1675 SPECTRUM DRIVE • LAWRENCEVILLE, GEORGIA 30043 • TEL (770) 962-5922 • FAX 962-7964

SEMI-ANNUAL VRP PROGRESS REPORT IDEAL CLEANERS 224 GREENVILLE STREET LAGRANGE, TROUP COUNTY, GEORGIA

HSI #10931 SEA JOB #172-094

SUBMITTED: OCTOBER 26, 2018

SAILORS ENGINEERING ASSOCIATES, INC.

1675 SPECTRUM DRIVE • LAWRENCEVILLE, GEORGIA 30043 • TEL (770) 962-5922 • FAX (770) 962-7964

October 26, 2018

Mr. David Hayes Georgia Department of Natural Resources Environmental Protection Division 205 Butler Street, S.E. Floyd Towers East, Suite 1054 Atlanta, GA 30334

> RE: First Semi-Annual VRP Progress Report Ideal Cleaners 224 Greenville Street LaGrange, Troup County, Georgia HSI #10931 SEA Job No. 172-094

Dear Mr. Hayes:

Sailors Engineering Associates, Inc. (SEA) has reviewed your comment letter dated April 26, 2018 and conducted additional activities related to the Voluntary Remediation Program (VRP) for the subject site and is pleased to present this report for your review. The following report discusses the activities completed during the period from April 26, 2018 through October 26, 2018, as well as planned and anticipated activities for the period of November 2018 to April 2019.

1.0 INTRODUCTION

1.1 Background

As part of a due diligence investigation conducted in March 2013, soil and groundwater samples were collected from the area immediately west of the dry cleaner building. Results of that investigation indicated impacts to soil and groundwater from tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), vinyl chloride (VC), acetone, 1,2,4-trimethylbenzene, xylenes and 2-butanone MEK). On May 30, 2013 a release notification was submitted to the Georgia EPD Hazardous Site Response Program and a Notification Addendum was submitted on March 28, 2014. The subject property was subsequently placed on the Hazardous Site Inventory as Site Number 10931 on March 9, 2015. The VRP application (the Application) submitted for Ideal Cleaners, located at 224 Greenville Street in LaGrange, Troup County Georgia; HSI # 10931, dated October 26, 2017 was approved April 26, 2018.

1.2 Site Description

The subject property is located along and south of Greenville Street at 224 Greenville Street, LaGrange, Troup County, Georgia and is currently owned by Goode Family, LLC. The subject property is approximately 0.66 acres in size. Ideal Cleaners occupies the western 7,080 square feet of the roughly

8,169 square foot building. Ideal Cleaners is currently a hydrocarbon based dry cleaning business. The eastern portion of the building is currently occupied by an insurance agency.

2.0 RESPONSE TO COMMENTS

SEA has reviewed your comment letter and has addressed comments 1 through 6 in sections within this report. With regard to comments 7 through 9(g), the requested additional submittals and corrections are attached with the exception of comment 9(a) regarding the September 2017 sample identification. The site had samples which had previously been numbered using a prefix of DP. When the September 2017 sampling event took place, a similar numbering system was employed in the field with a DP prefix to the samples. In order to prevent confusion, the samples were renumbered with an SDP prefix to differentiate the sample locations from the previous DPs.

3.0 ACTIVITIES COMPLETED THIS PERIOD

The proposed remediation includes the removal of soil from the affected area west of and beneath a portion of the Ideal Cleaners building. A stream buffer variance permit is required for this site since the remediation activities include the disturbance of an area adjacent to Oseligee Creek, also known as Tanyard Creek. A stream buffer variance application was submitted to Georgia EPD on July 5, 2018. Soil borings for geotechnical parameters were completed on January 2, 2018 to collect information for the design of an under pining system for the building and for a foundation for the stream bank improvements that would be made as part of the Stream Buffer Variance Permit. The borings were advanced to approximately 30-feet below ground surface (bgs) and standard penetration testing using split spoons and drop hammer were performed.

Based on the geotechnical boring performed, the soil consisted of shallow fill material overlying a thin layer of alluvium followed by saprolite soils from approximately 7 to 8 feet bgs. The water table was encountered approximately 4-feet bgs.

4.0 PLANNED ACTIVITIES

Following a review of the Stream Buffer Variance application, SEA was provided comments and has prepared our response, which is being submitted concurrently with this report. Part of the proposed remediation is the application of a chemical oxidant to address remaining soils not directly excavated. SEA will discuss the process and oxidant options with EPD prior to finalizing this portion of the remediation plan.

SEA anticipates that the excavation of the shallow, affected soils will occur during the next period. This will include under pining the building foundation, performing the stream bank restoration and the removal and disposal of both hazardous and non-hazardous soils. A portion of the soils will likely be hazardous based on a previous classification that was made during the March 2014 investigation and disposal, as well as on the additional investigation performed as part of the VRP application process. To the extent practicable, any soils exhibiting hazardous characteristics will be excavated, containerized and disposed of at a facility licensed to handle the waste. To the extent practicable, any remaining soils that have been affected by the release that are above the appropriate Risk Reduction Standard (RRS), will be excavated, placed in roll off containers and may be pre-treated prior to disposal as a non-hazardous waste.

SEA

Per discussion with EPD, evaluation of surface water impacts and further delineation of groundwater impacts and an evaluation groundwater remedial options will follow source removal activities. Depending on the timing of EPD's review and approval of the stream buffer variance request, these additional characterization activities may occur in the next semi-annual period or during subsequent periods. The site activities performed during this next period will be documented in a semi-annual progress report to be submitted by April 26, 2019.

5.0 VAPOR INTRUSION ASSESSMENT

The potential for vapor intrusion will be evaluated following source removal activities. Our evaluation will include modeling of the potential for exposure using site specific building and media inputs. The building is elevated on a series of concrete piers. In addition to the modeling, vapor samples may be taken from the crawl space to assess conditions beneath the floor slab. If warranted, vapor samples may also be taken from the occupied building interior.

6.0 MILESTONE SCHEDULE

VRP Compliance Status Report

The following milestone schedule outlines significant events as discussed above including historic and anticipated future events. The dates of future events may be accelerated based on the progress of the remedial measures taken.

Limited Phase II Investigation by S&ME April 2013 Release Notification May 30, 2013 Chemical Oxidation Pilot Study Injections October 2013 Impacted Soil Removal March 2014 Notification Addendum March 28, 2014 Listing on HSI March 9, 2015 Additional Investigation by EnviroForensics April 2017 Additional Investigation by SEA September 2017 VRP Application and VIRP submittal October 31, 2017 VRP Application Acceptance Letter April 26, 2018 Additional Remedial Measures As warranted VRP Semi-Annual Reports October 2018 until October 2022 On site horizontal delineation April 26, 2019 Off-site horizontal delineation April 26, 2020 Vertical Delineation October 26, 2020

3

SEA

April 2023

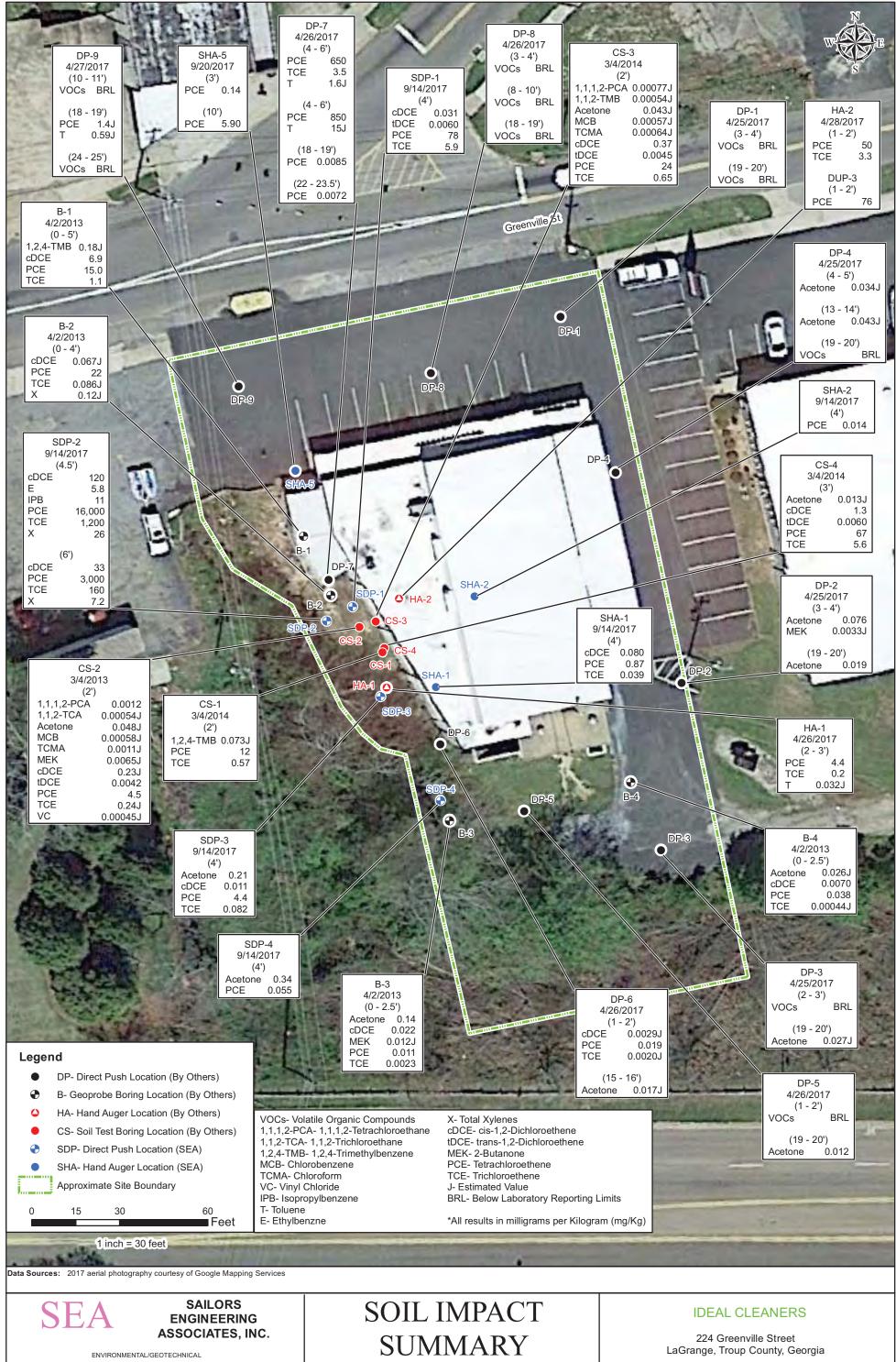
I certify, under penalty of law, that the enclosed electronic copy is complete, identical to the paper copy, and virus free.

If you have any questions or require any additional information, please contact us at your convenience.

Respectfully submitted,

SAILORS ENGINEERING ASSOCIATES, INC.

Michael J Haller, P.G.


Manager, Environmental Engineering

cc: Mr. Lewis Goode

see SEA

Appendix

Figures
Tables
Lab Data
Boring Logs
Summary of Professional Hours
Groundwater Scientist Certification Statement

1675 SPECTRUM DRIVE LAWRENCEVILLE, GEORGIA 30043 (770) 962-5922 FAX 962-7964

FIGURE 4

Job No. 172-094

10/22/2018

ENVIRONMENTAL/GEOTECHNICAL 1675 SPECTRUM DRIVE LAWRENCEVILLE, GEORGIA 30043 (770) 962-5922 FAX 962-7964 GROUNDWATER
IMPACT SUMMARY
FIGURE 5

224 Greenville Street LaGrange, Troup County, Georgia

Job No. 172-094

10/22/2018

SEA Job Number: 172-094

Table 1- Comprehensive Soil Laboratory Results Summary

										TCL VOCs (m	ng/Kg)								SPLP VO	OCs (mg/L)
Location	Depth	Date	1,1,1,2-PCA	1,1,2-TCA	1,2,4-TMB	Acetone	Chlorobenzene	Chloroform	cDCE	tDCE	Ethylbenzene	Isopropylbenzene	MEK	PCE	TCE	Toluene	VC	Xylenes	PCE	TCE
B-1	0-5'	4/1/2013	<0.46	<0.46	0.18J	<23.0	<0.46	<2.3	6.9	<0.46	<0.46	<0.46	<4.60	15.0	1.1	<2.3	<0.46	<1.4	NA	NA
B-2	0-4'	4/2/2013	<0.16	<0.16	<0.16	<8.1	<0.16	<0.16	0.067J	<0.16	<0.16	<0.16	<1.6	22	0.086J	<0.81	<0.16	0.12J	NA	NA
B-3	0-2.5'	4/2/2013	<0.0013	<0.0013	<0.0013	0.14	<0.0013	<0.0065	0.022	<0.0013	<0.0013	<0.0013	0.012J	0.011	0.0023	<0.0065	<0.0013	<0.0039	NA	NA
B-4	0-2.5'	4/2/2013	<0.0012	<0.0012	<0.0012	0.026J	<0.0012	<0.0060	0.0070	<0.0012	<0.0012	<0.0012	<0.012	0.038	0.00044J	<0.0060	<0.0012	<0.0036	NA	NA
CS-1	2'	3/4/2014	<0.26	<0.26	0.073J	<13.0	<0.26	<1.3	<0.26	<0.26	<0.26	<0.26	<2.6	12	0.57	<1.3	<0.26	<0.80	NA	NA
CS-2	2'	3/4/2014	0.0012	0.00054J	<0.0012	0.048J	0.00058J	0.0011J	0.23J	0.0042	<0.0012	<0.0012	0.0065J	4.5	0.24J	<0.0063	0.00045J	<0.0038	NA	NA
CS-3	2'	3/4/2014	0.00077J	<0.0014	0.00054J	0.043J	0.00057J	0.00064J	0.37	0.0045	<0.0014	<0.0014	<0.014	24	0.65	<0.0071	<0.0014	<0.0043	NA	NA
CS-4	3'	3/4/2014	<0.0012	<0.0012	<0.0012	0.013J	<0.0012	<0.0061	1.3	0.0060	<0.0012	<0.0012	<0.012	67	5.6	<0.0061	<0.0012	<0.0037	NA	NA
DP-1	3-4'	4/25/2017	NA	<0.0047	NA	<0.047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.023	<0.0047	<0.0047	<0.0047	<0.0047	<0.0093	NA	NA
	*19-20'	4/25/2017	NA	<0.0052	NA	<0.052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.026	<0.0052	<0.0052	<0.0052	<0.0052	<0.010	NA	NA
DP-2	3-4'	4/25/2017	NA	<0.0060	NA	0.076	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	0.0033J	<0.0060	<0.0060	<0.0060	<0.0060	<0.012	NA	NA
	*19-20'	4/25/2017	NA	<0.0056	NA	0.019J	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.028	<0.0056	<0.0056	<0.0056	<0.0056	<0.011	NA	NA
DP-3	2-3'	4/25/2017	NA	<0.0043	NA	<0.043	<0.0043	<0.0043	<0.0043	<0.0043	<0.0043	<0.0043	<0.021	<0.0043	<0.0043	<0.0043	<0.0043	<0.0086	NA	NA
	*19-20'	4/25/2017	NA	<0.0063	NA	0.027J	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.032	<0.0063	<0.0063	<0.0063	<0.0063	<0.013	NA	NA
l	4-5'	4/25/2017	NA	<0.0054	NA	0.034J	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.027	<0.0054	<0.0054	<0.0054	<0.0054	<0.011	NA	NA
DP-4	*13-14'	4/25/2017	NA	<0.0059	NA	0.043J	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.029	<0.0059	<0.0059	<0.0059	<0.0059	<0.012	NA	NA
	*19-20'	4/25/2017	NA	<0.0066	NA	<0.066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.0066	<0.033	<0.0066	<0.0066	<0.0066	<0.0066	<0.013	NA	NA
DP-5	1-2' *19-20'	4/26/2017	NA	<0.0049	NA	<0.049	<0.0049 <0.0052	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.024	<0.0049	<0.0049	<0.0049	<0.0049 <0.0052	<0.0098	NA	NA NA
		4/26/2017	NA NA	<0.0052	NA	0.012J		<0.0052		<0.0052	<0.0052	<0.0052	<0.026	<0.0052	<0.0052	<0.0052		<0.010	NA	
DP-6	1-2' *15-16'	4/26/2017 4/26/2017	NA NA	<0.0051 <0.0050	NA NA	<0.051 0.017J	<0.0051 <0.0050	<0.0051 <0.0050	0.0029J <0.0050	<0.0051 <0.0050	<0.0051 <0.0050	<0.0051 <0.0050	<0.026 <0.025	0.019 < 0.0050	0.0020J <0.0050	<0.0051 <0.0050	<0.0051 <0.0050	<0.010 <0.0099	NA NA	NA NA
	4-6'	4/26/2017	NA NA	<7.6	NA NA	<76	<7.6	<7.6	<7.6	<7.6	<7.6	<7.6	<38	650	3.5	1.6J	<7.6	<15	NA NA	NA NA
	4-6' (DUP-1)	4/26/2017	NA NA	<7.6	NA NA	<730	<7.6	<7.6	<7.6	<7.6	<73	<73	<370	850	<73	1.6J	<7.6	<150	NA NA	NA NA
DP-7	*18-19'	4/26/2017	NA NA	<0.0039	NA NA	<0.039	<0.0039	<0.0039	<0.0039	<0.0039	<0.0039	<0.0039	<0.019	0.0085	<0.0039	<0.0039	<0.0039	<0.0077	NA	NA NA
	*22-23.5'	4/26/2017	NA NA	<0.0053	NA NA	<0.053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.013	0.0072	<0.0053	<0.0053	<0.0053	<0.011	NA	NA NA
	3-4'	4/26/2017	NA NA	<0.0059	NA	<0.059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.027	<0.0059	<0.0059	<0.0059	<0.0059	<0.011	NA	NA NA
DP-8	*8-10'	4/26/2017	NA NA	<0.0055	NA	<0.055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.0055	<0.023	<0.0055	<0.0055	<0.0055	<0.0055	<0.012	NA	NA
	*18-19'	4/26/2017	NA	<0.0057	NA	<0.057	<0.0057	<0.0057	< 0.0057	<0.0057	<0.0057	<0.0057	<0.029	<0.0057	<0.0057	<0.0057	<0.0057	<0.011	NA	NA
	*10-11'	4/27/2017	NA	<0.0057	NA	<0.057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.0057	<0.028	<0.0057	<0.0057	<0.0057	<0.0057	<0.011	NA	NA
DP-9	*18-19'	4/27/2017	NA	<2.7	NA	<27	<2.7	<2.7	<2.7	<2.7	<2.7	<2.7	<14	1.4J	<2.7	0.59J	<2.7	<5.5	NA	NA
	*24-25'	4/27/2017	NA	<0.0062	NA	<0.062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.031	<0.0062	<0.0062	<0.0062	<0.0062	<0.012	NA	NA
HA-1	2-3'	4/26/2017	NA	<0.190	NA	<1.9	<0.190	<0.190	<0.190	<0.190	<0.190	<0.190	<0.960	4.4	0.2	0.032J	<0.190	<0.390	NA	NA
	1-2'	4/28/2017	NA	<3.1	NA	<31	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<15	50	3.3	<3.1	<3.1	<6.2	NA	NA
HA-2	1-2' (DUP-3)	4/28/2017	NA	<5.6	NA	<56	<5.6	<5.6	<5.6	<5.6	<5.6	<5.6	<28	76	<5.6	<5.6	<5.6	<11	NA	NA
SDP-1	4'	9/14/2017	<0.0051	<0.0051	NA	<0.10	<0.0051	<0.0051	0.031	0.0060	<0.0051	<0.0051	<0.051	78	5.9	<0.0051	<0.010	<0.0051	0.074	0.006
CDD 3	4.5'	9/14/2017	<3.0	<3.0	NA	<59	<3.0	<3.0	120	<3.0	5.8	11	<30	16,000	1,200	<3.0	<5.9	26	79.000	13.000
SDP-2	*6'	9/14/2017	<2.5	<2.5	NA	<50	<2.5	<2.5	33	<2.5	<2.5	<2.5	<25	3,000	160	<2.5	<5.0	7.2	75.000	8.100
SDP-3	4'	9/14/2017	<0.0052	<0.0052	NA	0.21	<0.0052	<0.0052	0.011	<0.0052	<0.0052	<0.0052	<0.052	4.4	0.082	<0.0052	<0.010	<0.0052	0.019	<0.0050
SDP-4	4'	9/14/2017	<0.0046	<0.0046	NA	0.34	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.046	0.055	<0.0046	<0.0046	<0.0092	<0.0046	0.0056	<0.0050
SHA-1	4'	9/14/2017	<0.0054	<0.0054	NA	<0.11	<0.0054	<0.0054	0.080	<0.0054	<0.0054	<0.0054	<0.054	0.87	0.039	<0.0054	<0.011	<0.0054	0.012	<0.0050
SHA-2	4'	9/14/2017	<0.0051	<0.0051	NA	<0.10	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.051	0.014	<0.0051	<0.0051	<0.010	<0.0051	0.790	0.026
SHA-5	3'	9/20/2017	<0.0050	<0.0050	NA	<0.099	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	0.14	<0.0050	<0.0050	<0.0099	<0.0050	<0.0050	<0.0050
311A-3	*10'	9/20/2017	<0.24	<0.24	NA	<4.9	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24	<2.4	5.90	<0.24	<0.24	<0.49	<0.24	0.100	0.0052
	Type 3 RRS		1.03	0.5	NS	400	10	4.90 / 10	7	10	70	21.88	200	0.5	0.5	100	0.2	1000		

Notes:

NA = Not Analyzed

NS = No Standard

NR = Not reported on Enviroforensics table

J = Estimated value

mg/Kg = milligrams per Kilogram

mg/L = milligrams per Liter

SDP & SHA = samples by SEA

* Sample was collected below the water table

Bold values are above laboratory reporting limits

Shaded values were removed during March 2014 soil excavation

Bold, highlighted values exceed the Type 3 RRS

VOCs = Volatile Organic Compounds 1,1,1,2-PCA = 1,1,1,2-Tetrachloroethane 1,1,2-TCA = 1,1,2-Trichloroethane

1,2,4-TMB = 1,2,4-Trimethylbenzene

cDCE = cis-1,2-Dichloroethene

PCE = Tetrachloroethene tDCE = trans-1,2-Dichloroethene

TCE = Trichloroethene

VC = Vinyl Chloride

MEK = 2-Butanone

SEA Job Number: 172-094

Table 2- Comprehensive Groundwater Laboratory Results Summary

							TCI	. VOCs (mg/L)					
Location	Date	Acetone	Carbon Disulfide	Chloroform	1,1-DCE	cDCE	tDCE	Ethylbenzene	Isopropylbenzene	PCE	TCE	Vinyl Chloride	Xylenes
B-2	4/2/2013	<1.2	NA	<0.120	<0.025	0.280	<0.025	<0.025	<0.025	3.300	0.120	0.034	<0.075
B-3	4/2/2013	<0.050	NA	<0.005	<0.001	0.710	0.0028	<0.001	<0.001	0.018	<0.001	0.050	<0.003
B-4	4/2/2013	<0.050	NA	<0.005	<0.001	<0.001	< 0.001	< 0.001	<0.001	0.0013	< 0.001	<0.001	<0.003
DP-2 (9-19)	4/25/2017	<0.020	<0.002	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.003
DP-3 (13-18)	4/25/2017	0.011J	0.0014J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.003
DP-4 (13-18)	4/26/2017	<0.020	<0.002	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.003
DP-5 (3-8)	4/26/2017	0.015J	<0.002	< 0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.003
DP-5 (8-18) Dup	4/26/2017	<0.020	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.003
DP-6 (4-5)	4/26/2017	<0.020	<0.002	<0.001	<0.001	0.023	<0.001	0.0014	0.059	0.00099J	< 0.001	0.013	0.00074J
DP-7 (DUP-2)	4/26/2017	<40	<4.0	<2.0	<2.0	2.400	<2.0	<2.0	<2.0	80.000	2.400	<2.0	<6.0
DP-8 (13-17)	4/26/2017	<0.100	<0.010	<0.005	<0.005	0.0079	<0.005	<0.005	<0.005	1.200	0.029	<0.005	<0.015
DP-9 (20-23)	4/27/2017	<0.020	<0.002	< 0.001	<0.001	0.0029	< 0.001	<0.001	<0.001	0.220	0.011	<0.001	<0.003
HA-1 (4.5-5)	4/26/2017	<0.400	<0.040	<0.020	<0.020	4.500	0.045	<0.020	<0.020	1.500	0.290	0.250	<0.060
MW-1 (DP-1)	4/30/2017	<0.010	<0.002	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
MW-2 (DP-9)	4/30/2017	<0.010	<0.002	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	0.0072	< 0.001	<0.001	<0.001
MW-3 (DP-3)	4/30/2017	<0.010	<0.002	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
MW-4 (DP-7)	4/30/2017	<0.100	<0.020	<0.010	<0.010	0.690	0.0080J	<0.010	<0.010	9.500	0.270	0.170	<0.010
MW-4 (DUP 4)	4/30/2017	<0.100	<0.020	<0.010	<0.010	0.840	0.0084J	<0.010	<0.010	10.000	0.280	0.140	<0.010
MW-5 (DP-6)	4/30/2017	<0.020	<0.004	<0.002	0.0013J	0.990	0.0045	<0.002	<0.002	0.036	0.037	0.210	<0.002
Type 3	RRS	4	4	0.1	4	0.07	0.1	0.7	NL	0.005	0.005	0.002	10

Notes: mg/L - milligrams per liter

Samples from DP-2 through DP-9 and HA-1 are grab samples from direct push or hand auger probes.

Only detected compounds are listed.

NA - Not Analyzed J - Estimated value

Highlighted values exceed Type 3 RRS

SEA Job Number: 172-094

Table 3a- Delineation Standards - Soil

		Delineation	Type 3	Highest Detected		
CAS		Standard	RRS	Concentration		Depth (ft-
Number	Constituent	(mg/Kg)	(mg/Kg)	(mg/Kg)	Location	bgs)
630-20-6	1,1,1,2-PCA	1.03	1.03	0.0012	CS-2	2'
79-00-5	1,1,2-TCA	0.5	0.5	0.00054J	CS-2	2'
95-63-6	1,2,4-TMB	Not Regulated U	nder HSRA	0.18J	B-1	0-5'
67-641	Acetone	400	400	0.34	SDP-4	4'
108-90-7	Chlorobenzene (MCB)	10	10	0.00058J	CS-2	2'
67-66-3	Chloroform (TCMA)	3.87	3.87	0.0011J	CS-2	2'
156-59-2	cDCE	7	7	120	SDP-2	4.5'
156-60-5	tDCE	10	10	0.0060	SDP-1	4'
130-00-3	IDCE	10	10	0.0060	CS-4	3'
100-41-4	Ethylbenzene	70	70	5.8	SDP-2	4.5'
98-82-8	Isopropylbenzene (IPB)	21.88	21.88	11	SDP-2	4.5'
78-93-3	MEK	200	200	0.012J	B-3	0-2.5'
127-18-4	PCE	0.5	0.5	16,000	SDP-2	4.5'
79-01-6	TCE	0.5	0.5	1,200	SDP-2	4.5'
108-88-3	Toluene	100	100	15J	DP-7 (DUP-1)	4'-6'
75-01-4	Vinyl Chloride (VC)	0.2	0.2	0.00045J	CS-2	2'
1330-20-7	Xylenes	100	1000	26	SDP-2	4.5'

mg/Kg = milligrams per kilogram

ft-bgs = feet below ground surface

RRS = Risk Reduction Standard

*Delineation Standard is the default residential cleanup standard (Type1 RRS)

1,1,1,2-PCA = 1,1,1,2-Tetrachloroethane

1,1,2-TCA = 1,1,2-Trichloeoethane

1,2,4-TMB = 1,2,4-Trimethylbenzene

cDCE = cis-1,2-Dichloroethene

PCE = Tetrachloroethene

tDCE = trans-1,2-Dichloroethene

TCE = Trichloroethene

MEK = Methyl Ethyl Ketone (2-Butanone)

J = Estimated value

Highlighted values exceed the Delineation Standard

SEA Job Number: 172-094

Table 3b - Delineation Standards - Groundwater

		Delineation		Highest Detected		
CAS		Standard*	Type 3 RRS	Concentration		Depth
Number	Constituent	(mg/L)	(mg/L)	(mg/L)	Location	(ft-bgs)
67-64-1	Acetone	4	4	0.015J	DP-5	3'-8'
75-15-0	Carbon Disulfide	4	4	0.0014J	DP-3	13'-18'
67-66-3	Chloroform	0.1	0.1	0.0012	MW-2	N/A
75-35-4	1,1-DCE	0.007	0.007	0.0013J	MW-5	N/A
156-59-2	cDCE	0.07	0.07	4.500	HA-1	4.5'-5'
156-60-5	tDCE	0.1	0.1	0.045	HA-1	4.5'-5'
100-41-4	Ethylbenzene	0.7	0.7	0.0014	DP-6	4'-5'
98-82-8	Isopropylbenzene	NL	NL	0.059	DP-6	4'-5'
127-18-4	PCE	0.005	0.005	80.000	DP-7 (DUP-2)	12'-17'
79-01-6	TCE	0.005	0.005	2.400	DP-7 (DUP-2)	12'-17'
75-01-4	Vinyl Chloride	0.002	0.002	0.250	HA-1	4.5'-5'
1330-20-7	Xylenes	10	10	0.00074J	DP-6	4'-5'

mg/L = milligrams per liter

ft-bgs = feet below ground surface

RRS = Risk Reduction Standard

*Delineation Standard is the default residential cleanup standard (Type1 RRS)

1,1-DCE = 1,1-Dichloroethene

cDCE = cis-1,2-Dichloroethene

PCE = Tetrachloroethene

tDCE = trans-1,2-Dichloroethene

TCE = Trichloroethene

J = Estimated value

NL = Not Listed

Highlighted values exceed the Delineation Standard

SEA Job Number: 172-094

Table 4- Groundwater Elevation Summary

		TOC		Screened	Groundwater
		Elevation	Depth to Water	Interval	Elevation
Location	Date	(ft-msl)	from TOC (ft)	(ft-bgs)	(ft-msl)
MW-1	4/30/2017	732.16	8.70	14-19	723.46
MW-2	4/30/2017	731.20	7.51	11-16	723.69
MW-3	4/30/2017	724.64	2.04	3-13	722.60
MW-4	4/30/2017	727.90	5.19	12-17	722.71
MW-5	4/30/2017	725.23	3.36	9-14	721.87

Notes: Data is from tables prepared by others.

TOC = Top of Casing

ft-msl = feet above mean sea level ft-bgs = feet below ground surface

SEA Job Number: 172-094

Table 5 - Well Construction Summary

Well No.	Well Status	Installed By	Ground Elevation (ft-msl)	TOC Elevation (ft-msl)	Total Boring Depth (ft-bgs)	Depth to Well Bottom from TOC (ft)	Casing Length (ft)	Screen Length (ft)	Screen Interval (ft-bgs)	Casing/Screen Material diameter (in)	Date Completed	Comment
MW-1 (DP-1)	Present	Enviroforensics	NA	732.16	20	19.62	NA	5	14-19	2" PVC	4/25/17	
MW-2 (DP-9)	Present	Enviroforensics	NA	731.20	25	16.11	NA	5	11-16	2" PVC	4/27/17	
MW-3 (DP-3)	Present	Enviroforensics	NA	724.64	20	13.02	NA	10	3-13	2" PVC	4/25/17	
MW-4 (DP-7)	Present	Enviroforensics	NA	727.90	23.5	17.15	NA	5	12-17	2" PVC	4/26/17	
MW-5 (DP-6)	Present	Enviroforensics	NA	925.23	20	13.71	NA	5	9-14	2" PVC	4/25/17	

TOC - Top of Casing

ft msl - feet above mean sea level

ft bgs - feet below ground surface

NA= Information Not Available

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404

Tel: (912)354-7858

TestAmerica Job ID: 680-137928-1

Client Project/Site: Ideal Cleaners - LaGrange, GA

For:

Environmental Forensic Investigation Inc Enviroforensics, Inc 825 N. Capitol Ave Indianapolis, Indiana 46204

Attn: Mr. Casey McFall

SAchi Barnett

Authorized for release by: 5/9/2017 2:52:28 PM

Eddie Barnett, Project Manager I (912)354-7858

eddie.barnett@testamericainc.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-137928-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F2	MS/MSD RPD exceeds control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
*	RPD of the LCS and LCSD exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

NC

PQL	Practical Quantitation Limit	
-----	------------------------------	--

QC	Ouglity Control
(.)(.)	Quality Control

Not Calculated

RL	Reporting Limit or	Requested Limit	(Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Page 2 of 53

Sample Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-137928-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-137928-1	6489-DP-1 (3-4)	Solid	04/25/17 11:30	04/26/17 09:10
680-137928-2	6489-DP-1 (19-20)	Solid	04/25/17 11:34	04/26/17 09:10
680-137928-4	6489-DP-2 (3-4)	Solid	04/25/17 15:05	04/26/17 09:10
680-137928-5	6489-DP-2 (19-20)	Solid	04/25/17 15:15	04/26/17 09:10
680-137928-6	6489-DP-2 (9-19)	Water	04/25/17 14:59	04/26/17 09:10
680-137928-7	6489-DP-3 (2-3)	Solid	04/25/17 16:42	04/26/17 09:10
680-137928-8	6489-DP-3 (19-20)	Solid	04/25/17 16:47	04/26/17 09:10
680-137928-10	6489-DP-3 (13-18)	Water	04/25/17 17:00	04/26/17 09:10
680-137928-11	6489-DP-4 (4-5)	Solid	04/25/17 18:10	04/26/17 09:10
680-137928-12	6489-DP-4 (13-14)	Solid	04/25/17 18:17	04/26/17 09:10
680-137928-13	6489-DP-4 (19-20)	Solid	04/25/17 18:24	04/26/17 09:10
680-137928-14	6489-TB	Water	04/25/17 00:00	04/26/17 09:10

Л

6

8

9

10

11

Case Narrative

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-137928-1

Job ID: 680-137928-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE Client: Environmental Forensic Investigation Inc Project: Ideal Cleaners - LaGrange, GA

Report Number: 680-137928-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 04/26/2017; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 1.1° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 6489-DP-1 (3-4) (680-137928-1), 6489-DP-1 (19-20) (680-137928-2), 6489-DP-2 (3-4) (680-137928-4), 6489-DP-2 (19-20) (680-137928-5), 6489-DP-3 (2-3) (680-137928-7), 6489-DP-3 (19-20) (680-137928-8), 6489-DP-4 (4-5) (680-137928-11), 6489-DP-4 (13-14) (680-137928-12) and 6489-DP-4 (19-20) (680-137928-13) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared on 04/26/2017 and analyzed on 05/04/2017 and 05/05/2017.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-477445 and analytical batches 680-478515 and 680-478517.

Bromomethane exceeded the RPD limit for LCSD 680-478753/5. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 6489-DP-2 (9-19) (680-137928-6), 6489-DP-3 (13-18) (680-137928-10) and 6489-TB (680-137928-14) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 05/08/2017 and 05/09/2017.

Methylene Chloride recovered outside the recovery criteria low for the MSD of sample 6489-DP-2 (9-19) MSD (680-137928-6) in batch 660-182601. Chloroethane exceeded the RPD limit. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Samples 6489-DP-1 (3-4) (680-137928-1), 6489-DP-1 (19-20) (680-137928-2), 6489-DP-2 (3-4) (680-137928-4), 6489-DP-2 (19-20) (680-137928-5), 6489-DP-3 (2-3) (680-137928-7), 6489-DP-3 (19-20) (680-137928-8), 6489-DP-4 (4-5) (680-137928-11), 6489-DP-4 (13-14) (680-137928-12) and 6489-DP-4 (19-20) (680-137928-13) were analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 04/28/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

a

3

4

5

6

8

9

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-1 (3-4)

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 680-137928-1 Date Collected: 04/25/17 11:30 **Matrix: Solid** Date Received: 04/26/17 09:10 Percent Solids: 86.8

Dichlorodifluoromethane									
	4.7	U	4.7	0.88	ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
Chloromethane	4.7	U	4.7	0.93	ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
Vinyl chloride	4.7	U	4.7	1.4	ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
Bromomethane	4.7	U	4.7	1.4	ug/Kg	ф.	04/26/17 12:14	05/04/17 19:13	1
Chloroethane	4.7	U	4.7	2.5	ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
Trichlorofluoromethane	4.7	U	4.7	1.1	ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
1,1-Dichloroethene	4.7	U	4.7	1.4	ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
Acetone	47	U	47	10	ug/Kg	☼	04/26/17 12:14	05/04/17 19:13	1
Carbon disulfide	4.7	U	4.7	1.0	ug/Kg	☼	04/26/17 12:14	05/04/17 19:13	1
Methylene Chloride	4.7	U	4.7	0.92	ug/Kg		04/26/17 12:14	05/04/17 19:13	1
trans-1,2-Dichloroethene	4.7	U	4.7	0.59	ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
Methyl tert-butyl ether	4.7	U	4.7	0.93	ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
1,1-Dichloroethane	4.7	U	4.7	1.0	ug/Kg		04/26/17 12:14	05/04/17 19:13	1
cis-1,2-Dichloroethene	4.7	U	4.7		ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
2-Butanone (MEK)	23	U	23		ug/Kg	☼		05/04/17 19:13	1
Chloroform	4.7	U	4.7		ug/Kg	ф	04/26/17 12:14	05/04/17 19:13	1
1,1,1-Trichloroethane	4.7	U	4.7		ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
Carbon tetrachloride	4.7	U	4.7		ug/Kg	₩	04/26/17 12:14	05/04/17 19:13	1
Benzene	4.7	U	4.7		ug/Kg		04/26/17 12:14	05/04/17 19:13	1
1.2-Dichloroethane	4.7		4.7		ug/Kg	₩		05/04/17 19:13	1
Trichloroethene	4.7		4.7		ug/Kg	₩		05/04/17 19:13	1
1,2-Dichloropropane	4.7		4.7		ug/Kg			05/04/17 19:13	1
Bromodichloromethane	4.7		4.7		ug/Kg	₩		05/04/17 19:13	1
cis-1,3-Dichloropropene	4.7		4.7		ug/Kg	₩		05/04/17 19:13	1
4-Methyl-2-pentanone	23		23		ug/Kg	.		05/04/17 19:13	1
Toluene	4.7		4.7		ug/Kg	₩		05/04/17 19:13	1
trans-1,3-Dichloropropene	4.7		4.7		ug/Kg	₩		05/04/17 19:13	1
1,1,2-Trichloroethane	4.7		4.7		ug/Kg	ф.		05/04/17 19:13	
Tetrachloroethene	4.7		4.7		ug/Kg	₩		05/04/17 19:13	1
2-Hexanone	23		23		ug/Kg	₩		05/04/17 19:13	1
Dibromochloromethane	4.7		4.7		ug/Kg	ф		05/04/17 19:13	
1,2-Dibromoethane	4.7		4.7		ug/Kg	₩		05/04/17 19:13	1
Chlorobenzene	4.7	_	4.7		ug/Kg	₩		05/04/17 19:13	1
Ethylbenzene	4.7		4.7		ug/Kg	ф		05/04/17 19:13	
Xylenes, Total	9.3		9.3		ug/Kg	₩		05/04/17 19:13	1
Styrene	4.7		4.7		ug/Kg	₩	04/26/17 12:14		1
Bromoform	4.7		4.7		ug/Kg		04/26/17 12:14		· · · · · · · · 1
Isopropylbenzene	4.7		4.7		ug/Kg ug/Kg	₽		05/04/17 19:13	1
1,1,2,2-Tetrachloroethane	4.7		4.7		ug/Kg ug/Kg	☼	04/26/17 12:14		1
1,3-Dichlorobenzene	4.7		4.7		ug/Kg ug/Kg	·····		05/04/17 19:13	 1
1,4-Dichlorobenzene	4.7		4.7 4.7		ug/Kg ug/Kg	₽		05/04/17 19:13	1
	4.7		4.7 4.7			₽	04/26/17 12:14		
1,2-Dichlorobenzene					ug/Kg				1
1,2-Dibromo-3-Chloropropane	9.3 4.7		9.3 4.7		ug/Kg ug/Kg	₽	04/26/17 12:14	05/04/17 19:13 05/04/17 19:13	1
1,2,4-Trichlorobenzene	4.7	J	4.7	0.63	ug/Ng	*	04/20/1/ 12:14	03/04/17 19:13	1

TestAmerica Savannah

04/26/17 12:14 05/04/17 19:13

04/26/17 12:14 05/04/17 19:13 04/26/17 12:14 05/04/17 19:13

70 - 130

70 - 130

70 - 130

96

126

122

5/9/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-137928-1

Client Sample ID: 6489-DP-1 (3-4)

Lab Sample ID: 680-137928-1

Date Collected: 04/25/17 11:30

Date Received: 04/26/17 09:10

Matrix: Solid
Percent Solids: 86.8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 4-Bromofluorobenzene (Surr)
 90
 70 - 130
 04/26/17 12:14
 05/04/17 19:13
 1

Client Sample ID: 6489-DP-1 (19-20)

Lab Sample ID: 680-137928-2

 Date Collected: 04/25/17 11:34
 Matrix: Solid

 Date Received: 04/26/17 09:10
 Percent Solids: 77.2

Method: 8260B - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.2		5.2	0.98	ug/Kg	<u> </u>	04/26/17 12:14	05/04/17 19:36	1
Chloromethane	5.2	U	5.2	1.0	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Vinyl chloride	5.2	U	5.2	1.6	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Bromomethane	5.2	U	5.2	1.6	ug/Kg	.	04/26/17 12:14	05/04/17 19:36	1
Chloroethane	5.2	U	5.2	2.8	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Trichlorofluoromethane	5.2	U	5.2	1.3	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
1,1-Dichloroethene	5.2	U	5.2	1.6	ug/Kg		04/26/17 12:14	05/04/17 19:36	1
Acetone	52	U	52	11	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Carbon disulfide	5.2	U	5.2	1.1	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Methylene Chloride	5.2	U	5.2	1.0	ug/Kg	₽	04/26/17 12:14	05/04/17 19:36	1
trans-1,2-Dichloroethene	5.2	U	5.2	0.66	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Methyl tert-butyl ether	5.2	U	5.2	1.0	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
1,1-Dichloroethane	5.2	U	5.2	1.1	ug/Kg	₽	04/26/17 12:14	05/04/17 19:36	1
cis-1,2-Dichloroethene	5.2	U	5.2	1.5	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
2-Butanone (MEK)	26	U	26	2.5	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Chloroform	5.2	U	5.2	1.1	ug/Kg		04/26/17 12:14	05/04/17 19:36	1
1,1,1-Trichloroethane	5.2	U	5.2	0.62	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Carbon tetrachloride	5.2	U	5.2	0.87	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Benzene	5.2	Ü	5.2	0.76	ug/Kg		04/26/17 12:14	05/04/17 19:36	1
1,2-Dichloroethane	5.2	U	5.2	1.1	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Trichloroethene	5.2	U	5.2	1.4	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
1,2-Dichloropropane	5.2	Ü	5.2	0.90	ug/Kg		04/26/17 12:14	05/04/17 19:36	1
Bromodichloromethane	5.2	U	5.2	1.0	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
cis-1,3-Dichloropropene	5.2	U	5.2	0.87	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
4-Methyl-2-pentanone	26	U	26	4.4	ug/Kg		04/26/17 12:14	05/04/17 19:36	1
Toluene	5.2	U	5.2	0.88	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
trans-1,3-Dichloropropene	5.2	U	5.2	0.91	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
1,1,2-Trichloroethane	5.2	U	5.2	1.4	ug/Kg	*	04/26/17 12:14	05/04/17 19:36	1
Tetrachloroethene	5.2	U	5.2	2.0	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
2-Hexanone	26	U	26	3.4	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Dibromochloromethane	5.2	U	5.2	1.8	ug/Kg	₽	04/26/17 12:14	05/04/17 19:36	1
1,2-Dibromoethane	5.2	U	5.2	1.6	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Chlorobenzene	5.2	U	5.2	1.0	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Ethylbenzene	5.2	U	5.2	1.4	ug/Kg	₽	04/26/17 12:14	05/04/17 19:36	1
Xylenes, Total	10	U	10	1.1	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Styrene	5.2	U	5.2	0.97	ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
Bromoform	5.2	U	5.2		ug/Kg		04/26/17 12:14	05/04/17 19:36	1
Isopropylbenzene	5.2	U	5.2		ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
1,1,2,2-Tetrachloroethane	5.2	U	5.2		ug/Kg	☼	04/26/17 12:14	05/04/17 19:36	1
1,3-Dichlorobenzene	5.2	U	5.2		ug/Kg		04/26/17 12:14	05/04/17 19:36	1
1,4-Dichlorobenzene	5.2		5.2		ug/Kg	₩	04/26/17 12:14	05/04/17 19:36	1

TestAmerica Savannah

Page 6 of 53 5/9/2017

2

3

4

6

9

10

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-137928-1

Client Sample ID: 6489-DP-1 (19-20)

Date Collected: 04/25/17 11:34 Date Received: 04/26/17 09:10

Lab Sample ID: 680-137928-2

Matrix: Solid Percent Solids: 77.2

Method: 8260B -	Volatile Organic	Compounds	(GC/MS)	(Continue	d)
Δnalvto		Posult Ouglif	Fior	DI	M

120

91

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	5.2	U	5.2	1.4	ug/Kg	<u> </u>	04/26/17 12:14	05/04/17 19:36	1
1,2-Dibromo-3-Chloropropane	10	U	10	4.6	ug/Kg		04/26/17 12:14	05/04/17 19:36	1
1,2,4-Trichlorobenzene	5.2	U	5.2	0.93	ug/Kg	₩	04/26/17 12:14	05/04/17 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		70 - 130				04/26/17 12:14	05/04/17 19:36	1
1,2-Dichloroethane-d4 (Surr)	123		70 - 130				04/26/17 12:14	05/04/17 19:36	1

70 - 130

70 - 130

Client Sample ID: 6489-DP-2 (3-4)

Date Collected: 04/25/17 15:05 Date Received: 04/26/17 09:10

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-137928-4

04/26/17 12:14 05/04/17 19:36

04/26/17 12:14 05/04/17 19:36

Matrix: Solid Percent Solids: 79.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	6.0	U	6.0	1.1	ug/Kg	₩	04/26/17 12:14	05/04/17 16:58	1
Chloromethane	6.0	U	6.0	1.2	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Vinyl chloride	6.0	U	6.0	1.8	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Bromomethane	6.0	U	6.0	1.8	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
Chloroethane	6.0	U	6.0	3.2	ug/Kg	≎	04/26/17 12:14	05/04/17 16:58	1
Trichlorofluoromethane	6.0	U	6.0	1.4	ug/Kg	≎	04/26/17 12:14	05/04/17 16:58	1
1,1-Dichloroethene	6.0	U	6.0	1.8	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
Acetone	76		60	13	ug/Kg	≎	04/26/17 12:14	05/04/17 16:58	1
Carbon disulfide	6.0	U	6.0	1.3	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Methylene Chloride	6.0	U	6.0	1.2	ug/Kg	φ.	04/26/17 12:14	05/04/17 16:58	1
trans-1,2-Dichloroethene	6.0	U	6.0	0.75	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Methyl tert-butyl ether	6.0	U	6.0	1.2	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
1,1-Dichloroethane	6.0	U	6.0	1.3	ug/Kg	φ.	04/26/17 12:14	05/04/17 16:58	1
cis-1,2-Dichloroethene	6.0	U	6.0	1.7	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
2-Butanone (MEK)	3.3	J	30	2.9	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Chloroform	6.0	U	6.0	1.3	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
1,1,1-Trichloroethane	6.0	U	6.0	0.70	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Carbon tetrachloride	6.0	U	6.0	0.99	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Benzene	6.0	Ü	6.0	0.87	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
1,2-Dichloroethane	6.0	U	6.0	1.3	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Trichloroethene	6.0	U	6.0	1.5	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
1,2-Dichloropropane	6.0	Ü	6.0	1.0	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
Bromodichloromethane	6.0	U	6.0	1.2	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
cis-1,3-Dichloropropene	6.0	U	6.0	0.99	ug/Kg	≎	04/26/17 12:14	05/04/17 16:58	1
4-Methyl-2-pentanone	30	Ü	30	5.0	ug/Kg		04/26/17 12:14	05/04/17 16:58	1
Toluene	6.0	U	6.0	1.0	ug/Kg	≎	04/26/17 12:14	05/04/17 16:58	1
trans-1,3-Dichloropropene	6.0	U	6.0	1.0	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
1,1,2-Trichloroethane	6.0	Ü	6.0	1.5	ug/Kg	φ.	04/26/17 12:14	05/04/17 16:58	1
Tetrachloroethene	6.0	U	6.0	2.3	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
2-Hexanone	30	U	30	3.9	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Dibromochloromethane	6.0	U	6.0	2.0	ug/Kg		04/26/17 12:14	05/04/17 16:58	1
1,2-Dibromoethane	6.0	U	6.0	1.8	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
Chlorobenzene	6.0	U	6.0	1.1	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
Ethylbenzene	6.0	Ü	6.0	1.5	ug/Kg		04/26/17 12:14	05/04/17 16:58	1

TestAmerica Savannah

Page 7 of 53

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-137928-1

Lab Sample ID: 680-137928-4

Lab Sample ID: 680-137928-5

Matrix: Solid

Percent Solids: 79.5

Client Sample ID: 6489-DP-2 (3-4)

Date Collected: 04/25/17 15:05 Date Received: 04/26/17 09:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	12	U	12	1.3	ug/Kg	<u></u>	04/26/17 12:14	05/04/17 16:58	1
Styrene	6.0	U	6.0	1.1	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Bromoform	6.0	U	6.0	1.8	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
Isopropylbenzene	6.0	U	6.0	2.3	ug/Kg	≎	04/26/17 12:14	05/04/17 16:58	1
1,1,2,2-Tetrachloroethane	6.0	U	6.0	1.9	ug/Kg	≎	04/26/17 12:14	05/04/17 16:58	1
1,3-Dichlorobenzene	6.0	U	6.0	1.9	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
1,4-Dichlorobenzene	6.0	U	6.0	0.88	ug/Kg	≎	04/26/17 12:14	05/04/17 16:58	1
1,2-Dichlorobenzene	6.0	U	6.0	1.5	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
1,2-Dibromo-3-Chloropropane	12	U	12	5.2	ug/Kg	₽	04/26/17 12:14	05/04/17 16:58	1
1,2,4-Trichlorobenzene	6.0	U	6.0	1.1	ug/Kg	☼	04/26/17 12:14	05/04/17 16:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		70 - 130				04/26/17 12:14	05/04/17 16:58	1
1,2-Dichloroethane-d4 (Surr)	98		70 - 130				04/26/17 12:14	05/04/17 16:58	1
Dibromofluoromethane (Surr)	101		70 - 130				04/26/17 12:14	05/04/17 16:58	1
4-Bromofluorobenzene (Surr)	95		70 - 130				04/26/17 12:14	05/04/17 16:58	1

Client Sample ID: 6489-DP-2 (19-20)

Date Collected: 04/25/17 15:15 Date Received: 04/26/17 09:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.6	U	5.6	1.0	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
Chloromethane	5.6	U	5.6	1.1	ug/Kg	≎	04/26/17 12:14	05/04/17 17:22	1
Vinyl chloride	5.6	U	5.6	1.7	ug/Kg	≎	04/26/17 12:14	05/04/17 17:22	1
Bromomethane	5.6	U	5.6	1.7	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
Chloroethane	5.6	U	5.6	3.0	ug/Kg	≎	04/26/17 12:14	05/04/17 17:22	1
Trichlorofluoromethane	5.6	U	5.6	1.3	ug/Kg	≎	04/26/17 12:14	05/04/17 17:22	1
1,1-Dichloroethene	5.6	U	5.6	1.7	ug/Kg	\$	04/26/17 12:14	05/04/17 17:22	1
Acetone	19	J	56	12	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
Carbon disulfide	5.6	U	5.6	1.2	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
Methylene Chloride	5.6	U	5.6	1.1	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
trans-1,2-Dichloroethene	5.6	U	5.6	0.70	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
Methyl tert-butyl ether	5.6	U	5.6	1.1	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
1,1-Dichloroethane	5.6	U	5.6	1.2	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
cis-1,2-Dichloroethene	5.6	U	5.6	1.6	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
2-Butanone (MEK)	28	U	28	2.7	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
Chloroform	5.6	U	5.6	1.2	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
1,1,1-Trichloroethane	5.6	U	5.6	0.66	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
Carbon tetrachloride	5.6	U	5.6	0.92	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
Benzene	5.6	U	5.6	0.81	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
1,2-Dichloroethane	5.6	U	5.6	1.2	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
Trichloroethene	5.6	U	5.6	1.4	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
1,2-Dichloropropane	5.6	Ü	5.6	0.96	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
Bromodichloromethane	5.6	U	5.6	1.1	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
cis-1,3-Dichloropropene	5.6	U	5.6	0.92	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
4-Methyl-2-pentanone	28	Ü	28	4.7	ug/Kg		04/26/17 12:14	05/04/17 17:22	1
Toluene	5.6	U	5.6	0.93	ug/Kg	☼	04/26/17 12:14	05/04/17 17:22	1
trans-1,3-Dichloropropene	5.6	U	5.6	0.97	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1

TestAmerica Savannah

Page 8 of 53

Matrix: Solid

Percent Solids: 71.7

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-137928-1

Lab Sample ID: 680-137928-5

Lab Sample ID: 680-137928-6

Matrix: Solid

Percent Solids: 71.7

Client Sample ID: 6489-DP-2 (19-20)

Date Collected: 04/25/17 15:15 Date Received: 04/26/17 09:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	5.6	U	5.6	1.4	ug/Kg	<u></u>	04/26/17 12:14	05/04/17 17:22	1
Tetrachloroethene	5.6	Ü	5.6	2.1	ug/Kg	\$	04/26/17 12:14	05/04/17 17:22	1
2-Hexanone	28	U	28	3.7	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
Dibromochloromethane	5.6	U	5.6	1.9	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
1,2-Dibromoethane	5.6	U	5.6	1.7	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
Chlorobenzene	5.6	U	5.6	1.1	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
Ethylbenzene	5.6	U	5.6	1.4	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
Xylenes, Total	11	U	11	1.2	ug/Kg	☆	04/26/17 12:14	05/04/17 17:22	1
Styrene	5.6	U	5.6	1.0	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
Bromoform	5.6	U	5.6	1.7	ug/Kg	₽	04/26/17 12:14	05/04/17 17:22	1
Isopropylbenzene	5.6	U	5.6	2.1	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
1,1,2,2-Tetrachloroethane	5.6	U	5.6	1.8	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
1,3-Dichlorobenzene	5.6	U	5.6	1.8	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
1,4-Dichlorobenzene	5.6	U	5.6	0.82	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
1,2-Dichlorobenzene	5.6	U	5.6	1.4	ug/Kg	☆	04/26/17 12:14	05/04/17 17:22	1
1,2-Dibromo-3-Chloropropane	11	U	11	4.9	ug/Kg	☆	04/26/17 12:14	05/04/17 17:22	1
1,2,4-Trichlorobenzene	5.6	U	5.6	0.99	ug/Kg	₩	04/26/17 12:14	05/04/17 17:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130				04/26/17 12:14	05/04/17 17:22	1
1,2-Dichloroethane-d4 (Surr)	95		70 - 130				04/26/17 12:14	05/04/17 17:22	1

Dibromofluoromethane (Surr) 95 70 - 130 4-Bromofluorobenzene (Surr) 94 70 - 130 04/26/17 12:14 05/04/17 17:22

Client Sample ID: 6489-DP-2 (9-19)

D

Date Collected: 04/25/17 14:	59							Matrix:	Water
Date Received: 04/26/17 09:	10								
Method: 8260B - Volatile O	rganic Compo	unds (GC/M	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	20	U –	20	9.9	ug/L			05/08/17 23:29	1
Benzene	1.0	U	1.0	0.50	ug/L			05/08/17 23:29	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/08/17 23:29	1
Bromoform	1.0	Ü	1.0	0.63	ug/L			05/08/17 23:29	1

, inary to	itoouit	- Quantition			•	- i i opai ca	7u.y = 0 u	D uo
Acetone	20	U –	20	9.9	ug/L		05/08/17 23:29	1
Benzene	1.0	U	1.0	0.50	ug/L		05/08/17 23:29	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L		05/08/17 23:29	1
Bromoform	1.0	U	1.0	0.63	ug/L		05/08/17 23:29	1
Bromomethane	5.0	U	5.0	2.5	ug/L		05/08/17 23:29	1
2-Butanone (MEK)	10	U	10	8.4	ug/L		05/08/17 23:29	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L		05/08/17 23:29	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L		05/08/17 23:29	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L		05/08/17 23:29	1
Chloroethane	5.0	U F2	5.0	2.5	ug/L		05/08/17 23:29	1
Chloroform	1.0	U	1.0	0.90	ug/L		05/08/17 23:29	1
Chloromethane	4.0	U	4.0	1.0	ug/L		05/08/17 23:29	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.65	ug/L		05/08/17 23:29	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.39	ug/L		05/08/17 23:29	1
Dibromochloromethane	1.0	U	1.0	0.31	ug/L		05/08/17 23:29	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/L		05/08/17 23:29	1
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L		05/08/17 23:29	1
1,2-Dichlorobenzene	1.0	U	1.0	0.49	ug/L		05/08/17 23:29	1
1,3-Dichlorobenzene	1.0	U	1.0	0.64	ug/L		05/08/17 23:29	1
1.4-Dichlorobenzene	1.0	U	1.0	0.60	ua/L		05/08/17 23:29	1

TestAmerica Savannah

Page 9 of 53 5/9/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-2 (9-19)

Date Collected: 04/25/17 14:59 Date Received: 04/26/17 09:10

Lab Sample ID: 680-137928-6

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.0	U	5.0	2.5	ug/L			05/08/17 23:29	1
1,1-Dichloroethane	1.0	U	1.0	0.52	ug/L			05/08/17 23:29	1
1,2-Dichloroethane	1.0	U	1.0	0.57	ug/L			05/08/17 23:29	1
1,1-Dichloroethene	1.0	U	1.0	0.67	ug/L			05/08/17 23:29	1
1,2-Dichloropropane	1.0	U	1.0	0.52	ug/L			05/08/17 23:29	1
Ethylbenzene	1.0	U	1.0	0.44	ug/L			05/08/17 23:29	1
2-Hexanone	10	U	10	4.4	ug/L			05/08/17 23:29	1
Isopropylbenzene	1.0	U	1.0	0.52	ug/L			05/08/17 23:29	1
Methylene Chloride	10	U F1	10	5.0	ug/L			05/08/17 23:29	1
4-Methyl-2-pentanone	10	U	10	4.0	ug/L			05/08/17 23:29	1
Methyl tert-butyl ether	1.0	U	1.0	0.44	ug/L			05/08/17 23:29	1
Styrene	2.0	U	2.0	0.98	ug/L			05/08/17 23:29	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.17	ug/L			05/08/17 23:29	1
Tetrachloroethene	1.0	U	1.0	0.50	ug/L			05/08/17 23:29	1
Toluene	1.0	U	1.0	0.51	ug/L			05/08/17 23:29	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.67	ug/L			05/08/17 23:29	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/L			05/08/17 23:29	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.58	ug/L			05/08/17 23:29	1
1,1,1-Trichloroethane	1.0	U	1.0	0.47	ug/L			05/08/17 23:29	1
1,1,2-Trichloroethane	1.0	U	1.0	0.47	ug/L			05/08/17 23:29	1
Trichloroethene	1.0	U	1.0	0.61	ug/L			05/08/17 23:29	1
Trichlorofluoromethane	5.0	U	5.0	2.5	ug/L			05/08/17 23:29	1
Vinyl chloride	1.0	U	1.0	0.71	ug/L			05/08/17 23:29	1
Xylenes, Total	3.0	U	3.0	0.50	ug/L			05/08/17 23:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

70 - 130

Client Sample ID: 6489-DP-3 (2-3)

Date Collected: 04/25/17 16:42

Toluene-d8 (Surr)

Date Received: 04/26/17 09:10 Percent Solids: 85.2

107

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	4.3	U	4.3	0.81	ug/Kg	<u></u>	04/26/17 12:14	05/05/17 16:37	1
Chloromethane	4.3	U	4.3	0.86	ug/Kg	≎	04/26/17 12:14	05/05/17 16:37	1
Vinyl chloride	4.3	U	4.3	1.3	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Bromomethane	4.3	U *	4.3	1.3	ug/Kg	\$	04/26/17 12:14	05/05/17 16:37	1
Chloroethane	4.3	U	4.3	2.3	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Trichlorofluoromethane	4.3	U	4.3	1.0	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
1,1-Dichloroethene	4.3	U	4.3	1.3	ug/Kg	φ.	04/26/17 12:14	05/05/17 16:37	1
Acetone	43	U	43	9.5	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Carbon disulfide	4.3	U	4.3	0.95	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Methylene Chloride	4.3	U	4.3	0.84	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
trans-1,2-Dichloroethene	4.3	U	4.3	0.54	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Methyl tert-butyl ether	4.3	U	4.3	0.86	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
1,1-Dichloroethane	4.3	U	4.3	0.95	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
cis-1,2-Dichloroethene	4.3	U	4.3	1.2	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
2-Butanone (MEK)	21	U	21	2.1	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Chloroform	4.3	Ü	4.3	0.95	ug/Kg	\$	04/26/17 12:14	05/05/17 16:37	1

TestAmerica Savannah

05/08/17 23:29

Matrix: Solid

Lab Sample ID: 680-137928-7

Page 10 of 53

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-3 (2-3)

Lab Sample ID: 680-137928-7 Date Collected: 04/25/17 16:42 Date Received: 04/26/17 09:10

Matrix: Solid Percent Solids: 85.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	4.3	U	4.3	0.51	ug/Kg	₩	04/26/17 12:14	05/05/17 16:37	1
Carbon tetrachloride	4.3	U	4.3	0.71	ug/Kg	≎	04/26/17 12:14	05/05/17 16:37	1
Benzene	4.3	U	4.3	0.63	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
1,2-Dichloroethane	4.3	U	4.3	0.95	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Trichloroethene	4.3	U	4.3	1.1	ug/Kg	≎	04/26/17 12:14	05/05/17 16:37	1
1,2-Dichloropropane	4.3	U	4.3	0.74	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
Bromodichloromethane	4.3	U	4.3	0.83	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
cis-1,3-Dichloropropene	4.3	U	4.3	0.71	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
4-Methyl-2-pentanone	21	U	21	3.6	ug/Kg	φ.	04/26/17 12:14	05/05/17 16:37	1
Toluene	4.3	U	4.3	0.72	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
trans-1,3-Dichloropropene	4.3	U	4.3	0.75	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
1,1,2-Trichloroethane	4.3	U	4.3	1.1	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
Tetrachloroethene	4.3	U	4.3	1.6	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
2-Hexanone	21	U	21	2.8	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
Dibromochloromethane	4.3	U	4.3	1.5	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
1,2-Dibromoethane	4.3	U	4.3	1.3	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
Chlorobenzene	4.3	U	4.3	0.83	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Ethylbenzene	4.3	U	4.3	1.1	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
Xylenes, Total	8.6	U	8.6	0.95	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Styrene	4.3	U	4.3	0.80	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
Bromoform	4.3	U	4.3	1.3	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
Isopropylbenzene	4.3	U	4.3	1.6	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
1,1,2,2-Tetrachloroethane	4.3	U	4.3	1.4	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
1,3-Dichlorobenzene	4.3	U	4.3	1.4	ug/Kg	φ.	04/26/17 12:14	05/05/17 16:37	1
1,4-Dichlorobenzene	4.3	U	4.3	0.64	ug/Kg	☼	04/26/17 12:14	05/05/17 16:37	1
1,2-Dichlorobenzene	4.3	U	4.3	1.1	ug/Kg	₽	04/26/17 12:14	05/05/17 16:37	1
1,2-Dibromo-3-Chloropropane	8.6	U	8.6	3.8	ug/Kg	φ.	04/26/17 12:14	05/05/17 16:37	1
1,2,4-Trichlorobenzene	4.3	U	4.3	0.76	ug/Kg	₩	04/26/17 12:14	05/05/17 16:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		70 - 130				04/26/17 12:14	05/05/17 16:37	1
1,2-Dichloroethane-d4 (Surr)	116		70 - 130				04/26/17 12:14	05/05/17 16:37	1
Dibromofluoromethane (Surr)	121		70 - 130				04/26/17 12:14	05/05/17 16:37	1
4-Bromofluorobenzene (Surr)	92		70 - 130				04/26/17 12:14	05/05/17 16:37	1

Client Sample ID: 6489-DP-3 (19-20) Lab Sample ID: 680-137928-8

Date Collected: 04/25/17 16:47 **Matrix: Solid** Date Received: 04/26/17 09:10 Percent Solids: 82.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	6.3	U	6.3	1.2	ug/Kg	\	04/26/17 12:14	05/04/17 18:08	1
Chloromethane	6.3	U	6.3	1.3	ug/Kg	☼	04/26/17 12:14	05/04/17 18:08	1
Vinyl chloride	6.3	U	6.3	1.9	ug/Kg	₽	04/26/17 12:14	05/04/17 18:08	1
Bromomethane	6.3	U	6.3	1.9	ug/Kg	₽	04/26/17 12:14	05/04/17 18:08	1
Chloroethane	6.3	U	6.3	3.4	ug/Kg	₽	04/26/17 12:14	05/04/17 18:08	1
Trichlorofluoromethane	6.3	U	6.3	1.5	ug/Kg	₽	04/26/17 12:14	05/04/17 18:08	1
1,1-Dichloroethene	6.3	U	6.3	1.9	ug/Kg	₽	04/26/17 12:14	05/04/17 18:08	1
Acetone	27	J	63	14	ug/Kg	☼	04/26/17 12:14	05/04/17 18:08	1
Carbon disulfide	6.3	U	6.3	1.4	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1

TestAmerica Savannah

Page 11 of 53

5/9/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-3 (19-20)

Date Collected: 04/25/17 16:47 Date Received: 04/26/17 09:10

Lab Sample ID: 680-137928-8

Matrix: Solid

Percent Solids: 82.8

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	6.3	U	6.3	1.2	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1
trans-1,2-Dichloroethene	6.3	U	6.3	0.80	ug/Kg	\$	04/26/17 12:14	05/04/17 18:08	1
Methyl tert-butyl ether	6.3	U	6.3	1.3	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1
1,1-Dichloroethane	6.3	Ü	6.3	1.4	ug/Kg	\$	04/26/17 12:14	05/04/17 18:08	1
cis-1,2-Dichloroethene	6.3	U	6.3	1.8	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1
2-Butanone (MEK)	32	U	32	3.0	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1
Chloroform	6.3	U	6.3	1.4	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1
1,1,1-Trichloroethane	6.3	U	6.3	0.74	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1
Carbon tetrachloride	6.3	U	6.3	1.0	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1
Benzene	6.3	U	6.3	0.92	ug/Kg	₽	04/26/17 12:14	05/04/17 18:08	1
1,2-Dichloroethane	6.3	U	6.3	1.4	ug/Kg	☼	04/26/17 12:14	05/04/17 18:08	1
Trichloroethene	6.3	U	6.3	1.6	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1
1,2-Dichloropropane	6.3	U	6.3	1.1	ug/Kg	₽	04/26/17 12:14	05/04/17 18:08	1
Bromodichloromethane	6.3	U	6.3	1.2	ug/Kg	☼	04/26/17 12:14	05/04/17 18:08	1
cis-1,3-Dichloropropene	6.3	U	6.3	1.0	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
4-Methyl-2-pentanone	32	Ü	32	5.3	ug/Kg	₽	04/26/17 12:14	05/04/17 18:08	1
Toluene	6.3	U	6.3	1.1	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
trans-1,3-Dichloropropene	6.3	U	6.3	1.1	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
1,1,2-Trichloroethane	6.3	Ü	6.3	1.6	ug/Kg		04/26/17 12:14	05/04/17 18:08	1
Tetrachloroethene	6.3	U	6.3	2.4	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
2-Hexanone	32	U	32	4.2	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
Dibromochloromethane	6.3	U	6.3	2.1	ug/Kg		04/26/17 12:14	05/04/17 18:08	1
1,2-Dibromoethane	6.3	U	6.3	1.9	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
Chlorobenzene	6.3	U	6.3	1.2	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
Ethylbenzene	6.3	Ü	6.3	1.6	ug/Kg	₽	04/26/17 12:14	05/04/17 18:08	1
Xylenes, Total	13	U	13	1.4	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
Styrene	6.3	U	6.3	1.2	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
Bromoform	6.3	U	6.3	1.9	ug/Kg	☼	04/26/17 12:14	05/04/17 18:08	1
Isopropylbenzene	6.3	U	6.3	2.4	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
1,1,2,2-Tetrachloroethane	6.3	U	6.3	2.0	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
1,3-Dichlorobenzene	6.3	U	6.3	2.0	ug/Kg	☆	04/26/17 12:14	05/04/17 18:08	1
1,4-Dichlorobenzene	6.3	U	6.3	0.93	ug/Kg	☼	04/26/17 12:14	05/04/17 18:08	1
1,2-Dichlorobenzene	6.3	U	6.3	1.6	ug/Kg	≎	04/26/17 12:14	05/04/17 18:08	1
1,2-Dibromo-3-Chloropropane	13	U	13	5.6	ug/Kg		04/26/17 12:14	05/04/17 18:08	1
1,2,4-Trichlorobenzene	6.3	U	6.3	1.1	ug/Kg	₩	04/26/17 12:14	05/04/17 18:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130				04/26/17 12:14	05/04/17 18:08	1
1,2-Dichloroethane-d4 (Surr)	96		70 - 130				04/26/17 12:14	05/04/17 18:08	1

Client Sample ID: 6489-DP-3 (13-18)

97

93

Date Collected: 04/25/17 17:00 Date Received: 04/26/17 09:10

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-137928-10 **Matrix: Water**

04/26/17 12:14 05/04/17 18:08

04/26/17 12:14 05/04/17 18:08

Method: 8260B - Volatile Organ	nic Compo	unds (GC/N	IS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	11	J	20	9.9	ug/L			05/09/17 01:07	1
Benzene	1.0	U	1.0	0.50	ug/L			05/09/17 01:07	1

70 - 130

70 - 130

TestAmerica Savannah

Page 12 of 53

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-137928-1

Lab Sample ID: 680-137928-10

Matrix: Water

Client Sample ID: 6489-DP-3 (13-18)

Date Collected: 04/25/17 17:00 Date Received: 04/26/17 09:10

Toluene-d8 (Surr)

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/09/17 01:07	1
Bromoform	1.0	U	1.0	0.63	ug/L			05/09/17 01:07	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/09/17 01:07	1
2-Butanone (MEK)	10	U	10	8.4	ug/L			05/09/17 01:07	1
Carbon disulfide	1.4	J	2.0	1.0	ug/L			05/09/17 01:07	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L			05/09/17 01:07	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L			05/09/17 01:07	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/09/17 01:07	1
Chloroform	1.0	U	1.0	0.90	ug/L			05/09/17 01:07	1
Chloromethane	4.0	U	4.0	1.0	ug/L			05/09/17 01:07	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.65	ug/L			05/09/17 01:07	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.39	ug/L			05/09/17 01:07	1
Dibromochloromethane	1.0	U	1.0	0.31	ug/L			05/09/17 01:07	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/L			05/09/17 01:07	1
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L			05/09/17 01:07	1
1,2-Dichlorobenzene	1.0	U	1.0	0.49	ug/L			05/09/17 01:07	1
1,3-Dichlorobenzene	1.0	Ü	1.0	0.64	ug/L			05/09/17 01:07	1
1,4-Dichlorobenzene	1.0	U	1.0	0.60	ug/L			05/09/17 01:07	1
Dichlorodifluoromethane	5.0	U	5.0	2.5	ug/L			05/09/17 01:07	1
1,1-Dichloroethane	1.0	Ü	1.0	0.52	ug/L			05/09/17 01:07	1
1,2-Dichloroethane	1.0	U	1.0	0.57	ug/L			05/09/17 01:07	•
1,1-Dichloroethene	1.0	U	1.0		ug/L			05/09/17 01:07	•
1,2-Dichloropropane	1.0	Ü	1.0	0.52	ug/L			05/09/17 01:07	• • • • • • • • • • • • • • • • • • • •
Ethylbenzene	1.0	U	1.0	0.44	-			05/09/17 01:07	1
2-Hexanone	10	U	10	4.4	ug/L			05/09/17 01:07	
Isopropylbenzene	1.0	Ü	1.0	0.52	ug/L			05/09/17 01:07	1
Methylene Chloride	10	U	10	5.0	ug/L			05/09/17 01:07	1
4-Methyl-2-pentanone	10	U	10	4.0	ug/L			05/09/17 01:07	1
Methyl tert-butyl ether	1.0	Ü	1.0	0.44	ug/L			05/09/17 01:07	1
Styrene	2.0	U	2.0		ug/L			05/09/17 01:07	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.17	ug/L			05/09/17 01:07	1
Tetrachloroethene	1.0	Ü	1.0		ug/L			05/09/17 01:07	1
Toluene	1.0	U	1.0		ug/L			05/09/17 01:07	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.67	_			05/09/17 01:07	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.27	-			05/09/17 01:07	
1,2,4-Trichlorobenzene	1.0	U	1.0	0.58	-			05/09/17 01:07	1
1,1,1-Trichloroethane	1.0		1.0		ug/L			05/09/17 01:07	1
1,1,2-Trichloroethane	1.0		1.0		ug/L			05/09/17 01:07	1
Trichloroethene	1.0		1.0		ug/L			05/09/17 01:07	1
Trichlorofluoromethane	5.0		5.0		ug/L			05/09/17 01:07	-
Vinyl chloride	1.0		1.0		ug/L			05/09/17 01:07	
Xylenes, Total	3.0		3.0		ug/L			05/09/17 01:07	1
Surrogate		Qualifier	Limits				Prepared	Analyzed	Dil Fac

05/09/17 01:07

70 - 130

106

4

6

a

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-4 (4-5)

Lab Sample ID: 680-137928-11

Date Collected: 04/25/17 18:10

Matrix: Solid

Date Received: 04/26/17 09:10

Percent Solids: 72.6

Method: 8260B - Volatile O Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.4		5.4	1.0	ug/Kg	₩		05/04/17 18:32	•
Chloromethane	5.4		5.4	1.1	ug/Kg	☆		05/04/17 18:32	1
Vinyl chloride	5.4		5.4		ug/Kg	, .		05/04/17 18:32	
Bromomethane	5.4		5.4		ug/Kg	*		05/04/17 18:32	1
Chloroethane	5.4	U	5.4	2.9	ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
Trichlorofluoromethane	5.4		5.4					05/04/17 18:32	1
1,1-Dichloroethene	5.4	U	5.4		ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
Acetone	34	J	54	12	ug/Kg	≎	04/26/17 12:14	05/04/17 18:32	1
Carbon disulfide	5.4	U	5.4	1.2	ug/Kg	≎	04/26/17 12:14	05/04/17 18:32	1
Methylene Chloride	5.4	U	5.4	1.1	ug/Kg	₽	04/26/17 12:14	05/04/17 18:32	1
trans-1,2-Dichloroethene	5.4	U	5.4	0.68	ug/Kg	₽	04/26/17 12:14	05/04/17 18:32	1
Methyl tert-butyl ether	5.4	U	5.4	1.1	ug/Kg	₽	04/26/17 12:14	05/04/17 18:32	1
1,1-Dichloroethane	5.4	U	5.4	1.2	ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
cis-1,2-Dichloroethene	5.4	U	5.4	1.5	ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
2-Butanone (MEK)	27	U	27	2.6	ug/Kg	≎	04/26/17 12:14	05/04/17 18:32	1
Chloroform	5.4	U	5.4	1.2	ug/Kg	≎	04/26/17 12:14	05/04/17 18:32	1
1,1,1-Trichloroethane	5.4	U	5.4	0.64	ug/Kg	≎	04/26/17 12:14	05/04/17 18:32	1
Carbon tetrachloride	5.4	U	5.4	0.90	ug/Kg	₽	04/26/17 12:14	05/04/17 18:32	1
Benzene	5.4	Ü	5.4	0.79	ug/Kg	.	04/26/17 12:14	05/04/17 18:32	1
1,2-Dichloroethane	5.4	U	5.4	1.2	ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
Trichloroethene	5.4	U	5.4	1.4	ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
1,2-Dichloropropane	5.4	U	5.4	0.93	ug/Kg		04/26/17 12:14	05/04/17 18:32	1
Bromodichloromethane	5.4	U	5.4	1.0	ug/Kg	≎	04/26/17 12:14	05/04/17 18:32	1
cis-1,3-Dichloropropene	5.4	U	5.4	0.90	ug/Kg	≎	04/26/17 12:14	05/04/17 18:32	1
4-Methyl-2-pentanone	27	Ü	27	4.5	ug/Kg	₽	04/26/17 12:14	05/04/17 18:32	1
Toluene	5.4	U	5.4	0.91	ug/Kg	≎	04/26/17 12:14	05/04/17 18:32	1
trans-1,3-Dichloropropene	5.4	U	5.4		ug/Kg	₽	04/26/17 12:14	05/04/17 18:32	1
1,1,2-Trichloroethane	5.4	U	5.4	1.4	ug/Kg		04/26/17 12:14	05/04/17 18:32	1
Tetrachloroethene	5.4	U	5.4	2.0	ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
2-Hexanone	27	U	27	3.6	ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
Dibromochloromethane	5.4		5.4	1.8	ug/Kg		04/26/17 12:14	05/04/17 18:32	1
1,2-Dibromoethane	5.4	U	5.4		ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
Chlorobenzene	5.4	U	5.4	1.0	ug/Kg	₩	04/26/17 12:14	05/04/17 18:32	1
Ethylbenzene	5.4		5.4		ug/Kg			05/04/17 18:32	1
Xylenes, Total	11	U	11		ug/Kg	≎		05/04/17 18:32	1
Styrene	5.4	U	5.4		ug/Kg	≎	04/26/17 12:14		1
Bromoform	5.4		5.4		ug/Kg	 \$		05/04/17 18:32	1
Isopropylbenzene	5.4		5.4		ug/Kg	₽		05/04/17 18:32	1
1,1,2,2-Tetrachloroethane	5.4		5.4		ug/Kg	₽		05/04/17 18:32	1
1,3-Dichlorobenzene	5.4		5.4		ug/Kg			05/04/17 18:32	1
1,4-Dichlorobenzene	5.4		5.4		ug/Kg	☆		05/04/17 18:32	1
1,2-Dichlorobenzene	5.4		5.4		ug/Kg	☆		05/04/17 18:32	1
1,2-Dibromo-3-Chloropropane	11		11		ug/Kg			05/04/17 18:32	· · · · · · · · · · · · · · · · · · ·
1,2,4-Trichlorobenzene	5.4		5.4		ug/Kg	₩		05/04/17 18:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130					05/04/17 18:32	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 130					05/04/17 18:32	1
Dibromofluoromethane (Surr)	96		70 - 130				04/26/17 12:14	05/04/17 18:32	1
4-Bromofluorobenzene (Surr)	99		70 - 130				04/26/17 12:14	05/04/17 18:32	1

TestAmerica Savannah

4

6

ŏ

10

2

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-4 (13-14)

Date Collected: 04/25/17 18:17

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 680-137928-12

Matrix: Solid

Percent Solids: 71.8

Date Received: 04/26/17	09:10

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.9	U	5.9	1.1	ug/Kg	— ☆	04/26/17 12:14	05/04/17 18:55	1
Chloromethane	5.9	U	5.9	1.2	ug/Kg	₩	04/26/17 12:14	05/04/17 18:55	1
Vinyl chloride	5.9	U	5.9	1.8	ug/Kg	₩	04/26/17 12:14	05/04/17 18:55	1
Bromomethane	5.9	U	5.9	1.8	ug/Kg	≎	04/26/17 12:14	05/04/17 18:55	1
Chloroethane	5.9	U	5.9	3.2	ug/Kg	₽	04/26/17 12:14	05/04/17 18:55	1
Trichlorofluoromethane	5.9	U	5.9	1.4	ug/Kg	₩	04/26/17 12:14	05/04/17 18:55	1
1,1-Dichloroethene	5.9	U	5.9	1.8	ug/Kg		04/26/17 12:14	05/04/17 18:55	1
Acetone	43	J	59	13	ug/Kg	₩	04/26/17 12:14	05/04/17 18:55	1
Carbon disulfide	5.9	U	5.9	1.3	ug/Kg	₩	04/26/17 12:14	05/04/17 18:55	1
Methylene Chloride	5.9	U	5.9	1.2	ug/Kg		04/26/17 12:14	05/04/17 18:55	1
trans-1,2-Dichloroethene	5.9	U	5.9	0.74	ug/Kg	₽	04/26/17 12:14	05/04/17 18:55	1
Methyl tert-butyl ether	5.9	U	5.9	1.2	ug/Kg	₩	04/26/17 12:14	05/04/17 18:55	1
1,1-Dichloroethane	5.9	U	5.9		ug/Kg		04/26/17 12:14	05/04/17 18:55	1
cis-1,2-Dichloroethene	5.9	U	5.9		ug/Kg	☼	04/26/17 12:14	05/04/17 18:55	1
2-Butanone (MEK)	29	U	29		ug/Kg	₩	04/26/17 12:14	05/04/17 18:55	1
Chloroform	5.9		5.9				04/26/17 12:14	05/04/17 18:55	1
1.1.1-Trichloroethane	5.9		5.9	0.69	ug/Kg	₩		05/04/17 18:55	1
Carbon tetrachloride	5.9		5.9		ug/Kg	₩	04/26/17 12:14	05/04/17 18:55	1
Benzene	5.9		5.9		ug/Kg	 .		05/04/17 18:55	1
1,2-Dichloroethane	5.9		5.9		ug/Kg	₩		05/04/17 18:55	1
Trichloroethene	5.9		5.9			₽		05/04/17 18:55	1
1,2-Dichloropropane	5.9		5.9		ug/Kg			05/04/17 18:55	
Bromodichloromethane	5.9		5.9	1.1	ug/Kg	₽		05/04/17 18:55	
cis-1,3-Dichloropropene	5.9		5.9		ug/Kg	₽		05/04/17 18:55	1
4-Methyl-2-pentanone	29		29		ug/Kg			05/04/17 18:55	
Toluene	5.9		5.9	0.99	ug/Kg	₽	04/26/17 12:14	05/04/17 18:55	1
trans-1,3-Dichloropropene	5.9		5.9	1.0	ug/Kg	₽		05/04/17 18:55	1
1,1,2-Trichloroethane	5.9		5.9		ug/Kg			05/04/17 18:55	' 1
Tetrachloroethene	5.9		5.9	2.2	ug/Kg ug/Kg	₽		05/04/17 18:55	1
2-Hexanone		U	29	3.9	ug/Kg ug/Kg	₽		05/04/17 18:55	1
	5.9								
Dibromochloromethane 1.2-Dibromoethane	5.9		5.9 5.9	2.0 1.8	ug/Kg ug/Kg	~ ⇔		05/04/17 18:55 05/04/17 18:55	1
,					• •	~ ☆			-
Chlorobenzene	5.9		5.9	1.1	ug/Kg			05/04/17 18:55	1
Ethylbenzene	5.9		5.9	1.5	ug/Kg	☆		05/04/17 18:55	1
Xylenes, Total	12		12	1.3	ug/Kg	☆		05/04/17 18:55	1
Styrene	5.9		5.9		ug/Kg			05/04/17 18:55	
Bromoform	5.9		5.9		ug/Kg	.;.	04/26/17 12:14		1
Isopropylbenzene	5.9		5.9		ug/Kg	.;.		05/04/17 18:55	1
1,1,2,2-Tetrachloroethane	5.9		5.9		ug/Kg			05/04/17 18:55	
1,3-Dichlorobenzene	5.9		5.9		ug/Kg	*		05/04/17 18:55	1
1,4-Dichlorobenzene	5.9		5.9		ug/Kg	₽		05/04/17 18:55	1
1,2-Dichlorobenzene	5.9		5.9		ug/Kg			05/04/17 18:55	1
1,2-Dibromo-3-Chloropropane	12		12		ug/Kg	₽	04/26/17 12:14	05/04/17 18:55	1
1,2,4-Trichlorobenzene	5.9	U	5.9	1.0	ug/Kg	≎	04/26/17 12:14	05/04/17 18:55	1

TestAmerica Savannah

Analyzed

04/26/17 12:14 05/04/17 18:55

04/26/17 12:14 05/04/17 18:55 04/26/17 12:14 05/04/17 18:55

Prepared

Limits

70 - 130

70 - 130

70 - 130

%Recovery Qualifier

98

95

93

Dil Fac

8

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-137928-1

Client Sample ID: 6489-DP-4 (13-14)

Date Collected: 04/25/17 18:17 Date Received: 04/26/17 09:10 Lab Sample ID: 680-137928-12

Matrix: Solid Percent Solids: 71.8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 4-Bromofluorobenzene (Surr)
 99
 70 - 130
 04/26/17 12:14
 05/04/17 18:55
 1

Client Sample ID: 6489-DP-4 (19-20)

Lab Sample ID: 680-137928-13

 Date Collected: 04/25/17 18:24
 Matrix: Solid

 Date Received: 04/26/17 09:10
 Percent Solids: 67.7

Method: 8260B - Volatile On Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	6.6	U –	6.6	1.2	ug/Kg	<u>₩</u>	04/26/17 12:14	05/04/17 19:18	1
Chloromethane	6.6	U	6.6	1.3	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
Vinyl chloride	6.6	U	6.6	2.0	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
Bromomethane	6.6	U	6.6	2.0	ug/Kg	₩.	04/26/17 12:14	05/04/17 19:18	1
Chloroethane	6.6	U	6.6	3.6	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
Trichlorofluoromethane	6.6	U	6.6	1.6	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
1,1-Dichloroethene	6.6	U	6.6	2.0	ug/Kg	₩.	04/26/17 12:14	05/04/17 19:18	1
Acetone	66	U	66	14	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
Carbon disulfide	6.6	U	6.6	1.4	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
Methylene Chloride	6.6	U	6.6	1.3	ug/Kg	₽	04/26/17 12:14	05/04/17 19:18	1
trans-1,2-Dichloroethene	6.6	U	6.6	0.83	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
Methyl tert-butyl ether	6.6	U	6.6	1.3	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
1,1-Dichloroethane	6.6	Ü	6.6	1.4	ug/Kg	₩.	04/26/17 12:14	05/04/17 19:18	1
cis-1,2-Dichloroethene	6.6	U	6.6	1.8	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
2-Butanone (MEK)	33	U	33	3.2	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
Chloroform	6.6	Ü	6.6	1.4	ug/Kg		04/26/17 12:14	05/04/17 19:18	1
1,1,1-Trichloroethane	6.6	U	6.6	0.78	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
Carbon tetrachloride	6.6	U	6.6	1.1	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
Benzene	6.6	Ü	6.6	0.96	ug/Kg		04/26/17 12:14	05/04/17 19:18	1
1,2-Dichloroethane	6.6	U	6.6	1.4	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
Trichloroethene	6.6	U	6.6	1.7	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
1,2-Dichloropropane	6.6	U	6.6	1.1	ug/Kg		04/26/17 12:14	05/04/17 19:18	1
Bromodichloromethane	6.6	U	6.6	1.3	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
cis-1,3-Dichloropropene	6.6	U	6.6	1.1	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
4-Methyl-2-pentanone	33	Ü	33	5.5	ug/Kg		04/26/17 12:14	05/04/17 19:18	1
Toluene	6.6	U	6.6	1.1	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
trans-1,3-Dichloropropene	6.6	U	6.6	1.1	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
1,1,2-Trichloroethane	6.6	Ü	6.6	1.7	ug/Kg	₩.	04/26/17 12:14	05/04/17 19:18	1
Tetrachloroethene	6.6	U	6.6	2.5	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
2-Hexanone	33	U	33	4.3	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
Dibromochloromethane	6.6	Ü	6.6	2.2	ug/Kg		04/26/17 12:14	05/04/17 19:18	1
1,2-Dibromoethane	6.6	U	6.6	2.0	ug/Kg	☼	04/26/17 12:14	05/04/17 19:18	1
Chlorobenzene	6.6	U	6.6	1.3	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
Ethylbenzene	6.6	Ü	6.6	1.7	ug/Kg	φ.	04/26/17 12:14	05/04/17 19:18	1
Xylenes, Total	13	U	13		ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
Styrene	6.6	U	6.6		ug/Kg	₩	04/26/17 12:14		1
Bromoform	6.6	U	6.6		ug/Kg		04/26/17 12:14		1
Isopropylbenzene	6.6		6.6		ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
1,1,2,2-Tetrachloroethane	6.6		6.6		ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	1
1,3-Dichlorobenzene	6.6	Ü	6.6		ug/Kg		04/26/17 12:14		1
1,4-Dichlorobenzene	6.6		6.6		ug/Kg	₩		05/04/17 19:18	1

TestAmerica Savannah

Page 16 of 53

2

3

6

9

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-4 (19-20)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

96

97

93

Date Collected: 04/25/17 18:24 Date Received: 04/26/17 09:10

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-137928-13

04/26/17 12:14 05/04/17 19:18

04/26/17 12:14 05/04/17 19:18

04/26/17 12:14 05/04/17 19:18

Matrix: Solid

Percent Solids: 67.7

mothod: 0200B Tolatile O	gaine compe	ando (Cor	mo, (continu	ou,					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	6.6	U	6.6	1.7	ug/Kg	<u> </u>	04/26/17 12:14	05/04/17 19:18	1
1,2-Dibromo-3-Chloropropane	13	Ü	13	5.8	ug/Kg	φ.	04/26/17 12:14	05/04/17 19:18	
1,2,4-Trichlorobenzene	6.6	U	6.6	1.2	ug/Kg	₩	04/26/17 12:14	05/04/17 19:18	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	92		70 - 130				04/26/17 12:14	05/04/17 19:18	

70 - 130

70 - 130

70 - 130

Client Sample ID: 6489-TB

Lab Sample ID: 680-137928-14

Date Collected: 04/25/17 00:00 Matrix: Water Date Received: 04/26/17 09:10

Method: 8260B - Volatile Org Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	20	U	20	9.9	ug/L			05/09/17 00:49	1
Benzene	1.0	U	1.0	0.50	ug/L			05/09/17 00:49	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/09/17 00:49	1
Bromoform	1.0	U	1.0	0.63	ug/L			05/09/17 00:49	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/09/17 00:49	1
2-Butanone (MEK)	10	U	10	8.4	ug/L			05/09/17 00:49	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/09/17 00:49	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L			05/09/17 00:49	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L			05/09/17 00:49	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/09/17 00:49	1
Chloroform	1.0	U	1.0	0.90	ug/L			05/09/17 00:49	1
Chloromethane	4.0	U	4.0	1.0	ug/L			05/09/17 00:49	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.65	ug/L			05/09/17 00:49	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.39	ug/L			05/09/17 00:49	1
Dibromochloromethane	1.0	U	1.0	0.31	ug/L			05/09/17 00:49	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/L			05/09/17 00:49	1
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L			05/09/17 00:49	1
1,2-Dichlorobenzene	1.0	U	1.0	0.49	ug/L			05/09/17 00:49	1
1,3-Dichlorobenzene	1.0	U	1.0	0.64	ug/L			05/09/17 00:49	1
1,4-Dichlorobenzene	1.0	U	1.0	0.60	ug/L			05/09/17 00:49	1
Dichlorodifluoromethane	5.0	U	5.0	2.5	ug/L			05/09/17 00:49	1
1,1-Dichloroethane	1.0	U	1.0	0.52	ug/L			05/09/17 00:49	1
1,2-Dichloroethane	1.0	U	1.0	0.57	ug/L			05/09/17 00:49	1
1,1-Dichloroethene	1.0	U	1.0	0.67	ug/L			05/09/17 00:49	1
1,2-Dichloropropane	1.0	U	1.0	0.52	ug/L			05/09/17 00:49	1
Ethylbenzene	1.0	U	1.0	0.44	ug/L			05/09/17 00:49	1
2-Hexanone	10	U	10	4.4	ug/L			05/09/17 00:49	1
Isopropylbenzene	1.0	U	1.0	0.52	ug/L			05/09/17 00:49	1
Methylene Chloride	10	U	10	5.0	ug/L			05/09/17 00:49	1
4-Methyl-2-pentanone	10	U	10	4.0	ug/L			05/09/17 00:49	1
Methyl tert-butyl ether	1.0	Ü	1.0	0.44	ug/L			05/09/17 00:49	1
Styrene	2.0	U	2.0	0.98	_			05/09/17 00:49	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.17	ug/L			05/09/17 00:49	1
Tetrachloroethene	1.0	U	1.0		ug/L			05/09/17 00:49	1

TestAmerica Savannah

5/9/2017

Page 17 of 53

2

4

6

7

9

10

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-137928-1

Client Sample ID: 6489-TB Lab Sample ID: 680-137928-14

Matrix: Water

Date Collected: 04/25/17 00:00 Date Received: 04/26/17 09:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	1.0	U	1.0	0.51	ug/L			05/09/17 00:49	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.67	ug/L			05/09/17 00:49	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/L			05/09/17 00:49	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.58	ug/L			05/09/17 00:49	1
1,1,1-Trichloroethane	1.0	U	1.0	0.47	ug/L			05/09/17 00:49	1
1,1,2-Trichloroethane	1.0	U	1.0	0.47	ug/L			05/09/17 00:49	1
Trichloroethene	1.0	U	1.0	0.61	ug/L			05/09/17 00:49	1
Trichlorofluoromethane	5.0	U	5.0	2.5	ug/L			05/09/17 00:49	1
Vinyl chloride	1.0	U	1.0	0.71	ug/L			05/09/17 00:49	1
Xylenes, Total	3.0	U	3.0	0.50	ug/L			05/09/17 00:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		70 - 130			-		05/09/17 00:49	1

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

America Job ID. 660-13/926-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 660-182601/7	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Ratch: 192601	

Analysis Batch: 182601	MB	MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	20		20		ug/L			05/08/17 22:59	1
Benzene	1.0	_	1.0	0.50	-			05/08/17 22:59	1
Bromodichloromethane	1.0		1.0	0.44	-			05/08/17 22:59	1
Bromoform	1.0		1.0	0.63	-			05/08/17 22:59	1
Bromomethane	5.0		5.0	2.5	ug/L			05/08/17 22:59	1
2-Butanone (MEK)	10	U	10		ug/L			05/08/17 22:59	1
Carbon disulfide	2.0		2.0		ug/L			05/08/17 22:59	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L			05/08/17 22:59	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L			05/08/17 22:59	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/08/17 22:59	1
Chloroform	1.0	U	1.0	0.90	ug/L			05/08/17 22:59	1
Chloromethane	4.0	U	4.0	1.0	ug/L			05/08/17 22:59	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.65	ug/L			05/08/17 22:59	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.39	ug/L			05/08/17 22:59	1
Dibromochloromethane	1.0	U	1.0	0.31	ug/L			05/08/17 22:59	1
1,2-Dibromo-3-Chloropropane	5.0	Ū	5.0	2.5	ug/L			05/08/17 22:59	1
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L			05/08/17 22:59	1
1,2-Dichlorobenzene	1.0	U	1.0	0.49	ug/L			05/08/17 22:59	1
1,3-Dichlorobenzene	1.0	Ü	1.0	0.64	-			05/08/17 22:59	1
1,4-Dichlorobenzene	1.0	U	1.0	0.60	_			05/08/17 22:59	1
Dichlorodifluoromethane	5.0	U	5.0		ug/L			05/08/17 22:59	1
1,1-Dichloroethane	1.0		1.0	0.52	-			05/08/17 22:59	1
1,2-Dichloroethane	1.0	U	1.0	0.57	-			05/08/17 22:59	1
1,1-Dichloroethene	1.0	U	1.0	0.67	-			05/08/17 22:59	1
1,2-Dichloropropane	1.0		1.0	0.52				05/08/17 22:59	1
Ethylbenzene	1.0		1.0	0.44	ū			05/08/17 22:59	1
2-Hexanone	10		10		ug/L			05/08/17 22:59	1
Isopropylbenzene	1.0		1.0	0.52	-			05/08/17 22:59	1
Methylene Chloride	10		10		ug/L			05/08/17 22:59	1
4-Methyl-2-pentanone	10		10		ug/L			05/08/17 22:59	1
Methyl tert-butyl ether	1.0		1.0	0.44				05/08/17 22:59	· · · · · · · · · · · · · · · · · · ·
Styrene	2.0		2.0	0.98	-			05/08/17 22:59	1
1,1,2,2-Tetrachloroethane	1.0		1.0	0.17	_			05/08/17 22:59	1
Tetrachloroethene	1.0		1.0	0.50	-			05/08/17 22:59	
Toluene	1.0		1.0	0.51	-			05/08/17 22:59	1
trans-1,2-Dichloroethene	1.0		1.0	0.67				05/08/17 22:59	1
					ug/L ug/L			05/08/17 22:59	
trans-1,3-Dichloropropene	1.0 1.0		1.0		ug/L ug/L			05/08/17 22:59	
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	1.0		1.0 1.0		-			05/08/17 22:59	1
				0.47					1
1,1,2-Trichloroethane	1.0		1.0	0.47	-			05/08/17 22:59	1
Trichloroethene	1.0		1.0		ug/L			05/08/17 22:59	1
Trichlorofluoromethane	5.0		5.0		ug/L			05/08/17 22:59	1
Vinyl chloride	1.0		1.0		ug/L			05/08/17 22:59	1
Xylenes, Total	3.0	U	3.0	0.50	ug/L			05/08/17 22:59	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		70 - 130					05/08/17 22:59	

TestAmerica Savannah

Page 19 of 53

5/9/2017

А

6

Ω

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 660-182601/4

Matrix: Water

Analysis Batch: 182601

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyte	Spike Added	LCS	LCS Qualifier Unit	D %Rec	%Rec. Limits	
Acetone	Added	109		D %Rec	62 - 142	— –
Benzene	10.0	11.2	ug/L	112		
Bromodichloromethane	10.0	10.9	ug/L	109		
Bromoform	10.0	9.18	ug/L	92		
Bromomethane	10.0	9.59	ug/L	96		
2-Butanone (MEK)	10.0	110	ug/L ug/L	110		
Carbon disulfide	10.0	10.7	ug/L	107	43 - 150	
Carbon tetrachloride	10.0	12.3	ug/L	123		
Chlorobenzene	10.0	9.95	ug/L ug/L	99		
Chloroethane	10.0	8.52		85		
Chloroform	10.0	11.0	ug/L	110		
Chloromethane	10.0	9.21	ug/L	92		
			ug/L			
cis-1,2-Dichloroethene	10.0	10.7	ug/L	107 102		
cis-1,3-Dichloropropene	10.0	10.2	ug/L			
Dibromochloromethane	10.0	10.2	ug/L	102		
1,2-Dibromo-3-Chloropropane	10.0	9.28	ug/L	93		
1,2-Dibromoethane	10.0	10.4	ug/L	104		
1,2-Dichlorobenzene	10.0	9.47	ug/L	95		
1,3-Dichlorobenzene	10.0	9.66	ug/L	97		
1,4-Dichlorobenzene	10.0	9.52	ug/L	95		
Dichlorodifluoromethane	10.0	9.44	ug/L	94		
1,1-Dichloroethane	10.0	11.2	ug/L	112		
1,2-Dichloroethane	10.0	10.5	ug/L	105		
1,1-Dichloroethene	10.0	11.4	ug/L	114		
1,2-Dichloropropane	10.0	10.6	ug/L	106		
Ethylbenzene	10.0	9.82	ug/L	98		
2-Hexanone	100	114	ug/L	114		
Isopropylbenzene	10.0	9.89	ug/L	99		
Methylene Chloride	10.0	8.20	-	82		
4-Methyl-2-pentanone	100	113	ug/L	113		
Methyl tert-butyl ether	10.0	10.8	ug/L	108	67 - 130	
Styrene	10.0	9.53	ug/L	95		
1,1,2,2-Tetrachloroethane	10.0	9.49	ug/L	95	67 - 130	
Tetrachloroethene	10.0	11.1	ug/L	111	66 - 143	
Toluene	10.0	10.9	ug/L	109	72 - 132	
trans-1,2-Dichloroethene	10.0	10.9	ug/L	109	74 - 139	
trans-1,3-Dichloropropene	10.0	10.5	ug/L	105	57 - 130	
1,2,4-Trichlorobenzene	10.0	9.74	ug/L	97	73 - 133	
1,1,1-Trichloroethane	10.0	11.8	ug/L	118	69 - 132	
1,1,2-Trichloroethane	10.0	10.7	ug/L	107	70 - 130	
Trichloroethene	10.0	11.2	ug/L	112	74 - 139	
Trichlorofluoromethane	10.0	9.10	ug/L	91	62 - 146	
Vinyl chloride	10.0	11.2	ug/L	112	59 - 147	

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 105 70 - 130

TestAmerica Savannah

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

000 107 020 1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 660-182601/5

Matrix: Water

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA

Analysis Batch: 182601	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	100	112		ug/L		112	62 - 142	3	30
Benzene	10.0	10.4		ug/L		104	71 - 131	7	30
Bromodichloromethane	10.0	10.4		ug/L		104	70 - 131	4	30
Bromoform	10.0	9.49		ug/L		95	68 - 130	3	30
Bromomethane	10.0	11.0		ug/L		110	10 - 150	13	30
2-Butanone (MEK)	100	112		ug/L		112	58 - 132	2	30
Carbon disulfide	10.0	10.6		ug/L		106	43 - 150	1	30
Carbon tetrachloride	10.0	12.2		ug/L		122	70 - 134	1	30
Chlorobenzene	10.0	9.48		ug/L		95	71 - 121	5	30
Chloroethane	10.0	11.0		ug/L		110	46 - 150	26	30
Chloroform	10.0	10.6		ug/L		106	73 - 133	3	30
Chloromethane	10.0	8.99		ug/L		90	52 - 150	2	30
cis-1,2-Dichloroethene	10.0	10.5		ug/L		105	73 - 133	2	30
cis-1,3-Dichloropropene	10.0	10.4		ug/L		104	68 - 130	2	30
Dibromochloromethane	10.0	9.59		ug/L		96	58 - 130	6	30
1,2-Dibromo-3-Chloropropane	10.0	9.38		ug/L		94	54 - 130	1	30
1,2-Dibromoethane	10.0	9.90		ug/L		99	71 - 131	5	30
1,2-Dichlorobenzene	10.0	9.18		ug/L		92	73 - 133	3	30
1,3-Dichlorobenzene	10.0	9.22		ug/L		92	73 - 133	5	30
1.4-Dichlorobenzene	10.0	9.24		ug/L		92	73 - 133	3	30
Dichlorodifluoromethane	10.0	10.2		ug/L		102	10 - 150	8	30
1,1-Dichloroethane	10.0	10.6		ug/L		106	72 - 130	6	30
1,2-Dichloroethane	10.0	9.99		ug/L		100	71 - 131	5	30
1,1-Dichloroethene	10.0	11.6		ug/L		116	56 - 141	2	30
1,2-Dichloropropane	10.0	10.5		ug/L		105	72 - 132	2	30
Ethylbenzene	10.0	9.73		ug/L		97	71 - 131	1	30
2-Hexanone	100	112		ug/L		112	57 ₋ 136	1	30
Isopropylbenzene	10.0	10.0		ug/L		100	70 - 131	2	30
Methylene Chloride	10.0	10.2		ug/L		102	68 - 142	22	30
4-Methyl-2-pentanone	100	114		ug/L		114	52 - 137	1	30
Methyl tert-butyl ether	10.0	10.2		ug/L		102	67 - 130	5	30
Styrene	10.0	9.58		ug/L		96	68 - 131	0	30
1,1,2,2-Tetrachloroethane	10.0	9.03		ug/L		90	67 - 130	5	30
Tetrachloroethene	10.0	11.0		ug/L		110	66 - 143	0	30
Toluene	10.0	10.8		ug/L		108	72 - 132	1	30
trans-1,2-Dichloroethene	10.0	10.9		ug/L		109	74 - 139	0	30
trans-1,3-Dichloropropene	10.0	9.91		ug/L		99	57 - 130	6	30
1,2,4-Trichlorobenzene	10.0	9.26		ug/L		93	73 - 133	5	30
1,1,1-Trichloroethane	10.0	12.1		ug/L		121	69 - 132	2	30
1,1,2-Trichloroethane	10.0	10.2		ug/L		102	70 - 130	5	30
Trichloroethene	10.0	11.2		ug/L		112	74 - 139	1	30
Trichlorofluoromethane	10.0	11.7		ug/L		117	62 - 146	25	30
Vinyl chloride	10.0	10.7		ug/L		107	59 - 147	4	30
Xylenes, Total	20.0	19.2		ug/L		96	70 - 130	1	30

 Surrogate
 %Recovery
 Qualifier
 Limits

 Toluene-d8 (Surr)
 103
 70 - 130

TestAmerica Savannah

4

6

8

9

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-137928-6 MS

Matrix: Water

Analysis Batch: 182601

Client Sample ID: 6489-DP-2 (9-19)

Prep Type: Total/NA

Analyte	•	Sample Qualifier	Spike Added		MS Qualifier Unit	D %Rec	%Rec. Limits
Acetone	20	U	100	98.1	ug/L		62 - 142
Benzene	1.0	U	10.0	9.53	ug/L	95	71 - 131
Bromodichloromethane	1.0	U	10.0	9.46	ug/L	95	70 - 131
Bromoform	1.0	U	10.0	8.02	ug/L	80	68 - 130
Bromomethane	5.0	U	10.0	6.24	ug/L	62	10 - 150
2-Butanone (MEK)	10	U	100	97.3	ug/L	97	58 - 132
Carbon disulfide	2.0		10.0	8.85	ug/L	88	43 - 150
Carbon tetrachloride	1.0	U	10.0	11.0	ug/L	110	70 - 134
Chlorobenzene	1.0	U	10.0	8.22	ug/L	82	71 - 121
Chloroethane	5.0	U F2	10.0	7.21	ug/L	72	46 - 150
Chloroform	1.0		10.0	9.38	ug/L	94	73 - 133
Chloromethane	4.0		10.0	7.10	ug/L	71	52 - 150
cis-1,2-Dichloroethene	1.0		10.0	9.20	ug/L	92	73 - 133
cis-1,3-Dichloropropene	1.0		10.0	8.28	ug/L	83	68 - 130
Dibromochloromethane	1.0		10.0	8.38	ug/L	84	58 - 130
1,2-Dibromo-3-Chloropropane	5.0		10.0	7.66	ug/L	77	54 - 130
1,2-Dibromoethane	1.0		10.0	8.90	ug/L	89	71 - 131
1,2-Dichlorobenzene	1.0		10.0	8.04	ug/L	80	73 - 133
1,3-Dichlorobenzene	1.0		10.0	8.05	ug/L	81	73 - 133
1,4-Dichlorobenzene	1.0		10.0	8.01	_	80	73 - 133 73 - 133
Dichlorodifluoromethane	5.0		10.0	8.75	ug/L	87	10 ₋ 150
					ug/L		
1,1-Dichloroethane	1.0		10.0	9.38	ug/L	94	72 - 130
1,2-Dichloroethane	1.0		10.0	8.82	ug/L	88	71 - 131
1,1-Dichloroethene	1.0		10.0	9.69	ug/L	97	56 - 141
1,2-Dichloropropane	1.0		10.0	9.22	ug/L	92	72 - 132
Ethylbenzene	1.0		10.0	8.46	ug/L	85	71 - 131
2-Hexanone	10		100	96.6	ug/L	97	57 - 136
Isopropylbenzene	1.0		10.0	8.48	ug/L	85	70 - 131
Methylene Chloride		U F1	10.0	7.30	Ū	73	68 - 142
4-Methyl-2-pentanone	10		100	95.7	ug/L	96	52 - 137
Methyl tert-butyl ether	1.0		10.0	9.06	ug/L	91	67 - 130
Styrene	2.0	U	10.0	8.44	ug/L	84	68 - 131
1,1,2,2-Tetrachloroethane	1.0	U	10.0	8.22	ug/L	82	67 - 130
Tetrachloroethene	1.0	Ü	10.0	9.60	ug/L	96	66 - 143
Toluene	1.0	U	10.0	9.25	ug/L	93	72 - 132
trans-1,2-Dichloroethene	1.0	U	10.0	9.43	ug/L	94	74 - 139
trans-1,3-Dichloropropene	1.0	U	10.0	8.28	ug/L	83	57 - 130
1,2,4-Trichlorobenzene	1.0	U	10.0	7.58	ug/L	76	73 - 133
1,1,1-Trichloroethane	1.0	U	10.0	9.79	ug/L	98	69 - 132
1,1,2-Trichloroethane	1.0	U	10.0	9.61	ug/L	96	70 - 130
Trichloroethene	1.0	U	10.0	9.68	ug/L	97	74 - 139
Trichlorofluoromethane	5.0	U	10.0	9.26	ug/L	93	62 - 146
Vinyl chloride	1.0		10.0	7.78	ug/L	78	59 - 147
Xylenes, Total	3.0		20.0	16.4	ug/L	82	70 - 130
	MS	MS					
Surrogate	%Recovery	Qualifier	Limits				
Toluene-d8 (Surr)	104		70 - 130				

TestAmerica Savannah

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-137928-6 MSD

Matrix: Water

Surrogate

Toluene-d8 (Surr)

Analysis Batch: 182601

Client Sample ID: 6489-DP-2 (9-19)

Prep Type: Total/NA

	•	Sample	Spike		MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Acetone	20		100	111		ug/L		111	62 - 142	13	30
Benzene	1.0		10.0	9.24		ug/L		92	71 - 131	3	30
Bromodichloromethane	1.0	U	10.0	9.77		ug/L		98	70 - 131	3	30
Bromoform	1.0	U	10.0	8.72		ug/L		87	68 - 130	8	30
Bromomethane	5.0	U	10.0	8.22		ug/L		82	10 - 150	27	30
2-Butanone (MEK)	10		100	112		ug/L		112	58 - 132	14	30
Carbon disulfide	2.0		10.0	8.53		ug/L		85	43 - 150	4	30
Carbon tetrachloride	1.0		10.0	9.38		ug/L		94	70 - 134	16	30
Chlorobenzene	1.0	U	10.0	8.82		ug/L		88	71 - 121	7	30
Chloroethane	5.0	U F2	10.0	10.0	F2	ug/L		100	46 - 150	33	30
Chloroform	1.0	U	10.0	9.26		ug/L		93	73 - 133	1	30
Chloromethane	4.0	U	10.0	7.78		ug/L		78	52 - 150	9	30
cis-1,2-Dichloroethene	1.0	Ü	10.0	9.40		ug/L		94	73 - 133	2	30
cis-1,3-Dichloropropene	1.0	U	10.0	9.53		ug/L		95	68 - 130	14	30
Dibromochloromethane	1.0	U	10.0	9.20		ug/L		92	58 - 130	9	30
1,2-Dibromo-3-Chloropropane	5.0	Ü	10.0	9.42		ug/L		94	54 - 130	21	30
1,2-Dibromoethane	1.0	U	10.0	9.94		ug/L		99	71 - 131	11	30
1,2-Dichlorobenzene	1.0	U	10.0	8.62		ug/L		86	73 - 133	7	30
1,3-Dichlorobenzene	1.0	U	10.0	8.59		ug/L		86	73 - 133	6	30
1,4-Dichlorobenzene	1.0	U	10.0	8.47		ug/L		85	73 - 133	6	30
Dichlorodifluoromethane	5.0	U	10.0	8.99		ug/L		90	10 - 150	3	30
1,1-Dichloroethane	1.0	U	10.0	9.31		ug/L		93	72 - 130	1	30
1,2-Dichloroethane	1.0	U	10.0	9.57		ug/L		96	71 - 131	8	30
1,1-Dichloroethene	1.0	U	10.0	9.07		ug/L		91	56 - 141	7	30
1,2-Dichloropropane	1.0	U	10.0	9.81		ug/L		98	72 - 132	6	30
Ethylbenzene	1.0	U	10.0	8.68		ug/L		87	71 - 131	3	30
2-Hexanone	10	U	100	114		ug/L		114	57 - 136	16	30
Isopropylbenzene	1.0	Ü	10.0	8.13		ug/L		81	70 - 131	4	30
Methylene Chloride	10	U F1	10.0	6.62	J F1	ug/L		66	68 - 142	10	30
4-Methyl-2-pentanone	10	U	100	113		ug/L		113	52 - 137	16	30
Methyl tert-butyl ether	1.0		10.0	10.1		ug/L		101	67 - 130	11	30
Styrene	2.0	U	10.0	8.45		ug/L		84	68 - 131	0	30
1,1,2,2-Tetrachloroethane	1.0	U	10.0	9.04		ug/L		90	67 - 130	9	30
Tetrachloroethene	1.0		10.0	9.10		ug/L		91	66 - 143	5	30
Toluene	1.0	U	10.0	9.47		ug/L		95	72 - 132	2	30
trans-1,2-Dichloroethene	1.0	U	10.0	9.18		ug/L		92	74 - 139	3	30
trans-1,3-Dichloropropene	1.0		10.0	9.45		ug/L		94	57 - 130	13	30
1,2,4-Trichlorobenzene	1.0		10.0	8.67		ug/L		87	73 - 133	13	30
1,1,1-Trichloroethane	1.0		10.0	9.13		ug/L		91	69 - 132	7	30
1,1,2-Trichloroethane	1.0		10.0	10.5		ug/L		105	70 - 130	9	30
Trichloroethene	1.0		10.0	9.09		ug/L		91	74 - 139	6	30
Trichlorofluoromethane	5.0		10.0	9.09		ug/L		91	62 - 146	2	30
Vinyl chloride	1.0		10.0	9.26		ug/L		93	59 - 147	17	30
Xylenes, Total	3.0		20.0	17.3		ug/L		86	70 - 130	5	30
•						•					

TestAmerica Savannah

Page 23 of 53

Limits

70 - 130

%Recovery Qualifier

105

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-13792 Matrix: Solid Analysis Batch: 478753	8-4 MS						Clien	ıt Samp	ole ID: 6489-DP-2 (3-4) Prep Type: Total/NA Prep Batch: 477445
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	6.0	U	77.2	67.3		ug/Kg	<u> </u>		

Analysis Batch: 478753		Sample	Spike		MS	11-:4		0/ Baa	Prep Batch: 477445 %Rec.
Analyte Dichlorodifluoromethane	6.0	Qualifier	Added	67.3	Qualifier	Unit ug/Kg	— D ※	%Rec	Limits
Chloromethane	6.0		77.2	67.2		ug/Kg ug/Kg	☼		
Vinyl chloride	6.0		77.2	68.6		ug/Kg ug/Kg	≎		
Bromomethane	6.0		77.2	80.5		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·		
Chloroethane	6.0		77.2	84.2			☼		
Trichlorofluoromethane	6.0		77.2	85.3		ug/Kg	≎		
1,1-Dichloroethene						ug/Kg	· · · · · · · · · · · · · · · · · · ·		
	6.0 76	U	77.2 386	83.4 597		ug/Kg	₩		
Acetone						ug/Kg	₩		
Carbon disulfide	6.0		77.2	84.8		ug/Kg			
Methylene Chloride	6.0		77.2	88.2		ug/Kg			
trans-1,2-Dichloroethene	6.0		77.2	75.1		ug/Kg	☼		
Methyl tert-butyl ether	6.0		77.2	86.4		ug/Kg	☆		
1,1-Dichloroethane	6.0		77.2	73.9		ug/Kg	*		
cis-1,2-Dichloroethene	6.0		77.2	72.4		ug/Kg	₩		
2-Butanone (MEK)	3.3		386	438		ug/Kg	₩		
Chloroform	6.0		77.2	77.5		ug/Kg	₽		
1,1,1-Trichloroethane	6.0	U	77.2	75.5		ug/Kg	₩		
Carbon tetrachloride	6.0	U	77.2	75.9		ug/Kg	☼		
Benzene	6.0	U	77.2	74.9		ug/Kg	₽		
1,2-Dichloroethane	6.0	U	77.2	83.3		ug/Kg	₩		
Trichloroethene	6.0	U	77.2	76.1		ug/Kg	₩		
1,2-Dichloropropane	6.0	U	77.2	74.2		ug/Kg	₩		
Bromodichloromethane	6.0	U	77.2	77.9		ug/Kg	☼		
cis-1,3-Dichloropropene	6.0	U	77.2	76.1		ug/Kg	☼		
4-Methyl-2-pentanone	30	U	386	457		ug/Kg			
Toluene	6.0	U	77.2	72.5		ug/Kg	₩		
trans-1,3-Dichloropropene	6.0	U	77.2	79.8		ug/Kg	☼		
1,1,2-Trichloroethane	6.0		77.2	82.2		ug/Kg			
Tetrachloroethene	6.0		77.2	76.6		ug/Kg	₩		
2-Hexanone	30	U	386	451		ug/Kg	₩		
Dibromochloromethane	6.0		77.2	83.4		ug/Kg			
1.2-Dibromoethane	6.0		77.2	86.3		ug/Kg	₩		
Chlorobenzene	6.0		77.2	75.1		ug/Kg	₩		
Ethylbenzene	6.0		77.2	74.8		ug/Kg			
Xylenes, Total	12		154	153		ug/Kg ug/Kg			
•	6.0		77.2	78.6			☼		
Styrene						ug/Kg			
Bromoform	6.0		77.2	90.3		ug/Kg	₩		
Isopropylbenzene	6.0		77.2	74.4		ug/Kg			
1,1,2,2-Tetrachloroethane	6.0		77.2	86.6		ug/Kg			
1,3-Dichlorobenzene	6.0		77.2	72.2		ug/Kg	\$		
1,4-Dichlorobenzene	6.0		77.2	72.1		ug/Kg	≎		
1,2-Dichlorobenzene	6.0		77.2	74.2		ug/Kg			
1,2-Dibromo-3-Chloropropane	12		77.2	82.5		ug/Kg	₩		
1,2,4-Trichlorobenzene	6.0	U	77.2	64.6		ug/Kg	☼		
		MS							
Surrogate	%Recovery	Qualifier	70 - 130						

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-137928-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-137928-4 MS

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: 6489-DP-2 (3-4) **Prep Type: Total/NA**

Prep Batch: 477445

	MS MS							
Surrogate	%Recovery	Qualifier	Limits					
1,2-Dichloroethane-d4 (Surr)	106		70 - 130					
Dibromofluoromethane (Surr)	103		70 - 130					
4-Bromofluorobenzene (Surr)	91		70 - 130					

Client Sample ID: 6489-DP-2 (3-4)

Prep Type: Total/NA

Prep Batch: 477445

Lab Sample ID: 680-137928-4 MSD

Matrix: Solid

Analysis Batch: 478753

Analysis Batch: 478753	Sample	Sample	Spike	MSD	MSD				Prep B %Rec.	atch: 4	77445 RPE
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Dichlorodifluoromethane	6.0		76.0	66.7	Qualifier	ug/Kg	— Ö	701100	Lillits		
Chloromethane	6.0		76.0	66.7		ug/Kg	₩				
Vinyl chloride	6.0		76.0	69.0		ug/Kg	☆				
Bromomethane	6.0		76.0	80.2		ug/Kg					
Chloroethane	6.0		76.0	82.5		ug/Kg	₩				
Trichlorofluoromethane	6.0		76.0	87.2		ug/Kg	₩				
1,1-Dichloroethene	6.0		76.0	80.2		ug/Kg					
Acetone	76		380	524		ug/Kg	☆				
Carbon disulfide	6.0	U	76.0	86.1		ug/Kg	₩				
Methylene Chloride	6.0	U	76.0	83.9		ug/Kg					
trans-1,2-Dichloroethene	6.0	U	76.0	72.0		ug/Kg	₩				
Methyl tert-butyl ether	6.0	U	76.0	78.4		ug/Kg	₩				
1,1-Dichloroethane	6.0	U	76.0	72.1		ug/Kg					
cis-1,2-Dichloroethene	6.0	U	76.0	71.1		ug/Kg	₩				
2-Butanone (MEK)	3.3	J	380	368		ug/Kg	₩				
Chloroform	6.0	U	76.0	73.3		ug/Kg					
1,1,1-Trichloroethane	6.0	U	76.0	76.1		ug/Kg	☆				
Carbon tetrachloride	6.0	U	76.0	77.9		ug/Kg	₩				
Benzene	6.0	U	76.0	74.3		ug/Kg					
1,2-Dichloroethane	6.0	U	76.0	77.8		ug/Kg	₩				
Trichloroethene	6.0	U	76.0	75.1		ug/Kg	≎				
1,2-Dichloropropane	6.0	U	76.0	72.2		ug/Kg	₩				
Bromodichloromethane	6.0	U	76.0	75.6		ug/Kg	≎				
cis-1,3-Dichloropropene	6.0	U	76.0	74.0		ug/Kg	≎				
4-Methyl-2-pentanone	30	U	380	422		ug/Kg	₽				
Toluene	6.0	U	76.0	73.2		ug/Kg	₩				
trans-1,3-Dichloropropene	6.0	U	76.0	76.5		ug/Kg	₩				
1,1,2-Trichloroethane	6.0	U	76.0	78.1		ug/Kg	₽				
Tetrachloroethene	6.0	U	76.0	75.8		ug/Kg	≎				
2-Hexanone	30	U	380	417		ug/Kg	≎				
Dibromochloromethane	6.0	U	76.0	80.9		ug/Kg	₩				
1,2-Dibromoethane	6.0	U	76.0	84.5		ug/Kg	≎				
Chlorobenzene	6.0	U	76.0	74.4		ug/Kg	≎				
Ethylbenzene	6.0	U	76.0	73.9		ug/Kg	₩				
Xylenes, Total	12	U	152	148		ug/Kg	☆				
Styrene	6.0	U	76.0	76.5		ug/Kg	☆				
Bromoform	6.0	U	76.0	85.2		ug/Kg	₽				
Isopropylbenzene	6.0	U	76.0	74.4		ug/Kg	☆				
1,1,2,2-Tetrachloroethane	6.0	U	76.0	82.1		ug/Kg	☆				

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MSD MSD

%Recovery Qualifier

99

101

100

93

Lab Sample ID: 680-137928-4 MSD

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: 6489-DP-2 (3-4) Prep Type: Total/NA

Prep Batch: 477445

/ many one Date in the co										ato	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,3-Dichlorobenzene	6.0	U	76.0	72.0		ug/Kg	₩				
1,4-Dichlorobenzene	6.0	U	76.0	72.9		ug/Kg	₽				
1,2-Dichlorobenzene	6.0	U	76.0	73.9		ug/Kg	₩				
1,2-Dibromo-3-Chloropropane	12	U	76.0	85.1		ug/Kg	₩				
1,2,4-Trichlorobenzene	6.0	U	76.0	71.2		ug/Kg	₩				

Limits

70 - 130

70 - 130

70 - 130 70 - 130

Lab Sample ID: MB 680-478515/10

Matrix: Solid

Surrogate

Toluene-d8 (Surr)

Analysis Batch: 478515

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 4/8515	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	200	U	200	38	ug/Kg			05/04/17 12:43	40
Chloromethane	200	U	200	40	ug/Kg			05/04/17 12:43	40
Vinyl chloride	200	U	200	60	ug/Kg			05/04/17 12:43	40
Bromomethane	200	U	200	60	ug/Kg			05/04/17 12:43	40
Chloroethane	200	U	200	110	ug/Kg			05/04/17 12:43	40
Trichlorofluoromethane	200	U	200	48	ug/Kg			05/04/17 12:43	40
1,1-Dichloroethene	200	U	200	60	ug/Kg			05/04/17 12:43	40
Acetone	2000	U	2000	440	ug/Kg			05/04/17 12:43	40
Carbon disulfide	200	U	200	44	ug/Kg			05/04/17 12:43	40
Methylene Chloride	200	U	200	39	ug/Kg			05/04/17 12:43	40
trans-1,2-Dichloroethene	200	U	200	25	ug/Kg			05/04/17 12:43	40
Methyl tert-butyl ether	200	U	200	40	ug/Kg			05/04/17 12:43	40
1,1-Dichloroethane	200	Ü	200	44	ug/Kg			05/04/17 12:43	40
cis-1,2-Dichloroethene	200	U	200	56	ug/Kg			05/04/17 12:43	40
2-Butanone (MEK)	1000	U	1000	96	ug/Kg			05/04/17 12:43	40
Chloroform	200	Ü	200	44	ug/Kg			05/04/17 12:43	40
1,1,1-Trichloroethane	200	U	200	24	ug/Kg			05/04/17 12:43	40
Carbon tetrachloride	200	U	200	33	ug/Kg			05/04/17 12:43	40
Benzene	200	U	200	29	ug/Kg			05/04/17 12:43	40
1,2-Dichloroethane	200	U	200	44	ug/Kg			05/04/17 12:43	40
Trichloroethene	200	U	200	52	ug/Kg			05/04/17 12:43	40
1,2-Dichloropropane	200	U	200	34	ug/Kg			05/04/17 12:43	40
Bromodichloromethane	200	U	200	39	ug/Kg			05/04/17 12:43	40
cis-1,3-Dichloropropene	200	U	200	33	ug/Kg			05/04/17 12:43	40
4-Methyl-2-pentanone	1000		1000		ug/Kg			05/04/17 12:43	40
Toluene	200	U	200	34	ug/Kg			05/04/17 12:43	40
trans-1,3-Dichloropropene	200	U	200	35	ug/Kg			05/04/17 12:43	40
1,1,2-Trichloroethane	200	U	200		ug/Kg			05/04/17 12:43	40
Tetrachloroethene	200	U	200		ug/Kg			05/04/17 12:43	40
2-Hexanone	1000	U	1000	130	ug/Kg			05/04/17 12:43	40
Dibromochloromethane	200		200		ug/Kg			05/04/17 12:43	40

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: MB 680-478515/10

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 478515

Matrix: Solid

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	200	U	200	60	ug/Kg			05/04/17 12:43	40
Chlorobenzene	200	U	200	38	ug/Kg			05/04/17 12:43	40
Ethylbenzene	200	U	200	52	ug/Kg			05/04/17 12:43	40
Xylenes, Total	400	U	400	44	ug/Kg			05/04/17 12:43	40
Styrene	200	U	200	37	ug/Kg			05/04/17 12:43	40
Bromoform	200	U	200	60	ug/Kg			05/04/17 12:43	40
Isopropylbenzene	200	U	200	76	ug/Kg			05/04/17 12:43	40
1,1,2,2-Tetrachloroethane	200	U	200	64	ug/Kg			05/04/17 12:43	40
1,3-Dichlorobenzene	200	U	200	64	ug/Kg			05/04/17 12:43	40
1,4-Dichlorobenzene	200	U	200	30	ug/Kg			05/04/17 12:43	40
1,2-Dichlorobenzene	200	U	200	52	ug/Kg			05/04/17 12:43	40
1,2-Dibromo-3-Chloropropane	400	U	400	180	ug/Kg			05/04/17 12:43	40
1,2,4-Trichlorobenzene	200	U	200	36	ug/Kg			05/04/17 12:43	40

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	70 - 130		05/04/17 12:43	40
1,2-Dichloroethane-d4 (Surr)	97	70 - 130		05/04/17 12:43	40
Dibromofluoromethane (Surr)	99	70 - 130		05/04/17 12:43	40
4-Bromofluorobenzene (Surr)	93	70 - 130		05/04/17 12:43	40

Lab Sample ID: MB 680-478515/11

Matrix: Solid

Analysis Batch: 478515

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.0	U –	5.0	0.94	ug/Kg			05/04/17 13:06	1
Chloromethane	5.0	U	5.0	1.0	ug/Kg			05/04/17 13:06	1
Vinyl chloride	5.0	U	5.0	1.5	ug/Kg			05/04/17 13:06	1
Bromomethane	5.0	U	5.0	1.5	ug/Kg			05/04/17 13:06	1
Chloroethane	5.0	U	5.0	2.7	ug/Kg			05/04/17 13:06	1
Trichlorofluoromethane	5.0	U	5.0	1.2	ug/Kg			05/04/17 13:06	1
1,1-Dichloroethene	5.0	U	5.0	1.5	ug/Kg			05/04/17 13:06	1
Acetone	50	U	50	11	ug/Kg			05/04/17 13:06	1
Carbon disulfide	5.0	U	5.0	1.1	ug/Kg			05/04/17 13:06	1
Methylene Chloride	5.0	U	5.0	0.98	ug/Kg			05/04/17 13:06	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.63	ug/Kg			05/04/17 13:06	1
Methyl tert-butyl ether	5.0	U	5.0	1.0	ug/Kg			05/04/17 13:06	1
1,1-Dichloroethane	5.0	U	5.0	1.1	ug/Kg			05/04/17 13:06	1
cis-1,2-Dichloroethene	5.0	U	5.0	1.4	ug/Kg			05/04/17 13:06	1
2-Butanone (MEK)	25	U	25	2.4	ug/Kg			05/04/17 13:06	1
Chloroform	5.0	U	5.0	1.1	ug/Kg			05/04/17 13:06	1
1,1,1-Trichloroethane	5.0	U	5.0	0.59	ug/Kg			05/04/17 13:06	1
Carbon tetrachloride	5.0	U	5.0	0.83	ug/Kg			05/04/17 13:06	1
Benzene	5.0	U	5.0	0.73	ug/Kg			05/04/17 13:06	1
1,2-Dichloroethane	5.0	U	5.0	1.1	ug/Kg			05/04/17 13:06	1
Trichloroethene	5.0	U	5.0	1.3	ug/Kg			05/04/17 13:06	1
1,2-Dichloropropane	5.0	U	5.0	0.86	ug/Kg			05/04/17 13:06	1
Bromodichloromethane	5.0	U	5.0	0.97	ug/Kg			05/04/17 13:06	1

TestAmerica Savannah

Page 27 of 53

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-478515/11

Matrix: Solid

Analysis Batch: 478515

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier **MDL** Unit Analyte RL **Prepared** Analyzed Dil Fac 0.83 ug/Kg cis-1,3-Dichloropropene 5.0 U 5.0 05/04/17 13:06 4-Methyl-2-pentanone 25 U 25 4.2 ug/Kg 05/04/17 13:06 Toluene 5.0 U 5.0 05/04/17 13:06 0.84 ug/Kg trans-1,3-Dichloropropene 5.0 U 5.0 0.87 ug/Kg 05/04/17 13:06 1,1,2-Trichloroethane 5.0 U 5.0 1.3 ug/Kg 05/04/17 13:06 Tetrachloroethene 5.0 U 5.0 1.9 ug/Kg 05/04/17 13:06 2-Hexanone 25 U 25 3.3 ug/Kg 05/04/17 13:06 Dibromochloromethane 5.0 U 5.0 1.7 ug/Kg 05/04/17 13:06 1.2-Dibromoethane 5.0 U 5.0 1.5 ug/Kg 05/04/17 13:06 Chlorobenzene 5.0 U 5.0 0.96 ug/Kg 05/04/17 13:06 Ethylbenzene 5.0 U 5.0 1.3 ug/Kg 05/04/17 13:06 Xylenes, Total 10 10 U 1.1 ug/Kg 05/04/17 13:06 5.0 U 5.0 0.93 ug/Kg Styrene 05/04/17 13:06 Bromoform 5.0 U 5.0 1.5 ug/Kg 05/04/17 13:06 Isopropylbenzene 5.0 U 5.0 05/04/17 13:06 1.9 ug/Kg 1,1,2,2-Tetrachloroethane 5.0 U 5.0 1.6 ug/Kg 05/04/17 13:06 1,3-Dichlorobenzene 5.0 U 5.0 1.6 ug/Kg 05/04/17 13:06 1.4-Dichlorobenzene 5.0 U 5.0 0.74 ug/Kg 05/04/17 13:06 1,2-Dichlorobenzene 5.0 U 5.0 1.3 ug/Kg 05/04/17 13:06 1,2-Dibromo-3-Chloropropane 10 U 10 4.4 ug/Kg 05/04/17 13:06 5.0 1,2,4-Trichlorobenzene 5.0 U 0.89 ug/Kg 05/04/17 13:06

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	70 - 130		05/04/17 13:06	
1,2-Dichloroethane-d4 (Surr)	97	70 - 130		05/04/17 13:06	1
Dibromofluoromethane (Surr)	97	70 - 130		05/04/17 13:06	1
4-Bromofluorobenzene (Surr)	95	70 - 130		05/04/17 13:06	1

Lab Sample ID: LCS 680-478515/4

Matrix: Solid

Analysis Batch: 478515

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Analysis Baton. 470010	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	50.0	46.7		ug/Kg		93	40 - 160
Chloromethane	50.0	43.1		ug/Kg		86	40 - 160
Vinyl chloride	50.0	44.3		ug/Kg		89	70 - 130
Bromomethane	50.0	44.9		ug/Kg		90	40 - 160
Chloroethane	50.0	45.8		ug/Kg		92	40 - 160
Trichlorofluoromethane	50.0	51.5		ug/Kg		103	40 - 160
1,1-Dichloroethene	50.0	47.9		ug/Kg		96	70 - 130
Acetone	250	207		ug/Kg		83	40 - 160
Carbon disulfide	50.0	44.9		ug/Kg		90	40 - 160
Methylene Chloride	50.0	42.7		ug/Kg		85	70 - 130
trans-1,2-Dichloroethene	50.0	45.4		ug/Kg		91	70 - 130
Methyl tert-butyl ether	50.0	43.2		ug/Kg		86	70 - 130
1,1-Dichloroethane	50.0	44.0		ug/Kg		88	70 - 130
cis-1,2-Dichloroethene	50.0	44.6		ug/Kg		89	70 - 130
2-Butanone (MEK)	250	223		ug/Kg		89	40 - 160

TestAmerica Savannah

Page 28 of 53

6

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-478515/4

Matrix: Solid

Analysis Batch: 478515

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroform	50.0	47.5		ug/Kg		95	70 - 130	
1,1,1-Trichloroethane	50.0	51.8		ug/Kg		104	70 - 130	
Carbon tetrachloride	50.0	54.7		ug/Kg		109	70 - 130	
Benzene	50.0	44.1		ug/Kg		88	70 - 130	
1,2-Dichloroethane	50.0	46.6		ug/Kg		93	70 - 130	
Trichloroethene	50.0	47.5		ug/Kg		95	70 - 130	
1,2-Dichloropropane	50.0	41.2		ug/Kg		82	70 - 130	
Bromodichloromethane	50.0	47.9		ug/Kg		96	70 - 130	
cis-1,3-Dichloropropene	50.0	45.7		ug/Kg		91	70 - 130	
4-Methyl-2-pentanone	250	205		ug/Kg		82	40 - 160	
Toluene	50.0	41.9		ug/Kg		84	70 - 130	
trans-1,3-Dichloropropene	50.0	47.0		ug/Kg		94	70 - 130	
1,1,2-Trichloroethane	50.0	40.8		ug/Kg		82	70 - 130	
Tetrachloroethene	50.0	51.1		ug/Kg		102	70 - 130	
2-Hexanone	250	212		ug/Kg		85	40 - 160	
Dibromochloromethane	50.0	47.9		ug/Kg		96	70 - 130	
1,2-Dibromoethane	50.0	42.9		ug/Kg		86	70 - 130	
Chlorobenzene	50.0	46.5		ug/Kg		93	70 - 130	
Ethylbenzene	50.0	47.5		ug/Kg		95	70 - 130	
Xylenes, Total	100	96.3		ug/Kg		96	70 - 130	
Styrene	50.0	45.4		ug/Kg		91	70 - 130	
Bromoform	50.0	51.6		ug/Kg		103	70 - 130	
Isopropylbenzene	50.0	48.6		ug/Kg		97	70 - 130	
1,1,2,2-Tetrachloroethane	50.0	44.8		ug/Kg		90	70 - 130	
1,3-Dichlorobenzene	50.0	47.7		ug/Kg		95	70 - 130	
1,4-Dichlorobenzene	50.0	47.2		ug/Kg		94	70 - 130	
1,2-Dichlorobenzene	50.0	45.9		ug/Kg		92	70 - 130	
1,2-Dibromo-3-Chloropropane	50.0	49.2		ug/Kg		98	40 - 160	
1,2,4-Trichlorobenzene	50.0	49.6		ug/Kg		99	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	90		70 - 130
1,2-Dichloroethane-d4 (Surr)	91		70 - 130
Dibromofluoromethane (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	90		70 - 130

Lab Sample ID: LCSD 680-478515/5

Matrix: Solid

Analysis Batch: 478515

Client Sample	ID: Lab	Control	Sample Dup	
		Prep Ty	pe: Total/NA	

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	47.4		ug/Kg		95	40 - 160	1	20
Chloromethane	50.0	42.5		ug/Kg		85	40 - 160	1	20
Vinyl chloride	50.0	44.3		ug/Kg		89	70 - 130	0	20
Bromomethane	50.0	44.3		ug/Kg		89	40 - 160	1	20
Chloroethane	50.0	47.0		ug/Kg		94	40 - 160	3	20
Trichlorofluoromethane	50.0	52.0		ug/Kg		104	40 - 160	1	20
1,1-Dichloroethene	50.0	46.8		ug/Kg		94	70 - 130	2	20

TestAmerica Savannah

5/9/2017

Page 29 of 53

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-478515/5

Matrix: Solid

Analysis Batch: 478515

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike LCSD L		LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	250	189		ug/Kg		76	40 - 160	9	20
Carbon disulfide	50.0	44.8		ug/Kg		90	40 - 160	0	20
Methylene Chloride	50.0	42.4		ug/Kg		85	70 - 130	1	20
trans-1,2-Dichloroethene	50.0	45.7		ug/Kg		91	70 - 130	1	20
Methyl tert-butyl ether	50.0	43.8		ug/Kg		88	70 - 130	1	20
1,1-Dichloroethane	50.0	45.0		ug/Kg		90	70 - 130	2	20
cis-1,2-Dichloroethene	50.0	45.4		ug/Kg		91	70 - 130	2	20
2-Butanone (MEK)	250	207		ug/Kg		83	40 - 160	7	20
Chloroform	50.0	47.5		ug/Kg		95	70 - 130	0	20
1,1,1-Trichloroethane	50.0	51.3		ug/Kg		103	70 - 130	1	20
Carbon tetrachloride	50.0	53.1		ug/Kg		106	70 - 130	3	20
Benzene	50.0	43.4		ug/Kg		87	70 - 130	2	20
1,2-Dichloroethane	50.0	46.6		ug/Kg		93	70 - 130	0	20
Trichloroethene	50.0	47.3		ug/Kg		95	70 - 130	0	20
1,2-Dichloropropane	50.0	41.1		ug/Kg		82	70 - 130	0	20
Bromodichloromethane	50.0	48.1		ug/Kg		96	70 - 130	1	20
cis-1,3-Dichloropropene	50.0	45.3		ug/Kg		91	70 - 130	1	20
4-Methyl-2-pentanone	250	191		ug/Kg		76	40 - 160	7	20
Toluene	50.0	42.7		ug/Kg		85	70 - 130	2	20
trans-1,3-Dichloropropene	50.0	46.7		ug/Kg		93	70 - 130	1	20
1,1,2-Trichloroethane	50.0	41.0		ug/Kg		82	70 - 130	1	20
Tetrachloroethene	50.0	50.5		ug/Kg		101	70 - 130	1	20
2-Hexanone	250	193		ug/Kg		77	40 - 160	10	20
Dibromochloromethane	50.0	48.3		ug/Kg		97	70 - 130	1	20
1,2-Dibromoethane	50.0	43.8		ug/Kg		88	70 - 130	2	20
Chlorobenzene	50.0	45.1		ug/Kg		90	70 - 130	3	20
Ethylbenzene	50.0	46.8		ug/Kg		94	70 - 130	1	20
Xylenes, Total	100	94.5		ug/Kg		95	70 - 130	2	20
Styrene	50.0	45.8		ug/Kg		92	70 - 130	1	20
Bromoform	50.0	48.4		ug/Kg		97	70 - 130	6	20
Isopropylbenzene	50.0	47.5		ug/Kg		95	70 - 130	2	20
1,1,2,2-Tetrachloroethane	50.0	41.4		ug/Kg		83	70 - 130	8	20
1,3-Dichlorobenzene	50.0	45.4		ug/Kg		91	70 - 130	5	20
1,4-Dichlorobenzene	50.0	45.6		ug/Kg		91	70 - 130	3	20
1,2-Dichlorobenzene	50.0	43.8		ug/Kg		88	70 - 130	5	20
1,2-Dibromo-3-Chloropropane	50.0	43.2		ug/Kg		86	40 - 160	13	20
1,2,4-Trichlorobenzene	50.0	48.5		ug/Kg		97	70 - 130	2	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	90		70 - 130
1,2-Dichloroethane-d4 (Surr)	93		70 - 130
Dibromofluoromethane (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	85		70 - 130

TestAmerica Savannah

5/9/2017

Page 30 of 53

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-478517/8	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Ratch: 478517	

		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.0		5.0		ug/Kg			05/04/17 11:53	1
Chloromethane	5.0		5.0		ug/Kg			05/04/17 11:53	1
Vinyl chloride	5.0		5.0		ug/Kg			05/04/17 11:53	1
Bromomethane	5.0		5.0		ug/Kg			05/04/17 11:53	1
Chloroethane	5.0		5.0		ug/Kg			05/04/17 11:53	1
Trichlorofluoromethane	5.0		5.0		ug/Kg			05/04/17 11:53	1
1,1-Dichloroethene	5.0	U	5.0		ug/Kg			05/04/17 11:53	1
Acetone	50	U	50	11	ug/Kg			05/04/17 11:53	1
Carbon disulfide	5.0	U	5.0	1.1	ug/Kg			05/04/17 11:53	1
Methylene Chloride	5.0	U	5.0	0.98	ug/Kg			05/04/17 11:53	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.63	ug/Kg			05/04/17 11:53	1
Methyl tert-butyl ether	5.0	U	5.0	1.0	ug/Kg			05/04/17 11:53	1
1,1-Dichloroethane	5.0	U	5.0	1.1	ug/Kg			05/04/17 11:53	1
cis-1,2-Dichloroethene	5.0	U	5.0	1.4	ug/Kg			05/04/17 11:53	1
2-Butanone (MEK)	25	U	25	2.4	ug/Kg			05/04/17 11:53	1
Chloroform	5.0	Ü	5.0	1.1	ug/Kg			05/04/17 11:53	1
1,1,1-Trichloroethane	5.0	U	5.0	0.59	ug/Kg			05/04/17 11:53	1
Carbon tetrachloride	5.0	U	5.0	0.83	ug/Kg			05/04/17 11:53	1
Benzene	5.0	U	5.0		ug/Kg			05/04/17 11:53	1
1,2-Dichloroethane	5.0	U	5.0		ug/Kg			05/04/17 11:53	1
Trichloroethene	5.0	U	5.0		ug/Kg			05/04/17 11:53	1
1,2-Dichloropropane	5.0	U	5.0		ug/Kg			05/04/17 11:53	1
Bromodichloromethane	5.0	U	5.0		ug/Kg			05/04/17 11:53	1
cis-1,3-Dichloropropene	5.0	U	5.0		ug/Kg			05/04/17 11:53	1
4-Methyl-2-pentanone	25		25		ug/Kg			05/04/17 11:53	1
Toluene	5.0		5.0		ug/Kg			05/04/17 11:53	1
trans-1,3-Dichloropropene	5.0		5.0		ug/Kg			05/04/17 11:53	1
1,1,2-Trichloroethane	5.0		5.0		ug/Kg			05/04/17 11:53	1
Tetrachloroethene	5.0		5.0		ug/Kg			05/04/17 11:53	1
2-Hexanone	25		25		ug/Kg			05/04/17 11:53	1
Dibromochloromethane	5.0		5.0		ug/Kg			05/04/17 11:53	
1,2-Dibromoethane	5.0		5.0		ug/Kg			05/04/17 11:53	1
Chlorobenzene	5.0		5.0		ug/Kg ug/Kg			05/04/17 11:53	1
Ethylbenzene	5.0		5.0		ug/Kg			05/04/17 11:53	
Xylenes, Total	10		10		ug/Kg ug/Kg			05/04/17 11:53	1
Styrene	5.0		5.0		ug/Kg ug/Kg			05/04/17 11:53	1
Bromoform	5.0				ug/Kg ug/Kg			05/04/17 11:53	
	5.0		5.0 5.0					05/04/17 11:53	1
Isopropylbenzene	5.0		5.0		ug/Kg ug/Kg			05/04/17 11:53	1
1,1,2,2-Tetrachloroethane									1
1,3-Dichlorobenzene	5.0		5.0		ug/Kg			05/04/17 11:53	1
1,4-Dichlorobenzene	5.0		5.0		ug/Kg			05/04/17 11:53	1
1,2-Dichlorobenzene	5.0		5.0		ug/Kg			05/04/17 11:53	
1,2-Dibromo-3-Chloropropane	10		10		ug/Kg			05/04/17 11:53	1
1,2,4-Trichlorobenzene	5.0	U	5.0	0.89	ug/Kg			05/04/17 11:53	1
	MB	МВ							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac

TestAmerica Savannah

Page 31 of 53

5/9/2017

9

4

6

8

11

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-137928-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-478517/8

Matrix: Solid

Analysis Batch: 478517

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 130		05/04/17 11:53	1
Dibromofluoromethane (Surr)	115		70 - 130		05/04/17 11:53	1
4-Bromofluorobenzene (Surr)	90		70 - 130		05/04/17 11:53	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab Sample ID: LCS 680-478517/4 Matrix: Solid

Analysis Batch: 478517

7 maryolo Batom 470017	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	50.0	43.7		ug/Kg		87	40 - 160
Chloromethane	50.0	41.9		ug/Kg		84	40 - 160
Vinyl chloride	50.0	42.4		ug/Kg		85	70 - 130
Bromomethane	50.0	42.0		ug/Kg		84	40 - 160
Chloroethane	50.0	44.0		ug/Kg		88	40 - 160
Trichlorofluoromethane	50.0	41.9		ug/Kg		84	40 - 160
1,1-Dichloroethene	50.0	43.5		ug/Kg		87	70 - 130
Acetone	250	218		ug/Kg		87	40 - 160
Carbon disulfide	50.0	45.0		ug/Kg		90	40 - 160
Methylene Chloride	50.0	45.0		ug/Kg		90	70 - 130
trans-1,2-Dichloroethene	50.0	45.0		ug/Kg		90	70 - 130
Methyl tert-butyl ether	50.0	45.8		ug/Kg		92	70 - 130
1,1-Dichloroethane	50.0	43.4		ug/Kg		87	70 - 130
cis-1,2-Dichloroethene	50.0	44.2		ug/Kg		88	70 - 130
2-Butanone (MEK)	250	224		ug/Kg		90	40 - 160
Chloroform	50.0	45.8		ug/Kg		92	70 - 130
1,1,1-Trichloroethane	50.0	45.7		ug/Kg		91	70 - 130
Carbon tetrachloride	50.0	47.3		ug/Kg		95	70 - 130
Benzene	50.0	46.4		ug/Kg		93	70 - 130
1,2-Dichloroethane	50.0	44.9		ug/Kg		90	70 - 130
Trichloroethene	50.0	46.6		ug/Kg		93	70 - 130
1,2-Dichloropropane	50.0	45.3		ug/Kg		91	70 - 130
Bromodichloromethane	50.0	46.4		ug/Kg		93	70 - 130
cis-1,3-Dichloropropene	50.0	45.8		ug/Kg		92	70 - 130
4-Methyl-2-pentanone	250	238		ug/Kg		95	40 - 160
Toluene	50.0	46.8		ug/Kg		94	70 - 130
trans-1,3-Dichloropropene	50.0	48.1		ug/Kg		96	70 - 130
1,1,2-Trichloroethane	50.0	46.6		ug/Kg		93	70 - 130
Tetrachloroethene	50.0	47.4		ug/Kg		95	70 - 130
2-Hexanone	250	244		ug/Kg		97	40 - 160
Dibromochloromethane	50.0	47.8		ug/Kg		96	70 - 130
1,2-Dibromoethane	50.0	47.9		ug/Kg		96	70 - 130
Chlorobenzene	50.0	46.5		ug/Kg		93	70 - 130
Ethylbenzene	50.0	47.4		ug/Kg		95	70 - 130
Xylenes, Total	100	94.4		ug/Kg		94	70 - 130
Styrene	50.0	49.0		ug/Kg		98	70 - 130
Bromoform	50.0	49.2		ug/Kg		98	70 - 130
Isopropylbenzene	50.0	48.3		ug/Kg		97	70 - 130
1,1,2,2-Tetrachloroethane	50.0	47.8		ug/Kg		96	70 - 130

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-478517/4

Lab Sample ID: LCSD 680-478517/5

Matrix: Solid

Analysis Batch: 478517

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,3-Dichlorobenzene	50.0	46.7		ug/Kg		93	70 - 130	
1,4-Dichlorobenzene	50.0	46.4		ug/Kg		93	70 - 130	
1,2-Dichlorobenzene	50.0	46.3		ug/Kg		93	70 - 130	
1,2-Dibromo-3-Chloropropane	50.0	46.7		ug/Kg		93	40 - 160	
1,2,4-Trichlorobenzene	50.0	47.0		ug/Kg		94	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		70 - 130
1,2-Dichloroethane-d4 (Surr)	91		70 - 130
Dibromofluoromethane (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	90		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 478517 LCSD LCSD **RPD** Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits **RPD** Limit 50.0 Dichlorodifluoromethane 43.3 ug/Kg 87 40 - 160 1 20 Chloromethane 50.0 44.2 ug/Kg 88 40 - 160 20 70 - 130 Vinyl chloride 50.0 44.0 ug/Kg 88 20 Bromomethane 50.0 44.8 90 40 - 160 6 20 ug/Kg Chloroethane 50.0 45.5 91 40 - 160 20 3 ug/Kg Trichlorofluoromethane 50.0 44.2 ug/Kg 88 40 - 160 5 20 1,1-Dichloroethene 50.0 46.0 92 70 - 130 6 20 ug/Kg 250 Acetone 239 ug/Kg 96 40 - 160 20 Carbon disulfide 50.0 46.4 ug/Kg 93 40 - 160 20 Methylene Chloride 50.0 46.7 ug/Kg 93 70 - 130 20 trans-1,2-Dichloroethene 50.0 48.7 97 70 - 130 20 ug/Kg 97 50.0 48.4 70 - 130 6 20 Methyl tert-butyl ether ug/Kg 1,1-Dichloroethane 50.0 47.2 ug/Kg 94 70 - 130 20 cis-1,2-Dichloroethene 50.0 95 70 - 130 20 47.5 ug/Kg 2-Butanone (MEK) 250 235 94 40 - 160 20 ug/Kg Chloroform 50.0 48.8 ug/Kg 98 70 - 130 6 20 1,1,1-Trichloroethane 50.0 48.0 ug/Kg 96 70 - 130 20 Carbon tetrachloride 50.0 48.7 ug/Kg 97 70 - 130 3 20 Benzene 50.0 47.8 ug/Kg 96 70 - 130 3 20 1,2-Dichloroethane 50.0 48.9 98 70 - 130 8 20 ug/Kg Trichloroethene 50.0 48.7 ug/Kg 97 70 - 13020 1.2-Dichloropropane 50.0 46.8 94 70 - 130 20 ug/Kg Bromodichloromethane 50.0 48.1 ug/Kg 96 70 - 130 20 cis-1,3-Dichloropropene 50.0 48.7 ug/Kg 97 70 - 130 20 40 - 160 4-Methyl-2-pentanone 250 248 99 20 ug/Kg 50.0 20 Toluene 47.8 ug/Kg 96 70 - 130 100 20 trans-1,3-Dichloropropene 50.0 50.2 70 - 130 ug/Kg 1,1,2-Trichloroethane 50.0 95 70 - 130 20 47.6 ug/Kg 100 Tetrachloroethene 50.0 50.1 70 - 13020 ug/Kg 5 2-Hexanone 250 251 ug/Kg 100 40 - 160 3 20 Dibromochloromethane 50.0 50.2 ug/Kg 100 70 - 130 20

TestAmerica Savannah

Page 33 of 53

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-478517/5

Matrix: Solid

Analysis Batch: 478517

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	50.0	50.3		ug/Kg		101	70 - 130	5	20
Chlorobenzene	50.0	48.5		ug/Kg		97	70 - 130	4	20
Ethylbenzene	50.0	49.3		ug/Kg		99	70 - 130	4	20
Xylenes, Total	100	101		ug/Kg		101	70 - 130	7	20
Styrene	50.0	52.5		ug/Kg		105	70 - 130	7	20
Bromoform	50.0	50.3		ug/Kg		101	70 - 130	2	20
Isopropylbenzene	50.0	50.5		ug/Kg		101	70 - 130	5	20
1,1,2,2-Tetrachloroethane	50.0	49.7		ug/Kg		99	70 - 130	4	20
1,3-Dichlorobenzene	50.0	48.7		ug/Kg		97	70 - 130	4	20
1,4-Dichlorobenzene	50.0	48.0		ug/Kg		96	70 - 130	3	20
1,2-Dichlorobenzene	50.0	48.3		ug/Kg		97	70 - 130	4	20
1,2-Dibromo-3-Chloropropane	50.0	44.8		ug/Kg		90	40 - 160	4	20
1,2,4-Trichlorobenzene	50.0	48.0		ug/Kg		96	70 - 130	2	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		70 - 130
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	92		70 - 130

Lab Sample ID: MB 680-478753/10

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte Result Dichlorodifluoromethane Quality Dichlorodifluoromethane 200 U Chloromethane 200 U Vinyl chloride 200 U	RL 200 200 200 200	40	Unit ug/Kg ug/Kg	D	Prepared	Analyzed 05/05/17 15:05	Dil Fac
Chloromethane 200 U	200	40				05/05/17 15:05	40
			ug/Kg			00/00/11 10:00	40
Vinyl chloride 200 II	200	00	0 0			05/05/17 15:05	40
VIII VIII CIII CIII CIII CIII CIII CIII		60	ug/Kg			05/05/17 15:05	40
Bromomethane 200 U	200	60	ug/Kg			05/05/17 15:05	40
Chloroethane 200 U	200	110	ug/Kg			05/05/17 15:05	40
Trichlorofluoromethane 200 U	200	48	ug/Kg			05/05/17 15:05	40
1,1-Dichloroethene 200 U	200	60	ug/Kg			05/05/17 15:05	40
Acetone 2000 U	2000	440	ug/Kg			05/05/17 15:05	40
Carbon disulfide 200 U	200	44	ug/Kg			05/05/17 15:05	40
Methylene Chloride 200 U	200	39	ug/Kg			05/05/17 15:05	40
trans-1,2-Dichloroethene 200 U	200	25	ug/Kg			05/05/17 15:05	40
Methyl tert-butyl ether 200 U	200	40	ug/Kg			05/05/17 15:05	40
1,1-Dichloroethane 200 U	200	44	ug/Kg			05/05/17 15:05	40
cis-1,2-Dichloroethene 200 U	200	56	ug/Kg			05/05/17 15:05	40
2-Butanone (MEK) 1000 U	1000	96	ug/Kg			05/05/17 15:05	40
Chloroform 200 U	200	44	ug/Kg			05/05/17 15:05	40
1,1,1-Trichloroethane 200 U	200	24	ug/Kg			05/05/17 15:05	40
Carbon tetrachloride 200 U	200	33	ug/Kg			05/05/17 15:05	40
Benzene 200 U	200	29	ug/Kg			05/05/17 15:05	40
1,2-Dichloroethane 200 U	200	44	ug/Kg			05/05/17 15:05	40
Trichloroethene 200 U	200	52	ug/Kg			05/05/17 15:05	40
1,2-Dichloropropane 200 U	200	34	ug/Kg			05/05/17 15:05	40
Bromodichloromethane 200 U	200	39	ug/Kg			05/05/17 15:05	40

TestAmerica Savannah

Page 34 of 53

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-478753/10

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	200	Ū	200	33	ug/Kg			05/05/17 15:05	40
4-Methyl-2-pentanone	1000	U	1000	170	ug/Kg			05/05/17 15:05	40
Toluene	200	U	200	34	ug/Kg			05/05/17 15:05	40
trans-1,3-Dichloropropene	200	U	200	35	ug/Kg			05/05/17 15:05	40
1,1,2-Trichloroethane	200	U	200	52	ug/Kg			05/05/17 15:05	40
Tetrachloroethene	200	U	200	76	ug/Kg			05/05/17 15:05	40
2-Hexanone	1000	U	1000	130	ug/Kg			05/05/17 15:05	40
Dibromochloromethane	200	U	200	68	ug/Kg			05/05/17 15:05	40
1,2-Dibromoethane	200	U	200	60	ug/Kg			05/05/17 15:05	40
Chlorobenzene	200	U	200	38	ug/Kg			05/05/17 15:05	40
Ethylbenzene	200	U	200	52	ug/Kg			05/05/17 15:05	40
Xylenes, Total	400	U	400	44	ug/Kg			05/05/17 15:05	40
Styrene	200	U	200	37	ug/Kg			05/05/17 15:05	40
Bromoform	200	U	200	60	ug/Kg			05/05/17 15:05	40
Isopropylbenzene	200	U	200	76	ug/Kg			05/05/17 15:05	40
1,1,2,2-Tetrachloroethane	200	U	200	64	ug/Kg			05/05/17 15:05	40
1,3-Dichlorobenzene	200	U	200	64	ug/Kg			05/05/17 15:05	40
1,4-Dichlorobenzene	200	U	200	30	ug/Kg			05/05/17 15:05	40
1,2-Dichlorobenzene	200	U	200	52	ug/Kg			05/05/17 15:05	40
1,2-Dibromo-3-Chloropropane	400	Ü	400	180	ug/Kg			05/05/17 15:05	40
1,2,4-Trichlorobenzene	200	U	200	36	ug/Kg			05/05/17 15:05	40

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	95	70 - 130		05/05/17 15:05	40	
1,2-Dichloroethane-d4 (Surr)	109	70 - 130		05/05/17 15:05	40	
Dibromofluoromethane (Surr)	111	70 - 130		05/05/17 15:05	40	
4-Bromofluorobenzene (Surr)	93	70 - 130		05/05/17 15:05	40	

Lab Sample ID: MB 680-478753/11

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.0	U –	5.0	0.94	ug/Kg			05/05/17 15:28	1
Chloromethane	5.0	U	5.0	1.0	ug/Kg			05/05/17 15:28	1
Vinyl chloride	5.0	U	5.0	1.5	ug/Kg			05/05/17 15:28	1
Bromomethane	5.0	U	5.0	1.5	ug/Kg			05/05/17 15:28	1
Chloroethane	5.0	U	5.0	2.7	ug/Kg			05/05/17 15:28	1
Trichlorofluoromethane	5.0	U	5.0	1.2	ug/Kg			05/05/17 15:28	1
1,1-Dichloroethene	5.0	U	5.0	1.5	ug/Kg			05/05/17 15:28	1
Acetone	50	U	50	11	ug/Kg			05/05/17 15:28	1
Carbon disulfide	5.0	U	5.0	1.1	ug/Kg			05/05/17 15:28	1
Methylene Chloride	5.0	U	5.0	0.98	ug/Kg			05/05/17 15:28	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.63	ug/Kg			05/05/17 15:28	1
Methyl tert-butyl ether	5.0	U	5.0	1.0	ug/Kg			05/05/17 15:28	1
1,1-Dichloroethane	5.0	U	5.0	1.1	ug/Kg			05/05/17 15:28	1
cis-1,2-Dichloroethene	5.0	U	5.0	1.4	ug/Kg			05/05/17 15:28	1
2-Butanone (MEK)	25	U	25	2.4	ug/Kg			05/05/17 15:28	1

TestAmerica Savannah

Page 35 of 53

2

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

estAmerica 300 iD. 000-13/920-

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-478753/11

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB **MDL** Unit Analyte Result Qualifier RL **Prepared** Analyzed Dil Fac Chloroform 5.0 U 5.0 05/05/17 15:28 1.1 ug/Kg 1,1,1-Trichloroethane 5.0 U 5.0 0.59 ug/Kg 05/05/17 15:28 Carbon tetrachloride 5.0 U 5.0 0.83 ug/Kg 05/05/17 15:28 Benzene 5.0 U 5.0 0.73 ug/Kg 05/05/17 15:28 1.2-Dichloroethane 5.0 U 5.0 1.1 ug/Kg 05/05/17 15:28 Trichloroethene 5.0 U 5.0 1.3 ug/Kg 05/05/17 15:28 1,2-Dichloropropane 5.0 U 5.0 05/05/17 15:28 0.86 ug/Kg Bromodichloromethane 5.0 U 5.0 0.97 ug/Kg 05/05/17 15:28 cis-1,3-Dichloropropene 5.0 U 5.0 0.83 ug/Kg 05/05/17 15:28 25 U 25 4-Methyl-2-pentanone 4.2 ug/Kg 05/05/17 15:28 Toluene 5.0 U 5.0 0.84 ug/Kg 05/05/17 15:28 5.0 0.87 ug/Kg trans-1,3-Dichloropropene 5.0 U 05/05/17 15:28 1,1,2-Trichloroethane 5.0 5.0 U 1.3 ug/Kg 05/05/17 15:28 Tetrachloroethene 5.0 U 5.0 1.9 05/05/17 15:28 ug/Kg 2-Hexanone 25 U 25 05/05/17 15:28 3.3 ug/Kg Dibromochloromethane 5.0 U 5.0 1.7 ug/Kg 05/05/17 15:28 1,2-Dibromoethane 5.0 U 5.0 05/05/17 15:28 1.5 ug/Kg Chlorobenzene 5.0 U 5.0 0.96 ug/Kg 05/05/17 15:28 Ethylbenzene 5.0 U 5.0 1.3 ug/Kg 05/05/17 15:28 Xylenes, Total 10 10 U 1.1 ug/Kg 05/05/17 15:28 Styrene 5.0 U 5.0 0.93 ug/Kg 05/05/17 15:28 **Bromoform** 5.0 U 5.0 1.5 ug/Kg 05/05/17 15:28 Isopropylbenzene 5.0 U 5.0 1.9 ug/Kg 05/05/17 15:28 1,1,2,2-Tetrachloroethane 5.0 U 5.0 1.6 ug/Kg 05/05/17 15:28 5.0 1,3-Dichlorobenzene 5.0 U 1.6 ug/Kg 05/05/17 15:28 1,4-Dichlorobenzene 5.0 U 5.0 0.74 ug/Kg 05/05/17 15:28 1,2-Dichlorobenzene 5.0 U 5.0 1.3 ug/Kg 05/05/17 15:28

5.0 U

10 U

Surrogate	%Recovery	Qualifier	Limits	ı	Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	95		70 - 130			05/05/17 15:28	1	
1,2-Dichloroethane-d4 (Surr)	105		70 - 130			05/05/17 15:28	1	
Dibromofluoromethane (Surr)	112		70 - 130			05/05/17 15:28	1	
4-Bromofluorobenzene (Surr)	92		70 - 130			05/05/17 15:28	1	

10

5.0

4.4 ug/Kg

0.89 ug/Kg

Lab Sample ID: LCS 680-478753/4

Matrix: Solid

Analysis Batch: 478753

1,2-Dibromo-3-Chloropropane

1.2.4-Trichlorobenzene

Client Sample ID: Lab Control Sample Prep Type: Total/NA

05/05/17 15:28

05/05/17 15:28

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	50.0	42.3		ug/Kg		85	40 - 160	
Chloromethane	50.0	40.5		ug/Kg		81	40 - 160	
Vinyl chloride	50.0	42.3		ug/Kg		85	70 - 130	
Bromomethane	50.0	40.1		ug/Kg		80	40 - 160	
Chloroethane	50.0	49.9		ug/Kg		100	40 - 160	
Trichlorofluoromethane	50.0	50.0		ug/Kg		100	40 - 160	
1,1-Dichloroethene	50.0	49.5		ug/Kg		99	70 - 130	

TestAmerica Savannah

Page 36 of 53

5/9/2017

7

5

67

0

10

44

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-478753/4

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Lab Control Sample

ment dample ib. Lab dontroi damp	C
Prep Type: Total/N	Α

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	250	254		ug/Kg		102	40 - 160	
Carbon disulfide	50.0	49.7		ug/Kg		99	40 - 160	
Methylene Chloride	50.0	50.4		ug/Kg		101	70 - 130	
trans-1,2-Dichloroethene	50.0	45.5		ug/Kg		91	70 - 130	
Methyl tert-butyl ether	50.0	44.8		ug/Kg		90	70 - 130	
1,1-Dichloroethane	50.0	44.8		ug/Kg		90	70 - 130	
cis-1,2-Dichloroethene	50.0	44.9		ug/Kg		90	70 - 130	
2-Butanone (MEK)	250	216		ug/Kg		87	40 - 160	
Chloroform	50.0	45.9		ug/Kg		92	70 - 130	
1,1,1-Trichloroethane	50.0	45.4		ug/Kg		91	70 - 130	
Carbon tetrachloride	50.0	46.2		ug/Kg		92	70 - 130	
Benzene	50.0	45.2		ug/Kg		90	70 - 130	
1,2-Dichloroethane	50.0	45.6		ug/Kg		91	70 - 130	
Trichloroethene	50.0	46.4		ug/Kg		93	70 - 130	
1,2-Dichloropropane	50.0	43.8		ug/Kg		88	70 - 130	
Bromodichloromethane	50.0	45.9		ug/Kg		92	70 - 130	
cis-1,3-Dichloropropene	50.0	45.1		ug/Kg		90	70 - 130	
4-Methyl-2-pentanone	250	235		ug/Kg		94	40 - 160	
Toluene	50.0	45.1		ug/Kg		90	70 - 130	
trans-1,3-Dichloropropene	50.0	46.5		ug/Kg		93	70 - 130	
1,1,2-Trichloroethane	50.0	46.7		ug/Kg		93	70 - 130	
Tetrachloroethene	50.0	46.5		ug/Kg		93	70 - 130	
2-Hexanone	250	235		ug/Kg		94	40 - 160	
Dibromochloromethane	50.0	48.2		ug/Kg		96	70 - 130	
1,2-Dibromoethane	50.0	47.3		ug/Kg		95	70 - 130	
Chlorobenzene	50.0	45.1		ug/Kg		90	70 - 130	
Ethylbenzene	50.0	45.2		ug/Kg		90	70 - 130	
Xylenes, Total	100	89.4		ug/Kg		89	70 - 130	
Styrene	50.0	47.4		ug/Kg		95	70 - 130	
Bromoform	50.0	47.8		ug/Kg		96	70 - 130	
Isopropylbenzene	50.0	45.6		ug/Kg		91	70 - 130	
1,1,2,2-Tetrachloroethane	50.0	46.4		ug/Kg		93	70 - 130	
1,3-Dichlorobenzene	50.0	45.2		ug/Kg		90	70 - 130	
1,4-Dichlorobenzene	50.0	45.1		ug/Kg		90	70 - 130	
1,2-Dichlorobenzene	50.0	45.6		ug/Kg		91	70 - 130	
1,2-Dibromo-3-Chloropropane	50.0	44.1		ug/Kg		88	40 - 160	
1,2,4-Trichlorobenzene	50.0	44.4		ug/Kg		89	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	90		70 - 130
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Dibromofluoromethane (Surr)	91		70 - 130
4-Bromofluorobenzene (Surr)	87		70 - 130

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Lab Sample ID: LCSD 680-478753/5

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 478753

Matrix: Solid

	Spike		LCSD		_		%Rec.		RPD
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	43.9		ug/Kg		88	40 - 160	4	20
Chloromethane	50.0	44.0		ug/Kg		88	40 - 160	8	20
Vinyl chloride	50.0	44.3		ug/Kg		89	70 - 130	5	20
Bromomethane	50.0	51.8	•	ug/Kg		104	40 - 160	25	20
Chloroethane	50.0	52.8		ug/Kg		106	40 - 160	6	20
Trichlorofluoromethane	50.0	52.0		ug/Kg		104	40 - 160	4	20
1,1-Dichloroethene	50.0	53.3		ug/Kg		107	70 - 130	8	20
Acetone	250	255		ug/Kg		102	40 - 160	0	20
Carbon disulfide	50.0	53.1		ug/Kg		106	40 - 160		20
Methylene Chloride	50.0	53.6		ug/Kg		107	70 - 130	6	20
trans-1,2-Dichloroethene	50.0	47.9		ug/Kg		96	70 - 130	5	20
Methyl tert-butyl ether	50.0	46.6		ug/Kg		93	70 - 130	4	20
1,1-Dichloroethane	50.0	47.2		ug/Kg		94	70 - 130	5	20
cis-1,2-Dichloroethene	50.0	46.6		ug/Kg		93	70 - 130	4	20
2-Butanone (MEK)	250	239		ug/Kg		96	40 - 160	10	20
Chloroform	50.0	47.2		ug/Kg		94	70 - 130	3	20
1,1,1-Trichloroethane	50.0	47.3		ug/Kg		95	70 - 130	4	20
Carbon tetrachloride	50.0	48.8		ug/Kg		98	70 - 130	6	20
Benzene	50.0	47.0		ug/Kg		94	70 - 130	4	20
1,2-Dichloroethane	50.0	47.6		ug/Kg		95	70 - 130	4	20
Trichloroethene	50.0	48.6		ug/Kg		97	70 - 130	5	20
1,2-Dichloropropane	50.0	45.7		ug/Kg		91	70 - 130	4	20
Bromodichloromethane	50.0	47.5		ug/Kg		95	70 - 130	3	20
cis-1,3-Dichloropropene	50.0	47.6		ug/Kg		95	70 - 130	5	20
4-Methyl-2-pentanone	250	243		ug/Kg		97	40 - 160	3	20
Toluene	50.0	46.7		ug/Kg		93	70 - 130	3	20
trans-1,3-Dichloropropene	50.0	49.2		ug/Kg		98	70 - 130	5	20
1,1,2-Trichloroethane	50.0	48.3		ug/Kg		97	70 - 130	3	20
Tetrachloroethene	50.0	49.4		ug/Kg		99	70 - 130	6	20
2-Hexanone	250	243		ug/Kg		97	40 - 160	3	20
Dibromochloromethane	50.0	49.9		ug/Kg		100	70 - 130	3	20
1,2-Dibromoethane	50.0	48.8		ug/Kg		98	70 - 130	3	20
Chlorobenzene	50.0	48.3		ug/Kg		97	70 - 130	7	20
Ethylbenzene	50.0	47.8		ug/Kg		96	70 - 130	6	20
Xylenes, Total	100	96.3		ug/Kg		96	70 - 130	7	20
Styrene	50.0	50.3		ug/Kg		101	70 - 130	6	20
Bromoform	50.0	50.5		ug/Kg		101	70 - 130	5	20
Isopropylbenzene	50.0	48.8		ug/Kg		98	70 - 130	7	20
1,1,2,2-Tetrachloroethane	50.0	47.9		ug/Kg		96	70 - 130	3	20
1,3-Dichlorobenzene	50.0	47.3		ug/Kg		95	70 - 130	4	20
1,4-Dichlorobenzene	50.0	46.8		ug/Kg		94	70 - 130	4	20
1,2-Dichlorobenzene	50.0	46.9		ug/Kg		94	70 - 130	3	20
1,2-Dibromo-3-Chloropropane	50.0	44.0		ug/Kg		88	40 - 160	0	20
1,2,4-Trichlorobenzene	50.0	47.1		ug/Kg		94	70 - 130	6	20

LCSD LCSD

Surrogate %Recovery Qualifier Limits
Toluene-d8 (Surr) 96 70 - 130

TestAmerica Savannah

4

6

R

9

4 4

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-137928-1

1000 11101100 000 12. 000 10. 020 1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-478753/5

Matrix: Solid

Analysis Batch: 478753

Client Sample	ID:	Lab	Cont	rol	San	nple	Dup
			Prep	Ту	pe:	Tota	I/NA

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	96		70 - 130
4-Bromofluorobenzene (Surr)	91		70 - 130

U

8

10

11

QC Association Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-137928-1

GC/MS VOA

Analysis Batch: 182601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-137928-6	6489-DP-2 (9-19)	Total/NA	Water	8260B	
680-137928-10	6489-DP-3 (13-18)	Total/NA	Water	8260B	
680-137928-14	6489-TB	Total/NA	Water	8260B	
MB 660-182601/7	Method Blank	Total/NA	Water	8260B	
LCS 660-182601/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 660-182601/5	Lab Control Sample Dup	Total/NA	Water	8260B	
680-137928-6 MS	6489-DP-2 (9-19)	Total/NA	Water	8260B	
680-137928-6 MSD	6489-DP-2 (9-19)	Total/NA	Water	8260B	

Prep Batch: 477445

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-137928-1	6489-DP-1 (3-4)	Total/NA	Solid	5035	_
680-137928-2	6489-DP-1 (19-20)	Total/NA	Solid	5035	
680-137928-4	6489-DP-2 (3-4)	Total/NA	Solid	5035	
680-137928-5	6489-DP-2 (19-20)	Total/NA	Solid	5035	
680-137928-7	6489-DP-3 (2-3)	Total/NA	Solid	5035	
680-137928-8	6489-DP-3 (19-20)	Total/NA	Solid	5035	
680-137928-11	6489-DP-4 (4-5)	Total/NA	Solid	5035	
680-137928-12	6489-DP-4 (13-14)	Total/NA	Solid	5035	
680-137928-13	6489-DP-4 (19-20)	Total/NA	Solid	5035	
680-137928-4 MS	6489-DP-2 (3-4)	Total/NA	Solid	5035	
680-137928-4 MSD	6489-DP-2 (3-4)	Total/NA	Solid	5035	

Analysis Batch: 478515

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-137928-4	6489-DP-2 (3-4)	Total/NA	Solid	8260B	477445
680-137928-5	6489-DP-2 (19-20)	Total/NA	Solid	8260B	477445
680-137928-8	6489-DP-3 (19-20)	Total/NA	Solid	8260B	477445
680-137928-11	6489-DP-4 (4-5)	Total/NA	Solid	8260B	477445
680-137928-12	6489-DP-4 (13-14)	Total/NA	Solid	8260B	477445
680-137928-13	6489-DP-4 (19-20)	Total/NA	Solid	8260B	477445
MB 680-478515/10	Method Blank	Total/NA	Solid	8260B	
MB 680-478515/11	Method Blank	Total/NA	Solid	8260B	
LCS 680-478515/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-478515/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

Analysis Batch: 478517

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-137928-1	6489-DP-1 (3-4)	Total/NA	Solid	8260B	477445
680-137928-2	6489-DP-1 (19-20)	Total/NA	Solid	8260B	477445
MB 680-478517/8	Method Blank	Total/NA	Solid	8260B	
LCS 680-478517/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-478517/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

Analysis Batch: 478753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-137928-7	6489-DP-3 (2-3)	Total/NA	Solid	8260B	477445
MB 680-478753/10	Method Blank	Total/NA	Solid	8260B	
MB 680-478753/11	Method Blank	Total/NA	Solid	8260B	
LCS 680-478753/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-478753/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

Page 40 of 53

TestAmerica Savannah

5/9/2017

3

1

5

_

8

9

4.4

QC Association Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-137928-1

GC/MS VOA (Continued)

Analysis Batch: 478753 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-137928-4 MS	6489-DP-2 (3-4)	Total/NA	Solid	8260B	477445
680-137928-4 MSD	6489-DP-2 (3-4)	Total/NA	Solid	8260B	477445

General Chemistry

Analysis Batch: 477794

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-137928-1	6489-DP-1 (3-4)	Total/NA	Solid	Moisture	
680-137928-2	6489-DP-1 (19-20)	Total/NA	Solid	Moisture	
680-137928-4	6489-DP-2 (3-4)	Total/NA	Solid	Moisture	
680-137928-5	6489-DP-2 (19-20)	Total/NA	Solid	Moisture	
680-137928-7	6489-DP-3 (2-3)	Total/NA	Solid	Moisture	
680-137928-8	6489-DP-3 (19-20)	Total/NA	Solid	Moisture	
680-137928-11	6489-DP-4 (4-5)	Total/NA	Solid	Moisture	
680-137928-12	6489-DP-4 (13-14)	Total/NA	Solid	Moisture	
680-137928-13	6489-DP-4 (19-20)	Total/NA	Solid	Moisture	
680-137928-4 MS	6489-DP-2 (3-4)	Total/NA	Solid	Moisture	
680-137928-4 MSD	6489-DP-2 (3-4)	Total/NA	Solid	Moisture	

2

6

7

8

9

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Lab Sample ID: 680-137928-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 04/25/17 11:30 Date Received: 04/26/17 09:10

Client Sample ID: 6489-DP-1 (3-4)

Batch Dil Initial Batch Batch **Final** Prepared Method **Prep Type** Type Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 477794 04/28/17 12:02 WRB TAL SAV Instrument ID: NOEQUIP

Client Sample ID: 6489-DP-1 (3-4)

Lab Sample ID: 680-137928-1 Date Collected: 04/25/17 11:30 **Matrix: Solid** Date Received: 04/26/17 09:10 Percent Solids: 86.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.166 g	5 mL	477445	04/26/17 12:14	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 19:13	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Lab Sample ID: 680-137928-2 Client Sample ID: 6489-DP-1 (19-20)

Date Collected: 04/25/17 11:34 Date Received: 04/26/17 09:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			477794	04/28/17 12:02	WRB	TAL SAV
	Instrument	ID: NOEQUIP								

Client Sample ID: 6489-DP-1 (19-20) Lab Sample ID: 680-137928-2 Date Collected: 04/25/17 11:34 **Matrix: Solid**

Date Received: 04/26/17 09:10 Percent Solids: 77.2

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.197 g	5 mL	477445	04/26/17 12:14	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 19:36	JLK	TAL SAV
	Instrumer	t ID: CMSAB								

Lab Sample ID: 680-137928-4 Client Sample ID: 6489-DP-2 (3-4)

Date Collected: 04/25/17 15:05 Date Received: 04/26/17 09:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			477794	04/28/17 12:02	WRB	TAL SAV
	Inetrumor	+ ID: NOEOLIID								

Client Sample ID: 6489-DP-2 (3-4) Lab Sample ID: 680-137928-4

Date Collected: 04/25/17 15:05 **Matrix: Solid** Date Received: 04/26/17 09:10 Percent Solids: 79.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.278 g	5 mL	477445	04/26/17 12:14	FES	TAL SAV

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Lab Sample ID: 680-137928-4

Lab Sample ID: 680-137928-5

Lab Sample ID: 680-137928-5

Matrix: Solid Percent Solids: 79.5

Client Sample ID: 6489-DP-2 (3-4)

Date Collected: 04/25/17 15:05 Date Received: 04/26/17 09:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 g	5 g	478515	05/04/17 16:58	JLK	TAL SAV
	Instrument	ID: CMSAA								

Client Sample ID: 6489-DP-2 (19-20)

Date Collected: 04/25/17 15:15 Date Received: 04/26/17 09:10

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 477794	Prepared or Analyzed 04/28/17 12:02	Analyst WRB	Lab TAL SAV
	Instrument	ID: NOEQUIP								

Client Sample ID: 6489-DP-2 (19-20)

Date Collected: 04/25/17 15:15 Date Received: 04/26/17 09:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.265 g	5 mL	477445	04/26/17 12:14	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478515	05/04/17 17:22	JLK	TAL SAV
	Instrumer	nt ID: CMSAA								

Client Sample ID: 6489-DP-2 (9-19)

Date Collected: 04/25/17 14:59

Date Received: 04/26/17 09:10

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Pactor 1	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 182601	Prepared or Analyzed 05/08/17 23:29	Analyst ECC	Lab TAL TAM
	Instrumen	t ID: CHBVMJ5975								

Client Sample ID: 6489-DP-3 (2-3)

Date Collected: 04/25/17 16:42

Date Received: 04/26/17 09:10

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed 04/28/17 12:02	Analyst WRB	Lab TAL SAV
	Instrumen	t ID: NOEQUIP								

Client Sample ID: 6489-DP-3 (2-3)

Date Collected: 04/25/17 16:42

Date Received: 04/26/17 09:10

_											
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			6.83 q	5 mL	477445	04/26/17 12:14	FES	TAL SAV	

TestAmerica Savannah

Lab Sample ID: 680-137928-7

Page 43 of 53

5/9/2017

Lab Sample ID: 680-137928-6 **Matrix: Water**

Matrix: Solid

Matrix: Solid

Percent Solids: 71.7

Lab Sample ID: 680-137928-7 **Matrix: Solid**

Matrix: Solid

Percent Solids: 85.2

Client Sample ID: 6489-DP-3 (2-3)

Project/Site: Ideal Cleaners - LaGrange, GA

Client: Environmental Forensic Investigation Inc

Date Collected: 04/25/17 16:42 Date Received: 04/26/17 09:10

Lab Sample ID: 680-137928-7

Matrix: Solid Percent Solids: 85.2

Batch Dil Final Batch Initial Batch **Prepared** Amount **Prep Type** Type Method Run **Factor Amount** Number or Analyzed **Analyst** Lab Total/NA Analysis 8260B 5 g 5 g 478753 05/05/17 16:37 JLK TAL SAV Instrument ID: CMSAB

Client Sample ID: 6489-DP-3 (19-20)

Date Collected: 04/25/17 16:47 Date Received: 04/26/17 09:10

Lab Sample ID: 680-137928-8

Matrix: Solid

Batch Dil Initial Final Batch Batch **Prepared Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 477794 04/28/17 12:02 WRB TAL SAV Instrument ID: NOEQUIP

Lab Sample ID: 680-137928-8 Client Sample ID: 6489-DP-3 (19-20)

Date Collected: 04/25/17 16:47 Date Received: 04/26/17 09:10

Matrix: Solid Percent Solids: 82.8

Final **Batch** Batch Dil Initial **Batch** Prepared **Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 477445 04/26/17 12:14 FES TAL SAV 4.783 g 5 mL Total/NA Analysis 8260B 478515 05/04/17 18:08 JLK TAL SAV 1 5 g 5 g Instrument ID: CMSAA

Client Sample ID: 6489-DP-3 (13-18)

Date Collected: 04/25/17 17:00

Prep Type

Total/NA

Date Received: 04/26/17 09:10

Lab Sample ID: 680-137928-10 **Matrix: Water**

Batch Batch Dil Initial Final Batch **Prepared** Method Type Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab 05/09/17 01:07 ECC TAL TAM Analysis 8260B 5 ml 5 ml 182601 Instrument ID: CHBVMJ5975

Client Sample ID: 6489-DP-4 (4-5)

Date Received: 04/26/17 09:10

Lab Sample ID: 680-137928-11 Date Collected: 04/25/17 18:10 **Matrix: Solid**

Dil Ratch Ratch Initial Final Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor Amount** Amount Number Analyst Lab Total/NA Analysis Moisture 477794 04/28/17 12:02 WRB TAL SAV

Instrument ID: NOEQUIP

Client Sample ID: 6489-DP-4 (4-5) Lab Sample ID: 680-137928-11

Date Collected: 04/25/17 18:10 **Matrix: Solid** Percent Solids: 72.6 Date Received: 04/26/17 09:10

Batch Batch Dil Initial **Final** Batch **Prepared** Type Method Run Factor Amount Amount Number or Analyzed **Prep Type** Analyst Lab 5035 477445 04/26/17 12:14 FES TAL SAV Total/NA Prep 6.386 g 5 mL

Lab Sample ID: 680-137928-11

Lab Sample ID: 680-137928-12

Lab Sample ID: 680-137928-12

Lab Sample ID: 680-137928-13

Lab Sample ID: 680-137928-13

Lab Sample ID: 680-137928-14

Client Sample ID: 6489-DP-4 (4-5)

Date Collected: 04/25/17 18:10 Date Received: 04/26/17 09:10

Matrix: Solid Percent Solids: 72.6

Batch Dil Initial Final Batch Batch **Prepared Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B 5 g 5 g 478515 05/04/17 18:32 JLK TAL SAV Instrument ID: CMSAA

Client Sample ID: 6489-DP-4 (13-14)

Date Collected: 04/25/17 18:17

Date Received: 04/26/17 09:10

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 477794	Prepared or Analyzed 04/28/17 12:02	Analyst WRB	Lab TAL SAV
	Instrumer	t ID: NOEQUIP								

Client Sample ID: 6489-DP-4 (13-14)

Date Collected: 04/25/17 18:17

Date Received: 04/26/17 09:10

Percent Solids: 71.8 Dil Batch Batch Initial Final **Batch Prepared** Prep Type Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 477445 04/26/17 12:14 FES TAL SAV 5.922 g 5 mL Total/NA Analysis 8260B 478515 05/04/17 18:55 JLK TAL SAV 1 5 g 5 g Instrument ID: CMSAA

Client Sample ID: 6489-DP-4 (19-20)

Date Collected: 04/25/17 18:24

Date Received: 04/26/17 09:10

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Pactor 1	Initial Amount	Final Amount	Batch Number 477794	Prepared or Analyzed 04/28/17 12:02	Analyst WRB	Lab TAL SAV
	Instrument	ID: NOEQUIP								

Client Sample ID: 6489-DP-4 (19-20)

Date Collected: 04/25/17 18:24

Date Received: 04/26/17 09:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.613 g	5 mL	477445	04/26/17 12:14	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478515	05/04/17 19:18	JLK	TAL SAV
	Instrument	ID: CMSAA								

Client Sample ID: 6489-TB

Date Collected: 04/25/17 00:00

Date Received: 04/26/17 09:10

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	182601	05/09/17 00:49	ECC	TAL TAM

TestAmerica Savannah

Matrix: Water

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 67.7

Lab Chronicle

Initial

Amount

5 mL

Final

Amount

5 mL

182601

Dil

Factor

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Batch

Type

Analysis

Client Sample ID: 6489-TB

Date Collected: 04/25/17 00:00

TestAmerica Job ID: 680-137928-1

Lab Sample ID: 680-137928-14

TAL TAM

Matrix: Water

Analyst

Date Received: 04/26/17 09:10

Batch Prepared Number or Analyzed

05/09/17 00:49 ECC

8260B Instrument ID: CHBVMJ5975

Batch

Method

Laboratory References:

Prep Type

Total/NA

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL TAM = TestAmerica Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Run

Accreditation/Certification Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-137928-1

Laboratory: TestAmerica Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Georgia	State Program	4	N/A	06-30-17 *

Laboratory: TestAmerica Tampa

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Florida	NELAP	4	E84282	06-30-17
Georgia	State Program	4	905	06-30-17
USDA	Federal		P330-14-00332	10-14-17

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-137928-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL TAM
Moisture	Percent Moisture	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL TAM = TestAmerica Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Δ

6

8

Client Contact	Project Manager: CA126	No Company I NPDES			TAL-8210 (0713)
Company Name: Entherite 22	3	ב ממכ	Site contact: Conclack	Date:	COC No:
Address: 925 N Carbot P.	Applies Tur		Lab Contact:	Carrier:	of COCs
e/Zip:	CAI ENDAR DAVC	MODERNIC DAVE			Sampler:
: Bula- 888-1911	TAT if different from Balow	WONDERS DATS			For Lab Use Only:
31-21	2 weeks				Walk-in Client:
Site: 10 LEG.			Y) (Lab Sampling:
-64	2 days		SW !		Job / SDG No.:
	Sample	alu	8 / SW		
Sample identification	Sample Sample Type (C=Comp.	one # of # of Ont-	erform I		
6489-DP-1 (3-4)	4125/17 1130 G	13	1		Sample Specific Notes:
6489-DP-1 (19-20)	-	+-	(×		
6489-DP-1 (16-19)	निर्दाण एड० ६	-	. >		
6489- DP-1 (3-4)	भीयहा । १५०६	-	*		
1 1469- DP-2 (19-26)	احاط	7 (3)			
0 6489-DP-2 (9-19)	मीय्यीत । एउन	work, 9	×		
Q 6489-DP-3 (2-3)	1642		_		
States-DP-3 (19-20)	16.47	<u> </u>	4 ×		
6489- DP-3 (3-13)	मीय्रीम ।गाउँ ६	3,	×	680-137928 Chair	
6489-08-3 (13-18)		1			ustody
(2-h) h-40- 6849	4/25/17 1810 6	\$0ir	/ ×		
(p1-61) h-da-6849)	भीज्या १८५७ ६	-	×		
Preservation Used: 1# Ice, 2m HCl; 3m H2SO4; 4m/HNO3; 5mNaOH; 6m Other	5≈NaOH; 6≈ Other	And the second second			
resolve nazara identification: Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the	for the sample in th		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison B	Unknown			
Special Instructions/QC Requirements & Comments:				Disposal by Lab	Months
Drapped of at Faller at 1850					
Custody Seals Intact: Tes No	Custody Seal No.:		Cooler Temp. (°C): Obs'd	Corrd	Thomas ID Ma
weinquisted by:	Company:		Received by:	Company:	Date/Time;
Veninquisiled by:	Company:	Date/Time:	Received by:	Company:	Date/Time:
Seinrquisned by:	Company:	Date/Time:	Received In Laboratory by:	Compaqy:	Date/Time:
7					こっていていてい

- Attanta

193725

Chain of Custody Record

SAR Lakeche Rueme

Savannah, 68 31484 Phone: 912.354.7958 Fax:

Secanals SP Side Fax:	Regulatory Program:	DW NPDES	RCRA		THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.
Client Contact	153		H	1	TAL-8210 (0713)
any Name	- 1		ine contact;	Date:	COC No:
CAMPIE	I BILLIAX: CKINCE		Lab Contact:	Carrier:	of COCs
7	3 Turna	Time		× .	Sampler:
State/Lip: The dira was poilty IN HEIGH	CALENDAR DAYS WO	WORKING DAYS		:	For Lab Use Only:
THE BEET - 1911	TAT if different from Below		(N		Walk-in Client:
3.797-279-15 ii	2 weeks		/A		Lab Sampling:
2	1 week				
घ्य	2 days	., -	ası		ob / SDG No .
2# 2017 GS.F.	1 day				
Sample Identification	Sample Sample (C=Comp. Date Time G=Grab)	# af Matrix Cont.	Filtered Sal		Sample Granific Notice
W489-D2-4 (14-20)	4/25/17 1824 G	th lios			COLOR OF THE PROPERTY OF THE P
6489-TB	1	water 3			
Pac					
ge 5					
O of					
53					
Preservation Used: 1= ice, 2= HCi; 3= H2SO4: 4=HNO3; 5=NaOH; 6= Other	; 5=NaOH; 6= Other				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the	he sample in the	Sample Disposal (A fee may b	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	d longer than 1 month)
☐ Non-Hazard ☐ Hammable ☐ Skin Irritant	Poisan B Unknown	IW	Return to Client	Disposal by lab	Months
Special Instructions/QC Requirements & Comments:				į	P. P
Custody Seals Intact:	Custody Seal No		Lond Tolon	00	
	Company control	- N- C			Therm ID No.:
Choose Ande	Staurithmusin	Sate/lime:	Received by:	Company:	Date/Time:
Kelinquished by:		Date/Time:	Received by:	Company:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received in Laboratory by:	Comments	Date/Time:
			1	1	ラ 77 ファントフ

981-Atlanta

TestAmerica

193726

Chain of Custody Record

S102 Labothe Everee

TestAmerica Savannah

5102 LaRoche Avenue Savannah, GA 31404 Phone (912) 354-7858 Fax (912) 352-0165

-	
	_
÷	
	_
	_
	Record
	_
	_
	_
	8
	$\mathbf{-}$
	-
	()
	ă
	A١
	w
- 1	~
- 1	ш_
	-
	Custody
•	$\boldsymbol{\sigma}$
	$\overline{}$
	_
	u
	_
7	-
	-
	w
	7,
	$\overline{}$
	_
- 1	, 1
	ວັ

Chain of

TestAmerican THE LEVEL OF THE PROPERTY OF THE PERTY OF T

Company Comp		Samolar			Lab Pr		1				Carrie	Carrier Tracking No(s):	(8):		COC No:	
Connection Con					Barn	ett, Ed	양				_				680-476849.1	
Property		Phone.			F-Mail						State	State of Orlain:			Pane:	
Autoritial control of the first control of the fi	Shippina/Receiving	i			eddie), barne	tt@test	america	inc.com		Georgia	dia di			Page 1 of 1	
Parametrical Laboratories, Inc. Due Data Requested: State Program - George						Special C	0 000	O Position	talon as					T	- Pob #:	
Pub Date Requested: Suite 100, Signatural continues of the rejamin Road, Suite 100, Signatural continues of the rejamin Road, Suite 100, Signatural continues of the reservation Road (signatural co	TestAmerica Laboratories, Inc.					State	Progran	Georgia	jia jia						680-137928-1	
TAT Requested (days): TAT		Due Date Requester	i						Analy	reis Re	Poditivi	<u>ا</u>			Preservation Codes:	les:
Thi requested (days): 2567 2677 269 265-7049(Fax) WO #: 268-7427(Tel) 813-885-7049(Fax) WO #: 269-7427(Tel) 813-885-7049(Fax) Wo #	י הפון וויוושליים	1 0200				ŀ		-				3	ŀ	-	A-HCL	M - Hexane
20: 3834 1865-7427(Tei) 813-885-7049(Fax) 1866-7427(Tei) 813-885-7049(Fa	cly: Tampa	TAT Requested (da	ys):												B - NaOH C - Zn Acetate	N - None O - AsNaO2
NO #: NO #	State, Zip; F1 33,634	<u> </u>													D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
No #	1) CCC	‡ Co				_	۷A								F- MeOH	R - Na2S203
None: Cleaners - LaGrange, GA Project #: G8018080 Sample S		¥				(0	is im)								G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
## Sample Date Project ## P	Email;	WO#					Z.AOM						•	sı	I - Ice J - Di Water زرجی زر	U - Acetone V - MCAA
Sample Date Type Sample Matrix Sample Matrix Sample Matrix Sample Matrix Sample C=comp, O=comp,	Project Name: Ideai Cleaners - LaGrange, GA	Project #: 68018080					כר סח							onisin	L-EDA	Z - other (specify)
Sample Sample C=Comp. Sample Watrix G=G SECOMP.	Sita:	SSOW#:					T (00)								Other:	
D) Sample Date C=comp. Sample	/			Sample	Matrix									ıequin		
D) Sample Date Time G=grab) GT-Theming Analy CT CT CT CT CT CT CT C			Sample	Type (C≍comp,	S-solid, S-water, S-wasterell,									ili lat		
4/25/17	Sample Identification - Client ID (Lab ID)	Sample Date	Time	-	BT=Tissue, A"Air)									οŢ	Special In	Special Instructions/Note:
4/25/17	The light by the time of time of the time of the time of time of the time of time	V A	\bigvee	Preserva	tion Code:	$\stackrel{\times}{>}$								X		
4/25/17	6489-DP-2 (9-19) (680-137928-6)	4/25/17	14:59 Eastern		Water		×							ღ .		7
4/25/17 14:59 MSD Water Eastern 17:00 Water 4/25/17 Eastern Water	6489-DP-2 (9-19) (680-137928-6MS)	4/25/17	14:59 Eastern	MS	Water		×	_						ო		
4/25/17 17:00 Water Eastern Water	6489-DP-2 (9-19) (680-137928-6MSD)	4/25/17	14:59 Eastern	MSD	Water		×							ო		
4/25/17 Eastern Water	6489-DP-3 (13-18) (680-137928-10)	4/25/17	17;00 Eastern		Water		×						:	ო		
	6489-TB (680-137928-14)	4/25/17	Eastern		Water		×					-		N		

currently maintain accreditation in the State of Origin listed above for analysis/lests/main'x being analysis/lest

	Possible Hazard Identification		èS	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	samples are retained longer than	1 month)
	Unconfirmed			Return To Client Disposal By	Lab Archive For	Months
	Deirverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	ds	Special Instructions/QC Requirements:		
	Empty Kit Relinquished by:	Date:	Time:	Metho	Method of Shipment:	
5/	Reinayished by:	Date/Time: 1554	1554 Company A Received by:	Received by:	1(30) (3/c)	
9/20	Reinquished by:	Date/Time:	Company	Redelived by:	DateMimo.f	Company
017	Relinquished by:	Date/Time:	Company	Received by:	Date/Time;	Company
	Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks:	3.6 13.2 co-00	Ç

Client: Environmental Forensic Investigation Inc

Job Number: 680-137928-1

Login Number: 137928 List Source: TestAmerica Savannah

List Number: 1

Creator: Flanagan, Naomi V

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 680-137928-1

Client: Environmental Forensic Investigation Inc

List Source: TestAmerica Tampa
List Number: 2
List Creation: 05/06/17 03:08 PM

Creator: Southers, Kristin B

Creator. Southers, Kristin D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

7

0

10

11

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-138014-1

Client Project/Site: Ideal Cleaners - LaGrange, GA

For:

Environmental Forensic Investigation Inc Enviroforensics, Inc 825 N. Capitol Ave Indianapolis, Indiana 46204

Attn: Mr. Casey McFall

Authorized for release h

Authorized for release by: 5/11/2017 4:35:26 PM

Eddie Barnett, Project Manager I (912)354-7858

eddie.barnett@testamericainc.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138014-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
X	Surrogate is outside control limits
*	RPD of the LCS and LCSD exceeds the control limits

Glossary

ND

PQL

QC

RER RL

RPD

TEF

TEQ

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Quality Control

TestAmerica Savannah

Page 2 of 64

Sample Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Lab Sample ID	Client Sample ID	Matrix	Collected Receive
680-138014-1	6489-DP-4 (13-18)	Water	04/26/17 08:17 04/27/17 09
680-138014-2	6489-DP-5 (1-2)	Solid	04/26/17 10:00 04/27/17 09
680-138014-3	6489-DP-5 (19-20)	Solid	04/26/17 09:55 04/27/17 09
680-138014-4	6489-DP-5 (3-8)	Water	04/26/17 10:10 04/27/17 09
680-138014-5	6489-DP-5 (8-18)	Water	04/26/17 10:05 04/27/17 09
680-138014-6	6489-DP-6 (1-2)	Solid	04/26/17 11:18 04/27/17 09
680-138014-7	6489-DP-6 (15-16)	Solid	04/26/17 11:23 04/27/17 09
680-138014-8	6489-DP-6 (4-5)	Water	04/26/17 12:46 04/27/17 09
680-138014-10	6489-DP-7 (4-6)	Solid	04/26/17 14:59 04/27/17 09
680-138014-11	6489-DP-7 (18-19)	Solid	04/26/17 14:53 04/27/17 09
680-138014-12	6489-DP-7 (22-23.5)	Solid	04/26/17 14:47 04/27/17 09
680-138014-14	6489-DP-8 (3-4)	Solid	04/26/17 18:05 04/27/17 09
680-138014-15	6489-DP-8 (8-10)	Solid	04/26/17 18:10 04/27/17 09
680-138014-16	6489-DP-8 (18-19)	Solid	04/26/17 18:15 04/27/17 09
680-138014-17	6489-DP-8 (13-17)	Water	04/26/17 18:20 04/27/17 09
680-138014-18	6489-HA-1 (2-3)	Solid	04/26/17 16:25 04/27/17 09
680-138014-19	6489-HA-1 (4.5-5)	Water	04/26/17 16:32 04/27/17 09
680-138014-20	6489-DUP-1	Solid	04/26/17 00:00 04/27/17 09
680-138014-21	6489-DUP-2	Water	04/26/17 00:00 04/27/17 09
680-138014-22	6489-TB	Water	04/26/17 00:00 04/27/17 09

Case Narrative

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Job ID: 680-138014-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE Client: Environmental Forensic Investigation Inc Project: Ideal Cleaners - LaGrange, GA

Report Number: 680-138014-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 04/27/2017; the samples arrived in good condition, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.7° C and 3.1° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 6489-DP-5 (1-2) (680-138014-2), 6489-DP-5 (19-20) (680-138014-3), 6489-DP-6 (1-2) (680-138014-6), 6489-DP-6 (15-16) (680-138014-7), 6489-DP-7 (4-6) (680-138014-10), 6489-DP-7 (18-19) (680-138014-11), 6489-DP-7 (22-23.5) (680-138014-12), 6489-DP-8 (3-4) (680-138014-14), 6489-DP-8 (8-10) (680-138014-15), 6489-DP-8 (18-19) (680-138014-16), 6489-HA-1 (2-3) (680-138014-18) and 6489-DUP-1 (680-138014-20) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared on 04/27/2017 and analyzed on 05/04/2017 and 05/05/2017.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-477632 and analytical batches 680-478515 and 680-478517.

1,2-Dichloroethane-d4 (Surr) recovered outside the surrogate recovery criteria high for 6489-DP-6 (1-2) (680-138014-6). Evidence of matrix interference is not obvious. The sample was re-analyzed with failing internal standard responses. The strongest set of data has been reported. Refer to the QC report for details.

Bromomethane exceeded the RPD limit for LCSD 680-478753/5. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 6489-DP-4 (13-18) (680-138014-1), 6489-DP-5 (3-8) (680-138014-4), 6489-DP-5 (8-18) (680-138014-5), 6489-DP-6 (4-5) (680-138014-8), 6489-DP-8 (13-17) (680-138014-17), 6489-HA-1 (4.5-5) (680-138014-19), 6489-DUP-2 (680-138014-21) and 6489-TB (680-138014-22) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 05/09/2017.

Samples 6489-DP-8 (13-17) (680-138014-17)[5X], 6489-DP-8 (13-17) (680-138014-17)[50X], 6489-HA-1 (4.5-5) (680-138014-19)[20X], 6489-HA-1 (4.5-5) (680-138014-19)[200X] and 6489-DUP-2 (680-138014-21)[2000X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Samples 6489-DP-5 (1-2) (680-138014-2), 6489-DP-5 (19-20) (680-138014-3), 6489-DP-6 (1-2) (680-138014-6), 6489-DP-6 (15-16) (680-138014-7), 6489-DP-7 (4-6) (680-138014-10), 6489-DP-7 (18-19) (680-138014-11), 6489-DP-7 (22-23.5) (680-138014-12), 6489-DP-8 (3-4) (680-138014-14), 6489-DP-8 (8-10) (680-138014-15), 6489-DP-8 (18-19) (680-138014-16), 6489-DP-1 (680-138014-20) were analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 05/03/2017.

4

_

7

8

40

11

Case Narrative

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Job ID: 680-138014-1 (Continued)

Laboratory: TestAmerica Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

- (

4

5

6

0

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Lab Sample ID: 680-138014-1

Matrix: Water

Client Sample ID: 6489-DP-4 (13-18)

Date Collected: 04/26/17 08:17 Date Received: 04/27/17 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone		U	20	9.9	ug/L			05/09/17 21:08	1
Benzene	1.0	U	1.0	0.50	ug/L			05/09/17 21:08	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/09/17 21:08	1
Bromoform	1.0	U	1.0	0.63	ug/L			05/09/17 21:08	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/09/17 21:08	1
2-Butanone (MEK)	10	U	10	8.4	ug/L			05/09/17 21:08	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/09/17 21:08	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L			05/09/17 21:08	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L			05/09/17 21:08	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/09/17 21:08	1
Chloroform	1.0	U	1.0	0.90	ug/L			05/09/17 21:08	1
Chloromethane	4.0	U	4.0		-			05/09/17 21:08	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.65	ug/L			05/09/17 21:08	1
cis-1,3-Dichloropropene	1.0	U	1.0		-			05/09/17 21:08	1
Dibromochloromethane	1.0		1.0	0.31				05/09/17 21:08	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/L			05/09/17 21:08	1
1,2-Dibromoethane	1.0		1.0	0.50	-			05/09/17 21:08	1
1,2-Dichlorobenzene	1.0		1.0		ug/L			05/09/17 21:08	1
1,3-Dichlorobenzene	1.0		1.0	0.64	-			05/09/17 21:08	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			05/09/17 21:08	1
Dichlorodifluoromethane	5.0		5.0		ug/L			05/09/17 21:08	1
1,1-Dichloroethane	1.0		1.0	0.52	-			05/09/17 21:08	1
1,2-Dichloroethane	1.0		1.0	0.57	_			05/09/17 21:08	1
1,1-Dichloroethene	1.0		1.0	0.67	-			05/09/17 21:08	1
1,2-Dichloropropane	1.0		1.0	0.52	-			05/09/17 21:08	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene	1.0		1.0	0.44	-			05/09/17 21:08	1
2-Hexanone	10		10		ug/L			05/09/17 21:08	
Isopropylbenzene	1.0		1.0	0.52	-			05/09/17 21:08	· · · · · · · · · · · · · · · · · · ·
Methylene Chloride	10		10		ug/L			05/09/17 21:08	1
4-Methyl-2-pentanone	10		10		ug/L			05/09/17 21:08	1
Methyl tert-butyl ether	1.0		1.0	0.44	-			05/09/17 21:08	
Styrene	2.0		2.0	0.44	-			05/09/17 21:08	1
1,1,2,2-Tetrachloroethane	1.0		1.0	0.90	-			05/09/17 21:08	1
Tetrachloroethene	1.0		1.0		ug/L ug/L			05/09/17 21:08	
Toluene	1.0		1.0	0.50	-			05/09/17 21:08	1
trans-1,2-Dichloroethene	1.0		1.0		ug/L			05/09/17 21:08	1
trans-1,3-Dichloropropene	1.0		1.0		ug/L			05/09/17 21:08	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			05/09/17 21:08	1
1,1,1-Trichloroethane	1.0		1.0		ug/L			05/09/17 21:08	1
1,1,2-Trichloroethane	1.0		1.0		ug/L			05/09/17 21:08	1
Trichloroethene	1.0		1.0		ug/L			05/09/17 21:08	1
Trichlorofluoromethane	5.0		5.0		ug/L			05/09/17 21:08	1
Vinyl chloride	1.0		1.0		ug/L			05/09/17 21:08	1
Xylenes, Total	3.0	U	3.0	0.50	ug/L			05/09/17 21:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-5 (1-2)

4-Bromofluorobenzene (Surr)

Date Collected: 04/26/17 10:00 Date Received: 04/27/17 09:30 Lab Sample ID: 680-138014-2

Matrix: Solid Percent Solids: 84.3

Method: 8260B - Volatile O Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	4.9		4.9	0.92	0 0	₩.		05/04/17 15:25	
Chloromethane	4.9		4.9		• •	☆		05/04/17 15:25	
Vinyl chloride	4.9		4.9	1.5	ug/Kg			05/04/17 15:25	
Bromomethane	4.9		4.9	1.5	ug/Kg	*		05/04/17 15:25	•
Chloroethane	4.9		4.9		ug/Kg	: \$		05/04/17 15:25	•
Trichlorofluoromethane	4.9		4.9		ug/Kg			05/04/17 15:25	
1,1-Dichloroethene	4.9		4.9	1.5	ug/Kg	₽	04/27/17 12:17	05/04/17 15:25	•
Acetone	49	U	49	11	0 0	₩	04/27/17 12:17	05/04/17 15:25	
Carbon disulfide	4.9		4.9		ug/Kg			05/04/17 15:25	
Methylene Chloride	4.9	U	4.9		ug/Kg	₩	04/27/17 12:17	05/04/17 15:25	•
trans-1,2-Dichloroethene	4.9	U	4.9	0.61	ug/Kg	≎	04/27/17 12:17	05/04/17 15:25	•
Methyl tert-butyl ether	4.9	U	4.9	0.98	ug/Kg	≎	04/27/17 12:17	05/04/17 15:25	•
1,1-Dichloroethane	4.9	U	4.9	1.1	ug/Kg	₽	04/27/17 12:17	05/04/17 15:25	
cis-1,2-Dichloroethene	4.9	U	4.9	1.4	ug/Kg	₩	04/27/17 12:17	05/04/17 15:25	1
2-Butanone (MEK)	24	U	24	2.3	ug/Kg	☼	04/27/17 12:17	05/04/17 15:25	•
Chloroform	4.9	U	4.9	1.1	ug/Kg	₩	04/27/17 12:17	05/04/17 15:25	,
1,1,1-Trichloroethane	4.9	U	4.9	0.58	ug/Kg	₩	04/27/17 12:17	05/04/17 15:25	•
Carbon tetrachloride	4.9	U	4.9	0.81	ug/Kg	≎	04/27/17 12:17	05/04/17 15:25	
Benzene	4.9	U	4.9	0.71	ug/Kg	≎	04/27/17 12:17	05/04/17 15:25	· · · · · · · · ·
1,2-Dichloroethane	4.9	U	4.9	1.1	ug/Kg	₽	04/27/17 12:17	05/04/17 15:25	
Trichloroethene	4.9	U	4.9	1.3	ug/Kg	₽	04/27/17 12:17	05/04/17 15:25	•
1,2-Dichloropropane	4.9	Ü	4.9	0.84	ug/Kg		04/27/17 12:17	05/04/17 15:25	•
Bromodichloromethane	4.9	U	4.9	0.95	ug/Kg	₩	04/27/17 12:17	05/04/17 15:25	1
cis-1,3-Dichloropropene	4.9	U	4.9	0.81	ug/Kg	₽	04/27/17 12:17	05/04/17 15:25	1
4-Methyl-2-pentanone	24	U	24	4.1	ug/Kg	₽	04/27/17 12:17	05/04/17 15:25	
Toluene	4.9	U	4.9	0.82	ug/Kg	☼	04/27/17 12:17	05/04/17 15:25	1
trans-1,3-Dichloropropene	4.9	U	4.9	0.85	ug/Kg	₩	04/27/17 12:17	05/04/17 15:25	
1,1,2-Trichloroethane	4.9	U	4.9	1.3	ug/Kg		04/27/17 12:17	05/04/17 15:25	,
Tetrachloroethene	4.9	U	4.9	1.9	ug/Kg	☼	04/27/17 12:17	05/04/17 15:25	
2-Hexanone	24	U	24	3.2	ug/Kg	☼	04/27/17 12:17	05/04/17 15:25	•
Dibromochloromethane	4.9	U	4.9	1.7	ug/Kg		04/27/17 12:17	05/04/17 15:25	,
1,2-Dibromoethane	4.9	U	4.9	1.5	ug/Kg	☼	04/27/17 12:17	05/04/17 15:25	
Chlorobenzene	4.9	U	4.9	0.94	ug/Kg	≎	04/27/17 12:17	05/04/17 15:25	
Ethylbenzene	4.9	U	4.9		ug/Kg		04/27/17 12:17	05/04/17 15:25	• • • • • • • •
Xylenes, Total	9.8	U	9.8	1.1	ug/Kg	₽	04/27/17 12:17	05/04/17 15:25	
Styrene	4.9	U	4.9		ug/Kg	₽	04/27/17 12:17	05/04/17 15:25	
Bromoform	4.9	Ü	4.9		ug/Kg			05/04/17 15:25	• • • • • • • •
Isopropylbenzene	4.9	U	4.9		ug/Kg	₩	04/27/17 12:17	05/04/17 15:25	
1,1,2,2-Tetrachloroethane	4.9	U	4.9		ug/Kg	₩	04/27/17 12:17	05/04/17 15:25	
1,3-Dichlorobenzene	4.9		4.9		ug/Kg		04/27/17 12:17	05/04/17 15:25	,
1,4-Dichlorobenzene	4.9	U	4.9		ug/Kg	₩	04/27/17 12:17	05/04/17 15:25	
1,2-Dichlorobenzene	4.9		4.9		ug/Kg	☼		05/04/17 15:25	
1,2-Dibromo-3-Chloropropane	9.8		9.8		ug/Kg			05/04/17 15:25	· · · · · · .
1,2,4-Trichlorobenzene	4.9		4.9		ug/Kg	☼		05/04/17 15:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	92		70 - 130				04/27/17 12:17	05/04/17 15:25	•
1,2-Dichloroethane-d4 (Surr)	118		70 - 130				04/27/17 12:17	05/04/17 15:25	1
Dibromofluoromethane (Surr)	120		70 - 130				04/27/17 12:17	05/04/17 15:25	1
							04/07/47 46 47	05/04/47 45 05	

TestAmerica Savannah

5/11/2017

04/27/17 12:17 05/04/17 15:25

Page 7 of 64

70 - 130

91

3

5

8

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-5 (19-20) Lab Sample ID: 680-138014-3

Date Collected: 04/26/17 09:55 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 88.3

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	5.2	U	5.2	0.98	ug/Kg	<u> </u>	04/27/17 12:17	05/04/17 15:47	
Chloromethane	5.2	U	5.2	1.0	ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
Vinyl chloride	5.2	U	5.2	1.6	ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
3romomethane	5.2	U	5.2	1.6	ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
Chloroethane	5.2	U	5.2	2.8	ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
Trichlorofluoromethane	5.2	U	5.2	1.3	ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
1,1-Dichloroethene	5.2	U	5.2	1.6	ug/Kg		04/27/17 12:17	05/04/17 15:47	
Acetone	12	J	52	12	ug/Kg	☼	04/27/17 12:17	05/04/17 15:47	
Carbon disulfide	5.2	U	5.2	1.2	ug/Kg	☼	04/27/17 12:17	05/04/17 15:47	
Methylene Chloride	5.2	U	5.2	1.0	ug/Kg	₽	04/27/17 12:17	05/04/17 15:47	
rans-1,2-Dichloroethene	5.2	U	5.2	0.66	ug/Kg	☼	04/27/17 12:17	05/04/17 15:47	
Methyl tert-butyl ether	5.2	U	5.2	1.0	ug/Kg	☼	04/27/17 12:17	05/04/17 15:47	
I,1-Dichloroethane	5.2	Ü	5.2		ug/Kg		04/27/17 12:17	05/04/17 15:47	
cis-1,2-Dichloroethene	5.2	U	5.2		ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
2-Butanone (MEK)	26	U	26		ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
Chloroform	5.2	Ü	5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/27/17 12:17	05/04/17 15:47	
,1,1-Trichloroethane	5.2	U	5.2		ug/Kg	☼	04/27/17 12:17	05/04/17 15:47	
Carbon tetrachloride	5.2	U	5.2	0.87	ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
Benzene	5.2	U	5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/27/17 12:17	05/04/17 15:47	
,2-Dichloroethane	5.2	U	5.2		ug/Kg	☼	04/27/17 12:17	05/04/17 15:47	
richloroethene	5.2	U	5.2		ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
,2-Dichloropropane	5.2	U	5.2		ug/Kg		04/27/17 12:17	05/04/17 15:47	
Bromodichloromethane	5.2	U	5.2		ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
is-1,3-Dichloropropene	5.2		5.2		ug/Kg	₩		05/04/17 15:47	
-Methyl-2-pentanone	26		26		ug/Kg			05/04/17 15:47	
oluene	5.2	U	5.2		ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
rans-1,3-Dichloropropene	5.2		5.2		ug/Kg	₩		05/04/17 15:47	
,1,2-Trichloroethane	5.2		5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/04/17 15:47	
etrachloroethene	5.2		5.2		ug/Kg	₩		05/04/17 15:47	
-Hexanone	26		26		ug/Kg	₩		05/04/17 15:47	
Dibromochloromethane	5.2		5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/04/17 15:47	
.2-Dibromoethane	5.2		5.2		ug/Kg	₩		05/04/17 15:47	
Chlorobenzene	5.2		5.2		ug/Kg	₩	04/27/17 12:17	05/04/17 15:47	
ithylbenzene	5.2		5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/04/17 15:47	
ylenes, Total	10		10		ug/Kg	₩		05/04/17 15:47	
tyrene	5.2		5.2		ug/Kg	₩		05/04/17 15:47	
romoform	5.2		5.2		ug/Kg	· · · · · · · · · · · · · · · · · · ·		05/04/17 15:47	
sopropylbenzene	5.2		5.2		ug/Kg	₩		05/04/17 15:47	
,1,2,2-Tetrachloroethane	5.2		5.2		ug/Kg	₩		05/04/17 15:47	
,3-Dichlorobenzene	5.2		5.2		ug/Kg			05/04/17 15:47	
,4-Dichlorobenzene	5.2		5.2		ug/Kg	₽		05/04/17 15:47	
,2-Dichlorobenzene	5.2		5.2		ug/Kg ug/Kg	☼		05/04/17 15:47	
,2-Dibromo-3-Chloropropane	10		10		ug/Kg ug/Kg			05/04/17 15:47	
,2,4-Trichlorobenzene	5.2		5.2		ug/Kg ug/Kg	₩		05/04/17 15:47	

TestAmerica Savannah

04/27/17 12:17 05/04/17 15:47

04/27/17 12:17 05/04/17 15:47 04/27/17 12:17 05/04/17 15:47

Page 8 of 64

70 - 130

70 - 130

70 - 130

92

123

122

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Client Sample ID: 6489-DP-5 (19-20)

Date Collected: 04/26/17 09:55 Date Received: 04/27/17 09:30 Lab Sample ID: 680-138014-3

Matrix: Solid

Percent Solids: 88.3

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Method: 8260B - Volatile Organic Compounds (GC/MS)

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 4-Bromofluorobenzene (Surr)
 89
 70 - 130
 04/27/17 12:17
 05/04/17 15:47
 1

Client Sample ID: 6489-DP-5 (3-8)

Lab Sample ID: 680-138014-4

Date Collected: 04/26/17 10:10 Matrix: Water

Date Received: 04/27/17 09:30

1,1,2-Trichloroethane

Trichloroethene

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	15	J	20	9.9	ug/L			05/09/17 21:27	1
Benzene	1.0	U	1.0	0.50	ug/L			05/09/17 21:27	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/09/17 21:27	1
Bromoform	1.0	U	1.0	0.63	ug/L			05/09/17 21:27	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/09/17 21:27	1
2-Butanone (MEK)	10	U	10	8.4	ug/L			05/09/17 21:27	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/09/17 21:27	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L			05/09/17 21:27	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L			05/09/17 21:27	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/09/17 21:27	1
Chloroform	1.0	U	1.0	0.90	ug/L			05/09/17 21:27	1
Chloromethane	4.0	U	4.0	1.0	ug/L			05/09/17 21:27	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.65	ug/L			05/09/17 21:27	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.39	ug/L			05/09/17 21:27	1
Dibromochloromethane	1.0	U	1.0	0.31	ug/L			05/09/17 21:27	1
1,2-Dibromo-3-Chloropropane	5.0	Ü	5.0	2.5	ug/L			05/09/17 21:27	1
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L			05/09/17 21:27	1
1,2-Dichlorobenzene	1.0	U	1.0	0.49	ug/L			05/09/17 21:27	1
1,3-Dichlorobenzene	1.0	Ü	1.0	0.64	ug/L			05/09/17 21:27	1
1,4-Dichlorobenzene	1.0	U	1.0	0.60	ug/L			05/09/17 21:27	1
Dichlorodifluoromethane	5.0	U	5.0	2.5	ug/L			05/09/17 21:27	1
1,1-Dichloroethane	1.0	U	1.0	0.52	ug/L			05/09/17 21:27	1
1,2-Dichloroethane	1.0	U	1.0	0.57	ug/L			05/09/17 21:27	1
1,1-Dichloroethene	1.0	U	1.0	0.67	ug/L			05/09/17 21:27	1
1,2-Dichloropropane	1.0	U	1.0	0.52	ug/L			05/09/17 21:27	1
Ethylbenzene	1.0	U	1.0	0.44	ug/L			05/09/17 21:27	1
2-Hexanone	10	U	10	4.4	ug/L			05/09/17 21:27	1
Isopropylbenzene	1.0	Ü	1.0	0.52	ug/L			05/09/17 21:27	1
Methylene Chloride	10	U	10	5.0	ug/L			05/09/17 21:27	1
4-Methyl-2-pentanone	10	U	10	4.0	ug/L			05/09/17 21:27	1
Methyl tert-butyl ether	1.0	U	1.0	0.44	ug/L			05/09/17 21:27	1
Styrene	2.0	U	2.0	0.98				05/09/17 21:27	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.17	ug/L			05/09/17 21:27	1
Tetrachloroethene	1.0		1.0	0.50	ug/L			05/09/17 21:27	1
Toluene	1.0	U	1.0	0.51				05/09/17 21:27	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.67	•			05/09/17 21:27	1
trans-1,3-Dichloropropene	1.0	Ū	1.0	0.27	-			05/09/17 21:27	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.58				05/09/17 21:27	1
1,1,1-Trichloroethane	1.0		1.0	0.47	•			05/09/17 21:27	1
					-				

TestAmerica Savannah

05/09/17 21:27

05/09/17 21:27

Page 9 of 64

1.0

1.0

0.47 ug/L

0.61 ug/L

1.0 U

1.0 U

9

3

4

6

9

11

12

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138014-1

Client Sample ID: 6489-DP-5 (3-8)

Date Collected: 04/26/17 10:10 Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-4

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	5.0	U	5.0	2.5	ug/L			05/09/17 21:27	1
Vinyl chloride	1.0	U	1.0	0.71	ug/L			05/09/17 21:27	1
Xylenes, Total	3.0	U	3.0	0.50	ug/L			05/09/17 21:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		70 - 130					05/09/17 21:27	1

Client Sample ID: 6489-DP-5 (8-18)

Date Collected: 04/26/17 10:05

Date Received: 04/27/17 09:30

Lab Sample	e ID:	680-1	380	14-5
		Mat	riv: W	lato

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 20 U 20 Acetone 9.9 ug/L 05/09/17 21:45 Benzene 1.0 U 1.0 0.50 ug/L 05/09/17 21:45 Bromodichloromethane 1.0 U 1.0 0.44 ug/L 05/09/17 21:45 Bromoform 1.0 U 1.0 0.63 ug/L 05/09/17 21:45 5.0 U Bromomethane 5.0 2.5 ug/L 05/09/17 21:45 8.4 ug/L 2-Butanone (MEK) 10 U 10 05/09/17 21:45 Carbon disulfide 20 U 2.0 ug/L 05/09/17 21:45 1.0 Carbon tetrachloride 1.0 U 1.0 0.43 ug/L 05/09/17 21:45 Chlorobenzene 1.0 U 1.0 0.63 ug/L 05/09/17 21:45 Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 21:45 Chloroform 1.0 U 1.0 0.90 05/09/17 21:45 ug/L Chloromethane 05/09/17 21:45 4.0 U 4.0 1.0 ug/L cis-1,2-Dichloroethene 1.0 U 1.0 0.65 ug/L 05/09/17 21:45 0.39 ug/L cis-1,3-Dichloropropene 1.0 U 1.0 05/09/17 21:45 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 21:45 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 21:45 1,2-Dibromoethane 1.0 U 1.0 0.50 ug/L 05/09/17 21:45 1,2-Dichlorobenzene 1.0 1.0 U 0.49 ug/L 05/09/17 21:45 1,3-Dichlorobenzene 1.0 U 1.0 0.64 ug/L 05/09/17 21:45 05/09/17 21:45 1.4-Dichlorobenzene 1.0 U 1.0 0.60 ug/L Dichlorodifluoromethane 5.0 U 5.0 2.5 ug/L 05/09/17 21:45 1.1-Dichloroethane 1.0 U 1.0 0.52 ug/L 05/09/17 21:45 1,2-Dichloroethane 1.0 U 1.0 0.57 ug/L 05/09/17 21:45 1,1-Dichloroethene 1.0 U 1.0 0.67 ug/L 05/09/17 21:45 1,2-Dichloropropane 1.0 U 1.0 0.52 ug/L 05/09/17 21:45 Ethylbenzene 1.0 U 1.0 0.44 ug/L 05/09/17 21:45 10 2-Hexanone 10 U 4.4 ug/L 05/09/17 21:45 Isopropylbenzene 1.0 U 1.0 0.52 ug/L 05/09/17 21:45 Methylene Chloride 10 U 10 5.0 ug/L 05/09/17 21:45 4-Methyl-2-pentanone 10 U 10 4.0 ug/L 05/09/17 21:45 Methyl tert-butyl ether 1.0 U 1.0 0.44 ug/L 05/09/17 21:45 Styrene 0.98 ug/L 2.0 U 2.0 05/09/17 21:45 1,1,2,2-Tetrachloroethane 1.0 U 0.17 ug/L 05/09/17 21:45 1.0 Tetrachloroethene 1.0 U 1.0 0.50 ug/L 05/09/17 21:45 0.51 ug/L Toluene 1.0 U 1.0 05/09/17 21:45 trans-1,2-Dichloroethene 1.0 U 1.0 0.67 ug/L 05/09/17 21:45 trans-1,3-Dichloropropene 1.0 U 1.0 0.27 ug/L 05/09/17 21:45

TestAmerica Savannah

Page 10 of 64

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Client Sample ID: 6489-DP-5 (8-18)

Date Collected: 04/26/17 10:05 Date Received: 04/27/17 09:30 Lab Sample ID: 680-138014-5

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	1.0	U	1.0	0.58	ug/L			05/09/17 21:45	1
1,1,1-Trichloroethane	1.0	U	1.0	0.47	ug/L			05/09/17 21:45	1
1,1,2-Trichloroethane	1.0	U	1.0	0.47	ug/L			05/09/17 21:45	1
Trichloroethene	1.0	U	1.0	0.61	ug/L			05/09/17 21:45	1
Trichlorofluoromethane	5.0	U	5.0	2.5	ug/L			05/09/17 21:45	1
Vinyl chloride	1.0	U	1.0	0.71	ug/L			05/09/17 21:45	1
Xylenes, Total	3.0	U	3.0	0.50	ug/L			05/09/17 21:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130			=		05/09/17 21:45	1

Client Sample ID: 6489-DP-6 (1-2)

Date Collected: 04/26/17 11:18 Date Received: 04/27/17 09:30 Lab Sample ID: 680-138014-6

Matrix: Solid Percent Solids: 81.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.1	U	5.1	0.97	ug/Kg	₩	04/27/17 12:17	05/04/17 16:10	1
Chloromethane	5.1	U	5.1	1.0	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Vinyl chloride	5.1	U	5.1	1.5	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Bromomethane	5.1	U	5.1	1.5	ug/Kg	₽	04/27/17 12:17	05/04/17 16:10	1
Chloroethane	5.1	U	5.1	2.8	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Trichlorofluoromethane	5.1	U	5.1	1.2	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
1,1-Dichloroethene	5.1	U	5.1	1.5	ug/Kg	₽	04/27/17 12:17	05/04/17 16:10	1
Acetone	51	U	51	11	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Carbon disulfide	5.1	U	5.1	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Methylene Chloride	5.1	U	5.1	1.0	ug/Kg		04/27/17 12:17	05/04/17 16:10	1
trans-1,2-Dichloroethene	5.1	U	5.1	0.65	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Methyl tert-butyl ether	5.1	U	5.1	1.0	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
1,1-Dichloroethane	5.1	U	5.1	1.1	ug/Kg	₽	04/27/17 12:17	05/04/17 16:10	1
cis-1,2-Dichloroethene	2.9	J	5.1	1.4	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
2-Butanone (MEK)	26	U	26	2.5	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Chloroform	5.1	U	5.1	1.1	ug/Kg	₽	04/27/17 12:17	05/04/17 16:10	1
1,1,1-Trichloroethane	5.1	U	5.1	0.61	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Carbon tetrachloride	5.1	U	5.1	0.85	ug/Kg	₩	04/27/17 12:17	05/04/17 16:10	1
Benzene	5.1	U	5.1	0.75	ug/Kg	φ.	04/27/17 12:17	05/04/17 16:10	1
1,2-Dichloroethane	5.1	U	5.1	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Trichloroethene	2.0	J	5.1	1.3	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
1,2-Dichloropropane	5.1	U	5.1	0.89	ug/Kg	φ.	04/27/17 12:17	05/04/17 16:10	1
Bromodichloromethane	5.1	U	5.1	1.0	ug/Kg	₩	04/27/17 12:17	05/04/17 16:10	1
cis-1,3-Dichloropropene	5.1	U	5.1	0.85	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
4-Methyl-2-pentanone	26	U	26	4.3	ug/Kg	₽	04/27/17 12:17	05/04/17 16:10	1
Toluene	5.1	U	5.1	0.86	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
trans-1,3-Dichloropropene	5.1	U	5.1	0.90	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
1,1,2-Trichloroethane	5.1	Ü	5.1	1.3	ug/Kg	₽	04/27/17 12:17	05/04/17 16:10	1
Tetrachloroethene	19		5.1	2.0	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
2-Hexanone	26	U	26	3.4	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Dibromochloromethane	5.1	Ü	5.1	1.8	ug/Kg		04/27/17 12:17	05/04/17 16:10	1
1,2-Dibromoethane	5.1	U	5.1	1.5	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Chlorobenzene	5.1	U	5.1		ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1

TestAmerica Savannah

Page 11 of 64

2

3

5

6

8

1 1

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Lab Sample ID: 680-138014-6

Matrix: Solid

Percent Solids: 81.6

Client Sample ID: 6489-DP-6 (1-2)

Date Collected: 04/26/17 11:18 Date Received: 04/27/17 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	5.1	U	5.1	1.3	ug/Kg	<u></u>	04/27/17 12:17	05/04/17 16:10	1
Xylenes, Total	10	U	10	1.1	ug/Kg		04/27/17 12:17	05/04/17 16:10	1
Styrene	5.1	U	5.1	0.96	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
Bromoform	5.1	Ü	5.1	1.5	ug/Kg	φ.	04/27/17 12:17	05/04/17 16:10	1
Isopropylbenzene	5.1	U	5.1	2.0	ug/Kg	₽	04/27/17 12:17	05/04/17 16:10	1
1,1,2,2-Tetrachloroethane	5.1	U	5.1	1.6	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
1,3-Dichlorobenzene	5.1	Ü	5.1	1.6	ug/Kg	φ.	04/27/17 12:17	05/04/17 16:10	1
1,4-Dichlorobenzene	5.1	U	5.1	0.76	ug/Kg	₽	04/27/17 12:17	05/04/17 16:10	1
1,2-Dichlorobenzene	5.1	U	5.1	1.3	ug/Kg	☼	04/27/17 12:17	05/04/17 16:10	1
1,2-Dibromo-3-Chloropropane	10	U	10	4.5	ug/Kg	₽	04/27/17 12:17	05/04/17 16:10	1
1,2,4-Trichlorobenzene	5.1	U	5.1	0.92	ug/Kg	≎	04/27/17 12:17	05/04/17 16:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130				04/27/17 12:17	05/04/17 16:10	1
1,2-Dichloroethane-d4 (Surr)	131	X	70 - 130				04/27/17 12:17	05/04/17 16:10	1
Dibromofluoromethane (Surr)	127		70 - 130				04/27/17 12:17	05/04/17 16:10	1
4-Bromofluorobenzene (Surr)	101		70 - 130				04/27/17 12:17	05/04/17 16:10	1

Client Sample ID: 6489-DP-6 (15-16)

Date Collected: 04/26/17 11:23 Date Received: 04/27/17 09:30 Lab Sample ID: 680-138014-7

Matrix: Solid

Matrix: Solid Percent Solids: 78.3

Method: 8260B - Volatile On Analyte	•	unds (GC/MS Qualifier	S) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.0		5.0	0.93	ug/Kg	<u></u>	04/27/17 12:17	05/04/17 16:33	1
Chloromethane	5.0	U	5.0	0.99	ug/Kg	₩	04/27/17 12:17	05/04/17 16:33	1
Vinyl chloride	5.0	U	5.0	1.5	ug/Kg	☼	04/27/17 12:17	05/04/17 16:33	1
Bromomethane	5.0	Ü	5.0	1.5	ug/Kg	☼	04/27/17 12:17	05/04/17 16:33	1
Chloroethane	5.0	U	5.0	2.7	ug/Kg	☼	04/27/17 12:17	05/04/17 16:33	1
Trichlorofluoromethane	5.0	U	5.0	1.2	ug/Kg	☼	04/27/17 12:17	05/04/17 16:33	1
1,1-Dichloroethene	5.0	U	5.0	1.5	ug/Kg		04/27/17 12:17	05/04/17 16:33	1
Acetone	17	J	50	11	ug/Kg	₩	04/27/17 12:17	05/04/17 16:33	1
Carbon disulfide	5.0	U	5.0	1.1	ug/Kg	₩	04/27/17 12:17	05/04/17 16:33	1
Methylene Chloride	5.0	U	5.0	0.97	ug/Kg	☆	04/27/17 12:17	05/04/17 16:33	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.63	ug/Kg	☼	04/27/17 12:17	05/04/17 16:33	1
Methyl tert-butyl ether	5.0	U	5.0	0.99	ug/Kg	≎	04/27/17 12:17	05/04/17 16:33	1
1,1-Dichloroethane	5.0	U	5.0	1.1	ug/Kg	\$	04/27/17 12:17	05/04/17 16:33	1
cis-1,2-Dichloroethene	5.0	U	5.0	1.4	ug/Kg	☼	04/27/17 12:17	05/04/17 16:33	1
2-Butanone (MEK)	25	U	25	2.4	ug/Kg	≎	04/27/17 12:17	05/04/17 16:33	1
Chloroform	5.0	U	5.0	1.1	ug/Kg	☆	04/27/17 12:17	05/04/17 16:33	1
1,1,1-Trichloroethane	5.0	U	5.0	0.59	ug/Kg	☼	04/27/17 12:17	05/04/17 16:33	1
Carbon tetrachloride	5.0	U	5.0	0.82	ug/Kg	₩	04/27/17 12:17	05/04/17 16:33	1
Benzene	5.0	U	5.0	0.73	ug/Kg	\$	04/27/17 12:17	05/04/17 16:33	1
1,2-Dichloroethane	5.0	U	5.0	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 16:33	1
Trichloroethene	5.0	U	5.0	1.3	ug/Kg	₩	04/27/17 12:17	05/04/17 16:33	1
1,2-Dichloropropane	5.0	U	5.0	0.85	ug/Kg		04/27/17 12:17	05/04/17 16:33	1
Bromodichloromethane	5.0	U	5.0	0.96	ug/Kg	₩	04/27/17 12:17	05/04/17 16:33	1
cis-1,3-Dichloropropene	5.0	U	5.0	0.82	ug/Kg	☼	04/27/17 12:17	05/04/17 16:33	1
4-Methyl-2-pentanone	25	Ü	25	4.2	ug/Kg		04/27/17 12:17	05/04/17 16:33	1
Toluene	5.0	U	5.0	0.83	ug/Kg	₩	04/27/17 12:17	05/04/17 16:33	1

TestAmerica Savannah

Page 12 of 64

5/11/2017

3

6

8

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-6 (15-16)

Lab Sample ID: 680-138014-7 Date Collected: 04/26/17 11:23 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 78.3

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Analyte Result Qualifier **MDL** Unit D Prepared Analyzed Dil Fac trans-1,3-Dichloropropene 5.0 U 5.0 0.86 ug/Kg 04/27/17 12:17 05/04/17 16:33 1,1,2-Trichloroethane 5.0 U 5.0 04/27/17 12:17 05/04/17 16:33 1.3 ug/Kg Tetrachloroethene 5.0 U 5.0 ug/Kg 04/27/17 12:17 05/04/17 16:33 2-Hexanone 25 U 25 3.3 ug/Kg 04/27/17 12:17 05/04/17 16:33 Dibromochloromethane 5.0 U 5.0 04/27/17 12:17 05/04/17 16:33 1.7 ug/Kg 1.2-Dibromoethane 5.0 U 5.0 ug/Kg 04/27/17 12:17 05/04/17 16:33 1.5 Chlorobenzene 5.0 U 5.0 0.95 ug/Kg 04/27/17 12:17 05/04/17 16:33 Ethylbenzene 5.0 U 5.0 1.3 ug/Kg 04/27/17 12:17 05/04/17 16:33 Xylenes, Total 9.9 U 9.9 1.1 04/27/17 12:17 05/04/17 16:33 ug/Kg Styrene 5.0 U 5.0 04/27/17 12:17 05/04/17 16:33 0.92 ug/Kg Bromoform 5.0 U 5.0 1.5 ug/Kg 04/27/17 12:17 05/04/17 16:33 Isopropylbenzene 5.0 U 5.0 04/27/17 12:17 05/04/17 16:33 1.9 ug/Kg 1,1,2,2-Tetrachloroethane 5.0 U 5.0 04/27/17 12:17 05/04/17 16:33 1.6 ug/Kg 1,3-Dichlorobenzene 5.0 U 5.0 1.6 ug/Kg 04/27/17 12:17 05/04/17 16:33 1.4-Dichlorobenzene 5.0 U 5.0 0.74 ug/Kg 04/27/17 12:17 05/04/17 16:33 1,2-Dichlorobenzene 5.0 U 5.0 1.3 ug/Kg 04/27/17 12:17 05/04/17 16:33 1,2-Dibromo-3-Chloropropane 9.9 U 9.9 4.4 ug/Kg 04/27/17 12:17 05/04/17 16:33 1,2,4-Trichlorobenzene 5.0 U 5.0 0.88 ug/Kg 04/27/17 12:17 05/04/17 16:33 Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed

Toluene-d8 (Surr) 93 70 - 130 04/27/17 12:17 05/04/17 16:33 70 - 130 1,2-Dichloroethane-d4 (Surr) 121 04/27/17 12:17 05/04/17 16:33 Dibromofluoromethane (Surr) 120 70 - 130 04/27/17 12:17 05/04/17 16:33 4-Bromofluorobenzene (Surr) 88 70 - 130 04/27/17 12:17 05/04/17 16:33

Client Sample ID: 6489-DP-6 (4-5)

Lab Sample ID: 680-138014-8 Date Collected: 04/26/17 12:46 **Matrix: Water** Date Received: 04/27/17 09:30

Benzene 1.0 U 1.0 0.50 ug/L 05/09/17 1 Bromodichloromethane 1.0 U 1.0 0.44 ug/L 05/09/17 1 Bromoform 1.0 U 1.0 0.63 ug/L 05/09/17 1 Bromomethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 2-Butanone (MEK) 10 U 10 8.4 ug/L 05/09/17 2 Carbon disulfide 2.0 U 2.0 1.0 ug/L 05/09/17 2 Carbon tetrachloride 1.0 U 1.0 0.43 ug/L 05/09/17 2 Chlorobenzene 1.0 U 1.0 0.63 ug/L 05/09/17 2 Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 Chloroform 1.0 U 1.0 0.90 ug/L 05/09/17 2 Chloromethane 4.0 U 4.0 1.0 ug/L 05/09/17 2 Cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 U 1.0 0.31 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 3 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 3	d Dil Fac	Analyzed	Prepared	D	Unit	MDL	RL	Qualifier	Result	Analyte
Bromodichloromethane 1.0 U 1.0 0.44 ug/L 05/09/17 degree Bromoform 1.0 U 1.0 0.63 ug/L 05/09/17 degree Bromomethane 5.0 U 5.0 2.5 ug/L 05/09/17 degree 2-Butanone (MEK) 10 U 10 8.4 ug/L 05/09/17 degree Carbon disulfide 2.0 U 2.0 1.0 ug/L 05/09/17 degree Carbon tetrachloride 1.0 U 1.0 0.43 ug/L 05/09/17 degree Chlorobenzene 1.0 U 1.0 0.63 ug/L 05/09/17 degree Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 degree Chloromethane 4.0 U 4.0 0.90 ug/L 05/09/17 degree Cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 degree cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 degree Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 degree 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 0.5 0.5 ug/L 05/09/17 degree	:04 1	05/09/17 22:04			ug/L	9.9	20	U	20	Acetone
Bromoform 1.0 U 1.0 0.63 ug/L 05/09/17 1 Bromomethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 2-Butanone (MEK) 10 U 10 8.4 ug/L 05/09/17 2 Carbon disulfide 2.0 U 2.0 1.0 ug/L 05/09/17 2 Carbon tetrachloride 1.0 U 1.0 0.43 ug/L 05/09/17 2 Chlorobenzene 1.0 U 1.0 0.63 ug/L 05/09/17 2 Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 Chloromethane 4.0 U 4.0 0.90 ug/L 05/09/17 2 Cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 2 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	0.50	1.0	U	1.0	Benzene
Bromomethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 2-Butanone (MEK) 10 U 10 8.4 ug/L 05/09/17 2 Carbon disulfide 2.0 U 2.0 1.0 ug/L 05/09/17 2 Carbon tetrachloride 1.0 U 1.0 0.43 ug/L 05/09/17 2 Chlorobenzene 1.0 U 1.0 0.63 ug/L 05/09/17 2 Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 Chloromethane 4.0 U 4.0 0.90 ug/L 05/09/17 2 Cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 2 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	0.44	1.0	U	1.0	Bromodichloromethane
2-Butanone (MEK) 10 U 10 B.4 ug/L 05/09/17 2 Carbon disulfide 2.0 U 2.0 1.0 ug/L 05/09/17 2 Carbon tetrachloride 1.0 U 1.0 0.43 ug/L 05/09/17 2 Chlorobenzene 1.0 U 1.0 0.63 ug/L 05/09/17 2 Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 Chloroform 1.0 U 1.0 0.90 ug/L 05/09/17 2 Chloromethane 4.0 U 4.0 1.0 ug/L 05/09/17 2 cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 2 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	0.63	1.0	U	1.0	Bromoform
Carbon disulfide 2.0 U 2.0 1.0 ug/L 05/09/17 2 Carbon tetrachloride 1.0 U 1.0 0.43 ug/L 05/09/17 2 Chlorobenzene 1.0 U 1.0 0.63 ug/L 05/09/17 2 Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 Chloroform 1.0 U 1.0 0.90 ug/L 05/09/17 2 Chloromethane 4.0 U 4.0 1.0 ug/L 05/09/17 2 cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 1.0 0.39 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 2 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	2.5	5.0	U	5.0	Bromomethane
Carbon tetrachloride 1.0 U 1.0 0.43 ug/L 05/09/17 2 Chlorobenzene 1.0 U 1.0 0.63 ug/L 05/09/17 2 Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 Chloroform 1.0 U 1.0 0.90 ug/L 05/09/17 2 Chloromethane 4.0 U 4.0 1.0 ug/L 05/09/17 2 cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 2 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	8.4	10	U	10	2-Butanone (MEK)
Chlorobenzene 1.0 U 1.0 0.63 ug/L 05/09/17 2 Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 Chloroform 1.0 U 1.0 0.90 ug/L 05/09/17 2 Chloromethane 4.0 U 4.0 1.0 ug/L 05/09/17 2 cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 2 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	1.0	2.0	U	2.0	Carbon disulfide
Chloroethane 5.0 U 5.0 2.5 ug/L 05/09/17 2 Chloroform 1.0 U 1.0 0.90 ug/L 05/09/17 2 Chloromethane 4.0 U 4.0 1.0 ug/L 05/09/17 2 cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 2 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	0.43	1.0	U	1.0	Carbon tetrachloride
Chloroform 1.0 U 1.0 0.90 ug/L 0.90 ug/L 05/09/17 2 Chloromethane 4.0 U 4.0 1.0 ug/L 05/09/17 2 cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 2 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	0.63	1.0	U	1.0	Chlorobenzene
Chloromethane 4.0 U 4.0 1.0 ug/L 05/09/17 2 cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 2 cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 2 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 2 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	2.5	5.0	U	5.0	Chloroethane
cis-1,2-Dichloroethene 23 1.0 0.65 ug/L 05/09/17 cr cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 cr Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 cr 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 0.5 ug/L 05/09/17 cr	:04 1	05/09/17 22:04			ug/L	0.90	1.0	U	1.0	Chloroform
cis-1,3-Dichloropropene 1.0 U 1.0 0.39 ug/L 05/09/17 3 Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 3 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17 3	:04 1	05/09/17 22:04			ug/L	1.0	4.0	U	4.0	Chloromethane
Dibromochloromethane 1.0 U 1.0 0.31 ug/L 05/09/17 1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17	:04 1	05/09/17 22:04			ug/L	0.65	1.0		23	cis-1,2-Dichloroethene
1,2-Dibromo-3-Chloropropane 5.0 U 5.0 2.5 ug/L 05/09/17	:04 1	05/09/17 22:04			ug/L	0.39	1.0	U	1.0	cis-1,3-Dichloropropene
,	:04 1	05/09/17 22:04			ug/L	0.31	1.0	U	1.0	Dibromochloromethane
1,2-Dibromoethane 1.0 U 1.0 0.50 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	2.5	5.0	U	5.0	1,2-Dibromo-3-Chloropropane
	:04 1	05/09/17 22:04			ug/L	0.50	1.0	U	1.0	1,2-Dibromoethane
1,2-Dichlorobenzene 1.0 U 1.0 0.49 ug/L 05/09/17 2	:04 1	05/09/17 22:04			ug/L	0.49	1.0	U	1.0	1,2-Dichlorobenzene
1,3-Dichlorobenzene 1.0 U 1.0 0.64 ug/L 05/09/17	:04 1	05/09/17 22:04			ug/L	0.64	1.0	U	1.0	1,3-Dichlorobenzene

TestAmerica Savannah

Page 13 of 64

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

1.0 U

1.0 U

1.0 U

1.0 U

1.0 U

5.0 U

13

0.74 J

Client Sample ID: 6489-DP-6 (4-5)

Date Collected: 04/26/17 12:46 Date Received: 04/27/17 09:30 Lab Sample ID: 680-138014-8

Matrix: Water

Dil Fac **Analyte** Result Qualifier RL **MDL** Unit D **Prepared** Analyzed 1,4-Dichlorobenzene 1.0 U 1.0 0.60 ug/L 05/09/17 22:04 Dichlorodifluoromethane 5.0 U 5.0 05/09/17 22:04 2.5 ug/L 1,1-Dichloroethane 1.0 U 1.0 0.52 ug/L 05/09/17 22:04 1,2-Dichloroethane 1.0 U 1.0 0.57 ug/L 05/09/17 22:04 0.67 ug/L 1,1-Dichloroethene 1.0 U 1.0 05/09/17 22:04 1,2-Dichloropropane 1.0 U 1.0 0.52 ug/L 05/09/17 22:04 Ethylbenzene 1.4 1.0 0.44 ug/L 05/09/17 22:04 2-Hexanone 10 U 10 4.4 ug/L 05/09/17 22:04 1.0 0.52 ug/L 05/09/17 22:04 Isopropylbenzene **59** Methylene Chloride 10 U 10 5.0 ug/L 05/09/17 22:04 4-Methyl-2-pentanone 10 U 10 4.0 ug/L 05/09/17 22:04 Methyl tert-butyl ether 1.0 U 1.0 0.44 ug/L 05/09/17 22:04 Styrene 2.0 U 2.0 0.98 ug/L 05/09/17 22:04 1,1,2,2-Tetrachloroethane 1.0 U 1.0 0.17 ug/L 05/09/17 22:04 1.0 0.50 ug/L 05/09/17 22:04 Tetrachloroethene 0.99 J Toluene 1.0 U 1.0 0.51 ug/L 05/09/17 22:04 trans-1,2-Dichloroethene 1.0 U 1.0 0.67 ug/L 05/09/17 22:04

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130		05/09/17 22:04	1

1.0

1.0

1.0

1.0

1.0

5.0

1.0

3.0

0.27 ug/L

0.58 ug/L

0.47 ug/L

0.47 ug/L

0.61 ug/L

2.5 ug/L

0.71 ug/L

0.50 ug/L

Client Sample ID: 6489-DP-7 (4-6)

Date Collected: 04/26/17 14:59

Date Received: 04/27/17 09:30

trans-1,3-Dichloropropene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

Lab	Samp	le ID	: 6	80-1	380	14-10	

05/09/17 22:04

05/09/17 22:04

05/09/17 22:04

05/09/17 22:04

05/09/17 22:04

05/09/17 22:04

05/09/17 22:04

05/09/17 22:04

Matrix: Solid Percent Solids: 90.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	7600	U	7600	1400	ug/Kg	<u> </u>	04/27/17 12:17	05/04/17 15:49	2000
Chloromethane	7600	U	7600	1500	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Vinyl chloride	7600	U	7600	2300	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Bromomethane	7600	U	7600	2300	ug/Kg	₽	04/27/17 12:17	05/04/17 15:49	2000
Chloroethane	7600	U	7600	4100	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Trichlorofluoromethane	7600	U	7600	1800	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
1,1-Dichloroethene	7600	U	7600	2300	ug/Kg	₽	04/27/17 12:17	05/04/17 15:49	2000
Acetone	76000	U	76000	17000	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Carbon disulfide	7600	U	7600	1700	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Methylene Chloride	7600	U	7600	1500	ug/Kg	₽	04/27/17 12:17	05/04/17 15:49	2000
trans-1,2-Dichloroethene	7600	U	7600	950	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Methyl tert-butyl ether	7600	U	7600	1500	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
1,1-Dichloroethane	7600	U	7600	1700	ug/Kg	*	04/27/17 12:17	05/04/17 15:49	2000
cis-1,2-Dichloroethene	7600	U	7600	2100	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
2-Butanone (MEK)	38000	U	38000	3600	ug/Kg	₩	04/27/17 12:17	05/04/17 15:49	2000

TestAmerica Savannah

Page 14 of 64

2

5

8

10

11

12

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-138014-10

Client Sample ID: 6489-DP-7 (4-6) Date Collected: 04/26/17 14:59 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 90.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	7600	U	7600	1700	ug/Kg	<u> </u>	04/27/17 12:17	05/04/17 15:49	2000
1,1,1-Trichloroethane	7600	U	7600	890			04/27/17 12:17	05/04/17 15:49	2000
Carbon tetrachloride	7600	U	7600	1300	ug/Kg	₩	04/27/17 12:17	05/04/17 15:49	2000
Benzene	7600	U	7600	1100	ug/Kg		04/27/17 12:17	05/04/17 15:49	2000
1,2-Dichloroethane	7600	U	7600	1700	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Trichloroethene	3500	J	7600	2000	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
1,2-Dichloropropane	7600	U	7600	1300	ug/Kg	₽	04/27/17 12:17	05/04/17 15:49	2000
Bromodichloromethane	7600	U	7600	1500	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
cis-1,3-Dichloropropene	7600	U	7600	1300	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
4-Methyl-2-pentanone	38000	U	38000	6300	ug/Kg	₩	04/27/17 12:17	05/04/17 15:49	2000
Toluene	1600	J	7600	1300	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
trans-1,3-Dichloropropene	7600	U	7600	1300	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
1,1,2-Trichloroethane	7600	U	7600	2000	ug/Kg		04/27/17 12:17	05/04/17 15:49	2000
2-Hexanone	38000	U	38000	5000	ug/Kg	₩	04/27/17 12:17	05/04/17 15:49	2000
Dibromochloromethane	7600	U	7600	2600	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
1,2-Dibromoethane	7600	U	7600	2300	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Chlorobenzene	7600	U	7600	1500	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Ethylbenzene	7600	U	7600	2000	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Xylenes, Total	15000	U	15000	1700	ug/Kg	₽	04/27/17 12:17	05/04/17 15:49	2000
Styrene	7600	U	7600	1400	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Bromoform	7600	U	7600	2300	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
Isopropylbenzene	7600	U	7600	2900	ug/Kg	☆	04/27/17 12:17	05/04/17 15:49	2000
1,1,2,2-Tetrachloroethane	7600	U	7600	2400	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
1,3-Dichlorobenzene	7600	U	7600	2400	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
1,4-Dichlorobenzene	7600	U	7600	1100	ug/Kg	☆	04/27/17 12:17	05/04/17 15:49	2000
1,2-Dichlorobenzene	7600	U	7600	2000	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
1,2-Dibromo-3-Chloropropane	15000	U	15000	6600	ug/Kg	☼	04/27/17 12:17	05/04/17 15:49	2000
1,2,4-Trichlorobenzene	7600	U	7600	1300	ug/Kg	\$	04/27/17 12:17	05/04/17 15:49	2000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		70 - 130				04/27/17 12:17	05/04/17 15:49	2000
1,2-Dichloroethane-d4 (Surr)	88		70 - 130				04/27/17 12:17	05/04/17 15:49	2000
Dibromofluoromethane (Surr)	96		70 - 130				04/27/17 12:17	05/04/17 15:49	2000
4-Bromofluorobenzene (Surr)	95		70 - 130				04/27/17 12:17	05/04/17 15:49	2000
Method: 8260B - Volatile Or	rganic Compo	unds (GC/I	MS) - DL						
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	650000		76000	29000	ug/Kg		04/27/17 12:17	05/05/17 19:17	20000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
T / (0 /0)			70 100					05/05/47 40 47	

04/27/17 12:17 05/05/17 19:17

04/27/17 12:17 05/05/17 19:17

04/27/17 12:17 05/05/17 19:17

04/27/17 12:17 05/05/17 19:17

70 - 130

70 - 130

70 - 130

70 - 130

94

102

110

90

20000

20000

20000

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-7 (18-19)

Lab Sample ID: 680-138014-11 Date Collected: 04/26/17 14:53 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 88.6

Method: 8260B - Volatile Or Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	3.9		3.9	0.72	ug/Kg	₩		05/04/17 16:56	1
Chloromethane	3.9		3.9	0.77	ug/Kg	☆		05/04/17 16:56	1
Vinyl chloride	3.9		3.9		ug/Kg	, .		05/04/17 16:56	
Bromomethane	3.9		3.9		ug/Kg	*		05/04/17 16:56	1
Chloroethane	3.9	U	3.9	2.1	ug/Kg	₩	04/27/17 12:17	05/04/17 16:56	1
Trichlorofluoromethane	3.9	U	3.9		ug/Kg			05/04/17 16:56	1
1,1-Dichloroethene	3.9		3.9	1.2	ug/Kg	₩	04/27/17 12:17	05/04/17 16:56	1
Acetone	39	U	39	8.5	ug/Kg	≎	04/27/17 12:17	05/04/17 16:56	1
Carbon disulfide	3.9	U	3.9		ug/Kg	≎	04/27/17 12:17	05/04/17 16:56	1
Methylene Chloride	3.9	U	3.9	0.75	ug/Kg	₽	04/27/17 12:17	05/04/17 16:56	1
trans-1,2-Dichloroethene	3.9	U	3.9		ug/Kg	₽	04/27/17 12:17	05/04/17 16:56	1
Methyl tert-butyl ether	3.9	U	3.9	0.77	ug/Kg	₽	04/27/17 12:17	05/04/17 16:56	1
1,1-Dichloroethane	3.9	U	3.9	0.85	ug/Kg	₩	04/27/17 12:17	05/04/17 16:56	1
cis-1,2-Dichloroethene	3.9	U	3.9	1.1	ug/Kg	₩	04/27/17 12:17	05/04/17 16:56	1
2-Butanone (MEK)	19	U	19	1.8	ug/Kg	≎	04/27/17 12:17	05/04/17 16:56	1
Chloroform	3.9	U	3.9	0.85	ug/Kg	≎	04/27/17 12:17	05/04/17 16:56	1
1,1,1-Trichloroethane	3.9	U	3.9	0.45	ug/Kg	≎	04/27/17 12:17	05/04/17 16:56	1
Carbon tetrachloride	3.9	U	3.9	0.64	ug/Kg	₩	04/27/17 12:17	05/04/17 16:56	1
Benzene	3.9	U	3.9	0.56	ug/Kg	.	04/27/17 12:17	05/04/17 16:56	1
1,2-Dichloroethane	3.9	U	3.9	0.85	ug/Kg	☼	04/27/17 12:17	05/04/17 16:56	1
Trichloroethene	3.9	U	3.9	1.0	ug/Kg	☼	04/27/17 12:17	05/04/17 16:56	1
1,2-Dichloropropane	3.9	U	3.9	0.66	ug/Kg		04/27/17 12:17	05/04/17 16:56	1
Bromodichloromethane	3.9	U	3.9	0.75	ug/Kg	≎	04/27/17 12:17	05/04/17 16:56	1
cis-1,3-Dichloropropene	3.9	U	3.9	0.64	ug/Kg	≎	04/27/17 12:17	05/04/17 16:56	1
4-Methyl-2-pentanone	19	U	19		ug/Kg		04/27/17 12:17	05/04/17 16:56	1
Toluene	3.9	U	3.9		ug/Kg	₩	04/27/17 12:17	05/04/17 16:56	1
trans-1,3-Dichloropropene	3.9	U	3.9		ug/Kg	₩	04/27/17 12:17	05/04/17 16:56	1
1,1,2-Trichloroethane	3.9	U	3.9	1.0	ug/Kg		04/27/17 12:17	05/04/17 16:56	1
Tetrachloroethene	8.5		3.9		ug/Kg	≎		05/04/17 16:56	1
2-Hexanone	19	U	19		ug/Kg	≎		05/04/17 16:56	1
Dibromochloromethane	3.9	Ü	3.9		ug/Kg		04/27/17 12:17	05/04/17 16:56	1
1,2-Dibromoethane	3.9		3.9		ug/Kg	≎		05/04/17 16:56	1
Chlorobenzene	3.9		3.9		ug/Kg	₽		05/04/17 16:56	1
Ethylbenzene	3.9		3.9		ug/Kg	 \$		05/04/17 16:56	
Xylenes, Total	7.7		7.7		ug/Kg	₩		05/04/17 16:56	1
Styrene	3.9		3.9		ug/Kg	₩	04/27/17 12:17		1
Bromoform	3.9		3.9		ug/Kg			05/04/17 16:56	· · · · · · · · · · · · · · · · · · ·
Isopropylbenzene	3.9		3.9		ug/Kg	☼		05/04/17 16:56	1
1,1,2,2-Tetrachloroethane	3.9		3.9		ug/Kg	☼		05/04/17 16:56	1
1,3-Dichlorobenzene	3.9		3.9		ug/Kg			05/04/17 16:56	· · · · · · · · · · · · · · · · · · ·
1,4-Dichlorobenzene	3.9		3.9		ug/Kg	☼		05/04/17 16:56	1
1,2-Dichlorobenzene	3.9		3.9		ug/Kg	☼		05/04/17 16:56	1
1,2-Dibromo-3-Chloropropane	7.7		7.7		ug/Kg			05/04/17 16:56	· · · · · · · · · · · · · · · · · · ·
1,2,4-Trichlorobenzene	3.9		3.9		ug/Kg	☼		05/04/17 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91		70 - 130				04/27/17 12:17	05/04/17 16:56	
1,2-Dichloroethane-d4 (Surr)	117		70 - 130				04/27/17 12:17	05/04/17 16:56	1
Dibromofluoromethane (Surr)	120		70 - 130				04/27/17 12:17	05/04/17 16:56	1
4-Bromofluorobenzene (Surr)									

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-7 (22-23.5)

Date Collected: 04/26/17 14:47 Date Received: 04/27/17 09:30

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 680-138014-12

Matrix: Solid Percent Solids: 87.7

Method: 8260B - Volatile On Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.3	U	5.3	1.0	ug/Kg	<u> </u>	04/27/17 12:17	05/04/17 17:19	1
Chloromethane	5.3	U	5.3	1.1	ug/Kg	₩	04/27/17 12:17	05/04/17 17:19	1
Vinyl chloride	5.3	U	5.3	1.6	ug/Kg	₩	04/27/17 12:17	05/04/17 17:19	1
Bromomethane	5.3	Ü	5.3	1.6	ug/Kg		04/27/17 12:17	05/04/17 17:19	1
Chloroethane	5.3	U	5.3	2.9	ug/Kg	₩	04/27/17 12:17	05/04/17 17:19	1
Trichlorofluoromethane	5.3	U	5.3	1.3	ug/Kg	₩	04/27/17 12:17	05/04/17 17:19	1
1,1-Dichloroethene	5.3	U	5.3	1.6	ug/Kg		04/27/17 12:17	05/04/17 17:19	1
Acetone	53	U	53	12	ug/Kg	₽	04/27/17 12:17	05/04/17 17:19	1
Carbon disulfide	5.3	U	5.3	1.2	ug/Kg	≎	04/27/17 12:17	05/04/17 17:19	1
Methylene Chloride	5.3	U	5.3	1.0	ug/Kg		04/27/17 12:17	05/04/17 17:19	1
trans-1,2-Dichloroethene	5.3	U	5.3		ug/Kg	₽	04/27/17 12:17	05/04/17 17:19	1
Methyl tert-butyl ether	5.3	U	5.3	1.1	ug/Kg	₽	04/27/17 12:17	05/04/17 17:19	1
1,1-Dichloroethane	5.3	U	5.3	1.2	ug/Kg	ф.	04/27/17 12:17	05/04/17 17:19	1
cis-1,2-Dichloroethene	5.3		5.3		ug/Kg	☼		05/04/17 17:19	1
2-Butanone (MEK)	27		27		ug/Kg	☼	04/27/17 12:17	05/04/17 17:19	1
Chloroform	5.3	U	5.3		ug/Kg		04/27/17 12:17	05/04/17 17:19	1
1,1,1-Trichloroethane	5.3	U	5.3		ug/Kg	₩	04/27/17 12:17	05/04/17 17:19	1
Carbon tetrachloride	5.3	U	5.3		ug/Kg	≎	04/27/17 12:17	05/04/17 17:19	1
Benzene	5.3	Ü	5.3		ug/Kg	.	04/27/17 12:17	05/04/17 17:19	1
1,2-Dichloroethane	5.3		5.3		ug/Kg	≎		05/04/17 17:19	1
Trichloroethene	5.3	U	5.3		ug/Kg	≎	04/27/17 12:17	05/04/17 17:19	1
1,2-Dichloropropane	5.3		5.3		ug/Kg			05/04/17 17:19	1
Bromodichloromethane	5.3		5.3		ug/Kg	₽	04/27/17 12:17	05/04/17 17:19	1
cis-1,3-Dichloropropene	5.3		5.3		ug/Kg	₽		05/04/17 17:19	1
4-Methyl-2-pentanone	27		27		ug/Kg			05/04/17 17:19	1
Toluene	5.3		5.3		ug/Kg	₽		05/04/17 17:19	1
trans-1,3-Dichloropropene	5.3		5.3		ug/Kg	≎		05/04/17 17:19	1
1,1,2-Trichloroethane	5.3		5.3		ug/Kg			05/04/17 17:19	1
Tetrachloroethene	7.2		5.3		ug/Kg	≎		05/04/17 17:19	1
2-Hexanone	27	U	27		ug/Kg	≎		05/04/17 17:19	1
Dibromochloromethane	5.3	Ü	5.3		ug/Kg			05/04/17 17:19	1
1,2-Dibromoethane	5.3		5.3		ug/Kg	₽		05/04/17 17:19	1
Chlorobenzene	5.3		5.3		ug/Kg	₽	04/27/17 12:17	05/04/17 17:19	1
Ethylbenzene	5.3		5.3		ug/Kg			05/04/17 17:19	· · · · · · · 1
Xylenes, Total	11		11		ug/Kg	₽		05/04/17 17:19	1
Styrene	5.3		5.3		ug/Kg	₽		05/04/17 17:19	1
Bromoform	5.3		5.3		ug/Kg			05/04/17 17:19	1
Isopropylbenzene	5.3		5.3		ug/Kg	☼		05/04/17 17:19	1
1,1,2,2-Tetrachloroethane	5.3		5.3		ug/Kg	☼		05/04/17 17:19	. 1
1,3-Dichlorobenzene	5.3		5.3		ug/Kg	.		05/04/17 17:19	1
1,4-Dichlorobenzene	5.3		5.3		ug/Kg	₽		05/04/17 17:19	1
1,2-Dichlorobenzene	5.3		5.3		ug/Kg	₽		05/04/17 17:19	1
1,2-Dibromo-3-Chloropropane	11		11		ug/Kg			05/04/17 17:19	
1,2,4-Trichlorobenzene	5.3		5.3		ug/Kg	₽		05/04/17 17:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
			70. 100				7 Tepareu	•	ac

TestAmerica Savannah

04/27/17 12:17 05/04/17 17:19

04/27/17 12:17 05/04/17 17:19 04/27/17 12:17 05/04/17 17:19

70 - 130

70 - 130

70 - 130

95

124

119

2

4

6

8

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138014-1

Client Sample ID: 6489-DP-7 (22-23.5)

Lab Sample ID: 680-138014-12 Date Collected: 04/26/17 14:47 **Matrix: Solid** Date Received: 04/27/17 09:30

Percent Solids: 87.7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 90 70 - 130 04/27/17 12:17 05/04/17 17:19

Client Sample ID: 6489-DP-8 (3-4) Lab Sample ID: 680-138014-14

Date Collected: 04/26/17 18:05 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 84.3

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.9	U	5.9	1.1	ug/Kg	<u> </u>	04/27/17 12:17	05/04/17 17:42	1
Chloromethane	5.9	U	5.9		ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Vinyl chloride	5.9	U	5.9	1.8	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Bromomethane	5.9	U	5.9	1.8	ug/Kg	φ.	04/27/17 12:17	05/04/17 17:42	1
Chloroethane	5.9	U	5.9	3.2	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Trichlorofluoromethane	5.9	U	5.9	1.4	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
1,1-Dichloroethene	5.9	U	5.9	1.8	ug/Kg		04/27/17 12:17	05/04/17 17:42	1
Acetone	59	U	59	13	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Carbon disulfide	5.9	U	5.9	1.3	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Methylene Chloride	5.9	U	5.9	1.2	ug/Kg	₽	04/27/17 12:17	05/04/17 17:42	1
trans-1,2-Dichloroethene	5.9	U	5.9	0.74	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Methyl tert-butyl ether	5.9	U	5.9	1.2	ug/Kg	₽	04/27/17 12:17	05/04/17 17:42	1
1,1-Dichloroethane	5.9	U	5.9	1.3	ug/Kg	₽	04/27/17 12:17	05/04/17 17:42	1
cis-1,2-Dichloroethene	5.9	U	5.9	1.6	ug/Kg	₩	04/27/17 12:17	05/04/17 17:42	1
2-Butanone (MEK)	29	U	29	2.8	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Chloroform	5.9	U	5.9	1.3	ug/Kg	₽	04/27/17 12:17	05/04/17 17:42	1
1,1,1-Trichloroethane	5.9	U	5.9	0.69	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Carbon tetrachloride	5.9	U	5.9	0.98	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Benzene	5.9	U	5.9	0.86	ug/Kg	.	04/27/17 12:17	05/04/17 17:42	1
1,2-Dichloroethane	5.9	U	5.9	1.3	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Trichloroethene	5.9	U	5.9	1.5	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
1,2-Dichloropropane	5.9	U	5.9	1.0	ug/Kg	₽	04/27/17 12:17	05/04/17 17:42	1
Bromodichloromethane	5.9	U	5.9	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
cis-1,3-Dichloropropene	5.9	U	5.9	0.98	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
4-Methyl-2-pentanone	29	Ü	29	4.9	ug/Kg	₽	04/27/17 12:17	05/04/17 17:42	1
Toluene	5.9	U	5.9	0.99	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
trans-1,3-Dichloropropene	5.9	U	5.9	1.0	ug/Kg	₩	04/27/17 12:17	05/04/17 17:42	1
1,1,2-Trichloroethane	5.9	Ü	5.9	1.5	ug/Kg	*	04/27/17 12:17	05/04/17 17:42	1
Tetrachloroethene	5.9	U	5.9	2.2	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
2-Hexanone	29	U	29	3.9	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Dibromochloromethane	5.9	U	5.9	2.0	ug/Kg		04/27/17 12:17	05/04/17 17:42	1
1,2-Dibromoethane	5.9	U	5.9	1.8	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Chlorobenzene	5.9	U	5.9	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Ethylbenzene	5.9	U	5.9	1.5	ug/Kg		04/27/17 12:17	05/04/17 17:42	1
Xylenes, Total	12	U	12	1.3	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Styrene	5.9	U	5.9	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Bromoform	5.9	U	5.9	1.8	ug/Kg	φ.	04/27/17 12:17	05/04/17 17:42	1
Isopropylbenzene	5.9	U	5.9	2.2	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
1,1,2,2-Tetrachloroethane	5.9	U	5.9	1.9	ug/Kg	₽	04/27/17 12:17	05/04/17 17:42	1
1,3-Dichlorobenzene	5.9	U	5.9	1.9	ug/Kg		04/27/17 12:17	05/04/17 17:42	1
1,4-Dichlorobenzene	5.9	U	5.9	0.87	ug/Kg	₩	04/27/17 12:17	05/04/17 17:42	1

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-8 (3-4)

Date Collected: 04/26/17 18:05 Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-14

Matrix: Solid Percent Solids: 84.3

Method: 8260B	 Volatile C 	Organic Compo	ounds ((GC/MS)	(Continued))
A malusta		Desui	اعت میں ا		. Di	841

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	5.9	U	5.9	1.5	ug/Kg	<u>₩</u>	04/27/17 12:17	05/04/17 17:42	1
1,2-Dibromo-3-Chloropropane	12	U	12	5.2	ug/Kg		04/27/17 12:17	05/04/17 17:42	1
1,2,4-Trichlorobenzene	5.9	U	5.9	1.0	ug/Kg	☼	04/27/17 12:17	05/04/17 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		70 - 130				04/27/17 12:17	05/04/17 17:42	1

121 70 - 130 04/27/17 12:17 05/04/17 17:42 1,2-Dichloroethane-d4 (Surr) Dibromofluoromethane (Surr) 70 - 130 04/27/17 12:17 05/04/17 17:42 118 04/27/17 12:17 05/04/17 17:42 70 - 130 4-Bromofluorobenzene (Surr) 93

Client Sample ID: 6489-DP-8 (8-10)

Date Collected: 04/26/17 18:10 Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-15

Matrix: Solid Percent Solids: 76.5

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.5	U	5.5	1.0	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
Chloromethane	5.5	U	5.5	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
Vinyl chloride	5.5	U	5.5	1.7	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
Bromomethane	5.5	U	5.5	1.7	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
Chloroethane	5.5	U	5.5	3.0	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
Trichlorofluoromethane	5.5	U	5.5	1.3	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
1,1-Dichloroethene	5.5	U	5.5	1.7	ug/Kg		04/27/17 12:17	05/04/17 18:05	1
Acetone	55	U	55	12	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
Carbon disulfide	5.5	U	5.5	1.2	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
Methylene Chloride	5.5	U	5.5	1.1	ug/Kg	φ.	04/27/17 12:17	05/04/17 18:05	1
trans-1,2-Dichloroethene	5.5	U	5.5	0.70	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
Methyl tert-butyl ether	5.5	U	5.5	1.1	ug/Kg	₩	04/27/17 12:17	05/04/17 18:05	1
1,1-Dichloroethane	5.5	U	5.5	1.2	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
cis-1,2-Dichloroethene	5.5	U	5.5	1.5	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
2-Butanone (MEK)	28	U	28	2.6	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
Chloroform	5.5	U	5.5	1.2	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
1,1,1-Trichloroethane	5.5	U	5.5	0.65	ug/Kg	₩	04/27/17 12:17	05/04/17 18:05	1
Carbon tetrachloride	5.5	U	5.5	0.92	ug/Kg	₩	04/27/17 12:17	05/04/17 18:05	1
Benzene	5.5	U	5.5	0.81	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
1,2-Dichloroethane	5.5	U	5.5	1.2	ug/Kg	₩	04/27/17 12:17	05/04/17 18:05	1
Trichloroethene	5.5	U	5.5	1.4	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
1,2-Dichloropropane	5.5	U	5.5	0.95	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
Bromodichloromethane	5.5	U	5.5	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
cis-1,3-Dichloropropene	5.5	U	5.5	0.92	ug/Kg	₩	04/27/17 12:17	05/04/17 18:05	1
4-Methyl-2-pentanone	28	U	28	4.6	ug/Kg	φ.	04/27/17 12:17	05/04/17 18:05	1
Toluene	5.5	U	5.5	0.93	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
trans-1,3-Dichloropropene	5.5	U	5.5	0.96	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
1,1,2-Trichloroethane	5.5	U	5.5	1.4	ug/Kg	φ.	04/27/17 12:17	05/04/17 18:05	1
Tetrachloroethene	5.5	U	5.5	2.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
2-Hexanone	28	U	28	3.6	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
Dibromochloromethane	5.5	U	5.5	1.9	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
1,2-Dibromoethane	5.5	U	5.5	1.7	ug/Kg	₩	04/27/17 12:17	05/04/17 18:05	1
Chlorobenzene	5.5	U	5.5	1.1	ug/Kg	₩	04/27/17 12:17	05/04/17 18:05	1
Ethylbenzene	5.5	Ü	5.5	1.4	ug/Kg	*	04/27/17 12:17	05/04/17 18:05	1

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-8 (8-10)

Date Collected: 04/26/17 18:10 Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-15

Matrix: Solid Percent Solids: 76.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total		U	11	1.2	ug/Kg	<u> </u>	04/27/17 12:17	05/04/17 18:05	1
Styrene	5.5	U	5.5	1.0	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
Bromoform	5.5	U	5.5	1.7	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
Isopropylbenzene	5.5	U	5.5	2.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
1,1,2,2-Tetrachloroethane	5.5	U	5.5	1.8	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
1,3-Dichlorobenzene	5.5	U	5.5	1.8	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
1,4-Dichlorobenzene	5.5	U	5.5	0.82	ug/Kg	☼	04/27/17 12:17	05/04/17 18:05	1
1,2-Dichlorobenzene	5.5	U	5.5	1.4	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
1,2-Dibromo-3-Chloropropane	11	U	11	4.9	ug/Kg	₽	04/27/17 12:17	05/04/17 18:05	1
1,2,4-Trichlorobenzene	5.5	U	5.5	0.98	ug/Kg	₩	04/27/17 12:17	05/04/17 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		70 - 130				04/27/17 12:17	05/04/17 18:05	1
1,2-Dichloroethane-d4 (Surr)	118		70 - 130				04/27/17 12:17	05/04/17 18:05	1
Dibromofluoromethane (Surr)	122		70 - 130				04/27/17 12:17	05/04/17 18:05	1
4-Bromofluorobenzene (Surr)	91		70 - 130				04/27/17 12:17	05/04/17 18:05	1

Client Sample ID: 6489-DP-8 (18-19) Lab Sample ID: 680-138014-16 Date Collected: 04/26/17 18:15 **Matrix: Solid**

Date Received: 04/27/17 09:30 Percent Solids: 72.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.7	U	5.7	1.1	ug/Kg	<u> </u>	04/27/17 12:17	05/04/17 18:27	1
Chloromethane	5.7	U	5.7	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Vinyl chloride	5.7	U	5.7	1.7	ug/Kg	₩	04/27/17 12:17	05/04/17 18:27	1
Bromomethane	5.7	U	5.7	1.7	ug/Kg	₽	04/27/17 12:17	05/04/17 18:27	1
Chloroethane	5.7	U	5.7	3.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Trichlorofluoromethane	5.7	U	5.7	1.4	ug/Kg	₩	04/27/17 12:17	05/04/17 18:27	1
1,1-Dichloroethene	5.7	U	5.7	1.7	ug/Kg	₽	04/27/17 12:17	05/04/17 18:27	1
Acetone	57	U	57	13	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Carbon disulfide	5.7	U	5.7	1.3	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Methylene Chloride	5.7	U	5.7	1.1	ug/Kg	₩.	04/27/17 12:17	05/04/17 18:27	1
trans-1,2-Dichloroethene	5.7	U	5.7	0.72	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Methyl tert-butyl ether	5.7	U	5.7	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
1,1-Dichloroethane	5.7	U	5.7	1.3	ug/Kg	₩	04/27/17 12:17	05/04/17 18:27	1
cis-1,2-Dichloroethene	5.7	U	5.7	1.6	ug/Kg	₩	04/27/17 12:17	05/04/17 18:27	1
2-Butanone (MEK)	29	U	29	2.7	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Chloroform	5.7	U	5.7	1.3	ug/Kg	₩.	04/27/17 12:17	05/04/17 18:27	1
1,1,1-Trichloroethane	5.7	U	5.7	0.67	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Carbon tetrachloride	5.7	U	5.7	0.95	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Benzene	5.7	U	5.7	0.83	ug/Kg	₽	04/27/17 12:17	05/04/17 18:27	1
1,2-Dichloroethane	5.7	U	5.7	1.3	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Trichloroethene	5.7	U	5.7	1.5	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
1,2-Dichloropropane	5.7	Ü	5.7	0.98	ug/Kg	₽	04/27/17 12:17	05/04/17 18:27	1
Bromodichloromethane	5.7	U	5.7	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
cis-1,3-Dichloropropene	5.7	U	5.7	0.95	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
4-Methyl-2-pentanone	29	U	29	4.8	ug/Kg	₽	04/27/17 12:17	05/04/17 18:27	1
Toluene	5.7	U	5.7	0.96	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
trans-1,3-Dichloropropene	5.7	U	5.7	0.99	ug/Kg	≎	04/27/17 12:17	05/04/17 18:27	1

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-8 (18-19)

Lab Sample ID: 680-138014-16 Date Collected: 04/26/17 18:15 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 72.7

04/27/17 12:17 05/04/17 18:27

04/27/17 12:17 05/04/17 18:27

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	5.7	U	5.7	1.5	ug/Kg	<u></u>	04/27/17 12:17	05/04/17 18:27	1
Tetrachloroethene	5.7	U	5.7	2.2	ug/Kg	φ.	04/27/17 12:17	05/04/17 18:27	1
2-Hexanone	29	U	29	3.8	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Dibromochloromethane	5.7	U	5.7	1.9	ug/Kg	₽	04/27/17 12:17	05/04/17 18:27	1
1,2-Dibromoethane	5.7	U	5.7	1.7	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Chlorobenzene	5.7	U	5.7	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Ethylbenzene	5.7	U	5.7	1.5	ug/Kg	₽	04/27/17 12:17	05/04/17 18:27	1
Xylenes, Total	11	U	11	1.3	ug/Kg	≎	04/27/17 12:17	05/04/17 18:27	1
Styrene	5.7	U	5.7	1.1	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
Bromoform	5.7	U	5.7	1.7	ug/Kg	₽	04/27/17 12:17	05/04/17 18:27	1
Isopropylbenzene	5.7	U	5.7	2.2	ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
1,1,2,2-Tetrachloroethane	5.7	U	5.7		ug/Kg	☼	04/27/17 12:17	05/04/17 18:27	1
1,3-Dichlorobenzene	5.7	U	5.7	1.8	ug/Kg	₽	04/27/17 12:17	05/04/17 18:27	1
1,4-Dichlorobenzene	5.7	U	5.7	0.84	ug/Kg	≎	04/27/17 12:17	05/04/17 18:27	1
1,2-Dichlorobenzene	5.7	U	5.7	1.5	ug/Kg	≎	04/27/17 12:17	05/04/17 18:27	1
1,2-Dibromo-3-Chloropropane	11	U	11	5.0	ug/Kg	*	04/27/17 12:17	05/04/17 18:27	1
1,2,4-Trichlorobenzene	5.7	U	5.7	1.0	ug/Kg	₩	04/27/17 12:17	05/04/17 18:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130				04/27/17 12:17	05/04/17 18:27	1
1,2-Dichloroethane-d4 (Surr)	122		70 - 130				04/27/17 12:17	05/04/17 18:27	1

Client Sample ID: 6489-DP-8 (13-17) Lab Sample ID: 680-138014-17

70 - 130

70 - 130

120

90

Date Collected: 04/26/17 18:20 Date Received: 04/27/17 09:30

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	100	U	100	50	ug/L			05/09/17 22:41	5
Benzene	5.0	U	5.0	2.5	ug/L			05/09/17 22:41	5
Bromodichloromethane	5.0	U	5.0	2.2	ug/L			05/09/17 22:41	5
Bromoform	5.0	U	5.0	3.2	ug/L			05/09/17 22:41	5
Bromomethane	25	U	25	13	ug/L			05/09/17 22:41	5
2-Butanone (MEK)	50	U	50	42	ug/L			05/09/17 22:41	5
Carbon disulfide	10	U	10	5.0	ug/L			05/09/17 22:41	5
Carbon tetrachloride	5.0	U	5.0	2.2	ug/L			05/09/17 22:41	5
Chlorobenzene	5.0	U	5.0	3.2	ug/L			05/09/17 22:41	5
Chloroethane	25	U	25	13	ug/L			05/09/17 22:41	5
Chloroform	5.0	U	5.0	4.5	ug/L			05/09/17 22:41	5
Chloromethane	20	U	20	5.0	ug/L			05/09/17 22:41	5
cis-1,2-Dichloroethene	7.9		5.0	3.3	ug/L			05/09/17 22:41	5
cis-1,3-Dichloropropene	5.0	U	5.0	2.0	ug/L			05/09/17 22:41	5
Dibromochloromethane	5.0	U	5.0	1.6	ug/L			05/09/17 22:41	5
1,2-Dibromo-3-Chloropropane	25	U	25	13	ug/L			05/09/17 22:41	5
1,2-Dibromoethane	5.0	U	5.0	2.5	ug/L			05/09/17 22:41	5
1,2-Dichlorobenzene	5.0	U	5.0	2.5	ug/L			05/09/17 22:41	5
1,3-Dichlorobenzene	5.0		5.0	3.2	ug/L			05/09/17 22:41	5
1,4-Dichlorobenzene	5.0	U	5.0	3.0	ug/L			05/09/17 22:41	5

TestAmerica Savannah

Page 21 of 64

Matrix: Water

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-8 (13-17)

Date Collected: 04/26/17 18:20 Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-17

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	25	U	25	13	ug/L			05/09/17 22:41	5
1,1-Dichloroethane	5.0	U	5.0	2.6	ug/L			05/09/17 22:41	5
1,2-Dichloroethane	5.0	U	5.0	2.9	ug/L			05/09/17 22:41	5
1,1-Dichloroethene	5.0	U	5.0	3.4	ug/L			05/09/17 22:41	5
1,2-Dichloropropane	5.0	U	5.0	2.6	ug/L			05/09/17 22:41	5
Ethylbenzene	5.0	U	5.0	2.2	ug/L			05/09/17 22:41	5
2-Hexanone	50	U	50	22	ug/L			05/09/17 22:41	5
Isopropylbenzene	5.0	U	5.0	2.6	ug/L			05/09/17 22:41	5
Methylene Chloride	50	U	50	25	ug/L			05/09/17 22:41	5
4-Methyl-2-pentanone	50	U	50	20	ug/L			05/09/17 22:41	5
Methyl tert-butyl ether	5.0	U	5.0	2.2	ug/L			05/09/17 22:41	5
Styrene	10	U	10	4.9	ug/L			05/09/17 22:41	5
1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.85	ug/L			05/09/17 22:41	5
Toluene	5.0	U	5.0	2.6	ug/L			05/09/17 22:41	5
trans-1,2-Dichloroethene	5.0	U	5.0	3.4	ug/L			05/09/17 22:41	5
trans-1,3-Dichloropropene	5.0	U	5.0	1.4	ug/L			05/09/17 22:41	5
1,2,4-Trichlorobenzene	5.0	Ü	5.0	2.9	ug/L			05/09/17 22:41	5
1,1,1-Trichloroethane	5.0	U	5.0	2.4	ug/L			05/09/17 22:41	5
1,1,2-Trichloroethane	5.0	U	5.0	2.4	ug/L			05/09/17 22:41	5
Trichloroethene	29		5.0	3.1	ug/L			05/09/17 22:41	5
Trichlorofluoromethane	25	U	25	13	ug/L			05/09/17 22:41	5
Vinyl chloride	5.0	U	5.0	3.6	ug/L			05/09/17 22:41	5
Xylenes, Total	15	U	15	2.5	ug/L			05/09/17 22:41	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130					05/09/17 22:41	5

Method: 8260B - Volatile Org	janic Compo	unds (GC/	MS) - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	1200		50	25	ug/L			05/09/17 22:22	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		70 - 130			-		05/09/17 22:22	50

Client Sample ID: 6489-HA-1 (2-3)

Lab Sample ID: 680-138014-18 Date Collected: 04/26/17 16:25 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 85.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	190	U	190	36	ug/Kg	<u></u>	04/27/17 12:17	05/05/17 19:40	40
Chloromethane	190	U	190	39	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Vinyl chloride	190	U	190	58	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Bromomethane	190	U	190	58	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
Chloroethane	190	U	190	100	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
Trichlorofluoromethane	190	U	190	46	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
1,1-Dichloroethene	190	U	190	58	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
Acetone	1900	U	1900	420	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Carbon disulfide	190	U	190	42	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Methylene Chloride	190	U	190	38	ug/Kg		04/27/17 12:17	05/05/17 19:40	40

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-HA-1 (2-3)

Date Collected: 04/26/17 16:25 Date Received: 04/27/17 09:30 Lab Sample ID: 680-138014-18

Matrix: Solid

Percent Solids: 85.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	190	U	190	24	ug/Kg	₩	04/27/17 12:17	05/05/17 19:40	40
Methyl tert-butyl ether	190	U	190	39	ug/Kg	≎	04/27/17 12:17	05/05/17 19:40	40
1,1-Dichloroethane	190	U	190	42	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
cis-1,2-Dichloroethene	190	U	190	54	ug/Kg	≎	04/27/17 12:17	05/05/17 19:40	40
2-Butanone (MEK)	960	U	960	93	ug/Kg	≎	04/27/17 12:17	05/05/17 19:40	40
Chloroform	190	U	190	42	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
1,1,1-Trichloroethane	190	U	190	23	ug/Kg	≎	04/27/17 12:17	05/05/17 19:40	40
Carbon tetrachloride	190	U	190	32	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Benzene	190	U	190	28	ug/Kg	φ.	04/27/17 12:17	05/05/17 19:40	40
1,2-Dichloroethane	190	U	190	42	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
Trichloroethene	200		190	50	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
1,2-Dichloropropane	190	U	190	33	ug/Kg	φ.	04/27/17 12:17	05/05/17 19:40	40
Bromodichloromethane	190	U	190	37	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
cis-1,3-Dichloropropene	190	U	190	32	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
4-Methyl-2-pentanone	960	U	960	160	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
Toluene	32	J	190	32	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
trans-1,3-Dichloropropene	190	U	190	34	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
1,1,2-Trichloroethane	190	U	190	50	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
Tetrachloroethene	4400		190	73	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
2-Hexanone	960	U	960	130	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Dibromochloromethane	190	U	190	66	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
1,2-Dibromoethane	190	U	190	58	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Chlorobenzene	190	U	190	37	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Ethylbenzene	190	U	190	50	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
Xylenes, Total	390	U	390	42	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Styrene	190	U	190	36	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
Bromoform	190	U	190	58	ug/Kg	φ.	04/27/17 12:17	05/05/17 19:40	40
Isopropylbenzene	190	U	190	73	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
1,1,2,2-Tetrachloroethane	190	U	190	62	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
1,3-Dichlorobenzene	190	U	190	62	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
1,4-Dichlorobenzene	190	U	190	29	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
1,2-Dichlorobenzene	190	U	190	50	ug/Kg	☼	04/27/17 12:17	05/05/17 19:40	40
1,2-Dibromo-3-Chloropropane	390	Ú	390	170	ug/Kg	₽	04/27/17 12:17	05/05/17 19:40	40
1,2,4-Trichlorobenzene	190	U	190	34	ug/Kg	≎	04/27/17 12:17	05/05/17 19:40	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130				04/27/17 12:17	05/05/17 19:40	40
1,2-Dichloroethane-d4 (Surr)	91		70 - 130				04/27/17 12:17	05/05/17 19:40	40
Dibromofluoromethane (Surr)	99		70 - 130				04/27/17 12:17	05/05/17 19:40	40
							0.4/0.7/4.7.46.4.7	05/05/47 40 40	

Client Sample ID: 6489-HA-1 (4.5-5)

Date Collected: 04/26/17 16:32 Date Received: 04/27/17 09:30

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-138014-19

04/27/17 12:17 05/05/17 19:40

Matrix: Water

Method: 8260B - Volatile Or	ganic Compo	unds (GC/I	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	400	U	400	200	ug/L			05/09/17 21:25	20
Benzene	20	U	20	10	ug/L			05/09/17 21:25	20
Bromodichloromethane	20	U	20	8.8	ug/L			05/09/17 21:25	20

70 - 130

TestAmerica Savannah

Page 23 of 64

4

6

8

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-HA-1 (4.5-5)

Date Collected: 04/26/17 16:32

Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-19

Matrix: Water

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Bromoform	20	U	20		ug/L			05/09/17 21:25	2
Bromomethane	100	U	100	50	ug/L			05/09/17 21:25	2
2-Butanone (MEK)	200	U	200	170	ug/L			05/09/17 21:25	2
Carbon disulfide	40	U	40	20	ug/L			05/09/17 21:25	2
Carbon tetrachloride	20	U	20	8.6	ug/L			05/09/17 21:25	2
Chlorobenzene	20	U	20	13	ug/L			05/09/17 21:25	2
Chloroethane	100	U	100	50	ug/L			05/09/17 21:25	2
Chloroform	20	U	20	18	ug/L			05/09/17 21:25	2
Chloromethane	80	U	80	20	ug/L			05/09/17 21:25	2
cis-1,3-Dichloropropene	20	U	20	7.8	ug/L			05/09/17 21:25	2
Dibromochloromethane	20	U	20		ug/L			05/09/17 21:25	2
1,2-Dibromo-3-Chloropropane	100	U	100	50	ug/L			05/09/17 21:25	2
1,2-Dibromoethane	20	U	20		ug/L			05/09/17 21:25	2
1,2-Dichlorobenzene	20	U	20		ug/L			05/09/17 21:25	2
1,3-Dichlorobenzene	20	U	20		ug/L			05/09/17 21:25	2
1,4-Dichlorobenzene	20		20		ug/L			05/09/17 21:25	2
Dichlorodifluoromethane	100		100		ug/L			05/09/17 21:25	2
1,1-Dichloroethane	20	U	20		ug/L			05/09/17 21:25	2
1,2-Dichloroethane	20		20		ug/L			05/09/17 21:25	2
1,1-Dichloroethene	20		20		ug/L			05/09/17 21:25	2
1,2-Dichloropropane	20		20		ug/L			05/09/17 21:25	2
Ethylbenzene	20		20		ug/L			05/09/17 21:25	2
2-Hexanone	200		200		ug/L			05/09/17 21:25	2
Isopropylbenzene	20		20		ug/L			05/09/17 21:25	2
Methylene Chloride	200		200		ug/L			05/09/17 21:25	2
4-Methyl-2-pentanone	200		200		ug/L			05/09/17 21:25	2
Methyl tert-butyl ether	20		20		ug/L			05/09/17 21:25	2
Styrene	40		40		ug/L			05/09/17 21:25	2
1,1,2,2-Tetrachloroethane	20		20		ug/L			05/09/17 21:25	2
Tetrachloroethene	1500	O	20		ug/L			05/09/17 21:25	2
Toluene	20	. , ,	20		ug/L			05/09/17 21:25	2
		U	20		ug/L ug/L			05/09/17 21:25	2
trans-1,2-Dichloroethene	45				-				
trans-1,3-Dichloropropene	20		20		ug/L			05/09/17 21:25 05/09/17 21:25	2
1,2,4-Trichlorobenzene	20		20		ug/L				2
1,1,1-Trichloroethane	20		20		ug/L			05/09/17 21:25	2
1,1,2-Trichloroethane	20	. U	20		ug/L			05/09/17 21:25	2
Trichloroethene	290		20		ug/L			05/09/17 21:25	2
Trichlorofluoromethane	100	U	100		ug/L			05/09/17 21:25	2
Vinyl chloride	250		20		ug/L			05/09/17 21:25	2
Xylenes, Total	60	U	60	10	ug/L			05/09/17 21:25	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	101		70 - 130					05/09/17 21:25	2
Method: 8260B - Volatile O	•	unds (GC/l Qualifier	,	MIDI	l lni4		Dronored	Apolyecad	- חוו
Analyte		Qualifier	RL 200	MDL		D	Prepared	Analyzed 05/09/17 16:41	Dil Fa
cis-1,2-Dichloroethene	4500		200	130	ug/L			UD/UB/17 16:41	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	102		70 - 130					05/09/17 16:41	2

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DUP-1

Lab Sample ID: 680-138014-20 Date Collected: 04/26/17 00:00 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 89.1

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	73000	U	73000	14000		<u> </u>	04/27/17 12:17	05/05/17 20:26	20000
Chloromethane	73000	U	73000	15000	ug/Kg	≎	04/27/17 12:17	05/05/17 20:26	20000
Vinyl chloride	73000	U	73000	22000	ug/Kg	₽	04/27/17 12:17	05/05/17 20:26	20000
Bromomethane	73000	U	73000	22000	ug/Kg	₩	04/27/17 12:17	05/05/17 20:26	20000
Chloroethane	73000	U	73000	39000	ug/Kg	₩	04/27/17 12:17	05/05/17 20:26	20000
Trichlorofluoromethane	73000	U	73000	18000	ug/Kg	≎	04/27/17 12:17	05/05/17 20:26	20000
1,1-Dichloroethene	73000	U	73000	22000	ug/Kg	☼	04/27/17 12:17	05/05/17 20:26	20000
Acetone	730000	U	730000	160000	ug/Kg	≎	04/27/17 12:17	05/05/17 20:26	20000
Carbon disulfide	73000	U	73000	16000	ug/Kg	≎	04/27/17 12:17	05/05/17 20:26	20000
Methylene Chloride	73000	U	73000	14000	ug/Kg	₩	04/27/17 12:17	05/05/17 20:26	20000
trans-1,2-Dichloroethene	73000	U	73000	9200	ug/Kg	₩	04/27/17 12:17	05/05/17 20:26	20000
Methyl tert-butyl ether	73000	U	73000	15000	ug/Kg	☼	04/27/17 12:17	05/05/17 20:26	20000
1,1-Dichloroethane	73000	U	73000	16000	ug/Kg		04/27/17 12:17	05/05/17 20:26	20000
cis-1,2-Dichloroethene	73000	U	73000	20000	ug/Kg	≎	04/27/17 12:17	05/05/17 20:26	20000
2-Butanone (MEK)	370000	U	370000	35000	ug/Kg	☼	04/27/17 12:17	05/05/17 20:26	20000
Chloroform	73000	U	73000	16000			04/27/17 12:17	05/05/17 20:26	20000
1,1,1-Trichloroethane	73000	U	73000	8600		₩	04/27/17 12:17	05/05/17 20:26	20000
Carbon tetrachloride	73000	U	73000	12000		≎	04/27/17 12:17	05/05/17 20:26	20000
Benzene	73000		73000	11000			04/27/17 12:17	05/05/17 20:26	20000
1,2-Dichloroethane	73000		73000	16000		₩		05/05/17 20:26	20000
Trichloroethene	73000		73000		ug/Kg	₩		05/05/17 20:26	20000
1,2-Dichloropropane	73000		73000	13000	0 0			05/05/17 20:26	20000
Bromodichloromethane	73000		73000	14000		₽		05/05/17 20:26	20000
cis-1,3-Dichloropropene	73000		73000		ug/Kg	₽		05/05/17 20:26	20000
4-Methyl-2-pentanone	370000		370000	61000	0 0			05/05/17 20:26	20000
Toluene	15000		73000	12000		₽		05/05/17 20:26	20000
trans-1,3-Dichloropropene	73000		73000	13000	0 0	₽		05/05/17 20:26	20000
1,1,2-Trichloroethane	73000		73000	19000				05/05/17 20:26	20000
	850000	U	73000	28000	0 0	₽		05/05/17 20:26	20000
Tetrachloroethene 2-Hexanone	370000	ш	370000	48000				05/05/17 20:26	20000
Dibromochloromethane	73000		73000	25000		☆		05/05/17 20:26	20000
1,2-Dibromoethane	73000		73000	22000				05/05/17 20:26	20000
Chlorobenzene	73000		73000	14000		% .		05/05/17 20:26	20000
Ethylbenzene	73000	U	73000	19000		₩		05/05/17 20:26	20000
Xylenes, Total	150000		150000	16000	0 0	φ.		05/05/17 20:26	20000
Styrene	73000		73000	14000		<u>.</u> .		05/05/17 20:26	20000
Bromoform	73000		73000	22000				05/05/17 20:26	20000
Isopropylbenzene	73000		73000		ug/Kg	φ.		05/05/17 20:26	20000
1,1,2,2-Tetrachloroethane	73000		73000		ug/Kg			05/05/17 20:26	20000
1,3-Dichlorobenzene	73000		73000		ug/Kg	*		05/05/17 20:26	20000
1,4-Dichlorobenzene	73000		73000	11000		*		05/05/17 20:26	20000
1,2-Dichlorobenzene	73000		73000		ug/Kg			05/05/17 20:26	20000
1,2-Dibromo-3-Chloropropane	150000		150000		ug/Kg	Þ		05/05/17 20:26	20000
1,2,4-Trichlorobenzene	73000	U	73000	13000	ug/Kg	☼	04/27/17 12:17	05/05/17 20:26	20000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	94		70 - 130				04/27/17 12:17	05/05/17 20:26	20000
1,2-Dichloroethane-d4 (Surr)	104		70 - 130				04/27/17 12:17	05/05/17 20:26	20000
Dibromofluoromethane (Surr)	109		70 - 130				04/27/17 12:17	05/05/17 20:26	20000
4-Bromofluorobenzene (Surr)	89		70 - 130				04/27/17 12:17	05/05/17 20:26	20000

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DUP-2 Lab Sample ID: 680-138014-21

Date Collected: 04/26/17 00:00 Matrix: Water Date Received: 04/27/17 09:30

Surrogate Toluene-d8 (Surr)	%Recovery 102	Qualifier	70 ₋ 130			Prepared	Analyzed 05/09/17 16:19	Dil Fac
•					J	_		
Xylenes, Total	6000		6000	1000	-		05/09/17 16:19	2000
Vinyl chloride	2000		2000	1400	-		05/09/17 16:19	2000
Trichlorofluoromethane	10000	U	10000	5000	-		05/09/17 16:19	2000
Trichloroethene	2400 2400	5	2000	1200	-		05/09/17 16:19	2000
1,1,2-Trichloroethane	2000		2000		ug/L ug/L		05/09/17 16:19	2000
1,1,1-Trichloroethane	2000		2000		ug/L ug/L		05/09/17 16:19	2000
1,2,4-Trichlorobenzene	2000		2000	1200	_		05/09/17 16:19	2000
trans-1,3-Dichloropropene	2000		2000		ug/L ug/L		05/09/17 16:19	2000
trans-1,2-Dichloroethene	2000		2000	1300	•		05/09/17 16:19	2000
Tetrachloroethene Toluene	2000	П	2000	1000	-		05/09/17 16:19	2000
	80000		2000	1000			05/09/17 16:19	2000
1,1,2,2-Tetrachloroethane	2000		2000		ug/L ug/L		05/09/17 16:19	2000
Styrene	4000		4000		ug/L ug/L		05/09/17 16:19	2000
Methyl tert-butyl ether	2000		2000		ug/L ug/L		05/09/17 16:19	2000
4-Methyl-2-pentanone	20000		20000		ug/L ug/L		05/09/17 16:19	2000
Isopropylbenzene Methylene Chloride	2000		2000	1000	ug/L ug/L		05/09/17 16:19	2000
2-Hexanone	20000		20000	8800 1000			05/09/17 16:19 05/09/17 16:19	2000
Ethylbenzene	2000		2000		ug/L		05/09/17 16:19	2000
1,2-Dichloropropane	2000		2000	1000	-		05/09/17 16:19	2000
1,1-Dichloroethene	2000		2000	1300	ū		05/09/17 16:19	2000
1,2-Dichloroethane	2000		2000	1100	•		05/09/17 16:19	2000
1,1-Dichloroethane	2000		2000		•		05/09/17 16:19	2000
Dichlorodifluoromethane	10000		10000	5000			05/09/17 16:19	2000
1,4-Dichlorobenzene	2000		2000	1200	-		05/09/17 16:19	2000
1,3-Dichlorobenzene	2000		2000	1300	-		05/09/17 16:19	2000
1,2-Dichlorobenzene	2000		2000		ug/L		05/09/17 16:19	2000
1,2-Dibromoethane	2000		2000		ug/L		05/09/17 16:19	2000
1,2-Dibromo-3-Chloropropane	10000		10000	5000	_		05/09/17 16:19	2000
Dibromochloromethane	2000		2000		ug/L		05/09/17 16:19	2000
cis-1,3-Dichloropropene	2000		2000		ug/L		05/09/17 16:19	2000
cis-1,2-Dichloroethene	2400		2000	1300	ū		05/09/17 16:19	2000
Chloromethane	8000		8000	2000			05/09/17 16:19	2000
Chloroform	2000		2000	1800	ū		05/09/17 16:19	2000
Chloroethane	10000		10000	5000	•		05/09/17 16:19	2000
Chlorobenzene	2000		2000	1300			05/09/17 16:19	2000
Carbon tetrachloride	2000	U	2000		ug/L		05/09/17 16:19	2000
Carbon disulfide	4000	U	4000	2000	ug/L		05/09/17 16:19	2000
2-Butanone (MEK)	20000		20000	17000	ug/L		05/09/17 16:19	2000
Bromomethane	10000	U	10000		-		05/09/17 16:19	2000
Bromoform	2000	U	2000	1300	ug/L		05/09/17 16:19	2000
Bromodichloromethane	2000	U	2000	880	ug/L		05/09/17 16:19	2000
Benzene	2000	U	2000	1000	ug/L		05/09/17 16:19	2000
Acetone	40000	U	40000	20000	ug/L		05/09/17 16:19	2000

3

4

6

g

9

4 4

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Client Sample ID: 6489-TB

Date Collected: 04/26/17 00:00 Date Received: 04/27/17 09:30 Lab Sample ID: 680-138014-22

Matrix: Water

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	20	U	20	9.9	ug/L			05/09/17 15:35	1
Benzene	1.0	U	1.0	0.50	ug/L			05/09/17 15:35	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/09/17 15:35	1
Bromoform	1.0	U	1.0	0.63	ug/L			05/09/17 15:35	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/09/17 15:35	1
2-Butanone (MEK)	10	U	10	8.4	ug/L			05/09/17 15:35	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/09/17 15:35	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L			05/09/17 15:35	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L			05/09/17 15:35	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/09/17 15:35	1
Chloroform	1.0	U	1.0	0.90	ug/L			05/09/17 15:35	1
Chloromethane	4.0	U	4.0	1.0	ug/L			05/09/17 15:35	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.65	ug/L			05/09/17 15:35	1
cis-1,3-Dichloropropene	1.0	U	1.0		ug/L			05/09/17 15:35	1
Dibromochloromethane	1.0	U	1.0		ug/L			05/09/17 15:35	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0		ug/L			05/09/17 15:35	1
1,2-Dibromoethane	1.0	U	1.0		ug/L			05/09/17 15:35	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			05/09/17 15:35	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			05/09/17 15:35	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			05/09/17 15:35	1
Dichlorodifluoromethane	5.0	U	5.0		ug/L			05/09/17 15:35	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			05/09/17 15:35	1
1,2-Dichloroethane	1.0	U	1.0		ug/L			05/09/17 15:35	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			05/09/17 15:35	1
1,2-Dichloropropane	1.0	Ü	1.0		ug/L			05/09/17 15:35	1
Ethylbenzene	1.0		1.0		ug/L			05/09/17 15:35	1
2-Hexanone	10	U	10		ug/L			05/09/17 15:35	1
Isopropylbenzene	1.0	Ü	1.0		ug/L			05/09/17 15:35	1
Methylene Chloride	10	U	10		ug/L			05/09/17 15:35	1
4-Methyl-2-pentanone	10	U	10		ug/L			05/09/17 15:35	1
Methyl tert-butyl ether	1.0		1.0		ug/L			05/09/17 15:35	1
Styrene	2.0		2.0		ug/L			05/09/17 15:35	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			05/09/17 15:35	1
Tetrachloroethene	1.0		1.0		ug/L			05/09/17 15:35	1
Toluene	1.0		1.0		ug/L			05/09/17 15:35	1
trans-1,2-Dichloroethene	1.0		1.0		ug/L			05/09/17 15:35	
trans-1,3-Dichloropropene	1.0		1.0		ug/L			05/09/17 15:35	
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			05/09/17 15:35	1
1,1,1-Trichloroethane	1.0		1.0		ug/L ug/L			05/09/17 15:35	1
1,1,2-Trichloroethane	1.0		1.0		ug/L ug/L			05/09/17 15:35	' 1
Trichloroethene	1.0		1.0		ug/L ug/L			05/09/17 15:35	1
Trichlorofluoromethane	5.0		5.0		ug/L ug/L			05/09/17 15:35	1
	1.0				-			05/09/17 15:35	
Vinyl chloride			1.0		ug/L				1
Xylenes, Total	3.0	U	3.0	0.50	ug/L			05/09/17 15:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		70 - 130			-		05/09/17 15:35	

TestAmerica Savannah

_

5

7

9

10

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 660-182625/6

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 182625

		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	20		20		ug/L			05/09/17 12:18	1
Benzene	1.0	U	1.0	0.50	ug/L			05/09/17 12:18	1
Bromodichloromethane	1.0	U	1.0		ug/L			05/09/17 12:18	1
Bromoform	1.0	U	1.0	0.63	ug/L			05/09/17 12:18	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/09/17 12:18	1
2-Butanone (MEK)	10	U	10	8.4	ug/L			05/09/17 12:18	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/09/17 12:18	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L			05/09/17 12:18	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L			05/09/17 12:18	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/09/17 12:18	1
Chloroform	1.0	U	1.0		ug/L			05/09/17 12:18	1
Chloromethane	4.0	U	4.0		ug/L			05/09/17 12:18	1
cis-1,2-Dichloroethene	1.0	Ü	1.0		ug/L			05/09/17 12:18	1
cis-1,3-Dichloropropene	1.0		1.0	0.39	-			05/09/17 12:18	1
Dibromochloromethane	1.0		1.0		ug/L			05/09/17 12:18	1
1,2-Dibromo-3-Chloropropane	5.0		5.0		ug/L			05/09/17 12:18	1
1,2-Dibromoethane	1.0		1.0		ug/L			05/09/17 12:18	1
1,2-Dichlorobenzene	1.0		1.0	0.49	-			05/09/17 12:18	1
1,3-Dichlorobenzene	1.0		1.0	0.49	-			05/09/17 12:18	
					-				
1,4-Dichlorobenzene	1.0		1.0 5.0	0.60	-			05/09/17 12:18	1
Dichlorodifluoromethane	5.0				ug/L			05/09/17 12:18	1
1,1-Dichloroethane	1.0		1.0		ug/L			05/09/17 12:18	1
1,2-Dichloroethane	1.0		1.0	0.57	-			05/09/17 12:18	1
1,1-Dichloroethene	1.0		1.0	0.67	-			05/09/17 12:18	1
1,2-Dichloropropane	1.0		1.0	0.52	-			05/09/17 12:18	1
Ethylbenzene	1.0		1.0	0.44	-			05/09/17 12:18	1
2-Hexanone	10	U	10		ug/L			05/09/17 12:18	1
Isopropylbenzene	1.0		1.0		ug/L			05/09/17 12:18	1
Methylene Chloride	10	U	10	5.0	ug/L			05/09/17 12:18	1
4-Methyl-2-pentanone	10	U	10	4.0	ug/L			05/09/17 12:18	1
Methyl tert-butyl ether	1.0	U	1.0	0.44	ug/L			05/09/17 12:18	1
Styrene	2.0	U	2.0	0.98	ug/L			05/09/17 12:18	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.17	ug/L			05/09/17 12:18	1
Tetrachloroethene	1.0	U	1.0	0.50	ug/L			05/09/17 12:18	1
Toluene	1.0	U	1.0	0.51	ug/L			05/09/17 12:18	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.67	ug/L			05/09/17 12:18	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.27				05/09/17 12:18	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			05/09/17 12:18	1
1,1,1-Trichloroethane	1.0		1.0		ug/L			05/09/17 12:18	1
1,1,2-Trichloroethane	1.0		1.0		ug/L			05/09/17 12:18	1
Trichloroethene	1.0		1.0		ug/L			05/09/17 12:18	1
Trichlorofluoromethane	5.0		5.0		ug/L			05/09/17 12:18	1
Vinyl chloride	1.0		1.0		ug/L			05/09/17 12:18	1
Xylenes, Total	3.0		3.0		ug/L			05/09/17 12:18	1
Aylonos, Total	3.0	5	3.0	0.50	ug/L			55/05/11 12.10	ļ
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		70 - 130			-		05/09/17 12:18	

TestAmerica Savannah

Page 28 of 64

5/11/2017

3

6

8

10

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 660-182625/4

Matrix: Water

Surrogate

Toluene-d8 (Surr)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Acetone	100	112		ug/L		62 - 142
Benzene	10.0	10.1		ug/L	101	71 - 131
Bromodichloromethane	10.0	9.77		ug/L	98	70 - 131
Bromoform	10.0	9.19		ug/L	92	68 - 130
Bromomethane	10.0	6.76		ug/L	68	10 - 150
2-Butanone (MEK)	100	96.6		ug/L	97	58 - 132
Carbon disulfide	10.0	10.3		ug/L	103	43 - 150
Carbon tetrachloride	10.0	10.2		ug/L	102	70 - 134
Chlorobenzene	10.0	10.0		ug/L	100	71 - 121
Chloroethane	10.0	10.3		ug/L	103	46 - 150
Chloroform	10.0	9.68		ug/L	97	73 - 133
Chloromethane	10.0	10.8		ug/L	108	52 - 150
sis-1,2-Dichloroethene	10.0	9.99		ug/L	100	73 - 133
cis-1,3-Dichloropropene	10.0	9.54		ug/L	95	68 - 130
Dibromochloromethane	10.0	10.0		ug/L	100	58 - 130
1,2-Dibromo-3-Chloropropane	10.0	9.35		ug/L	93	54 - 130
1,2-Dibromoethane	10.0	10.0		ug/L	100	71 - 131
1,2-Dichlorobenzene	10.0	9.68		ug/L	97	73 - 133
1,3-Dichlorobenzene	10.0	9.51		ug/L	95	73 - 133
,4-Dichlorobenzene	10.0	9.96		ug/L	100	73 - 133
Dichlorodifluoromethane	10.0	11.1		ug/L	111	10 - 150
1,1-Dichloroethane	10.0	10.5		ug/L	105	72 - 130
1,2-Dichloroethane	10.0	9.57		ug/L	96	71 - 131
1,1-Dichloroethene	10.0	10.7		ug/L	107	56 - 141
1,2-Dichloropropane	10.0	9.43		ug/L	94	72 - 132
Ethylbenzene	10.0	9.32		ug/L	93	71 - 131
2-Hexanone	100	105		ug/L	105	57 - 136
sopropylbenzene	10.0	9.40		ug/L	94	70 - 131
Methylene Chloride	10.0	12.7		ug/L	127	68 - 142
1-Methyl-2-pentanone	100	99.3		ug/L	99	52 - 137
Methyl tert-butyl ether	10.0	9.34		ug/L	93	67 - 130
Styrene	10.0	9.27		ug/L	93	68 - 131
1,1,2,2-Tetrachloroethane	10.0	9.49		ug/L	95	67 - 130
Tetrachloroethene	10.0	10.5		ug/L	105	66 - 143
Toluene	10.0	9.81		ug/L	98	72 - 132
rans-1,2-Dichloroethene	10.0	10.9		ug/L	109	74 - 139
rans-1,3-Dichloropropene	10.0	8.84		ug/L	88	57 - 130
1,2,4-Trichlorobenzene	10.0	10.0		ug/L	100	73 - 133
1,1,1-Trichloroethane	10.0	9.82		ug/L	98	69 - 132
1,1,2-Trichloroethane	10.0	10.1		ug/L	101	70 - 130
Trichloroethene	10.0	9.78		ug/L	98	74 - 139
Trichlorofluoromethane	10.0	11.2		ug/L	112	62 - 146
Vinyl chloride	10.0	11.2		ug/L	112	59 - 147
Xylenes, Total	20.0	18.9		ug/L	95	70 - 130

TestAmerica Savannah

Limits

70 - 130

%Recovery Qualifier

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 660-182648/7	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Ratch: 182648	

	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	20		20		ug/L			05/09/17 16:17	1
Benzene	1.0	U	1.0	0.50	ug/L			05/09/17 16:17	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/09/17 16:17	1
Bromoform	1.0	U	1.0	0.63	ug/L			05/09/17 16:17	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/09/17 16:17	1
2-Butanone (MEK)	10	U	10	8.4	ug/L			05/09/17 16:17	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/09/17 16:17	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L			05/09/17 16:17	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L			05/09/17 16:17	1
Chloroethane	5.0	Ú	5.0	2.5	ug/L			05/09/17 16:17	1
Chloroform	1.0	U	1.0	0.90	ug/L			05/09/17 16:17	1
Chloromethane	4.0	U	4.0	1.0	ug/L			05/09/17 16:17	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.65	ug/L			05/09/17 16:17	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.39	_			05/09/17 16:17	1
Dibromochloromethane	1.0	U	1.0	0.31	-			05/09/17 16:17	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0		ug/L			05/09/17 16:17	1
1,2-Dibromoethane	1.0		1.0	0.50	_			05/09/17 16:17	1
1,2-Dichlorobenzene	1.0	U	1.0	0.49	-			05/09/17 16:17	1
1,3-Dichlorobenzene	1.0		1.0	0.64	•			05/09/17 16:17	1
1.4-Dichlorobenzene	1.0		1.0	0.60	-			05/09/17 16:17	1
Dichlorodifluoromethane	5.0		5.0		ug/L			05/09/17 16:17	1
1,1-Dichloroethane	1.0		1.0	0.52	-			05/09/17 16:17	
1,2-Dichloroethane	1.0		1.0	0.57	-			05/09/17 16:17	1
1,1-Dichloroethene	1.0		1.0	0.67	-			05/09/17 16:17	1
1,2-Dichloropropane	1.0		1.0	0.52	-			05/09/17 16:17	
Ethylbenzene	1.0		1.0	0.44	-			05/09/17 16:17	1
2-Hexanone	10		10		ug/L			05/09/17 16:17	1
Isopropylbenzene	1.0		1.0	0.52	-			05/09/17 16:17	
Methylene Chloride	1.0		10		ug/L			05/09/17 16:17	1
4-Methyl-2-pentanone	10		10		ug/L			05/09/17 16:17	1
	1.0		1.0					05/09/17 16:17	
Methyl tert-butyl ether	2.0			0.44					
Styrene	2.0		2.0 1.0	0.98	-			05/09/17 16:17	1
1,1,2,2-Tetrachloroethane				0.17				05/09/17 16:17	1
Tetrachloroethene	1.0		1.0	0.50				05/09/17 16:17	1
Toluene	1.0		1.0	0.51	J			05/09/17 16:17	1
trans-1,2-Dichloroethene	1.0		1.0	0.67				05/09/17 16:17	1
trans-1,3-Dichloropropene	1.0		1.0	0.27				05/09/17 16:17	1
1,2,4-Trichlorobenzene	1.0		1.0	0.58				05/09/17 16:17	1
1,1,1-Trichloroethane	1.0		1.0		ug/L			05/09/17 16:17	
1,1,2-Trichloroethane	1.0		1.0		ug/L			05/09/17 16:17	1
Trichloroethene	1.0		1.0	0.61	-			05/09/17 16:17	1
Trichlorofluoromethane	5.0		5.0		ug/L			05/09/17 16:17	1
Vinyl chloride	1.0		1.0	0.71				05/09/17 16:17	1
Xylenes, Total	3.0	U	3.0	0.50	ug/L			05/09/17 16:17	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130				-	05/09/17 16:17	

TestAmerica Savannah

Page 30 of 64

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 660-182648/4

Client Sample ID: Lab Control Sample
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 182648

Anglyta	Spike Added	LCS	Qualifier Unit	D %Rec	%Rec. Limits
Analyte Acetone		86.9		$\frac{1}{87}$	62 - 142
Benzene	10.0	9.19	ug/L	92	71 - 131
Bromodichloromethane	10.0	8.87	ug/L	89	70 - 131
Bromoform	10.0	8.99		90	68 - 130
	10.0		ug/L		10 - 150
Bromomethane 2-Butanone (MEK)	10.0	8.31 87.2	ug/L	83 87	58 ₋ 132
	10.0		ug/L		
Carbon disulfide		8.55	ug/L	85	43 - 150
Carbon tetrachloride	10.0	10.2	ug/L	102	70 ₋ 134
Chlorobenzene	10.0	9.88	ug/L	99	71 - 121
Chloroethane	10.0	8.12	ug/L	81	46 - 150
Chloroform	10.0	8.73	ug/L	87	73 - 133
Chloromethane	10.0	8.40	ug/L	84	52 - 150
cis-1,2-Dichloroethene	10.0	8.90	ug/L	89	73 - 133
cis-1,3-Dichloropropene	10.0	8.28	ug/L	83	68 - 130
Dibromochloromethane	10.0	8.04	ug/L	80	58 - 130
1,2-Dibromo-3-Chloropropane	10.0	8.45	ug/L	84	54 - 130
1,2-Dibromoethane	10.0	8.35	ug/L	84	71 - 131
1,2-Dichlorobenzene	10.0	9.57	ug/L	96	73 - 133
1,3-Dichlorobenzene	10.0	9.69	ug/L	97	73 - 133
1,4-Dichlorobenzene	10.0	9.95	ug/L	99	73 - 133
Dichlorodifluoromethane	10.0	11.2	ug/L	112	10 - 150
1,1-Dichloroethane	10.0	9.12	ug/L	91	72 - 130
1,2-Dichloroethane	10.0	8.24	ug/L	82	71 - 131
1,1-Dichloroethene	10.0	9.74	ug/L	97	56 - 141
1,2-Dichloropropane	10.0	8.56	ug/L	86	72 - 132
Ethylbenzene	10.0	10.2	ug/L	102	71 - 131
2-Hexanone	100	86.2	ug/L	86	57 - 136
Isopropylbenzene	10.0	10.7	ug/L	107	70 - 131
Methylene Chloride	10.0	7.10	· ·	71	68 - 142
4-Methyl-2-pentanone	100	89.8	ug/L	90	52 - 137
Methyl tert-butyl ether	10.0	7.98	ug/L	80	67 - 130
Styrene	10.0	9.77	ug/L	98	68 - 131
1,1,2,2-Tetrachloroethane	10.0	8.94	ug/L	89	67 - 130
Tetrachloroethene	10.0	9.21	ug/L	92	66 - 143
Toluene	10.0	8.87	ug/L	89	72 - 132
trans-1,2-Dichloroethene	10.0	9.15	ug/L	91	74 - 139
trans-1,3-Dichloropropene	10.0	7.94	ug/L	79	57 - 130
1,2,4-Trichlorobenzene	10.0	9.66	ug/L	97	73 - 133
1,1,1-Trichloroethane	10.0	9.66	ug/L	97	69 - 132
1,1,2-Trichloroethane	10.0	8.32	ug/L	83	70 - 130
Trichloroethene	10.0	10.8	ug/L	108	74 - 139
Trichlorofluoromethane	10.0	8.50	ug/L	85	62 - 146
Vinyl chloride	10.0	8.55	ug/L	85	59 - 147
Xylenes, Total	20.0	19.8	ug/L	99	70 - 130

 Surrogate
 %Recovery
 Qualifier
 Limits

 Toluene-d8 (Surr)
 93
 70 - 130

TestAmerica Savannah

А

0

9

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 660-182648/5

Matrix: Water

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA

Analysis Batch: 182648

Analysis Batch: 182648	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	100	86.9		ug/L		87	62 - 142		30
Benzene	10.0	8.25		ug/L		83	71 - 131	11	30
Bromodichloromethane	10.0	8.42		ug/L		84	70 - 131	5	30
Bromoform	10.0	9.58		ug/L		96	68 - 130	6	30
Bromomethane	10.0	7.19		ug/L		72	10 - 150	14	30
2-Butanone (MEK)	100	87.4		ug/L		87	58 - 132	0	30
Carbon disulfide	10.0	7.13		ug/L		71	43 - 150	18	30
Carbon tetrachloride	10.0	7.96		ug/L		80	70 - 134	25	30
Chlorobenzene	10.0	9.38		ug/L		94	71 - 121	5	30
Chloroethane	10.0	7.64		ug/L		76	46 - 150	6	30
Chloroform	10.0	8.03		ug/L		80	73 - 133	8	30
Chloromethane	10.0	7.05		ug/L		70	52 - 150	18	30
cis-1,2-Dichloroethene	10.0	8.28		ug/L		83	73 - 133	7	30
cis-1,3-Dichloropropene	10.0	8.24		ug/L		82	68 - 130	1	30
Dibromochloromethane	10.0	7.88		ug/L		79	58 - 130	2	30
1,2-Dibromo-3-Chloropropane	10.0	9.46		ug/L		95	54 - 130	11	30
1,2-Dibromoethane	10.0	8.03		ug/L		80	71 - 131	4	30
1,2-Dichlorobenzene	10.0	9.36		ug/L		94	73 - 133	2	30
1,3-Dichlorobenzene	10.0	9.25		ug/L		93	73 - 133	5	30
1,4-Dichlorobenzene	10.0	9.40		ug/L		94	73 - 133	6	30
Dichlorodifluoromethane	10.0	8.62		ug/L		86	10 - 150	26	30
1,1-Dichloroethane	10.0	8.29		ug/L		83	72 - 130	9	30
1,2-Dichloroethane	10.0	8.06		ug/L		81	71 - 131	2	30
1,1-Dichloroethene	10.0	7.57		ug/L		76	56 - 141	25	30
1,2-Dichloropropane	10.0	8.55		ug/L		86	72 - 132	0	30
Ethylbenzene	10.0	8.75		ug/L		88	71 - 131	15	30
2-Hexanone	100	89.6		ug/L		90	57 - 136	4	30
Isopropylbenzene	10.0	9.20		ug/L		92	70 - 131	15	30
Methylene Chloride	10.0	8.17	J	ug/L		82	68 - 142	14	30
4-Methyl-2-pentanone	100	90.7	-	ug/L		91	52 - 137	1	30
Methyl tert-butyl ether	10.0	8.33		ug/L		83	67 - 130	4	30
Styrene	10.0	8.88		ug/L		89	68 - 131	9	30
1,1,2,2-Tetrachloroethane	10.0	9.47		ug/L		95	67 - 130	6	30
Tetrachloroethene	10.0	7.89		ug/L		79	66 - 143	15	30
Toluene	10.0	8.08		ug/L		81	72 - 132	9	30
trans-1,2-Dichloroethene	10.0	8.13		ug/L		81	74 - 139	12	30
trans-1,3-Dichloropropene	10.0	8.12		ug/L		81	57 - 130	2	30
1,2,4-Trichlorobenzene	10.0	9.42		ug/L		94	73 - 133	3	30
1,1,1-Trichloroethane	10.0	8.01		ug/L		80	69 - 132	19	30
1,1,2-Trichloroethane	10.0	8.18		ug/L		82	70 - 130	2	30
Trichloroethene	10.0	8.70		ug/L ug/L		87	74 - 139	22	30
Trichlorofluoromethane	10.0	7.46		ug/L ug/L		75	62 - 146	13	30
Vinyl chloride	10.0	7.40		ug/L ug/L		80	59 - 147	7	30

LCSD LCSD

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-478515/10 Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 478515

	МВ	MB							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	200	U	200	38	ug/Kg			05/04/17 12:43	40
Chloromethane	200	U	200	40	ug/Kg			05/04/17 12:43	40
Vinyl chloride	200	U	200	60	ug/Kg			05/04/17 12:43	40
Bromomethane	200	U	200	60	ug/Kg			05/04/17 12:43	40
Chloroethane	200	U	200	110	ug/Kg			05/04/17 12:43	40
Trichlorofluoromethane	200	U	200	48	ug/Kg			05/04/17 12:43	40
1,1-Dichloroethene	200	U	200	60	ug/Kg			05/04/17 12:43	40
Acetone	2000	U	2000	440	ug/Kg			05/04/17 12:43	40
Carbon disulfide	200	U	200	44	ug/Kg			05/04/17 12:43	40
Methylene Chloride	200	U	200	39	ug/Kg			05/04/17 12:43	40
trans-1,2-Dichloroethene	200	U	200		ug/Kg			05/04/17 12:43	40
Methyl tert-butyl ether	200	U	200		ug/Kg			05/04/17 12:43	40
1,1-Dichloroethane	200	U	200		ug/Kg			05/04/17 12:43	40
cis-1,2-Dichloroethene	200	U	200		ug/Kg			05/04/17 12:43	40
2-Butanone (MEK)	1000	U	1000		ug/Kg			05/04/17 12:43	40
Chloroform	200		200		ug/Kg			05/04/17 12:43	40
1,1,1-Trichloroethane	200		200		ug/Kg			05/04/17 12:43	40
Carbon tetrachloride	200		200		ug/Kg			05/04/17 12:43	40
Benzene	200		200		ug/Kg			05/04/17 12:43	40
1,2-Dichloroethane	200		200		ug/Kg			05/04/17 12:43	40
Trichloroethene	200		200		ug/Kg			05/04/17 12:43	40
1,2-Dichloropropane	200		200		ug/Kg			05/04/17 12:43	40
Bromodichloromethane	200		200		ug/Kg			05/04/17 12:43	40
cis-1,3-Dichloropropene	200		200		ug/Kg			05/04/17 12:43	40
4-Methyl-2-pentanone	1000		1000		ug/Kg			05/04/17 12:43	40
Toluene	200		200		ug/Kg			05/04/17 12:43	40
trans-1,3-Dichloropropene	200		200		ug/Kg			05/04/17 12:43	40
1,1,2-Trichloroethane	200		200		ug/Kg ug/Kg			05/04/17 12:43	40
Tetrachloroethene	200		200					05/04/17 12:43	40
2-Hexanone	1000		1000		ug/Kg			05/04/17 12:43	40
Dibromochloromethane	200		200		ug/Kg ug/Kg			05/04/17 12:43	40
	200		200						
1,2-Dibromoethane					ug/Kg			05/04/17 12:43	40
Chlorobenzene	200		200		ug/Kg			05/04/17 12:43	40
Ethylbenzene	200		200		ug/Kg			05/04/17 12:43	40
Xylenes, Total	400		400		ug/Kg			05/04/17 12:43	40
Styrene	200		200		ug/Kg			05/04/17 12:43	40
Bromoform	200		200		ug/Kg			05/04/17 12:43	40
Isopropylbenzene	200		200		ug/Kg			05/04/17 12:43	40
1,1,2,2-Tetrachloroethane	200		200		ug/Kg			05/04/17 12:43	40
1,3-Dichlorobenzene	200		200		ug/Kg			05/04/17 12:43	40
1,4-Dichlorobenzene	200		200		ug/Kg			05/04/17 12:43	40
1,2-Dichlorobenzene	200		200		ug/Kg			05/04/17 12:43	40
1,2-Dibromo-3-Chloropropane	400		400		ug/Kg			05/04/17 12:43	40
1,2,4-Trichlorobenzene	200	U	200	36	ug/Kg			05/04/17 12:43	40
	MB	MB							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		70 - 130				-	05/04/17 12:43	40

TestAmerica Savannah

Page 33 of 64

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138014-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-478515/10

Matrix: Solid

Analysis Batch: 478515

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Limits Dil Fac

Surrogate %Recovery Qualifier Prepared Analyzed 40 1,2-Dichloroethane-d4 (Surr) 97 70 - 130 05/04/17 12:43 Dibromofluoromethane (Surr) 99 70 - 130 05/04/17 12:43 40 4-Bromofluorobenzene (Surr) 93 05/04/17 12:43 40 70 - 130

RL

5.0

5.0

MDL Unit

0.97 ug/Kg

0.83 ug/Kg

4.2 ug/Kg

1.3 ug/Kg

1.1 ug/Kg

0.84

0.87

1.3

3.3

1.7

1.5 ua/Ka

0.96

0.93

1.5 ug/Kg

1.6

ug/Kg

ug/Kg

0.94

1.0

Lab Sample ID: MB 680-478515/11

Matrix: Solid

Chloromethane

Analyte

Analysis Batch: 478515

Dichlorodifluoromethane

Bromodichloromethane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

4-Methyl-2-pentanone

1,1,2-Trichloroethane

Dibromochloromethane

Tetrachloroethene

1,2-Dibromoethane

Chlorobenzene

Ethylbenzene

Xylenes, Total

Isopropylbenzene

1,1,2,2-Tetrachloroethane

Styrene

Bromoform

2-Hexanone

Toluene

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyzed

05/04/17 13:06

05/04/17 13:06

Prepared

Dil Fac

MB MB Result Qualifier

5.0 U

5.0 U

5.0 U

5.0 U

25 U

5.0 U

5.0 U

5.0 U

5.0 U

25 U

5.0 U

5.0 U

5.0 U

5.0 U

10 U

5.0 U

5.0 U

5.0 U

5.0 U

Vinyl chloride 5.0 U 5.0 1.5 ug/Kg 05/04/17 13:06 Bromomethane 5.0 U 5.0 1.5 ug/Kg 05/04/17 13:06 Chloroethane 5.0 U 5.0 2.7 ug/Kg 05/04/17 13:06 Trichlorofluoromethane 5.0 U 5.0 05/04/17 13:06 1.2 ug/Kg 1,1-Dichloroethene 5.0 U 5.0 1.5 ug/Kg 05/04/17 13:06 Acetone 50 U 50 11 ug/Kg 05/04/17 13:06 Carbon disulfide 5.0 U 5.0 1.1 ug/Kg 05/04/17 13:06 Methylene Chloride 5.0 U 5.0 0.98 ug/Kg 05/04/17 13:06 trans-1,2-Dichloroethene 5.0 U 5.0 0.63 ug/Kg 05/04/17 13:06 Methyl tert-butyl ether 5.0 U 5.0 1.0 ug/Kg 05/04/17 13:06 5.0 U 5.0 1,1-Dichloroethane 1.1 05/04/17 13:06 ug/Kg cis-1,2-Dichloroethene 5.0 U 5.0 05/04/17 13:06 ug/Kg 2-Butanone (MEK) 25 U 25 2.4 ug/Kg 05/04/17 13:06 Chloroform 5.0 U 5.0 1.1 ug/Kg 05/04/17 13:06 1.1.1-Trichloroethane 5.0 U 5.0 0.59 ug/Kg 05/04/17 13:06 Carbon tetrachloride 5.0 U 5.0 0.83 ug/Kg 05/04/17 13:06 Benzene 5.0 U 5.0 0.73 ug/Kg 05/04/17 13:06 1,2-Dichloroethane 5.0 U 5.0 1.1 ug/Kg 05/04/17 13:06 Trichloroethene 5.0 U 5.0 1.3 ug/Kg 05/04/17 13:06 1,2-Dichloropropane 5.0 U 5.0 05/04/17 13:06 0.86 ug/Kg

5.0

5.0

25

5.0

5.0

5.0

5.0

25

5.0

5.0

5.0

5.0

10

5.0

5.0

5.0

5.0

05/04/17 13:06 TestAmerica Savannah

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

05/04/17 13:06

Page 34 of 64

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Lab Sample ID: MB 680-478515/11

Lab Sample ID: LCS 680-478515/6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 478515

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	5.0	U	5.0	1.6	ug/Kg			05/04/17 13:06	1
1,4-Dichlorobenzene	5.0	U	5.0	0.74	ug/Kg			05/04/17 13:06	1
1,2-Dichlorobenzene	5.0	U	5.0	1.3	ug/Kg			05/04/17 13:06	1
1,2-Dibromo-3-Chloropropane	10	Ü	10	4.4	ug/Kg			05/04/17 13:06	1
1.2.4-Trichlorobenzene	5.0	U	5.0	0.89	ua/Ka			05/04/17 13:06	1

MB MB

	MD	MD					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130	_		05/04/17 13:06	1
1,2-Dichloroethane-d4 (Surr)	97		70 - 130			05/04/17 13:06	1
Dibromofluoromethane (Surr)	97		70 - 130			05/04/17 13:06	1
4-Bromofluorobenzene (Surr)	95		70 - 130			05/04/17 13:06	1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 478515							Trop Typor Totaliti
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	2500	2520		ug/Kg		101	40 - 160
Chloromethane	2500	2230		ug/Kg		89	40 - 160
Vinyl chloride	2500	2410		ug/Kg		97	70 - 130
Bromomethane	2500	2320		ug/Kg		93	40 - 160
Chloroethane	2500	2260		ug/Kg		90	40 - 160
Trichlorofluoromethane	2500	2730		ug/Kg		109	40 - 160
1,1-Dichloroethene	2500	2500		ug/Kg		100	70 - 130
Acetone	12500	10900		ug/Kg		87	40 - 160
Carbon disulfide	2500	2410		ug/Kg		97	40 - 160
Methylene Chloride	2500	2230		ug/Kg		89	70 - 130
trans-1,2-Dichloroethene	2500	2470		ug/Kg		99	70 - 130
Methyl tert-butyl ether	2500	2290		ug/Kg		92	70 - 130
1,1-Dichloroethane	2500	2360		ug/Kg		94	70 - 130
cis-1,2-Dichloroethene	2500	2420		ug/Kg		97	70 - 130
2-Butanone (MEK)	12500	11800		ug/Kg		95	40 - 160
Chloroform	2500	2510		ug/Kg		100	70 - 130
1,1,1-Trichloroethane	2500	2770		ug/Kg		111	70 - 130
Carbon tetrachloride	2500	2870		ug/Kg		115	70 - 130
Benzene	2500	2340		ug/Kg		94	70 - 130
1,2-Dichloroethane	2500	2440		ug/Kg		98	70 - 130
Trichloroethene	2500	2450		ug/Kg		98	70 - 130
1,2-Dichloropropane	2500	2190		ug/Kg		88	70 - 130
Bromodichloromethane	2500	2530		ug/Kg		101	70 - 130
cis-1,3-Dichloropropene	2500	2380		ug/Kg		95	70 - 130
4-Methyl-2-pentanone	12500	10400		ug/Kg		83	40 - 160
Toluene	2500	2240		ug/Kg		90	70 - 130
trans-1,3-Dichloropropene	2500	2400		ug/Kg		96	70 - 130
1,1,2-Trichloroethane	2500	2190		ug/Kg		88	70 - 130
Tetrachloroethene	2500	2680		ug/Kg		107	70 - 130
2-Hexanone	12500	10700		ug/Kg		86	40 - 160
Dibromochloromethane	2500	2540		ug/Kg		102	70 - 130

TestAmerica Savannah

3

5

6

8

9

4 4

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-478515/6

Matrix: Solid

Analysis Batch: 478515

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane	2500	2340		ug/Kg		94	70 - 130	
Chlorobenzene	2500	2460		ug/Kg		98	70 - 130	
Ethylbenzene	2500	2580		ug/Kg		103	70 - 130	
Xylenes, Total	5000	5100		ug/Kg		102	70 - 130	
Styrene	2500	2470		ug/Kg		99	70 - 130	
Bromoform	2500	2700		ug/Kg		108	70 - 130	
Isopropylbenzene	2500	2660		ug/Kg		106	70 - 130	
1,1,2,2-Tetrachloroethane	2500	2300		ug/Kg		92	70 - 130	
1,3-Dichlorobenzene	2500	2460		ug/Kg		98	70 - 130	
1,4-Dichlorobenzene	2500	2480		ug/Kg		99	70 - 130	
1,2-Dichlorobenzene	2500	2380		ug/Kg		95	70 - 130	
1,2-Dibromo-3-Chloropropane	2500	2350		ug/Kg		94	40 - 160	
1,2,4-Trichlorobenzene	2500	2650		ug/Kg		106	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		70 - 130
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130

Lab Sample ID: LCSD 680-478515/28

Matrix: Solid

Analysis Batch: 478515

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis balcii. 470010									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	2500	2410		ug/Kg		96	40 - 160	5	20
Chloromethane	2500	2170		ug/Kg		87	40 - 160	3	20
Vinyl chloride	2500	2440		ug/Kg		98	70 - 130	1	20
Bromomethane	2500	2600		ug/Kg		104	40 - 160	12	20
Chloroethane	2500	2440		ug/Kg		98	40 - 160	8	20
Trichlorofluoromethane	2500	2610		ug/Kg		105	40 - 160	4	20
1,1-Dichloroethene	2500	2550		ug/Kg		102	70 - 130	2	20
Acetone	12500	11100		ug/Kg		89	40 - 160	2	20
Carbon disulfide	2500	2400		ug/Kg		96	40 - 160	0	20
Methylene Chloride	2500	2350		ug/Kg		94	70 - 130	5	20
trans-1,2-Dichloroethene	2500	2480		ug/Kg		99	70 - 130	0	20
Methyl tert-butyl ether	2500	2380		ug/Kg		95	70 - 130	4	20
1,1-Dichloroethane	2500	2390		ug/Kg		96	70 - 130	2	20
cis-1,2-Dichloroethene	2500	2400		ug/Kg		96	70 - 130	1	20
2-Butanone (MEK)	12500	11900		ug/Kg		95	40 - 160	0	20
Chloroform	2500	2540		ug/Kg		102	70 - 130	2	20
1,1,1-Trichloroethane	2500	2660		ug/Kg		107	70 - 130	4	20
Carbon tetrachloride	2500	2750		ug/Kg		110	70 - 130	4	20
Benzene	2500	2410		ug/Kg		97	70 - 130	3	20
1,2-Dichloroethane	2500	2480		ug/Kg		99	70 - 130	2	20
Trichloroethene	2500	2570		ug/Kg		103	70 - 130	5	20
1,2-Dichloropropane	2500	2360		ug/Kg		94	70 - 130	8	20
Bromodichloromethane	2500	2670		ug/Kg		107	70 - 130	6	20

TestAmerica Savannah

Page 36 of 64

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-478515/28

Matrix: Solid

Analysis Batch: 478515

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Analysis Batch. 470313	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,3-Dichloropropene	2500	2550		ug/Kg		102	70 - 130	7	20
4-Methyl-2-pentanone	12500	10800		ug/Kg		86	40 - 160	3	20
Toluene	2500	2380		ug/Kg		95	70 - 130	6	20
trans-1,3-Dichloropropene	2500	2640		ug/Kg		106	70 - 130	9	20
1,1,2-Trichloroethane	2500	2450		ug/Kg		98	70 - 130	11	20
Tetrachloroethene	2500	2750		ug/Kg		110	70 - 130	3	20
2-Hexanone	12500	10800		ug/Kg		87	40 - 160	1	20
Dibromochloromethane	2500	2670		ug/Kg		107	70 - 130	5	20
1,2-Dibromoethane	2500	2440		ug/Kg		98	70 - 130	4	20
Chlorobenzene	2500	2580		ug/Kg		103	70 - 130	5	20
Ethylbenzene	2500	2680		ug/Kg		107	70 - 130	4	20
Xylenes, Total	5000	5270		ug/Kg		105	70 - 130	3	20
Styrene	2500	2550		ug/Kg		102	70 - 130	3	20
Bromoform	2500	2760		ug/Kg		110	70 - 130	2	20
Isopropylbenzene	2500	2710		ug/Kg		108	70 - 130	2	20
1,1,2,2-Tetrachloroethane	2500	2430		ug/Kg		97	70 - 130	5	20
1,3-Dichlorobenzene	2500	2540		ug/Kg		101	70 - 130	3	20
1,4-Dichlorobenzene	2500	2520		ug/Kg		101	70 - 130	2	20
1,2-Dichlorobenzene	2500	2470		ug/Kg		99	70 - 130	4	20
1,2-Dibromo-3-Chloropropane	2500	2410		ug/Kg		96	40 - 160	2	20
1,2,4-Trichlorobenzene	2500	2660		ug/Kg		107	70 - 130	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		70 - 130
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	106		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Lab Sample ID: MB 680-478517/8

Matrix: Solid

Analysis Batch: 478517

Client Sample ID: Method Blank	
Prep Type: Total/NA	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.0	U	5.0	0.94	ug/Kg			05/04/17 11:53	1
Chloromethane	5.0	U	5.0	1.0	ug/Kg			05/04/17 11:53	1
Vinyl chloride	5.0	U	5.0	1.5	ug/Kg			05/04/17 11:53	1
Bromomethane	5.0	U	5.0	1.5	ug/Kg			05/04/17 11:53	1
Chloroethane	5.0	U	5.0	2.7	ug/Kg			05/04/17 11:53	1
Trichlorofluoromethane	5.0	U	5.0	1.2	ug/Kg			05/04/17 11:53	1
1,1-Dichloroethene	5.0	U	5.0	1.5	ug/Kg			05/04/17 11:53	1
Acetone	50	U	50	11	ug/Kg			05/04/17 11:53	1
Carbon disulfide	5.0	U	5.0	1.1	ug/Kg			05/04/17 11:53	1
Methylene Chloride	5.0	U	5.0	0.98	ug/Kg			05/04/17 11:53	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.63	ug/Kg			05/04/17 11:53	1
Methyl tert-butyl ether	5.0	U	5.0	1.0	ug/Kg			05/04/17 11:53	1
1,1-Dichloroethane	5.0	U	5.0	1.1	ug/Kg			05/04/17 11:53	1
cis-1,2-Dichloroethene	5.0	U	5.0	1.4	ug/Kg			05/04/17 11:53	1
2-Butanone (MEK)	25	U	25	2.4	ug/Kg			05/04/17 11:53	1

TestAmerica Savannah

Page 37 of 64

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 680-478517/8

Matrix: Solid

Analysis Batch: 478517

Client Sample ID: Method Blank

Prep Type: Total/NA

	INIB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	5.0	U	5.0	1.1	ug/Kg			05/04/17 11:53	1
1,1,1-Trichloroethane	5.0	U	5.0	0.59	ug/Kg			05/04/17 11:53	1
Carbon tetrachloride	5.0	U	5.0	0.83	ug/Kg			05/04/17 11:53	1
Benzene	5.0	U	5.0	0.73	ug/Kg			05/04/17 11:53	1
1,2-Dichloroethane	5.0	U	5.0	1.1	ug/Kg			05/04/17 11:53	1
Trichloroethene	5.0	U	5.0	1.3	ug/Kg			05/04/17 11:53	1
1,2-Dichloropropane	5.0	U	5.0	0.86	ug/Kg			05/04/17 11:53	1
Bromodichloromethane	5.0	U	5.0	0.97	ug/Kg			05/04/17 11:53	1
cis-1,3-Dichloropropene	5.0	U	5.0	0.83	ug/Kg			05/04/17 11:53	1
4-Methyl-2-pentanone	25	U	25	4.2	ug/Kg			05/04/17 11:53	1
Toluene	5.0	U	5.0	0.84	ug/Kg			05/04/17 11:53	1
trans-1,3-Dichloropropene	5.0	U	5.0	0.87	ug/Kg			05/04/17 11:53	1
1,1,2-Trichloroethane	5.0	U	5.0	1.3	ug/Kg			05/04/17 11:53	1
Tetrachloroethene	5.0	U	5.0	1.9	ug/Kg			05/04/17 11:53	1
2-Hexanone	25	U	25	3.3	ug/Kg			05/04/17 11:53	1
Dibromochloromethane	5.0	U	5.0	1.7	ug/Kg			05/04/17 11:53	1
1,2-Dibromoethane	5.0	U	5.0	1.5	ug/Kg			05/04/17 11:53	1
Chlorobenzene	5.0	U	5.0	0.96	ug/Kg			05/04/17 11:53	1
Ethylbenzene	5.0	U	5.0	1.3	ug/Kg			05/04/17 11:53	1
Xylenes, Total	10	U	10	1.1	ug/Kg			05/04/17 11:53	1
Styrene	5.0	U	5.0	0.93	ug/Kg			05/04/17 11:53	1
Bromoform	5.0	U	5.0	1.5	ug/Kg			05/04/17 11:53	1
Isopropylbenzene	5.0	U	5.0	1.9	ug/Kg			05/04/17 11:53	1
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1.6	ug/Kg			05/04/17 11:53	1
1,3-Dichlorobenzene	5.0	U	5.0	1.6	ug/Kg			05/04/17 11:53	1
1,4-Dichlorobenzene	5.0	U	5.0	0.74	ug/Kg			05/04/17 11:53	1
1,2-Dichlorobenzene	5.0	U	5.0	1.3	ug/Kg			05/04/17 11:53	1
1,2-Dibromo-3-Chloropropane	10	U	10	4.4	ug/Kg			05/04/17 11:53	1
1,2,4-Trichlorobenzene	5.0	U	5.0	0.89	ug/Kg			05/04/17 11:53	1

Surrogate	%Recovery	Qualifier	Limits	Pi	repared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	93		70 - 130			05/04/17 11:53	1	
1,2-Dichloroethane-d4 (Surr)	108		70 - 130			05/04/17 11:53	1	
Dibromofluoromethane (Surr)	115		70 - 130			05/04/17 11:53	1	
4-Bromofluorobenzene (Surr)	90		70 - 130			05/04/17 11:53	1	

Lab Sample ID: LCS 680-478517/4

Matrix: Solid

Analysis Batch: 478517

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7a., 6.0 _ a.c 17 00 17	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	50.0	43.7		ug/Kg		87	40 - 160	
Chloromethane	50.0	41.9		ug/Kg		84	40 - 160	
Vinyl chloride	50.0	42.4		ug/Kg		85	70 - 130	
Bromomethane	50.0	42.0		ug/Kg		84	40 - 160	
Chloroethane	50.0	44.0		ug/Kg		88	40 - 160	
Trichlorofluoromethane	50.0	41.9		ug/Kg		84	40 - 160	
1,1-Dichloroethene	50.0	43.5		ug/Kg		87	70 - 130	

TestAmerica Savannah

Page 38 of 64

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-478517/4

Matrix: Solid

Analysis Batch: 478517

Cilent Sample ID: La	b Control Sample
Pre	ep Type: Total/NA

Analyte Added Result Quillifier Up/Kg 8-87 Limits Carbon disulfide 50.0 45.0 ug/Kg 9.90 40.160 Methylene Chloride 50.0 45.0 ug/Kg 9.90 70.130 Interpolation of the Chloride of the Chloride of the Chloride of So.0 45.0 ug/Kg 9.90 70.130 Methyl tert-butyl ether 50.0 43.4 ug/Kg 88 70.130 1.1-Dichloroethane 50.0 43.4 ug/Kg 88 70.130 2-Butanone (MEK) 250 224 ug/Kg 88 70.130 2-Butanone (MEK) 250 45.8 ug/Kg 90 40.160 Chloroform 50.0 45.7 ug/Kg 95 70.130 Carbon tetrachloride 50.0 45.7 ug/Kg 95 70.130 Benzene 50.0 46.8 ug/Kg 93 70.130 1,2-Dichloroptone 50.0 46.6 ug/Kg 93 70.130	•	Spike	LCS	LCS				%Rec.	
Carbon disulfide 50.0 45.0 ug/Kg 90 40.160 Methylene Chloride 50.0 45.0 ug/Kg 90 70.130 trans-12-Dichloroethene 50.0 45.8 ug/Kg 92 70.130 Methyl ter-butyl ether 50.0 45.8 ug/Kg 92 70.130 1.1-Dichloroethane 50.0 44.2 ug/Kg 87 70.130 2-Butanone (MEK) 250 224 ug/Kg 90 40.160 Chloroform 60.0 45.8 ug/Kg 91 70.130 Carbon tetrachloride 50.0 45.7 ug/Kg 91 70.130 Carbon tetrachloride 50.0 45.7 ug/Kg 95 70.130 Benzene 50.0 46.4 ug/Kg 93 70.130 1,2-Dichloroethane 50.0 46.6 ug/Kg 93 70.130 1,2-Dichloroethane 50.0 46.6 ug/Kg 93 70.130 Benzene 50.0	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methylene Chloride 50.0 45.0 ug/Kg 90 70.130 trans-1,2-Dichloroethene 50.0 45.8 ug/Kg 92 70.130 Methyl tert-bulyl ether 50.0 45.8 ug/Kg 92 70.130 1,1-Dichloroethane 50.0 43.4 ug/Kg 87 70.130 cis-1,2-Dichloroethane 50.0 44.2 ug/Kg 98 70.130 Chloroform 50.0 45.8 ug/Kg 92 70.130 Chloroform 50.0 45.8 ug/Kg 92 70.130 Chloroform 50.0 45.7 ug/Kg 95 70.130 Carbon tetrachloride 50.0 45.7 ug/Kg 95 70.130 Benzene 50.0 46.4 ug/Kg 93 70.130 1,2-Dichloroethane 50.0 46.8 ug/Kg 93 70.130 1,2-Dichloroethane 50.0 46.8 ug/Kg 93 70.130 1,2-Dichloroethane 50.0	Acetone	250	218		ug/Kg		87	40 - 160	
trans-1,2-Dichloroethene 50.0 45.0 ug/kg 90 70.130 Methyl terl-bulyl ether 50.0 45.8 ug/kg 87 70.130 1,1-Dichloroethane 50.0 44.2 ug/kg 87 70.130 cis-1,2-Dichloroethene 50.0 44.2 ug/kg 98 70.130 2-Butanone (MEK) 250 224 ug/kg 92 70.130 1,1-1-Trichloroethane 50.0 45.7 ug/kg 91 70.130 1,1-1-Trichloroethane 50.0 45.7 ug/kg 95 70.130 1,1-1-Trichloroethane 50.0 47.3 ug/kg 93 70.130 1,2-Dichloroethane 50.0 44.9 ug/kg 93 70.130 1,2-Dichloroptopane 50.0 45.3 ug/kg 91 70.130 1,2-Dichloroptopane 50.0 45.3 ug/kg 93 70.130 1,2-Dichloroptopane 50.0 45.8 ug/kg 93 70.130 4-Methyl	Carbon disulfide	50.0	45.0		ug/Kg		90	40 - 160	
Methyl terl-butyl ether 50.0 45.8 ug/kg 92 70.130 1.1-Dichloroethane 50.0 43.4 ug/kg 88 70.130 cst-12-Dichloroethane 50.0 44.2 ug/kg 88 70.130 2-Butanone (MEK) 250 224 ug/kg 90 40.160 Chloroform 50.0 45.8 ug/kg 91 70.130 Carbon tetrachloride 50.0 47.3 ug/kg 93 70.130 Benzene 50.0 46.4 ug/kg 93 70.130 Benzene 50.0 46.6 ug/kg 93 70.130 1,2-Dichloroptane 50.0 46.6 ug/kg 93 70.130 1,2-Dichloropropane 50.0 45.3 ug/kg 91 70.130 1,2-Dichloropropane 50.0 45.8 ug/kg 92 70.130 els-1,3-Dichloropropane 50.0 45.8 ug/kg 95 40.160 Toluene 50.0 46	Methylene Chloride	50.0	45.0		ug/Kg		90	70 - 130	
1,1-Dichloroethane 50.0 43.4 ug/Kg 87 70 - 130 cis-1,2-Dichloroethane 50.0 44.2 ug/Kg 88 70 - 130 2-Butanone (MEK) 250 224 ug/Kg 90 40 - 160 Chloroform 50.0 45.8 ug/Kg 92 70 - 130 1,1,1-Trichloroethane 50.0 45.7 ug/Kg 91 70 - 130 Carbon tetrachloride 50.0 46.4 ug/Kg 93 70 - 130 Benzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichloroethane 50.0 46.6 ug/Kg 93 70 - 130 1,2-Dichloropropane 50.0 46.6 ug/Kg 93 70 - 130 Bromodichloromethane 50.0 46.8 ug/Kg 93 70 - 130 L-2-Dichloropropane 50.0 45.8 ug/Kg 92 70 - 130 L-2-Dichloropropane 50.0 45.8 ug/Kg 95 40 - 60 Tolluere	trans-1,2-Dichloroethene	50.0	45.0		ug/Kg		90	70 - 130	
cis-1,2-Dichloroethene 50.0 44.2 ug/Kg 88 70.130 2-Butanone (MEK) 250 224 ug/Kg 90 40.160 Chloroform 50.0 45.8 ug/Kg 92 70.130 1.1,1-Trichloroethane 50.0 45.7 ug/Kg 95 70.130 Benzene 50.0 46.4 ug/Kg 95 70.130 1.2-Dichloroethane 50.0 46.4 ug/Kg 90 70.130 1.2-Dichloroethane 50.0 46.6 ug/Kg 90 70.130 1.2-Dichloropropane 50.0 46.6 ug/Kg 93 70.130 1.2-Dichloropropane 50.0 46.6 ug/Kg 93 70.130 8-modichloromethane 50.0 45.8 ug/Kg 93 70.130 1-1,2-Dichloropropene 50.0 46.8 ug/Kg 95 40.160 1-1,2-Trichloroethane 50.0 48.1 ug/Kg 95 70.130 1-1,2-Trichloroethane <td< td=""><td>Methyl tert-butyl ether</td><td>50.0</td><td>45.8</td><td></td><td>ug/Kg</td><td></td><td>92</td><td>70 - 130</td><td></td></td<>	Methyl tert-butyl ether	50.0	45.8		ug/Kg		92	70 - 130	
2-Butanone (MEK) 250 224 ug/Kg 90 40-160 Chloroform 50.0 45.8 ug/Kg 92 70-130 L1,1-Trichloroethane 50.0 45.7 ug/Kg 95 70-130 Carbon tetrachloride 50.0 47.3 ug/Kg 95 70-130 Benzene 50.0 46.4 ug/Kg 93 70-130 1,2-Dichloroethane 50.0 46.6 ug/Kg 93 70-130 1,2-Dichloropropane 50.0 46.6 ug/Kg 93 70-130 Bromodichloromethane 50.0 45.3 ug/Kg 91 70-130 1,2-Dichloropropane 50.0 45.8 ug/Kg 93 70-130 Bromodichloromethane 50.0 45.8 ug/Kg 92 70-130 4-Methyl-2-pentanone 250 238 ug/Kg 95 40-160 Toluene 50.0 46.8 ug/Kg 95 70-130 trans-1,3-Dichloropropene 50.0	1,1-Dichloroethane	50.0	43.4		ug/Kg		87	70 - 130	
Chloroform 50.0 45.8 ug/Kg 92 70-130 1,1,1-Trichloroethane 50.0 45.7 ug/Kg 91 70-130 Carbon tetrachloride 50.0 47.3 ug/Kg 95 70-130 Benzene 50.0 46.4 ug/Kg 93 70-130 1,2-Dichloroethane 50.0 46.6 ug/Kg 93 70-130 1,2-Dichloropropane 50.0 46.6 ug/Kg 93 70-130 1,2-Dichloropropane 50.0 45.3 ug/Kg 93 70-130 8 promodichloromethane 50.0 45.8 ug/Kg 93 70-130 cis-1,3-Dichloropropene 50.0 45.8 ug/Kg 92 70-130 4-Methyl-2-pentanone 250 238 ug/Kg 95 40-160 Tolluene 50.0 46.8 ug/Kg 96 70-130 taras-1,3-Dichloropropene 50.0 46.8 ug/Kg 96 70-130 1,1,2-Trichloroethane <t< td=""><td>cis-1,2-Dichloroethene</td><td>50.0</td><td>44.2</td><td></td><td>ug/Kg</td><td></td><td>88</td><td>70 - 130</td><td></td></t<>	cis-1,2-Dichloroethene	50.0	44.2		ug/Kg		88	70 - 130	
1,1,1-Trichloroethane 50.0 45.7 ug/Kg 91 70.130 Carbon tetrachloride 50.0 47.3 ug/Kg 95 70.130 Benzene 50.0 46.4 ug/Kg 93 70.130 1,2-Dichloroethane 50.0 44.9 ug/Kg 90 70.130 Trichloroethene 50.0 46.6 ug/Kg 93 70.130 1,2-Dichloropropane 50.0 45.3 ug/Kg 91 70.130 Bromodichloromethane 50.0 45.8 ug/Kg 93 70.130 eis-1,3-Dichloropropene 50.0 45.8 ug/Kg 92 70.130 4-Methyl-2-pentanone 250 238 ug/Kg 95 40.160 Toluene 50.0 46.8 ug/Kg 94 70.130 1,1,2-Trichloroethane 50.0 46.6 ug/Kg 93 70.130 1,1,2-Trichloroethane 50.0 47.4 ug/Kg 95 70.130 2-Hexanone 50.0	2-Butanone (MEK)	250	224		ug/Kg		90	40 - 160	
Carbon tetrachloride 50.0 47.3 ug/Kg 95 70.130 Benzene 50.0 46.4 ug/Kg 93 70.130 1,2-Dichloroethane 50.0 44.9 ug/Kg 90 70.130 1,2-Dichloropropane 50.0 45.3 ug/Kg 93 70.130 1,2-Dichloropropane 50.0 45.3 ug/Kg 93 70.130 Bromodichloromethane 50.0 45.8 ug/Kg 92 70.130 cis-1,3-Dichloropropene 50.0 45.8 ug/Kg 95 70.130 4-Methyl-2-pentanone 250 238 ug/Kg 95 70.130 trans-1,3-Dichloropropene 50.0 46.8 ug/Kg 95 70.130 trans-1,3-Dichloropropene 50.0 46.6 ug/Kg 95 70.130 trans-1,3-Dichloropropene 50.0 46.6 ug/Kg 95 70.130 trans-1,3-Dichloropene 50.0 47.4 ug/Kg 95 70.130 2-Hexa	Chloroform	50.0	45.8		ug/Kg		92	70 - 130	
Benzene 50.0 46.4 ug/Kg 93 70.130 1,2-Dichloroethane 50.0 44.9 ug/Kg 90 70.130 Trichloroethene 50.0 46.6 ug/Kg 93 70.130 1,2-Dichloropropane 50.0 45.3 ug/Kg 91 70.130 bromodichloromethane 50.0 46.4 ug/Kg 93 70.130 cis-1,3-Dichloropropene 50.0 45.8 ug/Kg 92 70.130 4-Methyl-2-pentanone 250 238 ug/Kg 95 40.160 Toluene 50.0 46.8 ug/Kg 94 70.130 1,1,2-Trichloroethane 50.0 48.1 ug/Kg 96 70.130 1,1,2-Trichloroethane 50.0 47.4 ug/Kg 95 70.130 2-Hexanone 250 244 ug/Kg 97 40.160 Dibromochloromethane 50.0 47.8 ug/Kg 96 70.130 1,2-Dibromoethane 50.0	1,1,1-Trichloroethane	50.0	45.7		ug/Kg		91	70 - 130	
1,2-Dichloroethane 50.0 44.9 ug/Kg 90 70 - 130 Trichloroethene 50.0 46.6 ug/Kg 93 70 - 130 1,2-Dichloropropane 50.0 45.3 ug/Kg 91 70 - 130 Bromodichloromethane 50.0 45.8 ug/Kg 93 70 - 130 cis-1,3-Dichloropropene 50.0 45.8 ug/Kg 92 70 - 130 4-Methyl-2-pentanone 250 238 ug/Kg 95 40 - 160 Toluene 50.0 46.8 ug/Kg 94 70 - 130 trans-1,3-Dichloropropene 50.0 46.8 ug/Kg 96 70 - 130 trans-1,3-Dichloropropene 50.0 46.8 ug/Kg 96 70 - 130 trans-1,3-Dichloropropene 50.0 46.8 ug/Kg 95 70 - 130 trans-1,3-Dichloropthane 50.0 47.4 ug/Kg 95 70 - 130 1,2-Dibromoethlane 50.0 47.8 ug/Kg 96 70 - 130 <tr< td=""><td>Carbon tetrachloride</td><td>50.0</td><td>47.3</td><td></td><td>ug/Kg</td><td></td><td>95</td><td>70 - 130</td><td></td></tr<>	Carbon tetrachloride	50.0	47.3		ug/Kg		95	70 - 130	
Trichloroethene 50.0 46.6 ug/Kg 93 70-130 1,2-Dichloropropane 50.0 45.3 ug/Kg 91 70-130 Bromodichloromethane 50.0 46.4 ug/Kg 93 70-130 cis-1,3-Dichloropropene 50.0 45.8 ug/Kg 92 70-130 4-Methyl-2-pentanone 250 238 ug/Kg 94 70-130 Toluene 50.0 46.8 ug/Kg 94 70-130 trans-1,3-Dichloropropene 50.0 48.1 ug/Kg 96 70-130 1,12-Trichloroethane 50.0 46.6 ug/Kg 93 70-130 1,12-Trichloroethane 50.0 47.4 ug/Kg 95 70-130 1,2-Hexanone 250 244 ug/Kg 97 40-160 Dibromochloromethane 50.0 47.8 ug/Kg 96 70-130 1,2-Dibromoethane 50.0 47.9 ug/Kg 95 70-130 Styrene 50.0 <td>Benzene</td> <td>50.0</td> <td>46.4</td> <td></td> <td>ug/Kg</td> <td></td> <td>93</td> <td>70 - 130</td> <td></td>	Benzene	50.0	46.4		ug/Kg		93	70 - 130	
1,2-Dichloropropane 50.0 45.3 ug/Kg 91 70-130 Bromodichloromethane 50.0 46.4 ug/Kg 93 70-130 cis-1,3-Dichloropropene 50.0 45.8 ug/Kg 92 70-130 4-Methyl-2-pentanone 250 238 ug/Kg 94 470-130 roluene 50.0 46.8 ug/Kg 94 70-130 trans-1,3-Dichloropropene 50.0 46.6 ug/Kg 96 70-130 1,1,2-Trichloroethane 50.0 46.6 ug/Kg 93 70-130 1,1,2-Trichloroethane 50.0 47.4 ug/Kg 95 70-130 1,2-Hexanone 50.0 47.4 ug/Kg 95 70-130 2-Hexanone 50.0 47.8 ug/Kg 96 70-130 1-2-Dibromochloromethane 50.0 47.8 ug/Kg 96 70-130 1,2-Dibromoethane 50.0 46.5 ug/Kg 95 70-130 Styrene 50.0	1,2-Dichloroethane	50.0	44.9		ug/Kg		90	70 - 130	
Bromodichloromethane 50.0 46.4 ug/Kg 93 70-130 cis-1,3-Dichloropropene 50.0 45.8 ug/Kg 92 70-130 4-Methyl-2-pentanone 250 238 ug/Kg 95 40-160 Toluene 50.0 46.8 ug/Kg 94 70-130 trans-1,3-Dichloropropene 50.0 48.1 ug/Kg 93 70-130 trans-1,3-Dichloropropene 50.0 48.6 ug/Kg 93 70-130 trans-1,3-Dichloropropene 50.0 46.6 ug/Kg 93 70-130 trans-1,3-Dichloropropene 50.0 46.6 ug/Kg 93 70-130 trans-1,3-Dichloropethane 50.0 47.4 ug/Kg 95 70-130 2-Hexanone 250 244 ug/Kg 97 40-160 Dibromochloromethane 50.0 47.8 ug/Kg 96 70-130 1,2-Dibromoethane 50.0 47.9 ug/Kg 93 70-130 Styrene </td <td>Trichloroethene</td> <td>50.0</td> <td>46.6</td> <td></td> <td>ug/Kg</td> <td></td> <td>93</td> <td>70 - 130</td> <td></td>	Trichloroethene	50.0	46.6		ug/Kg		93	70 - 130	
cis-1,3-Dichloropropene 50.0 45.8 ug/Kg 92 70-130 4-Methyl-2-pentanone 250 238 ug/Kg 95 40-160 Toluene 50.0 46.8 ug/Kg 94 70-130 trans-1,3-Dichloropropene 50.0 48.1 ug/Kg 96 70-130 1,1,2-Trichloroethane 50.0 46.6 ug/Kg 93 70-130 Tetrachloroethane 50.0 47.4 ug/Kg 95 70-130 2-Hexanone 250 244 ug/Kg 97 40-160 Dibromochloromethane 50.0 47.8 ug/Kg 96 70-130 1,2-Dibromoethane 50.0 47.8 ug/Kg 96 70-130 1,2-Dibromoethane 50.0 47.9 ug/Kg 96 70-130 Chlorobenzene 50.0 47.4 ug/Kg 95 70-130 Kylenes, Total 100 94.4 ug/Kg 94 70-130 Styrene 50.0 4	1,2-Dichloropropane	50.0	45.3		ug/Kg		91	70 - 130	
4-Methyl-2-pentanone 250 238 ug/Kg 95 40 - 160 Toluene 50.0 46.8 ug/Kg 94 70 - 130 trans-1,3-Dichloropropene 50.0 48.1 ug/Kg 96 70 - 130 1,1,2-Trichloroethane 50.0 46.6 ug/Kg 93 70 - 130 Tetrachloroethane 50.0 47.4 ug/Kg 95 70 - 130 2-Hexanone 250 244 ug/Kg 97 40 - 160 Dibromochloromethane 50.0 47.8 ug/Kg 96 70 - 130 1,2-Dibromoethane 50.0 47.9 ug/Kg 96 70 - 130 Chlorobenzene 50.0 47.9 ug/Kg 93 70 - 130 Ethylbenzene 50.0 47.4 ug/Kg 95 70 - 130 Kylenes, Total 100 94.4 ug/Kg 95 70 - 130 Styrene 50.0 49.0 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 49.2 ug/Kg 96 70 - 130 I,2,2-Tetrachloroethane <td>Bromodichloromethane</td> <td>50.0</td> <td>46.4</td> <td></td> <td>ug/Kg</td> <td></td> <td>93</td> <td>70 - 130</td> <td></td>	Bromodichloromethane	50.0	46.4		ug/Kg		93	70 - 130	
Toluene 50.0 46.8 ug/kg 94 70 - 130 trans-1,3-Dichloropropene 50.0 48.1 ug/kg 96 70 - 130 1,1,2-Trichloroethane 50.0 46.6 ug/kg 93 70 - 130 Tetrachloroethene 50.0 47.4 ug/kg 95 70 - 130 2-Hexanone 250 244 ug/kg 97 40 - 160 Dibromochloromethane 50.0 47.8 ug/kg 96 70 - 130 1,2-Dibromoethane 50.0 47.9 ug/kg 96 70 - 130 Chlorobenzene 50.0 46.5 ug/kg 93 70 - 130 Ethylbenzene 50.0 47.4 ug/kg 95 70 - 130 Styrene 50.0 47.4 ug/kg 95 70 - 130 Styrene 50.0 49.0 ug/kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/kg 97 70 - 130 1,2-2-Tetrachloroethane 50.0	cis-1,3-Dichloropropene	50.0	45.8		ug/Kg		92	70 - 130	
trans-1,3-Dichloropropene 50.0 48.1 ug/Kg 96 70 - 130 1,1,2-Trichloroethane 50.0 46.6 ug/Kg 93 70 - 130 Tetrachloroethene 50.0 47.4 ug/Kg 95 70 - 130 2-Hexanone 250 244 ug/Kg 97 40 - 160 Dibromochloromethane 50.0 47.8 ug/Kg 96 70 - 130 1,2-Dibromoethane 50.0 47.9 ug/Kg 96 70 - 130 Chlorobenzene 50.0 46.5 ug/Kg 93 70 - 130 Ethylbenzene 50.0 47.4 ug/Kg 95 70 - 130 Xylenes, Total 100 94.4 ug/Kg 94 70 - 130 Styrene 50.0 49.0 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/Kg 98 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,4-Dichlorobenzene	4-Methyl-2-pentanone	250	238		ug/Kg		95	40 - 160	
1,1,2-Trichloroethane 50.0 46.6 ug/Kg 93 70-130 Tetrachloroethene 50.0 47.4 ug/Kg 95 70-130 2-Hexanone 250 244 ug/Kg 97 40-160 Dibromochloromethane 50.0 47.8 ug/Kg 96 70-130 1,2-Dibromoethane 50.0 47.9 ug/Kg 96 70-130 Chlorobenzene 50.0 46.5 ug/Kg 93 70-130 Ethylbenzene 50.0 47.4 ug/Kg 95 70-130 Xylenes, Total 100 94.4 ug/Kg 94 70-130 Styrene 50.0 49.0 ug/Kg 98 70-130 Bromoform 50.0 49.2 ug/Kg 98 70-130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70-130 1,2-2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70-130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70-130 1,4-Dichlorobenzene 50.0 <	Toluene	50.0	46.8		ug/Kg		94	70 - 130	
Tetrachloroethene 50.0 47.4 ug/Kg 95 70-130 2-Hexanone 250 244 ug/Kg 97 40-160 Dibromochloromethane 50.0 47.8 ug/Kg 96 70-130 1,2-Dibromoethane 50.0 47.9 ug/Kg 96 70-130 Chlorobenzene 50.0 46.5 ug/Kg 93 70-130 Ethylbenzene 50.0 47.4 ug/Kg 95 70-130 Xylenes, Total 100 94.4 ug/Kg 94 70-130 Styrene 50.0 49.0 ug/Kg 98 70-130 Isopropylbenzene 50.0 49.2 ug/Kg 98 70-130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70-130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70-130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70-130 1,2-Dichlorobenzene 50.0 46.3<	trans-1,3-Dichloropropene	50.0	48.1		ug/Kg		96	70 - 130	
2-Hexanone 250 244 ug/Kg 97 40 - 160 Dibromochloromethane 50.0 47.8 ug/Kg 96 70 - 130 1,2-Dibromoethane 50.0 47.9 ug/Kg 96 70 - 130 Chlorobenzene 50.0 46.5 ug/Kg 93 70 - 130 Ethylbenzene 50.0 47.4 ug/Kg 95 70 - 130 Xylenes, Total 100 94.4 ug/Kg 94 70 - 130 Styrene 50.0 49.0 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 49.2 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 93 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 70 - 130	1,1,2-Trichloroethane	50.0	46.6		ug/Kg		93	70 - 130	
Dibromochloromethane 50.0 47.8 ug/Kg 96 70 - 130 1,2-Dibromoethane 50.0 47.9 ug/Kg 96 70 - 130 Chlorobenzene 50.0 46.5 ug/Kg 93 70 - 130 Ethylbenzene 50.0 47.4 ug/Kg 95 70 - 130 Xylenes, Total 100 94.4 ug/Kg 94 70 - 130 Styrene 50.0 49.0 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 49.2 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane	Tetrachloroethene	50.0	47.4		ug/Kg		95	70 - 130	
1,2-Dibromoethane 50.0 47.9 ug/Kg 96 70 - 130 Chlorobenzene 50.0 46.5 ug/Kg 93 70 - 130 Ethylbenzene 50.0 47.4 ug/Kg 95 70 - 130 Xylenes, Total 100 94.4 ug/Kg 94 70 - 130 Styrene 50.0 49.0 ug/Kg 98 70 - 130 Bromoform 50.0 49.2 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 70 - 130	2-Hexanone	250	244		ug/Kg		97	40 - 160	
Chlorobenzene 50.0 46.5 ug/Kg 93 70 - 130 Ethylbenzene 50.0 47.4 ug/Kg 95 70 - 130 Xylenes, Total 100 94.4 ug/Kg 94 70 - 130 Styrene 50.0 49.0 ug/Kg 98 70 - 130 Bromoform 50.0 49.2 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 70 - 130	Dibromochloromethane	50.0	47.8		ug/Kg		96	70 - 130	
Ethylbenzene 50.0 47.4 ug/Kg 95 70 - 130 Xylenes, Total 100 94.4 ug/Kg 94 70 - 130 Styrene 50.0 49.0 ug/Kg 98 70 - 130 Bromoform 50.0 49.2 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 70 - 130	1,2-Dibromoethane	50.0	47.9		ug/Kg		96	70 - 130	
Xylenes, Total 100 94.4 ug/Kg 94 70 - 130 Styrene 50.0 49.0 ug/Kg 98 70 - 130 Bromoform 50.0 49.2 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 70 - 130	Chlorobenzene	50.0	46.5		ug/Kg		93	70 - 130	
Styrene 50.0 49.0 ug/Kg 98 70 - 130 Bromoform 50.0 49.2 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 40 - 160	Ethylbenzene	50.0	47.4		ug/Kg		95	70 - 130	
Bromoform 50.0 49.2 ug/Kg 98 70 - 130 Isopropylbenzene 50.0 48.3 ug/Kg 97 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 40 - 160	Xylenes, Total	100	94.4		ug/Kg		94	70 - 130	
Isopropylbenzene 50.0 48.3 ug/Kg 97 70 - 130 1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 40 - 160	Styrene	50.0	49.0		ug/Kg		98	70 - 130	
1,1,2,2-Tetrachloroethane 50.0 47.8 ug/Kg 96 70 - 130 1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 40 - 160	Bromoform	50.0	49.2		ug/Kg		98	70 - 130	
1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 40 - 160	Isopropylbenzene	50.0	48.3		ug/Kg		97	70 - 130	
1,3-Dichlorobenzene 50.0 46.7 ug/Kg 93 70 - 130 1,4-Dichlorobenzene 50.0 46.4 ug/Kg 93 70 - 130 1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 40 - 160	1,1,2,2-Tetrachloroethane	50.0	47.8		ug/Kg		96	70 - 130	
1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 40 - 160	1,3-Dichlorobenzene	50.0	46.7				93	70 - 130	
1,2-Dichlorobenzene 50.0 46.3 ug/Kg 93 70 - 130 1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 40 - 160	1,4-Dichlorobenzene	50.0	46.4				93	70 - 130	
1,2-Dibromo-3-Chloropropane 50.0 46.7 ug/Kg 93 40 - 160	1,2-Dichlorobenzene		46.3				93	70 - 130	
	1,2-Dibromo-3-Chloropropane	50.0	46.7				93	40 - 160	
		50.0	47.0				94	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	94		70 - 130
1,2-Dichloroethane-d4 (Surr)	91		70 - 130
Dibromofluoromethane (Surr)	93		70 - 130
4-Bromofluorobenzene (Surr)	90		70 - 130

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-478517/5 Client Sample Matrix: Solid

Analysis Batch: 478517

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike		LCSD				%Rec.	_	RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	43.3		ug/Kg		87	40 - 160	1	20
Chloromethane	50.0	44.2		ug/Kg		88	40 - 160	5	20
Vinyl chloride	50.0	44.0		ug/Kg		88	70 - 130	4	20
Bromomethane	50.0	44.8		ug/Kg		90	40 - 160	6	20
Chloroethane	50.0	45.5		ug/Kg		91	40 - 160	3	20
Trichlorofluoromethane	50.0	44.2		ug/Kg		88	40 - 160	5	20
1,1-Dichloroethene	50.0	46.0		ug/Kg		92	70 - 130	6	20
Acetone	250	239		ug/Kg		96	40 - 160	9	20
Carbon disulfide	50.0	46.4		ug/Kg		93	40 - 160	3	20
Methylene Chloride	50.0	46.7		ug/Kg		93	70 - 130	4	20
trans-1,2-Dichloroethene	50.0	48.7		ug/Kg		97	70 - 130	8	20
Methyl tert-butyl ether	50.0	48.4		ug/Kg		97	70 - 130	6	20
1,1-Dichloroethane	50.0	47.2		ug/Kg		94	70 - 130	9	20
cis-1,2-Dichloroethene	50.0	47.5		ug/Kg		95	70 - 130	7	20
2-Butanone (MEK)	250	235		ug/Kg		94	40 - 160	5	20
Chloroform	50.0	48.8		ug/Kg		98	70 - 130	6	20
1,1,1-Trichloroethane	50.0	48.0		ug/Kg		96	70 - 130	5	20
Carbon tetrachloride	50.0	48.7		ug/Kg		97	70 - 130	3	20
Benzene	50.0	47.8		ug/Kg		96	70 - 130	3	20
1,2-Dichloroethane	50.0	48.9		ug/Kg		98	70 - 130	8	20
Trichloroethene	50.0	48.7		ug/Kg		97	70 - 130	4	20
1,2-Dichloropropane	50.0	46.8		ug/Kg		94	70 - 130	3	20
Bromodichloromethane	50.0	48.1		ug/Kg		96	70 - 130	4	20
cis-1,3-Dichloropropene	50.0	48.7		ug/Kg		97	70 - 130	6	20
4-Methyl-2-pentanone	250	248		ug/Kg		99	40 - 160	4	20
Toluene	50.0	47.8		ug/Kg		96	70 - 130	2	20
trans-1,3-Dichloropropene	50.0	50.2		ug/Kg		100	70 - 130	4	20
1,1,2-Trichloroethane	50.0	47.6		ug/Kg		95	70 - 130	2	20
Tetrachloroethene	50.0	50.1		ug/Kg		100	70 - 130	5	20
2-Hexanone	250	251		ug/Kg		100	40 - 160	3	20
Dibromochloromethane	50.0	50.2		ug/Kg		100	70 - 130	5	20
1.2-Dibromoethane	50.0	50.2		ug/Kg ug/Kg		101	70 - 130 70 - 130	5	20
Chlorobenzene	50.0	48.5		ug/Kg ug/Kg		97	70 - 130 70 - 130	4	20
Ethylbenzene	50.0	49.3		ug/Kg ug/Kg		99	70 - 130	4	20
Xylenes, Total	100	101				101	70 - 130 70 - 130	7	20
•	50.0	52.5		ug/Kg					20
Styrene				ug/Kg		105	70 - 130	7	
Bromoform	50.0	50.3		ug/Kg		101	70 - 130	2	20
Isopropylbenzene	50.0	50.5		ug/Kg		101	70 ₋ 130	5	20
1,1,2,2-Tetrachloroethane	50.0	49.7		ug/Kg		99	70 - 130	4	20
1,3-Dichlorobenzene	50.0	48.7		ug/Kg		97	70 - 130	4	20
1,4-Dichlorobenzene	50.0	48.0		ug/Kg		96	70 - 130	3	20
1,2-Dichlorobenzene	50.0	48.3		ug/Kg		97	70 - 130	4	20
1,2-Dibromo-3-Chloropropane	50.0	44.8		ug/Kg		90	40 - 160	4	20
1,2,4-Trichlorobenzene	50.0	48.0		ug/Kg		96	70 - 130	2	20

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 Toluene-d8 (Surr)
 98
 70 - 130

TestAmerica Savannah

Page 40 of 64

6

4

6

9

4

1'

117

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-478517/5

Lab Sample ID: MB 680-478753/10

Matrix: Solid

Analysis Batch: 478517

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	92		70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 478753

Analyte	MB	MB							
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	200	U	200	38	ug/Kg			05/05/17 15:05	40
Chloromethane	200	U	200	40	ug/Kg			05/05/17 15:05	40
Vinyl chloride	200	U	200	60	ug/Kg			05/05/17 15:05	40
Bromomethane	200	U	200	60	ug/Kg			05/05/17 15:05	40
Chloroethane	200	U	200	110	ug/Kg			05/05/17 15:05	40
Trichlorofluoromethane	200	U	200	48	ug/Kg			05/05/17 15:05	40
1,1-Dichloroethene	200	U	200	60	ug/Kg			05/05/17 15:05	40
Acetone	2000	U	2000	440	ug/Kg			05/05/17 15:05	40
Carbon disulfide	200	U	200	44	ug/Kg			05/05/17 15:05	40
Methylene Chloride	200	U	200	39	ug/Kg			05/05/17 15:05	40
trans-1,2-Dichloroethene	200	U	200	25	ug/Kg			05/05/17 15:05	40
Methyl tert-butyl ether	200	U	200	40	ug/Kg			05/05/17 15:05	40
1,1-Dichloroethane	200	U	200	44	ug/Kg			05/05/17 15:05	40
cis-1,2-Dichloroethene	200	U	200	56	ug/Kg			05/05/17 15:05	40
2-Butanone (MEK)	1000	U	1000	96	ug/Kg			05/05/17 15:05	40
Chloroform	200	Ü	200	44	ug/Kg			05/05/17 15:05	40
1,1,1-Trichloroethane	200	U	200	24	ug/Kg			05/05/17 15:05	40
Carbon tetrachloride	200	U	200	33	ug/Kg			05/05/17 15:05	40
Benzene	200	Ü	200	29	ug/Kg			05/05/17 15:05	40
1,2-Dichloroethane	200	U	200	44	ug/Kg			05/05/17 15:05	40
Trichloroethene	200	U	200	52	ug/Kg			05/05/17 15:05	40
1,2-Dichloropropane	200	Ü	200	34	ug/Kg			05/05/17 15:05	40
Bromodichloromethane	200	U	200	39	ug/Kg			05/05/17 15:05	40
cis-1,3-Dichloropropene	200	U	200	33	ug/Kg			05/05/17 15:05	40
4-Methyl-2-pentanone	1000	U	1000	170	ug/Kg			05/05/17 15:05	40
Toluene	200	U	200	34	ug/Kg			05/05/17 15:05	40
trans-1,3-Dichloropropene	200	U	200	35	ug/Kg			05/05/17 15:05	40
1,1,2-Trichloroethane	200	U	200	52	ug/Kg			05/05/17 15:05	40
Tetrachloroethene	200	U	200	76	ug/Kg			05/05/17 15:05	40
2-Hexanone	1000	U	1000	130	ug/Kg			05/05/17 15:05	40
Dibromochloromethane	200	Ü	200	68	ug/Kg			05/05/17 15:05	40
1,2-Dibromoethane	200	U	200	60	ug/Kg			05/05/17 15:05	40
Chlorobenzene	200	U	200	38	ug/Kg			05/05/17 15:05	40
Ethylbenzene	200	Ü	200	52	ug/Kg			05/05/17 15:05	40
Xylenes, Total	400	U	400	44	ug/Kg			05/05/17 15:05	40
Styrene	200	U	200	37	ug/Kg			05/05/17 15:05	40
Bromoform	200	U	200	60	ug/Kg			05/05/17 15:05	40
Isopropylbenzene	200	U	200	76	ug/Kg			05/05/17 15:05	40
1,1,2,2-Tetrachloroethane	200	U	200	64	ug/Kg			05/05/17 15:05	40

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-478753/10

Matrix: Solid

Analysis Batch: 478753

Client	Sample ID):	Meth	od	Blank
	Prep	T	ype:	To	tal/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	200	U	200	64	ug/Kg			05/05/17 15:05	40
1,4-Dichlorobenzene	200	U	200	30	ug/Kg			05/05/17 15:05	40
1,2-Dichlorobenzene	200	U	200	52	ug/Kg			05/05/17 15:05	40
1,2-Dibromo-3-Chloropropane	400	U	400	180	ug/Kg			05/05/17 15:05	40
1,2,4-Trichlorobenzene	200	U	200	36	ug/Kg			05/05/17 15:05	40

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95	70 - 130		05/05/17 15:05	40
1,2-Dichloroethane-d4 (Surr)	109	70 - 130		05/05/17 15:05	40
Dibromofluoromethane (Surr)	111	70 - 130		05/05/17 15:05	40
4-Bromofluorobenzene (Surr)	93	70 - 130		05/05/17 15:05	40

Lab Sample ID: MB 680-478753/11

Matrix: Solid

Client	Sample ID: Method Blank	(
	Prep Type: Total/NA	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.0	U	5.0	0.94	ug/Kg			05/05/17 15:28	1
Chloromethane	5.0	U	5.0	1.0	ug/Kg			05/05/17 15:28	1
Vinyl chloride	5.0	U	5.0	1.5	ug/Kg			05/05/17 15:28	1
Bromomethane	5.0	U	5.0	1.5	ug/Kg			05/05/17 15:28	1
Chloroethane	5.0	U	5.0	2.7	ug/Kg			05/05/17 15:28	1
Trichlorofluoromethane	5.0	U	5.0	1.2	ug/Kg			05/05/17 15:28	1
1,1-Dichloroethene	5.0	U	5.0	1.5	ug/Kg			05/05/17 15:28	1
Acetone	50	U	50	11	ug/Kg			05/05/17 15:28	1
Carbon disulfide	5.0	U	5.0	1.1	ug/Kg			05/05/17 15:28	1
Methylene Chloride	5.0	U	5.0	0.98	ug/Kg			05/05/17 15:28	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.63	ug/Kg			05/05/17 15:28	1
Methyl tert-butyl ether	5.0	U	5.0	1.0	ug/Kg			05/05/17 15:28	1
1,1-Dichloroethane	5.0	U	5.0	1.1	ug/Kg			05/05/17 15:28	1
cis-1,2-Dichloroethene	5.0	U	5.0	1.4	ug/Kg			05/05/17 15:28	1
2-Butanone (MEK)	25	U	25	2.4	ug/Kg			05/05/17 15:28	1
Chloroform	5.0	U	5.0	1.1	ug/Kg			05/05/17 15:28	1
1,1,1-Trichloroethane	5.0	U	5.0	0.59	ug/Kg			05/05/17 15:28	1
Carbon tetrachloride	5.0	U	5.0	0.83	ug/Kg			05/05/17 15:28	1
Benzene	5.0	U	5.0	0.73	ug/Kg			05/05/17 15:28	1
1,2-Dichloroethane	5.0	U	5.0	1.1	ug/Kg			05/05/17 15:28	1
Trichloroethene	5.0	U	5.0	1.3	ug/Kg			05/05/17 15:28	1
1,2-Dichloropropane	5.0	U	5.0	0.86	ug/Kg			05/05/17 15:28	1
Bromodichloromethane	5.0	U	5.0	0.97	ug/Kg			05/05/17 15:28	1
cis-1,3-Dichloropropene	5.0	U	5.0	0.83	ug/Kg			05/05/17 15:28	1
4-Methyl-2-pentanone	25	U	25	4.2	ug/Kg			05/05/17 15:28	1
Toluene	5.0	U	5.0	0.84	ug/Kg			05/05/17 15:28	1
trans-1,3-Dichloropropene	5.0	U	5.0	0.87	ug/Kg			05/05/17 15:28	1
1,1,2-Trichloroethane	5.0	U	5.0	1.3	ug/Kg			05/05/17 15:28	1
Tetrachloroethene	5.0	U	5.0	1.9	ug/Kg			05/05/17 15:28	1
2-Hexanone	25	U	25	3.3	ug/Kg			05/05/17 15:28	1
Dibromochloromethane	5.0	U	5.0	1.7	ug/Kg			05/05/17 15:28	1

TestAmerica Savannah

5/11/2017

Page 42 of 64

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-478753/11

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Analyte **Prepared** Analyzed Dil Fac 1.2-Dibromoethane 5.0 U 5.0 1.5 ug/Kg 05/05/17 15:28 Chlorobenzene 5.0 U 5.0 0.96 ug/Kg 05/05/17 15:28 Ethylbenzene 5.0 U 5.0 1.3 ug/Kg 05/05/17 15:28 Xylenes, Total 10 U 10 1.1 ug/Kg 05/05/17 15:28 Styrene 5.0 U 5.0 0.93 ug/Kg 05/05/17 15:28 Bromoform 5.0 U 5.0 1.5 ug/Kg 05/05/17 15:28 Isopropylbenzene 5.0 U 5.0 05/05/17 15:28 1.9 ug/Kg 1,1,2,2-Tetrachloroethane 5.0 U 5.0 1.6 ug/Kg 05/05/17 15:28 1.6 ug/Kg 1.3-Dichlorobenzene 5.0 U 5.0 05/05/17 15:28 1,4-Dichlorobenzene 5.0 U 5.0 0.74 ug/Kg 05/05/17 15:28 1,2-Dichlorobenzene 5.0 U 5.0 1.3 ug/Kg 05/05/17 15:28 1,2-Dibromo-3-Chloropropane 10 U 10 4.4 ug/Kg 05/05/17 15:28 1,2,4-Trichlorobenzene 5.0 U 5.0 0.89 ug/Kg 05/05/17 15:28

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95	70 - 130		05/05/17 15:28	1
1,2-Dichloroethane-d4 (Surr)	105	70 - 130		05/05/17 15:28	1
Dibromofluoromethane (Surr)	112	70 - 130		05/05/17 15:28	1
4-Bromofluorobenzene (Surr)	92	70 - 130		05/05/17 15:28	1

Lab Sample ID: LCS 680-478753/4

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	50.0	42.3		ug/Kg		85	40 - 160	
Chloromethane	50.0	40.5		ug/Kg		81	40 - 160	
Vinyl chloride	50.0	42.3		ug/Kg		85	70 - 130	
Bromomethane	50.0	40.1		ug/Kg		80	40 - 160	
Chloroethane	50.0	49.9		ug/Kg		100	40 - 160	
Trichlorofluoromethane	50.0	50.0		ug/Kg		100	40 - 160	
1,1-Dichloroethene	50.0	49.5		ug/Kg		99	70 - 130	
Acetone	250	254		ug/Kg		102	40 - 160	
Carbon disulfide	50.0	49.7		ug/Kg		99	40 - 160	
Methylene Chloride	50.0	50.4		ug/Kg		101	70 - 130	
trans-1,2-Dichloroethene	50.0	45.5		ug/Kg		91	70 - 130	
Methyl tert-butyl ether	50.0	44.8		ug/Kg		90	70 - 130	
1,1-Dichloroethane	50.0	44.8		ug/Kg		90	70 - 130	
cis-1,2-Dichloroethene	50.0	44.9		ug/Kg		90	70 - 130	
2-Butanone (MEK)	250	216		ug/Kg		87	40 - 160	
Chloroform	50.0	45.9		ug/Kg		92	70 - 130	
1,1,1-Trichloroethane	50.0	45.4		ug/Kg		91	70 - 130	
Carbon tetrachloride	50.0	46.2		ug/Kg		92	70 - 130	
Benzene	50.0	45.2		ug/Kg		90	70 - 130	
1,2-Dichloroethane	50.0	45.6		ug/Kg		91	70 - 130	
Trichloroethene	50.0	46.4		ug/Kg		93	70 - 130	
1,2-Dichloropropane	50.0	43.8		ug/Kg		88	70 - 130	
Bromodichloromethane	50.0	45.9		ug/Kg		92	70 - 130	

TestAmerica Savannah

Page 43 of 64

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-478753/4

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS LC	S		%Rec.
Analyte	Added	Result Qu	ualifier Unit	D %Rec	Limits
cis-1,3-Dichloropropene	50.0	45.1	ug/Kg	90	70 - 130
4-Methyl-2-pentanone	250	235	ug/Kg	94	40 - 160
Toluene	50.0	45.1	ug/Kg	90	70 - 130
trans-1,3-Dichloropropene	50.0	46.5	ug/Kg	93	70 - 130
1,1,2-Trichloroethane	50.0	46.7	ug/Kg	93	70 - 130
Tetrachloroethene	50.0	46.5	ug/Kg	93	70 - 130
2-Hexanone	250	235	ug/Kg	94	40 - 160
Dibromochloromethane	50.0	48.2	ug/Kg	96	70 - 130
1,2-Dibromoethane	50.0	47.3	ug/Kg	95	70 - 130
Chlorobenzene	50.0	45.1	ug/Kg	90	70 - 130
Ethylbenzene	50.0	45.2	ug/Kg	90	70 - 130
Xylenes, Total	100	89.4	ug/Kg	89	70 - 130
Styrene	50.0	47.4	ug/Kg	95	70 - 130
Bromoform	50.0	47.8	ug/Kg	96	70 - 130
Isopropylbenzene	50.0	45.6	ug/Kg	91	70 - 130
1,1,2,2-Tetrachloroethane	50.0	46.4	ug/Kg	93	70 - 130
1,3-Dichlorobenzene	50.0	45.2	ug/Kg	90	70 - 130
1,4-Dichlorobenzene	50.0	45.1	ug/Kg	90	70 - 130
1,2-Dichlorobenzene	50.0	45.6	ug/Kg	91	70 - 130
1,2-Dibromo-3-Chloropropane	50.0	44.1	ug/Kg	88	40 - 160
1,2,4-Trichlorobenzene	50.0	44.4	ug/Kg	89	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	90		70 - 130
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Dibromofluoromethane (Surr)	91		70 - 130
4-Bromofluorobenzene (Surr)	87		70 - 130

Lab Sample ID: LCS 680-478753/6

Matrix: Solid

Analysis Batch: 478753

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	2500	2380		ug/Kg		95	40 - 160
Chloromethane	2500	2370		ug/Kg		95	40 - 160
Vinyl chloride	2500	2410		ug/Kg		96	70 - 130
Bromomethane	2500	2800		ug/Kg		112	40 - 160
Chloroethane	2500	2920		ug/Kg		117	40 - 160
Trichlorofluoromethane	2500	2880		ug/Kg		115	40 - 160
1,1-Dichloroethene	2500	2830		ug/Kg		113	70 - 130
Acetone	12500	15200		ug/Kg		122	40 - 160
Carbon disulfide	2500	2970		ug/Kg		119	40 - 160
Methylene Chloride	2500	2930		ug/Kg		117	70 - 130
trans-1,2-Dichloroethene	2500	2660		ug/Kg		106	70 - 130
Methyl tert-butyl ether	2500	2780		ug/Kg		111	70 - 130
1,1-Dichloroethane	2500	2560		ug/Kg		102	70 - 130
cis-1,2-Dichloroethene	2500	2650		ug/Kg		106	70 - 130
2-Butanone (MEK)	12500	13500		ug/Kg		108	40 - 160

TestAmerica Savannah

5/11/2017

Page 44 of 64

3

7

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-478753/6

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloroform	2500	2650		ug/Kg		106	70 - 130
1,1,1-Trichloroethane	2500	2620		ug/Kg		105	70 - 130
Carbon tetrachloride	2500	2660		ug/Kg		107	70 - 130
Benzene	2500	2660		ug/Kg		107	70 - 130
1,2-Dichloroethane	2500	2790		ug/Kg		112	70 - 130
Trichloroethene	2500	2750		ug/Kg		110	70 - 130
1,2-Dichloropropane	2500	2640		ug/Kg		105	70 - 130
Bromodichloromethane	2500	2720		ug/Kg		109	70 - 130
cis-1,3-Dichloropropene	2500	2780		ug/Kg		111	70 - 130
4-Methyl-2-pentanone	12500	14400		ug/Kg		115	40 - 160
Toluene	2500	2670		ug/Kg		107	70 - 130
trans-1,3-Dichloropropene	2500	2870		ug/Kg		115	70 - 130
1,1,2-Trichloroethane	2500	2770		ug/Kg		111	70 - 130
Tetrachloroethene	2500	2770		ug/Kg		111	70 - 130
2-Hexanone	12500	14200		ug/Kg		114	40 - 160
Dibromochloromethane	2500	2860		ug/Kg		114	70 - 130
1,2-Dibromoethane	2500	2820		ug/Kg		113	70 - 130
Chlorobenzene	2500	2720		ug/Kg		109	70 - 130
Ethylbenzene	2500	2740		ug/Kg		109	70 - 130
Xylenes, Total	5000	5470		ug/Kg		109	70 - 130
Styrene	2500	2850		ug/Kg		114	70 - 130
Bromoform	2500	2960		ug/Kg		118	70 - 130
Isopropylbenzene	2500	2790		ug/Kg		111	70 - 130
1,1,2,2-Tetrachloroethane	2500	2740		ug/Kg		110	70 - 130
1,3-Dichlorobenzene	2500	2700		ug/Kg		108	70 - 130
1,4-Dichlorobenzene	2500	2660		ug/Kg		106	70 - 130
1,2-Dichlorobenzene	2500	2640		ug/Kg		106	70 - 130
1,2-Dibromo-3-Chloropropane	2500	2590		ug/Kg		104	40 - 160
1,2,4-Trichlorobenzene	2500	2710		ug/Kg		108	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	110		70 - 130
1,2-Dichloroethane-d4 (Surr)	108		70 - 130
Dibromofluoromethane (Surr)	106		70 - 130
4-Bromofluorobenzene (Surr)	104		70 - 130

Lab Sample ID: LCSD 680-478753/5

Matrix: Solid

Analysis Batch: 478753

Client Sample I	D: La	ıb C	ontro	ol Sar	nple	Dup
			ran 1	Tyne:	Tota	I/N A

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	43.9	-	ug/Kg		88	40 - 160	4	20
Chloromethane	50.0	44.0		ug/Kg		88	40 - 160	8	20
Vinyl chloride	50.0	44.3		ug/Kg		89	70 - 130	5	20
Bromomethane	50.0	51.8	*	ug/Kg		104	40 - 160	25	20
Chloroethane	50.0	52.8		ug/Kg		106	40 - 160	6	20
Trichlorofluoromethane	50.0	52.0		ug/Kg		104	40 - 160	4	20
1,1-Dichloroethene	50.0	53.3		ug/Kg		107	70 - 130	8	20

TestAmerica Savannah

Page 45 of 64

2

5

7

9

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-478753/5

Matrix: Solid

Analysis Batch: 478753

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike LCSD LCSI		LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	t Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	250	255		ug/Kg		102	40 - 160	0	20
Carbon disulfide	50.0	53.1		ug/Kg		106	40 - 160	7	20
Methylene Chloride	50.0	53.6		ug/Kg		107	70 - 130	6	20
trans-1,2-Dichloroethene	50.0	47.9		ug/Kg		96	70 - 130	5	20
Methyl tert-butyl ether	50.0	46.6		ug/Kg		93	70 - 130	4	20
1,1-Dichloroethane	50.0	47.2		ug/Kg		94	70 - 130	5	20
cis-1,2-Dichloroethene	50.0	46.6		ug/Kg		93	70 - 130	4	20
2-Butanone (MEK)	250	239		ug/Kg		96	40 - 160	10	20
Chloroform	50.0	47.2		ug/Kg		94	70 - 130	3	20
1,1,1-Trichloroethane	50.0	47.3		ug/Kg		95	70 - 130	4	20
Carbon tetrachloride	50.0	48.8		ug/Kg		98	70 - 130	6	20
Benzene	50.0	47.0		ug/Kg		94	70 - 130	4	20
1,2-Dichloroethane	50.0	47.6		ug/Kg		95	70 - 130	4	20
Trichloroethene	50.0	48.6		ug/Kg		97	70 - 130	5	20
1,2-Dichloropropane	50.0	45.7		ug/Kg		91	70 - 130	4	20
Bromodichloromethane	50.0	47.5		ug/Kg		95	70 - 130	3	20
cis-1,3-Dichloropropene	50.0	47.6		ug/Kg		95	70 - 130	5	20
4-Methyl-2-pentanone	250	243		ug/Kg		97	40 - 160	3	20
Toluene	50.0	46.7		ug/Kg		93	70 - 130	3	20
trans-1,3-Dichloropropene	50.0	49.2		ug/Kg		98	70 - 130	5	20
1,1,2-Trichloroethane	50.0	48.3		ug/Kg		97	70 - 130	3	20
Tetrachloroethene	50.0	49.4		ug/Kg		99	70 - 130	6	20
2-Hexanone	250	243		ug/Kg		97	40 - 160	3	20
Dibromochloromethane	50.0	49.9		ug/Kg		100	70 - 130	3	20
1,2-Dibromoethane	50.0	48.8		ug/Kg		98	70 - 130	3	20
Chlorobenzene	50.0	48.3		ug/Kg		97	70 - 130	7	20
Ethylbenzene	50.0	47.8		ug/Kg		96	70 - 130	6	20
Xylenes, Total	100	96.3		ug/Kg		96	70 - 130	7	20
Styrene	50.0	50.3		ug/Kg		101	70 - 130	6	20
Bromoform	50.0	50.5		ug/Kg		101	70 - 130	5	20
Isopropylbenzene	50.0	48.8		ug/Kg		98	70 - 130	7	20
1,1,2,2-Tetrachloroethane	50.0	47.9		ug/Kg		96	70 - 130	3	20
1,3-Dichlorobenzene	50.0	47.3		ug/Kg		95	70 - 130	4	20
1,4-Dichlorobenzene	50.0	46.8		ug/Kg		94	70 - 130	4	20
1,2-Dichlorobenzene	50.0	46.9		ug/Kg		94	70 - 130	3	20
1,2-Dibromo-3-Chloropropane	50.0	44.0		ug/Kg		88	40 - 160	0	20
1,2,4-Trichlorobenzene	50.0	47.1		ug/Kg		94	70 - 130	6	20
, ,				3 3					

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	96		70 - 130
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	96		70 - 130
4-Bromofluorobenzene (Surr)	91		70 - 130

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-478753/7

Matrix: Solid

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Dichlorodifluoromethane	2500	2260		ug/Kg		90	40 - 160	5	20
Chloromethane	2500	2250		ug/Kg		90	40 - 160	5	20
Vinyl chloride	2500	2360		ug/Kg		95	70 - 130	2	20
Bromomethane	2500	2780		ug/Kg		111	40 - 160	1	20
Chloroethane	2500	2940		ug/Kg		118	40 - 160	1	20
Trichlorofluoromethane	2500	2850		ug/Kg		114	40 - 160	1	20
1,1-Dichloroethene	2500	2890		ug/Kg		115	70 - 130	2	20
Acetone	12500	15600		ug/Kg		124	40 - 160	2	20
Carbon disulfide	2500	2800		ug/Kg		112	40 - 160	6	20
Methylene Chloride	2500	2780		ug/Kg		111	70 - 130	5	20
trans-1,2-Dichloroethene	2500	2550		ug/Kg		102	70 - 130	4	20
Methyl tert-butyl ether	2500	2660		ug/Kg		106	70 - 130	5	20
1,1-Dichloroethane	2500	2450		ug/Kg		98	70 - 130	4	20
cis-1,2-Dichloroethene	2500	2550		ug/Kg		102	70 - 130	4	20
2-Butanone (MEK)	12500	13600		ug/Kg		109	40 - 160	1	20
Chloroform	2500	2570		ug/Kg		103	70 - 130	3	20
1,1,1-Trichloroethane	2500	2480		ug/Kg		99	70 - 130	6	20
Carbon tetrachloride	2500	2530		ug/Kg		101	70 - 130	5	20
Benzene	2500	2530		ug/Kg		101	70 - 130	5	20
1,2-Dichloroethane	2500	2730		ug/Kg		109	70 - 130	2	20
Trichloroethene	2500	2600		ug/Kg		104	70 - 130	6	20
1,2-Dichloropropane	2500	2470		ug/Kg		99	70 - 130	6	20
Bromodichloromethane	2500	2560		ug/Kg		102	70 - 130	6	20
cis-1,3-Dichloropropene	2500	2660		ug/Kg		106	70 - 130	5	20
4-Methyl-2-pentanone	12500	13800		ug/Kg		110	40 - 160	4	20
Toluene	2500	2540		ug/Kg		102	70 - 130	5	20
trans-1,3-Dichloropropene	2500	2740		ug/Kg		110	70 - 130	4	20
1,1,2-Trichloroethane	2500	2640		ug/Kg		106	70 - 130	5	20
Tetrachloroethene	2500	2610		ug/Kg		104	70 - 130	6	20
2-Hexanone	12500	13600		ug/Kg		109	40 - 160	5	20
Dibromochloromethane	2500	2740		ug/Kg		110	70 - 130	4	20
1,2-Dibromoethane	2500	2750		ug/Kg		110	70 - 130	2	20
Chlorobenzene	2500	2630		ug/Kg		105	70 - 130	3	20
Ethylbenzene	2500	2630		ug/Kg		105	70 - 130	4	20
Xylenes, Total	5000	5320		ug/Kg		106	70 - 130	3	20
Styrene	2500	2770		ug/Kg		111	70 - 130	3	20
Bromoform	2500	2910		ug/Kg		116	70 - 130	2	20
Isopropylbenzene	2500	2680		ug/Kg		107	70 - 130	4	20
1,1,2,2-Tetrachloroethane	2500	2680		ug/Kg		107	70 - 130	2	20
1,3-Dichlorobenzene	2500	2520		ug/Kg		101	70 - 130	7	20
1,4-Dichlorobenzene	2500	2470		ug/Kg		99	70 - 130	7	20
1,2-Dichlorobenzene	2500	2490		ug/Kg		100	70 - 130	6	20
1,2-Dibromo-3-Chloropropane	2500	2460		ug/Kg		98	40 - 160	5	20
1,2,4-Trichlorobenzene	2500	2510		ug/Kg		100	70 - 130	8	20

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 Toluene-d8 (Surr)
 104
 70 - 130

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138014-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-478753/7

Matrix: Solid

Analysis Batch: 478753

Client Sample	ID:	Lab	Conti	rol	Sar	nple	Dup
			Prep	Ту	pe:	Tota	I/NA

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104	70 - 130
Dibromofluoromethane (Surr)	104	70 - 130
4-Bromofluorobenzene (Surr)	98	70 - 130

QC Association Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

GC/MS VOA

Analysis Batch: 182625

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138014-19 - DL	6489-HA-1 (4.5-5)	Total/NA	Water	8260B	
680-138014-19	6489-HA-1 (4.5-5)	Total/NA	Water	8260B	
680-138014-21	6489-DUP-2	Total/NA	Water	8260B	
680-138014-22	6489-TB	Total/NA	Water	8260B	
MB 660-182625/6	Method Blank	Total/NA	Water	8260B	
LCS 660-182625/4	Lab Control Sample	Total/NA	Water	8260B	

Analysis Batch: 182648

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138014-1	6489-DP-4 (13-18)	Total/NA	Water	8260B	-
680-138014-4	6489-DP-5 (3-8)	Total/NA	Water	8260B	
680-138014-5	6489-DP-5 (8-18)	Total/NA	Water	8260B	
680-138014-8	6489-DP-6 (4-5)	Total/NA	Water	8260B	
680-138014-17 - DL	6489-DP-8 (13-17)	Total/NA	Water	8260B	
680-138014-17	6489-DP-8 (13-17)	Total/NA	Water	8260B	
MB 660-182648/7	Method Blank	Total/NA	Water	8260B	
LCS 660-182648/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 660-182648/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Prep Batch: 477632

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138014-2	6489-DP-5 (1-2)	Total/NA	Solid	5035	-
680-138014-3	6489-DP-5 (19-20)	Total/NA	Solid	5035	
680-138014-6	6489-DP-6 (1-2)	Total/NA	Solid	5035	
680-138014-7	6489-DP-6 (15-16)	Total/NA	Solid	5035	
680-138014-10	6489-DP-7 (4-6)	Total/NA	Solid	5035	
680-138014-10 - DL	6489-DP-7 (4-6)	Total/NA	Solid	5035	
680-138014-11	6489-DP-7 (18-19)	Total/NA	Solid	5035	
680-138014-12	6489-DP-7 (22-23.5)	Total/NA	Solid	5035	
680-138014-14	6489-DP-8 (3-4)	Total/NA	Solid	5035	
680-138014-15	6489-DP-8 (8-10)	Total/NA	Solid	5035	
680-138014-16	6489-DP-8 (18-19)	Total/NA	Solid	5035	
680-138014-18	6489-HA-1 (2-3)	Total/NA	Solid	5035	
680-138014-20	6489-DUP-1	Total/NA	Solid	5035	

Analysis Batch: 478515

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138014-10	6489-DP-7 (4-6)	Total/NA	Solid	8260B	477632
MB 680-478515/10	Method Blank	Total/NA	Solid	8260B	
MB 680-478515/11	Method Blank	Total/NA	Solid	8260B	
LCS 680-478515/6	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-478515/28	Lab Control Sample Dup	Total/NA	Solid	8260B	

Analysis Batch: 478517

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138014-2	6489-DP-5 (1-2)	Total/NA	Solid	8260B	477632
680-138014-3	6489-DP-5 (19-20)	Total/NA	Solid	8260B	477632
680-138014-6	6489-DP-6 (1-2)	Total/NA	Solid	8260B	477632
680-138014-7	6489-DP-6 (15-16)	Total/NA	Solid	8260B	477632
680-138014-11	6489-DP-7 (18-19)	Total/NA	Solid	8260B	477632
680-138014-12	6489-DP-7 (22-23.5)	Total/NA	Solid	8260B	477632

TestAmerica Savannah

4

۾

_

10

<u> 11</u>

QC Association Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138014-1

GC/MS VOA (Continued)

Analysis Batch: 478517 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138014-14	6489-DP-8 (3-4)	Total/NA	Solid	8260B	477632
680-138014-15	6489-DP-8 (8-10)	Total/NA	Solid	8260B	477632
680-138014-16	6489-DP-8 (18-19)	Total/NA	Solid	8260B	477632
MB 680-478517/8	Method Blank	Total/NA	Solid	8260B	
LCS 680-478517/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-478517/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

Analysis Batch: 478753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138014-10 - DL	6489-DP-7 (4-6)	Total/NA	Solid	8260B	477632
680-138014-18	6489-HA-1 (2-3)	Total/NA	Solid	8260B	477632
680-138014-20	6489-DUP-1	Total/NA	Solid	8260B	477632
MB 680-478753/10	Method Blank	Total/NA	Solid	8260B	
MB 680-478753/11	Method Blank	Total/NA	Solid	8260B	
LCS 680-478753/4	Lab Control Sample	Total/NA	Solid	8260B	
LCS 680-478753/6	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-478753/5	Lab Control Sample Dup	Total/NA	Solid	8260B	
LCSD 680-478753/7	Lab Control Sample Dup	Total/NA	Solid	8260B	

General Chemistry

Analysis Batch: 478489

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138014-2	6489-DP-5 (1-2)	Total/NA	Solid	Moisture	
680-138014-3	6489-DP-5 (19-20)	Total/NA	Solid	Moisture	
680-138014-6	6489-DP-6 (1-2)	Total/NA	Solid	Moisture	
680-138014-7	6489-DP-6 (15-16)	Total/NA	Solid	Moisture	
680-138014-10	6489-DP-7 (4-6)	Total/NA	Solid	Moisture	
680-138014-11	6489-DP-7 (18-19)	Total/NA	Solid	Moisture	
680-138014-12	6489-DP-7 (22-23.5)	Total/NA	Solid	Moisture	
680-138014-14	6489-DP-8 (3-4)	Total/NA	Solid	Moisture	
680-138014-15	6489-DP-8 (8-10)	Total/NA	Solid	Moisture	
680-138014-16	6489-DP-8 (18-19)	Total/NA	Solid	Moisture	
680-138014-18	6489-HA-1 (2-3)	Total/NA	Solid	Moisture	
680-138014-20	6489-DUP-1	Total/NA	Solid	Moisture	

Page 50 of 64

Client Sample ID: 6489-DP-4 (13-18)

Instrument ID: CHBVMJ5975

Lab Sample ID: 680-138014-1

Matrix: Water

Dil Initial Batch Batch Batch **Final Prepared** Method Number **Prep Type** Type Run **Factor Amount** Amount or Analyzed Analyst Lab Total/NA Analysis 8260B 5 mL 5 mL 182648 05/09/17 21:08 K1P TAL TAM

Lab Sample ID: 680-138014-2 Client Sample ID: 6489-DP-5 (1-2)

Date Collected: 04/26/17 10:00 **Matrix: Solid**

Date Received: 04/27/17 09:30

Date Collected: 04/26/17 08:17

Date Received: 04/27/17 09:30

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed **Analyst** Total/NA 478489 05/03/17 19:05 EDE TAL SAV Analysis Moisture Instrument ID: NOEQUIP

Lab Sample ID: 680-138014-2 Client Sample ID: 6489-DP-5 (1-2)

Date Collected: 04/26/17 10:00 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 84.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.081 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 15:25	JLK	TAL SAV
	Instrumer	t ID: CMSAB								

Lab Sample ID: 680-138014-3 Client Sample ID: 6489-DP-5 (19-20)

Date Collected: 04/26/17 09:55 **Matrix: Solid**

Date Received: 04/27/17 09:30

Batch Dil Initial Final Batch **Batch** Prepared Prep Type Type Method Run **Factor Amount** Amount Number or Analyzed Analyst Lab Total/NA Moisture 478489 05/03/17 19:05 EDE TAL SAV Analysis Instrument ID: NOEQUIP

Client Sample ID: 6489-DP-5 (19-20) Lab Sample ID: 680-138014-3

Date Collected: 04/26/17 09:55 **Matrix: Solid** Percent Solids: 88.3 Date Received: 04/27/17 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.407 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 15:47	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Lab Sample ID: 680-138014-4 Client Sample ID: 6489-DP-5 (3-8)

Date Collected: 04/26/17 10:10 **Matrix: Water** Date Received: 04/27/17 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	182648	05/09/17 21:27	K1P	TAL TAM

Client Sample ID: 6489-DP-5 (3-8)

Date Collected: 04/26/17 10:10 Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-4

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	182648	05/09/17 21:27	K1P	TAL TAM
	Instrument	ID: CHBVMJ5975								

Client Sample ID: 6489-DP-5 (8-18)

Date Collected: 04/26/17 10:05 Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-5 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	182648	05/09/17 21:45	K1P	TAL TAM
	Instrument	ID: CHBVMJ5975								

Client Sample ID: 6489-DP-6 (1-2)

Date Collected: 04/26/17 11:18 Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-6

Matrix: Solid

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep	Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Tota	I/NA	Analysis	Moisture		1			478489	05/03/17 19:05	EDE	TAL SAV
		Instrument	ID: NOEQUIP								

Client Sample ID: 6489-DP-6 (1-2)

Date Collected: 04/26/17 11:18

Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-6 Matrix: Solid

Lab Sample ID: 680-138014-7

Percent Solids: 81.6

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.951 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 16:10	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Client Sample ID: 6489-DP-6 (15-16)

Date Collected: 04/26/17 11:23

Date Received: 04/27/17 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478489	05/03/17 19:05	EDE	TAL SAV
	Instrumen	t ID: NOEQUIP								

Client Sample ID: 6489-DP-6 (15-16)

Date Collected: 04/26/17 11:23

Date Received: 04/27/17 09:30

Lab Sample ID: 680-138014-7 **Matrix: Solid** Percent Solids: 78.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.425 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV

Client Sample ID: 6489-DP-6 (15-16)

Lab Sample ID: 680-138014-7

Matrix: Solid

Date Collected: 04/26/17 11:23 Date Received: 04/27/17 09:30

Percent Solids: 78.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 16:33	JLK	TAL SAV
	Instrument	ID: CMSAB								

Client Sample ID: 6489-DP-6 (4-5)

Lab Sample ID: 680-138014-8

Matrix: Water

Date Collected: 04/26/17 12:46 Date Received: 04/27/17 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	182648	05/09/17 22:04	K1P	TAL TAM
	Instrument	ID: CHBVMJ5975								

Lab Sample ID: 680-138014-10 Client Sample ID: 6489-DP-7 (4-6) Date Collected: 04/26/17 14:59

Matrix: Solid

Date Received: 04/27/17 09:30

Dil Batch **Batch** Initial Final **Batch** Prepared Prep Type Type Method Run **Factor Amount** Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 478489 05/03/17 19:05 EDE TAL SAV Instrument ID: NOEQUIP

Client Sample ID: 6489-DP-7 (4-6) Lab Sample ID: 680-138014-10

Date Collected: 04/26/17 14:59 Date Received: 04/27/17 09:30

Matrix: Solid Percent Solids: 90.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			7.336 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B		2000	5 mL	5 mL	478515	05/04/17 15:49	JLK	TAL SAV
	Instrumer	nt ID: CMSAA								
Total/NA	Prep	5035	DL		7.336 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B	DL	20000	5 mL	5 mL	478753	05/05/17 19:17	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Client Sample ID: 6489-DP-7 (18-19) Lab Sample ID: 680-138014-11

Date Collected: 04/26/17 14:53 Date Received: 04/27/17 09:30

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478489	05/03/17 19:05	EDE	TAL SAV
	Instrument	ID: NOEQUIP								

Lab Sample ID: 680-138014-11

Matrix: Solid

Percent Solids: 88.6

Client Sample ID: 6489-DP-7 (18-19) Date Collected: 04/26/17 14:53 Date Received: 04/27/17 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			7.331 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis Instrumer	8260B at ID: CMSAB		1	5 g	5 g	478517	05/04/17 16:56	JLK	TAL SAV

Client Sample ID: 6489-DP-7 (22-23.5) Lab Sample ID: 680-138014-12

Date Collected: 04/26/17 14:47 Date Received: 04/27/17 09:30

Matrix: Solid

Batch Batch Dil Initial **Final** Batch **Prepared Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA 478489 05/03/17 19:05 EDE TAL SAV Analysis Moisture Instrument ID: NOEQUIP

Client Sample ID: 6489-DP-7 (22-23.5) Lab Sample ID: 680-138014-12

Date Collected: 04/26/17 14:47 Matrix: Solid Date Received: 04/27/17 09:30 Percent Solids: 87.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.339 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 17:19	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Lab Sample ID: 680-138014-14 Client Sample ID: 6489-DP-8 (3-4)

Date Collected: 04/26/17 18:05 Matrix: Solid

Date Received: 04/27/17 09:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478489	05/03/17 19:05	EDE	TAL SAV
	Instrumen	t ID: NOEQUIP								

Client Sample ID: 6489-DP-8 (3-4) Lab Sample ID: 680-138014-14

Date Collected: 04/26/17 18:05 **Matrix: Solid** Date Received: 04/27/17 09:30 Percent Solids: 84.3

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.048 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 17:42	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Lab Sample ID: 680-138014-15

Matrix: Solid

Client Sample ID: 6489-DP-8 (8-10)

Date Collected: 04/26/17 18:10 Date Received: 04/27/17 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478489	05/03/17 19:05	EDE	TAL SAV
	Instrument	ID: NOEQUIP								

Client Sample ID: 6489-DP-8 (8-10) Lab Sample ID: 680-138014-15

Date Collected: 04/26/17 18:10 Date Received: 04/27/17 09:30

Matrix: Solid Percent Solids: 76.5

Lab Sample ID: 680-138014-16

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.925 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 18:05	JLK	TAL SAV
	Instrumer	t ID: CMSAB								

Client Sample ID: 6489-DP-8 (18-19)

Date Collected: 04/26/17 18:15 Date Received: 04/27/17 09:30

Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed Analyst Prep Type Type **Factor Amount** Amount Run Lab 478489 05/03/17 19:05 EDE Total/NA Analysis Moisture TAL SAV

Instrument ID: NOEQUIP

Client Sample ID: 6489-DP-8 (18-19) Lab Sample ID: 680-138014-16

Date Collected: 04/26/17 18:15 Matrix: Solid Percent Solids: 72.7 Date Received: 04/27/17 09:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.026 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	478517	05/04/17 18:27	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Client Sample ID: 6489-DP-8 (13-17) Lab Sample ID: 680-138014-17

Date Collected: 04/26/17 18:20 **Matrix: Water** Date Received: 04/27/17 09:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B at ID: CHBVMJ5	DL 975	50	5 mL	5 mL	182648	05/09/17 22:22	K1P	TAL TAM
Total/NA	Analysis Instrumer	8260B at ID: CHBVMJ5	975	5	5 mL	5 mL	182648	05/09/17 22:41	K1P	TAL TAM

2

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Lab Sample ID: 680-138014-18

Matrix: Solid

Client Sample ID: 6489-HA-1 (2-3)
Date Collected: 04/26/17 16:25

Date Received: 04/27/17 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478489	05/03/17 19:05	EDE	TAL SAV
	Instrument	ID: NOEQUIP								

Lab Sample ID: 680-138014-18

Lab Sample ID: 680-138014-19

Date Collected: 04/26/17 16:25 Date Received: 04/27/17 09:30

Client Sample ID: 6489-HA-1 (2-3)

Matrix: Solid
Percent Solids: 85.0

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.102 g	5 mL	477632	04/27/17 12:17	FES	TAL SAV
Total/NA	Analysis	8260B		40	5 mL	5 mL	478753	05/05/17 19:40	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Client Sample ID: 6489-HA-1 (4.5-5)

Date Collected: 04/26/17 16:32

Matrix: Water

Date Received: 04/27/17 09:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	8260B at ID: CHBVME	DL 5973	200	5 mL	5 mL	182625	05/09/17 16:41	TGP	TAL TAM
Total/NA	Analysis Instrumen	8260B at ID: CHBVME	5973	20	5 mL	5 mL	182625	05/09/17 21:25	TGP	TAL TAM

Client Sample ID: 6489-DUP-1 Lab Sample ID: 680-138014-20

Date Collected: 04/26/17 00:00 Matrix: Solid

Date Collected: 04/26/17 00:00 Date Received: 04/27/17 09:30

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method **Factor Amount** Amount Number or Analyzed Analyst Run Lab 478489 05/03/17 19:05 EDE Total/NA Analysis Moisture TAL SAV Instrument ID: NOEQUIP

Client Sample ID: 6489-DUP-1 Lab Sample ID: 680-138014-20

Date Collected: 04/26/17 00:00 Date Received: 04/27/17 09:30 Matrix: Solid

Percent Solids: 89.1

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Prep	5035	Kuii		7.677 g	5 mL	477632	04/27/17 12:17		TAL SAV
Total/NA	Analysis	8260B		20000	5 mL	5 mL	478753	05/05/17 20:26	JLK	TAL SAV
	Instrumer	t ID: CMSAB								

Lab Chronicle

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Lab Sample ID: 680-138014-21

Matrix: Water

Client Sample ID: 6489-DUP-2

Date Collected: 04/26/17 00:00 Date Received: 04/27/17 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		2000	5 mL	5 mL	182625	05/09/17 16:19	TGP	TAL TAM
	Instrument	ID: CHBVME5973								

Date Collected: 04/26/17 00:00 Matrix: Water

Date Received: 04/27/17 09:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	182625	05/09/17 15:35	TGP	TAL TAM
	Instrument	ID: CHBVME5973								

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL TAM = TestAmerica Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

3

4

5

1

a

10

11

Accreditation/Certification Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138014-1

Laboratory: TestAmerica Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Georgia	State Program	4	N/A	06-30-17 *

Laboratory: TestAmerica Tampa

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Florida	NELAP	4	E84282	06-30-17
Georgia	State Program	4	905	06-30-17
USDA	Federal		P330-14-00332	10-14-17

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138014-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL TAM
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
Moisture	Percent Moisture	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 TAL TAM = TestAmerica Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Δ

10

44

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

193728 Chain of Custody Record

TestAmerica Savannah

5102 LaRoche Avenue

Savannah, GA 31484 Phone: 912.354.7858 Fax:

TestAmerica

A	Client Contact	Project Manager:	nager: C	CACE		Site	Site Contact:	Date:		COC No:	
Cap ttil Ave Catendar Days	Company Name: Emary Forest CTC	Tel/Fax:	SUME			Lak	Contact:	Carrier:		of	COCs
Clearest Company Com	825 N Cantel		Analysis To	urnaround	Time	F					
13-17 1916	te/Zip: Indianapoli? IN		DAR DAYS	WOR	KING DAYS					For Lab Use Only:	
1 day Sample Sa	317-972-	N N	if different fro	vm Below weeks week						Walk-in Client: Lab Sampling:	
Sample Sample Sample Sample Coccord Sample S	10489 1000		2	days						Job / SDG No.:	
12-17	Sample Identification	Sample Date	Sample	Sample Type (C=Comp, G=Grab)		Filtered Sa				Sample Specific Notes:	c Notes:
8-10) 4 226 17 1865 6 501 4 4 18-19) 4 226 17 1815 6 501 4 4 18-19) 4 226 13-17) 4 226 18-20 6 0 00 00 00 00 00 00 00 00 00 00 00 0	_		1516	8	water	2	*				
18-16		4/24/17	1805	9	lios	1	×				
18-19) サール 1815 6 561 サーフ・13-17) サール 1820 6 いがす 3 サール・12-3 サール 10-25 6 5 11 サーク・12-3 サール 10-25 6 5 11 サーク・12-3 サール 10-25 6 5 11 サール 3 サール 10-25 6 5 11 サール 10-25 6 5 1		4/26/17	1810	9		+	×				
13-17 1820 6 12 14 12-3 12-3 12-3 12-3 124 125 6 12 14 12 12 12 12 12 13 14 14 15 15 15 15 15 15	(61-81) 8-48-00 (18-16)	4/26/17	1815	9		+	×				
1 (4.5 - 5) 4 / 1 (1 (2 5 2 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6489- PP-8 (13-17)	4726/17	1820	9	white	3	×				
124 142 6 1424 3 4 24 14 14 14 15 15 15 15 1	6489-419-1 (2-3)	4/24/17	1425	9	Siril	7	×				
Fice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other fication: listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the slab is to dispose of the sample. Planmable Skin Irritant Poison B Unknown C Requirements & Comments: Company: Date/Time:		4/24/17	1632	9	water	3	×				
d: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other dentification: Om a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the nif the lab is to dispose of the sample. Rammable Skin Irritant Poison B Unknown Rammable Skin Irritant Company: Date/Time: Ado at ~ 1055	10489- DWP-1	1)	9	Lios	+	×				
d: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other dentification: dentification: dentification: dentification: dentification: dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample in the lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample in the lab is to dispose of the sample in the lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample in the lab is to dispose of the sample in the lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is dispose of the sample. dentification: fithe lab is to dispose of the sample. dentification: fithe lab is the sample. dentification: fithe lab is the sample. dentification: fither lab is the sample. dentification: fithe lab is the sample. dentification: fither lab is the sample. dentification: dentification: fither lab is the sample. dentification: dentification	6489- DUP-2	Ì)	9	when	3	×				
de 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other dentification: om a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the list is to dispose of the sample. Hammable	200	1	1	1	when	3	×				
dentification: dentification: om a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the if the lab is to dispose of the sample. Planmable Skin Irritant Poison B Unknown Rammable Skin Irritant Poison B Unknown Ado at ~ 1055 Ado at ~ 1055 Indiact: Ves No Company: Company: Company: Company: Company: Company: Date/Time: Company: Company: Date/Time: Company: Company: Date/Time: Company: Company: Date/Time: Company: Company: Date/Time: Company: Company: Date/Time: Company: Company: Date/Time: Company: Company:											
dentification: 'om a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the lab is to dispose of the sample. Hammable Skin Irritant Poison 8 Unknown Hammable Skin Irritant Custody Seal No.: Company: Company: Date/Time:						\exists					
Flammable Skin Irritant Poison B Unknown Return to Client Disposal by Lab	Preservation Used: 1= Ice, 2= nc); 3= ncs04; 4 Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste Comments Section if the lab is to dissose of the same		PA Waste	Codes for t	he sample		Sample Disposal (A fee m	ay be assesse	d if samples are retain	ned longer than 1 month	
ns/QC Requirements & Comments: ### A 1955 Intact: □ ves □ No Custody Seal No.: Company: □ Company: □ Date/Time: Received to Company: □ Date/	Non-Hazard Skin	ant	8	Unkno	nwo		Return to Client	Disposal by t.z		Months	
Intact:	Special Instructions/QC Requirements & Commercial Instructions/ No. 12 Am. At. A. 1975	nts:							, ,		
Company: Date/Time: Received by: Company: Date/Time: Received by:	. Yes	Custody St	eal No.:				Cooler Temp. (°C): Obs.d. 2	11.4 Corrd 8-110	Therm ID No.:	
Company: Date/Time: Received by:		Company			Date/Time		Received by:		Sompany:	Date/Time:	
4	Relinquished by:	Company:			Date/Time		Received by:	9	Sompany:	Date/Time:	
Company: Date/Time: Received in Laboratory by:	Relinquished by:	Company			Date/Time.		Received in Laboratory by:		Company	Date/Time:	000

TestAmerica Savannah

5102 LaRoche Avenue

Savannah, GA 31404 Phone (912) 354-7858 Fax (912) 352-0165

TestAmerican representation represen

Chain of Custody Record

200 (210) (210) (210) (210) (210)													
	Sampler:			Lab PM:	i			Ö	Carrier Tracking No(s):	0 No(s):		COC No:	
Client Information (Sub Contract Lab)				barnet	barnett, Eddie i							000-470048.	
Client Contact:	Phone;			E-Mail:				Sta	State of Origin:			Page:	
Shipping/Receiving				eddie,t	oarnett@t	eddie.barnett@testamericainc.com	nc.com	<u>ල</u>	Georgia			Page 1 of 1	
Company:				¥	creditation	Accreditations Required (See note):	e note);					# dol	
TestAmerica Laboratories, Inc.				<u>ග</u>	tate Prog	State Program - Georgia	iä					680-138014-1	
	Due Date Requested:	÷							7			Preservation Codes:	Codes:
6712 Benjamin Road, Suite 100,	5/9/2017						Analysis Requested	anbay	pars			A-HCL	M - Hexane
City;	TAT Requested (days):	ys):										B - NaOH	N - None
Tampa							_					C - Zn Acetate	O - AsNaO2
State, Zlp:	_											D - Nitric Acid	P - N2204S
FL, 33634					A		_					m Namso4	Q - Na2SO3
F	PO #:				AS						_	G - Amchlor	
813-885-7427(Tel) 813-885-7049(Fax)				,,					_		_	H - Ascorbic Acid	
Email:	# OM			N 10 2	{0N		···					i - Ice J - Di Water J - Di Water	U - Acetone V - MCAA
Project Name: Ideal Cleaners - LaGrange, GA	Project #: 68018080			aV) at	JO 50,								Z - other (specify)
Sites	SSOW#:			unes	r) ası							Other:	
		Sample	Sample Type (C=comp,	Matrix (Wewstor, Especial Streets)	ld Filtered form MSIA 1980508(8) (eelsgor)							ទេ៤៣២៦ នៃ	
Sample Identification - Client ID (Lab ID)	Sample Date	Time		~	P91								Special Instructions/Note:
		\setminus	Preservation Code:	ion Code:	X								
6489-DP-4 (13-18) (680-138014-1)	4/26/17	08:17 Eastern		Water	×							3	
6489-DP-5 (3-8) (680-138014-4)	4/26/17	10:10 Eastern		Water	×			-				3	
6489-DP-5 (8-18) (680-138014-5)	4/26/17	10:05 Eastern		Water	×							8	
6489-DP-6 (4-5) (680-138014-8)	4/26/17	12:46 Eastern		Water	×		,					3	
6489-DP-8 (13-17) (680-138014-17)	4/26/17	18:20 Eastern		Water	×							ю	
6489-HA-1 (4.5-5) (680-138014-19)	4/26/17	16:32 Eastern		Water	×							8	
6489-DUP-2 (680-138014-21)	4/26/17	Eastern		Water	×							3	
6489-TB (680-138014-22)	4/26/17	Eastern		Water	×							3	
Note: Since inboratory accreditations are subject to change, Tost-America Laboratories, inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not	ories, Inc. places the ow	nership of met	nod, analyte & a	ccreditation comp	llance upor	out subcontra	ct laboratories	This samp	le shipmen	t is forward	ed under c	ain-of-custody. If th	e taboratory does not

Note: Since iaborations are subject to change. TostAmerica Laborationes, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laborations. This sample shipment is forwarded under chain-of-custody. If the laboratory does not contract the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, inc. attention in mediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Possible Hazard Identification

	Unconfirmed				Return To Client bis	Disposal By Lab	Archive For	Months
	Deliverable Requested: I, II, III, IV, Other (specify)	r (specify)	Primary Deliverable Rank; 2	S	Sedu	**	-	
	Empty Kit Relinquished by:		Date;	Time;		Method of Shipment	อกป	
5/	Bermaushed by		Date Time:	Company Company	Received by:		JE)1 - £//1/9/9	1(30 Company T-P
	Refinquished by:		Date/Time;	Company	Received by:		Date/Ijlme: '	Сотрапу
017	Reinquished by:		Date/Time:	Сотрапу	Received by:	Date	Date/Time.	Сомралу
	Custody Seals Intact: Custody Seal No.;	l No.:			Cooler Temperature(s) °C and Other Remarks:		3.6/3.2 60-00	9

Page 62 of 64

Login Sample Receipt Checklist

Client: Environmental Forensic Investigation Inc Job Number: 680-138014-1

Login Number: 138014 List Source: TestAmerica Savannah

List Number: 1

Creator: Flanagan, Naomi V

Question Answer Comment Radioactivity wasn't checked or is = background as measured by a survey</td N/A
Radioactivity wasn't chacked or is = hackground as measured by a survey N/A</th
meter.
The cooler's custody seal, if present, is intact.
Sample custody seals, if present, are intact.
The cooler or samples do not appear to have been compromised or tampered with.
Samples were received on ice. True
Cooler Temperature is acceptable. True
Cooler Temperature is recorded. True
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC?
There are no discrepancies between the containers received and the COC. True
Samples are received within Holding Time (excluding tests with immediate True HTs)
Sample containers have legible labels.
Containers are not broken or leaking.
Sample collection date/times are provided.
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified. True
There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").
Multiphasic samples are not present. True
Samples do not require splitting or compositing.

3

4

5

6

8

10

11

Login Sample Receipt Checklist

Client: Environmental Forensic Investigation Inc Job Number: 680-138014-1

List Source: TestAmerica Tampa
List Number: 2
List Creation: 05/06/17 03:08 PM

Creator: Southers, Kristin B

orcator. Countries, Itristin B		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
amples were received on ice.	True	
cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
OC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
nere are no discrepancies between the containers received and the COC.	True	
amples are received within Holding Time (excluding tests with immediate Ts)	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
ample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
ample bottles are completely filled.	True	
ample Preservation Verified.	True	
here is sufficient vol. for all requested analyses, incl. any requested IS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
fultiphasic samples are not present.	True	
amples do not require splitting or compositing.	True	
tesidual Chlorine Checked.	N/A	

3

4

5

7

9

4 4

11

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-138116-1

Client Project/Site: Ideal Cleaners - LaGrange, GA

For:

Environmental Forensic Investigation Inc Enviroforensics, Inc 825 N. Capitol Ave Indianapolis, Indiana 46204

Attn: Mr. Casey McFall

SAShi Barnett

Authorized for release by: 5/12/2017 2:31:31 PM

Eddie Barnett, Project Manager I (912)354-7858

eddie.barnett@testamericainc.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138116-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
*	RPD of the LCS and LCSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

PQL

NC

ND

Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

Not Detected at the reporting limit (or MDL or EDL if shown)

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

Not Calculated

TestAmerica Savannah

Page 2 of 27

Sample Summary

Matrix

Solid

Solid

Solid

Water

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID

6489-DP-9 (10-11)

6489-DP-9 (18-19)

6489-DP-9 (24-25)

6489-DP-9 (20-23)

Lab Sample ID

680-138116-1

680-138116-2

680-138116-3

680-138116-5

TestAmerica Job ID: 680-138116-1

Collected	Received
04/27/17 09:55	04/28/17 09:05
04/27/17 10:00	04/28/17 09:05

04/27/17 10:05 04/28/17 09:05

04/27/17 10:12 04/28/17 09:05

3

4

5

9

10

11

Case Narrative

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138116-1

Job ID: 680-138116-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE Client: Environmental Forensic Investigation Inc Project: Ideal Cleaners - LaGrange, GA

Report Number: 680-138116-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 04/28/2017; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 4.0° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 6489-DP-9 (10-11) (680-138116-1), 6489-DP-9 (18-19) (680-138116-2) and 6489-DP-9 (24-25) (680-138116-3) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared on 04/28/2017 and analyzed on 05/09/2017 and 05/10/2017.

A trip blank was listed on the Chain of Custody (COC); however, a trip blank was not received.

The following sample was diluted due to the nature of the sample matrix: 6489-DP-9 (18-19) (680-138116-2). Elevated reporting limits (RLs) are provided.

1,1,2,2-Tetrachloroethane, Carbon disulfide, Chloromethane, Dichlorodifluoromethane and Vinyl chloride exceeded the RPD limit for LCSD 680-479174/30. Refer to the QC report for details.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-477863 and analytical batch 680-479312.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample 6489-DP-9 (20-23) (680-138116-5) was analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 05/10/2017.

Sample 6489-DP-9 (20-23) (680-138116-5)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Samples 6489-DP-9 (10-11) (680-138116-1), 6489-DP-9 (18-19) (680-138116-2) and 6489-DP-9 (24-25) (680-138116-3) were analyzed for Percent Solids/Moisture in accordance with TestAmerica SOP. The samples were analyzed on 05/04/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

А

4

5

7

8

4.0

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-9 (10-11)

Date Collected: 04/27/17 09:55 Date Received: 04/28/17 09:05

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 680-138116-1

Matrix: Solid Percent Solids: 91.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.7	U *	5.7	1.1	ug/Kg	<u> </u>	04/28/17 16:36	05/09/17 20:51	1
Chloromethane	5.7	U *	5.7	1.1	ug/Kg	₩	04/28/17 16:36	05/09/17 20:51	1
Vinyl chloride	5.7	U *	5.7	1.7	ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	1
Bromomethane	5.7	U	5.7	1.7	ug/Kg		04/28/17 16:36	05/09/17 20:51	1
Chloroethane	5.7	U	5.7	3.1	ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	1
Trichlorofluoromethane	5.7	U	5.7	1.4	ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	1
1,1-Dichloroethene	5.7	U	5.7	1.7	ug/Kg		04/28/17 16:36	05/09/17 20:51	1
Acetone	57	U	57	13	ug/Kg	≎	04/28/17 16:36	05/09/17 20:51	1
Carbon disulfide	5.7	U *	5.7	1.3	ug/Kg	☆	04/28/17 16:36	05/09/17 20:51	1
Methylene Chloride	5.7	U	5.7	1.1	ug/Kg	₽	04/28/17 16:36	05/09/17 20:51	1
trans-1,2-Dichloroethene	5.7	U	5.7	0.72	ug/Kg	₽	04/28/17 16:36	05/09/17 20:51	1
Methyl tert-butyl ether	5.7	U	5.7		ug/Kg	₽	04/28/17 16:36	05/09/17 20:51	1
1,1-Dichloroethane	5.7	U	5.7	1.3	ug/Kg		04/28/17 16:36	05/09/17 20:51	1
cis-1,2-Dichloroethene	5.7	U	5.7		ug/Kg	₩	04/28/17 16:36	05/09/17 20:51	1
2-Butanone (MEK)	28	U	28		ug/Kg	₩	04/28/17 16:36	05/09/17 20:51	1
Chloroform	5.7	U	5.7		ug/Kg		04/28/17 16:36	05/09/17 20:51	1
1,1,1-Trichloroethane	5.7	U	5.7		ug/Kg	₩	04/28/17 16:36	05/09/17 20:51	1
Carbon tetrachloride	5.7	U	5.7		ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	1
Benzene	5.7	U	5.7		ug/Kg		04/28/17 16:36	05/09/17 20:51	,
1,2-Dichloroethane	5.7	U	5.7		ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	
Trichloroethene	5.7	U	5.7		ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	
1,2-Dichloropropane	5.7	. U	5.7		ug/Kg		04/28/17 16:36	05/09/17 20:51	1
Bromodichloromethane	5.7	U	5.7		ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	1
cis-1,3-Dichloropropene	5.7	U	5.7		ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	1
4-Methyl-2-pentanone	28	U	28		ug/Kg		04/28/17 16:36	05/09/17 20:51	1
Toluene	5.7	U	5.7		ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	
trans-1,3-Dichloropropene	5.7		5.7		ug/Kg	≎		05/09/17 20:51	
1,1,2-Trichloroethane	5.7	U	5.7		ug/Kg		04/28/17 16:36	05/09/17 20:51	,
Tetrachloroethene	5.7		5.7		ug/Kg	☼		05/09/17 20:51	
2-Hexanone	28	U	28		ug/Kg	☼	04/28/17 16:36	05/09/17 20:51	
Dibromochloromethane	5.7		5.7		ug/Kg	 ☆		05/09/17 20:51	
1,2-Dibromoethane	5.7		5.7		ug/Kg	≎		05/09/17 20:51	
Chlorobenzene	5.7		5.7		ug/Kg	₽		05/09/17 20:51	
Ethylbenzene	5.7		5.7		ug/Kg	 ☆		05/09/17 20:51	
Xylenes, Total	11	U	11		ug/Kg	₽		05/09/17 20:51	
Styrene	5.7		5.7		ug/Kg	☼		05/09/17 20:51	
Bromoform	5.7		5.7		ug/Kg			05/09/17 20:51	
Isopropylbenzene	5.7		5.7		ug/Kg	☼		05/09/17 20:51	
1,1,2,2-Tetrachloroethane		U *	5.7		ug/Kg			05/09/17 20:51	1
1,3-Dichlorobenzene	5.7		5.7		ug/Kg			05/09/17 20:51	1
1,4-Dichlorobenzene	5.7		5.7		ug/Kg	☼		05/09/17 20:51	1
1,2-Dichlorobenzene	5.7		5.7		ug/Kg		04/28/17 16:36		
1,2-Dibromo-3-Chloropropane	11		11		ug/Kg			05/09/17 20:51	,
1,2,4-Trichlorobenzene	5.7		5.7		ug/Kg	₽		05/09/17 20:51	1
					-				

TestAmerica Savannah

04/28/17 16:36 05/09/17 20:51

04/28/17 16:36 05/09/17 20:51 04/28/17 16:36 05/09/17 20:51

Page 5 of 27

70 - 130

70 - 130

70 - 130

96

101

101

5/12/2017

Client Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138116-1

Client Sample ID: 6489-DP-9 (10-11)

Date Collected: 04/27/17 09:55 Date Received: 04/28/17 09:05 Lab Sample ID: 680-138116-1

Matrix: Solid Percent Solids: 91.9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: 6489-DP-9 (18-19)

Lab Sample ID: 680-138116-2

 Date Collected: 04/27/17 10:00
 Matrix: Solid

 Date Received: 04/28/17 09:05
 Percent Solids: 83.5

Method: 8260B - Volatile Or Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	2700	U	2700	510	ug/Kg	<u>₩</u>	04/28/17 16:36	05/10/17 16:53	500
Chloromethane	2700	U	2700	550	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Vinyl chloride	2700	U	2700	820	ug/Kg	₩	04/28/17 16:36	05/10/17 16:53	500
Bromomethane	2700	U	2700	820	ug/Kg	φ.	04/28/17 16:36	05/10/17 16:53	500
Chloroethane	2700	U	2700	1500	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Trichlorofluoromethane	2700	U	2700	660	ug/Kg	₩	04/28/17 16:36	05/10/17 16:53	500
1,1-Dichloroethene	2700	U	2700	820	ug/Kg	φ.	04/28/17 16:36	05/10/17 16:53	500
Acetone	27000	U	27000	6000	ug/Kg	₩	04/28/17 16:36	05/10/17 16:53	500
Carbon disulfide	2700	U	2700	600	ug/Kg	₩	04/28/17 16:36	05/10/17 16:53	500
Methylene Chloride	2700	U	2700	540	ug/Kg	₽	04/28/17 16:36	05/10/17 16:53	500
trans-1,2-Dichloroethene	2700	U	2700	340	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Methyl tert-butyl ether	2700	U	2700	550	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
1,1-Dichloroethane	2700	U	2700	600	ug/Kg	*	04/28/17 16:36	05/10/17 16:53	500
cis-1,2-Dichloroethene	2700	U	2700	760	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
2-Butanone (MEK)	14000	U	14000	1300	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Chloroform	2700	Ü	2700	600	ug/Kg		04/28/17 16:36	05/10/17 16:53	500
1,1,1-Trichloroethane	2700	U	2700	320	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Carbon tetrachloride	2700	U	2700	450	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Benzene	2700	U	2700	400	ug/Kg		04/28/17 16:36	05/10/17 16:53	500
1,2-Dichloroethane	2700	U	2700	600	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Trichloroethene	2700	U	2700	710	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
1,2-Dichloropropane	2700	Ü	2700	470	ug/Kg		04/28/17 16:36	05/10/17 16:53	500
Bromodichloromethane	2700	U	2700	530	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
cis-1,3-Dichloropropene	2700	U	2700	450	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
4-Methyl-2-pentanone	14000	Ü	14000	2300	ug/Kg	φ.	04/28/17 16:36	05/10/17 16:53	500
Toluene	590	J	2700	460	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
trans-1,3-Dichloropropene	2700	U	2700	480	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
1,1,2-Trichloroethane	2700	Ü	2700	710	ug/Kg		04/28/17 16:36	05/10/17 16:53	500
Tetrachloroethene	1400	J	2700	1000	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
2-Hexanone	14000	U	14000	1800	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Dibromochloromethane	2700	U	2700	930	ug/Kg		04/28/17 16:36	05/10/17 16:53	500
1,2-Dibromoethane	2700	U	2700	820	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Chlorobenzene	2700	U	2700	520	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Ethylbenzene	2700	Ü	2700	710	ug/Kg		04/28/17 16:36	05/10/17 16:53	500
Xylenes, Total	5500	U	5500	600	ug/Kg	₩	04/28/17 16:36	05/10/17 16:53	500
Styrene	2700	U	2700	510	ug/Kg	☼	04/28/17 16:36	05/10/17 16:53	500
Bromoform	2700	U	2700		ug/Kg	φ.	04/28/17 16:36	05/10/17 16:53	500
Isopropylbenzene	2700		2700		ug/Kg	₽	04/28/17 16:36	05/10/17 16:53	500
1,1,2,2-Tetrachloroethane	2700		2700		ug/Kg	₽	04/28/17 16:36	05/10/17 16:53	500
1,3-Dichlorobenzene	2700		2700		ug/Kg	· · · · · · · · · · · · · · · · · · ·			500
1,4-Dichlorobenzene	2700		2700		ug/Kg	₽	04/28/17 16:36		500

TestAmerica Savannah

5/12/2017

Page 6 of 27

2

3

4

6

9

1 4

04/28/17 16:36 05/10/17 16:53

500

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-9 (18-19)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-138116-2 Date Collected: 04/27/17 10:00 **Matrix: Solid** Date Received: 04/28/17 09:05 Percent Solids: 83.5

98

Method: 8260B - Volatile O	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	2700	U	2700	710	ug/Kg	<u></u>	04/28/17 16:36	05/10/17 16:53	500
1,2-Dibromo-3-Chloropropane	5500	U	5500	2400	ug/Kg	φ.	04/28/17 16:36	05/10/17 16:53	500
1,2,4-Trichlorobenzene	2700	U	2700	490	ug/Kg	₩	04/28/17 16:36	05/10/17 16:53	500
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130				04/28/17 16:36	05/10/17 16:53	500
1,2-Dichloroethane-d4 (Surr)	102		70 - 130				04/28/17 16:36	05/10/17 16:53	500
Dibromofluoromethane (Surr)	111		70 - 130				04/28/17 16:36	05/10/17 16:53	500

Client Sample ID: 6489-DP-9 (24-25) Lab Sample ID: 680-138116-3

70 - 130

Date Collected: 04/27/17 10:05 **Matrix: Solid**

Method: 8260B - Volatile Or Analyte		unds (GC/M	S) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	6.2	U *	6.2	1.2	ug/Kg	<u></u>	04/28/17 16:36	05/09/17 21:14	1
Chloromethane	6.2	U *	6.2	1.2	ug/Kg	₩	04/28/17 16:36	05/09/17 21:14	1
Vinyl chloride	6.2	U *	6.2	1.9	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Bromomethane	6.2	U	6.2	1.9	ug/Kg		04/28/17 16:36	05/09/17 21:14	1
Chloroethane	6.2	U	6.2	3.3	ug/Kg	₩	04/28/17 16:36	05/09/17 21:14	1
Trichlorofluoromethane	6.2	U	6.2	1.5	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
1,1-Dichloroethene	6.2	Ü	6.2	1.9	ug/Kg	*	04/28/17 16:36	05/09/17 21:14	1
Acetone	62	U	62	14	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Carbon disulfide	6.2	U *	6.2	1.4	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Methylene Chloride	6.2	U	6.2	1.2	ug/Kg		04/28/17 16:36	05/09/17 21:14	1
trans-1,2-Dichloroethene	6.2	U	6.2	0.78	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Methyl tert-butyl ether	6.2	U	6.2	1.2	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
1,1-Dichloroethane	6.2	U	6.2	1.4	ug/Kg		04/28/17 16:36	05/09/17 21:14	1
cis-1,2-Dichloroethene	6.2	U	6.2	1.7	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
2-Butanone (MEK)	31	U	31	3.0	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Chloroform	6.2	U	6.2	1.4	ug/Kg	₩	04/28/17 16:36	05/09/17 21:14	1
1,1,1-Trichloroethane	6.2	U	6.2	0.73	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Carbon tetrachloride	6.2	U	6.2	1.0	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Benzene	6.2	U	6.2	0.90	ug/Kg	₽	04/28/17 16:36	05/09/17 21:14	1
1,2-Dichloroethane	6.2	U	6.2	1.4	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Trichloroethene	6.2	U	6.2	1.6	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
1,2-Dichloropropane	6.2	U	6.2	1.1	ug/Kg		04/28/17 16:36	05/09/17 21:14	1
Bromodichloromethane	6.2	U	6.2	1.2	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
cis-1,3-Dichloropropene	6.2	U	6.2	1.0	ug/Kg	₩	04/28/17 16:36	05/09/17 21:14	1
4-Methyl-2-pentanone	31	U	31	5.2	ug/Kg	₩.	04/28/17 16:36	05/09/17 21:14	1
Toluene	6.2	U	6.2	1.0	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
trans-1,3-Dichloropropene	6.2	U	6.2	1.1	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
1,1,2-Trichloroethane	6.2	U	6.2	1.6	ug/Kg	φ.	04/28/17 16:36	05/09/17 21:14	1
Tetrachloroethene	6.2	U	6.2	2.4	ug/Kg	₩	04/28/17 16:36	05/09/17 21:14	1
2-Hexanone	31	U	31	4.1	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Dibromochloromethane	6.2	U	6.2	2.1	ug/Kg	₽	04/28/17 16:36	05/09/17 21:14	1
1,2-Dibromoethane	6.2	U	6.2	1.9	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Chlorobenzene	6.2	U	6.2	1.2	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Ethylbenzene	6.2	U	6.2	1.6	ug/Kg		04/28/17 16:36	05/09/17 21:14	1

TestAmerica Savannah

Page 7 of 27 5/12/2017

Client Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138116-1

Client Sample ID: 6489-DP-9 (24-25)

Lab Sample ID: 680-138116-3

Date Collected: 04/27/17 10:05

Date Received: 04/28/17 09:05

Matrix: Solid
Percent Solids: 72.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	12	U	12	1.4	ug/Kg	<u></u>	04/28/17 16:36	05/09/17 21:14	1
Styrene	6.2	U	6.2	1.2	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
Bromoform	6.2	U	6.2	1.9	ug/Kg	₽	04/28/17 16:36	05/09/17 21:14	1
Isopropylbenzene	6.2	U	6.2	2.4	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
1,1,2,2-Tetrachloroethane	6.2	U *	6.2	2.0	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
1,3-Dichlorobenzene	6.2	U	6.2	2.0	ug/Kg	₽	04/28/17 16:36	05/09/17 21:14	1
1,4-Dichlorobenzene	6.2	U	6.2	0.92	ug/Kg	₽	04/28/17 16:36	05/09/17 21:14	1
1,2-Dichlorobenzene	6.2	U	6.2	1.6	ug/Kg	☼	04/28/17 16:36	05/09/17 21:14	1
1,2-Dibromo-3-Chloropropane	12	U	12	5.5	ug/Kg	₽	04/28/17 16:36	05/09/17 21:14	1
1,2,4-Trichlorobenzene	6.2	U	6.2	1.1	ug/Kg	≎	04/28/17 16:36	05/09/17 21:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130				04/28/17 16:36	05/09/17 21:14	1
1,2-Dichloroethane-d4 (Surr)	101		70 - 130				04/28/17 16:36	05/09/17 21:14	1
Dibromofluoromethane (Surr)	100		70 - 130				04/28/17 16:36	05/09/17 21:14	1
4-Bromofluorobenzene (Surr)	96		70 - 130				04/28/17 16:36	05/09/17 21:14	1

Client Sample ID: 6489-DP-9 (20-23)

Lab Sample ID: 680-138116-5

Date Collected: 04/27/17 10:12 Matrix: Water Date Received: 04/28/17 09:05

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	20	U –	20	9.9	ug/L			05/10/17 17:41	1
Benzene	1.0	U	1.0	0.50	ug/L			05/10/17 17:41	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/10/17 17:41	1
Bromoform	1.0	U	1.0	0.63	ug/L			05/10/17 17:41	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/10/17 17:41	1
2-Butanone (MEK)	10	U	10	8.4	ug/L			05/10/17 17:41	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/10/17 17:41	1
Carbon tetrachloride	1.0	U	1.0	0.43	ug/L			05/10/17 17:41	1
Chlorobenzene	1.0	U	1.0	0.63	ug/L			05/10/17 17:41	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/10/17 17:41	1
Chloroform	1.0	U	1.0	0.90	ug/L			05/10/17 17:41	1
Chloromethane	4.0	U	4.0	1.0	ug/L			05/10/17 17:41	1
cis-1,2-Dichloroethene	2.9		1.0	0.65	ug/L			05/10/17 17:41	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.39	ug/L			05/10/17 17:41	1
Dibromochloromethane	1.0	U	1.0	0.31	ug/L			05/10/17 17:41	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	2.5	ug/L			05/10/17 17:41	1
1,2-Dibromoethane	1.0	U	1.0	0.50	ug/L			05/10/17 17:41	1
1,2-Dichlorobenzene	1.0	U	1.0	0.49	ug/L			05/10/17 17:41	1
1,3-Dichlorobenzene	1.0	U	1.0	0.64	ug/L			05/10/17 17:41	1
1,4-Dichlorobenzene	1.0	U	1.0	0.60	ug/L			05/10/17 17:41	1
Dichlorodifluoromethane	5.0	U	5.0	2.5	ug/L			05/10/17 17:41	1
1,1-Dichloroethane	1.0	Ü	1.0	0.52	ug/L			05/10/17 17:41	1
1,2-Dichloroethane	1.0	U	1.0	0.57	ug/L			05/10/17 17:41	1
1,1-Dichloroethene	1.0	U	1.0	0.67	ug/L			05/10/17 17:41	1
1,2-Dichloropropane	1.0	Ü	1.0	0.52	ug/L			05/10/17 17:41	1
Ethylbenzene	1.0	U	1.0	0.44	ug/L			05/10/17 17:41	1
2-Hexanone	10	U	10		ug/L			05/10/17 17:41	1

TestAmerica Savannah

Page 8 of 27 5/12/2017

Client Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138116-1

Lab Sample ID: 680-138116-5

Matrix: Water

C	lient	Sample	ID:	6489-DP-9	(20-23)
---	-------	--------	-----	-----------	---------

Date Collected: 04/27/17 10:12 Date Received: 04/28/17 09:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	1.0	U	1.0	0.52	ug/L			05/10/17 17:41	1
Methylene Chloride	10	U	10	5.0	ug/L			05/10/17 17:41	1
4-Methyl-2-pentanone	10	U	10	4.0	ug/L			05/10/17 17:41	1
Methyl tert-butyl ether	1.0	U	1.0	0.44	ug/L			05/10/17 17:41	1
Styrene	2.0	U	2.0	0.98	ug/L			05/10/17 17:41	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.17	ug/L			05/10/17 17:41	1
Toluene	1.0	U	1.0	0.51	ug/L			05/10/17 17:41	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.67	ug/L			05/10/17 17:41	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/L			05/10/17 17:41	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.58	ug/L			05/10/17 17:41	1
1,1,1-Trichloroethane	1.0	U	1.0	0.47	ug/L			05/10/17 17:41	1
1,1,2-Trichloroethane	1.0	U	1.0	0.47	ug/L			05/10/17 17:41	1
Trichloroethene	11		1.0	0.61	ug/L			05/10/17 17:41	1
Trichlorofluoromethane	5.0	U	5.0	2.5	ug/L			05/10/17 17:41	1
Vinyl chloride	1.0	U	1.0	0.71	ug/L			05/10/17 17:41	1
Xylenes, Total	3.0	U	3.0	0.50	ug/L			05/10/17 17:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130			•		05/10/17 17:41	1
Method: 8260B - Volatile (Organic Compo	unds (GC/	MS) - DL						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	220		10	5.0	ug/L			05/10/17 17:22	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130					05/10/17 17:22	

5/12/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 660-182668/6	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 182668									
Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone			20		ug/L		riepaieu	05/10/17 09:40	Dirac
Benzene	1.0		1.0		ug/L			05/10/17 09:40	
Bromodichloromethane	1.0		1.0	0.30	_			05/10/17 09:40	1
Bromoform	1.0		1.0	0.44	ū			05/10/17 09:40	
Bromomethane	5.0		5.0		ug/L ug/L			05/10/17 09:40	1
	10		10		-			05/10/17 09:40	1
2-Butanone (MEK) Carbon disulfide	2.0		2.0		ug/L ug/L			05/10/17 09:40	
Carbon tetrachloride	1.0		1.0	0.43				05/10/17 09:40	
Chlorobenzene	1.0		1.0		-			05/10/17 09:40	1
				0.63					1
Chloroethane	5.0		5.0		ug/L			05/10/17 09:40	1
Chloroform	1.0		1.0	0.90	-			05/10/17 09:40	1
Chloromethane	4.0		4.0		ug/L			05/10/17 09:40	1
cis-1,2-Dichloroethene	1.0		1.0	0.65	-			05/10/17 09:40	1
cis-1,3-Dichloropropene	1.0		1.0	0.39	_			05/10/17 09:40	1
Dibromochloromethane	1.0		1.0	0.31	-			05/10/17 09:40	
1,2-Dibromo-3-Chloropropane	5.0		5.0		ug/L			05/10/17 09:40	1
1,2-Dibromoethane	1.0		1.0	0.50	-			05/10/17 09:40	1
1,2-Dichlorobenzene	1.0		1.0	0.49	-			05/10/17 09:40	1
1,3-Dichlorobenzene	1.0		1.0	0.64	-			05/10/17 09:40	1
1,4-Dichlorobenzene	1.0		1.0	0.60	-			05/10/17 09:40	1
Dichlorodifluoromethane	5.0	U	5.0	2.5	ug/L			05/10/17 09:40	1
1,1-Dichloroethane	1.0		1.0	0.52	-			05/10/17 09:40	1
1,2-Dichloroethane	1.0		1.0	0.57	-			05/10/17 09:40	1
1,1-Dichloroethene	1.0	U	1.0	0.67	ug/L			05/10/17 09:40	1
1,2-Dichloropropane	1.0	U	1.0	0.52	ug/L			05/10/17 09:40	1
Ethylbenzene	1.0	U	1.0	0.44	ug/L			05/10/17 09:40	1
2-Hexanone	10	U	10	4.4	ug/L			05/10/17 09:40	1
Isopropylbenzene	1.0	U	1.0	0.52	ug/L			05/10/17 09:40	1
Methylene Chloride	10	U	10	5.0	ug/L			05/10/17 09:40	1
4-Methyl-2-pentanone	10	U	10	4.0	ug/L			05/10/17 09:40	1
Methyl tert-butyl ether	1.0	U	1.0	0.44	ug/L			05/10/17 09:40	1
Styrene	2.0	U	2.0	0.98	ug/L			05/10/17 09:40	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.17	ug/L			05/10/17 09:40	1
Tetrachloroethene	1.0	U	1.0	0.50	ug/L			05/10/17 09:40	1
Toluene	1.0	U	1.0	0.51	ug/L			05/10/17 09:40	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.67	-			05/10/17 09:40	1
trans-1,3-Dichloropropene	1.0	Ü	1.0		ug/L			05/10/17 09:40	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			05/10/17 09:40	1
1,1,1-Trichloroethane	1.0	U	1.0	0.47	_			05/10/17 09:40	1
1,1,2-Trichloroethane	1.0		1.0	0.47	-			05/10/17 09:40	1
Trichloroethene	1.0		1.0		ug/L			05/10/17 09:40	1
Trichlorofluoromethane	5.0		5.0		ug/L			05/10/17 09:40	1
Vinyl chloride	1.0		1.0		ug/L			05/10/17 09:40	
Xylenes, Total	3.0		3.0		ug/L			05/10/17 09:40	1
	MR	МВ							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130					05/10/17 09:40	1

TestAmerica Savannah

5/12/2017

Page 10 of 27

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 660-182668/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 182668

Analyte	Spike Added	LCS LCS Result Qual	lifier Unit	D %Rec	%Rec. Limits	
Acetone		91.4	ug/L	— = //// 91	62 - 142	
Benzene	10.0	9.20	ug/L	92	71 - 131	
Bromodichloromethane	10.0	8.94	ug/L	89	70 - 131	
Bromoform	10.0	9.94	ug/L	99	68 - 130	
Bromomethane	10.0	8.65	ug/L	87	10 - 150	
2-Butanone (MEK)	100	92.1	ug/L	92	58 ₋ 132	
Carbon disulfide	10.0	8.26	ug/L	83	43 - 150	
Carbon tetrachloride	10.0	9.33	ug/L	93	70 - 134	
Chlorobenzene	10.0	10.1	ug/L	101	70 - 134 71 - 121	
Chloroethane	10.0	8.12	ug/L	81	46 - 150	
Chloroform	10.0	9.33	ug/L ug/L	93	73 - 133	
Chloromethane	10.0	9.33 8.05	_	93 81	73 - 133 52 - 150	
			ug/L		73 - 133	
cis-1,2-Dichloroethene	10.0	8.91	ug/L	89		
cis-1,3-Dichloropropene	10.0	8.87	ug/L	89	68 - 130	
Dibromochloromethane	10.0	8.60	ug/L	86	58 - 130	
1,2-Dibromo-3-Chloropropane	10.0	9.45	ug/L	95	54 - 130	
1,2-Dibromoethane	10.0	8.66	ug/L	87	71 - 131	
1,2-Dichlorobenzene	10.0	10.3	ug/L	103	73 - 133	
1,3-Dichlorobenzene	10.0	10.4	ug/L	104	73 - 133	
1,4-Dichlorobenzene	10.0	10.5	ug/L	105	73 - 133	
Dichlorodifluoromethane	10.0	7.35	ug/L	73	10 - 150	
1,1-Dichloroethane	10.0	9.00	ug/L	90	72 - 130	
1,2-Dichloroethane	10.0	8.79	ug/L	88	71 - 131	
1,1-Dichloroethene	10.0	9.06	ug/L	91	56 - 141	
1,2-Dichloropropane	10.0	9.07	ug/L	91	72 - 132	
Ethylbenzene	10.0	10.0	ug/L	100	71 - 131	
2-Hexanone	100	92.8	ug/L	93	57 - 136	
Isopropylbenzene	10.0	10.4	ug/L	104	70 - 131	
Methylene Chloride	10.0	8.15 J	ug/L	81	68 - 142	
4-Methyl-2-pentanone	100	94.0	ug/L	94	52 - 137	
Methyl tert-butyl ether	10.0	8.58	ug/L	86	67 - 130	
Styrene	10.0	10.1	ug/L	101	68 - 131	
1,1,2,2-Tetrachloroethane	10.0	9.27	ug/L	93	67 - 130	
Tetrachloroethene	10.0	8.69	ug/L	87	66 - 143	
Toluene	10.0	9.10	ug/L	91	72 - 132	
trans-1,2-Dichloroethene	10.0	8.83	ug/L	88	74 - 139	
trans-1,3-Dichloropropene	10.0	8.45	ug/L	85	57 - 130	
1,2,4-Trichlorobenzene	10.0	10.1	ug/L	101	73 - 133	
1,1,1-Trichloroethane	10.0	9.42	ug/L	94	69 - 132	
1,1,2-Trichloroethane	10.0	8.62	ug/L	86	70 - 130	
Trichloroethene	10.0	9.49	ug/L	95	74 - 139	
Trichlorofluoromethane	10.0	7.15	ug/L	71	62 - 146	
Vinyl chloride	10.0	8.13	ug/L	81	59 - 147	
Xylenes, Total	20.0	19.1	ug/L	95	70 - 130	

Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 95 70 - 130

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-479174/10 Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 479174	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.0	U	5.0	0.94	ug/Kg			05/09/17 19:41	1
Chloromethane	5.0	U	5.0	1.0	ug/Kg			05/09/17 19:41	1
Vinyl chloride	5.0	U	5.0	1.5	ug/Kg			05/09/17 19:41	1
Bromomethane	5.0	U	5.0	1.5	ug/Kg			05/09/17 19:41	1
Chloroethane	5.0	U	5.0	2.7	ug/Kg			05/09/17 19:41	1
Trichlorofluoromethane	5.0	U	5.0	1.2	ug/Kg			05/09/17 19:41	1
1,1-Dichloroethene	5.0	U	5.0	1.5	ug/Kg			05/09/17 19:41	1
Acetone	50	U	50	11	ug/Kg			05/09/17 19:41	1
Carbon disulfide	5.0	U	5.0	1.1	ug/Kg			05/09/17 19:41	1
Methylene Chloride	5.0	U	5.0	0.98	ug/Kg			05/09/17 19:41	1
trans-1,2-Dichloroethene	5.0	U	5.0	0.63	ug/Kg			05/09/17 19:41	1
Methyl tert-butyl ether	5.0	U	5.0	1.0	ug/Kg			05/09/17 19:41	1
1,1-Dichloroethane	5.0	Ü	5.0	1.1	ug/Kg			05/09/17 19:41	1
cis-1,2-Dichloroethene	5.0	U	5.0	1.4	ug/Kg			05/09/17 19:41	1
2-Butanone (MEK)	25	U	25	2.4	ug/Kg			05/09/17 19:41	1
Chloroform	5.0	Ü	5.0	1.1	ug/Kg			05/09/17 19:41	1
1,1,1-Trichloroethane	5.0	U	5.0	0.59	ug/Kg			05/09/17 19:41	1
Carbon tetrachloride	5.0	U	5.0	0.83	ug/Kg			05/09/17 19:41	1
Benzene	5.0	Ü	5.0	0.73	ug/Kg			05/09/17 19:41	1
1,2-Dichloroethane	5.0	U	5.0	1.1	ug/Kg			05/09/17 19:41	1
Trichloroethene	5.0	U	5.0	1.3	ug/Kg			05/09/17 19:41	1
1,2-Dichloropropane	5.0	U	5.0	0.86	ug/Kg			05/09/17 19:41	1
Bromodichloromethane	5.0	U	5.0	0.97	ug/Kg			05/09/17 19:41	1
cis-1,3-Dichloropropene	5.0	U	5.0	0.83	ug/Kg			05/09/17 19:41	1
4-Methyl-2-pentanone	25	Ú	25	4.2	ug/Kg			05/09/17 19:41	1
Toluene	5.0	U	5.0	0.84	ug/Kg			05/09/17 19:41	1
trans-1,3-Dichloropropene	5.0	U	5.0	0.87	ug/Kg			05/09/17 19:41	1
1,1,2-Trichloroethane	5.0	U	5.0	1.3	ug/Kg			05/09/17 19:41	1
Tetrachloroethene	5.0	U	5.0	1.9	ug/Kg			05/09/17 19:41	1
2-Hexanone	25	U	25	3.3	ug/Kg			05/09/17 19:41	1
Dibromochloromethane	5.0	U	5.0	1.7	ug/Kg			05/09/17 19:41	1
1,2-Dibromoethane	5.0	U	5.0		ug/Kg			05/09/17 19:41	1
Chlorobenzene	5.0	U	5.0	0.96	ug/Kg			05/09/17 19:41	1
Ethylbenzene	5.0	U	5.0	1.3	ug/Kg			05/09/17 19:41	1
Xylenes, Total	10	U	10	1.1	ug/Kg			05/09/17 19:41	1
Styrene	5.0	U	5.0	0.93	ug/Kg			05/09/17 19:41	1
Bromoform	5.0	U	5.0		ug/Kg			05/09/17 19:41	1
Isopropylbenzene	5.0	U	5.0		ug/Kg			05/09/17 19:41	1
1,1,2,2-Tetrachloroethane	5.0	U	5.0	1.6	ug/Kg			05/09/17 19:41	1
1,3-Dichlorobenzene	5.0	U	5.0	1.6	ug/Kg			05/09/17 19:41	1
1,4-Dichlorobenzene	5.0	U	5.0		ug/Kg			05/09/17 19:41	1
1,2-Dichlorobenzene	5.0	U	5.0	1.3	ug/Kg			05/09/17 19:41	1
1,2-Dibromo-3-Chloropropane	10	U	10		ug/Kg			05/09/17 19:41	1
1,2,4-Trichlorobenzene	5.0		5.0		ug/Kg			05/09/17 19:41	1
	MR	MB							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		70 - 130				sparea	05/09/17 19:41	1

TestAmerica Savannah

Page 12 of 27

5/12/2017

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138116-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-479174/10

Lab Sample ID: LCS 680-479174/6

Matrix: Solid

Analysis Batch: 479174

Client Sample ID: Method Blank Prep Type: Total/NA

	IVIB	IVIB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		70 - 130		05/09/17 19:41	1
Dibromofluoromethane (Surr)	101		70 - 130		05/09/17 19:41	1
4-Bromofluorobenzene (Surr)	97		70 - 130		05/09/17 19:41	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 479174

	Spike	LCS LC	S		%Rec.
Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits
Dichlorodifluoromethane	50.0	60.7	ug/Kg	121	40 - 160
Chloromethane	50.0	50.0	ug/Kg	100	40 - 160
Vinyl chloride	50.0	53.4	ug/Kg	107	70 - 130
Bromomethane	50.0	52.4	ug/Kg	105	40 - 160
Chloroethane	50.0	52.5	ug/Kg	105	40 - 160
Trichlorofluoromethane	50.0	60.2	ug/Kg	120	40 - 160
1,1-Dichloroethene	50.0	55.6	ug/Kg	111	70 - 130
Acetone	250	212	ug/Kg	85	40 - 160
Carbon disulfide	50.0	54.0	ug/Kg	108	40 - 160
Methylene Chloride	50.0	47.4	ug/Kg	95	70 - 130
trans-1,2-Dichloroethene	50.0	53.8	ug/Kg	108	70 - 130
Methyl tert-butyl ether	50.0	51.4	ug/Kg	103	70 - 130
1,1-Dichloroethane	50.0	52.3	ug/Kg	105	70 - 130
cis-1,2-Dichloroethene	50.0	53.1	ug/Kg	106	70 - 130
2-Butanone (MEK)	250	244	ug/Kg	98	40 - 160
Chloroform	50.0	54.6	ug/Kg	109	70 - 130
1,1,1-Trichloroethane	50.0	59.9	ug/Kg	120	70 - 130
Carbon tetrachloride	50.0	61.5	ug/Kg	123	70 - 130
Benzene	50.0	51.1	ug/Kg	102	70 - 130
1,2-Dichloroethane	50.0	54.6	ug/Kg	109	70 - 130
Trichloroethene	50.0	55.2	ug/Kg	110	70 - 130
1,2-Dichloropropane	50.0	47.1	ug/Kg	94	70 - 130
Bromodichloromethane	50.0	54.9	ug/Kg	110	70 - 130
cis-1,3-Dichloropropene	50.0	53.2	ug/Kg	106	70 - 130
4-Methyl-2-pentanone	250	208	ug/Kg	83	40 - 160
Toluene	50.0	48.2	ug/Kg	96	70 - 130
trans-1,3-Dichloropropene	50.0	52.7	ug/Kg	105	70 - 130
1,1,2-Trichloroethane	50.0	47.4	ug/Kg	95	70 - 130
Tetrachloroethene	50.0	57.2	ug/Kg	114	70 - 130
2-Hexanone	250	211	ug/Kg	84	40 - 160
Dibromochloromethane	50.0	54.6	ug/Kg	109	70 - 130
1,2-Dibromoethane	50.0	49.2	ug/Kg	98	70 - 130
Chlorobenzene	50.0	53.9	ug/Kg	108	70 - 130
Ethylbenzene	50.0	57.0	ug/Kg	114	70 - 130
Xylenes, Total	100	113	ug/Kg	113	70 - 130
Styrene	50.0	54.8	ug/Kg	110	70 - 130
Bromoform	50.0	57.8	ug/Kg	116	70 - 130
Isopropylbenzene	50.0	57.2	ug/Kg	114	70 - 130
1,1,2,2-Tetrachloroethane	50.0	48.8	ug/Kg	98	70 - 130

TestAmerica Savannah

Page 13 of 27

5/12/2017

50.0

56.2

TestAmerica Job ID: 680-138116-1

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-479174/6

Matrix: Solid

1.3-Dichlorobenzene

1.4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

Analyte

Analysis Batch: 479174

1,2-Dibromo-3-Chloropropane

Client Sample ID: Lab Control Sample Prep Type: Total/NA

70 - 130

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits 50.0 53.3 107 70 - 130 ug/Kg 50.0 53.3 ug/Kg 107 70 - 130 50.0 51 1 ug/Kg 102 70 - 13050.0 48.1 ug/Kg 96 40 - 160

ug/Kg

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 110 70 - 130 1,2-Dichloroethane-d4 (Surr) 108 70 - 130 Dibromofluoromethane (Surr) 112 70 - 130 4-Bromofluorobenzene (Surr) 103 70 - 130

Lab Sample ID: LCSD 680-479174/30

Matrix: Solid

Analysis Batch: 479174

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

112

LCSD LCSD **RPD** Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 43.3 50.0 Dichlorodifluoromethane ug/Kg 87 40 - 160 34 20 Chloromethane 50.0 40.1 * ug/Kg 80 40 - 160 22 20 70 - 130 Vinyl chloride 50.0 41.0 ug/Kg 82 26 20 Bromomethane 50.0 43.1 86 40 - 160 20 20 ug/Kg Chloroethane 50.0 86 40 - 160 20 20 42.9 ug/Kg Trichlorofluoromethane 50.0 49.3 ug/Kg 99 40 - 160 20 20 1,1-Dichloroethene 50.0 45.5 91 70 - 130 20 20 ug/Kg Acetone 250 183 ug/Kg 73 40 - 160 15 20 Carbon disulfide 50.0 42.3 ug/Kg 85 40 - 160 24 20 Methylene Chloride 50.0 42.3 ug/Kg 85 70 - 130 12 20 trans-1,2-Dichloroethene 50.0 45.0 90 70 - 130 18 20 ug/Kg 90 50.0 44.9 70 - 130 13 20 Methyl tert-butyl ether ug/Kg 1,1-Dichloroethane 50.0 44.5 ug/Kg 89 70 - 130 16 20 90 cis-1,2-Dichloroethene 50.0 70 - 13020 45.0 ug/Kg 17 2-Butanone (MEK) 250 202 81 40 - 160 19 20 ug/Kg 97 Chloroform 50.0 48.6 ug/Kg 70 - 130 12 20 1,1,1-Trichloroethane 50.0 51.6 ug/Kg 103 70 - 130 15 20 Carbon tetrachloride 50.0 52.9 ug/Kg 106 70 - 130 15 20 Benzene 50.0 42.4 ug/Kg 85 70 - 130 18 20 1,2-Dichloroethane 50.0 49.6 99 70 - 130 10 20 ug/Kg Trichloroethene 50.0 48.4 ug/Kg 97 70 - 13013 20 1.2-Dichloropropane 50.0 41.6 83 70 - 130 12 20 ug/Kg Bromodichloromethane 50.0 49.8 ug/Kg 100 70 - 130 10 20 cis-1,3-Dichloropropene 50.0 44.7 ug/Kg 89 70 - 130 17 20 4-Methyl-2-pentanone 250 191 77 40 - 160 8 20 ug/Kg Toluene 50.0 40.8 ug/Kg 82 70 - 130 17 20 94 20 50.0 47.0 70 - 130trans-1,3-Dichloropropene ug/Kg 11 50.0 85 20 1,1,2-Trichloroethane 42.7 ug/Kg 70 - 13010 96 Tetrachloroethene 50.0 48.1 70 - 130 17 20 ug/Kg 2-Hexanone 250 194 ug/Kg 78 40 - 160 8 20 Dibromochloromethane 50.0 50.5 ug/Kg 101 70 _ 130 20

TestAmerica Savannah

Page 14 of 27

6

3

5

7

9

10

11

14

5/12/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-479174/30

Matrix: Solid

Matrix: Solid

Analysis Batch: 479312

Analysis Batch: 479174

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	50.0	44.5		ug/Kg		89	70 - 130	10	20
Chlorobenzene	50.0	44.6		ug/Kg		89	70 - 130	19	20
Ethylbenzene	50.0	46.4		ug/Kg		93	70 - 130	20	20
Xylenes, Total	100	93.7		ug/Kg		94	70 - 130	19	20
Styrene	50.0	45.4		ug/Kg		91	70 - 130	19	20
Bromoform	50.0	51.4		ug/Kg		103	70 - 130	12	20
Isopropylbenzene	50.0	47.3		ug/Kg		95	70 - 130	19	20
1,1,2,2-Tetrachloroethane	50.0	39.7	*	ug/Kg		79	70 - 130	21	20
1,3-Dichlorobenzene	50.0	45.6		ug/Kg		91	70 - 130	16	20
1,4-Dichlorobenzene	50.0	45.2		ug/Kg		90	70 - 130	17	20
1,2-Dichlorobenzene	50.0	44.6		ug/Kg		89	70 - 130	14	20
1,2-Dibromo-3-Chloropropane	50.0	43.1		ug/Kg		86	40 - 160	11	20
1,2,4-Trichlorobenzene	50.0	47.1		ug/Kg		94	70 - 130	18	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	89		70 - 130
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	84		70 - 130

Lab Sample ID: MB 680-479312/8 **Client Sample ID: Method Blank**

Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	200	U	200	38	ug/Kg			05/10/17 14:10	40
Chloromethane	200	U	200	40	ug/Kg			05/10/17 14:10	40
Vinyl chloride	200	U	200	60	ug/Kg			05/10/17 14:10	40
Bromomethane	200	U	200	60	ug/Kg			05/10/17 14:10	40
Chloroethane	200	U	200	110	ug/Kg			05/10/17 14:10	40
Trichlorofluoromethane	200	U	200	48	ug/Kg			05/10/17 14:10	40
1,1-Dichloroethene	200	U	200	60	ug/Kg			05/10/17 14:10	40
Acetone	2000	U	2000	440	ug/Kg			05/10/17 14:10	40
Carbon disulfide	200	U	200	44	ug/Kg			05/10/17 14:10	40
Methylene Chloride	200	U	200	39	ug/Kg			05/10/17 14:10	40
trans-1,2-Dichloroethene	200	U	200	25	ug/Kg			05/10/17 14:10	40
Methyl tert-butyl ether	200	U	200	40	ug/Kg			05/10/17 14:10	40
1,1-Dichloroethane	200	U	200	44	ug/Kg			05/10/17 14:10	40
cis-1,2-Dichloroethene	200	U	200	56	ug/Kg			05/10/17 14:10	40
2-Butanone (MEK)	1000	U	1000	96	ug/Kg			05/10/17 14:10	40
Chloroform	200	U	200	44	ug/Kg			05/10/17 14:10	40
1,1,1-Trichloroethane	200	U	200	24	ug/Kg			05/10/17 14:10	40
Carbon tetrachloride	200	U	200	33	ug/Kg			05/10/17 14:10	40
Benzene	200	U	200	29	ug/Kg			05/10/17 14:10	40
1,2-Dichloroethane	200	U	200	44	ug/Kg			05/10/17 14:10	40
Trichloroethene	200	U	200	52	ug/Kg			05/10/17 14:10	40
1,2-Dichloropropane	200	U	200	34	ug/Kg			05/10/17 14:10	40
Bromodichloromethane	200	U	200	39	ug/Kg			05/10/17 14:10	40

TestAmerica Savannah

Page 15 of 27

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-479312/8

Matrix: Solid

Analysis Batch: 479312

Client Sample ID: Method Blank

Prep Type: Total/NA MB MB

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	200	U	200	33	ug/Kg			05/10/17 14:10	40
4-Methyl-2-pentanone	1000	U	1000	170	ug/Kg			05/10/17 14:10	40
Toluene	200	U	200	34	ug/Kg			05/10/17 14:10	40
trans-1,3-Dichloropropene	200	U	200	35	ug/Kg			05/10/17 14:10	40
1,1,2-Trichloroethane	200	U	200	52	ug/Kg			05/10/17 14:10	40
Tetrachloroethene	200	U	200	76	ug/Kg			05/10/17 14:10	40
2-Hexanone	1000	U	1000	130	ug/Kg			05/10/17 14:10	40
Dibromochloromethane	200	U	200	68	ug/Kg			05/10/17 14:10	40
1,2-Dibromoethane	200	U	200	60	ug/Kg			05/10/17 14:10	40
Chlorobenzene	200	U	200	38	ug/Kg			05/10/17 14:10	40
Ethylbenzene	200	U	200	52	ug/Kg			05/10/17 14:10	40
Xylenes, Total	400	U	400	44	ug/Kg			05/10/17 14:10	40
Styrene	200	U	200	37	ug/Kg			05/10/17 14:10	40
Bromoform	200	U	200	60	ug/Kg			05/10/17 14:10	40
Isopropylbenzene	200	U	200	76	ug/Kg			05/10/17 14:10	40
1,1,2,2-Tetrachloroethane	200	U	200	64	ug/Kg			05/10/17 14:10	40
1,3-Dichlorobenzene	200	U	200	64	ug/Kg			05/10/17 14:10	40
1,4-Dichlorobenzene	200	U	200	30	ug/Kg			05/10/17 14:10	40
1,2-Dichlorobenzene	200	U	200	52	ug/Kg			05/10/17 14:10	40
1,2-Dibromo-3-Chloropropane	400	Ü	400	180	ug/Kg			05/10/17 14:10	40
1,2,4-Trichlorobenzene	200	U	200	36	ug/Kg			05/10/17 14:10	40

MB MB

Surrogate	%Recovery Q	Qualifier	Limits	,	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130			05/10/17 14:10	40
1,2-Dichloroethane-d4 (Surr)	104		70 - 130			05/10/17 14:10	40
Dibromofluoromethane (Surr)	108		70 - 130			05/10/17 14:10	40
4-Bromofluorobenzene (Surr)	93		70 - 130			05/10/17 14:10	40

Lab Sample ID: LCS 680-479312/4

Matrix: Solid

Analysis Batch: 479312

Client Sample ID:	Lab	Contro	I Sample
	Prep	Type:	Total/NA

Analysis Buton. 470012	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	2500	2290		ug/Kg		91	40 - 160
Chloromethane	2500	2350		ug/Kg		94	40 - 160
Vinyl chloride	2500	2640		ug/Kg		105	70 - 130
Bromomethane	2500	2750		ug/Kg		110	40 - 160
Chloroethane	2500	2640		ug/Kg		106	40 - 160
Trichlorofluoromethane	2500	2650		ug/Kg		106	40 - 160
1,1-Dichloroethene	2500	2120		ug/Kg		85	70 - 130
Acetone	12500	11600		ug/Kg		93	40 - 160
Carbon disulfide	2500	2730		ug/Kg		109	40 - 160
Methylene Chloride	2500	2560		ug/Kg		102	70 - 130
trans-1,2-Dichloroethene	2500	2140		ug/Kg		85	70 - 130
Methyl tert-butyl ether	2500	2450		ug/Kg		98	70 - 130
1,1-Dichloroethane	2500	2130		ug/Kg		85	70 - 130
cis-1,2-Dichloroethene	2500	2140		ug/Kg		86	70 - 130
2-Butanone (MEK)	12500	10700		ug/Kg		86	40 - 160

TestAmerica Savannah

Page 16 of 27

5/12/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-479312/4

Matrix: Solid

Analysis Batch: 479312

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloroform	2500	2240		ug/Kg		90	70 - 130
1,1,1-Trichloroethane	2500	2650		ug/Kg		106	70 - 130
Carbon tetrachloride	2500	2720		ug/Kg		109	70 - 130
Benzene	2500	2550		ug/Kg		102	70 - 130
1,2-Dichloroethane	2500	2270		ug/Kg		91	70 - 130
Trichloroethene	2500	2740		ug/Kg		110	70 - 130
1,2-Dichloropropane	2500	2410		ug/Kg		96	70 - 130
Bromodichloromethane	2500	2520		ug/Kg		101	70 - 130
cis-1,3-Dichloropropene	2500	2620		ug/Kg		105	70 - 130
4-Methyl-2-pentanone	12500	12800		ug/Kg		102	40 - 160
Toluene	2500	2630		ug/Kg		105	70 - 130
trans-1,3-Dichloropropene	2500	2700		ug/Kg		108	70 - 130
1,1,2-Trichloroethane	2500	2520		ug/Kg		101	70 - 130
Tetrachloroethene	2500	2860		ug/Kg		114	70 - 130
2-Hexanone	12500	13000		ug/Kg		104	40 - 160
Dibromochloromethane	2500	2760		ug/Kg		110	70 - 130
1,2-Dibromoethane	2500	2750		ug/Kg		110	70 - 130
Chlorobenzene	2500	2550		ug/Kg		102	70 - 130
Ethylbenzene	2500	2610		ug/Kg		104	70 - 130
Xylenes, Total	5000	5330		ug/Kg		107	70 - 130
Styrene	2500	2710		ug/Kg		108	70 - 130
Bromoform	2500	2780		ug/Kg		111	70 - 130
Isopropylbenzene	2500	2740		ug/Kg		110	70 - 130
1,1,2,2-Tetrachloroethane	2500	2460		ug/Kg		98	70 - 130
1,3-Dichlorobenzene	2500	2540		ug/Kg		102	70 - 130
1,4-Dichlorobenzene	2500	2540		ug/Kg		102	70 - 130
1,2-Dichlorobenzene	2500	2530		ug/Kg		101	70 - 130
1,2-Dibromo-3-Chloropropane	2500	2550		ug/Kg		102	40 - 160
1,2,4-Trichlorobenzene	2500	2700		ug/Kg		108	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		70 - 130
1,2-Dichloroethane-d4 (Surr)	91		70 - 130
Dibromofluoromethane (Surr)	94		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130

Lab Sample ID: LCSD 680-479312/9

Matrix: Solid

Analysis Batch: 479312

Client Sample	ID:	Lab	Contr	ol Sam	ple Dup
			Pren	Type: 1	Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	2500	2020		ug/Kg		81	40 - 160	13	20
Chloromethane	2500	2170		ug/Kg		87	40 - 160	8	20
Vinyl chloride	2500	2270		ug/Kg		91	70 - 130	15	20
Bromomethane	2500	2270		ug/Kg		91	40 - 160	19	20
Chloroethane	2500	2400		ug/Kg		96	40 - 160	10	20
Trichlorofluoromethane	2500	2450		ug/Kg		98	40 - 160	8	20
1,1-Dichloroethene	2500	2280		ug/Kg		91	70 - 130	7	20

TestAmerica Savannah

5/12/2017

Page 17 of 27

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-479312/9

Matrix: Solid

Analysis Batch: 479312

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	12500	12100		ug/Kg		97	40 - 160	4	20
Carbon disulfide	2500	2490		ug/Kg		100	40 - 160	9	20
Methylene Chloride	2500	2510		ug/Kg		100	70 - 130	2	20
trans-1,2-Dichloroethene	2500	2220		ug/Kg		89	70 - 130	4	20
Methyl tert-butyl ether	2500	2500		ug/Kg		100	70 - 130	2	20
1,1-Dichloroethane	2500	2130		ug/Kg		85	70 - 130	0	20
cis-1,2-Dichloroethene	2500	2170		ug/Kg		87	70 - 130	1	20
2-Butanone (MEK)	12500	11600		ug/Kg		93	40 - 160	8	20
Chloroform	2500	2270		ug/Kg		91	70 - 130	1	20
1,1,1-Trichloroethane	2500	2480		ug/Kg		99	70 - 130	7	20
Carbon tetrachloride	2500	2540		ug/Kg		102	70 - 130	7	20
Benzene	2500	2340		ug/Kg		94	70 - 130	9	20
1,2-Dichloroethane	2500	2300		ug/Kg		92	70 - 130	2	20
Trichloroethene	2500	2570		ug/Kg		103	70 - 130	7	20
1,2-Dichloropropane	2500	2230		ug/Kg		89	70 - 130	8	20
Bromodichloromethane	2500	2430		ug/Kg		97	70 - 130	4	20
cis-1,3-Dichloropropene	2500	2560		ug/Kg		102	70 - 130	2	20
4-Methyl-2-pentanone	12500	12800		ug/Kg		103	40 - 160	0	20
Toluene	2500	2420		ug/Kg		97	70 - 130	8	20
trans-1,3-Dichloropropene	2500	2640		ug/Kg		106	70 - 130	2	20
1,1,2-Trichloroethane	2500	2520		ug/Kg		101	70 - 130	0	20
Tetrachloroethene	2500	2670		ug/Kg		107	70 - 130	7	20
2-Hexanone	12500	13100		ug/Kg		105	40 - 160	0	20
Dibromochloromethane	2500	2690		ug/Kg		107	70 - 130	3	20
1,2-Dibromoethane	2500	2660		ug/Kg		106	70 - 130	3	20
Chlorobenzene	2500	2420		ug/Kg		97	70 - 130	5	20
Ethylbenzene	2500	2440		ug/Kg		97	70 - 130	7	20
Xylenes, Total	5000	5020		ug/Kg		100	70 - 130	6	20
Styrene	2500	2570		ug/Kg		103	70 - 130	5	20
Bromoform	2500	2740		ug/Kg		110	70 - 130	1	20
Isopropylbenzene	2500	2560		ug/Kg		103	70 - 130	7	20
1,1,2,2-Tetrachloroethane	2500	2450		ug/Kg		98	70 - 130	0	20
1,3-Dichlorobenzene	2500	2400		ug/Kg		96	70 - 130	6	20
1,4-Dichlorobenzene	2500	2350		ug/Kg		94	70 - 130	8	20
1,2-Dichlorobenzene	2500	2350		ug/Kg		94	70 - 130	7	20
1,2-Dibromo-3-Chloropropane	2500	2550		ug/Kg		102	40 - 160	0	20
1,2,4-Trichlorobenzene	2500	2610		ug/Kg		104	70 - 130	4	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	97		70 - 130
1,2-Dichloroethane-d4 (Surr)	93		70 - 130
Dibromofluoromethane (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	90		70 - 130

TestAmerica Savannah

Page 18 of 27

QC Association Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138116-1

GC/MS VOA

Analysis Batch: 182668

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138116-5 - DL	6489-DP-9 (20-23)	Total/NA	Water	8260B	
680-138116-5	6489-DP-9 (20-23)	Total/NA	Water	8260B	
MB 660-182668/6	Method Blank	Total/NA	Water	8260B	
LCS 660-182668/4	Lab Control Sample	Total/NA	Water	8260B	

Prep Batch: 477863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138116-1	6489-DP-9 (10-11)	Total/NA	Solid	5035	
680-138116-2	6489-DP-9 (18-19)	Total/NA	Solid	5035	
680-138116-3	6489-DP-9 (24-25)	Total/NA	Solid	5035	

Analysis Batch: 479174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138116-1	6489-DP-9 (10-11)	Total/NA	Solid	8260B	477863
680-138116-3	6489-DP-9 (24-25)	Total/NA	Solid	8260B	477863
MB 680-479174/10	Method Blank	Total/NA	Solid	8260B	
LCS 680-479174/6	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-479174/30	Lab Control Sample Dup	Total/NA	Solid	8260B	

Analysis Batch: 479312

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138116-2	6489-DP-9 (18-19)	Total/NA	Solid	8260B	477863
MB 680-479312/8	Method Blank	Total/NA	Solid	8260B	
LCS 680-479312/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-479312/9	Lab Control Sample Dup	Total/NA	Solid	8260B	

General Chemistry

Analysis Batch: 478621

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138116-1	6489-DP-9 (10-11)	Total/NA	Solid	Moisture	
680-138116-2	6489-DP-9 (18-19)	Total/NA	Solid	Moisture	
680-138116-3	6489-DP-9 (24-25)	Total/NA	Solid	Moisture	

300 10: 000-130110-1

TestAmerica Savannah

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-9 (10-11)

Lab Sample ID: 680-138116-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 04/27/17 09:55 Date Received: 04/28/17 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478621	05/04/17 16:56	WRB	TAL SAV
	Instrument	ID: NOEQUIP								

Client Sample ID: 6489-DP-9 (10-11) Lab Sample ID: 680-138116-1

Date Collected: 04/27/17 09:55 **Matrix: Solid** Date Received: 04/28/17 09:05 Percent Solids: 91.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.773 g	5 mL	477863	04/28/17 16:36	FES	TAL SAV
Total/NA	Analysis	8260B		1	5 g	5 g	479174	05/09/17 20:51	JLK	TAL SAV
	Instrumer	nt ID: CMSAA								

Lab Sample ID: 680-138116-2 Client Sample ID: 6489-DP-9 (18-19)

Date Collected: 04/27/17 10:00 Date Received: 04/28/17 09:05

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478621	05/04/17 16:56	WRB	TAL SAV
	Instrumen	t ID: NOFQUIP								

Client Sample ID: 6489-DP-9 (18-19) Lab Sample ID: 680-138116-2

Date Collected: 04/27/17 10:00 **Matrix: Solid** Date Received: 04/28/17 09:05 Percent Solids: 83.5

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.483 g	5 mL	477863	04/28/17 16:36	FES	TAL SAV
Total/NA	Analysis	8260B		500	5 mL	5 mL	479312	05/10/17 16:53	JLK	TAL SAV
	Instrumer	t ID: CMSAB								

Lab Sample ID: 680-138116-3 Client Sample ID: 6489-DP-9 (24-25)

Date Collected: 04/27/17 10:05 Date Received: 04/28/17 09:05

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478621	05/04/17 16:56	WRB	TAL SAV
	Inetrumor	+ ID: NOFOLIID								

Client Sample ID: 6489-DP-9 (24-25) Lab Sample ID: 680-138116-3

Date Collected: 04/27/17 10:05 **Matrix: Solid** Date Received: 04/28/17 09:05 Percent Solids: 72.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.557 g	5 mL	477863	04/28/17 16:36	FES	TAL SAV

TestAmerica Savannah

Lab Chronicle

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DP-9 (24-25)

TestAmerica Job ID: 680-138116-1

Lab Sample ID: 680-138116-3

Matrix: Solid

Percent Solids: 72.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 g	5 g	479174	05/09/17 21:14	JLK	TAL SAV
	Instrument	ID: CMSAA								

Lab Sample ID: 680-138116-5 Client Sample ID: 6489-DP-9 (20-23)

Date Collected: 04/27/17 10:12 **Matrix: Water**

Date Received: 04/28/17 09:05

Date Collected: 04/27/17 10:05

Date Received: 04/28/17 09:05

Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method 8260B t ID: CHBVMJ5	Run DL 975	Factor 10	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 182668	Prepared or Analyzed 05/10/17 17:22	Analyst K1P	Lab TAL TAM
Total/NA	Analysis Instrumen	8260B t ID: CHBVMJ5	975	1	5 mL	5 mL	182668	05/10/17 17:41	K1P	TAL TAM

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TAL TAM = TestAmerica Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Accreditation/Certification Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138116-1

Laboratory: TestAmerica Savannah

The accreditations/certifications listed below are applicable to this report.

Georgia State Program 4 N/A 06-30-17 *	Authority	Program	EPA Region	Identification Number	Expiration Date
	Georgia	State Program	4	N/A	06-30-17 *

Laboratory: TestAmerica Tampa

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Florida	NELAP	4	E84282	06-30-17
Georgia	State Program	4	905	06-30-17
USDA	Federal		P330-14-00332	10-14-17

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138116-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL TAM
Moisture	Percent Moisture	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858
TAL TAM = TestAmerica Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

4

5

7

8

IV

111

905

Date/Time: 4-28-17

Date/Time:

Company

Received In Labor Pory by:

Date/Time:

Company:

Company

Received by:

681-Atlanta

TestAmerica Savannah

5102 LaRoche Avenue

Savannah, GA 31464 Phone: 912.354.7858 Fax:

Fax:

Chain of Custody Record

193734

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

TAL-8210 (0713) Sample Specific Notes COCs Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only Walk-in Client: ab Sampling: Job / SDG No. 4 Therm ID No Date/Time: COC No. Archive for 1 680-138116 Chain of Custody .2 Corr'd. Company Disposal by Lab Carrier: Date: Cooler Temp. ("C): Obs'd: Other: Received by Site Contact: Lab Contact: RCRA 0253 200 × × × Perform MS / MSD (Y / N) Date/Time: II41 Filtered Sample (Y / N) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. NPDES # of Cont. 4 3 + 4 27 17 Date/Time: WORKING DAYS water water Matrix 1,08 Soil 138 Analysis Turnaround Time Regulatory Program: Dw Type (C=Comp, G=Grab) Project Manager: CACFall Sample TAT if different from Below 9 9 Enura Faven sicc 0 0 9 2 weeks 1 week 2 days 1 day Sample CALENDAR DAYS Time Tel/Fax: Sawe 0955 1027 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 1000 2001 1012 Custody Seal No.: Company: Poison B 바기나 나나나 Sample Date 1/2/ 4/27/17 4/27/17 X Special Instructions/QC Requirements & Comments: City/State/Zip: Indianapolis IN Hosey Sample Identification Company Name: Enviro Ferensics Yes Client Contact Project Name: Ideal Cleaners 825 N Capital ATLA Possible Hazard Identification: (11-11) 6-40-684-99 (20-23) Phone: 846-888-7411 317-219-115 6489-08-9 (24-25) (P1-81) P-90-19) (11-01) b-da-bapa Custody Seals Intact. 4550 LIOT #04 Refinguished by: Relinquished by Non-Hazard A489-TB Site: 6489 Address:

Chain of Custody Record

TestAmerica Savannah

Testimenton de la constant de la con

l estAmerica Savannan 5102 LaRoche Avenue Savannah, GA 31404 Phone (912) 354-7858 Fax (912) 352-0165	Chain of Custody Record	TestAmerical Force of Stock of
Client Information (Sub Contract Lab)	tt, Eddie T	0; COC No: 680-47684941
l	Phone: E-Mail: State of Origin: eddie.barnett@testamericainc.com Georgia	Page 1 of 1
Сотралу: TestAmerica Laboratories, Inc.	Accreditations Required (See note): State Program - Georgia	Job#: 680-138116-1
Address: 6712 Benjamin Road, Suite 100,	Duo Date Requested: 5/10/2017 Analysis Requested	170
		A - HCL M - Hexane B NaOH C - Zn Acctate O - Astraco2 D - Nitric Acid P - Na2O4S
FL, 33634 Phone: 813-885-7407(Tel) 813-885-7049(Fav)	-	
1	(0)	n - Ascorate Acid 1 - Ice J - Di Water
Project Name: Ideal Cleaners - LaGrange, GA	80 25 (Yes	K-EDTA L-EDA
Ske:	A) GSI	of co Other:
Sownia Idantification - Clint III de Hill	Sample (Watrix ed (Wat	Cotal Number
	Preservation Code:	
6489-DP-9 (20-23) (680-138116-5)	4/27/17 10:12 Water X	n
Noto: Sinco laboratory accreditations are subject to change. TestAmorica Lourently maintain accreditation in the State of Origin listed above for analysic Laboratories, inc. attention immediately. If all requested accreditations are	Note: Since laboratory accreditations are subject to change. Teat-Amorica Laboratories, inc. places the ownership of method, analyte & accreditation compliance upon out subcentract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Test-America laboratories will be provided. Any changes to accreditation status should be brought to Test-America Laboratories, inc.	varised under chain-of-custody. If the laboratory does not to accreditation status should be brought to TestAmerica
Possible Hazard Identification	ce may be	cs are retained longer than 1 month)
Uncontimed Deliverable Requested: 1, 11, 111, IV, Other (specify)	Primary Deliverable Rank: 2 Special instructions/QC Requirements:	Archive ror
Empty Kit Relinquished by:	Method of	
Particulation by: PERCHAP Repliquation by:	Date/Time: A 1 SSY - Company Received by: Company Received by: Company Received by: Date/Time: Date/	Date/Time: Company TPA-Date/Time: Company
Relinquished by:	Date/Time: Company Received by:	Date/Time;
Custody Seals Intact: Custody Seal No.:	Cooler Temperature(s) °C and Other Remarks: 3, L.	90×100 2.5
6	· /	3 3 4 5 5 6 6 7 7 7 8 8

Login Sample Receipt Checklist

Client: Environmental Forensic Investigation Inc Job Number: 680-138116-1

Login Number: 138116 List Source: TestAmerica Savannah

List Number: 1

Creator: Flanagan, Naomi V

Oreator. I lanagan, Naomi v		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Trip Blank is listed on the COC; Trip Blank was not received.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

8

40

11

Login Sample Receipt Checklist

Client: Environmental Forensic Investigation Inc Job Number: 680-138116-1

List Source: TestAmerica Tampa
List Number: 2
List Creation: 05/06/17 03:08 PM

Creator: Southers, Kristin B

oroatori oodarioro, rariotti b		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

_

9

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-138140-1

Client Project/Site: Ideal Cleaners - LaGrange, GA

For:

Environmental Forensic Investigation Inc Enviroforensics, Inc 825 N. Capitol Ave Indianapolis, Indiana 46204

Attn: Mr. Casey McFall

Authorized for release by:

5/15/2017 2:31:37 PM

Eddie Barnett, Project Manager I (912)354-7858

eddie.barnett@testamericainc.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method Detection Limit

Minimum Level (Dioxin)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Not Calculated

Quality Control

TestAmerica Job ID: 680-138140-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

MDL

ML

NC

ND

PQL

QC RER

RL

RPD TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

Sample Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138140-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
680-138140-1	6489-HA-2 (1-2)	Solid	04/28/17 09:20 04/29/17 10:50
680-138140-2	6489-DUP-3	Solid	04/28/17 00:00 04/29/17 10:50
680-138140-5	6489-TB	Water	04/28/17 00:00 04/29/17 10:50

3

4

5

6

8

9

Case Narrative

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138140-1

Job ID: 680-138140-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE Client: Environmental Forensic Investigation Inc Project: Ideal Cleaners - LaGrange, GA

Report Number: 680-138140-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 04/29/2017; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 3.5° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 6489-HA-2 (1-2) (680-138140-1) and 6489- DUP-3 (680-138140-2) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were prepared on 05/01/2017 and analyzed on 05/11/2017.

Toluene was detected in method blank MB 680-479410/12 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample 6489-TB (680-138140-5) was analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The sample was analyzed on 05/11/2017.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with analytical batch 680-479365.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS/MOISTURE

Samples 6489-HA-2 (1-2) (680-138140-1) and 6489- DUP-3 (680-138140-2) were analyzed for Percent Solids/Moisture in accordance with TestAmerica SO. The samples were analyzed on 05/05/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

-

3

4

5

6

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-HA-2 (1-2)

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 680-138140-1 Date Collected: 04/28/17 09:20 **Matrix: Solid** Date Received: 04/29/17 10:50 Percent Solids: 90.2

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	3100	U	3100	580	ug/Kg		05/01/17 13:10	05/11/17 17:26	500
Chloromethane	3100	U	3100	620	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Vinyl chloride	3100	U	3100		ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Bromomethane	3100	U	3100	930	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Chloroethane	3100	U	3100	1700	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Trichlorofluoromethane	3100	U	3100	740	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
1,1-Dichloroethene	3100	U	3100	930	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Acetone	31000	U	31000	6800	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Carbon disulfide	3100	U	3100	680	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Methylene Chloride	3100	U	3100	610	ug/Kg	₽	05/01/17 13:10	05/11/17 17:26	500
trans-1,2-Dichloroethene	3100	U	3100	390	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Methyl tert-butyl ether	3100	U	3100	620	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
1,1-Dichloroethane	3100	U	3100	680	ug/Kg	₽	05/01/17 13:10	05/11/17 17:26	500
cis-1,2-Dichloroethene	3100	U	3100	870	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
2-Butanone (MEK)	15000	U	15000	1500	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Chloroform	3100	U	3100	680	ug/Kg	₽	05/01/17 13:10	05/11/17 17:26	500
1,1,1-Trichloroethane	3100	U	3100	370	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Carbon tetrachloride	3100	U	3100	510	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Benzene	3100	U	3100	450	ug/Kg	ф	05/01/17 13:10	05/11/17 17:26	500
1,2-Dichloroethane	3100	U	3100	680	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Trichloroethene	3300		3100	810	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
1,2-Dichloropropane	3100	U	3100	530	ug/Kg	ф.	05/01/17 13:10	05/11/17 17:26	500
Bromodichloromethane	3100	U	3100	600	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
cis-1,3-Dichloropropene	3100	U	3100	510	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
4-Methyl-2-pentanone	15000	U	15000	2600	ug/Kg	₽	05/01/17 13:10	05/11/17 17:26	500
Toluene	3100	U	3100	520	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
trans-1,3-Dichloropropene	3100	U	3100	540	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
1,1,2-Trichloroethane	3100	U	3100	810	ug/Kg	₽	05/01/17 13:10	05/11/17 17:26	500
Tetrachloroethene	50000		3100	1200	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
2-Hexanone	15000	U	15000	2000	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Dibromochloromethane	3100	Ú	3100	1100	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
1,2-Dibromoethane	3100	U	3100	930	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
Chlorobenzene	3100	U	3100	590	ug/Kg	☼	05/01/17 13:10	05/11/17 17:26	500
Ethylbenzene	3100	Ü	3100	810	ug/Kg		05/01/17 13:10	05/11/17 17:26	500
Xylenes, Total	6200	U	6200	680	ug/Kg	☼	05/01/17 13:10	05/11/17 17:26	500
Styrene	3100	U	3100	580	ug/Kg	☼	05/01/17 13:10	05/11/17 17:26	500
Bromoform	3100	Ü	3100	930	ug/Kg		05/01/17 13:10	05/11/17 17:26	500
Isopropylbenzene	3100	U	3100	1200	ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
1,1,2,2-Tetrachloroethane	3100	U	3100		ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
1,3-Dichlorobenzene	3100	U	3100		ug/Kg		05/01/17 13:10	05/11/17 17:26	500
1,4-Dichlorobenzene	3100	U	3100		ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
1,2-Dichlorobenzene	3100	U	3100		ug/Kg	₩	05/01/17 13:10	05/11/17 17:26	500
1,2-Dibromo-3-Chloropropane	6200	U	6200		ug/Kg		05/01/17 13:10	05/11/17 17:26	500
1,2,4-Trichlorobenzene	3100		3100		ug/Kg	₩		05/11/17 17:26	500

TestAmerica Savannah

<u>05/01/17 13:10</u> <u>05/11/17 17:26</u>

05/01/17 13:10 05/11/17 17:26

05/01/17 13:10 05/11/17 17:26

Page 5 of 24

70 - 130

70 - 130

70 - 130

97

103

105

5/15/2017

500

500

Client Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138140-1

Client Sample ID: 6489-HA-2 (1-2)

Date Collected: 04/28/17 09:20 Date Received: 04/29/17 10:50 Lab Sample ID: 680-138140-1

Matrix: Solid

Percent Solids: 90.2

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: 6489-DUP-3 Lab Sample ID: 680-138140-2

 Date Collected: 04/28/17 00:00
 Matrix: Solid

 Date Received: 04/29/17 10:50
 Percent Solids: 88.8

Method: 8260B - Volatile On Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5600	U	5600	1100	ug/Kg	<u> </u>	05/01/17 13:10	05/11/17 17:55	1000
Chloromethane	5600	U	5600	1100	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Vinyl chloride	5600	U	5600	1700	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Bromomethane	5600	U	5600	1700	ug/Kg	₽	05/01/17 13:10	05/11/17 17:55	1000
Chloroethane	5600	U	5600	3000	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Trichlorofluoromethane	5600	U	5600	1400	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
1,1-Dichloroethene	5600	U	5600	1700	ug/Kg	₽	05/01/17 13:10	05/11/17 17:55	1000
Acetone	56000	U	56000	12000	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Carbon disulfide	5600	U	5600	1200	ug/Kg	₩	05/01/17 13:10	05/11/17 17:55	1000
Methylene Chloride	5600	U	5600	1100	ug/Kg	₽	05/01/17 13:10	05/11/17 17:55	1000
trans-1,2-Dichloroethene	5600	U	5600	710	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Methyl tert-butyl ether	5600	U	5600	1100	ug/Kg	₩	05/01/17 13:10	05/11/17 17:55	1000
1,1-Dichloroethane	5600	U	5600	1200	ug/Kg	₽	05/01/17 13:10	05/11/17 17:55	1000
cis-1,2-Dichloroethene	5600	U	5600	1600	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
2-Butanone (MEK)	28000	U	28000	2700	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Chloroform	5600	U	5600	1200	ug/Kg		05/01/17 13:10	05/11/17 17:55	1000
1,1,1-Trichloroethane	5600	U	5600	660	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Carbon tetrachloride	5600	U	5600	930	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Benzene	5600	U	5600	820	ug/Kg	\$	05/01/17 13:10	05/11/17 17:55	1000
1,2-Dichloroethane	5600	U	5600	1200	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Trichloroethene	5600	U	5600	1500	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
1,2-Dichloropropane	5600	U	5600	970	ug/Kg		05/01/17 13:10	05/11/17 17:55	1000
Bromodichloromethane	5600	U	5600	1100	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
cis-1,3-Dichloropropene	5600	U	5600	930	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
4-Methyl-2-pentanone	28000	U	28000	4700	ug/Kg	₽	05/01/17 13:10	05/11/17 17:55	1000
Toluene	5600	U	5600	950	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
trans-1,3-Dichloropropene	5600	U	5600	980	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
1,1,2-Trichloroethane	5600	U	5600	1500	ug/Kg	₽	05/01/17 13:10	05/11/17 17:55	1000
Tetrachloroethene	76000		5600	2100	ug/Kg	₩	05/01/17 13:10	05/11/17 17:55	1000
2-Hexanone	28000	U	28000	3700	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Dibromochloromethane	5600	U	5600	1900	ug/Kg	₽	05/01/17 13:10	05/11/17 17:55	1000
1,2-Dibromoethane	5600	U	5600	1700	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Chlorobenzene	5600	U	5600	1100	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Ethylbenzene	5600	U	5600	1500	ug/Kg		05/01/17 13:10	05/11/17 17:55	1000
Xylenes, Total	11000	U	11000	1200	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Styrene	5600	U	5600	1000	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
Bromoform	5600	U	5600	1700	ug/Kg	₽	05/01/17 13:10	05/11/17 17:55	1000
Isopropylbenzene	5600	U	5600	2100	ug/Kg	₩	05/01/17 13:10	05/11/17 17:55	1000
1,1,2,2-Tetrachloroethane	5600	U	5600	1800	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
1,3-Dichlorobenzene	5600	Ü	5600	1800	ug/Kg		05/01/17 13:10	05/11/17 17:55	1000
1,4-Dichlorobenzene	5600	U	5600		ug/Kg	≎	05/01/17 13:10	05/11/17 17:55	1000

TestAmerica Savannah

2

3

_

6

9

10

19

5/15/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-DUP-3

Date Collected: 04/28/17 00:00 Date Received: 04/29/17 10:50

1,2-Dichloroethane-d4 (Surr)
Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 680-138140-2

05/01/17 13:10 05/11/17 17:55

05/01/17 13:10 05/11/17 17:55

05/01/17 13:10 05/11/17 17:55

Matrix: Solid

Percent Solids: 88.8

ethod: 8260B	- Volatile	Organic	Compounds	(GC/MS)	(Continued)	

99

104

89

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	5600	U	5600	1500	ug/Kg	₩	05/01/17 13:10	05/11/17 17:55	1000
1,2-Dibromo-3-Chloropropane	11000	U	11000	5000	ug/Kg	☼	05/01/17 13:10	05/11/17 17:55	1000
1,2,4-Trichlorobenzene	5600	U	5600	1000	ug/Kg	₩	05/01/17 13:10	05/11/17 17:55	1000
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130				05/01/17 13:10	05/11/17 17:55	1000

70 - 130

70 - 130

70 - 130

Client Sample ID: 6489-TB Lab Sample ID: 680-138140-5

Date Collected: 04/28/17 00:00 Matrix: Water Date Received: 04/29/17 10:50

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL **MDL** Unit D **Prepared** Analyzed Dil Fac Dichlorodifluoromethane 1.0 U 1.0 0.60 ug/L 05/11/17 01:04 1.0 U Chloromethane 1.0 05/11/17 01:04 0.40 ug/L Vinyl chloride 1.0 U 1.0 0.50 ug/L 05/11/17 01:04 5.0 Bromomethane 5.0 U 2.5 ug/L 05/11/17 01:04 Chloroethane 5.0 U 5.0 2.5 ug/L 05/11/17 01:04 Trichlorofluoromethane 1.0 U 1.0 0.42 ug/L 05/11/17 01:04 1,1-Dichloroethene 1.0 U 1.0 0.36 ug/L 05/11/17 01:04 Acetone 10 U 10 7.0 ug/L 05/11/17 01:04 Carbon disulfide 2.0 U 2.0 1.0 ug/L 05/11/17 01:04 Methylene Chloride 5.0 U 5.0 2.5 ug/L 05/11/17 01:04 trans-1,2-Dichloroethene 1.0 U 0.37 ug/L 1.0 05/11/17 01:04 0.30 ug/L Methyl tert-butyl ether 10 U 10 05/11/17 01:04 1,1-Dichloroethane 1.0 U 1.0 0.38 ug/L 05/11/17 01:04 cis-1,2-Dichloroethene 1.0 U 1.0 0.41 ug/L 05/11/17 01:04 10 U 10 2-Butanone (MEK) 3.4 ug/L 05/11/17 01:04 Chloroform 1.0 U 1.0 0.50 ug/L 05/11/17 01:04 1,1,1-Trichloroethane 1.0 U 1.0 0.37 ug/L 05/11/17 01:04 Carbon tetrachloride 1.0 U 1.0 0.33 ug/L 05/11/17 01:04 Benzene 1.0 U 1.0 0.43 ug/L 05/11/17 01:04 1,2-Dichloroethane 1.0 U 1.0 0.50 ug/L 05/11/17 01:04 Trichloroethene 1.0 U 1.0 0.48 ug/L 05/11/17 01:04 1,2-Dichloropropane 1.0 U 1.0 0.67 ug/L 05/11/17 01:04 Bromodichloromethane 1.0 U 1.0 0.44 ug/L 05/11/17 01:04 1.0 cis-1,3-Dichloropropene 1.0 U 0.40 ug/L 05/11/17 01:04 4-Methyl-2-pentanone 10 U 10 2.1 ug/L 05/11/17 01:04 Toluene 1.0 1.0 U 0.48 ug/L 05/11/17 01:04 trans-1,3-Dichloropropene 1.0 U 1.0 0.42 ug/L 05/11/17 01:04 1,1,2-Trichloroethane 1.0 U 1.0 0.33 ug/L 05/11/17 01:04 Tetrachloroethene 0.74 ug/L 05/11/17 01:04 1.0 U 1.0 2-Hexanone 10 U 10 2.0 ug/L 05/11/17 01:04 Dibromochloromethane 1.0 U 1.0 0.32 ug/L 05/11/17 01:04 1,2-Dibromoethane 1.0 U 1.0 0.44 ug/L 05/11/17 01:04 Chlorobenzene 1.0 U 1.0 0.26 ug/L 05/11/17 01:04 Ethylbenzene 1.0 U 1.0 0.33 ug/L 05/11/17 01:04

TestAmerica Savannah

Page 7 of 24

2

3

5

7

Ö

1000

1000

1000

10

4.0

5/15/2017

Client Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138140-1

Lab Sample ID: 680-138140-5

Matrix: Water

Client Sample ID: 6489-TB

Date Collected: 04/28/17 00:00 Date Received: 04/29/17 10:50

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ied)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.0	U	1.0	0.23	ug/L			05/11/17 01:04	1
Styrene	1.0	U	1.0	0.27	ug/L			05/11/17 01:04	1
Bromoform	1.0	U	1.0	0.43	ug/L			05/11/17 01:04	1
Isopropylbenzene	1.0	U	1.0	0.35	ug/L			05/11/17 01:04	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.62	ug/L			05/11/17 01:04	1
1,3-Dichlorobenzene	1.0	U	1.0	0.43	ug/L			05/11/17 01:04	1
1,4-Dichlorobenzene	1.0	U	1.0	0.46	ug/L			05/11/17 01:04	1
1,2-Dichlorobenzene	1.0	U	1.0	0.37	ug/L			05/11/17 01:04	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	1.1	ug/L			05/11/17 01:04	1
1,2,4-Trichlorobenzene	5.0	U	5.0	2.5	ug/L			05/11/17 01:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		80 - 120			-		05/11/17 01:04	1
1,2-Dichloroethane-d4 (Surr)	83		73 - 131					05/11/17 01:04	1
Dibromofluoromethane (Surr)	93		80 - 122					05/11/17 01:04	1
4-Bromofluorobenzene (Surr)	92		80 - 120					05/11/17 01:04	1

2

1

J

0

9

10

<u>11</u>

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid									Prep Type: Total/N
Analysis Batch: 479410	0	0	0!!	мо	мо				Prep Batch: 47809
Analyte	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec. Limits
Dichlorodifluoromethane	3100		30400	25900	Qualifier	ug/Kg	— ğ	85	40 - 160
Chloromethane	3100		30400	22900		ug/Kg	₽	75	40 - 160
Vinyl chloride	3100		30400	24100		ug/Kg ug/Kg	₽	79	70 - 130
Bromomethane	3100		30400	24400		ug/Kg		80	40 - 160
Chloroethane	3100		30400	24300		ug/Kg	₩	80	40 - 160
Trichlorofluoromethane	3100		30400	27100		ug/Kg	₽	89	40 - 160
1,1-Dichloroethene	3100		30400	27100		ug/Kg		89	70 - 130
Acetone	31000		152000	132000		ug/Kg ug/Kg	₽	87	40 - 160
Carbon disulfide	3100		30400	25000		ug/Kg ug/Kg	₽	82	40 - 160
Methylene Chloride	3100		30400	27400		ug/Kg		90	70 - 130
trans-1,2-Dichloroethene	3100		30400	26200		ug/Kg ug/Kg	₽	86	70 - 130 70 - 130
·	3100		30400	29000			₽	95	70 - 130 70 - 130
Methyl tert-butyl ether 1,1-Dichloroethane	3100		30400	24100		ug/Kg ug/Kg	.	79	70 - 130
cis-1,2-Dichloroethene	3100		30400	26000		ug/Kg ug/Kg	₩	79 86	70 - 130 70 - 130
2-Butanone (MEK)	15000		152000	135000		ug/Kg ug/Kg	₩	89	70 - 130 40 - 160
Chloroform	3100		30400	26700			· · · · · · · · · · · · · · · · · · ·	88	70 - 130
1,1,1-Trichloroethane	3100		30400	26600		ug/Kg ug/Kg	₩	88	70 - 130 70 - 130
Carbon tetrachloride	3100		30400	27500			≎	90	70 - 130 70 - 130
Benzene	3100		30400	24800		ug/Kg		82	70 - 130
				26800		ug/Kg	₩		
1,2-Dichloroethane	3100 3300	U	30400 30400	31500		ug/Kg	☆	88 93	70 - 130 70 - 130
Trichloroethene						ug/Kg			
1,2-Dichloropropane Bromodichloromethane	3100 3100		30400 30400	23300		ug/Kg	₩	77 oc	70 - 130
	3100		30400	26100 26900		ug/Kg	☆	86 88	70 ₋ 130 70 ₋ 130
cis-1,3-Dichloropropene	15000					ug/Kg			
4-Methyl-2-pentanone			152000	137000		ug/Kg	₩	90	40 - 160
Toluene	3100		30400	26200 27700		ug/Kg	☆	86	70 - 130
trans-1,3-Dichloropropene	3100		30400			ug/Kg		91	70 - 130
1,1,2-Trichloroethane	3100	U	30400	26500		ug/Kg		87	70 - 130
Tetrachloroethene	50000		30400	77200		ug/Kg	*	90	70 - 130
2-Hexanone	15000		152000	136000		ug/Kg	 	90	40 - 160
Dibromochloromethane	3100		30400	29200		ug/Kg	₩ #	96	70 - 130
1,2-Dibromoethane	3100		30400	28500		ug/Kg	₩	94	70 - 130
Chlorobenzene	3100		30400	26900		ug/Kg		88	70 - 130
Ethylbenzene	3100		30400	26700		ug/Kg	\$	88	70 - 130
Xylenes, Total	6200		60800	54600		ug/Kg	‡	90	70 - 130
Styrene	3100		30400	27700		ug/Kg		91	70 - 130
Bromoform	3100		30400	30600		ug/Kg	‡	101	70 - 130
Isopropylbenzene	3100		30400	27700		ug/Kg	‡	91	70 - 130
1,1,2,2-Tetrachloroethane	3100		30400	26700		ug/Kg		88	70 - 130
1,3-Dichlorobenzene	3100		30400	27100		ug/Kg	\$	89	70 - 130
1,4-Dichlorobenzene	3100		30400	26300		ug/Kg	‡	87	70 - 130
1,2-Dichlorobenzene	3100		30400	26500		ug/Kg		87	70 - 130
1,2-Dibromo-3-Chloropropane	6200		30400	28000		ug/Kg	\$	92	40 - 160
1,2,4-Trichlorobenzene	3100	U	30400	28500		ug/Kg	☆	94	70 - 130
	MS	MS							
Surrogate	%Recovery		Limits						
Toluene-d8 (Surr)	90		70 - 130						

TestAmerica Savannah

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138140-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-138140-1 MS

Lab Sample ID: 680-138140-1 MSD

Matrix: Solid

Analysis Batch: 479410

Client Sample ID: 6489-HA-2 (1-2) **Prep Type: Total/NA**

Prep Batch: 478098

MS MS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 70 - 130 93 Dibromofluoromethane (Surr) 92 70 - 130 4-Bromofluorobenzene (Surr) 86 70 - 130

Client Sample ID: 6489-HA-2 (1-2)

Matrix: Solid Analysis Batch: 479410	Samula	Samuela	Cuilta	Med	Men				Prep Typ		
Analyte	•	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	Limit
Dichlorodifluoromethane	3100	U	32200	28300		ug/Kg	<u></u>	88	40 - 160	9	30
Chloromethane	3100	U	32200	24600		ug/Kg	₽	76	40 - 160	7	30
Vinyl chloride	3100	U	32200	25500		ug/Kg	₩	79	70 - 130	6	30
Bromomethane	3100	U	32200	26100		ug/Kg	\$	81	40 - 160	7	30
Chloroethane	3100	U	32200	25800		ug/Kg	₽	80	40 - 160	6	30
Trichlorofluoromethane	3100	U	32200	28200		ug/Kg	≎	88	40 - 160	4	30
1,1-Dichloroethene	3100	U	32200	28600		ug/Kg		89	70 - 130	5	30
Acetone	31000	U	161000	143000		ug/Kg	☼	89	40 - 160	8	30
Carbon disulfide	3100	U	32200	27300		ug/Kg	≎	85	40 - 160	9	30
Methylene Chloride	3100	U	32200	29800		ug/Kg		93	70 - 130	9	30
trans-1,2-Dichloroethene	3100	U	32200	28500		ug/Kg	≎	89	70 - 130	8	30
Methyl tert-butyl ether	3100	U	32200	30300		ug/Kg	₽	94	70 - 130	4	30
1,1-Dichloroethane	3100	U	32200	26100		ug/Kg		81	70 - 130	8	30
cis-1,2-Dichloroethene	3100	U	32200	27500		ug/Kg	≎	85	70 - 130	6	30
2-Butanone (MEK)	15000	U	161000	140000		ug/Kg	₽	87	40 - 160	3	30
Chloroform	3100	U	32200	28200		ug/Kg		88	70 - 130	6	30
1,1,1-Trichloroethane	3100	U	32200	28600		ug/Kg	≎	89	70 - 130	7	30
Carbon tetrachloride	3100	U	32200	29800		ug/Kg	☼	93	70 - 130	8	30
Benzene	3100	U	32200	26800		ug/Kg		83	70 - 130	8	30
1,2-Dichloroethane	3100	U	32200	27900		ug/Kg	☼	87	70 - 130	4	30
Trichloroethene	3300		32200	34600		ug/Kg	☼	97	70 - 130	10	30
1,2-Dichloropropane	3100	Ū	32200	25100		ug/Kg		78	70 - 130	7	30
Bromodichloromethane	3100	U	32200	28200		ug/Kg	₩	88	70 - 130	8	30
cis-1,3-Dichloropropene	3100	U	32200	29000		ug/Kg	₩	90	70 - 130	8	30
4-Methyl-2-pentanone	15000	U	161000	145000		ug/Kg		90	40 - 160	6	30
Toluene	3100	U	32200	28000		ug/Kg	☼	87	70 - 130	7	30
trans-1,3-Dichloropropene	3100	U	32200	29800		ug/Kg	☼	93	70 - 130	7	30
1,1,2-Trichloroethane	3100	U	32200	27900		ug/Kg	Φ.	87	70 - 130	5	30
Tetrachloroethene	50000		32200	83700		ug/Kg	₩	105	70 - 130	8	30
2-Hexanone	15000	U	161000	144000		ug/Kg	☼	89	40 - 160	6	30
Dibromochloromethane	3100	U	32200	31600		ug/Kg		98	70 - 130	8	30
1,2-Dibromoethane	3100	U	32200	31200		ug/Kg	₩	97	70 - 130	9	30
Chlorobenzene	3100	U	32200	29100		ug/Kg	₩	90	70 - 130	8	30
Ethylbenzene	3100	U	32200	28900		ug/Kg		90	70 - 130	8	30
Xylenes, Total	6200	U	64400	58600		ug/Kg	₽	91	70 - 130	7	30
Styrene	3100	U	32200	30500		ug/Kg	₩	95	70 - 130	9	30
Bromoform	3100	U	32200	34300		ug/Kg		106	70 - 130	11	30
Isopropylbenzene	3100		32200	30100		ug/Kg	☼	94	70 - 130	8	30
1,1,2,2-Tetrachloroethane	3100		32200	28800		ug/Kg	₩	90	70 - 130	8	30

TestAmerica Savannah

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: 6489-HA-2 (1-2) Lab Sample ID: 680-138140-1 MSD **Matrix: Solid Prep Type: Total/NA Prep Batch: 478098**

Analysis Batch: 479410

Analysis Baton: 47 04 10									i icp be	4011. 4 <i>1</i>	0000
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,3-Dichlorobenzene	3100	U	32200	28900		ug/Kg	₩	90	70 - 130	6	30
1,4-Dichlorobenzene	3100	U	32200	28900		ug/Kg	₩	90	70 - 130	9	30
1,2-Dichlorobenzene	3100	U	32200	28800		ug/Kg	₩	89	70 - 130	8	30
1,2-Dibromo-3-Chloropropane	6200	U	32200	30700		ug/Kg	₩	95	40 - 160	9	30
1,2,4-Trichlorobenzene	3100	U	32200	31500		ug/Kg	₩	98	70 - 130	10	30

MSD MSD Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 91 70 - 130 1,2-Dichloroethane-d4 (Surr) 93 70 - 130 Dibromofluoromethane (Surr) 92 70 - 130 70 - 130 4-Bromofluorobenzene (Surr) 86

Client Sample ID: Method Blank

Prep Type: Total/NA

Lab Sample ID: MB 680-479365/9 **Matrix: Water**

Analysis Batch: 479365

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	1.0	U	1.0	0.60	ug/L			05/10/17 20:15	1
Chloromethane	1.0	U	1.0	0.40	ug/L			05/10/17 20:15	1
Vinyl chloride	1.0	U	1.0	0.50	ug/L			05/10/17 20:15	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/10/17 20:15	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/10/17 20:15	1
Trichlorofluoromethane	1.0	U	1.0	0.42	ug/L			05/10/17 20:15	1
1,1-Dichloroethene	1.0	U	1.0	0.36	ug/L			05/10/17 20:15	1
Acetone	10	U	10	7.0	ug/L			05/10/17 20:15	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/10/17 20:15	1
Methylene Chloride	5.0	U	5.0	2.5	ug/L			05/10/17 20:15	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.37	ug/L			05/10/17 20:15	1
Methyl tert-butyl ether	10	U	10	0.30	ug/L			05/10/17 20:15	1
1,1-Dichloroethane	1.0	U	1.0	0.38	ug/L			05/10/17 20:15	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.41	ug/L			05/10/17 20:15	1
2-Butanone (MEK)	10	U	10	3.4	ug/L			05/10/17 20:15	1
Chloroform	1.0	U	1.0	0.50	ug/L			05/10/17 20:15	1
1,1,1-Trichloroethane	1.0	U	1.0	0.37	ug/L			05/10/17 20:15	1
Carbon tetrachloride	1.0	U	1.0	0.33	ug/L			05/10/17 20:15	1
Benzene	1.0	U	1.0	0.43	ug/L			05/10/17 20:15	1
1,2-Dichloroethane	1.0	U	1.0	0.50	ug/L			05/10/17 20:15	1
Trichloroethene	1.0	U	1.0	0.48	ug/L			05/10/17 20:15	1
1,2-Dichloropropane	1.0	U	1.0	0.67	ug/L			05/10/17 20:15	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/10/17 20:15	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.40	ug/L			05/10/17 20:15	1
4-Methyl-2-pentanone	10	U	10	2.1	ug/L			05/10/17 20:15	1
Toluene	1.0	U	1.0	0.48	ug/L			05/10/17 20:15	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.42	ug/L			05/10/17 20:15	1
1,1,2-Trichloroethane	1.0	Ü	1.0	0.33	ug/L			05/10/17 20:15	1
Tetrachloroethene	1.0	U	1.0	0.74	ug/L			05/10/17 20:15	1
2-Hexanone	10	U	10	2.0	ug/L			05/10/17 20:15	1
Dibromochloromethane	1.0	U	1.0	0.32	ug/L			05/10/17 20:15	1

TestAmerica Savannah

5/15/2017

Page 11 of 24

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-479365/9 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 479365

inaly old Datolii il occo									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	1.0	U	1.0	0.44	ug/L			05/10/17 20:15	1
Chlorobenzene	1.0	U	1.0	0.26	ug/L			05/10/17 20:15	1
Ethylbenzene	1.0	U	1.0	0.33	ug/L			05/10/17 20:15	1
Xylenes, Total	1.0	U	1.0	0.23	ug/L			05/10/17 20:15	1
Styrene	1.0	U	1.0	0.27	ug/L			05/10/17 20:15	1
Bromoform	1.0	U	1.0	0.43	ug/L			05/10/17 20:15	1
Isopropylbenzene	1.0	U	1.0	0.35	ug/L			05/10/17 20:15	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.62	ug/L			05/10/17 20:15	1
1,3-Dichlorobenzene	1.0	U	1.0	0.43	ug/L			05/10/17 20:15	1
1,4-Dichlorobenzene	1.0	U	1.0	0.46	ug/L			05/10/17 20:15	1
1,2-Dichlorobenzene	1.0	U	1.0	0.37	ug/L			05/10/17 20:15	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	1.1	ug/L			05/10/17 20:15	1
1,2,4-Trichlorobenzene	5.0	U	5.0	2.5	ug/L			05/10/17 20:15	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103	80 - 120		05/10/17 20:15	1
1,2-Dichloroethane-d4 (Surr)	84	73 - 131		05/10/17 20:15	1
Dibromofluoromethane (Surr)	93	80 - 122		05/10/17 20:15	1
4-Bromofluorobenzene (Surr)	92	80 - 120		05/10/17 20:15	1

Lab Sample ID: LCS 680-479365/3

Matrix: Water

Analysis Batch: 479365

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Allalysis Batch. 479305							0/ 5	
	Spike		LCS		_		%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	50.0	61.2		ug/L		122	70 - 137	
Chloromethane	50.0	51.6		ug/L		103	76 - 149	
Vinyl chloride	50.0	47.6		ug/L		95	80 - 129	
Bromomethane	50.0	66.3		ug/L		133	43 - 146	
Chloroethane	50.0	49.7		ug/L		99	48 - 145	
Trichlorofluoromethane	50.0	52.3		ug/L		105	58 - 127	
1,1-Dichloroethene	50.0	50.0		ug/L		100	80 - 120	
Acetone	250	235		ug/L		94	68 - 132	
Carbon disulfide	50.0	49.2		ug/L		98	77 - 129	
Methylene Chloride	50.0	49.7		ug/L		99	80 - 120	
trans-1,2-Dichloroethene	50.0	51.5		ug/L		103	80 - 120	
Methyl tert-butyl ether	50.0	47.1		ug/L		94	80 - 122	
1,1-Dichloroethane	50.0	48.2		ug/L		96	80 - 120	
cis-1,2-Dichloroethene	50.0	46.1		ug/L		92	80 - 120	
2-Butanone (MEK)	250	240		ug/L		96	79 - 125	
Chloroform	50.0	47.8		ug/L		96	80 - 120	
1,1,1-Trichloroethane	50.0	47.8		ug/L		96	80 - 120	
Carbon tetrachloride	50.0	47.2		ug/L		94	67 - 125	
Benzene	50.0	50.4		ug/L		101	80 - 120	
1,2-Dichloroethane	50.0	43.8		ug/L		88	72 - 128	
Trichloroethene	50.0	50.8		ug/L		102	80 - 120	
1,2-Dichloropropane	50.0	48.0		ug/L		96	80 - 120	
Bromodichloromethane	50.0	46.8		ug/L		94	80 - 120	

TestAmerica Savannah

Page 12 of 24

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-479365/3

Matrix: Water

Analysis Batch: 479365

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,3-Dichloropropene	50.0	46.8		ug/L		94	80 - 129	
4-Methyl-2-pentanone	250	220		ug/L		88	80 - 134	
Toluene	50.0	51.3		ug/L		103	80 - 120	
trans-1,3-Dichloropropene	50.0	44.9		ug/L		90	80 - 128	
1,1,2-Trichloroethane	50.0	49.4		ug/L		99	80 - 120	
Tetrachloroethene	50.0	53.0		ug/L		106	71 - 123	
2-Hexanone	250	218		ug/L		87	80 - 131	
Dibromochloromethane	50.0	48.1		ug/L		96	68 - 120	
1,2-Dibromoethane	50.0	48.8		ug/L		98	75 - 126	
Chlorobenzene	50.0	52.5		ug/L		105	80 - 120	
Ethylbenzene	50.0	52.6		ug/L		105	80 - 120	
Xylenes, Total	100	103		ug/L		103	80 - 120	
Styrene	50.0	54.5		ug/L		109	80 - 126	
Bromoform	50.0	47.3		ug/L		95	52 - 122	
Isopropylbenzene	50.0	54.0		ug/L		108	79 - 126	
1,1,2,2-Tetrachloroethane	50.0	52.3		ug/L		105	76 - 126	
1,3-Dichlorobenzene	50.0	49.3		ug/L		99	80 - 120	
1,4-Dichlorobenzene	50.0	48.3		ug/L		97	80 - 120	
1,2-Dichlorobenzene	50.0	49.2		ug/L		98	80 - 120	
1,2-Dibromo-3-Chloropropane	50.0	49.3		ug/L		99	74 - 120	
1,2,4-Trichlorobenzene	50.0	47.4		ug/L		95	71 - 126	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	84		73 - 131
Dibromofluoromethane (Surr)	94		80 - 122
4-Bromofluorobenzene (Surr)	87		80 - 120

Lab Sample ID: LCSD 680-479365/4

Matrix: Water

Analysis Batch: 479365

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	57.9		ug/L		116	70 - 137	6	40
Chloromethane	50.0	52.0		ug/L		104	76 - 149	1	30
Vinyl chloride	50.0	48.6		ug/L		97	80 - 129	2	20
Bromomethane	50.0	63.9		ug/L		128	43 - 146	4	20
Chloroethane	50.0	51.2		ug/L		102	48 - 145	3	20
Trichlorofluoromethane	50.0	54.2		ug/L		108	58 - 127	4	20
1,1-Dichloroethene	50.0	50.9		ug/L		102	80 - 120	2	20
Acetone	250	241		ug/L		96	68 - 132	3	30
Carbon disulfide	50.0	49.3		ug/L		99	77 - 129	0	20
Methylene Chloride	50.0	48.4		ug/L		97	80 - 120	3	20
trans-1,2-Dichloroethene	50.0	51.8		ug/L		104	80 - 120	1	20
Methyl tert-butyl ether	50.0	47.7		ug/L		95	80 - 122	1	20
1,1-Dichloroethane	50.0	48.3		ug/L		97	80 - 120	0	20
cis-1,2-Dichloroethene	50.0	47.2		ug/L		94	80 - 120	2	20
2-Butanone (MEK)	250	241		ug/L		96	79 - 125	1	20

TestAmerica Savannah

Page 13 of 24

Prep Type: Total/NA

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-479365/4

Matrix: Water

Analysis Batch: 479365

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	50.0	48.0		ug/L		96	80 - 120	0	20
1,1,1-Trichloroethane	50.0	48.0		ug/L		96	80 - 120	0	20
Carbon tetrachloride	50.0	47.8		ug/L		96	67 - 125	1	20
Benzene	50.0	50.6		ug/L		101	80 - 120	0	20
1,2-Dichloroethane	50.0	44.5		ug/L		89	72 - 128	1	50
Trichloroethene	50.0	50.2		ug/L		100	80 - 120	1	20
1,2-Dichloropropane	50.0	46.9		ug/L		94	80 - 120	2	20
Bromodichloromethane	50.0	45.8		ug/L		92	80 - 120	2	20
cis-1,3-Dichloropropene	50.0	45.7		ug/L		91	80 - 129	2	20
4-Methyl-2-pentanone	250	211		ug/L		85	80 - 134	4	20
Toluene	50.0	49.6		ug/L		99	80 - 120	3	20
trans-1,3-Dichloropropene	50.0	44.3		ug/L		89	80 - 128	1	30
1,1,2-Trichloroethane	50.0	49.2		ug/L		98	80 - 120	1	20
Tetrachloroethene	50.0	53.1		ug/L		106	71 - 123	0	20
2-Hexanone	250	221		ug/L		88	80 - 131	2	20
Dibromochloromethane	50.0	47.7		ug/L		95	68 - 120	1	20
1,2-Dibromoethane	50.0	49.1		ug/L		98	75 - 126	1	20
Chlorobenzene	50.0	52.6		ug/L		105	80 - 120	0	20
Ethylbenzene	50.0	52.5		ug/L		105	80 - 120	0	20
Xylenes, Total	100	104		ug/L		104	80 - 120	0	20
Styrene	50.0	54.3		ug/L		109	80 - 126	0	20
Bromoform	50.0	47.2		ug/L		94	52 - 122	0	20
Isopropylbenzene	50.0	54.0		ug/L		108	79 - 126	0	20
1,1,2,2-Tetrachloroethane	50.0	51.7		ug/L		103	76 - 126	1	20
1,3-Dichlorobenzene	50.0	49.5		ug/L		99	80 - 120	1	20
1,4-Dichlorobenzene	50.0	49.8		ug/L		100	80 - 120	3	20
1,2-Dichlorobenzene	50.0	50.7		ug/L		101	80 - 120	3	20
1,2-Dibromo-3-Chloropropane	50.0	50.6		ug/L		101	74 - 120	3	20
1,2,4-Trichlorobenzene	50.0	49.7		ug/L		99	71 - 126	5	20

LCSD LCSD

MB MB

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		80 - 120
1,2-Dichloroethane-d4 (Surr)	85		73 - 131
Dibromofluoromethane (Surr)	94		80 - 122
4-Bromofluorobenzene (Surr)	88		80 - 120

Lab Sample ID: MB 680-479410/12

Matrix: Solid

Analysis Batch: 479410

Client Sample ID: Method Blank **Prep Type: Total/NA**

	1410	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	200	U	200	38	ug/Kg			05/11/17 12:26	40
Chloromethane	200	U	200	40	ug/Kg			05/11/17 12:26	40
Vinyl chloride	200	U	200	60	ug/Kg			05/11/17 12:26	40
Bromomethane	200	U	200	60	ug/Kg			05/11/17 12:26	40
Chloroethane	200	U	200	110	ug/Kg			05/11/17 12:26	40
Trichlorofluoromethane	200	U	200	48	ug/Kg			05/11/17 12:26	40
1,1-Dichloroethene	200	U	200	60	ug/Kg			05/11/17 12:26	40

TestAmerica Savannah

Page 14 of 24

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-479410/12

Matrix: Solid

Analysis Batch: 479410

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	2000	U	2000	440	ug/Kg			05/11/17 12:26	40
Carbon disulfide	200	U	200	44	ug/Kg			05/11/17 12:26	40
Methylene Chloride	200	U	200	39	ug/Kg			05/11/17 12:26	40
trans-1,2-Dichloroethene	200	U	200	25	ug/Kg			05/11/17 12:26	40
Methyl tert-butyl ether	200	U	200	40	ug/Kg			05/11/17 12:26	40
1,1-Dichloroethane	200	U	200	44	ug/Kg			05/11/17 12:26	40
cis-1,2-Dichloroethene	200	U	200	56	ug/Kg			05/11/17 12:26	40
2-Butanone (MEK)	1000	U	1000	96	ug/Kg			05/11/17 12:26	40
Chloroform	200	U	200	44	ug/Kg			05/11/17 12:26	40
1,1,1-Trichloroethane	200	U	200	24	ug/Kg			05/11/17 12:26	40
Carbon tetrachloride	200	U	200	33	ug/Kg			05/11/17 12:26	40
Benzene	200	U	200	29	ug/Kg			05/11/17 12:26	40
1,2-Dichloroethane	200	U	200	44	ug/Kg			05/11/17 12:26	40
Trichloroethene	200	U	200	52	ug/Kg			05/11/17 12:26	40
1,2-Dichloropropane	200	U	200	34	ug/Kg			05/11/17 12:26	40
Bromodichloromethane	200	U	200	39	ug/Kg			05/11/17 12:26	40
cis-1,3-Dichloropropene	200	U	200	33	ug/Kg			05/11/17 12:26	40
4-Methyl-2-pentanone	1000	U	1000	170	ug/Kg			05/11/17 12:26	40
Toluene	39.4	J	200	34	ug/Kg			05/11/17 12:26	40
trans-1,3-Dichloropropene	200	U	200	35	ug/Kg			05/11/17 12:26	40
1,1,2-Trichloroethane	200	U	200	52	ug/Kg			05/11/17 12:26	40
Tetrachloroethene	200	U	200	76	ug/Kg			05/11/17 12:26	40
2-Hexanone	1000	U	1000	130	ug/Kg			05/11/17 12:26	40
Dibromochloromethane	200	U	200	68	ug/Kg			05/11/17 12:26	40
1,2-Dibromoethane	200	U	200	60	ug/Kg			05/11/17 12:26	40
Chlorobenzene	200	U	200	38	ug/Kg			05/11/17 12:26	40
Ethylbenzene	200	U	200	52	ug/Kg			05/11/17 12:26	40
Xylenes, Total	400	U	400	44	ug/Kg			05/11/17 12:26	40
Styrene	200	U	200	37	ug/Kg			05/11/17 12:26	40
Bromoform	200	U	200	60	ug/Kg			05/11/17 12:26	40
Isopropylbenzene	200	U	200	76	ug/Kg			05/11/17 12:26	40
1,1,2,2-Tetrachloroethane	200	U	200	64	ug/Kg			05/11/17 12:26	40
1,3-Dichlorobenzene	200	U	200	64	ug/Kg			05/11/17 12:26	40
1,4-Dichlorobenzene	200	U	200	30	ug/Kg			05/11/17 12:26	40
1,2-Dichlorobenzene	200	U	200		ug/Kg			05/11/17 12:26	40
1,2-Dibromo-3-Chloropropane	400	U	400	180	ug/Kg			05/11/17 12:26	40
1,2,4-Trichlorobenzene	200	U	200	36	ug/Kg			05/11/17 12:26	40

ИR	MR
""	IIID

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		70 - 130		05/11/17 12:26	40
1,2-Dichloroethane-d4 (Surr)	106		70 - 130		05/11/17 12:26	40
Dibromofluoromethane (Surr)	108		70 - 130		05/11/17 12:26	40
4-Bromofluorobenzene (Surr)	90		70 - 130		05/11/17 12:26	40

TestAmerica Savannah

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-479410/6

Matrix: Solid

Analysis Batch: 479410

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Allalysis Datell. 47 94 10		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	·	2500	2570		ug/Kg		103	40 - 160	
Chloromethane		2500	2250		ug/Kg		90	40 - 160	
Vinyl chloride		2500	2320		ug/Kg		93	70 - 130	
Bromomethane		2500	2300		ug/Kg		92	40 - 160	
Chloroethane		2500	2370		ug/Kg		95	40 - 160	
Trichlorofluoromethane		2500	2360		ug/Kg		94	40 - 160	
1,1-Dichloroethene		2500	2610		ug/Kg		104	70 - 130	
Acetone		12500	11600		ug/Kg		93	40 - 160	
Carbon disulfide		2500	2470		ug/Kg		99	40 - 160	
Methylene Chloride		2500	2510		ug/Kg		100	70 - 130	
trans-1,2-Dichloroethene		2500	2450		ug/Kg		98	70 - 130	
Methyl tert-butyl ether		2500	2550		ug/Kg		102	70 - 130	
1,1-Dichloroethane		2500	2310		ug/Kg		92	70 - 130	
cis-1,2-Dichloroethene		2500	2370		ug/Kg		95	70 - 130	
2-Butanone (MEK)		12500	11800		ug/Kg		95	40 - 160	
Chloroform		2500	2420		ug/Kg		97	70 - 130	
1,1,1-Trichloroethane		2500	2540		ug/Kg		101	70 - 130	
Carbon tetrachloride		2500	2590		ug/Kg		103	70 - 130	
Benzene		2500	2360		ug/Kg		94	70 - 130	
1.2-Dichloroethane		2500	2400		ug/Kg		96	70 - 130	
Trichloroethene		2500	2640		ug/Kg		105	70 - 130	
1,2-Dichloropropane		2500	2220		ug/Kg		89	70 - 130	
Bromodichloromethane		2500	2520		ug/Kg		101	70 - 130	
cis-1,3-Dichloropropene		2500	2580		ug/Kg		103	70 - 130	
4-Methyl-2-pentanone		12500	12400		ug/Kg		99	40 - 160	
Toluene		2500	2420		ug/Kg		97	70 - 130	
trans-1,3-Dichloropropene		2500	2650		ug/Kg		106	70 - 130	
1,1,2-Trichloroethane		2500	2390		ug/Kg		95	70 - 130	
Tetrachloroethene		2500	2720		ug/Kg		109	70 - 130	
2-Hexanone		12500	12300		ug/Kg		98	40 - 160	
Dibromochloromethane		2500	2780		ug/Kg		111	70 - 130	
1,2-Dibromoethane		2500	2640		ug/Kg ug/Kg		106	70 - 130	
Chlorobenzene		2500	2540		ug/Kg ug/Kg		100	70 - 130 70 - 130	
Ethylbenzene		2500	2560		ug/Kg ug/Kg		102	70 - 130	
Xylenes, Total		5000	5240		ug/Kg ug/Kg		102	70 - 130 70 - 130	
Styrene		2500	2650		ug/Kg ug/Kg		106	70 - 130 70 - 130	
Bromoform		2500	3000		ug/Kg ug/Kg		120	70 - 130	
Isopropylbenzene		2500 2500	2700		ug/Kg ug/Kg		108	70 - 130 70 - 130	
1,1,2,2-Tetrachloroethane		2500 2500	2530		ug/Kg ug/Kg		100	70 - 130 70 - 130	
1,3-Dichlorobenzene		2500	2650		ug/Kg ug/Kg		101	70 - 130	
1,4-Dichlorobenzene		2500 2500	2600		ug/Kg ug/Kg		104	70 - 130 70 - 130	
1,4-Dichlorobenzene		2500	2590				104	70 - 130 70 - 130	
					ug/Kg				
1,2-Dibromo-3-Chloropropane		2500	2740		ug/Kg		110	40 - 160	
1,2,4-Trichlorobenzene		2500	2890		ug/Kg		116	70 - 130	
	LCS LCS								
Surrogate	%Recovery Qualifier	Limits							
Toluene-d8 (Surr)	104	70 - 130							

TestAmerica Savannah

9

4

6

8

9

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-479410/6

Lab Sample ID: LCSD 680-479410/7

Matrix: Solid

Analysis Batch: 479410

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 479410

Analysis Batch: 479410	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	2500	2560		ug/Kg		102	40 - 160	1	20
Chloromethane	2500	2330		ug/Kg		93	40 - 160	4	20
Vinyl chloride	2500	2400		ug/Kg		96	70 - 130	3	20
Bromomethane	2500	2490		ug/Kg		99	40 - 160	8	20
Chloroethane	2500	2470		ug/Kg		99	40 - 160	4	20
Trichlorofluoromethane	2500	2450		ug/Kg		98	40 - 160	4	20
1,1-Dichloroethene	2500	2750		ug/Kg		110	70 - 130	5	20
Acetone	12500	12600		ug/Kg		101	40 - 160	8	20
Carbon disulfide	2500	2570		ug/Kg		103	40 - 160	4	20
Methylene Chloride	2500	2710		ug/Kg		108	70 - 130	8	20
trans-1,2-Dichloroethene	2500	2580		ug/Kg		103	70 - 130	5	20
Methyl tert-butyl ether	2500	2700		ug/Kg		108	70 - 130	6	20
1,1-Dichloroethane	2500	2400		ug/Kg		96	70 - 130	4	20
cis-1,2-Dichloroethene	2500	2510		ug/Kg		100	70 - 130	6	20
2-Butanone (MEK)	12500	12600		ug/Kg		101	40 - 160	6	20
Chloroform	2500	2540		ug/Kg		102	70 - 130	5	20
1,1,1-Trichloroethane	2500	2600		ug/Kg		104	70 - 130	3	20
Carbon tetrachloride	2500	2710		ug/Kg		108	70 - 130	5	20
Benzene	2500	2480		ug/Kg		99	70 - 130	5	20
1,2-Dichloroethane	2500	2570		ug/Kg		103	70 - 130	7	20
Trichloroethene	2500	2790		ug/Kg		112	70 - 130	6	20
1,2-Dichloropropane	2500	2340		ug/Kg		94	70 - 130	5	20
Bromodichloromethane	2500	2580		ug/Kg		103	70 - 130	2	20
cis-1,3-Dichloropropene	2500	2670		ug/Kg		107	70 - 130	4	20
4-Methyl-2-pentanone	12500	13200		ug/Kg		105	40 - 160	6	20
Toluene	2500	2520		ug/Kg		101	70 - 130	4	20
trans-1,3-Dichloropropene	2500	2740		ug/Kg		110	70 - 130	3	20
1,1,2-Trichloroethane	2500	2600		ug/Kg		104	70 - 130	9	20
Tetrachloroethene	2500	2810		ug/Kg		112	70 - 130	3	20
2-Hexanone	12500	13000		ug/Kg		104	40 - 160	6	20
Dibromochloromethane	2500	2870		ug/Kg		115	70 - 130	3	20
1,2-Dibromoethane	2500	2730		ug/Kg		109	70 - 130	3	20
Chlorobenzene	2500	2580		ug/Kg		103	70 - 130	2	20
Ethylbenzene	2500	2600		ug/Kg		104	70 - 130	2	20
Xylenes, Total	5000	5270		ug/Kg		105	70 - 130	1	20
Styrene	2500	2710		ug/Kg		108	70 - 130	2	20
Bromoform	2500	3070		ug/Kg		123	70 - 130	2	20
Isopropylbenzene	2500	2710		ug/Kg		108	70 - 130	0	20
1,1,2,2-Tetrachloroethane	2500	2630		ug/Kg		105	70 - 130	4	20

TestAmerica Savannah

Page 17 of 24

5/15/2017

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138140-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-479410/7

Matrix: Solid

Analysis Batch: 479410

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

LCSD LCSD RPD %Rec.

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,3-Dichlorobenzene	2500	2630	-	ug/Kg		105	70 - 130	1	20
1,4-Dichlorobenzene	2500	2590		ug/Kg		104	70 - 130	0	20
1,2-Dichlorobenzene	2500	2570		ug/Kg		103	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	2500	2710		ug/Kg		108	40 - 160	1	20
1,2,4-Trichlorobenzene	2500	2860		ug/Kg		114	70 - 130	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	107		70 - 130
1,2-Dichloroethane-d4 (Surr)	105		70 - 130
Dibromofluoromethane (Surr)	107		70 - 130
4-Bromofluorobenzene (Surr)	104		70 - 130

QC Association Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138140-1

GC/MS VOA

Prep Batch: 478098

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
680-138140-1	6489-HA-2 (1-2)	Total/NA	Solid	5035
680-138140-2	6489-DUP-3	Total/NA	Solid	5035
680-138140-1 MS	6489-HA-2 (1-2)	Total/NA	Solid	5035
680-138140-1 MSD	6489-HA-2 (1-2)	Total/NA	Solid	5035

Analysis Batch: 479365

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138140-5	6489-TB	Total/NA	Water	8260B	
MB 680-479365/9	Method Blank	Total/NA	Water	8260B	
LCS 680-479365/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-479365/4	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 479410

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138140-1	6489-HA-2 (1-2)	Total/NA	Solid	8260B	478098
680-138140-2	6489-DUP-3	Total/NA	Solid	8260B	478098
MB 680-479410/12	Method Blank	Total/NA	Solid	8260B	
LCS 680-479410/6	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-479410/7	Lab Control Sample Dup	Total/NA	Solid	8260B	
680-138140-1 MS	6489-HA-2 (1-2)	Total/NA	Solid	8260B	478098
680-138140-1 MSD	6489-HA-2 (1-2)	Total/NA	Solid	8260B	478098

General Chemistry

Analysis Batch: 478690

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138140-1	6489-HA-2 (1-2)	Total/NA	Solid	Moisture	<u> </u>
680-138140-2	6489-DUP-3	Total/NA	Solid	Moisture	
680-138140-1 MS	6489-HA-2 (1-2)	Total/NA	Solid	Moisture	
680-138140-1 MSD	6489-HA-2 (1-2)	Total/NA	Solid	Moisture	

6

A

7

8

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-HA-2 (1-2)

Lab Sample ID: 680-138140-1

Matrix: Solid

Date Collected: 04/28/17 09:20 Date Received: 04/29/17 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478690	05/05/17 09:01	EDE	TAL SAV
	Instrument	ID: NOFOLIP								

Client Sample ID: 6489-HA-2 (1-2) Lab Sample ID: 680-138140-1

Date Collected: 04/28/17 09:20 **Matrix: Solid** Date Received: 04/29/17 10:50 Percent Solids: 90.2

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.474 g	5 mL	478098	05/01/17 13:10	FES	TAL SAV
Total/NA	Analysis	8260B		500	5 mL	5 mL	479410	05/11/17 17:26	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Lab Sample ID: 680-138140-2 Client Sample ID: 6489-DUP-3 Date Collected: 04/28/17 00:00 **Matrix: Solid**

Date Received: 04/29/17 10:50

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			478690	05/05/17 09:01	EDE	TAL SAV
	Instrument	ID: NOEQUIP								

Client Sample ID: 6489-DUP-3 Lab Sample ID: 680-138140-2 Date Collected: 04/28/17 00:00 **Matrix: Solid** Date Received: 04/29/17 10:50 Percent Solids: 88.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5 g	5 mL	478098	05/01/17 13:10	FES	TAL SAV
Total/NA	Analysis	8260B		1000	5 mL	5 mL	479410	05/11/17 17:55	JLK	TAL SAV
	Instrumer	nt ID: CMSAB								

Lab Sample ID: 680-138140-5 Client Sample ID: 6489-TB Date Collected: 04/28/17 00:00 **Matrix: Water**

Date Received: 04/29/17 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	479365	05/11/17 01:04	JD1	TAL SAV
	Instrumen	t ID: CMSP2								

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

Accreditation/Certification Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Laboratory: TestAmerica Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Georgia	State Program	4	N/A	06-30-17 *

TestAmerica Job ID: 680-138140-1

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Savannah

Method Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138140-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
Moisture	Percent Moisture	EPA	TAL SAV

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

6

3

4

-

6

0

10

11

1000

Date/Fime: 4 -29-17

Date/Time

Company

Date/Time:

Company

Received in Laborator By:

Date/Time:

Company:

Received by:

428 17 Date/Time:

EMMEDFO MOUSICS

Relinquished by

Relinquished by:

5/15/2017

Relinquished by:

Company

Received by

TestAmerica Savannah

5102 LaRoche Averue

Savannah, GA 31464 Phone: 912.354.7858 Fax:

193733 Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

TestAmerica

681-Atlanta TAL-8210 (0713) Sample Specific Notes: COCs Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only: Walk-in Client: Job / SDG No. .ab Sampling: ō Therm ID No COC No. 680-138140 Chain of Custody Disposal by Lab Carrier: Date: Cooler Temp. ("C): Obs'o Other: Return to Client 100 BILL 02M/2N Site Contact: Lab Contact: × RCRA × 8260 × × Perform MS / MSD (Y / N) Filtered Sample (Y/N) Date/Time: 1443 NPDES Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the 7 # of Cont. co ナ WORKING DAYS うなろう Matrix 105 501 Tel/Fax: Swme Analysis Turnaround Time Md Type (C=Comp, G=Grab) Project Manager: CACFALL Sample Regulatory Program: TAT if different from Below 0 9 2 weeks 2 days 1 week 1 day Sample CALENDAR DAYS Time 0260 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Custody Seal No. Poison B 4/28/17 Sample Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample. Address: 825 N Capital Mue Sample Identification Company Name: Enum Farensics Yes Project Name: Josef, Cleaners Client Contact City/State/Zip: Indicapality
Phone: Sule-888-7911 317-972-7875 Possible Hazard Identification: 6489-11A-2 (1-2) 1550 LIOZ #04 Custody Seals Intact 6489 - Dup-3 6489-TB Site: 6489 Non-Hazard

Page 23 of 24

Login Sample Receipt Checklist

Client: Environmental Forensic Investigation Inc Job Number: 680-138140-1

Login Number: 138140 List Source: TestAmerica Savannah

List Number: 1

Creator: Flanagan, Naomi V

Creator. Frantagan, Naomi V		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

1

3

4

5

0

Ö

10

11

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-138204-1

Client Project/Site: Ideal Cleaners - LaGrange, GA

For:

Environmental Forensic Investigation Inc Enviroforensics, Inc 825 N. Capitol Ave Indianapolis, Indiana 46204

Attn: Mr. Casey McFall

Ashi Barrett

Authorized for release by: 5/16/2017 1:29:15 PM

Eddie Barnett, Project Manager I (912)354-7858

eddie.barnett@testamericainc.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138204-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.
*	LCS or LCSD is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Oloobal y	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

ND

ML

NC

Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

Not Calculated

QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Minimum Level (Dioxin)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

5/16/2017

Sample Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID

6489-MW-1

6489-MW-2

6489-MW-3

6489-MW-4

6489-MW-5

6489-DUP-4

6489-EB-1

6489-TB

Lab Sample ID

680-138204-1

680-138204-2

680-138204-3

680-138204-4

680-138204-5

680-138204-6

680-138204-7

680-138204-8

TestAmerica Job ID: 680-138204-1

04/30/17 00:00 05/02/17 09:50

	0.1111		3		
Matrix	Collected	Received			
Water	04/30/17 12:57	05/02/17 09:50	Δ		
Water	04/30/17 13:44	05/02/17 09:50			
Water	04/30/17 14:36	05/02/17 09:50	5		
Water	04/30/17 16:26	05/02/17 09:50	J		
Water	04/30/17 15:38	05/02/17 09:50	C		
Water	04/30/17 00:00	05/02/17 09:50	0		
Water	04/30/17 17:45	05/02/17 09:50			

Water

Case Narrative

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138204-1

Job ID: 680-138204-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE Client: Environmental Forensic Investigation Inc Project: Ideal Cleaners - LaGrange, GA

Report Number: 680-138204-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 05/02/2017; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 6489-MW-1 (680-138204-1), 6489-MW-2 (680-138204-2), 6489-MW-3 (680-138204-3), 6489-MW-4 (680-138204-4), 6489-MW-5 (680-138204-5), 6489-DUP-4 (680-138204-6), 6489-EB-1 (680-138204-7) and 6489-TB (680-138204-8) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 05/11/2017 and 05/12/2017.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 680-479607.

2-Hexanone recovered outside the recovery criteria low for LCS 680-479400/3. Chloroform recovered outside the recovery criteria low for LCS 680-479607/3. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported. Refer to the QC report for details.

Vinyl chloride exceeded the RPD limit for the MSD of sample 6489-MW-1 MSD (680-138204-1) in batch 680-479400. Refer to the QC report for details.

Samples 6489-MW-4 (680-138204-4)[10X], 6489-MW-4 (680-138204-4)[100X], 6489-MW-5 (680-138204-5)[10X], 6489-MW-5 (680-138204-5)[2X], 6489-DUP-4 (680-138204-6)[10X] and 6489-DUP-4 (680-138204-6)[100X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

9

10

TestAmerica Savannah 5/16/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Lab Sample ID: 680-138204-1

Matrix: Water

Client Sample ID: 6489-MW-1 Date Collected: 04/30/17 12:57 Date Received: 05/02/17 09:50

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

ı	Analyzed	Dil Fac	5
			4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	1.0	U	1.0	0.60	ug/L			05/11/17 12:56	1
Chloromethane	1.0	U	1.0	0.40	ug/L			05/11/17 12:56	1
Vinyl chloride	1.0	U F2	1.0	0.50	ug/L			05/11/17 12:56	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/11/17 12:56	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/11/17 12:56	1
Trichlorofluoromethane	1.0	U	1.0	0.42	ug/L			05/11/17 12:56	1
1,1-Dichloroethene	1.0	U	1.0	0.36	ug/L			05/11/17 12:56	1
Acetone	10	U	10	7.0	ug/L			05/11/17 12:56	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/11/17 12:56	1
Methylene Chloride	5.0	U	5.0	2.5	ug/L			05/11/17 12:56	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.37	ug/L			05/11/17 12:56	1
Methyl tert-butyl ether	10	U	10	0.30	ug/L			05/11/17 12:56	1
1,1-Dichloroethane	1.0	U	1.0	0.38	-			05/11/17 12:56	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.41	_			05/11/17 12:56	1
2-Butanone (MEK)	10	U	10		ug/L			05/11/17 12:56	1
Chloroform	1.0	U	1.0	0.50	-			05/11/17 12:56	1
1,1,1-Trichloroethane	1.0	U	1.0	0.37	-			05/11/17 12:56	1
Carbon tetrachloride	1.0	U	1.0	0.33	-			05/11/17 12:56	1
Benzene	1.0	Ū	1.0	0.43	-			05/11/17 12:56	1
1,2-Dichloroethane	1.0	U	1.0	0.50	-			05/11/17 12:56	1
Trichloroethene	1.0	U	1.0	0.48	-			05/11/17 12:56	1
1,2-Dichloropropane	1.0	Ū	1.0	0.67				05/11/17 12:56	1
Bromodichloromethane	1.0		1.0	0.44	-			05/11/17 12:56	1
cis-1,3-Dichloropropene	1.0		1.0	0.40	•			05/11/17 12:56	1
4-Methyl-2-pentanone	10		10		ug/L			05/11/17 12:56	1
Toluene	1.0	U	1.0	0.48	_			05/11/17 12:56	1
trans-1,3-Dichloropropene	1.0		1.0	0.42	-			05/11/17 12:56	1
1,1,2-Trichloroethane	1.0		1.0	0.33				05/11/17 12:56	1
Tetrachloroethene	1.0		1.0	0.74	•			05/11/17 12:56	1
2-Hexanone	10	U *	10		ug/L			05/11/17 12:56	1
Dibromochloromethane	1.0		1.0	0.32	-			05/11/17 12:56	1
1,2-Dibromoethane	1.0		1.0	0.44	-			05/11/17 12:56	1
Chlorobenzene	1.0		1.0	0.26	-			05/11/17 12:56	1
Ethylbenzene	1.0		1.0	0.33				05/11/17 12:56	1
Xylenes, Total	1.0		1.0	0.23	-			05/11/17 12:56	1
Styrene	1.0	U	1.0	0.27	-			05/11/17 12:56	1
Bromoform	1.0		1.0	0.43	-			05/11/17 12:56	1
Isopropylbenzene	1.0		1.0	0.35				05/11/17 12:56	1
1,1,2,2-Tetrachloroethane	1.0		1.0	0.62	_			05/11/17 12:56	. 1
1,3-Dichlorobenzene	1.0		1.0	0.43				05/11/17 12:56	1
1,4-Dichlorobenzene	1.0		1.0	0.46	-			05/11/17 12:56	1
1,2-Dichlorobenzene	1.0		1.0	0.37	_			05/11/17 12:56	. 1
1,2-Dibromo-3-Chloropropane	5.0		5.0		ug/L			05/11/17 12:56	· · · · · · · 1
1,2,4-Trichlorobenzene	5.0		5.0		ug/L			05/11/17 12:56	1
		Qualifier					Prepared		Dil Fac

TestAmerica Savannah

05/11/17 12:56 05/11/17 12:56

05/11/17 12:56

Page 5 of 31

80 - 120

73 - 131

80 - 122

106

81

92

5/16/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138204-1

Lab Sample ID: 680-138204-1

Matrix: Water

Client Sample ID: 6489-MW-1

Date Collected: 04/30/17 12:57 Date Received: 05/02/17 09:50

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 4-Bromofluorobenzene (Surr)
 94
 80 - 120
 05/11/17 12:56
 1

Client Sample ID: 6489-MW-2 Lab Sample ID: 680-138204-2

Date Collected: 04/30/17 13:44

Matrix: Water

Date Received: 05/02/17 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	1.0	U	1.0	0.60	ug/L			05/11/17 13:18	1
Chloromethane	1.0	U	1.0	0.40	ug/L			05/11/17 13:18	1
Vinyl chloride	1.0	U	1.0	0.50	ug/L			05/11/17 13:18	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/11/17 13:18	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/11/17 13:18	1
Trichlorofluoromethane	1.0	U	1.0	0.42	ug/L			05/11/17 13:18	1
1,1-Dichloroethene	1.0	U	1.0	0.36	ug/L			05/11/17 13:18	1
Acetone	10	U	10	7.0	ug/L			05/11/17 13:18	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/11/17 13:18	1
Methylene Chloride	5.0	U	5.0	2.5	ug/L			05/11/17 13:18	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.37	ug/L			05/11/17 13:18	1
Methyl tert-butyl ether	10	U	10	0.30	ug/L			05/11/17 13:18	1
1,1-Dichloroethane	1.0	U	1.0	0.38	ug/L			05/11/17 13:18	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.41	ug/L			05/11/17 13:18	1
2-Butanone (MEK)	10	U	10	3.4	ug/L			05/11/17 13:18	1
Chloroform	1.2		1.0	0.50	ug/L			05/11/17 13:18	1
1,1,1-Trichloroethane	1.0	U	1.0	0.37	ug/L			05/11/17 13:18	1
Carbon tetrachloride	1.0	U	1.0	0.33	ug/L			05/11/17 13:18	1
Benzene	1.0	U	1.0	0.43	ug/L			05/11/17 13:18	1
1,2-Dichloroethane	1.0	U	1.0	0.50	ug/L			05/11/17 13:18	1
Trichloroethene	1.0	U	1.0	0.48	ug/L			05/11/17 13:18	1
1,2-Dichloropropane	1.0	U	1.0	0.67	ug/L			05/11/17 13:18	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/11/17 13:18	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.40	ug/L			05/11/17 13:18	1
4-Methyl-2-pentanone	10	U	10	2.1	ug/L			05/11/17 13:18	1
Toluene	1.0	U	1.0	0.48	ug/L			05/11/17 13:18	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.42	ug/L			05/11/17 13:18	1
1,1,2-Trichloroethane	1.0	U	1.0	0.33	ug/L			05/11/17 13:18	1
Tetrachloroethene	7.2		1.0	0.74	ug/L			05/11/17 13:18	1
2-Hexanone	10	U *	10	2.0	ug/L			05/11/17 13:18	1
Dibromochloromethane	1.0	U	1.0	0.32	ug/L			05/11/17 13:18	1
1,2-Dibromoethane	1.0	U	1.0	0.44	ug/L			05/11/17 13:18	1
Chlorobenzene	1.0	U	1.0	0.26	ug/L			05/11/17 13:18	1
Ethylbenzene	1.0	U	1.0	0.33	ug/L			05/11/17 13:18	1
Xylenes, Total	1.0	U	1.0	0.23	ug/L			05/11/17 13:18	1
Styrene	1.0	U	1.0	0.27	ug/L			05/11/17 13:18	1
Bromoform	1.0	Ü	1.0	0.43	ug/L			05/11/17 13:18	1
Isopropylbenzene	1.0	U	1.0	0.35	ug/L			05/11/17 13:18	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.62	ug/L			05/11/17 13:18	1
1,3-Dichlorobenzene	1.0	U	1.0	0.43	ug/L			05/11/17 13:18	1
1,4-Dichlorobenzene	1.0	U	1.0	0.46	-			05/11/17 13:18	1

TestAmerica Savannah

Page 6 of 31 5/16/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Client Sample ID: 6489-MW-2

Date Collected: 04/30/17 13:44 Date Received: 05/02/17 09:50 Lab Sample ID: 680-138204-2

Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	1.0	U	1.0	0.37	ug/L			05/11/17 13:18	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	1.1	ug/L			05/11/17 13:18	1
1,2,4-Trichlorobenzene	5.0	U	5.0	2.5	ug/L			05/11/17 13:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			80 - 120			-		05/11/17 13:18	1

 1,2-Dichloroethane-d4 (Surr)
 82
 73 - 131
 05/11/17 13:18

 Dibromofluoromethane (Surr)
 92
 80 - 122
 05/11/17 13:18

 4-Bromofluorobenzene (Surr)
 92
 80 - 120
 05/11/17 13:18

Client Sample ID: 6489-MW-3

Date Collected: 04/30/17 14:36

Lab Sample ID: 680-138204-3

Matrix: Water

Date Collected: 04/30/17 14:36
Date Received: 05/02/17 09:50

Method: 8260B - Volatile Organic Compounds (GC/MS) **Analyte** Result Qualifier RLMDL Unit D Analyzed Dil Fac Prepared Dichlorodifluoromethane 1.0 U 1.0 0.60 ug/L 05/11/17 14:03 1.0 U 1.0 Chloromethane 05/11/17 14:03 0.40 ug/L Vinyl chloride 1.0 U 1.0 0.50 ug/L 05/11/17 14:03 Bromomethane 5.0 U 5.0 2.5 ug/L 05/11/17 14:03 Chloroethane 5.0 U 5.0 2.5 ug/L 05/11/17 14:03 Trichlorofluoromethane 1.0 U 1.0 0.42 ug/L 05/11/17 14:03 1,1-Dichloroethene 1.0 U 1.0 0.36 ug/L 05/11/17 14:03 Acetone 10 U 10 7.0 ug/L 05/11/17 14:03 Carbon disulfide 2.0 U 2.0 1.0 ug/L 05/11/17 14:03 Methylene Chloride 5.0 U 5.0 2.5 ug/L 05/11/17 14:03 trans-1,2-Dichloroethene 1.0 U 0.37 ug/L 1.0 05/11/17 14:03 Methyl tert-butyl ether 10 U 10 0.30 ug/L 05/11/17 14:03 1,1-Dichloroethane 1.0 U 1.0 0.38 ug/L 05/11/17 14:03 cis-1,2-Dichloroethene 1.0 U 1.0 0.41 ug/L 05/11/17 14:03 10 U 10 05/11/17 14:03 2-Butanone (MEK) 3.4 ug/L Chloroform 1.0 U 1.0 0.50 ug/L 05/11/17 14:03 1,1,1-Trichloroethane 1.0 U 1.0 0.37 ug/L 05/11/17 14:03 Carbon tetrachloride 1.0 U 1.0 0.33 ug/L 05/11/17 14:03 Benzene 1.0 U 1.0 0.43 ug/L 05/11/17 14:03 1,2-Dichloroethane 1.0 U 1.0 0.50 ug/L 05/11/17 14:03 Trichloroethene 1.0 U 1.0 0.48 ug/L 05/11/17 14:03 1,2-Dichloropropane 1.0 U 1.0 0.67 ug/L 05/11/17 14:03 Bromodichloromethane 1.0 U 1.0 0.44 ug/L 05/11/17 14:03 1.0 1.0 U 0.40 ug/L cis-1,3-Dichloropropene 05/11/17 14:03 4-Methyl-2-pentanone 10 U 10 2.1 ug/L 05/11/17 14:03 Toluene 1.0 U 1.0 0.48 ug/L 05/11/17 14:03 trans-1,3-Dichloropropene 1.0 U 1.0 0.42 ug/L 05/11/17 14:03 1,1,2-Trichloroethane 1.0 U 1.0 0.33 ug/L 05/11/17 14:03 Tetrachloroethene 0.74 ug/L 05/11/17 14:03 1.0 U 1.0 2-Hexanone 10 U 3 10 2.0 ug/L 05/11/17 14:03 Dibromochloromethane 1.0 U 1.0 0.32 ug/L 05/11/17 14:03 1,2-Dibromoethane 1.0 U 1.0 0.44 ug/L 05/11/17 14:03 Chlorobenzene 1.0 U 1.0 0.26 ug/L 05/11/17 14:03 Ethylbenzene 1.0 U 1.0 0.33 ug/L 05/11/17 14:03

TestAmerica Savannah

Page 7 of 31

2

3

5

7

8

11

12

5/16/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138204-1

Lab Sample ID: 680-138204-3

05/11/17 14:03

Matrix: Water

Client Sample ID: 6489-MW-3 Date Collected: 04/30/17 14:36

Date Received: 05/02/17 09:50

4-Bromofluorobenzene (Surr)

Method: 8260B - Volatile Org	ganic Compo	unds (GC/	MS) (Continu	ıed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.0	U	1.0	0.23	ug/L			05/11/17 14:03	1
Styrene	1.0	U	1.0	0.27	ug/L			05/11/17 14:03	1
Bromoform	1.0	U	1.0	0.43	ug/L			05/11/17 14:03	1
Isopropylbenzene	1.0	U	1.0	0.35	ug/L			05/11/17 14:03	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.62	ug/L			05/11/17 14:03	1
1,3-Dichlorobenzene	1.0	U	1.0	0.43	ug/L			05/11/17 14:03	1
1,4-Dichlorobenzene	1.0	U	1.0	0.46	ug/L			05/11/17 14:03	1
1,2-Dichlorobenzene	1.0	U	1.0	0.37	ug/L			05/11/17 14:03	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	1.1	ug/L			05/11/17 14:03	1
1,2,4-Trichlorobenzene	5.0	U	5.0	2.5	ug/L			05/11/17 14:03	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	103		80 - 120			-		05/11/17 14:03	
1,2-Dichloroethane-d4 (Surr)	84		73 - 131					05/11/17 14:03	
Dibromofluoromethane (Surr)	93		80 - 122					05/11/17 14:03	1

Client Sample ID: 6489-MW-4 Lab Sample ID: 680-138204-4

80 - 120

95

Date Collected: 04/30/17 16:26 Matrix: Water Date Received: 05/02/17 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	10	U	10	6.0	ug/L			05/11/17 14:25	10
Chloromethane	10	U	10	4.0	ug/L			05/11/17 14:25	10
Vinyl chloride	170		10	5.0	ug/L			05/11/17 14:25	10
Bromomethane	50	U	50	25	ug/L			05/11/17 14:25	10
Chloroethane	50	U	50	25	ug/L			05/11/17 14:25	10
Trichlorofluoromethane	10	U	10	4.2	ug/L			05/11/17 14:25	10
1,1-Dichloroethene	10	U	10	3.6	ug/L			05/11/17 14:25	10
Acetone	100	U	100	70	ug/L			05/11/17 14:25	10
Carbon disulfide	20	U	20	10	ug/L			05/11/17 14:25	10
Methylene Chloride	50	U	50	25	ug/L			05/11/17 14:25	10
trans-1,2-Dichloroethene	8.0	J	10	3.7	ug/L			05/11/17 14:25	10
Methyl tert-butyl ether	100	U	100	3.0	ug/L			05/11/17 14:25	10
1,1-Dichloroethane	10	U	10	3.8	ug/L			05/11/17 14:25	10
cis-1,2-Dichloroethene	690		10	4.1	ug/L			05/11/17 14:25	10
2-Butanone (MEK)	100	U	100	34	ug/L			05/11/17 14:25	10
Chloroform	10	U	10	5.0	ug/L			05/11/17 14:25	10
1,1,1-Trichloroethane	10	U	10	3.7	ug/L			05/11/17 14:25	10
Carbon tetrachloride	10	U	10	3.3	ug/L			05/11/17 14:25	10
Benzene	10	U	10	4.3	ug/L			05/11/17 14:25	10
1,2-Dichloroethane	10	U	10	5.0	ug/L			05/11/17 14:25	10
Trichloroethene	270		10	4.8	ug/L			05/11/17 14:25	10
1,2-Dichloropropane	10	U	10	6.7	ug/L			05/11/17 14:25	10
Bromodichloromethane	10	U	10	4.4	ug/L			05/11/17 14:25	10
cis-1,3-Dichloropropene	10	U	10	4.0	ug/L			05/11/17 14:25	10
4-Methyl-2-pentanone	100	U	100	21	ug/L			05/11/17 14:25	10
Toluene	10	U	10	4.8	ug/L			05/11/17 14:25	10
trans-1,3-Dichloropropene	10	U	10	4.2	ug/L			05/11/17 14:25	10

TestAmerica Savannah

Page 8 of 31 5/16/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138204-1

Lab Sample ID: 680-138204-4

Matrix: Water

Client Sample ID: 6489-MW-4 Date Collected: 04/30/17 16:26

Date Received: 05/02/17 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	10	U	10	3.3	ug/L			05/11/17 14:25	10
2-Hexanone	100	U *	100	20	ug/L			05/11/17 14:25	10
Dibromochloromethane	10	U	10	3.2	ug/L			05/11/17 14:25	10
1,2-Dibromoethane	10	U	10	4.4	ug/L			05/11/17 14:25	10
Chlorobenzene	10	U	10	2.6	ug/L			05/11/17 14:25	10
Ethylbenzene	10	U	10	3.3	ug/L			05/11/17 14:25	10
Xylenes, Total	10	U	10	2.3	ug/L			05/11/17 14:25	10
Styrene	10	U	10	2.7	ug/L			05/11/17 14:25	10
Bromoform	10	U	10	4.3	ug/L			05/11/17 14:25	10
Isopropylbenzene	10	U	10	3.5	ug/L			05/11/17 14:25	10
1,1,2,2-Tetrachloroethane	10	U	10	6.2	ug/L			05/11/17 14:25	10
1,3-Dichlorobenzene	10	U	10	4.3	ug/L			05/11/17 14:25	10
1,4-Dichlorobenzene	10	U	10	4.6	ug/L			05/11/17 14:25	10
1,2-Dichlorobenzene	10	U	10	3.7	ug/L			05/11/17 14:25	10
1,2-Dibromo-3-Chloropropane	50	U	50	11	ug/L			05/11/17 14:25	10
1,2,4-Trichlorobenzene	50	U	50	25	ug/L			05/11/17 14:25	10

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104	80 - 120		05/11/17 14:25	10
1,2-Dichloroethane-d4 (Surr)	83	73 - 131		05/11/17 14:25	10
Dibromofluoromethane (Surr)	93	80 - 122		05/11/17 14:25	10
4-Bromofluorobenzene (Surr)	93	80 - 120		05/11/17 14:25	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	9500		100	74	ug/L			05/12/17 13:05	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		80 - 120			•		05/12/17 13:05	100
1,2-Dichloroethane-d4 (Surr)	79		73 - 131					05/12/17 13:05	100
Dibromofluoromethane (Surr)	93		80 - 122					05/12/17 13:05	100
4-Bromofluorobenzene (Surr)	101		80 - 120					05/12/17 13:05	100

Client Sample ID: 6489-MW-5 Lab Sample ID: 680-138204-5 Date Collected: 04/30/17 15:38 Matrix: Water Date Received: 05/02/17 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	2.0	U	2.0	1.2	ug/L			05/11/17 14:47	2
Chloromethane	2.0	U	2.0	0.80	ug/L			05/11/17 14:47	2
Vinyl chloride	210		2.0	1.0	ug/L			05/11/17 14:47	2
Bromomethane	10	U	10	5.0	ug/L			05/11/17 14:47	2
Chloroethane	10	U	10	5.0	ug/L			05/11/17 14:47	2
Trichlorofluoromethane	2.0	U	2.0	0.84	ug/L			05/11/17 14:47	2
1,1-Dichloroethene	1.3	J	2.0	0.72	ug/L			05/11/17 14:47	2
Acetone	20	U	20	14	ug/L			05/11/17 14:47	2
Carbon disulfide	4.0	U	4.0	2.0	ug/L			05/11/17 14:47	2
Methylene Chloride	10	U	10	5.0	ug/L			05/11/17 14:47	2
trans-1,2-Dichloroethene	4.5		2.0	0.74	ug/L			05/11/17 14:47	2

TestAmerica Savannah

Page 9 of 31

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Lab Sample ID: 680-138204-5

Matrix: Water

Client Sample ID: 6489-MW-5 Date Collected: 04/30/17 15:38

Styrene

Bromoform

Isopropylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,1,2,2-Tetrachloroethane

1,2-Dibromo-3-Chloropropane

4-Bromofluorobenzene (Surr)

Date Received: 05/02/17 09:50 Method: 8260B - Volatile Organic Compounds (GC/MS) - DL (Continued) Dil Fac **Analyte** Result Qualifier RL **MDL** Unit D **Prepared** Analyzed Methyl tert-butyl ether 20 U 20 0.60 ug/L 05/11/17 14:47 2 1,1-Dichloroethane 2.0 U 2.0 05/11/17 14:47 0.76 ug/L 2 2-Butanone (MEK) 20 U 20 6.8 ug/L 05/11/17 14:47 Chloroform 2.0 U 2.0 1.0 ug/L 05/11/17 14:47 2 2.0 U 2.0 2 1,1,1-Trichloroethane 0.74 ug/L 05/11/17 14:47 2 Carbon tetrachloride 2.0 U 2.0 0.66 ug/L 05/11/17 14:47 2 Benzene 2.0 U 2.0 0.86 ug/L 05/11/17 14:47 2 1,2-Dichloroethane 2.0 U 2.0 1.0 ug/L 05/11/17 14:47 05/11/17 14:47 2 2.0 0.96 ug/L **Trichloroethene** 37 2.0 U 2 1,2-Dichloropropane 2.0 1.3 ug/L 05/11/17 14:47 2.0 U 2 Bromodichloromethane 2.0 0.88 ug/L 05/11/17 14:47 cis-1,3-Dichloropropene 2.0 U 2.0 0.80 ug/L 05/11/17 14:47 2 2 20 U 20 4-Methyl-2-pentanone 4.2 ug/L 05/11/17 14:47 2 Toluene 2.0 U 2.0 0.96 ug/L 05/11/17 14:47 2.0 U 2.0 0.84 ug/L 2 trans-1,3-Dichloropropene 05/11/17 14:47 2 1,1,2-Trichloroethane 2.0 U 2.0 0.66 ug/L 05/11/17 14:47 2-Hexanone 20 U 20 4.0 ug/L 05/11/17 14:47 2 Dibromochloromethane 2.0 U 2.0 0.64 ug/L 05/11/17 14:47 2 1.2-Dibromoethane 2.0 U 2.0 0.88 ug/L 05/11/17 14:47 2 2.0 U 2 Chlorobenzene 2.0 0.52 ug/L 05/11/17 14:47 Ethylbenzene 2.0 U 2.0 0.66 ug/L 05/11/17 14:47 2 2 Xylenes, Total 2.0 U 2.0 0.46 ug/L 05/11/17 14:47

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105	80 - 120	\overline{O}	5/11/17 14:47	2
1,2-Dichloroethane-d4 (Surr)	82	73 - 131	0	5/11/17 14:47	2
Dibromofluoromethane (Surr)	92	80 - 122	0	5/11/17 14:47	2
4-Bromofluorobenzene (Surr)	91	80 - 120	0	5/11/17 14:47	2

2.0

2.0

2.0

2.0

2.0

2.0

2.0

10

10

0.54 ug/L

0.86 ug/L

0.70 ug/L

1.2 ug/L

0.86 ug/L

0.92 ug/L

0.74 ug/L

2.2 ug/L

5.0 ug/L

2.0 U

10 U

10 U

106

Method: 8260B - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	990		10	4.1	ug/L			05/12/17 13:31	10
Tetrachloroethene	36		10	7.4	ug/L			05/12/17 13:31	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		80 - 120			•		05/12/17 13:31	10
			70 404					05/12/17 13:31	10
1,2-Dichloroethane-d4 (Surr)	82		73 - 131					05/12/11 13:31	10

80 - 120

TestAmerica Savannah

05/12/17 13:31

2

2

2

2

2 2

2

2 2

05/11/17 14:47

05/11/17 14:47

05/11/17 14:47

05/11/17 14:47

05/11/17 14:47

05/11/17 14:47

05/11/17 14:47

05/11/17 14:47

05/11/17 14:47

5/16/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Lab Sample ID: 680-138204-6

Matrix: Water

Client Sample ID: 6489-DUP-4

Date Collected: 04/30/17 00:00 Date Received: 05/02/17 09:50

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL Dil Fac Analyte Result Qualifier RL**MDL** Unit D **Prepared** Analyzed Dichlorodifluoromethane 10 Ū 10 6.0 ug/L 05/11/17 15:09 10 Chloromethane 10 U 10 05/11/17 15:09 10 4.0 ug/L Vinyl chloride 140 10 5.0 ug/L 05/11/17 15:09 10 Bromomethane 50 U 50 25 ug/L 05/11/17 15:09 10 50 U 50 25 Chloroethane ug/L 05/11/17 15:09 10 Trichlorofluoromethane 10 U 10 4.2 ug/L 05/11/17 15:09 10 1,1-Dichloroethene 10 U 10 3.6 ug/L 05/11/17 15:09 10 Acetone 100 U 100 70 ug/L 05/11/17 15:09 10 20 U 20 Carbon disulfide ug/L 10 10 05/11/17 15:09 Methylene Chloride 50 50 25 10 Ü ug/L 05/11/17 15:09 10 3.7 ug/L 10 trans-1,2-Dichloroethene 8.4 J 05/11/17 15:09 Methyl tert-butyl ether 100 U 100 3.0 ug/L 05/11/17 15:09 10 10 U 1.1-Dichloroethane 10 3.8 ug/L 10 05/11/17 15:09 2-Butanone (MEK) 100 U 100 34 ug/L 05/11/17 15:09 10 Chloroform 10 U 10 5.0 ug/L 10 05/11/17 15:09 1,1,1-Trichloroethane 10 U 10 3.7 ug/L 05/11/17 15:09 10 Carbon tetrachloride 10 U 10 3.3 05/11/17 15:09 10 ug/L Benzene 10 U 10 4.3 ug/L 05/11/17 15:09 10 1,2-Dichloroethane 10 10 5.0 ug/L 05/11/17 15:09 10 10 ug/L **Trichloroethene** 280 4.8 05/11/17 15:09 10 1,2-Dichloropropane 10 U 10 6.7 ug/L 05/11/17 15:09 10 10 U 10 Bromodichloromethane 4.4 ug/L 05/11/17 15:09 10 10 cis-1,3-Dichloropropene 10 U 4.0 ug/L 05/11/17 15:09 10 100 4-Methyl-2-pentanone 100 U 21 ug/L 05/11/17 15:09 10 Toluene 10 U 10 4.8 ug/L 05/11/17 15:09 10 10 U 10 4.2 ug/L 05/11/17 15:09 10 trans-1,3-Dichloropropene 1,1,2-Trichloroethane 10 U 10 3.3 ug/L 05/11/17 15:09 10 2-Hexanone 100 100 LI 20 ug/L 05/11/17 15:09 10 Dibromochloromethane 10 U 10 3.2 ug/L 05/11/17 15:09 10 1,2-Dibromoethane 10 U 10 4.4 ug/L 10 05/11/17 15:09 10 U 10 2.6 ug/L Chlorobenzene 05/11/17 15:09 10 Ethylbenzene 10 U 10 3.3 ug/L 05/11/17 15:09 10 2.3 Xylenes, Total 10 U 10 ug/L 05/11/17 15:09 10 10 Styrene 10 U 2.7 ug/L 05/11/17 15:09 10 Bromoform 10 U 10 4.3 ug/L 05/11/17 15:09 10 10 10 Isopropylbenzene U 3.5 ug/L 05/11/17 15:09 10 10 U 10 1,1,2,2-Tetrachloroethane 6.2 ug/L 05/11/17 15:09 10 1,3-Dichlorobenzene 10 U 10 4.3 ug/L 10 05/11/17 15:09 10 U 10 1,4-Dichlorobenzene 4.6 ug/L 05/11/17 15:09 10

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104	80 - 120		05/11/17 15:09	10
1,2-Dichloroethane-d4 (Surr)	83	73 - 131		05/11/17 15:09	10
Dibromofluoromethane (Surr)	92	80 - 122		05/11/17 15:09	10
4-Bromofluorobenzene (Surr)	90	80 - 120		05/11/17 15:09	10

10

50

50

3.7 ug/L

11 ug/L

25 ug/L

10 U

50 U

50 U

TestAmerica Savannah

05/11/17 15:09

05/11/17 15:09

05/11/17 15:09

10

10

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138204-1

Client Sample ID: 6489-DUP-4 Lab

Date Collected: 04/30/17 00:00

Lab Sample ID: 680-138204-6 Matrix: Water

Date Received: 05/02/17 09:50

Method: 8260B - Volatile C	rganic Compo	unds (GC/	MS) - DL2						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	840		100	41	ug/L			05/12/17 13:56	100
Tetrachloroethene	10000		100	74	ug/L			05/12/17 13:56	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120					05/12/17 13:56	100
1,2-Dichloroethane-d4 (Surr)	81		73 - 131					05/12/17 13:56	100
Dibromofluoromethane (Surr)	98		80 - 122					05/12/17 13:56	100
4-Bromofluorobenzene (Surr)	104		80 - 120					05/12/17 13:56	100

Client Sample ID: 6489-EB-1 Lab Sample ID: 680-138204-7

Date Collected: 04/30/17 17:45 Matrix: Water

Date Received: 05/02/17 09:50

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	1.0	U	1.0	0.60	ug/L			05/12/17 12:39	1
Chloromethane	1.0	U	1.0	0.40	ug/L			05/12/17 12:39	1
Vinyl chloride	1.0	U	1.0	0.50	ug/L			05/12/17 12:39	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/12/17 12:39	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/12/17 12:39	1
Trichlorofluoromethane	1.0	U	1.0	0.42	ug/L			05/12/17 12:39	1
1,1-Dichloroethene	1.0	U	1.0	0.36	ug/L			05/12/17 12:39	1
Acetone	10	U	10	7.0	ug/L			05/12/17 12:39	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/12/17 12:39	1
Methylene Chloride	5.0	U	5.0	2.5	ug/L			05/12/17 12:39	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.37	ug/L			05/12/17 12:39	1
Methyl tert-butyl ether	10	U	10	0.30	ug/L			05/12/17 12:39	1
1,1-Dichloroethane	1.0	U	1.0	0.38	ug/L			05/12/17 12:39	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.41	ug/L			05/12/17 12:39	1
2-Butanone (MEK)	10	U	10	3.4	ug/L			05/12/17 12:39	1
Chloroform	1.0	U *	1.0	0.50	ug/L			05/12/17 12:39	1
1,1,1-Trichloroethane	1.0	U	1.0	0.37	ug/L			05/12/17 12:39	1
Carbon tetrachloride	1.0	U	1.0	0.33	ug/L			05/12/17 12:39	1
Benzene	1.0		1.0	0.43	ug/L			05/12/17 12:39	1
1,2-Dichloroethane	1.0	U	1.0	0.50	ug/L			05/12/17 12:39	1
Trichloroethene	1.0	U	1.0	0.48	ug/L			05/12/17 12:39	1
1,2-Dichloropropane	1.0		1.0	0.67	ug/L			05/12/17 12:39	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/12/17 12:39	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.40	ug/L			05/12/17 12:39	1
4-Methyl-2-pentanone	10		10	2.1	ug/L			05/12/17 12:39	1
Toluene	1.0	U	1.0	0.48	ug/L			05/12/17 12:39	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.42	-			05/12/17 12:39	1
1,1,2-Trichloroethane	1.0		1.0	0.33	ug/L			05/12/17 12:39	1
Tetrachloroethene	1.0	U	1.0	0.74	-			05/12/17 12:39	1
2-Hexanone	10	U	10	2.0	ug/L			05/12/17 12:39	1
Dibromochloromethane	1.0		1.0	0.32	ug/L			05/12/17 12:39	1
1,2-Dibromoethane	1.0	U	1.0	0.44	-			05/12/17 12:39	1
Chlorobenzene	1.0	U	1.0	0.26	-			05/12/17 12:39	1
Ethylbenzene	1.0		1.0	0.33	-			05/12/17 12:39	1
Xylenes, Total	1.0	U	1.0	0.23				05/12/17 12:39	1

TestAmerica Savannah

Page 12 of 31

2

3

4

6

9

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138204-1

Lab Sample ID: 680-138204-7

05/12/17 12:39

05/12/17 12:39

05/12/17 12:39

05/12/17 12:39

Matrix: Water

Client Sample ID: 6489-EB-1 Date Collected: 04/30/17 17:45

Date Received: 05/02/17 09:50

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ıed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	1.0	U	1.0	0.27	ug/L			05/12/17 12:39	1
Bromoform	1.0	U	1.0	0.43	ug/L			05/12/17 12:39	1
Isopropylbenzene	1.0	U	1.0	0.35	ug/L			05/12/17 12:39	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.62	ug/L			05/12/17 12:39	1
1,3-Dichlorobenzene	1.0	U	1.0	0.43	ug/L			05/12/17 12:39	1
1,4-Dichlorobenzene	1.0	U	1.0	0.46	ug/L			05/12/17 12:39	1
1,2-Dichlorobenzene	1.0	U	1.0	0.37	ug/L			05/12/17 12:39	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	1.1	ug/L			05/12/17 12:39	1
1,2,4-Trichlorobenzene	5.0	U	5.0	2.5	ug/L			05/12/17 12:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client Sample ID: 6489-TB Lab Sample ID: 680-138204-8 Date Collected: 04/30/17 00:00 **Matrix: Water**

80 - 120

73 - 131

80 - 122

80 - 120

102

79

92

101

Date Received: 05/02/17 09:50

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	1.0	U	1.0	0.60	ug/L			05/11/17 15:54	1
Chloromethane	1.0	U	1.0	0.40	ug/L			05/11/17 15:54	1
Vinyl chloride	1.0	U	1.0	0.50	ug/L			05/11/17 15:54	1
Bromomethane	5.0	U	5.0	2.5	ug/L			05/11/17 15:54	1
Chloroethane	5.0	U	5.0	2.5	ug/L			05/11/17 15:54	1
Trichlorofluoromethane	1.0	U	1.0	0.42	ug/L			05/11/17 15:54	1
1,1-Dichloroethene	1.0	U	1.0	0.36	ug/L			05/11/17 15:54	1
Acetone	10	U	10	7.0	ug/L			05/11/17 15:54	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/11/17 15:54	1
Methylene Chloride	5.0	U	5.0	2.5	ug/L			05/11/17 15:54	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.37	ug/L			05/11/17 15:54	1
Methyl tert-butyl ether	10	U	10	0.30	ug/L			05/11/17 15:54	1
1,1-Dichloroethane	1.0	U	1.0	0.38	ug/L			05/11/17 15:54	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.41	ug/L			05/11/17 15:54	1
2-Butanone (MEK)	10	U	10	3.4	ug/L			05/11/17 15:54	1
Chloroform	1.0	U	1.0	0.50	ug/L			05/11/17 15:54	1
1,1,1-Trichloroethane	1.0	U	1.0	0.37	ug/L			05/11/17 15:54	1
Carbon tetrachloride	1.0	U	1.0	0.33	ug/L			05/11/17 15:54	1
Benzene	1.0	U	1.0	0.43	ug/L			05/11/17 15:54	1
1,2-Dichloroethane	1.0	U	1.0	0.50	ug/L			05/11/17 15:54	1
Trichloroethene	1.0	U	1.0	0.48	ug/L			05/11/17 15:54	1
1,2-Dichloropropane	1.0	U	1.0	0.67	ug/L			05/11/17 15:54	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/11/17 15:54	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.40	ug/L			05/11/17 15:54	1
4-Methyl-2-pentanone	10	U	10	2.1	ug/L			05/11/17 15:54	1
Toluene	1.0	U	1.0	0.48	ug/L			05/11/17 15:54	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.42	ug/L			05/11/17 15:54	1
1,1,2-Trichloroethane	1.0		1.0	0.33	ug/L			05/11/17 15:54	1

TestAmerica Savannah

Page 13 of 31

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138204-1

Lab Sample ID: 680-138204-8

Matrix: Water

Client Sample ID: 6489-TB

Date Collected: 04/30/17 00:00 Date Received: 05/02/17 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	1.0	U	1.0	0.74	ug/L			05/11/17 15:54	1
2-Hexanone	10	U *	10	2.0	ug/L			05/11/17 15:54	1
Dibromochloromethane	1.0	U	1.0	0.32	ug/L			05/11/17 15:54	1
1,2-Dibromoethane	1.0	U	1.0	0.44	ug/L			05/11/17 15:54	1
Chlorobenzene	1.0	U	1.0	0.26	ug/L			05/11/17 15:54	1
Ethylbenzene	1.0	U	1.0	0.33	ug/L			05/11/17 15:54	1
Xylenes, Total	1.0	U	1.0	0.23	ug/L			05/11/17 15:54	1
Styrene	1.0	U	1.0	0.27	ug/L			05/11/17 15:54	1
Bromoform	1.0	U	1.0	0.43	ug/L			05/11/17 15:54	1
Isopropylbenzene	1.0	U	1.0	0.35	ug/L			05/11/17 15:54	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.62	ug/L			05/11/17 15:54	1
1,3-Dichlorobenzene	1.0	U	1.0	0.43	ug/L			05/11/17 15:54	1
1,4-Dichlorobenzene	1.0	U	1.0	0.46	ug/L			05/11/17 15:54	1
1,2-Dichlorobenzene	1.0	U	1.0	0.37	ug/L			05/11/17 15:54	1
1,2-Dibromo-3-Chloropropane	5.0	U	5.0	1.1	ug/L			05/11/17 15:54	1
1,2,4-Trichlorobenzene	5.0	U	5.0	2.5	ug/L			05/11/17 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120					05/11/17 15:54	1

Surrogate	%Recovery 0	Qualifier L	imits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105	8	0 - 120		05/11/17 15:54	1
1,2-Dichloroethane-d4 (Surr)	85	7.	3 - 131		05/11/17 15:54	1
Dibromofluoromethane (Surr)	94	8	0 - 122		05/11/17 15:54	1
4-Bromofluorobenzene (Surr)	92	8	0 - 120		05/11/17 15:54	1

2

3

5

1

9

10

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

C31/4111C11C4 000 1D. 000-100204-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-479400/9	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 479400	

	MB								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	1.0		1.0	0.60	_			05/11/17 10:43	1
Chloromethane	1.0		1.0		ug/L			05/11/17 10:43	1
Vinyl chloride	1.0		1.0	0.50	-			05/11/17 10:43	1
Bromomethane	5.0		5.0		ug/L			05/11/17 10:43	1
Chloroethane	5.0		5.0	2.5	ug/L			05/11/17 10:43	1
Trichlorofluoromethane	1.0	U	1.0	0.42	-			05/11/17 10:43	1
1,1-Dichloroethene	1.0	U	1.0	0.36	-			05/11/17 10:43	1
Acetone	10	U	10		ug/L			05/11/17 10:43	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/11/17 10:43	1
Methylene Chloride	5.0	U	5.0	2.5	ug/L			05/11/17 10:43	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.37	ug/L			05/11/17 10:43	1
Methyl tert-butyl ether	10	U	10	0.30	ug/L			05/11/17 10:43	1
1,1-Dichloroethane	1.0	U	1.0	0.38	ug/L			05/11/17 10:43	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.41	ug/L			05/11/17 10:43	1
2-Butanone (MEK)	10	U	10	3.4	ug/L			05/11/17 10:43	1
Chloroform	1.0		1.0	0.50	-			05/11/17 10:43	1
1,1,1-Trichloroethane	1.0	U	1.0	0.37	-			05/11/17 10:43	1
Carbon tetrachloride	1.0	U	1.0	0.33	-			05/11/17 10:43	1
Benzene	1.0	. U	1.0	0.43	-			05/11/17 10:43	1
1,2-Dichloroethane	1.0	U	1.0	0.50	-			05/11/17 10:43	1
Trichloroethene	1.0	U	1.0	0.48	-			05/11/17 10:43	1
1,2-Dichloropropane	1.0		1.0	0.67	-			05/11/17 10:43	1
Bromodichloromethane	1.0		1.0	0.44	-			05/11/17 10:43	1
cis-1,3-Dichloropropene	1.0		1.0	0.40	-			05/11/17 10:43	1
4-Methyl-2-pentanone	10		10		ug/L			05/11/17 10:43	1
Toluene	1.0		1.0	0.48	-			05/11/17 10:43	1
trans-1,3-Dichloropropene	1.0		1.0	0.42	-			05/11/17 10:43	1
1,1,2-Trichloroethane	1.0		1.0	0.33	-			05/11/17 10:43	· · · · · · · · 1
Tetrachloroethene	1.0		1.0	0.74	-			05/11/17 10:43	1
2-Hexanone	10		10		ug/L			05/11/17 10:43	1
Dibromochloromethane	1.0		1.0	0.32				05/11/17 10:43	· · · · · · · · · · · · · · · · · · ·
1,2-Dibromoethane	1.0		1.0	0.44	-			05/11/17 10:43	1
Chlorobenzene	1.0		1.0	0.44	-			05/11/17 10:43	1
Ethylbenzene	1.0		1.0	0.33	-			05/11/17 10:43	· · · · · · · · · · · · · · · · · · ·
•					-			05/11/17 10:43	1
Xylenes, Total	1.0		1.0	0.23					
Styrene	1.0		1.0	0.27				05/11/17 10:43	1
Bromoform	1.0		1.0	0.43				05/11/17 10:43	1
Isopropylbenzene	1.0		1.0		ug/L			05/11/17 10:43	1
1,1,2,2-Tetrachloroethane	1.0		1.0	0.62				05/11/17 10:43	1
1,3-Dichlorobenzene	1.0		1.0		ug/L			05/11/17 10:43	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			05/11/17 10:43	1
1,2-Dichlorobenzene	1.0		1.0	0.37				05/11/17 10:43	1
1,2-Dibromo-3-Chloropropane	5.0		5.0		ug/L			05/11/17 10:43	1
1,2,4-Trichlorobenzene	5.0	U	5.0	2.5	ug/L			05/11/17 10:43	1
	МВ	MB							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		80 - 120			-	•	05/11/17 10:43	1

TestAmerica Savannah

Page 15 of 31

5/16/2017

5

6

8

1 1

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138204-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-479400/9

Lab Sample ID: LCS 680-479400/3

Matrix: Water

Analysis Batch: 479400

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82		73 - 131		05/11/17 10:43	1
Dibromofluoromethane (Surr)	94		80 - 122		05/11/17 10:43	1
4-Bromofluorobenzene (Surr)	92		80 - 120		05/11/17 10:43	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 479400

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifie		D %Rec	Limits	
Dichlorodifluoromethane	50.0	58.6	ug/L	117	70 - 137	
Chloromethane	50.0	48.1	ug/L	96	76 - 149	
Vinyl chloride	50.0	54.5	ug/L	109	80 - 129	
Bromomethane	50.0	57.5	ug/L	115	43 - 146	
Chloroethane	50.0	50.2	ug/L	100	48 - 145	
Trichlorofluoromethane	50.0	52.3	ug/L	105	58 - 127	
1,1-Dichloroethene	50.0	49.9	ug/L	100	80 - 120	
Acetone	250	220	ug/L	88	68 - 132	
Carbon disulfide	50.0	49.8	ug/L	100	77 - 129	
Methylene Chloride	50.0	48.0	ug/L	96	80 - 120	
trans-1,2-Dichloroethene	50.0	52.1	ug/L	104	80 - 120	
Methyl tert-butyl ether	50.0	45.7	ug/L	91	80 - 122	
1,1-Dichloroethane	50.0	47.4	ug/L	95	80 - 120	
cis-1,2-Dichloroethene	50.0	46.2	ug/L	92	80 - 120	
2-Butanone (MEK)	250	223	ug/L	89	79 - 125	
Chloroform	50.0	47.6	ug/L	95	80 - 120	
1,1,1-Trichloroethane	50.0	47.3	ug/L	95	80 - 120	
Carbon tetrachloride	50.0	47.6	ug/L	95	67 - 125	
Benzene	50.0	50.2	ug/L	100	80 - 120	
1,2-Dichloroethane	50.0	43.4	ug/L	87	72 - 128	
Trichloroethene	50.0	51.1	ug/L	102	80 - 120	
1,2-Dichloropropane	50.0	48.0	ug/L	96	80 - 120	
Bromodichloromethane	50.0	47.1	ug/L	94	80 - 120	
cis-1,3-Dichloropropene	50.0	47.2	ug/L	94	80 - 129	
4-Methyl-2-pentanone	250	204	ug/L	82	80 - 134	
Toluene	50.0	51.1	ug/L	102	80 - 120	
trans-1,3-Dichloropropene	50.0	44.2	ug/L	88	80 - 128	
1,1,2-Trichloroethane	50.0	47.6	ug/L	95	80 - 120	
Tetrachloroethene	50.0	51.9	ug/L	104	71 - 123	
2-Hexanone	250	196 *	ug/L	78	80 - 131	
Dibromochloromethane	50.0	45.9	ug/L	92	68 - 120	
1,2-Dibromoethane	50.0	47.0	ug/L	94	75 - 126	
Chlorobenzene	50.0	53.0	ug/L	106	80 - 120	
Ethylbenzene	50.0	52.7	ug/L	105	80 - 120	
Xylenes, Total	100	103	ug/L	103	80 - 120	
Styrene	50.0	54.2	ug/L	108	80 - 126	
Bromoform	50.0	46.2	ug/L	92	52 - 122	
Isopropylbenzene	50.0	53.1	ug/L	106	79 - 126	
1,1,2,2-Tetrachloroethane	50.0	49.5	ug/L	99	76 - 126	

TestAmerica Savannah

5/16/2017

Page 16 of 31

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-479400/3

Matrix: Water

Analysis Batch: 479400

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte A	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,3-Dichlorobenzene	50.0	50.2		ug/L		100	80 - 120	
1,4-Dichlorobenzene	50.0	50.4		ug/L		101	80 - 120	
1,2-Dichlorobenzene	50.0	51.5		ug/L		103	80 - 120	
1,2-Dibromo-3-Chloropropane	50.0	48.9		ug/L		98	74 - 120	
1,2,4-Trichlorobenzene	50.0	49.4		ug/L		99	71 - 126	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
1,2-Dichloroethane-d4 (Surr)	82		73 - 131
Dibromofluoromethane (Surr)	94		80 - 122
4-Bromofluorobenzene (Surr)	89		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 479400

Lab Sample ID: LCSD 680-479400/4

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Dichlorodifluoromethane	50.0	53.6		ug/L		107	70 - 137	9	40
Chloromethane	50.0	50.1		ug/L		100	76 - 149	4	30
Vinyl chloride	50.0	53.7		ug/L		107	80 - 129	1	20
Bromomethane	50.0	61.7		ug/L		123	43 - 146	7	20
Chloroethane	50.0	49.3		ug/L		99	48 - 145	2	20
Trichlorofluoromethane	50.0	50.9		ug/L		102	58 - 127	3	20
1,1-Dichloroethene	50.0	48.4		ug/L		97	80 - 120	3	20
Acetone	250	240		ug/L		96	68 - 132	9	30
Carbon disulfide	50.0	48.1		ug/L		96	77 - 129	4	20
Methylene Chloride	50.0	48.6		ug/L		97	80 - 120	1	20
trans-1,2-Dichloroethene	50.0	51.3		ug/L		103	80 - 120	2	20
Methyl tert-butyl ether	50.0	48.4		ug/L		97	80 - 122	6	20
1,1-Dichloroethane	50.0	48.1		ug/L		96	80 - 120	1	20
cis-1,2-Dichloroethene	50.0	46.2		ug/L		92	80 - 120	0	20
2-Butanone (MEK)	250	241		ug/L		96	79 - 125	8	20
Chloroform	50.0	47.9		ug/L		96	80 - 120	1	20
1,1,1-Trichloroethane	50.0	46.6		ug/L		93	80 - 120	1	20
Carbon tetrachloride	50.0	45.9		ug/L		92	67 - 125	4	20
Benzene	50.0	50.4		ug/L		101	80 - 120	0	20
1,2-Dichloroethane	50.0	44.9		ug/L		90	72 - 128	3	50
Trichloroethene	50.0	50.2		ug/L		100	80 - 120	2	20
1,2-Dichloropropane	50.0	49.5		ug/L		99	80 - 120	3	20
Bromodichloromethane	50.0	48.4		ug/L		97	80 - 120	3	20
cis-1,3-Dichloropropene	50.0	49.5		ug/L		99	80 - 129	5	20
4-Methyl-2-pentanone	250	221		ug/L		89	80 - 134	8	20
Toluene	50.0	50.9		ug/L		102	80 - 120	0	20
trans-1,3-Dichloropropene	50.0	46.1		ug/L		92	80 - 128	4	30
1,1,2-Trichloroethane	50.0	50.8		ug/L		102	80 - 120	7	20
Tetrachloroethene	50.0	51.4		ug/L		103	71 - 123	1	20
2-Hexanone	250	217		ug/L		87	80 - 131	10	20
Dibromochloromethane	50.0	48.6		ug/L		97	68 - 120	6	20

TestAmerica Savannah

5/16/2017

Page 17 of 31

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-479400/4

Matrix: Water

Analysis Batch: 479400

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	50.0	51.2		ug/L		102	75 - 126	8	20
Chlorobenzene	50.0	53.4		ug/L		107	80 - 120	1	20
Ethylbenzene	50.0	52.4		ug/L		105	80 - 120	1	20
Xylenes, Total	100	103		ug/L		103	80 - 120	0	20
Styrene	50.0	54.8		ug/L		110	80 - 126	1	20
Bromoform	50.0	49.2		ug/L		98	52 - 122	6	20
Isopropylbenzene	50.0	52.8		ug/L		106	79 - 126	1	20
1,1,2,2-Tetrachloroethane	50.0	53.0		ug/L		106	76 - 126	7	20
1,3-Dichlorobenzene	50.0	51.0		ug/L		102	80 - 120	2	20
1,4-Dichlorobenzene	50.0	50.0		ug/L		100	80 - 120	1	20
1,2-Dichlorobenzene	50.0	51.8		ug/L		104	80 - 120	1	20
1,2-Dibromo-3-Chloropropane	50.0	51.1		ug/L		102	74 - 120	4	20
1,2,4-Trichlorobenzene	50.0	51.5		ug/L		103	71 - 126	4	20

LCSD LCSD %Recovery Qualifier Limits 101

Toluene-d8 (Surr) 80 - 120 1,2-Dichloroethane-d4 (Surr) 87 73 - 131 97 Dibromofluoromethane (Surr) 80 - 122 4-Bromofluorobenzene (Surr) 91 80 - 120

Lab Sample ID: 680-138204-1 MS

Matrix: Water

Surrogate

Analysis Batch: 479400

Client Sample ID: 6489-MW-1

Prep Type: Total/NA

Alialysis Datcil. 47 3400		_							
	•	Sample	Spike		MS				%Rec.
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	1.0	U	50.0	53.4		ug/L		107	70 - 137
Chloromethane	1.0	U	50.0	48.9		ug/L		98	76 - 149
Vinyl chloride	1.0	U F2	50.0	54.7		ug/L		109	80 - 129
Bromomethane	5.0	Ü	50.0	65.3		ug/L		131	43 - 146
Chloroethane	5.0	U	50.0	49.1		ug/L		98	48 - 145
Trichlorofluoromethane	1.0	U	50.0	50.1		ug/L		100	58 - 127
1,1-Dichloroethene	1.0	U	50.0	50.4		ug/L		101	80 - 120
Acetone	10	U	250	224		ug/L		90	68 - 132
Carbon disulfide	2.0	U	50.0	49.1		ug/L		98	77 - 129
Methylene Chloride	5.0	U	50.0	45.5		ug/L		91	80 - 120
trans-1,2-Dichloroethene	1.0	U	50.0	51.3		ug/L		103	80 - 120
Methyl tert-butyl ether	10	U	50.0	45.1		ug/L		90	80 - 122
1,1-Dichloroethane	1.0	U	50.0	47.0		ug/L		94	80 - 120
cis-1,2-Dichloroethene	1.0	U	50.0	44.6		ug/L		89	80 - 120
2-Butanone (MEK)	10	U	250	220		ug/L		88	79 - 125
Chloroform	1.0	U	50.0	46.7		ug/L		93	80 - 120
1,1,1-Trichloroethane	1.0	U	50.0	46.6		ug/L		93	80 - 120
Carbon tetrachloride	1.0	U	50.0	46.5		ug/L		93	67 - 125
Benzene	1.0	U	50.0	49.9		ug/L		100	80 - 120
1,2-Dichloroethane	1.0	U	50.0	41.7		ug/L		83	72 - 128
Trichloroethene	1.0	U	50.0	50.1		ug/L		100	80 - 120
1,2-Dichloropropane	1.0		50.0	46.2		ug/L		92	80 - 120
Bromodichloromethane	1.0	U	50.0	45.0		ug/L		90	80 - 120

TestAmerica Savannah

Page 18 of 31

5/16/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-138204-1 MS

Client Sample ID: 6489-MW-1

Matrix: Water Prep Type: Total/NA Analysis Batch: 479400 %Rec Sample Sample Spike

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,3-Dichloropropene	1.0	U	50.0	43.7		ug/L		87	80 - 129	
4-Methyl-2-pentanone	10	U	250	205		ug/L		82	80 - 134	
Toluene	1.0	U	50.0	49.4		ug/L		99	80 - 120	
trans-1,3-Dichloropropene	1.0	U	50.0	41.5		ug/L		83	80 - 128	
1,1,2-Trichloroethane	1.0	U	50.0	47.2		ug/L		94	80 - 120	
Tetrachloroethene	1.0	U	50.0	51.6		ug/L		103	71 - 123	
2-Hexanone	10	U *	250	203		ug/L		81	80 - 131	
Dibromochloromethane	1.0	U	50.0	44.0		ug/L		88	68 - 120	
1,2-Dibromoethane	1.0	U	50.0	46.4		ug/L		93	75 - 126	
Chlorobenzene	1.0	U	50.0	52.5		ug/L		105	80 - 120	
Ethylbenzene	1.0	U	50.0	53.1		ug/L		106	80 - 120	
Xylenes, Total	1.0	U	100	102		ug/L		102	80 - 120	
Styrene	1.0	U	50.0	52.7		ug/L		105	80 - 126	
Bromoform	1.0	U	50.0	45.4		ug/L		91	52 - 122	
Isopropylbenzene	1.0	U	50.0	54.0		ug/L		108	79 - 126	
1,1,2,2-Tetrachloroethane	1.0	U	50.0	50.9		ug/L		102	76 - 126	
1,3-Dichlorobenzene	1.0	U	50.0	48.1		ug/L		96	80 - 120	
1,4-Dichlorobenzene	1.0	U	50.0	47.6		ug/L		95	80 - 120	
1,2-Dichlorobenzene	1.0	U	50.0	47.9		ug/L		96	80 - 120	
1,2-Dibromo-3-Chloropropane	5.0	U	50.0	47.3		ug/L		95	74 - 120	
1,2,4-Trichlorobenzene	5.0	U	50.0	44.1		ug/L		88	71 - 126	

MS MS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 102 80 - 120 1,2-Dichloroethane-d4 (Surr) 81 73 - 131 Dibromofluoromethane (Surr) 92 80 - 122 4-Bromofluorobenzene (Surr) 88 80 - 120

Lab Sample ID: 680-138204-1 MSD

Matrix: Water

Analysis Batch: 479400

Allalysis Datell. 41 3400											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	1.0	U	50.0	53.1		ug/L		106	70 - 137	0	40
Chloromethane	1.0	U	50.0	48.8		ug/L		98	76 - 149	0	30
Vinyl chloride	1.0	U F2	50.0	44.2	F2	ug/L		88	80 - 129	21	20
Bromomethane	5.0	Ü	50.0	54.9		ug/L		110	43 - 146	17	20
Chloroethane	5.0	U	50.0	49.4		ug/L		99	48 - 145	1	20
Trichlorofluoromethane	1.0	U	50.0	53.3		ug/L		107	58 - 127	6	20
1,1-Dichloroethene	1.0	U	50.0	51.0		ug/L		102	80 - 120	1	20
Acetone	10	U	250	222		ug/L		89	68 - 132	1	30
Carbon disulfide	2.0	U	50.0	49.9		ug/L		100	77 - 129	2	20
Methylene Chloride	5.0	U	50.0	46.1		ug/L		92	80 - 120	1	20
trans-1,2-Dichloroethene	1.0	U	50.0	52.3		ug/L		105	80 - 120	2	20
Methyl tert-butyl ether	10	U	50.0	44.9		ug/L		90	80 - 122	0	20
1,1-Dichloroethane	1.0	U	50.0	47.0		ug/L		94	80 - 120	0	20
cis-1,2-Dichloroethene	1.0	U	50.0	44.3		ug/L		89	80 - 120	1	20
2-Butanone (MEK)	10	U	250	225		ug/L		90	79 - 125	2	20

TestAmerica Savannah

Client Sample ID: 6489-MW-1

Prep Type: Total/NA

Page 19 of 31

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-138204-1 MSD

Matrix: Water

Analysis Batch: 479400

Client Sample ID: 6489-MW-1

Prep Type: Total/NA

,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	1.0	U	50.0	46.8		ug/L		94	80 - 120	0	20
1,1,1-Trichloroethane	1.0	U	50.0	46.8		ug/L		94	80 - 120	1	20
Carbon tetrachloride	1.0	U	50.0	47.6		ug/L		95	67 - 125	2	20
Benzene	1.0	U	50.0	50.0		ug/L		100	80 - 120	0	20
1,2-Dichloroethane	1.0	U	50.0	41.2		ug/L		82	72 - 128	1	50
Trichloroethene	1.0	U	50.0	50.7		ug/L		101	80 - 120	1	20
1,2-Dichloropropane	1.0	U	50.0	47.2		ug/L		94	80 - 120	2	20
Bromodichloromethane	1.0	U	50.0	45.5		ug/L		91	80 - 120	1	20
cis-1,3-Dichloropropene	1.0	U	50.0	44.8		ug/L		90	80 - 129	3	20
4-Methyl-2-pentanone	10	U	250	206		ug/L		83	80 - 134	1	20
Toluene	1.0	U	50.0	50.8		ug/L		102	80 - 120	3	20
trans-1,3-Dichloropropene	1.0	U	50.0	41.9		ug/L		84	80 - 128	1	30
1,1,2-Trichloroethane	1.0	U	50.0	46.6		ug/L		93	80 - 120	1	20
Tetrachloroethene	1.0	U	50.0	52.3		ug/L		105	71 - 123	1	20
2-Hexanone	10	U *	250	202		ug/L		81	80 - 131	1	20
Dibromochloromethane	1.0	U	50.0	45.2		ug/L		90	68 - 120	3	20
1,2-Dibromoethane	1.0	U	50.0	46.9		ug/L		94	75 - 126	1	20
Chlorobenzene	1.0	U	50.0	53.0		ug/L		106	80 - 120	1	20
Ethylbenzene	1.0	U	50.0	53.6		ug/L		107	80 - 120	1	20
Xylenes, Total	1.0	U	100	105		ug/L		105	80 - 120	2	20
Styrene	1.0	U	50.0	53.8		ug/L		108	80 - 126	2	20
Bromoform	1.0	U	50.0	45.6		ug/L		91	52 - 122	0	20
Isopropylbenzene	1.0	U	50.0	54.8		ug/L		110	79 - 126	1	20
1,1,2,2-Tetrachloroethane	1.0	U	50.0	51.4		ug/L		103	76 - 126	1	20
1,3-Dichlorobenzene	1.0	U	50.0	50.0		ug/L		100	80 - 120	4	20
1,4-Dichlorobenzene	1.0	U	50.0	49.3		ug/L		99	80 - 120	3	20
1,2-Dichlorobenzene	1.0	U	50.0	49.6		ug/L		99	80 - 120	4	20
1,2-Dibromo-3-Chloropropane	5.0	U	50.0	48.5		ug/L		97	74 - 120	2	20
1,2,4-Trichlorobenzene	5.0	U	50.0	48.6		ug/L		97	71 - 126	10	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		80 - 120
1,2-Dichloroethane-d4 (Surr)	80		73 - 131
Dibromofluoromethane (Surr)	93		80 - 122
4-Bromofluorobenzene (Surr)	90		80 - 120

Lab Sample ID: MB 680-479607/8

Matrix: Water

Analysis Batch: 479607

Client Sample ID: Method Blank Prep Type: Total/NA

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0	0.60	ug/L			05/12/17 12:14	1
1.0	U	1.0	0.40	ug/L			05/12/17 12:14	1
1.0	U	1.0	0.50	ug/L			05/12/17 12:14	1
5.0	U	5.0	2.5	ug/L			05/12/17 12:14	1
5.0	U	5.0	2.5	ug/L			05/12/17 12:14	1
1.0	U	1.0	0.42	ug/L			05/12/17 12:14	1
1.0	U	1.0	0.36	ug/L			05/12/17 12:14	1
	Result 1.0 1.0 1.0 5.0 5.0 1.0	MB MB Result Qualifier 1.0 U 1.0 U 1.0 U 5.0 U 5.0 U 1.0 U 1.0 U	Result Qualifier RL 1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 5.0 U 5.0 5.0 U 5.0 1.0 U 1.0	Result Qualifier RL MDL 1.0 U 1.0 0.60 1.0 U 1.0 0.40 1.0 U 1.0 0.50 5.0 U 5.0 2.5 5.0 U 5.0 2.5 1.0 U 1.0 0.42	Result Qualifier RL MDL Unit 1.0 U 1.0 0.60 ug/L 1.0 U 1.0 0.40 ug/L 1.0 U 1.0 0.50 ug/L 5.0 U 5.0 2.5 ug/L 5.0 U 5.0 2.5 ug/L 1.0 U 1.0 0.42 ug/L	Result Qualifier RL MDL unit D 1.0 U 1.0 0.60 ug/L ug/L 1.0 U 1.0 0.40 ug/L ug/L 1.0 U 1.0 0.50 ug/L 5.0 U 5.0 2.5 ug/L 5.0 U 1.0 0.42 ug/L	Result Qualifier RL MDL unit D Prepared 1.0 U 1.0 0.60 ug/L ug/L 1.0 U 1.0 0.40 ug/L 1.0 U 1.0 0.50 ug/L 5.0 U 5.0 2.5 ug/L 5.0 U 0.42 ug/L	Result Qualifier RL MDL Unit D Prepared Analyzed 1.0 U 1.0 0.60 ug/L 05/12/17 12:14 1.0 U 1.0 0.40 ug/L 05/12/17 12:14 1.0 U 1.0 0.50 ug/L 05/12/17 12:14 5.0 U 5.0 2.5 ug/L 05/12/17 12:14 5.0 U 5.0 2.5 ug/L 05/12/17 12:14 1.0 U 1.0 0.42 ug/L 05/12/17 12:14

TestAmerica Savannah

Page 20 of 31

5/16/2017

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample	ID: MB	680-479607/8
------------	--------	--------------

Matrix: Water

1,2,4-Trichlorobenzene

Analysis Batch: 479607

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	10	U	10	7.0	ug/L			05/12/17 12:14	1
Carbon disulfide	2.0	U	2.0	1.0	ug/L			05/12/17 12:14	1
Methylene Chloride	5.0	U	5.0	2.5	ug/L			05/12/17 12:14	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.37	ug/L			05/12/17 12:14	1
Methyl tert-butyl ether	10	U	10	0.30	ug/L			05/12/17 12:14	1
1,1-Dichloroethane	1.0	U	1.0	0.38	ug/L			05/12/17 12:14	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.41	ug/L			05/12/17 12:14	1
2-Butanone (MEK)	10	U	10	3.4	ug/L			05/12/17 12:14	1
Chloroform	1.0	U	1.0	0.50	ug/L			05/12/17 12:14	1
1,1,1-Trichloroethane	1.0	U	1.0	0.37	ug/L			05/12/17 12:14	1
Carbon tetrachloride	1.0	U	1.0	0.33	ug/L			05/12/17 12:14	1
Benzene	1.0	U	1.0	0.43	ug/L			05/12/17 12:14	1
1,2-Dichloroethane	1.0	U	1.0	0.50	ug/L			05/12/17 12:14	1
Trichloroethene	1.0	U	1.0	0.48	ug/L			05/12/17 12:14	1
1,2-Dichloropropane	1.0		1.0		ug/L			05/12/17 12:14	1
Bromodichloromethane	1.0	U	1.0	0.44	ug/L			05/12/17 12:14	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.40	ug/L			05/12/17 12:14	1
4-Methyl-2-pentanone	10	U	10	2.1	ug/L			05/12/17 12:14	1
Toluene	1.0	U	1.0	0.48	ug/L			05/12/17 12:14	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.42	ug/L			05/12/17 12:14	1
1,1,2-Trichloroethane	1.0	U	1.0	0.33	ug/L			05/12/17 12:14	1
Tetrachloroethene	1.0	U	1.0		ug/L			05/12/17 12:14	1
2-Hexanone	10	U	10	2.0	ug/L			05/12/17 12:14	1
Dibromochloromethane	1.0	U	1.0	0.32	ug/L			05/12/17 12:14	1
1,2-Dibromoethane	1.0	U	1.0	0.44	ug/L			05/12/17 12:14	1
Chlorobenzene	1.0	U	1.0	0.26	ug/L			05/12/17 12:14	1
Ethylbenzene	1.0		1.0	0.33	ug/L			05/12/17 12:14	1
Xylenes, Total	1.0	U	1.0	0.23	ug/L			05/12/17 12:14	1
Styrene	1.0	U	1.0	0.27	ug/L			05/12/17 12:14	1
Bromoform	1.0		1.0	0.43	ug/L			05/12/17 12:14	1
Isopropylbenzene	1.0	U	1.0	0.35	ug/L			05/12/17 12:14	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.62	ug/L			05/12/17 12:14	1
1,3-Dichlorobenzene	1.0		1.0	0.43	ug/L			05/12/17 12:14	1
1,4-Dichlorobenzene	1.0	U	1.0	0.46	ug/L			05/12/17 12:14	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			05/12/17 12:14	1
1,2-Dibromo-3-Chloropropane	5.0		5.0		ug/L			05/12/17 12:14	1
' '					•				

1D	MD
IID	IVID

5.0 U

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120		05/12/17 12:14	1
1,2-Dichloroethane-d4 (Surr)	81		73 - 131		05/12/17 12:14	1
Dibromofluoromethane (Surr)	94		80 - 122		05/12/17 12:14	1
4-Bromofluorobenzene (Surr)	101		80 - 120		05/12/17 12:14	1

5.0

2.5 ug/L

TestAmerica Savannah

05/12/17 12:14

Page 21 of 31

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

StAmerica Job ID: 680-138204-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-479607/3

Matrix: Water

Analysis Batch: 479607

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

A 1 4 .	Spike		LCS		_	0/ 5	%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	50.0	39.8		ug/L		80	70 - 137	
Chloromethane	50.0	46.4		ug/L		93	76 - 149	
Vinyl chloride	50.0	46.7		ug/L		93	80 - 129	
Bromomethane	50.0	40.0		ug/L		80	43 - 146	
Chloroethane	50.0	45.3		ug/L		91	48 - 145	
Trichlorofluoromethane	50.0	43.9		ug/L		88	58 - 127	
1,1-Dichloroethene	50.0	44.8		ug/L		90	80 - 120	
Acetone	250	215		ug/L		86	68 - 132	
Carbon disulfide	50.0	51.1		ug/L		102	77 - 129	
Methylene Chloride	50.0	42.2		ug/L		84	80 - 120	
trans-1,2-Dichloroethene	50.0	49.2		ug/L		98	80 - 120	
Methyl tert-butyl ether	50.0	48.5		ug/L		97	80 - 122	
1,1-Dichloroethane	50.0	48.4		ug/L		97	80 - 120	
cis-1,2-Dichloroethene	50.0	41.4		ug/L		83	80 - 120	
2-Butanone (MEK)	250	199		ug/L		79	79 - 125	
Chloroform	50.0	39.7	•	ug/L		79	80 - 120	
1,1,1-Trichloroethane	50.0	40.5		ug/L		81	80 - 120	
Carbon tetrachloride	50.0	43.6		ug/L		87	67 - 125	
Benzene	50.0	49.2		ug/L		98	80 - 120	
1,2-Dichloroethane	50.0	49.9		ug/L		100	72 - 128	
Trichloroethene	50.0	45.6		ug/L		91	80 - 120	
1,2-Dichloropropane	50.0	51.2		ug/L		102	80 - 120	
Bromodichloromethane	50.0	43.7		ug/L		87	80 - 120	
cis-1,3-Dichloropropene	50.0	47.8		ug/L		96	80 - 129	
4-Methyl-2-pentanone	250	213		ug/L		85	80 - 134	
Toluene	50.0	43.1		ug/L		86	80 - 120	
trans-1,3-Dichloropropene	50.0	45.2		ug/L		90	80 - 128	
1,1,2-Trichloroethane	50.0	44.2		ug/L		88	80 - 120	
Tetrachloroethene	50.0	46.0		ug/L		92	71 - 123	
2-Hexanone	250	222		ug/L		89	80 - 131	
Dibromochloromethane	50.0	44.4		ug/L		89	68 - 120	
1,2-Dibromoethane	50.0	44.4		ug/L		89	75 - 126	
Chlorobenzene	50.0	48.0		ug/L		96	80 - 120	
Ethylbenzene	50.0	50.4		ug/L		101	80 - 120	
Xylenes, Total	100	101		ug/L		101	80 - 120	
Styrene	50.0	52.7		ug/L		105	80 - 126	
Bromoform	50.0	45.3		ug/L		91	52 - 122	
Isopropylbenzene	50.0	53.0		ug/L		106	79 - 126	
1,1,2,2-Tetrachloroethane	50.0	46.4		ug/L		93	76 - 126	
1,3-Dichlorobenzene	50.0	52.6		ug/L		105	80 - 120	
1,4-Dichlorobenzene	50.0	45.9		ug/L		92	80 - 120	
1,2-Dichlorobenzene	50.0	47.4		ug/L		95	80 - 120	
1,2-Dibromo-3-Chloropropane	50.0	51.9		ug/L		104	74 - 120	
1,2,4-Trichlorobenzene	50.0	54.3		ug/L		109	71 - 126	

%Recovery Qualifier Limits 80 - 120

Surrogate

Toluene-d8 (Surr)

TestAmerica Savannah

Page 22 of 31

5

7

0

10

11

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-479607/3

Lab Sample ID: LCSD 680-479607/4

Matrix: Water

Matrix: Water

Analysis Batch: 479607

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	83		73 - 131
Dibromofluoromethane (Surr)	85		80 - 122
4-Bromofluorobenzene (Surr)	95		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 479607

Analysis Batch. 479007	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	47.5	-	ug/L		95	70 - 137	18	40
Chloromethane	50.0	49.3		ug/L		99	76 - 149	6	30
Vinyl chloride	50.0	51.7		ug/L		103	80 - 129	10	20
Bromomethane	50.0	48.1		ug/L		96	43 - 146	19	20
Chloroethane	50.0	52.3		ug/L		105	48 - 145	14	20
Trichlorofluoromethane	50.0	51.3		ug/L		103	58 - 127	15	20
1,1-Dichloroethene	50.0	52.7		ug/L		105	80 - 120	16	20
Acetone	250	245		ug/L		98	68 - 132	13	30
Carbon disulfide	50.0	57.9		ug/L		116	77 - 129	12	20
Methylene Chloride	50.0	51.4		ug/L		103	80 - 120	20	20
trans-1,2-Dichloroethene	50.0	54.7		ug/L		109	80 - 120	11	20
Methyl tert-butyl ether	50.0	53.7		ug/L		107	80 - 122	10	20
1,1-Dichloroethane	50.0	47.0		ug/L		94	80 - 120	3	20
cis-1,2-Dichloroethene	50.0	47.1		ug/L		94	80 - 120	13	20
2-Butanone (MEK)	250	217		ug/L		87	79 - 125	9	20
Chloroform	50.0	44.0		ug/L		88	80 - 120	10	20
1,1,1-Trichloroethane	50.0	44.5		ug/L		89	80 - 120	9	20
Carbon tetrachloride	50.0	47.6		ug/L		95	67 - 125	9	20
Benzene	50.0	48.9		ug/L		98	80 - 120	1	20
1,2-Dichloroethane	50.0	49.3		ug/L		99	72 - 128	1	50
Trichloroethene	50.0	48.1		ug/L		96	80 - 120	5	20
1,2-Dichloropropane	50.0	49.4		ug/L		99	80 - 120	4	20
Bromodichloromethane	50.0	47.3		ug/L		95	80 - 120	8	20
cis-1,3-Dichloropropene	50.0	52.2		ug/L		104	80 - 129	9	20
4-Methyl-2-pentanone	250	224		ug/L		90	80 - 134	5	20
Toluene	50.0	47.4		ug/L		95	80 - 120	9	20
trans-1,3-Dichloropropene	50.0	49.7		ug/L		99	80 - 128	9	30
1,1,2-Trichloroethane	50.0	47.2		ug/L		94	80 - 120	7	20
Tetrachloroethene	50.0	50.2		ug/L		100	71 - 123	9	20
2-Hexanone	250	231		ug/L		93	80 - 131	4	20
Dibromochloromethane	50.0	48.5		ug/L		97	68 - 120	9	20
1,2-Dibromoethane	50.0	48.0		ug/L		96	75 - 126	8	20
Chlorobenzene	50.0	49.6		ug/L		99	80 - 120	3	20
Ethylbenzene	50.0	51.4		ug/L		103	80 - 120	2	20
Xylenes, Total	100	103		ug/L		103	80 - 120	2	20
Styrene	50.0	53.4		ug/L		107	80 - 126	1	20
Bromoform	50.0	47.1		ug/L		94	52 - 122	4	20
Isopropylbenzene	50.0	54.4		ug/L		109	79 - 126	3	20
1,1,2,2-Tetrachloroethane	50.0	42.9		ug/L		86	76 - 126	8	20

TestAmerica Savannah

5/16/2017

Page 23 of 31

QC Sample Results

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138204-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-479607/4

Matrix: Water

Analysis Batch: 479607

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

LCSD LCSD RPD %Rec.

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,3-Dichlorobenzene	50.0	49.4	-	ug/L		99	80 - 120	6	20
1,4-Dichlorobenzene	50.0	47.2		ug/L		94	80 - 120	3	20
1,2-Dichlorobenzene	50.0	48.3		ug/L		97	80 - 120	2	20
1,2-Dibromo-3-Chloropropane	50.0	51.1		ug/L		102	74 - 120	2	20
1,2,4-Trichlorobenzene	50.0	57.0		ug/L		114	71 - 126	5	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		80 - 120
1,2-Dichloroethane-d4 (Surr)	80		73 - 131
Dibromofluoromethane (Surr)	93		80 - 122
4-Bromofluorobenzene (Surr)	88		80 - 120

QC Association Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138204-1

GC/MS VOA

Analysis Batch: 479400

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138204-1	6489-MW-1	Total/NA	Water	8260B	_
680-138204-2	6489-MW-2	Total/NA	Water	8260B	
680-138204-3	6489-MW-3	Total/NA	Water	8260B	
680-138204-4 - DL	6489-MW-4	Total/NA	Water	8260B	
680-138204-5 - DL	6489-MW-5	Total/NA	Water	8260B	
680-138204-6 - DL	6489-DUP-4	Total/NA	Water	8260B	
680-138204-8	6489-TB	Total/NA	Water	8260B	
MB 680-479400/9	Method Blank	Total/NA	Water	8260B	
LCS 680-479400/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-479400/4	Lab Control Sample Dup	Total/NA	Water	8260B	
680-138204-1 MS	6489-MW-1	Total/NA	Water	8260B	
680-138204-1 MSD	6489-MW-1	Total/NA	Water	8260B	

Analysis Batch: 479607

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-138204-4 - DL2	6489-MW-4	Total/NA	Water	8260B	
680-138204-5 - DL2	6489-MW-5	Total/NA	Water	8260B	
680-138204-6 - DL2	6489-DUP-4	Total/NA	Water	8260B	
680-138204-7	6489-EB-1	Total/NA	Water	8260B	
MB 680-479607/8	Method Blank	Total/NA	Water	8260B	
LCS 680-479607/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-479607/4	Lab Control Sample Dup	Total/NA	Water	8260B	

7

8

9

10

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Lab Sample ID: 680-138204-1

Client Sample ID: 6489-MW-1 Date Collected: 04/30/17 12:57

Date Received: 05/02/17 09:50

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	479400	05/11/17 12:56	SMC	TAL SAV
	Inetrumon	+ ID: CMSD2								

Lab Sample ID: 680-138204-2

Client Sample ID: 6489-MW-2 Date Collected: 04/30/17 13:44 **Matrix: Water**

Date Received: 05/02/17 09:50

Batch Batch Dil Initial Final Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor Amount** Amount Number **Analyst** Total/NA 479400 05/11/17 13:18 SMC TAL SAV Analysis 8260B 5 mL 5 mL Instrument ID: CMSP2

Client Sample ID: 6489-MW-3 Lab Sample ID: 680-138204-3 **Matrix: Water**

Date Collected: 04/30/17 14:36 Date Received: 05/02/17 09:50

Instrument ID: CMSP2

Batch Dil Initial Final **Batch** Batch **Prepared** Method Amount Number **Prep Type** Type Run Factor **Amount** or Analyzed Analyst Lab Total/NA 8260B 479400 05/11/17 14:03 SMC TAL SAV Analysis 5 ml 5 ml

Lab Sample ID: 680-138204-4 Client Sample ID: 6489-MW-4 Date Collected: 04/30/17 16:26 **Matrix: Water**

Date Received: 05/02/17 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	8260B at ID: CMSB	DL2	100	5 mL	5 mL	479607	05/12/17 13:05	СМВ	TAL SAV
Total/NA	Analysis Instrumer	8260B	DL	10	5 mL	5 mL	479400	05/11/17 14:25	SMC	TAL SAV

Client Sample ID: 6489-MW-5 Lab Sample ID: 680-138204-5 Matrix: Water

Date Collected: 04/30/17 15:38 Date Received: 05/02/17 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	8260B t ID: CMSB	DL2	10	5 mL	5 mL	479607	05/12/17 13:31	СМВ	TAL SAV
Total/NA	Analysis Instrumen	8260B t ID: CMSP2	DL	2	5 mL	5 mL	479400	05/11/17 14:47	SMC	TAL SAV

TestAmerica Savannah

Lab Chronicle

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

TestAmerica Job ID: 680-138204-1

Lab Sample ID: 680-138204-6

Matrix: Water

Date Collected: 04/30/17 00:00 Date Received: 05/02/17 09:50

Client Sample ID: 6489-DUP-4

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL2	100	5 mL	5 mL	479607	05/12/17 13:56	CMB	TAL SAV
	Instrumen	t ID: CMSB								
Total/NA	Analysis	8260B	DL	10	5 mL	5 mL	479400	05/11/17 15:09	SMC	TAL SAV
	Instrumen	t ID: CMSP2								

Lab Sample ID: 680-138204-7 Client Sample ID: 6489-EB-1

Date Collected: 04/30/17 17:45 **Matrix: Water** Date Received: 05/02/17 09:50

Dil Batch **Batch** Initial Final **Batch** Prepared **Prep Type** Method Amount Amount Number or Analyzed Analyst Type Run **Factor** Lab

Total/NA Analysis 8260B 5 mL 5 mL 479607 05/12/17 12:39 CMB TAL SAV Instrument ID: CMSB

Client Sample ID: 6489-TB Lab Sample ID: 680-138204-8

Date Collected: 04/30/17 00:00 **Matrix: Water** Date Received: 05/02/17 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	479400	05/11/17 15:54	SMC	TAL SAV
	Instrumer	nt ID: CMSP2								

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica Savannah

Accreditation/Certification Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA

Laboratory: TestAmerica Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Georgia	State Program	4	N/A	06-30-17 *

TestAmerica Job ID: 680-138204-1

TestAmerica Savannah

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Environmental Forensic Investigation Inc Project/Site: Ideal Cleaners - LaGrange, GA TestAmerica Job ID: 680-138204-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

۾

a

10

11

TestAmerica Savannah

5102 LaRoche Avenue

Savannah, GA 31404 Phone: 912.354.7858 Fax:

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

TestAmerica

193729

681-Atlanta TAL-8210 (0713) Sample Specific Notes: COCs 10(0F)3.30 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Strate Strate For Lab Use Only: ab Sampling: Job / SDG No. Walk-in Client: Date/Time: Date/Time: COC No. 680-138204 Chain of Custody LTS S. Company: Company: Disposal by Lab Carrier: Date: Received in Laboratory by Other: Return to Client 738 Received by: Received by: Site Contact: dem 221 Lab Contact: X RCRA 0258 HIS NOC × × × × × X X × Perform MS / MSD (Y / V) 200 Fiftered Sample (Y / N) Date/Time: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Regulatory Program: Dw NPDES # of Cont. d M 3 3 K 3 3 M Date/Time: Date/Time: WORKING DAYS Matrix water 3 deca water water water when **WORTH** water Analysis Turnaround Time Project Manager: CALCFall Type (C=Comp, G=Grab) sache s Sample TAT if different from Below 10 9 9 9 9 9 2 weeks 1 week 2 days 1 day Enuraturensics Company: Sample CALENDAR DAYS 1257 1436 1626 1338 SHLI Tel/Fax: Same 4/30/17 13-44 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Custody Seal No. B nosion 4/30/11 4/30/17 4/30/17 Company: 2000 4/20/17 4 30/17 Company Sample Date Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample Address: 815 D Capital Hun City/State/Zip: Indeminapolis, IN Holot S Sample Identification Company Name: Enviro Forcusics Client Contact Project Name: Ideal Chamics Phone: 866-888-7411 317-972-7875 Possible Hazard Identification 6489- Kun-2 6489- ALM-4 2-mm - 6849 4-4nd-68+7 6489-12W-1 6409- MW-3 6489 - E8-1 Custody Seals Intact PO# 20170554 4489-TB Clist Spilling 1995 Relinquished by: Site: 4489 Det ax:

Page 30 of 31

Login Sample Receipt Checklist

Client: Environmental Forensic Investigation Inc Job Number: 680-138204-1

Login Number: 138204 List Source: TestAmerica Savannah

List Number: 1

Creator: Banda, Christy S

Creator. Banda, Christy 5		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

<u>၁</u>

9

11

ENVIRO Forensics		Boring Log						
Project Number: 6489	3.5	Boring No.: DP- (/1	MW	-			
Project Name: Ideal Cleaver	2	Location: A (NE corner of property)	5		·			
Drilling Contractor: Betts		Logged by: CSprelbauer						
Drilling Method: DP	Date Started: 4125 117 1053	Total Depth (ft bgs): 20 Depth to Water (ft	bgs):	16				
Borehole Dia. (in):	Date Completed: 4/25/17	Surface Elevation (ft MSL):						
Remarks:								
		HA first 5 ft						
Type very Log		Material Decorieties	evel	PID Reading (ppm)				
Depth (ft) Sample No. Sample Type Recovery Graphic Log		Material Description						
Sar Sar Grr US			W.	II d	Backfill			
	0-0.5; asphalt		1	0.2				
	0.5-1 : Brown STHY	day, moist, + + gravel, low plasticat	8	٥.3				
-2	1.0-3 : Light brown	sand, well sorted, f-m, + f gravel,		_				
-3	moist, + 5	int.	1 1	0.5				
-4	3-6 : same but	poor suret		_				
-5 -	: very light	brown, sitty clay, low plasticity, it orange), forme f-c /+ gravel sixed wents from breaking down igneous rocks		4.0				
-6	6-16 modeled (w	ith orange), when the down inhears rocks						
7 000	Mineral tragg	ments from breaking down igneous rocks		0.3				
-8	11 - 10 - Bracks cond.	51H, f, well sorted, saturated		-				
-9				4.6				
_10		pinh, silty day, nonplastic, unsaturate		-				
-11	19-20: arange 1 green	August 1211 1 22 11 1 22 11		0.6				
-12	Consideration		Projection .		America			
-13				0.3				
- 14								
<u></u>			144	0.6				
-16			T	_				
- 17				0,6				
-18				_				
19				0.5				
-20			100	<u>ی. ن</u>				
-21	5012 3-4 19-20	1180						
-22	ail 3-4	11324						
-23	200, 10-770	1150						
- 24	19							
-25	ens /m							
- 26								
- 27								
- 21								
	Page	1 of 2						

Proj	ect Nu	mbe	er: 6	189			Boring	No.: DP-2		Mikkakingga arunganan	***************************************
	ect Na				anev	5		ste building,			
Drillin	ng Contra	actor:	Beth	3		HAMMIN Террина на н	Logged by: Cspielbauer		***************		(Nax
	ng Metho		DP	**************************************		Date Started: 4/25/17 1352		Depth to Water (fi	bgs)	: 11	
Boreh	ole Dia.	(in):				Date Completed: 4 25/17	Surface Elevation (ft MSL):				
Remar	rks:	1 1								Yau	***************************************
Depth (ft)	Sample No.	Sample Type	% Recovery	Graphic Log	USCS Code		Material Description		Water Level	PID Reading (ppm)	Backfill
	***************************************			***********************		0-0.5: asphalt	uudinimminin liita ka	ississississississistetti (1900) on taleetti kantaa kantaa kantaa kantaa kantaa kantaa kantaa kantaa kantaa ka		0.3	-
-1 -2 -3 -4			00,		A A suggestion of the superference of the supe	0.5-11: wight group so sand, + f			ANALY WATER TO THE STATE OF THE	0.4	
-5 -6 -7			100		Annual superior super	Saturated from 15		wated again	Cook	0.6	
-9 -10 -11						+ f grand	sity play, t-s f-c gra , unsaturated		SCHOOL STATE OF THE STATE OF TH	0.4	
- 12	low-		90		and the same and t		70000 Ton. 1000 Ton. 1000 Ton.			8.0	CARROLL CONTRACTOR CON
- 13 - 14										0.6	000000000000000000000000000000000000000
-15									and descriptions of the second		-
-16									and reconstructions.	0.6	
-17					on or other designation of the state of the				AD THE PROPERTY OF THE PARTY OF	23.6	Commission of the Commission o
- 18			100		and the second s				SPANIAL DESCRIPTION OF THE PARTY OF THE PART		
- 19					independent and a second			171. mm.		23.0	***************************************
-20				-		23.63	Parinos (a)			+	
- 21 - 22					de constitución de la constituci	145°	Con Se Constant			L	- Control of the Cont
- 23 - 24 25					elitelentanisticum grant g	CO. is las so	Borings (disturb)			and the state of t	Antonio delegación de la conferencia en exercia mais la substanta de estado de la conferencia de estado de la conferencia de estado de e
- 26 - 27		Total Control of the				50			The second secon	,,,,,,	Annual Annual Control of the Control

ENVIRO	lorei	nsic	S		P	Bori	ing I	og			
Project N	umbe	er: ¿	2489			Boring	No.:	DP-3	//	MW-	-3
Project N	ame:	Id	leal (Hear	urs	Location: D					
Drilling Cont	ractor:	Bett	S			Logged by: Cspreibauer					
Drilling Meth	od: 3	SP 9C		***************************************	Date Started: 4/25/17 1604	Total Depth (ft bgs): 20	Depth	to Water (f	t bgs)	: 4	
Borehole Dia	. (in):	Miliona en 11100000	***************************************	******************************	Date Completed: 4 25 17 1430		***************************************	ellilitariitaen, passaan en		and a succession of the succes	
Remarks:			40 (n. mar) 180 mar (n. mar)					and the state of t			and the same of th
Depth (ft) Sample No.	Sample Type	% Recovery	Graphic Log	USCS Code		Material Description	14 the	154	Water Level	PID Reading (ppm)	Backfill
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12	8 1 9				0-0.5: asphoult 0.5-4: ught brown 4-: Light grow sutcrated	, sandy silt, motet, t . Sandy f.m, well sort at 4 ft.	f grow, t-s s	el (1t,	¥ 444	16.5 20.5 19.8	2-4 4-5
- 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26					last 1.5 ft had to u	2-3 1642 19.20 1647		cend Innu	a de la constante de la consta	- 25.2 - 0.4 -	18.5

ENV	IRO /	ore	nsic	s				Borin	g Log			
Proje	ect Nu	mb	er: 6	489				Boring N	o.: DP-4			
Proje	ect Na	me:	JA	eal	Clean	ers	Location: B			VALUE ATTENDED		***************************************
	g Contra		****				Logged by: CSprelb	XXXX	tidelektrist tidelektrist i verangerannen serrinnen merenna			errania de la comunidada d
Drillin	g Metho	d:	DP	***************************************	***************************************	Date Started: 4 25 17	Total Depth (ft bgs):		Depth to Water (f	t bgs)	1: 16	
	ole Dia.	(in):	www.mana.asq.a	haaraan an markan day ba		Date Completed: 4/25/17	Surface Elevation (ft	MSL):			nd 1 de 100 de 27 de 11 de 27 de	
Remari	ks:	de capacita por 1700 na		7. 1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	***************************************		6.00			T	ogaroon record de sampe	
Depth (ft)	Sample No.	Sample Type	% Recovery	Graphic Log	USCS Code		Material Description			Water Level	PID Reading (ppm)	Backfill
-11 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27			001			16-18: Brown orange 5 18-20: Brown orange black largers, +	sticty, t f so some bluelgrang sandy silt, model brown modeled sand f, unsertime	y, modeled and, + of modeling	sily clay, granal		0.8	

Proj	ect Nu	mbe	er: 6	489			Boring No.: DP-5			
Proj	ect Na	me:	Ide	al Cl	eaul	\$	Location: E, S of site building	. 18886/12 <u>w. 1990</u>	***************************************	***************************************
	ng Contra		*************			ananan-aran-aran-aran-aran-aran-aran-ar	Logged by: Csprelbauer	***************************************	***************************************	te destribute de la destrada d
	ng Metho					Date Started: 1/26/17 828	Total Depth (ft bgs): 20 Depth to Water	(ft bgs)): 3.5	
Borel	ole Dia.	(in):				Date Completed: 4 247	Surface Elevation (ft MSL):			***************************************
Rema	rks:							·····	Manustrassaturas (m. f. marcons)	7
Depth (ft)	Sample No.	Sample Type	% Recovery	Graphic Log	USCS Code		Material Description	Water Level	PID Reading (ppm)	Backfill
- 1					-3	D-3 : Brown Sitty	cand, f-m, well sorted, moist,		6.+	97.
-3			100				g day, low plasticity, worst	3.5	No-Fl	
-5 -6						SWAVATER				31/
-7 -8 -9			0			4.5-5 : Dank Bro non plas	wa sitty day, t-s f-m sand,	AMANANAN AND AND AND AND AND AND AND AND A	-	
-10 -11						5-10: No Recovery	Sandy + f grand		258	
- 12 - 13 - 14			50			10-18.8: Paul Brown	sandy, sit, e-c, poor sort, + f grand		190	
-15 - 16						18-20 : Brown July	books like rqueous rodes that	and the second s	178	
- 17 - 18 - 19			00			withering	on place, mores		87.2	
-20 -21 -22 -23 -24 -25 -26						Eost: 19	20 1000 1-2 1000 3-8 1005			

ENVIR	ofor	rens	ics				Boring Log			
Project	Num	nber:	(Br	189			Boring No.: DP-6	1	14/-	-5
Project	Nam	ne: e	delts	r Jd	eal (Cleaners	Location: F	1	1.7	
Drilling (Contract	or:	Butt	5			Logged by: Cspreibauer			
Drilling N	/lethod:	D.	•			Date Started: 425/17	Total Depth (ft bgs): 20 Depth to Water (ft bgs)): 4	
Borehole Remarks:	Dia. (în	1):			***************************************	Date Completed: 4/25/17	Surface Elevation (ft MSL):	~~~~~		See Market July 19
	Sample No.	Sample Type		Graphic Log	USCS Code		Material Description	Water Level	PID Reading (ppm)	Dackell
-1 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17		Appropriation of the control of the	00	0		4-5: Brown Silly 5-10 Brown f-c becomes light 10-14: Dark brown S Saturated	Sandy Silt, f-m, + f grand, Sandy Silt, f-m, + f grand, Saturated Sitty Sand, poor Sort, + sitt and sand non-sortwated The brown at 7 ft andy silt, f grainel, + fine grand wange sand f-c, poor sort, +-s silt, wange restated to hook as you inchease whe weathered rocks as you inchease whe weathered rocks as you inchease	44	113	
-18 -19 -20 -21 -22 -23 -24 -25					enceptation and the second and the s	Soil 10520	15-16 15-16 1130 1244		- 1.7 - -	

Page 1 of 2

-27

ENV	/IRO	ore	nsic	S			Boring Log			
Proje	ect Nu	ımb	er: L	489	***************************************		Boring No.: DP-7	11	MW-	-4
Proje	ect Na	me:	Ide	eal Cl	ranos	s	Location: H (where J is on the map)	ten	south	,
Drillin	g Contr	actor:	Bet	15			Logged by: CSprelbauer			***************************************
Drillin	ng Metho	od:	PP			Date Started: 4/26/17	Total Depth (ft bgs): 23.5 Depth to Water (f	t bgs)	: 15	***************************************
***************************************	ole Dia.					Date Completed: 4/21/17	Surface Elevation (ft MSL):	************	***************************************	***************************************
Remari	ks:									***************************************
Depth (ft)	Sample No.	Sample Type	% Recovery	Graphic Log	USCS Code		Material Description	Water Level	PID Reading (ppm)	Backfill
-1				***************************************		0-2: orange sitty day	1 1000 Plastruty, +-s f-c sand		7.4	
-3 -4			100			gravel, moist	ry sand, f-m, well sort, t-s f-c		10.4	
-5		ACTION OF THE PROPERTY OF THE				Maize	sand with t-5 day, no grand	MANAGORANA TANGANA	670	
-8			10			@ 12 ft turns		Annual Control of the	136	
-10 -11		And the state of t				14-15: Brown lorange	sitty sand, f-m, well surt, moist	delication of the second secon	46.5	
- 12 - 13 - 14			70			15-17: Brown sity sand 17-285 Brown sitty sa	els from well sorted, saturated and, bound ligrary largers from weathered rocks)		20.0	A.
-15					-			Ž.	101	1
- 17 - 18			OG Commence			* 0 .	2007-4	A de la companya de l	3.40	-1-
-19								NAME OF THE OWNER, WHICH THE OWNER, WHIC	2.5	-
-20		Manage of the same			-			-		
-21		Prografication stands without distributions	100	To the second se	there are a constitution of the constitution o		A-6-19 TAS WILL TO THE TELLE	Charles and Charle	0.4	
- 23		***		The state of the s			115 15° 17 22	The state of the s	0,3	
- 24		MANAGA MA	-			23.5 volusal	10-19 1853 HUT 22	distriction of the state of the		-
-25		NO CONTRACTOR OF THE PARTY OF T		and the state of t		soil:	10-19 S. CAUR	***************************************	MAN OF SECTION	
- 26 - 27		The state of the s			And the control of th		GW. 12-17	entry entry		A commence of the commence of
	***************************************	The second secon					6 va 1 of 2		and the second s	-

ENVIRO forens	sic s		Boring Log			
Project Number	: 6489		Boring No.: DP- &	}	stanomintonomikiri aman	
Project Name:	Jdeal a	leaker'	Location: & N (N of size building appro	k cu	decir	belalenskerelene
Drilling Contractor:			Logged by: Osciellasist			***************************************
Drilling Method: 0	HIII II AAAA II AAAA III AAAAAAA		Date Started: 4 21617 Total Depth (ft bgs): 20 Depth to Water	ft bgs): 15	
Borehole Dia. (in):		-	Date Completed: 4 26 17 Surface Elevation (ft MSL):	······································		
Sample No. Sample Type	% Recovery Graphic Log	USCS Code	Material Description	Water Level	PID Reading (ppm)	Backfill
-4	30		0-0.5: asphilit 0.5-1: Brown sithy sand f-m, well sort, with some clay; + grand (+), moist 1-4: Orange sithy day; + f sand, woist 4-6: Light brown sand; f-e, well sort; +-s silt; 6-14: Light brown jullowish clay with +-s sand; f-e; 14-15: Light brown jullowish (weathered rock) silty sand 14-15: Cight brown jullowish (weathered rock) silty sand 14-15: Brown sandy silt; saturated 15-20: Light brown javange silty sand (weather 16-20: Light brown javange silty sand (weather)		2.1 2.4 2.2 2.1 27.9 4.5 3.0 2.9 1.1 0.9	35-

Page 1 of 2

roje	ect Nu	mbe	r: 4	489			Boring No.: DP-9	11	14-	2
roje	ect Na	me:	Id	eal C	leake	rs	Location: G (NW of site building) /		•	***************************************
	g Contra				. * * * * * * * * * * * * * * * * * * *		Logged by: Ospielbauer			
rillir	ng Metho	d: D	P		4686000 100000000000000000000000000000000	Date Started: 412710	Total Depth (ft bgs): 25 Depth to Water (f	bgs)	: 14	
**********	ole Dia.	(in):	***************************************	******************	***********	20,300	Surface Elevation (ft MSL):	*****		***************************************
lemar	ks:	*****************		**********************	**************************************			***************************************	***************************************	
Depth (ft)	Sample No.	Sample Type	% Recovery	Graphic Log	USCS Code		+119 first 5 ft used discrete compler for gw Material Description	Water Level	PID Reading (ppm)	Backfill
1						0-0.5: asphalt	šte;		0,5	
2			voi			0.5-2: Brown 517ty grand, moi	sounds fro, poor sout, +-s f-c		0.3	Mariana de Caracteria de C
5							day, tow plasticity, + + m sand		ð.2	***************************************
7			20				silty sand, f-c, poor sort, unsaturated		0.1	(A. A. A
9			30			Service of the servic	sitt, + f grand, saturated silty sand, +-c, poor surt,		0.2	Common common company common c
11			لاي			unsaturate	d. (woodleved rock)		7.2	(10-
13						20 - 23 : Brown sandy	bitt, suturated	T	1.8	
16			100			23 - 25 = Brown) right 1	brown, sitty day, t-s f-m sand, och) unsaturated.		3.7	
17 18 19		то от техня в					- 70		0.6	
20			,					Andread and Andrea	7.6	
22			100		Opposition on the second control of the seco			A CONTRACTOR CONTRACTO	0.66	4-2
24		***************************************				1027	108500		5.4	43-3
26						OW: 14-14-73 POR	2017. 54-52 10 0023		0440000	work and the second

Monitoring Well Sampling Log (Georgia EPD / USEPA Region 4) ww-1

		_	,					
	Cleaners			Project #: 648		8843-00-00-00-00-00-00-00-00-00-00-00-00-00		
Address:	224 Gree	nville 5+	Labrange	, Georgia		Date: 4/30/17		
Well Depth: 19.0	e2_water depth	8.70	Well Diameter:	2		Probe Model: 404	áha	
Total Depth:	10.92	,	Screened Interval:	14-19		Pump Type: Stain	Less Steel P	ump depth Bi
Three to Five Well	Volumes: 5.34	8.90	gallons (1.78)			W.CAV21	son purp	
The supplied of the same of th	Must Be	Stable Prior to	Sampling	Optional	Do Not Use f	or Stabilization		2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Time	рН	Cond. (µS/cm)	Turbidity (NTU)	D.O. (mg/L)		ORP (mV)	Water Level	Total Volume Removed
	+/- 0.1	+/- 5%	<10 or 10%	0.2 or +/-10%	+/-0.5	+/-20 mV	ft bgs	gallons
1222	6.02	125	38.9	8.38	25.31	189	8,70	0.00
1227	6.05	105	159	9.41	25.50	190	9.38	0.75
1232	6.09	122	84.0	8.32	25,40	192	9.36	2.00
1237	6.04	120	30.1	₹.88	25.90	188	9.30	3.00
1242	6.01	811	25.0	7.67	26.07	203	9,45	3.75
1247	6.07	117	18.5	6.86	25.72	193	9.40	4.75
1252	6.07	114	9.9	6.46	25.99	190	9.37	5.50
					(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
		. 9						
				W Andrew College Colle				
					99			
NOTES:		1	W Ms/ms	D *	.1	1		
Sample Time:	1257							
	nel: CSprelbau							
Sample Type and	Analys is Requester	d: 000 8	2le0					
	e stabilization, pH, C d placed within the to					served.		
	tic or centrifugal pum							

Monitoring Well Sampling Log (Georgia EPD / USEPA Region 4) ww-2

ddress:	224 Gre	enville st	LaGrange	, Georgia		Date: 4/30/17	_	
Veil Depth:] lz .	11 worker day	Hu 7.51	Well Diameter:	2	ŕ	Probe Model: He	oriba	
otal Depth:	8.40	<u>.</u>	Screened Interval:	11-16		Pump Type: Shows	Ness Steel P	unp depth 9
hree to Five We	Il Volumes: 4-20	- 7.00	gallons (1.40)			poderio	or i consti	
4	Must Be	Stable Prior to		Optional	Որոնական անգանական արև անանանական արև արև անանական արև արև արև արև արև արև արև արև արև արև	r Stabilization	munadanik	
Time	рН	Cond. (µS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp (°C)	ORF (mV)	Water Level	Total Volume Removed
1000	+/- 0.1	+/- 5%	<10 or 10%	0.2 or +/-10%	1 /40.5	+/-20 mV	ft bgs	gallons
1309	6.75	121		5.32	28.66	131	7.37	0
1314	5.63	123	100	1.14	25.50	201	9.30	0.75
1319	5.46	121	50.0	0.79	25.04	203	9.23	2.
1324	5.38	124	67.2	1,74	23-87	120	9.57	3.25
1329	6.62	125	17.9	3.02	23.75	112	9.51	4
1334	6.54	124	9.2	3.03	75.74	99	9.51	2
1339	6.53	124	5.5	2.37	25.78	102	4.51	5.75

NOTES: Sample Time: Sampling Perso	1344 nnel: <u>Csprelba</u>	lus						

Monitoring Well Sampling Log (Georgia EPD / USEPA Region 4) NW-3

			Well Diameter:			Probe Model: Hu		4
			Screened Interval			Pump Type: Stear	ion pump	ump depth 2
	Must Be	Stable Prior to	Sampling	Optional	Do Not Use fo	or Stabilization		
Time	рН	Cond. (µS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp (°C)	ORP (mV)	Water Level	Total Volume Removed
1411	+/- 0.1 5.14	+/- 5%	<10 or 10%	0.2 or +/-10% 2 .99	#/-0.5 25.23	+/-20 mV	ft bgs	gallons
1416	4.18	106	4.7	0.82	22.98	272	2.85	1.5
1421	4.19	103	1.0	6.00	22.22	282	2-70	3.0
1426	4,17	99	0.4	0.00	22-30	275	2.65	4.5
1431	4.15	106	15.1	0.00	22.47	237	2.92	6.0
			12	1.2				
	4							
	ý,							
Maria de la companya								

OTES:					I	1		

Well pump should placed within the top three (3) feet of the water column, and moved downward if drawdown is observed. Only use peristaltic or centrifugal pump (RediFlo) to purge wells.

Monitoring Well Sampling Log (Georgia EPD / USEPA Region 4) & w-4

dress:	224 Gree	nuive st	LaGrange	, Georgia		Date: 4 30 17	1000magas	
	5 water de					Probe Model: Ho		
	11.96 Volumes: 5.85					Pump Type: Stewn	scon jamp P	ump depth I
		Stable Prior to		Optional	Do Not Use	for Stabilization		
Time	рН	(µS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp (°C)	ORP (mV)	Water Level	Total Volume Removed
4.01	+/- 0.1 5-85	+/- 5% 210	<10 or 10%	0.2 or +/-10%	+/-0.5 22-76	+/-20 mV	ft bgs	gallons
१७०१							5.19	0
1604	5.01	203	8.2	0.00	21.64	173	5.75	2
1611	6.09	195	6.7	0.00	22.10	97	5.43	3.5
11614	6.10	187	2.5	0.00	22.08	88	5.45	5
1621	4.08	186	1.8	6.00	22.09	18	5.70	6.5
OTES:			Am.	-0 "				
Sample Time:	el: <u>Cspiabane</u>	v	-	DUP-4 *				

Monitoring Well Sampling Log (Georgia EPD / USEPA Region 4) 2005

	11 water depth	3.36	Well Diameter:	2		Probe Model: Ho	riba	_
	10.35 Volumes: 5.07		gallons (1.49)			Pump Type: Staw	soon pump	mp depth _
	Must Be	Stable Prior to	Sampling	Optional	eplephaticolomical animatical (de photos animatical)	or Stabilization		
Time	рН	Cond, (µS/cm)	Turbidity (NTU)	D.O. (mg/L)	Temp (°C)	ORP (mV)	Water Level	Total Volum Removed
1458	+/- 0.1	+/- 5%	<10 or 10%	0.2 or +/-10%	+/-0.5	+/-20 mV	ft bgs	gallons
	5.42			9.63	22.93		3.36	0.0%
1503	5.34	278	116.9	0.00	20.06	213	4.41	1.09
1208	5,09	258	6.0	0.00	26.63	218	4.20	2.00
1513	4.94	232	1.4.1	00.00	20.64	229	4.75	3.56
1518	5.00	225	6.4	0.00	20.54	224	4.94	4.5%
1523	4.98	192	5.1	0.00	20.59	240	5.22	5.5%
1528	5.04	202	7.7	0.00	20.44	221	5.22	6.50
1533	5.07	2.00	6.7	0.00	20.50	225	5.20	7.56
							<	
Sampling Person	nel: Csprelloau Analysis Requester		رما			1		

Page 1 of 1

Ideal Cleaners
LaGrange, Troup County, Gerogia
HSI #10931
SEA Job #172-094
Summary of Activities and Professional Hours

1st Semi-Annual VRP Progress Report

Activity	Professional Hours Spent
VIRP Revisions	23.25
Semi-Annual Report Preparation	22

Georgia Professional Certification Form

"I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.

The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Michael J Haller P.G. Number 1062
Printed Name and GA PE/PG Number

10/26/2018 Date

AFOISTERED PROF