Greenhouse Gas Emissions Inventory for the State of Georgia

Summary Report of 1990 – 2005 baselines and detail on the 2005 inventory, developed using the U.S. EPA State Inventory Tool

Georgia Dept. of Natural Resources Environmental Protection Division Air Protection Branch November 2008

Report on Georgia's Greenhouse Gas Emissions Inventory

Introduction

During recent deliberations in developing Georgia's first comprehensive energy strategy, much discussion related to preparing Georgia for future climate change policies. As a result, the Governor's Energy Policy Council unanimously recommended that Georgia update its greenhouse gas (GHG) inventory (originally released in 1999) and develop a process to keep it current every three years. This report is, in part, a response to that charge. Since that recommendation, the likelihood of mandatory GHG reporting and reduction programs in the United States has become even more apparent^{1,2,3,4}, further supporting the need for a systematic inventory of statewide GHG emissions.

Available tools and estimation techniques have greatly improved since Georgia developed its first greenhouse gas inventory in 1999. However, this updated inventory is still only a gross estimate due to the lack of necessary data inputs. This updated inventory identifies the major categories of GHG emission sources and their annual trends from 1990 to 2005 using the US EPA's State Inventory Tool version released on July 22, 2008. The GA Environmental Protection Division (EPD) intends to identify areas in this inventory that would benefit most from for further refinement using more accurate currently available or easily obtained data, collect necessary data, and update the inventory as needed or as possible.

Recently, Congress has required the US EPA to release a proposed mandatory Greenhouse Gas Reporting Rule by the end of September 2008, with a final rule required by the end of June 2009⁵. This rule will require mandatory reporting of greenhouse gases "above appropriate thresholds in all sectors of the economy", including both upstream production and downstream sources. The EPA is responsible for determining the reporting thresholds, frequency, and mechanisms. In addition, in response to the U.S. Supreme Court's decision in Massachusetts v. EPA, the US EPA released an Advance Notice of Proposed Rulemaking for public comment on Regulating Greenhouse Gas Emissions under the Clean Air Act ⁶(July 11, 2008). This greenhouse gas inventory is an initial step for the Georgia EPD in preparing to respond to these potential upcoming federal programs.

² A Comparison of Legislative Climate Change Targets in the 110th Congress as of Sept 9, 2008,

¹ "US ready for 'binding' reductions of greenhouse gases - official UPDATE", Feb 25, 2008, accessed March 5, 2008, http://www.forbes.com/afxnewslimited/feeds/afx/2008/02/25/afx4691077.html

http://www.wri.org/chart/comparison-legislative-climate-change-targets-110th-congress-1990-2050, accessed September 12, 2008.

³ March 11, 2008 Reps. Waxman and Markey "Moratorium on Uncontrolled Power Plants Act of 2008" addressing permitting and emission allowances for new coal-fired power plants proposed without controls on their global warming emissions. .<u>http://oversight.house.gov/documents/20080311104934.pdf</u>.

⁴ Greenhouse Gas Accountability Act of 2007 (H.R. 2651), <u>National Greenhouse Gas Registry Act of 2007 (S. 1387)</u>, and FY 2008 Interior Appropriations Bill with Feinstein-Boxer Measure to support mandatory economy-wide greenhouse gas emissions registry.

⁵ <u>http://www.epa.gov/climatechange/emissions/ghgrulemaking.html</u>, accessed September 12, 2008.

⁶ <u>http://www.epa.gov/climatechange/anpr.html</u>, accessed September 12, 2008.

Method

The GA GHG inventory was prepared using the U.S. Environmental Protection Agency's (EPA) State Inventory Tool (SIT)⁷ with the state-specific defaults provided with the tool. Emissions of carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydroflurocarbons (HFCs), perflurocarbons (PFCs), and sulfur hexafluoride (SF6) are calculated. This set of 6 gases (gas categories) is standard in GHG analysis, inventory development, and emission reduction programs. Results are presented in units of carbon dioxide equivalents (CO2E), often in million metric tons (MMT), for each gas for comparative purposes following the guidance of the Intergovernmental Panel on Climate Change⁸, a widely accepted procedure for greenhouse gas analysis. Selected results for emissions in Georgia during the years 1990 - 2005 and a more detailed description of the 2005 inventory are presented here. More information on the SIT is provided in Appendix A.

Results

Results are presented for annual trends in overall GHG emissions between the years 1990 and 2005 and in more detail for the year 2005, which corresponds with the most recent detailed inventories for other types of emissions submitted under the Consolidated Emissions Reporting Rule (CERR)⁹. Results are presented in the following order:

Annual Trends A. Annual Trends by Sector B. Annual Trends by Gas C. Annual Trends by Gas per Sector: Detailed Emissions for the Year 2005

Annual Trends

Gross GHG emissions in Georgia are estimated to have increased by 33% between 1990 and 2005, with a minimum of 145.0 MMTCO2E tons/year emissions in 1991 and a maximum of 202.2 MMTCO2E in 2005 (Figure 1). Net emissions, which includes the carbon flux of forests (discussed later), increased by 36% due to a slower rate of increase in carbon sinks (26%) than in emissions. Gross emissions trends differ when evaluated with respect to changes in population or gross state product (GSP), a measure referred to as 'emissions intensity'. Emissions intensity decreased by 5% per capita and by 89% per annual GSP between 1990 and 2005 (Figure 2). These results indicate that, while overall emissions increased, they did not increase as rapidly as population or GSP.

⁷ Information available at <u>http://www.epa.gov/climatechange/wycd/stateandlocalgov/analyticaltools.html</u>. The version applied was publicly released on July 22, 2008.

⁸ The Intergovernmental Panel on Climate Change (IPCC) assigned each GHG a GWP based on properties such as solar radiative forcing and average atmospheric lifetime and is often reported as an equivalent mass of CO_2 (GWP = 1) integrated over a 100-year period. SIT GWPs are largely based on the IPCC Technical Summary of Working Group I, *Climate Change 2001: The Scientific Basis.* <u>http://www.grida.no/climate/ipcc_tar/wg1/247.htm</u>.

⁹ CERR Final Rule. Published in the Federal Register on June 10, 2002 (FR Volume 67, Number 111, pp 39602 - 39616). The CERR requires State agencies under the Clean Air Act to submit emissions inventories for SO_x , VOC, NO_x , CO, Pb, and PM_{10} for the year 2002 and every 3 years afterward, with delayed reporting requirements for $PM_{2.5}$ and NH_3 .

Figure 1. Annual Trends in Greenhouse Gas Emissions in Georgia (1990 - 2005)

Figure 2. Annual Trends in Gross Emissions of GHGs per Capita and per Gross State Product $(x10^{-2})$

A. Annual Trends by Sector

The overall sectors and their gases inventoried are shown in Table 1. These sectors are further broken down as shown in the Appendix. As with other U.S. states, the majority of Georgia's GHG emissions and its increasing trend are largely due to increased energy production and use (Figure 3). The increasing trend is slightly offset by increased sequestration of carbon (carbon removed from the atmosphere, indicated by negative emissions values) caused by extensive re-forestation and other tree planting activities reflected in the Land Use, Coverage, and Forestry sector (LUCF) (Figure 3a and 3b).

Category	Sector	Gases	Industries/activities included
Energy	CO ₂ from Fossil	CO_2	transportation, electric utilities, residential,
	Fuel Combustion		commercial, industrial, international bunker
			fuels
	Stationary	CH_4, N_2O	residential, commercial, industrial, electric
	Combustion		utilities
	Natural Gas and Oil	CO_2, CH_4	transmission, distribution, flaring
	Coal Mining	CH ₄	surface, underground, abandoned
	Mobile Combustion	CH_4, N_2O	on-road, non-road, aviation, marine, locomotive
Industrial	Industrial Processes	CH_4 , N_2O ,	cement production, lime manufacture, electric
Processes		HFC, PFC,	power transmission and distribution
		SF ₆	
Agriculture	Agriculture	CH_4 , N_2O	manure management, residue burning
LUCF	Land Use Change	CO ₂ , CH _{4,}	soil liming, fertilization, forest fires (nonCO ₂),
	and Forestry	N ₂ O	urban trees, forest management (sources and
			sinks)
Waste	Municipal Solid	CO ₂ , CH _{4,}	landfill and waste combustion
	Waste	N_2O	
	Wastewater	CH_4, N_2O	municipal and industrial (pulp and paper, food
			production)

Table 1. Sectors and their associated emissions inventoried using the US EPA SIT.

Figure 3. (a) Sector Specific Annual Trends in GHG Emissions and (b) excluding CO₂ from Energy Production.

While the increase in carbon sequestration by forested land is believed to reflect actual changes in land management starting during the late 1980s (which has a delayed impact on sequestration)¹⁰, representation of the timing and extent of these changes may be refined. Other sectors slightly contributing to the inventory include Agriculture (e.g. soil management, enteric fermentation, and manure management), Industrial Processes (e.g. electric power transmission and distribution systems, cement manufacture, ammonia and urea production), non-CO₂ Energy production emissions, and Waste (e.g. municipal solid combustion and wastewater). Note that emissions from the Energy sector are 98-99% due to CO₂ emissions from fossil fuel combustion and 1-2% from CH₄ and N₂O emissions

¹⁰ Georgia Forestry Commission, Nathan McClure, personal communication with Michelle Bergin, March 2008.

from mobile and stationary combustion sources. Emissions estimates for the sectors Natural Gas and Oil Systems and Coal Mining are zero for Georgia.

B. Annual Trends by Gas

Viewing the inventory by gas shows that of the six greenhouse gases inventoried, the large majority of emissions and growth is from CO_2 , followed by N_2O , CH_4 , and combined emissions of HFC, PFC, and SF₆ (Figure 4). The HFC, PFC, and SF₆ category, representing a number of compounds with extremely long atmospheric lifetimes, is shown to be steadily increasing.

Figure 4. Annual Trends in Emissions of (a) CO₂, CH₄, N₂O, and HFC, PFC, and SF₆, and (b) excluding CO₂.

The large majority of emissions and growth is from CO_2 emitted during fossil fuel combustion from petroleum use in the transportation sector and coal use in the electric utility sector (increasing by 30% and 26% from 1990 to 2005, respectively) (Figure 5). The remainder of CO_2 emitted during fossil fuel combustion is estimated to be from the industrial sector, followed by residential and then commercial activities (mostly natural gas combustion).

Figure 5. Annual Trends in CO2 emissions from fossil fuel combustion.

C. Annual Trends by Gas per Sector

A further look at emissions by source sector reveals the differences in contribution to individual greenhouse gases (Figure 6). First, as previously stated, we see that the emissions of CO₂ are much higher than of CH₄, N₂O, HFC, PFC, and SF₆ (up to over 180 MMTCO2E compared with slightly over 16.5 MMTCO2E of the other gases combined). CO₂ emissions are overwhelmingly dominated by fossil fuel combustion (Figure 6a), which has been generally increasing since 1992 and was 184 MMTCO2E in 2005. Methane and N₂O total emissions combined were 12.5 MMTCO2E in 2005 (about 6% of total inventoried greenhouse gas emissions). The HFC, PFC, and SF₆ category, responsible for approximately 2% of the total inventory in recent years (3.80 MMTCO2E in 2005), is considered to be emitted entirely from industrial processes.

Methane emissions are largely emitted from waste processes, including waste combustion and industrial and municipal wastewater treatment. Agricultural processes, including enteric fermentation and manure management are also contributors, and lower emissions result from mobile and stationary source combustion (Figure 6b). These emissions are estimated to have been fairly steady since the mid 1990s.

 N_2O emissions are emitted at an overall similar level to CH_4 , with dominant contributions from agricultural processes including soil and manure management, followed by mobile and stationary combustion, and then wastewater treatment (Figure 6c). These emissions are estimated to have increased between 1992 and 1996 and then to have begun to gradually decrease until the early 2000s, mostly due to changes in mobile combustion and agricultural soil management practices.

It should be noted that other anthropogenic gases, such as NF_3 , may be required for inclusion in greenhouse gas emissions inventories in the future.

Figure 6. (a) CO₂, (b) CH₄, (c) N₂O, and (d) HFC, PFC, and SF6 emissions by source.

Detailed Emissions for the Year 2005

Gross emissions during the year 2005 were 202 MMTCO2E, with source patterns typical of other recent years. The majority of emitted Global Warming Potential (GWP), approximately 92%, was due to CO₂ emissions from activities related to energy production and use (Figure 7 a,b).

Figure 7. GHG Emissions in Georgia by (a) sector and (b) gas during 2005. Gross emissions were 202 MMTCO2E.

Viewing the inventory in more detail, it can be seen that the large majority of GHG emissions from energy production and use were contributed by CO_2 emissions from fossil fuel combustion (Figure 8a), largely resulting from the electric power (45%) and transportation (38%) sectors (Figure 8b).

Figure 8. GHG Emissions in Georgia from (a) energy production and use and from (b) fossil fuel combustion during 2005.

Of the three fossil fuels calculated, combustion of coal (45%) and petroleum (43%) resulted in the largest emissions of CO₂ (Figure 9a). Coal was mostly used for electric power generation (95%) (Figure 9b) and petroleum was mostly used was for transportation (88%) (Figure 9c). Natural gas emissions are more evenly split from use by the industrial (37%) and residential (30%) sectors, with smaller contributions from the electric power (18%) and commercial (13%) sectors (Figure 9d).

Figure 9. Georgia 2005 CO_2 contributions from fossil fuel combustion by (a) fuel type and by sector for each fuel type, including (b) coal, (c) petroleum, and (d) natural gas.

Future Activity

In its Fiscal Year 2008 Consolidated Appropriations Act (H.R. 2764; Public Law 110–161), Congress directed the US EPA to draft a mandatory GHG reporting rule by September 2008 and a final rule by June 2009¹¹. This rule will cover both "upstream" and "downstream" sources (e.g. fossil fuel and chemical producers and importers and direct emitters such as large industrial facilities, respectively). The GA EPD is preparing to respond to this rule and will continue to explore ways to refine and improve future GHG inventories. More accurate data may available for some sources from information already routinely collected by the EPD for permitting and for the derivation of criteria pollutant emissions inventories, and some sectors will likely be identified for the collection of additional data. The state of Georgia is a member of The Climate Registry¹², with five companies in the state already signed onto the Registry as Founding Reporters. Further industries may join the registry, providing an additional, reliable source of greenhouse gas emissions data. The years 2002 and 2005, which align with GA EPD detailed emissions inventories assembled in compliance with the Consolidated Emissions Reporting Rule (CERR), will likely be targeted for more detailed analysis and refinement.

For questions, comments, or suggestions, please contact:

Chuck Mueller, Senior Policy Advisor, Acting Chief of the Air Protection Branch, GA Member to Board of Directors to The Climate Registry Environmental Protection Division (404) 363-7016 (404) 657-5949 Chuck.Mueller@dnr.state.ga.us

Michelle Bergin, PhD Environmental Engineer Air Protection Branch Environmental Protection Division (404) 362-4569 Michelle.Bergin@dnr.state.ga.us

¹¹ http://www.epa.gov/climatechange/emissions/ghgrulemaking.html

¹² The Climate Registry is a U.S. state-led international organization with currently 39 U.S. states, 1 Mexican state, 3 Canadian provinces, and 3 Native American tribes signed as members. The Registry is expected to open to voluntary reporters early in 2008. <u>http://www.theclimateregistry.org/</u>.

Appendix

The EPA's State Inventory Tool (SIT)

The SIT is a set of Microsoft Excel based workbooks and is composed of 10 'modules', each addressing a different sector and/or gas type. Six greenhouse gases/categories are accounted for by this system, including carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFC), perfluorocarbons (PFC), and sulfur hexafluoride (SF₆), and are reported in units of million metric tons of carbon dioxide equivalent (MMTCO2E) based on the gas' Global Warming Potential (GWP). The Intergovernmental Panel on Climate Change (IPCC) assigned each GHG a GWP based on properties such as solar radiative forcing and average atmospheric lifetime, and is often reported as an equivalent mass of CO₂ integrated over a 100-year period.¹³ Contribution of these gases to the inventory may differ if normalized over different periods (e.g. 200 years, 500 years.)

	Module Name	Gases	Examples
1	CO ₂ from Fossil Fuel	CO ₂	transportation, electric utilities, residential,
	Combustion		commercial, industrial, international bunker fuels
2	Stationary	CH ₄ , N ₂ O	residential, commercial, industrial, electric utilities
	Combustion		
3	Natural Gas and Oil	CO ₂ , CH ₄	transmission, distribution, flaring
4	Coal Mining	CH ₄	surface, underground, abandoned
5	Mobile Combustion	CH ₄ , N ₂ O	on-road, non-road, aviation, marine, locomotive
6	Industrial Processes	CH ₄ , N ₂ O,	cement production, lime manufacture, electric power
		HFC, PFC, SF ₆	transmission and distribution
7	Agriculture	CH ₄ , N ₂ O	manure management, residue burning
8	Land Use Change and	CO ₂ , CH ₄ , N ₂ O	soil liming, fertilization, forest fires (nonCO ₂), urban
	Forestry		trees, forest management (sources and sinks)
9	Municipal Solid	CO ₂ , CH ₄ , N ₂ O	landfill and waste combustion
	Waste		
10	Wastewater	CH ₄ , N ₂ O	municipal and industrial (pulp and paper, food
			production)

The SIT modules are as follows:

These sectors are further categorized as:

Energy	CO2 from Fossil Fuel Combustion
	Stationary Combustion
	Mobile Combustion
	Coal Mining
	Natural Gas and Oil Systems
Industrial Processes	Industrial Processes
Agriculture	Enteric Fermentation
	Manure Management
	Rice Cultivation

¹³ SIT GWPs are largely based on the IPCC Technical Summary of Working Group I, Climate Change 2001: The Scientific Basis. <u>http://www.grida.no/climate/ipcc_tar/wg1/247.htm</u>.

	Agricultural Soil Management Burning of Agricultural Crop Waste
LUCF	LUCF
Waste	Municipal Solid Waste
	Wastewater

The following tables contain a summary of these modules for the state of Georgia through 2005.

	Appendix	to <u>Gr</u>	eenho	ouse G	ias En	nissio	ns Inv	entory	/ for th	ne Sta	te of C	Georgi	a				
	September	2008															
	The following t		o from th		m, oboot		modulo	of the LIC		ata Invar	tory Too		ad far th		Coordia		
	The following t	ables an			ly sheet		module		EFA SI			Calculat			Georgia	•	
	Module name	s															
1	CO2 from Fos						, transpo	rtation)									
2	Stationary Cor																
3	Natural Gas ar	nd Oil (e.	.g. transn	nission, c	listributio	n, flaring)										
4	Coal Mining																
5	Mobile Combu																
6	Industrial Proc																
7	Agriculture (Cl						idue burr	ning)									
8	Land Use Cha					(S)											
9	Municipal Solid	d Waste	(landfill a	ind comb	ustion)												
0	Wastewater	1				1	1										
1	CO2 from Fos																
	MMTCO2E	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	Residential	5.87	6.23	6.95	7.42	6.82	7.29	7.94	7.33	6.82	6.44	8.78	7.43	7.69	8.05	7.94	7.57
	Coal	0.01	0.00	0.02	0.01	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.0
	Petroleum	0.95	0.97	1.05	1.12	1.05	1.04	1.05	1.09	0.97	1.06	1.17	0.85	0.81	0.85	0.93	0.76
	Natural Gas	4.91	5.26	5.88	6.30	5.76	6.24	6.89	6.23	5.85	5.38	7.60	6.58	6.88	7.19	7.00	6.79
	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Commercial	3.77	3.52	3.85	3.91	3.80	4.02	4.03	3.95	3.57	3.16	4.01	3.67	3.27	3.37	3.71	3.5
	Coal	0.04	0.02	0.07	0.04	0.06	0.12	0.01	0.04	0.02	0.04	0.02	0.02	0.01	-	0.01	0.10
	Petroleum	1.03	0.73	0.85	0.74	0.79	0.82	0.70	0.79	0.53	0.75	0.82	0.87	0.61	0.58	0.65	0.52
	Natural Gas	2.69	2.78	2.93	3.13	2.95	3.07	3.33	3.12	3.02	2.37	3.17	2.78	2.64	2.78	3.05	2.89
	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Industrial	19.18	19.58	19.92	19.34	20.04	20.91	21.20	20.66	19.12	18.72	19.87	19.29	19.46	20.43	20.55	20.2
	Coal	5.22	4.91	4.18	4.01	4.51	4.57	4.64	4.77	4.61	4.59	4.75	4.77	4.40	4.24	4.23	4.05
	Petroleum	5.32	5.76	6.55	6.38	6.26	6.57	6.93	6.58	5.78	5.99	6.42	7.19	7.49	7.60	7.68	7.92
	Natural Gas	8.64	8.91	9.20	8.94	9.28	9.78	9.64	9.30	8.73	8.14	8.70	7.33	7.56	8.59	8.64	8.24
	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Transportation	48.57	47.32	47.79	53.21	53.91	56.35	59.51	57.20	59.15	61.23	61.31	61.19	61.35	62.84	66.14	69.1
	Coal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Petroleum	48.17	46.91	47.38	52.83	53.53	55.93	59.04	56.75	58.72	60.72	60.98	60.76	60.89	62.40	65.75	68.8
	Natural Gas	0.40	0.40	0.41	0.39	0.39	0.43	0.47	0.45	0.43	0.50	0.33	0.43	0.46	0.44	0.39	0.3
	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Electric Power	61.45	55.08	52.88	57.33	59.77	63.91	63.67	68.20	68.66	69.96	73.79	68.58	73.32	73.37	75.41	83.1
	Coal	61.19	54.95	52.69	56.94	59.54	63.09	63.08	67.05	66.13	67.54	70.81	66.40	70.02	71.29	72.75	78.9
	Petroleum	0.15	0.09	0.12	0.23	0.16	0.22	0.28	0.24	0.72	0.65	0.72	0.31	0.23	0.33	0.15	0.21

	Natural Gas	0.10	0.05	0.06	0.16	0.07	0.60	0.31	0.91	1.81	1.77	2.26	1.87	3.07	1.75	2.51	4.01
1	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	International Bunker Fuels	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.01
	Petroleum	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.01
	TOTAL	138.84	131.74	131.38	141.22	144.34	152.48	156.36	157.33	157.33	159.51	167.76	160.17	165.07	168.05	173.75	183.61
	Coal	66.47	59.88	56.96	61.00	64.11	67.79	67.72	71.87	70.77	72.18	75.58	71.20	74.43	75.53	77.00	83.08
	Petroleum	55.63	54.46	55.95	61.29	61.78	64.57	67.99	65.45	66.72	69.17	70.11	69.97	70.03	71.76	75.16	78.23
	Natural Gas	16.75	17.40	18.47	18.92	18.45	20.12	20.64	20.02	19.84	18.16	22.07	18.99	20.61	20.76	21.58	22.29
	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Otalian																
2		ary Com				missions	5)										
_	2a. Stationary		-		1	1001	1005	100/	100-	1000	1000						
_	MMTCO2E	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	Residential	0.018	0.019	0.021	0.027	0.026	0.026	0.027	0.023	0.020	0.021	0.024	0.017	0.017	0.018	0.018	0.018
	Coal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-	0.000	0.000
	Petroleum	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.003	0.002
	Natural Gas	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.004
	Wood	0.013	0.014	0.014	0.021	0.020	0.020	0.020	0.016	0.014	0.015	0.016	0.011	0.011	0.011	0.012	0.012
	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Commercial	0.006	0.005	0.006	0.007	0.007	0.007	0.007	0.007	0.006	0.006	0.007	0.006	0.005	0.005	0.005	0.005
	Coal	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-	0.000	0.001
	Petroleum	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.001
	Natural Gas	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.001	0.002	0.002	0.002
	Wood	0.001	0.001	0.002	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.003	0.002	0.002	0.002	0.002	0.002
	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Industrial	0.248	0.239	0.238	0.241	0.247	0.260	0.264	0.278	0.260	0.260	0.254	0.225	0.331	0.241	0.254	0.238
	Coal	0.026	0.025	0.021	0.020	0.023	0.023	0.023	0.024	0.023	0.023	0.024	0.024	0.022	0.021	0.021	0.020
	Petroleum	0.010	0.010	0.012	0.011	0.011	0.012	0.013	0.013	0.011	0.012	0.013	0.014	0.015	0.015	0.016	0.017
	Natural Gas	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.004	0.005	0.004	0.004	0.005	0.005	0.004
	Wood	0.207	0.200	0.200	0.205	0.208	0.220	0.222	0.237	0.222	0.221	0.213	0.183	0.290	0.200	0.212	0.196
	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Electric Utilities	0.307	0.275	0.265	0.286	0.297	0.315	0.315	0.337	0.338	0.344	0.361	0.338	0.357	0.363	0.370	0.402
	Coal	0.306	0.275	0.264	0.285	0.297	0.314	0.314	0.334	0.334	0.342	0.358	0.336	0.354	0.361	0.368	0.399
	Petroleum	0.000	0.000	0.000	0.001	0.000	0.001	0.001	0.001	0.002	0.002	0.002	0.001	0.001	0.001	0.000	0.001
	Natural Gas	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.002
	Wood	-	-	-	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T	TOTAL	0.579	0.539	0.529	0.561	0.577	0.608	0.612	0.645	0.624	0.632	0.646	0.585	0.710	0.627	0.647	0.663
	Coal	0.333	0.300	0.286	0.305	0.320	0.337	0.337	0.358	0.358	0.365	0.382	0.360	0.376	0.382	0.389	0.420
	Petroleum	0.016	0.015	0.017	0.017	0.017	0.018	0.019	0.019	0.017	0.018	0.020	0.020	0.019	0.020	0.021	0.021
	Natural Gas	0.009	0.009	0.010	0.010	0.010	0.011	0.011	0.011	0.011	0.010	0.012	0.010	0.011	0.011	0.012	0.012
+	Wood	0.221	0.215	0.216	0.228	0.231	0.242	0.245	0.257	0.239	0.239	0.232	0.195	0.304	0.214	0.225	0.211

Appendix p. 4

Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oh Stationar	V Combu	ation CL	l omioo	iana												
2b. Stationar	1990	1991	14 emiss 1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	200
Residential	0.079	0.082	0.088	0,121	0.114	0,116	0,120	0.098	0.087	0.091	0.101	0.070	0.071	0.074	0.076	0.07
Coal	0.001	0.000	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-	0.000	0.0
Petroleum	0.003	0.003	0.003	0.004	0.003	0.003	0.003	0.004	0.003	0.003	0.004	0.003	0.003	0.003	0.003	0.00
Natural Gas	0.009	0.010	0.011	0.012	0.011	0.012	0.013	0.012	0.011	0.010	0.014	0.012	0.013	0.014	0.013	0.0
Wood	0.066	0.069	0.072	0.105	0.099	0.099	0.103	0.082	0.073	0.077	0.082	0.054	0.055	0.058	0.059	0.0
Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Commercial	0.015	0.015	0.016	0.022	0.022	0.022	0.022	0.022	0.019	0.019	0.022	0.017	0.017	0.017	0.018	0.0
Coal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-	0.000	0.0
Petroleum	0.003	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.0
Natural Gas	0.005	0.005	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.004	0.006	0.005	0.005	0.005	0.006	0.0
Wood	0.007	0.007	0.008	0.014	0.013	0.014	0.014	0.014	0.012	0.013	0.013	0.010	0.010	0.010	0.010	0.0
Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Industrial	0.123	0.119	0.119	0.120	0.123	0.130	0.131	0.139	0.130	0.130	0.126	0.111	0.165	0.120	0.126	0.1
Coal	0.012	0.011	0.009	0.009	0.010	0.010	0.011	0.011	0.010	0.010	0.011	0.011	0.010	0.010	0.010	0.0
Petroleum	0.003	0.003	0.004	0.004	0.004	0.004	0.005	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.0
Natural Gas	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.0
Wood	0.105	0.102	0.102	0.104	0.106	0.112	0.113	0.120	0.113	0.112	0.108	0.093	0.148	0.102	0.107	0.1
Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electric Power	0.014	0.013	0.012	0.013	0.014	0.015	0.015	0.016	0.016	0.017	0.018	0.016	0.017	0.017	0.018	0.0
Coal	0.014	0.012	0.012	0.013	0.013	0.014	0.014	0.015	0.015	0.015	0.016	0.015	0.016	0.016	0.017	0.0
Petroleum	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.0
Natural Gas	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0
Wood	-	-	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
TOTAL	0.231	0.229	0.234	0.276	0.272	0.282	0.288	0.274	0.253	0.256	0.267	0.214	0.270	0.228	0.237	0.2
Coal	0.026	0.024	0.023	0.023	0.024	0.026	0.025	0.026	0.026	0.026	0.027	0.026	0.026	0.026	0.026	0.0
Petroleum	0.010	0.009	0.010	0.010	0.010	0.010	0.010	0.010	0.009	0.010	0.011	0.010	0.010	0.010	0.011	0.0
Natural Gas	0.018	0.018	0.020	0.021	0.020	0.021	0.023	0.021	0.021	0.018	0.024	0.021	0.022	0.023	0.023	0.0
Wood	0.178	0.178	0.182	0.223	0.219	0.224	0.230	0.216	0.198	0.202	0.204	0.157	0.212	0.170	0.177	0.1
Other	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· ·
						L <u>.</u>										
Natural Gas		e.g. trans	mission	, distrib	ution, fla	aring)										
Emissions (MMT	1 -	1001	1002	1003	1004	1005	1004	1007	1009	1000	2000	2001	2002	2003	2004	20
Net	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	20
Natural Gas	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oil		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Emissions by Go	1990	2) 1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	20
	1990	1771	1772	1773	- 1994	1990	1320	177/	- 1998	-	2000	2001	2002	2003	2004	20

	Flaring																
4	Coal Mining																
	Emissions (MTCC	02E)															
		1990	1991*	1992*	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	Coal Mining	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Abandoned Coal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Mines																
	Vented	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Sealed	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Flooded	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	<u></u>																
5	Mobile Comb				,												
	CH4 Emission	s from l	Nobile S	ources	(MTCO2	E)											
	Fuel Type/Vehicle Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	Gasoline	200,47	201,42	206,90	200,95	201,17	193,80	186,92	180,41	172,64	156,05	151,21	149,10	125,99	115,14	107,18	98,145
	Highway	2	2	2	9	1	8	6	4	2	9	5	7	0	4	7	
	Passenger Cars	123,51 0	116,919	117,78 2	112,87 9	113,20 8	108,56 6	104,58 8	100,31 8	96,727	90,913	87,851	82,250	74,506	67,296	62,635	56,354
	Light-Duty Trucks	63,755	70,360	75,571	75,301	74,855	72,236	70,309	69,060	65,815	55,699	54,711	59,762	44,735	41,526	38,471	36,070
	Heavy-Duty Vehicles	12,512	13,420	12,778	12,003	12,289	12,152	11,208	10,235	9,305	8,572	7,771	6,301	5,977	5,565	5,288	4,926
	Motorcycles	695	723	771	777	819	854	821	801	794	874	881	794	771	757	793	795
	Diesel Highway	710	745	770	801	878	934	971	1,047	1,082	1,040	1,126	1,158	1,176	1,166	1,203	1,180
	Passenger Cars	7	6	7	6	6	6	6	6	6	5	5	5	5	5	5	5
	Light-Duty Trucks	15	17	19	21	22	23	24	26	27	26	28	30	29	30	31	32
	Heavy-Duty Vehicles	687	722	744	774	850	906	942	1,015	1,049	1,009	1,093	1,123	1,142	1,131	1,167	1,143
	Non-Highway	14,204	11,619	12,839	12,000	11,933	13,340	13,961	13,105	13,161	13,426	12,648	13,867	14,360	13,809	16,303	17,09
	Boats	1,665	1,665	3,529	2,656	2,016	1,614	1,502	1,415	1,238	1,086	1,110	1,011	2,158	2,403	4,239	4,624
	Locomotives	1,307	988	1,022	920	1,143	1,238	1,442	1,880	1,397	1,379	1,284	1,326	2,134	1,890	1,989	2,014
	Farm	2,845	1,878	1,733	2,182	2,017	3,298	3,538	3,201	3,875	3,505	3,604	4,606	3,863	2,756	2,557	2,567
	Equipment		-	-			-										
	Construction	1,491	1,254	1,332	1,334	1,461	1,604	2,102	1,772	1,967	2,186	2,156	2,664	2,373	2,469	2,470	2,724
	Equipment																
	Aircraft	5,468	4,458	3,896	4,544	4,899	5,225	5,028	4,487	4,344	4,458	3,668	2,857	2,423	2,899	3,416	3,592
	Other*	1,428	1,376	1,327	364	397	362	350	349	340	812	825	1,402	1,409	1,392	1,632	1,577
	Alternative	273	288	304	385	404	540	711	974	1,087	1,176	1,358	1,765	2,062	2,725	3,049	2,674
	Fuel Vehicles																
	Light Duty Vehicles	94	100	108	116	115	218	280	476	527	582	646	763	872	965	984	842

Heavy Duty Vehicles	99	98	97	129	143	175	275	328	377	397	505	781	942	1,477	1,750	1,55
Buses	80	90	99	139	146	147	155	170	183	197	207	221	247	282	314	27
Total	215,65 9	214,07 4	220,81 5	214,14 4	214,38 6	208,62 2	202,56 9	195,54 1	187,97 2	171,70 1	166,34 7	165,89 7	143,58 7	132,84 4	127,74 1	119, 5
* "Other" include	es snowmob	oiles, small	gasoline p	owered uti	lity equipm	ent, heavy	-duty gaso	line power	ed utility e	equipment,	and heavy	-duty diese	el powered	utility equ	ipment.	
N2O Emission	. from	Mahila ((MTCO2												
				•		1005	100/	1007	1000	1000	2000	2001	2002	2002	2004	200
Fuel Type/Vehicle Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	20
Gasoline	1,975,	2,134,	2,347,	2,411,	2,549,	2,600,	2,677,	2,750,	2,783,	2,606,	2,624,	2,560,	2,251,	2,091,	1,974,	1,8
Highway	268	214	795	387	046	653	845	256	926	301	281	214	528	437	277	11
Passenger Cars	1,254,2	1,263,6	1,340,6	1,338,7	1,399,8	1,405,8	1,421,3	1,427,5	1,441,8	1,386,0	1,380,5	1,321,7	1,224,4	1,132,1	1,079,9	997
russenger curs	87	81	55	06	69	79	83	79	09	00	06	34	83	01	85	(
Light-Duty	685,99	829,01	963,99	1,029,1	1,101,8	1,145,6	1,201,0	1,261,3	1,275,0	1,157,6	1,179,7	1,180,0	965,96	897,02	829,39	773
Trucks	6	6	5	38	84	02	14	71	53	97	65	88	7	9	6	8
Heavy-Duty Vehicles	33,987	40,480	42,039	42,430	46,118	47,948	54,258	60,135	65,895	61,323	62,712	57,218	59,934	61,181	63,715	61,
Motorcycles	997	1,037	1,106	1,114	1,175	1,224	1,189	1,171	1,169	1,281	1,297	1,174	1,143	1,125	1,181	1,1
Diesel Highway	10,132	10,631	10,995	11,431	12,518	13,298	13,826	14,897	15,379	14,789	16,010	16,459	16,695	16,572	17,094	16,
Passenger Cars	227	208	212	204	202	192	188	189	182	171	170	157	157	157	162	16
Light-Duty Trucks	348	390	445	472	500	518	549	593	612	599	645	698	667	690	706	77
Heavy-Duty Vehicles	9,556	10,032	10,338	10,755	11,816	12,587	13,089	14,115	14,585	14,019	15,196	15,604	15,871	15,725	16,227	15,
Non-Highway	113,69 2	92,104	93,734	94,522	99,662	108,02 6	107,72 4	98,234	97,614	101,03 9	91,930	89,064	85,314	88,388	100,94 9	105
Boats	8,548	8,547	18,119	13,639	10,351	8,285	7,710	7,265	6,357	5,576	5,699	5,191	11,078	12,339	21,765	23,
Locomotives	6,173	4,666	4,829	4,345	5,397	5,846	6,813	8,882	6,601	6,516	6,065	6,266	10,082	8,930	9,395	9,!
Farm	7,467	4,928	4,549	5,726	5,293	8,655	9,284	8,401	10,170	9,200	9,458	12,089	10,138	7,232	6,711	6,7
Equipment																
Construction	9,785	8,229	8,736	8,755	9,587	10,521	13,788	11,628	12,906	14,343	14,148	17,480	15,569	16,202	16,204	17,
Equipment																
Aircraft	72,354	56,705	48,792	59,668	66,428	72,345	67,833	59,767	59,352	60,079	51,145	38,841	29,204	34,555	36,165	37,
Other*	9,366	9,029	8,708	2,389	2,606	2,374	2,296	2,292	2,229	5,326	5,414	9,197	9,242	9,131	10,708	10,
Alternative Fuel Vehicles	3,736	3,554	3,390	4,277	4,124	4,082	4,415	4,919	5,123	4,799	5,429	6,499	7,535	8,819	9,552	8,3
Light Duty Vehicles	885	880	888	940	872	1,011	1,137	1,370	1,438	1,442	1,709	1,927	2,265	2,511	2,659	2,3
Heavy Duty Vehicles	2,736	2,544	2,358	3,135	3,040	2,867	3,063	3,322	3,439	3,089	3,448	4,281	4,945	5,937	6,481	5,6
Buses	115	130	144	203	212	205	216	227	246	268	272	290	325	371	413	3
Total	2,102,	2,240,	2,455,	2,521,	2,665,	2,726,	2,803,	2,868,	2,902,	2,726,	2,737,	2,672,	2,361,	2,205,	2,101,	1,9
Total	828	503	915	617	349	058	810	306	042	929	651	235	072	216	871	18

Appendix p. 7

Industrial Pro	cesses	(e.g. cen	nent prod	duction,	lime ma	nufactur	e)	1	1							
Emissions were n and Aluminum Pro	iot calculat							cid Product	ion, Semic	onductor N	Manufactu	ring, Magne	esium Prod	uction, HC	FC-22 Proc	duction,
Emissions in MTCO2E	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	200
Carbon Dioxide	1,039,2	976,82	1,007,6	1,445,8	1,526,5	1,588,2	1,286,8	2,291,3	2,373,	2,249,1	2,337,	2,273,	2,391,8	2,320,	2,287,	2,03
Emissions	04	4	18	15	56	40	40	50	871	84	387	061	71	718	053	265
Cement	491,34	435,76	445,93	815,84	830,01	845,23	421,68	424,83	450,91	465,59	509,71	496,93	458,85	420,27	420,44	391,0
Manufacture	2	0	8	0	5	6	3	1	4	6	6	3	1	4	3	8
Lime Manufacture	-	-	-	84,887	76,383	86,407	78,683	-	-	-	-	-	-	-	-	-
Limestone and Dolomite Use	-	-	-	-	27,877	56,958	76,550	105,53 0	132,30 5	75,680	57,395	48,237	46,642	31,952	38,225	43,9
Soda Ash	70,681	68,436	69,516	69,700	70,314	73,786	73,310	75,179	76,811	76,213	77,338	78,199	79,629	78,298	79,052	79,2
Ammonia &	477,18	472,62	492,16	475,38	521,96	525,85	636,61	596,83	610,94	600,44	546,08	431,60	577,72	463,66	513,88	490
Urea	0	9	4	8	8	3	4	2	2	2	9	0	2	6	4	5
Iron & Steel	-	-	-	-	-	-	-	1,088,9	1,102,8	1,031,2	1,146,8	1,218,0	1,229,0	1,326,5	1,235,4	1,03
Production								79	99	53	48	93	27	28	49	0
Nitrous Oxide Emissions	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitric Acid Production	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Adipic Acid Production	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HFC, PFC, and	800,58	772,36	815,58	916,31	1,045,6	1,465,4	1,738,2	1,999,7	2,128,8	2,360,	2,627,	2,847,	3,073,	3,288,	3,561,5	3,80
SF6 Emissions	5	5	2	3	09	81	60	88	93	038	603	917	250	228	10	41
ODS	8,634	16,807	45,948	145,69	332,15	780,42	1,097,0	1,414,7	1,609,8	1,828,0	2,103,1	2,326,	2,558,	2,798,	3,053,	3,2
Substitutes				1	7	3	73	53	55	46	53	716	988	447	682	99
Semiconductor Manufacturing	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium Production	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electric Power	791,95	755,55	769,63	770,62	713,45	685,05	641,18	585,03	519,03	531,99	524,45	521,20	514,26	489,78	507,82	504
Transmission and Distribution	0	8	5	2	2	8	8	5	8	2	0	1	2	1	8	3
Systems																
HCFC-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Production																
Aluminum Production	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	1,839,7	1,749,1	1,823,2	2,362,1	2,572,1	3,053,	3,025,1	4,291,1	4,502,	4,609,	4,964,	5,120,9	5,465,1	5,608,	5,848,	5,8

	Emissions	88	90	00	28	65	721	01	39	764	222	990	79	22	946	562	675
	_																
7	A	gricultu	re (CH4 a	and N2O), e.g. ma	inure ma	inageme	ent, resid	lue burn	ing)							
	Note: Totals E	below do	not acco	unt for e	missions	from the	following	g animals	, fertiliz	ers, crop	os, or har	vested a	reas:				
	Enteric																
	Fermentation:																
	Manure																
	Management																
	and Ag Soils-																
	Animal:		14/1-1	<u>di D:</u>		6 1 4		a :	<i>a</i> 1								
	Ag Soils-Plant- Residues,	Red Clov	er, White	Clover, Bir	rdsfoot Tre	etoil, Arroi	wleat Clove	er, Crimsor	n Clover,								
	Legumes,																
	Histosols:																
	Ag Soils-Plant-	Orga	nic: Dried	Blood, Corr	post, Othe	er Sewage	Sludge, To	inkage									
	Fertilizers:				•	5	2.	5									
	Rice																
	Cultivation :																
	Ag Residue																
	Burning:																
	The "National Ad																
	Inventory of Gre emissions from liv														and overes	timates in	airect
	Emissions (MMT									TIVEIIIO	y. Omer 3		nor be ur				
		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	Enteric																
	Fermentation	1.852	1.885	1.905	1.883	1.929	1.956	1.880	1.822	1.706	1.687	1.706	1.663	1.637	1.731	1.688	1.669
	Manure																
	Management	1.350	1.371	1.391	1.451	1.472	1.473	1.517	1.539	1.630	1.611	1.575	1.598	1.626	1.580	1.598	1.611
	Ag Soils	1.659	1.946	1.865	1.941	2.053	2.972	3.282	2.834	2.705	2.268	2.270	2.560	2.348	2.474	2.351	2.920
		1.000	1.040	1.000	1.041	2.000	2.072	0.202	2.004	2.700	2.200	2.270	2.000	2.040	2.474	2.001	2.020
	Rice Cultivation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Agricultural																
	Residue Burning	0.006	0.008	0.009	0.005	0.008	0.005	0.007	0.006	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.005
	Burning	0.006	0.008	0.009	0.005	0.006	0.005	0.007	0.000	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.005
	TOTAL	4.867	5.210	5.171	5.282	5.462	6.406	6.686	6.201	6.045	5.570	5.555	5.826	5.615	5.789	5.642	6.204
8	Land Use Cha																
	Emissions were n	ot calculat	ed for the	following	sector: Fo	rest Fires.	If you sk	ipped any	of these by	y mistake,	please ret	urn to the	control wo	rksheet ar	nd complet	e each skip	ped
	source.																
			1	1	1				1		1	1		1	1	1	

Emissions* (M	MTCO2E)															
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Forest Carbon Flux	(33.07)	(33.07)	(33.07)	(36.68)	(36.68)	(36.68)	(38.72)	(46.53)	(46.53)	(46.53)	(46.53)	(46.53)	(46.53)	(46.53)	(46.53)	(46.53)
Aboveground Biomass	(10.99)	(10.99)	(10.99)	(10.99)	(10.99)	(10.99)	(13.33)	(22.36)	(22.36)	(22.36)	(22.36)	(22.36)	(22.36)	(22.36)	(22.36)	(22.36
Belowground Biomass	(2.14)	(2.14)	(2.14)	(2.14)	(2.14)	(2.14)	(2.64)	(4.55)	(4.55)	(4.55)	(4.55)	(4.55)	(4.55)	(4.55)	(4.55)	(4.55)
Dead Wood	(1.11)	(1.11)	(1.11)	(1.11)	(1.11)	(1.11)	(1.30)	(2.03)	(2.03)	(2.03)	(2.03)	(2.03)	(2.03)	(2.03)	(2.03)	(2.03
Litter	1.08	1.08	1.08	1.08	1.08	1.08	0.88	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Soil Organic Carbon	(4.04)	(4.04)	(4.04)	(4.04)	(4.04)	(4.04)	(2.84)	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78	1.78
Total wood products and landfills	(15.87)	(15.87)	(15.87)	(19.48)	(19.48)	(19.48)	(19.48)	(19.48)	(19.48)	(19.48)	(19.48)	(19.48)	(19.48)	(19.48)	(19.48)	(19.48
Liming of Agricultural Soils	-	-	-	-	-	-	0.00	-	-	-	-	-	-	-	-	-
Limestone	-	-	-	-	-	-	0.00	-	-	-	-	-	-	-	-	-
Dolomite	-	-	-	-	-	-	0.00	-	-	-	-	-	-	-	-	-
Urea Fertilization	0.01	0.00	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Urban Trees	(3.11)	(3.24)	(3.37)	(3.50)	(3.62)	(3.75)	(3.88)	(4.00)	(4.13)	(4.26)	(4.39)	(4.51)	(4.64)	(4.77)	(4.89)	(5.02
Landfilled Yard Trimmings and Food Scraps	(6.34)	(5.42)	(5.39)	(4.71)	(4.21)	(3.53)	(2.90)	(2.83)	(2.78)	(2.56)	(2.53)	(2.63)	(2.73)	(2.26)	(2.03)	(2.13)
Grass	(0.52)	(0.49)	(0.48)	(0.39)	(0.33)	(0.24)	(0.16)	(0.17)	(0.17)	(0.15)	(0.16)	(0.19)	(0.21)	(0.15)	(0.13)	(0.15
Leaves	(2.56)	(2.47)	(2.46)	(2.17)	(1.96)	(1.67)	(1.40)	(1.36)	(1.33)	(1.23)	(1.22)	(1.26)	(1.30)	(1.09)	(0.99)	(1.03
Branches	(2.55)	(2.46)	(2.45)	(2.15)	(1.92)	(1.62)	(1.34)	(1.30)	(1.27)	(1.17)	(1.15)	(1.19)	(1.23)	(1.02)	(0.92)	(0.96
Landfilled Food Scraps	(0.71)	(0.64)	(0.64)	(0.61)	(0.60)	(0.51)	(0.59)	(0.72)	(0.87)	(0.88)	(1.10)	(1.07)	(1.07)	(1.02)	(1.18)	(1.10)
Forest Fires	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CH4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N2O from Settlement	-	-	-	-	0.03	0.09	0.09	0.09	0.08	0.07	0.07	0.07	0.08	0.08	0.08	0.07
Soils																
Total	(42.52)				(44.47)	(43.86)	(45.38)	(53.26)	(53.35)	(53.27)	(53.37)	(53.61)	(53.82)	(53.48)	(53.37)	(53.6
* Note that par	rentheses i	ndicate ne	et sequesti	ration.												
Waste (munic					,											
Total Emissio								1007	1009	1000	2000	2001	2002	2003	2004	2005
CI 14	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
CH4	2.362	2.388	2.484	2.468	2.687	2.862	3.115	2.889	3.354	2.980	3.152	2.883	2.717	2.766	2.660	2.612
CO2	0.082	0.073	0.073	0.103	0.111	0.112	0.047	0.071	0.053	0.059	0.054	0.047	0.035	0.057	0.083	0.09

Appendix p.10

N20	0.003	0.002	0.002	0.003	0.003	0.003	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.00
Total	2.446	2.463	2.559	2.574	2.801	2.977	3.163	2.961	3.408	3.040	3.208	2.931	2.752	2.824	2.744	2.7
		10.01	(1)====													
CH4 Emis	sions from			· · · · ·												
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	200
Potential CH4	-14 2,718,	2,821,	2,928,	3,090,	3,334,	3,596,	3,848,	4,051,	4,418,	4,630,	4,858,	5,035,	5,319,	5,721,	6,105,	6,4
44 6147	723	398	419	819	640	622	333	607	149	400	546	269	622	596	468	94
MSW	2,540,	2,636,	2,736,	2,888,	3,116,4	3,361,3	3,596,	3,786,	4,129,1	4,327,	4,540,	4,705,	4,971,6	5,347,	5,706,	6,0
Generation	863	821	840	616	86	29	572	549	11	477	697	859	09	286	045	54
Industrial	177,86	184,57	191,57	202,20	218,15	235,29	251,76	265,05	289,03	302,92	317,84	329,41	348,01	374,31	399,42	423
Generation	0	7	9	3	4	3	0	8	8	3	9	0	3	0	3	8
CH4 Avoide	d (94,70 3)	(168,3 82)	(168,3 82)	(348,7 08)	(348,7 08)	(416,3 69)	(386,9 63)	(842,1 30)	(691,1 36)	(1,319 , 4 70)	(1,355 ,978)	(1,831 ,681)	(2,301 ,016)	(2,648 ,717)	(3,150 ,378)	(3, ,2
Flare	-	(73,68	(73,68	(254,0	(254,0	(321,6	(292,2	(674,5	(523,5	(1,151,	(1,188,	(1,664,	(2,133,	(2,481,	(2,780,	(3,2
		0)	0)	05)	05)	67)	60)	79)	86)	920)	427)	130)	465)	166)	695)	52
Landfill Gas	-to- (94,70	(94,70	(94,70	(94,70	(94,70	(94,70	(94,70	(167,5	(167,5	(167,5	(167,5	(167,5	(167,5	(167,5	(369,6	(36
Energy	3)	3)	3)	3)	3)	3)	3)	51)	51)	51)	51)	51)	51)	51)	83)	8
Oxidation a	t 244,61	246,84	256,84	253,99	276,77	294,49	320,96	294,44	343,79	300,80	318,47	287,41	267,05	269,85	255,56	247
MSW Land	fills 6	4	6	1	8	6	1	2	7	1	2	8	9	7	7	
Oxidation a Industrial Landfills	it 17,786	18,458	19,158	20,220	21,815	23,529	25,176	26,506	28,904	30,292	31,785	32,941	34,801	37,431	39,942	42,
Total CH4	2,361,	2,387,	2,484,	2,467,	2,687,	2,862,	3,115,	2,888,	3,354,	2,979,	3,152,	2,883,	2,716,	2,765,	2,659,	2,6
Emissions	619	714	033	900	339	228	233	529	311	837	312	229	746	591	581	5
CO2 and	N2O Emissi	ons fron	n Waste	Combus	tion (M7	CO2E)										
Gas/Waste Product	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	20
	82,024	72,835	73,104	103,40	110,62	111,74	46,528	70,665	52,844	58,609	54,031	46,865	34,776	57,006	82,751	91,
CO2	01,01	/ _,000	/0,201	4	0	6	.0,010	, 0,000	01,011	00,007	01,001	.0,000	0.,,,,,	07,000	01,701	,
Plastics	55,009	48,958	48,847	69,303	73,283	74,514	31,030	47,672	35,671	40,128	36,756	31,747	23,547	38,355	54,630	50
Synthetic	11,981	10,354				13,286		-				, 5,149	, 3,770	6,223	11,538	59
Rubber in MSW	11,701	10,334	10,012	13,824	14,602	13,280	5,457	7,975	5,871	6,181	5,805	5,149	0,,,,0			-
MSW Synthetic	15,034	13,522	10,012	13,824 20,277	14,602 22,734	23,946	10,041	15,018	11,302	12,301	11,471	9,969	7,460	12,428	16,583	15,
MSW Synthetic Fibers	15,034	13,522	14,246	20,277	22,734	23,946	10,041	15,018	11,302	12,301	11,471	9,969	7,460		-	59, 15, 17,
MSW Synthetic Fibers N20	15,034 2,722	13,522 2,178	14,246 2,227	20,277 2,933	22,734 3,155	23,946 3,155	10,041 1,222	15,018 1,812	11,302 1,330	12,301 1,413	11,471 1,267	9,969 1,046	7,460 761	1,218	1,675	15, 17, 1 ,
MSW Synthetic Fibers	15,034 2,722 and 84,746	13,522	14,246	20,277	22,734	23,946	10,041	15,018	11,302	12,301	11,471	9,969	7,460		-	15, 17,
MSW Synthetic Fibers N2O Total CO2	15,034 2,722 and 84,746 ions	13,522 2,178	14,246 2,227	20,277 2,933 106,33	22,734 3,155 113,77	23,946 3,155 114,90	10,041 1,222	15,018 1,812	11,302 1,330	12,301 1,413	11,471 1,267	9,969 1,046	7,460 761	1,218	1,675	15, 17, 1 ,
MSW Synthetic Fibers N2O Total CO2 N2O Emissi Wastewat	15,034 2,722 and 84,746 ions	13,522 2,178 75,013	14,246 2,227 75,332	20,277 2,933 106,33 6	22,734 3,155 113,77 5	23,946 3,155 114,90 1	10,041 1,222 47,749	15,018 1,812 72,477	11,302 1,330 54,174	12,301 1,413 60,022	11,471 1,267	9,969 1,046	7,460 761	1,218	1,675	15, 17, 1 ,
MSW Synthetic Fibers N2O Total CO2 N2O Emissi Wastewat	15,034 2,722 and 84,746 ions ter	13,522 2,178 75,013	14,246 2,227 75,332	20,277 2,933 106,33 6	22,734 3,155 113,77 5	23,946 3,155 114,90 1	10,041 1,222 47,749	15,018 1,812 72,477	11,302 1,330 54,174	12,301 1,413 60,022	11,471 1,267	9,969 1,046	7,460 761	1,218	1,675	15, 17, 1 ,

(MMTCO2E)																
Municipal CH4	0.44	0.45	0.45	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.55	0.57	0.58	0.59	0.60	0.61
Municipal N2O	0.18	0.18	0.19	0.19	0.20	0.20	0.21	0.21	0.22	0.22	0.24	0.25	0.25	0.25	0.26	0.27
Industrial CH4	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.0
Fruits &	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vegetables																
Red Meat	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.0
Poultry	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pulp & Paper	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Emissions	0.62	0.64	0.66	0.67	0.69	0.70	0.71	0.72	0.74	0.76	0.80	0.82	0.83	0.85	0.87	0.8
																1