

Voluntary Remediation Program Status Report No. 3

Former Swift & Company Meat Processing Plant Moultrie, Colquitt County, Georgia HSI Site No. 10509

Submitted to:

Georgia Department of Natural Resources
Environmental Protection Division
Hazardous Sites Response and Remediation Program
Suite 1054, East Tower
2 Martin Luther King Jr. Drive SE
Atlanta, Georgia 30334

Prepared ConAgra Brands

for: 222 Merchandise Mart Plaza, Suite 1300, Chicago, IL 60654

Date: December 14, 2016

Prepared by: Amec Foster Wheeler Environment & Infrastructure, Inc.

1075 Big Shanty Road NW, Suite 100, Kennesaw, Georgia 30144

Project No.: 6122140220

December 14, 2016

Mr. Allan Nix Unit Coordinator Georgia Department of Natural Resources Response and Remediation Program Suite 1054 East 2 Martin Luther King Jr. Drive SE Atlanta, Georgia 30334

Subject:

Voluntary Remediation Program Status Report No. 3

Former Swift & Company Meat Processing Plant

1189 North Main Street, Moultrie, Colquitt County, Georgia

HSI Site No. 10509

Dear Mr. Nix:

On behalf of ConAgra Brands and Swift & Company, Inc., Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) respectfully submits the attached Voluntary Remediation Program (VRP) Status Report No. 3 for the above-referenced site. ConAgra submitted a Voluntary Investigation and Remediation Plan (VIRP) to the Georgia Environmental Protection Division (EPD) on February 27, 2015. EPD accepted Swift & Company as a participant as defined in the Georgia Voluntary Remediation Program Act in its letter dated May 29, 2015. This VRP Status Report No. 3 is submitted as a semiannual progress report in accordance with the schedule contained in the May 29, 2015 letter.

Please contact us at 770-421-3400 with any questions you may have regarding this submittal. Thank you for your assistance with this project.

Sincerely,

Amec Foster Wheeler Environment & Infrastructure, Inc.

John Quinn, P.G. Senior Geologist David E. Smoak, P.G.

Associate Geologist/Project Manager

CC:

Ms. René Rimelspach, ConAgra Foods

Kevin Johnson, Stoel Rives

Mr. Mickey Waller, City of Moultrie Mr. Billy Fallin, Tumlin Estate

Attachments: VRP Status Report No. 3

TABLE OF CONTENTS

				<u>Page</u>
1.0	PG C	ERTIFIC	CATION	1-1
2.0	INTR	ODUCT	ION AND BACKGROUND	2-1
3.0	WOR	K PERF	ORMED DURING REPORTING PERIOD	3-1
	3.1	PROF	PERTY OWNERSHIP CHANGES AND AFFIDAVITS	3-1
	3.2	OFFS	ITE ACCESS AGREEMENTS	3-1
	3.3	ANNL	JAL GROUNDWATER SAMPLING AND ANALYSIS	3-2
		3.3.1	Groundwater Elevation and Flow Direction	
		3.3.2	Groundwater Velocity	
		3.3.3	Groundwater Quality Comparison to Prior Analytical Data	
	3.4		TED SOURCEDK MODELING RESULTS	
	0	3.4.1	Data Preparation	
		3.4.2	Analyses	3-9
		3.4.3	Results	
	3.5		TED FATE AND TRANSPORT MODELING	
	3.7	RESP	ONSE TO COMMENTS – EPD LETTER (SEPT. 26, 2016)	3-11
4.0	CON	CLUSIO	NS AND RECOMMENDATIONS	4-1
5.0	NEX	T SUBM	ITTAL	5-1
TABI		. 1	Cura manus of Croundwister Flourisians	
	Table Table		Summary of Groundwater Elevations Summary of Groundwater Analytical Results	
	Table		Summary of SourceDK Model Input	
FIGU	Figur	1 <u>م</u>	Site Location Map	
	Figur		Site Map	
	Figur	e 3	Potentiometric Surface - Shallow Zone A - September 21, 2015	
	Figur		Potentiometric Surface – Shallow Zone B – September 21, 2015	1
	Figur Figur		Groundwater Quality Map – pH – September 2015 Groundwater Quality Map – Barium – September 2015	
	Figur		Groundwater Quality Map – Lead – September 2015	
APPI		E S endix A:	September 2015 Laboratory Data Reports, Chain of Custody, ar	nd Fiold
	whhe	TIUIX A.	Sampling Reports	iu i i c iu
		ndix B:	SourceDK Modeling Results	
		endix C:	Fate and Transport Modeling	
	Appe	ndix D:	Registered Professional Supporting Documentation	

1.0 PG CERTIFICATION

"I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.

Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring, I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division.

Date

PG00131

The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

David E. Smoak / Georgia P.G. #1314

Printed Name and GA PE Number

Var Elica

Signature and Stamp

2.0 INTRODUCTION AND BACKGROUND

This Voluntary Remediation Program Semi-Annual Status Report No. 3 (Status Report) was prepared in accordance with the Voluntary Remediation Program (VRP) for the former Swift & Company former meat processing facility site, Hazardous Site Inventory (HSI) No.10509. The Georgia Environmental Protection Division (EPD) letter, dated May 29, 2015, accepted the site into the VRP and requested submittal of semi-annual VRP status reports. As required by EPD's letter dated May 29, 2015, semiannual progress reports are to submitted November 29th and May 29th annually, beginning November 2015 and ending in 2020, unless a compliance status report (CSR) is submitted and approved prior to 2020. This third Status Report covers the activities conducted subsequent to the December 2015 through May 2016 activities documented in Status Report No. 2 (Amec Foster Wheeler, June, 2016). The goals of this Status Report are to comply with the status report submittal schedule, update EPD on the progress of activities at the site, and update prior information and respond to comments provided by EPD in a September 26, 2016 comment letter. This Status Report is submitted under an extension request communicated to EPD via electronic mail on November 22, 2016, and followed up with a hardcopy letter dated November 28, 2016.

The site is comprised of three properties listed on the HSI as qualifying properties and is located at 1189 North Main Street (U.S. Highway 319 Business, Georgia Highway 33) in the northern part of Moultrie, Georgia, in Colquitt County. A site location map is shown on Figure 1. The property boundaries and ownership have changed as a result of an acquisition by Crop Production Services in September 2016. The HSI listed parcels now include:

- A 2.53 acre tract currently owned by the City of Moultrie (Tax ID Parcel M022A 005), which represents the southernmost portion of the former 14-acre Swift & Company meat processing facility property.
- A 1.1 acre (previously 2.52 acre) parcel owned by the Rennie A. Tumlin Estate (Tax ID Parcel M022A 004).
- A 1.42 acre parcel now owned by Crop Production Services (CPS). This is a portion of
 the site that was previously owned by the Tumlin Estate but subdivided in September
 2016 in an acquisition by CPS. CPS owns an additional 5.62 acres abutting the west
 side and extending to the north that were purchased from other parties (Joint
 Development Authority (JDA) of Brooks, Colquitt, Grady, Mitchell, and Thomas
 Counties, the Arnold Property, and North Street Development).

A site map is provided in Figure 2. The western and southern boundaries of the site are bordered by an active railroad right of way owned by Georgia & Florida RailNet, Inc. North Main Street borders the subject properties on the east. The northern boundary of the subject properties are bounded by property that was part of the former Swift facility and currently include the Tumlin Estate and Crop Production Services. Railroad tracks and retention ponds used by Farmland National Beef are located to the west.

While operational, the Swift & Company plant was a stockyard and meat-processing facility where hogs, cattle, and sheep were slaughtered, butchered, and packaged for the consumer market. The meat-processing plant was originally constructed in 1914, and operated until 1970.

After 1970, Swift & Company constructed a new facility to the west now referred to as Farmland National Beef.

After meat processing operations ceased, the buildings remained on the property for about 30 years and were believed to have been used for storage. The buildings on the 2.53-acre City of Moultrie tract were demolished in 2001, and the surface was subsequently graded and grassed. Information contained in a CSR prepared by Advanced Environmental Technologies, LLC (AET), and information provided by City of Moultrie representatives report the demolition debris was removed and properly disposed offsite. The Former Boiler and Engine House were demolished in 2011. There are no activities currently conducted on the subject properties, and the subject properties are currently located on an open tract.

Previous investigations of the property detected volatile organic compounds (VOCs), and metals in groundwater. A few of the constituents exceeded the Hazardous Site Response Act (HSRA) notification concentrations. The environmental history of the site is summarized as follows:

- Assessments including soil and groundwater sampling were conducted in 1997.
- The site was listed on the Hazardous Site Inventory (HSI) on June 6, 1998 as Site No. 10509.
- A HSRA Compliance Status Report (CSR) Assessment was conducted in 2001-2002 that included soil and groundwater sampling and submittal of a CSR. Buildings on the property were demolished in 2001 before the HSRA CSR investigations.
- Further CSR assessment was performed in 2003 (including submittal of a Revised CSR).
- Additional field investigation was conducted in 2004-2005.
- The available 2004-2005 data were included in the September 30, 2008, Revised CSR, which also included details for the 2007 and 2008 investigations conducted by MACTEC.
- The January 29, 2010 Revised CSR responded to the subsequent EPD comments on the September 30, 2008, Revised CSR, and included information from 2009 field investigations by MACTEC.
- A Corrective Action Plan (CAP) was submitted on May 13, 2011. The proposed remedy in the CAP for the former Swift site was monitored natural attenuation (MNA).
- EPD gave Conditional Approval of the CAP In a letter dated December 12, 2011.
- The First Semiannual Corrective Action Effectiveness Report (CAER) was submitted to EPD on June 12, 2012.
- The Second Semiannual CAER was submitted to EPD on December 11, 2012.
- The Third Semiannual CAER was submitted to EPD on May 24, 2013.
- The Fourth Semiannual CAER was submitted to EPD on December 11, 2013.
- The First Annual CAER (ACAER) was submitted to EPD on February 27, 2015 as Appendix B to the Voluntary Remediation Program Application and Plan. Based on the results of the monitoring and the updated SourceDK models presented in the ACAER, and after discussions with EPD, Conagra made the decision to proceed with entering the site into the VRP.

- The EPD letter dated May 29, 2015 accepted the site into the VRP and requested submittal of semi-annual VRP status reports.
- The EPD letter dated June 4, 2015 put forth comments to be addressed during implementation of the VRP. A response letter dated August 31, 2015 to the EPD Comments letter was submitted.
- The VRP Status Report No. 1 was submitted to EPD on December 8, 2015 as a semiannual progress report. The first Status Report covered the activities conducted subsequent to the EPD's May 29, 2015 VRP acceptance letter.
- The VRP Status Report No. 2 was submitted in May 2016 and included responses to an EPD comment letter dated January 25, 2016.

3.0 WORK PERFORMED DURING REPORTING PERIOD

The activities currently identified to be conducted at the Swift site under the VRP are outlined in the VRP Application and Plan, dated February 27, 2015, and the EPD VRP approval and comment letters dated May 29 and June 4, 2015. The activities that have been conducted subsequent to Status Report No. 2 (for the period ending May 2016) include the recording of affidavits for the City of Moultrie property and the Tumlin Estate property; initiation of discussions with representatives of the City of Moultrie and Tumlin Estate regarding Uniform Environmental Covenants; completion of the second annual groundwater sampling and analysis (September 27-29 2016); coordination and execution of access agreements with Thomas Bates on the east side of North Main Street and with the Georgia Department of Transportation for an encroachment permit in the right-of-way along the east side of North Main Street; installation of two monitoring wells; one on the Bates property and one on the Georgia Department of Transportation right of way, as previously requested by EPD; and completion of an update to SourceDK modeling results and fate and transport modeling. These activities are described in the following sections.

3.1 PROPERTY OWNERSHIP CHANGES AND AFFIDAVITS

As reported in Section 2.0 above, during this reporting period, Crop Production Services purchased 7.04 acres of property to the north and partially inclusive of the Swift Moultrie HSI site. These properties included:

- 1.2 acres of the former Tumlin Estate property which was part of the site.
- 1.62 acres abutting the northwest side of the site that was formerly owned by the Joint Development Authority of Brooks, Colquitt, Grady, Mitchell, and Thomas Counties.
- 0.49 acres of the former Arnold property.
- 3.51 acres of the North Main Street Properties.

Property Affidavits were filed and recorded for the VRP Properties that are part of the site including the City of Moultrie and the Tumlin Estate. These notices were provided to Georgia EPD on October 31, 2016. The property deed for the portion of the Tumlin Estate that was transferred to Crop Production Services contained the HSI Site Listing Notice. Therefore, it was not necessary to file a separate affidavit for this property because the HSI language is already included in the deed exhibit. EPD provided concurrence on October 25, 2016.

3.2 OFFSITE ACCESS AGREEMENTS

During the reporting period, Amec Foster Wheeler was able to execute a Site Access License Agreement with Thomas Bates, owner of the property across Main Street and east of MW-9. This well was requested by EPD and is a replacement for former MW-28. An access agreement was not able to be executed with the owner of the property east of MW-29 at a second location requested by EPD. However, Amec Foster Wheeler successfully executed a right-of-way encroachment permit with the Georgia Department of Transportation and installed a monitoring well thereon.

3.3 ANNUAL GROUNDWATER SAMPLING AND ANALYSIS

The continued monitoring plan consists of annual groundwater sampling for up to five years of six site monitoring wells for site constituents of concern (COCs) including arsenic, barium, cadmium, chromium, lead, nitrates and chlorides. These six wells include MW-6, MW-9, MW-13D, MW-15, MW-16, and MW-27DDDD, and are shown on Figure 2. In September 2016, eight additional wells (MW-1, MW-4, MW-7, MW-12, MW-18, MW-20, MW-29 and MW-31) were also sampled to address an inadvertent omission of these constituents from the September 2015 supplemental sampling in response to comments included in EPD's letter dated June 4, 2015. Additionally, the field pH of every groundwater sample is monitored during the sampling events. Water level measurements are collected in all site monitoring wells prior to sampling to evaluate groundwater flow direction. The metals sampling is conducted under low-flow methodologies to reduce potential turbidity in the samples. The procedures used to collect groundwater samples are conducted in general accordance with USEPA Region 4 SESD procedure SESDPROC-301-R3 (USEPA, 2013).

The scope of services performed during the September 2016 annual groundwater sampling and analysis event included the following:

- Determined the depth to groundwater in accessible site wells (September 27, 2016) and calculated groundwater elevations.
- Obtained groundwater samples on September 27, 28, and 29, 2016 from 14 site monitoring wells (MW-1, MW-4, MW-6, MW-7, MW-9, MW-12, MW-13D, MW-15, MW-16, MW-18, MW-20, MW-27DDDD, MW-29 and MW-31).
- Six samples were analyzed for the site COCs including arsenic, barium, cadmium, chromium and lead plus nitrates and chloride (MW-6, MW-9, MW-13D, MW-15, MW-16 and MW-27DDDD). Additionally, the field pH of every groundwater sample was monitored during the sampling event. Six samples were analyzed only for nitrates and chlorides (MW-4, MW-7, MW-12, MW-20, MW-29 and MW-31) due to being inadvertently omitted from the September 2015 expanded sampling event required by EPD. One sample (MW-1) was resampled for lead (plus chloride and nitrate) due to a first time occurrence of elevated lead in September 2015 that exceeded the Type I RRS, associated with highly elevated turbidity. One sample (MW-18) was resampled for arsenic, cadmium and lead (plus chloride and nitrate) due to Type I RRS exceedances in September 2015.
- Prepared potentiometric surface maps using the September 27, 2016 groundwater elevation data showing groundwater flow directions in Shallow Zones A and B and determination of the groundwater flow rate.
- Prepared an updated pH map based upon the September 27-29, 2016 pH values.
- Prepared lead and barium isoconcentration maps based upon the September 27-29, 2016 concentrations.
- Updated the SourceDK models submitted in the First ACAER with the data obtained in September 2016.
- Updated the fate and transport modeling (BioScreen-AT) submitted in the VRP Application and Plan.
- Evaluated data and prepared this summary of annual groundwater sampling and analysis.

The following sections describe the services listed above.

3.3.1 Groundwater Elevation and Flow Direction

Groundwater elevations were calculated from depth to groundwater measurements made in site monitoring wells on September 27, 2016 (Table 1). Table 1 also summarizes groundwater elevations measured at the site since 2001.

Potentiometric surface maps for the two shallow aquifers at the site, Shallow Zone A and Shallow Zone B, were developed from the groundwater elevation data obtained on September 27, 2016 and are presented as Figures 3 and 4, respectively. The Shallow Zone A potentiometric map appears similar to the map presented in the 2015 VRP Status Report with the exception of an elevated area in the water table at MW-8. The Shallow Zone B potentiometric map appears similar to the map presented in the 2015 VRP Status Report, although as MW-19 was not gauged on September 27, 2016 the groundwater surface is not depicted to the south in the area of MW-19. The direction of flow in Shallow Zone A (Figure 3) is generally to the north and northwest, while the flow direction in Shallow Zone B shows an eastward component in the central portion of the site and a southerly component in the northern portion of the site, due to higher groundwater elevations in MW-31 and MW-29 as compared to MW-3 and MW-16 (Figure 4). Note that the interpretation of groundwater flow direction in Shallow Zone B for the September 2016 measurement event was made more difficult because of the inability to measure the groundwater elevations at MW-A, MW-23, MW-24 and MW-25, which are presumed to have been destroyed due to the grading which has been performed at the site, as mentioned in previous reports.

In addition, an evaluation of the vertical hydraulic gradient at the site was performed. Based on the groundwater elevation data obtained on September 27, 2016 from the cluster of wells that includes MW-8, MW-13D, MW-22DD and MW-26DDD, there was a downward vertical gradient of about 0.431 foot per foot at well pair MW-8 (screened in Shallow Zone A) and MW-26DDD, and of about 0.265 foot per foot at well pair MW-13D (screened in Shallow Zone B) and MW-26DDD. Additionally, a comparison of groundwater elevations at this well cluster to nearby deep well MW-27DDDD shows a downward vertical gradient from each well (MW-8, MW-13D, and MW-26DDDD) toward the interval screened by MW-27DDDD.

3.3.2 Groundwater Velocity

Based on the potentiometric surface maps, the horizontal gradient in the ground water in Shallow Zone A was about 0.0217 feet per foot across the site on September 27, 2016. The horizontal gradient in the ground water in Shallow Zone B ranged from 0.0069 to 0.0305 feet per foot on September 27, 2016. An effective porosity for the saturated soil was estimated to be 20 percent for a clayey sand/sandy clay (Driscoll, 1986). The horizontal ground-water flow velocity was calculated using the Darcy equation:

V = Ki/ne
Where: K = hydraulic conductivity (feet/day)
i = hydraulic gradient (feet/foot)
ne = effective porosity

The gradients given above, the geometric mean of the Shallow Zone A and B hydraulic conductivity testing results obtained in May 2012 (4.1544 ft./day and 2.8046 ft./day,

respectively), and the estimated effective porosity of 0.2 were used to calculate a groundwater flow velocity of approximately 165 ft./year for Shallow Zone A, and a groundwater flow velocity of approximately 35 to 156 ft./year for Shallow Zone B. The Shallow Zone A velocity is slightly higher than the range of previous values reported in the previous CAERs and the Revised CSR, while the minimum Shallow Zone B velocity is within the range previously reported in the Revised CSR and the maximum Shallow Zone B velocity is within the range reported in the Revised CSR and the previous CAERs.

3.3.3 Groundwater Quality

For the groundwater quality sampling conducted on September 27, 28 and 29, 2016 in 14 site monitoring wells, the wells sampled were as follows:

Upgradient wells:

MW-12 Shallow Zone A (chloride and nitrate)

Interior wells:

- MW-6 Shallow Zone B (COC metals, chloride and nitrate)
- MW-7 Shallow Zone B (chloride and nitrate)
- MW-13D Shallow Zone B (COC metals, chloride and nitrate)
- MW-16 Shallow Zone B (COC metals, chloride and nitrate)
- MW-18 Shallow Zone B (arsenic, cadmium, lead, chloride and nitrate)

Perimeter wells:

- MW-4 Shallow Zone A (chloride and nitrate)
- MW-29 Shallow Zone B (chloride and nitrate)
- MW-31 Shallow Zone B (chloride and nitrate)

Downgradient wells:

- MW-1 Shallow Zone B (lead, chloride and nitrate)
- MW-9 Shallow Zone B (COC metals, chloride and nitrate)
- MW-15 Shallow Zone B (COC metals, chloride and nitrate)
- MW-20 Shallow Zone B (chloride and nitrate)

Deep well:

• MW-27DDDD Deep well (COC metals, chloride and nitrate)

The groundwater sampling procedure was conducted as follows. Before the purging and sampling of each well, the depth to water and total well depth were measured. Each well has been marked with a permanent reference survey point. The total depth of the well was measured from this survey point to the well bottom using a measuring tape. The depth to groundwater was measured from the reference survey point to the groundwater surface in the well using an electrical water-level indicator. The water level probe was lowered down the well until the meter's tone sounded, indicating the probe had encountered water. The measured depth to groundwater from the surveyed datum point on the well casing was recorded on the sampling form and in the field logbook to the nearest 0.01 foot. The depth to the groundwater was then subtracted from the surveyed elevation of the casing reference point to determine the groundwater elevation. Depth to groundwater data and groundwater elevations are shown on Table 1.

The wells were purged using a peristaltic pump, with the exception of MW-27DDDD, which was purged using a submersible pump due to the depth to groundwater exceeding the capability of a

peristaltic pump. New polyethylene tubing was used at each well and inserted into the water column of the well. Either a three well volume method of purging or a low-flow method of purging was used, dependent of the rate of well recharge encountered. The tubing intake was initially placed at the approximate midpoint of the well screen, and the wells pumped at a relatively slow pumping rate (less than 500 milliliters per minute [mL/min]). If the water level stabilized, a low-flow purge was conducted until the pH, temperature, and specific conductance (SC) readings stabilized to within 10% of the previous reading, and the sample was collected. If the water level could not be stabilized by adjusting the pumping rate, the intake was placed near the top of the well column and a minimum of three well volumes were purged from the well prior to sample collection.

The groundwater turbidity readings were measured with an electronic turbidity meter and documented before collecting samples in laboratory-provided preserved containers for analysis. At MW-1 and MW-15, both total and dissolved metals samples were collected, as turbidity could not be reduced below >800 and 275 NTU, respectively.

The samples were delivered to Analytical Environmental Services, Inc. (AES) under chain-of-custody protocol for analysis (as indicated above) by EPA Method 6020A for the site COCs including arsenic, barium, cadmium, chromium and lead; and chloride and nitrate by EPA Method 9056A.

As noted above, groundwater samples from six monitoring wells (MW-6, MW-9, MW-13D, MW-15, MW-16 and MW-27DDDD) were analyzed for the complete COC list. Groundwater samples from six monitoring wells (MW-4, MW-7, MW-12, MW-20, MW-29 and MW-31) were analyzed only for chloride and nitrate due to being inadvertently omitted from the September 2015 expanded sampling event. Well MW-1 was resampled for lead (plus chloride and nitrate) due to a first time occurrence in September 2015 that exceeded the Type I RRS, associated with highly elevated turbidity. One well (MW-18) was resampled for arsenic, cadmium and lead (plus chloride and nitrate) due to Type I RRS exceedances in September 2015.

The field pH measurements are reported in Table 2, along with a summary of the results of the analyses of the September 2016 samples. The laboratory analytical reports and field sampling reports for the September 2016 sampling event are provided in Appendix A.

A review of the results of the analyses of the September 2016 samples (Table 2) indicates that arsenic was only detected in MW-15, whereas arsenic was detected in seven wells (MW-1, MW-6, MW-7, MW-9, MW-13D, MW-15 and MW-18) in September 2015. The arsenic detection in MW-15 was in a total metals samples with elevated turbidity, and arsenic was not detected in the dissolved metals sample collected from MW-15. The arsenic concentration in MW-15 was well below the Type 1 RRS of 0.01 mg/L. Arsenic had never before been reported in six of the wells (MW-1, MW-6, MW-7, MW-9, MW-15 and MW-18) where it was reported in September 2015, and had only been reported once before at MW-13D. The only previous arsenic exceedances of the Type 1 RRS prior to September 2015 were isolated occurrences; once at MW-12 (0.0126 mg/L in September 2013), and once at MW-28 (0.017 mg/L in November 2004). Also, while arsenic was reported at MW-9 during the September 2015 sampling event, arsenic was not detected in the duplicate sample (DUP-1) collected at MW-9. For the reasons given above (only two previous Type 1 RRS exceedances, reports of arsenic in multiple wells in which it had never before been reported, an arsenic detection in a parent sample but not the

associated duplicate sample, and arsenic only being detected in a single well in September 2016), the arsenic detections in September 2015 are considered anomalous and are not believed to reflect actual site conditions.

Cadmium was reported in samples from MW-9 (.000918 mg/L), DUP-1 (0.000938 mg/L), MW-13D (0.00219 mg/L), MW-15 (total metals sample at 0.131 mg/L and dissolved metals sample at 0.103 mg/L) and MW-27DDDD (0.00311 mg/L), all below the Type 1 RRS of 0.005 mg/L except for MW-15.

Chromium was only detected in the total metals sample from MW-15 (0.0246 mg/L). The chromium detection in MW-15 was in a total metals sample with elevated turbidity. Chromium was not detected in the dissolved metals sample collected from this well, and did not exceed the Type 1 RRS of 0.1 mg/L

Barium was detected in all samples analyzed for the constituent, with concentrations ranging from 0.0766 mg/L (dissolved sample from MW-15) to 7.22 mg/L (MW-27DDDD). All of the concentrations were below the barium Type 1 RRS of 2 mg/L except for the MW-27DDDD value (7.22 mg/L). The MW-27DDDD concentration of 7.22 mg/L represents a noticeable increase from the September 2015 barium value of 4.95 mg/L, and is the highest barium value observed at MW-27DDDD. The MW-6 concentration of 0.181 mg/L is a substantial decrease from the barium value of 10.3 mg/L reported in September 2014, which is now believed to have been anomalous.

Lead was reported in 7 of the 8 well samples in which it was analyzed (MW-1, MW-6, MW-9, MW-13D, MW-15, MW-16 and MW-18) at concentrations ranging from 0.00146 mg/L (MW-18) to 0.236 mg/L (MW-15). The lead detection in MW-1 was in the total metals sample with elevated turbidity and was not detected in the dissolved metals sample. The lead detections in six of the wells (MW-1, MW-6, MW-9, MW-13D, MW-15 and MW-16) exceeded the Type 1 RRS of 0.015 mg/L. Of these wells, as mentioned above, lead was not detected in the dissolved metals sample collected from MW-1.

3.3.4 Comparison to Prior Analytical Data

Updated SourceDK models have been prepared, following an additional year of monitoring. However, as part of preparation of this first Status Report, a comparison of the September 2016 data to the most recent comparable prior data was performed for the analyzed COCs. This comparison is described below.

The September 2015 arsenic results indicated that arsenic was detected in seven of the well samples (MW-1, MW-6, MW-7, MW-9, MW-13D, MW-15 and MW-18), whereas arsenic was only detected in MW-15 (0.00672 mg/L) in September 2016. Prior to September 2015, arsenic had never before been reported in six of these wells (MW-1, MW-6, MW-7, MW-9, MW-15 and MW-18), and had only been reported once before at MW-13D. The arsenic detection in MW-15 in September 2016 was in a total metals samples with elevated turbidity, and arsenic was not detected in the dissolved metals sample collected from MW-15. The arsenic concentration in MW-15 did not exceed the Type 1 RRS of 0.01 mg/L. The only arsenic exceedances prior to September 2015 of the Type 1 RRS were isolated occurrences; once at MW-12 (0.0126 mg/L in September 2013), and once at MW-28 (0.017 mg/L in November 2004). As mentioned previously, for the reasons given above (only two previous Type 1 RRS exceedances, reports of

arsenic in multiple wells in which it had never before been reported, and an arsenic detection in a parent sample but not the associated duplicate sample), the arsenic detections are considered anomalous and are not believed to reflect actual site conditions.

Detections of cadmium in September 2016 were in wells where it had previously been reported in September 2015 (the duplicate sample [DUP-1] from MW-9, MW-15 and MW-27DDDD), with a new detections at MW-13D. Cadmium was detected in DUP-1 at 0.000938 mg/L, below the September 2015 detection of 0.00135 mg/L at MW-9. This detection is below the Type 1 RRS of 0.005 mg/L. Cadmium at MW-15 increased from 0.00249 mg/L in September 2015 to 0.131 mg/L (total metals sample) and 0.103 (dissolved metals sample), exceeding the Type 1 RRS. Cadmium at MW-18 decreased from 0.00742 mg/l in September 2015 to <0.0007 mg/L. Cadmium was detected at MW-13D at a concentration of 0.00219 mg/L, similar to concentrations found since March 2012 with the exception of September 2015 (<0.00450 mg/L). Cadmium at MW-27DDDD increased slightly from 0.00228 mg/L in September 2015 to 0.00331 mg/L in September 2016. All of the September 2016 cadmium values were below the Type 1 and Type 2 RRS of 0.005 mg/L and 0.0078 respectively, except for the exceedances (total and dissolved samples) at MW-15.

Chromium was only detected in well MW-15. The detection at MW-15 increased from the detection in September 2015, with chromium at MW-15 increasing from 0.00643 mg/L in September 2015 to 0.0246 mg/L in September 2016, and was below the Type 1 RRS of 0.1 mg/L.

For barium, there were three instances of an increase in concentration as compared to the previous data. In two of those wells where an increase was noted (MW-9, and MW-13D), the concentrations were both within the range of values obtained during 2012, 2013, 2014 and 2015 monitoring, and were well below values measured during previous historical site monitoring. The MW-6 concentration of 0.181 mg/L is a substantial decrease from the barium value of 10.3 mg/L reported in September 2014, which is now believed to have been anomalous. The September 2016 value is similar to the barium value of 0.296 mg/L reported at MW-6 in September 2012, further confirming the September 2014 value of 10.3 mg/L as anomalous. The MW-27DDDD concentration of 7.22 mg/L represents a noticeable increase from the September 2015 barium value of 4.95 mg/L, and is the highest barium value observed at MW-27DDDD. Only the MW-27DDDD value (7.22 mg/L) is above the barium Type 1 RRS of 2 mg/L.

The barium detections were further evaluated using the updated SourceDK model, as described in Section 4.0. As noted above, none of the September 2016 barium concentrations exceeded the barium Type 1 RRS of 2 mg/L except for the MW-27DDDD value (7.22 mg/L). While the MW-27DDDD value exceeded the Type 1 RRS, it was well below the Type 4 RRS of 20 mg/L.

For lead, of eight wells analyzed, there were three instances of an increase in concentration as compared to the most recent data (at MW-13D [0.173 mg/l vs. 0.129 mg/L in September 2015], MW-15 [0.294 mg/L vs. 0.243 mg/L in September 2015] and MW-16 [0.0161 mg/L vs. 0.0121 mg/L in September 2015]. In these wells where an increase in lead concentration was noted (MW-13D, MW-15 and MW-16), the concentrations were either within, or only slightly above, the range of values obtained during 2012 through 2015 monitoring, or were well below values measured during previous historical site monitoring.

The lead detections were further evaluated using the updated SourceDK model, as described in Section 4.0. As noted above, the lead detections in six of the wells (MW-1, MW-6, MW-9, MW-13D, MW-15, and MW-16) exceeded the Type 1 RRS of 0.015 mg/L. Of these wells, as also mentioned above, lead was not detected in the dissolved metals sample collected from MW-1.

The September 2016 measured field pH values were also compared to the September 2015 data. Of the 14 wells that had been sampled in both September 2015 and September 2016, two of the measured pH values decreased (becoming more acidic), and twelve of the wells exhibited an increase in pH (becoming more neutral). In general, the changes in pH were minor, with the exceptions of MW-6 and MW-18 with increases of 1.40 and 1.85 standard units respectively.

The September 2016 pH values were used to prepare an updated pH contour map. A comparison to the pH map presented in the 2015 VRP Status Report that the area of low pH appears to have become smaller, based on the September 2016 data.

3.4 UPDATED SOURCEDK MODELING RESULTS

As discussed in Section 3.0, the results of the September 2016 annual sampling event were used to prepare updated SourceDK models. The results of the updated modeling are discussed below.

Monitored natural attenuation (MNA) was evaluated as a corrective action measure in the May 13, 2011 CAP to address groundwater impacts at the site. As described in the CAP, the U.S. Environmental Protection Agency's (USEPA) MNA Directive (USEPA, 1999) was used as guidance, in conjunction with the SourceDK computer spreadsheet. SourceDK is designed for use in evaluating the potential efficacy of MNA as a remedial alternative. This evaluation involves collection of site-specific data sufficient to estimate with an acceptable level of confidence both the rate of attenuation processes and the anticipated time required to achieve remediation objectives (AFCEE, 2004).

This evaluation requires statistical tools to assess the data collected in the site characterization and determine if natural attenuation (decreasing trends) is occurring. The SourceDK Microsoft Excel computer spreadsheet program is a planning-level screening model for estimating groundwater remediation timeframes and the uncertainties associated with the estimated timeframe. In this evaluation, "remediation timeframe" is the time required for the high-concentration source zones at a site to reach a certain target concentration (AFCEE, 2004).

3.4.1 Data Preparation

The updated dataset to be analyzed was generated from groundwater samples taken from August 2001 to September 2016, and included the following wells monitored semi-annually in 2012 and 2013, and annually in 2014, 2015 and 2016: Monitoring well MW-1 was included in the dataset for the SourceDK evaluation, as it was sampled in September 2015 for the first time since January 2003. MW-31 was not included during this period as it was only analyzed for Chloride and Nitrate. Monitoring wells MW-2, MW-3, MW-19 and MW-23 were not sampled in September 2015 or 2016, and were not included in the updated dataset.

Well ID				
MW-01	MW-15			
MW-06	MW-16			
MW-09	MW-18			
MW-13D	MW-27DDDD			

Since the methods used in the SourceDK package do not accommodate data below the reporting limit, all data reported as "below reporting limit" were converted to a detection at the reporting limit. Since these wells have had a record of at least one COC detection (barium, lead), this is considered to be a conservative substitution.

Only total metals results were used for the evaluation; dissolved metals results were not used. Both barium and lead were used for the evaluation; the final dataset is listed in Table 3.

3.4.2 Analyses

The SourceDK assessment is based on a slope determined from a regression model of existing groundwater data. As described in the SourceDK documentation, this model predicts remediation timeframe by determining the trend in measured concentration vs. time data from source-zone monitoring wells (or wells in other parts of the plume) and then extrapolating this trend to determine how long it will take to reach a cleanup objective entered by the user. The trend is based on an analysis of log-concentration vs. time data for any constituent in groundwater (AFCEE, 2004).

For each well of interest, a SourceDK spreadsheet model was constructed by adding site-specific sample dates, analytical concentrations, and the proposed regulatory limit (Type 1 RRS) into the spreadsheet. The model then takes the log of concentration and plots that against the sample date and calculates the slope of the resulting regression line. A negative slope (corresponding to a positive decay constant) suggests a downward trend in concentration and the likelihood of attenuation occurring. The model presents a graph of the resulting regression analysis along with a dotted line representing the regulatory limit, the regressions coefficient of determination (r2), a predicted year to attain cleanup (along with confidence limits on the estimate, if possible), and an estimated decay constant derived from the regression slope.

3.4.3 Results

A total of 14 different well/COC models were run. The results of each model run are included in Appendix B. A summary of the results is presented in the following tables. The majority of the updated models present decreasing trends in concentration (negative slopes and positive decay rates), with 75 percent of the barium trends and 83.3 percent of the lead trends decreasing. The direction of trend appears well defined in all cases with the exception of MW-13D (lead), MW-18 (barium), MW-20 (barium and lead) and MW-29 (lead) where the slope is essentially flat.

Summary of SourceDK Trend Results

	Barium	Lead
Decreases	6	5
Total	8	6
Percent	75%	83.3%

SourceDK Trend Results by COC

Well	Barium	Lead	Comments
MW-01	NA	Increasing	2015 and 2016 lead concentration (total metals) above Type 1 RRS; dissolved metals sample non-detect for lead; all previous lead analyses non-detect
MW-06	Decreasing	Decreasing	2015 barium concentration below Type 1 RRS; 2012, 2013, 2014, 2015 and 2016 lead concentrations both above and below Type 1 RRS
MW-09	Decreasing	Decreasing	Barium Type 1 RRS attained; lead Type 1 RRS not yet attained
MW-13D	Decreasing	Decreasing	Barium Type 1 RRS attained; lead Type 1 RRS not yet attained
MW-15	Decreasing	Increasing	Barium Type 1 RRS attained; lead Type 1 RRS not yet attained. Only four data points (2003, 2014, 2015 and 2016)
MW-16	Decreasing	Decreasing	Barium Type 1 RRS attained; lead Type 1 RRS not yet attained
MW-18	Decreasing	Decreasing	Barium Type 1 RRS attained; lead Type 1 RRS attained
MW-27DDDD	Increasing	NA	Barium above Type 1 RRS, but below Type 4 RRS. 2016 concentration is the highest recorded value.

NA- not applicable; either all, or all except one, concentrations below detection limit

3.5 UPDATED FATE AND TRANSPORT MODELING

Contaminant fate and transport modeling was updated using the Bioscreen-AT model (as was completed in the VRP Application and Plan), with updated data from September 2016 to assess theoretical downgradient migration of dissolved lead and determine if the distance would fall within acceptable point of compliance requirements under the VRP. In accordance with ConAgra's August 31, 2015 responses to EPD's comments dated June 4, 2015, the site point of exposure (POE) was designated as a location approximately 1051 feet east of the eastern property line of the site. The associated Point of Demonstration (POD) well was designated as MW-9, pursuant to any clarification resulting from additional potentiometric data that may be obtained in the future from new monitoring wells (MW-28R and MW-32) installed across U.S Highway 319, as stated in the comment responses. Two source area monitoring wells are currently being used for the BioScreen-AT modeling, including MW-18 (replaced previous source well MW-13D based on more current data), and MW-15 which was added pursuant to EPD Comments of June 4, 2015.

BioScreen-AT is an enhanced version of BioScreen (Neewell et al, 1996) with an exact solution for the transport of a contaminant (Karanovic et al, 2007). The model uses the Domenico equation which describes one-dimensional transport of a solute (inorganic or organic, decaying or non-decaying). The model simulates advection, adsorption and three-dimensional dispersion of any dissolved constituent (inorganic or organic), and has the ability to simulate constant or decaying sources, and contaminant degradation using degradation constants. Features within the model designed to account for processes specific to natural attenuation of organic constituents were not applicable. The use of BioScreen-AT was limited for this site-specific application to model only advection, dispersion, and adsorption onto porous media since lead is not known to degrade at notable rates.

The results of the BioScreen-AT modeling remained favorable, indicating that under a theoretical worst-case scenario lead would meet compliance standards within approximately 220 feet to 380 feet downgradient of the property boundary (425 feet to 590 feet from "source" monitoring well MW-18) based on 45 year and 100 year plume durations, respectively. For the MW-15 second source scenario, the lead concentration (for the modeled travel time of 100 additional years) would not exceed the GWPS of 0.015 mg/l between approximately 450 to 620 feet from MW-15, or approximately 270 to 320 feet beyond the eastern boundary along the prevalent groundwater flow direction. However, the actual downgradient extent of the dissolved lead plume would likely be much less since its mobility is diminished as pH level becomes more neutral. This decreased mobility with increased pH is not able to be simulated by BioScreen-AT. Also, the BioScreen-AT model assumes a constant source, which does not apply to the Swift site as operations have ceased and there is no known residual source. The Georgia VRP permits a Point of Compliance up to 1,000 feet from a contaminant source provided there is no exposure risk. The full BioScreen-AT modeling discussion, site data, results and aerial depiction of the modeled potential offsite plume limit are provided in Appendix C.

3.6 RESPONSE TO COMMENTS – EPD LETTER (SEPT. 26, 2016)

Following are the EPD comments in bold, followed by ConAgra's responses:

1) EPD does not necessarily agree that Shallow Zone B has consistently displayed a flow pattern that converges from north and south, transitioning to an eastward flow. Groundwater elevations along the eastern boundary of the Tumlin property have historically been relatively high compared to groundwater elevations within the property interior. EPD agrees that potentiometric data from two proposed delineations wells, east of MW-9 and MW-15, may help clarify direction of groundwater flow.

Response to No. 1 - Potentiometric surface maps for Shallow Zone B over the past several years have indicated a general lower groundwater elevation near MW-3 and MW-9 relative to other Shallow Zone B monitoring wells resulting in a lower potentiometric contour in the east central portion of the site near the property line. It is acknowledged that there is some variation noted over time. Additionally, some hydraulic interconnectivity between Shallow Zone A (perched zone) and Shallow Zone B may lead to some inconsistencies dependent upon rainfall and infiltration/recharge factors. Amec Foster Wheeler agrees that the data obtained from Shallow Zone B wells recently installed east of MW9 and MW-15 will serve to clarify the direction of groundwater flow. These data will be incorporated into the next Status Report.

2) The groundwater sampling logs in Report I contain inconsistencies regarding pump-intake placement. If a traditional multi-volume purge is conducted, the pump intake should be initially placed near the top of the water column. The pump intake should be lowered as the water column is drawn down, but should maintain a consistent depth with respect to the top of the water column. A relatively rapid pumping rate may be utilized, but the pumping rate should be reduced if the water column does not stabilize. A rapid pumping rate may also create problems with excess turbidity. If the low-flow purge method is utilized (also known as micro-purging or the tubing-in-screened-interval method), the pump intake should be placed at the approximate midpoint of the well screen, and water-column drawdown should be kept to a minimum (preferably less than 0.1 meter). The pumping rate should be kept relatively slow, usually less than 0.5 liter per minute, to ensure that groundwater is being drawn through the well screen instead of from the top of the water column. The pumping rate and amount of drawdown should be recorded on the groundwater sampling field log at regular intervals. Refer to U.S. EPA Region 4 Science and Ecosystem Support Di vision (SESD), "Operating Procedure SESDPROC-301-R3."

Response to No. 2 – Amec Foster Wheeler's standard field procedures strive to follow the SESD guidance as summarized in the comment above. For the September 2016 sampling event, for all wells except MW-27DDDD, either a three well volume method of purging or a low-flow method of purging was used, dependent of the rate of well recharge encountered. The tubing intake was initially placed at the approximate midpoint of the well screen, and the wells pumped at a relatively slow pumping rate (less than 500 milliliters per minute [mL/min]). If the water level stabilized, a low-flow purge was conducted until the pH, temperature, and specific conductance (SC) readings stabilized, and the sample was collected. If the water level could not be stabilized by adjusting the pumping rate, the intake was placed near the top of the well column and a minimum of three well volumes were purged from the well prior to sample collection. At MW-27DDDD, the three well volume purge method was used from the onset of purging so as to confirm the removal of any stagnant water column that might have been present in that deep well. The attached field sampling forms (Appendix A) present the purge methods used at each well during the September 2016 sampling event.

4.0 CONCLUSIONS AND RECOMMENDATIONS

In March 2012, a total of five well locations (MW-7, MW-9, MW-13D, MW-16, and MW-18) exceeded the lead Type 1 RRS, while in September 2016, seven well locations exceeded the lead Type 1 RRS (MW-1, MW-6, MW-9, MW-13D, MW-15, MW-16 and MW-18). While the lead concentration in MW-1 in September 2016 exceeded the Type 1 RRS, this exceedance was in a total metals sample with elevated turbidity, and lead was not detected in the dissolved metals samples collected in MW-1.

The September 2016 sampling detected arsenic only in MW-15, which is well below the Type 1 RRS of 0.01 mg/L. The arsenic detection in MW-15 was in a total metals sample with elevated turbidity, and arsenic was not detected in the dissolved metals sample collected from MW-15. The only previous arsenic exceedances of the Type 1 RRS were isolated occurences; once at MW-6 (total arsenic only at 0.0159 mg/L in September 2015), once at MW-12 (0.0126 mg/L in September 2013), once at MW-13D (total arsenic only at 0.0264 mg/L in September 2015), once at MW-18 (0.07 mg/L in September 2015) and once at MW-28 (0.017 mg/L in November 2004). Arsenic had never before been reported in six of these wells (MW-1, MW-6, MW-7, MW-9, MW-15 and MW-18), and had been reported only once before at MW-13D.

As mentioned previously, for the reasons given above: (1) only two previous arsenic Type 1 RRS exceedances; (2) reports of arsenic in multiple wells in which it had never before been reported; (3) an arsenic detection in a parent sample but not the associated duplicate sample; and (4) arsenic only being detected in a single well in September 2016, the September 2015 arsenic detections are considered anomalous and not reflective of actual site conditions.

Barium meets the Type 4 RRS of 20 mg/L at all sampling locations, and also meets the Type 1 RRS of 2 mg/L at all locations except MW-27DDDD. The barium value at MW-27DDDD increased from 4.95 mg/L in 2015 to 7.22 mg/L (the highest value observed to date). The MW-6 concentration of 0.181 mg/L in September 2016 is a substantial decrease from the barium value of 10.3 mg/L reported in September 2014, which is now believed to have been anomalous. This anomalous value is possibly due to the redevelopment performed the day prior to MW-6 being sampled in September 2014, as discussed in the ACAER.

Annual groundwater sampling will continue (unless an alternative frequency is subsequently approved by EPD) until the data demonstrate that human health and the environment are adequately protected and EPD concurs. If the data demonstrates that a reduced frequency is warranted, modifications will be proposed in subsequent status reports.

HIS Site No. 10509

5.0 NEXT SUBMITTAL

As required by EPD's letter dated May 29, 2015, semiannual progress reports are to submitted to EPD November 29th and May 29th annually, beginning November 2015 and ending in 2020, unless a CSR is submitted and approved prior to 2020. A report for the fourth semiannual period is expected to be submitted by May 29th, 2017, and is planned to include the following activities:

- Results from surveying and sampling of the two new offsite wells (MW-28R and MW-32) to include an updated potentiometric surface map for Shallow Zone B and updated COC distribution map.
- Updated biscreen based on results of two new offsite wells (MW-28R and MW-32), if necessary.
- Update on status of Uniform Environmental Covenants.
- Any additional activity, if required, related to pending resolution to EPD comments received prior to submittal of Status Report No. 4.

December 14, 2016 Amec Foster Wheeler Project 6122-14-0220

TABLES

Table 1: Summary of Groundwater Elevations

Well Number	Date Measured	Top of Casing Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Groundwater Elevation (ft, NAVD)
	8/30/01	308.00	2.59-17.59	295.09
	12/18/01	308.00	2.59-17.59	294.18
	1/30/03	308.00	2.59-17.59	297.77
	2/14/03	308.00	2.59-17.59	296.42
	4/8/03	308.00	2.59-17.59	298.56
	6/9/04	308.00	2.59-17.59	297.45
	11/5/04	308.00	2.59-17.59	298.54
	1/25/2005 ¹	306.50	1.09-16.09	299.62
	2/15/05	306.50	1.09-16.09	300.04
MW-1	5/15/2007 ²	306.06	0.65-15.66	295.71
10100 1				
	7/16/2008 ²	306.06	0.65-15.66	294.20
	10/19/09	306.06	0.65-15.66	295.59
	3/28/12	306.06	0.65-15.66	301.68
	9/26/12	306.06	0.65-15.66	302.69
	3/26/13	306.06	0.65-15.67	304.38
	9/9/13	306.06	0.65-15.67	303.08
	9/22/14	306.06	0.65-15.67	296.28
	9/21/15	306.06	0.65-15.68	295.56
	9/27/16	306.06	0.65-15.68	304.00
	8/30/01	309.38	2.35-17.35	297.23
	12/18/01	309.38	2.35-17.35	294.22
	1/30/03	309.38	2.35-17.35	297.63
	2/14/03	309.38	2.35-17.35	297.78
	4/8/03	309.38	2.35-17.35	298.42
	6/9/04	309.38	2.35-17.35	296.61
	11/5/04	309.38	2.35-17.35	297.92
	1/25/2005 ¹	307.96	0.93-15.93	299.06
	2/15/05	307.96	0.93-15.93	299.40
MW-2	5/16/2007 ²	307.48	0.45-15.45	Dry
	7/16/2008 ²	307.48	0.45-15.45	Dry
	10/19/09	307.48	0.45-15.45	307.27
	3/28/12	307.48	0.45-15.45	Dry
	9/26/12	307.48	0.45-15.45	302.62
	3/26/13	307.48	0.45-15.46	306.17
	9/9/13	307.48	0.45-15.46	304.36
	9/22/14	307.48	0.45-15.46	Dry
	9/21/15	307.48	0.45-15.47	Dry
	9/27/16	307.48	0.45-15.47	Dry
	8/30/01	306.91	2.07-21.67	296.69
	12/18/01	306.91	2.07-21.67	293.89
	1/30/03	306.91	2.07-21.67	297.38
	2/14/03	306.91	2.07-21.67	297.56
	4/8/03	306.91	2.07-21.67	298.15
	6/9/04	306.91	2.07-21.67	296.42
	11/5/04	306.91	2.07-21.67	297.16
	1/25/2005 ¹	306.79	1.95-21.55	297.87
	2/15/05	306.79	1.95-21.55	298.27
MW-3	5/15/2007 ²	306.32	1.48-21.08	294.47

Table 1: Summary of Groundwater Elevations

Well Number	Date Measured	Top of Casing Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Groundwater Elevation (ft, NAVD)
	7/16/2008 ²	306.32	1.48-21.08	293.40
	10/19/09	306.32	1.48-21.08	NM
	3/28/12	306.32	1.48-21.08	295.88
	9/26/12	306.32	1.48-21.08	296.43
	3/26/13	306.32	1.48-21.09	298.01
	9/9/13	306.32	1.48-21.09	297.91
	9/22/14	306.32	1.48-21.09	295.97
	9/21/15	306.32	1.48-21.10	293.00
	9/27/16	306.32	1.48-21.10	295.50
	8/30/01	309.73	3.39-13.39	307.74
	12/18/01	309.73	3.39-13.39	305.45
	1/30/03	309.73	3.39-13.39	307.34
	2/14/03	309.73	3.39-13.39	308.28
	4/8/03	309.73	3.39-13.39	308.11
	6/9/04	309.73	3.39-13.39	306.66
	11/5/04	309.73	3.39-13.39	306.91
	1/25/05	309.73	3.39-13.39	308.28
	2/15/05	309.73	3.39-13.39	309.54
MW-4	5/15/2007 ²	309.39	3.05-13.05	NL
	7/16/2008 ²	309.39	3.05-13.05	NL
	10/19/09	309.39	3.05-13.05	308.23
	3/28/12	309.39	3.05-13.05	306.97
	9/26/12	309.39	3.05-13.05	308.04
	3/26/13	309.39	3.05-13.06	308.65
	9/9/13	309.39	3.05-13.06	308.05
	9/22/14	309.39	3.05-13.06	307.92
	9/21/15	309.39	3.05-13.07	305.38
	9/27/16	309.39	3.05-13.07	308.38
	8/30/01	307.83	1.55-11.55	306.13
	12/18/01	307.83	1.55-11.55	301.38
	1/30/03	307.83	1.55-11.55	304.17
	2/14/03	307.83	1.55-11.55	304.60
	4/8/03	307.83	1.55-11.55	305.40
	6/9/04	307.83	1.55-11.55	304.87
	11/5/04	307.83	1.55-11.55	304.34
	1/25/05	307.83	1.55-11.55	305.01
N 4\ A / _ E	2/15/05	307.83	1.55-11.55	305.52
MW-5	5/15/07	307.83	1.55-11.55	NL
	7/16/08	307.83	1.55-11.55	NL
	10/19/09	307.83	1.55-11.55	NL
	3/28/12	307.83	1.55-11.55	NL
	9/26/12	307.83	1.55-11.55	NL
	3/26/13	307.83	1.55-11.56	NL
	9/9/13	307.83	1.55-11.56	NL
	9/22/14	307.83	1.55-11.56	NL
	9/21/15	307.83	1.55-11.57	NL
	8/30/01	307.98	2.12-12.12	299.97
	12/18/01	307.98	2.12-12.12	299.29

	Table 1: Summary of Groundwater Elevations					
Well Number	Date Measured	Top of Casing Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Groundwater Elevation (ft, NAVD)		
	1/30/03	307.98		Covered with fill		
	1/30/03	307.90	2.12-12.12	dirt		
	2/14/03	307.98	2.12-12.12	305.58		
	4/8/03	307.98	2.12-12.12	305.74		
	6/9/04	307.98	2.12-12.12	304.46		
	11/5/04	307.98	2.12-12.12	304.32		
	1/25/2005 ¹	309.96	4.10-14.10	304.51		
MW-6	2/15/05	309.96	4.10-14.10	304.20		
IVIVV-O	5/15/2007 ²	309.55	3.69-13.69	302.20		
	7/16/2008 ²	309.55	3.69-13.69	281.60		
	10/19/09	309.55	3.69-13.69	305.80		
	3/28/12	309.55	3.69-13.69	303.74		
	9/26/12	309.55	3.69-13.69	303.49		
	3/26/13	309.55	3.69-13.70	306.30		
	9/9/13	309.55	3.69-13.70	306.27		
	9/22/14	309.55	3.69-13.70	301.65		
	9/21/15	309.55	3.69-13.71	301.70		
	9/27/16	309.55	3.69-13.71	304.34		
	12/18/01	308.17	5.49-25.49	294.30		
	1/30/03	308.17	5.49-25.49	Covered with fill dirt		
	2/14/03	308.17	5.49-25.49	298.18		
	4/8/03	308.17	5.49-25.49	298.78		
	6/9/04	308.17	5.49-25.49	297.16		
	11/5/04	308.17	5.49-25.49	298.60		
	1/25/2005 ¹	309.63	6.95-26.95	298.41		
	2/15/05	309.63	6.95-26.95	298.53		
MW-7	5/16/2007 ²	309.21	6.53-26.53	294.89		
	7/16/2008 ²	309.21	6.53-26.53	NM		
	10/19/09	309.21	6.53-26.53	294.40		
	3/28/12	309.21	6.53-26.53	296.48		
	9/26/12	309.21	6.53-26.53	297.23		
	3/26/13	309.21	6.53-26.54	299.65		
	9/9/13	309.21	6.53-26.54	298.53		
	9/22/14	309.21	6.53-26.54	295.45		
	9/21/15	309.21	6.53-26.55	293.36		
	9/27/16	309.21	6.53-26.55	296.19		
	8/30/01	308.61	2.20-12.20	297.60		
	12/18/01	308.61	2.20-12.20	297.51		
	1/30/03	308.61	2.20-12.20	302.32		
	2/14/03	308.61	2.20-12.20	303.95		
	4/8/03	308.61	2.20-12.20	304.64		
	6/9/04	308.61	2.20-12.20	301.94		
	11/5/04	308.61	2.20-12.20	300.93		
	1/25/2005 ¹	308.43	2.02-12.02	304.71		
	2/15/05	308.43	2.02-12.02	304.29		
MW-8	5/15/2007 ²	308.03	1.62-11.62	301.47		

	Table 1: Summary of Groundwater Elevations					
Well Number	Date Measured	Top of Casing Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Groundwater Elevation (ft, NAVD)		
	7/16/2008 ²	308.03	1.62-11.62	301.60		
	10/19/09	308.03	1.62-11.62	306.62		
	3/28/12	308.03	1.62-11.62	303.87		
	9/26/12	308.03	1.62-11.62	305.59		
	3/26/13	308.03	1.62-11.63	307.17		
	9/9/13	308.03	1.62-11.63	305.62		
	9/22/14	308.03	1.62-11.63	305.85		
	9/21/15	308.03	1.62-11.64	301.02		
	9/27/16	308.03	1.62-11.64	307.37		
	8/30/01	307.12	2.43-22.43	296.20		
	12/18/01	307.12	2.43-22.43	293.50		
	1/30/03	307.12	2.43-22.43	297.15		
	2/14/03	307.12	2.43-22.43	297.32		
	4/8/03	307.12	2.43-22.43	297.85		
	6/9/04	307.12	2.43-22.43	Covered with fill dirt		
	11/5/04	307.12	2.43-22.43	296.81		
	1/25/2005 ¹	307.57	2.88-22.88	297.52		
	2/15/05	307.57	2.88-22.88	297.65		
MW-9	5/15/2007 ²	307.12	2.43-22.43	294.06		
	7/16/2008 ²	307.12	2.43-22.43	292.97		
	10/19/09	307.12	2.43-22.43	293.66		
	3/28/12	307.12	2.43-22.43	295.47		
	9/26/12	307.12	2.43-22.43	295.98		
	3/26/13	307.12	2.43-22.44	297.63		
	9/9/13	307.12	2.43-22.44	297.61		
	9/22/14	307.12	2.43-22.44	294.61		
	9/21/15	307.12	2.43-22.45	292.69		
	9/27/16	307.12	2.43-22.45	294.98		
	8/30/01	308.20	1.65-11.65	304.95		
	12/18/01	308.20	1.65-11.65	302.62		
			1.00 11.00	Covered with fill		
	1/30/03	308.20	1.65-11.65	dirt		
	2/14/03	308.20	1.65-11.65	305.70		
	4/8/03	308.20	1.65-11.65	306.31		
	6/9/04	308.20	1.65-11.65	305.33		
	11/5/04	308.20	1.65-11.65	304.90		
	1/25/2005 ¹	309.29	2.74-12.74	305.39		
	2/15/05	309.29	2.74-12.74	305.14		
MW-10						
	5/15/2007 ²	308.94	2.39-12.39	303.12		
	7/16/2008 ²	308.94	2.39-12.39	303.51		
	10/19/09	308.94	2.39-12.39	305.20		
	3/28/12	308.94	2.39-12.39	NL		
	9/26/12	308.94	2.39-12.39	NL		
	3/26/13	308.94	2.39-12.40	NL		
	9/9/13	308.94	2.39-12.40	NL		
	9/22/14	308.94	2.39-12.40	NL		
	9/21/15	308.94	2.39-12.41	NL		

Table 1: Summary of Groundwater Elevations

		Top of Casing	Denth of Sersoned	Groundwater
Well Number	Date Measured	Elevation	Depth of Screened Interval (ft btoc)	Elevation
		(ft, NAVD)	interval (it bloc)	(ft, NAVD)
	9/27/16	308.94	2.39-12.41	NL
	8/30/01	308.92	1.84-11.84	298.12
	12/18/01	308.92	1.84-11.84	303.19
	1/30/03	308.92	1.84-11.84	306.03
	2/14/03	308.92	1.84-11.84	306.14
	4/8/03	308.92	1.84-11.84	305.76
	6/9/04	308.92	1.84-11.84	303.36
	11/5/04	308.92	1.84-11.84	303.93
	1/25/05	308.92	1.84-11.84	304.77
	2/15/05	308.92	1.84-11.84	304.96
MW-11	5/15/2007 ²	308.47	1.39-11.39	302.30
	7/16/2008 ²	308.47	1.39-11.39	304.87
	10/19/09	308.47	1.39-11.39	306.42
	3/28/12	308.47	1.39-11.39	NL
	9/26/12	308.47	1.39-11.39	NL
	3/26/13	308.47	1.39-11.40	NL
	9/9/13	308.47	1.39-11.40	NL
	9/22/14	308.47	1.39-11.40	NL
	9/21/15	308.47	1.39-11.41	NL
	9/27/16	308.47	1.39-11.41	NL
	8/30/01	311.10	1.76-11.76	306.47
	12/18/01	311.10	1.76-11.76	305.37
	1/30/03	311.10	1.76-11.76	303.30
	2/14/03	311.10	1.76-11.76	306.47
	4/8/03	311.10	1.76-11.76	307.15
	6/9/04	311.10	1.76-11.76	304.98
	11/5/04	311.10	1.76-11.76	304.75
	1/25/05	311.10	1.76-11.76	306.75
	2/15/05	311.10	1.76-11.76	306.70
MW-12	5/15/2007 ²	310.77	1.43-11.43	304.17
	7/16/2008 ²	310.77	1.43-11.43	304.30
	10/19/09	310.77	1.43-11.43	307.22
	3/28/12	310.77	1.43-11.43	306.24
	9/26/12	310.77	1.43-11.43	307.29
	3/26/13	310.77	1.43-11.44	308.67
	9/9/13	310.77	1.43-11.44	307.95
	9/22/14	310.77	1.43-11.44	305.83
	9/21/15	310.77	1.43-11.45	304.39
	9/27/16	310.77	1.43-11.45	305.97
	8/30/01	308.78	19.58-24.58	296.43
	12/18/01	308.78	19.58-24.58	293.55
	1/30/03	308.78	19.58-24.58	297.28
	2/14/03	308.78	19.58-24.58	297.44
	4/8/03	308.78	19.58-24.58	296.98
	6/9/04	308.78	19.58-24.58	296.20
	11/5/04	308.78	19.58-24.58	296.97
	1/25/2005 ¹	308.58	19.38-24.38	297.66
	2/15/05	308.58	19.38-24.38	297.73

Table 1: Summary of Groundwater Elevations

		Top of Casing	Depth of Screened	Groundwater
Well Number	Date Measured	Elevation	Interval (ft btoc)	Elevation
		(ft, NAVD)	miorial (it bios)	(ft, NAVD)
MW-13D	5/15/2007 ²	308.15	18.95-23.95	294.16
	7/16/2008 ²	308.15	18.95-23.95	292.99
	10/19/09	308.15	18.95-23.95	293.64
	3/28/12	308.15	18.95-23.95	295.48
	9/26/12	308.15	18.95-23.95	296.03
	3/26/13	308.15	18.95-23.96	297.69
	9/9/13	308.15	18.95-23.96	297.71
	9/22/14	308.15	18.95-23.96	294.63
	9/21/15	308.15	18.95-23.97	292.70
	9/27/16	308.15	18.95-23.97	295.00
	8/30/01	306.92	1.19-6.19	DRY
	12/18/01	306.92	1.19-6.19	DRY
	1/30/03	306.92	1.19-6.19	303.94
	2/14/03	306.92	1.19-6.19	304.72
	4/8/03	306.92	1.19-6.19	304.25
	6/9/04	306.92	1.19-6.19	303.72
	11/5/04	306.92	1.19-6.19	303.68
	1/25/2005 ¹	306.81	1.08-6.08	304.01
	2/15/05	306.81	1.08-6.08	304.50
MW-14	5/15/2007 ²	306.45	0.72-5.72	302.33
	7/16/2008 ²	306.45	0.72-5.72	302.80
	10/19/09	306.45	0.72-5.72	NM
	3/28/12	306.45	0.72-5.72	303.59
	9/26/12	306.45	0.72-5.72	303.79
	3/26/13	306.45	0.72-5.73	304.52
	9/9/13	306.45	0.72-5.73	303.91
	9/22/14	306.45	0.72-5.73	304.06
	9/21/15	306.45	0.72-5.74	302.75
	9//27/16	306.45	0.72-5.74	304.54
	1/30/03	305.82	5.18-15.18	290.88
	2/14/03	305.82	5.18-15.18	292.05
	4/8/03	305.82	5.18-15.18	296.29
	6/9/04	305.82	5.18-15.18	299.24
	11/5/04	305.82	5.18-15.18	300.07
	1/25/2005 ¹	305.88	5.24-15.24	300.63
	2/15/05	305.88	5.24-15.24	301.09
	5/16/2007 ²	305.48	4.84-14.84	297.87
MW-15	7/16/2008 ²	305.48	4.84-14.84	297.46
	10/19/09	305.48	4.84-14.84	299.82
	3/28/12	305.48	4.84-14.84	300.56
	9/26/12	305.48	4.84-14.84	300.86
	3/26/13	305.48	4.84-14.85	301.46
	9/9/13	305.48	4.84-14.85	301.34
	9/22/14	305.48	4.84-14.85	300.51
	9/21/15	305.48	4.84-14.86	297.48
	9/27/16	305.48	4.84-14.86	300.61
	1/30/03	309.95	5.40-20.40	NM
	2/14/03	309.95	5.40-20.40	298.04

Table 1: Summary of Groundwater Elevations					
Well Number	Date Measured	Top of Casing Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Groundwater Elevation (ft, NAVD)	
	4/8/03	309.95	5.40-20.40	298.64	
	6/9/04	309.95	5.40-20.40	296.96	
	11/5/04	309.95	5.40-20.40	297.76	
	1/25/2005 ¹	310.00	5.45-20.45	298.31	
	2/15/05	310.00	5.45-20.45	298.47	
	5/16/2007 ²	309.55	5.00-20.00	295.00	
MW-16	7/16/2008 ²	309.55	5.00-20.00	293.88	
	10/19/09	309.55	5.00-20.00	295.06	
	3/28/12	309.55	5.00-20.00	296.57	
	9/26/12	309.55	5.00-20.00	297.17	
	3/26/13	309.55	5.00-20.01	298.77	
	9/9/13	309.55	5.00-20.01	298.59	
	9/22/14	309.55	5.00-20.01	295.38	
	9/21/15	307.57	5.00-20.02	293.42	
	9/27/16	307.57	5.00-20.02	296.19	
	1/30/03	307.53	4.90-14.90	304.83	
	2/14/03	307.53	4.90-14.90	305.26	
	4/8/03	307.53	4.90-14.90	305.11	
	6/9/04	307.53	4.90-14.90	303.43	
	11/5/04	307.53	4.90-14.90	303.71	
	1/25/05			Covered with fill	
	1/25/05	307.53	4.90-14.90	dirt	
	2/15/05	307.53	4.90-14.90	304.15	
MW-17	5/16/07	307.53	4.90-14.90	NL	
1010 0 17	7/16/08	307.53	4.90-14.90	NL	
	10/19/09	307.53	4.90-14.90	Destroyed	
	3/28/12	307.53	4.90-14.90	Destroyed	
	9/26/12	307.53	4.90-14.90	Destroyed	
	3/26/13	307.53	4.90-14.91	Destroyed	
	9/9/13	307.53	4.90-14.91	Destroyed	
	9/22/14	307.53	4.90-14.91	Destroyed	
	9/21/15	307.53	4.90-14.92	Destroyed	
	9/27/16	307.53	4.90-14.92	Destroyed	
	1/30/03	307.43	5.38-20.38	298.93	
	2/14/03	307.43	5.38-20.38	298.2	
	4/8/03	307.43	5.38-20.38	298.69	
	6/9/04	307.43	5.38-20.38	297.3	
	11/5/04	307.43	5.38-20.38	298.57	
	1/25/2005 ¹	308.12	6.07-21.07	298.99	
	2/15/05	308.12	6.07-21.07	298.96	
NAVA 4 4 0	5/15/2007 ²	307.69	5.64-20.64	294.6045	
MW-18	7/16/2008 ²	307.69	5.64-20.64	293.23	
	10/19/09	307.69	5.64-20.64	294.32	
	3/28/12	307.69	5.64-20.64	296.58	
	9/26/12	307.69	5.64-20.64	297.56	
	3/26/13	307.69	5.64-20.65	301.57	
	9/9/13	307.69	5.64-20.65	299.23	
	9/22/14	307.69	5.64-20.65	295.28	

Table 1: Summary of Groundwater Elevations

Table 1: Summary of Groundwater Elevations					
Well Number	Date Measured	Top of Casing Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Groundwater Elevation (ft, NAVD)	
	9/21/15	309.03	5.64-20.66	293.12	
	9/27/16	309.03	5.64-20.66	298.12	
	1/30/03	308.66	5.42-15.42	303.56	
	2/14/03	308.66	5.42-15.42	302.72	
	4/8/03	308.66	5.42-15.42	302.58	
	6/9/04	308.66	5.42-15.42	301.35	
	11/5/04	308.66	5.42-15.42	301.99	
	1/25/2005 ¹	308.89	5.65-15.65	300.29	
	2/15/05	308.89	5.65-15.65	303.46	
	5/16/2007 ²	308.47	5.23-15.23	299.794	
MW-19	7/16/2008 ²	308.47	5.23-15.23	298.69	
	10/19/09	308.47	5.23-15.23	302.51	
	3/28/12	308.47	5.23-15.23	301.97	
	9/26/12	308.47	5.23-15.23	302.12	
	3/26/13	308.47	5.23-15.24	303.64	
	9/9/13	308.47	5.23-15.24	302.34	
	9/22/14	308.47	5.23-15.24	297.76	
	9/21/15	308.47	5.23-15.25	297.69	
	9/27/16	308.47	5.23-15.25	NM	
	1/30/03	305.63	5.21-15.21	297.43	
	2/14/03	305.63	5.21-15.21	297.94	
	4/8/03	305.63	5.21-15.21	298.65	
	6/9/04	305.63	5.21-15.21	296.91	
	11/5/04	305.63	5.21-15.21	297.54	
	1/25/2005 ¹	305.67	5.25-15.25	298.17	
	2/15/05	305.67	5.25-15.25	298.21	
	5/15/2007 ²	305.30	4.88-14.88	295.0002	
MW-20	7/16/2008 ²	305.30	4.88-14.88	298.73	
	10/19/09	305.30	4.88-14.88	302.73	
	3/28/12	305.30	4.88-14.88	300.42	
	9/26/12	305.30	4.88-14.88	302.62	
	3/26/13	305.30	4.88-14.89	303.49	
	9/9/13	305.30	4.88-14.89	301.39	
	9/22/14	305.30	4.88-14.89	301.58	
	9/21/15	305.30	4.88-14.90	296.31	
	9/27/16	305.30	4.88-14.90	302.84	
	1/30/03	306.12	5.18-15.18	296.52	
	2/14/03	306.12	5.18-15.18	299.22	
	4/8/03	306.12	5.18-15.18	299.40	
	6/9/04	306.12	5.18-15.18	298.21	
	11/5/04	306.12	5.18-15.18	297.99	
	1/25/2005 ¹	306.16	5.22-15.22	298.50	
	2/15/05	306.16	5.22-15.22	298.63	
NAVA 04	5/15/2007 ²	305.82	4.88-14.88	296.74	
MW-21	7/16/2008 ²	305.82	4.88-14.88	296.70	
	10/19/09	305.82	4.88-14.88	304.07	
	3/28/12	305.82	4.88-14.88	301.52	
	9/26/12	305.82	4.88-14.88	302.97	

Table 1: Summary of Groundwater Elevations

	Table 1. Gull	Top of Casing	dwater Elevations	Groundwater	
Well Number	Date Measured	Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Elevation (ft, NAVD)	
	3/26/13	305.82	4.88-14.89	305.36	
	9/9/13	305.82	4.88-14.89	304.43	
	9/22/14	305.82	4.88-14.89	300.61	
	9/21/15	305.82	4.88-14.90	299.84	
	9/27/16	305.82	4.88-14.90	305.54	
	1/30/03	308.72	40.34-45.34	292.11	
	2/14/03	308.72	40.34-45.34	292.21	
	4/8/03	308.72	40.34-45.34	292.61	
	6/9/04	308.72	40.34-45.34	290.82	
	11/5/04	308.72	40.34-45.34	291.59	
	1/25/2005 ¹	308.55	40.17-45.17	292.44	
	2/15/05	308.55	40.17-45.17	292.60	
	5/15/2007 ²	308.06	39.68-44.68	289.2084	
MW-22DD	7/16/2008 ²	308.06	39.68-44.68	288.49	
	10/19/09	308.06	39.68-44.68	288.84	
	3/28/12	308.06	39.68-44.68	290.30	
	9/26/12	308.06	39.68-44.68	290.56	
	3/26/13	308.06	39.68-44.69	292.20	
	9/9/13	308.06	39.68-44.69	292.12	
	9/22/14	308.06	39.68-44.69	289.60	
	9/21/15	308.06	39.68-44.70	288.11	
	9/27/16	308.06	39.68-44.70	289.85	
	4/8/03	306.78	5.41-20.41	299.03	
	6/9/04	306.78	5.41-20.41	297.71	
	11/5/04			298.55	
	1/25/2005 ¹	306.83	5.46-20.46	298.93	
	2/15/05	306.83	5.46-20.46	298.79	
	5/16/2007 ²	306.42	5.05-20.05	294.8207	
	7/16/2008 ²	306.42	5.05-20.05	293.24	
MW-23	10/19/09	306.42	5.05-20.05	293.87	
	3/28/12	306.42	5.05-20.05	296.80	
	9/26/12	306.42	5.05-20.05	297.42	
	3/26/13	306.42	5.05-20.06	299.28	
	9/9/13	306.42	5.05-20.06	298.91	
	9/22/14	306.42	5.05-20.06	NL	
	9/21/15	306.42	5.05-20.07	NL	
	9/27/16	306.42	5.05-20.07	NL	
	4/8/03	309.81	5.43-20.43	299.24	
	6/9/04	309.81	5.43-20.43	297.5	
	11/5/04	309.81	5.43-20.43	298.35	
	1/25/2005 ¹	309.85	5.47-20.47	298.75	
	2/15/05	309.85	5.47-20.47	299.08	
	5/16/2007 ²	309.42	5.04-20.04	295.4728	
	7/16/2008 ²	309.42	5.04-20.04	294.23	
MW-24	10/19/09	309.42	5.04-20.04	295.86	
	3/28/12	309.42	5.04-20.04	297.27	
	9/26/12	309.42	5.04-20.04	297.93	
	3/26/13	309.42	5.04-20.05	300.20	

Table 1: Summary of Groundwater Elevations

Well Number	Date Measured	Top of Casing Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Groundwater Elevation (ft, NAVD)	
	9/9/13	309.42	5.04-20.05	299.59	
	9/22/14	309.42	5.04-20.05	NL	
	9/21/15	309.42	5.04-20.06	NL	
	9/27/16	309.42	5.04-20.06	NL	
	4/8/03	311.02	5.30-20.30	299.19	
	6/9/04	311.02	5.30-20.30	297.41	
	11/5/04	311.02	5.30-20.30	298.24	
	1/25/2005 ²	311.06	5.34-20.34	298.81	
	1/25/2005 ¹	311.06	5.34-20.34	299.01	
	5/15/2007 ²	310.76	5.04-20.04	295.5463	
	7/16/2008 ²	310.76	5.04-20.04	294.31	
MW-25	10/19/09	310.76	5.04-20.04	295.81	
	3/28/12	310.76	5.04-20.04	297.32	
	9/26/12	310.76	5.04-20.04	297.94	
	3/26/13	310.76	5.04-20.05	300.22	
	9/10/13	310.76	5.04-20.05	299.48	
	9/22/14	310.76	5.04-20.05	NL	
	9/21/15	310.76	5.04-20.06	NL	
	9/27/16	310.76	5.04-20.06	NL	
	4/8/03	308.35	55.43-60.43	288.36	
	6/9/04	308.35	55.43-60.43	286.78	
	11/5/04	308.35	55.43-60.43	287.48	
	1/25/2005 ¹	308.57	55.65-60.65	288.21	
	2/15/05	308.57	55.65-60.65	288.42	
	5/15/2007 ²	308.14	55.22-60.22	285.63	
	7/16/2008 ²	308.14	55.22-60.22	284.57	
MW-26DDD	10/19/09	308.14	55.22-60.22	285.25	
	3/28/12	308.14	55.22-60.22	286.27	
	9/26/12	308.14	55.22-60.22	286.08	
	3/26/13	308.14	55.22-60.23	287.49	
	9/9/13	308.14	55.22-60.23	286.86	
	9/22/14	308.14	55.22-60.23	285.21	
	9/21/15	308.14	55.22-60.24	284.73	
	9/27/16	308.14	55.22-60.24	285.38	
	11/5/04	308.35	71.23-91.19	283.88	
	1/25/2005 ¹	309.32	72.20-92.16	284.77	
	2/15/05	309.32	72.20-92.16	284.84	
	5/15/2007 ²	308.85	71.73-91.69	285.35	
	7/16/2008 ²	308.85	71.73-91.69	290.14	
	10/19/09	308.85	71.73-91.69	280.96	
MW-27DDDD	3/28/12	308.85	71.73-91.69	281.53	
	9/26/12	308.85	71.73-91.69	283.13	
	3/26/13	308.85	71.73-91.70	284.72	
	9/11/13	308.85	71.73-91.70	284.79	
	9/22/14	308.85	71.73-91.70	282.33	
	9/21/15	308.85	71.73-91.71	281.16	
	9/27/16	308.85	71.73-91.71	282.34	
	11/5/04	305.83	9.30-24.30	290.21	

Table 1: Summary of Groundwater Elevations										
Well Number	Date Measured	Top of Casing Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Groundwater Elevation (ft, NAVD)						
	1/25/05	305.83	9.30-24.30	291.08						
	2/15/05	305.83	9.30-24.30	291.01						
	5/15/07	305.83	9.30-24.30	288.38						
	7/16/08	305.83	9.30-24.30	NL						
	10/19/09	305.83	9.30-24.30	NL						
MW-28	3/28/12	305.83	9.30-24.30	NL						
	9/26/12	305.83	9.30-24.30	NL						
	3/26/13	305.83	9.30-24.30	NL						
		9/9/13 305.83 9.30-24.		NL						
	9/22/14	305.83	9.30-24.30	NL						
	9/21/15	305.83	9.30-24.30	NL						
	9/27/16	305.83	9.30-24.30	NL						
	12/18/01	307.07	15.54-19.54	294.47						
	4/8/03	307.07	15.54-19.54	299.46						
	6/9/04	307.07	15.54-19.54	298.43						
	11/5/04	307.07	15.54-19.54	299.28						
	1/25/2005 ¹	307.07	15.54-19.54	299.36						
	2/15/05	307.07	15.54-19.54	299.26						
	5/15/2007 ²	306.73	15.20-19.20	295.27						
MW-A	7/16/2008 ²	306.73	15.20-19.20	NM						
IVIVV-A	10/19/09	306.73	15.20-19.20	294.50						
	3/28/12	306.73	15.20-19.20	297.33						
	9/26/12	306.73	15.20-19.20	298.36						
	3/26/13	306.73	15.20-19.20	300.20						
	9/9/13	306.73	15.20-19.20	299.01						
	9/22/14	306.73	15.20-19.20	NL						
	9/21/15	306.73	15.20-19.20	NL						
	9/27/16	306.73	15.20-19.20	NL						
	7/17/08	310.49	14.00-24.00	294.54						
	10/19/09	310.49	14.00-24.00	296.54						
	3/28/12	310.49	14.00-24.00	298.41						
	9/26/12	310.49	14.00-24.00	298.46						
MW-29	3/26/13	310.49	14.00-24.00	297.71						
	9/9/13	310.49	14.00-24.00	298.57						
	9/22/14	310.49	14.00-24.00	296.02						
	9/21/15	306.85	14.00-24.00	294.26						
	9/27/16	306.85	14.00-24.00	298.11						
	7/17/08	305.51	10.00-20.00	294.67						
	10/19/09	305.51	10.00-20.00	296.10						
	3/28/12	305.51	10.00-20.00	NL						
	3/28/12	305.51	10.00-20.00	NL						
MW-30	3/26/13	305.51	10.00-20.00	NL						
	9/9/13	305.51	10.00-20.00	NL						
	9/22/14	305.51	10.00-20.00	NL						
	9/21/15	305.51	10.00-20.00	NL						
	9/27/16	305.51	10.00-20.00	NL						
	<u> </u>									
	5/2/12	Not Surveyed	14.6-24.6 ⁴	N/A						

Well Number	Date Measured	Top of Casing Elevation (ft, NAVD)	Depth of Screened Interval (ft btoc)	Groundwater Elevation (ft, NAVD)			
	3/26/13	Not Surveyed	Surveyed 14.6-24.6 ⁴				
MW-31 9/9/13		Not Surveyed	14.6-24.6 ⁴	N/A			
	9/22/14 Not Surveye		14.6-24.6 ⁴	N/A			
	9/21/15	306.32	14.6-24.6 ⁴	294.09			
	9/27/16	306.32	14.6-24.6 ⁴	297.15			

Notes: JMQ 11/16/16
NAVD = North American Vertical Datum NJM 11/17/16

btoc = Below top of casing

N/A=Not Applicable

NL = Not Located

NM = Not Measured

¹ Indicates top of casing elevation was revised due to site grading.

² Indicates a revised top of casing elevation based on a site topographic survey.

³ Possible measurement error.

⁴ Below ground surface

Table 2: Summary of Groundwater Analytical Results												
Sample ID	Sample Date	Sampling Method	pH (pH units)	Turbidity (NTU)	Sample Type	Arsenic (mg/L)	Barium	Cadmium (mg/L)	Chromium	Lead (mg/L)	Chloride (mg/L)	Nitrate (mg/L)
MW-1	8/30/2001	Bailer	5.32	70	Total	< 0.05	(mg/L) < 0.5	< 0.005	(mg/L) < 0.05	< 0.05	NA	NA
MW-1	9/6/2001	Bailer	NM	NM	Total	< 0.05	< 0.5	< 0.005	< 0.05	< 0.01	NA	NA
MW-1	9/18/2001	Bailer	5.47	NM	Total	NA	NA	NA	NA	NA	NA	< 0.01
MW-1	12/18/2001	Peristaltic Pump	5.35	1.99	Total	NA NA	0.33	NA	NA NA	< 0.005	NA NA	< 0.01
MW-1 MW-1	10/4/2002 1/31/2003	- Peristaltic Pump	NM 5.17	NM 10.3	Total Total	NA NA	NA 0.042	NA NA	NA NA	NA < 0.005	NA NA	NA NA
MW-1	11/9/2004	-	NM	NM	Total	NA	NA	NA	NA	NA	NA	NA
MW-1	9/23/2015	Peristaltic Pump	5.38	7800	Total	0.00676	0.191	< 0.0007	0.0499	0.077	NA	NA
MW-1	9/23/2015	Peristaltic Pump	NM	NM	Dissolved	<0.005	0.0159	<0.0007	<0.005	<0.001	NA	NA
MW-1	9/29/2016	Peristaltic Pump	5.62	>800	Total	NA NA	NA NA	NA	NA NA	0.0691	11	<0.25
MW-1 MW-2	9/29/2016 8/30/2001	Peristaltic Pump Bailer	NM 4.21	NM 75	Dissolved Total	NA < 0.05	NA 3.5	NA < 0.005	NA < 0.05	<0.001 0.11	NA NA	NA NA
MW-2	9/6/2001	Bailer	NM	NM	Dissolved	NA	5	NA	NA	0.11	NA NA	NA NA
MW-2	9/6/2001	Bailer	NM	NM	Total	< 0.05	4.9	< 0.005	< 0.05	0.21	NA	NA
MW-2	9/18/2001	Bailer	4.14	NM	Total	NA	NA	NA	NA	NA	NA	2.16
MW-2	12/18/2001	Peristaltic Pump	4.18	1.11	Total	NA NA	12	NA	NA NA	0.55	NA NA	1.1
MW-2 ** MW-2 **	10/4/2002 9/28/2012	Peristaltic Pump	NM 6.22	NM 27.8	Total Total	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-2	3/28/2013	Peristaltic Pump	5.99	140.0	Total	< 0.005	0.0409	< 0.0007	< 0.005	0.00236	300	0.66 J
MW-2	3/28/2013	Peristaltic Pump	NM	NM	Dissolved	< 0.005	0.0332	<0.0007	<0.005	<0.001	NA	NA
MW-2	9/12/2013	Peristaltic Pump	6.04	39.8	Total	< 0.005	0.0486	<0.0007	<0.005	0.00146	360	<2.5
MW-2	9/12/2013	Peristaltic Pump	NM	NM	Dissolved	< 0.005	0.0453	<0.0007	<0.005	<0.001	NA NA	NA NA
MW-3 MW-3	8/30/2001 9/6/2001	Bailer Bailer	4.72 NM	180000 NM	Total Dissolved	< 0.05 < 0.05	3.4 0.6	< 0.005 < 0.005	< 0.05 < 0.05	0.12 0.022	NA NA	NA NA
MW-3	9/6/2001	Bailer	NM	NM	Total	< 0.05	0.56	< 0.005	< 0.05	0.022	NA NA	NA NA
MW-3	9/18/2001	Bailer	4.61	NM	Total	NA	NA	NA	NA	NA	NA	12.7
MW-3	12/18/2001	Peristaltic Pump	4.5	1.16	Total	NA	0.89	NA	NA	0.044	NA	12
MW-3 MW-3	10/4/2002	Poriotaltic Duran	NM 5.71	NM 0.31	Total	NA NA	NA 2.3	NA NA	NA NA	NA 0.010	NA NA	NA NA
MW-3	11/10/2004 2/15/2011	Peristaltic Pump Peristaltic Pump	5.71 5.95	0.31 51.1	Total Total	NA <0.005	2.3 0.0848	< 0.0007	NA <0.005	0.019 0.00347	NA NA	NA NA
MW-3	2/15/2011	Peristaltic Pump	NM	0.24	Dissolved	<0.005	0.0801	< 0.0007	<0.005	<0.001	NA	NA
MW-3	3/29/2012	Peristaltic Pump	5.64	9.2	Total	<0.005	0.179	<0.0007	<0.005	0.00123	140	0.63
MW-3	9/27/2012	Peristaltic Pump	5.57	9.5	Total	< 0.005	0.120	< 0.0007	< 0.005	0.00136	120	<2.5
MW-3 MW-3	3/26/2013 3/26/2013	Peristaltic Pump Peristaltic Pump	5.60 NM	89.7 NM	Total Dissolved	< 0.005 < 0.005	0.0275 0.0234	< 0.0007 < 0.0007	< 0.005 < 0.005	0.00501 0.00229	5.4 NA	0.16 J NA
MW-3	9/10/2013	Peristaltic Pump	5.75	9.96	Total	< 0.005	0.0234	< 0.0007	< 0.005	0.00223	130	0.75
MW-3	9/23/2014	Peristaltic Pump	5.26	16.1	Total	< 0.005	0.168	< 0.0007	< 0.005	0.00166	120	0.28
MW-3	9/23/2014	Peristaltic Pump	NM	NM	Dissolved	< 0.005	0.166	< 0.0007	< 0.005	<0.001	NA	NA
MW-4	8/30/2001	Bailer	6.45	72 NA	Total	< 0.05	< 0.5	< 0.005	< 0.05	< 0.05	NA NA	NA NA
MW-4 MW-4	9/6/2001 9/18/2001	Bailer Bailer	NM 6.35	NM NM	Total Total	< 0.05 NA	< 0.5 NA	< 0.005 NA	< 0.05 NA	< 0.01 NA	NA NA	NA < 0.01
MW-4	12/18/2001	Peristaltic Pump	6.3	37.2	Total	NA	0.081	NA	NA	< 0.005	NA	< 0.01
MW-4	1/31/2003	Peristaltic Pump	5.75	2.86	Total	NA	NA	NA	NA	NA	NA	NA
MW-4	4/8/2003	Peristaltic Pump	NM	NM	Total	NA 0.005	NA 0.400	NA 0.0007	NA 0.005	NA 0.004	NA NA	NA NA
MW-4 MW-4	10/20/2009 10/20/2009	Peristaltic Pump Peristaltic Pump	NM 6.55	NM 0.47	Dissolved Total	< 0.005 < 0.005	0.106 0.107	< 0.0007 < 0.0007	< 0.025 < 0.005	< 0.001 < 0.001	NA 4.3	NA 4
MW-4	9/22/2015	Peristaltic Pump	6.19	0.37	Total	< 0.005	0.0948	< 0.0007	< 0.005	<0.001	NA	NA
MW-4	9/28/2016	Peristaltic Pump	6.44	5.17	Total	NA	NA	NA	NA	NA	3.9	2.2
MW-5	8/30/2001	Bailer	6.96	2900	Total	< 0.05	< 0.5	< 0.005	< 0.05	< 0.05	NA	NA
MW-5	9/6/2001	Bailer	NM	NM	Total	< 0.05	< 0.5	< 0.005	< 0.05	< 0.01	NA	NA 2.25
MW-5 MW-5	9/18/2001 12/18/2001	Bailer Peristaltic Pump	6.55 6.76	NM 0.67	Total Total	NA NA	NA 0.11	NA NA	NA NA	NA < 0.005	NA NA	0.25 0.12
MW-6	8/30/2001	Bailer	4.09	75	Total	< 0.05	2	< 0.005	< 0.05	0.19	NA	NA
MW-6	9/6/2001	Bailer	NM	NM	Dissolved	NA	2.2	NA	NA	0.26	NA	NA
MW-6	9/6/2001	Bailer	NM	NM	Total	< 0.05	2.1	< 0.005	< 0.05	0.27	NA	NA
MW-6	9/18/2001	Bailer	4.21	NM 1.59	Total	NA NA	NA 5.3	NA NA	NA NA	NA 0.55	NA NA	13.8
MW-6 MW-6	12/18/2001 5/16/2007	Peristaltic Pump -	4.12 4.23	1.58 6.72	Total Total	NA NA	5.3 NA	NA NA	NA NA	0.55 NA	NA 2400	16 0.33
MW-6	3/30/2012	Peristaltic Pump	6.05	9.17	Total	< 0.005	0.0746	< 0.0007	<0.005	<0.001	2000	<2.5
MW-6	9/27/2012	Peristaltic Pump	6.34	8.7	Total	<0.025	0.296	< 0.0035	<0.025	0.0322	1800	<25
MW-6	3/27/2013	Peristaltic Pump	6.65	4.37	Total	< 0.005	0.039	0.00082	< 0.005	< 0.001	210	<2.7
MW-6 MW-6	9/10/2013 9/10/2013	Peristaltic Pump Peristaltic Pump	5.57 NM	69.1 NM	Total Dissolved	< 0.005 < 0.005	0.420 0.509	0.000878 < 0.0007	0.00547 < 0.005	0.0534 0.0112	1400 NA	<2.5 NA
MW-6	9/10/2013	Peristaltic Pump	4.10	21.4	Total	< 0.005	10.3	0.00146	0.0106	1.16	6300	<25
MW-6	9/25/2014	Peristaltic Pump	NM	NM	Dissolved	< 0.005	9.29	0.00158	< 0.005	0.994	NA	NA
MW-6	9/23/2015	Peristaltic Pump	4.55	1.88	Total	0.0159	0.449	<0.002	<0.005	0.132	NA 750	NA 0.5
MW-6	9/28/2016	Peristaltic Pump	5.95	4.41	Total	< 0.005	0.181	< 0.0007	< 0.005	0.036	750	<2.5
MW-7 MW-7	12/18/2001 5/16/2007	Peristaltic Pump	4.31 3.54	1.66 5.02	Total Total	NA NA	13 NA	NA NA	NA NA	0.32 NA	NA 3900	4.2 3.2
DUP-03	5/16/2007	-	3.54	5.02	Total	NA NA	NA NA	NA NA	NA NA	NA	4000	3.6
MW-7	3/30/2012	Peristaltic Pump	5.14	1.41	Total	<0.005	0.577	< 0.0007	<0.005	0.026	1500	3.4
MW-7	9/28/2012	Peristaltic Pump	5.94	3.93	Total	<0.005	0.384	< 0.0007	<0.005	0.00666	900	<12 UJ
DUP-1	9/28/2012 3/27/2013	Peristaltic Pump	NM 6.24	NM 2.00	Total	<0.005	0.320	< 0.0007	<0.005	0.00483	890	<12 UJ
MW-7 MW-7	9/11/2013	Peristaltic Pump Peristaltic Pump	6.34 5.91	2.00 3.71	Total Total	<0.005 <0.005	0.127 0.216	<0.0007 <0.0007	<0.005 <0.005	<0.001 <0.001	260 660	3.8 J <2.5
MW-7	9/23/2014	Peristaltic Pump	5.65	1.39	Total	<0.005	0.315	<0.0007	<0.005	0.00913	1200	4.0
MW-7	9/22/2015	Peristaltic Pump	5.57	1.47	Total	0.00533	0.493	<0.001	<0.005	0.00995	NA	NA
MW-7	9/28/2016	Peristaltic Pump	5.75	0.78	Total	NA	NA	NA	NA	NA	1100	<12
MW-8 MW-8	8/30/2001	- Poiler	NM	NM NM	Total	NA - 0.05	NA < 0.5	NA - 0.005	NA - 0.05	NA - 0.01	NA NA	NA NA
MW-8	9/6/2001 9/18/2001	Bailer Bailer	NM 5.03	NM NM	Total Total	< 0.05 NA	< 0.5 NA	< 0.005 NA	< 0.05 NA	< 0.01 NA	NA NA	NA 33.3
		A Type 1/3 Groundwat				0.01	2	0.005	0.1	0.015	250*	10
Background						<0.005	0.125	<0.0007	<0.005	<0.001	12	2.4
Highest RRS						0.01	20	0.051	0.1	0.015		
Corrective Action Goal					0.01	20	0.051	0.1	0.015			

Desire	Table 2: Summary of Groundwater Analytical Results												
MAY-0	Sample ID	•			•	-					Lead (mg/L)	Chloride (mg/L)	Nitrate (mg/L)
September Sept	MW-9				` ′			`	· • ·	` •	0.08	NA	NA
Barrier September Septem											0.17	NA	NA
MAYO 1071-9001 Percentair Pump 4.3 4.74 Total N.A. 5.3 NA NA NA NA NA NA NA N											0.077	NA NA	NA 5.29
Month											NA 0.26	NA NA	5.38 5.8
MW-0	l 										0.108	NA	NA
Months											0.12	940	2.4 J
Month											0.0437 0.0472	490 490	2.6 <2.5 UJ
609/9											0.0472	640	2.4 J
Digney											0.0613	760	<2.5
MAY-10 92/22015 Perstatic Pump 4.31 2.58 Total 0.00569 0.375 0.00150 0.0056 0.0074 0.0052016 Perstatic Pump 4.30 6.33 7.0011 0.0055 0.375 0.000018 0.0005 0.000											0.0678	860	<25
DIPM** 92/22016 Perestatic Purpor 4.31 2.98 Total 0.0005 0.375 0.00058 0.0054 0.005 0.007 0.005 0.007 0.005 0.			•								0.0677	900 NA	<25 NA
MAY-10				-							0.0898 0.0912	NA NA	NA NA
MM-10			•	-							0.0715	690	<12
Mon-10			Peristaltic Pump	4.90		Total	<0.005	0.572	0.000938	<0.005	0.0720	710	<12
Mary 10 918/2001 Bailer 6.11 NM Total NA NA NA NA NA NA NA N											< 0.05	NA	NA
MW-10 12/18/2019 Petrishitic Pump 5.72 1.75 Total NN 0.39 NA NA NA NA NA NA NA N											< 0.01 NA	NA NA	NA < 0.01
MM-10 1021/2009 Perissine Fump NM NM Dissolved < 0.005 0.103 < 0.0007 < 0.005 < 0.004 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.005 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007 < 0.0007											< 0.005	NA NA	< 0.01
MW-11	MW-10				NM					< 0.005	< 0.001	NA	NA
MW-11											< 0.001	23	< 0.25
MW-11											< 0.05	NA NA	NA NA
MW-11 12/18/2001 Peristatic Pump 6.62 0.59 Total NA 0.11 NA NA 0.66 NA 0.007 0.005											< 0.01 NA	NA NA	NA 0.58
MW-11											< 0.005	NA	< 0.01
MW-12			Peristaltic Pump								< 0.001	NA	NA
MW-12			·								< 0.001	5.9	< 0.25
MW-12				-							< 0.05 < 0.01	NA NA	NA NA
MW-12											< 0.01 NA	NA NA	< 0.01
MW-12	MW-12	12/19/2001	Peristaltic Pump	5.72	4.26	Total	NA	0.13	NA	NA	< 0.005	NA	< 0.01
MW-12 9/27/2012 Peristalic Pump 6.01 4.04 Total 4.005 0.184 0.0005 0.0007 0.0005											< 0.001	NA	NA
MW-12			'	1							< 0.001 < 0.001	6.2 3.1	2.4 <0.25
MW-12				t							<0.001	2.9	5.4
MW-12			•	i e					<0.0007		<0.001	2.1	4.8
MW-12											<0.001	2.1	0.25
MW-121			•	-							<0.001	2.7 NA	<0.25
MW-13D				-							<0.001 NA	4.5	NA <0.25
MW-13D 9/6/2001 Bailer MM NM Total < 0.05 2.4 < 0.005 < 0.05 < 0.05 MW-13D 9/18/2001 Bailer 4.22 NM Total NA NA NA NA NA NA NA N			·								0.16	NA	NA
MW-13D				-		Dissolved					0.14	NA	NA
MW-13D											0.14	NA	NA
MW-13D				1							NA 0.19	NA NA	3.16 3.4
MW-13D 3/30/2012 Peristaltic Pump 3.72 2.62 Total <0.005 0.273 0.00333 <0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.00132 <0.005 0.005 0.005 0.005 0.005 0.005 0.00132 <0.005 0.005 0.00132 <0.005 0.007 0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00132 <0.005 0.00142 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145 <0.005 0.00145				t							NA	NA NA	NA
NW-13D 3/28/2013 Peristaltic Pump 3.02 0.51 Total <0.005 0.383 0.00203 <0.005 0.001-1 3/28/2013 Peristaltic Pump NM NIM Total <0.005 0.386 0.00202 <0.005 0.	MW-13D		•			Total	<0.005	0.273		<0.005	0.168	1600	5.5
DUP-1 3/28/2013 Peristaltic Pump NM NM Total <0.005 0.386 0.00202 <0.005 0 MW-13D 9/12/2013 Peristaltic Pump 3.95 0.73 Total <0.0059 0.338 0.0049 <0.005 0 0 MW-13D 9/25/2014 Peristaltic Pump 3.82 0.61 Total <0.005 0.254 0.00508 <0.005 0 0 MW-13D 9/25/2015 Peristaltic Pump 3.82 0.61 Total <0.005 0.254 0.00508 <0.005 0 0 0 MW-13D 9/22/2015 Peristaltic Pump 3.83 2.41 Total 0.0269 0.169 <0.00450 <0.005 0 0 0 0 0 0 0 0 0											0.128	1400	<12 UJ
MW-13D 9/12/2013 Peristaltic Pump 3.95 0.73 Total 0.00699 0.338 0.0049 <0.005 0.			· · · · · · · · · · · · · · · · · · ·								0.143	1600	4.0 J
MW-13D 9/25/2014 Peristaltic Pump 3.82 0.61 Total <0.005 0.254 0.00508 <0.005 0 MW-13D 9/22/2015 Peristaltic Pump 3.83 2.41 Total 0.0269 0.169 <0.00405 <0.005 0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0				ł							0.143 0.139	1600 1500	4.0 J 3.4
MW-13D 9/22/2015 Peristaltic Pump 3.83 2.41 Total 0.0269 0.169 0.00450 0.005 0.00713D 9/28/2016 Peristaltic Pump 3.73 3.81 Total 0.005 0.219 0.00219			· · · · · · · · · · · · · · · · · · ·								0.139	1600	<25
WW-15	l -										0.129	NA	NA
MW-15 9/25/2014 Peristaltic Pump 3.75 0.95 Total <0.005 0.0628 <0.0007 0.0437 0	MW-13D		Peristaltic Pump	3.73	3.81	Total	<0.005	0.219	0.00219	<0.005	0.173	1800	<12
MW-15 9/23/2015 Peristaltic Pump 4.18 7.84 Total 0.0264 <0.075 0.00249 0.00643 0 MW-15 9/29/2016 Peristaltic Pump 4.35 275 Total 0.0067 0.200 0.131 0.005	MW-15	4/8/2003	Peristaltic Pump	3.58	43.2	Total	NA	0.412	NA	NA	0.124	NA	NA
MW-15 9/29/2016 Peristaltic Pump 4.35 275 Total 0.00672 0.220 0.131 0.0246 0.007			•								0.311	1900	<25
MW-15 9/29/2016 Peristaltic Pump NM NM Dissolved <0.005 0.0766 0.103 <0.005 0.007 MW-16 2/14/2003 Peristaltic Pump NM NM NM Total NA NA NA NA NA NA NA N	1		•								0.243 0.294	NA 2000	NA <25
MW-16											0.236	NA	NA
MW-16 3/29/2012 Peristaltic Pump 4.5 0.5 Total <0.005 0.542 < 0.0007 <0.005 0.0 MW-16 9/28/2012 Peristaltic Pump 4.60 1.25 Total < 0.005			·								0.1	NA	NA
MW-16 9/28/2012 Peristaltic Pump 4.60 1.25 Total <0.005 0.642 <0.0007 <0.005 0.			Peristaltic Pump	NM					NA		NA	NA	NA
MW-16 3/27/2013 Peristaltic Pump 5.44 3.06 Total < 0.005 0.495 < 0.0007 < 0.005 0.1 MW-16 9/11/2013 Peristaltic Pump 5.02 0.0 Total < 0.005											0.0239 0.0220	530 490	4 <12 UJ
MW-16											0.00220	640	5.9 J
MW-16 9/24/2014 Peristaltic Pump 4.36 4.86 Total <0.005 <0.01 <0.0007 <0.005 0.0 MW-16 9/22/2015 Peristaltic Pump 4.20 8.22 Total <0.005			•								0.01290	470	5.2
MW-16 9/28/2016 Peristaltic Pump 4.41 7.98 Total <0.005 0.508 <0.0007 <0.005 0.005 MW-17 1/30/2003 Peristaltic Pump 5.42 0.79 Total NA 0.06 NA NA MW-17 11/9/2004 Bailer 6.88 5.39 Total NA NA NA NA MW-18 1/30/2003 Peristaltic Pump 3.64 1.51 Total NA 0.285 NA NA DUPLICATE 1/30/2003 Peristaltic Pump 3.64 1.51 Total NA 0.282 NA NA MW-18 11/10/2004 Peristaltic Pump 6.07 1.17 Total NA NA NA NA MW-18 10/21/2009 Peristaltic Pump MM NM Dissolved < 0.005	l 	9/24/2014	Peristaltic Pump	-						<0.005	0.0244	570	<25
MW-17 1/30/2003 Peristaltic Pump 5.42 0.79 Total NA 0.06 NA NA A MW-17 11/9/2004 Bailer 6.88 5.39 Total NA NA NA NA MW-18 1/30/2003 Peristaltic Pump 3.64 1.51 Total NA 0.285 NA NA NA MW-18 11/10/2004 Peristaltic Pump 6.07 1.17 Total NA 0.282 NA NA NA MW-18 11/10/2004 Peristaltic Pump 6.07 1.17 Total NA NA NA NA MW-18 10/21/2009 Peristaltic Pump 4.44 4 Total <0.005			'								0.0121	NA 250	NA <12
MW-17 11/9/2004 Bailer 6.88 5.39 Total NA NA NA MW-18 1/30/2003 Peristaltic Pump 3.64 1.51 Total NA 0.285 NA NA DUPLICATE 1/30/2003 Peristaltic Pump 3.64 1.51 Total NA 0.282 NA NA MW-18 11/10/2004 Peristaltic Pump 6.07 1.17 Total NA NA NA NA MW-18 10/21/2009 Peristaltic Pump NM NM Dissolved < 0.005											0.0161 < 0.005	250 NA	<12 NA
MW-18 1/30/2003 Peristaltic Pump 3.64 1.51 Total NA 0.285 NA NA 0 DUPLICATE 1/30/2003 Peristaltic Pump 3.64 1.51 Total NA 0.282 NA NA NA MW-18 11/10/2004 Peristaltic Pump 6.07 1.17 Total NA NA NA NA MW-18 10/21/2009 Peristaltic Pump NM NM Dissolved < 0.005	1										< 0.005 NA	NA NA	NA NA
MW-18 11/10/2004 Peristaltic Pump 6.07 1.17 Total NA NA NA NA MW-18 10/21/2009 Peristaltic Pump NM NM Dissolved < 0.005											0.382	NA	NA
MW-18 10/21/2009 Peristaltic Pump NM NM Dissolved < 0.005 0.312 0.00881 < 0.005 0 MW-18 10/21/2009 Peristaltic Pump 4.44 4 Total < 0.005			•	-							0.351	NA	NA
MW-18 10/21/2009 Peristaltic Pump 4.44 4 Total < 0.005 0.345 0.00849 < 0.005 0 MW-18 3/30/2012 Peristaltic Pump 5.49 5.06 Total < 0.005			•								NA 0.287	NA NA	NA NA
MW-18 3/30/2012 Peristaltic Pump 5.49 5.06 Total < 0.005 0.148 < 0.0007 < 0.005 0.005 DUP-1 3/30/2012 Peristaltic Pump 5.49 5.06 Total < 0.005				1							0.287 0.318	NA 3000	NA 1.1 J
MW-18 9/28/2012 Peristaltic Pump 6.11 2.10 Total <0.005 0.0934 <0.0007 <0.005 0.0 MW-18 3/27/2013 Peristaltic Pump 6.91 35.4 Total <0.005	MW-18	3/30/2012		-							0.0211	1200	<2.5
MW-18 3/27/2013 Peristaltic Pump 6.91 35.4 Total <0.005 0.0531 <0.0007 <0.005 0.0 MW-18 3/27/2013 Peristaltic Pump NM NM Dissolved <0.005			•	-							0.022	1100	<2.5
MW-18 3/27/2013 Peristaltic Pump NM NM Dissolved <0.005 0.0529 <0.0007 <0.005 <0.005 MW-18 9/10/2013 Peristaltic Pump 6.19 5.29 Total <0.005			•								0.00288	800	<12 UJ
MW-18 9/10/2013 Peristaltic Pump 6.19 5.29 Total <0.005 0.124 0.00214 <0.005 0.6 MW-18 9/24/2014 Peristaltic Pump 4.71 8.83 Total <0.005				-							0.00329 < 0.001	200 NA	<0.14 NA
MW-18 9/24/2014 Peristaltic Pump 4.71 8.83 Total <0.005 0.254 0.00175 <0.005 0 MW-18 9/23/2015 Peristaltic Pump 4.51 17.9 Total 0.0708 0.173 0.00742 <0.005			•	-							0.00166	610	<2.5
MW-18 9/23/2015 Peristaltic Pump NM NM Dissolved 0.0747 0.0185 0.00507 <0.005 0 MW-18 9/29/2016 Peristaltic Pump 6.36 4.08 Total <0.005			•	-							0.216	260	<50
MW-18 9/29/2016 Peristaltic Pump 6.36 4.08 Total <0.005 NA <0.0007 NA 0.0 Applicable Standards: HSRA Type 1/3 Groundwater RRS or USEPA MCLs 0.01 2 0.005 0.1 0 Background <0.005			•								0.258	NA	NA
Applicable Standards: HSRA Type 1/3 Groundwater RRS or USEPA MCLs 0.01 2 0.005 0.1 0 Background <0.005				1							0.176 0.00146	NA 360	NA <12
Background <0.005 0.125 <0.0007 <0.005 <											0.00146	250*	<12 10
			, po 1/0 Orounawat		JEI A MICE	-					<0.001	12	2.4
<u> </u>	Highest RRS						0.01	20	0.051	0.1	0.015		
		ion Goal									0.015		

I———					y of Ground							
Sample ID	Sample	Sampling	pH	Turbidity	Sample	Arsenic	Barium	Cadmium	Chromium		Chloride	Nitrate
NAVA 40	Date 1/30/2003	Method	(pH units)	(NTU)	Type	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-19 MW-19	10/23/2009	Peristaltic Pump Peristaltic Pump	NM NM	NM NM	Total Dissolved	NA < 0.005	NA 0.12	NA < 0.0007	NA < 0.025	NA < 0.001	NA NA	NA NA
MW-19	10/23/2009	Peristaltic Pump	6.3	0.19	Total	< 0.005	0.125	< 0.0007	< 0.025	< 0.001	12	< 0.25
MW-19	3/29/2012	Peristaltic Pump	5.78	7.1	Total	<0.005	0.252	< 0.0007	<0.005	<0.001	11	0.58
MW-19	9/28/2012	Peristaltic Pump	6.20	1.03	Total	<0.005	0.231	< 0.0007	<0.005	<0.001	7.8	<0.25 UJ
MW-19	3/26/2013	Peristaltic Pump	6.46	4.40	Total	<0.005	0.143	<0.0007	<0.005	<0.001	3.6	<0.25
MW-19	9/11/2013	Peristaltic Pump	5.95	4.39	Total	<0.005	0.147	<0.0007	<0.005	<0.001	6.6	<0.25
MW-19	9/23/2014	Peristaltic Pump	5.45	1.08	Total	<0.005	0.131	<0.0007	<0.005	0.00287	5.5	<0.25
MW-20	1/30/2003	Peristaltic Pump	5.44	3.03	Total	NA	0.045	NA	NA	< 0.005	NA	NA
DUP-2 MW-20	1/30/2003 10/22/2009	Peristaltic Pump Peristaltic Pump	5.44 NM	3.03 NM	Total Dissolved	NA < 0.005	NA 0.0161	NA < 0.0007	NA < 0.025	NA < 0.001	NA NA	NA NA
MW-20	10/22/2009	Peristaltic Pump	5.37	30.9	Total	< 0.005	0.0101	< 0.0007	< 0.025	0.00344	11	0.81
MW-20	3/30/2012	Peristaltic Pump	5.51	21.1	Total	< 0.005	0.0447	< 0.0007	< 0.005	0.00549	9.6	<0.25
MW-20	3/30/2012	Peristaltic Pump	NM	NM	Dissolved	<0.005	0.0331	< 0.0007	<0.005	<0.001	NA	NA
MW-20	9/27/2012	Peristaltic Pump	5.96	73.9	Total	<0.005	0.0325	< 0.0007	<0.005	0.00490	9.3	<0.25
MW-20	9/27/2012	Peristaltic Pump	NM	NM	Dissolved	<0.005	0.0243	< 0.0007	<0.005	<0.001	NA	NA
MW-20	3/27/2013	Peristaltic Pump	5.88	33.4	Total	<0.005	0.0333	< 0.0007	<0.005	0.00689	12	0.24 J
MW-20	3/27/2013	Peristaltic Pump	NM 5.75	NM 450	Dissolved	<0.005	0.0209	<0.0007	<0.005	<0.001	NA 44	NA 0.05
MW-20 MW-20	9/10/2013 9/10/2013	Peristaltic Pump Peristaltic Pump	5.75 NM	158 NM	Total Dissolved	<0.005 <0.005	0.0413 0.0146	<0.0007 <0.0007	0.00808 < 0.005	0.0101 <0.001	11 NA	<0.25 NA
MW-20	9/24/2014	Peristaltic Pump	5.50	96.7	Total	<0.005	0.0140	<0.0007	0.00822	0.0038	15	<0.25
MW-20	9/24/2014	Peristaltic Pump	NM	NM	Dissolved	<0.005	0.0188	<0.0007	<0.005	<0.001	NA	NA
MW-20	9/22/2015	Peristaltic Pump	5.46	51.3	Total	<0.005	0.0221	<0.0007	<0.005	0.00347	NA	NA
MW-20	9/22/2015	Peristaltic Pump	NM	NM	Dissolved	<0.005	0.0191	<0.0007	<0.005	<0.001	NA	NA
MW-20	9/29/2016	Peristaltic Pump	5.96	23.60	Total	NA	NA	NA	NA	NA	7.0	<0.25
MW-21	1/31/2003	Peristaltic Pump	4.96	9.7	Total	NA	0.324	NA NA	NA NA	< 0.005	NA NA	NA
MW-21 MW-21	11/10/2004	Poriotaltia Duran	NM 5.67	NM > 1000	Total Total	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-22DD	10/21/2009 1/31/2003	Peristaltic Pump Peristaltic Pump	4.37	> 1000 3.36	Total	NA NA	7.012	NA NA	NA NA	< 0.005	NA NA	NA NA
MW-23	4/8/2003	Peristaltic Pump	5.63	44.8	Total	NA NA	0.072	NA NA	NA NA	< 0.005	NA NA	NA NA
MW-23	11/10/2004	Peristaltic Pump	7.24	9.95	Total	NA NA	0.072 NA	NA NA	NA NA	< 0.005 NA	NA NA	NA NA
MW-23	5/16/2007	-	NM	NM	Total	NA	NA	NA	NA	NA	110	< 0.05
MW-23	10/21/2009	Peristaltic Pump	NM	NM	Dissolved	< 0.005	0.0479	< 0.0007	< 0.025	< 0.001	NA	NA
MW-23	10/21/2009	Peristaltic Pump	5.82	0.78	Total	< 0.005	0.0517	< 0.0007	< 0.005	< 0.001	110	< 0.25
MW-23	3/29/2012	Peristaltic Pump	6.18	1.48	Total	<0.005	0.064	< 0.0007	<0.005	<0.001	87	<0.25
MW-23	9/27/2012	Peristaltic Pump	6.75	2.06	Total	<0.005	0.0912	< 0.0007	<0.005	<0.001	62	2.8
MW-23 MW-23	3/26/2013	Peristaltic Pump	6.04 6.17	3.00	Total Total	<0.005 <0.005	0.0689 0.0679	<0.0007 <0.0007	<0.005 <0.005	<0.001 <0.001	31 37	0.14 J 0.98
MW-24	9/10/2013 4/8/2003	Peristaltic Pump Peristaltic Pump	4.73	1.91 0.34	Total	<0.005 NA	0.0679	<0.0007 NA	<0.005 NA	< 0.001	NA	NA
DUPLICATE	4/8/2003	Peristaltic Pump	4.73	0.34	Total	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA
MW-24	10/22/2009	Peristaltic Pump	NM	NM	Dissolved	< 0.005	0.0416	< 0.0007	< 0.025	< 0.001	NA	NA
MW-24	10/22/2009	Peristaltic Pump	5.7	0.14	Total	< 0.005	0.0466	< 0.0007	< 0.005	< 0.001	130	< 0.25
MW-25	4/8/2003	Peristaltic Pump	4.93	2.46	Total	NA	2.8	NA	NA	0.008	NA	NA
DUPLICATE	4/8/2003	Peristaltic Pump	4.93	2.46	Total	NA	2.76	NA	NA	0.011	NA	NA
MW-25	11/9/2004	Bailer	4.47	6.11	Total	NA	3.2	NA	NA	0.031	NA	NA
MW-25	10/22/2009	Peristaltic Pump	NM 4.22	NM 0.22	Dissolved	< 0.005	0.365	< 0.0007	< 0.005	0.00508	NA 270	NA 2.7
MW-25 MW-26DDD	10/22/2009 4/8/2003	Peristaltic Pump Peristaltic Pump	4.32	0.32	Total	< 0.005 NA	0.402 4.78	< 0.0007 NA	< 0.005 NA	0.00568 < 0.005	270 NA	2.7 NA
MW-26DDD	4/8/2003	Bladder Pump	5.8 NM	2 NM	Total Total	NA NA	4.76 NA	NA NA	NA NA	< 0.005 NA	NA NA	NA NA
MW-26DDD	6/9/2004	Bladder Pump	NM	2.05	Total	NA	16	NA	NA	< 0.005	NA	NA
MW-27DDDD	11/10/2004	Bailer	6.6	7.66	Total	NA	< 0.5	NA	NA	NA	NA	NA
MW-27DDDD	2/15/2011	Peristaltic Pump	5.36	5.01	Total	<0.005	4.34	0.00178	<0.005	<0.001	NA	NA
MW-27DDDD	5/3/2012	Submersible Pump	5.07	2.02	Total	<0.005	4.91	0.00187	<0.005	<0.001	490	2.5
MW-27DDDD	9/27/2012	Submersible Pump	4.88	1.59	Total	<0.005	5.15	0.00184	<0.005	<0.001	530	2.6
MW-27DDDD	3/28/2013	Submersible Pump	4.93	5.78	Total	<0.005	5.55	0.00216	<0.005	<0.001	530	3.7 J
MW-27DDDD	9/12/2013	Peristaltic Pump	4.93	12.9	Total	<0.005	5.11	0.00243	<0.005	<0.001	610	<5.0
MW-27DDDD MW-27DDDD	9/12/2013 9/25/2014	Peristaltic Pump Peristaltic Pump	NM 4.74	NM 0.72	Dissolved Total	<0.005 <0.005	4.9 6.72	0.00235 0.00246	<0.005 <0.005	<0.001 <0.001	NA 610	NA <2.5
MW-27DDDD	9/23/2014	Peristaltic Pump	4.74	3.84	Total	< 0.005	4.95	0.00246	< 0.005	<0.001	NA	<2.5 NA
MW-27DDDD	9/28/2016	Submersible Pump	4.97	0.87	Total	< 0.005	7.22	0.00220	< 0.005	<0.001	690	<12
MW-28	11/9/2004	Bailer	6.06	6.34	Total	0.017	2.6	< 0.01	< 0.01	< 0.005	NA	NA
MW-28	5/16/2007	Peristaltic Pump	5.25	1.16	Total	< 0.01	0.16	NA	NA	NA	NA	NA
MW-29	7/17/2008	Bailer	4.42	1.7	Total	NA	1	NA	NA	< 0.01	NA	NA
MW-29	10/22/2009	Peristaltic Pump	NM	NM	Dissolved	< 0.005	0.965	< 0.0007	< 0.005	0.00886	NA	NA
MW-29	10/22/2009	Peristaltic Pump	4.21	0	Total	< 0.005	0.985	< 0.0007	< 0.005	0.00899	160	3.5
MW-29	3/30/2012	Peristaltic Pump	4.08	0.32	Total	<0.005	0.819	< 0.0007	<0.005	0.00733	140	1.4
MW-29 MW-29	9/27/2012 3/28/2013	Peristaltic Pump	4.45	0.0	Total	<0.005	0.765	< 0.0007	<0.005	0.00692	120	<2.5 1.8
MW-29	9/11/2013	Peristaltic Pump Peristaltic Pump	4.33 4.30	0.23	Total Total	< 0.005 < 0.005	0.764 0.712	< 0.0007 < 0.0007	< 0.005 < 0.005	0.00780 0.00721	120 120	1.8 <2.5
DUP-1	9/11/2013	Peristaltic Pump	4.30	0.0	Total	< 0.005	0.712	< 0.0007	< 0.005	0.00721	150	<2.5
MW-29	9/24/2014	Peristaltic Pump	4.28	0.75	Total	< 0.005	0.682	< 0.0007	< 0.005	0.00718	130	<25
MW-29	9/23/2015	Peristaltic Pump	4.07	0.81	Total	< 0.005	0.589	< 0.0007	< 0.005	0.00715	NA	NA
MW-29	9/29/2016	Peristaltic Pump	4.52	0.16	Total	NA	NA	NA	NA	NA	110	1.1
MW-30	7/17/2008	Bailer	NM	NM	Total	NA	NA	NA	NA	NA	NA	NA
MW-30	10/23/2009	Peristaltic Pump	NM 4.04	NM	Dissolved	< 0.005	0.0127	< 0.0007	< 0.025	0.0112	NA 440	NA 0.00
MW-30	10/23/2009	Peristaltic Pump	4.21	0.06	Total	< 0.005	0.0126	< 0.0007	< 0.005	0.0112	440	0.29
MW-31	5/2/2012	Peristaltic Pump	4.92	1.52	Total	<0.005	1.09	<0.0007	<0.005	0.0055	140	6.8
MW-31	9/23/2015	Peristaltic Pump	4.19	0.66	Total	<0.005	0.837	<0.0007	<0.005	0.00894	NA 150	NA 5.0
MW-31	9/29/2016	Peristaltic Pump	4.46	0.46	Total	NA 0.01	NA 2	NA 0.005	NA 0.1	NA 0.015	150 250*	5.0
	iliualus: HSKA	Type 1/3 Groundwat	EI KKO OF U	SEFA WICE	5	0.01 <0.005	0.125	0.005 <0.0007	0.1 <0.005	0.015 <0.001	12	10 2.4
Background Highest RRS						0.01	20	0.000 <i>7</i> 0.051	0.1	0.015		
Corrective Act	ion Goal					0.01	20	0.051	0.1	0.015		
Soliective Act	JULI GUAL					0.01		0.031	U. I	0.010		

Table 2: Summary of Groundwater Analytical Results

Sample ID	Sample	Sampling	рН	Turbidity	Sample	Arsenic	Barium	Cadmium	Chromium	Lead	Chloride	Nitrate
•	Date	Method	(pH units)	•	Type	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-A	12/18/2001	Peristaltic Pump	6.75	1.41	Total	< 0.005	0.036	< 0.002	< 0.002	< 0.005	NA	0.74
MW-A	5/15/2007	Peristaltic Pump	6.77	2.36	Total	NA	NA	NA	NA	NA	NA	NA
MW-A	10/22/2009	Peristaltic Pump	NM	NM	Dissolved	< 0.005	0.0775	< 0.0007	< 0.025	< 0.001	NA	NA
MW-DUP01	10/22/2009	Peristaltic Pump	NM	NM	Dissolved	< 0.005	0.0762	< 0.0007	< 0.025	< 0.001	NA	NA
MW-A	10/22/2009	Peristaltic Pump	6.21	0	Total	< 0.005	0.0886	< 0.0007	< 0.005	< 0.001	120	< 0.25
MW-DUP01	10/22/2009	Peristaltic Pump	6.21	0	Total	< 0.005	0.0839	< 0.0007	< 0.005	< 0.001	130	< 0.25
TMW-1	7/14/1997	-	NM	NM	Total	< 0.005	5.38	0.028	0.028	0.028	NA	NA
Applicable St	andards: HSRA	Type 1/3 Groundwat	er RRS or U	SEPA MCL	S	0.01	2	0.005	0.1	0.015	250*	10
Background						<0.005	0.125	<0.0007	<0.005	<0.001	12	2.4
Highest RRS	ghest RRS					0.01	20	0.051	0.1	0.015		
Corrective Action Goal					0.01	20	0.051	0.1	0.015	-		

Notes:

RRS = Risk Reduction Standard

Total Metals are field preserved, unfiltered

Dissolved Metals are not preserved, laboratory filtered

USEPA MCLs = United States Environmental Protection Agency Maximum Contaminant Levels

HSRA Type 1/3 GW RRS from Appendix III

- * = USEPA Secondary Maximum Contaminant Levels are used for Chloride
- ** insufficient water column for sample collection
- = Data unavailable
- -- = No Applicable Standard has been established for this constituent

Bolded result represents a positive value

Bolded/Shaded result exceeds the groundwater standard

Bolded/Shaded result exceeds the RRS

Data Qualifiers:

J = Estimated value based on QC data

NA = Not Analyzed

NM = Not Measured

Prepared by/Date: RMB 12/21/09 Checked by/Date: JAH 12/21/09 Revised by: JMQ 11/9/16 Checked by: NJM 11/17/16

Table 3: Summary of SourceDK Model Input

Well ID	Sample Date	Barium (mg/L)	Lead (mg/L)	Number Of Samples
	8/30/2001	<0.05	<0.05	1
	9/6/2001	<0.05	<0.01	1
MW-1	12/18/2001	0.33	<0.005	1
IVIVV-1	1/31/2003	0.042	<0.005	1
	9/23/2015	0.191	0.077	1
	9/29/2016	NA	0.0691	1
	8/30/2001	2	0.19	1
	9/6/2001	2.1	0.27	1
	12/18/2001	5.3	0.55	1
	3/30/2012	0.0746	<0.001	1
MW-6	9/27/2012	0.296	0.0322	1
IVIVV-0	3/27/2013	0.039	<0.001	1
	9/10/2013	0.42	0.0534	1
	9/25/2014	10.3	1.16	1
	9/23/2015	0.449	0.132	1
	9/28/2016	0.181	0.036	1
	12/18/2001	13	0.32	1
	3/30/2012	0.577	0.026	1
	9/28/2012	0.384	0.00666	1
MW-7	3/27/2013	0.127	<0.001	1
	9/11/2013	0.216	<0.001	1
	9/23/2014	0.315	0.00913	1
	9/22/2015	0.493	0.00995	1
	8/30/2001	1.6	0.08	1
	9/6/2001	2	0.077	1
	12/18/2001	5.3	0.26	1
	10/21/2009	1.22	0.12	1
	3/30/2012	0.18	0.0437	1
MW-9	9/28/2012	0.118	0.0472	1
	3/27/2013	0.232	0.0483	1
	9/11/2013	0.225	0.0613	1
	9/24/2014	0.338	0.0678	1
	9/22/2015	0.375	0.0898	1
	9/28/2016	0.572	0.072	1

Table 3: Summary of SourceDK Model Input

Well ID	Sample Date	Barium (mg/L)	Lead (mg/L)	Number Of Samples
	8/30/2001	0.5		1
	9/6/2001	0.5		1
	12/19/2001	0.13		1
	10/20/2009	0.12		1
MW-12	3/29/2012	0.182	<0.001	1
IVIVV-12	9/27/2012	0.134	<0.001	1
	3/26/2013	0.102	<0.001	1
	9/10/2013	0.124	<0.001	1
	9/23/2014	0.154	<0.001	1
	9/22/2015	0.130	<0.001	1
	8/30/2001	3.2	0.16	1
	9/6/2001	2.4	0.14	1
	12/18/2001	1.7	0.19	1
	3/30/2012	0.273	0.168	1
MW 40D	9/28/2012	0.295	0.128	1
MW-13D	3/28/2013	0.383	0.143	1
	9/12/2013	0.338	0.139	1
	9/25/2014	0.254	0.176	1
	9/22/2015	0.169	0.129	1
	9/28/2016	0.219	0.173	1
	4/8/2003	0.412	0.124	1
1004.45	9/25/2014	0.0628	0.311	1
MW-15	9/23/2015	<0.075	0.243	1
	9/29/2016	0.22	0.294	1
	2/14/2003	2.34	0.1	1
	3/29/2012	0.542	0.0239	1
	9/28/2012	0.642	0.022	1
BBW 40	3/27/2013	0.495	0.00914	1
MW-16	9/11/2013	0.631	0.0129	1
	9/24/2014	<0.01	0.0244	1
	9/22/2015	0.531	0.0121	1
	9/28/2016	0.508	0.0161	1
	1/30/2003	0.2835	0.3665	2
	10/21/2009	0.345	0.318	1
	3/30/2012	0.148	0.0211	1
	9/28/2012	0.093	0.00288	1
MW-18	3/27/2013	0.0531	0.00329	1
	9/10/2013	0.124	0.00166	1
	9/24/2014	0.254	0.216	1
	9/23/2015	0.173	0.258	1
	9/29/2016	NA NA	0.00146	1

Table 3: Summary of SourceDK Model Input

Well ID	Sample Date	Barium (mg/L)	Lead (mg/L)	Number Of Samples
	1/30/2003	0.045	0.005	1
	10/22/2009	0.0224	0.00344	1
	3/30/2012	0.0447	0.00549	1
MW-20	9/27/2012	0.0325	0.0049	1
IVI VV-ZU	3/27/2013	0.0333	0.00689	1
	9/10/2013	0.0413	0.0101	1
	9/24/2014	0.0334	0.0038	1
	9/22/2015	0.0221	0.00347	1
	11/10/2004	<0.5		1
	2/15/2011	4.34	<0.001	1
	5/3/2012	4.91	<0.001	1
	9/27/2012	5.15	<0.001	1
MW-27DDDD	3/28/2013	5.55	<0.001	1
	9/12/2013	5.11	< 0.001	1
	9/25/2014	6.72	<0.001	1
	9/23/2015	4.95	<0.001	1
	9/28/2016	7.22		
	10/22/2009	0.985	0.00899	1
	3/30/2012	0.819	0.00733	1
	9/27/2012	0.765	0.00692	1
MW-29	3/28/2013	0.764	0.0078	1
	9/11/2013	0.7120	0.00721	1
	9/24/2014	0.682	0.00718	1
	9/23/2015	0.589	0.00715	1
MW-31	5/2/2012	1.09	0.0055	1
161-64-161	9/23/2015	0.837	0.00894	1

Notes:

mg/L = milligrams per Liter
-- = not analyzed or not used as input

Prepared by/Date: JMQ 11/1/2013 Checked by/Date: JDD 11/5/2013

Revised by: JMQ 11/09/16 Checked by: NM 11/17/16 Swift & Company, Moultrie, GA Voluntary Remediation Program Status Report No. 3 HIS Site No. 10509

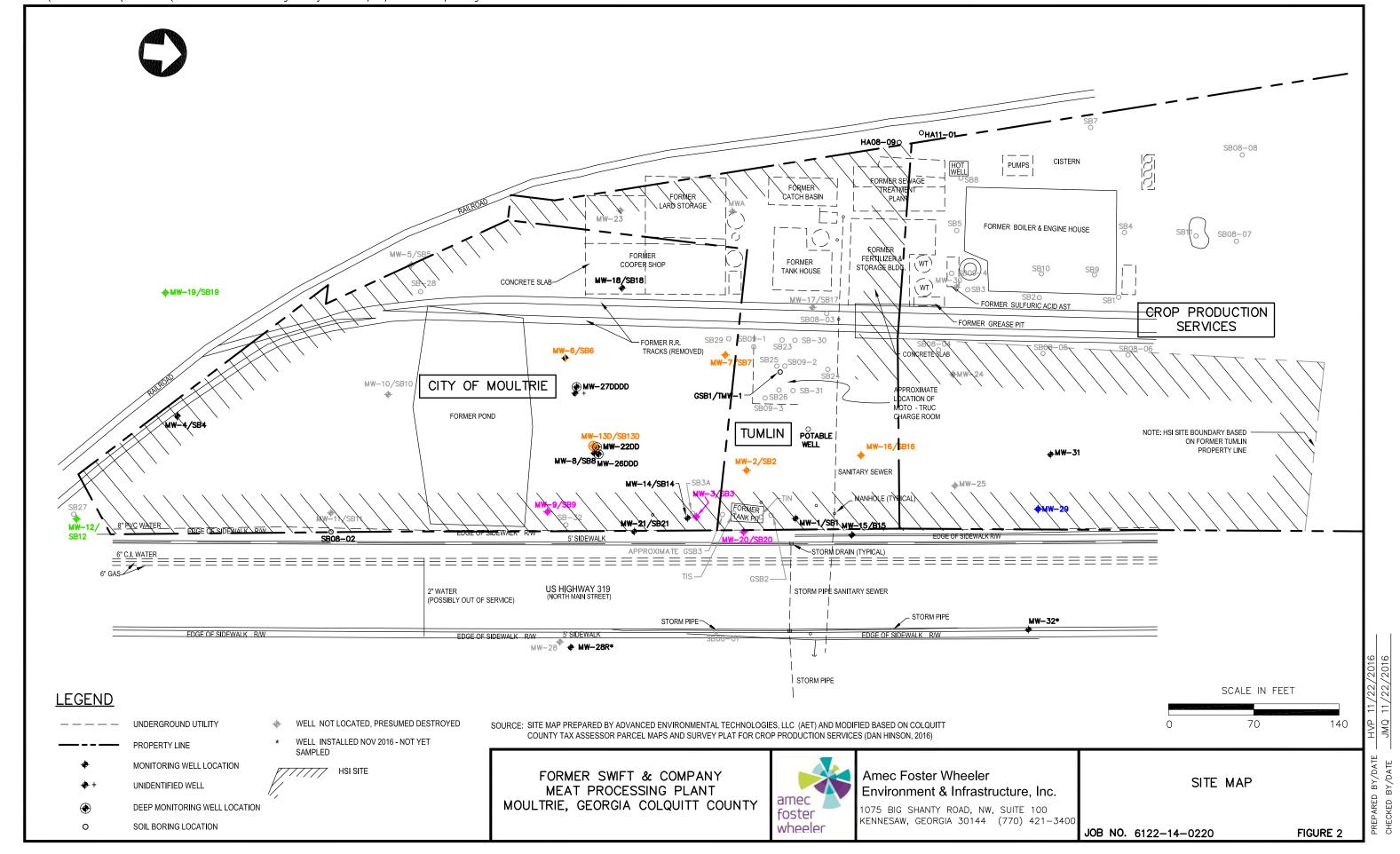
December 14, 2016 Amec Foster Wheeler Project 6122-14-0220

FIGURES

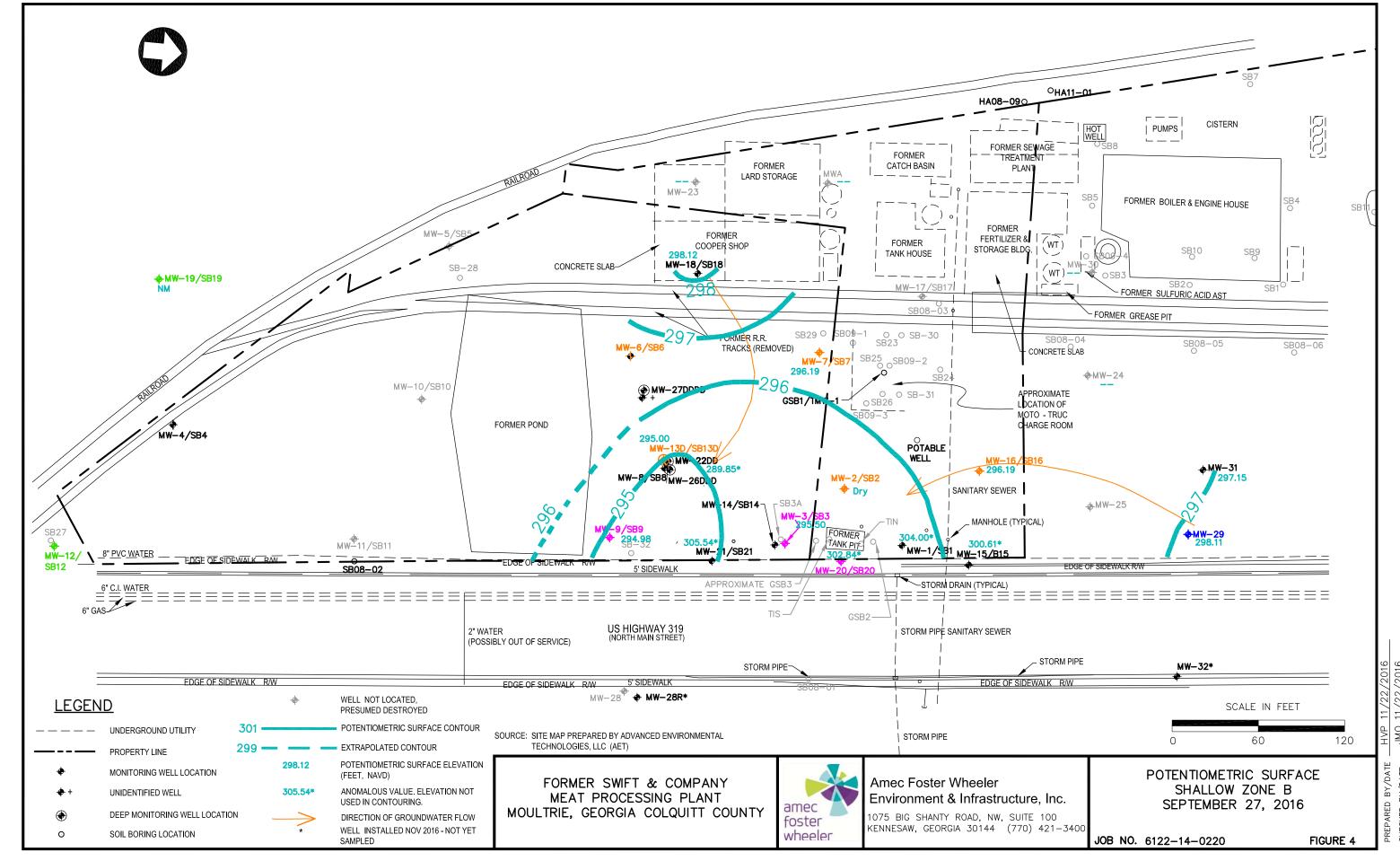
SCALE 2 MILE CONTOUR INTERVAL 10 FEET BASE MAP FROM MOUTRIE QUADRANGLE, 7.5 MINUTE SERIES (TOPOGRAPHIC), 1978, PHOTO REVISED 1988

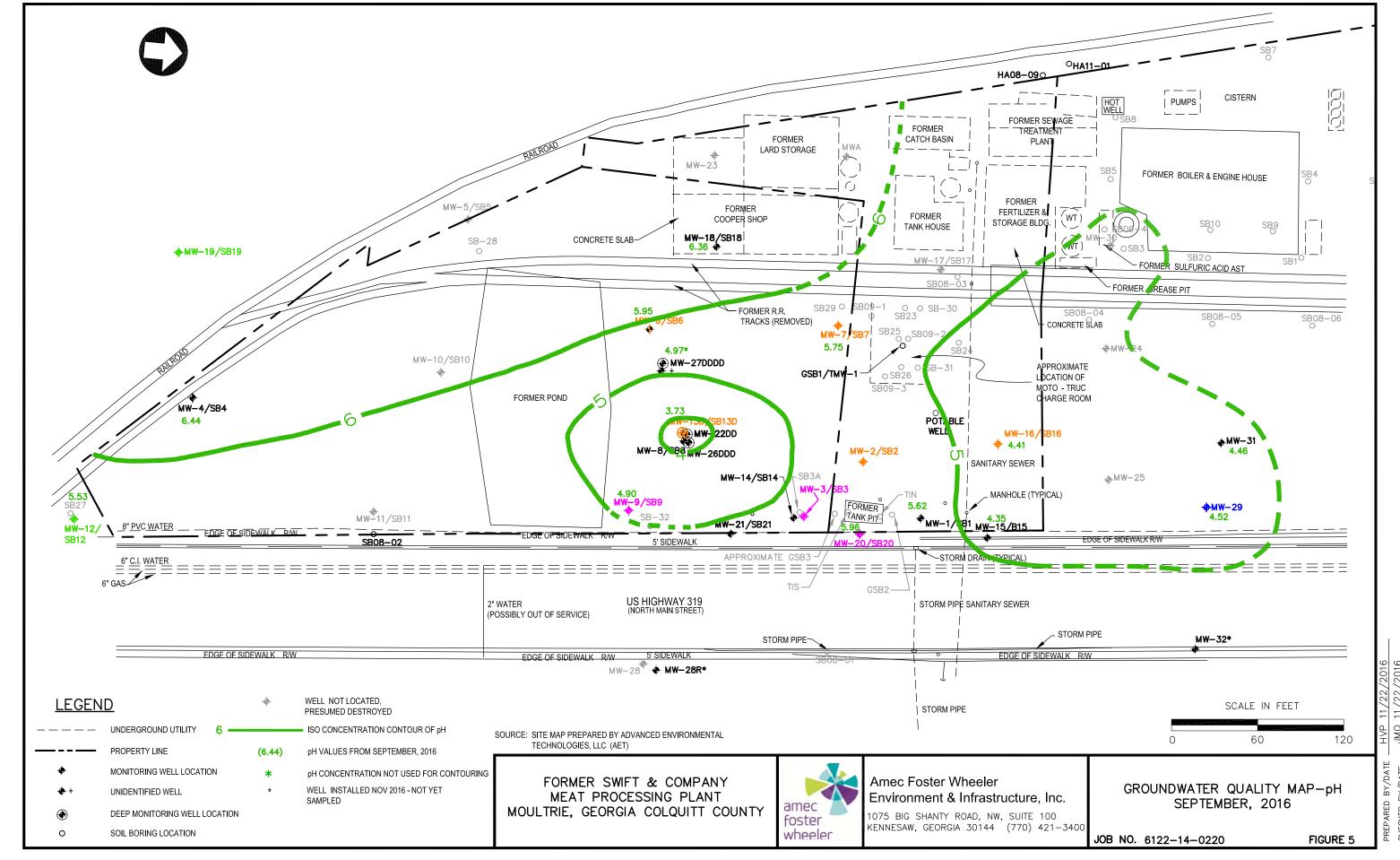
GEORGIA QUADRANGLE LOCATION

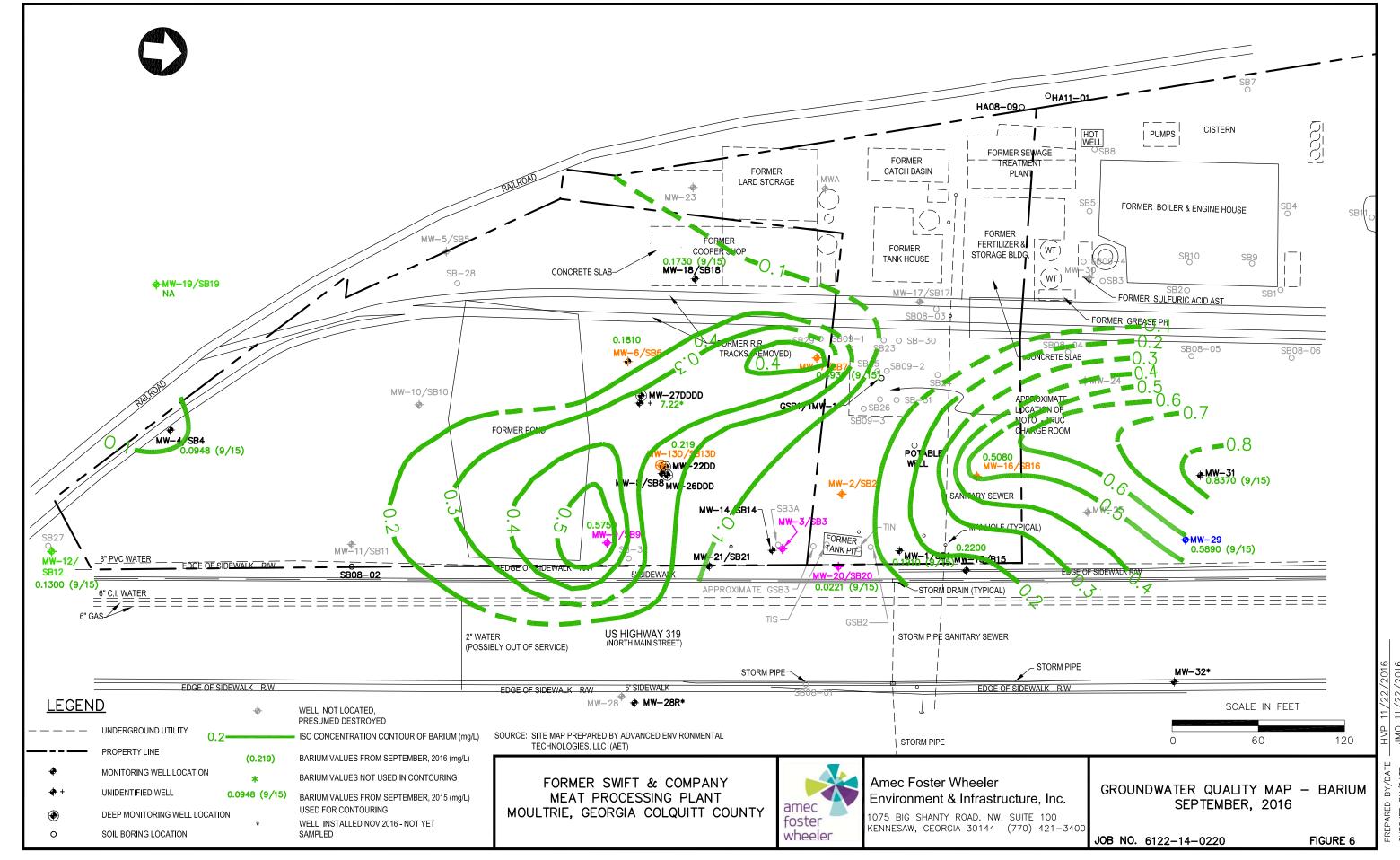
FORMER SWIFT & COMPANY-

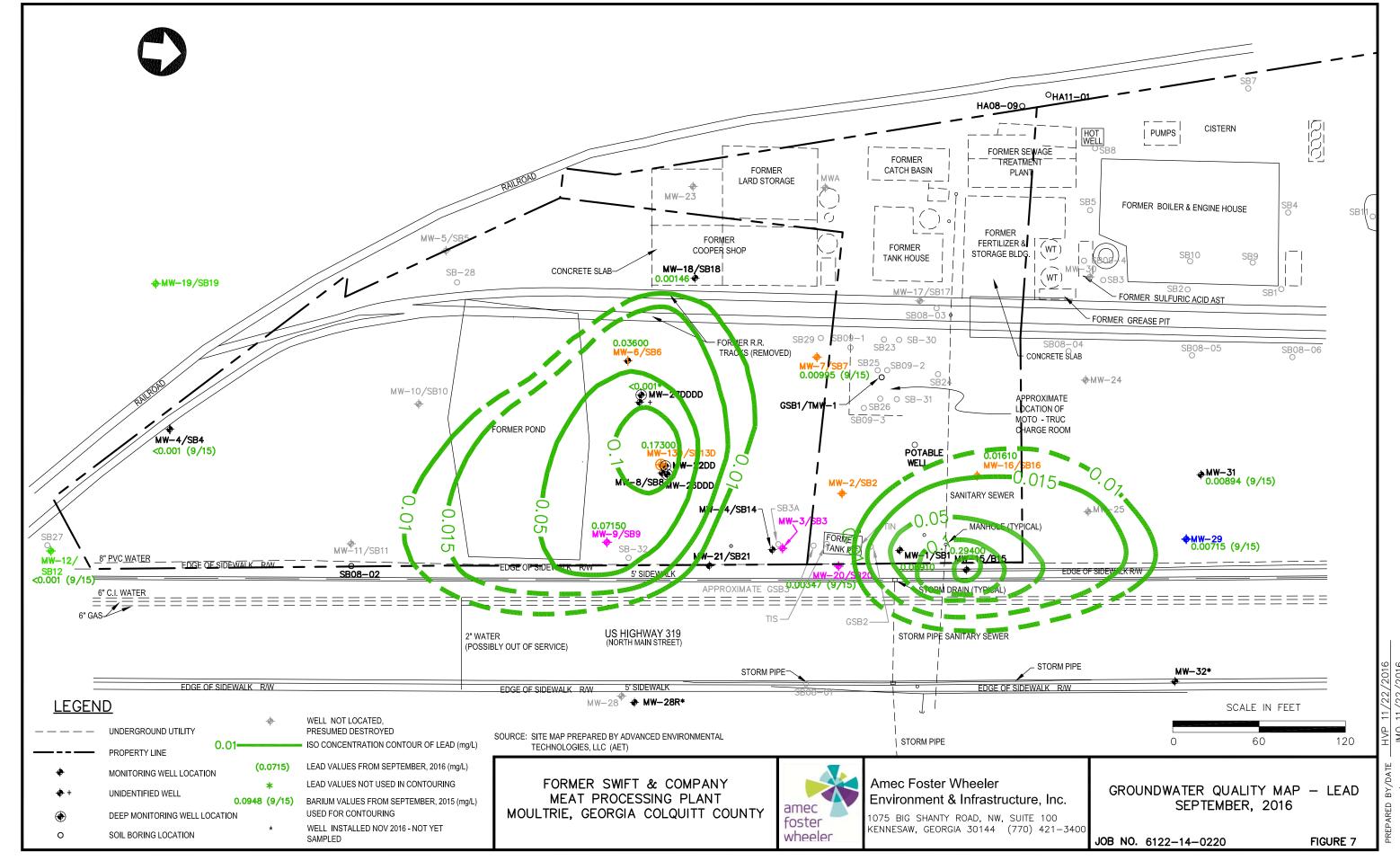

MEAT PROCESSING PLANT 1189 NORTH MAIN STREET MOULTRIE, GEORGIA COLQUITT COUNTY

amec foster wheeler




SITE LOCATION MAP


JOB NO. 6122-14-0220 FIGURE 1 PREPARED BY/DATE CHECKED BY/DATE



Swift & Company, Moultrie, GA Voluntary Remediation Program Status Report No. 3 HIS Site No. 10509

December 14, 2016 Amec Foster Wheeler Project 6122-14-0220

APPENDIX A

September 2016 Laboratory Data Reports, Chain Of Custody, And Field Sampling Reports

Swift & Company, Moultrie, GA Voluntary Remediation Program Status Report No. 3 December 14, 2016 Amec Foster Wheeler Project 6122-14-0220 HIS Site No. 10509 Laboratory Reports for September 2016 Groundwater Sampling Event

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

October 14, 2016

Mark Andrews AMEC E&I, Inc. -Kennesaw 1075 Big Shanty Rd NW Kennesaw GA 30144

TEL: (770) 421-3327 FAX: (770) 421-3308

RE: Swift Moultrie

Order No: 1609N31 Dear Mark Andrews:

Analytical Environmental Services, Inc. received 2 samples on 9/28/2016 10:15:00 AM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES's accreditations are as follows:

- -NELAC/Florida State Laboratory ID E87582 for analysis of Non-Potable Water, Solid & Chemical Materials, and Drinking Water Microbiology, effective 07/01/16-06/30/17.
- -NELAC/Louisiana Agency Interest No. 100818 for or analysis of Non-Potable Water and Solid & Chemical Materials, effective 07/01/16-06/30/17.
- -NELAC/Texas Certificate No. T104704509-16-6 for or analysis of Non-Potable Water and Solid & Chemical Materials, effective 03/01/16-02/28/17.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Metals, PCM Asbestos, Gravimetric), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/17.

Ioana Pacurar

Project Manager

IDana) Pacurar

Revision 10/14/2016

A 3

ANALYTICAL ENVIRONMENTAL SERVICES, INC

CHAIN OF CUSTODY

Work Order: 1009131

3080 Presidential Drive, Atlanta GA 30340-3704

AES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

Date: 1/27/16 Page ______ of _____

AMEC Foster Wheeler	ADDRESS: 1075 NW SU	Bis Sha	ty D. Ke	LD MARSO	W. 6A-				ANA	LYSIS	REQU	ESTED		-	Visit our website	
	FAX:	, J, J, J, G		,,,,,			Withte 1	<u>}</u>							www.aesatlanta.com to check on the status of	rs
710-421-3400						Metal	40	7,							your results, place bottle orders, etc.	ıtaine
HONE: 710-421-3400 BAMPLED BY: MARKA & EVER G.	SIGNATURE:					4	7 -	9							orders, etc.	No#of Container
	SAM	PLED		ນ	s)	Sit	× 7	3								% oN
# SAMPLE ID			م ا	Composite	Matrix (See codes)		7		PRES	ERVA'	TION (Se	e codes)			REMARKS	
	DATE	TIME	Grab	Con	Mat (See											
1 MW-6 2 MW-12		1547	V			X	$\chi \lambda$									2
2 MW-12	7/27/12	1635	V		GW		$X \mid \lambda$	4								
3									_							
4								_								
5					.,											
6																
7																
8																
9																
10																
11																
12																
13			ļ													
14																
RELINOUISHED BY DATE/TIME	RECEIVED BY	Υ			DATE/TIME				PRO	JECT I	NFORM	IATION			RECEIPT	
gram are 9/27/12 1700	1:	JA-9/2	this n	ت		PROJ	ECT NA	E+	- /	nou	1/4	(e			Total # of Containers	3
2:	2:	Neeferen	2/	۸/،	.0.	PROJ	ECT#:		100	111	0 1 10	n _a	S. 10	٠ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	Tumaround Time Request	
2.	3.	neseren	412	8116	10012	SITE	ADDRE	iss: [187	1001 50.	TN	Ma	M 57	ナンピピフ	Standard 5 Business Days 2 Business Day Rush	
5.						SENI	O REPOI	/ 	Dav	rd 5	is oa k	rm	ark 1	treot Andrays	2 Business Day Rush Next Business Day Rush	
SPECIĄL INSTRUCTIONS/COMMENTS:		SHIPMEN	Т МЕТНО)D			DICE TO		<i>Q-17</i>	<u>-, -, -, </u>		<u>. </u>	.,, /	· · · · · · · · · · · · · · · · · · ·	Same Day Rush (auth req.)
SPECIAL INSTRUCTIONS/COMMENTS: SIFF Metals = Argonic, Barium, Calmium Chromium, and brad	OUT /	1	VIA:			(IF D	IFFERE	NT FRO	OM ABO	OVE)					Other	
Argonic, British Chambon	IN / VIA:												STATE PROGRAM (if any):			
Chrontun, and was 4	CLIENT COES UPS MAIL COURIER GREYHOUND OTHER				OUOTE #: PO#:					E-mail? Y/N; Fax? Y/N DATA PACKAGE: I II III IV						
SAMPLES RECEIVED AFTER 3PM OR ON SATURDAY ARE CONSAMPLES ARE DISPOSED 30 DAYS AFTER REPORT COMPLE	NSIDERED RI	ECEIVED THE	NEXT B					TIME	IS NOT	r INDIO			LL PRO	CEED WITH		·

Client: AMEC E&I, Inc. -Kennesaw

Project: Swift Moultrie Case Narrative

Date:

14-Oct-16

Lab ID: 1609N31

Ion Chromotography Analysis by Method 9056A:

Due to sample matrix, sample(s) 1609N31-001B required dilution during preparation and/or analysis resulting in elevated reporting limits.

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-6

Project Name: Swift Moultrie Collection Date: 9/27/2016 3:47:00 PM

Lab ID: 1609N31-001 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst				
Total Metals by ICP/MS	S SW6020B	(SW3005A)											
Arsenic		BRL	0.00500		mg/L	230426	1	10/05/2016 07:32	CC				
Barium		0.181	0.0100		mg/L	230426	1	10/05/2016 07:32	CC				
Cadmium		BRL	0.000700		mg/L	230426	1	10/05/2016 07:32	CC				
Chromium		BRL	0.00500		mg/L	230426	1	10/05/2016 07:32	CC				
Lead		0.0360	0.00100		mg/L	230426	1	10/05/2016 07:32	CC				
ION SCAN SW9056A													
Chloride		750	50		mg/L	R326252	2 50	09/28/2016 15:42	JW				
Nitrate		BRL	2.5		mg/L	R326252	2 10	09/28/2016 12:00	JW				

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-12

Project Name: Swift Moultrie Collection Date: 9/27/2016 4:35:00 PM

Lab ID: 1609N31-002 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
ION SCAN	SW9056A								
Chloride		4.5	1.0		mg/L	R326252	2 1	09/28/2016 11:22	JW
Nitrate		BRL	0.25		mg/L	R326252	2 1	09/28/2016 11:22	JW

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Page 5 of 10

Sample/Cooler Receipt Checklist

Client AMEC - Kenneggw		Work Order	Number	1609N31
Checklist completed by Signature Date	1/2 1/10			
Carrier name: FedExVPS Courier Client US	S Mail Other	r		
Shipping container/cooler in good condition?	Yes	No	Not Present _	-
Custody seals intact on shipping container/cooler?	Yes	No	Not Present _	<u>'</u>
Custody seals intact on sample bottles?	Yes	No	Not Present 🗻	
Container/Temp Blank temperature in compliance? (0°≤6°C)	*Yes _	No		
Cooler #1 Cooler #2 Cooler #3	Cooler #4	Cool	er#5	Cooler #6
Chain of custody present?	Yes 🗸	No		
Chain of custody signed when relinquished and received?	Yes 🗹	No		
Chain of custody agrees with sample labels?	Yes 🗹	No		
Samples in proper container/bottle?	Yes 🗸	No		
Sample containers intact?	$_{\rm Yes} \underline{\smile} $	No		
Sufficient sample volume for indicated test?	Yes 🗹	No		
All samples received within holding time?	Yes _	No		
Was TAT marked on the COC?	Yes _	No		
Proceed with Standard TAT as per project history?	Yes	No	Not Applicab	le <u>~</u>
Water - VOA vials have zero headspace? No VOA vials su	ıbmitted	Yes _	No	
Water - pH acceptable upon receipt?	Yes _	No	Not Applicab	le
Adjusted?			<u>م</u>	-
Sample Condition: Good Other(Explain)				·
(For diffusive samples or AIHA lead) Is a known blank include	ied? Yes	N	0	

See Case Narrative for resolution of the Non-Conformance.

\\Aes_server\l\Sample Receipt\My Documents\COCs and pH Adjustment Sheet\Sample_Cooler_Recipt_Checklist_Rev1.rtf

^{*} Samples do not have to comply with the given range for certain parameters.

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie Lab Order: 1609N31

Dates Report

Date: 5-Oct-16

Lab Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
1609N31-001A	MW-6	9/27/2016 3:47:00PM	Groundwater	Total Metals by ICP/MS		10/3/2016 4:25:00PM	10/05/2016
1609N31-001B	MW-6	9/27/2016 3:47:00PM	Groundwater	ION SCAN			09/28/2016
1609N31-002A	MW-12	9/27/2016 4:35:00PM	Groundwater	ION SCAN			09/28/2016

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie 1609N31

Workorder:

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: 230426

Sample ID: MB-230426 SampleType: MBLK	Client ID:	Total Metals by ICP/MS	SW6020R		Uni Pot	ts: mg/L chID: 230426		Date: lysis Date:	10/03/2		Run No: 32 Seq No: 70	
SampleType. WIBLK	resicode.	Total Metals by TC1/MIS	5 W 0020B		Dau	CIIID. 230426	Alla	iysis Date.	10/05/2	016	seq No. 70	1/8943
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val	%RPD	RPD L	imit Qua
Arsenic	BRL	0.00500										
Barium	BRL	0.0100										
Cadmium	BRL	0.000700										
Chromium	BRL	0.00500										
Lead	BRL	0.00100										
Sample ID: LCS-230426 SampleType: LCS	Client ID: TestCode:	Total Metals by ICP/MS	SW6020B		Uni Bat	ts: mg/L chID: 230426		Date: lysis Date:	10/03/2 10/05/2		Run No: 32 Seq No: 70	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val	%RPD	RPD Li	imit Qua
Arsenic	0.1017	0.00500	0.1000		102	80	120					
Barium	0.1028	0.0100	0.1000		103	80	120					
Cadmium	0.1032	0.000700	0.1000		103	80	120					
Chromium	0.1023	0.00500	0.1000	0.0007860	102	80	120					
Lead	0.1013	0.00100	0.1000		101	80	120					
Sample ID: 1609N31-001AMS SampleType: MS	Client ID: TestCode:	MW-6 Total Metals by ICP/MS	SW6020B		Uni Bat	ts: mg/L chID: 230426		Date: lysis Date:	10/03/2 10/05/2		Run No: 32 Seq No: 70	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Re	f Val	%RPD	RPD Li	imit Qua
Arsenic	0.1023	0.00500	0.1000	0.001529	101	75	125					
Barium	0.2817	0.0100	0.1000	0.1811	101	75	125					
Cadmium	0.1011	0.000700	0.1000	0.0004770	101	75	125					
Chromium	0.1003	0.00500	0.1000	0.001372	98.9	75	125					
ead	0.1400	0.00100	0.1000	0.03603	104	75	125					

Qualifiers: Greater than Result value

> BRL Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 8 of 10

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie **Workorder:** 1609N31

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: 230426

Sample ID: 1609N31-001AMSD	Client ID:				Uni	ts: mg/L	Prep	Date: 10/03	/2016	Run No: 326665
SampleType: MSD	TestCode:	Total Metals by ICP/MS	SW6020B		Bat	chID: 230426	Ana	lysis Date: 10/05	/2016	Seq No: 7078947
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic	0.1037	0.00500	0.1000	0.001529	102	75	125	0.1023	1.36	20
Barium	0.2842	0.0100	0.1000	0.1811	103	75	125	0.2817	0.884	20
Cadmium	0.1030	0.000700	0.1000	0.0004770	103	75	125	0.1011	1.86	20
Chromium	0.1014	0.00500	0.1000	0.001372	100	75	125	0.1003	1.09	20
Lead	0.1426	0.00100	0.1000	0.03603	107	75	125	0.1400	1.84	20

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

ш

S Spike Recovery outside limits due to matrix

E Estimated (value above quantitation range)

Less than Result value

N Analyte not NELAC certified

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 9 of 10

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie **Workorder:** 1609N31

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: R326252

Sample ID: MB-R326252	Client ID:				Uni	its: mg/L	Pre	p Date:		Run No: 326252
SampleType: MBLK	TestCode:	ION SCAN SW9056A			Bat	chID: R32625	2 Ana	alysis Date: 09/28	3/2016	Seq No: 7066629
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qua
Chloride	BRL	1.0								
Nitrate	BRL	0.25								
Sample ID: LCS-R326252	Client ID:				Uni	ts: mg/L	Pre	p Date:		Run No: 326252
SampleType: LCS	TestCode:	ION SCAN SW9056A			Bat	chID: R32625	2 Ana	alysis Date: 09/28	3/2016	Seq No: 7066628
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qua
Chloride	9.604	1.0	10.00		96.0	90	110			
Nitrate	4.800	0.25	5.000		96.0	90	110			
Sample ID: 1609N85-002BMS	Client ID:				Uni	its: mg/L	Pre	p Date:		Run No: 326252
SampleType: MS	TestCode:	ION SCAN SW9056A			Bat	chID: R32625 2	2 Ana	alysis Date: 09/28	3/2016	Seq No: 7066638
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qua
Chloride	150.6	10	100.0	52.42	98.1	90	110			
Nitrate	63.54	2.5	50.00	13.29	101	90	110			
Sample ID: 1609N85-002BMSD	Client ID:				Uni	its: mg/L	Pre	p Date:		Run No: 326252
SampleType: MSD	TestCode:	ION SCAN SW9056A			Bat	chID: R32625 2	2 Ana	alysis Date: 09/28	3/2016	Seq No: 7066639
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qua
Chloride	150.4	10	100.0	52.42	98.0	90	110	150.6	0.079	20
Nitrate	63.49	2.5	50.00	13.29	100	90	110	63.54	0.078	20

Qualifiers: > Greater than Result value

BRL Below reporting limit

Rpt Lim Reporting Limit

J Estimated value detected below Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 10 of 10

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

October 14, 2016

Mark Andrews AMEC E&I, Inc. -Kennesaw 1075 Big Shanty Rd NW Kennesaw GA 30144

TEL: (770) 421-3327 FAX: (770) 421-3308

RE: Swift - Moultrie

Order No: 1609O92 Dear Mark Andrews:

Analytical Environmental Services, Inc. received 8 samples on 9/29/2016 10:20:00 AM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES's accreditations are as follows:

- -NELAC/Florida State Laboratory ID E87582 for analysis of Non-Potable Water, Solid & Chemical Materials, and Drinking Water Microbiology, effective 07/01/16-06/30/17.
- -NELAC/Louisiana Agency Interest No. 100818 for or analysis of Non-Potable Water and Solid & Chemical Materials, effective 07/01/16-06/30/17.
- -NELAC/Texas Certificate No. T104704509-16-6 for or analysis of Non-Potable Water and Solid & Chemical Materials, effective 03/01/16-02/28/17.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Metals, PCM Asbestos, Gravimetric), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/17.

Ioana Pacurar

Project Manager

IDana) Pacurar

Revision 10/14/2016

3080 Presidential Drive, Atlanta GA 30340-3704

AES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

ANALYTICAL ENVIRONMENTAL SERVICES, INC

Date:	7	 <u>1</u> of	<u></u>

COMPANY:	ADDRESS: 1075 Blg Sha NW Sulta 10	nty RI)				ANAL	YSIS I	REQUI	ESTED			Visit our website	
AMEC Foster Wheeler	NW SULTA 10	D. Kenne	KW, GH	15									www.aesatlanta.com to check on the status of	
PHONE: 770-421-3400	FAX:			mrtals	2/20	Ž							your results, place bottle	ainers
Mark A. 2 Ever G.	SIGNATURE:		2		\$ 6	\$							orders, etc.	of Container
THAT I TO THE TOTAL OF THE TOTA	SAMPLED			3,15	3 8									No # 0
# SAMPLE ID		Grab	Matrix (See codes)				PRESE	RVAT	ION (Se	e codes)			REMARKS	
	DATE TIME	Grab	Mat (See	W :	t]									
1 MW-9	7/28/16 1022	V	GW	X	$X \mid 2$	<u> </u>								2
2 MW-131)	9/28/16 1157	1	GW	X										2
3 NUP-1	8/28/14 1200	1	GW	X	\mathcal{X}									2
1 EB-1	9/28/16 1/20	1	GW	X	(W									2
5 MW-7	9/28/16 1040	<i>i</i> /	BW		XX	7								1
6 MW-16	7/28/16 1422		12W	X	XX	6								N
7 MW-16MS	9/28/16 1422		GW	1	X	V								2
8 Mw-16M50	9/28/14 1477		GW		Y									2
	9/28/16 1540	4	GW	Ιχ Ι'	\$15	Ž								2
	9/28/16 1640	U	GW		$\langle 1 \rangle$	(1
•	1120116 10-10		1900	1 1	74	1								
				1			1			1				
12				1		_	1 1			1				
13		 		+-+		_	╁╼╁	-	_	+				<u> </u>
14 RELINQUISHED BY DATE/TIME	RECEIVED BY	<u> </u>	DATE/TIMI	E		Sheep or Track of American Action	PROJ	ECT II	VFORM	1ATION			RECEIPT	1
		2010 10		PROJI	ECT NA	ME:			,				Total # of Containers	
9-28-16/1700	Man 19: 9/2	<u> </u>	", U	1.5	W	FY	M	00	11	re				<u> </u>
2:	2:			РКОЛ	ECT#:		10	100	un -	m.la	Pho	-1-	Turnaround Time Request	
	3:			SITE	ADDRE	ESS: / / - / Lat	67 /	(\mathcal{P}^{\prime})	,	/112×11	5711PM	<i>9</i> T	Standard 5 Business Days 2 Business Day Rush	
β:				SENE	REPO	Z	Davt	1 5	noa	K	Store Mar	K Antrav	Next Business Day Rush	
SPECIAL INSTRUCTIONS/COMMENTS: (4)	SHIPMEN	T METHOD		INVO	ICE TO) ;					•		Same Day Rush (auth req.)
SPECIAL INSTRUCTIONS/COMMENTS: SITE MATALS = ARSPAIL, BANDA, CADMIUM - CHROMIUM - ALLAND	OUT / /	VIA:		(IF D	IFFERE	NT FRO	M ABO	VE)					Other	
CHAMION & CHYOMIUM, ON LAND		VIA:	OTRIED										STATE PROGRAM (if any): E-mail? Y/N; Fax? Y/N	
	CLIENT FedEx U GREYHOUND O	ps mail (THER	Jainoo							DATA PACKAGE: I II III	IV			
SAMPLES RECEIVED AFTER 3PM OR ON SATURDAY ARE C	ONSIDERED RECEIVED THE	NEXT BUSI	NESS DAY. IF T			TIME	IS NOT	INDIC			LL PROC	EED WITH		
SAMPLES ARE DISPOSED 30 DAYS AFTER REPORT COMPLI	TION UNLESS OTHER ARRA	ANGEMENTS	ARE MADE.											

Client: AMEC E&I, Inc. -Kennesaw

Project: Swift - Moultrie Case Narrative

Date:

14-Oct-16

Lab ID: 1609O92

IC Analysis by Method 9056A:

Due to sample matrix, sample(s) 1609O92-001B, -002B, -003B, -005A, -006B, and -007B required a dilution during preparation and/or analysis resulting in elevated reporting limits.

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-9

Project Name: Swift - Moultrie **Collection Date:** 9/28/2016 10:22:00 AM

Date:

14-Oct-16

Lab ID: 1609O92-001 Matrix: Groundwater

Analyses	Resul	t Reporting Limit	Qual U	J nits	BatchID	Dilution Factor	Date Analyzed	Analyst
Total Metals by ICP/MS S	SW6020B			(SW	/3005A)			
Arsenic	BRI	0.00500		mg/L	230512	1	10/06/2016 06:17	CC
Barium	0.57	5 0.0100		mg/L	230512	1	10/06/2016 06:17	CC
Cadmium	0.0009	0.000700		mg/L	230512	1	10/06/2016 06:17	CC
Chromium	BRI	0.00500		mg/L	230512	1	10/06/2016 06:17	CC
Lead	0.071	5 0.00100		mg/L	230512	1	10/06/2016 06:17	CC
ION SCAN SW9056A								
Chloride	690	50		mg/L	R326571	50	09/29/2016 15:16	JW
Nitrate	BRI	. 12		mg/L	R326571	50	09/29/2016 15:16	JW

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-13D

Project Name: Swift - Moultrie Collection Date: 9/28/2016 11:57:00 AM

Date:

14-Oct-16

Lab ID: 1609O92-002 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst			
Total Metals by ICP/MS SW6020B		(SW3005A)									
Arsenic	BRL	0.00500		mg/L	230512	1	10/06/2016 06:23	CC			
Barium	0.219	0.0100		mg/L	230512	1	10/06/2016 06:23	CC			
Cadmium	0.00219	0.000700		mg/L	230512	1	10/06/2016 06:23	CC			
Chromium	BRL	0.00500		mg/L	230512	1	10/06/2016 06:23	CC			
Lead	0.173	0.00100		mg/L	230512	1	10/06/2016 06:23	CC			
ION SCAN SW9056A											
Chloride	1800	50		mg/L	R326571	50	09/29/2016 15:31	JW			
Nitrate	BRL	12		mg/L	R326571	50	09/29/2016 15:31	JW			

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: DUP-1

Project Name: Swift - Moultrie **Collection Date:** 9/28/2016 12:00:00 PM

Lab ID: 1609O92-003 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst		
Total Metals by ICP/MS SW6020B	(SW3005A)									
Arsenic	BRL	0.00500		mg/L	230512	1	10/06/2016 06:48	CC		
Barium	0.572	0.0100		mg/L	230512	1	10/06/2016 06:48	CC		
Cadmium	0.000938	0.000700		mg/L	230512	1	10/06/2016 06:48	CC		
Chromium	BRL	0.00500		mg/L	230512	1	10/06/2016 06:48	CC		
Lead	0.0720	0.00100		mg/L	230512	1	10/06/2016 06:48	CC		
ION SCAN SW9056A										
Chloride	710	50		mg/L	R326571	50	09/29/2016 15:46	JW		
Nitrate	BRL	12		mg/L	R326571	1 50	09/29/2016 15:46	JW		

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: EB-1

Project Name: Swift - Moultrie Collection Date: 9/28/2016 11:20:00 AM

Date:

14-Oct-16

Lab ID: 1609O92-004 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst			
Total Metals by ICP/MS SW6020B		(SW3005A)									
Arsenic	BRL	0.00500		mg/L	230512	1	10/06/2016 06:54	CC			
Barium	BRL	0.0100		mg/L	230512	1	10/06/2016 06:54	CC			
Cadmium	BRL	0.000700		mg/L	230512	1	10/06/2016 06:54	CC			
Chromium	BRL	0.00500		mg/L	230512	1	10/06/2016 06:54	CC			
Lead	BRL	0.00100		mg/L	230512	1	10/06/2016 06:54	CC			
ION SCAN SW9056A											
Chloride	BRL	1.0		mg/L	R326571	. 1	09/29/2016 14:55	JW			
Nitrate	BRL	0.25		mg/L	R326571	. 1	09/29/2016 14:55	JW			

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-7

Project Name: Swift - Moultrie Collection Date: 9/28/2016 10:40:00 AM

Lab ID: 1609O92-005 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
ION SCAN	SW9056A								
Chloride		1100	50		mg/L	R326571	50	09/29/2016 16:00	JW
Nitrate		BRL	12		mg/L	R326571	50	09/29/2016 16:00	JW

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-16

Project Name: Swift - Moultrie **Collection Date:** 9/28/2016 2:22:00 PM

Date:

14-Oct-16

Lab ID: 1609O92-006 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst			
Total Metals by ICP/MS SW6020B		(SW3005A)									
Arsenic	BRL	0.00500		mg/L	230512	1	10/06/2016 05:46	CC			
Barium	0.508	0.0100		mg/L	230512	1	10/06/2016 05:46	CC			
Cadmium	BRL	0.000700		mg/L	230512	1	10/06/2016 05:46	CC			
Chromium	BRL	0.00500		mg/L	230512	1	10/06/2016 05:46	CC			
Lead	0.0161	0.00100		mg/L	230512	1	10/06/2016 05:46	CC			
ION SCAN SW9056A											
Chloride	250	50		mg/L	R326571	50	09/29/2016 16:15	JW			
Nitrate	BRL	12		mg/L	R326571	50	09/29/2016 16:15	JW			

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-27DDDD

Project Name: Swift - Moultrie **Collection Date:** 9/28/2016 3:40:00 PM

Date:

14-Oct-16

Lab ID:1609O92-007Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst			
Total Metals by ICP/MS SW6020B		(SW3005A)									
Arsenic	BRL	0.00500		mg/L	230512	1	10/06/2016 07:01	CC			
Barium	7.22	0.0100		mg/L	230512	1	10/06/2016 07:01	CC			
Cadmium	0.00311	0.000700		mg/L	230512	1	10/06/2016 07:01	CC			
Chromium	BRL	0.00500		mg/L	230512	1	10/06/2016 07:01	CC			
Lead	BRL	0.00100		mg/L	230512	1	10/06/2016 07:01	CC			
ION SCAN SW9056A											
Chloride	690	50		mg/L	R326571	50	09/29/2016 16:30	JW			
Nitrate	BRL	12		mg/L	R326571	50	09/29/2016 16:30	JW			

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Page 10 of 17

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-4

Project Name: Swift - Moultrie **Collection Date:** 9/28/2016 4:40:00 PM

Lab ID: 1609O92-008 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
ION SCAN	SW9056A								
Chloride		3.9	1.0		mg/L	R326571	. 1	09/30/2016 09:47	JW
Nitrate		2.2	0.25		mg/L	R326571	. 1	09/30/2016 09:47	JW

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Page 11 of 17

Sample/Cooler Receipt Checklist

Client Ame c		Work Order Num	ber 169997
Checklist completed by Signature Date	<u> </u>		
Carrier name: FedExUPS Courier Client U	S Mail Other	-	
Shipping container/cooler in good condition?	Yes	No _ Not I	Present
Custody seals intact on shipping container/cooler?	Yes	No _ Not I	Present
Custody seals intact on sample bottles?	Yes	No _ Not I	Present
Container/Temp Blank temperature in compliance? (0°≤6°C)* Yes	No	
Cooler #1 Cooler #2 Cooler #3	Cooler #4 _	Cooler#5	Cooler #6
Chain of custody present?	Yes _	No	
Chain of custody signed when relinquished and received?	Yes _	No	
Chain of custody agrees with sample labels?	Yes _	No	
Samples in proper container/bottle?	Yes	No	
Sample containers intact?	Yes _	No	
Sufficient sample volume for indicated test?	Yes _	No	
All samples received within holding time?	Yes	No	
Was TAT marked on the COC?	Yes 🔽	No	
Proceed with Standard TAT as per project history?	Yes	No _ Not	Applicable
Water - VOA vials have zero headspace? No VOA vials s	submitted	Yes	No
Water - pH acceptable upon receipt?	Yes _i	No _ Not	Applicable
Adjusted?		,)
Sample Condition: Good Other(Explain)			
(For diffusive samples or AIHA lead) Is a known blank inclu	ided? Yes	No . /	/

See Case Narrative for resolution of the Non-Conformance.

^{*} Samples do not have to comply with the given range for certain parameters.

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift - Moultrie

Lab Order: 1609O92

Dates Report

Date: 6-Oct-16

Lab Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
1609O92-001A	MW-9	9/28/2016 10:22:00AM	Groundwater	Total Metals by ICP/MS		10/4/2016 6:14:00 PM	10/06/2016
1609O92-001B	MW-9	9/28/2016 10:22:00AM	Groundwater	ION SCAN			09/29/2016
1609O92-002A	MW-13D	9/28/2016 11:57:00AM	Groundwater	Total Metals by ICP/MS		10/4/2016 6:14:00 PM	10/06/2016
1609O92-002B	MW-13D	9/28/2016 11:57:00AM	Groundwater	ION SCAN			09/29/2016
1609O92-003A	DUP-1	9/28/2016 12:00:00PM	Groundwater	Total Metals by ICP/MS		10/4/2016 6:14:00 PM	10/06/2016
1609O92-003B	DUP-1	9/28/2016 12:00:00PM	Groundwater	ION SCAN			09/29/2016
1609O92-004A	EB-1	9/28/2016 11:20:00AM	Groundwater	Total Metals by ICP/MS		10/4/2016 6:14:00 PM	10/06/2016
1609O92-004B	EB-1	9/28/2016 11:20:00AM	Groundwater	ION SCAN			09/29/2016
1609O92-005A	MW-7	9/28/2016 10:40:00AM	Groundwater	ION SCAN			09/29/2016
1609O92-006A	MW-16	9/28/2016 2:22:00PM	Groundwater	Total Metals by ICP/MS		10/4/2016 6:14:00 PM	10/06/2016
1609O92-006B	MW-16	9/28/2016 2:22:00PM	Groundwater	ION SCAN			09/29/2016
1609O92-007A	MW-27DDDD	9/28/2016 3:40:00PM	Groundwater	Total Metals by ICP/MS		10/4/2016 6:14:00 PM	10/06/2016
1609O92-007B	MW-27DDDD	9/28/2016 3:40:00PM	Groundwater	ION SCAN			09/29/2016
1609O92-008A	MW-4	9/28/2016 4:40:00PM	Groundwater	ION SCAN			09/30/2016

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift - Moultrie **Workorder:** 1609O92

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: 230512

Sample ID: MB-230512 SampleType: MBLK	Client ID:	Total Metals by ICP/MS	SW6020R		Uni Bate	ts: mg/L chID: 230512		p Date:	10/04/2016 10/06/2016	Run No: 326777 Seq No: 7081443
SampleType. WIBLK	resicoue.	Total Metals by Tel /MS	5 17 00 20 B		Dau	CIIID. 230512	Alla	ilysis Date.	10/00/2010	seq No. 7081443
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RF	PD RPD Limit Q
Arsenic	BRL	0.00500								
Barium	BRL	0.0100								
Cadmium	BRL	0.000700								
Chromium	BRL	0.00500								
Lead	BRL	0.00100								
Sample ID: LCS-230512 SampleType: LCS	Client ID: TestCode:	Total Metals by ICP/MS	SW6020B		Uni Bate	ts: mg/L chID: 230512		p Date: alysis Date:	10/04/2016 10/06/2016	Run No: 326777 Seq No: 7081444
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RF	PD RPD Limit Q
Arsenic	0.1055	0.00500	0.1000		106	80	120			
Barium	0.1067	0.0100	0.1000		107	80	120			
Cadmium	0.1050	0.000700	0.1000		105	80	120			
Chromium	0.1051	0.00500	0.1000	0.0009080	104	80	120			
Lead	0.1028	0.00100	0.1000		103	80	120			
Sample ID: 1609O92-006AMS SampleType: MS	Client ID: TestCode:	MW-16 Total Metals by ICP/MS	SW6020B		Uni Bate	ts: mg/L chID: 230512		p Date: alysis Date:	10/04/2016 10/06/2016	Run No: 326777 Seq No: 7081446
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RF	PD RPD Limit Q
Arsenic	0.1051	0.00500	0.1000	0.0003180	105	75	125			
Barium	0.6633	0.0100	0.1000	0.5084	155	75	125			
Cadmium	0.1049	0.000700	0.1000		105	75	125			
Chromium	0.1044	0.00500	0.1000	0.002266	102	75	125			
ead	0.1217	0.00100	0.1000	0.01611	106	75	125			

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

N Analyte not NELAC certified

Less than Result value

S Spike Recovery outside limits due to matrix

E Estimated (value above quantitation range)

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 14 of 17

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift - Moultrie

Workorder: 1609O92

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: 230512

Sample ID: 1609O92-006AMSD	Client ID:	MW-16			Uni	ts: mg/L	Prep	Date: 10/0	4/2016	Run No: 32677	7
SampleType: MSD	TestCode:	Total Metals by ICP/MS	SW6020B		Bate	chID: 230512	Ana	lysis Date: 10/0	6/2016	Seq No: 70814	47
A 1 4.	D 14	DDT Linia	CDIZ 1	CDIZ D CV.1	0/DEC	T. Thurs	TTUE TOUGH	DDD D CW.1	0/ DDD	DDD I iir	0.1
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Arsenic	0.1052	0.00500	0.1000	0.0003180	105	75	125	0.1051	0.095	20	
Barium	0.6611	0.0100	0.1000	0.5084	153	75	125	0.6633	0.332	20	S
Cadmium	0.1059	0.000700	0.1000		106	75	125	0.1049	0.949	20	
Chromium	0.1054	0.00500	0.1000	0.002266	103	75	125	0.1044	0.953	20	
Lead	0.1232	0.00100	0.1000	0.01611	107	75	125	0.1217	1.22	20	

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 15 of 17

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift - Moultrie **Workorder:** 1609O92

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: R326571

Sample ID: MB-R326571 SampleType: MBLK	Client ID: TestCode:	ION SCAN SW9056A			Un Bat	its: mg/L chID: R32657		p Date: alysis Date: 09/29	0/2016	Run No: 326571 Seq No: 7076180
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chloride	BRL	1.0								
Nitrate	BRL	0.25								
Sample ID: LCS-R326571	Client ID:				Un	its: mg/L	Pre	p Date:		Run No: 326571
SampleType: LCS	TestCode:	ION SCAN SW9056A			Bat	chID: R32657	1 Ana	alysis Date: 09/29	0/2016	Seq No: 7076179
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chloride	9.580	1.0	10.00	0.1263	94.5	90	110			
Nitrate	4.801	0.25	5.000		96.0	90	110			
Sample ID: 1609O26-001AMS SampleType: MS	Client ID: TestCode:	ION SCAN SW9056A			Un Bat	its: mg/L chID: R32657		p Date: alysis Date: 09/29	0/2016	Run No: 326571 Seq No: 7076204
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chloride	10.91	1.0	10.00	1.743	91.7	90	110			
Nitrate	5.765	0.25	5.000	0.8333	98.6	90	110			
Sample ID: 1609O92-006BMS SampleType: MS	Client ID: TestCode:	MW-16 ION SCAN SW9056A			Un Bat	its: mg/L chID: R32657		p Date: alysis Date: 09/29	0/2016	Run No: 326571 Seq No: 7076202
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chloride	779.3	50	500.0	251.0	106	90	110			
Nitrate	246.2	12	250.0	4.569	96.7	90	110			
Sample ID: 1609O92-006BMSD SampleType: MSD	Client ID: TestCode:	MW-16 ION SCAN SW9056A			Un Bat	its: mg/L chID: R32657		p Date: alysis Date: 09/29	0/2016	Run No: 326571 Seq No: 7076203
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chloride	751.0	50	500.0	251.0	100	90	110	779.3	3.69	20
Qualifiers: > Greater than Result valu BRL Below reporting limit J Estimated value detecte Rpt Lim Reporting Limit		Limit	E Estim	than Result value ated (value above quantit te not NELAC certified Recovery outside limits of			Н	Analyte detected in the ass Holding times for preparat RPD outside limits due to	tion or analysis	

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift - Moultrie

Workorder: 1609O92

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: R326571

Sample ID: 1609O92-006BMS SampleType: MSD		IW-16 ON SCAN SW9056A			Uni Bat	ts: mg/L chID: R32657		Date: lysis Date: 09/29		Run No: 32657 1 Seq No: 70762 0	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Nitrate	244.2	12	250.0	4.569	95.9	90	110	246.2	0.821	20	

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 17 of 17

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

October 14, 2016

Mark Andrews AMEC E&I, Inc. -Kennesaw 1075 Big Shanty Rd NW Kennesaw GA 30144

TEL: (770) 421-3327 FAX: (770) 421-3308

RE: Swift Moultrie

Order No: 1609Q19 Dear Mark Andrews:

6 samples on 9/30/2016 10:55:00 AM Analytical Environmental Services, Inc. received for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES's accreditations are as follows:

- -NELAC/Florida State Laboratory ID E87582 for analysis of Non-Potable Water, Solid & Chemical Materials, and Drinking Water Microbiology, effective 07/01/16-06/30/17.
- -NELAC/Louisiana Agency Interest No. 100818 for or analysis of Non-Potable Water and Solid & Chemical Materials, effective 07/01/16-06/30/17.
- -NELAC/Texas Certificate No. T104704509-16-6 for or analysis of Non-Potable Water and Solid & Chemical Materials, effective 03/01/16-02/28/17.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Metals, PCM Asbestos, Gravimetric), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 09/01/17.

Ioana Pacurar

Project Manager

IDana) Pacurar

Revision 10/14/2016

COMPANY:

10

ANALYTICAL ENVIRONMENTAL SERVICES, INC

CHAIN OF CUSTODY

ANALYSIS REQUESTED

PRESERVATION (See codes)

3080 Presidential Drive Atlanta GA 30340-3906

SAMPLE ID

TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

AMEC Foster whooler NW suite 100, Kemishing 64

FAX:

DATE

SIGNATURE 02

SAMPLED

TIME

	Work Order: 10090	19
Date: 9	29-16 Page of	1
	Visit our website www.aesatlanta.com to check on the status of your results, place bottle orders, etc.	No # of Containers
	REMARKS	# °N
		<u>ر</u> 2
		3_
		1
		1

										- 1	- 1			1		- 1	- 1					- 1	
11															T				******				
12								T													****		-
13																				,			
14																	T						
1. /	RECEIVED BY				DATE/TIME					PRO	JECT	INFO	RMA'	TION						RE	CEIPT		\exists
9/30/16/1055	Örmi	. Anuly	: 91	1301/6	10:55 am	PROJE	SCT NA	AME:	Ft	- /	Ma	ルル	4	\mathscr{C}					Total	l # of Cor	ntainers		
3:	2:()	()				ECT#: ADDRE	SS: {	19	14	NOI	M	M	ain	Sti	op t	,				Time Reque		
			-				REPOR					Mo	øΚ	J-1.	hark	Aw	trow	<u> </u>	7	usiness D xt Busine:	Day Rush ss Day Rush		
STECHAL INSTRUCTIONS/COMMENTS: STEC METALS = Arsentc, Darrum	OUT /	SHIPMENT /	METHO VIA:	D		INVOI	CE TO	:						V		1.0			_	ne Day R	ush (auth re	q.)	
SPECIAL INSTRUCTIONS/COMMENTS: SIFE MPTAIS = Arsente, Darium Cadmium, Chromium, and world Dissolved Samples field filteral	IN CLIEN	T FedEx UP	VIA: S∐MAII IER	r∏coui	RIER	OLIO?	er 11											E-ma	ail? Y/N	N;	y): Fax? Y/N		
-		***************************************			**	QUOT							PO#:_						A PACK	AGE:	ı 🗆 II 🔲 II	I IV	
SAMPLES RECEIVED AFTER 3PM OR ON SATURDAY ARE CONS SAMPLES ARE DISPOSED OF 30 DAYS AFTER COMPLETION OF							MARK	ED O	N CO	C AE	S WIL	LL PR	OCEI	ED WIT	TH STA	NDAR	D TA	Γ.					l

Matrix (See codes)

GW

Cott GW 120 Gw

Client: AMEC E&I, Inc. -Kennesaw

Project: Swift Moultrie Case Narrative

Date:

14-Oct-16

Lab ID: 1609Q19

IC Analysis by Method 9056A:

Due to sample matrix, sample MW-15 and MW-18 required a dilution during preparation and/or analysis resulting in elevated reporting limits.

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-15

Project Name: Swift Moultrie Collection Date: 9/29/2016 11:57:00 AM

Date:

14-Oct-16

Lab ID: 1609Q19-001 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Total Metals by ICP/MS SW6020B		Limit		(SW	/3005A)	Factor		
Arsenic	0.00672	0.00500		mg/L	230565	1	10/07/2016 02:12	CC
Barium	0.220	0.0100		mg/L	230565	1	10/07/2016 02:12	CC
Cadmium	0.131	0.000700		mg/L	230565	1	10/07/2016 02:12	CC
Chromium	0.0246	0.00500		mg/L	230565	1	10/07/2016 02:12	CC
Lead	0.294	0.00100		mg/L	230565	1	10/07/2016 02:12	CC
ION SCAN SW9056A								
Chloride	2000	100		mg/L	R326904	100	09/30/2016 18:55	JW
Nitrate	BRL	25		mg/L	R326904	100	09/30/2016 18:55	JW
Dissolved Metals by ICP/MS SW6020B				(SW	/3005A)			
Arsenic	BRL	0.00500		mg/L	230628	1	10/07/2016 02:43	CC
Barium	0.0766	0.0100		mg/L	230628	1	10/07/2016 02:43	CC
Cadmium	0.103	0.000700		mg/L	230628	1	10/07/2016 02:43	CC
Chromium	BRL	0.00500		mg/L	230628	1	10/07/2016 02:43	CC
Lead	0.236	0.00100		mg/L	230628	1	10/07/2016 02:43	CC

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-18

Project Name: Swift Moultrie Collection Date: 9/29/2016 9:50:00 AM

Lab ID:1609Q19-002Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Total Metals by ICP/MS SW6020B				(SV	V3005A)			
Arsenic	BRL	0.00500		mg/L	230565	1	10/07/2016 02:18	CC
Cadmium	BRL	0.000700		mg/L	230565	1	10/07/2016 02:18	CC
Lead	0.00146	0.00100		mg/L	230565	1	10/07/2016 02:18	CC
ION SCAN SW9056A								
Chloride	360	50		mg/L	R326904	1 50	09/30/2016 19:10	JW
Nitrate	BRL	12		mg/L	R326904	1 50	09/30/2016 19:10	JW

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-1

Project Name: Swift Moultrie Collection Date: 9/29/2016 1:47:00 PM

Lab ID: 1609Q19-003 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
Total Metals by ICP/MS SW6020B				(SW	V3005A)			
Lead	0.0691	0.00100		mg/L	230565	1	10/07/2016 02:24	CC
ION SCAN SW9056A								
Chloride	11	1.0		mg/L	R326904	1	09/30/2016 19:25	JW
Nitrate	BRL	0.25		mg/L	R326904	1	09/30/2016 19:25	JW
Dissolved Metals by ICP/MS SW6020B				(SW	/3005A)			
Lead	BRL	0.00100		mg/L	230628	1	10/07/2016 03:33	CC

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Estimated value detected below Reporting Limit

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-20

Project Name: Swift Moultrie Collection Date: 9/29/2016 11:35:00 AM

Lab ID: 1609Q19-004 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
ION SCAN	SW9056A								
Chloride		7.0	1.0		mg/L	R326904	1	09/30/2016 17:24	JW
Nitrate		BRL	0.25		mg/L	R326904	1	09/30/2016 17:24	JW

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

Less than Result value

NC Not confirmed

Estimated value detected below Reporting Limit

Page 7 of 17

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-29

Project Name: Swift Moultrie Collection Date: 9/29/2016 1:30:00 PM

Lab ID: 1609Q19-005 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
ION SCAN	SW9056A								
Chloride		110	50		mg/L	R326904	4 50	09/30/2016 20:32	JW
Nitrate		1.1	0.25		mg/L	R326904	1 1	09/30/2016 17:40	JW

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Page 8 of 17

Client: AMEC E&I, Inc. -Kennesaw Client Sample ID: MW-31

Project Name: Swift Moultrie Collection Date: 9/29/2016 3:15:00 PM

Lab ID:1609Q19-006Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
ION SCAN	SW9056A								
Chloride		150	50		mg/L	R326904	1 50	09/30/2016 20:47	JW
Nitrate		5.0	0.25		mg/L	R326904	1 1	09/30/2016 17:55	JW

Date:

14-Oct-16

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Sample/Cooler Receipt Checklist

Client AMEC Hennesaw		Work Order	Number	09019
Checklist completed by Signature Date	/30/3014	<i></i>	, .	v
Carrier name: FedEx UPS Courier Client US	S Mail Other	r		
Shipping container/cooler in good condition?	Yes	No	Not Present	
Custody seals intact on shipping container/cooler?	Yes	No	Not Present <u></u>	
Custody seals intact on sample bottles?	Yes	No	Not Present 👤	
Container/Temp Blank temperature in compliance? (0°≤6°C)	*Yes	No		
Cooler #1 3.8°C Cooler #2 Cooler #3	_ Cooler #4	Cool	er#5	Cooler #6
Chain of custody present?	Yes _	No		
Chain of custody signed when relinquished and received?	Yes _	No		
Chain of custody agrees with sample labels?	Yes 🗸	No		
Samples in proper container/bottle?	Yes 👱	No		
Sample containers intact?	Yes 👱	No		
Sufficient sample volume for indicated test?	Yes 🗸	No		
All samples received within holding time?	Yes _	No		
Was TAT marked on the COC?	Yes _	No		
Proceed with Standard TAT as per project history?	Yes	No	Not Applicable	<u>~</u>
Water - VOA vials have zero headspace? No VOA vials su	ibmitted	Yes _	No	
Water - pH acceptable upon receipt?	Yes 🗹	No	Not Applicable	·
Adjusted?	Che	cked by	<u>CJ</u>	
Sample Condition: Good Other(Explain)	***************************************			
(For diffusive samples or AIHA lead) Is a known blank include	led? Yes	_ No	o <u>~</u>	

See Case Narrative for resolution of the Non-Conformance.

 $\verb|\Aes_server|| Sample Receipt My Documents COCs and pH Adjustment Sheet Sample Cooler_Recipt Checklist_Rev1.rtf|$

^{*} Samples do not have to comply with the given range for certain parameters.

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie Lab Order: 1609Q19

Dates Report

Date: 11-Oct-16

Lab Sample ID 1609Q19-001A	Client Sample ID MW-15	Collection Date 9/29/2016 11:57:00AM	Matrix Groundwater	Test Name Total Metals by ICP/MS	TCLP Date	Prep Date 10/5/2016 4:46:00 PM	Analysis Date 10/07/2016
1609Q19-001B	MW-15	9/29/2016 11:57:00AM	Groundwater	Dissolved Metals by ICP/MS		10/6/2016 11:50:00 AM	10/07/2016
1609Q19-001C	MW-15	9/29/2016 11:57:00AM	Groundwater	ION SCAN			09/30/2016
1609Q19-002A	MW-18	9/29/2016 9:50:00AM	Groundwater	ION SCAN			09/30/2016
1609Q19-002B	MW-18	9/29/2016 9:50:00AM	Groundwater	Total Metals by ICP/MS		10/5/2016 4:46:00 PM	10/07/2016
1609Q19-003A	MW-1	9/29/2016 1:47:00PM	Groundwater	ION SCAN			09/30/2016
1609Q19-003B	MW-1	9/29/2016 1:47:00PM	Groundwater	Total Metals by ICP/MS		10/5/2016 4:46:00 PM	10/07/2016
1609Q19-003C	MW-1	9/29/2016 1:47:00PM	Groundwater	Dissolved Metals by ICP/MS		10/6/2016 11:50:00 AM	10/07/2016
1609Q19-004A	MW-20	9/29/2016 11:35:00AM	Groundwater	ION SCAN			09/30/2016
1609Q19-005A	MW-29	9/29/2016 1:30:00PM	Groundwater	ION SCAN			09/30/2016
1609Q19-006A	MW-31	9/29/2016 3:15:00PM	Groundwater	ION SCAN			09/30/2016

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie **Workorder:** 1609Q19

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: 230565

Sample ID: MB-230565	Client ID:				Uni	ts: mg/L	Prej	Date:	10/05/2016	Run No: 326889
SampleType: MBLK	TestCode:	Total Metals by ICP/MS	SW6020B		Bate	chID: 230565	Ana	llysis Date:	10/06/2016	Seq No: 7084741
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPl	O RPD Limit Qu
Arsenic	BRL	0.00500								
Barium	BRL	0.0100								
Cadmium	BRL	0.000700								
Chromium	BRL	0.00500								
Lead	BRL	0.00100								
Sample ID: LCS-230565 SampleType: LCS	Client ID: TestCode:	Total Metals by ICP/MS	SW6020B		Uni Bate	ts: mg/L chID: 230565	•	Date:	10/05/2016 10/06/2016	Run No: 326889 Seq No: 7084742
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPl	O RPD Limit Qu
Arsenic	0.1007	0.00500	0.1000		101	80	120			
Barium	0.1002	0.0100	0.1000		100	80	120			
Cadmium	0.1022	0.000700	0.1000		102	80	120			
Chromium	0.1028	0.00500	0.1000	0.001101	102	80	120			
Lead	0.09983	0.00100	0.1000		99.8	80	120			
Sample ID: 1609P93-033CMS SampleType: MS	Client ID: TestCode:	Total Metals by ICP/MS	SW6020B		Uni Bate	ts: mg/L chID: 230565		Date:	10/05/2016 10/07/2016	Run No: 326889 Seq No: 7085680
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPl	O RPD Limit Qu
Arsenic	0.09655	0.00500	0.1000	0.0005360	96.0	75	125			
Barium	0.1058	0.0100	0.1000	0.006047	99.8	75	125			
Cadmium	0.1018	0.000700	0.1000		102	75	125			
Chromium	0.09785	0.00500	0.1000	0.003810	94.0	75	125			
ead	0.1009	0.00100	0.1000	0.0005910	100	75	125			

Qualifiers: > Greater than Result value

BRL Below reporting limit

Rpt Lim Reporting Limit

J Estimated value detected below Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 12 of 17

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie **Workorder:** 1609Q19

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: 230565

Sample ID: 1609P93-033CMSD SampleType: MSD	Client ID: TestCode:	Total Metals by ICP/MS	SW6020B		Uni Bat	ts: mg/L chID: 230565			5/2016 7/2016	Run No: 326889 Seq No: 7085681
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic	0.09790	0.00500	0.1000	0.0005360	97.4	75	125	0.09655	1.39	20
Barium	0.1059	0.0100	0.1000	0.006047	99.9	75	125	0.1058	0.094	20
Cadmium	0.1026	0.000700	0.1000		103	75	125	0.1018	0.783	20
Chromium	0.09947	0.00500	0.1000	0.003810	95.7	75	125	0.09785	1.64	20
Lead	0.1023	0.00100	0.1000	0.0005910	102	75	125	0.1009	1.38	20

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 13 of 17

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie **Workorder:** 1609Q19

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: 230628

Sample ID: MB-230628 SampleType: MBLK	Client ID: TestCode:	Dissolved Metals by ICP	/MS SW6020B		Uni Bat	ts: mg/L chID: 230628		Date:	10/06/2016 10/07/2016	Run No: 326891 Seq No: 7084914
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC		High Limit	RPD Ref		•
Arsenic	BRL	0.00500								
Barium	BRL	0.0100								
Cadmium	BRL	0.000700								
Chromium	BRL	0.00500								
Lead	BRL	0.00100								
Sample ID: LCS-230628 SampleType: LCS	Client ID: TestCode:	Dissolved Metals by ICP	/MS SW6020B		Uni Bat	its: mg/L chID: 230628	•	Date:	10/06/2016 10/07/2016	Run No: 326891 Seq No: 7084915
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPD	RPD Limit Qua
Arsenic	0.09928	0.00500	0.1000		99.3	80	120			
Barium	0.09923	0.0100	0.1000		99.2	80	120			
Cadmium	0.1006	0.000700	0.1000		101	80	120			
Chromium	0.09970	0.00500	0.1000		99.7	80	120			
Lead	0.09831	0.00100	0.1000		98.3	80	120			
Sample ID: 1609Q19-001BMS SampleType: MS	Client ID: TestCode:	MW-15 Dissolved Metals by ICP	/MS SW6020B		Uni Bat	ts: mg/L chID: 230628	•	Date:	10/06/2016 10/07/2016	Run No: 326891 Seq No: 7084917
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPD	RPD Limit Qua
Arsenic	0.09024	0.00500	0.1000		90.2	75	125			
Barium	0.1549	0.0100	0.1000	0.07659	78.3	75	125			
Cadmium	0.1942	0.000700	0.1000	0.1028	91.4	75	125			
Chromium	0.08821	0.00500	0.1000	0.001537	86.7	75	125			
Lead	0.3259	0.00100	0.1000	0.2362	89.7	75	125			

Qualifiers: > Greater than Result value

BRL Below reporting limit

Rpt Lim Reporting Limit

J Estimated value detected below Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 14 of 17

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie **Workorder:** 1609Q19

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: 230628

Sample ID: 1609Q19-001BMSD	Client ID:	MW-15			Uni	ts: mg/L	Prep	Date: 10/06	/2016	Run No: 326891
SampleType: MSD	TestCode:	Dissolved Metals by ICP	MS SW6020B		Bat	chID: 230628	Ana	lysis Date: 10/07	/2016	Seq No: 7084918
A 1 4.	D 14	DDT Limit	CDIZ 1	CDIZ D CV.1	0/DEC	T. Timb	TT: 1. T ! 'A	DDD D CV-1	0/ DDD	DDD Livit O d
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Arsenic	0.09485	0.00500	0.1000		94.8	75	125	0.09024	4.98	20
Barium	0.1575	0.0100	0.1000	0.07659	80.9	75	125	0.1549	1.66	20
Cadmium	0.1977	0.000700	0.1000	0.1028	94.9	75	125	0.1942	1.79	20
Chromium	0.09175	0.00500	0.1000	0.001537	90.2	75	125	0.08821	3.93	20
Lead	0.3301	0.00100	0.1000	0.2362	93.9	75	125	0.3259	1.28	20

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 15 of 17

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie
Workorder: 1609Q19

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: R326904

Sample ID: MB-R326904 SampleType: MBLK	Client ID:	ION SCAN SW9056A			Un	its: mg/L tchID: R32690		p Date:	N/2016	Run No: 3269 Seq No: 7085	
SampleType. WIBLK	resicode.	ION SCAN SWOODA			Dai	(CIIID). K32090	4 Ana	arysis Date. 09/30	J/2010	Seq No. 7085	100
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPI	O RPD Limi	t Qual
Chloride	BRL	1.0									
Nitrate	BRL	0.25									
Sample ID: LCS-R326904	Client ID:				Un	its: mg/L	Pre	p Date:		Run No: 3269	04
SampleType: LCS	TestCode:	ION SCAN SW9056A			Bat	tchID: R32690	4 Ana	alysis Date: 09/30	0/2016	Seq No: 7085	165
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPI	O RPD Limi	t Qual
Chloride	5.379	1.0	5.000	0.1647	104	90	110				
Nitrate	4.949	0.25	5.000	0.02435	98.5	90	110				
Sample ID: 1609Q13-009DMS	Client ID:				Un	its: mg/L	Pre	p Date:		Run No: 3269	04
SampleType: MS	TestCode:	ION SCAN SW9056A			Bat	tchID: R32690	4 Ana	alysis Date: 09/30	0/2016	Seq No: 7085	188
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPI	O RPD Limi	t Qual
Chloride	8.417	1.0	5.000		168	90	110				S
Nitrate	5.355	0.25	5.000		107	90	110				
Sample ID: 1609Q13-010DMS	Client ID:				Un	its: mg/L	Pre	p Date:		Run No: 3269	04
SampleType: MS	TestCode:	ION SCAN SW9056A			Bat	tchID: R32690	4 Ana	alysis Date: 09/30	0/2016	Seq No: 7085	190
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPI	O RPD Limi	t Qual
Chloride	15.11	2.0	10.00		151	90	110				S
Nitrate	10.25	0.50	10.00		103	90	110				
Sample ID: 1609Q13-009AMSD	Client ID:				Un	its: mg/L	Pre	p Date:		Run No: 3269	04
SampleType: MSD	TestCode:	ION SCAN SW9056A			Bat	tchID: R32690	4 Ana	alysis Date: 09/30	0/2016	Seq No: 7085	189
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPI	O RPD Limi	t Qual
Chloride	8.170	1.0	5.000		163	90	110	0	0	20	S
Qualifiers: > Greater than Result value	2		< Less	than Result value			В	Analyte detected in the ass	sociated metho	d blank	
BRL Below reporting limit			E Estim	nated (value above quantita	ation range)		Н	Holding times for prepara	tion or analysis	s exceeded	
J Estimated value detected	d below Reporting l	Limit	N Anal	yte not NELAC certified			R	RPD outside limits due to	matrix	Page 16 of 17	
Rpt Lim Reporting Limit			S Spike	Recovery outside limits of	lue to matrix					-	

Client: AMEC E&I, Inc. -Kennesaw

Project Name: Swift Moultrie 1609Q19 Workorder:

ANALYTICAL QC SUMMARY REPORT

Date:

14-Oct-16

BatchID: R326904

Sample ID: 1609Q13-009AM SampleType: MSD		N SCAN SW9056A			Uni Bat	ts: mg/L chID: R32690		Date: lysis Date: 09/30		Run No: 32690 4 Seq No: 708518	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
Nitrate	5.205	0.25	5.000		104	90	110	0	0	20	

Qualifiers: Greater than Result value

> BRL Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 17 of 17

Swift & Company, Moultrie, GA Voluntary Remediation Program Status Report No. 3 December 14, 2016 Amec Foster Wheeler Project 6122-14-0220 HIS Site No. 10509 Field Sampling Reports for September 2016 Groundwater Sampling Event

FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT	L TYPE:St								
WELL ID: /// WELL MATERIAL:									
WELL WATERIAL;	PVC	•				11			
	•			WELL DIA	AMETER: 💆	ኒ ′ ′			
SAMPLE METHOD	: Peristally	< PVMP			O WATER: 🔏	.43	GRAB (x) COMPOSITE ()
					EPTH: <u> </u>	95			,
DUP./REP. OF:				WATER C	OLUMN HEIG	ьнт: <u>//<i>3./</i></u>	<u>52 X</u> .163,	X3	
Arrived at: /2	06				OLUME: 6		/well walcomes	\ for 21	
Screen length:	(/_)			-			(well volumes)	· -	
Tubing Intake (bto	c) =			=			well volumes)	-	
Tubing make (bto	 	T		[1.47 × 000			Von Volumes)	lor o wensj	T
:	VOL. PURGED	Diss. Oxygen	ORP (+/- 10	pH (+/- 0.1	SPEC. COND. (ms/cm) [+/-		TURB. (NTU)	Pump Rate ml/min. (& pump	New Water
TIME	(gal)	(+/- 10%)	mV)	pH units)	3%]	TEMP (°C)	[<10 NTU]	setting)	Level
Initial: 12 5		MH	NH	6.07	0.25	30.3	399	100 ()	2.50
1225	· <u>7</u> 5			5.77	0.18	24.8	226	100	2.65
1231	175			5.90	0.11	28.7	207	300	3.60
1237	1.25			5.92	0.20	28:4	177	300	4.00
<u> </u>	1-10			6.15	0-22	28.6	32:4	200	4.35
12 49	2.25			GOT	6.19	28.6	90.3	300	4.71
1255	2-75			5.74	U & I I	28.6	231	300	6.45
1301	3.25	-		P / 9	0.18		200	300	6.70
1307	3.75%			0161	017	28.6	300	300	7 000
13/3	4.2			0.65	0.16	28.4	300615	300	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
1)11	4.75			0.00	0,15	28.4	l .		1/85
1325	5.75			5.55	07/0	30.4	2800	300	8 15
1321	5.72	 		5.60	016	201	-1 deb	300	9 200
1337	6.4)			5.62	011	29-6	7800	300	7.0/
	6,75			0.62	0-16	17-6	7 000	020	10.20
NOTES:	well d	Om 5 d	our at	any Y	Aow P	NFA , la	Ill horon	of Harn	
110120.	In Divini		1.	1/1/2005	become	Semale	1. 11/	4	iko al
	TOPAT	1 with	Tousles	and 1	,		In Ipwil	DYDEC	isto ay
	10112	WH NO	10010		170000	o oo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DIOI)	· · · · · · · · · · · · · · · · · · ·
SAMPLE DATE:	1347		······································	**************************************					
CONTAINER					ANALYTICAL				
SIZE/TYPE	NO.	PRESE	RVATIVE		METHOD		ANA	ALYSIS	
						Total	Lord	·	
						DISSOLV	nd rped		
						Whates	7 chloren	les	
	<u> </u>							****	
			051155	I INFOR	ATION				
			GENERA	L INFORM	ATION	·		*	
WEATHER:									
SHIPPED VIA:							· · · · · · · · · · · · · · · · · · ·		
SHIPPED TO:				Т	000000000				
SAMPLER:					OBSERVER:				

SHIPPED VIA: SHIPPED TO: SAMPLER:

GUILLEN

FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: __1ST QUARTER __2ND QUARTER __3RD QUARTER __4TH QUARTER MONITORING WELL TYPE: __Standard __ Compliance __Background __Extraction WELL ID: MW-4
WELL MATERIAL: PVC WELL DIAMETER: Z'DEPTH TO WATER: 1001 SAMPLE METHOD: PERISTALTIC GRAB (x) COMPOSITE () TOTAL DEPTH: WATER COLUMN HEIGHT: 12,39x017=2,10x3=6.3/ DUP./REP. OF: PURGE VOLUME: 6/31 [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] Arrived at: [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Screen length: [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] Tubing Intake (btoc) = SPEC. COND. Pump Rate VOL. PURGED Diss. Oxygen ORP (+/- 10 pH (+/- 0.1 (ms/cm) [+/-TURB. (NTU) ml/min. (& pump New Water (+/- 10%) TEMP (°C) [<10 NTU] mV) pH units) 3%] setting) TIME (gal) Level 0.25 6.57 27,4 48.2 Initial: 16 15 0,56 200 26.5 6,21 0.56 32.5 1620 0.5 200 1.17 26.7 6.41 18.6 200 0.75 0.55 1625 1,18 26.9 6.42 0.54 200 1630 1,0 8.65 1.18 1.25 6.44 0.53 27,0 5,17 200 1635 1,18 SAMPLE 16 40 NOTES: 9-28-16 SAMPLE DATE: 1640 SAMPLE TIME: ANALYTICAL CONTAINER SIZE/TYPE METHOD NO. PRESERVATIVE ANALYSIS 500 ML POL **GENERAL INFORMATION** WEATHER:

OBSERVER:

SAMPLER:

FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: __1ST QUARTER __2ND QUARTER __3RD QUARTER __4TH QUARTER MONITORING WELL TYPE: __Standard __ Compliance __Background __Extraction WELL ID: MW-6 WELL MATERIAL: PVC WELL DIAMETER: 2 SAMPLE METHOD: PENSTALTE PUMP DEPTH TO WATER: 5 2/ GRAB (x) COMPOSITE () TOTAL DEPTH: 13.80 WATER COLUMN HEIGHT: 8. 5-9 8 1/63 83 = DUP./REP. OF:___ PURGE VOLUME: 4, 20 9al Arrived at: 1310 [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] Screen length: 3.69 - 13-71 [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Tubing Intake (btoc) = 12 2 6 -[1.47 x water column height (ft) x 3 (well volumes) for 6" wells] SPEC. COND. Pump Rate VOL. PURGED Diss. Oxygen ORP (+/- 10 pH (+/- 0.1 TURB. (NTU) (ms/cm) [+/ml/min. (& pump New Water (+/- 10%) mV) pH units) 3%1 TEMP (°C) [<10 NTU] setting) Level (gal) TIME 8-04 Initial: 142 0 4,44 150 NA 13.1 .25 29,3 <u>5-80</u> 12.8 150 6.00 .75 50 4.56 2.50 2.75 3.00 3.25 3.50 3.75 1535 Droffin NOTES: tubing close to TOP of SUMM and Ango SAMPLE DATE: 9/27/16 SAMPLE TIME: ANALYTICAL CONTAINER SIZE/TYPE **PRESERVATIVE** METHOD NO. **ANALYSIS** NH03 250 mi/00/ NINP 590 MI/POLY **GENERAL INFORMATION** WEATHER: POLEY SHIPPED VIA: SHIPPED TO:

OBSERVER:

FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: 1ST QUARTER 2ND QUARTER 3RD QUARTER 4TH QUARTER MONITORING WELL TYPE: __Standard __ Compliance __Background __Extraction WELL ID: MW-6 CONTINUAL WELL MATERIAL: PVC WELL DIAMETER: 2 SAMPLE METHOD: PONS/alte Punp DEPTH TO WATER: 5-2/ GRAB (x) COMPOSITE () TOTAL DEPTH: 12-80 WATER COLUMN HEIGHT:___ DUP./REP. OF:_____ PURGE VOLUME: [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] Arrived at:_ [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Screen length: [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] Tubing Intake (btoc) = _ SPEC, COND. Pump Rate ORP (+/- 10 TURB. (NTU) ml/min. (& pump pH (+/- 0.1 (ms/cm) [+/-New Water VOL. PURGED Diss. Oxygen setting) TEMP (°C) [<10 NTU] (+/- 10%) mV) pH units) 3%] Level TIME (gal) 200 4.00 Initial: 1540 200 4.25 Sumple NOTES: SAMPLE DATE: 9/27 SAMPLE TIME: ANALYTICAL CONTAINER SIZE/TYPE NO. **PRESERVATIVE** METHOD **ANALYSIS GENERAL INFORMATION** WEATHER: SHIPPED VIA: SHIPPED TO: MAR Androws OBSERVER: SAMPLER:

SHIPPED TO: SAMPLER:

VILLEN

FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: __1ST QUARTER __2ND QUARTER __3RD QUARTER __4TH QUARTER MONITORING WELL TYPE: __Standard __ Compliance __Background __Extraction WELL ID: MW-7 WELL MATERIAL: PVC WELL DIAMETER: SAMPLE METHOD: PELISTACTIC DEPTH TO WATER: 13,02 GRAB (x) COMPOSITE () TOTAL DEPTH: WATER COLUMN HEIGHT: 13.2/X,17=2.24X3=6.73 DUP./REP. OF:____ PURGE VOLUME: 6,73 [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] Arrived at: [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Screen length: [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] Tubing Intake (btoc) = SPEC. COND. Pump Rate Diss. Oxygen ORP (+/- 10 pH (+/- 0.1 (ms/cm) [+/-TURB. (NTU) VOL. PURGED ml/min. (& pump New Water TEMP (°C) (+/- 10%) pH units) [<10 NTU] TIME (gal) mV) 3%] setting) Level 0.25 3,79 24,9 920 5,74 14.4 200 Initial: 13,31 925 0.5 3.75 25.5 8,84 200 13.67 200 0.75 25,0 930 3,69 7,63 13.92 9.35 1,0 3,24 25,1 8.08 200 14.21 5,49 1.5 940 2.64 24.9 400 14.58 945 955 2.0 5,95 2.68 24.9 4,86 400 15,13 3,0 3,24 25,2 400 5.84 4,11 15.57 25,3 400 4,0 5,75 3,52 3,66 15,99 1005 3.53 5,0 25,3 2.96 16,41 400 1015 6.0 3.54 1025 5,75 25,3 1,69 400 **6916.97** 6.5 400 1030 5175 3,55 2513 0.86 17,24 400 7,0 0.78 1035 5.75 25,3 1768 1040 well draws Down & Low Flow rates - moved water Col. & Ruged 3 well Volumes before Sam NOTES: 9-28-16 SAMPLE DATE: 1040 SAMPLE TIME: ANALYTICAL CONTAINER SIZE/TYPE NO. PRESERVATIVE METHOD ANALYSIS None **GENERAL INFORMATION** Humid- Clea WEATHER: SHIPPED VIA:

OBSERVER:

SAMPLER:

FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: __1ST QUARTER __2ND QUARTER __3RD QUARTER __4TH QUARTER MONITORING WELL TYPE: __Standard __ Compliance __Background __Extraction WELL ID: _______ WELL MATERIAL: PVC WELL DIAMETER: SAMPLE METHOD: Portstalte Purp **DEPTH TO WATER:** GRAB (x) COMPOSITE () TOTAL DEPTH: 2000 DUP./REP. OF: DUP-WATER COLUMN HEIGHT:_ PURGE VOLUME: [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Tubing Intake (btoc) = ~14' [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] SPEC. COND. Pump Rate TURB. (NTU) VOL. PURGED Diss. Oxygen ORP (+/- 10 pH (+/- 0.1 (ms/cm) [+/ml/min. (& pump New Water pH units) TEMP (°C) [<10 NTU] setting) (+/- 10%) mV) 3%] Level TIME (gal) 1,45 200 (Initial: 1941) MA NA 64 22,7 200 26.0 0-62 200 18.6 2*5 -8* 25.8 2*00* 0.87 2.00 201 200 263 200 26.4 SAMPIP the ma water burl stabalize pump Intuto and seman NOTES: SAMPLE DATE: SAMPLE TIME: CONTAINER ANALYTICAL METHOD SIZE/TYPE NO. **PRESERVATIVE** ANALYSIS 2 GENERAL INFORMATION WEATHER: SHIPPED VIA: SHIPPED TO: OBSERVER:

SAMPLER: EVER GUILLEN

FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVEN MONITORING WE WELL ID: <u>M/L</u> WELL MATERIAL	ELL TYPE:Sta ノー(フ								
SAMPLE METHO DUP./REP. OF: Arrived at: Screen length:	D: <u>PERISTA</u>	LTIC		WATER C PURGE V [0.163 x w	OLUME: 3 vater column h vater column h	75 HT: <u>6,95</u> 54 neight (ft) x 3	(well volumes) for 4" wells]	
Tubing Intake (bt	oc) =			[1.47 x wa	iter column he	eight (ft) x 3 (well volumes)	for 6" wells]	
rime	VOL. PURGED	Diss. Oxygen (+/- 10%)	ORP (+/- 10 mV)	pH (+/- 0.1 pH units)	SPEC. COND. (ms/cm) [+/- 3%]	TEMP (°C)	TURB. (NTU) [<10 NTU]	Pump Rate ml/min. (& pump setting)	New Water Level
nitial: 1555	0.25	_	1	5196	0,38	29,6	13.7	200 ()	4.93
1800	0.5	-)	5,82	0.37	29.3	17.8	200	5,29
1605	1.0	_		5,85	0137	29,4	13,1	400	5,42
1610	1.5	_	1	5,41	0,36	29,6	8,29	400	2013
1615	2,0	_)	5,49	0.37	29,6	6103	400	6:04
1620	2.5			5,52	0,39	29.3	4,01	400	6,92
1625	3.0	-	-	5,48	0,40	29,3	1.96	400	6,73
16 30	3.5			5:53	0.40	29,0	0,99	400	7,01
NOTES:	Water le	vel DR# Colum	ws Dou and	well	Burge:	9- Lau 3 well	sed & Tu Volumes	bing to T.	of of
SAMPLE DATE:_ SAMPLE TIME:	9-27-16								
CONTAINER SIZE/TYPE	NO.	PRES	ERVATIVE		ANALYTICAL METHOD		AN	ALYSIS	
500 POLY	L	pone							
	15 6 7								
			anime:	. wree	ATION				
	111 - 1	1		L INFORM					
WEATHER:	HOT - H	WALD -	Jome	- CLOV	25				7
SHIPPED VIA:	FED EX								
SHIPPED TO:	42-3								

OBSERVER:

FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT MONITORING WEI WELL ID: Mby	LL TYPE:Sta	TER2ND C		RD QUAR	TER4TH QI				
WELL MATERIAL:						61			
				MELL DI) "			
SAMPLE METHOD	WELL DIAMETER: GRAB (x) COMPOSITE () TOTAL DEPTH: 24,13								
DUP./REP. OF:				WATER C	OLUMN HEIG	HT:]],]	X.163X.3	32 .	
1101	2			PURGE V	OLUME: 5.	42	-		
Arrived at: 1101	AN 2294						(well volumes		
Screen length: 18. Tubing Intake (bto	[0.653 x water column height (ft) x 3 (well volumes) for 4" wells] [1.47 x water column height (ft) x 3 (well volumes) for 6" wells]								
Tubing Intake (bto	c) =/	T		[1.47 x wa	ter column n	eight (ft) x 3 (well volumes)	for 6" wells]	1
TIME	VOL. PURGED (gal)	Diss. Oxygen (+/- 10%)	ORP (+/- 10 mV)	pH (+/- 0.1 pH units)	SPEC. COND. (ms/cm) [+/- 3%]	TEMP (°C)	TURB. (NTU) [<10 NTU]	Pump Rate mi/min. (& pump setting)	New Water Level
Initial: 1/14	-	BA	NH	6.04	1.43	27.3	12.4	200 ()	13.10
1119	.25			4.34	4.80	26.6	9.77	200150	13-11
1125	150			4.71	5.39	26,8	8.15	150	13.09
1/3 1	175			3,86	5,41	26.9	7.66	150	13.09
1137	1.00			3.80	5.49	26.8	6.44	150	13.09
1143	1.25			3.77	5.50	26.8	6.21	150	13.07
1144	1.50		· ····	3.75		26.8	4.00	150	13.09
1155	1.73			3.73	5.55	26.7	3.81	150	13.07
1167	- al.	2 1/10 2	An I	12/					
110	5ample	> thus	MW-1						

			· · · · · · · · · · · · · · · · · · ·						
								100	
NOTES:	WATER	low1 5	taballar	TUBA	w In Inta	mil s	CUPPA	Puiso 10	w flow
	•								
					~~~				
SAMPLE DATE:	128/16								
CONTAINER	I				ANALYTICAL				
SIZE/TYPE	1 1				METHOD ANALYSIS				
						Sita Motals			
						Nitratof chlorido			
			CENEDA	L INFORMA	TION		<del></del>	<del></del>	<del></del> 7
WEATHER:		<del></del>	GENERA	LINFORINE	TION	<del></del>		,	
SHIPPED VIA:			······································					Minut. A	
SHIPPED TO:									
SAMPLER: Muy	k Andron	<i>5</i>			OBSERVER:				

### FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: __1ST QUARTER __2ND QUARTER __3RD QUARTER __4TH QUARTER MONITORING WELL TYPE: __Standard __ Compliance __Background __Extraction WELL ID: Mいっ/ら WELL MATERIAL: PVC WELL DIAMETER: SAMPLE METHOD: PUMP DEPTH TO WATER: 4.89 GRAB (x) COMPOSITE ( ) TOTAL DEPTH: 15.05 WATER COLUMN HEIGHT: 10.17 X 3 X 163 DUP./REP. OF:_ PURGE VOLUME: 4.97 Sal [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Tubing Intake (btoc) = [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] SPEC, COND. Pump Rate ORP (+/- 10 New Water VOL, PURGED Diss. Oxygen pH (+/- 0.1 (ms/cm) [+/-TURB. (NTU) ml/min. (& pump (+/- 10%) pH units) TEMP (°C) [<10 NTU] Level 3%1 setting) mV) TIME (gal) 5.56 24.7 Initial: 1000 200 6.60 13.4 -25 1005 28.7 7.30 1015 24.7 05 29.1) 190 29.2 28.5 200 29.1 200 2*0*8 28-7 200 2017 200 25.6 200 7800 Sample Horse mus-1157 will position NOTES: Drawing 1/clum . Pungr 3 WALL TUblas Intake water Columo 1155 GARILFALOR A TOTAL + DISSOLVER Cleanto actor Collecting Source, Drapped Tubby to bottom & worked to Druplape will, pured to Dry SAMPLE DATE: SAMPLE TIME: ANALYTICAL CONTAINER METHOD SIZE/TYPE **PRESERVATIVE** NO. **ANALYSIS** 250 M /polt Sila molal 500 ml/ poly Witnate & Chloride Assolved metals GENERAL INFORMATION WEATHER: SHIPPED VIA: SHIPPED TO: Androws OBSERVER: SAMPLER:

### FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: __1ST QUARTER __2ND QUARTER __3RD QUARTER __4TH QUARTER MONITORING WELL TYPE: __Standard __ Compliance __Background __Extraction WELL ID: MW-16 WELL MATERIAL: PVC WELL DIAMETER: SAMPLE METHOD: Peristaltic pump

DUP./REP. OF: M5/M5D

Arrived at: 1315

Screen length: 4.39 MA: 44 5.00 - 20.02 DEPTH TO WATER: GRAB (x) COMPOSITE ( ) TOTAL DEPTH: 18-25 WATER COLUMN HEIGHT: 6.75 PURGE VOLUME: 3.39 [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Tubing Intake (btoc) = [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] SPEC. COND. Pump Rate Diss. Oxygen ORP (+/- 10 VOL. PURGED pH (+/- 0.1 (ms/cm) [+/-TURB. (NTU) ml/min. (& pump New Water (+/- 10%) TEMP (°C) pH units) 3%] [<10 NTU] mV) TIME (gal) setting) Level 4.40 4.8 Initial: *1332* PCD 150 25 150 150 25.0 150 23-2 150 150 MWL m5/m60 NOTES: SAMPLE DATE: 7/28/16 SAMPLE TIME: CONTAINER ANALYTICAL SIZE/TYPE METHOD NO. **PRESERVATIVE** Sito Motals Altrato & delado 500 m/181

GENERAL INFORMATION							
WEATHER:	cloudy Hest						
SHIPPED VIA:	Folex						
SHIPPED TO:	AES Labo						
SAMPLER:	ark Andrews	OBSERVER:					

SHIPPED TO:

SAMPLER:

GUILLEN

### FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: __1ST QUARTER __2ND QUARTER __3RD QUARTER __4TH QUARTER MONITORING WELL TYPE: __Standard __ Compliance __Background __Extraction WELL ID: MW-18 WELL MATERIAL: PVC WELL DIAMETER: Z SAMPLE METHOD: PERISTALTIC DEPTH TO WATER: 11.55 GRAB (x) COMPOSITE ( ) TOTAL DEPTH: 22.18 DUP./REP. OF:____ WATER COLUMN HEIGHT: 10-63 x ,17 = 1.80 x 3 = 5.42 PURGE VOLUME: 5742 1 [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] *Arrived at: Screen length: [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] Tubing Intake (btoc) = SPEC. COND. Pump Rate Diss. Oxygen ORP (+/- 10 pH (+/- 0.1 TURB. (NTU) VOL. PURGED (ms/cm) [+/ml/min. (& pump New Water (+/- 10%) mV) pH units) 3%] TEMP (°C) [<10 NTU] setting) (gal) TIME Level 845 -0,25 6.31 1,74 23,5 85,4 11,82 Initial: 200 1,69 855 6.19 89.9 12,01 0,5 23,6 100 900 1.0 1.64 23.8 38,4 400 6,46 12,43 910 20,8 400 2,0 23,9 12,68 3,0 920 6,35 1.16 24,5 14,4 400 13,13 930 4.0 6,32 1.17 24.5 7.11 400 13.77 940 5,0 636 1,17 2415 3,99 400 14.56 6.36 400 515 945 1117 24,5 4,08 14,94 950 water level draws down @ Low Flow - moved intake to NOTES: 9-29-16 SAMPLE DATE: 950 SAMPLE TIME: CONTAINER ANALYTICAL SIZE/TYPE PRESERVATIVE METHOD NO. ANALYSIS 250 ML 8047 SOOML POLY **GENERAL INFORMATION** HUMID - Some WEATHER: SHIPPED VIA:

OBSERVER:

SHIPPED VIA:
SHIPPED TO:
SAMPLER: EVEL

### FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: __1ST QUARTER __2ND QUARTER __3RD QUARTER __4TH QUARTER WELL MATERIAL: PVC WELL DIAMETER: 2" SAMPLE METHOD: PERISTALTIC DEPTH TO WATER: 2,46 GRAB (x) COMPOSITE ( ) TOTAL DEPTH: 15,08 WATER COLUMN HEIGHT: 12.62 X 0,17= 2.14 x 3= 6.43 DUP./REP. OF:___ PURGE VOLUME: 6,43 [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] Arrived at: [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Screen length: Tubing Intake (btoc) = [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] SPEC. COND. Pump Rate Diss. Oxygen ORP (+/- 10 pH (+/- 0.1 (ms/cm) [+/-TURB. (NTU) New Water VOL. PURGED ml/min. (& pump TEMP (°C) (+/- 10%) pH units) [<10 NTU] TIME (gal) mV) 3%] setting) Level 0,25 5,33 0.25 3,19 Initial: 1015 39.3 26,9 200 0,5 5,91 0.24 2711 28,6 100 3,86 10 25 0.24 27.2 400 110 5.94 25,0 4,12 1030 22.9 1040 2.0 0,24 27,3 400 4,99 22,5 18.7 0.24 400 5,12 1050 3,0 1100 4.0 5,98 0.25 27,6 1416 400 6,34 400 5,96 0.25 27,6 7,69 5.0 14.5 1110 5,95 6.0 0.24 27.6 19,9 400 8,71 1120 5.96 23,6 400 9.10 27,6 1125 0.23 615 1135 water (and DRAWS DOWN @ LOW FLOW - SET INTAKE @ TOP OF WATER COCUMN and Purged 3 well Vownes Before SAMPLING -NOTES: TURBIDITY RISING as WATER LEVEL DROPS BELOW 8,0' SAMPLE DATE: 9-29-16 SAMPLE TIME: 1135 ANALYTICAL CONTAINER SIZE/TYPE NO. **PRESERVATIVE** METHOD **ANALYSIS** 500 ML POLY GENERAL INFORMATION Hor- HUMIB-Clear WEATHER:

OBSERVER:

PROJECT NAME: Swift Moultrie

## FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: 1ST QUARTER 2ND QUARTER 3RD QUARTER 4TH QUARTER MONITORING WELL TYPE: Standard Compliance Background Extraction WELL ID: MW-275000 WELL MATERIAL: PVC WELL DIAMETER: Z" SAMPLE METHOD: MONSOON Punp DEPTH TO WATER: 26.51 GRAB (x) COMPOSITE ( ) TOTAL DEPTH: 91,41 WATER COLUMN HEIGHT: 64.9 X,17=11.03 x 3=33.09 DUP./REP. OF: PURGE VOLUME: 33,07 [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] Arrived at: [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Screen length: [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] Tubing Intake (btoc) = SPEC. COND. Pump Rate New Water ORP (+/- 10 pH (+/- 0.1 TURB. (NTU) Diss. Oxygen ml/min. (& pump VOL. PURGED (ms/cm) [+/-(+/- 10%) pH units) 3%] TEMP (°C) [<10 NTU] setting) Level mV) TIME (gal) 6.19 2.13 24.9 33,67 Initial: 1310 4.0 168.0 2.00 8,0 24.3 64,0 36,72 5,19 1330 12,0 5103 2,19 23.8 47,1 37.11 1350 16.0 5104 23,4 2.25 3732 26.5 1410 23.7 16.9 38,19 1430 20,0 4.88 2,31 24,0 4.95 2.26 23.7 11,7 38.78 1450 2,97 23,6 39,84 28.0 4,97 2.22 1510 1,19 32.0 4,98 2.21 23.6 40.18 1530 23.6 4.97 2,22 0.87 40,23 33,0 15 35 Creple 1540 NOTES: 9-28-16 SAMPLE DATE: SAMPLE TIME: ANALYTICAL CONTAINER METHOD SIZE/TYPE NO. PRESERVATIVE **ANALYSIS** 250 ML POLY 500 MLPOLY

	GENI	ERAL INFORMATION	
WEATHER:	HOT - HUMID - CL	EAR	
SHIPPED VIA:	FEDEX		
SHIPPED TO:	AES		
SAMPLER: EV	EL GUILLEN	OBSERVER:	

PROJECT NAME: Swift Moultrie

## FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVENT: __1ST QUARTER __2ND QUARTER __3RD QUARTER __4TH QUARTER MONITORING WELL TYPE: __Standard __ Compliance __Background __Extraction WELL ID: MW-29 WELL MATERIAL: PVC WELL DIAMETER: 2" SAMPLE METHOD: PERISTALTIC DEPTH TO WATER: 8.74 GRAB (x) COMPOSITE ( ) TOTAL DEPTH: 20162 WATER COLUMN HEIGHT: 11.88 × 17= 2.01 × 3 = 6.05 DUP./REP. OF: PURGE VOLUME: 6,05 Arrived at: [0.163 x water column height (ft) x 3 (well volumes) for 2" wells] Screen length: [0.653 x water column height (ft) x 3 (well volumes) for 4" wells] Tubing Intake (btoc) = [1.47 x water column height (ft) x 3 (well volumes) for 6" wells] SPEC. COND. Pump Rate Diss. Oxygen ORP (+/- 10 pH (+/- 0.1 (ms/cm) [+/-TURB. (NTU) VOL. PURGED ml/min. (& pump New Water TIME (+/- 10%) mV) pH units) 3%] TEMP (°C) [<10 NTU] setting) Level (gal) 5.0 0,42 27,6 Initial: 12.25 0.25 4.67 200 1 9,42 0.37 25.8 1.56 1235 1.25 3.93 11,26 400 400 2.25 4,56 0.37 0,96 1245 2518 11.98 3,25 4,52 25,9 0137 0,59 400 1255 12,46 4.25 0.38 25,9 0,40 400 1305 9.52 13,02 5,25 0,29 0.38 2517 400 13,46 1315 4,54 1325 6,25 4,52 0,38 2517 0,16 400 13,90 Courte SAMPLE 1330 NOTES: 9-29-16 SAMPLE DATE: SAMPLE TIME: ANALYTICAL CONTAINER SIZE/TYPE NO. **PRESERVATIVE** METHOD **ANALYSIS** Dane 500 ML POLY

	GEN	ERAL INFORMATION	
WEATHER:	HOT-HUMID-CLEAR		
SHIPPED VIA:			
SHIPPED TO:	AES		
SAMPLER: EV	EL GUILLEN	OBSERVER:	

PROJECT NAME: Swift Moultrie

SAMPLER: EVER GUILLEN

# FIELD SAMPLING REPORT

Project Number:

Amec Foster Wheeler

1075 BIG SHANTY ROAD NW, SUITE 100 KENNESAW GA 30144

PHONE: (770) 421-3400 / FAX: (770) 421-3486

SAMPLING EVEN' MONITORING WE WELL ID:	LL TYPE: _Sta								
SAMPLE METHOD		CTIC		TOTAL DI WATER C		7,17 135 HT: 12,18		c) COMPOSITE (	
Arrived at: Screen length: Tubing Intake (bto				[0.163 x w [0.653 x w	ater column h	neight (ft) x 3 neight (ft) x 3	(well volumes (well volumes well volumes)	) for 4" wells]	
Tubing make (bio	VOL. PURGED	Diss. Oxygen	ORP (+/- 10	pH (+/- 0.1	SPEC. COND. (ms/cm) [+/-	eight (it) x 5 (	TURB. (NTU)	Pump Rate ml/min. (& pump	New Water
TIME	(gal)	(+/- 10%)	mV)	pH units)	3%]	TEMP (°C)	[<10 NTU]	setting)	Level
Initial: 1445	0.25	-	~	4.56	0.32	27.9	3.45	200 ( )	9,27
1450	0.5	^	1		0.58	27.8	2.37	200	9,29
1455	0.75		_	4.23		27.7	1.74	200	9.30
1500	1,0	_	_	4.49		27.5	0.99	200	9,30
1505	1125			4.45		27.5	0.55	200	9.31
1510	1.5	)	_	446		27.4	0,46	200	9.31
	A								
NOTES:									
SAMPLE DATE:9 SAMPLE TIME:	1-29-16								
CONTAINER SIZE/TYPE	NO.	PRESE	ERVATIVE		ANALYTICAL METHOD		ANA	ALYSIS	
500m2 7044	1	Non	e						
			GENERA	L INFORMA	ATION				
WEATHER:	HOT-1	HUMIE							
SHIPPED VIA:									
CHIPPED TO:	AKC								

OBSERVER:

December 14, 2016 Amec Foster Wheeler Project 6122-14-0220

APPENDIX B SourceDK Modeling Results

		er for Environmenta and I.D.:	ecision Suppo		Vers		1.1	·   -	Mpiri	E R	Dat	<b>1</b>	10.80		→ Enter va	alue directly. alculated by mo nter any data).	del.	
	1. ENTER CO	NSTITUENT NAM	E AND HISTORIC	AL DATA			3. C	UTPU	T GRAPH									
				tration mg/L							п	NSSOLV	/FD I FAI	CONCE	NTRATION	J		
	Date	Constituent A	Constituent B	Constituent C	Constituent D							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ng/L)	manoi	•		
	(mm/dd/yy)	Barium	Lead						4.005.00				Cleanup	Level				
1	8/30/2001	0.05	0.05			_			1.00E+00							R ² = 0.4129		
2	9/6/2001	0.05	0.01					$\overline{}$	4 005 04	=								
3	12/18/2001 1/31/2003	0.33 0.042	0.005 0.005					g/L	1.00E-01	•								
4 5	9/23/2015	0.042 0.191	0.005					E	4.005.00	<u></u>								
6	9/29/2016		0.0691					Concentration (mg/L)	1.00E-02	-	_							
7 8								rati	4.005.00	=								
9								ent	1.00E-03									
10								Š	1.005.04	1								
11 12								ပိ	1.00E-04									
13									4.005.05	-								
14									1.00E-05	2001	6/2	2004	4/2	2007	2/20	10 11	/2012	9/201
15						1000			0/2	-00.	0,2	.001	., 2	Time			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,20
	2. WHICH CO	NSTITUENT TO P	LOT?	Print I	Historical Data		Num	nber of	Years Over W	hich to P	lot Graph				(yr)	Update	Graph_)	
			Wha	at is the cleanup le	vel?		4. F	RESUL	TS									
	_	5 .			[		I	Predicte	ed Date to Ach	ieve Clea	anup:							
	0	Barium		2	(mg/L)		,	Confide	ence Interval o	n Predicte	ed Cleanu	ມນ Date:		•	90 % Conf	idence Interval		
	_								3 data points need			•	ls)		95 % Conf	idence Interval		
	•	Lead		0.015	(mg/L)											0		
												(Lo	wer Limit on	Confidence I			it on Confidence	e Interval)
	0	Constituent C			(mg/L)							`			,	`		
									Decay Rate C numbers represen			avitenan e	numbare rar	recent evnar	ndina nlumes	\		
	0	Constituent D			(mg/L)			positive	таптьего тергезеп	t sillikilig į	plumes write	riegative	nambers rep	лезені ехраі	iding plantes,	)		
								Retu	urn To Main S	creen		New Site	e/Clear So	creen		ample Data Set	HE	LP

					D	1				<b>-</b>		4	Data Inp	ut Instructions	:		
•	Comodiatio	n Timeframe D	pointing Suppo	ert System								1	10.80	Ente	er value directly.		
		ter for Environment		ort System	Versi	ion	1.1	E	mpiri	eal	Dat	a		Valu	e calculated by mo	del.	
	Site Location		Swift MW-6			0	•••						10.80		't enter any data).		
1	Constituent o	f Interest:	Barium and Lead														
	. ENTER CO	NSTITUENT NAM	E AND HISTORIC	AL DATA		1	3. (	OUTPL	JT GRAPH						_		
			Concer	ntration mg/L							DIS	SOLVE	D BARIUN	I CONCENTRA	TION		
	Date	Constituent A	Constituent B	Constituent C	Constituent D								(mg	g/L)			
	(mm/dd/yy)	Barium	Lead						1.00E+02				Cleanup I	Level			
1	8/30/2001	2	0.19			•			1.002+02						$R^2 = 0.2584$		
2	9/6/2001	2.1	0.27					_	1.00E+01								
3	12/18/2001	5.3	0.55					Concentration (mg/L)	4.005.00	<b></b> -							
4	3/30/2012	0.0746	0.001					Ε̈́	1.00E+00								_
6	9/27/2012 3/27/2013	0.296 0.039	0.0322 0.001						1.00E-01	]							
7	9/10/2013	0.039	0.0534					은	1.002 01						•		
8	9/25/2014	10.3	1.16					ïa	1.00E-02								
9	9/23/2015	0.449	0.132					eut									
10	9/28/2016	0.181	0.036					ĕ	1.00E-03								
11								Ō	1.00E-04	=							
12								U	1.00⊑-04								
13									1.00E-05	1							
14						_				2001	9/20	004	9/20	07 9/	2010 9	/2013	9/201
15						88			0, -		0,20		0,20	Time (day)			0,20.
				Print I	Historical Data									. (,			
	WHICH CO	NSTITUENT TO P	I OT2	Fillici	listorical Data		Nur	nhar at	Years Over W	hich to D	lot Granh			/	/r) Update	Graph	
,	WINCITCO	NSTITULINI TO F	LOT:				INUI	libel o	rears Over W	IIICII IO F	iot Grapii			()	///		
			Wh	at is the cleanup le	vel?		4. I	RESUL	.TS								
								Predic	ted Date to Ach	ieve Clea	anup:					2002	
	◉	Barium		2	(mg/L)												
									ence Interval o					90 %	Confidence Interval		
	_				T			(at least	3 data points need	ed to calcul	ate confidenc	e intervals	s)	O 95 % (	Confidence Interval		
	0	Lead		0.015	(mg/L)								00	04	ta Oank	O-l- / 7	
												(1.00	20			Calc (+ve T	
	0	Constituent C			(mg/L)							(LOW	er Limit on C	onfidence Interval)	(Opper Lin	iit on Confident	e mervai)
	•	Constituent			[(1119/12)			Source	Decay Rate C	onstant (	1/vear):					1.51E-01	
												negative n	umbers repre	sent expanding plui	nes)		
	0	Constituent D			(mg/L)												
								Ref	urn To Main S	creen	Ne	ew Site/	Clear Scr	een Paste	Example Data	HE HE	LP
											_/  _				Set		
						-											

	Air Force Cent	er ior Environmen	tai Excellence	ort System	Version	on 1	.1	7 6	<b>F   E</b> mpiri	R	1 Data	10.80	Value	r value directly. calculated by mode enter any data).	ol.	
_	Site Location		Swift MW-6									10.00	(Don't	enter any datay.		
	Constituent o		Barium and Lead			7 6										
	1. ENTER CO	NSTITUENT NAM	IE AND HISTORIC	AL DATA			3. C	UTPU	T GRAPH							
			Concer	ntration mg/L 🔻		Н					DISSO	LVED LEAD	CONCENTRATION	ON		
	Date	Constituent A	Constituent B	Constituent C	Constituent D						2.000		ng/L)			
	(mm/dd/yy)	Barium	Lead									•	<del></del>			
									1.00E+01	3	-	Cleanup	Level			_
1	8/30/2001	2	0.19			_								$R^2 = 0.1366$		
2	9/6/2001	2.1	0.27					$\overline{}$	1.00E+00	<b>-</b>						_
3	12/18/2001	5.3	0.55					7								
4	3/30/2012	0.0746	0.001					Ε̈́	1.00E-01							
5	9/27/2012 3/27/2013	0.296 0.039	0.0322 0.001					_								•
7	9/10/2013	0.039	0.0534					.2	1.00E-02							
8	9/25/2014	10.3	1.16					ā								
9	9/23/2015	0.449	0.132					Concentration (mg/L)	1.00E-03							
10	9/28/2016	0.181	0.036					ဋ	1.002 00							
11								Ō	1.00E-04							
12								O	1.002 01							
13									1.00E-05							
14										001	9/2004	0/2	007 9/2	010 9/2	2013	9/201
15						<u> </u>			0/2	.001	3/2004	3/2	Time (day)	.010 3/2	.013	// ZU I
				Print H	Historical Data	$\  \ $							Time (day)	( , , , , ,	. )	
:	2. WHICH CO	NSTITUENT TO F	PLOT?				Num	ber of	Years Over WI	hich to Plot	Graph		(y	r) Update G	irapn	
			Wh	at is the cleanup le	vel?		4 R	ESUL	TS							
			***	at is the oleanapie	vor:					01					0040	
	0	Barium		2	(mg/L)		r	redict	ed Date to Achi	ieve Cleanu	ıp:				2019	
	0	Danum			(IIIg/L)		(	:onfide	ence Interval or	Predicted	Cleanup Dat	۵٠	<b>●</b> 90 % Co	onfidence Interval		
									3 data points neede				Ī	onfidence Interval		
	•	Lead		0.015	(mg/L)		,		·			,	<b>O</b> 73 78 C	office frierval		
	_											2	001	to Can't C	alc (+ve Trend	
											(	Lower Limit on	Confidence Interval)	(Upper Limit	on Confidence Inter	val)
	0	Constituent C			(mg/L)											
									Decay Rate Co						1.45E-01	
	^						(	ositive	numbers represent	shrinking plun	nes while negativ	e numbers rep	resent expanding plum	es)		
	0	Constituent D			(mg/L)											
													Doors 5	xample Data		
								Ret	urn To Main S	creen	New S	ite/Clear Sc	reen Faste E	Set	HELP	
											4					

					DI	V		=	- 1 =	ł D	4		Data Input	Instructions			
	Pomodiatio	n Timeframe D	ocision Suppo	rt System									10.80	Ente	er value directly.		
		ter for Environment		ort System	Versi	on 1	1 1	E	mpirio	cal	Data			- Value	e calculated by mo	del	
	Site Location		Swift MW-9		10.0.		•						10.80		't enter any data).		
_	Constituent o		Barium and Lead														
	. ENTER CO	NSTITUENT NAM	E AND HISTORIC	AL DATA			3. O	UTPU	T GRAPH								
			Concer	ntration mg/L							DISSOL	VEC	BARIUM (	ONCENTRA	TION		
	Date	Constituent A	Constituent B	Constituent C	Constituent D	Н							(mg/L	-)			
	(mm/dd/yy)	Barium	Lead			Н			4 005 04			(	Cleanup Le	vel			
1	8/30/2001	1.6	0.08						1.00E+01	-					$R^2 = 0.6342$		
2	9/6/2001	2	0.077					_	1.00E+00	<del></del>							
3	12/18/2001	5.3	0.26					Concentration (mg/L)	1.002100								• •
4	10/21/2009	1.22	0.12					ξ	1.00E-01						'		
5	3/30/2012	0.18	0.0437						1.002 01								
6	9/28/2012 3/27/2013	0.118 0.232	0.0472 0.0483					ē	1.00E-02								
8	9/11/2013	0.232	0.0463					ā									
9	9/24/2014	0.338	0.0678					ř	1.00E-03								
10	9/22/2015	0.375	0.0898					ၓ									
11	9/28/2016	0.575	0.0715					ō	1.00E-04								
12								J									
13									1.00E-05								
14 15						J			8/2	001	9/2004		9/200	7 9/2	2010 9	/2013	9/201
15]									0, =		0,200.			Time (day)		0.0	0,20.
				Drint I	Historical Data	Н								(,			
	WHICH CO	NSTITUENT TO P	I OT2	Fillici	listorical Data	Н	Num	hor of	Years Over Wh	ich to Pla	t Granh			()	(r) Update	Graph	
•	WINCITCO	NSTITULINI TO F	LOT:			▎Ļ	INUIT	Dei Oi	Tears Over Wi	IICH IO PIO	СОГАРП				")		
			Wh	at is the cleanup le	vel?		4. R	ESUL [.]	ΓS								
							F	redicte	ed Date to Achi	eve Clean	iup:					2002	
	◉	Barium		2	(mg/L)									_			
									nce Interval on					90 % 0	Confidence Interval		
				0.045	T		(;	at least 3	data points neede	d to calculate	e confidence inte	ervals)	)	O 95 % C	Confidence Interval		
	0	Lead		0.015	(mg/L)								2001		to	2012	
												(Lowe		idence Interval)		nit on Confidence	e Interval)
	0	Constituent C		0.005	(mg/L)							(LOW6	o. Limit on Com	.acrice interval)	(Opper Lii	on connactio	o morvai)
	_				10 3 7		5	Source	Decay Rate Co	nstant (1/	year):					1.63E-01	
	_						(1	ositive r	numbers represent	shrinking plu	mes while nega	tive nu	umbers represe	nt expanding plun	nes)		
	0	Constituent D			(mg/L)												
						Ш								Davis.	Everyole Dete		
								Retu	ırn To Main So	reen	New S	Site/0	Clear Scree	n Paste I	Example Data Set	HE HE	LP 📕
											-/ -			4			
						] [ˈ											

	Air Force Cent	er for Environmen	tai Excellence	ort System	Versi	on 1.	1	1	<b>F I E</b> mpiri	R cal D	1 ata	10.80	Valu	er value directly.  The calculated by module to the calculated and the calculated by module.	lel.	
_	Site Location		Swift MW-9									10.00	(Dor	it enter any datay.		
	Constituent o		Barium and Lead													
	1. ENTER CO	NSTITUENT NAM	IE AND HISTORIC	AL DATA			3. O	UTPU	T GRAPH							
			Concer	ntration mg/L							DISSOI	VED LEAD	CONCENTRAT	ION		
	Date	Constituent A	Constituent B	Constituent C	Constituent D						2.000		ng/L)			
	(mm/dd/yy)	Barium	Lead									•				
									1.00E+00	3	-	- Cleanup	Level			
1	8/30/2001	1.6	0.08			_								$R^2 = 0.2716$		
2	9/6/2001	2	0.077					$\overline{}$	1.00E-01							_
3	12/18/2001	5.3	0.26					J/6	1.00E-01	-						<u> </u>
4	10/21/2009	1.22	0.12					Ε̈́								
5	3/30/2012 9/28/2012	0.18 0.118	0.0437 0.0472					_	1.00E-02							
7	3/27/2013	0.116	0.0483					.≘								
8	9/11/2013	0.232	0.0463					ā	1.005.03	-						
9	9/24/2014	0.338	0.0678					Ĭ	1.00E-03							
10	9/22/2015	0.375	0.0898					Concentration (mg/L)		3						
11	9/28/2016	0.575	0.0715					ō	1.00E-04	1						
12								O								
13									1.00E-05	-						
14										2004	0/2004	0/0	007 9/	2010	2042	0/204
15						<u> </u>			0/2	2001	9/2004	9/2		2010 9/	2013	9/201
	a willen co	NCTITUENT TO	N OTO	Print H	Historical Data		Nives	4	Vacra Over W	hish to Dist (	h [		Time (day)	(Update	Graph	
	z. WHICH CO	NSTITUENT TO F	LOT?			١L	Num	per or	Years Over W	nich to Plot (	rapn		(	yr) Update	отартт	
			Wh	at is the cleanup le	vel2		4 R	ESUL	TS							
			****	at io the cleanap io						iaua Olaanu					2040	
	0	Barium		2	(mg/L)		۲	realct	ed Date to Ach	ieve Cieanuj	D:				2046	
	0	Danum			(IIIg/L)		C	onfide	ence Interval or	Predicted (	leanun Date	٥.	90 %	Confidence Interval		
									3 data points need				05 %	Confidence Interval		
	•	Lead		0.015	(mg/L)								75 76	confidence interval		
					,							2	018	to Can't	Calc (+ve Tre	nd)
											(	Lower Limit on (	Confidence Interval)	(Upper Limi	t on Confidence I	Interval)
	0	Constituent C		0.005	(mg/L)											
									Decay Rate C						4.52E-02	
							(þ	ositive	numbers represent	t shrinking plum	es while negativ	re numbers repr	resent expanding plu	mes)		
	0	Constituent D			(mg/L)											
													Pacto	Example Data		
								Ret	urn To Main S	creen	New S	ite/Clear Sc	reen	Set	HEL	P
							-									
						╽╏										
		•	·													

		n Timeframe D	ecision Suppo	ort System	D			_	npirio	R	1	<b>Data Inp</b> 10.80	out Instructions	: er value directly.	
		er for Environment			Versio	n 1.	.1	= 1	ubiii		सरस	10.80		e calculated by mod	lel.
_	ite Location		Swift MW13D									10.00	(Don	't enter any data).	
	Constituent of	f Interest:	Barium and Lead												
1	. ENTER CO	NSTITUENT NAM	E AND HISTORIC	AL DATA			3. C	OUTPUT	GRAPH						
				ntration mg/L							DISSOLV	ED BARIU	M CONCENTRA	TION	
	Date	Constituent A	Constituent B	Constituent C	Constituent D							(m	ıg/L)		
	(mm/dd/yy)	Barium	Lead						4 005 04			- Cleanup	Level		
1	8/30/2001	3.2	0.16					·	1.00E+01	•				R ² = 0.9574	
2	9/6/2001	2.4	0.14						4.005.00					11 = 0.9374	
3	12/18/2001	1.7	0.19					₹	1.00E+00						
4	3/30/2012	0.273	0.168					Concentration (mg/L)	1 00E 01						
5	9/28/2012	0.295	0.128					ے	1.00E-01						
6	3/28/2013	0.383	0.143					<u>0</u>	1 005 00						
7	9/12/2013	0.338	0.139					ā	1.00E-02						
8 9	9/25/2014 9/22/2015	0.254 0.169	0.176 0.129					뒫	1 005 02						
10	9/22/2015	0.169	0.129					င်မ	1.00E-03						
11	9/20/2010	0.219	0.173					o	4 005 04						
12								Ö	1.00E-04						
13									4 005 05						
14									1.00E-05 +	204	0/0004	0/0	007 04	2010	0/00
15									8/20	001	9/2004	9/2		2010 9/	2013 9/20
													Time (day)		
				Print H	Historical Data									(r) Update	Overh
2	. WHICH CO	NSTITUENT TO P	LOT?	_			Nun	mber of Y	ears Over Whi	ich to Plot Gr	aph		()	rr) Opdate	Grapn
			14/6	at in the alconum la	vol2	Ī	4 6	RESULTS							
			VVII	at is the cleanup le	ver?									_	
	•	Barium		2	(maga/L)			Predicted	d Date to Achie	eve Cleanup:					2002
	•	Barium			(mg/L)			Confiden	ce Interval on	Predicted Cla	anun Data		<b>(a)</b> 90 % (	Confidence Interval	
									data points needed		•		Ī	Confidence Interval	
	0	Lead		0.015	(mg/L)								O 95 % (	Somucince Interval	
												2	001	to	2004
	-										(Lo	ower Limit on (	Confidence Interval)	(Upper Limi	t on Confidence Interval)
	0	Constituent C			(mg/L)						`				
									Decay Rate Co			numbore ren	esent expanding plur	2000	1.73E-01
	0	Constituent D			(mg/L)	L	(	(bositive III	imbers represent s	minking plumes	wille negative	numbers repr	esent expanding plui	1163)	
	J	Constituent D			(1119/L)										
											N 0'	- (01	Paste	Example Data	HELD
								Retur	n To Main Sc	reen	New Sit	e/Clear Sc	reen	Set	HELP

•	5				DI			TI	F	R	•	1	<b>Data Inp</b>	out Instru		1 5 4		
F	Remediatio	n Timeframe D	ecision Suppo	rt System								_	10.80		→ Enter	value directly.		
		er for Environment			Versio	on 1.1		Emp	1	ea।	pat	9	10.90			calculated by mod	el.	
	ite Location		Swift MW13D										10.80		(Don't	enter any data).		
	onstituent o	f Interest:	Barium and Lead															
1	. ENTER CO	NSTITUENT NAM	E AND HISTORIC	AL DATA	1	3.	Οl	JTPUT GRA	PH									
			Concer	ntration mg/L							DI	SSOLV	ED LEAD	CONCE	NTRATIO	N		
	Date	Constituent A	Constituent B	Constituent C	Constituent D								(m	ıg/L)				
	(mm/dd/yy)	Barium	Lead					1.00	00				Cleanup	Level				
1	8/30/2001	3.2	0.16					1.001	=+00							$R^2 = 0.05$		
2	9/6/2001	2.4	0.14					_	i							N = 0.00		
3	12/18/2001	1.7	0.19					Concentration (mg/L) 1.00 1.00 1.00	E-01									
4	3/30/2012	0.273	0.168					E E										
5	9/28/2012	0.295	0.128					1.00	E-02									
6 7	3/28/2013 9/12/2013	0.383 0.338	0.143 0.139					Θ										
8	9/25/2014	0.338	0.139					<b>i</b> 100	E 02									
9	9/22/2015	0.169	0.129					1.00	E-03									
10	9/28/2016	0.219	0.173					ဋ										
11								<b>5</b> 1.00	E-04									
12								J										
13								1.00	E-05									
14 15						-			8/2	001	9/20	004	9/2	007	9/20	010 9/	2013	9/201
13													•	Time				0,_0
				Print I	Historical Data										` ,			
2	WHICH CO	NSTITUENT TO P	LOT2	1111111	listorical Data	l I NI	ımh	er of Years	Over WI	nich to Plo	t Granh				(yr)	Update (	Graph	
_	. ••••••	NOTITOLINI TO I	LOT			'``	anno	er or rears	OVEI VVI	iicii to i io	л Огарії				(יע)			
			Wh	at is the cleanup le	vel?	4.	RE	SULTS										
							Pr	edicted Date	to Achi	eve Clear	nup:						2467	
	0	Barium		2	(mg/L)										_			
								onfidence Int						(	<b>9</b> 90 % Cor	nfidence Interval		
	•			2.245	I. a.s		(at	least 3 data po	ints neede	d to calculat	e confidenc	ce interva	ls)	(	<b>)</b> 95 % Cor	nfidence Interval		
	•	Lead		0.015	(mg/L)								2	114		to Can't (	Calc (+ve Tre	nad)
												(Lo	wer Limit on (				on Confidence	
	0	Constituent C			(mg/L)							(20		001111001100		(оррог 2	on connactice	
							So	ource Decay	Rate Co	onstant (1/	/year):						5.08E-03	
	^				•		(pc	sitive numbers	represent	shrinking plu	umes while	negative	numbers repi	esent expa	nding plume	s)		
	0	Constituent D			(mg/L)													
															Pasto F	cample Data		
								Return To	Main So	creen	N	ew Site	/Clear Sc	reen		Set	HEL	P
											-41							

Α		er for Environment	ecision Suppo	ort System	Vers		1.1		mpiri	E R	Dat	1 ta	10.80	out Instru	→ Enter va	alue directly. alculated by mod nter any data).	del.	
	onstituent o		Barium and Lead	<u> </u>								_			(20.710.			
1	ENTER CO	NSTITUENT NAM	E AND HISTORIC				3. C	UTPUI	Γ GRAPH				•					
			Concer	ntration mg/L							DI	ISSOLV	ED BARIU	M CONCE	ENTRATIC	ON		
	Date (mm/dd/ss)	Constituent A  Barium	Constituent B	Constituent C	Constituent D									ng/L)				
	(mm/dd/yy)	Barium	Lead						1.00E+01	=			- Cleanup	Level				
1	4/8/2003	0.412	0.124			•				L						$R^2 = 0.4947$		
2	9/25/2014 9/23/2015	0.0628 0.075	0.311 0.243					$\Box$	1.00E+00									
4	9/23/2015	0.075	0.243					<u>Б</u>		-								•
5	0,=0,=0.0							٥	1.00E-01									
6								Concentration (mg/L)	1.00E-02	=								
8								Irat	1.00L-02									
9								eut	1.00E-03									_
0								Š										
1  2								ပိ	1.00E-04									
13									4 005 05	=								
14									1.00E-05	2003	12/	/2005	8/2	UU8	5/20	11 1	2014	9/20
5						-			¬1/.	2000	12/	2000	0/2	Time		11 1/	2014	J1 <b>2</b> 0
				Print I	Historical Data		L								,	,		
2	WHICH CO	NSTITUENT TO P	LOT?				Num	ber of	Years Over W	Vhich to P	lot Graph	n _			(yr)	Update	Graph	
			14.0		10			- O. II										
			vvn	at is the cleanup le	vei?			ESULT									2222	
	•	Barium		2	(mg/L)		ŀ	realcte	ed Date to Acl	nieve Cie	anup:						2003	
	Ŭ	Dariam			[(g, =)		(	Confide	nce Interval c	on Predict	ed Clean	up Date:		(	90 % Conf	fidence Interval		
	0				T		(;	at least 3	data points need	ded to calcu	late confider	nce interva	als)		95 % Conf	fidence Interval		
	0	Lead		0.015	(mg/L)								_ 2	003	+	o <b>Can't</b>	Calc (+ve Trend	7
												(Lo	ower Limit on (				it on Confidence Inte	
	0	Constituent C			(mg/L)							,			,			
									Decay Rate C umbers represer			le negativo	numbers rope	resent evnen	nding plumos	)	1.00E-01	
	0	Constituent D			(mg/L)			Jositive II		TR SHILIKING	pidifies Willie	io riegative	Transcis repi		iding plumes,			
								Retu	ırn To Main S	Screen		New Site	e/Clear Sc	reen		ample Data	HELP	
								Netu	TO Mall C	Joreen			J. 3.00.		8	Set	,,,,,,	
																	T	

S	ir Force Cent ite Location	er for Environmenta and I.D.:	ecision Suppo al Excellence  Swift MW15	rt System	Vers	sion	1.1	Ę	<b>F I E</b> mpiri	E R	Dat	1	10.80	ut Instruct	ions:  Enter value (  Value calcula (  Don't enter a	nted by model		
	onstituent o		Barium and Lead			_												
1	ENTER CO	NSTITUENT NAM	E AND HISTORIC			1	3. (	OUTPU	IT GRAPH									
				tration mg/L							DI	ISSOLVE		CONCENT	RATION			
	Date (mm/dd/yy)	Constituent A  Barium	Constituent B Lead	Constituent C	Constituent D	1							(mg					
	(ITIII/dd/yy)	Darium	Leau						1.00E+00	3		C	leanup L	_evel				
1	4/8/2003	0.412	0.124			•									R ² =	0.9085		
2	9/25/2014	0.0628	0.311					$\Box$	1.00E-01	<u>.</u>								
3_	9/23/2015	0.075 0.22	0.243 0.294					<u> </u>	1.002 01									
5	0/20/2010	0.22	0.201					٤	1.00E-02									
6								Concentration (mg/L)	1.00E-02									
7 8								rat	4 005 00	=								
9								ent	1.00E-03									
10								ŭ	4 005 04	=								
11								ပိ	1.00E-04									
12 13										=								
14									1.00E-05	+	40/0	205	0/00	00	5/0044	4/0	04.4	0/004
15						₩			4/2	2003	12/2	2005	8/20	∪8 Time (d	5/2011	1/2	014	9/201
2	wнісн со	NSTITUENT TO P	LOT?	Print I	Historical Data		Nur	nber of	Years Over W	hich to Plo	ot Graph			Time (d	(yr) (	Update G	raph_)	
			Wha	at is the cleanup le	vel?		4. 1	RESUL	TS									
	_							Predict	ed Date to Ach	ieve Clear	nup:					Can't Ca	lc (+ve Tr	end)
	0	Barium		2	(mg/L)			o " .		D 11 4	. 01	<b>5</b> /			90 % Confidence	a Interval		
							III		ence Interval or 3 data points neede					_	95 % Confidence			
	•	Lead		0.015	(mg/L)			(				,		O,	75 % Conndend	e intervai		
														+ve Trend			alc (+ve Tre	
	0	Constituent C			(ma/L)							(Lower	Limit on Co	onfidence Inte	erval)	(Upper Limit o	n Confidence	Interval)
		Constituent C			(mg/L)			Source	Decay Rate C	onstant (1	/vear):					-6	.41E-02	
									numbers represent			negative nun	mbers repre	sent expandir	ng plumes)			
	0	Constituent D			(mg/L)													
								Ret	urn To Main S	creen	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	lew Site/C	lear Scre	een Pa	aste Examp Set	le Data	HEL	.P

		n Timeframe D	ecision Suppo	rt System	D				F I E	E R	Dat	<b>1</b>	<b>Data In</b> 10.80		Enter valu	ue directly.	
	Site Location	er for Environment	Swift MW16		Versio	n 1.	7		шрии	Cai	Du		10.80			culated by model. er any data).	
	Constituent of		Barium and Lead												Don't ont	or any datay.	
									T GRAPH								
	1. ENTER CO	NSTITUENT NAM	E AND HISTORIC			1	3. U	UIPU	I GRAPH								
				tration mg/L							DIS	SSOLVE	D BARIU	M CONCENT	<b>TRATION</b>	ı	
	Date	Constituent A	Constituent B	Constituent C	Constituent D								(n	ng/L)			
	(mm/dd/yy)	Barium	Lead						1.00E+01				Cleanup	Level			
1	2/14/2003	2.34	0.1						1.00⊑+01						R	² = 0.229	
2	3/29/2012	0.542	0.0239					_	1.005.00							- 0.229	
3	9/28/2012	0.642	0.022					£	1.00E+00								• •
4	3/27/2013	0.495	0.00914					πg	1.00E-01	3							
5	9/11/2013	0.631	0.0129					=	1.00E-01								
6	9/24/2014	0.01	0.0244					. <u>ō</u>	1.00E-02	]							
/ 8	9/22/2015 9/28/2016	0.531 0.508	0.0121 0.0161					īa	1.000 02								-
9	3/20/2010	0.000	0.0101					ř	1.00E-03								
10								Soncentration (mg/L)									
11								Ō	1.00E-04								
12								O									
13									1.00E-05	1	1 1						
14 15						-				2003	11/2	2005	7/2	.008	4/2011	1/2014	9/201
1000000														Time (da			
				Print H	Historical Data									,			
	2. WHICH CO	NSTITUENT TO P	LOT?	<u> </u>	notorioui Buta		Num	ber of	Years Over W	hich to P	lot Graph				(yr)	Update Graph	۱ )
						Ļ					от Отарт				13.7	`	
			Wha	at is the cleanup le	vel?	-	4. R	ESUL [*]	TS								
							Р	redicte	ed Date to Ach	nieve Clea	anup:					20	03
	◉	Barium		2	(mg/L)												
									ence Interval o data points need				-)	_		ence Interval	
	O	Lead		0.015	(mg/L)		(8	il least 3	data points need	ied to calcul	ate confider	ice interval	S)	O 95	5 % Confide	ence Interval	
	•	Load		0.010	[(1119/12)								2	003	to	Can't Calc (	+ve Trend)
												(Lov	wer Limit on	Confidence Inter	val)	(Upper Limit on Co	
	0	Constituent C			(mg/L)												
									Decay Rate C	,	, ,					1.80	<b>Ξ-01</b>
	0	Constituent D			(ma/L)	╚	(p	ositive r	numbers represen	it shrinking p	lumes while	negative i	numbers rep	resent expanding	g plumes)		
	J	Constituent D			(mg/L)	ı											
								Retu	urn To Main S	Screen	/	Vew Site	/Clear So	reen	ste Exan Se	nple Data	HELP
							-								00		

						7						_	Data In	put Instructions	<u>:</u>			
	5	o u			D				ΓIΕ	: R	) ! \	1	10.80		ter value dire	ectly.		
		n Timetrame Deer for Environment	ecision Suppo	rt System	Versio			E	mpiri	cal	Dat	ta		Val		, h m. a dal		
	Site Location		Swift MW16		versio	on	1.1			Out	Du		10.80		ue calculated n't enter any			
	Constituent o		Barium and Lead											(2.5		1		
			E AND HISTORIC			1	2 (	MITDI	IT GRAPH									
	I. ENIER CO	NSTITUENT NAM		itration mg/L 🔻		П	3. (	JUIFU	II GRAFII									
	Date	Constituent A	Constituent B	Constituent C	Constituent D	П					D	DISSOL		CONCENTRAT	TION			
	(mm/dd/yy)	Barium	Lead	Constituent C	Constituent D	П								ng/L)				
	(mm/aa/yy)	Dariam	Lead			П			1.00E+00	=			Cleanup	Level				<u> </u>
1	2/14/2003	2.34	0.1			-									$R^2 = 0.7$	727		
2	3/29/2012	0.542	0.0239					$\widehat{}$	1.00E-01	_								
3	9/28/2012 3/27/2013	0.642 0.495	0.022 0.00914					J/6	1.002-01									
5	9/11/2013	0.495	0.00914					Ξ										<u>.</u>
6	9/24/2014	0.01	0.0244					Ę	1.00E-02									7
7	9/22/2015	0.531	0.0121					ij										
8	9/28/2016	0.508	0.0161					į	1.00E-03									-
9								Concentration (mg/L)										
10 11								ŭ	1.00E-04									41
12								ŭ										
13									1 005 05									
14									1.00E-05	2003	11/	2005	7/2	008 4	/2011	1/2014	0/	_ 2016
15									2/2	.003	1 1/2	2005	1/2	Time (day)		1/2014	9/.	20 10
				Print I	listerical Data	1								rinic (day)				
		NSTITUENT TO F	U OTO	Print F	Historical Data	П	Nim	4	V O \\	hiah ta Dlat	4 Cuanh	г			ا ا دسه	Jpdate Graph		
	z. Which CO	NSIIIUENI IU F	LOTE			IJ	Null	ibei oi	Years Over W	HICH TO PIOT	і	L			yr)	, passes 512pm		
			Wha	at is the cleanup le	vel?		4. F	RESUL	TS									
				·				Predict	ed Date to Ach	ieve Clean	up:					201	4	4
	0	Barium		2	(mg/L)										_			'∥
									ence Interval o					<b>9</b> 90 %	Confidence In	terval		
	•			2.245	( ")		(	at least	3 data points need	ed to calculate	e confiden	nce inter	vals)	O 95 %	Confidence In	terval		
	•	Lead		0.015	(mg/L)								9	007	to	203	5	a
												(1		Confidence Interval)		pper Limit on Cor		aD (Ia
	0	Constituent C			(mg/L)							,		,	(-)			<b>É</b>
									Decay Rate C							1.49E	-01	1
	0	0 " 15			( ")		(	positive	numbers represen	shrinking plu	mes while	e negativ	e numbers rep	resent expanding plu	ımes)			
	J	Constituent D			(mg/L)													
														Paste	Example L	Data		
								Ret	urn To Main S	creen	٨	vew Si	ite/Clear So	reen	Set		HELP	

	<b>S</b>		r	3 6	DI			T	1 E	P			-	out Instruc					
	Remediatio	n Timeframe D	ecision Suppo	rt System				E			 		10.80		Enter va	alue directly.			
	Air Force Cent	er for Environment	al Excellence		Version	1.1		E 111	piri	eal t	Jate		10.80			Iculated by mod	lel.		
_	Site Location Constituent o		Swift MW-18 Barium and Lead									_	10.00		(Don't en	nter any data).			
							-	UTDUT 6	D 4 D 1 1										-
	I. ENTER CO	NSIIIUENI NAM	E AND HISTORIC			3.	Ot	UTPUT G	SKAPH										
	_			tration mg/L							DISS	OLVE		M CONCE	NTRATIO	N			
	Date	Constituent A	Constituent B	Constituent C	Constituent D	1							(m	ig/L)					4
	(mm/dd/yy)	Barium	Lead			1		1	.00E+01 =				Cleanup	Level					
1	1/30/2003	0.2835	0.3665		_			•	.002.01						ı	$R^2 = 0.0751$			
2	10/21/2009	0.345	0.318					· 1.	.00E+00										
3	3/30/2012	0.148	0.0211					g/L									-	<b>.</b> ]	
4 5	9/28/2012 3/27/2013	0.093 0.531	0.00288 0.00329					Ĕ 1	.00E-01										
6	9/10/2013	0.124	0.00166					Ë											
7	9/24/2014	0.254	0.216					.¥ 1	.00E-02										
8	9/23/2015	0.173	0.258					<b>H</b>											
9 10	9/29/2016		0.00146					Concentration (mg/L)	.00E-03										
11								Ö ,	005.04										
12								O 1	.00E-04										
13								1	.00E-05										
14					_			'	1/20	กกร	8/200	05	2/2	008	9/201	ın 3/	2013	9/20	115
15					L				1,2	000	0,200	00	2,2	Time (		0	2010	0,20	
				Print H	Historical Data									,	,				4
	2. WHICH CO	NSTITUENT TO P	LOT?	1111111	listorical Bata	N	umh	per of Ye	ars Over Wh	nich to Plot (	Graph				(yr)	Update	Graph )		
											<b>σ</b> .α <b>ρ</b>				(J·/				=
			Wha	at is the cleanup le	vel?	4.	RE	ESULTS											
	_						Pı	redicted	Date to Achie	eve Cleanu _l	p:						2003		
	•	Barium		2	(mg/L)		_			5 "	21	<b>5</b> .			100 0/ Camfi	dence Interval			
									e Interval on ta points neede				)	_					
	0	Lead		0.015	(mg/L)		(4.	0001 0 00	ia pointo riocac	a to calculate t	Joinido.100		,		195 % Confi	dence Interval			
													2	003	to	Can't	Calc (+ve Tr	end)	
		0 " 10			1, ,,,							(Low	er Limit on (	Confidence In	terval)	(Upper Limi	t on Confidence	e Interval)	
	0	Constituent C			(mg/L)		S	ource De	cay Rate Co	nstant (1/ve	ear).						3.98E-02		
									bers represent			egative n	umbers repr	resent expand	ling plumes)		0.30L UL		
	0	Constituent D			(mg/L)														
								Return	To Main So	reen	Ne	w Site/	Clear Sc	reen		emple Data et	HEI	LP	
						1													

F	Air Force Cent	n Timeframe D er for Environment	ecision Suppo al Excellence	rt System	Version				T   E	E R	Dat	<b>1</b>	10.80		Enter value	e directly. Ilated by model. r any data).		
	Site Location Constituent o		Swift MW-18 Barium and Lead												Don't chick	any datay.		
				AL DATA		Г												-
1				tration mg/L	O matitive at D	3	3. OL	JIPUI	GRAPH		D	ISSOLVI		CONCENTE	RATION			
	Date (mm/dd/yy)	Constituent A  Barium	Constituent B	Constituent C	Constituent D								•	g/L)				
	(IIIII/dd/yy)	Darium	Leau						1.00E+00				Cleanup	Level				
1	1/30/2003	0.2835	0.3665		_				1.002100					_	R²	= 0.2179	_	
2	10/21/2009	0.345	0.318						4 005 04					_			•	
3	3/30/2012	0.148	0.0211					봊	1.00E-01									
4	9/28/2012	0.093	0.00288					Ĕ										
6	3/27/2013 9/10/2013	0.531 0.124	0.00329 0.00166					_	1.00E-02								<b>***</b>	
7	9/10/2013	0.124	0.00166					흕										
8	9/23/2015	0.173	0.258					<u>t</u> a	1.00E-03							_		
9	9/29/2016		0.00146					Concentration (mg/L)	1.00L-03									
10								ĕ		=								
11								Ō	1.00E-04	1								
12										3								
13 14									1.00E-05	1								
15					,				1/2	2003	10/2	2005	7/20	800	4/2011	1/20	14	9/2016
10						1								Time (da	ay)			
				Print H	Historical Data													
2	. WHICH CO	NSTITUENT TO P	LOT?		ilotorioai Bata	1	Numb	er of \	ears Over W	hich to Plo	t Graph				(yr)	Update Gra	ph )	
						H	101110	0. 0.			O.up				(J·/			
			Wha	at is the cleanup le	vel?	4	4. RE	SULT	s									
							Pr	edicte	d Date to Ach	ieve Clear	nup:						2014	
	0	Barium		2	(mg/L)						•			_				_
									nce Interval o					90	% Confider	nce Interval		
	6				Tr. m.		(at	least 3	data points need	ed to calculat	e confiden	ce intervals	;)	O 95	% Confider	nce Interval		
	•	Lead		0.015	(mg/L)								20	003	to	Cont Col	o / . vo Tropo	
												(Low		Confidence Inter		(Upper Limit on	Confidence Into	
	0	Constituent C			(mg/L)							(LOW	or Limit on C	Somidence mile	vaij	(Opper Limit on	Confidence inte	I vai)
					1(9-)		Sc	ource I	Decay Rate C	onstant (1/	/year):					2.8	2E-01	
							(pc	sitive n	umbers represen	t shrinking plu	imes while	negative n	umbers repr	esent expanding	g plumes)	_		
	0	Constituent D			(mg/L)	F												
								Retu	rn To Main S	creen		lew Site/	'Clear Sci	reen	ste Exam Set	,	HELP	

	Air Force Cent	er for Environment	ai Excellence		Version	1.1		- E	<b>T</b>	E ri	cal	2	ata		<b>Data In</b> 10.80		Value		ed by mod	lel.		
_	Site Location		Swift MW-27DDD	D											10.00		(Don't	enter an	y data).			
	Constituent o	f Interest:	Barium			_																
	1. ENTER CO	NSTITUENT NAM	E AND HISTORIC	AL DATA		3	3. O	UTP	UT GRAPI	1												
			Concen	ntration mg/L		ı							DISS	OLVE	BARIU	M CONC	ENTRAT	ION				
	Date	Constituent A	Constituent B	Constituent C	Constituent D	ı							2.00	02.12.		ng/L)						
	(mm/dd/yy)	Barium				ı									Cleanup							
									1.00E-	-01					Cleanup	Level						<b>—</b>
1	11/10/2004	0.5			_						L							<del>2_</del> _0	) <del>.8496</del>			T
2	2/15/2011	4.34						$\overline{}$	1.00E-	-00												
3	5/3/2012	4.91						76	)	. !	7											
4 5	9/27/2012 3/28/2013	5.15 5.55						ΞĔ	1.00E	-01												
6	9/12/2013	5.11						چ														
7	9/25/2014	6.72						읁	1.00E	-02												
8	9/23/2015	4.95						ta														
9	9/28/2016	7.22						e	1.00E	-03												
10								Š														
11								Concentration (mg/L)	1.00E	-04												
12																						
13 14									1.00E	-05	1	1 1			1 1	1 1 1	1 1		1 1	-	1 1	
15					-					11/2	2004		3/200	07	8/2	009	12/2	2011	5/	2014		9/2016
1000000																Time	(day)					
:	2. WHICH CO	NSTITUENT TO P	LOT?	Print H	Historical Data	١	Num	ber c	of Years Ov	er Wh	nich to l	Plot Gr	aph				(yr	, (	Update	Graph	)	
			Wha	at is the cleanup le	vel?	4	. R	ESU	LTS													
							Р	redic	cted Date to	o Achi	eve Cle	eanup:							Can't (	alc (+v	e Trene	d)
	◉	Barium		2	(mg/L)							•					_			·		
									dence Inter								90 % Co	onfidence	Interval			
		0 " . 5			I ( ")		(a	it leas	t 3 data point	s neede	ed to calc	ulate cor	nfidence	intervals	)		O 95 % Co	onfidence	Interval			
	0	Constituent B			(mg/L)										an't Calc	(+ve Tr	ond)	to	Canl	ale (u	e Trenc	47
																Confidence			Upper Limi			
	0	Constituent C			(mg/L)									(2011	O. 2 O	001111001100	, ,,,,,,	,	орро: 2		301.00 11.10	,,,,,
	_				,		S	ourc	e Decay R	ate Co	onstant	(1/yea	ır):							-2.17E-	01	
	_						(p	ositiv	e numbers rep	oresent	shrinking	g plumes	while ne	egative nu	umbers rep	resent expa	anding plume	es)				
	0	Constituent D			(mg/L)																	
								Re	eturn To M	ain So	creen	_	Nev	w Site/	Clear Sc	reen	Paste E	xample Set	Data	F	IELP	

December 14, 2016 Amec Foster Wheeler Project 6122-14-0220

# APPENDIX C Updated Fate And Transport Modeling Results

## BIOSCREEN-AT Model Results Former Swift Site, Moultrie, Georgia Fate and Transport of Lead

This section presents the modeled fate and transport for lead at the former Swift site, which was found above the screening level for groundwater in one or more wells. The screening level is based on the Groundwater Protection Standard (GWPS) of 0.015 mg/L. This section will focus on lead concentrations in groundwater since this form is subject to migration. The purpose of the following assessment is to evaluate the potential for lead detected above the screening levels to migrate beyond the current monitoring well network.

The maximum lead concentration detected in groundwater samples taken in September 2015 was at MW-18 (0.258 mg/L). Additionally, the lead concentration at MW-15 (0.243 mg/L), located on the eastern perimeter of the site, was also modeled using BIOSCREEN-AT.

## **Lead Transport**

The potential for lead in groundwater to migrate from current locations to beyond the current monitoring well network was evaluated using the one-dimensional fate and transport model BIOSCREEN-AT. BIOSCREEN-AT is an enhanced version of BIOSCREEN (Newell et al., 1996) with an exact analytical solution for the transport of a contaminant (Karanovic et al., 2007). This model is based on Microsoft Excel software that solves the widely-used analytical Domenico equation (Karanovic et al, 2007). This equation describes transport of solute in groundwater (inorganic or organic, decaying or non-decaying). Features within the model designed to account for processes specific to natural attenuation of organic constituents were not used. The model simulates advection, adsorption and three dimensional dispersion of any dissolved constituent (inorganic or organic), and has the ability to simulate constant or decaying sources, and contaminant degradation using degradation constants. The use of BIOSCREEN AT was limited for this site-specific application to model only advection, dispersion, and adsorption onto porous media since lead is an elemental contaminant that does not naturally degrade. Processes such as degradation or other chemical/biological processes were not included in this model. The use of this model as described above is consistent with USEPA guidance (Ford et al, 2007), where the USEPA's Center for Subsurface Modeling Support states that the Domenico-based models (such as BIOCHLOR, BIOSCREEN, FOOTPRINT, and REMChlor) in their current forms are reasonable for screening level tools.

Lead is modeled as being transported from the source area with the following assumptions.

- The modeled flow path is depicted from MW-18 through MW-09 and beyond.
- The highest detected lead concentration in MW-18 is representative of lead concentrations in the source area and is constant in concentration.
- An alternate scenario using MW-15 as a source area is also modeled.

The parameters selected for use in the model are presented in the following subsections.

#### **Source Zone Width**

The source zone is defined as the two-dimensional cross sectional area that is perpendicular to the direction of groundwater flow and of known constituent concentration. Downgradient of this

zone, the groundwater concentration is calculated by the model based on the dispersion, decay, adsorption, etc. that would occur in the flow field based on the value of the parameters used in the model. The modeled source is MW-18, with MW-15 also modeled as an alternate scenario. The planar two-dimensional source is represented by the highest detected lead concentration (MW-18 or MW-15). The cross section of the source is assumed to be approximately 100 feet wide around MW-18, or MW-15 in the alternate scenario.

#### **Source Zone Thickness**

The source zone thickness was assumed to be 50 feet based on the boring log and potentiometric surface measurements of MW-26DDD (near the central portion of the site).

## Seepage velocity

There are two ways to input seepage velocity in this model – either as a final seepage velocity or as hydraulic conductivity, groundwater gradient, and effective porosity. The final seepage velocity method was used in this model exercise.

There are two water-bearing zones in the area of this model (Zone A and B). For this model, they are considered as one unit. The seepage velocity in Zone A has been calculated to be 65 ft/yr based on a horizontal gradient of 0.0086 ft/ft. Seepage velocities in Zone B have been calculated to be 32 - 91 ft/yr; based on a horizontal gradient of 0.0063 - 0.0178 ft/ft. Since the model requires a single seepage velocity, 65 ft/y was used. This value is consistent with reported values for both zones.

## **Dispersivity**

The dispersivities were calculated by the model based on an estimated plume length of 280 feet. The resulting values are longitudinal dispersivity (13.3 feet), the transverse dispersivity (1.3 feet), and vertical dispersivity of 0.13 feet. The model estimates these based on published guidelines for dispersivity (Newell et al., 1996).

#### **Partitioning Coefficient**

BIOSCREEN is designed to use an organic Kd partitioning coefficient. This value is dependent on the fraction of organic carbon (foc) in the aquifer matrix, which is used to multiply the entered organic carbon partitioning coefficient (Koc) to get the organic Kd. It can also be used to model an inorganic metal constituent by entering a foc = 1.0 and an actual Kd for the Koc. With this adjustment, the appropriate actual metal Kd value is used in the adsorption formula. The Kd value for lead is dependent on pH. Both H+ (which determines pH) and Pb2+ are cations so there can be competition between them for adsorption sites on grain surfaces. This means the effective Kd depends on actual groundwater pH. Literature values report a range of Kd values from 5 L/kg to 100,000 L/kg (USEPA, 1996). Because the groundwater pH is below neutral, the median of literature values (15,849L/kg) was used as an initial input value and adjusted to calibrate the model to historic plume length and actual groundwater concentrations. Final Kd was dependent on length of time assumed since initial release.

#### **Source Concentration and Strength**

For the initial calibration, the lead concentration used in the MW-18 area was 0.258 mg/L, based on the September 2015 total metals sampling result at MW-18. At MW-18, both total and dissolved metals samples were collected, as turbidity could not be reduced below 17.9 NTU. The dissolved metals result at MW-18 was 0.176 mg/L. The source was assumed to be

constant over time. The lead concentration in the MW-15 area is 0.243 mg/L based on the September 2015 sampling result.

## **Degradation and Chemical Transformations**

No degradation of lead or chemical reactions was assumed in the model.

#### **Simulation Time**

For calibration, the estimated earliest and latest possible times of release (based on the years of operation of the former Swift facility) were modeled. The actual first release date is unknown but should lie somewhere between these endpoints. The estimated earliest possible release date gives the plume 100 years to develop and results in a slower moving plume with a higher retardation factor for the aquifer. Use of these parameters would lead to predictions of slower future growth and more limited extent. The estimated latest possible release date gives the plume 44 years to develop and results in a faster moving plume with a lower retardation factor for the aquifer. Use of these parameters would lead to predictions of faster future growth and more extensive plume development. Since neither of these scenarios takes into account source area attenuation (both use a continuing source), both will generate very conservative (higher concentrations and greater extent) estimates of future plume development.

#### **Calibration Values**

The following September 2015 concentrations were used to calibrate the Kd values for the 100 and 44 year historic plume development:

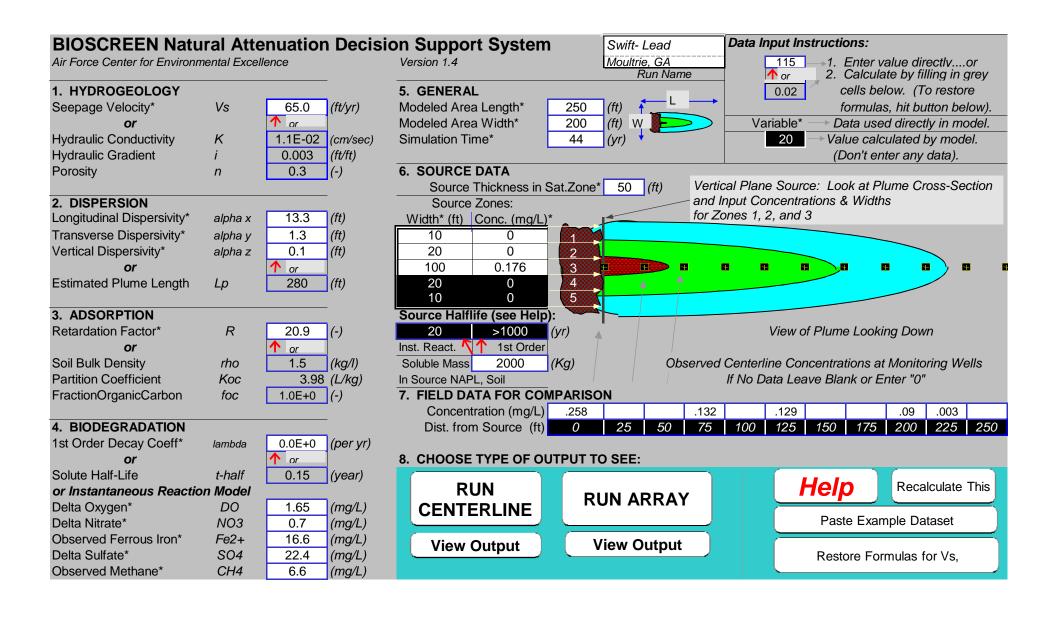
Well	Distance (Feet from Source Area)	September 2015 Lead Concentration (mg/L)
MW-18	0	0.258 (total)
MW-18	0	0.176 (dissolved)
MW-6	74	0.132
MW-13D	132	0.129
MW-9	194	0.0898
MW-20	224	0.00347

Screen captures of final input and output values for the 44 and 100 year historic plumes are attached.

The calibration using the MW-18 total metals value of 0.258 mg/L yielded unsatisfactory predicted values as compared to existing site values. Therefore, the calibration was performed again using the MW-18 dissolved metals value of 0.176 mg/L, which yielded a more satisfactory calibration when compared to site values. As mentioned above, the BIOSCREEN input pages for both the MW-18 total and dissolved metals values, and associated model output pages showing predicted values, are attached.

For the MW-15 scenario, the source used was the MW-15 September 2015 lead concentration of 0.243 mg/L. Modeled travel times of 50 and 100 years were used for this scenario. The set-

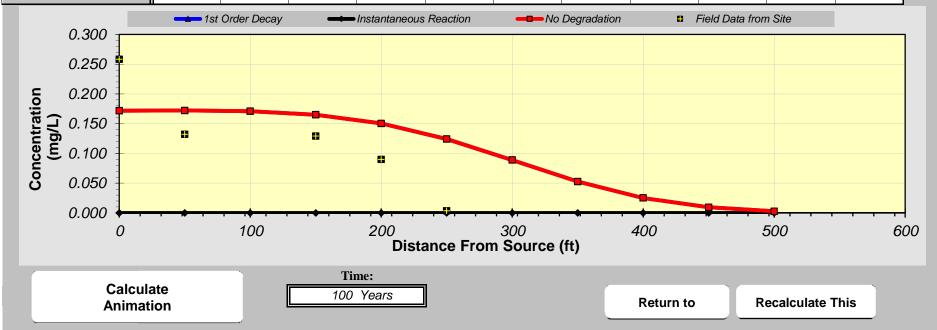
up for the MW-18 scenario was otherwise used, as there are no downgradient wells from MW-15 to use for calibration of the Kd values.


#### **CONCLUSIONS**

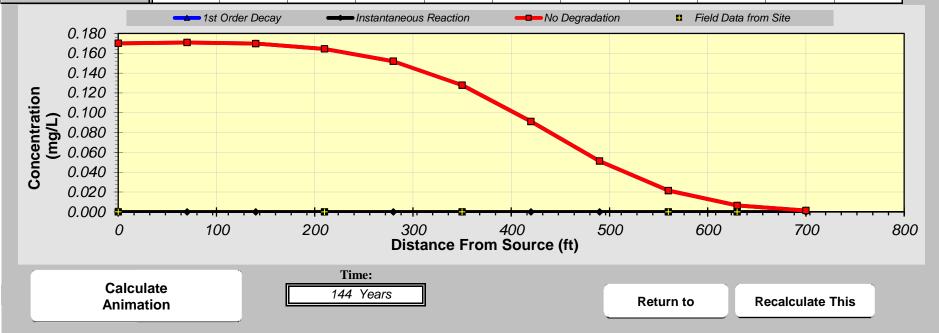
#### **Lead Model Results**


The results of this model of lead fate and transport from MW-18 toward MW-9 show that (for the modeled travel time of 100 additional years) the lead concentration would not exceed the GWPS of 0.015 mg/l between approximately 425 to 590 feet from MW-18 (44 year historic plume or 100 year historic plume, respectively). This distance would extend beyond the eastern property boundary approximately 220 to 380 feet for the two time periods. For the MW-15 source scenario, the lead concentration (for the modeled travel time of 100 additional years) would not exceed the GWPS of 0.015 mg/l between approximately 450 to 620 feet from MW-15, or approximately 270 to 320 feet beyond the eastern boundary along the prevalent groundwater flow direction.

The models represent a very conservative estimate and actual conditions will be lower, as the highest detected groundwater concentration was maintained as a constant source over the entire model timeframe, and because the Kd values used are very low when compared to guidance document values. Most importantly, as pH becomes more neutral over time and distance from the source, the mobility of lead will be diminished and corresponding Kd values would increase. Screen captures of model inputs and results are attached.

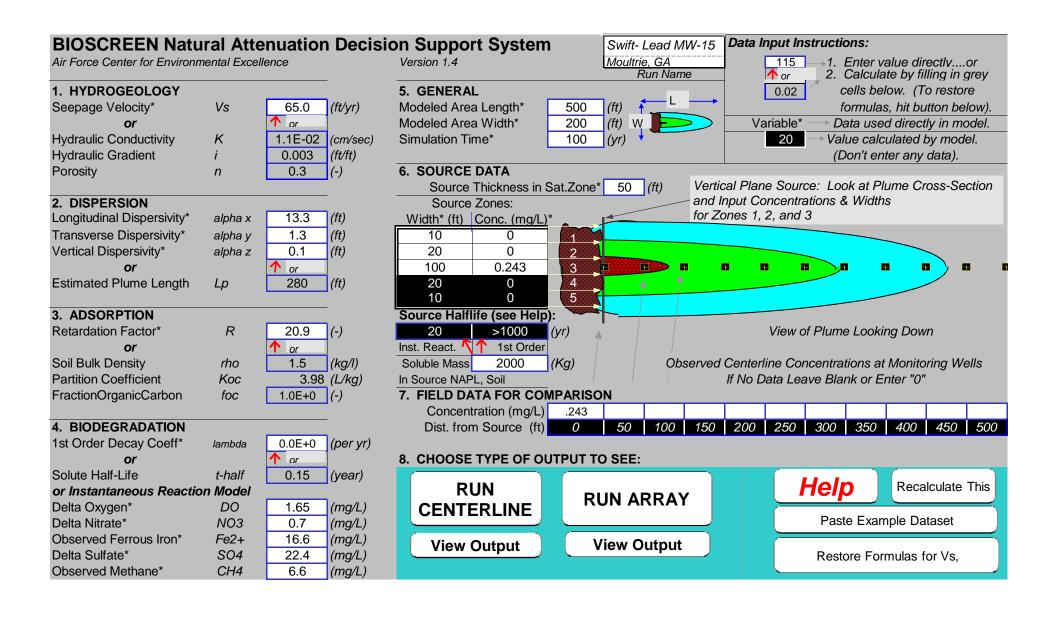




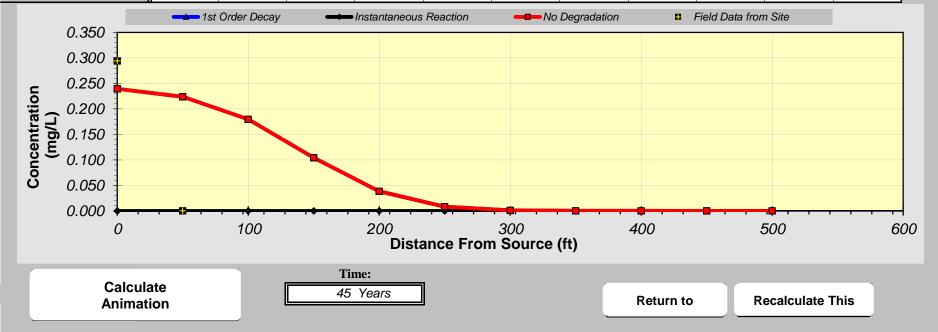


TYPE OF MODEL	0	25	50	75	100	125	150	175	200	225	250
No Degradation	0.254	0.247	0.237	0.219	0.190	0.153	0.111	0.071	0.041	0.020	0.009
1st Order Decay	0.254	0.247	0.237	0.219	0.190	0.153	0.111	0.071	0.041	0.020	0.009
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.001			0.036		0.173			0.072		



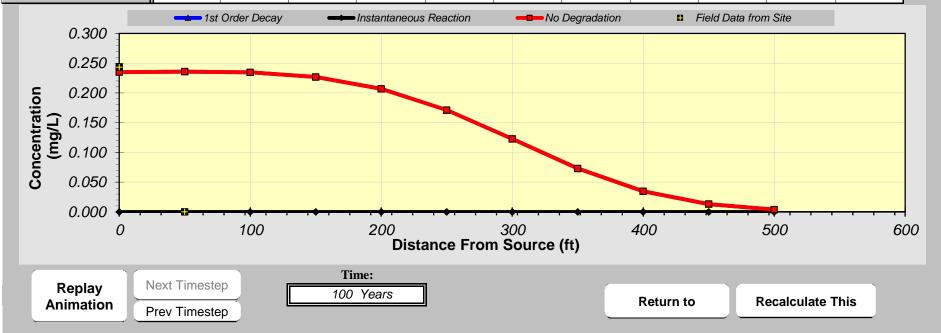
TYPE OF MODEL	0	50	100	150	200	250	300	350	400	450	500
No Degradation	0.172	0.172	0.171	0.165	0.150	0.124	0.089	0.053	0.025	0.009	0.003
1st Order Decay	0.172	0.172	0.171	0.165	0.150	0.124	0.089	0.053	0.025	0.009	0.003
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.258	0.132		0.129	0.090	0.003					



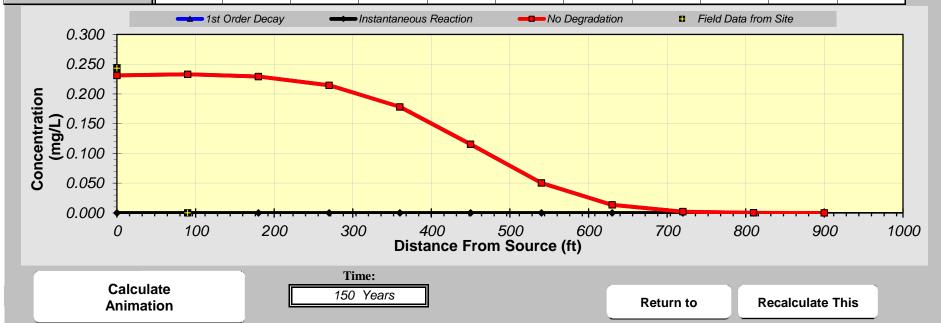

TYPE OF MODEL	0	70	140	210	280	350	420	490	560	630	700
No Degradation	0.170	0.171	0.170	0.164	0.152	0.128	0.091	0.051	0.022	0.007	0.001
1st Order Decay	0.170	0.171	0.170	0.164	0.152	0.128	0.091	0.051	0.022	0.007	0.001
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site											




Swift & Company, Moultrie, GA Voluntary Remediation Program Status Report No. 3 HIS Site No. 10509 December 14, 2016 Amec Foster Wheeler Project 6122-14-0220

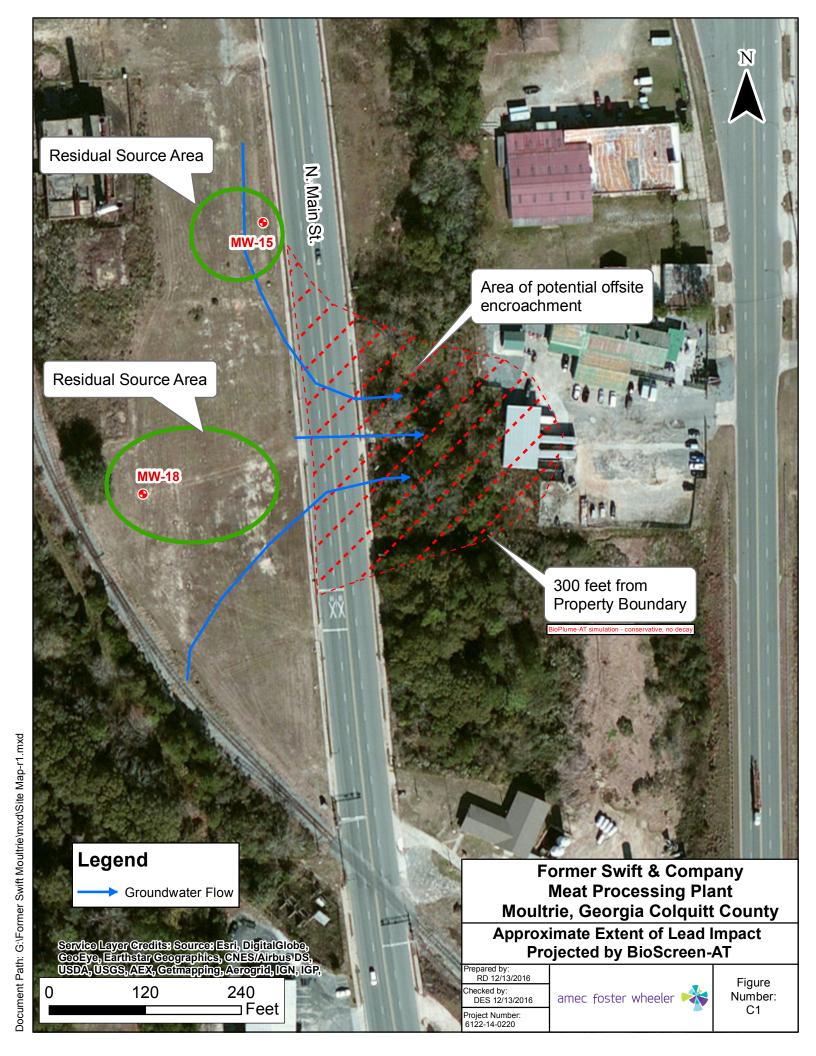

Set-up and Predicted Values of MW-15 Scenario




TYPE OF MODEL	0	50	100	150	200	250	300	350	400	450	500
No Degradation	0.239	0.224	0.179	0.104	0.038	0.008	0.001	0.000	0.000	0.000	0.000
1st Order Decay	0.239	0.224	0.179	0.104	0.038	0.008	0.001	0.000	0.000	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.294										



TYPE OF MODEL	0	50	100	150	200	250	300	350	400	450	500
No Degradation	0.235	0.236	0.235	0.227	0.207	0.171	0.123	0.073	0.035	0.013	0.004
1st Order Decay	0.235	0.236	0.235	0.227	0.207	0.171	0.123	0.073	0.035	0.013	0.004
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.243										




TYPE OF MODEL	0	90	180	270	360	450	540	630	720	810	900
No Degradation	0.231	0.233	0.229	0.214	0.178	0.115	0.050	0.013	0.002	0.000	0.000
1st Order Decay	0.231	0.233	0.229	0.214	0.178	0.115	0.050	0.013	0.002	0.000	0.000
Inst. Reaction	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	0.243										



Swift & Company, Moultrie, GA Voluntary Remediation Program Status Report No. 3 HIS Site No. 10509 December 14, 2016 Amec Foster Wheeler Project 6122-14-0220

BioScreen-AT Projection of Migration Potential in Groundwater (Conservative – No decay)



Swift & Company, Moultrie, GA Voluntary Remediation Program Status Report No. 3 HIS Site No. 10509

December 14, 2016 Amec Foster Wheeler Project 6122-14-0220

# APPENDIX D REGISTERED PROFESSIONAL SUPPORTING DOCUMENTATION

# **Summary of Hours and Services**

Former SWIFT & Company Meat Processing Plant HSI Site No. 10509 Submittal to EPD date December 14, 2016

David E. Smoak, P.G.
Preparation of submittal and review
21 hours charged through December 9, 2016

John Quinn, P.G
Preparation of submittal documentation
26.5 hours charged through December 9, 2016