

SEMI-ANNUAL VRP PROGRESS REPORT (18 Month)

DIAMOND CRYSTAL DULUTH, LLC
DULUTH, GA
HSI SITE No. 10844

DECEMBER 2016

PREPARED FOR:

DIAMOND CRYSTAL DULUTH, LLC 3245 N. BERKELEY LAKE ROAD DULUTH, GA, 30096-4972

> Matthew S. Mudge Project Manager

M.S. hulye

Howard J. Frank, P.G. Senior Geologist

TABLE OF CONTENTS

SECT	TION	PAGE
1.0	INTRODUCTION	1
2.0	SUMMARY OF SITE ACTIVITIES	2
2.1	Overland Run-Off Evaluation	2
2.2	Groundwater Assessment	3
2.3	Leachability Evaluation	3
2.4	Neighboring Property Conditions	4
2.	.4.1 Berkeley Lake Village Owners Association	4
2.5	Preliminary Paving and Site Controls Plan	4
2.6	Conceptual Site Model	5
2.7	Corrective Action Plan	
3.0	RESPONSE TO 12-MONTH VRP PROGRESS REPORT COMMENTS.	6
4.0	SITE ACTIVITIES PLANNED FOR NEXT 6 MONTHS	7
5.0	SUMMARY	8
6.0	MONTHLY INVOICE SUMMARY	10
7.0	REFERENCES	11
LIST	OF TABLES	
Table	1.0 Revised Milestone Schedule	8
	1.0 Revised Milestone Schedule (cont.)	
Table	2.0 Summary of Monthly Hours Invoiced	10
LIST	OF APPENDICES	
Apper	ndix A Overland Run-Off Evaluation	
	ndix B Groundwater And Soil Assessment Memorandum	
	ndix C Updated Paving And Site Controls Plan	
Apper	ndix D Updated Conceptual Site Model	

PG Certification

"I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et.seq.). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.

Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring, I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division.

The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Howard J.

Senior Geologic

Date: 12-7-14

Diamond Crystal Duluth, LLC; HSI Site No. 10844

SynTerra

1.0 INTRODUCTION

The Voluntary Investigation and Remediation Plan (VIRP) application for the Diamond Crystal Duluth, LLC (Diamond Crystal Duluth) facility, located at 3245 North Berkeley Lake Road in Duluth, Gwinnett County, Georgia (HSI Site No. 10844), was submitted to the Georgia Environmental Protection Division (EPD) on May 11, 2015. The VIRP was approved by the EPD in a letter dated June 8, 2015.

An initial Progress Report was submitted in December 2015 summarizing activities completed during the first six months in the Voluntary Remediation Program (VRP). A semiannual Progress Report was submitted in June 2016 summarizing activities completed during the second six month period (first 12 months) of the VRP. This Progress Report provides a summary of activities conducted from June 2016 through December 2016, the third six month period (first 18 months) in the VRP.

2.0 SUMMARY OF SITE ACTIVITIES

As described in the VIRP application, certain activities are scheduled to be completed within the third six month period (first 18 months) after entry to the VRP. Based on previous Progress Reports, as well as comments received from the EPD, additional activities were added to the milestone schedule and reported herein; these activities include:

- Evaluate the overland run-off route and the potential for offsite impacts to surface water/sediment as a result of surface erosion of impacted soils;
- Complete a site groundwater assessment;
- Evaluate the leachability pathway for site soils leaching to groundwater;
- Update on subsurface conditions on adjacent property;
- Report on progress with site paving and controls; and,
- Update the Conceptual Site Model (CSM) and Corrective Action Plan (CAP), if necessary.

A summary of the activities conducted from June 2016 through November 2016 are described in the following sections.

2.1 Overland Run-Off Evaluation

An overland run-off route and the potential for offsite impacts to surface water/sediment as a result of surface erosion of impacted soils were evaluated. As shown on the attached figure in **Appendix A**, the site is divided into two drainage basin areas. Rainfall run-off on the eastern portion of the facility is collected into catch basins which conveys into the municipal storm water sewer along North Berkeley Lake Road. Rainfall run-off from the central and western portion of the facility sheet flows to a storm water ditch running along the west property boundary (with flow from the adjacent parcel) and is directed to a storm water manhole/inlet located offsite, to the northwest (behind the Gwinnett County Fire Station No. 19). The final storm water disposition from this drainage area of the site is not definitive.

The property has limited unpaved surface area, and these areas are largely vegetated or stabilized with mulch or gravel cover, reducing the potential for surface erosion of impacted soils. Additionally, a preliminary site paving and controls plan was

developed for the Diamond Crystal Duluth site and improvements have been made at the facility in stages since 2015, as reported in previous Progress Reports. These improvements will continue to be implemented as part of the long term paving and capping effort at the facility. The paving and capping of exposed areas onsite reduces the potential for surface erosion of impacted soils and sediment laden run-off from leaving the property.

Based on these findings, the overland run-off route does not appear to present the potential for offsite impacts.

2.2 Groundwater Assessment

A groundwater assessment was completed in October and November 2016; three monitoring wells were installed as part of the assessment. A memorandum summarizing the activities and assessment results is included in **Appendix B** for further details.

Based upon the analytical results from representative groundwater samples collected from two onsite monitoring wells, there are no impacts to groundwater observed. The laboratory analytical results indicate that arsenic concentrations in groundwater are below the respective Georgia Rule for Safe Drinking Water Maximum Contaminant Level (MCL).

The proposed groundwater Risk Reduction Standard (RRS) for arsenic at the site shall be Type 1 residential (10 micrograms per liter $[\mu g/L]$). The proposed RRS for arsenic in groundwater at the Diamond Crystal Duluth site will be used to further assess the need for potential corrective action and to develop the site Corrective Action Plan (CAP).

2.3 Leachability Evaluation

The Georgia EPD responded to the June 2016 Progress Report in a letter dated July 11, 2016. The letter included a comment (provided in Section 3) that if proposing Type 4 soil RRS, the leachability requirement must be met prior to approval of the overall site-specific soil RRS for the site.

During the recent groundwater assessment completed in October and November 2016, soil samples were collected from each 5-foot section of soil cores from the borings installed on the property. The six (6) borings extended from the ground surface to bedrock refusal using direct-push and hollow-stem auger drilling techniques. Boring logs and a table summarizing soil sample testing for total arsenic concentrations are provided within the attached groundwater assessment memorandum (**Appendix B**).

As part of the soil leaching to groundwater evaluation, one soil sample from each boring was submitted for further analytical testing. The soil samples selected for analysis ranged in depth and in detected arsenic concentrations. These soil samples were analyzed for arsenic following a synthetic precipitation leaching procedure (SPLP), pH, and dry weight by GCAL Analytical Laboratory, LLC.

Laboratory results were only recently received and further evaluation of the soil leaching to groundwater pathway is needed. Additional details related to this effort will be completed over the next 6 month reporting period with results provided in the June 2017 (24 month) Progress Report.

2.4 Neighboring Property Conditions

2.4.1 Berkeley Lake Village Owners Association

Site assessment activities were completed at the Berkeley Lake Village Owners Association (BLVOA) property located at 3351 North Berkeley Lake Road NW, Duluth, Georgia. The property is located north of the Diamond Crystal Duluth facility. BLVOA conducted further assessment on the property as part of the VIRP in December 2015 and a VRP Progress Report was submitted to the EPD in July 2016.

Previous assessment activities consisted of collecting surface soil samples from the property which confirmed the widespread presence of arsenic ranging in concentrations from 35.3 to 239.7 milligrams per kilogram (mg/kg) throughout the property. During the reporting period, two groundwater monitoring wells were installed on the property. One of the monitoring wells appears to be damaged and is in the process of being replaced. A representative groundwater sample was collected from the other monitoring well and arsenic was not detected above the laboratory method detection limit.

The progress report indicates that additional soil sampling will be conducted in the two additional parcels that have been added to the site. Also an additional two monitoring wells will be installed on the property.

2.5 Preliminary Paving and Site Controls Plan

A preliminary site paving and controls plan is continuing to be developed for the Diamond Crystal Duluth site. An updated <u>conceptual</u> figure outlining the areas being considered for paving/capping controls is included in **Appendix C**. It is premature to

identify areas requiring corrective action since all proposed site RRS values have yet to be reviewed/approved in conjunction with the EPD.

During the third six month period (first 18 months) in the VRP, Diamond Crystal Duluth prepared additional areas for paving along the west side and northwest corner of the facility building. The work completed included capping these areas with concrete, the locations are shown on the included figure in **Appendix C**.

The preliminary site paving and controls plan will continue to be evaluated as Diamond Crystal Duluth progresses through the VRP and identifies areas requiring corrective action based on applicable exposure pathways/receptors and site RRS values.

2.6 Conceptual Site Model

The Conceptual Site Model (CSM) was updated to reflect the potential receptors presented in the June 2016 (12 month) Progress Report as well as the overland run-off and soil leaching to groundwater exposure routes to potential receptors. The updated CSM is provided in **Appendix D**.

2.7 Corrective Action Plan

No adjustments to the proposed Corrective Action Plan (CAP) are required at this time.

3.0 RESPONSE TO 12-MONTH VRP PROGRESS REPORT COMMENTS

The Diamond Crystal Duluth 12-Month Semi-Annual VRP Progress Report was submitted to the EPD in June 2016. On July 11, 2016 the EPD provided a letter with comments relating to the June 2016 Semi-Annual VRP Progress Report. This section provides responses to the EPD's comments (shown in italicized text, followed by responses).

1) The receptor-specific health-based goals for arsenic in soil are acceptable. However, Section 2.1.3 states, "No development of RRS for the protection of groundwater will be completed at this time, pending results of the groundwater assessment." Please note that unless the proposed RRS is being based on the generic Type 1 or Type 3 soil RRS, the leachability requirement must be met prior to approval of the overall site-specific soil RRS for the site [see section 391-3-19-.07(09)(d)1 of the Rules for Hazardous Site Response]. An evaluation of the leachability pathway is an essential component in the determination of any site-specific soil RRS.

A leachability evaluation is underway, additional details are provided in Section 2.3 of this Progress Report.

4.0 SITE ACTIVITIES PLANNED FOR NEXT 6 MONTHS

The following activities will be conducted in the next 6 months and summarized in the (24 Month) Semi-Annual VRP Progress Report to be submitted in June 2017:

- Continue the leachability pathway evaluation for site soils leaching to groundwater;
- Report on progress with site paving and controls;
- Update on subsurface conditions on adjacent property; and,
- Update the CSM and CAP, if necessary.

SynTerra

5.0 SUMMARY

All activities related to the VIRP implementation to be completed within the third six month period (first 18 months) after entry to the VRP have been completed. A revised milestone schedule is provided in **Table 1**, below.

Table 1.0 Revised Milestone Schedule

Timeline	Date Activity			
-	June 8, 2015	VIRP Application Approved	Complete	
Within 45 days of VRP entry	July 21, 2015	Filing of Affidavit with clerk of Superior Court of Gwinnett County pursuant to O.C.G.A. §44-2-20	Complete	
Within 30 days of filing affidavit	August 10, 2015	Submittal of copy of receipt of recorded Affidavit to EPD	Complete	
Due within first 6 months	December 2015	Provide results of additional horizontal delineation of arsenic in surface soil		
o monuis	2013	Update on subsurface conditions on adjacent County Property	Complete	
		Submittal of Soil Management Plan	Complete	
		Submittal of preliminary paving and site controls plan		
Due within first 12 Months	June 2016	Review RRS for applicable exposure pathways and proposed RRS for the Diamond Crystal Duluth site		
		Report on progress with site paving and controls plan	Complete	
		Update on subsurface conditions on adjacent property	-	
		Adjustments to CSM and CAP, if necessary		
Due within first 18 Months	December 2016	Evaluate overland run-off route and the potential for offsite impacts to surface water/sediment as a result of surface erosion of impacted soils		
		Complete a site groundwater assessment		
		Evaluate the leachability pathway for site soils leaching to groundwater (initiated)		
		Report on progress with site paving and controls plan		
		Update on subsurface conditions on adjacent property		
		Adjustments to CSM and CAP, if necessary		

Diamond Crystal Duluth, LLC; HSI Site No. 10844

SynTerra

Table 1.0 Revised Milestone Schedule (cont.)

Timeline	Date	Activity	Status			
Due within first 24 Months	June 2017	e 2017 Continue to evaluate the leachability pathway for site soils leaching to groundwater				
	Report on progress with site paving and controls Update on subsurface conditions on adjacent properties					
	Adjustments to CSM and CAP, if necessary					
Due within first						
30 Worths	2017	Update on subsurface conditions on adjacent properties				
		Adjustments to CSM and CAP, if necessary				
Due within first	June 2020	Report on progress with site paving and controls				
00 Wiolitis		Submit the final Compliance Status Report certifying completion of the CAP				

6.0 MONTHLY INVOICE SUMMARY

The VRP requires that the professional engineer/geologist specified in the VIRP application oversee the implementation of the VIRP in accordance with the provisions, purposes, standards and policies of the Georgia Voluntary Remediation Program Act. During the period from June 2016 through November 2016, SynTerra staff invoiced 139.5 hours on this project. A monthly summary of hours invoiced and a description of services provided is shown in **Table 2**, below.

Table 2.0 Summary of Monthly Hours Invoiced

Month	Hours Billed	Description of Activities
June 2016	18.25	RRS review and calculations (cont. from May 2016)
		Compiled (cont. from May 2016) and submitted 12 Month VRP Progress Report
July 2016	1.5	2016 planning
		Reviewed EPD correspondence
August 2016	0	
September 2016	1	Leachability evaluation (reviewed approach)
October 2016	13.5	Groundwater assessment (planning, field preparation, and field activities)
		Leachability evaluation (reviewed approach)(cont.)
		Compiled 18 Month VRP Progress Report
November 2016	105.25	Groundwater assessment (field activities cont., data review, memorandum preparation)
		Leachability evaluation (planning, met with EPD, reviewed guidance)(cont.)
		RRS review for groundwater
		Review available progress reports and assessments from other properties included in HSI Site No. 10844 and adjacent to Diamond Crystal Duluth
		Preliminary paving and site controls plan
		Compiled 18 Month VRP Progress Report (cont.)

7.0 REFERENCES

Geosyntec. 2016. Voluntary Remediation Program (VRP) Semi-Annual Progress Report, Berkeley Lake Village Owners Association, North Berkeley Lake Road Site, HSI #10844, Duluth, Gwinnett County, GA. July, 2016.

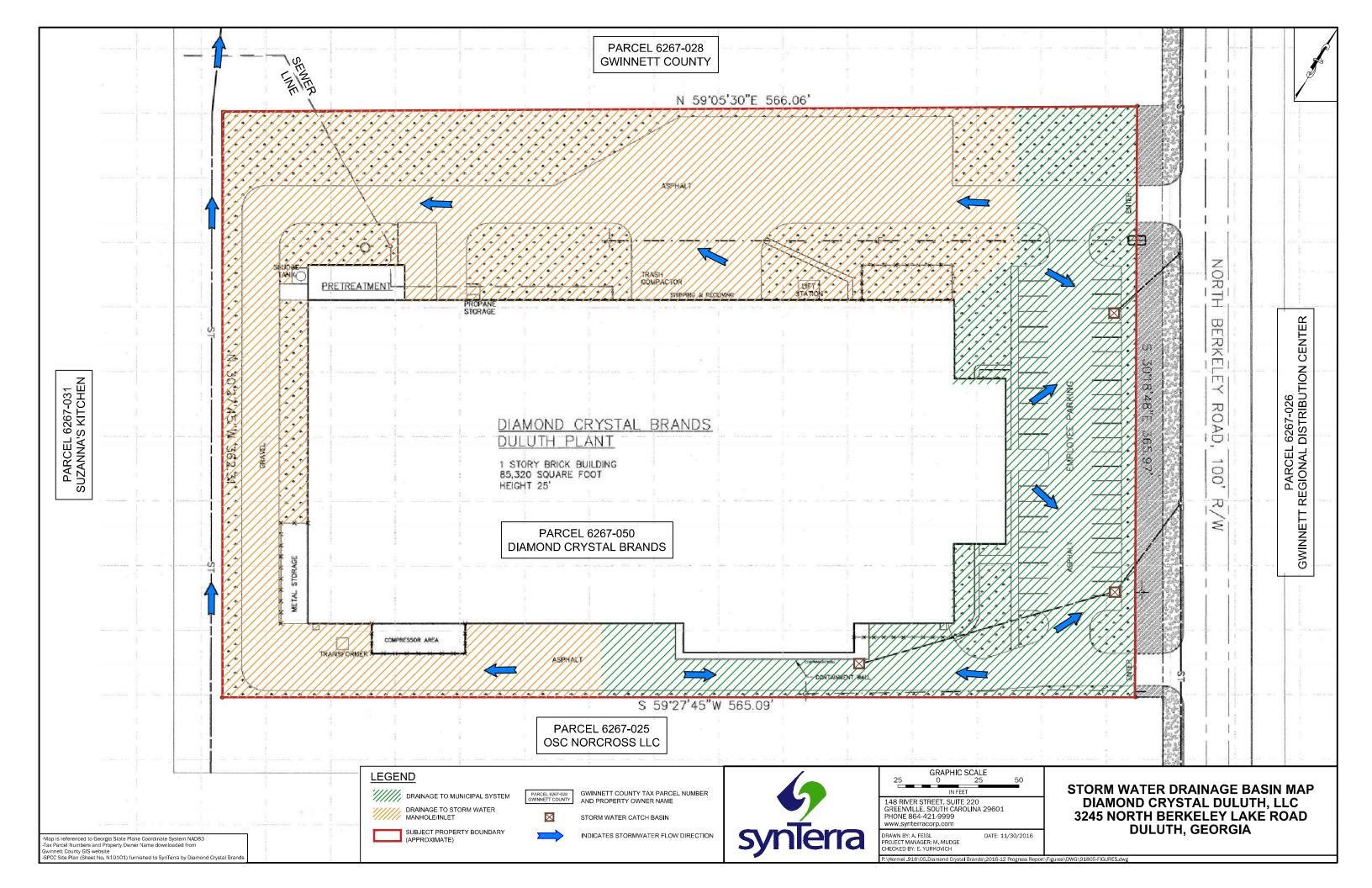
Georgia EPD. 2016. Comments: Semi-Annual VRP Progress Report, Diamond Crystal Duluth Property, North Berkeley Lake Road Site, Duluth, Gwinnett County, HSI # 10844. July 11, 2016.

Georgia EPD. 2016. Comparison of Existing Risk Reduction Standards. https://epd.georgia.gov/comparison-existing-contamination-risk-reduction-standards-391-3-19-07. Accessed May 2016.

Georgia EPD. 2016. Hazardous Site Response Act. https://epd.georgia.gov/hazardous-facility-response-act-guidance. Accessed May 2016.

New Jersey DEP. 2013. Development of Site-Specific Impact to Ground Water Soil Remediation Standards Using the Synthetic Precipitation Leaching Procedure. Version 3.0 – November 2013.

http://www.nj.gov/dep/srp/guidance/rs/splp_guidance.pdf


USEPA. 1996. Soil Screening Guidance: Technical Background Document. Office of Emergency Response: U.S. Environmental Protection Agency, Washington, DC, EPA/540/R-95/128 PB96-963502. May 1996.

US EPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Emergency and Remedial Response: U.S. Environmental Protection Agency, Washington, D.C. OSWER 9355.4-24. December. 2002. http://www.epa.gov/superfund/health/conmedia/soil/pdfs/ssg_main.pdf

Diamond Crystal Duluth, LLC; HSI Site No. 10844

SynTerra

APPENDIX A OVERLAND RUN-OFF EVALUATION

Diamond Crystal Duluth, LLC; HSI Site No. 10844

SynTerra

APPENDIX B

GROUNDWATER AND SOIL ASSESSMENT MEMORANDUM

TECHNICAL MEMORANDUM

Date: December 7, 2016 File: 918.05.07

To: Michael Putnam – Diamond Crystal Duluth, LLC

Cc: Matthew S. Mudge - SynTerra

From: Evan M. Yurkovich; Howard J. Frank, P.G.

Subject: Groundwater and Soil Assessment

Diamond Crystal Duluth Facility

3245 North Berkeley Lake Road; Duluth, GA

This memorandum summarizes environmental assessment activities performed by SynTerra in October and November 2016 at 3245 North Berkeley Lake Road, Duluth, Georgia (**Figure 1**). The purpose of the field investigation was to further assess arsenic in soils and groundwater at the Diamond Crystal Duluth, LLC (Duluth Diamond Crystal) facility.

This assessment was conducted to satisfy requirements of the Georgia Environmental Protection Division (EPD) Voluntary Remediation Program (VRP). The facility entered the VRP on June 8, 2015 and is included in a Hazardous Site Inventory (HSI) listing (HSI No. 10844). HSI Site No. 10844 is a multi-property listing comprised of five land parcel units. Adjacent properties are shown on **Figure 2**.

The Georgia EPD responded to the December 2015 *Semi-Annual VRP Progress Report (6 month)* in a letter dated March 18, 2016. The comments provided by the EPD need to be addressed to EPD's satisfaction in order to maintain compliance with the Georgia Hazardous Site Response Act (HSRA). The EPD required Diamond Crystal to complete an assessment of groundwater at the facility.

1.0 FIELD INVESTIGATION

The fieldwork activities were initiated in late October 2016 and completed on November 2, 2016 and included the collection of 30 subsurface soil samples at 6 locations using a drill rig equipped with a direct-push coring device. Additionally, three permanent monitoring wells were installed and groundwater samples were collected. Sample locations located are shown on **Figure 3**.

This section describes the methods used during the field investigation.

1.1 SOIL BORING AND MONITORING WELL ACTIVITIES

Prior to site activities, Ground Penetrating Radar Systems Inc. (GPRS) conducted a subsurface investigation to identify underground utilities in the designated areas on October 31, 2016. Additionally, a public utility notification was submitted to the Georgia 811 to evaluate potential underground utilities located at or near the work areas at the site. No potential utility conflicts were identified.

On October 31 and November 1, 2016, soil sampling activities were conducted by SynTerra personnel and included the advancement of subsurface soil borings at 6 locations with soil samples collected from each location. Permanent monitoring wells were installed at three of these boring locations. The direct-push borings and permanent monitoring wells were installed by GeoLab Drilling, located in Dacula, Georgia. The boring and monitoring wells were installed using a GeoProbe® 6620DT drill rig with direct-push and hollow stem auger drilling capabilities. Soil boring and monitoring well locations are shown on **Figure 3**.

Continuous soil cores were collected using standard GeoProbe® direct-push and macro-core sampling techniques. The borings continued until refusal was met. Locations (SB-1, SB-4, and SB-5) in the northern portion of the property met refusal between 8 and 18 feet below ground surface (ft-bgs) where competent bedrock was encountered. The macro-cores were collected in acetate sleeves that were cut open and examined in the field. Once direct-push techniques met refusal, the drill rig converted to drilling with hollow stem augers until refusal was met at each boring. The soils were described with respect to soil type, color, degree of saturation, and other soil properties (Attachment 1).

The monitoring wells were installed by drilling down the soil borings using 4¼-inch inside diameter hollow stem augers. The monitoring wells were constructed of 2-inch diameter PVC casing with 5-foot long well screens. A 20-40 sand was placed in the annulus around the screen and extended to a depth of 3 feet above the top of each well screen. Bentonite pellets were placed at the top of the sand and extended 2 feet above and were then hydrated. Grout was mixed and placed from the top of the bentonite seal to the ground surface. The wells were completed with flush-mount monuments. Monitoring well construction details are included in **Attachment 1**.

1.2 SAMPLE COLLECTION AND PROCESSING

1.2.1 Soil Sample Collection

Borings were advanced from the ground surface to refusal using a 2-inch diameter stainless steel direct push coring device and 4½-inch inside diameter hollow stem augers. Soil samples were collected within every 5-foot section of soil core. A total of 28 soil samples, in addition to two duplicates (at different locations), were collected from the boring locations.

Sampling information was recorded on field logs and included date, sampling method, sample IDs and depths, soil classification, field observations, and any other applicable notes. The borings were logged using the Unified Soil Classification System. A summary of boring and soil sampling information is provided in **Table 1**.

Each sample was placed in pre-labeled sampling containers, placed in a chilled cooler, and delivered to the analytical testing laboratory under standard chain-of-custody protocols.

1.2.2 Groundwater Sample Collection

On November 1, 2016, the monitoring wells were developed using a 12-volt submersible pump and disposable tubing by repeatedly surging and pumping each to remove accumulated sediment and allowing the sand pack to settle.

Prior to collecting groundwater samples from monitoring wells, the static water level was measured in each well on November 2, 2016. Monitoring well MW-1 was not sampled due to insufficient amount of water within the well screen interval. The monitoring wells were purged with a 12-volt battery operated monsoon pump using low-flow techniques. During purging, the pH, specific conductivity, dissolved oxygen, oxidation-reduction potential (ORP), turbidity and temperature were measured and recorded. Well purging continued until these parameters stabilized (typically three successive readings in which pH +/- 0.1 unit; specific conductivity +/- 3 percent; temperature, dissolved oxygen and turbidity +/- 10 percent; and ORP +/- 10 millivolts). Well sampling logs are included as **Attachment 2**.

1.3 DECONTAMINATION PROCEDURES

Soil samples were collected using a combination of dedicated, single-use equipment and decontaminated, reusable equipment. Dedicated, single-use sampling equipment included nitrile gloves and laboratory-provided sample jars. Reusable sampling equipment included the stainless steel direct push coring device, hollow-stem augers, and development and sampling pumps. The reusable equipment was decontaminated prior to use and between sampling locations to prevent cross-contamination.

1.4 INVESTIGATION-DERIVED WASTE

Soil cuttings and purge water generated during borehole advancement and well development were containerized into 55-gallon drums. Single-use equipment was placed in a garbage bin for disposal as municipal solid waste.

The drums will be properly disposed of at an approved facility following waste characterization/profiling; this activity is in progress at this time.

2.0 MONITORING WELL SURVEY AND WATER LEVEL MEASUREMENTS

The monitoring wells were surveyed relative to Georgia state plane coordinates by LeCraw Engineering, Inc. (Mr. James A. Cannington, Georgia PLS# 2678) on November 3, 2016. In addition, the elevation of the ground surface and the measuring point at the top of each monitoring well casing was surveyed to the nearest 0.01 foot relative to mean sea level. The Monitor Well Location Survey map is provided in **Attachment 3**.

On November 2, 2016, water levels were collected from all of the onsite monitoring wells. The water levels recorded are included on **Table 2**. A potentiometric surface was generated from

the water levels and shown on **Figure 4**. The associated map indicates that groundwater flows to the west.

3.0 ANALYTICAL TESTING

Twenty-eight soil samples and two field duplicates were collected from 6 locations between October 31 and November 1, 2016. Groundwater samples were collected from monitoring wells MW-2 and MW-3, as well as a duplicate sample from MW-3 on November 2, 2016. The samples were submitted to GCAL Analytical Laboratory, LLC in Baton Rouge, Louisiana for analysis. Chain-of-custody procedures were followed from sample collection to sample analysis.

3.1 ANALYTICAL METHODS

The thirty soil samples and three groundwater samples were analyzed for total arsenic by United States Environmental Protection Agency (US EPA) Method 6010C.

3.2 ANALYTICAL RESULTS

Results of the analytical testing are summarized in **Table 3 and 4**. The laboratory analytical reports and chain-of-custody documentation for the sampling activities are included in **Attachment 4**.

A data quality assessment was performed on sample data collected from the site in November 2016. The laboratory data was reviewed for precision, accuracy, and completeness in accordance with the *US EPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (EPA540-R-10-011, January 2010), and the most recently promulgated versions of the analytical methods.

Upon receipt of the laboratory analytical results, the data package was reviewed for completeness to verify the appropriate samples were collected and the requested analyses performed. The sample collection logs were reviewed and compared against the chain-of-custody documentation to verify the sample collection information was properly transcribed. The chain-of-custody forms were then checked against the laboratory sample check-in documentation. Requirements for proper handling and preservation were met and the samples were properly checked-in and analyzed for the requested analyses.

Laboratory batch quality control data were then evaluated for precision, accuracy, and completeness. Field duplicate results were also compared to verify the sample collection system was under control and generally showed good replication.

Based on this review, the data is usable for quantitative reporting and decision-making purposes as reported.

4.0 DISCUSSION OF RESULTS

Arsenic was detected in all soil samples analyzed. Analytical results are presented in **Table 3**. The highest arsenic concentration detected from any sample was 369 mg/kg at SB-04 at a depth of six ft-bgs (sample ID SB-04_6), located along the north side of the facility building (**Figure 3**). The lowest arsenic concentration detected was 6.19 mg/kg at SB-06 at a depth of 16 ft-bgs (sample ID SB-06_16), located at the northern property boundary.

Arsenic was detected in the groundwater samples analyzed. Analytical results are presented in **Table 4**. The analytical results were compared to the Georgia Rules for Safe Drinking Water Maximum Contaminant Levels (MCL). All of the arsenic detections were below the respective arsenic MCL of 10 micrograms per liter (μ g/L).

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the sampling and analytical testing completed and summarized in this memorandum, the elevated concentrations of arsenic in surface soil identified at the site appear to have a fairly un-uniform distribution; there are elevated concentrations of arsenic in subsurface soils at varying degrees of concentrations with no clear pattern or source area established. Groundwater does not appear to be impacted by arsenic present in soils at the site.

The results of this assessment will be used in conjunction with earlier studies of the site, as well as with assessments from neighboring properties, in evaluating areas requiring potential corrective action at the Diamond Crystal Duluth property.

If there are any questions related to the activities performed or the findings of this assessment, please contact us at (864) 421-9999.

ATTACHMENTS:

Figure 1 – USGS Topographic Map

Figure 2 – 2016 Aerial Photograph

Figure 3 – Boring and Monitoring Well Locations

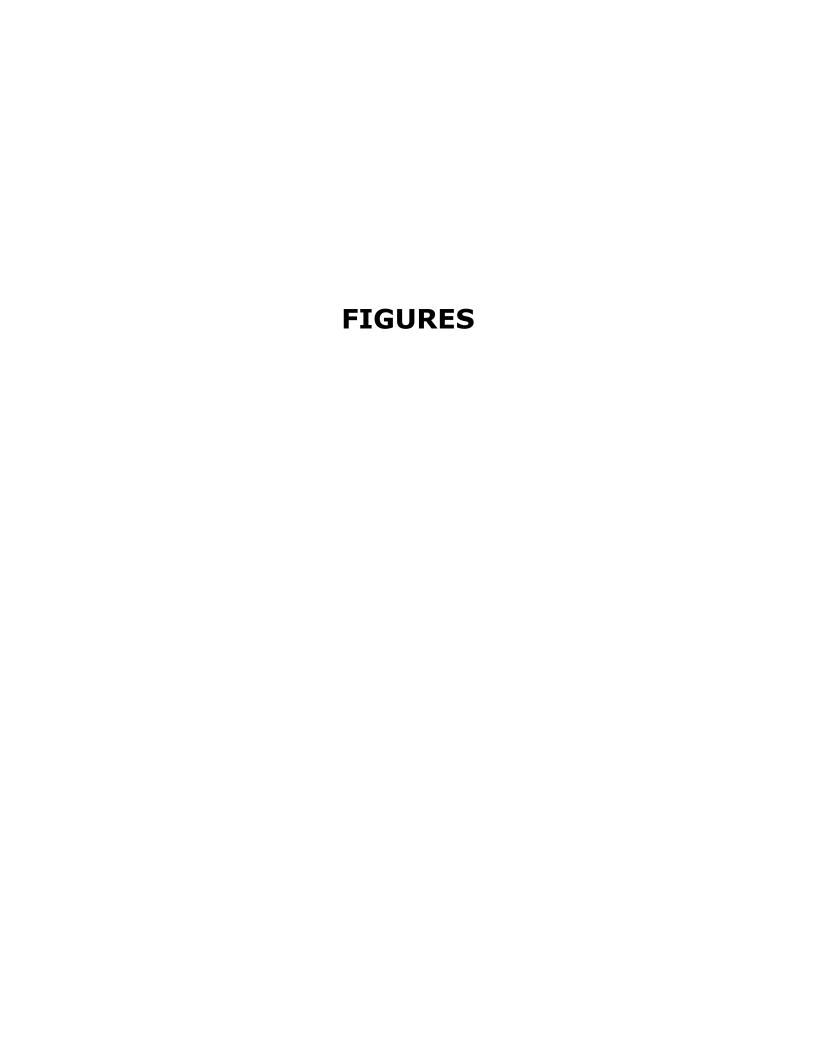
Figure 4 – Potentiometric Surface Map, November 2, 2016

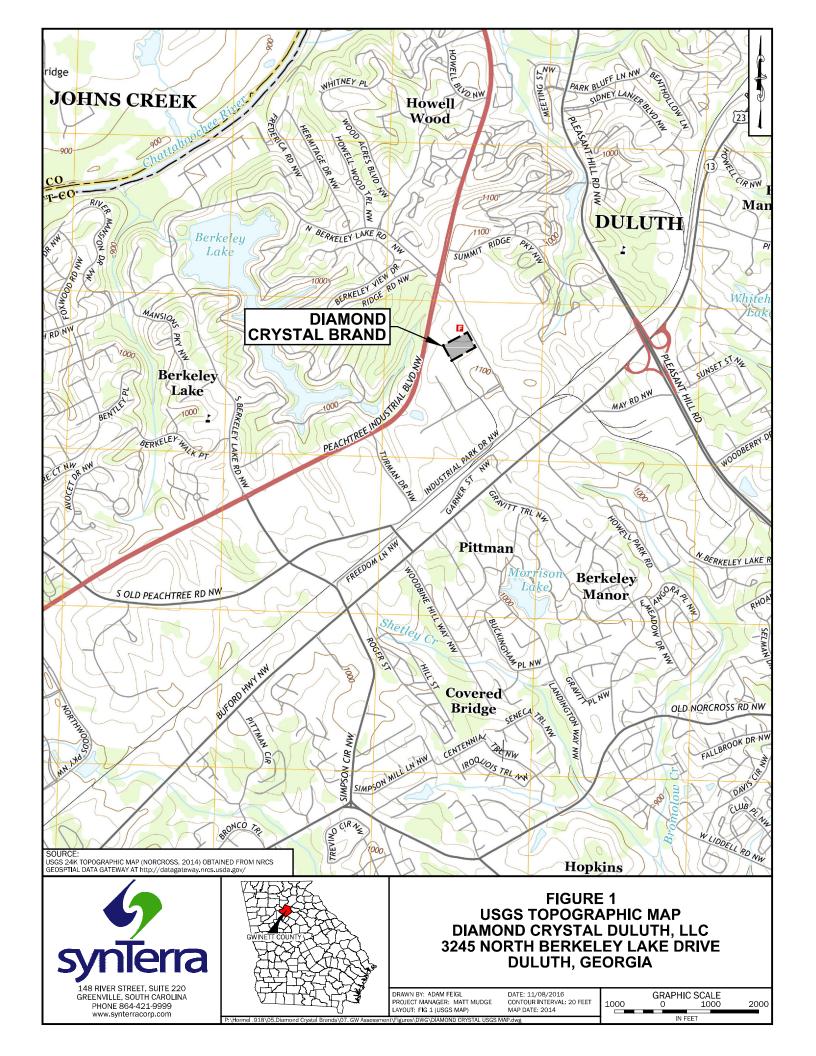
Figure 5 – Cross Section A – A'

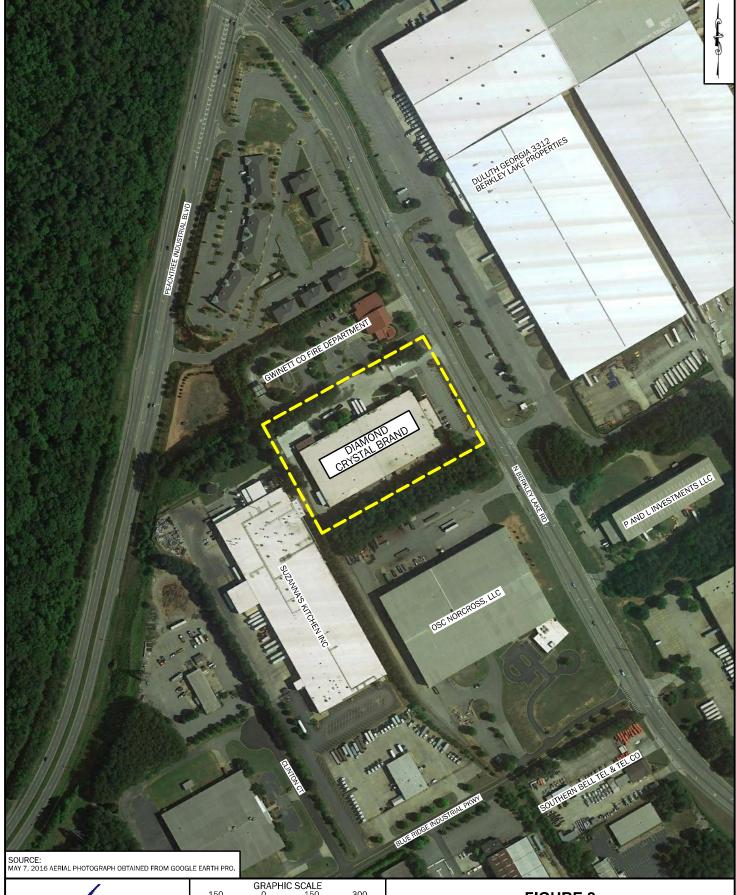
Table 1 – Boring Log Summary

Table 2 – Well Construction and Water Level Information

Table 3 – Summary of Soil Analytical Results


Table 4 – Summary of Groundwater Analytical Results


Attachment 1 – Geologist Logs and Well Construction Records

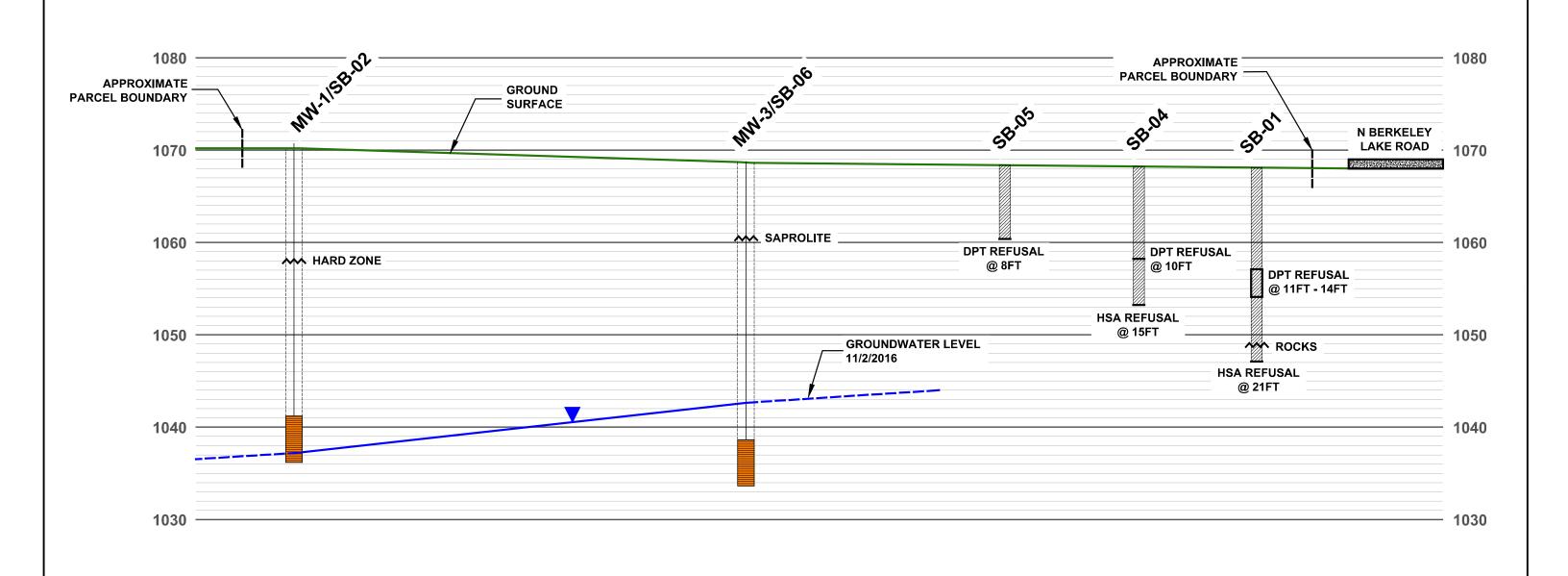

Attachment 2 – Groundwater Sampling Logs

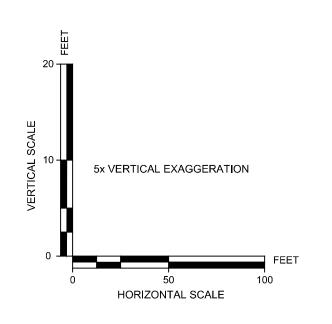
Attachment 3 – Monitor Well Coordinates – LeCraw Engineering, LLC

Attachment 4 – Laboratory Analytical Reports

GRAPHIC SCALE
150 0 150 300

IN FEET
48 RIVER STREET, SUITE 220


148 RIVER STREET, SUITE 220 GREENVILLE, SOUTH CAROLINA 29601 PHONE 864-421-9999 www.synterracorp.com


DRAWN BY: ADAM FEIGL DATE: 11/08/2016 PROJECT MANAGER: MATT MUDGE LAYOUT: FIG 2 (2016 AERIAL PHOTOGRAPH) FIGURE 2 2016 AERIAL PHOTOGRAPH DIAMOND CRYSTAL DULUTH, LLC 3245 NORTH BERKELEY LAKE ROAD DULUTH, GEORGIA

12/07/2016 10:52 AM P:\Hormel .918\05 Diamond Crystal Brands\07. GW Assessment\Figures\DWG\DIAMOND CRYSTAL AERIAL MAP.dwg

CROSS SECTION LOCATION MAP

NOT TO SCALE

148 RIVER STREET, SUITE 220 GREENVILLE, SOUTH CAROLINA 29601 PHONE 864-421-9999 www.synterracorp.com

RAWN BY: A. FEIGL DATE: 12/7/201
ROJECT MANAGER: M. MUDGE
HECKED BY: E. YURKOVICH

FIGURE 5 CROSS SECTION A-A' DIAMOND CRYSTAL DULUTH, LLC 3245 NORTH BERKELEY LAKE ROAD DULUTH, GEORGIA

GROUND SURFACE ELEVATIONWATER TABLE ELEVATION

WELL SCREEN

SOIL BORING

∼ ROCK LAYER

CHECKED BY: E, YURKOVICH

PAMING PATH: PAHarmal 018305 Diamond Chetal Brands 07, CW Assassment/Edulas DWC/ADIAMOND CRYSTAL CROSS SECTION dw.

LEGEND

Table 1 Boring Log Summary Diamond Crystal Duluth, LLC Duluth, Georgia

	Total				Soil Data Summary		
	Depth of	Drilling	Soil In		Field Screening Result		
Boring	Boring (feet bgs)	Method	(feet	bgs)	USCS Soil Type	Sample Depth	Discoloration
			From	То		(feet)	
SB-01	21	Direct Push	0	0.5	Topsoil, pine needles, small rocks		no
			0.5	2.0	Silty SAND (SP-SM)	1	no
			2.0	10.0	Silty SAND (SP-SM)	7	no
		HSAs	10.0	16.0	Silty SAND (SP-SM), micaceous, hard zome at 11 ft-bgs	13	no
			16.0	21.0	Sandy SILT (ML), micaceous, small rocks at 18 ft-bgs	16	no
MW-01/SB-02	35	Direct Push	0	0.5	Poorly graded GRAVEL with topsoil (GP)		no
		HSAs	0.5	4.0	SILT (ML)	2	no
			4.0	5.0	Sandy SILT (ML)		no
			5.0	8.0	Clayey SILT (ML)	7	no
			8.0	11.0	CLAY (CL)		no
			11.0	13.0	CLAY (CL), micaceous, hard zone	12	no
			13.0	17.0	CLAY (CL)	17	no
			17.0	18.0	Silty CLAY (CL-ML)		no
			18.0	22.0	Clay (CL), small rocks		no
			22.0	22.5	Dark brown/black staining (approximate 4-in thick)	23	yes
			22.5	29.0	Clay (CL)	28	no
			29.0	31.0	Clay (CL)		no
			31.0	35.0	Clay (CL), wet area from 31 to 34 ft-bgs, saprolite at 34 ft-bgs.		no
MW 02/CD 02	22.5	Discret Decel	•	0.5		-	
MW-02/SB-03	32.5	Direct Push	0	0.5	Asphalt		no
			0.5	2.0	Clayey SILT (ML)	2	no
			2.0	3.0	CLAY (CL)		no
			3.0	5.0	Silty CLAY (CL)		no
			5.0	8.0	Sandy SILT (ML)	8	no
			8.0	11.0	SILT (ML)		no
			11.0	14.0	Silty SAND (SM)	14	no
			14.0	16.0	Silty SAND (SM), saprolitic		no
			16.0	20.0	Saprolite		no
		HSAs	20.0	23.0	Sandy SILT (ML)	23	no
			23.0	25.0	Silty SAND (SM)		no
			25.0	27.0	Sandy SILT (ML)		no
			27.0	31.0	Clayey SILT (ML)	28	no
			31.0	32.5	Silty CLAY (CL)		no
SB-04	15	Direct Push	0	0.5	Topsoil		no
			0.5	3.0	Silty SAND (SM)	2	no
			3.0	5.0	Sandy SILT (ML)		no
			5.0	7.0	Silty SAND (SM)	6	no
			7.0	8.0	Silty SAND (SM)		no
		HSAs	8.0	15.0	Saprolite, micaceous, layered with dark staining	12	yes
SB-05	8	Direct Push	0	0.5	Topsoil, pine needles, small rocks		no
			0.5	6.0	SILT (ML)	2	no
			6.0	7.0	Saprolite, rock layer at 7 ft-bgs	6	no
			7.0	8.0	Silty SAND (SM), with rocks		no
MW-03/SB-06	39	Direct Push	0	0.5	Gravel and topsoil		no
			0.5	2.0	Silty SAND (SM)	2	no
			2.0	3.0	Silty SAND (SM)		no
			3.0	8.0	Silty SAND (SM)		no
			8.0	10.0	Sandy SILT (ML) saprolitic	9	no
			10.0	12.0	Sandy SILT (ML)	12	no
			12.0	13.0	Silty SAND (SM)	12	no
			13.0	15.0	Sandy SILT (ML)	<u> </u>	no
			15.0	17.0	Sandy SILT (ML) micaceous	16	no
			17.0	23.0	Sandy SILT (ML), micaceous	23	no
		HSAs	23.0	36.0	Clayey SILT (ML), saprolitic, micaceous	26, 31, 35	no
					polarcy office, suproffice, filleactual	20, 31, 33	1110

Notes: bgs = below ground surface USCS = Unified Soil Classification System

Prepared by: <u>EMY</u> Checked by <u>JYT</u>

Table 2 Well Construction and Water Level Information Diamond Crystal Duluth, LLC Duluth, Georgia

Well	Northing (ft.)	Easting (ft.)	TOC Elevation (ft.)	Ground Surface Elevation (ft.)	Screen Interval (ft. BGS)	Total Well Depth (ft. below TOC)	Date of Measurement	Depth to Groundwater (ft. below TOC)	Groundwater Elevation (ft.)
MW-01	1448314.65	2295384.28	1070.38	1070.2	29 to 34	34.67	11/2/2016	33.62	1036.76
MW-02	1448088.81	2295599.97	1071.37	1071.66	25 to 30	30.07	11/2/2016	23.78	1047.59
MW-03	1448476.73	2295573.97	1068.18	1068.64	30 to 35	35.35	11/2/2016	25.97	1042.21

Notes:

TOC - Top of Casing Elevation

ft. - Feet

BGS - Below Ground Surface

NA - Not Available

Wells surveyed by Lecraw Engineering, Inc. on November 3, 2016.

Checked By: <u>JYT</u>

Prepared By: <u>EMY</u>

Table 3 Summary of Soil Analytical Results Diamond Crystal Duluth, LLC Duluth, Georgia

Boring Location	Date	Sampling Method	Depth (feet bgs)	Arsenic Concentration ² (mg/kg) <cas 7440-38-2=""></cas>	Detection Limit (mg/kg)	Type 4 Risk Reduction Standard ⁴ Industrial Worker (mg/kg)	Type 4 Risk Reduction Standard ⁴ Maintenance Worker (mg/kg)	Type 4 Risk Reduction Standard ⁴ Construction Worker (mg/kg)	Type 4 Risk Reduction Standard ⁴ Adolescent Trespasser (mg/kg)
SB-01_1	10/31/2016	Direct Push Core ¹	1	18.1	0.119	762	3,053	322	1,532
SB-01_7	10/31/2016	Direct Push Core ¹	7	9.37	0.114	762	3,053	322	1,532
SB-01_13	10/31/2016	Direct Push Core ¹	13	33	0.104	762	3,053	322	1,532
SB-01_16	10/31/2016	Direct Push Core ¹	16	50.5	1.17	762	3,053	322	1,532
SB-02_2	10/31/2016	Direct Push Core ¹	2	141	1.3	762	3,053	322	1,532
SB-02_7	10/31/2016	Direct Push Core ¹	7	52	1.2	762	3,053	322	1,532
SB-02_12	10/31/2016	Direct Push Core ¹	12	116	1.27	762	3,053	322	1,532
SB-02_17	10/31/2016	Direct Push Core ¹	17	100	1.23	762	3,053	322	1,532
SB-02_23	10/31/2016	Direct Push Core ¹	23	134	1.2	762	3,053	322	1,532
SB-02_28	10/31/2016	Direct Push Core ¹	28	26	0.122	762	3,053	322	1,532
SB-03_2	10/31/2016	Direct Push Core ¹	2	7.36	0.119	762	3,053	322	1,532
SB-03_8	10/31/2016	Direct Push Core ¹	8	46.7	1.17	762	3,053	322	1,532
SB-03_14	10/31/2016	Direct Push Core ¹	14	69.5	1.26	762	3,053	322	1,532
SB-03_23	10/31/2016	Direct Push Core ¹	23	31.1	0.124	762	3,053	322	1,532
SB-03_23 DUP	10/31/2016	Direct Push Core ¹	23	34	0.128	762	3,053	322	1,532
SB-03_28	10/31/2016	Direct Push Core ¹	28	106	1.34	762	3,053	322	1,532
SB-04_2	11/1/2016	Direct Push Core ¹	2	357	1.25	762	3,053	322	1,532
SB-04_6	11/1/2016	Direct Push Core ¹	6	369	1.19	762	3,053	322	1,532
SB-04_12	11/1/2016	Direct Push Core ¹	12	362	1.22	762	3,053	322	1,532
SB-05_2	11/1/2016	Direct Push Core ¹	2	50.2	1.11	762	3,053	322	1,532
SB-05_6	11/1/2016	Direct Push Core ¹	6	111	1.04	762	•		1,532
SB-06_2	11/1/2016	Direct Push Core ¹	2	10.6	0.113	762	3,053	322	1,532
SB-06_9	11/1/2016	Direct Push Core ¹	9	9.41	0.112	762	3,053	322	1,532
SB-06_12	11/1/2016	Direct Push Core ¹	12	20.5	0.14	762	3,053	322	1,532
SB-06_16	11/1/2016	Direct Push Core ¹	16	6.19	0.135	762	3,053	322	1,532
SB-06_23	11/1/2016	Direct Push Core ¹	23	10.6	0.151	762	3,053	322	1,532
SB-06_26	11/1/2016	Direct Push Core ¹	26	13.9	0.136	762	3,053	322	1,532
SB-06_26 DUP	11/1/2016	Direct Push Core ¹	26	13.9	0.135	762	3,053	322	1,532
SB-06_31	11/1/2016	Direct Push Core ¹	31	88.6	1.37	762	3,053	322	1,532
SB-06_35	11/1/2016	Direct Push Core ¹	35	65.9	1.2	762	3,053	322	1,532

Notes:

¹ = Direct push approach using stainless steel soil coring device

bgs = below ground surface

mg/kg = milligrams per kilogram

Bold value idicates the concentration exceeds the risk reduction standard

Shaded cell indicates value exceeds Type 4 Risk Reduction Standard for Construction Worker.

Checked by: JYT

Prepared by: EMY

² = Total metals by US EPA Method 6020A

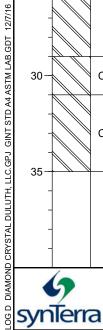
³ = Concentrations as listed in Appendix I of the Georgia Rules of Hazardous Site Response

⁴ = Concentrations based on Georgia EPD Risk Reduction Standards 391-3-19-.07

Table 4 Summary of Groundwater Analytical Results Diamond Crystal Duluth, LLC Duluth, Georgia

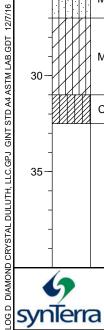
Analytes	MW-02	MW-03	MW-03 DUP
Meta	ls (μg/L)		
Arsenic	1.90	3.23	3.02
Risk Reduction Standard		10	
Georgia MCL		10	

Prepared by: <u>EMY</u> Checked by: <u>MSM</u>


Notes:

- 1. Groundwater samples were collected on November 2, 2016.
- 2. Results are in microgram per liter (μ g/L).
- 3. Analytical results are compared to Georgia Rules for Safe Drinking Water Maximum Contaminant Levels (MCL), August 2013.
- 4. Risk Reduction Standard from Rules of Georgia Department of Natural Resources Environmental Protection Division Media Target Concentrations and Standards Exposure Assumptions Table 1 of Appendix III Groundwater Criteria, November 2016.
- 5. Bold results indicate detections exceed their respective MCL.

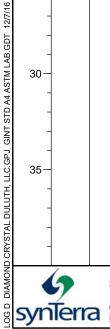
ATTACHMENT 1


GEOLOGIST LOGS AND WELL CONSTRUCTION RECORDS

PROJECT: Diamond Crystal Duluth, LLC				WELL / B	ORIN	G NO:	ı	MW-0	1/SB	-02	
PROJ	ECT NC	: 918	3.05	STARTED	TARTED: 10/31/16			СО	10/31/16		
DRILL	ING CO	MPAN	NY: Geolab Drilling	NORTHIN	NORTHING: 1448476.73			EAS	TING:	2295573.97	
	ING ME			G.S. ELE	G.S. ELEV: 1068.64 ft MSL			M.P.	ELEV:	1068.18 ft MSL	
			TER: 2/4.25 IN	DEPTH T	O WA	ATER:3	3.62 ft	TOC	TOT	AL DEPTH:	35.0 ft BGS
NOTE		S- Belo	ow Ground Surface	LOGGED	_		. Yurko	vich	CHE	CKED BY:	M. Mudge
DEPTH (ft)	GRAPHIC LOG	nscs	DESCRIPTION		SAMPLE	RECOV.	BLOW	PID (mdd)			WELL STRUCTION ount Monument
		GP	Gravel, grey, mixed with topsoil						N N	1 14511 1	ount Mondment
-		ML	SILT, brownish red, brittle, small rocks								
5-		ML	Sandy SILT, reddish brown, mottled red/w	hite							
-		ML	Clayey SILT, brownish red, loose								
- 10 <i>-</i> -		CL	CLAY, red, stiff, mottled white		_					⋖ -2" Sch. riser	40 threaded PVC
-		CL	CLAY, brownish red, micaceous, firm							 Cement	grout
15— -		CL	CLAY, red, firm.								
		CL ML	Silty CLAY, red								
20-		CL	CLAY, red, firm								
		CL	Dark brown/black staining (approximately	4-in thick)							
- 25 — - -		CL	CLAY, red, firm							⊸ -Bentoni	te seal
30-		CL	CLAY, light brown/red, firm, moist							⋖ -Sand pa	
-		CL	CLAY, light brown, firm moist. Wet area at Saprolite at 34 ft-bgs.	: 31 ft-bgs.						—-Well sci	reen
35— - -			Boring terminated at 35.0' bgs.		_						
_	(e,	vnTerra						CLIENT:	Diamond Cr	ystal Duluth, LLC

PROJECT LOCATION: Duluth, GA

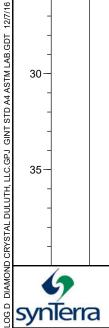
PROJECT:	WELL / Bo	ORIN	IG NO:		MW-0	2/SB	-03			
PROJECT NO): 918	8.05	STARTED):	10/31/16				MPLETED:	10/31/16
DRILLING CO	MPAN	NY: Geolab Drilling	NORTHIN	DRTHING: 1448314.65 EA			EAS	TING:	2295384.28	
DRILLING ME	THOE): Dual Tube/ HSA	G.S. ELE\	G.S. ELEV: 1070.20 ft MSL M.P. ELEV			ELEV:	1070.38 ft MSL		
BOREHOLE D	DIAME	TER: 2/4.25 IN	DEPTH TO	O WA	ATER:2	3.78 ft	TOC	TOT	AL DEPTH:	32.5 ft BGS
	S- Belo	ow Ground Surface	LOGGED	BY:	Е	. Yurko	vich	CHE	CKED BY:	M. Mudge
DEPTH (ft) GRAPHIC LOG	nscs	DESCRIPTION		SAMPLE	RECOV.	BLOW	PID (mdd)			WELL STRUCTION ount Monument
		Asphalt						N N	1 IdSIT IVI	ount Wonament
	ML	Clayey SILT, orangish brown, micaceous								
	CL	CLAY, brownish red, micaceous, firm								
5	CL	Silty CLAY, brownish red, micaceous, firm	ı							
	ML	Sandy SILT, yellowish brown, loose		_						
10-	ML	SILT, orangish/light brown, loose, saprolition	С							grout 40 threaded PVC
	SM	Silty SAND, orangish brown/grey							riser	
15-	SM	Silty SAND, greyish brown, saprolitic								
20		Saprolite, orangish brown, layered								
	ML	Sandy SILT, greyish brown, loose. DPT re ft-bgs, switch to HSAs.	fusal at 21						⊸ Bentoni	e seal
25	SM	Silty SAND, brown, loose							¥	
	ML	Sandy SILT, greyish brown							← Sand pa	ack (No. 2)
30-	ML	Clayey SILT, greyish brown, moist								een
	CL	Silty CLAY, brown, moist								
		Boring terminated due to auger refusal at 3	32.5 ft-bgs							
35-										
	ę,	vnTerra					(CLIENT:	Diamond Cr	ystal Duluth, LLC



PROJECT LOCATION: Duluth, GA

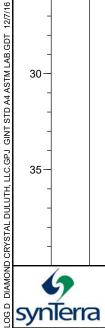
PROJECT	Γ:	Dia	mond Crystal Duluth, LLC	WELL / BORING NO: MW-03/SB-06							
PROJECT				STARTED):	1	1/1/16		CO	MPLETED:	11/1/16
DRILLING			_	NORTHIN		1	448088	3.81	EAS	TING:	2295599.97
DRILLING				G.S. ELE\	/ :	1	071.66	ft MSL	M.P.	ELEV:	1071.37 ft MSL
			TER: 2/4.25 IN	DEPTH TO	NW C	ATER:2	25.97 ft	TOC	TOT	AL DEPTH:	39.0 ft BGS
		S- Belo	ow Ground Surface	LOGGED	_	_	. Yurko	ovich	CHE	CKED BY:	M. Mudge
DEPTH (ft) GRAPHIC	POOT	nscs	DESCRIPTION		SAMPLE	RECOV. (%)	BLOW	(mdd)			WELL STRUCTION Jount Monument
		GM	Gravel and topsoil								
		SM	Silty SAND, reddish brown, loose								
		SM	Silty SAND, reddish light brown, soft								
5-		SM	Silty SAND, brownish red								
10		ML	Sandy SILT, reddish brown, saprolitic							- 2" Sch.	40 threaded PVC
		ML	Sandy SILT, reddish light brown, soft							riser	
		SM	Silty SAND, light brown, whitish,							Cement	grout
15		ML	Sandy SILT, brown, soft								
		ML	Sandy SILT, brown, micaceous, compact								
20-		ML	Sandy SILT, brown, saprolitic, micaceous, quartz	layered with							
25-		ML	Clayey SILT, brown, saprolitic, micaceous							¥ -Bentoni	te seal
30			S.E.J. S.							≪ Sand pa — Well scr	
		ML	SILT, dark brown, saprolite		-						
			Boring terminated due to auger refusal at 3	39 ft-bgs							
			_					(CLIENT:	Diamond Cr	ystal Duluth, LLC

LOG D DIAMOND CRYSTAL DULUTH, LLC.GPJ GINT STD A4 ASTM LAB.GDT 12/7/16


PROJECT: Diamond Crystal Duluth, LLC WELL / BORING NO: SB-01 10/31/16 PROJECT NO: 918.05 COMPLETED: 10/31/16 STARTED: DRILLING COMPANY: Geolab Drilling NORTHING: EASTING: Dual Tube/ HSA DRILLING METHOD: G.S. ELEV: ft MSL M.P. ELEV: ft MSL BOREHOLE DIAMETER: 2/4.25 IN DEPTH TO WATER: ft TOC TOTAL DEPTH: 21.0 ft BGS NOTES: BGS-Below Ground Surface LOGGED BY: E. Yurkovich CHECKED BY: M. Mudge BLOW COUNTS GRAPHIC LOG SAMPLE DEPTH (ft) RECOV. **USCS** PID (ppm) WELL **DESCRIPTION** CONSTRUCTION OL Topsoil, pine needles, small rocks SP Silty SAND, light brown, dry, loose SM 5 SP Silty SAND, light brown, white, dry, loose SM 10 SP Silty SAND, light brown, micaceous, loose, dry. Hard SM zone around 14 ft-bgs 15 Sandy SILT, brown, micaceous, dry. Rocks observed ML at 18 ft-bgs Boring terminated due to refusal at 21.0' bgs. 25 30 35

SynTerra 148 River Street, Suite 220 Greenville, South Carolina 29601 Phone: 864-421-9999

CLIENT: Diamond Crystal Duluth, LLC PROJECT LOCATION: Duluth, GA


PROJECT: Diamond Crystal Duluth, LLC WELL / BORING NO: **SB-04** 11/1/16 PROJECT NO: 918.05 COMPLETED: 11/1/16 STARTED: DRILLING COMPANY: Geolab Drilling NORTHING: EASTING: Dual Tube/ HSA DRILLING METHOD: G.S. ELEV: ft MSL M.P. ELEV: ft MSL BOREHOLE DIAMETER: 2/4.25 IN DEPTH TO WATER: ft TOC TOTAL DEPTH: 15.0 ft BGS NOTES: BGS-Below Ground Surface LOGGED BY: E. Yurkovich CHECKED BY: M. Mudge GRAPHIC LOG BLOW COUNTS SAMPLE DEPTH (ft) RECOV. **USCS** PID (ppm) WELL **DESCRIPTION** CONSTRUCTION Topsoil SM Silty SAND, reddish brown Sandy SILT, reddish brown to white/grey brown, soft, MLloose, dry SM Silty SAND, grey Silty SAND, whitish grey to reddish brown, firm, small SMSaprolite, layered, dark staining, micaceous. DPT refusal at 10 ft-bgs, switch to HSAs. Boring terminated due to auger refusal at 15 ft-bgs 20 25 30 35

SynTerra 148 River Street, Suite 220 Greenville, South Carolina 29601 Phone: 864-421-9999

CLIENT: Diamond Crystal Duluth, LLC PROJECT LOCATION: Duluth, GA

PROJECT: Diamond Crystal Duluth, LLC WELL / BORING NO: **SB-05** 11/1/16 PROJECT NO: 918.05 STARTED: COMPLETED: 11/1/16 DRILLING COMPANY: Geolab Drilling NORTHING: EASTING: **DRILLING METHOD:** Direct-Push G.S. ELEV: ft MSL M.P. ELEV: ft MSL BOREHOLE DIAMETER: 2 IN DEPTH TO WATER: ft TOC TOTAL DEPTH: 8.0 ft BGS NOTES: BGS-Below Ground Surface LOGGED BY: E. Yurkovich CHECKED BY: M. Mudge GRAPHIC LOG BLOW SAMPLE DEPTH (ft) RECOV. **USCS** PID (ppm) WELL **DESCRIPTION** CONSTRUCTION OL Topsoil, pine needles ML SILT, light brown, soft, dry 5 Saprolite, reddish brown. Rock layer at 7 ft-bgs, grey/white small rocks SM Silty SAND, light brown, rocks Boring terminated due to DPT refusal at 8 ft-bgs. 10 15 20 25 30 35

SynTerra 148 River Street, Suite 220 Greenville, South Carolina 29601 Phone: 864-421-9999

CLIENT: Diamond Crystal Duluth, LLC PROJECT LOCATION: Duluth, GA

ATTACHMENT 2 GROUNDWATER SAMPLING LOGS

LOW FLOW SAMPLING LOG

10
synTerra
synierra

	10	CLIENT DIAMOND CRYPTAL BIZANID	
		LOCATION: DOCUTH, GA	
0/	nTorn	FIELD PERSONNEL: EYURKOVICH	
эу	nlerra	WEATHER: SUNNY OVERCAST RAIN TEMPERATURE (APPROX): 709	
	ver Street, Suite 220 e, South Carolina 29601	MULTI METER TYPE/S#: VS1 556 08C101079	
(864) 421-9	999 • (864) 421-9909 Fa synTerracorp.com		
WELL ID:	MW-2	PUMP/TUBING INTAKE DEPTH: 27 (FT) START PURGE TIME: 850	
MEASURING POINT:	тос	START PURGE DATE: 11316 END PURGE TIME: 953	
WELL DIAMETER:	A (IN)	END PURGE DATE: 11316 FINAL READING TIME: 919	
WELL DEPTH:	30.07 (17)	TOTAL VOLUME PURGED: (GAL)	
DEPTH TO WATER:	23.78 (FT)	SAMPLE DATE: 11 9116 SAMPLE COLLECTION TIME: 953	
PURGE METHOD:	☐ Grundfos Pump	2 Volt Pump Peristaltic Pump Dedicated Pump Teflon Bailer Polyethylene Bailer	
SAMPLE METHOD:	☐ Grundfos Pump	2 Volt Pump Peristaltic Pump Dedicated Pump Teflon Bailer Polyethylene Bailer	

WATER LEVEL			pH*	CONDUCTANCE*	DO*	ORP*	TURBIDITY	COMMENTS
	(mL/mln)	(° Celsius)	(su)	(μS/cm)	(mg/L)	(mV)	(NTU)	
24.78	130	18.00	6.41	93	8.10	-75.4	798	
24.83	190	18.79	6.31	95	8.11	-76.4	154	
24.91	120	19.05	4,23	95	8:13	-75.6	191	
24.99	120	19.11	6.19	95	7.67	-75.4	101	
25,03	180	19.14	6,16	94	7.61	-75.4	93	
25.09	180	19.17	0.14	95	7.58	-76.0	9.86	
	24.91 24.99 24.99 25.03	24.78 130 24.83 120 24.91 120 24.99 120 25.03 180	24.78 130 18.00 24.83 120 18.79 24.91 120 19.05 24.99 120 19.11 25.03 180 19.14	24.78 130 18.00 6.41 24.83 120 18.79 6.31 24.91 120 19.05 6.33 24.99 120 19.11 6.19 25.03 180 19.14 6.16	24.78 130 18.00 6.41 93 24.83 120 18.79 6.31 95 24.91 120 19.05 6.33 95 24.99 120 19.11 6.19 95 25.03 180 19.14 6.16 94	24.78 130 18.00 6.41 93 8.10 24.83 120 18.79 6.31 95 8.11 24.91 120 19.05 6.33 95 8.12 24.99 120 19.11 6.19 95 7.67 25.03 120 19.14 6.16 94 7.61	24.78 130 18.00 6.41 93 8.10 -75.4 24.83 120 18.79 6.31 95 8.11 -76.4 24.91 120 19.05 6.33 95 8.12 -75.6 24.99 120 19.11 6.19 95 7.67 -75.4 25.03 180 19.14 6.16 94 7.61 -75.4	24.78 130 18.00 6.41 93 8.10 -75.4 798 24.83 120 18.79 6.31 95 8.11 -76.4 154 24.91 120 19.05 6.23 95 8.12 -75.6 121 24.99 120 19.11 6.19 95 7.67 -75.4 101 25.03 180 19.14 6.16 94 7.61 -75.4 93

^{*} Field Parameters collected from flow through cell unless otherwise noted.

PARAMETES STABILIZED. WAIT FOR TURBIPITY TO DROP FOR SAMPLE COLLECTION

		1	NUMB	ER O	F CO	NTAIN	ERS			NUMBER OF CONTAINERS								
CONSTITUENTS SAMPLED	盲冒		500 mL POLY	mL GAL nl VG		1 L AMBER	PRESERVATIVE	CONSTITUENTS SAMPLED		125 ml POLY	250 mL POLY	500 mL POLY	1/2 GALLON	40 ml VOA	1 L AMBER	PRESERVATIVE		
TOTAL ACCONIC		1						44										
	+	-			-									-				

PROTECTIVE CASING:			٧	WELL PAD:			LOCK:			VELL TAG:		VEGITATION:			
G 000	□ BAD	□ NA	GOOD	□BAD	□ NA	☐ GOOD	☐ BAD	□ NA	□ GOOD	□ BAD	□ NA	GOOD	□ BAD	□ NA	

COMMENTS: IF TURBIDITY >10 NTUS, REDEVELOPMENT NEEDED ☐ YES ☐ NO

IF YES, OBSERVATIONS FOLLOWING LOWERING OF TUBING OR PUMP IN WELL:

IF NO, PROVIDE OBSERVATIONS REGARDING NATURAL CONDITIONS:

FIELD VEHICLE ACCESSIBLE YES NO

Associated midday/end-of-day DO, conductivity, pH within range? (See calibration sheet for this sample date) 🗆 YES 🗆 NO. If NO, which parameter NOTE that reported data should be considered as flagged accordingly.

^{*} SynTerra is not NC-certified for these parameters. Data collected for information purposes only

6
synTerra
148 River Street, Suite 220

Greenville, South Carolina 29601 (864) 421-9999 • (864) 421-9909 Fax www.synTerracorp.com

> (IN) (FT)

TEMPERATURE*

(° Celsius)

19.02

21.11

21.20

21.29

☐ Grundfos Pump ☐ Grundfos Pump

FLOW RATE

(mL/min)

140

130

120 190

100 120

190

WELL ID:

MEASURING POINT: WELL DIAMETER:

TIME

1031

1040

1046

1049

WELL DEPTH: **DEPTH TO WATER:**

PURGE METHOD:

SAMPLE METHOD:

WATER LEVEL

26.97

27.04

27.59

27.61

		CLIENT	DAMON	O CRYSTY	L BRANS	
		LOCATION:	DULUTE	The second secon		
	FIEL	D PERSONNEL:	E.Yuex			
		WEATHER:			AIN TEMPERATURE	(APPROX): 70°
	MULTI ME	TER TYPE/S#:	VSI 559	0 08610	1079	
	TURBITIDY M	ETER TYPE/S#	-	Doowe		616
PUMP	TUBING INT.	AKE DEPTH:	32 F	T) START	PURGE TIME:	1027
	START P	URGE DATE:	1/2/16	END	PURGE TIME:	1120
	END P	URGE DATE:	12/16	FINAL RE	ADING TIME:	1049
2 Volt I		MPLE DATE:	dicated Pump	SAMPLE	COLLECTION TIME:	1120 ne Bailer
2 Volt I	Pump Peris	taltic Pump		_	TIME:	ne Bailer ne Bailer
2 Volt I	Pump ☐ Peris	taltic Pump	dicated Pump dicated Pump	☐ Teflon Bailer	TIME: Polyethyle	ne Bailer
2 Volt I JRE* s)	Pump Peris Pump Peris pH* (su)	taltic Pump De taltic Pump De SPECIFIC CONDUCTANCE* (µS/cm)	dicated Pump dicated Pump DO* (mg/L)	☐ Teflon Bailer☐ Teflon Bailer☐ ORP*	TIME: Polyethyle Polyethyle TURBIDITY (NTU)	ne Bailer ne Bailer
2 Volt I JRE* s)	Pump Peris Pump Peris pH* (su) 7.07	taltic Pump De taltic Pump De SPECIFIC CONDUCTANCE*	dicated Pump dicated Pump DO*	ORP*	TIME: Polyethyle TURBIDITY	ne Bailer ne Bailer
2 Volt I URE* s)	Pump Peris pH* (su) 7.07 (u.u)	taltic Pump De taltic Pump De taltic Pump De SPECIFIC CONDUCTANCE* (µS/cm) 70 70	dicated Pump dicated Pump DO* (mg/L) 8.90 7.97	☐ Teflon Bailer ☐ Teflon Bailer ☐ ORP* (mV)	TIME: Polyethyle Polyethyle TURBIDITY (NTU)	ne Bailer ne Bailer
2 Volt I URE* s)	Pump Peris Pump Peris pH* (su) 7.07 (e.60	specific Conductance* (µs/cm) 70 70 70	dicated Pump dicated Pump DO* (mg/L) 8.90 7.97 7.84	Teflon Bailer Teflon Bailer ORP* (mV) -136.9 -119.7	TIME: Polyethyle Polyethyle TURBIDITY (NTU) G95 302 135	ne Bailer ne Bailer
2 Volt I	Pump Peris pH* (su) 7.07 (u.u)	taltic Pump De taltic Pump De taltic Pump De SPECIFIC CONDUCTANCE* (µS/cm) 70 70	dicated Pump dicated Pump DO* (mg/L) 8.90 7.97	ORP* (mV) -136.9 -119.7 -118.7 -111.3	TIME: Polyethyle Polyethyle TURBIDITY (NTU) C95 309 135 115	ne Bailer ne Bailer
2 Volt I	Pump Peris Pump Peris pH* (su) 7.07 (4.48 6.61 6.54 6.26	taltic Pump De taltic Pump De taltic Pump De SPECIFIC CONDUCTANCE* (µS/cm) 70 70 70 70 70 70 70 70 70 7	DO* (mg/L) 8.90 7.97 7.84 8.05 7.99	ORP* (mV) -136.9 -119.7	TIME: Polyethyle Polyethyle TURBIDITY (NTU) G95 302 135	ne Bailer ne Bailer
2 Volt I 2 Volt I URE* is)	Pump Peris pH* (su) 7.07 (e.60) 6.601	taltic Pump De taltic Pump De taltic Pump De SPECIFIC CONDUCTANCE* (µS/cm) 70 70 70 70 70 70 70 70	dicated Pump dicated Pump DO* (mg/L) 8.90 7.97 7.84 8.05	ORP* (mV) -136.9 -119.7 -118.7 -111.3 -95.9	TIME: Polyethyle Polyethyle TURBIDITY (NTU) G95 302 135 115 103	ne Bailer ne Bailer

* Field Parameters

COMMENTS: PARAMETERS	STABLED.	WAIT FOR TURBIDITY	TO POOP PRIOR TO SAMPLE COLECTION) .
Cource DUPLKATE	SAMPLE	MW-03 DD		

	!	UMB	ER O	F CO	NTAINE	RS		-	ERS					
125 ml POLY	250 mL POLY	500 mL POLY	1/2 GALLON	40 ml VOA	1 L AMBER	PRESERVATIVE	CONSTITUENTS SAMPLED	125 ml POLY	250 mL POLY	500 mL POLY	1/2 GALLON	40 ml VOA	1 L AMBER	PRESERVATIVE
	t													
-														
	25 ml POL	25 ml POLY 50 mL POLY	ml POLY mL POLY	ml POLY mL POLY GALLON	ml POLY mL POLY mL POLY GALLON	mI POLY mL POLY mL POLY sallon 1 Voa	M M M M M M M M M M M M M M M M M M M	MI POLY MI POLY MI POLY MI VOA	MI POLY	MI POLY ML POLY AMBER AMBER MI POLY ML POLY ML POLY ML POLY	ML POLY	MI POLY ML POLY	MI POLY MI POLY MI POLY MI VOA MI VOA MI POLY	MI POLY ML POLY ML POLY ML POLY SALLON MI POLY ML POLY

PROTECTIVE CASING:			WELL PAD:			LOCK:			٧	VELL TAG:		VEGITATION:			
GOOD	□BAD	□ NA	GOOD	☐ BAD	□ NA	□ GOOD	☐ BAD	□ NA	□ GOOD	☐ BAD	□ NA	GOOD	☐ BAD	□ NA	

IF TURBIDITY >10 NTUS, REDEVELOPMENT NEEDED ☐ YES ☐ NO COMMENTS:

IF YES, OBSERVATIONS FOLLOWING LOWERING OF TUBING OR PUMP IN WELL:

IF NO, PROVIDE OBSERVATIONS REGARDING NATURAL CONDITIONS:

FIELD VEHICLE ACCESSIBLE YES NO

Associated midday/end-of-day DO, conductivity, pH within range? (See calibration sheet for this sample date) 🗆 YES 🗆 NO. If NO, which parameter , NOTE that reported data should be considered as flagged accordingly .

^{*} SynTerra is not NC-certified for these parameters. Data collected for information purposes only

ATTACHMENT 3

MONITOR WELL COORDINATES - LECRAW ENGINEERING, LLC

Monitoring Well Coordinates Diamond Crystal Brands Facility 3245 N Berkley Lake Rd., Duluth, GA

WELL#	NORTHING GEORGIA COORDINATE SYSTEM OF 1985 - WEST ZONE	EASTING GEORGIA COORDINATE SYSTEM OF 1985 - WEST ZONE	GEOGRAPHIC LATITUDE NORTH	GEOGRAPHIC LONGITUDE WEST	ELEVATION NORTH AMERICAN VERTICAL DATUM - 1988	DESCRIPTION
1	1448314.65	2295384.28	33° 58' 53.25"	84° 10' 14.24"	1070.69	TOP OF WELL CAP
1					1070.38	TOP OF PCV CASING
1					1070.20	GROUND
2	1448088.81	2295599.97	33° 58' 51.01"	84° 10′ 11.68″	1071.64	TOP OF WELL CAP
2					1071.37	TOP OF PCV CASING
2					1071.66	GROUND
3	1448476.73	2295573.97	33° 58' 54.85"	84° 10' 11.99"	1068.74	TOD OF WELL CAD
3	1770770.73	225575.57	33 30 34.03	04 10 11.33		TOP OF WELL CAP
					1068.18	TOP OF PCV CASING
3					1068.64	GROUND

Note: The date of the field work for this location data was 11/3/2016

No. 2678

No. 2678

No. 2678

No. 2678

No. 2678

AS SURVEYOR FOR LECRAW ENGINEERING, INC.

ATTACHMENT 4 LABORATORY ANALYTICAL REPORTS

ANALYTICAL LABORATORIES, LLC

NELAP CERTIFICATE NUMBER: 01955 DOD ELAP CERTIFICATE NUMBER: L14-243

ANALYTICAL RESULTS

PERFORMED BY

GCAL, LLC

7979 Innovation Park Dr. Baton Rouge, LA 70820

Report Date 11/14/2016

GCAL Report 216110370

Project DCB/918.05.07

Deliver To

Matt Mudge Synterra Corp 148 River st Suite 220 Greenville, SC 29601 864-421-9999 **Additional Recipients**

NONE

GCAL Report#: 216110370 Page 1 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with GCAL's Standard Operating Procedures.

Common Abbreviations that may be Utilized in this Report

ND Indicates the result was Not Detected at the specified reporting limit

NO Indicates the sample did not ignite when preliminary test performed for EPA Method 1030

DO Indicates the result was Diluted Out

MI Indicates the result was subject to Matrix Interference
TNTC Indicates the result was Too Numerous To Count
SUBC Indicates the analysis was Sub-Contracted
FLD Indicates the analysis was performed in the Field

DL Detection Limit

DL Diluted analysis – when appended to Client Sample ID

LOD Limit of Detection
LOQ Limit of Quantitation
RE Re-analysis

CF HPLC or GC Confirmation

00:01 Reported as a time equivalent to 12:00 AM

Reporting Flags that may be Utilized in this Report

J or I Indicates the result is between the MDL and LOQ

J DOD flag on analyte in the parent sample for MS/MSD outside acceptance criteria

U Indicates the compound was analyzed for but not detected

B or V Indicates the analyte was detected in the associated Method Blank Indicates a non-compliant QC Result (See Q Flag Application Report)

Indicates a non-compliant or not applicable QC recovery or RPD – see narrative
 The result is estimated because it exceeded the instrument calibration range

E Metals - % difference for the serial dilution is > 10%

P RPD between primary and confirmation result is greater than 40

Sample receipt at GCAL is documented through the attached chain of custody. In accordance with NELAC, this report shall be reproduced only in full and with the written permission of GCAL. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with The NELAC Institute (TNI) Standard 2009 and terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

Estimated uncertainty of measurement is available upon request. This report is in compliance with the DOD QSM as specified in the contract if applicable.

Authorized Signature
GCAL Report 216110370

GCAL Report#: 216110370 Page 2 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Certifications

Certification	Certification Number
DOD ELAP	L14-243
Alabama	01955
Arkansas	12-060-0
Colorado	01955
Delaware	01955
Florida	E87854
Georgia	01955
Hawaii	01955
Idaho	01955
Illinois	200048
Indiana	01955
Kansas	E-10354
Kentucky	95
Louisiana	01955
Maryland	01955
Massachusetts	01955
Michigan	01955
Mississippi	01955
Missouri	01955
Montana	N/A
Nebraska	01955
New Mexico	01955
North Carolina	618
North Dakota	R-195
Oklahoma	9403
South Carolina	73006001
South Dakota	01955
Tennessee	01955
Texas	T104704178
Vermont	01955
Virginia	460215
USDA Soil Permit	P330-10-00117

GCAL Report#: 216110370 Page 3 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Case Narrative

Client: Synterra Report: 216110370

Gulf Coast Analytical Laboratories received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

METALS

In the EPA 6020A analysis, a chemical or physical interference necessitated a dilution for samples 21611037001 (SB-01_1), 21611037002 (SB-01_7), 21611037003 (SB-01_13), 21611037010 (SB-02_28), 21611037011 (SB-03_2), 21611037014 (SB-03_23), 21611037015 (SB-03_23 DUP), 21611037022 (SB-06_2), 21611037023 (SB-06_9), 21611037024 (SB-06_12), 21611037025 (SB-06_16), 21611037026 (SB-06_23), 21611037027 (SB-06_26), and 21611037028 (SB-06_26 DUP). This is reflected in elevated detection limits.

In the EPA 6020A analysis, samples 21611037004 (SB-01_16), 21611037005 (SB-02_2), 21611037006 (SB-02_7), 21611037007 (SB-02_12), 21611037008 (SB-02_17), 21611037009 (SB-02_23), 21611037012 (SB-03_8), 21611037013 (SB-03_14), 21611037016 (SB-03_28), 21611037017 (SB-04_2), 21611037018 (SB-04_6), 21611037019 (SB-04_12), 21611037020 (SB-05_2), 21611037021 (SB-05_6), 21611037029 (SB-06_31), and 21611037030 (SB-06_35) had to be diluted in order to bracket the concentration of the target analyte within the calibration range of the instrument.

In the EPA 6020A analysis for prep batch 598194, the MS and/or MSD recovery is outside the control limits for Arsenic. The LCS recovery is within control limits. This indicates the analysis is in control and the sample is affected by matrix interference or the element is non-homogeneous in the sample. A post-digestion spike was performed.

In the EPA 6020A analysis for prep batch 598193, the MS/MSD recoveries and RPD are not applicable for Arsenic because the sample concentration is greater than four times the spike concentration. The LCS recovery is acceptable.

GCAL Report#: 216110370 Page 4 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Summary

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
21611037001	SB-01_1	Solid	10/31/2016 11:15	11/03/2016 10:00
21611037002	SB-01_7	Solid	10/31/2016 11:18	11/03/2016 10:00
21611037003	SB-01_13	Solid	10/31/2016 11:21	11/03/2016 10:00
21611037004	SB-01_16	Solid	10/31/2016 11:24	11/03/2016 10:00
21611037005	SB-02_2	Solid	10/31/2016 12:30	11/03/2016 10:00
21611037006	SB-02_7	Solid	10/31/2016 12:36	11/03/2016 10:00
21611037007	SB-02_12	Solid	10/31/2016 12:41	11/03/2016 10:00
21611037008	SB-02_17	Solid	10/31/2016 12:45	11/03/2016 10:00
21611037009	SB-02_23	Solid	10/31/2016 12:48	11/03/2016 10:00
21611037010	SB-02_28	Solid	10/31/2016 12:51	11/03/2016 10:00
21611037011	SB-03_2	Solid	10/31/2016 17:18	11/03/2016 10:00
21611037012	SB-03_8	Solid	10/31/2016 17:20	11/03/2016 10:00
21611037013	SB-03_14	Solid	10/31/2016 17:22	11/03/2016 10:00
21611037014	SB-03_23	Solid	10/31/2016 17:25	11/03/2016 10:00
21611037015	SB-03_23 DUP	Solid	10/31/2016 17:25	11/03/2016 10:00
21611037016	SB-03_28	Solid	10/31/2016 17:29	11/03/2016 10:00
21611037017	SB-04_2	Solid	11/01/2016 10:50	11/03/2016 10:00
21611037018	SB-04_6	Solid	11/01/2016 10:53	11/03/2016 10:00
21611037019	SB-04_12	Solid	11/01/2016 10:57	11/03/2016 10:00
21611037020	SB-05_2	Solid	11/01/2016 11:25	11/03/2016 10:00
21611037021	SB-05_6	Solid	11/01/2016 11:30	11/03/2016 10:00
21611037022	SB-06_2	Solid	11/01/2016 12:55	11/03/2016 10:00
21611037023	SB-06_9	Solid	11/01/2016 12:58	11/03/2016 10:00
21611037024	SB-06_12	Solid	11/01/2016 13:01	11/03/2016 10:00
21611037025	SB-06_16	Solid	11/01/2016 13:04	11/03/2016 10:00
21611037026	SB-06_23	Solid	11/01/2016 13:07	11/03/2016 10:00
21611037027	SB-06_26	Solid	11/01/2016 13:10	11/03/2016 10:00
21611037028	SB-06_26 DUP	Solid	11/01/2016 13:10	11/03/2016 10:00
21611037029	SB-06_31	Solid	11/01/2016 13:13	11/03/2016 10:00
21611037030	SB-06_35	Solid	11/01/2016 14:30	11/03/2016 10:00

GCAL Report#: 216110370 Page 5 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Summary of Compounds Detected

CD 01 1	Co	ollect Date	10/31/2016 11:15		GCAL ID	21611037001	
SB-01_1	Re	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Wei	ight Basis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			18100	119	475	ug/Kg
OD 04 7	Co	ollect Date	10/31/2016 11:18		GCAL ID	21611037002	
SB-01_7	Re	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Wei	ight Basis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			9370	114	456	ug/Kg
00 04 40	Co	ollect Date	10/31/2016 11:21		GCAL ID	21611037003	
SB-01_13	Re	eceive Date	11/03/2016 10:00		Matrix	Solid	
EDA 0000A							
EPA 6020A	*Results Reported on Dry Wei	ight Basis					
CAS#	*Results Reported on Dry Wei Parameter	ight Basis		Result	DL	LOQ	Units
		ight Basis		Result 33000	DL 104	LOQ 415	Units ug/Kg
CAS# 7440-38-2	Parameter Arsenic	ollect Date	10/31/2016 11:24				
CAS#	Parameter Arsenic Co		10/31/2016 11:24 11/03/2016 10:00		104	415	
CAS# 7440-38-2	Parameter Arsenic Co	ollect Date			104 GCAL ID	415 21611037004	
CAS# 7440-38-2	Parameter Arsenic Co	ollect Date			104 GCAL ID	415 21611037004	

GCAL Report#: 216110370 Page 6 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Summary of Compounds Detected

CD 02 2	Collect Date	10/31/2016 12:30		GCAL ID	21611037005	
SB-02_2	Receive Dat	e 11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Basis					
CAS#	Parameter		Result	DL	LOQ	Unit
7440-38-2	Arsenic		141000	1300	5180	ug/K
00.00.7	Collect Date	10/31/2016 12:36		GCAL ID	21611037006	
SB-02_7	Receive Dat	e 11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Basis					
CAS#	Parameter		Result	DL	LOQ	Unit
7440-38-2	Arsenic		52000	1200	4810	ug/Ko
00.00.40	Collect Date	10/31/2016 12:41		GCAL ID	21611037007	
SB-02_12	Receive Dat	e 11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Basis					
CAS#	Parameter		Result	DL	LOQ	Units
7440-38-2	Arsenic		116000	1270	5080	ug/Ko
00.00.47	Collect Date	10/31/2016 12:45		GCAL ID	21611037008	
SB-02_17	Receive Dat	e 11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Basis					
CAS#	Parameter		Result	DL	LOQ	Units
7440-38-2	Arsenic		100000	1230	4920	ug/Kg

GCAL Report#: 216110370 Page 7 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Summary of Compounds Detected

SB 02 22	Collect Da	nte 10/31/	/2016 12:48		GCAL ID	21611037009	
SB-02_23	Receive D	ate 11/03/	/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Bas	is					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			134000	1210	4820	ug/Ko
	0 11 . 10	40/04/	/00404054		0041 ID	04044007040	
SB-02_28	Collect Da		/2016 12:51		GCAL ID	21611037010	
<u> </u>	Receive D	ate 11/03/	/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Bas	is					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			26000	122	487	ug/Kg
	Collect Da	nte 10/31/	/2016 17:18		GCAL ID	21611037011	
SB-03_2	Receive D	ate 11/03/	/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Bas	is					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			7360	119	477	ug/Kg
	Collect Da	nte 10/31/	/2016 17:20		GCAL ID	21611037012	
SB-03_8	Receive D	ate 11/03/	/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Bas	is					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			46700	1170	4670	ug/Kg

GCAL Report#: 216110370 Page 8 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Summary of Compounds Detected

SD 02 14	Co	ollect Date	10/31/2016 17:22		GCAL ID	21611037013	
SB-03_14	Re	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry We	eight Basis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			69500	1260	5040	ug/Kg
	_						
SB-03_23	Co	ollect Date	10/31/2016 17:25		GCAL ID	21611037014	
05 00_20	Re	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry We	eight Basis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			31100	124	496	ug/Kg
SB-03 23	DIID	ollect Date	10/31/2016 17:25		GCAL ID	21611037015	
3B-03_23	Re	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry We	eight Basis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			34000	128	514	ug/Kg
	C	ollect Date	10/31/2016 17:29		GCAL ID	21611037016	
SB-03 28							
<u>-</u>	Re	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry We	eight Basis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			106000	1340	5350	ug/Kg

GCAL Report#: 216110370 Page 9 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Summary of Compounds Detected

CD 04 2	Collect Date	te 11/01/2016 10:50		GCAL ID	21611037017	
SB-04_2	Receive Da	ate 11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Basis	3				
CAS#	Parameter		Result	DL	LOQ	Units
7440-38-2	Arsenic		357000	1250	5020	ug/K
	Collect Dat	te 11/01/2016 10:53		GCAL ID	21611037018	
SB-04_6	Receive Da	ate 11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Basis	S				
CAS#	Parameter		Result	DL	LOQ	Units
7440-38-2	Arsenic		369000	1190	4760	ug/Kg
00.04.40	Collect Dat	te 11/01/2016 10:57		GCAL ID	21611037019	
SB-04_12	Receive Da	ate 11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Basis	6				
CAS#	Parameter		Result	DL	LOQ	Units
7440-38-2	Arsenic		362000	1220	4860	ug/Kg
00.05.0	Collect Dat	te 11/01/2016 11:25		GCAL ID	21611037020	
SB-05_2	Receive Da	ate 11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Basis	3				
CAS#	Parameter		Result	DL	LOQ	Units
7440-38-2	Arsenic		50200	1110	4460	ug/Kg

GCAL Report#: 216110370 Page 10 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Summary of Compounds Detected

CD OF C	Collect D	Date	11/01/2016 11:30		GCAL ID	21611037021	
SB-05_6	Receive	Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Ba	noio					
		1515		D 11	D.	1.00	
CAS# 7440-38-2	Parameter Arsenic			Result 111000	DL 1040	LOQ 4160	Units
7440-30-2	Arsenic			111000	1040	4100	ug/Kg
	Collect D	Date	11/01/2016 12:55		GCAL ID	21611037022	
SB-06_2	Receive	Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Ba	neie					
CAS#	Parameter	1010		Result	DL	LOQ	Units
7440-38-2	Arsenic			10600	113	452	ug/Kg
7440-30-2	Alselle			10000	113	402	ugritg
CD OC O	Collect D	Date	11/01/2016 12:58		GCAL ID	21611037023	
SB-06_9	Receive	Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Ba	asis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			9410	112	448	ug/Kg
_	Collect D	Date	11/01/2016 13:01		GCAL ID	21611037024	
SB-06_12	Receive		11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry Weight Ba	neie					
CAS#	Parameter	4010		Result	DL	LOQ	Units
7440-38-2	Arsenic			20500	140	560	ug/Kg

GCAL Report#: 216110370 Page 11 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Summary of Compounds Detected

SD 06 46	С	ollect Date	11/01/2016 13:04		GCAL ID	21611037025	
SB-06_16	R	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Deculto Deported on Dry W	oight Doois					
	*Results Reported on Dry We	eignt Basis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			6190	135	540	ug/Kg
	C	ollect Date	11/01/2016 13:07		GCAL ID	21611037026	
SB-06_23	_						
_	R	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry We	eight Basis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			10600	151	602	ug/Kg
CD 00 00	С	ollect Date	11/01/2016 13:10		GCAL ID	21611037027	
SB-06_26	R	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry We	eight Basis					
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			13900	136	545	ug/Kg
OD 00 00	DUD	ollect Date	11/01/2016 13:10		GCAL ID	21611037028	
SB-06_26	DUP	eceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A	*Results Reported on Dry We	eight Basis					
CAS#	Parameter	-		Result	DL	LOQ	Units
7440-38-2	Arsenic			13900	135	540	ug/Kg
1440 00 2	Aisonio			10000	.55	5-70	agritg

GCAL Report#: 216110370 Page 12 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Summary of Compounds Detected

SB-06 31	Col	llect Date	11/01/2016 13:13		GCAL ID	21611037029	
36-00_31	Rec	ceive Date	11/03/2016 10:00		Matrix	Solid	
EPA 6020A cas# 7440-38-2	*Results Reported on Dry Weig Parameter Arsenic	ght Basis		Result 88600	DL 1370	LOQ 5490	Units ug/Kg

SD 06 25	Collect Date	11/01/2016 14:30	GCAL ID	21611037030
SB-06_35	Receive Date	11/03/2016 10:00	Matrix	Solid

EPA 6020A	*Results Reported on Dry Weight Basis
-----------	---------------------------------------

CAS#	Parameter	Result	DL	LOQ	Units
7440-38-2	Arsenic	65900	1200	4800	ug/Kg

GCAL Report#: 216110370 Page 13 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Dilution Analysis Date Analytical Batch By 11/04/2016 09:40 598193 **EPA 3050B** 10 11/07/2016 14:49 **AWG** 598374 CAS# **Parameter** DL Units Result LOQ

7440-38-2 Arsenic 18100 119 475 ug/Kg

SB-01_7

Collect Date 10/31/2016 11:18

GCAL ID 21611037002

Receive Date 11/03/2016 10:00

Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Dilution Analysis Date By **Analytical Batch** 11/04/2016 09:40 598193 **EPA 3050B** 10 11/07/2016 14:53 **AWG** 598374 CAS# **Parameter** Result DL LOQ Units 7440-38-2 Arsenic 9370 114 456 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Dilution Analysis Date By **Analytical Batch** 10 11/04/2016 09:40 598193 **EPA 3050B** 11/07/2016 15:00 **AWG** 598374 CAS# Parameter DL LOQ Units Result 7440-38-2 33000 104 415 **Arsenic** ug/Kg

SB-01_16

Collect Date 10/31/2016 11:24

GCAL ID 21611037004

Receive Date 11/03/2016 10:00

Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Dilution Analysis Date By **Analytical Batch** 11/04/2016 09:40 598193 **EPA 3050B** 100 11/08/2016 11:36 **AWG** 598450 CAS# **Parameter** Result DL LOQ Units 7440-38-2 Arsenic 50500 1170 4690 ug/Kg

GCAL Report#: 216110370 Page 14 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

SB-02 2 Collect Date 10/31/2016 12:30 GCAL ID 21611037005

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598193
 EPA 3050B
 100
 11/08/2016 11:40
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 141000
 1300
 5180
 ug/Kg

SB-02_7

Collect Date 10/31/2016 12:36

GCAL ID 21611037006

Receive Date 11/03/2016 10:00

Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598193
 EPA 3050B
 100
 11/08/2016 11:44
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 52000
 1200
 4810
 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Analytical Batch Prep Batch Prep Method Dilution Analysis Date Ву 11/04/2016 09:40 598193 **EPA 3050B** 100 11/08/2016 11:47 AWG 598450 CAS# **Parameter** Result DL LOQ Units 7440-38-2 Arsenic 116000 1270 5080 ug/Kg

GCAL Report#: 216110370 Page 15 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

SB-02_17

Collect Date 10/31/2016 12:45

GCAL ID 21611037008

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Analysis Date Analytical Batch Dilution Ву 11/04/2016 09:40 598193 **EPA 3050B** 100 11/08/2016 11:51 AWG 598450 CAS# **Parameter** Result DL LOQ Units

7440-38-2 Arsenic 100000 1230 4920 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598193
 EPA 3050B
 100
 11/08/2016 12:10
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 134000
 1210
 4820
 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Dilution Analysis Date Ву **Analytical Batch** 11/04/2016 09:40 598193 **EPA 3050B** 10 11/07/2016 16:25 AWG 598374 CAS# **Parameter** Result DL LOQ Units 7440-38-2 Arsenic 26000 122 487 ug/Kg

GCAL Report#: 216110370 Page 16 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

SB-03 2 Collect Date 10/31/2016 17:18 GCAL ID 21611037011

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Analysis Date Analytical Batch Dilution Ву 11/04/2016 09:40 598193 **EPA 3050B** 10 11/07/2016 16:44 AWG 598374 CAS# **Parameter** Result DL LOQ Units

7440-38-2 Arsenic 7360 119 477 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598193
 EPA 3050B
 100
 11/08/2016 12:14
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 46700
 1170
 4670
 ug/Kg

 SB-03_14
 Collect Date
 10/31/2016 17:22
 GCAL ID
 21611037013

 Receive Date
 11/03/2016 10:00
 Matrix
 Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Dilution Analysis Date Analytical Batch Ву 11/04/2016 09:40 598193 **EPA 3050B** 100 11/08/2016 12:18 AWG 598450 CAS# **Parameter** Result DL LOQ Units 7440-38-2 Arsenic 69500 1260 5040 ug/Kg

GCAL Report#: 216110370 Page 17 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

SB-03 23Collect Date 10/31/2016 17:25

GCAL ID 21611037014

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598193
 EPA 3050B
 10
 11/07/2016 17:07
 AWG
 598374

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 31100
 124
 496
 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598193
 EPA 3050B
 10
 11/07/2016 17:14
 AWG
 598374

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 34000
 128
 514
 ug/Kg

 SB-03_28
 Collect Date
 10/31/2016 17:29
 GCAL ID
 21611037016

 Receive Date
 11/03/2016 10:00
 Matrix
 Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Dilution Analysis Date Analytical Batch Ву 11/04/2016 09:40 598193 **EPA 3050B** 100 11/08/2016 12:22 AWG 598450 CAS# **Parameter** Result DL LOQ Units 7440-38-2 Arsenic 106000 1340 5350 ug/Kg

GCAL Report#: 216110370 Page 18 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

SB-04 2 Collect Date 11/01/2016 10:50 GCAL ID 21611037017

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 100
 11/08/2016 12:26
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 357000
 1250
 5020
 ug/Kg

SB-04_6

Collect Date 11/01/2016 10:53

GCAL ID 21611037018

Receive Date 11/03/2016 10:00

Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 100
 11/08/2016 12:41
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 369000
 1190
 4760
 ug/Kg

 SB-04_12
 Collect Date
 11/01/2016 10:57
 GCAL ID
 21611037019

 Receive Date
 11/03/2016 10:00
 Matrix
 Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date 11/04/2016 09:40	Prep Batch 598194	Prep Method EPA 3050B	Dilution 100	Analysis Date 11/08/2016 12:45	By AWG	Analytical Batch 598450	
CAS# 7440-38-2	Parameter Arsenic			Result 362000	DL 1220	LOQ 4860	Units ug/Kg

GCAL Report#: 216110370 Page 19 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

SB-05 2 Collect Date 11/01/2016 11:25 GCAL ID 21611037020

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 100
 11/08/2016 12:48
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 50200
 1110
 4460
 ug/Kg

SB-05_6

Collect Date 11/01/2016 11:30 GCAL ID 21611037021

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 100
 11/08/2016 12:52
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 111000
 1040
 4160
 ug/Kg

 SB-06_2
 Collect Date
 11/01/2016 12:55
 GCAL ID
 21611037022

 Receive Date
 11/03/2016 10:00
 Matrix
 Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date	Prep Batch	Prep Method	Dilution	Analysis Date	Ву	Analytical Batch	
11/04/2016 09:40	598194	EPA 3050B	10	11/07/2016 18:27	AWG	598374	
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			10600	113	452	ug/Kg

GCAL Report#: 216110370 Page 20 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

SB-06 9 Collect Date 11/01/2016 12:58 GCAL ID 21611037023

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 10
 11/07/2016 18:34
 AWG
 598374

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 9410
 112
 448
 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 10
 11/07/2016 18:42
 AWG
 598374

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 20500
 140
 560
 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date Prep Batch Prep Method Dilution Analysis Date Ву **Analytical Batch** 11/04/2016 09:40 598194 **EPA 3050B** 10 11/07/2016 18:50 AWG 598374 CAS# **Parameter** Result DL LOQ Units 7440-38-2 Arsenic 6190 135 540 ug/Kg

GCAL Report#: 216110370 Page 21 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

SB-06 23 Collect Date 11/01/2016 13:07 GCAL ID 21611037026

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 10
 11/07/2016 19:28
 AWG
 598374

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 10600
 151
 602
 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 10
 11/07/2016 19:36
 AWG
 598374

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 13900
 136
 545
 ug/Kg

 SB-06_26 DUP
 Collect Date
 11/01/2016 13:10
 GCAL ID
 21611037028

 Receive Date
 11/03/2016 10:00
 Matrix
 Solid

EPA 6020A *Results Reported on Dry Weight Basis

Prep Date	Prep Batch	Prep Method	Dilution	Analysis Date	Ву	Analytical Batch	
11/04/2016 09:40	598194	EPA 3050B	10	11/07/2016 19:43	AWG	598374	
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			13900	135	540	ug/Kg

GCAL Report#: 216110370 Page 22 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Sample Results

SB-06 31 Collect Date 11/01/2016 13:13 GCAL ID 21611037029

Receive Date 11/03/2016 10:00 Matrix Solid

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 100
 11/08/2016 12:56
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 88600
 1370
 5490
 ug/Kg

EPA 6020A *Results Reported on Dry Weight Basis

 Prep Date
 Prep Batch
 Prep Method
 Dilution
 Analysis Date
 By
 Analytical Batch

 11/04/2016 09:40
 598194
 EPA 3050B
 100
 11/08/2016 13:00
 AWG
 598450

 CAS#
 Parameter
 Result
 DL
 LOQ
 Units

 7440-38-2
 Arsenic
 65900
 1200
 4800
 ug/Kg

GCAL Report#: 216110370 Page 23 of 28

Project ID: DCB/918.05.07 **Report Date:** 11/14/2016

Inorganics QC Summary

Analytical Batch	Client ID	MB598193		LCS598	193		
598374	GCAL ID	1626226	1626227				
Prep Batch	Sample Type	MB	LCS				
598193	Prep Date	11/04/2016 09	11/04/2016 09:40				
Prep Method	Analysis Date	11/07/2016 14	11/07/2016 14:45				
EPA 3050B	Matrix	Solid		Solid			
EDV 603	EPA 6020A			Spike	Result	0/ D	Control
EFA 0020A		Result	DL	Added	Resuit	70 K	Limits%R
Arsenic	7440-38-2	10.0U	10.0	2000	2160	108	80 - 120

Analytical Batch	Client ID	_		162609	-			162609				
598450 Prep Batch	Sample Type			162622 MS	28			1626229 MSD				
598193		11/04/2016 09:4		016 09:40)		11/04/2016 09:40					
Prep Method		11/08/2016 11:51			016 11:55	5		11/08/2016 11:59				
EPA 3050B	Matrix	Solid		Solid				Solid				
EPA 602	0.Λ	Units	ug/Kg	Spike	Result	%R	Control	Spike	Result	%R	שש	RPD Limit
LFA 0020A		Result	DL	Added	Nesuit	/013	Limits%R	Added	Nesuit	/013	IXI D	Limit
Arsenic	7440-38-2	100000	1230	2460	160000	2400*	80 - 120	2460	163000	2560*	2	20

Analytical Batch	Client ID	MB598194		LCS598	194		
598374	GCAL ID	1626230	1626231				
Prep Batch	Sample Type	MB	LCS				
598194	Prep Date	11/04/2016 09	11/04/2016 09:40				
Prep Method	Analysis Date	11/07/2016 17	11/07/2016 17:33				
EPA 3050B	Matrix	Solid		Solid			
EPA 602	ΛΛ	Units	ug/Kg	Spike	Result	0/. D	Control
EFA 0020A		Result	DL	Added	Nesuit	/01	Limits%R
Arsenic	7440-38-2	10.0U	10.0	2000	2100	105	80 - 120

Analytical Batch	Client ID	SB-06_16		1626111	MS			1626111	MSD			
598374	GCAL ID	21611037025		1626232			1626233					
Prep Batch	Sample Type	SAMPLE		MS	MS			MSD				
598194	Prep Date	11/04/2016 09:	11/04/20	16 09:40)		11/04/2016 09:40					
Prep Method	Analysis Date	11/07/2016 18:	11/07/20	/2016 18:57			11/07/2016 19:05					
EPA 3050B	Matrix	Solid		Solid	Solid			Solid				
EPA 602	۸۸	Units	ug/Kg	Spike	Result	%R	Control	Spike	Result	0/. D	DDD	RPD
EFA 002	Result	DL	Added	Kesuit	/01\	Limits%R	Added	Nesuit	/01	KFD	Limit	
Arsenic	7440-38-2	6190	135	2700	9630	128*	80 - 120	2700	8500	86	13	20

GCAL Report#: 216110370 Page 24 of 28

CHAIN OF CUSTODY RECORD

Client ID: 4945 - Synterra

SDG: 216110370

SAB3 PM:

Report to: Client: SWTERRA Address: 148 RNERST CORPOULLE & 91601 Contact: MATT MUDIE Phone: 964 - 597 - 4633 E-mail: MMUDIE & Synleracorp.com P.O. Number Project Name/Number PROJECT Name/Number	Bill to: Client: SYNTERGA Address: [48 Piver ST, Svill GREAVIUE & 2466 Contact: Phone: 844-431-9999 E-mail: 83.05.07		Analytical Requ	uests & Method	GCAL use only: Custody Seal used Tyes Ino intact Tyes Ino Temperature °C 0-4, 1-1726 32, 55 cpc Dissolved Analysis Requested I Field filtered Lab filtered
Time		No Con-			Preservative
Matrix ¹ Date (2400) Comp Grab Sample Do		tainers▼		+	1 1000/1000/1000
	5-01-1	1	X		
5 103/16/11/8 / 92	3-01-7		X		2
S 10/31/10 1/31 V 38	3-01-13	1	X		3
	5-01-16	(X		4
	3-02-2	(X		5
	3-02-7	(X		
	0-02-12	1	X		7
10101010	5-02_17	1	X		8
	-08-23	1	X	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9
17-10-10-10-10-10-10-10-10-10-10-10-10-10-	-02-28	11	X		10
	-02-30 (BN)	7			
	00-30	1	Y		11
1101	-03-2		2		12
	-03_8				112
Air Bill No: 7976 1556 65	522	and Day			
Relinquisted by: (signature) AWET 11007/16 Tir	me: Received by: (Signature) Received by: (Signature) Received by: (Signature)	Date:	Note: Acc	THIVE FOR FUTURE OW UP TBO BASE g these samples, you agree to GC	DUPON ARSONIC RESULTS
Matrix': W = water, S = solid, L = liquid, T = tissue	*Requipe prior approval, rush ch	11-3-10 narges may appl	2 1000 conditions co	ontained in our most recent sched	

Matrix1: W = water, S = solid, L = liquid, T = tissue

Phone: 225.769.4900 • Fax: 225.767.5717 • www.gcal.com

CHAIN OF CUSTODY RECORD

Client ID: 4945 - Synterra

SDG: 216110370 **PM**: SAB3

Report to: Client: SHITEREA Address: 148 RIVER ST GEFENVILLE SC PICO I Contact: MATH MUDGE Phone: 864-537-4633 E-mail: MMUGG SYNLEYBOOF OF Project Name/Number P.O. Number Project Name/Number Sampled By: EM	Bill to: Client: SYNTERRA Address: 148 RIVER ST, SURE CORENVILLE SC 916 Contact: Phone: 864-401-9779 E-mail: 8,05.07	290	Analytical Requ	uests & Method	GCAL use only: Custody Seal used yes no intact yes no Temperature °C 0.4, 1.1626 32,55500 Dissolved Analysis Requested Field filtered Lab filtered
Matrix ¹ Date Time Comp Grab Sample	Description	No Con- tainers			Preservative
	5-03_14	1	X		13
	-03_23	1	X		14
	-03-23 DUP		X		15
	-03_28	(X		16
	-04_2	1	X		17
	-04_6	(X		18
	-04-12	1	X		19
	3-05_A	1	X		20
	8-05-6	1	X	La	21
	3-06-2	i	1		22
	3-06-9	42	X		23
	3-06-12	12	X		24
	3-06-16	12	*		25
Air Bill No: 7776 1556					
Turn Around Time (Business Days): ☐ 24h*	3 48h* □ 3 days* □ 1 week* ♥ Stan	dard (Per C	Contract/Quote)	<u> </u>	
	11me: Received by: (Signature) ANCT		Time: Note: 42		RON AGENIC PESCOTS
Reinquished by: (Signature) Date:	Time: Received by: [signature] *Requires prior approval, rush cha	11-3-10	/ODO conditions co	g these samples, you agree to ontained in our most recent sc	GCAL's terms and hedule of services. al changes. Please email written changes to your PM.

CHAIN OF CUSTODY RECORD

Client ID: 4945 - Synterra

We cannot accept verbal changes. Please email written changes to your PM.

SDG: 216110370 SAB3

PM:

Phone: 225.769.4900 • Fax: 225.767.5717 • www.gcal.com GCAL use only: Bill to: Analytical Requests & Method Report to: SWITERRA SYNTERRA Client: Custody Seal Client: Address: 148 RIVER ST SUITE 280 Address: 148 RVER ST used yes no GREENVILLE SC 89601 intact d yes □ no MATT MUDGE 864-507-4633 Contact: TOTAL MASANIC Contact: Temperature °C _O_U, I_I E26 Phone: 864-421-9999 mmudge@ Synterecorp.um E-mail: ☐ Dissolved Analysis Requested Project Name/Number P.O. Number 918.05.07 Des ☐ Field filtered Sampled By: ☐ Lab filtered Time Preservative Sample Description Grab Comp Matrix¹ Date (2400)0 58-06-23 11/14 1307 X SB-06-26 REPORT 11/16/1300 3B-06-26 DUP 11/1/4 13/0 CLIENT FINAL 11/16/13/3 30 11/11/16/14/30 7776 1556 6522 Air Bill No: Turn Around Time (Business Days): ☐ 24h* ☐ 48h* ☐ 3 days* ☐ 1 week* ☐ Standard (Per Contract/Quote) Date 16 7.15 Note: ARCHIVE POR POURE SAMPLES

* FOLLOW OF TED BASED LANN ARCHIVE RESERVE 11/2/16 915 By submitting these samples, you agree to GCAL's terms and conditions contained in our most recent schedule of services.

*Requires prior approval, rush charges may apply.

Matrix1: W = water, S = solid, L = liquid, T = tissue

SAMPLE RECEIVING CHECKLIST

SAMPLE DELIVERY GROUP 216110370			CHECKLIST	YES	NO	NA
Client PM SAB3	Transport !	Method	Samples received with proper thermal and chemical preservation?	~		
4945 - Synterra			Radioactivity is <1600 cmp? If no, record cmp value in notes section.	~		
			Custody seals present and intact?	~		
			COC relinquished and complete (including sample IDs, collect dates/times, and sampler name)?	~		
Profile Number 271713	Received B		Short holds or RUSH samples received?		~	
2/1/13	Loiton, Rain	J L.	All containers received in good condition and within hold time?	~		
			All sample labels and containers received match the chain of custody?	~		
Line Item(s)	Receive Da	te(s)	Preservation checked at receipt? Exceptions: VOC, Coliform, TOC, Oil and Grease, DOC			~
2 - Solid- Arsenic	11/03/16		Preservative added to any containers?		~	
*	1		VOC water containers received with headspace < 6mm?			~
			Received filtered sample volume for dissolved analysis?			~
= 100			Trip blank present in all coolers containing VOC waters?			~
i. = =1 = _2 = 11			Samples collected in containers provided by GCAL?	~		
COOLERS			DISCREPANCIES LAB PRESERVATIONS			
Airbill Thermon	neter ID: E26	Temp(°C)	None None			
7776 1556 6522		0.4				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.1				
=						
			e			
				====		
NOTES	5					

Revision 1.5

Page 1 of 1

GCAL Report#: 216110370

Page 28 of 28

NELAP CERTIFICATE NUMBER: 01955 DOD ELAP CERTIFICATE NUMBER: L14-243

ANALYTICAL RESULTS

PERFORMED BY

GCAL, LLC

7979 Innovation Park Dr. Baton Rouge, LA 70820

Report Date 11/09/2016

GCAL Report 216110369

Project DCB/ 918.05.07

Deliver To

Matt Mudge Synterra Corp 148 River st Suite 220 Greenville, SC 29601 864-421-9999 **Additional Recipients**

NONE

GCAL Report#: 216110369 Page 1 of 10

Project ID: DCB/ 918.05.07 **Report Date:** 11/09/2016

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with GCAL's Standard Operating Procedures.

Common Abbreviations that may be Utilized in this Report

ND Indicates the result was Not Detected at the specified reporting limit

NO Indicates the sample did not ignite when preliminary test performed for EPA Method 1030

DO Indicates the result was Diluted Out

MI Indicates the result was subject to Matrix Interference
TNTC Indicates the result was Too Numerous To Count
SUBC Indicates the analysis was Sub-Contracted
FLD Indicates the analysis was performed in the Field

DL Detection Limit

DL Diluted analysis – when appended to Client Sample ID

LOD Limit of Detection
LOQ Limit of Quantitation
RE Re-analysis

CF HPLC or GC Confirmation

00:01 Reported as a time equivalent to 12:00 AM

Reporting Flags that may be Utilized in this Report

J or I Indicates the result is between the MDL and LOQ

J DOD flag on analyte in the parent sample for MS/MSD outside acceptance criteria

U Indicates the compound was analyzed for but not detected

B or V Indicates the analyte was detected in the associated Method Blank Indicates a non-compliant QC Result (See Q Flag Application Report)

Indicates a non-compliant or not applicable QC recovery or RPD – see narrative
 The result is estimated because it exceeded the instrument calibration range

E Metals - % diference for the serial dilution is > 10%

P RPD between primary and confirmation result is greater than 40

Sample receipt at GCAL is documented through the attached chain of custody. In accordance with NELAC, this report shall be reproduced only in full and with the written permission of GCAL. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with The NELAC Institute (TNI) Standard 2009 and terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

Estimated uncertainty of measurement is available upon request. This report is in compliance with the DOD QSM as specified in the contract if applicable.

Authorized Signature
GCAL Report 216110369

GCAL Report#: 216110369 Page 2 of 10

Project ID: DCB/ 918.05.07 **Report Date:** 11/09/2016

Certifications

Certification	Certification Number
DOD ELAP	L14-243
Alabama	01955
Arkansas	12-060-0
Colorado	01955
Delaware	01955
Florida	E87854
Georgia	01955
Hawaii	01955
Idaho	01955
Illinois	200048
Indiana	01955
Kansas	E-10354
Kentucky	95
Louisiana	01955
Maryland	01955
Massachusetts	01955
Michigan	01955
Mississippi	01955
Missouri	01955
Montana	N/A
Nebraska	01955
New Mexico	01955
North Carolina	618
North Dakota	R-195
Oklahoma	9403
South Carolina	73006001
South Dakota	01955
Tennessee	01955
Texas	T104704178
Vermont	01955
Virginia	460215
USDA Soil Permit	P330-10-00117

GCAL Report#: 216110369 Page 3 of 10

Project ID: DCB/ 918.05.07 **Report Date:** 11/09/2016

Case Narrative

Client: Synterra Report: 216110369

Gulf Coast Analytical Laboratories received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

No anomalies were found for the analyzed sample(s).

GCAL Report#: 216110369 Page 4 of 10

Project ID: DCB/ 918.05.07 **Report Date:** 11/09/2016

Sample Summary

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21611036901	MW-2	Water	11/02/2016 09:53	11/03/2016 10:00	
21611036902	MW-3	Water	11/02/2016 11:20	11/03/2016 10:00	
21611036903	MW-3 DUP	Water	11/02/2016 11:20	11/03/2016 10:00	

GCAL Report#: 216110369 Page 5 of 10

7440-38-2

Arsenic

Report#: 216110369

Project ID: DCB/ 918.05.07 **Report Date:** 11/09/2016

3.02

0.25

1.00

ug/L

Summary of Compounds Detected

MW-2		Collect Date Receive Date	11/02/2016 09:53 11/03/2016 10:00		GCAL ID Matrix	21611036901 Water	
EPA 6020A cas# 7440-38-2	Parameter Arsenic			Result 1.90	DL 0.25	LOQ 1.00	Units ug/L
MW-3		Collect Date	11/02/2016 11:20		GCAL ID	21611036902	
IVI VV-3		Receive Date	11/03/2016 10:00		Matrix	Water	
EPA 6020A							
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			3.23	0.25	1.00	ug/L
		Collect Date	11/02/2016 11:20		GCAL ID	21611036903	
MW-3 DUP		Receive Date	11/03/2016 10:00		Matrix	Water	
EPA 6020A							
CAS#	Parameter			Result	DL	LOQ	Units

GCAL Report#: 216110369 Page 6 of 10

Project ID: DCB/ 918.05.07 **Report Date:** 11/09/2016

Sample Results

 MW-2
 Collect Date
 11/02/2016 09:53
 GCAL ID
 21611036901

 Receive Date
 11/03/2016 10:00
 Matrix
 Water

EPA 6020A

Prep Date Prep Batch		Prep Method	Dilution	Analysis Date	Ву	Analytical Batch	
11/04/2016 09:45	598147	EPA 3010A	1	11/07/2016 23:25	JLN	598385	
CAS#	Parameter			Result	DL	LOQ	Units

7440-38-2 Arsenic 1.90 0.25 1.00 ug/L

 MW-3
 Collect Date
 11/02/2016 11:20
 GCAL ID
 21611036902

 Receive Date
 11/03/2016 10:00
 Matrix
 Water

EPA 6020A

Prep Date	Prep Batch	Prep Method	Dilution	Analysis Date	Ву	Analytical Batch	
11/04/2016 09:45	598147	EPA 3010A	1	11/07/2016 23:29	JLN	598385	
CAS#	Parameter			Result	DL	LOQ	Units
7440-38-2	Arsenic			3.23	0.25	1.00	ug/L

EPA 6020A

Prep Date 11/04/2016 09:45	Prep Batch 598147	Prep Method EPA 3010A	Dilution 1	Analysis Date 11/07/2016 23:33	By JLN	Analytical Batch 598385	
CAS# 7440-38-2	Parameter Arsenic			Result 3.02	DL 0.25	LOQ 1.00	Units ug/L

GCAL Report#: 216110369 Page 7 of 10

Project ID: DCB/ 918.05.07 **Report Date:** 11/09/2016

Inorganics QC Summary

Analytical Batch	MB598147	LCS598147					
598385	GCAL ID	1625904	1625905				
Prep Batch	Sample Type	MB	LCS				
598147	11/04/2016 09:45	11/04/2016 09:45					
Prep Method	11/07/2016 22:14	11/07/20	16 22:18				
EPA 3010A	Matrix	Water		Water			
EPA 602	20 Λ	Units	ug/L	Spike	Result	0/. D	Control
LFA 002	LUA	Result DL		Added		/01	Limits%R
Arsenic	7440-38-2	0.25U	0.25	50.0	52.9	106	80 - 120

GCAL Report#: 216110369 Page 8 of 10

CHAIN OF CUSTODY RECORD

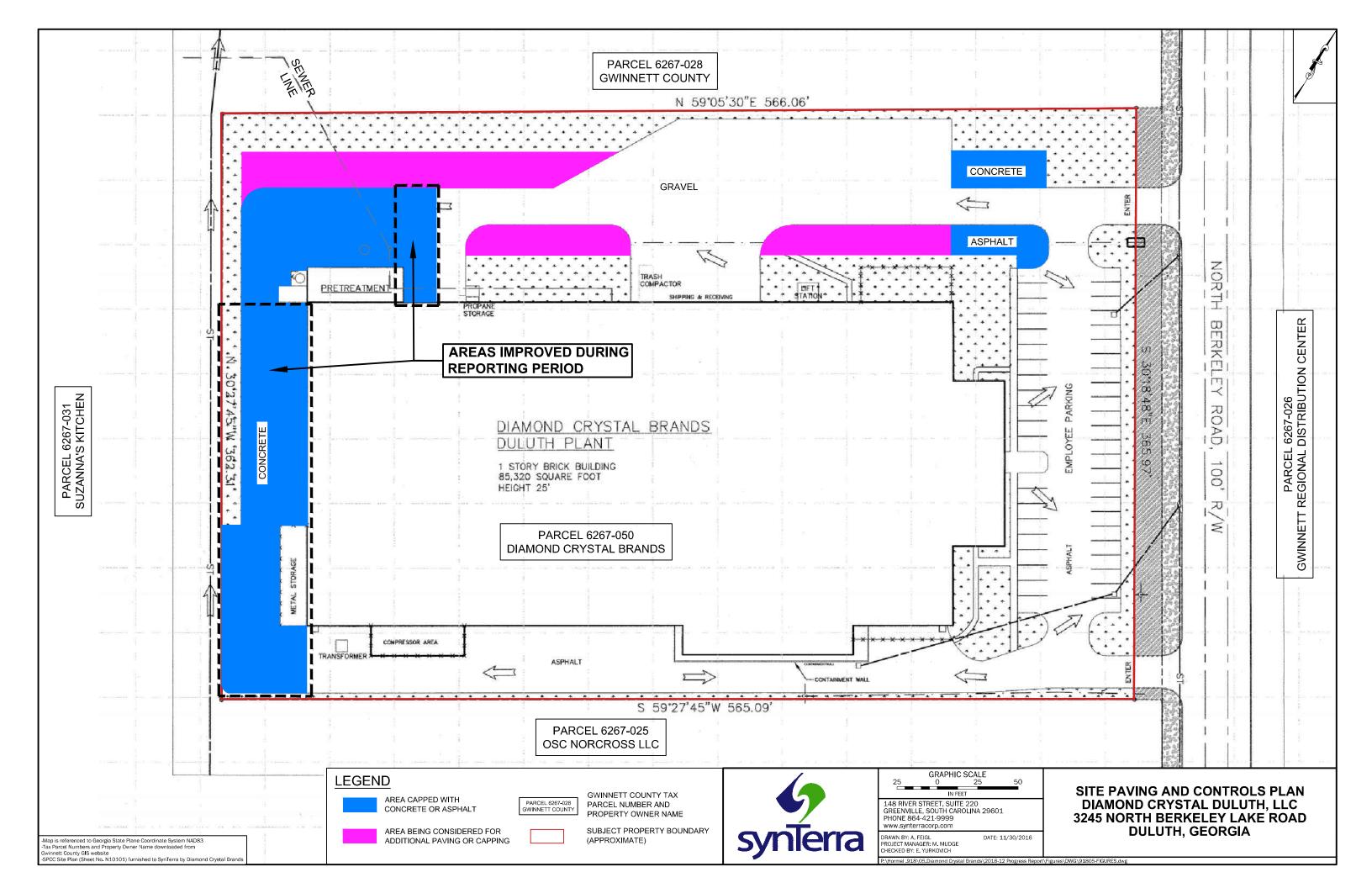
Client ID: 4945 - Synterra

SDG: 216110369

PM: SAB3

Client Addre Conta Phot E-m	ess: 14 Go et: M ne: 8	Report SANTE	ort to: NEA DE ST LLE S LUCKE DOGE Project I	633 Na Carr	Contact: Phone: 864-431-9999 E-mail:	No 1	TSTAL ARSENIC	ytical Requests &	Method	GCAL use only: Custody Seal used yes no intact yes no Temperature °C O.4, L162 32, 55 com Dissolved Analysis Requested Field filtered Lab filtered
Matrix ¹	Date	Time (2400)	Comp	Grab	Sample Description	Con- tainers▼				Preservative
W	11/2/16	953		~	MW-9	1	X			# 1
W	ulalio	1190		~	HW-3	1	X		7 1 8	2
W	11/2/16			V	MW-3 DY	1	K			3
				1,2						
		5							4 5 4	
			1							
Air Bill Turn <i>A</i>		ime (Bu	777 siness D	6 13	24h*	ard (Per 0	Contract/Que	ote)		
delinguished delinguished delinguished	by Signature	ANE	2	Date:	10 10 10 10 10 10 10 10	Date:	Time: 10.75 Time: 1000	By submitting these sam conditions contained in	our most recent sched	CAL's terms and dule of services. changes. Please email written changes to your P

ANDISTICAL PROPERTORIES, LLC			SAMPLE RECEIVING CHECKLIST	* 2	1 6 1	1 0 3	69*
SAMPLE DELIVERY GROU	UP 216110	369	CHECKLIST		YES	NO	NA
Client PM SAB3	Transport N	lethod	Samples received with proper thermal and chemical preservation?		~		
4945 - Synterra	FEDEX		Radioactivity is <1600 cmp? If no, record cmp value in notes section.		~		
			Custody seals present and intact?		~		
			COC relinquished and complete (including sample IDs, collect dates/times, and sample	r name)?	~		
Profile Number 271713	Received B		Short holds or RUSH samples received?			~	
2/1/13	Lonon, Nanc		All containers received in good condition and within hold time?		~		
			All sample labels and containers received match the chain of custody?		~		
Line Item(s)	Receive Da	te(s)	Preservation checked at receipt? Exceptions: VOC, Coliform, TOC, Oil and Grease, DC	C	~		
1 - Water-Arsenic	11/03/16		Preservative added to any containers?			~	
			VOC water containers received with headspace < 6mm?				~
			Received filtered sample volume for dissolved analysis?				~
			Trip blank present in all coolers containing VOC waters?				~
			Samples collected in containers provided by GCAL?		~		
COOLERS			DISCREPANCIES LAB PRESERVATION	S			
Airbill Thermomete	r ID: E26	Temp(°C)	None				
7776 1556 6522		0.4					
·		1.1					
			, s				
×.							
* * * * * * * * * * * * * * * * * * *							
* * *							
NOTES	-		1				

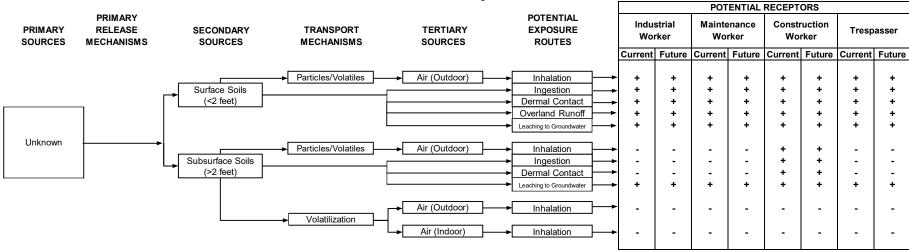

Revision 1.5 Page 1 of 1

GCAL Report#: 216110369 Page 10 of 10

Diamond Crystal Duluth, LLC; HSI Site No. 10844

SynTerra

APPENDIX C UPDATED PAVING AND SITE CONTROLS PLAN



Diamond Crystal Duluth, LLC; HSI Site No. 10844

SynTerra

APPENDIX D UPDATED CONCEPTUAL SITE MODEL

Site Conceptual Exposure Model Diamond Crystal Duluth, LLC 3245 North Berkeley Lake Road Duluth, Georgia

Notes:

- + This route is a primary source of exposure.
- There is no exposure by this route.