HOOD PACKAGING CORPORATION MADISON, MISSISSIPPI

Voluntary Remediation Program Semiannual Progress Report No. 5 Hood Packaging Corporation Site Valdosta, Georgia

Prepared By:
H. M. Rollins Company, Inc.
P. O. Box 3471
Gulfport, Mississippi 39505
(228) 832-1738

April 20, 2019

TABLE OF CONTENTS

1.0	INT	RODUCTION 1
2.0	BAC	CKGROUND
3.0	ACT	TIVITIES COMPLETED IN THIS REPORTING PERIOD 2
	3.1	Groundwater Activities
	3.2	Surface Water Activities
	3.3	Exposure Area Discussion
	3.4	Contact with the City of Valdosta
4.0	PLA	NNED ACTIVITIES FOR THE NEXT REPORTING PERIOD 6
	4.1	Groundwater Activities
	4.2	Surface Water Activities
	4.3	Exposure Area and Area Averaging Approach to Type 4 RRS
5.0	VRP	PROJECT MANAGEMENT 7
	5.1	<u>Professional Oversight</u>
	5.2	<u>Project Schedule</u> 8
6.0	REF	ERENCES 8

LIST OF FIGURES

Figure 1	Site Location Drawing
Figure 2	Monitoring Well Locations
Figure 3	Groundwater Equipotential Drawing
Figure 4	MW-SB-17 Log and Construction Diagram
Figure 5	Project Schedule
Figure 6	Surface Water Sampling, 2/14/19
Figure 7	Groundwater Sampling, 2/13/19 - 2/14/19

LIST OF TABLES

Table 1	Groundwater Monitoring Results
Table 2	Groundwater Levels
Table 3	Surface Water Sampling Results
Table 4	Monitoring Well Construction Details
Table 5	95% UCL Mean Computations
Table 6	Type 4 RRS Calculations
Table 7	Lead Type 4 RRS Calculations

APPENDICES

APPENDIX A Field Notes from Groundwater and Surface Water Sampling

APPENDIX B Analytical Results from Groundwater and Surface Water Sampling

4/20/19

ENGINEERING CERTIFICATION

I certify that I am a qualified groundwater scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by State registration and completion of accredited university courses, that enable me to make sound professional judgements regarding groundwater monitoring and contaminant fate-and-transport. I further certify that this report was prepared by myself or by a subordinate working under my direction.

Henry & Rollins, P.E.

Da

1.0 INTRODUCTION

This is the fifth Semiannual Progress Report being submitted under the Voluntary Remediation Program (VRP) on behalf of Hood Packaging Corporation (Hood) for the property known as Tract 2 located in the 900 block of River Street, Valdosta, Lowndes County, Georgia. The purpose of this report is to provide the Georgia Environmental Protection Division (EPD) with information concerning the activities accomplished on the site during the fifth six-month period since the site was approved for participation in the Georgia Voluntary Remediation Program, and to detail activities planned for the next six months.

2.0 BACKGROUND

Hood owns property in the 900 block on both sides of River Street in Valdosta, Georgia. Hood acquired a multi-wall bag manufacturing facility on the site in 1992 and operated the facility until May of 2009. The property consists of three parcels, known as Tracts 1, 2, and 3, all of which were listed on the Georgia Hazardous Site Inventory (HSI) as site 10089. Tracts 1 and 3 have been removed from the HSI by EPD, and Hood has sold Tract 3 to a third party. The site location is shown in Figure 1.

Unknown to Hood at the time of the 1992 acquisition, Tract 2 had been used for the manufacturing of fertilizer from the early 1900's to the 1970's. The site was listed on the HSI because of the presence of metals at levels exceeding the Georgia Hazardous Site Response Act (HSRA) notification thresholds.

Site investigations were conducted over a period of years that delineated the extent of contamination of the metals arsenic, lead, and barium in both soil and groundwater. A

site Compliance Status Report (CSR) was prepared in 1999 and a Corrective Action Plan was submitted in 2006.

In 2010, the EPA and EPD performed a Site Reconnaissance and Pre-CERCLIS Screening Assessment (PSA) of Tract 2. The PSA employed XRF technology, and the results indicated the presence of additional metals, at above HSRA notification levels, at several locations. Hood subsequently took samples at the locations identified in the PSA and subjected them to laboratory analysis. The results of these analyses found only one additional metal, zinc, at the location identified in previous investigations as Large Area 4, at concentrations exceeding the HSRA notification levels. Delineation for zinc at Large Area 4 to default Type 2 Risk Reduction Standards has now been completed.

Hood prepared and submitted a VRP Application and Investigation and Remediation Plan on September 12, 2014. The VRP application resulted in the issuance of Consent Order No. EPD-VRP-013, which, once executed, enrolled the site in the VRP program. This consent order was fully executed on September 20, 2016. Semiannual progress reports are due on April 20 and October 20 of each year.

3.0 ACTIVITIES COMPLETED IN THIS REPORTING PERIOD

3.1 Groundwater Activities

3.1.1 Monitoring Well Installation and Repair

There was one new well installed during this reporting period. This new well was installed on City of Valdosta property to function as a Point of Demonstration Well as defined in OGGA 12-8-102(a)(10). This well has

been designated MW-SB-17. The approximate location of this well has been added to the site drawings found in the Figures in this report. A well construction drawing is found in Figure 4. None of the other existing wells required any maintenance or repair. The location of all monitoring wells is shown on the drawing in Figure 2. Monitoring well construction details are found in Table 4.

3.1.1 *Groundwater Sampling*

Another round of groundwater sampling was conducted on February 13 and 14, 2019, for the purpose of providing additional data on the groundwater concentrations of arsenic, lead, barium, and zinc, the previously determined constituents of concern. The following wells were sampled: MW-SB-1R, MW-SB-1A, MW-SB-2, MW-SB-2AR, MW-SB-4R, MW-SB-5, MW-SB-6, MW-SB-9, MW-SB-9A, MW-SB-12R, MW-SB-13, MW-SB-14, and MW-SB-15. Water levels were measured in the following additional wells: MW-SB-3, MW-SB-7, MW-SB-10, MW-SB-11, and MW-SB-16. Sampling was performed by Joe McVay, P.G. Field notes from the sampling event are found in Appendix A. The results from this sampling event, as well as historic events, are presented in Table 1. The laboratory reports are found in Appendix B. A drawing showing the measured concentrations at each well is found as Figure 7. Groundwater results for the February 2019, sampling were generally within expected ranges based on historical results.

3.1.3 *Groundwater Levels and Equipotentials*

Groundwater elevation measurements were taken from the wells that were monitored during this semiannual period, as well as the remaining wells on Tract 2. Overall, the water levels measured in the February 2019 sampling event were higher than normal due to higher than normal rainfall. There was a somewhat larger than normal upward vertical gradient exhibited at the locations where multiple wells are present. These water levels, as well as historic levels, are presented in Table 2.

A site drawing showing estimated groundwater equipotential lines is found in Figure 3. This drawing shows groundwater flow patterns similar to those in the past with a high point near the center of Tract 2.

3.2 Surface Water Activities

Surface water samples were taken while personnel were on-site to conduct the groundwater monitoring activities. Samples were taken on February 14, 2019 at the six locations previously sampled. These include: where the surface drain flows under the entrance road to the City park; slightly downstream where the drain passes under River Street; further downstream where the drain passes beneath Magnolia Street, Lankford Drive, and Baytree Road; and at an upstream sample location. The sampling locations are shown on Figure 6.

The results from these recent surface water samples as well as historic results are found in Table 3. The laboratory reports are found in Appendix B. The results of the February 14, 2019, surface water sampling showed no significant impact from

arsenic or barium at any location. The lead surface water results were 34.7 μ g/l at the Park Road Ditch location and declined to background levels at the Lankford Drive sampling location. The zinc surface water results were 222 μ g/l at the Park Road Ditch location and declined to expected background at the Lankford Drive sampling location.

3.3 Exposure Area Discussion

During the prior reporting period, significant additional soil sampling was conducted. The results of this sampling, in addition to previous soil sampling, confirmed that metals of concern are distributed broadly across a large portion of the site. This pattern is consistent with the evidence that suggests that after the fertilizer manufacturing operations ceased, the site was graded to smooth the contours. This explains why the fertilizer building slab is covered with about a foot of material consisting of soils and demolition debris, similar to the materials found distributed widely across the site.

The distribution of contaminants supports the use of area averaging techniques to develop expected concentrations in an exposure area risk analysis. For the purpose of developing a 95% UCL estimate of the mean concentration in the exposure area, a large-volume composite sample was prepared from the 111 individual samples taken in the exposure area. This large-volume sample was thoroughly mixed and 10 replicate analyses were conducted. The results from these analyses were submitted in the prior VRP report. The 95% UCL estimate of the mean concentrations based on these 10 samples was computed using EPA's ProUCL software. The results of this analysis are found in Table 5.

In order to evaluate the potential direct exposure risk associated with the calculated exposure area concentrations, computations were performed using standard procedures specified in 391-3-19-.07(9). These computations showing the Type 4 RRS concentrations based on site-specific exposure factors are found in Tables 6 and 7.

These computations were provided to EPD via email prior to a planned meeting to discuss site issues.

3.4 Contact with the City of Valdosta

During this reporting period, approval was received from Scott Fowler, the Environmental Manager of the City of Valdosta, for the location of the new groundwater monitoring well on City property. The well was installed on March 6, 2019.

4.0 PLANNED ACTIVITIES FOR THE NEXT REPORTING PERIOD

4.1 Groundwater Activities

The new Point of Demonstration well will be sampled in the next reporting period, and additional groundwater monitoring will be discussed at the meeting to be held with EPD personnel on May 22, 2019.

4.2 Surface Water Activities

Additional surface water monitoring will be discussed at the meeting to be held with EPD personnel on May 22, 2019.

4.3 Exposure Area and Area Averaging Approach to Type 4 RRS

A meeting is scheduled with EPD personnel on May 22, 2019, to discuss the materials provided to EPD by email on February 8, 2019. These materials included computations for development of a 95% upper confidence limit estimate of exposure concentrations based on an area averaging approach and calculation of potential Type 4 RRS based on site-specific exposure factors that would be managed by appropriate environmental covenants.

The goal of this meeting is to obtain EPD guidance that will help define the final corrective measures for the site.

5.0 VRP PROJECT MANAGEMENT

5.1 Professional Oversight

Oversight for this project is being provided by H. Martin Rollins, P.E. (Georgia #14285). A summary of hours committed to this project during the reporting period is shown in the following table. Significant additional professional time was expended by contract personnel.

H. M. Rollins, P.E. (Georgia #14285)										
	Work Completed									
October 2018	58.5	Oversight of the work								
November 2018	1.0	described in this report.								
December 2018	16.0									
January 2019	17.5									
February 2019	30.4									
March 2019	36.3									

5.2 Project Schedule

All delineation activities are now complete. Discussions concerning Type 4 RRS and final corrective actions are planned for the EPD meeting on May 22, 2019. Planned project completion is still within the VRP completion guidance.

6.0 REFERENCES

H. M. Rollins Company, Inc., 1999.

Compliance Status Report. Prepared by H. M. Rollins Company, Inc., Last Revision September, 1999.

H. M. Rollins Company, Inc., 2006.

Corrective Action Plan. Prepared by H. M. Rollins Company, Inc., Last Revision May 1, 2006.

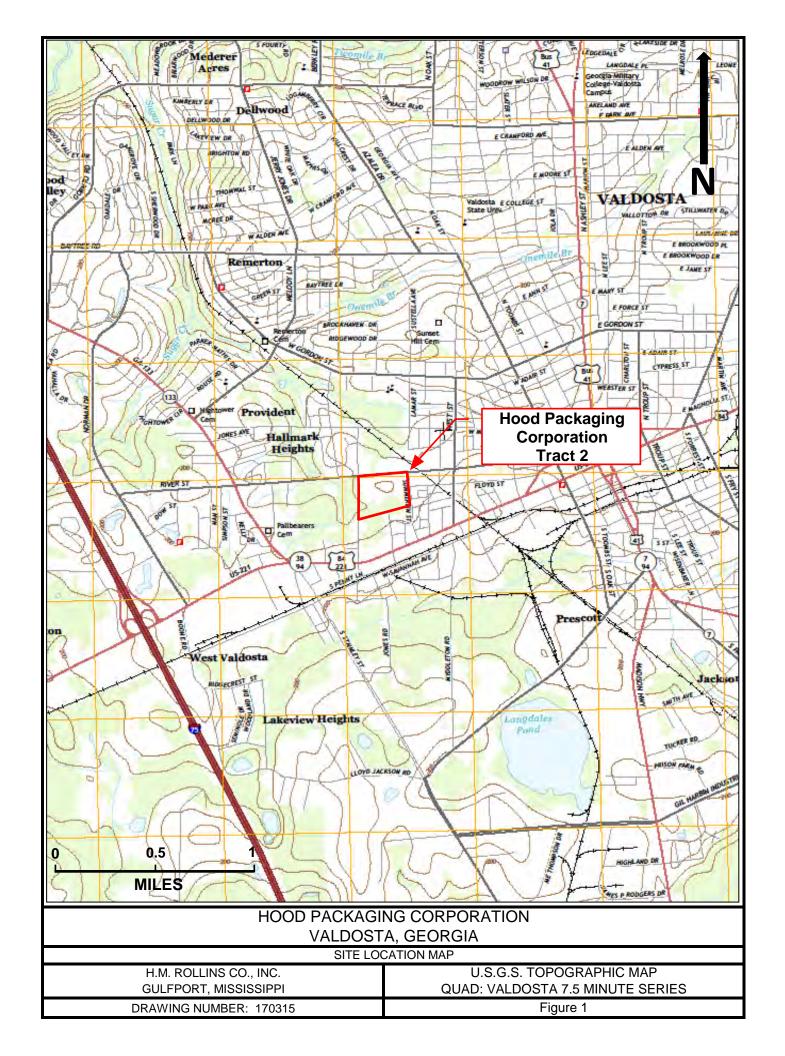
H. M. Rollins Company, Inc., 2014.

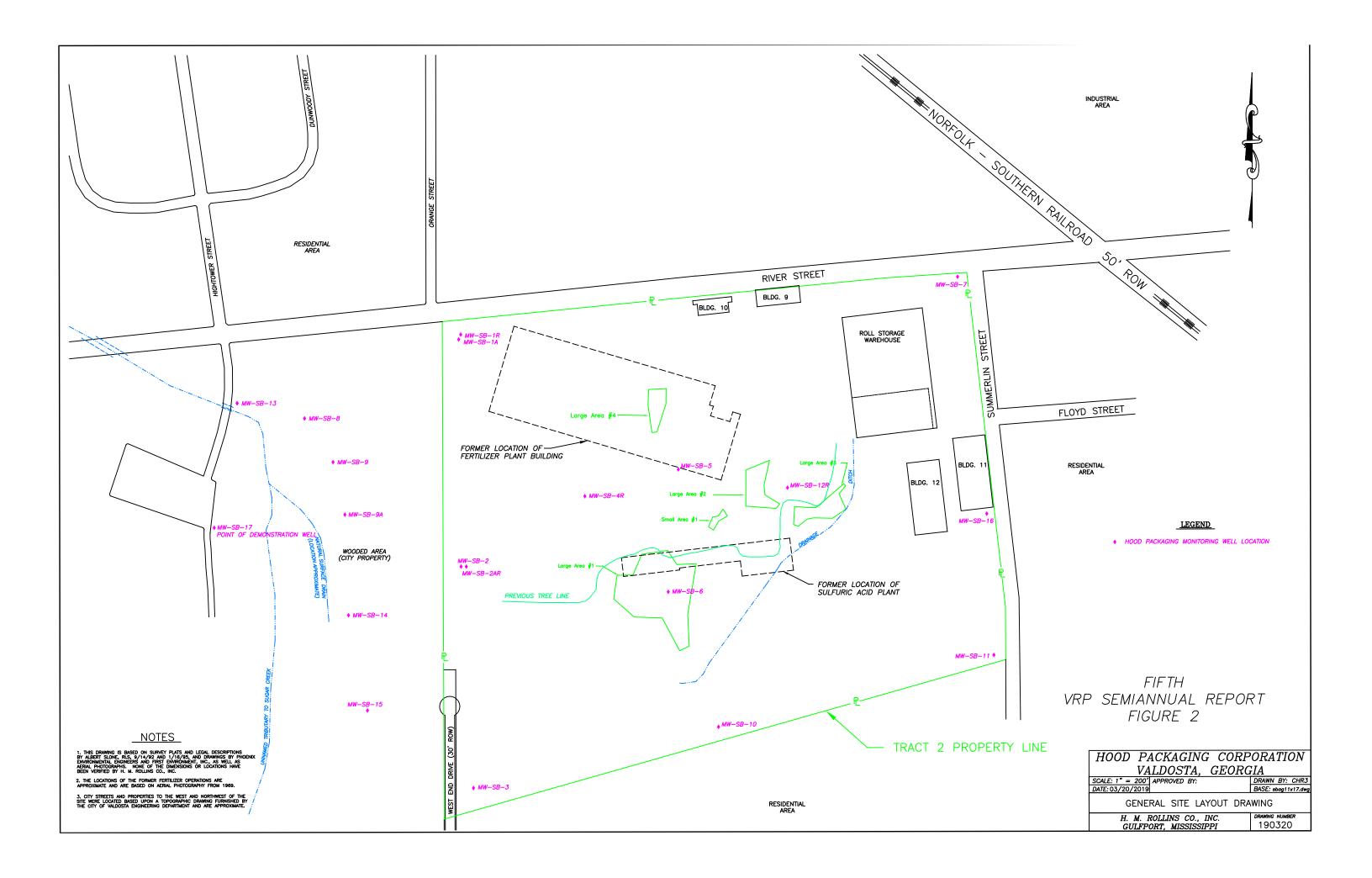
Voluntary Remediation Program, Application, Investigation, and Remediation Plan. Prepared by H. M. Rollins Company, Inc., September, 2014.

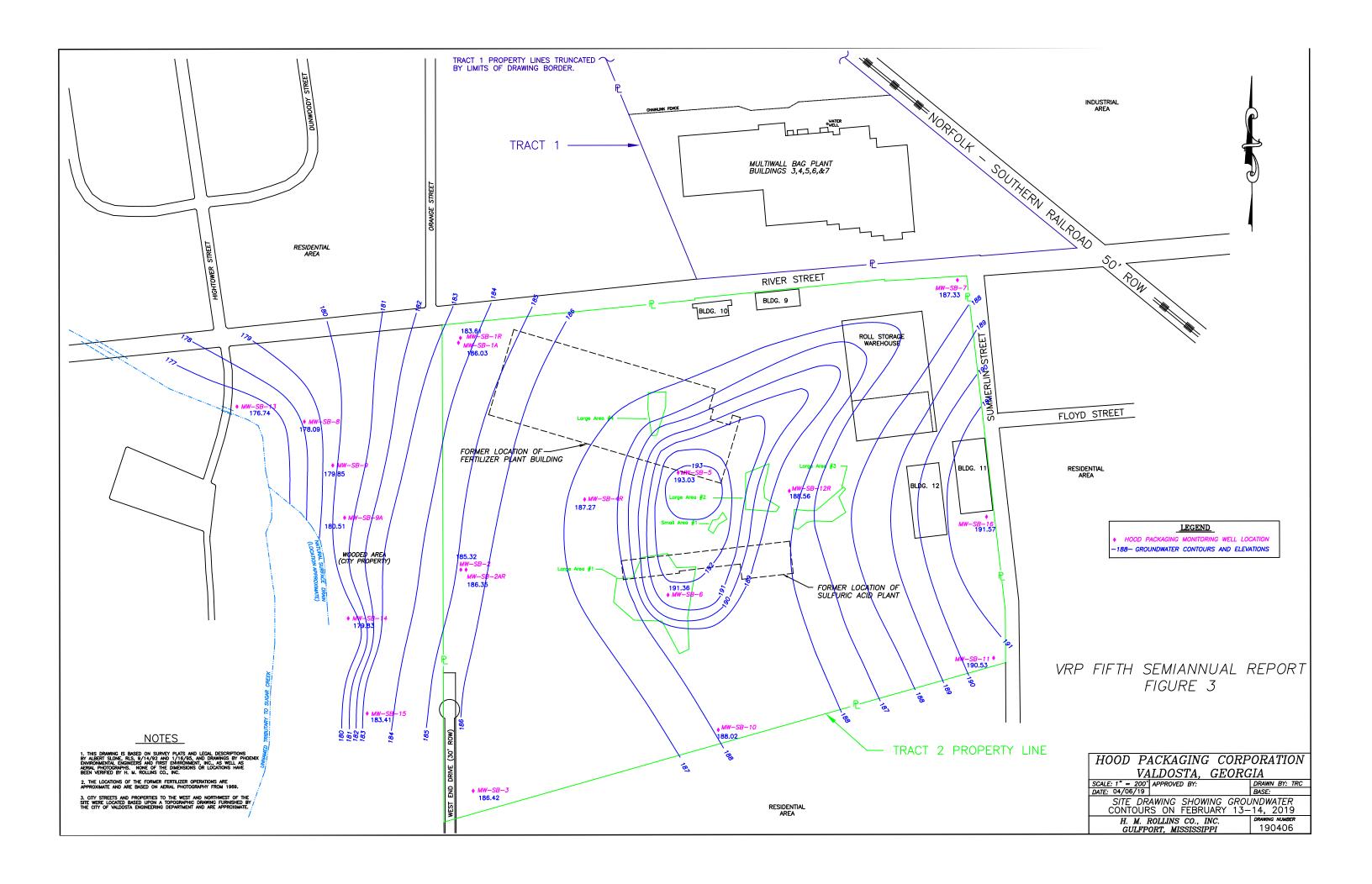
H. M. Rollins Company, Inc., 2017.

Voluntary Remediation Program, Semiannual Progress Report No. 1. Prepared by H. M. Rollins Company, Inc., April 20, 2017.

H. M. Rollins Company, Inc., 2018.

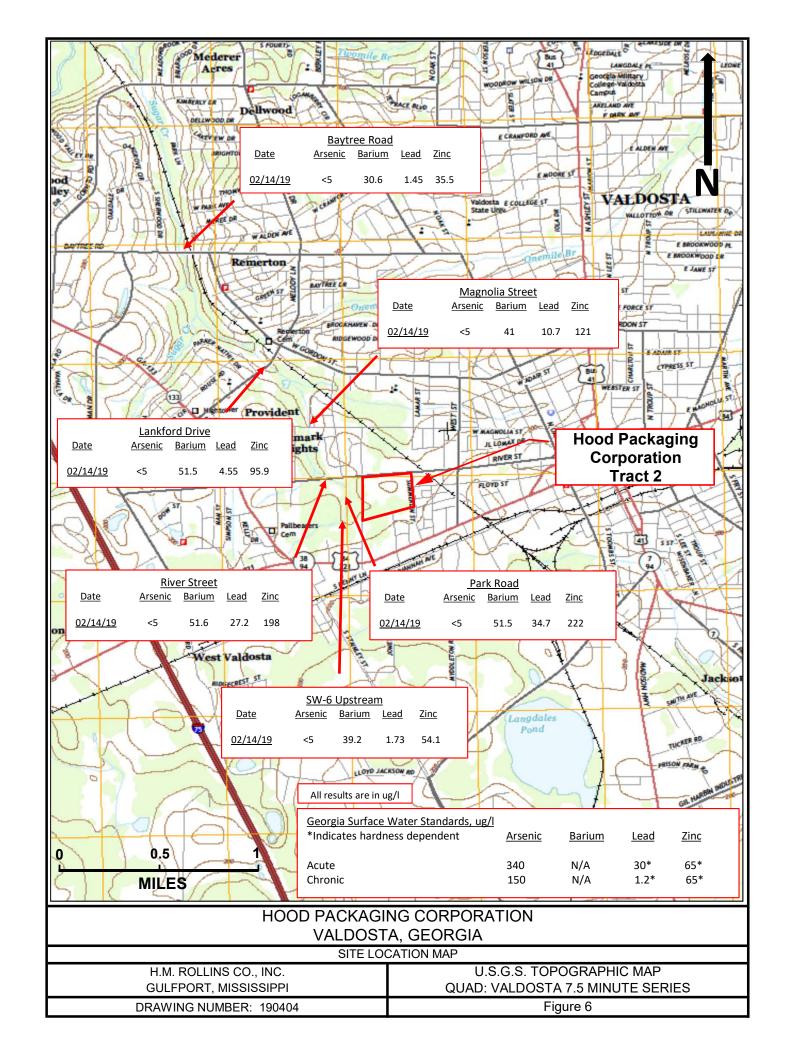

Voluntary Remediation Program, Semiannual Progress Report No. 2. Prepared by H. M. Rollins Company, Inc., October 20, 2017.

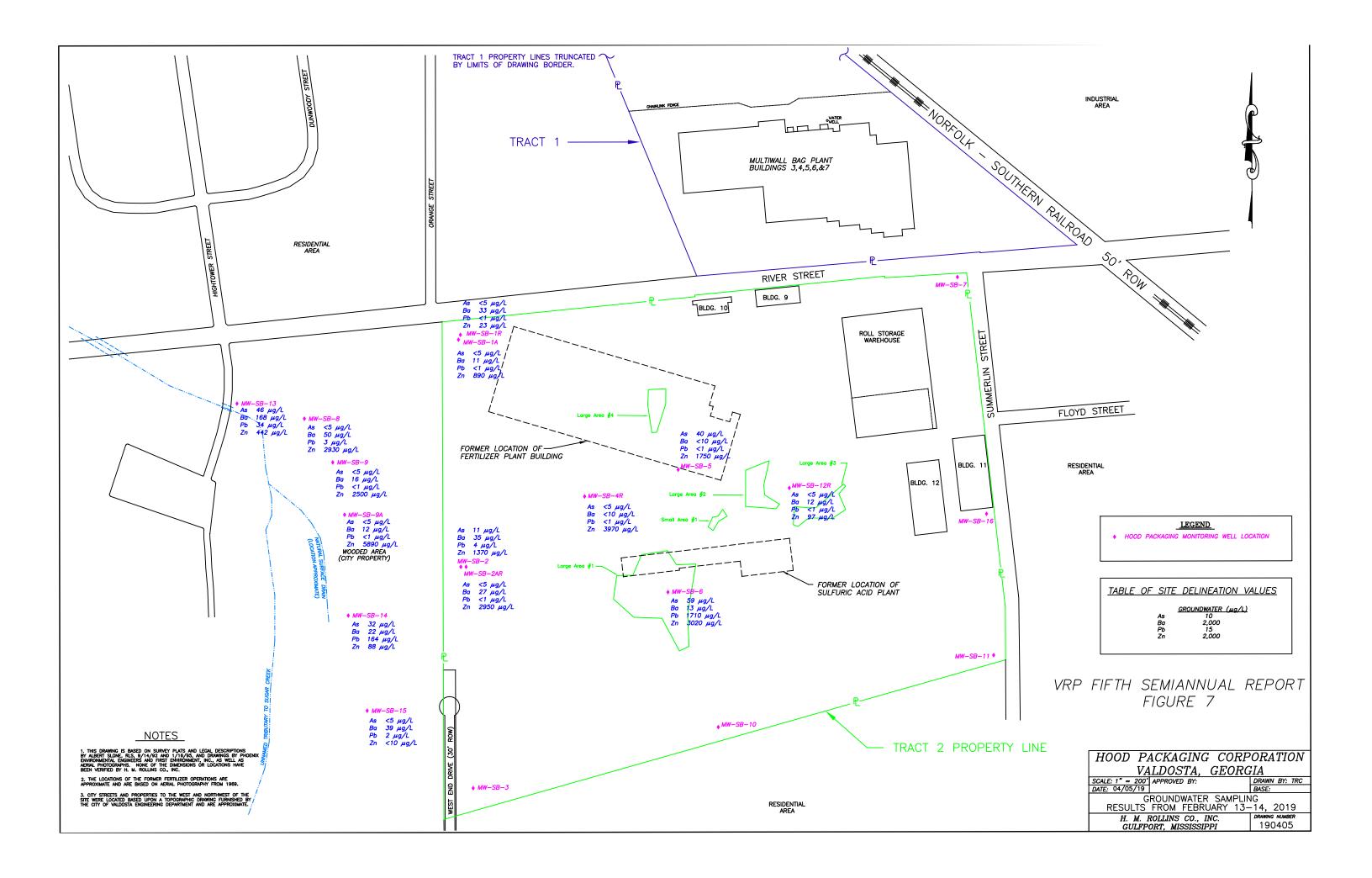

H. M. Rollins Company, Inc., 2018.


Voluntary Remediation Program, Semiannual Progress Report No. 3. Prepared by H. M. Rollins Company, Inc., April 20, 2018.

H. M. Rollins Company, Inc., 2018.

Voluntary Remediation Program, Semiannual Progress Report No. 4. Prepared by H. M. Rollins Company, Inc., October 20, 2018.


	: HTW D	DRILLIN						OLENa. SB-17			
. COMPANY NAME H. M. Rollins	Company		i ng suscon Betts En	TRACTOR vironmer	ntal Rec	overy		HEET 1 $_{ m 1}$ SHEETS $^{ m 1}$			
. РАОЈЕСТ Hood Packagin			: 4. LOCA	ATION iver Stree	t Valdo	sta, GA					
WE OF DRILLER	g Corp.			UFACTURER'			RILL	7.1.1.7.27			
Caleb Harnage	D.D. all sl		Geoprobe 8. HOLE LOCATION								
. SIZE AND TYPES OF DRILLING AND SAMPLING EQUIPMENT	DPT 2"x 5' spoon			SB-13							
	4.25 HSA			FACE ELEVAT							
			10. DAT	E STARTED	IVA		11. DATE CO	XMPLETED X			
					5/19		3/6/19				
2. OVERBURDEN THICKNESS			15. DEF	TH GROUND	WATER EN	COUNTERE	8.0'				
3. DEPTH DRILLED INTO ROCK			16. DEF	TH TO WATE	R AND ELA	PSED TIME	AFTER DRILLIR	NG COMPLETED			
4. TOTAL DEPTH OF HOLE			17. OTI-	IER WATER L	EVEL MEA	SUREMENT	s (SPECIFY)				
B, GEOTECHNICAL SAMPLES	DISTURBED	UNDISTU	RBED	19. TOTAL N	UMBER OF	CORE BOX	ES				
O, SAMPLES FOR CHEMICAL ANAL	YSIS VOC	METALS	OTHER (S	PECIFY) O	THER (SP	ECIFY) OT	HER (SPECIF				
x . X 2 A 2 3 3 2 (2) 2 (2) 2 (2)								RECOVERY %			
2. DISPOSITION OF HOLE	BACKFILLED	MONITORING WELL	OTHER (S	PECIFY) 2	23. SIGNAT	URE OF INS	PECTOR	_1			
Monitoring Well Set		X									
ELEV. DEPTH C	DESCRIPTION OF MATERIALS		SCREENING ESULTS d	GEOTECH S OR CORE B		NALYTICAL AMPLE No.	BLOW COUNTS	REMARKS h			
Tan Sa	and very fine and e/yellow/grey clay				-						


E ELLIO MILL DOAD	JOB NAME: Hood Pa	ackaging corp.
55 ELLIS MILL ROAD	WELL NOUMBER:	SB-17
ILLEDGEVILLE, GA 31061	WELL LOCATION:	In park
p of Casing Elevation: 184.90 Feet	Bentonite Type:	POS Chips
pe Sand Pack: 20-30 washed	Cement Type:	Portland
reen Material: .01 slotted PVC	Field Geologist:	Joe McVay
ser Material: PVC	Drilling Contractor"	Betts Environmental
ser Diameter: 2"	Amount of Bentonite	Used: 8- 50 lb bags
illing Method: DPT & Rotary ager Size and Type: 4.25" HAS	Amount of Sand Use	d: 8 bags
DIMENSIONS OF CONCRETE PAD	LENGTH OF SOLID RISER	TOTAL DEPTH OF WELL
CONCRETE PAD 2'x2'x4"	LENGTH OF SOLID RISER 3.7'	TOTAL DEPTH OF WELL 9' STABILIZE WATER LEVEL ~4.0'~
CONCRETE PAD 2'x2'x4" DEPTH TO TOP OF	SOLID RISER	OF WELL 9' STABILIZE WATER LEVEL
CONCRETE PAD 2'x2'x4" DEPTH TO TOP OF BENTONITE SEAL 1.0' DEPTH TO TOP OF	SOLID RISER 3.7' LENGTH OF SCREEN	OF WELL 9' STABILIZE WATER LEVEL ~ 4.0' ~ Concrete

HOOD PACKAGING CORPORATION

VRP Corrective Action Implementation Schedule

Task	Duration	Mont 1	h Mon	th Mo	nth Mo	nth N	Month 5	Month	Month 7	Mont	Mont	h Mon						onth N	Month M	Month 1	Month 18	Month 19	Month 20	Month 21	Month 22	Month 23		Month 25	Month 26	Monti 27		Mont 29	Mont 30	h Mont	h Month	Month 33	h Month	
VRP Acceptance	-	×				1				Ť	Ť	T		+	<u> </u>			10				13	20			20	24	20			20	1	30	<u> </u>	32	- 55	1	- 55
Complete Soil Delineation for Zinc	6 months	\searrow	\gt	\Diamond	\Diamond		X	X																														
Complete Groundwater Delineation for Zinc	6 months		Ĭ	Ť	Ĭ	Ĭ		${\mathbf x}$	×	\times	\sim	\rightarrow	\Diamond																									1
Soil Sampling for Disposal Characterization	6 months							$\overline{}$				ightharpoons	$\langle \nabla$	\bigcirc	\bigcirc	\bigcirc		\times																				
Prepare Corrective Action Plan	5 months												Ĭ	Ì		75	<	X	X	\times	\times																	
Choose Contractors	2 months																Ĭ	Ĭ	Ĭ		$\boldsymbol{\times}$	X																
Complete Preliminary Site Work	3 months																					$\boldsymbol{\times}$	X	×														
Complete Groundwater pH Adjustment	3 months																				ĺ			$\boldsymbol{\times}$	\times	×												
Install Cap System or Excavate & Dispose Offsite	7 months																									\supset	×	×	×	×	\sim	\sim						
Complete Survey and Environmental Covenants	3 months																														Ĭ	\mathbf{x}	$\mathbf{\dot{\times}}$	\rightarrow				1
Prepare and Submit Final CSR	7 months																															\sim	\times	\sim	\mathbf{x}	\sim		

Hood Packaging Corporation Valdosta, Georgia Summary of Analytical Results - Monitoring Wells

			Metals	s, μg/l		
HSRA Type 1 S	tandards (µg/l)	10	2000	15	2000	
Well No.	Date	Arsenic	Barium	Lead	Zinc	Notes
MW-SB-1	5/24/1997	<5	43	55		
MW-SB-1	5/24/1997	<5	41	54		DUPLICATE
MW-SB-1	8/27/1997	<5	61	31		
MW-SB-1	8/27/1997	<5	64	29		
MW-SB-1	10/17/1997	<5	53	46		
MW-SB-1	7/26/2001	<5	127	42		
MW-SB-1	3/7/2006	24	77	64		
MW-SB-1	3/7/2006	<5	21	<5		FILTERED IN LAB
MW-SB-1R	4/20/2017	<5	44	<1	14	
MW-SB-1R	11/21/2017	<5	35	<1	15	
MW-SB-1R	3/23/2018	<5	38	<1	26	
MW-SB-1R	2/13/2019	<5	33	<1	23	
MW-SB-1A	10/17/1997	<5	87	<5		
MW-SB-1A	10/17/1997	<5	115	<5		DUPLICATE
MW-SB-1A	7/26/2001	<50	35	<5		
MW-SB-1A	3/7/2006	<5	72	<5		
MW-SB-1A	3/7/2006	<5	14	<5		FILTERED IN LAB
MW-SB-1A	4/20/2017	<5	13	<1	374	
MW-SB-1A	11/21/2017	<5	11	<1	1,090	
MW-SB-1A	3/22/2018	<5	<10	<1	614	
MW-SB-1A	2/13/2019	<5	11	<1	890	
MW-SB-2	5/24/1997	6	71	<5		
MW-SB-2	5/24/1997	15	72	10		DUPLICATE
MW-SB-2	8/27/1997	7	27	<5		
MW-SB-2	10/14/1997	13		<5		
MW-SB-2	7/26/2001	10	13	<5		
MW-SB-2	3/7/2006	40	32	<5		
MW-SB-2	3/7/2006	36	<10	<5		FILTERED IN LAB

Hood Packaging Corporation Valdosta, Georgia Summary of Analytical Results - Monitoring Wells

			Metals	s, μg/l		
HSRA Type 1 S	tandards (μg/l)	10	2000	15	2000	
Well No.	Date	Arsenic	Barium	Lead	Zinc	Notes
MW-SB-2	4/19/2017	9	26	<1	526	
MW-SB-2	11/20/2017	9	19	3	578	
MW-SB-2	3/22/2018	8	22	3	589	
MW-SB-2	2/13/2019	11	35	4	1,370	
MW-SB-2A	10/14/1997	<10		<5		
MW-SB-2A	10/8/1998	<5	37	<5		
MW-SB-2A	10/8/1998	<5	37	<5		DUPLICATE
MW-SB-2A	7/26/2001	<250	<10	<5		
MW-SB-2A	3/7/2006	<5	11	<5		
MW-SB-2A	3/7/2006	<5	<10	<5		FILTERED IN LAB
MW-SB-2AR	4/19/2017	<5	43	<1	408	
MW-SB-2AR	11/20/2017	<5	13	<1	14,700	
MW-SB-2AR	3/22/2018	<5	<10	<1	28,300	
MW-SB-2AR	2/13/2019	<5	27	<1	2,950	
MW-SB-3	5/24/1997	<5	30	<5		
MW-SB-3	5/24/1997	<5	36	<5		DUPLICATE
MW-SB-3	8/27/1997	<5	38	<5		
MW-SB-3	7/26/2001	<5	186	13		
MW-SB-3	10/4/2001			14		
MW-SB-3	10/4/2001			<5		FILTERED
MW-SB-3	10/4/2001			16		DUPLICATE
MW-SB-3	10/4/2001			<5		DUPLICATE / FILTERED
MW-SB-4	10/16/1997	<5	22	<5		
MW-SB-4	10/16/1997	<5	31	<5		DUPLICATE
MW-SB-4	7/26/2001	<25	21	<5		
MW-SB-4R	4/20/2017	<5	<10	<1	2,230	
MW-SB-4R	11/20/2017	<5	<10	<1	1,770	
MW-SB-4R	3/23/2018	<5	<10	<1	1,420	

Hood Packaging Corporation Valdosta, Georgia Summary of Analytical Results - Monitoring Wells

			Metals	s, μg/l		
HSRA Type 1 S	tandards (μg/l)	10	2000	15	2000	
Well No.	Date	Arsenic	Barium	Lead	Zinc	Notes
MW-SB-4R	2/13/2019	<5	<10	<1	3,970	
MW-SB-5	10/16/1997	<5	67	<5		
MW-SB-5	10/16/1997	<5	103	<5		DUPLICATE
MW-SB-5	7/26/2001	26	<10	<5		
MW-SB-5	4/20/2017	39	<10	<1	1,180	
MW-SB-5	11/20/2017	56	<10	<1	1,810	
MW-SB-5	3/23/2018	50	<10	<1	1,680	
MW-SB-5	2/14/2019	40	<10	<1	1,750	
MW-SB-6	10/16/1997	2,660	358	64		
MW-SB-6	10/16/1997	2,720	350	62		DUPLICATE
MW-SB-6	7/26/2001	2,520	<10	810		
MW-SB-6	3/7/2006	717	<10	434		
MW-SB-6	3/7/2006	700	<10	403		FILTERED IN LAB
MW-SB-6	4/20/2017	72	11	464	1,920	
MW-SB-6	11/21/2017	131	14	2,670	2,610	
MW-SB-6	3/23/2018	63	<10	2,750	2,220	
MW-SB-6	2/14/2019	59	13	1,710	3,020	
MW-SB-7	10/16/1997	<5	36	<5		
MW-SB-7	10/16/1997	<5	89	<5		DUPLICATE
MW-SB-7	10/8/1998	<5	17	<5		
MW-SB-7	10/8/1998	<5	13	<5		DUPLICATE
MW-SB-7	7/26/2001	<5	24	<5		
MW-SB-8	10/17/1997	<5	89	7		
MW-SB-8	10/17/1997	<5	85	7		DUPLICATE
MW-SB-8	10/17/1997			5		FILTERED
MW-SB-8	10/8/1998	<5	47	<5		
MW-SB-8	10/8/1998	<5	44	<5		DUPLICATE
MW-SB-8	7/25/2001	<50	59	5		

Hood Packaging Corporation Valdosta, Georgia Summary of Analytical Results - Monitoring Wells

			Metals	s, μg/l		
HSRA Type 1 S	tandards (μg/l)	10	2000	15	2000	
Well No.	Date	Arsenic	Barium	Lead	Zinc	Notes
MW-SB-8	3/8/2006	<5	49	<5		
MW-SB-8	3/8/2006	<5	46	<5		FILTERED IN LAB
MW-SB-8	4/19/2017	<5	54	6	2,230	
MW-SB-8	11/20/2017	<5	33	<1	3,120	
MW-SB-8	3/22/2018	<5	26	6	2,660	
MW-SB-8	2/14/2019	<5	50	3	2,930	
MW-SB-9	10/17/1997	<5	51	<5		
MW-SB-9	10/17/1997	<5	67	<5		DUPLICATE
MW-SB-9	7/26/2001	<50	31	<5		
MW-SB-9	3/8/2006	<5	18	<5		
MW-SB-9	3/8/2006	<5	14	<5		FILTERED IN LAB
MW-SB-9	4/19/2017	<5	61	4	2,270	
MW-SB-9	11/20/2017	<5	18	<1	2,980	
MW-SB-9	3/22/2018	<5	13	<1	2,530	
MW-SB-9	2/13/2019	<5	16	<1	2,500	
MW-SB-9A	11/19/1997	<5	23	<5		
MW-SB-9A	11/19/1997	<5	22	<5		DUPLICATE
MW-SB-9A	11/19/1997	<5	15	<5		FILTERED
MW-SB-9A	7/26/2001	<50	12	<5		
MW-SB-9A	3/8/2006	<5	<10	<5		
MW-SB-9A	3/8/2006	<5	<10	<5		FILTERED IN LAB
MW-SB-9A	4/19/2017	<5	11	<1	4,390	
MW-SB-9A	11/20/2017	<5	11	<1	5,970	
MW-SB-9A	3/22/2018	<5	<10	<1	6,640	
MW-SB-9A	2/13/2019	<5	12	<1	5,890	
MW-SB-10	10/17/1997	<5	57	<5		
MW-SB-10	10/17/1997	<5	64	<5		DUPLICATE
MW-SB-10	7/26/2001	<5	110	<5		

Hood Packaging Corporation Valdosta, Georgia Summary of Analytical Results - Monitoring Wells

			Metal	s, μg/l		
HSRA Type 1 S	tandards (µg/l)	10	2000	15	2000	
Well No.	Date	Arsenic	Barium	Lead	Zinc	Notes
MW-SB-11	11/19/1997	<5	59	<5		
MW-SB-11	11/19/1997	<5	60	<5		DUPLICATE
MW-SB-11	11/19/1997	<5	64	7		FILTERED
MW-SB-11	10/9/1998	<5	52	<5		
MW-SB-11	10/9/1998	<5	55	<5		DUPLICATE
MW-SB-11	7/26/2001	<5	73	<5		
MW-SB-12	11/19/1997	15	16	<5		
MW-SB-12	11/19/1997	17	15	<5		DUPLICATE
MW-SB-12	11/19/1997	20	16	<5		FILTERED
MW-SB-12	7/26/2001	29	<10	<5		
MW-SB-12R	4/20/2017	7	187	4	44	
MW-SB-12R	11/20/2017	<5	<10	<1	46	
MW-SB-12R	3/23/2018	<5	21	<1	63	
MW-SB-12R	2/14/2019	<5	12	<1	97	
MW-SB-13	11/19/1997	14	50	9		
MW-SB-13	11/19/1997	16	51	8		DUPLICATE
MW-SB-13	11/19/1997	20	50	<5		FILTERED
MW-SB-13	10/8/1998	16	76	67		
MW-SB-13	10/8/1998	15	72	52		DUPLICATE
MW-SB-13	10/8/1998	14	68	<5		FILTERED
MW-SB-13	7/26/2001	16	123	158		
MW-SB-13	3/8/2006	13	102	29		
MW-SB-13	3/8/2006	<5	89	16		FILTERED IN LAB
MW-SB-13	4/20/2017	21	90	39	359	
MW-SB-13	11/21/2017	57	221	16	188	
MW-SB-13	3/23/2018	112	184	24	718	
MW-SB-13	2/14/2019	46	168	34	442	
MW-SB-14	11/19/1997	41	149	212		

TABLE 1

Hood Packaging Corporation Valdosta, Georgia Summary of Analytical Results - Monitoring Wells

			Metal	s, μg/l		
HSRA Type 1 S	tandards (μg/l)	10	2000	15	2000	
Well No.	Date	Arsenic	Barium	Lead	Zinc	Notes
MW-SB-14	11/19/1997	41	139	191		DUPLICATE
MW-SB-14	11/19/1997	49	140	136		FILTERED
MW-SB-14	10/8/1998	50	79	211		
MW-SB-14	10/8/1998	51	80	249		DUPLICATE
MW-SB-14	7/26/2001	72	60	144		
MW-SB-14	3/8/2006	32	25	96		
MW-SB-14	3/8/2006	38	18	63		FILTERED IN LAB
MW-SB-14	4/19/2017	30	42	144	108	
MW-SB-14	11/20/2017	29	71	173	388	
MW-SB-14	3/22/2018	15	15	138	92	
MW-SB-14	2/13/2019	32	22	164	88	
MW-SB-15	10/9/1998	<5	54	<5		
MW-SB-15	10/9/1998	<5	38	<5		FILTERED
MW-SB-15	7/26/2001	<5	62	<5		
MW-SB-15	3/8/2006	<5	59	<5		
MW-SB-15	3/8/2006	<5	27	<5		FILTERED IN LAB
MW-SB-15	4/19/2017	<5	34	<1	<10	
MW-SB-15	11/20/2017	<5	31	<1	<10	
MW-SB-15	3/22/2018	<5	32	1	<10	
MW-SB-15	2/14/2019	<5	39	2	<10	
MW-SB-16	10/9/1998	<5	36	<5		
MW-SB-16	10/9/1998	<5	38	<5		DUPLICATE
MW-SB-16	7/26/2001	<5	36	<5		

TABLE 2

Hood Packaging Corporation

Valdosta, Georgia

Table of Groundwater Elevations

DATE OF MEASU	REMENT:	5/24/	1997	8/26/	1997	10/16	/1997	11/1	9/1997	10/9/	1998	5/8/2	2001	7/25/	2001	10/4/	2001	3/8/2	2006	4/19/	2017	11/21	/2017	3/22/	2018	2/13/	/2019
WELL	ELEV, MP, feet NGVD	DIST TO WATER, ft	GW ELEV, ft NGVD																								
MW-SB-1	189.28	6.85	182.43	6.64	182.64	7.93	181.35	4.79	184.49	4.88	184.40	8.36	180.92	6.21	183.07	8.98	180.30	5.92	183.36								
MW-SB-1R	188.56																			8.10	180.46	8.65	179.91	7.69	180.87	4.95	183.61
MW-SB-1A	189.25							3.70	185.55	4.93	184.32	7.97	181.28	6.12	183.13	8.46	180.79	5.48	183.77	5.63	183.62	8.22	181.03	7.49	181.76	3.22	186.03
MW-SB-2	188.52	6.18	182.34	5.89	182.63	7.30	181.22	4.02	184.50	4.48	184.04	7.81	180.71	5.56	182.96	7.88	180.64	5.43	183.09	7.35	181.17	7.38	181.14	6.97	181.55	3.20	185.32
MW-SB-2A	188.58					7.33	181.25	3.28	185.30	5.30	183.28	7.57	181.01	6.10	182.48	7.79	180.79	5.13	183.45								
MW-SB-2AR	188.21																			6.56	181.65	6.78	181.43	6.84	181.37	1.86	186.35
MW-SB-3	192.32	9.61	182.71	8.97	183.35	11.03	181.29	6.99	185.33	8.22	184.10	11.41	180.91	9.23	183.09	11.64	180.68	8.21	184.11			11.01	181.31	10.80	181.52	5.90	186.42
MW-SB-4	192.88					6.66	186.22	2.50	190.38	3.15	189.73	6.27	186.61	4.05	188.83	6.80	186.08										
MW-SB-4R	193.44																			11.35	182.09						
MW-SB-4R*	193.87																					11.32	182.55	11.23	182.64	6.60	187.27
MW-SB-5	197.53					8.67	188.86	4.00	193.53	3.66	193.87	7.63	189.90	5.77	191.76	8.26	189.27	5.40	192.13	8.50	189.03	7.99	189.54	8.25	189.28	4.50	193.03
MW-SB-6	194.76					11.50	183.26	4.46	190.30	4.66	190.10	11.72	183.04	5.61	189.15	12.46	182.30	5.82	188.94	10.31	184.45	5.76	189.00	4.55	190.21	3.40	191.36
MW-SB-7	196.40					13.82	182.58	9.14	187.26	11.46	184.94	13.90	182.50	12.49	183.91	14.67	181.73	12.27	184.13			14.13	182.27	13.96	182.44	9.07	187.33
MW-SB-8	180.10					2.63	177.47	2.32	177.78	2.30	177.80	5.66	174.44	2.91	177.19	4.94	175.16	2.84	177.26	3.19	176.91	3.63	176.47	2.84	177.26	2.01	178.09
MW-SB-9	182.25					3.46	178.79	3.04	179.21	3.19	179.06	6.09	176.16	3.80	178.45	5.61	176.64	3.95	178.30	5.48	176.77	4.79	177.46	3.94	178.31	2.40	179.85
MW-SB-9A	183.86							3.49	180.37	3.56	180.30	6.06	177.80	4.12	179.74	5.86	178.00	4.25	179.61	5.61	178.25	5.49	178.37	4.96	178.90	3.35	180.51
MW-SB-10	193.04					10.77	182.27	6.10	186.94	6.53	186.51	10.86	182.18	8.76	184.28	11.36	181.68	7.98	185.06			10.38	182.66	9.82	183.22	5.02	188.02
MW-SB-11	199.38							11.21	188.17	15.02	184.36	16.37	183.01	15.30	184.08	17.10	182.28	8.76	190.62			16.32	183.06	14.61	184.77	8.85	190.53
MW-SB-12	199.08							3.96	195.12	4.00	195.08	7.68	191.40	6.72	192.36	7.88	191.20										
MW-SB-12R	198.83																			15.64	183.19	15.29	183.54	15.25	183.58		188.56
MW-SB-13	179.49							3.33	176.16	3.25	176.24	5.86	173.63	3.42	176.07	5.71	173.78	3.20	176.29	2.90	176.59	4.41	175.08	2.81	176.68	2.75	176.74
MW-SB-14	183.66							2.84	180.82	2.95	180.71	5.06	178.60	3.08	180.58	4.74	178.92	3.66	180.00	5.87	177.79	5.85	177.81	5.11	178.55	3.83	179.83
MW-SB-15	186.17									3.40	182.77	5.93	180.24	3.70	182.47	5.84	180.33	3.77	182.40	5.16	181.01	5.11	181.06	4.30	181.87	2.76	183.41
MW-SB-16	198.55									7.84	190.71	9.51	189.04	8.22	190.33	9.64	188.91	13.28	185.27			10.05	188.50	10.03	188.52	6.98	191.57

^{*} New elevation after repair

Hood Packaging Corporation Valdosta, Georgia Surface Water Sampling Results

			Arsenic	Barium	Lead	Zinc
Georgia Surfa	ce Water Standards, µg/l	Acute	340	N/A	30*	65*
* indicates	hardness dependent	Chronic	150	N/A	1.2*	65*
Date	Sample ID			All result	ts in μg/l.	
02/14/19	Park Road Ditch		<5	51.5	34.7	222
03/23/18	Park Road Ditch		< 5	42.3	8.08	301
11/21/17	Park Road Ditch		< 5	31	5	89
04/20/17	Park Road Ditch		< 5	38.6	1.68	134
11/16/16	Park Road Ditch		2		2	<20
07/25/01	Park Road Ditch		7	58	41	
05/09/01	Park Road Ditch		< 5	30	6	
08/10/99	Park Road Ditch		12	69	67	
11/17/97	Park Road Ditch		5	46	32	
02/14/19	River Street Ditch		<5	51.6	27.2	198
03/23/18	River Street Ditch		< 5	39	4.14	147
11/21/17	River Street Ditch		< 5	28	3	36.5
04/20/17	River Street Ditch		<5	39.7	19.6	113
11/16/16	River Street Ditch		2		3	<20
07/25/01	River Street Ditch		<5	56	15	
05/09/01	River Street Ditch		<5	56	32	
08/10/99	River Street Ditch		<5	30	13	
11/17/97	River Street Ditch		5	63	34	
02/14/19	Magnolia Street Ditch		<5	41	10.7	121
03/23/18	Magnolia Street Ditch		<5	26.1	<1	38.1
11/21/17	Magnolia Street Ditch		<5	22	<1	13.2
03/07/06	Magnolia Street Ditch		<5	35	<5	
05/09/01	Magnolia Street Ditch		<5	30	<5	
02/14/19	Lankford Drive Ditch		<5	51.5	4.55	95.9
03/23/18	Lankford Drive Ditch		<5	45.9	1.84	32.5
11/21/17	Lankford Drive Ditch		<5	43	1	29
05/09/01	Lankford Drive Ditch		<5	50	<5	
02/14/19	Baytree Road Ditch		<5	30.6	1.45	35.5
03/23/18	Baytree Road Ditch		<5	19.5	<1	19.2
11/21/17	Baytree Road Ditch		<5	28	2	20.7

Hood Packaging Corporation Valdosta, Georgia Surface Water Sampling Results

			Arsenic	Barium	Lead	Zinc
Georgia Surfa	ce Water Standards, µg/l	Acute	340	N/A	30*	65*
* indicates	hardness dependent	Chronic	150	N/A	1.2*	65*
Date	Sample ID			All result	s in µg/l.	
05/09/01	Baytree Road Ditch		<5	30	< 5	
02/14/19	SW-6 Upstream		<5	39.2	1.73	54.1
03/30/18	SW-6 Upstream		<5	36.5	3.21	25.5

TABLE 4

Monitoring Well Construction Details
Hood Packaging Corporation
Valdosta, Georgia

Well No.	Total Depth (feet, BLS)	Screen Length (feet)	Construction	Measuring Point Elevation (feet NGVD)
MW-SB-1R	30	10	2" PVC	188.56
MW-SB-1A	51	10	2" PVC	189.25
MW-SB-2	13	10	2" PVC	188.52
MW-SB-2AR	33.5	10	2" PVC	188.21
MW-SB-3	17	10	2" PVC	192.32
MW-SB-4R	24.4	10	2" PVC	193.87
MW-SB-5	11	5	2" PVC	197.53
MW-SB-6	17	10	2" PVC	194.76
MW-SB-7	24	10	2" PVC	196.40
MW-SB-8	13	5	2" PVC	180.10
MW-SB-9	13	5	2" PVC	182.25
MW-SB-9A	12	10	2" PVC	183.86
MW-SB-10	19	10	2" PVC	193.04
MW-SB-11	22	15	2" PVC	199.38
MW-SB-12R	19	10	2" PVC	198.83
MW-SB-13	12.5	10	2" PVC	179.49
MW-SB-14#	6.5	5	2" PVC	183.66
MW-SB-15	7	5	2" PVC	186.17
MW-SB-16	15	10	2" PVC	198.55
MW-SB-17	9	5	2" PVC	184.90

	Α	В	С	D	E	F	G	Н	1 1	T J	K	ı
1	٨	В	C	_	ormal UCL S				ets	J	IX	
2			ESTIMATE	OF SITE-W	IDE AVERAC	SE CONCEI	NTRATIONS	FROM EPA	A PROUCL S	SOFTWARE	<u> </u>	
3					Hoo	d Packagin	g Corporation	n, Valdosta,	GA			
4		User Sele	cted Options									
5	Date	e/Time of C	omputation	ProUCL 5.1	2/6/2019 10:1	16:06 AM			1	1	1	
6			From File	Metal Resul	ts Analysis F	OR UCL CA	LCS.xls					
7		Fu	II Precision	OFF								
8	(Confidence	Coefficient	95%								
9												
10												
11						Ars	enic					
12												
13						General	Statistics					
14			Total	Number of C	bservations	10					Observations	10
15									Numbe	r of Missing (Observations	0
16					Minimum	51.8					Mean	61.85
17					Maximum	74.7					Median	61.55
18				0 (" : .	SD	7.762				SD of	logged Data	0.125
19				Coefficient	of Variation	0.126					Skewness	0.25
20						Namel	COE Toot					
21				honiro Wille	Foot Ctotiotic	0.956	OF Test		Chanira W	SIL COE Tool	•	
22				napiro Wilk C	Test Statistic	0.956		Data ann	-	ilk GOF Test at 5% Signific		
23			J /0 GI	-	Test Statistic	0.842		Бата арре		GOF Test	ance Level	
24			5'	% Lilliefors C		0.112		Data anne		at 5% Signific	ance Level	
25				70 E.IIIIO1010 C			5% Significa		- Tronnara	21 0 70 Olgi IIII o		
26												
27					Ass	sumina Norr	nal Distributi	on				
28			95% No	rmal UCL					UCLs (Adju	usted for Ske	ewness)	
29 30				95% Stu	dent's-t UCL	66.35			95% Adjuste	ed-CLT UCL	(Chen-1995)	66.09
31									95% Modifi	ied-t UCL (Jo	hnson-1978)	66.38
32												
33						Suggested	UCL to Use					
34				95% Stu	dent's-t UCL	66.35						
35					L							
36	N	lote: Sugge	stions regard	ing the selec	tion of a 95%	UCL are pro	ovided to help	p the user to	select the n	most appropri	iate 95% UCL	
37			F	Recommenda	itions are bas	ed upon dat	a size, data d	distribution, a	and skewnes	SS.		
38											d Lee (2006).	
39	Ho	wever, simu	lations result	s will not cov	er all Real W			nal insight th	ne user may	want to cons	ult a statistici	an.
40						TABL	E 5 A					
41												

	A	В	Гс	T D)	l E		l F	1	G	Н			I		J	一		K	$\overline{}$	
1		_			No			tatistics fo	r Uncer	sored		ta Sets	•	•							
2			ESTIMAT	E OF SI	TE-W	IDE A	VERA	GE CONCI	ENTRA	TIONS	FROM	EPA I	PROU	CL S	OF	TWAF	₹E				
3							Hod	od Packagi	ng Cor	oratio	n, Valdo	osta, G	iΑ								
42								В	arium											.1	
43																					
44								Genera	l Statis	ics											
45			Tota	al Numbe	er of C	bserva	ations	10					Nur	mber	of [Distino	t Ol	bser	vations	9	
46													Nur	nber	of N	/lissin	g Ol	bser	vations	0	
47						Min	imum	543											Mear	609).5
48						Max	imum	726											Mediar	596	3.5
49							SD	55.98								SD	of le	ogge	ed Data	0.1	0889
50		Coefficient of Variation 0.0918 Skewness													1.	.099					
51																					
52								Normal	GOF T	est											
53				Shapiro '									Shapiro								
54			5%	Shapiro \	Wilk C	Critical '	Value				Data	appea				_		ince	Level		
55				Lillie	efors T	Test Sta	atistic	0.205								F Test					
56				5% Lillie	fors C							appea	r Norm	nal at	5%	Signi	ifica	ince	Level		
57						Data	appe	ar Normal	at 5% S	ignifica	ance Le	vel									
58																					
59							As	suming No	rmal Di	stributi											
60			95%	Normal U							!	95% U		-					-		
61				959	% Stud	dent's-	t UCL	642									•		n-1995)		
62												9	5% Mo	odifie	d-t	UCL (Joh	nsor	n-1978)	643	3
63																					
64								Suggeste	d UCL t	o Use											
65				959	% Stud	dent's-	t UCL	642													
66																					
67	1	Note: Sugge	stions rega													appro	pria	ite 95	5% UC	L	
68								sed upon da		· 											
69		These reco																			
70	Но	wever, simu	lations resu	ults will no	ot cov	er all F	Real W			additio	nal insig	ght the	user r	nay v	van	t to co	nsu	ıltas	statistic	ian.	
71								TAE	SLE 5 B												
72																					


	Α	В	С	D		E		F	1	G	Н					J	一		K		
1					No	ormal U	ICL S	tatistics fo	r Unce	nsored	Full Da	ta Sets	3								
2			ESTIMAT	E OF SIT	E-W	IDE AV	'ERA	GE CONC	ENTRA	TIONS	FROM	EPA I	PROU	CL S	OF	TWAF	₹E				
3							Hoo	od Packagi	ng Cor	poratio	n, Valdo	sta, G	iΑ								
73			-1			-		1	_ead								-		-	-1	-
74																					
75								Genera	l Statis	tics											
76			Tot	al Numbe	r of C	bserva	tions	10					Nur	mber	of [Distino	t Ob	oser	vations	9	
77													Nur	nber	of N	/lissin	g Ol	oser	vations	0	
78						Mini	mum	918											Mean	1150)
79						Maxi	mum	1420										ı	Median	1095	5
80							SD	157								SD	of lo	ogge	ed Data	0.	135
81		Coefficient of Variation 0.137 Skewness													0.4	438					
82									•												
83								Normal	GOF	Гest											
84				Shapiro V	Nilk T	est Sta	itistic	0.951				S	hapiro	Will	k G	OF Te	est				
85			5%	Shapiro V	Vilk C	ritical V	/alue	0.842			Data	appea	r Norm	nal at	5%	Signi	fica	nce	Level		
86				Lillie	fors T	Test Sta	itistic	0.2					Lillie	fors (GOI	- Test	1				
87				5% Lillief	fors C	ritical V	/alue	0.262			Data	appea	r Norm	nal at	5%	Signi	fica	nce	Level		
88						Data	appe	ar Normal	at 5% \$	Signific	ance Le	vel									
89																					
90							As	suming No	rmal D	istribut	ion										
91			95% 1	Normal U	CL							95% U	CLs (Adjus	stec	for S	kew	/nes	s)		
92				95%	6 Stud	dent's-t	UCL	1241				95	% Adj	justed	d-C	LT UC	L (C	Cher	า-1995)	1239)
93												9	5% Mo	odifie	d-t	UCL (Joh	nsor	า-1978)	1242	2
94																					
95								Suggeste	d UCL	to Use											
96				95%	6 Stud	dent's-t	UCL	1241													
97																					
98		Note: Sugge	stions rega	rding the	selec	tion of a	э 9 <mark>5</mark> %	UCL are p	rovide	d to hel	p the us	er to s	elect tl	he mo	ost	appro	pria	te 95	5% UC	L.	
99								sed upon d													
100			mmendatio																		
101	Но	wever, simu	ılations resu	ults will no	ot cov	er all R	eal W	orld data s	ets; for	additio	nal insi	the the	user n	nay w	van	to co	nsu	lt a s	statistic	ian.	
102								TAE	SLE 5 C	;											
103																					

	A	В	С	D	E	F	G	Н	ı	J	K	L
1				, N	ormal UCL S	Statistics for	Uncensored	Full Data Se	ets	•		
2			ESTIMATE	OF SITE-W	VIDE AVERA	GE CONCE	NTRATIONS	FROM EPA	PROUCL	SOFTWARE		
3					Но	od Packagin	g Corporatio	n, Valdosta,	GA			
104						Z	inc					
105												
106						General	Statistics					
107			Total	Number of	Observations	10			Numbe	er of Distinct (Observations	9
108									Numbe	r of Missing (Observations	0
109					Minimum	817					Mean	1112
110					Maximum	1250					Median	1130
111					SD	133.6				SD of	logged Data	0.129
112				Coefficier	nt of Variation	0.12					Skewness	-1.181
113												
114							GOF Test					
115				· ·	Test Statistic				•	ilk GOF Test		
116			5% S	•	Critical Value			Data appe		at 5% Signific	ance Level	
117					Test Statistic					GOF Test		
118			5	% Lilliefors	Critical Value				ear Normal a	at 5% Signific	ance Level	
119					Data appe	ar Normal a	t 5% Significa	ance Level				
120												
121					As	suming Nor	mal Distribut					
122			95% No	ormal UCL					, -	usted for Ske	•	
123				95% Stu	udent's-t UCL	1189					(Chen-1995)	1164
124									95% Modifi	ied-t UCL (Jo	hnson-1978)	1187
125												
126							UCL to Use					
127				95% Stu	udent's-t UCL	1189						
128												
129	I	Note: Sugge			ction of a 95%						iate 95% UCL	
130					ations are ba							
131					upon the resu							
132	Но	wever, simu	ılations result	s will not co	ver all Real V	Vorld data se	ts; for additio	nal insight th	ne user may	want to cons	sult a statistic	an.
133												
134		Note: For			ed data, confi						may not be	
135			reliable.	Chen's and	Johnson's m	<u>-</u>		nts for posit	ely skewed	d data sets.		
136						TABL	.E 5 D					

RAGS Part B - Equations 6 & 7 - Risk-based Preliminary Remediation Goals GEORGIA TYPE 4 STANDARDS - INDUSTRIAL SCENARIO SOIL ARSENIC

	Common V	/ariables		
EF	50	exposure frequency	days/yr	(Site Specific)
ED		exposure duration	yr	(Site Specific)
BW		adult body weight	kg	(391-3-19 Table 3)
AT	70	averaging time	yr	(391-3-19 Table 3)
	Ingestion o	of Soil - ARSENIC		
IR_{soil}	50	soil ingestion rate	mg/day	(Site Specific)
SF _o	1.5	oral cancer slope factor	(mg/kg-day) ⁻¹	(EPA IRIS)
RfD_o	3.00E-04	oral chronic reference dose	(mg/kg-day) ⁻¹	(EPA IRIS)
	Inhalation	of Particulates - ARSENIC		
IR_{air}	20	inhalation rate	m³/day	(391-3-19 Table 3)
PEF	4.63E+09	particulate emission factor	m³/kg	(391-3-19 Table 3)
1/VF	0	1 / soil-to air volatilization factor	1 / (m³/kg)	(chemical specific)
SF_i	NA	inhalation cancer slope factor	(mg/kg-day) ⁻¹	(No data in IRIS)
RfD_i	NA	inhalation chronic reference dose	(mg/kg-day) ⁻¹	(No data in IRIS)
Eq. 6		To Soil: Carcinogenic Effects	- ARSENIC	
TR	1.00E-05	target excess cancer risk	unitless	(391-3-19 Table 3)
C =		TR * BW * AT *	365	
(risk based)	EF	* ED * [(SF _o * 1.00E-6 * IR _{soil}) + (SI	F _i * IR _{air} * (1/VF	+ 1/PEF))]
Allowable Concentration	218.027	for a target excess individual mg/kg lifetime cancer risk o	1 11111-115	
Ea. 7	Exposure 1	Co Soil: Noncarcinogenic Effe	cts - ARSENIO	c

Eq. 7 Exposure To Soil: Noncarcinogenic Effects - ARSENIC

RAGS Part B - Equations 6 & 7 - Risk-based Preliminary Remediation Goals GEORGIA TYPE 4 STANDARDS - INDUSTRIAL SCENARIO SOIL BARIUM

	Common V	ariables		
EF	50	exposure frequency	days/yr	(Site Specific)
ED		exposure duration	yr	(Site Specific)
BW		adult body weight	kg	(391-3-19 Table 3)
AT	70	averaging time	yr	(391-3-19 Table 3)
	Ingestion o	of Soil - BARIUM		
IR_{soil}	50	soil ingestion rate	mg/day	(Site Specific)
SF _o	0	oral cancer slope factor	(mg/kg-day) ⁻¹	(IRIS Class D)
RfD_o	2.00E-01	oral chronic reference dose	(mg/kg-day) ⁻¹	(EPA IRIS)
	Inhalation	of Particulates - BARIUM		
IR_{air}	20	inhalation rate	m³/day	(391-3-19 Table 3)
PEF	4.63E+09	particulate emission factor	m ³ /kg	(391-3-19 Table 3)
1/VF	0	1 / soil-to air volatilization factor	1 / (m ³ /kg)	(chemical specific)
SF_i	NA	inhalation cancer slope factor	(mg/kg-day) ⁻¹	(IRIS Class D)
RfD_i	NA	inhalation chronic reference dose	(mg/kg-day) ⁻¹	(No data in IRIS)
Eq. 6	Exposure 7	To Soil: Carcinogenic Effects	- BARIUM	
TR	NA	target excess cancer risk	unitless	(391-3-19 Table 3)
C =		TR * BW * AT *		
(risk based)	EF	* ED * [(SF _o * 1.00E-6 * IR _{soil}) + (SI	F _i * IR _{air} * (1/VF	+ 1/PEF))]
Allowable Concentration	No Carcinogenic Data	mg/kg for a target excess individua lifetime cancer risk o	INIΔ	
Eq. 7	Exposure 7	o Soil: Noncarcinogenic Effe	cts - BARIUM	
THI	1	target hazard index	unitless	(391-3-19 Table 3)
C =		THI * BW * AT *	365	
(risk based)	EF * E	THI * BW * AT * D * [(1/RfD _o * 1.00E-6 * IR _{soil}) + (1/	'RfD _i * IR _{air} * (1/	VF + 1/PEF))]

for a target

hazard index of

Allowable

Concentration

6,540,800 mg/kg

Table 6 B

RAGS Part B - Equations 6 & 7 - Risk-based Preliminary Remediation Goals GEORGIA TYPE 4 STANDARDS - INDUSTRIAL SCENARIO SOIL ZINC

	Common V	ariables ariables		
EF	50	exposure frequency	days/yr	(Site Specific)
ED	25	exposure duration	yr	(Site Specific)
BW	80	adult body weight	kg	(391-3-19 Table 3)
AT	70	averaging time	yr	(391-3-19 Table 3)
	Ingestion o	of Soil - ZINC		
IR_{soil}	50	soil ingestion rate	mg/day	(Site Specific)
SF _o	0	oral cancer slope factor	(mg/kg-day) ⁻¹	(IRIS Class D)
RfD_o	3.00E-01	oral chronic reference dose	(mg/kg-day) ⁻¹	(EPA IRIS)
	Inhalation	of Particulates - ZINC		
IR_{air}	20	inhalation rate	m³/day	(391-3-19 Table 3)
PEF	4.63E+09	particulate emission factor	m ³ /kg	(391-3-19 Table 3)
1/VF		1 / soil-to air volatilization factor	1 / (m ³ /kg)	(chemical specific)
SF _i	NA	inhalation cancer slope factor	(mg/kg-day) ⁻¹	(IRIS Class D)
RfD_i	NA	inhalation chronic reference dose	(mg/kg-day) ⁻¹	(No data in IRIS)
Eq. 6	Exposure 7	To Soil: Carcinogenic Effects	- ZINC	
TR	NA	target excess cancer risk	unitless	(391-3-19 Table 3)
C =		TR * BW * AT * * ED * [(SF _o * 1.00E-6 * IR _{soil}) + (Sl	365	
(risk based)	EF	* ED * [(SF _o * 1.00E-6 * IR _{soil}) + (Sl	F _i * IR _{air} * (1/VF	+ 1/PEF))]
Allowable Concentration	No Carcinogenic Data	mg/kg for a target excess individua lifetime cancer risk o	NA	
Eq. 7	Exposure 7	To Soil: Noncarcinogenic Effe	cts - ZINC	
THI	1	target hazard index	unitless	(391-3-19 Table 3)
C =		THI * BW * AT *	365	

EF * ED * [(1/RfD_o * 1.00E-6 * IR_{soil}) + (1/RfD_i * IR_{air} * (1/VF + 1/PEF))]

hazard index of

for a target

Table 6 C

(risk based)

Allowable

Concentration

9,811,200 mg/kg

HOOD PACKAGING CORPORATION VALDOSTA, GA

Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead

Version date 06/14/2017 Edit Red Cells

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009- 2014	GSDi and PbBo from Analysis of NHANES 2007- 2010	GSDi and PbBo from Analysis of NHANES 2004- 2007	GSDi and PbBo from Analysis of NHANES III (Phases 1&2)
PbS	Soil lead concentration	μg/g or ppm	1054	1129	776	100
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	µg/dL per ug/dav	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB		1.8	1.7	1.8	2.1
PbB ₀	Baseline PbB	μg/dL	0.6	0.7	1.0	1.5
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050	0.050	0.050	0.050
IR_{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day				
W_S	Weighting factor; fraction of IR_{S+D} ingested as outdoor soil					
K_{SD}	Mass fraction of soil in dust					
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	219	219	219	219
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365
PbB _{adult}	PbB of adult worker, geometric mean	μg/dL	2.1	2.3	2.1	1.6
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	μg/dL	5.0	5.0	5.0	5.0
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	μg/dL	5.0	5.0	5.0	5.0
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB, assuming lognormal distribution	%	5.0%	5.0%	5.0%	5.0%

Table 7 A

HOOD PACKAGING CORPORATION VALDOSTA, GA

Calculations of Preliminary Remediation Goals (PRGs) for Soil in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee

Version date 06/14/2017 EDIT RED CELLS

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009- 2014	GSDi and PbBo from Analysis of NHANES 2007- 2010	GSDi and PbBo from Analysis of NHANES 1999- 2004	GSDi and PbBo from Analysis of NHANES III (Phases 1&2)
PbB _{fetal} , 0.95	Target PbB in fetus (e.g., 2-8 μg/dL)	μg/dL	5	5	5	5
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	µg/dL per ug/dav	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB		1.8	1.7	1.8	2.1
PbB ₀	Baseline PbB	μg/dL	0.6	0.7	1.0	1.5
IR _S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050	0.050	0.050	0.050
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	50	50	50	50
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365
PRG in Soil for no more th	an 5% probability that fetal PbB exceeds target PbB	ppm	4,601	4,930	3,384	424

TABLE 7 B

Changed Exposure Frequency to Site-Specific Value of 50 days/yr to Conservatively Estimate Trespass or Inspection/Maintenance Exposure Risk

58. 23.	2 6 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
S8	10 0 4 1 20 - 6 6 4 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13-3,40 = 10.6 10,6 x 0,48 = 5,88	190 181 0815 1. 190 181 0815 1. 190 181 0840 3 1.344 41.70 0900 6 1.44 41.95 0903 4 1.44 41.95 0903 4 1.944 1.83 0900 5 1.944 1.83 0900 1 1.944 1.83 0900 1 1.944 1.83 0900
13-3.4	1-100 5
	1.900 1.900
23.40	11.13 17.14
3.13.19	2,68 3,68 3,68 3,68 3,59 3,59 3,59 3,59 3,59 3,59 3,59 3,59

	5.17	3.48	- s	-	6	3	7			33.14	6	5cm		en ,	٦,	П	6	=	5.	
	-3.83=5.17		4170	1005	1013	1020	8601	1035			P. 31 = 814.	4.7.6	1055	0111	1191	1131	61711	1155	1207	
	10	5.17 X, 48 I	7018		6:11	0.9	0.50			35- 1-36-	33.14 × .48	Turb	11.16		2,09	193	21/3		41-10	
			Cand	661.0	0.084	0,076	40.0	Sunple Ting				Cand	0.574	CENO	0,780	30,37 U.785	30.26 Dings	20.18 Diny	Sumple	
6	2,83		767.5	141.69	05.50	15,55	15.51	250	SAR	7 1.86	4 }	Temo	6157	20.00	2013	20,00	30,36	20.18		
2-13-19			4d	3.87	5617	Ciasi	16.4		53.0			Ph	9	3.414	3413	3413	3,419	17.0		

7	11.8 9.66	Gent		(6	7	J'	0	9		-	19.88	33.94	1881	-300-	J	8	6	101	200	-	20	6	
	11	100	1187	1301	1205	1910	13/15	1318	6861		332 = 49.88	4.88 X .48 53.94	1176	18.31	1255	1310	1340	1355	11/08	14123	וחרוס	1458	1510
	15-3.20	7019	285	176	55.9	587	-	26.51	1100		53.1-	19.88 X	Torb	2.30	85.3	80,6	シーり	35,9	1.50	13,9	9,5		2
			0,624		0.606	0,599	0,590 411.A	165.0	Sample				Cond	2.311	1.893	1.788	1.891 51.4	1.001	1001	600,6	2,000	1.983	Sumple 7
	2 3,30	Teno			176.07	10.04	17.31	18.6			V 3.22		Temp	20,36	20.64	20,50	J.06	3.0 .22	20,53	20182	30,93	20,78	587
2.13.19		10	-	11/2	3.74	3.81	3.84	3.85		50-14			20	3.84	3.98	7.97	3.87	300	7.00	3,79	3,77	3.81	

13.00 13.00	1 1 2 0 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
33.2-4.9 27.25.X.118 13.00 13.16 13.16 13.16 13.16 13.16 13.16 13.16 13.16	1200 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
37.25 × .42 13.00 13.00 13.10 13.15 13.16 13.16 13.16 13.16 13.16	1200 24 - 50 17
13.00 13.00	2-70062
1340 1340 1319 1345 14100	
1346	
1319 1345 1410 1413	
13415	
14100	
14113	
111 30	
27.1-6.6= 20,5	300,5
20.5X . 48 =	9.84
Tob Line	Gal
15/05	-
22,3 1538	R
15414	2
7.6 1553	7
1600	'2
1607	2
9/9/	7
16133	C)0
35 16 35	5
1640	
9 10 5	00

=		I	~	30		6	2	5	5		-		23	5,39	1901		(8)	2	I.	5	9	5	
		8 8	80'h = 8h.	7-1-6	805	810	815	168	900	230			10,27= 11,23			0880	0856	2060	5160	P6 0	0934	0940	
		13-4,5	8.5x	Turb	1.651	6.83	8117	0017	3.79	170			31.5 LO. 27 =	11.23 X, 418=	7016	9.76	5.67.	2,14		0		The	
				Cond.	1,333	1,304	1,235	1.156	1.155	Sample					So Not	0.241	158.0	0.377	0.096			Sample Time	
6	The street of	517		Temp	15.62	16.418	16,51	14.42	16.59				L6:01 X		Temo	05.81	1900	19.11	71.9	16.36	19.32		
61-171-6	512.5	K		9	200	41.10	2110	הכיה	レジス	2		< 13-130			40	LI.84.	120	11.87	78.17	11.95	11.84		

								700															
7.4	0	6,60	10.	3) —	O	M	7	10	9	7	00		1150	= 3.09	100	_	Co	0	7	17		
	(2)	20-3.40:16.60	16.60 X .418=7.97		00		0							9.2- 2,76= 6.44	11		0	20	7	1106	5	1130	
		3.4	7.	J. B.	0950	1001	010	(030	T)	1555				Ce	J. X	I	0	1053	1011	10		-	
		-00	X Og.	29	08.17	4 FUS	-	_		15				1.3-	8/1° Xhhig	Turb Tine	35.80 1045	18.8	31.31	30.05	31,35)	
-			~0	Tuch	5	4,5	314							U)	100	35	90	m.	2	2	17	
		1		Cond	3 Mg	2.राद्य	2,465	2:4134		Sumple Time			-		-	0	15	0,0414	77	11000	0,0415	5)6	
						Ŕ				7						Cond	150.0		L10,0		0,0	Sample	
		1	-	Temp	17.63	19.37	17135	17,83		NO!				7		2	15.57	15.47	15:57	19:51	15.60		
2-4-19	SB-6	Di								55			 121	N.		Temp			_		_		
to	S			d	2,30	2,33	09.90	60					50-15			Ph	4116	41.37	5	1113	CINI		

3 - 0 0		3 35	7-00	No L		
35	2000	15:	2410	1308	× × ×	
		6 3 5 X				
	5 K	1		180 7	2 2	
	00 0	=			2	
16.67 16.47	161419	Co	18.07 19.07	17.3	25.5	
885	~		0000	5,53	55.0	
	8 16.67 2.854 7.75 1198 18 16.43 2.854 7.75 1198	7 16.40 3.854 7.75 1198 19 16.40 3.854 7.75 1156 17 16.40 3.854 6.87 1156 17 16.40 3.854 (6.87 1156 17 16.45 3.861 (.55 1265	7 16.40 2.854 7.75 1148 17 16.40 2.856 6.87 1156 17 16.45 2.861 6.55 1205 25 5-40 7.75 1256 25 5-40 7.75 1256 25 5-40 7.75 1256	Tene Cond Tuth Tine 16.40 2.854 7.75 11.48 16.40 2.854 6.87 11.56 16.40 2.854 6.87 11.56 16.40 2.854 6.87 11.56 76.40 2.85 6.87 11.56 Sample Time 12.15 Tenp Cond Tuth Time 18.07 0.513 69.7 12.10	2 16.67 3.864 13.70 1135 18 16.67 3.854 7.75 1198 19 16.40 3.854 7.75 1196 17 16.40 3.856 6.87 1156 17 16.45 3.861 6.55 13.65 17 16.45 3.861 6.55 13.85 20 18.07 0.513 69.7 13.40 20 18.07 0.513 69.7 13.60 20 18.07 0.513 69.7 13.60 20 18.07 0.5185 191.7 13.51 20 18.07 0.5185 191.7 13.51 20 18.87 0.485 191.7 13.51	8 16 617 3,863 13,70 1135 18 16 617 3,863 13,70 1135 18 16 617 3,864 71,75 1148 20 11,15 6 3 11,15 6 3 11,15 6 3 11,15 6 3 11,15 6 3 11,15 6 3 11,15 6 3 11,15 6 3 11,15 6 3 11,15 6 3 11,15 6 3 11,15 6 1,15

615	1355	1436	5051	1525	5017							
PRO DITCH	50,40	57(207	30,0	5		0 ¢ 0 T h	4.07	86.9	8.85	5.90	iù Ç	
PRO PRO	River Street	Mushella S	Langlacy Ocho	SayTice Road	UP ST 1860	3		31-505	11-8/5	53.3	01-05	

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

February 21, 2019

M. Rollins H.M. Rollins Co.

608 34th St

Gulfport

MS 39501

RE: HOOD Packaging Corporation

Dear M. Rollins: Order No: 1902F18

Analytical Environmental Services, Inc. received for the analyses presented in following report.

20 samples on

2/15/2019 11:57:00 AM

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES's accreditations are as follows:

-NELAP/State of Florida Laboratory ID E87582 for analysis of Non-Potable Water, Solid & Chemical Materials, Air & Emissions Volatile Organics, and Drinking Water Microbiology & Metals, effective 07/01/18-06/30/19.

State of Georgia, Department of Natural Resources ID #800 for analysis of Drinking Water Metals, effective 07/01/18-06/30/19 and Total Coliforms/ E. coli, effective 04/25/17-04/24/20.

-AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Metals, PCM Asbestos, Gravimetric), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 11/01/19.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Pans nasondi

Paris Masoudi

Project Manager

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

	1902418
Work Order:	0.00 1 (10

AE	3080 Presidential Drive Atlanta, GA 30340-3 Phone: (770) 457-8177 / Toll-Free: (800) 97		(770) 457-818	38			CHAIN OF CU	SIODY	Date:	Page of	2_	
			8 34± Fort		treet			ANALYSIS RI	1 7 7		Visit our website www.aesatlanta.com for	
PHONE;	418) 804-2355	EMAIL:			399	10c		(SENIC	GAD NC		downloadable COCs and to log in to your AESAccess account.	Number of Containers
SAMPLE	DBY: JOE McVay	SIGNATURE:	APLED:	2	_ ш			Ars Broom	Ninc Zinc			mber of (
#	SAMPLE ID	DATE	TIME	GRAB	COMPOSITE	MATRIX (see codes)		PRESERVATION	N (see codes)		REMARKS	N
1	SB-IA	1510	2/13/19	X		GW	HN03	XX				
2	SR-IR	1480	2/13/19			GW	HN 03		x x 4			
3	SB - 2	12:22	2/13/19	X		GW	HN 03		4 × 4			
4	5 B - 2 AV	12.07	2/13/19	λ		GW	HN 03	<u> </u>	- * *			
S	5B-4R	1640	2/13/19	X		GW	AN 03	<u> </u>	- 7 4 -			
6	SB-5	0830	2/14/19	X		GW	HN 03	$+\times$	<u> </u>			
7	5B-6	1555	2/14/19	X	<u> </u>	GW	HN 03	XX				-
8	<u>5B-8</u>	1215	2/14/19	<u> </u>		GW	HN03	<u> </u>	X Y			
9	6B-9.	09:12	2/13/19	X		GW.	HNO3	$X \mid X \mid$	- ^- -			
10	5B-119A	0945	2/13/19	<u> X</u>		GW	H103	- X X				-
11	SB-12R	0940	2/14/19			GW	14003	<u> </u>				
12	<u> 58-13</u>	1335	2/14/10	X	<u> </u>	GW	HA 03	- x	<u> </u>			
13	SB-14	1035	2/13/19	<u> </u>		GW	HN 03	<u> </u>	K X X			ļ
14	5B - 15	1120	2/14/19	1 X		<u>GW</u>	140/03	<u> </u>	<u> </u>		RECEIPT	
RELINQ	UISHED BY: DATE/TIME:	RECEIVED BY:	<u> </u>	5-19	DATE/TII	ME:	PROJECT NAME: Had Pf	PROJECT INF		works me	Total # of Containers	
1	4-13-11	1 () •	7 0 1	- 1	t ···		PROJECT #:		m Corx	1101	Turnaround Time (TAT) Reque	<u>est</u>
2.] ^{2.} \(\)	J				SITE ADDRESS: R	VEK S	treet.		X Standard	
3.		3.					SEND REPORT TO:	VA I Dos	TA, GA	*	2 Business Day Rush	
	INSTRUCTIONS (COMMENTS	-	CURTAGE	T NACTUO			SEND REPORT TO:		,		Next Business Day Rush Same-Day Rush (auth req.	,
SECIAL	PECIAL INSTRUCTIONS/COMMENTS: SHIPMENT METHOD OUT: / / VIA:						M VOLLINS	JT EROM ABOV	Elin I	011 \	Other	•1
	IN: / / VIA:										STATE PROGRAM (if any):	
		Client	FedEx UPS	US ma	ail courie	r	GulfPort, No 39505 E-mail?				E-mail? Fax?	_
	other:						QUOTE #:		PO#:	- Committee of the Comm	DATA PACKAGE: 1 O 11 O 111 O 1V C	
Submiss	ion of samples to the laboratory constitutes acceptance of AES	S's T erms & Condi	tions. Client assur	mes sole r	esponsibility	for damage	e or loss of samples before	we accept the	m. Samples received	d after 3PM or on Sa	turday are considered as received the	tollowing

Matrix Codes: A = Air GW = Groundwater SE = Sediment SO = Soil SW = Surface Water ST=Stormwater WW = Waste Water (Blanks) DW = Drinking Water (Blanks) O = Other (specify)

Preservative Codes: H+I = Hydrochloric acid + ice I = Ice only N = Nitric acid S+I = Sulfuric acid + ice S/M+I = Sodium Bisulfate/Methanol + ice O = Other (specify) NA = None

business day. If no TAT is marked on COC, AES will proceed with standard TAT. Samples are disposed of 30 days after completion of report unless other arrangements are made.

7.11.18 CO

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

CHAIN OF CUSTODY

Work Order:	1902818

AE	3080 Presidential Drive Atlanta, GA 30340-37 Phone: (770) 457-8177 / Toll-Free: (800) 972-		(770) 457-818	8		`		• 0.								Date:		Page <u>2</u> of	<u>2</u>
COMPA	ANY:	ADDRESS:	34th S Port,		ŧΤ					ANA	LYSIS	Ţ	JESTE	D T				Visit our website www.aesatlanta.com for	
PHONE SAMPL	M. RONINS (478) 804-2355 ED BY: JOJE MEVAY	EMAIL:	Port,	MS	39	50\					ZSENIC	MULAR		JUL				downloadable COCs and to log in to your AESAccess account.	Number of Containers
#	SAMPLE ID	SAN	IPLED:	GRAB	COMPOSITE	MATRIX (see codes)				PRESI	ERVATI	ION (se	ee code	es)				REMARKS	Number
1	Park Road Pitch SWI	1345	2/14/19	X		GW		v03 103			X	X	X,	X.					
3	RIVER Street Ditch SWR Magnolia Street SW3	.1355 143D	2/14/19	X		GW		03			X	<u> </u>		į.					
4	LANKFORD PINE SWA	1505	2/14/19	X		GW	H	V 03			X	Į.	/	<u> </u>					
5	BOY TREE Pd. 5WS	1525	2/14/19	X		GW	H	03			X	<u> </u>	<u> </u>	시			_		
6	Upstream swlo	1405	2/14/19								_	_		-		-	\vdash		-
7			<u>' / '</u>					-	-	-		-+	_	+	+	+	1		
8	and the second s					<u> </u>				\dashv		-	-		\dashv				
9											_	_			_	+			
10					_		\vdash	+			_	_							
11			*								_					1			
13																			
14																			***********
RELING	QUISHED BY: DATE/TIME:	RECEIVED BY:			DATE	/TIME:				PRO	DJECT I	NFOR	MATIC	N				RECEIPT	
1.	Inhur 2-15-19	1.	$\sim a$	15-10	7 (157	PROJECT	NAME:	Pa	c V t	4Gi	NG	Co	יחסי	zat	Kai		Total # of Containers	
2.		2.	0		•		PROJECT SITE ADD	#: RESS:	127	IDO	2.	St	PE	ET				Turnaround Time (TAT) Request Time (TAT) Request Time (TAT) Request Time (TAT) Request	<u>t</u>
3.		3.					SEND RE	PORT TC):									Next Business Day Rush	
SPECIA	AL INSTRUCTIONS/COMMENTS:	ουτ: /	SHIPMEN	T METHO	D		INVOICE	TO (IF D	IFFERE	WI FRO	M ABO	(°C) DVE): .2.1	ıı Tyaz	5,60	<u> </u>			Same-Day Rush (auth req.) Other	
		IN: /	/ FedEx UPS other:	VIA: US ma	ail cou	urier	P.O. BOX 3471 GUIFPORT, MS. 39505 QUOTE #: PO#:						50S	>		STATE PROGRAM (if any): E-mail?			
Subm	ission of samples to the laboratory constitutes acceptance of AES	s Terms & Cond	itions. Client assur	nes sole r	esponsib	ility for damag	e or loss o	sample	s befor	e we ac	cept t	hem. S	Sample	s receiv	ed after	· 3PM o	r on 5a	turday are considered as received the fo	ilowing

business day. If no TAT is marked on COC, AES will proceed with standard TAT. Samples are disposed of 30 days after completion of report unless other arrangements are made.

7.11.18_CO

Client: H.M. Rollins Co. Client Sample ID: SB-1A

Project Name: HOOD Packaging Corporation Collection Date: 2/13/2019 3:10:00 PM

Lab ID: 1902F18-001 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst				
Trace Elements by ICP/MS	E200.8	(E200.2)											
Arsenic		BRL	5.00		ug/L	274580	1	02/19/2019 15:34	KP				
Barium		11.0	10.0		ug/L	274580	1	02/19/2019 15:34	KP				
Lead		BRL	1.00		ug/L	274580	1	02/19/2019 15:34	KP				
Zinc		890	10.0		ug/L	274580	1	02/19/2019 15:34	KP				

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-1R

Project Name: HOOD Packaging Corporation Collection Date: 2/13/2019 2:30:00 PM

Lab ID: 1902F18-002 Matrix: Groundwater

							I
Analyses	Result	Reporting Limit Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS E200.8			(E2	200.2)			
Arsenic	BRL	5.00	ug/L	274580	1	02/19/2019 15:45	KP
Barium	32.8	10.0	ug/L	274580	1	02/19/2019 15:45	KP
Lead	BRL	1.00	ug/L	274580	1	02/19/2019 15:45	KP
Zinc	22.5	10.0	ug/L	274580	1	02/19/2019 15:45	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed
< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-2

Project Name: HOOD Packaging Corporation Collection Date: 2/13/2019 12:22:00 PM

Lab ID: 1902F18-003 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst				
Trace Elements by ICP/MS	E200.8	(E200.2)											
Arsenic		10.6	5.00		ug/L	274580	1	02/19/2019 15:48	KP				
Barium		35.0	10.0		ug/L	274580	1	02/19/2019 15:48	KP				
Lead		3.86	1.00		ug/L	274580	1	02/19/2019 15:48	KP				
Zinc		1370	10.0		ug/L	274580	1	02/19/2019 15:48	KP				

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-2AR

Project Name: HOOD Packaging Corporation Collection Date: 2/13/2019 12:07:00 PM

Lab ID: 1902F18-004 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst					
Trace Elements by ICP/MS E200	0.8	(E200.2)											
Arsenic	BRL	5.00		ug/L	274580	1	02/19/2019 15:50	KP					
Barium	26.6	10.0		ug/L	274580	1	02/19/2019 15:50	KP					
Lead	BRL	1.00		ug/L	274580	1	02/19/2019 15:50	KP					
Zinc	2950	10.0		ug/L	274580	1	02/20/2019 17:59	KP					

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

Less than Result value

NC Not confirmed

Client: H.M. Rollins Co. Client Sample ID: SB-4R

Project Name: HOOD Packaging Corporation Collection Date: 2/13/2019 4:40:00 PM

Lab ID: 1902F18-005 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	200.2)			
Arsenic		BRL	5.00		ug/L	274580	1	02/19/2019 16:25	KP
Barium		BRL	10.0		ug/L	274580	1	02/19/2019 16:25	KP
Lead		BRL	1.00		ug/L	274580	1	02/19/2019 16:25	KP
Zinc		3970	10.0		ug/L	274580	1	02/20/2019 18:01	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-5

Project Name: HOOD Packaging Corporation Collection Date: 2/14/2019 8:30:00 AM

Lab ID: 1902F18-006 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	200.2)			
Arsenic		40.0	5.00		ug/L	274580	1	02/19/2019 16:27	KP
Barium		BRL	10.0		ug/L	274580	1	02/19/2019 16:27	KP
Lead		BRL	1.00		ug/L	274580	1	02/19/2019 16:27	KP
Zinc		1750	10.0		ug/L	274580	1	02/19/2019 16:27	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-6

Project Name: HOOD Packaging Corporation Collection Date: 2/14/2019 3:55:00 PM

Lab ID: 1902F18-007 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst					
Trace Elements by ICP/MS E	2200.8	(E200.2)											
Arsenic	58.6	5.00		ug/L	274580	1	02/19/2019 16:29	KP					
Barium	12.7	10.0		ug/L	274580	1	02/19/2019 16:29	KP					
Lead	1710	1.00		ug/L	274580	1	02/19/2019 16:29	KP					
Zinc	3020	10.0		ug/L	274580	1	02/20/2019 18:04	KP					

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-8

Project Name: HOOD Packaging Corporation Collection Date: 2/14/2019 12:15:00 PM

Lab ID:1902F18-008Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS E2	200.8			(E2	00.2)			
Arsenic	BRL	5.00		ug/L	274580	1	02/19/2019 16:32	KP
Barium	49.5	10.0		ug/L	274580	1	02/19/2019 16:32	KP
Lead	2.91	1.00		ug/L	274580	1	02/19/2019 16:32	KP
Zinc	2930	10.0		ug/L	274580	1	02/20/2019 18:06	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-9

Project Name: HOOD Packaging Corporation Collection Date: 2/13/2019 9:12:00 AM

Lab ID: 1902F18-009 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS E20	0.8			(E2	200.2)			
Arsenic	BRL	5.00		ug/L	274580	1	02/19/2019 16:34	KP
Barium	16.2	10.0		ug/L	274580	1	02/19/2019 16:34	KP
Lead	BRL	1.00		ug/L	274580	1	02/19/2019 16:34	KP
Zinc	2500	10.0		ug/L	274580	1	02/19/2019 16:34	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-9A

Project Name: HOOD Packaging Corporation Collection Date: 2/13/2019 9:45:00 AM

Lab ID: 1902F18-010 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	200.2)			
Arsenic		BRL	5.00		ug/L	274580	1	02/19/2019 16:36	KP
Barium		11.6	10.0		ug/L	274580	1	02/19/2019 16:36	KP
Lead		BRL	1.00		ug/L	274580	1	02/19/2019 16:36	KP
Zinc		5890	20.0		ug/L	274580	2	02/20/2019 18:08	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-12R

Project Name: HOOD Packaging Corporation Collection Date: 2/14/2019 9:40:00 AM

Lab ID: 1902F18-011 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS E200.8				(E2	200.2)			
Arsenic	BRL	5.00		ug/L	274580	1	02/19/2019 15:41	KP
Barium	11.8	10.0		ug/L	274580	1	02/19/2019 15:41	KP
Lead	BRL	1.00		ug/L	274580	1	02/19/2019 15:41	KP
Zinc	96.8	10.0		ug/L	274580	1	02/19/2019 15:41	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-13

Project Name: HOOD Packaging Corporation Collection Date: 2/14/2019 1:35:00 PM

Lab ID: 1902F18-012 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	200.2)			
Arsenic		46.4	5.00		ug/L	274580	1	02/19/2019 16:39	KP
Barium		168	10.0		ug/L	274580	1	02/19/2019 16:39	KP
Lead		33.8	1.00		ug/L	274580	1	02/19/2019 16:39	KP
Zinc		442	10.0		ug/L	274580	1	02/19/2019 16:39	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-14

Project Name: HOOD Packaging Corporation Collection Date: 2/13/2019 10:35:00 AM

Lab ID: 1902F18-013 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	200.2)			
Arsenic		32.1	5.00		ug/L	274580	1	02/19/2019 16:41	KP
Barium		21.7	10.0		ug/L	274580	1	02/19/2019 16:41	KP
Lead		164	1.00		ug/L	274580	1	02/19/2019 16:41	KP
Zinc		88.4	10.0		ug/L	274580	1	02/19/2019 16:41	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co. Client Sample ID: SB-15

Project Name: HOOD Packaging Corporation Collection Date: 2/14/2019 11:20:00 AM

Lab ID: 1902F18-014 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	200.2)			
Arsenic		BRL	5.00		ug/L	274580	1	02/19/2019 16:44	KP
Barium		39.3	10.0		ug/L	274580	1	02/19/2019 16:44	KP
Lead		1.70	1.00		ug/L	274580	1	02/19/2019 16:44	KP
Zinc		BRL	10.0		ug/L	274580	1	02/19/2019 16:44	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client:H.M. Rollins Co.Client Sample ID:PARK ROAD DITCH SWIProject Name:HOOD Packaging CorporationCollection Date:2/14/2019 1:45:00 PM

Date:

21-Feb-19

Lab ID: 1902F18-015 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS E200.8				(E2	200.2)			
Arsenic	BRL	5.00		ug/L	274580	1	02/19/2019 16:46	KP
Barium	51.5	10.0		ug/L	274580	1	02/19/2019 16:46	KP
Lead	34.7	1.00		ug/L	274580	1	02/19/2019 16:46	KP
Zinc	222	10.0		ug/L	274580	1	02/19/2019 16:46	KP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: H.M. Rollins Co.

Project Name: HOOD Packaging Corporation Collection Date: 2/14/2019 1:55:00 PM

Lab ID: 1902F18-016 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	200.2)			
Arsenic		BRL	5.00		ug/L	274580	1	02/19/2019 17:11	KP
Barium		51.6	10.0		ug/L	274580	1	02/19/2019 17:11	KP
Lead		27.2	1.00		ug/L	274580	1	02/19/2019 17:11	KP
Zinc		198	10.0		ug/L	274580	1	02/19/2019 17:11	KP

Date:

Client Sample ID:

21-Feb-19

RIVER STREET DITCH SWR

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client:H.M. Rollins Co.Client Sample ID:MAGNOLIA STREET SW3Project Name:HOOD Packaging CorporationCollection Date:2/14/2019 2:30:00 PM

Lab ID: 1902F18-017 Matrix: Groundwater

121

Reporting Dilution Analyses Result Qual Units **BatchID** Date Analyzed Analyst Limit Factor **Trace Elements by ICP/MS** E200.8 (E200.2)BRL 5.00 ug/L 274580 02/19/2019 17:13 KP Arsenic 41.0 10.0 ug/L 274580 02/19/2019 17:13 KP Barium 10.7 ug/L 274580 02/19/2019 17:13 KP Lead 1.00

10.0

ug/L

274580

Qualifiers:

Zinc

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

21-Feb-19

02/19/2019 17:13

KP

Date:

Client:H.M. Rollins Co.Client Sample ID:LANKFORD DRIVE SW4Project Name:HOOD Packaging CorporationCollection Date:2/14/2019 3:05:00 PM

Date:

21-Feb-19

Lab ID: 1902F18-018 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	(00.2)			
Arsenic		BRL	5.00		ug/L	274580	1	02/19/2019 17:16	KP
Barium		51.5	10.0		ug/L	274580	1	02/19/2019 17:16	KP
Lead		4.55	1.00		ug/L	274580	1	02/19/2019 17:16	KP
Zinc		95.9	10.0		ug/L	274580	1	02/19/2019 17:16	KP

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client:H.M. Rollins Co.Client Sample ID:BAY TREE RD. SW5Project Name:HOOD Packaging CorporationCollection Date:2/14/2019 3:25:00 PM

Lab ID: 1902F18-019 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	200.2)			
Arsenic		BRL	5.00		ug/L	274580	1	02/19/2019 17:18	KP
Barium		30.6	10.0		ug/L	274580	1	02/19/2019 17:18	KP
Lead		1.45	1.00		ug/L	274580	1	02/19/2019 17:18	KP
Zinc		35.5	10.0		ug/L	274580	1	02/19/2019 17:18	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client:H.M. Rollins Co.Client Sample ID:UPSTREAM SW6Project Name:HOOD Packaging CorporationCollection Date:2/14/2019 2:05:00 PM

Lab ID: 1902F18-020 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Trace Elements by ICP/MS	E200.8				(E2	200.2)			
Arsenic		BRL	5.00		ug/L	274580	1	02/19/2019 17:20	KP
Barium		39.2	10.0		ug/L	274580	1	02/19/2019 17:20	KP
Lead		1.73	1.00		ug/L	274580	1	02/19/2019 17:20	KP
Zinc		54.1	10.0		ug/L	274580	1	02/19/2019 17:20	KP

Date:

21-Feb-19

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

SAMPLE/COOLER RECEIPT CHECKLIST

1. Client Name: H.M. Rollins Co.			AES Work Order Number: 1902F18							
2. Carrier: FedEx UPS USPS Client Courier Other			_			_				
	Yes	No	N/A	Details	Comments					
3. Shipping container/cooler received in good condition?	0	О	О	damaged leaking other						
4. Custody seals present on shipping container?	O	Ō	О							
5. Custody seals intact on shipping container?	Ŏ		0							
6. Temperature blanks present?	0	Ō	O							
Cooler temperature(s) within limits of 0-6°C? [See item 13 and 14 for temperature recordings.]	0	0	0	Cooling initiated for recently collected samples / ice present						
8. Chain of Custody (COC) present?	•	\circ	0							
9. Chain of Custody signed, dated, and timed when relinquished and received?		10	M							
0. Sampler name and/or signature on COC?	0	18	l M							
Were all samples received within holding time?	Ŏ	18	M							
12. TAT marked on the COC?	ŏ	Ŏ	Ö	If no TAT indicated, proceeded with standard TAT per T	erms & Conditions.					
3. Cooler 1 Temperature 1.7 °C Cooler 2 Temperature			°C	Cooler 3 Temperature °C Cool	er 4 Temperature°C					
4. Cooler 5 Temperature °C Cooler 6 Temperature			°С		er 8 Temperature °C					
4. cooler 5 remperature c cooler 6 remperature			C	esolei 7 Temperature e esol	er o remperature					
5. Comments:										
				1		MJ 2/15/19				
				i certify that i have d	ompleted sections 1-15 (dated initials).					
	Yes	No	N/A	Details	Comments					
6. Were sample containers intact upon receipt?	\odot		O							
7. Custody seals present on sample containers?		0								
8. Custody seals intact on sample containers?										
9. Do sample container labels match the COC?	0	0	0	incomplete info illegible no label other						
0. Are analyses requested indicated on the COC?	0	0	\bigcirc							
1. Were all of the samples listed on the COC received?	0	0	0	samples received but not listed on COC samples listed on COC not received						
2. Was the sample collection date/time noted?	0	0	\cap							
3. Did we receive sufficient sample volume for indicated analyses?	Ŏ	18	18							
4. Were samples received in appropriate containers?	Õ	18	18							
5. Were VOA samples received without headspace (< 1/4" bubble)?	18	18	ŏ							
6. Were trip blanks submitted?	$ \mathcal{A} $	$\vdash {\sim}$	Ŏ	listed on COC not listed on COC						
				instead on ede						
7. Comments:										
This section only applies to samples where pH can be				I certify that I have co	ompleted sections 16-27 (dated initials).	BC 2/16/19				
checked at Sample Receipt	Yes	No	N/A	Details	Comments					
8. Have containers needing chemical preservation been checked? *	0	O	0							
9. Containers meet preservation guidelines?	Ō	0	Ō							
0. Was pH adjusted at Sample Receipt?	0	O	O							
*Note: Certain analyses require chemical preservation but must be check	ked in th	ne labora	atory ar	nd not upon Sample Receipt such as Coliforms, VOCs	and Oil & Grease /TPH.					

I certify that I have completed sections 28-30 (dated initials).

BC 2/16/19

pH Adjustment Sheet

AES	Test	pH as	1 1	Preservative	Lot # of	Amo	Final	Tech's	Date	Time		
Sample ID number	Requested	Received	рН	Required	Preservative		or Pellets	•	pΗ	Initials		0 / 1 /
1902 F18 - 019A 1.62	200.8	6	l	HNO3	MET 838 74	0.2	mL	Pellets	1		2-16	944
1902F18-19A 20FZ	500. g	4	l	HN03	MET 83374	0.5	mL	Pellets	L	BC	2-16	945
11001 (0 1 111 23							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets			:	
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				
							mL	Pellets				

^{*} Number of Pellets when adding NAOH

21-Feb-19 Date:

Client: H.M. Rollins Co.

ANALYTICAL QC SUMMARY REPORT

Project Name: HOOD Packaging Corporation Workorder: 1902F18

BatchID: 274580

Sample ID: MB-274580	Client ID:				Uni	ts: ug/L	Pre	ep Date:	02/18/2019	Run No: 391456	
SampleType: MBLK	TestCode: T	Trace Elements by ICP/N	MS E200.8		Bat	chID: 274580	Ar	nalysis Date:	02/19/2019	Seq No: 8760537	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val %RPD	RPD Limit Qua	
Arsenic	BRL	5.00									
Barium	BRL	10.0									
Lead	BRL	1.00									
Tine	BRL	10.0									
Sample ID: LCS-274580	Client ID:				Uni	ts: ug/L	Pro	ep Date:	02/18/2019	Run No: 391456	
SampleType: LCS	TestCode: T	Trace Elements by ICP/N	MS E200.8		Bat	chID: 274580	Ar	nalysis Date:	02/19/2019	Seq No: 8760538	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val %RPD	RPD Limit Qua	
Arsenic	104.5	5.00	100.0		105	85	115				
Barium	103.8	10.0	100.0		104	85	115				
ead	104.4	1.00	100.0		104	85	115				
Zinc	122.5	10.0	100.0	7.531	115	85	115				
Sample ID: 1902F18-001AMS	Client ID: S	SB-1A			Uni	ts: ug/L	Pro	ep Date:	02/18/2019	Run No: 391456	
SampleType: MS	TestCode: T	Trace Elements by ICP/N	MS E200.8		Bat	chID: 274580	Ar	nalysis Date:	02/19/2019	Seq No: 8760540	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val %RPD	RPD Limit Qua	
Arsenic	107.0	5.00	100.0		107	70	130				
Barium	121.1	10.0	100.0	11.04	110	70	130				
Lead	103.0	1.00	100.0		103	70	130				
Tine	1003	10.0	100.0	889.8	113	70	130				
Sample ID: 1902F18-011AMS SampleType: MS	Client ID: S TestCode: T	SB-12R Trace Elements by ICP/N	MS E200.8		Uni Bat	ts: ug/L chID: 274580		ep Date: nalysis Date:	02/18/2019 02/19/2019	Run No: 391456 Seq No: 8760548	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val %RPD	RPD Limit Qua	
Arsenic	113.5	5.00	100.0	2.549	111	70	130				
Qualifiers: > Greater than Result value < Less than Result value							В	Analyte detected	in the associated method	blank	
BRL Below reporting limit	BRL Below reporting limit E Estimated (value above quantita										
J Estimated value detec	eted below Reporting L	imit	N Analy	rte not NELAC certified			R	RPD outside lin	nits due to matrix		
Rpt Lim Reporting Limit			S Spike	Recovery outside limits	lue to matrix						

Client: H.M. Rollins Co.

Project Name: HOOD Packaging Corporation

Workorder: 1902F18

ANALYTICAL QC SUMMARY REPORT

Date:

21-Feb-19

BatchID: 274580

Sample ID: 1902F18-011AMS SampleType: MS	Client ID: TestCode:	SB-12R Trace Elements by ICP/M	IS E200.8		Uni Bate	ts: ug/L chID: 274580		Date: 02/18 lysis Date: 02/19		Run No: 391456 Seq No: 8760548
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Barium	126.2	10.0	100.0	11.77	114	70	130			
Lead	106.4	1.00	100.0		106	70	130			
Zinc	201.8	10.0	100.0	96.79	105	70	130			
Sample ID: 1902F18-001AMSD	Client ID:	SB-1A			Uni	ts: ug/L	Prep	Date: 02/18	8/2019	Run No: 391456
SampleType: MSD	TestCode:	Trace Elements by ICP/M	IS E200.8		Bato	chID: 274580	Ana	lysis Date: 02/19	9/2019	Seq No: 8760543
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic	107.2	5.00	100.0		107	70	130	107.0	0.200	20
Barium	124.6	10.0	100.0	11.04	114	70	130	121.1	2.89	20
Lead	103.6	1.00	100.0		104	70	130	103.0	0.628	20
Zinc	1004	10.0	100.0	889.8	114	70	130	1003	0.089	20

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix