Voluntary Remediation Program Sixth Progress Report

Roper Pump Company HSI No. 10901 Commerce, Georgia

Roper Pump Company

PUMPS

Responsive partner. Exceptional outcomes. 3475 Old Maysville Road Commerce, Georgia 30529

Prepared by:

WENCK 1080 Holcomb Bridge Road Bldg 100, Suite 190 Roswell, Georgia 30076 Phone: 678-987 Fax: 678-987

Table of Contents

1.0 INTRODUCTION					
	1.1 1.2	Historical Activities1-1Site Geology and Hydrogeology1-1			
2.0	SUMM	ARY OF SITE ACTIVITIES			
	2.1 2.2 2.3	Full Scale Groundwater Injections2-1Post-Injection Monitoring and Groundwater Sampling2-2Monitoring Well Survey2-3			
3.0	SAMP	LING PROCEDURES			
	3.1 3.2	Water Level MEasurements 3-1 Groundwater Sampling 3-1			
4.0	DISCU	JSSION OF ANALYTICAL RESULTS			
5.0	CONC	EPTUAL SITE MODEL 5-1			
	5.1 5.2 5.3 5.4	Constituents of Concern5-1Center of the Plume5-1Groundwater Flow Characteristics5-1Extent of Groundwater Impacts5-1			
6.0	PLANI	NED ACTIVITIES AND SCHEDULE			

<u>TABLES</u>

Monitoring Well Construction Details
Summary of Groundwater Elevations
Summary of Groundwater Field Parameters
Summary of Groundwater Analytical Results
Post-Injection Analytical Trends
Projected VRP Schedule

FIGURES

Figure 1 Figure 2	Site Location Map Alley Full-Scale Injection Locations
Figure 3	Barrier Wall Full-Scale Injection Locations
Figure 4	Sile Delali Map Detentiometria Surface Man - October 2017
Figure 5	Croundwater Analytical Man – October 2017
Figure 6A	Groundwater Analytical Map – October 2017
Figure 60	Analytical Trands at Wall MW 6DS
Figure 60	Analytical Trends at Well MW 95
Figure 6E	Analytical Trends at Well MW-12
Figure 6E	Analytical Trends at Well MW-13
Figure 6G	Analytical Trends at Well MW-12
Figure 6H	Analytical Trends at Well MW-21D
Figure 6I	Analytical Trends at Well MW-23
Figure 7A	1,1,2,2-tetrachloroethane Isoconcentration Map – October 2017
Figure 7B	1,1,2,2-tetrachloroethane Isoconcentration Map – Jan-March 2018
Figure 8A	Tetrachloroethene Isoconcentration Map – October 2017
Figure 8B	Tetrachloroethene Isoconcentration Map – Jan-March 2018
Figure 9A	Trichloroethene Isoconcentration Map – October 2017
Figure 9B	Trichloroethene Isoconcentration Map – Jan-March 2018
Figure 10A	Cis-1,2-dichloroethene Isoconcentration Map – October 2017
Figure 10B	Cis-1,2-dichloroethene Isoconcentration Map – Jan-March 2018
Figure 11	Cross-Section Location Map
Figure 12	Cross Section A-A'
Figure 13	Cross Section B-B'

APPENDICES

Appendix A	Full-Scale Treatment Information
Appendix B	Field Sampling Forms
Appendix C	GLS Survey Report
Appendix D	Laboratory Analytical Reports

PG Certification

"I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, <u>et seq</u>.). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors or the Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.

Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long-term monitoring, I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division.

The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Katie Ross, P.G.

Ratie Ross, P.G./ Regional Resource Group Leader Real Estate Resources

May 11, 2018

Registration No. 1776 State of Georgia

May 2018

iii

\\atlanta-dc1\atlanta\Technical\6572 Roper Pump Company\6572-0001 Roper Pump HSI 10901\Phase-07 6th VRP Progress Report\Roper 6th VRP PR FINAL.docx The Roper Pump Company ("Roper") facility is located at 3475 Old Maysville Road in Commerce, Jackson County, Georgia (HSI Site No. 10901) ("Site"). The Site location is shown on **Figure 1**. The Voluntary Remediation Program ("VRP") Application was submitted to the Georgia Environmental Protection Division ("EPD") on December 18, 2014. EPD approved the VRP Application in a letter dated April 13, 2015. This Sixth VRP Progress Report provides a summary of activities conducted from November 2017 through April 2018 ("Report Period").

1.1 HISTORICAL ACTIVITIES

The Roper Pump Company manufactures gear pumps, progressive cavity pumps, flow dividers, and power sections for clients in the energy, transportation, and food and beverage industries. In May 2009 during construction activities associated with a facility building expansion, soil and groundwater adjacent to an abandoned storm sewer line were found to have elevated concentrations of volatile organic compounds ("VOCs"), primarily tetrachloroethene ("PCE") and trichloroethene ("TCE"). A Release Notification was submitted to the EPD pursuant to the Hazardous Site Response Act ("HSRA") on July 13, 2009. The facility was listed on the Georgia Hazardous Site Inventory ("HSI") on November 23, 2009 as HSI No. 10901 for releases of 1,1,2-trichloroethane ("1,1,2-TCA") to soil and groundwater above a reportable quantity. Other contaminants documented in groundwater included 1,1,2,2-tetrachloroethane, 1,1-dichloroethene, chloroform, cis-1,2-dichloroethene ("cis-DCE"), PCE, TCE, benzene, methyl ethyl ketone, and trans-1,2-DCE.

Corrective actions conducted at the Site to date includes: excavation of contaminated soil; installation and operation of an SVE system; installation of a 60 mil HDPE vapor barrier beneath the office portion of the building expansion; and Bioavailable Absorbent Media ("BAM") injection. The BAM injection is further discussed in Section 2.1.

1.2 SITE GEOLOGY AND HYDROGEOLOGY

The Site is in the Piedmont Physiographic Province of Georgia. Soils in the Piedmont are derived through weathering of the underlying metamorphic rocks, predominantly composed of gneisses and schists. According to the December 2014 VIRP, the Natural Resources Conservation Service ("NRSC") Soil Survey described the Site as being composed of predominantly Cecil sandy loam developed primarily from fine to coarse grained gneisses followed by hornblende and tale schists.

The Piedmont Province typically consists of crystalline bedrock with discontinuous fractures containing water, which are hydraulically connected to the saprolite (weathered bedrock and soil or residuum) above. The degree of fracturing and size of the fracture apertures (openings) tends to decrease with depth.

Groundwater in the Piedmont Province occurs under unconfined conditions where the potentiometric surface mimics the ground surface topography. Along topographically low areas, the water table typically occurs within soil and saprolite of the hydrogeological profile. Along topographically high areas, the water table often occurs in underlying crystalline bedrock. The saprolite-bedrock aquifer is recharged by rainfall and discharges

into streams in valley bottoms. The saprolite stores and transmits water in the pore spaces between the soils (clays, silts, and sands) that comprise the saprolite. The saprolite has a much higher storage capacity but lower transmissivity than the underlying bedrock. The bedrock stores and transmits water through secondary porosity features (fractures, joints, and faults). The bedrock can transmit very large volumes of water; the transmissivity depends on the density and orientation of the secondary porosity features. Based on the local topography around the Site and available site information, shallow groundwater generally flows in an easterly direction.

During this Report Period, Roper conducted the following activities:

- ▲ Conducted the full-scale BAM groundwater injections (December 2017);
- Conducted full-scale post-injection monitoring (January through March 2018); and
- Surveyed horizontal and vertical locations of monitoring wells (March 2018).

These activities are further summarized below.

2.1 FULL SCALE GROUNDWATER INJECTIONS

From December 4 to December 13, 2017, Wenck Associates, Inc. ("Wenck"), along with ORIN Technologies and Geolab Drilling, mobilized to perform full scale groundwater BAM injections. The treatment included a combination of BAM and Anaerobic BioChem Carbon ("ABC"):

- BAM is a sustainable, pyrolized, recycled cellulosic bio-mass product (>80% fixed carbon) derived from a proprietary blend of recycled organic materials with a high cation exchange and an estimated half-life of 500 years. BAM has diverse pore sizes with a minimum total surface area of up to 1,133 square meters per gram. BAM has the ability to provide ample usable surface area for maximizing microbial colonization and thereby an active microbial community. BAM's affinity for organic and inorganic compounds supports maximum contact (bio-availability through high sorbency) with microbes allowing for complete degradation. Select locations included 0.3% of zero valent iron ("ZVI").
- ABC is a patented mixture of lactates, fatty acids, alcohols and a phosphate buffer. The lactate components serve as the short-term (more quickly consumed) components and the fatty acids serve as long-term releasing components.

The full-scale remediation approach included a BAM injection that was conducted in December 2017 through a series of borings using direct push technology ("DPT"), spaced in a grid-like pattern in five areas of the Site: 1) the "alley"; 2) the building interior; 3) the loading dock; 4) near MW-23; and 5) the barrier wall. Wenck advanced a total of one-hundred and nine (109) borings at the Site, to the depth of approximately 20 to 50 feet. The treatment chemistry was injected into the rods to create minimal positive pressure before commencing injection into the surrounding formation. The rods were then raised through the vertical treatment zone while simultaneously injecting the treatment chemistry into the formation.

The 109 borings were completed as follows:

• Wenck advanced forty-four (44) direct push borings in the alley area at the Site. The borings were installed in a grid pattern evenly spaced throughout the alley. Two boring locations were moved next to monitoring wells MW-21 and MW-7 in order to add additional injection chemistry to these areas. In general, the injection borings were advanced to a total depth of approximately 50 feet and the treatment chemistry was injected from approximately 21 feet to 50 feet from the bottom up.

- Wenck advanced eight (8) direct push borings in the loading dock area at the Site. The borings were installed in the loading dock and in the area of MW-6 at the entrance to the alley. In general, the injection borings were advanced to a total depth of approximately 49 feet and the treatment chemistry was injected from approximately 21 feet to 49 feet from the bottom up.
- Wenck advanced ten (10) direct push borings inside the building in the area of MW-13. The borings were installed in a grid pattern evenly spaced throughout shelving units in the building. An additional three borings were added near MW-13 in order to add additional injection chemistry in the area. In general, the injection borings were advanced to a total depth of approximately 49 feet and the treatment chemistry was injected from approximately 21 feet to 49 feet from the bottom up.
- Wenck advanced six (6) direct push borings in the area upgradient of MW-23. The borings were installed in a grid pattern shaped like a triangle. Due to a gas line, one point of the triangle had to be moved east toward MW-23. In general, the injection borings were advanced to a total depth of approximately 49 feet and the treatment chemistry was injected from approximately 21 feet to 49 feet from the bottom up. Approximately 400 gallons of a 7.5% BAM solution was added to borings in this area.
- Wenck advanced forty-one (41) direct push borings to form a barrier wall east of the building along the northeastern property boundary. The borings were installed in two rows along the northeastern fence of the property. In general, the injection borings were advanced to a total depth of approximately 49 feet and the treatment chemistry was injected from approximately 21 feet to 49 feet from the bottom up.

A number of borings encountered short circuiting or intervals of no flow. If the injection chemistry was unable to be injected at the planned interval, the injection chemistry was either added to the adjoining boring or at the interval above or below the planned injection interval. **Figure 2** shows the locations of the injection locations in the alley, loading dock, and interior areas. **Figure 3** shows the locations of the injection points in the barrier wall and MW-23 areas.

The remedial injection treatment chemistry was prepared using specialized injection equipment. The treatment chemistry was mixed and temporarily staged prior to injection in 200-gallon tanks located inside an enclosed injection trailer. The tank was first filled with the proper amount of water to achieve the desired BAM concentration. Multiple tanks were mixed and used during the injection, which enabled work to proceed steadily and efficiently. The treatment chemistry was pumped into the formation using an air-driven, chemically resistant pump. Additional details about the injection can be found in **Appendix A**.

2.2 POST-INJECTION MONITORING AND GROUNDWATER SAMPLING

Wenck began post-injection monitoring events in January 2018. During the Reporting Period, Wenck conducted post-injection monitoring events in January, February, and March. Wenck collected water level measurements, post-injection field parameter readings, and groundwater samples for target VOC parameter analyses from five (5) select monitoring wells each month. Field parameters recorded included: pH, conductivity, oxidation reduction potential ("ORP"), temperature, and dissolved oxygen ("DO"). Water level measurements and post-injection field parameter readings were collected during each event from the following monitoring wells:

- January: MW-7, MW-13, MW-21, MW-22, and MW-23.
- February: MW-9S, MW-12, MW-13D, MW-15D, and MW-21D.
- March: MW-6DS, MW-9D, MW-12D, MW-13, and MW-23.

The sampling activities were performed in general accordance with the U.S. Environmental Protection Agency ("EPA") Region 4 Science and Ecosystem Support Division ("SESD") Quality System and Technical Procedures for surface water (SESDPROC-201-R3) sampling and groundwater (SESDPROC-301-R3) sampling. All groundwater water samples were analyzed for VOCs (EPA method 8260) analysis. The locations of the monitoring wells are shown on **Figure 4**. The monitoring well construction details are presented in **Table 1** and the water level measurements collected during the sampling event are presented in **Table 2**. Water quality field parameters measured during the October 2017 event are provided in **Table 3**. A description of the groundwater sampling procedures is presented in Section 3.0 and the groundwater sampling field forms are provided in **Appendix B**. The results of the post-injection groundwater monitoring are discussed in Section 4.0.

The monthly post-injection monitoring events are planned to continue until June 2018. The results of the January through March post-injection monitoring events are discussed in Section 4.0. The April through June 2018 post-injection sampling events will be discussed in the next reporting period.

2.3 MONITORING WELL SURVEY

On March 7, 2018, Wenck along with Georgia Land Survey ("GLS") mobilized to survey the horizontal and vertical locations of the five vertical delineation monitoring wells (MW-12, MW-13, MW-21, MW-22, and MW-23) that were installed in October 2017. GLS also surveyed the performance well MW-21D and monitoring wells MW-2, and MW-6 while onsite. The updated survey data is shown in **Table 2.** A copy of GLS's survey report can be found in **Appendix C**.

3.1 WATER LEVEL MEASUREMENTS

Prior to sampling, depths to groundwater and total well depths were measured using a water level indicator. Previously marked reference points were used to ensure consistency of measurements. Depths were measured to the nearest 0.01 foot. Water level measurement results are presented in **Table 2.** A potentiometric surface map depicting groundwater flow during the last sitewide groundwater gauging event (October 2017) is presented on **Figure 5**. Groundwater elevations recorded on October 12, 2017 indicated that groundwater beneath the site flows to the east with an average hydraulic gradient of 0.029 feet/foot.

During the post-injection monitoring events, measured depth to water ranged from 17.23 to 23.38 feet below top of casing ("TOC"). The water table elevations ranged from 874.72 feet above mean sea level ("msl") to 878.44 feet msl. The observed groundwater conditions during this period are consistent with previous synoptic monitoring events. Groundwater gauging of all wells will be performed as part of the July 2018 monitoring event.

3.2 GROUNDWATER SAMPLING

Post-injection groundwater sampling from January to March 2018 included collection of samples from five (5) select wells each month. Thirteen (13) monitoring wells (MW-6DS, MW-7, MW-9S, MW-9D, MW-12, MW-12D, MW-13, MW-13D, MW-15D, MW-21, MW-21D, MW-22, and MW-23) have been sampled during this period with monitoring wells MW-13 and MW-23 being sampled twice.

The following field parameters were measured using direct reading instruments: DO, pH, conductivity ("SC"), water temperature, turbidity, and ORP. The results of these measurements are presented in **Table 3**. Groundwater parameters during purging were considered stable when at least three (3) sets of readings were within the following ranges:

- ▲ pH (± 0.1 SU);
- ▲ SC (± 5%);
- ▲ Turbidity (<10 NTUs or stable); and
- ▲ DO (± 0.2mg/L or 10%, whichever was greater);

Pumping rates were established at 0.1 liters per minute and adjusted to accommodate drawdown, if necessary. Purge water from the wells was placed into 55-gallon steel drums. The drums of investigation-derived waste ("IDW") were properly labeled prior to leaving the site.

Groundwater samples were collected after field parameters stabilized. The samples were collected in laboratory supplied pre-preserved bottles, placed in a cooler with ice, and submitted under chain-of-custody control to Pace Analytical Services, LLC ("Pace") for laboratory analysis. All groundwater samples were analyzed to determine concentrations of VOCs using EPA method 8260B. Field logs of the sampling activities are provided in **Appendix B**.

Decontamination of non-disposable equipment was performed during the sampling event. Equipment was cleansed after each use with phosphate-free laboratory detergent and rinsed with distilled water in general accordance with the EPA SESD OP for *Field Equipment Cleaning and Decontamination* (SESDPROC-205-R3, December 2015). The equipment was then allowed to air dry.

A full-scale injection event was performed in December 2017, and post-injection monitoring was performed monthly between January and March 2018. Select groundwater wells in the injection areas were sampled in January through March 2018 to evaluate groundwater conditions in and immediately downgradient of the injection areas. The results of the January, February, and March post-injection groundwater sampling events are summarized below.

Groundwater samples were collected from thirteen (13) monitoring wells during the January through March groundwater sampling events. As shown on **Table 4**, eight (8) constituents were detected above the laboratory reporting limit. Of those constituents, four (4) were detected at concentrations above the Type 4 risk reduction standard ("RRS"), including: 1,1,2,2-Tetrachloroethane ("1,1,2,2-TCA"), Cis-1,2-dichloroethene ("cis-DCE"), Tetrachloroethene ("PCE"), and Trichloroethene ("TCE"). Results are as follows:

- 1,1,2,2-Tetrachloroethane exceeded the RRS at MW-7 (13 μg/L).
- Cis-DCE exceeded the RRS at six (6) wells: MW-7 (900 µg/L), MW-12 (11,700 µg/L), MW-13 (2,000 µg/L (January) and 890 µg/L (March)), MW-21 (5,100 µg/L), MW-22 (1,600 µg/L), and MW-23 (650 µg/L (January) and 1,070 µg/L (March)).
- PCE exceeded the RRS at eight (8) wells: MW-7 (17,000 µg/L), MW-12 (8,050 µg/L), MW-13 (44,000 µg/L (January) and 31,400 µg/L (March)), MW-13D (592 µg/L), MW-15D (1,520 µg/L), MW-21 (2,400 µg/L), MW-22 (38,000 µg/L), and MW-23 (115 µg/L (March)).
- TCE exceeded the RRS at ten (10) wells: MW-6DS (34.1 μg/L), MW-7 (330 μg/L), MW-9D (13.7 μg/L), MW-12 (1,540 μg/L), MW-12D (27.3 μg/L), MW-13 (1,200 μg/L (January) and 626 μg/L (March)), MW-13D (890 μg/L), MW-15D (97 μg/L), MW-21 (1,100 μg/L), and MW-23 (200 μg/L (January) and 148 μg/L (March)).

Laboratory reports and supporting chain-of-custody documentation are included in **Appendix D**.

In comparison to pre-injection groundwater conditions in 2017, a decrease in parent product, PCE was observed in nine (9) of the thirteen (13) wells (MW-7, MW-9S, MW-12, MW-13, MW-13D, MW-21, MW-21D, MW-22, and MW-23) sampled during the post-injection groundwater monitoring. Additionally, a decrease in TCE was observed in twelve (12) of the thirteen (13) wells (MW-7, MW-9S, MW-9D, MW-12, MW-12D, MW-13, MW-13D, MW-15D, MW-21, MW-21D, MW-22, and MW-23) sampled during the post-injection groundwater monitoring. These results suggest the BAM injection is working to reduce PCE in the groundwater plume. This is further supported by an increase in cis-DCE in five (5) monitoring wells (MW-7, MW-12, MW-21, MW-22, and MW-23). Deep wells located below the targeted injection zone remained relatively stable following the BAM injection event (MW-6DS, MW-9D, MW-12D, and MW-15D). The following table summarizes post-injection information available to date:

	Tetra	achloroethen	e (PCE)	Tric	chloroethene	(TCE)
Well ID	Oct 2017	Post- Treatment	% Reduction	Oct 2017	Post- Treatment	% Reduction
MW-7	19,000	17,000	11%	600	330	45%
MW-9S	1,200	Non-detect	100%	260	Non-detect	100%
MW-12	64,000	8,050	87%	2,800	1,540	45%
MW-13	72,000	31,400	56%	2,200	626	72%
MW-13D	4,100	592	86%	1,000	890	11%
MW-21	39,000	2,400	94%	2,900	1,100	62%
MW-21D	1,000	7.1	99%	190	4.1	98%
MW-22	47,000	38,000	19%	790	Non-detect	100%
MW-23	5,500	115	98%	3,700	148	96%

Table 4-1. Post-Injection Analytical Trends

The analytical results from the October 2017 and January through March post-injection monitoring are shown in **Table 4**. **Figure 6A** and **Figure 6B** show the October 2017 and January through March Post-injection monitoring results. Graphs showing the analytical trends for select groundwater wells are shown in **Figures 6C-61**.

Roper previously developed a conceptual site model ("CSM") which provides the basis for identifying and evaluating potential contaminant sources and transport mechanisms for contaminant migration through the environment, as well as evaluation of potential risk to receptors. The CSM defines site characteristics, release sources, extent of the plume(s), likely fate and transport mechanisms, potential exposure pathways, and potential sensitive receptors that could be impacted.

We anticipate updating the CSM following the July 2018 sitewide monitoring event. The following sections summarize the current understanding of the CSM based on the most recent site information.

5.1 CONSTITUENTS OF CONCERN

Environmental assessment activities have been ongoing at the Site since 2009. The most recent groundwater analytical testing identified four (4) compounds which were detected at concentrations greater than non-residential RRS including the following: 1,1,2,2-TCA; cis-DCE; PCE, and TCE.

5.2 CENTER OF THE PLUME

The VRP application included a discussion of historical activities that contributed to the impacts at the Site. The information indicates that the cause of VOCs released to the subsurface was from a spill(s) that occurred in the vicinity of the abandoned storm sewer located near the overhang storage. The abandoned storm sewer extends underground from the inlet located under Loading Dock #1, northwest to the storm drain. Site information collected since the original VRP application supports this assessment and demonstrates that the highest concentrations of VOC in groundwater are present near the abandoned storm sewer including areas beneath existing buildings. PCE concentrations in groundwater decrease along a gradient with increasing distance downgradient of the abandoned storm sewer.

5.3 GROUNDWATER FLOW CHARACTERISTICS

As previously discussed, water level measurements collected on October 12, 2017 (**Table 2**) were used to develop a potentiometric surface map for the Site. As shown on **Figure 5**, the groundwater elevation data indicates groundwater beneath the site flows to the east with an average hydraulic gradient of 0.029 feet/foot.

5.4 EXTENT OF GROUNDWATER IMPACTS

The full-scale groundwater treatment plan included chemical injection in the center of the plume and along the northeast property boundary to reduce concentrations and prevent further downgradient migration of PCE and TCE. Groundwater analytical results from the October 2017 and post-injection monitoring events are presented on **Figure 6A** and **Figure 6B**. The extents of the four (4) constituents above the EPD-approved Type 4 RRS individual and their concentrations above delineation criteria are presented on isoconcentration maps as **Figures 7A** through **10B**.

Groundwater sampling information indicates that concentrations of 1,1,2,2-TCA greater than the applicable delineation criteria and Type 4 RRS are confined to on-site wells in the center of the plume (MW-7, MW-13, and MW-22). The horizontal extent of 1,1,2,2-TCA was previously delineated to the northeast, east, and southeast by monitoring wells MW-10, MW-4, and MW-3 as shown on **Figure 7A**.

Concentrations of PCE and TCE greater than the applicable Type 4 RRS remain in the center of the plume and have migrated downgradient toward the northeast property boundary. PCE in wells MW-7, MW-12, MW-13, MW-21, and MW-22 reported PCE at 17,000 ug/L, 8,050 ug/L, 31,400 ug/L, 2,400 ug/L, and 38,000 ug/L during post-injection monitoring. Downgradient of the center of the plume, PCE was reported at MW-23 at 115 ug/L. The horizontal extents of PCE and TCE were previously delineated to the northeast, east, and southeast by monitoring wells MW-10, MW-18, MW-19, and MW-20 as shown on **Figures 8A and 9A**.

Concentrations of cis-DCE greater than the applicable delineation criteria and Type 4 risk RRS are primarily confined to on-site wells MW-7, MW-12, MW-13, MW-21, MW-22, and MW-23. Groundwater sampling information indicates that cis-DCE concentrations greater than the RRS have migrated slightly downgradient toward MW-23 but horizontal extent of cis-DCE was previously delineated to the northeast, east, and southeast by monitoring wells MW-10, MW-4, and MW-3 as shown on **Figure 10A**.

Vertical delineation activities at the site have been performed to evaluate the distribution of groundwater impacts through the aquifer. Bedrock monitoring well MW-15D was installed to provide vertical delineation information for the Site. In addition, deep monitoring wells MW-6D, MW-9D, MW-12D, and MW-13D provide information regarding vertical distribution of impacts. **Figure 11** presents a cross section location map. Groundwater concentration information results from the October 2017 sampling event are depicted on cross section **Figures 12 and 13**.

During the previous reporting period, significant efforts were made to evaluate the groundwater conditions of the plume. Specifically, samples collected during the pilot testing indicated that the majority of the impacted material was located between 30 and 40 feet bgs. A number of wells (MW-12, MW-13, MW-21 and MW-22) were strategically installed to monitor this zone within the center of the plume. Monitoring well MW-23 was installed slightly deeper in the downgradient portion of the plume.

Groundwater sampling performed in October 2017 indicated that the highest groundwater impacts were located within a vertical zone extending from approximately 30 to 45 feet bgs. PCE concentrations in wells from this vertical zone including MW-7, MW-12, MW-13, MW-21 and MW-22 were reported at 17,000 ug/L, 8,050 ug/L, 31,400 ug/L, 2,400 ug/L, and 38,000 ug/L, respectively, during the post-injection sampling events.

The October 2017 sampling also demonstrated that concentrations in the center of the plume decreased significantly within the deeper zones at depths ranging from 50 feet to 86.5 feet bgs. PCE concentrations in wells from the deeper vertical zone including MW-9D, MW-12D, MW-13D, and MW-21D were reported during the post-injection monitoring events at 1.7 ug/L, 7.2 ug/L, 592 ug/L, and 7.1 ug/L, respectively.

As provided in **Table 5**, Activities planned for the next six-month reporting period (May 2018 through September 2018) include the following:

- Continue post-injection groundwater monitoring (May and June 2018);
- Evaluate treatment effectiveness;
- ▲ Complete groundwater sampling event of select wells (July 2018); and
- ▲ Update the CSM for the site.

The Seventh VRP Progress Report will be submitted by October 31, 2018.

TABLE 1Monitoring Well Construction Details

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI No. 10901

Well Number	Well Completion Date	Top of Casing Elevation (feet-NGVD)	Depth of Screened Interval (feet BGS)	Screen Length (feet)
MW-1	2/10/2014	895.62	11.5 - 26.5	15
MW-2	2/10/2014	896.57	9.9 - 24.9	15
MW-3	2/17/2014	901.06	11.9 - 26.9	15
MW-4	2/18/2014	899.10	9.7 - 24.7	15
MW-5	2/18/2014	898.65	9.9 - 24.9	15
MW-6	2/17/2014	898.33	9.2 - 24.2	15
MW-6D	2/14/2014	898.25	33 - 43	10
MW-6DS	2/14/2014	898.31	61 - 66	5
MW-7	2/18/2014	898.12	9.4 - 24.4	15
MW-8	10/28/2014	903.70	24.5 - 34.5	10
MW-9D	10/29/2014	898.48	63.5 - 68.5	5
MW-9S	10/29/2014	898.31	16 - 26	10
MW-10	10/29/2014	906.94	29.5 - 39.5	10
MW-11	10/29/2014	901.31	24 - 34	10
MW-12	10/2/2017	898.28	35 - 45	10
MW-12D	8/31/2015	898.27	81.5 - 86.5	5
MW-13	10/2/2017	898.49	30 - 40	10
MW-13D	8/28/2015	898.26	64 - 69	5
MW-14	8/27/2015	899.10	25 - 35	10
MW-15D	2/24/2016	898.10	74 - 84	10
MW-16	2/25/2016	900.87	25 - 35	10
MW-17	2/25/2016	899.92	30 - 40	10
MW-18	8/26/2016	886.50	30 - 40	10
MW-19	12/2/2016	906.86	25 - 40	15
MW-20	12/9/2016	900.11	25 - 40	15
MW-21	10/3/2017	898.67	30 - 40	10
MW-21D	4/17/2017	898.76	50 - 60	10
MW-22	10/4/2017	895.67	30 - 40	10
MW-23	10/4/2017	899.60	40 - 50	10

Notes:

NGVD- National Geodetic Vertical Datum

BGS- Below Ground Surface

TBD- To Be Determined in next report period

Prepared by:	SEF	Date:	10/20/2017
Reviewed by:	MP	Date:	5/1/2018

TABLE 2 Summary of Groundwater Elevations

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI Site No. 10901

Well Number	Date Measured	Top of Casing Elevation (feet)	Depth of Screened Interval (feet BLS)	Water Depth (feet)	Groundwater Elevation (feet)
MW-4	10/12/17	899.1	9.7-24.7	23.23	875.87
	05/25/17	898.37	9.2-24.2	20.16	878.21
	06/26/17	898.37	9.2-24.2	19.89	878.48
MW-6	07/18/17	898.37	9.2-24.2	19.57	878.80
	08/24/17	898.37	9.2-24.2	19.42	878.95
	10/12/17	898.37	9.2-24.2	19.54	878.83
	05/25/17	898.25	33-43	20.14	878.11
	06/26/17	898.25	33-43	19.88	878.37
MW-6D	07/18/17	898.25	33-43	19.55	878.70
	08/24/17	898.25	33-43	19.42	878.83
	10/12/17	898.25	33-43	19.56	878.69
	05/25/17	898.31	61-66	21.45	876.86
	06/26/17	898.31	61-66	20.23	878.08
	07/18/17	898.31	61-66	19.89	878.42
MW-6DS	08/24/17	898.31	61-66	19.73	878.58
	10/12/17	898.31	61-66	19.78	878.53
	03/28/18	898.31	61-66	20.64	877.67
	05/25/17	898.12	9.4-24.4	21.12	877.00
	06/26/17	898.12	9.4-24.4	20.85	877.27
	07/18/17	898.12	9.4-24.4	20.52	877.60
MVV-7	08/24/17	898.12	9.4-24.4	20.31	877.81
	10/12/17	898.12	9.4-24.4	20.78	877.34
	01/19/18	898.12	9.4-24.4	20.86	877.26
	05/25/17	898.31	16-26	20.96	877.35
	06/26/17	898.31	16-26	20.71	877.60
	07/18/17	898.31	16-26	20.39	877.92
IVIVV-95	08/24/17	898.31	16-26	20.17	878.14
	10/12/17	898.31	16-26	20.24	878.07
	02/28/18	898.31	16-26	20.40	877.91
	05/25/17	898.48	63.5-68.5	21.24	877.24
	06/26/17	898.48	63.5-68.5	20.99	877.49
	07/18/17	898.48	63.5-68.5	20.67	877.81
	08/24/17	898.48	63.5-68.5	20.46	878.02
	10/12/17	898.48	63.5-68.5	20.53	877.95
	03/28/18	898.48	63.5-68.5	20.29	878.19
M\\\/ 10	10/12/17	898.28	35-45	20.55	877.73
	02/28/18	898.28	35-45	21.00	877.28

TABLE 2 Summary of Groundwater Elevations

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI Site No. 10901

Wall	Date	Top of	Dopth of	Wator	Groupdwater
Number	Measured	Casing	Screened	Depth	Elevation
		Elevation	Interval	(feet)	(feet)
		(feet)	(feet BLS)		
	05/25/17	898.27	81.5-86.5	21.49	876.78
	06/26/17	898.27	81.5-86.5	21.17	877.10
	07/18/17	898.27	81.5-86.5	20.85	877.42
	08/24/17	898.27	81.5-86.5	20.63	877.64
	10/12/17	898.27	81.5-86.5	20.36	877.91
	03/28/18	898.27	81.5-86.5	20.53	877.74
	10/12/17	898.49	30-40	20.37	878.12
MW-13	01/19/18	898.49	30-40	20.82	877.67
	03/28/18	898.49	30-40	20.12	878.37
	05/25/17	898.26	64-69	NM	
	06/26/17	898.26	64-69	20.74	877.53
MW-13D	07/18/17	898.26	64-69	NM	
	10/12/17	898.26	64-69	20.34	877.92
	02/28/18	898.26	64-69	20.38	877.88
	10/12/17	898.10	74-84	23.51	874.59
10100-150	02/28/18	898.10	74-84	23.38	874.72
	10/12/17	898.67	30-40	20.71	877.96
	01/19/18	898.67	30-40	21.14	877.53
	05/25/17	898.76	50-60	21.69	877.07
	06/26/17	898.76	50-60	21.41	877.35
	07/18/17	898.76	50-60	21.33	877.43
10100-210	08/24/17	898.76	50-60	20.87	877.89
	10/12/17	898.76	50-60	20.97	877.79
	02/28/18	898.76	50-60	21.17	877.59
	10/12/17	895.67	30-40	16.85	878.82
10100-22	01/19/18	895.67	30-40	17.23	878.44
	10/12/17	899.60	40-50	23.37	876.23
MW-23	01/19/18	899.60	40-50	23.85	875.75
	03/28/18	899.60	40-50	23.16	876.44

Notes:

Elevations measured to an assumed datum of 1000.00 feet TBD - To Be Determined in next report period NM - Not Measured

Prepared by:	SEF	Date:	4/2/2018
Reviewed by:	MCP	Date:	5/1/2018

TABLE 3Summary of Groundwater Parameters

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI Site No. 10901

Well ID	Date Sampled	Temp (°C)	pH (SU)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)
MW-4	10/12/2017	21.6	4.86	0.045	56.1	306.2
	9/2/2015	75.90	5.18	0.059	5.58	437.00
	3/3/2016	17.52	4.89	0.091	6.76	516.00
N <i>1</i> \\\/ _	6/26/2017	22.45	5.44	0.074	0.85	18.60
10100-0	7/18/2017	23.70	4.76	0.076	6.13	165.70
	8/24/2017	19.61	4.90	0.080	5.97	195.60
	10/12/2017	23.10	5.01	0.070	5.95	277.80
	9/3/2015	21.86	5.84	0.019	2.88	372.00
	3/4/2016	17.05	5.40	0.043	3.24	359.00
	5/25/2017	22.62	5.51	0.036	5.59	210.00
	6/26/2017	23.28	5.63	0.031	5.25	45.60
	7/18/2017	22.33	5.04	0.030	5.28	180.10
	10/12/2017	22.40	5.00	0.028	4.45	335.80
	9/2/2015	75.00	5.54	0.018	5.03	410.00
	3/3/2016	16.95	4.93	0.027	5.48	520.00
	5/25/2017	21.57	5.76	0.037	5.00	189.30
MW-6DS	6/26/2017	23.08	6.18	0.041	5.16	3.50
	7/18/2017	23.27	5.42	0.041	0.58	143.00
	10/12/2017	22.40	5.21	0.030	5.12	289.80
	3/28/2018	21.30	5.99	0.051	3.89	4.00
	9/4/2015	24.40	5.32	0.046	5.21	419.00
	5/25/2017	21.53	4.98	0.052	5.46	252.20
	6/26/2017	21.95	5.43	0.070	4.62	20.90
MW-7	7/18/2017	23.75	4.99	0.090	4.05	76.50
	8/24/2017	22.91	5.11	0.091	3.94	132.10
	10/13/2017	22.50	4.88	0.087	3.71	486.40
	1/19/2018	20.75	4.19	0.077	4.48	298.00
	9/2/2015	73.90	4.39	0.101	6.82	432.00
	5/25/2017	20.54	5.24	0.124	4.23	208.80
	6/26/2017	21.30	5.79	0.130	0.01	-1.20
MW-9S	7/18/2017	22.19	5.02	0.138	2.83	71.70
	8/24/2017	22.07	5.05	0.142	5.10	189.80
	10/13/2017	20.60	4.79	0.123	5.64	285.20
	2/28/2018	20.45	6.01	0.238	2.80	163.00
	9/2/2015	24.99	11.29	0.201	2.54	37.00
	3/2/2016	16.82	9.71	0.229	0.91	78.00
	8/31/2016	23.29	10.11	0.153	3.34	2.00
	5/25/2017	20.64	10.17	0.101	1.63	1.20
MW-9D	6/26/2017	20.95	9.31	0.093	2.97	-80.60
	7/18/2017	23.29	9.32	0.117	2.00	-139.00
	8/24/2017	23.29	9.28	0.114	2.29	-22.20
	10/12/2017	20.50	9.90	0.099	2.81	53.10
	3/28/2018	19.44	9.53	0.093	3.62	26.00

TABLE 3Summary of Groundwater Parameters

Responsive partner. Exceptional outcomes.

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI Site No. 10901

Well ID	Date Sampled	Temp (°C)	pH (SU)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)
	10/13/2017	21.90	6.21	0.085	0.80	57.20
10100-12	2/28/2018	21.28	6.07	0.171	1.18	-62.00
	9/3/2015	70.80	11.12	0.080	6.20	172.00
	3/3/2016	18.72	8.67	0.097	3.01	231.00
	8/31/2016	24.98	9.39	0.092	5.71	82.00
	5/25/2017	21.67	9.21	0.092	3.65	57.40
MW-12D	6/26/2017	21.99	9.20	0.104	3.75	-44.90
	7/18/2017	23.40	9.15	0.109	3.89	-122.10
	8/24/2017	22.90	8.87	0.100	4.84	24.40
	10/12/2017	21.60	9.31	0.080	5.31	62.50
	3/28/2018	20.08	9.07	0.077	1.31	61.80
	10/13/2017	20.60	5.18	0.055	1.38	189.90
MW-13	1/19/2018	24.22	4.73	0.073	1.08	170.00
	3/28/2018	19.89	4.72	0.070	0.81	106.70
	9/3/2015	71.30	10.53	0.070	3.46	148.00
	3/3/2016	19.71	5.74	0.049	1.66	395.00
	8/31/2016	21.47	5.56	0.115	2.83	291.00
10100-130	6/27/2017	20.97	6.44	0.048	3.94	-17.80
	10/13/2017	20.60	6.13	0.038	4.42	177.50
	2/28/2018	20.83	5.73	0.065	3.99	225.00
	10/12/2017	21.40	6.41	0.040	3.21	186.70
10100-130	2/28/2018	18.35	6.69	0.076	5.01	121.00
	10/13/2017	20.70	6.44	0.130	1.13	20.30
	1/19/2018	23.42	4.71	0.851	1.24	98.00
	5/25/2017	20.71	6.21	0.030	5.98	186.40
	6/26/2017	21.73	6.48	0.032	6.36	3.90
M\\/_21D	7/18/2017	22.14	7.21	0.037	5.97	-61.80
	8/24/2017	22.70	6.37	0.035	6.22	89.20
	10/13/2017	20.70	6.38	0.029	5.75	144.20
	2/28/2018	21.34	5.99	0.103	2.57	25.00
M\\\/_22	10/13/2017	20.70	5.13	0.059	5.92	271.00
	1/19/2018	15.88	6.13	0.361	1.91	122.00
	10/12/2017	20.50	5.51	0.056	3.83	173.80
MW-23	1/19/2018	24.46	4.76	0.538	0.78	91.00
	3/28/2018	19.82	4.83	0.278	0.28	60.90

Prepared by:	SEF	Date:	4/2/2018
Reviewed by:	MCP	Date:	4/17/2018

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI No. 10901

		proethane	hane	е		-	chene	Ð		oethene	
		achlo	roet	ethe	(T)	l/6rl	proef	ther	Ĺ)	hlor	ane
		etra	olho	oroe	Grl)	Ĕ	chlc	roe	/6rl)	-Dic	ethe
		.2-T) Tric	ichl	ene	ofor	2-di	chlo	ne (1,2))
6 I 75		1,2, g/L	1,2. g/L	1-D g/L	enze	lore	s-1, g/L	etrae g/L	olue	ans- g/L	ichl g/L
Sample ID	Date Sampled	0 1, (µ	1, (µ	, ¹ ,	Be	<u>ن</u>	C cis		Ĕ	E ti	누그
Delineatio	n Criteria (Type 1 RRS) Type 2 RRS	0.2	5	/	5	80	70	5	1000	310	5
	Type 4 RRS	1.3	5	520	8.72	80	200	98	5200	2000	5.2
	2/24/2014	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	11/7/2014	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
MVV-1	9/2/2015	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	3/2/2016	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	2/24/2014	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-2	11/7/2014	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	9/3/2015	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	3/2/2016	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	2/24/2014	<1	<1	<1	<1	<1	<1	4.5	<1	<1	35
MW 2	5/19/2014	<5	<5	<5	<5	7.1	<5	<)	<5	<5	23
14100-3	0/4/2014	<5	<5	<5	<5	<5	<5	0.3	<5	<5	55
	3/2/2015	< 5	< 5	<5	<5	<5	<5	<5	<5	<5	22
	2/24/2014	<1	<1	<1	<1	<1	14	189	<1	<1	130
	5/19/2014	<5	<5	<5	<5	38	<5	24	<5	<5	11
	11/5/2014	<5	<5	<5	<5	<5	10	170	<5	<5	98
MW-4	9/4/2015	<5	<5	<5	<5	<5	11	130	<5	<5	98
	3/4/2016	<5	<5	<5	<5	<5	6.7	88.8	<5	<5	53.4
	10/12/2017	<2	<2	<2	<5	<2	<70	13.0	<2	<2	19
	2/24/2014	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-5	11/6/2014	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	9/2/2015	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	3/2/2016	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	2/24/2014	<5	<5	<5	<5	3.0	190	930	<5	1.9	630
	9/2/2014	<5	<5	<5	<5	<5	110	120	<5	<5	40
MW-6	3/3/2016	<5	<5	<5	<5	<5	74.2	119	<5	<5	23
	6/27/2017	<2	<2	<2	<5	<2	<70	6.2	<2	<2	5.1
	10/12/2017	<2	<2	<2	<5	<2	<70	<5	<2	<2	<5
	2/24/2014	<1	<1	<1	<1	2.6	15	20	<1	<1	87
	11/6/2014	<5	<5	<5	<5	<5	<5	17	<5	<5	29
MW-6D	9/2/2015	<5	<5	<5	<5	<5	<5	18	<5	<5	30
	3/4/2016	<5	<5	<5	<5	<5	22.7	93.4	<5	<5	133
	6/27/2017	<2	<2	<2	<5	<2	<70	19.0	<2	<2	22
	10/12/2017	<2	<2	<2	<5	<2 4 E	0</td <td>13.0</td> <td><2</td> <td><2</td> <td>20</td>	13.0	<2	<2	20
	2/24/2014	<5	<5	<5	<5	4.5	124	100	<5	<5	133
MW-6DS	9/3/2014	<5	<5	<5	<5	<5	20	110	<5	<5	210
	3/3/2016	< 5	< 5	<5	<5	<5	<5	5.9	<5	<5	32.8
	10/12/2017	<2	<2	<2	<5	<2	<70	73.0	<2	<2	24
	3/28/2018	<1	<1	<1	<1	<1	37.9	4.5	<1	<1	34.1
	5/1/2009	NA	NA	NA	NA	NA	NA	1900	NA	NA	240
	2/24/2014	3.8	<1	<1	<1	<1	25	2400	<1	<1	170
	11/6/2014	9.2	<5	<5	<5	<5	27	14000	<5	<5	180
MW-7	9/4/2015	<500	<500	<500	<500	<500	<500	16000	<500	<500	<500
	6/27/2017	16	<2	2.6	<5	4	370.0	13000	<2	2	490
	10/12/2017	14	<2	3	<5	4	240.0	19000	<2	<2	600
1	1/19/2018	13	<2	3.6	<5	3.5	900	17000	<2	<2	330

Notes:

μg/L = micrograms per liter RRS = Risk Reduction Standard

< 5.0 = Analyte not detected above the laboratory detection limit

5.7 = Exceeds Delineation Criteria
 190 = Exceeds Industrial RRS
 NA = Not Analyzed

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI No. 10901

Sample ID	Date Sampled	,1,2,2-Tetrachloroethane µg/L)	,1,2-Trichloroethane ug/L)	, 1-Dichloroethene [µg/L]	Зепzene (µg/L)	Chloroform (µg/L)	zis-1,2-dichloroethene jug/L)	etrachloroethene ug/L)	Toluene (µg/L)	rans-1,2-Dichloroethene ug/L)	richloroethene ug/L)
Delineatio	n Criteria (Type 1 RRS)	0.2	5	7	5	80	70	5	1000	100	5
Benneadlo	Type 2 RRS	0.89	5	100	5.4	80	70	19	1000	310	5
	Type 4 RRS	1.3	5	520	8.72	80	200	98	5200	2000	5.2
	11/7/2014	<5	<5	<5	<5	<5	<5	70	<5	<5	12
MW-8	9/3/2015	<5	<5	<5	<5	<5	<5	70	<5	<5	9.6
	3/4/2016	<5	<5	<5	<5	<5	<5	46	<5	<5	7.1
	11/7/2014	<5	<5	<5	<5	<5	240	1600	<5	<5	600
	9/2/2015	<5	10	<5	<5	<5	260	490	<5	<5	540
MW-9S	6/27/2017	<2	<2	<2	<5	<2	250	140	<2	<2	240
	10/12/2017	<2	<2	<2	<5	<2	240	1200	<2	<2	260
	2/28/2018	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	11/6/2014	<5	<5	<5	<5	16	<5	<5	<5	<5	7.8
	9/2/2015	<5	<5	<5	<5	<5	<5	7.1	<5	<5	31
MW-9D	3/2/2016	<5	<5	<5	<5	<5	<5	<5	<5	<5	13.9
	10/12/2017	<2	<2	<2	<5	<2	<70	<5	<2	<2	18
	3/28/2018	<1	<1	<1	<1	<1	<1	1.7	<1	<1	13.7
	11/7/2014	<5	<5	<5	<5	<5	<5	<5	<5	<5	6.1
MW-10	9/3/2015	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	3/2/2016	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	11/7/2014	<5	<5	<5	44	<5	<5	110	<5	<5	59
MW-11	9/4/2015	<5	<5	<5	43	<5	<5	97	<5	<5	55
	3/2/2016	<5	<5	<5	52.6	<5	<5	129	<5	<5	64.7
MM4 10	10/12/2017	<2	<2	13	<5	4.1	140	64000	4.2	<2	2800
MVV-12	2/28/2018	<1	<1	67.3	<1	<1	11,700	8050	3.3	129	1540
	3/3/2016	<5	<5	<5	<5	<5	<5	35.8	<5	<5	140
MW-12D	10/12/2017	<2	<2	<2	<5	<2	<70	8.8	<2	<2	31
	3/28/2018	<1	<1	<1	<1	<1	<1	7.2	<1	<1	27.3
	10/12/2017	36	<2	30	<5	16	1600	72000	130	15	2200
MW-13	1/19/2018	30	<2	15	<5	11	2000	44000	110	8.8	1200
	3/28/2018	14.4	<1	10.4	<1	5.3	869	31400	51.6	<1	626
	9/3/2015	<5	<5	<5	<5	<5	5.5	140	<5	<5	770
	3/3/2016	<5	<5	<5	<5	<5	13.2	320	<5	<5	1200
MW-13D	6/27/2017	<2	<2	<2	<5	<2	<70	390	<2	<2	880
	10/12/2017	<2	<2	<2	<5	<2	<70	4100	<2	<2	1000
	2/28/2018	<1	<1	<1	<1	<1	28.3	592	<1	<1	890
MW-14	9/3/2015	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	3/2/2016	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	3/4/2016	<5	<5	<5	<5	<5	<5	1540	<5	<5	89
MW-15D	10/12/2017	<2	<2	<2	<5	<2	<70	1300	<2	<2	110
MM/ 1 C	2/28/2018	<1	<1	<1	<1	<1	7.1	1520	<1	<1	97
14147-10	3/3/2016	<5	<5	<5	< 5	<5	5.2	26.1	<5	<5	24.9
MW-17	3/4/2016	<5	<5	<5	<5	<5	15.5	553	<5	<5	158
	12/15/2010	<5	<5	<5	< 5	<5	19.5	554	< 5	<5	183
MW-18	9/2/2016	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
MW 10	12/15/2010	<5	<5	<5	<>>	<5	<>	<>>	<>>	<5	5
MW-19	12/15/2010	<5	<5	<5	~5	<5	 	~5	~5	<5	0.2
MW-20	10/12/2017	<5	<5	<5	< <u>></u>	<5	< 5 0 (5	< C /	~ 5	<5	< J
MW-21	1/10/2012	3.2	<2	15	<5	5.5	360	39000	29	2.3	2900
L	4/10/2017	<2	<2	16	~5	<2	5100	2400	0.2	9.0	1100
	4/18/2017	<2	<2	<2	<5	<2	< 5	140	<2	<2	62
MW-21D	6/2//201/	<2	<2	<2	<5	<2	0</td <td>220</td> <td><2</td> <td><2</td> <td>90</td>	220	<2	<2	90
	10/12/2017	<2	<2	<2	<5	<2	0</td <td>1000</td> <td><2</td> <td><2</td> <td>190</td>	1000	<2	<2	190
1	2/28/2018	<1	<1	<1	<⊥	<⊥	68.0	/.1	<1		4.1

Notes:

 μ g/L = micrograms per liter

RRS = Risk Reduction Standard

<5.0 = Analyte not detected above the laboratory detection limit

 5.7
 = Exceeds Delineation Criteria

 190
 = Exceeds Industrial RRS

 NA
 = Not Analyzed

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI No. 10901

Sample ID	Date Sampled	1,1,2,2-Tetrachloroethane (µg/L)	1,1,2-Trichloroethane (µg/L)	1,1-Dichloroethene (µg/L)	Benzene (µg/L)	Chloroform (µg/L)	cis-1,2-dichloroethene (µg/L)	Tetrachloroethene (μg/L)	Toluene (µg/L)	trans-1,2-Dichloroethene (µg/L)	Trichloroethene (µg/L)
Delineatio	n Criteria (Type 1 RRS)	0.2	5	7	5	80	70	5	1000	100	5
	Type 2 RRS	0.89	5	100	5.4	80	70	19	1000	310	5
	Type 4 RRS	1.3	5	520	8.72	80	200	98	5200	2000	5.2
MW-22	10/12/2017	24	<2	14	<5	14	680	47000	37.0	9.8	790
1100 22	1/19/2018	19	<2	7.2	<5	7.3	1600	38000	26	4.8	<1000
	10/12/2017	<2	<2	<2	<5	5.8	700	5500	2.5	<2	3700
MW-23	1/19/2018	<2	<2	<2	<5	<2	650	42	<2	<2	200
	3/28/2018	<1	<1	3.5	<1	<1	1070	115	<1	<1	148
B-1	5/22/2009	<5	<5	<5	<5	16	2300	600	<5	29	2500
B-10	5/21/2009	100	86	37	<5	23	4500	93000	130	47	1400
B-11	5/21/2009	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
B-20	5/22/2009	<5	<5	<5	<5	<5	8.5	530	<5	<5	7.4
SB-1	5/21/2009	<5	<5	<5	<5	10	250	190	<5	<5	810
SB-9	5/22/2009	<5	<5	<5	<5	<5	90	4900	<5	<5	1400
TW-1	5/27/2009	<5	<5	<5	<5	<5	<5	<5	<5	<5	14
TW-2	5/27/2009	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TW-3	5/27/2009	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
TW-4	5/27/2009	<5	<5	<5	130	<5	<5	9	<5	<5	6.7
TW-5	5/27/2009	<5	<5	<5	<5	<5	<5	<5	<5	<5	25
TW-6	5/27/2009	<5	<5	<5	<5	<5	<5	19	<5	<5	6
TW-7	5/27/2009	<5	<5	<5	<5	<5	9.4	33	<5	<5	60
TW-8	5/27/2009	<5	<5	<5	<5	<5	230	37	<5	<5	180

Notes:

Prepared by: SEF Reviewed by: MCP Date: ____ Date:

4/10/2018 4/17/2018

Notes: µg/L = micrograms per liter RRS = Risk Reduction Standard <5.0 = Analyte not detected above the laboratory detection limit **5.7** = Exceeds Delineation Criteria **190** = Exceeds Industrial RRS NA = Not Analyzed

TABLE 5 Projected VRP Schedule

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI No. 10901

Date	Activity
May 2018	May Post-Injection Monitoring
1010 2010	May rost mjeetion Monitoring
June 2018	June Post-Injection Monitoring
July 2018	Full Groundwater Sampling Event
September 2018	Submit Seventh VRP Progress Report

2 9:19:33 AM	201	Pre- La		1 the	Star.	100	Datil	an the	. Mar	a	1 Section	12		and the
10/31/201				114		18	1212	Port.						-
Date/Time:	and the second	12			The second		🔶 MW-19	17	-	Apple	No.		200	Sector
			Part				12	Y	AL SA	N. 2.8	1 24		TI	-
III MARKE			MW-	95	MW-2	23	MW-	-4	al and		🔶 MW-17	- 1	to the all	
1 Second	MW	-6	Parameter	ug/L	Parameter	ug/L	Parameter	ug/L	11 10-		ALL A	at 1	Par Lan	- ALAN
	Parameter	ug/L	1,1,2,2-1CA	1.200	1,1,2,2-TCA	5 500	1,1,2,2-TCA	< 2	Part of the second seco			1.499.20		1000
- AND	1,1,2,2-TCA	< 2	TCE	260	TCE	3,300		13.0		1. 10 M 19 1	LAR .		The State	and the second
10 Berger	PCE	< 5	cDEC	240	cDEC	700	CDEC	< 70	M	W-15D	A LO A	8 9		1
1111	TCE	< 5	MW-9	9D	MW-10	and the set	0.020	1	Paramet	ter ua/l	A COLOR	1984		1 1
	CDEC	< 70	Parameter	ug/L				1 3	1,1,2,2-1	TCA ·	<2			1
1 and	MW-	6D	1,1,2,2-TCA	< 2		and the second division in which the		4 MW-8	PCE	1,30	00			
1111 44	Parameter	ug/L	PCE	< 5	8	Sec. 10			TCE	11	10			
The state	1,1,2,2-TCA	< 2	TCE	18.0					cDEC	< 7	70			
		20.0	CDEC	< 70	- Comment				and the second	MM	7	1 1		
		< 70	The Me				X		1 10	Parameter				
e v fr					L Frida	1				.1.2.2-TCA	14.0	,		
Alter	Parameter			1		1 .4	A		P	CE	19,000			
	1.1.2.2-TCA	 < 2	R'a A			41	1. a /	13.32	Т	CE	600			
33/	PCE	73.0	- Well			111			cl	DEC	240			
	TCE	24.0				H.			MW-3	11 1	1 Contraction	1		
	c DEC	< 70	2	•		Pr.		(Trans			1 2			
15101	EN LO	HAN V			and the second				Maxam. III.		AN I	T		-
- And Ba	Containing in				CENTE:					1	+ MW-16	5		2
					Peterson and		MW-	21	MW-	12			A A	14
		1			and the second s	100	Parameter	ug/L	Parameter	uq/L		120		1
E E			S BL -	1	Jan	R	1,1,2,2-TCA	3.2	1,1,2,2-TCA	< 2	🔶 MW-11	1.99		
	2	1	M	N-13	1st -	(max)	PCE	39,000	PCE	6,400		11.2		11
Contraction of the local division of the loc	MW-22		Paramete	r ug/L	the is a	600 P.	TCE	2,900	TCE	2,800	12 A		SX K	1
Parame	ter ug/L	- 🔶 MW	-1 1,1,2,2-TC	CA 36.0	pill it of	8	cDEC	360	cDEC	140			4 MW-2	0
1,1,2,2-	TCA 24.0		PCE	72,000	to date	_	MW-2	21D	MW-1	.2D		34		
PCE	47,000			1 600		1	Parameter	ug/L	Parameter	ug/L		15 Ale		
TCE	790		CDLC	1,000	the state		1,1,2,2-TCA	< 2	1,1,2,2-TCA	< 2		1 3		100
c DEC	680		MV	V-13D	A CAR A CAR AND A CAR AND A	+ MW	PCE	1,000	PCE	8.8		STR 1		1 3
123		Section of the sectio	Paramete	er ug/L	-	and the second	TCE	190	TCE	31.0	1.241	you by	in an	
	Propagation		1,1,2,2-10	<u>A < 2</u>	1.44	1	CDEC	< 70	CDEC	< 70	and the second	CA S	JAR.	
PX		San C. R.	TCE	1.000		Autom	and the second se				NUM 14	1168	2.05	8
2017.r		1 Parties	cDEC	< 70			A COLORINA COLORINA			ar a	MW-14	Bellen with the second		8- JA
							and the second second	and the second	and a second sec	and some of the	a second	Contraction of the second	of Low or Low of	
r Anak	And the		1				and the second	and the second		Contraction of the local division of the loc			Con reading	1 1 2 2
ndwate		a children	1 - Carlos						and in the	The second	Constanting of the local division of the loc	State of the local division of the local div	AND AND	-
D/Gro		C Ingle	C.S. 1 2005					1	and the second	and the set of the	No. of Concession, Name	Contraction of the local division of the loc	Statement of the local division of the local	-
XW/100								1 agent	2					~K
222/0	A BARRE	ALL						a star	18.2			Ĭ A	ASSOCIATE	s I

Responsive partner. Exceptional outcomes.

P: 678-987-5840 F: 678-987-5877

1080 HOLCOMB BRIDGE RD BLDG 100, SUITE 190 ROSWELL, GA 30076

DWN APP REV DATE

REV REVISION DESCRIPTION

Legend

🔶 Monitoring Wells

Approximate Parcel Boundary

Notes

1, 1, 2, 2 - TCA: 1, 1, 2, 2 -Tetrachloroethane PCE: Tetrachloroethene TCE: Trichloroethene cDEC: Cis -1, 2 - Dichloroethene ug/L: micrograms per liter

		Fe	et			
PROJECT TITLE ROPER PUMP COMPANY HSI NO. 10901	SHEET GR F		WATI	ER ANA	LYTIC R 201	CAL 7
ROPER PUMP COMPANY	DWN BY	CHK'D	APP'D	DWG DATE	10/24/	2017
	HDK	AJH	AJH	SCALE	AS SHO	WN
3475 OLD MAYSILLE RD COMMERCE, JACKSON COUNTY, GA	PROJECT NO. 6572-0001		FIGURE N	io. 6A		rev no. 0

MW-23 Parameter µ9/L Date 1,1,2,2-TCA <1 3/28/2018 CE 115 3/28/2018 CDEC 1070 3/28/2018 DEC 1070 3/28/2018 MW-12 MW-13 MW-13 MW-14	Legend Monitoring Wells Approximate Parcel Boundary
MW-9D MW-9D Parameter H9/L Date 1,1,2,2-TCA -1 3/28/2018 CEE -1.7 3/28/2018 MW-10 MW-10 MW-10 MW-15D Parameter H9/L Dec -1.7 3/28/2018 MW-10 MW-10 MW-15D Parameter H9/L Dec -1.7 3/28/2018 MW-10 MW-6DS MW-6DS Parameter H9/L MW-6DS MW-6DS Parameter H9/L MW-6DS MW-10 MW-6DS MW-10 MW-6DS MW-10 MW-6DS MW-6DS Parameter H9/L Date MW-12 MW-6DS MW-6DS Parameter H9/L MW-6DS MW-6DS Parameter H9/L Date MW-12 MW-6DS Parameter H9/L MW-10 MW-6 MW-10 MW-10	
1,1,2,2-TCA <1	Notes 1, 1, 2, 2 - TCA: 1, 1, 2, 2 - Tetrachloroethane PCE: Tetrachloroethene TCE: Trichloroethene cDEC: Cis -1, 2 - Dichloroethene ug/L: micrograms per liter
MW-22 i,1,2,2-TCA 30 1/19/2018 Parameter µ9/L Date 1/19/2018 L,1,2,2-TCA 19 1/19/2018 CE 38000 1/19/2018 DEC 2000 1/19/2018 MW-13 Parameter µ9/L Parameter µ9/L Date 1,1,2,2-TCA 14.4 3/28/2018 CE 31400 3/28/2018 CE 328/2018 CE 3/28/2018 MW-13D MW-13D CE 626 3/28/2018 MW-13D MW-13D MW-13D MW-13D MW-13D MW-13D MW-13D MW-13D Dec 800 3/28/2018 MW-13D	F 100
Parameter P9/2 Date 1,1,2,2-TCA <1	DMPANY SHEET TITLE GROUNDWATER ANALYTICAL RESULTS JANUARY-MARCH 2018 DMPANY DMPANY DWN BY CHKTD APPTD DWG DATE OMPANY DWN BY CHKTD APPTD DWG DATE OMPANY DWN BY CHKTD APPTD DWG DATE OMPANY DWN BY CHKTD APPTD DWG DATE OUN BY FROJECT NO. FIGURE NO. 6B 0

Figure 6C: Analytical Trends at Well MW-6DS

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI Site No. 10901

Figure 6D: Analytical Trends at Well MW-9S

Roper Pump Company 3475 Old Maysville Road Commerce, Jackson County, Georgia HSI Site No. 10901

Figure 6E: Analytical Trends at Well MW-12

Figure 6F: Analytical Trends at Well MW-13

Figure 6G: Analytical Trends at Well MW-21

Figure 6H: Groundwater Quality at Well MW-21D

Figure 6I: Groundwater Quality at Well MW-23

Legend

Monitoring Wells

Approximate Parcel Boundary

1,1,2,2-TCA Concentration ug/L

0 - 2
2 - 5
5 - 10
10 - 15
15 - 20
20 - 25
25 - 30
> 30

Notes 1, 1, 2, 2 - TCA: 1, 1, 2, 2 -Tetrachloroethane ug/L: micrograms per liter

0	50	100	
	Feet		

PROJECT TITLE ROPER PUMP COMPANY HSI NO. 10901	SHEET	I, 1, 2, 2-TCA SOCONCENTRATION MAP			νP	
	/ (00			ER 201	[/)	
KUPLK FUMF CUMPANT	DWN BY CHK'D		APP'D	DWG DATE 10/24/201		2017
	HDK	AJH	AJH AJH SCALE AS SHO			WN
	PROJECT NO. FIGURE		FIGURE N	FIGURE NO.		REV NO.
COMMERCE, JACKSON COUNTY, GA	6572-	-0001		7A		0

1,1,2,2-TCA Concentration ug/L

1, 1, 2, 2 - TCA: 1, 1, 2, 2 -Tetrachloroethane ug/L: micrograms per liter

		0	20 Fe) et	40			
PROJECT TITLE ROPER PUMP COMPANY HSI NO. 10901			SHEET TITLE 1, 1, 2, 2-TCA ISOCONCENTRATION MAP					
ROPER PUMP CC	MPANY	DWN BY			AR. 20	10/24/	2017	
		HDK	АЈН	АЛН	SCALE	AS SHO	WN	
3475 OLD MAYSII COMMERCE, JACKSON	LE RD COUNTY, GA	PROJECT 6572-	NO. - 0001	FIGURE N	o. 7B		rev no. 0	

Legend

Monitoring Wells

Approximate Parcel Boundary

PCE Concentration

40

40 - 1,000

1,000 - 10,000

10,000 - 30,000

30,000 - 50,000

Notes PCE: Tetrachloroethene ug/L: micrograms per liter

Company and a second		10	01			
PROJECT TITLE	SHEET TITLE PCE ISOCONCENTRATION MAP (October 2017)					
ROPER PUMP COMPANY HSI NO. 10901						МАР
ROPER PUMP COMPANY	DWN BY	CHK'D	APP'D	DWG DATE	10/24/	2017
	HDK	AJH	AJH	SCALE	AS SHO	WN
	PROJECT NO.		FIGURE N	0.		REV NO.
COMMERCE, JACKSON COUNTY, GA	6572-0001			8A		0

Legend

Monitoring Wells

Approximate Parcel Boundary

PCE Concentration ug/L

40 - 1,000

1,000 - 10,000

- 10,000 30,000
- 30,000 50,000

Notes PCE: Tetrachloroethene ug/L: micrograms per liter

	4	
0	50	100

122	and the second							
	PROJECT TITLE	SHEET TITLE						
	ROPER PUMP COMPANY HSI NO. 10901	PCE ISOCONCENTRATION M.					МАР	
		(Janu			uary-march 2018)			
	ROPER PUMP COMPANY	DWN BY	CHK'D	APP'D	DWG DATE	10/24/	2017	
		HDK	AJH	AJH	SCALE	AS SHO	WN	
		PROJECT NO. 6572-0001		FIGURE NO. 8B			REV NO.	
	COMMERCE, JACKSON COUNTY, GA						0	

Approximate Parcel

ug/L: micrograms per liter

and the second s						
PROJECT TITLE	SHEET "	TITLE				
ROPER PUMP COMPANY HSI NO. 10901	TCE ISOCONCENTRATION MAI					
		(OCLODER 2017)				
ROPER PUMP COMPANY	DWN BY CHK'D		APP'D	DWG DATE	10/24/	2017
	HDK	АЈН	АЈН	SCALE	AS SHO	WN
	PROJECT NO.		FIGURE N	0.	REV NO.	
COMMERCE, JACKSON COUNTY, GA	6572-	-0001		9A		0

Monitoring Wells

Approximate Parcel Boundary

TCE Concentration ug/L

Notes TCE: Trichloroethene ug/L: micrograms per liter

Participant And States		-				
PROJECT TITLE	SHEET TITLE TCE ISOCONCENTRATION MAP (January-March 2018)					
ROPER PUMP COMPANY HSI NO. 10901						
	(January-March 2016)					
ROPER PUMP COMPANY			APP'D	DWG DATE	10/24/	2017
	HDK	АЈН	АЈН	SCALE	AS SHO	WN
	PROJECT NO. 6572-0001		O. FIGURE NO			REV NO.
				9B		0
COMMERCE, JACKSON COUNTY, GA						

Approximate Parcel

cDCE: Cis -1, 2 - Dichloroethene

35	Plant and a state of the state						
	PROJECT TITLE	SHEET 1	FITLE				
	ROPER PUMP COMPANY HSI NO. 10901	cDCE ISOCONCENTRATION M					MAP
		(OCLOBER 2017)					
	ROPER PUMP COMPANY			APP'D	DWG DATE	10/24/	2017
		нрк	AJH	AJH	SCALE	AS SHO	WN
		PROJECT NO.		FIGURE N	ю.		REV NO.
	COMMERCE, JACKSON COUNTY, GA	6572-	0001		10A		0

Monitoring

Approximate Parcel Boundary

cDCE Concentration ug/L

Notes cDCE: Cis -1, 2 - Dichloroethene ug/L: micrograms per liter

12	and the second se						
	PROJECT TITLE	SHEET T	TITLE				
	ROPER PUMP COMPANY HSI NO. 10901	cDCE ISOCONCENTRATION M					
		(January-March 2018)					
	RUPER PUMP COMPANY	DWN BY	CHK'D	APP'D	DWG DATE	10/24/	2017
		HDK	АЈН	АЈН	SCALE	AS SHO	WN
		PROJECT NO. 6572-0001		FIGURE N	0.	REV NO.	
	S475 OLD MATSILLE RD				10B		0
	COMMERCE, JACKSON COUNTY, GA						

cad/figures/cross section figures

45\Desktop\ROPER CROSS SECTIO

	-						
PROJECT TITLE	SHEET TITLE CROSS SECTION B-B'						
ROPER PUMP COMPANY							
COMMERCE, JACKSON COUNTY, GEORGIA	DWN BY	CHK'D	APP'D	DWG DATE	APRIL	. 2018	
HSI NO. 10901	JVB	AH	AH	SCALE	AS SH	OWN	
	PROJECT	NO.	SHEET N	0.		REV NO.	
	6572-	-0001	FIC	SURE	13		

Full-Scale Treatment Information

Wenck Associates, Inc. Roper Pump - Commerce, GA Injection Summary Table 1

						Flow	Injection		
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-1	12/4/17	10:56		54-44	6%/0%/0%	4	96	160	No flow until 44' bgs
				44-41	6%/0%/0%	4	96	55	
				41-38	6%/0%/0%	4	80	40	
				38-35	6%/0%/0%	4	60	40	
				35-32	6%/0%/0%	4	60	40	
				32-29	6%/0%/0%	4	60	40	
				29-26	6%/0%/0%	4	60	40	
			13:15	26-25	6%/0%/0%	4	60	35	450 Gallons
IP-24	12/4/17	11:45	11:55	49-25	0%/0%/0%	0	100	0	Rods clogged
IP-10	12/4/17	12:25		49-40	6%/3.0%/0.3%	6	88	160	No flow until 40' bgs
				40-38	6%/3.0%/0.3%	6	60	55	
				38-36	6%/3.0%/0.3%	6	60	40	
				36-34	6%/3.0%/0.3%	6	60	40	
				34-32	6%/3.0%/0.3%	6	60	40	
				32-30	6%/3.0%/0.3%	6	60	30	
				30-28	6%/3.0%/0.3%	6	60	30	
				28-27	6%/3.0%/0.3%	6	60	30	
			13:46	27-25	6%/3.0%/0.3%	6	60	25	450 Gallons

Injection		Timo	Timo	Injection	BAM/ABC/ ZVI	Flow Rate	Injection	Callons	
Point	Date	On	Off	Denth	Concentration	(gpm)	(psi)	Injected	Comments
IP-17	12/4/17	13.30		54-42	6%/0%/0%	4	86	200	No flow until 42' bgs
	12/1/1/	10.00		42-40	6%/0%/0%	4	86	0	
				40-38	6%/0%/0%	4	86	50	
				38-36	6%/0%/0%	4	86	0	
				36-34	6%/0%/0%	4	86	50	
				34-32	6%/0%/0%	4	86	50	
				32-30	6%/0%/0%	4	88	25	
				30-28	6%/0%/0%	4	86	25	
				28-26	6%/0%/0%	4	82	25	
			15:35	26-25	6%/0%/0%	4	65	25	450 Gallons
IP-23	12/4/17	14:21		54-52	6%/3.0%/0.3%	7	60	60	
				52-50	6%/3.0%/0.3%	7	60	60	Make up volume for IP-24
				50-48	6%/3.0%/0.3%	7	60	60	
				48-46	6%/3.0%/0.3%	7	60	60	
				46-44	6%/3.0%/0.3%	7	60	60	
				44-42	6%/3.0%/0.3%	7	60	60	
				42-40	6%/3.0%/0.3%	7	62	60	
				40-38	6%/3.0%/0.3%	7	78	60	
				38-36	6%/3.0%/0.3%	7	62	60	
				36-34	6%/3.0%/0.3%	7	80	60	
				34-32	6%/3.0%/0.3%	7	80	75	
				32-30	6%/3.0%/0.3%	7	78	75	
				30-28	6%/3.0%/0.3%	7	66	75	
			16:52	28-25	6%/3.0%/0.3%	7	62	75	900 Gallons

						Flow	Injection		
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-3	12/4/17	15:40		54-50	6%/0%/0%	6	92	60	No flow until 50' bgs
				50-48	6%/0%/0%	6	88	31	
				48-46	6%/0%/0%	6	92	31	
				46-44	6%/0%/0%	6	82	31	
				44-42	6%/0%/0%	6	74	31	
				42-40	6%/0%/0%	6	72	31	
				40-38	6%/0%/0%	6	66	35	
				38-36	6%/0%/0%	6	64	35	
				36-34	6%/0%/0%	6	60	35	
				34-32	6%/0%/0%	6	60	35	
				32-28	6%/0%/0%	6	60	0	Leak through rod's threads
			17:06	28-25	6%/0%/0%	6	52	95	450 Gallons
IP-4	12/5/17	7:52		54-52	6%/0%/0%	6	100	30	
				52-50	6%/0%/0%	6	96	30	
				50-48	6%/0%/0%	6	98	30	
				48-46	6%/0%/0%	6	78	30	
				46-44	6%/0%/0%	6	70	30	
				44-42	6%/0%/0%	6	68	30	
				42-40	6%/0%/0%	6	68	30	
				40-38	6%/0%/0%	6	66	30	
				38-36	6%/0%/0%	6	64	30	
				36-34	6%/0%/0%	6	68	30	
				34-32	6%/0%/0%	6	66	30	
				32-30	6%/0%/0%	6	64	30	
				30-28	6%/0%/0%	6	64	30	
			9:25	28-25	6%/0%/0%	6	58	60	450 Gallons

						Flow	Injection		
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-9	12/5/17	7:52		54-52	6%/3.0%/0.3%	6	96	30	
				52-50	6%/3.0%/0.3%	6	96	30	
				50-38	6%/3.0%/0.3%	6	84	80	No flow 50 to 40' bgs
				38-36	6%/3.0%/0.3%	6	90	130	
				36-34	6%/3.0%/0.3%	6	80	30	
				34-32	6%/3.0%/0.3%	6	78	30	
				32-30	6%/3.0%/0.3%	6	54	30	
				30-28	6%/3.0%/0.3%	6	70	30	
				28-26	6%/3.0%/0.3%	6	70	30	
			9:25	26-25	6%/3.0%/0.3%	6	58	30	450 Gallons
IP-19	12/5/17	8:56		54-50	6%/0%/0.3%	7	92	60	No flow until 50' bgs
				50-48	6%/0%/0.3%	7	82	30	
				48-46	6%/0%/0.3%	7	78	30	
				46-44	6%/0%/0.3%	7	70	30	
				44-42	6%/0%/0.3%	7	68	30	
				42-40	6%/0%/0.3%	7	56	30	
				40-38	6%/0%/0.3%	7	50	30	
				38-36	6%/0%/0.3%	7	50	30	
				36-34	6%/0%/0.3%	7	52	30	
				34-32	6%/0%/0.3%	7	52	30	
				32-30	6%/0%/0.3%	7	52	30	
				30-28	6%/0%/0.3%	7	48	30	
				28-26	6%/0%/0.3%	7	46	30	
			10:07	26-25	6%/0%/0.3%	7	42	30	450 Gallons

						Flow	Injection	0.11	
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-32	12/5/17	9:34		54-52	6%/3.0%/0.3%	8	68	30	
				52-50	6%/3.0%/0.3%	8	46	30	
				50-48	6%/3.0%/0.3%	8	56	30	
				48-46	6%/3.0%/0.3%	8	52	30	
				46-44	6%/3.0%/0.3%	8	44	30	
				44-42	6%/3.0%/0.3%	8	68	30	
				42-40	6%/3.0%/0.3%	8	62	30	
				40-38	6%/3.0%/0.3%	8	62	30	
				38-36	6%/3.0%/0.3%	8	60	30	
				36-34	6%/3.0%/0.3%	8	68	30	
				34-32	6%/3.0%/0.3%	8	68	30	
				32-30	6%/3.0%/0.3%	8	68	30	
				30-28	6%/3.0%/0.3%	8	68	30	
				28-26	6%/3.0%/0.3%	8	62	30	
			10:28	26-25	6%/3.0%/0.3%	8	60	30	450 Gallons
IP-16	12/5/17	10:35		48-46	6%/0%/0%	6		120	Refusal at 48' bgs
				46-44	6%/0%/0%	6		30	Now flow until 46' bgs
				44-42	6%/0%/0%	6		30	
				42-40	6%/0%/0%	6		30	
				40-38	6%/0%/0%	6		30	
				38-36	6%/0%/0%	6		30	
				36-34	6%/0%/0%	6		30	
				34-32	6%/0%/0%	6		30	
				32-30	6%/0%/0%	6		30	
				30-28	6%/0%/0%	6		30	
			11:52	28-25	6%/0%/0%	6		60	450 Gallons

Injection		Time	Time	Injection	BAM/ABC/ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-38	12/5/17	11:37		54-48	6%/3.0%/0.3%	5	98	10	No flow until 48' bgs
				48-46	6%/3.0%/0.3%	5	90	110	
				46-44	6%/3.0%/0.3%	5	86	30	
				44-42	6%/3.0%/0.3%	5	78	30	
				42-40	6%/3.0%/0.3%	5	72	30	
				40-38	6%/3.0%/0.3%	5	50	30	
				38-36	6%/3.0%/0.3%	5	68	30	
				36-34	6%/3.0%/0.3%	5	68	30	
				34-32	6%/3.0%/0.3%	5	70	30	
				32-30	6%/3.0%/0.3%	5	62	30	
				30-28	6%/3.0%/0.3%	5	62	30	
				28-26	6%/3.0%/0.3%	5	62	30	
			13:18	26-25	6%/3.0%/0.3%	5	66	30	450 Gallons
IP-2	12/5/17	12:08		54-44	6%/0%/0.3%	8		100	No flow until 44' bgs
				44-42	6%/0%/0.3%	8		30	
				42-40	6%/0%/0.3%	8		30	
				40-38	6%/0%/0.3%	8		30	
				38-36	6%/0%/0.3%	8		30	
				36-34	6%/0%/0.3%	8		30	
				34-32	6%/0%/0.3%	8		30	
				32-30	6%/0%/0.3%	8		30	
				30-28	6%/0%/0.3%	8		30	
				28-26	6%/0%/0.3%	8		30	
			13:10	26-25	6%/0%/0.3%	8		30	400 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-33	12/5/17	13:51		53-49	6%/3.0%/0.3%	8	94	60	
				49-47	6%/3.0%/0.3%	8	50	30	
				47-45	6%/3.0%/0.3%	8	60	30	
				45-43	6%/3.0%/0.3%	8	50	30	
				43-41	6%/3.0%/0.3%	8	50	30	
				41-39	6%/3.0%/0.3%	8	50	30	
				39-37	6%/3.0%/0.3%	8	50	30	
				37-35	6%/3.0%/0.3%	8	40	30	
				35-33	6%/3.0%/0.3%	8	40	30	
				33-31	6%/3.0%/0.3%	8	40	30	
				31-29	6%/3.0%/0.3%	8	40	30	
				29-27	6%/3.0%/0.3%	8	38	30	
			14:53	27-25	6%/3.0%/0.3%	8	42	30	450 Gallons
IP-18	12/5/17	13:45		49-45	6%/0%/0.3%	5	94	70	Now flow until 45' bgs
				45-43	6%/0%/0.3%	5	88	35	Make up volume for IP-2
				43-41	6%/0%/0.3%	5	88	35	
				41-39	6%/0%/0.3%	5	88	35	
				39-37	6%/0%/0.3%	5	80	35	
				37-35	6%/0%/0.3%	5	80	35	
				35-33	6%/0%/0.3%	5	80	35	
				33-31	6%/0%/0.3%	5	80	35	
				31-29	6%/0%/0.3%	5	78	35	
				29-27	6%/0%/0.3%	5	76	35	
				27-25	6%/0%/0.3%	5	70	35	
			15:24	25-21	6%/0%/0.3%	5	66	80	500 Gallons

Injection		Time	Time	Injection	BAM/ABC/ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-39	12/5/17	15:20		53-47	6%/3.0%/0.3%	5	90	25	
				47-45	6%/3.0%/0.3%	5	90	50	
				45-43	6%/3.0%/0.3%	5	90	65	
				43-41	6%/3.0%/0.3%	5	90	40	
				41-39	6%/3.0%/0.3%	5	88	30	
				39-37	6%/3.0%/0.3%	5	88	30	
				37-35	6%/3.0%/0.3%	5	70	30	
				35-33	6%/3.0%/0.3%	5	72	30	
				33-31	6%/3.0%/0.3%	5	72	30	
				31-29	6%/3.0%/0.3%	5	68	30	
				29-27	6%/3.0%/0.3%	5	66	30	
				27-25	6%/3.0%/0.3%	5	64	30	
			17:11	25-23	6%/3.0%/0.3%	5	60	30	450 Gallons
IP-5	12/5/17	15:37		49-45	6%/3.0%/0.3%	8		60	
				45-43	6%/3.0%/0.3%	8		30	
				43-41	6%/3.0%/0.3%	8		30	
				41-39	6%/3.0%/0.3%	8		30	
				39-37	6%/3.0%/0.3%	8		30	
				37-35	6%/3.0%/0.3%	8		30	
				35-33	6%/3.0%/0.3%	8		30	
				33-31	6%/3.0%/0.3%	8		30	
				31-29	6%/3.0%/0.3%	8		30	
				29-27	6%/3.0%/0.3%	8		30	
				27-25	6%/3.0%/0.3%	8		30	
			16:44	25-21	6%/3.0%/0.3%	8		90	450 Gallons

Injection	Di	Time	Time	Injection	BAM/ABC/ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	0n	Off	Depth	Concentration	(gpm)	(ps1)	Injected	Comments
IP-20	12/5/17	16:52		49-45	6%/0%/0%	8	74	60	
				45-43	6%/0%/0%	8	70	30	
				43-41	6%/0%/0%	8	80	30	
				41-39	6%/0%/0%	8	82	30	
				39-37	6%/0%/0%	8	80	30	
				37-35	6%/0%/0%	8	90	30	
				35-33	6%/0%/0%	8	78	30	
				33-31	6%/0%/0%	8	76	30	
				31-29	6%/0%/0%	8	74	30	
				29-27	6%/0%/0%	8	76	30	
				27-25	6%/0%/0%	8	72	30	
			17:44	25-21	6%/0%/0%	8	72	90	450 Gallons
IP-25	12/6/17	7:30		49-47	6%/3.0%/0.3%	7	88	30	
				47-45	6%/3.0%/0.3%	7	92	30	
				45-43	6%/3.0%/0.3%	7	98	30	
				43-41	6%/3.0%/0.3%	7	84	30	
				41-39	6%/3.0%/0.3%	7	80	30	
				39-37	6%/3.0%/0.3%	7	82	30	
				37-35	6%/3.0%/0.3%	7	82	30	
				35-33	6%/3.0%/0.3%	7	70	30	
				33-31	6%/3.0%/0.3%	7	74	30	
				31-29	6%/3.0%/0.3%	7	74	30	
				29-27	6%/3.0%/0.3%	7	68	30	
				27-25	6%/3.0%/0.3%	7	66	30	
			8:44	25-21	6%/3.0%/0.3%	7	68	90	450 Gallons

Injustion		Time	Time	Injustion		Flow	Injection	Callona	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP_6	12/6/17	7.38		19_17	6%/3.0%/0.3%	<u>(8011)</u> 8	(P31) 02	30	Conuncints
11-0	12/0/17	7.50		47-47	6%/3.0%/0.3%	8	70	30	
				47-43	6%/3.0%/0.3%	8	70	30	
				43-43	6%/3.0%/0.3%	8	81	30	
				4J-41 /1_20	6%/3.0%/0.3%	8	82	30	
				20.27	6% /3.0% /0.3%	8	78	30	
				37-35	6%/3.0%/0.3%	8	62	30	
				25.22	6%/3.0%/0.3%	0	54	30	
				22.21	6%/3.0%/0.3%	0	69	30	
				35-51	6%/3.0%/0.3%	0	00	30	
				31-29	6%/3.0%/0.3%	8	58	30	
				29-27	6%/3.0%/0.3%	8	58	30	
				27-25	6%/3.0%/0.3%	8	58	30	
			8:43	25-21	6%/3.0%/0.3%	8	50	90	450 Gallons
IP-40	12/6/17	9:20		49-42	6%/3.0%/0.3%	6	92	105	
				42-40	6%/3.0%/0.3%	6	86	30	
				40-38	6%/3.0%/0.3%	6	84	30	
				38-36	6%/3.0%/0.3%	6	82	30	
				36-34	6%/3.0%/0.3%	6	78	30	
				34-32	6%/3.0%/0.3%	6	76	30	
				32-30	6%/3.0%/0.3%	6	76	30	
				30-28	6%/3.0%/0.3%	6	74	30	
				28-26	6%/3.0%/0.3%	6	72	30	
				26-25	6%/3.0%/0.3%	6	72	30	
				25-23	6%/3.0%/0.3%	6	78	30	
			10:53	23-21	6%/3.0%/0.3%	6	82	45	450 Gallons

T • .•			T .	T		Flow	Injection	0.11	
Injection		lime	lime	Injection	BAM/ABC/ZVI	Kate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-21	12/6/17	9:26		49-45	6%/0%/0%	6	92	60	
				45-43	6%/0%/0%	6	52	30	
				43-41	6%/0%/0%	6	50	30	
				41-39	6%/0%/0%	6	50	30	
				39-37	6%/0%/0%	6	50	30	
				37-35	6%/0%/0%	6	56	30	
				35-33	6%/0%/0%	6	68	30	
				33-31	6%/0%/0%	6	64	30	
				31-29	6%/0%/0%	6	62	30	
				29-27	6%/0%/0%	6	60	30	
				27-25	6%/0%/0%	6	58	30	
				25-23	6%/0%/0%	6	56	30	
			11:01	23-21	6%/0%/0%	6	58	60	450 Gallons
IP-31	12/6/17	11:20		49-47	6%/3.0%/0.3%	4	100	30	
				47-45	6%/3.0%/0.3%	4	94	30	
				45-39	6%/3.0%/0.3%	4	92	90	No flow 45' to 41' bgs
				39-37	6%/3.0%/0.3%	4	86	30	
				37-35	6%/3.0%/0.3%	4	82	30	
				35-33	6%/3.0%/0.3%	4	76	30	
				33-31	6%/3.0%/0.3%	4	78	30	
				31-29	6%/3.0%/0.3%	4	70	30	
				29-27	6%/3.0%/0.3%	4	68	30	
				27-25	6%/3.0%/0.3%	4	60	30	
				25-23	6%/3.0%/0.3%	4	62	30	
			13:34	23-21	6%/3.0%/0.3%	4	30	60	450 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-8	12/6/17	11:44	_	49-47	6%/3.0%/0.3%	7	64	30	
	, ,			47-45	6%/3.0%/0.3%	7	70	30	
				45-43	6%/3.0%/0.3%	7	72	30	
				43-41	6%/3.0%/0.3%	7	70	30	
				41-39	6%/3.0%/0.3%	7	84	30	
				39-37	6%/3.0%/0.3%	7	72	30	
				37-35	6%/3.0%/0.3%	7	74	30	
				35-33	6%/3.0%/0.3%	7	72	30	
				33-31	6%/3.0%/0.3%	7	70	30	
				31-29	6%/3.0%/0.3%	7	62	30	
				29-27	6%/3.0%/0.3%	7	68	30	
				27-25	6%/3.0%/0.3%	7	66	30	
			12:59	25-21	6%/3.0%/0.3%	7	66	90	450 Gallons
IP-22	12/6/17	13:19		49-45	6%/3.0%/0.3%	5	90	90	
				45-43	6%/3.0%/0.3%	5	88	30	
				43-41	6%/3.0%/0.3%	5	72	30	
				41-39	6%/3.0%/0.3%	5	62	30	
				39-37	6%/3.0%/0.3%	5	60	30	
				37-35	6%/3.0%/0.3%	5	60	30	
				35-33	6%/3.0%/0.3%	5	60	30	Connected with
				33-31	6%/3.0%/0.3%	5	60	30	MW-21D
				31-29	6%/3.0%/0.3%	5	48	30	
				29-27	6%/3.0%/0.3%	5	56	30	
				27-25	6%/3.0%/0.3%	5	64	30	
			15:03	25-21	6%/3.0%/0.3%	5	62	60	450 Gallons

Injection		Timo	Timo	Injection	RAM/ARC/ 7VI	Flow	Injection	Callons	
Point	Date	On	Off	Depth	Concentration	(onm)	(psi)	Injected	Comments
IP-11	12/6/17	13.43	011	49-45	6%/30%/03%	6	78	60	Comments
	12/0/1/	10.10		45-43	6%/3.0%/0.3%	6	90	30	
				43-41	6%/3.0%/0.3%	6	82	30	
				41-39	6%/3.0%/0.3%	6	90	30	
				39-37	6%/3.0%/0.3%	6	88	30	
				37-35	6%/3.0%/0.3%	6	88	30	
				35-33	6%/3.0%/0.3%	6	86	30	
				33-31	6%/3.0%/0.3%	6	84	30	
				31-29	6%/3.0%/0.3%	6	80	30	
				29-27	6%/3.0%/0.3%	6	80	30	
				27-25	6%/3.0%/0.3%	6	78	30	
			15:22	25-21	6%/3.0%/0.3%	6	76	90	450 Gallons
IP-7	12/6/17	15:13		49-47	6%/3.0%/0.3%	6	96	30	
				47-43	6%/3.0%/0.3%	6	64	90	No flow 47' to 45' bgs
				43-41	6%/3.0%/0.3%	6	66	30	
				41-39	6%/3.0%/0.3%	6	70	30	
				39-37	6%/3.0%/0.3%	6	76	30	Mounding in MW-21
				37-35	6%/3.0%/0.3%	6	72	30	
				35-33	6%/3.0%/0.3%	6	60	30	
				33-31	6%/3.0%/0.3%	6	68	30	
				31-29	6%/3.0%/0.3%	6	77	30	
				29-27	6%/3.0%/0.3%	6	60	30	
				27-25	6%/3.0%/0.3%	6	66	30	
				25-23	6%/3.0%/0.3%	6	60	30	
			16:32	23-21	6%/3.0%/0.3%	6	64	30	450 Gallons

Injection		Time	Time	Injection	BAM/ABC/ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(ps1)	Injected	Comments
IP-26	12/6/17	15:51		49-45	6%/0%/0%	7	86	60	
				45-43	6%/0%/0%	7	76	30	
				43-41	6%/0%/0%	7	70	30	
				41-39	6%/0%/0%	7	70	30	
				39-37	6%/0%/0%	7	70	30	
				37-35	6%/0%/0%	7	72	30	
				35-33	6%/0%/0%	7	72	30	
				33-31	6%/0%/0%	7	70	30	
				31-29	6%/0%/0%	7	70	30	
				29-27	6%/0%/0%	7	66	30	
				27-25	6%/0%/0%	7	68	30	
				25-23	6%/0%/0%	7	68	30	
			17:05	23-21	6%/0%/0%	7	68	60	450 Gallons
IP-49	12/7/17	7:55		49-47	6%/3.0%/0.3%	6	98	15	
				47-43	6%/3.0%/0.3%	6	88	15	
				43-39	6%/3.0%/0.3%	6	94	30	
				39-37	6%/3.0%/0.3%	6	78	120	
				37-35	6%/3.0%/0.3%	6	76	30	
				35-33	6%/3.0%/0.3%	6	66	30	
				33-31	6%/3.0%/0.3%	6	58	30	
				31-29	6%/3.0%/0.3%	6	52	30	
				29-27	6%/3.0%/0.3%	6	54	30	
				27-25	6%/3.0%/0.3%	6	58	30	
				25-23	6%/3.0%/0.3%	6	60	30	
			9:25	23-21	6%/3.0%/0.3%	6	62	60	450 Gallons

Injection	Date	Time	Time	Injection	BAM/ABC/ZVI	Flow Rate	Injection Pressure (psi)	Gallons	Comments
IP-50	12/7/17	9.33		49-43	6%/0%/0%	5	98	90	Comments
11 00	12/1/11	2.00		43-41	6%/0%/0%	5	58	30	
				41-39	6%/0%/0%	5	76	30	
				39-37	6%/0%/0%	5	70	30	
				37-35	6%/0%/0%	5	76	30	
				35-33	6%/0%/0%	5	56	30	
				33-31	6%/0%/0%	5	60	30	
				31-29	6%/0%/0%	5	64	30	
				29-27	6%/0%/0%	5	64	30	
				27-25	6%/0%/0%	5	58	30	
				25-23	6%/0%/0%	5	58	30	
			11:13	23-21	6%/0%/0%	5	52	60	450 Gallons
IP-41	12/7/17	7:39		49-45	6%/3.0%/0.3%	6	86	60	
				45-43	6%/3.0%/0.3%	6	86	30	
				43-41	6%/3.0%/0.3%	6	84	30	
				41-39	6%/3.0%/0.3%	6	82	30	
				39-37	6%/3.0%/0.3%	6	78	30	
				37-35	6%/3.0%/0.3%	6	78	30	
				35-33	6%/3.0%/0.3%	6	74	30	
				33-31	6%/3.0%/0.3%	6	62	30	
				31-29	6%/3.0%/0.3%	6	60	30	
				29-27	6%/3.0%/0.3%	6	60	30	
				27-25	6%/3.0%/0.3%	6	74	30	
				25-23	6%/3.0%/0.3%	6	78	30	
			10:13	23-21	6%/3.0%/0.3%	6	70	60	450 Gallons

т		T .	 .	т		Flow	Injection	C 11	
Injection		Time	Time	Injection	BAM/ABC/ZVI	Kate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(ps1)	Injected	Comments
IP-42	12/7/17	9:00		49-45	6%/0%/0.3%	7	80	60	
				45-43	6%/0%/0.3%	7	78	30	
				43-41	6%/0%/0.3%	7	74	30	
				41-39	6%/0%/0.3%	7	80	30	
				39-37	6%/0%/0.3%	7	80	30	
				37-35	6%/0%/0.3%	7	78	30	
				35-33	6%/0%/0.3%	7	76	30	
				33-31	6%/0%/0.3%	7	80	30	
				31-29	6%/0%/0.3%	7	82	30	
				29-27	6%/0%/0.3%	7	80	30	
				27-25	6%/0%/0.3%	7	80	30	
				25-23	6%/0%/0.3%	7	76	30	
			10:13	23-21	6%/0%/0.3%	7	74	60	450 Gallons
IP-34	12/7/17	10:38		49-45	6%/0%/0.3%	8		60	No flow until 45' bgs
				45-43	6%/0%/0.3%	8		30	
				43-41	6%/0%/0.3%	8		30	
				41-39	6%/0%/0.3%	8		30	
				39-37	6%/0%/0.3%	8		30	
				37-35	6%/0%/0.3%	8		30	
				35-33	6%/0%/0.3%	8		30	
				33-31	6%/0%/0.3%	8		30	
				31-29	6%/0%/0.3%	8		30	
				29-27	6%/0%/0.3%	8		30	
				27-25	6%/0%/0.3%	8		30	
			11:34	25-21	6%/0%/0.3%	8		90	450 Gallons

						Flow	Injection		
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-35	12/7/17	11:52		49-45	6.75%/0%/0%	5	84	56	No flow until 45' bgs
				45-43	6.75%/0%/0%	5	82	28	Daylight through crack in
				43-41	6.75%/0%/0%	5	82	28	asphalt
			12:37	41-39	6.75%/0%/0%	5	80	23	135 Gallons
IP-36	12/7/17	13:10		49-37	6.75%/0%/0%	6	88	173	No flow until 37' bgs
				37-35	6.75%/0%/0%	6	84	100	
									Make up volume for IP-
				35-33	6.75%/0%/0%	6	84	56	35
				33-31	6.75%/0%/0%	6	88	56	
				31-29	6.75%/0%/0%	6	84	56	
				29-27	6.75%/0%/0%	6	76	56	
				27-25	6.75%/0%/0%	6	76	56	
				25-23	6.75%/0%/0%	6	74	56	
			15:13	23-21	6.75%/0%/0%	6	70	56	665 Gallons
IP-46A	12/7/17	11:26		49-45	6.75%/3.0%/0.3%	1	96	15	Clogged injection screen
			12:53	45-39	6.75%/3.0%/0.3%	0	96	0	15 Gallons
IP-45	12/7/17	13:06		37-35	6.75%/3.0%/0.3%	6	80	180	
				35-33	6.75%/3.0%/0.3%	6	76	30	
				33-31	6.75%/3.0%/0.3%	6	78	30	Daylight up borehole
			14:07	31-29	6.75%/3.0%/0.3%	6	62	60	300 Gallons

Injustion		Time	Time	Injustion		Flow	Injection	Callana	
Doint	Data	On	Off	Domth	DAWI/ADC/ZVI	(anna)	riessure	Ganons	Commonto
Point ID 46P	Date	0n	Off			(gpm)	(psi)	Injected	Comments
II ² -46D	12/7/17	14:49		49-45	6.75%/0%/0%	/	84	60	
				45-43	6.75%/0%/0%	/	/4	30	
				43-41	6.75%/0%/0%	7	62	30	
				41-39	6.75%/0%/0%	7	60	30	
				39-37	6.75%/0%/0%	7	58	30	
				37-35	6.75%/0%/0%	7	60	30	
				35-33	6.75%/0%/0%	7	60	30	
				33-31	6.75%/0%/0%	7	62	30	
				31-29	6.75%/0%/0%	7	60	30	
				29-27	6.75%/0%/0%	7	60	30	
				27-25	6.75%/0%/0%	7	68	30	
			15:50	25-21	6.75%/0%/0%	7	68	40	400 Gallons
IP-44	12/7/17	15:23		49-43	6.75%/0%/0.3%	5	90	84	
				43-41	6.75%/0%/0.3%	5	88	28	
				41-39	6.75%/0%/0.3%	5	80	28	
				39-37	6.75%/0%/0.3%	5	78	28	
				37-35	6.75%/0%/0.3%	5	76	28	
				35-33	6.75%/0%/0.3%	5	76	28	
				33-31	6.75%/0%/0.3%	5	76	28	
				31-29	6.75%/0%/0.3%	5	74	28	
				29-27	6.75%/0%/0.3%	5	74	28	
				27-25	6.75%/0%/0.3%	5	70	28	
				25-23	6.75%/0%/0.3%	5	70	28	
			17:07	23-21	6.75%/0%/0.3%	5	70	36	400 Gallons

Injection		Timo	Timo	Injection	BAM/ABC/ ZVI	Flow Rate	Injection	Callons	
Point	Date	On	Off	Depth	Concentration	(gnm)	(psi)	Injected	Comments
IP-48	12/7/17	16:00		49-45	6.75%/0%/0%	6	94	50	No flow until 45' bgs
				45-43	6.75%/0%/0%	6	92	45	
				43-41	6.75%/0%/0%	6	72	45	Make up for IP-46
				41-39	6.75%/0%/0%	6	58	35	•
				39-37	6.75%/0%/0%	6	56	35	
				37-35	6.75%/0%/0%	6	54	35	
				35-33	6.75%/0%/0%	6	56	35	
				33-31	6.75%/0%/0%	6	68	35	
				31-29	6.75%/0%/0%	6	68	35	
				29-27	6.75%/0%/0%	6	60	35	
				27-25	6.75%/0%/0%	6	54	35	
				25-23	6.75%/0%/0%	6	60	60	
			17:51	23-21	6.75%/0%/0%	6	60	60	540 Gallons
IP-43	12/8/17	7:50		49-45	6.75%/0%/0%	9	90	56	
				45-43	6.75%/0%/0%	9	78	28	
				43-41	6.75%/0%/0%	9	78	28	
				41-39	6.75%/0%/0%	9	78	28	
				39-37	6.75%/0%/0%	9	76	28	
				37-35	6.75%/0%/0%	9	76	28	
				35-33	6.75%/0%/0%	9	74	28	
				33-31	6.75%/0%/0%	9	74	28	
				31-29	6.75%/0%/0%	9	76	28	
				29-27	6.75%/0%/0%	9	76	28	
				27-25	6.75%/0%/0%	9	74	28	
				25-23	6.75%/0%/0%	9	76	28	
			8:43	23-21	6.75%/0%/0%	9	78	36	400 Gallons
т		T .		т		Flow	Injection	0 11	
-----------	---------	------------	---------	-----------	-----------------	-------	-----------	----------	------------------------
Injection	-	lime	lime	Injection	BAM/ABC/ZVI	Kate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-37	12/8/17	8:53		49-45	6.75%/0%/0%	5	80	56	
				45-43	6.75%/0%/0%	5	78	28	
				43-41	6.75%/0%/0%	5	78	28	
				41-39	6.75%/0%/0%	5	82	28	
				39-37	6.75%/0%/0%	5	80	28	
				37-35	6.75%/0%/0%	5	80	28	
				35-33	6.75%/0%/0%	5	80	28	
				33-31	6.75%/0%/0%	5	76	28	
				31-29	6.75%/0%/0%	5	76	28	
				29-27	6.75%/0%/0%	5	78	28	
				27-25	6.75%/0%/0%	5	78	28	
				25-23	6.75%/0%/0%	5	74	28	
			10:37	23-21	6.75%/0%/0%	5	80	36	400 Gallons
IP-67	12/8/17	8:09		49-47	6.75%/3.0%/0.3%	2	76	10	No flow 47' to 41' bgs
			8:43	47-39		2	76	40	50 Gallons
IP-65	12/8/17	9:14		44-36	9.0%/3.0%/0.3%	5		150	No flow until 36' bgs
				36-34	9.0%/3.0%/0.3%	5		30	
				34-32	9.0%/3.0%/0.3%	5		30	Make up for IP-67
				32-30	9.0%/3.0%/0.3%	5		30	
				30-28	9.0%/3.0%/0.3%	5		30	
				28-26	9.0%/3.0%/0.3%	5		30	
				26-24	9.0%/3.0%/0.3%	5		30	
				24-22	9.0%/3.0%/0.3%	5		30	
			10:50	22-21	9.0%/3.0%/0.3%	5		90	450 Gallons

Inication		Times	Times	Inication		Flow	Injection	Callana	
Injection	Dete	Time	Time	Denth	DAM/ADC/ZVI	Kate	Pressure	Gailons	Commente
Point	Date 10 (0 /17	0n	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-75	12/8/17	11:10	11.10	49-47	9.0%/3.0%/0.3%	2	86	40	Daylight old borehole
			11:40	47-45	9.0%/3.0%/0.3%	0	0	0	40 Gallons
IP-63	12/8/17	12:18		49-47	9.0%/3.0%/0.3%	5	100	0	
			13:23	47-35	9.0%/3.0%/0.3%	5	82	250	250 Gallons
IP-30	12/8/17	11:15		49-45	9.0%/0%/0%	7	80	42	No flow until 45' bgs
				45-43	9.0%/0%/0%	7	80	21	
				43-41	9.0%/0%/0%	7	80	21	
				41-39	9.0%/0%/0%	7	82	21	
				39-37	9.0%/0%/0%	7	76	21	
				37-35	9.0%/0%/0%	7	76	21	
				35-33	9.0%/0%/0%	7	76	21	
				33-31	9.0%/0%/0%	7	76	21	
				31-29	9.0%/0%/0%	7	76	21	
				29-27	9.0%/0%/0%	7	74	21	
				27-25	9.0%/0%/0%	7	74	21	
				25-23	9.0%/0%/0%	7	74	21	
			12:07	23-21	9.0%/0%/0%	7	74	27	300 Gallons
IP-MW7	12/8/17	12:31		25-23	9.0%/0%/0%	8	90	60	Extra point near MW-7
				23-21	9.0%/0%/0%	8	80	100	
				21-19	9.0%/0%/0%	8	76	70	
				19-17	9.0%/0%/0%	8	76	110	
			13:35	17-15	9.0%/0%/0%	8	76	110	450 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection	Callons	
Point	Data	On	Off	Denth	Concentration	(anm)	(pei)	Injected	Comments
IP_14	12/11/17	9.31	OII	<u>19-45</u>	9.0% /0% /0%	<u>(gpiii)</u>	90	42	Comments
11-14	14/11/17	7.51		45-43	9.0%/0%/0%	6	88	21	
				43-41	9.0%/0%/0%	6	88	21	
				41-39	9.0%/0%/0%	6	80	21	
				39-37	9.0%/0%/0%	6	80	21	
				37-35	9.0%/0%/0%	6	80	21	
				35-33	9.0%/0%/0%	6	78	21	
				33-31	9.0%/0%/0%	6	78	21	
				31-29	9.0%/0%/0%	6	76	21	
				29-27	9.0%/0%/0%	6	76	21	
				27-25	9.0%/0%/0%	6	76	21	
				25-23	9.0%/0%/0%	6	76	21	
			10:34	23-21	9.0%/0%/0%	6	78	27	300 Gallons
IP-108	12/11/17	9:51		49-47	9.0%/0%/0%	6	64	21	
				47-43	9.0%/0%/0%	6	78	42	
				43-41	9.0%/0%/0%	6	84	21	
				41-39	9.0%/0%/0%	6	78	21	
				39-37	9.0%/0%/0%	6	64	21	
				37-35	9.0%/0%/0%	6	66	21	
				35-33	9.0%/0%/0%	6	70	21	
				33-31	9.0%/0%/0%	6	66	21	
				31-29	9.0%/0%/0%	6	58	21	
				29-27	9.0%/0%/0%	6	72	21	
				27-25	9.0%/0%/0%	6	74	21	
				25-23	9.0%/0%/0%	6	68	21	
			10:58	23-21	9.0%/0%/0%	6	66	27	300 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-27	12/11/17	10:45		49-43	9.0%/0%/0%	5	90	63	No flow until 43' bgs
				43-41	9.0%/0%/0%	5	88	21	
				41-39	9.0%/0%/0%	5	82	21	
				39-37	9.0%/0%/0%	5	76	21	
				37-35	9.0%/0%/0%	5	76	21	
				35-33	9.0%/0%/0%	5	70	21	
				33-31	9.0%/0%/0%	5	68	21	
				31-29	9.0%/0%/0%	5	68	21	
				29-27	9.0%/0%/0%	5	66	21	
				27-25	9.0%/0%/0%	5	66	21	
				25-23	9.0%/0%/0%	5	66	21	
			11:54	23-21	9.0%/0%/0%	5	64	27	300 Gallons
IP-112	12/11/17	11:37		49-47	9.0%/0%/0%	6	86	21	
				47-45	9.0%/0%/0%	6	82	21	
				45-43	9.0%/0%/0%	6	68	21	
				43-41	9.0%/0%/0%	6	68	21	
				41-39	9.0%/0%/0%	6	64	21	
				39-37	9.0%/0%/0%	6	80	21	
				37-35	9.0%/0%/0%	6	76	21	
				35-33	9.0%/0%/0%	6	78	21	
				33-31	9.0%/0%/0%	6	76	21	
				31-29	9.0%/0%/0%	6	74	21	
				29-27	9.0%/0%/0%	6	76	21	
				27-25	9.0%/0%/0%	6	70	21	
				25-23	9.0%/0%/0%	6	70	21	
			12:32	23-21	9.0%/0%/0%	6	70	27	300 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection	Callons	
Point	Date	On	Off	Depth	Concentration	(onm)	(psi)	Injected	Comments
IP-29	12/11/17	12:09	011	49-45	9.0%/0%/0%	6	86	42	No flow until 45' bgs
				45-43	9.0%/0%/0%	6	84	21	
				43-41	9.0%/0%/0%	6	84	21	
				41-39	9.0%/0%/0%	6	82	21	
				39-37	9.0%/0%/0%	6	82	21	
				37-35	9.0%/0%/0%	6	78	21	
				35-33	9.0%/0%/0%	6	78	21	
				33-31	9.0%/0%/0%	6	76	21	
				31-29	9.0%/0%/0%	6	76	21	
				29-27	9.0%/0%/0%	6	76	21	
				27-25	9.0%/0%/0%	6	76	21	
				25-23	9.0%/0%/0%	6	74	21	
			13:06	23-21	9.0%/0%/0%	6	70	27	300 Gallons
IP-107	12/11/17	13:32		49-47	9.0%/3.0%/0.3%	6	88	16	
				47-39	9.0%/3.0%/0.3%	6	84	74	
				39-37	9.0%/3.0%/0.3%	6	84	21	
				37-35	9.0%/3.0%/0.3%	6	80	42	
				35-33	9.0%/3.0%/0.3%	6	76	21	
				33-31	9.0%/3.0%/0.3%	6	80	21	
				31-29	9.0%/3.0%/0.3%	6	78	21	
				29-27	9.0%/3.0%/0.3%	6	76	21	
				27-25	9.0%/3.0%/0.3%	6	76	21	
				25-23	9.0%/3.0%/0.3%	6	76	21	
			14:39	23-21	9.0%/3.0%/0.3%	6	74	21	300 Gallons

T ' ('		T .		т. с.		Flow	Injection	C 11	
Injection		Time	Time	Injection	BAM/ABC/ZVI	Kate	Pressure	Gallons	
Point	Date	0n	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-13	12/11/17	13:30		49-43	9.0%/0%/0%	4	94	63	No flow until 43' bgs
				43-41	9.0%/0%/0%	4	94	21	
				41-39	9.0%/0%/0%	4	92	21	
				39-37	9.0%/0%/0%	4	92	21	
				37-35	9.0%/0%/0%	4	90	21	
				35-33	9.0%/0%/0%	4	90	21	
				33-31	9.0%/0%/0%	4	90	21	Screen broke off rod
			14:37	31-29	9.0%/0%/0%	4	90	15	204 Gallons
IP-111	12/11/17	15:15		44	9.0%/3.0%/0.3%	6	78	63	Refusal at 44' bgs
				44-42	9.0%/3.0%/0.3%	6	76	21	
				42-40	9.0%/3.0%/0.3%	6	78	21	
				40-38	9.0%/3.0%/0.3%	6	76	21	
				38-36	9.0%/3.0%/0.3%	6	74	21	
				36-34	9.0%/3.0%/0.3%	6	76	21	
				34-32	9.0%/3.0%/0.3%	6	74	21	
				32-30	9.0%/3.0%/0.3%	6	72	21	
				30-28	9.0%/3.0%/0.3%	6	66	21	
				28-26	9.0%/3.0%/0.3%	6	68	21	
				26-25	9.0%/3.0%/0.3%	6	64	21	
				25-23	9.0%/3.0%/0.3%	6	78	21	
			16:07	23-21	9.0%/3.0%/0.3%	6	72	21	300 Gallons

						Flow	Injection	0.11	
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-15	12/11/17	14:58		49-41	9.0%/0%/0%	6	90	84	No flow until 41' bgs
				41-39	9.0%/0%/0%	6	90	21	
				39-37	9.0%/0%/0%	6	90	21	
				37-35	9.0%/0%/0%	6	90	21	
				35-33	9.0%/0%/0%	6	90	21	
				33-31	9.0%/0%/0%	6	90	21	
				31-29	9.0%/0%/0%	6	90	42	Make up volume for IP-
				29-27	9.0%/0%/0%	6	86	42	13
				27-25	9.0%/0%/0%	6	86	42	
				25-23	9.0%/0%/0%	6	84	42	
			16:20	23-21	9.0%/0%/0%	6	82	43	400 Gallons
IP-28	12/11/17	16:32		49-43	9.0%/0%/0%	6		63	No flow until 43' bgs
				43-41	9.0%/0%/0%	6		21	
				41-39	9.0%/0%/0%	6		21	
				39-37	9.0%/0%/0%	6		21	
				37-35	9.0%/0%/0%	6		21	
				35-33	9.0%/0%/0%	6		21	
				33-31	9.0%/0%/0%	6		21	
				31-29	9.0%/0%/0%	6		21	
				29-27	9.0%/0%/0%	6		21	
				27-25	9.0%/0%/0%	6		21	
				25-23	9.0%/0%/0%	6		21	
			17:37	23-21	9.0%/0%/0%	6		27	300 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection	Gallons	
Point	Date	On	Off	Denth	Concentration	(gnm)	(psi)	Injected	Comments
IP-MW22	12/11/17	16:35	011	39-37	9.0%/0%/0%	6	68	25	
11 1010022		10.00		37-35	9.0%/0%/0%	6	66	75	
				35-33	9.0%/0%/0%	6	76	30	
			17:15	33-31	9.0%/0%/0%	6	68	70	200 Gallons
IP-59	12/11/17	20:15		49-47	9.0%/0%/0.8%	7	70	21	
	, , , , , , , , , , , , , , , , , , ,			47-45	9.0%/0%/0.8%	7	68	21	
				45-43	9.0%/0%/0.8%	7	68	21	
				43-41	9.0%/0%/0.8%	7	68	21	
				41-39	9.0%/0%/0.8%	7	66	21	
				39-37	9.0%/0%/0.8%	7	70	21	
				37-35	9.0%/0%/0.8%	7	70	21	
				35-33	9.0%/0%/0.8%	7	72	21	
				33-31	9.0%/0%/0.8%	7	62	21	
				31-29	9.0%/0%/0.8%	7	60	21	
				29-27	9.0%/0%/0.8%	7	68	21	
				27-25	9.0%/0%/0.8%	7	64	21	
				25-23	9.0%/0%/0.8%	7	64	21	
			21:05	23-21	9.0%/0%/0.8%	7	62	27	300 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection	Callons	
Point	Date	On	Off	Depth	Concentration	(opm)	(psi)	Injected	Comments
IP-57	12/11/17	20:20	011	49-47	9.0%/0%/0.8%	4	(1997)	21	
	, ,			47-45	9.0%/0%/0.8%	4		21	
				45-43	9.0%/0%/0.8%	4		22	
				43-41	9.0%/0%/0.8%	4		22	
				41-39	9.0%/0%/0.8%	4		22	
				39-37	9.0%/0%/0.8%	4		22	
				37-35	9.0%/0%/0.8%	4		22	
				35-33	9.0%/0%/0.8%	4		21	
				33-31	9.0%/0%/0.8%	4		21	
				31-29	9.0%/0%/0.8%	4		21	
				29-27	9.0%/0%/0.8%	4		21	Screen clogged
			21:30	27-25	9.0%/0%/0.8%	4		21	257 Gallons
IP-51	12/11/17	21:45		49-47	9.0%/0%/0.8%	6	84	24	
				47-45	9.0%/0%/0.8%	6	80	24	
				45-43	9.0%/0%/0.8%	6	68	24	
				43-41	9.0%/0%/0.8%	6	68	24	
				41-39	9.0%/0%/0.8%	6	68	24	
				39-37	9.0%/0%/0.8%	6	64	24	
				37-35	9.0%/0%/0.8%	6	68	24	
				35-33	9.0%/0%/0.8%	6	70	24	
				33-31	9.0%/0%/0.8%	6	66	22	
				31-29	9.0%/0%/0.8%	6	66	22	
				29-27	9.0%/0%/0.8%	6	66	22	
				27-25	9.0%/0%/0.8%	6	66	22	
				25-23	9.0%/0%/0.8%	6	68	20	
			22:55	23-21	9.0%/0%/0.8%	6	68	20	320 Gallons

		— •				Flow	Injection		
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-52	21/11/17	22:05		49-47	9.0%/10.0%/0.8%	6	76	43	
				47-45	9.0%/10.0%/0.8%	6	64	43	
				45-43	9.0%/10.0%/0.8%	6	66	43	
				43-41	9.0%/10.0%/0.8%	6	62	43	
				41-39	9.0%/10.0%/0.8%	6	66	43	
				39-37	9.0%/10.0%/0.8%	6	68	43	
				37-35	9.0%/10.0%/0.8%	6	68	43	
				35-33	9.0%/10.0%/0.8%	6	60	43	
				33-31	9.0%/10.0%/0.8%	6	48	43	
				31-29	9.0%/10.0%/0.8%	6	42	43	
				29-27	9.0%/10.0%/0.8%	6	40	43	
				27-25	9.0%/10.0%/0.8%	6	40	43	
				25-23	9.0%/10.0%/0.8%	6	42	43	
			23:55	23-21	9.0%/10.0%/0.8%	6	44	41	600 Gallons
IP-61	12/12/17	0:45		49-39	9.0%/0%/0.8%	3	100	40	Clogged screen
				39-37	9.0%/0%/0.8%	3	90	40	
				37-35	9.0%/0%/0.8%	3	95	40	
				35-33	9.0%/0%/0.8%	3	90	30	
				33-31	9.0%/0%/0.8%	3	80	30	
				31-29	9.0%/0%/0.8%	3	75	30	
			2:30	29-27	9.0%/0%/0.8%	3	75	10	Compressor broke down
	12/12/17	19:00		27-25	9.0%/0%/0.8%	3	80	20	
				25-23	9.0%/0%/0.8%	3	78	20	
			19:30	23-21	9.0%/0%/0.8%	3	60	20	280 Gallons

Injustion		Time	Time	Injustion		Flow	Injection	Callana	
Point	Data	On	Off	Dopth	DAWI/ADC/ZVI	(anm)	(noi)	Gallons	Commonte
ID 55	12/12/17	1.05	Ull	10 17		(gpiii)	(psi) 60	11jecteu 13	Comments
11-55	12/12/17	1.05		49-47	9.0%/10.0%/0.8%	6	54	43	
				47-43	9.0%/10.0%/0.0%	6	50	43	
				43-43	9.0%/10.0%/0.8%	6		43	
				43-41	9.0%/10.0%/0.0%	0	40 50	43	
				41-39	9.0%/10.0%/0.8%	0	52	45	
				39-37	9.0%/10.0%/0.8%	6	50	43	
				37-35	9.0%/10.0%/0.8%	6	46	43	
				35-33	9.0%/10.0%/0.8%	6	42	43	
				33-31	9.0%/10.0%/0.8%	6	36	43	
				31-29	9.0%/10.0%/0.8%	6	36	43	
			2:30	29-27	9.0%/10.0%/0.8%	6	60	43	Compressor broke down
	12/12/17	19:00		27-25	9.0%/10.0%/0.8%	6	52	43	
				25-23	9.0%/10.0%/0.8%	6	48	42	
			19:25	23-21	9.0%/10.0%/0.8%	6	42	42	600 Gallons
IP-12	12/12/17	8:30		49-45	9.0%/0%/0%	6	88	42	
				45-43	9.0%/0%/0%	6	86	21	
				43-41	9.0%/0%/0%	6	84	21	
				41-39	9.0%/0%/0%	6	84	21	
				39-37	9.0%/0%/0%	6	82	21	
				37-35	9.0%/0%/0%	6	80	21	
				35-33	9.0%/0%/0%	6	80	21	
				33-31	9.0%/0%/0%	6	80	21	
				31-29	9.0%/0%/0%	6	78	21	
				29-27	9.0%/0%/0%	6	78	21	
				27-25	9.0%/0%/0%	6	78	21	
			9:30	25-21	9.0%/0%/0%	6	76	48	300 Gallons

T I I		— •		T I I		Flow	Injection	0.11	
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-106	12/12/17	8:57		49-47	9.0%/3.0%/0.3%	7	80	42	
				47-45	9.0%/3.0%/0.3%	7	66	42	
				45-43	9.0%/3.0%/0.3%	7	62	42	
				43-41	9.0%/3.0%/0.3%	7	66	42	
				41-39	9.0%/3.0%/0.3%	7	62	42	
				39-37	9.0%/3.0%/0.3%	7	62	42	
				37-35	9.0%/3.0%/0.3%	7	60	42	
				35-33	9.0%/3.0%/0.3%	7	58	42	
				33-31	9.0%/3.0%/0.3%	7	58	42	
				31-29	9.0%/3.0%/0.3%	7	66	42	
				29-27	9.0%/3.0%/0.3%	7	66	42	
				27-25	9.0%/3.0%/0.3%	7	60	42	
				25-23	9.0%/3.0%/0.3%	7	60	42	
			10:43	23-21	9.0%/3.0%/0.3%	7	60	54	600 Gallons
IP-MW21	12/12/17	10:01		40-37	9.0%/0%/0%	6	88	70	
				37-35	9.0%/0%/0%	6	88	70	
				35-33	9.0%/0%/0%	6	88	100	
			11:03	33-31	9.0%/0%/0%	6	88	60	300 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-110	12/12/17	11:02		49-45	9.0%/3.0%/0.3%	5	88	84	
				45-43	9.0%/3.0%/0.3%	5	84	42	
				43-41	9.0%/3.0%/0.3%	5	70	42	
				41-39	9.0%/3.0%/0.3%	5	80	120	
				39-37	9.0%/3.0%/0.3%	5	80	35	
				37-35	9.0%/3.0%/0.3%	5	84	35	
				35-33	9.0%/3.0%/0.3%	5	86	35	
				33-31	9.0%/3.0%/0.3%	5	88	35	
				31-29	9.0%/3.0%/0.3%	5	86	35	
				29-27	9.0%/3.0%/0.3%	5	70	35	
				27-25	9.0%/3.0%/0.3%	5	72	35	
				25-23	9.0%/3.0%/0.3%	5	76	35	
			13:40	23-21	9.0%/3.0%/0.3%	5	78	32	600 Gallons
IP-71	12/12/17	12:55		49-45	9.0%/0%/0%	4	96	42	
				45-43	9.0%/0%/0%	4	94	21	
				43-41	9.0%/0%/0%	4	96	21	
				41-39	9.0%/0%/0%	4	90	21	
				39-37	9.0%/0%/0%	4	88	21	
				37-35	9.0%/0%/0%	4	88	21	
				35-33	9.0%/0%/0%	4	86	21	
				33-31	9.0%/0%/0%	4	86	21	
				31-29	9.0%/0%/0%	4	86	21	
				29-27	9.0%/0%/0%	4	84	21	
				27-25	9.0%/0%/0%	4	84	21	
				25-23	9.0%/0%/0%	4	84	21	
			14:52	23-21	9.0%/0%/0%	4	84	27	300 Gallons

						Flow	Injection		
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-105	12/12/17	14:34		49-47	9.0%/0%/0%	5	76	21	
				47-45	9.0%/0%/0%	5	72	21	
				45-43	9.0%/0%/0%				
				43-41	9.0%/0%/0%	5	72	21	
				41-39	9.0%/0%/0%	5	74	21	
				39-37	9.0%/0%/0%	5	70	21	
				37-35	9.0%/0%/0%	5	70	21	
				35-33	9.0%/0%/0%	5	68	21	
				33-31	9.0%/0%/0%	5	66	21	
				31-29	9.0%/0%/0%	5	66	21	
				29-27	9.0%/0%/0%	5	74	21	
				27-25	9.0%/0%/0%	5	68	21	
				25-23	9.0%/0%/0%	5	70	21	
			15:43	23-21	9.0%/0%/0%	5	68	27	300 Gallons
IP-69	12/12/17	15:29		49-47	9.0%/0%/0%	3	88	21	
				47-45	9.0%/0%/0%	3	90	21	
				45-43	9.0%/0%/0%	3	90	21	
				43-41	9.0%/0%/0%	3	98	21	
				41-39	9.0%/0%/0%	3	92	21	
				39-29	9.0%/0%/0%	3	84	105	No flow 39' to 31' bgs
				29-27	9.0%/0%/0%	3	84	21	
				27-25	9.0%/0%/0%	3	84	21	
				25-23	9.0%/0%/0%	3	82	21	
			17:57	23-21	9.0%/0%/0%	3	82	27	300 Gallons

Injection		Timo	Timo	Injection	BAM/ABC/ ZVI	Flow	Injection	Callons	
Point	Date	On	Off	Depth	Concentration	(onm)	(psi)	Injected	Comments
IP-109	12/12/17	16:25	011	49-47	9.0%/0%/0%	4	90	21	Comments
	/ /			47-45	9.0%/0%/0%	4	90	21	
				45-43	9.0%/0%/0%	4	88	21	
				43-41	9.0%/0%/0%	4	90	21	
				41-39	9.0%/0%/0%	4	90	21	
				39-37	9.0%/0%/0%	4	86	21	
				37-35	9.0%/0%/0%	4	84	21	
			17:59	35-33	9.0%/0%/0%	4	94	153	300 Gallons
IP-58	12/12/17	19:55		49-47	9.0%/0%/0.8%	6	80	21	
				47-45	9.0%/0%/0.8%	6	68	21	
				45-43	9.0%/0%/0.8%	6	60	21	
				43-41	9.0%/0%/0.8%	6	58	21	
				41-39	9.0%/0%/0.8%	6	76	21	
				39-37	9.0%/0%/0.8%	6	72	21	
				37-35	9.0%/0%/0.8%	6	70	21	
				35-33	9.0%/0%/0.8%	6	68	21	
				33-31	9.0%/0%/0.8%	6	64	21	
				31-29	9.0%/0%/0.8%	6	74	21	
				29-27	9.0%/0%/0.8%	6	72	21	
				27-25	9.0%/0%/0.8%	6	82	21	
				25-23	9.0%/0%/0.8%	6	84	21	
			20:55	23-21	9.0%/0%/0.8%	6	78	27	300 Gallons

Injection		Timo	Timo	Injection	RAM/ARC/ 7VI	Flow	Injection	Callons	
Point	Date	On	Off	Denth	Concentration	(gpm)	(psi)	Injected	Comments
IP-60	12/12/17	19.50		49-47	9.0%/0%/0.8%	<u>(8pm)</u> 7	76	21	Conuncitis
11 00	12/12/17	17.00		47-45	9.0%/0%/0.8%	7	78	21	
				45-43	9.0%/0%/0.8%	7	72	21	
				43-41	9.0%/0%/0.8%	7	66	21	
				41-39	9.0%/0%/0.8%	7	64	21	
				39-37	9.0%/0%/0.8%	7	62	21	
				37-35	9.0%/0%/0.8%	7	62	21	
				35-33	9.0%/0%/0.8%	7	68	21	
				33-31	9.0%/0%/0.8%	7	66	21	
				31-29	9.0%/0%/0.8%	7	64	21	
				29-27	9.0%/0%/0.8%	7	60	21	
				27-25	9.0%/0%/0.8%	7	58	21	
				25-23	9.0%/0%/0.8%	7	58	21	
			20:40	23-21	9.0%/0%/0.8%	7	58	27	300 Gallons
IP-53	12/12/17	21:10		49-47	9.0%/0%/0.8%	8	50	21	
				47-45	9.0%/0%/0.8%	8	56	21	
				45-43	9.0%/0%/0.8%	8	62	21	
				43-41	9.0%/0%/0.8%	8	56	21	
				41-39	9.0%/0%/0.8%	8	56	21	
				39-37	9.0%/0%/0.8%	8	50	21	
				37-35	9.0%/0%/0.8%	8	60	21	
				35-33	9.0%/0%/0.8%	8	52	42	
				33-31	9.0%/0%/0.8%	8	58	42	
				31-29	9.0%/0%/0.8%	8	58	42	
			21:50	29-27	9.0%/0%/0.8%	8	58	27	300 Gallons

						Flow	Injection		
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-54	12/12/17	21:20		49-47	9.0%/0%/0.8%	6	84	21	
				47-45	9.0%/0%/0.8%	6	78	21	
				45-43	9.0%/0%/0.8%	6	66	21	
				43-41	9.0%/0%/0.8%	6	72	21	
				41-39	9.0%/0%/0.8%	6	68	21	
				39-37	9.0%/0%/0.8%	6	62	21	
				37-35	9.0%/0%/0.8%	6	60	21	
				35-33	9.0%/0%/0.8%	6	62	21	
				33-31	9.0%/0%/0.8%	6	66	21	
				31-29	9.0%/0%/0.8%	6	68	21	
				29-27	9.0%/0%/0.8%	6	70	21	
				27-25	9.0%/0%/0.8%	6	70	21	
				25-23	9.0%/0%/0.8%	6	72	21	
			22:20	23-21	9.0%/0%/0.8%	6	74	27	300 Gallons
IP-73	12/13/17	8:09		49-43	9.0%/0%/0%	4	90	63	No flow until 43' bgs
				43-37	9.0%/0%/0%	4	90	63	No flow 41' to 39' bgs
				37-35	9.0%/0%/0%	4	90	21	
				35-33	9.0%/0%/0%	4	90	21	
				33-31	9.0%/0%/0%	4	56	21	
				31-29	9.0%/0%/0%	4	56	21	
				29-27	9.0%/0%/0%	4	52	21	
				27-25	9.0%/0%/0%	4	52	21	
				25-23	9.0%/0%/0%	4	50	21	
			9:47	23-21	9.0%/0%/0%	4	50	27	300 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-81	12/13/17	8:08	-	49-47	9.0%/0%/0%	4	90	21	
	, ,			47-45	9.0%/0%/0%	4	88	21	
				45-43	9.0%/0%/0%	4	88	21	
				43-41	9.0%/0%/0%	4	76	21	
			8:42	41-39	9.0%/0%/0%	4	76	6	Bottom out rod clogged
		8:52		39-29	9.0%/0%/0%	7	66	120	Switched to side injection
				29-27	9.0%/0%/0%	7	40	21	rod
				27-25	9.0%/0%/0%	7	58	21	
				25-23	9.0%/0%/0%	7	60	21	
			9:25	23-21	9.0%/0%/0%	7	60	27	300 Gallons
IP-62	12/13/17	9:45	10:40	49-21	9.0%/3.0%/0.3%	0	100	0	Clogged rods
IP-74	12/13/17	9:58		49-43	9.0%/3.0%/0.3%	6	94	63	No flow until 43' bgs
				43-41	9.0%/3.0%/0.3%	6	92	21	
				41-39	9.0%/3.0%/0.3%	6	92	21	
				39-37	9.0%/3.0%/0.3%	6	90	21	
				37-35	9.0%/3.0%/0.3%	6	98	21	
				35-29	9.0%/3.0%/0.3%	6	98	63	No flow 33' to 31' bgs
				29-27	9.0%/3.0%/0.3%	6	90	21	
				27-25	9.0%/3.0%/0.3%	6	80	21	
				25-23	9.0%/3.0%/0.3%	6	80	21	
			10:52	23-21	9.0%/3.0%/0.3%	6	80	27	300 Gallons

						Flow	Injection		
Injection		Time	Time	Injection	BAM/ABC/ZVI	Rate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-66	12/13/17	11:11		49-41	9.0%/3.0%/0.3%	6	90	25	No flow until 41' bgs
				41-39	9.0%/3.0%/0.3%	6	84	80	
				39-37	9.0%/3.0%/0.3%	6	82	21	
				37-35	9.0%/3.0%/0.3%	6	66	21	
				35-33	9.0%/3.0%/0.3%	6	60	21	
				33-31	9.0%/3.0%/0.3%	6	62	21	
				31-29	9.0%/3.0%/0.3%	6	60	21	
				29-27	9.0%/3.0%/0.3%	6	64	21	
				27-25	9.0%/3.0%/0.3%	6	62	21	
				25-23	9.0%/3.0%/0.3%	6	58	21	
			12:07	23-21	9.0%/3.0%/0.3%	6	58	27	300 Gallons
IP-78	12/13/17	11:16		49-37	9.0%/3.0%/0.3%	5	90	126	No flow until 37' bgs
				37-35	9.0%/3.0%/0.3%	5	90	21	
				35-33	9.0%/3.0%/0.3%	5	84	21	
				33-31	9.0%/3.0%/0.3%	5	84	21	
				31-29	9.0%/3.0%/0.3%	5	82	21	
				29-27	9.0%/3.0%/0.3%	5	80	21	
				27-25	9.0%/3.0%/0.3%	5	80	21	
				25-23	9.0%/3.0%/0.3%	5	82	21	
			12:29	23-21	9.0%/3.0%/0.3%	5	80	27	300 Gallons
IP-64	12/13/17	12:35		49-47	13.5%/3.0%/0.3%	2	76	30	
				47-45	13.5%/3.0%/0.3%	2	98	0	No flow
				45-43	13.5%/3.0%/0.3%	2	98	0	No flow
				43-41	13.5%/3.0%/0.3%	2	98	0	Daylight up borehole
			13:21	41-39	13.5%/3.0%/0.3%	2	78	20	50 Gallons

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-72	12/13/17	12:43		49-43	13.5%/3.0%/0.3%	3	90	42	No flow until 43' bgs
	, ,			43-41	13.5%/3.0%/0.3%	3	90	14	
				41-35	13.5%/3.0%/0.3%	3	90	0	No flow
			13:15	35-33	13.5%/3.0%/0.3%	3	90	10	66 Gallons
IP-47	12/13/17	13:29		49-47	13.5%/0%/0%	3	70	10	Connected with MW-23
			14:29	33-31	13.5%/0%/0%	3	70	140	150 Gallons
IP-76	12/13/17	13:37		49-29	13.5%/3.0%/0.3%	2	98	0	No flow until 27' bgs
			14:40	29-27	13.5%/3.0%/0.3%	2	78	50	50 Gallons
IP-68	12/13/17	14:55		49-27	13.5%/3.0%/0.3%	5	84	50	
				27-25	13.5%/3.0%/0.3%	5	84	66	
				25-23	13.5%/3.0%/0.3%	5	64	66	Make up volume for IP-64
			16:00	23-21	13.5%/3.0%/0.3%	5	64	68	250 Gallons
IP-83	12/13/17	15:15		30-28	13.5%/0%/0%	5		20	No flow until 28' bgs
				28-26	13.5%/0%/0%	5		20	
				26-24	13.5%/0%/0%	5		20	Connected with MW-4
				24-22	13.5%/0%/0%	5		20	
				22-20	13.5%/0%/0%	5		50	Make up volume for IP-72
				20-18	13.5%/0%/0%	5		50	& IP-76
				18-16	13.5%/0%/0%	5		100	
			16:45	16-14	13.5%/0%/0%	5		100	380 Gallons

т		 .		T		Flow	Injection	0 11	
Injection		lime	lime	Injection	BAM/ABC/ZVI	Kate	Pressure	Gallons	
Point	Date	- On	Off	Depth		(gpm)	(psi)	Injected	Comments
IP-70	12/13/17	16:35		49-37	13.5%/3.0%/0.3%	4	100	10	No flow until 37' bgs
			17:30	29-27	13.5%/3.0%/0.3%	4	76	190	200 Gallons
IP-88	12/13/17	17:00		49-35	13.5%/3.0%/0.3%	6	100	0	No flow until 35' bgs
				35-33	13.5%/3.0%/0.3%	6	88	112	
				33-31	13.5%/3.0%/0.3%	6	88	48	Now flow 29' to 27' bgs
			17:45	27-25	13.5%/3.0%/0.3%	6	88	40	200 Gallons
IP-84	12/14/17	7:55		49-43	13.5%/0%/0%	4	94	42	No flow until 43' bgs
				43-29	13.5%/0%/0%	4	78	100	No flow 41' to 31' bgs
			9:12	29-25	13.5%/0%/0%	4	78	58	200 Gallons
IP-87	12/14/17	9:21		49-47	13.5%/3.0%/0.3%	3	72	50	Make up volume for IP-72
			11:35	47-31	13.5%/3.0%/0.3%	3	72	180	230 Gallons
IP-91	12/14/17	11:55		49-47	13.5%/3.0%/0.3%	6	68	0	Make up volume for IP-76
			12:47	47-29	13.5%/3.0%/0.3%	6	68	280	280 Gallons
IP-92	12/14/17	13:01		49-41	13.5%/3.0%/0.3%	6	90	35	No flow until 41' bgs
			13:46	41-27	13.5%/3.0%/0.3%	6	60	165	200 Gallons
IP-80	12/14/17	8:09		49-45	13.5%/3.0%/0.3%	3	78	50	No flow until 45' bgs
				39-37	13.5%/3.0%/0.3%	3	80	10	
				37-29	13.5%/3.0%/0.3%	3	80	80	No flow 37' to 31' bgs
				29-27	13.5%/3.0%/0.3%	3	78	40	
			9:55	27-25	13.5%/3.0%/0.3%	3	76	35	215 Gallons

т		 .		T		Flow	Injection	C 11	
Injection	D.	lime	lime	Injection	BAM/ABC/ZVI	Kate	Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(ps1)	Injected	Comments
IP-77	12/14/17	10:15		29-27	13.5%/3.0%/0.3%	6	88	200	Make up volume
			12:12	27-25	13.5%/0%/0%	6	74	400	600 Gallons
IP-79	12/14/17	12:27		49-47	13.5%/0%/0%	5	88	20	
				47-34	13.5%/0%/0%	5	92	20	No flow 47 to 35' bgs
				34-31	13.5%/0%/0%	5	86	130	Make up volume
			14:04	25-23	13.5%/0%/0%	5	76	230	400 Gallons
IP-85	12/14/17	14:50		49-34	13.5%/0%/0%	1	98	20	Daylight up borehole
			16:00	27-25	13.5%/0%/0%	1	92	25	45 Gallons
IP-86	12/14/17	16:05		49-47	13.5%/0%/0%	4	94	20	
				33-31	13.5%/0%/0%	4	90	80	
				29-27	13.5%/0%/0%	4	86	100	Make up volume for IP-85
			17:44	27-25	13.5%/0%/0%	4	80	155	355 Gallons
IP-94	12/14/17	13:58	14:46	49-39	13.5%/3.0%/0.3%	6	56	200	200 Gallons
	, ,				, ,				
IP-96	12/14/17	15:05		49-39	13.5%/3.0%/0.3%	6	70	100	No flow until 39' bgs
				39-33	13.5%/3.0%/0.3%	6	70	50	
			15:43	33-25	13.5%/3.0%/0.3%	6	70	50	200 Gallons
IP-100	12/14/17	15:47		49-44	13.5%/3.0%/0.3%	4	58	100	No flow until 44' bgs
	, ,		16:46	44-39	13.5%/3.0%/0.3%	4	58	100	200 Gallons
							1		
							Ì		

Injection		Time	Time	Injection	BAM/ABC/ ZVI	Flow Rate	Injection	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-97	12/14/17	16:56		49-44	13.5%/3.0%/0.3%	6	78	100	No flow until 44' bgs
	, ,			44-34	13.5%/3.0%/0.3%	6	72	50	No flow 44' to 36' bgs
			17:37	34-24	13.5%/3.0%/0.3%	6	60	50	200 Gallons
IP-98	12/15/17	7:51		45-30	13.5%/3.0%/0.3%	5	88	100	Refusal at 45' bgs
				30-25	13.5%/3.0%/0.3%	5	80	50	No flow until 30' bgs
			8:41	25-21	13.5%/3.0%/0.3%	5	80	50	200 Gallons
IP-102	12/15/17	8:55		49-47	13.5%/3.0%/0.3%	3	32	55	
				47-35	13.5%/3.0%/0.3%	3	80	38	Daylight up borehole
			9:47	35-25	13.5%/3.0%/0.3%	3	80	8	101 Gallons
IP-89	12/15/17	8:30		49-31	13.5%/3.0%/0.3%	5	98	15	No flow until 31' bgs
			10:16	31-25	13.5%/3.0%/0.3%	5	66	385	400 Gallons
IP-99	12/15/17	9:56		49-44	13.5%/3.0%/0.3%	3	86	100	Daylight up adjacent hole
			11:08	44-31	13.5%/3.0%/0.3%	0	66	0	100 Gallons
IP-90	12/15/17	10:30	11:38	49-33	13.5%/3.0%/0.3%	4	92	200	200 Gallons
IP-101	12/15/17	11:49		49-44	13.5%/0%/0%	8	90	100	
				44-37	13.5%/0%/0%	8	90	50	Make up volume for IP-
				37-31	13.5%/0%/0%	8	80	50	99 and IP-102
				31-27	13.5%/0%/0%	8	72	100	
			12:48	27-21	13.5%/0%/0%	8	74	100	400 Gallons

Injection		Time	Time	Injection	BAM/ABC/ZVI	Flow Rate	Injection Pressure	Gallons	
Point	Date	On	Off	Depth	Concentration	(gpm)	(psi)	Injected	Comments
IP-95	12/15/17	11:40		29-27	13.5%/0%/0%	4	90	60	Make up volume
			13:52	23-21	13.5%/0%/0%	4	60	340	400 Gallons
IP-93	12/15/17	12:56		49-39	13.5%/0%/0%	0	100	0	Daylight up borehole
			13:30	39-29	13.5%/0%/0%	5	68	130	130 Gallons
IP-82	12/14/17			49-21	13.5%/3.0%/0.3%	0	100	0	Screen broke off
								37,508	Total Gallons

Field Sampling Forms

GROUNDWATER SAMPLING LOG

Page _____ of ____

Responsive partner. Exceptional outcomes.											
Project: RODES	Project: ROPS PUMD Project Number: (6572-000) - OC										
Location:	MERCE	1GA	Well ID: N	110-7	1						
Date: /////<	6	Start Time at W	rell:	00		End Time at We	ell: [2:()O			
Sampler: SEF		Weather:	leor	30'-	5	Comments:					
			WELL CH	ARACTERIST	ICS						
Well Diameter (in):	Well Screen Depth Interval:	9.4	(ft) to 24.	Y (ft)	Initial Depth to Water (ft):	20.	86				
Total Well Depth (ft):	Well Capacity (gallons per foo	ot):	1 Well Volume (gallons):		3 Well Vol. (gal)	:1 11	>				
7442	\bigcirc	1,3	05	6		1,70					
		par factly 0.75"	= 0.02: 1" = 0.04	. 21 - 0.16.21 - 1	Total Vol. Purge	d (gal):	56				
wen capacity (ganons per 1001): 0.75 = 0.02; 1 = 0.04; 2 = 0.10; 5 = 0.05; 5 = 1.02; 6 = 1.47; 12 = 5.88											
PURGING DATA											
Initial Depth of Tubing (ft): ~22.5	Total Purge Tim	se:	Purge Equipmer Submersible Pur (specify)	nt (circle one): T mp (Peristaltic	Bailer Bladder P Pump Other	Pump Electric					
Initial Purge Rate (gpm): O. I. L/M Final Purge Rate (gpm): O. I. L/M Purge Rate (gpm): O. I. L/M Micro-purge				circle one): Stress	Meter(s) used (d	circle one): YSI 5	56 Lamotte 20	020 (Horiba U53			
Reading Total Volume Time Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)			
1023 0.5L	20.89	15.45	6.19	0.119	3.74	305	terba/ho	180			
1020 1.0L	20,92	15,67	6.01	0.07	4.05	219	<i>Y U</i>	203			
1030 201	20,75	1708	5.59	0.904	418	130 EG 7	11 11	020			
1043 2.56	20.95	17,73	4.71	0.087	4.10	32.7	dr/no	156			
1045 3.0L	20.95	18.38	4.48	0.051	3.93	41,0		214			
1055 3.5L	20.95	18.85	4,38	0.079	3.74	0.00	514 1	280			
1100 4.06	20.90	17.60 20.64	4.24	0.078	4.54	13. 57.4	FUILID/HO	787			
1115 5.0L	20.73	20.71	4.24	0.076	4,49	0.00	dc/no	294			
1120 S.SL	20.93	20.75	4,19	0,077	4.48	20.6	11 11	298			
Stabilization: Tempe	rature - ± 0.1°; pl	H - ± 0.1; Conduct	tivity - ± 5%; Diss	solved Oxygen - :	± 0.2 mg/L (or 109	% saturation); Tu	rbidity - ≤ 10 NT	Us (or stable)			
			SA	MPLING							
Sampled by (print):		Collection Meth Bailer Straw r	od (circle one): method Vacuu	ım Jug Other	Time Sampling Initiated:	123	Time Sampling Completed:	1128			
Sample ID	Sample Time	Number of Containers	Volume	Preservative	Analysis/ E	PA Method	Sample Type (G Othe	- Grab, C - Composite, er (specify))			
MW-7	1125	3	40ml	HCC	VQ	シ	Ŀ	2			
Notes: Stop PU	rgæ	1153-	1105		2						
1 an											

1018

Ś.

GROUNDWATER SAMPLING LOG

Page _____ of ___

Responsive pa	artner. Exceptio	nal outcomes.							
Project: RL	pler			Project Number	B657	7 <u>2 - 000</u>	1		
Location: (0	MMerce, C	FA		Well ID: MU	N-23				
Date:]	9-18		Start Time at W	ell: 1050			End Time at We	=#: 1140	
Sampler: M	, Pudget	ł	Weather: 50	MAY, 50	°F		Comments:		
	-			WELL CH	ARACTERIST	ICS			
Well Diameter (in):	2"	Well Screen Depth Interval:	40	(ft) to 50 (ft) Initial Depth to Water (ft):			23.85	Fł	
Total Well Depth (ft):	otal Well Well Capacity Pepth (ft): (gallons per foot):			1 Weil Volume (gallons):		3 Well Vol. (gal)	1.1	galloi	15
4	6.7	Öille	3	0.3	67	d (gal): 5,0	g a llon s	<u> </u>	
	Well	capacity (gallons	per foot): 0.75"	= 0.02; 1" = 0.04;	; 2" = 0.16; 3" = (0.37; 4" = 0.65; 5	' = 1,02; 6" = 1.4	17; 12" = 5.88	
				PURG	SING DATA				
Initial Depth of Tubing (ft): 43' of Tubing (ft): 43'			43'	Total Purge Time: 50 MINS		Purge Equipment (circle one): Bailer Bladder Pump Electric Submersible Pump Peristaltic Pump Other (specify)			
Initial Purge Rate (gpm):	0.1	Final Purge Rate (gpm):	d s	Purge Method (Low Flow-Low S Micro-purge	circle one): tress	Meter(s) used (circle one): YSI 556 Lamotte 2020 Horiba U53			
Reading Time	Total Volume Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/Odor	ORP (mV)
1115	2.5	23,96	24,30	4.75	0.570	1.06	24.1	none	95
1120	3.0	23,97	24.32	4.73	0.557	0,90	22.4	None	94
1125	3.5	23,97	24,39	4,74	0,540	0.88	19.2	none	93
1130	4.0	23.97	24.4a	4.75	0.530	0,81	18.3	none	92
1135	4,5	23,97	24.46	4.76	0.538	0.78	18.3	none	91
1140	5.0			5.	umple				<u></u>
			· · · · · · · · · · · · · · · · · · ·						
L									
Stabi	ization: Temper	ature - ± 0.1°; pl	I - ± 0.1; Conduc	tivity - ± 5%; Diss	olved Oxygen - :	± 0.2 mg/L (or 10	% saturation); T	urbidity - ≤ 10 NT	Us (or stable)

SAMPLING

Sampled by (print): Murk	Padgett	Collection Meth Bailer Strawn	od (circle one): nethod Vacuu	ım Jug Other	Time Sampling Initiated:	1140	Time Sampling Completed:	1143
Sample ID	Sample Time	Number of Containers	Volume	Preservative	Analysis/ EP	A Method	Sample Type (G Othe	i - Grab, C - Composite, er (specify))
MW-23	1140	3	40 ml	Hcl	B260-V015			6

Notes: Clear / Slight Odor

GROUNDWATER SAMPLING LOG

Page _____ of _____

Responsive pa	rther. Exception	hal outcomes.								
Project:	oPer			Project Number	6572	-0001				
Location: (OMMERCE	?, GA		well ID: MW	-21					
Date: 1 - 1	9-18	,	Start Time at W	ell: 1210			End Time at W	ell: 1305		
Sampler: Ma	Padaet	H	Weather: 5	VANY, 50°	F		Comments:			
	v			WELL CHA	ARACTERIST	ICS				
Well Diameter (in):	211	Well Screen Depth Interval:	30	(ft) to 40	7(ft)	Initial Depth to Water (ft): 21.14 F-1				
Total Well Depth (ft):	01	Well Capacity (gallons per foo	Vell Capacity 1 Well Volume gallons per foot): (gallons):			3 Well Vol. (gal)	4,84			
39	.9.	0,10	03	.61		Total Vol. Purge	d (gal): 5,0	gallon:	6	
	Well	capacity (gallons	per foot): 0.75"	= 0.02; 1" = 0.04;	; 2" = 0.16; 3" = 0	0.37; 4" = 0.65; 5'	" = 1.02; 6" = 1.4	17; 12" = 5.88		
				PURG	GING DATA					
Initial Depth of Tubing (ft):	35'	Final Depth of Tubing (ft):	35'	Total Purge Time:			Purge Equipment (circle one): Bailer Bladder Pump Electric Submersible Pump Peristaltic Pump Other (specify)			
Initial Purge Rate (gpm):	9.1	Final Purge ^{Rate (gpm):} Ø),[Purge Method (Low Flow-Low S Micro-purge	circle one): tress	Meter(s) used (o	circle one): YSI	556 Lamotte 202	0 Horiba U53	
Reading Time	Total Volume Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)	
1240	3,0	21.39	22.72	4.72	0.860	1.31	21.4	Slight odor	97	
1245	35	21.40	23,14	4.72	0.856	1.29	18.2	Slight ador	97	
1250	4.0	21.41	23.37	4.71	0.855	1.27	16.6	Glight ador	93	
1255	4.5	21.41	23,42	4.71	0,851	1.24	13.4	Bitght odur	98	
1300	5,0	21,40	23.45 -		- 5	ample -			The second s	
¥3 (1)										
1974-11 										
Stabili	zation: Temper	ature - ± 0.1°; pł	- ± 0.1; Conduc	tivity - ± 5%; Diss	olved Oxygen - :	± 0.2 mg/L (or 10	% saturation); T	urbidity - ≤ 10 NTU	s (or stable)	
a 1.11.1.1			o	SA	MPLING					

Sampled by (print): Mark Padaett		Collection Meth Bailer Strawr	od (circle one): nethod> Vacuu	m Jug Other	Time Sampling Initiated: 1300	Time Sampling Completed: 1305
Sample ID	Sample Time	Number of Containers	Volume	Preservative	Analysis/ EPA Method	Sample Type (G - Grab, C - Composite, Other (specify))
MW-21	1300	3	40 M]	1+01	8260 - 4005	6
					20	

Notes: Clear / Slight odor

GROUNDWATER SAMPLING LOG

Page _____ of _____

	Responsive pa	artner. Exceptio	nal outcomes.								
	Project: RC	2995	PUM	Q	Project Numbe	r: 657	12-0	- 190	do		
	Location:	OMN	resce.	GA	Well ID: V	1W - 2	12		C.		
	Date:	9/1-6		Start Time at W	/ell: 123	P		End Time at W	ell: 140	0	
	Sampler:	FUL	ER	Weather: 🔘	leor	40'	5	Comments:			
			``		WELL CH	ARACTERIST	ICS				
	Well Diameter (in):	9	Well Screen Depth Interval:	30	(ft) to((ft)	Initial Depth to Water (ft):	17.23	3		
	Depth (ft): (gallons per foot):			t):	1 Well Volume (gallons):		3 Well Vol. (gal)	· 11.	13		
	YO O.163 Well capacity (gallons per foot): 0.75			63	3.7	1	Total Vol. Purge	1(m) 36			
	Well capacity (gallons per foot): 0.7				= 0.02: 1'' = 0.04						
					PLIRG			- 1.02, 0 - 1.4	1,12 - 5.00		
	Initial Depth Final Depth				Total Purge Tim		Purge Fouinment (circle one): Boiler Bladdor Pump Flostria				
	of Tubing (ft): ~35			401	MN	Submersible Pur (specify)	mp (Peristaltic	Pump Other			
	Initial Purge		Final Purge		Purge Method (circle one):	Meter(s) used (d	circle one): YSI 5	56 Lamotte 20	20 Horiba U53	
	Rate (gpm):),1L/m	Rate (gpm):).[[/m	Low Flow-Low S Micro-purge	itress					
1250	Reading Time	Total Volume Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)	
	1255	0.5L	17.97	12.91	5.28	0.369	5.62	19.3	dr/no	142	
	1300	1.0-	17,40	13.55	5.59	0.378	4.3	11.5	4 11	135	
	1305	1.5L	17,17	14.69	5.98	0.379	2.55	11.6	<i>i</i> , <i>1</i>	129	
	1310	2.0L	1.11	5.04	6.07	0.371	2.28	8.15	11 11	122	
	1315	2.SL	12.77	15.39	6.10	0.367	2.11	8.98	17 11	122	
	1318	3,0L	1.80	15.61	6.12	0.363	2.01	7.27	11 11	122	
	1323	3.5L	17.82	15.88	6.13	0.36	1,91	5.64	11 11	122	
	324			50	M	P	ie				
						V					
	Stabili	zation: Tempera	ature - ± 0.1°; pH	- ± 0.1; Conduct	ivity - ± 5%; Diss	olved Oxygen - ±	0.2 mg/L (or 10%	% saturation); Tu	rbidity - ≤ 10 NTL	Js (or stable)	

SAMPLING

Sampled by (print):		Collection Meth Bailer Straw i	od (circle one): method Vacuu	m Jug Other	Time Sampling Initiated: 1326	Time Sampling Completed: 133
Sample ID	Sample Time	Number of Containers	Volume	Preservative	Analysis/ EPA Method	Sample Type (G - Grab, C - Composite, Other (specify))
MW-22	1326	3	40ml HCC		VOC	6

Notes:

GROUNDWATER SAMPLING LOG

and a second second

Page _____ of ____

Responsive pa	irtner. Exceptio	nal outcomes.								
Project: R	Per			Project Numbe	r: 6572	- 0001				
Location: <i>U</i>	mmerce	6A		Well ID: M	W-13			2		
Date: -	9-18		Start Time at W	vell: 1311	0		End Time at We	ell: 140.	5	
Sampler: M	, Padaei	H+	Weather:	SUMAY, 50	°F		Comments:			
				WELL CH	WELL CHARACTERISTICS					
Well Diameter (in):	2"	Well Screen Depth Interval:	30	(ft) to)(ft)	Initial Depth to Water (ft):	20,82			
Total Well Depth (ft):	8 11E 1	Well Capacity (gallons per foo	t):	1 Well Volume (gallons):	C1)	3 Well Vol. (gal)	4,62			
2	1,42	0.10	03	1.54 Total Vol. Purge			d (gal): 5,0	gallon	5	
	Well	capacity (gallons	per foot): 0.75"	= 0.02; 1" = 0.04	; 2" = 0.16; 3" = (0.37; 4" = 0.65; 5	" = 1.02; 6" = 1.4	7; 12" = 5.88		
				PURG	SING DATA					
Initial Depth of Tubing (ft): 351 Final Depth of Tubing (ft): 351			35'	Total Purge Tim 50	e: MM 5	Purge Equipmer Submersible Pur (specify)	nt (circle one): mp Peristaltic	3ailer Bladder P Pump Other	'ump Electric	
Initial Purge Rate (gpm):	itial Purge ate (gpm): 0, 1 Final Purge Rate (gpm): 0, 1			Purge Method (Low Flow-Low Micro-purge	circle one): tress	Meter(s) used (circle one): YSI 556 Lamotte 2020 Horiba US			120 Horiba 053	
Reading Time	Total Volume Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph Conductivity SU (μS/cm)		Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)	
1340	3.0	20,95	23.74	4,73	0.071	1,15	2.02	none	157	
1345	3,5	20.95	13.92	4.71	0,071	1.15	1.18	none	162	
1350	4.0	20,95	24,13	4.71	0.072	1.11	1.96	none	167	
1355	4.5	20.96	24.22	4.73	1.073	1,09	0.72	nane	170	
1400	50 -		(A ·		anolo			110100	110	
6	210				with the					
Stabili	zation: Tempera	ature - ± 0.1°; pH	- ± 0.1; Conduct	tivity - ± 5%; Diss	olved Oxygen - ±	± 0.2 mg/L (or 105	% saturation); Tu	irbidity - ≤ 10 NTU	Js (or stable)	
				SA	MPLING					
Sampled by (prin	nt): Pordgrett		Collection Metho Bailer Strawn	od (circle one): nethod Vacuu	m Jug Other	Time Sampling Initiated:	1400	Time Sampling Completed:	1405	
Samp	ule ID	Sample Time	Number of Containers	Volume	Preservative	Analysis/ El	PA Method	Sample Type (G Othe	 Grab, C - Composite, r (specify)) 	
Mwy	3	1400	3	40 MI	Hel	9260 -	Vors		<i>G</i>	
						<i>µ</i> .				

Notes: Clear / NO odor

•

GROUNDWATER	SAMPLING	LOG
GILOONDWITTER	SHAILERING I	LUU

Page _____ of _____

P

			-			0				
roject: ROOCS	-PUM	\mathbf{D}	Project Numbe	65	72-6	000	J			
ocation: OMN	PAPE	1A	Well ID:	A	10-2	D	- p-	a a		
ate: 2/26/1	X	Start Time at W	/ell: 10:3	0		End Time at W	ell: 120	0		
malar Strille	ic i	Weather: 6	ain			Comments:				
The STORE	2	weather.	WELL CH	ARACTERIST	ICS	commentar				
ell O	Well Screen	60	6	2	Initial Depth	0117	,			
ameter (in):	Depth Interval:	20	(ft) to	(ft)	to Water (ft):	d1:11				
pth (ft):	(gallons): (gallons): 3 Well Vol. (gal): 6.64									
59.72 (). 105 (0.20										
Total Vol. Purged (gar): 3. 5 L										
We	ll capacity (gallon	s per foot): 0.75"	= 0.02; 1 " = 0.04	; 2" = 0.16; 3" = (0.37; 4" = 0.65; 5'	' = 1.02; 6" = 1.4	17; 12" = 5.88			
tial Depth	Final Denth		Total Purge Tim	SING DATA	Purge Equipmen	t (circle opel:	Bailer Bladder Pi	imp Electric		
Tubing (ft): 66	of Tubing (ft):	55	42	min	Submersible Pur	mp Peristaltic	Pump Other (sp	ecify)		
itial Purge	Final Purge	i.i.	Purge Method (circle one):	Meter(s) used (d	circle one): YSI	556 Lamotte 202	20 Horiba U53		
ite (gpm): 0.12	Rate (gpm):	1.16 0	Micro-purge	aress						
Reading Total Volume Time Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)		
1.00 0.5L	21.34	16.12	6.77	0.114	3.76	3.81	c/r/no	57		
:051.01	2.34	16.45	1.09	0.108	3.2	3.68	De/no	46		
1:10 1.5L	21.34	16.48	6.06	0.111	3.00	2.68	11 11	40		
1:15 2.0L	21.34	16.53	6.00	0.108	2.86	2.45	11 11	37		
1:20 2.5L	21.34	16.61	6.00	0.105	2.65	2.45	U 11	33		
1:25 3.0L	21.34	16.65	5.96	0.103	2.60	2.18	11 41	29		
1:30 3.6L	21.34	6.45	5.99	0.103	2.57	1.92	9 11	25		
:35 5	0	M	P		e			<u> </u>		
			1							
			Sec.							
				1 × 1						
Stabilization: Tempe	rature - ± 0.1°; pl	H - ± 0.1; Conduc	tivity - ± 5%; Diss	olved Oxygen -	± 0.2 mg/L (or 109	% saturation); Ti	urbidity - ≤ 10 NTU	s (or stable)		
			SA	MPLING	T. 0 11 1					
npied by (print):		Bailer Straw	nod (circle one): method Vacuu	m Jug Other	Initiated:	1:35	Completed:	11:42		
Samela ID	Conv. 1. TT	Number of	Volumo				Sample Type (G	- Grab, C - Composite,		
	Sample Time			Preservative	Analysis/ E	PA Method	Other	(specify))		
NW ZID	1130	\sim	your	1100		0		7		
						1.1				
								<u>.</u>		

GROUNDWATER SAMPLING LOG

∫ of

Page ____

Responsive pa	rtner. Exceptiona	al outcomes.								
Project: R	per			Project Number	65	72-1				
Location: L	mmerce (6A		Well ID: MI	w-150					
Date: 21	26/18		Start Time at W	ell: 1100			End Time at W	ell: 1200		
Sampler:	, Padaett	_	Weather: 👖	Un, 50°F Comments:						
	,		and the	WELL CH	ARACTERIST	ICS				
Well Diameter (in):	2	Well Screen Depth Interval:	75	(ft) to <u>35</u>	(ft)	Initial Depth to Water (ft):				
Total Well Depth (ft):	45	Well Capacity (gallons per foo	t):	1 Well Volume (gallons):		3 Well Vol. (gal): ZA 06				
125	85	0.1	63	10,0	12	Total Vol. Purgeo	d (gal):	14 5.0		
	Well	Capacity (gallons	per foot): 0.75"	= 0.02; 1" = 0.04	; 2" = 0.16; 3" = ().37; 4" = 0.65; 5 "	= 1.02; 6" = 1.4	7; 12" = 5.88		
		-apacity (Banon	per reet, and	PURG	SING DATA				-	
Initial Depth of Tubing (ft):	80	Final Depth of Tubing (ft):	80	Total Purge Tim	e: Min	Purge Equipmen Submersible Pun	t (circle one): I np Peristaltic	Bailer Bladder Port	ump Electric ecify)	
Initial Purge Rate (gpm):	0.1	Final Purge Rate (gpm):	0.1 <	Purge Method (Low Flow-Low S Micro-purge	circle one): stress	Meter(s) used (c	ircle one): YSI 5	556 Lamotte 20	20 Horiba U53	
Reading Time	Total Volume Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)	
1130	3.0	25.06	15,11	6.68	1080	5,33	1.30	Clear	108	
1125	3.6	25.22	14,142	6.68	0.07%	5,19	1,74	Clear	110	
TILIA	4.0	26.31	112,101	6.69	0.076	4.67	3.17	Clear	116	
8948£	AJ T	36.45	R. 28	1. 1.21	0.076	E. OF	2.57	Clent	121	
1172	703 E.M	0.70-17	132132	CANT	the all of the	219/1	AU 4	6012M1		
1150	2.04			a de la come	-					
1			1							
						1				
	1			(*						
				2	10 C		4			
Stab	ilization: Temper	ature - ± 0.1°; pl	H - ± 0.1; Conduct	tivity - ± 5%; Diss	solved Oxygen - :	± 0.2 mg/L (or 10%	6 saturation); Tu	urbidity - ≤ 10 NTU	ls (or stable)	
	х. 			SA	MPLING	14				
Sampled by (pr	int):	daett	Collection Meth Bailer Straw r	od (circle one): nethod Vacuu	m Jug Other	Time Sampling Initiated:	155	Time Sampling Completed:	1200	
San	nple ID	Sample Time	Number of Containers	Volume	Preservative	Analysis/ El	PA Method	Sample Type (G Othe	- Grab, C - Composite, r (specify))	
M	w-15D		3	40 ml	Hel-	\$260		6		
								(*)		
Notes:						<u>\</u>				
						-6 X				
									12	
								2		

GROUNDWATER SAMPLING LOG

__of__

Page ___

Responsive partner. Exceptiona	Responsive partner. Exceptional outcomes.									
Project: ROPS	-PUV	ΛP	Project Number	65	72-6	XX				
Location: OMMP	sce. (A	Well ID: 7	SM	W-9	S		,		
Date: 2/26/18	X -	Start Time at W	ell: // ; (50		End Time at We	132	2		
Sampler: SFULC		Weather: R	Loim			Comments:				
		· · · · · · · · · · · · · · · · · · ·	WELL CH	ARACTERIST	ICS		2			
Well Diameter (in):	Well Screen Depth Interval:	16	(ft) to)(ft)	Initial Depth to Water (ft):					
Total Well Depth (ft):	Well Capacity (gallons per foot	:):	1 Well Volume (gallons):		3 Well Vol. (gal): 23					
25.16	0.16	3	0.7	7	Total Vol. Purge	d (gal)	501.			
W(u) = 0.02; 1''										
Well	capacity (gallons	per 100t): 0.75	- 0.02; 1 = 0.04;			1.02,0 = 1.4	, 12 - 5.00			
	Provide and		PURG	UNG DATA	Durge Faultan	+ /circla	ailer Diaddar D	Imp Electric		
Initial Depth of Tubing (ft): 23 Initial Depth of Tubing (ft): 23 Initial Purge Line: Submersible Pump Peristaltic Pump Other (specify)								ecify)		
Initial Purge Rate (gpm): O.1 L/M	Final Purge Rate (gpm):	11/m	Purge Method (Low Flow-Low S Micro-purge	circle one): tress	Meter(s) used (o	circle one): YSI 5	56 Lamotte 20	40 Horiba U53		
Reading Total Volume Time Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)		
225 0.5L	20.44	13.79	6.20	0.253	5.28	12.6	dr/nc	156		
1235 1.56 20.44 14.94			4.09	5.246	351	4.05	11 11	161		
1240 2.0L	240 2.06 20.45 15.20 6.070				3.00	2.03		162		
1295 2.66	20.45	15.53	6.01	0.239	1.80	0.75	n 9 n 11	163		
1255 5	0	M	P		e	010		1		
3								1		
Stabilization: Tempe	rature - $\pm 0.1^{\circ}$; pl	I - ± 0.1; Conduc	tivity - ± 5%; Diss	olved Oxygen -	± 0.2 mg/L (or 109	% saturation); Tu	rbidity - ≤ 10 NTL	Js (or stable)		
			SA	MPLING	-	0.000	-	10 C		
Sampled by (print):		Collection Meth Bailer Straw r	od (circle one): method Vacuu	m Jug Other	Time Sampling Initiated:	255	Time Sampling Completed:	1302 Grah C. Composite		
Sample ID	Sample Time	Containers	Volume	Preservative	Analysis/ E	PA Method	Othe	r (specify))		
MW-95	1255	3	your	HCL	VO	/				
		6								
Notor				i.						
NULES.										
								*		
								<i>.</i> 0		
÷		· \								
				~						
A CONTRACTOR OF										

GROUNDWATER SAMPLING LOG

Page

Integer Image: Project Number: Image: Project Number: <t< th=""><th>Responsive pa</th><th>rtner. Exception</th><th>al outcomes.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Responsive pa	rtner. Exception	al outcomes.								
Ocction: Lametric (LA Vellip: M/W-13 bate: alagility start Time at Well: 1245 End Time at Well: 1335 ampler: M. Padge H Westher: FMID: fmital Depth comments: Comments: Vell careful (II: 2 Depth Intervel: 35 (II: 10 16 (II: 10 (II: 10<	Project: Raper				Project Number: (2572 - 000)						
bate: 2 28/1 8 start Time at Well: 124/5 End Time at Well: 17335 ampler: M. Padge H Weather: Tam, 50%F comments: WELL CHARACTERISTICS Well Capacity (alloss per foot): 1.961 Volume (galons): 3.961 Vol. (gal): 11.77 Total Vol. Parged (gal): Y.10 Vell capacity (galons per foot): 0.37 = 0.02; 1* 0.05; 2* 0.12; 8* - 0.37; 4* 0.05; 2* 0.10; 6* - 1.47; 12* = 5.88 PURGING DATA PURGING DATA PURGING DATA PURGING DATA Note: colspan="2">Colspan= 0.02; 1* 0.05; 2* 0.02; 6* - 1.47; 12* = 5.88 PURGING DATA PURGING DATA PURGING DATA PURGING DATA PURGING DATA PURGING DATA PURGING INCHAMPY <	Location: Lommerce, GA				Well ID: MW-12						
ampler: M. P. A. O. P. A. O. P. H. Weather: M. B. S. M. S.	Date: 2/25/13 Start Time at W				Vell: 1245	ell: 1245			End Time at Well: 1335		
Instance Product of the part of the pa	m Qalmatt m				m. Eng	E		Comments:			
Vell Well Screen J/ (i) 1 (i) (i) (i) (i) (ii) (iii) (iiiii) (iiiii) (iiiii)<		- Fride/E	11	weather.	WELL CH	ARACTERIST	TICS	comments.	·		
Bandter (D): Depth Interval: 22 (f): 1 well vol. (f): Well vol. (g):	Well	-	Well Screen		11.0	,	Initial Depth				
Valil Vell Well Capacity I Vell Volume epsth fr(t): U 1/63 3/9 Vell capacity (gallons per foot): 0.75" - 0.04; 2" = 0.06; 2" = 0.04; 2" = 0.05; 5" = 0.27, 4	Diameter (in):	d	Depth Interval:	97	(ft) to	(ft)	to Water (ft): 21,00				
45 0.163 3.9 11.7 Total Vol.Purged (gal): 4.0 Well capacity (gallons per foot): 0.75" = 0.02; 1" = 0.04; 2" = 0.16; 3" = 0.37; 5" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 PURGING DAT PURGING PURGING TOTAL PU	otal Well Depth (ft):		Well Capacity (gallons per foc	Vell Capacity gallons per foot):		1 Well Volume (gallons):		3 Well Vol. (gal):			
Total Vol. Purged (gal): "1.0 Well capacity (gallons per foot): 0.75" = 0.02; 1" = 0.04; 2" = 0.16; 3" = 0.26; 5" = 1.02; 6" = 1.07; 12" = 5.86 PURCING DATA NURGING DATA PURCING Cols; 5" = 0.02; 6" = 1.07; 12" = 5.86 PURCING Colspan="2">Submersible Pump Baller: Bladder Pump Number Colspan="2">Submersible Pump Perstatic Pump Other (specify) Metric (gam): Autor (specify) Metric (gam): Purge Method (circle one): Weter(s) used (circle one): Netroing (fin): Time Purge (gal) Other (specify) Metric (gam): Autor (fin): Other (specify) Time Purged (gal) Other (specify) Time (gam): Autor (fin): Other (specify) Time (gam): Purged (gal) Other (specify) Time (gam): Other (specify) Time (gam): Other (specify) Time (specify) Other (4	5	0.16	3	3.9			11.1	4		
Weit diparting period of 001 003 = 00.19 × 00.19 × 00.39 ×		Wal	Canasity (selles				Total Vol. Purged (gal): 1.0				
Hial Depth Frubing (ft): Final Depth of Tubing (ft): Total Purge Transmission Purge Equipment (circle one): Bailer Bladder Pump Electric Submersible Pump Peretatic Pump Other (specify) Hial Purge tegins: Final Purge Transmission Final Purge Transmission Purge Equipment (circle one): Bailer Bladder Pump Electric Submersible Pump Peretatic Pump Other (specify) Reading Total Volume Depth to Water Temperature Time Purged (gal) Final Purge Transmission Phile Depth of Tubing (ft) Octor (Specify) Stable 2.0.0 21.2.3 19.3.9 5.91.3 0.199 1.0.9 3.5.7 Clear - 5.3 1310 2.1.5 21.2.4 19.2.4 6.0.2 0.172 1.21 2.5.7 Clear - 5.7 1310 2.5.5 21.2.4 19.2.4 6.0.2 0.172 1.21 2.5.7 Clear - 5.7 1310 2.5.5 21.2.4 19.2.4 6.0.2 0.172 1.21 2.5.7 Clear - 5.6 1315 3.0 21.2.4 19.2.4 6.0.2 0.172 1.21 2.5.7 Clear - 5.6 1325 41.0 21.3.2.6 6.0.2 0.172 1.3.1 2.5.7 Clear - 5.6 1325 21.0.2		vvei	capacity (gallon:	s per 100t): 0.75	- 0.02; 1" = 0.02	$4; 2^{n} = 0.16; 3^{n} = 0.1$	0.37;4 = 0.05;5	= 1.02; 6" = 1.4	+/; 12" = 5.88		
Frubing (ft): 40 of Tubing (ft): 41 40 Submersible Pump Control of Submersib	nitial Depth		Final Depth		Total Purge Tim	ne:	Purge Equipme	nt (circle one)	Bailer Bladder P	ump Electric	
Hial Purge tet (gm): Final Purge Reading Purge Method (circle one): Meter(s) used (circle one): Muter(s): Muter(s)	f Tubing (ft):	40	of Tubing (ft):	40	40		Submersible Pump Penstaltic Pump Other (specify)				
Reading Time Total Volume Purged (ga) Depth to Water (t) Temperature (°C) Ph SU Conductivity (µS/cm) Dissolved Oxygen (mg/t) Turbidity (µTUs) Color/ Odor ORP (mV) 1305 2.0 21.23 19.39 5.913 0.199 1.03 2.57 Clear 52 310 2.5 21.24 19.34 5.916 0.193 1.17 2.57 Clear 53 315 3.0 21.24 19.24 6.01 0.179 1.21 2.57 Clear 53 325 3.136 19.23 6.02 0.172 1.21 2.57 Clear 56 325 4.0 19.23 6.02 0.171 1.18 2.57 Clear 56 325 4.0 19.23 6.07 0.171 1.18 2.57 Clear 56 326 4.0 19.23 0.07 0.171 1.18 2.57 Clear 56 326 4.0 19.23 19.23<	nitial Purge Final Purge ate (gpm): B , R ate (gpm):			0.1	Purge Method (circle one): Low Flow-Low Stress Micro-purge		Meter(s) used (circle one): YSI 556 Lamotte 2020 Horiba U53				
1305 2.0 21.23 19.38 5.913 0.199 1.03 2.57 Clear -53 1310 2.5 21.21 19.34 5.96 0.183 1.17 2.57 Clear -53 1315 3.0 21.24 19.24 6.01 0.179 1.91 2.57 Clear -53 1325 3.12 18.32 6.02 0.172 1.21 2.57 Clear -55 1325 41.0 1.8.33 18.32 6.07 0.171 1.18 2.51 clear -56 1325 41.0 1.8.33 19.32 6.07 0.171 1.18 2.51 clear -56 1325 41.0 1.8.33 19.32 6.07 0.171 1.18 2.51 clear -62 1326 1.9.32 1.9.32 6.07 0.171 1.18 2.57 clear -62 1330 1.9.32 1.9.32 1.9.32 1.9.32 1.9.32 1.9.32 1.9.32 1.9.32 1.9.32 1.9.32 1.9.32 1.9.32	Reading Time	Total Volume Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	, ORP (mV)	
310 3.5 31.21 14.31 5.96 0.183 1.17 2.57 Clear -53 315 3.0 31.24 13.24 6.01 0.179 1.91 3.57 Clear -57 320 3.5 31.24 13.24 6.01 0.179 1.91 3.57 Clear -56 325 41.0 31.33 13.33 6.07 0.171 1.18 3.57 clear -56 325 41.0 31.33 6.07 0.171 1.18 3.57 clear -56 325 41.0 31.33 6.07 0.171 1.18 3.57 clear -56 325 41.0 31.33 6.07 0.171 1.18 3.57 clear -63 1 1.0 1.33 6.07 0.171 1.18 3.57 clear -63 1 1.0 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.	1305	2.0	21,23	19.39	5,93	0.199	1.08	2.57	Ciest	-52	
315 3.0 31.24 19.34 6.01 17.9 1.9 3.57 Clear -57 320 3.5 31.36 19.33 6.07 0.171 1.31 3.51 Clear -56 335 41.0 31.33 19.33 6.07 0.171 1.31 3.51 Clear -56 335 41.0 31.33 19.33 6.07 0.171 1.32 3.51 Clear -56 335 41.0 31.33 19.33 6.07 0.171 1.32 3.51 Clear -56 335 41.0 31.33 6.07 0.171 1.32 3.51 Clear -56 335 41.0 31.33 6.07 0.171 1.32 3.51 Clear -56 336 19.33 19.33 19.33 19.33 19.33 19.33 19.33 19.33 19.33 33.65 11.33.65 11.33.6 11.33.6 11.21 133.60 5 Sample ID Sample Time 133.0 3 19.41 17.1 33.60	1310	2,5	21.21	18,34	5.96	0,188	1.17	2,57	Clear	-53	
3.5 3.6 13.3 0.0 0.173 1.31 3.51 0.0 56 3.5 4.0 13.3 13.3 0.171 1.13 3.51 0.0 56 3.5 4.0 13.3 0.07 0.171 1.13 3.51 0.0 56 3.5 4.0 13.33 0.07 0.171 1.13 3.51 0.00 56 3.5 4.0 13.33 0.07 0.171 1.13 3.51 0.00 56 3.5 0.07 0.171 1.13 3.51 0.00 56 56 3.5 0.07 0.171 1.13 3.51 0.00 56 56 1.00	1315	3.0	21,24	1924	6.01	0,179	1.19	2,57	Clear	- 57	
335 4.0 3.33 13.33 0.171 1.33 2.51 0.161 - 63 1	1320	3,5	21.26	18,22	6.02	0,172	1.21	2,51	clear	-56	
Image: Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Sample type Collection Method (circle one): Bailer Time Sampling Initiated: Time Sampling Completed: 13330 MIM- 12 Sample Time Number of Containers Volume Preservative Analysis/ EPA Method Other (specify)) MIM- 13 1330 3 40 MI 1421 3360 6 MIM- 13 1330 3 40 MI 1421 3360 6 MIM- 13 1330 3 40 MI 1421 3360 6 MIM- 13 1330 1 1 1 1 1 MIM- 13 1 1 1 1 1 1 MIM- 13 1 1 1	1325	4.0	21.23	18.23	6.07	0.171	1.13	2.57	ciear	-62	
Image: Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Sample ID Sample Time Collection Method (circle one): Bailer Time Sampling Containers Time Sampling Volume Sample Time Sampling Or for (specify)) Sample Time Sampling Or for (specify)	2								1.00		
Image: Stabilization: Temperature - ± 0.1°; PH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) SAMPLING mpled by (print): Collection Method (circle one): Bailer traw method Vacuum Jug Other Time Sampling Initiated: Time Sampling Completed: Time Sample Time Sample ID Sample Time Number of Containers Volume Preservative Analysis/ EPA Method Other (specify)) MM- IA I I I I I I I I Ites: I I I I I I I I I I			1		· · · · · ·	1 w.			1. au		
Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Sample ID Sample Time Collection Method (Circle one): Bailer Straw method Time Sampling Preservative Sample Type (G - Grab, C - Composit Other (specify)) MW- 12 13330 3 40 MI Hz 1 Sad60 6 Image: Harmonic Harmonic Harmoni Image: Harmonic Harmonic Harmonic Harmonic Harmon			10					а С			
Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) Sampled by (print): Collection Method (circle one): Bailer Staw method Vacuum Jug Other Time Sampling Initiated: Time Sampling Completed: Time Sampling Ompleted: Time Sampling Ompleted: Time Sampling Completed: Sample Type (G - Grab, C - Composit Other (specify)) MM-13 1330 3 40 MI Hz1 S3260 6 Min-13 1330 3 40 MI Hz1 S3260 6 tes: List List List List List List											
Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) SAMPLING mpled by (print): Collection Method (circle one): Time Sampling Time Sampling 13335 Sample ID Sample Time Number of Volume Preservative Analysis/ EPA Method Sample Type (G - Grab, C - Composit Other (specify)) MIN-13 1330 3 40 MI Hz1 S3260 6 tes: E E E E E E E							Sec				
Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) SAMPLING mpled by (print): Collection Method (circle one): Bailer Straw method Vacuum Jug Other Time Sampling Initiated: Time Sampling Ompleted: I 3330 Sample ID Sample Time Number of Containers Volume Preservative Analysis/ EPA Method Sample Type (G - Grab, C - Composit Other (specify)) MM-13 1330 3 40 MI H cl f f 8360 6 Mumber of Containers Volume Preservative Analysis/ EPA Method 6 6 Mumber of Containers Volume Preservative Analysis/ EPA Method 6 6 Mumber of Containers Volume Deservative Analysis/ EPA Method 6 6 Mumber of Containers Volume If cl f Sample O 6 6 Mumber of Containers Volume If cl f Same Containers Volume If cl f Same Containers Volume Mumber of Containers Volume If cl f Same Containers Volume If cl f Same Containers Vol					1						
SAMPLING mpled by (print): Collection Method (circle one): Time Sampling Time Sample Time Sample Time Time Sampling Time Sampling Time Sampling Time Sampling Sample Time	Stabili	ization: Temper	ature - ± 0.1°; pH	I - ± 0.1; Conduct	ivity - ± 5%; Diss	olved Oxygen - 1	± 0.2 mg/L (or 109	% saturation); Τι	urbidity - ≤ 10 NTU	s (or stable)	
Mine Sampling Bailer Straw method Vacuum Jug Other Inite Sampling I 330 Completed: I 335 Sample ID Sample Time Number of Containers Volume Preservative Analysis/ EPA Method Sample Type (G - Grab, C - Composit Other (specify)) MIN-12 1330 3 40 MI Iffeld Sample Type (G - Grab, C - Composit Other (specify)) MIN-13 1330 3 40 MI Iffeld Sample Type (G - Grab, C - Composit Other (specify)) MIN-13 1330 3 40 MI Iffeld Sample Type (G - Grab, C - Composit Other (specify)) MIN-13 1330 3 40 MI Iffeld Sample Type (G - Grab, C - Composit Other (specify)) MIN-13 1330 3 40 MI Iffeld Sample Type (G - Grab, C - Composit Other (specify)) MIN-13 1330 3 40 MI Iffeld Sample Type (G - Grab, C - Composit Other (specify)) MIN-13 1330 3 40 MI Iffeld Sample Type (G - Grab, C - Composit Other (specify) MIN-13 1330 3 40 MI Iffeld Sample Type (G - Grab, C - Composit Other (specify) MIN-14 1330 1330 1330 1330 1330	mpled by (prin	t):		Collection Metho	SA	MPLING	Time Sampling	/-	Time Compling		
Sample ID Sample Time Number of Containers Volume Preservative Analysis/EPA Method Sample Type (G - Grab, C - Composite Other (specify)) MIN-12 1330 3 40 MI Hc1 82,60 6- Image: Image	M. Padgett			Bailer Straw method Vacuum		m Jug Other	Jug Other Initiated:		Completed:	1335	
MW-12 1330 3 40 MI Hz1 ⁻ 9360 6 Image: Imag	Sample ID Sample Time		Number of Containers	Volume		Analysis/ FPA Method		Sample Type (G - Grab, C - Composite, Other (specify))			
	MIN-12 1330		3	4 ml 1+r1-		S260					
tes:				10 111		Oneu		U			
tes:							2				
tes:											
	ites:				1						

GREGHDWATER SAME ENGLEGG	GROUNDWATER	SAMPLING LOG
--------------------------	-------------	--------------

Page_____ of____

Responsive partner. Exceptional outcomes.											
Project: ROPES PUMP Project Number: 6572-000											
Location: OMMOSCE, (A Well ID: MW-13D											
Date: 2/28/15	6	Start Time at W	ell: 1340			End Time at Well: 500					
Sampler: Stille		Weather: R	bin		•	Comments:					
WELL CHARACTERISTICS											
Vell Well Screen Depth Interval:(ft) to(ft) Initial Depth to Water (ft): 20.37											
Total Well Depth (ft):	Well Capacity (gallons per foo	t):	1 Well Volume (gallons): 3 Well Vol. (g			1. (gal): 23.74					
49	0.14	23	7.92			1201					
	1				Total Vol. Purge	Total Vol. Purged (gat):					
Well capacity (gallons per foot): 0.75" = 0.02; 1" = 0.04; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88											
			PURG	SING DATA							
of Tubing (ft): 6.5	Final Depth of Tubing (ft):	46.5	Total Purge Tim	e: Min	Purge Equipment (circle-one): Bailer Bladder Pump Electric Submersible Pump Peristaltic Pump Other (specify)						
Initial Purge Rate (gpm): 9 JL/M).1 L/M	Pu rge Method (Low Flow-Low S Micro -purg e	circle one): tress	Meter(s) used (circle one): YSI 556 Lamotte 2020 Horiba U53							
Reading Total Volume Time Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)			
450.62	20.98	14.46	6.88	0.063	6.04	220	dr/no	26			
1410 JUL	20.92	10.12	5.79	0.069	4.64	1.00		230			
112000	2020	17110	5.00	0.001	410		11 11	22/2			
192204	20.00	1701	5.10	0.040	7.00	000	11 11	200			
1435 2.6L	20.00	11,50	5,13	0.065	3.99	0.91		225			
1440 0	0	pul	N		P						
			1					- Tr.			
13.4	10.00					a					
	·										
and the second of	64		1000								
	194										
Stabilization, Tomas	10 10 pl	t +0.1. Conduc	tivity + E% Dice	colucid Oxygen	6 2 mg/l (or 10	K saturation): Tu	urbidity - < 10 NTL	ls (or stable)			
Stabilization: Temper	ature - ± 0.1-; pi	1 ± 0.1, conduc	CA	MDI INC	- 0.2 HIB/E (01 10)	o sacaracióny, ru					
SAIVIPLING Collection Mathed (circle analy											
Bailer Str			method Vacuu	m Jug Other	Initiated: 1440		Completed: 1445				
Sample ID	Sample Time	Containers	Volume	Preservative	Analysis/ E	PA Method	Othe	r (specify))			
111,120	ILLO	0	Ch. I	LEY	120		1				
HMW-IOD	1970		JOM	AL		\bigcirc		>			
							·				
				and a second							
			2.4.19								
Notes:				18							
					Sec. Sec.		134				
		and the second			- 10 - 14 - 16 A						
2 52				5. at	Claud St.	-					
					141						
- +											

GROUNDWATER SAMPLING LOG

Page _____ of ____

Responsive pa	artner. Exceptio	nal outcomes.									
Project: Rof	Per			Project Number: B6472-0001							
Location: LOMMENCE, GA				WellID: MW-12D							
Date: 3/28/18 Start Time at '				Vell: 1055			End Time at Well: 1135				
Sampler: M. Dadaett Weather: 5				MAY, 60°	C		Comments:				
WELL CHARACTERISTICS											
Well	011	Well Screen	11 r			Initial Depth		1			
Diameter (in):	a	Depth Interval:	\$1.5	(ft) to 86.5	2 (ft)	to Water (ft):	to Water (ft): 20,53				
Depth (ft): (gallons per foot):			t):	(gallons):	3.94	3 Well Vol. (gal): 41,5 9011005					
30,5 0,16			3	Eq. 101	= 1,76	Total Vol. Purged (gal): 3,0 9allon5					
	Well	capacity (gallons	s per foot): 0.75 "	= 0.02; 1" = 0.04	; 2" = 0.16; 3" = (0.37; 4" = 0.65; 5"	= 1.02; 6" = 1.4	17; 12" = 5.88			
				PUR	GING DATA						
Initial Depth of Tubing (ft):	84'	Final Depth of Tubing (ft):	841	Total Purge Tim Z()	ne: NTNS	Purge Equipment (circle one): Bailer Bladder Pump Electric Submersible Pump (Peristaltic Pump) Other (specify)					
Initial Purge	AA D	Final Purge		Purge Method	circle one):	Meter(s) used (c	ircle one):(VSL	556 Jamotte 20	20 Horiba US3		
Rate (gpm):	sot o.l	Rate (gpm):	0.4	w Flow-Low Stress Micro-purge		Laniotte 2020 nonide USS					
Reading Time	Total Volume Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity Mg (µ 8/ cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)		
1110	1.5	21.08	20.16	9.04	0.078	4.47	6.85	Clear	66.7		
1115	2,0	21.12	20.10	9.05	0.077	1.62	5,78	Clear	60.4		
1120	2,5	al.15	20.09	9.05	0,077	1.73	5,33	Clear	64.7		
1125	3.0	21.17	20.08	9.07	1.077	1.3/	5.55	Clear	61.8		
1002	7.5	all	40100	(107	01011	1.01	1.00	CICHI	0110		
									20		
Stabi	lization: Temper	ature - ± 0.1°; pl	H - ± 0.1; Conduc	tivity - ± 5%; Dis	solved Oxygen - :	± 0.2 mg/L (or 10%	% saturation); To	urbidity - ≤ 10 NTL	Is (or stable)		
				SA	MPLING						
Sampled by (print): Collection M			Collection Meth Bailer Straw	od (circle one): method Vacuu	ım Jug Other	Time Sampling Initiated: 1130		Time Sampling Completed: 1135			
		Number of					Sample Type (G - Grab, C - Composite,				
Sample ID Samp		Sample Time	Containers	Volume Preservative		Analysis/ EPA Method		Other (specify))			
MW-la	MW-IaD		3	40 M Her		SR60-VOCS		6			
Notes:					2						
1.1											
								. *			
			•								

MB0

1

GROUNDWATER SAMPLING LOG

Page _____ of _____

Responsive partner. Exception	nal outcomes.									
Project: RODES P	UMP		Project Number:	657:	2-00	0]				
	ce, V.	AC	Well ID:	lW - d	7D					
Date: 3/26/14	\sum	Start Time at We		0 10:	30	End Time at We	12:15	5		
Sampler: SEF		Weather: T	A. Cla	uds		Comments:				
			WELL CHA	RACTERISTI	CS					
Well	Well Screen	120	19	G	Initial Depth	000	0			
Diameter (in): '	Depth Interval: Well Canacity	0.5	(ft) to () .	<u>(ft)</u>	to Water (ft):					
Depth (ft):	(gallons per foot	2	(gallons):	71	3 Well Vol. (gal): 23.13					
Q1.00	0.1 <i>0</i>	50	1.1	1	Total Vol. Purgeo	rged (gal): 3.OL				
Wel	l capacity (gallons	per foot): 0.75"	= 0.02; 1 " = 0.04; 2 " = 0.16; 3 " = 0.37; 4 " = 0.65; 5 " = 1.02; 6 " = 1.47; 12 " = 5.88							
			PURG	ING DATA						
Initial Depth of Tubing (ft):	Final Depth of Tubing (ft):	lole	Total Purge Time	Min	Purge Equipmen Submersible Pur	t (circle one): B np (Peristaltic I	Bladder Pu Pupp Other (sp	ump Electric ecify)		
Initial Purge Rate (gpm): D.1 L/M	Final Purge Rate (gpm):	D.14m	Purge Method (Low Flow-Low S Micro-purge	tress	Meter(s) used (c	ircle one). YSI 5	56 Lamotte 20	20 Horiba U53		
Reading Total Volume Time Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)		
1035 0.5L	21.20	19.33	9.5%	0.128	30	5.53	Cls/no	54.5		
1140 IOL	20.15	19.40	9.38	0.114	3.18	5.48	te P	50.8		
1145 161	2110	QUA	Qui	0103	3.10	4.80	11 11	49.4		
1150 001	2120	19:00	142	DOAN	315	631	11 IL	25%		
TICE ALL	11 12	1007	9 40	0.002	102 01.7 UQ/2 " "					
HOU DE	11 12	10110	0.02	0.012	21.0	AL D				
IDOF SUL	pri.20	17.74	CC.14	0.073	J.GL	2. 3.70 2.6.0				
TTO S	10	m	1 P							
		<i>B</i>	L L							
		1 + 0 1 0	tiultu 1 For Th	colucid Ormer	+ 0.2 mg/L/ 400	% saturation) T	urhidity < 10 MT	ls (or stable)		
Stabilization: Tempe	rature - ± 0.1°; pl	n - ± 0.1; Conduc	uvity - ± 5%; Diss د ۸	MPLING	L 0.2 ING/L (or 10	/# saturation); Tu	a biaity - 5 10 NT	os (or stanie)		
Sampled by (print):		Collection Meth	od (circle one):		Time Sampling	1000	Time Sampling	1010		
SEP	T	Bailer Straw	method Vacuu	m Jug Other	Initiated:	1205	Completed:	- Grab, C - Composito		
Sample ID	Sample Time	Containers	Volume	Preservative	Analysis/ E	PA Method	Othe	er (specify))		
MW-9D	1205	3	Gome	HCL	VOC/	8260	(6		
		1								
Notes:										
					ŝ					
								8		

ist in

GROUNDWATER SAMPLING LOG

Page of

Responsive partner, Exceptional outcome Ł Project Number: NNA Project Well ID: Location Start Time at Well: End Time at Well: Date: land Weather: Lut. 5 .5 Comments: Sampler WELL CHARACTERISTICS Well Well Screen Initial Depth (ft) to _66 6 (ft) to Water (ft): Diameter (in): Depth Interval: 1 Well Volume Total Well Well Capacity (gallons): 3 Well Vol. (gal): Depth (ft): (gallons per foot): 66.45 7.41 Total Vol. Purged (gal): Well capacity (gallons per foot): 0.75" = 0.02; 1" = 0.04; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 **PURGING DATA** Purge Equipment (circle one): Bailer Bladder Pump Electric Total Purge Time: Initial Depth **Final Depth** 5 Submersible Pump (Peristaltic Pump of Tubing (ft): of Tubing (ft): Other (specify) Ø min Final Purge Purge Method (circle one): Meter(s) used (circle ond): YSI 556 Lamotte 2020 Horiba U53 Initial Purge Rate (gpm): 🌔 ow Flow-Low Stress Rate (gpm): Micro-purge Conductivity Ph Dissolved Turbidity 1200 Depth to Water Temperature Reading Total Volume Color/Odor ORP (mV) (NTUs) (µS/cm) Purged (gal) (ft) (°C) SU Oxygen (mg/L) Time 2 3 2 0.10 20 ch, 05 0.5 05 no le 1 U L (0, 1)0 U (0 O h 4 695 D 8. 11 R ()h 11 20 Q 6.1 ค W 11 36 6.0 0.060 2 3. D 11 h 04 5 340 3 6.02 2 k 11 4 00 5 97 5 ก Ъ 11 2 4 50 96 3. 85 0 055 К 5.09 0.053 h 4 355 21 3 8 റ 11 11 21. 5 400 1 36 051 3 5.2 5.6 0 Stabilization: Temperature - ± 0.1°; pH - ± 0.1; Conductivity - ± 5%; Dissolved Oxygen - ± 0.2 mg/L (or 10% saturation); Turbidity - ≤ 10 NTUs (or stable) SAMPLING Sampled by (print) Time Sampling Time Sampling Collection Method (circle one): 405 Vacuum Jug Other initiated: Completed: Bailer Straw method Sample Type (G - Grab, C - Composite, Number of Volume Analysis/ EPA Method Other (specify)) Containers Preservative Sample Time Sample ID LOC 1 8260 2 Mula 6DK om 1 1330-1332 Stop purge to reconnect tubing, resume purging @1320 1330-1332 Stop purge to clean out flow through cell and probe to see if elevated turbidity will go down. 1686-151

ISD ICED-LINE

GROUNDWATER SAMPLING LOG

Page _____ of _____

Responsive pa	artner. Exceptio	nal outcomes.										
Project: Rø	ation: Commerce, GA				B6472	-0001						
Location: LO	MMerce,	GA		Well ID: MW	-23							
Date: 3/2	8/18		Start Time at W	ell: 1155			End Time at We	ell: 1240				
Sampler: M,	padaett		Weather: 50	ANY,650	F		Comments:					
				WELL CHA	ARACTERIST	CS						
Well	011	Well Screen		e		Initial Depth						
Diameter (in):	à"	Depth Interval:	40	(ft) to 50	(ft)	to Water (ft):	23.16					
Depth (ft):	,	(gallons per foot	t):	(gallons):	4	3 Well Vol. (gal)	19.2	gallons				
	10'	0.1	6 3	Eq. Vol =	aallons	-						
	\M/oll	capacity (gallops	par fact): 0.75"	= 0.02; 1" = 0.04; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88								
	vven	capacity (gallons	per 1001): 0.75	-0.02, 1 - 0.04, 2 - 0.10, 3 - 0.07, 4 - 0.00, 5 = 1.02, 0 = 1.47, 12 - 5.00								
PURGING DATA												
Initial Depth of Tubing (ft):	45'	Final Depth of Tubing (ft):	\$5'	Total Purge Time ろり /	e: MIN 5	Purge Equipmer Submersible Pur	t (circle one): I np Peristaltic	Bailer Bladder Pu Pump Other (sp	Jmp Electric ecify)			
Initial Purge Rate (gpm):	tial Purge Final Purge te (gpm): \vec{O}_1 Reading Total Volume Depth to Water Temperatur				circle one): tress	Meter(s) used (o	ircle one) YSI	56> Lamotte 20	20 Horiba U53			
Reading Time	Total Volume Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)			
1205	1.0	23.37	19.77	4.64	302	1,44	13.0	Clear	81.1			
1210	1.5	23.39	19,67	4.68	303	1,26	8,73	Clear	77.3			
1215	210	23.41	19.86	4.71	307	0.55	7.03	clear	70.1			
1220	2.5	23,42	19.79	4,79	286	0.34	7.14	clear	64,5			
1225	3.0	23,43	19,84	4.82	274	0.29	5.59	clear	62.5			
1230	3,5	23.44	19.82	4,83	278	0,28	6.51	Clear	60.9			
			(
						1						
Stabi	lization: Tompo	$rature = \pm 0.1^{\circ}$ pl	- + 0 1: Conduc	tivity - + 5%: Diss	solved Ovygen -	+ 0.2 mg/L (or 10	% saturation). Tu	urbidity - < 10 NTL	ls (or stable)			
Stab	inzation. Tempe	Tature - 1 0.1 , pr	1-10.1, conduc	SA	MPLING	10.2 mg/ 1 (01 10	so succitation, in		is (or studie)			
Sampled by Inri	nt):		Collection Meth	od (circle one)		Time Sampling		Time Sampling	1 all			
M.	Padapt		Bailer Straw	method> Vacuu	ım Jug Other	Initiated:	1235	Completed:	1240			
<u> </u>	unger [Number of			3		Sample Type (G	- Grab, C - Composite,			
Sam	ple ID	Sample Time	Containers	Volume	Preservative	Analysis/ E	PA Method	Othe	r (specity))			
MW-	23	1235	3	40 MI	1721	1063-	8260		6			
									-			
Notes:			1	1								

GROUNDWATER SAMPLING LOG

Page _____ of ____

177 March Var

Responsive partner. Exception	al outcomes.	18							
Project: Roper			Project Number:	B6472	-0001				
Location: COMMONCE,	6A		Well ID: MW	-13					
Date: 3128118		Start Time at We	ell: 1300			End Time at We	1:1340		
Sampler: M. Pudgett	/	Weather: Gu	MY, 70°F	2		Comments:			
	1		WELL CHA	RACTERIST	CS				
Well Diameter (in): $\mathcal{A}^{\prime\prime}$	Well Screen Depth Interval:	30	(ft) to <u>40</u>	(ft)	Initial Depth to Water (ft):	20.12			
Total Well Depth (ft):	Well Capacity (gallons per foo	t):	1 Well Volume (gallons):		3 Well Vol. (gal):	100	allans		
40'	Dil	6	6	4 901		Tha j	14/10/1 -		
1- 		3	Eg. 101=	1.17	Total Vol. Purgeo	d (gal): 3,0	94110115		
weild	capacity (gallons	per toot): 0.75	= 0.02; 1 = 0.04;		.37;4" = 0.05;5	= 1.02; 0 = 1.4	/;12 = 5.00		
Initial Denth	Final Depth	,	Total Purge Time		Purge Equipmen	t (circle one): B	ailer Bladder Pu	ump Electric	
of Tubing (ft): 35	of Tubing (ft):	35'	Total Farge		Submersible Pun	np Peristaltic	Pump Other (sp	ecify)	
Initial Purge	Final Purge	- 1	Purge Method (circle one):	Meter(s) used (circle one) (SI 556) Lamotte 2020 Horiba U53				
Rate (gpm): Dil	Rate (gpm):	0,1 4	Micro-purge	tress			~		
Reading Total Volume Time Purged (gal)	Depth to Water (ft)	Temperature (°C)	Ph SU	Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTUs)	Color/ Odor	ORP (mV)	
1310 1.0	20,31	19.88	4.55	65	1,60	34.3	Cloudy	115.1	
1315 1.5	20,27	19,90	4.67	66	1,25	15.3	clear	111.8	
1320 2.0	20,28	19.89	4,70	68	1.09	8.55	clear	110.0	
1325 2.5	20,28	19,88	4.72	78	6.38	5.73	Clear	107.7	
1330 3.0	20,27	19,89	4,72	70	0,81	4,53	Clear	106.7	
	14. 1								
			· · · · ·						
Stabilization: Tempera	ature - ± 0.1°; pl	H - ± 0.1; Conduc	l tivity - ± 5%; Diss	l olved Oxygen - :	£ 0.2 mg/L (or 109	% saturation); Tu	I Irbidity - ≤ 10 NTU	Js (or stable)	
			SA	MPLING					
Sampled by (print): M , pordy e	H	Collection Meth Bailer Strawn	od (circle one): method Vacuu	m Jug Other	Time Sampling Initiated:	1335	Time Sampling Completed:	1340	
Sample ID	Sample Time	Number of Containers	Volume	Preservative	Analysis/ E	PA Method	Sample Type (G Othe	- Grab, C - Composite, er (specify))	
MW-13	1335	3	40 MI	Hel-	VOCS-8260 G-				

Notes:

GLS Survey Report

Monitoring Well (MW)

Monitoring Well #	Northina(Y)	Easting(X)	Top of Casing Elevation	Grade Elevation
MW-2	1533718.416	2503310.499	896.67'	897.07'
MW-6	1534097.779	2503278.363	898.37 '	898.65'
MW-12	1533992.857	2503428.110	898.28 '	898.52'
MW-13	1534014.679	2503316.828	898.49 '	898.79 '
MW-21	1534013.344	2503370.165	898.67 '	898.96'
<i>MW-21D</i>	1534011.402	2503371.980	898.76 '	899.01'
MW-22	1534059.670	2503238.676	895.67 '	895.94
<i>MW-23</i>	1534037.168	2503555.159	899.60'	899.89'

SURVEY NOTES

C E O R G PEGISTERED No. 3028 PROFESSIONAL C URVERS

Josh L. Lewis IV, RLS 3028

Signature:

This stat to a subsequent of an eviding agreed on percels of land and does not

	 Equipmen station a Software Carlson S Elevations Limited in CLOSURE The field dat gathered by has a positio 	t used; Lei nd Allegro used: Carl: Survce. a are based mprovement STATEMI a used to radial surv nal toleran	ica 1200 robotic total MX data collector. son Survey 2013 and d on N.A.V.D. 88 datum. ts shown. ENT compile this plat was ey measurements and ice of 0.1 feet.	M₩-2 �			subdivide co boundaries, instruments THIS PLAT PERMITS, C FOR ANY L surveyor co property su Board of F in O.C.G.A.	or create a new parcel or make The recording information of th swhich created the parcel or p DOES NOT IMPLY APPROVAL OF OMPLIANCE WITH LOCAL REGULAT USE OR PURPOSE OF THE LAND. ertifies that this plat complies w urveys in Georgia as set forth in Registration for Professional Engi Section 15-6-67.	any changes to any real property he documents, maps, plats, or other arcels are stated hereon. RECORDATION OF ANY LOCAL JURISDICTION, AVAILABILITY OF TONS OR REQUIREMENTS, OR SUITABILITY Furthermore, the undersigned land with the minimum technical standards for in the rules and regulations of the Georgia neers and Land Surveyors and as set forth
			155 CLIFTWOOD I	DRIVE — ATLANTA, GEORGI	A 30328 — TELEPHO	DNE: (404) 255-	4671 — FAX: (404) 255—0	5607 — WWW.GEORGIALANDSU	IRVEYING.COM
			MONITORING WELLS	SURVEY PLAT FOR:	3475 Maysville	Road, Comme	erce Georgia 30529		DATE: 2/15/18 SCALE: 40'
		AWING	WE	NCK	ASS	OCI	ATES	, INC.	
		F3	LAND LOT:	GMD 2	55 DISTRICT	S	ECTION	Jackson COUNTY, GA	
	0 0	ဟ 	LOT:	BLOC	к:	UNIT:	PH.	ASE:	
			SUBDIVISION:						
			PLAT BOOK	, PAGE	DRAFTER:	BMS	REVISION DATE:		
_			DEED BOOK	, PAGE	PARTY CHIE	F: JJ	FIELD DATE: 3/7/18	SHEET <u>1</u> OF <u>1</u>	~ V
	THIS PLAT WAS P Persons. Or ent	PREPARED FO	OR THE EXCLUSIVE USE OF THE ATTERS PERTAINING TO TITLE A	PERSON, PERSONS OR ENTITY NA Re excepted	MED HEREON. THIS PLAT D	OES NOT EXTEND TO /	ANY UNNAMED PERSON, PERSONS, C	or entity without express rectifi	CATION BY THE SURVEYOR NAMING SAID PERSON,

Laboratory Analytical Reports

(To reduce the size of the paper copy, the laboratory analytical reports are provided with the electronic copy of the report)

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

Laboratory Report
Prepared For:
WENCK Associates
1080 Holcomb Bridge Road, Building 100, Suite 190
Roswell, GA 30076
Attention: Mr. Adam Hayes
Report Number: ABA0542
January 26, 2018
Project: Roper Pump
Project #:6572-0001

We appreciate the opportunity to provide the analytical support for your project. The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Approved:

Q. Bulance Signature

Jigha cure

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, LLC. Pace Analytical Services, LLC. certifies that the following analytical results meet all requirements of the National Environmental Laboratory Accreditation Conference (NELAC). All test results relate only to the samples analyzed.

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
	ABA0542-01	Ground Water	01/19/18 11:23	01/19/18 15:15
MW-23	ABA0542-02	Ground Water	01/19/18 11:40	01/19/18 15:15
MW-21	ABA0542-03	Ground Water	01/19/18 13:00	01/19/18 15:15
MW-22	ABA0542-04	Ground Water	01/19/18 13:26	01/19/18 15:15
MW-13	ABA0542-05	Ground Water	01/19/18 14:00	01/19/18 15:15
Trip Blank	ABA0542-06	Water	01/19/18 00:00	01/19/18 15:15

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Client ID: MW-7

Date/Time Sampled: 01/19/2018 11:23:00AM

Matrix: Ground Water

Project: Roper Pump Lab Number ID: ABA0542-01 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Acetone	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Acrolein	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Acrylonitrile	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Allyl Chloride (3-Chloropropylene)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Benzene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Bromobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Bromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Bromodichloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Bromoform	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Bromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
n-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
sec-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
tert-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Carbon Disulfide	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Carbon Tetrachloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Chlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1-Chlorobutane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Chloroethane	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Chloroform	0.0035	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Chloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
2-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
4-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Dibromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,2-Dibromo-3-chloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,2-Dibromoethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Dibromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,2-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,3-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,4-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
trans-1,4-Dichloro-2-butene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Dichlorodifluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,1-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,2-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,1-Dichloroethene	0.0036	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
cis-1,2-Dichloroethene	0.90	0.40	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 2:59	8010572	LIH
trans-1,2-Dichloroethene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH

Page 3 of 28

Report No.: ABA0542

Client ID: MW-7

Date/Time Sampled: 01/19/2018 11:23:00AM

Matrix: Ground Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-01 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
1,2-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,3-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
2,2-Dichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,1-Dichloropropene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
cis-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
trans-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Ethylbenzene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Ethyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Hexachlorobutadiene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
p-Isopropyltoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Hexachloroethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Iodomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Isopropylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Methacrylonitrile	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Methyl Acrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Methyl Butyl Ketone (2-Hexanone)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Methylene Chloride	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Methyl Ethyl Ketone (2-Butanone)	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Methyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
4-Methyl-2-pentanone (MIBK)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Methyl-tert-Butyl Ether	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Naphthalene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
2-Nitropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Propionitrile (Ethyl Cyanide)	ND	0.020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
n-Propylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Styrene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,1,1,2-Tetrachloroethane	0.029	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,1,2,2-Tetrachloroethane	0.013	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Tetrachloroethene	17	1.0	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 2:59	8010572	LIH
Tetrahydrofuran	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Toluene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,2,3-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,2,4-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,1,1-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,1,2-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Trichloroethene	0.33	0.20	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 2:59	8010572	LIH

Page 4 of 28

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Client ID: MW-7

Date/Time Sampled: 01/19/2018 11:23:00AM

Matrix: Ground Water

Project: Roper Pump Lab Number ID: ABA0542-01 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Trichlorofluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,2,3-Trichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,2,4-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
1,3,5-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Vinyl Acetate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Vinyl Chloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
m+p-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
o-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Xylenes, total	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 2:33	8010572	LIH
Surrogate: Dibromofluoromethane	98 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 2:33	8010572	
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 2:59	8010572	
Surrogate: 1,2-Dichloroethane-d4	94 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 2:59	8010572	
Surrogate: 1,2-Dichloroethane-d4	98 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 2:33	8010572	
Surrogate: Toluene-d8	100 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 2:59	8010572	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 2:33	8010572	
Surrogate: 4-Bromofluorobenzene	108 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 2:59	8010572	
Surrogate: 4-Bromofluorobenzene	111 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 2:33	8010572	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Client ID: MW-23

Date/Time Sampled: 01/19/2018 11:40:00AM

Matrix: Ground Water

Project: Roper Pump Lab Number ID: ABA0542-02 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Acetone	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Acrolein	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Acrylonitrile	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Allyl Chloride (3-Chloropropylene)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Benzene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Bromobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Bromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Bromodichloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Bromoform	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Bromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
n-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
sec-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
tert-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Carbon Disulfide	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Carbon Tetrachloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Chlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1-Chlorobutane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Chloroethane	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Chloroform	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Chloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
2-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
4-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Dibromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,2-Dibromo-3-chloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,2-Dibromoethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Dibromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,2-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,3-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,4-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
trans-1,4-Dichloro-2-butene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Dichlorodifluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,1-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,2-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,1-Dichloroethene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
cis-1,2-Dichloroethene	0.65	0.40	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 3:50	8010572	LIH
trans-1.2-Dichloroethene	ND	0.0020	ma/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH

Page 6 of 28

Report No.: ABA0542

Client ID: MW-23

Date/Time Sampled: 01/19/2018 11:40:00AM

Matrix: Ground Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-02 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
1,2-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,3-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
2,2-Dichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,1-Dichloropropene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
cis-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
trans-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Ethylbenzene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Ethyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Hexachlorobutadiene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
p-lsopropyltoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Hexachloroethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
lodomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Isopropylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Methacrylonitrile	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Methyl Acrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Methyl Butyl Ketone (2-Hexanone)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Methylene Chloride	0.0088	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Methyl Ethyl Ketone (2-Butanone)	0.15	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Methyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
4-Methyl-2-pentanone (MIBK)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Methyl-tert-Butyl Ether	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Naphthalene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
2-Nitropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Propionitrile (Ethyl Cyanide)	ND	0.020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
n-Propylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Styrene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,1,2,2-Tetrachloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Tetrachloroethene	0.042	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Tetrahydrofuran	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Toluene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,2,3-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,2,4-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,1,1-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,1,2-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Trichloroethene	0.20	0.20	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 3:50	8010572	LIH

Page 7 of 28

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Client ID: MW-23

Date/Time Sampled: 01/19/2018 11:40:00AM

Matrix: Ground Water

Project: Roper Pump Lab Number ID: ABA0542-02 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Trichlorofluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,2,3-Trichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,2,4-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
1,3,5-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Vinyl Acetate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Vinyl Chloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
m+p-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
o-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Xylenes, total	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 3:24	8010572	LIH
Surrogate: Dibromofluoromethane	95 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 3:24	8010572	
Surrogate: Dibromofluoromethane	94 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 3:50	8010572	
Surrogate: 1,2-Dichloroethane-d4	99 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 3:50	8010572	
Surrogate: 1,2-Dichloroethane-d4	98 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 3:24	8010572	
Surrogate: Toluene-d8	102 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 3:50	8010572	
Surrogate: Toluene-d8	102 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 3:24	8010572	
Surrogate: 4-Bromofluorobenzene	109 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 3:50	8010572	
Surrogate: 4-Bromofluorobenzene	109 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 3:24	8010572	

Report No.: ABA0542

Client ID: MW-21

Date/Time Sampled: 01/19/2018 1:00:00PM

Matrix: Ground Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-03 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Acetone	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Acrolein	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Acrylonitrile	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Allyl Chloride (3-Chloropropylene)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Benzene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Bromobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Bromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Bromodichloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Bromoform	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Bromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
n-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
sec-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
tert-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Carbon Disulfide	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Carbon Tetrachloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Chlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1-Chlorobutane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Chloroethane	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Chloroform	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Chloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
2-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
4-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Dibromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,2-Dibromo-3-chloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,2-Dibromoethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Dibromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,2-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,3-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,4-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
trans-1,4-Dichloro-2-butene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Dichlorodifluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,1-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,2-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,1-Dichloroethene	0.016	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
cis-1,2-Dichloroethene	5.1	4.0	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 4:41	8010572	LIH
trans-1,2-Dichloroethene	0.0090	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH

Page 9 of 28

Report No.: ABA0542

Client ID: MW-21

Date/Time Sampled: 01/19/2018 1:00:00PM

Matrix: Ground Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-03 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
1,2-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,3-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
2,2-Dichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,1-Dichloropropene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
cis-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
trans-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Ethylbenzene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Ethyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Hexachlorobutadiene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
p-Isopropyltoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Hexachloroethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Iodomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Isopropylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Methacrylonitrile	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Methyl Acrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Methyl Butyl Ketone (2-Hexanone)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Methylene Chloride	0.041	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Methyl Ethyl Ketone (2-Butanone)	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Methyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
4-Methyl-2-pentanone (MIBK)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Methyl-tert-Butyl Ether	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Naphthalene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
2-Nitropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Propionitrile (Ethyl Cyanide)	ND	0.020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
n-Propylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Styrene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,1,2,2-Tetrachloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Tetrachloroethene	2.4	1.0	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 4:41	8010572	LIH
Tetrahydrofuran	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Toluene	0.0082	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,2,3-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,2,4-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,1,1-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,1,2-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Trichloroethene	1.1	1.0	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 4:41	8010572	LIH

Page 10 of 28

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Client ID: MW-21

Date/Time Sampled: 01/19/2018 1:00:00PM

Matrix: Ground Water

Project: Roper Pump Lab Number ID: ABA0542-03 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Trichlorofluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,2,3-Trichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,2,4-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
1,3,5-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Vinyl Acetate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Vinyl Chloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
m+p-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
o-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Xylenes, total	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 4:15	8010572	LIH
Surrogate: Dibromofluoromethane	96 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 4:15	8010572	
Surrogate: Dibromofluoromethane	92 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 4:41	8010572	
Surrogate: 1,2-Dichloroethane-d4	99 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 4:41	8010572	
Surrogate: 1,2-Dichloroethane-d4	96 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 4:15	8010572	
Surrogate: Toluene-d8	102 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 4:41	8010572	
Surrogate: Toluene-d8	100 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 4:15	8010572	
Surrogate: 4-Bromofluorobenzene	104 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 4:41	8010572	
Surrogate: 4-Bromofluorobenzene	108 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 4:15	8010572	

Report No.: ABA0542

Client ID: MW-22

Date/Time Sampled: 01/19/2018 1:26:00PM

Matrix: Ground Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-04 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Acetone	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Acrolein	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Acrylonitrile	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Allyl Chloride (3-Chloropropylene)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Benzene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Bromobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Bromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Bromodichloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Bromoform	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Bromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
n-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
sec-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
tert-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Carbon Disulfide	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Carbon Tetrachloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Chlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1-Chlorobutane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Chloroethane	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Chloroform	0.0073	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Chloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
2-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
4-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Dibromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,2-Dibromo-3-chloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,2-Dibromoethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Dibromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,2-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,3-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,4-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
trans-1,4-Dichloro-2-butene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Dichlorodifluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,1-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,2-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,1-Dichloroethene	0.0072	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
cis-1,2-Dichloroethene	1.6	1.0	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 5:31	8010572	LIH
trans-1,2-Dichloroethene	0.0048	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH

Page 12 of 28

Report No.: ABA0542

Client ID: MW-22

Date/Time Sampled: 01/19/2018 1:26:00PM

Matrix: Ground Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-04 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
1,2-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,3-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
2,2-Dichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,1-Dichloropropene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
cis-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
trans-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Ethylbenzene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Ethyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Hexachlorobutadiene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
p-lsopropyltoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Hexachloroethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
lodomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Isopropylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Methacrylonitrile	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Methyl Acrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Methyl Butyl Ketone (2-Hexanone)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Methylene Chloride	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Methyl Ethyl Ketone (2-Butanone)	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Methyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
4-Methyl-2-pentanone (MIBK)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Methyl-tert-Butyl Ether	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Naphthalene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
2-Nitropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Propionitrile (Ethyl Cyanide)	ND	0.020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
n-Propylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Styrene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,1,1,2-Tetrachloroethane	0.086	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,1,2,2-Tetrachloroethane	0.019	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Tetrachloroethene	38	5.0	mg/L	EPA 8260B		1000	1/24/18 16:00	1/25/18 0:42	8010572	LIH
Tetrahydrofuran	0.060	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Toluene	0.026	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,2,3-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,2,4-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,1,1-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,1,2-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Trichloroethene	ND	1.0	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 5:31	8010572	LIH

Page 13 of 28

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Client ID: MW-22

Date/Time Sampled: 01/19/2018 1:26:00PM

Matrix: Ground Water

Project: Roper Pump Lab Number ID: ABA0542-04 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Trichlorofluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,2,3-Trichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,2,4-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
1,3,5-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Vinyl Acetate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Vinyl Chloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
m+p-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
o-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Xylenes, total	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:06	8010572	LIH
Surrogate: Dibromofluoromethane	93 %	80-	120	EPA 8260B			1/24/18 16:00	1/25/18 0:42	8010572	
Surrogate: Dibromofluoromethane	96 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:31	8010572	
Surrogate: Dibromofluoromethane	93 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:06	8010572	
Surrogate: 1,2-Dichloroethane-d4	98 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:31	8010572	
Surrogate: 1,2-Dichloroethane-d4	99 %	78-	120	EPA 8260B			1/24/18 16:00	1/25/18 0:42	8010572	
Surrogate: 1,2-Dichloroethane-d4	96 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:06	8010572	
Surrogate: Toluene-d8	101 %	80-	120	EPA 8260B			1/24/18 16:00	1/25/18 0:42	8010572	
Surrogate: Toluene-d8	98 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:31	8010572	
Surrogate: Toluene-d8	112 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:06	8010572	
Surrogate: 4-Bromofluorobenzene	103 %	80-	120	EPA 8260B			1/24/18 16:00	1/25/18 0:42	8010572	
Surrogate: 4-Bromofluorobenzene	110 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:31	8010572	
Surrogate: 4-Bromofluorobenzene	110 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:06	8010572	

Report No.: ABA0542

Client ID: MW-13

Date/Time Sampled: 01/19/2018 2:00:00PM

Matrix: Ground Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-05 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Acetone	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Acrolein	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Acrylonitrile	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Allyl Chloride (3-Chloropropylene)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Benzene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Bromobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Bromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Bromodichloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Bromoform	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Bromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
n-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
sec-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
tert-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Carbon Disulfide	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Carbon Tetrachloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Chlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1-Chlorobutane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Chloroethane	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Chloroform	0.011	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Chloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
2-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
4-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Dibromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,2-Dibromo-3-chloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,2-Dibromoethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Dibromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,2-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,3-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,4-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
trans-1,4-Dichloro-2-butene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Dichlorodifluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,1-Dichloroethane	0.0027	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,2-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,1-Dichloroethene	0.015	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
cis-1,2-Dichloroethene	2.0	1.0	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 6:22	8010572	LIH
trans-1,2-Dichloroethene	0.0088	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH

Report No.: ABA0542

Client ID: MW-13

Date/Time Sampled: 01/19/2018 2:00:00PM

Matrix: Ground Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-05 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
1,2-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,3-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
2,2-Dichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,1-Dichloropropene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
cis-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
trans-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Ethylbenzene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Ethyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Hexachlorobutadiene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
p-Isopropyltoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Hexachloroethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Iodomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Isopropylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Methacrylonitrile	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Methyl Acrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Methyl Butyl Ketone (2-Hexanone)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Methylene Chloride	0.43	0.40	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 6:22	8010572	LIH
Methyl Ethyl Ketone (2-Butanone)	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Methyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
4-Methyl-2-pentanone (MIBK)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Methyl-tert-Butyl Ether	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Naphthalene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
2-Nitropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Propionitrile (Ethyl Cyanide)	ND	0.020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
n-Propylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Styrene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,1,1,2-Tetrachloroethane	0.13	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,1,2,2-Tetrachloroethane	0.030	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Tetrachloroethene	44	5.0	mg/L	EPA 8260B		1000	1/24/18 16:00	1/25/18 1:08	8010572	LIH
Tetrachloroethene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Tetrahydrofuran	0.083	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Toluene	0.11	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,2,3-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,2,4-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,1,1-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,1,2-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH

Page 16 of 28

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Client ID: MW-13

Date/Time Sampled: 01/19/2018 2:00:00PM

Matrix: Ground Water

Project: Roper Pump Lab Number ID: ABA0542-05 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Trichloroethene	1.2	1.0	mg/L	EPA 8260B		200	1/23/18 21:54	1/24/18 6:22	8010572	LIH
Trichlorofluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,2,3-Trichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,2,4-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
1,3,5-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Vinyl Acetate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Vinyl Chloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
m+p-Xylene	0.0069	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
o-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Xylenes, total	0.0069	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 5:57	8010572	LIH
Surrogate: Dibromofluoromethane	96 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:57	8010572	
Surrogate: Dibromofluoromethane	90 %	80-	120	EPA 8260B			1/24/18 16:00	1/25/18 1:08	8010572	
Surrogate: Dibromofluoromethane	94 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 6:22	8010572	
Surrogate: 1,2-Dichloroethane-d4	97 %	78-	120	EPA 8260B			1/24/18 16:00	1/25/18 1:08	8010572	
Surrogate: 1,2-Dichloroethane-d4	98 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 6:22	8010572	
Surrogate: 1,2-Dichloroethane-d4	94 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:57	8010572	
Surrogate: Toluene-d8	101 %	80-	120	EPA 8260B			1/24/18 16:00	1/25/18 1:08	8010572	
Surrogate: Toluene-d8	100 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 6:22	8010572	
Surrogate: Toluene-d8	114 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:57	8010572	
Surrogate: 4-Bromofluorobenzene	108 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 6:22	8010572	
Surrogate: 4-Bromofluorobenzene	105 %	80-	120	EPA 8260B			1/24/18 16:00	1/25/18 1:08	8010572	
Surrogate: 4-Bromofluorobenzene	104 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 5:57	8010572	

Report No.: ABA0542

Client ID: Trip Blank

Date/Time Sampled: 01/19/2018 12:00:00AM

Matrix: Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-06 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Acetone	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Acrolein	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Acrylonitrile	ND	0.050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Allyl Chloride (3-Chloropropylene)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Benzene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Bromobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Bromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Bromodichloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Bromoform	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Bromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
n-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
sec-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
tert-Butylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Carbon Disulfide	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Carbon Tetrachloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Chlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1-Chlorobutane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Chloroethane	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Chloroform	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Chloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
2-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
4-Chlorotoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Dibromochloromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,2-Dibromo-3-chloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,2-Dibromoethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Dibromomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,2-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,3-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,4-Dichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
trans-1,4-Dichloro-2-butene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Dichlorodifluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,1-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,2-Dichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,1-Dichloroethene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
cis-1,2-Dichloroethene	ND	0.070	mg/L	EPA 8260B		1	1/24/18 16:00	1/25/18 0:17	8010572	LIH
trans-1,2-Dichloroethene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH

Page 18 of 28

Report No.: ABA0542

Client ID: Trip Blank

Date/Time Sampled: 01/19/2018 12:00:00AM

Matrix: Water

PACE ANALYTICAL SERVICES, LLC.

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

Project: Roper Pump Lab Number ID: ABA0542-06 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
1,2-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,3-Dichloropropane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
2,2-Dichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,1-Dichloropropene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
cis-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
trans-1,3-Dichloropropene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Ethylbenzene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Ethyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Hexachlorobutadiene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
p-Isopropyltoluene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Hexachloroethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
lodomethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Isopropylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Methacrylonitrile	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Methyl Acrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Methyl Butyl Ketone (2-Hexanone)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Methylene Chloride	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Methyl Ethyl Ketone (2-Butanone)	ND	0.10	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Methyl Methacrylate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
4-Methyl-2-pentanone (MIBK)	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Methyl-tert-Butyl Ether	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Naphthalene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
2-Nitropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Propionitrile (Ethyl Cyanide)	ND	0.020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
n-Propylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Styrene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,1,2,2-Tetrachloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Tetrachloroethene	ND	0.0050	mg/L	EPA 8260B		1	1/24/18 16:00	1/25/18 0:17	8010572	LIH
Tetrahydrofuran	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Toluene	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,2,3-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,2,4-Trichlorobenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,1,1-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,1,2-Trichloroethane	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Trichloroethene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH

Page 19 of 28

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Client ID: Trip Blank

Date/Time Sampled: 01/19/2018 12:00:00AM

Matrix: Water

Project: Roper Pump Lab Number ID: ABA0542-06 Date/Time Received: 01/19/2018 3:15:00PM

Analyte	Result	RL	Units	Method	Qual.	DF	Preparation Date	Analytical Date	Batch	Init.
Volatile Organic Compounds by EPA 8260										
Trichlorofluoromethane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,2,3-Trichloropropane	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,2,4-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
1,3,5-Trimethylbenzene	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Vinyl Acetate	ND	0.010	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Vinyl Chloride	ND	0.0020	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
m+p-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
o-Xylene	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Xylenes, total	ND	0.0050	mg/L	EPA 8260B		1	1/23/18 21:54	1/24/18 6:47	8010572	LIH
Surrogate: Dibromofluoromethane	93 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 6:47	8010572	
Surrogate: Dibromofluoromethane	89 %	80-	120	EPA 8260B			1/24/18 16:00	1/25/18 0:17	8010572	
Surrogate: 1,2-Dichloroethane-d4	95 %	78-	120	EPA 8260B			1/24/18 16:00	1/25/18 0:17	8010572	
Surrogate: 1,2-Dichloroethane-d4	98 %	78-	120	EPA 8260B			1/23/18 21:54	1/24/18 6:47	8010572	
Surrogate: Toluene-d8	102 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 6:47	8010572	
Surrogate: Toluene-d8	103 %	80-	120	EPA 8260B			1/24/18 16:00	1/25/18 0:17	8010572	
Surrogate: 4-Bromofluorobenzene	103 %	80-	120	EPA 8260B	60B		1/24/18 16:00	1/25/18 0:17	8010572	
Surrogate: 4-Bromofluorobenzene	104 %	80-	120	EPA 8260B			1/23/18 21:54	1/24/18 6:47	8010572	

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Volatile Organic Compounds by EPA 8260 - Quality Control

		Reporting		Spike	Spike Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 8010572 - EPA 5030B										
Blank (8010572-BLK1)	Prepared & Analyzed: 01/23/18									
Acetone	ND	0.10	mg/L							
Acrolein	ND	0.050	mg/L							
Acrylonitrile	ND	0.050	mg/L							
Allyl Chloride (3-Chloropropylene)	ND	0.010	mg/L							
Benzene	ND	0.0050	mg/L							
Bromobenzene	ND	0.010	mg/L							
Bromochloromethane	ND	0.010	mg/L							
Bromodichloromethane	ND	0.010	mg/L							
Bromoform	ND	0.010	mg/L							
Bromomethane	ND	0.010	mg/L							
n-Butylbenzene	ND	0.010	mg/L							
sec-Butylbenzene	ND	0.010	mg/L							
tert-Butylbenzene	ND	0.010	mg/L							
Carbon Disulfide	ND	0.010	mg/L							
Carbon Tetrachloride	ND	0.0020	mg/L							
Chlorobenzene	ND	0.010	mg/L							
1-Chlorobutane	ND	0.010	mg/L							
Chloroethane	ND	0.0050	mg/L							
Chloroform	ND	0.0020	mg/L							
Chloromethane	ND	0.010	mg/L							
2-Chlorotoluene	ND	0.010	mg/L							
4-Chlorotoluene	ND	0.010	mg/L							
Dibromochloromethane	ND	0.010	mg/L							
1,2-Dibromo-3-chloropropane	ND	0.010	mg/L							
1,2-Dibromoethane	ND	0.010	mg/L							
Dibromomethane	ND	0.010	mg/L							
1,2-Dichlorobenzene	ND	0.010	mg/L							
1,3-Dichlorobenzene	ND	0.010	mg/L							
1,4-Dichlorobenzene	ND	0.010	mg/L							
trans-1,4-Dichloro-2-butene	ND	0.0050	mg/L							
Dichlorodifluoromethane	ND	0.010	mg/L							
1,1-Dichloroethane	ND	0.0020	mg/L							
1,2-Dichloroethane	ND	0.0020	mg/L							
1,1-Dichloroethene	ND	0.0020	mg/L							
cis-1,2-Dichloroethene	ND	0.070	mg/L							
trans-1,2-Dichloroethene	ND	0.0020	mg/L							
1,2-Dichloropropane	ND	0.0020	mg/L							
1,3-Dichloropropane	ND	0.0020	mg/L							
2,2-Dichloropropane	ND	0.010	mg/L							
1,1-Dichloropropene	ND	0.010	mg/L							
cis-1,3-Dichloropropene	ND	0.0020	mg/L							

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, § Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Volatile Organic Compounds by EPA 8260 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 8010572 - EPA 5030B										
Blank (8010572-BI K1)	ared & An:	alvzed: 01/	23/18							
trans-1.3-Dichloropropene	ND	0.0020	ma/L		Пер		ary200.017	20/10		
Ethylbenzene	ND	0.0020	ma/L							
Ethyl Methacrylate	ND	0.010	ma/l							
Hexachlorobutadiene	ND	0.010	ma/l							
p-lsopropyltoluene	ND	0.010	ma/L							
Hexachloroethane	ND	0.010	ma/L							
Iodomethane	ND	0.010	ma/L							
Isopropylbenzene	ND	0.010	ma/l							
Methacrylonitrile	ND	0.010	ma/l							
Methyl Acrylate	ND	0.010	ma/l							
Methyl Butyl Ketone (2-Hexanone)	ND	0.010	ma/l							
Methylene Chloride	ND	0.0050	ma/l							
Methyl Ethyl Ketone (2-Butanone)	ND	0.0000	ma/l							
Methyl Methacrylate	ND	0.010	ma/l							
4-Methyl-2-pentanone (MIBK)	ND	0.010	ma/l							
Methyl_tert_Butyl Ether	ND	0.010	mg/L							
Nanhthalene	ND	0.010	mg/L							
2-Nitropropage	ND	0.010	mg/L							
Propionitrile (Ethyl Cyanide)		0.020	mg/L							
n-Propulbenzene		0.020	mg/L							
Styrene		0.0050	mg/L							
1 1 1 2 Tetrachloroethane		0.0030	mg/L							
1,1,2,2 Tetrachloroethane		0.0020	mg/L							
Tetrachloroethene		0.0020	mg/L							
Tetrabydrofuran		0.0030	mg/L							
		0.010	mg/L							
		0.0020	mg/L							
		0.010	mg/L							
1,1,1 Trichloroethane		0.010	mg/L							
1,1,2 Trichloroethana		0.0020	mg/L							
Triphoroothono		0.0020	mg/L							
Trichlorofluoromethana		0.0050	mg/L							
		0.010	mg/L							
1,2,3-Inchoropropane		0.010	mg/L							
1,2,4-Trimethylbenzene		0.010	mg/L							
		0.010	mg/L							
Vinyl Chlorida		0.010	mg/L							
		0.0020	ma/l							
		0.0050	m=//							
U-Aylenes total	טא סע	0.0050	mg/L							
Ayrenes, lutar	1NU 4E	0.0050	mg/∟	50.000		00	80 400			
Surroyate. Dibromonuoromethane	45		ug/L	50.000		09	00-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, § Roswell GA, 30076 Attention: Mr. Adam Hayes

Report No.: ABA0542

Volatile Organic Compounds by EPA 8260 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 8010572 - EPA 5030B										
Blank (8010572-BLK1)		Prepared & Analyzed: 01/23/18								
Surrogate: 1,2-Dichloroethane-d4	46		ug/L	50.000		92	78-120			
Surrogate: Toluene-d8	48		ug/L	50.000		96	80-120			
Surrogate: 4-Bromofluorobenzene	54		ug/L	50.000		107	80-120			
LCS (8010572-BS1)					Prep	ared & An	alyzed: 01/	/23/18		
Benzene	0.049	0.0050	mg/L	0.050000		97	67-134			
Chlorobenzene	0.050	0.010	mg/L	0.050000		100	69-122			
1,1-Dichloroethene	0.056	0.0020	mg/L	0.050000		112	58-142			
Toluene	0.053	0.0020	mg/L	0.050000		107	68-127			
Trichloroethene	0.056	0.0050	mg/L	0.050000		111	72-132			
Surrogate: Dibromofluoromethane	51		ug/L	50.000		102	80-120			
Surrogate: 1,2-Dichloroethane-d4	49		ug/L	50.000		99	78-120			
Surrogate: Toluene-d8	49		ug/L	50.000		97	80-120			
Surrogate: 4-Bromofluorobenzene	48		ug/L	50.000		96	80-120			
Matrix Spike (8010572-MS1)	So	ource: ABA054	2-01		Prep	ared: 01/2	3/18 Anal	yzed: 01/2	24/18	
Benzene	2.2	1.0	mg/L	10.000	ND	22	67-134			QM-05
Chlorobenzene	2.5	2.0	mg/L	10.000	ND	25	69-122			QM-05
1,1-Dichloroethene	2.8	0.40	mg/L	10.000	ND	28	58-142			QM-05
Toluene	2.1	0.40	mg/L	10.000	ND	21	68-127			QM-05
Trichloroethene	2.5	1.0	mg/L	10.000	0.34	21	72-132			QM-05
Surrogate: Dibromofluoromethane	49		ug/L	50.000		99	80-120			
Surrogate: 1,2-Dichloroethane-d4	49		ug/L	50.000		99	78-120			
Surrogate: Toluene-d8	51		ug/L	50.000		103	80-120			
Surrogate: 4-Bromofluorobenzene	51		ug/L	50.000		102	80-120			
Matrix Spike Dup (8010572-MSD1)	So	ource: ABA054	2-01		Prep	ared: 01/2	3/18 Analy	yzed: 01/2	24/18	
Benzene	5.6	1.0	mg/L	10.000	ND	56	67-134	86	9	QM-06
Chlorobenzene	5.9	2.0	mg/L	10.000	ND	59	69-122	80	13	QM-06
1,1-Dichloroethene	7.1	0.40	mg/L	10.000	ND	71	58-142	85	9	QR-02
Toluene	5.5	0.40	mg/L	10.000	ND	55	68-127	91	9	QM-06
Trichloroethene	6.0	1.0	mg/L	10.000	0.34	57	72-132	84	11	QM-06
Surrogate: Dibromofluoromethane	51		ug/L	50.000		101	80-120			
Surrogate: 1,2-Dichloroethane-d4	51		ug/L	50.000		102	78-120			
Surrogate: Toluene-d8	52		ug/L	50.000		104	80-120			
Surrogate: 4-Bromofluorobenzene	50		ug/L	50.000		101	80-120			

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, § Roswell GA, 30076 Attention: Mr. Adam Hayes

Laboratory Certifications

Code	Description	Number	Expires
GADW	Georgia DW Inorganics Eff: 07/01/2016	812	06/30/2018
GADWM	Georgia DW Microbiology Eff: 07/01/2015	812	12/09/2019
NC	North Carolina	381	12/31/2018
NELAC	FL DOH (Non-Pot. Water, Solids) Eff:: 07/01/2016	E87315	06/30/2018
NELDW	FL DOH NELAC (Drinking Water) Eff: 07/01/2016	E87315	06/30/2018
SC	South Carolina	98011001	06/30/2018
ТХ	Texas	T104704397-08-TX	03/31/2018
VA	Virginia	460204	12/14/2018

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

January 26, 2018

WENCK Associates 1080 Holcomb Bridge Road, Building 100, § Roswell GA, 30076 Attention: Mr. Adam Hayes

Legend

Definition of Laboratory Terms

- ND None Detected at the Reporting Limit
- TIC Tentatively Identified Compound
- CFU Colony Forming Units
- SOP Method run per Pace Standard Operating Procedure
 - RL Reporting Limit
- **DF** Dilution Factor
 - * Analyte not included in the NELAC list of certified analytes.

Sample Information

N-Nitrosodiphenylamine breaks down to diphenylamine in the GCMS; both analytes are reported as N-Nitrososdiphenylamine. Pace is not NELAC certified for diphenylamine.

Phthalic acid and phthalic anhydride are reported as dimethyl phthalate

Maleic acid and maleic anhydride are reported as dimethyl malate

1,2-Diphenylhydrazine breaks down to azobenzene in the GCMS; both analytes are reported as azobenzene Drinking Water Records will be available for at least 5 years and are subject to disposal after the 5 years have elapsed.

Definition of Qualifiers

- **QR-02** The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries.
- **QM-06** Due to suspected matrix interference, RPD and Percent Recovery values for the MS and/or MSD were outside control limits. Sample results for the QC batch were accepted based on acceptable LCS recoveries.
- **QM-05** The spike recovery was outside acceptance limits for the MS and/or MSD and/or PDS due to suspected matrix interference. Sample results for the QC batch were accepted based on acceptable LCS recoveries.

Note: Unless otherwise noted, all results are reported on an as received basis.

092 PAGE:	CONTAINER TYPE	P - PLASTIC	A - AMBER GLAS	G - CLEAR GLASS
A 30(L	A	8	_
Pace Analytical Services, LLC - Atlanta GA 110 TECHNOLOGY PARKWAY, PEACHTREE CORNERS, G (770) 734-4200 : FAX (770) 734-4201	ANALYSIS REQUESTED	CONTAINER TYPE: V	PRESERVATION	#of
CHAIN OF CUSTODY RECORD	CLIENT NAME: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Never	CLIENT ADDRESS/PHONE NUMBER/FAX NUMBER:	1050 Holpomb Bridge Rood

ЧО

	G - CLEAR GLASS 3 - H204, 50 C	V - VOA VIAL 4 - NaOH, 56°C	0 - 0THER 6 - Na ₂ S ₂ O ₃ ≤6°C 7 - ≤6°C not frozen	•MATRIX CODES:	DW - DRINKING WATER S - SOIL WW - WASTEWATER SL - SLUDGE	GW - GROUNDWATER SD - SOLID SW - SURFACE WATER A - AIR	ST - STORM WATER L - LIQUID W - WATER P - PRODUCT	REMARKS/ADDITIONAL INFORMATION						Trip Blouk	-		FOR WAB USE ONLY ?	INB#: XBHOSHY	Entered into LIMS: (0 H Tracking #:
< (- 0	z ⊃ Į	200	۲. ۲		*		~~	1	4	5	e			DATE/TIME:	7-14-19 1212 DATE/TIME:	LIENT OTHER FS Cooler D:
CONTAINER TYPE: X	PRESERVATION. A PRESERVATION.) O Z	00) ८२ - z ш	<u>κ</u> ω	001	→ I		M	N N	3 3	3 3				BELINDUISHED BY: 2.4 / 0 1.4	RELINQUISHED BY:	SAMPLE SHIPPED VIA: UPS COURIER Curredy Seal: Matecy Broken Not Present N/A # of Coolers
	LIENI ADDHESS/PHONE NUMBER/FAX NUMBER:	ROSULAN UN RODED	EPORT TO: ADAM HAYES AHAYES EWERCK, COM	EQUESTED COMPLETION DATE PO#: Story Juned TAT	ROPES PUIND	ROJECT #: (1572 - 050)	Collection Collection MATRIX C G SAMPLE IDENTIFICATION		1/11/18/11:23 (GW X MW-7	CT-MW X MO OHIN 4/6/	19/18/13:00 GW X MW-21	119/18/19:26/CW X NW-22	21-11/18/14:00 GW X MM-13				AMPLED BX AND TITLE: 10 / 100000 DATE/TIME:	ECENED BY: ECENED P. 19-19-19 1460	HERE BY UBS. I LING DATHAGE OF 1515

of 28

Project # ABAOTH Counter: FaceAnalytical Client Name: Wenck Project # ABAOTH Sourier: FaceAnalytical USPS Client Commercial Pace Other Debodal Counter: FaceAnalytical Obtobal Project # ABAOTH Debodal Project # ABAOTH Counter: FaceAnalytical Obtobal Project # ABAOTH Project # ABAOTH Counter: FaceAnalytical Obtobal Project # ABAOTH Project # ABAOTH Cated Salo no Coler/Box Present: Project # ABAOTH Project # ABAOTH Project # ABAOTH Counter Stratt Obtobal Project # ABAOTH Project # ABAOTH Counter Stratt Obtobal Project # ABAOTH Project # ABAOTH Counter Stratt Obtobal Project # ABAOTH Project # ABAOTH Counter Stratt Type of locs None Other Project # ABAOTH Counter Stratt Type of locs Obtobal Other Obtobal Project # ABAOTH Counter Stratt Type of locs Obtobal Other Obtobal Project # ABAOTH Counter Stratt	Sar	nple Condition	Upon Receipt	
	1 Decharge	1. / 1.	/	N. MR ANSH?
Sourior: Fed Ex UPS USPS Other District Provide Data Control: From Data From Data Provide Data Provide Data Control: From Data Stable Bass None Other Samples on los. cooling process has begun Cooler Temperature From Data High Data Blue None Samples on los. cooling process has begun Constance Tubed From Data Blue None Comments: Data and Initials of person establishing Constance Tubed From Data Blue None Comments: Data and Initials of person establishing Constance Tubed From Data Blue None Samples Arrived within Hold Time Graf Data Blue None Samples Arrived within Hold Time Graf Data Blue None Samples Arrived within Hold Time Graf Data Samples Arrived Within Arrived Time Samples Arrived Within Arrived Time Samples Arrived Within Arrived Time Samples	Client Name	:_Wenck		Project # <u>ADFIULA</u>
Sourder: Fed Ex UPS USPS Client Commercial Pace Other Other Statody Sal on Cooler/Box Present: Yes no Seals intact: Yes no Packing Material: Bubble Wrap Bubble Bags None Other Samples on ice: cooling process has begun Dooler Temperature Type of Ice: //we Bible None Comments: Samples on ice: cooling process has begun Dooler Temperature Samples on ice: cooling process has begun Comments: Comments: Dooler Temperature Sampler Name & Signature on COC Gres Dive Dive Samples Anice Signature on COC Samples Anice Signature on COC Sampler Name & Signature on COC Gres Dive Dive Sampler Name & Signature on COC Sampler Name & Signature on COC Short Hold Time Analysis (<72hr):	1 .	<u></u>	-	
Desized y Seal on Cooler/Box Present: Image: Seal	courier: Fed Ex UPS USPS Clier Fracking #:	nt Commercial	Pace Other	Optional Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags None Other Chermometer Used Image: Strate St	Custody Seal on Cooler/Box Present: Gyes	🗌 no 🛛 Seals	intact: Ves	no
Type of Ice: Blue Samples on ice: Dooleng organization Cooler Temperature 5.5 Biological Tissue is Frazen:: No Data and Initiation Foreign examining contents: Data of Custody Present: 7/96 No NA 2 Chain of Custody Relinquished: 2/96 No NA 2 Chain of Custody Relinquished: 2/96 No NA 3 Samples Artived within Hold Time 6/96 NA 4 Samples Artived within Hold Time 6/96 NA 4 Sample Name & Signature on COC: 6/96 NA 4 Samples Artived within Hold Time: 6/96 NA 5 Short Hold Time Analysis (<72hr): 1/96 NA 8 Correct Containers Used: 6/96 NA 8 Containers Intact: 6/96 NA 10 Elferge volume received for Dissolved tests 10 11 Samples antice of Condition: 10 13 13 All contaners needing preservation frave Beam fielded 19/96 14 Headstantmendballosi Samples 10 14	Packing Material: Bubble Wrap Bubble	Bags 🗌 None	Other	
Cooler Temperature Status Biological Tissue is Frozen: Yes No Date and initiate of portion examining contents: Chain of Custody Present: Comments: Comments: Comments: Contents:	Thermometer Used THR 082	Type of Ice: Wet	Blue None	Samples on ice, cooling process has begun
Gramp should be above freezing to 9°C Comments: Comments: Chain of Custody Present: Creations: 1. Chain of Custody Relinquished: Prest No. NNA. 1. Chain of Custody Relinquished: Prest No. NNA. 2. Sampler Name & Signature on COC: Prest No. NNA. 3. Samples Arrived within Hold Time: Prest No. NNA. 5. Short Hold Time Analysis (<72hr):		Biological Tissue	is Frozen: Yes No	Date and Initials of person examining
Dhain of Custody Present: Image: Strategy Filed Out:	emp should be above freezing to 6°C		Comments:	
Chain of Custody Filled Out: Image: No. Ima. Internatintere Image: No. Image: No. Image: No. Image: No. Ima.	Chain of Custody Present:		1.	
Chain of Custody Relinquished: PTST No NA 3. Sampler Name & Signature on COC: PTST No NA 4. Samples Arrived within Hold Time PTST No NA 5. Short Hold Time Analysis (<72hr):	Chain of Custody Filled Out:		2.	
Sampler Name & Signature on COC: Effest Neo NA 4. Samples Arrived within Hold Time. Effest Neo NA 5. Short Hold Time Analysis (<72hr):	Chain of Custody Relinquished:	Pres ONO ON/A	3.	
Samples Arrived within Hold Time: Hold Time (Hold Time Analysis (<72hr): Uves (Ma Construction and Construct	Sampler Name & Signature on COC:	TYes DNO DN/A	4.	
Short Hold Time Analysis (<72hr):	Samples Arrived within Hold Time:		5.	
Rush Turn Around Time Requested: IVes IVes <td>Short Hold Time Analysis (<72hr):</td> <td>□Yes ⊡No □N/A</td> <td>6.</td> <td></td>	Short Hold Time Analysis (<72hr):	□Yes ⊡No □N/A	6.	
Sufficient Volume: Yes NA 8. Correct Containers Used: Yes NA 9. -Pace Containers Used: Yes NA 10. Containers Intact: Yes NA 10. Filtered volume received for Dissolved tests Yes NA 10. Sample Labels match COC Yes NA 12. -Includes date/time/ID/Analysis Matrix: Matrix: Matrix: All containers needing preservation have been checked Yes NA 13. All containers needing preservation are found to be in completed Yes NA 15. Samples checked for decklorination: Yes NA 15. Trip Blank Present: Yes NA 16. The Blank Custody Seals Present Yes NA 16. Person Contacted	Rush Turn Around Time Requested:	Yes No ON/A	7.	
Correct Containers Used: Pace Containers Used: Pace Containers Used: Pace Containers Used: Pace Containers Intact: Pace Contracted Pace Containers Pac	Sufficient Volume:		8.	
Pace Containers Used: Pace Containers Intact: Pace Containers Pace Inter: Pace Containers Pace Inter: Pace In	Correct Containers Used:	TYes DNO DN/A	9.	
Containers Intact: Image: No Image:	-Pace Containers Used:			
Filtered volume received for Dissolved tests IVes IVes IVes III. Sample Labels match COC IVes <	Containers Intact:	THE NO TNA	10.	1
Sample Labels match COC: Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked Ives No Ves N	Filtered volume received for Dissolved tests	DYes DNO BRIA	11.	ŝ
-Includes date/time/ID/Analysis Matrix:	Sample Labels match COC	EYes DNO DN/A	12.	
All containers needing preservation have been checked. I Yes No EWA II. All containers needing preservation are found to be in compliance with EPA recommendation. I Yes No INVA Initial when completed I Yes No INVA Initial when completed I Yes on INVA II. INITIAL Yes INO INVA II. INITIAL	-Includes date/time/ID/Analysis Matrix:	C-W		
All containers needing preservation are found to be in organized with EPA recommendation.	All containers needing preservation have been checked.		13.	
exceptions GA coliform, TOC, O&G, WI-DRO (water) Ives Initial when completed completed preservative Samples checked for dechlorination: Ives No Ives Ives Samples checked for dechlorination: Ives No Ives Ives Headspace in VOA Vials (>6mm): Ives Ives Ives Ives Trip Blank Present: Ives Ives Ives Ives Pace Trip Blank Custody Seals Present Ives Ives Ives Ives Pace Trip Blank Lot # (if purchased)	All containers needing preservation are found to be in compliance with EPA recommendation.			<u> </u>
Samples checked for dechlorination: Image: Second Seco	exceptions: NOA, Coliform, TOC, O&G, WI-DRO (water)	Yes No	Initial when completed	Lot # of added preservative
Headspace in VOA Vials (>6mm): IYes INo IN/A 15 Trip Blank Present: IYes INo IN/A 16 Trip Blank Custody Seals Present IYes INo IN/A 16 Pace Trip Blank Lot # (if purchased). Image:	Samples checked for dechlorination:	Yes No EMA	14.	
Trip Blank Present: Image: Divestigation in the image: Divestigation	Headspace in VOA Vials (>6mm):		15	
Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased) Client Notification/ Resolution: Field Data Required? Person Contacted:	Trip Blank Present:		16	2
Pace Trip Blank Lot # (if purchased) Client Notification/ Resolution: Person Contacted: Comments/ Resolution:	Trip Blank Custody Seals Present			
Client Notification/ Resolution: Field Data Required? Y / N Person Contacted: Date/Time: Comments/ Resolution:	Pace Trip Blank Lot # (if purchased):			
Person Contacted: Date/Time: Comments/ Resolution: Previous Managers Review:	Client Notification/ Resolution:			Field Data Paguirad2
Comments/ Resolution:	Person Contacted:	Date/	Time	
	Comments/ Resolution:			and the second
Project Manager Paviau				
Broiget Manager Baylow				
Broiget Magager Boylour				
Brolest Manager Review				
Broject Manager Poviews				
	Project Manager Peview:			Data

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Page 27 of 28

Pace Analytical®

Environmental Monitoring & Laboratory Analysis 110 Technology Parkway, Peachtree Corners, GA 30092 (770) 734-4200 FAX (770) 734-4201

LOG-IN CHECKLIST

Printed: 1/22/2018 11:32:39AM

Attn: Ms. Kristen Rivera

Client: WENCK Associates Project: Roper Pump Date Received: 01/19/18 15:15		Work Order: Logged In By:	ABA0542 Charles Hawks	
OBSERVATIONS				
#Samples: 6	#Containers: 17			
Minimum Temp(C): 5.5	Maximum Temp(C):	5.5	Custody Seal(s) Used:	Yes

CHECKLIST ITEMS

COC included with Samples	YES
Sample Container(s) Intact	YES
Chain of Custody Complete	YES
Sample Container(s) Match COC	YES
Custody seal Intact	YES
Temperature in Compliance	YES
Sufficient Sample Volume for Analysis	YES
Zero Headspace Maintained for VOA Analyses	YES
Samples labeled preserved (If Applicable)	YES
Samples received within Allowable Hold Times	YES
Samples Received on Ice	YES
Preservation Confirmed	YES

Comments:

Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

April 05, 2018

Adam Hayes WENCK Associates 1080 Holcomb Bridge Road, Building 100, Suite 190 Roswell, GA 30076

RE: Project: Pace Project No.:

Dear Adam Hayes:

Enclosed are the analytical results for sample(s) received by the laboratory between and . The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Eben Buchanon

Eben Buchanan eben.buchanan@pacelabs.com (770)734-4200 Project Manager

Enclosures

cc: Mark Padgett, WENCK Associates

REPORT OF LABORATORY ANALYSIS
PaceAnalytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custodv is a LEGAL DOCUMENT. All relevant fields must be completed i

. Instelv

			יטי-לינאניעין וא בבטאב טלילטאובוען. איו ופופעמון וופוטא וווטא טפ לטווואיפופע מ מביווייה ר	- finite	
Section Require	d Client Information:	accuon b Required Project Information:	locator of Internation:	Page: 1 Of 1	
Compan	y: WENCK Associates	Report To: Mark Padgett	Attention: ADam, Hayes		
Address	v 1080 Hotcomb Bridge Road.	COPY TO: ALAM HOVES	Company Name: Juent /		
Roswell.	. GA 30076		Addresse 1000 Halcomb Bridge Rd, Robwell, 6A	A Street of Agency agency and the second second	
Emait	mpadgatt@wenck.com	Purchase Order #:)	Pace Quote:		
Phone:	828.261.5589 Fax	Project Name: Roper	Pace Project Manager. 0bon. buchanan@pacelabs.com,		
Request	ted Due Date: Standard TAT	Project #: 66472 - 0001	Pace Profile #:		
		(Je) o			
	MATRIX Drivking Weal Water				
	SAMPLE ID Subsu	د د د د د د د د د د د د د د د د د د د	Ar coule BR3	(MY) 9nhc	
# Wəti	One Character per box. Whe (A.Z, 0-9 / ,) Ar Sample Ids must bo unique Tissue	RAMPLE TYPE	AOC PÅ 8560 AOC PÅ 8560 Merpsuoj Merpsuoj HCI HCI HCI HCO HCI HCO HCO HCO HCO HCO HCO HCO HCI HCO HCO HCO HCO HCO HCO HCO HCO HCO HCO	Residual Chic	
	MW-6D5	wr 6 3436118 1405			
S	MW-9D	In 6 1 1205			
	MW- 12D	brt6 1130			
	mw-13	WTG 1335			
5	MW - 23	wr 6 V 1 a 35	X		
9	Trip Blunk	10 V	×		
					
6				263332	1
9					
12					
eqst fil					
		ONIANK HEADTH / WEACK 76	28/18/1912 /1/1XUMM/ 14/18/18	5/9/	
				5.27 7 7	
Pa		SAMPLER NAME AND		, uo t	
age 2		SIGNATURE of SA	AMPLER: MAYK PACYOPH AMPLER: MAAID D-d_moth DATE Signed: 2124-112	TEMP IT	l
of 3			ninnin I unanni Unahla		

	s sv			linen Decoint		
San	ipie C	ond	tion	Upon Receipt		
Pace Analytical Client Name	ú	len	cK		Project #	
					LIO#: 263332	
Courler: Fed Ex UPS USPS Clien	t 🗆 C	omme	rcial	Pace Other	PM: EDB Due Date: 04	/04/18
Custody Seal on Cooler/Box Present: Pyes	Пл	o	Seals	intact: 🖉 yes 🔲	CLIENT: WENCK	
Packing Material: Bubble Wrap	Bags		one [Other	<i>p</i>	
Thermometer Used 8.3	Туре о	f lce:	Net) Blue None 🗌	Samples on ice, cooling process has begun	
Cooler Temperature <u>5'2</u>	Biolog	ical T	Issue	is Frozen: Yes No Comments:	contents: 0/28/18	1
Chain of Custody Present:	Pres			1.		
Chain of Custody Filled Out:	Hes			2	·	
Chain of Custody Relinquished:	Fres			3.		ļ.
Sampler Name & Signature on COC:	, Erres	□No		4.		H
Samples Arrived within Hold Time:	Æ Yes	□No		5		4
Short Hold Time Analysis (<72hr):	☐Yes	Deno'		6.		<u> </u> -
Rush Turn Around Time Requested:	□Yes	jtrio	⊡n/A	7.		₽
Sufficient Volume:	-Eres			8	· · · · · · · · · · · · · · · · · · ·	
Correct Containers Used:	, EYes			9.		
-Pace Containers Used:	Pres	□No				₽
Containers Intact:	-Eres			10.		
Filtered volume received for Dissolved tests	□Yes		EN IA	11		
Sample Labels match COC:	-Erres	[]no	⊡n/A	12.		
-Includes date/time/ID/Analysis Matrix:	L				·	 -
All containers needing preservation have been checked.	□Yes		-BINA	13.		
All containers needing preservation are found to be in compliance with EPA recommendation.		014	⊡n/A			
exceptions: VDA colliform, TOC, O&G, WI-DRO (water)	P Yas			Initial when completed	Lot # of added preservative	
Samples checked for dechlorination:	□Yes			14.		
Headspace in VOA Vials (>6mm):	□Yes	ZNO		15.		
Trin Black Present	ZYes!	N₀	⊡n/a	16.		
Trio Black Custody Seals Present	AT es				9	
Pace Trip Blank Lot # (if purchased):						
Client Notification/ Resolution:					Field Data Required? Y / N	T_
Person Contacted:			_Date/	Time.		
Comments/ Resolution:					· · · · · · · · · · · · · · · · · · ·	
						<u></u>
						├ ── [`]
				<u> </u>		
			<u> </u>	· · · · · · · · · · · · · · · · · · ·		 -
·		-				-
Project Manager Review:					Date:	_

Note: Whenever there is a discrepancy affecting North Carolina compliance samples a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp incorrect containers,

Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

March 09, 2018

Adam Hayes WENCK Associates 1080 Holcomb Bridge Road, Building 100, Suite 190 Roswell, GA 30076

RE: Project: Roper Pump B6572-0001 Pace Project No.: 262331

Dear Adam Hayes:

Enclosed are the analytical results for sample(s) received by the laboratory on February 28, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Eben Buchanon

Eben Buchanan eben.buchanan@pacelabs.com (770)734-4200 Project Manager

Enclosures

cc: Mark Padgett, WENCK Associates

CERTIFICATIONS

Project: Roper Pump B6572-0001 Pace Project No.: 262331

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001 Texas Certification #: T104704397-08-TX Virginia Certification #: 460204

SAMPLE SUMMARY

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Lab ID	Sample ID	Matrix	Date Collected	Date Received
262331001	MW-9S	Water	02/28/18 12:55	02/28/18 16:30
262331002	MW-12	Water	02/28/18 13:30	02/28/18 16:30
262331003	MW-13D	Water	02/28/18 14:40	02/28/18 16:30
262331004	MW-15D	Water	02/28/18 11:55	02/28/18 16:30
262331005	MW-21D	Water	02/28/18 11:35	02/28/18 16:30

SAMPLE ANALYTE COUNT

Project:Roper Pump B6572-0001Pace Project No.:262331

Lab ID	Sample ID	Method	Analysts	Analytes Reported
262331001	MW-9S	EPA 8260B	RAC	64
262331002	MW-12	EPA 8260B	LIH, RAC	64
262331003	MW-13D	EPA 8260B	LIH, RAC	64
262331004	MW-15D	EPA 8260B	LIH, RAC	64
262331005	MW-21D	EPA 8260B	LIH	64

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. C 8260B MSV Analytical Method: EPA 8260B Analyti	
8260B MSV Analytical Method: EPA 8260B Acetone ND ug/L 25.0 1 03/05/18 12:49 67-64-1 Benzene ND ug/L 1.0 1 03/05/18 12:49 71-43-2 Bromobenzene ND ug/L 1.0 1 03/05/18 12:49 108-86-1 Bromochloromethane ND ug/L 1.0 1 03/05/18 12:49 74-97-5 Bromodichloromethane ND ug/L 1.0 1 03/05/18 12:49 75-27-4 Bromoform ND ug/L 1.0 1 03/05/18 12:49 75-27-2 Bromoform ND ug/L 1.0 1 03/05/18 12:49 75-27-2 Bromomethane ND ug/L 1.0 1 03/05/18 12:49 75-25-2 Bromomethane ND ug/L 2.0 1 03/05/18 12:49 74-83-9 2 Butapagong (MEK) ND ug/L 2.0 1 03/05/18 12:49 74-83-9	Qual
Acetone ND ug/L 25.0 1 03/05/18 12:49 67-64-1 Benzene ND ug/L 1.0 1 03/05/18 12:49 71-43-2 Bromobenzene ND ug/L 1.0 1 03/05/18 12:49 71-43-2 Bromochloromethane ND ug/L 1.0 1 03/05/18 12:49 74-97-5 Bromodichloromethane ND ug/L 1.0 1 03/05/18 12:49 75-27-4 Bromoform ND ug/L 1.0 1 03/05/18 12:49 75-25-2 Bromomethane ND ug/L 2.0 1 03/05/18 12:49 74-83-9 2 Butaneone (MEK) ND ug/L 2.0 1 03/05/18 12:49 74-83-9	
Benzene ND ug/L 1.0 1 03/05/18 12:49 71-43-2 Bromobenzene ND ug/L 1.0 1 03/05/18 12:49 108-86-1 Bromochloromethane ND ug/L 1.0 1 03/05/18 12:49 74-97-5 Bromochloromethane ND ug/L 1.0 1 03/05/18 12:49 75-27-4 Bromoform ND ug/L 1.0 1 03/05/18 12:49 75-27-4 Bromomethane ND ug/L 1.0 1 03/05/18 12:49 75-27-2 Bromomethane ND ug/L 2.0 1 03/05/18 12:49 75-25-2 Bromomethane ND ug/L 2.0 1 03/05/18 12:49 74-83-9 2. Butapageng (MEK) ND ug/L 5.0 1 03/05/18 12:49 74-83-9	
Bromobenzene ND ug/L 1.0 1 03/05/18 12:49 108-86-1 Bromochloromethane ND ug/L 1.0 1 03/05/18 12:49 74-97-5 Bromochloromethane ND ug/L 1.0 1 03/05/18 12:49 75-27-4 Bromoform ND ug/L 1.0 1 03/05/18 12:49 75-27-4 Bromomethane ND ug/L 1.0 1 03/05/18 12:49 75-25-2 Bromomethane ND ug/L 2.0 1 03/05/18 12:49 74-83-9 2. Butapagen (MEK) ND ug/L 5.0 1 03/05/18 12:49 70-22	
Bromochloromethane ND ug/L 1.0 1 03/05/18 12:49 74-97-5 Bromodichloromethane ND ug/L 1.0 1 03/05/18 12:49 75-27-4 Bromoform ND ug/L 1.0 1 03/05/18 12:49 75-25-2 Bromomethane ND ug/L 2.0 1 03/05/18 12:49 74-83-9 2. Butapagon (MEK) ND ug/L 5.0 1 03/05/18 12:40 70.2	
Bromodichloromethane ND ug/L 1.0 1 03/05/18 12:49 75-27-4 Bromoform ND ug/L 1.0 1 03/05/18 12:49 75-25-2 Bromomethane ND ug/L 2.0 1 03/05/18 12:49 74-83-9 2 Butanono (MEK) ND ug/L 5.0 1 03/05/18 12:40 78-83-9	
Bromoform ND ug/L 1.0 1 03/05/18 12:49 75-25-2 Bromomethane ND ug/L 2.0 1 03/05/18 12:49 74-83-9 2 Butanana (MEK) ND ug/L 5.0 1 03/05/18 12:40 78-83-9	
Bromomethane ND ug/L 2.0 1 03/05/18 12:49 74-83-9 2 Butanono (MEK) ND ug/L 5.0 1 03/05/18 12:49 74-83-9	
2 Butanono (MEK) ND ug/l 5.0.1 02/05/48.40.40.70.02.2	
2-ουταποπε (πιμπτ) 10 μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ	
Carbon tetrachloride ND ug/L 1.0 1 03/05/18 12:49 56-23-5	
Chlorobenzene ND ug/L 1.0 1 03/05/18 12:49 108-90-7	
Chloroethane ND ug/L 1.0 1 03/05/18 12:49 75-00-3	
Chloroform ND ug/L 1.0 1 03/05/18 12:49 67-66-3	
Chloromethane ND ug/L 1.0 1 03/05/18 12:49 74-87-3	
2-Chlorotoluene ND ug/L 1.0 1 03/05/18 12:49 95-49-8	
4-Chlorotoluene ND ug/L 1.0 1 03/05/18 12:49 106-43-4	
1.2-Dibromo-3-chloropropane ND ug/L 1.0 1 03/05/18 12:49 96-12-8	
Dibromochloromethane ND ug/L 1.0 1 03/05/18 12:49 124-48-1	
1.2-Dibromoethane (EDB) ND ug/L 1.0 1 03/05/18 12:49 106-93-4	
Dibromomethane ND ug/L 1.0 1 03/05/18 12:49 74-95-3	
1.2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 12:49 95-50-1	
1.3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 12:49 541-73-1	
1.4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 12:49 106-46-7	
Dichlorodifluoromethane ND ug/L 1.0 1 03/05/18 12:49 75-71-8	
1.1-Dichloroethane ND ug/L 1.0 1 03/05/18 12:49 75-34-3	
1.2-Dichloroethane ND ug/L 1.0 1 03/05/18 12:49 107-06-2	
1.1-Dichloroethene ND ug/l 1.0 1 03/05/18 12:49 75-35-4	
cis-1.2-Dichloroethene ND ug/L 1.0 1 03/05/18 12:49 156-59-2	
trans-1 2-Dichloroethene ND ug/l 1.0 1 03/05/18 12:49 156-60-5	
12-Dichloropropage ND ug/ 1.0 1 03/05/18.12:49 78-87-5	
13-Dichloropropage ND uq/l 1.0 1 $03/05/18$ 12:49 142-28-9	
2 - Dichloropropane ND ug/ 1.0 1 03/05/18 12:49 594-20-7	
1.1-Dichloropropene ND ug/L 1.0 1 03/05/18 12:49 563-58-6	
cis-1.3-Dichloropropene ND ug/L 1.0 1 03/05/18 12:49 10061-01-5	
trans-1.3-Dichloropropene ND ug/L 1.0 1 03/05/18 12:49 10061-02-6	
Diisopropyl ether ND ug/l 10.0 1 03/05/18 12:49 108-20-3	
Enclose in the second	
Hexachloro-1.3-butadiene ND ug/L 10.0 1 03/05/18 12:49 87-68-3	
2-Hexanone ND ug/l 5.0 1 03/05/18 12:49 591-78-6	
p-Isopropyltoluene ND ug/L 1.0.1 03/05/18.12:49.99-87-6	
Methylene Chloride ND ug/L 1.0 1 03/05/18 12:49 75-09-2	
4-Methyl-2-pentanone (MIBK) ND ug/l 5.0 1 03/05/18.12:49.108-10-1	
Methyl-tert-butyl ether ND ug/l 10.0 1 03/05/18.12:49.1634-04-4	
Naphthalene ND ug/L 1.0 1 03/05/18 12:40 1004 04 4	
Styrene ND ug/L 1.0 1 03/05/18 12:49 01 20 0	
1 1 1 2-Tetrachloroethane ND ug/l 1 0 1 03/05/18 12:49 630-20-6	
1 1 2 2-Tetrachloroethane ND ug/l 1 0 1 03/05/18 12:49 000 20 0	
Tetrachloroethene ND ug/L 1.0 1 03/05/18 12:49 127-18-4	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Sample: MW-9S	Lab ID: 262	331001	Collected: 02/28/1	8 12:55	Received: 02	2/28/18 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Toluene	ND	ug/L	1.0	1		03/05/18 12:49	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/05/18 12:49	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/05/18 12:49	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/05/18 12:49	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/05/18 12:49	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		03/05/18 12:49	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/05/18 12:49	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/05/18 12:49	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/05/18 12:49	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/05/18 12:49	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/05/18 12:49	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		03/05/18 12:49	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/05/18 12:49	95-47-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	97	%.	81-119	1		03/05/18 12:49	17060-07-0	
Dibromofluoromethane (S)	96	%.	82-114	1		03/05/18 12:49	1868-53-7	
4-Bromofluorobenzene (S)	104	%.	82-120	1		03/05/18 12:49	460-00-4	
Toluene-d8 (S)	95	%.	82-109	1		03/05/18 12:49	2037-26-5	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Sample: MW-12	Lab ID: 2623	331002	Collected: 02/28/1	8 13:30	Received: 0	2/28/18 16:30 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 8	260B					
Acetone	ND	ug/L	25.0	1		03/05/18 13:16	67-64-1	
Benzene	ND	ug/L	1.0	1		03/05/18 13:16	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/05/18 13:16	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/05/18 13:16	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/05/18 13:16	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/05/18 13:16	75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/05/18 13:16	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/05/18 13:16	78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/05/18 13:16	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/05/18 13:16	108-90-7	
Chloroethane	ND	ug/L	1.0	1		03/05/18 13:16	75-00-3	
Chloroform	ND	ug/L	1.0	1		03/05/18 13:16	67-66-3	
Chloromethane	ND	ug/L	1.0	1		03/05/18 13:16	74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1		03/05/18 13:16	95-49-8	
4-Chlorotoluene	ND	ug/L	1.0	1		03/05/18 13:16	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	1		03/05/18 13:16	96-12-8	
Dibromochloromethane	ND	ug/L	1.0	1		03/05/18 13:16	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1		03/05/18 13:16	106-93-4	
Dibromomethane	ND	ug/L	1.0	1		03/05/18 13:16	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:16	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:16	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:16	106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		03/05/18 13:16	75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		03/05/18 13:16	75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		03/05/18 13:16	107-06-2	
1,1-Dichloroethene	67.3	ug/L	1.0	1		03/05/18 13:16	75-35-4	
cis-1,2-Dichloroethene	11700	ug/L	100	100		03/07/18 13:31	156-59-2	
trans-1,2-Dichloroethene	129	ug/L	1.0	1		03/05/18 13:16	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/05/18 13:16	78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		03/05/18 13:16	142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		03/05/18 13:16	594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		03/05/18 13:16	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/05/18 13:16	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/05/18 13:16	10061-02-6	
Diisopropyl ether	ND	ug/L	10.0	1		03/05/18 13:16	108-20-3	
Ethylbenzene	ND	ug/L	1.0	1		03/05/18 13:16	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1		03/05/18 13:16	87-68-3	
2-Hexanone	ND	ug/L	5.0	1		03/05/18 13:16	591-78-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		03/05/18 13:16	99-87-6	
Methylene Chloride	ND	ug/L	1.0	1		03/05/18 13:16	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/05/18 13:16	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	10.0	1		03/05/18 13:16	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		03/05/18 13:16	91-20-3	
Styrene	ND	ug/L	1.0	1		03/05/18 13:16	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/05/18 13:16	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/05/18 13:16	79-34-5	
Tetrachloroethene	8050	ug/L	100	100		03/07/18 13:31	127-18-4	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Sample: MW-12	Lab ID: 262	331002	Collected: 02/28/1	8 13:30	Received: 0	2/28/18 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Toluene	3.3	ug/L	1.0	1		03/05/18 13:16	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:16	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:16	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/05/18 13:16	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/05/18 13:16	79-00-5	
Trichloroethene	1540	ug/L	100	100		03/07/18 13:31	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/05/18 13:16	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/05/18 13:16	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/05/18 13:16	108-05-4	
Vinyl chloride	1.8	ug/L	1.0	1		03/05/18 13:16	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/05/18 13:16	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		03/05/18 13:16	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/05/18 13:16	95-47-6	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	97	%.	81-119	1		03/05/18 13:16	17060-07-0	
Dibromofluoromethane (S)	102	%.	82-114	1		03/05/18 13:16	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	82-120	1		03/05/18 13:16	460-00-4	
Toluene-d8 (S)	96	%.	82-109	1		03/05/18 13:16	2037-26-5	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Sample: MW-13D	Lab ID: 262	331003	Collected: 02/28/1	8 14:40	Received: 0	2/28/18 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 8	260B					
Acetone	ND	ug/L	25.0	1		03/05/18 13:42	67-64-1	
Benzene	ND	ug/L	1.0	1		03/05/18 13:42	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/05/18 13:42	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/05/18 13:42	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/05/18 13:42	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/05/18 13:42	75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/05/18 13:42	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/05/18 13:42	78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/05/18 13:42	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/05/18 13:42	108-90-7	
Chloroethane	ND	ug/L	1.0	1		03/05/18 13:42	75-00-3	
Chloroform	ND	ug/L	1.0	1		03/05/18 13:42	67-66-3	
Chloromethane	ND	ug/L	1.0	1		03/05/18 13:42	74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1		03/05/18 13:42	95-49-8	
4-Chlorotoluene	ND	ug/L	1.0	1		03/05/18 13:42	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	1		03/05/18 13:42	96-12-8	
Dibromochloromethane	ND	ug/L	1.0	1		03/05/18 13:42	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1		03/05/18 13:42	106-93-4	
Dibromomethane	ND	ug/L	1.0	1		03/05/18 13:42	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:42	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:42	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:42	106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		03/05/18 13:42	75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		03/05/18 13:42	75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		03/05/18 13:42	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		03/05/18 13:42	75-35-4	
cis-1,2-Dichloroethene	28.3	ug/L	1.0	1		03/05/18 13:42	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		03/05/18 13:42	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		03/05/18 13:42	78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		03/05/18 13:42	142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		03/05/18 13:42	594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		03/05/18 13:42	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/05/18 13:42	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/05/18 13:42	10061-02-6	
Diisopropyl ether	ND	ug/L	10.0	1		03/05/18 13:42	108-20-3	
Ethylbenzene	ND	ug/L	1.0	1		03/05/18 13:42	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1		03/05/18 13:42	87-68-3	
2-Hexanone	ND	ug/L	5.0	1		03/05/18 13:42	591-78-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		03/05/18 13:42	99-87-6	
Methylene Chloride	ND	ug/L	1.0	1		03/05/18 13:42	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/05/18 13:42	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	10.0	1		03/05/18 13:42	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		03/05/18 13:42	91-20-3	
Styrene	ND	ug/L	1.0	1		03/05/18 13:42	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		03/05/18 13:42	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		03/05/18 13:42	79-34-5	
Tetrachloroethene	592	ug/L	100	100		03/07/18 13:57	127-18-4	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Sample: MW-13D	Lab ID: 262	331003	Collected: 02/28/1	8 14:40	Received: 0	2/28/18 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 82	260B					
Toluene	ND	ug/L	1.0	1		03/05/18 13:42	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:42	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/05/18 13:42	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/05/18 13:42	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/05/18 13:42	79-00-5	
Trichloroethene	890	ug/L	100	100		03/07/18 13:57	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/05/18 13:42	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/05/18 13:42	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/05/18 13:42	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/05/18 13:42	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/05/18 13:42	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		03/05/18 13:42	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/05/18 13:42	95-47-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	99	%.	81-119	1		03/05/18 13:42	17060-07-0	
Dibromofluoromethane (S)	98	%.	82-114	1		03/05/18 13:42	1868-53-7	
4-Bromofluorobenzene (S)	102	%.	82-120	1		03/05/18 13:42	460-00-4	
Toluene-d8 (S)	94	%.	82-109	1		03/05/18 13:42	2037-26-5	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260B MSV Analytical Method: EPA 82608	Sample: MW-15D	Lab ID: 262	331004	Collected: 02/28/1	8 11:55	Received: 0	2/28/18 16:30 N	latrix: Water	
Secon MSV Analytical Method: EPA 8260B Acetone ND ug/L 25.0 1 03/05/18 14:09 7-64-1 Benzene ND ug/L 1.0 1 03/05/18 14:09 7-64-1 Benzene ND ug/L 1.0 1 03/05/18 14:09 74-92 Bromochiromethane ND ug/L 1.0 1 03/05/18 14:09 75-27-4 Bromodichloromethane ND ug/L 1.0 1 03/05/18 14:09 75-25-2 Bromomethane ND ug/L 2.0 1 03/05/18 14:09 75-25-2 Bromotin ND ug/L 1.0 1 03/05/18 14:09 75-33-3 Carbon tetrachloride ND ug/L 1.0 1 03/05/18 14:09 75-03-3 Chlorobetnane ND ug/L 1.0 1 03/05/18 14:09 75-03-3 Chlorobetnane ND ug/L 1.0 1 03/05/18 14:09 75-03-3 Chlorobetnane ND <td< th=""><th>Parameters</th><th>Results</th><th>Units</th><th>Report Limit</th><th>DF</th><th>Prepared</th><th>Analyzed</th><th>CAS No.</th><th>Qual</th></td<>	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Actone ND ug/L 25.0 1 03/05/18 14:09 67-64-1 Benzene ND ug/L 1.0 1 03/05/18 14:09 71-43-2 Bromobenzene ND ug/L 1.0 1 03/05/18 14:09 75-84-1 Bromochromethane ND ug/L 1.0 1 03/05/18 14:09 75-27-4 Bromothane ND ug/L 2.0 1 03/05/18 14:09 75-82-2 Bromothane ND ug/L 2.0 1 03/05/18 14:09 76-83-3 Carbon tetrachloride ND ug/L 1.0 1 03/05/18 14:09 76-83-3 Carbon tetrachloride ND ug/L 1.0 1 03/05/18 14:09 76-0-3 Chlorothane ND ug/L 1.0 1 03/05/18 14:09 76-83 Chlorothane ND ug/L 1.0 1 03/05/18 14:09 76-83 Chlorothane ND ug/L 1.0 1 03/05/18 14:09 7	8260B MSV	Analytical Meth	nod: EPA 82	260B					
Benzene ND ug/L 1.0 1 Q305/18 14:09 71-43-2 Bromobenzene ND ug/L 1.0 1 Q305/18 14:09 71-43-2 Bromobloromethane ND ug/L 1.0 1 Q305/18 14:09 74-97-5 Bromodichloromethane ND ug/L 1.0 1 Q305/18 14:09 75-27-4 Bromomethane ND ug/L 2.0 1 Q305/18 14:09 75-27-4 Bromomethane ND ug/L 2.0 1 Q305/18 14:09 76-83-3 Carbon tetrachloride ND ug/L 1.0 1 Q305/18 14:09 76-83-3 Chlorobenzene ND ug/L 1.0 1 Q305/18 14:09 76-66-3 Chlorothane ND ug/L 1.0 1 Q305/18 14:09 76-48-3 Chlorothane ND ug/L 1.0 1 Q305/18 14:09 76-48-3 Chlorothane ND ug/L 1.0 1 Q305/18 14:09	Acetone	ND	ug/L	25.0	1		03/05/18 14:09	67-64-1	
Bromochozene ND ug/L 1.0 1 03/05/18 14:09 76-88-1 Bromocichioromethane ND ug/L 1.0 1 03/05/18 14:09 75-27-4 Bromocichioromethane ND ug/L 1.0 1 03/05/18 14:09 75-27-4 Bromocinhioromethane ND ug/L 1.0 03/05/18 14:09 75-27-4 Bromocinhioromethane ND ug/L 1.0 03/05/18 14:09 76-27-4 2-Butanone (MEK) ND ug/L 1.0 03/05/18 14:09 76-83-3 Chiorobenzene ND ug/L 1.0 1 03/05/18 14:09 76-06-3 Chioroethane ND ug/L 1.0 1 03/05/18 14:09 76-48-3 Chioroethane ND ug/L 1.0 1 03/05/18 14:09 96-48-8 4-Chiorotoluene ND ug/L 1.0 1 03/05/18 14:09 96-49-8 1.2-Dioromochane ND ug/L 1.0 1 03/05/18 14:09 96-49-8	Benzene	ND	ug/L	1.0	1		03/05/18 14:09	71-43-2	
Bromochloromethane ND ug/L 1.0 1 03/05/18 14:09 74-97-5 Bromodichloromethane ND ug/L 1.0 1 03/05/18 14:09 75-25-2 Bromomethane ND ug/L 2.0 1 03/05/18 14:09 75-25-2 Bromomethane ND ug/L 5.0 1 03/05/18 14:09 75-25-2 Chorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-25-2 Chorobenzene ND ug/L 1.0 1 03/05/18 14:09 76-23-3 Chlorobenzene ND ug/L 1.0 1 03/05/18 14:09 76-66-3 Chlorobenzene ND ug/L 1.0 1 03/05/18 14:09 76-49-8 2-Chloroblorene ND ug/L 1.0 1 03/05/18 14:09 76-49-8 2-Chloroblorenethane ND ug/L 1.0 1 03/05/18 14:09 76-12-8 Dibromochloromethane ND ug/L 1.0 1	Bromobenzene	ND	ug/L	1.0	1		03/05/18 14:09	108-86-1	
Bromodichloromethane ND ug/L 1.0 1 0.305/18 14:09 75-27-4 Bromorthane ND ug/L 1.0 1 0.305/18 14:09 75-25-2 Bromorthane ND ug/L 5.0 1 0.305/18 14:09 75-25-2 Carbon tetrachloride ND ug/L 5.0 1 0.305/18 14:09 75-25-2 Carbon tetrachloride ND ug/L 1.0 1 0.305/18 14:09 76-33-3 Chlorobenzene ND ug/L 1.0 1 0.305/18 14:09 76-83-3 Chlorototuene ND ug/L 1.0 1 0.305/18 14:09 76-86-3 Chlorototuene ND ug/L 1.0 1 0.305/18 14:09 96-83-4 2-Chlorotoluene ND ug/L 1.0 1 0.305/18 14:09 166-43-4 1_2-Dibromo-3-chloropropane ND ug/L 1.0 1 0.305/18 14:09 164-3-3 1_2-Dichlorobenzene ND ug/L 1.0 <td< td=""><td>Bromochloromethane</td><td>ND</td><td>ug/L</td><td>1.0</td><td>1</td><td></td><td>03/05/18 14:09</td><td>74-97-5</td><td></td></td<>	Bromochloromethane	ND	ug/L	1.0	1		03/05/18 14:09	74-97-5	
Bromodern ND ug/L 1.0 1 0.306/18 14:09 75-25-2 Bromomethane ND ug/L 2.0 1 0.305/18 14:09 74-83-9 Selutanone (MEK) ND ug/L 1.0 1 0.306/18 14:09 78-93-3 Carbon tetrachloride ND ug/L 1.0 1 0.306/18 14:09 75-25-2 Chlorothane ND ug/L 1.0 1 0.306/18 14:09 75-30-3 Chlorothane ND ug/L 1.0 1 0.306/18 14:09 75-80-3 Chlorothane ND ug/L 1.0 1 0.306/18 14:09 95-49-8 Chlorothuene ND ug/L 1.0 1 0.306/18 14:09 95-49-8 2-Chlorotoluene ND ug/L 1.0 1 0.306/18 14:09 95-49-8 2-Chlorotoluene ND ug/L 1.0 1 0.306/18 14:09 16-12-8 Dibromochhoromethane ND ug/L 1.0 1 0.306/18 14	Bromodichloromethane	ND	ug/L	1.0	1		03/05/18 14:09	75-27-4	
Bromomethane ND ug/L 2.0 1 03/05/18 14:09 74-83-9 2-Butanone (MEK) ND ug/L 5.0 1 03/05/18 14:09 76-93-3 Carbon tetracholinide ND ug/L 1.0 1 03/05/18 14:09 56-23-5 Chlorobenzene ND ug/L 1.0 1 03/05/18 14:09 57-60-3 Chlorobethane ND ug/L 1.0 1 03/05/18 14:09 67-66-3 Chlorobethane ND ug/L 1.0 1 03/05/18 14:09 67-66-3 Chlorobutene ND ug/L 1.0 1 03/05/18 14:09 96-42-8 Chlorobutene ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromochloromethane ND ug/L 1.0 1 03/05/18 14:09 16-2-8 Dibromochloromethane (EDB) ND ug/L 1.0 1 03/05/18 14:09 54-9-3 1,2-Dichlorobenzene ND ug/L 1.0 1	Bromoform	ND	ug/L	1.0	1		03/05/18 14:09	75-25-2	
2-Butaone (MEK) ND ug/L 5.0 1 03/05/18 14:09 78-93-3 Carbon tetrachloride ND ug/L 1.0 1 03/05/18 14:09 76-93-3 Chlorobenzene ND ug/L 1.0 1 03/05/18 14:09 76-90-3 Chlorobentane ND ug/L 1.0 1 03/05/18 14:09 76-6-3 Chlorobentane ND ug/L 1.0 1 03/05/18 14:09 76-6-3 Chlorobentane ND ug/L 1.0 1 03/05/18 14:09 76-47-3 2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 76-47-3 2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 76-47-3 2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 76-47-3 1-2-Dichorobenzene ND ug/L 1.0 1 03/05/18 14:09 76-7-8-3 1-2-Dichlorobenzene ND ug/L 1.0 1	Bromomethane	ND	ug/L	2.0	1		03/05/18 14:09	74-83-9	
Carbon tetrachloride ND ug/L 1.0 1 03/05/18 14:09 56-23-5 Chlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-00-3 Chlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-00-3 Chlorothane ND ug/L 1.0 1 03/05/18 14:09 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromosthane ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromosthane (EDB) ND ug/L 1.0 1 03/05/18 14:09 16-93-4 1,2-Dibromosthane (EDB) ND ug/L 1.0 1 03/05/18 14:09 16-93-4 1,2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 16-93-4 1,2-Dichlorobenzene ND ug/L 1.0 1<	2-Butanone (MEK)	ND	ug/L	5.0	1		03/05/18 14:09	78-93-3	
Chlorobenzene ND ug/L 1.0 1 03/05/18 14:09 108-90-7 Chloroterhane ND ug/L 1.0 1 03/05/18 14:09 7-50-3 Chloroterhane ND ug/L 1.0 1 03/05/18 14:09 7-66-3 Chlorotelhane ND ug/L 1.0 1 03/05/18 14:09 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 95-49-8 4-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 96-43-4 1,2-Dibromo-3-chloropropane ND ug/L 1.0 1 03/05/18 14:09 162-8 Dibromochloromethane ND ug/L 1.0 1 03/05/18 14:09 162-8 Dibromochloropethane ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 55-01 1,3-Dichlorobenzene ND ug/L 1.0 1<	Carbon tetrachloride	ND	ug/L	1.0	1		03/05/18 14:09	56-23-5	
Chloroethane ND ug/L 1.0 1 03/05/18 14:09 75-00-3 Chloroform ND ug/L 1.0 1 03/05/18 14:09 67-66-3 Chloromethane ND ug/L 1.0 1 03/05/18 14:09 95-49-8 2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromo-3-chloropropane ND ug/L 1.0 1 03/05/18 14:09 106-43-4 1,2-Dibromo-s-chloropropane ND ug/L 1.0 1 03/05/18 14:09 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-56-1 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-57-1 1,4-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,2-Dichloroethane ND ug/L 1.0<	Chlorobenzene	ND	ug/L	1.0	1		03/05/18 14:09	108-90-7	
Chloroform ND ug/L 1.0 1 03/05/18 14:09 67-66-3 Chloromethane ND ug/L 1.0 1 03/05/18 14:09 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 95-49-8 4-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromochloromethane ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromochloromethane ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromochloromethane ND ug/L 1.0 1 03/05/18 14:09 16-3-3 1,2-Dibromochloromethane ND ug/L 1.0 1 03/05/18 14:09 16-3-3 1,2-Dichorobenzene ND ug/L 1.0 1 03/05/18 14:09 16-46-7 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-31-8 1,1-Dichlorobethane ND ug/L 1.0	Chloroethane	ND	ug/L	1.0	1		03/05/18 14:09	75-00-3	
Chloromethane ND ug/L 1.0 1 03/05/18 14:09 74-87-3 2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 95-49-8 4-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 166-43-4 1,2-Dibromo-3-chloropropane ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromochloromethane (EDB) ND ug/L 1.0 1 03/05/18 14:09 74-95-3 1,2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-71-8 1,4-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-35-4 1,2-Dichloroethane ND ug/L	Chloroform	ND	ug/L	1.0	1		03/05/18 14:09	67-66-3	
2-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 95-49-8 4-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 106-43-4 1,2-Dibromo-3-chloropropane ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromochloromethane ND ug/L 1.0 1 03/05/18 14:09 106-93-4 1,2-Dibromoethane (EDB) ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-71-8 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-71-8 1,2-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 15-54-3 1,2-Dichloroethane ND ug/L 1.0 1	Chloromethane	ND	ug/L	1.0	1		03/05/18 14:09	74-87-3	
4-Chlorotoluene ND ug/L 1.0 1 03/05/18 14:09 106-43-4 1,2-Dibromo-3-chloropropane ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromochloromethane ND ug/L 1.0 1 03/05/18 14:09 12-48-1 1,2-Dibromoethane (EDB) ND ug/L 1.0 1 03/05/18 14:09 74-95-3 1,2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 96-67-7 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-71-8 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-35-4 1,4-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 166-65-9-2 1,1-Dichloroethane ND	2-Chlorotoluene	ND	ug/L	1.0	1		03/05/18 14:09	95-49-8	
1,2-Dibromo-3-chloropropane ND ug/L 1.0 1 03/05/18 14:09 96-12-8 Dibromochloromethane ND ug/L 2.0 1 03/05/18 14:09 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 2.0 1 03/05/18 14:09 106-93-4 Dibromomethane ND ug/L 1.0 1 03/05/18 14:09 54-95-3 1,2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 54-17-3 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 54-17-3 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-71-8 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,1-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 78-87-5 1,3-Dichl	4-Chlorotoluene	ND	ug/L	1.0	1		03/05/18 14:09	106-43-4	
Dibromochloromethane ND ug/L 1.0 1 03/05/18 14:09 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 2.0 1 03/05/18 14:09 74-95-3 Dibromomethane ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-71-8 1,4-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,1-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 78-35-4 1,2-Dichloroethene ND ug/L	1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	1		03/05/18 14:09	96-12-8	
1,2-Dibromoethane (EDB) ND ug/L 2.0 1 03/05/18 14:09 106-93-4 Dibromomethane ND ug/L 1.0 1 03/05/18 14:09 74-95-3 1,2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-35-4 1,1-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 156-59-2 trans-1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 166-60-5 1,3-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 78-75 1,3-Dichloropropane<	Dibromochloromethane	ND	ug/L	1.0	1		03/05/18 14:09	124-48-1	
Dibromomethane ND ug/L 1.0 1 03/05/18 14:09 74-95-3 1,2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-71-8 Dichlorodifluoromethane ND ug/L 1.0 1 03/05/18 14:09 75-73-3 1,1-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-35-4 1,2-Dichloroethene 7.1 ug/L 1.0 1 03/05/18 14:09 156-59-2 trans-1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 166-05 1,3-Dichloropropane ND ug/L 1.0 1	1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1		03/05/18 14:09	106-93-4	
1,2-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 95-50-1 1,3-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 541-73-1 1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 75-71-8 Dichlorodifluoromethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,1-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-35-4 1,1-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 75-35-4 1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 75-55-2 1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 78-87-5 1,2-Dichloroptopane ND ug/L 1.0 1 03/05/18 14:09 563-58-6 1,2-Dichloroptopene	Dibromomethane	ND	ua/L	1.0	1		03/05/18 14:09	74-95-3	
1,3-DichlorobenzeneNDug/L1.0103/05/18 14:09541-73-11,4-DichlorobenzeneNDug/L1.0103/05/18 14:09106-46-7DichlorodifluoromethaneNDug/L1.0103/05/18 14:0975-71-81,1-DichloroethaneNDug/L1.0103/05/18 14:0975-34-31,2-DichloroethaneNDug/L1.0103/05/18 14:09175-35-41,1-DichloroethaneNDug/L1.0103/05/18 14:09175-35-41,1-DichloroetheneNDug/L1.0103/05/18 14:09156-59-21,1-DichloroetheneNDug/L1.0103/05/18 14:09156-60-51,2-DichloroetheneNDug/L1.0103/05/18 14:09156-60-51,3-DichloropapaneNDug/L1.0103/05/18 14:09142-28-92,2-DichloroppaneNDug/L1.0103/05/18 14:09142-28-92,2-DichloroppaneNDug/L1.0103/05/18 14:09543-66cis-1,3-DichloroppopeneNDug/L1.0103/05/18 14:09563-58-6cis-1,3-DichloroppopeneNDug/L1.0103/05/18 14:091061-01-5trans-1,3-DichloropropeneNDug/L1.0103/05/18 14:091061-01-5Disopropyl etherNDug/L1.0103/05/18 14:091061-02-6Disopropyl etherNDug/L1.0 <t< td=""><td>1.2-Dichlorobenzene</td><td>ND</td><td>ua/L</td><td>1.0</td><td>1</td><td></td><td>03/05/18 14:09</td><td>95-50-1</td><td></td></t<>	1.2-Dichlorobenzene	ND	ua/L	1.0	1		03/05/18 14:09	95-50-1	
1,4-Dichlorobenzene ND ug/L 1.0 1 03/05/18 14:09 106-46-7 Dichlorodifluoromethane ND ug/L 1.0 1 03/05/18 14:09 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 107-06-2 1,1-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 156-59-2 1,1-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 156-60-5 1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 156-60-5 1,2-Dichloroptopane ND ug/L 1.0 1 03/05/18 14:09 142-28-9 1,2-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 56-3-52 1,3-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 98-20-7 1,1-Dichloropropene ND <	1.3-Dichlorobenzene	ND	ug/L	1.0	1		03/05/18 14:09	541-73-1	
Dichlorodifluoromethane ND ug/L 1.0 1 03/05/18 14:09 75-71-8 1,1-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 75-34-3 1,2-Dichloroethane ND ug/L 1.0 1 03/05/18 14:09 107-06-2 1,1-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 75-35-4 cis-1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 156-59-2 trans-1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 156-60-5 1,2-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 78-87-5 1,3-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 142-28-9 2,2-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 <	1.4-Dichlorobenzene	ND	ug/L	1.0	1		03/05/18 14:09	106-46-7	
1,1-DichloroethaneNDug/L1.0103/05/1814:0975-34-31,2-DichloroethaneNDug/L1.0103/05/1814:09107-06-21,1-DichloroetheneNDug/L1.0103/05/1814:0975-35-4cis-1,2-Dichloroethene7.1ug/L1.0103/05/1814:09156-59-2trans-1,2-DichloroetheneNDug/L1.0103/05/1814:09156-60-51,2-DichloropropaneNDug/L1.0103/05/1814:0978-87-51,3-DichloropropaneNDug/L1.0103/05/1814:09142-28-92,2-DichloropropaneNDug/L1.0103/05/1814:09563-58-6cis-1,3-DichloropropaneNDug/L1.0103/05/1814:091061-01-5trans-1,3-DichloropropeneNDug/L1.0103/05/1814:091061-02-6Diisopropyl etherNDug/L10.0103/05/1814:09108-20-3EthylbenzeneNDug/L1.0103/05/1814:09100-41-4Hexachloro-1,3-butadieneNDug/L1.0103/05/1814:0987-68-3	Dichlorodifluoromethane	ND	ug/L	1.0	1		03/05/18 14:09	75-71-8	
1,2-DichloroethaneNDug/L1.0103/05/18 14:09107-06-21,1-DichloroetheneNDug/L1.0103/05/18 14:0975-35-4cis-1,2-Dichloroethene7.1ug/L1.0103/05/18 14:09156-59-2trans-1,2-DichloroetheneNDug/L1.0103/05/18 14:09156-60-51,2-DichloropropaneNDug/L1.0103/05/18 14:0978-87-51,3-DichloropropaneNDug/L1.0103/05/18 14:09594-20-71,3-DichloropropaneNDug/L1.0103/05/18 14:09594-20-71,1-DichloropropaneNDug/L1.0103/05/18 14:09563-58-6cis-1,3-DichloropropaneNDug/L1.0103/05/18 14:0910061-01-5trans-1,3-DichloropropeneNDug/L1.0103/05/18 14:0910061-02-6Diisopropyl etherNDug/L1.0103/05/18 14:09108-20-3EthylbenzeneNDug/L1.0103/05/18 14:09100-41-4Hexachloro-1,3-butadieneNDug/L1.0103/05/18 14:0987-68-3	1.1-Dichloroethane	ND	ug/L	1.0	1		03/05/18 14:09	75-34-3	
1,1-DichloroetheneNDug/L1.0103/05/18 14:0975-35-4cis-1,2-Dichloroethene7.1ug/L1.0103/05/18 14:0975-35-4trans-1,2-DichloroetheneNDug/L1.0103/05/18 14:09156-59-21,2-DichloroptopaneNDug/L1.0103/05/18 14:0978-87-51,3-DichloropropaneNDug/L1.0103/05/18 14:0978-87-52,2-DichloropropaneNDug/L1.0103/05/18 14:09142-28-92,2-DichloropropaneNDug/L1.0103/05/18 14:09594-20-71,1-DichloropropaneNDug/L1.0103/05/18 14:09563-58-6cis-1,3-DichloropropeneNDug/L1.0103/05/18 14:0910061-01-5trans-1,3-DichloropropeneNDug/L1.0103/05/18 14:0910061-02-6Disopropyl etherNDug/L10.0103/05/18 14:09108-20-3EthylbenzeneNDug/L1.0103/05/18 14:09100-41-4Hexachloro-1,3-butadieneNDug/L10.0103/05/18 14:0987-68-3	1.2-Dichloroethane	ND	ug/L	1.0	1		03/05/18 14:09	107-06-2	
Note No <	1.1-Dichloroethene	ND	ug/L	1.0	1		03/05/18 14:09	75-35-4	
trans-1,2-Dichloroethene ND ug/L 1.0 1 03/05/18 14:09 156-60-5 1,2-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 78-87-5 1,3-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 142-28-9 2,2-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 594-20-7 1,1-Dichloropropane ND ug/L 1.0 1 03/05/18 14:09 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 03/05/18 14:09 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 03/05/18 14:09 10061-02-6 Disopropyl ether ND ug/L 1.0 1 03/05/18 14:09 108-20-3 Ethylbenzene ND ug/L 10.0 1 03/05/18 14:09 108-20-3 Hexachloro-1,3-butadiene ND ug/L 1.0 1 03/05/18 14:09 10-41-4	cis-1.2-Dichloroethene	7.1	ug/L	1.0	1		03/05/18 14:09	156-59-2	
1,2-DichloropropaneNDug/L1.0103/05/18 14:0978-87-51,3-DichloropropaneNDug/L1.0103/05/18 14:09142-28-92,2-DichloropropaneNDug/L1.0103/05/18 14:09594-20-71,1-DichloropropaneNDug/L1.0103/05/18 14:09563-58-6cis-1,3-DichloropropeneNDug/L1.0103/05/18 14:0910061-01-5trans-1,3-DichloropropeneNDug/L1.0103/05/18 14:0910061-02-6Diisopropyl etherNDug/L10.0103/05/18 14:09108-20-3EthylbenzeneNDug/L1.0103/05/18 14:09100-41-4Hexachloro-1,3-butadieneNDug/L10.0103/05/18 14:0987-68-3	trans-1.2-Dichloroethene	ND	ug/L	1.0	1		03/05/18 14:09	156-60-5	
NDug/L1.0103/05/18 14:09142-28-92,2-DichloropropaneNDug/L1.0103/05/18 14:09594-20-71,1-DichloropropeneNDug/L1.0103/05/18 14:09563-58-6cis-1,3-DichloropropeneNDug/L1.0103/05/18 14:0910061-01-5trans-1,3-DichloropropeneNDug/L1.0103/05/18 14:0910061-02-6Diisopropyl etherNDug/L10.0103/05/18 14:09108-20-3EthylbenzeneNDug/L1.0103/05/18 14:09100-41-4Hexachloro-1,3-butadieneNDug/L10.0103/05/18 14:0987-68-3	1.2-Dichloropropane	ND	ug/L	1.0	1		03/05/18 14:09	78-87-5	
ND ug/L 1.0 1 03/05/18 14:09 594-20-7 1,1-Dichloropropene ND ug/L 1.0 1 03/05/18 14:09 563-58-6 cis-1,3-Dichloropropene ND ug/L 1.0 1 03/05/18 14:09 1061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 03/05/18 14:09 10061-01-5 Diisopropyl ether ND ug/L 1.0 1 03/05/18 14:09 10061-02-6 Diisopropyl ether ND ug/L 10.0 1 03/05/18 14:09 108-20-3 Ethylbenzene ND ug/L 1.0 1 03/05/18 14:09 100-41-4 Hexachloro-1,3-butadiene ND ug/L 10.0 1 03/05/18 14:09 87-68-3	1.3-Dichloropropane	ND	ug/L	1.0	1		03/05/18 14:09	142-28-9	
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	2.2-Dichloropropane	ND	ug/L	1.0	1		03/05/18 14:09	594-20-7	
cis-1,3-Dichloropropene ND ug/L 1.0 1 03/05/18 14:09 10061-01-5 trans-1,3-Dichloropropene ND ug/L 1.0 1 03/05/18 14:09 10061-02-6 Diisopropyl ether ND ug/L 10.0 1 03/05/18 14:09 108-20-3 Ethylbenzene ND ug/L 1.0 1 03/05/18 14:09 100-41-4 Hexachloro-1,3-butadiene ND ug/L 10.0 1 03/05/18 14:09 87-68-3	1.1-Dichloropropene	ND	ug/L	1.0	1		03/05/18 14:09	563-58-6	
trans-1,3-Dichloropropene ND ug/L 1.0 1 03/05/18 14:09 10061-02-6 Diisopropyl ether ND ug/L 10.0 1 03/05/18 14:09 108-20-3 Ethylbenzene ND ug/L 1.0 1 03/05/18 14:09 100-41-4 Hexachloro-1,3-butadiene ND ug/L 10.0 1 03/05/18 14:09 87-68-3	cis-1.3-Dichloropropene	ND	ug/L	1.0	1		03/05/18 14:09	10061-01-5	
Diisopropyl ether ND ug/L 10.0 1 03/05/18 14:09 108-20-3 Ethylbenzene ND ug/L 1.0 1 03/05/18 14:09 100-41-4 Hexachloro-1,3-butadiene ND ug/L 10.0 1 03/05/18 14:09 87-68-3	trans-1.3-Dichloropropene	ND	ug/L	1.0	1		03/05/18 14:09	10061-02-6	
Ethylbenzene ND ug/L 1.0 1 03/05/18 14:09 100-41-4 Hexachloro-1,3-butadiene ND ug/L 10.0 1 03/05/18 14:09 87-68-3	Diisopropyl ether	ND	ug/L	10.0	1		03/05/18 14:09	108-20-3	
Hexachloro-1,3-butadiene ND ug/L 10.0 1 03/05/18 14:09 87-68-3	Ethylbenzene	ND	ug/L	1.0	1		03/05/18 14:09	100-41-4	
······································	Hexachloro-1.3-butadiene	ND	ug/L	10.0	1		03/05/18 14:09	87-68-3	
2-Hexanone ND ug/l 5.0 1 03/05/18.14:09.591-78-6	2-Hexanone	ND	ug/l	5.0	1		03/05/18 14:09	591-78-6	
p-Isopropyltoluene ND ug/L 1.0 1 03/05/18 14:09 99-87-6	p-lsopropyltoluene	ND	ug/L	1.0	1		03/05/18 14:09	99-87-6	
Methylene Chloride ND ug/l 1.0 1 03/05/18 14:09 75-09-2	Methylene Chloride	ND	ug/L	1.0	1		03/05/18 14:09	75-09-2	
4-Methyl-2-pentanone (MIBK) ND ug/l 5.0 1 03/05/18 14:09 108-10-1	4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		03/05/18 14:09	108-10-1	
Methyl-tert-butyl ether ND ug/l 10.0 1 03/05/18 14:09 1634-04-4	Methyl-tert-butyl ether	ND	ug/L	10.0	1		03/05/18 14:09	1634-04-4	
Naphthalene ND ug/L 1.0 1 03/05/18 14:09 91-20-3	Naphthalene	ND	9, - Ua/l	10	1		03/05/18 14:09	91-20-3	
Styrene ND ug/l 1.0 1 03/05/18 14:09 100-42-5	Styrene	ND	ua/l	1.0	1		03/05/18 14:09	100-42-5	
1.1.1.2 Tetrachloroethane ND ug/l 1.0 1 03/05/18 14:09 630-20-6	1.1.1.2-Tetrachloroethane	ND	ua/l	1.0	1		03/05/18 14:09	630-20-6	
1.1.2.2-Tetrachloroethane ND ug/l 1.0 1 03/05/18 14:09 79-34-5	1.1.2.2-Tetrachloroethane	ND	ua/l	1.0	1		03/05/18 14:09	79-34-5	
Tetrachloroethene 1520 ug/L 100 100 03/07/18 14:22 127-18-4	Tetrachloroethene	1520	ug/L	100	100		03/07/18 14:22	127-18-4	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Sample: MW-15D	Lab ID: 2623	331004	Collected: 02/28/1	8 11:55	Received: 02	2/28/18 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Toluene	ND	ug/L	1.0	1		03/05/18 14:09	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/05/18 14:09	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/05/18 14:09	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/05/18 14:09	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/05/18 14:09	79-00-5	
Trichloroethene	97.0	ug/L	1.0	1		03/05/18 14:09	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/05/18 14:09	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/05/18 14:09	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/05/18 14:09	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/05/18 14:09	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/05/18 14:09	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		03/05/18 14:09	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/05/18 14:09	95-47-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	97	%.	81-119	1		03/05/18 14:09	17060-07-0	
Dibromofluoromethane (S)	96	%.	82-114	1		03/05/18 14:09	1868-53-7	
4-Bromofluorobenzene (S)	107	%.	82-120	1		03/05/18 14:09	460-00-4	
Toluene-d8 (S)	94	%.	82-109	1		03/05/18 14:09	2037-26-5	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Sample: MW-21D	Lab ID: 2623	331005	Collected: 02/28/1	8 11:35	Received: 02	2/28/18 16:30 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Acetone	ND	ug/L	25.0	1		03/07/18 15:39	67-64-1	
Benzene	ND	ug/L	1.0	1		03/07/18 15:39	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		03/07/18 15:39	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		03/07/18 15:39	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		03/07/18 15:39	75-27-4	
Bromoform	ND	ug/L	1.0	1		03/07/18 15:39	75-25-2	
Bromomethane	ND	ug/L	2.0	1		03/07/18 15:39	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		03/07/18 15:39	78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03/07/18 15:39	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03/07/18 15:39	108-90-7	
Chloroethane	ND	ug/L	1.0	1		03/07/18 15:39	75-00-3	
Chloroform	ND	ug/L	1.0	1		03/07/18 15:39	67-66-3	
Chloromethane	ND	ug/L	1.0	1		03/07/18 15:39	74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1		03/07/18 15:39	95-49-8	
4-Chlorotoluene	ND	ug/L	1.0	1		03/07/18 15:39	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	1		03/07/18 15:39	96-12-8	
Dibromochloromethane	ND	ug/L	1.0	1		03/07/18 15:39	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1		03/07/18 15:39	106-93-4	
Dibromomethane	ND	ug/L	1.0	1		03/07/18 15:39	74-95-3	
1.2-Dichlorobenzene	ND	ua/L	1.0	1		03/07/18 15:39	95-50-1	
1.3-Dichlorobenzene	ND	ua/L	1.0	1		03/07/18 15:39	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		03/07/18 15:39	106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		03/07/18 15:39	75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		03/07/18 15:39	75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		03/07/18 15:39	107-06-2	
1.1-Dichloroethene	ND	ua/L	1.0	1		03/07/18 15:39	75-35-4	
cis-1,2-Dichloroethene	68.0	ug/L	1.0	1		03/07/18 15:39	156-59-2	
trans-1.2-Dichloroethene	ND	ua/L	1.0	1		03/07/18 15:39	156-60-5	
1.2-Dichloropropane	ND	ua/L	1.0	1		03/07/18 15:39	78-87-5	
1.3-Dichloropropane	ND	ua/L	1.0	1		03/07/18 15:39	142-28-9	
2.2-Dichloropropane	ND	ua/L	1.0	1		03/07/18 15:39	594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		03/07/18 15:39	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		03/07/18 15:39	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		03/07/18 15:39	10061-02-6	
Diisopropyl ether	ND	ua/L	10.0	1		03/07/18 15:39	108-20-3	
Ethylbenzene	ND	ua/L	1.0	1		03/07/18 15:39	100-41-4	
Hexachloro-1.3-butadiene	ND	ua/L	10.0	1		03/07/18 15:39	87-68-3	
2-Hexanone	ND	ua/L	5.0	1		03/07/18 15:39	591-78-6	
p-lsopropyltoluene	ND	ua/L	1.0	1		03/07/18 15:39	99-87-6	
Methylene Chloride	ND	ua/L	1.0	1		03/07/18 15:39	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ua/L	5.0	1		03/07/18 15:39	108-10-1	
Methyl-tert-butyl ether	ND	ua/L	10.0	1		03/07/18 15:39	1634-04-4	
Naphthalene	ND	ua/L	1.0	1		03/07/18 15:39	91-20-3	
Styrene	ND	ua/l	1.0	1		03/07/18 15:39	100-42-5	
1.1.1.2-Tetrachloroethane	ND	ua/l	1.0	1		03/07/18 15:39	630-20-6	
1.1.2.2-Tetrachloroethane	ND	ua/l	1.0	1		03/07/18 15:39	79-34-5	
Tetrachloroethene	7.1	ug/L	1.0	1		03/07/18 15:39	127-18-4	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

Sample: MW-21D	Lab ID: 2623	331005	Collected: 02/28/1	8 11:35	Received: 02	2/28/18 16:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Toluene	ND	ug/L	1.0	1		03/07/18 15:39	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		03/07/18 15:39	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		03/07/18 15:39	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		03/07/18 15:39	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		03/07/18 15:39	79-00-5	
Trichloroethene	4.1	ug/L	1.0	1		03/07/18 15:39	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		03/07/18 15:39	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		03/07/18 15:39	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		03/07/18 15:39	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		03/07/18 15:39	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		03/07/18 15:39	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		03/07/18 15:39	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		03/07/18 15:39	95-47-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	106	%.	81-119	1		03/07/18 15:39	17060-07-0	
Dibromofluoromethane (S)	98	%.	82-114	1		03/07/18 15:39	1868-53-7	
4-Bromofluorobenzene (S)	111	%.	82-120	1		03/07/18 15:39	460-00-4	
Toluene-d8 (S)	91	%.	82-109	1		03/07/18 15:39	2037-26-5	

Project: Roper Pump B6572-0001

Pace Project No.: 262331

QC Batch: 2001	Analysis Met	nod: EPA (8260B	
OC Batch Method: EPA 8260B	Analysis Des	cription: 8260	B MSV	
	Analysis Des			
Associated Lab Samples: 262331001, 262331	002, 262331003, 2623310	04, 262331005		
METHOD BLANK: 11125	Matrix:	Water		
Associated Lab Samples: 262331001, 262331	002, 262331003, 2623310	04, 262331005		
	Blank	Reporting		
Parameter Un	nits Result	Limit	Analyzed	Qualifiers
1 1 1 2-Tetrachloroethane		10 0	3/05/18 11:20	
1 1 1-Trichloroethane		1.0 0	3/05/18 11:20	
1 1 2 2-Tetrachloroethane		1.0 0	3/05/18 11:20	
1,1,2,2-Tetrachioroethane ug		1.0 0	3/05/18 11:29	
1.1-Dichloroethane ug		1.0 0	3/05/18 11.23	
1.1 Dichloroothono	y∟ ND v/I ND	1.0 0	2/05/10 11.29	
		1.0 0	3/05/10 11:29	
1,1-Dichloropropene Ug	JL ND	1.0 0	3/05/10 11:29	
1,2,3-michloropenzene Ug	y∟ ND	1.0 0	2/05/10 11:29	
1,2,3-Trichlandhananan Ug	J/L ND	1.0 0	3/05/18 11:29	
1,2,4-1 ricnioropenzene ug	J/L ND	1.0 0	3/05/18 11:29	
1,2-Dipromo-3-chioropropane ug	J/L ND	1.0 0	3/05/18 11:29	
1,2-Dipromoetnane (EDB) Ug	J/L ND	1.0 0	3/05/18 11:29	
1,2-Dichlorobenzene ug	J/L ND	1.0 0	3/05/18 11:29	
1,2-Dichloroethane ug	g/L ND	1.0 0	3/05/18 11:29	
1,2-Dichloropropane ug	g/L ND	1.0 0	3/05/18 11:29	
1,3-Dichlorobenzene ug	J/L ND	1.0 0	3/05/18 11:29	
1,3-Dichloropropane ug	g/L ND	1.0 0	3/05/18 11:29	
1,4-Dichlorobenzene ug	g/L ND	1.0 0	3/05/18 11:29	
2,2-Dichloropropane ug	g/L ND	1.0 0	3/05/18 11:29	
2-Butanone (MEK) ug	g/L ND	5.0 0	3/05/18 11:29	
2-Chlorotoluene ug	g/L ND	1.0 0	3/05/18 11:29	
2-Hexanone ug	g/L ND	5.0 0	3/05/18 11:29	
4-Chlorotoluene ug	g/L ND	1.0 0	3/05/18 11:29	
4-Methyl-2-pentanone (MIBK) ug	g/L ND	5.0 0	3/05/18 11:29	
Acetone ug	g/L ND	25.0 0	3/05/18 11:29	
Benzene ug	g/L ND	1.0 0	3/05/18 11:29	
Bromobenzene ug	g/L ND	1.0 0	3/05/18 11:29	
Bromochloromethane ug	g/L ND	1.0 0	3/05/18 11:29	
Bromodichloromethane ug	g/L ND	1.0 0	3/05/18 11:29	
Bromoform ug	g/L ND	1.0 0	3/05/18 11:29	
Bromomethane ug	g/L ND	2.0 0	3/05/18 11:29	
Carbon tetrachloride ug	g/L ND	1.0 0	3/05/18 11:29	
Chlorobenzene uc	g/L ND	1.0 0	3/05/18 11:29	
Chloroethane uc	g/L ND	1.0 0	3/05/18 11:29	
Chloroform uc	g/L ND	1.0 0	3/05/18 11:29	
Chloromethane uc	g/L ND	1.0 0	3/05/18 11:29	
cis-1,2-Dichloroethene uc	, g/L ND	1.0 0	3/05/18 11:29	
cis-1,3-Dichloropropene uc	, g/L ND	1.0 0	3/05/18 11:29	
Dibromochloromethane	n/L ND	1.0 0	3/05/18 11:29	
Dibromomethane	n/L ND	1.0 0	3/05/18 11:29	
Dichlorodifluoromethane uc	n/L ND	1.0 0	3/05/18 11:29	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Roper Pump B6572-0001

Pace Project No.: 262331

METHOD BLANK: 11125		Matrix:	Water		
Associated Lab Samples:	262331001, 262331002, 2623310	003, 2623310	04, 262331005		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diisopropyl ether	ug/L	ND	10.0	03/05/18 11:29	
Ethylbenzene	ug/L	ND	1.0	03/05/18 11:29	
Hexachloro-1,3-butadiene	ug/L	ND	10.0	03/05/18 11:29	
m&p-Xylene	ug/L	ND	1.0	03/05/18 11:29	
Methyl-tert-butyl ether	ug/L	ND	10.0	03/05/18 11:29	
Methylene Chloride	ug/L	ND	1.0	03/05/18 11:29	
Naphthalene	ug/L	ND	1.0	03/05/18 11:29	
o-Xylene	ug/L	ND	1.0	03/05/18 11:29	
p-Isopropyltoluene	ug/L	ND	1.0	03/05/18 11:29	
Styrene	ug/L	ND	1.0	03/05/18 11:29	
Tetrachloroethene	ug/L	ND	1.0	03/05/18 11:29	
Toluene	ug/L	ND	1.0	03/05/18 11:29	
trans-1,2-Dichloroethene	ug/L	ND	1.0	03/05/18 11:29	
trans-1,3-Dichloropropene	ug/L	ND	1.0	03/05/18 11:29	
Trichloroethene	ug/L	ND	1.0	03/05/18 11:29	
Trichlorofluoromethane	ug/L	ND	1.0	03/05/18 11:29	
Vinyl acetate	ug/L	ND	2.0	03/05/18 11:29	
Vinyl chloride	ug/L	ND	1.0	03/05/18 11:29	
Xylene (Total)	ug/L	ND	2.0	03/05/18 11:29	
1,2-Dichloroethane-d4 (S)	%.	98	81-119	03/05/18 11:29	
4-Bromofluorobenzene (S)	%.	105	82-120	03/05/18 11:29	
Dibromofluoromethane (S)	%.	94	82-114	03/05/18 11:29	
Toluene-d8 (S)	%.	96	82-109	03/05/18 11:29	

LABORATORY CONTROL SAMPLE: 11126

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		43.7	87	68-137	
1,1,1-Trichloroethane	ug/L	50	48.7	97	72-134	
1,1,2,2-Tetrachloroethane	ug/L	50	45.4	91	51-158	
1,1,2-Trichloroethane	ug/L	50	51.9	104	78-131	
1,1-Dichloroethane	ug/L	50	57.4	115	69-151	
1,1-Dichloroethene	ug/L	50	51.3	103	64-158	
1,1-Dichloropropene	ug/L	50	49.0	98	70-133	
1,2,3-Trichlorobenzene	ug/L	50	48.7	97	73-130	
1,2,3-Trichloropropane	ug/L	50	44.4	89	78-133	
1,2,4-Trichlorobenzene	ug/L	50	47.6	95	51-163	
1,2-Dibromo-3-chloropropane	ug/L	50	41.6	83	58-124	
1,2-Dibromoethane (EDB)	ug/L	50	47.8	96	71-134	
1,2-Dichlorobenzene	ug/L	50	48.2	96	70-135	
1,2-Dichloroethane	ug/L	50	48.3	97	72-129	
1,2-Dichloropropane	ug/L	50	52.9	106	64-135	
1,3-Dichlorobenzene	ug/L	50	47.3	95	71-134	
1,3-Dichloropropane	ug/L	50	50.0	100	70-140	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Roper Pump B6572-0001

Pace Project No .: 262331 LABORATORY CONTROL SAMPLE: 11126 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dichlorobenzene ug/L 50 44.9 90 70-131 2,2-Dichloropropane ug/L 50 47.7 95 34-170 2-Butanone (MEK) 100 88.5 89 52-143 ug/L 48.6 97 77-128 2-Chlorotoluene ug/L 50 83.1 83 61-136 2-Hexanone ug/L 100 4-Chlorotoluene 50 47.8 96 79-126 ug/L 4-Methyl-2-pentanone (MIBK) 100 86.1 86 71-129 ug/L 100 84.4 84 48-224 Acetone ug/L 50 49.8 100 68-132 Benzene ug/L Bromobenzene ug/L 50 46.7 93 75-122 Bromochloromethane ug/L 50 55.9 112 73-133 Bromodichloromethane ug/L 50 46.0 92 67-121 Bromoform ug/L 50 42.8 86 57-125 50 94 Bromomethane ug/L 47.0 35-156 50 99 Carbon tetrachloride ug/L 49.3 66-122 95 Chlorobenzene ug/L 50 47.5 71-126 Chloroethane 50 59.1 118 43-143 ug/L Chloroform ug/L 50 52.3 105 71-136 Chloromethane 50 36.0 72 47-123 ug/L 106 cis-1,2-Dichloroethene ug/L 50 52.8 74-131 cis-1,3-Dichloropropene 50 46.2 92 78-120 ug/L Dibromochloromethane ug/L 50 45.8 92 65-115 Dibromomethane ug/L 50 51.5 103 79-129 Dichlorodifluoromethane 50 20.7 41 29-124 ug/L Diisopropyl ether 50 59.7 119 70-130 ug/L Ethylbenzene ug/L 50 48.3 97 68-129 Hexachloro-1,3-butadiene ug/L 50 52.5 105 58-142 m&p-Xylene 100 98.8 99 67-137 ug/L 100 59-130 Methyl-tert-butyl ether 96.0 96 ug/L 51.3 103 61-147 Methylene Chloride 50 ug/L Naphthalene 50 44.3 89 48-144 ug/L 47.6 o-Xylene 50 95 52-141 ug/L 90 p-Isopropyltoluene ug/L 50 45.1 58-137 Styrene ug/L 50 46.3 93 77-128 Tetrachloroethene ug/L 50 45.9 92 51-139 Toluene ug/L 50 50.3 101 60-133

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

50

50

50

50

50

50

150

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

%.

%.

%.

%.

REPORT OF LABORATORY ANALYSIS

54.3

44.7

49.9

43.1

45.3

38.8

146

109

89

100

86

91

78

98

94

97

105

93

69-144

74-128

73-126

55-132

52-141

50-133

78-132

81-119

82-120

82-114

82-109

trans-1,2-Dichloroethene

Trichlorofluoromethane

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylene (Total)

Toluene-d8 (S)

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

Dibromofluoromethane (S)

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Roper Pump B6572-0001

Pace Project No.: 262331

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 11127			11128							
			MS	MSD								
		262201001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	22.0	28.7	44	57	68-137	27	11	M1,R1
1,1,1-Trichloroethane	ug/L	ND	50	50	27.1	36.4	54	73	66-142	29	11	M1,R1
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	23.8	30.4	48	61	39-171	24	13	R1
1,1,2-Trichloroethane	ug/L	ND	50	50	26.3	34.2	53	68	73-136	26	12	M1,R1
1,1-Dichloroethane	ug/L	ND	50	50	32.0	41.6	64	83	66-155	26	15	M1,R1
1,1-Dichloroethene	ug/L	ND	50	50	36.7	45.8	73	92	33-181	22	34	
1,1-Dichloropropene	ug/L	ND	50	50	32.9	42.3	66	85	70-133	25	12	M1,R1
1,2,3-Trichlorobenzene	ug/L	ND	50	50	21.4	29.9	43	60	73-130	33	22	M1,R1
1,2,3-Trichloropropane	ug/L	ND	50	50	20.6	26.8	41	54	78-133	26	14	M1,R1
1,2,4-Trichlorobenzene	ug/L	ND	50	50	21.2	29.0	42	58	44-164	31	13	M1,R1
1,2-Dibromo-3-	ug/L	ND	50	50	17.8	23.3	36	47	58-124	27	15	M1,R1
chloropropane												
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	23.3	30.2	47	60	71-134	26	12	M1,R1
1,2-Dichlorobenzene	ug/L	ND	50	50	26.0	32.9	52	66	69-135	23	10	M1,R1
1,2-Dichloroethane	ug/L	ND	50	50	27.0	34.7	54	69	36-159	25	10	R1
1,2-Dichloropropane	ug/L	ND	50	50	28.6	36.5	57	73	68-132	24	11	M1,R1
1,3-Dichlorobenzene	ug/L	ND	50	50	25.3	32.6	51	65	68-135	25	10	M1,R1
1,3-Dichloropropane	ug/L	ND	50	50	26.7	33.5	53	67	70-138	23	10	M1,R1
1,4-Dichlorobenzene	ug/L	ND	50	50	23.6	30.4	47	61	49-153	25	9	M1,R1
2,2-Dichloropropane	ug/L	ND	50	50	22.2	30.1	44	60	34-170	30	9	R1
2-Butanone (MEK)	ug/L	ND	100	100	41.1	52.9	41	53	10-189	25	23	R1
2-Chlorotoluene	ug/L	ND	50	50	27.8	35.9	56	72	77-128	25	10	M1,R1
2-Hexanone	ug/L	ND	100	100	38.1	50.5	38	50	40-135	28	18	M1,R1
4-Chlorotoluene	ug/L	ND	50	50	26.6	34.4	53	69	79-126	26	10	M1,R1
4-Methyl-2-pentanone (MIBK)	ug/L	ND	100	100	40.7	52.6	41	53	30-177	26	10	R1
Acetone	ug/L	ND	100	100	40.4	50.3	40	50	44-223	22	14	M1,R1
Benzene	ug/L	ND	50	50	29.0	37.5	58	75	66-139	26	10	M1,R1
Bromobenzene	ug/L	ND	50	50	25.9	33.5	52	67	75-122	26	12	M1,R1
Bromochloromethane	ug/L	ND	50	50	31.1	40.5	62	81	73-133	26	13	M1,R1
Bromodichloromethane	ug/L	ND	50	50	23.8	31.3	48	63	57-120	27	13	M1,R1
Bromoform	ug/L	ND	50	50	18.7	25.0	37	50	48-128	29	13	M1,R1
Bromomethane	ug/L	ND	50	50	31.3	40.4	63	81	10-187	25	32	
Carbon tetrachloride	ug/L	ND	50	50	30.7	40.9	61	82	58-127	28	14	R1
Chlorobenzene	ug/L	ND	50	50	26.2	33.3	52	67	63-137	24	10	M1,R1
Chloroethane	ug/L	ND	50	50	40.4	50.2	81	100	52-146	22	16	R1
Chloroform	ug/L	ND	50	50	29.7	38.9	59	78	74-137	27	9	M1,R1
Chloromethane	ug/L	ND	50	50	22.1	28.8	44	58	41-127	26	10	R1
cis-1,2-Dichloroethene	ug/L	ND	50	50	29.9	38.6	60	77	71-138	25	16	M1,R1
cis-1,3-Dichloropropene	ug/L	ND	50	50	20.1	28.1	40	56	32-145	33	12	R1
Dibromochloromethane	ug/L	ND	50	50	21.7	28.7	43	57	52-116	28	13	M1,R1
Dibromomethane	ug/L	ND	50	50	25.2	33.4	50	67	79-129	28	14	M1,R1
Dichlorodifluoromethane	ug/L	ND	50	50	16.2	21.8	32	44	36-126	29	15	M1,R1
Diisopropyl ether	ug/L	ND	50	50	31.1	41.1	62	82	70-130	28	20	M1,R1
Ethylbenzene	ua/L	ND	50	50	27.6	35.1	55	70	31-174	24	10	R1
Hexachloro-1,3-butadiene	ug/L	ND	50	50	27.1	37.8	54	76	58-142	33	11	M1,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Roper Pump B6572-0001

Pace Project No.: 262331

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	ATE: 11127			11128							
			MS	MSD								
		262201001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
m&p-Xylene	ug/L	ND	100	100	56.4	71.4	56	71	27-179	23	10	R1
Methyl-tert-butyl ether	ug/L	ND	100	100	42.4	56.2	42	56	38-120	28	12	R1
Methylene Chloride	ug/L	ND	50	50	29.8	38.2	60	76	61-146	25	15	M1,R1
Naphthalene	ug/L	ND	50	50	20.3	27.6	41	55	25-159	30	14	R1
o-Xylene	ug/L	ND	50	50	26.1	33.5	52	67	52-141	25	65	
p-Isopropyltoluene	ug/L	ND	50	50	25.8	33.4	52	67	59-134	26	9	M1,R1
Styrene	ug/L	ND	50	50	24.7	31.0	49	62	77-128	23	14	M1,R1
Tetrachloroethene	ug/L	ND	50	50	27.5	35.6	55	71	36-155	26	14	R1
Toluene	ug/L	ND	50	50	28.8	37.6	58	75	52-146	26	11	R1
trans-1,2-Dichloroethene	ug/L	ND	50	50	32.2	40.6	64	81	61-152	23	14	R1
trans-1,3-Dichloropropene	ug/L	ND	50	50	18.4	24.8	37	50	37-146	30	12	R1
Trichloroethene	ug/L	ND	50	50	28.7	37.4	57	75	61-141	27	12	M1,R1
Trichlorofluoromethane	ug/L	ND	50	50	34.4	43.3	69	87	51-141	23	13	R1
Vinyl acetate	ug/L	ND	50	50	19.1	26.9	38	54	52-141	34	14	M1,R1
Vinyl chloride	ug/L	ND	50	50	27.8	35.9	56	72	22-156	26	26	
Xylene (Total)	ug/L	ND	150	150	82.5	105	55	70	78-132	24	7	RS
1,2-Dichloroethane-d4 (S)	%.						96	95	81-119			
4-Bromofluorobenzene (S)	%.						101	101	82-120			
Dibromofluoromethane (S)	%.						106	106	82-114			
Toluene-d8 (S)	%.						96	94	82-109			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Roper Pump B6572-0001

Pace Project No.: 262331

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.
- RS The RPD value in one of the constituent analytes was outside the control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Roper Pump B6572-0001Pace Project No.:262331

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
262331001	MW-9S	EPA 8260B	2001		
262331002	MW-12	EPA 8260B	2001		
262331003	MW-13D	EPA 8260B	2001		
262331004	MW-15D	EPA 8260B	2001		
262331005	MW-21D	EPA 8260B	2001		

															1
		•			CHAI	N OF (CUSTO	DY RE	COR	0			AV Amber Vial	S Encore Sumpler PV Propreserved vial	//
Pace Analy	ical ° s.com			LAB	W.O#		eder Filtrager 1	Quot	i	.	Page	L of L	P Prestic AL Amber Litter CL Clear Litter AP Amber Passic AG Amber Passic	LC Plastic container LJ Plastic Jur Ziptic bag R Teddre bag Minit poly	
			t.				5. Š. 1		-	;			SU SOBJET Other Propreserved vial Size(s) 202, 402, 802, 1602,3	C Terra-core	
Company Name: Wenck		PO# ₿	6572-000					NAN SE	Y 515				40mt 500mt 250mt 1 Example: 40cP = 40c Plasti	125 ml c, 80253= 802 Soll Jar	
Address: 1040 Hollomb	Srikye Roa	q			•										Ŵ
city: Rosavell	State:	A zip: 30	076						÷				Wate	xcodes	
Attn: RTAM HOYES, Mark	Badyctt	Fax#											SD Sould Waste GW Ground Water	SL Studgo SO Sod Sodiment	
email: A have SQRENK M. COM	Phone:	678 - 96	7-5845					i					AFW Analyte Free H20 WW Wasto Water DW Drinking Water	AQ Aqueous NA Nonaqueous PE Petrokeum	
Project AFPF	Deni t	B4671	-000		57	-						0109 	SW Surfaco Water ML Misic Liquid	O Canar	
Sampler MINU P. MINH	Circle One Event: Quartely Semi-A	Daily Weekly unual Annual	Monthly N/A		PRA ·			-				MPLI MPLI	Preservati	A Type Codes	
					- 09							AX3 EXA	A. None E. HCL B. HNO3 F. MeO C. H2SO4 G. Na2	H J. NCAA H J. MCAA S203 K. Zn Acotata	
					B								D. NaOH H. NaH	SO4 O. Other	īT
													REI	MARKS	
1 MW-95	8/88/19 123	5 6W													
2 MW-12	3:	30 1			ĽX,								MING		Ţ
3 MW-13D	hi	af-			N N										-
4 MW-150	511 112	55			X C										T
5 MW- 21D	V 113	5 1	\U ∰3		X								·		
9													777775		
7												TOM	: 2623	31	
8															
6															
10					È.							262331			Z
	Plan	piote	Cicle OA	OC:Report		EDD(Hes)	MUNADAY			COCCO		CN CN CN			
W Today 10 2D 30 40 S0 S0	Ì	4		other		CSV Other				× i	moteto	LA TX IL		+ 	
1 Milled Rodinates	<u>s</u>	M.K	2 [2051 14			Recei	AG		No.	Dail			Non-Contormance Found? Samples INTACT upon anti-	an	
2	 					a.							Received on Wet Ico? Proper Preservativos Indicat	 	
e Pac						$\left(\right)$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, ,		44	1.01	1 2 1	Received within holding time Custody scats Intact? Volanities recid without heads	د معمور د	
						8	NAW N)				200	Proper Contamers Usod?		ļ I
Bompano Lab 954-582-43 55 J)0 Rovis	sion: F•ALL•C•0()7- Rev.00) Z	5	F°C)	4	T T T	じる	L'in	t	C.O.C. Sen	"# 1086	5

an a					
Sector Se	mple C	ondition	Upon Receipt		
Pari Arabairat	1.	2000	· · ·	height #	
Pace Analytical Client Name	∋: <u> </u>	re her			<u>+</u> ‴−
· · · · · · · · · · · · · · · · · · ·	_			WO#:2623 <u>31</u>	
ourier: 🔲 Fed Ex 🗍 UPS 🗌 USPS 🖉 Cli	ent LIC	mmercial	Pace Other	PM: EDB Due Date: 03	3/07/18
racking #:		Seals	Intact: Ves	CLIENT: WENCK	
ustony Seat on Copieribux Present.					
acking Material: 🔲 Bubble Wrap 🖉 Bubb	le Bags	None		Samples on ice, cooling process has begun	
hermometer Used	type o Biolog	Ice: Wet		Date and Initials of person examining	1
cooler Temperature <u>5'4</u>	Biolog	C\$1 119906	Comments:	contents: 24 Las 18 MR	
the of Custody Present:	ElYes		1.]
their of Custody Filed Out			2.		ļ
thain of Custody Relinquished:	Ves		3.		
amoler Name & Signature on COC:	ZY es		4.		4
Samples Arrived within Hold Time:	ETTes		5.		4
Short Hold Time Analysis (<72hr):	□Yes .		6.		ļ
Rush Turn Around Time Requested:	□Yes		7		4
Sufficient Volume:	- TYes		8		4
Correct Containers Used:	, ETYes		9.		
-Pace Containers Used:	· Elves				H
Containers Intact:	-EYos		10.		4
Filtered volume received for Dissolved tests	□Yes	DNO DINA	11.		4
Sample Labels match COC:	Yes		12.		
-Includes date/time/ID/Analysis Matrix:	GIU	ľ		-	╬
All containers needing preservation have been checked.	🖾 Yes	DNO -ENVA	13.		
All containers needing preservation are found to be in	Yes				
			Initial when	Lot # of added	1
exceptions/ VOA, coliform, TOC, O&G, WI-DRO (water)	163		completed	preservative	╣
Samples checked for dechlorination:	- Yes		14.	· · · · · · · · · · · · · · · · · · ·	╢
leadspace in VOA Vials (>6mm):	- Yes	ZHRO ĽIN/A	15.		+
Trip Blank Present:	⊡Yes, 		16.		
Trip Blank Custody Seals Present	□Yes			,	·
Pace Trip Blank Lot # (if purchased):	•				
Client Notification/ Resolution:				Field Data Required? Y / N	
Person Contacted:		Date/	Time:		
Comments/ Resolution:					+
					+
					+ .
					+
	<u></u>			· · · · · · · · · · · · · · · · · · ·	+
					†
				Detai	1

Note: whenever there is a discrepancy affectil	ig North Carolina compliance samples	a copy of this form will b	e sent to the North Carolina DEH
Certification Office (i.e. out of hold, incorrect p	eservative, out of temp incorrect cont	ainers)	

Responsive partner. Exceptional outcomes.