/2016 15:15	MD
Chlorobenzene	BRL	0.92		ug/m3	224402	2	05/25/2016 15:15	MD
Chloroethane	BRL	0.53		ug/m3	224402	2	05/25/2016 15:15	MD
Chloroform	BRL	0.98		ug/m3	224402	2	05/25/2016 15:15	MD
Chloromethane	0.99	0.41		ug/m3	224402	2	05/25/2016 15:15	MD
cis-1,2-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 15:15	MD
cis-1,3-Dichloropropene	BRL	0.91		ug/m3	224402	2	05/25/2016 15:15	MD
Cyclohexane	BRL	0.69		ug/m3	224402	2	05/25/2016 15:15	MD
Dibromochloromethane	BRL	1.7		ug/m3	224402	2	05/25/2016 15:15	MD
Dichlorodifluoromethane	1.9	0.99		ug/m3	224402	2	05/25/2016 15:15	MD
Ethyl acetate	BRL	0.72		ug/m3	224402	2	05/25/2016 15:15	MD
Ethylbenzene	BRL	0.87		ug/m3	224402	2	05/25/2016 15:15	MD

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

Client:

TO-15 Report

Environmental Planning Specialists, Inc.

Client Sample ID: 16139-IA-1

Date:

26-May-16

Project Name: Grantville Mill **Collection Date:** 5/19/2016 10:12:00 AM

Lab ID: 1605G05-001 **Matrix:** Air

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
Toxic Organic Compounds in Air by GCMS	TO-15			(TO				
Freon-113	BRL	1.5		ug/m3	224402	2	05/25/2016 15:15	MD
Freon-114	BRL	1.4		ug/m3	224402	2	05/25/2016 15:15	MD
Hexachlorobutadiene	BRL	2.1		ug/m3	224402	2	05/25/2016 15:15	MD
m,p-Xylene	BRL	1.7		ug/m3	224402	2	05/25/2016 15:15	MD
Methyl tert-butyl ether	BRL	0.72		ug/m3	224402	2	05/25/2016 15:15	MD
Methylene chloride	3.0	0.69		ug/m3	224402	2	05/25/2016 15:15	MD
n-Heptane	BRL	0.82		ug/m3	224402	2	05/25/2016 15:15	MD
n-Hexane	BRL	0.70		ug/m3	224402	2	05/25/2016 15:15	MD
o-Xylene	BRL	0.87		ug/m3	224402	2	05/25/2016 15:15	MD
Propene	BRL	0.34		ug/m3	224402	2	05/25/2016 15:15	MD
Styrene	BRL	0.85		ug/m3	224402	2	05/25/2016 15:15	MD
Tetrachloroethene	BRL	1.4		ug/m3	224402	2	05/25/2016 15:15	MD
Tetrahydrofuran	3.2	0.59		ug/m3	224402	2	05/25/2016 15:15	MD
Toluene	0.87	0.75		ug/m3	224402	2	05/25/2016 15:15	MD
trans-1,2-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 15:15	MD
trans-1,3-Dichloropropene	BRL	0.91		ug/m3	224402	2	05/25/2016 15:15	MD
Trichloroethene	BRL	1.1		ug/m3	224402	2	05/25/2016 15:15	MD
Trichlorofluoromethane	BRL	1.1		ug/m3	224402	2	05/25/2016 15:15	MD
Vinyl acetate	BRL	0.70		ug/m3	224402	2	05/25/2016 15:15	MD
Vinyl bromide	BRL	0.87		ug/m3	224402	2	05/25/2016 15:15	MD
Vinyl chloride	BRL	0.51		ug/m3	224402	2	05/25/2016 15:15	MD
Xylenes, Total	BRL	2.6		ug/m3	224402	2	05/25/2016 15:15	MD
Surr: 4-Bromofluorobenzene	96.8	70-130		%REC	224402	2	05/25/2016 15:15	MD

Qualifiers:

BRL Below reporting limit

> Greater than Result value

Narr See case narrative

NC Not confirmed

Estimated value detected below Reporting Limit

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

Client:

TO-15 Report

Environmental Planning Specialists, Inc. Client Sample ID: 16139-IA-2

Date:

26-May-16

Project Name: Grantville Mill **Collection Date:** 5/18/2016 10:17:00 AM

Lab ID: 1605G05-002 **Matrix:** Air

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Toxic Organic Compounds in Air by GCMS	TO-15			(TO)-15)			
1,1,1-Trichloroethane	BRL	1.1		ug/m3	224402	2	05/25/2016 16:13	MD
1,1,2,2-Tetrachloroethane	BRL	1.4		ug/m3	224402	2	05/25/2016 16:13	MD
1,1,2-Trichloroethane	BRL	1.1		ug/m3	224402	2	05/25/2016 16:13	MD
1,1-Dichloroethane	BRL	0.81		ug/m3	224402	2	05/25/2016 16:13	MD
1,1-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 16:13	MD
1,2,4-Trichlorobenzene	BRL	1.5		ug/m3	224402	2	05/25/2016 16:13	MD
1,2,4-Trimethylbenzene	BRL	0.98		ug/m3	224402	2	05/25/2016 16:13	MD
1,2-Dibromoethane	BRL	1.5		ug/m3	224402	2	05/25/2016 16:13	MD
1,2-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 16:13	MD
1,2-Dichloroethane	BRL	0.81		ug/m3	224402	2	05/25/2016 16:13	MD
1,2-Dichloropropane	BRL	0.92		ug/m3	224402	2	05/25/2016 16:13	MD
1,3,5-Trimethylbenzene	BRL	0.98		ug/m3	224402	2	05/25/2016 16:13	MD
1,3-Butadiene	BRL	0.44		ug/m3	224402	2	05/25/2016 16:13	MD
1,3-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 16:13	MD
1,4-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 16:13	MD
1,4-Dioxane	BRL	0.72		ug/m3	224402	2	05/25/2016 16:13	MD
2,2,4-Trimethylpentane	BRL	0.93		ug/m3	224402	2	05/25/2016 16:13	MD
2-Butanone	1.6	0.59		ug/m3	224402	2	05/25/2016 16:13	MD
2-Hexanone	BRL	0.82		ug/m3	224402	2	05/25/2016 16:13	MD
4-Ethyltoluene	BRL	0.98		ug/m3	224402	2	05/25/2016 16:13	MD
4-Methyl-2-pentanone	BRL	0.82		ug/m3	224402	2	05/25/2016 16:13	MD
Acetone	28	0.48		ug/m3	224402	2	05/25/2016 16:13	MD
Allyl chloride	BRL	0.63		ug/m3	224402	2	05/25/2016 16:13	MD
Benzene	BRL	0.64		ug/m3	224402	2	05/25/2016 16:13	MD
Benzyl chloride	BRL	1.0		ug/m3	224402	2	05/25/2016 16:13	MD
Bromodichloromethane	BRL	1.3		ug/m3	224402	2	05/25/2016 16:13	MD
Bromoform	BRL	2.1		ug/m3	224402	2	05/25/2016 16:13	MD
Bromomethane	BRL	0.78		ug/m3	224402	2	05/25/2016 16:13	MD
Carbon disulfide	BRL	0.62		ug/m3	224402	2	05/25/2016 16:13	MD
Carbon tetrachloride	BRL	1.3		ug/m3	224402	2	05/25/2016 16:13	MD
Chlorobenzene	BRL	0.92		ug/m3	224402	2	05/25/2016 16:13	MD
Chloroethane	BRL	0.53		ug/m3	224402	2	05/25/2016 16:13	MD
Chloroform	BRL	0.98		ug/m3	224402	2	05/25/2016 16:13	MD
Chloromethane	1.1	0.41		ug/m3	224402	2	05/25/2016 16:13	MD
cis-1,2-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 16:13	MD
cis-1,3-Dichloropropene	BRL	0.91		ug/m3	224402	2	05/25/2016 16:13	MD
Cyclohexane	BRL	0.69		ug/m3	224402	2	05/25/2016 16:13	MD
Dibromochloromethane	BRL	1.7		ug/m3	224402	2	05/25/2016 16:13	MD
Dichlorodifluoromethane	1.9	0.99		ug/m3	224402	2	05/25/2016 16:13	MD
Ethyl acetate	BRL	0.72		ug/m3	224402	2	05/25/2016 16:13	MD
Ethylbenzene	BRL	0.87		ug/m3	224402	2	05/25/2016 16:13	MD

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Client:

TO-15 Report

Environmental Planning Specialists, Inc. Client Sample ID: 16139-IA-2

Date:

26-May-16

Project Name: Grantville Mill Collection Date: 5/18/2016 10:17:00 AM

Lab ID: 1605G05-002 **Matrix:** Air

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Toxic Organic Compounds in Air by GCMS	TO-15			(TO				
Freon-113	BRL	1.5		ug/m3	224402	2	05/25/2016 16:13	MD
Freon-114	BRL	1.4		ug/m3	224402	2	05/25/2016 16:13	MD
Hexachlorobutadiene	BRL	2.1		ug/m3	224402	2	05/25/2016 16:13	MD
m,p-Xylene	BRL	1.7		ug/m3	224402	2	05/25/2016 16:13	MD
Methyl tert-butyl ether	BRL	0.72		ug/m3	224402	2	05/25/2016 16:13	MD
Methylene chloride	1.1	0.69		ug/m3	224402	2	05/25/2016 16:13	MD
n-Heptane	BRL	0.82		ug/m3	224402	2	05/25/2016 16:13	MD
n-Hexane	BRL	0.70		ug/m3	224402	2	05/25/2016 16:13	MD
o-Xylene	BRL	0.87		ug/m3	224402	2	05/25/2016 16:13	MD
Propene	BRL	0.34		ug/m3	224402	2	05/25/2016 16:13	MD
Styrene	BRL	0.85		ug/m3	224402	2	05/25/2016 16:13	MD
Tetrachloroethene	BRL	1.4		ug/m3	224402	2	05/25/2016 16:13	MD
Tetrahydrofuran	2.9	0.59		ug/m3	224402	2	05/25/2016 16:13	MD
Toluene	0.90	0.75		ug/m3	224402	2	05/25/2016 16:13	MD
trans-1,2-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 16:13	MD
trans-1,3-Dichloropropene	BRL	0.91		ug/m3	224402	2	05/25/2016 16:13	MD
Trichloroethene	BRL	1.1		ug/m3	224402	2	05/25/2016 16:13	MD
Trichlorofluoromethane	BRL	1.1		ug/m3	224402	2	05/25/2016 16:13	MD
Vinyl acetate	BRL	0.70		ug/m3	224402	2	05/25/2016 16:13	MD
Vinyl bromide	BRL	0.87		ug/m3	224402	2	05/25/2016 16:13	MD
Vinyl chloride	BRL	0.51		ug/m3	224402	2	05/25/2016 16:13	MD
Xylenes, Total	BRL	2.6		ug/m3	224402	2	05/25/2016 16:13	MD
Surr: 4-Bromofluorobenzene	94.8	70-130		%REC	224402	2	05/25/2016 16:13	MD

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Sample Receipt Checklist for Air Canisters

Client EPS	Work Order Number /bas 605
Checklist completed by Mullinary	5/19/2016
Signature	Date
Carrier name: FedExUPSCourierClient	US MailOther
Shipping container in good condition? Custody seals intact on shipping container? Chain of custody present? Chain of custody signed when relinquished and received	YesNo Not Present YesNo Not Present YesNo
Chain of custody agrees with sample labels? Field data sheets present? Sample containers intact? If no, explain:	Yes_No_Yes_No_Yes_No_
All samples received within holding time? Was TAT marked on the COC? Proceed with Standard TAT as per project history? All canisters received per Bottle Order issued?	Yes_No_ Yes_No_ Yes_No_ Not Applicable_ Yes_No_
See Case Narrative for resolution of the Non-Conform	tance.

Client: Environmental Planning Specialists, Inc.

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

Page 12 of 19

Project Name: Grantville Mill **Workorder:** 1605G05

Rpt Lim Reporting Limit

BatchID: 224402

Sample ID: MB-224402 Sample Type: MBLK	Client ID: TestCode: To	xic Organic Compound	ds in Air by GCM	1S TO-15	Uni Bat	ts: ppbv chID: 224402		ep Date: nalysis Date:	05/24/2016 05/24/2016	Run No: 3174 2 Seq No: 6841 5	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	f Val %RPD	RPD Limit	Qual
1,1,1-Trichloroethane	BRL	0.20									
1,1,2,2-Tetrachloroethane	BRL	0.20									
1,1,2-Trichloroethane	BRL	0.20									
1,1-Dichloroethane	BRL	0.20									
1,1-Dichloroethene	BRL	0.20									
1,2,4-Trichlorobenzene	BRL	0.20									
1,2,4-Trimethylbenzene	BRL	0.20									
1,2-Dibromoethane	BRL	0.20									
,2-Dichlorobenzene	BRL	0.20									
,2-Dichloroethane	BRL	0.20									
,2-Dichloropropane	BRL	0.20									
,3,5-Trimethylbenzene	BRL	0.20									
,3-Butadiene	BRL	0.20									
,3-Dichlorobenzene	BRL	0.20									
,4-Dichlorobenzene	BRL	0.20									
,4-Dioxane	BRL	0.20									
2,2,4-Trimethylpentane	BRL	0.20									
2-Butanone	BRL	0.20									
2-Hexanone	BRL	0.20									
l-Ethyltoluene	BRL	0.20									
-Methyl-2-pentanone	BRL	0.20									
Acetone	BRL	1.0									
Allyl chloride	BRL	0.20									
Benzene	0.2900	0.20									В
Benzyl chloride	BRL	0.20									
Bromodichloromethane	BRL	0.20									
Bromoform	BRL	0.20									
Qualifiers: > Greater than Resu	ılt value		< Less	than Result value			В	Analyte detected	in the associated method	blank	
BRL Below reporting lin	mit		E Estim	nated (value above quantit	ation range)		Н	Holding times for	r preparation or analysis	exceeded	
J Estimated value of	detected below Reporting Lim	iit	N Analy	yte not NELAC certified			R	RPD outside lim	its due to matrix	Page 12 of 19	

S Spike Recovery outside limits due to matrix

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill

1605G05

Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Workorder:

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

H Holding times for preparation or analysis exceeded

Page 13 of 19

R RPD outside limits due to matrix

Sample ID: MB-224402 SampleType: MBLK	Client ID:	Toxic Organic Compounds in Air by	GCMS TO-15	Un Bat	its: ppbv tchID: 224402		Date: 05/2 lysis Date: 05/2		Run No: 31742 Seq No: 68419	
Sample Type. WIBLK	resicoue.	Tome organic compounds in the sy	10 10	Dai	CIIID. 224402	Alla	1ys15 Date. 03/2	4/2010	Seq No. 00413	U /
Analyte	Result	RPT Limit SPK val	ue SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Bromomethane	BRL	0.20								
Carbon disulfide	BRL	0.20								
Carbon tetrachloride	BRL	0.20								
Chlorobenzene	BRL	0.20								
Chloroethane	BRL	0.20								
Chloroform	BRL	0.20								
Chloromethane	BRL	0.20								
cis-1,2-Dichloroethene	BRL	0.20								
cis-1,3-Dichloropropene	BRL	0.20								
Cyclohexane	BRL	0.20								
Dibromochloromethane	BRL	0.20								
Dichlorodifluoromethane	BRL	0.20								
Ethyl acetate	BRL	0.20								
Ethylbenzene	BRL	0.20								
Freon-113	BRL	0.20								
Freon-114	BRL	0.20								
Hexachlorobutadiene	BRL	0.20								
m,p-Xylene	BRL	0.40								
Methyl tert-butyl ether	BRL	0.20								
Methylene chloride	BRL	0.20								
n-Heptane	BRL	0.20								
n-Hexane	BRL	0.20								
o-Xylene	BRL	0.20								
Propene	BRL	0.20								
Styrene	BRL	0.20								
Tetrachloroethene	BRL	0.20								
Tetrahydrofuran	BRL	0.20								
-										

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

N Analyte not NELAC certified

1605G05

Workorder:

Client: Environmental Planning Specialists, Inc.

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Project Name: Grantville Mill

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

R RPD outside limits due to matrix

Page 14 of 19

Sample ID: MB-224402	Client ID:				Un		-	Date:	05/24/2016	Run No: 317423	
SampleType: MBLK	TestCode:	Toxic Organic Compound	ds in Air by GCM	IS TO-15	Bat	chID: 224402	Ana	lysis Date:	05/24/2016	Seq No: 684190 ′	7
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	`Val %RPD	RPD Limit	Qual
Toluene	BRL	0.20									
trans-1,2-Dichloroethene	BRL	0.20									
trans-1,3-Dichloropropene	BRL	0.20									
Trichloroethene	BRL	0.20									
Trichlorofluoromethane	BRL	0.20									
Vinyl acetate	BRL	0.20									
Vinyl bromide	BRL	0.20									
Vinyl chloride	BRL	0.20									
Xylenes, Total	BRL	0.60									
Surr: 4-Bromofluorobenzene	3.910	0	4.000		97.8	70	130				
Sample ID: LCS-224402	Client ID:				Un	its: ppbv	Prep	Date:	05/24/2016	Run No: 317423	
SampleType: LCS	TestCode:	Toxic Organic Compound	ds in Air by GCM	IS TO-15	Bat	chID: 224402	Ana	lysis Date:	05/24/2016	Seq No: 684190 8	8
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	`Val %RPD	RPD Limit	Qual
1,1,1-Trichloroethane	3.840	0.20	4.000		96.0	70	130				
1,1,2,2-Tetrachloroethane	3.990	0.20	4.000	0.1500	96.0	70	130				
1,1,2-Trichloroethane	4.220	0.20	4.000	0.1500	102	70	130				
1,1-Dichloroethane	3.940	0.20	4.000		98.5	70	130				
1,1-Dichloroethene	4.090	0.20	4.000		102	70	130				
1,2,4-Trichlorobenzene	3.480	0.20	4.000	0.07000	85.2	70	130				
1,2,4-Trimethylbenzene	3.790	0.20	4.000	0.1100	92.0	70	130				
1,2-Dibromoethane	3.970	0.20	4.000	0.1100	96.5	70	130				
1,2-Dichlorobenzene	3.710	0.20	4.000	0.1200	89.8	70	130				
1,2-Dichloroethane	4.150	0.20	4.000		104	70	130				
1,2-Dichloropropane	4.310	0.20	4.000		108	70	130				
1,3,5-Trimethylbenzene	3.860	0.20	4.000	0.1100	93.8	70	130				
1,3-Butadiene	3.760	0.20	4.000		94.0	70	130				
Qualifiers: > Greater than Result v	value		< Less	than Result value			В	Analyte detected i	in the associated method	blank	

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill Workorder: 1605G05

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: LCS-224402 SampleType: LCS	Client ID: TestCode: Tox	xic Organic Compoun	ds in Air by GCM	IS TO-15	Uni Bat	ts: ppbv chID: 224402		Date: 05/24 lysis Date: 05/24		Run No: 317423 Seq No: 6841908
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
1,3-Dichlorobenzene	3.770	0.20	4.000	0.1200	91.2	70	130			
1,4-Dichlorobenzene	3.730	0.20	4.000	0.1200	90.2	70	130			
1,4-Dioxane	4.160	0.20	4.000		104	70	130			
2,2,4-Trimethylpentane	4.240	0.20	4.000		106	70	130			
2-Butanone	3.740	0.20	4.000		93.5	70	130			
2-Hexanone	4.180	0.20	4.000		104	70	130			
4-Ethyltoluene	3.790	0.20	4.000		94.8	70	130			
4-Methyl-2-pentanone	4.380	0.20	4.000		110	70	130			
Acetone	3.810	1.0	4.000	0.1600	91.2	70	130			
Allyl chloride	4.520	0.20	4.000		113	70	130			
Benzene	4.140	0.20	4.000	0.2900	96.2	70	130			В
Benzyl chloride	4.500	0.20	4.000		112	70	130			
Bromodichloromethane	4.080	0.20	4.000		102	70	130			
Bromoform	3.860	0.20	4.000	0.06000	95.0	70	130			
Bromomethane	3.600	0.20	4.000		90.0	70	130			
Carbon disulfide	4.340	0.20	4.000		108	70	130			
Carbon tetrachloride	3.970	0.20	4.000	0.07000	97.5	70	130			
Chlorobenzene	3.920	0.20	4.000	0.1700	93.8	70	130			
Chloroethane	3.670	0.20	4.000		91.8	70	130			
Chloroform	3.850	0.20	4.000	0.07000	94.5	70	130			
Chloromethane	3.940	0.20	4.000		98.5	70	130			
cis-1,2-Dichloroethene	3.790	0.20	4.000		94.8	70	130			
cis-1,3-Dichloropropene	4.280	0.20	4.000		107	70	130			
Cyclohexane	4.000	0.20	4.000		100	70	130			
Dibromochloromethane	3.870	0.20	4.000	0.05000	95.5	70	130			
Dichlorodifluoromethane	3.710	0.20	4.000		92.8	70	130			
Ethyl acetate	4.030	0.20	4.000		101	70	130			

Qualifiers:

Greater than Result value

BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 15 of 19

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill **Workorder:** 1605G05

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: LCS-224402	Client ID:				Uni				/2016	Run No: 317423
SampleType: LCS	TestCode:	Toxic Organic Compound	ds in Air by GCM	S TO-15	Bat	chID: 224402	Ana	lysis Date: 05/24	/2016	Seq No: 6841908
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Ethylbenzene	4.070	0.20	4.000	0.1600	97.8	70	130			
Freon-113	4.190	0.20	4.000		105	70	130			
Freon-114	3.680	0.20	4.000		92.0	70	130			
Hexachlorobutadiene	3.370	0.20	4.000	0.07000	82.5	70	130			
m,p-Xylene	8.020	0.40	8.000	0.3000	96.5	70	130			
Methyl tert-butyl ether	3.830	0.20	4.000		95.8	70	130			
Methylene chloride	4.230	0.20	4.000	0.1800	101	70	130			
n-Heptane	4.350	0.20	4.000		109	70	130			
n-Hexane	4.050	0.20	4.000		101	70	130			
o-Xylene	4.000	0.20	4.000	0.1600	96.0	70	130			
Propene	3.700	0.20	4.000		92.5	70	130			
Styrene	4.010	0.20	4.000	0.1400	96.8	70	130			
Tetrachloroethene	3.820	0.20	4.000	0.1700	91.2	70	130			
Tetrahydrofuran	4.030	0.20	4.000		101	70	130			
Toluene	4.220	0.20	4.000	0.1900	101	70	130			
trans-1,2-Dichloroethene	3.680	0.20	4.000		92.0	70	130			
trans-1,3-Dichloropropene	4.350	0.20	4.000		109	70	130			
Trichloroethene	4.030	0.20	4.000	0.1100	98.0	70	130			
Trichlorofluoromethane	3.640	0.20	4.000		91.0	70	130			
Vinyl acetate	3.850	0.20	4.000		96.2	70	130			
Vinyl bromide	3.580	0.20	4.000		89.5	70	130			
Vinyl chloride	3.760	0.20	4.000		94.0	70	130			
Xylenes, Total	12.02	0.60	12.00	0.4600	96.3	70	130			
Surr: 4-Bromofluorobenzene	3.570	0	4.000		89.2	70	130			

Qualifiers: > Greater th

Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 16 of 19

Workorder:

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill

1605G05

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: 1605G05-001ADUP SampleType: DUP		16139-IA-1 Toxic Organic Compounds in Air by	GCMS TO-15	Un Bat	its: ppbv rchID: 224402		Date: 05/24 lysis Date: 05/25		Run No: 317539 Seq No: 6842884
Analyte	Result	RPT Limit SPK va	llue SPK Ref Val	%REC	Low Limit H	igh Limit	RPD Ref Val	%RPD	RPD Limit Qua
1,1,1-Trichloroethane	BRL	0.20					0	0	25
1,1,2,2-Tetrachloroethane	BRL	0.20					0	0	25
1,1,2-Trichloroethane	BRL	0.20					0	0	25
1,1-Dichloroethane	BRL	0.20					0	0	25
,1-Dichloroethene	BRL	0.20					0	0	25
1,2,4-Trichlorobenzene	BRL	0.20					0	0	25
,2,4-Trimethylbenzene	BRL	0.20					0	0	25
,2-Dibromoethane	BRL	0.20					0	0	25
,2-Dichlorobenzene	BRL	0.20					0	0	25
,2-Dichloroethane	BRL	0.20					0	0	25
,2-Dichloropropane	BRL	0.20					0	0	25
,3,5-Trimethylbenzene	BRL	0.20					0	0	25
,3-Butadiene	BRL	0.20					0	0	25
,3-Dichlorobenzene	BRL	0.20					0	0	25
,4-Dichlorobenzene	BRL	0.20					0	0	25
,4-Dioxane	BRL	0.20					0	0	25
2,2,4-Trimethylpentane	BRL	0.20					0	0	25
-Butanone	0.5100	0.20					0.4900	4.00	25
2-Hexanone	BRL	0.20					0	0	25
l-Ethyltoluene	BRL	0.20					0	0	25
l-Methyl-2-pentanone	BRL	0.20					0	0	25
Acetone	11.05	1.0					11.02	0.272	25
Allyl chloride	BRL	0.20					0	0	25
Benzene	BRL	0.20					0.1000	0	25
Benzyl chloride	BRL	0.20					0	0	25
Bromodichloromethane	BRL	0.20					0	0	25
Bromoform	BRL	0.20					0	0	25

Qualifiers:

> Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 17 of 19

1605G05

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill

Workorder:

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: 1605G05-001ADUP SampleType: DUP		16139-IA-1 Toxic Organic Compounds in Air by C	SCMS TO-15	Uni Bat	its: ppbv chID: 224402		Date: 05/24 lysis Date: 05/25		Run No: 317539 Seq No: 6842884
Analyte	Result	RPT Limit SPK value	ie SPK Ref Val	%REC	Low Limit Hig	gh Limit	RPD Ref Val	%RPD	RPD Limit Qual
Bromomethane	BRL	0.20					0	0	25
Carbon disulfide	BRL	0.20					0	0	25
Carbon tetrachloride	BRL	0.20					0	0	25
Chlorobenzene	BRL	0.20					0	0	25
Chloroethane	BRL	0.20					0	0	25
Chloroform	BRL	0.20					0.07000	0	25
Chloromethane	0.4900	0.20					0.4800	2.06	25
cis-1,2-Dichloroethene	BRL	0.20					0	0	25
cis-1,3-Dichloropropene	BRL	0.20					0	0	25
Cyclohexane	BRL	0.20					0	0	25
Dibromochloromethane	BRL	0.20					0	0	25
Dichlorodifluoromethane	0.3900	0.20					0.3900	0	25
Ethyl acetate	BRL	0.20					0	0	25
Ethylbenzene	BRL	0.20					0	0	25
Freon-113	BRL	0.20					0.06000	0	25
Freon-114	BRL	0.20					0	0	25
Hexachlorobutadiene	BRL	0.20					0	0	25
n,p-Xylene	BRL	0.40					0.09000	0	25
Methyl tert-butyl ether	BRL	0.20					0	0	25
Methylene chloride	0.8800	0.20					0.8600	2.30	25
n-Heptane	BRL	0.20					0	0	25
n-Hexane	BRL	0.20					0	0	25
o-Xylene	BRL	0.20					0.05000	0	25
Propene	BRL	0.20					0	0	25
Styrene	BRL	0.20					0	0	25
Tetrachloroethene	BRL	0.20					0.1000	0	25
Tetrahydrofuran	1.070	0.20					1.090	1.85	25

Qualifiers:

ers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 18 of 19

Client: Environmental Planning Specialists, Inc.

Grantville Mill

Workorder: 1605G05

Project Name:

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: 1605G05-001ADUP		16139-IA-1			Uni	ts: ppbv	Prep	Date: 05/24	/2016	Run No: 317539
SampleType: DUP	TestCode:	Toxic Organic Compound	ls in Air by GCM	IS TO-15	Bate	chID: 224402	Ana	lysis Date: 05/25	/2016	Seq No: 6842884
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Toluene	0.2300	0.20						0.2300	0	25
trans-1,2-Dichloroethene	BRL	0.20						0	0	25
trans-1,3-Dichloropropene	BRL	0.20						0	0	25
Trichloroethene	BRL	0.20						0	0	25
Trichlorofluoromethane	BRL	0.20						0.1800	0	25
Vinyl acetate	BRL	0.20						0	0	25
Vinyl bromide	BRL	0.20						0	0	25
Vinyl chloride	BRL	0.20						0	0	25
Xylenes, Total	BRL	0.60						0.1400	0	25
Surr: 4-Bromofluorobenzene	3.850	0	4.000		96.2	70	130	3.870	0	0

Qualifiers: Greater than Result value

> BRL Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 19 of 19

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

May 26, 2016

Aaron Williams
Environmental Planning Specialists, Inc.
1050 Crown Pointe Parkway, Suite 550
Atlanta GA 30338

TEL: (404) 315-9113 FAX: (404) 315-8509

RE: Grantville Mill

Dear Aaron Williams: Order No: 1605G05

Analytical Environmental Services, Inc. received 2 samples on 5/19/2016 4:20:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Air & Emissions for Volatile Organics effective 07/01/15-06/30/16.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Chantelle Kanhai

CKAnhav

Project Manager

APPENDIX

Compound	CAS#	Alternate Name	ТО-	ТО-	SOP
			14A	15	
Acetone	67-64-1				X
Allyl chloride	107-05-1	3-Chloropropene		X	
Benzene	71-43-2		X	X	
Benzyl chloride	100-44-7		X	X	
Bromodichloromethane	75-27-4	Dichlorobromomethane			X
Bromoform	75-25-2	Tribromomethane		X	
Bromomethane	74-83-9	Methyl bromide	X	X	
1,3-Butadiene	106-99-0			X	
Carbon disulfide	75-15-0			X	
Carbon tetrachloride	56-23-5		X	X	
Chlorobenzene	108-90-7		X	X	
Chloroethane	75-00-3	Ethyl chloride	X	X	
Chloroform	67-66-3	,	X	X	
Chloromethane	74-87-3	Methyl chloride	X	X	
Cyclohexane	110-82-7				X
Dibromochloromethane	124-48-1	Chlorodibromomethane			X
1,2-Dibromoethane	106-93-4	EDB/Ethylene dibromide	X	X	
1,2-Dichlorobenzene	95-50-1	o-Dichlorobenzene	X	X	
1,3-Dichlorobenzene	541-73-1	<i>m</i> -Dichlorobenzene	X	X	
1,4-Dichlorobenzene	106-46-7	p-Dichlorobenzene	X	X	
Dichlorodifluoromethane	75-71-8	Freon-12	X		
1,1-Dichloroethane	75-34-3		X	X	
1,2-Dichloroethane	107-06-2		X	X	
1,1-Dichloroethene	75-35-4	1,1-Dichloroethylene	X	X	
cis-1,2-Dichloroethene	156-59-2	cis-1,2-Dichloroethylene	X	X	
trans-1,2-Dichloroethene	156-60-5	<i>trans</i> -1,2-Dichloroethylene		X	
1,2-Dichloropropane	78-87-5	,	X	X	
cis-1,3-Dichloropropene	10061-01-5		X	X	
trans-1,3-	10061-02-6		X	X	
Dichloropropene					
1,2-Dichloro-1,1,2,2-	76-14-2	Freon-114	X		
tetrafluoroethane					
1,4-Dioxane	123-91-1	1,4-Diethylene oxide		X	
Ethyl acetate	141-78-6	Acetic acid, ethyl ester			X
Ethylbenzene	100-41-4	, ,	X	X	
4-Ethyltoluene	622-96-8		 		X
n-Heptane	142-82-5	Heptane			X
Hexachlorobutadiene	87-68-3	Hexachloro-1,3-butadiene	X	X	

n-Hexane	110-54-3	Hexane		X	
Compound	CAS#	Alternate Name	TO-	ТО-	SOP
_			14A	15	
2-Hexanone	591-78-6	Methyl butyl ketone			X
Methylene chloride	75-09-2	Dichloromethane	X	X	
Methyl tert-butyl ether	1634-04-4	MTBE		X	
Methyl ethyl ketone	78-93-3	MEK/2-Butanone		X	
Methyl isobutyl ketone	108-10-1	4-Methyl-2-pentanone		X	
2-Propanol	67-63-0	Isopropanol/Isopropyl alcohol			X
Propene	115-07-1	Propylene			X
Styrene	100-42-5			X	
1,1,2,2-Tetrachloroethane	79-34-5		X	X	
Tetrachloroethene	127-18-4	Tetrachloroethylene	X	X	
Tetrahydrofuran	109-99-9				X
Toluene	108-88-3			X	
1,2,4-Trichlorobenzene	120-82-1			X	
1,1,1-Trichloroethane	74-55-6			X	
1,1,2-Trichloroethane	79-00-5			X	
Trichloroethene	79-01-6	Trichloroethylene		X	
Trichlorofluoromethane	75-69-4	Freon-11	X		
1,1,2-Trichloro-1,2,2-	76-13-1	Freon-113	X		
Trifluoroethane					
1,2,4-Trimethylbenzene	95-63-6		X	X	
1,3,5-Trimethylbenzene	108-67-8		X	X	
2,2,4-Trimethylpentane	540-84-1	Isooctane		X	
Vinyl acetate	108-05-04			X	
Vinyl bromide	593-60-2	Bromoethene		X	
Vinyl chloride	75-01-4	Chloroethene	X	X	
Xylenes, Total	1330-20-7		X	X	
m/p-Xylene	179601-23-1		X	X	
o-Xylene	95-47-6		X	X	

VAPOR/AIR CHAIN OF CUSTODY

Work Order #: 1605605

3080 Presidential Drive, Atlanta GA 30340-3704

TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

Page 1 of 2

Com	pany:	Address:				Bottle O	bedon #.			1							
	ipany: EPS Dhc.	1050	Cous	Pointe Pl	ويبتأ	1				Turnarou	nd II	me (Cire	ele One	<i>à</i>):	Stan	ndard	3 Day Rush
		Siz- 5	550		_	1 44	1017										
Phor	1P'	AHan-	m, GA	<i>3</i> 0338	~		- 7								2 Da	ay Rush	Other
0	ne: 404 315 9113		· · · · · · · · · · · · · · · · · · ·						Canister	Canister	. 1	ANALY	SIS RJ	EQUES	STED	<u> </u>	
Samp	pled by: Alex Testoft	Signature	ex Fety	#		Sample		Flow	Pressure	Pressure	;			T			
#	Sample ID	Samp	ole Start '	Sample	e Finish	Matrix*	Serial #	Controller ID	In Field ("Hg)	In Field ("Hg)	TO-15					R	Remarks
	Sumple 115	Date	Time (24hr)	Date	Time (24 hr)				Start	Stop	T						
I	16139-IA-1	5-18-1L		5-19-16	1612	IA	17458	01158	>30	4	X			+++			
2	16139-IA-2	5-18-16	1017	5-19-16			18892	01151	>30	6.5	X		+	+++			
3							100 12		750								
4													+-	++			
5													+				
6												_					w
7											\vdash			-		<u></u>	
8													_	+			
9								\vdash		<u> </u>			_	-			#
10											\vdash						
	L INSTRUCTIONS/COMMENTS:	RELINQUISH	TED BA		E/TIME:	25050 (22				<u></u> !	Ш						
f special	lized list is required, list analytes here:	1.60 64		5-19-	JIIME:	RECEIVED E	****		E/TIME:	PROTECTNA	3.677		PRO.	JECT INF	FORMATION	N	
		1004 Jst 2:	TV_	[620		L JANN	an Ahu	Uiz 5/19/	lo 4:20	PROJECT NA	G!	artuil	le 1	1111			·
		2: I			ļ	2: (V	·	PROJECT#:							
	ļ	3:				3:				SITE ADDRES	ss: /	STAN		/_ A			
					ľ	3. I			ŀ			2!Alfy	1511~1	<u>し</u> た		<u>-</u>	
	Γ				SHIPME	NT METHOD	<u> </u>			SEND REPOR	TTO:	aville	MS(C)	erupla	11/19.co.	<u>~ &</u>	***************************************
		i	OUT /	/ /	J	VIA;				INVOICE TO: (IF DIFFEREN	√T FRO	M ABOVE) 	Benv	planning	room	
			IN /	1	-> <u>-</u> -	VIA:			Į,	PO#:							
				CCIENT	_	UPS MAIL	COURIER		f	STATE PROGI	RAM (i	f any):		E-	-mail? Y/N	Fax? Y	
AMPL	EC DECEMEN VELLE SOW OD CVAIN	~			GREYHOUND				lo	OUOTE#:						GE: I II	
isit ou	ES RECEIVED AFTER 3PM OR SATURD ur website www.aesatlanta.com to chec	JAY ARE CO	NSIDERED A	AS RECEIVE	D ON THE N	JEXT BUSIN	ESS DAY; IF N	O TAT IS MAR	CKED ON CO	C, AES WILI	. PROC	EED AS S'	TANDAR	d TAT.		*	*
	to care a control to chec	.K on the sta	tus of your	resuits, place	è bottle ord	ers, etc.											

Work	Order #:	100

ANALYTICAL ENVIRONMENTAL SERVICES, INC VAPOR/AIR FIELD TEST DATA SHEET 3080 Presidential Drive, Atlanta GA 30340-3704 TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188 Company: Address: Project Name:

∥ €	PS Inc.		our Pointe	- Plevy		<u> </u>	xantrille	z Mill					Project	Number:		
		Ste 330	a ,64 <i>3</i> 03	338	Site Addr	ess: 41	Indust	dal Wa	بر د	ce of sil	e, GA		 ,			
Pho	ne: 404 315 9113	Fax:		11		·····		- 1	SAM	PLING	NFORM	ATIO	N			
Sam	pled by: Alex Testalt	Signature	alex 13	洲		······································	Samp	le Start	· · · · · · · · · · · · · · · · · · ·	-			Sampl	e Stop		
			Flow	T-76			Canister	Flow	Temp	erature		<u> </u>	Canister	Flow	Temn	erature
#	Sample ID	Canister Serial #	Controller ID#	Cert. ID#		Time (24hr)	Pressure in Field ("Hg)	Control Readout (mL/min)	Interior (°F)	Ambient (°F)	Date	Time (24hr)	Pressure in Field ("Hg)	Readout	Interior (°F)	
1	16139- IA-1	17458	01158	223)156	5-18-16	1012	>30	24 hr.	68		5-19-16	1012	(Hg) 식	(mL/min) 24 hr-	68	
2	16139- IA-Z	18892	01151	221285	5-18-16	1017	>30	2740	68		5-19-16			24 hr	68	
3																
4	<u> </u>															
5																
6																
7									. "							
8	<u>,,,</u>													ļ		
9								-								
10		<u></u>														
Date	Shipped Out From Lab: OL,	+ Fift) 16z 5-19.	E	Field Note	es:									L	
Date	Received Back To Lab:	a Ahil			Client			····	1874	,,,,,						
	her Conditions ent Temp Avg:	door	V	'	-											
Ambi	ent Temp High/Low: or Air Temp Avg:				-											
Baro	metric Pressure: Speed/Direction:	····			_			•								
Othe																

Client: Environmental Planning Specialists, Inc.

Project: Grantville Mill
Lab ID: 1605G05

Case Narrative

Date:

26-May-16

Volatiles Organic Compounds Analysis by Method TO-15:

Benzene was detected in Method Blank 224402 at 0.29 ppbv which was above reporting limit of 0.2 ppbv resulting in "B" qualified data for the Batch QC samples. Associated sample values were less than reporting limit and data is reportable with high bias.

TO-15 Report

Date:

26-May-16

Client: Environmental Planning Specialists, Inc. Client Sample ID: 16139-IA-1

Project Name: Grantville Mill Collection Date: 5/19/2016 10:12:00 AM

Lab ID: 1605G05-001 **Matrix:** Air

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Toxic Organic Compounds in Air by GCMS	TO-15			(TO)-15)			
1,1,1-Trichloroethane	BRL	1.1		ug/m3	224402	2	05/25/2016 15:15	MD
1,1,2,2-Tetrachloroethane	BRL	1.4		ug/m3	224402	2	05/25/2016 15:15	MD
1,1,2-Trichloroethane	BRL	1.1		ug/m3	224402	2	05/25/2016 15:15	MD
1,1-Dichloroethane	BRL	0.81		ug/m3	224402	2	05/25/2016 15:15	MD
1,1-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 15:15	MD
1,2,4-Trichlorobenzene	BRL	1.5		ug/m3	224402	2	05/25/2016 15:15	MD
1,2,4-Trimethylbenzene	BRL	0.98		ug/m3	224402	2	05/25/2016 15:15	MD
1,2-Dibromoethane	BRL	1.5		ug/m3	224402	2	05/25/2016 15:15	MD
1,2-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 15:15	MD
1,2-Dichloroethane	BRL	0.81		ug/m3	224402	2	05/25/2016 15:15	MD
1,2-Dichloropropane	BRL	0.92		ug/m3	224402	2	05/25/2016 15:15	MD
1,3,5-Trimethylbenzene	BRL	0.98		ug/m3	224402	2	05/25/2016 15:15	MD
1,3-Butadiene	BRL	0.44		ug/m3	224402	2	05/25/2016 15:15	MD
1,3-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 15:15	MD
1,4-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 15:15	MD
1,4-Dioxane	BRL	0.72		ug/m3	224402	2	05/25/2016 15:15	MD
2,2,4-Trimethylpentane	BRL	0.93		ug/m3	224402	2	05/25/2016 15:15	MD
2-Butanone	1.4	0.59		ug/m3	224402	2	05/25/2016 15:15	MD
2-Hexanone	BRL	0.82		ug/m3	224402	2	05/25/2016 15:15	MD
4-Ethyltoluene	BRL	0.98		ug/m3	224402	2	05/25/2016 15:15	MD
4-Methyl-2-pentanone	BRL	0.82		ug/m3	224402	2	05/25/2016 15:15	MD
Acetone	26	0.48		ug/m3	224402	2	05/25/2016 15:15	MD
Allyl chloride	BRL	0.63		ug/m3	224402	2	05/25/2016 15:15	MD
Benzene	BRL	0.64		ug/m3	224402	2	05/25/2016 15:15	MD
Benzyl chloride	BRL	1.0		ug/m3	224402	2	05/25/2016 15:15	MD
Bromodichloromethane	BRL	1.3		ug/m3	224402	2	05/25/2016 15:15	MD
Bromoform	BRL	2.1		ug/m3	224402	2	05/25/2016 15:15	MD
Bromomethane	BRL	0.78		ug/m3	224402	2	05/25/2016 15:15	MD
Carbon disulfide	BRL	0.62		ug/m3	224402	2	05/25/2016 15:15	MD
Carbon tetrachloride	BRL	1.3		ug/m3	224402	2	05/25/2016 15:15	MD
Chlorobenzene	BRL	0.92		ug/m3	224402	2	05/25/2016 15:15	MD
Chloroethane	BRL	0.53		ug/m3	224402	2	05/25/2016 15:15	MD
Chloroform	BRL	0.98		ug/m3	224402	2	05/25/2016 15:15	MD
Chloromethane	0.99	0.41		ug/m3	224402	2	05/25/2016 15:15	MD
cis-1,2-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 15:15	MD
cis-1,3-Dichloropropene	BRL	0.91		ug/m3	224402	2	05/25/2016 15:15	MD
Cyclohexane	BRL	0.69		ug/m3	224402	2	05/25/2016 15:15	MD
Dibromochloromethane	BRL	1.7		ug/m3	224402	2	05/25/2016 15:15	MD
Dichlorodifluoromethane	1.9	0.99		ug/m3	224402	2	05/25/2016 15:15	MD
Ethyl acetate	BRL	0.72		ug/m3	224402	2	05/25/2016 15:15	MD
Ethylbenzene	BRL	0.87		ug/m3	224402	2	05/25/2016 15:15	MD

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

Client:

TO-15 Report

Environmental Planning Specialists, Inc.

Client Sample ID: 16139-IA-1

Date:

26-May-16

Project Name: Grantville Mill **Collection Date:** 5/19/2016 10:12:00 AM

Lab ID: 1605G05-001 **Matrix:** Air

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Toxic Organic Compounds in Air by GCMS	TO-15			(TO)-15)			
Freon-113	BRL	1.5		ug/m3	224402	2	05/25/2016 15:15	MD
Freon-114	BRL	1.4		ug/m3	224402	2	05/25/2016 15:15	MD
Hexachlorobutadiene	BRL	2.1		ug/m3	224402	2	05/25/2016 15:15	MD
m,p-Xylene	BRL	1.7		ug/m3	224402	2	05/25/2016 15:15	MD
Methyl tert-butyl ether	BRL	0.72		ug/m3	224402	2	05/25/2016 15:15	MD
Methylene chloride	3.0	0.69		ug/m3	224402	2	05/25/2016 15:15	MD
n-Heptane	BRL	0.82		ug/m3	224402	2	05/25/2016 15:15	MD
n-Hexane	BRL	0.70		ug/m3	224402	2	05/25/2016 15:15	MD
o-Xylene	BRL	0.87		ug/m3	224402	2	05/25/2016 15:15	MD
Propene	BRL	0.34		ug/m3	224402	2	05/25/2016 15:15	MD
Styrene	BRL	0.85		ug/m3	224402	2	05/25/2016 15:15	MD
Tetrachloroethene	BRL	1.4		ug/m3	224402	2	05/25/2016 15:15	MD
Tetrahydrofuran	3.2	0.59		ug/m3	224402	2	05/25/2016 15:15	MD
Toluene	0.87	0.75		ug/m3	224402	2	05/25/2016 15:15	MD
trans-1,2-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 15:15	MD
trans-1,3-Dichloropropene	BRL	0.91		ug/m3	224402	2	05/25/2016 15:15	MD
Trichloroethene	BRL	1.1		ug/m3	224402	2	05/25/2016 15:15	MD
Trichlorofluoromethane	BRL	1.1		ug/m3	224402	2	05/25/2016 15:15	MD
Vinyl acetate	BRL	0.70		ug/m3	224402	2	05/25/2016 15:15	MD
Vinyl bromide	BRL	0.87		ug/m3	224402	2	05/25/2016 15:15	MD
Vinyl chloride	BRL	0.51		ug/m3	224402	2	05/25/2016 15:15	MD
Xylenes, Total	BRL	2.6		ug/m3	224402	2	05/25/2016 15:15	MD
Surr: 4-Bromofluorobenzene	96.8	70-130		%REC	224402	2	05/25/2016 15:15	MD

Qualifiers:

BRL Below reporting limit

> Greater than Result value

Narr See case narrative

NC Not confirmed

Estimated value detected below Reporting Limit

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

Client:

TO-15 Report

Environmental Planning Specialists, Inc. Client Sample ID: 16139-IA-2

Date:

26-May-16

Project Name: Grantville Mill **Collection Date:** 5/18/2016 10:17:00 AM

Lab ID: 1605G05-002 **Matrix:** Air

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Toxic Organic Compounds in Air by GCMS	TO-15			(TO)-15)			
1,1,1-Trichloroethane	BRL	1.1		ug/m3	224402	2	05/25/2016 16:13	MD
1,1,2,2-Tetrachloroethane	BRL	1.4		ug/m3	224402	2	05/25/2016 16:13	MD
1,1,2-Trichloroethane	BRL	1.1		ug/m3	224402	2	05/25/2016 16:13	MD
1,1-Dichloroethane	BRL	0.81		ug/m3	224402	2	05/25/2016 16:13	MD
1,1-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 16:13	MD
1,2,4-Trichlorobenzene	BRL	1.5		ug/m3	224402	2	05/25/2016 16:13	MD
1,2,4-Trimethylbenzene	BRL	0.98		ug/m3	224402	2	05/25/2016 16:13	MD
1,2-Dibromoethane	BRL	1.5		ug/m3	224402	2	05/25/2016 16:13	MD
1,2-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 16:13	MD
1,2-Dichloroethane	BRL	0.81		ug/m3	224402	2	05/25/2016 16:13	MD
1,2-Dichloropropane	BRL	0.92		ug/m3	224402	2	05/25/2016 16:13	MD
1,3,5-Trimethylbenzene	BRL	0.98		ug/m3	224402	2	05/25/2016 16:13	MD
1,3-Butadiene	BRL	0.44		ug/m3	224402	2	05/25/2016 16:13	MD
1,3-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 16:13	MD
1,4-Dichlorobenzene	BRL	1.2		ug/m3	224402	2	05/25/2016 16:13	MD
1,4-Dioxane	BRL	0.72		ug/m3	224402	2	05/25/2016 16:13	MD
2,2,4-Trimethylpentane	BRL	0.93		ug/m3	224402	2	05/25/2016 16:13	MD
2-Butanone	1.6	0.59		ug/m3	224402	2	05/25/2016 16:13	MD
2-Hexanone	BRL	0.82		ug/m3	224402	2	05/25/2016 16:13	MD
4-Ethyltoluene	BRL	0.98		ug/m3	224402	2	05/25/2016 16:13	MD
4-Methyl-2-pentanone	BRL	0.82		ug/m3	224402	2	05/25/2016 16:13	MD
Acetone	28	0.48		ug/m3	224402	2	05/25/2016 16:13	MD
Allyl chloride	BRL	0.63		ug/m3	224402	2	05/25/2016 16:13	MD
Benzene	BRL	0.64		ug/m3	224402	2	05/25/2016 16:13	MD
Benzyl chloride	BRL	1.0		ug/m3	224402	2	05/25/2016 16:13	MD
Bromodichloromethane	BRL	1.3		ug/m3	224402	2	05/25/2016 16:13	MD
Bromoform	BRL	2.1		ug/m3	224402	2	05/25/2016 16:13	MD
Bromomethane	BRL	0.78		ug/m3	224402	2	05/25/2016 16:13	MD
Carbon disulfide	BRL	0.62		ug/m3	224402	2	05/25/2016 16:13	MD
Carbon tetrachloride	BRL	1.3		ug/m3	224402	2	05/25/2016 16:13	MD
Chlorobenzene	BRL	0.92		ug/m3	224402	2	05/25/2016 16:13	MD
Chloroethane	BRL	0.53		ug/m3	224402	2	05/25/2016 16:13	MD
Chloroform	BRL	0.98		ug/m3	224402	2	05/25/2016 16:13	MD
Chloromethane	1.1	0.41		ug/m3	224402	2	05/25/2016 16:13	MD
cis-1,2-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 16:13	MD
cis-1,3-Dichloropropene	BRL	0.91		ug/m3	224402	2	05/25/2016 16:13	MD
Cyclohexane	BRL	0.69		ug/m3	224402	2	05/25/2016 16:13	MD
Dibromochloromethane	BRL	1.7		ug/m3	224402	2	05/25/2016 16:13	MD
Dichlorodifluoromethane	1.9	0.99		ug/m3	224402	2	05/25/2016 16:13	MD
Ethyl acetate	BRL	0.72		ug/m3	224402	2	05/25/2016 16:13	MD
Ethylbenzene	BRL	0.87		ug/m3	224402	2	05/25/2016 16:13	MD

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

1605G05-002

Project Name: Grantville Mill

Client:

Lab ID:

TO-15 Report

Environmental Planning Specialists, Inc. Client Sample ID: 16139-IA-2

Collection Date: 5/18/2016 10:17:00 AM

Date:

26-May-16

Matrix: Air

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Toxic Organic Compounds in Air by GCMS	TO-15			(TO)-15)			
Freon-113	BRL	1.5		ug/m3	224402	2	05/25/2016 16:13	MD
Freon-114	BRL	1.4		ug/m3	224402	2	05/25/2016 16:13	MD
Hexachlorobutadiene	BRL	2.1		ug/m3	224402	2	05/25/2016 16:13	MD
m,p-Xylene	BRL	1.7		ug/m3	224402	2	05/25/2016 16:13	MD
Methyl tert-butyl ether	BRL	0.72		ug/m3	224402	2	05/25/2016 16:13	MD
Methylene chloride	1.1	0.69		ug/m3	224402	2	05/25/2016 16:13	MD
n-Heptane	BRL	0.82		ug/m3	224402	2	05/25/2016 16:13	MD
n-Hexane	BRL	0.70		ug/m3	224402	2	05/25/2016 16:13	MD
o-Xylene	BRL	0.87		ug/m3	224402	2	05/25/2016 16:13	MD
Propene	BRL	0.34		ug/m3	224402	2	05/25/2016 16:13	MD
Styrene	BRL	0.85		ug/m3	224402	2	05/25/2016 16:13	MD
Tetrachloroethene	BRL	1.4		ug/m3	224402	2	05/25/2016 16:13	MD
Tetrahydrofuran	2.9	0.59		ug/m3	224402	2	05/25/2016 16:13	MD
Toluene	0.90	0.75		ug/m3	224402	2	05/25/2016 16:13	MD
trans-1,2-Dichloroethene	BRL	0.79		ug/m3	224402	2	05/25/2016 16:13	MD
trans-1,3-Dichloropropene	BRL	0.91		ug/m3	224402	2	05/25/2016 16:13	MD
Trichloroethene	BRL	1.1		ug/m3	224402	2	05/25/2016 16:13	MD
Trichlorofluoromethane	BRL	1.1		ug/m3	224402	2	05/25/2016 16:13	MD
Vinyl acetate	BRL	0.70		ug/m3	224402	2	05/25/2016 16:13	MD
Vinyl bromide	BRL	0.87		ug/m3	224402	2	05/25/2016 16:13	MD
Vinyl chloride	BRL	0.51		ug/m3	224402	2	05/25/2016 16:13	MD
Xylenes, Total	BRL	2.6		ug/m3	224402	2	05/25/2016 16:13	MD
Surr: 4-Bromofluorobenzene	94.8	70-130		%REC	224402	2	05/25/2016 16:13	MD

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Sample Receipt Checklist for Air Canisters

Client EPS	Work Order Number /bas 605
Checklist completed by Musikanian	5/19/2016
Signature	Date
Carrier name: FedExUPSCourierClient	US MailOther
Shipping container in good condition? Custody seals intact on shipping container? Chain of custody present? Chain of custody signed when relinquished and received	YesNo Not Present YesNo Not Present YesNo
Chain of custody agrees with sample labels? Field data sheets present? Sample containers intact? If no, explain:	Yes_No_Yes_No_Yes_No_
All samples received within holding time? Was TAT marked on the COC? Proceed with Standard TAT as per project history? All canisters received per Bottle Order issued?	Yes_No_ Yes_No_ Yes_No_ Not Applicable_ Yes_No_
See Case Narrative for resolution of the Non-Conform	tance.

Client: Environmental Planning Specialists, Inc.

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

Page 12 of 19

Project Name: Grantville Mill **Workorder:** 1605G05

Rpt Lim Reporting Limit

BatchID: 224402

Sample ID: MB-224402 SampleType: MBLK	Client ID: TestCode: To	xic Organic Compound	ds in Air by GCM	IS TO-15	Uni Bat	ts: ppbv chID: 224402		ep Date: nalysis Date:	05/24/2016 05/24/2016	Run No: 31742 Seq No: 68419	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val %RPD	RPD Limit	Qual
1,1,1-Trichloroethane	BRL	0.20									
1,1,2,2-Tetrachloroethane	BRL	0.20									
1,1,2-Trichloroethane	BRL	0.20									
1,1-Dichloroethane	BRL	0.20									
1,1-Dichloroethene	BRL	0.20									
1,2,4-Trichlorobenzene	BRL	0.20									
1,2,4-Trimethylbenzene	BRL	0.20									
1,2-Dibromoethane	BRL	0.20									
,2-Dichlorobenzene	BRL	0.20									
,2-Dichloroethane	BRL	0.20									
,2-Dichloropropane	BRL	0.20									
,3,5-Trimethylbenzene	BRL	0.20									
,3-Butadiene	BRL	0.20									
,3-Dichlorobenzene	BRL	0.20									
,4-Dichlorobenzene	BRL	0.20									
,4-Dioxane	BRL	0.20									
2,2,4-Trimethylpentane	BRL	0.20									
2-Butanone	BRL	0.20									
2-Hexanone	BRL	0.20									
1-Ethyltoluene	BRL	0.20									
l-Methyl-2-pentanone	BRL	0.20									
Acetone	BRL	1.0									
Allyl chloride	BRL	0.20									
Benzene	0.2900	0.20									В
Benzyl chloride	BRL	0.20									
Bromodichloromethane	BRL	0.20									
Bromoform	BRL	0.20									
Qualifiers: > Greater than Resu	lt value		< Less	than Result value			В	Analyte detected	in the associated method	blank	
BRL Below reporting li	mit		E Estim	ated (value above quantit	ation range)		Н	Holding times fo	r preparation or analysis	exceeded	
J Estimated value of	detected below Reporting Lim	iit	N Analy	te not NELAC certified			R	RPD outside lim	its due to matrix	Page 12 of 19	

S Spike Recovery outside limits due to matrix

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill

1605G05

Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Workorder:

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

H Holding times for preparation or analysis exceeded

Page 13 of 19

R RPD outside limits due to matrix

Sample ID: MB-224402 SampleType: MBLK	Client ID:	Toxic Organic Compounds in A	ir by GCN	4S TO-15	Un: Bat	its: ppbv cchID: 224402		Date: 0 lysis Date: 0	05/24/2016 05/24/2016	Run No: 31742 Seq No: 68419	
Sample Type. WIBER	resicoue.	Tome Organic Compounds mark	a by den	10 10	Dat	CIIID. 224402	Alla	iysis Date. U	3/24/2010	Seq 140. 00413	07
Analyte	Result	RPT Limit SPI	C value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	al %RPD	RPD Limit	Qual
Bromomethane	BRL	0.20									
Carbon disulfide	BRL	0.20									
Carbon tetrachloride	BRL	0.20									
Chlorobenzene	BRL	0.20									
Chloroethane	BRL	0.20									
Chloroform	BRL	0.20									
Chloromethane	BRL	0.20									
cis-1,2-Dichloroethene	BRL	0.20									
cis-1,3-Dichloropropene	BRL	0.20									
Cyclohexane	BRL	0.20									
Dibromochloromethane	BRL	0.20									
Dichlorodifluoromethane	BRL	0.20									
Ethyl acetate	BRL	0.20									
Ethylbenzene	BRL	0.20									
Freon-113	BRL	0.20									
Freon-114	BRL	0.20									
Hexachlorobutadiene	BRL	0.20									
m,p-Xylene	BRL	0.40									
Methyl tert-butyl ether	BRL	0.20									
Methylene chloride	BRL	0.20									
n-Heptane	BRL	0.20									
n-Hexane	BRL	0.20									
o-Xylene	BRL	0.20									
Propene	BRL	0.20									
Styrene	BRL	0.20									
Tetrachloroethene	BRL	0.20									
Tetrahydrofuran	BRL	0.20									
-											

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

N Analyte not NELAC certified

1605G05

Workorder:

Client: Environmental Planning Specialists, Inc.

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Project Name: Grantville Mill

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

R RPD outside limits due to matrix

Page 14 of 19

Sample ID: MB-224402	Client ID:				Un		-	Date:	05/24/2016	Run No: 317423	
SampleType: MBLK	TestCode:	Toxic Organic Compound	ds in Air by GCM	IS TO-15	Bat	chID: 224402	Ana	lysis Date:	05/24/2016	Seq No: 684190 ′	7
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	`Val %RPD	RPD Limit	Qual
Toluene	BRL	0.20									
trans-1,2-Dichloroethene	BRL	0.20									
trans-1,3-Dichloropropene	BRL	0.20									
Trichloroethene	BRL	0.20									
Trichlorofluoromethane	BRL	0.20									
Vinyl acetate	BRL	0.20									
Vinyl bromide	BRL	0.20									
Vinyl chloride	BRL	0.20									
Xylenes, Total	BRL	0.60									
Surr: 4-Bromofluorobenzene	3.910	0	4.000		97.8	70	130				
Sample ID: LCS-224402	Client ID:				Un	its: ppbv	Prep	Date:	05/24/2016	Run No: 317423	
SampleType: LCS	TestCode:	Toxic Organic Compound	ds in Air by GCM	IS TO-15	Bat	chID: 224402	Ana	lysis Date:	05/24/2016	Seq No: 684190 8	8
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	`Val %RPD	RPD Limit	Qual
1,1,1-Trichloroethane	3.840	0.20	4.000		96.0	70	130				
1,1,2,2-Tetrachloroethane	3.990	0.20	4.000	0.1500	96.0	70	130				
1,1,2-Trichloroethane	4.220	0.20	4.000	0.1500	102	70	130				
1,1-Dichloroethane	3.940	0.20	4.000		98.5	70	130				
1,1-Dichloroethene	4.090	0.20	4.000		102	70	130				
1,2,4-Trichlorobenzene	3.480	0.20	4.000	0.07000	85.2	70	130				
1,2,4-Trimethylbenzene	3.790	0.20	4.000	0.1100	92.0	70	130				
1,2-Dibromoethane	3.970	0.20	4.000	0.1100	96.5	70	130				
1,2-Dichlorobenzene	3.710	0.20	4.000	0.1200	89.8	70	130				
1,2-Dichloroethane	4.150	0.20	4.000		104	70	130				
1,2-Dichloropropane	4.310	0.20	4.000		108	70	130				
1,3,5-Trimethylbenzene	3.860	0.20	4.000	0.1100	93.8	70	130				
1,3-Butadiene	3.760	0.20	4.000		94.0	70	130				
Qualifiers: > Greater than Result v	value		< Less	than Result value			В	Analyte detected i	in the associated method	blank	

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill Workorder: 1605G05

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: LCS-224402 SampleType: LCS	Client ID: TestCode: Tox	xic Organic Compoun	ds in Air by GCM	IS TO-15	Uni Bat	ts: ppbv chID: 224402		Date: 05/24 lysis Date: 05/24		Run No: 317423 Seq No: 6841908
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
1,3-Dichlorobenzene	3.770	0.20	4.000	0.1200	91.2	70	130			
1,4-Dichlorobenzene	3.730	0.20	4.000	0.1200	90.2	70	130			
1,4-Dioxane	4.160	0.20	4.000		104	70	130			
2,2,4-Trimethylpentane	4.240	0.20	4.000		106	70	130			
2-Butanone	3.740	0.20	4.000		93.5	70	130			
2-Hexanone	4.180	0.20	4.000		104	70	130			
4-Ethyltoluene	3.790	0.20	4.000		94.8	70	130			
4-Methyl-2-pentanone	4.380	0.20	4.000		110	70	130			
Acetone	3.810	1.0	4.000	0.1600	91.2	70	130			
Allyl chloride	4.520	0.20	4.000		113	70	130			
Benzene	4.140	0.20	4.000	0.2900	96.2	70	130			В
Benzyl chloride	4.500	0.20	4.000		112	70	130			
Bromodichloromethane	4.080	0.20	4.000		102	70	130			
Bromoform	3.860	0.20	4.000	0.06000	95.0	70	130			
Bromomethane	3.600	0.20	4.000		90.0	70	130			
Carbon disulfide	4.340	0.20	4.000		108	70	130			
Carbon tetrachloride	3.970	0.20	4.000	0.07000	97.5	70	130			
Chlorobenzene	3.920	0.20	4.000	0.1700	93.8	70	130			
Chloroethane	3.670	0.20	4.000		91.8	70	130			
Chloroform	3.850	0.20	4.000	0.07000	94.5	70	130			
Chloromethane	3.940	0.20	4.000		98.5	70	130			
cis-1,2-Dichloroethene	3.790	0.20	4.000		94.8	70	130			
cis-1,3-Dichloropropene	4.280	0.20	4.000		107	70	130			
Cyclohexane	4.000	0.20	4.000		100	70	130			
Dibromochloromethane	3.870	0.20	4.000	0.05000	95.5	70	130			
Dichlorodifluoromethane	3.710	0.20	4.000		92.8	70	130			
Ethyl acetate	4.030	0.20	4.000		101	70	130			

Qualifiers:

Greater than Result value

BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 15 of 19

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill **Workorder:** 1605G05

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: LCS-224402	Client ID:				Uni				/2016	Run No: 317423		
SampleType: LCS	TestCode:	Toxic Organic Compound	ds in Air by GCM	S TO-15	Bat	chID: 224402	Ana	lysis Date: 05/24	/2016	Seq No: 6841908		
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual		
Ethylbenzene	4.070	0.20	4.000	0.1600	97.8	70	130					
Freon-113	4.190	0.20	4.000		105	70	130					
Freon-114	3.680	0.20	4.000		92.0	70	130					
Hexachlorobutadiene	3.370	0.20	4.000	0.07000	82.5	70	130					
m,p-Xylene	8.020	0.40	8.000	0.3000	96.5	70	130					
Methyl tert-butyl ether	3.830	0.20	4.000		95.8	70	130					
Methylene chloride	4.230	0.20	4.000	0.1800	101	70	130					
n-Heptane	4.350	0.20	4.000		109	70	130					
n-Hexane	4.050	0.20	4.000		101	70	130					
o-Xylene	4.000	0.20	4.000	0.1600	96.0	70	130					
Propene	3.700	0.20	4.000		92.5	70	130					
Styrene	4.010	0.20	4.000	0.1400	96.8	70	130					
Tetrachloroethene	3.820	0.20	4.000	0.1700	91.2	70	130					
Tetrahydrofuran	4.030	0.20	4.000		101	70	130					
Toluene	4.220	0.20	4.000	0.1900	101	70	130					
trans-1,2-Dichloroethene	3.680	0.20	4.000		92.0	70	130					
trans-1,3-Dichloropropene	4.350	0.20	4.000		109	70	130					
Trichloroethene	4.030	0.20	4.000	0.1100	98.0	70	130					
Trichlorofluoromethane	3.640	0.20	4.000		91.0	70	130					
Vinyl acetate	3.850	0.20	4.000		96.2	70	130					
Vinyl bromide	3.580	0.20	4.000		89.5	70	130					
Vinyl chloride	3.760	0.20	4.000		94.0	70	130					
Xylenes, Total	12.02	0.60	12.00	0.4600	96.3	70	130					
Surr: 4-Bromofluorobenzene	3.570	0	4.000		89.2	70	130					

Qualifiers: > Greater th

Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 16 of 19

Workorder:

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill

1605G05

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: 1605G05-001ADUP SampleType: DUP		16139-IA-1 Toxic Organic Compounds in Air by	GCMS TO-15	Un Bat	its: ppbv rchID: 224402		Date: 05/24 lysis Date: 05/25		Run No: 317539 Seq No: 6842884
Analyte	Result	RPT Limit SPK va	llue SPK Ref Val	%REC	Low Limit H	igh Limit	RPD Ref Val	%RPD	RPD Limit Qua
1,1,1-Trichloroethane	BRL	0.20					0	0	25
1,1,2,2-Tetrachloroethane	BRL	0.20					0	0	25
1,1,2-Trichloroethane	BRL	0.20					0	0	25
1,1-Dichloroethane	BRL	0.20					0	0	25
,1-Dichloroethene	BRL	0.20					0	0	25
1,2,4-Trichlorobenzene	BRL	0.20					0	0	25
,2,4-Trimethylbenzene	BRL	0.20					0	0	25
,2-Dibromoethane	BRL	0.20					0	0	25
,2-Dichlorobenzene	BRL	0.20					0	0	25
,2-Dichloroethane	BRL	0.20					0	0	25
,2-Dichloropropane	BRL	0.20					0	0	25
,3,5-Trimethylbenzene	BRL	0.20					0	0	25
,3-Butadiene	BRL	0.20					0	0	25
,3-Dichlorobenzene	BRL	0.20					0	0	25
,4-Dichlorobenzene	BRL	0.20					0	0	25
,4-Dioxane	BRL	0.20					0	0	25
2,2,4-Trimethylpentane	BRL	0.20					0	0	25
-Butanone	0.5100	0.20					0.4900	4.00	25
2-Hexanone	BRL	0.20					0	0	25
l-Ethyltoluene	BRL	0.20					0	0	25
l-Methyl-2-pentanone	BRL	0.20					0	0	25
Acetone	11.05	1.0					11.02	0.272	25
Allyl chloride	BRL	0.20					0	0	25
Benzene	BRL	0.20					0.1000	0	25
Benzyl chloride	BRL	0.20					0	0	25
Bromodichloromethane	BRL	0.20					0	0	25
Bromoform	BRL	0.20					0	0	25

Qualifiers:

> Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 17 of 19

1605G05

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill

Workorder:

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: 1605G05-001ADUP SampleType: DUP		16139-IA-1 Toxic Organic Compounds in Air by C	CCMS TO-15	Uni Bat	its: ppbv chID: 224402		Date: 05/24 lysis Date: 05/25		Run No: 317539 Seq No: 6842884
Analyte	Result	RPT Limit SPK value	ie SPK Ref Val	%REC	Low Limit Hig	gh Limit	RPD Ref Val	%RPD	RPD Limit Qual
Bromomethane	BRL	0.20					0	0	25
Carbon disulfide	BRL	0.20					0	0	25
Carbon tetrachloride	BRL	0.20					0	0	25
Chlorobenzene	BRL	0.20					0	0	25
Chloroethane	BRL	0.20					0	0	25
Chloroform	BRL	0.20					0.07000	0	25
Chloromethane	0.4900	0.20					0.4800	2.06	25
cis-1,2-Dichloroethene	BRL	0.20					0	0	25
cis-1,3-Dichloropropene	BRL	0.20					0	0	25
Cyclohexane	BRL	0.20					0	0	25
Dibromochloromethane	BRL	0.20					0	0	25
Dichlorodifluoromethane	0.3900	0.20					0.3900	0	25
Ethyl acetate	BRL	0.20					0	0	25
Ethylbenzene	BRL	0.20					0	0	25
Freon-113	BRL	0.20					0.06000	0	25
Freon-114	BRL	0.20					0	0	25
Hexachlorobutadiene	BRL	0.20					0	0	25
n,p-Xylene	BRL	0.40					0.09000	0	25
Methyl tert-butyl ether	BRL	0.20					0	0	25
Methylene chloride	0.8800	0.20					0.8600	2.30	25
n-Heptane	BRL	0.20					0	0	25
n-Hexane	BRL	0.20					0	0	25
o-Xylene	BRL	0.20					0.05000	0	25
Propene	BRL	0.20					0	0	25
Styrene	BRL	0.20					0	0	25
Tetrachloroethene	BRL	0.20					0.1000	0	25
Tetrahydrofuran	1.070	0.20					1.090	1.85	25

Qualifiers:

ers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 18 of 19

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill

Workorder: 1605G05

ANALYTICAL QC SUMMARY REPORT

Date:

26-May-16

BatchID: 224402

Sample ID: 1605G05-001ADUP		16139-IA-1			Uni	ts: ppbv	Prep	Date: 05/24	/2016	Run No: 317539
SampleType: DUP	TestCode:	Toxic Organic Compound	ls in Air by GCM	IS TO-15	Bate	chID: 224402	Ana	lysis Date: 05/25	/2016	Seq No: 6842884
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Toluene	0.2300	0.20						0.2300	0	25
trans-1,2-Dichloroethene	BRL	0.20						0	0	25
trans-1,3-Dichloropropene	BRL	0.20						0	0	25
Trichloroethene	BRL	0.20						0	0	25
Trichlorofluoromethane	BRL	0.20						0.1800	0	25
Vinyl acetate	BRL	0.20						0	0	25
Vinyl bromide	BRL	0.20						0	0	25
Vinyl chloride	BRL	0.20						0	0	25
Xylenes, Total	BRL	0.60						0.1400	0	25
Surr: 4-Bromofluorobenzene	3.850	0	4.000		96.2	70	130	3.870	0	0

Qualifiers: Greater than Result value

> BRL Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 19 of 19

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

June 29, 2016

Aaron Williams
Environmental Planning Specialists, Inc.
1050 Crown Pointe Parkway
Atlanta GA 30338

TEL: (404) 315-9113 FAX: (404) 315-8509

RE: Grantville Mill

Dear Aaron Williams: Order No: 1606M09

Analytical Environmental Services, Inc. received 3 samples on 6/22/2016 3:15:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES's accreditations are as follows:

- -NELAC/Florida State Laboratory ID E87582 for analysis of Non-Potable Water, Solid & Chemical Materials, and Drinking Water Microbiology, effective 07/01/15-06/30/16.
- -NELAC/Louisiana Agency Interest No. 100818 for or analysis of Non-Potable Water and Solid & Chemical Materials, effective 07/01/15-06/30/16.
- -NELAC/Texas Certificate No. T104704509-16-6 for or analysis of Non-Potable Water and Solid & Chemical Materials, effective 03/01/16-02/28/17.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Metals, PCM Asbestos, Gravimetric), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/17.

Chantelle Kanhai

CEKanhav

Project Manager

ANALYTICAL ENVIRONMENTAL SERVICES, INC

CHAIN OF CUSTODY

3080 Presidential Drive, Atlanta GA 30340-3704 AES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

COMPANY:	ADDRESS:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							Date: _{	b-V2-16 Page	of _
EPS Inc.	1050 00 - 6	mk Phu	9			AN	ALYSIS	REQUES	TED			
	Ste STO Attanta, GA 3						, ,	<u> </u>			Visit our website	
DHONE:	Attenta, GA 3	.0338									www.aesatlanta.cor	n 📄
PHONE: 404 315 9113				-]						to check on the status	
SAMPLED BY: + 10L / 11	SIGNATUREA #	100	7	- 3						1 1	your results, place bott	tle g
SAMPLED BY: Alex Testalt / Alex Hyma	A SIGNATURE	Oley Suff Char K S							1 1	orders, etc.	tle outsiner.	
	SAMPLED											
# SAMPLE ID		osite	odes	<u>-</u> -		PRES	SERVATI	ON (See co	-d\			
	DATE TIME	Grab	Matrix (See codes)	3/3				011 (300 (1	ides)		REMARKS	7
, 16173- MW-16	6-22-11 12.15			The state of the s								
2 16173-TW-1		+×	GW	-								2
3 Trip Black	6-22-11 1315		GW						_			2.
· ·			<u> W</u>									
4												12
5			<u> </u>									
6									+	_		
7					1	_		╅╌┼╴	+	_		
8				 	+			+				
9			<u> </u>					+-+				
10					- -							
11		<u> </u>		<u> </u>	4-4-	44						1
12				<u> </u>								
												+
13												
14					1 1			 	+ +	+		
RELINQUISHED BY DAT	TE/TIME RECEIVED BY	}	DATE/TIME			PROJ	ECT INFO	L J DRMATIC	I I	and the contract of the contra		
Jel 124 / 1515	Junia Shilly	1.100114	3:15	PROJECT	NAME	ķ	11	4 6 6 /	711	·····	RECEIPT	T
	- I WWAY ANULLY	WICCHL	<u>prh</u>		<u> </u>	Canto	lle	WIII			Total # of Containers	6
			•	PROJECT							Tumaround Time Request	
	3:			SITE ADD	RESS: /	Srant		(-N		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Standard 5 Business Days	
				SEMIL DES	CODE TO	<u> </u>	Jille,	$\frac{\mathcal{O}^{r}}{\mathbf{x}^{r}}$		- 102	2 Business Day Rush	
PECIAL INSTRUCTIONS/COMMENTS:	SHIPMENT	METHOD	-	DEND KE	OKTTO:	avilli	LICE	jemple	anias.co	in K	Next Business Day Rush	
	OUT / /	VIA:	İ	INVOICE (IF DIFFEI	TO: RENT FRC	NOTA MABOVI	E) :************************************	empla	indy, co	n	Same Day Rush (auth req.)	,
	IN	VIA:		i			,				O Other	
		S MAIL COUR	IER								STATE PROGRAM (if any):	-
AMPLES RECEIVED AFTER 3PM OR ON SATURDAY	ORE YHOUND OH			QUOTE #:_			·	PO#:			E-mail? Y/N; Fax? Y/N	
AMPLES RECEIVED AFTER 3PM OR ON SATURDAY AMPLES ARE DISPOSED 30 DAYS AFTER REPORT CO	OMPLETION UNLESS OTHER ARRAN	EXT BUSINESS GEMENTS ARE	DAY, IF TU MADE	RNAROUN	D TIME	IS NOT IN	DICATE	D, AES W	ILL PROCE	EED WITH S	DATA PACKAGE: II III TANDARD TAT OF SAMPLES.	1V
ATRIX CODES: A = Air GW = Groundwater SE = S	Sediment SO = Soil SIV = Surface Water	er W = Water fl	Blanks) DH	V = Drinkin	r 147545 /171	lambo) C					Page 2 of 13	

Client: Environmental Planning Specialists, Inc. Client Sample ID: 16173-MW-16

Project Name: Grantville Mill **Collection Date:** 6/22/2016 12:15:00 PM

Date:

29-Jun-16

Lab ID: 1606M09-001 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260	В			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,1,2-Trichloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,1-Dichloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,1-Dichloroethene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,2-Dibromoethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,2-Dichlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,2-Dichloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,2-Dichloropropane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,3-Dichlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
1,4-Dichlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
2-Butanone	BRL	50		ug/L	225985	1	06/24/2016 04:13	CH
2-Hexanone	BRL	10		ug/L	225985	1	06/24/2016 04:13	CH
4-Methyl-2-pentanone	BRL	10		ug/L	225985	1	06/24/2016 04:13	CH
Acetone	BRL	50		ug/L	225985	1	06/24/2016 04:13	CH
Benzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Bromodichloromethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Bromoform	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Bromomethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Carbon disulfide	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Carbon tetrachloride	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Chlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Chloroethane	BRL	10		ug/L	225985	1	06/24/2016 04:13	CH
Chloroform	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Chloromethane	BRL	10		ug/L	225985	1	06/24/2016 04:13	CH
cis-1,2-Dichloroethene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
cis-1,3-Dichloropropene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Cyclohexane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Dibromochloromethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Dichlorodifluoromethane	BRL	10		ug/L	225985	1	06/24/2016 04:13	CH
Ethylbenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Freon-113	BRL	10		ug/L	225985	1	06/24/2016 04:13	CH
Isopropylbenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
m,p-Xylene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Methyl acetate	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Methyl tert-butyl ether	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Methylcyclohexane	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Methylene chloride	BRL	10		ug/L	225985	1	06/24/2016 04:13	CH
o-Xylene	BRL	5.0		ug/L	225985	1	06/24/2016 04:13	СН

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Client: Environmental Planning Specialists, Inc. Client Sample ID: 16173-MW-16

Project Name: Grantville Mill **Collection Date:** 6/22/2016 12:15:00 PM

Date:

29-Jun-16

Lab ID: 1606M09-001 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SV	V5030B)			
Styrene		BRL	5.0		ug/L	225985	1	06/24/2016 04:13	СН
Tetrachloroethene		18000	2500		ug/L	225985	500	06/24/2016 18:34	CH
Toluene		BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
trans-1,2-Dichloroethene		BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
trans-1,3-Dichloropropene		BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Trichloroethene		BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Trichlorofluoromethane		BRL	5.0		ug/L	225985	1	06/24/2016 04:13	CH
Vinyl chloride		BRL	2.0		ug/L	225985	1	06/24/2016 04:13	CH
Surr: 4-Bromofluorobenzene		79.5	70.7-125		%REC	225985	500	06/24/2016 18:34	CH
Surr: 4-Bromofluorobenzene		86.9	70.7-125		%REC	225985	1	06/24/2016 04:13	CH
Surr: Dibromofluoromethane		96.9	82.2-120		%REC	225985	500	06/24/2016 18:34	CH
Surr: Dibromofluoromethane		84.4	82.2-120		%REC	225985	1	06/24/2016 04:13	CH
Surr: Toluene-d8		98.5	81.8-120		%REC	225985	500	06/24/2016 18:34	CH
Surr: Toluene-d8		87	81.8-120		%REC	225985	1	06/24/2016 04:13	CH

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Client: Environmental Planning Specialists, Inc. Client Sample ID: 16173-TW-1

Project Name: Grantville Mill **Collection Date:** 6/22/2016 1:15:00 PM

Date:

29-Jun-16

Lab ID: 1606M09-002 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst			
TCL VOLATILE ORGANICS SW82601	3	(SW5030B)									
1,1,1-Trichloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,1,2-Trichloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	CH			
1,1-Dichloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	CH			
1,1-Dichloroethene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,2-Dibromoethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,2-Dichlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,2-Dichloroethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,2-Dichloropropane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,3-Dichlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
1,4-Dichlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
2-Butanone	BRL	50		ug/L	225985	1	06/24/2016 04:39	СН			
2-Hexanone	BRL	10		ug/L	225985	1	06/24/2016 04:39	СН			
4-Methyl-2-pentanone	BRL	10		ug/L	225985	1	06/24/2016 04:39	СН			
Acetone	BRL	50		ug/L	225985	1	06/24/2016 04:39	СН			
Benzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Bromodichloromethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Bromoform	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Bromomethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Carbon disulfide	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Carbon tetrachloride	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Chlorobenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Chloroethane	BRL	10		ug/L	225985	1	06/24/2016 04:39	СН			
Chloroform	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Chloromethane	BRL	10		ug/L	225985	1	06/24/2016 04:39	СН			
cis-1,2-Dichloroethene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
cis-1,3-Dichloropropene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Cyclohexane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Dibromochloromethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Dichlorodifluoromethane	BRL	10		ug/L	225985	1	06/24/2016 04:39	СН			
Ethylbenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Freon-113	BRL	10		ug/L	225985	1	06/24/2016 04:39	СН			
Isopropylbenzene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
m,p-Xylene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Methyl acetate	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Methyl tert-butyl ether	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Methylcyclohexane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			
Methylene chloride	BRL	10		ug/L	225985	1	06/24/2016 04:39	СН			
o-Xylene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН			

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

Client: Environmental Planning Specialists, Inc. Client Sample ID: 16173-TW-1

Project Name: Grantville Mill Collection Date: 6/22/2016 1:15:00 PM

Date:

29-Jun-16

Lab ID: 1606M09-002 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SW	/5030B)			
Styrene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	СН
Tetrachloroethene	3400	250		ug/L	225985	50	06/24/2016 19:52	CH
Toluene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	CH
trans-1,2-Dichloroethene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	CH
trans-1,3-Dichloropropene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	CH
Trichloroethene	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	CH
Trichlorofluoromethane	BRL	5.0		ug/L	225985	1	06/24/2016 04:39	CH
Vinyl chloride	BRL	2.0		ug/L	225985	1	06/24/2016 04:39	CH
Surr: 4-Bromofluorobenzene	80.1	70.7-125		%REC	225985	50	06/24/2016 19:52	CH
Surr: 4-Bromofluorobenzene	85.2	70.7-125		%REC	225985	1	06/24/2016 04:39	CH
Surr: Dibromofluoromethane	105	82.2-120		%REC	225985	50	06/24/2016 19:52	CH
Surr: Dibromofluoromethane	96	82.2-120		%REC	225985	1	06/24/2016 04:39	CH
Surr: Toluene-d8	104	81.8-120		%REC	225985	50	06/24/2016 19:52	CH
Surr: Toluene-d8	98.2	81.8-120		%REC	225985	1	06/24/2016 04:39	СН

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Client:Environmental Planning Specialists, Inc.Client Sample ID:TRIP BLANKProject Name:Grantville MillCollection Date:6/22/2016

Project Name:Grantville MillCollection Date:6/22/2016Lab ID:1606M09-003Matrix:Aqueous

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SV	V5030B)			
1,1,1-Trichloroethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	СН
1,1,2,2-Tetrachloroethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,1,2-Trichloroethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,1-Dichloroethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,1-Dichloroethene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,2-Dibromo-3-chloropropane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,2-Dibromoethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,2-Dichlorobenzene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,2-Dichloroethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,2-Dichloropropane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,3-Dichlorobenzene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
1,4-Dichlorobenzene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
2-Butanone		BRL	50		ug/L	225985	1	06/24/2016 20:18	CH
2-Hexanone		BRL	10		ug/L	225985	1	06/24/2016 20:18	CH
4-Methyl-2-pentanone		BRL	10		ug/L	225985	1	06/24/2016 20:18	CH
Acetone		BRL	50		ug/L	225985	1	06/24/2016 20:18	CH
Benzene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Bromodichloromethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Bromoform		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Bromomethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Carbon disulfide		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Carbon tetrachloride		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Chlorobenzene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Chloroethane		BRL	10		ug/L	225985	1	06/24/2016 20:18	CH
Chloroform		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Chloromethane		BRL	10		ug/L	225985	1	06/24/2016 20:18	CH
cis-1,2-Dichloroethene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
cis-1,3-Dichloropropene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Cyclohexane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Dibromochloromethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Dichlorodifluoromethane		BRL	10		ug/L	225985	1	06/24/2016 20:18	CH
Ethylbenzene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Freon-113		BRL	10		ug/L	225985	1	06/24/2016 20:18	CH
Isopropylbenzene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
m,p-Xylene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Methyl acetate		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Methyl tert-butyl ether		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Methylcyclohexane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Methylene chloride		BRL	10		ug/L	225985	1	06/24/2016 20:18	CH
o-Xylene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	СН

Qualifiers:

Date:

29-Jun-16

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Client:Environmental Planning Specialists, Inc.Client Sample ID:TRIP BLANKProject Name:Grantville MillCollection Date:6/22/2016

Project Name:Grantville MillCollection Date:6/22/2016Lab ID:1606M09-003Matrix:Aqueous

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SW	/5030B)			
Styrene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	СН
Tetrachloroethene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	СН
Toluene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	СН
trans-1,2-Dichloroethene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
trans-1,3-Dichloropropene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Trichloroethene		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Trichlorofluoromethane		BRL	5.0		ug/L	225985	1	06/24/2016 20:18	CH
Vinyl chloride		BRL	2.0		ug/L	225985	1	06/24/2016 20:18	CH
Surr: 4-Bromofluorobenzene		80.3	70.7-125		%REC	225985	1	06/24/2016 20:18	CH
Surr: Dibromofluoromethane		102	82.2-120		%REC	225985	1	06/24/2016 20:18	СН
Surr: Toluene-d8		102	81.8-120		%REC	225985	1	06/24/2016 20:18	CH

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

29-Jun-16

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Sample/Cooler Receipt Checklist

Client EPS	 	Work Orde	er Number	leobulig
Checklist completed by Signature Date	<u> 22 20 4</u>			
Carrier name: FedEx UPS Courier Client U	S Mail Oth	er		
Shipping container/cooler in good condition?	Yes _	_No	Not Present	
Custody seals intact on shipping container/cooler?	Yes	No	Not Present _	
Custody seals intact on sample bottles?	Yes	No	Not Present	
Container/Temp Blank temperature in compliance? (0°≤6°C)	*Yes	No		
Cooler #1 A/C Cooler #2 Cooler #3	Cooler #4	Coc	oler#5	Cooler #6
Chain of custody present?	Yès	No	**	
Chain of custody signed when relinquished and received?	Yes 🗻	No		
Chain of custody agrees with sample labels?	Yes 🗹	No		
Samples in proper container/bottle?	Yes 🟒	No		
Sample containers intact?	Yes 👤	No	هديا	
Sufficient sample volume for indicated test?	Yes _	No		
All samples received within holding time?	Yes 🗾	No	•	
Was TAT marked on the COC?	Yes _	No		
Proceed with Standard TAT as per project history?	Yes _	No	Not Applicable	
Water - VOA vials have zero headspace? No VOA vials su	ıbmitted	Yes	No	
Water - pH acceptable upon receipt?	Yes 👤	No _	Not Applicable	
Sample Condition: Good Other(Explain)				
(For diffusive samples or AIHA lead) Is a known blank include	ed? Yes	N	· <u>~</u>	
See Case Narrative for resolution of the Non Conformance				111111111111111111111111111111111111111

* Samples do not have to comply with the given range for certain parameters.

\\Aes_server\l\Sample Receipt\My Documents\COCs and pH Adjustment Sheet\Sample_Cooler_Recipt_Checklist_Rev1.rtf

1606M09

Workorder:

BRL

Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Environmental Planning Specialists, Inc. **Client:**

Grantville Mill **Project Name:**

ANALYTICAL QC SUMMARY REPORT

Date:

29-Jun-16

BatchID: 225985

H Holding times for preparation or analysis exceeded

Page 10 of 13

R RPD outside limits due to matrix

Sample ID: MB-225985	Client ID:	CL VOLATILE ODCANIC	e ewozen	D	Uni	U			3/2016	Run No: 31963	
SampleType: MBLK	TestCode: 10	CL VOLATILE ORGANIC	5 SW82601	В	Bat	chID: 225985	Ana	lysis Date: 06/2	3/2016	Seq No: 68980)04
Analyte	Result	RPT Limit S	PK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qua
1,1,1-Trichloroethane	BRL	5.0									
1,1,2,2-Tetrachloroethane	BRL	5.0									
1,1,2-Trichloroethane	BRL	5.0									
1,1-Dichloroethane	BRL	5.0									
1,1-Dichloroethene	BRL	5.0									
1,2,4-Trichlorobenzene	BRL	5.0									
,2-Dibromo-3-chloropropane	BRL	5.0									
,2-Dibromoethane	BRL	5.0									
,2-Dichlorobenzene	BRL	5.0									
,2-Dichloroethane	BRL	5.0									
,2-Dichloropropane	BRL	5.0									
,3-Dichlorobenzene	BRL	5.0									
,4-Dichlorobenzene	BRL	5.0									
-Butanone	BRL	50									
2-Hexanone	BRL	10									
l-Methyl-2-pentanone	BRL	10									
Acetone	BRL	50									
Benzene	BRL	5.0									
Bromodichloromethane	BRL	5.0									
Bromoform	BRL	5.0									
Bromomethane	BRL	5.0									
Carbon disulfide	BRL	5.0									
Carbon tetrachloride	BRL	5.0									
Chlorobenzene	BRL	5.0									
Chloroethane	BRL	10									
Chloroform	BRL	5.0									
Chloromethane	BRL	10									

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

N Analyte not NELAC certified

1606M09

Workorder:

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill ANALYTICAL QC SUMMARY REPORT

Date:

29-Jun-16

BatchID: 225985

Sample ID: MB-225985	Client ID:				Uni	ts: ug/L	Prep	Date:	06/23/2016	Run No: 319	637
SampleType: MBLK	TestCode: TC	L VOLATILE ORGA	NICS SW82601	В	Bat	chID: 225985	Ana	lysis Date:	06/23/2016	Seq No: 689	8004
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPI	RPD Lim	nit Qual
cis-1,2-Dichloroethene	BRL	5.0									
cis-1,3-Dichloropropene	BRL	5.0									
Cyclohexane	BRL	5.0									
Dibromochloromethane	BRL	5.0									
Dichlorodifluoromethane	BRL	10									
Ethylbenzene	BRL	5.0									
Freon-113	BRL	10									
Isopropylbenzene	BRL	5.0									
m,p-Xylene	BRL	5.0									
Methyl acetate	BRL	5.0									
Methyl tert-butyl ether	BRL	5.0									
Methylcyclohexane	BRL	5.0									
Methylene chloride	BRL	5.0									
o-Xylene	BRL	5.0									
Styrene	BRL	5.0									
Tetrachloroethene	BRL	5.0									
Toluene	BRL	5.0									
trans-1,2-Dichloroethene	BRL	5.0									
trans-1,3-Dichloropropene	BRL	5.0									
Trichloroethene	BRL	5.0									
Trichlorofluoromethane	BRL	5.0									
Vinyl chloride	BRL	2.0									
Surr: 4-Bromofluorobenzene	41.68	0	50.00		83.4	70.7	125				
Surr: Dibromofluoromethane	49.72	0	50.00		99.4	82.2	120				
Surr: Toluene-d8	52.85	0	50.00		106	81.8	120				

Qualifiers:

BRL

Greater than Result value

Rpt Lim Reporting Limit

Below reporting limit

Estimated value detected below Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 11 of 13

Client: Environmental Planning Specialists, Inc.

Grantville Mill

Project Name: Workorder: 1606M09

Rpt Lim Reporting Limit

ANALYTICAL QC SUMMARY REPORT

Date:

29-Jun-16

BatchID: 225985

Sample ID: LCS-225985 SampleType: LCS	Client ID: TestCode: T	CL VOLATILE ORGA	NICS SW82601	В	Un: Bat	its: ug/L tchID: 225985		ep Date: 06/23 nalysis Date: 06/23		Run No: 31963 Seq No: 68980	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
1,1-Dichloroethene	57.27	5.0	50.00		115	65.3	137				
Benzene	50.95	5.0	50.00		102	74.9	123				
Chlorobenzene	49.40	5.0	50.00		98.8	73.9	124				
Toluene	54.35	5.0	50.00		109	75	124				
Trichloroethene	53.36	5.0	50.00		107	73.1	128				
Surr: 4-Bromofluorobenzene	42.00	0	50.00		84.0	70.7	125				
Surr: Dibromofluoromethane	50.36	0	50.00		101	82.2	120				
Surr: Toluene-d8	52.30	0	50.00		105	81.8	120				
Sample ID: 1606M09-001AMS SampleType: MS		6173-MW-16 CL VOLATILE ORGA	NICS SW82601	В	Un Bat	its: ug/L tchID: 225985		ep Date: 06/23 nalysis Date: 06/24		Run No: 31970 Seq No: 69021	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
,1-Dichloroethene	26760	2500	25000		107	60	150				
Benzene	24740	2500	25000		98.9	70.1	132				
Chlorobenzene	25340	2500	25000		101	70.9	131				
Coluene	25330	2500	25000		101	70.1	133				
Trichloroethene	25450	2500	25000		102	70	136				
Surr: 4-Bromofluorobenzene	20060	0	25000		80.2	70.7	125				
Surr: Dibromofluoromethane	23450	0	25000		93.8	82.2	120				
Surr: Toluene-d8	23830	0	25000		95.3	81.8	120				
Sample ID: 1606M09-001AMSD SampleType: MSD		6173-MW-16 CL VOLATILE ORGA	NICS SW82601	В	Un: Bat	its: ug/L tchID: 225985		ep Date: 06/23 nalysis Date: 06/24		Run No: 31970 Seq No: 69021	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
,1-Dichloroethene	27240	2500	25000		109	60	150	26760	1.78	17.7	
Benzene	25210	2500	25000		101	70.1	132	24740	1.90	20	
Qualifiers: > Greater than Result valu	e		< Less	than Result value			В	Analyte detected in the ass	sociated method	blank	
BRL Below reporting limit			E Estim	nated (value above quantit	ation range)		Н	Holding times for prepara	tion or analysis e	exceeded	
J Estimated value detecte	d below Reporting Li	mit	N Analy	yte not NELAC certified			R	RPD outside limits due to	matrix	Page 12 of 13	
Rpt Lim Reporting Limit			S Snike	Recovery outside limits of	due to matrix						

S Spike Recovery outside limits due to matrix

Workorder:

Client: Environmental Planning Specialists, Inc.

Project Name: Grantville Mill 1606M09

ANALYTICAL QC SUMMARY REPORT

Date:

29-Jun-16

BatchID: 225985

Sample ID: 1606M09-001AMSD SampleType: MSD		16173-MW-16 TCL VOLATILE ORGA	NICS SW82601	В	Uni Bat	its: ug/L chID: 225985		Date: 06/23 lysis Date: 06/24		Run No: 319700 Seq No: 6902127
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chlorobenzene	24890	2500	25000		99.6	70.9	131	25340	1.77	20
Toluene	26490	2500	25000		106	70.1	133	25330	4.46	20
Trichloroethene	25320	2500	25000		101	70	136	25450	0.492	20
Surr: 4-Bromofluorobenzene	20000	0	25000		80.0	70.7	125	20060	0	0
Surr: Dibromofluoromethane	24860	0	25000		99.4	82.2	120	23450	0	0
Surr: Toluene-d8	25560	0	25000		102	81.8	120	23830	0	0

Qualifiers: Greater than Result value

> BRL Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 13 of 13

Mr. Aaron Williams EPS, Inc. 1050 Crown Pointe Parkway, Suite 550 Atlanta, GA 30338

H&P Project: EPS021116-15 Client Project: Grantville Mill

Dear Mr. Aaron Williams:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 11-Feb-16 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- · Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

Janis Villarreal

H&P Mobile Geochemistry, Inc. is certified under the California ELAP, the National Environmental Laboratory Accreditation Conference (NELAC) and the Department of Defense Accreditation Programs.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021116-15

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
16040-SG-1	E602065-01	Vapor	09-Feb-16	11-Feb-16
16040-SG-2	E602065-02	Vapor	09-Feb-16	11-Feb-16
16040-SG-3	E602065-03	Vapor	09-Feb-16	11-Feb-16
16040-SG-4	E602065-04	Vapor	09-Feb-16	11-Feb-16

The percent recoveries for 1,2,4-Trichlorobenzene and Hexachlorobutadiene fell below the method criteria in the continuing calibration verification. Any results for these analytes may be biased low.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc.
Project: EPS021116-15

1050 Crown Pointe Parkway, Suite 550
Project Number: Grantville Mill
Reported:
Atlanta, GA 30338
Project Manager: Mr. Aaron Williams
18-Feb-16 07:50

DETECTIONS SUMMARY

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Acetone	26	24	ug/m3	EPA TO-15	
Carbon disulfide	6.5	6.3	ug/m3	EPA TO-15	
Benzene	16	3.2	ug/m3	EPA TO-15	
1,2-Dichloropropane	170	9.4	ug/m3	EPA TO-15	
Toluene	130	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	210	6.9	ug/m3	EPA TO-15	
Ethylbenzene	7.8	4.4	ug/m3	EPA TO-15	
m,p-Xylene	20	8.8	ug/m3	EPA TO-15	
o-Xylene	6.3	4.4	ug/m3	EPA TO-15	
Sample ID: 16040-SG-2	Laboratory ID: E0	02065-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloromethane	2.1	2.1	ug/m3	EPA TO-15	
Acetone	49	24	ug/m3	EPA TO-15	
Benzene	9.6	3.2	ug/m3	EPA TO-15	
1,2-Dichloropropane	77	9.4	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	21	8.3	ug/m3	EPA TO-15	
Toluene	66	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	10	6.9	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	6.7	5.0	ug/m3	EPA TO-15	
Sample ID: 16040-SG-3	Laboratory ID: E0	02065-03			
Ameliate	P 1	Reporting	**	No. 1	N-4
Analyte	Result	Limit	Units	Method	Notes
Chloroform	5.4	4.9	ug/m3	EPA TO-15	
Benzene	4.3	3.2	ug/m3	EPA TO-15	
1,2-Dichloropropane	32	9.4	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	9.8	8.3	ug/m3	EPA TO-15	
Toluene	33	3.8	ug/m3	EPA TO-15	
Sample ID: 16040-SG-4	Laboratory ID: E0				
Analyte	Result	Reporting Limit	Units	Method	Notes
2-Butanone (MEK)	40	30	ug/m3	EPA TO-15	140103
Chloroform	9.0	4.9	ug/m3	EPA TO-15	
CHOTOROFIII	9.0	4.9	ug/III3	ErA 10-13	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc.
1050 Crown Pointe Parkway, Suite 550
Atlanta, GA 30338
Project Manager: Mr. Aaron Williams
Project Manager: Mr. Aaron Williams

Sample ID: 16040-SG-4	Laboratory ID: E60	2065-04			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
1,2-Dichloropropane	95	9.4	ug/m3	EPA TO-15	
4-Methyl-2-pentanone (MIBK)	40	8.3	ug/m3	EPA TO-15	
Toluene	250	3.8	ug/m3	EPA TO-15	
Ethylbenzene	8.6	4.4	ug/m3	EPA TO-15	
m,p-Xylene	51	8.8	ug/m3	EPA TO-15	
o-Xylene	24	4.4	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	5.3	5.0	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021116-15

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16040-SG-1 (E602065-01) Vapor Sampled: 09-1	Feb-16 Receiv								
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB61510	15-Feb-16	15-Feb-16	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	26	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	6.5	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	16	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	170	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	130	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	210	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	7.8	4.4	"	"	"	"	"	"	
m,p-Xylene	20	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
~	110	1.0							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021116-15

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Volatile Organic Compounds by EPA TO-15

Analyte	Res	Reporting ult Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16040-SG-1 (E602065-01) Vapor	Sampled: 09-Feb-16 F	Received: 11-Feb-	16						
o-Xylene	6	.3 4.4	ug/m3	1	EB61510	15-Feb-16	15-Feb-16	EPA TO-15	
Bromoform	N	D 10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	N	D 7.0	"	"	"	"	"	"	
4-Ethyltoluene	N	D 5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	N	D 5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	N	D 5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	N	D 12	"	"	"	"	"	"	
1,4-Dichlorobenzene	N	D 12	"	"	"	"	"	"	
1,2-Dichlorobenzene	N	D 12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	N	D 38	"	"	"	"	"	"	
Hexachlorobutadiene	N	D 54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76	-134	"	"	"	"	
Surrogate: Toluene-d8		100 %	78	-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		81.0 %		-127	"	"	"	"	
16040-SG-2 (E602065-02) Vapor	Sampled: 09-Feb-16 F	Received: 11-Feb-	16						
Dichlorodifluoromethane (F12)	N	D 5.0	ug/m3	1	EB61510	15-Feb-16	15-Feb-16	EPA TO-15	
				-	LBOIDIO				
Chloromethane	2	.1 2.1	"	"	"	"	"	"	
Chloromethane Dichlorotetrafluoroethane (F114)						"	"		
	N	.1 2.1	"	"	"			"	
Dichlorotetrafluoroethane (F114)	N N	. 1 2.1 D 7.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride	N N N	.1 2.1 D 7.1 D 2.6	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	N N N	.1 2.1 D 7.1 D 2.6 D 16	"	"	" "	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	N N N N	.1 2.1 D 7.1 D 2.6 D 16 D 8.0 D 5.6	" " " " " " " " " " " " " " " " " " " "	" " "	" " " "	" " "	" " " "	n n n	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	N N N N	.1 2.1 D 7.1 D 2.6 D 16 D 8.0 D 5.6	" " " " " " " " " " " " " " " " " " " "	" " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "	n n n	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone	N N N N	.1 2.1 ID 7.1 ID 2.6 ID 16 ID 8.0 ID 5.6 19 24	n n n	" " " " " "	" " " " "	n n n	" " " " "	n n n	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	N N N N 2 N N	.1 2.1 D 7.1 D 7.6 D 7.6 D 7.6 D 7.6 D 7.6 D 7.6 D 7.7 D 7.7	n n n	" " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	n n n	" " " " "	n n n	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11	N N N N N 2 N 3) N	.1 2.1 D 7.1 D 2.6 D 16 D 8.0 D 5.6 D 4.0 D 7.7 D 3.5	" " " " " " " " " " " " " " " " " " " "	" " " " " "	" " " " " " " "	" " " " " " " "	" " " " "	n n n	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane)	N N N N N N 3) N Nane)	.1 2.1 D 7.1 D 2.6 D 16 D 8.0 D 5.6 D 4.0 D 7.7 D 3.5 D 6.3	" " " " " " " " " " " " " " " " " " " "		" " " " " " " " "	" " " " " " " " " " "	" " " " " " " " "		
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11 Methylene chloride (Dichloromethane) Carbon disulfide	N N N N N N 3) N N N N N N N N N N N N N	.1 2.1 D 7.1 D 2.6 D 16 D 8.0 D 5.6 D 4.0 D 7.7 D 3.5 D 6.3 D 8.0	"""""""""""""""""""""""""""""""""""""""			n n n n n n n n n n n n n n n n n n n	" " " " " " " " " " "		
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11 Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	N N N N N 3) N N N N N N N N N N N N N N	.1 2.1				n n n n n n n n n n n n n n n n n n n	" " " " " " " " " " "		
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	N N N N N 3) N Nane) N N	.1 2.1 D 7.1 D 7.1 D 2.6 D 16 D 8.0 D 5.6 D 4.0 D 7.7 D 3.5 D 6.3 D 8.0					" " " " " " " " " " "		
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	N N N N 3) Nane) N N N N	.1 2.1							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	N N N N N 3) N ane) N N N N N N N N N N N N N N N N N N N	.1 2.1							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	N N N N N N N N N N N N N N N N N N N	.1 2.1							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F11 Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	N N N N N N N N N N N N N N N N N N N	.1 2.1							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021116-15 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16040-SG-2 (E602065-02) Vapor	Sampled: 09-Feb-16 Receive	ed: 11-Feb-16	í						
Trichloroethene	ND	5.5	ug/m3	1	EB61510	15-Feb-16	15-Feb-16	EPA TO-15	
1,2-Dichloropropane	77	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	21	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	66	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	10	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	ND	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	6.7	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		87.6 %	76_	-134	"	"	"	"	
Surrogate: Toluene-d8		109 %		-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %		-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021116-15

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Volatile Organic Compounds by EPA TO-15

The Proble Geochemistry, Inc.											
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes		
16040-SG-3 (E602065-03) Vapor S	Sampled: 09-Feb-16 Received	d: 11-Feb-16	<u> </u>								
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB61510	15-Feb-16	15-Feb-16	EPA TO-15			
Chloromethane	ND	2.1	"	"	"	"	"	"			
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"			
Vinyl chloride	ND	2.6	"	"	"	"	"	"			
Bromomethane	ND	16	"	"	"	"	"	"			
Chloroethane	ND	8.0	"	"	"	"	"	"			
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"			
Acetone	ND	24	"	"	"	"	"	"			
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"			
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"			
Methylene chloride (Dichloromethane		3.5	"	"	"	"	"	"			
Carbon disulfide	ND	6.3	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"			
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"			
2-Butanone (MEK)	ND	30	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"			
Chloroform	5.4	4.9	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"			
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"			
Benzene	4.3	3.2	"	"	"	"	"	"			
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"			
Trichloroethene	ND	5.5	"	"	"	"	"	"			
1,2-Dichloropropane	32	9.4	"	"	"	"	"	"			
Bromodichloromethane	ND	6.8	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"			
4-Methyl-2-pentanone (MIBK)	9.8	8.3	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"			
Toluene	33	3.8	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"			
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"			
Dibromochloromethane	ND	8.6	"	"	"	"	"	"			
Tetrachloroethene	ND	6.9	"	"	"	"	"	"			
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"			
Chlorobenzene	ND	4.7	"	"	"	"	"	"			
Ethylbenzene	ND	4.4	"	"	"	"	"	"			
m,p-Xylene	ND ND	8.8	"	"	"	"	"	"			
Styrene	ND	4.3	"	"	"	"	"	"			
ot, rolle	ND	7.0									

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021116-15

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Volatile Organic Compounds by EPA TO-15

		ici wiobii	C GCOCI	iciliisti y	, 1110.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16040-SG-3 (E602065-03) Vapor	Sampled: 09-Feb-16 Recei	ved: 11-Feb-16	6						
o-Xylene	ND	4.4	ug/m3	1	EB61510	15-Feb-16	15-Feb-16	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		89.4 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		99.1 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.0 %		127	"	"	"	"	
16040-SG-4 (E602065-04) Vapor	Sampled: 09-Feb-16 Recei	ved: 11-Feb-16	6						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EB61510	15-Feb-16	15-Feb-16	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	ND	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F11	3) ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichlorometha		3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	40	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	9.0	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	88	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc.

Project: EPS021116-15

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16040-SG-4 (E602065-04) Vapor	Sampled: 09-Feb-16 Receiv	ed: 11-Feb-16	5						
Trichloroethene	ND	5.5	ug/m3	1	EB61510	15-Feb-16	15-Feb-16	EPA TO-15	
1,2-Dichloropropane	95	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	40	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	250	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	ND	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	8.6	4.4	"	"	"	"	"	"	
m,p-Xylene	51	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	24	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	5.3	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		115 %	76	134	"	"	"	"	
Surrogate: Toluene-d8		107 %		125	"	"	"	"	
Surrogate: 10tuene-as Surrogate: 4-Bromofluorobenzene		91.1 %		127	"	"	"	"	
Surroguie. 4-Bromojiuorovenzene		91.1 70	//-	12/					

Analyte

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

Limit

Notes

EPS, Inc. Project: EPS021116-15

Result

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Units

Limit

	• ,			
Reporting	Spike	Source	%REC	

Result

Level

%REC

Limits

RPD

DII- (EDC1510 DI IZ1)				Prepared & Analyzed: 15-Feb-16
Blank (EB61510-BLK1) Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane (F12)	ND ND	2.1	ug/III3	
Dichlorotetrafluoroethane (F114)	ND ND	7.1	"	
/inyl chloride	ND ND	2.6	,,	
Bromomethane		2.6 16	"	
Chloroethane	ND ND	8.0	"	
richlorofluoromethane (F11)	ND ND	5.6	,,	
Acetone			"	
,1-Dichloroethene	ND	24	"	
,1,2-Trichlorotrifluoroethane (F113)	ND ND	4.0 7.7	,,	
			"	
Methylene chloride (Dichloromethane)	ND	3.5	"	
Carbon disulfide	ND	6.3	"	
rans-1,2-Dichloroethene	ND	8.0	"	
,1-Dichloroethane	ND	4.1	"	
-Butanone (MEK)	ND	30	,,	
is-1,2-Dichloroethene	ND	4.0		
Chloroform	ND	4.9		
,1,1-Trichloroethane	ND	5.5	"	
,2-Dichloroethane (EDC)	ND	4.1	"	
enzene	ND	3.2	"	
arbon tetrachloride	ND	6.4		
richloroethene	ND	5.5	"	
,2-Dichloropropane	ND	9.4	"	
romodichloromethane	ND	6.8	"	
is-1,3-Dichloropropene	ND	4.6	"	
-Methyl-2-pentanone (MIBK)	ND	8.3	"	
rans-1,3-Dichloropropene	ND	4.6	"	
oluene	ND	3.8	"	
,1,2-Trichloroethane	ND	5.5	"	
-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
Cetrachloroethene	ND	6.9	"	
,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

EPS, Inc. Project: EPS021116-15 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB61510 - TO-15										
Blank (EB61510-BLK1)				Prepared &	Analyzed:	15-Feb-16				
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	38	"							
Hexachlorobutadiene	ND	54	"							
Surrogate: 1,2-Dichloroethane-d4	227		"	214		106	76-134			
Surrogate: Toluene-d8	205		"	207		99.0	78-125			
Surrogate: 4-Bromofluorobenzene	307		"	364		84.1	77-127			
LCS (EB61510-BS1)				Prepared &	z Analyzed:	15-Feb-16				
Dichlorodifluoromethane (F12)	95	5.0	ug/m3	101	v 1 11101 j 2001.	94.6	59-128			
Vinyl chloride	46	2.6	ug/III3	52.0		87.8	64-127			
Chloroethane	60	8.0	"	53.6		112	63-127			
Trichlorofluoromethane (F11)	93	5.6	"	113		82.1	62-126			
1,1-Dichloroethene	93 71	4.0	"	80.8		88.0	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	140	7.7	"	155		87.5	66-126			
Methylene chloride (Dichloromethane)	61	3.5	"	70.8		86.1	62-115			
trans-1,2-Dichloroethene	68	8.0	"	80.8		83.6	67-124			
1,1-Dichloroethane	70	4.1	"	82.4		84.4	68-126			
cis-1,2-Dichloroethene	69	4.1	"	80.0		86.4	70-121			
Chloroform	85	4.0 4.9	"	99.2		85.5	68-123			
1,1,1-Trichloroethane	96	4.9 5.5	"	111		86.4	68-125			
1,2-Dichloroethane (EDC)	71	4.1	"	82.4		86.4	65-128			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021116-15 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Liiiit	Ollits	Level	Result	70KEC	Lillits	KFD	Lillit	ivotes
Batch EB61510 - TO-15										
LCS (EB61510-BS1)				Prepared &	Analyzed:	15-Feb-16				
Benzene	56	3.2	ug/m3	64.8		86.4	69-119			
Carbon tetrachloride	110	6.4	"	128		87.1	68-132			
Trichloroethene	93	5.5	"	110		84.4	71-123			
Toluene	63	3.8	"	76.8		81.4	66-119			
1,1,2-Trichloroethane	91	5.5	"	111		81.9	73-119			
Tetrachloroethene	110	6.9	"	138		77.4	66-124			
1,1,1,2-Tetrachloroethane	110	7.0	"	140		79.1	67-129			
Ethylbenzene	66	4.4	"	88.4		74.3	70-124			
m,p-Xylene	67	8.8	"	88.4		76.1	61-134			
o-Xylene	66	4.4	"	88.4		74.4	67-125			
1,1,2,2-Tetrachloroethane	100	7.0	"	140		74.3	65-127			
Surrogate: 1,2-Dichloroethane-d4	228		"	214		107	76-134			
Surrogate: Toluene-d8	205		"	207		98.8	78-125			
Surrogate: 4-Bromofluorobenzene	332		"	364		91.1	77-127			
LCS Dup (EB61510-BSD1)				Prepared &	Analyzed:	15-Feb-16				
Dichlorodifluoromethane (F12)	95	5.0	ug/m3	101		94.1	59-128	0.633	25	
Vinyl chloride	45	2.6	"	52.0		87.2	64-127	0.684	25	
Chloroethane	59	8.0	"	53.6		110	63-127	2.03	25	
Trichlorofluoromethane (F11)	90	5.6	"	113		79.9	62-126	2.71	25	
1,1-Dichloroethene	71	4.0	"	80.8		87.6	61-133	0.397	25	
1,1,2-Trichlorotrifluoroethane (F113)	130	7.7	"	155		86.6	66-126	1.03	25	
Methylene chloride (Dichloromethane)	61	3.5	"	70.8		85.9	62-115	0.231	25	
trans-1,2-Dichloroethene	68	8.0	"	80.8		84.5	67-124	1.18	25	
1,1-Dichloroethane	70	4.1	"	82.4		85.0	68-126	0.765	25	
cis-1,2-Dichloroethene	69	4.0	"	80.0		85.8	70-121	0.701	25	
Chloroform	84	4.9	"	99.2		84.8	68-123	0.818	25	
1,1,1-Trichloroethane	96	5.5	"	111		86.0	68-125	0.518	25	
1,2-Dichloroethane (EDC)	70	4.1	"	82.4		85.0	65-128	1.63	25	
Benzene	54	3.2	"	64.8		83.9	69-119	2.93	25	
Carbon tetrachloride	110	6.4	"	128		85.3	68-132	2.08	25	
Trichloroethene	94	5.5	"	110		85.4	71-123	1.11	25	
Toluene	64	3.8	"	76.8		83.3	66-119	2.29	25	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021116-15 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB61510 - TO-15										
LCS Dup (EB61510-BSD1)				Prepared &	ኔ Analyzed:	15-Feb-16				
1,1,2-Trichloroethane	90	5.5	ug/m3	111		81.1	73-119	1.04	25	
Tetrachloroethene	110	6.9	"	138		78.0	66-124	0.771	25	
1,1,1,2-Tetrachloroethane	110	7.0	"	140		80.2	67-129	1.37	25	
Ethylbenzene	66	4.4	"	88.4		74.9	70-124	0.734	25	
m,p-Xylene	67	8.8	"	88.4		75.2	61-134	1.18	25	

m,p-Ayiene	07	0.0		00.4	13.2	01-134	1.10	23	
o-Xylene	67	4.4	"	88.4	75.3	67-125	1.33	25	
1,1,2,2-Tetrachloroethane	110	7.0	"	140	76.3	65-127	2.65	25	
Surrogate: 1,2-Dichloroethane-d4	223		"	214	104	76-134			
Surrogate: Toluene-d8	208		"	207	100	78-125			
Surrogate: 4-Bromofluorobenzene	345		"	364	94.6	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021116-15

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams18-Feb-16 07:50

Notes and Definitions

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP and the ISO 17025 programs, certification number L11-175.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804,9678 F 760.804,9159

VAPOR / AIR Chain of Custody

DATE: 2-9-2016 Page ___ of __1

	La	Client an	d Project	Information										Sampl	e Rec	eipt (l	Lab Us	e Only	()	
Lab Client/Consultant: ES Inc.	Atlas Ges S	ampli ng		Project Name / #:	Grantvill	Mi	11					Date	Rec'd:	2/11	16	Cont	rol#:	0015	55.0	1
Lab Client Project Manager:	Jim Fineis	Aaron W	Illiams	Project Location:	Grantville	GA							Project			211	16-	CHICAGO CONTRACTOR CON	, ,	
Lab Client Address: Painte Pkwy	1 20 Nottawa			Report E-Mail(s):	iimfineis@a	tlas-geo	.com	-SUZ	2/11/16			Lab V	Vork Or				106	CLASS CONTRACTOR		
Lab Client City, State, Zip	Alpharetta, (6,000	0	jimfineis@at [williams @ testaff@e	enuplar	ming.	com				Samp	ole Intac	OF STREET	TO STORE STORE STORE	ATTION OF THE PARTY AND ADDRESS.	See N		elow	
Phone Number: 404-315-9113	770-883-997			a	testaffee	nuplan	ling. c	om						ge ID:					RT	_
Reporting Requireme			urnaroun	联系列斯特尼斯斯斯斯斯斯斯斯斯斯	BARRIER BUCKERS BEAR OF THE RES	mpler Info		S. B. State				DOUBLE OF SERVICE	de Lab:	E SUBSECTION OF						
	Level IV	5-7 da 3-day 48-Hr	Rush	24-Hr Rush Mobile Lab Other:	Sampler(s): Alex Signature: Date: Z-9-	Testos	A DANGE THE POLICE OF THE					Recei 12	ipt Note 93T	s/Tracki T61	ng#: 87-	197	1 38	93 PM Initi	ials: S	任
Additional Instructions to Laborat Check if Project Analyte List is a * Preferred VOC units (please che μg/L μg/m³ ppbv	Attached							and Full List TO-15	ist / Project List	☐ TO-15	ohthalene 8260SV ☐ TO-15 ☐ TO-17m		(sorbent tube)	atic Fractions	punoduu → □ He	4 8015m	2 N2			
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tedlar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short List / Project	Oxygenates Region 8260SV	Naphthalene ☐ 8260SV ☐	TPHv as Gas □ 8260SVm [TPHv as Diesel (sorbent tube)	Aromatic/Aliphatic Fractions ☐ 8260SVm ☐ TO-15m	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by A			
16040-SG-1		02/09/16	11:40	SV	406 ML	135	12	X												
16040-SG-2		02/09/16	12:00	SV	400 mL	221	7.30	X												T vie
16040-56-3		02/09/16	12230	SV	400 nL	250	.43	X												
16040-5G-4	(株) (大) (大) (大) (大) (大) (大) (大) (大) (大) (大	02/09/16	12:45	SV	400 ML	144	-:42	X												
	Teshoff		Inc		Time:	Received by:	Fori	Uns	wa	the	ŀ	Company			Date: 2/1	elico)		30	
Approved/Relinquished by: Approved/Relinquished by:		Company:		Date:	Time:	Received by:						Company			Date:			Time:	012	

Mr. Aaron Williams EPS, Inc. 1050 Crown Pointe Parkway, Suite 550 Atlanta, GA 30338

H&P Project: EPS021516-13 Client Project: Grantville Mill

Dear Mr. Aaron Williams:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 15-Feb-16 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- · Notes and Definitions / Appendix
- Chain of Custody
- · Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

Janis Villarreal

H&P Mobile Geochemistry, Inc. is certified under the California ELAP, the National Environmental Laboratory Accreditation Conference (NELAC) and the Department of Defense Accreditation Programs.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
16043-SG-7	E602078-01	Vapor	12-Feb-16	15-Feb-16
16043-SG-6	E602078-02	Vapor	12-Feb-16	15-Feb-16
16043-SG-5	E602078-03	Vapor	12-Feb-16	15-Feb-16
16043-SSSG-2	E602078-04	Vapor	12-Feb-16	15-Feb-16
16043-SSSG-1	E602078-05	Vapor	12-Feb-16	15-Feb-16
16043-DUP	E602078-06	Vapor	12-Feb-16	15-Feb-16

Due to the presence of elevated concentrations, the following samples were analyzed using H&P 8260SV rather than EPA Method TO-15:

16043-SG-6

16043-SG-5

16043- SSSG-1

16043-Dup

The following EPA Method TO-15 analytes are not reported by H&P 8260SV:

Dichlorotetrafluoroethane

4-Ethyltoluene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc.

Project: EPS021516-13

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Volatile Organic Compounds by EPA TO-15

		IIŒI .	WIODIIC C							
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16043-SG-7 (E602078-01) Vapor Sam	pled: 12-Feb-16	Received: 15	5-Feb-16							
Dichlorodifluoromethane (F12)	ND		25	ug/m3	5	EB62316	23-Feb-16	24-Feb-16	EPA TO-15	
Chloromethane	ND		10	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND		35	"	"	"	"	"	"	
Vinyl chloride	ND		13	"	"	"	"	"	"	
Bromomethane	ND		79	"	"	"	"	"	"	
Chloroethane	ND		40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND		28	"	"	"	"	"	"	
Acetone	210		120	"	"	"	"	"	"	
1,1-Dichloroethene	ND		20	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND		39	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND		18	"	"	"	"	"	"	
Carbon disulfide	ND		32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND		40	"	"	"	"	"	"	
1,1-Dichloroethane	ND		21	"	"	"	"	"	"	
2-Butanone (MEK)	ND		150	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND		20	"	"	"	"	"	"	
Chloroform	ND		25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND		28	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		21	"	"	"	"	"	"	
Benzene	ND		16	"	"	"	"	"	"	
Carbon tetrachloride	ND		32	"	"	"	"	"	"	
Trichloroethene	ND		27	"	"	"	"	"	"	
1,2-Dichloropropane	ND		47	"	"	"	"	"	"	
Bromodichloromethane	ND		34	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND		23	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND		41	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND		23	"	"	"	"	"	"	
Toluene	22		19	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND		28	"	"	"	"	"	"	
2-Hexanone (MBK)	ND		41	"	"	"	"	"	"	
Dibromochloromethane	ND		43	"	"	"	"	"	"	
Tetrachloroethene	8900		34	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		39	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		35	"	"	"	"	"	"	
Chlorobenzene	ND		23	"	"	"	"	"	"	
Ethylbenzene	ND		22	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Volatile Organic Compounds by EPA TO-15

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16043-SG-7 (E602078-01) Vapor	Sampled: 12-Feb-16	Received: 1	5-Feb-16							
m,p-Xylene	ND		44	ug/m3	5	EB62316	23-Feb-16	24-Feb-16	EPA TO-15	
Styrene	ND		22	"	"	"	"	"	"	
o-Xylene	ND		22	"	"	"	"	"	"	
Bromoform	ND		52	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		35	"	"	"	"	"	"	
4-Ethyltoluene	ND		25	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND		25	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND		25	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND		61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND		61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND		61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND		190	"	"	"	"	"	"	
Hexachlorobutadiene	ND		270	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			131 %	76		"	"	"	"	
Surrogate: Toluene-d8			101 %	<i>78</i>		"	"	"	"	
Surrogate: 4-Bromofluorobenzene			84.6 %	77-	127	"	"	"	"	
16043-SSSG-2 (E602078-04) Vapo	r Sampled: 12-Feb-	16 Received	: 15-Feb-16							
Dichlorodifluoromethane (F12)	ND		25	ug/m3	5	EB62316	23-Feb-16	24-Feb-16	EPA TO-15	
Chloromethane	ND		4.0	"						
Dichlorotetrafluoroethane (F114)			10	"	"	"	"	"	"	
2.0orototatiaoroculaile (1.117)	ND		10 35	,	"	"	"	"	"	
Vinyl chloride	ND ND									
			35		"	"	"		"	
Vinyl chloride	ND		35 13	"	"	"	"	"	"	
Vinyl chloride Bromomethane	ND ND		35 13 79	"	" "	"	" "	"	"	
Vinyl chloride Bromomethane Chloroethane	ND ND ND		35 13 79 40	" "	" "	" "	" " "	" " "	"	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND 62		35 13 79 40 28	" " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " "	"	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone	ND ND ND 62 ND ND		35 13 79 40 28 120	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	" " "	"	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	ND ND ND 62 ND ND ND		35 13 79 40 28 120 20	" " " " " " "	" " " " " "	11 11 11 11	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND 62 ND ND ND		35 13 79 40 28 120 20 39	n n n n	" " " " " " " "	" " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	" " " " " " " " " "	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND 62 ND ND ND ND ND ND ND ND ND		35 13 79 40 28 120 20 39 18	n n n n	" " " " " " " " " " " " " " " " " " " "	" " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " "	" " " " " " " " " "	
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113 Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND 62 ND		35 13 79 40 28 120 20 39 18 32	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""			
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane Carbon disulfide trans-1,2-Dichloroethene	ND ND RD RD ND		35 13 79 40 28 120 20 39 18 32 40	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11				
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND 62 ND		35 13 79 40 28 120 20 39 18 32 40 21	" " " " " " " " " " " " " " " " " " " "						
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND 62 ND		35 13 79 40 28 120 20 39 18 32 40 21 150							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Volatile Organic Compounds by EPA TO-15

	D 4	MDI	Reporting	TT '4	Dilution	D : 1	D 1		M d d	N7 -
Analyte	Result	MDL	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
16043-SSSG-2 (E602078-04) Vapor	Sampled: 12-Feb-16	Received:	15-Feb-16							
1,2-Dichloroethane (EDC)	ND		21	ug/m3	5	EB62316	23-Feb-16	24-Feb-16	EPA TO-15	
Benzene	ND		16	"	"	"	"	"	"	
Carbon tetrachloride	ND		32	"	"	"	"	"	"	
Trichloroethene	ND		27	"	"	"	"	"	"	
1,2-Dichloropropane	ND		47	"	"	"	"	"	"	
Bromodichloromethane	ND		34	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND		23	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND		41	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND		23	"	"	"	"	"	"	
Toluene	ND		19	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND		28	"	"	"	"	"	"	
2-Hexanone (MBK)	ND		41	"	"	"	"	"	"	
Dibromochloromethane	ND		43	"	"	"	"	"	"	
Tetrachloroethene	14000		34	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		39	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		35	"	"	"	"	"	"	
Chlorobenzene	ND		23	"	"	"	"	"	"	
Ethylbenzene	ND		22	"	"	"	"	"	"	
m,p-Xylene	ND		44	"	"	"	"	"	"	
Styrene	ND		22	"	"	"	"	"	"	
o-Xylene	ND		22	"	"	"	"	"	"	
Bromoform	ND		52	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		35	"	"	"	"	"	"	
4-Ethyltoluene	ND		25	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND		25	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND		25	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND		61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND		61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND		61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND		190	"	"	"	"	"	"	
Hexachlorobutadiene	ND		270	"	"	"	"	"	"	
G . 12 D: 11 . 1			120.01	76.13	,	,,	"	"		
Surrogate: 1,2-Dichloroethane-d4			129 %	76-13-		"	"	"	"	
Surrogate: 1 Promofuorobonzona			102 %	78-12:		,,	"	,,	"	
Surrogate: 4-Bromofluorobenzene			85.0 %	77-12	/	"	"	,,	,,	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Volatile Organic Compounds by H&P 8260SV

					115t1 y, 111					
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16043-SG-6 (E602078-02) Vapor San	npled: 12-Feb-16	Received: 1	5-Feb-16							J- Repor
Acetone	ND	5000	5000	ug/m3	0.05	EB61714	16-Feb-16	16-Feb-16	H&P 8260SV	
2-Butanone (MEK)	ND	1000	2500	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1000	2500	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1000	2500	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	200	500	"	"	"	"	"	"	
Chloromethane	ND	200	500	"	"	"	"	"	"	
Vinyl chloride	ND	50	50	"	"	"	"	"	"	
Bromomethane	ND	200	500	"	"	"	"	"	"	
Chloroethane	ND	200	500	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	200	500	"	"	"	"	"	"	
1,1-Dichloroethene	ND	200	500	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	200	500	"	"	"	"	"	"	
Carbon disulfide	ND	200	500	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	200	500	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	200	500	"	"	"	"	"	"	
1,1-Dichloroethane	ND	200	500	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	200	500	"	"	"	"	"	"	
Chloroform	410	50	100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	200	500	"	"	"	"	"	"	
Carbon tetrachloride	ND	50	100	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	50	100	"	"	"	"	"	"	
Benzene	ND	50	100	"	"	"	"	"	"	
Trichloroethene	ND	50	100	"	"	"	"	"	"	
1,2-Dichloropropane	ND	200	500	"	"	"	"	"	"	
Bromodichloromethane	ND	200	500	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	200	500	"	"	"	"	"	"	
Toluene	ND	400	1000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	200	500	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	200	500	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	200	500	"	"	"	"	"	"	
Tetrachloroethene	720000	2800	4000	"	2	"	"	"	"	
Dibromochloromethane	ND	200	500	"	0.05	"	"	"	"	
Chlorobenzene	ND	50	100	"	"	"	"	"	"	
Ethylbenzene	ND	200	500	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	200	500	"	"	"	"	"	"	
m,p-Xylene	ND	200	500	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc.

Project: EPS021516-13

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16043-SG-6 (E602078-02) Vapor	Sampled: 12-Feb-16	Received: 15	5-Feb-16							J- Report
o-Xylene	ND	200	500	ug/m3	0.05	EB61714	16-Feb-16	16-Feb-16	H&P 8260SV	
Styrene	ND	200	500	"	"	"	"	"	"	
Bromoform	ND	200	500	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	200	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	200	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	200	500	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	200	500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	200	500	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			99.9 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			98.9 %	75-		"	"	"	"	
Surrogate: Toluene-d8			93.4 %	75-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene			98.9 %	75-		"	"	"	"	
16043-SG-5 (E602078-03) Vapor	Sampled: 12-Feb-16	Received: 15	5-Feb-16							J- Report
Acetone	ND	5000	5000	ug/m3	0.05	EB61714	16-Feb-16	16-Feb-16	H&P 8260SV	
2-Butanone (MEK)	ND	1000	2500	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1000	2500	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1000	2500	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	200	500	"	"	"	"	"	"	
Chloromethane	ND	200	500	"	"	"	"	"	"	
Vinyl chloride	ND	50	50	"	"	"	"	"	"	
Bromomethane	ND	200	500	"	"	"	"	"	"	
Chloroethane	ND	200	500	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	200	500	"	"	"	"	"	"	
1,1-Dichloroethene	ND	200	500	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113) ND	200	500	"	"	"	"	"	"	
Carbon disulfide	ND	200	500	"	"	"	"	"	"	
Methylene chloride (Dichloromethan		200	500	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	200	500	"	"	"	"	"	"	
1,1-Dichloroethane	ND	200	500	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	200	500	"	"	"	"	"	"	
Chloroform	ND	50	100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	200	500	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16043-SG-5 (E602078-03) Vapor	Sampled: 12-Feb-16	Received: 1	5-Feb-16							J- Report
Carbon tetrachloride	ND	50	100	ug/m3	0.05	EB61714	16-Feb-16	16-Feb-16	H&P 8260SV	
1,2-Dichloroethane (EDC)	ND	50	100	"	"	"	"	"	"	
Benzene	ND	50	100	"	"	"	"	"	"	
Trichloroethene	ND	50	100	"	"	"	"	"	"	
1,2-Dichloropropane	ND	200	500	"	"	"	"	"	"	
Bromodichloromethane	ND	200	500	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	200	500	"	"	"	"	"	"	
Toluene	ND	400	1000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	200	500	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	200	500	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	200	500	"	"	"	"	"	"	
Tetrachloroethene	270000	1400	2000	"	1	"	"	"	"	
Dibromochloromethane	ND	200	500	"	0.05	"	"	"	"	
Chlorobenzene	ND	50	100	"	"	"	"	"	"	
Ethylbenzene	ND	200	500	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	200	500	"	"	"	"	"	"	
m,p-Xylene	ND	200	500	"	"	"	"	"	"	
o-Xylene	ND	200	500	"	"	"	"	"	"	
Styrene	ND	200	500	"	"	"	"	"	"	
Bromoform	ND	200	500	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	200	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	200	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	200	500	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	200	500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	200	500	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			102 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			108 %	75-	125	"	"	"	"	
Surrogate: Toluene-d8			99.4 %	75-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			103 %	75-	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16043-SSSG-1 (E602078-05) Vapor	Sampled: 12-Feb-16	Received	: 15-Feb-16							J- Report
Acetone	ND	5000	5000	ug/m3	0.05	EB61714	16-Feb-16	16-Feb-16	H&P 8260SV	
2-Butanone (MEK)	ND	1000	2500	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1000	2500	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1000	2500	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	200	500	"	"	"	"	"	"	
Chloromethane	ND	200	500	"	"	"	"	"	"	
Vinyl chloride	ND	50	50	"	"	"	"	"	"	
Bromomethane	ND	200	500	"	"	"	"	"	"	
Chloroethane	ND	200	500	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	600	200	500	"	"	"	"	"	"	
1,1-Dichloroethene	ND	200	500	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	200	500	"	"	"	"	"	"	
Carbon disulfide	ND	200	500	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)) ND	200	500	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	200	500	"	"	"	"	"	"	
1,1-Dichloroethane	ND	200	500	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	200	500	"	"	"	"	"	"	
Chloroform	ND	50	100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	200	500	"	"	"	"	"	"	
Carbon tetrachloride	ND	50	100	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	50	100	"	"	"	"	"	"	
Benzene	ND	50	100	"	"	"	"	"	"	
Trichloroethene	60	50	100	"	"	"	"	"	"	J
1,2-Dichloropropane	ND	200	500	"	"	"	"	"	"	
Bromodichloromethane	ND	200	500	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	200	500	"	"	"	"	"	"	
Toluene	ND	400	1000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	200	500	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	200	500	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	200	500	"	"	"	"	"	"	
Tetrachloroethene	72000	70	100	"	"	"	"	"	"	
Dibromochloromethane	ND	200	500	"	"	"	"	"	"	
Chlorobenzene	ND	50	100	"	"	"	"	"	"	
Ethylbenzene	ND	200	500	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	200	500	"	"	"	"	"	"	
m,p-Xylene	ND	200	500	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc.

Project: EPS021516-13

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16043-SSSG-1 (E602078-05) Vapor	Sampled: 12-Feb-16	Received	: 15-Feb-16							J- Report
o-Xylene	ND	200	500	ug/m3	0.05	EB61714	16-Feb-16	16-Feb-16	H&P 8260SV	
Styrene	ND	200	500	"	"	"	"	"	"	
Bromoform	ND	200	500	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	200	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	200	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	200	500	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	200	500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	200	500	"	"	"	"	"	"	
Commenter Dilaman and and			10/0/	7.5	125	,,	"	,,	,,	
Surrogate: Dibromofluoromethane			106 %		125	,,	,,	"	"	
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8			104 % 98.2 %	75- 75-		,,	,,	,,	,,	
Surrogate: 4-Bromofluorobenzene			101 %	75-		"	"	"	"	
Surroguie. 4-Bromojiuorovenzene			101 /0	75-	123					
16043-DUP (E602078-06) Vapor Sa	impled: 12-Feb-16 R		5-Feb-16							J- Report
Acetone	ND	5000	5000	ug/m3	0.05	EB61714	16-Feb-16	16-Feb-16	H&P 8260SV	
2-Butanone (MEK)	ND	1000	2500	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	1000	2500	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	1000	2500	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	200	500	"	"	"	"	"	"	
Chloromethane	ND	200	500	"	"	"	"	"	"	
Vinyl chloride	ND	50	50	"	"	"	"	"	"	
Bromomethane	ND	200	500	"	"	"	"	"	"	
Chloroethane	ND	200	500	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	200	500	"	"	"	"	"	"	
1,1-Dichloroethene	ND	200	500	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	200	500	"	"	"	"	"	"	
Carbon disulfide	ND	200	500	"	"	"	"	"	"	
Methylene chloride (Dichloromethane) ND	200	500	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	200	500	"	"	"	"	"	"	
1,1-Dichloroethane	ND	200	500	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	200	500	"	"	"	"	"	"	
Chloroform	ND	50	100	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	200	500	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16043-DUP (E602078-06) Vapor	Sampled: 12-Feb-16	Received: 1	5-Feb-16							J- Report
Carbon tetrachloride	ND	50	100	ug/m3	0.05	EB61714	16-Feb-16	16-Feb-16	H&P 8260SV	
1,2-Dichloroethane (EDC)	ND	50	100	"	"	"	"	"	"	
Benzene	ND	50	100	"	"	"	"	"	"	
Trichloroethene	ND	50	100	"	"	"	"	"	"	
1,2-Dichloropropane	ND	200	500	"	"	"	"	"	"	
Bromodichloromethane	ND	200	500	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	200	500	"	"	"	"	"	"	
Toluene	ND	400	1000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	200	500	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	200	500	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	200	500	"	"	"	"	"	"	
Tetrachloroethene	260000	1400	2000	"	1	"	"	"	"	
Dibromochloromethane	ND	200	500	"	0.05	"	"	"	"	
Chlorobenzene	ND	50	100	"	"	"	"	"	"	
Ethylbenzene	ND	200	500	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	200	500	"	"	"	"	"	"	
m,p-Xylene	ND	200	500	"	"	"	"	"	"	
o-Xylene	ND	200	500	"	"	"	"	"	"	
Styrene	ND	200	500	"	"	"	"	"	"	
Bromoform	ND	200	500	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	200	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	200	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	200	500	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	200	500	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	200	500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	200	500	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			100 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4			108 %	75-	125	"	"	"	"	
Surrogate: Toluene-d8			95.0 %	75-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			101 %	75-	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EB62316-BLK1)				Prepared & Analyzed: 23-Feb
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	,,	
Vinyl chloride	ND	2.6	"	
Bromomethane	ND	16	,,	
Chloroethane	ND	8.0	,,	
richlorofluoromethane (F11)	ND	5.6	"	
acetone	ND	24	"	
,1-Dichloroethene	ND	4.0	"	
,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
Methylene chloride (Dichloromethane)	ND	3.5	,,	
arbon disulfide	ND	6.3	,,	
rans-1,2-Dichloroethene	ND	8.0	"	
,1-Dichloroethane	ND	4.1	"	
-Butanone (MEK)	ND	30	"	
is-1,2-Dichloroethene	ND	4.0	"	
hloroform	ND	4.9	,,	
1,1-Trichloroethane	ND	5.5	"	
2-Dichloroethane (EDC)	ND	4.1	"	
enzene	ND	3.2	"	
arbon tetrachloride	ND	6.4	"	
richloroethene	ND	5.5	"	
,2-Dichloropropane	ND	9.4	"	
Bromodichloromethane	ND	6.8	"	
s-1,3-Dichloropropene	ND	4.6	"	
Methyl-2-pentanone (MIBK)	ND	8.3	"	
ans-1,3-Dichloropropene	ND	4.6	"	
oluene	ND	3.8	"	
,1,2-Trichloroethane	ND	5.5	"	
-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
etrachloroethene	ND	6.9	"	
,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,2-Tetrachloroethane	ND	7.0	,,	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

EPS, Inc. Project: EPS021516-13
1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB62316 - TO-15										
Blank (EB62316-BLK1)				Prepared &	Analyzed:	23-Feb-16				
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	38	"							
Hexachlorobutadiene	ND	54	"							
Surrogate: 1,2-Dichloroethane-d4	261		"	214		122	76-134			
Surrogate: Toluene-d8	203		"	207		98.2	78-125			
Surrogate: 4-Bromofluorobenzene	325		"	364		89.3	77-127			
LCS (EB62316-BS1)				Prepared &	Analyzed:	23-Feb-16				
Dichlorodifluoromethane (F12)	110	5.0	ug/m3	101	· · · · · · · · · · · · · · · · · · ·	110	59-128			
Vinyl chloride	56	2.6	ug/III3	52.0		109	64-127			
Chloroethane	50 52	8.0	"	53.6		97.1	63-127			
Trichlorofluoromethane (F11)	120	5.6	"	113		110	62-126			
1,1-Dichloroethene	84	4.0	"	80.8		104	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7	"	155		106	66-126			
Methylene chloride (Dichloromethane)	71	3.5	"	70.8		99.9	62-115			
trans-1,2-Dichloroethene	74	8.0	"	80.8		91.5	67-124			
1,1-Dichloroethane	80	4.1	"	82.4		97.3	68-126			
cis-1,2-Dichloroethene	80	4.0	"	80.0		100	70-121			
Chloroform	110	4.9	"	99.2		110	68-123			
1,1,1-Trichloroethane	130	5.5	"	111		119	68-125			
1,2-Dichloroethane (EDC)	93	4.1		82.4		112	65-128			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Liiiit	Ollits	Level	Result	/0KEC	Lillits	KFD	Lillit	Notes
Batch EB62316 - TO-15										
LCS (EB62316-BS1)				Prepared &	Analyzed:	23-Feb-16				
Benzene	64	3.2	ug/m3	64.8		98.4	69-119			
Carbon tetrachloride	150	6.4	"	128		118	68-132			
Trichloroethene	110	5.5	"	110		102	71-123			
Toluene	77	3.8	"	76.8		100	66-119			
1,1,2-Trichloroethane	100	5.5	"	111		94.3	73-119			
Tetrachloroethene	130	6.9	"	138		96.1	66-124			
1,1,1,2-Tetrachloroethane	140	7.0	"	140		96.8	67-129			
Ethylbenzene	84	4.4	"	88.4		94.5	70-124			
m,p-Xylene	85	8.8	"	88.4		96.5	61-134			
o-Xylene	86	4.4	"	88.4		97.6	67-125			
1,1,2,2-Tetrachloroethane	120	7.0	"	140		84.7	65-127			
Surrogate: 1,2-Dichloroethane-d4	264		"	214		123	76-134			
Surrogate: Toluene-d8	200		"	207		96.7	78-125			
Surrogate: 4-Bromofluorobenzene	375		"	364		103	77-127			
LCS Dup (EB62316-BSD1)					Analyzed:	23-Feb-16				
Dichlorodifluoromethane (F12)	110	5.0	ug/m3	101		110	59-128	0.226	25	
Vinyl chloride	57	2.6	"	52.0		110	64-127	1.01	25	
Chloroethane	63	8.0	"	53.6		118	63-127	19.3	25	
Trichlorofluoromethane (F11)	130	5.6	"	113		113	62-126	2.19	25	
1,1-Dichloroethene	85	4.0	"	80.8		105	61-133	0.476	25	
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7	"	155		106	66-126	0.282	25	
Methylene chloride (Dichloromethane)	71	3.5	"	70.8		101	62-115	0.893	25	
trans-1,2-Dichloroethene	76	8.0	"	80.8		93.9	67-124	2.58	25	
1,1-Dichloroethane	81	4.1	"	82.4		97.7	68-126	0.409	25	
cis-1,2-Dichloroethene	79	4.0	"	80.0		98.8	70-121	1.21	25	
Chloroform	110	4.9	"	99.2		110	68-123	0.453	25	
1,1,1-Trichloroethane	130	5.5	"	111		117	68-125	1.35	25	
1,2-Dichloroethane (EDC)	94	4.1	"	82.4		115	65-128	1.80	25	
Benzene	66	3.2	"	64.8		101	69-119	3.10	25	
Carbon tetrachloride	150	6.4	"	128		120	68-132	1.39	25	
Trichloroethene	110	5.5	"	110		102	71-123	0.146	25	
Toluene	79	3.8	"	76.8		103	66-119	2.98	25	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB62316 - TO-15										
LCS Dup (EB62316-BSD1)				Prepared &	Analyzed:	23-Feb-16				
1,1,2-Trichloroethane	110	5.5	ug/m3	111		96.6	73-119	2.49	25	
Tetrachloroethene	140	6.9	"	138		99.6	66-124	3.52	25	
1,1,1,2-Tetrachloroethane	140	7.0	"	140		97.4	67-129	0.564	25	
Ethylbenzene	84	4.4	"	88.4		95.2	70-124	0.734	25	
m,p-Xylene	87	8.8	"	88.4		97.9	61-134	1.48	25	
o-Xylene	87	4.4	"	88.4		98.1	67-125	0.559	25	
1,1,2,2-Tetrachloroethane	120	7.0	"	140		85.2	65-127	0.586	25	
Surrogate: 1,2-Dichloroethane-d4	265		"	214		124	76-134			
Surrogate: Toluene-d8	202		"	207		97.4	78-125			
Surrogate: 4-Bromofluorobenzene	378		"	364		104	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EB61714-BLK1) ND 5000 ug/m3
2-Butanone (MEK) ND 2500 "
2-Butanone (WEK) ND 2500
2-Hexamone (MDK) ND 2500
4-Methyl-2-pentanone (MBK)
Demolocultuoromentane (F12)
Chloroniemane ND 300
Villy Cilionde ND 50
Promomentane ND 300
Chloroethane ND 500 "
Trichlorofluoromethane (F11) ND 500 "
1,1-Dichloroethene ND 500 "
1,1,2 Trichlorotrifluoroethane (F113) ND 500 "
Carbon disulfide ND 500 "
Methylene chloride (Dichloromethane) ND 500 "
trans-1,2-Dichloroethene ND 500 "
1,1-Dichloroethane ND 500 "
cis-1,2-Dichloroethene ND 500 "
Chloroform ND 100 "
1,1,1-Trichloroethane ND 500 "
Carbon tetrachloride ND 100 "
1,2-Dichloroethane (EDC) ND 100 "
Benzene ND 100 "
Trichloroethene ND 100 "
1,2-Dichloropropane ND 500 "
Bromodichloromethane ND 500 "
cis-1,3-Dichloropropene ND 500 "
Toluene ND 1000 "
trans-1,3-Dichloropropene ND 500 "
1,1,2-Trichloroethane ND 500 "
1,2-Dibromoethane (EDB) ND 500 "
Tetrachloroethene ND 100 "
Dibromochloromethane ND 500 "
Chlorobenzene ND 100 "
Ethylbenzene ND 500 "

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

EPS, Inc. Project: EPS021516-13
1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Reporting

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB61714 - EPA 5030										
Blank (EB61714-BLK1)				Prepared &	Analyzed:	16-Feb-16				
1,1,1,2-Tetrachloroethane	ND	500	ug/m3							
m,p-Xylene	ND	500	"							
o-Xylene	ND	500	"							
Styrene	ND	500	"							
Bromoform	ND	500	"							
1,1,2,2-Tetrachloroethane	ND	500	"							
1,3,5-Trimethylbenzene	ND	500	"							
1,2,4-Trimethylbenzene	ND	500	"							
1,3-Dichlorobenzene	ND	500	"							
1,4-Dichlorobenzene	ND	500	"							
1,2-Dichlorobenzene	ND	500	"							
1,2,4-Trichlorobenzene	ND	500	"							
Hexachlorobutadiene	ND	500	"							
Surrogate: Dibromofluoromethane	2460		"	2500		98.3	75-125			
Surrogate: 1,2-Dichloroethane-d4	2600		"	2500		104	75-125			
Surrogate: Toluene-d8	2360		"	2500		94.3	75-125			
Surrogate: 4-Bromofluorobenzene	2470		"	2500		98.8	75-125			
LCS (EB61714-BS1)				Prepared &	z Analyzed:	16-Feb-16				
Dichlorodifluoromethane (F12)	3600	500	ug/m3	5000	,	72.5	70-130			
Vinyl chloride	4000	50	"	5000		80.5	70-130			
Chloroethane	4200	500	"	5000		83.1	70-130			
Trichlorofluoromethane (F11)	5000	500	"	5000		99.8	70-130			
1,1-Dichloroethene	5000	500	"	5000		99.9	70-130			
1,1,2 Trichlorotrifluoroethane (F113)	5400	500	"	5000		108	70-130			
Methylene chloride (Dichloromethane)	4900	500	"	5000		97.4	70-130			
trans-1,2-Dichloroethene	4900	500	"	5000		98.6	70-130			
1,1-Dichloroethane	4800	500	"	5000		96.1	70-130			
cis-1,2-Dichloroethene	5000	500	"	5000		99.4	70-130			
Chloroform	5300	100	"	5000		106	70-130			
1,1,1-Trichloroethane	5200	500	"	5000		104	70-130			
Carbon tetrachloride	5500	100	"	5000		111	70-130			
1,2-Dichloroethane (EDC)	4900	100	"	5000		98.3	70-130			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB61714 - EPA 5030										
LCS (EB61714-BS1)				Prepared &	Analyzed:	16-Feb-16				
Benzene	4800	100	ug/m3	5000		95.3	70-130			
Trichloroethene	5100	100	"	5000		102	70-130			
Toluene	4700	1000	"	5000		94.5	70-130			
1,1,2-Trichloroethane	4800	500	"	5000		96.5	70-130			
Tetrachloroethene	4900	100	"	5000		98.0	70-130			
Ethylbenzene	5000	500	"	5000		101	70-130			
1,1,1,2-Tetrachloroethane	5200	500	"	5000		104	70-130			
m,p-Xylene	9800	500	"	10000		97.9	70-130			
o-Xylene	5000	500	"	5000		99.4	70-130			
1,1,2,2-Tetrachloroethane	5100	500	"	5000		102	70-130			
Surrogate: Dibromofluoromethane	2480		"	2500		99.2	75-125			
Surrogate: 1,2-Dichloroethane-d4	2430		"	2500		97.4	75-125			
Surrogate: Toluene-d8	2470		"	2500		98.8	75-125			
Surrogate: 4-Bromofluorobenzene	2500		"	2500		100	75-125			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS021516-13

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams25-Feb-16 11:37

Notes and Definitions

J- Report This sample is reported to the MDL or LOD determined for this method. All confirmed hits above the listed MDL or LOD value

and below the RL/LOQ, will be flagged with a "J" result. If an MDL or LOD is not listed, the analyte is ND at the RL.

J Detected but below the RL/LOQ; therefore, result is an estimated concentration.

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP and the ISO 17025 programs, certification number L11-175.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 2-12-16 Page 1 of 1

	Lak	Client and	d Project	Information										Sampl	e Rec	eipt (I	Lab Us	e Only	/)	
Lab Client/Consultant: EPS In	ıc.	914 HZ 2		Project Name / #:	Grantville	e Mil	16.5		m 35			Date	Rec'd:	2/15	116	Contro	ol #:\\(015	0.01	
	Williams			Project Location:	Grantville	. LA		grad in	086		ELT M	H&P	Project	# EP	3502	215	16-	13		
Lab Client Address: LOSO Coun		ru Ste	550	Report E-Mail(s):	ollomo Da	0.50/00	ana c	- 44				Lab V	Work Or	der#	EG	002	20	78		
Lab Client City, State, Zip: AHanda	6A 3033	28		av	1 1 00 0	ropiece	y. 4	om -				COLUMN TO SERVICE				Total Market Spirit	See I		elow	
Phone Number: 464 315		,0		9-1	restatt we	nuplan	ing-a	om							116			Temp:		
Reporting Requireme		Т	urnaroun	d Time	Sar	mpler Info	rmatio	n				SHESSIELS:	de Lab:		.,.					
Standard Report Level III	Level IV	⋨ 5-7 day	y Stnd	24-Hr Rush	Sampler(s): Aj	ex Tos	toff	ers of				Recei	ipt Note:	s/Trackii	ng #:	1.10	1219	325	,	
Excel EDD Other EDD:	isaba an estab	☐ 3-day I	Rush	☐ Mobile Lab	Signature: // 0	177	#5					16	451	10	187		121	120		
CA Geotracker Global ID:		☐ 48-Hr i	Rush	Other:	Date: 02/12	-116	W										Lat	PM Init	ials: 8U	2
Additional Instructions to Laborat Check if Project Analyte List is A * Preferred VOC units (please cho µg/L µg/m³ ppbv	Attached	Hè	P 82	reported LIOSV yee	NE CENTUAL OF			rd Full List	VOCS Short List / Project List	□ 10-15	Naphthalene ☐ 8260SV ☐ TO-15 ☐ TO-17m	☐ TO-15m	TPHv as Diesel (sorbent tube) ☐ TO-17m	Aromatic/Aliphatic Fractions ☐ 8260SVm ☐ TO-15m	ompound PA He	PA 8015m	Fixed Gases by ASTM D1945	irre,21 sastOn ms. 11		
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tedlar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCS Short	Oxygenates 8260SV	Naphthalene □ 8260SV □	TPHv as Gas ☐ 8260SVm	TPHv as Diese	Aromatic/Alip 8260SVm	Leak Check Compound		Fixed Gases t			
16043-86-7		02/12/16	11:55	SV	400 M	465	.25	X		e Ing										
16043-86-6 @		02/12/16	12:10	SU	400mc	255	-19	X												
16043-5G-5 (A)		02/14/6	12:20	SV	YOOML	247	78	X						See The Co						1
16043 - 8886-2		02/12/16	13:12	SV	400AL	237	.12	×			4								Page 1	
16043-5886-1		02/12/16	13:25	55	400 ml	471	.38	X									1			
16043 - DUP (*)		०भाया	12:00	SS	YOUNL	229	.48	X												
M															ingerical and the second					
Approved Relinquished by: Alex	Testoff	Company:	Inc.	Date: 02-11-16	Time: 15:20	Received by:	For	Uns	wz	ut	n	Company	P		Date:	Sli	0	Time:	5	
Approved/Relinquished by:		Company:		Date:	Time:	Received by:						Company			Date:			Time:		
Approved/Relinquished by:		Company:		Date:	Time:	Received by:						Company	:		Date:			Time:		

Mr. Aaron Williams EPS, Inc. 1050 Crown Pointe Parkway, Suite 550 Atlanta, GA 30338

H&P Project: EPS062216-10 Client Project: Grantville Mill

Dear Mr. Aaron Williams:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 22-Jun-16 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

Janis Villarreal

H&P Mobile Geochemistry, Inc. is certified under the California ELAP, the National Environmental Laboratory Accreditation Conference (NELAC) and the Department of Defense Accreditation Programs.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS062216-10

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams27-Jun-16 14:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
16172-SG-8	E606089-01	Vapor	21-Jun-16	22-Jun-16

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS062216-10
1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams27-Jun-16 14:51

DETECTIONS SUMMARY

imple ID: 16172-SG-8	Laboratory ID: E60 0	6089-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Trichlorofluoromethane (F11)	8.8	5.6	ug/m3	EPA TO-15	
Benzene	37	3.2	ug/m3	EPA TO-15	
Toluene	25	3.8	ug/m3	EPA TO-15	
Tetrachloroethene	2500	6.9	ug/m3	EPA TO-15	
Chlorobenzene	9.5	4.7	ug/m3	EPA TO-15	
Ethylbenzene	4.4	4.4	ug/m3	EPA TO-15	
m,p-Xylene	16	8.8	ug/m3	EPA TO-15	
o-Xylene	8.7	4.4	ug/m3	EPA TO-15	
1.2.4-Trimethylbenzene	23	5.0	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS062216-10

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams27-Jun-16 14:51

Volatile Organic Compounds by EPA TO-15

		10011			inc.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16172-SG-8 (E606089-01) Vapor	Sampled: 21-Jun-16 Receiv	ved: 22-Jun-16	<u> </u>						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EF62403	24-Jun-16	24-Jun-16	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	8.8	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F11	3) ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichlorometha	ane) ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	37	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	25	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	2500	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	9.5	4.7	"	"	"	"	"	"	
Ethylbenzene	4.4	4.4	"	"	"	"	"	"	
m,p-Xylene	16	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	8.7	4.4	**	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS062216-10

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams27-Jun-16 14:51

Volatile Organic Compounds by EPA TO-15

		CCI WIODII	e Geoen	ciiiisti j,	1110.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
16172-SG-8 (E606089-01) Vapor	Sampled: 21-Jun-16 Receiv	ed: 22-Jun-10	5						
Bromoform	ND	10	ug/m3	1	EF62403	24-Jun-16	24-Jun-16	EPA TO-15	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	23	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	II .	"	II .	"	
Surrogate: 1,2-Dichloroethane-d4		99.7 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	77-1		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS062216-10

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams27-Jun-16 14:51

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EF62403 - TO-15				
Blank (EF62403-BLK1)				Prepared & Analyzed: 24-Jun-16
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	
Vinyl chloride	ND	2.6	"	
Bromomethane	ND	16	"	
Chloroethane	ND	8.0	"	
Trichlorofluoromethane (F11)	ND	5.6	"	
1,1-Dichloroethene	ND	4.0	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	
Carbon disulfide	ND	6.3	"	
trans-1,2-Dichloroethene	ND	8.0	"	
1,1-Dichloroethane	ND	4.1	"	
2-Butanone (MEK)	ND	30	"	
cis-1,2-Dichloroethene	ND	4.0	"	
Chloroform	ND	4.9	"	
1,1,1-Trichloroethane	ND	5.5	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	
Benzene	ND	3.2	"	
Carbon tetrachloride	ND	6.4	"	
Trichloroethene	ND	5.5	"	
1,2-Dichloropropane	ND	9.4	"	
Bromodichloromethane	ND	6.8	"	
cis-1,3-Dichloropropene	ND	4.6	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	
trans-1,3-Dichloropropene	ND	4.6	"	
Toluene	ND	3.8	"	
1,1,2-Trichloroethane	ND	5.5	"	
2-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
Tetrachloroethene	ND	6.9	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	
Chlorobenzene	ND	4.7	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

EPS, Inc. Project: EPS062216-10 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams27-Jun-16 14:51

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF62403 - TO-15										
Blank (EF62403-BLK1)				Prepared &	Analyzed:	24-Jun-16				
Ethylbenzene	ND	4.4	ug/m3							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	38	"							
Hexachlorobutadiene	ND	54	"							
Surrogate: 1,2-Dichloroethane-d4	43.2		"	42.9		101	76-134			
Surrogate: Toluene-d8	42.1		"	41.4		102	78-125			
Surrogate: 4-Bromofluorobenzene	73.0		"	72.9		100	77-127			
LCC (EECAMA BC1)				Prepared: 2	24-Jun-16 A	nalyzed: 24	5-Jun-16			
LCS (EF62403-BS1) Dichlorodifluoromethane (F12)	110	F 0	ug/m3	101	24 3411 1071	111	59-128			
Vinyl chloride		5.0	ug/III3	52.0		111	64-127			
•	57 50	2.6	,,							
Chloroethane Trichlorofluoromethane (F11)	58 120	8.0 5.6	,,	53.6 113		107 104	63-127 62-126			
1,1-Dichloroethene		5.6 4.0	,,	80.8		104	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	88 170	4.0 7.7	,,	155		111	66-126			
Methylene chloride (Dichloromethane)	78	7.7 3.5	,,	70.8		111	62-115			
			,,							
trans-1,2-Dichloroethene	86	8.0	,,	80.8		106 109	67-124			
1,1-Dichloroethane	90	4.1	,,	82.4			68-126			
cis-1,2-Dichloroethene	89	4.0	,,	80.0		111	70-121			
Chloroform	110	4.9	,,	99.2		112	68-123			
1,1,1-Trichloroethane	130	5.5		111		113	68-125			
1,2-Dichloroethane (EDC)	92	4.1	"	82.4		111	65-128			
Benzene	76	3.2	"	64.8		117	69-119			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS062216-10
1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams27-Jun-16 14:51

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Liiiit	Omts	Level	Result /URLE	Limits	КГБ	Liiiit	110103
Batch EF62403 - TO-15									
LCS (EF62403-BS1)				Prepared: 2	24-Jun-16 Analyzed:	25-Jun-16			
Carbon tetrachloride	150	6.4	ug/m3	128	117	68-132			
Trichloroethene	110	5.5	"	110	102	71-123			
Toluene	81	3.8	"	76.8	106	66-119			
1,1,2-Trichloroethane	120	5.5	"	111	108	73-119			
Tetrachloroethene	150	6.9	"	138	109	66-124			
1,1,1,2-Tetrachloroethane	160	7.0	"	140	116	67-129			
Ethylbenzene	97	4.4	"	88.4	110	70-124			
m,p-Xylene	99	8.8	"	88.4	111	61-134			
o-Xylene	94	4.4	"	88.4	107	67-125			
1,1,2,2-Tetrachloroethane	150	7.0	"	140	109	65-127			
Surrogate: 1,2-Dichloroethane-d4	45.0		"	42.9	105	76-134			
Surrogate: Toluene-d8	42.3		"	41.4	102	78-125			
Surrogate: 4-Bromofluorobenzene	72.6		"	72.9	99.6	77-127			
				Dramaradi 1	M. Jun. 16 Analyzadi	05 Jun 16			
LCS Dup (EF62403-BSD1)					24-Jun-16 Analyzed:				
Dichlorodifluoromethane (F12)	110	5.0	ug/m3	101	109	59-128	2.08	25	
Vinyl chloride	56	2.6	"	52.0	107	64-127	2.61	25	
Chloroethane	53	8.0	"	53.6	99.7	63-127	7.42	25	
Trichlorofluoromethane (F11)	110	5.6	"	113	101	62-126	3.41	25	
1,1-Dichloroethene	87	4.0	"	80.8	108	61-133	0.783	25	
1,1,2-Trichlorotrifluoroethane (F113)	170	7.7	"	155	112	66-126	0.760	25	
Methylene chloride (Dichloromethane)	74	3.5	"	70.8	104	62-115	5.97	25	
trans-1,2-Dichloroethene	86	8.0	"	80.8	107	67-124	0.234	25	
1,1-Dichloroethane	91	4.1	"	82.4	111	68-126	1.68	25	
cis-1,2-Dichloroethene	85	4.0	"	80.0	106	70-121	4.81	25	
Chloroform	110	4.9	"	99.2	109	68-123	2.70	25	
1,1,1-Trichloroethane	120	5.5	"	111	108	68-125	3.90	25	
1,2-Dichloroethane (EDC)	89	4.1	"	82.4	108	65-128	3.09	25	
Benzene	74	3.2	"	64.8	115	69-119	2.15	25	
Carbon tetrachloride	120	6.4	"	128	96.9	68-132	18.6	25	
Trichloroethene	110	5.5	"	110	103	71-123	1.26	25	
Toluene	81	3.8	"	76.8	106	66-119	0.0938	25	
1,1,2-Trichloroethane	120	5.5	"	111	108	73-119	0.277	25	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS062216-10 1050 Crown Pointe Parkway, Suite 550 Project Number: Grantville Mill

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams27-Jun-16 14:51

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF62403 - TO-15										
LCS Dup (EF62403-BSD1)	Prepared: 24-Jun-16 Analyzed: 25-Jun-16									
Tetrachloroethene	150	6.9	ug/m3	138		112	66-124	2.67	25	
1,1,1,2-Tetrachloroethane	160	7.0	"	140		116	67-129	0.472	25	
Ethylbenzene	98	4.4	"	88.4		111	70-124	1.48	25	
m,p-Xylene	100	8.8	"	88.4		115	61-134	3.03	25	
o-Xylene	98	4.4	"	88.4		110	67-125	3.53	25	
1,1,2,2-Tetrachloroethane	160	7.0	"	140		112	65-127	2.92	25	
Surrogate: 1,2-Dichloroethane-d4	43.8		"	42.9		102	76-134			
Surrogate: Toluene-d8	42.7		"	41.4		103	78-125			
Surrogate: 4-Bromofluorobenzene	75.1		"	72.9		103	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

EPS, Inc. Project: EPS062216-10

1050 Crown Pointe Parkway, Suite 550Project Number: Grantville MillReported:Atlanta, GA 30338Project Manager: Mr. Aaron Williams27-Jun-16 14:51

Notes and Definitions

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP and the ISO 17025 programs, certification number L11-175.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 6-21-16
Page _ 1 _ of _ 1

Lab Client and Project Information											•	Sampl	e Rec	eipt (L	ab Us	e Only	y)			
Lab Client/Consultant: EPS Trc.				Project Name /#: Grantuille Mil							Date Rec'd: 6/22/16 Control #: 1905							5.0	1	
Lab Oliant Desirat Management	n Williams			Project Location: Great Tile CA							H&P Project # EPS 062216-1									
Lab Client Address: 1050 Crown Pointe Pky, Ste 550 Lab Client City, State, Zip: Atlanta, GA 30338			Project Location: Grantville, GA Report E-Mail(s): awilliams Denuplanning.com					Laster a			Nork Ord				80					
										Samp	ole Intac] See I	-	elow			
Phone Number: 404 315 9113				1								Receipt Gauge ID: 11167 Temp: RT								
Reporting Requirements Turnaroun				nd Time Sampler Information					197-1		Outside Lab:									
and the second s	Level IV	▼ 5-7 day		24-Hr Rush									-170	2002						
Excel EDD Other EDD:	HOLD THE H	3-day		☐ Mobile Lab	Signature:	Auto	1			G01701		12	8136	EUF	011	Toc	110	_		
CA Geotracker Global ID:		☐ 48-Hr I		□ Other: □ Date: 6-21-16							Lab PM Init							tials: K	ım	
Additional Instructions to Labora ☐ Check if Project Analyte List is * Preferred VOC units (please ch ☐ µg/L	Attached	nu grati pa			CONTAINED	· ·		ard Full List	VOCs Short List / Project List	TO-15	Naphthalene ☐ 8260SV ☐ TO-15 ☐ TO-17m	s n	TPHv as Diesel (sorbent tube)	Aromatic/Aliphatic Fractions 8260SVm T0-15m	Compound IPA He	EPA 8015m	Fixed Gases by ASTM D1945			
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tedlar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short 8260SV	Oxygenates 8260SV	Naphthalene □ 8260SV	TPHv as Gas ☐ 8260SVm	TPHv as Die ☐ TO-17m	Aromatic/Aliph	Leak Check Compound	Methane by EPA 8015m	Fixed Gases			
16172-5G-8		06/21/16	1045	VS	400 ML	270	-1.97	X												
										field the second										
																			4	
Approved/Relinquished by: Approved/Relinquished by:		Eps Company: The Company:		Date: 6-21-[6 Date:	Time: 1730 Time:	Received by:	Jon	·Un	sw.	art		Company			Date:	22/1	6	Time:	:00)
Approved/Relinquished by:		Company:		Date:	Time:	Received by:						Company	:		Date:			Time:		