




July 31, 2018

Mr. David Brownlee, Unit Coordinator
Response and Remediation Program
Georgia Environmental Protection Division – Land Protection Branch
2 Martin Luther King, Jr. Drive, SE, Suite 1054 East
Atlanta, Georgia 30334

RE: 11th Voluntary Remediation Program Semiannual Progress Report

Thomasville National Bank Property (Former Rose City Cleaners)

301 North Broad Street

Thomasville, Thomas County, Georgia

HSI No. 10902

Dear Mr. Brownlee:

Peachtree Environmental (Peachtree) is submitting this 11th Voluntary Remediation Program (VRP) Semiannual Progress Report for the Thomasville National Bank (TNB) property located at 301 North Broad Street in Thomasville, Georgia (the "VRP Property"). The report documents the activities conducted from February 1, 2018 through June 31, 2018 for the VRP Property.

On June 22, 2018, the Georgia Environmental Protection Division (EPD) issued a letter with comments on the previous 10<sup>th</sup> Semi-Annual Progress report. The EPD letter is summarized below:

**EPD Comment 1:** EPD noted that MW-24 was not sampled during the December 2017 sampling event. Please include MW-24 in groundwater monitoring network and sample this well in future. Please be advised that the US EPA Region 4 Science and Ecosystem Support Division operating procedure for groundwater sampling has been revised. The latest version is SESDPROC-301-R4, effective April 26, 2017 (Section 3.4 of the report references SESDPROC-301-R3, which became effective on March 6, 2013).

**Response:** Monitoring well MW-24 was sampled during the June 2018 sampling event and will be included in future sampling events. The 11<sup>th</sup> Semiannual Progress Report references SESDPROC-301-R4.

**EPD Comment 2:** In addition to acquiring groundwater use restriction covenants on properties underlain by the contaminant plume, a groundwater-contaminant fate-and-transport model will

be required to demonstrate a stable or shrinking plume in the final Compliance Status Report (CSR).

**Response:** A fate-and-transport model will be included in the VRP CSR.

**EPD Comment 3:** Exposure to VOCs in groundwater via soil vapor intrusion is a potential complete pathway of exposure. EPD concurs with your proposal that Indoor Air Quality will be evaluated, and a vapor mitigation approach will be incorporated into the correction action plan if necessary.

**Response:** Indoor air quality sampling was performed in the TNB bank building and is discussed in the 11<sup>th</sup> Semiannual Progress Report. Additional indoor air quality sampling and sub-slab sampling is proposed for the TNB building; soil vapor samples will also be collected at locations underlain by and near the groundwater contaminant plume.

**EPD Comment 4:** EPD concurs with your Proposed Future Work of Section 4.0 of the 10<sup>th</sup> Semiannual VRP Progress Report.

**Response:** TNB appreciates Georgia EPD's concurrence.

If you have questions regarding the attached report, or require additional information, please contact either of the undersigned.

Sincerely,

**PEACHTREE ENVIRONMENTAL** 

Larry Carter, P.G.

Project Geologist

Anthony Nievera
Project Director

Attachment – 11th Semiannual VRP Progress Report

### ELEVENTH SEMIANNUAL VRP PROGRESS REPORT FOR THE

#### THOMASVILLE NATIONAL BANK PROPERTY (FORMER ROSE CITY CLEANERS) THOMASVILLE, THOMAS COUNTY, GEORGIA HSI #10902

PEACHTREE PROJECT NO. 3151



#### **DOCUMENT PREPARED FOR:**



301 NORTH BROAD STREET
THOMASVILLE, THOMAS COUNTY, GEORGIA

#### **DOCUMENT PREPARED BY:**



3000 NORTHWOODS PARKWAY, SUITE 105 NORCROSS, GEORGIA 30071 (770) 449-6100 · FAX (770) 449-6119 WWW.PEACHTREEENVIRONMENTAL.COM

# ELEVENTH SEMIANNUAL VRP PROGRESS REPORT FOR THE THOMASVILLE NATIONAL BANK PROPERTY (FORMER ROSE CITY CLEANERS) THOMASVILLE, THOMAS COUNTY, GEORGIA HSI #10902

#### **TABLE OF CONTENTS**

| 1.0 | IN    | TRC      | DDUCTION AND BACKGROUND                    | 1 |
|-----|-------|----------|--------------------------------------------|---|
| 1.1 |       | Intr     | oduction                                   | 1 |
| 1.2 |       | VRF      | Property Description                       | 1 |
| 1.3 |       | Prop     | perty Background                           | 1 |
| 1   | .3.1  |          | Historic Property Use                      | 1 |
| 2.0 | CC    | ONC      | CEPTUAL SITE MODEL                         | 3 |
| 2.1 | ;     | Surf     | face and Sub-surface Setting               | 3 |
| 2   | 2.1.1 |          | Surface Setting                            | 3 |
| 2   | 2.1.2 | <u> </u> | Subsurface Setting                         | 3 |
| 2.2 |       | Kno      | wn or Suspected Source Areas               | 3 |
| 2.3 | ,     | Con      | ntaminant Migration Pathways               | 3 |
| 2.4 |       | Soil     | and Groundwater Impacts                    | 4 |
| 2.4 | .1    | S        | oil Impacts                                | 4 |
| 2   | 2.4.2 | <u>-</u> | Groundwater Impacts                        | 4 |
| 3.0 |       |          | K PERFORMED DURING THIS PERIOD             |   |
| 3.1 | ,     | Soil     | Investigative Methods                      | 5 |
| 3.2 |       | Gro      | undwater Investigation Methods             | 5 |
| 3.3 |       | Gro      | undwater Elevations                        | 5 |
| 3.4 | . '   | Wel      | Il Purging                                 | 5 |
| 3.5 |       | Gro      | undwater Sampling Procedures               | 6 |
| 3.6 |       | Dec      | contamination Procedures                   | 6 |
| 3.7 |       | Ana      | llytical Results                           | 6 |
| 3   | 3.7.1 |          | Soil Investigation Results                 | 6 |
| 3   | 3.7.2 | <u>-</u> | Groundwater Analytical Results             | 6 |
| 3.8 |       | Pote     | ential Source Areas                        | 9 |
| 4.0 |       |          | POSED FUTURE WORK1                         |   |
| 4.1 | (     | Obta     | ain Groundwater Use Restriction Covenants1 | 0 |

| 4.2 | Monitoring Well Sampling               | 11 |
|-----|----------------------------------------|----|
| 4.3 | Prepare Compliance Status Report       | 11 |
| 5.0 | PROFESSIONAL SERVICE HOURS THIS PERIOD | 12 |
| 6.0 | PROFESSIONAL CERTIFICATION             | 13 |

#### LIST OF FIGURES

| Figure 1 | Property Location / USGS Topographic Map      |
|----------|-----------------------------------------------|
| Figure 2 | VRP Property Layout Map                       |
| Figure 3 | Groundwater Elevation Map – June 2018         |
| Figure 4 | VOC Concentrations in Groundwater – June 2018 |
| Figure 5 | PCE Concentration Map – June 2018             |
| Figure 6 | TCE Concentration Map – June 2018             |
| Figure 7 | cis-1,2-DCE Concentration Map – June 2018     |
|          |                                               |

#### LIST OF TABLES

| Table 1 | Summary of Groundwater Elevations         |
|---------|-------------------------------------------|
| Table 2 | Summary of Groundwater Analytical Results |

#### LIST OF APPENDICES

| Appendix A | USEPA Vapor Intrusion Screening Level                   |
|------------|---------------------------------------------------------|
| Appendix B | Monitoring Well Purging and Sampling Information Sheets |
| Appendix C | Historic Concentration Trend Graphs                     |
| Appendix D | June 2018 Groundwater Laboratory Analytical Report      |
| Appendix E | FACS Air Sampling Reports                               |
| Appendix F | Summary of Professional Service Hours                   |

#### **ACRONYMS**

AES Analytical Environmental Services, Inc.

bgs Below Ground Surface cis-1,2-DCE cis-1,2-Dichloroethene CSR Compliance Status Report

CR Carcinogenic Risk
CSM Conceptual Site Model

EPA Environmental Protection Agency
EPD Environmental Protection Division
FACS Forensic Analytical Consulting Services

HQ Hazard Quotient

HSI Hazardous Site Inventory µg/kg Micrograms per Kilogram µg/m³ Micrograms per Cubic Meter

μg/L Micrograms per Liter
Peachtree Peachtree Environmental

PCE Tetrachloroethene
RN Release Notification
RRS Risk Reduction Standard

SESD Science and Ecological Services Division

TCE Trichloroethene

TCL Target Compound List
TNB Thomasville National Bank
USGS United States Geological Survey
UST Underground Storage Tank

USTMP Underground Storage Tank Management Program

VISL Vapor Intrusion Screening Level VRP Voluntary Remediation Program VOCs Volatile Organic Compounds

#### 1.0 INTRODUCTION AND BACKGROUND

#### 1.1 Introduction

Peachtree Environmental (Peachtree) is submitting this 11th Voluntary Remediation Program (VRP) Semiannual Progress Report on behalf of the Thomasville National Bank (TNB) property located at 301 North Broad Street in Thomasville, Georgia (the "VRP Property"). The VRP Property is listed on the Hazardous Site Inventory (HSI) as Site #10902 (former Rose City Cleaners). This 11th Semiannual Progress Report describes activities conducted by Peachtree on February 1, 2018 through June 30, 2018 for the VRP Property. This report also contains indoor air-quality sampling data collected by Forensic Analytical Consulting Services (FACS), consultant for TNB, on December 7, 9, and 11, 2017 (FACS Report dated January 16, 2018) and on February 28, 2018 (FACS Report dated March 16, 2018).

#### 1.2 VRP Property Description

The VRP Property is located at 30° 50' 21.63" North (latitude) and 83° 58' 56.80" West (longitude). A VRP Property Location / U.S. Geological Survey (USGS) Topographic Map is included as **Figure 1**. The VRP Property consists of two parcels of land totaling approximately 1.52 acres, as follows:

- 301 North Broad Street Parcel ID: 005 006004 (1.0 Acres); and
- 325 North Broad Street Parcel ID: 005 006003 (0.52 Acres).

The 301 North Broad Street parcel consists of the main TNB building with walk-up and drivethrough teller services and offices. The 325 North Broad Street parcel is occupied by the TNB administration building. The VRP Property is bordered by:

- Northeast Broad Street commercial establishments;
- Southeast Washington Street and a City of Thomasville government complex;
- Southwest North Madison Street with commercial establishments and government complexes; and
- Northwest Undeveloped and commercial properties.

A VRP Property Layout Map is provided as Figure 2.

#### 1.3 PROPERTY BACKGROUND

#### 1.3.1 Historic Property Use

The VRP Property reportedly operated as a gasoline service station and dry cleaner (Rose City Dry Cleaners) from the 1970's to the 1990's. The former Underground Storage Tank (UST) system owner reported a release of regulated petroleum constituents on May 4, 1995. The Georgia Underground Storage Tank Management Program (USTMP) branch of the Georgia Environmental Protection Division (EPD) issued a "No Further Action" letter for the UST release on May 31, 2001.

Little information is available on the past dry-cleaning operations at the former Rose City Cleaners. Due to the relatively high concentrations of tetrachloroethene (PCE) and

1

breakdown products TCE and cis-1.2-DCE in soil and groundwater, it was presumed that the facility performed dry-cleaning operations at some time in its past. However, based on historical information provided by TNB personnel and others, the former dry cleaners served as a drop off location only, and no on-site dry-cleaning activities were performed. No information is available concerning the location(s) of the dry-cleaning machines within the facility or on-site disposal practices, if any. The parent company, Rose City Cleaners, was previously located in Tallahassee, FL, but closed several years ago. During operation of the Rose City Cleaners satellite, Peachtree understands that clothes dropped off at the property were transported to Tallahassee for actual dry-cleaning operations. Rose City Laundry is now doing business at 1102 E. Jackson Street, Thomasville (229-228-9666).

The relationships between two other establishments on site and the dry cleaner, if any, are unknown. A Bumper to Bumper facility was directly adjacent to the southwestern wall of dry cleaner, but no information on mutual access has been discovered. There was also a car repair establishment that appears to have been adjacent to the Bumper to Bumper facility. No information is available regarding the exact nature of the Bumper to Bumper activities. The possibility exists that the former Bumper to Bumper facility and the former car repair facility may have used chlorinated solvents. The USTs previously mentioned presumably were associated with the car repair establishment and/or the gasoline service station which at one time occupied all or part of the dry cleaner space.

According to a review of Thomas County tax records, TNB purchased the VRP Property in December 1995. The footprint of the former dry cleaner and other establishments on site are depicted on **Figure 2**.

#### 2.0 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) was presented in the 3<sup>rd</sup> Semiannual Progress Report and was revised in the 6<sup>th</sup> Semiannual Progress Report based on additional subsurface information collected by advancing additional soil borings at the VRP Property. Pertinent changes to the CSM based on recent data are discussed in the following sections.

#### 2.1 SURFACE AND SUB-SURFACE SETTING

#### 2.1.1 Surface Setting

No changes.

#### 2.1.2 Subsurface Setting

No changes.

#### 2.2 Known or Suspected Source Areas

Volatile organic compounds (VOCs) have been detected in soil and groundwater at the VRP Property. VOC constituents have been detected in soil samples collected in the grassed areas located on the northeast, southeast, and southwest sides of the building. The highest concentration of PCE in soil, 6,200 micrograms per kilogram (µg/kg), was detected in the sample collected 15 feet below ground surface (bgs) from the soil boring for MW-21, located adjacent to the northeast corner of the building; however, no PCE was detected in groundwater samples collected from MW-21 during the August 2016, December 2016, June 2017, December 2017, or June 2018 sampling events.

Contaminant concentrations detected in groundwater samples down-gradient of the main bank building exceed Risk Reduction Standards (RRSs) and suggest a source up-gradient of these monitoring wells. However, the concentrations of VOCs detected in the soil and groundwater samples up-gradient and to the northeast of the bank building do not suggest a significant contaminant source outside of the building footprint. Therefore, both the soil and groundwater quality data, as well as the groundwater potentiometric map, suggests a soil contaminant source beneath the current bank building.

#### 2.3 CONTAMINANT MIGRATION PATHWAYS

A preliminary evaluation of the contaminant migration pathways was discussed in the 3<sup>rd</sup> Semiannual VRP report. No changes to the soil and groundwater migration pathways have been identified except for soil vapor migration. As discussed in previous Semi-Annual Progress Reports, the potential exists for vapor intrusion into the bank building from groundwater and impacted soil. Indoor air-quality sampling performed by FACS confirmed the presence of VOC constituents inside the TNB building (see **Section 3.8**).

There is a potential for vapor intrusion into the courthouse and residential structures located southwest and down-gradient of the TNB property. The potential for vapor intrusion into the

courthouse structure from impacted groundwater was screened using the U.S. Environmental Protection Agency (EPA) Vapor Intrusion Screening Level (VISL) calculator. The VISL calculator (**Appendix A**) was run in the "Commercial" Exposure Scenario using a generic groundwater-to-indoor-air Attenuation Factor of 0.001. Input parameters for cis-1,2-DCE (57  $\mu$ g/L), ethylbenzene (6.7  $\mu$ g/L), total xylenes (33.8  $\mu$ g/L), PCE (1,100  $\mu$ g/L), toluene (7.7  $\mu$ g/L), and TCE (770  $\mu$ g/L) were based on the June 2018 analysis of groundwater from MW-6. The results indicated that the calculated carcinogenic risk (CR) of 5.39 x 10<sup>-4</sup> and the Hazard Quotient (HQ) of 1.25 x 10<sup>2</sup> exceed the CR and HQ thresholds of 1 x 10<sup>-5</sup> and 1, respectively. The primary constituents affecting the CR and HQ are the chlorinated compounds PCE and TCE. Therefore, based on the assumption that groundwater concentrations equal or similar to those observed at TNB monitoring well MW-6 are present on the courthouse property, the VISL screening indicates further assessment of the courthouse property is warranted.

#### 2.4 SOIL AND GROUNDWATER IMPACTS

2.4.1 SOIL IMPACTS

No changes.

2.4.2 Groundwater Impacts

No changes.

#### 3.0 WORK PERFORMED DURING THIS PERIOD

Work performed at the VRP Property during the current period is also summarized below:

- Collection and analysis of indoor air quality samples by FACS, consultant for TNB, on December 7, 9, and 11, 2017 and on February 28, 2018.
- Collection of groundwater samples from existing wells for laboratory analysis on June 5 and 6, 2018 to evaluate the extent and concentration of the existing groundwater plume.
- Preparation of this 11th VRP Semiannual Progress Report, which includes discussion of the groundwater analytical results and of the potential institutional controls discussed with EPD.

#### 3.1 Soil Investigative Methods

No soil sampling was performed during this period.

#### 3.2 GROUNDWATER INVESTIGATION METHODS

On June 5 and 6, 2018, groundwater samples were collected from monitoring wells MW-2, MW-3, MW-5, MW-6, MW-7, MW-12, MW-14, MW-15, MW-16, MW-17, MW-18, MW-19, MW-21, and MW-24. In the 9<sup>th</sup> Semi Annual VRP Progress Report, Peachtree requested to eliminate monitoring wells DW-1, MW-1, MW-4, MW-8, MW-9, MW-10, MW-11, MW-13, MW-20, MW-21, MW-22, MW-23, and MW-24 from the sampling plan. In an email dated December 15, 2017, EPD approved Peachtree's request, but required the continued sampling of monitoring wells MW-21 and MW-24.

#### 3.3 GROUNDWATER ELEVATIONS

As part of the 11th Semiannual Progress Report, Peachtree personnel measured water levels prior to the collection of groundwater samples from the monitoring well network at the VRP Property on June 5 and 6, 2018 (**Table 1**). Prior to well purging and sampling, the depth to water in each monitoring well was measured from the top of the casing using an electronic water-level indicator. Each well measurement was recorded to one-hundredth of a foot. The groundwater elevation of each shallow monitoring well was used to prepare a potentiometric map for the June 2018 sampling event, included as **Figure 3**. The resulting groundwater flow direction to the southwest is consistent with historic observations.

#### 3.4 WELL PURGING

Well purging and sampling for the June 2018 sampling event were conducted in general accordance with the Region IV USEPA Science and Ecosystem Support Division (SESD) Operating Procedure for Groundwater Sampling (SESDPROC-301-R4, April 26, 2017). After water levels were measured, the wells were purged using the multiple-volume purge method and the low-flow method using a peristaltic pump in accordance with SESDPROC-301-R4. Field parameters (pH, specific conductivity, temperature, dissolved oxygen, and oxidation-reduction potential) were measured using a flow-through cell equipped with a YSI 556 multi-

parameter water-quality probe. Turbidity was measured using a Horiba U53. Flow rates were generally kept within a range of 100 ml/min to 400 ml/min to minimize drawdown. The recorded well data is included on the Monitoring Well Purging & Sampling Information Sheets in **Appendix B.** Purging was terminated and the wells were sampled when the field parameters stabilized<sup>1</sup>.

#### 3.5 GROUNDWATER SAMPLING PROCEDURES

Groundwater sampling was conducted in general accordance with standard USEPA protocols (i.e., SESDPROC-301-R4, April 26, 2017). Following well purging and appropriate recharge, groundwater samples were collected using the peristaltic pump. Following purging activities, the polyethylene tubing was removed from the well, and the groundwater sample collected from the end of the tubing that was in the well (i.e., the groundwater sample did not pass through the peristaltic pump head).

Samples were discharged directly into clean 40 ml glass vials with Teflon® septa. The samples were placed on ice in a cooler and transported to Analytical Environmental Services, Inc. (AES) in Atlanta, Georgia, following chain-of-custody procedures. The groundwater samples were analyzed for Target Compound List (TCL) VOCs by USEPA Method 8260B (SW 846 "Test Methods for Evaluating Solid Waste" Third Edition with subsequent updates).

#### 3.6 DECONTAMINATION PROCEDURES

Most of sample-contacting equipment was single-use, disposable equipment. Other downhole or reusable field monitoring and sampling equipment was properly decontaminated between sampling locations in general accordance with the SESD Operating Procedures for Field Equipment and Decontamination (SESDPROC-205-R2, December 2011).

#### 3.7 ANALYTICAL RESULTS

#### 3.7.1 Soil Investigation Results

No soil samples were collected during this period.

#### 3.7.2 Groundwater Analytical Results

During the June 2018 sampling event, chlorinated and non-chlorinated VOC constituents were detected in the groundwater samples analyzed. The non-chlorinated constituents detected are frequently associated with petroleum products and are attributed to a release of petroleum fuel when the Property previously operated as a gasoline station. The chlorinated constituents detected in June 2018 above RRSs in groundwater samples included PCE (7.6 micrograms per liter [ $\mu$ g/L] to 4,900  $\mu$ g/L), cis-1,2-DCE (71  $\mu$ g/L to 2,100  $\mu$ g/L), TCE (6.3  $\mu$ g/L to 770  $\mu$ g/L), and vinyl chloride (2.4  $\mu$ g/L to 5.9  $\mu$ g/L). Groundwater analytical results are summarized in **Table 2** and depicted on **Figure 4**.

 $<sup>^{1}</sup>$  Groundwater stabilization occurs when three consecutive well measurements of specific conductivity are approximately  $\pm$  10 %, pH values are within 0.1 pH unit of the last three value averages, and groundwater turbidity (NTU) values are < 10 NTUs (EPA/542/S-02/001).

The groundwater sample collected from MW-19 (beneath the drive-thru canopy southwest of the building) continued to exhibit the highest PCE concentration (4,900  $\mu$ g/L). This well is located near the apparent source area of the groundwater contaminant plume, which extends in a down-gradient direction to the southwest. Monitoring well MW-19 has consistently exhibited the highest PCE concentrations since this well was initially sampled in August 2016, with PCE concentrations ranging from 3,700  $\mu$ g/L to 8,000  $\mu$ g/L, and more recently 4,900  $\mu$ g/L in June 2018.

Trend graphs of historic groundwater data for monitoring wells MW-2, MW-3, MW-5, MW-6, MW-7, and MW-19 are included in **Appendix C**. The PCE concentrations in groundwater from MW-2 have remained relatively consistent from June 2015 to June 2018 and have ranged from 6.8  $\mu$ g/L to 11  $\mu$ g/L, during that period. The PCE concentrations in groundwater from MW-3 have decreased significantly from a high of 600  $\mu$ g/L in June 2015 to 17  $\mu$ g/L in June 2018.

The PCE concentrations in groundwater from MW-5 have fluctuated significantly since sampling began in September 2011. PCE concentrations have ranged from as low as 34  $\mu$ g/L in June 2012 to as high as 5,200  $\mu$ g/L in November 2013 and have decreased from 1,400  $\mu$ g/L in December 2017 to 890  $\mu$ g/L in June 2018.

Significant variations in PCE concentrations have also occurred in groundwater samples collected from MW-6 and MW-7. The PCE concentration in MW-6 increased from 490  $\mu$ g/L in June 2017 to 1,100  $\mu$ g/L in June 2018. PCE concentrations in MW-7 increased from 330  $\mu$ g/L in December 2017 to 420  $\mu$ g/L in June 2018. PCE concentrations in groundwater samples collected from MW-12 have remained relatively consistent over time.

Decreases in TCE concentrations were noted in groundwater samples collected from MW-2, MW-3, MW-15, MW-21, and MW-24, while increases were noted in groundwater samples collected from MW-5, MW-6, MW-7, and MW-19, compared to the previous December 2017 sampling event. Concentrations of the degradation product cis-1,2-DCE increased in groundwater samples collected from MW-3, MW-5, MW-6, MW-15, MW-16, MW-17, MW-18, MW-19, and MW-21, with MW-15, MW-16, and MW-19 exhibiting he most notable increases. No decrease in cis-1,2-DCE concentrations were noted from the December 2018 sampling event. Trans-1,2-dichloroethene was not detected in any of the groundwater samples in December 2017 and was only detected in MW-21 at 5.8  $\mu$ g/L in the June 2018 sampling event.

In addition to halogenated VOCs, hydrocarbon constituents were detected in groundwater samples collected from monitoring wells MW-5, MW-6, MW-15, MW-16, MW17, and MW-18. Benzene was the only petroleum fuel constituent detected above the RRS in groundwater samples collected from monitoring wells MW-5, MW-6, MW-16,

MW17, MW-18, and MW-21 and occurred at concentrations ranging from 5.3  $\mu$ g/L to 71  $\mu$ g/L. Fluctuations in the concentrations of ethylbenzene, toluene, and total xylenes have been observed in the groundwater samples from these wells.

#### Horizontal Extent of Impacted Groundwater

The principal VOCs detected in groundwater at the VRP Property are PCE and its associated breakdown products and various petroleum-related constituents. Concentrations of the chlorinated VOCs cis-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride were detected above their Type 1/3 RRS. The June 2018 concentration maps for PCE, TCE, and cis-1,2-DCE are included as Figures 5, 6, and 7, and historic trend graphs are presented in Appendix C. Concentrations of the VOCs benzene, cyclohexane, ethylbenzene, isopropyl benzene, methylcyclohexane, toluene, and/or xylenes are associated with previous petroleum hydrocarbon releases and were detected in groundwater from monitoring wells located adjacent to the on-site building and in MW-5, MW-6, MW-15, MW-16, MW-17, MW-18, and MW-21. Since the primary constituents are chlorinated constituents, the petroleum hydrocarbons are not included in the concentration maps. Of these petroleum constituents, concentrations of benzene, cyclohexane, and isopropyl benzene were above their respective Type 1/3 RRS. A summary of the historic groundwater analytical data is provided in **Table 2**. The laboratory analytical report for the June 2018 sampling event is contained in Appendix D.

The June 2018 groundwater analytical results confirm that the horizontal extent of impacted shallow groundwater has been completely delineated, as reported in the 4<sup>th</sup> Semiannual Progress Report submitted in late January 2015 following the installation and sampling of MW-14, and confirmed in subsequent Semiannual Progress Reports.

#### Vertical Extent of Impacted Groundwater

The vertical extent of groundwater impact has been delineated by previous (2015 to 2017) sampling of former deep monitoring well DW-1. This monitoring well has been removed from the sampling plan, as approved by EPD.

#### 3.8 INDOOR AIR QUALITY SAMPLING

On December 9, 2017, Forensic Analytical Consulting Services (FACS) collected the first of two sets of indoor air quality samples within the TNB building during non-business hours. The HVAC units were turned off during the sampling activities. Three air samples were collected on the first floor on December 9, 2011 over an eight-hour period using air-flow regulators and one-liter mini-canisters. In addition, one outside air quality sample was collected outside an air duct on the second floor. The samples were submitted to SGS Galston Laboratory for analysis by EPA Method TO-15. On December 11, 2017 FACS collected the second set of indoor air quality samples over an eight-hour period within the TNB building during regular business hours. The HVAC systems were operating during these sampling activities. On December 11, 2017, three indoor samples and one outdoor sample were collected at the same locations as those

in the December 9, 2017 sampling event and submitted for VOC analysis using EPA Method TO-15. Six of the eight samples were analyzed.

The following VOC constituents and their concentration ranges were detected in one or more of the interior samples: acetone (12.35 micrograms per cubic meter [ $\mu$ g/m³] to 92.64  $\mu$ g/m³), benzene (3.38  $\mu$ g/m³), cyclohexane (7.92  $\mu$ g/m³), ethyl acetate (4.32  $\mu$ g/m³ to 5.77  $\mu$ g/m³), Freon-12 (4.95  $\mu$ g/m³), heptane (16.39  $\mu$ g/m³), hexane (35.25  $\mu$ g/m³), isopropyl alcohol (13.27  $\mu$ g/m³), propylene (15.49  $\mu$ g/m³), PCE (156  $\mu$ g/m³ to 434.07  $\mu$ g/m³), toluene (1.30  $\mu$ g/m³ to 10.93  $\mu$ g/m³), and vinyl acetate (4.80  $\mu$ g/m³ to 16.90  $\mu$ g/m³). Chloromethane, cyclohexane, ethyl acetate, heptane, methyl ethyl ketone, PCE, toluene, and vinyl acetate were also detected at lower concentrations in the outside air samples.

To evaluate the impact of building pressurization on indoor PCE concentrations, FACS recommended a temporary modification to the HVAC systems to increase building pressurization. Air Conditioning Technology & Services, Inc. was contracted by TNB to temporarily install an air scrubber in-line with HVAC units 3 and 4. After the building operated under positive pressure for several days, additional interior air samples were collected. On February 28, 2018, FACS collected four additional interior air samples over an eight hour period in a manner previously described and submitted the samples for tetrachloroethylene analysis using EPA Method TO-15. PCE concentrations ranged from 312  $\mu g/m^3$  to 353  $\mu g/m^3$ . FACS concluded that positive building pressurization achieved an 18% reduction in PCE concentrations compared to the December 2017 results. However, FACS stated that the PCE concentrations exceeded the November 2017 US EPA Regional Screening Levels, but were far below the OSHA Permissible Exposure Limits. FACS concluded that based upon the test results, additional mitigation measures would be needed to reduce PCE concentrations within the TNB building, beyond modification of the HVAC system.

FACS also recommended considering sub-slab testing to help design a sub-slab vapor extraction system to prevent vapor intrusion into the indoor air. A copy of the FACS reports are included in **Appendix E.** 

#### 3.9 POTENTIAL SOURCE AREAS

Based on the groundwater flow data and groundwater quality data, monitoring wells MW-5, MW-6, MW-15, and MW-19 have exhibited the highest concentrations of VOC constituents of the monitoring wells sampled and are located down-gradient of the both the former and existing buildings. A comparison of the groundwater quality data collected from monitoring wells located in front and up-gradient of the building (MW-21, MW-22, MW-23, and MW-24) to the results from the down-gradient wells (MW-5, MW-15, and MW-19) suggests a significant contaminant source located somewhere between the up-gradient side of the building and the monitoring wells on the downgradient side of the building.

#### 4.0 PROPOSED FUTURE WORK

Future work at the TNB property includes the following tasks:

#### 4.1 TASK 1 – ADDITIONAL INDOOR AIR QUALITY SAMPLING

The TCE analytical detection level in the IAQ samples collected by FACS were not low enough to meet the current EPA short-term exposure value of 2 micrograms per cubic meter (µg/m³). In addition, the volume of the Suma canisters used to collect the IAQ samples was not large enough to accommodate the sampling duration. To further evaluate the indoor air quality within the TNB building, additional indoor air samples will be collected inside the building with respect to contaminants detected in the soil and groundwater. The laboratory analysis will meet the 2.0 µg/m³ short-term exposure value. Four indoor air samples will be collected from the TNB bank building in addition to two ambient air samples collected outside of the building. Each sample will be collected from a representative location within the bank building (for the indoor air samples) and from appropriate locations around the exterior of the property for the ambient air samples. Each sample will be collected in an individually laboratory certified 6-liter summa canister that is equipped with an 8-hour flow controller. The intake summa cans will be placed at a height of approximately 3 feet above ground level to allow for a representative sample to be collected. The samples will be collected during non-business hours to help reduce the possibility of influence from people, clothing or maintenance work that might occur during business hours. The air samples will be submitted to the laboratory for VOC analysis using EPA Method TO-15.

#### 4.2 TASK 2 - SUB-SLAB VAPOR SAMPLING

To assess the presence of subsurface soil vapors underneath the TNB building, sub-slab soil vapor samples will be collected underneath the TNB building. Up to six permanent sub-slab monitoring points will be installed beneath the TNB building at locations adequate to evaluate the distribution of VOCs underneath the entire building. Flush-mounted access covers will be installed at each sampling point to provide access to the sample locations. Once this is done, permanent soil vapor sampling points will be installed using hand tools to a depth of approximately 18 inches below the floor. The sampling points will be allowed to equilibrate approximately twelve hours prior to sampling. Soil vapor samples will then be collected in summa canisters from these points and analyzed for VOCs by EPA Method TO-15. The permanent sampling points can also be used as future access points to measure the effectiveness of a sub-slab depressurization (mitigation) system or for future confirmation sampling.

#### 4.3 Task 3 – Exterior Soil Vapor Sampling

Exterior soil vapor samples on adjoining and down-gradient properties will be collected on county-owned properties (old courthouse, new courthouse, and library) and in the city right-of-way near residential and other structures. Access to county-owned properties will be required to collect soil vapor samples on county-owned properties, and permission by the City of Thomasville will be required to install sampling points on the city right-of-way.

To assess the presence of subsurface soil vapors on other properties (properties underlain by the contaminant plume and properties located approximately 100 feet from the extent of the plume), fourteen soil vapor samples will be collected. Temporary soil vapor monitoring points will be installed at these locations using hand tools. Once installed, the sampling points will be allowed to equilibrate approximately twelve hours prior to sampling. Soil vapor samples will then be collected in summa canisters and submitted for VOC analysis by EPA Method TO-15.

#### 4.4 TASK 4 - DATA EVALUATION AND SOIL VAPOR MITIGATION DESIGN

Once received, the IAQ, sub-slab, and exterior soil vapor data will be reviewed and evaluated. The sampling results will be presented in the CSR. Appropriate figures and tables will be incorporated into the report to present the analytical results.

The IAQ and sub-slab data will be used as lines of evidence regarding the indoor air quality within the TNB building, verification of the source, and the potential for exposure. In addition, the sub-slab data will be used in conjunction with building plans and drawings and subsurface stratigraphic data to design a vapor mitigation system for the TNB building. Additional IAQ and sub-slab sampling may be required to gather additional data for this purpose.

The exterior soil vapor analytical results will be used to further evaluate the potential for migration onto nearby properties and/or the potential for VI into nearby buildings. Additional exterior soil vapor sampling may be required to gather additional data and further assess the potential for vapor intrusion.

#### 4.5 Task 5 - Obtain Groundwater Use Restriction Covenants

Based on the February 2017 meeting with EPD and TNB personnel, EPD agrees with pursuing a Type 5 approach for the VRP Property. Acquiring groundwater use restriction covenants on properties underlain by the contaminant plume is currently being pursued by TNB and their attorney.

#### 4.6 TASK 6 - MONITORING WELL SAMPLING

Monitoring well sampling will be performed in December 2018 using the procedures described above for the June 2018 sampling. The samples will be placed on ice in a cooler and transported to AES in Atlanta, Georgia following chain-of-custody procedures. The groundwater samples will be analyzed for TCL VOCs by USEPA Method 8260B.

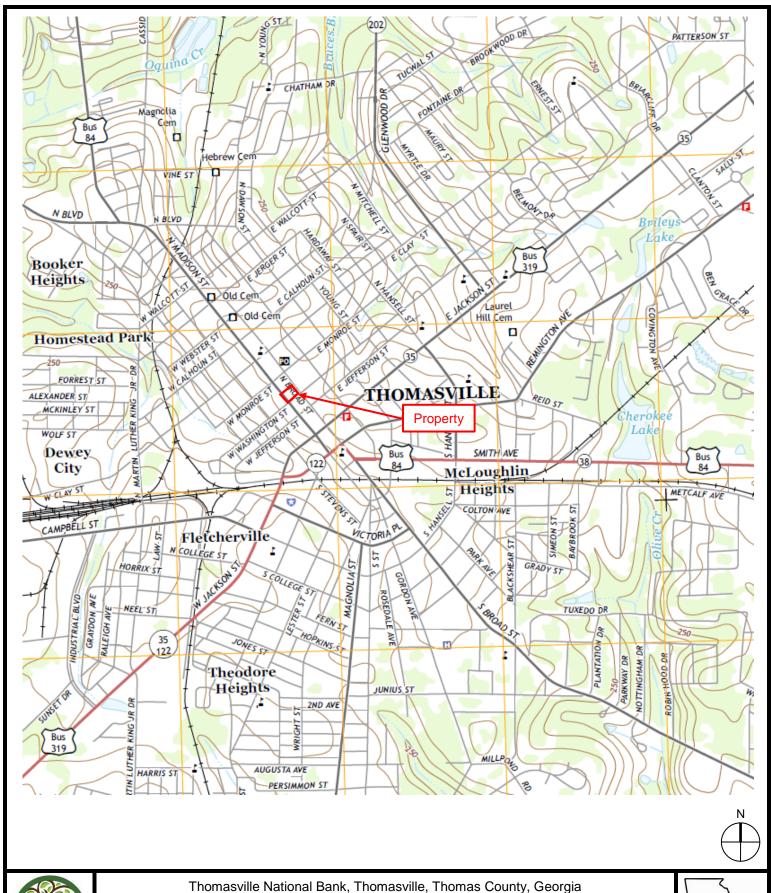
#### 4.7 Task 7 - Prepare Compliance Status Report

The CSR is due on February 1, 2019. The results of the December 2018 groundwater sampling, soil vapor sampling data, vapor mitigation measures implemented, and additional indoor air quality and soil vapor sampling will be included in the CSR. The CSR will also contain the groundwater use restriction covenants and proposed measures (if necessary) to further evaluate and mitigate elevated indoor and/or subgrade VOC concentrations.

#### 5.0 PROFESSIONAL SERVICE HOURS THIS PERIOD

A monthly summary of Professional Engineer/Geologist hours expended during the past 6 months for the tasks performed, as documented by this semiannual progress report, is included as **Appendix F**.

#### 6.0 PROFESSIONAL CERTIFICATION


"I certify that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering, and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by me or by a subordinate working under my direction."

Larry Carter, P.G.

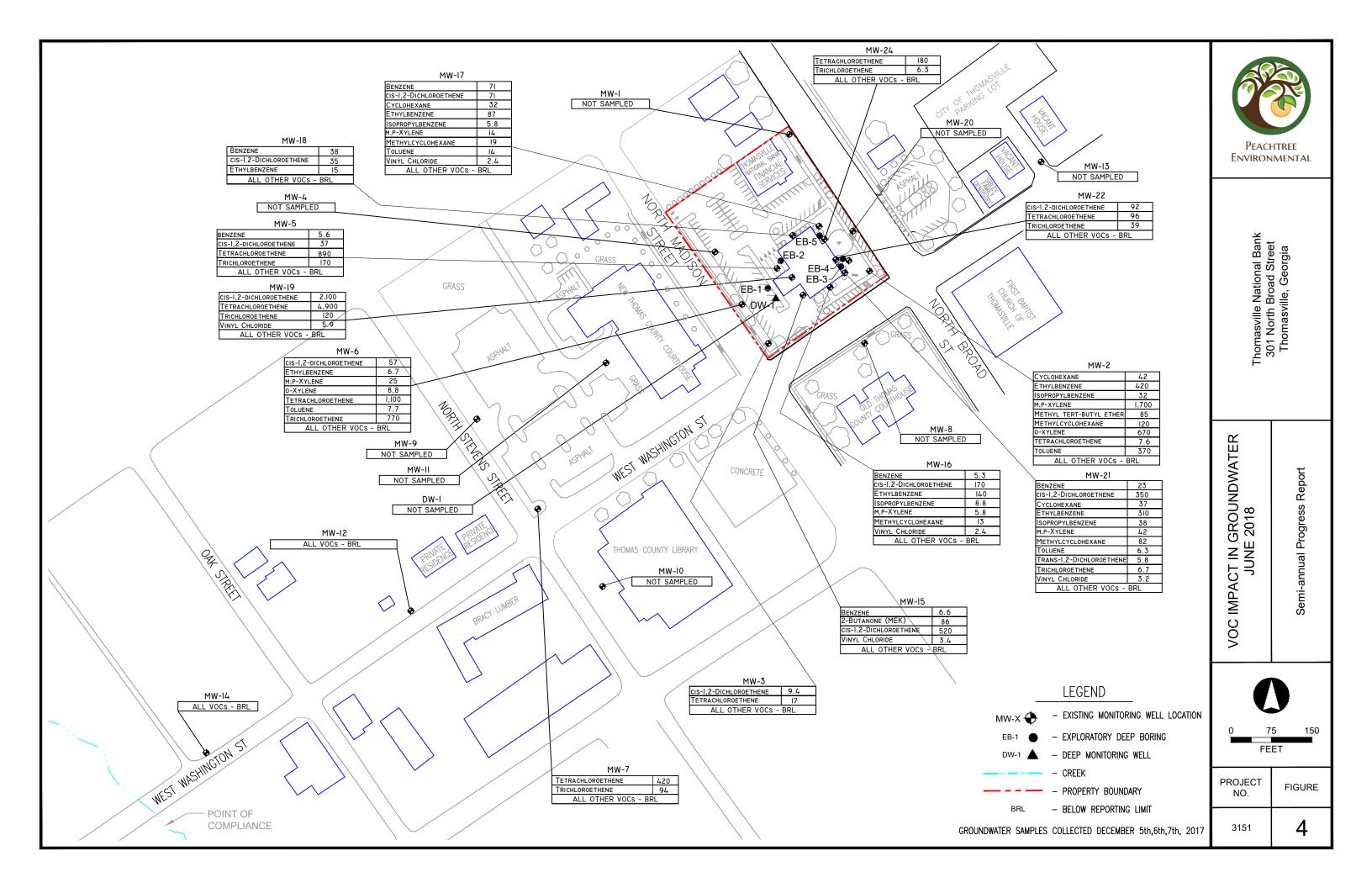
Georgia Registration No. 657

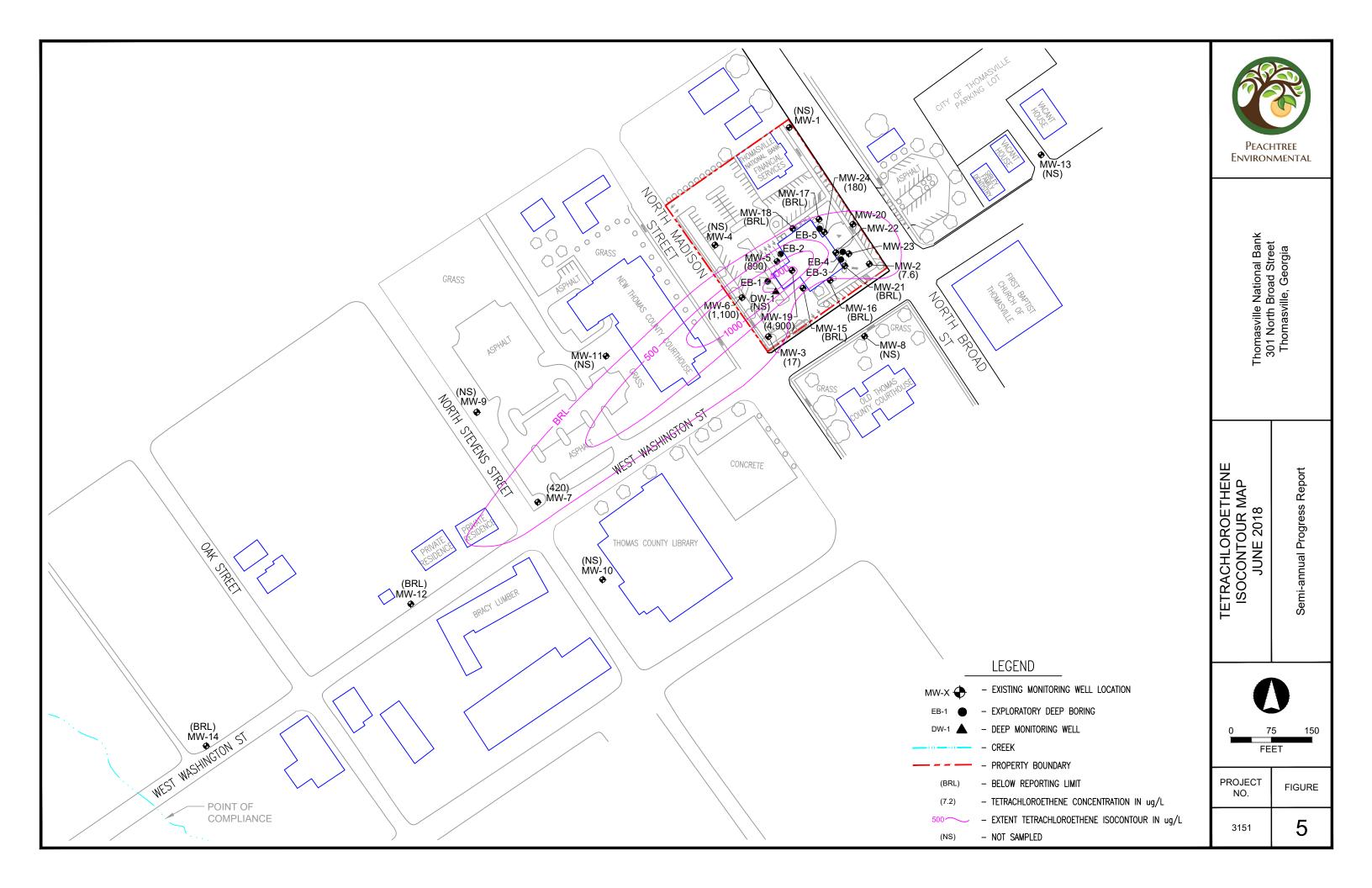


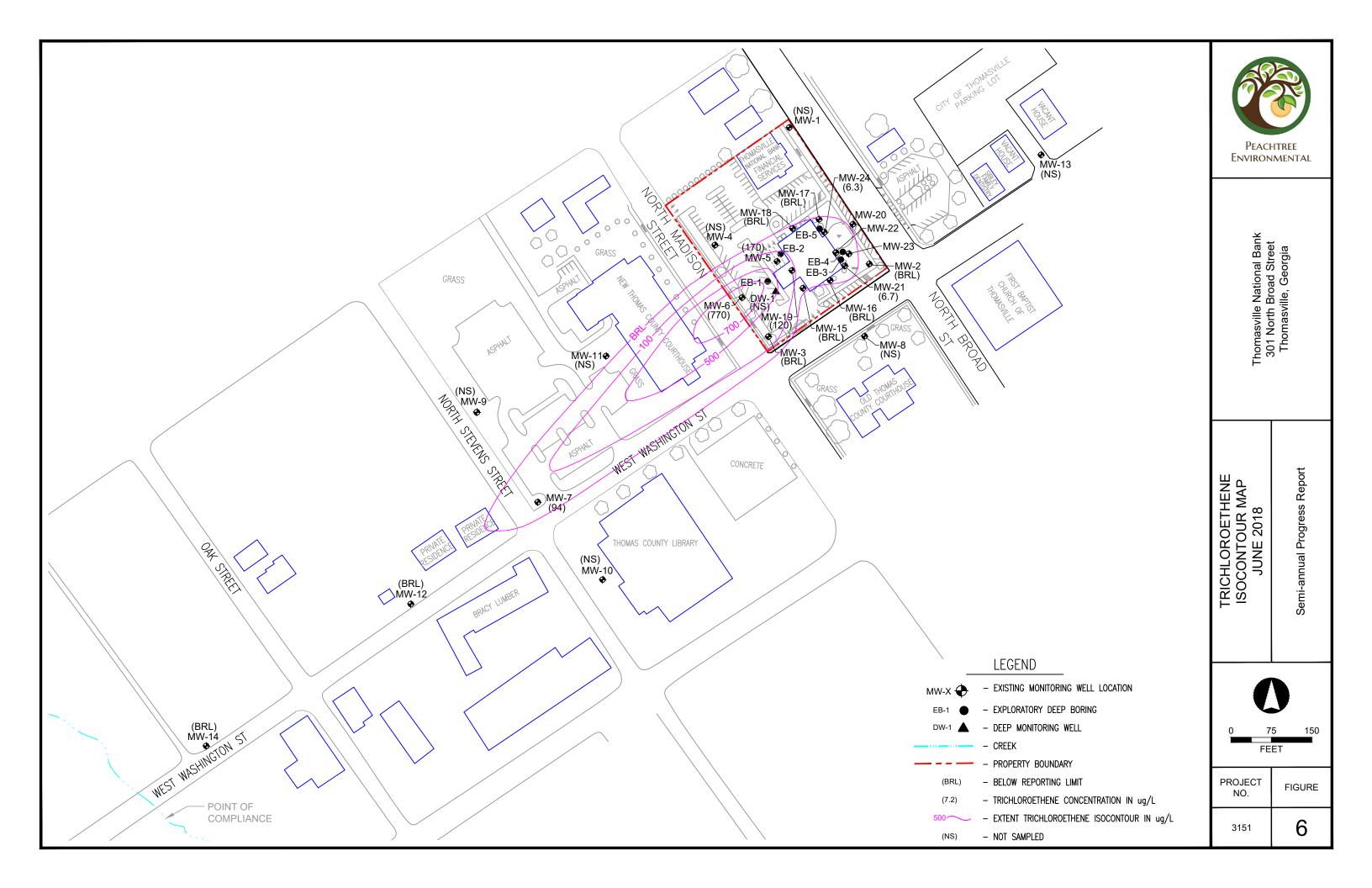
**FIGURES** 

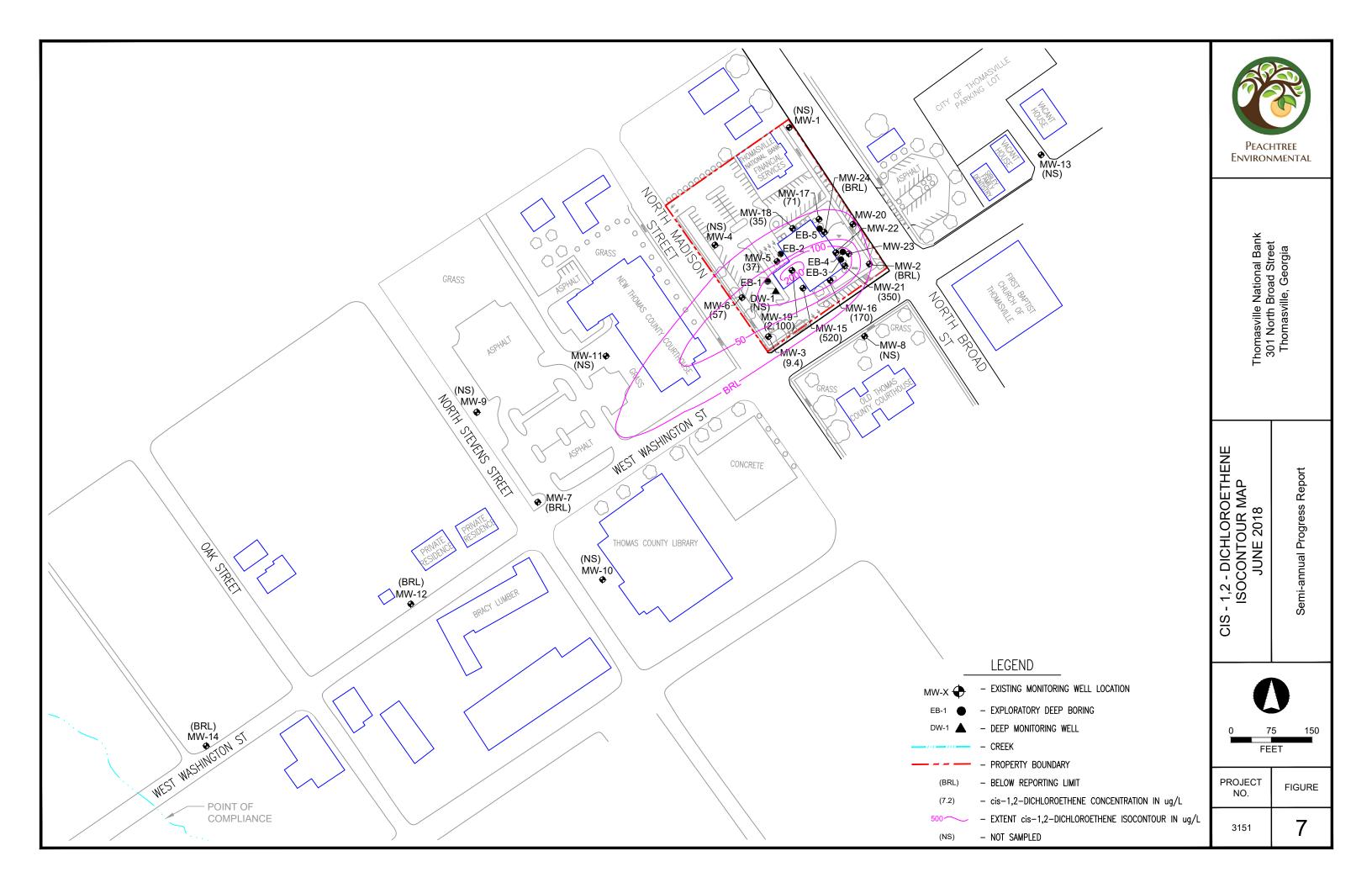





#### FIGURE 1 SITE LOCATION MAP


Base Map: 2014 USGS Thomasville, Georgia Quadrangle, Approx. Scale = 1: 24,000
















**TABLES** 

TABLE 1

| MW-1  Top of Casing Elevation (feet)  100.00  MW-1  100.00  98.22 | 08/21/09 09/01/11 06/27/12 06/06/13 11/22/13 06/24/14 12/15/14 06/27/15 12/05/15 06/07/16 12/08/16 06/28/17 12/06/17 06/06/18 08/21/09 09/01/11 06/27/12 06/06/13 11/22/13 06/24/14 12/16/14 06/28/15 12/06/15 06/06/16                                                          | Depth to Groundwater (feet)  24.00  27.25  27.08  25.42  24.61  22.36  24.67  24.12  26.71  24.54  25.92  25.96  25.78  24.75  27.42  27.34  25.74  23.17  -24 (fp)  24.77 | Water Level Elevation (feet)  76.00  72.75  72.92  74.58  75.39  77.64  75.33  75.88  73.29  75.46  74.08  74.04  74.22  75.22  75.25  72.58  72.66  74.26  74.86  76.83 |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MW-1 100.00 MW-2 98.22                                            | 09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/15/14<br>06/27/15<br>12/05/15<br>06/07/16<br>12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16 | 27.25 27.08 25.42 24.61 22.36 24.67 24.12 26.71 24.54 25.92 25.96 25.78 24.75 27.42 27.34 25.74 25.14 23.17 ~24 (fp) 24.77                                                 | 72.75 72.92 74.58 75.39 77.64 75.33 75.88 73.29 75.46 74.08 74.04 74.22 75.22 75.25 72.58 72.66 74.26 74.86                                                              |
| MW-2 98.22                                                        | 06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/15/14<br>06/27/15<br>12/05/15<br>06/07/16<br>12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16             | 27.08 25.42 24.61 22.36 24.67 24.12 26.71 24.54 25.92 25.96 25.78 24.75 27.42 27.34 25.74 25.14 23.17 ~24 (fp) 24.77                                                       | 72.92 74.58 75.39 77.64 75.33 75.88 73.29 75.46 74.08 74.04 74.22 75.22 75.25 72.58 72.66 74.26 74.86                                                                    |
| MW-2 98.22                                                        | 06/06/13<br>11/22/13<br>06/24/14<br>12/15/14<br>06/27/15<br>12/05/15<br>06/07/16<br>12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                         | 25.42 24.61 22.36 24.67 24.12 26.71 24.54 25.92 25.96 25.78 24.75 27.42 27.34 25.74 25.14 23.17 ~24 (fp) 24.77                                                             | 74.58 75.39 77.64 75.33 75.88 73.29 75.46 74.08 74.04 74.22 75.22 75.25 72.58 72.66 74.26 74.86                                                                          |
| MW-2 98.22                                                        | 11/22/13<br>06/24/14<br>12/15/14<br>06/27/15<br>12/05/15<br>06/07/16<br>12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                     | 24.61 22.36 24.67 24.12 26.71 24.54 25.92 25.96 25.78 24.75 27.42 27.34 25.74 25.14 23.17 ~24 (fp) 24.77                                                                   | 75.39<br>77.64<br>75.33<br>75.88<br>73.29<br>75.46<br>74.08<br>74.04<br>74.22<br>75.22<br>75.25<br>72.58<br>72.66<br>74.26<br>74.86                                      |
| MW-2 98.22                                                        | 06/24/14<br>12/15/14<br>06/27/15<br>12/05/15<br>06/07/16<br>12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                 | 22.36 24.67 24.12 26.71 24.54 25.92 25.96 25.78 24.78 24.75 27.42 27.34 25.74 25.14 23.17 ~24 (fp) 24.77                                                                   | 77.64 75.33 75.88 73.29 75.46 74.08 74.04 74.22 75.22 75.25 72.58 72.66 74.26 74.86                                                                                      |
| MW-2 98.22                                                        | 12/15/14<br>06/27/15<br>12/05/15<br>06/07/16<br>12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                             | 24.67 24.12 26.71 24.54 25.92 25.96 25.78 24.75 27.42 27.34 25.74 25.14 23.17 ~24 (fp) 24.77                                                                               | 75.33<br>75.88<br>73.29<br>75.46<br>74.08<br>74.04<br>74.22<br>75.22<br>75.25<br>72.58<br>72.66<br>74.26<br>74.86                                                        |
| MW-2 98.22                                                        | 06/27/15<br>12/05/15<br>06/07/16<br>12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                         | 24.12 26.71 24.54 25.92 25.96 25.78 24.78 24.75 27.42 27.34 25.74 25.14 23.17 ~24 (fp) 24.77                                                                               | 75.88<br>73.29<br>75.46<br>74.08<br>74.04<br>74.22<br>75.22<br>75.25<br>72.58<br>72.66<br>74.26<br>74.86                                                                 |
| MW-2 98.22                                                        | 12/05/15<br>06/07/16<br>12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                     | 26.71 24.54 25.92 25.96 25.78 24.78 24.75 27.42 27.34 25.74 25.14 23.17 ~24 (fp) 24.77                                                                                     | 73.29 75.46 74.08 74.04 74.22 75.22 75.25 72.58 72.66 74.26 74.86                                                                                                        |
| MW-2<br>98.22                                                     | 06/07/16<br>12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                 | 24.54<br>25.92<br>25.96<br>25.78<br>24.78<br>24.75<br>27.42<br>27.34<br>25.74<br>25.14<br>23.17<br>~24 (fp)<br>24.77                                                       | 75.46<br>74.08<br>74.04<br>74.22<br>75.22<br>75.25<br>72.58<br>72.66<br>74.26                                                                                            |
| MW-2<br>98.22                                                     | 12/08/16<br>06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                             | 25.92<br>25.96<br>25.78<br>24.78<br>24.75<br>27.42<br>27.34<br>25.74<br>25.14<br>23.17<br>-24 (fp)<br>24.77                                                                | 74.08<br>74.04<br>74.22<br>75.22<br>75.25<br>72.58<br>72.66<br>74.26<br>74.86                                                                                            |
| MW-2<br>98.22                                                     | 06/28/17<br>12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                                         | 25.96<br>25.78<br>24.78<br>24.75<br>27.42<br>27.34<br>25.74<br>25.14<br>23.17<br>-24 (fp)<br>24.77                                                                         | 74.04<br>74.22<br>75.22<br>75.25<br>72.58<br>72.66<br>74.26<br>74.86                                                                                                     |
| MW-2<br>98.22                                                     | 12/06/17<br>06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                                                     | 25.78<br>24.78<br>24.75<br>27.42<br>27.34<br>25.74<br>25.14<br>23.17<br>-24 (fp)<br>24.77                                                                                  | 74.22<br>75.22<br>75.25<br>72.58<br>72.66<br>74.26<br>74.86                                                                                                              |
| MW-2<br>98.22                                                     | 06/06/18<br>08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                                                                 | 24.78 24.75 27.42 27.34 25.74 25.14 23.17 -24 (fp) 24.77                                                                                                                   | 75.22<br>75.25<br>72.58<br>72.66<br>74.26<br>74.86                                                                                                                       |
| MW-2<br>98.22                                                     | 08/21/09<br>09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15                                                                                                                                                                         | 24.75<br>27.42<br>27.34<br>25.74<br>25.14<br>23.17<br>-24 (fp)<br>24.77                                                                                                    | 75.25<br>72.58<br>72.66<br>74.26<br>74.86                                                                                                                                |
| MW-2<br>98.22                                                     | 09/01/11<br>06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                                                                                         | 27.42<br>27.34<br>25.74<br>25.14<br>23.17<br>-24 (fp)<br>24.77                                                                                                             | 72.58<br>72.66<br>74.26<br>74.86                                                                                                                                         |
| 98.22                                                             | 06/27/12<br>06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                                                                                                     | 27.34<br>25.74<br>25.14<br>23.17<br>-24 (fp)<br>24.77                                                                                                                      | 72.66<br>74.26<br>74.86                                                                                                                                                  |
| 98.22                                                             | 06/06/13<br>11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                                                                                                                 | 25.74<br>25.14<br>23.17<br>~24 (fp)<br>24.77                                                                                                                               | 74.26<br>74.86                                                                                                                                                           |
| 98.22                                                             | 11/22/13<br>06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                                                                                                                             | 25.14<br>23.17<br>~24 (fp)<br>24.77                                                                                                                                        | 74.86                                                                                                                                                                    |
| 98.22                                                             | 06/24/14<br>12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                                                                                                                                         | 23.17<br>~24 (fp)<br>24.77                                                                                                                                                 |                                                                                                                                                                          |
| 98.22                                                             | 12/16/14<br>06/28/15<br>12/06/15<br>06/06/16                                                                                                                                                                                                                                     | ~24 (fp)<br>24.77                                                                                                                                                          | 76.83                                                                                                                                                                    |
| 98.22                                                             | 06/28/15<br>12/06/15<br>06/06/16                                                                                                                                                                                                                                                 | 24.77                                                                                                                                                                      | ~                                                                                                                                                                        |
|                                                                   | 12/06/15<br>06/06/16                                                                                                                                                                                                                                                             |                                                                                                                                                                            | 75.00                                                                                                                                                                    |
|                                                                   | 06/06/16                                                                                                                                                                                                                                                                         |                                                                                                                                                                            | 75.23                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                                                  | 27.03                                                                                                                                                                      | 72.97                                                                                                                                                                    |
|                                                                   | 12/09/16                                                                                                                                                                                                                                                                         | 25.08                                                                                                                                                                      | 74.92                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                                                  | 26.29                                                                                                                                                                      | 73.71                                                                                                                                                                    |
|                                                                   | 06/28/17                                                                                                                                                                                                                                                                         | 26.19                                                                                                                                                                      | 73.81                                                                                                                                                                    |
|                                                                   | 12/06/17                                                                                                                                                                                                                                                                         | 25.84                                                                                                                                                                      | 74.16                                                                                                                                                                    |
|                                                                   | 06/06/18                                                                                                                                                                                                                                                                         | 25.03                                                                                                                                                                      | 74.97                                                                                                                                                                    |
| MW-3                                                              | 08/21/09                                                                                                                                                                                                                                                                         | 24.11                                                                                                                                                                      | 74.11                                                                                                                                                                    |
| MW-3                                                              | 09/01/11                                                                                                                                                                                                                                                                         | 26.61                                                                                                                                                                      | 71.61<br>71.73                                                                                                                                                           |
| MW-3                                                              | 06/27/12                                                                                                                                                                                                                                                                         | 26.49                                                                                                                                                                      | 73.22                                                                                                                                                                    |
| MW-3                                                              | 06/06/13                                                                                                                                                                                                                                                                         | 25.00                                                                                                                                                                      | 73.85                                                                                                                                                                    |
| MW-3                                                              | 11/22/13                                                                                                                                                                                                                                                                         | 24.37                                                                                                                                                                      | 75.75                                                                                                                                                                    |
| MW-3                                                              | 06/24/14                                                                                                                                                                                                                                                                         | 22.47                                                                                                                                                                      | 73.89                                                                                                                                                                    |
| ıı .                                                              | 12/16/14                                                                                                                                                                                                                                                                         | 24.33                                                                                                                                                                      | 74.18                                                                                                                                                                    |
|                                                                   | 06/28/15                                                                                                                                                                                                                                                                         | 24.04                                                                                                                                                                      | 72.06                                                                                                                                                                    |
|                                                                   | 12/05/15                                                                                                                                                                                                                                                                         | 26.16                                                                                                                                                                      | 72.06                                                                                                                                                                    |
|                                                                   | 06/08/16                                                                                                                                                                                                                                                                         | 24.41                                                                                                                                                                      |                                                                                                                                                                          |
|                                                                   | 12/09/16                                                                                                                                                                                                                                                                         | 25.52                                                                                                                                                                      | 72.70<br>74.00                                                                                                                                                           |
|                                                                   | 06/17/17<br>12/06/17                                                                                                                                                                                                                                                             | 24.22<br>25.12                                                                                                                                                             | 73.10                                                                                                                                                                    |
|                                                                   | 06/06/18                                                                                                                                                                                                                                                                         | 24.28                                                                                                                                                                      | 73.10                                                                                                                                                                    |
| 97.36                                                             |                                                                                                                                                                                                                                                                                  | 23.21                                                                                                                                                                      | 74.15                                                                                                                                                                    |
| 97.30                                                             | 08/21/09<br>09/01/11                                                                                                                                                                                                                                                             | 25.91                                                                                                                                                                      | 71.45                                                                                                                                                                    |
|                                                                   | 06/27/12                                                                                                                                                                                                                                                                         | 25.72                                                                                                                                                                      | 71.64                                                                                                                                                                    |
|                                                                   | 06/06/13                                                                                                                                                                                                                                                                         | 24.15                                                                                                                                                                      | 73.21                                                                                                                                                                    |
|                                                                   | 11/22/13                                                                                                                                                                                                                                                                         | 23.50                                                                                                                                                                      | 73.86                                                                                                                                                                    |
|                                                                   | 06/24/14                                                                                                                                                                                                                                                                         | 21.39                                                                                                                                                                      | 75.97                                                                                                                                                                    |
|                                                                   | 12/15/14                                                                                                                                                                                                                                                                         | 23.37                                                                                                                                                                      | 73.99                                                                                                                                                                    |
| MW-4                                                              | 06/28/15                                                                                                                                                                                                                                                                         | 23.05                                                                                                                                                                      | 74.31                                                                                                                                                                    |
|                                                                   | 12/05/15                                                                                                                                                                                                                                                                         | 25.42                                                                                                                                                                      | 71.94                                                                                                                                                                    |
|                                                                   |                                                                                                                                                                                                                                                                                  | 23.48                                                                                                                                                                      | 73.88                                                                                                                                                                    |
|                                                                   | 06/08/16                                                                                                                                                                                                                                                                         |                                                                                                                                                                            | 72.65                                                                                                                                                                    |
|                                                                   | 12/00/40                                                                                                                                                                                                                                                                         | 24.71                                                                                                                                                                      |                                                                                                                                                                          |
|                                                                   | 12/09/16                                                                                                                                                                                                                                                                         | 24.51                                                                                                                                                                      | 72.85                                                                                                                                                                    |
|                                                                   | 12/09/16<br>06/28/17<br>12/06/17                                                                                                                                                                                                                                                 | 24.45                                                                                                                                                                      | 72.91                                                                                                                                                                    |

TABLE 1

**Summary of Water Measurements and Monitoring Well Top of Casing Elevations** 

| . ,       | Summary of Water Measurements and Monitoring Well Top of Casing Elevations  Top of Casing  Depth to  Water Leve |                      |                       |                                 |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|---------------------------------|--|--|--|--|--|--|
| Well I.D. | Top of Casing<br>Elevation (feet)                                                                               | Date                 | Groundwater<br>(feet) | Water Level<br>Elevation (feet) |  |  |  |  |  |  |
|           | 100.40                                                                                                          | 08/21/09             | 25.72                 | 74.68                           |  |  |  |  |  |  |
|           | 100.40                                                                                                          | 09/01/11             | 28.40                 | 72.00                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/27/12             | 28.28                 | 72.12                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/06/13             | 26.75                 | 73.65                           |  |  |  |  |  |  |
|           |                                                                                                                 |                      | 26.03                 | 74.37                           |  |  |  |  |  |  |
|           |                                                                                                                 | 11/22/13             | 24.04                 | 76.36                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/24/14             | 26.02                 | 74.38                           |  |  |  |  |  |  |
| MW-5      |                                                                                                                 | 06/24/14             | 25.61                 | 74.79                           |  |  |  |  |  |  |
| 14144-2   |                                                                                                                 | 06/28/15<br>12/06/15 |                       | 72.46                           |  |  |  |  |  |  |
|           |                                                                                                                 |                      | 27.94<br>26.00        | 74.40                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/08/16             | 25.67                 | 74.73                           |  |  |  |  |  |  |
|           |                                                                                                                 | 08/20/16             | 27.19                 | 73.21                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/07/16             | 27.19                 | 73.32                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/29/17             |                       | 73.50                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/05/17             | 26.90                 | 74.30                           |  |  |  |  |  |  |
|           | 07.02                                                                                                           | 06/05/18             | 26.10                 | 71.72                           |  |  |  |  |  |  |
|           | 97.92                                                                                                           | 06/27/12             | 26.20                 | 73.17                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/06/13             | 24.75                 | 73.17                           |  |  |  |  |  |  |
|           |                                                                                                                 | 11/22/13             | 24.07                 |                                 |  |  |  |  |  |  |
|           |                                                                                                                 | 06/24/14             | 22.08                 | 75.84                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/15/14             | 23.94                 | 73.98                           |  |  |  |  |  |  |
| MW-6      |                                                                                                                 | 06/28/15             | 23.61                 | 74.31                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/05/15             | 25.94                 | 71.98                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/08/16             | 24.05                 | 73.87                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/09/16             | 25.24                 | 72.68                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/27/17             | 25.03                 | 72.89                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/06/17             | 24.95                 | 72.97                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/06/18             | 23.98                 | 73.94                           |  |  |  |  |  |  |
|           | 80.74                                                                                                           | 06/27/12             | 12.41                 | 68.33                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/06/13             | 11.94                 | 68.80                           |  |  |  |  |  |  |
|           |                                                                                                                 | 11/22/13             | 12.47                 | 68.27                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/24/14             | 11.14                 | 69.60                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/15/14             | 11.28                 | 69.46                           |  |  |  |  |  |  |
| MW-7      |                                                                                                                 | 06/29/15             | 11.65                 | 69.09                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/06/15             | 12.98                 | 67.76                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/08/15             | 11.65                 | 69.09                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/09/16             | 12.51                 | 68.23                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/29/17             | 11.58                 | 69.16                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/07/17             | 12.18                 | 68.56                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/06/18             | 11.92                 | 68.82                           |  |  |  |  |  |  |
|           | 99.90                                                                                                           | 06/27/12             | 27.53                 | 72.37                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/06/13             | 26.10                 | 73.80                           |  |  |  |  |  |  |
|           |                                                                                                                 | 11/22/13             | 25.48                 | 74.42                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/24/14             | 23.65                 | 76.25                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/15/14             | 25.48                 | 74.42                           |  |  |  |  |  |  |
| MW-8      |                                                                                                                 | 06/28/15             | 25.17                 | 74.73                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/05/15             | 27.27                 | 72.63                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/08/16             | 25.50                 | 74.40                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/09/16             | 26.59                 | 73.31                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/28/17             | 26.32                 | 73.58                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/06/17             | 26.20                 | 73.70                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/06/18             | 25.25                 | 74.65                           |  |  |  |  |  |  |
|           | 81.19                                                                                                           | 11/22/13             | 12.71                 | 68.48                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/24/14             | 11.15                 | 70.04                           |  |  |  |  |  |  |
|           |                                                                                                                 | 12/16/14             | 11.38                 | 69.81                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/29/15             | 12.23                 | 68.96                           |  |  |  |  |  |  |
|           |                                                                                                                 | 06/29/15             | 12.23                 | 68.96                           |  |  |  |  |  |  |
| MW-9      |                                                                                                                 | 12/06/15             | 13.36                 | 67.83                           |  |  |  |  |  |  |
|           | ıı l                                                                                                            | 06/09/16             | 11.40                 | 69.79                           |  |  |  |  |  |  |

PEACHTREE ENVIRONMENTAL

### TABLE 1 Summary of Water Measurements and Monitoring Well Top of Casing Elevations

| Well I.D. | Top of Casing<br>Elevation (feet) |          | Depth to<br>Groundwater<br>(feet) | Water Level<br>Elevation (feet) |
|-----------|-----------------------------------|----------|-----------------------------------|---------------------------------|
|           |                                   | 12/09/16 | 12.55                             | 68.64                           |
|           |                                   | 06/28/17 | 11.50                             | 69.69                           |
|           |                                   | 12/06/17 | 12.74                             | 68.45                           |
|           |                                   | 06/06/18 | 10.85                             | 70.34                           |

TABLE 1

Summary of Water Measurements and Monitoring Well Top of Casing Elevations

|           |                                   |                      | Depth to              |                                 |  |
|-----------|-----------------------------------|----------------------|-----------------------|---------------------------------|--|
| Well I.D. | Top of Casing<br>Elevation (feet) | Date                 | Groundwater<br>(feet) | Water Level<br>Elevation (feet) |  |
|           | 85.67                             | 11/22/13             | 18.17                 | 67.50                           |  |
|           |                                   | 06/24/14             | 16.49                 | 69.18                           |  |
|           |                                   | 12/16/14             | 17.82                 | 67.85                           |  |
|           |                                   | 06/29/15             | 17.72                 | 67.95                           |  |
| NNW 40    |                                   | 12/06/15             | 18.45                 | 67.22                           |  |
| MW-10     |                                   | 06/08/16             | 17.28                 | 68.39                           |  |
|           |                                   | 12/09/16             | 18.36                 | 67.31                           |  |
|           |                                   | 06/28/17             | 17.34                 | 68.33                           |  |
|           |                                   | 12/07/17             | 18.13                 | 67.54                           |  |
|           |                                   | 06/06/18             | 17.15                 | 68.52                           |  |
|           | 90.65                             | 11/22/13             | 19.91                 | 70.74                           |  |
|           |                                   | 06/24/14             | 17.86                 | 72.79                           |  |
|           |                                   | 12/15/14             | 19.40                 | 71.25                           |  |
|           |                                   | 06/28/15             | 19.33                 | 71.32                           |  |
|           |                                   | 12/05/15             | 21.27                 | 69.38                           |  |
| MW-11     |                                   | 06/08/16             | 19.20                 | 71.45                           |  |
|           |                                   | 12/09/16             | 20.53                 | 70.12                           |  |
|           |                                   | 06/29/17             | 19.83                 | 70.82                           |  |
|           |                                   | 12/06/17             | 20.04                 | 70.61                           |  |
|           |                                   | 06/06/18             | 19.08                 | 71.57                           |  |
|           | 65.53                             | 11/22/13             | 3.57                  | 61.96                           |  |
|           | 33.33                             | 06/24/14             | 2.89                  | 62.64                           |  |
|           |                                   | 12/16/14             | 2.61                  | 62.92                           |  |
|           |                                   | 06/29/15             | 3.58                  | 61.95                           |  |
|           |                                   | 12/06/15             | 3.34                  | 62.19                           |  |
| MW-12     |                                   | 06/09/16             | 2.32                  | 63.21                           |  |
|           |                                   | 12/09/16             | 3.08                  | 62.45                           |  |
|           |                                   | 06/29/17             | 1.85                  | 63.68                           |  |
|           |                                   | 12/07/17             | 3.28                  | 62.25                           |  |
|           |                                   | 06/06/18             | 1.99                  | 63.54                           |  |
|           | 97.16                             | 11/22/13             | 21.54                 | 75.62                           |  |
|           | 07.10                             | 06/24/14             | 19.55                 | 77.61                           |  |
|           |                                   | 12/15/14             | 21.48                 | 75.68                           |  |
|           |                                   | 06/28/15             | 21.25                 | 75.91                           |  |
| MW-13     |                                   | 12/05/15             | 23.40                 | 73.76                           |  |
|           |                                   | 06/07/16             | 21.00                 | 76.16                           |  |
|           |                                   | 12/08/16             | 22.61                 | 74.55                           |  |
|           |                                   | 06/27/17<br>12/06/17 | 22.03<br>22.24        | 75.13<br>74.92                  |  |
|           |                                   | 06/06/18             | 20.65                 | 76.51                           |  |
| MW-14     | 59.92                             | 01/27/15             | 4.22                  | 55.70                           |  |
|           |                                   | 06/29/15             | 5.69                  | 54.23                           |  |
|           |                                   | 12/06/15             | 4.51                  | 55.41                           |  |
|           |                                   | 06/09/16             | 4.27                  | 55.65                           |  |
|           |                                   | 12/09/16             | 4.49                  | 55.43                           |  |
|           |                                   | 06/29/17             | 4.05                  | 55.87                           |  |
|           |                                   | 12/07/17             | 4.52                  | 55.40                           |  |
|           |                                   | 06/06/18             | 4.39                  | 55.53                           |  |
|           | ıı L                              |                      | L                     |                                 |  |

TABLE 1
Summary of Water Measurements and Monitoring Well Top of Casing Elevations

| ,         | er Measurements and Mon           |          | Depth to              |                                 |  |  |
|-----------|-----------------------------------|----------|-----------------------|---------------------------------|--|--|
| Well I.D. | Top of Casing<br>Elevation (feet) | Date     | Groundwater<br>(feet) | Water Level<br>Elevation (feet) |  |  |
| MW-15     | 100.39                            | 12/07/15 | 27.71                 | 72.68                           |  |  |
|           |                                   | 06/08/16 | 25.75                 | 74.64                           |  |  |
|           |                                   | 08/20/16 | 25.43                 | 74.96                           |  |  |
|           |                                   | 12/10/16 | 27.05                 | 73.34                           |  |  |
|           |                                   | 06/29/17 | 26.83                 | 73.56                           |  |  |
|           |                                   | 12/05/17 | 26.60                 | 73.79                           |  |  |
|           |                                   | 06/05/18 | 25.82                 | 74.57                           |  |  |
| MW-16     | 99.54                             | 12/07/15 | 26.67                 | 72.87                           |  |  |
|           |                                   | 06/08/16 | 24.84                 | 74.70                           |  |  |
|           |                                   | 12/08/16 | 25.96                 | 73.58                           |  |  |
|           |                                   | 06/28/17 | 25.83                 | 73.71                           |  |  |
|           |                                   | 12/05/17 | 25.58                 | 73.96                           |  |  |
|           |                                   | 06/05/18 | 24.78                 | 74.76                           |  |  |
| MW-17     | 100.70                            | 12/07/15 | 27.59                 | 73.11                           |  |  |
|           |                                   | 06/07/16 | 25.54                 | 75.16                           |  |  |
|           |                                   | 06/07/16 | 25.54                 | 75.16                           |  |  |
|           |                                   | 12/08/16 | 26.75                 | 73.95                           |  |  |
|           |                                   | 06/28/17 | 26.79                 | 73.91                           |  |  |
|           |                                   | 12/05/17 | 23.51                 | 77.19                           |  |  |
|           |                                   | 06/06/18 | 25.73                 | 74.97                           |  |  |
| MW-18     | 99.89                             | 12/07/15 | 26.69                 | 73.20                           |  |  |
| 14144-10  | 33.03                             | 06/07/16 | 25.00                 | 74.89                           |  |  |
|           |                                   | 12/08/16 | 26.24                 | 73.65                           |  |  |
|           |                                   | 06/28/17 | 26.18                 | 73.71                           |  |  |
|           |                                   | 12/05/17 | 25.94                 | 73.95                           |  |  |
|           |                                   | 06/05/18 | 25.17                 | 74.72                           |  |  |
| DW-1      | 98.30                             | 01/17/15 | 46.23                 | 52.07                           |  |  |
| DVV-1     | 98.30                             | 06/08/16 | 45.50                 | 52.80                           |  |  |
|           |                                   | 12/09/16 | 46.68                 | 51.62                           |  |  |
|           |                                   | 06/28/17 | 46.89                 | 51.41                           |  |  |
|           |                                   |          | 45.19                 | 53.11                           |  |  |
|           |                                   | 12/06/17 |                       | 53.61                           |  |  |
| MW-19     | 101.14                            | 06/05/18 | 44.69                 | 75.06                           |  |  |
| IVIVV-19  | 101.14                            | 08/20/16 | 26.08                 | 73.44                           |  |  |
|           |                                   | 12/10/16 | 27.70                 | 73.53                           |  |  |
|           |                                   | 06/28/17 | 27.61                 | 73.81                           |  |  |
|           |                                   | 12/6/170 | 27.33                 |                                 |  |  |
| B414/ 00  | 400.00                            | 06/06/18 | 26.57                 | 74.57                           |  |  |
| MW-20     | 100.22                            | 08/21/16 | 24.38                 | 75.84<br>74.03                  |  |  |
| B8184 O4  | 400.60                            | 12/08/16 | 26.19                 |                                 |  |  |
| MW-21     | 100.69                            | 08/21/16 | 25.22                 | 75.47                           |  |  |
|           |                                   | 12/08/16 | 26.90                 | 73.79                           |  |  |
|           |                                   | 06/28/17 | 26.84                 | 73.85                           |  |  |
|           |                                   | 12/05/17 | 26.52                 | 74.14                           |  |  |
| 100 OC    | 101.00                            | 06/06/18 | 25.70                 | 74.99                           |  |  |
| MW-22     | 101.00                            | 08/21/16 | 25.61                 | 75.39                           |  |  |
|           | 100.00                            | 12/08/16 | 26.15                 | 74.85                           |  |  |
| MW-23     | 100.68                            | 08/21/16 | 25.25                 | 75.43                           |  |  |
|           |                                   | 12/08/16 | 26.82                 | 73.86                           |  |  |
| MW-24     | 100.76                            | 08/21/16 | 25.16                 | 75.60                           |  |  |
|           |                                   | 12/08/16 | 26.85                 | 73.91                           |  |  |
|           |                                   | 06/06/18 | 25.77                 | 74.99                           |  |  |

Top of casing elevation for MW-1 used as project benchmark, assigned an elevation of 100.00 feet; remaining elevations surveyed relative to MW-1 by Peachtree Environmental personnel.

Top of casing elevation for MW-2 was determined to be 100.18 on December 7,2015 by Peachtree Environmental personnel.

#### TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |           |          |           |          |            |           | MW-1       |           |           |          |           |           |           |
|--------------------------|--------------|-----------|----------|-----------|----------|------------|-----------|------------|-----------|-----------|----------|-----------|-----------|-----------|
| Sample Date              |              | 8/20/2009 | 9/1/2011 | 6/28/2012 | 6/6/2013 | 11/20/2013 | 6/24/2014 | 12/15/2014 | 6/27/2015 | 12/5/2015 | 6/7/2016 | 12/8/2016 | 6/28/2017 | 12/6/2017 |
| Results reported in µg/L | TYPE 1/3 RRS |           |          |           |          |            |           |            |           |           |          |           |           |           |
| TCL Volatile Organics    | TIPE I/3 KKS |           |          |           |          |            |           |            |           |           |          |           |           |           |
| Acetone                  | 2,000        | ND 50     | ND 50    | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Benzene                  | 5            | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| 2-Butanone (MEK)         | 2,000        | ND 50     | ND 50    | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Chloroform               | 80           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| cis-1,2-Dichloroethene   | 70           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Cyclohexane              | 5            | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Ethylbenzene             | 1,000        | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | 23        | ND 5.0    |
| Isopropylbenzene         | 5            | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| m,p-Xylene               | 10,000       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | 88        | ND 5.0    |
| Methyl tert-butyl ether  | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Methylcyclohexane        | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| o-Xylene                 | 10,000       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | 31        | ND 5.0    |
| Tetrachloroethene        | 5            | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Toluene                  | 1,000        | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | 19        | ND 5.0    |
| Trans-1,2-Dichloroethene | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Trichloroethene          | 5            | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Vinyl chloride           | 2            | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0   | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    |

#### NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

Type 1/3 used for xylene isomers is taken from Total xylenes

#### TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |          |           |          |            |           |            | MW-2      |           |          |           |           |           |          |        |
|--------------------------|--------------|----------|-----------|----------|------------|-----------|------------|-----------|-----------|----------|-----------|-----------|-----------|----------|--------|
| Sample Date              | 8/20/2009    | 9/1/2011 | 6/28/2012 | 6/6/2013 | 11/20/2013 | 6/25/2014 | 12/16/2014 | 6/28/2015 | 12/6/2015 | 6/8/2016 | 12/8/2016 | 6/28/2017 | 12/6/2017 | 6/6/2018 |        |
| Results reported in μg/L | TYPE 1/3 RRS |          |           |          |            |           |            |           |           |          |           |           |           |          |        |
| TCL Volatile Organics    | TIPE I/3 KKS |          |           |          |            |           |            |           |           |          |           |           |           |          |        |
| Acetone                  | 2,000        | ND 50    | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 50    | ND 50  |
| Benzene                  | 5            | 15       | 12        | 8.8      | 6.6        | 11        | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0 |
| 2-Butanone (MEK)         | 2,000        | ND 50    | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 50    | ND 5.0 |
| Chloroform               | 80           | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0 |
| cis-1,2-Dichloroethene   | 70           | 12       | 10        | 33       | 9.9        | 16        | ND 5.0     | ND 5.0    | 7.8       | ND 5.0   | 6.0       | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0 |
| Cyclohexane              | 5            | 130      | 190       | 6.3      | 67         | 89        | ND 5.0     | ND 5.0    | ND 5.0    | 55       | 48        | 47        | 49        | 34       | 42     |
| Ethylbenzene             | 1,000        | 500      | 740       | 280      | 490        | 1,100     | 2,100      | 2,600     | 740       | 600      | 500       | 660       | 450       | 370      | 420    |
| Isopropylbenzene         | 5            | 41       | 77        | 36       | 65         | 60        | ND 5.0     | ND 5.0    | 55        | 51       | 36        | 30        | 38        | 21       | 32     |
| m,p-Xylene               | 10,000       | 1,700    | 2,800     | 1,000    | 1,800      | 4,100     | 8,000      | 9,900     | 2,900     | 2,100    | 1,900     | 2,500     | 1,700     | 1,400    | 1,700  |
| Methyl tert-butyl ether  | NR           | 90       | 23        | 12       | 25         | 22        | ND 5.0     | ND 5.0    | 8.0       | ND 5.0   | ND 5.0    | ND 5.0    | 12        | 56       | 85     |
| Methylcyclohexane        | NR           | 190      | 190       | 52       | 100        | 150       | 100        | ND 5.0    | 100       | 130      | 140       | 150       | 140       | 79       | 120    |
| o-Xylene                 | 10,000       | 730      | 1,100     | 440      | 680        | 1,900     | 3,700      | 4,400     | 1,200     | 870      | 760       | 1,000     | 690       | 610      | 670    |
| Tetrachloroethene        | 5            | 19       | 18        | 680      | 14         | 13        | ND 5.0     | ND 5.0    | 11        | 9.1      | 9.4       | 10        | 9.8       | 6.8      | 7.6    |
| Toluene                  | 1,000        | 1,600    | 1,400     | 620      | 1,000      | 2,600     | 2,400      | 4,000     | 1,200     | 760      | 630       | 670       | 540       | 430      | 370    |
| Trans-1,2-Dichloroethene | NR           | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0 |
| Trichloroethene          | 5            | 12       | 10        | 150      | 5.2        | 10        | ND 5.0     | ND 5.0    | 6.9       | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0 |
| Vinyl chloride           | 2            | ND 2.0   | ND 2.0    | ND 2.0   | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0 |

#### NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

Type 1/3 used for xylene isomers is taken from Total xylenes

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |           |          |           |          |            | M\        | V-3        |           |           |          |           |           |           |          |
|--------------------------|--------------|-----------|----------|-----------|----------|------------|-----------|------------|-----------|-----------|----------|-----------|-----------|-----------|----------|
| Sample Date              |              | 8/20/2009 | 9/1/2011 | 6/27/2012 | 6/7/2013 | 11/21/2013 | 6/25/2014 | 12/16/2014 | 6/28/2015 | 12/5/2015 | 6/8/2016 | 12/9/2016 | 6/27/2017 | 12/6/2017 | 6/6/2018 |
| Results reported in μg/L | TYPE 1/3 RRS |           |          |           |          |            |           |            |           |           |          |           |           |           |          |
| TCL Volatile Organics    | 11PE 1/3 KKS |           |          |           |          |            |           |            |           |           |          |           |           |           |          |
| Acetone                  | 2,000        | ND 50     | ND 50    | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 50    |
| Benzene                  | 5            | ND 5.0    | 13       | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| 2-Butanone (MEK)         | 2,000        | ND 50     | ND 50    | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 5.0   |
| Chloroform               | 80           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| cis-1,2-Dichloroethene   | 70           | 15        | 140      | 26        | ND 5.0   | 18         | 33        | 49         | 14        | 190       | 81       | 88        | 69        | 19        | 9.4      |
| Cyclohexane              | 5            | ND 5.0    | 13       | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Ethylbenzene             | 1,000        | ND 5.0    | 62       | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Isopropylbenzene         | 5            | ND 5.0    | 20       | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| m,p-Xylene               | 10,000       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Methyl tert-butyl ether  | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Methylcyclohexane        | NR           | ND 5.0    | 16       | 7.2       | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | 6.5       | ND 5.0    | ND 5.0    | ND 5.0   |
| o-Xylene                 | 10,000       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Tetrachloroethene        | 5            | 60        | 10       | 7.6       | 76       | 310        | 80        | 320        | 600       | 200       | 31       | 42        | 13        | 16        | 17       |
| Toluene                  | 1,000        | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Trans-1,2-Dichloroethene | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Trichloroethene          | 5            | 15        | 5        | ND 5.0    | ND 5.0   | 13         | 5.3       | 20         | 23        | 52        | 11       | 57        | 14        | 5.1       | ND 5.0   |
| Vinyl chloride           | 2            | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0   | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    | ND 2.0   |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |           |          |           |           |            |           | MW-4       |           |           |          |           |           |           |
|--------------------------|--------------|-----------|----------|-----------|-----------|------------|-----------|------------|-----------|-----------|----------|-----------|-----------|-----------|
| Sample Date              |              | 8/21/2009 | 9/1/2011 | 6/27/2012 | 6/25/2014 | 11/21/2013 | 6/25/2014 | 12/15/2014 | 6/28/2015 | 12/5/2015 | 6/8/2016 | 12/9/2016 | 6/28/2017 | 12/6/2017 |
| Results reported in µg/L | TYPE 1/3 RRS |           |          |           |           |            |           |            |           |           |          |           |           |           |
| TCL Volatile Organics    | TIPE 1/3 KKS |           |          |           |           |            |           |            |           |           |          |           |           |           |
| Acetone                  | 2,000        | ND 50     | ND 50    | ND 50     | ND 50     | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Benzene                  | 5            | ND 5.0    | ND 5.0   | 12        | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| 2-Butanone (MEK)         | 2,000        | ND 50     | ND 50    | ND 50     | ND 50     | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Chloroform               | 80           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| cis-1,2-Dichloroethene   | 70           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Cyclohexane              | 5            | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Ethylbenzene             | 1,000        | ND 5.0    | ND 5.0   | 13        | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Isopropylbenzene         | 5            | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| m,p-Xylene               | 10,000       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | 5.3      | ND 5.0    | ND 5.0    | ND 5.0    |
| Methyl tert-butyl ether  | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Methylcyclohexane        | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| o-Xylene                 | 10,000       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Tetrachloroethene        | 5            | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Toluene                  | 1,000        | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Trans-1,2-Dichloroethene | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Trichloroethene          | 5            | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Vinyl chloride           | 2            | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |           |          |           |          |            |           |            | MW-5      |           |          |           |           |           |           | -        |
|--------------------------|--------------|-----------|----------|-----------|----------|------------|-----------|------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|----------|
| Sample Date              |              | 8/20/2009 | 9/1/2011 | 6/28/2012 | 6/7/2013 | 11/21/2013 | 6/25/2014 | 12/16/2014 | 6/28/2015 | 12/6/2015 | 6/8/2016 | 8/20/2016 | 12/7/2016 | 6/29/2017 | 12/5/2017 | 6/5/2018 |
| Results reported in µg/L | TYPE 1/3 RRS |           |          |           |          |            |           |            |           |           |          |           |           |           |           |          |
| TCL Volatile Organics    | TIPE I/3 KKS |           |          |           |          |            |           |            |           |           |          |           |           |           |           |          |
| Acetone                  | 2,000        | ND 50     | ND 50    | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 50     | ND 50    |
| Benzene                  | 5            | 22        | 14       | 20        | 7.9      | 9.3        | 13        | 17         | ND 5.0    | 12        | 15       | 11        | 29        | 27        | 15        | 5.6      |
| 2-Butanone (MEK)         | 2,000        | ND 50     | ND 50    | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 50     | ND 50    |
| Chloroform               | 80           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0    | ND 50    |
| cis-1,2-Dichloroethene   | 70           | 23        | 9.5      | 30        | 16       | 11         | 9.0       | 14         | ND 5.0    | 15        | 19       | 14        | 29        | 37        | 25        | 37       |
| Cyclohexane              | 5            | 73        | ND 5.0   | ND 5.0    | ND 5.0   | 5.2        | 5.8       | 14         | ND 5.0    | 27        | 15       | ND 5.0    | 13        | 10        | 12        | ND 50    |
| Ethylbenzene             | 1,000        | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | 7.6       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0    | ND 50    |
| Isopropylbenzene         | 5            | 9.6       | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0    | ND 50    |
| m,p-Xylene               | 10,000       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | 28        | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0    | ND 50    |
| Methyl tert-butyl ether  | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0    | ND 50    |
| Methylcyclohexane        | NR           | 110       | 9.1      | ND 5.0    | ND 5.0   | 5.4        | 5.2       | 13         | ND 5.0    | 11        | 9.3      | ND 5.0    | 6.4       | 6         | 8.6       | ND 50    |
| o-Xylene                 | 10,000       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | 11        | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0    | ND 50    |
| Tetrachloroethene        | 5            | 480       | 170      | 34        | 990      | 5,200      | 1,100     | 560        | 980       | 180       | 1,100    | 1,500     | 240       | 100       | 1,400     | 890      |
| Toluene                  | 1,000        | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | 7.0       | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0    | ND 50    |
| Trans-1,2-Dichloroethene | NR           | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0    | ND 50    |
| Trichloroethene          | 5            | 30        | 6.8      | 11        | 53       | 36         | 25        | 28         | 21        | 67        | 110      | 120       | 46        | 52        | 74        | 170      |
| Vinyl chloride           | 2            | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0   | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    | ND 2.0    | ND 2.0   |

5 of 18

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

Type 1/3 used for xylene isomers is taken from Total xylenes

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |                 |           |          |            |           |            | MV        | V-6       |          |           |           |           |          |
|--------------------------|-----------------|-----------|----------|------------|-----------|------------|-----------|-----------|----------|-----------|-----------|-----------|----------|
| Sample Date              |                 | 6/27/2012 | 6/7/2013 | 11/21/2013 | 6/25/2014 | 12/15/2014 | 6/28/2015 | 12/5/2015 | 6/8/2016 | 12/9/2016 | 6/27/2017 | 12/6/2017 | 6/6/2018 |
| Results reported in µg/L | TYPE 1/3 RRS    |           |          |            |           |            |           |           |          |           |           |           |          |
| TCL Volatile Organics    | = 1 TPE 1/3 KKS |           |          |            |           |            |           |           |          |           |           |           |          |
| Acetone                  | 2,000           | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 50    |
| Benzene                  | 5               | 33        | 15       | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | 7.6       | 6.8       | ND 5.0   |
| 2-Butanone (MEK)         | 2,000           | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 50    |
| Chloroform               | 80              | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| cis-1,2-Dichloroethene   | 70              | 44        | 56       | 33         | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | 9.7       | 19        | 39        | 57       |
| Cyclohexane              | 5               | ND 5.0    | 6.9      | 6.3        | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | 5.6       | ND 5.0   |
| Ethylbenzene             | 1,000           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | 6.7      |
| Isopropylbenzene         | 5               | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| m,p-Xylene               | 10,000          | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | 25       |
| Methyl tert-butyl ether  | NR              | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Methylcyclohexane        | NR              | 6.3       | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| o-Xylene                 | 10,000          | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | 8.8      |
| Tetrachloroethene        | 5               | 340       | 660      | 680        | 450       | 72         | 49        | 240       | 500      | 390       | 490       | 600       | 1,100    |
| Toluene                  | 1,000           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | 7.7      |
| Trans-1,2-Dichloroethene | NR              | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Trichloroethene          | 5               | 67        | 100      | 150        | 89        | 16         | 9.8       | 77        | 92       | 120       | 190       | 400       | 770      |
| Vinyl chloride           | 2               | ND 2.0    | ND 2.0   | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    | ND 2.0   |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |           |          |            |           |            | MV        | N-7       |          |           |           |           |          |
|--------------------------|--------------|-----------|----------|------------|-----------|------------|-----------|-----------|----------|-----------|-----------|-----------|----------|
| Sample Date              |              | 6/29/2012 | 6/7/2013 | 11/21/2013 | 6/25/2014 | 12/16/2014 | 6/29/2015 | 12/6/2015 | 6/8/2016 | 12/9/2016 | 6/29/2017 | 12/7/2017 | 6/6/2018 |
| Results reported in µg/L | TVDE 4/0 DD0 |           |          |            |           |            |           | 1         | 1        |           | 1         |           |          |
| TCL Volatile Organics    | TYPE 1/3 RRS |           |          |            |           |            |           |           |          |           |           |           |          |
| Acetone                  | 2,000        | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 50    |
| Benzene                  | 5            | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| 2-Butanone (MEK)         | 2,000        | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     | ND 50    |
| Chloroform               | 80           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| cis-1,2-Dichloroethene   | 70           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | 5.9      | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Cyclohexane              | 5            | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Ethylbenzene             | 1,000        | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Isopropylbenzene         | 5            | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| m,p-Xylene               | 10,000       | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Methyl tert-butyl ether  | NR           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Methylcyclohexane        | NR           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| o-Xylene                 | 10,000       | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Tetrachloroethene        | 5            | 150       | 280      | 180        | 99        | 170        | 83        | 28        | 140      | 140       | 430       | 330       | 420      |
| Toluene                  | 1,000        | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Trans-1,2-Dichloroethene | NR           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   |
| Trichloroethene          | 5            | 22        | 47       | 21         | 6.8       | 21         | 16        | ND 5.0    | 17       | 16        | 51        | 60        | 94       |
| Vinyl chloride           | 2            | ND 2.0    | ND 2.0   | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    | ND 2.0   |

7 of 18

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |           |          |            |           |            | MW-8      |           |          |           |           |           |
|--------------------------|--------------|-----------|----------|------------|-----------|------------|-----------|-----------|----------|-----------|-----------|-----------|
| Sample Date              |              | 6/29/2012 | 6/6/2013 | 11/21/2013 | 6/25/2014 | 12/15/2014 | 6/28/2015 | 12/5/2015 | 6/8/2016 | 12/9/2016 | 6/28/2017 | 12/6/2017 |
| Results reported in µg/L | TYPE 1/3 RRS |           |          |            |           |            |           |           |          |           |           |           |
| TCL Volatile Organics    | TIPE I/3 KKS |           |          |            |           |            |           |           |          |           |           |           |
| Acetone                  | 2,000        | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Benzene                  | 5            | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| 2-Butanone (MEK)         | 2,000        | ND 50     | ND 50    | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Chloroform               | 80           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| cis-1,2-Dichloroethene   | 70           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Cyclohexane              | 5            | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Ethylbenzene             | 1,000        | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Isopropylbenzene         | 5            | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| m,p-Xylene               | 10,000       | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Methyl tert-butyl ether  | NR           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Methylcyclohexane        | NR           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| o-Xylene                 | 10,000       | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Tetrachloroethene        | 5            | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Toluene                  | 1,000        | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Trans-1,2-Dichloroethene | NR           | ND 5.0    | ND 5.0   | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Trichloroethene          | 5            | ND 5.0    | ND 5.0   | ND 5.0     | 5.3       | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Vinyl chloride           | 2            | ND 2.0    | ND 2.0   | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |            |           |            |           | MW-9      |          |           |           |           |
|--------------------------|--------------|------------|-----------|------------|-----------|-----------|----------|-----------|-----------|-----------|
| Sample Date              |              | 11/20/2013 | 6/25/2014 | 12/16/2014 | 6/29/2015 | 12/6/2015 | 6/9/2016 | 12/9/2016 | 6/28/2017 | 12/6/2017 |
| Results reported in µg/L | TYPE 1/3 RRS |            |           |            |           |           |          |           |           |           |
| TCL Volatile Organics    | TIPE I/3 KKS |            |           |            |           |           |          |           |           |           |
| Acetone                  | 2,000        | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Benzene                  | 5            | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| 2-Butanone (MEK)         | 2,000        | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Chloroform               | 80           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| cis-1,2-Dichloroethene   | 70           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Cyclohexane              | 5            | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Ethylbenzene             | 1,000        | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Isopropylbenzene         | 5            | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| m,p-Xylene               | 10,000       | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Methyl tert-butyl ether  | NR           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Methylcyclohexane        | NR           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| o-Xylene                 | 10,000       | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Tetrachloroethene        | 5            | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Toluene                  | 1,000        | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Trans-1,2-Dichloroethene | NR           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Trichloroethene          | 5            | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Vinyl chloride           | 2            | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |            |           |            |           | MW-1      | n         |          |           |           |           |
|--------------------------|--------------|------------|-----------|------------|-----------|-----------|-----------|----------|-----------|-----------|-----------|
| Sample Date              |              | 11/20/2013 | 6/25/2014 | 12/16/2014 | 6/28/2015 | 6/29/2015 | 12/6/2015 | 6/8/2016 | 12/9/2016 | 6/28/2017 | 12/7/2017 |
| Results reported in µg/L | TVDE 4/0 DD0 |            |           |            |           |           |           |          |           |           |           |
| TCL Volatile Organics    | TYPE 1/3 RRS |            |           |            |           |           |           |          |           |           |           |
| Acetone                  | 2,000        | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Benzene                  | 5            | 15         | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| 2-Butanone (MEK)         | 2,000        | ND 50      | ND 50     | ND 50      | ND 50     | ND 50     | ND 50     | ND 50    | ND 50     | ND 50     | ND 50     |
| Chloroform               | 80           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| cis-1,2-Dichloroethene   | 70           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Cyclohexane              | 5            | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Ethylbenzene             | 1,000        | 13         | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Isopropylbenzene         | 5            | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| m,p-Xylene               | 10,000       | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Methyl tert-butyl ether  | NR           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Methylcyclohexane        | NR           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| o-Xylene                 | 10,000       | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Tetrachloroethene        | 5            | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Toluene                  | 1,000        | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Trans-1,2-Dichloroethene | NR           | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Trichloroethene          | 5            | ND 5.0     | ND 5.0    | ND 5.0     | ND 5.0    | ND 5.0    | ND 5.0    | ND 5.0   | ND 5.0    | ND 5.0    | ND 5.0    |
| Vinyl chloride           | 2            | ND 2.0     | ND 2.0    | ND 2.0     | ND 2.0    | ND 2.0    | ND 2.0    | ND 2.0   | ND 2.0    | ND 2.0    | ND 2.0    |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |          |           |          |         | MW-11   |        |         |         |         |
|--------------------------|--------------|----------|-----------|----------|---------|---------|--------|---------|---------|---------|
| Sample Date              |              | 11/20/13 | 6/25/2014 | 12/15/14 | 6/28/15 | 12/5/15 | 6/8/16 | 12/9/16 | 6/29/17 | 12/6/17 |
| Results reported in µg/L | TYPE 1/3 RRS |          |           |          |         |         |        |         |         |         |
| TCL Volatile Organics    | TIPE I/3 KKS |          |           |          |         |         |        |         |         |         |
| Acetone                  | 2,000        | ND 50    | ND 50     | ND 50    | ND 50   | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   |
| Benzene                  | 5            | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| 2-Butanone (MEK)         | 2,000        | ND 50    | ND 50     | ND 50    | ND 50   | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   |
| Chloroform               | 80           | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| cis-1,2-Dichloroethene   | 70           | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Cyclohexane              | 5            | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Ethylbenzene             | 1,000        | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Isopropylbenzene         | 5            | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| m,p-Xylene               | 10,000       | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Methyl tert-butyl ether  | NR           | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Methylcyclohexane        | NR           | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| o-Xylene                 | 10,000       | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Tetrachloroethene        | 5            | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Toluene                  | 1,000        | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Trans-1,2-Dichloroethene | NR           | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Trichloroethene          | 5            | ND 5.0   | ND 5.0    | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Vinyl chloride           | 2            | ND 2.0   | ND 2.0    | ND 2.0   | ND 2.0  | ND 2.0  | ND 2.0 | ND 2.0  | ND 2.0  | ND 2.0  |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |          |         |          |         | MW      | <i>I</i> -12 |         |         |         |        |
|--------------------------|--------------|----------|---------|----------|---------|---------|--------------|---------|---------|---------|--------|
| Sample Date              |              | 11/22/13 | 6/25/14 | 12/16/14 | 6/29/15 | 12/5/15 | 6/8/16       | 12/9/16 | 6/29/17 | 12/7/17 | 6/6/18 |
| Results reported in µg/L | TYPE 1/3 RRS |          |         |          |         |         |              |         |         |         |        |
| TCL Volatile Organics    | TIPE 1/3 KK3 |          |         |          |         |         |              |         |         |         |        |
| Acetone                  | 2,000        | ND 50    | ND 50   | ND 50    | ND 50   | ND 50   | ND 50        | ND 50   | ND 50   | ND 50   | ND 50  |
| Benzene                  | 5            | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| 2-Butanone (MEK)         | 2,000        | ND 50    | ND 50   | ND 50    | ND 50   | ND 50   | ND 50        | ND 50   | ND 50   | ND 50   | ND 50  |
| Chloroform               | 80           | ND 5.0   | ND 50   | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| cis-1,2-Dichloroethene   | 70           | ND 5.0   | ND 5.0  | 5.2      | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Cyclohexane              | 5            | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Ethylbenzene             | 1,000        | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Isopropylbenzene         | 5            | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| m,p-Xylene               | 10,000       | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Methyl tert-butyl ether  | NR           | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Methylcyclohexane        | NR           | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| o-Xylene                 | 10,000       | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Tetrachloroethene        | 5            | 40       | 22      | 11       | 6.5     | 13      | 19           | 16      | 5.6     | 13      | ND 5.0 |
| Toluene                  | 1,000        | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Trans-1,2-Dichloroethene | NR           | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Trichloroethene          | 5            | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Vinyl chloride           | 2            | ND 2.0   | ND 2.0  | ND 2.0   | ND 2.0  | ND 2.0  | ND 2.0       | ND 2.0  | ND 2.0  | ND 2.0  | ND 2.0 |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |          |         |          |         | MW-13   |        |         |         |         |
|--------------------------|--------------|----------|---------|----------|---------|---------|--------|---------|---------|---------|
| Sample Date              |              | 11/22/13 | 6/24/14 | 12/15/14 | 6/28/15 | 12/5/15 | 6/7/16 | 12/8/16 | 6/27/17 | 12/6/17 |
| Results reported in μg/L | TYPE 1/3 RRS |          |         |          |         |         |        |         |         |         |
| TCL Volatile Organics    | TIPE 1/3 KK3 |          |         |          |         |         |        |         |         |         |
| Acetone                  | 2,000        | ND 50    | ND 50   | ND 50    | ND 50   | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   |
| Benzene                  | 5            | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| 2-Butanone (MEK)         | 2,000        | ND 50    | ND 50   | ND 50    | ND 50   | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   |
| Chloroform               | 80           | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| cis-1,2-Dichloroethene   | 70           | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Cyclohexane              | 5            | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Ethylbenzene             | 1,000        | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Isopropylbenzene         | 5            | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| m,p-Xylene               | 10,000       | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Methyl tert-butyl ether  | NR           | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Methylcyclohexane        | NR           | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| o-Xylene                 | 10,000       | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Tetrachloroethene        | 5            | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Toluene                  | 1,000        | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Trans-1,2-Dichloroethene | NR           | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Trichloroethene          | 5            | ND 5.0   | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Vinyl chloride           | 2            | ND 2.0   | ND 2.0  | ND 2.0   | ND 2.0  | ND 2.0  | ND 2.0 | ND 2.0  | ND 2.0  | ND 2.0  |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |         |         |         | MV     | V-14    |         |         |        |         |        |         | MW-15   |         |         |        |
|--------------------------|--------------|---------|---------|---------|--------|---------|---------|---------|--------|---------|--------|---------|---------|---------|---------|--------|
| Sample Date              |              | 1/27/15 | 6/29/15 | 12/6/15 | 6/8/16 | 12/9/16 | 6/29/17 | 12/7/17 | 6/6/18 | 12/7/15 | 6/8/16 | 8/20/16 | 12/9/16 | 6/27/17 | 12/5/17 | 6/5/18 |
| Results reported in µg/L | TYPE 1/3 RRS |         |         |         |        |         |         |         |        |         |        |         |         |         |         |        |
| TCL Volatile Organics    | TIPE I/3 KKS |         |         |         |        |         |         |         |        |         |        |         |         |         |         |        |
| Acetone                  | 2,000        | ND 50   | ND 50   | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   | ND 50  | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   | ND 50   | ND 50  |
| Benzene                  | 5            | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | 6.6    |
| 2-Butanone (MEK)         | 2,000        | ND 50   | ND 50   | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   | ND 5.0 | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   | ND 50   | 86     |
| Chloroform               | 80           | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| cis-1,2-Dichloroethene   | 70           | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | 76      | 1500   | 880     | 600     | 430     | 370     | 520    |
| Cyclohexane              | 5            | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Ethylbenzene             | 1,000        | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Isopropylbenzene         | 5            | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| m,p-Xylene               | 10,000       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Methyl tert-butyl ether  | NR           | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Methylcyclohexane        | NR           | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| o-Xylene                 | 10,000       | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Tetrachloroethene        | 5            | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | 830     | 23     | ND 5.0  | ND 5.0  | 23      | 46      | ND 5.0 |
| Toluene                  | 1,000        | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Trans-1,2-Dichloroethene | NR           | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | 19     | 7.0     | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 |
| Trichloroethene          | 5            | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | 180     | 15     | ND 5.0  | 5.7     | 18      | 30      | ND 5.0 |
| Vinyl chloride           | 2            | ND 2.0  | ND 2.0  | ND 2.0  | ND 2.0 | ND 2.0  | ND 2.0  | ND 2.0  | ND 2.0 | ND 2.0  | 4.0    | 3.4     | 6.1     | 3       | 2.9     | 3.4    |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              |         |        | MW      | <i>l</i> -16 |         |        |         |        | MW      | <i>I</i> -17 |         |        |
|--------------------------|--------------|---------|--------|---------|--------------|---------|--------|---------|--------|---------|--------------|---------|--------|
| Sample Date              |              | 12/7/15 | 6/8/16 | 12/8/16 | 6/28/17      | 12/5/17 | 6/5/18 | 12/7/15 | 6/7/16 | 12/8/16 | 6/28/17      | 12/5/17 | 6/6/18 |
| Results reported in µg/L | TYPE 1/3 RRS |         |        |         |              |         |        |         |        |         |              |         |        |
| TCL Volatile Organics    | TIPE I/3 KKS |         |        |         |              |         |        |         |        |         |              |         |        |
| Acetone                  | 2,000        | ND 50   | ND 50  | ND 50   | ND 50        | ND 50   | ND 50  | ND 50   | ND 50  | ND 50   | ND 50        | ND 50   | ND 50  |
| Benzene                  | 5            | 34      | ND 5.0 | 13      | 14           | 5.7     | 5.3    | 260     | 150    | 47      | 46           | 16      | 71     |
| 2-Butanone (MEK)         | 2,000        | ND 50   | ND 50  | ND 50   | ND 50        | ND 50   | ND 50  | ND 50   | ND 50  | ND 50   | ND 50        | ND 50   | ND 50  |
| Chloroform               | 80           | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 |
| cis-1,2-Dichloroethene   | 70           | 390     | 19     | 160     | 210          | 120     | 170    | 190     | 69     | 36      | 43           | 13      | 71     |
| Cyclohexane              | 5            | 16      | ND 5.0 | 22      | 11           | ND 5.0  | ND 5.0 | 52      | 83     | 18      | 18           | 5.5     | 32     |
| Ethylbenzene             | 1,000        | 440     | 15     | 230     | 450          | 310     | 140    | 240     | 190    | 98      | 37           | 9.3     | 87     |
| Isopropylbenzene         | 5            | 31      | ND 5.0 | 52      | 42           | 17      | 8.8    | 14      | 17     | 7.2     | ND 5.0       | ND 5.0  | 5.8    |
| m,p-Xylene               | 10,000       | 200     | ND 5.0 | 20      | 32           | 15      | 5.8    | 630     | 380    | 62      | 5.5          | ND 5.0  | 14     |
| Methyl tert-butyl ether  | NR           | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 |
| Methylcyclohexane        | NR           | 27      | 7.0    | 37      | 18           | 11      | 13     | 32      | 70     | 19      | 16           | 7.2     | 19     |
| o-Xylene                 | 10,000       | 33      | ND 5.0 | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 | 140     | 180    | 15      | ND 5.0       | ND 5.0  | ND 5.0 |
| Tetrachloroethene        | 5            | 5.8     | ND 5.0 | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 | ND 5.0  | 6.2    | 6.7     | ND 5.0       | ND 5.0  | ND 5.0 |
| Toluene                  | 1,000        | 10      | ND 5.0 | 8.5     | 5.6          | ND 5.0  | ND 5.0 | 36      | 320    | 16      | ND 5.0       | ND 5.0  | 14     |
| Trans-1,2-Dichloroethene | NR           | 6.6     | ND 5.0 | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 |
| Trichloroethene          | 5            | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 | 12      | 7.5    | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0 |
| Vinyl chloride           | 2            | ND 2.0  | ND 2.0 | ND 2.0  | ND 2.0       | ND 2.0  | 2.4    | 3.1     | ND 2.0 | ND 2.0  | ND 2.0       | ND 2.0  | 2.4    |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              | MW-18   |        |         |         |         |        |         |          | MW-19   |         |        |
|--------------------------|--------------|---------|--------|---------|---------|---------|--------|---------|----------|---------|---------|--------|
| Sample Date              |              | 12/7/15 | 6/7/16 | 12/8/16 | 6/28/17 | 12/5/17 | 6/5/18 | 8/20/16 | 12/10/16 | 6/27/17 | 12/6/17 | 6/6/18 |
| Results reported in µg/L | TYPE 1/3 RRS |         |        |         |         |         |        |         |          |         |         |        |
| TCL Volatile Organics    | TIPE I/3 KKS |         |        |         |         |         |        |         |          |         |         |        |
| Acetone                  | 2,000        | 52      | ND 50  | ND 50   | ND 50   | ND 50   | ND 50  | ND 50   | ND 50    | ND 50   | ND 50   | ND 5.0 |
| Benzene                  | 5            | ND 5.0  | 12     | 15      | 26      | 41      | 38     | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| 2-Butanone (MEK)         | 2,000        | 91      | ND 50  | ND 50   | ND 50   | ND 50   | ND 50  | ND 50   | ND 50    | ND 50   | ND 50   | ND 50  |
| Chloroform               | 80           | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| cis-1,2-Dichloroethene   | 70           | 7.2     | 21     | 19      | 34      | 25      | 35     | 7.9     | 16       | 42      | 880     | 2100   |
| Cyclohexane              | 5            | ND 5.0  | 14     | 22      | 15      | 12      | ND 5.0 | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| Ethylbenzene             | 1,000        | 35      | 37     | 130     | 45      | 24      | 15     | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| Isopropylbenzene         | 5            | 5.5     | 9.5    | 20      | 5.7     | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| m,p-Xylene               | 10,000       | 5.3     | ND 5.0 | 6.0     | 7.2     | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| Methyl tert-butyl ether  | NR           | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| Methylcyclohexane        | NR           | ND 5.0  | 6.8    | 11      | 11      | 11      | ND 5.0 | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| o-Xylene                 | 10,000       | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| Tetrachloroethene        | 5            | 5.3     | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | 3,700   | 6,800    | 8,000   | 6,200   | 4,900  |
| Toluene                  | 1,000        | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| Trans-1,2-Dichloroethene | NR           | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0   | ND 5.0  | ND 5.0  | ND 50  |
| Trichloroethene          | 5            | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | 13      | 60       | 64      | 110     | 120    |
| Vinyl chloride           | 2            | ND 2.0  | ND 2.0 | ND 2.0  | ND 2.0  | ND 2.0  | ND 2.0 | ND 2.0  | ND 2.0   | ND 2.0  | ND 2.0  | 5.9    |

#### NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              | MV      | V-20    |         |         | MW-21   |         |        | MW      | I-22    |
|--------------------------|--------------|---------|---------|---------|---------|---------|---------|--------|---------|---------|
| Sample Date              |              | 8/21/16 | 12/8/16 | 8/21/16 | 12/8/16 | 6/28/17 | 12/5/17 | 6/6/18 | 8/21/16 | 12/8/16 |
| Results reported in μg/L | TYPE 1/3 RRS |         |         |         |         |         |         |        |         |         |
| TCL Volatile Organics    | TIPE I/3 KKS |         |         |         |         |         |         |        |         |         |
| Acetone                  | 2,000        | ND 50   | ND 50  | ND 50   | ND 50   |
| Benzene                  | 5            | ND 5.0  | ND 5.0  | ND 5.0  | 13      | 26      | 33      | 23     | ND 5.0  | ND 5.0  |
| 2-Butanone (MEK)         | 2,000        | ND 50   | ND 50  | ND 50   | ND 50   |
| Chloroform               | 80           | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  |
| cis-1,2-Dichloroethene   | 70           | ND 5.0  | ND 5.0  | 280     | 140     | 290     | 260     | 350    | 76      | 92      |
| Cyclohexane              | 5            | ND 5.0  | ND 5.0  | 27      | 26      | 23      | 16      | 37     | ND 5.0  | ND 5.0  |
| Ethylbenzene             | 1,000        | ND 5.0  | ND 5.0  | 480     | 350     | 190     | 240     | 310    | ND 5.0  | ND 5.0  |
| Isopropylbenzene         | 5            | ND 5.0  | ND 5.0  | 32      | 38      | 26      | 28      | 38     | ND 5.0  | ND 5.0  |
| m,p-Xylene               | 10,000       | ND 5.0  | ND 5.0  | 760     | 540     | 120     | 59      | 42     | ND 5.0  | ND 5.0  |
| Methyl tert-butyl ether  | NR           | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  |
| Methylcyclohexane        | NR           | ND 5.0  | ND 5.0  | 72      | 60      | 45      | 35      | 82     | ND 5.0  | ND 5.0  |
| o-Xylene                 | 10,000       | ND 5.0  | ND 5.0  | 20      | 12      | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  |
| Tetrachloroethene        | 5            | 14      | 18      | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0  | ND 5.0 | 66      | 96      |
| Toluene                  | 1,000        | ND 5.0  | ND 5.0  | 27      | 27      | 5.8     | 5.9     | 6.3    | ND 5.0  | ND 5.0  |
| Trans-1,2-Dichloroethene | NR           | ND 5.0  | ND 5.0  | 6.4     | ND 5.0  | 5.6     | ND 5.0  | 5.8    | ND 5.0  | ND 5.0  |
| Trichloroethene          | 5            | ND 5.0  | ND 5.0  | 26      | 110     | 14      | 13      | 6.7    | 12      | 39      |
| Vinyl chloride           | 2            | ND 2.0  | 2.1     | 3.2    | ND 2.0  | ND 2.0  |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.

# TABLE 2 Summary of Groundwater Analytical Results

| WELL                     |              | MW      | <i>I</i> -23 |         | MW-24   |        |         |        | DW-1    |         |         |
|--------------------------|--------------|---------|--------------|---------|---------|--------|---------|--------|---------|---------|---------|
| Sample Date              |              | 8/21/16 | 12/8/16      | 8/21/16 | 12/8/16 | 6/6/18 | 1/18/16 | 6/8/16 | 12/9/16 | 6/28/17 | 12/6/17 |
| Results reported in µg/L | TYPE 1/3 RRS |         |              |         |         |        |         |        |         |         |         |
| TCL Volatile Organics    | TIPE I/S KKS |         |              |         |         |        |         |        |         |         |         |
| Acetone                  | 2,000        | ND 50   | ND 50        | ND 50   | ND 50   | ND 50  | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   |
| Benzene                  | 5            | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| 2-Butanone (MEK)         | 2,000        | ND 50   | ND 50        | ND 50   | ND 50   | ND 5.0 | ND 50   | ND 50  | ND 50   | ND 50   | ND 50   |
| Chloroform               | 80           | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| cis-1,2-Dichloroethene   | 70           | 13      | 12           | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Cyclohexane              | 5            | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Ethylbenzene             | 1,000        | 31      | 6.1          | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Isopropylbenzene         | 5            | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| m,p-Xylene               | 10,000       | 86      | 20           | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Methyl tert-butyl ether  | NR           | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Methylcyclohexane        | NR           | 24      | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| o-Xylene                 | 10,000       | 25      | 7.8          | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Tetrachloroethene        | 5            | 17      | 8.9          | 140     | 71      | 180    | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Toluene                  | 1,000        | 21      | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Trans-1,2-Dichloroethene | NR           | ND 5.0  | ND 5.0       | ND 5.0  | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Trichloroethene          | 5            | 14      | 12           | ND 5.0  | ND 5.0  | 6.3    | ND 5.0  | ND 5.0 | ND 5.0  | ND 5.0  | ND 5.0  |
| Vinyl chloride           | 2            | ND 2.0  | ND 2.0       | ND 2.0  | ND 2.0  | ND 2.0 | ND 2.0  | ND 2.0 | ND 2.0  | ND 2.0  | ND 2.0  |

# NOTES:

10 - concentration is above laboratory reporting limits.

50 - concentration is above Type 1/3 RRS.



# **APPENDIX A**

**USEPA Vapor Intrusion Screening Level** 

# \* Inputted values different from Resident defaults are highlighted. Output generated 22JUN2018:15:16:38

| Variable                                                                  | Resident<br>Air<br>Default<br>Value | Value   |
|---------------------------------------------------------------------------|-------------------------------------|---------|
| AF <sub>gw</sub> (Attenuation Factor Groundwater) unitless                | 0.001                               | 0.001   |
| AF <sub>ss</sub> (Attenuation Factor Sub-Slab) unitless                   | 0.03                                | 0.03    |
| ED <sub>res</sub> (exposure duration) years                               | 26                                  | 26      |
| ED <sub>0-2</sub> (mutagenic exposure duration first phase) years         | 2                                   | 2       |
| ED <sub>2-6</sub> (mutagenic exposure duration second phase) years        | 4                                   | 4       |
| ED <sub>6-16</sub> (mutagenic exposure duration third phase) years        | 10                                  | 10      |
| ED <sub>16-26</sub> (mutagenic exposure duration fourth phase) years      | 10                                  | 10      |
| EF <sub>res</sub> (exposure frequency) days/year                          | 350                                 | 350     |
| EF <sub>0-2</sub> (mutagenic exposure frequency first phase) days/year    | 350                                 | 350     |
| EF <sub>2-6</sub> (mutagenic exposure frequency second phase) days/year   | 350                                 | 350     |
| EF <sub>6-16</sub> (mutagenic exposure frequency third phase) days/year   | 350                                 | 350     |
| EF <sub>16-26</sub> (mutagenic exposure frequency fourth phase) days/year | 350                                 | 350     |
| ET <sub>res</sub> (exposure time) hours/day                               | 24                                  | 24      |
| ET <sub>0-2</sub> (mutagenic exposure time first phase) hours/day         | 24                                  | 24      |
| ET <sub>2-6</sub> (mutagenic exposure time second phase) hours/day        | 24                                  | 24      |
| ET <sub>6-16</sub> (mutagenic exposure time third phase) hours/day        | 24                                  | 24      |
| ET <sub>16-26</sub> (mutagenic exposure time fourth phase) hours/day      | 24                                  | 24      |
| THQ (target hazard quotient) unitless                                     | 0.1                                 | 1       |
| LT (lifetime) years                                                       | 70                                  | 70      |
| TR (target risk) unitless                                                 | 1.0E-06                             | 1.0E-05 |

# Output generated 22JUN2018:15:16:38

| Chemical                   | CAS<br>Number | Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1) | Does the<br>chemical<br>have<br>inhalation<br>toxicity<br>data?<br>(IUR<br>and/or<br>RfC) | Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C <sub>vp</sub> > C <sub>ia</sub> ,Target?) | Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source? (Che > Cia, Target?) | Target Indoor Air Concentration (TCR=1E-05 or THQ=1) MIN(C <sub>ia.c</sub> ,C <sub>ia.nc</sub> ) (µg/m³) | Toxicity<br>Basis |
|----------------------------|---------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|
| Dichloroethylene, 1,2-cis- | 156-59-2      | Yes                                                                      | No                                                                                        | No Inhal. Tox. Info                                                                                                                                    | No Inhal. Tox. Info                                                                                                                   |                                                                                                          |                   |
| Ethylbenzene               | 100-41-4      | Yes                                                                      | Yes                                                                                       | Yes                                                                                                                                                    | Yes                                                                                                                                   | 1.12E+01                                                                                                 | CA                |
| Tetrachloroethylene        | 127-18-4      | Yes                                                                      | Yes                                                                                       | Yes                                                                                                                                                    | Yes                                                                                                                                   | 4.17E+01                                                                                                 | NC                |
| Toluene                    | 108-88-3      | Yes                                                                      | Yes                                                                                       | Yes                                                                                                                                                    | Yes                                                                                                                                   | 5.21E+03                                                                                                 | NC                |
| Trichloroethylene          | 79-01-6       | Yes                                                                      | Yes                                                                                       | Yes                                                                                                                                                    | Yes                                                                                                                                   | 2.09E+00                                                                                                 | NC                |
| Xylenes                    | 1330-20-7     | Yes                                                                      | Yes                                                                                       | Yes                                                                                                                                                    | Yes                                                                                                                                   | 1.04E+02                                                                                                 | NC                |

# Output generated 22JUN2018:15:16:38

| Chemical                   | Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-05 or THQ=1) C <sub>sg</sub> ,Target (μg/m³) | Target<br>Groundwater<br>Concentration<br>(TCR=1E-05<br>or THQ=1)<br>C <sub>gw</sub> ,Target<br>(µg/L) | Is Target Groundwater Concentration < MCL? (C <sub>gw</sub> < MCL?) | Pure Phase<br>Vapor<br>Concentration<br>C <sub>νp</sub> \<br>(18.5°C)\<br>(μg/m³) | Maximum<br>Groundwater<br>Vapor<br>Concentration<br>C <sub>hc</sub> \<br>(μg/m³) | Temperature<br>for Maximum<br>Groundwater<br>Vapor<br>Concentration<br>(°C) | Lower<br>Explosive<br>Limit<br>LEL<br>(%<br>by<br>volume) |
|----------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|
| Dichloroethylene, 1,2-cis- |                                                                                                             |                                                                                                        |                                                                     | 1.04E+09                                                                          | 8.18E+08                                                                         | 18.5                                                                        | 3.00                                                      |
| Ethylbenzene               | 3.74E+02                                                                                                    | 4.98E+01                                                                                               | Yes (700)                                                           | 5.48E+07                                                                          | 3.81E+07                                                                         | 18.5                                                                        | 0.80                                                      |
| Tetrachloroethylene        | 1.39E+03                                                                                                    | 8.05E+01                                                                                               | No (5)                                                              | 1.65E+08                                                                          | 1.07E+08                                                                         | 18.5                                                                        |                                                           |
| Toluene                    | 1.74E+05                                                                                                    | 2.64E+04                                                                                               | No (1000)                                                           | 1.41E+08                                                                          | 1.04E+08                                                                         | 18.5                                                                        | 1.10                                                      |
| Trichloroethylene          | 6.95E+01                                                                                                    | 6.92E+00                                                                                               | No (5)                                                              | 4.88E+08                                                                          | 3.86E+08                                                                         | 18.5                                                                        | 8.00                                                      |
| Xylenes                    | 3.48E+03                                                                                                    | 5.50E+02                                                                                               | Yes (10000)                                                         | 4.56E+07                                                                          | 2.01E+07                                                                         | 18.5                                                                        |                                                           |

# Output generated 22JUN2018:15:16:38

| Chemical                   | LEL<br>Ref | Inhalation<br>Unit<br>Risk<br>(ug/m³) <sup>-1</sup> | IUR<br>Ref | RfC<br>(mg/m³) | RfC<br>Ref | Mutagenic<br>Indicator | Carcinogenic<br>VISL<br>TCR=1E-05<br>C <sub>ia.c</sub><br>(µg/m³) | Noncarcinogenic<br>VISL<br>THQ=1<br>C <sub>ia,nc</sub><br>(μg/m³) |
|----------------------------|------------|-----------------------------------------------------|------------|----------------|------------|------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|
| Dichloroethylene, 1,2-cis- | U          |                                                     |            |                |            | No                     |                                                                   |                                                                   |
| Ethylbenzene               | U          | 2.50E-06                                            | U          | 1.00E+00       | U          | No                     | 1.12E+01                                                          | 1.04E+03                                                          |
| Tetrachloroethylene        |            | 2.60E-07                                            | U          | 4.00E-02       | U          | No                     | 1.08E+02                                                          | 4.17E+01                                                          |
| Toluene                    | U          |                                                     |            | 5.00E+00       | U          | No                     |                                                                   | 5.21E+03                                                          |
| Trichloroethylene          | U          | 4.10E-06                                            | U          | 2.00E-03       | U          | Mut                    | 4.78E+00                                                          | 2.09E+00                                                          |
| Xylenes                    |            |                                                     |            | 1.00E-01       | U          | No                     |                                                                   | 1.04E+02                                                          |

| Chemical                   | CAS<br>Number | Site<br>Groundwater<br>Concentration<br>C <sub>gw</sub> \<br>(µg/L) | Site<br>Indoor Air<br>Concentration<br>C <sub>i.a</sub> \<br>(µg/m³) | VI<br>Carcinogenic<br>Risk<br>CR | VI<br>Hazard<br>HQ | Inhalation<br>Unit<br>Risk<br>(ug/m³)-1 | IUR<br>Ref |
|----------------------------|---------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|--------------------|-----------------------------------------|------------|
| Dichloroethylene, 1,2-cis- | 156-59-2      | 57                                                                  |                                                                      |                                  |                    |                                         |            |
| Ethylbenzene               | 100-41-4      | 6.7                                                                 | 1.51E+00                                                             | 1.35E-06                         | 1.45E-03           | 2.50E-06                                | U          |
| Tetrachloroethylene        | 127-18-4      | 1100                                                                | 5.70E+02                                                             | 5.28E-05                         | 1.37E+01           | 2.60E-07                                | U          |
| Toluene                    | 108-88-3      | 7.7                                                                 | 1.52E+00                                                             |                                  | 2.91E-04           |                                         |            |
| Trichloroethylene          | 79-01-6       | 770                                                                 | 2.32E+02                                                             | 4.85E-04                         | 1.11E+02           | 4.10E-06                                | U          |
| Xylenes                    | 1330-20-7     | 33.8                                                                | 6.41E+00                                                             |                                  | 6.14E-02           |                                         |            |
| *Sum                       |               |                                                                     |                                                                      | 5.39E-04                         | 1.25E+02           |                                         |            |

| Chemical                   | Chronic<br>RfC<br>(mg/m³) | RfC<br>Ref | Temperature (°C)\ for Groundwater Vapor Concentration | Mutagen? |
|----------------------------|---------------------------|------------|-------------------------------------------------------|----------|
| Dichloroethylene, 1,2-cis- |                           |            | 18.5                                                  | No       |
| Ethylbenzene               | 1.00E+00                  | U          | 18.5                                                  | No       |
| Tetrachloroethylene        | 4.00E-02                  | U          | 18.5                                                  | No       |
| Toluene                    | 5.00E+00                  | U          | 18.5                                                  | No       |
| Trichloroethylene          | 2.00E-03                  | U          | 18.5                                                  | Mut      |
| Xylenes                    | 1.00E-01                  | U          | 18.5                                                  | No       |
| *Sum                       |                           |            |                                                       |          |

| Chemical                      | CAS<br>Number | Does the chemical meet the definition for volatility? (HLC>1E-5 or VP>1) | Does the chemical have inhalation toxicity data? (IUR and/or RfC) | MW     | MW<br>Ref | Vapor<br>Pressure<br>VP<br>(mm Hg) | VP<br>Ref | S<br>(mg/L) | S<br>Ref | MCL<br>(ug/L) | HLC<br>(atm-m³/mole) | Henry's<br>Law<br>Constant<br>(unitless) |
|-------------------------------|---------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|--------|-----------|------------------------------------|-----------|-------------|----------|---------------|----------------------|------------------------------------------|
| Dichloroethylene,<br>1,2-cis- | 156-59-2      | Yes                                                                      | No                                                                | 96.94  | U         | 2.00E+02                           | U         | 6.41E+03    | U        | 70            | 4.08E-03             | 1.67E-01                                 |
| Ethylbenzene                  | 100-41-4      | Yes                                                                      | Yes                                                               | 106.17 | U         | 9.60E+00                           | U         | 1.69E+02    | U        | 700           | 7.88E-03             | 3.22E-01                                 |
| Tetrachloroethylene           | 127-18-4      | Yes                                                                      | Yes                                                               | 165.83 | U         | 1.85E+01                           | U         | 2.06E+02    | U        | 5             | 1.77E-02             | 7.24E-01                                 |
| Toluene                       | 108-88-3      | Yes                                                                      | Yes                                                               | 92.14  | U         | 2.84E+01                           | U         | 5.26E+02    | U        | 1000          | 6.64E-03             | 2.71E-01                                 |
| Trichloroethylene             | 79-01-6       | Yes                                                                      | Yes                                                               | 131.39 | U         | 6.90E+01                           | U         | 1.28E+03    | U        | 5             | 9.85E-03             | 4.03E-01                                 |
| Xylenes                       | 1330-20-7     | Yes                                                                      | Yes                                                               | 106.17 | U         | 7.99E+00                           | U         | 1.06E+02    | U        | 10000         | 6.63E-03             | 2.71E-01                                 |

| Chemical                      | Henry's<br>Law<br>Constant<br>(18.5 °C) | Henry's<br>Law<br>Constant<br>Used in<br>Calcs<br>(unitless) | H`<br>and<br>HLC<br>Ref | Enthalpy of vaporization @ groundwater temperature $\Delta H_{v,gw} \setminus (cal/mol)$ | Exponent<br>for<br>$\Delta H_{_{v,gw}}$ | Vapor<br>Pressure<br>VP<br>(18.5 °C)\<br>(mm Hg) | D <sub>ia</sub> \<br>(cm²/s) | D <sub>ia</sub> \<br>(18.5 °C)\<br>(cm²/s) | D <sub>ia</sub> \<br>Used in<br>Calcs<br>(cm²/s) | D <sub>ia</sub> \<br>Ref | D <sub>iw</sub> \<br>(cm²/s) |
|-------------------------------|-----------------------------------------|--------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------|------------------------------|
| Dichloroethylene,<br>1,2-cis- | 1.28E-01                                | 1.28E-01                                                     | U                       | 7698.85                                                                                  | 0.34                                    | 7.97E+08                                         | 8.54E-02                     | 0.085422                                   | 0.085422                                         | U                        | 1.11E-05                     |
| Ethylbenzene                  | 2.26E-01                                | 2.26E-01                                                     | U                       | 10054.00                                                                                 | 0.37                                    | 3.84E+07                                         | 6.62E-02                     | 0.0662489                                  | 0.0662489                                        | U                        | 8.27E-06                     |
| Tetrachloroethylene           | 5.18E-01                                | 5.18E-01                                                     | U                       | 9465.78                                                                                  | 0.35                                    | 1.18E+08                                         | 4.88E-02                     | 0.0487831                                  | 0.0487831                                        | U                        | 9.24E-06                     |
| Toluene                       | 1.97E-01                                | 1.97E-01                                                     | U                       | 9067.73                                                                                  | 0.36                                    | 1.02E+08                                         | 7.53E-02                     | 0.0752582                                  | 0.0752582                                        | U                        | 9.00E-06                     |
| Trichloroethylene             | 3.01E-01                                | 3.01E-01                                                     | U                       | 8281.13                                                                                  | 0.35                                    | 3.65E+08                                         | 6.63E-02                     | 0.0663433                                  | 0.0663433                                        | U                        | 9.98E-06                     |
| Xylenes                       | 1.90E-01                                | 1.90E-01                                                     | U                       | 10094.26                                                                                 | 0.37                                    | 3.19E+07                                         | 6.63E-02                     | 0.0662832                                  | 0.0662832                                        | U                        | 8.28E-06                     |

| Chemical                      | D <sub>iw</sub> \ (18.5 °C)\ (cm²/s) | D <sub>iw</sub> \ Used in Calcs (cm²/s) | D <sub>i∾</sub> \<br>Ref | Normal<br>Boiling<br>Point<br>T <sub>boil</sub> \<br>(K) | BP<br>Ref | Critical<br>Temperature<br>T <sub>crit</sub> \<br>(K) | T <sub>crit</sub> \<br>Ref | Enthalpy of vaporization at the normal boiling point $\Delta H_{v,b} \setminus (cal/mol)$ | ∆H <sub>v,b</sub> \<br>Ref | K <sub>cc</sub> \<br>(cm³/g) | Kٍ\<br>Ref | Lower<br>Explosive<br>Limit<br>LEL<br>(%<br>by<br>volume) | LEL<br>Ref |
|-------------------------------|--------------------------------------|-----------------------------------------|--------------------------|----------------------------------------------------------|-----------|-------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------|----------------------------|------------------------------|------------|-----------------------------------------------------------|------------|
| Dichloroethylene,<br>1,2-cis- | 0.0000111                            | 0.0000111                               | U                        | 333.25                                                   | U         | 5.36E+02                                              | U                          | 7220.00                                                                                   | U                          | 39.6                         | U          | 3.00                                                      | U          |
| Ethylbenzene                  | 8.2735E-6                            | 8.2735E-6                               | U                        | 409.15                                                   | U         | 6.17E+02                                              | U                          | 8500.00                                                                                   | U                          | 446                          | U          | 0.80                                                      | U          |
| Tetrachloroethylene           | 9.2384E-6                            | 9.2384E-6                               | U                        | 394.15                                                   | U         | 6.20E+02                                              | U                          | 8290.00                                                                                   | U                          | 94.9                         | U          |                                                           |            |
| Toluene                       | 9.0015E-6                            | 9.0015E-6                               | U                        | 384.15                                                   | U         | 5.92E+02                                              | U                          | 7930.00                                                                                   | U                          | 234                          | U          | 1.10                                                      | U          |
| Trichloroethylene             | 9.9806E-6                            | 9.9806E-6                               | U                        | 360.35                                                   | U         | 5.71E+02                                              | U                          | 7500.00                                                                                   | U                          | 60.7                         | U          | 8.00                                                      | U          |
| Xylenes                       | 8.2793E-6                            | 8.2793E-6                               | U                        | 411.15                                                   | U         | 6.20E+02                                              | U                          | 8520.00                                                                                   | U                          | 383                          | U          |                                                           |            |



# **APPENDIX B**

Monitoring Well Purging and Sampling Information Sheets

|                |                   | M                     | onitoring    | Well Pur        | ging & S           | ampling             | Information   | on            |             |          |
|----------------|-------------------|-----------------------|--------------|-----------------|--------------------|---------------------|---------------|---------------|-------------|----------|
| Peachtree Pr   | oject:            | Thomasville           | National Ba  | ınk             | Project No.:       | 3151                |               | Date:         | 6/6/2018    |          |
| Peachtree Pe   | ersonnel:         | Larry Carter          |              |                 | •                  |                     |               |               |             |          |
|                |                   |                       |              | WEL             | L INFORMA          | TION                |               |               |             |          |
| Well Identific | ation No:         | MW-2                  |              |                 | Location:          | Thomasville         | e, Thomas Co  | unty, Georgi  | a           |          |
| Well Diamete   | er (inches):      | 2                     |              |                 | Well Constr        | uction:             | Schedule 40   | PVC           |             |          |
| Total Well De  | epth from TO      | C (feet):             | 30           |                 | Screened In        | terval from TO      | OC (feet):    | 20-30         |             |          |
| Depth to Wat   | ter from TOC      | (feet):               | 25.03        |                 |                    |                     |               |               |             |          |
| Length of Sta  | atic Water Co     | lumn (feet):          | 4.97         |                 |                    |                     |               |               |             |          |
|                |                   |                       |              | WELI            | L OBSERVA          | TIONS               |               |               |             |          |
| General Con    | dition of Well    | :                     | good         |                 | General Co         | ndition of Surr     | ounding Area: |               | good        |          |
| LNAPL Obse     | rvation/Thick     | ness:                 | N/A          |                 | Method of N        | leasure:            | EWL           |               |             |          |
| Well Volume    | = Length of       | Static Water C        | Column x We  | II Capacity     |                    |                     |               |               |             |          |
|                | Well Dian         | neter (inches)        | 0.75         | 1               | 1.25               | 2                   | 3             | 4             | 5           | 6        |
| Well           | Capacity (gal     | lons per foot)        | 0.02         | 0.04            | 0.06               | 0.16                | 0.37          | 0.65          | 1.02        | 1.47     |
| One Well Vo    | lume (gallons     | s):                   | 0.80         |                 | Three Well         | Volumes (galle      | ons):         | 2.40          |             |          |
|                |                   |                       |              | WELL PU         | RGING INFO         | ORMATION            |               |               |             |          |
| Purging Meth   | nod:              | Low flow, lo          | w stress wit | h peristaltic   | pump and p         | olyethylene ti      | ubing         |               |             |          |
| Depth of Pun   | np Intake fror    | n TOC (feet):         |              | 26.00           |                    |                     |               |               |             |          |
| Start Time:    | 8:42              |                       |              |                 |                    |                     |               |               |             |          |
| Time           | Gallons<br>Purged | Water Level<br>(feet) | рН           |                 | onductance<br>/cm) | Turbidity<br>(NTUs) | Tempera       | ture (°C)     | DO (mg/L)   | ORP (mV) |
| 8:50           | 0.25              | 25.57                 | 6.67         |                 | 158                | 3.10                | 24            | .82           | 2.47        | -33      |
| 8:57           | 0.50              | 25.50                 | 6.66         | 0.1             | 155                | 3.10                | 24            | .86           | 0.00        | -41      |
| 9:06           | 0.75              | 25.45                 | 6.63         | 0.1             | 153                | 3.00                | 24            | .92           | 0.00        | -49      |
| 9:11           | 1.00              | 25.45                 | 6.63         | 0.1             | 153                | 2.70                | 24            | .99           | 0.00        | -57      |
| 9:21           | 1.25              | 25.43                 | 6.62         | 0.1             | 152                | 2.70                | 25            | .12           | 0.00        | -64      |
| 9:28           | 1.50              | 25.44                 | 6.62         | 0.1             | 151                | 2.60                | 25            | .19           | 0.00        | -70      |
| 9:38           | 1.75              | 25.43                 | 6.61         | 0.1             | 151                | 2.70                | 25            | .29           | 0.00        | -72      |
| 9:45           | 2.00              | 25.43                 | 6.61         | 0.1             | 151                | 2.60                | 25            | .38           | 0.00        | -75      |
| 9:52           | 2.25              | 25.43                 | 6.61         | 0.1             | 152                | 2.60                | 25            | .46           | 0.00        | -78      |
| 9:58           | 2.40              | 25.42                 | 6.60         | 0.1             | 152                | 2.60                | 25            | .58           | 0.00        | -79      |
|                |                   |                       |              |                 |                    |                     |               |               |             |          |
|                |                   |                       |              |                 |                    |                     |               |               |             |          |
| Purged Volur   | me (gallons):     |                       | 2.40         | Purge Time (    | (minutes):         | 76                  | Pumping Rat   | e (gallons pe | r minute):  | 0.03     |
|                |                   |                       |              | WELL SAI        | MPLING INF         | ORMATION            |               |               |             |          |
| Method of Sa   | ampling:          | Sample colle          | ected direct | y from tubing   | g using "soc       | la straw" met       | hod           |               |             |          |
| Decontamina    | tion Procedu      | ires:                 | N/A - single | -use tubing     | T                  |                     |               |               |             |          |
| Sample ID      | Time              |                       | Container    |                 |                    | Preservative        | •             |               | Analyses    |          |
|                |                   |                       | 40 mL (2)    |                 | ı                  | nydrochloric ad     | cid           | volatile      | organic com | pounds   |
| MW-2           | 10:00             |                       |              |                 |                    |                     |               |               |             |          |
|                |                   |                       |              |                 |                    |                     |               |               |             |          |
| Sample Tran    | sport Contair     | ner and Prese         | rvation:     | Cooler and      | ice                |                     |               |               |             |          |
| Sample Dest    | ination:          | Analytical E          | nvironmenta  | al Services, In | c. in Atlanta      | , Georgia           |               |               |             |          |
| Sample Deliv   | ery Method a      | and Courier:          | Peachtree p  | personnel       |                    |                     |               |               |             |          |
| Chain of Cus   | tody Comple       | ted:                  | Yes          |                 |                    |                     |               |               |             |          |

|                |                   | M                     | onitoring    | y Well Pur      | ging & S            | ampling             | Informatio    | on            |               |          |
|----------------|-------------------|-----------------------|--------------|-----------------|---------------------|---------------------|---------------|---------------|---------------|----------|
| Peachtree Pr   | oject:            | Thomasville           | National Ba  | ank             | Project No.:        | 3151                |               | Date:         | 6/6/2018      |          |
| Peachtree Pe   | ersonnel:         | Daniel Barfie         | eld          |                 | l .                 |                     |               |               |               |          |
|                |                   |                       |              | WEI             | L INFORMA           | TION                |               |               |               |          |
| Well Identific | ation No:         | MW-3                  |              |                 | Location:           | Thomasville         | e, Thomas Co  | unty, Georg   | ia            |          |
| Well Diamete   | er (inches):      | 2                     |              |                 | Well Constr         | uction:             | Schedule 40   | PVC           |               |          |
| Total Well De  | epth from TO      | C (feet):             | 29           |                 | Screened In         | iterval from To     | OC (feet):    | 19-29         |               |          |
| Depth to Wat   | ter from TOC      | (feet):               | 24.28        |                 |                     |                     |               |               |               |          |
| Length of Sta  | atic Water Co     | lumn (feet):          | 4.72         |                 |                     |                     |               |               |               |          |
|                |                   |                       |              | WEL             | L OBSERVA           | TIONS               |               |               |               |          |
| General Con    | dition of Well    | :                     | good         |                 | General Co          | ndition of Surr     | ounding Area: |               | good          |          |
| LNAPL Obse     | rvation/Thick     | ness:                 | none         |                 | Method of N         | leasure:            | EWL           |               |               |          |
| Well Volume    | = Length of       | Static Water C        | Column x We  | II Capacity     |                     |                     |               |               |               |          |
|                | Well Dian         | neter (inches)        | 0.75         | 1               | 1.25                | 2                   | 3             | 4             | 5             | 6        |
| Well           | Capacity (gal     | lons per foot)        | 0.02         | 0.04            | 0.06                | 0.16                | 0.37          | 0.65          | 1.02          | 1.47     |
| One Well Vo    | lume (gallons     | s):                   | 0.76         |                 | Three Well          | Volumes (gall       | ons):         | 2.28          |               |          |
|                |                   |                       |              | WELL PU         | RGING INFO          | ORMATION            |               |               |               |          |
| Purging Meth   | nod:              | Low flow, lo          | w stress wit | th peristaltic  | pump and p          | olyethylene t       | ubing         |               |               |          |
| Depth of Pun   | np Intake fror    | n TOC (feet):         |              | 27              |                     |                     |               |               |               |          |
| Start Time:    | 10:18             |                       |              |                 |                     |                     |               |               |               |          |
| Time           | Gallons<br>Purged | Water Level<br>(feet) | рН           |                 | onductance<br>5/cm) | Turbidity<br>(NTUs) | Tempera       | ture (°C)     | DO (mg/L)     | ORP (mV) |
| 10:29          | 0.50              | 24.34                 | 5.74         |                 | 097                 | 16.30               | 26            | .57           | 6.25          | 11       |
| 10:37          | 1.00              | 24.35                 | 5.74         | 0.2             | 203                 | 7.50                | 26            | .24           | 0.34          | 2        |
| 10:45          | 1.50              | 24.35                 | 5.73         | 0.2             | 200                 | 2.20                | 26            | .26           | 0.00          | -4       |
| 10:54          | 2.00              | 24.35                 | 5.73         | 0.1             | 198                 | 1.70                | 26            | .31           | 0.00          | -4       |
| 11:00          | 2.40              | 24.35                 | 5.72         | 0.1             | 197                 | 1.30                | 26            | .40           | 0.00          | -4       |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
| Purged Volur   | me (gallons):     |                       | 2.40         | Purge Time      | (minutes):          | 42                  | Pumping Rat   | e (gallons pe | r minute):    | 0.06     |
|                |                   |                       |              | WELL SAI        | MPLING INF          | ORMATION            |               |               |               |          |
| Method of Sa   | ampling:          | Sample colle          | ected direct | ly from tubino  | g using "soc        | la straw" met       | thod          |               |               |          |
| Decontamina    | tion Procedu      | ires:                 | N/A - single | -use tubing     |                     |                     |               |               |               |          |
| Sample ID      | Time              |                       | Container    |                 |                     | Preservative        | )             |               | Analyses      |          |
|                |                   |                       | 40 mL (2)    |                 |                     | nydrochloric a      | cid           | volatile      | e organic com | pounds   |
| MW-3           | 11:00             |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
| Sample Tran    | sport Contair     | ner and Prese         | rvation:     | Cooler and      | ice                 |                     |               |               |               |          |
| Sample Dest    | ination:          | Analytical E          | nvironmenta  | al Services, In | nc. in Atlanta      | ı, Georgia          |               |               |               |          |
| Sample Deliv   | ery Method a      | and Courier:          | Peachtree p  | personnel       |                     |                     |               |               |               |          |
| Chain of Cus   | tody Comple       | ted:                  | Yes          |                 |                     |                     |               |               |               |          |

|                |                   | M                  | onitoring    | Well Pur        | ging & S            | Sampling            | Information  | on            |                                                    |          |
|----------------|-------------------|--------------------|--------------|-----------------|---------------------|---------------------|--------------|---------------|----------------------------------------------------|----------|
| Peachtree Pr   | oject:            | Thomasville        | National Ba  | ink             | Project No.:        | 3151                |              | Date:         | 6/5/2018                                           |          |
| Peachtree Pe   | ersonnel:         | Daniel Barfie      | eld          |                 |                     |                     |              |               |                                                    |          |
|                |                   |                    |              | WEI             | L INFORMA           | ATION               |              |               |                                                    |          |
| Well Identific | ation No:         | MW-5               |              |                 | Location:           | Thomasville         | e, Thomas Co | unty, Georgi  | a                                                  |          |
| Well Diamete   | er (inches):      | 2                  |              |                 | Well Constr         | uction:             | Schedule 40  | PVC           |                                                    |          |
| Total Well De  | epth from TO      | C (feet):          | 34           |                 | Screened Ir         | nterval from TO     | DC (feet):   | 24-34         |                                                    |          |
| Depth to Wat   | ter from TOC      | (feet):            | 26.10        |                 |                     |                     |              |               |                                                    |          |
| Length of Sta  | atic Water Co     | lumn (feet):       | 7.90         |                 |                     |                     |              |               |                                                    |          |
|                |                   |                    |              | WEL             | L OBSERVA           | TIONS               |              |               |                                                    |          |
| General Con    | dition of Well    | :                  | good         |                 | General Co          | ndition of Surr     | ounding Area |               | good                                               |          |
| LNAPL Obse     | rvation/Thick     | ness:              | none         |                 | Method of N         | leasure:            | EWL          |               |                                                    |          |
| Well Volume    | = Length of       | Static Water C     | olumn x We   | II Capacity     | 1                   | 1                   | _            |               | T                                                  |          |
|                | Well Dian         | neter (inches)     | 0.75         | 1               | 1.25                | 2                   | 3            | 4             | 5                                                  | 6        |
| Well           | Capacity (gal     | lons per foot)     | 0.02         | 0.04            | 0.06                | 0.16                | 0.37         | 0.65          | 1.02                                               | 1.47     |
| One Well Vo    | lume (gallons     | s):                | 1.26         |                 | Three Well          | Volumes (galle      | ons):        | 3.79          |                                                    |          |
|                |                   |                    |              | WELL PU         | RGING INFO          | ORMATION            |              |               |                                                    |          |
| Purging Meth   | nod:              | Low flow, lo       | w stress wit | th peristaltic  | pump and p          | olyethylene to      | ubing        |               |                                                    |          |
| Depth of Pun   | np Intake fror    | n TOC (feet):      |              | 28              |                     |                     |              |               |                                                    |          |
| Start Time:    |                   | 1                  |              | T 0 ''' 0       |                     | T =                 |              |               | <del>,                                      </del> | ,        |
| Time           | Gallons<br>Purged | Water Level (feet) | рН           |                 | onductance<br>5/cm) | Turbidity<br>(NTUs) | Tempera      | ture (°C)     | DO (mg/L)                                          | ORP (mV) |
| 16:27          | 0.50              | 26.68              | 5.07         |                 | 154                 | 5.70                | 28           | .56           | 8.95                                               | 131      |
| 16:37          | 1.00              | 26.61              | 5.10         | 0.1             | 162                 | 5.20                | 28           | .52           | 2.47                                               | 135      |
| 16:48          | 1.50              | 26.64              | 5.10         | 0.1             | 161                 | 4.80                | 28           | .66           | 0.00                                               | 138      |
| 16:59          | 2.00              | 26.67              | 5.13         | 0.1             | 157                 | 3.30                | 29           | .00           | 0.00                                               | 137      |
| 17:07          | 2.50              | 26.67              | 5.16         | 0.4             | 152                 | 1.50                | 29           | .10           | 0.00                                               | 136      |
| 17:18          | 3.00              | 26.67              | 5.18         | 0.4             | 148                 | 0.70                | 28           | .15           | 0.00                                               | 135      |
| 17:28          | 3.50              | 26.67              | 5.19         | 0.1             | 147                 | 1.20                | 29           | .15           | 0.00                                               | 134      |
| 17:38          | 4.00              | 26.67              | 5.19         | 0.1             | 145                 | 0.00                | 29           | .12           | 0.00                                               | 133      |
|                |                   |                    |              |                 |                     |                     |              |               |                                                    |          |
|                |                   |                    |              |                 |                     |                     |              |               |                                                    |          |
|                |                   |                    |              |                 |                     |                     |              |               |                                                    |          |
|                |                   |                    |              |                 |                     |                     |              |               |                                                    |          |
| Purged Volur   | me (gallons):     |                    | 4.00         | Purge Time      | (minutes):          | 83                  | Pumping Rat  | e (gallons pe | r minute):                                         | 0.05     |
|                |                   |                    |              | WELL SAI        | MPLING INF          | ORMATION            |              |               |                                                    |          |
| Method of Sa   | ampling:          | Sample colle       | ected direct | ly from tubino  | g using "soo        | la straw" met       | hod          |               |                                                    |          |
| Decontamina    | tion Procedu      | ires:              | N/A - single | -use tubing     |                     |                     |              |               |                                                    |          |
| Sample ID      | Time              |                    | Container    |                 |                     | Preservative        | )            |               | Analyses                                           |          |
|                |                   |                    | 40 mL (2)    |                 | -                   | hydrochloric ad     | cid          | volatile      | e organic com                                      | pounds   |
| MW-5           | 17:45             |                    |              |                 |                     |                     |              |               |                                                    |          |
|                |                   |                    |              |                 |                     |                     |              |               |                                                    |          |
| Sample Tran    | sport Contair     | ner and Preser     | vation:      | Cooler and      | ice                 |                     |              |               |                                                    |          |
| Sample Dest    | ination:          | Analytical E       | nvironmenta  | al Services, In | nc. in Atlanta      | a, Georgia          |              |               |                                                    |          |
| Sample Deliv   | ery Method a      | and Courier:       | Peachtree p  | personnel       |                     |                     |              |               |                                                    |          |
| Chain of Cus   | tody Comple       | ted:               | Yes          |                 |                     |                     |              |               |                                                    |          |

|                |                   | M                     | onitoring    | Well Pur        | ging & S           | ampling             | Information   | on                                           |               |          |
|----------------|-------------------|-----------------------|--------------|-----------------|--------------------|---------------------|---------------|----------------------------------------------|---------------|----------|
| Peachtree Pr   | oject:            | Thomasville           | National Ba  | ınk             | Project No.:       | 3151                |               | Date:                                        | 6/6/2018      |          |
| Peachtree Pe   | ersonnel:         | Larry Carter          |              |                 | •                  |                     |               |                                              |               |          |
|                |                   |                       |              | WEI             | L INFORMA          | ATION               |               |                                              |               |          |
| Well Identific | ation No:         | MW-6                  |              |                 | Location:          | Thomasville         | e, Thomas Co  | unty, Georg                                  | ia            |          |
| Well Diamete   | er (inches):      | 1                     |              |                 | Well Constr        | uction:             | Schedule 40   | PVC                                          |               |          |
| Total Well De  | epth from TO      | C (feet):             | 30           |                 | Screened In        | nterval from TC     | DC (feet):    | 20-30                                        |               |          |
| Depth to Wa    | ter from TOC      | (feet):               | 23.98        |                 |                    |                     |               |                                              |               |          |
| Length of Sta  | atic Water Co     | lumn (feet):          | 6.02         |                 |                    |                     |               |                                              |               |          |
|                |                   |                       |              | WEL             | L OBSERVA          | TIONS               |               |                                              |               |          |
| General Con    | dition of Well    | :                     | good         |                 | General Co         | ndition of Surr     | ounding Area: |                                              | good          |          |
| LNAPL Obse     | ervation/Thick    | ness:                 | none         |                 | Method of N        | /leasure:           | EWL           |                                              |               |          |
| Well Volume    | = Length of       | Static Water C        | Column x We  | II Capacity     |                    |                     |               |                                              |               |          |
|                | Well Dian         | neter (inches)        | 0.75         | 1               | 1.25               | 2                   | 3             | 4                                            | 5             | 6        |
| Well           | Capacity (gal     | lons per foot)        | 0.02         | 0.04            | 0.06               | 0.16                | 0.37          | 0.65                                         | 1.02          | 1.47     |
| One Well Vo    | lume (gallons     | s):                   | 0.24         |                 | Three Well         | Volumes (galle      | ons):         | 0.70                                         |               |          |
|                |                   |                       |              | WELL PU         | RGING INFO         | ORMATION            |               |                                              |               |          |
| Purging Meth   | nod:              | Low flow, lo          | w stress wit | th peristaltic  | pump and p         | olyethylene tı      | ubing         |                                              |               |          |
| Depth of Pur   | np Intake fror    | n TOC (feet):         |              | 25.5            |                    |                     |               |                                              |               |          |
| Start Time:    | 10:30             |                       |              |                 |                    |                     |               |                                              |               |          |
| Time           | Gallons<br>Purged | Water Level<br>(feet) | рН           |                 | onductance<br>/cm) | Turbidity<br>(NTUs) | Tempera       | iture (°C)                                   | DO (mg/L)     | ORP (mV) |
| 10:56          | 0.20              | 25.00                 | 6.19         |                 | 160                | 7.90                | 26            | .25                                          | 0.00          | 54       |
| 11:06          | 0.40              | 25.05                 | 6.19         | 0.4             | 158                | 7.60                | 26            | .26                                          | 0.00          | 54       |
| 11:12          | 0.60              | 24.95                 | 6.19         | 0.4             | 157                | 5.90                | 26            | .32                                          | 0.00          | 54       |
| 11:18          | 0.75              | 24.95                 | 6.19         | 0.4             | 157                | 5.70                | 26            | .32                                          | 0.00          | 54       |
|                |                   |                       |              |                 |                    |                     |               |                                              |               |          |
|                |                   |                       |              |                 |                    |                     |               |                                              |               |          |
|                |                   |                       |              |                 |                    |                     |               |                                              |               |          |
|                |                   |                       |              |                 |                    |                     |               |                                              |               |          |
|                |                   |                       |              |                 |                    |                     |               |                                              |               |          |
|                |                   |                       |              |                 |                    |                     |               |                                              |               |          |
|                |                   |                       |              |                 |                    |                     |               |                                              |               |          |
|                |                   |                       |              |                 |                    |                     |               |                                              |               |          |
| Purged Volui   | me (gallons):     |                       | 0.75         | Purge Time      | (minutes):         | 48                  | Pumping Rat   | e (gallons pe                                | r minute):    | 0.02     |
|                | ,,                |                       |              |                 | MPLING INF         | ORMATION            | 1             | <u>,,,                                  </u> | · .           |          |
| Method of Sa   | ampling:          | Sample colle          | ected direct | ly from tubino  | g using "soc       | la straw" met       | hod           |                                              |               |          |
|                | ation Procedu     |                       |              | -use tubing     |                    |                     |               |                                              |               |          |
| Sample ID      | Time              |                       | Container    |                 |                    | Preservative        | ,             |                                              | Analyses      |          |
| · ·            |                   |                       | 40 mL (2)    |                 | 1                  | hydrochloric ac     | id            | volatile                                     | e organic com | pounds   |
| MW-6           | 11:20             |                       |              |                 |                    |                     |               |                                              |               |          |
|                |                   |                       |              |                 |                    |                     |               |                                              |               |          |
| Sample Tran    | sport Contair     | l<br>ner and Prese    | rvation:     | Cooler and      | ice                |                     |               | <u> </u>                                     |               |          |
| Sample Dest    |                   |                       |              | al Services, In | ıc. in Atlanta     | a, Georgia          |               |                                              |               |          |
|                |                   | and Courier:          |              |                 |                    |                     |               |                                              |               |          |
|                | tody Comple       |                       | Yes          |                 |                    |                     |               |                                              |               |          |
| 3151 Thomas    | ville National Ba | ole.                  |              |                 |                    |                     |               |                                              |               |          |

|                |                   | M                  | onitoring    | Well Pur        | ging & S           | ampling             | Informatio     | on             |               |          |
|----------------|-------------------|--------------------|--------------|-----------------|--------------------|---------------------|----------------|----------------|---------------|----------|
| Peachtree Pr   | oject:            | Thomasville        | National Ba  | ınk             | Project No.:       | 3151                |                | Date:          | 12/7/2017     |          |
| Peachtree Pe   | ersonnel:         | Daniel Barfie      | eld          |                 |                    |                     |                |                |               |          |
|                |                   |                    |              | WEL             | L INFORMA          | TION                |                |                |               |          |
| Well Identific | ation No:         | MW-7               |              |                 | Location:          | Thomasville         | e, Thomas Co   | unty, Georg    | ia            |          |
| Well Diamete   | er (inches):      | 2                  |              |                 | Well Constr        | uction:             | Schedule 40    | PVC            |               |          |
| Total Well De  | epth from TO      | C (feet):          | 30           |                 | Screened In        | terval from To      | OC (feet):     | 20-30          |               |          |
| Depth to Wat   | er from TOC       | (feet):            | 11.92        |                 |                    |                     |                |                |               |          |
| Length of Sta  | tic Water Co      | lumn (feet):       | 18.08        |                 |                    |                     |                |                |               |          |
|                |                   |                    |              | WELI            | L OBSERVA          | TIONS               |                |                |               |          |
| General Con    | dition of Well    | :                  | good         |                 | General Co         | ndition of Surr     | rounding Area: |                | good          |          |
| LNAPL Obse     | rvation/Thick     | ness:              | none         |                 | Method of N        | leasure:            | EWL            |                |               |          |
| Well Volume    | = Length of       | Static Water C     | olumn x We   | Il Capacity     |                    |                     | <del>-</del>   |                | •             |          |
|                | Well Diam         | neter (inches)     | 0.75         | 1               | 1.25               | 2                   | 3              | 4              | 5             | 6        |
| Well           | Capacity (gal     | lons per foot)     | 0.02         | 0.04            | 0.06               | 0.16                | 0.37           | 0.65           | 1.02          | 1.47     |
| One Well Vol   | ume (gallons      | s):                | 2.89         |                 | Three Well         | Volumes (gall       | ons):          | 8.67           |               |          |
|                |                   |                    |              | WELL PU         | RGING INFO         | ORMATION            |                |                |               |          |
| Purging Meth   | iod:              | Low flow, lo       | w volume w   | ith peristaltic | pump and           | oolyethylene        | tubing         |                |               |          |
| Depth of Pun   | np Intake fror    | n TOC (feet):      |              | 25              |                    |                     |                |                |               |          |
| Start Time:    | 12:47             |                    |              |                 |                    |                     |                |                |               |          |
| Time           | Gallons<br>Purged | Water Level (feet) | рН           |                 | onductance<br>/cm) | Turbidity<br>(NTUs) | Tempera        | ature (°C)     | DO (mg/L)     | ORP (mV) |
| 12:54          | 0.25              | 12.32              | 5.08         | 0.0             | 071                | 3.90                | 27             | .14            | 3.79          | 242      |
| 13:08          | 0.50              | 12.03              | 5.07         | 0.0             | )71                | 2.80                | 27             | .56            | 1.34          | 261      |
| 13:18          | 0.75              | 12.03              | 5.07         | 0.0             | )71                | 2.60                | 27             | .67            | 1.35          | 261      |
| 13:33          | 1.00              | 12.03              | 5.08         | 0.0             | 070                | 2.30                | 27             | .81            | 1.25          | 264      |
| 13:45          | 1.25              | 12.03              | 5.08         | 0.0             | 070                | 2.60                | 27             | .84            | 1.07          | 268      |
| 13:58          | 1.50              | 12.03              | 5.08         | 0.0             | 070                | 2.70                | 27             | .89            | 1.00          | 268      |
|                |                   |                    |              |                 |                    |                     |                |                |               |          |
|                |                   |                    |              |                 |                    |                     |                |                |               |          |
|                |                   |                    |              |                 |                    |                     |                |                |               |          |
|                |                   |                    |              |                 |                    |                     |                |                |               |          |
|                |                   |                    |              |                 |                    |                     |                |                |               |          |
|                |                   |                    |              |                 |                    |                     |                |                |               |          |
| Purged Volur   | ne (gallons):     |                    | 1.50         | Purge Time (    | (minutes):         | 71                  | Pumping Rat    | te (gallons pe | er minute):   | 0.02     |
|                |                   |                    |              |                 | MPLING INF         |                     |                |                |               |          |
| Method of Sa   | mpling:           | Sample colle       | ected direct | y from tubing   | g using "soo       | a straw" met        | thod           |                |               |          |
| Decontamina    | tion Procedu      | res:               | N/A - single | -use tubing     | T                  |                     |                | Ī              |               |          |
| Sample ID      | Time              |                    | Container    |                 |                    | Preservative        | 9              |                | Analyses      |          |
|                |                   |                    | 40 mL (2)    |                 | I                  | nydrochloric a      | cid            | volatil        | e organic com | pounds   |
| MW-7           | 14:00             |                    |              |                 |                    |                     |                |                |               |          |
|                |                   |                    |              |                 |                    |                     |                |                |               |          |
| Sample Tran    | sport Contair     | ner and Preser     | vation:      | Cooler and      | ice                |                     |                |                |               |          |
| Sample Dest    | ination:          | Analytical E       | nvironmenta  | ıl Services, In | c. in Atlanta      | , Georgia           |                |                |               |          |
| Sample Deliv   | ery Method a      | and Courier:       | Peachtree p  | ersonnel        |                    |                     |                |                |               |          |
| Chain of Cus   | tody Comple       | ted:               | Yes          |                 |                    |                     |                |                |               |          |

|                |                 | M              | onitoring    | Well Pu         | rging & S          | ampling I       | nformatio    | n                                       |             |         |
|----------------|-----------------|----------------|--------------|-----------------|--------------------|-----------------|--------------|-----------------------------------------|-------------|---------|
| Peachtree Pr   | oject:          | Thomasville    |              |                 | Project No.:       |                 |              |                                         | 6/6/2018    |         |
| Peachtree Pe   | ersonnel:       | Larry Carter   |              |                 |                    |                 |              | I.                                      |             |         |
|                |                 |                |              | WE              | LL INFORMA         | TION            |              |                                         |             |         |
| Well Identific | ation No:       | MW-12          |              |                 | Location:          | Thomasville     | , Thomas Co  | unty, Georgia                           | a           |         |
| Well Diamete   | er (inches):    | 2              |              |                 | Well Constru       | uction:         | Schedule 40  | PVC                                     |             |         |
| Total Well De  | epth from TO    | C (feet):      | 15           |                 | Screened In        | terval from TO  | C (feet):    | 5-15                                    |             |         |
| Depth to Wa    | ter from TOC    | (feet):        | 1.99         |                 |                    |                 |              |                                         |             |         |
| Length of Sta  | atic Water Co   | lumn (feet):   | 13.01        |                 |                    |                 |              |                                         |             |         |
|                |                 |                |              | WEL             | L OBSERVA          | TIONS           |              |                                         |             |         |
| General Con    | dition of Well: |                | good         |                 | General Cor        | dition of Surro | unding Area: |                                         | good        |         |
| LNAPL Obse     | rvation/Thick   | ness:          | none         |                 | Method of M        | easure:         | EWL          |                                         |             |         |
| Well Volume    | = Length of S   | Static Water C | olumn x Wel  | I Capacity      |                    |                 |              |                                         |             |         |
|                | Well Diam       | neter (inches) | 0.75         | 1               | 1.25               | 2               | 3            | 4                                       | 5           | 6       |
| Well           | Capacity (gal   | lons per foot) | 0.02         | 0.04            | 0.06               | 0.16            | 0.37         | 0.65                                    | 1.02        | 1.47    |
| One Well Vo    | lume (gallons   | ):             | 2.10         | •               | Three Well \       | /olumes (gallo  | ns):         | 6.20                                    |             |         |
|                |                 |                |              | WELL PU         | RGING INFO         | DRMATION        |              |                                         |             |         |
| Purging Meth   | od:             | Low flow, lo   | w stress wi  | th peristaltic  | pump and p         | olyethylene tu  | ubing        |                                         |             |         |
| Depth of Pun   | np Intake fron  | n TOC (feet):  |              | 3.0             |                    |                 |              |                                         |             |         |
| Start Time:    | 12:55           |                |              |                 |                    |                 |              |                                         |             |         |
| Time           | Gallons         | Water Level    | рН           |                 | onductance<br>/cm) | Turbidity       | Tempera      | ature (°C)                              | DO (mg/L)   | ORP (mV |
| 13:13          | Purged<br>1.00  | (feet)<br>2.20 | 7.06         | ,               | 151                | (NTUs)<br>4.00  | 25           | .82                                     | 3.27        | -63     |
| 13:26          | 2.00            | 2.20           | 7.01         |                 | 386                | 3.50            |              | .31                                     | 1.60        | -45     |
| 13:36          | 3.00            | 2.20           | 6.97         |                 | 360                | 3.00            |              | .28                                     | 0.29        | -34     |
| 13:54          | 4.00            | 2.22           | 6.94         |                 | 343                | 3.30            |              | .39                                     | 0.04        | -26     |
| 13:58          | 4.50            | 2.25           | 6.93         |                 | 330                | 3.40            |              | .27                                     | 0.00        | -23     |
| 14:04          | 5.00            | 2.24           | 6.93         |                 | 336                | 3.40            |              | .26                                     | 0.00        | -23     |
| 14:10          | 5.50            | 2.24           | 6.92         |                 | 334                | 3.30            |              | .10                                     | 0.00        | -21     |
| 14:18          | 6.20            | 2.24           | 6.91         |                 | 332                | 2.80            |              | .40                                     | 0.00        | -18     |
| 14.10          | 0.20            | 2.27           | 0.51         | 0               |                    | 2.00            |              |                                         | 0.00        | -10     |
|                |                 |                |              |                 |                    |                 |              |                                         |             |         |
|                |                 |                |              |                 |                    |                 |              |                                         |             |         |
|                |                 |                |              |                 |                    |                 |              |                                         |             |         |
|                |                 |                |              |                 |                    |                 |              |                                         |             |         |
|                |                 |                |              |                 |                    |                 | <del> </del> |                                         |             |         |
|                |                 |                |              | 1               |                    |                 |              |                                         |             |         |
|                |                 |                |              |                 |                    | 1               | <del> </del> |                                         |             |         |
|                |                 |                |              | <u> </u>        |                    |                 | 1            |                                         |             |         |
| Purged Volur   | ne (gallons):   | l              | 6.20         | Purge Time      | (minutes):         | 83              | Pumping Rat  | te (gallons per                         | minute):    | 0.07    |
| J              | ,5 ,/.          |                | -            |                 | MPLING INF         |                 | 1 , 3        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | /-          |         |
| Method of Sa   | impling:        | Sample coll    | ected direct |                 |                    | a straw" metl   | hod          |                                         |             |         |
|                | tion Procedu    |                | N/A - single |                 |                    |                 |              |                                         |             |         |
| Sample ID      | Time            |                | Container    |                 |                    | Preservative    |              |                                         | Analyses    |         |
| 1,7.3          | -               |                | 40 mL (2)    |                 | ı                  | nydrochloric ac |              | volatile                                | organic com | pounds  |
| MW-12          | 14:20           |                | .,,          |                 |                    |                 |              |                                         | - '         | -       |
|                |                 |                |              |                 |                    |                 |              |                                         |             |         |
| Sample Tran    | sport Contain   | er and Preser  | vation:      | Cooler and      | ice                |                 |              | <u> </u>                                |             |         |
| Sample Dest    | •               |                |              | al Services, In |                    | ı, Georgia      |              |                                         |             |         |
|                | rery Method a   |                | Peachtree p  |                 |                    | ,               |              |                                         |             |         |
|                | tody Complet    |                | Yes          |                 |                    |                 |              |                                         |             |         |

|                             |                   | M                      | onitoring    | Well Pur        | ging & S            | ampling             | Information  | on             |               |          |
|-----------------------------|-------------------|------------------------|--------------|-----------------|---------------------|---------------------|--------------|----------------|---------------|----------|
| Peachtree Pr                | oject:            | Thomasville            | National Ba  | ınk             | Project No.:        | 3151                |              | Date:          | 6/6/2018      |          |
| Peachtree Pe                | ersonnel:         | Daniel Barfie          | eld          |                 |                     |                     |              |                |               |          |
|                             |                   |                        |              | WEL             | L INFORMA           | TION                |              |                |               |          |
| Well Identific              | ation No:         | MW-14                  |              |                 | Location:           | Thomasville         | e, Thomas Co | unty, Georgi   | ia            |          |
| Well Diamete                | er (inches):      | 2                      |              |                 | Well Constr         | uction:             | Schedule 40  | PVC            |               |          |
| Total Well De               | epth from TO      | C (feet):              | 13.5         |                 | Screened In         | terval from TO      | OC (feet):   | 3.5-13.5       |               |          |
| Depth to Wat                | ter from TOC      | (feet):                | 4.39         |                 |                     |                     |              |                |               |          |
| Length of Sta               | atic Water Co     | lumn (feet):           | 9.11         |                 |                     |                     |              |                |               |          |
|                             |                   |                        |              | WELI            | L OBSERVA           | TIONS               |              |                |               |          |
| General Cond                | dition of Well    | :                      | good         |                 | General Co          | ndition of Surr     | ounding Area |                | good          |          |
| LNAPL Obse                  | rvation/Thick     | ness:                  | none         |                 | Method of N         | leasure:            | EWL          |                |               |          |
| Well Volume                 | = Length of       | Static Water C         | olumn x We   | II Capacity     |                     |                     |              |                |               |          |
|                             | Well Dian         | neter (inches)         | 0.75         | 1               | 1.25                | 2                   | 3            | 4              | 5             | 6        |
| Well                        | Capacity (gal     | lons per foot)         | 0.02         | 0.04            | 0.06                | 0.16                | 0.37         | 0.65           | 1.02          | 1.47     |
| One Well Vol                | lume (gallons     | s):                    | 1.46         |                 | Three Well          | Volumes (gall       | ons):        | 4.38           |               |          |
|                             |                   |                        |              | WELL PU         | RGING INFO          | ORMATION            |              |                |               |          |
| Purging Meth                | nod:              | Low flow, lo           | w stress wit | th peristaltic  | pump and p          | olyethylene t       | ubing        |                |               |          |
| Depth of Pun                | np Intake fror    | n TOC (feet):          |              | 7               |                     |                     |              |                |               |          |
| Start Time:                 | 14:23             |                        |              |                 |                     |                     |              |                |               |          |
| Time                        | Gallons<br>Purged | Water Level<br>(feet)  | рН           |                 | onductance<br>5/cm) | Turbidity<br>(NTUs) | Tempera      | ature (°C)     | DO (mg/L)     | ORP (mV) |
| 14:32                       | 0.50              | 4.62                   | 6.44         |                 | 402                 | 17.20               | 29           | .74            | 0.57          | -66      |
| 14:39                       | 1.00              | 4.68                   | 6.47         | 0.4             | 421                 | 15.60               | 29           | .78            | 0.25          | -77      |
| 14:47                       | 1.50              | 4.76                   | 6.53         | 0.4             | 460                 | 10.90               | 30           | .04            | 0.00          | -102     |
| 15:02                       | 2.00              | 4.84                   | 6.55         | 0.4             | 469                 | 6.30                | 30           | .98            | 0.00          | -105     |
| 15:34                       | 2.50              | 4.86                   | 6.55         | 0.4             | 462                 | 4.30                | 31           | .81            | 0.03          | -102     |
| 15:55                       | 3.00              | 4.86                   | 6.54         | 0.4             | 448                 | 3.10                | 32           | .58            | 0.25          | -73      |
| 16:15                       | 3.50              | 4.86                   | 6.54         | 0.4             | 443                 | 3.90                | 32           | .80            | 0.16          | -82      |
| 16:28                       | 4.00              | 4.86                   | 6.48         | 0.4             | 441                 | 7.20                | 32           | .35            | 0.00          | -73      |
| 16:43                       | 4.50              | 4.86                   | 6.46         | 0.4             | 436                 | 6.30                | 32           | .30            | 0.00          | -70      |
|                             |                   |                        |              |                 |                     |                     |              |                |               |          |
|                             |                   |                        |              |                 |                     |                     |              |                |               |          |
|                             |                   |                        |              |                 |                     |                     |              |                |               |          |
| Purged Volur                | me (gallons):     |                        | 4.50         | Purge Time (    | ,                   | 140                 | Pumping Rat  | te (gallons pe | r minute):    | 0.03     |
|                             |                   |                        |              |                 | MPLING INF          |                     |              |                |               |          |
| Method of Sa                |                   |                        |              | ly from tubing  | g using "soo        | la straw" met       | hod          |                |               |          |
| Decontamina                 |                   | ires:                  |              | -use tubing     | 1                   |                     |              |                |               |          |
| Sample ID                   | Time              |                        | Container    |                 |                     | Preservative        |              |                | Analyses      |          |
|                             | 45.45             |                        | 40 mL (2)    |                 |                     | nydrochloric ac     | cid          | volatile       | e organic com | pounds   |
| MW-14                       | 16:45             |                        |              |                 |                     |                     |              |                |               |          |
| 0 . –                       |                   | <u> </u>               |              |                 | <u> </u>            |                     |              |                |               |          |
|                             | ·                 | ner and Preser         |              | Cooler and i    |                     |                     |              |                |               |          |
| Sample Desti                |                   |                        |              | al Services, In | nc. in Atlanta      | ı, Georgia          |              |                |               |          |
|                             |                   | and Courier:           |              | personnel       |                     |                     |              |                |               |          |
| Chain of Cus<br>3151 Thomas | tody Comple       | ted:<br>nk<br>s Panort | Yes          |                 |                     |                     |              |                |               |          |

|                |                   | M                     | onitoring    | Well Pur        | ging & S           | ampling             | Informatio    | on            |               |          |
|----------------|-------------------|-----------------------|--------------|-----------------|--------------------|---------------------|---------------|---------------|---------------|----------|
| Peachtree Pr   | oject:            | Thomasville           | National Ba  | ınk             | Project No.:       | 3151                |               | Date:         | 6/5/2018      |          |
| Peachtree Pe   | ersonnel:         | Larry Carter          |              |                 |                    |                     |               |               |               |          |
|                |                   |                       |              | WEL             | L INFORMA          | TION                |               |               |               |          |
| Well Identific | ation No:         | MW-15                 |              |                 | Location:          | Thomasville         | e, Thomas Co  | unty, Georgi  | ia            |          |
| Well Diamete   | er (inches):      | 2                     |              |                 | Well Constr        | uction:             | Schedule 40   | PVC           |               |          |
| Total Well De  | epth from TO      | C (feet):             | 32           |                 | Screened In        | terval from To      | OC (feet):    | 29-34         |               |          |
| Depth to Wat   | ter from TOC      | (feet):               | 25.82        |                 |                    |                     |               |               |               |          |
| Length of Sta  | atic Water Co     | lumn (feet):          | 8.18         |                 |                    |                     |               |               |               |          |
|                |                   |                       |              | WELI            | L OBSERVA          | TIONS               |               |               |               |          |
| General Con    | dition of Well    | :                     | good         |                 | General Cor        | ndition of Surr     | ounding Area: |               | good          |          |
| LNAPL Obse     | rvation/Thick     | ness:                 | none         |                 | Method of M        | leasure:            | EWL           |               |               |          |
| Well Volume    | = Length of       | Static Water C        | Column x We  | II Capacity     |                    |                     |               |               |               |          |
|                | Well Diam         | neter (inches)        | 0.75         | 1               | 1.25               | 2                   | 3             | 4             | 5             | 6        |
| Well           | Capacity (gal     | lons per foot)        | 0.02         | 0.04            | 0.06               | 0.16                | 0.37          | 0.65          | 1.02          | 1.47     |
| One Well Vo    | lume (gallons     | s):                   | 1.30         |                 | Three Well         | Volumes (gall       | ons):         | 3.90          |               |          |
|                |                   |                       |              | WELL PU         | RGING INFO         | RMATION             |               |               |               |          |
| Purging Meth   | nod:              | Low flow, lo          | w stress wit | h peristaltic   | pump and p         | olyethylene t       | ubing         |               |               |          |
| Depth of Pun   | np Intake fror    | n TOC (feet):         |              | 27              |                    |                     |               |               |               |          |
| Start Time:    | 16:20             |                       |              |                 |                    |                     |               |               |               |          |
| Time           | Gallons<br>Purged | Water Level<br>(feet) | рН           |                 | onductance<br>/cm) | Turbidity<br>(NTUs) | Tempera       | iture (°C)    | DO (mg/L)     | ORP (mV) |
| 16:40          | 0.50              | 26.16                 | 7.07         | 0.2             | 250                | 7.40                | 26            | .61           | 0.00          | -96      |
| 16:56          | 1.00              | 26.21                 | 7.03         | 0.2             | 243                | 11.90               | 26.           | .48           | 0.00          | -96      |
| 17:25          | 2.00              | 26.11                 | 7.01         | 0.2             | 237                | 4.70                | 26.           | .59           | 0.00          | -95      |
| 17:37          | 2.50              | 26.37                 | 7.01         | 0.2             | 235                | 4.70                | 25.           | .89           | 0.00          | -97      |
| 17:45          | 3.00              | 26.48                 | 7.02         | 0.2             | 236                | 4.30                | 25.           | .67           | 0.00          | -100     |
| 17:54          | 3.50              | 26.48                 | 7.00         | 0.2             | 235                | 4.90                | 26            | .61           | 0.00          | -100     |
| 18:03          | 3.90              | 26.48                 | 6.99         | 0.2             | 232                | 4.80                | 25            | .52           | 0.00          | -100     |
|                |                   |                       |              |                 |                    |                     |               |               |               |          |
|                |                   |                       |              |                 |                    |                     |               |               |               |          |
|                |                   |                       |              |                 |                    |                     |               |               |               |          |
|                |                   |                       |              |                 |                    |                     |               |               |               |          |
|                |                   |                       |              |                 |                    |                     |               |               |               |          |
| Purged Volur   | ne (gallons):     | •                     | 3.90         | Purge Time (    | (minutes):         | 103                 | Pumping Rat   | e (gallons pe | r minute):    | 0.04     |
|                |                   |                       |              |                 |                    |                     |               |               |               |          |
| Method of Sa   | ampling:          | Sample colle          | ected direct | y from tubing   | g using "sod       | a straw" met        | thod          |               |               |          |
| Decontamina    | tion Procedu      | ires:                 | N/A - single | -use tubing     |                    |                     |               |               |               |          |
| Sample ID      | Time              |                       | Container    |                 |                    | Preservative        | 9             |               | Analyses      |          |
|                |                   |                       | 40 mL (2)    |                 | ŀ                  | ydrochloric a       | cid           | volatile      | e organic com | oounds   |
| MW-15          | 18:05             |                       |              |                 |                    |                     |               |               |               |          |
|                |                   |                       |              |                 |                    |                     |               |               |               |          |
| Sample Tran    | sport Contair     | ner and Prese         | rvation:     | Cooler and i    | ice                |                     |               |               |               |          |
| Sample Dest    | ination:          | Analytical E          | nvironmenta  | al Services, In | c. in Atlanta      | , Georgia           |               |               |               |          |
| Sample Deliv   | ery Method a      | and Courier:          | Peachtree p  | personnel       |                    |                     |               |               |               |          |
| Chain of Cus   | tody Comple       | ted:                  | Yes          |                 |                    |                     |               |               |               |          |

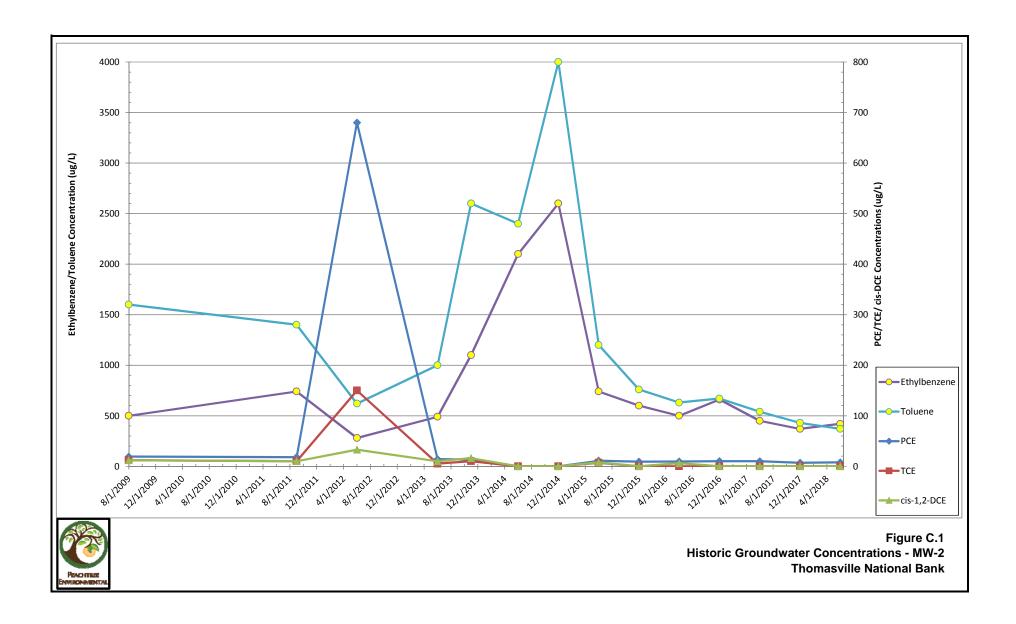
|                  |                   | M                  | onitoring     | Well Pur        | ging & S           | ampling             | Informatio   | on            |             |          |
|------------------|-------------------|--------------------|---------------|-----------------|--------------------|---------------------|--------------|---------------|-------------|----------|
| Peachtree Pro    | ject:             | Thomasville        | National Ba   | ınk             | Project No.:       | 3151                |              | Date:         | 6/5/2018    |          |
| Peachtree Per    | sonnel:           | Larry Carter       |               |                 |                    |                     |              |               |             |          |
|                  |                   |                    |               | WEL             | L INFORMA          | TION                |              |               |             |          |
| Well Identificat | tion No:          | MW-16              |               |                 | Location:          | Thomasville         | e, Thomas Co | unty, Georgi  | a           |          |
| Well Diameter    | (inches):         | 2                  |               |                 | Well Constr        | uction:             | Schedule 40  | PVC           |             |          |
| Total Well Dep   | oth from TO       | C (feet):          | 30            |                 | Screened In        | terval from TO      | OC (feet):   | 20-30         |             |          |
| Depth to Wate    | r from TOC        | (feet):            | 24.78         |                 |                    |                     |              |               |             |          |
| Length of Stati  | ic Water Co       | lumn (feet):       | 5.22          |                 |                    |                     |              |               |             |          |
|                  |                   |                    |               | WELI            | L OBSERVA          | TIONS               |              |               |             |          |
| General Condi    | ition of Well     | :                  | good          |                 | General Co         | ndition of Surr     | ounding Area | :             | good        |          |
| LNAPL Observ     | vation/Thick      | ness:              | none          |                 | Method of M        | leasure:            | EWL          |               |             |          |
| Well Volume =    | Length of S       | Static Water C     | olumn x We    | II Capacity     |                    |                     |              |               |             |          |
|                  | Well Diam         | neter (inches)     | 0.75          | 1               | 1.25               | 2                   | 3            | 4             | 5           | 6        |
| Well C           | apacity (gal      | lons per foot)     | 0.02          | 0.04            | 0.06               | 0.16                | 0.37         | 0.65          | 1.02        | 1.47     |
| One Well Volu    | ıme (gallons      | s):                | 0.84          |                 | Three Well         | Volumes (galle      | ons):        | 2.50          |             |          |
|                  |                   |                    |               | WELL PU         | RGING INFO         | DRMATION            |              |               |             |          |
| Purging Metho    | od:               | Low flow, lo       | w stress wit  | h peristaltic   | pump and p         | olyethylene to      | ubing        |               |             |          |
| Depth of Pump    | o Intake fron     | n TOC (feet):      |               | 26              |                    |                     |              |               |             |          |
| Start Time: 1    | 4:32              |                    |               |                 |                    | ı                   | _            |               | T           |          |
| Time             | Gallons<br>Purged | Water Level (feet) | рН            |                 | onductance<br>/cm) | Turbidity<br>(NTUs) | Tempera      | ture (°C)     | DO (mg/L)   | ORP (mV) |
| 14:43            | 0.25              | 24.81              | 6.80          |                 | 274                | 1.10                | 25           | .40           | 1.69        | -80      |
| 14:54            | 0.50              | 24.82              | 6.84          | 0.2             | 270                | 1.00                | 25           | .37           | 0.76        | -84      |
| 15:01            | 0.75              | 24.82              | 6.86          | 0.2             | 270                | 1.00                | 25           | .39           | 0.45        | -86      |
| 15:08            | 1.00              | 24.82              | 6.88          | 0.2             | 274                | 1.00                | 25           | .41           | 0.26        | -90      |
| 15:17            | 1.25              | 24.83              | 6.87          | 0.2             | 274                | 1.00                | 25           | .34           | 0.11        | -91      |
| 15:22            | 1.50              | 24.83              | 6.88          | 0.2             | 273                | 1.00                | 25           | .31           | 0.00        | -92      |
| 15:29            | 1.75              | 24.83              | 6.90          | 0.2             | 274                | 1.00                | 25           | .36           | 0.00        | -93      |
| 15:42            | 2.25              | 24.84              | 6.90          | 0.2             | 279                | 1.00                | 25           | .51           | 0.00        | -94      |
| 15:52            | 2.60              | 24.84              | 6.91          | 0.2             | 281                | 0.90                | 25           | .52           | 0.00        | -96      |
|                  |                   |                    |               |                 |                    |                     |              |               |             |          |
|                  |                   |                    |               |                 |                    |                     |              |               |             |          |
|                  |                   |                    |               |                 |                    |                     |              |               |             |          |
| Purged Volum     | e (gallons):      |                    | 2.60          | Purge Time (    | (minutes):         | 80                  | Pumping Rat  | e (gallons pe | r minute):  | 0.03     |
|                  |                   |                    |               | WELL SAI        | MPLING INF         | ORMATION            |              |               |             |          |
| Method of San    | npling:           | Sample colle       | ected directl | y from tubing   | using "sod         | a straw" met        | hod          |               |             |          |
| Decontaminati    | on Procedu        | res:               | N/A - single  | -use tubing     |                    |                     |              |               |             |          |
| Sample ID        | Time              |                    | Container     |                 |                    | Preservative        | )            |               | Analyses    |          |
|                  |                   |                    | 40 mL (2)     |                 | ŀ                  | ydrochloric ad      | cid          | volatile      | organic com | pounds   |
| MW-16            | 15:55             |                    |               |                 |                    |                     |              |               |             |          |
|                  |                   |                    |               |                 |                    |                     |              |               |             |          |
| Sample Transp    | port Contain      | er and Prese       | vation:       | Cooler and i    | ice                |                     |              |               |             |          |
| Sample Destin    | nation:           | Analytical E       | nvironmenta   | al Services, In | c. in Atlanta      | , Georgia           |              |               |             |          |
| Sample Delive    | ery Method a      | and Courier:       | Peachtree p   | personnel       |                    |                     |              |               |             |          |
| Chain of Custo   | ody Complet       | ted:               | Yes           |                 |                    |                     |              |               |             |          |

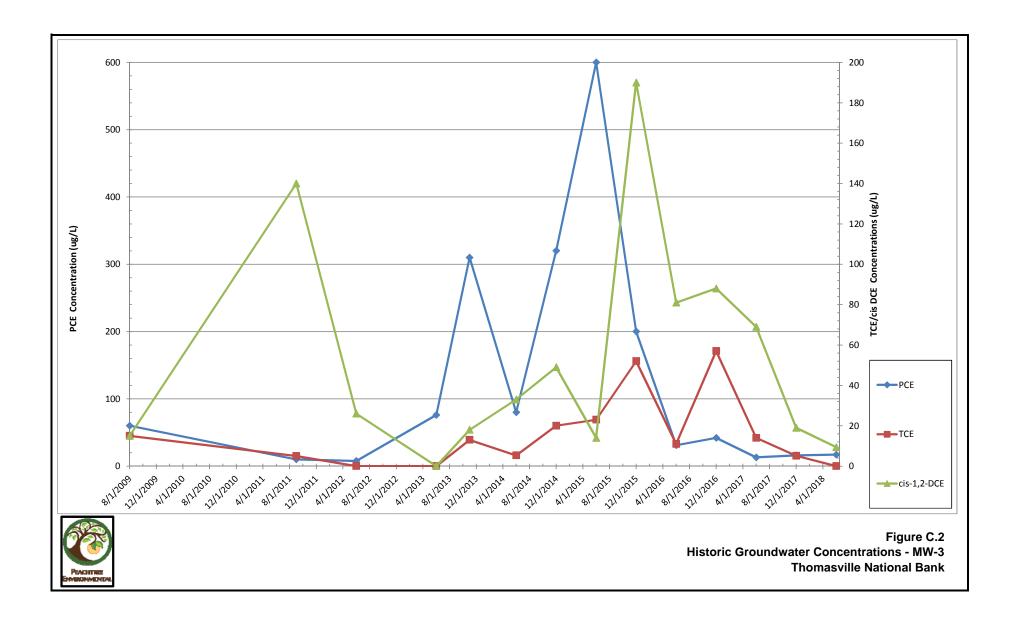
|                |                   | M                     | onitoring    | Well Pur        | ging & S            | ampling             | Information   | on            |               |          |
|----------------|-------------------|-----------------------|--------------|-----------------|---------------------|---------------------|---------------|---------------|---------------|----------|
| Peachtree Pi   | oject:            | Thomasville           | National Ba  | ınk             | Project No.:        | 3151                |               | Date:         | 6/6/2018      |          |
| Peachtree Pe   | ersonnel:         | Daniel Barfie         | eld          |                 | l                   |                     |               |               |               |          |
|                |                   |                       |              | WEL             | L INFORMA           | TION                |               |               |               |          |
| Well Identific | ation No:         | MW-17                 |              |                 | Location:           | Thomasville         | e, Thomas Co  | unty, Georg   | ia            |          |
| Well Diamete   | er (inches):      | 2                     |              |                 | Well Constr         | uction:             | Schedule 40   | PVC           |               |          |
| Total Well De  | epth from TO      | C (feet):             | 29.0         |                 | Screened In         | iterval from TC     | DC (feet):    | 19-29         |               |          |
| Depth to Wa    | ter from TOC      | (feet):               | 25.73        |                 |                     |                     |               |               |               |          |
| Length of Sta  | atic Water Co     | lumn (feet):          | 3.72         |                 |                     |                     |               |               |               |          |
|                |                   |                       |              | WEL             | L OBSERVA           | TIONS               |               |               |               |          |
| General Con    | dition of Well    | :                     | good         |                 | General Co          | ndition of Surr     | ounding Area: |               | good          |          |
| LNAPL Obse     | ervation/Thick    | ness:                 | none         |                 | Method of N         | leasure:            | EWL           |               |               |          |
| Well Volume    | = Length of       | Static Water C        | Column x We  | II Capacity     |                     |                     |               |               |               |          |
|                | Well Diam         | neter (inches)        | 0.75         | 1               | 1.25                | 2                   | 3             | 4             | 5             | 6        |
| Well           | Capacity (gal     | lons per foot)        | 0.02         | 0.04            | 0.06                | 0.16                | 0.37          | 0.65          | 1.02          | 1.47     |
| One Well Vo    | lume (gallons     | s):                   | 0.52         |                 | Three Well          | Volumes (galle      | ons):         | 1.56          |               |          |
|                |                   |                       |              | WELL PU         | RGING INFO          | ORMATION            |               |               |               |          |
| Purging Meth   | nod:              | Low flow, lo          | w stress wit | h peristaltic   | pump and p          | olyethylene tı      | ubing         |               |               |          |
| Depth of Pur   | np Intake fror    | n TOC (feet):         |              | 28              |                     |                     |               |               |               |          |
| Start Time:    | 9:18              |                       |              |                 |                     |                     |               |               |               |          |
| Time           | Gallons<br>Purged | Water Level<br>(feet) | рН           |                 | onductance<br>5/cm) | Turbidity<br>(NTUs) | Tempera       | ture (°C)     | DO (mg/L)     | ORP (mV) |
| 9:26           | 0.25              | 25.84                 | 5.76         | 0.2             | 210                 | 2.20                | 24            | .88           | 0.00          | 102      |
| 9:29           | 0.50              | 25.84                 | 5.93         | 0.2             | 208                 | 2.90                | 24            | .92           | 0.00          | -10      |
| 9:38           | 1.00              | 25.85                 | 6.11         | 0.2             | 240                 | 0.90                | 24            | .74           | 0.00          | -75      |
| 9:42           | 1.25              | 25.84                 | 6.19         | 0.2             | 263                 | 0.40                | 24            | .83           | 0.00          | -102     |
| 9:46           | 1.50              | 25.84                 | 6.21         | 0.2             | 268                 | 0.50                | 24            | .96           | 0.00          | -111     |
| 9:50           | 1.8               | 25.84                 | 6.22         | 0.2             | 270                 | 0.40                | 24            | .97           | 0.00          | -115     |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
| Purged Volui   | me (gallons):     | •                     | 1.75         | Purge Time      | (minutes):          | 32                  | Pumping Rat   | e (gallons pe | er minute):   | 0.05     |
|                |                   |                       |              | WELL SAI        | MPLING INF          | ORMATION            |               |               |               |          |
| Method of Sa   | ampling:          | Sample colle          | ected direct | y from tubino   | g using "soc        | la straw" met       | hod           |               |               |          |
| Decontamina    | ation Procedu     | res:                  | N/A - single | -use tubing     |                     |                     |               |               |               |          |
| Sample ID      | Time              |                       | Container    |                 |                     | Preservative        | ,             |               | Analyses      |          |
|                |                   |                       | 40 mL (2)    |                 |                     | nydrochloric ad     | eid           | volatile      | e organic com | pounds   |
| MW-17          | 10:00             |                       |              |                 |                     |                     |               |               |               |          |
|                |                   |                       |              |                 |                     |                     |               |               |               |          |
| Sample Tran    | sport Contair     | ner and Prese         | rvation:     | Cooler and      | ice                 |                     |               |               |               |          |
| Sample Dest    | ination:          | Analytical E          | nvironmenta  | al Services, In | nc. in Atlanta      | ı, Georgia          |               |               |               |          |
| Sample Deliv   | very Method a     | and Courier:          | Peachtree p  | personnel       |                     |                     |               |               |               |          |
| Chain of Cus   | tody Comple       | ted:                  | Yes          |                 |                     |                     |               |               |               |          |

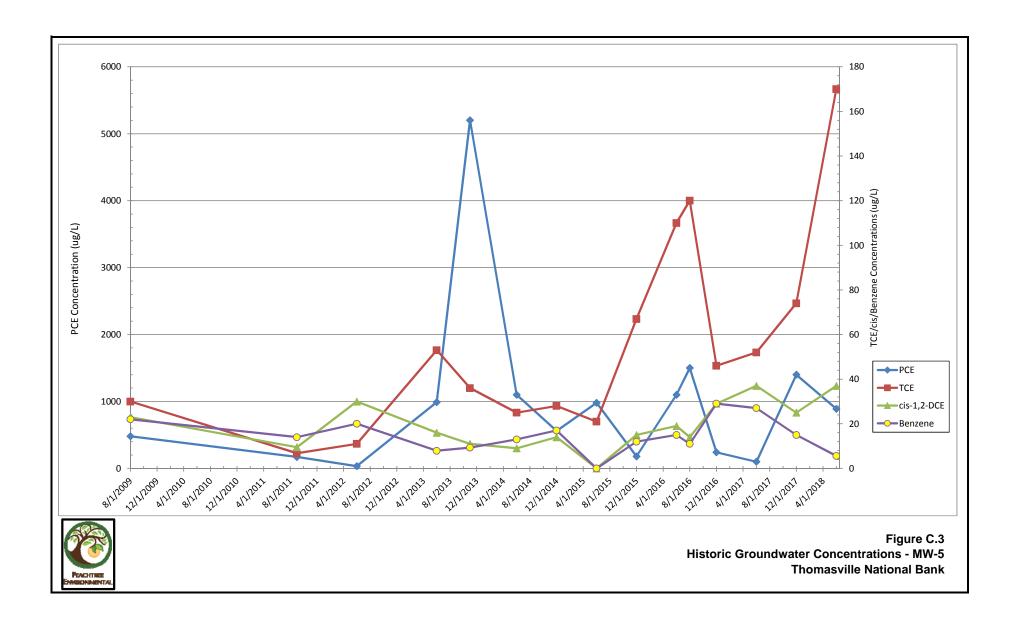
|                |                   | M                  | onitoring    | Well Pur        | ging & S           | ampling             | Informatio    | on            |               |          |
|----------------|-------------------|--------------------|--------------|-----------------|--------------------|---------------------|---------------|---------------|---------------|----------|
| Peachtree Pr   | oject:            | Thomasville        | National Ba  | ınk             | Project No.:       | 3151                |               | Date:         | 6/5/2018      |          |
| Peachtree Pe   | ersonnel:         | Daniel Barfie      | eld          |                 |                    |                     |               |               |               |          |
|                |                   |                    |              | WEL             | L INFORMA          | TION                |               |               |               |          |
| Well Identific | ation No:         | MW-18              |              |                 | Location:          | Thomasville         | e, Thomas Co  | unty, Georg   | ia            |          |
| Well Diamete   | er (inches):      | 2                  |              |                 | Well Constr        | uction:             | Schedule 40   | PVC           |               |          |
| Total Well De  | epth from TO      | C (feet):          | 30           |                 | Screened In        | terval from To      | OC (feet):    | 20-30         |               |          |
| Depth to Wat   | ter from TOC      | (feet):            | 25.17        |                 |                    |                     |               |               |               |          |
| Length of Sta  | atic Water Co     | lumn (feet):       | 4.83         |                 |                    |                     |               |               |               |          |
|                |                   |                    |              | WELI            | L OBSERVA          | TIONS               |               |               |               |          |
| General Con    | dition of Well    | l:                 | good         |                 | General Co         | ndition of Surr     | ounding Area: |               | good          |          |
| LNAPL Obse     | rvation/Thick     | iness:             | none         |                 | Method of M        | leasure:            | EWL           |               |               |          |
| Well Volume    | = Length of       | Static Water C     | olumn x We   | II Capacity * o | ld oil smell       |                     |               |               |               |          |
|                | Well Dian         | neter (inches)     | 0.75         | 1               | 1.25               | 2                   | 3             | 4             | 5             | 6        |
| Well           | Capacity (gal     | lons per foot)     | 0.02         | 0.04            | 0.06               | 0.16                | 0.37          | 0.65          | 1.02          | 1.47     |
| One Well Vo    | lume (gallons     | s):                | 0.77         |                 | Three Well         | Volumes (gall       | ons):         | 2.31          |               |          |
|                |                   |                    |              | WELL PU         | RGING INFO         | ORMATION            |               |               |               |          |
| Purging Meth   | nod:              | Low flow, lo       | w stress wit | h peristaltic   | pump and p         | olyethylene t       | ubing         |               |               |          |
| Depth of Pun   | np Intake fror    | n TOC (feet):      |              | 27              |                    |                     |               |               |               |          |
| Start Time:    | 14:30             |                    |              |                 |                    |                     |               |               | 1             |          |
| Time           | Gallons<br>Purged | Water Level (feet) | рН           |                 | onductance<br>/cm) | Turbidity<br>(NTUs) | Tempera       | ture (°C)     | DO (mg/L)     | ORP (mV) |
| 14:45          | 0.25              | 25.24              | 6.47         | ,               | 437                | 9.50                | 25.           | .61           | 3.06          | -148     |
| 14:48          | 0.50              | 25.26              | 6.48         | 0.4             | 126                | 3.40                | 25.           | .28           | 0.02          | -166     |
| 14:54          | 1.00              | 25.27              | 6.46         | 0.4             | 416                | 2.70                | 25.           | .29           | 1.76          | -172     |
| 15:00          | 1.50              | 25.27              | 6.42         | 0.4             | 400                | 1.30                | 25.           | .25           | 1.22          | -185     |
| 15:07          | 2.00              | 25.27              | 6.43         | 0.3             | 396                | 0.70                | 25.           | .30           | 0.90          | -196     |
| 15:12          | 2.40              | 25.27              | 6.44         | 0.3             | 397                | 0.80                | 25.           | .42           | 0.69          | -199     |
|                |                   |                    |              |                 |                    |                     |               |               |               |          |
|                |                   |                    |              |                 |                    |                     |               |               |               |          |
|                |                   |                    |              |                 |                    |                     |               |               |               |          |
|                |                   |                    |              |                 |                    |                     |               |               |               |          |
|                |                   |                    |              |                 |                    |                     |               |               |               |          |
|                |                   |                    |              |                 |                    |                     |               |               |               |          |
| Purged Volur   | me (gallons):     | ļ                  | 2.40         | Purge Time (    | (minutes):         | 42                  | Pumping Rat   | e (gallons pe | er minute):   | 0.06     |
|                |                   |                    |              |                 |                    |                     |               |               |               |          |
| Method of Sa   | ampling:          | Sample colle       | ected direct | y from tubing   | g using "sod       | a straw" met        | thod          |               |               |          |
| Decontamina    | ation Procedu     | ıres:              | N/A - single | -use tubing     |                    |                     |               |               |               |          |
| Sample ID      | Time              |                    | Container    |                 |                    | Preservative        | )             |               | Analyses      |          |
|                |                   |                    | 40 mL (2)    |                 | ŀ                  | ydrochloric a       | cid           | volatile      | e organic com | pounds   |
| MW-18          | 15:15             |                    |              |                 |                    |                     |               |               |               |          |
|                |                   |                    |              |                 |                    |                     |               |               |               |          |
| Sample Tran    | sport Contair     | ner and Prese      | rvation:     | Cooler and i    | ice                |                     |               |               |               |          |
| Sample Dest    | ination:          | Analytical E       | nvironmenta  | al Services, In | ıc. in Atlanta     | , Georgia           |               |               |               |          |
| Sample Deliv   | very Method a     | and Courier:       | Peachtree p  | personnel       |                    |                     |               |               |               |          |
| Chain of Cus   | tody Comple       | ted:               | Yes          |                 |                    |                     |               |               |               |          |

|                                                                    |                                        | M              | onitoring    | Well Pur                     | ging & S                                 | Sampling            | Informatio                              | on                         |           |          |  |
|--------------------------------------------------------------------|----------------------------------------|----------------|--------------|------------------------------|------------------------------------------|---------------------|-----------------------------------------|----------------------------|-----------|----------|--|
| Peachtree Project: Thomasville                                     |                                        |                | National Ba  | ınk                          | Project No.:                             | t No.: <b>3151</b>  |                                         | Date:                      | 6/6/2018  |          |  |
| Peachtree Personnel: Daniel Barfie                                 |                                        |                | eld          |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              | WEI                          | L INFORMA                                | ATION               |                                         |                            |           |          |  |
| Well Identific                                                     | ation No:                              | MW-19          |              |                              | Location:                                | Thomasville         | e, Thomas Co                            | unty, Georg                | ia        |          |  |
| Well Diameter (inches): 1                                          |                                        |                |              |                              | Well Construction: Schedule 40 PVC       |                     |                                         |                            |           |          |  |
| Total Well Depth from TOC (feet): 32                               |                                        |                |              |                              | Screened Interval from TOC (feet): 22-32 |                     |                                         |                            |           |          |  |
| Depth to Wat                                                       | er from TOC                            | (feet):        | 26.57        |                              |                                          |                     |                                         |                            |           |          |  |
| Length of Sta                                                      | tic Water Co                           | lumn (feet):   | 5.43         |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              | WEL                          | L OBSERVA                                | TIONS               |                                         |                            |           |          |  |
| General Condition of Well:                                         |                                        |                | good         |                              | General Condition of Surrounding Area:   |                     |                                         |                            | good      |          |  |
| LNAPL Observation/Thickness:                                       |                                        |                | none         |                              | Method of Measure: EWL                   |                     |                                         |                            |           |          |  |
| Well Volume                                                        | = Length of S                          | Static Water C | olumn x We   | II Capacity                  |                                          |                     |                                         |                            |           |          |  |
| Well Diameter (inches)                                             |                                        |                | 0.75         | 1                            | 1.25                                     | 2                   | 3                                       | 4                          | 5         | 6        |  |
| Well Capacity (gallons per foot)                                   |                                        |                | 0.02         | 0.04                         | 0.06                                     | 0.16                | 0.37                                    | 0.65                       | 1.02      | 1.47     |  |
| One Well Volume (gallons): 0.22 Three Well Volumes (gallons): 0.66 |                                        |                |              |                              |                                          |                     |                                         |                            |           | •        |  |
|                                                                    |                                        |                |              | WELL PU                      | RGING INFO                               | ORMATION            |                                         |                            |           |          |  |
| Purging Meth                                                       | od:                                    | Low flow lov   | v stress wit | n peristaltic p              | ump and po                               | olyethylene tu      | ıbing                                   |                            |           |          |  |
| Depth of Pum                                                       | np Intake fron                         | n TOC (feet):  |              | 29                           |                                          |                     |                                         |                            |           |          |  |
| Start Time:                                                        | 7:15                                   |                |              |                              |                                          |                     |                                         |                            |           |          |  |
| Time                                                               | Time Gallons Water Level Purged (feet) |                | рН           | Specific Conductance (mS/cm) |                                          | Turbidity<br>(NTUs) | Temperature (°C)                        |                            | DO (mg/L) | ORP (mV) |  |
| 7:27                                                               | 0.25                                   | 26.92          | 4.57         | 0.1                          | 141                                      | 4.90                | 25                                      | .18                        | 2.32      | 253      |  |
| 7:37                                                               | 0.50                                   | 26.90          | 4.61         | 0.140                        |                                          | 4.80                | 25.07                                   |                            | 1.62      | 262      |  |
| 7:45                                                               | 0.75                                   | 26.90          | 4.70         | 0.1                          | 140                                      | 5.10                | 24                                      | 24.92                      |           | 276      |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
| Purged Volume (gallons): 0.75 Purge Time (                         |                                        |                |              |                              | (minutes):                               | 30                  | Pumping Rate (gallons per minute): 0.03 |                            |           | 0.03     |  |
|                                                                    |                                        |                |              | WELL SAI                     | MPLING INF                               | ORMATION            |                                         |                            |           |          |  |
| Method of Sa                                                       | mpling:                                | Sample colle   | ected direct | y from tubing                | g using "soc                             | la straw" met       | thod                                    |                            |           |          |  |
| Decontamination Procedures: N/A - single-use tubing                |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
| Sample ID Time Container                                           |                                        |                |              | Preservative                 |                                          |                     | Analyses                                |                            |           |          |  |
|                                                                    |                                        | 40 mL (2)      |              |                              | hydrochloric acid                        |                     |                                         | volatile organic compounds |           |          |  |
| MW-19                                                              | 7:50                                   |                |              |                              |                                          |                     |                                         |                            |           |          |  |
|                                                                    |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
| Sample Transport Container and Preservation: Cooler and ice        |                                        |                |              |                              |                                          |                     |                                         |                            |           |          |  |
| Sample Dest                                                        | nation:                                | Analytical E   | nvironmenta  | I Services, In               | c. in Atlanta                            | a, Georgia          |                                         |                            |           |          |  |
| Sample Deliv                                                       | ery Method a                           | and Courier:   | Peachtree p  | ersonnel                     |                                          |                     |                                         |                            |           |          |  |
| Chain of Cus                                                       | tody Complet                           | ted:           | Yes          |                              |                                          |                     |                                         |                            |           |          |  |

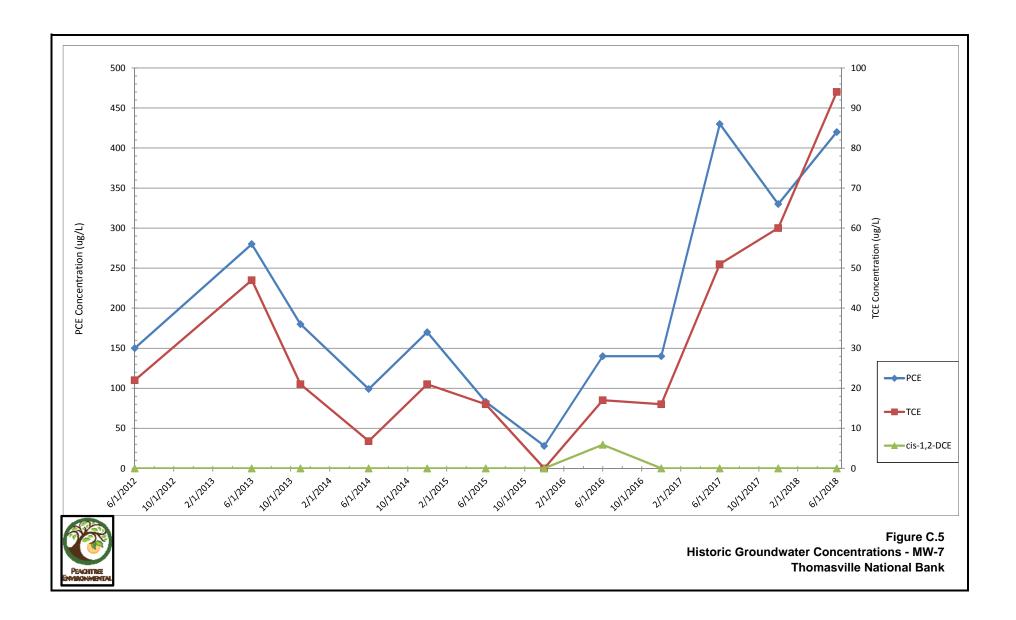
| Purged   (leef)   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                | M              | onitoring     | Well Pur       | ging & S       | ampling         | Information   | on             |               |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|---------------|----------------|----------------|-----------------|---------------|----------------|---------------|----------|
| Well Identification No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Peachtree Pr   | oject:         |                |               |                |                |                 |               |                | 12/5/2017     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peachtree Pe   | ersonnel:      | Larry Carter   |               |                | l .            |                 |               | I              |               |          |
| Well Diameter (inches): 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                |                |               | WEI            | L INFORMA      | TION            |               |                |               |          |
| Total Well Depth from TOC (feet): 35   Screened Interval from TOC (feet): 25-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well Identific | ation No:      | MW-21          |               |                | Location:      | Thomasville     | e, Thomas Co  | unty, Georg    | ia            |          |
| Depth to Water from TOC (feet): 25.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Well Diamete   | er (inches):   | 1              |               |                | Well Constr    | uction:         | Schedule 40   | PVC            |               |          |
| ### April                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Well De  | epth from TO   | C (feet):      | 35            |                | Screened In    | terval from TO  | OC (feet):    | 25-35          |               |          |
| Well Observation   Seneral Condition of Well:   good   General Condition of Surrounding Area:   good   Method of Measure:   EWL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth to Wat   | ter from TOC   | (feet):        | 25.70         |                |                |                 |               |                |               |          |
| Seneral Condition of Well:   good   General Condition of Surrounding Area:   good   Method of Measure:   EWL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Length of Sta  | atic Water Co  | lumn (feet):   | 9.30          |                |                |                 |               |                |               |          |
| NAPL Observation/Thickness:   none   Method of Measure:   EWL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |               | WEL            | L OBSERVA      | TIONS           |               |                |               |          |
| Well Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | General Con    | dition of Well | :              | good          |                | General Co     | ndition of Surr | ounding Area: |                | good          |          |
| Well Diameter (inches)   0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LNAPL Obse     | rvation/Thick  | ness:          | none          |                | Method of N    | leasure:        | EWL           |                |               |          |
| Well Capacity (gallons) per foot)   0.02   0.04   0.06   0.16   0.37   0.65   1.02   1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well Volume    | = Length of    | Static Water C | Column x We   | II Capacity    |                |                 |               |                |               |          |
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Well Dian      | neter (inches) | 0.75          | 1              | 1.25           | 2               | 3             | 4              | 5             | 6        |
| WELL PURGING INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Well           | Capacity (gal  | lons per foot) | 0.02          | 0.04           | 0.06           | 0.16            | 0.37          | 0.65           | 1.02          | 1.47     |
| Company   Comp | One Well Vo    | lume (gallons  | s):            | 0.37          |                | Three Well     | Volumes (gall   | ons):         | 1.12           |               |          |
| Depth of Pump Intake from TOC (feet): 26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |                |               | WELL PU        | RGING INFO     | DRMATION        |               |                |               |          |
| Start Time: 7:35   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Purging Meth   | nod:           | Low flow, lo   | w stress wit  | h peristaltic  | pump and p     | olyethylene t   | ubing         |                |               |          |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth of Pun   | np Intake fror | n TOC (feet):  |               | 26.5           |                |                 |               |                |               |          |
| Purged   (feet)   PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Start Time:    | 7:35           |                |               |                |                | _               |               |                |               |          |
| 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time           |                |                | рН            |                |                | ,               | Tempera       | ature (°C)     | DO (mg/L)     | ORP (mV) |
| 8:06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7:50           |                | ` ,            | 6.81          |                |                | , ,             | 24            | .78            | 0.39          | -55      |
| 8:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8:00           | 0.50           | 25.95          | 6.82          | 0.1            | 175            | 3.30            | 24            | .68            | 0.19          | -58      |
| 8:20 1.20 25.98 6.84 0.174 3.30 24.40 0.00 -66  Purged Volume (gallons): 1.20 Purge Time (minutes): 45 Pumping Rate (gallons per minute): 0.03  WELL SAMPLING INFORMATION  Wethod of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Multiple Sample Collected directly from tubing using "soda straw" method  MW-21 8:23 Preservative Analyses  hydrochloric acid volatile organic compounds  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8:06           | 0.75           | 25.98          | 6.84          | 0.1            | 175            | 3.50            | 24            | .45            | 0.00          | -64      |
| Purged Volume (gallons):  1.20 Purge Time (minutes):  45 Pumping Rate (gallons per minute):  0.03  WELL SAMPLING INFORMATION  Wethod of Sampling:  Sample collected directly from tubing using "soda straw" method  Decontamination Procedures:  N/A - single-use tubing  Sample ID  Time  Container  Preservative  Analyses  40 mL (2)  hydrochloric acid  volatile organic compounds  MW-21  8:23  Sample Transport Container and Preservation:  Cooler and ice  Sample Destination:  Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier:  Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8:14           | 1.00           | 25.98          | 6.84          | 0.1            | 175            | 3.50            | 24            | .42            | 0.00          | -65      |
| WELL SAMPLING INFORMATION  Method of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  40 mL (2) hydrochloric acid volatile organic compounds  MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8:20           | 1.20           | 25.98          | 6.84          | 0.1            | 174            | 3.30            | 24            | .40            | 0.00          | -66      |
| WELL SAMPLING INFORMATION  Method of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  40 mL (2) hydrochloric acid volatile organic compounds  MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |                |               |                |                |                 |               |                |               |          |
| WELL SAMPLING INFORMATION  Method of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  40 mL (2) hydrochloric acid volatile organic compounds  MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |                |               |                |                |                 |               |                |               |          |
| WELL SAMPLING INFORMATION  Method of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  40 mL (2) hydrochloric acid volatile organic compounds  MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |                |               |                |                |                 |               |                |               |          |
| WELL SAMPLING INFORMATION  Method of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  40 mL (2) hydrochloric acid volatile organic compounds  MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |                |               |                |                |                 |               |                |               |          |
| WELL SAMPLING INFORMATION  Method of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  40 mL (2) hydrochloric acid volatile organic compounds  MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |                |               |                |                |                 |               |                |               |          |
| WELL SAMPLING INFORMATION  Method of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  40 mL (2) hydrochloric acid volatile organic compounds  MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |                |               |                |                |                 |               |                |               |          |
| WELL SAMPLING INFORMATION  Method of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  40 mL (2) hydrochloric acid volatile organic compounds  MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |                |               |                |                |                 |               |                |               |          |
| Method of Sampling: Sample collected directly from tubing using "soda straw" method  Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  MW-21 8:23 40 mL (2) hydrochloric acid volatile organic compounds  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Purged Volur   | me (gallons):  |                | 1.20          | Purge Time     | (minutes):     | 45              | Pumping Rat   | te (gallons pe | r minute):    | 0.03     |
| Decontamination Procedures: N/A - single-use tubing  Sample ID Time Container Preservative Analyses  MW-21 8:23 40 mL (2) hydrochloric acid volatile organic compounds  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |               | WELL SAI       | MPLING INF     | ORMATION        |               |                |               |          |
| Sample ID Time Container Preservative Analyses  MW-21 8:23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Method of Sa   | ampling:       | Sample colle   | ected directl | y from tubing  | g using "soo   | la straw" met   | hod           |                |               |          |
| MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Decontamina    | tion Procedu   | ıres:          | N/A - single  | -use tubing    |                |                 |               |                |               |          |
| MW-21 8:23  Sample Transport Container and Preservation: Cooler and ice  Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia  Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample ID      | Time           |                | Container     |                |                | Preservative    | <b>;</b>      |                | Analyses      |          |
| Sample Transport Container and Preservation: Cooler and ice Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |                | 40 mL (2)     |                | ŀ              | nydrochloric ad | cid           | volatile       | e organic com | pounds   |
| Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MW-21          | 8:23           |                |               |                |                |                 |               |                |               |          |
| Sample Destination: Analytical Environmental Services, Inc. in Atlanta, Georgia Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |                |               |                |                |                 |               |                |               |          |
| Sample Delivery Method and Courier: Peachtree personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Tran    | sport Contair  | ner and Prese  | rvation:      | Cooler and     | ice            |                 |               |                |               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Dest    | ination:       | Analytical E   | nvironmenta   | I Services, In | nc. in Atlanta | , Georgia       |               |                |               |          |
| Chain of Custody Completed: Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Deliv   | ery Method a   | and Courier:   | Peachtree p   | ersonnel       |                |                 |               |                |               |          |
| 2451 Thompswille Mational Bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chain of Cus   | tody Comple    | ted:           | Yes           |                |                |                 |               |                |               |          |


PEACHTREE ENVIRONMENTAL


|                |                   | M                  | onitoring    | y Well Pur      | ging & S           | ampling             | Informatio     | on            |               |          |
|----------------|-------------------|--------------------|--------------|-----------------|--------------------|---------------------|----------------|---------------|---------------|----------|
| Peachtree Pi   | oject:            | Thomasville        | National Ba  | ank             | Project No.:       | 3151                |                | Date:         | 6/6/2018      |          |
| Peachtree Po   | ersonnel:         | Daniel Barfi       | eld          |                 | •                  |                     |                |               |               |          |
|                |                   |                    |              | WEL             | L INFORMA          | TION                |                |               |               |          |
| Well Identific | ation No:         | MW-24              |              |                 | Location:          | Thomasville         | e, Thomas Co   | unty, Georg   | ia            |          |
| Well Diamete   | er (inches):      | 1                  |              |                 | Well Constr        | uction:             | Schedule 40    | PVC           |               |          |
| Total Well De  | epth from TO      | C (feet):          | 30           |                 | Screened In        | terval from To      | OC (feet):     | 20-30         |               |          |
| Depth to Wa    | ter from TOC      | (feet):            | 25.77        |                 |                    |                     |                |               |               |          |
| Length of Sta  | atic Water Co     | lumn (feet):       | 4.23         |                 |                    |                     |                |               |               |          |
|                |                   |                    |              | WELI            | L OBSERVA          | TIONS               |                |               |               |          |
| General Con    | dition of Well    | l:                 | good         |                 | General Co         | ndition of Surr     | rounding Area: |               | good          |          |
| LNAPL Obse     | ervation/Thick    | iness:             | none         |                 | Method of M        | leasure:            | EWL            |               |               |          |
| Well Volume    | = Length of       | Static Water C     | olumn x We   | II Capacity     |                    |                     |                |               |               |          |
|                | Well Diam         | neter (inches)     | 0.75         | 1               | 1.25               | 2                   | 3              | 4             | 5             | 6        |
| Well           | Capacity (gal     | lons per foot)     | 0.02         | 0.04            | 0.06               | 0.16                | 0.37           | 0.65          | 1.02          | 1.47     |
| One Well Vo    | lume (gallons     | s):                | 0.17         |                 | Three Well         | Volumes (gall       | ons):          | 0.51          |               |          |
|                |                   |                    |              | WELL PU         | RGING INFO         | ORMATION            |                |               |               |          |
| Purging Meth   | nod:              | Low flow, lo       | w stress wi  | th peristaltic  | pump and p         | olyethylene t       | ubing          |               |               |          |
| Depth of Pur   | np Intake fror    | n TOC (feet):      |              | 29              |                    |                     |                |               |               |          |
| Start Time:    | 8:25              |                    |              |                 |                    |                     |                |               |               |          |
| Time           | Gallons<br>Purged | Water Level (feet) | рН           |                 | onductance<br>/cm) | Turbidity<br>(NTUs) | Tempera        | ature (°C)    | DO (mg/L)     | ORP (mV) |
| 8:35           | 0.20              | 26.69              | 5.47         | ,               | 216                | 0.80                | 24.            | .74           | 2.25          | 211      |
| 8:42           | 0.40              | 26.69              | 5.62         | 0.2             | 220                | 3.20                | 24.            | .69           | 0.09          | 191      |
| 8:48           | 0.60              | 26.69              | 5.71         | 0.2             | 218                | 2.30                | 24.            | .60           | 0.00          | 180      |
| 8:54           | 0.80              | 26.69              | 5.71         | 0.2             | 218                | 1.90                | 24             | .70           | 0.00          | 171      |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
| Purged Volui   | me (gallons):     | ļ                  | 0.80         | Purge Time (    | (minutes):         | 29                  | Pumping Rat    | e (gallons pe | er minute):   | 0.03     |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
| Method of Sa   | ampling:          | Sample colle       | ected direct | ly from tubing  | using "soc         | la straw" met       | thod           |               |               |          |
| Decontamina    | ation Procedu     | ıres:              | N/A - single | -use tubing     |                    |                     |                |               |               |          |
| Sample ID      | Time              |                    | Container    |                 |                    | Preservative        | e              |               | Analyses      |          |
|                |                   |                    | 40 mL (2)    |                 | ı                  | nydrochloric a      | cid            | volatile      | e organic com | pounds   |
| MW-24          | 9:00              |                    |              |                 |                    |                     |                |               |               |          |
|                |                   |                    |              |                 |                    |                     |                |               |               |          |
| Sample Tran    | sport Contair     | ner and Prese      | rvation:     | Cooler and i    | ice                |                     |                |               |               |          |
| Sample Dest    | ination:          | Analytical E       | nvironmenta  | al Services, In | c. in Atlanta      | ı, Georgia          |                |               |               |          |
| Sample Deliv   | ery Method a      | and Courier:       | Peachtree ¡  | personnel       |                    |                     |                |               |               |          |
| Chain of Cus   | tody Comple       | ted:               | Yes          |                 |                    |                     |                |               |               |          |




# APPENDIX C


Historic Concentration Trend Graphs













# APPENDIX D

June 2018 Groundwater Laboratory Analytical Report

# ANALYTICAL ENVIRONMENTAL SERVICES, INC.



June 12, 2018

Larry Carter

Peachtree Environmental

3000 Northwoods Parkway, Suite 105 Norcross

30071 GA

RE: Thomasville National Bank - TNB

Dear Larry Carter: Order No: 1806811

Analytical Environmental Services, Inc. received

15 samples on 6/7/2018 12:15:00 PM

for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES's accreditations are as follows:

- -NELAP/State of Florida Laboratory ID E87582 for analysis of Non-Potable Water, Solid & Chemical Materials, Air & Emissions Volatile Organics, and Drinking Water Microbiology & Metals, effective 07/01/17-06/30/18. State of Georgia, Department of Natural Resources ID #800 for analysis of Drinking Water Metals, effective 07/01/17-06/30/18 and Total Coliforms/ E. coli, effective 04/25/17-04/24/20.
- -NELAP/Louisiana Agency Interest No. 100818 for or analysis of Non-Potable Water and Solid & Chemical Materials, effective 07/01/17-06/30/18.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Metals, PCM Asbestos, Gravimetric), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 11/01/19.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Pano nasondi

Paris Masoudi

Project Manager

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

CHAIN OF CUSTODY

806811 Work Order:

3080 Presidential Drive Atlanta, GA 30340-3704

| AE          | S Phone: (770) 457-8177 / Toll-Free: (800) 977 | 2-4889 / Fax: (   | (770) 457-818               | 8    |           |                    |      |          |      | 1 2 2 2 2 2 |            |           |          | Date: 6 | 17/18    | Page                                                                          | of /         | _        |
|-------------|------------------------------------------------|-------------------|-----------------------------|------|-----------|--------------------|------|----------|------|-------------|------------|-----------|----------|---------|----------|-------------------------------------------------------------------------------|--------------|----------|
| ONE         | achtree Environmental                          | Suit<br>Nord      | Vonthue 105<br>105<br>1055, | 674  | 300       | 7/                 | 0    |          |      | ANALY       | SIS REQU   | JESTED    |          |         | download | t our website<br>esatlanta.com<br>dable COCs an<br>o your AESAcce<br>account. | d to         |          |
| MPLI<br>2 c | EDBY: Frang Conter, Downel BurField            | SIGNATURE:<br>SAM | IPLED:                      | GRAB | COMPOSITE | MATRIX (see codes) | 1000 |          |      | PRESERV     | /ATION (se | ee codes) |          |         |          |                                                                               | Number of Co |          |
|             | Trip Blank                                     | DATE              | TIME                        | б    | COM       | M. (see            |      |          |      |             |            |           |          |         |          | REMARKS                                                                       | 5            | 2        |
| 1           | ma-I                                           | 6/6/18            | 1000                        |      | X         | GW                 |      |          |      | $\sqcup$    | $\perp$    | $\perp$   | -        | $\perp$ |          |                                                                               | 2            | _        |
| 2           | mw-3                                           | 6/6/18            | 1100                        |      | 1         |                    |      |          |      | $\vdash$    | $\perp$    |           |          | +       |          |                                                                               | 2            | -        |
| 3           | mu-s                                           | 615/18            | 1745                        |      |           |                    |      |          | -    | $\vdash$    | +          |           |          | ++      |          |                                                                               |              | 2        |
| 4           | m w-6                                          | 40/18             | 1120                        |      |           |                    | -    | $\sqcup$ |      |             | 1          |           |          | +       |          |                                                                               | 2            | 2        |
| 5           | ma 7                                           | 6/6/18            | 1400                        |      | 1         |                    |      | $\sqcup$ |      |             | -          |           |          |         |          |                                                                               | 2            |          |
| 6           | m 60-12                                        | 6/6/18            | 1420                        |      |           |                    |      | $\sqcup$ |      |             | $\perp$    |           | $\vdash$ |         |          |                                                                               | - 5          |          |
| 7           | m 2-14                                         | 6/6/18            | 1645                        |      | 1         |                    |      |          |      |             | $\perp$    |           |          | +       |          |                                                                               | 2            |          |
| 8           | m 4 - 15                                       | 615/18            | 1805                        |      | 1         |                    |      | $\sqcup$ |      |             | $\perp$    |           | -        | $\perp$ |          |                                                                               | 2            |          |
| 9           | m W-16                                         | 6/5/18            | 1555                        |      | $\perp$   |                    |      |          |      |             | +          | _         |          | $\perp$ |          |                                                                               | 2            |          |
| 10          | Mu-17                                          | 6/6/18            | 1000                        |      | $\sqcup$  |                    | _    |          |      | $\perp$     | $\perp$    |           |          | ++      |          |                                                                               | 2            |          |
| 11          | mu-18                                          | 6/5/18            | 1515                        |      | $\sqcup$  |                    | _    | $\sqcup$ |      | $\perp$     | $\perp$    |           |          | $\perp$ |          |                                                                               | 3            | 2        |
| 12          | m w-19                                         | 6/6/18            | 0750                        |      | $\sqcup$  | 1                  | _    | $\sqcup$ | _    | $\bot$      | +          | _         | -        |         |          |                                                                               | - 6          |          |
| 13          | mu-21                                          | 6/6/18            | 0823                        |      | 1         |                    | _    |          |      | $\bot$      | $\perp$    |           | -        |         |          |                                                                               | 2            | 4        |
| 14          | mw-24                                          | 616/18            | 0900                        |      |           | 14                 |      |          |      |             |            |           |          |         |          | RECEIPT                                                                       |              | _        |
| ELINC       | QUISHED BY: DATE/TIME:                         | RECEIVED BY:      | 2005                        | (01  | DATE,     | LOIS               | PRC  | JECT NA  | ME:  | PROJE       | CT INFOR   | MATION    |          |         | -        |                                                                               |              | $\dashv$ |
| X           | flow for 61418 1216                            | 1.1710×10         | 100n                        | Ul   | 2:1       | Spm                |      | Th       | masi |             | 10/10      | nal b     | Bunk     | TMB     |          | al # of Containers                                                            |              | 0        |
|             |                                                | 2.                |                             |      |           | 4                  | _    | JECT #:  |      | 151         |            |           |          |         |          | around Time (TAT) tandard 5 Business                                          |              |          |
|             |                                                | 1                 |                             |      |           |                    |      |          |      |             |            |           |          |         | II /X/5  | tariuaru o business                                                           | Days         | - 11     |

Thomas ville, GTL SEND REPORT PERITON PROCES Trecentinon montels are SHIPMENT METHOD INVOICE TO: SPECIAL INSTRUCTIONS/COMMENTS: (IF DIFFERENT FROM ABOVE) OUT: VIA:

UPS US mail courier Greyhound

PO#: DATA PACKAGE: I O II O III O IV O QUOTE #: Submission of samples to the laboratory constitutes acceptance of AES's Terms & Conditions. Samples received after 3PM or on Saturday are considered as received the following business day. If no TAT is marked on COC, AES will proceed with standard TAT. Samples are disposed of 30 days after completion of report unless other arangements are made.

Preservative Codes: H+I = Hydrochloric acid + ice I = Ice only N = Nitric acid S+I = Sulfuric acid + ice S/M+I = Sodium Bisulfate/Methanol + ice O = Other (specify) NA = None

client

2 Business Day Rush

Other \_

STATE PROGRAM (if any):

E-mail?

Next Business Day Rush Same-Day Rush (auth req.)

Fax?

Client:Peachtree EnvironmentalClient Sample ID:TRIP BLANKProject NameThomasville National Bank - TNBCollection Date:6/6/2018

Lab ID: 1806811-001 Matrix: Aqueous

| Analyses                     | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW8260 | В      |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,1,2,2-Tetrachloroethane    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,1,2-Trichloroethane        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,1-Dichloroethane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,1-Dichloroethene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,2,4-Trichlorobenzene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,2-Dibromo-3-chloropropane  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,2-Dibromoethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,2-Dichlorobenzene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,2-Dichloroethane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,2-Dichloropropane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,3-Dichlorobenzene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 1,4-Dichlorobenzene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 2-Butanone                   | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 2-Hexanone                   | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| 4-Methyl-2-pentanone         | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Acetone                      | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Benzene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Bromodichloromethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Bromoform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Bromomethane                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Carbon disulfide             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Carbon tetrachloride         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Chlorobenzene                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Chloroethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Chloroform                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Chloromethane                | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| cis-1,2-Dichloroethene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| cis-1,3-Dichloropropene      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Cyclohexane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Dibromochloromethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Dichlorodifluoromethane      | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Ethylbenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Freon-113                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Isopropylbenzene             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| m,p-Xylene                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Methyl acetate               | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Methyl tert-butyl ether      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Methylcyclohexane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Methylene chloride           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| o-Xylene                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |

Qualifiers:

BRL Below reporting limit

Date:

12-Jun-18

Narr See case narrative

<sup>\*</sup> Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed
< Less than Result value

J Estimated value detected below Reporting Limit

Client:Peachtree EnvironmentalClient Sample ID:TRIP BLANKProject NameThomasville National Bank - TNBCollection Date:6/6/2018

Lab ID: 1806811-001 Matrix: Aqueous

| Analyses                   |         | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|----------------------------|---------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS      | SW8260B |        |                    |      | (SV   | V5030B) |              |                  |         |
| Styrene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Tetrachloroethene          |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Toluene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| trans-1,2-Dichloroethene   |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| trans-1,3-Dichloropropene  |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Trichloroethene            |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Trichlorofluoromethane     |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Vinyl chloride             |         | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Surr: 4-Bromofluorobenzene |         | 86.4   | 68-127             |      | %REC  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Surr: Dibromofluoromethane |         | 114    | 84.4-122           |      | %REC  | 262200  | 1            | 06/11/2018 17:09 | OM      |
| Surr: Toluene-d8           |         | 98.2   | 80.1-116           |      | %REC  | 262200  | 1            | 06/11/2018 17:09 | OM      |

Date:

12-Jun-18

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-2

Project Name Thomasville National Bank - TNB Collection Date: 6/6/2018 10:00:00 AM

Date:

12-Jun-18

Lab ID: 1806811-002 Matrix: Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW8260B |        |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 2-Butanone                    | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Acetone                       | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Benzene                       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Bromoform                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Bromomethane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Chloroethane                  | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Chloroform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Chloromethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| cis-1,2-Dichloroethene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Cyclohexane                   | 42     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Ethylbenzene                  | 420    | 250                |      | ug/L  | 262200  | 50           | 06/11/2018 17:56 | OM      |
| Freon-113                     | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Isopropylbenzene              | 32     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| m,p-Xylene                    | 1700   | 250                |      | ug/L  | 262200  | 50           | 06/11/2018 17:56 | OM      |
| Methyl acetate                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Methyl tert-butyl ether       | 85     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Methylcyclohexane             | 120    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Methylene chloride            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| o-Xylene                      | 670    | 250                |      | ug/L  | 262200  | 50           | 06/11/2018 17:56 | OM      |

Qualifiers:

BRL Below reporting limit

<sup>\*</sup> Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-2

**Project Name** Thomasville National Bank - TNB **Collection Date:** 6/6/2018 10:00:00 AM

Date:

12-Jun-18

Lab ID: 1806811-002 Matrix: Groundwater

| Analyses                   |         | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|----------------------------|---------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS      | SW8260B |        |                    |      | (SW   | V5030B) |              |                  |         |
| Styrene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Tetrachloroethene          |         | 7.6    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Toluene                    |         | 370    | 250                |      | ug/L  | 262200  | 50           | 06/11/2018 17:56 | OM      |
| trans-1,2-Dichloroethene   |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| trans-1,3-Dichloropropene  |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Trichloroethene            |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Trichlorofluoromethane     |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Vinyl chloride             |         | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Surr: 4-Bromofluorobenzene |         | 91.1   | 68-127             |      | %REC  | 262200  | 50           | 06/11/2018 17:56 | OM      |
| Surr: 4-Bromofluorobenzene |         | 112    | 68-127             |      | %REC  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Surr: Dibromofluoromethane |         | 112    | 84.4-122           |      | %REC  | 262200  | 50           | 06/11/2018 17:56 | OM      |
| Surr: Dibromofluoromethane |         | 93.5   | 84.4-122           |      | %REC  | 262200  | 1            | 06/12/2018 14:11 | OM      |
| Surr: Toluene-d8           |         | 99.6   | 80.1-116           |      | %REC  | 262200  | 50           | 06/11/2018 17:56 | OM      |
| Surr: Toluene-d8           |         | 99     | 80.1-116           |      | %REC  | 262200  | 1            | 06/12/2018 14:11 | OM      |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Second Second

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-3

**Project Name** Thomasville National Bank - TNB **Collection Date:** 6/6/2018 11:00:00 AM

Date:

12-Jun-18

Lab ID:1806811-003Matrix:Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW82601 | В      |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 2-Butanone                    | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Acetone                       | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Benzene                       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Bromoform                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Bromomethane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Chloroethane                  | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Chloroform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Chloromethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| cis-1,2-Dichloroethene        | 9.4    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Cyclohexane                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Ethylbenzene                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Freon-113                     | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Isopropylbenzene              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| m,p-Xylene                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Methyl acetate                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Methyl tert-butyl ether       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Methylcyclohexane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Methylene chloride            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| o-Xylene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |

Qualifiers:

<sup>\*</sup> Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-3

Project Name Thomasville National Bank - TNB Collection Date: 6/6/2018 11:00:00 AM

Date:

12-Jun-18

Lab ID: 1806811-003 Matrix: Groundwater

| Analyses                   |         | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|----------------------------|---------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS      | SW8260B |        |                    |      | (SW   | V5030B) |              |                  |         |
| Styrene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Tetrachloroethene          |         | 17     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Toluene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| trans-1,2-Dichloroethene   |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| trans-1,3-Dichloropropene  |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Trichloroethene            |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Trichlorofluoromethane     |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Vinyl chloride             |         | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Surr: 4-Bromofluorobenzene |         | 82.6   | 68-127             |      | %REC  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Surr: Dibromofluoromethane |         | 111    | 84.4-122           |      | %REC  | 262200  | 1            | 06/12/2018 09:01 | OM      |
| Surr: Toluene-d8           |         | 100    | 80.1-116           |      | %REC  | 262200  | 1            | 06/12/2018 09:01 | OM      |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-5

Project NameThomasville National Bank - TNBCollection Date:6/5/2018 5:45:00 PM

Lab ID:1806811-004Matrix:Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units        | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|--------------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW8260B |        |                    |      | (SV          | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 2-Butanone                    | BRL    | 50                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Acetone                       | BRL    | 50                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Benzene                       | 5.6    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Bromoform                     | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Bromomethane                  | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Chloroethane                  | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Chloroform                    | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Chloromethane                 | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| cis-1,2-Dichloroethene        | 37     | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Cyclohexane                   | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Ethylbenzene                  | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Freon-113                     | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Isopropylbenzene              | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| m,p-Xylene                    | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Methyl acetate                | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Methyl tert-butyl ether       | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Methylcyclohexane             | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Methylene chloride            | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:49 | OM      |
| o-Xylene                      | BRL    | 5.0                |      | ug/L<br>ug/L | 262200  | 1            | 06/12/2018 03:49 | OM      |
| U-Ayiche                      | DICL   | 5.0                |      | 45/12        | 202200  | 1            | 00/12/2010 03.49 |         |

Qualifiers:

BRL Below reporting limit

Date:

12-Jun-18

<sup>\*</sup> Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-5

Project NameThomasville National Bank - TNBCollection Date:6/5/2018 5:45:00 PM

Lab ID:1806811-004Matrix:Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW82601 | 3      |                    |      | (SW   | /5030B) |              |                  |         |
| Styrene                       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Tetrachloroethene             | 890    | 250                |      | ug/L  | 262200  | 50           | 06/12/2018 13:47 | OM      |
| Toluene                       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:49 | OM      |
| trans-1,2-Dichloroethene      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:49 | OM      |
| trans-1,3-Dichloropropene     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Trichloroethene               | 170    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Trichlorofluoromethane        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Vinyl chloride                | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Surr: 4-Bromofluorobenzene    | 84.3   | 68-127             |      | %REC  | 262200  | 50           | 06/12/2018 13:47 | OM      |
| Surr: 4-Bromofluorobenzene    | 87.2   | 68-127             |      | %REC  | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Surr: Dibromofluoromethane    | 110    | 84.4-122           |      | %REC  | 262200  | 50           | 06/12/2018 13:47 | OM      |
| Surr: Dibromofluoromethane    | 106    | 84.4-122           |      | %REC  | 262200  | 1            | 06/12/2018 03:49 | OM      |
| Surr: Toluene-d8              | 96.4   | 80.1-116           |      | %REC  | 262200  | 50           | 06/12/2018 13:47 | OM      |
| Surr: Toluene-d8              | 97.2   | 80.1-116           |      | %REC  | 262200  | 1            | 06/12/2018 03:49 | OM      |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

12-Jun-18

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-6

**Project Name** Thomasville National Bank - TNB **Collection Date:** 6/6/2018 11:20:00 AM

Date:

12-Jun-18

Lab ID: 1806811-005 Matrix: Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW8260B | 3      |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 2-Butanone                    | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Acetone                       | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Benzene                       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Bromoform                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Bromomethane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Chloroethane                  | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Chloroform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Chloromethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| cis-1,2-Dichloroethene        | 57     | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Cyclohexane                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Ethylbenzene                  | 6.7    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Freon-113                     | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Isopropylbenzene              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| m,p-Xylene                    | 25     | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Methyl acetate                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Methyl tert-butyl ether       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Methylcyclohexane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Methylene chloride            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| o-Xylene                      | 8.8    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |

Qualifiers:

<sup>\*</sup> Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-6

**Project Name** Thomasville National Bank - TNB **Collection Date:** 6/6/2018 11:20:00 AM

Date:

12-Jun-18

Lab ID: 1806811-005 Matrix: Groundwater

| Analyses                   |         | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|----------------------------|---------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS      | SW8260B |        |                    |      | (SW   | /5030B) |              |                  |         |
| Styrene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Tetrachloroethene          |         | 1100   | 50                 |      | ug/L  | 262200  | 10           | 06/12/2018 12:59 | OM      |
| Toluene                    |         | 7.7    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| trans-1,2-Dichloroethene   |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| trans-1,3-Dichloropropene  |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Trichloroethene            |         | 770    | 50                 |      | ug/L  | 262200  | 10           | 06/12/2018 12:59 | OM      |
| Trichlorofluoromethane     |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Vinyl chloride             |         | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Surr: 4-Bromofluorobenzene |         | 89.1   | 68-127             |      | %REC  | 262200  | 10           | 06/12/2018 12:59 | OM      |
| Surr: 4-Bromofluorobenzene |         | 92.5   | 68-127             |      | %REC  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Surr: Dibromofluoromethane |         | 107    | 84.4-122           |      | %REC  | 262200  | 10           | 06/12/2018 12:59 | OM      |
| Surr: Dibromofluoromethane |         | 109    | 84.4-122           |      | %REC  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Surr: Toluene-d8           |         | 97.5   | 80.1-116           |      | %REC  | 262200  | 1            | 06/11/2018 20:19 | OM      |
| Surr: Toluene-d8           |         | 96.5   | 80.1-116           |      | %REC  | 262200  | 10           | 06/12/2018 12:59 | OM      |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-7

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 2:00:00 PM

Lab ID:1806811-006Matrix:Groundwater

| Analyses                     | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW8260 | В      |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,1,2,2-Tetrachloroethane    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,1,2-Trichloroethane        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,1-Dichloroethane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,1-Dichloroethene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,2,4-Trichlorobenzene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,2-Dibromo-3-chloropropane  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,2-Dibromoethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,2-Dichlorobenzene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,2-Dichloroethane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,2-Dichloropropane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,3-Dichlorobenzene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 1,4-Dichlorobenzene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 2-Butanone                   | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 2-Hexanone                   | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| 4-Methyl-2-pentanone         | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Acetone                      | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Benzene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Bromodichloromethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Bromoform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Bromomethane                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Carbon disulfide             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Carbon tetrachloride         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Chlorobenzene                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Chloroethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Chloroform                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Chloromethane                | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| cis-1,2-Dichloroethene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| cis-1,3-Dichloropropene      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Cyclohexane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Dibromochloromethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Dichlorodifluoromethane      | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Ethylbenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Freon-113                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Isopropylbenzene             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| m,p-Xylene                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Methyl acetate               | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Methyl tert-butyl ether      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Methylcyclohexane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Methylene chloride           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| o-Xylene                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |

Qualifiers:

Date:

12-Jun-18

<sup>\*</sup> Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-7

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 2:00:00 PM

Lab ID:1806811-006Matrix:Groundwater

| Analyses                   |        | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|----------------------------|--------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS S    | W8260B |        |                    |      | (SW   | /5030B) |              |                  |         |
| Styrene                    |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Tetrachloroethene          |        | 420    | 50                 |      | ug/L  | 262200  | 10           | 06/12/2018 00:16 | OM      |
| Toluene                    |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| trans-1,2-Dichloroethene   |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| trans-1,3-Dichloropropene  |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Trichloroethene            |        | 94     | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Trichlorofluoromethane     |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Vinyl chloride             |        | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Surr: 4-Bromofluorobenzene |        | 81.6   | 68-127             |      | %REC  | 262200  | 10           | 06/12/2018 00:16 | OM      |
| Surr: 4-Bromofluorobenzene |        | 83.5   | 68-127             |      | %REC  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Surr: Dibromofluoromethane |        | 114    | 84.4-122           |      | %REC  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Surr: Dibromofluoromethane |        | 115    | 84.4-122           |      | %REC  | 262200  | 10           | 06/12/2018 00:16 | OM      |
| Surr: Toluene-d8           |        | 97.9   | 80.1-116           |      | %REC  | 262200  | 1            | 06/11/2018 23:52 | OM      |
| Surr: Toluene-d8           |        | 98.4   | 80.1-116           |      | %REC  | 262200  | 10           | 06/12/2018 00:16 | OM      |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

12-Jun-18

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-12

Project Name Thomasville National Bank - TNB Collection Date: 6/6/2018 2:20:00 PM

Lab ID: 1806811-007 Matrix: Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW8260B |        |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 2-Butanone                    | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Acetone                       | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Benzene                       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Bromoform                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Bromomethane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Chloroethane                  | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Chloroform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Chloromethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| cis-1,2-Dichloroethene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Cyclohexane                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Ethylbenzene                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Freon-113                     | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Isopropylbenzene              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| m,p-Xylene                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Methyl acetate                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Methyl tert-butyl ether       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Methylcyclohexane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Methylene chloride            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| o-Xylene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |

Qualifiers:

- \* Value exceeds maximum contaminant level
- BRL Below reporting limit
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

E Estimated (value above quantitation range)

Date:

12-Jun-18

S Spike Recovery outside limits due to matrix

Narr See case narrative

- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-12

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 2:20:00 PM

Lab ID:1806811-007Matrix:Groundwater

| Analyses                   |         | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|----------------------------|---------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS      | SW8260B |        |                    |      | (SV   | V5030B) |              |                  |         |
| Styrene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Tetrachloroethene          |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Toluene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| trans-1,2-Dichloroethene   |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| trans-1,3-Dichloropropene  |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Trichloroethene            |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Trichlorofluoromethane     |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Vinyl chloride             |         | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Surr: 4-Bromofluorobenzene |         | 84.3   | 68-127             |      | %REC  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Surr: Dibromofluoromethane |         | 109    | 84.4-122           |      | %REC  | 262200  | 1            | 06/11/2018 18:44 | OM      |
| Surr: Toluene-d8           |         | 99.5   | 80.1-116           |      | %REC  | 262200  | 1            | 06/11/2018 18:44 | OM      |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

12-Jun-18

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-14

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 4:45:00 PM

Lab ID:1806811-008Matrix:Groundwater

| Analyses                     | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |  |  |
|------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|--|--|
| TCL VOLATILE ORGANICS SW8260 | В      | (SW5030B)          |      |       |         |              |                  |         |  |  |
| 1,1,1-Trichloroethane        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,1,2,2-Tetrachloroethane    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,1,2-Trichloroethane        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,1-Dichloroethane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,1-Dichloroethene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,2,4-Trichlorobenzene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,2-Dibromo-3-chloropropane  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,2-Dibromoethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,2-Dichlorobenzene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,2-Dichloroethane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,2-Dichloropropane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,3-Dichlorobenzene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 1,4-Dichlorobenzene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 2-Butanone                   | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 2-Hexanone                   | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| 4-Methyl-2-pentanone         | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Acetone                      | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Benzene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Bromodichloromethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Bromoform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Bromomethane                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Carbon disulfide             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Carbon tetrachloride         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Chlorobenzene                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Chloroethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Chloroform                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Chloromethane                | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| cis-1,2-Dichloroethene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| cis-1,3-Dichloropropene      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Cyclohexane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Dibromochloromethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Dichlorodifluoromethane      | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Ethylbenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Freon-113                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Isopropylbenzene             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| m,p-Xylene                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Methyl acetate               | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Methyl tert-butyl ether      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Methylcyclohexane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| Methylene chloride           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |
| o-Xylene                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |

Qualifiers:

BRL Below reporting limit

Date:

12-Jun-18

<sup>\*</sup> Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-14

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 4:45:00 PM

Lab ID:1806811-008Matrix:Groundwater

| Analyses                   | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |  |  |  |  |
|----------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|--|--|--|--|
| TCL VOLATILE ORGANICS SW82 | 60B    | B (SW5030B)        |      |       |         |              |                  |         |  |  |  |  |
| Styrene                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| Tetrachloroethene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| Toluene                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| trans-1,2-Dichloroethene   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| trans-1,3-Dichloropropene  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| Trichloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| Trichlorofluoromethane     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| Vinyl chloride             | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| Surr: 4-Bromofluorobenzene | 80.6   | 68-127             |      | %REC  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| Surr: Dibromofluoromethane | 108    | 84.4-122           |      | %REC  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |
| Surr: Toluene-d8           | 101    | 80.1-116           |      | %REC  | 262200  | 1            | 06/11/2018 19:08 | OM      |  |  |  |  |

Date:

12-Jun-18

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-15

Project Name Thomasville National Bank - TNB Collection Date: 6/5/2018 6:05:00 PM

Lab ID:1806811-009Matrix:Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW8260B |        |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 2-Butanone                    | 86     | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Acetone                       | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Benzene                       | 6.6    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Bromoform                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Bromomethane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Chloroethane                  | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Chloroform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Chloromethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| cis-1,2-Dichloroethene        | 520    | 50                 |      | ug/L  | 262200  | 10           | 06/12/2018 01:04 | OM      |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Cyclohexane                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Ethylbenzene                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Freon-113                     | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Isopropylbenzene              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| m,p-Xylene                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Methyl acetate                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Methyl tert-butyl ether       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Methylcyclohexane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Methylene chloride            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| o-Xylene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| o zrytene                     | DICE   | 5.0                |      |       | 202200  |              | 00/12/2010 00.40 |         |

Qualifiers:

Date:

12-Jun-18

<sup>\*</sup> Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-15

Project NameThomasville National Bank - TNBCollection Date:6/5/2018 6:05:00 PM

Lab ID:1806811-009Matrix:Groundwater

| Analyses                   |        | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|----------------------------|--------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS S    | W8260B |        |                    |      | (SW   | /5030B) |              |                  |         |
| Styrene                    |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Tetrachloroethene          |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Toluene                    |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| trans-1,2-Dichloroethene   |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| trans-1,3-Dichloropropene  |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Trichloroethene            |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Trichlorofluoromethane     |        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Vinyl chloride             |        | 3.4    | 2.0                |      | ug/L  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Surr: 4-Bromofluorobenzene |        | 84.1   | 68-127             |      | %REC  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Surr: 4-Bromofluorobenzene |        | 86     | 68-127             |      | %REC  | 262200  | 10           | 06/12/2018 01:04 | OM      |
| Surr: Dibromofluoromethane |        | 108    | 84.4-122           |      | %REC  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Surr: Dibromofluoromethane |        | 111    | 84.4-122           |      | %REC  | 262200  | 10           | 06/12/2018 01:04 | OM      |
| Surr: Toluene-d8           |        | 98.6   | 80.1-116           |      | %REC  | 262200  | 1            | 06/12/2018 00:40 | OM      |
| Surr: Toluene-d8           |        | 98.5   | 80.1-116           |      | %REC  | 262200  | 10           | 06/12/2018 01:04 | OM      |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

12-Jun-18

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-16

 Project Name
 Thomasville National Bank - TNB
 Collection Date:
 6/5/2018 3:55:00 PM

Lab ID:1806811-010Matrix:Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analys |
|-------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|--------|
| TCL VOLATILE ORGANICS SW8260B |        |                    |      | (SV   | V5030B) |              |                  |        |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 2-Butanone                    | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Acetone                       | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Benzene                       | 5.3    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Bromoform                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Bromomethane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Chloroethane                  | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Chloroform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Chloromethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| cis-1,2-Dichloroethene        | 170    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Cyclohexane                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Ethylbenzene                  | 140    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Freon-113                     | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Isopropylbenzene              | 8.8    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| m,p-Xylene                    | 5.8    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Methyl acetate                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Methyl tert-butyl ether       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Methylcyclohexane             | 13     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| Methylene chloride            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |
| o-Xylene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM     |

Qualifiers:

Date:

12-Jun-18

<sup>\*</sup> Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-16

Project NameThomasville National Bank - TNBCollection Date:6/5/2018 3:55:00 PM

Lab ID:1806811-010Matrix:Groundwater

| Analyses                   |         | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|----------------------------|---------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS      | SW8260B |        |                    |      | (SW   | /5030B) |              |                  |         |
| Styrene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| Tetrachloroethene          |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| Toluene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| trans-1,2-Dichloroethene   |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| trans-1,3-Dichloropropene  |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| Trichloroethene            |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| Trichlorofluoromethane     |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| Vinyl chloride             |         | 2.4    | 2.0                |      | ug/L  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| Surr: 4-Bromofluorobenzene |         | 96.6   | 68-127             |      | %REC  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| Surr: Dibromofluoromethane |         | 106    | 84.4-122           |      | %REC  | 262200  | 1            | 06/12/2018 01:28 | OM      |
| Surr: Toluene-d8           |         | 96.6   | 80.1-116           |      | %REC  | 262200  | 1            | 06/12/2018 01:28 | OM      |

Date:

12-Jun-18

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-17

**Project Name** Thomasville National Bank - TNB **Collection Date:** 6/6/2018 10:00:00 AM

Date:

12-Jun-18

Lab ID:1806811-011Matrix:Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW82601 | 3      |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 2-Butanone                    | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Acetone                       | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Benzene                       | 71     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Bromoform                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Bromomethane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Chloroethane                  | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Chloroform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Chloromethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| cis-1,2-Dichloroethene        | 71     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Cyclohexane                   | 32     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Ethylbenzene                  | 87     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Freon-113                     | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Isopropylbenzene              | 5.8    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| m,p-Xylene                    | 14     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Methyl acetate                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Methyl tert-butyl ether       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Methylcyclohexane             | 19     | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| Methylene chloride            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |
| o-Xylene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |

Qualifiers:

<sup>\*</sup> Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-17

**Project Name** Thomasville National Bank - TNB **Collection Date:** 6/6/2018 10:00:00 AM

Date:

12-Jun-18

Lab ID: 1806811-011 Matrix: Groundwater

| Analyses                   |         | Result    | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |  |  |
|----------------------------|---------|-----------|--------------------|------|-------|---------|--------------|------------------|---------|--|--|
| TCL VOLATILE ORGANICS S    | SW8260B | (SW5030B) |                    |      |       |         |              |                  |         |  |  |
| Styrene                    |         | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| Tetrachloroethene          |         | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| Toluene                    |         | 14        | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| trans-1,2-Dichloroethene   |         | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| trans-1,3-Dichloropropene  |         | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| Trichloroethene            |         | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| Trichlorofluoromethane     |         | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| Vinyl chloride             |         | 2.4       | 2.0                |      | ug/L  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| Surr: 4-Bromofluorobenzene |         | 99.3      | 68-127             |      | %REC  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| Surr: Dibromofluoromethane |         | 101       | 84.4-122           |      | %REC  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |
| Surr: Toluene-d8           |         | 96.3      | 80.1-116           |      | %REC  | 262200  | 1            | 06/12/2018 02:14 | OM      |  |  |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Second Second

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-18

Project NameThomasville National Bank - TNBCollection Date:6/5/2018 3:15:00 PM

Lab ID:1806811-012Matrix:Groundwater

| Analyses                     | Result           | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |  |
|------------------------------|------------------|--------------------|------|-------|---------|--------------|------------------|---------|--|
| TCL VOLATILE ORGANICS SW8260 | W8260B (SW5030B) |                    |      |       |         |              |                  |         |  |
| 1,1,1-Trichloroethane        | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,1,2,2-Tetrachloroethane    | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,1,2-Trichloroethane        | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,1-Dichloroethane           | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,1-Dichloroethene           | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,2,4-Trichlorobenzene       | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,2-Dibromo-3-chloropropane  | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,2-Dibromoethane            | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,2-Dichlorobenzene          | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,2-Dichloroethane           | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,2-Dichloropropane          | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,3-Dichlorobenzene          | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 1,4-Dichlorobenzene          | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 2-Butanone                   | BRL              | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 2-Hexanone                   | BRL              | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| 4-Methyl-2-pentanone         | BRL              | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Acetone                      | BRL              | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Benzene                      | 38               | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Bromodichloromethane         | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Bromoform                    | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Bromomethane                 | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Carbon disulfide             | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Carbon tetrachloride         | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Chlorobenzene                | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Chloroethane                 | BRL              | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Chloroform                   | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Chloromethane                | BRL              | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| cis-1,2-Dichloroethene       | 35               | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| cis-1,3-Dichloropropene      | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Cyclohexane                  | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Dibromochloromethane         | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Dichlorodifluoromethane      | BRL              | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Ethylbenzene                 | 15               | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Freon-113                    | BRL              | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Isopropylbenzene             | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| m,p-Xylene                   | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Methyl acetate               | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Methyl tert-butyl ether      | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Methylcyclohexane            | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| Methylene chloride           | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |
| o-Xylene                     | BRL              | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |

Qualifiers:

BRL Below reporting limit

Date:

12-Jun-18

<sup>\*</sup> Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-18

Project NameThomasville National Bank - TNBCollection Date:6/5/2018 3:15:00 PM

Lab ID:1806811-012Matrix:Groundwater

| Analyses                     | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |  |  |  |
|------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|--|--|--|
| TCL VOLATILE ORGANICS SW8260 | В      | (SW5030B)          |      |       |         |              |                  |         |  |  |  |
| Styrene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| Tetrachloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| Toluene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| trans-1,2-Dichloroethene     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| trans-1,3-Dichloropropene    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| Trichloroethene              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| Trichlorofluoromethane       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| Vinyl chloride               | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| Surr: 4-Bromofluorobenzene   | 92.3   | 68-127             |      | %REC  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| Surr: Dibromofluoromethane   | 109    | 84.4-122           |      | %REC  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |
| Surr: Toluene-d8             | 102    | 80.1-116           |      | %REC  | 262200  | 1            | 06/11/2018 19:55 | OM      |  |  |  |

Date:

12-Jun-18

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

Client: Peachtree Environmental Client Sample ID: MW-19

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 7:50:00 AM

Lab ID:1806811-013Matrix:Groundwater

| Analyses                    | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-----------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW826 | 0B     |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,1,2,2-Tetrachloroethane   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,1,2-Trichloroethane       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,1-Dichloroethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,1-Dichloroethene          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,2,4-Trichlorobenzene      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,2-Dibromo-3-chloropropane | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,2-Dibromoethane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,2-Dichlorobenzene         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,2-Dichloroethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,2-Dichloropropane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,3-Dichlorobenzene         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 1,4-Dichlorobenzene         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 2-Butanone                  | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 2-Hexanone                  | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| 4-Methyl-2-pentanone        | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Acetone                     | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Benzene                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Bromodichloromethane        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Bromoform                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Bromomethane                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Carbon disulfide            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Carbon tetrachloride        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Chlorobenzene               | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Chloroethane                | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Chloroform                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Chloromethane               | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| cis-1,2-Dichloroethene      | 2100   | 250                |      | ug/L  | 262200  | 50           | 06/11/2018 17:33 | OM      |
| cis-1,3-Dichloropropene     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Cyclohexane                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Dibromochloromethane        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Dichlorodifluoromethane     | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Ethylbenzene                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Freon-113                   | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Isopropylbenzene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| m,p-Xylene                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Methyl acetate              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Methyl tert-butyl ether     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Methylcyclohexane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| Methylene chloride          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |
| o-Xylene                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |

Qualifiers:

Date:

12-Jun-18

<sup>\*</sup> Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-19

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 7:50:00 AM

Lab ID:1806811-013Matrix:Groundwater

| Analyses                   |       | Result    | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |  |  |  |
|----------------------------|-------|-----------|--------------------|------|-------|---------|--------------|------------------|---------|--|--|--|
| TCL VOLATILE ORGANICS SW   | 8260B | (SW5030B) |                    |      |       |         |              |                  |         |  |  |  |
| Styrene                    |       | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |
| Tetrachloroethene          |       | 4900      | 500                |      | ug/L  | 262200  | 100          | 06/12/2018 13:24 | OM      |  |  |  |
| Toluene                    |       | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |
| trans-1,2-Dichloroethene   |       | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |
| trans-1,3-Dichloropropene  |       | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |
| Trichloroethene            |       | 120       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |
| Trichlorofluoromethane     |       | BRL       | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |
| Vinyl chloride             |       | 5.9       | 2.0                |      | ug/L  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |
| Surr: 4-Bromofluorobenzene |       | 81.6      | 68-127             |      | %REC  | 262200  | 50           | 06/11/2018 17:33 | OM      |  |  |  |
| Surr: 4-Bromofluorobenzene |       | 80.9      | 68-127             |      | %REC  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |
| Surr: 4-Bromofluorobenzene |       | 80.4      | 68-127             |      | %REC  | 262200  | 100          | 06/12/2018 13:24 | OM      |  |  |  |
| Surr: Dibromofluoromethane |       | 116       | 84.4-122           |      | %REC  | 262200  | 50           | 06/11/2018 17:33 | OM      |  |  |  |
| Surr: Dibromofluoromethane |       | 110       | 84.4-122           |      | %REC  | 262200  | 100          | 06/12/2018 13:24 | OM      |  |  |  |
| Surr: Dibromofluoromethane |       | 113       | 84.4-122           |      | %REC  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |
| Surr: Toluene-d8           |       | 100       | 80.1-116           |      | %REC  | 262200  | 50           | 06/11/2018 17:33 | OM      |  |  |  |
| Surr: Toluene-d8           |       | 96        | 80.1-116           |      | %REC  | 262200  | 100          | 06/12/2018 13:24 | OM      |  |  |  |
| Surr: Toluene-d8           |       | 98.5      | 80.1-116           |      | %REC  | 262200  | 1            | 06/12/2018 08:09 | OM      |  |  |  |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Seater than Result value

E Estimated (value above quantitation range)

Date:

12-Jun-18

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

Less than Result value

Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-21

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 8:23:00 AM

Lab ID:1806811-014Matrix:Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units        | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|--------------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW8260B |        |                    |      | (SV          | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 2-Butanone                    | BRL    | 50                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Acetone                       | BRL    | 50                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Benzene                       | 23     | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Bromoform                     | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Bromomethane                  | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Chloroethane                  | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Chloroform                    | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Chloromethane                 | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| cis-1,2-Dichloroethene        | 350    | 50                 |      | ug/L         | 262200  | 10           | 06/12/2018 03:25 | OM      |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Cyclohexane                   | 37     | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Ethylbenzene                  | 310    | 50                 |      | ug/L         | 262200  | 10           | 06/12/2018 03:25 | OM      |
| Freon-113                     | BRL    | 10                 |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Isopropylbenzene              | 38     | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| m,p-Xylene                    | 42     | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Methyl acetate                | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Methyl tert-butyl ether       | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Methylcyclohexane             | 82     | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| Methylene chloride            | BRL    | 5.0                |      | ug/L         | 262200  | 1            | 06/12/2018 03:02 | OM      |
| o-Xylene                      | BRL    | 5.0                |      | ug/L<br>ug/L | 262200  | 1            | 06/12/2018 03:02 | OM      |
| U-Ayiche                      | DICL   | 3.0                |      | 45/12        | 202200  | 1            | 00/12/2010 03.02 |         |

Qualifiers:

BRL Below reporting limit

Date:

12-Jun-18

Narr See case narrative
NC Not confirmed

<sup>\*</sup> Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-21

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 8:23:00 AM

Lab ID:1806811-014Matrix:Groundwater

| Analyses                    | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |  |  |  |  |
|-----------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|--|--|--|--|
| TCL VOLATILE ORGANICS SW826 | 50B    | (SW5030B)          |      |       |         |              |                  |         |  |  |  |  |
| Styrene                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| Tetrachloroethene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| Toluene                     | 6.3    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| trans-1,2-Dichloroethene    | 5.8    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| trans-1,3-Dichloropropene   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| Trichloroethene             | 6.7    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| Trichlorofluoromethane      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| Vinyl chloride              | 3.2    | 2.0                |      | ug/L  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| Surr: 4-Bromofluorobenzene  | 87.6   | 68-127             |      | %REC  | 262200  | 10           | 06/12/2018 03:25 | OM      |  |  |  |  |
| Surr: 4-Bromofluorobenzene  | 101    | 68-127             |      | %REC  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| Surr: Dibromofluoromethane  | 101    | 84.4-122           |      | %REC  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |
| Surr: Dibromofluoromethane  | 110    | 84.4-122           |      | %REC  | 262200  | 10           | 06/12/2018 03:25 | OM      |  |  |  |  |
| Surr: Toluene-d8            | 97.4   | 80.1-116           |      | %REC  | 262200  | 10           | 06/12/2018 03:25 | OM      |  |  |  |  |
| Surr: Toluene-d8            | 100    | 80.1-116           |      | %REC  | 262200  | 1            | 06/12/2018 03:02 | OM      |  |  |  |  |

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

12-Jun-18

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-24

Project Name Thomasville National Bank - TNB Collection Date: 6/6/2018 9:00:00 AM

Lab ID:1806811-015Matrix:Groundwater

| Analyses                      | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|-------------------------------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS SW82601 | В      |                    |      | (SV   | V5030B) |              |                  |         |
| 1,1,1-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,1,2,2-Tetrachloroethane     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,1,2-Trichloroethane         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,1-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,1-Dichloroethene            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,2,4-Trichlorobenzene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,2-Dibromo-3-chloropropane   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,2-Dibromoethane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,2-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,2-Dichloroethane            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,2-Dichloropropane           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,3-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 1,4-Dichlorobenzene           | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 2-Butanone                    | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 2-Hexanone                    | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| 4-Methyl-2-pentanone          | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Acetone                       | BRL    | 50                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Benzene                       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Bromodichloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Bromoform                     | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Bromomethane                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Carbon disulfide              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Carbon tetrachloride          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Chlorobenzene                 | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Chloroethane                  | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Chloroform                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Chloromethane                 | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| cis-1,2-Dichloroethene        | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| cis-1,3-Dichloropropene       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Cyclohexane                   | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Dibromochloromethane          | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Dichlorodifluoromethane       | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Ethylbenzene                  | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Freon-113                     | BRL    | 10                 |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Isopropylbenzene              | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| m,p-Xylene                    | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Methyl acetate                | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Methyl tert-butyl ether       | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Methylcyclohexane             | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Methylene chloride            | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| o-Xylene                      | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |

Qualifiers:

BRL Below reporting limit

Date:

12-Jun-18

Narr See case narrative
NC Not confirmed

<sup>\*</sup> Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

<sup>&</sup>gt; Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

<sup>&</sup>lt; Less than Result value

J Estimated value detected below Reporting Limit

Client: Peachtree Environmental Client Sample ID: MW-24

Project NameThomasville National Bank - TNBCollection Date:6/6/2018 9:00:00 AM

Lab ID:1806811-015Matrix:Groundwater

| Analyses                   |         | Result | Reporting<br>Limit | Qual | Units | BatchID | Dilutio<br>n | Date Analyzed    | Analyst |
|----------------------------|---------|--------|--------------------|------|-------|---------|--------------|------------------|---------|
| TCL VOLATILE ORGANICS      | SW8260B |        |                    |      | (SW   | /5030B) |              |                  |         |
| Styrene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Tetrachloroethene          |         | 180    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Toluene                    |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| trans-1,2-Dichloroethene   |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| trans-1,3-Dichloropropene  |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Trichloroethene            |         | 6.3    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Trichlorofluoromethane     |         | BRL    | 5.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Vinyl chloride             |         | BRL    | 2.0                |      | ug/L  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Surr: 4-Bromofluorobenzene |         | 82     | 68-127             |      | %REC  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Surr: Dibromofluoromethane |         | 119    | 84.4-122           |      | %REC  | 262200  | 1            | 06/11/2018 19:32 | OM      |
| Surr: Toluene-d8           |         | 104    | 80.1-116           |      | %REC  | 262200  | 1            | 06/11/2018 19:32 | OM      |

Date:

12-Jun-18

Qualifiers:

\* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

Less than Result value

Estimated value detected below Reporting Limit



### SAMPLE/COOLER RECEIPT CHECKLIST

| Clear | Save as |
|-------|---------|
|       |         |

| 1. Client Name: Peachtree Environmental                                                                               |            |                | AES Work Order Number: 1806811 |                                                                           |                                          |        |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------------|----------------|--------------------------------|---------------------------------------------------------------------------|------------------------------------------|--------|--|--|--|--|--|
| 2. Carrier: FedEx UPS USPS Client Courier Othel                                                                       |            |                | -                              |                                                                           |                                          |        |  |  |  |  |  |
|                                                                                                                       | Yes        | No             | N/A                            | Details                                                                   | Comments                                 |        |  |  |  |  |  |
| 3. Shipping container/cooler received in good condition?                                                              | 0          | Ю              | ГО                             | damaged leaking other                                                     |                                          |        |  |  |  |  |  |
| 4. Custody seals present on shipping container?                                                                       | 0          | 0              | О                              |                                                                           |                                          |        |  |  |  |  |  |
| 5. Custody seals intact on shipping container?                                                                        | Õ          | $\overline{0}$ | 10                             |                                                                           |                                          |        |  |  |  |  |  |
| 6. Temperature blanks present?                                                                                        | 0          | Ŏ              | Ŏ                              |                                                                           |                                          |        |  |  |  |  |  |
| 7. Cooler temperature(s) within limits of 0-6°C? [See item 13 and 14 for temperature recordings.]                     | 0          | 0              | 0                              | Cooling initiated for recently collected samples / ice present            |                                          |        |  |  |  |  |  |
| 8. Chain of Custody (COC) present?                                                                                    | 0          | $\Box$         | $\circ$                        |                                                                           |                                          |        |  |  |  |  |  |
| 9. Chain of Custody signed, dated, and timed when relinquished and received?                                          | Õ          | Ŏ              | Ŏ                              |                                                                           |                                          |        |  |  |  |  |  |
| 10. Sampler name and/or signature on COC?                                                                             | 0          | Ŏ              | 10                             |                                                                           |                                          |        |  |  |  |  |  |
| 11. Were all samples received within holding time?                                                                    | Õ          | Ŏ              | Ŏ                              |                                                                           |                                          |        |  |  |  |  |  |
| 12. TAT marked on the COC?                                                                                            | Õ          | 10             | M                              | If no TAT indicated, proceeded with standard TAT per Te                   | erms & Conditions.                       |        |  |  |  |  |  |
| 13. Cooler 1 Temperature 1.5 °C Cooler 2 Temperature 14. Cooler 5 Temperature 7 °C Cooler 6 Temperature 15. Comments: |            |                | °C<br>°C                       | · ————                                                                    | er 4 Temperature°C er 8 Temperature°C    |        |  |  |  |  |  |
|                                                                                                                       |            |                |                                | l certify that I have co                                                  | mpleted sections 1-15 (dated initials).  | 7/18   |  |  |  |  |  |
|                                                                                                                       | Yes        | No             | N/A                            | Details                                                                   | Comments                                 |        |  |  |  |  |  |
| 16. Were sample containers intact upon receipt?                                                                       | 0          | Ю              | ΙΟ                             |                                                                           |                                          |        |  |  |  |  |  |
| 17. Custody seals present on sample containers?                                                                       | $\bigcirc$ | 0              | 0                              |                                                                           |                                          |        |  |  |  |  |  |
| 18. Custody seals intact on sample containers?                                                                        | O          |                | 0                              |                                                                           |                                          |        |  |  |  |  |  |
| 19. Do sample container labels match the COC?                                                                         | 0          | 0              | 0                              | incomplete info illegible no label other                                  |                                          |        |  |  |  |  |  |
| 20. Are analyses requested indicated on the COC?                                                                      | 0          | 0              | 0                              |                                                                           |                                          |        |  |  |  |  |  |
| 21. Were all of the samples listed on the COC received?                                                               | 0          | 0              | 0                              | samples received but not listed on COC samples listed on COC not received |                                          |        |  |  |  |  |  |
| 22. Was the sample collection date/time noted?                                                                        | 0          | О              | Ю                              |                                                                           |                                          |        |  |  |  |  |  |
| 23. Did we receive sufficient sample volume for indicated analyses?                                                   | 0          |                | Ю                              |                                                                           |                                          |        |  |  |  |  |  |
| 24. Were samples received in appropriate containers?                                                                  | 0          |                |                                |                                                                           |                                          |        |  |  |  |  |  |
| 25. Were VOA samples received without headspace (< 1/4" bubble)?                                                      | 0          | О              | 0                              |                                                                           |                                          |        |  |  |  |  |  |
| 26. Were trip blanks submitted?                                                                                       | 0          | Ю              | Ō                              | listed on COC not listed on COC                                           |                                          |        |  |  |  |  |  |
| 27. Comments:                                                                                                         |            |                |                                |                                                                           | •                                        |        |  |  |  |  |  |
| This section only applies to samples where pH can be                                                                  |            |                |                                | I certify that I have co                                                  | mpleted sections 16-27 (dated initials). | 6/8/18 |  |  |  |  |  |
| checked at Sample Receipt.                                                                                            | Yes        | No             | N/A                            | Details                                                                   | Comments                                 |        |  |  |  |  |  |
| 28. Have containers needing chemical preservation been checked? *                                                     | О          | ГО             | 0                              |                                                                           |                                          |        |  |  |  |  |  |
| 29. Containers meet preservation guidelines?                                                                          | Ŏ          | Ŏ              | Ŏ                              |                                                                           |                                          |        |  |  |  |  |  |
| 30. Was pH adjusted at Sample Receipt?                                                                                | Õ          | Ŏ              | Ŏ                              |                                                                           |                                          |        |  |  |  |  |  |
| ,                                                                                                                     |            |                |                                | •                                                                         | •                                        |        |  |  |  |  |  |

\* Note: Certain analyses require chemical preservation but must be checked in the laboratory and not upon Sample Receipt such as Coliforms, VOCs and Oil & Grease/TPH.

I certify that I have completed sections 28-30 (dated initials).

MDP 6/8/18

Rpt Lim Reporting Limit

**Client:** 

Analytical Environmental Selvices, Inc

ANALYTICAL QC SUMMARY REPORT

Date:

12-Jun-18

**Project Name** Thomasville National Bank - TNB

Peachtree Environmental

Workorder: 1806811 BatchID: 262200

| Sample ID: MB-262200<br>SampleType: MBLK | Client ID:<br>TestCode: TC | L VOLATILE ORGA | NICS SW82601 | 3                         | Un<br>Ba     | its: <b>ug/L</b><br>tchID: <b>262200</b> |            | p Date: 00 alysis Date: 00 | 6/11/2018<br>6/11/2018 | Run No: <b>37243</b><br>Seq No: <b>82712</b> |      |
|------------------------------------------|----------------------------|-----------------|--------------|---------------------------|--------------|------------------------------------------|------------|----------------------------|------------------------|----------------------------------------------|------|
| Analyte                                  | Result                     | RPT Limit       | SPK value    | SPK Ref Val               | %REC         | Low Limit                                | High Limit | RPD Ref V                  | al %RPD                | RPD Limit                                    | Qual |
| 1,1,1-Trichloroethane                    | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,1,2,2-Tetrachloroethane                | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,1,2-Trichloroethane                    | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,1-Dichloroethane                       | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,1-Dichloroethene                       | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,2,4-Trichlorobenzene                   | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,2-Dibromo-3-chloropropane              | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,2-Dibromoethane                        | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,2-Dichlorobenzene                      | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,2-Dichloroethane                       | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,2-Dichloropropane                      | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,3-Dichlorobenzene                      | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 1,4-Dichlorobenzene                      | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| 2-Butanone                               | BRL                        | 50              |              |                           |              |                                          |            |                            |                        |                                              |      |
| 2-Hexanone                               | BRL                        | 10              |              |                           |              |                                          |            |                            |                        |                                              |      |
| 4-Methyl-2-pentanone                     | BRL                        | 10              |              |                           |              |                                          |            |                            |                        |                                              |      |
| Acetone                                  | BRL                        | 50              |              |                           |              |                                          |            |                            |                        |                                              |      |
| Benzene                                  | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| Bromodichloromethane                     | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| Bromoform                                | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| Bromomethane                             | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| Carbon disulfide                         | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| Carbon tetrachloride                     | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| Chlorobenzene                            | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| Chloroethane                             | BRL                        | 10              |              |                           |              |                                          |            |                            |                        |                                              |      |
| Chloroform                               | BRL                        | 5.0             |              |                           |              |                                          |            |                            |                        |                                              |      |
| Chloromethane                            | BRL                        | 10              |              |                           |              |                                          |            |                            |                        |                                              |      |
| Qualifiers: > Greater than Result        | value                      |                 | < Less       | than Result value         |              |                                          | В          | Analyte detected in the    | he associated method   | blank                                        |      |
| BRL Below reporting limit                |                            |                 |              | ated (value above quantit | ation range) |                                          |            | Holding times for pre      |                        | exceeded                                     |      |
| J Estimated value det                    | ected below Reporting Lim  | it              | N Analy      | te not NELAC certified    |              |                                          | R          | RPD outside limits d       | due to matrix          |                                              |      |

S Spike Recovery outside limits due to matrix

**Client:** Peachtree Environmental

Thomasville National Bank - TNB

**Project Name** Workorder: 1806811

### ANALYTICAL QC SUMMARY REPORT

Date:

12-Jun-18

BatchID: 262200

| Sample ID: MB-262200       | Client ID:             |                    |              |             | Uni  | ts: ug/L            | Prep       | Date:       | 06/11/2018 | Run No: 372435         |
|----------------------------|------------------------|--------------------|--------------|-------------|------|---------------------|------------|-------------|------------|------------------------|
| SampleType: MBLK           | TestCode: <sup>T</sup> | TCL VOLATILE ORGAN | NICS SW82601 | 3           | Bate | chID: <b>262200</b> | Ana        | lysis Date: | 06/11/2018 | Seq No: <b>8271268</b> |
| Analyte                    | Result                 | RPT Limit          | SPK value    | SPK Ref Val | %REC | Low Limit           | High Limit | RPD Ref     | `Val %RPI  | RPD Limit Qual         |
| cis-1,2-Dichloroethene     | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| cis-1,3-Dichloropropene    | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Cyclohexane                | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Dibromochloromethane       | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Dichlorodifluoromethane    | BRL                    | 10                 |              |             |      |                     |            |             |            |                        |
| Ethylbenzene               | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Freon-113                  | BRL                    | 10                 |              |             |      |                     |            |             |            |                        |
| Isopropylbenzene           | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| m,p-Xylene                 | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Methyl acetate             | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Methyl tert-butyl ether    | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Methylcyclohexane          | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Methylene chloride         | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| o-Xylene                   | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Styrene                    | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Tetrachloroethene          | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Toluene                    | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| trans-1,2-Dichloroethene   | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| trans-1,3-Dichloropropene  | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Trichloroethene            | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Trichlorofluoromethane     | BRL                    | 5.0                |              |             |      |                     |            |             |            |                        |
| Vinyl chloride             | BRL                    | 2.0                |              |             |      |                     |            |             |            |                        |
| Surr: 4-Bromofluorobenzene | 41.62                  | 0                  | 50.00        |             | 83.2 | 68                  | 127        |             |            |                        |
| Surr: Dibromofluoromethane | 56.73                  | 0                  | 50.00        |             | 113  | 84.4                | 122        |             |            |                        |
| Surr: Toluene-d8           | 50.40                  | 0                  | 50.00        |             | 101  | 80.1                | 116        |             |            |                        |

Qualifiers:

 $\operatorname{BRL}$ 

Greater than Result value

Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Date: 12-Jun-18

**Client:** Peachtree Environmental **Project Name** 

ANALYTICAL QC SUMMARY REPORT Thomasville National Bank - TNB

Workorder: 1806811 BatchID: 262200

| Sample ID: LCS-262200                         | Client ID:              | TCL VOLATH E ODCA         | NICS SW9260  | D                       | Un            | 0                                       |                           | •                                      |          | Run No: 372589                                  |
|-----------------------------------------------|-------------------------|---------------------------|--------------|-------------------------|---------------|-----------------------------------------|---------------------------|----------------------------------------|----------|-------------------------------------------------|
| SampleType: LCS                               | TestCode:               | TCL VOLATILE ORGA         | INICS 5W6200 | D                       | Bat           | chID: 262200                            | Ai                        | nalysis Date: 06/1                     | 1/2018   | Seq No: <b>8271683</b>                          |
| Analyte                                       | Result                  | RPT Limit                 | SPK value    | SPK Ref Val             | %REC          | Low Limit                               | High Limit                | RPD Ref Val                            | %RPD     | RPD Limit Qua                                   |
| ,1-Dichloroethene                             | 63.79                   | 5.0                       | 50.00        |                         | 128           | 69                                      | 136                       |                                        |          |                                                 |
| Benzene                                       | 50.29                   | 5.0                       | 50.00        |                         | 101           | 73.7                                    | 126                       |                                        |          |                                                 |
| Chlorobenzene                                 | 48.84                   | 5.0                       | 50.00        |                         | 97.7          | 73.5                                    | 124                       |                                        |          |                                                 |
| oluene                                        | 52.26                   | 5.0                       | 50.00        |                         | 105           | 76.8                                    | 125                       |                                        |          |                                                 |
| richloroethene                                | 48.95                   | 5.0                       | 50.00        |                         | 97.9          | 70.9                                    | 124                       |                                        |          |                                                 |
| Surr: 4-Bromofluorobenzene                    | 41.60                   | 0                         | 50.00        |                         | 83.2          | 68                                      | 127                       |                                        |          |                                                 |
| Surr: Dibromofluoromethane                    | 53.21                   | 0                         | 50.00        |                         | 106           | 84.4                                    | 122                       |                                        |          |                                                 |
| Surr: Toluene-d8                              | 47.83                   | 0                         | 50.00        |                         | 95.7          | 80.1                                    | 116                       |                                        |          |                                                 |
| Sample ID: 1806811-003AMS                     | Client ID:              |                           |              |                         | Un            |                                         |                           | •                                      |          | Run No: <b>372589</b>                           |
| SampleType: MS                                | TestCode:               | TCL VOLATILE ORGA         | ANICS SW8260 | В                       | Bat           | chID: 262200                            | Aı                        | nalysis Date: 06/1                     | 2/2018   | Seq No: <b>8271890</b>                          |
| Analyte                                       | Result                  | RPT Limit                 | SPK value    | SPK Ref Val             | %REC          | Low Limit                               | High Limit                | RPD Ref Val                            | %RPD     | RPD Limit Qua                                   |
| ,1-Dichloroethene                             | 614.5                   | 50                        | 500.0        |                         | 123           | 65.7                                    | 143                       |                                        |          |                                                 |
| enzene                                        | 511.3                   | 50                        | 500.0        |                         | 102           | 66.1                                    | 137                       |                                        |          |                                                 |
| Chlorobenzene                                 | 494.0                   | 50                        | 500.0        |                         | 98.8          | 70.9                                    | 132                       |                                        |          |                                                 |
| oluene                                        | 512.2                   | 50                        | 500.0        |                         | 102           | 63.8                                    | 141                       |                                        |          |                                                 |
| richloroethene                                | 485.6                   | 50                        | 500.0        |                         | 97.1          | 70.6                                    | 128                       |                                        |          |                                                 |
| Surr: 4-Bromofluorobenzene                    | 436.2                   | 0                         | 500.0        |                         | 87.2          | 68                                      | 127                       |                                        |          |                                                 |
| Surr: Dibromofluoromethane                    | 522.4                   | 0                         | 500.0        |                         | 104           | 84.4                                    | 122                       |                                        |          |                                                 |
| Surr: Toluene-d8                              | 482.9                   | 0                         | 500.0        |                         | 96.6          | 80.1                                    | 116                       |                                        |          |                                                 |
| Sample ID: 1806811-003AMSD<br>SampleType: MSD | Client ID:<br>TestCode: | MW-3<br>TCL VOLATILE ORGA | NICS SW8260  | В                       | Un:<br>Bat    | its: <b>ug/L</b><br>chID: <b>262200</b> |                           | rep Date: 06/12<br>nalysis Date: 06/12 |          | Run No: <b>372589</b><br>Seq No: <b>8271891</b> |
| Analyte                                       | Result                  | RPT Limit                 | SPK value    | SPK Ref Val             | %REC          | Low Limit                               | High Limit                | RPD Ref Val                            | %RPD     | RPD Limit Qua                                   |
| ,1-Dichloroethene                             | 615.5                   | 50                        | 500.0        |                         | 123           | 65.7                                    | 143                       | 614.5                                  | 0.163    | 17.7                                            |
| Benzene                                       | 493.5                   | 50                        | 500.0        |                         | 98.7          | 66.1                                    | 137                       | 511.3                                  | 3.54     | 20                                              |
|                                               |                         |                           |              |                         |               |                                         |                           |                                        |          |                                                 |
| ualifiers: > Greater than Result valu         | ue                      |                           |              | than Result value       |               |                                         |                           | Analyte detected in the as             |          |                                                 |
| BRL Below reporting limit                     |                         |                           |              | tation range)           |               | Н                                       | Holding times for prepara | -                                      | exceeded |                                                 |
| J Estimated value detect                      | ed below Reporting      | Limit                     | ·            | yte not NELAC certified |               |                                         | R                         | RPD outside limits due to              | matrix   |                                                 |
| Rpt Lim Reporting Limit                       |                         |                           | S Spike      | Recovery outside limits | due to matrix |                                         |                           |                                        |          | Page 36 of 37                                   |

Client: Peachtree Environmental

**Project Name** Thomasville National Bank - TNB

**Workorder:** 1806811

### ANALYTICAL QC SUMMARY REPORT

Date:

12-Jun-18

BatchID: 262200

| Sample ID: 1806811-003AMSD | Client ID: 1 |                                         |           |             | Uni             | ts: ug/L  | Prep       | Date: 06/11/               | 2018 | Run No: <b>372589</b>  |  |
|----------------------------|--------------|-----------------------------------------|-----------|-------------|-----------------|-----------|------------|----------------------------|------|------------------------|--|
| SampleType: MSD            | TestCode:    | TestCode: TCL VOLATILE ORGANICS SW8260B |           |             | BatchID: 262200 |           |            | lysis Date: <b>06/12</b> / | 2018 | Seq No: <b>8271891</b> |  |
| Analyte                    | Result       | RPT Limit                               | SPK value | SPK Ref Val | %REC            | Low Limit | High Limit | RPD Ref Val                | %RPD | RPD Limit Qual         |  |
| Chlorobenzene              | 485.1        | 50                                      | 500.0     |             | 97.0            | 70.9      | 132        | 494.0                      | 1.82 | 20                     |  |
| Toluene                    | 497.9        | 50                                      | 500.0     |             | 99.6            | 63.8      | 141        | 512.2                      | 2.83 | 20                     |  |
| Trichloroethene            | 476.4        | 50                                      | 500.0     |             | 95.3            | 70.6      | 128        | 485.6                      | 1.91 | 20                     |  |
| Surr: 4-Bromofluorobenzene | 410.0        | 0                                       | 500.0     |             | 82.0            | 68        | 127        | 436.2                      | 0    | 0                      |  |
| Surr: Dibromofluoromethane | 498.8        | 0                                       | 500.0     |             | 99.8            | 84.4      | 122        | 522.4                      | 0    | 0                      |  |
| Surr: Toluene-d8           | 475.9        | 0                                       | 500.0     |             | 95.2            | 80.1      | 116        | 482.9                      | 0    | 0                      |  |

Qualifiers:

Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix



### APPENDIX E

FACS Air Sampling Reports

PEHOOVER@sgrlaw.com

Phone: 404-815-3769

Phone: 850-766-1938



### **Privileged and Confidential, Attorney Work Product**

### January 16, 2018

TO Phillip E. Hoover Smith, Gambrell & Russell, LLP

Promenade, Suite 3100 1230 Peachtree Street, N.E. Atlanta, Georgia 30309-3592

FROM David Krause <u>DKrause@forensicanalytical.com</u>

Forensic Analytical Consulting Services 2976 Wellington Circle West

Tallahassee, FL 32309

RE Report findings for Indoor Air Sampling of VOCs Potentially Associated with Vapor

Intrusion

Dear Mr. Hoover,

The following report summarizes the findings and the methodologies used to collect and analyze the indoor air samples from the Thomasville National Bank located at 301 North Broad Street, Thomasville, Georgia. Forensic Analytical Consulting Services (FACS) was retained to evaluate eleven\* (11) VOCs outlined below in relation to potential vapor intrusion of subsurface contaminants.

- o Benzene
- o cis-1, 2-Dichloroethene (cis-DCE)
- o Cyclohexane
- o Ethylbenzene
- o Isopropyl Benzene
- o Perchloroethylene (i.e. Tetrachloroethylene or PCE)
- o Toluene
- o Trans-1,2-Dichloroethene
- o Trichloroethene (TCE)
- o Vinyl Chloride (MW-15)
- o Total (m-, p-, o- isomers) Xylenes

On December 7, 2017, FACS representatives performed an initial site visit to determine possible sampling locations and to identify any potential interferences while sampling. Products and processes that were identified as possible VOC generators were either removed or turned off. On Saturday December 9, 2017, a representative from FACS under my direction collected the first set of samples during non-business hours. The second set of VOC samples were collected on Monday December 11, 2017 during regular business hours. One-liter mini canisters with regulators were supplied by SGS Galson Laboratory and submitted for gas chromatography mass spectrometry (GC/MS) analysis using the EPA TO-15 method.

### **Sample Collection**

### **December 9, 2017**

During non-business hours, a total of three (3) indoor air samples and one (1) outdoor air sample was collected over the course of eight (8) hours. All three indoor air samples were collected on the 1st floor in various locations depicted in Table 1. The outside air sample was collected from an outside air duct

located in the 2nd floor mechanical room. To collect the sample from outside air, a small hole was drilled on the side of the metal duct and a tygon tubing was inserted into the hole and connected to a one-liter mini canister regulator. The four HVAC systems were turned on to reflect the same system operations during regular business hours when the building is occupied. All candles, desk-top aromatic diffuser, and the lobby unvented gas fireplace were removed or turned off prior to sample collection. No odors or other potential interference was observed.

### December 11, 2017

During regular business hours, a total of three (3) indoor air samples and one (1) outdoor air sample was collected over the course of eight (8) hours. Sample locations were the same as those used during non-business hours. The HVAC systems were operating under normal conditions upon arrival. All candles, desk-top aromatic diffuser, and the lobby unvented gas fireplace were removed or turned off prior to sample collection. No odors or other potential interference was observed.

**Table 1: Sample Location Descriptions** 

| Sample ID   | Location Description                                                     |
|-------------|--------------------------------------------------------------------------|
| 01A-12917*  | 1st office right of fireplace from main entrance- sample placed on floor |
| 01B-121117  | next to desk/chair (NE of building)                                      |
| 02A-12917   | Corner Office- sample placed in back corner between desks (SW of         |
| 02B-121117  | building)                                                                |
| 03A-12917   | Drive-thru teller back countertop between entry door and window          |
| 03B-121117  | brive-till a teller back countertop between entry door and willdow       |
| 04A-12917   | Outside air- Left vent                                                   |
| 04B-121117* | outside an Left vent                                                     |

<sup>\*</sup> Sample lost to follow-up

### **Summary of Findings**

A total of six out of eight samples collected were analyzed by SGS Galson Laboratory using gas chromatography. An indoor air sample collected during non-business hours and the outside air sample collected during normal business hours were lost to follow-up due to equipment failure. The compound Methylcyclohexane was not included in the analysis due to EPA TO-15 method limitations. The predominant VOC present in all samples was Tetrachloroethylene also known as PCE (CAS No. 127-18-4). This specific VOC was highest during regular business hours ranging from 353  $\mu$ g/m³ to 434  $\mu$ g/m³. During non-business hours, the indoor PCE concentrations ranged from 135  $\mu$ g/m³ to 156  $\mu$ g/m³. The outdoor air concentration of PCE was 9.5  $\mu$ g/m³. A diagram depicting each sample location with the associated PCE concentrations is provided as an attachment. Tables depicting results from each sample are provided in detail below. Laboratory results for all samples are provided in the attachment.

| Sample 1                    |                       |                               |    |        |         |
|-----------------------------|-----------------------|-------------------------------|----|--------|---------|
| CACNI                       |                       | Non-Business Hrs.  ppbv μg/m³ |    | Busine | ss Hrs. |
| CAS NO.                     | Compound Identified   |                               |    | ppbv   | μg/m³   |
| 67-64-1                     | Acetone               | NA                            | NA | 13.00  | 30.88   |
| 127-18-4                    | Tetrachloroethylene   | NA                            | NA | 52.00  | 352.69  |
| 108-88-3 Toluene NA NA 1.30 |                       |                               |    |        | 4.90    |
| Total \                     | Volatile Organic Comp | ounds                         |    |        | 388.47  |

\*NA = Samples lost to follow-up

|          | Sample 2                              |       |                   |                   |        |        |         |
|----------|---------------------------------------|-------|-------------------|-------------------|--------|--------|---------|
| CACNIC   | Sommound Identified Non-Business Hrs. |       | Non-Business Hrs. | Non-Business Hrs. |        | Busine | ss Hrs. |
| CAS NO.  | Compound Identified                   | ppbv  | μg/m³             | ppbv              | μg/m³  |        |         |
| 67-64-1  | Acetone                               | 39.00 | 92.64             | 11.00             | 26.13  |        |         |
| 71-43-2  | Benzene                               | 1.20  | 3.83              | ND                | ND     |        |         |
| 110-82-7 | Cyclohexane                           | 2.30  | 7.92              | ND                | ND     |        |         |
| 141-78-6 | Ethyl Acetate                         | ND    | ND                | 1.20              | 4.32   |        |         |
| 142-82-5 | Heptane                               | 4.00  | 16.39             | ND                | ND     |        |         |
| 110-54-3 | Hexane                                | 10.00 | 35.25             | ND                | ND     |        |         |
| 67-63-0  | Isopropyl Alcohol                     | ND    | ND                | 5.40              | 13.27  |        |         |
| 115-07-1 | Propylene                             | 9.00  | 15.49             | ND                | ND     |        |         |
| 127-18-4 | Tetrachloroethylene                   | 23.00 | 156.00            | 63.00             | 427.29 |        |         |
| 108-88-3 | Toluene                               | 1.80  | 6.78              | ND                | ND     |        |         |
| 108-05-4 | Vinyl Acetate                         | 4.80  | 16.90             | ND                | ND     |        |         |
| Total    | Volatile Organic Comp                 | ounds | 351.20            |                   | 471.01 |        |         |

<sup>\*\*</sup> ND = Non-Detect

|          |                       | Sample 3 |           |        |               |  |
|----------|-----------------------|----------|-----------|--------|---------------|--|
|          |                       | Non-Busi | ness Hrs. | Busine | Business Hrs. |  |
| CAS No.  | Compound Identified   | ppbv     | μg/m³     | ppbv   | μg/m³         |  |
| 67-64-1  | Acetone               | 5.20     | 12.35     | 13.00  | 30.88         |  |
| 141-78-6 | Ethyl Acetate         | 1.60     | 5.77      | 1.40   | 5.05          |  |
| 75-71-8  | Freon-12              | ND       | ND        | 1.00   | 4.95          |  |
| 127-18-4 | Tetrachloroethylene   | 20.00    | 135.65    | 64.00  | 434.07        |  |
| 108-88-3 | Toluene               | 2.90     | 10.93     | ND     | ND            |  |
| Total    | Volatile Organic Comp | ounds    | 164.70    |        | 474.95        |  |

<sup>\*\*</sup> ND = Non-Detect

|          | Sample                | 4 (Outsid         | le Air) |                   |       |
|----------|-----------------------|-------------------|---------|-------------------|-------|
| CACNI    | Commonwed Idontified  | Non-Business Hrs. |         | rs. Business Hrs. |       |
| CAS NO.  | Compound Identified   | ppbv              | μg/m³   | ppbv              | μg/m³ |
| 74-87-3  | Chloromethane         | 1.0               | 2.07    | NA                | NA    |
| 110-82-7 | Cyclohexane           | 1.0               | 3.44    | NA                | NA    |
| 141-78-6 | Ethyl Acetate         | 3.9               | 14.05   | NA                | NA    |
| 142-82-5 | Heptane               | 2.7               | 11.07   | NA                | NA    |
| 110-54-3 | Hexane                | 2.0               | 7.05    | NA                | NA    |
| 78-93-3  | Methyl Ethyl Ketone   | 1.0               | 2.95    | NA                | NA    |
| 127-18-4 | Tetrachloroethylene   | 1.4               | 9.5     | NA                | NA    |
| 108-88-3 | Toluene               | 1.5               | 5.65    | NA                | NA    |
| 108-05-4 | Vinyl Acetate         | 1.7               | 5.99    | NA                | NA    |
| Total    | Volatile Organic Comp | ounds             | 61.77   |                   |       |

<sup>\*</sup>NA = Samples lost to follow-up

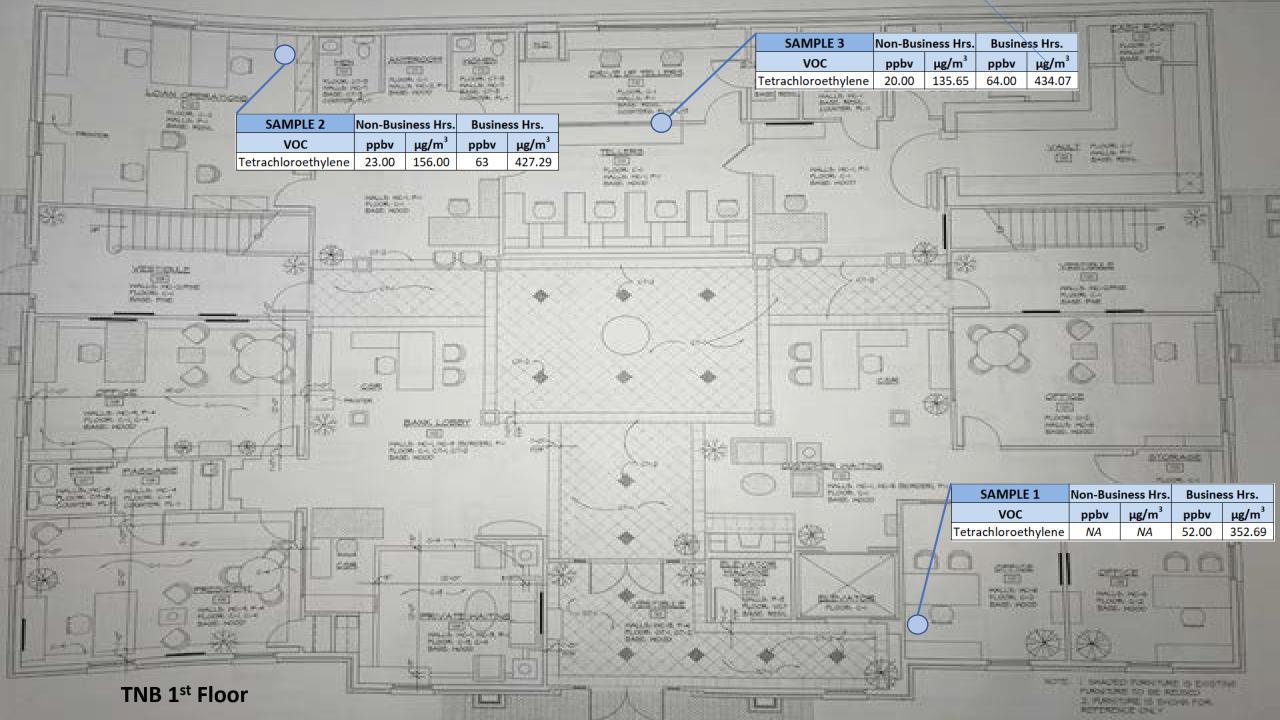
### **Limitations**

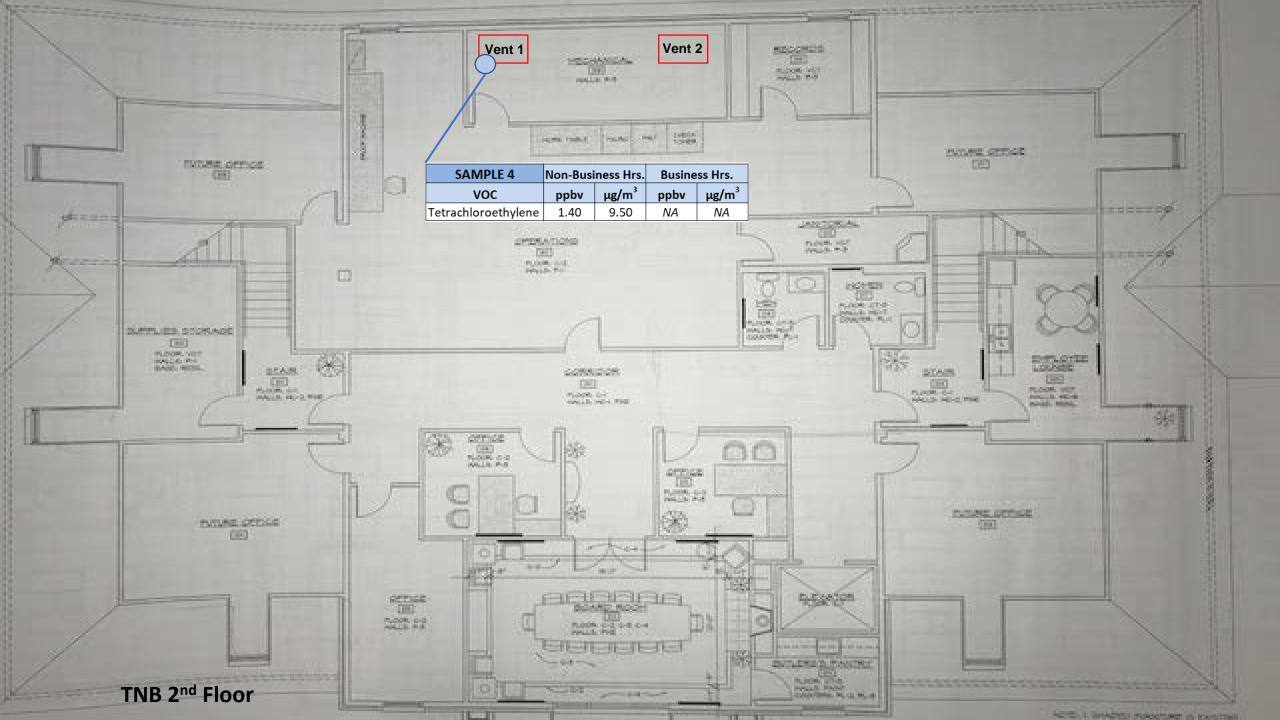
The methods, conclusions, and recommendations provided are based on professional judgment, experience and the current standard of practice for professional service. They are subject to the limitations and variability inherent in the methodology employed. As with all environmental investigations, it is limited to the defined scope and does not purport to identify all hazards, nor indicate that other hazards do not exist.

Please contact me if you have any questions regarding the information provided.

Respectfully,

David Krause, Ph.D., MSPH, CIH


Senior CIH/Toxicologist


Director, Southeast Operations

DKrause@forensicanalytical.com | www.forensicanalytical.com

Attachments: Diagram with PCE Concentrations

SGS Galson Analytical Results







### **Privileged and Confidential, Attorney Work Product**

### March 19, 2018

TO Phillip E. Hoover Smith, Gambrell & Russell, LLP Promenade, Suite 3100 1230 Peachtree Street, N.E. Atlanta, Georgia 30309-3592 PEHOOVER@sgrlaw.com Phone: 404-815-3769

FROM David Krause <u>DKrause@forensicanalytical.com</u>

Forensic Analytical Consulting Services Phone: 850-766-1938 2976 Wellington Circle West

Tallahassee, FL 32309

RE Report of Findings for Indoor Air Sampling of PCE after Temporary Modifications to Positively Pressurize the Building

Dear Mr. Hoover,

The following report summarizes the findings and the methodologies used to collect and analyze the indoor air samples from the Thomasville National Bank (TNB) located at 301 North Broad Street, Thomasville, Georgia. Forensic Analytical Consulting Services (FACS) was retained to evaluate the TNB for Tetrachloroethylene (PCE) related to vapor intrusion. The results presented in this report represent those after temporary modifications to first floor HVAC systems, to positively pressurize the building.

In December of 2017, FACS collected two sets of VOC samples to evaluate potential vapor intrusion of subsurface contaminants. Based on the results, further investigation was recommended to determine if the building pressurization and/or HVAC operations were contributing to elevated indoor levels of PCE believed to be originating from soil vapor intrusion. Pressurization of the TNB was digitally monitored over a two-week period. The results (overall range: +12.5 to - 35 pascal) showed an imbalance of the outside air, causing the building to be negative with respect to the outdoors for significant periods of time.

To evaluate the impact of building pressurization on indoor levels of PCE, FACS recommended a temporary modification to the HVAC system to increase building pressurization. Once the HVAC modifications were implemented by the HVAC Contractor, additional indoor air samples were collected to see if PCE concentrations decreased. One-liter mini canisters with regulators were supplied by SGS Galson Laboratory and submitted for gas chromatography mass spectrometry (GC/MS) analysis using the EPA TO-15 method.

### **Pressurization Modifications**

The TNB HVAC service contractor, Air Conditioning Technology & Services, Inc. temporarily installed an air scrubber in-line with air handling units 3 and 4 serving the first floor to positively pressurize the building air. After the building was operated under positive pressure for several days, samples for PCE were collected

### **Sample Collection**

On Wednesday February 28, 2018, a total of four (4) indoor air samples were collected during regular business hours over the course of eight (8) hours. All four indoor air samples were collected on the 1st floor in various locations outlined in Table 1. Samples 1 to 3 were placed in the same locations used during the December 2017 sampling events. Sample 4 was placed in a new location not previously sampled. The HVAC systems were operating under normal conditions upon arrival.

**Table 1: Sample Location Descriptions** 

| Sample ID  | Location Description                                                                                           |
|------------|----------------------------------------------------------------------------------------------------------------|
| 01B-022818 | 1st office right of fireplace from main entrance- sample placed on floor next to desk/chair (NE of building)   |
| 02B-022818 | Corner Office- sample placed in back corner between desks (SW of building)                                     |
| 03B-022818 | Drive-thru teller back countertop between entry door and window                                                |
| 04B-022818 | 2nd office left of fireplace from main entrance- sample placed on floor next to stool by door (SE of building) |

### **Summary of Findings**

All four samples were analyzed by SGS Galson Laboratory using gas chromatography.

Tetrachloroethylene also known as PCE (CAS No. 127-18-4) was the only compound analyzed based on previous results. The PCE concentrations ranged from 312  $\mu$ g/m³ to 353  $\mu$ g/m³. A reduction of 18 % was observed compared to samples collected during business hours in December of 2017. A diagram depicting each sample location with PCE concentrations is provided in Attachment 1. Table 2 depicts results of each sample during the most recent and earlier sampling events. Laboratory results for all samples collected February 28, 2018 are provided in Attachment 2.

Table 2: Indoor Air Sample Results — December 9 & 11, 2017 and February 28, 2018

|          |                           | Sample 1  |          |               |        |               |       |
|----------|---------------------------|-----------|----------|---------------|--------|---------------|-------|
|          | <b>Collection Date</b>    | 12/09     | /17      | 12/1:         | L/2017 | 02/2          | 28/18 |
| CACAL    | 6                         | Non-Busin | ess Hrs. | Business Hrs. |        | Business Hrs. |       |
| CAS No.  | Compound                  | ppbv      | μg/m³    | ppbv          | μg/m³  | ppbv          | μg/m³ |
| 127-18-4 | Tetrachloroethylene (PCE) | NA        | NA       | 52            | 353    | 50            | 339   |

<sup>\*</sup>NA = Samples lost to follow-up

|          |                           | Sample 2  |          |               |        |               |       |
|----------|---------------------------|-----------|----------|---------------|--------|---------------|-------|
|          | <b>Collection Date</b>    | 12/09     | /17      | 12/1          | 1/2017 | 02/2          | 28/18 |
| CACNI    | C                         | Non-Busin | ess Hrs. | Business Hrs. |        | Business Hrs. |       |
| CAS No.  | Compound                  | ppbv      | μg/m³    | ppbv          | μg/m³  | ppbv          | μg/m³ |
| 127-18-4 | Tetrachloroethylene (PCE) | 23        | 156      | 63            | 427    | 47            | 319   |

|          |                           | Sample 3  |          |               |        |               |       |
|----------|---------------------------|-----------|----------|---------------|--------|---------------|-------|
|          | Collection Date           | 12/09     | /17      | 12/1          | 1/2017 | 02/2          | 28/18 |
| CACAL    | <b>6</b>                  | Non-Busir | ess Hrs. | Business Hrs. |        | Business Hrs. |       |
| CAS No.  | Compound                  | ppbv      | μg/m³    | ppbv          | μg/m³  | ppbv          | μg/m³ |
| 127-18-4 | Tetrachloroethylene (PCE) | 20        | 136      | 64            | 434    | 46            | 312   |

|          |                           | Sample 4  |                         |      |               |      |       |
|----------|---------------------------|-----------|-------------------------|------|---------------|------|-------|
|          | <b>Collection Date</b>    | 12/09     | /17                     | 12/1 | 1/2017        | 02/2 | 28/18 |
| CACN     | 0                         | Non-Busir | ness Hrs. Business Hrs. |      | Business Hrs. |      |       |
| CAS No.  | Compound                  | ppbv      | μg/m³                   | ppbv | μg/m³         | ppbv | μg/m³ |
| 127-18-4 | Tetrachloroethylene (PCE) | NC        | NC                      | NC   | NC            | 52   | 353   |

<sup>\*</sup> NC = Not Collected

### Conclusions

Positively pressurizing the building alone achieved an 18% reduction in PCE concentrations, comparing average levels measures in December 2017 with those measured on February 28, 2018. However, the remaining concentrations of PCE throughout the first floor still exceeded the screening levels for PCE in workplace setting described in the November 2017 US EPA Regional Screening Levels, but were far below OSHA Permissible Exposure Limits.

Based upon these test results, it is apparent that additional mitigation measures will be needed to reduce PCE concentrations within the TNB Building, beyond modification of the HVAC Systems. It is recommended that sub-slab testing be considered to help design a sub-slab vapor extraction system to prevent vapor intrusion to the indoor air.

### Limitations

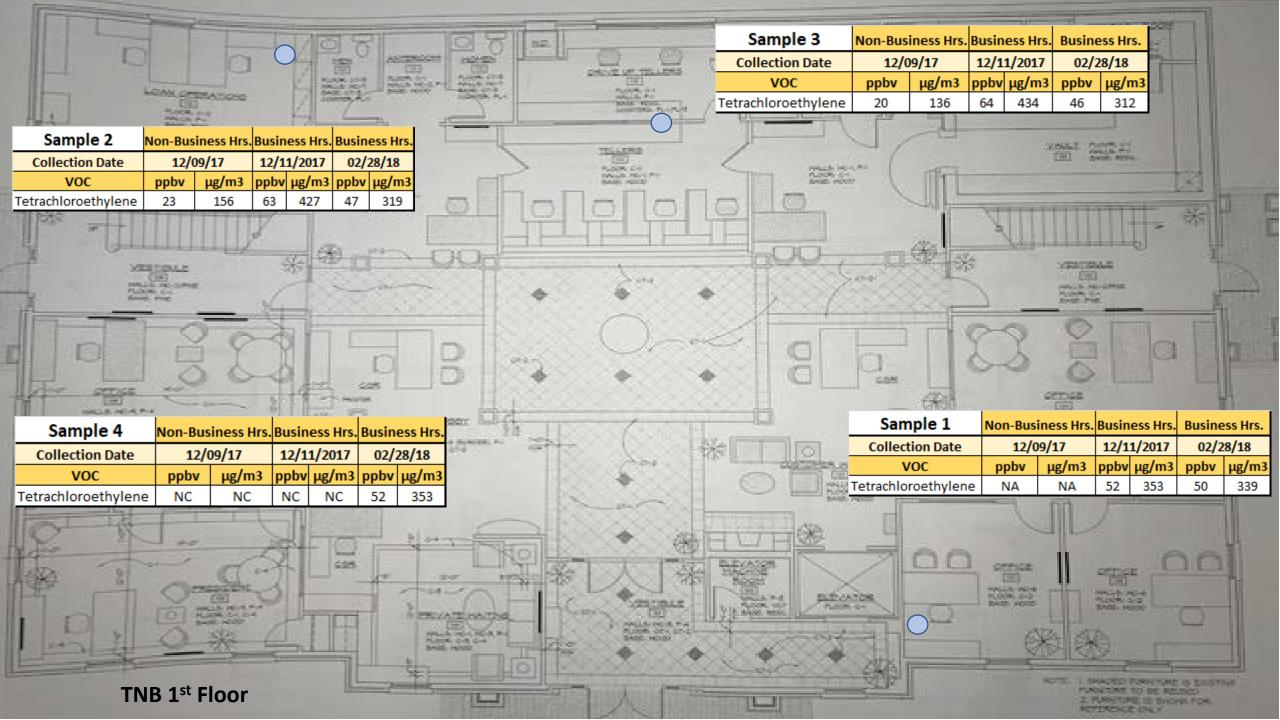
The methods, conclusions, and recommendations provided are based on professional judgment, experience and the current standard of practice for professional service. They are subject to the limitations and variability inherent in the methodology employed. As with all environmental investigations, it is limited to the defined scope and does not purport to identify all hazards, nor indicate that other hazards do not exist.

Please contact me if you have any questions regarding the information provided.

Respectfully,

David Krause, Ph.D., MSPH, CIH

Senior CIH/Toxicologist


Var trum

Director, Southeast Operations

DKrause@forensicanalytical.com | www.forensicanalytical.com

Attachments: Diagram with PCE Concentrations

SGS Galson Analytical Results





Mr. David Krause Forensic Analytical Consulting Services 2976 Wellington Circle W Tallahassee, FL 32309 December 28, 2017

DOH ELAP #11626 AIHA-LAP #100324 Account# 32609

Login# L428483

Dear Mr. Krause:

Enclosed are the analytical results for the samples received by our laboratory on December 14, 2017. All test results meet the quality control requirements of AIHA-LAP and NELAC unless otherwise stated in this report. All samples on the chain of custody were received in good condition unless otherwise noted.

Please note that 01A-12917 and 04B-121117 were received under full vacuum and were not analyzed/reported.

Results in this report are based on the sampling data provided by the client and refer only to the samples as they were received at the laboratory. When possible, non-IOM samples will be retained for 14 days following the date of this report (unless an extension is specifically requested). IOM samples are retained for 7 days.

Current Scopes of Accreditation can be viewed at www.sgsgalson.com in the accreditations section of the "About" page.

Please contact Tonya Lancaster at (888) 432-5227, if you would like any additional information regarding this report. Thank you for using SGS Galson Laboratories.

Sincerely,

SGS Galson Laboratories

Lisa Swab

Laboratory Director

Enclosure(s)

Galson Laboratories, Inc. is now a part of SGS, the world's leading inspection, verification, testing, and certification company. As part of our transition to SGS, you will begin to see some formatting changes with reports that will improve the presentation of data and allow for the transition to the new logo.



### GALSON

| nsulting- Florida Account No.: 32609 Login No. : L428483 Units : ppbv                                                                                                                                                                              | L428483-4<br>04A-12917   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Client : Forensic Analytical Consulting- Florida Site : Thomasville NB Project No. : PJ35744  Date Sampled : 09-DEC-17 - 11-DEC-17 Account No.: 32 Date Received : 14-DEC-17 Login No. : L4 Date Analyzed : 20-DEC-17 Units : propert ID : 1038938 | L428483-3<br>03A-12917   |
| Client : Forensic Rite : Thomasvilleroject No. : PJ35744  Date Sampled : 09-DEC-17  Date Received : 14-DEC-17  Date Analyzed : 20-DEC-17  Report ID : 1038938                                                                                      | L428483-2<br>02A-12917   |
|                                                                                                                                                                                                                                                    | rog<br>ppbv              |
| 6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.galsonlabs.com                                                                                                                                                  | Galson ID:<br>Client ID: |

| Propylene                                | 5.0               | 0.6                     | <5.0                     | <5.0              |                 |  |
|------------------------------------------|-------------------|-------------------------|--------------------------|-------------------|-----------------|--|
| Freon-12                                 | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Chloromethane                            | 1.0               | <1.0                    | <1.0                     | 1.0               |                 |  |
| Freon-114                                | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Vinyl Chloride                           | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| 1,3-Butadiene                            | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Bromomethane                             | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Chloroethane                             | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Vinyl Bromide                            | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Freon-11                                 | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Isopropyl Alcohol                        | 5.0               | <5.0                    | <5.0                     | 37                |                 |  |
| Acetone                                  | 5.0               | 39                      | 5.2                      | 720               |                 |  |
| 1,1-Dichloroethene                       | 1:0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Methylene Chloride                       | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Freon-113                                | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Allyl Chloride                           | 1.0               | <1.0                    | <1.0                     | <1.0              |                 |  |
| Analytical Method: mod. OSHA PV2120/mod. | OSHA PV212<br>Can | :0/mod. EPA TO15; GC/MS | /MS QC by<br>Approved by | : AMD<br>by : TLH | Supervisor: SAP |  |

| Supervisor: SAP                                          |                             | NYS DOH # : 11626  |
|----------------------------------------------------------|-----------------------------|--------------------|
| QC by : AMD                                              | Approved by : TLH           | : 21-DEC-17        |
| Analytical Method: mod. OSHA PV2120/mod. EPA T015; GC/MS | Collection Media : Mini Can | Submitted by : BLD |

L -Liters NA -Not Applicable NS -Not Specified LOQ -Limit of Quantitation ppbv-Parts per Billion Volume ppmv-Parts per Million Volume m3 -Cubic Meters ND -Not Detected mg -Milligrams ug -Micrograms -Greater Than -Less Than



### GALSON

|        |                                                                      |                                                                    |                          |                  |                          |                         |                    |               |                     |                          |        |               |            |                 |                    |                       |             |                      |         | ej.                       |            | 11626              |
|--------|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------|------------------|--------------------------|-------------------------|--------------------|---------------|---------------------|--------------------------|--------|---------------|------------|-----------------|--------------------|-----------------------|-------------|----------------------|---------|---------------------------|------------|--------------------|
|        |                                                                      | 32609<br>1428483<br>: ppbv                                         |                          |                  |                          |                         |                    |               |                     |                          |        |               |            |                 |                    |                       |             |                      |         | Supervisor: SAP           |            | NYS DOH #: 11      |
|        | onsulting- Florida                                                   | Account No.: 32<br>Login No. : L4<br>Units : p                     | L428483-4<br>04A-12917   | <5.0             | <1.0                     | <1.0                    | <1.0               | 1.7           | 1.0                 | <1.0                     | 2.0    | 3.9           | <1.0       | <1.0            | <1.0               | <1.0                  | 1.0         | <1.0                 | <1.0    | : AMD                     | by : TLH   | : 21-DEC-17        |
|        | : Forensic Analytical Consulting- Florida : Thomasville NB : PJ35744 | : 09-DEC-17 - 11-DEC-17<br>: 14-DEC-17<br>: 20-DEC-17<br>: 1038938 | L428483-3<br>03A-12917   | <5.0             | <1.0                     | <1.0                    | <1.0               | <1.0          | <1.0                | <1.0                     | <1.0   | 1.6           | <1.0       | <1.0            | <1.0               | <1.0                  | <1.0        | <1.0                 | <1.0    | .5; GC/MS QC by           | Approved h | Date               |
| )<br>) | Client<br>Site<br>Project No.                                        | Date Sampled<br>Date Received<br>Date Analyzed<br>Report ID        | L428483-2<br>02A-12917   | <5.0             | <1.0                     | <1.0                    | <1.0               | 4.8           | <1.0                | <1.0                     | 10     | <1.0          | <1.0       | <1.0            | <1.0               | <1.0                  | 2.3         | <1.0                 | 1.2     | PV2120/mod. EPA T015;     |            |                    |
| 1      |                                                                      |                                                                    | rog<br>Tog               | 5.0              | 1.0                      | 1.0                     | 1.0                | 1.0           | 1.0                 | 1.0                      | 1.0    | 1.0           | 1.0        | 1.0             | 1.0                | 1.0                   | 1.0         | 1.0                  | 1.0     | OSHA PV.                  | Can        |                    |
|        | 6601 Kirkville Road<br>East Syracuse, NY 13057<br>(315) 432-5227     | $\sim$ $\sigma$                                                    | Galson ID:<br>Client ID: | Carbon Disulfide | Trans-1,2-Dichloroethene | Methyl Tert-Butyl Ether | 1,1-Dichloroethane | Vinyl Acetate | Methyl Ethyl Ketone | cis-1,2-Dichloroethylene | Hexane | Ethyl Acetate | Chloroform | Tetrahydrofuran | 1,2-Dichloroethane | 1,1,1-Trichloroethane | Cyclohexane | Carbon Tetrachloride | Benzene | Analytical Method: mod. 0 | Mini       | Submitted by : BLD |

I -Liters NA -Not Applicable NS -Not Specified LOQ -Limit of Quantitation ppbv-Parts per Billion Volume ppmv-Parts per Million Volume m3 -Cubic Meters ND -Not Detected mg -Milligrams ug -Micrograms -Greater Than -Less Than



### GALSON

| Î       |                                  | able                          |
|---------|----------------------------------|-------------------------------|
| 8       | Liters                           | NA -Not Applica               |
|         | T<br>H                           | NA L                          |
| 0 8 4 4 | e NS -Not Specified              | LOQ -Limit of Quantitation    |
|         | rs ppbv-Parts per Billion Volume | ppmv-Parts per Million Volume |
| 5       | s m3 -Cubic Meters               | ND -Not Detected              |
|         | mg -Milligrams                   | ug -Micrograms                |
|         | -Less Than                       | -Greater Than                 |
| I       | ٧                                | Λ                             |



| 6601 Kirkville Road<br>East Syracuse, NY 13057 |     | Client<br>Site<br>Project No.                               | : Forensic Analytical Consulting- Florida<br>: Thomasville NB<br>: PJ35744 | nsulting- Florida                                         |
|------------------------------------------------|-----|-------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|
| FAX: (315) 437-0571 www.galsonlabs.com         |     | Date Sampled<br>Date Received<br>Date Analyzed<br>Report ID | : 09-DEC-17 - 11-DEC-17<br>: 14-DEC-17<br>: 20-DEC-17<br>: 1038938         | Account No.: 32609<br>Login No. : 1428483<br>Units : ppbv |
| Galson ID:<br>Client ID:                       | LOQ | L428483-2<br>02A-12917                                      | L428483-3<br>03A-12917                                                     | L428483-4<br>04A-12917                                    |
| Ethylbenzene                                   | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| Bromoform                                      | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| m & p-xylene                                   | 2.0 | <2.0                                                        | <2.0                                                                       | <2.0                                                      |
| Styrene                                        | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| o-Xylene                                       | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| 1,1,2,2-Tetrachloroethane                      | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| 4-Ethyltoluene                                 | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| 1,3,5-Trimethylbenzene                         | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| 1,2,4-Trimethylbenzene                         | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| 1,3-Dichlorobenzene                            | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| Benzyl Chloride                                | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| 1,4-Dichlorobenzene                            | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |
| 1,2-Dichlorobenzene                            | 1.0 | <1.0                                                        | <1.0                                                                       | <1.0                                                      |

| Supervisor: SAP                          |                             | NYS DOH # : 11626  |
|------------------------------------------|-----------------------------|--------------------|
| : AMD                                    | Dy : T                      | : 21-DEC-17        |
| QC by                                    | Approved                    | Date               |
| OSHA PV2120/mod. EPA TO15; GC/MS         | Can                         |                    |
| Analytical Method: mod. OSHA PV2120/mod. | Collection Media : Mini Can | Submitted by : BLD |

NS -Not Specified Log -Liters LOQ -Limit of Quantitation NA -Not Applicable ppbv-Parts per Billion Volume ppmv-Parts per Million Volume m3 -Cubic Meters ND -Not Detected mg -Milligrams ug -Micrograms -Greater Than -Less Than V /



### GALSON

|                                         |                                                                  | 9<br>4483<br>V                                            |             |                          |           |          |               |           |                |               |              |              |               |          |                   |         |                    |                    |           |                | Supervisor: SAP           |                           | NYS DOH # : 11626  |
|-----------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|-------------|--------------------------|-----------|----------|---------------|-----------|----------------|---------------|--------------|--------------|---------------|----------|-------------------|---------|--------------------|--------------------|-----------|----------------|---------------------------|---------------------------|--------------------|
| sulting- Florida                        |                                                                  | Account No.: 32609<br>Login No. : L428483<br>Units : ppbv |             | L428483-7<br>03B-121117  | <5.0      | 1.0      | <1.0          | <1.0      | <1.0           | <1.0          | <1.0         | <1.0         | <1.0          | <1.0     | <5.0              | 13      | <1.0               | <1.0               | <1.0      | <1.0           | : AMD                     | : TLH                     | : 21-DEC-17        |
| Forensic Analytical Consulting- Florida | Thomasville NB<br>PJ35744                                        | 09-DEC-17 - 11-DEC-17<br>14-DEC-17<br>20-DEC-17           | 1038938     | L428483-6<br>02B-121117  | <5.0      | <1.0     | <1.0          | <1.0      | <1.0           | <1.0          | <1.0         | <1.0         | <1.0          | <1.0     | 5.4               | 11      | <1.0               | <1.0               | <1.0      | <1.0           | TO15; GC/MS QC by         | Approved by               | Date               |
| Client :                                | Site<br>Project No. :                                            | Date Sampled :<br>Date Received :<br>Date Analyzed :      | Report ID : | L428483-5<br>01B-121117  | <5.0      | <1.0     | <1.0          | <1.0      | <1.0           | <1.0          | <1.0         | <1.0         | <1.0          | <1.0     | <5.0              | 13      | <1.0               | <1.0               | <1.0      | <1.0           | OSHA PV2120/mod. EPA TO15 |                           |                    |
|                                         |                                                                  |                                                           |             | LOQ<br>ppbv              | 5.0       | 1.0      | 1.0           | 1.0       | 1.0            | 1.0           | 1.0          | 1.0          | 1.0           | 1.0      | 5.0               | 2.0     | 1.0                | 1.0                | 1.0       | 1.0            | OSHA PV2                  | Can                       |                    |
| -                                       | 6601 Kirkville Road<br>East Syracuse, NY 13057<br>(315) 432-5227 | FAX: (315) 437-0571 www.galsonlabs.com                    |             | Galson ID:<br>Client ID: | Propylene | Freon-12 | Chloromethane | Freon-114 | Vinyl Chloride | 1,3-Butadiene | Bromomethane | Chloroethane | Vinyl Bromide | Freon-11 | Isopropyl Alcohol | Acetone | 1,1-Dichloroethene | Methylene Chloride | Freon-113 | Allyl Chloride | Analytical Method: mod. C | Collection Media : Mini C | Submitted by : BLD |

L -Liters NA -Not Applicable NS -Not Specified LOQ -Limit of Quantitation ppbv-Parts per Billion Volume ppmv-Parts per Million Volume mg -Milligrams m3 -Cubic Meters ug -Micrograms ND -Not Detected -Greater Than -Less Than V



| 9<br>4 8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Supervisor: SAP<br>NYS DOH # : 11626                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| nsulting- Florida Account No.: 32609 Login No. : L428483 Units : ppbv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L428483-7<br>03B-121117              | \$\\ \frac{1}{1} \\ \frac{1} \\ \frac{1}{1} \\ \frac{1} \\ \frac{1}{1} \\ \frac{1} | : AMD<br>y : TLH<br>: 21-DEC-17                                             |
| Forensic Analytical Consulting- Florida Thomasville NB PJ35744  09-DEC-17 - 11-DEC-17 Account No.: 32 14-DEC-17 Login No. : L4 20-DEC-17 Units : p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L428483-6<br>02B-121117              | \$\frac{1}{2} \\ \frac{1}{2} \\ \frac | GC/MS QC by<br>Approved by<br>Date                                          |
| Site : Table Site : Table Suppled : Campled : Campled : Campled : Campled : Campled : Cample Suppled : Cample Supples : Camples | L428483-5<br>01B-121117              | % \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OSHA PV2120/mod. EPA TO15; GC/MS<br>Can                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOQ                                  | 0000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OSHA PV?<br>Can                                                             |
| 6601 Kirkville Road East Syracuse, NY 13057 (315) 432-527 FAX: (315) 437-0571 www.galsonlabs.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>Galson ID:<br/>Client ID:</pre> | Carbon Disulfide Trans-1,2-Dichloroethene Methyl Tert-Butyl Ether 1,1-Dichloroethane Vinyl Acetate Methyl Ethyl Ketone cis-1,2-Dichloroethylene Hexane Ethyl Acetate Chloroform Tetrahydrofuran 1,2-Dichloroethane 1,1-Trichloroethane Cyclohexane Carbon Tetrachloride Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analytical Method: mod. O<br>Collection Media: Mini C<br>Submitted by : BLD |

NS -Not Specified LOQ -Limit of Quantitation NA -Not Applicable ppbv-Parts per Billion Volume ppmv-Parts per Million Volume m3 -Cubic Meters ND -Not Detected mg -Milligrams ug -Micrograms > -Greater Than

< -Less Than



### GALSON

|   |                                                                      |                                                            |                                     |             |                        |         |                     |                   |                      |                         |                           |                       |         |                      |                        |                     |                   |                     |               | Supervisor: SAP                  |                             | S DOH # : 11626    |
|---|----------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|-------------|------------------------|---------|---------------------|-------------------|----------------------|-------------------------|---------------------------|-----------------------|---------|----------------------|------------------------|---------------------|-------------------|---------------------|---------------|----------------------------------|-----------------------------|--------------------|
|   | ısulting- Florida                                                    | Account No.: 32609<br>Login No. : L428483<br>Units : ppbv  | L428483-7<br>03B-121117             | <5.0        | <1.0                   | <1.0    | <1.0                | <1.0              | <1.0                 | <1.0                    | <1.0                      | <1.0                  | <1.0    | <1.0                 | <1.0                   | <1.0                | <1.0              | 64                  | <1.0          | : AMD                            | / : TLH                     | : 21-DEC-17 NYS    |
|   | Forensic Analytical Consulting- Florida<br>Thomasville NB<br>PJ35744 | 09-DEC-17 - 11-DEC-17<br>14-DEC-17<br>20-DEC-17<br>1038938 | L428483-6<br>02B-121117             | <5.0        | <1.0                   | <1.0    | <1.0                | <1.0              | <1.0                 | <1.0                    | <1.0                      | <1.0                  | <1.0    | <1.0                 | <1.0                   | <1.0                | <1.0              | 63                  | <1.0          | ; GC/MS QC by                    | Approved by                 | Date               |
|   | Client<br>Site :<br>Project No. :                                    | Date Sampled : Date Received : Date Analyzed : Report ID : | L428483-5<br>01B-121117             | <5.0        | <1.0                   | <1.0    | <1.0                | <1.0              | <1.0                 | <1.0                    | <1.0                      | <1.0                  | 1.3     | <1.0                 | <1.0                   | <1.0                | <1.0              | 52                  | <1.0          | OSHA PV2120/mod. EPA TO15; GC/MS |                             |                    |
|   |                                                                      |                                                            | LOQ                                 | 5.0         | 1.0                    | 1.0     | 1.0                 | 1.0               | 1.0                  | 1.0                     | 1.0                       | 1.0                   | 1.0     | 1.0                  | 1.0                    | 1.0                 | 1.0               | 1.0                 | 1.0           | SHA PV2                          | ü                           |                    |
| _ | 6601 Kirkville Road<br>East Syracuse, NY 13057<br>(315) 432-5227     | FAX: (315) 437-0571<br>www.galsonlabs.com                  | <pre>Galson ID:    Client ID:</pre> | 1,4-Dioxane | 2,2,4-Trimethylpentane | Heptane | 1,2-Dichloropropane | Trichloroethylene | Bromodichloromethane | cis-1,3-Dichloropropene | trans-1,3-Dichloropropene | 1,1,2-Trichloroethane | Toluene | Dibromochloromethane | Methyl Isobutyl Ketone | Methyl Butyl Ketone | 1,2-Dibromoethane | Tetrachloroethylene | Chlorobenzene | Analytical Method: mod. OS       | Collection Media : Mini Can | Submitted by : BLD |

L -Liters NA -Not Applicable NS -Not Specified LOQ -Limit of Quantitation ppmv-Parts per Million Volume ppbv-Parts per Billion Volume m3 -Cubic Meters ND -Not Detected mg -Milligrams ug -Micrograms -Greater Than < -Less Than
> -Greater Th



### GALSON

| •                                      |      |                               |                                           |                                           |  |
|----------------------------------------|------|-------------------------------|-------------------------------------------|-------------------------------------------|--|
|                                        |      | Client                        | : Forensic Analytical Consulting- Florida | nsulting- Florida                         |  |
| 6601 Kirkville Road                    |      | Site                          | : Thomasville NB                          |                                           |  |
| East Syracuse, NY 13057 (315) 432-5227 |      | Project No.                   | : PJ35744                                 |                                           |  |
| FAX: (315) 437-0571 www.galsonlabs.com |      | Date Sampled<br>Date Received | : 09-DEC-17 - 11-DEC-17 : 14-DEC-17       | Account No.: 32609<br>Login No. : L428483 |  |
|                                        |      |                               | : 20-DEC-17<br>: 1038938                  | Units : ppbv                              |  |
| Galson ID:                             | TOO  | L428483-5                     | L428483-6                                 | L428483-7                                 |  |
| Client ID:                             | nqdd | 01B-121117                    | 02B-121117                                | 03B-121117                                |  |
| Ethylbenzene                           | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| Bromoform                              | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| m & p-xylene                           | 2.0  | <2.0                          | <2.0                                      | <2.0                                      |  |
| Styrene                                | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| o-Xylene                               | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| 1,1,2,2-Tetrachloroethane              | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| 4-Ethyltoluene                         | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| 1,3,5-Trimethylbenzene                 | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| 1,2,4-Trimethylbenzene                 | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| 1,3-Dichlorobenzene                    | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| Benzyl Chloride                        | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| 1,4-Dichlorobenzene                    | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
| 1,2-Dichlorobenzene                    | 1.0  | <1.0                          | <1.0                                      | <1.0                                      |  |
|                                        |      |                               |                                           |                                           |  |
|                                        |      |                               |                                           |                                           |  |
|                                        |      |                               |                                           |                                           |  |

| Supervisor: SAP                                          |                             | NYS DOH # : 11626 |
|----------------------------------------------------------|-----------------------------|-------------------|
| : AMD                                                    | : TLH                       | : 21-DEC-17       |
| QC by                                                    | Approved by                 | Date              |
| Analytical Method: mod. OSHA PV2120/mod. EPA T015; GC/MS | i Can                       |                   |
| : mod.                                                   | : Mini                      | : BID             |
| Analytical Method                                        | Collection Media : Mini Can | Submitted by      |

L -Liters NA -Not Applicable NS -Not Specified LOQ -Limit of Quantitation ppbv-Parts per Billion Volume ppmv-Parts per Million Volume m3 -Cubic Meters ND -Not Detected mg -Milligrams ug -Micrograms -Greater Than V /

-Less Than



### GALSON

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.galsonlabs.com

Client : Forensic Analytical Consulting

Site : Thomasville NB Project No. : PJ35744 Date Sampled : 09-DEC-17 - 11-DEC-17

: 14-DEC-17

Date Received

Date Analyzed : 20-DEC-17 Report ID : 1038947

Account No.: 32609 Login No. : L428483

Client ID : 02A-12917 Lab ID : L428483-2

Concentration vdqqq 15 Retention 4.45 Time 000106-97-8 000109-66-0 CAS Number Tentatively Identified Compounds Pentane Butane

Estimated

| Supervisor: SAP                                          |                             | NYS DOH # : 11626  |
|----------------------------------------------------------|-----------------------------|--------------------|
| QC by : AMD                                              | Approved by : TLH           | Date : 21-DEC-17   |
| Analytical Method: mod. OSHA PV2120/mod. EPA TO15; GC/MS | Collection Media : Mini Can | Submitted by : BLD |

Field sampling was not performed by Galson. Galson presents results based on sampling data provided by clients.

ppbv-Parts per Billion Volume ppmv-Parts per Million Volume

mg -Milligrams m3 -Cubic Meters ug -Micrograms ND -Not Detected

-Greater Than

-Less Than

NS -Not Specified l-Liters LOQ -Limit of Quantitation NA -Not Applicable



### GALSON

East Syracuse, NY 13057 6601 Kirkville Road FAX: (315) 437-0571 www.galsonlabs.com (315) 432-5227

: Forensic Analytical Consulting Thomasville NB Client Site

: 09-DEC-17 - 11-DEC-17 : PJ35744 Project No.

: 20-DEC-17 : 1038947 Date Analyzed

Login No. : L428483 Account No.: 32609

Report ID : 14-DEC-17 Date Sampled Date Received

|                       | Estimated Concentration | ndqqq                            | 6.2                          |
|-----------------------|-------------------------|----------------------------------|------------------------------|
|                       | Retention               | Time                             | 4.96                         |
| Lab ID : L428483-3    |                         | CAS Number                       | 000064-17-5                  |
| Lab ID :              |                         | ed Compounds                     |                              |
| Client ID : 03A-12917 |                         | Tentatively Identified Compounds | Ethanol<br>Butane, 2-methyl- |

| Supervisor: SAP                                         |                             | NYS DOH # : 11626 |
|---------------------------------------------------------|-----------------------------|-------------------|
| : AMD                                                   | ed by : TLH                 | : 21-DEC-17       |
| QC by                                                   | Approved h                  | Date              |
| nalytical Method: mod. OSHA PV2120/mod. EPA TO15; GC/MS | collection Media : Mini Can | d by : BLD        |
| Analytica                                               | Collection                  | Submitted by      |

Field sampling was not performed by Galson. Galson presents results based on sampling data provided by clients.

m3 -Cubic Meters ND -Not Detected

mg -Milligrams ug -Micrograms

-Greater Than

-Less Than

ppbv-Parts per Billion Volume NS -Not Specified 1 -Liters ppmv-Parts per Million Volume LOQ -Limit of Quantitation NA -Not Applicable



### GALSON

East Syracuse, NY 13057 6601 Kirkville Road FAX: (315) 437-0571 www.galsonlabs.com (315) 432-5227

Login No. : L428483 Account No.: 32609 Forensic Analytical Consulting Thomasville NB Client Site

: 20-DEC-17 Date Analyzed Report ID : 09-DEC-17 - 11-DEC-17

: 14-DEC-17

Date Received Date Sampled Project No.

PJ35744

: 1038947

Lab ID : L428483-4 Client ID : 04A-12917

Concentration Estimated vdaa 34 Retention 4.93 Time 000064-17-5 CAS Number Tentatively Identified Compounds Ethanol

0-99-601000

Pentane

: 11626 Supervisor: SAP NYS DOH # : 21-DEC-17 Approved by : TLH Date : 21-I : AMD QC by Analytical Method: mod. OSHA PV2120/mod. EPA TO15; GC/MS Collection Media: Mini Can : BLD Submitted by l -Liters NA -Not Applicable NS -Not Specified LOQ -Limit of Quantitation ppbv-Parts per Billion Volume ppmv-Parts per Million Volume m3 -Cubic Meters ND -Not Detected mg -Milligrams ug -Micrograms -Greater Than -Less Than

Field sampling was not performed by Galson. Galson presents results based on sampling data provided by clients.



### GALSON

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.galsonlabs.com

Client : Forensic Analytical Consulting Site : Thomasville NB

Project No. : PJ35744 Date Sampled : 09-DEC-17 - 11-DEC-17

: 14-DEC-17

Date Received

Login No. : L428483

Date Analyzed : 20-DEC-17

Account No.: 32609

: 1038947

Report ID

Client ID : 01B-121117

Lab ID : L428483-5

Concentration Estimated Aqaa 11 Retention 4.09 0000115-10-6 CAS Number Tentatively Identified Compounds Dimethyl ether Ethanol

NYS DOH # : 11626 Supervisor: SAP : 21-DEC-17 : AMD Approved by : TLH Date : 21-1 QC by Analytical Method: mod. OSHA PV2120/mod. EPA T015; GC/MS Collection Media: Mini Can BLD Submitted by

Field sampling was not performed by Galson. Galson presents results based on sampling data provided by clients.

l -Liters NA -Not Applicable

LOQ -Limit of Quantitation

-Not Specified

SZ

ppbv-Parts per Billion Volume

ppmv-Parts per Million Volume

m3 -Cubic Meters ND -Not Detected

mg -Milligrams ug -Micrograms

-Greater Than

-Less Than



### GALSON

East Syracuse, NY 13057 6601 Kirkville Road FAX: (315) 437-0571 www.galsonlabs.com (315) 432-5227

Login No. : L428483 Account No.: 32609 Forensic Analytical Consulting Thomasville NB Client Site

: 09-DEC-17 - 11-DEC-17 PJ35744 Date Sampled Project No.

: 14-DEC-17

Date Received

: 20-DEC-17 : 1038947 Date Analyzed Report ID

Client ID : 02B-121117

Lab ID : L428483-6

Concentration Estimated 7.6 vdqqq 21 Retention 4.08 000115-10-6 000064-17-5 000075-05-8 CAS Number Tentatively Identified Compounds Dimethyl ether Acetonitrile Ethanol

NYS DOH # : 11626 Supervisor: SAP : 21-DEC-17 : AMD Approved by : TLH Date : 21-1 QC by OSHA PV2120/mod. EPA TO15; GC/MS Collection Media: Mini Can Analytical Method: mod. Submitted by

l -Liters NA -Not Applicable LOQ -Limit of Quantitation ppmv-Parts per Million Volume m3 -Cubic Meters ND -Not Detected mg -Milligrams ug -Micrograms -Greater Than

-Not Specified

SN

ppbv-Parts per Billion Volume

-Less Than

Field sampling was not performed by Galson. Galson presents results based on sampling data provided by clients.



### GALSON

East Syracuse, NY 13057 6601 Kirkville Road FAX: (315) 437-0571 www.galsonlabs.com (315) 432-5227

Forensic Analytical Consulting Thomasville NB Client Site

: PJ35744

Login No. : L428483 Account No.: 32609

: 20-DEC-17 : 1038947 Date Analyzed Report ID

: 09-DEC-17 - 11-DEC-17 : 14-DEC-17

Date Received Date Sampled Project No.

Client ID : 03B-121117

Lab ID : L428483-7

Estimated

vdaq

10

Concentration Retention 4.08 Time 000115-10-6 CAS Number Tentatively Identified Compounds Dimethyl ether Ethanol

| Supervisor: SAP                                          |                             | NYS DOH # : 11626 |
|----------------------------------------------------------|-----------------------------|-------------------|
| : AMD                                                    | T : Yd                      | : 21-DEC-17       |
| QC by                                                    | Approved                    | Date              |
| Analytical Method: mod. OSHA PV2120/mod. EPA T015; GC/MS | i Can                       |                   |
| d: mod.                                                  | : Mini                      | : BID             |
| Analytical Metho                                         | Collection Media : Mini Can | Submitted by      |

Galson presents results based on sampling data provided by clients. Field sampling was not performed by Galson.

ppbv-Parts per Billion Volume ppmv-Parts per Million Volume

m3 -Cubic Meters ND -Not Detected

mg -Milligrams ug -Micrograms

-Greater Than

-Less Than

NS -Not Specified 1 -Liters LOQ -Limit of Quantitation NA -Not Applicable



### GALSON

6601 Kirkville Road
East Syracuse, NY 13057
(315) 432-5257
FAX: (315) 437-0571
www.galsonlabs.com

Client Name : Forensic Analytical Consulting- Florida : Thomasville NB : PJ35744

Project No.

Account No.: 32609 Login No. : L428483 Date Sampled: 09-DEC-17 - 11-DEC-17 Date Received: 14-DEC-17 Date Analyzed: 20-DEC-17 This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise noted below, all quality control results associated with the samples were within established control limits or did not impact reported results.

party acting at the Client's direction). The laboratory does not have control over the sampling process. The findings herein constitute no warranty of the samples' representativeness of any sampled environment and strictly relate to the samples as they were presented to the laboratory. Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third

Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceeding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported. The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).

Unless otherwise noted below, reported results have not been blank corrected for any field blank or method blank.

ID: 1038938): L428483 (Report

NYSDOH does not offer a certification for the following compounds: Propylene, Ethyl Acetate, Tetrahydrofuran, Methyl n-Butyl Ketone, and 4-Ethyl Toluene. SOPs: in-vocs(33)

L428483-2 (Report ID: 1038938):

Propylene result may be biased high due to co-elution with Propane

L428483-2-7 (Report ID: 1038938):

Acetone results may be biased high due to co-elution with 2-Methylbutane.

-Kilograms -Not Specified S S S -Cubic Meters -Liters m3 -Milligrams mg ng -Greater Than -Less Than

-Not Applicable

NA

ppm -Parts per Million ND -Not Detected



## GALSON

Client Name : Forensic Analytical Consulting- Florida Site : Thomasville NB Project No. : PJ35744

Account No.: 32609 Login No. : L428483 Date Sampled: 09-DEC-17 - 11-DEC-17 Date Received: 14-DEC-17 Date Analyzed: 20-DEC-17

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.galsonlabs.com

L428483 (Report ID: 1038938):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

| tarameter                 | Accuracy | mean necovery |
|---------------------------|----------|---------------|
| 1,1,2-Trichloroethane     | +/-11.4% | 95.9%         |
| 1,1-Dichloroethene        | +/-13.8% | 88.66         |
| 1,2-Dichloroethane        | +/-18.2% | 1018          |
| 2,2,4-Trimethylpentane    | +/-13.5% | %5.00         |
| Allyl Chloride            | +/-16.8% | 98.6%         |
| Carbon Tetrachloride      | +/-17.9% | 102%          |
| cis-1,2-Dichloroethylene  | +/-12.8% | 99.4%         |
| cis-1,3-Dichloropropene   | +/-12.4% | 99.2%         |
| 1,4-Dioxane               | +/-19%   | 87.9%         |
| Tetrachloroethylene       | +/-13.6% | 97.78         |
| Toluene                   | +/-13%   | 86.98         |
| 1,2-Dichlorobenzene       | +/-17.4% | 94.5%         |
| 1,3,5-Trimethylbenzene    | +/-14.9% | %<br>60<br>60 |
| Cyclohexane               | +/-13.4% | 98.2%         |
| Trans-1,2-Dichloroethene  | +/-13%   | 97.78         |
| Vinyl Chloride            | +/-13.5% | 98.4%         |
| 1,1-Dichloroethane        | +/-13.7% | 88.38         |
| 1,2,4-Trimethylbenzene    | +/-16.4% | 86.66         |
| 1,2-Dichloropropane       | +/-13.18 | 96.98         |
| 4-Ethyltoluene            | +/-14.9% | 101\$         |
| Dibromochloromethane      | +/-12.9% | 99.5%         |
| Methyl Isobutyl Ketone    | +/-16.63 | 101%          |
| Chloroethane              | +/-16.78 | 98.5%         |
| Heptane                   | +/-14.78 | 88.00         |
| Methyl Butyl Ketone       | +/-17.48 | 101%          |
| Tetrahydrofuran           | +/-16.6% | 94.4%         |
| trans-1,3-Dichloropropene | +/-14.5% | 102%          |

NA -Not Applicable

ppm -Parts per Million ND -Not Detected

kg -Kilograms NS -Not Specified

-Cubic Meters

m3

mg -Milligrams ug -Micrograms

-Less Than -Greater Than



## GALSON

Client Name : Forensic Analytical Consulting- Florida Site : Thomasville NB Project No. : PJ35744

Account No.: 32609 Login No. : L428483

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571 www.galsonlabs.com

Date Sampled: 09-DEC-17 - 11-DEC-17 Date Received: 14-DEC-17 Date Analyzed: 20-DEC-17

98.2% +/-16.5% +/-15.4% +/-178 1,1,2,2-Tetrachloroethane Methyl Tert-Butyl Ether Isopropyl Alcohol 1,1,1-Trichloroethane Bromodichloromethane Carbon Disulfide Ethyl Acetate Vinyl Acetate Vinyl Bromide 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl Ethyl Ketone Methylene Chloride 1,2-Dibromoethane Trichloroethylene 1,3-Butadiene Benzyl Chloride Chloromethane Chlorobenzene Ethylbenzene Bromomethane m & p-xylene Chloroform Propylene Bromoform Freon-114 Freon-113 o-Xylene Freen-11 Freon-12 Acetone Benzene Hexane

L428483 (Report ID: 1038947): Note: Any detected siloxanes are always deleted from TIC results, as they may be artifacts contributed by the

NA -Not Applicable

ppm -Parts per Million ND -Not Detected

| kg -Kilograms  | NS -Not Specified |
|----------------|-------------------|
| -Cubic Meters  | -Liters           |
| ш3             | Н                 |
| mg -Milligrams | ug -Micrograms    |
| -Less Than     | -Greater Than     |
| V              | ٨                 |



## GALSON

Client Name : Forensic Analytical Consulting- Florida Site : Thomasville NB Project No. : PJ35744

Account No.: 32609 Login No. : L428483

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5257 FAX: (315) 437-0571 www.galsonlabs.com

Date Sampled: 09-DEC-17 - 11-DEC-17 Date Received: 14-DEC-17 Date Analyzed: 20-DEC-17

1428483 (Report ID: 1038947):

sampling/chromatographic system.

Non-target compounds detected in any samples are tentatively identified by using a search of the NIST/EPA Mass Spectral Library, which contains nearly two hundred thousand compounds. Compounds not detected will not be listed on the report. Compounds with very low quality matches will be reported as "unknown."

Tentatively identified Compounds (TICS) are estimated values. TICS are calculated using an average response factor of I for all compounds.

-Cubic Meters -Liters m3 mg -Milligrams ug -Micrograms -Greater Than < -Less Than
> -Greater Th

NA -Not Applicable

ppm -Parts per Million ND -Not Detected

kg -Kilograms NS -Not Specified

Page 19 of 21 Report Reference:1 Generated:28-DEC-17 11:19

Prep:UNKNOWN 770975802183 Date:12/14/17 Shipper:FEDEX Initials:MAK

| <b>.</b>         |                                                                                                  |          |                              |                                                       |                             |                 |                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                 |                                                                     |                                                             |                                            |                                                    |
|------------------|--------------------------------------------------------------------------------------------------|----------|------------------------------|-------------------------------------------------------|-----------------------------|-----------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| and can          |                                                                                                  |          | Invoice To: Accounts Payable | Company Name: Forensic Analytical Consulting- Florida | Address 1: 21228 Cabor Blvd |                 | Phone No. 110 200 A595                 | Email Address: saddeness: saddene | Day of the distance of the dis |                                                   | Payment info.:   I will call SGS Galson to provide credit card info | Lard on rife (enter the last five digits on the line below) | Please indicate which OEL(                 | IAQ :   Other :   Specify Limit(s)   Specify Other |
| Ydo.             | ortal.galsoniabs.com                                                                             |          | Invoice To:                  | Company Name: E                                       | Address 1: 2                | Address 2:      | Phone No                               | Email Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P.O. No. :                                        | Payment info.:                                                      | - 1                                                         | State Sampled :                            | 10<br>10                                           |
| CHAIN OF CUSTODY | ctronically by logging in to your Client Portal account at <u>https://portal.galsonlabs.com/</u> |          | Report To: Mr. David Krause  | Analytical Consulting                                 | Services                    |                 | City, State Zip: Tallahassee, FL 32309 | 850 - 766 - 1938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 850 - 766 - 1938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Email reports to: dkrause@forensicanalytical.com, | 1) damage to tenaricanary crear . com                               |                                                             | J. Can                                     |                                                    |
| 2                | plete this COC ele                                                                               |          | Report To :                  | Company Name:                                         | Address 1                   | Address 2 :     | City, State Zip :                      | Phone No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cell No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Email reports to :                                | Comments:                                                           |                                                             | hi@gma                                     |                                                    |
| GALSON           | You may edit and complete this COC electronically                                                |          | Client Acct No.:             | 32609                                                 | Original Press No.          | PSY455578       |                                        | CS Rep:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CMOSER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Online COC No.:                                   | 141515                                                              |                                                             | to FACS+1                                  |                                                    |
| . ~              | Surcharge}                                                                                       | %0       | 35%                          | %05                                                   | 75%                         | 100%            | 150%                                   | 200%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | E S                                                                 |                                                             | DION                                       |                                                    |
| -ep:Unknomn      | 740010                                                                                           | Standard | 4 Business Days              | 3 Business Days                                       | 2 Business Days             | Next Day by 6pm | Next Day by Noon                       | Same Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A Samples submitted using the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FreePumpLoan** Program                            |                                                                     |                                                             | comments: Send Involve to FACS+IN@grad.com |                                                    |
| w                | -1                                                                                               | ~~       |                              | ᆜ                                                     | 느,                          |                 | <u></u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J L                                               |                                                                     |                                                             |                                            |                                                    |

|                                           |                        |                                     |                                               |                                      | 7                                                                                                                                                                                                | Specify ciliates                                                                 | appectly Office                                                            |  |
|-------------------------------------------|------------------------|-------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Site Name: Tromasville NB Project: 235744 | 16 NB Pre              | oject: pJ35744                      | Sampled By:                                   | Smoled By: Namauz                    | ~~~                                                                                                                                                                                              | List description of industry or Process/interferences present in sampling area : | resent in sampling area:                                                   |  |
| Sample ID *<br>(Maximum of 20 Characters) | Date Sampled *         | * Collection Medium                 | Sample Volume<br>Sample Time<br>Sample Area * | Liters<br>Minutes<br>in², cm², ft² • | Analysis Requested                                                                                                                                                                               | Method Reference ^                                                               | Hexavalent Chromium<br>Process (e.g., welding,<br>plating, painting, etc.) |  |
| 618-12917                                 | -12/9/207              | Minican, 1 L                        | ∞                                             | hoars                                | Volatile Organics mod. OSHA Profile (61) (TO15 list PV2120/mod. EPA & TICs) TO15; GC/MS                                                                                                          | mod. OSHA<br>PV2120/mod. EPA<br>TO15; GC/MS                                      |                                                                            |  |
| ^ If the method(s) indicated o.           | n the COC are not c    | our routine/preferred method(s), we | will substitute our routine                   | /preferred methods. If               | A if the method(s) indicated on the COC are not our routine/preferred method(s), we will substitute our routine/preferred methods. If this is not acceptable, check here to have us contact you. | have us contact you.                                                             |                                                                            |  |
| Chain of Custody                          | Print Name / Signature | Signature                           | Date                                          |                                      | Priot Name / Signature                                                                                                                                                                           |                                                                                  | Date                                                                       |  |

|                     | 333                                                |                    |                  |                  |                                                                       |                                |                                                                                                           | The second secon |      |
|---------------------|----------------------------------------------------|--------------------|------------------|------------------|-----------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Print Nam           | Print Name / Signature                             | -                  | Date             | Time             |                                                                       | Print Name                     | Print Name / Signature                                                                                    | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time |
| Shalasia livernack  | -1 Shalasha                                        | Lumast             | Piala            | 3: Slepon        | 401217 3: Sepa Received By:                                           |                                | S S SS. W. Wille                                                                                          | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 1                   |                                                    | 1)                 |                  |                  | Received By:                                                          | Michelle Krause                | Received By: Michelle Krause Westakke Ty                                                                  | ンゴカ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3    |
|                     |                                                    | * You must fill    | in these colum   | ns for any samp  | fill in these columns for any samples which you are submitting.       | e submitting.                  | Online COC No. : 141515                                                                                   | : 141515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|                     |                                                    | Samples rec        | seived after 3pm | will be conside  | Samples received after 3pm will be considered as next day's business. | s business.                    | Prep No. : F5745<br>Account No. : 32609<br>Draft : 12/4/20                                                | Prep No.: PS74555/8<br>count No.: 32609<br>Draft: 12/4/2017 4:23:05 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M    |
| All services are re | All services are rendered in accordance with the a | ance with the appl | licable SGS Gen  | neral Conditions | of Service acces                                                      | sible via: http://www.sqs.com/ | onlicable SGS General Conditions of Service accessible via http://www.scs.com/en/Terms.and.Conditions.acm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

Page: 1/4

SGS Galson | 6601 Kirkville Road E. Syracuse, NY 13057, USA 1+1 888 432 5227 | +1 315 432 5227 www.galsonlabs.com | www.sgs.com

Page 20 of 21 Report Reference:1 Generated:28-DEC-17 11:19

Member of the SGS Group (SGS SA)



# CHAIN OF CUSTODY

| N. Company |
|------------|
| Chang      |
|            |
| S          |
| 120        |
|            |
| 3          |
|            |
|            |
| 2          |
| 200        |
| Min        |

Comments:

| Sample ID * (Maximum of 20 Characters) | Date Sampled * | Collection Medium | Sample Volume<br>Sample Time<br>Sample Area | Liters<br>Minutes<br>in², cm², ft² • | Analysis Requested                                      | Method Reference ^                          | Hexavalent Chromium<br>Process (e.g., welding,<br>plating, painting, etc.) |
|----------------------------------------|----------------|-------------------|---------------------------------------------|--------------------------------------|---------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|
| 024-12917                              | 12/9/17        | Minican, 1 L      | 8                                           | Smoy                                 | Volatile Organics<br>Profile (61) (TO15 list<br>& TICs) | mod. OSHA<br>PVZ120/mod. EPA<br>TO15; GC/MS |                                                                            |
| 412917                                 | 12/9/17        | Minican, 1 L      | 8                                           | Symony                               | Volatile Organics<br>Profile (61) (TO15 list<br>& TICs) | mod. OSHA<br>PV2120/mod. EPA<br>TO15; GC/MS |                                                                            |
| 4112917                                | 12/9/17        | Minican, 1 L      | 8                                           | Symmy                                | Volatile Organics<br>Profile (61) (TO15 list<br>& TICs) | mod. OSHA<br>PV2120/mod. EPA<br>TO15; GC/MS |                                                                            |
| 411121-810                             | 12/11/17       | Minican, 1 L      | 8                                           | neurs                                | Volatile Organics<br>Profile (61) (TO15 list<br>& TICs) | mod. OSEA<br>PV2120/mod. EPA<br>TO15; GC/MS |                                                                            |
| 511171-870                             | £1/11/21       | Minican, 1 L      | 8                                           | nous                                 | Volatile Organics<br>Profile (61) (TO15 list<br>& TICs) | mod. OSHA<br>PV2120/mod. BPA<br>TO15; GC/MS |                                                                            |
| 638-121113                             | 12/11/17       | Minican, 1 L      | 8                                           | MUST                                 | Volatile Organics<br>Profile (61) (TO15 list<br>& TICs) | mod. OSHA<br>PV2120/mod. EPA<br>TO15; GC/MS |                                                                            |
| 041B-121117-                           | 12/11/14       | Minican, 1 L      | 8                                           | Maris                                | Volatile Organics<br>Profile (61) (TOIS list<br>& TICs) | mod. OSHA<br>PV2120/mod. EPA<br>TO15; GC/MS |                                                                            |
| Did Not Use                            |                | Minican, 1 L      |                                             |                                      | Volatile Organics<br>Profile (61) (TO15 list<br>& TICs) | mod. OSHA<br>PV2120/mod. BPA<br>TO15; GC/MS |                                                                            |

Date de same Print Name / Signature Michelle Krause Received By: Received By: 3.50pm [ want cipila Shouasna Print Name / Signature Relinquished By: Shalasca 1. Wanack Relinquished By: Chain of Custody

A if the method(s) indicated on the COC are not our routine/preferred method(s), we will substitute our routine/preferred methods. If this is not acceptable, check here to have us contact you.

Time

\* You must fill in these columns for any samples which you are submitting. Samples received after 3pm will be considered as next day's business,

Online COC No.: 141515 Prep No.: PSY455578 Account No.: 32609 Draft: 12/4/2017 4:23:05 PM All services are rendered in accordance with the applicable SGS General Conditions of Service accessible via: http://www.sgs.com/en/Terms-and-Conditions.aspx

Page: 2/8

Page 21 of 21 Report Reference:1 Generated:28-DEC-17 11:19

SGS Galson | 6601 Kirkville Road E. Syracuse, NY 13057, USA 1+1 888 432 5227 | +1 315 432 5227 www.galsonlabs.com | www.sgs.com

Member of the SGS Group (SGS SA)

March 07, 2018

Mr. David Krause Forensic Analytical Consulting Services 2976 Wellington Circle W Tallahassee, FL 32309

DOH ELAP #11626 AIHA-LAP #100324 Account# 32609

Login# L435237

Dear Mr. Krause:

Enclosed are the analytical results for the samples received by our laboratory on March 05, 2018. All test results meet the quality control requirements of AIHA-LAP and NELAC unless otherwise stated in this report. All samples on the chain of custody were received in good condition unless otherwise noted.

Results in this report are based on the sampling data provided by the client and refer only to the samples as they were received at the laboratory. When possible, non-IOM samples will be retained for 14 days following the date of this report (unless an extension is specifically requested). IOM samples are retained for 7 days.

Current Scopes of Accreditation can be viewed at www.sgsgalson.com in the accreditations section of the "About" page.

Please contact Tonya Lancaster at (888) 432-5227, if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab

Laboratory Director

Enclosure(s)



## LABORATORY ANALYSIS REPORT

## GALSON

: L435237 Account No.: 32609 nqdd: : Forensic Analytical Consulting- Florida 03B-022818 L435237-3 Login No. Units 02B-022818 L435237-2 Date Analyzed : 06-MAR-18 : 28-FEB-18 : 05-MAR-18 : TNB : PJ35744 : 1050661 Date Received Date Sampled L435237-1 01B-022818 Project No. Report ID Client Site LOQ East Syracuse, NY 13057 Galson ID: Client ID: 6601 Kirkville Road FAX: (315) 437-0571 www.galsonlabs.com (315) 432-5227

47

1.0

Tetrachloroethylene

| lytical Method:             | Analytical Method: mod. OSHA PV2120/mod. EPA | TO15; GC/MS | QC by         | SAP       | Supervisor: SAP   |  |
|-----------------------------|----------------------------------------------|-------------|---------------|-----------|-------------------|--|
| Collection Media : Mini Can | Mini Can                                     |             | Approved by : | SAP       |                   |  |
| Submitted by :              | BLD                                          |             | Date :        | 07-MAR-18 | NYS DOH # : 11626 |  |

L -Liters NA -Not Applicable NS -Not Specified LOQ -Limit of Quantitation ppmv-Parts per Million Volume ppbv-Parts per Billion Volume m3 -Cubic Meters ND -Not Detected mg -Milligrams ug -Micrograms -Greater Than -Less Than



## LABORATORY ANALYSIS REPORT

## GALSON

: Forensic Analytical Consulting- Florida Client

: PJ35744 : INB Project No. Site

East Syracuse, NY 13057

FAX: (315) 437-0571

(315) 432-5227

www.galsonlabs.com

6601 Kirkville Road

: 28-FEB-18 Date Sampled

Date Received : 05-MAR-18

Date Analyzed : 06-MAR-18

: 1050661 Report ID

Login No. : L435237 Account No.: 32609

rddd: Units

Tetrachloroethylene

52 1.0

04B-022818

vdqqq

TOO

Galson ID: Client ID:

L435237-4

NYS DOH # : 11626 Supervisor: SAP : 07-MAR-18 Approved by : SAP Date OSHA PV2120/mod. EPA TO15; GC/MS Collection Media : Mini Can Analytical Method: mod. Submitted by

ppmv-Parts per Million Volume LOQ -Limit of Quantitation NA -Not Applicable -Liters -Not Specified NS ppbv-Parts per Billion Volume mg -Milligrams m3 -Cubic Meters ug -Micrograms ND -Not Detected -Greater Than < -Less Than



## GALSON

Client Name : Forensic Analytical Consulting- Florida

Site : TNB Project No. : PJ35744 Date Sampled: 28-FEB-18 Date Received: 05-MAR-18 Date Analyzed: 06-MAR-18

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 Www.galsonlabs.com

Account No.: 32609 Login No. : L435237 This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise noted below, all quality control results associated with the samples were within established control limits or did not impact reported results. Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process. The findings herein constitute no warranty of the samples' representativeness of any sampled environment and strictly relate to the samples as they were presented to the laboratory.

Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceeding the final result toolumn may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.

The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).

Unless otherwise noted below, reported results have not been blank corrected for any field blank or method blank.

L435237 (Report ID: 1050661):

SOPs: in-vocs(33)

L435237 (Report ID: 1050661):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SDP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter Accuracy Mean Recovery

Tetrachloroethylene +/-13.

-Less Than mg -Milligrams m3 -Cubic Meters -Greater Than ug -Micrograms l -Liters

V

ppm -Parts per Million ND -Not Detected

-Kilograms -Not Specified

kg Ng

NA -Not Applicable

[435237] 771667765417 Date:03/05/18 Shipper:FEDEX Initials:MAK Prep: UNKNOWN

## **CHAIN OF CUSTODY** GALSON

(2-13

| et https://portal.galsoniabs.com/                                                                                                                              | Invoice To: Accounts Payable Company Name: Forensic Analytical Consulting- Florida Address 1: 21228 Cabor Blvd Address 2: City, State Zip: Hayward, CA 94545 Phone No.: 510 - 266 - 4600 Email Address: £acstlh@gmail.com Comments: P.O. No.: Payment info.: I will call SGS Galson to provide credit card info Card on File (enter the last five digits on the line below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | State Sampled: Please indicate which OEL(s) this data will be used for:  OSHA PEL  | List description of industry or Process/interferen | Analysis Requested Method Reference A Process (e.g., welding, painting, etc.) | CACES ONLY TO 15  | is is not acceptable, check here to have us contact you.                                            | Print Name / Signature Date Time        | Michelle Krauge Metalla Axes 2/5/8 | 5.: 146680<br>5.: 757465911<br>5.: 32609<br>ft: 2/21/2018 4:29:23 PM               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|------------------------------------------------------------------------------------|
| nd complete this COC electronically by logging in to your Client Portal account at <a href="https://portal.galsonlabs.com/">https://portal.galsonlabs.com/</a> | Report T  Company Nam  D.: Address Address City, State Zil Phone No Cell No Email reports to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Email report to akravist@forensicanalytical.com and SItward@forensicanalytical.com | Project: PJ 35744 Sampled By: Nomack               | Sample Volume Liters Sample Time Minutes Sample Area in?, cm², ft² *          | 1. 8 hours        | preferred method(s), we will substitute our routine/pr                                              | 20 Li Brock 3/1 1B 11 Cam Benefited Bu. | Received By:                       | Samples received after 3pm will be considered as next day's business.  Account No. |
| Standard 0% Standard 10%                                                                                                                                       | 4 Business Days   35%   Client Acct No     3 Business Days   50%   32609     2 Business Days   75%   Original Prep No     Next Day by 6pm   100%   PSY465911     Next Day by Noon   150%   PSY465911     Samples Submitted using the FreePumpl.com™ Program   TLANCASTER     Samples submitted using the FreeSamplingBadges™ Program   146680     146680   PSW   PSW   PSW     Samples Submitted using the FreeSamplingBadges™ Program   146680     Samples Program   PSW   PSW     Samples Submitted using the FreeSamplingBadges™ Program   146680     Samples Program   PSW   PSW     Samples Submitted Using the FreeSamplingBadges™ Program   146680     Samples Submitted Using the FreeSamples Using Usi | SITUATOR PERSICAL STENSICAL                                                        | 100                                                | ns) Date Sampled •                                                            | 018-02818 2/28/18 | A If the method(s) indicated on the COC are not our routine Chain of Custody Print Name / Signature | Relinquished By: Shaiasia 1. W Quadha   | Relinquished By:                   | All services are randered in:                                                      |

Page: 1/2

Page 5 of 6 .Repurt Reference: 1 Generated: 07-MAR-18 16:21 

Marrager of the SGS Creup (SGS S.)

SGS North | 6601 Kirkville Road E. Syracuse, NY 13057, USA t +1 888 432 5227 | +1 315 432 5227 www.galsonlebs.com | www.sgs.com

Member of the SGS Grain (SGS SA)



Comments:

# **CHAIN OF CUSTODY**

|               | Method Reference A Process (e.g., welding, | plaung, painting, etc.) | 0 1          | 2     |  |  |  |   |  |  |  |                                                                      | on.                                                                                                             | Date Time                     |                      | 25/18 1024                       | Online COC No.: 146580                                     | Account No.: 32609                                                     | Draft: 2/21/2018 4:29:23 PM                                                                                                                                     |
|---------------|--------------------------------------------|-------------------------|--------------|-------|--|--|--|---|--|--|--|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|----------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Analysis Requested Re                      | Chach lordery les       | 1.7          | 10 15 |  |  |  |   |  |  |  |                                                                      | we will substitute our routine/preferred methods. If this is not acceptable, check here to have us contact you. | Print Name / Signature        | •                    | Michelle Krause Muchalle Hydroge | online                                                     | Accoun                                                                 | All services are rendered in accordance with the applicable SGS General Conditions of Service accessible via http://www.co.co.co.co.co.co.co.co.co.co.co.co.co. |
| Liters        | Minutes<br>in², cm², ft² •                 | haurs 2                 | 71170        | 2     |  |  |  |   |  |  |  |                                                                      | eferred methods. If this is                                                                                     |                               | Received By:         | Received By: Mic                 | in these columns for any samples which you are submitting. | ouniples received after 3pm will be considered as next day's business. | of Service accessible via-                                                                                                                                      |
| Sample Volume | Sample Time<br>Sample Area                 | 80                      | ×            | 0     |  |  |  | 1 |  |  |  |                                                                      | ubstitute our routine/pr                                                                                        | Time                          | 18 1:15pm            | _                                | columns for any sampl                                      | er 3pm will be consider                                                | 3S General Conditions                                                                                                                                           |
|               |                                            | Minican, 1 L            | Minican, 1 L |       |  |  |  |   |  |  |  | to the boundary                                                      | odinapleteried memod(s), we will st                                                                             | 2                             | MUNICIPAL CONTRACTOR |                                  | * You must fill in these                                   | Samples received an                                                    | in accordance with the applicable SC                                                                                                                            |
|               | vare sampled                               | 2/28/18                 | 8/187/2      |       |  |  |  |   |  |  |  | e COC are not our r                                                  | Print Name / Cia-                                                                                               |                               |                      |                                  |                                                            |                                                                        | irvices arë renderëd                                                                                                                                            |
| Sample ID *   | (Maximum of 20 Characters)                 | 036-022818              | 046-022818   |       |  |  |  |   |  |  |  | A If the method(s) indicated on the COC are not our routing/ordered. | Chain of Custody                                                                                                | Relinquished By: AMICE CALLLA | Relinquished By:     |                                  |                                                            | \$10 m                                                                 |                                                                                                                                                                 |

Page: 2/2

Report Affection Report Report Reference: 1 Generated: 07-MAR-18 16:21 The sample of the same

Member of the SGS Group (5000 ex

SGS North 6601 Kirkville Road E. Syracuse, NY 13057, USA t+1 888 432 5227 | +1 315 432 5227 www.galsonlebs.com | www.sgs.com

Member of the SGS Grain ISGS CD



### **APPENDIX F**

Summary of Professional Service Hours

### THOMASVILLE NATIONAL BANK THOMASVILLE, THOMAS COUNTY, GEORGIA HSI #10902

### APPENDIX F SUMMARY OF PROFESSIONAL SERVICE HOURS

| Quantity | Units  | Time Period                             | Total Hours<br>Subtotal |
|----------|--------|-----------------------------------------|-------------------------|
|          |        | January 28 to February 24, 2018         |                         |
|          |        | Project Management                      |                         |
| 0.00     | Hours  | Project Manager (W. Larry Carter, P.G.) | 0.                      |
|          |        | February 25 to March 31, 2018           |                         |
|          |        | Project Management                      |                         |
| 0.00     | Hours  | Project Manager (W. Larry Carter, P.G.) | 0.                      |
|          |        | April 1 to April 28, 2018               |                         |
|          |        | Project Management                      |                         |
| 0.50     | Hours  | Project Manager (W. Larry Carter, P.G.) | 0.                      |
|          |        | April 29 to May 26, 2018                |                         |
|          |        | Project Management                      |                         |
| 1.50     | Hours  | Project Manager (W. Larry Carter, P.G.) | 1.                      |
| 1.00     | Tiouro | May 27 to June 30, 2018                 |                         |
|          |        | Project Management                      |                         |
| 62.25    | Hours  | Project Manager (W. Larry Carter, P.G.) | 62                      |
|          |        | P.G. MONTHLY HOURS TOTAL =>             | 64.                     |