13 December 2019 Eric Cornwell Georgia Department of Natural Resources Environmental Protection Division Air Protection Branch 4244 International Parkway, Suite 120 Atlanta, Georgia 30354-3908 Dear Mr. Cornwell: RE: SIP Permit Application BD Madison Air Quality Permit 3841-211-0021-S-0-04-0 Enclosed is a SIP application for our 1211 Mary Magnan Blvd., Madison, Georgia location. The application describes the additional voluntary emission controls we plan to install to reduce fugitive emissions of Ethylene Oxide. These emissions are not regulated by Subpart O (40 CFR 63.360). Please note that Attachment E of the permit application, a "potential to emit" (PTE) spreadsheet, contains information which BD has designated as "Trade Secrets" under the Georgia Open Records Act, O.C.G.A. § 50-18-70, et seq. This information is protected from disclosure to the public. In support of the designation, BD is providing an affidavit and a redacted version of the permit application, which is marked as required. If you have any questions or comments regarding this information, please contact me at (770) 652-2049. Sincerely, John LaMontagne Process Technology Engineer Urology and Critical Care Division Becton, Dickinson and Company cc: K. Hays, GA EPD R. Pasdon With Air Dispersion Modeling files. (USB Flash Drive) Certified: 70062150000389632596 ### ATTACHMENT E CONTAINS CONFIDENTIAL TRADE SECRET INFORMATION NOT SUBJECT TO DISCLOSURE PURSUANT TO OCGA § 50-18-72(34) State of Georgia Department of Natural Resources Environmental Protection Division Air Protection Branch Stationary Source Permitting Program 4244 International Parkway, Suite 120 Atlanta, Georgia 30354 404/363-7000 Fax: 404/363-7100 ### SIP AIR PERMIT APPLICATION | - | | OIL AIR FERMIT APPLICATION | | |--------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | | Date Received: | EPD Use Only Application No. | | | | | FORM 1.00: GENERAL INFORMATION | | | 1. | Facility Information Facility Name: AIRS No. (if know Facility Location: Is this facility a "si | BD Madison | | | 2. | Facility Coordina Latitud UTM Coordinate | e: 33° 33' 52" NORTH Longitude: 83° 28' 29" WEST | | | 3. | Facility Owner Name of Owner: Owner Address | Becton, Dickinson and Company Street: 1 Becton Drive City: Franklin Lakes State: NJ Zip: 07417 | | | 4. | Contact Person:<br>Telephone No.: | john.lamontagne@BD.com Same as: Facility Location: ☐ Owner Address: ☐ Other: ☒ | | | Nan<br>Add<br>This | lress of Official application is subn | Title: Sr.Operations Mgr. Covington Street: 8195 Industrial Blvd. City: Covington State: GA Zip: 30014 nitted in accordance with the provisions of the Georgia Rules for Air Quality Control and, to the is complete and correct. | | | Sigr | nature: | Pasadon Date: 13 DEC 2019 | | | 6. | Reason f | or Applic | ation: (Ch | eck all that apply) | | | | | | |----|--------------|------------------------|-----------------|--------------------------|-------------|-----------------|--------------------|--------------------|------------| | | ☐ New | Facility (to | be constru | cted) | | Revision of | Data Submittee | d in an Earlier Ap | plication | | | | ing Facility | / (initial or n | nodification application | on) | Application N | lo.: | | | | | □ Perm | nit to Cons | truct | | | Date of Origin | nal | | | | | □ Perm | it to Opera | ate | | | Submittal: | real . | | | | | ☐ Char | ge of Loc | ation | | | | | | | | | Perm | it to Modif | y Existing E | quipment: Affec | ted Permi | t No.: | | | | | 7. | Permittin | a Evemni | ion Activit | es (for permitted fa | cilities e | mlish: | | | | | •• | | | | based on emission | | | 391-3-103(6)( | i)(3) been perfor | med at the | | | tacility tha | t nave not | been previ | ously incorporated in | a permit | ? | | | | | | ⊠ No | ∐ Yes, | please fill | out the SIP Exempt | ion Attac | hment (See | nstructions for | the attachment of | lownload) | | 8. | Has assis | stance he | en provide | d to you for any par | t of this | annlication? | | | | | • | □ No | oranioe pe | Yes, S | | | | heen employe | ed or will be em | nloved | | | | ase provi | | wing information: | . 00, u 00 | mountaint mas | been employe | or will be eiti | pioyeu. | | | Name of 0 | Consulting | Company: | Trinity Consultan | ts | | | | | | | | | Justin Ficka | | | | | | | | | Telephone | _ | 678 441-99 | 77 | Fax | No.: | | | | | | Email Add | - | | | | | | | | | | Mailing Ac | dress: | | 3495 Piedmont Rd | | | | | | | | Dagariha t | h - 0 | City: | Atlanta | State: | GA | Zip: | 30305 | | | | | ne Consul<br>ersion Mo | tant's Involv | /ement: | | | | | | | | 1 2 | | | | | | | | | | | | | | | | | | | | | 9. | Submitted | Applicat | ion Forms | Select only the nec | essary fo | rms for the fac | cility application | n that will be sub | mitted. | | | of Forms | Form | | | | | | | | | | 1 | 2.00 E | mission Un | it List | | | | | | | | | | | nd Fuel Burning Equ | ipment | | | | | | | | | | Tank Physical Data | | | | | | | | | | Printing ( | | | | | | | | | | | | Coating Operations | lele.e.e.e. | la a ( | | | | | | | | | cinerators (solid/liqui | | lestruction) | | | | | | 1 | | | Control Devices (APC | | | | | | | | | 3.0 | | | | | | | | | | | 3.02 | 2 Baghous | es & Other Filter Col | lectors | | | | | | | | 3.03 | B Electrost | atic Precipitators | | | | | | | | 1 | 4.00 E | missions Da | nta | | | | | | | | 1 | | onitoring In | | | | | | | | | 1 | | | sion Sources | | | | | | | _ | 1 | 7.00 A | r Modeling | Intormation | | | | | | | 10 | Construct | ion or Mo | dification [ | )ata | | | | | | | | | | | ction estimated to sta | art in Feb | 112n/ 2020 | | | | | | | | 3 3.1041 0 | | | waij EUEU | | | | | Carbon monoxide (CO) | | | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------| | Nitrogen oxides (NOx) | | | | | | Particulate Matter (PM) (filterable only) | | | | | | PM <10 microns (PM10) | | | | | | PM <2.5 microns (PM2.5) | | | | | | Sulfur dioxide (SO <sub>2</sub> ) | | | | | | Volatile Organic Compounds (VOC) | | | | | | Greenhouse Gases (GHGs) (in CO2e) | | | | | | Total Hazardous Air Pollutants (HAPs) | | | | | | Individual HAPs Listed Below: | 100 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | 13. Existing Facility Emissions Summ | nary | | | | | | Current I | | After Mod | lification | | Criteria Pollutant | Current I<br>Potential (tpy) | Actual (tpy) | After Mod<br>Potential (tpy) | lification Actual (tpy) | | Criteria Pollutant Carbon monoxide (CO) | Current I Potential (tpy) 19.89 | | | | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) | Current I<br>Potential (tpy) | Actual (tpy) | Potential (tpy) | Actual (tpy) | | Criteria Pollutant | Current I Potential (tpy) 19.89 | Actual (tpy) 2.81 | Potential (tpy)<br>19.89 | Actual (tpy) 2.81 | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) | Current I<br>Potential (tpy)<br>19.89<br>36.23 | 2.81<br>4.60 | 19.89<br>36.23 | 2.81<br>4.60 | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) Particulate Matter (PM) (filterable only) | Current I<br>Potential (tpy)<br>19.89<br>36.23<br>1.94 | Actual (tpy) 2.81 4.60 0.27 | Potential (tpy) 19.89 36.23 1.94 | Actual (tpy) 2.81 4.60 0.27 | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) Particulate Matter (PM) (filterable only) PM <10 microns (PM10) | Current I<br>Potential (tpy)<br>19.89<br>36.23<br>1.94<br>1.94 | Actual (tpy) 2.81 4.60 0.27 0.27 | Potential (tpy) 19.89 36.23 1.94 1.94 | Actual (tpy) 2.81 4.60 0.27 0.27 | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) Particulate Matter (PM) (filterable only) PM <10 microns (PM10) PM <2.5 microns (PM2.5) | Current I Potential (tpy) 19.89 36.23 1.94 1.94 1.94 | Actual (tpy) 2.81 4.60 0.27 0.27 0.27 | Potential (tpy) 19.89 36.23 1.94 1.94 1.94 | Actual (tpy) 2.81 4.60 0.27 0.27 | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) Particulate Matter (PM) (filterable only) PM <10 microns (PM10) PM <2.5 microns (PM2.5) Sulfur dioxide (SO <sub>2</sub> ) Volatile Organic Compounds (VOC) | Current I Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 | Actual (tpy) 2.81 4.60 0.27 0.27 0.27 0.50 | Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 | Actual (tpy) 2.81 4.60 0.27 0.27 0.27 0.50 | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) Particulate Matter (PM) (filterable only) PM <10 microns (PM10) PM <2.5 microns (PM2.5) Sulfur dioxide (SO <sub>2</sub> ) Volatile Organic Compounds (VOC) Greenhouse Gases (GHGs) (in CO2e) | Current I Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 3.1 | Actual (tpy) 2.81 4.60 0.27 0.27 0.27 0.50 0.56 | Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 2.6 | Actual (tpy) 2.81 4.60 0.27 0.27 0.27 0.50 0.37 | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) Particulate Matter (PM) (filterable only) PM <10 microns (PM10) PM <2.5 microns (PM2.5) Sulfur dioxide (SO <sub>2</sub> ) | Current I Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 3.1 23,748 | Actual (tpy) 2.81 4.60 0.27 0.27 0.27 0.50 0.56 3,542 | Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 2.6 23,748 | Actual (tpy) 2.81 4.60 0.27 0.27 0.27 0.50 0.37 3,542 | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) Particulate Matter (PM) (filterable only) PM <10 microns (PM10) PM <2.5 microns (PM2.5) Sulfur dioxide (SO <sub>2</sub> ) Volatile Organic Compounds (VOC) Greenhouse Gases (GHGs) (in CO2e) Total Hazardous Air Pollutants (HAPs) | Current I Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 3.1 23,748 | Actual (tpy) 2.81 4.60 0.27 0.27 0.27 0.50 0.56 3,542 | Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 2.6 23,748 | Actual (tpy) 2.81 4.60 0.27 0.27 0.50 0.37 3,542 0.06* | | Criteria Pollutant Carbon monoxide (CO) Nitrogen oxides (NOx) Particulate Matter (PM) (filterable only) PM <10 microns (PM10) PM <2.5 microns (PM2.5) Sulfur dioxide (SO <sub>2</sub> ) Volatile Organic Compounds (VOC) Greenhouse Gases (GHGs) (in CO2e) Total Hazardous Air Pollutants (HAPs) Individual HAPs Listed Below: | Current I Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 3.1 23,748 0.87* | Actual (tpy) 2.81 4.60 0.27 0.27 0.27 0.50 0.56 3,542 0.25* | Potential (tpy) 19.89 36.23 1.94 1.94 1.94 3.02 2.6 23,748 0.39* | Actual (tpy) 2.81 4.60 0.27 0.27 0.50 0.37 3,542 0.06* | 11. If confidential information is being submitted in this application, were the guidelines followed in the Potential (tpy) **New Facility** Actual (tpy) "Procedures for Requesting that Submitted Information be treated as Confidential"? ☐ No Criteria Pollutant 12. New Facility Emissions Summary \*Historical estimating methods were employed for the preparation of this information. BD's environmental consultants are currently collecting EtO data from inside and outside the Covington and Madison plants. When these studies are completed, BD reserves the right to revise the EtO emissions estimates contained in this application based upon that newly obtained information. | SIC Code: 3841 SIC Description: Surgical & Medical Instruments & Apparatus NAICS Code: 339112 Surgical & Medical Instruments & Apparatus NAICS Description: Surgical and Medical Instrument Manufacturing 15. Description of general production process and operation for which a permit is being requested. If necestatach additional sheets to give an adequate description. Include layout drawings, as necessary, to deseach process. References should be made to source codes used in the application. This application is for the addition of Emission Controls for currently non-captured emissions of Ethylene Oxide (EO) existing medical device sterilization facility. The existing regulated process which includes the Sterilization Chamber Stanust Vert, Chamber Vent, and Aeration Exhaust are not being modified. Information for these systems has beet included in previous permit applications and will not be repeated here. This application is specific to additional emission to being installed to capture and treat emissions not captured by current control equipment. No increase in the usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two Local Exhaust Ventilation Systems: System One (SYS1) will capture potential emissions from the seven Sterilization Vessel Rooms (VRM1, VRM2, VRM4, VRM4, VRM6, VRM6, VRM6, VRM7), the Vessel to Aeration Transfer Corridors (UCO1, UCO2), and the EO Dispensing Ro (DRM1, DRM2). Reference Attachment C. System Two (SYS2) will capture potential emissions from the Work in Progress Area (WIP1) where product is stored Sterilization and prior to shipment. Reference Attachment D. The captured emissions will be treated using Advanced Air Technologies Model DR490 "Dry Bed Scrubbers" designachieve an estimated 99% destruction efficiency. Attachment B - Attachment E - Attachment B - Plot Plan with proposed new stack locations System 2 Flow Diagram Attachment B - Advanced Air Technologies DR-490 Equipment Information Air Dispersion Modeling 1 | 4. 4-Digit Facility | y Identification Code: | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 15. Description of general production process and operation for which a permit is being requested. If neces attach additional sheets to give an adequate description. Include layout drawings, as necessary, to deseach process. References should be made to source codes used in the application. This application is for the addition of Emission Controls for currently non-captured emissions of Ethylene Oxide (EC) existing medical device sterilization facility. The existing regulated process which includes the Sterilization Chamber Exhaust Vent, Chamber Vent, and Aeration Exhaust are not being modified. Information for these systems has beer included in previous permit applications and will not be repeated here. This application is specific to additional emissions not captured by current control equipment. No increase in the usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two usage of EO will result from this proposed fugitive emission versult from this proposed fugitive emission from the seven Sterilization Vessel Rooms (VRM1, VRM2, VRM2, VRM2, VRM3, VRM5, VRM6, VRM6, VRM7, the Vessel to Aeration Transfer Corridors (UCO1, UCO2), and the EO Dispensing Ro (DRM1, DRM2). Reference Attachment E. Attachment B. Floor Plan Attachment B. Floor Plan | SIC Code: 38 | SIC Description | n: Surgical & Medical Instruments & Apparatus | | attach additional sheets to give an adequate description. Include layout drawings, as necessary, to deseach process. References should be made to source codes used in the application. This application is for the addition of Emission Controls for currently non-captured emissions of Ethylene Oxide (EO) existing medical device sterilization facility. The existing regulated process which includes the Sterilization Chamber Exhaust Vent, Chamber Vent, and Aeration Exhaust are not being modified. Information for these systems has beer included in previous permit applications and will not be repeated here. This application is specific to additional emiss controls being installed to capture and treat emissions not captured by current control equipment. No increase in the usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two Local Exhaust Ventilation Systems: System One (SYS1) will capture potential emissions from the seven Sterilization Vessel Rooms (VRM1, VRM2, VRM VRM4, VRM5, VRM6, VRM7), the Vessel to Aeration Transfer Corridors (UCO1, UCO2), and the EO Dispensing Ro (DRM1, DRM2). Reference Attachment C. System Two (SYS2) will capture potential emissions from the Work in Progress Area (WIP1) where product is stored Sterilization and prior to shipment. Reference Attachment D. The captured emissions will be treated using Advanced Air Technologies Model DR490 "Dry Bed Scrubbers" designative an estimated 99% destruction efficiency. 16. Additional information provided in attachments as listed below: Attachment B - Attachment B - Plot Plan with proposed new stack locations Attachment C - System 2 Flow Diagram Attachment E - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | NAICS Code: 33 | 339112 NAICS Description | n: Surgical and Medical Instrument Manufacturing | | attach additional sheets to give an adequate description. Include layout drawings, as necessary, to deseach process. References should be made to source codes used in the application. This application is for the addition of Emission Controls for currently non-captured emissions of Ethylene Oxide (EO) existing medical device sterilization facility. The existing regulated process which includes the Sterilization Chamber Exhaust Vent, Chamber Vent, and Aeration Exhaust are not being modified. Information for these systems has beer included in previous permit applications and will not be repeated here. This application is specific to additional emiss controls being installed to capture and treat emissions not captured by current control equipment. No increase in the usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two Local Exhaust Ventilation Systems: System One (SYS1) will capture potential emissions from the seven Sterilization Vessel Rooms (VRM1, VRM2, VRM VRM4, VRM5, VRM6, VRM7), the Vessel to Aeration Transfer Corridors (UCO1, UCO2), and the EO Dispensing Ro (DRM1, DRM2). Reference Attachment C. System Two (SYS2) will capture potential emissions from the Work in Progress Area (WIP1) where product is stored Sterilization and prior to shipment. Reference Attachment D. The captured emissions will be treated using Advanced Air Technologies Model DR490 "Dry Bed Scrubbers" designative an estimated 99% destruction efficiency. 16. Additional information provided in attachments as listed below: Attachment B - Attachment B - Plot Plan with proposed new stack locations Attachment C - System 2 Flow Diagram Attachment E - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | <del></del> | | | | existing medical device sterilization facility. The existing regulated process which includes the Sterilization Chamber Exhaust Vent, Chamber Vent, and Aeration Exhaust are not being modified. Information for these systems has beer included in previous permit applications and will not be repeated here. This application is specific to additional emiss controls being installed to capture and treat emissions not captured by current control equipment. No increase in the usage of EO will result from this proposed fugitive emission control project. The new controls will be comprised of two Local Exhaust Ventilation Systems: System One (SYS1) will capture potential emissions from the seven Sterilization Vessel Rooms (VRM1, VRM2, VRM VRM4, VRM5, VRM6, VRM7), the Vessel to Aeration Transfer Corridors (UCO1, UCO2), and the EO Dispensing Ro (DRM1, DRM2). Reference Attachment C. System Two (SYS2) will capture potential emissions from the Work in Progress Area (WIP1) where product is stored Sterilization and prior to shipment. Reference Attachment D. The captured emissions will be treated using Advanced Air Technologies Model DR490 "Dry Bed Scrubbers" designative an estimated 99% destruction efficiency. 16. Additional information provided in attachments as listed below: Attachment A - Floor Plan Attachment B - Plot Plan with proposed new stack locations Attachment B - Mass Balance Calculations. Attachment B - Mass Balance Calculations. Advanced Air Technologies DR-490 Equipment Information Advanced Air Technologies DR-490 Equipment Information Attachment B - Advanced Air Technologies DR-490 Equipment Information Attachment B - Advanced Air Technologies DR-490 Equipment Information Attachment B - Advanced Air Technologies DR-490 Equipment Information Attachment B - Advanced Air Technologies DR-490 Equipment Information Attachment B - Advanced Air Technologies DR-490 Equipment Information | attach addition | nal sheets to give an adequate des | cription. Include layout drawings, as necessary, to describe | | VRM4, VRM5, VRM6, VRM7), the Vessel to Aeration Transfer Corridors (UCO1, UCO2), and the EO Dispensing Ro (DRM1, DRM2). Reference Attachment C. System Two (SYS2) will capture potential emissions from the Work in Progress Area (WIP1) where product is stored Sterilization and prior to shipment. Reference Attachment D. The captured emissions will be treated using Advanced Air Technologies Model DR490 "Dry Bed Scrubbers" designs achieve an estimated 99% destruction efficiency. 16. Additional information provided in attachments as listed below: Attachment A - Floor Plan Attachment B - Plot Plan with proposed new stack locations Attachment C - System 1 Flow Diagram Attachment E - Attachment F - Monitoring Recommendations Attachment F - Advanced Air Technologies DR-490 Equipment Information Advanced Air Technologies DR-490 Equipment Information Attachment Information: Unless previously submitted, include the following two items: Attachment B - Plot plan/map of facility location or date of previous submittal: Attachment B | xisting medical dev<br>exhaust Vent, Cham<br>ncluded in previous<br>ontrols being install<br>sage of EO will resu | evice sterilization facility. The existing imber Vent, and Aeration Exhaust are s permit applications and will not be realled to capture and treat emissions no sult from this proposed fugitive emissions. | regulated process which includes the Sterilization Chamber not being modified. Information for these systems has been epeated here. This application is specific to additional emission of captured by current control equipment. No increase in the | | Sterilization and prior to shipment. Reference Attachment D. The captured emissions will be treated using Advanced Air Technologies Model DR490 "Dry Bed Scrubbers" designs achieve an estimated 99% destruction efficiency. 16. Additional information provided in attachments as listed below: Attachment A - Floor Plan Attachment B - Plot Plan with proposed new stack locations Attachment C - System 1 Flow Diagram Attachment D - System 2 Flow Diagram Attachment E - Mass Balance Calculations. Attachment F - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Attachment B | 'RM4, VRM5, VRM6 | M6, VRM7), the Vessel to Aeration Tra | the seven Sterilization Vessel Rooms (VRM1, VRM2, VRM3, unsfer Corridors (UCO1, UCO2), and the EO Dispensing Rooms | | achieve an estimated 99% destruction efficiency. 16. Additional information provided in attachments as listed below: Attachment A - Floor Plan Attachment B - Plot Plan with proposed new stack locations Attachment C - System 1 Flow Diagram Attachment D - System 2 Flow Diagram Attachment E - Mass Balance Calculations. Attachment F - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | ystem Two (SYS2)<br>terilization and prior | <ol> <li>will capture potential emissions from<br/>for to shipment. Reference Attachmen</li> </ol> | the Work in Progress Area (WIP1) where product is stored after b. | | Attachment A - Floor Plan Attachment B - Plot Plan with proposed new stack locations Attachment C - System 1 Flow Diagram Attachment D - System 2 Flow Diagram Attachment E - Mass Balance Calculations. Attachment F - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | he captured emission | sions will be treated using Advanced A ed 99% destruction efficiency. | Air Technologies Model DR490 "Dry Bed Scrubbers" designed to | | Attachment B - Plot Plan with proposed new stack locations Attachment C - System 1 Flow Diagram Attachment D - System 2 Flow Diagram Attachment E - Mass Balance Calculations. Attachment F - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | 6. Additional infor | ormation provided in attachments a | s listed below: | | Attachment B - Plot Plan with proposed new stack locations Attachment C - System 1 Flow Diagram Attachment D - System 2 Flow Diagram Attachment E - Mass Balance Calculations. Attachment F - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | Attachment A - | Floor Plan | | | Attachment C - System 1 Flow Diagram Attachment D - System 2 Flow Diagram Attachment E - Mass Balance Calculations. Attachment F - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | | | locations | | Attachment D - System 2 Flow Diagram Attachment E - Mass Balance Calculations. Attachment F - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | | | TOGATOTIS | | Attachment E - Mass Balance Calculations. Attachment F - Monitoring Recommendations Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | | | | | Attachment G - Advanced Air Technologies DR-490 Equipment Information Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | Attachment E - | | | | Attachment H - Air Dispersion Modeling 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | Attachment F - | Monitoring Recommendations | | | 17. Additional Information: Unless previously submitted, include the following two items: Plot plan/map of facility location or date of previous submittal: Attachment B | Attachment G - | Advanced Air Technologies DR-49 | 0 Equipment Information | | Plot plan/map of facility location or date of previous submittal: Attachment B | Attachment H - | Air Dispersion Modeling | | | | 7. Additional Infor | ormation: Unless previously submi | tted, include the following two items: | | Flow Diagram or date of previous submittal: Attachment C 2 D | ☑ Plot plan/ma | nap of facility location or date of previo | us submittal: Attachment B | | Attachment C & D | | ram or date of previous submittal: A | Attachment C & D | | <ul> <li>18. Other Environmental Permitting Needs:</li> <li>Will this facility/modification trigger the need for environmental permits/approvals (other than air) such as Hazarde Waste Generation, Solid Waste Handling, Water withdrawal, water discharge, SWPPP, mining, landfill, etc.?</li> <li>No ☐ Yes, please list below:</li> </ul> | Will this facility/m<br>Waste Generatio | modification trigger the need for environments, Solid Waste Handling, Water with | onmental permits/approvals (other than air) such as Hazardous<br>drawal, water discharge, SWPPP, mining, landfill, etc.? | ### 19. List requested permit limits including synthetic minor (SM) limits. ### **Proposed Permit Conditions** Permittee shall initially test performance of System1 (SYS1) and System2 (SYS2) to confirm ethylene oxide removal efficiency of at least 99% on a concentration basis within 60 days of commissioning of each system and within 60 days following any replacement of dry bed media. Removal efficiency across each system (SYS1 and SYS2) shall be demonstrated on a concentration reduction basis using simultaneous samples of inlet and outlet gases by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode. During sampling of the inlet and outlet concentrations across each system, the outlet stack airflows will be measured using EPA Methods 1, 2, and 4 for determination of volumetric flow rate and moisture content, and calculation of mass emission rate of ethylene oxide. Permittee shall sample the outlet from System1 (SYS1) and System2 (SYS2) once each month by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode to determine concentration of ethylene oxide in the exhaust airflow stream. Permittee shall track monthly concentration data versus baseline conditions and, in consultation with the dry bed manufacturer, determine when media replacement is warranted to maintain at least 99% removal efficiency. 20. Effective March 1, 2019, permit application fees will be assessed. The fee amount varies based on type of permit application. Application acknowledgement emails will be sent to the current registered fee contact in the GECO system. If fee contacts have changed, please list that below: Fee Contact name: n/a Fee Contact email address: n/a Fee Contact phone number: n/a Fee invoices will be created through the GECO system shortly after the application is received. It is the applicant's responsibility to access the facility GECO account, generate the fee invoice, and submit payment within 10 days after notification. ### FORM 2.00 - EMISSION UNIT LIST | | | | WIP1 | DRM2 | DRM1 | UCO2 | UCO1 | WIP1 | VRM7 | VRM6 | VRM5 | VRM4 | VRM3 | VRM2 | VRM1 | Unit ID | |--|--|-----|------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------| | | | | Work in Progress | EO Dispensing 2 | EO Dispensing 1 | Transfer 2 | Transfer 1 | Work in Progress | Vessel Room 7 | Vessel Room 6 | Vessel Room 5 | Vessel Room 4 | Vessel Room 3 | Vessel Room 2 | Vessel Room 1 | Name | | | | | N/A NA | N/A | N/A | Manufacturer and Model Number | | | | St. | Common area where sterilized product is stored prior to shipment | Dedicated Room for Dispensing EO from supply drums to Vessel #7 | Dedicated Room for Dispensing EO from supply drums to Vessels #1- #6 | Corridor between Vessel Room 7 and Aeration Cell 7 | Common corridor between Vessel Rooms 1-5 and Aeration Cells | Common area where sterilized product is stored prior to shipment | Dedicated Room for Sterilization Chamber 7 | Dedicated Room for Sterilization Chamber 6 | Dedicated Room for Sterilization Chamber 5 | Dedicated Room for Sterilization Chamber 4 | Dedicated Room for Sterilization Chamber 3 | Dedicated Room for Sterilization Chamber 2 | Dedicated Room for Sterilization Chamber 1 | Description | # Form 3.00 - AIR POLLUTION CONTROL DEVICES - PART A: GENERAL EQUIPMENT INFORMATION | SYS2 | SYS1 | APCD<br>Unit ID | |-------------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------|----------------------------------|-------------------------------------------|------------------------| | WIP1 | DRM2 | DRM1 | UCO2 | UCO1 | VRM7 | VRM6 | VRM5 | VRM4 | VRM3 | VRM2 | VRM1 | Oliv 10 | Emission | | Dry Beds Scrubber etc) | (Baghouse, ESP, | | TBD Installed | Date | | Advanced Air Technologies,<br>DR490 | Advanced Air Technologies,<br>DR490 | Advanced Air Technologies, DR490 DR490 | Advanced Air Technologies, DR490 | (Attach Mfg. Specifications & Literature) | Make & Model Number | | No Specifications? | Unit Modified from Mfg | | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | inlet | Gas Temp. °F | | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | Outlet | mp. °F | | 67,709 | 212-1,058 | 2,116-8,464 | 3,147 | 3,147 | 1,580-2,645 | 4,232- | 4,232-<br>10.580 | 4,232-<br>10.580 | 4,232-<br>10.580 | 2,116-<br>10,580 | 2,116-<br>10,580 | (acfm) | Inlet Gas | ## Form 3.00 - AIR POLLUTION CONTROL DEVICES - PART B: EMISSION INFORMATION | APCD | | Percent<br>Effici | Percent Control Efficiency | Inlet S | Inlet Stream To APCD | Exit Si | Exit Stream From APCD | Pressure Drop | |---------|----------------|-------------------|----------------------------|---------|-------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------| | Unit ID | College | Design | Actual | lb/hr | Method of Determination | lb/hr | Method of Determination | Across Unit (Inches of water) | | SYS1 | Ethylene Oxide | 99% | TBD | 0.013 | Mass Balance | 0.00013 | Mass Balance | 7 | | SYS2 | Ethylene Oxide | 99% | TBD | 0.40 | Mass Balance | 0.0040* | Mass Balance | 7 | | | | | | | | | *This value was calculated using the facility's maximum sterilization production rate at 8,760 hours per year (i.e., the PTE). | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ### FORM 4.00 - EMISSION INFORMATION | | Air Pollution | | | | | <b>Emission Rates</b> | tes | | |---------|----------------------|-------------|-------------------|---------------------------------------|------------------------------------|---------------------------------------|---------------------------------|-------------------------------------------------| | Unit ID | Control<br>Device ID | Stack<br>ID | Pollutant Emitted | Hourly Actual<br>Emissions<br>(lb/hr) | Hourly Potential Emissions (lb/hr) | Actual<br>Annual<br>Emission<br>(tpy) | Potential Annual Emission (tpy) | Method of Determination | | VRM1 | SYS1 | STK1 | Ethylene Oxide | 0.000013 | 0.000013 | 0.00006 | 0.00006 | Process Knowledge<br>& Engineering<br>Judgement | | VRM2 | SYS1 | STK1 | Ethylene Oxide | 0.000013 | 0.000013 | 0.00006 | 0.00006 | Process Knowledge<br>& Engineering<br>Judgement | | VRM3 | SYS1 | STK1 | Ethylene Oxide | 0.000013 | 0.000013 | 0.00006 | 0.00006 | Process Knowledge & Engineering Judgement | | VRM4 | SYS1 | STK1 | Ethylene Oxide | 0.000013 | 0.000013 | 0.00006 | 0.00006 | Process Knowledge<br>& Engineering<br>Judgement | | VRM5 | SYS1 | STK1 | Ethylene Oxide | 0.000013 | 0.000013 | 0.00006 | 0.00006 | Process Knowledge<br>& Engineering<br>Judgement | | VRM6 | SYS1 | STK1 | Ethylene Oxide | 0.000013 | 0.000013 | 0.00006 | 0.00006 | Process Knowledge & Engineering Judgement | | VRM7 | SYS1 | STK1 | Ethylene Oxide | 0.000013 | 0.000013 | 0.00006 | 0.00006 | Process Knowledge & Engineering Judgement | | | SYS1 | STK1 | Ethylene Oxide | 0.00000037 | 0.0000097 | .000016 | 0.000043 | Mass Balance | | UCO2 | SYS1 | STK1 | Ethylene Oxide | 0.00000037 | 0.0000097 | .000016 | 0.000043 | Mass Balance | | DMR1 | SYS1 | STK1 | Ethylene Oxide | 0.000013 | 0.000013 | 0.00006 | 0.00006 | Process Knowledge & Engineering Judgement | | DMR2 | SYS1 | STK1 | Ethylene Oxide | 0.000013 | 0.000013 | 0.00006 | 0.00006 | Process Knowledge & Engineering Judgement | | WIP1 | SYS2 | STK2 | Ethylene Oxide | 0.0015 | 0.0040 | 0.0065 | 0.018 | Mass Balance | **BD Madison** **Date of Application:** 12 December 2019 ### **FORM 5.00 MONITORING INFORMATION** | Emission | | Monitored Para | meter | | |---------------------|----------------------------------------|------------------------------------|-------|------------------------| | Unit ID/<br>APCD ID | Emission Unit/APCD Name | Parameter | Units | Monitoring Frequency | | VRM1/SYS<br>1 | Vessel Room1/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | VRM2/SYS<br>1 | Vessel Room2/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | VRM3/SYS<br>1 | Vessel Room3/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | VRM4/SYS<br>1 | Vessel Room4/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | VRM5/SYS<br>1 | Vessel Room5/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | VRM6/SYS<br>1 | Vessel Room6/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | VRM7/SYS<br>1 | Vessel Room7/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | UCO1/SYS<br>1 | Vessel to Aeration Transfer/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | UCO2/SYS<br>1 | Vessel to Aeration<br>Transfer/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | DMR1/SYS<br>1 | EO Dispensing/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | DMR2/SYS<br>1 | EO Dispensing/System1 | EO Concentration at outlet of SYS1 | ppm | Reference Attachment F | | WIP1/SYS2 | Work in<br>Progress/System2 | EO Concentration at outlet of SYS2 | ppm | Reference Attachment F | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Co | mm | ents: | |--------|----|-------| | $\sim$ | | GHLO. | Monitoring detail described in attachment F ## FORM 7.00 - AIR MODELING INFORMATION: Stack Data | | | | | | STK2 | STK1 | | 5 | Stack | |--|--|--|--|--|------------|-------------------------------------------------------|------------|------------------|----------------------------------------------| | | | | | | WIP1 | VRM1, VRM2, VRM4, VRM6, VRM7, UCO1, UCO2, DMR1, DMR2, | | Unit ID(s) | Emission | | | | | | | 100 | 100 | Grade (ft) | Height<br>Above | St | | | | | | | 5.17 | 3.83 | (ft) | Inside | Stack Information | | | | | | | To the Sky | To the Sky | Direction | Exhaust | on | | | | | | | 20 | 20 | (ft) | Height | Dimension<br>Structure | | | | | | | 50 | 50 | Side (ft) | Longest | Dimensions of largest Structure Near Stack | | | | | | | 50.8 | 52 | (ft/sec) | Velocity | Exit G | | | | | | | 70 | 70 | (°F) | Temperature | Exit Gas Conditions at Maximum Emission Rate | | | | | | | 67,709 | 24,546 | Average | Flow Ra | Maximum Emissi | | | | | | | 67,709 | 38,087 | Maximum | Flow Rate (acfm) | on Rate | **NOTE:** If emissions are not vented through a stack, describe point of discharge below and, if necessary, include an attachment. List the attachment in Form 1.00 General Information, Item 16. | Fac | ilitv | Non | | |-----|-------|-------|-----| | rau | HILLY | IVAII | IE. | | BD | Mad | disor | |----|-----|-------| |----|-----|-------| Date of Application: 12 December 2019 ### FORM 7.00 AIR MODELING INFORMATION: Chemicals Data | Chemical | Potential<br>Emission Rate<br>(lb/hr) | Toxicity | Reference | MSDS<br>Attached | |------------------------------|---------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|------------------| | Ethylene Oxide CAS#: 71-25-8 | 0.0055 | PEL: 1ppm<br>STEL: 5 ppm<br>See Att H for<br>Outside<br>Exposures | OSHA 1910 See Att H for Outside Exposures Reference | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Page 1 of 2 Page 2 of 2 ### **BD Madison SIP Application** ### **General Description** The intent of the mechanical systems design upgrade is to capture unregulated, fugitive Ethylene Oxide (EO) emissions inside the facility and reduce the potential for releases of these emissions to atmosphere. An effective means of containing emissions is to capture EO at the source. The capture and treatment systems will utilize pressure differential strategies. Using negatively pressurized spaces, extraction will direct air from the lowest EO concentrations to the highest concentrations in the building and then send this exhaust air through an EO destruction process. Existing exhaust fans (WIP1) will be replaced with a dedicated EO capture and destruction systems. Further, the shipping area will be enclosed. The new systems are designed to reduce captured emissions by 99% at the outlet. ### System 1 Description/Flow Diagram System One (SYS1) will capture potential emissions from the seven Sterilization Vessel Rooms (VRM1, VRM2, VRM3, VRM4, VRM5, VRM6, VRM7), the Vessel to Aeration Transfer Corridors (UCO1, UCO2), and the EO Dispensing Room (DRM1, DMR2). All SYS1 exhaust will be manifolded into a Dry Bed System with variable speed exhaust fan with a maximum capacity of 38,087 cfm. The system will maintain negative pressure, with respect to outside, in the Vessel Rooms, Vessel to Aeration Transfer Corridors, Drum Dispensing rooms and use local ventilation exhaust to capture and destruct EO. ### Normal Mode: Vessel Rooms VRM1-VRM2 will exhaust 2,116 cfm each, Vessel Rooms VRM3-VRM5 will exhaust 4,232 cfm each, Vessel Room VRM7 will exhaust 1,058 cfm. DMR1 will exhaust 2,116 cfm, DMR2 will exhaust 212 cfm. UC01, UCO2 hoods will be off. Total cfm = 24,546. The Vessel rooms, DMR1, DMR2, and UCO1, UCO2 can increase cfm, to a total of 38,087 cfm, if monitoring equipment detects elevated EO levels. ### Chamber Unloading Mode: When a chamber is being unloaded the room exhaust will ramp to High Flow 2,645-10,580 cfm (all other vessel rooms will be at Low Flow (1,058-4,232 cfm) the corresponding UCO1 or UCO2 hood will go to 3,174 cfm exhaust (all other hoods will be off). DMR1, DMR2 will remain at 212/2,116 cfm. Total cfm = 20,843-29,836 cfm. The other Vessel rooms can increase cfm, to a total of 38,087 cfm, if monitoring equipment detects elevated EO levels. ### **Emergency Mode:** SYS1 will also incorporate a safety feature that will serve to shut down the system in the case of a major EO leak (≥25% of LEL or 7,500ppm). The AAT Dry Beds are designed for a maximum limit of 10,000 ppm and can ignite if overfed leading to potential fire or explosion. An EO sensor will be located in the SYS1 inlet duct and will activate a shutdown sequence based on an internal setpoint. EO emissions will not be captured in this emergency situation. This event will also trigger a sterilization process shutdown. It should be noted that BD has not experienced levels of this magnitude in its twenty-year history and this safety system is being included only to prevent a personnel injury in the event of a catastrophic failure. ### **BD Madison SIP Application** ### System 2 Description/Flow Diagram System Two (SYS2) will capture potential emissions from the Work in Progress Area (WIP1) where product is stored after Sterilization and prior to shipment. All SYS2 exhaust will be manifolded into a Dry Bed System with multiple variable speed exhaust fans for a maximum capacity of 67,700 cfm. The exhaust fans will be routed to a common Stack (STK2). The system will maintain negative pressure, with respect to outside, in the WIP1 area. The area pressure will be monitored with pressure sensors and fans will modulated to maintain a negative pressure in the space. Administrative controls will be implemented to ensure building integrity is preserved, doorways are managed, and air flows/pressures are maintained per design. The administrative controls will consist of written Operating Procedures and Preventative Maintenance procedures/checklists. The controls will also include pressure sensing devices and system monitoring that will notify plant personnel if the systems are not functioning properly. The shipping area will be enclosed to aid in containment of emissions. ### CONTAINS CONFIDENTIAL TRADE SECRET INFORMATION - NOT SUBJECT TO DISCLOSURE PURSUANT TO OCGA § 50-18-72(34) | ecton, Dickinson and Company | Page 1 of 2 | : | | - | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | lass Balance Calculations for SIP Application (PTE) | | | | -* tore r - r | | acility: Madison, GA | | i | Total | | | put data: | | | | | | thylene oxide usage | Cycle Info | Cycle Info | Total | Info for two cycles is shown as they have alternat absorption and k factors | | terilizer removal efficency | | | ІЬ/уг | Total usage based on Mass Balance | | TO efficiency, seration | 99.9% | 99.9% | | Based on partial pressure calculation estimate | | TO efficiency, vessels | 99.700% | 99.700% | , | Based on 2018 Performance Testing (Previously submitted to EPD) | | roduct transfer time, sterilizer to seration | 99.999% | 99.999% | | Based on 2018 Performance Testing (Previously submitted to EPD) | | eration time | 5 | 5 | min | | | eration Unload time | 16<br>10 | 16<br>10 | hr<br>min | · | | stem 1 removal efficiency | 99% | 99% | min | Account MAN A | | stern 2 removal efficiency | 99% | 99% | | Assume 99% Based on vendor literature | | | 33,0 | 3370 | r | Assume 99% Based on vendor literature | | stem 2 Safety Factor | 4.00 | 4.00 | | Safety factor included to account for variation in future products and products which may impact EO residuals. | | sumptions: | Lipe | | | PEDSTY WIRDLESS MORE TRANSPORTERS. | | oduct absorption <sup>2</sup> | Section 1 | 100 | į | 1 | | degassing rate constant, k | | | lb/hr | † | | iscellaneous fugitive loss | 100 | | the state of s | Captured in system 1 | | | 1 | 1 | | , and the special of | | lculations: | | | | | | | | Į. | | 1 | | idhizer: | Ĭ | ************ | 1 | | | into sterilizers | | | ib | Total usage based on Mass Balance minus miscellaneous fugitive loss | | absorbed by product | 2,159.6 | 585.0 | 2,745 fb | A service construction of the service servic | | in sterilizer not absorbed by product | | | lb | | | exhausted to RTO from vac/air wash | | | tb | | | exhausted to RTO from vent | 537.7 | 64.4 | 602 lb | - | | erilizer exhaust to RTO | | | Ib<br>Ib | | | erilizer exhaust removed by RTO | | | th and the | | | rilizer exhaust to etmosphere after RTO | 1 10 5X 10 | -0.5 | 6.9 lb | | | nsfer: | | : | 1 | | | | | | | EO will off-gas from products during aeration per equation: $C = C_0 e^{i\Delta t}$ , whe | | affine during made at heart and | | | | C = Final EO concentration, C <sub>e</sub> = EO concentration at time 0, k = EO degassin | | offgas during product transfer to aeration | 0.51% | 0.99% | to Aus | rate constant, and t = degassing time in hrs. | | offgas during product transfer to aeration | 11.0 | 5.8 | 16.8 lb | This will be captured by system one | | semaining in product entering agration | 2440.0 | | | | | gas during seration | 2,148.6 | 579.2 | 2,727.8 lb | | | gas during unloading | 62.6% | 85.1%<br>0.02 | 1.5<br>0.03 | | | offgas during peration | 1,345.5 | 493.2 | tion for the f | | | RTO during aeration | 1,345.5 | 493.2 | 1,838.7 lb | | | RTO during seration unload | 8.2 | 1.7 | 9.9 lb | : | | al aeration to RTO | 1,353.7 | 494.9 | 1,848.6 fb | <u> </u> | | ation removed by RTO | 1,349.7 | 493.4 | 1,843.1 b | | | ation exhaust to atmosphere after RTO | 4.1 | 15 | 5.5 lb | | | | | 1 | | | | tem1: | | ; | | | | System 1 | 111.0 | 5.8 | 116.8 lb | | | noved by System 1 | 109.9 | 5.7 | 115.7 Ib | × | | tem 1 exhaust to atmosphere | 1.1 | 0.06 | 1.2 | | | tem2: | | | | | | System 2<br>noved by System 2 | 3,179.4 | 337.3 | 3,516.6 lb | Includes System 2 Safety Factor | | tern 2 exhaust to atmosphere | 3,147.6 | 333.9 | 3,481.5 lb | | | em 2 exhaust to autoprime | 31.8 | 84 | 35.2 | | | susted before Modification: | | | | | | exhausted to atmosphere from RTO | 9.4 | 53 | 22 6 6 | | | shausted to atmosphere by system 1 | 111.0 | 2.1 | 11.6 % | i DC | | xhausted by to atmosphere System 2 | | 5.8 | 116.8 % | Plane and Inches of the pro- | | EO exhausted to atmosphere | 794.8 | 84.3 | 879.2 lb | Does not include Safety Factor | | The state of s | 915.3<br>C t | 92.2 | 1,007.4 7b | Before Modifications | | | ¥ . | ii va | 0 5 Tons | | | usted after Modification; | • | 1 | | | | shausted to atmosphere from RTO | 9.4 | 2,1 | 11.6 lb | | | khausted to atmosphere by system 1 | 1.1 | 0.06 | 1.2 tb | • | | xhausted by to atmosphere System 2 | 31.8 | 3.4 | 35.2 % | Poes include Safety Factor | | EO exhau ted to atmosphere | 47.3 | 5.6 | 47.9 | A STATE OF THE PARTY PAR | | | 0.023 | 0.0028 | 0 024 Tons | After Modifications | | | | | - | | | This estimates how much EO is removed during p | ost exposure vacuum wa | shes but does | not include what is | in the product at the time it transfers to Agratian. | | estimates the automit of ED in the biodict Auto | It atents the frankiel to e | ieration. | | THE PARTY OF P | | 3 An estimate based on Product EO Residue Testin | g performed by 80 labor | story personn | el. | | | 4 An estimate of potential EO emissions from pure. | /valve packaging, flange | losses. EO sur | poly drum changes | and non-routine losses. | | 5 The Safety Factor is only included in the After Mo | dification calculations as | this incurse of | ab al mateurs umn or | closed to appoint for an data to figure and a second as a second | | table full contract the contrac | trie preparation of this ! | Mass Halance. | BD's environments | Concentrate are correctly collection for data force incline and annual and | | 6 Covington and Madison plants. When these stud | | | | emissions estimates contained in this application based upon that newly obtaine | ### CONTAINS CONFIDENTIAL TRADE SECRET INFORMATION - NOT SUBJECT TO DISCLOSURE PURSUANT TO OCGA \$ 50-18-72/34) | ATTACHMENT E<br>Becton, Dickinson and Company | Page 2 of 2 | | j | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Section, Dickinson and Company | .1. | į | | | | Mess Balance Calculations for SIP Application (Actual) <sup>6</sup> acility: Madison, GA | | , | | 4 | | acility: Macison, GA nout data: | | | | | | draw conta: | | | | | | thylene oxide usage | Cycle Info | Cycle Info | Total | Info for two cycles is shown as they have alternat absorption and k factor | | the first owner before a most real. | 100000 | | III III | /yr Total usage based on Mass Balance (CY2018) | | terflizer removal efficency | 99.9% | 99.9% | | Based on pertial pressure calculation estimate | | TO efficiency, aeration | 99.700% | 99.700% | | Based on 2018 Performance Testing (Previously submitted to EPD) | | O efficiency, vessels | 99.999% | 99.999% | - | Second on 2010 Professional World - Inc. 1 . 4 | | oduct transfer time, sterilizer to aeration | 5 | 5 | m | in | | eration time | 16 | 5<br>16 | hr | | | eration Unload time | 10 | 10 | m | in | | stem 1 removal efficiency | 99% | 99% | | Assume 99% Based on vendor literature | | stem 2 removal efficiency | 99% | 99% | 1 | Assume 99% Based on vendor literature | | rstem 2 Safety Factor | 4.00 | | : | Safety factor included to account for variation in future products and pro- | | ssumptions: | 4.00 | 4.00 | | density which may impact FO residuals. | | oduct absorption <sup>2</sup> | | 1.4 | | | | degassing rate constant, k | | | | | | scellaneous fugitive loss | | | lb/ | hr | | occupations (dente into | 100 | 0 | b | Captured in system 1 | | culations: | | 1 | | | | cuadors. | | 7.11.11.11.1 | | | | tilizer: | | i | | | | into sterilizers | | | | | | absorbed by product | Secretary of | | b | Total usage based on Mass Balance minus miscellaneous fugitive loss | | in sterilizer not absorbed by product | 795.4 | 231.9 | 1,027 lb | To delicate the desired to the control of contr | | exhausted to RTO from vac/air wash | | | Jb Ib | Í | | exhausted to RTO from vent | B | | lb | | | ersizer exhaust to RTO | 198,1 | 25.5 | 224 lb | | | eritizer exhaust removed by RTO | | | lb lb | | | rilizer exhaust to atmosphere after RTO | Name and | THE PERSON | | | | Asier | 2.0 | 0.3 | 2.2 to | | | Littlete i | | | | • | | | ı | | | EO will off-gas from products during aeration per equation: $C = C_0 e^{141}$ , where | | offers I A | ļ | | | C = Final EO concentration, C <sub>e</sub> = EO concentration at time 0, k = EO degassing | | offgas during product transfer to aeration | 0.51% | 0.99% | | rate constant, and t = degassing time in hrs. | | offgas during product transfer to aeration | 4,1 | 2.3 | 64 lb | This will be captured by system one | | | ** | | | | | remaining in product entering seration ges during seration | 791.3 | 229.6 | 1,021.0 tb | | | gas during unloading | 62.6% | 85.1% | 1.5 | | | AT ANY DAY SAME. | 0.01 | 0.02 | 0.03 | | | offges during seration | 495.6 | 195.5 | 691.1 lb | | | RTO during acration<br>RTO during acration unload | 495.6 | 195.5 | 691.1 lb | i i | | al aeration to RTO | 3.0 | 0.7 | 3.7 lb | | | ation removed by RTO | 498.6 | 196.2 | 694.8 lb | | | ation exhaust to atmosphere after RTO | 497.1 | 195.6 | 692.7 lb | | | and it common to dringshire and 410 | 2.9 | 6.6 | 2.1 h | | | tem1: | | | | 4 | | System 1 | 200.4 | | | | | noved by System 1 | 304.1 | 2.3 | 106.4 lb | | | em 1 exhaust to atmosphere | 103.0 | 2.3 | 105.3 lb | | | em2: | 18 | 0.0 | 3.3 | | | System 2 | 1 171 0 | 100 7 | 1 304 7 " | and an also are a second | | noved by System 2 | 1,171.0<br>1,159.3 | 133.7 | 1,304.7 lb | Includes System 2 Safety Factor | | em 2 exhaust to etmosphere | 1,139.5 | 132.4 | 1,291.7 16 | | | - Commence of the | 44.6 | 1.3 | ti I | | | usted before Modification: | • | ÷ | | | | phausted to atmosphere from RTO | 3.5 | ñol | 4 9 4 | | | chausted to atmosphere by system 1 | | 0.8 | 4.3 fb | 1 | | chausted by to atmosphere System 2 | 104.1 | 2.3 | 106.4 lb | <u> </u> | | I EO exhausted to atmosphere | 292.7 | 33.4 | 326.2 lb | Does not include Safety Factor <sup>5</sup> | | | 400.3 | 36.6 | 43t 9 # | Before Modifications | | | 0.2 | 0.02 | 02 Ten | | | usted after Modification: | | 1 | 1 | ÷ | | xhausted to atmosphere from RTO | 3.5 | 0.8 | 4 3 16 | | | chausted to atmosphere by system 1 | 1.0 | 0.02 | 4.3 lb | | | xhausted by to atmosphere System 2 | 11.7 | 1.3 | 13.0 lb | Dept Include Safety Course | | ED exhausted to atmosphere | 16.2 | 3.7 | 18 # 1b | Does Include Safety Factor | | | 6.008 | 0.0011 | 0.009 10 2 | Arter Muddin attorn | | | | - | | | | This estimates how much EO is removed during post | exposure vacuum wast | es but does n | ot include what | s in the product at the time it to be a to t | | | laris ine transfer to aer | anion. | minim ailshif ! | and the product of the thing of the transfers to Agracion. | | 3 An estimate based on Product EO Residue Testing pe | rformed by 80 laborate | ory personnel. | | | | 4 An estimate of potential EO emissions from pump/va | ive packaging, flange lo | sses. EO sunni | ly drum chance- | and non-couring laces | | ine Safety Factor is only included in the After Modifi- | cation calculations as H | ile incurac tha | new natem to de | reignand by account for any day, and a | | Table 2 | | er Dalames D | Dia naminana na di | esigned to account for variation in future products and product density. all consultants are currently collecting EtO data from inside and outside the | | The state of s | E 64 #P68 #D514 AL 7132 MA | ias Deliaine. ~ | | al consumers are currently collecting EtO data from inside and outside the<br>emissions estimates contained in this application based upon that newly obtaine | ### **BD Madison SIP Application** BD has not identified an US EPA- or GA EPD-approved stack test method that will measure the concentrations of unregulated, fugitive emissions of ethylene oxide (EO), which are expected to be less than 0.2 ppm, that will enter the dry systems' inlets or the resulting, reduced concentrations of EO at the dry bed systems' outlets or the combined stacks.¹ For these reasons, BD proposes to demonstrate the control efficiency of the dry bed systems using the following sample collection and analysis methods, which are based EPA Method TO-15. Based upon available information, BD anticipates that the ethylene oxide (EO) concentrations at the inlet and outlet of the proposed systems will be relatively low (i.e., typically less than 0.2 ppmv) and essentially not reliably detected by standard EPA stack testing methods (e.g., EPA Method No. 18). To overcome this limitation, the approach described below employs a gas sampling technique capable of achieving lower detection limits. When the inlet and outlet concentrations are close to the limits of detection of the analytical equipment it becomes mathematically impossible to prove the specified destruction efficiency. We are currently investigating monitoring technologies and methods that would allow practical measurement of the relatively low levels of EO expected at the outlet of the proposed emission systems with the intent to be able to confirm a 99% reduction or an equivalent emission standard. BD welcomes any alternate sample/analysis methods may be that GA EPD may recommend. BD proposes that the initial compliance tests and subsequent monthly monitoring of System1 and System2 as follows: ### **Initial Compliance Testing:** - Demonstrate 99% ethylene oxide removal efficiency of the dry bed systems across each control System using simultaneous samples of inlet and outlet gases by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode. - During this sampling of the inlet and outlet concentrations across each system, the outlet stack airflows will be measured using EPA Methods 1, 2, and 4 for determination of volumetric flow rate and moisture content. <sup>&</sup>lt;sup>1</sup> Advanced Air Technologies, Inc. (AAT), the manufacturer of the dry bed systems, has claimed that that emissions "of EtO will be 99% or = 1 ppmv, whichever is less stringent, when operated per AAT operations manual and other parameters of project design." BD has based its calculations of the removal of unregulated, fugitive EO emissions on AAT's manufacturer's claims. To its knowledge, BD's installation of the AAT dry bed systems to control EO in the concentrations found in the unregulated, fugitive emissions of the substance at the Covington plant is the first such installation anywhere. BD, nonetheless, believes that the dry bed systems will reduce the unregulated, fugitive emissions of EO by 99%. - Using the above-measured airflow and concentration data, the mass emission rate from each System will be calculated and reported. - These data will be used to establish baseline conditions against which subsequent monitoring data (collected as described below) will be considered in determining when media replacement should be initiated. This compliance testing regime will be repeated after completion of any future media replacement. ### **Routine Monitoring:** - Sample the outlet from each dry bed system on a monthly basis by Summa Canisters using EPA Method TO-15 with analysis by GC/MS in the Selective Ion Monitoring (SIM) acquisition mode and determine concentration of ethylene oxide in the exhaust airflow stream. - Monthly concentration data will be tracked and compared with baseline data. - Trending of the monthly concentration data versus baseline will be used in consultation with the dry bed manufacturer to determine when media replacement is warranted to maintain at least 99% removal efficiency. ### **BD** Madison SIP Application The abatement method is chemisorption (adsorption accompanied by chemical reaction) by means of Advanced Air Technology dry beds containing sulfonated polymer of styrene. Once the chemisorption process has occurred, the amount of EO is reduced by at least 99%. See table below: ISO 9001: 2008 Certified ### **ADVANCED AIR TECHNOLOGIES, INC.** 300 Earl Sleeseman Drive Corunna, MI 48817 (Michigan - USA) Phone: 989-743-5544 Fax: 989-743-5624 Toll Free: 800-295-6583 ### AAT, INC. DR-490 ETHYLENE OXIDE ABATOR REMOVAL EFFICIENCY DECAY (BASED ON 2000 SCFM AIR FLOW RATE) | lb. EtO Treated/lb.<br>Reactant | lb. EtO Previously<br>Treated | EtO % Removal<br>Efficiency | |---------------------------------|-------------------------------|-----------------------------| | 0 | 0 | 99.995 | | 0.05 | 45 | 99.97 | | 0.10 | 90 | 99.95 | | 0.15 | 135 | 99.92 | | 0.20 | 180 | 99.9 | | 0.25 | 225 | 99.5 | | 0.30 | 270 | 99 | | 0.35 | 315 | 98 | | 0.40 | 360 | 97 | | 0.45 | 405 | 95 | | 0.50 | 450 | 85 | | 0.52 | 468 | 0 | ### ETHYLENE OXIDE EMISSIONS IMPACT ASSESSMENT **BD Bard > Madison Facility** Prepared By: TRINITY CONSULTANTS December 2019 Project 191101.0280 Environmental solutions delivered uncommonly well ### 1. ETHYLENE OXIDE EMISSIONS IMPACT ASSESSMENT EPD regulates the emissions of toxic air pollutants (TAPs) through a program approved under the provisions of GRAQC Rule 391-3-1-.02(2)(a)3(ii). A TAP is defined as any substance that may have an adverse effect on public health, excluding any specific substance that is covered by a State or Federal ambient air quality standard. Procedures governing the EPD's review of toxic air pollutant emissions as part of air permit reviews are contained in EPD's Guideline for Ambient Impact Assessment of Toxic Air Pollutant Emissions (the Guideline).1 This assessment included dispersion modeling for ethylene oxide (EtO) from the facility. ### 1.1. MODELING ASSESSMENT Modeling conducted was done with the AERMOD (v19191) dispersion model. Meteorological data utilized for the modeling assessment was obtained from the Georgia EPD website, consistent with the meteorological data recommended for use for the location of the subject facility (Morgan County). Meteorological data utilized was processed using AERMET (v18081), AERSURFACE (v13016), and AERMINUTE (v15272) with the adjusted surface friction velocity option (ADJ\_U\*). Five consecutive years of meteorological data (2014-2018) were utilized in the modeling assessment, with surface meteorological data from the Athens Ben Epps airport and upper air data from Falcon Field in Peachtree City, Georgia. This assessment was performed in accordance with the *Guideline*. ### 1.1.1. Source Parameters Ethylene oxide emissions were modeled as point sources from three specific facility stack locations. For point sources, AERMOD requires the stack height (m), inside stack exit diameter (m), temperature (K), and exit gas velocity (m/s) to be specified. Table 1-1 provides a summary of the location and stack parameters used in the dispersion model for the point sources. The modeled emission rates reflect the current DRE for the RTO (incinerator) at the Madison facility, and assume a 99% reduction of all fugitive emissions of EtO from the facility, which reflects the performance of the dry bed filters proposed in the permit application for which this modeling was performed. <sup>&</sup>lt;sup>1</sup> Guideline for Ambient Impact Assessment of Toxic Air Pollutant Emissions. Georgia Department of Natural Resources, Environmental Protection Division, Air Protection Branch, Revised, May 2017. <sup>&</sup>lt;sup>2</sup> https://epd.georgia.gov/air-protection-branch-technical-guidance-0/air-quality-modeling/georgia-aermet-meteorological-data BD Madison | Ethylene Oxide Emissions Impact Assessment **BD Madison SIP Application** Table 1-1. Point Source Parameters | | ameter | (in) Diameter (m) | 1 210 | 1.617 | 1167 | H | |---------|------------------|-------------------|--------------|-------------|--------------|--------------| | | | _ | + | 200 | | | | | Flow | | 33.1 | | 25.5 | 96.800 | | | Exit Velocity | (m/s) | 17 98 | 2 | 11.24 | 16.18 | | | Exit Velocity | (ft/s) | 42.6 | | 36.9 | 53.1 | | Stack | Temperature | Œ | 394.26 | | 294.26 | 294.26 | | Stack | Temperature Te | Œ | 250 | | 20 | 70 | | | Stack Height | (H) | 15.24 | | 30.48 | 30.48 | | | Stack Height | Œ | 20 | | 100 | 100 | | | Modeled | Emissions (g/s) | 1,67E-04 | 200.7 | 1./36-05 | 5.07E-04 | | Modeled | Emissions | (lb/hr) | 1.32E-03 | 4 0 111 0 4 | L.3/E-04 | 4.02E-03 | | Modeled | Emissions | (lb/yr) | 11.6 | 4.5 | 777 | 35.2 | | | | Northing (meter) | 3,716,316.63 | 0417 070 00 | 05,702,017,6 | 3,716,272.66 | | | | Easting (meter) | 270,841.52 | 270.070.40 | 04.0/0/7 | 270,881.85 | | | | Source | RTO | Culphon 4 | System 1 | System 2 | ### **BD Madison SIP Application** ### 1.1.2. Land Use Classification Classification of land use in the immediate area surrounding a facility is important in determining the appropriate dispersion coefficients to select for a particular modeling application. The selection of either rural or urban dispersion coefficients for a specific application should follow one of two procedures. These include a land use classification procedure or a population-based procedure to determine whether the area is primarily urban or rural.<sup>3</sup> Of the two methods, the land use procedure is considered more definitive. The land use within the total area circumscribed by a 3-kilometer (km) radius circle around the facility was classified using the land use typing scheme proposed by Auer. If land use types I1 (Heavy Industrial), I2 (Light Industrial), C1 (Commercial), R2 (Residential; Small Lot Single Family & Duplex), and R3 (Residential; Multi-Family) account for 50% or more of the circumscribed area, urban dispersion coefficients should be used; otherwise, rural dispersion coefficients are appropriate. AERSURFACE (v13016) was used for the extraction of the land-use values in the domain. The results of the land use analysis evaluation were as follows. Each USGS NLCD92 land use class was compared to the most appropriate Auer land use category to quantify the total urban and rural area. Table 1-2 summarizes the results of this land use analysis. As approximately 98.2% of the area can be classified as rural, rural dispersion coefficients were used. The AERSURFACE files are enclosed in Appendix A. <sup>&</sup>lt;sup>3</sup> 40 CFR Part 51, Appendix W, the Guideline on Air Quality Models (January 2017) – Section 7.2.1.1(b)(i) BD Madison | Ethylene Oxide Emissions Impact Assessment ### **BD Madison SIP Application** Table 1-2. Summary of Land Use Analysis | USGS NLCD92 | | | Auer Scheme | Rural/<br>Urban | Land<br>Area | |---------------|------------------------------------------|---------------------|------------------------------------------------------------------|-----------------|--------------| | Land<br>Class | Land Class Description | Land<br>Use<br>Type | Land Use Description | Orban | Alea | | 11 | Open Water | A5 | Water Surfaces/Rivers/Lakes | Rural | 0.7% | | 12 | Perennial Ice/Snow | A5 | Water Surfaces/Rivers/Lakes | Rural | 0.0% | | 21 | Low Intensity Residential | R1 | Common Residential | Rural | 2.9% | | 22 | High Intensity Residential | R2 and<br>R3 | Compact Residential<br>(Single Family, Multi-Family &<br>Duplex) | Urban | 0.3% | | 23 | Commercial/Industrial/<br>Transportation | I1, I2,<br>and C1 | Heavy and Light-Moderate<br>Industrial & Commercial | Urban | 1.5% | | 31 | Bare Rock/Sand/Clay | A3 | Undeveloped | Rural | 0.2% | | 32 | Quarries/Strip Mines/Gravel | A4 | Undeveloped Rural | Rural | 0.3% | | 33 | Transitional | A3 | Undeveloped/Uncultivated | Rural | 2.0% | | 41 | Deciduous Forest | A4 | Undeveloped Rural | Rural | 22.8% | | 42 | Evergreen Forest | A4 | Undeveloped Rural | Rural | 22.3% | | 43 | Mixed Forest | A4 | Undeveloped Rural | Rural | 12.3% | | 51 | Shrubland | A3 | Undeveloped/Uncultivated | Rural | 0.0% | | 61 | Orchards/Vineyard/Other | A2 | Agricultural Rural | Rural | 0.0% | | 71 | Grasslands/Herbaceous | A3 | Undeveloped/Uncultivated | Rural | 0.0% | | 81 | Pasture/Hay | A2 | Agricultural Rural | Rural | 24.2% | | 82 | Row Crops | A2 | Agricultural Rural | Rural | 8.9% | | 83 | Small Grains | A2 | Agricultural Rural | Rural | 0.0% | | 84 | Fallow | A2 | Agricultural Rural | Rural | 0.0% | | 85 | Urban/Recreational Grasses | A1 | Metropolitan Natural | Rural | 1.4% | | 91 | Woody Wetlands | A4 | Undeveloped Rural | Rural | 0.3% | | 92 | Emergent Herbaceous<br>Wetlands | A4 | Undeveloped Rural | Rural | 0.0% | ### 1.1.3. Building Downwash The effects of building downwash for each of the stack emission points were evaluated in terms of the proximity of the stack to nearby structures. The purpose of this evaluation is to determine if stack discharges might become caught in the turbulent wakes of these structures leading to downwash of the plumes. Wind blowing around a building creates zones of turbulence that are greater than if the building were absent. For these modeling analyses, the direction-specific building dimensions used as input to the AERMOD model were calculated using the U.S. EPA's BPIP PRIME, version 04274. BPIP PRIME is designed to incorporate the BD Madison | Ethylene Oxide Emissions Impact Assessment ### **BD Madison SIP Application** concepts and procedures expressed in the GEP Technical Support document, the Building Downwash Guidance document, and other related documents.<sup>4</sup> For the BPIP analysis, the structure elevations (buildings and stacks) were estimating using the AERMAP processor (v18081). Terrain elevations from the USGS 1-arc second NED were used for AERMAP processing. In all modeling analysis data files, the location of emission points and structures were represented in the UTM coordinate system, zone 17, NAD 83. EPA has promulgated stack height regulations that restrict the use of stack heights in excess of "Good Engineering Practice" (GEP) in air dispersion modeling analyses. Under these regulations, that portion of a stack in excess of the GEP height is generally not creditable when modeling to determine source impacts. This essentially prevents the use of excessively tall stacks to reduce ground-level pollutant concentrations. This equation is limited to stacks located within five times the lesser dimension (5L) of a building structure. Stacks located at a distance greater than 5L from a building structure are not subject to the wake effects of the structure. The wind direction-specific downwash dimensions and the dominant downwash structures used in this analysis are determined using BPIP. In general, the lowest GEP stack height for any source is 65 meters by default.<sup>5</sup> The BPIP evaluation indicates that none of the facility emission unit stacks exceed GEP stack height. Input and output files from the BPIP downwash analysis are provided in the electronic files included in Appendix A. ### 1.1.4. Receptor Grid Coordinate System Modeled concentrations were calculated at ground-level receptors placed along the facility fenceline and on a variable Cartesian receptor grid. Fenceline receptors were spaced no more than 25 meters apart. Beyond the fenceline, receptors were placed with 100 meters spacing on a Cartesian grid extending outward from the facility. An approximately 10 km by 10 km modeling domain with a receptor spacing of 100 meters was created. Also, six residential receptors, as identified from review of aerial imagery and data reviewed regarding land use classification information (industrial/commercial) from available online information, were also placed within the receptor grid system to provide predicted modeled impacts at nearby residential areas.<sup>6</sup> Receptor elevations and hill heights required by AERMOD were determined using the AERMAP terrain preprocessor (v18081). Terrain elevations from the USGS 1-arc second NED were used for AERMAP processing. In all modeling analysis data files, the location of receptors were represented in the UTM coordinate system, zone 17, NAD 83. ### 1.1.5. Modeling Results Using the source parameters specified in Table 1-1, and additional model setup as described above, AERMOD was executed for each of the five years of meteorological data to determine the maximum predicted modeled 1- BD Madison | Ethylene Oxide Emissions Impact Assessment <sup>&</sup>lt;sup>4</sup> U.S. EPA, Office of Air Quality Planning and Standards, Guidelines for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations) (Revised), Research Triangle Park, North Carolina, EPA 450/4-80-023R, June 1985. <sup>5 40</sup> CFR 51.100(ii) <sup>6</sup> https://qpublic.schneidercorp.com/ ### **BD Madison SIP Application** hr, 24-hr, and annual concentrations of ethylene oxide at each receptor location. Table 1-3 below summarizes the MGLC for each averaging period. Hourly concentrations were adjusted to a 15-min averaging period based on the *Guideline* (15-min MGLC = 1-hr MGLC \* 1.32). **Table 1-3. Maximum Predicted Modeled Impacts** | Year | Max Annual<br>Concentration<br>(µg/m³) | Annual<br>AAC (μg/m³) | Max 24-hr<br>Concentration<br>(µg/m³) | 24-hr AAC<br>(μg/m³) | Max Hourly<br>Concentration<br>(µg/m³) | Max 15-min<br>Concentration<br>(μg/m³) | 15-minute AAC<br>(µg/m³) | |--------------------------------------|----------------------------------------------------------|-----------------------|----------------------------------------------------------|----------------------|----------------------------------------|----------------------------------------|--------------------------| | 2014<br>2015<br>2016<br>2017<br>2018 | 1.92E-03<br>2.25E-03<br>2.17E-03<br>1.52E-03<br>2.31E-03 | 3.3E-04 | 1.94E-02<br>2.42E-02<br>1.87E-02<br>3.22E-02<br>2.02E-02 | 1.43 | 0.37<br>0.55<br>0.45<br>0.77<br>0.21 | 0.48<br>0.72<br>0.59<br>1.01<br>0.28 | 900 | While maximum predicted modeled impacts exceed the annual AAC, the locations where the annual AAC are exceeded are limited to locations in close proximity to the facility. No modeled impacts exceed the 100 in a million cancer risk level for the annual averaging period. Values for comparison to Georgia EPD derived AAC values have been provided above. Analyses were also conducted to evaluate predicted modeled impacts for the annual averaging period at six residential receptors identified. Table 1-3 below summarizes the annual average maximum predicted modeled impacts at the six residential receptor locations identified as part of this assessment. Table 1-4. Maximum Predicted Modeled Impacts at EPD Identified Residential Receptors | Residential Area | Easting (meter) | Northing (meter) | Max Annual<br>Concentration<br>(μg/m³) | Averaging Period | Annual<br>AAC (µg/m³) | Ratio of Result<br>to AAC | |------------------|-----------------|------------------|----------------------------------------|------------------|-----------------------|---------------------------| | R1 | 270,899.4 | 3,717,756.1 | 9.00E-05 | Annual | 3.3E-04 | 0.27 | | R2 | 271,433.0 | 3,717,474.5 | 1.30E-04 | Annual | 3.3E-04 | 0.39 | | R3 | 271,875.7 | 3,717,411.6 | 1.70E-04 | Annual | 3.3E-04 | 0.52 | | R4 | 272,423.9 | 3,717,211.9 | 2.10E-04 | Annual | 3.3E-04 | 0.64 | | R5 | 272,813.0 | 3,716,885.3 | 1.40E-04 | Annual | 3.3E-04 | 0.42 | | R6 | 273,487.2 | 3,715,958.2 | 9.00E-05 | Annual | 3.3E-04 | 0.27 | All air dispersion modeling files are included in Appendix A. ### **APPENDIX A. ELECTRONIC TOXICS MODELING FILES**