COMPLIANCE STATUS REPORT (REVISED MAY 31, 2017) & PROGRESS REPORT

FOUNTAIN OAKS SHOPPING CENTER 4920 Roswell Road, NE Sandy Springs, Fulton County, Georgia 37347

HSI No. 10807

Prepared for: LONG ISLAND ASSOCIATES, LTD. and assigns C/O Fletcher Bright 537 Market Street, Suite 400 Chattanooga, TN 37402

Prepared by: **MARION ENVIRONMENTAL INCORPORATED** 115 Parmenas Lane Chattanooga, TN 37405 (423) 499-4919 <u>www.marionenv.com</u>

May 31, 2017

MEI Project No. 16577

Professional Certification

This report has been prepared by Marion Environmental Inc. under the supervision of the Professionals whose seals and signatures appear hereon. The findings, recommendations, specifications, or professional opinions are presented within the limits prescribed by the client, after being prepared in accordance with generally accepted professional practice. No other warranty is expressed or implied.

Philip A. Lutin, P.E. Project Coordinator Tennessee Professional Engineer #7342

Steve Wild, P.E., P.G. Georgia Professional Engineer #40859 Georgia Professional Geologist #1360

STATEMENT OF FINDINGS

The Fountain Oaks Shopping Center (FOSC), 4920 Roswell Road NE, Sandy Springs, Fulton County, Georgia (the subject site) is currently listed on the Georgia Hazardous Site Inventory (HSI) as HSI No. 10807. The Subject site and two associated properties currently are regulated under the auspices of the Georgia Voluntary Remediation Program (VRP). These three properties are:

- 1. Fountain Oaks Shopping Center (subject site), 4920 Roswell Rd NE, Sandy Springs, GA 30342 Fulton County Assessor Parcel No 17 009300061319.
- 2. 115 West Belle Isle Road (FOSC Outparcel), Sandy Springs, Georgia 30342 Fulton County Assessor Parcel No 17 009300021073.
- 3. Long Island Terrace property (undeveloped), Sandy Springs, Georgia 30342 Fulton County Assessor Parcel No 17 009300060881.

The extent of on-site and off-site soil, groundwater and soil vapor contaminants of concern (COC) impacts and potential exposure risks have been thoroughly delineated over the course of multiple investigations conducted from 2005 to 2015 by Marion Environmental, Inc. (MEI) and others.

A soil remediation project conducted by others on the FOSC out-parcel in 2007-2008 removed all on-site soils exceeding approved Risk Reduction Standards (RRS). A vapor intrusion (VI) mitigation system was installed by others beneath the north tenant wing of the FOSC and operated for approximately two and a half years, from December 2008 to May 2011. Exposure risks associated with former on-site soil and soil vapor impacts were successfully mitigated.

The FOSC site was originally placed on the HSI because of soil contamination from a release of tetrachloroethene (PCE) and 14 associated contaminants of concern (COCs). As documented in multiple reports prepared by others, and summarized herein, soil on the FOSC site complies with approved Types 1, 3, and/or 4 Risk Reduction Standards (RRS). Since the soil contamination that caused the FOSC site to be listed on the HSI has been remediated to within approved RRS levels, the site is eligible for de-listing from the HSI.

The most recent, March 2015 groundwater analytical results indicated that COC concentrations exceed applicable RRS at 14 on-site monitoring wells. These COCs and 14 exceedance locations are as follows:

0	Benzene	(MWs-20, 21 & 28)
0	cDCE	(MWs-2, 4, 16, 20 & 28)
0	PCE	(MWs-2, 3, 5, 9, 13S, 14, 16, 20, 22, 23 & 28)
0	TCE	(MWS-2, 4, 6, 16, 20 & 28)
0	VC	(MWs-16 & 28)

Additionally, USEPA vapor intrusion screening level (VISL) calculations using the March 2015 groundwater sampling event indicate the *potential* presence of VI risks at five monitoring wells for PCE (MW-2 & MW-22), TCE (MW-2, MW-4 & MW-16) and benzene (MW-28). The

former on-site dryclean (DC) operation is responsible for the potential VI risk from PCE & TCE at MW-2 and MW-4, while the off-site sources are responsible for the potential VI risk at the other three monitoring wells. However, results from soil vapor sampling, indoor air sampling, and vapor modeling using the US EPA VISL calculator and the Johnson & Ettinger (J&E) model provide multiple lines of evidence to support the conclusion that the vapor intrusion pathway does not pose a risk to current or future commercial receptors and that the site is compliant with vapor risk requirements under HSRA and the VRP for delisting.

There are no off-site soil or groundwater impacts in excess of applicable Type 1/Type 2 RRS.

The conceptual site model (CSM) of the FOSC subject location is of a site where:

- Release sources and substances released have been well defined.
- The lateral and vertical extent and magnitude of soil contamination on-site and potential exposure risks have been well defined through exhaustive subsurface investigations.
- Soil contamination on-site in excess of approved RRS has been removed.
- The lateral and vertical extent and magnitude of groundwater contamination on and offsite and associated exposure risks have been well defined.
- Groundwater flow and subsurface contaminant migration patterns in soil and groundwater are/were significantly affected by the pre-development topography.
- The groundwater contaminant plume, although in excess of RRS in several locations, is stable and rapidly attenuating.
- Groundwater fate & transport modeling has demonstrated that:
 - There was a *potential* risk of PCE in the on-site groundwater plume migrating to discharge into surface water at levels exceeding Georgia In Stream standards on the undeveloped Long Island Terrace property. However:
 - A surface water sample collected from the stream on the Long Island Terrace property on May 3, 2017 did not contain any chlorinated VOCs.
 - Hence, groundwater to surface water migration is an incomplete exposure pathway.
 - On-site groundwater RRS exceedances are not a significant health risk to hypothetical off-site residential receptors 1,000 ft downgradient.
 - The contaminant plume is stable, and is not anticipated to migrate downgradient beyond current dimensions.
- Potential on-site vapor intrusion (VI) impacts modeled using the US EPA VISL calculator suggested there was a *potential* VI risk associated with PCE, TCE and benzene at five on-site wells. However:
 - Modeling conducted by both MEI and Amec Foster Wheeler (AFW) using the Johnson & Ettinger (J&E) model and site-specific data collected by others (including soil vapor and indoor air sampling) support the conclusion that risks suggested with the VISL are overestimates.
 - The VI modeling results described herein support the conclusion that the site is compliant with vapor risk requirements under HSRA and the VRP for delisting.
- Vapor intrusion (VI) impacts for existing on-site commercial worker receptors have been:
 - Assessed through soil vapor sampling, a soil vapor survey, indoor air sampling, VI modeling, and soil gas sampling; and
 - Mitigated through operation of an on-site VI mitigation system.

- Potential dense non-aqueous phase liquid (DNAPL), i.e., "free product" was investigated and determined not to be present beneath the site.
- There are no soil, groundwater, or vapor intrusion (VI) impacts in excess of RRS/riskbased levels on off-site properties.

The overall FOSC conceptual site model (CSM) is a site that has been thoroughly investigated, the potential human health and environmental risks have been evaluated and the site complies with applicable RRS for soil. Groundwater in excess of RRS on-site is not a human health or environmental risk due to incomplete exposure pathways, and a plume that is rapidly attenuating.

On-site exposure domains for this CSM include those areas of the site where:

- Groundwater COC concentrations exceed applicable RRS for the incomplete, but *potentially complete* groundwater ingestion pathway.
- VISL screening calculations indicated that *potential* VI risks exceed target levels.

There is no off-site exposure domain because:

- The FOSC site is a non-drinking water source.
- There are no off-site groundwater COC concentrations exceeding applicable RRS
- The groundwater contaminant plume is naturally attenuating at a rapid rate
- Fate & transport modeling suggests that the groundwater contaminant (PCE) migration to surface water on the Long Island Terrace property was a potential concern.
 - However, the surface water sample collected from the stream on May 3, 2017 shows that groundwater migration to surface water discharge is an incomplete exposure pathway.
- Groundwater fate & transport modeling demonstrates a lack of risk for off-site groundwater ingestion by hypothetical residential receptors 1,000 feet downgradient from the site.

No soil remediation, and thus no remediation plan, is necessary for on or off-site soil, because:

- The extent of soil on-site contamination was exhaustively delineated
- On-site soil exceeding RRS was removed during the 2007-2008 soil remediation project
- Remaining in-situ concentrations of COCs in on-site soil below RRS have been exhaustively demonstrated through collection of excavation verification samples and borings/monitoring wells installed by MEI
- No COCs in excess of applicable RRS have been detected in off-site soils.

The excavation of approximately 3,831 tons of contaminated soil from the release source area and immediate downgradient area in 2007-2008 removed a significant secondary source of groundwater contamination via the soil-to-groundwater leaching pathway. As a result, groundwater COC concentrations in on-site release source and downgradient areas and have been rapidly attenuating as have associated exposure risk levels.

MEI requests closure of all downgradient and cross-gradient wells associated with the former onsite release, for the following reasons:

- The contaminated soil that would have acted as an ongoing secondary source of groundwater contamination (via soil to groundwater leaching) has been removed,
- The groundwater contaminant plume is rapidly attenuating, and
- There are no off-site, downgradient groundwater impacts in excess of applicable RRS.

Therefore, MEI requests abandonment of the following 13 wells.

1. MW-2	6. MW-27	11. MW-30
2. MW-4	7. MW-3	12. MW-31
3. MW-9	8. MW-13D	13. MW-3
4. MW-17	9. MW-13S	
5. MW-26	10. MW-29	

No expansion of existing facilities is planned for the immediate future and no engineering controls are necessary for mitigation of VI risks in existing buildings.

Institutional controls, including deed notices and restrictive covenants prohibiting groundwater use are proposed to help mitigate potential exposure risks from on-site groundwater exceeding applicable RRS and potential VI concerns.

Draft uniform environmental covenants (UECs) for the FOSC, 115 West Belle Isle Road and Long Island Terrace properties are included in this CSR. The specific language of both covenants includes groundwater use prohibitions.

The following four required generic milestones have either already been completed or should be considered to have been completed with the submittal of this updated CSR and Progress Report:

- 1. Horizontal delineation of the release and associated COCs on property accessible at the time of enrollment;
- 2. Horizontal delineation of the release and associated COCs on property inaccessible at the time of enrollment;
- 3. Update CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and
- 4. Submit the compliance status report (CSR) required under the VRP, including requisite certifications.

CERTIFICATION OF COMPLIANCE

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report, and my review of the findings of reports prepared by others on file at the Georgia Department of Natural Resources, Environmental Protection Division (EPD), Hazardous Site Response Program (HSRP), with respect to the *soil* risk reduction standards (RRSs) of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that the <u>soil</u> at this site <u>is in compliance</u> with the approved Type 1, 3, and/or 4 Risk Reduction Standards.

Based on my review of the findings of this report with respect to the risk reduction standards (RRSs) of the Rules for Hazardous Site Response, Rule 391-3-19.07, I have determined that groundwater at this site is *not* in compliance with Type 3 and/or Type 4 risk reduction standards.

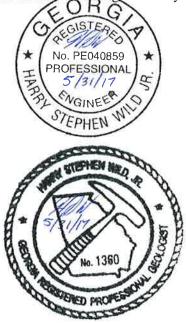
(Signature)

Fletcher Bright for LIA

(Typed Name)

(Title)

Fletcher Bright Company 537 Market Street, Suite 400 Chattanooga, TN 37402 (423) 755-8830


GROUNDWATER SCIENTIST STATEMENT

I certify that I am a qualified groundwater scientist who has a bachelors and masters degree in Geology as well as a bachelor's degree in Chemical Engineering. I have sufficient training and experience in groundwater hydrology and related fields (as demonstrated by state registration and completion of accredited university courses) that enables me to make sound professional judgments regarding groundwater monitoring as well as contaminant fate and transport. I further certify that this Compliance Status Report and Progress Report as well as accompanying documents for the Fountain Oaks Shopping Center at 4920 Roswell Road, and two associated properties in Sandy Springs, Fulton County, Georgia, except where noted otherwise, were prepared by me and appropriately qualified colleagues and subordinates working under my direction.

(Signature)

Steve Wild, P.E., P.G. MARION ENVIRONMENTAL, INC.

Georgia Professional Engineer #40859 Georgia Professional Geologist #1360

Georgia Stamp or Seal

TABLE OF CONTENTS

Statement of Findings	iii
Certification of Compliance	vii
Groundwater Scientist Statement	viii
List of Appendices	xi
List of Figures	xii
List of Tables	xiii
List of Acronyms and Abbreviations	xiv
1.0 INTRODUCTION	
1.1. Application and Property Qualifications	
1.2. Site Location and Description	
2.0 PREVIOUS INVESTIGATIONS & REMEDIAL ACTIONS	
2.1. Overview - Previous Investigations & Remedial Actions	
2.2. On-Site Petroleum UST Facility	
2.3. Source Area Summary	13
2.4. Chemicals/Contaminants Of Concern	14
2.5. Existing Regulatory Framework	
2.6. Risk Reduction Standards	
2.6.1. Soil Risk Reduction Standards	18
2.6.2. Groundwater Risk Reduction Standards	19
3.0 CONCEPTUAL SITE MODEL	21
3.1. Conceptual Site Model - Overview	21
3.2. Geologic and Hydrogeologic Setting	
3.2.1. Topography and Drainage	
3.2.2. Geology - Soil/Unconsolidated Residuum	23
3.2.3. Bedrock Geology	
3.3. CSM - Soil/Residuum	
3.3.1. Delineation of COC Concentrations	
3.3.2. Soil Remediation	
3.3.3. Magnitude & Extent of Remaining COC Concentrations	
3.4. CSM - Groundwater	
3.4.1. Groundwater Flow Direction, Gradient & Velocity	
3.4.2. Water Resources	
3.4.2.1. Drinking Water Supplies	
3.4.2.2. Surface Water	
3.4.3. Groundwater Contaminant Plumes	
3.4.3.1. Plume Delineation	
3.4.3.2. Qualifying Delineation Criteria	
3.4.3.3. Plume Stability & Natural Attenuation	

TABLE OF CONTENTS - Continued

		3.4.4. Gi	roundwater Fate & Transport/Natural Attenuation Modeling	34
		3.4	4.4.1. Domenico Steady-State Transport/Natural Attenuation Mod	le134
		3.4	4.4.2. Point of Exposure & Estimation of Centerline Distances	
		3.4	4.4.3. Derivation of Natural Attenuation Rate/Decay Constants	41
		3.4	4.4.4. Soil to Groundwater Leaching	43
		3.4	4.4.5. Model Calibration	45
		3.4	4.4.6. Downgradient Extent of Contaminant Plume	47
		3.4	4.4.7. Fate & Transport Modeling Results	48
	3.5.	CSM - V	apor Intrusion	50
		3.5.1. Va	apor Intrusion Assessments	50
		3.5.2. Va	apor Intrusion Modeling	50
		3.5.3. So	oil Vapor Survey	53
		3.5.4. In	door Air Quality Sampling	54
		3.5.5. OI	n-Site Vapor Mitigation System	56
	3.6.	CSM - E	xposure Model	57
		3.6.1. Cu	urrent and Future Land Uses	58
		3.0	6.1.1. Fountain Oaks Shopping Center	58
		3.0	6.1.2. 115 West Belle Isle Road – FOSC Outparcel	58
		3.0	6.1.3. Long Island Terrace Undeveloped Property	58
		3.0	6.1.4. Off-Site Neighboring Properties	59
		3.6.2. Ex	xposure Pathways & Receptors	59
		3.6.3. Ex	xposure Domains	61
4.0	VOI	LUNTAR	Y REMEDIATION PLAN	62
	4.1.	Voluntar	y Remediation Plan - Soil	62
	4.2.	Voluntar	y Remediation Plan - Groundwater	63
		4.2.1. Se	econdary Source Removal & Natural Attenuation	63
		4.2.2. M	onitoring Well Abandonment	64
	4.3.	Engineer	ing Controls	64
	4.4.	Institutio	nal Controls	65
		4.4.1. Re	estrictive Covenants	65
5.0	PRC	GRESS F	REPORT	65
6.0	MIL	ESTONE	SCHEDULE	66
7.0	SUN	IMARY &	& CONCLUSIONS	66
8.0	REF	ERENCE	S	72

LIST OF APPENDICES

Appendix A	
Appendix B	
Appendix C	Soil to Groundwater Leaching Calculations
Appendix D	Draft Uniform Environmental Covenants
Appendix E	Evaluation of Vapor Intrusion Pathway
Appendix F	
Appendix G	Laboratory Analytical Results - Surface Water Sample
Appendix H	
Appendix I	Revised CSR & Progress Report – Electronic Copy (Compact Disc)

LIST OF FIGURES – APPENDIX A

<u>Figure</u>	<u> </u>	<u>Page</u>
1.	Topographic Site Vicinity Map	A1
2.	Site Map	A2
3.	Monitoring Well and Surface Water Location Map	A3
4.	Groundwater Potentiometric Surface Map – 10-MAR-2015	A4
5.	USGS 1928 Topographic Map w 10-MAR-2015 Potentiometric Surface Overlay	A5
6.	Groundwater Quality Map - March 2015 vs. Most Recent Previous Event	A6
7.	Benzene - Plume Delineation & Modeling Results Map	A7
8.	cis-1,2-Dichloroethene- Plume Delineation & Modeling Results Map	A8
9.	Tetrachloroethene - Plume Delineation & Modeling Results Map	A9
10.	Trichloroethene - Plume Delineation & Modeling Results Map	A10
11.	Vinyl Chloride - Plume Delineation & Modeling Results Map	A11

LIST OF TABLES – APPENDIX B

Tab	<u>le <u>Title</u></u>	Page
1.	Summary of Previous Investigation, Remediation, & Mitigation Activities	6
2.	Groundwater Analytical Results - VOCs Detected - March 2015	B1
3.	Groundwater Fate & Transport - Off-Site Stream - Benzene	B2
4.	Groundwater Fate & Transport - Off-Site Stream - cDCE - On-Site DC Source	B3
5.	Groundwater Fate & Transport - Off-Site Stream - cDCE - Surrogate Source	B4
6.	Groundwater Fate & Transport - Off-Site Stream - PCE	B5
7.	Groundwater Fate & Transport - Off-Site Stream - TCE	B6
8.	Groundwater Fate & Transport - Off-Site Stream - VC	B7
9.	Soil Volatilization Factor (VF) Calculations	B8
10.	Exposure Parameter Values	B9
11.	Chemical-Specific Parameter Values	B10
12.	Soil – Type 1/Type 2 RRS Selection Summary	B11
13.	Soil – Type 3/Type 4 RRS Selection Summary	B12
14.	Soil - Type 1 & Type 2 Residential RRS vs. Off Site Residual Concentrations	B13
15.	Soil - Type 3 & Type 4 Commercial RRS vs. On-Site Residual Concentrations	B14
16.	Groundwater – Type 1 & Type 2 Residential RRS Selection Summary	B15
17.	Groundwater – Type 3 & Type 4 Commercial RRS Selection Summary	B16
18.	Groundwater - Type 1 & Type 2 Residential RRS vs. Off Site Concentrations	B17
19.	Groundwater - Type 3 & Type 4 Commercial RRS vs. On-Site Concentrations	B18
20.	Groundwater – RRS Exceedance Locations & Release Sources	B19

LIST OF ACRONYMS AND ABBREVIATIONS

BGS	Below Ground Surface
COC	
cDCE	
DC	,
DCE	5
DNR	
DP	
EPA	
EPD	
ESA	-
FOSC	
HSRA	
HSRP	•
MEI	
: g/kg	
: g/L	
MCL	
mg/kg	
mg/L	
msl	mean sea level
MW	
NC	Notification Concentration
PCE	
POE	Point of Exposure
ppb	
ppm	
RRS	Risk Reduction Standards
RRFM	Roswell Road Food Mart
TCE	Trichloroethene
tDCE	trans-1,2-dichloroethene
UC	United Consulting
USRIF	
UST	Underground Storage Tank
VC	Vinyl Chloride
VI	Vapor Intrusion
VIA	
VOC	Volatile Organic Compound
VRP	Voluntary Remediation Program

1.0 INTRODUCTION

The Fountain Oaks Shopping Center (FOSC), 4920 Roswell Road NE, Sandy Springs, Fulton County, Georgia (the subject site) site is currently listed on the Georgia Hazardous Site Inventory (HSI) as HSI No. 10807. Through participation in the Georgia Voluntary Remediation Program (VRP), the responsible party (responsible for on-site groundwater impacts and off-site impacts) and current property owners seek to have the three subject properties de-listed from the HSI.

1.1. Applicability and Site Qualifications

Long Island Associates (LIA) is a responsible party, as defined by the Georgia Hazardous Site Response Act (HSRA), for groundwater contamination beneath property located at 4920 Roswell Road in Sandy Springs, Fulton County, Georgia (the subject property). The subject property also includes two associated parcels, one located at 115 West Belle Isle Drive (0.25 acre) and an undeveloped parcel on Long Island Terrace (0.74 acre).

LIA previously submitting a VRP Application for the subject properties under the Georgia Voluntary Remediation Program Act (VRPA) pursuant to Official Code of Georgia Annotated (O.C.G.A.) § 12-8-100, et seq. The properties were accepted into the VRP on November 30, 2016.

According to O.C.G.A. § 12-8-105, in order to be considered a "qualifying property," a property must be listed on the Hazardous Site Inventory (HSI), meet the criteria of the Georgia Hazardous Site Reuse and Redevelopment Act ("the Brownfields Act"), or have a release of regulated substances to the environment. The subject property was first listed on the HSI on July 15, 2005 as the Fountain Oaks Shopping Center (FOSC), 4920 Roswell Road NE, HSI Site Number 10807.

An adjacent property at 4980 Roswell Road NE, occupied by Chastain Cleaners, was sub-listed as part of HSI 10807 on October 3, 2008. However, the Chastain Cleaners site was not included in the VRP application since it is an off-site dry cleaning solvent release source (as discussed subsequently in **Section 2.3** herein) whose release migrated onto the FOSC site.

1

Under O.C.G.A. § 12-8-105, in order to qualify for entry into the VRP, the property could not be subject to any of the following limitations:

- 1. It cannot be listed on the federal National Priorities List ("the NPL" or "Superfund" list).
- 2. It cannot be currently undergoing response activities required by an Order of the Regional Administration of the U.S. Environmental Protection Agency (EPA).
- It shall not be a facility that is required to have a permit under the Georgia Hazardous Waste Management Act.
- It shall not violate the terms and conditions under which the Georgia Environmental Protection Division (EPD) operates and administers remedial programs by delegation or similar authorization from the U.S. EPA.
- It shall not have any lien filed under the Hazardous Waste Management Act or the Georgia Underground Storage Tank Management Act.

None of the limiting criteria listed in items 1 through 5 above apply to the subject properties. Therefore, the FOSC site is a "qualifying property" under the VRP.

According to O.C.G.A. § 12-8-106, the following criteria must be met in order for the Participant to meet the qualifications of the VRP:

- 1. The Participant must be the owner of the property or have express permission to enter another's property to perform corrective action, including, to the extent applicable, implementing controls for the site pursuant to written lease, license, order, or indenture.
- 2. The Participant must not be in violation of any order, judgment, statute, rule, or regulation subject to the enforcement authority of the Director.
- 3. The Participant must meet other such criteria as may be established by the Georgia Department of Natural Resources (DNR) Board.

Since the Participant meets all of the criteria stated above, the Participant is qualified under the VRP. The owner of the property is as follows:

AMREIT Fountain Oaks LP 8 Greenway Plaza, Suite 1000 Houston, TX 77046 Telephone: (713) 850 1400 The Applicant requested entry into the VRP with the express consent of the current property owner, AMREIT Fountain Oaks, LP.

The three properties that were the subject of the VRP application were (**Figure 2 in Appendix A**):

- Fountain Oaks Shopping Center (subject site)
 4920 Roswell Rd NE, Sandy Springs, GA 30342
 Fulton County Assessor Parcel No 17 009300061319. Area: 13.5 acres.
- 115 West Belle Isle Road, Sandy Springs, Georgia 30342
 Fulton County Assessor Parcel No 17 009300021073. Area: 0.2571 acres.
- Long Island Terrace property (undeveloped), Sandy Springs, Georgia 30342
 Fulton County Assessor Parcel No 17 009300060881. Area: 0.74 acres.

1.2. Site Location & Description

The VRP application was prepared to obtain entry into the Georgia VRP for the Fountain Oaks Shopping Center (FOSC) site, 4920 Roswell Road NE, Sandy Springs, Fulton County, Georgia (**Figures 1 & 2** in **Appendix A**). The FOSC site is Georgia Hazardous Site Index (HSI) Site Number 10807. Former dry cleaning (DC) operations at the FOSC resulted in the release of compounds to the environment that are regulated under the Georgia Hazardous Site Response Act.

Additionally, two off-site, upgradient sources have released regulated constituents into groundwater that has migrated onto the FOSC site. Chlorinated solvent constituents have been identified in groundwater on the Chastain Cleaners property, located northeast of the site, directly across W. Belle Isle Road. Gasoline constituents have been identified in groundwater on the Roswell Road Food Mart property, located adjacent to the northeast corner of the site. Similar constituents have been detected in groundwater on the FOSC subject site immediately downgradient of these off-site sources. Refer to **Section 2.3** for further discussion.

3

The FOSC site encompasses approximately 13.5 acres and contains a retail shopping center with a Kroger grocery store as well as service and retail shops (**Figure 2**). Three buildings are located on the FOSC subject property. The largest of the buildings is located on the western half of the property, and consists of three contiguous structures; a north wing and south wing separated by a Kroger grocery store. Both the north and south wings of that building contain multiple commercial, retail, and professional tenant spaces.

The north wing contains five tenant spaces. The south wing is a two-story structure comprised of multiple tenant spaces. The next smaller building on the property is also a two-story, multiple-tenant structure located on the southern portion of the FOSC subject site. The third building on the property is a freestanding petroleum UST facility/fuel station located centrally on the easternmost side as shown on **Figure 2 in Appendix A**.

2.0 PREVIOUS INVESTIGATIONS & REMEDIAL ACTIONS

2.1 Overview - Previous Investigations & Remedial Actions

Records obtained from the Georgia Department of Natural Resources, Environmental Protection Division (EPD) and other sources show that the site was developed into the current retail shopping center in 1987 by Long Island Associates, Ltd. Dry cleaning (DC) operations were conducted in the northernmost tenant bay under the business ownership of several different entities for approximately 20 years from November 1987 until approximately March 2007. LIA sold the FOSC to U.S. Retail Income Fund VIII-D (USRIF) in December 2003. Hence, DC operations were conducted on site during both LIA's and USRIF's ownership of the property.

Former on-site DC ownership details are documented in multiple reports on file with the EPD HSRP. Previous work conducted at the site includes soil and groundwater investigations, a soil remediation project, vapor intrusion assessments, a soil vapor survey, indoor air testing and groundwater monitoring. All of this work is detailed in documents previously submitted to and are on file with the EPD HSRP. All previous investigation & remediation work is briefly described herein, and is summarized in **Table 1** as follows, which includes the document, date and pages where the work is described in detail.

A release of chlorinated solvents and other chlorinated volatile organic compounds (CVOCs) associated with on-site DC operations was discovered in March 2005 during a Phase II Environmental Site Assessment conducted by Keramida Environmental, Inc. The presence of CVOC contamination in on-site soil was reported to EPD on May 31, 2005. The exact date of the release of the dry cleaning solvent tetrachloroethene (PCE, also known as perchloroethylene or "perc") is unknown, but clearly occurred sometime between 1987 and 2005.

Following initial discovery of the release in March 2005, multiple soil and groundwater investigations were conducted by between March 2005 and June 2007 by Keramida Environmental and United Consulting (UC). These investigations determined the extent of soil contamination on site in excess of calculated Risk Reduction Standards (RRS) and the magnitude of groundwater contamination in multiple locations on site.

The results of these 2005-2007 investigations indicated that there were three release sources for on-site soil and/or groundwater contamination from both DC solvents and petroleum hydrocarbons (see discussion in **Section 2.3**):

- 1. A former on-site DC tenant bay,
- 2. An off-site, upgradient DC operation (Chastain Cleaners), and
- An off-site, upgradient petroleum underground storage tank (UST) facility, (CITGO/Roswell Road Food Mart).

The methods, results and conclusions of the previous investigations conducted by others are documented in multiple reports on file with the EPD HSRP, the most recent being MEI's 2015 CSR & VRP Application. The list of COCs detected during these soil investigations is discussed in **Section 2.4** herein.

Following delineation of the lateral and vertical extent of on-site soil contamination in excess of RRS, a soil remediation project was conducted by USRIF between November 2007 and May 2008. That project resulted in the removal of 3,830.53 tons of impacted soil and the collection and analysis of 213 soil verification/confirmation samples, and 146 split verification/ confirmation samples.

Investigation/ Report Date	Entity/Consultant/Contractor Performing Investigation/Remediation	Investigation/Remediation Summary	Document on file at EPD where work described/documented, Document Date, Location within Document
1992	U.S. EPA	Emergency removal of abandoned drums. Drums not associated with on-site drycleaner. No soil or groundwater sampling conducted	UC PPCAP, 28-NOV-05, Page 4
29-Oct-03	National Assessment Corp.	Phase I ESA. No Phase II ESA recommended	UC PPCAP, 28-NOV-05, Page 4
14-Mar-05	Prof. Svc. Industries, Inc.	Phase I ESA. Phase II ESA recommended	UC PPCAP, 28-NOV-05, Pages 4-5
30-Mar-05	Keramida Environmental Inc. (Keramida)	Phase II ESA. Eleven borings installed inside & outside drycleaner bay. Soil contaminated with PCE at 0.014 to 34.8 ppm discovered	UC PPCAP, 28-NOV-05, Page 5
29-Apr-05	Keramida	Installation of 4 monitoring wells (MWs) (MW-1 to MW-4). Groundwater PCE, TCE and cDCE contamination discovered.	UC PPCAP, 28-NOV-05, Page 5
May-June 2005	United Consulting	PPCAP Investigation. Installation of 23 direct push (DP) soil borings and 3 monitoring wells (MWs) (MW- 5 to MW-11). Collection of 59 soil and 7 groundwater samples.	UC PPCAP, 28-NOV-05, Page 5-9 & 38-42, Tables 1 & 2
21-Feb-08	United Consulting	Vapor Intrusion Assessment & Mitigation Design	UC VIA & Mitigation Design Rpt, 21-FEB-2008
Nov. 2006 - June 2007	United Consulting	PPCSR Investigation. Installation of 49 DP borings. Installation of 5 MWs (MW-8 to MW-12). Field screen soil every 2 ft. Analyze one soil sample per boring. Define areas where soil corrective action necessary.	UC PPCSR, 10-JUN-08, Pages 13-21, Tables 1 & 2
Nov. 2007 - May 2008	United Consulting/ Greenleaf Environmental	Soil remediation project. Removal of 3,830.53 tons of impacted soil. Collection & analysis of 213 soil verification/confirmation samples and 146 split verification/confirmation samples (by MEI).	UC PPCSR, 10-JUN-08, Pages 34-45, Tables 7 & 8
11-Dec-07	Marion Environmental Inc.	Preliminary Corrective Action Plan (PCAP). Proposed soil vapor survey of site to identify impacted areas. Groundwater investigation proposed to follow soil vapor survey. Calculation of Risk Reduction Standards (RRS) proposed.	MEI PCAP, 11-Dec-07
May 2008 - May 2009	Marion Environmental Inc.	PCAP/CSR GW Investigation. Installation of 22 MWs (MW-13S to MW-33). Define extent of groundwater contamination on and off-site. Confirm no off-site soil impacts.	MEI CSR, 14-JAN-10, Pages 26-51, Tables 1-4
25-Aug-08	Marion Environmental Inc./ Atlantic Environmental Inc.	Off-Site indoor residential air sampling. Sample results confirm no impacts to off-site indoor air quality.	MEI CSR, 14-JAN-10, Pages 59-61, Appendix G
Sep-08	Marion Environmental Inc./ W.L. Gore & Assoc.	Soil vapor survey. Survey indentifies three distinct commingled plumes originating from one on-site and two off-site release sources.	MEI CSR, 14-JAN-10, Pages 51-58, Appendix F
Dec-2008	United Consulting	Installation of vapor intrusion mitigation system (VIMS) incl: passive soil vapor barrier in former DC tenant bay, passive sub-slab depressurization system beneath former DC tenant bay, installation of eight north-south horizontal borings beneath entire northern wing of FOSC center manifolded to regenerative blower.	UC Vapor Mitigation System Implementation Rpt, 3 JUN-2009
May-2011	United Consulting	Shut down and abandon vapor intrustion mitigation system in accordance with VI mitigation, sampling and modeling showing no existing impacts or potential VI impacts in excess of 1E-05 carcinogenic or HQ=1 non-carcinogenic health effects.	UC Vapor System Sampling and Modeling for Closure Rpt, 25-FEB-2011. UC Vapor Intrusion Mitigation System (VIMS) Closure Report, 26-MAY-2011. EPD Approval Ltr 8-AUG-2011
Jun-2013	Property Solutions	Phase II ESA. Indoor air & soil gas sampling. Groundwater sampling.	3-JUN-13 Prop. Solutions Report (MEI CSR, 31-MAY-15, Appendix H)
Mar-2015	Marion Environmental Inc.	Groundwater sampling event. Site-wide comprehensive sampling all wells. Document significant natural attenuation of groundwater contamination. Updated RRS calculated.	MEI GW Monitoring Rpt., 14-MAY-15
Dec-2015	Marion Environmental Inc.	Compliance Status Report and application for entry into Voluntary Remediation Program.	MEI CSR & VRP Application, 11-DEC-15

The results of the soil remediation and verification sampling indicated that all impacted soil in excess of calculated RRS was successfully removed from the site. This work is documented in UC's June 8, 2010 Prospective Purchaser Compliance Status Report (PPCSR).

The potential presence of dense non-aqueous phase liquid (DNAPL) or "free product" was evaluated by UC using procedures in EPA guidance documents during investigatory phases of soil impact assessment and during excavation/verification sampling. Although PCE concentrations slightly exceeded 1 % of the solubility limit in some groundwater samples, other potential DNAPL indicators were not present. Therefore, based on the results of extensive testing and observations, DNAPL was not considered present in soil or groundwater. This work is documented in UC's June 8, 2010 Prospective Purchaser Compliance Status Report (PPCSR).

Following the soil remediation project, UC installed a vapor intrusion mitigation system (VIMS) beneath the former DC tenant bay and the north tenant wing of the FOSC site. This system consisted of a passive vapor barrier and sub slab depressurization system installed beneath the former DC facility and an active vapor mitigation system was installed beneath the remaining units in the north FOSC wing. The VIMS was operated for approximately two and a half years, from December 2008 to May 2011.

EPD authorized shutdown of the VIMS system after soil gas sampling results and VI modeling results both indicated that there were no VI risks present in excess of target levels. The system was shut down, decommissioned and the shallow vapor monitoring wells abandoned in May 2011. This VI mitigation and monitoring work is documented in three reports prepared by UC:

- Vapor Intrusion Assessment and Mitigation Design Report (21-FEB-2008)
- Vapor Intrusion Mitigation System Implementation Report (3-JUN-2009), and
- Vapor System Sampling and Modeling for Closure Report (25-FEB-2011)

MEI initiated investigations of the full on- and off-site extent of groundwater contamination and the extent of off-site soil and groundwater contamination after completion of the soil remediation project. Twenty-three monitoring wells were installed on- and off-site between May 2008 and May 2009. Collection and analysis of soil and groundwater samples confirmed that the full

extent, depth and magnitude of the groundwater contaminant plume were defined by these investigations. Soil analytical results from samples collected during the groundwater investigation confirmed that there are no off-site soil impacts associated with the former on-site DC release source. This work is documented in MEI's January 14, 2010 CSR, previously submitted to and on file with the HSRP.

The locations of groundwater monitoring wells installed by MEI are shown on **Figure 3 in Appendix A**. Groundwater analytical results showing only those compounds detected in groundwater during the most recent, March 2015 groundwater sampling event are tabulated in **Table 2 in Appendix B**. A discussion of COCs detected in groundwater during any previous sampling event in comparison to only those COCs detected during the most recent, March 2015 sampling event is contained in **Section 2.4** herein.

An investigation of nearby off-site, indoor residential air quality at 79 West Belle Isle Road, located immediately west of FOSC was conducted by Industrial Hygiene consultants Atlantic Environmental Inc. (AEI) in August 2008, under subcontract to MEI. The results of this study confirmed that there were no impacts to off-site indoor residential air quality associated with vapor intrusion of contaminants released from former on-site DC operations.

Since the 2008 indoor air sampling event, during which no DC vapors were detected, recent groundwater analytical results (March 2015) show that contaminant concentrations have declined in the nearest upgradient well (MW-13S) by an average of 93.6%. This remarkable reduction in upgradient groundwater contaminant concentrations is evidence of significantly reduced off-site vapor intrusion risk for the neighboring property. The 2008 indoor air sampling work is documented in AEI's report, included as Appendix G MEI's January 14, 2010 CSR.

A soil vapor survey on the northern portion of the FOSC site and adjacent off-site areas was conducted by MEI in September 2008. One hundred and twenty-four (124) W.L. Gore & Associates (now Amplified Geochemical Imaging LLC) Gore-Sorber® soil vapor absorption modules were deployed on the northern portion of the FOSC site. These modules were installed

8

outside of structures at an approximate 50-foot-by-50-foot grid shown on the figures included within Gore's report to MEI, which is included as Appendix F of MEI's January 14, 2010 CSR.

The results of this soil vapor survey identified three distinct contaminant plumes commingled on the FOSC site. These three plumes originated from one on-site source (the former DC operations) and from two off-site sources (Chastain Cleaners and the CITGO/Roswell Road Food Mart ("CITGO/RRFM").

As stated previously, all of the above prior work detailed herein was described in MEI's January 14, 2010 CSR. On March 9, 2015, the EPD HSRP issued a review letter for the CSR.

The EPD noted in their March 9, 2015 letter that the CSR had certified that the site did not comply with Risk Reduction Standards (RRS) and that monitored natural attenuation (MNA) had been recommended by MEI as the groundwater remediation method. Further, the EPD directed LIA to perform the following activities:

- 1. Conduct a site-wide comprehensive groundwater monitoring event.
- 2. Construct specific geologic cross-sections.
- 3. Evaluate the vapor intrusion pathway using up-to-date groundwater analytical results.
- 4. Calculate updated Risk Reduction Standards (RRS) based on current toxicity values.

In response to the EPD's letter, MEI conducted a comprehensive groundwater monitoring event in March 2015. Groundwater samples were collected from all 29 existing wells and analyzed for VOC concentrations. The methods and results of this sampling event were documented in MEI's Groundwater Monitoring Report dated May 14, 2015, on file with the EPD HSRP.

Groundwater analytical results from the March 2015 sampling event show that 13 compounds were present in on-site groundwater, while five compounds were detected in off-site groundwater (**Table 2**). Comparison of the March 2015 groundwater sampling results with those of the previous 2008 or 2009 event at each well generally indicate significant reductions in PCE, TCE and cDCE across the site, with few exceptions. At 12 wells surrounding and downgradient from the former on-site drycleaner (MWs-2, 3, 4, 9, 13S, 14, 18, 19, 26, 27 and 30), PCE declined by an average of

approximately 74%, TCE by approximately 49% and cDCE by approximately 19% between 2008/2009 and 2015.

Comparison of the March 2015 and previous groundwater analytical data showed clearly that COC concentrations in the on-site source area and downgradient areas declined sharply from 2008/2009 levels due to natural attenuation. Hence, there is ample evidence that removal of the secondary source material (the impacted soil) followed by rapid natural attenuation has proven to be an effective remedy for cleanup of groundwater impacted by former on-site DC operations.

Vapor intrusion screening for the groundwater volatilization to indoor air inhalation pathway for a commercial worker was performed utilizing the U.S. EPA Vapor Intrusion Screening Level (VISL – Version 3.3.1, updated May 2014) calculator. The VISL "Groundwater Concentration to Indoor Air Concentration" (GWC-IAC) calculator indicated that three compounds, PCE, TCE and benzene, are present in on-site groundwater at concentrations capable of exceeding indoor air inhalation targets.

The VISL calculator indicated that two compounds, TCE and benzene, potentially exceed the 1E-05 carcinogenic risk for commercial workers via the indoor air inhalation pathway. Similarly, the calculator suggested two compounds, PCE and TCE, potentially exceed the toxicity effects hazard quotient (HQ) of 1.0 for commercial workers. Hence the VISL-calculated target concentrations of PCE, TCE and benzene, the five locations at which these targets are exceeded, and the groundwater concentrations of these three VOCs are:

<u>Compound</u>	VISL Target Conc.	Exceedance Locations (MAR-2015 Concentration)		
PCE	240 µg/L	MW-2 (775 µg/L) MW-22 (520 µg/L)		
TCE	22 µg/L	MW-2 (71.5 µg/L) MW-4 (120 µg/L) MW-16 (35 µg/L)		
Benzene	69 µg/L	MW-28 (135 µg/L)		

The groundwater contamination exceeding the VISL groundwater target concentrations at monitoring wells MW-16, MW-22 and MW-28 was released from the off-site release sources, Chastain Cleaners and the CITGO/RRFM. Therefore, the release from the former on-site

drycleaner appears only to have affected the VISL target exceedances at source area wells MW-2 and MW-4.

Updated groundwater Risk Reduction Standards (RRS) were calculated using current U.S. EPA toxicity values. The results of these calculations were detailed in the May 14, 2015 Groundwater Monitoring Report.

2.2 On-Site Petroleum UST Facility

An on-site petroleum UST facility containing three fiberglass double-walled tanks was installed at the FOSC in November 2005. This on-site UST facility is not the source of petroleumcontaminated groundwater on the FOSC site as evidenced by the following:

- There are no records of a release from this facility (Facility ID No. 10001030) in Georgia EPD, UST Management Program (USTMP) records.
- There is an USTMP record of a confirmed release from the Roswell Road Food Mart (CITGO/RRFM), 4968 Roswell Rd, Facility ID No. 9000005, on May 2, 1989, as well as USTMP records of multiple "suspected releases" on the following dates:

0	09/24/1997	0	04/16/2001
0	05/13/1998	0	05/14/2001
0	06/05/1998	0	02/26/2002
0	07/13/1999	0	10/26/2011

- The most recent investigation at the CITGO/RRFM in 1997 confirmed the presence of the petroleum VOCs benzene, toluene, ethylbenzene and xylenes (BTEX) in groundwater on the property (see discussion in **Section 2.3**).
- Groundwater contamination from benzene and methyl tert-butyl ether (MTBE) was detected in samples collected from MW-5, downgradient from the CITGO/RRFM, in April and June 2005, prior to installation of the on-site UST facility in November 2005.
- MTBE is associated with the on-site groundwater petroleum contamination (**Table 2**)
 - MTBE is an oxygenate (oxygen-containing compound) used in U.S. gasoline at low levels as an octane enhancer since 1979, and at higher levels in 1992-2005 to fulfill oxygenate requirements for reformulated gasoline (RFG) set by Congress in the 1990 Clean Air Act Amendments.

- According to EPA data, MTBE has not been used in significant quantities in RFG (non-compliance) areas since 2005. A similar decrease in MTBE use was also observed in conventional gasoline areas (Kinner, 2001) and (<u>http://archive.epa.gov/mtbe/web/html/faq.html</u>).
- Therefore it is unlikely that gasoline stored in the modern USTs installed in November 2005 at the on-site fuel station ever contained MTBE.
- MTBE is very soluble in groundwater (approximately 50,000 mg/L); approximately 30 times more soluble, and significantly less volatile, than are the petroleum hydrocarbon constituents of gasoline.
- MTBE does not readily sorb to soil, rock surfaces, or organic carbon in soil because of its high solubility. In contrast, the BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are retarded relative to groundwater velocity because they sorb to soil/rock surfaces and organic carbon in soil. Hence, MTBE moves faster and further in groundwater than the BTEX compounds.
- Because of its high solubility and lack of retardation, MTBE tends to form "halo" of groundwater contamination along the leading edge of a groundwater gasoline contaminant plume, where the released gasoline contained MTBE. This is exactly the situation in the petroleum contaminant plume at FOSC (see Figure 21 in MEI's 2015 CSR & Table 2 herein).
- Groundwater contaminated with benzene and MTBE is present at wells MW-5, MW-20 and MW-21, hydraulically *upgradient* from the on-site Kroger fuel station. The March 12, 2015 sample from MW-21, approximately 100 feet upgradient from the on-site fuel station, contained 2,500 µg/L of MTBE.
- The 2008 soil vapor survey map for BTEX indicates an area of concentrated BTEX vapor (a vapor "hot spot") north of, and hydraulically upgradient from the on-site fuel station.

Hence, the on-site Kroger fuel station is not the source of petroleum hydrocarbons detected in on-site groundwater. The petroleum release source is clearly the off-site CITGO/RRFM facility.

2.3 Source Area Summary

There are three release source areas associated with soil and/or groundwater contamination on the FOSC site: one on-site source, and two off-site sources. These three release sources are:

On-Site Source:	Former Dry Cleaning Operation Fountain Oaks Shopping Center 4920 Roswell Road NE, Sandy Springs, GA 30342 Parcel ID No. 17 00930006131 HSI Site No. 10807
	Property Owner Information:
	AMREIT Fountain Oaks LP
	8 Greenway Plaza, Suite 1000, Houston, TX 77046
Off-Site Source:	Active Dry Cleaning Operation
	Chastain Cleaners
	4980 Roswell Road NE, Sandy Springs, Georgia 30342
	Parcel ID No. 17 009300021826
	Property Owner Information:
	Give Us Inc
	740 Woodscape Trail, Johns Creek, GA 30022
	Roswell, Georgia 30022
Off-Site Source:	Active Petroleum UST Facility
	Roswell Road Food Mart
	4968 Roswell Road NE, Sandy Springs, Georgia 30342
	Parcel ID No. 17 -009300021842
	UST Facility ID No. 09000005
	-
	Property Owner Information:
	The Rock It Inc
	P O Box 19695, Atlanta, GA 30325

Chastain Cleaners and Roswell Road Food Mart (RRFM) are both directly upgradient of the FOSC subject site, based on the directions of groundwater flow as shown on **Figure 4 in Appendix A**. Groundwater contaminant plumes originating on each of these properties have migrated onto the FOSC subject site.

Chastain Cleaners is sub-listed on the HSI with FOSC as HSI No. 10807. The most recent investigation at Chastain Cleaners in 2009 confirmed chlorinated volatile organic compounds (CVOCS) in groundwater, including PCE, TCE, cDCE and VC. Based on groundwater flow

directions, distances from impacted off-site wells to the former dry cleaners at FOSC, and the documented presence of CVOCs in groundwater on this upgradient property, CVOCs were released from the Chastain Cleaners property and migrated onto the FOSC subject site.

The Roswell Road Food Mart site (RRFM, formerly EZ Serve gas station) was granted "No Further Action" (NFA) status for a confirmed petroleum release by the Georgia EPD UST Management Program in 1998. The most recent investigation at RRFM in 1997 confirmed the presence of gasoline VOCs benzene, toluene, ethylbenzene and xylenes (BTEX) in groundwater on the property. Based on groundwater flow directions, the documented presence of petroleum compounds in groundwater on the upgradient RRFM parcel, and the lack of any documented release from the UST facility on the FOSC property (see **Section 2.2**), the release of BTEX that migrated onto the FOSC subject site originated on the RRFM property.

2.4 Chemicals/Contaminants of Concern

Multiple potential chemicals of concern (COC) have been detected during previous soil and groundwater investigations. The CSR prepared by MEI, dated January 14, 2010, presented the potential COCs detected in groundwater. The PPCAP prepared by UC dated November 28, 2005, also presented multiple potential COCs for soil. The combined list of potential COCs from these two documents include:

- 1. acetone
- 2. benzene
- 3. 2-butanone (aka methyl ethyl ketone, MEK)
- 4. n-butylbenzene
- 5. sec-butylbenzene
- 6. carbon disulfide (CD)
- 7. chlorobenzene
- 8. chloroform
- 9. cyclohexane
- 10. 1,2-dichloroethane (1,2-DCA)
- 11. cis-1,2-dichloroethene (cDCE)
- 12. diisopropyl ether
- 13. ethylbenzene

- 14. isopropylbenzene (cumene)
- 15. methyl cyclohexane
- 16. 4-methyl-2-pentanone (aka methyl isobutyl ketone, MIBK)
- 17. methyl-tertiary butyl ether (MTBE)
- 18. n-propylbenzene
- 19. tetrachloroethene (PCE)
- 20. toluene
- 21. trichloroethene (TCE)
- 22. 1,2,3-trimethylbenzene (1,2,3-TMB)
- 23. 1,2,4- trimethylbenzene (1,2,4-TMB)
- 24. 1,3,5- trimethylbenzene (1,3,5-TMB)
- 25. vinyl chloride (VC)
- 26. xylenes

One additional previously undetected PCE/TCE degradation daughter compound, trans-1,2dichloroethene (tDCE), was reported to be present in on-site groundwater for the first time in March 2015.

Of the 27 total *potential* COCs, the following nine compounds are not listed in EPD Rules, Chapter 391-3-19, Appendix I, *Regulated Substances and Soil Concentrations That Trigger Notification* and are therefore not regulated under the HSRP:

- 1. n-butylbenzene
- 2. sec-butylbenzene
- 3. diisopropyl ether
- 4. methyl cyclohexane
- 5. methyl-tertiary butyl ether (MTBE)
- 6. n-propylbenzene
- 7. 1,2,3-trimethylbenzene (1,2,3-TMB)
- 8. 1,2,4- trimethylbenzene (1,2,4-TMB)
- 9. 1,3,5- trimethylbenzene (1,3,5-TMB)

Chlorobenzene was only detected in two soil samples from a single location, directly beneath the former location of a DC machine in boring I-DP-2 at 1 foot (0.0065 mg/kg) and 9 feet (0.0078 mg/kg) below ground surface (BGS). The HSRP notification concentration (NC) for chlorobenzene is 4.18 mg/kg, while the final approved Type 3 RRS is 10 mg/kg. Soil was excavated to a depth of 13 to 16 feet BGS in this area. No soil verification sample from this area or any other soil or groundwater sample collected on site contained any chlorobenzene. Hence, chlorobenzene is not a COC.

Additionally, the following seven compounds were either only detected in groundwater at a single location during a single sampling event, or were not detected in groundwater during the most recent, March 2015 sampling event. Justification for elimination of these compounds from consideration as COCs is presented below. The seven compounds not detected in groundwater during the March 2015 groundwater sampling event that should be eliminated from consideration as COCs are:

1.	1,2-dichloroethane (1,2-DCA)	(detected once at MW-28, 3 µg/L, 5/20/2009)
2.	cyclohexane	(detected once at MW-5, 12 μ g/L, 4/20/2006)
3.	ethylbenzene	(last detected at MW-19, 1.4 µg/L, 5/21/2009)
4.	methyl cyclohexane (only detected a	t MW-5, 6.5 μg/L, 4/20/06 & 6.7 μg/L, 11/1/06)
5.	4-methyl-2-pentanone (MIBK)	(detected once at MW-25, 16 μ g/L, 5/22/2009)
6.	toluene	(last detected at MW-19, 11 µg/L, 5/21/2009)
7.	xylenes (last detected at MW-5, 20 µ	ug/L, 5/20/2009 & MW-19, 24 μg/L, 5/21/2009)

Hence, for the purposes of this VRP application, the 10 COCs are:

- 1. acetone
- 2. benzene
- 3. chloroform
- 4. cis-1,2-dichloroethene (cDCE)
- 5. trans-1,2-dichloroethene (tDCE)
- 6. isopropylbenzene (cumene)
- 7. methyl ethyl ketone (MEK) or (2-butanone)
- 8. tetrachloroethene (PCE)

- 9. trichloroethene (TCE)
- 10. vinyl chloride (VC)

2.5 Existing Regulatory Framework

The FOSC site is currently regulated by the Georgia Voluntary Remediation Program (VRP) as authorized by the Georgia Voluntary Remediation Program Act (VRPA) pursuant to Official Code of Georgia Annotated (O.C.G.A.) § 12-8-100, et seq.

As stated in **Section 2.1** previously, DC operations were conducted on site under the ownership of both the original developer of the property (LIA) and the subsequent purchaser (USRIF). The magnitude and extent of contamination documented during initial subsurface investigations in 2005 suggested groundwater contamination originated during LIA's ownership of the property. Since DC operations had continued under USRIF's subsequent ownership, on-going contribution to on-site soil contamination could not be ruled out.

Subsequently, investigation and remediation of groundwater contamination was delegated to the original developer of the property (LIA), while investigation and remediation of soil contamination and potential DNAPL impacts were delegated to the purchaser (USRIF). USRIF subsequently voluntarily investigated and remediated on-site soil impacts and investigated potential DNAPL. LIA was responsible for the investigation and remediation (if necessary) of on-site groundwater and off-site soil and groundwater impacts. Investigation and remediation of both soil and groundwater impacts on and off site have been regulated under the HSRP to date.

Additionally, the property was granted a limitation of liability (LOL) by the EPD in a letter dated March 6, 2006 pursuant to the 2005 Amendment (Georgia Senate Bill 277) to O.C.G.A. Section §12-8-200 et seq. of the Hazardous Site Reuse and Redevelopment Act ("the Georgia Brownfields Act"). EPD determined that the property owner at that time, U.S. Retail Income Fund VIII-D (USRIF), was eligible to receive a LOL for preexisting releases that occurred prior to December 31, 2003, subject to a number of specific conditions outlined in the approval letter. The Georgia Brownfield Program Summary Table (<u>https://epd.georgia.gov/brownfield#links</u>)

shows that the FOSC site is on the list of Brownfield properties, with [soil] cleanup completed 18-JUL-08, with restricted, non-residential land use, and Type 3 and 4 RRS applicable.

2.6 Risk Reduction Standards

2.6.1 Soil Risk Reduction Standards

Soil Risk Reduction Standards (RRS) were calculated by UC on behalf of USRIF, the party voluntarily performing investigation and remediation of on-site soil contamination under the auspices of the Georgia Brownfields Program. Type 3 and 4 RRS were calculated for multiple COCs in soil and subsequently approved by EPD. Type 1, default RRS were reported to have been provided by the EPD in a letter dated May 10, 2007. Hence, Type 1 default, Type 3 and/or Type 4 RRS for on-site soil were calculated for following 14 compounds (UC PPCSR, 10-JUN-08, Table 5):

- 1. acetone
- 2. carbon disulfide (CD)
- 3. chlorobenzene
- 4. cumene (isopropylbenzene)
- 5. 1,1-dichloroethene (1,1-DCE)
- 6. cis-1,2-dichloroethene (cDCE)
- 7. trans-1,2-dichloroethene (tDCE)
- 8. ethylbenzene
- 9. 4-methyl-2-pentanone (methyl isobutyl ketone) (MIBK)
- 10. tetrachloroethene (PCE)
- 11. toluene
- 12. trichloroethene (TCE)
- 13. xylenes
- 14. vinyl chloride (VC)

Two additional, previously undetected compounds, benzene and 2-butanone (a.k.a., methyl ethyl ketone or "MEK"), were found to be present in on-site soil during MEI's 2008-2009 subsurface investigations. Type 4 commercial RRS were calculated by MEI for these two compounds using USEPA Risk Assessment Guidance for Superfund (RAGS), Part B, Equation 6 (carcinogenic

health effects) and Equation 7 (non-carcinogenic effects) (USEPA, 1991). As requested by EPD, MEI re-calculated soil volatilization factor (VF) inputs into RRS calculations using the most recent, May 2016, physical parameters from the US EPA Regional Screening Levels (RSLs) table, online at: <u>https://www.epa.gov/sites/production/files/2016-</u>06/documents/params_sl_table_01run_may2016.pdf. The updated soil VFs are tabulated in **Table 9 in Appendix B**.

Type 1 and 2 RRS for off-site residential soil calculated by MEI are summarized in **Tables 12 & 14 in Appendix B**. Soil to groundwater leaching calculations used in determining the Type 2 residential RRS are included as **Tables C1 – C9 in Appendix B**.

Comparison of both the previously approved and calculated RRS to verification sample analytical data collected during the 2007-2008 soil remediation project indicate that all impacted soil exceeding applicable RRS was successfully removed from the site. Analytical data from MEI's 2008-2009 subsurface investigation confirmed that no COCs were present in on-site soil in excess of applicable RRS. A Certification of Compliance verifying the compliance of on-site soil with all applicable RRS is included on page viii of this CSR.

2.6.2 Groundwater Risk Reduction Standards

Updated groundwater RRS were calculated using current U.S. EPA toxicity values. Updated toxicity values were obtained from the U.S. EPA Regional Screening Level (RSL) calculator website. Additional guidance was obtained from the U.S. EPA Region 4 Human Health Risk Assessment Supplemental Guidance and from the Georgia EPD HSRP.

MEI calculated Type 2 RRS for off-site residential land use for both potential carcinogenic and non-carcinogenic effects and both resident adult and child receptors. Likewise, MEI calculated Type 4 RRS for on-site commercial land use for carcinogenic and non-carcinogenic effects for a commercial worker.

In accordance with EPD Rules, the highest of the Type 1 default RRS, or the calculated Type 2 RRS is the final RRS for the residential use scenario. Similarly, the higher of either the Type 3 default or calculated site-specific Type 4 RRS is the final RRS for commercial usage.

Comparison of the RRS values with March 2015 groundwater concentrations show off-site groundwater is within applicable Type 1/Type 2 RRS. The results of the Type 3/Type 4 RRS evaluation indicate that five compounds are present in on-site groundwater in excess of the RRS for commercial use. The five compounds reported to be present in groundwater during the March 2015 sampling event in excess of Type 3/Type 4 commercial RRS values are:

- benzene
- cis-1,2-dichloroethylene (cDCE)
- tetrachloroethene (PCE)
- trichloroethene (TCE)
- vinyl chloride (VC)

Comparison of the Type 3/Type 4 commercial RRS to the March 2015 groundwater analytical data indicate exceedance of the RRS at 14 monitoring wells on the FOSC site. Groundwater isoconcentration contour/plume delineation maps for the five COCs present in on-site groundwater in excess of applicable RRS are presented as **Figures 7-11 in Appendix A**.

As previously noted, there are three sources of groundwater contamination on the FOSC site: the former on-site drycleaner, an off-site drycleaner (Chastain Cleaners) and an off-site gas station (CITGO/RRFM). The two off-site release sources are responsible for the majority of Type 3/Type 4 RRS exceedances (**Figures 7-11; Table 20**).

The former on-site drycleaner release resulted in RRS exceedances at only seven monitoring wells on the FOSC site: MW-2, MW-3, MW-4, MW-9, MW-13S, MW-14 and MW-27 (**Table 2**). Therefore, because of the release from former on-site DC operations, the site does not comply with Type 3/Type 4 RRS for groundwater at seven monitoring wells. A Certification of Compliance verifying the non-compliance of on-site groundwater with applicable RRS is included on page viii of this CSR.

3.0 CONCEPTUAL SITE MODEL (CSM)

3.1 Conceptual Site Model - Overview

The overall conceptual site model (CSM) of the FOSC subject location is of a site where:

- The release sources, one on-site and two off-site, and substances released into the environment on and surrounding the FOSC site have been well defined.
- The lateral and vertical extent and magnitude of soil contamination on-site and potential human health risks associated with the former DC operation were well defined through a series of exhaustive subsurface investigations.
- Soil contamination on-site in excess of applicable RRS was successfully removed via a 2007-2008 soil remediation/excavation project.
- The lateral and vertical extent and magnitude of groundwater contamination on and offsite, and associated human health risks, were defined through during a thorough 2008-2009 investigation.
- Groundwater flow, and subsurface contaminant migration patterns in soil and groundwater, are/were significantly affected by the pre-development topography.
- The groundwater contaminant plume, although in excess of RRS at several locations, is stable and naturally attenuating at a rapid rate due to removal of the contaminated source area soils/secondary source material.
- Potential vapor intrusion (VI) impacts for both on-site commercial receptors and off-site residential receptors:
 - Have been assessed through soil vapor sampling, a soil vapor survey, indoor air sampling, and VI modeling.
 - Have been mitigated through operation of an on-site VI mitigation system.
- Potential on-site VI impacts/residual soil gas COC concentrations are currently well below applicable risk-based levels.
 - Detections of constituents in six indoor air samples taken in 2013 did not exceed applicable standards in the EPA OSWER Vapor Intrusion Screening Level (VISL) Calculator using a Target Risk Concentration of 1.00E-05.
- The potential presence of DNAPL was investigated. DNAPL was determined not to be present on or beneath the site.

• There are no soil, groundwater, or vapor intrusion (VI) impacts in excess of RRS/riskbased levels on off-site properties.

Hence, the overall CSM of the FOSC site is of a site that:

- Has been thoroughly investigated,
- The potential human health and environmental risks evaluated, and
- Complies with applicable RRS for soil and vapor intrusion.

Groundwater in excess of RRS on-site is not a human health or environmental risk due to incomplete exposure pathways, and a plume that is rapidly attenuating. Detailed descriptions of the individual components of the CSM outlined above are presented in the following sections of this document.

3.2 Geologic and Hydrogeologic Setting

The FOSC site is located within the Piedmont Physiographic Province of Georgia, which is composed of hard igneous and metamorphic rocks derived from the recrystallization of ancient (300 to 600 million year old) sediments. In this type of geologic setting, the direction of groundwater flow is anticipated generally to conform to topographic slope or to that of nearby surface water. The water table is generally 30 to 100 feet below the ground surface on hilltops and hillsides, but is at or near the ground surface in stream valleys and draws.

Data obtained at the FOSC site are demonstrative of this regional groundwater flow system. The groundwater is flowing principally in the soil above bedrock and to a lesser degree through the bedrock system. In some areas, the rock surface extends above the groundwater table.

3.2.1 Topography and Drainage

The surface relief of the Piedmont is characterized by relatively low, rolling hills with heights above sea level between 200 feet (50 m) and 800 to 1,000 feet (250 m to 300 m). Based on the U.S. Geological Survey (USGS) 7.5-minute Sandy Springs, Georgia topographic quadrangle map (1955, photo-revised 1983) pre-development elevations at the FOSC site ranged from approximately 1,010 ft msl to approximately 1,030 ft msl. The elevations on and immediately

surrounding the FOSC site range from approximately 960 to 990 ft msl, as determined by surveyed surface elevations at each of the 22 monitor wells installed by MEI in 2008-2009,

A historic topographic map, dated 1928 (**Figure 5**), shows the FOSC site in an area of gently rolling hills with elevations of approximately 990 feet above mean sea level (ft msl) to 1,040 ft msl. Two small valleys traversed the FOSC site in a general northeast to southwest orientation. One valley small was located on the northern portion of the site, originating in the approximate area of the off-site Chastain Cleaners facility and traversing the site to the southwest, beneath the location of the former on-site DC tenant bay.

The second small valley was shown on the southern portion of the FOSC site. The two previously existing small valleys were apparently filled for the construction of the FOSC development. The unfilled remnants of these two small valleys are still present west and southwest of the FOSC site, as shown on the 2014 USGS Sandy Springs topographic map (**Figure 5**).

The 2014 USGS topographic map (**Figure 1**) shows the eastern portion of the site sloping westward, and then leveling to the west. Surface water flow at the FOSC site and immediate vicinity generally flows west and southwest.

3.2.2 Geology - Soil/Unconsolidated Residuum

Soil samples collected and logged during the multiple subsurface investigations performed at the site indicate that there is approximately 1-22 feet of fill material overlaying residual native soils on site. The fill soils generally consisted of silts with varying amounts of clay, fine sand, mica, weathered mica schist (saprolite), and less-weathered rock fragments.

Residual soil/unconsolidated residuum was encountered below the fill materials, above competent bedrock. The residual soils were generally classified as silts and fine sand with varying amounts of clay, mica, and weathered rock fragments.

As noted previously, fill materials are present near land surface across the majority of the FOSC site with thicknesses ranging from approximately one to twenty-two feet. The in-filling of the site is suggested by the presence of two small valleys shown on 1927-1930 topographic maps geo-referenced to current Atlanta-area street maps, with the approximately boundary of the FOSC site and structures overlain (**Figure 5**) (<u>http://disc.library.emory.edu/atlantamaps/atlanta-1927-30-topographic-maps-with-open-street-map-overlay/</u>). Hence, consistent with the previously existing topography, fill thickness generally thickens from east to west

3.2.3 Bedrock Geology

As stated herein in **Section 3.2.3**, according to the Georgia Geological Survey publication "Geology of the Greater Atlanta Area" (Bulletin 96, 1984), the rocks underlying the FOSC site are undifferentiated, ductally sheared rocks of the Brevard fault zone. According to the Georgia Geological Survey publication "Geologic Map of Georgia" (1979, Atlanta Area, North 4 East 2) rocks beneath the site are "button mica schist," a type of high-grade metamorphic rock.

The mica schist rock type mapped by the Georgia Geological Survey was confirmed to be present beneath the FOSC site during rock drilling conducted by MEI in 2008 to 2009, as shown in MEI's January 14, 2010 CSR. Further, the mica schist beneath the site was found to be interfingered with more highly metamorphosed gneiss and amphibolite. Depth to competent bedrock at the FOSC site varies from approximately 40 to 65 feet below surface grade (BGS).

3.3 CSM - Soil/Residuum

As noted previously, there is approximately 1-22 feet of fill material overlaying residual native soils on site. The in-filling of two small valleys formerly at the FOSC was necessary to level and develop the site into its current, relatively level configuration. The original, pre-development topographic surface has played a significant role in the migration of contaminants released from the former on-site DC source and the two off-site sources. The original topography of the site is shown on a 1927-1930 topographic map with the approximately boundary of the FOSC site and associated structures overlain (**Figure 15**).

24

3.3.1 Delineation of COC Concentrations

The extent of on-site soil contamination was delineated through previous investigations conducted initially by Keramida Environmental and through subsequent exhaustive soil boring and sampling conducted by UC. During the course of these previous soil investigations, the following activities were performed to delineate the lateral and vertical extent of soil contamination on site:

- 1. Keramida (Phase II ESA, March 30, 2005) installation of 11 soil borings, including:
 - a. Seven borings between 18 and 30 ft deep (four converted to monitoring wells).
 - b. Four shallow borings within the former DC tenant bay.
 - c. Collection and analysis of 18 soil samples for VOC concentrations.
 - d. PCE present in 16 of 18 samples at 0.014 to 34.8 mg/kg.

2. UC (PPCAP, 28-NOV-05):

- a. Installation of 18 direct push borings.
- b. Installation of 8 groundwater monitoring wells.
- c. Collection and analysis of 63 soil samples for VOCs concentrations
- d. PCE present in 25 of 63 soil samples at concentrations up to 380 mg/kg
- 3. UC extent of contamination investigation (PPCSR, 10-JUN-08):
 - a. Installation of 49 direct push (DP) environmental assessment borings, (EAB-1 EAB-49), to assess extent of PCE in soil for remedial actions.
 - Installation of two hand-auger borings (HA-1 & HA-2) inside coin dealer & restaurant tenant spaces to assess the extent of PCE under these facilities for remedial actions;
 - c. Collection and field screening of soil samples every two feet from DP borings.
 - d. Selection of two to three soil samples from each DP & hand auger boring for analytical testing for PCE concentrations.
 - e. PCE present in 97 of 106 samples collected.
 - f. PCE present in excess of NCs in 56 samples.
 - g. PCE present in excess of approved Type 4 RRS (1.18 mg/kg) in 35 samples.

Additionally, following the soil remediation project (Sections 2.1 and 3.2.2), MEI installed 22 monitoring wells and 4 DP borings, and collected and analyzed 33 soil samples during our 2008-

2009 PCAP/CSR investigation. Analysis of these soil samples indicated that on-site concentrations of PCE (the principle COC) ranged from below detection limits (BDL) to 300 micrograms per kilogram (μg/kg). Additionally, during MEI's 2008-2009 investigation, no soil sample collected from an off-site boring contained any COCs in excess of default, Type 1 RRS.

Hence, through the installation of approximately 106 borings and collection and analysis of approximately 220 soil samples, the extent of soil contamination on the FOSC site was well defined. Consequently, the potential human health risks associated with on-site soil contamination, reflected in RRS exceedances, was also well defined prior to initiation of the 2007-2008 soil remediation project. An isoconcentration contour map showing the delineated extent of PCE in soil was provided as Figure 4 in UC's 10-JUN-2008 PPCSR.

3.3.2 Soil Remediation

A soil remediation/excavation project was conducted in the area surrounding and within the former on-site DC tenant bay. Prior to excavating the contaminated soil, the lateral and vertical extent of impacts exceeding the Type 4 RRS for PCE, the principle COC, was defined through the installation of 49 environmental assessment borings and collection and analysis of 106 soil samples (see discussion in **Section 3.3.1**).

Prior to commencement of the corrective actions, PCE was the only constituent detected in soil above the Type 4 RRS. PCE was therefore the primary COC driving soil corrective action.

Remedial operations included excavation and disposal of impacted soils with COC concentrations exceeding the approved 1.18 mg/kg Type 4 RRS for PCE. Excavation began in November 2007 and concluded in May 2008.

Analytical testing of initial verification samples indicated the presence of COCs in approximately 1-5% of excavated areas at concentrations greater than the approved RRS. Reexcavation was then conducted in these areas with subsequent follow-up verification sampling. This process continued until the results of the verification sampling demonstrated that the soils remaining in place complied with the approved RRS. During excavation of Areas 5 and 6 undercutting the adjacent tenant space restaurant, an approximate 3-foot diameter cylindrical excavation was observed directly below the spread footing for the south wall of the former DC facility. The origin of the cylindrical excavation was likely a former test boring for a caisson foundation. This cylindrical excavation/preferential pathway (Area EA 6A) was remediated by over drilling with a 6-foot diameter auger to a depth of 31 ft BGS, at which point competent rock was encountered.

Through the soil remediation process:

- Five stages of excavation, follow-up verification sampling and subsequent overexcavation were conducted at some locations.
- Approximately 3,830 tons of impacted soils were removed
- A preferential vertical pathway to groundwater was discovered directly beneath the former DC tenant bay.
- Collection and analysis of 213 soil verification samples indicated that all soil in excess of RRS was successfully removed.
- Collection and analysis of 146 split verification samples provided separate confirmation that all soil in excess of RRS was successfully removed.

The results of the soil remediation verification sampling therefore confirm successful removal of all impacted soil in excess of calculated RRS. This work is documented in UC's June 8, 2010 Prospective Purchaser Compliance Status Report (PPCSR).

Hence, the on-site soil portion of the CSM is of formerly contaminated soil that has been remediated and therefore does not pose a significant human health or environmental risk.

3.3.3 Magnitude and Extent of Remaining COC Concentrations

The results of soil verification sample analyses collected during the soil remediation project indicate that the following are the maximum concentrations of the principle COCs remaining in on-site soil:

Compo	Ind Approx. Max. Residu	<u>aal Type 4 RRS</u>
• Ben	zene 0.016 mg/kg	53.1 mg/kg
• PCE	1.1 mg/kg	1.18 mg/kg
• TCI	0.18 mg/kg	0.7 mg/kg
• cDC	E 0.2 mg/kg	1.84 mg/kg
• VC	Not Detected	0.2 mg/kg

These remaining COC concentrations in soil are all below applicable RRS.

3.4 CSM - Groundwater

3.4.1 Groundwater Flow Directions, Gradients and Velocity

Groundwater elevation data were used to construct potentiometric map for the FOSC site for the most recent, March 10, 2015 groundwater sampling event (**Figure 4 in Appendix A**). Based on the potentiometric map included as **Figure 4**, groundwater flow on site is complex, with a groundwater flow divide. This groundwater divide and groundwater flow clearly mimics the pre-development topography at the site, as evidence by an overlay of the March 10, 2015 groundwater **5**).

As shown on **Figure 4**, Groundwater flows toward the southwest to west-southwest on the northern portion of the property, including the on-site release source area. Groundwater beneath the southern portion of the property flows toward the south to south-southwest (**Figure 4**).

The groundwater hydraulic gradient in the source area generally varies from approximately 0.01 to 0.05 feet/foot (ft/ft), with an average of approximately 0.03 ft/ft. As shown on **Figure 4**, the direction of groundwater flow is generally from the north-northeast toward the south-southwest.

According to a previous hydrogeological assessment, described by UC in their November 28, 2005 PPCAP, the overall porosity of the residuum beneath the site is approximately 0.22, while the effective porosity is approximately 0.20. Additionally, the hydraulic conductivity of unconsolidated residuum beneath the site is reported to vary between approximately 2.29E-05 centimeters per second (cm/s) and approximately 2.64E-04 cm/s, with a geometric mean of approximately 7.78E-05 cm/s.

Groundwater flow velocity (Darcy velocity) was calculated using the site-specific data above and the Darcy Equation:

$$v = K * i / n$$

Where:

K = hydraulic conductivity = 7.78E-05 cm/s = 80.4 ft/yr i = hydraulic gradient (dimensionless slope) ≈ 0.03 (average value) n = porosity ≈ 0.2 (20% porosity) estimated for residuum.

Therefore,

v = (80.4 ft/yr)(0.03)/0.2

v = 12 ft/yr = approximate average groundwater flow velocity.

Hence, the average groundwater flow velocity is approximately 12 ft/yr, with a flow direction toward the west-southwest near the former on-site DC release source area, and a south-southwesterly flow direction beneath the southern portion of the site.

3.4.2 Water Resources

3.4.2.1 Drinking Water Supplies

The City of Atlanta's water supply and treatment system is owned and operated by the City of Atlanta Department of Watershed Management (DWM). The geographic area served by the City of Atlanta water treatment and distribution system covers an area greater than 650 square miles and includes the City of Sandy Springs

(www.atlantaga.gov/modules/showdocument.aspx?documentid=2831). Additional public water

supplies in the area are operated by the Dekalb County Department of Watershed Management (DWM) (<u>http://dekalbwatershed.com/Chattahoochee.htm</u>)

The intakes for these two municipal water supplies are located the following distances from the FOSC site:

• Atlanta DWM – Atlanta – Fulton County Water Treatment Plant	12.6 miles
• Atlanta DWM – Chattahoochee Water Treatment Plant	6.1 miles
• Atlanta DWM – Hemphill Water Treatment Plant	7.0 miles
• Dekalb County DWM – Chattahoochee Raw Water Transmission Main	6.9 miles

A search of U.S. Geological Survey records of wells in Georgia

(http://waterdata.usgs.gov/ga/nwis/inventory) indicates that there are no water supply wells located within a two-mile radius of the FOSC site. Specifically, there are no records of any water supply wells within a four-mile-by-four-mile latitude and longitude defined "box" centered on the FOSC site. Hence, groundwater impacts on the FOSC site are not a potential threat to public or private water supplies.

3.4.2.2 Surface Water

The 2014 USGS Sandy Springs topographic quadrangle map (**Figure 1**) shows that the nearest downgradient surface water stream is an unnamed tributary to Nancy Creek located approximately 1,200 feet southwest of the on-site groundwater contaminant plume.

The 1928 USGS topographic map (**Figure 55**) shows two intermittent streams/drainage conveyances in the two pre-development valleys within the footprint of the FOSC site. Subsequent USGS Sandy Springs quadrangle topographic maps from 1955, 1968, 1973 and 1983 do not indicate the presence of these streams within the two valleys. The FOSC site was originally developed in 1987, at which time the valleys were filled in, and the northernmost of the two intermittent streams / drainage conveyances shown on the 1928 topo map was apparently channelized into a culvert.

The culvert discharges on the undeveloped Long Island Terrace property, into a drainage conveyance near the base of the fill material, within the valley shown on the 1928 topographic map (**Figure 5**). The discharge location of the culvert is also shown on **Figures 2-11 in Appendix A.**

MEI collected a grab sample of the water exiting the culvert on May 3, 2017 as directed in EPD's Comment Letter of November 30, 2016, Item #6. This sample was collected in accordance with EPA Region 4 Science & Environmental Support Division (SESD) "Quality System & Technical Procedures" – "Surface Water Sampling" operating procedures. The sample was immediately placed on ice after collection and was shipped under chain of custody protocols to Environmental Science Laboratory in Mount Juliet, Tennessee. The sample was analyzed for VOCs concentrations by EPA Method 8260B. Analytical results from this surface water sample are contained in **Appendix G**.

The results of this analysis show that there were no chlorinated hydrocarbons or VOCs were present in the sample. The analytical results indicate that for five compounds (acetone, acrolein, dichlorodifluoromethane, 2,2-dichloropropane, and trichlorofluoromethane), the batch quality control (QC) was outside the laboratory QC range for precision or accuracy. Only one of these compounds, acetone, is a COC and also a common laboratory artifact, but was not detected in the sample. Therefore, the surface water analytical results confirm that there is no evidence that the subsurface contaminant plume originating from the former onsite DC operation impacted the channelized surface water runoff within the culvert.

Since the downgradient extent of the groundwater contaminant plume has been defined, and the surface water sample did indicate the presence of any chlorinated hydrocarbons, the FOSC site is not a potential threat to underlying conveyances or downgradient surface water bodies.

31

3.4.3 Groundwater Contaminant Plumes

3.4.3.1 Plume Delineation

The groundwater contaminant plume was delineated through the installation of 33 monitoring wells between 2005 and 2009 and through the collection and analysis of 163 groundwater samples from these wells between 2005 and 2015. The results of both the 2008/2009 and 2015 groundwater sampling events indicate that the lateral and vertical extent of groundwater contamination has been defined.

The results of the March 2015 groundwater sampling event indicate that there are 14 locations on site (listed below) where groundwater exceeds applicable Type 3/Type 4 RRS for one of five COCs (**Table 20 and Figure 7-11**). These COCs and on-site exceedance locations are:

- Benzene (MWs-20, 21 & 28)
- cDCE (MWs-2, 4, 16, 20 & 28)
- PCE (MWs-2, 3, 5, 9, 13S, 14, 16, 20, 22, 23 & 28)
- TCE (MWS-2, 4, 6, 16, 20 & 28)
- VC (MWs-16 & 28)

The March 2015 groundwater sampling results also indicate that there are no off-site groundwater COC concentrations in excess of applicable Type 1/Type 2 RRS (**Tables 2 & 18**). The 22 μ g/L of PCE reported in March 2015 at monitoring well MW-13S, adjacent to the western property boundary, suggests the possibility that off-site groundwater may be impacted above the 11 μ g/L Type 1/Type 2 residential RRS. However, at two wells located farther downgradient, MW-30 and MW-31, the March 2015 PCE concentrations were 10 μ g/L and <1 μ g/L (i.e., "BDL") respectively. Hence the downgradient extent of the plume is defined west of and downgradient from the former on-site release source area.

A groundwater quality map showing analytical results of the March 2015 groundwater sampling event in comparison to previous (2008/2009) analytical results at each well is included as **Figure 6**. Groundwater isoconcentration contour/plume delineation maps for the five COCs present in on-site groundwater in excess of applicable Type 3/Type 4 Commercial RRS are presented as **Figures 7-11 in Appendix A**.

3.4.3.2 Qualifying Delineation Criteria

The Georgia VRP Act (O.C.G.A. §12-8-100 et seq.) defines five potential criteria that may be used as satisfactory evidence of the delineation of the horizontal and vertical extent of soil or groundwater contamination. These five criteria are (O.C.G.A. §12-8-108):

- 1. Concentrations from an appropriate number of samples that are representative of local ambient or anthropogenic background conditions not affected by the subject site release;
- Soil concentrations less than those concentrations that require notification under standards (i.e., notification concentrations or "NCs");
- 3. Two times the laboratory lower detection limit concentration using an applicable analytical test method recognized by the USEPA;
- 4. For metals in soils... [Not Applicable]
- 5. Default, residential cleanup standards;

The groundwater contaminant plume that originated from the former on-site DC source has been defined under criteria number 5 above. Specifically, COC levels are below default, Type 1 residential cleanup standards in the monitoring wells farthest downgradient to the south and southeast (MWs 7, 33 and 15), farthest downgradient to the west (within the in-filled topographic valley beneath the site) (MWs 30 & 31) and cross-gradient to the north (MW-25). Groundwater isoconcentration contour/plume delineation maps for the five COCs (benzene, cDCE, PCE, TCE and VC) in on-site groundwater in excess of Type 3/Type 4 RRS are presented as **Figures 7-11 in Appendix A**.

Collection of soil samples during multiple site investigations by MEI and others have defined the extent of soil contamination to within default, Type 1 RRS. Hence, the downgradient and crossgradient extent of soil and groundwater contamination associated with the release from the former on-site DC operation have been delineated in accordance with applicable language in the authorizing statute. Delineation of the upgradient extent of groundwater contamination associated with the two off-site release sources, Chastain Cleaners and the CITGO/RRFM, are the responsibilities of the respective property owners and/or business operators at those two locations.

3.4.3.3 Plume Stability & Natural Attenuation

The groundwater contaminant plume associated with the former on-site DC release source is stable and naturally attenuating at a rapid rate. Comparison of the results of the most recent, March 2015 groundwater sampling event with those of the previous 2009 or 2008 event (the most recent previous event varies well to well) generally indicate significant and/or remarkable reductions in PCE, TCE and cDCE across the site, with few exceptions (**Figure 6**)

The rapid natural attenuation of groundwater contamination is illustrated on a groundwater quality map included as **Figure 6**, which shows the PCE, TCE, cDCE and VC results from the March 2015 sampling event, as well as the previous results from 2008 or 2009. As shown by the data on **Figure 6**, at 12 wells surrounding and downgradient from the former on-site drycleaner (MWs-2, 3, 4, 9, 13S, 14, 18, 19, 26, 27 and 30), PCE declined by an average of approximately 74%, TCE by approximately 49% and cDCE by approximately 19%.

These reductions in PCE, TCE and cDCE concentrations in the release source and downgradient areas show clearly that natural attenuation is occurring at a rapid pace. Remediation of the contaminated source area soils (secondary source material) has no doubt been an important contributing factor to the observed rapid natural attenuation of groundwater contamination.

Hence, the groundwater contaminant plume aspect of the CSM is of a delineated, stable plume that is rapidly attenuating.

3.4.4 Groundwater Fate & Transport/Natural Attenuation Modeling

3.4.4.1 Domenico Steady-State Fate & Transport / Natural Attenuation Model

The Domenico analytical model (Domenico, 1987) is a solution to the advection-dispersion partial-differential equation of contaminant transport in groundwater. The Domenico model is commonly used to predict downgradient groundwater contaminant concentrations along a straight-line flow path at a given distance from a release point source (USEPA, 2002; USEPA, 1996; ASTM, 1995).

The analytical solution form of the Domenico equation was programmed into a Microsoft Excel spreadsheet to perform the modeling documented herein. The model was applied to the FOSC groundwater contaminant plume to estimate downgradient COC concentrations in groundwater at a 1000-foot distance downgradient from the delineated plume boundary, as specified in the Georgia VRP Act (O.C.G.A. § 12-8-102 (b)(11)(C)). The model was also used to estimate the maximum downgradient extent of the groundwater contaminant plume for the five COCs exceeding Type 3/4 Commercial RRS in on-site groundwater.

Use of the model requires contaminant concentration data at a minimum of one source area monitoring well and one to two downgradient wells. The groundwater data must show a reasonable plume pattern typical of "point sources" (i.e., contaminant concentration is highest in the source well and gradually decreasing in downgradient wells). The model is calibrated by adjusting three model input parameters to fit groundwater concentration spatial pattern based on the spatial concentration distribution data. The model after calibration is then used to predict the horizontal plume length in groundwater.

The Domenico analytical model is based on the advection-dispersion partial-differential equation for organic contaminant transport processes in groundwater as described in Domenico and Robbins (1985). Under conditions of a steady-state, continuous source with one-dimensional groundwater velocity, three-dimensional dispersion, and a first order degradation rate constant, the analytical solution can be expressed as the following equation (Domenico 1987):

$$\frac{C_x}{C_0} = \exp\left\{\frac{x}{2\alpha_x}\left[1 - \left(1 + \frac{4\lambda\alpha_x}{\upsilon}\right)^{\frac{1}{2}}\right]\right\} erf\left[\frac{Y}{4(\alpha_y x)^{\frac{1}{2}}}\right] erf\left[\frac{Z}{4(\alpha_z x)^{\frac{1}{2}}}\right]$$

Where,

 C_x - contaminant concentration in a downgradient well at distance x (mg/L),

- Co contaminant concentration in the source well (mg/L),
- x centerline distance between the source well and downgradient well (cm),
- α_x , α_y & α_z longitudinal, transverse, and vertical dispersivity (cm), respectively,
- λ degradation rate constant (day⁻¹),
- v groundwater velocity (cm/day),

Y - source width (cm),
Z - source depth (cm),
erf - error function,
exp - exponential function.

The Domenico groundwater contaminant fate & transport model assumes:

- 1. A source of finite width and thickness dimensions perpendicular to groundwater flow,
- 2. A steady state (steady or fixed concentration) source,
- 3. Homogeneous aquifer properties,
- 4. One dimensional groundwater flow,
- 5. First order degradation rate,
- 6. Contaminant concentration estimated at the centerline of the plume,
- 7. Molecular diffusion based on concentration gradient is neglected,
- 8. No retardation (e.g., sorption) in transport processes.

Understanding model assumptions is crucial for simulating transport processes of contaminants in groundwater. The inherent assumptions in the model equation make it a conservative means of estimating downgradient contaminant concentrations. Specifically, the model assumes a steady-state, fixed concentration contamination source within a rectangular area perpendicular to the direction of groundwater flow/plume migration. As documented in **Section 3.4.3.4**, groundwater contaminant concentrations in the release source area and downgradient areas are rapidly attenuating.

Hence, the steady-state (fixed concentration) assumption implicit in the model is a conservative assumption. MEI utilized the highest groundwater concentrations of benzene, cDCE, PCE, TCE and VC measured in groundwater during the March 2015 sampling event as the steady-state source area groundwater concentration (C_{source}). The source area width (W) was assumed to be approximately 32.4 feet, based on the 30-foot north-south width of the former DC tenant bay, and a composite groundwater flow direction toward the west-southwest, with a bearing of 250 degrees. Hence, the width of the former DC tenant bay perpendicular to flow (at a 90° angle to 250°, i.e., 160° or 340°) is approximately 32.4 feet, the assumed width of the source area.

The value of the source area depth was left at the default value of 200 cm, to be conservative. Source zone / mixing zone thickness was estimated at 216 cm (7.1 ft), which is the average distance between the depth at which groundwater was first encountered in borings and depth to competent bedrock/refusal.

Understanding chemical properties in relation to model assumptions also is critical in interpreting the transport model results. For example, MTBE has a low potential for sorption onto soil particles/organic carbon due to its low soil-groundwater organic carbon partition coefficient (K_{oc}) value (12 L/kg) while PCE has a relatively high K_{oc} value (94.95 L/kg) and a corresponding high retardation potential.

"Retardation" is the slower movement of a contaminant in groundwater, relative to the groundwater velocity, due to sorption of the contaminant onto soil particles and organic carbon. Thus, the speed of contaminant transport is "retarded" relative to groundwater velocity.

Therefore, the lack of retardation in the model, assumption No. 8 above, may not be a significant factor for MTBE, but suggests the model tends to overestimate downgradient concentrations of COCs with higher K_{oc} values like benzene, PCE and TCE. Hence, for these compounds, the predicted downgradient concentration is a conservative estimate.

All model input parameters consisted of one the following:

- Site-specific information contained in this report, and/or in previous reports on the FOSC site by MEI and others, as documented in **Table 1**.
- Conservative, default values published by:
 - The US EPA (Regional Screening Levels (RSL) Table, May 2016)
 - The American Society for Testing and Materials (ASTM)
 - (Standards E2081-00 & E1739-95)
 - The Georgia EPD
- Values from public or published, documented sources
 - o (U.S. National Weather Service, Weidemeir, et al., 1999).

All fate and transport model input parameters, parameter values, data sources, formulas for individual/intermediate variables, conversion factors, and intermediate and final calculations are documented in **Tables 3-8 in Appendix B**.

An implicit assumption is that model input parameters are in consistent units, hence modeled linear dimensions (distances, depths, widths, etc.) are in centimeters (cm); velocities (distance/time) are in cm/day or cm/year. Concentration values were input in milligrams per liter (mg/L). Corresponding site-specific values more commonly expressed in feet, inches, ft/yr, in/yr, micrograms per liter (μ g/L), etc., and corresponding conversion factors/formulas, are all given in the groundwater fate & transport modeling calculations documented in **Tables 3-8 in Appendix B**

Significant aspects of the groundwater fate and transport modeling relative to VRP regulatory compliance, derivation of natural attenuation constants, calculation of the soil-to-groundwater leaching source term and model calibration are discussed in **Sections 3.4.4.2 – 3.4.4.5** as follows. Groundwater fate and transport modeling results are discussed in **Section 3.4.4.6**, and are summarized in **Tables 3-8 in Appendix B**.

3.4.4.2 Point of Exposure, Estimation of Centerline Distance Modeled

The Domenico fate and transport model was applied to estimate downgradient COC concentrations at a 1000-foot distance downgradient from the delineated plume boundary, at the "point of exposure" (POE) as defined in the Georgia VRP Act (O.C.G.A. § 12-8-102 (b)(11)(C)).

However, EPD's November 30, 2016 "Comment Letter" reviewing MEI's December 2015 CSR, Comment #6, stated the following:

"EPD does not agree with Section 3.4.2.2 of the December 2015 VRP and CSR, which stated that because the downgradient extent of the groundwater plume has been defined, the downgradient surface water stream would not be impacted by the constituents of concern (COC) from the subject property in the future. The nearest surface water body originates on-site along the western boundary of the subject property, as observed during EPD's October 5, 2016 site visit, not 1,200 feet southwest of the plume as stated in

Section 3.4.2.2. Please collect a minimum of one (1) sample from the surface water and include a figure illustrating the creek as the nearest Point of Exposure (POE)."

MEI has performed several tasks in response to this comment. First, as described in **Section 3.4.2.2 "Surface Water"**, a grab sample of the water exiting the culvert on the undeveloped Long Island Terrace property was collected on May 3, 2017 and analyzed for VOC concentrations by EPA Method 8260B. The results of this analysis (**Appendix G**) indicate that there were no VOCs detected present in the sample.

Additionally, MEI modeled the fate & transport of the five compounds in on-site groundwater exceeding Type 3/4 Commercial RRS using both potential downgradient points of exposure, i.e., both the culvert outlet on the Long Island Terrace property, and a hypothetical drinking water well 1000 feet downgradient.

Figures 7 – 11 in Appendix A are groundwater isoconcentration contour/plume delineation maps showing the creek as the nearest POE for the five COCs exceeding RRS (benzene, cDCE, PCE, TCE & VC) in on-site groundwater. The fate & transport model results shown on Figures 7 – 11 illustrate the model calculations shown on Tables 3-8 in Appendix B. Groundwater plume delineation maps for these five compounds showing the hypothetical 1,000 foot downgradient well as the POE are presented as Figures 7 – 11 in Appendix A.

One of the conditions for using the Domenico Model to simulate contaminant fate & transport is that the selected downgradient well must be along the plume centerline, at a distance specified by the user. The distances modeled, from release source to POE includes both distance from the delineated downgradient edge of the contaminant plume to the POE, as well as the distance along flow path from the release source to the delineated edge of the plume.

The on-site release source area for chlorinated COCs is the former DC tenant bay on the northern tip of the FOSC north wing (**Figure 3**). Groundwater beneath the northwest portion of the FOSC, including the release source, and adjacent off-site area flows predominantly toward the west-southwest, or on an approximate bearing of 250 degrees. The distances from the release source to the downgradient delineated plume edges for three of the four chlorinated COCs

39

exceeding RRS (cDCE, PCE and TCE), along the 250° groundwater flow path, were estimated from the plume maps included as **Figures 7-11**.

Although the release source for benzene is the off-site CITGO/RRFM, the location of the highest groundwater benzene concentration on the FOSC site is monitoring well MW-28 (135 μ g/L). Likewise, the location of the highest vinyl chloride (VC) concentration on site is also at MW-28. Hence, for purposes of modeling the fate & transport of benzene and VC in groundwater, MW-28 was assumed to be the on-site "release source area" for these two compounds. The distances from the surrogate source area (MW-28) to downgradient delineated plume edges, along the predominant groundwater flow path (250° bearing), were estimated from the benzene and VC isoconcentration / plume delineation maps (**Figures 7 & 11**). Other source area parameters, such as source width and thickness, depth to impacted soil, mixing zone thickness, etc. were assumed to remain constant at both the actual on-site release source (the former DC tenant bay) and the surrogate release source (MW-28).

The estimated distances from the on-site release source area, and surrogate benzene release source area, and the total plume centerline/groundwater fate & transport distances modeled are summarized below:

<u>Point of Exposure – Stream on Long Island Terrace Property</u>			
COC	Distance: Source - <u>Delin. Plume Edge</u>	Distance: Plume Edge <u>Pt. of Exposure</u>	Distance, total
Benzene	50 ft	405 ft	455 ft
	(1,524 cm)	(12,344 cm)	(13,868 cm)
cDCE	70 ft	305 ft	375 ft
(N. Source Area)	(2,134 cm)	(9,296 cm)	(11,430 cm)
cDCE	50 ft	200 ft	250 ft
(S. Source Area)	(1,524 cm)	(6,096 cm)	(7,620 cm)
PCE	300 ft	75 ft	375 ft
	(9,144 cm)	(2,286 cm)	(11,430 cm)
TCE	175 ft	200 ft	375 ft
	(5,334 cm)	(6,096 cm)	(11,430 cm)
VC	47 ft	218 ft	265 ft
	(1,433 cm)	(6,645 cm)	(8,077 cm)

Point of Exposure – Hypothetical 1,000 ft Downgradient Water Well			
	Distance: Source -	Distance: Plume Edge	
COC	<u>Delin. Plume Edge</u>	Pt. of Exposure	<u>Distance, total</u>
Benzene	50 ft	1,000 ft	1,160 ft
	(1,524 cm)	(30,480 cm)	(32,004 cm)
cDCE	70 ft	1000 ft	1,110 ft
	(2,134 cm)	(30,480 cm)	(32,614 cm)
PCE	300 ft	1000 ft	1,300 ft
	(9,144 cm)	(30,480 cm)	(39,624 cm)
TCE	175 ft	1000 ft	1,175 ft
	(5,334 cm)	(30,480 cm)	(35,814 cm)
VC	47 ft	1000 ft	1,070 ft
	(1,433 cm)	(30,480 cm)	(31,913 cm)

3.4.4.3 Derivation of Natural Attenuation Rate/Decay Constants

MEI utilized USEPA methods to derive site-specific attenuation/"decay" rate constants (i.e., values of lambda, λ) for use in the contaminant fate & transport modeling. These methods are described in the EPA documents "Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies" (USEPA, 2002) and "Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water" (USEPA, 1998). Calculated site-specific values of the attenuation rate constant, lambda (or K_{point} in USEPA, 2002) were compared to values published in Howard, et al. (1991) "Handbook of Environmental Degradation Rates."

First, MEI calculated approximate attenuation rate constants for the five COCs exceeding RRS in on-site groundwater using the measured changes in contaminant concentrations at each well from the time of peak contaminant concentration, i.e., 2008 or 2009 levels, to the most March 2015 levels with the exponential growth/decay equation:

$$C_t = C_o e^{-kt}$$

Where:

- C_t = Concentration at time (t), i.e., 2015 C_t = Original (pack) concentration (in 2008 or
- $C_o = Original (peak) concentration (in 2008 or 2009)$
- e = natural exponent
- k = attenuation rate constant (time⁻¹)
- t = time.

The exponential decay equation was then rearranged to solve for k, the attenuation/degradation rate constant for a single COC at a single well:

$$k = ln (C_t / C_o) / t$$

The geometric mean of attenuation rate constants were calculated for groups of wells within each of three areas: the release source area (immediately downgradient from the on-site release source), the downgradient plume (originating from the on-site release source), and wells impacted from the off-site release sources.

MEI also utilized the method for determination of the "Concentration vs. Time Attenuation Rate Constant" described in EPA (2002). This method requires a linear-linear plot of the natural log (ln) of contaminant concentration on the y-axis against elapsed time (days) on the x-axis.

An exponential regression analysis through the plotted points gives the equation of the line of best fit. If the data plot to a straight line, the degradation rate relationship is first order. The slope of this regression line is the attenuation rate constant, k_{point} .

The concentration versus time attenuation rate constant at a single monitoring well (k_{point}) is not indicative of plume trends. However, the calculation of k_{point} at multiple wells within the entire plume can be used to assess plume attenuation and trends (EPA, 2002). The geometric mean of k_{point} attenuation rate constants were calculated for groups of wells within the release source area, the downgradient plume, and wells impacted from off-site release sources.

These geometric means k_{point} values for the source area (k_{source}), downgradient plume, and off-site source groups were then compared to published values (Howard, et al., 1991). In all cases, the calculated site-specific geometric mean attenuation rate was within the published range of values.

At most contaminant release sites, the source area attenuation rate is slower than the rate in the downgradient plume. Hence, concentration profiles tend to retreat back toward the source over

time. The lifecycle of the plume is thus determined by source attenuation rates, which can be predicted by concentration versus time plots for the most contaminated wells (EPA, 2002).

MEI utilized the lower, more conservative calculated geometric mean value of lambda/ k_{point} (i.e., slower decay) from either the source area (k_{source}) or downgradient plume in the contaminant fate & transport modeling.

3.4.4.4 Soil to Groundwater Leaching

As stated previously, the Domenico model uses a steady-state (fixed concentration) rectangular source of fixed width and depth/thickness, oriented perpendicular to the direction of groundwater flow/plume transport. Leaching of residual soil contamination into underlying groundwater contributes to source area groundwater contaminant concentrations.

Since source area soils have been remediated, contributions to existing groundwater contamination from soil-to-groundwater leaching (C_{leach}) are relatively minor. Nonetheless, out of an abundance of caution, MEI calculated soil-to-groundwater leaching concentrations for the contaminant fate & transport modeling.

MEI utilized the highest groundwater concentrations of benzene, cDCE, PCE, TCE and VC measured in groundwater during the March 2015 sampling event, plus the calculated soil-to-groundwater leaching as the C_{source} concentration. Hence, the steady-state groundwater source area concentration is:

$$C_{source} = C_{max, gw} + C_{leach, soil}$$

Where:

 C_{source} – Steady-state groundwater concentration in source zone. $C_{max, gw}$ – Maximum groundwater contaminant concentration in source zone. $C_{leach, soil}$ – Soil-to-groundwater leachate concentration contributing to source.

Soil to groundwater leaching calculations (**Appendix C**) were performed using the equations and methods outlined in American Society of Testing and Materials (ASTM) Standard Guide E2081 "Standard Guide for Risk-Based Corrective Action" (ASTM, 2015). Soil to groundwater

leaching model input parameters, similar to the input parameters for the fate & transport modeling, were a combination of the following:

- Site-specific information contained in this report, and/or in previous reports on the FOSC site by MEI and others, as documented in **Table 1**.
- Conservative, default values published by:
 - o The US EPA (Regional Screening Levels (RSL) Table, May 2016)
 - o The American Society for Testing and Materials (E2081-00 & E1739-95),
 - o The Georgia EPD
- Values from public or published, documented sources (U.S. National Weather Service, Weidemeir, et al., 1999)

Surface water precipitation infiltration (I) into soil was estimated as a percentage of total rainfall using the following empirical formula (Wiedemeir, et al., 1999, p. 52):

$$\mathbf{I} = \mathbf{P}^2 * \mathbf{k}_i$$

Where: I = infiltration (cm/yr) P = annual precipitation (cm/yr) $k_i = infiltration coefficient (yr/cm)$

The annual normal precipitation for Atlanta is 49.71 inches per year (126 cm/yr), according to National Weather Service, Peachtree City, Georgia on-line records (<u>http://www.srh.noaa.gov/ffc/?n=rainfall_scorecard</u>). The value of k_i is dependent upon soil type, with values of 0.0018 for sandy soil, 0.0009 for silty soil, and 0.00018 for clay soil (Wiedemeir, et al., 1999). Hence the empirically estimated precipitation infiltration rate is:

$$I = (126 \text{ cm/yr})^2 * (0.0009 \text{ yr/cm}) = 14.3 \text{ cm/yr} = 5.65 \text{ in/yr} =$$

Soil to groundwater leaching formulas, input parameters, parameter values, data sources, and calculation results are presented in **Tables 3-8 in Appendix B**. The results of the soil to groundwater leaching calculations are briefly summarized below.

	Soil - Maximum	Soil to GW
COC	Residual Concentration	Leaching Concentration
Benzene	0.016 mg/L	0.0013 mg/L
cDCE	0.30 mg/L	0.11 mg/L
PCE	1.1 mg/L	0.17 mg/L
TCE	0.18 mg/L	0.043 mg/L
VC	ND – Subst. 0.0012 MDL	0.00062 mg/L

3.4.4.5 Model Calibration

The historically observed downgradient transport of PCE from the source area to downgradient wells was used to calibrate the model. PCE was used since it was the substance originally released on from the on-site former DC source.

The model was calibrated using the following site-specific values:

- Distances from the source area to downgradient wells.
- Historical groundwater PCE concentrations:
 - Source area maximum concentrations, both historical and recent
 - Downgradient well concentrations
- Groundwater velocity
- Attenuation rate constant

The farthest downgradient well from the release source where PCE has been detected is MW-30 (**Figure 9, Table 2**). Fortuitously, MW-30 is also located virtually directly hydraulically downgradient from the release source, at a distance of approximately 300 feet. This well was installed May 13, 2009 (**Table 2**) and first sampled on May 21, 2009. Source area well MW-2 (downgradient from the former DC source), which has historically contained the highest concentrations of dissolved contaminants, was sampled May 22, 2009. Hence, May 2009 is the first date on which there is groundwater plume data from both the source area and farthest downgradient well. The May 2009 PCE concentration in MW-2 was 2,900 μ g/L, while the concentration at MW-30 was 42 μ g/L.

The highest groundwater PCE concentrations were previously reported in groundwater closer to the DC release source, $11,000 \ \mu g/L$ at now-destroyed well MW-10 on 11/21/2006,

approximately 60 ft downgradient from the DC tenant bay. However, no corresponding downgradient data is available for this earlier date. Hence, determining the proper initial source area groundwater concentration ($C_{max, gw}$) for model calibration was problematic, since this concentration could vary between 2,900 µg/L (the 05/2009 value for which both source and downgradient data were available) and 11,000 µg/L (the highest reported value, from 11/2006).

Estimation of a source area soil PCE concentration ($C_{max, soil}$) for estimation of the soil to groundwater leaching concentration (C_{leach}) was also challenging. The maximum preremediation PCE concentration in soil at a single location, at boring I-DP-2, directly beneath a former DC machine location, was 380 mg/kg. However, the geometric mean of the maximum reported PCE concentrations, where PCE was present, in 10 select pre-remediation borings in and immediately surrounding the former DC tenant bay is 6 mg/kg PCE. Hence, the PCE soil source term ($C_{max, soil}$) could vary between 6 and 380 mg/kg.

MEI therefore adopted the following approach to model calibration. Initially, values of dispersivity and attenuation rate were held constant. A 2,900 μ g/L PCE concentration was assumed for C_{max, gw} (05/2009 concentration at MW-2) and the soil source area term was adjusted until the PCE concentration 300 feet downgradient matched the 05/2009 42 μ g/L concentration measured at MW-30. A soil source area concentration of 200 mg/kg produced the best fit.

A sensitivity analysis was then conducted for the Domenico model by varying input parameter values, one at a time, within reasonable ranges. Model outputs from various input values were compared with the "baseline" case. The sensitivity analysis results indicate that model output is sensitive to the following model input parameters:

- Longitudinal dispersivity (α_x)
- Groundwater velocity (*v*)
- Downgradient transport distance (x), and
- Attenuation rate constant (λ).

Since site-specific values of v, x, and λ have been calculated herein previously, but v and λ have a narrow range of values, a sensitivity analysis was performed for varying values of these

46

parameters. The four parameters were used to calibrate the model by changing the values of these parameters to best fit the May 2009 analytical data.

3.4.4.6 Downgradient Extent of Contaminant Plume

As stated previously, the Domenico model was used to estimate the maximum downgradient extent of the groundwater contaminant plume for the five COCs exceeding Type ³/₄ Commercial RRS in on-site groundwater. The model input parameters utilized were identical to those listed above, with one exception.

Instead of specifying a fixed distance downgradient (x) at which point the model would calculate a concentration (C_x), a trial-and-error approach was utilized to determine the distance downgradient at which the concentration, C_x , equaled the default Type 1 RRS. This trial-anderror determination of the downgradient distance at which the concentration (C_x) equaled the default Type 1 RRS was performed using the Microsoft Excel "Goal Seek" function.

The goal seek function allows the user to specify the desired result of a formula to find the input value necessary to achieve that result. In the Goal Seek dialog box, the user specifies the cell containing the formula ("Set Cell"), the desired value for the formula to return ("To Value", in this case, $C_x = Type 1$ RRS) and one of the source cells that the formula is dependent upon ("By Changing Cell", in this case, the downgradient distance, x). Both of the cell specifications must be a single cell reference or name. The "To Value" must be a number. The source cell specified to change ("By Changing Cell") to obtain the desired "To Value", must contain a number, rather than a formula.

The Goal Seek command then uses a simple linear search beginning with guesses on the positive or negative side of the value in the source cell (By Changing Cell). Excel uses the initial guesses and recalculates the formula. Guesses bringing the formula result closer to the targeted result (To Value) is the direction (positive or negative) in which Goal Seek continues to guess. If neither direction appears to approach the target value, Goal Seek makes additional guesses further away from the initial source cell value. After the direction is determined, Goal Seek uses

an iterative process in which the source cell value changes incrementally at varying rates until converging upon the target value.

The results of the calculations estimating the downgradient extent of the contaminant plume(s) are summarized in **Section 3.4.4.7**. The calculated downgradient extent of each of the five COCs exceeding commercial RRS on site are shown on **Figures 7-11 in Appendix A**.

3.4.4.7 Fate & Transport / Natural Attenuation Model Results

The results of the groundwater fate & transport modeling calculations are briefly summarized below.

<u> Point of Exposure – Off-Site Stream – Long Island Terrace Property</u>			
	Modeled Downgradient	Georgia In Stream	Distance fm Source -
<u>COC</u>	POE Concentration	Water Quality Standard	Downgrad. POE
Benzene	e ^{*1} 0.83 μg/L	51 µg/L	455 ft
cDCE ^{*2}	2.68 μg/L	$70 \ \mu g/L^{*3}$	375 ft
cDCE ^{*3}	3.83 μg/L	$70 \ \mu g/L^{*3}$	250 ft
PCE^{*2}	8.03 μg/L	3.3 µg/L	375 ft
TCE^{*2}	1.40 µg/L	30 µg/L	375 ft
VC^{*3}	0.24 µg/L	$2 \mu g/L$	250 ft
Notes: *1 Modeled Source Area = Surrogate Source at MW-28			
^{*2} Modeled Source Area = Former Onsite Drycleaner			
^{*3} Modeled Source Area = Surrogate Source at MW-16			
^{*4} No In Stream Standard for cDCE, Drinking Water MCL/Type 1 RRS substituted			

Point of Exposure – Hypothetical 1,000 ft Downgradient Water Well

	Modeled Downgradient	Default, Type 1 RRS/
COC	POE Concentration	Drinking Water MCL
Benzene	0.12 μg/L	5 µg/L
cDCE	0.31 µg/L	70 µg/L
PCE	0.18 μg/L	5 µg/L
TCE	0.14 µg/L	5 µg/L
VC	0.013 µg/L	2 µg/L

The results of the contaminant fate & transport modeling calculations in **Tables 3-8** and summarized above indicate that of the five COCs exceeding RRS in on-site groundwater, only PCE poses a potential surface water contamination risk at the off-site stream POE. However, the results of the surface water sampling conducted on May 3, 2017 (discussion in **Section 3.4.2.2**,

results in **Appendix G**) showed that no VOCs were present in the water within this stream. Hence, the groundwater contaminant plume does not represent a potential contamination threat to off-site surface water.

Additionally, the modeling results summarized above also show that the projected concentration at a POE 1000 ft downgradient from the delineated plume was significantly below default, Type 1 RRS/Drinking Water MCLs. Also, since there is no retardation in the Domenico model relative to groundwater velocity, the predicted downgradient PCE, TCE and benzene concentrations are conservative, maximum approximations. Therefore, the modeling results demonstrate that on-site groundwater contamination does not pose a significant risk to a hypothetical groundwater user at a downgradient point of exposure (POE) 1,000 feet from the defined plume boundary.

The calculated downgradient extent of the contaminant plume for the five COCs exceeding commercial RRS on site are shown on **Figures 7-11**. As shown on plume maps for cDCE and PCE, **Figures 8 & 9**, respectively, the calculated maximum downgradient extent of the contaminant plume for these two COCs is somewhat less than the current extent of each plume. The possible explanations for the difference between the calculated maximum downgradient extent extent of the plume include:

- The groundwater source area concentration (C_{source}) utilized in the modeling calculations are the most recent, March 2015 concentrations. Past concentrations of PCE and cDCE in source area groundwater were orders of magnitude greater than at present, resulting in a larger present-day plume in comparison to the estimated extent of a future plume.
- The plume did not originally degrade as rapidly in the past, before soil/secondary source removal, as it does at present, resulting in farther downgradient COC transport in comparison to estimated future transport.

Hence, the modeling results show that the downgradient extent of PCE and cDCE are not anticipated to expand significantly beyond current plume dimensions. The modeling results therefore confirm that the plume is stable and that on-site groundwater contamination in excess of Commercial RRS does not pose a significant human health risk to potential off-site users.

3.5 CSM – Vapor Intrusion

3.5.1 Vapor Intrusion Assessments

Multiple soil vapor investigations/assessments, vapor intrusion (VI) modeling, indoor air testing and a soil vapor survey were all performed to quantify potential human health risks from the VI exposure pathway. Previous VI assessments and mitigation efforts are described in the following reports:

- Vapor Intrusion Assessment and Mitigation Design Report (UC, 21-FEB-2008),
- Vapor Intrusion Mitigation System Implementation Report (UC, 3-JUN-2009),
- Vapor System Sampling and Modeling for Closure Report (UC, 25-FEB-2011), and
- Limited Subsurface Investigation (Property Solutions, 6-JUN-2013).

Hence, the VI aspect of the CSM is of a site where potential VI issues have been well investigated and potential impacts in excess of risk-based standards have been abated. The assessment, modeling, sampling and mitigation work upon which this description is based are detailed below.

3.5.2 Vapor Intrusion Modeling

Initially, vapor intrusion modeling was performed by UC as described in their 21-FEB-2008 Vapor Intrusion Assessment and Mitigation Design Report. UC used the Johnson & Ettinger (J&E) model (U.S. EPA, 1991). This J&E modeling work performed by UC concluded:

- There was a potential for vapor intrusion into the proposed buildings from the impacted groundwater, using a target risk level of one in a million (1:1,000,000), (1E-06) for the DC and adjacent tenant spaces up to, but not including the Kroger.
 Note: EPD uses a target risk level of 1:100,000 or 1E-05.
- The health risk in excess of 1E-06 could be mitigated with the installation of a vapor venting system.
- The Kroger and tenant spaces to the south were not at risk.

A VI mitigation system (VIMS) was subsequently installed and operated by UC for approximately two years (**Section 3.5.5**). The opportunity for potential closure of the VIMS was identified by UC following a review of MEI's January 14, 2010 CSR. UC performed revised VI

modeling using the J&E model, 1E-05 target carcinogenic risk levels and site-specific parameters. Based on UC's revised model results, COCs in soil gas did not result in a carcinogenic risk exceeding risk levels of 1E-5 or non-carcinogenic toxicity effects exceeding a hazard quotient of 1.0 for potential commercial workers.

MEI initially performed VI modeling during our 2008-2009 CSR investigation (MEI CSR, 14-JAN-2010) using the J&E model to evaluate potential health effects of occupant exposure to COC vapors. MEI utilized a target risk level of 1E-05 and site specific subsurface data to calculate the acceptable groundwater concentrations associated with both carcinogenic and noncarcinogenic effects, for both residential and commercial usage. The results of MEI's J&E VI modeling indicated that no COCs were present in 2008/2009, in on or off-site groundwater at concentrations that would cause carcinogenic or non-carcinogenic risk to exceed target levels for either commercial workers on the FOSC site or for residential receptors at neighboring off-site properties.

MEI performed VI screening using the U.S. EPA's Vapor Intrusion Screening Level (VISL) calculator, version 3.5.1 (May 2016) for this CSR/Status Report. This screening was performed for the groundwater volatilization to indoor air inhalation pathway for a commercial worker. User inputs into the calculator are limited, but include target carcinogenic risk level (1E-05), groundwater temperature (17.6 °C; interpolated from U.S. EPA maps) and maximum concentrations of listed VOCs in groundwater.

The VISL "Groundwater Concentration to Indoor Air Concentration" (GWC-IAC) calculator indicated that TCE and benzene were present in groundwater at concentrations *potentially capable* of exceeding 1E-05 carcinogenic risk for commercial workers via the indoor air inhalation pathway. Similarly, the GWC-IAC calculator indicated that PCE and TCE were present in on-site groundwater at concentrations *potentially capable* of exceeding the toxicity effects hazard quotient of 1.0 for commercial workers via the indoor air inhalation pathway. Hence, the VISL screening identified three compounds, PCE, TCE and benzene, in on-site groundwater at concentrations are inhalation targets for carcinogenic or non-carcinogenic effects.

The VISL calculator determines groundwater "target concentrations," i.e., concentrations at which carcinogenic and/or non-carcinogenic screening levels are not exceeded. The VISL-calculated target concentrations of PCE, TCE and benzene, the locations at which these targets are exceeded, and the March 2015 groundwater concentrations of these three VOCs are tabulated below.

Compound	VISL Target Conc.	Exceedance Locations (MAR-2015 Concentration)
PCE	360 µg/L	MW-2 (775 µg/L); MW-22 (520 µg/L)
TCE	31 µg/L	MW-2 (71.5 µg/L), MW-4 (120 µg/L); MW-16 (35 µg/L)
Benzene	98 µg/L	MW-28 (135 µg/L)

The groundwater contamination exceeding the VISL groundwater target concentrations at MW-16, MW-22 and MW-28 was released from the off-site sources, Chastain Cleaners and the CITGO/RRFM. The release from the former on-site drycleaner is responsible for the VISL target exceedances of PCE and TCE at MW-2 and MW-4.

An "Additional Evaluation of the Vapor Intrusion Pathway" conducted by Amec Foster Wheeler (AFW) is included herein as **Appendix E**. AFW evaluated the vapor intrusion pathway for both soil and groundwater sources respectively using the VISL SG_IA-Calc and GW_IA-Calc modules and the J&E model. AFW's evaluation identified multiple lines of evidence to support the conclusion that the vapor intrusion pathway does not pose a risk to current or future commercial receptors and concludes:

"In summary, indoor air sample concentrations collected in May 2013 were less than commercial indoor air VISLs with one exception, chloroform. However, estimated risk associated with chloroform is less than the HSRA target risk level of 10-5. Risk calculations were completed using the May 2013 soil vapor sampling results and the March 2015 groundwater sampling results in the SG_IA Calc and GW_IA_Calc modules of the VISL Calculator in order to estimate the indoor air concentrations and risks and hazards for detected constituents in soil vapor and groundwater. When site-specific conditions are included in the calculations, the resulting estimated cumulative hazards and risks indicate no unacceptable risk or hazards for commercial receptors potentially exposed via indoor air vapor emissions based on maintaining the current hard cover and current building parameters. Therefore, the site is compliant with vapor risk requirements under HSRA and the VRP for delisting."

Similarly, although the VISL modeling conducted by MEI indicates *potential* elevated VI risk at several locations, the J&E modeling results support the conclusion that risks suggested with the VISL are overestimates. Hence, based on the modeling results described herein, MEI concurs with AFW's conclusion that the site is compliant with vapor risk requirements under HSRA and the VRP for delisting.

3.5.3 Soil Vapor Survey

MEI conducted a soil vapor survey at the FOSC site in September 2008. One hundred twentyfour (124) Gore-Sorber modules were employed on an approximate 50 by 50-foot grid over the entire northern portion of the FOSC site and neighboring public rights-of-way. The methods and results of the soil vapor survey are described MEI's 14-JAN-2010 CSR and in W. L. Gore & Associates' report included as Appendix F therein.

Four principle COCs were chosen for soil vapor survey color contour mapping for their utility in determining the on-site extent of contamination and documenting the migration of impacted groundwater from offsite onto the FOSC site:

- Tetrachloroethene (PCE)
- Trichloroethene (TCE)
- cis-1,2-dichloroethene (cDCE)
- Benzene, toluene, ethylbenzene, and xylenes (BTEX).

PCE was detected at 92 of the 124 module locations. The maximum calculated PCE concentration on site was approximately 42,608 micrograms per cubic meter ($\mu g/m^3$), at a location approximately 50 feet north of the former on-site dry cleaner. The results of the soil vapor study indicated that the highest PCE concentrations were present around the perimeter of the former on-site dry cleaner.

A secondary area of elevated PCE concentration was located approximately 100 feet southwest of Chastain Cleaners. This area of elevated concentration was approximately 400 feet east and hydraulically upgradient of the former on site dry cleaner tenant space.

TCE was detected in 32 of 124 modules during the survey, with calculated concentrations ranging from 0.68 μ g/m³ to 460.14 μ g/m³. Maximum concentrations mirrored the results of PCE. Two areas of higher concentrations were just north of the former on-site dry cleaners and southwest of Chastain Cleaners.

Detections of cDCE were lower than PCE or TCE. cDCE was detected at 9 of the 124 module locations, in concentrations calculated to range from $0.85 \,\mu g/m^3$ to $194.62 \,\mu g/m^3$. Two cDCE areas of elevated concentration were identified, one hydraulically downgradient of the former on-site dry cleaner and one downgradient from Chastain Cleaners.

BTEX was detected at 91 of the 124 module locations at concentrations ranging from 0.01 μ g/m³ to 72.95 μ g/m³. The highest reported detections were located in the northeastern corner of the FOSC parking lot.

The soil vapor survey showed that there were clearly two separate sources for chlorinated solvent (CVOCs) contamination in soil gas at the FOSC site, the former on-site DC operation and Chastain Cleaners off site. The results of the soil vapor survey also showed that all significant BTEX contamination was associated with the CITGO/RRFM filling station northeast of the FOSC site.

Hence, the soil vapor survey confirmed the presence of three commingled groundwater contaminant plumes on the FOSC site from one on-site and two off-site sources.

3.5.4 Indoor Air Quality Sampling

MEI contracted with industrial hygiene consultants Atlantic Environmental, Inc. (AEI) to perform air sampling inside the residence 79 West Belle Isle Road on August 25, 2008. This

54

work is described in MEI's 14-JAN-2010 CSR and in AEI's report to MEI included as Appendix G in the CSR.

Air samples were collected using SUMMA® Canisters at locations pre-defined by MEI in concert with the property owner. Ambient or "background" air sampling was also performed at two locations outside the residence.

Laboratory analytical results indicated that there were no indoor air concentrations of the DC COCs (PCE or TCE) or any daughter products (DCE and VC) in any sample. In the conclusion of their report, AEI stated, "Based on AEI's physical findings and laboratory results, no further work is necessary at this time."

Since the indoor air sampling in August 2008, groundwater concentrations of PCE, TCE and cDCE have declined precipitously (**Table 2**) at the nearest upgradient monitoring well, MW-13S. The July 2008 and March 2015 concentrations of these three compounds at this well, and the percent declines in COC concentrations, are listed as follows.

MW-13S - PCE, TCE & cDCE Groundwater Concentrations

	7-JUL-08 Avg. Conc.	<u>10-MAR-15 Avg. Conc.</u>	<u>% Reduction</u>
PCE	1,005 µg/L	22 µg/L	-97.8%
TCE	29 µg/L	1.95 μg/L	-93.3 %
cDCE	33 µg/L	3.4 µg/L	-89.7%

Since no indoor vapors were detected during sampling in 2008, and groundwater contaminant concentrations have declined in the nearest upgradient well by an average of 93.6%, the risk of off-site VI appears minuscule. Hence, in accordance with discussions with EPD HSRP personnel in a meeting of February 27, 2015, the previous indoor air sampling conducted at the residence at 79 West Belle Isle Road, in concert with the remarkable reductions in groundwater COC concentrations, are evidence that there is no VI risk for this neighboring property.

Additionally, in May 2013, Property Solutions performed a Limited Subsurface Investigation of the FOSC site, including indoor air and soil vapor sampling (copy of report in **Appendix H**). Six indoor air samples were collected over a period of 8 hours using laboratory-supplied Summa® canisters with laboratory-supplied flow regulators. Summa® canisters were placed within the Kroger store (Suite 20) and four of the suites within the north wing of the FOSC center.

From the results of this indoor air sampling, Property Solutions concluded:

"Detections of constituents in indoor air did not exceed the Target Indoor Air Concentrations (TIAs) as provided in the EPA OSWER Vapor Intrusion Screening Level (VISL) Calculator Version 3.0 (November 2012) using a Target Risk Concentration (TCR) of 1.00E-05.

Detections of constituents in indoor air did not exceed the TIAs as provided in the EPA OSWER VISL) Calculator Version 3.0 (November 2012) using a more stringent TCR of 1.00E-06, with the exception of chloroform in two samples. Indoor air sources of chloroform include the use of municipal (chlorinated) water, bleaches, and refrigerants. It is the opinion of Property Solutions that based on the results of soil gas samples, chloroform detections are likely the result of sources other than the subsurface."

Hence the results of indoor air sampling conducted in multiple FOSC commercial suites within and adjacent to the former on-site release source area confirm that the potential subsurface to indoor air exposure pathway is incomplete, and no further action appears warranted. Similarly, indoor air sampling at the nearest downgradient, off-site residence likewise confirm that the subsurface to indoor air exposure pathway is incomplete, and no further action appears warranted.

3.5.5 **On-Site Vapor Mitigation System**

UC installed a vapor intrusion mitigation system (VIMS) beneath the former DC tenant bay and the north tenant wing of the FOSC site. This system consisted of:

• A passive vapor barrier and sub slab depressurization system installed beneath the former DC facility. Slotted piping was placed in a gravel bed and covered with a high-density

polyethylene (HDPE) below the concrete subfloor. The slotted piping was connected to a vertical riser and passive wind turbine.

- An active vapor mitigation system was installed beneath the remaining units in the north FOSC wing. A system of eight north-south slotted gas collection pipes were hydraulically jacked under these units. The eight collection pipes were manifolded together in an alternating pattern and connected to roof-mounted vacuum blowers.
- A telemetry system was installed to monitor blower operation by monitoring the vacuum pressure at both of the discharge pipes of the active VIMS on one-hour intervals.
- Monitoring ports including two sets of three 8-foot deep monitoring wells along each of the east and west sides of the building. A total of nine shallow vapor monitoring ports were installed
- The pressure monitoring of the VIMS indicated that negative pressures were generated at least 12 feet away from the collection piping, with greater negative pressure generation closer to the system. Thus, the VIMS operated as designed, depressurizing the soil beneath the tenant spaces of the north section of the FOSC.

This system was operation for approximately two and a half years, from December 2008 to May 2011. EPD authorized shutdown of the VIMS system after soil gas sampling results and VI modeling results both indicated that there were no VI risks present on site in excess of target levels. The system was shut down, decommissioned and the shallow vapor monitoring wells abandoned in May 2011. This work is documented in three reports prepared by UC:

- Vapor Intrusion Assessment and Mitigation Design Report (21-FEB-2008)
- Vapor Intrusion Mitigation System Implementation Report (3-JUN-2009), and
- Vapor System Sampling and Modeling for Closure Report (25-FEB-2011)

Hence, there are no residual VI risks from soil sources in excess of applicable target levels present on the FOSC site.

3.6 CSM – Exposure Model

The conceptual exposure model of the FOSC site is one in which, based on current and projected future property and groundwater uses, there are no immediate threats to human health or the

environment in excess of applicable risk-based levels. Specifically, potential exposure sources (soil, groundwater, DNAPL & soil vapor) and pathways (ingestion, inhalation, etc.) have been thoroughly assessed, exposure risks have been quantified and excess risk has been mitigated. The details of the conceptual site exposure model are described below.

3.6.1 Current and Future Land Uses

3.6.1.1 Fountain Oaks Shopping Center (FOSC)

The principle FOSC parcel at 4920 Roswell Road NE, Parcel ID 17 009300061319, is a commercial retail shopping center and will continue to be used for commercial purposes for the foreseeable future. The site is zoned C-1, "Community Business District" by the City of Sandy Springs, as shown on the online geographic information system (GIS) zoning map (gis.sandyspringsga.gov/flexviewers/Gen_Flex/). MEI understands that no expansion of existing facilities is planned for the immediate future.

3.6.1.2 115 West Belle Isle Road – FOSC Outparcel

The small outparcel on the FOSC site at 115 West Belle Isle Road, Parcel ID 17 009300021073, is located in the parking lot immediately west of the FOSC north wing (**Figure 1**). Although the site is currently zoned R-4, "Single Family Dwelling" according to the Sandy Springs GIS website, it is also currently a parking area in a commercial development.

Hence, the property at 115 West Belle Isle Road will continue to be used for commercial purposes for the foreseeable future. The site will therefore be occupied exclusively by commercial worker and/or construction worker receptors for the foreseeable future.

3.6.1.3 Long Island Terrace – Undeveloped Property

The undeveloped property on Long Island Terrace, Parcel ID 17 009300060881, is zoned R-3 "Single Family Dwelling District" by the City of Sandy Springs. However, the property is "land-locked" with no road access and occupies a topographic basin. It is unlikely that this property will be developed for residential use given the steep slopes, uneven terrain, viewshed, and land-locked nature of the parcel. However, the property is considered "residential" and assumed to be occupied by residential receptors for exposure modeling purposes.

3.6.1.4 Off-Site Neighboring Properties

The neighboring cross gradient properties to the north of the FOSC site, and the downgradient properties to the west of FOSC are all single-family residences. These properties are likely to continue being used for residential purposes and occupied by potential residential receptors for the foreseeable future.

3.6.2 Exposure Pathways & Receptors

There are only five *potentially* complete *on-site* exposure pathways for the following potential receptors:

- Soil Dermal Contact (construction worker receptor)
- Groundwater Dermal Contact (construction worker receptor)
- Soil Vapor intrusion to indoor air inhalation (commercial worker receptor)
- Groundwater Vapor intrusion to indoor air inhalation (commercial worker receptor)
- Groundwater Ingestion (commercial worker receptor)

Each of these potentially complete exposure pathways is addressed herein as follows.

Soil – Dermal Contact (Construction Worker Receptor)

Comparison of residual on-site and off-site soil concentrations to calculated RRS show that there are no concentrations of COCs in either on-site or off-site soil exceeding RRS. Calculation of Type 3/Type 4 RRS includes consideration of the dermal contact for a construction worker exposure pathway. The 2007-2008 soil remediation project removed all soil from the site in excess of Type 3/Type 4 RRS. Hence, this is an incomplete exposure pathway.

<u>Groundwater – Dermal Contact (Construction Worker Receptor)</u>

The potential dermal contact exposure pathway for a construction worker receptor is an incomplete pathway, due to the depth to groundwater on site. The average depth to groundwater across the entire FOSC site is approximately 34 feet, while average depth to groundwater surrounding the on-site release source area is approximately 36.7 feet. These depths to groundwater are well below depths that construction projects typically penetrate into the

subsurface. Hence, groundwater- dermal contact for a potential construction worker receptor is an incomplete exposure pathway.

Soil – Vapor Intrusion to Indoor Air Inhalation (Commercial Worker Receptor)

As described in **Section 3.5.2**, vapor intrusion modeling conducted by UC and MEI, both before and following VI mitigation by UC, have demonstrated that there is no excess risk present on site for the Soil - VI to indoor air pathway for a commercial worker receptor.

Groundwater - Vapor Intrusion to Indoor Air Inhalation (Commercial Worker Receptor)

Vapor intrusion modeling conducted by MEI (discussed in Section 3.5.2) using the EPA VISL model suggest that there is a potential VI risk associated with PCE, TCE and benzene at five monitoring wells, listed as follow.

<u>Compound</u>	VISL Target Conc.	Exceedance Locations (MAR-2015 Concentration)
PCE	360 µg/L	MW-2 (775 µg/L); MW-22 (520 µg/L)
TCE	31 µg/L	MW-2 (71.5 µg/L), MW-4 (120 µg/L); MW-16 (35 µg/L)
Benzene	98 µg/L	MW-28 (135 µg/L)

An "Additional Evaluation of the Vapor Intrusion Pathway" conducted by Amec Foster Wheeler (AFW) included herein as **Appendix E** concluded (see discussion in **Section 3.5.2**):

"When site-specific conditions are included in the [VI] calculations, the resulting estimated cumulative hazards and risks indicate no unacceptable risk or hazards for commercial receptors potentially exposed via indoor air vapor emissions based on maintaining the current hard cover and current building parameters. Therefore, the site is compliant with vapor risk requirements under HSRA and the VRP for delisting."

MEI likewise performed follow-up VI modeling using the U.S. EPA Johnson & Ettinger (J&E) vapor intrusion model and site-specific data. The results of these calculations **show** that no groundwater concentrations of COCs exceed the calculated J&E "final indoor exposure groundwater concentrations."

Therefore, although the VISL modeling conducted by MEI indicates *potential* elevated VI risk at several locations, the J&E modeling results support the conclusion that risks suggested with the

VISL are overestimates. Hence, based on the modeling results described herein, MEI concurs with AFW's conclusion that the site is compliant with vapor risk requirements under HSRA and the VRP for delisting.

<u>Groundwater – Ingestion (Commercial Worker Receptor)</u>

As described in **Section 3.4.2.1**, there are no drinking water supply sources within a two-mile radius of the site. The FOSC site is a non-drinking water site. Hence, the potential exposure pathway, groundwater ingestion by commercial worker receptor is an incomplete pathway.

3.6.3 Exposure Domains

As defined in the Georgia VRP Act (§ O.C.G.A. 12-8-102), "exposure domains" are the contaminated geographical areas of a site that can result in exposure to a particular receptor via a specified exposure pathway. Specifically:

- The soil exposure domain for surficial contact with site soils is the area impacted by COCs from the ground surface down to a depth of two feet BGS.
- The soil exposure domain for exposure of construction workers is the impacted area of soils from the ground surface down to the depth of construction; and
- The soil exposure domain for protection of groundwater at an established point of exposure is the impacted area of site soils from the ground surface down to the uppermost groundwater zone.

The on-site exposure domains for this CSM include those areas of the site where:

Groundwater COC concentrations exceed applicable RRS for the incomplete, but *potentially complete* groundwater ingestion pathway (Tables 19 & 20). These COCs and 14 on-site exceedance locations are:

& 28)

0	Benzene	(MWs-20, 21 & 28)
0	cDCE	(MWs-2, 4, 16, 20 & 28)
0	PCE	(MWs-2, 3, 5, 9, 13S, 14, 16, 20, 22, 23
0	TCE	(MWS-2, 4, 6, 16, 20 & 28)
0	VC	(MWs-16 & 28)

o Benzene (MWs-20, 21 & 28)

• VISL screening calculations indicate that there are *potential* VI risks exceeding target levels at five monitoring wells (MW-2, MW-4, MW-16, MW-22 & MW-28).

The only *potential* off-site exposure domain would be a limited area of groundwater contamination immediately adjacent to the FOSC site for the incomplete groundwater ingestion pathway for a potential residential receptor. Hence, there is no off-site exposure domain because:

- The FOSC site is a non-drinking water site (see Section 3.4.2.1)
- There are no off-site groundwater COC concentrations exceeding applicable RRS (see Section 3.4.3.2)
- The groundwater contaminant plume is naturally attenuating at a relatively rapid rate (see Section 3.4.3.4.).
- Groundwater contaminant fate & transport modeling suggests that PCE could impact the surface water stream point of compliance on the undeveloped Long Island Terrace property adjacent to the FOSC site, at levels exceeding the Georgia In Stream Standard.
 - However, a surface water sample collected from this stream on May 3, 2017 did not contain any detectible VOCs. Hence, this potential exposure domain is associated with an incomplete exposure pathway.
- Groundwater contaminant fate & transport modeling demonstrates a lack of risk for offsite groundwater ingestion by hypothetical remote residential receptors 1,000 feet from the contaminant plume.

The use of engineering and institutional controls to mitigate *potential* on-site exposure risks associated with the incomplete exposure pathways is described in **Section 4.0** as follows.

4.0 VOLUNTARY REMEDIATION PLAN

4.1. Voluntary Remediation Plan - Soil

No soil remediation, and thus no remediation plan, is necessary for on- or off-site soil because:

- The extent of soil on-site contamination was exhaustively delineated (see Section 3.3.1),
- On-site soil exceeding approved RRS was removed during the 2007-2008 soil remediation project (see Section 3.3.2),

- The remaining in-situ concentrations of COCs in on-site soil was exhaustively demonstrated through collection of verification samples and borings/monitoring wells installed by MEI (see Section 3.3.3), and
- No COCs in excess of applicable RRS have been detected in off-site soils (see Section 3.3.1)

<u>Soil</u> at the FOSC site <u>is in compliance with all applicable/EPD-approved RRS</u>, as certified in the report Certification of Compliance on page viii herein. Since the site was initially listed on the HSI for a release of tetrachloroethene (PCE) to soil, and on-site soil has been remediated and is now in compliance with applicable RRS, the FOSC site is eligible for delisting from the HSI.

4.2. Voluntary Remediation Plan – Groundwater

As noted in **Section 3.6.3**, there are two potential exposure domains on the FOSC site and one off site:

- On-site areas where groundwater COC concentrations exceed applicable RRS for the incomplete, but *potentially complete* groundwater ingestion pathway,
- On-site areas where VISL screening calculations indicated *potential* VI risks exceeding target levels, and
- The off-site stream where fate & transport modeling suggests PCE levels could exceed the Georgia In Stream Standard,
 - Surface water sampling results show that this is an incomplete exposure pathway.

4.2.1. Secondary Source Removal & Natural Attenuation

The excavation of approximately 3,831 tons of contaminated soil from the release source area and immediate downgradient area in 2007-2008 (see Sections 2.1 an d 3.3.2) removed this significant secondary source of groundwater contamination via the soil-to-groundwater leaching pathway. As a result, groundwater COC concentrations in both the on-site release source and downgradient areas have been rapidly attenuating (see Section 3.4.3.4) and associated exposure risk levels have been rapidly declining. Therefore, no additional active remediation efforts appear to be required for remediation of groundwater contamination.

4.2.2. Monitoring Well Abandonment

EPD personnel gave tentative verbal approval to abandon several wells in a meeting on February 27, 2015, including (**Figure 3**):

- MW-4
- MW-9
- MW-26
- MW-27

MEI requests closure of all downgradient and cross-gradient wells associated with the former onsite release, for the following reasons:

- The contaminated soil that would have acted as an ongoing secondary source of groundwater contamination (via soil to groundwater leaching) has been removed,
- The groundwater contaminant plume is rapidly attenuating, and
- There are no off-site, downgradient groundwater impacts in excess of applicable RRS.

Therefore, MEI requests abandonment of the following wells.

1.	MW-2	8.	MW-13D
2.	MW-4	9.	MW-13S
3.	MW-9	10.	MW-29
4.	MW-17	11.	MW-30
5.	MW-26	12	MW-31
6.	MW-27		
7.	MW-3	13.	. MW-32

4.3. Engineering Controls

MEI understands that no expansion of existing facilities is planned for the immediate future. Engineering controls are not necessary for the exposure domains on site, i.e., locations where groundwater exceeds Type 3/Type 4 RRS, and locations where the VISL calculator suggests VI risks are potentially present. Controls are unnecessary due to the following:

- J&E model results indicate that the VISL exposure calculations are overestimates.
- Indoor air sampling results conducted during a Limited Subsurface Investigation in 2013

(Appendix H) confirm that the potential subsurface to indoor air exposure pathway is incomplete.

• All of the areas where VISL indicates potential indoor air exposure risks are unoccupied paved parking areas, and will remain so for the foreseeable future.

4.4. Institutional Controls

MEI proposes the use of institutional controls, specifically, deed notices and restrictive covenants, to mitigate potential exposure risks from on-site groundwater exceeding applicable RRS.

4.4.1. Restrictive Covenants

Restrictive environmental covenants are proposed between the property owner(s) and EPD as a means of mitigating potential exposure to groundwater exceeding RRS. Draft Uniform Environmental Covenants for FOSC & 115 West Belle Isle Road properties and the undeveloped Long Island Terrace property are contained herein in **Appendix D**. The specific language of each covenant includes a prohibition on the use of groundwater beneath the site.

5.0 PROGRESS REPORT

Since submittal of the VRP Application and CSR in December 2015, the following events have transpired regarding the FOSC site:

- No expansion of existing facilities is planned for the immediate future.
- MEI collected a water sample from the stream on the undeveloped Long Island Terrace property on May 3, 2017.
 - This sample was analyzed for VOCs by EPA Method 8260B.
 - The results of the analysis showed that no chlorinated VOCs were present in in the sample.
 - The absence of chlorinated VOCs in the sample confirms that groundwater migration to surface water discharge is an incomplete exposure pathway.
- AFW conducted an "Additional Evaluation of the Vapor Intrusion Pathway" to address comments raised by EPD in its November 30, 2016 letter regarding vapor modeling.

No other significant activities related to the environmental or regulatory status of the site have been performed since submittal of the December 2015 CSR & VRP Application.

6.0 MILESTONE SCHEDULE

As listed on the VRP application form, the following four required generic milestones must be included in this initial application:

- 1. Within 12 months of enrollment (into the VRP):
 - a. Horizontal delineation of the release and associated COCs on property where access is available at the time of enrollment;
- 2. Within 24 months of enrollment:
 - a. Horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment;
- 3. Within 30 months of enrollment:
 - a. Update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and
- 4. Within 60 months after enrollment,
 - a. Submit the compliance status report (CSR) required under the VRP, including requisite certifications.

Please note that all of item numbers 1, 2 and 3 above have been completed and this information submitted to EPD. Item number 4 should be considered completed upon submittal of this updated CSR. A milestone schedule Gantt chart is included as **Appendix F**.

7.0 SUMMARY & CONCLUSIONS

The Fountain Oaks Shopping Center (FOSC), 4920 Roswell Road NE, Sandy Springs, Fulton County, Georgia (the subject site) is currently listed on the Georgia Hazardous Site Inventory (HSI) as HSI No. 10807. The Subject site and two associated properties currently are regulated under the auspices of the Georgia Voluntary Remediation Program (VRP). These three properties are:

- Fountain Oaks Shopping Center (subject site), 4920 Roswell Rd NE, Sandy Springs, GA 30342 Fulton County Assessor Parcel No 17 009300061319.
- 115 West Belle Isle Road (FOSC Outparcel), Sandy Springs, Georgia 30342 Fulton County Assessor Parcel No 17 009300021073.
- Long Island Terrace property (undeveloped), Sandy Springs, Georgia 30342 Fulton County Assessor Parcel No 17 009300060881.

The extent of on-site and off-site soil, groundwater and soil vapor contaminants of concern (COC) impacts and potential exposure risks have been thoroughly delineated over the course of multiple investigations conducted from 2005 to 2015 by Marion Environmental, Inc. (MEI) and others.

A soil remediation project conducted by others on the FOSC out-parcel in 2007-2008 removed all on-site soils exceeding approved Risk Reduction Standards (RRS). A vapor intrusion (VI) mitigation system was installed by others beneath the north tenant wing of the FOSC and operated for approximately two and a half years, from December 2008 to May 2011. Exposure risks associated with former on-site soil and soil vapor impacts were successfully mitigated.

The FOSC site was originally placed on the HSI because of soil contamination from a release of tetrachloroethene (PCE) and 14 associated contaminants of concern (COCs). As documented in multiple reports prepared by others, and summarized herein, soil on the FOSC site complies with approved Types 1, 3, and/or 4 Risk Reduction Standards (RRS). Since the soil contamination that caused the FOSC site to be listed on the HSI has been remediated to within approved RRS levels, the site is eligible for de-listing from the HSI.

The most recent, March 2015 groundwater analytical results indicated that COC concentrations exceed applicable RRS at 14 on-site monitoring wells. These COCs and 14 exceedance locations are as follows:

0	Benzene	(MWs-20, 21 & 28)
0	cDCE	(MWs-2, 4, 16, 20 & 28)
0	PCE	(MWs-2, 3, 5, 9, 13S, 14, 16, 20, 22, 23 & 28)
0	TCE	(MWS-2, 4, 6, 16, 20 & 28)
0	VC	(MWs-16 & 28)

Additionally, USEPA vapor intrusion screening level (VISL) calculations using the March 2015 groundwater sampling event indicate the *potential* presence of VI risks at five monitoring wells for PCE (MW-2 & MW-22), TCE (MW-2, MW-4 & MW-16) and benzene (MW-28). The former on-site dryclean (DC) operation is responsible for the potential VI risk from PCE & TCE at MW-2 and MW-4, while the off-site sources are responsible for the potential VI risk at the other three monitoring wells.

However, results from soil vapor & indoor air sampling, and vapor modeling using the VISL calculator and J&E model provide multiple lines of evidence supporting the conclusion that the vapor intrusion pathway does not pose a risk to current or future commercial receptors. Hence, the site is compliant with vapor risk requirements under HSRA and the VRP for delisting.

There are no off-site soil or groundwater impacts in excess of applicable Type 1/Type 2 RRS.

The conceptual site model (CSM) of the FOSC subject location is of a site where:

- Release sources and substances released have been well defined.
- The lateral and vertical extent and magnitude of soil contamination on-site and potential exposure risks have been well defined through exhaustive subsurface investigations.
- Soil contamination on-site in excess of approved RRS has been removed.
- The lateral and vertical extent and magnitude of groundwater contamination on and offsite and associated exposure risks have been well defined.

- Groundwater flow and subsurface contaminant migration patterns in soil and groundwater are/were significantly affected by the pre-development topography.
- The groundwater contaminant plume, although in excess of RRS in several locations, is stable and rapidly attenuating.
- Groundwater fate & transport modeling has demonstrated that:
 - There was a *potential* risk of PCE in the on-site groundwater plume migrating to discharge into surface water at levels exceeding Georgia In Stream standards on the undeveloped Long Island Terrace property. However:
 - A surface water sample collected from the stream on the Long Island
 Terrace property on May 3, 2017 did not contain any chlorinated VOCs.
 - Hence, groundwater to surface water migration is an incomplete exposure pathway.
 - On-site groundwater RRS exceedances are not a significant health risk to hypothetical off-site residential receptors 1,000 ft downgradient.
 - The contaminant plume is stable, and is not anticipated to migrate downgradient beyond current dimensions.
- Potential on-site vapor intrusion (VI) impacts modeled using the US EPA VISL calculator suggested that there was a *potential* VI risk associated with PCE, TCE and benzene at five on-site wells.
 - Modeling conducted by both MEI and Amec Foster Wheeler (AFW) using the Johnson & Ettinger (J&E) model and site-specific data (including soil vapor and indoor air sampling) support the conclusion that risks suggested with the VISL are overestimates.
 - The VI modeling results described herein support the conclusion that the site is compliant with vapor risk requirements under HSRA and the VRP for delisting.
- Vapor intrusion (VI) impacts for existing on-site commercial worker receptors have been:
 - Assessed through soil vapor sampling, a soil vapor survey, indoor air sampling,
 VI modeling, and soil gas sampling; and
 - Mitigated through operation of an on-site VI mitigation system.
- Potential dense non-aqueous phase liquid (DNAPL), i.e., "free product" was investigated and determined not to be present beneath the site.

• There are no soil, groundwater, or vapor intrusion (VI) impacts in excess of RRS/riskbased levels on off-site properties.

The overall FOSC conceptual site model (CSM) is a site that has been thoroughly investigated, the potential human health and environmental risks have been evaluated and the site complies with applicable RRS for soil. Groundwater in excess of RRS on-site is not a human health or environmental risk due to incomplete exposure pathways, and a plume that is rapidly attenuating.

On-site exposure domains for this CSM include those areas of the site where:

- Groundwater COC concentrations exceed applicable RRS for the incomplete, but *potentially complete* groundwater ingestion pathway.
- VISL screening calculations indicated that *potential* VI risks exceed target levels.

There is no off-site exposure domain because:

- The FOSC site is a non-drinking water source.
- There are no off-site groundwater COC concentrations exceeding applicable RRS
- The groundwater contaminant plume is naturally attenuating at a rapid rate
- Fate & transport modeling suggests that the groundwater contaminant (PCE) migration to surface water on the Long Island Terrace property was a potential concern.
 - However, the surface water sample collected from the stream on May 3, 2017 shows that groundwater migration to surface water discharge is an incomplete exposure pathway.
- Groundwater fate & transport modeling demonstrates a lack of risk for off-site groundwater ingestion by hypothetical residential receptors 1,000 feet downgradient from the site.

No soil remediation, and thus no remediation plan, is necessary for on or off-site soil, because:

- The extent of soil on-site contamination was exhaustively delineated
- On-site soil exceeding RRS was removed during the 2007-2008 soil remediation project
- Remaining in-situ concentrations of COCs in on-site soil below RRS have been exhaustively demonstrated through collection of excavation verification samples and

borings/monitoring wells installed by MEI

• No COCs in excess of applicable RRS have been detected in off-site soils.

The excavation of approximately 3,831 tons of contaminated soil from the release source area and immediate downgradient area in 2007-2008 removed a significant secondary source of groundwater contamination via the soil-to-groundwater leaching pathway. As a result, groundwater COC concentrations in on-site release source and downgradient areas and have been rapidly attenuating as have associated exposure risk levels.

MEI requests closure of all downgradient and cross-gradient wells associated with the former onsite release, for the following reasons:

- The contaminated soil that would have acted as an ongoing secondary source of groundwater contamination (via soil to groundwater leaching) has been removed,
- The groundwater contaminant plume is rapidly attenuating, and
- There are no off-site, downgradient groundwater impacts in excess of applicable RRS. Therefore, MEI requests abandonment of the following 13 wells.

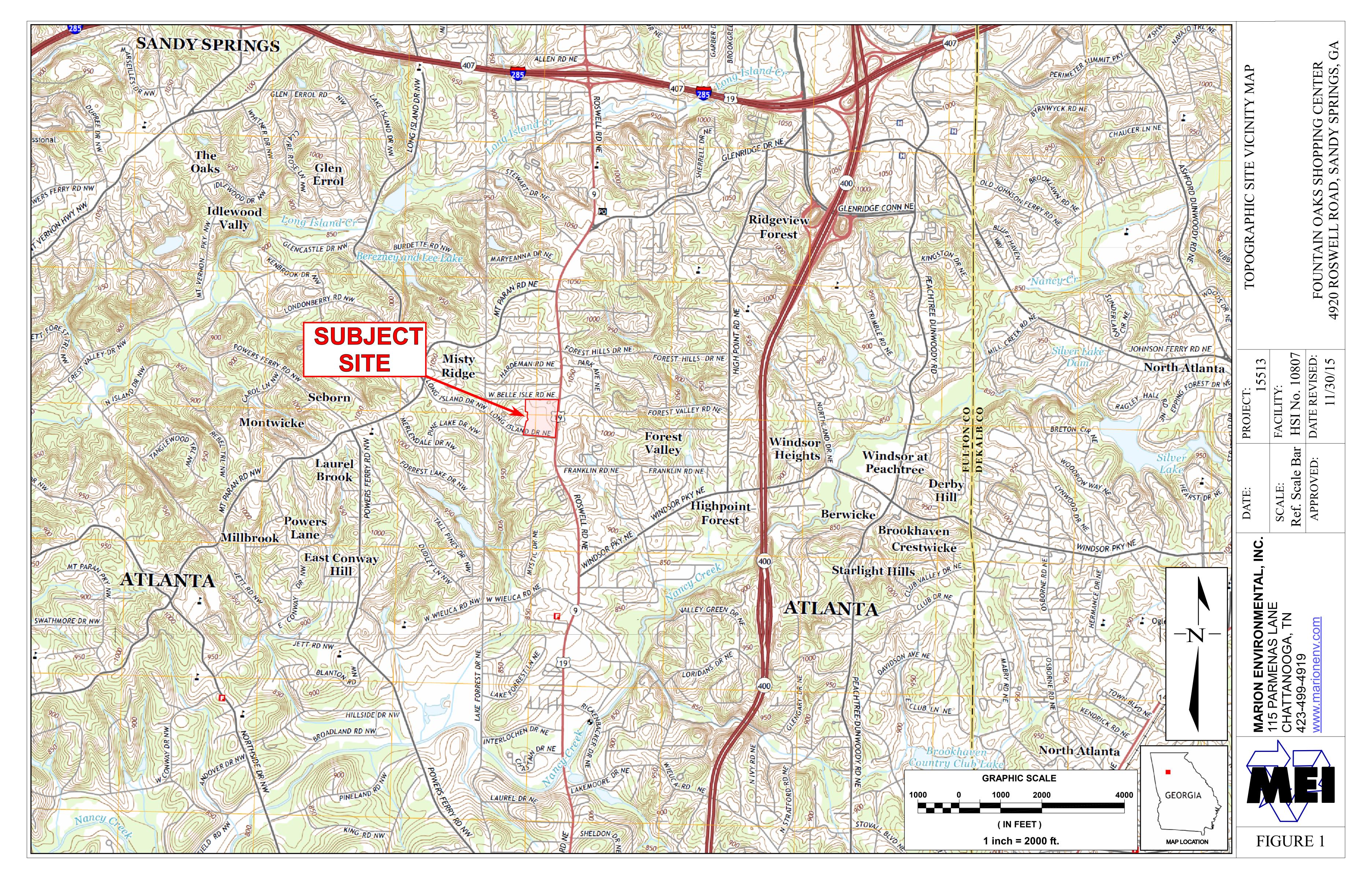
1. MW-2	6. MW-27	11. MW-30
2. MW-4	7. MW-3	12. MW-31
3. MW-9	8. MW-13D	13. MW-32
4. MW-17	9. MW-13S	
5. MW-26	10. MW-29	

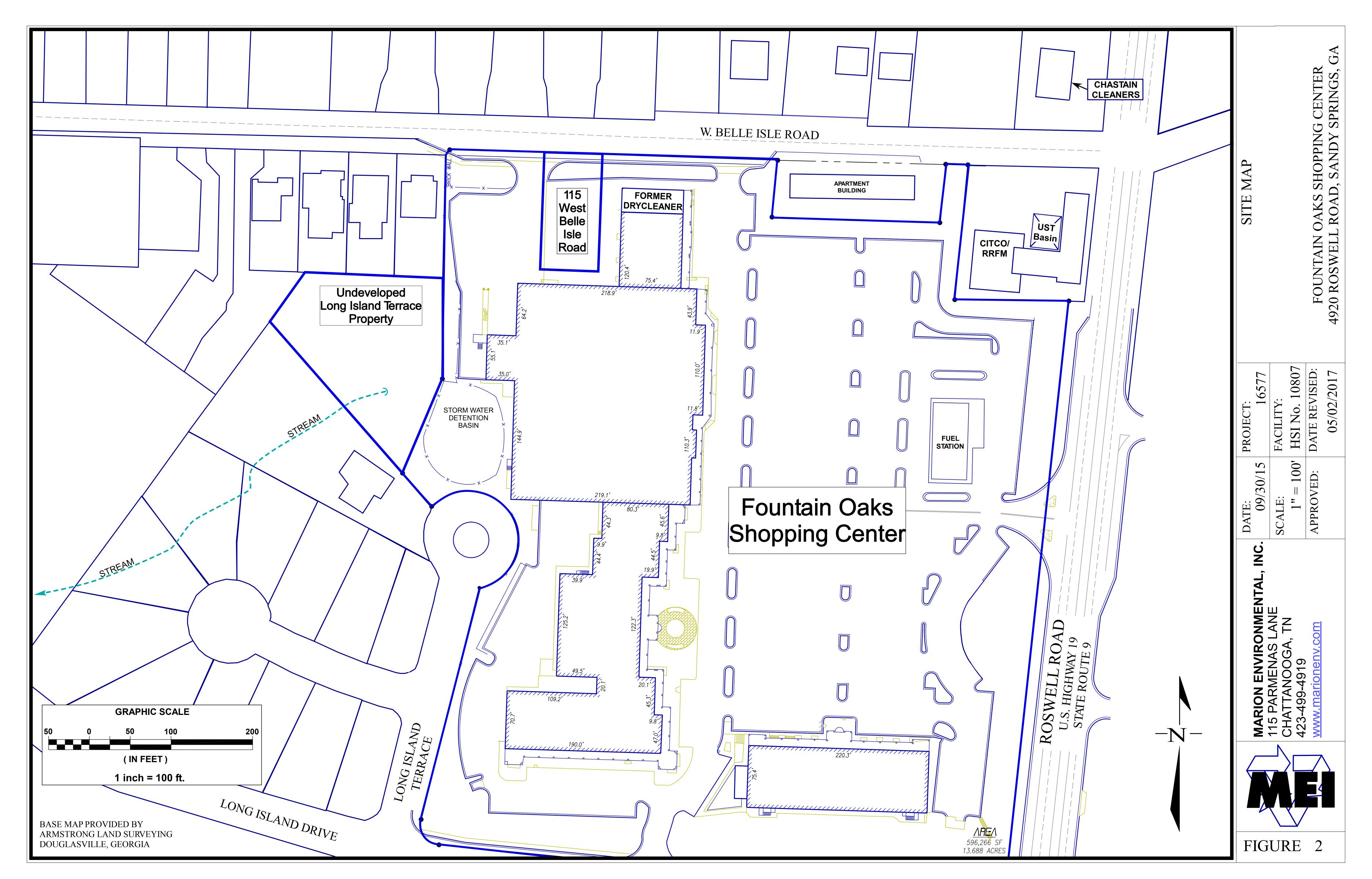
No expansion of existing facilities is planned for the immediate future and no engineering controls are necessary for mitigation of VI risks in existing buildings.

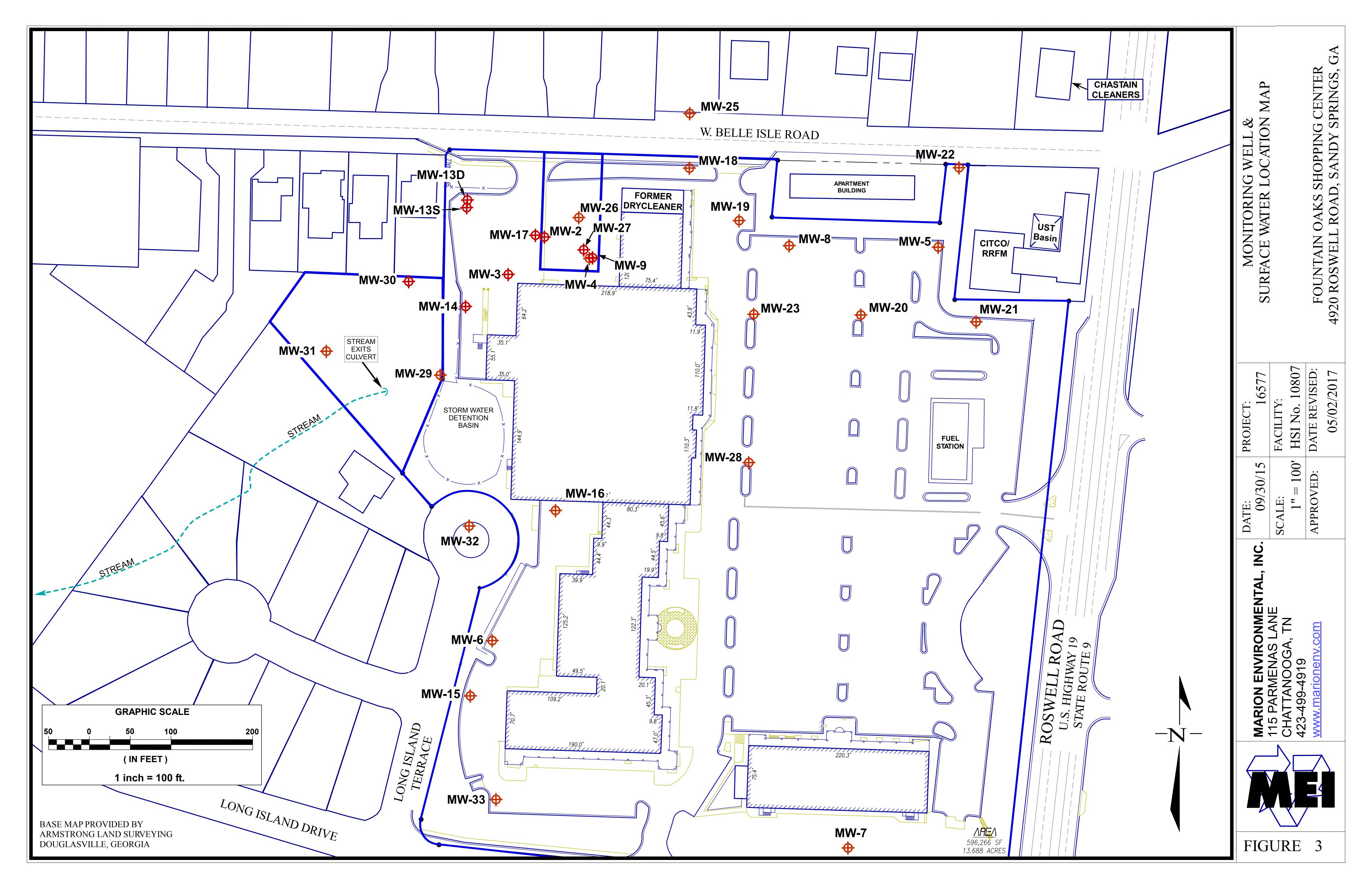
Institutional controls, including deed notices and restrictive covenants prohibiting groundwater use are proposed to help mitigate potential exposure risks from on-site groundwater exceeding applicable RRS and potential VI concerns.

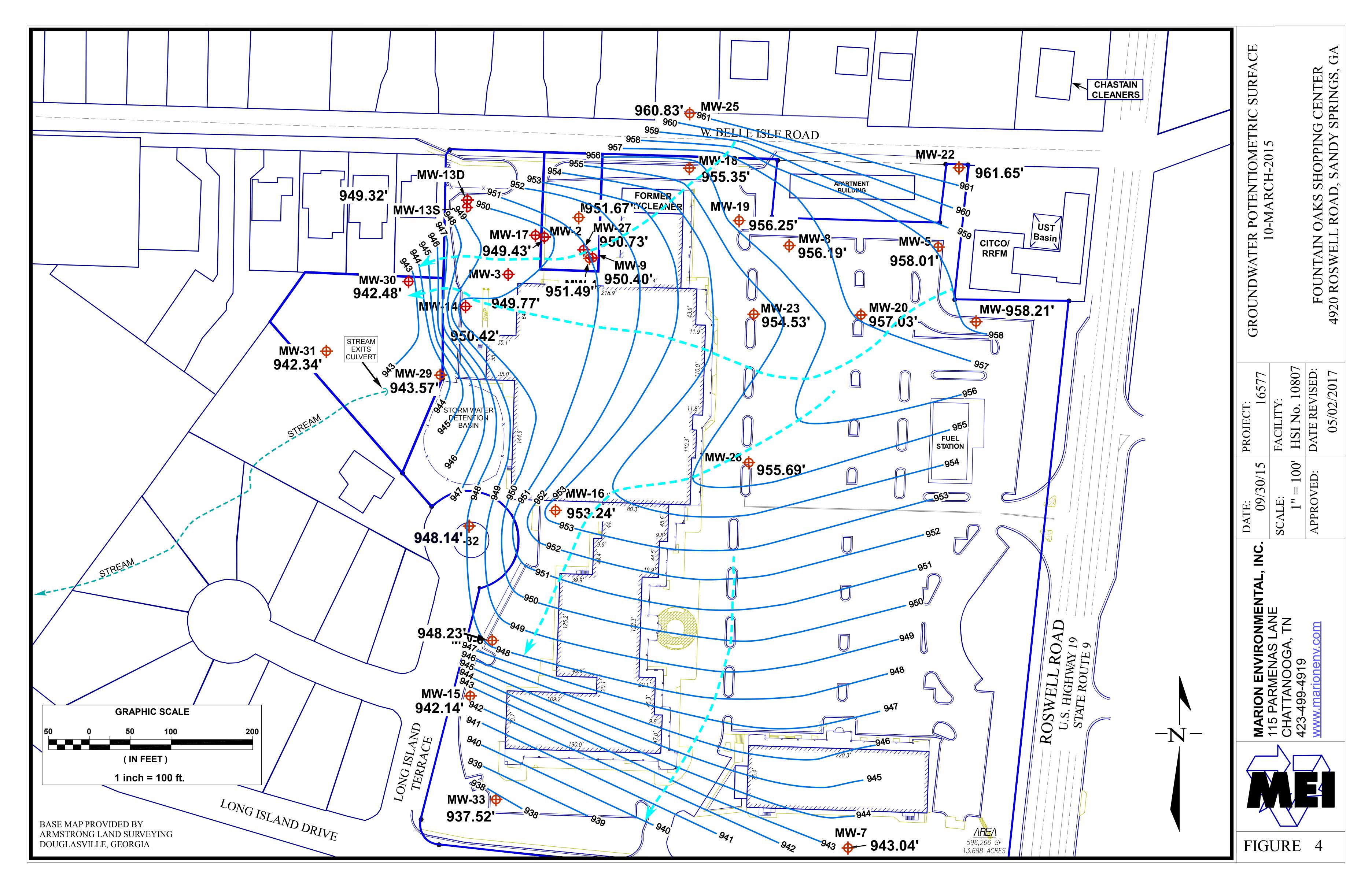
Draft uniform environmental covenants (UECs) for the FOSC site and Long Island Terrace property are included in this CSR. The specific language of both covenants includes groundwater use prohibitions. The following four required generic milestones have either already been completed or should be considered to have been completed with the submittal of this updated CSR and Progress Report:

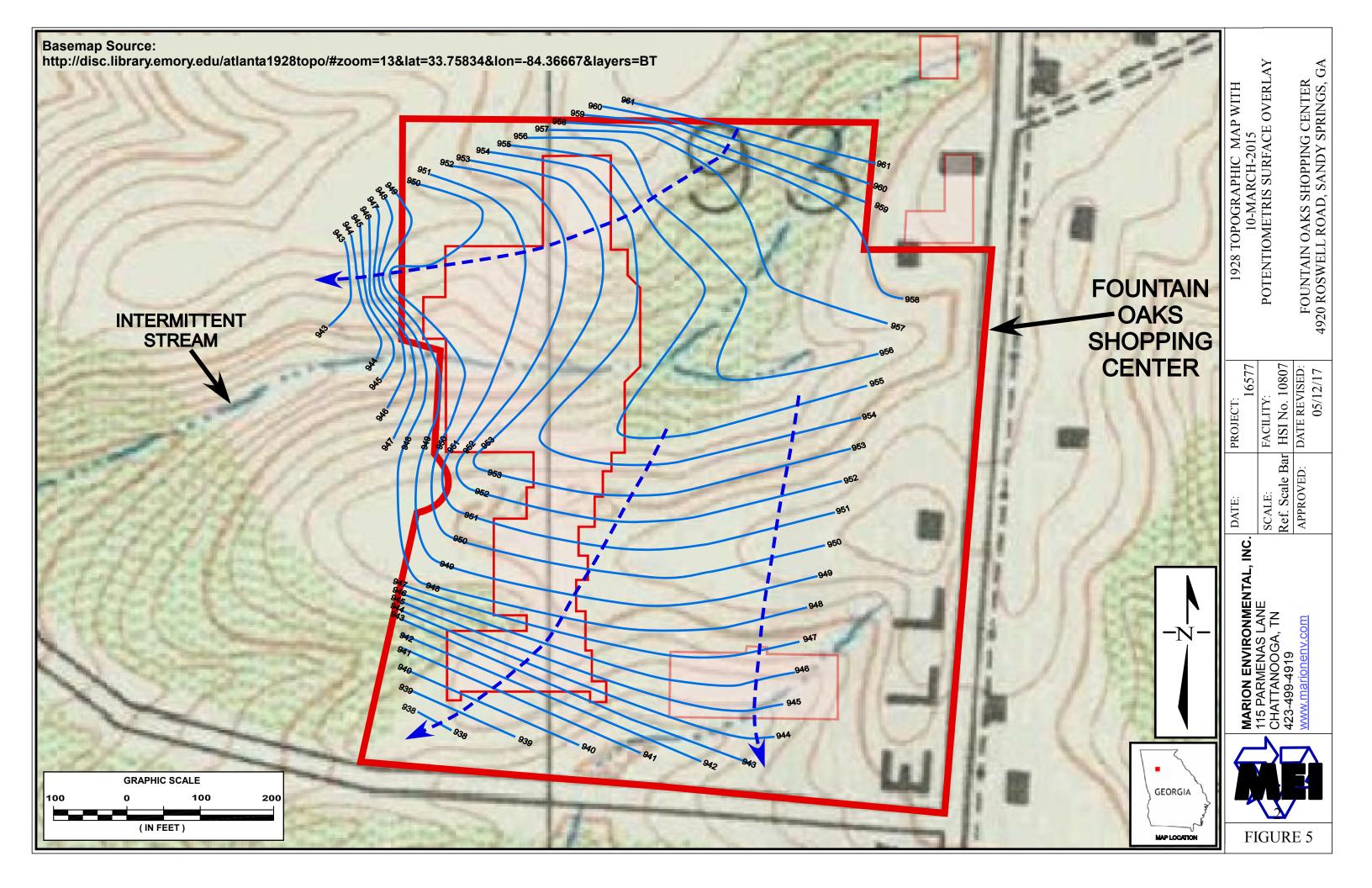
- 1. Horizontal delineation of the release and associated COCs on property accessible at the time of enrollment;
- 2. Horizontal delineation of the release and associated COCs on property inaccessible at the time of enrollment;
- 3. Update CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and
- 4. Submit the compliance status report (CSR) required under the VRP, including requisite certifications.

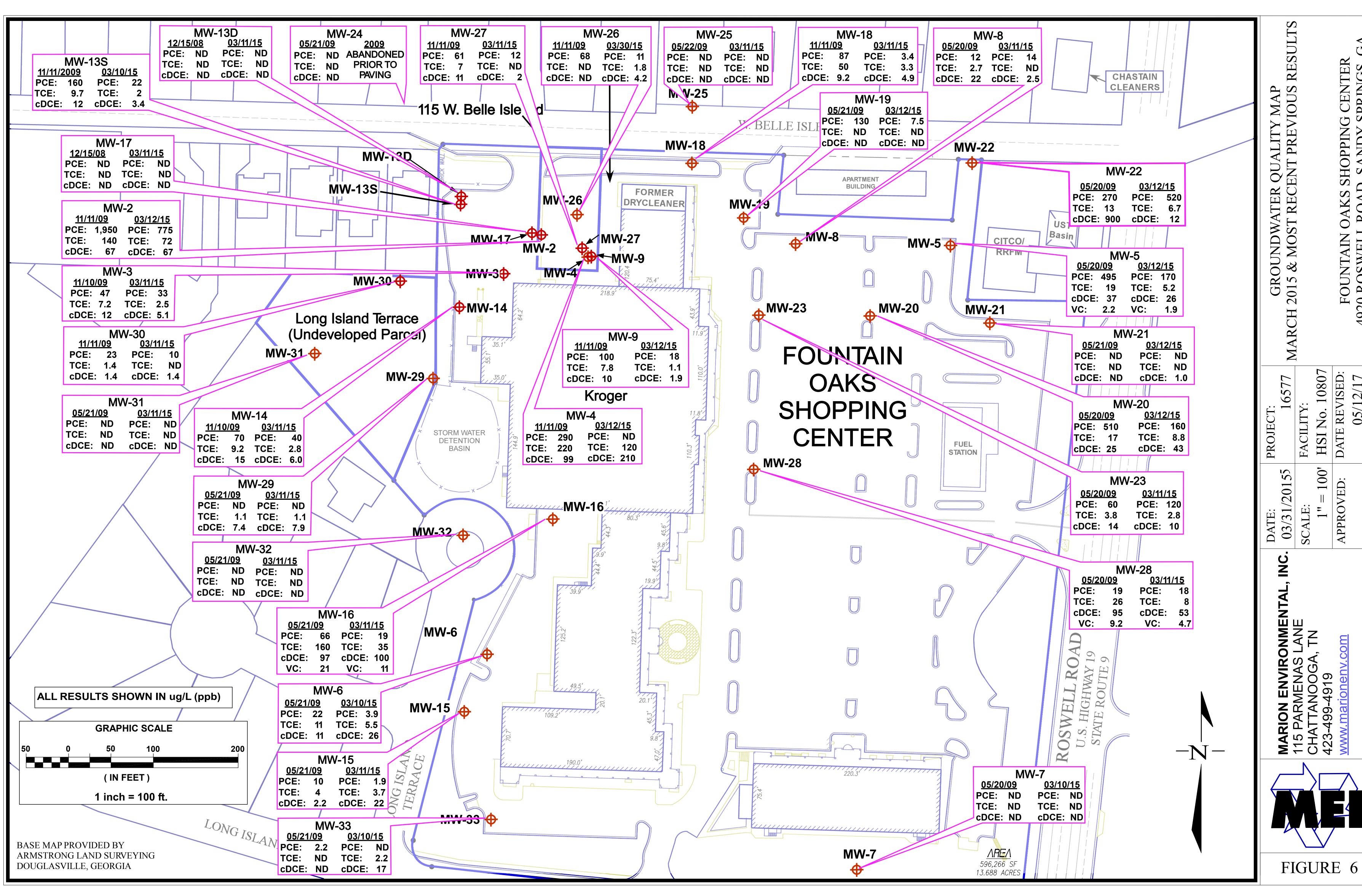

8.0 REFERENCES

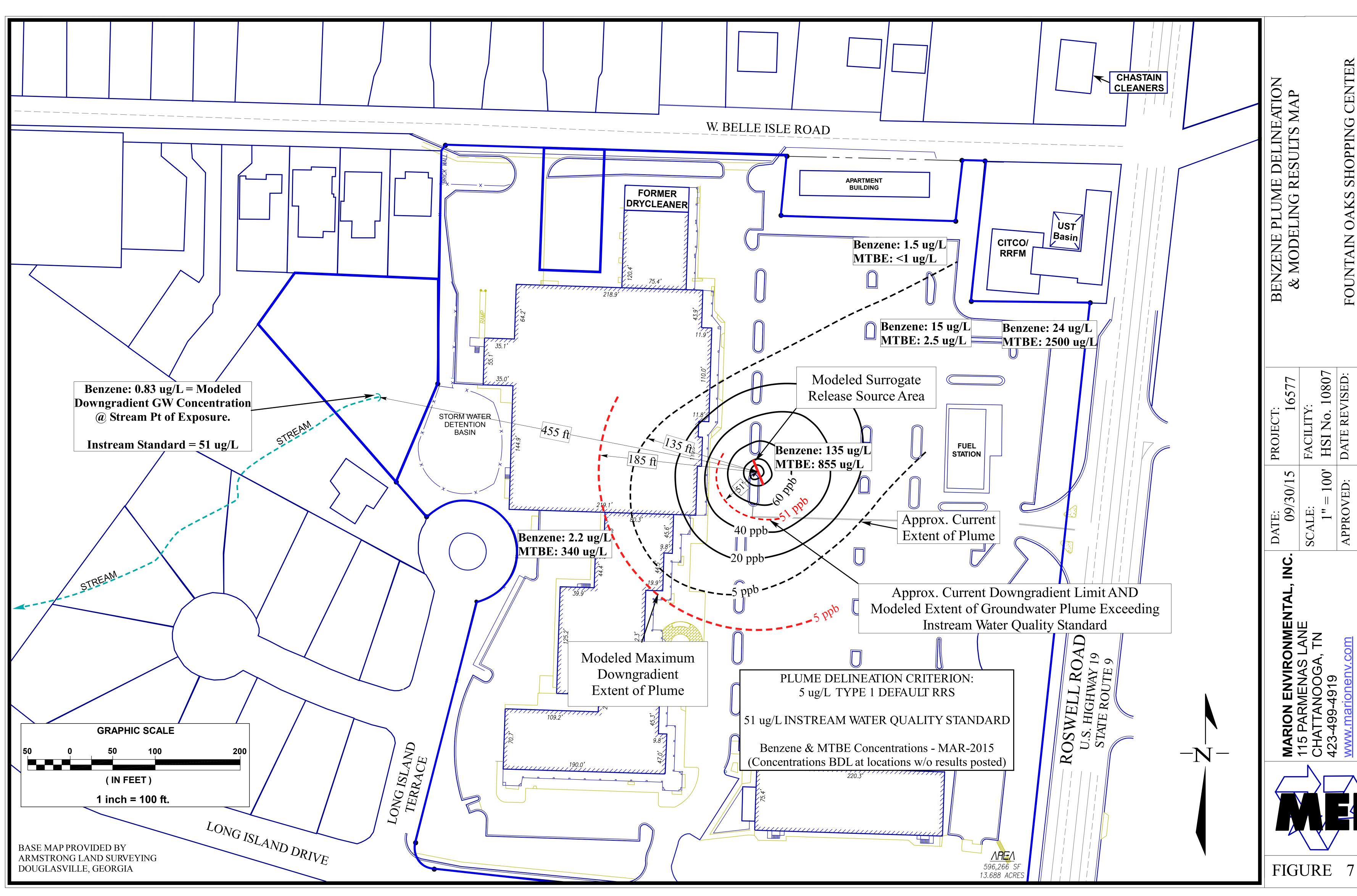

- American Society for Testing and Materials (ASTM). 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. ASTM E1739-95. West Conshohocken, PA.
- American Society for Testing and Materials (ASTM). 2015. Standard Guide for Risk-Based Corrective Action. ASTM E2018-00. West Conshohocken, PA.
- Domenico, P.A. and Robbins, G.A. 1985. A new method of contaminant plume analysis. Ground Water Vol. 23(4):476-485.
- Domenico, P.A. 1987. An analytical model for multidimensional transport of decaying contaminant species. Journal of Hydrology 91:49-58.
- Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., and Michalenko, E.M. 1991.
 Handbook of Environmental Degradation Rates, Lewis Publishers, CRC Press, 2000
 Corporate Blvd. N.W., Boca Raton, FL 33431.
- Johnson, P. C., and R. A. Ettinger. 1991. Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environ. Sci. Technology, 25:1445-1452.
- Kinner, Nancy E. 2001. Fate, Transport and Remediation of MTBE. Testimony before the United States Senate Committee on Environment and Public Works. Salem, NH.

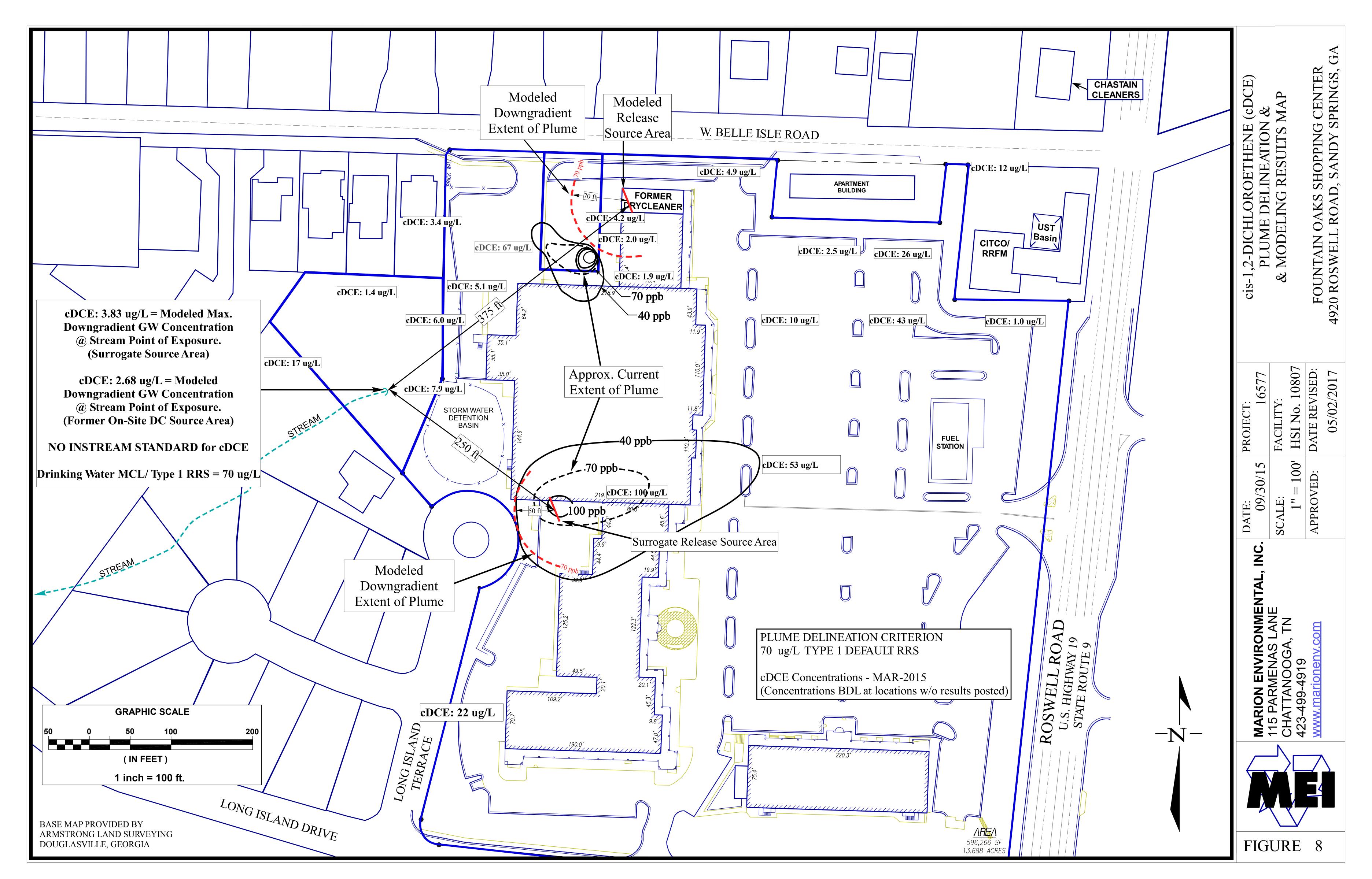

- U.S. Environmental Protection Agency (USEPA). 1991. Risk Assessment Guidance for Superfund (RAGS): Volume 1 - Human Health Evaluation Manual (HHEM) (Part B, Development of Risk-Based Preliminary Remediation Goals). Office of Emergency and Remedial Response, Washington, DC. EPA/540/R-92/003. OSWER Directive 9285.7-O1B. NTIS PB92-963333.
- USEPA. 1996. BIOSCREEN Natural Attenuation Decision Support System User's Manual, Version 1.3. EPA/600/R-96/087.
- USEPA. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128, 1998.
- USEPA. 2002. Ground Water Issue Paper "Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies". EPA/540/S-02/500.
- USEPA. February 2004. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. http://epa.gov/swerrims/riskassessment/airmodel/pdf/2004_0222_3phase_users_guide.pdf
- Weidemeir, Todd H., Rifai, H.S., Newell, C.J., and Wilson, J.T. 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley & Sons, New York, NY.


Appendix A

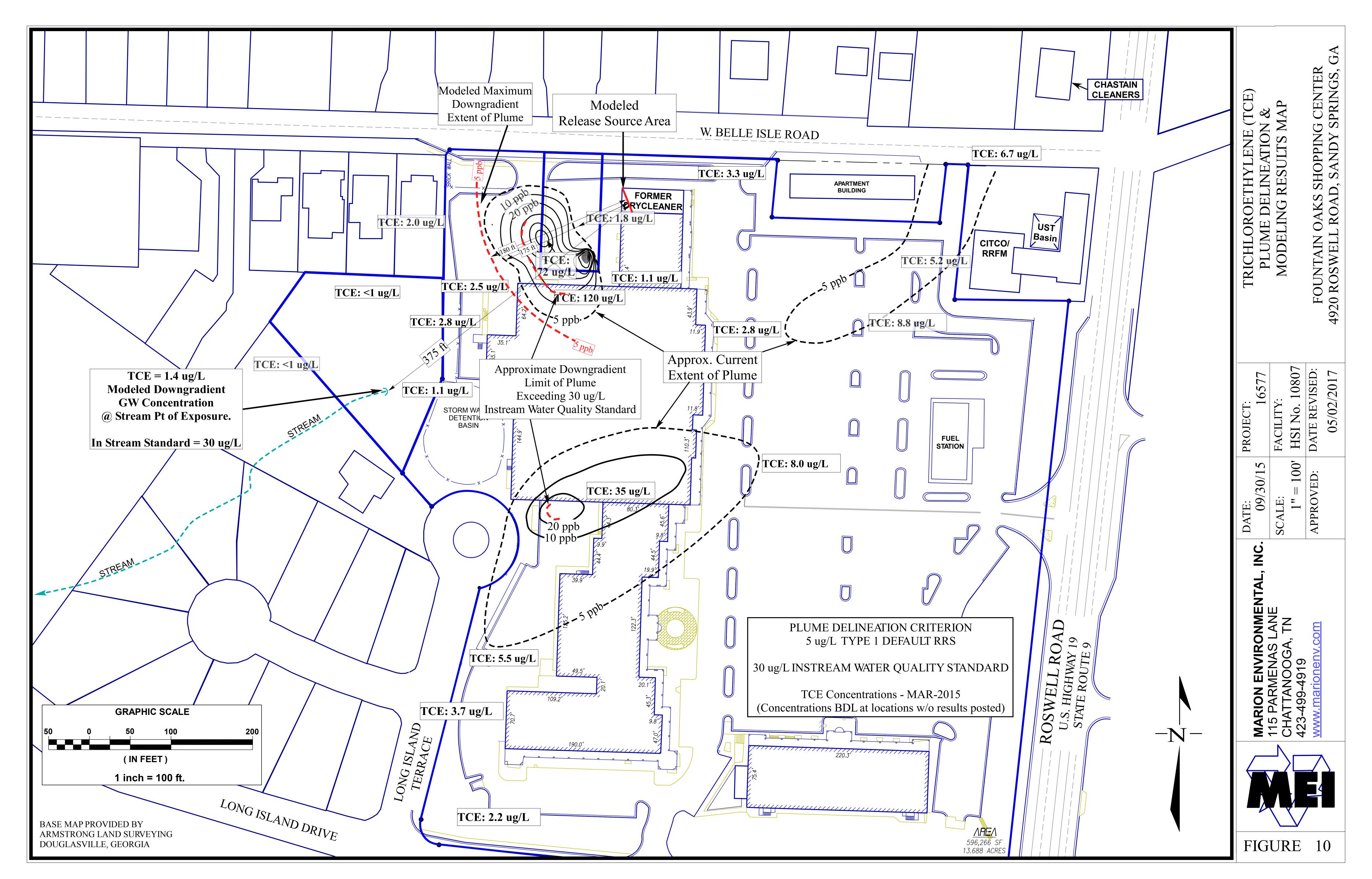

Figures

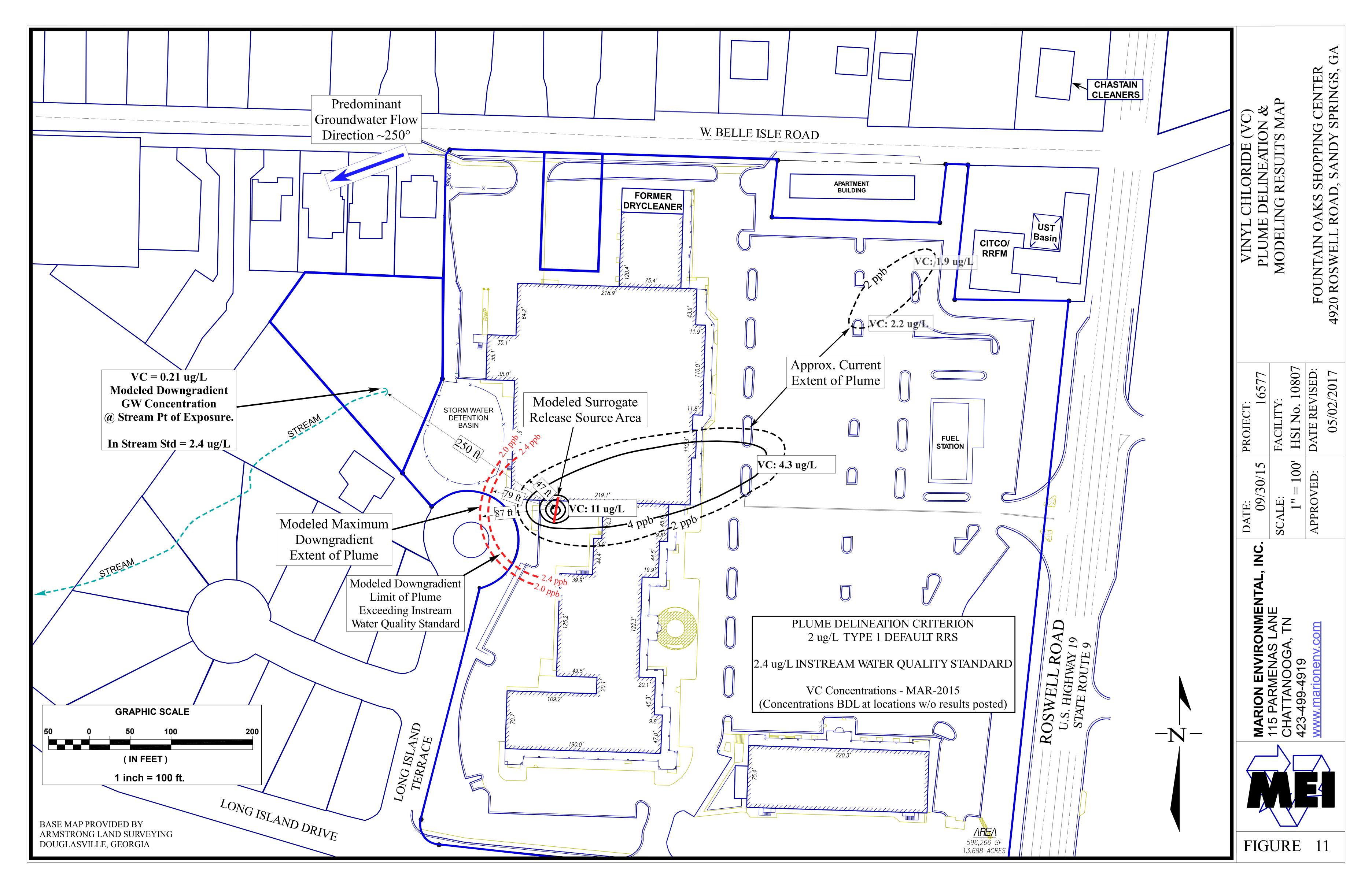












Appendix B

Tables

TABLE 2 Fountain Oaks Shopping Center Groundwater Analytical Results - VOCs Detected - March 2015 Sampling Event (All concentration units in micrograms per liter (µg/L))

(All concentration units in micrograms per liter (µg/L))														
Well ID	Date	Acetone	Benzene	sec-Butylbenzene	Chloroform	Cumene (Isopropylbenzene)	cis-1,2-Dichloroethene (cDCE)	(tDCE) (tDCE)	Di-isoproyl ether	Methyl Ethyl Ketone (MEK) (2-Butanone)	Methyl tert. Butyl Ether (MTBE)	Tetrachloroethene (PCE)	Trichloroethene (TCE)	Vinyl chloride (VC)
MW-2	3/12/2015	<50	<1	<1	5.6	<1	65	<1	<1	<10	1.0	740	70	<1
(Dup.)	3/12/2015	<50	<1	<1	6.1	<1	68	<1	<1	<10	<1	810	73	<1
MW-3	3/11/2015	<50	<1	<1	10	<1	5.1	<1	<1	<10	1.0	33	2.5	<1
MW-4	3/12/2015	<50	<1	<1	<5	<1	210	1.2	<1	<10	<1	<10	120	<1
MW-5	3/12/2015	<50	1.5	<1	<5	<1	26	<1	<1	<10	<1	170	5.2	1.9
MW-6	3/10/2015	<50	<1	<1	<5	<1	26	<1	1.7	<10	45	3.9	5.5	<1
MW-7	3/10/2015	<50	<1	<1	<5	<1	<1	<1	<1	<10	<1	<1	<1	<1
MW-8	3/11/2015	<50	<1	<1	11	<1	2.5	<1	<1	<50	<1	14	<1	<1
MW-9	3/12/2015	<50	<1	<1	14	<1	1.9	<1	<1	<10	<1	18	1.1	<1
MW-13D	3/11/2015	89	<1	<1	<5	<1	<1	<1	<1	11	<1	<1	<1	<1
MW-13S	3/10/2015	<50	<1	<1	12	<1	3.0	<1	<1	<10	<1	21	1.8	<1
(Dup.)	3/10/2015	<50	<1	<1	11	<1	3.7	<1	<1	<10	<1	23	2.1	<1
MW-14	3/11/2015	<50	<1	<1	9.7	<1	6.0	<1	<1	<10	<1	40	2.8	<1
MW-15	3/11/2015	<50	<1	<1	<5	<1	22	<1	<1	<10	<1	1.9	3.7	<1
MW-16	3/11/2015	54	2.2	<1	<5	<1	100	<1	5.7	<10	340	19	35	11
MW-17	3/11/2015	<50	<1	<1	<5	<1	<1	<1	<1	<10	<1	<1	<1	<1
MW-18	3/11/2015	<50	<1	<1	<5	<1	4.9	<1	<1	<1	<1	3.4	3.3	<1
MW-19	3/12/2015	<50	<1	<1	11	<1	<1	<1	<1	<10	<1	7.5	<1	<1
MW-20	3/12/2015	<50	15	<1	<5	<1	43	<1	<1	<10	2.5	160	8.8	2.2
MW-21	3/12/2015	<50	24	<1	<5	<1	1.0	<1	46	<10	2500	<1	<1	<1
MW-22	3/12/2015	<50	<1	<1	8.9	<1	12	<1	<1	<10	<1	520	6.7	<1
MW-23	3/11/2015	<50	<1	<1	5.6	<1	10	<1	<1	<10	<1	120	2.8	<1
MW-25	3/11/2015	<50	<1	<10	<5	<1	<1	<1	<1	<10	<1	<1	<1	<1
MW-26	3/30/2015	<50	<1	<10	<5	<1	4.2	<1	<1	<10	<1	11	1.8	<1
MW-27	3/11/2015	<50	<1	<1	12	<1	2.0	<1	<1	<10	<1	12	<1	<1
MW-28	3/11/2015	86	130	1.5	<5	2.6	48	<1	11	<10	820	16	7.0	3.9
(Dup.)	3/11/2015	<50	140	1.9	<5	3.2	58	<1	12	<10	890	20	8.9	4.7
MW-29	3/11/2015	<50	<1	<10	<5	<1	7.9	<1	1.0	<10	15	<1	1.1	<1
MW-30	3/11/2015	<50	<1	<10	<5	<1	1.4	<1	<1	<10	<1	10	<1	<1
MW-31	3/11/2015	<50	<1	<10	<5	<1	<1	<1	<1	<10	<1	<1	<1	<1
MW-32	3/11/2015	<50	<1	<10	<5	<1	<1	<1	<1	<10	1.9	<1	<1	<1
MW-33 NOTES: (1) We	3/10/2015 11 #'s 1, 10, 11 &	<50 12 abandor	<1 ned/destroye	<10 d during 200	<5 07-2008 soil	<1 remediation	17 n. Well #24 :	<1 abandoned/d	<1 lestroyed du	<10 ring 2009 ro	3.3 ad paving.	<1	2.2	<1
(2) The "less that			•	-					•	-	-			

Table 3

Domenico Fate & Transport/Attenutaion Model & Soil to Groundwater Leaching Calculations

Benzene

Modeled Point of Exposure - Off-Site Stream

Fountain Oaks Shopping Center	
-------------------------------	--

			Fountain Oaks Shopping Center	[
Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
	1		Soil to Ground Water Leaching	[
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	- cachaco City
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	
-1						Weidemeier, et al., 1999, p. 52
Ι	Infiltration Rate	14.3	$I = P^{2} * 0.009$	cm/year	Calculated	p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015,
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
V	Hydraulic conductivity	(72E - 00	$V = V + \frac{8}{2} \frac{400}{2} \frac{1}{2} $			
K _{sat}	(saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 05-2017, Figs 6&7
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water	146		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
	Partition Coefficient			-		
f _{oc}	Fractional Org. Carbon Soil-Water Partition/Sorption	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Coeff.	5.2268	$K_{d} = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
$ ho_s$	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015
H'	Henry's Law Constant	0.23		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	5.403	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015
LF_{sw}	Leaching Factor - Soil to	0.087	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015
2-1 SW	Groundwater	0.007		pp		
C _{max, soil}	Max soil concentration on-site	0.016		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, 8 & 22
C _{leach}	Conc. in GW by leaching	1.4E-03	$C_{leach} = C_{max, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015
		Dom	enico Ground Water Solute Transport Mod	el		
C _{max,gw}	Max GW concentration on-site	135		μg/L	Site-specific	MEI CSR, 05-2017,
C _{max,gw}	Max GW concentration on-site	0.135		mg/L	Site-specific	Tbl 2
	Steady State GW concentration		C = C + C	-	Calculated	Calculated
C _{source} , gw	in source zone	0.136	$C_{source, gw} = C_{max, gw} + C_{leach}$	mg/L		Calculated
X _{del}	Distance: Source to Downgrad. Delineated Edge of Plume	50		ft	Site & Compound- specific	MEI CSR, 05-2017,
v	Distance: Source to Downgrad.	1.524	y - y * 20.48 cm/ft		Site & Compound-	Figs. 10-14
X _{del}	Delineated Edge of Plume	1,524	$x_{del, cm} = x_{del, ft} * 30.48 \text{ cm/ft}$	cm	specific	-
X _{POE}	Dist: Downgrad. Edge Delineated Plume to Pt. of Exposure	405		ft	Site & Compound- specific	MEI CSR, 05-2017,
	Dist: Downgrad. Edge Delineated		* 20.40		Site & Compound-	Figs. 10-14
X _{POE}	Plume to Pt. of Exposure	12,344	$x_{POE, cm} = x_{POE, ft} * 30.48 \text{ cm/ft}$	cm	specific	
X _{total}	Distance - Total to Potential	455		ft	Calculated	
	Receptor Distance - Total to Potential	12.0.00	* 20.40			
X _{total}	Receptor	13,868	$x_{total, cm} = x_{total, ft} * 30.48 \text{ cm/ft}$	cm	Calculated	
λ	Degradation rate const.	0.00067		day ⁻¹	Geo. Mean of Site Specific	MEI CSR, 12-2015, Table 11
α _x	Longitudinal Dispersivity	1386.84	$\alpha_{\rm x} = {\rm x}_{\rm total} * 0.1$	cm	Calculated	ASTM E 1739
α _y	Transverse Dispersivity	462.28	$\alpha_{\rm v} = \alpha_{\rm x} / 3$	cm	Calculated	ASTM E 1739
α _z	Vertical Dispersivity	69.342	$\frac{\alpha_y - \alpha_x}{\alpha_z - \alpha_y} = \frac{\alpha_y}{20}$	cm	Calculated	ASTM E 1739
u	Specific Discharge	285.29	$\mathbf{u} = (\mathbf{K}_{\text{sat}} * \mathbf{i}) / \Theta_{\text{w}}$	cm/day	Calculated	ASTM E2081-00 (2015
W	Source width (Horiz.)	32.4	-	ft	Site-specific	MEI CSR, 12-2015,
W	Source width (Horiz.)	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Calculated	Sec. 3.4.4.1
S _d	Source thickness (Vertical)	200		cm	Default	EPA RSL Table, 2015
	e Transport/Attenuation Equation					ASTM E 1739, EPA
			//(4*sqrt(α y * x _{total})))] * [erf (S _d /(4*sqrt(α _z *	x _{total})))]}		2002
Intermed. calc.	Domenico - exponential term	-3.246E-02	$(x_{total}/(2 * \alpha_x)*(1-sqrt(1+(4*\lambda*\alpha_x/u)))$	dimensionless	Calculated	Calculated
Internieu. cale.				1	Calcalate 1	Calculated
Intermed. calc.	exp (exponential term)	9.681E-01	exp (exponential term)	dimensionless	Calculated	Calculated
	(1st term) - error function (erf)	9.681E-01 9.751E-02		dimensionless	Calculated	Calculated
Intermed. calc. Intermed. calc.	(1st term) - error function (erf) to be calc.	9.751E-02	$(W/(4*sqrt(\alpha_y * x_{total})))$	dimensionless	Calculated	Calculated
Intermed. calc.	(1st term) - error function (erf)					
Intermed. calc. Intermed. calc.	(1st term) - error function (erf) to be calc. (2nd term) - error function (erf)	9.751E-02	$(W/(4*sqrt(\alpha_y * x_{total})))$	dimensionless	Calculated	Calculated
Intermed. calc. Intermed. calc. Intermed. calc.	(1st term) - error function (erf) to be calc. (2nd term) - error function (erf) to be calc.	9.751E-02 5.099E-02	$(W/(4*sqrt(\alpha_y * x_{total})))$ $(S_d/(4*sqrt(\alpha_z * x_{total})))$	dimensionless dimensionless	Calculated Calculated	Calculated Calculated
Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc.	(1st term) - error function (erf) to be calc. (2nd term) - error function (erf) to be calc. erf (1st term)=	9.751E-02 5.099E-02 0.109677	$(W/(4*sqrt(\alpha_y * x_{total})))$ $(S_d/(4*sqrt(\alpha_z * x_{total})))$ $erf(W/(4*sqrt(\alpha_y * x_{total})))$	dimensionless dimensionless dimensionless	Calculated Calculated Calculated	Calculated Calculated Calculated
Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc.	(1st term) - error function (erf) to be calc. (2nd term) - error function (erf) to be calc. erf (1st term)= erf (2nd term)= erf(1st Term) * erf (2nd Term} Domenico Results	9.751E-02 5.099E-02 0.109677 0.057483	$(W/(4*sqrt(\alpha_y * x_{total})))$ $(S_d/(4*sqrt(\alpha_z * x_{total})))$ $erf(W/(4*sqrt(\alpha_y * x_{total})))$	dimensionless dimensionless dimensionless dimensionless	Calculated Calculated Calculated Calculated	Calculated Calculated Calculated Calculated
Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc.	(1st term) - error function (erf) to be calc. (2nd term) - error function (erf) to be calc. erf (1st term)= erf (2nd term)= erf(1st Term) * erf (2nd Term} Domenico Results {parenthetical term}	9.751E-02 5.099E-02 0.109677 0.057483 6.305E-03 6.103E-03	$(W/(4*sqrt(\alpha_y * x_{total})))$ $(S_d/(4*sqrt(\alpha_z * x_{total})))$ $erf(W/(4*sqrt(\alpha_y * x_{total})))$ $erf(S_d/(4*sqrt(\alpha_z * x_{total})))$ $(exp [exp. term] * [erf(1st term)] * [erf(2nd term)])$	dimensionless dimensionless dimensionless dimensionless dimensionless	Calculated Calculated Calculated Calculated Calculated	Calculated Calculated Calculated Calculated Calculated
Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc.	(1st term) - error function (erf) to be calc. (2nd term) - error function (erf) to be calc. erf (1st term)= erf (2nd term)= erf(1st Term) * erf (2nd Term} Domenico Results	9.751E-02 5.099E-02 0.109677 0.057483 6.305E-03	$(W/(4*sqrt(\alpha_y * x_{total})))$ $(S_d/(4*sqrt(\alpha_z * x_{total})))$ $erf(W/(4*sqrt(\alpha_y * x_{total})))$ $erf(S_d/(4*sqrt(\alpha_z * x_{total})))$	dimensionless dimensionless dimensionless dimensionless dimensionless	Calculated Calculated Calculated Calculated Calculated	Calculated Calculated Calculated Calculated Calculated
Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. C(x) =	(1st term) - error function (erf) to be calc. (2nd term) - error function (erf) to be calc. erf (1st term)= erf (2nd term)= erf(1st Term) * erf (2nd Term} Domenico Results {parenthetical term} Downgradient Point of Exposure Concentration Downgradient Point of	9.751E-02 5.099E-02 0.109677 0.057483 6.305E-03 6.103E-03 8.3E-04	$(W/(4*sqrt(\alpha_{y} * x_{total})))$ $(S_{d}/(4*sqrt(\alpha_{z} * x_{total})))$ $erf(W/(4*sqrt(\alpha_{y} * x_{total})))$ $erf(S_{d}/(4*sqrt(\alpha_{z} * x_{total})))$ $(exp [exp. term] * [erf(1st term)] * [erf(2nd term)])$ $C_{(x)} = C_{source, gw} * \{Domenico Eqn.\}$	dimensionless dimensionless dimensionless dimensionless dimensionless dimensionless mg/L	Calculated Calculated Calculated Calculated Calculated Calculated Calculated	Calculated Calculated Calculated Calculated Calculated Calculated Calculated
Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc. Intermed. calc.	(1st term) - error function (erf) to be calc. (2nd term) - error function (erf) to be calc. erf (1st term)= erf (2nd term)= erf(1st Term) * erf (2nd Term} Domenico Results {parenthetical term} Downgradient Point of Exposure Concentration	9.751E-02 5.099E-02 0.109677 0.057483 6.305E-03 6.103E-03	$(W/(4*sqrt(\alpha_y * x_{total})))$ $(S_d/(4*sqrt(\alpha_z * x_{total})))$ $erf(W/(4*sqrt(\alpha_y * x_{total})))$ $erf(S_d/(4*sqrt(\alpha_z * x_{total})))$ $(exp [exp. term] * [erf(1st term)] * [erf(2nd term)])$	dimensionless dimensionless dimensionless dimensionless dimensionless	Calculated Calculated Calculated Calculated Calculated Calculated	Calculated Calculated Calculated Calculated Calculated Calculated

Table 4 Domenico Fate & Transport/Attenutaion Model & Soil to Groundwater Leaching Calculations cis-1,2-Dichloroethene (cDCE) - On-Site Drycleaner Release Source Modeled Point of Exposure - Off-Site Stream

Fountain Oaks Shopping Center	•
-------------------------------	---

			Fountain Oaks Shopping Center		T	<u> </u>
Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
	1		Soil to Ground Water Leaching			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	Peachtree City
			$\Gamma_{\rm cm} = \Gamma_{\rm in} = 2.5 + {\rm Cm}{\rm m}$			
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MELCOD 12 2015
δ _{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
	Hydraulic conductivity		ogw, cm ogw, ft 50.40 cm/ft			
K _{sat}	(saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)}$ * 86,400 sec/day	cm/day		
	(saturated) Groundwater Hydraulic					MEI CSR, 05-2017,
i	Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	Figs 6&7
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015
K _{oc}	Soil Organic Carbon-Water	39.6		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f _{oc}	Partition Coefficient Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
	Soil-Water Partition/Sorption				_	
K _d	Coeff.	1.41768	$\mathbf{K}_{\mathrm{d}} = \mathbf{K}_{\mathrm{oc}} * \mathbf{f}_{\mathrm{oc}}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{\rm a}$	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015
H'	Henry's Law Constant	0.17		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	1.585	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015
	Leaching Factor - Soil to	0.207			Coloulated	ASTM E2021 00 (2015
LF _{sw}	Groundwater	0.297	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 2015, Tables
Cleach	Conc. in GW by leaching	8.9E-02		mg/L	Calculated	7, 8 & 22 ASTM E2081-00 (2015
Cleach	Colle. In GW by leaching		lenie Course d Weter Selete Terrere et Med	-	Calculated	101WI E2001-00 (2013
			enico Ground Water Solute Transport Mod	1		Γ
C _{max,gw}	Max GW concentration on-site	210		μg/L	Site-specific	MEI CSR, 05-2017,
C _{max,gw}	Max GW concentration on-site	0.210		mg/L	Site-specific	Tbl 2
C _{source, gw}	Steady State GW concentration in source zone	0.299	$C_{source, gw} = C_{max, gw} + C_{leach}$	mg/L	Calculated	Calculated
	Distance: Source to Downgrad.				Site & Compound-	
X _{del}	Delineated Edge of Plume	70		ft	specific	MEI CSR, 05-2017,
x _{del}	Distance: Source to Downgrad.	2,134	$x_{del, cm} = x_{del, ft} * 30.48 \text{ cm/ft}$	cm	Site & Compound-	Figs. 10-14
	Delineated Edge of Plume Dist: Downgrad. Edge Delineated				specific Site & Compound-	
X _{POE}	Plume to Pt. of Exposure	305		ft	specific	MEI CSR, 05-2017,
	Dist: Downgrad. Edge Delineated	9,296	$x_{POE, cm} = x_{POE, ft} * 30.48 \text{ cm/ft}$	cm	Site & Compound-	Figs. 10-14
X _{POE}	Plume to Pt. of Exposure	,,2)0			specific	
x _{total}	Distance - Total to Potential Receptor	375		ft	Site-specific	
× .	Distance - Total to Potential	11,430	$x_{total, cm} = x_{total, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	
X _{total}	Receptor	11,430	Atotal, cm – Atotal, ft 50.40 Cm/ ft	cm	-	
λ	Degradation rate const.	0.0008		day ⁻¹	Geo. Mean of Site Specific	MEI CSR, 12-2015, Table 11
α _x	Longitudinal Dispersivity	1143	$\alpha_x = x_{total} * 0.1$	cm	Calculated	ASTM E 1739
α _y	Transverse Dispersivity	381	$\alpha_{\rm v} = \alpha_{\rm x} / 3$	cm	Calculated	ASTM E 1739
α _z	Vertical Dispersivity	57.15	$\frac{\alpha_{\rm y}}{\alpha_{\rm z}} = \frac{\alpha_{\rm x}}{20}$	cm	Calculated	ASTM E 1739
u	Specific Discharge	285.29	$\mathbf{u} = (\mathbf{K}_{\text{sat}} * \mathbf{i}) / \Theta_{\text{w}}$	cm/day	Calculated	ASTM E2081-00 (2015
W	Source width (Horiz.)	32.4	<u>(sat</u> ·/ · · · w	ft	Site-specific	MEI CSR, 12-2015,
W	Source width (Horiz.)	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Calculated	Sec. 3.4.4.1
S _d	Source thickness (Vertical)	200		cm	Default	EPA RSL Table, 2015
-	e Transport/Attenuation Equation		<u> </u>			ASTM E 1739, EPA
-			$T/(4*sqrt(\alpha y * x_{total})))] * [erf (S_d/(4*sqrt(\alpha_z * x_{total})))]$	(<pre>total</pre>)))]}		2002
Intermed. calc.	Domenico - exponential term	-3.195E-02	$(x_{\text{total}}/(2 * \alpha_x)*(1-\text{sqrt}(1+(4*\lambda*\alpha_x/u))))$	dimensionless	Calculated	Calculated
Intermed. calc.	exp (exponential term)	9.686E-01	exp (exponential term)	dimensionless	Calculated	Calculated
Intermed. calc.	(1st term) - error function (erf)	1.183E-01		dimensionless	Calculated	Calculated
Intermed. calc.	to be calc.	1.183E-01	$(W/(4*sqrt(\alpha_y * x_{total})))$	dimensionless	Calculated	Calculated
Intermed. calc.	(2nd term) - error function (erf)	6.186E-02	$(S_d/(4*sqrt(\alpha_z * x_{total})))$	dimensionless	Calculated	Calculated
Intermed. calc.	to be calc.	0.132876	$erf(W/(4*sqrt(\alpha_v * x_{total})))$	dimensionless	Calculated	Calculated
	erf (1st term)=		,		-	Calculated
Intermed. calc.	erf (2nd term)=	0.069717	$erf (S_d/(4*sqrt(\alpha_z * x_{total})))$	dimensionless	Calculated	
Intermed. calc.	erf(1st Term) * erf (2nd Term}	9.264E-03		dimensionless	Calculated	Calculated
Intermed. calc.	Domenico Results {parenthetical term}	8.972E-03	{exp [exp. term] * [erf (1st term)] * [erf (2nd term)]}	dimensionless	Calculated	Calculated
	Downgradient Point of	0 7E 02			Colordata	Colord-4-3
$\mathbf{C}(\mathbf{x}) =$	Exposure Concentration	2.7E-03	$C_{(x)} = C_{source, gw} * \{Domenico Eqn.\}$	mg/L	Calculated	Calculated
				1		1
C (x) =	Downgradient Point of	2.68	$C_{(x)} = C_{source, ow} * \{Domenico Ean.\}$	μ <u>α/Ι</u>	Calculated	Calculated
C(x) =	Downgradient Point of Exposure Concentration Residential RRS/ Drinking	2.68	$C_{(x)} = C_{source, gw} * \{Domenico Eqn.\}$	μg/L	Calculated	Calculated EPD Rule 391-5-

Table 5 Domenico Fate & Transport/Attenutaion Model & Soil to Groundwater Leaching Calculations cis-1,2-Dichloroethene (cDCE) - Surrogate Release Source Mathematical Distribution of the Distrowed of the Distribution of the Distribution

Modeled Point of Exposure - Off-Site Stream Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Fountain Oaks Shopping Center Formula	Units	Parameter Type	Data Source
variable	variable Definition	value	Formula Soil to Ground Water Leaching	Units	r ar ameter Type	Data Source
W	Width of Source	32.4	in the second se	ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc,
			$P_{cm} = P_{in} * 2.54 \text{ cm/in}$		Calculated	Peachtree City
P	Avg. Annual Precipitation	126	$\mathbf{r}_{cm} = \mathbf{r}_{in} + 2.54 \text{ cm/m}$	cm/yr		
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999,
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015,
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
	(saturated) Groundwater Hydraulic			enil duy		MEI CSR, 05-2017,
i	Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	Figs 6&7
U _{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	39.6		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f _{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption	1.41768	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ _s	Coeff. Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{w}	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ _a	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.17		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	1.585	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to	0.297	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
	Groundwater		Sw (Sw /			MEI CSR, 2015, Tables
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	7, 8 & 22
Cleach	Conc. in GW by leaching	8.9E-02		mg/L	Calculated	ASTM E2081-00 (2015)
		Dom	enico Ground Water Solute Transport Mod	el		
C _{max,gw}	Max GW concentration on-site	100		μg/L	Site-specific	MEI CSR, 05-2017,
C _{max,gw}	Max GW concentration on-site Steady State GW concentration	0.100		mg/L	Site-specific	Tbl 2
C _{source, gw}	in source zone	0.189	$C_{source, gw} = C_{max, gw} + C_{leach}$	mg/L	Calculated	Calculated
x _{del}	Distance: Source to Downgrad.	50		ft	Site & Compound-	MEL COD. 05 2017
	Delineated Edge of Plume Distance: Source to Downgrad.		* 20.40 //5		specific Site & Compound-	MEI CSR, 05-2017, Figs. 10-14
X _{del}	Delineated Edge of Plume	1,524	$x_{del, cm} = x_{del, ft} * 30.48 \text{ cm/ft}$	cm	specific	
X _{POE}	Dist: Downgrad. Edge Delineated Plume to Pt. of Exposure	200		ft	Site & Compound- specific	MEI CSR, 05-2017,
FUE	Dist: Downgrad. Edge Delineated	6,096	$x_{POE, cm} = x_{POE, ft} * 30.48 \text{ cm/ft}$		Site & Compound-	Figs. 10-14
X _{POE}	Plume to Pt. of Exposure	0,090	APOE, cm – APOE, ft 50.40 cm/n	cm	specific	
X _{total}	Distance - Total to Potential Receptor	250		ft	Site-specific	
X _{total}	Distance - Total to Potential	7,620	$x_{total, cm} = x_{total, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	
	Receptor	0.0000		1	Geo. Mean of Site	MEI CSR, 12-2015,
λ	Degradation rate const.	0.0008		day ⁻¹	Specific	Table 11
α _x	Longitudinal Dispersivity	762	$\alpha_{\rm x} = {\rm x}_{\rm total} * 0.1$	cm	Calculated	ASTM E 1739
α _y	Transverse Dispersivity	254	$\alpha_{\rm y} = \alpha_{\rm x} / 3$	cm	Calculated	ASTM E 1739
α _z	Vertical Dispersivity Specific Discharge	38.1 285.29	$\alpha_z = \alpha_x / 20$ $\mathbf{u} = (\mathbf{K}_{\text{sat}} * \mathbf{i}) / \Theta_w$	cm cm/day	Calculated Calculated	ASTM E 1739 ASTM E2081-00 (2015)
u W	Source width (Horiz.)	32.4	$u = (\mathbf{R}_{sat} \mathbf{i}) / \mathfrak{V}_W$	ft	Site-specific	MEI CSR, 12-2015,
W	Source width (Horiz.)	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Calculated	Sec. 3.4.4.1
S _d	Source thickness (Vertical)	200	**	cm	Default	EPA RSL Table, 2015
Domenico Steady-State	Transport/Attenuation Equatio	n:				ASTM E 1739, EPA
I			$/(4*sqrt(\alpha_y * x_{total})))] * [erf (S_d/(4*sqrt(\alpha_z * x_{total})))]$		1	2002
Intermed. calc.	Domenico - exponential term	-2.132E-02	$(x_{\text{total}}/(2 * \alpha_x)*(1-\operatorname{sqrt}(1+(4*\lambda*\alpha_x/u)))$	dimensionless	Calculated	Calculated
Intermed. calc.	exp (exponential term) (1st term) - error function (erf)	9.789E-01	exp (exponential term)	dimensionless	Calculated	Calculated
Intermed. calc.	(1st term) - error function (err) to be calc.	1.775E-01	$(W/(4*sqrt(\alpha_y * x_{total})))$	dimensionless	Calculated	Calculated
Intermed. calc.	(2nd term) - error function (erf)	9.280E-02	$(S_d/(4*sqrt(\alpha_z * x_{total})))$	dimensionless	Calculated	Calculated
Intermed. calc.	to be calc. erf (1st term)=	0.198162	$erf(W/(4*sqrt(\alpha_v * x_{total})))$	dimensionless	Calculated	Calculated
Intermed. calc.	erf (2nd term)=	0.104409	$\frac{\operatorname{err}(w/(4 \operatorname{sqrt}(\alpha_{y} \times x_{\operatorname{total}})))}{\operatorname{err}(S_{d}/(4 \operatorname{sqrt}(\alpha_{z} \times x_{\operatorname{total}})))}$	dimensionless	Calculated	Calculated
Intermed. calc.	erf(1st Term) * erf (2nd Term}	2.069E-02		dimensionless	Calculated	Calculated
Intermed. calc.	Domenico Results	2.025E-02	{exp [exp. term] * [erf (1st term)] * [erf (2nd term)]}	dimensionless	Calculated	Calculated
	{parenthetical term}					Carculated
C (x) =	Downgradient Point of Exposure Concentration	3.8E-03	$C_{(x)} = C_{source, gw} * {Domenico Eqn.}$	mg/L	Calculated	Calculated
C (x) =	Downgradient Point of	3.83	$C_{(x)} = C_{source, gw} * \{Domenico Eqn.\}$	μg/L	Calculated	Calculated
U(A) -	Exposure Concentration	5.05	C(X) = Csource, gw (Domenico Eqn.)	µg/т.	Calculated	
	Residential RRS/ Drinking					EPD Rule 391-5-

Table 6 Domenico Fate & Transport/Attenutaion Model & Soil to Groundwater Leaching Calculations Tetrachloroethene Modeled Point of Exposure - Off-Site Stream Fountain Oaks Shopping Center

			Fountain Oaks Shopping Center			
Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
	1		Soil to Ground Water Leaching			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015,
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 05-2017, Figs 6&7
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water	94.94		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f _{oc}	Partition Coefficient Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption	3.398852	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ _s	Coeff. Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{\rm w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.724		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	3.647	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.129	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	1.1		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, 8 & 22
C _{leach}	Conc. in GW by leaching	1.4E-01	$C_{\text{leach}} = C_{\text{max, soil}} * LF_{\text{sw}}$	mg/L	Calculated	ASTM E2081-00 (2015)
		Dom	enico Ground Water Solute Transport Mod	-		
C _{max,gw}	Max GW concentration on-site	775		μg/L	Site-specific	MEI CSR, 05-2017,
C _{max,gw}	Max GW concentration on-site	0.775		mg/L	Site-specific	Tbl 2
C _{source, gw}	Steady State GW concentration in source zone	0.917	$C_{source, gw} = C_{max, gw} + C_{leach}$	mg/L	Calculated	Calculated
X _{del}	Distance: Source to Downgrad.	300		ft	Site & Compound-	MELCED 05 2017
X _{del}	Delineated Edge of Plume Distance: Source to Downgrad.	9,144	$x_{del, cm} = x_{del, ft} * 30.48 \text{ cm/ft}$	cm	specific Site & Compound-	MEI CSR, 05-2017, Figs. 10-14
Adel	Delineated Edge of Plume Dist: Downgrad. Edge Delineated	,	Adel, cm – Adel, ft – 50.40 cm At		specific Site & Compound-	
X _{POE}	Plume to Pt. of Exposure Dist: Downgrad. Edge Delineated	75		ft	specific	MEI CSR, 05-2017, Figs. 10-14
X _{POE}	Plume to Pt. of Exposure	2,286	$x_{POE, cm} = x_{POE, ft} * 30.48 \text{ cm/ft}$	cm	Site & Compound- specific	11gs. 10-14
x _{total}	Distance - Total to Potential Receptor	375		ft	Site-specific	
X _{total}	Distance - Total to Potential Receptor	11,430	$x_{total, cm} = x_{total, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	
λ	Degradation rate const.	0.0014		day ⁻¹	Geo. Mean of Site Specific	MEI CSR, 12-2015, Table 11
$\alpha_{\rm x}$	Longitudinal Dispersivity	1143	$\alpha_x = x_{total} * 0.1$	cm	Calculated	ASTM E 1739
α _y	Transverse Dispersivity	381	$\alpha_y = \alpha_x / 3$	cm	Calculated	ASTM E 1739
α _z	Vertical Dispersivity	57.15	$\alpha_z = \alpha_x / 20$	cm	Calculated	ASTM E 1739
u	Specific Discharge	285.29	$\mathbf{u} = (\mathbf{K}_{\text{sat}} * \mathbf{i}) / \boldsymbol{\Theta}_{\mathbf{w}}$	cm/day	Calculated	ASTM E2081-00 (2015)
W	Source width (Horiz.)	32.4		ft	Site-specific	MEI CSR, 12-2015,
W	Source width (Horiz.)	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Calculated	Sec. 3.4.4.1
S _d	Source thickness (Vertical)	200		cm	Default	EPA RSL Table, 2015
			$M/(4*sqrt(\alpha y * x_{total})))] * [erf (S_d/(4*sqrt(\alpha_z * \alpha_z)))]$	x _{total})))]}		ASTM E 1739, EPA 2002
Intermed. calc.	Domenico - exponential term	-5.578E-02	$(x_{total}/(2 * \alpha_x)*(1-sqrt(1+(4*\lambda*\alpha_x/u))))$	dimensionless	Calculated	Calculated
Intermed. calc.	exp (exponential term)	9.457E-01	exp (exponential term)	dimensionless	Calculated	Calculated
Intermed. calc.	(1st term) - error function (erf) to be calc.	1.183E-01	$(W/(4*sqrt(\alpha_y * x_{total})))$	dimensionless	Calculated	Calculated
Intermed. calc.	(2nd term) - error function (erf) to be calc.	6.186E-02	$(S_d/(4*sqrt(\alpha_z * x_{total})))$	dimensionless	Calculated	Calculated
Intermed. calc.	erf (1st term)=	0.132876	erf (W/(4*sqrt($\alpha_y * x_{total})$))	dimensionless	Calculated	Calculated
Intermed. calc.	erf (2nd term)=	0.069717	$\frac{\operatorname{erf}\left(\mathrm{S}_{d}/(4*\operatorname{sqrt}(\alpha_{z}*\mathbf{x}_{\operatorname{total}}))\right)}{\operatorname{erf}\left(\mathrm{S}_{d}/(4*\operatorname{sqrt}(\alpha_{z}*\mathbf{x}_{\operatorname{total}}))\right)}$	dimensionless	Calculated	Calculated
Intermed. calc.	erf(1st Term) * erf (2nd Term}	9.264E-03		dimensionless	Calculated	Calculated
Intermed. calc.	Domenico Results {parenthetical term}	8.761E-03	[exp [exp. term] * [erf (1st term)] * [erf (2nd term)]]	dimensionless	Calculated	Calculated
C (x) =	Downgradient Point of	8.0E-03	$C_{(x)} = C_{source, gw} * \{Domenico Eqn.\}$	mg/L	Calculated	Calculated
C (x) =	Exposure Concentration Downgradient Point of	8.03	$C_{(x)} = C_{source, gw} * \{Domenico Eqn.\}$	μg/L	Calculated	Calculated
~ (24) -	Exposure Concentration	3100	(A) - SUULCE, gw (- STATE CO Equal)	r'5'		
In Stream Standard	Georgia In Stream Water	3.3		μg/L	Default	EPD Rule 391-3-

Table 7

Domenico Fate & Transport/Attenutaion Model & Soil to Groundwater Leaching Calculations

Trichloroethene

Modeled Point of Exposure - Off-Site Stream

Fountain Oaks Shopping Center

¥7 • • •	X 7 2 -11 T 6 • • •	X 7 I	Fountain Oaks Shopping Center	T T •/	Derror (T	D -4 0				
Variable	Variable Definition	Value	Formula Soil to Cround Water Leaching	Units	Parameter Type	Data Source				
Soil to Ground Water Leaching										
W	Width of Source	32.4	W W * 20.49 are /ft	ft	Site-specific	MEI CSR, 2015, Sect. 3.4.4.4.1				
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	Natl. Weather Svc,				
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Peachtree City				
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated					
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999				
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	p. 52				
δ _{gw}	GW Mixing Zone Thickness	7.1	S S * 20.40 /0	ft	Site-specific	MEI CSR, 12-2015, Table 2				
δ _{gw}	GW Mixing Zone Thickness Hydraulic conductivity	216	$\delta_{\rm gw, cm} = \delta_{\rm gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific					
K _{sat}	(saturated) Hydraulic conductivity	7.78E-05 6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/sec	Site-specific	UC PPCAP, Pg 23				
i	(saturated) Groundwater Hydraulic	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 05-2017,				
U_{gw}	Gradient GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	Figs 6&7 ASTM E2081-00 (2015				
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw} * \delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)				
K _{oc}	Soil Organic Carbon-Water	60.7		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015				
f _{oc}	Partition Coefficient Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1				
K _d	Soil-Water Partition/Sorption Coeff.	2.17306	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)				
ρ _s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1				
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1				
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)				
Η'	Henry's Law Constant	0.403		dimensionless	Compound-Specific	EPA RSL Table, 2015				
K _{sw}	Soil to Leachate Partition Coeff.	2.375	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)				
LF _{sw}	Leaching Factor - Soil to Groundwater	0.198	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)				
C _{max, soil}	Max soil concentration on-site	0.18		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, 8 & 22				
C _{leach}	Conc. in GW by leaching	3.6E-02	$C_{leach} = C_{max, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)				
		Dom	enico Ground Water Solute Transport Mod	el						
C _{max,gw}	Max GW concentration on-site	120		μg/L	Site-specific	MEI CSR, 05-2017,				
C _{max,gw}	Max GW concentration on-site Steady State GW concentration	0.120		mg/L	Site-specific	Tbl 2				
C _{source, gw}	in source zone	0.156	$C_{source, gw} = C_{max, gw} + C_{leach}$	mg/L	Calculated	Calculated				
x _{del}	Distance: Source to Downgrad. Delineated Edge of Plume	175		ft	Site & Compound- specific	MEI CSR, 05-2017,				
x _{del}	Distance: Source to Downgrad. Delineated Edge of Plume	5,334	$x_{del, cm} = x_{del, ft} * 30.48 \text{ cm/ft}$	cm	Site & Compound- specific	Figs. 10-14				
X _{POE}	Dist: Downgrad. Edge Delineated Plume to Pt. of Exposure	200		ft	Site & Compound- specific	MEI CSR, 05-2017,				
	Dist: Downgrad. Edge Delineated	6,096	$x_{POE, cm} = x_{POE, ft} * 30.48 \text{ cm/ft}$	cm	Site & Compound-	Figs. 10-14				
x x	Plume to Pt. of Exposure Distance - Total to Potential	375	hype, cm hype, it solve childs	ft	specific Site-specific					
X _{total}	Receptor Distance - Total to Potential			It	<u>^</u>					
X _{total}	Receptor	11,430	$x_{total, cm} = x_{total, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	NEL COD. 10 0015				
λ	Degradation rate const.	0.00066		day ⁻¹	Geo. Mean of Site Specific	MEI CSR, 12-2015, Table 11				
a _x	Longitudinal Dispersivity	1143	$\alpha_{\rm x} = {\rm x}_{\rm total} * 0.1$	cm	Calculated	ASTM E 1739				
α _y	Transverse Dispersivity	381	$\alpha_y = \alpha_x / 3$	cm	Calculated	ASTM E 1739				
α _z	Vertical Dispersivity	57.15	$\alpha_z = \alpha_x / 20$	cm	Calculated	ASTM E 1739				
u W	Specific Discharge Source width (Horiz.)	285.29 32.4	$\mathbf{u} = (\mathbf{K}_{\text{sat}} * \mathbf{i}) / \boldsymbol{\Theta}_{\mathbf{w}}$	cm/day ft	Calculated Site-specific	ASTM E2081-00 (2015)				
W	Source width (Horiz.)	<u> </u>	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific Calculated	MEI CSR, 12-2015, Sec. 3.4.4.1				
S _d	Source thickness (Vertical)	200		cm	Default	EPA RSL Table, 2015				
Domenico Steady-State	e Transport/Attenuation Equation	on:			Derivati	ASTM E 1739, EPA				
			$\frac{1}{(4*\operatorname{sqrt}(\alpha y * x_{\operatorname{total}})))} * [\operatorname{erf}(S_d/(4*\operatorname{sqrt}(\alpha_z * y_{\operatorname{total}})))] + [\operatorname{erf}(S_d/(4*\operatorname{sqrt}(\alpha_z * y_{\operatorname{total}})))]$			2002				
Intermed. calc.	Domenico - exponential term	-2.637E-02	$(x_{total}/(2 * \alpha_x)*(1-sqrt(1+(4*\lambda*\alpha_x/u))))$	dimensionless	Calculated	Calculated				
Intermed. calc.	exp (exponential term) (1st term) - error function (erf)	9.740E-01	exp (exponential term)	dimensionless	Calculated	Calculated				
Intermed. calc.	to be calc. (2nd term) - error function (erf)	1.183E-01	$(W/(4*sqrt(\alpha_y * x_{total})))$	dimensionless	Calculated	Calculated				
Intermed. calc.	to be calc.	6.186E-02	$(S_d/(4*sqrt(\alpha_z * x_{total})))$	dimensionless	Calculated	Calculated				
Intermed. calc.	erf (1st term)=	0.132876	$\operatorname{erf} \left(W/(4*\operatorname{sqrt}(\alpha_y * x_{\text{total}})) \right)$	dimensionless	Calculated	Calculated				
Intermed. calc.	erf (2nd term)=	0.069717	erf ($S_d/(4*sqrt(\alpha_z * x_{total})))$	dimensionless	Calculated	Calculated				
Intermed. calc.	erf(1st Term) * erf (2nd Term} Domenico Results	9.264E-03 9.023E-03	[exp [exp. term] * [erf (1st term)] * [erf (2nd term)]]	dimensionless	Calculated Calculated	Calculated				
$\mathbf{C}(\mathbf{x}) =$	{parenthetical term} Downgradient Point of	9.023E-03	$C_{(x)} = C_{\text{source, gw}} * \{\text{Domenico Eqn.}\}$	mg/L	Calculated	Calculated				
$C(\mathbf{x}) =$	Exposure Concentration Downgradient Point of	1.40E-03	$C_{(x)} = C_{source, gw} * \{Domenico Eqn.\}$ $C_{(x)} = C_{source, gw} * \{Domenico Eqn.\}$	mg/L 	Calculated	Calculated				
	Exposure Concentration Georgia In Stream Water		(x) ~source, gw (Domented Equ.)			EPD Rule 391-3-				
In Stream Standard	ocorgia in ou cam water	30		μg/L	Default	.03(5)(e)(iv)				

Table 8 Domenico Fate & Transport/Attenutaion Model & Soil to Groundwater Leaching Calculations Vinyl Chloride Modeled Point of Exposure - Off-Site Stream Fountain Oaks Shopping Center

Variable W	Variable Definition	Value	Formula	Units	Parameter Type	Data Source					
W					1 41 41 1000 1 - 5 PC	Data Source					
W	Soil to Ground Water Leaching										
	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.					
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1					
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City					
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	- cuchuce ony					
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil						
						Weidemeier, et al., 1999, p. 52					
I	Infiltration Rate	14.3	$I = P^{2} * 0.009$	cm/year	Calculated	p. 52					
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015,					
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	Table 2					
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23					
K _{sat}	Hydraulic conductivity	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day							
sat	(saturated) Groundwater Hydraulic	0.7211100	rsat,(cm/day) = rsat,(cm/s) 00,100 sec/ day	Chivday		MEI CSR, 05-2017,					
i	Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	Figs 6&7					
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)					
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)					
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	21.73		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015					
f _{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1					
	Soil-Water Partition/Sorption		V = V + f		-						
K _d	Coeff.	0.777934	$K_{d} = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)					
ρ _s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1					
$\Theta_{\rm w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1					
Θ_a	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)					
H'	Henry's Law Constant	1.14	V = [O + (V + 1) + (U + O)]/	dimensionless	Compound-Specific	EPA RSL Table, 2015					
5₩	Soil to Leachate Partition Coeff. Leaching Factor - Soil to	1.085		mg/L-wtr/mg/kg-soil		ASTM E2081-00 (2015)					
LF_{sw}	Leaching Factor - Soil to Groundwater	0.434	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)					
C _{max, soil}	Max soil concentration on-site	0.0012	NOT DETECTED - Subst. MDL	mg/kg	Site-specific	MEI CSR, 2015, Tables					
C _{leach}	Conc. in GW by leaching	5.2E-04	$C_{\text{leach}} = C_{\text{max, soil}} * LF_{\text{sw}}$	mg/L	Calculated	7, 8 & 22 ASTM E2081-00 (2015)					
Uleach	Conc. In O w by leaching				Calculated	ASTM E2081-00 (2013)					
~			enico Ground Water Solute Transport Mod		~						
C _{max,gw}	Max GW concentration on-site	11		μg/L	Site-specific	MEI CSR, 05-2017, Tbl 2					
C _{max,gw}	Max GW concentration on-site Steady State GW concentration	0.011		mg/L	Site-specific	1012					
C _{source, gw}	in source zone	0.012	$C_{source, gw} = C_{max, gw} + C_{leach}$	mg/L	Calculated	Calculated					
X _{del}	Distance: Source to Downgrad.	45		ft	Site & Compound-	NEL COD. 05 0015					
	Delineated Edge of Plume Distance: Source to Downgrad.				specific Site & Compound-	MEI CSR, 05-2017, Figs. 10-14					
X _{del}	Delineated Edge of Plume	1,372	$x_{del, cm} = x_{del, ft} * 30.48 \text{ cm/ft}$	cm	specific	1155. 10 11					
	Dist: Downgrad. Edge Delineated Plume to Pt. of Exposure	205		ft	Site & Compound-	NEL COD. 05 2015					
X _{POE}	Dist: Downgrad. Edge Delineated				specific Site & Compound-	MEI CSR, 05-2017, Figs. 10-14					
x _{POE}	Plume to Pt. of Exposure	6,248	$x_{POE, cm} = x_{POE, ft} * 30.48 \text{ cm/ft}$	cm	specific						
x _{total}	Distance - Total to Potential	250		ft	Site-specific						
	Receptor Distance - Total to Potential	T (20)	* 20.49/6		<u>0:</u>						
X _{total}	Receptor	7,620	$x_{total, cm} = x_{total, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific						
λ	Degradation rate const.	0.00032		day ⁻¹	Geo. Mean of Site Specific	MEI CSR, 12-2015, Table 11					
α _x	Longitudinal Dispersivity	762	$\alpha_x = x_{total} * 0.1$	cm	Calculated	ASTM E 1739					
α _y	Transverse Dispersivity	254	$\alpha_y = \alpha_x / 3$	cm	Calculated	ASTM E 1739					
α _z	Vertical Dispersivity	38.1	$\alpha_z = \alpha_x / 20$	cm	Calculated	ASTM E 1739					
u	Specific Discharge	285.29	$u = (K_{sat} * i) / \Theta_w$	cm/day	Calculated	ASTM E2081-00 (2015)					
W	Source width (Horiz.)	32.4		ft	Site-specific	MEI CSR, 12-2015,					
W	Source width (Horiz.)	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Calculated	Sec. 3.4.4.1					
S _d	Source thickness (Vertical)	200		cm	Default	EPA RSL Table, 2015					
	Transport/Attenuation Equation $x = \frac{1}{2} \frac{2}{3} \frac{1}{3} \frac$		$W/(4*\operatorname{sqrt}(\alpha_y * x_{\operatorname{total}})))] * [\operatorname{erf}(S_d/(4*\operatorname{sqrt}(\alpha_z * \alpha_z)))]$	v (1)))]]		ASTM E 1739, EPA					
		u)))] * [erf (w -8.540E-03		x _{total})))]} dimensionless	Coloulated	2002					
Intermed. calc.	Domenico - exponential term exp (exponential term)	-8.540E-03 9.915E-01	$\frac{(x_{\text{total}}/(2 * \alpha_x)*(1 - \text{sqrt}(1 + (4*\lambda*\alpha_x/u))))}{\exp(\text{exponential term})}$	dimensionless	Calculated Calculated	Calculated Calculated					
	(1st term) - error function (erf)										
Intermed. calc.	to be calc.	1.775E-01	$(W/(4*sqrt(\alpha_y * x_{total})))$	dimensionless	Calculated	Calculated					
Intermed. calc.	(2nd term) - error function (erf)	9.280E-02	$(S_d/(4*sqrt(\alpha_z * x_{total})))$	dimensionless	Calculated	Calculated					
Intermed. calc.	to be calc. erf (1st term)=	0.198162	erf (W/(4*sqrt($\alpha_v * x_{total})$))	dimensionless	Calculated	Calculated					
Intermed. calc.	erf (2nd term)=	0.104409	$\frac{\operatorname{err}(w)(4 \operatorname{sqrt}(\alpha_y - x_{\operatorname{total}})))}{\operatorname{err}(S_d/(4 \operatorname{sqrt}(\alpha_z + x_{\operatorname{total}})))}$	dimensionless	Calculated	Calculated					
Intermed. calc.	erf(1st Term) * erf (2nd Term}	2.069E-02		dimensionless	Calculated	Calculated					
Intermed. calc.	Domenico Results	2.051E-02	[exp [exp. term] * [erf (1st term)] * [erf (2nd term)]]	dimensionless	Calculated	Calculated					
	{parenthetical term}	2.031E-02	[cop [cop. term] · [err (1st term)] * [err (2nd term)]]	unnensiomess		Calculated					
		•	C = C * (Domenico Fan.)	mg/L	Calculated	Calculated					
C(x) =	Downgradient Point of Exposure Concentration	2.4E-04	$C_{(x)} = C_{source, gw} * \{Domenico Eqn.\}$			Curcumerea					
C(x) =	Downgradient Point of Exposure Concentration Downgradient Point of										
	Exposure Concentration	2.4E-04 0.236	$C_{(x)} = C_{source, gw} * {Domenico Eqn.}$ $C_{(x)} = C_{source, gw} * {Domenico Eqn.}$	μg/L	Calculated	Calculated EPD Rule 391-3-					

Variable	Variable Definition	Value	Units	Parameter Type	Data Source	Volatilization Factor Formula
LS	Length of Side - Contam. Area	45	m	Defaults	EPD Rule 391-3-19, App. III	VF = [(LS * V * DH) / A] * [(π * α * T) ^{1/2} / (2 * D _{ei} * E * K _{as} * 1E-03 kg/g)]
V	Wind Speed in Mixing Zone	2.25	m/s	Defaults	EPD Rule 391-3-19, App. III	$V_1 = [(LS V DII) / A] [(II U I) / (Z D_{ei} L R_{as} IL-03 kg/g)]$
DH	Diffusion Height	2	m	Defaults	EPD Rule 391-3-19, App. III	
А	Area of Contamination	0.5	acre	Defaults	EPD Rule 391-3-19, App. III	
А	Area of Contamination	2.02E+07	cm ²	Defaults	EPD Rule 391-3-19, App. III	
т	Exposure Interval	25	year	Defaults	EPD Rule 391-3-19, App. III	
т	Exposure Interval	7.89E+08	seconds	Defaults	EPD Rule 391-3-19, App. III	
ρ _s	Soil Dry Solids Density	2.65	g/cm ³	Defaults	EPD Rule 391-3-19, App. III	
f _{oc}	Fractional Org. Carbon	0.0200	dimensionless	Defaults	EPD Rule 391-3-19, App. III	
E	Porosity - Total Soil	0.35	dimensionless	Defaults	EPD Rule 391-3-19, App. III	

TABLE 9Fountain Oaks Shopping CenterSoil Volatilization Factor Calculations

Analyte	Henry's Law Constant	Diffusivity in Air	Diffusivity - Effective	Soil Organic Carbon- Water Partition Coefficient	Soil-Water Partition/ Sorption Coeff.	Soil-Air Partition Coefficient	Alpha (α)	Volatilization Factor (VF)
	H (atm-m ³ /mol)	D _{ia} (cm²/s)	D _{ei} = D _i * E ^{0.33} (cm²/s)	K _{oc} (L/kg)	K _d = K _{oc} * f _{oc} (g-W/g-soil)	K _{as} = H / K _d * 41 (g-soil/cm ³ -air)	$\alpha = \{(D_{ei}^*E) / [(E+(\rho_s)(1-E))/K_{as}]\}$ (cm/s)	m³/kg
Acetone	3.5E-05	1.1E-01	7.5E-02	2.4E+00	4.7E-02	3.0E-02	3.8E-04	6.1E+03
Benzene	5.6E-03	9.0E-02	6.3E-02	1.5E+02	2.9E+00	7.9E-02	8.4E-04	4.1E+03
Chloroform	3.7E-03	7.7E-02	5.4E-02	3.2E+01	6.4E-01	2.4E-01	2.2E-03	2.6E+03
Cumene	1.2E-02	6.0E-02	4.3E-02	7.0E+02	1.4E+01	3.5E-02	2.5E-04	7.5E+03
Dichloroethylene, 1,2-cis-	4.1E-03	8.8E-02	6.3E-02	4.0E+01	7.9E-01	2.1E-01	2.2E-03	2.5E+03
Dichloroethylene, 1,2-trans-	9.4E-03	8.8E-02	6.2E-02	4.0E+01	7.9E-01	4.9E-01	5.1E-03	1.7E+03
Methyl Ethyl Ketone (MEK) (2-Butanone)	5.7E-05	9.1E-02	6.5E-02	4.5E+00	9.0E-02	2.6E-02	2.8E-04	7.1E+03
Tetrachloroethylene	1.8E-02	5.0E-02	3.6E-02	9.5E+01	1.9E+00	3.9E-01	2.3E-03	2.5E+03
Trichloroethylene	9.9E-03	6.9E-02	4.9E-02	6.1E+01	1.2E+00	3.3E-01	2.7E-03	2.3E+03
Vinyl Chloride	2.8E-02	1.1E-01	7.6E-02	2.2E+01	4.3E-01	2.6E+00	3.4E-02	6.5E+02

Notes:

(1) Volatilization Factors (VFs) calculated using formulas and constant values as specified in EPD Rule 391-3-19, Appendix III

TABLE 10

Risk Reduction Standards - Exposure Parameter Values Fountain Oaks Shopping Center

Variable	Value
Target cancer risk (TR) - unitless	1.0E-05
Target hazard quotient (THQ) - unitless	1
Averaging time for carcinogens, resident adult (AT _{c, ar}) - years	70
Averaging time for carcinogens, resident child $(AT_{c, cr})$ - years	70
Averaging time for carcinogens, commercial (AT _{c, c}) - years	70
Averaging time for noncarcinogens, resident adult (AT _{nc, ar}) - years	30
Averaging time for noncarcinogens, resident child (AT _{nc, cr}) - years	6
Averaging time for noncarcinogens, commercial (AT _{nc, c}) - years	25
Averaging time - days/year	365
Body Weight - adult (BW _a) - kg	70
Body Weight - children 1-6 yr (BW _c) - kg	15
Exposure frequency (EF), residential - days/yr	350
Exposure frequency (EF), commercial - days/yr	250
Exposure duration, resident adult (ED _{ar}) - years	30
Exposure duration, resident child (ED _{cr}) - years	6
Exposure duration, commercial (ED _c) - years	25
Exposure Time (ET) hours/day	24
Ingestion Rate, Soil, residential (IR _{soil, r}) - mg/day	114
Ingestion Rate, Soil, commercial (IR _{soil, c}) - mg/day	50
Ingestion Rate, Water - resident adult (IRW _{cr}) - L/day	2
Ingestion Rate, Water - resident child (IRW _{cr}) - L/day	1
Ingestion Rate, Water - commercial (IRW $_{c}$) - L/day	1
Inhalation Rate, resident adult (IR _{air, ar}) - m3/day	15
Inhalation Rate, resident child (IR _{air, cr}) - m3/day	15
Inhalation Rate, Commercial (IR _{air, c}) - m3/day	20
Inhalation Rate, Commercial (IR _{air, c}) - m3/day	20
Particulate Emission Factor (PEF) - mg/kg	4.63E+09
Volatilization factor of Andelman (K) - L/m3	0.5

Inhalation Inhalation Chronic Soil to Air Ingestion Inhalation **Oral Chronic** Inhalation Unit Chronic Cancer Slope Volatilization **Cancer Slope** Reference CAS Reference Risk Chemical Reference Factor - VF Factor SFi Concentration Number Factor SFo Dose RfDo $(ug/m^{3})-1$ Dose RfDi RfC (mg/kg-day)-1 (mg/kg-day)-1 (mg/kg-day) (m^3/kg) (mg/kg-day) (mg/m^3) 67-64-1 9.0E-01 3.1E+01 8.8E+00 6.1E+03 Acetone ---71-43-2 5.5E-02 7.8E-06 2.7E-02 4.0E-03 3.0E-02 8.6E-03 4.1E+03 Benzene Chloroform 8.1E-02 67-66-3 3.1E-02 2.3E-05 1.0E-02 9.8E-02 2.8E-02 2.6E+03 Cumene (Isopropylbenzene) 98-82-8 1.0E-01 4.0E-01 1.1E-01 7.5E+03 -Dichloroethylene, 1,2-cis- (cDCE) 156-59-2 2.0E-03 2.5E+03 --Dichloroethylene, 1,2-trans- (tDCE) 156-60-5 2.0E-02 1.7E+03 -Methyl Ethyl Ketone (MEK) 78-93-3 6.0E-01 5.0E+00 1.4E+00 7.1E+03 --(2-Butanone) Tetrachloroethylene (PCE) 127-18-4 2.1E-03 2.6E-07 9.1E-04 6.0E-03 4.0E-02 1.1E-02 2.5E+03 Trichloroethylene (TCE) 79-01-6 4.6E-02 4.1E-06 1.4E-02 5.0E-04 2.0E-03 5.7E-04 2.3E+03 Vinyl Chloride (VC) 75-01-4 7.2E-01 4.4E-06 1.5E-02 3.0E-03 1.0E-01 2.9E-02 6.5E+02 Notes: (1) Chemical-specific values obtained from most recent US EPA Regional Screening Level (RSL) "Chemical Specific Parameters" table, updated May 2016.

TABLE 11 Risk Reduction Standards - Chemical-Specific Parameter Values Fountain Oaks Shopping Center

Online at: https://www.epa.gov/sites/production/files/2016-06/documents/params_sl_table_01run_may2016.pdf

1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Soil Notification			Higher of	Calculated RAGS	Eqn Results - Res	idential - Potential Ty	pe 1 or 2 RRS			Soil to GW Leaching		
Compound	Concentration (NC) (EPD Rule 391-3- 19, App. I)	Groundwater Criteria (EPD Rule 391-3-19, App. III, Table 1)	Groundwater Criterion x 100	Groundwater	RAGS EQN 6 ADULT TR=1.0E-5	RAGS EQN 6 CHILD TR=1.0E-5	RAGS EQN 7 ADULT HQ=1	RAGS EQN 7 CHILD HQ=1	Soil: Type 1 RRS ⁽¹⁾ (Least of Columns 5-9)	Type 1 RRS Note	Concentration - Causing GW to Exceed Type 1 or 2 RRS ⁽²⁾	Soil: Type 2 RRS ⁽¹⁾ (Least of Columns 6-9 or 12)	Type 2 RRS Note
	(mg/kg)	(mg/L)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/L)	(mg/kg)	
acetone	2.74	4	400	400	-	-	1.8E+05	3.1E+04	4.0E+02	GW*100	3.7E+01	3.7E+01	Soil to GW Leaching
benzene	0.02	0.005	0.5	0.5	1.6E+01	1.7E+01	1.6E+02	3.3E+01	5.0E-01	GW*100	5.8E-01	5.0E-01	Soil to GW Leaching
chloroform	0.68	0.08	8	8	3.6E+00	3.8E+00	3.3E+02	6.8E+01	3.6E+00	RAGS Eqn 6 Adult - c	2.1E+00	2.1E+00	Soil to GW Leaching
cumene (isopropylbenzene)	21.88	Not Listed	-	21.88	-	-	3.9E+03	8.1E+02	2.2E+01	Soil NC	1.0E+02	2.2E+01	Soil NC
cis-1,2-dichloroethene (cDCE)	0.53	0.070	7	7	-	-	-	-	7.0E+00	GW*100	2.2E+00	2.2E+00	Soil to GW Leaching
trans-1,2-dichloroethene (tDCE)	0.53	0.1	10	10	-	-	-	-	1.0E+01	GW*100	3.2E+00	3.2E+00	Soil to GW Leaching
methyl ethyl ketone (MEK)	0.79	2	200	200	-	-	4.4E+04	8.7E+03	2.0E+02	GW*100	1.4E+01	1.4E+01	Soil to GW Leaching
tetrachloroethene (PCE)	0.18	0.005	0.5	0.5	3.0E+02	3.1E+02	1.3E+02	2.8E+01	5.0E-01	GW*100	1.4E+00	5.0E-01	GW Criterion *10
trichloroethene (TCE)	0.13	0.005	0.5	0.5	1.7E+01	1.8E+01	6.3E+00	1.3E+00	5.0E-01	GW*100	2.4E-01	2.4E-01	Soil to GW Leaching
vinyl chloride (VC)	0.04	0.002	0.2	0.2	3.9E+00	3.7E+00	8.7E+01	1.8E+01	2.0E-01	GW*100	3.4E-02	3.4E-02	Soil to GW Leaching

Table 12 - Soil - Type 1 & Type 2 RRS Selection Summary

' RRS Notes indicate criterion by which final RRS was selected. "c" = carcinogenic, "nc" = non-carcinogenic, "GW *100" = Groundwate "Soil to GW Leaching" = soil concentration that would cause groundwater to exceed higher of Type 3 or Type 4 groundwater RRS

	2	3	4	5	6	7	8	9	10	11	12		13	14	15
	Soil Notification Concentration (NC)	Groundwater Criteria	Type 3 RRS ALL SOIL	Type 3 RRS		Equation Results - cential Type 3 & 4 RS	Type 3 RRS ⁽¹⁾ SHALLOW SOIL (SOIL ≤2 ft DEEP)	Type 3 RRS	Previously	Soil to Gw Leaching Concentration	Type 4 RRS (1)	Soil Type 4 RRS ⁽¹⁾ SHALLOW SOIL	Type 4 RRS	Previously	Final Type 3 or 4
Compound	(EPD Rule 391-3-19, App. I)	(EPD Rule 391-3-19, App. III, Table 1)	Higher of GW Criterion * 100 OR Soil NC	ALL SOIL Note ⁽⁴⁾	RAGS EQN 6 COMMERCIAL TR=1.0E-5	RAGS EQN 7 COMMERCIAL HQ=1	(Least of Columns 4, 6 &7)	SHALLOW SOIL Note ⁽⁴⁾	Approved Type 3 RRS ⁽³⁾	Causing GW to Exceed Type 3 or Type 4 RRS ⁽²⁾	(Least of	(Least of Columns 3, 4 or 8)	Note ⁽⁴⁾	Approved Type 4 RRS ⁽³⁾	Commercial RRS
	(mg/kg)	(mg/L)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)
cetone	2.74	4	4.0E+02	GW*100		2.4E+05	4.0E+02	GW*100	4.0E+02	2.2E+00	2.2E+00	2.2E+00	Soil to GW Leaching	NA	4.0E+02
enzene	0.02	0.005	5.0E-01	GW*100	2.1E+01	1.8E+02	5.0E-01	GW*100	NA	5.8E-01	5.8E-01	5.8E-01	Soil to GW Leaching	NA	5.8E-01
hloroform	0.68	0.08	8.0E+00	GW*101	4.6E+00	3.6E+02	4.6E+00	RAGS Eqn 6 - c	NA	2.1E+00	2.1E+00	2.1E+00	Soil to GW Leaching	NA	4.6E+00
umene (isopropylbenzene)	21.88	Not Listed	2.2E+01	Soil NC		4.3E+03	2.2E+01	Soil NC	NA	1.1E+01	1.1E+01	1.1E+01	Soil to GW Leaching	NA	2.2E+01
is-1,2-dichloroethene (cDCE)	0.53	0.070	7.0E+00	GW*100			7.0E+00	GW*100	NA	2.4E-01	2.4E-01	2.4E-01	Soil to GW Leaching	1.84E+00	7.0E+00
rans-1,2-dichloroethene (tDCE)	0.53	0.1	1.0E+01	GW*100			1.0E+01	GW*100	NA	3.4E-01	3.4E-01	3.4E-01	Soil to GW Leaching	NA	1.0E+01
nethyl ethyl ketone (MEK)	0.79	2	2.0E+02	GW*100		5.0E+04	2.0E+02	GW*100	NA	1.5E+00	1.5E+00	1.5E+00	Soil to GW Leaching	NA	2.0E+02
etrachloroethene (PCE)	0.18	0.005	5.0E-01	GW*100	3.8E+02	1.4E+02	5.0E-01	GW*100	NA	1.5E-01	1.5E-01	1.5E-01	Soil to GW Leaching	1.18E+00	1.18E+00
richloroethene (TCE)	0.13	0.005	5.0E-01	GW*100	2.2E+01	6.7E+00	5.0E-01	GW*100	NA	2.6E-02	2.6E-02	2.6E-02	Soil to GW Leaching	7.0E-01	7.0E-01
inyl chloride (VC)	0.04	0.002	2.0E-01	GW*100	5.6E+00	9.4E+01	2.0E-01	GW*100	NA	6.5E-02	6.8E-03	6.8E-03	Soil to GW Leaching	NA	2.0E-01

Table 13 - Soil - Type 3 & 4 RRS Selection Summary

⁽⁴⁾ RRS Notes indicate criterion by which final RRS was selected. "c" = carcinogenic, "nc" = non-carcinogenic, "GW*100" = Groundwater criterion times 100, "Soil to GW Leaching" = soil concentration that would cause groundwater to exceed higher of Type 3 or Type 4 RRS

Compound	Soil - Type 1 RRS ⁽¹⁾ DELINEATION CRITERIA (mg/kg)	Previously Approved Type 1 RRS ⁽²⁾ (mg/kg)	Soil: Type 2 RRS ⁽¹⁾ (mg/kg)	FINAL RESIDENTIAL RRS (mg/kg)	Off-Site Maximum Soil Concentration ⁽³⁾ (mg/kg)	Final Residential Type 1/2 RRS Exceeded Off- Site?
acetone	4.0E+02	-	3.7E+01	4.0E+02	0.081	NO
benzene	5.0E-01	-	5.0E-01	5.0E-01	ND	NO
chloroform	3.6E+00	-	2.1E+00	3.6E+00	ND	NO
cumene (isopropylbenzene)	2.2E+01	-	2.2E+01	2.2E+01	ND	NO
cis-1,2-dichloroethene (cDCE)	7.0E+00	-	2.2E+00	7.0E+00	ND	NO
trans-1,2-dichloroethene (tDCE)	1.0E+01	1.0E+01	3.2E+00	1.0E+01	ND	NO
methyl ethyl ketone (MEK)	2.0E+02	-	1.4E+01	2.0E+02	ND	NO
tetrachloroethene (PCE)	5.0E-01	-	5.0E-01	5.0E-01	ND	NO
trichloroethene (TCE)	5.0E-01	-	2.4E-01	5.0E-01	ND	NO
vinyl chloride (VC)	2.0E-01	2.0E-01	3.4E-02	2.0E-01	ND	NO

Table 14 - SOIL - Type 1 & Type 2 Residential RRS vs. Off Site Residual Concentrations

⁽¹⁾ Indicates RRS calculated by MEI (Using RAGS Equations 6 & 7 with up-to-date toxicity information). Eqn 6 & 7 input values utilized are listed in tables in this VRP Application Addendum.

⁽²⁾ Indicates RRS calculated by UC and reported to have been previously approved by EPD

(UC PPCAP, 28-NOV-05, Table 5; UC CSR 10-JUN-08, Table 5)

⁽³⁾ Soil analytical information taken from UC PPCSR, Table 7 - "Soil Verification Analytical Testing Summary" and

Table 8 "Marion Split Verification Sample Test Results" and from MEI 10-JAN-10 CSR, Table 3 "Soil Analytical Results"

'ND" means "not detected"

Compound	Soil - Type 1 RRS (1) DELINEATION CRITERIA	Soil - Calculated Type 3 RRS SHALLOW SOIL ⁽¹⁾	Previously Approved Type 3 RRS ⁽²⁾	Soil - Calculated Type 4 RRS ⁽¹⁾	Previously Approved Type 4 RRS ⁽³⁾	Final Commercial RRS (Highest of Prev. Approved or Calculated)	On-Site Maximum Residual Soil Concentration (3)	Type 3/4 Commercial RRS Exceeded ON-Site? (Calc. Herein OR Prev. Approved)
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
acetone	4.0E+02	4.0E+02	4.0E+02	2.2E+00	NA	4.0E+02	0.29	NO
benzene	5.0E-01	5.0E-01	NA	5.8E-01	NA	5.8E-01	0.016	NO
chloroform	3.6E+00	4.6E+00	NA	2.1E+00	NA	4.6E+00	0.011	NO
cumene (isopropylbenzene)	2.2E+01	2.2E+01	NA	1.1E+01	NA	2.2E+01	ND	NO
cis-1,2-dichloroethene (cDCE)	7.0E+00	7.0E+00	NA	2.4E-01	1.84E+00	7.0E+00	0.3	NO
trans-1,2-dichloroethene (tDCE)	1.0E+01	1.0E+01	NA	3.4E-01	NA	1.0E+01	ND	NO
methyl ethyl ketone (MEK)	2.0E+02	2.0E+02	NA	1.5E+00	NA	2.0E+02	0.12	NO
tetrachloroethene (PCE)	5.0E-01	5.0E-01	NA	1.5E-01	1.18E+00	1.18E+00	1.1	NO
trichloroethene (TCE)	5.0E-01	5.0E-01	NA	2.6E-02	7.0E-01	7.0E-01	0.18	NO
vinyl chloride (VC)	2.0E-01	2.0E-01	NA	6.8E-03	NA	2.0E-01	ND	NO

Table 15 - Soil - Type 3 & 4 Commercial RRS vs On-Site Residual Concentrations

¹⁾ Indicates RRS calculated by MEI (Using RAGS Equations 6 & 7 with up-to-date toxicity information).

Eqn 6 & 7 input values utilized are listed in Tables 10 & 11 in this VRP Application Addendum.

²⁾ RRS calculated by UC and reported to have been previously approved by EPD (UC PPCAP, 28-NOV-05, Table 5; UC CSR 10-JUN-08, Table 5)

³⁾ Soil analytical information taken from UC PPCSR, Table 7 - "Soil Verification Analytical Testing Summary" and

Table 8 "Marion Split Verification Sample Test Results" and from MEI 10-JAN-10 CSR, Table 3 "Soil Analytical Results"

"ND" means "not detected"

			Calculated RAG	S Eqn Results -	Residential - Po	tential Type 2				
Compound	Type 1 RRS Groundwater	Type 1 Groundwater RRS Note ⁽¹⁾	RAGS EQN 1 ADULT TR=1.0E-5	RAGS EQN 1 CHILD TR=1.0E-5	RAGS EQN 2 ADULT HQ=1	RAGS EQN 2 CHILD HQ=1	Type 2 RRS Groundwater ⁽¹⁾	Type 2 RRS Note	Final Residential RRS	Residen-tial RRS Note
	(mg/L)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/L)	
acetone	4.0E+00	GW Criterion			2.4E+01	8.0E+00	8.0E+00	nc	8.0E+00	nc
benzene	5.0E-03	GW Criterion	5.4E-03	7.0E-03	5.3E-02	1.4E-02	5.4E-03	с	5.4E-03	с
chloroform	8.0E-02	GW Criterion	2.6E-03	2.9E-03	1.6E-01	4.2E-02	2.6E-03	с	8.0E-02	GW Criterion
cumene (isopropylbenzene)	1.0E-03	Detection Limit			8.5E-01	2.1E-01	2.1E-01	nc	2.1E-01	nc
cis-1,2-dichloroethene (cDCE)	7.0E-02	GW Criterion					7.0E-02	GW Criterion	7.0E-02	GW Criterion
trans-1,2-dichloroethene (tDCE)	1.0E-01	GW Criterion					1.0E-01	GW Criterion	1.0E-01	GW Criterion
methyl ethyl ketone (MEK)	2.0E+00	GW Criterion			8.5E+00	2.3E+00	2.3E+00	nc	2.3E+00	nc
tetrachloroethene (PCE)	5.0E-03	GW Criterion	1.5E-01	2.0E-01	7.4E-02	1.9E-02	1.9E-02	nc	1.9E-02	nc
trichloroethene (TCE)	5.0E-03	GW Criterion	8.5E-03	1.2E-02	4.3E-03	1.0E-03	1.0E-03	nc	5.0E-03	GW Criterion
vinyl chloride (VC)	2.0E-03	GW Criterion	1.1E-03	2.2E-03	7.9E-02	2.6E-02	1.1E-03	с	2.0E-03	GW Criterion

Table 16 - Groundwater - Type 1 & Type 2 Residential RRS Selection Summary

¹⁾ RRS Notes indicate criterion by which RRS was selected. "c" = carcinogenic, "nc" = non-carcinogenic, "GW Criterion" = EPD Groundwater criterion,

"Detection Limit" = Laboratory Method Detection Limit.

²⁾ Indicates RRS calculated by MEI using RAGS Equations 1 & 2 with up-to-date toxicity information.

		Туре 3	-	Results - Residential - ype 2 RRS ⁽¹⁾				Final
Compound	Type 3 RRS Groundwater	Groundwater RRS Note	RAGS EQN 1 COMMERCIAL TR=1.0E-5	RAGS EQN 2 COMMERCIAL HQ=1	Type 4 RRS Groundwater	Type 4 RRS Note ⁽²⁾	Final Commercial RRS	Commercial RRS Note ⁽²⁾
	(mg/L)		(mg/L)	(mg/L)	(mg/L)	-	(mg/L)	
acetone	4.0E+00	GW Criterion		4.6E+01	4.6E+01	nc	4.6E+01	nc
benzene	5.0E-03	GW Criterion	8.7E-03	7.2E-02	8.7E-03	С	8.7E-03	С
chloroform	8.0E-02	GW Criterion	3.4E-03	2.2E-01	3.4E-03	С	8.0E-02	GW Criterion
cumene (isopropylbenzene)	1.0E-03	Detection Limit		1.0E+00	1.0E+00	nc	1.0E+00	nc
cis-1,2-dichloroethene (cDCE)	7.0E-02	GW Criterion			7.0E-02	GW Criterion	7.0E-02	GW Criterion
trans-1,2-dichloroethene (tDCE)	1.0E-01	GW Criterion			1.0E-01	GW Criterion	1.0E-01	GW Criterion
methyl ethyl ketone (MEK)	2.0E+00	GW Criterion		1.2E+01	1.2E+01	nc	1.2E+01	nc
tetrachloroethene (PCE)	5.0E-03	GW Criterion	2.6E-01	9.8E-02	9.8E-02	nc	9.8E-02	nc
trichloroethene (TCE)	5.0E-03	GW Criterion	1.5E-02	5.2E-03	5.2E-03	nc	5.2E-03	nc
vinyl chloride (VC)	2.0E-03	GW Criterion	3.3E-03	1.5E-01	3.3E-03	с	3.3E-03	С
	5.0E-03 2.0E-03	GW Criterion GW Criterion	1.5E-02 3.3E-03	5.2E-03	5.2E-03	nc	5.2E-03	

Table 17 - Groundwater - Type 3 & Type 4 Commercial RRS Selection Summary

⁽¹⁾ Indicates RRS calculated by MEI using RAGS Equations 1 & 2 with up-to-date toxicity information.

(2) RRS Notes indicate criterion by which RRS was selected. "c" = carcinogenic, "nc" = non-carcinogenic, "GW Criterion" = EPD Groundwater criterion,

"Detection Limit" = Laboratory Method Detection Limit.

Compound	Groundwater Type 1 RRS ⁽¹⁾	Groundwater Type 2 RRS ⁽¹⁾	Groundwater: Final Residential RRS ⁽¹⁾	Groundwater Residential RRS Note	Groundwater Concentration Off-Site Maximum ⁽²⁾	Residential RRS Exceeded Off-Site?
	(mg/L)	(mg/L)	(mg/L)		(mg/L)	
acetone	4.0E+00	8.0E+00	8.0E+00	Type 2	<0.050	NO
benzene	5.0E-03	5.4E-03	5.4E-03	Type 2	<0.001	NO
chloroform	8.0E-02	2.6E-03	8.0E-02	Type 1	<0.005	NO
cumene (isopropylbenzene)	1.0E-03	2.1E-01	2.1E-01	Type 2	<0.001	NO
cis-1,2-dichloroethene (cDCE)	7.0E-02	7.0E-02	7.0E-02	Type 1	0.0079	NO
trans-1,2-dichloroethene (tDCE)	1.0E-01	1.0E-01	1.0E-01	Type 1	<0.001	NO
methyl ethyl ketone (MEK)	2.0E+00	2.3E+00	2.3E+00	Type 2	<0.010	NO
tetrachloroethene (PCE)	5.0E-03	1.9E-02	1.9E-02	Type 2	0.010	NO
trichloroethene (TCE)	5.0E-03	1.0E-03	5.0E-03	Type 1	0.0011	NO
vinyl chloride (VC)	2.0E-03	1.1E-03	2.0E-03	Type 1	<0.001	NO
 Indicates RRS calculated by MEI (Using RAGS Equ Groundwater analytical data from March 2015 g 	·				·	

 Table 18 - Groundwater - Type 1 & Type 2 Residential RRS vs. Residual Concentrations Off Site

Compound	Groundwater Type 3 RRS ⁽¹⁾	Groundwater Type 4 RRS ⁽¹⁾	Groundwater: Final Commercial RRS ⁽¹⁾	Groundwater Commercial RRS Note	Groundwater Concentration On-Site Maximum Residual ⁽²⁾	Commercial RRS Exceeded ON-Site?
	(mg/L)	(mg/L)	(mg/L)		(mg/L)	
acetone	4.0E+00	4.6E+01	4.6E+01	Type 4	0.089	NO
benzene	5.0E-03	8.7E-03	8.7E-03	Type 4	0.140	YES
chloroform	8.0E-02	3.4E-03	8.0E-02	Type 3	0.014	NO
cumene (isopropylbenzene)	1.0E-03	1.0E+00	1.0E+00	Type 4	0.0032	NO
cis-1,2-dichloroethene (cDCE)	7.0E-02	7.0E-02	7.0E-02	Type 4	0.210	YES
trans-1,2-dichloroethene (tDCE)	1.0E-01	1.0E-01	1.0E-01	Type 4	0.0012	NO
methyl ethyl ketone (MEK)	2.0E+00	1.2E+01	1.2E+01	Type 4	0.011	NO
tetrachloroethene (PCE)	5.0E-03	9.8E-02	9.8E-02	Type 4	0.810	YES
trichloroethene (TCE)	5.0E-03	5.2E-03	5.2E-03	Type 4	0.120	YES
vinyl chloride (VC)	2.0E-03	3.3E-03	3.3E-03	Type 4	0.011	YES
 Indicates RRS calculated by MEI (Using RAGS Groundwater analytical data from March 20 			r <u> </u>	1	·· · · · · · · · · · · · · · · · · · ·	

Table 19 - Groundwater - Type 3 & 4 Commercial RRS vs. Maximum COC Concentrations On-Site

TABLE 20 Commercial Risk Reduction Standards - Groundwater - Exceedance Locations & Release Sources Fountain Oaks Shopping Center

					Release Sou	rces for RRS E	Exceedances at In	dividual Wells	5
COCs in On-Site Groundwater	Final Commercial	Final Commercial RRS (μg/L)	Commercial RRS Note	Former On-	-Site Drycleaner	Off-Site	Drycleaner	Off-Site	Gas Station
	RRS (mg/L)	κκο (μ 9 /Ε)	KKS NOLE	March-2015 Well ID Concentration (µg/L)		Well ID	March-2015 Concentration (μg/L)	Well ID	March-2015 Concentration (µg/L)
Acetone	4.60E+01	46,000	Type 4 RRS		٢	lo groundwater	exceedences on s	site	
Benzene	0.0087	8.7	Type 4 RRS					MW-20	15
								MW-21	24
								MW-28	135
Chloroform	0.080	80	Type 3 RRS		Ν	lo groundwater	exceedences on s	site	
Cumene (Isopropylbenzene)	1.0	1,000	Type 3 RRS		Ν	lo groundwater	exceedences on s	site	
Dichloroethylene, 1,2-cis- (cDCE)	0.070	70	Type 3 & 4	MW-4	210	MW-16	100		
Dichloroethylene, 1,2-trans- (tDCE)	0.1	100	Type 3 & 4		Ņ	lo groundwater	exceedences on s	site	
Methyl Ethyl Ketone (MEK)	12	12,000	Type 4		Ν	lo groundwater	exceedences on s	site	
Tetrachloroethylene (PCE)	0.098	98	Type 4	MW-2	775	MW-5	170		
						MW-20	160		
						MW-22	520		
						MW-23	120		
Trichloroethylene (TCE)	0.0052	5.2	Type 4	MW-2	71.5	MW-6	5.5		
				MW-4	120	MW-16	35		
						MW-20	8.8		
						MW-28	7.95		
Vinyl Chloride (VC)	0.0033	3.3	Type 4			MW-16	11		
						MW-28	4.3		

Appendix C

Soil to Groundwater Leaching Calculations

Table C1
Soil to Groundwater Leaching Calculations - Type 2 RRS
Benzene - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 12-2015, Sect. 3.4.4.4.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSK, 12-2015, Sect. 5.4.4.4
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree Cit
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	Weidemeine et al. 1000 a. 52
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	Weidemeier, et al., 1999, p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MELCOD 12 2015 T 11 2
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance (along flow path)$	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	2.364		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	8.46E-02	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, Tab
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{\rm a}$	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
Η'	Henry's Law Constant	1.43E-03		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	0.228	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.219	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.016		mg/kg	Site-specific	MEI CSR, 12-2015, Tables 7, 8 &
C _{target} , Soil	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	3.7E+01		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	8.0E+00		mg/L		
C _{leach}	Conc. in GW by leaching	8.0E+00	$C_{leach} = C_{target, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C2
Soil to Groundwater Leaching Calculations - Type 2 RRS
Benzene - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 12-2015, Sect. 3.4.4.4.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSK, 12-2015, Sect. 5.4.4.4
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree Cit
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	Weidemeine et al. 1000 a. 52
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	Weidemeier, et al., 1999, p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MELCOD 12 2015 T 11 2
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)}$ * 86,400 sec/day	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance (along flow path)$	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	145.8		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	5.22E+00	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, Tab
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{\rm a}$	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.23		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	5.396	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.009	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.016		mg/kg	Site-specific	MEI CSR, 12-2015, Tables 7, 8 &
C _{target} , Soil	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	5.8E-01		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	5.4E-03		mg/L		
C _{leach}	Conc. in GW by leaching	5.4E-03	$C_{leach} = C_{target, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C3
Soil to Groundwater Leaching Calculations - Type 2 RRS
Chloroform - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 12-2015, Sect. 3.4.4.4.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSK, 12-2015, Sect. 5.4.4.4
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree Cit
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	W. 1. 1. 1. 1. 1000 - 72
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	Weidemeier, et al., 1999, p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	NELCOD 10 2015 E 11 0
δ _{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	31.82		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
\mathbf{f}_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	1.14E+00	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, Tab
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.15		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	1.304	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.038	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, 8 & 2
C _{target} , Soil	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	2.09E+00		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	8.00E-02		mg/L		
C _{leach}	Conc. in GW by leaching	8.0E-02		mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*	·		
W	Width of Source	32.4		ft	Site-specific	
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Sect. 3.4.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009	Cili ili de de d	dimensionless	Specific to Silty Soil	
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	Weidemeier, et al., 1999, p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MELCOD 12 2015 T 11 2
δ _{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	697.8		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
\mathbf{f}_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	2.50E+01	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, Table
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
Η'	Henry's Law Constant	0.47		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	25.192	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.002	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0	Not Detected	mg/kg	Site-specific	MEI CSR, 12-2015, Tables 7, 8 & 2
C _{target, Soil}	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	1.0E+02		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	2.1E-01		mg/L		
C _{leach}	Conc. in GW by leaching	2.1E-01	$C_{leach} = C_{target, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
Ctarget, GW - Cleach		0.0E+00	C _{target, GW} - C _{leach}			

Table C4	
Soil to Groundwater Leaching Calculations - Type 2 RRS	
Cumene (Isopropylbenzene) - Fountain Oaks Shopping Center	

Table C5
Soil to Groundwater Leaching Calculations - Type 2 RRS
cis-1,2-Dichloroethene (cDCE) - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 12-2015, Sect. 3.4.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEICSK, 12-2015, Sect. 5.4.
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	Weidemeier, et al., 1999, p.
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MELCOD 12 2015 T-11-
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)}$ * 86,400 sec/day	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure
U _{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2,124	$DAF = 1 + (U_{gw} * \delta_{gw})/(I^*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	39.6		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
\mathbf{f}_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	1.42E+00	$K_{d} = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, T
Θ_{w}	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{\rm a}$	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.17		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	1.585	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.032	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 12-2015, Tables 7, 8
C _{target, Soil}	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	2.2E+00		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	7.0E-02		mg/L		
Cleach	Conc. in GW by leaching	7.0E-02	$C_{leach} = C_{target, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
_{rrget, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
	·		Soil to Ground Water Leaching*	·		
W	Width of Source	32.4		ft	Site-specific	MELCED 12 2015 Seet 2.4.4.4
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Sect. 3.4.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	W. 1
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	Weidemeier, et al., 1999, p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MELCOD 12 2015 T 11 2
δ _{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)}$ * 86,400 sec/day	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance (along flow path)$	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw} * \delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	39.6		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	1.42E+00	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, Table
Θ_{w}	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{\rm a}$	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.38		dimensionless	Compound-Specific	EPA RSL Table, 2015
\mathbf{K}_{sw}	Soil to Leachate Partition Coeff.	1.616	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.031	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 12-2015, Tables 7, 8 & 2
C _{target} , Soil	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	3.2E+00		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	1.0E-01		mg/L		
C _{leach}	Conc. in GW by leaching	1.0E-01	$C_{leach} = C_{target, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C6	
Soil to Groundwater Leaching Calculations - Type 2 RRS	
trans-1,2-Dichloroethene (cDCE) - Fountain Oaks Shopping Center	

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
	·		Soil to Ground Water Leaching*	·		·
W	Width of Source	32.4		ft	Site-specific	MELCED 12 2015 Seet 2.4.4.4.1
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Sect. 3.4.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	Weidemeier, et al., 1999, p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	NEL COD 10 0015 E 11 0
δ _{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)}$ * 86,400 sec/day	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw} * \delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	4.51		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	1.61E-01	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, Table
Θ_{w}	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{\rm a}$	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	2.33E-03		dimensionless	Compound-Specific	EPA RSL Table, 2015
K_{sw}	Soil to Leachate Partition Coeff.	0.305	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.164	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 12-2015, Tables 7, 8 & 2
C _{target} , Soil	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	1.4E+01		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	2.3E+00		mg/L		
C _{leach}	Conc. in GW by leaching	2.3E+00	$C_{leach} = C_{target, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C7	
Soil to Groundwater Leaching Calculations - Type 2 RRS	
cis-1,2-Dichloroethene (cDCE) - Fountain Oaks Shopping Center	

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MELCED 12 2015 Seet 2.4.4.4
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Sect. 3.4.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	W. 1
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	Weidemeier, et al., 1999, p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MELCER 12 2015 T-1-1- 2
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)}$ * 86,400 sec/day	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance (along flow path)$	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw} * \delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	94.94		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	3.40E+00	$\mathbf{K}_{d} = \mathbf{K}_{oc} * \mathbf{f}_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, Table
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.724		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	3.647	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.014	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	1.1		mg/kg	Site-specific	MEI CSR, 12-2015, Tables 7, 8 & 2
C _{target} , Soil	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	1.4E+00		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	1.9E-02		mg/L		
C _{leach}	Conc. in GW by leaching	1.9E-02	$C_{leach} = C_{target, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C8 Soil to Groundwater Leaching Calculations - Type 2 RRS Tetrachloroethene - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MELCED 12 2015 Sect 2 4 4 4 1
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Sect. 3.4.4.4.
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	W. 1
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	- Weidemeier, et al., 1999, p. 5
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MELCOD 12 2015 T.11. 2
δ _{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)}$ * 86,400 sec/day	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance (along flow path)$	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	60.7		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	2.17E+00	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, Table
Θ_{w}	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{\rm a}$	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.403		dimensionless	Compound-Specific	EPA RSL Table, 2015
K_{sw}	Soil to Leachate Partition Coeff.	2.375	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.021	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.18		mg/kg	Site-specific	MEI CSR, 12-2015, Tables 7, 8 & 2
C _{target, Soil}	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	2.4E-01		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	5.0E-03		mg/L		
C _{leach}	Conc. in GW by leaching	5.0E-03	$C_{leach} = C_{target, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C9 Soil to Groundwater Leaching Calculations - Type 2 RRS Trichloroethene - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 12-2015, Sect. 3.4.4.4.1
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	WILL COR, 12-2015, Sect. 5.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	W. 1. 1. 1. 1000 50
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	Weidemeier, et al., 1999, p. 52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MELCER 12 2015 T-11- 2
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI CSR, 12-2015, Table 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)}$ * 86,400 sec/day	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance (along flow path)$	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	20	DAF = 20	dimensionless	Default	
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	21.73		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	7.78E-01	$\mathbf{K}_{d} = \mathbf{K}_{oc} * \mathbf{f}_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
ρ_b	Soil Particle Density	2.65		g-S/cm^3-S	Default	EPD Rule 391-3-19 App. III, Table
Θ_{w}	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{\rm a}$	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	1.14		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	1.085	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF_{sw}	Leaching Factor - Soil to Groundwater	0.046	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0	Not Detected	mg/kg	Site-specific	MEI CSR, 12-2015, Tables 7, 8 & 2
C _{target} , Soil	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	3.4E-02		mg/kg		
C _{RRS 1,2-GW}	Higher of Type 1 or Type 2 RRS: GROUNDWATER	2.0E-03		mg/L		
C _{leach}	Conc. in GW by leaching	1.6E-03	$C_{leach} = C_{target, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		4.5E-04	C _{target, GW} - C _{leach}		. <u> </u>	

Table C10 Soil to Groundwater Leaching Calculations - Type 2 RRS Vinyl Chloride - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peacht City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999,
Ι	Infiltration Rate	14.3	$I = P^{2} * 0.009$	cm/year	Calculated	52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Tabl
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure
U _{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	2.364		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	0.0846312	$\mathbf{K}_{d} = \mathbf{K}_{oc} * \mathbf{f}_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015
Η'	Henry's Law Constant	1.43E-03		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	0.228	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015
LF _{sw}	Leaching Factor - Soil to Groundwater	2.063	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015
C _{max, soil}	Max soil concentration on-site	0.016		mg/kg	Site-specific	MEI CSR, 2015, Tables 7 & 22
$\mathbf{C}_{\mathrm{target, Soil}}$	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	2.2E+01				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	4.6E+01				
C _{leach}	Conc. in GW by leaching	4.6E+01	$C_{leach} = C_{max, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015
C _{target, GW} - C _{leach}		0.00E+00	C _{target, GW} - C _{leach}			

Table C11 Soil to Groundwater Leaching Calculations - Type 4 RRS Benzene - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtr City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
$\mathbf{k}_{\mathbf{i}}$	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999, j
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Table
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	WEI COR, 12-2015, 14510
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	145.8		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	5.21964	$\mathbf{K}_{d}=\mathbf{K}_{oc}*\mathbf{f}_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.23		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	5.396	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.087	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.016		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, & 22
C _{target} , Soil	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	1.0E-01				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	8.7E-03				
Cleach	Conc. in GW by leaching	8.7E-03	$C_{leach} = C_{max, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C12 Soil to Groundwater Leaching Calculations - Type 4 RRS Benzene - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999, p. 5
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	weidemeier, et al., 1999, p. 5.
$\boldsymbol{\delta}_{gw}$	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Table 2
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	WIEI CSK, 12-2015, 140le 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	31.82		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	1.139156	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.15		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	1.304	$\mathbf{K}_{sw} = \left[\Theta_{w} + (\mathbf{K}_{d} * \rho_{s}) + (\mathbf{H}_{eff} * \Theta_{a})\right] / \rho_{s}$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.361	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
$C_{\text{max, soil}}$	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, 8 & 22
C _{target, Soil}	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	2.2E-01				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	8.0E-02				
C _{leach}	Conc. in GW by leaching	8.0E-02		mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C13 Soil to Groundwater Leaching Calculations - Type 4 RRS Chloroform - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtr City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999,
Ι	Infiltration Rate	14.3	$I = P^{2} * 0.009$	cm/year	Calculated	52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Table
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI COR, 12 2013, 140K
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	697.8		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	24.98124	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015
$ ho_s$	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{w}	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015
H'	Henry's Law Constant	0.47		dimensionless	Compound-Specific	EPA RSL Table, 2015
\mathbf{K}_{sw}	Soil to Leachate Partition Coeff.	25.192	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015
LF _{sw}	Leaching Factor - Soil to Groundwater	0.019	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 2015, Tables 7 & 22
C _{target, Soil}	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	1.1E+01				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	2.1E-01				
C _{leach}	Conc. in GW by leaching	2.1E-01		mg/L	Calculated	ASTM E2081-00 (2015
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

 Table C14

 Soil to Groundwater Leaching Calculations - Type 4 RRS

 Cumene (Isopropylbenzene) - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtre City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999, p
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Table
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	1121 Cort, 12 2010, 14010
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure
U _{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	39.6		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	1.41768	$\mathbf{K}_{d} = \mathbf{K}_{oc} * \mathbf{f}_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.17		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	1.585	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.297	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, & 22
C _{target, Soil}	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	2.4E-01				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	7.0E-02				
Cleach	Conc. in GW by leaching	7.0E-02		mg/L	Calculated	ASTM E2081-00 (2015)
Ctarget, GW - Cleach		0.0E+00	C _{target. GW} - C _{leach}			

Table C15 Soil to Groundwater Leaching Calculations - Type 4 RRS cis-1.2-Dichloroethene (cDCE) - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtr City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999,
Ι	Infiltration Rate	14.3	$I = P^{2*}0.009$	cm/year	Calculated	52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Table
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}^* \delta_{gw})/(I^*W)$	dimensionless	Calculated	ASTM E2081-00 (2015
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	39.6		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	1.41768	$\mathbf{K}_{d} = \mathbf{K}_{oc} * \mathbf{f}_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015
H'	Henry's Law Constant	0.38		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	1.616	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015
LF _{sw}	Leaching Factor - Soil to Groundwater	0.291	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 2015, Tables 7 & 22
C _{target, Soil}	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	3.4E-01				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	1.0E-01				
C _{leach}	Conc. in GW by leaching	1.0E-01		mg/L	Calculated	ASTM E2081-00 (2015
C _{target, GW} - C _{leach}		1.0E-04	C _{target, GW} - C _{leach}			

Table C16 Soil to Groundwater Leaching Calculations - Type 4 RRS trans-1.2-Dichloroethene (cDCE) - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtre City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor/Coefficient	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999, p
Ι	Infiltration Rate	14.3	$I = P^{2} * 0.009$	cm/year	Calculated	52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Table 1
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	4.51		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	0.161458	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	2.33E-03		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	0.305	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	1.543	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.3		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, & 22
C _{target, Soil}	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	1.5E+00				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	2.3E+00				
C _{leach}	Conc. in GW by leaching	2.3E+00		mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C17 Soil to Groundwater Leaching Calculations - Type 4 RRS cis-1.2-Dichloroethene (CDCE) - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtre City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999, p
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Table
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	WILL COR, 12-2015, 14010
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)}$ * 86,400 sec/day	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	94.94		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	3.398852	$K_d = K_{oc} * f_{oc}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_s	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.724		dimensionless	Compound-Specific	EPA RSL Table, 2015
K_{sw}	Soil to Leachate Partition Coeff.	3.647	$\boldsymbol{K}_{sw} = \left[\boldsymbol{\Theta}_w + (\boldsymbol{K}_d \ast \boldsymbol{\rho}_s) + (\boldsymbol{H}_{eff} \ast \boldsymbol{\Theta}_a)\right] / \boldsymbol{\rho}_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF _{sw}	Leaching Factor - Soil to Groundwater	0.129	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	1.1		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, & 22
C _{target, Soil}	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	1.5E-01				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	1.9E-02				
Cleach	Conc. in GW by leaching	1.9E-02	$C_{leach} = C_{max, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		0.0E+00	C _{target, GW} - C _{leach}			

Table C18 Soil to Groundwater Leaching Calculations - Type 4 RRS Tetrachloroethene - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtre City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999, p
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Table 2
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	MEI COR, 12-2013, 14010
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2.124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	60.7		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	2.17306	$\mathbf{K}_{\mathrm{d}} = \mathbf{K}_{\mathrm{oc}} * \mathbf{f}_{\mathrm{oc}}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
ρ_{s}	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	0.403		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	2.375	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF_{sw}	Leaching Factor - Soil to Groundwater	0.198	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.18		mg/kg	Site-specific	MEI CSR, 2015, Tables 7, & 22
$\mathbf{C}_{target,Soil}$	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	2.6E-02				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	5.0E-03				
Cleach	Conc. in GW by leaching	5.2E-03	$C_{leach} = C_{max, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
C _{target, GW} - C _{leach}		-2.0E-04	C _{target, GW} - C _{leach}			

Table C19 Soil to Groundwater Leaching Calculations - Type 4 RRS Trichloroethene - Fountain Oaks Shopping Center

Variable	Variable Definition	Value	Formula	Units	Parameter Type	Data Source
			Soil to Ground Water Leaching*			
W	Width of Source	32.4		ft	Site-specific	MEI CSR, 2015, Sect.
W	Width of Source	988	$W_{cm} = W_{ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	3.4.4.1
Р	Avg. Annual Precipitation	49.71		in/yr	Site-specific	Natl. Weather Svc, Peachtree City
Р	Avg. Annual Precipitation	126	$P_{cm} = P_{in} * 2.54 \text{ cm/in}$	cm/yr	Calculated	
k _i	Infiltration Factor	0.0009		dimensionless	Specific to Silty Soil	Weidemeier, et al., 1999, p.
Ι	Infiltration Rate	14.3	$I = P^2 * 0.009$	cm/year	Calculated	52
δ_{gw}	GW Mixing Zone Thickness	7.1		ft	Site-specific	MEI CSR, 12-2015, Table 2
δ_{gw}	GW Mixing Zone Thickness	216	$\delta_{gw, cm} = \delta_{gw, ft} * 30.48 \text{ cm/ft}$	cm	Site-specific	WIEF COR, 12-2013, 14010 2
K _{sat}	Hydraulic conductivity (saturated)	7.78E-05		cm/sec	Site-specific	UC PPCAP, Pg 23
K _{sat}	Hydraulic conductivity (saturated)	6.72E+00	$K_{sat,(cm/day)} = K_{sat,(cm/s)} * 86,400 \text{ sec/day}$	cm/day		
i	Groundwater Hydraulic Gradient	0.03	$i = \Delta head/\Delta distance$ (along flow path)	cm/cm	Site-specific, Avg.	MEI CSR, 12-2015, Figure 17
U_{gw}	GW Darcy velocity	73.61	$U_{gw} = K_{sat} * i$	cm/year	Calculated	ASTM E2081-00 (2015)
DAF	Dilution Attenutation Factor	2,124	$DAF = 1 + (U_{gw}*\delta_{gw})/(I*W)$	dimensionless	Calculated	ASTM E2081-00 (2015)
K _{oc}	Soil Organic Carbon-Water Partition Coefficient	21.73		cm^3-W/g-C	Compound-Specific	EPA RSL Table, 2015
f_{oc}	Fractional Org. Carbon	3.58%		%	Site-specific	UC PPCAP, Table 1
K _d	Soil-Water Partition/Sorption Coeff.	0.777934	$\mathbf{K}_{\mathrm{d}} = \mathbf{K}_{\mathrm{oc}} * \mathbf{f}_{\mathrm{oc}}$	g-W/g-soil	Calculated	ASTM E2081-00 (2015)
$ ho_s$	Soil Bulk Density	1.80		g-S/cm^3-S	Site-specific	UC PPCAP, Table 1
$\Theta_{ m w}$	Soil Volumetric Water Content	0.258		cm^3-W/cm^3-S	Site-specific	UC PPCAP, Table 1
Θ_{a}	Soil Volumetric Air Content	0.26		cm^3-A/cm^3-S	default	ASTM E2081-00 (2015)
H'	Henry's Law Constant	1.14		dimensionless	Compound-Specific	EPA RSL Table, 2015
K _{sw}	Soil to Leachate Partition Coeff.	1.085	$K_{sw} = \left[\Theta_w + (K_d * \rho_s) + (H_{eff} * \Theta_a)\right] / \rho_s$	mg/L-wtr/mg/kg-soil	Calculated	ASTM E2081-00 (2015)
LF_{sw}	Leaching Factor - Soil to Groundwater	0.434	$LF_{sw} = 1/(K_{sw} * DAF)$	ppm/ppm	Calculated	ASTM E2081-00 (2015)
C _{max, soil}	Max soil concentration on-site	0.0012	NOT DETECTED - Subst. MDL	mg/kg	Site-specific	MEI CSR, 2015, Tables 7, 8 & 22
C _{target} , Soil	Soil Conc. Causing Leachate to Exceed Higher of Type 1 or 2 GW RRS	6.8E-03				
C _{RRS 1,2-GW}	Higher of Type 3 or Type 4 RRS: GROUNDWATER	2.0E-03				
Cleach	Conc. in GW by leaching	2.9E-03	$C_{leach} = C_{max, soil} * LF_{sw}$	mg/L	Calculated	ASTM E2081-00 (2015)
Ctarget, GW - Cleach		-9.378E-04	C _{target, GW} - C _{leach}			

Table C20 Soil to Groundwater Leaching Calculations - Type 4 RRS Vinyl Chloride - Fountain Oaks Shopping Center

Appendix D

Draft Uniform Environmental Covenants

After Recording Return to:

Gerald L. Pouncey, Esq. Morris, Manning & Martin LLP 1600 Atlanta Financial Center 3343 Peachtree Road NE Atlanta, GA 30326

Environmental Covenant

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 *et seq*, for the property identified below (hereinafter the "Property") as part of an environmental response project to address regulated substances released into the environment. This Environmental Covenant restricts the use of groundwater on the Property to prevent humans from coming into contact with regulated substances.

Fee Owner of Property/Grantor:	AMREIT Fountain Oaks, LP 1221 Main Street Suite #1000 Columbia, SC 29201
Grantee/Holder:	AMREIT Fountain Oaks, LP 1221 Main Street Suite #1000 Columbia, SC 29201
Grantee/Entity with express power to enforce:	State of Georgia Department of Natural Resources Environmental Protection Division (hereinafter, "EPD") 2 Martin Luther King Jr. Drive, SE Suite 1152 East Tower Atlanta, GA 30334
Parties with interest in the Property:	AMREIT Fountain Oaks, LP 1221 Main Street Suite #1000 Columbia, SC 29201

Environmental Covenant Fountain Oaks Shopping Center Page 2

Property:

The property subject to this Environmental Covenant is the Fountain Oaks Shopping Center located at 4920 Roswell Road and 115 W. Belle Isle Road in Atlanta, Fulton County, Georgia (hereinafter "Property"). A complete legal description of the Property is attached as Exhibit A. A map of the Property is attached as Exhibit B.

The Property is approximately 13.77 acres and consists of the following tax parcels, which are subject to this Environmental Covenant:

17 009300061319 17 009300021073

Name and Location of Administrative Record:

The administrative record for the environmental response project is identified as HSI File 10807. This record is available for review at the following location:

Georgia Environmental Protection Division Response and Remediation Program 2 MLK Jr. Drive, SE, Suite 1054 East Tower Atlanta, GA 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

Description of Contamination and Corrective Action:

This Property was previously listed on the state's hazardous site inventory and was designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.

This Declaration of Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 *et seq.* by AMREIT Fountain Oaks, LP, its successors and assigns, and the State of Georgia, Department of Natural Resources, Environmental Protection Division (hereinafter "EPD"), its successors and assigns. This Environmental Covenant is required in accordance with the approved Voluntary Remediation Program Application and Compliance Status Report and the documented release of acetone, benzene, chloroform, tetrachloroethylene, trichloroethylene, cis-1,2 dichloroethylene, trans-1,2-dichloroethene, methyl ethyl ketone, and vinyl chloride on the Property. These are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder (hereinafter "HSRA" and "Rules", respectively). The Corrective Action consisted of soil excavation and institutional controls including the restriction of groundwater use to protect human health and the environment.

Grantor, AMREIT Fountain Oaks, LP, hereby binds Grantor, its successors and assigns to the activity and use restriction(s) for the Property identified herein and grants such other rights under this Environmental Covenant in favor of AMREIT Fountain Oaks, LP and EPD. EPD shall have full right

Environmental Covenant Fountain Oaks Shopping Center Page 3

of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from exercising any authority under applicable law.

AMREIT Fountain Oaks, LP makes the following declaration as to limitations, restrictions, and uses to which the Property may be put and specifies that such declarations shall constitute covenants to run with the land, pursuant to O.C.G.A. § 44-16-5(a); is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to O.C.G.A. § 44-16-9 and 10; and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property occur before such time as this Environmental Covenant has been amended or revoked then said Environmental Covenant shall be binding on the transferee(s) or purchaser(s).

The Environmental Covenant shall inure to the benefit of AMREIT Fountain Oaks, LP and EPD and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns or AMREIT Fountain Oaks, LP or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Activity and/or Use Limitation

<u>Groundwater Use Limitation.</u> The use or extraction of groundwater beneath the Property for drinking water or other potable uses shall be prohibited. The use or extraction of groundwater for any other purpose besides site characterization is prohibited unless conducted under a plan approved in writing by EPD.

General Provisions

<u>Notice of Limitation in Future Conveyances.</u> Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the activity and use limitation set forth in this Environmental Covenant and shall provide the recorded location of the Environmental Covenant.

<u>Access</u>. Grantor shall provide reasonable access to Grantee/Holder or its assigns to verify compliance with established activity and/or use limitations identified herein.

<u>Effective Date</u>. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with OCGA § 44-16-8(a).

<u>Benefit.</u> This Environmental Covenant shall inure to the benefit of Grantee/Holder, EPD, and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns, Grantee/Holder or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Environmental Covenant Fountain Oaks Shopping Center Page 4

<u>Termination or Modification.</u> This Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-16-5, unless and until the Director determines that the Property is in compliance with the Type 1 or 2 Risk Reduction Standards, as defined in Section 391-3-19-.07 of the Georgia Rules of Hazardous Site Response, whereupon the Environmental Covenant may be amended or terminated, as appropriate, in accordance with O.C.G.A. § 44-16-1 *et seq*.

<u>Severability</u>. If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.

<u>Warranty.</u> Grantor hereby represents and warrants to the other signatories hereto that the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided, and to carry out all obligations hereunder and in accordance with O.C.G.A. § 44-16-1 *et seq.*

<u>No EPD Interest in Property Created</u>. This Environmental Covenant does not in any way create any interest by EPD in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

Representations and Warranties.

Grantor hereby represents and warrants to the other signatories hereto:

- a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
- b) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered;
- c) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;
- d) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- e) That the Grantor has served each of the people or entities referenced in O.C.G.A. § 44-16-7(a) with an identical copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-7(a).
- f) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- g) That this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.

Notices.

Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

Georgia Environmental Protection Division Branch Chief Environmental Covenant Fountain Oaks Shopping Center Page 5

> Land Protection Branch 2 Martin Luther King Jr. Drive SE Suite 1054 East Tower Atlanta, GA 30334

AMREIT Fountain Oaks, LP 1221 Main Street Suite #1000 Columbia, SC 29201

Grantor has caused this Environmental Covenant to be executed pursuant to The Georgia Uniform Environmental Covenants Act, on the ______day of _____, 2016.

Signed, sealed, and delivered in the presence of:	For the Grantor:	
Unofficial Witness (Signature)	Name of Grantor (Print)	
		(Seal)
Unofficial Witness Name (Print)	Grantor's Authorized Representative (Signature)	_ 、 ,
	Authorized Representative Name (Print)	_
Unofficial Witness Address (Print)		
	Title of Authorized Representative (Print)	
Notary Public (Signature)		
My Commission Expires:	Dated: (NOTARY SEAL)	

Environmental Covenant Fountain Oaks Shopping Center Page 6

Signed, sealed, and delivered in the presence of:	For the State of Georgia Environmental Protection Division:	
Unofficial Witness (Signature)		
Unofficial Witness Name (Print)	(Signature)	(Seal)
Unofficial Witness Address (Print)	Richard E. Dunn Director	
Notary Public (<i>Signature</i>) My Commission Expires:	Dated: (NOTARY SEAL)	

After Recording Return to:

Georgia Environmental Protection Division Response and Remediation Program 2 Martin Luther King, Jr. Drive, SE Suite 1462 East Atlanta, Georgia 30334

Environmental Covenant

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, OCGA § 44-16-1, *et seq.* This Environmental Covenant subjects the Property identified below to the activity and/or use limitations specified in this document. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with OCGA § 44-16-8(a).

Fee Owner of Property/Grantor:	Fletcher Bright Partners I, Ltd. 537 Market Street Suite 400 Chattanooga, TN 37402
Grantee/Holder:	Fletcher Bright Partners I, Ltd. 537 Market Street Suite 400 Chattanooga, TN 37402
Grantee/Entity with express power to enforce:	State of Georgia Department of Natural Resources Environmental Protection Division 2 Martin Luther King Jr. Drive, SE Suite 1152 East Tower Atlanta, GA 30334
Parties with interest in the Property:	Fletcher Bright Partners I, Ltd. 537 Market Street Suite 400 Chattanooga, TN 37402

Property:

The property subject to this Environmental Covenant is the undeveloped Long Island Terrace parcel (hereinafter "Property"), located on Long Island Terrace in Sandy Springs, Fulton County, Georgia. This tract of land was conveyed on December 31, 2003 from Fletcher Bright, Fletcher Bright Company, and Michael O. Savage (d/b/a Long Island Associates) to Long Island Associates, Ltd recorded in Deed Book 36860, Page 594, Fulton County Records. The area is located in Land Lot 93 of

the 17th District of Fulton County, Georgia. Vacant residential property, 0.74 acres. A complete legal description of the area is attached as Exhibit A and a map of the area is attached as Exhibit B. **Tax Parcel Number(s):**

17 009300060881 of Fulton County, Georgia

Name and Location of Administrative Records:

The corrective action at the Property that is the subject of this Environmental Covenant is described in the following document[s]:

- Prospective Purcahser Compliance Status Report, 10-JUN-2008
- Preliminary Corrective Action Plan, 11-Dec-2007
- Compliance Status Report, 14-JAN-2010
- Groundwater Monitoring Report, 14-MAY-2015
- Compliance Status Report & Voluntary Remediation Program Application, 11-DEC-2015
- Compliance Status Report & Progress Report, 30-MAY-2017

These documents are available at the following locations:

Georgia Environmental Protection Division Response and Remediation Program 2 MLK Jr. Drive, SE, Suite 1462 East Tower Atlanta, GA 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

Description of Contamination and Corrective Action:

This Property has been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.

This Declaration of Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 *et seq.* by Fletcher Bright Partners I, Ltd, its successors and assigns, and the State of Georgia, Department of Natural Resources, Environmental Protection Division (hereinafter "EPD"), its successors and assigns. This Environmental Covenant is required in accordance with the approved Voluntary Remediation Program Application and Voluntary Remediation Program application and the documented release of tetrachloroethylene with associated compounds trichloroethene (TCE), and cis-1,2-dichloroethene (cDCE) occurred on the Property. These are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder (hereinafter "HSRA" and "Rules", respectively). The proposed Corrective Action consisted of soil excavation/ secondary source removal on the neighboring release source property and institutional controls consisting of the restriction of groundwater to non-drinking water uses to protect human health and the environment.

Grantor, Fletcher Bright Partners I, Ltd., hereby binds Grantor, its successors and assigns to the activity and use restriction(s) for the Property identified herein and grants such other rights under this Environmental Covenant in favor of the Fletcher Bright Partners I, Ltd. and EPD. EPD shall have full right of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 *et seq.*, and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from excising any authority under applicable law.

Fletcher Bright Partners I, Ltd. makes the following declaration as to limitations, restrictions, and uses to which the Property may be put and specifies that such declarations shall constitute covenants to run with the land, pursuant to O.C.G.A. § 44-16-5(a); is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to O.C.G.A. § 44-16-9; and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property occur before such time as this Environmental Covenant has been amended or revoked then said Environmental Covenant shall be binding on the transferee(s).

The Environmental Covenant shall inure to the benefit of <name of Holder>, EPD, <name of Grantor> and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns, <name of Holder> or its successors and assigns, <name of Grantor> or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Activity and/or Use Limitation(s)

<u>Groundwater Use Limitation</u>. The use or extraction of groundwater beneath the Property for drinking water or for any other potable uses shall be prohibited. The use or extraction of groundwater for any other purposes besides site characterization is prohibited unless conducted under a plan approved in writing by EPD.

General Provisions

<u>Notice of Limitation in Future Conveyances.</u> Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the activity and use limitations set forth in this Environmental Covenant and shall provide the recorded location of the Environmental Covenant.

<u>Access</u>. Grantor shall provide reasonable access to Grantee/Holder or its assigns to verify compliance with established activity and/or use limitations identified herein.

<u>Effective Date</u>. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with OCGA § 44-16-8(a).

<u>Benefit</u>. This Environmental Covenant shall inure to the benefit of Grantee/Holder, EPD, and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns,

Grantee/Holder or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

<u>Termination or Modification</u>. The Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-5-60, unless and until the Director determines that the Property is in compliance with the Type 1 or 2 Risk Reduction Standards, as defined in Georgia Rules of Hazardous Site Response, whereupon the Environmental Covenant may be amended or revoked in accordance with O.C.G.A. § 44-16-1 *et seq*.

<u>Severability.</u> If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.

<u>Warranty</u>. Grantor hereby represents and warrants to the other signatories hereto that the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided, and to carry out all obligations hereunder and in accordance with O.C.G.A. § 44-16-1 et seq.

<u>No Property Interest Created in EPD</u>. This Environmental Covenant does not in any way create any interest by EPD in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

Representations and Warranties.

Grantor hereby represents and warrants to the other signatories hereto:

- a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
- b) That the Grantor is the sole owner of the Property and holds fee simple title which is free, clear and unencumbered;
- c) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;
- d) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- e) That the Grantor has served each of the people or entities referenced in Activity 10 above with an identical copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-4(d).
- f) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- g) That this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.

Notices.

Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

> Georgia Environmental Protection Division Branch Chief Land Protection Branch 2 Martin Luther King Jr. Drive SE Suite 1154 East Tower Atlanta, GA 30334

Fletcher Bright Partners I, Ltd. 537 Market Street Suite 400 Chattanooga, TN 37402

Grantor has caused this Environmental Covenant to be executed pursuant to The Georgia Uniform Environmental Covenants Act, on the _____ day of _____, 2017.

Signed, sealed, and delivered in the presence of: For the Grantor: Unofficial Witness (Signature) Name of Grantor (Print) Unofficial Witness Name (Print) Grantor's Authorized Representative (Seal) (Signature) Authorized Representative Name (Print) Unofficial Witness Address (Print) Title of Authorized Representative (Print)

Notary Public (Signature)

Dated:_____

My Commission Expires_____

Signed, sealed, and delivered in the presence of:

For the State of Georgia Environmental Protection Division

Unofficial Witness (Signature)

Unofficial Witness Name (Print)

(Signature)

Richard E. Dunn Director

Unofficial Witness Address (Print)

Notary Public (Signature)

Dated:

(NOTARY SEAL)

My Commission Expires_____

(Seal)

Exhibit A Legal Description Exhibit B Map **Appendix E**

Evaluation of Vapor Intrusion Pathway

May 12, 2017

Mr. Jim McKenney, P.E. EDENS Limited Partnership 7200 Wisconsin Avenue, Suite 400 Bethesda, MD 20814

Phone: (803) 269-8913 Email: JMcKenney@edens.com

Subject: Additional Evaluation of Vapor Intrusion Pathway Fountain Oaks Shopping Center 4920 Roswell Road, NE Sandy Springs, Georgia Amec Foster Wheeler Project No. 6121-15-0100

Dear Mr. McKenney

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) respectfully submits the attached evaluation of vapor risk in response to comments by the Environmental Protection Division (EPD) based on its review of a Compliance Status Report (CSR) and Voluntary Remediation Program Application (VRPA) prepared by Marion Environmental.

Based on the attached documentation, the site is in compliance with vapor risk requirements under HSRA and the VRP for delisting. Amec Foster Wheeler appreciates the opportunity to be of service on this project. If you have any questions, please contact Amec Foster Wheeler at 404-873-4761.

Sincerely,

Amec Foster Wheeler Environment & Infrastructure, Inc.

Laura M. Smith, RHSP Associate Scientist

Charles S.S

Charles T. Ferry, P.E. Senior Principal Engineer

Attachments: Data Tables 1-4 VISL Tables 5-7 Appendix A Tables A-1 – A-5 Figure 20 (from Marion Environmental)

cc. Mr. Gerald Pouncey, Morris, Manning & Martin, LLP

ADDITIONAL EVALUATION OF THE VAPOR INTRUSION PATHWAY

Background

The potential sources for vapor intrusion from the subsurface at the Fountain Oaks Shopping Center (FOSC) have been thoroughly investigated and defined. The extent of volatile organic compounds (VOCs) have previously been characterized using indoor air, soil vapor, soil, and groundwater sampling, and three potential sources identified: a former dry cleaner that was located on the northern portion of the FOSC, another dry cleaner (Chastain Cleaners) located to the northeast and off-site with migration of constituents of potential concern (COPCs) onto the FOSC property, and a former gas station that was located on the eastern portion of the FOSC. Thus, COPCs include VOCs associated with dry cleaning and petroleum-based fuels.

Soil excavations have been completed and soil exceeding risk reduction standards (RRS) have been removed. In 2008, a vapor intrusion mitigation system (VISM) was installed and was in operation until late 2011. To evaluate the post-remediation conditions, a focused site investigation was completed for soil gas and indoor air in May 2013. Sub-slab and near-slab soil gas samples were collected from six locations using laboratory-supplied Summa[®] canisters within and adjacent to the northern portion of the shopping center buildings. In addition, six indoor air sampling canisters (laboratory-supplied Summa[®] canisters) were placed within the Kroger store and four of the suites to the north of Kroger for indoor air sampling (Property Solutions, 2013). Canister samples were analyzed by Method TO-15. A summary of these data, which are used as lines of evidence in the vapor intrusion risk evaluation, are provided in Table 1 and Table 2 (attached).

In March 2015, remaining groundwater monitoring wells were sampled for COPCs. These data were presented in the December 2015 Compliance Status Report and VRP Application (Marion Environmental Inc., 2015). Figure 20 from that report is presented for reference herein. Additionally, the March 2015 groundwater analytical results are presented in Appendix A, Table A-1 (attached). In the December 2015 CSR and VRP Application, these data were used to address the potential of vapor intrusion in the USEPA's Johnson and Ettinger Model (J&E Model, USEPA, 2004). Per current USEPA guidance, quantitative fate and transport modeling is a valuable tool in the evaluation of current and future human health risk from vapor intrusion (USEPA, 2015a). The results of the J&E Modeling additionally support a conclusion that the potential for vapor intrusion on the north portion of FOSC had been substantially reduced and the residual concentrations in groundwater would not pose a risk to current and future site receptors.

In November 2016, EPD provided comments that indicated that the J&E Model results would not be accepted as a line of evidence to demonstrate that vapor intrusion risks are in the acceptable range. The same comment requested that the Vapor Intrusion Screening Level (VISL) calculator should be used to evaluate risk for this pathway. Although current USEPA guidance (USEPA, 2015) supports the continuing use of the J&E Model, an alternative risk evaluation has been completed using VISL. In addition, per EPD's comments, the groundwater concentrations associated with the northeastern portion of the FOSC have also been evaluated. The groundwater monitoring wells within each area have been evaluated and wells with positive detections for the COPCs of interest are included in the estimation of the exposure point concentrations (EPCs). The grouping of the monitoring wells is indicated by color coding in Appendix A, Table A-1. When there are four or more detections of a COPC, USEPA's ProUCL software version 5.1 (USEPA, 2015b) has been used to calculate representative EPCs.

This approach is consistent with guidance for risk assessment issued by USEPA Region 4 (USEPA, 2014) and the Georgia VRP. The EPCs used to address risk for groundwater are listed in Table 3 (FOSC north portion) and Table 4 (northeastern portion that includes off-site source concentrations and petroleum-related COPCs). The calculated ProUCL EPCs are presented in Appendix A.

Risk Characterization – Vapor Intrusion Modeling

The SG_IA-Calc module of the May 2016 VISL Calculator was used to estimate risks and hazards associated with indoor air concentrations from residual soil vapor impacts from groundwater for the north portion of the FOSC. The maximum detected soil vapor concentrations detected in May 2013 for constituents exceeding commercial sub-slab VISLs were used in the calculations. Two constituents, benzene and tetrachloroethene, had maximum reported concentrations that exceeded the VISLs based on a target risk of 10^{-6} and hazard index of 0.1 (Table 1). These two compounds were carried forward to the SG_IA risk calculations. Table 5 shows the cumulative risks and hazards estimated using the VISL calculator and soil vapor concentrations. Incremental cancer risk was estimated at 3 x 10^{-6} and the hazard index at 0.2. Estimated risks are less than the HSRA target risk level of 1×10^{-5} ; the hazard index is less than the HSRA target HI of 1. This first line of evidence supports the conclusion that the vapor intrusion pathway does not pose a risk to current or future commercial receptors because soil vapor exposures do not exceed the risk goals set forth in HSRA.

Table 2 summarizes the results of the indoor air sampling event completed in May 2013. The maximum reported detections for the site COPCs plus other detected constituents that were not detected in soil vapor or in groundwater were compared to commercial indoor air VISLs. The VISLs were based on a target risk of 10^{-6} and target hazard index of 0.1. One of the constituents, chloroform, had a maximum concentration of $1.1 \ \mu g/m^3$ that exceeded the screening VISL of $0.53 \ \mu g/m^3$. Under a commercial scenario, the maximum concentration of chloroform would be associated with an estimated risk of $2.1 \ x 10^{-6}$. This estimated risk is less than the HSRA target risk level of $1 \ x 10^{-5}$. In addition, chloroform is commonly found in ambient air and is associated with chlorinated water and may not be due to vapor intrusion from groundwater. This second line of evidence supports the conclusion that the vapor intrusion pathway does not pose a risk to current or future commercial receptors.

The GW_IA-Calc module of the May 2016 VISL was used to estimate risks and hazards associated with indoor air concentrations from residual groundwater impacts for the north portion of the FOSC. The COPCs and EPCs are summarized on Table 3 and the estimated risks and hazards are shown on Table 6. Incremental cancer risk was estimated at 8 x 10^{-6} and the hazard index at 2. Estimated risks are less than the HSRA target risk level of 1×10^{-5} ; the hazard index is slightly greater than the HSRA target HI of 1. The HI is primarily associated with trichloroethene (TCE). Please note that calculations completed with the J&E Model indicate a much higher degree of attenuation between groundwater and the building foundations. The higher degree of attenuation was supported by the depth to groundwater (27 to 33 feet below ground surface) and the 2013 soil vapor results discussed above. If the attenuation factor in the VISL were adjusted to 0.005, which is allowed under USEPA guidance, the resulting VISL calculator HI would be equal to 1 and the north portion of the FOSC would equal the HSRA target HI. Based on these site-specific considerations, the third line of evidence also supports the conclusion that the vapor intrusion pathway does not pose a risk to current or future commercial receptors.

The GW_IA-Calc module of the May 2016 VISL was used to estimate risks and hazards associated with indoor air concentrations from residual groundwater impacts for the northeastern and eastern portion

of the FOSC. These concentrations are associated with an off-site dry cleaning site and a former gas station. The COPCs and EPCs are summarized on Table 4 and the estimated risks and hazards are shown on Table 7. Incremental cancer risk was estimated at 6×10^{-6} and the hazard index at 0.7. Estimated risks are less than the HSRA target risk level of 1×10^{-5} ; the hazard index is less than the HSRA target HI of 1. This line of evidence supports the conclusion that the vapor intrusion pathway does not pose a risk to current or future commercial receptors located on the northeastern and eastern portion of the FOSC.

This approach assumes the structure of a building is located above the subsurface impacts and volatile emissions will enter through the floor slab and does not incorporate dispersion, dilution, or bioattenuation. However, in actuality, the concentrations of volatile compounds may naturally attenuate over time. In fact, concentrations at the FOSC monitoring wells exhibit a downward trend in concentrations with time (Figure 20 attached). This approach also assumes an infinite subsurface contamination source, while the distribution across the site is not homogeneous. In general, the assumptions used to estimate indoor air exposures and risks would tend to overestimate indoor air concentrations. The results obtained with the J&E Model also support the conclusion that risk and hazards calculated with the VISL are overestimates.

In summary, indoor air sample concentrations collected in May 2013 were less than commercial indoor air VISLs with one exception, chloroform. However, estimated risk associated with chloroform is less than the HSRA target risk level of 10⁻⁵. Risk calculations were completed using the May 2013 soil vapor sampling results and the March 2015 groundwater sampling results in the SG_IA Calc and GW_IA_Calc modules of the VISL Calculator in order to estimate the indoor air concentrations and risks and hazards for detected constituents in soil vapor and groundwater. When site-specific conditions are included in the calculations, the resulting estimated cumulative hazards and risks indicate no unacceptable risk or hazards for commercial receptors potentially exposed via indoor air vapor emissions based on maintaining the current hard cover and current building parameters. Therefore, the site is compliant with vapor risk requirements under HSRA and the VRP for delisting.

References

- Marion Environmental Inc., 2015. Compliance Status Report and Voluntary Remediation Program Application, Fountain Oaks Shopping Center, December 2015.
- Property Solutions Inc., 2013. Limited Subsurface Investigation of Shoppes at Fountain Oaks, Atlanta, Fulton County, Georgia. June 6, 2013.
- USEPA, 2004. Johnson and Ettinger Model and User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings, Office of Emergency and Remedial Response, February 2004.
- USEPA, 2014. Region 4 Human Health Risk Assessment Supplemental Guidance, January 2014.
- USEPA, 2015a. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air, OSWER Publication 9200.2-154, June 2015.
- USEPA, 2015b. ProUCL Version 5.1, Statistical Software for Environmental Applications for Data Sets with and without Non-Detect Observation, October 2015.

USEPA, 2016. Vapor Intrusion Screening Level (VISL) Calculator Version 3.5.1 (May 2016 RSLs).

TABLES

Table 1Fountain Oaks Dry Cleaning Site - Fountain Oaks Shopping CenterSumma Cannister Soil Gas Data Summary- 2013

Parameter	May 2013 Maximum Reported Concentration, ug/m ³ (a)	Soil Gas VISL (Target Risk of 10 ⁻⁶ and Hazard Index of 0.1), ug/m ³ (b)				
1,2,4-Trimethylbenzene	34	880				
1,3,5-Trimethylbenzene	11	880 (c)				
2-Butanone	43	73000				
4-Ethyltoluene	10	NA				
Acetone	250	450000				
Benzene	140	52				
Carbon disulfide	8.0	10000				
Chlorobenzene	20	730				
Chloroform	8.6	18				
Dichlorodifluoromethane	31	1500				
Ethylbenzene	32	160				
Methyl isobutyl ketone	36	44000				
Tetrachloroethene	1200	580				
Toluene	170	73000				
Trichloroethene	7.2	29				
Trichlorofluoromethane	58	NA				
Xylenes	91	1500				

ug/m³ = micrograms per cubic meter

NA Screening level not available

(a) Limited Subsurface Investigation of Shoppes at Fountain Oaks, Property Solutions Inc., June 2013

(b) Commercial Soil Gas Vapor Intrusion Screening Level (VISL), USEPA, May 2016

(c) 1,2,4-Trimethylbenzene used as a surrogate

Bolded parameter had maximum reported concentrations greater than the VISL.

Compounds in italics were not detected in groundwater.

Prepared by: LMS 5/2/17 Checked by: LWC 5/4/17

Table 2Fountain Oaks Dry Cleaning Site - Fountain Oaks Shopping CenterIndoor Air Data Summary- 2013

Parameter	May 2013 Maximum Reported Concentration, ug/m ³ (a)	Indoor Air VISL (Target Risk of 10 ⁻⁶ and Hazard Index of 0.1), ug/m ³ (b)
1,2,4-Trimethylbenzene	0.73	26
1,3,5-Trimethylbenzene	<0.5	26 (c)
2-Butanone	3.6	2200
4-Ethyltoluene	<0.5	NA
Acetone	250	14000
Benzene	1.0	1.6
Carbon disulfide	3.0	310
Carbon tetrachloride	0.59	2.0
Chlorobenzene	<0.47	22
Chloromethane	1.6	39
Chloroform	1.1	0.53
Dichlorodifluoromethane	3.4	44
Ethylbenzene	0.92	4.9
Methyl isobutyl ketone	<0.83	1300
Methylene chloride	0.72	260
Styrene	2.0	440
Tetrachloroethene	3.1	18
Toluene	4.5	2200
1,1,1-Trichloroethane	3.1	2200
Trichloroethene	<0.55	0.88
Trichlorofluoromethane	23	NA
1,1,2-Trichlorotrifluoroethane	16	13000
Xylenes	2.6	44

ug/m³ = micrograms per cubic meter

ND Not Detected in Indoor Air

NA Screening level not available

(a) Limited Subsurface Investigation of Shoppes at Fountain Oaks, Property Solutions Inc., June 2013

(b) Commercial Indoor Air Screening Level (VISL), USEPA, May 2016

(c) 1,2,4-Trimethylbenzene used as a surrogate

Bolded parameter had maximum reported concentrations greater than the VISL.

Compounds in italics were not detected in groundwater.

Prepared by: LMS 5/2/17 Checked by: LWC 5/4/17

Table 3Fountain Oaks Dry Cleaning Site - Fountain Oaks Shopping CenterGroundwater Data Summary- March 2015

		Maximum Reported		
Parameter	Frequency of Detection	Concentration, ug/L (a)	Exposure Point Concentration	Basis
Chloroform	6/10	14	10.5	95% KM (t) UCL
cis 1,2-Dichloroethene	10/10	210	NA	
trans 1,2-Dichloroethene	1/10	1.2	NA	
Di-isopropyl ether	1/10	1	1	Maximum
Methyl tert butyl ether	3/10	15	15	Maximum
Tetrachloroethene	8/10	810	447	95% KM (Chebyshev) UCL
Trichloroethene	8/10	120	104	97.5% KM (Chebyshev) UCL

Source: Compliance Status Report and Voluntary Remediation Program Application, Fountain Oaks Shopping Center,

Marion Environmental Inc., December 2015

(a) Table 9 Data for wells within plume with detections of COPCs: MW-2, MW-3, MW-4, MW-9, MW-13S, MW-14, MW-

26, MW-27, MW-29, and MW-30

NA No inhalation toxicity data available for this constituent.

% percent

UCL Upper Confidence Limit of the Arithmetic Mean

KM Kaplan Meier

UCLs calculated using ProUCL Version 5.1

Prepared by: LMS 12/29/16 Checked by: LWC 12/30/16

Table 4

Northeastern Area (Chastain Cleaners Source) - Fountain Oaks Shopping Center Groundwater Data Summary- March 2015

Parameter	Frequency of Detection	Maximum Reported Concentration, ug/L (a)	Exposure Point Concentration, ug/L	Basis
Acetone	2/13	86	86	Maximum
Benzene	5/13	140	48.7	95% Hall's Bootstrap
sec-Butylbenzene	1/13	1.9	NA	
Chloroform	4/13	11	7.56	95% KM (t) UCL
Cumene	1/13	3.2	3.2	Maximum
cis 1,2-Dichloroethene	12/13	100	NA	
Di-isopropyl ether	4/13	46	12.6	95% KM (t) UCL
Methyl tert butyl ether	6/13	2500	661	95% KM (t) UCL
Tetrachloroethene	11/13	520	282	95% KM Adj Gamma UCL
Trichloroethene	10/13	35	16.4	95% KM Adj Gamma UCL
Vinyl chloride	4/13	11	3.77	95% KM (t) UCL

Source: Compliance Status Report and Voluntary Remediation Program Application, Fountain Oaks Shopping Center, Marion Environmental Inc., December 2015

(a) Table 9 Data for wells within plume with detections of COPCs: MW-5, MW-6, MW-8, MW-15, MW-16, MW-18,

MW-19, MW-20, MW-21, MW-22, MW-23, MW-28, and MW-33

NA No inhalation toxicity data available for this constituent.

% percent

UCL Upper Confidence Limit of the Arithmetic Mean

KM Kaplan Meier

Adj Adjusted

UCLs calculated using ProUCL Version 5.1

Prepared by: LMS 12/29/16 Checked by: LWC 12/30/16 Soil Gas Investigation - Fountain Oaks Former Dry Cleaning Area

EPA-OLEM VAPOR INTRUSION ASSESSMENT

Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.5.1 (May 2016 RSLs)

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

		Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	Carcinogenic Risk	Carcinogenic VI Hazard		Inhalation Unit Risk	IUR	Reference Concentration	-	Mutagenic Indicator	
		Csg	Cia	CR	HQ		IUR	Source*	RfC	Source*		l
CAS	Chemical Name	(ug/m ³)	(ug/m ³)	UR	ΠQ		(ug/m ³) ⁻¹		(mg/m ³)		i i	ł
71-43-2	Benzene	1.4E+02	4.20E+00	2.7E-06	3E-02		7.80E-06		3.00E-02		i J	I
127-18-4	Tetrachloroethylene	1.2E+03	3.60E+01	7.6E-07	2E-01		2.60E-07		4.00E-02		i l	l
Notes:			Totals (Risk & HI)	3.E-06	0.2							
(1)	Inhalation Pathway Exposure Parameters (RME):		Units		Resid	lential	Comme	rcial			Selected (b scena	
	Exposure Scenario				Symbol	Value	Symbol	Value			Symbol	Value
	Averaging time for carcinogens		(yrs)		ATc_R_SG	70	ATc_C_SG	70			ATc_SG	70
	Averaging time for non-carcinogens		(yrs)		ATnc_R_SG	26	ATnc_C_SG	25			ATnc_SG	25
	Exposure duration		(yrs)		ED_R_SG	26	ED_C_SG	25			ED_SG	25
	Exposure frequency		(days/yr)		EF_R_SG	350	EF_C_SG	250			EF_SG	250
	Exposure time		(hr/day)		ET_R_SG	24	ET_C_SG	8			ET_SG	8
(2)	Generic Attenuation Factors:				Resid	lential	Comme	rcial			Selected (b scena	
	Groundwater		(-)		AFgw_R_SG	0.001	AFgw_C_SG	0.001			AFgw_SG	0.001
	Sub-Slab and Exterior Soil Gas		(-)		AFss_R_SG	0.03	AFss_C_SG	0.03			AFss_SG	0.03
(3)	<u>Formulas</u>											

Site Sub-slab or VI

Cia, target = MIN(Cia,c; Cia,nc) Cia, c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

3	Residen	itial	Commercial	Selected (based on scenario)
	mIURTCE_R_SG	1.00E-06	nIURTCE_C_SG 0.00E+00	mIURTCE_SG 0.00E+00
	IURTCE_R_SG	3.10E-06	IURTCE_C_SG 4.10E-06	IURTCE_SG 4.10E-06

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

http://www.epa.gov/iris/subst/index.html

Note: This section applies to trichloroethylene and other mutagenic	Age Cohort	Exposure Duration	Age-dependent adjustment factor
chemicals, but not to vinyl chloride.	0 - 2 years	2	10
	2 - 6 years	4	3
	6 - 16 years	10	3
	16 - 26 years	10	1

Mutagenic-mode-of-action (MMOA) adjustment factor 25 This factor is used in the equations for mutagenic chemicals.

http://www.atsdr.cdc.gov/mrls/index.html

http://epa-heast.ornl.gov/heast.shtml

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

http://hhpprtv.ornl.gov/pprtv.shtml

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:
 P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at: H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at: S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user. Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be change

Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

Groundwater Concentrations on North Side (Fountain Oaks Former Dry Cleaning Site) EPA-OLEM VAPOR INTRUSION ASSESSMENT

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.5.1 (May 2016 RSLs)

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	17.8	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

2

			Calculated	VI		
		Site Groundwater	Indoor Air	Carcinogenic	VI Hazard	
		Concentration	Concentration	Risk		
		Cgw	Cia	CR	HQ	
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	нų	
67-66-3	Chloroform	1.1E+01	1.15E+00	1.1E-06	1.3E-03	
108-20-3	Diisopropyl Ether	1.0E+00	1.05E-01	No IUR	1.7E-05	
1634-04-4	Methyl tert-Butyl Ether (MTBE)	1.5E+01	2.66E-01	2.8E-09	1.0E-05	
127-18-4	Tetrachloroethylene	4.5E+02	2.18E+02	2.3E-06	6.2E-01	
79-01-6	Trichloroethylene	1.0E+02	2.94E+01	4.9E-06	1.7E+00	

Total (Risk & HI):

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
IUR	Source	RfC	Source	
(ug/m ³) ⁻¹		(mg/m ³)		i
2.30E-05		9.80E-02	А	
		7.00E-01	Р	
2.60E-07	CA	3.00E+00		
2.60E-07	-	4.00E-02	_	
see note	-	2.00E-03	-	TCE

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

http://epa-heast.ornl.gov/heast.shtml

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Reside	ntial	Commer	cial	Selected (b	
(1)	Exposure Scenario		Symbol	Value	Symbol	Value	scena Symbol	ario) Value
	Averaging time for carcinogens	(yrs)	ATc_R_GW	70	ATc_C_GW	70	ATc_GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc_R_GW	26	ATnc_C_GW	25	Atnc_GW	25
	Exposure duration	(yrs)	ED_R_GW	26	ED_C_GW	25	ED_GW	25
	Exposure frequency	(days/yr)	EF_R_GW	350	EF_C_GW	250	EF_GW	250
	Exposure time	(hr/day)	ET_R_GW	24	ET_C_GW	4	ET_GW	4
(2)	Generic Attenuation Factors:		Reside	ntial	Commer	cial	Selected (b	

8.E-06

/							scena	rio)	
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value	
	Groundwater	(-)	AFgw_R_GW	0.001	AFgw_C_GW	0.001	AFgw_GW	0.001	
	Sub-Slab and Exterior Soil Gas	(-)	AFss_R_GW	0.03	AFss_C_GW	0.03	AFss_GW	0.03	

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4)	Special Case Chemicals		Reside	ntial	Comme	rcial	Selected (based on scenario)
	Trichloroethylene		Symbol	Value	Symbol	Value	Symbol Value
			mIURTCE_R_GW IURTCE_R_GW	1.00E-06 3.10E-06	IURTCE_C_GW		mIURTCE_GW 0.00E+00 IURTCE_GW 4.10E-06
	Mutagenic Chemicals	The exposure durations and age-dependent adjustm	ent factors for mutage	nic-mode-of-a	action are listed in	the table below:	
		Exposure	Age-dependent	adiustment			

Exposure Duration Age Cohort Note: This section applies to trichloroethylene and other mutagenic factor chemicals, but not to vinyl chloride. 0 - 2 years 10 2 2 - 6 years Λ 6 - 16 years 10 16 - 26 years 10 25 This factor is used in the equations for mutagenic chemicals. Mutagenic-mode-of-action (MMOA) adjustment factor

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

http://www.epa.gov/iris/subst/index.html http://hhpprtv.ornl.gov/pprtv.shtml

 P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:
 http://www.epa.gov/inssubst/index.i

 A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:
 http://htttp://htttp://http://http://http://http://http://http:// http://www.atsdr.cdc.gov/mrls/index.html

S = See RSL User Guide, Section 5
 X = PPRTV Appendix
 Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).
 VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Vellow highlighting indicates site-specific parameters that may be edited by the user. Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed. Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

Notes:

Groundwater Concentrations from Northeastern Area (Chastain Cleaners Source) EPA-OLEM VAPOR INTRUSION ASSESSMENT Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.5.1 (May 2016 RSLs)

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	17.8	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site	Calculated	VI	
		Groundwater	Indoor Air	Carcinogenic	VI Hazard
		Concentration	Concentration	Risk	
		Cgw	Cia	CD	110
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	HQ
67-64-1	Acetone	8.6E+01	9.01E-02	No IUR	3.3E-07
71-43-2	Benzene	4.9E+01	7.90E+00	2.5E-06	3.0E-02
67-66-3	Chloroform	7.6E+00	8.30E-01	7.8E-07	9.7E-04
98-82-8	Cumene	3.2E+00	8.91E-01	No IUR	2.5E-04
108-20-3	Diisopropyl Ether	1.3E+01	1.32E+00	No IUR	2.2E-04
1634-04-4	Methyl tert-Butyl Ether (MTBE)	6.6E+02	1.17E+01	1.2E-07	4.5E-04
127-18-4	Tetrachloroethylene	2.8E+02	1.37E+02	1.5E-06	3.9E-01
79-01-6	Trichloroethylene	1.6E+01	4.64E+00	7.8E-07	2.6E-01
75-01-4	Vinyl Chloride	3.8E+00	3.49E+00	6.3E-07	4.0E-03

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source*	RfC	Source*	
(ug/m ³) ⁻¹		(mg/m ³)		i
		3.10E+01	Α	
7.80E-06		3.00E-02	-	
2.30E-05	1	9.80E-02	Α	
		4.00E-01		
		7.00E-01	Р	
2.60E-07	CA	3.00E+00		
2.60E-07		4.00E-02		
see note		2.00E-03		TCE
4.40E-06	1	1.00E-01	1	VC

Selected (based on

Total (Risk & HI):

6.E-06

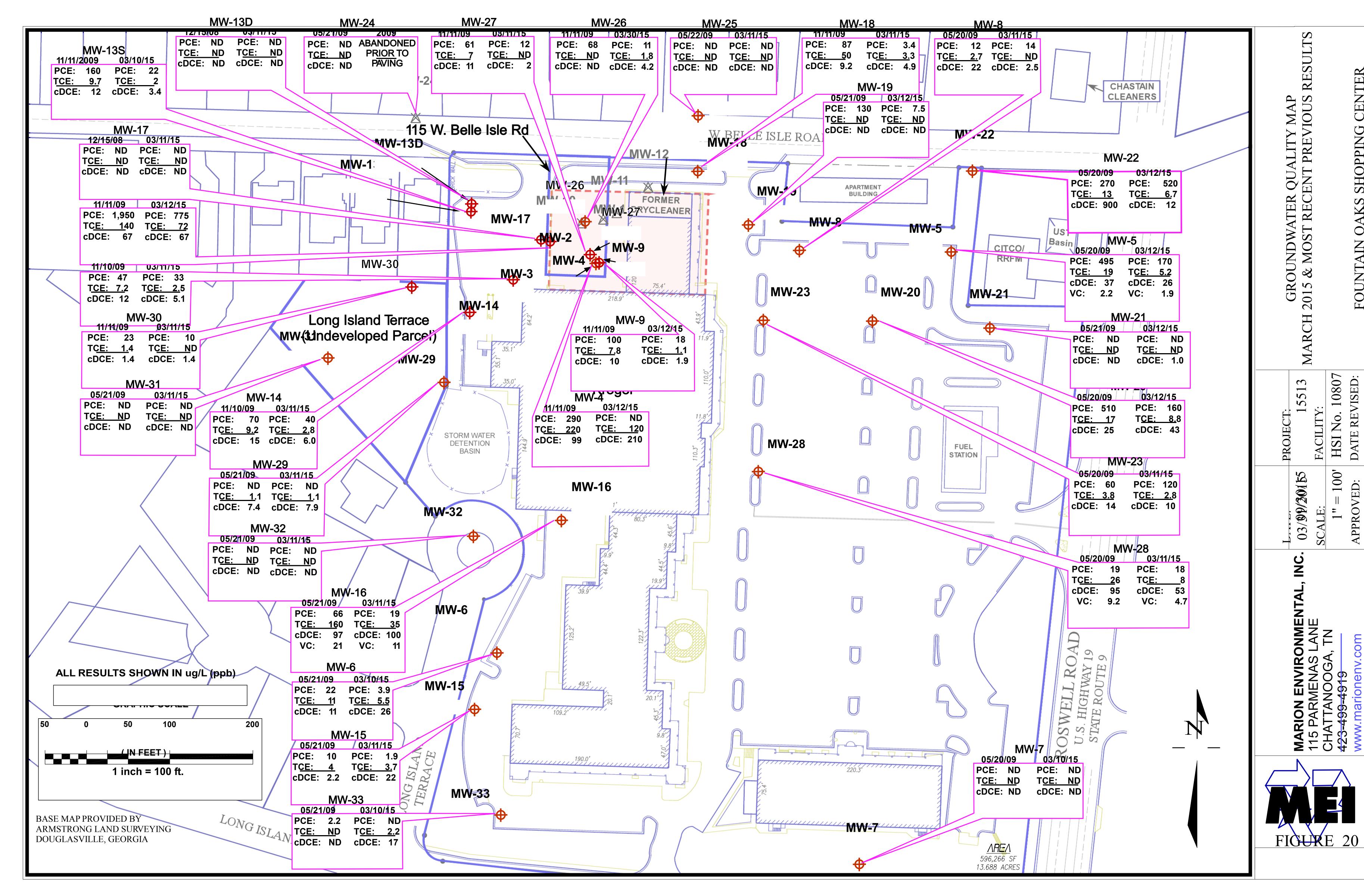
Residential

0.7

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Resider	ntial	Commer	cial	Selected (scen	
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATc_R_GW	70	ATc_C_GW	70	ATc_GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc_R_GW	26	ATnc_C_GW	25	Atnc_GW	25
	Exposure duration	(yrs)	ED_R_GW	26	ED_C_GW	25	ED_GW	25
	Exposure frequency	(days/yr)	EF_R_GW	350	EF_C_GW	250	EF_GW	250
	Exposure time	(hr/day)	ET_R_GW	24	ET_C_GW	4	ET_GW	4
(2)	Generic Attenuation Factors:		Resider	ntial	Commer	cial	Selected (scen	
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value
	Groundwater	(-)	AFgw_R_GW	0.001	AFgw_C_GW	0.001	AFgw_GW	0.001
	Sub-Slab and Exterior Soil Gas	(-)	AFss_R_GW	0.03	AFss_C_GW	0.03	AFss_GW	0.03

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)


(4)	Special Case Chemicals	Reside	Residential		ial	Selected (based on scenario)
	Trichloroethylene	Symbol	Value	Symbol	Value	Symbol Value
		mIURTCE_R_GW	1.00E-06	IURTCE_C_GW	0.00E+00	mIURTCE_GW 0.00E+00
		IURTCE_R_GW	3.10E-06	IURTCE_C_GW	4.10E-06	IURTCE_GW 4.10E-06

Mutagenic Chemicals The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Note: This section applies to tr chemicals, but not to vinyl chlo	ichloroethylene and other mutagenic ride.	Age Cohort 0 - 2 years 2 - 6 years 6 - 16 years 16 - 26 years	Exposure Duration 2 4 10 10	Age-dependent adjustment factor 10 3 3 1	
	Mutagenic-mode-of-a	ction (MMOA) adj	ustment factor	25	This factor is used in the equations for mutagenic chemicals.
Vinyl Chloride	See the Navigation	Guide equation for	Cia,c for vinyl cł	nloride.	
Notation: I = IRIS: EPA Integrated Risk Information System (IRIS P = PPRTV. EPA Provisional Peer Reviewed Toxicity V A = Agency for Toxic Substances and Disease Registry CA = California Environmental Protection Agency/Office H = HEAST. EPA Superfund Health Effects Assessme S = See RSL User Guide, Section 5 X = PPRTV Appendix Mut = Chemical acts according to the mutagenic-mode- VC	alues (PPRTVs). Available online at (ATSDR) Minimum Risk Levels (MRL of Environmental Heatth Hazard Ass nt Summary Tables (HEAST) databas of-action, special exposure parameter	Ls). Available online essment assessme e. Available online rs apply (see footno	e at: ints. Available c at:	hhpprtv.ornl.gov/pprtv.shtml http://www nline at:	atsdr.cdc.gov/mrls/index.html http://www.oehha.ca.gov/risk/ChemicalDB/index.asp aast.ornl.gov/heast.shtml

Vic = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation). VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation). TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above). Yellow highlighting indicates site-specific parameters that may be edited by the user Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed. Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

FIGURE 20

APPENDIX A

GROUNDWATER DATA

PROUCL INPUTS AND OUTPUTS

Table A-1

Fountain Oaks Shopping Center

Groundwater Analytical Results - March 2015 (Originally Table 9 from the December 2015 CSR and VRP Application)

	Acetone	Benzene	sec-Butylbenzene	Chloroform	Cumene (Isopropylbenzene)	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Di-isopropyl ether	Methyl Ethyl Ketone (2-Butanone)	Methyl tert Butyl Ether	Tetrachloroethene	Trichloroethene	Vinyl chloride
/201		<1	<1	5.6	<1	65	<1	<1	<10	1.0	740	70	<1
/201	15 <50	<1	<1	6.1	<1	68	<1	<1	<10	<1	810	73	<1
/201	15 <50	<1	<1	10	<1	5.1	<1	<1	<10	1.0	33	2.5	<1
/201	15 <50	<1	<1	<5	<1	210	1.2	<1	<10	<1	<10	120	<1
/201	15 <50	1.5	<1	<5	<1	26	<1	<1	<10	<1	170	5.2	1.9
/201	15 <50	<1	<1	<5	<1	26	<1	1.7	<10	45	3.9	5.5	<1
/201	15 <50	<1	<1	<5	<1	<1	<1	<1	<10	<1	<1	<1	<1
/201	15 <50	<1	<1	11	<1	2.5	<1	<1	<50	<1	14	<1	<1
/201	15 <50	<1	<1	14	<1	1.9	<1	<1	<10	<1	18	1.1	<1
/201	15 89	<1	<1	<5	<1	<1	<1	<1	11	<1	<1	<1	<1
/201		<1	<1	12	<1	3.0	<1	<1	<10	<1	21	1.8	<1
/201	15 <50	<1	<1	11	<1	3.7	<1	<1	<10	<1	23	2.1	<1
/201	15 <50	<1	<1	9.7	<1	6.0	<1	<1	<10	<1	40	2.8	<1
/201	15 <50	<1	<1	<5	<1	22	<1	<1	<10	<1	1.9	3.7	<1
/201	15 54	2.2	<1	<5	<1	100	<1	5.7	<10	340	19	35	11
/201	15 <50	<1	<1	<5	<1	<1	<1	<1	<10	<1	<1	<1	<1
/201	15 <50	<1	<1	<5	<1	4.9	<1	<1	<1	<1	3.4	3.3	<1
/201	15 <50	<1	<1	11	<1	<1	<1	<1	<10	<1	7.5	<1	<1
/201	15 <50	15	<1	<5	<1	43	<1	<1	<10	2.5	160	8.8	2.2
/201	15 <50	24	<1	<5	<1	1.0	<1	46	<10	2500	<1	<1	<1
/201	15 <50	<1	<1	8.9	<1	12	<1	<1	<10	<1	520	6.7	<1
/201	15 <50	<1	<1	5.6	<1	10	<1	<1	<10	<1	120	2.8	<1
/201	15 <50	<1	<10	<5	<1	<1	<1	<1	<10	<1	<1	<1	<1
/201	15 <50	<1	<10	<5	<1	4.2	<1	<1	<10	<1	11	1.8	<1
/201	15 <50	<1	<1	12	<1	2.0	<1	<1	<10	<1	12	<1	<1
/201		130	1.5	<5	2.6	48	<1	11	<10	820	16	7.0	3.9
/201	15 <50	140	1.9	<5	3.2	58	<1	12	<10	890	20	8.9	4.7
/201	15 <50	<1	<10	<5	<1	7.9	<1	1.0	<10	15	<1	1.1	<1
/201	15 <50	<1	<10	<5	<1	1.4	<1	<1	<10	<1	10	<1	<1
/201		<1	<10	<5	<1	<1	<1	<1	<10	<1	<1	<1	<1
/201	15 <50	<1	<10	<5	<1	<1	<1	<1	<10	1.9	<1	<1	<1
/201	15 <50	<1	<10	<5	<1	17	<1	ml	<1	<1 <10	<1 <10 3.3	<1 <10 3.3 <1	

Monitoring wells within Northeastern Area (upgradient source) with detections of COPCs: MW-5, MW-6, MW-8, MW-15, MW-16, MW-18, MW-19, MW-20, MW-21, MW-22, MW-23, MW-28, and MW-33 Monitoring wells within Fountain Oaks Dry Cleaning Area with detections of COPCs: MW-2, MW-3, MW-4, MW-9, MW-13S, MW-14, MW-26, MW-27, MW-29, and MW-30

Table A-2Groundwater Analytical Data for ProUCLFountain Oaks Dry Cleaning Site

Well ID	Chloroform	D_Chloroform	PCE	D_PCE	TCE	D_TCE
MW-2	6.1	1	810	1	73	1
MW-3	10	1	33	1	2.5	1
MW-4	5	0	10	0	120	1
MW-9	14	1	18	1	1.1	1
MW-13S	12	1	23	1	2.1	1
MW-14	9.7	1	40	1	2.8	1
MW-26	5	0	11	1	1.8	1
MW-27	12	1	12	1	1	0
MW-29	5	0	1	0	1.1	1
MW-30	5	0	10	1	1	0

UCL Statistics for Data Sets with Non-Detects

User Selected Options				
Date/Time of Computation	ProUCL 5.112/29/2016 1:48:50 PM			
From File	Table 9 GW 2015 Data_b.xls			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operation 2000				

95% Gamma Approximate UCL (use when n>=50) 11.34

Chloroform

General Statistics			
Total Number of Observations	10	Number of Distinct Observations	6
Number of Detects	6	Number of Non-Detects	4
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	6.1	Minimum Non-Detect	5
Maximum Detect	14	Maximum Non-Detect	5
Variance Detects	7.379	Percent Non-Detects	40%
Mean Detects	10.63	SD Detects	2.716
Median Detects	11	CV Detects	0.255
Skewness Detects	-0.763	Kurtosis Detects	0.933
Mean of Logged Detects	2.332	SD of Logged Detects	0.29
Mount of 209900 Bollotto	2.002	02 01 203900 2010010	0.20
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Normal at 5% Significance	l evel
Lilliefors Test Statistic	0.199	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance	
Detected Data appear Normal at 5% Significance L		Detected Data appear Normal at 5% Significance	Levei
Delected Data appear Normal at 5% Significance L	evei		
Kaplan-Meier (KM) Statistics using Normal Critical	Values and	other Nonparametric LICLs	
KM Mean	8.38	KM Standard Error of Mean	1.165
KM SD	3.362		10.1
		95% KM (BCA) UCL	
95% KM (t) UCL	10.52	95% KM (Percentile Bootstrap) UCL	10.17
95% KM (z) UCL	10.3	95% KM Bootstrap t UCL	10.24
90% KM Chebyshev UCL	11.87	95% KM Chebyshev UCL	13.46
97.5% KM Chebyshev UCL	15.65	99% KM Chebyshev UCL	19.97
Commo COE Tooto on Dotoctod Observations Only			
Gamma GOF Tests on Detected Observations Only		Anderson Darling OOF Test	
A-D Test Statistic	0.38	Anderson-Darling GOF Test	
5% A-D Critical Value	0.698	Detected data appear Gamma Distributed at 5% S	significance Level
K-S Test Statistic	0.225	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.332	Detected data appear Gamma Distributed at 5% S	Significance Level
Detected data appear Gamma Distributed at 5% Sig	gnificance	Level	
Commo Statistico en Datastad Data Only			
Gamma Statistics on Detected Data Only	15 70	k star (bias corrected ML E)	8 002
k hat (MLE)	15.78	k star (bias corrected MLE)	8.002
Theta hat (MLE)	0.674	Theta star (bias corrected MLE)	1.329
nu hat (MLE)	189.4	nu star (bias corrected)	96.03
Mean (detects)	10.63		
Gamma ROS Statistics using Imputed Non-Detects			
GROS may not be used when data set has > 50% I			
		s <1.0, especially when the sample size is small (e.g	., <15-20)
For such situations, GROS method may yield incom		of UCLs and BTVs	
This is especially true when the sample size is sma	II.		
-	-	e computed using gamma distribution on KM estimat	
Minimum	2.458	Mean	8.104
Maximum	14	Median	7.9
SD	3.936	CV	0.486
k hat (MLE)	4.032	k star (bias corrected MLE)	2.889
Theta hat (MLE)	2.01	Theta star (bias corrected MLE)	2.805
nu hat (MLE)	80.64	nu star (bias corrected)	57.78
Adjusted Level of Significance (β)	0.0267		
Approximate Chi Square Value (57.78, α)	41.31	Adjusted Chi Square Value (57.78, β)	38.9
95% Camma Approximate LICL (use when $n>-50$)		95% Camma Adjusted LICL (use when n<50)	12.04

12.04

95% Gamma Adjusted UCL (use when n<50)

	- 4		
Estimates of Gamma Parameters using KM Estima Mean (KM)	ates 8.38	SD (KM)	3.362
Variance (KM)	0.30 11.31	SE of Mean (KM)	1.165
k hat (KM)	6.211	k star (KM)	4.415
nu hat (KM)	124.2	nu star (KM)	88.29
theta hat (KM)	1.349	theta star (KM)	1.898
80% gamma percentile (KM)	11.42	90% gamma percentile (KM)	13.72
95% gamma percentile (KM)	15.83	99% gamma percentile (KM)	20.31
Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (88.29, α)	67.63	Adjusted Chi Square Value (88.29, β)	64.5
95% Gamma Approximate KM-UCL (use when r		95% Gamma Adjusted KM-UCL (use when n<50)	
	12 - 10.34		11.47
Lognormal GOF Test on Detected Observations C	-		
Shapiro Wilk Test Statistic	0.886	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significanc	e Level
Lilliefors Test Statistic	0.252	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significanc	e Levei
Detected Data appear Lognormal at 5% Significan	ice Levei		
Lognormal ROS Statistics Using Imputed Non-Det	ects		
Mean in Original Scale	8.385	Mean in Log Scale	2.038
SD in Original Scale	3.583	SD in Log Scale	0.452
95% t UCL (assumes normality of ROS data)	10.46	95% Percentile Bootstrap UCL	10.13
95% BCA Bootstrap UCL	10.23	95% Bootstrap t UCL	10.56
95% H-UCL (Log ROS)	11.76		
Statistics using KM estimates on Logged Data and	Assuming	Lognormal Distribution	
KM Mean (logged)	2.043	KM Geo Mean	7.713
KM SD (logged)	0.409	95% Critical H Value (KM-Log)	2.1
KM Standard Error of Mean (logged)	0.142	95% H-UCL (KM -Log)	11.17
KM SD (logged)	0.409	95% Critical H Value (KM-Log)	2.1
KM Standard Error of Mean (logged)	0.142		
DL/2 Statistics			
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	7.38	Mean in Log Scale	1.766
SD in Original Scale	4.663	SD in Log Scale	0.762
95% t UCL (Assumes normality)	10.08	95% H-Stat UCL	15.29
DL/2 is not a recommended method, provided for	comparison	s and historical reasons	
Nonnarametric Distribution Free LICL Statistics			

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use	
95% KM (t) UCL	10.52

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCE

General Statistics			
Total Number of Observations	10	Number of Distinct Observations	9
Number of Detects	8	Number of Non-Detects	2
Number of Distinct Detects	8	Number of Distinct Non-Detects	2
Minimum Detect	10	Minimum Non-Detect	1
Maximum Detect	810	Maximum Non-Detect	10
Variance Detects	77932	Percent Non-Detects	20%
Mean Detects	119.6	SD Detects	279.2
Median Detects	20.5	CV Detects	2.334
Skewness Detects	2.82	Kurtosis Detects	7.964
Mean of Logged Detects	3.387	SD of Logged Detects	1.431

Normal GOF Test on Detects Only

Table A-3Fountain Oaks Dry Cleaning SiteProUCL Statistics

	0.450		
Shapiro Wilk Test Statistic	0.453	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.818 0.487	Detected Data Not Normal at 5% Significance Level Lilliefors GOF Test	
5% Lilliefors Critical Value	0.487	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level		Detected Data Not Normal at 5% Olymicance Level	
Kaplan-Meier (KM) Statistics using Normal Critical	alues and	other Nonparametric UCLs	
KM Mean	95.9	KM Standard Error of Mean	80.57
KM SD	238.3	95% KM (BCA) UCL	257.2
95% KM (t) UCL	243.6	95% KM (Percentile Bootstrap) UCL	252.8
95% KM (z) UCL	228.4	95% KM Bootstrap t UCL	2257
90% KM Chebyshev UCL	337.6	95% KM Chebyshev UCL	447.1
97.5% KM Chebyshev UCL	599.1	99% KM Chebyshev UCL	897.6
Commo COE Tooto on Detocted Observations Only			
Gamma GOF Tests on Detected Observations Only A-D Test Statistic	1.55	Anderson-Darling GOF Test	
5% A-D Critical Value	0.769	Detected Data Not Gamma Distributed at 5% Signifi	cance I evel
K-S Test Statistic	0.42	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.311	Detected Data Not Gamma Distributed at 5% Signifi	cance Level
Detected Data Not Gamma Distributed at 5% Signifi			
5			
Gamma Statistics on Detected Data Only			
k hat (MLE)	0.46	k star (bias corrected MLE)	0.371
Theta hat (MLE)	259.8	Theta star (bias corrected MLE)	322.4
nu hat (MLE)	7.366	nu star (bias corrected)	5.937
Mean (detects)	119.6		
Gamma ROS Statistics using Imputed Non-Detects		any find about stings of multiple DLs	
GROS may not be used when data set has > 50% N		s <1.0, especially when the sample size is small (e.g.,	<15 20)
For such situations, GROS method may yield incom			<13-20)
This is especially true when the sample size is small			
		computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	95.7
Maximum	810	Median	15
SD	251.3	CV	2.626
k hat (MLE)	0.255	k star (bias corrected MLE)	0.245
Theta hat (MLE)	374.9	Theta star (bias corrected MLE)	390
nu hat (MLE)	5.106	nu star (bias corrected)	4.907
Adjusted Level of Significance (β)	0.0267		
Approximate Chi Square Value (4.91, α)	1.11	Adjusted Chi Square Value (4.91, β)	0.832
95% Gamma Approximate UCL (use when n>=50)	423.2	95% Gamma Adjusted UCL (use when n<50)	564.7
Estimates of Commo Decomptors using KM Estimat	~~		
Estimates of Gamma Parameters using KM Estimat Mean (KM)	95.9	SD (KM)	238.3
Variance (KM)	95.9 56804	SE of Mean (KM)	238.3 80.57
k hat (KM)	0.162	k star (KM)	0.18
nu hat (KM)	3.238	nu star (KM)	3.6
theta hat (KM)	592.3	theta star (KM)	532.8
80% gamma percentile (KM)	119	90% gamma percentile (KM)	289.2
95% gamma percentile (KM)	507.3	99% gamma percentile (KM)	1119
Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (3.60, α)	0.57	Adjusted Chi Square Value (3.60, β)	0.401
95% Gamma Approximate KM-UCL (use when n>	= 605.3	95% Gamma Adjusted KM-UCL (use when n<50)	860.3
Lognormal GOF Test on Detected Observations On			
Shapiro Wilk Test Statistic	0.74	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Lognormal at 5% Significance Le	ver
Lilliefors Test Statistic 5% Lilliefors Critical Value	0.291 0.283	Lilliefors GOF Test Detected Data Not Lognormal at 5% Significance Le	
Detected Data Not Lognormal at 5% Significance Le		Detected Data Not Logiornia at 5% Significance Le	vei
Lognormal ROS Statistics Using Imputed Non-Deter	cts		
Mean in Original Scale	95.96	Mean in Log Scale	2.765
SD in Original Scale	251.2	SD in Log Scale	1.82
95% t UCL (assumes normality of ROS data)	241.6	95% Percentile Bootstrap UCL	253.2
95% BCA Bootstrap UCL	334.7	95% Bootstrap t UCL	2277

95% H-UCL (Log ROS)	1689		
Statistics using KM estimates on Logged Data	and Assuming	Lognormal Distribution	
KM Mean (logged)	2.709	KM Geo Mean	15.02
KM SD (logged)	1.808	95% Critical H Value (KM-Log)	4.933
KM Standard Error of Mean (logged)	0.611	95% H-UCL (KM -Log)	1506
KM SD (logged)	1.808	95% Critical H Value (KM-Log)	4.933
KM Standard Error of Mean (logged)	0.611		
DL/2 Statistics			
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	96.25	Mean in Log Scale	2.801
SD in Original Scale	251.1	SD in Log Scale	1.847
95% t UCL (Assumes normality)	241.8	95% H-Stat UCL	2003
DL/2 is not a recommended method, provided	for comparisor	is and historical reasons	

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use	
95% KM (Chebyshev) UCL	447.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCE

General Statistics			
Total Number of Observations	10	Number of Distinct Observations	8
Number of Detects	8	Number of Non-Detects	2
Number of Distinct Detects	7	Number of Distinct Non-Detects	1
Minimum Detect	1.1	Minimum Non-Detect	1
Maximum Detect	120	Maximum Non-Detect	1
Variance Detects	2076	Percent Non-Detects	20%
Mean Detects	25.55	SD Detects	45.56
Median Detects	2.3	CV Detects	1.783
Skewness Detects	1.752	Kurtosis Detects	1.985
Mean of Logged Detects	1.568	SD of Logged Detects	1.87
Name of OOF Tast on Data de Only			
Normal GOF Test on Detects Only	0.60	Shanira Wilk COF Test	
Shapiro Wilk Test Statistic	0.62 0.818	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.010	Detected Data Not Normal at 5% Significance Level Lilliefors GOF Test	
5% Lilliefors Critical Value	0.441		
Detected Data Not Normal at 5% Significance Leve		Detected Data Not Normal at 5% Significance Level	
Delected Data Not Normal at 5% Significance Leve	I		
Kaplan-Meier (KM) Statistics using Normal Critical	values and	other Nonparametric UCLs	
KM Mean	20.64	KM Standard Error of Mean	13.31
KM SD	39.36	95% KM (BCA) UCL	44.65
95% KM (t) UCL	45.03	95% KM (Percentile Bootstrap) UCL	44.24
95% KM (z) UCL	42.53	95% KM Bootstrap t UCL	1163
90% KM Chebyshev UCL	60.56	95% KM Chebyshev UCL	78.65
97.5% KM Chebyshev UCL	103.7	99% KM Chebyshev UCL	153
Gamma GOF Tests on Detected Observations Only			
A-D Test Statistic	1.32	Anderson-Darling GOF Test	
5% A-D Critical Value	0.781	Detected Data Not Gamma Distributed at 5% Signification of the second se	icance Level
K-S Test Statistic	0.428	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.313	Detected Data Not Gamma Distributed at 5% Signif	icance Level
Detected Data Not Gamma Distributed at 5% Signif	icance Lev		
Gamma Statistics on Detected Data Only			
k hat (MLE)	0.394	k star (bias corrected MLE)	0.33
Theta hat (MLE)	64.79	Theta star (bias corrected MLE)	77.47
nu hat (MLE)	6.309	nu star (bias corrected)	5.277
Mean (detects)	25.55		

Gamma ROS Statistics using Imputed Non-Detects		apply find apparticipan at multiple DLa	
GROS may not be used when data set has > 50%		s <1.0, especially when the sample size is small (e.g.,	<15 20)
For such situations, GROS method may yield incom			<15-20)
This is especially true when the sample size is sma			
		e computed using gamma distribution on KM estimates	\$
Minimum	0.01	Mean	20.44
Maximum	120	Median	1.95
SD	41.6	CV	2.035
k hat (MLE)	0.263	k star (bias corrected MLE)	0.25
Theta hat (MLE)	77.86	Theta star (bias corrected MLE)	81.62
nu hat (MLE)	5.251	nu star (bias corrected)	5.009
Adjusted Level of Significance (β)	0.0267		
Approximate Chi Square Value (5.01, α)	1.156	Adjusted Chi Square Value (5.01, β)	0.87
95% Gamma Approximate UCL (use when n>=50)	88.55	95% Gamma Adjusted UCL (use when n<50)	117.7
Estimates of Gamma Parameters using KM Estima	tes		
Mean (KM)	20.64	SD (KM)	39.36
Variance (KM)	1550	SE of Mean (KM)	13.31
k hat (KM)	0.275	k star (KM)	0.259
nu hat (KM)	5.499	nu star (KM)	5.182
theta hat (KM)	75.07	theta star (KM)	79.65
80% gamma percentile (KM)	30.35	90% gamma percentile (KM)	61.78
95% gamma percentile (KM)	98.84	99% gamma percentile (KM)	197
Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (5.18, α)	1.237	Adjusted Chi Square Value (5.18, β)	0.937
95% Gamma Approximate KM-UCL (use when n	>= 86.44	95% Gamma Adjusted KM-UCL (use when n<50)	114.1
Lognormal GOF Test on Detected Observations Or	alv		
Shapiro Wilk Test Statistic	0.739	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Lognormal at 5% Significance Le	vel
Lilliefors Test Statistic	0.363	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.283	Detected Data Not Lognormal at 5% Significance Le	evel
Detected Data Not Lognormal at 5% Significance L	evel		
Lognormal POS Statistics Using Imputed Non Date	oto		
Lognormal ROS Statistics Using Imputed Non-Dete Mean in Original Scale	20.46	Mean in Log Scale	0.725
SD in Original Scale	41.59	SD in Log Scale	2.437
95% t UCL (assumes normality of ROS data)	44.57	95% Percentile Bootstrap UCL	44.14
95% BCA Bootstrap UCL	51.22	95% Bootstrap t UCL	889.5
95% H-UCL (Log ROS)	7676		
	•		
Statistics using KM estimates on Logged Data and	•	KM Geo Mean	3.506
KM Mean (logged)	1.254 1.685	95% Critical H Value (KM-Log)	3.506 4.641
KM SD (logged) KM Standard Error of Mean (logged)	0.57	(0)	4.64 i 196.8
KM SD (logged)	1.685	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	4.641
KM Standard Error of Mean (logged)	0.57	So / Onical IT value (RM-Log)	1.041
DL/2 Statistics			
DL/2 Normal	00.54	DL/2 Log-Transformed	4 4 4 0
Mean in Original Scale	20.54	Mean in Log Scale	1.116
SD in Original Scale	41.55	SD in Log Scale 95% H-Stat UCL	1.905
95% t UCL (Assumes normality) DL/2 is not a recommended method, provided for c	44.62		497.5
	ompanioun		
Nonparametric Distribution Free UCL Statistics			

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use 975% KM (Chebyshev) UCL 103.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Well ID	Benzene	D_Benzene	Chloroform	D_Chloroform	Di-isoproyl ether	D_Di-isoproyl ether	MTBE	D_MTBE	PCE	D_PCE	TCE	D_TCE	vc	D_VC
MW-5	1.5	1	5	0	1	0	1	0	170	1	5.2	1	1.9	1
MW-6	1	0	5	0	1.7	1	45	1	3.9	1	5.5	1	1	0
MW-8	1	0	11	1	1	0	1	0	14	1	1	0	1	0
MW-15	1	0	5	0	1	0	1	0	1.9	1	3.7	1	1	0
MW-16	2.2	1	5	0	5.7	1	340	1	19	1	35	1	11	1
MW-18	1	0	5	0	1	0	1	0	3.4	1	3.3	1	1	0
MW-19	1	0	11	1	1	0	1	0	7.5	1	1	0	1	0
MW-20	15	1	5	0	1	0	2.5	1	160	1	8.8	1	2.2	1
MW-21	24	1	5	0	46	1	2500	1	1	0	1	0	1	0
MW-22	1	0	8.9	1	1	0	1	0	520	1	6.7	1	1	0
MW-23	1	0	5.6	1	1	0	1	0	120	1	2.8	1	1	0
MW-28	140	1	5	0	12	1	890	1	20	1	8.9	1	4.7	1
MW-33	1	0	5	0	1	0	3.3	1	1	0	2.2	1	1	0

UCL Statistics for Data Sets with Non-Detects

User Selected Options	
Date/Time of Computation	ProUCL 5.112/29/2016 12:22:21 PM
From File	Table 9 GW 2015 Data_c.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operation	2000

Benzene

Bonzono			
General Statistics			
Total Number of Observations	13	Number of Distinct Observations	6
Number of Detects	5	Number of Non-Detects	8
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	1.5	Minimum Non-Detect	1
Maximum Detect	140	Maximum Non-Detect	1
Variance Detects	3433	Percent Non-Detects	61.54%
Mean Detects	36.54	SD Detects	58.59
Median Detects	15	CV Detects	1.604
Skewness Detects	2.096	Kurtosis Detects	4.485
Mean of Logged Detects	2.404	SD of Logged Detects	1.853
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.69	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.385	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			
Kaplan-Meier (KM) Statistics using Normal Critical V	alues and o	ther Nonparametric UCLs	
KM Mean	14.67	KM Standard Error of Mean	11.42
KM SD	36.81	95% KM (BCA) UCL	36.11
95% KM (t) UCL	35.02	95% KM (Percentile Bootstrap) UCL	34.96
95% KM (z) UCL	33.45	95% KM Bootstrap t UCL	98.24
90% KM Chebyshev UCL	48.92	95% KM Chebyshev UCL	64.43
97.5% KM Chebyshev UCL	85.96	99% KM Chebyshev UCL	128.3
Gamma GOF Tests on Detected Observations Only			
A-D Test Statistic	0.351	Anderson-Darling GOF Test	
5% A-D Critical Value	0.71	Detected data appear Gamma Distributed at 5% Sig	nificance Level
K-S Test Statistic	0.225	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.371	Detected data appear Gamma Distributed at 5% Sig	nificance Level
Detected data appear Gamma Distributed at 5% Sig	nificance Le	vel	
Commo Statistics on Datastad Data Only			
Gamma Statistics on Detected Data Only	0.500		0.044
k hat (MLE)	0.528	k star (bias corrected MLE)	0.344
Theta hat (MLE)	69.26	Theta star (bias corrected MLE)	106.1
nu hat (MLE)	5.276 36.54	nu star (bias corrected)	3.444
Mean (detects)	30.34		
Gamma ROS Statistics using Imputed Non-Detects			
GROS may not be used when data set has > 50% N	IDs with mar	ny tied observations at multiple DLs	
		<1.0, especially when the sample size is small (e.g., <	15-20)
For such situations, GROS method may yield incorre			.0 20)
This is especially true when the sample size is small			
		computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	14.06
Maximum	140	Median	0.01
SD	38.56	CV	2.742
k hat (MLE)	0.166	k star (bias corrected MLE)	0.179
Theta hat (MLE)	84.56	Theta star (bias corrected MLE)	78.46
nu hat (MLE)	4.323	nu star (bias corrected)	4.659
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (4.66, α)	0.998	Adjusted Chi Square Value (4.66, β)	0.783
95% Gamma Approximate UCL (use when n>=50)	65.64	95% Gamma Adjusted UCL (use when n<50)	83.71
Estimates of Gamma Parameters using KM Estimate			
Mean (KM)	14.67	SD (KM)	36.81
Variance (KM)	1355	SE of Mean (KM)	11.42
k hat (KM)	0.159	k star (KM)	0.173
nu hat (KM)	4.128	nu star (KM)	4.509
theta hat (KM)	92.39	theta star (KM)	84.59
80% gamma percentile (KM)	17.77	90% gamma percentile (KM)	44.14
95% gamma percentile (KM)	78.28	99% gamma percentile (KM)	174.6
Commo Koplon Mojor (KM) Statistics			
Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (4.51, α)	0.932	Adjusted Chi Square Value (4.51, β)	0.727
95% Gamma Approximate KM-UCL (use when n>		95% Gamma Adjusted KM-UCL (use when n<50)	

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognormal at 5% Significanc	0.939 0.762 0.208 0.343 e Level	Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Signific Lilliefors GOF Test Detected Data appear Lognormal at 5% Signific	
Lognormal ROS Statistics Using Imputed Non-Dete		Maan in Log Scola	1 650
Mean in Original Scale SD in Original Scale	14.1 38.54	Mean in Log Scale SD in Log Scale	-1.652 3.951
95% t UCL (assumes normality of ROS data)	33.15	95% Percentile Bootstrap UCL	32.97
95% BCA Bootstrap UCL	46.82	95% Bootstrap t UCL	132.1
95% H-UCL (Log ROS)	13966591		
Statistics using KM estimates on Logged Data and A	0	5	0.504
KM Mean (logged) KM SD (logged)	0.925 1.557	KM Geo Mean 95% Critical H Value (KM-Log)	2.521 3.889
KM Standard Error of Mean (logged)	0.483	95% H-UCL (KM -Log)	48.68
KM SD (logged)	1.557	95% Critical H Value (KM-Log)	3.889
KM Standard Error of Mean (logged)	0.483		
DL/2 Statistics		DL/QL an Transformed	
DL/2 Normal Mean in Original Scale	14.36	DL/2 Log-Transformed Mean in Log Scale	0.498
SD in Original Scale	38.44	SD in Log Scale	1.899
95% t UCL (Assumes normality)	33.36	95% H-Stat UCL	121.2
DL/2 is not a recommended method, provided for co			
Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Si	gnificance L	evel	
Suggested UCL to Use 95% KM Bootstrap t UCL	95.73	95% Hall's Bootstrap	48.68
	33.75	35% Hall'S Dootstrap	40.00
Note: Suggestions regarding the selection of a 95% Recommendations are based upon data size, data These recommendations are based upon the result However, simulations results will not cover all Real	distribution, s of the simu	and skewness. Ilation studies summarized in Singh, Maichle, and	Lee (2006).
Chloroform			
General Statistics			
Total Number of Observations	13	Number of Distinct Observations	4
Number of Detects	4	Number of Non-Detects	9
Number of Distinct Detects	3	Number of Distinct Non-Detects	1
Minimum Detect	5.6	Minimum Non-Detect	5
Maximum Detect Variance Detects	11 6.503	Maximum Non-Detect Percent Non-Detects	5 69.23%
Mean Detects	9.125	SD Detects	2.55
Median Detects	9.95	CV Detects	0.279
Skewness Detects	-1.231	Kurtosis Detects	0.621
Mean of Logged Detects	2.176	SD of Logged Detects	0.318
Normal GOF Test on Detects Only	0.946	Shapira Will COF Test	
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.846 0.748	Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significand	
Lilliefors Test Statistic	0.269	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Detected Data appear Normal at 5% Significant	ce Level
Detected Data appear Normal at 5% Significance Le			
Kaplan-Meier (KM) Statistics using Normal Critical			0 705
KM Mean KM SD	6.269 2.264	KM Standard Error of Mean 95% KM (BCA) UCL	0.725 N/A
95% KM (t) UCL	7.561	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	7.462	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	8.444	95% KM Chebyshev UCL	9.43
97.5% KM Chebyshev UCL	10.8	99% KM Chebyshev UCL	13.48
Gamma GOF Tests on Detected Observations Only		Anderson Darling COF Test	
A-D Test Statistic 5% A-D Critical Value	0.489 0.657	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5%	Significance Level
K-S Test Statistic	0.037	Kolmogorov-Smirnov GOF	Significance Level
5% K-S Critical Value	0.395	Detected data appear Gamma Distributed at 5%	Significance Level
Detected data appear Gamma Distributed at 5% Sig			3
Gamma Statistics on Detected Data Only			
k hat (MLE)	14.51	k star (bias corrected MLE)	3.793
Theta hat (MLE)	0.629	Theta star (bias corrected MLE)	2.406
nu hat (MLE)	116	nu star (bias corrected)	30.34
Mean (detects)	9.125		
Gamma ROS Statistics using Imputed Non-Detects			

GROS may not be used when data set has > 50% N	De with m	any tied observations at multiple DLs	
		<1.0, especially when the sample size is small (e.g., <	15 20)
For such situations, GROS method may yield incorr			10-20)
This is especially true when the sample size is small			
		computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	4.057
Maximum	11	Median	3.113
SD	4.035	CV	
	4.035 0.45	•••	0.995
k hat (MLE)	9.014	k star (bias corrected MLE)	0.398 10.21
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)	11.7 0.0301	nu star (bias corrected)	10.34
Adjusted Level of Significance (β)		Adjusted Obj Osusse Malus (40.04, 0)	0.044
Approximate Chi Square Value (10.34, α)	4.153	Adjusted Chi Square Value (10.34, β)	3.611
95% Gamma Approximate UCL (use when n>=50)	10.1	95% Gamma Adjusted UCL (use when n<50)	N/A
Estimates of Commo Deventers weight KM Estimat			
Estimates of Gamma Parameters using KM Estimat			0.064
Mean (KM)	6.269	SD (KM)	2.264
Variance (KM)	5.125	SE of Mean (KM)	0.725
k hat (KM)	7.669	k star (KM)	5.95
nu hat (KM)	199.4	nu star (KM)	154.7
theta hat (KM)	0.818	theta star (KM)	1.054
80% gamma percentile (KM)	8.268	90% gamma percentile (KM)	9.705
95% gamma percentile (KM)	11.01	99% gamma percentile (KM)	13.73
Gamma Kaplan-Meier (KM) Statistics	407		400.4
Approximate Chi Square Value (154.71, α)	127	Adjusted Chi Square Value (154.71, β)	123.4
95% Gamma Approximate KM-UCL (use when n>	»= 7.04	95% Gamma Adjusted KM-UCL (use when n<50)	7.801
	h.,		
Lognormal GOF Test on Detected Observations On		Charing Wills OOF Tast	
Shapiro Wilk Test Statistic	0.821	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance	e Levei
Lilliefors Test Statistic	0.262	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance	e Levei
Detected Data appear Lognormal at 5% Significanc	e Levei		
Leanermal DOC Statistics Using Imputed Nen Date	oto		
Lognormal ROS Statistics Using Imputed Non-Dete	4.961	Maan in Log Coole	1.402
Mean in Original Scale		Mean in Log Scale	
SD in Original Scale	3.314	SD in Log Scale	0.661
95% t UCL (assumes normality of ROS data)	6.6	95% Percentile Bootstrap UCL	6.527
95% BCA Bootstrap UCL	6.612	95% Bootstrap t UCL	7.087
95% H-UCL (Log ROS)	7.862		
Statistics using KM estimates on Lagged Data and		agnormal Distribution	
Statistics using KM estimates on Logged Data and A	•	•	E 0E2
KM Mean (logged) KM SD (logged)	1.784 0.303	KM Geo Mean 95% Critical H Value (KM-Log)	5.953 1.912
	0.303	(e ,	7.366
KM Standard Error of Mean (logged)	0.097	95% H-UCL (KM -Log)	1.912
KM SD (logged)		95% Critical H Value (KM-Log)	1.912
KM Standard Error of Mean (logged)	0.097		
DL/2 Statistics			
		DI /2 Log Transformed	
DL/2 Normal Mean in Original Scale	1 520	DL/2 Log-Transformed	1.304
Mean in Original Scale	4.538 3.428	Mean in Log Scale	0.626
SD in Original Scale		SD in Log Scale	
95% t UCL (Assumes normality)	6.233	95% H-Stat UCL	6.751
DL/2 is not a recommended method, provided for co	mparisons	anu misionical reasons	
Nonparametric Distribution Free UCL Statistics			
•	inificanco l	evel	
Detected Data appear Normal Distributed at 5% Sig	ninicance L	CVCI	
Suggested UCL to Use			
95% KM (t) UCL	7.561		
	1.501		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Di-isoproyl ether

General Statistics			
Total Number of Observations	13	Number of Distinct Observations	5
Number of Detects	4	Number of Non-Detects	9
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	1.7	Minimum Non-Detect	1
Maximum Detect	46	Maximum Non-Detect	1
Variance Detects	408.7	Percent Non-Detects	69.23%
Mean Detects	16.35	SD Detects	20.22
Median Detects	8.85	CV Detects	1.236
Skewness Detects	1.745	Kurtosis Detects	3.106
Mean of Logged Detects	2.146	SD of Logged Detects	1.381

Normal GOF Test on Detects Only	0.809	Shapira Wilk COE Toot	
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.809	Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Le	wol
Lilliefors Test Statistic	0.335	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Detected Data appear Normal at 5% Significance Le	vel
Detected Data appear Normal at 5% Significance L			
Kaplan-Meier (KM) Statistics using Normal Critical	Values and c	ther Nonnarametric LICLs	
KM Mean	5.723	KM Standard Error of Mean	3.85
KM SD	12.02	95% KM (BCA) UCL	N/A
95% KM (t) UCL	12.58	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	12.06	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	17.27	95% KM Chebyshev UCL	22.5
97.5% KM Chebyshev UCL	29.77	99% KM Chebyshev UCL	44.03
Gamma GOF Tests on Detected Observations Only	v		
A-D Test Statistic	0.25	Anderson-Darling GOF Test	
5% A-D Critical Value	0.668	Detected data appear Gamma Distributed at 5% Sig	nificance Level
K-S Test Statistic	0.217	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.403	Detected data appear Gamma Distributed at 5% Sig	nificance Level
Detected data appear Gamma Distributed at 5% Si	grinicance Le		
Gamma Statistics on Detected Data Only			
k hat (MLE)	0.902	k star (bias corrected MLE)	0.392
Theta hat (MLE)	18.13	Theta star (bias corrected MLE)	41.7
nu hat (MLE) Mean (detects)	7.215 16.35	nu star (bias corrected)	3.137
	10.00		
Gamma ROS Statistics using Imputed Non-Detects			
GROS may not be used when data set has > 50%			15.00
		<1.0, especially when the sample size is small (e.g., $<$	15-20)
For such situations, GROS method may yield incom		TUGLS AND BIVS	
This is especially true when the sample size is sma		computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	5.038
Maximum	46	Median	0.01
SD	12.8	CV	2.54
k hat (MLE)	0.18	k star (bias corrected MLE)	0.19
Theta hat (MLE)	27.92	Theta star (bias corrected MLE)	26.51
nu hat (MLE)	4.69	nu star (bias corrected)	4.941
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (4.94, α)	1.125	Adjusted Chi Square Value (4.94, β)	0.891
95% Gamma Approximate UCL (use when n>=50)	22.12	95% Gamma Adjusted UCL (use when n<50)	N/A
Estimates of Gamma Parameters using KM Estima	tes		
Mean (KM)	5.723	SD (KM)	12.02
Variance (KM)	144.5	SE of Mean (KM)	3.85
k hat (KM)	0.227	k star (KM)	0.226
nu hat (KM)	5.893	nu star (KM)	5.867
theta hat (KM)	25.25	theta star (KM)	25.36
80% gamma percentile (KM)	7.986	90% gamma percentile (KM)	17.27
95% gamma percentile (KM)	28.54	99% gamma percentile (KM)	58.97
Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (5.87, α)	1.572	Adjusted Chi Square Value (5.87, β)	1.278
95% Gamma Approximate KM-UCL (use when n	>=21.36	95% Gamma Adjusted KM-UCL (use when n<50)	26.27
Lognormal GOF Test on Detected Observations Or	nly		
Shapiro Wilk Test Statistic	1	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance	e Level
Lilliefors Test Statistic	0.153	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance	e Level
Detected Data appear Lognormal at 5% Significance	ce Level		
Lognormal ROS Statistics Using Imputed Non-Dete	ects		
Mean in Original Scale	5.112	Mean in Log Scale	-1.803
SD in Original Scale	12.77	SD in Log Scale	3.344
95% t UCL (assumes normality of ROS data)	11.42	95% Percentile Bootstrap UCL	11.69
95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	15.26 74211	95% Bootstrap t UCL	41.08
	17211		
Statistics using KM estimates on Logged Data and	•	•	
KM Mean (logged)	0.66	KM Geo Mean	1.935
KM SD (logged)	1.192	95% Critical H Value (KM-Log)	3.192
KM Standard Error of Mean (logged)	0.382	95% H-UCL (KM -Log)	11.81
KM SD (logged) KM Standard Error of Mean (logged)	1.192 0.382	95% Critical H Value (KM-Log)	3.192
The oralidard Lifer of meall (logged)	0.002		
DL/2 Statistics			
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	5.377	Mean in Log Scale	0.18

SD in Original Scale 95% t UCL (Assumes normality)	12.65 11.63	SD in Log Scale 95% H-Stat UCL	1.529 20.95
DL/2 is not a recommended method, provide			20.95
Nonparametric Distribution Free UCL Statis			
Detected Data appear Normal Distributed at	5% Significance L	evel	
Suggested UCL to Use			
95% KM (t) UCL	12.58		
		rovided to help the user to select the most appropri	ate 95% UCL
Recommendations are based upon data siz			
		ulation studies summarized in Singh, Maichle, and sets; for additional insight the user may want to co	
МТВЕ			
General Statistics			
Total Number of Observations	13	Number of Distinct Observations	7
Number of Detects	6	Number of Non-Detects	7
Number of Distinct Detects	6	Number of Distinct Non-Detects	1
Minimum Detect	2.5	Minimum Non-Detect	1
Maximum Detect	2500	Maximum Non-Detect	1
Variance Detects	955467	Percent Non-Detects	53.85%
Mean Detects	630.1 102.5	SD Detects	977.5
Median Detects	192.5 1.875	CV Detects Kurtosis Detects	1.551 3.46
Skewness Detects Mean of Logged Detects	4.394	SD of Logged Detects	3.46 2.907
mount of Logged Delecto	7.004	02 01 209904 2010010	2.301
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.74	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance L	evel
Lilliefors Test Statistic	0.283	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance	e Level
Detected Data appear Approximate Normal	at 5% Significance	Level	
Kaplan-Meier (KM) Statistics using Normal	Critical Values and	other Nonparametric UCLs	
KM Mean	291.4	KM Standard Error of Mean	207.4
KM SD	682.5	95% KM (BCA) UCL	607.6
95% KM (t) UCL	661	95% KM (Percentile Bootstrap) UCL	630
95% KM (z) UCL	632.5	95% KM Bootstrap t UCL	2166
90% KM Chebyshev UCL	913.5	95% KM Chebyshev UCL	1195
97.5% KM Chebyshev UCL	1586	99% KM Chebyshev UCL	2355
Gamma GOF Tests on Detected Observation	ons Only		
A-D Test Statistic	0.276	Anderson-Darling GOF Test	
5% A-D Critical Value	0.762	Detected data appear Gamma Distributed at 5%	Significance
K-S Test Statistic	0.197	Kolmogorov-Smirnov GOF	-
5% K-S Critical Value	0.356	Detected data appear Gamma Distributed at 5%	Significance
Detected data appear Gamma Distributed a	t 5% Significance L	evel	
Gamma Statistics on Detected Data Only			
k hat (MLE)	0.331	k star (bias corrected MLE)	0.276
Theta hat (MLE)	1906	Theta star (bias corrected MLE)	2279
nu hat (MLE)	3.968	nu star (bias corrected)	3.317
Mean (detects)	630.1		
Gamma ROS Statistics using Imputed Non-	Detects		
GROS may not be used when data set has		any tied observations at multiple DLs	
GROS may not be used when kstar of deter	cts is small such as	<1.0, especially when the sample size is small (e.g	g., <15-20)
For such situations, GROS method may yie		of UCLs and BTVs	
This is especially true when the sample size			
		computed using gamma distribution on KM estima	
5	0.01	Mean	290.8
Minimum		Median	0.01
Minimum Maximum	2500		2.443
Minimum Maximum SD	2500 710.6	CV	
Minimum Maximum SD k hat (MLE)	2500 710.6 0.128	CV k star (bias corrected MLE)	0.15
Minimum Maximum SD k hat (MLE) Theta hat (MLE)	2500 710.6 0.128 2267	CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.15 1939
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	2500 710.6 0.128 2267 3.336	CV k star (bias corrected MLE)	0.15
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	2500 710.6 0.128 2267 3.336 0.0301	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.15 1939 3.899
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (3.90, α)	2500 710.6 0.128 2267 3.336 0.0301 0.682	CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.15 1939 3.899 0.519
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (3.90, α) 95% Gamma Approximate UCL (use when t	2500 710.6 0.128 2267 3.336 0.0301 0.682 n>=50) 1662	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (3.90, β)	0.15 1939 3.899
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (3.90, α) 95% Gamma Approximate UCL (use when i Estimates of Gamma Parameters using KM	2500 710.6 0.128 2267 3.336 0.0301 0.682 n>=50) 1662 Estimates	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (3.90, β) 95% Gamma Adjusted UCL (use when n<50)	0.15 1939 3.899 0.519 2185
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (3.90, α) 95% Gamma Approximate UCL (use when i Estimates of Gamma Parameters using KM Mean (KM)	2500 710.6 0.128 2267 3.336 0.0301 0.682 n>=50) 1662 Estimates 291.4	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (3.90, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM)	0.15 1939 3.899 0.519 2185 682.5
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (3.90, α) 95% Gamma Approximate UCL (use when in Estimates of Gamma Parameters using KM Mean (KM) Variance (KM)	2500 710.6 0.128 2267 3.336 0.0301 0.682 n>=50) 1662 Estimates 291.4 465854	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (3.90, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM)	0.15 1939 3.899 0.519 2185 682.5 207.4
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (3.90, α) 95% Gamma Approximate UCL (use when i Estimates of Gamma Parameters using KM Mean (KM) Variance (KM) k hat (KM)	2500 710.6 0.128 2267 3.336 0.0301 0.682 n>=50) 1662 Estimates 291.4 465854 0.182	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (3.90, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM)	0.15 1939 3.899 0.519 2185 682.5 207.4 0.191
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (3.90, α) 95% Gamma Approximate UCL (use when i Estimates of Gamma Parameters using KM Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	2500 710.6 0.128 2267 3.336 0.0301 0.682 n>=50) 1662 Estimates 291.4 465854 0.182 4.738	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (3.90, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	0.15 1939 3.899 0.519 2185 682.5 207.4 0.191 4.978
Minimum Maximum SD k hat (MLE) Theta hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (3.90, α) 95% Gamma Approximate UCL (use when i Estimates of Gamma Parameters using KM Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM)	2500 710.6 0.128 2267 3.336 0.0301 0.682 n>=50) 1662 Estimates 291.4 465854 0.182 4.738 1599	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (3.90, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM)	0.15 1939 3.899 0.519 2185 682.5 207.4 0.191 4.978 1522
Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (3.90, α) 95% Gamma Approximate UCL (use when i Estimates of Gamma Parameters using KM Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	2500 710.6 0.128 2267 3.336 0.0301 0.682 n>=50) 1662 Estimates 291.4 465854 0.182 4.738	CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (3.90, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	0.15 1939 3.899 0.519 2185 682.5 207.4 0.191 4.978

Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (4.98, α)	1.142	Adjusted Chi Square Value (4.98, β)	0.905
95% Gamma Approximate KM-UCL (use when n	>= 1270	95% Gamma Adjusted KM-UCL (use when n<50)) 1602
Lognormal GOF Test on Detected Observations O			
Shapiro Wilk Test Statistic	0.907	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significand	e Level
Lilliefors Test Statistic	0.198	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significant	e Level
Detected Data appear Lognormal at 5% Significant	ce Level		
Lognormal ROS Statistics Using Imputed Non-Dete	ects		
Mean in Original Scale	290.9	Mean in Log Scale	-0.474
SD in Original Scale	710.6	SD in Log Scale	5.49
95% t UCL (assumes normality of ROS data)	642.2	95% Percentile Bootstrap UCL	629.7
95% BCA Bootstrap UCL	906.6	95% Bootstrap t UCL	2264
95% H-UCL (Log ROS)	8.03E+14	•	
Statistics using KM estimates on Logged Data and			
KM Mean (logged)	2.028	KM Geo Mean	7.597
KM SD (logged)	2.837	95% Critical H Value (KM-Log)	6.592
KM Standard Error of Mean (logged)	0.862	95% H-UCL (KM -Log)	93858
KM SD (logged)	2.837	95% Critical H Value (KM-Log)	6.592
KM Standard Error of Mean (logged)	0.862		
DL/2 Statistics			
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	291.1	Mean in Log Scale	1.655
SD in Original Scale	710.5	SD in Log Scale	3.238
95% t UCL (Assumes normality)	642.3	95% H-Stat UCL	1064210
DL/2 is not a recommended method, provided for c		and historical reasons	
· · · · · · · · · · · · · · · · · · ·			

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use 95% KM (t) UCL

661

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCE

General Statistics			
Total Number of Observations	13	Number of Distinct Observations	12
Number of Detects	11	Number of Non-Detects	2
Number of Distinct Detects	11	Number of Distinct Non-Detects	1
Minimum Detect	1.9	Minimum Non-Detect	1
Maximum Detect	520	Maximum Non-Detect	1
Variance Detects	24207	Percent Non-Detects	15.38%
Mean Detects	94.52	SD Detects	155.6
Median Detects	19	CV Detects	1.646
Skewness Detects	2.383	Kurtosis Detects	6.219
Mean of Logged Detects	3.188	SD of Logged Detects	1.865
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.652	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.32	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.251	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level		-	
Kaplan-Meier (KM) Statistics using Normal Critical V	alues and o	ther Nonparametric UCLs	
KM Mean	80.13	KM Standard Error of Mean	40.89
KM SD	140.6	95% KM (BCA) UCL	151.5
95% KM (t) UCL	153	95% KM (Percentile Bootstrap) UCL	150.1
95% KM (z) UCL	147.4	95% KM Bootstrap t UCL	232.7
90% KM Chebyshev UCL	202.8	95% KM Chebyshev UCL	258.4
97.5% KM Chebyshev UCL	335.5	99% KM Chebyshev UCL	487
Camma COE Tests on Detected Observations Only			

0.267

Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.587

5% A-D Critical Value

5% K-S Critical Value

K-S Test Statistic

Anderson-Darling GOF Test

0.787 Detected data appear Gamma Distributed at 5% Significance Level

Kolmogorov-Smirnov GOF

0.27 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only
--

k hat (MLE)	0.471	k star (bias corrected MLE)	0.403
Theta hat (MLE)	200.6	Theta star (bias corrected MLE)	234.3
nu hat (MLE)	10.37	nu star (bias corrected)	8.874
Mean (detects)	94.52		

Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For some distributed detected data, PTVs and UC		computed using commo distribution on KM estimates			
Minimum	0.01	computed using gamma distribution on KM estimates Mean	79.98		
Maximum	520	Median	14		
SD	146.4	CV	1.83		
	0.29		0.274		
k hat (MLE)		k star (bias corrected MLE)			
Theta hat (MLE)	275.9	Theta star (bias corrected MLE)	291.6		
nu hat (MLE)	7.536	nu star (bias corrected)	7.131		
Adjusted Level of Significance (β)	0.0301				
Approximate Chi Square Value (7.13, α)	2.242	Adjusted Chi Square Value (7.13, β)	1.873		
95% Gamma Approximate UCL (use when n>=50)	254.3	95% Gamma Adjusted UCL (use when n<50)	304.5		
Estimates of Gamma Parameters using KM Estimat	es				
Mean (KM)	80.13	SD (KM)	140.6		
Variance (KM)	19759	SE of Mean (KM)	40.89		
k hat (KM)	0.325	k star (KM)	0.301		
nu hat (KM)	8.449	nu star (KM)	7.832		
theta hat (KM)	246.6	theta star (KM)	266		
80% gamma percentile (KM)	123	90% gamma percentile (KM)	236.2		
95% gamma percentile (KM)	366.1	99% gamma percentile (KM)	703.4		
	000.1	oo /o gamma percentile (run)	100.1		
Gamma Kaplan-Meier (KM) Statistics					
Approximate Chi Square Value (7.83, α)	2.638	Adjusted Chi Square Value (7.82, R)	2.229		
		Adjusted Chi Square Value (7.83, β)			
95% Gamma Approximate KM-UCL (use when n>	=237.9	95% Gamma Adjusted KM-UCL (use when n<5	0 281.6		
Lognormal GOF Test on Detected Observations On					
Shapiro Wilk Test Statistic	0.935	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Lognormal at 5% Significance	e Level		
Lilliefors Test Statistic	0.178	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.251	Detected Data appear Lognormal at 5% Significance Level			
Detected Data appear Lognormal at 5% Significanc	e Level				
Lognormal ROS Statistics Using Imputed Non-Dete	cts				
Mean in Original Scale	80.02	Mean in Log Scale	2.5		
SD in Original Scale	146.4	SD in Log Scale	2.4		
95% t UCL (assumes normality of ROS data)	152.4	95% Percentile Bootstrap UCL	149.1		
95% BCA Bootstrap UCL	188.2	95% Bootstrap t UCL	233.6		
95% H-UCL (Log ROS)	10997				
00/01/ 002 (20g 1000)					
Statistics using KM estimates on Logged Data and	Assumina I	oppormal Distribution			
KM Mean (logged)	2.698	KM Geo Mean	14.85		
KM SD (logged)	1.999		4.804		
		95% Critical H Value (KM-Log)			
KM Standard Error of Mean (logged)	0.582	95% H-UCL (KM -Log)	1753		
KM SD (logged)	1.999	95% Critical H Value (KM-Log)	4.804		
KM Standard Error of Mean (logged)	0.582				
DL/2 Statistics					
DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	80.05	Mean in Log Scale	2.591		
SD in Original Scale	146.4	SD in Log Scale	2.241		
95% t UCL (Assumes normality)	152.4	95% H-Stat UCL	5175		
DL/2 is not a recommended method, provided for co	omparisons	and historical reasons			
· · · · · · · · · · · · · · · · · · ·					
Nonparametric Distribution Free UCL Statistics					
Detected Data appear Gamma Distributed at 5% Si	onificance I	evel			
Beteeled Bala appear Canina Biothbaled at 670 of	grinioarioe E				
Suggested UCL to Use					
95% KM Bootstrap t UCL	265.7	95% Hall's Bootstrap	1753		
JU TANI DUDISILAPI LUCE	200.1	5570 Hall 5 Doutstrap	1755		
Note: Quagaptiona regarding the selection of a 05%	1101	muided to help the uper to calcut the most as a sub-			
		rovided to help the user to select the most appropriate	95% UCL.		
Recommendations are based upon data size, data			(0000)		
		ulation studies summarized in Singh, Maichle, and Lee			
However, simulations results will not cover all Real	vvorid data	sets; for additional insight the user may want to consu	it a statistician.		

TCE

13	Number of Distinct Observations	11
10	Number of Non-Detects	3

Number of Distinct Detects	10	Number of Distinct Non-Detects	1
Minimum Detect	2.2	Minimum Non-Detect	1
Maximum Detect	35	Maximum Non-Detect	1
Variance Detects	94.12	Percent Non-Detects	23.08%
Mean Detects	8.21	SD Detects	9.701
Median Detects	5.35	CV Detects	1.182
Skewness Detects	2.828	Kurtosis Detects	8.434
Mean of Logged Detects	1.749	SD of Logged Detects	0.79
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.592	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.372	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Leve	1		
Kaplan-Meier (KM) Statistics using Normal Critical			
KM Mean	6.546	KM Standard Error of Mean	2.521
KM SD	8.625	95% KM (BCA) UCL	11.37
95% KM (t) UCL	11.04	95% KM (Percentile Bootstrap) UCL	10.97
95% KM (z) UCL	10.69	95% KM Bootstrap t UCL	18.36
90% KM Chebyshev UCL	14.11	95% KM Chebyshev UCL	17.54
97.5% KM Chebyshev UCL	22.29	99% KM Chebyshev UCL	31.63
Gamma GOF Tests on Detected Observations Only		Anderson Dedian COF Test	
A-D Test Statistic	0.78	Anderson-Darling GOF Test	
5% A-D Critical Value	0.739	Detected Data Not Gamma Distributed at 5% Signifi	icance Level
K-S Test Statistic	0.255	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.271	Detected data appear Gamma Distributed at 5% Sig	inificance Level
Detected data follow Appr. Gamma Distribution at 8	% Significa	ince Level	
Gamma Statistics on Detected Data Only			
k hat (MLE)	1.55	k star (bias corrected MLE)	1.151
Theta hat (MLE)	5.298	Theta star (bias corrected MLE)	7.131
nu hat (MLE)	30.99	nu star (bias corrected)	23.03
Mean (detects)	8.21		23.03
(detects)	0.21		
For such situations, GROS method may yield incor This is especially true when the sample size is sma	rect values II.	<1.0, especially when the sample size is small (e.g., < of UCLs and BTVs computed using gamma distribution on KM estimates	10 20)
Minimum	0.01	Mean	
	0.01		6.318
Maximum	35	Median	6.318 3.7
Maximum SD	35 9.139	Median CV	3.7 1.447
Maximum SD k hat (MLE)	35 9.139 0.419	Median CV k star (bias corrected MLE)	3.7 1.447 0.373
Maximum SD k hat (MLE) Theta hat (MLE)	35 9.139	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	3.7 1.447 0.373 16.92
Maximum SD k hat (MLE)	35 9.139 0.419 15.09 10.88	Median CV k star (bias corrected MLE)	3.7 1.447 0.373
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	35 9.139 0.419 15.09	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	3.7 1.447 0.373 16.92
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	35 9.139 0.419 15.09 10.88 0.0301	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	3.7 1.447 0.373 16.92 9.705
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α)	35 9.139 0.419 15.09 10.88 0.0301 3.758	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β)	3.7 1.447 0.373 16.92 9.705 3.249
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β)	3.7 1.447 0.373 16.92 9.705 3.249
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value ($9.71, \alpha$) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (12.85, α)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value ($9.71, \alpha$) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (12.85, α)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 5.795	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (12.85, α) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Or	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 55.795	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM)	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (12.85, α) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Of Shapiro Wilk Test Statistic	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 5.795 5.795	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) SE of Mean Adjusted KM-UCL (use when n<50) Shapiro Wilk GOF Test	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estimat Mean (KM) Variance (KM) k hat (KM) nu hat (KM) 80% gamma percentile (KM) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Or Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 5.795 5.795 5.14.52	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) 90% gamma percentile (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 95% Gamma Adjusted KM-UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39 e Level
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (12.85, α) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Of Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 55.795 55.795 55.795 0.842 0.905 0.842 0.19 0.262	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) 10% gamma percentile (KM) 90% gamma percentile (KM) 90% gamma percentile (KM) 93% gamma percentile (KM) SS Gamma Adjusted KM-UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lilliefors GOF Test	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39 e Level
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Of Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognormal at 5% Significand Lognormal ROS Statistics Using Imputed Non-Dete	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 5.795 5.795 5.795 5.795 5.795 5.795 co.14.52	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 95% Gamma Adjusted KM-UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39 e Level e Level
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estimate Mean (KM) Variance (KM) k hat (KM) nu hat (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Or Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Critical Value Detected Data appear Lognormal at 5% Significance Lognormal ROS Statistics Using Imputed Non-Dete Mean in Original Scale	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 55(14.52 0.905 0.842 0.19 0.262 te Level ccts 6.525	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 95% Gamma Adjusted KM-UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39 e Level 1.313
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Or Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Critical Value Detected Data appear Lognormal at 5% Significance Mean in Original Scale SD in Original Scale	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 55.795 55.795 55.795 5.795 5.795 0.842 0.905 0.842 0.19 0.262 ce Level ects 6.525 8.992	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 95% Gamma Adjusted KM-UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Mean in Log Scale SD in Log Scale	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39 e Level e Level 1.313 1.085
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (12.85, α) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Or Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognormal at 5% Significance Lognormal ROS Statistics Using Imputed Non-Detected Mean in Original Scale 95% t UCL (assumes normality of ROS data)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 5.795 5.795 5.795 5.795 5.795 5.795 0.842 0.905 0.90	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) 100% gamma percentile (KM) 90% gamma percentile (KM) 90% gamma percentile (KM) 90% gamma percentile (KM) 90% gamma percentile (KM) SE of Mean (KM) Adjusted Chi Square Value (12.85, β) 95% Gamma Adjusted KM-UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance SD in Log Scale 95% Percentile Bootstrap UCL	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39 e Level e Level 1.313 1.085 10.87
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) nu hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (12.85, α) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Or Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Critical Value Detected Data appear Lognormal at 5% Significand Lognormal ROS Statistics Using Imputed Non-Dete Mean in Original Scale SD in Original Scale SD in Original Scale	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.79	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) theta star (KM) 90% gamma percentile (KM) 99% gamma percentile (KM) 99% gamma percentile (KM) 95% Gamma Adjusted KM-UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Mean in Log Scale SD in Log Scale	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39 e Level e Level 1.313 1.085
Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (9.71, α) 95% Gamma Approximate UCL (use when n>=50) Estimates of Gamma Parameters using KM Estima Mean (KM) Variance (KM) k hat (KM) nu hat (KM) theta hat (KM) 80% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) 95% gamma percentile (KM) Gamma Kaplan-Meier (KM) Statistics Approximate Chi Square Value (12.85, α) 95% Gamma Approximate KM-UCL (use when n>= Lognormal GOF Test on Detected Observations Or Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognormal at 5% Significance Lognormal ROS Statistics Using Imputed Non-Detected Mean in Original Scale 95% t UCL (assumes normality of ROS data)	35 9.139 0.419 15.09 10.88 0.0301 3.758 16.31 tes 6.546 74.39 0.576 14.98 11.36 10.75 25.25 5.795 5.795 5.795 5.795 5.795 5.795 5.795 0.842 0.905 0.90	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Adjusted Chi Square Value (9.71, β) 95% Gamma Adjusted UCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM) 100% gamma percentile (KM) 90% gamma percentile (KM) 90% gamma percentile (KM) 90% gamma percentile (KM) 90% gamma percentile (KM) SE of Mean (KM) Adjusted Chi Square Value (12.85, β) 95% Gamma Adjusted KM-UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance SD in Log Scale 95% Percentile Bootstrap UCL	3.7 1.447 0.373 16.92 9.705 3.249 18.87 8.625 2.521 0.494 12.85 13.24 17.75 43.7 5.135 16.39 e Level e Level 1.313 1.085 10.87

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.346	KM Geo Mean	3.84
KM SD (logged)	0.987	95% Critical H Value (KM-Log)	2.826
KM Standard Error of Mean (logged)	0.289	95% H-UCL (KM -Log)	13.99
KM SD (logged)	0.987	95% Critical H Value (KM-Log)	2.826
KM Standard Error of Mean (logged)	0.289		
DL/2 Statistics			
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	6.431	Mean in Log Scale	1.186
SD in Original Scale	9.056	SD in Log Scale	1.271
95% t UCL (Assumes normality)	10.91	95% H-Stat UCL	24.98
DL/2 is not a recommended method, provided for co	mparisons	and historical reasons	

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use			
95% KM Adjusted Gamma UCL	16.39	95% GROS Adjusted Gamma UCL	18.87

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

vc

nu hat (MLE)

General Statistics			
Total Number of Observations	13	Number of Distinct Observations	5
Number of Detects	4	Number of Non-Detects	9
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	1.9	Minimum Non-Detect	1
Maximum Detect	11	Maximum Non-Detect	1
Variance Detects	17.84	Percent Non-Detects	69.23%
Mean Detects	4.95	SD Detects	4.224
Median Detects	3.45	CV Detects	0.853
Skewness Detects	1.524	Kurtosis Detects	2.031
Mean of Logged Detects	1.344	SD of Logged Detects	0.807
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.832	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Normal at 5% Signific	ance Level
Lilliefors Test Statistic	0.274	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Detected Data appear Normal at 5% Signific	ance Level
Detected Data appear Normal at 5% Signific	ance Level		
Kaplan-Meier (KM) Statistics using Normal C	Critical Values and	other Nonparametric UCLs	
KM Mean	2.215	KM Standard Error of Mean	0.874
KM SD	2.728	95% KM (BCA) UCL	N/A
95% KM (t) UCL	3.772	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	3.652	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	4.836	95% KM Chebyshev UCL	6.023
97.5% KM Chebyshev UCL	7.671	99% KM Chebyshev UCL	10.91
Gamma GOF Tests on Detected Observation			
A-D Test Statistic	0.377	Anderson-Darling GOF Test	
5% A-D Critical Value	0.66	Detected data appear Gamma Distributed at	5% Significance Level
K-S Test Statistic	0.286	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.398	Detected data appear Gamma Distributed at	5% Significance Level
Detected data appear Gamma Distributed at	5% Significance	Level	
Gamma Statistics on Detected Data Only			
k hat (MLE)	2.109	k star (bias corrected MLE)	0.694
Theta hat (MLE)	2.347	Theta star (bias corrected MLE)	7.134
nu hat (MLE)	16.87	nu star (bias corrected)	5.551
Mean (detects)	4.95		
Commo DOC Statistics using Imputed Non F	Datasta		
Gamma ROS Statistics using Imputed Non-E		any find charge stigns at multiple DLs	
GROS may not be used when data set has >			(
		s <1.0, especially when the sample size is small	(e.g., <15-20)
For such situations, GROS method may yield		OF OCLS and BTVS	
This is especially true when the sample size		a computed using gamma distribution on KM act	imataa
Minimum	and UCLS may be 0.01	e computed using gamma distribution on KM est Mean	
Minimum Maximum	0.01	Median	1.53
SD		CV	0.01
	3.177		2.076
k hat (MLE)	0.226 6.781	k star (bias corrected MLE)	0.225 6.804
Theta hat (MLE)	6.781 5.867	Theta star (bias corrected MLE)	6.804 5.846
nu nat (MLE)	5 Xh/	nu star (blas corrected)	5 X46

5.846

nu star (bias corrected)

5.867

Adjusted Level of Significance (β) Approximate Chi Square Value (5.85, α)	0.0301 1.562	Adjusted Chi Square Value (5.85, β)	1.269
95% Gamma Approximate UCL (use when n>=50)	5.727	95% Gamma Adjusted UCL (use when n<50)	N/A
Estimates of Gamma Parameters using KM Estimat	es		
Mean (KM)	2.215	SD (KM)	2.728
Variance (KM)	7.441	SE of Mean (KM)	0.874
k hat (KM)	0.66	k star (KM)	0.559
nu hat (KM)	17.15	nu star (KM)	14.52
theta hat (KM)	3.359	theta star (KM)	3.966
80% gamma percentile (KM)	3.65	90% gamma percentile (KM)	5.854
95% gamma percentile (KM)	8.179	99% gamma percentile (KM)	13.84
Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (14.52, α)	6.932	Adjusted Chi Square Value (14.52, β)	6.199
95% Gamma Approximate KM-UCL (use when n>	=4.642	95% Gamma Adjusted KM-UCL (use when n<50)	5.191
Lognormal GOF Test on Detected Observations On	ly		
Shapiro Wilk Test Statistic	0.911	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance	e Level
Lilliefors Test Statistic	0.254	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance	e Level
Detected Data appear Lognormal at 5% Significanc	e Level		
Lognormal ROS Statistics Using Imputed Non-Dete			
Mean in Original Scale	1.694	Mean in Log Scale	-0.953
SD in Original Scale	3.099	SD in Log Scale	1.945
95% t UCL (assumes normality of ROS data)	3.226	95% Percentile Bootstrap UCL	3.188
95% BCA Bootstrap UCL	3.918	95% Bootstrap t UCL	6.771
95% H-UCL (Log ROS)	35.15		
Statistics using KM estimates on Logged Data and	0	0	
KM Mean (logged)	0.414	KM Geo Mean	1.512
KM SD (logged)	0.731	95% Critical H Value (KM-Log)	2.416
KM Standard Error of Mean (logged)	0.234	95% H-UCL (KM -Log)	3.291
KM SD (logged)	0.731	95% Critical H Value (KM-Log)	2.416
KM Standard Error of Mean (logged)	0.234		
DL/2 Statistics			
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.869	Mean in Log Scale	-0.0664
SD in Original Scale	3.005	SD in Log Scale	1.059
95% t UCL (Assumes normality)	3.355	95% H-Stat UCL	4.036
DL/2 is not a recommended method, provided for co	omparisons	and historical reasons	

Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use 95% KM (t) UCL

3.772

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Appendix F

Milestone Schedule Gantt Chart

	Time to Accomplish Task (Months from Acceptance by EPD)									
TASK	0-6	6 - 12	12 - 18	18 - 24	24 - 30	30 - 36	36 - 42	42 - 48	48 - 54	54 - 60
Abandon 13 Monitor Wells										
Horizontal Delineation of Release Site - COMPLETED										
Horizontal Delineation of Release Off Site- COMPLETED										
Update CSM - COMPLETED										
Submit Compliance Status Reoprt (CSR) - COMPLETED										

Milestone Schedule Gantt Chart

Appendix G

Laboratory Analytical Results – Surface Water Sample

ANALYTICAL REPORT May 12, 2017

L906951 05/04/2017

15513 FOSC

Marion Environmental Inc.

Sample Delivery Group:	
Samples Received:	
Project Number:	
Description:	

Report To:

Steve Wild 115 Parmenas Lane Chattanooga, TN 37405

Entire Report Reviewed By: Chu, form

Chris McCord Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Mount Juliet. TN 37122 12065 Lebanon Rd 615-758-5858 800-767-5859 www.esclabsciences.com

TABLE OF CONTENTS

ONE	LAB.	NATIONWIDE.
-----	------	-------------

*

Ср

Ss

Ċn

Sr

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SW-01 L906951-01	5
Qc: Quality Control Summary	7
Volatile Organic Compounds (GC/MS) by Method 8260B	7
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Chain of Custody	13

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

SW-01 L906951-01 GW			Collected by J Barrett	Collected date/time 05/03/17 09:30	Received date/time 05/04/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG977676	1	05/09/17 02:22	05/09/17 02:22	BMB

² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

¥

Ср

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Technical Service Representative

SAMPLE RESULTS - 01

畿

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result mg/l	Qualifier	RDL mg/l	Dilution	Analysis date / time	Batch	
Acetone	ND	<u>J4</u>	0.0500	1	05/09/2017 02:22	WG977676	2
Acrolein	ND	J4	0.0500	1	05/09/2017 02:22	WG977676	
Acrylonitrile	ND	_	0.0100	1	05/09/2017 02:22	WG977676	3
Benzene	ND		0.00100	1	05/09/2017 02:22	WG977676	
Bromobenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	
Bromodichloromethane	ND		0.00100	1	05/09/2017 02:22	WG977676	4
Bromoform	ND		0.00100	1	05/09/2017 02:22	WG977676	
Bromomethane	ND		0.00500	1	05/09/2017 02:22	WG977676	5
n-Butylbenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	
•							
sec-Butylbenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	e
ert-Butylbenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	
Carbon tetrachloride	ND		0.00100	1	05/09/2017 02:22	<u>WG977676</u>	
Chlorobenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	/
Chlorodibromomethane	ND		0.00100	1	05/09/2017 02:22	WG977676	
Chloroethane	ND		0.00500	1	05/09/2017 02:22	<u>WG977676</u>	8
Chloroform	ND		0.00500	1	05/09/2017 02:22	WG977676	
Chloromethane	ND		0.00250	1	05/09/2017 02:22	WG977676	L
2-Chlorotoluene	ND		0.00100	1	05/09/2017 02:22	WG977676	9
l-Chlorotoluene	ND		0.00100	1	05/09/2017 02:22	WG977676	
,2-Dibromo-3-Chloropropane	ND		0.00500	1	05/09/2017 02:22	WG977676	
,2-Dibromoethane	ND		0.00100	1	05/09/2017 02:22	WG977676	
Dibromomethane	ND		0.00100	1	05/09/2017 02:22	WG977676	
,2-Dichlorobenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	
	ND		0.00100				
,3-Dichlorobenzene				1	05/09/2017 02:22	WG977676	
4-Dichlorobenzene	ND	10	0.00100	1	05/09/2017 02:22	WG977676	
Dichlorodifluoromethane	ND	<u>J3</u>	0.00500	1	05/09/2017 02:22	<u>WG977676</u>	
,1-Dichloroethane	ND		0.00100	1	05/09/2017 02:22	WG977676	
,2-Dichloroethane	ND		0.00100	1	05/09/2017 02:22	WG977676	
,1-Dichloroethene	ND		0.00100	1	05/09/2017 02:22	WG977676	
is-1,2-Dichloroethene	ND		0.00100	1	05/09/2017 02:22	WG977676	
rans-1,2-Dichloroethene	ND		0.00100	1	05/09/2017 02:22	WG977676	
,2-Dichloropropane	ND		0.00100	1	05/09/2017 02:22	WG977676	
,1-Dichloropropene	ND		0.00100	1	05/09/2017 02:22	WG977676	
,3-Dichloropropane	ND		0.00100	1	05/09/2017 02:22	WG977676	
sis-1,3-Dichloropropene	ND		0.00100	1	05/09/2017 02:22	WG977676	
rans-1,3-Dichloropropene	ND		0.00100	1	05/09/2017 02:22	WG977676	
2,2-Dichloropropane	ND	<u>J3</u>	0.00100	1	05/09/2017 02:22	WG977676	
)i-isopropyl ether	ND	30	0.00100	1	05/09/2017 02:22	WG977676	
Ethylbenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	
lexachloro-1,3-butadiene	ND		0.00100	1	05/09/2017 02:22	WG977676	
sopropylbenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	
-Isopropyltoluene	ND		0.00100	1	05/09/2017 02:22	<u>WG977676</u>	
P-Butanone (MEK)	ND		0.0100	1	05/09/2017 02:22	<u>WG977676</u>	
lethylene Chloride	ND		0.00500	1	05/09/2017 02:22	WG977676	
-Methyl-2-pentanone (MIBK)	ND		0.0100	1	05/09/2017 02:22	<u>WG977676</u>	
lethyl tert-butyl ether	ND		0.00100	1	05/09/2017 02:22	WG977676	
laphthalene	ND		0.00500	1	05/09/2017 02:22	WG977676	
-Propylbenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	
tyrene	ND		0.00100	1	05/09/2017 02:22	WG977676	
1,1,2-Tetrachloroethane	ND		0.00100	1	05/09/2017 02:22	WG977676	
1,2,2-Tetrachloroethane	ND		0.00100	1	05/09/2017 02:22	WG977676	
1,2-Trichlorotrifluoroethane	ND		0.00100	1	05/09/2017 02:22	WG977676	
etrachloroethene	ND		0.00100	1	05/09/2017 02:22	WG977676	
	ND		0.00100	1			
oluene					05/09/2017 02:22	WG977676	
,2,3-Trichlorobenzene	ND ND		0.00100	1	05/09/2017 02:22	WG977676	
,2,4-Trichlorobenzene				1	05/09/2017 02:22	WG977676	

Marion Environmental Inc.

PROJECT: 15513 SDG: L906951

DATE/TIME: 05/12/17 10:31

PAGE: 5 of 14

SAMPLE RESULTS - 01

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	mg/l		mg/l		date / time		
1,1,1-Trichloroethane	ND		0.00100	1	05/09/2017 02:22	WG977676	² Tc
1,1,2-Trichloroethane	ND		0.00100	1	05/09/2017 02:22	WG977676	10
Trichloroethene	ND		0.00100	1	05/09/2017 02:22	<u>WG977676</u>	3
Trichlorofluoromethane	ND	<u>J3</u>	0.00500	1	05/09/2017 02:22	WG977676	³ Ss
1,2,3-Trichloropropane	ND		0.00250	1	05/09/2017 02:22	<u>WG977676</u>	
1,2,4-Trimethylbenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	⁴ Cr
1,2,3-Trimethylbenzene	ND		0.00100	1	05/09/2017 02:22	<u>WG977676</u>	Ci
1,3,5-Trimethylbenzene	ND		0.00100	1	05/09/2017 02:22	WG977676	5
Vinyl chloride	ND		0.00100	1	05/09/2017 02:22	<u>WG977676</u>	⁵ Sr
Xylenes, Total	ND		0.00300	1	05/09/2017 02:22	<u>WG977676</u>	
(S) Toluene-d8	99.6		80.0-120		05/09/2017 02:22	<u>WG977676</u>	⁶ Qo
(S) Dibromofluoromethane	93.9		76.0-123		05/09/2017 02:22	<u>WG977676</u>	G
(S) 4-Bromofluorobenzene	113		80.0-120		05/09/2017 02:22	<u>WG977676</u>	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3217457-2 05/08/17	21:47			
. ,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Acrolein	U		0.00887	0.0500
Acrylonitrile	U		0.00187	0.0100
Benzene	U		0.000331	0.00100
	U		0.000352	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
	U		0.000866	0.00500
	U		0.000361	0.00100
,	U		0.000365	0.00100
	U		0.000399	0.00100
	U		0.000379	0.00100
	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
	U		0.000324	0.00500
	U		0.000276	0.00250
	U		0.000375	0.00100
4-Chlorotoluene	U		0.000351	0.00100
1,2-Dibromo-3-Chloropropane	U		0.00133	0.00500
	U		0.000381	0.00100
Dibromomethane	U		0.000346	0.00100
1,2-Dichlorobenzene	U		0.000349	0.00100
1,3-Dichlorobenzene	U		0.000220	0.00100
1,4-Dichlorobenzene	U		0.000274	0.00100
Dichlorodifluoromethane	U		0.000551	0.00500
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	0.000989	Ţ	0.000260	0.00100
trans-1,2-Dichloroethene	U	_	0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
	U		0.000352	0.00100
1,3-Dichloropropane	U		0.000366	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
2,2-Dichloropropane	U		0.000321	0.00100
	11		0.000320	0.00100
Di-isopropyl ether	U			
	U		0.000384	0.00100

ACCOUNT: Marion Environmental Inc. PROJECT: 15513 SDG: L906951 DATE/TIME: 05/12/17 10:31

PAGE: 7 of 14

WG977676

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L906951-01

ONE LAB. NATIONWIDE.

Гс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3217457-2 05/08/1	7 21:47				
	MB Result	MB Qualifier	MB MDL	IB RDL	
Analyte	mg/l		mg/l	ıg/l	
Isopropylbenzene	U		0.000326	.00100	
p-Isopropyltoluene	U		0.000350	.00100	
2-Butanone (MEK)	U		0.00393	.0100	
Methylene Chloride	U		0.00100	.00500	
4-Methyl-2-pentanone (MIBK)	U		0.00214	.0100	
Methyl tert-butyl ether	U		0.000367	.00100	
Naphthalene	U		0.00100	.00500	
n-Propylbenzene	U		0.000349	.00100	
Styrene	U		0.000307	.00100	
1,1,1,2-Tetrachloroethane	U		0.000385	.00100	
1,1,2,2-Tetrachloroethane	U		0.000130	.00100	
Tetrachloroethene	U		0.000372	.00100	
Toluene	U		0.000412	.00100	
1,1,2-Trichlorotrifluoroethane	U		0.000303	.00100	
1,2,3-Trichlorobenzene	U		0.000230	.00100	
1,2,4-Trichlorobenzene	U		0.000355	.00100	
1,1,1-Trichloroethane	U		0.000319	.00100	
1,1,2-Trichloroethane	U		0.000383	.00100	
Trichloroethene	U		0.000398	.00100	
Trichlorofluoromethane	U		0.00120	.00500	
1,2,3-Trichloropropane	U		0.000807	.00250	
1,2,3-Trimethylbenzene	U		0.000321	.00100	
1,2,4-Trimethylbenzene	U		0.000373	.00100	
1,3,5-Trimethylbenzene	U		0.000387	.00100	
Vinyl chloride	U		0.000259	.00100	
Xylenes, Total	U		0.00106	.00300	
(S) Toluene-d8	103			0.0-120	
(S) Dibromofluoromethane	93.2			5.0-123	
(S) 4-Bromofluorobenzene	107			0.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.191	0.223	153	178	10.0-160		<u>J4</u>	15.1	23
Acrolein	0.125	0.571	0.513	457	411	10.0-160	<u>E J4</u>	<u>E J4</u>	10.6	20
Acrylonitrile	0.125	0.101	0.0969	80.7	77.5	60.0-142			4.04	20
Benzene	0.0250	0.0199	0.0210	79.7	84.1	69.0-123			5.40	20

ACCOUNT:	PROJECT:
Marion Environmental Inc.	15513

SDG: L906951 05/12/17 10:31

DATE/TIME:

PAGE: 8 of 14

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

// CS) P3217457.1 05/08/17 20:55 · // CSD) P3217457.3 05/08/17 22:04

(LCS) R3217457-1 05/08/17											
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Bromobenzene	0.0250	0.0221	0.0237	88.5	94.6	79.0-120			6.72	20	
Bromodichloromethane	0.0250	0.0210	0.0212	84.2	84.7	76.0-120			0.570	20	
Bromoform	0.0250	0.0251	0.0257	100	103	67.0-132			2.43	20	
Bromomethane	0.0250	0.0254	0.0264	102	106	18.0-160			3.74	20	
n-Butylbenzene	0.0250	0.0221	0.0252	88.5	101	72.0-126			12.9	20	
sec-Butylbenzene	0.0250	0.0246	0.0267	98.6	107	74.0-121			8.06	20	
tert-Butylbenzene	0.0250	0.0254	0.0273	102	109	75.0-122			7.13	20	
Carbon tetrachloride	0.0250	0.0210	0.0218	84.1	87.3	63.0-122			3.70	20	
Chlorobenzene	0.0250	0.0255	0.0269	102	108	79.0-121			5.45	20	
Chlorodibromomethane	0.0250	0.0233	0.0249	93.1	99.8	75.0-125			6.85	20	
Chloroethane	0.0250	0.0201	0.0211	80.4	84.5	47.0-152			4.97	20	
Chloroform	0.0250	0.0204	0.0221	81.7	88.4	72.0-121			7.89	20	
Chloromethane	0.0250	0.0214	0.0222	85.6	88.6	48.0-139			3.47	20	
2-Chlorotoluene	0.0250	0.0246	0.0259	98.3	104	74.0-122			5.32	20	
4-Chlorotoluene	0.0250	0.0241	0.0260	96.3	104	79.0-120			7.57	20	
1,2-Dibromo-3-Chloropropane	0.0250	0.0200	0.0200	80.1	79.9	64.0-127			0.250	20	
1,2-Dibromoethane	0.0250	0.0247	0.0251	98.9	100	77.0-123			1.37	20	
Dibromomethane	0.0250	0.0227	0.0225	90.9	90.2	78.0-120			0.830	20	
1,2-Dichlorobenzene	0.0250	0.0235	0.0245	93.8	98.0	80.0-120			4.33	20	
1,3-Dichlorobenzene	0.0250	0.0258	0.0277	103	111	72.0-123			7.08	20	
1,4-Dichlorobenzene	0.0250	0.0227	0.0247	91.0	98.6	77.0-120			8.07	20	
Dichlorodifluoromethane	0.0250	0.0207	0.0297	82.8	119	49.0-155		<u>J3</u>	35.6	20	
1,1-Dichloroethane	0.0250	0.0196	0.0204	78.4	81.5	70.0-126			3.81	20	
1,2-Dichloroethane	0.0250	0.0203	0.0201	81.3	80.2	67.0-126			1.27	20	
1,1-Dichloroethene	0.0250	0.0201	0.0210	80.5	84.0	64.0-129			4.29	20	
cis-1,2-Dichloroethene	0.0250	0.0222	0.0226	89.0	90.3	73.0-120			1.49	20	
trans-1,2-Dichloroethene	0.0250	0.0204	0.0208	81.4	83.0	71.0-121			1.93	20	
1,2-Dichloropropane	0.0250	0.0215	0.0212	86.0	84.8	75.0-125			1.39	20	
1,1-Dichloropropene	0.0250	0.0205	0.0214	81.9	85.8	71.0-129			4.57	20	
1,3-Dichloropropane	0.0250	0.0246	0.0253	98.2	101	80.0-121			3.08	20	
cis-1,3-Dichloropropene	0.0250	0.0209	0.0217	83.6	86.7	79.0-123			3.63	20	
trans-1,3-Dichloropropene	0.0250	0.0213	0.0220	85.4	88.1	74.0-127			3.20	20	
2,2-Dichloropropane	0.0250	0.0170	0.0215	68.0	86.2	60.0-125		<u>J3</u>	23.5	20	
Di-isopropyl ether	0.0250	0.0179	0.0179	71.6	71.4	59.0-133			0.200	20	
Ethylbenzene	0.0250	0.0258	0.0277	103	111	77.0-120			7.12	20	
Hexachloro-1,3-butadiene	0.0250	0.0227	0.0257	90.9	103	64.0-131			12.1	20	
Isopropylbenzene	0.0250	0.0236	0.0257	94.4	103	75.0-120			8.42	20	
p-Isopropyltoluene	0.0250	0.0259	0.0282	104	113	74.0-126			8.48	20	
2-Butanone (MEK)	0.125	0.136	0.153	109	122	37.0-158			12.0	20	
Methylene Chloride	0.0250	0.0210	0.0207	84.0	82.9	66.0-121			1.33	20	
A	CCOUNT:			PR	OJECT:		SDG:			DATE/TIME: PAG	GE:
Marion E	nvironmental Inc.			1	15513		L9069	51		05/12/17 10:31 9 of	of 14

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	0.125	0.118	0.113	94.5	90.3	59.0-143			4.55	20	
Methyl tert-butyl ether	0.0250	0.0202	0.0205	81.0	82.1	64.0-123			1.42	20	
Naphthalene	0.0250	0.0178	0.0174	71.4	69.6	62.0-128			2.54	20	
n-Propylbenzene	0.0250	0.0247	0.0265	98.7	106	79.0-120			7.14	20	
Styrene	0.0250	0.0247	0.0261	98.8	104	78.0-124			5.60	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0248	0.0262	99.0	105	75.0-122			5.60	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0246	0.0268	98.5	107	71.0-122			8.54	20	
Tetrachloroethene	0.0250	0.0291	0.0309	116	124	70.0-127			6.07	20	
Toluene	0.0250	0.0221	0.0227	88.3	90.7	77.0-120			2.69	20	
1,1,2-Trichlorotrifluoroethane	0.0250	0.0236	0.0252	94.5	101	61.0-136			6.45	20	
1,2,3-Trichlorobenzene	0.0250	0.0214	0.0213	85.6	85.3	61.0-133			0.340	20	
1,2,4-Trichlorobenzene	0.0250	0.0187	0.0198	74.8	79.3	69.0-129			5.96	20	
1,1,1-Trichloroethane	0.0250	0.0204	0.0215	81.7	86.0	68.0-122			5.13	20	
1,1,2-Trichloroethane	0.0250	0.0261	0.0278	104	111	78.0-120			6.40	20	
Trichloroethene	0.0250	0.0270	0.0249	108	99.6	78.0-120			8.07	20	
Trichlorofluoromethane	0.0250	0.0188	0.0246	75.4	98.6	56.0-137		<u>J3</u>	26.7	20	
1,2,3-Trichloropropane	0.0250	0.0260	0.0267	104	107	72.0-124			2.83	20	
1,2,3-Trimethylbenzene	0.0250	0.0216	0.0232	86.5	92.7	75.0-120			6.86	20	
1,2,4-Trimethylbenzene	0.0250	0.0241	0.0255	96.4	102	75.0-120			5.61	20	
1,3,5-Trimethylbenzene	0.0250	0.0246	0.0261	98.2	105	75.0-120			6.19	20	
Vinyl chloride	0.0250	0.0220	0.0242	87.9	97.0	64.0-133			9.80	20	
Xylenes, Total	0.0750	0.0735	0.0793	98.0	106	77.0-120			7.59	20	
(S) Toluene-d8				102	102	80.0-120					
(S) Dibromofluoromethane				90.9	92.8	76.0-123					
(S) 4-Bromofluorobenzene				104	107	80.0-120					

ACCOUNT: Marion Environmental Inc. PROJECT: 15513 SDG: L906951 DATE/TIME: 05/12/17 10:31 PAGE: 10 of 14

GLOSSARY OF TERMS

₩

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
ouisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{r/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:						
Marion Environmental Inc.						

Company Name/Address: Marion Environmental Inc.			Billing Information:			Analysis/Container/Preservative					Chain of Custody Page of		
115 Parmenas Lane Chattanooga, TN 37405			Sue Hartline 115 Parmenas Lane Chattanooga,TN 37405									E-A-B S-C-I-E-N-C-E-S	
Report to: STEVELHILD	worth "	Em	ail to:		184							12065 Lebs Mt. Juliet,	
Project FUSC	Feli	1	City/Sate STANDY SPRWGS Collected GA			0			Phone: (800) 767-5859 Phone: (615) 758-5858				
Phone: (423) 499-4919 Client Project #: FAX: (423) 892-5122 Client Project #:			ESC Key:			226			Fax: (615) 758-5859 B125				
Collected by: (print) 38484575			P.O.#:			5					DI	25	
Collected by (signature): Rush? (Lab MUS) Same Day Next Day.		ab MUST Be ame Day ext Day	200% No.		1					CoCode MARENV (lab use only) Template/Prelogin			
Packed on Ice N Y		Two Day		.50% FAX?NoYes		of Cntrs	0				Shipped Via:		
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time		-					Remarks/Contaminant	Sample # (lab only)
54-01	G	OT		53/17	0330	2	×	d	r - 11			15.94	-01
100 C			and the second	1	1.1	13							
		190	and the second	1		177							
1 + 6.00m				191	ja la				-				The Barton
10 M		dr.	12.2		1								
		-				-							
					- 4								
Matrix: SS - SolVSolid GW - Groun	dwater WW - V	 WasteWater [a Water OT	Other SU	RE	ACIS V	HA	TEK.		pH	Tem	
Remarks:				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		13.	,				Flow	Tenŋ Othe	
telinquished by (Signature)	Date:	17 1723	Recei	ved by: (Sign	ature)			San	nples retur	ned via:	LIPS	Condition	(lab use only) [L
elinguished by: (Signature)	S IS Date:			ved by: (Sign	ature) 6679	240	13	Ten		1910 -	s Received	t CoC Seals Intact	
elinquished by: (Signature)	Date:	Time:	Rece	the second second side of the second s	y: (Signature)	- 1	mo	Dat		Time:	UN	pH Checked:	NCF:

ESC LAB SCI			
Cooler Receip			
Client: MASENU	SDG#	190	06951
Cooler Received/Opened On: 5/1/17	Temperature:	19	1.1
Received By: Marina Malone			
Signature: Marina Malone			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	1 ST 1 ST 1 ST 1	/	
COC Signed / Accurate?	In the state of the second of	1	(BACK)
Bottles arrive intact?		/	
Correct bottles used?	and the state of the state of the	1	122.00
Sufficient volume sent?		1	
If Applicable			ALC: NO.
VOA Zero headspace?			
Preservation Correct / Checked?			Sullar, sould

Appendix H

2013 Limited Subsurface Investigation Report

LIMITED SUBSURFACE INVESTIGATION

of

Shoppes at Fountain Oaks 4920 Roswell Road, NE Atlanta, Fulton County, Georgia 37347

Prepared for:

AmREIT 8 Greenway Plaza, Suite 1000 Houston, Texas 77046

Prepared by:

Property Solutions Incorporated 1270 Winchester Parkway, Suite 202 Smyrna, Georgia 30080

June 6, 2013

Property Solutions Project No. 2031813

LIMITED SUBSURFACE INVESTIGATION

of

Shoppes at Fountain Oaks 4920 Roswell Road, NE Atlanta, Fulton County, Georgia 30342

Prepared for:

AmREIT 8 Greenway Plaza, Suite 1000 Houston, Texas 77046

Prepared by:

Property Solutions Incorporated 1270 Winchester Parkway, Suite 202 Smyrna, Georgia, 30080

Dated: June 6, 2013

Property Solutions Project No. 2031813

For:

Thomas Lawrence, PG Environmental Consultant

Brant Teets Senior Project Manager

For:

Kevin J. Billings, P.E. Senior Vice President

TABLE OF CONTENTS

SECTION

EXECUTIVE SUMMARY

1.0 1.1 1.2 1.3 2.0 2.1 2.2 3.0 3.1 3.2 3.3 4.0 REGULATORY STANDARDS 14 5.0 6.0 7.0 8.0 9.0

APPENDICES

APPENDIX A	FIGURES
APPENDIX B	TABLES
APPENDIX C	PROPERTY PHOTOGRAPHS
APPENDIX D	ANALYTICAL DATA
APPENDIX E	PROFESSIONAL QUALIFICATIONS
20131813	

EXECUTIVE SUMMARY

Property Solutions Incorporated (Property Solutions) has conducted a Limited Subsurface Investigation (SI) of the Shoppes at Fountain Oaks located at 4920 Roswell Road, NE in Atlanta, Fulton County, Georgia, 37347 (subject property) at the request of AmREIT.

The Phase II SI was performed based on the findings and recommendations presented in the Draft Phase I Environmental Assessment (EA) report dated May 10, 2013 and current regulatory status of the property. Our Draft Phase I EA Report and subsequent information identified the following Areas of Concern (AOCs):

• Area of Concern 1: HSI Site 10807

The subject property is listed on the HSI database as Site No. 10807 for a known release of Tetrachloroethene (PCE) in soil at levels exceeding the reportable quantity, resulting from dry cleaners that previously operated on the site from approximately 1987 until 2007. Impacted soils have reportedly been excavated and removed from the site. Groundwater contamination remains at the subject property. The current subsurface conditions at the subject property are unknown, since no assessment activities have been conducted since 2009. The most recent groundwater sampling results available (November 2009) indicate a peak concentration of 1,900 micrograms/liter (µg/L) of the chlorinated solvent PCE in the northwest portion of the subject property. Results from the prior sampling event (May 2009) indicate a peak concentration of 2,900 µg/L at the same location. The Risk Reduction Standard (RRS) for PCE that would likely be used to obtain regulatory closure is 5 µg/L. Off-site migration of chlorinated solvents has been identified west of the subject property, in the vicinity of a residential area. A plan for continuing assessment and/or remediation has not been submitted to the state by the Responsible party (RP).

In addition to the on-site sources of subsurface impact, two off-site sources are suspected as contributors to the plume. An upgradient dry cleaner is suspected as contributing to chlorinated solvent impact at the subject property. Previous assessments have also detected petroleum constituents in the subsurface, which has been potentially attributed to the northeast adjoining Citgo gas station.

A vapor intrusion mitigation system was previously operated on the subject property for slightly over one year prior to being decommissioned with the approval of the Georgia Environmental Protection Division (GA EPD).

• Area of Concern 2: Kroger Fuel Center

A Kroger Fuel Center currently operates on the subject property. The facility currently operates two gasoline-containing underground storage tanks (USTs) (20,000 gallons and 8,000 gallons). The tanks were reportedly installed in 2005 and are double-walled. The operation of a gas station with petroleum-containing USTs and a dispenser system is a recognized environmental condition. It should be noted that there are no reported releases in connection with this facility, and in the event of a release, Kroger would be

the RP for assessment or remediation activities.

Property Solutions was contracted by AmREIT to evaluate the presence/absence of potential subsurface concerns as they relate to the AOCs and to evaluate the need for additional investigation activities as warranted and was not intended for submittal to the State of Georgia. The main goal of this investigation was to address potential vapor intrusion and current groundwater conditions in relation to AOC-1.

<u>Groundwater</u>: On May 15 and May 17, 2013, groundwater samples were collected from 18 of the existing monitoring wells on the subject property. The wells were purged of three well volumes (or until dry) before sampling using a submersible pump or disposable Teflon bailer. Groundwater samples were then collected using a disposable Teflon bailer and submitted under chain-of-custody to a Georgia-certified laboratory for analysis for volatile organic compounds (VOCs) by USEPA SW846 Method 8260.

<u>Soil Gas/Indoor Air:</u> On May 16, 2013, sub-slab and near-slab soil gas samples were collected from six locations using laboratory-supplied Summa® canisters within and adjacent to the northern portion of the shopping center buildings. A helium tracer test on each sub-slab soil gas sampling location was performed to ensure a proper seal from ambient air entering the sub-slab sampling point. Six indoor air sampling canisters (laboratory-supplied Summa® canisters) were also placed within the Kroger store and four of the suites to the north of Kroger for indoor air sampling. The Summa® canisters containing the air samples were submitted under chain-of-custody to H&P Mobile Chemistry Inc. (H&P), a National Environmental Laboratory Conference (NELAC) accredited laboratory for VOC analysis by USEPA Method TO-15.

This Limited SI was performed to determine the potential presence/absence of subsurface contamination at the subject property as it relates to the environmental concerns identified.

• Area of Concern One (AOC-1) – HSI Site 10807

Current groundwater impact as shown by well sampling does not show significant variation from documented historic conditions as provided in the November 2010 CSR. There are three constituents of concern in on-site groundwater related to the former on-site dry cleaners that exceed their applicable RRS: Tetrachloroethene (PCE), Trichloroethene (TCE) and Vinyl chloride (VC). Only PCE in groundwater at one off-site location, MW-30, exceeded the applicable Type 1 RRS of 5 μ g/L. Additionally, benzene and MTBE were detected above the applicable RRS in wells near the northeastern portion of the subject property. Also of note is that MTBE was detected above the RRS in MW-16, located on the western portion of the subject property, south of Kroger. MTBE exceeding the RRS and low level petroleum constituents have historically been detected at this location. The source of the apparent petroleum impact in this area is unclear. Low level MTBE (below the RRS) was also detected in the groundwater sample from MW-29, located off-site, immediately adjacent the western property boundary, west of Kroger.

Peak concentrations of PCE in groundwater were detected at 2,470 μ g/L in MW-2, which was an

20131813

increase from the November 2009 result of 1,900 μ g/L.

PCE concentrations detected in the groundwater sample from MW-30 (off-site near residential area to the west) decreased slightly from a concentration of 23 μ g/L in November 2009 to 17.9 μ g/L during the current monitoring event.

MTBE detected in the groundwater sample from MW-21 (downgradient of the off-site Citgo) increased from a concentration of 350 μ g/L in May 2009 to 1,780 μ g/L during the current monitoring event. This well was not sampled during the November 2009 monitoring event.

<u>Soil Gas:</u> Constituents detected in analyzed soil gas (sub-slab and near-slab) included chlorinated hydrocarbons and petroleum constituents. The highest level of PCE detected was at SV-1, located outside the footprint of the building on the north end of the former dry cleaner. PCE was detected at this location at 1,200 μ g/m³. One sub-slab sample (SV-6) was collected within the footprint of the building in vacant Suite 23A. PCE was detected at 24 μ g/m³ at this location.

<u>Indoor Air:</u> Detections of constituents in indoor air did not exceed the Target Indoor Air Concentrations (TIAs) as provided in the EPA OSWER Vapor Intrusion Screening Level (VISL) Calculator Version 3.0 (November 2012) using a Target Risk Concentration (TCR) of 1.00E-05.

Detections of constituents in indoor air did not exceed the TIAs as provided in the EPA OSWER VISL) Calculator Version 3.0 (November 2012) using a more stringent TCR of 1.00E-06, with the exception of chloroform in two samples. Indoor air sources of chloroform include the use of municipal (chlorinated) water, bleaches, and refrigerants. It is the opinion of Property Solutions that based on the results of analysis of soil gas samples, chloroform detections likely do not originate from the subsurface.

1.0 INTRODUCTION

1.1 Purpose

Property Solutions Incorporated (Property Solutions) has conducted a Limited Subsurface Investigation (SI) of Shoppes at Fountain Oaks located at 4920 Roswell Road, NE in Atlanta, Fulton County, Georgia, (subject property) at the request of AmREIT.

The Phase II SI was performed based on the findings and recommendations presented in the Draft Phase I Environmental Assessment (EA) report dated May 10, 2013 and current regulatory status of the property. The potential environmental concerns identified in the Phase I EA included the following:

• Area of Concern 1: HSI Site 10807

The subject property is listed on the HSI database as Site No. 10807 for a known release of Tetrachloroethene (PCE) in soil at levels exceeding the reportable quantity, resulting from dry cleaners that previously operated on the site from approximately 1987 until 2007. Impacted soils have reportedly been excavated and removed from the site. Groundwater contamination remains at the subject property. The current subsurface conditions at the subject property are unknown, since no assessment activities have been conducted since 2009. The most recent groundwater sampling results available (November 2009) indicate a peak concentration of 1,900 micrograms/liter (µg/L) of the chlorinated solvent PCE in the northwest portion of the subject property. Results from the prior sampling event (May 2009) indicate a peak concentration of 2,900 µg/L at the same location. The Risk Reduction Standard (RRS) for PCE that would likely be used to obtain regulatory closure is 5 µg/L. Off-site migration of chlorinated solvents has been identified west of the subject property, in the vicinity of a residential area. A plan for continuing assessment and/or remediation has not been submitted to the state by the Responsible party (RP).

In addition to the on-site sources of subsurface impact, two off-site sources are suspected as contributors to the plume. An upgradient dry cleaner is suspected as contributing to chlorinated solvent impact at the subject property. Previous assessments have also detected petroleum constituents in the subsurface, which has been potentially attributed to the northeast adjoining Citgo gas station.

A vapor intrusion mitigation system was previously operated on the subject property for slightly over one year prior to being decommissioned with the approval of the Georgia Environmental Protection Division (GA EPD).

• Area of Concern 2: Kroger Fuel Center

A Kroger Fuel Center currently operates on the subject property. The facility currently operates two gasoline-containing underground storage tanks (USTs) (20,000 gallons and 8,000 gallons). The tanks were reportedly installed in 2005 and are double-walled. The operation of a gas station with petroleum-containing USTs and a dispenser system is a

recognized environmental condition. It should be noted that there are no reported releases in connection with this facility, and in the event of a release, Kroger would be the RP for assessment or remediation activities.

Property Solutions was contracted by AmREIT to evaluate the presence/absence of potential subsurface concerns as they relate to the AOCs and to evaluate the need for additional investigation activities as warranted and was not intended for submittal to the State of Georgia. The main goal of this investigation was to address potential vapor intrusion and current groundwater conditions in relation to AOC-1.

1.2 Scope of Work

The scope of work conducted as part of this Limited SI included evaluation of soil gas, indoor air, and groundwater conditions through the installation of sub-slab and near-slab (outside footprint of building) soil vapor sampling points, indoor air sampling, and the collection and analysis of select groundwater samples from 18 of the existing monitoring wells. The following provides a summary of the tasks performed:

- 1. A utility locate request was made to Utilities Protection Center, Inc. (Georgia 811) to locate and mark subsurface utilities (Ticket No. 05103-219-018).
- 2. A walk-through of the subject property tenant spaces in the vicinity of the units to the sampled was conducted to identify the use or storage of materials such as paints, cleaners, and degreasers that could interfere with the indoor air sampling results or potentially produce false positive analytical results.
- 3. Six sub-slab and near-slab soil gas samples were collected by advancing 1-inch diameter holes through the floor in select locations, dedicated Nylaflow® tubing advanced into the borehole and sealed from the surface with bentonite and soil gas collected from each sampling point via laboratory-supplied 400 milliliter (ml) Summa® canisters utilizing a laboratory-supplied stainless steel flow regulator. Sampling locations were purged of approximately 180 ml using a syringe prior to connecting the Summa® canisters.
- 4. Six indoor air sampling canisters were collected via laboratory-supplied 6 liter Summa® canisters with a laboratory-supplied stainless steel flow regulator. Summa® canisters were placed within the Kroger store (Suite 20) and four of the suites to the north of Kroger (Suites 21, 23A, 23B, 24). Indoor air samples were collected over a period of 8 hours.
- 5. The Summa® canisters containing the sub-slab/near-slab and indoor air samples were submitted under chain-of-custody to H&P Mobile Chemistry Inc. (H&P), a National Environmental Laboratory Conference (NELAC) accredited laboratory for VOC analysis by USEPA Method TO-15.

6. For the indoor air constituents identified on-site, Property Solutions used Target Indoor

Air Concentrations (TIAs) as provided in the EPA OSWER Vapor Intrusion Screening Level (VISL) Calculator Version 3.0 (November 2012) using a Target Risk Concentrations (TCRs) of 1.00E-05 and a TCR of 1.00E-06 for comparison..

- 7. Groundwater samples were collected from 18 of the existing monitoring wells on the subject property (wells previously installed by others). It should be noted that two wells (MW-24 and MW-31) could not be located for sampling. Prior to sampling, wells were purged of three well volumes (or until dry) using a submersible pump or disposable Teflon bailer. Purge water was containerized for disposal in 55-gallon drums. Groundwater samples were collected using a disposable Teflon bailer in laboratory-supplied containers, stored on ice, and submitted under chain-of-custody to Gulf Coast Analytical (GCAL), a Georgia-certified laboratory, for analysis.
- 8. The groundwater analytical results were compared to the applicable standards, which are the Type III/IV Risk Reduction Standards (RRS) provided in Chapter 391-3-19 of Georgia's Rules for Hazardous Site Response (hereafter, the "Rules"). The Rules were promulgated under authority of the Hazardous Site Response Act (HSRA) OCGA § 12-8-90 et seq. (1992), designated for the site in the 2009 Compliance Status Report (CSR) submitted to the Environmental Protection Division of the Georgia Department of Natural Resources (EPD).

1.3 Special Terms and Conditions

This Limited Phase II SI was performed in accordance with the above Scope of Work. No special terms and conditions apply

1.4 Reliance

This report has been prepared for the sole benefit of AmREIT and may not be relied upon by any other person or entity without the written authorization of Property Solutions.

2.0 BACKGROUND INFORMATION

2.1 **Property Location**

Property Location			
Property Name	The Shoppes at Fountain Oaks		
Property Address	4920 Roswell Road NE		
Property Town, County, State, Zip	Atlanta, Fulton County, Georgia 30342		
Property Tax Identification	17009300061319 and 17009300021073 (Key Site Manager and Fulton County Tax Assessor)		
Property Topographic Quadrangle	Sandy Springs, Georgia		
Nearest Intersection	Long Island Drive and Roswell Road; W. Belle Isle Road and Roswell Road		

Property Location	
Area Description	Residential and commercial area

An excerpt from the USGS 7.5-minute series topographic quadrangle map of <u>Sandy Springs</u>, <u>Georgia</u>, locating the subject property, is included in Appendix A.

2.2 **Property Description**

Property Information			
Property Ownership Name	Shoppes of Fountain Oaks LP (Fulton County Tax Assessor)		
Date of Acquisition	December 23, 2010		
Property Acreage	13.688 acres (Property Survey, Armstrong Land Surveying, Inc., dated 2003)		
Property Shape	Irregular		
Property Use	Retail shopping center		
Number of Buildings	Two		
Number of Stories	Two		
Construction Date	1988 (Key Site Manager and Fulton County Tax Assessor)		
Building Square Footage	160,598 square feet (Key Site Manager); 164,573 square feet (Fulton County Tax Assessor)		
Basement/Slab-on-grade	Slab-on-grade		
Number of Units	45		
Ceiling Finishes	Acoustical ceiling tile, exposed metal		
Floor Finishes	Ceramic tile, vinyl tile, concrete, wood panel floors		
Wall Finishes	Painted and/or wallpapered drywall, concrete block		
HVAC (Energy Source & Type of System)	Electric and natural gas fired exterior roof-mounted package units		
Renovation Date	2004-2005 (Previous reports)		
Renovation Description	New exterior façade, roof replacement, pylon sign upgrade and pavement overlay. Tenant improvements and tenant build outs.		
Vehicular Access	Four entrance/exits drives (one drive from the south off Long Island Drive, one drive from the east off Roswell Road, and two drives from the north off of W. Belle Isle Road		
Other Improvements	Pavement, landscaping and a Kroger Fuel Service center.		
Property Coverage	Footprints of the subject buildings, associated parking areas, lawn areas, and landscaping		

The subject property is identified as 17009300061319 and 17009300021073, according to the Fulton County Tax Assessor. A property diagram of the subject property is included in Appendix A.

2.3 **Property Operations**

The subject property is used as a retail and commercial shopping center with a Kroger Fuel Service center. There are two buildings – one main building which includes the Kroger store and a second smaller retail building.

Suite/Address	Tenant	Operations	Dates	
01-02	Sue Mills	School uniforms	May 2002	
03-04	Yoga Spring's Yoga Studio	Yoga studio	Feb 2002	
05	Vacant	Vacant	Vacant	
06-07	Alexandra's Alterations	Alterations (clothing)	July 2006	
08	ТСВҮ	Food	Feb 2012	
09	Soung Youn Salon	Personal care salon	June 2001	
10	Vacant	Vacant	Vacant	
10B	Young Cleaners	Dry Cleaning (Drop Station)	November 2010	
11-12	Eye First Vision Center	Eye Doctor	May 2003	
13A	Dental Associates of Atlanta	Dentist	December 2004	
13B	Vacant	Vacant	Vacant	
14	Café Posh	Restaurant	May 2009	
15	Vacant	Vacant	Vacant	
16-17	Dance Theater	Dance studio	May 2012	
18	Sally Beauty Supply	Retail beauty supplies	May 2011	
19	Art & Soul	Crafts	March 2012	
20	Kroger #350	Grocery store and fuel center	July 1988	
21	Baily's Bottle Shop	Beverage store	March 2007	
22	Pizza Hut	Restaurant	November 2006	
23A	Vacant	Vacant	Vacant	
23B	Coins & Currency	Coin shop	March 2003	
24	Moohan Martial Arts	Martial arts training	August 2011	
25	Kumon Math & Reading Center	Educational training	September 2007	
26-27	Gymboree	Kids play shop	September 2008	
30	Bridge Club of Atlanta	Games	May 2012	
31	Cuts Inc.	Barber shop	June 2000	
36	Shape Medical Weight Loss Center	Weight control	November 2007	

At the time of the property visit, the subject property was occupied by the following tenants:

Suite/Address	Tenant	Operations	Dates
37-38	Sola Salon Studios	Personal grooming	September 2005
39	Vacant	Vacant	Vacant
40	Nail Idol	Nail salon	May 2004
41	Vacant	Vacant	Vacant
42	AF Morad Lawyer	Attorney	September 2010
43	Brightway Insurance	Insurance agent	October 2011
44	Little Busy Mandarin Academy	Education	November 2003
45A	Pig N Chick Express	Restaurant	August 2002
45B	Mail USA	Mail center	November 2001
45C	GNC	Vitamins / nutrition	June 2004
46	Jersey Subs	Restaurant	March 2001
47	Wok & Roll	Restaurant	February 2002

2.4 **Property History**

Based on a review of the historical sources, the subject property consisted of wooded land and residential-type structures from prior to 1938 until 1968 aerial photo which indicated commercial-type structures on the northeast portion of the subject property. These commercial-type structures were present until the construction of the current improvements in 1988.

Phase I ESAs were performed in 2003 and 2005 that recommended additional sampling. A Phase II ESA was performed in March 2005, with 11 soils borings advanced to refusal except two. The report stated that groundwater was not encountered, but does exist at approximately 40-45 feet below ground surface (bgs). A surface sample was collected from a small tributary creek (of Nancy Creek) on the southwest side of the property. PCE was detected in soil above the EPD's Notification Concentration of 0.18 mg/kg in 5 of the 18 samples submitted. The surface water results for VOCs were below laboratory detection limits (of 5 ppb for PCE). PCE was detected in the subsurface west of the cleaners to a maximum depth of 27 feet bgs.

A Prospective Purchaser Corrective Action Plan (PPCAP) for the corrective action of the soil impacts above the Type 4 RRS under HSRA was submitted in November 2005 in order to attain Limit of Liability (LoL) protection under Georgia's Hazardous Site Reuse and Redevelopment Act (Brownfield Act). The PPCAP stated that Fountain Oaks has a known release of the regulated substances PCE, trichloroethylene (TCE), cis-1,2-DCE, 4-methyl-2-pentanone, acetone, carbon disulfide, chlorobenzene, ethyl-benzene, isopropylbenzene, toluene, and xylenes. The report states that the Potential Purchaser, US Retail Income Fund VIII-D, did not cause or contribute to the pre-existing release and therefore qualified for full protection under the Brownfield Act. The soil impacts were believed to be from the former on-site cleaners (Fashion Care) that operated from 1990-2001. However, Ultimate Cleaners (which operated from 2001-2007) could not be wholly eliminated as a potential contributor to the soil releases. The CAP estimated that 912 tons of soil would need to be excavated and disposed from this property.

Potential sources for impacted groundwater included the former Fashion Care cleaners, as well as the adjacent Citgo gas station and the nearby Chastain Cleaners. The highest concentration of PCE impacts were detected in the probable former location of the drycleaner machine (in MW-2). The second highest concentration of PCE impact was detected in the MW-5, which is downgradient from the off-site Chastain Cleaners and near the Fountain Oaks property line. These two monitoring wells with the highest concentration were separated by a monitoring well that shows lower PCE concentrations, which indicate that there may be two separate PCE plumes.

Four potential on-site source areas for soil impact were identified: the area of the existing and former dry-cleaning machines; the area of the former lint trap (previously referred to as the vault); the area northwest of the north drive through glass door; and, the area west of the rear double delivery door. Soil removal was conducted in these potential source areas from November 2007 to May 2008. The excavations were conducted in stages (a maximum of five stages and verification sampling were conducted), and a total of 3,803.53 tons of impacted soils were removed from the subject property. The observed impact to groundwater by PCE, TCE, MTBE, cis-1,2-DCE, chloroform, methyl ethyl ketone, benzene, cyclohexane, and methyl cyclohexane, did not require remediation. Remedial action for groundwater is not required of the current owners under the provisions of the Brownfield Act and LoL.

A vapor intrusion assessment was prepared in February 2008. It was based on Tier 3 modeling, which determined that in order to meet the USEPA Superfund cancer risk of one in a million, vapor intrusion mitigation measures were needed under the spaces from the former drycleaner to the Kroger space. The recommended system called for the installation of sub-grade gas collection piping under the tenant spaces to depressurize the soil beneath them. A blower was to be installed on the system and the vapor was to be vented through the roof of the former drycleaner space. Greenleaf Environmental installed a vapor intrusion mitigation system (VIMS) in 2008. The system was approved by EPD to reduce potential vapor intrusion in the one-story adjoining tenants. The system was operated for approximately one year until EPD approved the shutdown of the system.

A Compliance Status Report (CSR) was completed by MEI in January 2010 on behalf of the responsible party. The CSR stated that the upgradient and downgradient lateral extents of groundwater contamination associated with the former on-site dry cleaning operations were fully defined, and had not migrated into groundwater within bedrock. Three groundwater contaminants related to the former on-site dry cleaners exceeded their applicable Type IV RRS on site: PCE, TCE and VC. Only PCE at one off-site location, MW-30, exceeded the applicable Type 1/3 RRS of 5 μ g/L. The upgradient extent of groundwater contamination associated with the two apparent off-site sources (Chastain Cleaners and the Citgo/Quickmart) were not defined, but not attributed to the site and thus were the responsibility of their owners or their tenants. Concentrations of two petroleum contaminants in on-site groundwater, benzene and MTBE, exceeded their applicable RRS. Groundwater sampling indicated that observed PCE concentrations were reported to have declined approximately 35% to 93% from the period of 2008 to the end of 2009. Since the extent of the plume had been defined and contaminant concentrations appeared to be declining, the groundwater contaminant plume appeared to be

either stable or decreasing in lateral extent and magnitude, monitored natural attenuation (MNA) was proposed as the remedial strategy at the subject property since the source area soil had been remediated.

A soil vapor survey conducted September 9 - 24, 2008, indicated that PCE was present at 92 of 124 module installation locations utilized for the investigation, with a maximum PCE concentration of 42,608 µg/m3 in an area near the former on-site dry cleaner. A secondary area of elevated concentrations for PCE was located approximately 100 feet southwest of the off-site Chastain Cleaners. Significant BTEX contamination was associated with the off-site Citgo/Quikmart UST facility immediately northeast of and upgradient from the subject property. MEI concluded that the soil vapor survey confirmed that there are three commingled groundwater contaminant plumes present on the Fountain Oaks Shopping Center property, one from a former on-site source and two from current off-site sources. Residential indoor air sampling conducted on August 25, 2008 indicated that none of the common chemicals associated with dry cleaning, and detected in nearby groundwater were detected in any sample.

3.0 PHYSICAL SETTINGS

3.1 Topography/Regional Drainage

Topographic Quadrangle Name	Sandy Springs, Georgia
Property Elevation	1,015 to 1,035 feet above mean sea level
Surface Gradient	Southwest
Property Drainage	Inlets feeding detention pond
Regional Drainage	Southerly towards Nancy Creek
Closest Perennial Water body	Tributary to Sharon's Creek located approximately 0.2 miles southwest

A copy of the USGS 7.5-minute series topographic quadrangle map of <u>Sandy Springs</u>, <u>Georgia</u>, is included in Appendix A.

3.2 Soils

USDA County Soil Survey			
Information Source	Soil Survey of Fulton County, Georgia		
Date of Information Source	December 1958		
Soil Name	Lloyd series		
uplands in the Southern Piedmont. The so igneous and high-grade metamorphic roo	of very deep, well drained, moderately permeable soils on ils formed in residuum derived from intermediate and mafic, eks. Slopes are commonly 2 to 10 percent but range to 50 mual temperature is about 61 degrees F., and mean annual		
Expected depth to bedrock	Greater than 10 feet		

3.3 Underlying Formation

The site is located within the Piedmont Physiographic Province, Southern Piedmont Physiographic Province, which extends southeast of the Brevard fault zone to the Fall Line. Rocks of the Southern Piedmont consist of Proterozoic to early Paleozoic gneisses, quartzites, amphibolites, phylites, schists, and metagabbros (200-700 million years ago).

According to the Geology of the Greater Atlanta Area (Georgia Geological Survey Bulletin 96, 1984) the rocks underlying the site are undifferentiated, ductally-sheared rocks of the Brevard fault zone. According to the Geologic Map of Georgia (1979, Atlanta Area, North 4 East 2, Geologic Survey of Georgia) these rocks are button mica schist, a type of high-grade metamorphic rock. This rock type was confirmed to be present during rock drilling conducted for the PPCAP investigation. Further, the mica schist was found to be interfingered with more highly metamorphosed gneiss and amphibolite. The depth to competent rock varies from about 40 to 65 feet BGS.

3.4 Groundwater

Groundwater occurs in the pore spaces of the soil and saprolite horizons, and also within fractures of the crystalline bedrock. The transition zone between saprolite and unweathered rock is generally a preferential pathway for lateral groundwater flow. This zone typically contains a lower percentage of clay, derived from the complete weathering of micaceous minerals and feldspar, and is made more permeable by cracking associated with shrinking and swelling of minerals by hydration. In some areas, the rock surface extends above the water table.

The movement of groundwater typically follows the original surface topography, moving from hilltops and uplands to stream valleys. Groundwater at the site is first encountered at 27 to 42 feet BGS, depending on ground elevation; depth to water as measured in the monitoring well network is presented in Table 1. Groundwater elevation beneath the site, as defined by the monitoring well network, ranges from 936 feet to 962 feet NAVD (North American Vertical Datum; see Table 1). Groundwater flow direction typically follows surface topography, flowing westerly to southwesterly. A water table map is presented in Figure 3.

The occurrence and movement of deeper groundwater in the unweathered bedrock is generally restricted to fractures, because these materials have little primary porosity. The fractures are typically most numerous and have the largest openings near the top of the unweathered rock. The amount and location of groundwater in the crystalline rock varies greatly dependent on the depth, openness, and degree of connection between fractures. Depth to water ranges from 36 to 45 feet BGS; bedrock groundwater flow has not been investigated at the site. Data obtained at the site indicate that the bedrock groundwater has not been impacted by site activities.

4.0 FIELD INVESTIGATION ACTIVITIES

4.1 Field Activities

Field activities commenced on May 15, 2013, when Thomas Lawrence, Field Hydrogeologist of Property Solutions, arrived at the subject property to begin monitoring well sampling. Weather conditions at the time of the field activities consisted of sunny skies with an approximate outside air temperature of 80 degrees Fahrenheit. Twenty of the existing monitoring wells were to be sampled; however two monitoring wells (MW-24 and MW-31) could not be located. Well location and water table maps are included in Appendix A.

On May 16, Jim Fineis with Atlas Geo-Sampling, contracted by Property Solutions, conducted the soil gas and indoor air sampling for the site. Weather conditions at the time of the field activities consisted of sunny skies with an approximate outside air temperature of 82 degrees Fahrenheit. A vapor sampling point map is included in Appendix A.

4.2 Sampling Methods

4.2.1 Groundwater Sampling

Property Solutions collected groundwater samples from 18 of the existing monitoring wells (Figure 2) on the subject property (wells previously installed by others). Prior to purging, water levels were measured relative to the top of each well casing using a Solinst Model 101 electric water level tape. Groundwater level measurements and elevations for each well are presented in Table 1. Figure 3 illustrates the water table map based on groundwater elevations calculated from the water levels measured within the wells. Based on the calculated well volumes using the total depths of the wells minus the depths to water, wells were then purged of three well volumes or until dry using a stainless-steel Monsoon submersible pump or dedicated, disposable Teflon Bailer. Dedicated, disposable HDPE tubing was utilized with the pump. Purge water was containerized for disposal in 55-gallon drums. After purging, groundwater samples were collected using a dedicated, disposable Teflon bailer.

All sample-contacting equipment used during the investigation (i.e., water level meter and Monsoon pump) was cleaned with a mixture of Alconox® and distilled water and then rinsed with distilled water. Property Solutions field personnel utilized disposable nitrile gloves during sample collection and decontamination.

4.2.2 Soil Vapor Sampling

One sub-slab (Suite 23A) and five near-slab soil gas samples were collected by advancing 1-inch diameter holes through the floor in select locations (Figure 2), dedicated Nylaflow® tubing advanced into the borehole and sealed from the surface with bentonite and soil gas collected from each sampling point via laboratory-supplied 400 milliliter (ml) Summa® canisters utilizing a laboratory-supplied stainless steel flow regulator. The sampling point was purged through the tubing, removing approximately three volumes of air prior to collecting a sample. A helium

tracer test was performed on each sub-slab soil gas sampling location to ensure a proper seal from ambient air entering the sub-slab sampling point. After each sample was collected, the hole was patched with concrete.

4.2.2 Soil Vapor Sampling

Six indoor air sampling canisters were collected via laboratory-supplied 6 liter Summa® canisters with a laboratory-supplied stainless steel flow regulator. Summa® canisters were placed within the Kroger store (Suite 20) and four of the suites to the north of Kroger (Suites 21, 23A, 23B, 24) (Figure 2). Indoor air samples were collected over a period of 8 hours.

4.3 Analytical Laboratory Information

Groundwater samples were poured directly into clean, laboratory-supplied 40-ml glass vials with Teflon® septa, stored on ice, and submitted under chain-of-custody to Gulf Coast Analytical Labs (GCAL), a Georgia-certified laboratory, for analysis of Volatile Organic Compounds (VOCs). As each sample was collected, the sampling containers were labeled. The label denoted the name of the subject property, the sample location, the time and date the sample was collected, any preservatives added to the sample, and the analysis required for each sample. The information from each label was transferred onto the chain of custody form provided by GCAL. One trip blank was analyzed by the laboratory for quality assurance/quality control purposes. The VOC samples were analyzed by EPA Method 8260B (SW 846 "Test Methods for Evaluating Solid Waste" Third Edition with subsequent updates).

The Summa® canisters containing the soil gas and indoor air samples were submitted under chain-of-custody to H&P Mobile Chemistry Inc. (H&P), a NELAC accredited laboratory for VOC analysis by USEPA Method TO-15.

Analytical results were provided to Property Solutions in electronic format for submittal to AmREIT. The results of the groundwater and vapor sampling are presented in Tables 2 through 4.

5.0 **REGULATORY STANDARDS**

For the groundwater constituents identified on-site, Property Solutions used the calculated Type III/IV RRS provided in the January 2010 CSR. The Type I Residential RRS for PCE was used for the off-site wells, as provided in the CSR. However, it should be noted that the calculated Type IV RRS for PCE, which is based on site-specific parameters, is the same as the default Type I for residential areas.

For the indoor air constituents identified on-site, Property Solutions used Target Indoor Air Concentrations (TIAs) as provided in the EPA OSWER Vapor Intrusion Screening Level (VISL) Calculator Version 3.0 (November 2012) using a Target Risk Concentrations (TCRs) of 1.00E-05 and a TCR of 1.00E-06 for comparison..

6.0 EXPLORATION RESULTS

6.1 HSI Site 10807

<u>Groundwater:</u> Based on the results of the groundwater sampling conducted in Area of Concern 1, the subsurface conditions in the vicinity of Area of Concern 1 can be generally described as follows:

Current groundwater impact as shown by well sampling does not show significant variation from documented historic conditions as provided in the November 2010 CSR. There are three constituents of concern in on-site groundwater related to the former on-site dry cleaners that exceed their applicable RRS: PCE, TCE and VC. Only PCE in groundwater at one off-site location, MW-30, exceeded the applicable Type 1 RRS of 5 μ g/L. Additionally, benzene and MTBE were detected above the applicable RRS in wells near the northeastern portion of the subject property. Also of note is that MTBE was detected above the RRS in MW-16, located on the western portion of the subject property, south of Kroger. MTBE exceeding the RRS and low level petroleum constituents have historically been detected at this location. The source of the apparent petroleum impact in this area is unclear. Low level MTBE (below the RRS) was also detected in the groundwater sample from MW-29, located off-site, immediately adjacent the western property boundary, west of Kroger.

Peak concentrations of PCE in groundwater were detected at 2,470 μ g/L in MW-2, which was an increase from the November 2009 result of 1,900 μ g/L.

PCE concentrations detected in the groundwater sample from MW-30 (off-site near residential area to the west) decreased slightly from a concentration of 23 μ g/L in November 2009 to 17.9 μ g/L during the current monitoring event.

MTBE detected in the groundwater sample from MW-21 (downgradient of the off-site Citgo) increased from a concentration of 350 μ g/L in May 2009 to 1,780 μ g/L during the current monitoring event. This well was not sampled during the November 2009 monitoring event.

Analytical results, as reported by GCAL, are provided in the Table 2. The concentrations are provided in micrograms per liter (μ g/L).

<u>Soil Gas:</u> Constituents detected in analyzed soil gas (sub-slab and near-slab) included chlorinated hydrocarbons and petroleum constituents. The highest level of PCE detected was at SV-1, located outside the footprint of the building on the north end of the former dry cleaner. PCE was detected at this location at 1,200 μ g/m³. One sub-slab sample (SV-6) was collected within the footprint of the building in vacant Suite 23A. PCE was detected at 24 μ g/m³ at this location.

Analytical results, as reported by H&P, are provided in Tables 3 and 4. The concentrations are provided in micrograms per meter ($\mu g/m$).

<u>Indoor Air:</u> Detections of constituents in indoor air did not exceed the Target Indoor Air Concentrations (TIAs) as provided in the EPA OSWER Vapor Intrusion Screening Level (VISL) Calculator Version 3.0 (November 2012) using a Target Risk Concentration (TCR) of 1.00E-05.

Detections of constituents in indoor air did not exceed the TIAs as provided in the EPA OSWER VISL) Calculator Version 3.0 (November 2012) using a more stringent TCR of 1.00E-06, with the exception of chloroform in two samples. Indoor air sources of chloroform include the use of municipal (chlorinated) water, bleaches, and refrigerants. It is the opinion of Property Solutions that based on the results of soil gas samples, chloroform detections are likely the result of sources other than the subsurface.

Analytical results, as reported by H&P, are provided in Tables 3 and 4. The concentrations are provided in micrograms per meter ($\mu g/m$).

7.0 CONCLUSIONS

This Limited Phase II SI was performed to determine the potential presence/absence of subsurface contamination at the subject property as it relates to the environmental concerns identified below:

<u>Groundwater:</u> Based on the results of the groundwater sampling conducted in Area of Concern 1, current groundwater impact as shown by well sampling does not show significant variation from documented historic conditions as provided in the November 2010 CSR. There are three constituents of concern in on-site groundwater related to the former on-site dry cleaners that exceed their applicable RRS: PCE, TCE and VC. Only PCE in groundwater at one off-site location, MW-30, exceeded the applicable Type 1 RRS of 5 μ g/L. Additionally, benzene and MTBE were detected above the applicable RRS in wells near the northeastern portion of the subject property. MTBE was detected above the RRS in MW-16, located on the western portion of the subject property, south of Kroger. The source of the apparent petroleum impact in this area is unclear. Low level MTBE (below the RRS) was also detected in the groundwater sample from MW-29, located off-site, immediately adjacent the western property boundary, west of Kroger.

Peak concentrations of PCE in groundwater were detected at 2,470 μ g/L in MW-2, which was an increase from the November 2009 result of 1,900 μ g/L.

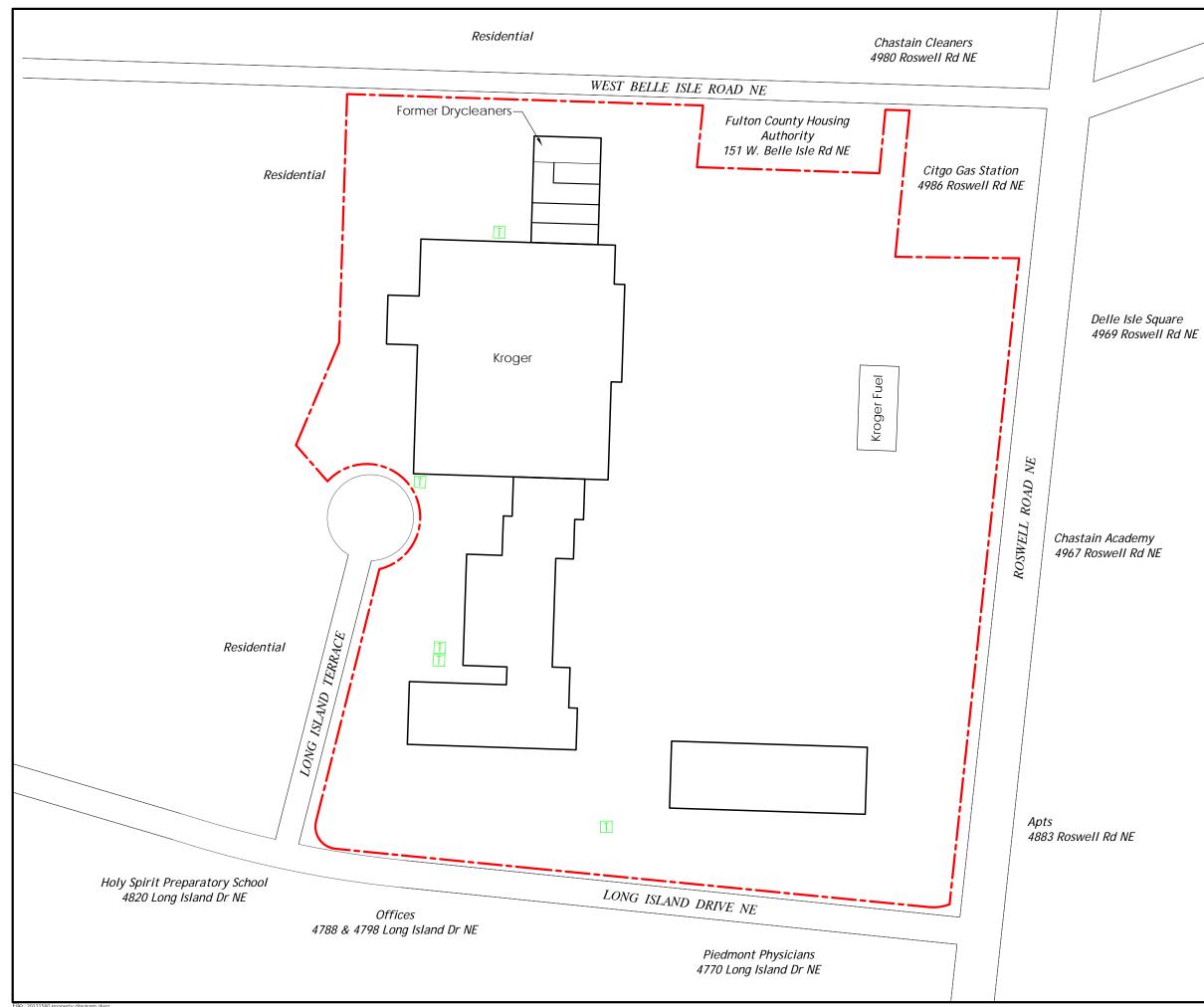
PCE concentrations detected in the groundwater sample from MW-30 (off-site near residential area to the west) decreased slightly from a concentration of 23 μ g/L in November 2009 to 17.9 μ g/L during the current monitoring event.

MTBE detected in the groundwater sample from MW-21 (downgradient of the off-site Citgo) increased from a concentration of 350 μ g/L in May 2009 to 1,780 μ g/L during the current monitoring event.

<u>Soil Gas:</u> Constituents detected in analyzed soil gas (sub-slab and near-slab) included chlorinated hydrocarbons and petroleum constituents. The highest level of PCE detected was at SV-1, located outside the footprint of the building on the north end of the former dry cleaner. PCE was detected at this location at 1,200 μ g/m³. One sub-slab sample (SV-6) was collected within the footprint of the building in vacant Suite 23A. PCE was detected at 24 μ g/m³ at this location.

<u>Indoor Air:</u> Detections of constituents in indoor air did not exceed the Target Indoor Air Concentrations (TIAs) as provided in the EPA OSWER Vapor Intrusion Screening Level (VISL) Calculator Version 3.0 (November 2012) using a Target Risk Concentration (TCR) of 1.00E-05.

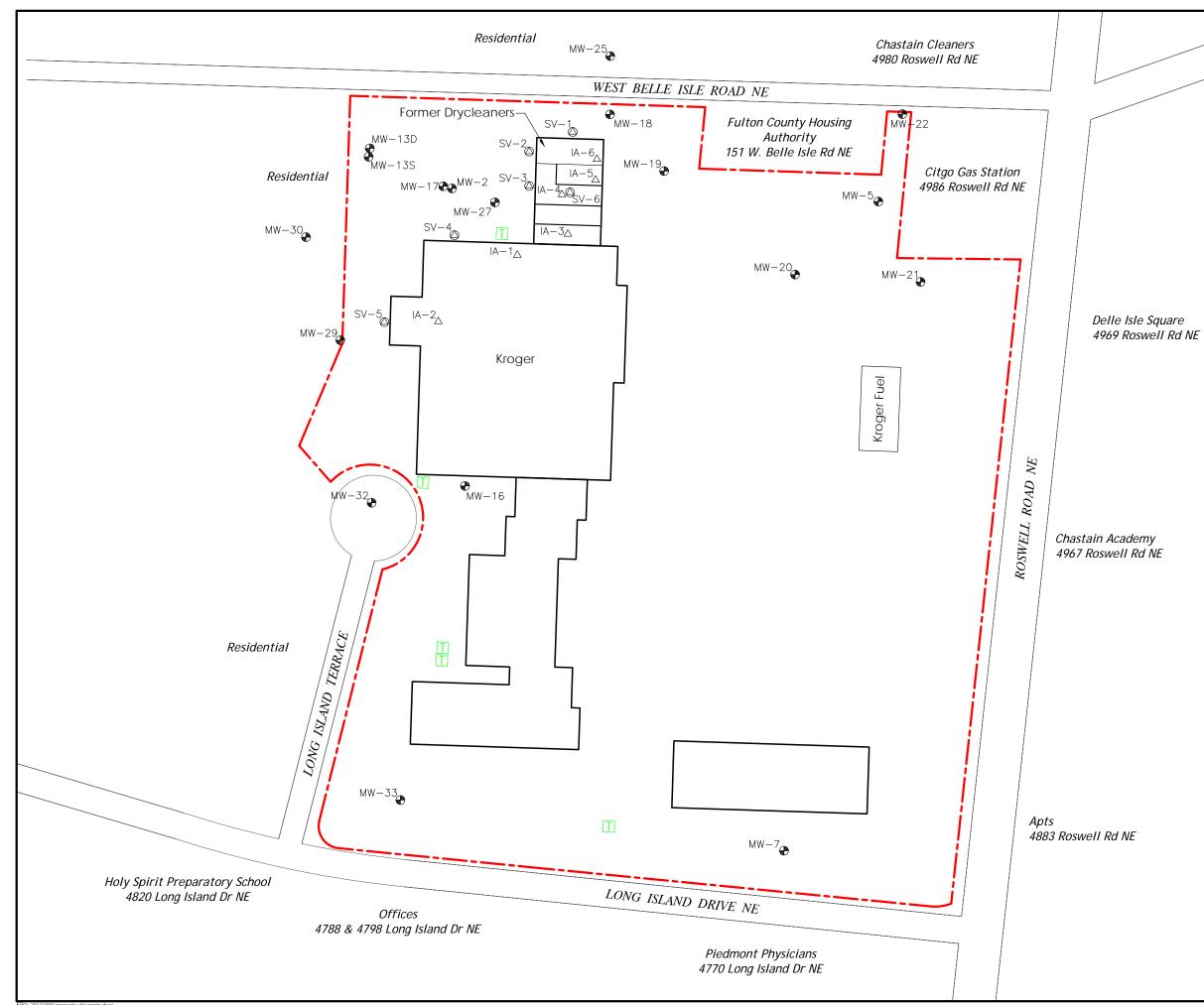
Detections of constituents in indoor air did not exceed the TIAs as provided in the EPA OSWER VISL) Calculator Version 3.0 (November 2012) using a more stringent TCR of 1.00E-06, with the exception of chloroform in two samples. Indoor air sources of chloroform include the use of municipal (chlorinated) water, bleaches, and refrigerants. It is the opinion of Property Solutions that based on the results of soil gas samples, chloroform detections are likely the result of sources other than the subsurface.


8.0 **RECOMMENDATIONS**

- Based on the results of indoor air sampling, it appears that the subsurface to indoor air pathway is incomplete, and no further action appears warranted based on indoor air conditions at the time of our evaluation.
- Based on the Limitation of Liability protection offered under the Brownfield Program, and the identification of a responsible party for the groundwater impacts, no further action appears warranted in connection with existing groundwater impacts.
- Based on previous remedial activities and regulatory closure in connection with soil impacts identified on the subject property, no further action appears warranted at this time in connection with previously identified impacts to soil. If additional soil contamination is identified, further action may be required.
- Property Solutions recommends obtaining information from Kroger to confirm tank integrity of the on-site USTs.

9.0 **REFERENCES**

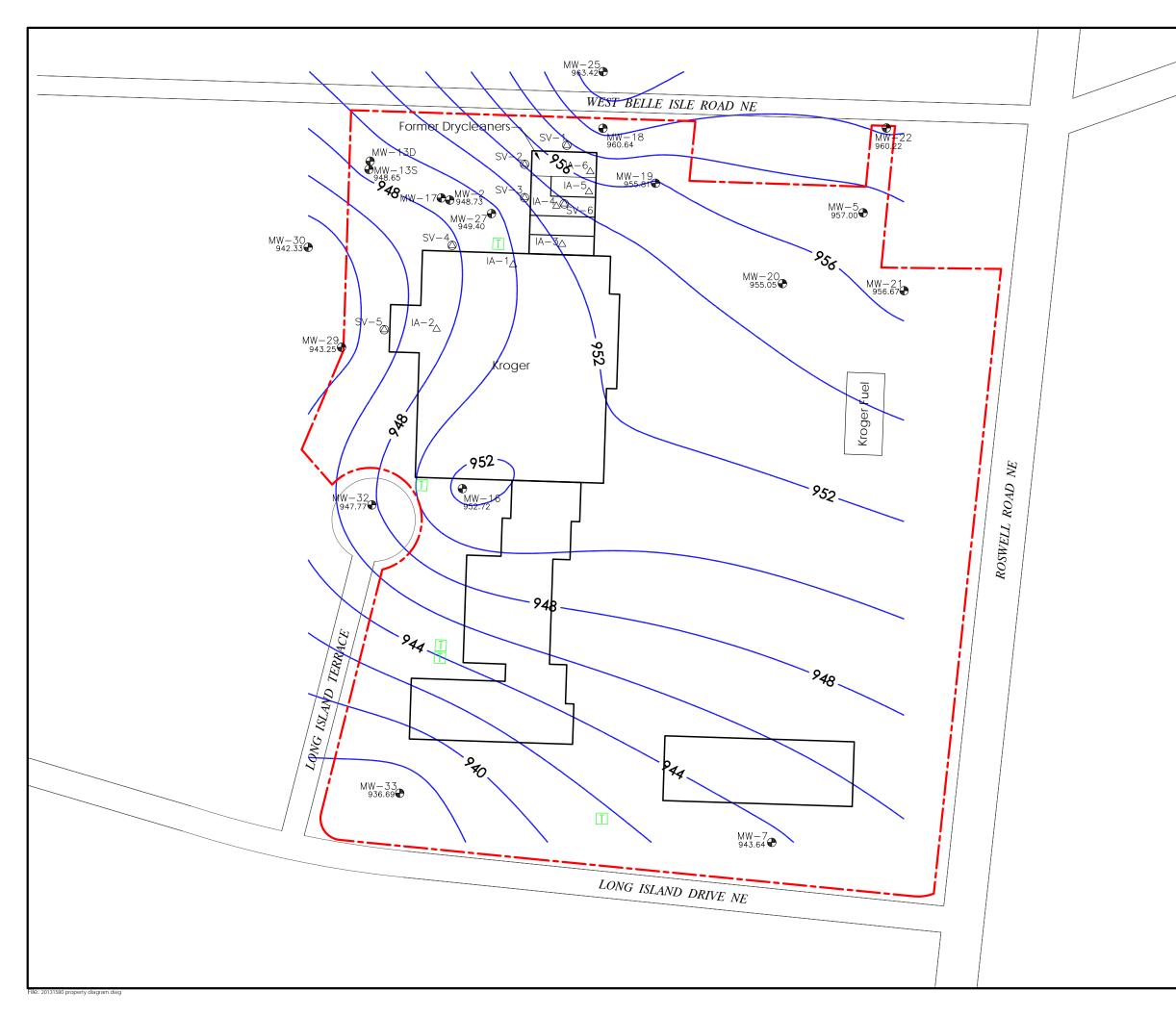
- 1. United States Geological Survey's 7.5-minute topographic quadrangle map of <u>Sandy Springs</u>, <u>Georgia</u>.
- 2. United States Department of Agriculture, Soil Conservation Services' <u>Soil Survey of Fulton</u> <u>County, Georgia</u>.
- 3. <u>Geologic Map of Georgia</u>, 1979, Georgia Geological Survey.
- 4. Georgia Geological Survey Bulletin 96, 1984, Georgia Geological Survey


APPENDIX A FIGURES

NOTE: 1. All Boundaries are Approximate.

SITE DIAGRAM				
Fountain Oaks 4920 Roswell Road Atlanta, Fulton County, Georgia 30342				
Drawn By: JSB	Not to Scale		Project No.: 20131813	
CAD By: RJA		→ Pr	operty Solutions Inc.	
CAD On: 5/9/2013			vironmental & Engineering Consulting 3 New Albany Road, Moorestown, NJ 08057	
Revised On: 6/6/2013		1000	one: 856-813-3000 & Fax: 856-813-1069	

LEGEND


Pad-Mounted Transformer Existing Monitoring Well Soil Vapor Sample

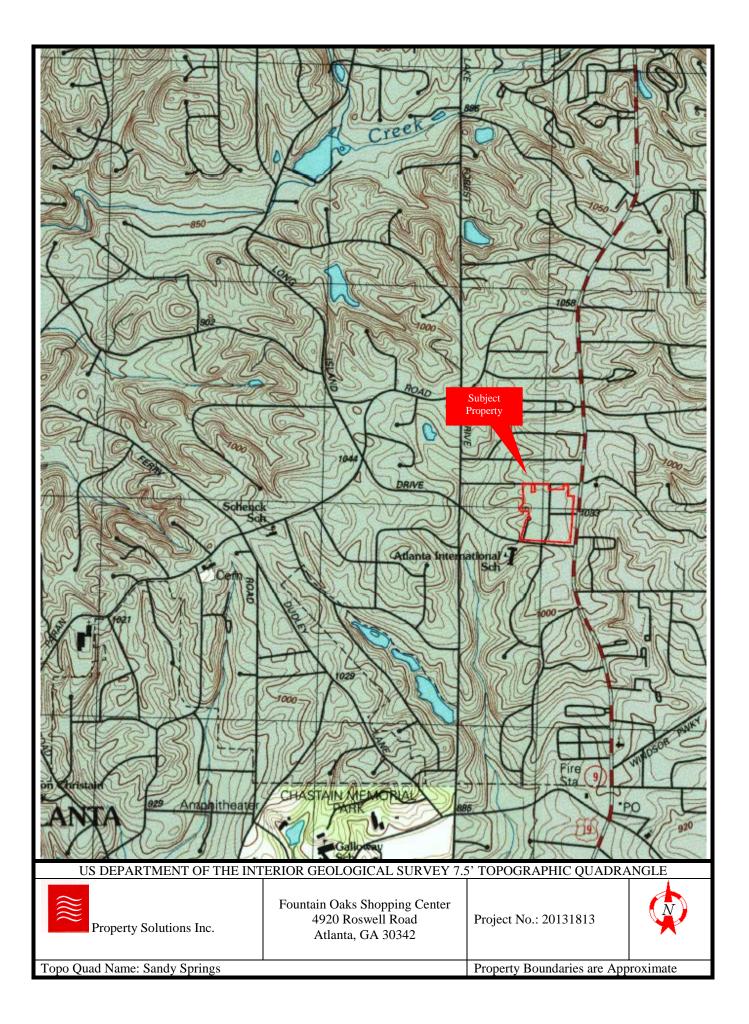
Indoor Air Sample

NOTE:

1. All Boundaries are Approximate.

SAMPLING LOCATIONS					
Fountain Oaks 4920 Roswell Road Atlanta, Fulton County, Georgia 30342					
Drawn By: JSB	y: Not to Scale Project No.: 20131813				
CAD By: RJA	-	P	operty Solutions Inc.		
CAD On: 5/9/2013	(\mathbf{N})		vironmental & Engineering Consulting 3 New Albany Road, Moorestown, NJ 08057		
Revised On: 5/24/2013	×	Ph	one: 856-813-3000 & Fax: 856-813-1069		

LEGEND


Existing Monitoring Well

- Soil Vapor Sample
- \triangle Indoor Air Sample

NOTE:

- All Boundaries are Approximate.
 All elevations are in feet above mean sea level (ft msl).
 Contour interval = 2 ft msl.

GROUNDWATER CONTOUR MAP (5/17/2013) Fountain Oaks 4920 Roswell Road Atlanta, Fulton County, Georgia 30342 Drawn By: JSB Not to Sca Project No.: 20131813 CAD By: RJA Property Solutions Inc. CAD On: 5/9/2013 (\mathbf{N}) Environmental & Engineering Consulting 323 New Albany Road, Moorestown, NJ 0805 evised On: 6/6/2013 one: 856-813-3000 & Fax: 856-813-1069

APPENDIX B TABLES

TABLE 1 GROUNDWATER ELEVATIONS FOUNTAIN OAKS SHOPPING CENTER ATLANTA, GEORGIA

Well Number	Top Of Casing Elevation (ft)	Total Depth (ft.)	Date Measured	Depth To Water (ft)	Groundwater Elevation (ft)
MW-2	983.45	50	11/10/2009	34.26	949.19
			5/17/2013	34.72	948.73
MW-5	987.90	37.5	11/10/2009	30.94	956.96
			5/17/2013	30.90	957.00
MW-7	985.55	47	11/10/2009	40.51	945.04
			5/15/2013	41.91	943.64
MW-13S	982.35	49.5	11/10/2009	33.17	949.18
			5/17/2013	33.70	948.65
MW-13D	982.10	100	5/21/2009	30.75	951.35
			5/17/2013	35.99	946.11
MW-16	982.05	40	11/10/2009	29.31	952.74
			5/17/2013	29.33	952.72
MW-17	983.49	99	5/21/2009	52.23	931.26
			5/17/2013	41.50	941.99
MW-18	995.19	45	11/10/2009	34.25	960.94
			5/17/2013	34.55	960.64
MW-19	990.85	40	11/10/2009	34.81	956.04
			5/17/2013	35.04	955.81
MW-20	985.13	40	11/10/2009	29.91	955.22
			5/17/2013	30.08	955.05
MW-21	990.13	38	11/10/2009	33.88	956.25
			5/15/2013	33.46	956.67
MW-22	987.66	35	11/10/2009	27.41	960.25
			5/17/2013	27.44	960.22
MW-25	995.32	34	11/10/2009	38.33	956.99
			5/15/2013	31.90	963.42
MW-27	986.53	46	11/10/2009	36.34	950.19
			5/17/2013	37.13	949.40
MW-29	982.68	42	11/10/2009	37.67	945.01
			5/17/2013	39.43	943.25
MW-30	972.84	34	11/10/2009	29.65	943.19
			5/17/2013	30.51	942.33
MW-32	985.12	44	11/10/2009	35.44	949.68
			5/15/2013	37.35	947.77
MW-33	976.34	49	11/10/2009	39.53	936.81
			5/17/2013	39.65	936.69

TABLE 2 SUMMARY LIST OF DETECTIONS IN GROUNDWATER SAMPLES FOUNTAIN OAKS SHOPPING CENTER ATLANTA, GEORGIA

Monitoring	Parameter		Samp	ole Date		RRS
Well	Detected	Dec-08	May-09	Nov-09	May-13	
	Tetrachloroethene	1,900	2,900	1,900	2,470	5
MW2	Trichloroethene	120	160	120	170	38
	Benzene	160	190	NS	26.6	8.7
	Tetrachloroethene	370	510	NS	246	5
MW5	cis-1,2-Dichloroethene	11	38	NS	72.1	1000
	Tetrachloroethene	920	350	160	54.1	5
MW13S	cis-1,2-Dichloroethene	25	15	12	6.31	1000
	2-Butanone	ND	NS	NS	10.5	NA
MW13D	Acetone	280	NS	NS	54.5	NA
	cis-1,2-Dichloroethene	100	97	NS	96.2	1000
MW16	Methyl tert-butyl ether (MTBE)	1,900	960	NS	961	260
	Tetrachloroethene	1,100	590	87	43.5	5
	Trichloroethene	15	24	50	34.5	38
MW18	cis-1,2-Dichloroethene	10	43	9.2	22.5	1000
MW19	Tetrachloroethene	92	130	NS	19.3	5
	Benzene	28	34	NS	95.3	8.7
	Tetrachloroethene	420	510	NS	200	5
MW20	cis-1,2-Dichloroethene	6.1	25	NS	79.1	1000
	Benzene	1600	1800	NS	745	8.7
MW21	Methyl tert-butyl ether (MTBE)	360	350	NS	1780	260
	Tetrachloroethene	280	270	NS	989	5
	Trichloroethene	15	13	NS	37.5	38
MW22	cis-1,2-Dichloroethene	650	900	NS	83.8	1000
	Tetrachloroethene	NA	190	61	47.8	5
	Trichloroethene	NA	14	7	5.8	38
MW27	cis-1,2-Dichloroethene	NA	14	11	11.2	1000
	cis-1,2-Dichloroethene	NA	7.4	NS	11.8	1000
MW-29	Methyl tert-butyl ether (MTBE)	NA	4.8	NS	14.9	260
MW30	Tetrachloroethene	NA	42	23	17.9	5

All results in micrograms per liter (μ g/L) **Bold** indicates result above Risk Reduction Standard (RRS)

TABLE 3 SUMMARY LIST OF DETECTIONS IN SOIL GAS SAMPLES FOUNTAIN OAKS SHOPPING CENTER ATLANTA, GEORGIA

Sample	Parameter	
ĪĎ	Detected	May-13
	Dichlorodifluoromethane	11
	Acetone	39
	Benzene	8.4
	Toluene	48
	Tetrachloroethene	1,200
	Ethylbenzene	12
	m,p-Xylene	40
	o-Xylene	13
SV-1	1,2,4-Trimethylbenzene	14
	Dichlorodifluoromethane	31
	Trichlorofluoromethane	58
	Acetone	61
	Carbon disulfide	7.0
	Benzene	37
	Trichloroethene	7.2
	4-Methyl-2-pentanone (MIBK)	14
	Toluene	110
	Tetrachloroethene	780
	Chlorobenzene	8.5
	Ethylbenzene	30
	m,p-Xylene	90
	o-Xylene	27
	4-Ethyltoluene	10
	1,3,5-Trimethylbenzene	11
SV-2	1,2,4-Trimethylbenzene	34
	Acetone	32
	Benzene	13
	Toluene	27
	Tetrachloroethene	87
	Ethylbenzene	6.9
	m,p-Xylene	25
	o-Xylene	9.1
SV-3	1,2,4-Trimethylbenzene	12
	Acetone	92
	Carbon disulfide	7.9
	Chloroform	8.6
	Benzene	140
	4-Methyl-2-pentanone (MIBK)	21
	Toluene	170
	Tetrachloroethene	180
	Chlorobenzene	20
	Ethylbenzene	32
	m,p-Xylene	91
	o-Xylene	27
	4-Ethyltoluene	5.5
	1,3,5-Trimethylbenzene	6.7
SV-4	1,2,4-Trimethylbenzene	23
Jv-4	Acetone	100
	Carbon disulfide	8
	Carbon uisuniue	8 17

TABLE 3 SUMMARY LIST OF DETECTIONS IN SOIL GAS SAMPLES FOUNTAIN OAKS SHOPPING CENTER ATLANTA, GEORGIA

	4-Methyl-2-pentanone (MIBK)	15
	Toluene	65
	Chlorobenzene	8.3
	Ethylbenzene	21
	m,p-Xylene	64
	o-Xylene	22
	4-Ethyltoluene	5.9
	1,3,5-Trimethylbenzene	5.8
SV-5	1,2,4-Trimethylbenzene	20
	Dichlorodifluoromethane	7.6
	Trichlorofluoromethane	19
	Acetone	250
	2-Butanone	43
	Benzene	25
	4-Methyl-2-pentanone (MIBK)	36
	Toluene	84
	Tetrachloroethene	24
	Chlorobenzene	5.7
	Ethylbenzene	26
	m,p-Xylene	79
	o-Xylene	24
	4-Ethyltoluene	9.3
	1,3,5-Trimethylbenzene	8.4
SV-6	1,2,4-Trimethylbenzene	33

All results in micrograms per cubic meter ($\mu g/m^3$)

TABLE 4 SUMMARY LIST OF DETECTIONS IN INDOOR AIR SAMPLES FOUNTAIN OAKS SHOPPING CENTER ATLANTA, GEORGIA

Sample	Parameter		Target Indoor Air	Target Indoor Air
IĎ	Detected	May-13	Concentration (State)*	Concentration (Federal)**
		_		
	Dichlorodifluoromethane	1.8	440	440
	Chloromethane	1.4	390	390
	Trichlorofluoromethane	7.4	3,100	3,100
	Acetone	31	140,000	140,000
	Methylene chloride	0.72	2,600	1,200
	Carbon disulfide	3.0	3,100	3,100
	2-Butanone (MEK)	3.4	22,000	22,000
	Chloroform	0.95	5.3	0.53
	Benzene	1.0	16	1.6
	Carbon tetrachloride	0.57	20	2.2
	Toluene	4.5	22,000	22,000
	Ethylbenzene	0.64	49	4.9
	m,p-Xylene	1.70	440	440
	Styrene	0.65	4,400	4,400
	o-Xylene	0.66	440	440
IA-1	1,2,4-Trimethylbenzene	0.00	31	31
14-1	Dichlorodifluoromethane	2.3	440	440
	Chloromethane	2.5	390	390
	Trichlorofluoromethane	8.4	3,100	3,100
	Acetone	33	140,000	140,000
	Methylene chloride	0.60	2,600	1,200
	2-Butanone (MEK)	3.6	22,000	22,000
	Chloroform	1.1	5.3	0.53
	Benzene	0.95	16	1.6
	Carbon tetrachloride	0.59	20	2.2
	Toluene	3.6	22,000	22,000
	Ethylbenzene	0.50	49	4.9
	m,p-Xylene	1.3	440	440
	Styrene	0.75	4,400	4,400
	o-Xylene	0.54	440	440
IA-2	1,2,4-Trimethylbenzene	0.59	31	31
	Dichlorodifluoromethane	2.4	440	440
	Chloromethane	1.4	390	390
	Trichlorofluoromethane	13	3,100	3,100
	Acetone	26	140,000	140,000
	Methylene chloride	0.41	2,600	1,200
	Carbon disulfide	0.73	3,100	3,100
	2-Butanone (MEK)	1.9	22,000	22,000
	Benzene	0.75	16	1.6
	Carbon tetrachloride	0.40	20	2.2
	Toluene	2.2	22,000	22,000
	m,p-Xylene	1.2	440	440
IA-3	1,2,4-Trimethylbenzene	0.52	31	31
-	Dichlorodifluoromethane	2.8	440	440
	Chloromethane	1.1	390	390
	Trichlorofluoromethane	1.1	3,100	3,100
	Acetone	29	140,000	140,000
	1,1,2-Trichlorotrifluoroethane	2.8	130,000	130,000
	1,1,2-111CINOIOUIIIuOIOEUIAIIE		,	,
	Methylene chloride	0.43	2,600	1,200

TABLE 4 SUMMARY LIST OF DETECTIONS IN INDOOR AIR SAMPLES FOUNTAIN OAKS SHOPPING CENTER ATLANTA, GEORGIA

	2-Butanone (MEK)	1.8	22,000	22,000
	Chloroform	0.28	5.3	0.53
	Benzene	0.76	16	1.6
	Carbon tetrachloride	0.34	20	2.2
	Toluene	2.6	22,000	22,000
	Ethylbenzene	0.45	49	4.9
	m,p-Xylene	1.4	440	440
	Styrene	0.65	4,400	4,400
	o-Xylene	0.55	440	440
IA-4	1,2,4-Trimethylbenzene	0.55	31	31
	Dichlorodifluoromethane	3.4	440	440
	Chloromethane	1.5	390	390
	Trichlorofluoromethane	22	3,100	3,100
	Acetone	250	140,000	140,000
	1,1,2-Trichlorotrifluoroethane	16	130,000	130,000
	Methylene chloride	0.62	2,600	1,200
	2-Butanone (MEK)	2.3	22,000	22,000
	Chloroform	1.0	5.3	0.53
	1,1,1-Trichloroethane	3.1	22,000	22,000
	Benzene	0.82	16	1.6
	Carbon tetrachloride	0.43	20	2.2
	Toluene	4.0	22,000	22,000
	Tetrachloroethene	3.1	180	47
	Ethylbenzene	0.92	49	4.9
	m,p-Xylene	2.6	440	440
	Styrene	2.0	4,400	4,400
	o-Xylene	0.88	440	440
IA-5	1,2,4-Trimethylbenzene	0.51	31	31
	Dichlorodifluoromethane	3.1	440	440
	Chloromethane	1.5	390	390
	Trichlorofluoromethane	23	3,100	3,100
	Acetone	36	140,000	140,000
	1,1,2-Trichlorotrifluoroethane	1.2	130,000	130,000
	Methylene chloride	0.42	2,600	1,200
	2-Butanone (MEK)	2.0	22,000	22,000
	Chloroform	0.49	5.3	0.53
	Benzene	0.61	16	1.6
	Carbon tetrachloride	0.42	20	2.2
	Toluene	2.8	22,000	22,000
	Tetrachloroethene	1.2	180	47
	m,p-Xylene	1.2	440	440
IA-6	1,2,4-Trimethylbenzene	0.65	31	31

All results in micrograms per cubic meter $(\mu g/m^3)$

*Based on the EPA OSWER Vapor Intrusion Screening Level (VISL) Calculator Version 3.0, November 2012 RSLs for commercial properties using a Target Risk For Carcinogens (TCR) of 1.00E-05

Based on the EPA OSWER Vapor Intrusion Screening Level (VISL) Calculator Version 3.0, November 2012 RSLs for commercial properties using a Target Risk For Carcinogens (TCR) of 1.00E-06. **Bold indicates a result over this value.

APPENDIX C PROPERTY PHOTOGRAPHS

PHOTO 1.

Project identification signage, Roswell Road.

PHOTO 2.

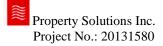

View of the east elevation of the large building (containing Kroger Grocery Store).

PHOTO 3.

View of the north elevation of the smaller building on left side of photo.

PHOTO 4.

View of east side of the north end of the large building. Former drycleaner was located in the northern most tenant space (currently identified in the photograph as "Martial Arts").

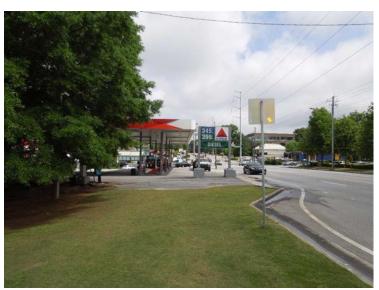
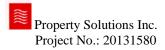



PHOTO 5.

Citgo Station, adjoining to the northeast.

PHOTO 6. On-site Kroger Fuel Center

PHOTO 7.

Typical flush-mount monitoring wells on subject property.

PHOTO 8.

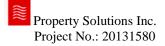

Western portion of subject property - MW-30 is visible in the background.

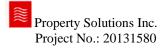
PHOTO 9.

Interior of former dry cleaner (current martial arts studio).

PHOTO 10.

Indoor air sample in former dry cleaner.

PHOTO 11.


One of the indoor air sample locations in Kroger store.

РНОТО 12.

Typical set-up of near-slab soil vapor sampling point.

APPENDIX D ANALYTICAL DATA

NELAP CERTIFICATE NUMBER 01955 DOD ELAP CERTIFICATE NUMBER ADE - 1482

ANALYTICAL RESULTS

PERFORMED BY

GULF COAST ANALYTICAL LABORATORIES, INC.

7979 GSRI Avenue Baton Rouge, LA 70820

Report Date 05/24/2013

Deliver To Property Solutions, Inc. 1270 Winchester Prkwy. Suite 202 Smyrna, GA 30080 770-434-1997 Ext. 210

Attn Brant Teets

Project Rush VOC

CASE NARRATIVE

Client: Property Solutions Report: 213051701

Gulf Coast Analytical Laboratories received and analyzed the sample(s) listed on the sample cross-reference page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was resubmitted on 05/24/13. The client revised the ID for sample 213005170101 (MW-21).

VOLATILES MASS SPECTROMETRY

In the SW-846 8260B analysis, sample 21305170101 (MW-21) had to be diluted to bracket the concentration of target compounds within the calibration range of the instrument. The dilution is reflected in elevated detection limits.

MISCELLANEOUS

The volatile containers for samples 21305170101 (MW-21) and 21305170104 (MW-25) contained headspace in excess of that allowed by the method. The sample was analyzed at the clients request.

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with GCAL's Standard Operating Procedures.

Common Abbreviations Utilized in this Report

ND Indicates the result was Not Detected at the specified RDL DO Indicates the result was Diluted Out МІ Indicates the result was subject to Matrix Interference TNTC Indicates the result was Too Numerous To Count **SUBC** Indicates the analysis was Sub-Contracted FLD Indicates the analysis was performed in the Field PQL Practical Quantitation Limit MDL Method Detection Limit RDL Reporting Detection Limit 00:00 Reported as a time equivalent to 12:00 AM

Reporting Flags Utilized in this Report

- J Indicates the result is between the MDL and RDL
- U Indicates the compound was analyzed for but not detected
- **B** Indicates the analyte was detected in the associated Method Blank

Sample receipt at GCAL is documented through the attached chain of custody. In accordance with NELAC, this report shall be reproduced only in full and with the written permission of GCAL. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with the NELAC standard and terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

Estimated uncertainty of measurement is available upon request. This report is in compliance with the DOD QSM as specified in the contract if applicable.

Authorized Signature **GCAL REPORT** 213051701

Report Sample Summary

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
21305170101	MW-21	Water	05/15/2013 13:25	05/17/2013 09:00
21305170102	MW-7	Water	05/15/2013 14:25	05/17/2013 09:00
21305170103	MW-32	Water	05/15/2013 15:10	05/17/2013 09:00
21305170104	MW-25	Water	05/15/2013 16:30	05/17/2013 09:00

Summary of Compounds Detected

GCAL ID 21305170101	Client ID MW-21	Matrix Water	Collect Date/Time Receive Date/Time 05/15/2013 13:25 05/17/2013 09:00			
SW-846 826	50B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
71-43-2	Benzene		745	25.0		ug/L
SW-846 826	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
1634-04-4	tert-Butyl methyl ether (MTBE)		1780	100		ug/L

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
21305170101	MW-21	Water	05/15/2013 13:25	05/17/2013 09:00

SV	V-846 8260B	
	Prep Date	Prep Batch

Prep Date	Prep Batch Prep Method	Dilution 5	Analyzed 05/17/2013 13:01	ByAnalytical BatclAMD507508	า
CAS#	Parameter	Result	RDL	REG LIMIT	Units
630-20-6	1,1,1,2-Tetrachloroethane	<25.0	25.0		ug/L
71-55-6	1,1,1-Trichloroethane	<25.0	25.0		ug/L
79-34-5	1,1,2,2-Tetrachloroethane	<25.0	25.0		ug/L
79-00-5	1,1,2-Trichloroethane	<25.0	25.0		ug/L
75-34-3	1,1-Dichloroethane	<25.0	25.0		ug/L
75-35-4	1,1-Dichloroethene	<25.0	25.0		ug/L
563-58-6	1,1-Dichloropropene	<25.0	25.0		ug/L
96-18-4	1,2,3-Trichloropropane	<25.0	25.0		ug/L
120-82-1	1,2,4-Trichlorobenzene	<25.0	25.0		ug/L
95-63-6	1,2,4-Trimethylbenzene	<25.0	25.0		ug/L
96-12-8	1,2-Dibromo-3-chloropropane	<25.0	25.0		ug/L
106-93-4	1,2-Dibromoethane	<25.0	25.0		ug/L
95-50-1	1,2-Dichlorobenzene	<25.0	25.0		ug/L
107-06-2	1,2-Dichloroethane	<25.0	25.0		ug/L
540-59-0	1,2-Dichloroethene(Total)	<50.0	50.0		ug/L
78-87-5	1,2-Dichloropropane	<25.0	25.0		ug/L
108-67-8	1,3,5-Trimethylbenzene	<25.0	25.0		ug/L
541-73-1	1,3-Dichlorobenzene	<25.0	25.0		ug/L
142-28-9	1,3-Dichloropropane	<25.0	25.0		ug/L
106-46-7	1,4-Dichlorobenzene	<25.0	25.0		ug/L
594-20-7	2,2-Dichloropropane	<25.0	25.0		ug/L
78-93-3	2-Butanone	<25.0	25.0		ug/L
95-49-8	2-Chlorotoluene	<25.0	25.0		ug/L
591-78-6	2-Hexanone	<25.0	25.0		-
106-43-4	4-Chlorotoluene	<25.0	25.0		ug/L ug/L
99-87-6		<25.0	25.0		-
	4-Isopropyltoluene				ug/L
108-10-1	4-Methyl-2-pentanone	<25.0	25.0		ug/L
67-64-1	Acetone	<25.0	25.0		ug/L
71-43-2	Benzene	745	25.0		ug/L
108-86-1	Bromobenzene	<25.0	25.0		ug/L
74-97-5	Bromochloromethane	<25.0	25.0		ug/L
75-27-4	Bromodichloromethane	<25.0	25.0		ug/L
75-25-2	Bromoform	<25.0	25.0		ug/L
74-83-9	Bromomethane	<25.0	25.0		ug/L
75-15-0	Carbon disulfide	<25.0	25.0		ug/L
56-23-5	Carbon tetrachloride	<25.0	25.0		ug/L
108-90-7	Chlorobenzene	<25.0	25.0		ug/L
75-00-3	Chloroethane	<25.0	25.0		ug/L
67-66-3	Chloroform	<25.0	25.0		ug/L
74-87-3	Chloromethane	<25.0	25.0		ug/L
124-48-1	Dibromochloromethane	<25.0	25.0		ug/L
74-95-3	Dibromomethane	<25.0	25.0		ug/L
75-71-8	Dichlorodifluoromethane	<25.0	25.0		ug/L
100-41-4	Ethylbenzene	<25.0	25.0		ug/L
87-68-3	Hexachlorobutadiene	<25.0	25.0		ug/L
98-82-8	Isopropylbenzene (Cumene)	<25.0	25.0		ug/L
74-88-4	Methyl iodide	<25.0	25.0		ug/L
75-09-2	Methylene chloride	<25.0	25.0		ug/L
91-20-3	Naphthalene	<25.0	25.0		ug/L
100-42-5	Styrene	<25.0	25.0		ug/L

AL ID 05170101	Client ID I MW-21		Collect Date/ 05/15/2013 1							
V-846 8260B										
Prep Date	Prep Batch	Prep Method	Dilution 5	Analyzed 05/17/2013 13:01	By AMD	Analytical Batch 507508				
CAS#	Parameter		Result	RDL	R	EG LIMIT	Units			
127-18-4	Tetrachloroethene		<25.0	25.0			ug/L			
108-88-3	Toluene		<25.0	25.0			ug/L			
79-01-6	Trichloroethene		<25.0	25.0			ug/L			
75-69-4	Trichlorofluoromethane		<25.0	25.0			ug/L			
76-13-1	Trichlorotrifluoroethane		<25.0	25.0			ug/L			
75-01-4	Vinyl chloride		<25.0	25.0			ug/L			
1330-20-7	Xylene (total)		<75.0	75.0			ug/L			
156-59-2	cis-1,2-Dichloroethene		<25.0	25.0			ug/L			
10061-01-5	cis-1,3-Dichloropropene		<25.0	25.0			ug/L			
136777-61-2	m,p-Xylene		<50.0	50.0			ug/L			
104-51-8	n-Butylbenzene		<25.0	25.0			ug/L			
103-65-1	n-Propylbenzene		<25.0	25.0			ug/L			
95-47-6	o-Xylene		<25.0	25.0			ug/L			
135-98-8	sec-Butylbenzene		<25.0	25.0			ug/L			

Conc. Spiked

250

250

250

250

<25.0

<25.0

<25.0

<25.0

282

251

260

227

Conc. Rec

25.0

25.0

25.0

25.0

% Recovery

113

100

104

91

Units

ug/L

ug/L

ug/L

ug/L

SW-846 8260B

98-06-6

156-60-5

110-57-6

460-00-4

1868-53-7

2037-26-5

17060-07-0

CAS#

10061-02-6

tert-Butylbenzene

4-Bromofluorobenzene

Dibromofluoromethane

1,2-Dichloroethane-d4

Surrogate

Toluene d8

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

trans-1,4-Dichloro-2-butene

Prep Date	Prep Batch	Prep Method	Dilution 20	Analyzed 05/17/2013 15:29	By Analy AMD 50750	/tical Batch 08
CAS#	Parameter		Result	RDL	REG LIMI	T Units
1634-04-4	tert-Butyl methyl ether	(MTBE)	1780	100		ug/L
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Recovery	Rec Limits
460-00-4	4-Bromofluorobenzene	1000	1110	ug/L	111	78 - 130
1868-53-7	Dibromofluoromethane	1000	1010	ug/L	101	77 - 127
2037-26-5	Toluene d8	1000	1020	ug/L	102	76 - 134
17060-07-0	1,2-Dichloroethane-d4	1000	934	ug/L	93	71 - 127

ug/L

ug/L

ug/L

ug/L

Rec Limits

78 - 130

77 - 127

76 - 134

71 - 127

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
<mark>21305170102</mark>	MW-7	Water	05/15/2013 14:25	05/17/2013 09:00
SW-846 82	60B			

Prep Date	Prep Batch	Prep Method	Dilution 1	Analyzed 05/17/2013 13:22	By AMD	Analytical Batc 507508	h
CAS#	Parameter		Result	RDL	R	EG LIMIT	Units
630-20-6	1,1,1,2-Tetrachloroethane		<5.00	5.00			ug/l
71-55-6	1,1,1-Trichloroethane		<5.00	5.00			ug/l
79-34-5	1,1,2,2-Tetrachloroethane		<5.00	5.00			ug/l
79-00-5	1,1,2-Trichloroethane		<5.00	5.00			ug/l
75-34-3	1,1-Dichloroethane		<5.00	5.00			ug/l
75-35-4	1,1-Dichloroethene		<5.00	5.00			ug/l
563-58-6	1,1-Dichloropropene		<5.00	5.00			ug/l
96-18-4	1,2,3-Trichloropropane		<5.00	5.00			ug/l
120-82-1	1,2,4-Trichlorobenzene		<5.00	5.00			ug/l
95-63-6	1,2,4-Trimethylbenzene		<5.00	5.00			ug/l
96-12-8	1,2-Dibromo-3-chloropropa	ne	<5.00	5.00			ug/l
106-93-4	1,2-Dibromoethane		<5.00	5.00			ug/l
95-50-1	1,2-Dichlorobenzene		<5.00	5.00			ug/l
107-06-2	1,2-Dichloroethane		<5.00	5.00			ug/l
540-59-0	1,2-Dichloroethene(Total)		<10.0	10.0			ug/l
78-87-5	1,2-Dichloropropane		<5.00	5.00			ug/l
108-67-8	1,3,5-Trimethylbenzene		<5.00	5.00			ug/l
541-73-1	1,3-Dichlorobenzene		<5.00	5.00			-
142-28-9			<5.00	5.00			ug/l
	1,3-Dichloropropane						ug/l
106-46-7	1,4-Dichlorobenzene		<5.00	5.00			ug/l
594-20-7	2,2-Dichloropropane		<5.00	5.00			ug/l
78-93-3	2-Butanone		<5.00	5.00			ug/l
95-49-8	2-Chlorotoluene		<5.00	5.00			ug/l
591-78-6	2-Hexanone		<5.00	5.00			ug/l
106-43-4	4-Chlorotoluene		<5.00	5.00			ug/l
99-87-6	4-Isopropyltoluene		<5.00	5.00			ug/l
108-10-1	4-Methyl-2-pentanone		<5.00	5.00			ug/l
67-64-1	Acetone		<5.00	5.00			ug/l
71-43-2	Benzene		<5.00	5.00			ug/l
108-86-1	Bromobenzene		<5.00	5.00			ug/l
74-97-5	Bromochloromethane		<5.00	5.00			ug/l
75-27-4	Bromodichloromethane		<5.00	5.00			ug/l
75-25-2	Bromoform		<5.00	5.00			ug/l
74-83-9	Bromomethane		<5.00	5.00			ug/l
75-15-0	Carbon disulfide		<5.00	5.00			ug/l
56-23-5	Carbon tetrachloride		<5.00	5.00			ug/l
108-90-7	Chlorobenzene		<5.00	5.00			ug/l
75-00-3	Chloroethane		<5.00	5.00			ug/l
67-66-3	Chloroform		<5.00	5.00			ug/l
74-87-3	Chloromethane		<5.00	5.00			ug/l
124-48-1	Dibromochloromethane		<5.00	5.00			ug/l
74-95-3	Dibromomethane		<5.00	5.00			ug/l
75-71-8	Dichlorodifluoromethane		<5.00	5.00			ug/l
100-41-4	Ethylbenzene		<5.00	5.00			ug/l
37-68-3	Hexachlorobutadiene		<5.00	5.00			ug/l
98-82-8	Isopropylbenzene (Cumene	e)	<5.00	5.00			ug/l
74-88-4	Methyl iodide		<5.00	5.00			ug/l
75-09-2	Methylene chloride		<5.00	5.00			ug/l
91-20-3	Naphthalene		<5.00	5.00			ug/l
100-42-5	Styrene		<5.00	5.00			ug/l

AL ID	Client ID	Matrix	Collect Date	/Time	Receive	e Date/Time	
05170102	MW-7	Water	05/15/2013 1	4:25	05/17/2013 09:00		
V-846 826	0B						
Prep Date	Prep Batch	Prep Method	Dilution	Analyzed	Ву	Analytical	Batch
	-	-	1	05/17/2013 13:22	AMD	507508	
CAS#	Parameter		Result	RDL	RE	EG LIMIT	Unit
127-18-4	Tetrachloroethene		<5.00	5.00			ug/
108-88-3	Toluene		<5.00	5.00			ug
79-01-6	Trichloroethene		<5.00	5.00			ug
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug
75-01-4	Vinyl chloride		<5.00	5.00			ug
1330-20-7	Xylene (total)		<15.0	15.0			ug
156-59-2	cis-1,2-Dichloroethene		<5.00	5.00			ug
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			ug
136777-61-2	m,p-Xylene		<10.0	10.0			ug
104-51-8	n-Butylbenzene		<5.00	5.00			ug
103-65-1	n-Propylbenzene		<5.00	5.00			ug
95-47-6	o-Xylene		<5.00	5.00			ug
135-98-8	sec-Butylbenzene		<5.00	5.00			ug
1634-04-4	tert-Butyl methyl ether (MT	BE)	<5.00	5.00			ug
98-06-6	tert-Butylbenzene		<5.00	5.00			ug
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			ug
10061-02-6	trans-1,3-Dichloropropene		<5.00	5.00			ug
110-57-6	trans-1,4-Dichloro-2-butene	9	<5.00	5.00			ug
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Rec	covery	Rec Limi
460-00-4	4-Bromofluorobenzene	50	54.5	ug/L		109	78 - 13
1868-53-7	Dibromofluoromethane	50	52.3	ug/L		105	77 - 12
2037-26-5	Toluene d8	50	50.7	ug/L		101	76 - 13
17060-07-0	1,2-Dichloroethane-d4	50	47.3	ug/L		95	71 - 12

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305170103	MW-32	Water	05/15/2013 15:10	05/17/2013 09:00	
_					

SW-846	8260B
311-040	02000

Prep Date	Prep Batch Prep Method	Dilution 1	Analyzed 05/17/2013 13:44	By AMD	Analytical Batch 507508	
CAS#	Parameter	Result	RDL	REC	G LIMIT	Units
630-20-6	1,1,1,2-Tetrachloroethane	<5.00	5.00			ug/L
71-55-6	1,1,1-Trichloroethane	<5.00	5.00			ug/L
79-34-5	1,1,2,2-Tetrachloroethane	<5.00	5.00			ug/L
79-00-5	1,1,2-Trichloroethane	<5.00	5.00			ug/L
75-34-3	1,1-Dichloroethane	<5.00	5.00			ug/L
75-35-4	1,1-Dichloroethene	<5.00	5.00			ug/L
563-58-6	1,1-Dichloropropene	<5.00	5.00			ug/L
96-18-4	1,2,3-Trichloropropane	<5.00	5.00			ug/L
120-82-1	1,2,4-Trichlorobenzene	<5.00	5.00			ug/L
95-63-6	1,2,4-Trimethylbenzene	<5.00	5.00			ug/L
96-12-8	1,2-Dibromo-3-chloropropane	<5.00	5.00			ug/L
106-93-4	1,2-Dibromoethane	<5.00	5.00			ug/L
95-50-1	1,2-Dichlorobenzene	<5.00	5.00			ug/L
107-06-2	1,2-Dichloroethane	<5.00	5.00			ug/L
540-59-0	1,2-Dichloroethene(Total)	<10.0	10.0			ug/L
78-87-5	1,2-Dichloropropane	<5.00	5.00			ug/L
108-67-8	1,3,5-Trimethylbenzene	<5.00	5.00			ug/L
541-73-1	1,3-Dichlorobenzene	<5.00	5.00			ug/L
142-28-9	1,3-Dichloropropane	<5.00	5.00			ug/L
106-46-7	1,4-Dichlorobenzene	<5.00	5.00			ug/L
594-20-7	2,2-Dichloropropane	<5.00	5.00			ug/L
78-93-3	2-Butanone	<5.00	5.00			ug/L
95-49-8	2-Chlorotoluene	<5.00	5.00			ug/L
591-78-6	2-Hexanone	<5.00	5.00			ug/L
106-43-4	4-Chlorotoluene	<5.00	5.00			ug/L
99-87-6	4-Isopropyltoluene	<5.00	5.00			ug/L
108-10-1	4-Methyl-2-pentanone	<5.00	5.00			ug/L
67-64-1	Acetone	<5.00	5.00			
71-43-2	Benzene	<5.00	5.00			ug/L ug/L
108-86-1	Bromobenzene	<5.00	5.00			-
74-97-5	Bromochloromethane	<5.00	5.00			ug/L
						ug/L
75-27-4	Bromodichloromethane	<5.00	5.00			ug/L
75-25-2 74-83-9	Bromoform	<5.00	5.00			ug/L
	Bromomethane	<5.00	5.00			ug/L
75-15-0	Carbon disulfide	<5.00	5.00			ug/L
56-23-5	Carbon tetrachloride	<5.00	5.00			ug/L
108-90-7	Chlorobenzene	<5.00	5.00			ug/L
75-00-3	Chloroethane	<5.00	5.00			ug/L
67-66-3	Chloroform	<5.00	5.00			ug/L
74-87-3	Chloromethane	<5.00	5.00			ug/L
124-48-1	Dibromochloromethane	<5.00	5.00			ug/L
74-95-3	Dibromomethane	<5.00	5.00			ug/L
75-71-8	Dichlorodifluoromethane	<5.00	5.00			ug/L
100-41-4	Ethylbenzene	<5.00	5.00			ug/L
87-68-3	Hexachlorobutadiene	<5.00	5.00			ug/L
98-82-8	Isopropylbenzene (Cumene)	<5.00	5.00			ug/L
74-88-4	Methyl iodide	<5.00	5.00			ug/L
75-09-2	Methylene chloride	<5.00	5.00			ug/L
91-20-3	Naphthalene	<5.00	5.00			ug/L
100-42-5	Styrene	<5.00	5.00			ug/L

AL ID 05170103	Client IDMatrixCollect Date/TimeMW-32Water05/15/2013 15:10					e Date/Time 013 09:00						
V-846 826	V-846 8260B											
Prep Date	Prep Batch	Prep Method	Dilution 1	Analyzed 05/17/2013 13:44	By AMD	Analytical Batch 507508						
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Unit					
127-18-4	Tetrachloroethene		<5.00	5.00			ug/					
108-88-3	Toluene		<5.00	5.00			ug/					
79-01-6	Trichloroethene		<5.00	5.00			ug					
75-69-4	Trichlorofluoromethane	9	<5.00	5.00			ug					
76-13-1	Trichlorotrifluoroethane	9	<5.00	5.00			ug					
75-01-4	Vinyl chloride		<5.00	5.00			ug					
1330-20-7	Xylene (total)		<15.0	15.0			ug					
156-59-2	cis-1,2-Dichloroethene		<5.00	5.00			ug					
10061-01-5	cis-1,3-Dichloropropen	e	<5.00	5.00			ug					
136777-61-2	m,p-Xylene		<10.0	10.0			ug					
104-51-8	n-Butylbenzene		<5.00	5.00			ug					
103-65-1	n-Propylbenzene		<5.00	5.00			ug					
95-47-6	o-Xylene		<5.00	5.00			ug					
135-98-8	sec-Butylbenzene		<5.00	5.00			ug					
1634-04-4	tert-Butyl methyl ether	(MTBE)	<5.00	5.00			ug					
98-06-6	tert-Butylbenzene		<5.00	5.00			ug					
156-60-5	trans-1,2-Dichloroethe	ne	<5.00	5.00			ug					
10061-02-6	trans-1,3-Dichloroprop	ene	<5.00	5.00			ug/					
110-57-6	trans-1,4-Dichloro-2-bu	utene	<5.00	5.00			ug					
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Red	covery Red	: Limit					

110-57-6	trans-1,4-Dichloro-2-butene		<5.00	5.00		ug/L
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Recovery	Rec Limits
460-00-4	4-Bromofluorobenzene	50	54.5	ug/L	109	78 - 130
1868-53-7	Dibromofluoromethane	50	52.5	ug/L	105	77 - 127
2037-26-5	Toluene d8	50	51.8	ug/L	104	76 - 134
17060-07-0	1,2-Dichloroethane-d4	50	45.5	ug/L	91	71 - 127

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
21305170104	MW-25	Water	05/15/2013 16:30	05/17/2013 09:00
SW-846 82	60B			

Prep Date	Prep Batch Prep Method	Dilution 1	Analyzed 05/17/2013 14:04	ByAnalytical BatcAMD507508	h
CAS#	Parameter	Result	RDL	REG LIMIT	Units
630-20-6	1,1,1,2-Tetrachloroethane	<5.00	5.00		ug/l
71-55-6	1,1,1-Trichloroethane	<5.00	5.00		ug/l
79-34-5	1,1,2,2-Tetrachloroethane	<5.00	5.00		ug/l
79-00-5	1,1,2-Trichloroethane	<5.00	5.00		ug/
75-34-3	1,1-Dichloroethane	<5.00	5.00		ug/
75-35-4	1,1-Dichloroethene	<5.00	5.00		ug/
563-58-6	1,1-Dichloropropene	<5.00	5.00		ug/
96-18-4	1,2,3-Trichloropropane	<5.00	5.00		ug/
120-82-1	1,2,4-Trichlorobenzene	<5.00	5.00		ug/
95-63-6	1,2,4-Trimethylbenzene	<5.00	5.00		ug/
96-12-8	1,2-Dibromo-3-chloropropane	<5.00	5.00		ug/
106-93-4	1,2-Dibromoethane	<5.00	5.00		ug/
95-50-1	1,2-Dichlorobenzene	<5.00	5.00		ug/
107-06-2	1,2-Dichloroethane	<5.00	5.00		ug/
540-59-0	1,2-Dichloroethene(Total)	<10.0	10.0		ug/
78-87-5	1,2-Dichloropropane	<5.00	5.00		ug/
108-67-8	1,3,5-Trimethylbenzene	<5.00	5.00		ug/
541-73-1	1,3-Dichlorobenzene	<5.00	5.00		ug/
142-28-9	1,3-Dichloropropane	<5.00	5.00		ug/
106-46-7	1,4-Dichlorobenzene	<5.00	5.00		ug/
594-20-7	2,2-Dichloropropane	<5.00	5.00		ug/
78-93-3	2-Butanone	<5.00	5.00		ug/
95-49-8	2-Chlorotoluene	<5.00	5.00		ug/
591-78-6	2-Hexanone	<5.00	5.00		ug/
106-43-4	4-Chlorotoluene	<5.00	5.00		ug/
99-87-6	4-Isopropyltoluene	<5.00	5.00		ug/
108-10-1	4-Methyl-2-pentanone	<5.00	5.00		ug/
67-64-1	Acetone	<5.00	5.00		ug/
71-43-2	Benzene	<5.00	5.00		ug/ ug/
108-86-1	Bromobenzene	<5.00	5.00		ug/
74-97-5	Bromochloromethane	<5.00	5.00		
74-97-3 75-27-4	Bromodichloromethane	<5.00	5.00		ug/
75-27-4 75-25-2	Bromoform				ug/
75-25-2 74-83-9	Bromonorm Bromomethane	<5.00	5.00		ug/
		<5.00	5.00		ug/
75-15-0	Carbon disulfide	<5.00	5.00		ug/
56-23-5	Carbon tetrachloride	<5.00	5.00		ug/
108-90-7	Chlorobenzene	<5.00	5.00		ug/
75-00-3	Chloroethane	<5.00	5.00		ug/
67-66-3	Chloroform	<5.00	5.00		ug/
74-87-3	Chloromethane	<5.00	5.00		ug/
124-48-1	Dibromochloromethane	<5.00	5.00		ug/
74-95-3	Dibromomethane	<5.00	5.00		ug/
75-71-8	Dichlorodifluoromethane	<5.00	5.00		ug/
100-41-4	Ethylbenzene	<5.00	5.00		ug/
87-68-3	Hexachlorobutadiene	<5.00	5.00		ug/
98-82-8	Isopropylbenzene (Cumene)	<5.00	5.00		ug/
74-88-4	Methyl iodide	<5.00	5.00		ug/
75-09-2	Methylene chloride	<5.00	5.00		ug/
91-20-3	Naphthalene	<5.00	5.00		ug/
100-42-5	Styrene	<5.00	5.00		ug/

AL ID 305170104	Client ID MW-25	Matrix Water	Collect Date/ 05/15/2013 1		Receive Date/Til 05/17/2013 09:00	
N-846 826	0B					
Prep Date	Prep Batch P	Prep Method	Dilution 1	Analyzed 05/17/2013 14:04	By Analyt AMD 507508	ical Batch
CAS#	Parameter		Result	RDL	REG LIMIT	Unit
127-18-4	Tetrachloroethene		<5.00	5.00		ug/
108-88-3	Toluene		<5.00	5.00		ug/
79-01-6	Trichloroethene		<5.00	5.00		ug/
75-69-4	Trichlorofluoromethane		<5.00	5.00		ug
76-13-1	Trichlorotrifluoroethane		<5.00	5.00		ug
75-01-4	Vinyl chloride		<5.00	5.00		ug
1330-20-7	Xylene (total)		<15.0	15.0		ug
156-59-2	cis-1,2-Dichloroethene		<5.00	5.00		ug
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00		ug
136777-61-2	m,p-Xylene		<10.0	10.0		ug
104-51-8	n-Butylbenzene		<5.00	5.00		ug
103-65-1	n-Propylbenzene		<5.00	5.00		ug
95-47-6	o-Xylene		<5.00	5.00		ug
135-98-8	sec-Butylbenzene		<5.00	5.00		ug
1634-04-4	tert-Butyl methyl ether (MTBE)	<5.00	5.00		ug
98-06-6	tert-Butylbenzene		<5.00	5.00		ug
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00		ug
10061-02-6	trans-1,3-Dichloropropene		<5.00	5.00		ug
110-57-6	trans-1,4-Dichloro-2-butene		<5.00	5.00		ug
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Recovery	Rec Limit
460-00-4	4-Bromofluorobenzene	50	55.7	ug/L	111	78 - 13
1868-53-7	Dibromofluoromethane	50	51	ug/L	102	77 - 12

50

50

51.5

46.9

ug/L

ug/L

2037-26-5

17060-07-0

1,2-Dichloroethane-d4

Toluene d8

76 - 134

71 - 127

103

94

GC/MS Volatiles Quality Control Summary

Analytical Bat	ch 507508	Client ID	MB507508			LCS507508			LCSD507508			
Prep Bat	ch N/A	GCAL ID	1192608			1192609			1192610			
-		Sample Type	Method Blank			LCS			LCSD			
		Analytical Date	05/17/2013 10:32			05/17/2013 08:43			05/17/2013 09:25			
		Matrix	Water			Water			Water			
	SW-846 82	60B	Units	ug/L	Spike	Result		Control	Result			RPD
			Result	RDL	Added		% R	Limits % R		% R	RPD	Limit
67-64-1	Acetone		<5.00	5.00	50.0	33.4	67	44 - 156	34.2	68	2	30
107-02-8	Acrolein		<25.0	25.0	250	261	104	30 - 160	250	100	4	30
107-13-1	Acrylonitrile		<25.0	25.0	250	224	90	64 - 137	216	86	4	30
74-97-5	Bromochloron		<5.00	5.00	50.0	50.3	101	76 - 130	45.2	90	11	30
75-27-4	Bromodichloro	omethane	<5.00	5.00	50.0	47.4	95	74 - 125	42.4	85	11	30
75-25-2	Bromoform		<5.00	5.00	50.0	46.6	93	64 - 122	45.1	90	3	30
74-83-9	Bromomethan	e	<5.00	5.00	50.0	53.5	107	47 - 138	43.3	87	21	30
75-15-0	Carbon disulfi	de	<5.00	5.00	50.0	49.9	100	69 - 136	46.7	93	7	30
56-23-5	Carbon tetrac	hloride	<5.00	5.00	50.0	44.3	89	76 - 128	41.0	82	8	30
75-00-3	Chloroethane		<5.00	5.00	50.0	48.9	98	62 - 141	43.3	87	12	30
136777-61-2	m,p-Xylene		<10.0	10.0	100	93.9	94	74 - 126	92.0	92	2	30
67-66-3	Chloroform		<5.00	5.00	50.0	47.4	95	75 - 122	42.1	84	12	30
74-87-3	Chloromethan	e	<5.00	5.00	50.0	43.0	86	59 - 132	40.5	81	6	30
124-48-1	Dibromochloro	omethane	<5.00	5.00	50.0	46.0	92	71 - 123	43.5	87	6	30
74-95-3	Dibromometha	ane	<5.00	5.00	50.0	49.6	99	72 - 129	45.3	91	9	30
75-71-8	Dichlorodifluo	romethane	<5.00	5.00	50.0	48.2	96	58 - 140	43.6	87	10	30
75-34-3	1,1-Dichloroet	hane	<5.00	5.00	50.0	45.5	91	74 - 127	40.7	81	11	30
107-06-2	1,2-Dichloroet	hane	<5.00	5.00	50.0	42.6	85	71 - 129	38.9	78	9	30
156-59-2	cis-1,2-Dichlo		<5.00	5.00	50.0	44.4	89	73 - 130	39.9	80	11	30
156-60-5	trans-1,2-Dich	loroethene	<5.00	5.00	50.0	46.1	92	69 - 132	41.8	84	10	30
75-09-2	Methylene chl	oride	<5.00	5.00	50.0	41.4	83	68 - 132	36.7	73	12	30
78-87-5	1,2-Dichloropr	opane	<5.00	5.00	50.0	46.1	92	72 - 128	40.2	80	14	30
10061-01-5	cis-1,3-Dichlo		<5.00	5.00	50.0	42.8	86	71 - 132	38.5	77	11	30
10061-02-6	trans-1,3-Dich		<5.00	5.00	50.0	42.0	84	71 - 131	37.9	76	10	30
100-41-4	Ethylbenzene		<5.00	5.00	50.0	51.3	103	74 - 126	48.9	98	5	30
591-78-6	2-Hexanone		<5.00	5.00	50.0	32.9	66	50 - 135	34.3	69	4	30
98-82-8		ene (Cumene)	<5.00	5.00	50.0	50.8	102	71 - 125	51.6	103	2	30
78-93-3	2-Butanone	- ()	<5.00	5.00	50.0	37.3	75	58 - 137	35.0	70	6	30
74-88-4	Methyl iodide		<5.00	5.00	50.0	54.2	108	57 - 141	43.9	88	21	30
108-10-1	4-Methyl-2-pe	ntanone	<5.00	5.00	50.0	35.3	71	57 - 132	35.2	70	0	30
103-65-1	n-Propylbenze		<5.00	5.00	50.0	44.5	89	75 - 129	42.2	84	5	30
100-42-5	Styrene		<5.00	5.00	50.0	45.3	91	71 - 127	43.2	86	5	30
127-18-4	Tetrachloroeth		<5.00	5.00	50.0	54.4	109	68 - 128	52.7	105	3	30
121-10-4	renachioroen		<5.00	5.00	50.0	54.4	109	00 - 120	52.7	105	3	30

GC/MS Volatiles Quality Control Summary

Analytical Batcl	n 507508	Client ID	MB507508			LCS507508			LCSD507508			
Prep Batcl	h N/A	GCAL ID	1192608			1192609			1192610			
•		Sample Type	Method Blank			LCS			LCSD			
		Analytical Date	05/17/2013 10:32			05/17/2013 08:43			05/17/2013 09:25			
		Matrix	Water			Water			Water			
ç	SW-846 826	50B	Units	ug/L	Spike	Result		Control	Result			RPD
			Result	RDL	Added		% R	Limits % R		% R	RPD	Limit
630-20-6	1,1,1,2-Tetrach		<5.00	5.00	50.0	51.1	102	75 - 124	47.6	95	7	30
79-34-5	1,1,2,2-Tetrach	loroethane	<5.00	5.00	50.0	43.4	87	70 - 122	39.6	79	9	30
120-82-1	1,2,4-Trichlorol	benzene	<5.00	5.00	50.0	45.5	91	61 - 135	45.1	90	1	30
71-55-6	1,1,1-Trichloroe	ethane	<5.00	5.00	50.0	49.4	99	76 - 126	45.5	91	8	30
79-00-5	1,1,2-Trichloroe	ethane	<5.00	5.00	50.0	49.7	99	72 - 121	46.1	92	8	30
75-69-4	Trichlorofluoror	methane	<5.00	5.00	50.0	49.9	100	72 - 136	45.8	92	9	30
96-18-4	1,2,3-Trichloro	propane	<5.00	5.00	50.0	41.0	82	70 - 120	38.1	76	7	30
95-63-6	1,2,4-Trimethyl	benzene	<5.00	5.00	50.0	42.6	85	74 - 125	40.9	82	4	30
108-67-8	1,3,5-Trimethyl	benzene	<5.00	5.00	50.0	46.7	93	71 - 132	44.5	89	5	30
75-01-4	Vinyl chloride		<5.00	5.00	50.0	44.4	89	68 - 132	40.4	81	9	30
95-47-6	o-Xylene		<5.00	5.00	50.0	45.5	91	73 - 130	43.0	86	6	30
96-12-8	1,2-Dibromo-3-	chloropropane	<5.00	5.00	50.0	48.6	97	57 - 121	45.6	91	6	30
106-93-4	1,2-Dibromoeth	nane	<5.00	5.00	50.0	47.2	94	70 - 124	44.5	89	6	30
108-05-4	Vinyl acetate		<5.00	5.00	50.0	0.00	0*	54 - 147	0.00	0*	0	30
1634-04-4	tert-Butyl methy	yl ether (MTBE)	<5.00	5.00	50.0	47.7	95	71 - 125	43.9	88	8	30
540-59-0	1,2-Dichloroeth	nene(Total)	<10.0	10.0	100	90.5	91	74 - 128	81.8	82	10	30
99-87-6	4-Isopropyltolu	ene	<5.00	5.00	50.0	42.5	85	71 - 129	41.6	83	2	30
1330-20-7	Xylene (total)		<15.0	15.0	150	139	93	74 - 127	135	90	3	30
110-57-6	trans-1,4-Dichle	oro-2-butene	<5.00	5.00	50.0	35.0	70	56 - 132	31.7	63	10	30
594-20-7	2,2-Dichloropro	pane	<5.00	5.00	50.0	44.3	89	77 - 124	40.7	81	8	30
76-13-1	Trichlorotrifluor	oethane	<5.00	5.00	50.0	49.3	99	72 - 136	46.1	92	7	30
563-58-6	1,1-Dichloropro	pene	<5.00	5.00	50.0	46.7	93	72 - 131	44.2	88	6	30
110-75-8	2-Chloroethylvi	nyl ether	<5.00	5.00	50.0	40.9	82	56 - 124	37.8	76	8	30
142-28-9	1,3-Dichloropro	pane	<5.00	5.00	50.0	47.1	94	74 - 122	43.6	87	8	30
108-86-1	Bromobenzene	9	<5.00	5.00	50.0	40.2	80	71 - 120	36.5	73	10	30
95-49-8	2-Chlorotoluen	e	<5.00	5.00	50.0	42.0	84	72 - 127	39.4	79	6	30
106-43-4	4-Chlorotoluen	e	<5.00	5.00	50.0	43.2	86	75 - 126	40.2	80	7	30
98-06-6	tert-Butylbenze	ene	<5.00	5.00	50.0	43.7	87	72 - 126	41.6	83	5	30
135-98-8	sec-Butylbenze	ene	<5.00	5.00	50.0	47.1	94	70 - 136	46.4	93	1	30
541-73-1	1,3-Dichlorobe	nzene	<5.00	5.00	50.0	45.8	92	74 - 126	42.2	84	8	30
106-46-7	1,4-Dichlorobe	nzene	<5.00	5.00	50.0	44.2	88	72 - 122	41.3	83	7	30
104-51-8	n-Butylbenzene		<5.00	5.00	50.0	41.3	83	69 - 134	40.7	81	1	30
95-50-1	1,2-Dichlorobe		<5.00	5.00	50.0	46.0	92	71 - 126	43.1	86	7	30

GC/MS Volatiles Quality Control Summary

Analytical Batch	507508	Client ID	MB507508			LCS507508			LCSD507508			
Prep Batch	N/A	GCAL ID	1192608			1192609			1192610			
		Sample Type	Method Blank			LCS			LCSD			
		Analytical Date	05/17/2013 10:32			05/17/2013 08:43			05/17/2013 09:25			
		Matrix	Water			Water			Water			
6	W-846 826	SUD	Units	ug/L	Spike	Result		Control	Result			RPD
3	VV-040 0Z0		Result	RDL	Added	Result	% R	Limits % R	Result	% R	RPD	Limit
87-68-3	Hexachlorobut	adiene	<5.00	5.00	50.0	46.1	92	61 - 144	48.0	96	4	30
91-20-3	Naphthalene		<5.00	5.00	50.0	41.7	83	57 - 138	41.2	82	1	35
75-35-4	1,1-Dichloroeth	nene	<5.00	5.00	50.0	53.4	107	69 - 129	49.9	100	7	20
71-43-2	Benzene		<5.00	5.00	50.0	48.5	97	70 - 129	43.6	87	11	20
79-01-6	Trichloroethene	e	<5.00	5.00	50.0	52.4	105	76 - 129	48.2	96	8	20
108-88-3	Toluene		<5.00	5.00	50.0	48.2	96	72 - 120	45.0	90	7	20
108-90-7	Chlorobenzene)	<5.00	5.00	50.0	49.4	99	74 - 123	45.9	92	7	20
Surrogate												
460-00-4	4-Bromofluorob	benzene	54.3	109	50	56	112	78 - 130	58.6	117		
1868-53-7	Dibromofluoror	nethane	52.1	104	50	52.3	105	77 - 127	51.8	104		
2037-26-5	Toluene d8		51.8	104	50	49.4	99	76 - 134	50.4	101		
17060-07-0	1,2-Dichloroeth	nane-d4	44.9	90	50	43.8	88	71 - 127	47.2	94		

CHAIN OF CUSTO		GCAL USE ONLY
7979 GSRI Ave., Baton Rouge, LA 70820-7402 Phone: 225.769.4900 • Fax: 225.767.5717 • www.gcal.com	4848/213051701	105/20/B
Report to: Stedon Bill to: Client: Phone: SAME AS DEPORT Address: 1270 Winchester PKDY Phone: 770-434-1997 Ext 200 Phone: 770-434-1997 Ext 200 Phone: Phone: Phone: E-mail: DEFETSO property solution i/NE-mail; PO. Number Project Name/Number Sampled By: Thom Lawrence	Analytical Requests & I	
Matrix ¹ Date Time Comp Grab Sample Description		Preservative
$\frac{1}{10000000000000000000000000000000000$		
Image: Second		
Air Bill No: 7997 8113 2999		- · · · · · · · · · · · · · · · · · · ·
Turn Around Time (Business Days): 24h* 48h* 3 days* 1 week* Standard (R Retinquisive by: (Signature) Date: Time: Received by: (Signature) Date: Date: Image: Signature) Date: Time: Received by: (Signature) Date: Date: Refinquisive by: (Signature) Date: Time: Received by: (Signature) Date: Refinquisive by: (Signature) Date: Time: Received by: (Signature) Date:	13 17922 Note: 1. 3 0 100 Due of the second	5/20/13 by 4:00 AM CST ples, you agree to GCAL's terms and ur most recent schedule of services.

Matrix¹: W = water, S = solid, L = liquid, T = tissue

South and the state of the stat

*Requires prior approval, rush charges may apply.

We cannot accept verbal changes. Please email written changes to your PM.

69.°

.

ł

SAMPLE RECEIVING CHECKLIST

SAMPLE DELIVERY GROUP 213051701			CHECKLIST				
Client 4848 - Property Solutions	Transport N	lethod	Were all samples received using proper thermal preservation?		Ves		
			When used, were all custody seals intact?		₩ Yes	∏ No —	1 I V
Profile Number	Received By	,	Were all samples received in proper containers?	₩ Yes	∏ No	∏ NA	
243146	Law, Brittany	P.	Were all samples received using proper chemical preservation?		Yes	∏ No	
			Was preservative added to any container at the lab? Were all containers received in good condition?	₩Yes	I No ■		
Line Item(s)	Receive Dat	e(s)	Were all VOA vials received with no head space?		Yes	∏ No I No	
1 - RUSH VOC 05/17/13			Do all sample labels match the Chain of Custody?		Ves		
			Did the Chain of Custody list the sampling technician?		IV Yes	No	
			Was the COC maintained i.e. all signatures, dates and time of re	₩ Yes			
COOLERS	<u>.</u>		DISCREPANCIES	LABORATORY PRESERVATIONS			
Airbill		Temp(oC)	None	None			
7997 8113 2999		3.7 (E20)					
						-	
NOTES Three vials for	analysis 8260 f	or sample ID M	N-25 received with headspace. Zero vials remain. Client notified.				

Revision 1.4

NELAP CERTIFICATE NUMBER 01955 DOD ELAP CERTIFICATE NUMBER ADE - 1482

ANALYTICAL RESULTS

PERFORMED BY

GULF COAST ANALYTICAL LABORATORIES, INC.

7979 GSRI Avenue Baton Rouge, LA 70820

Report Date 05/24/2013

Deliver To Property Solutions, Inc. 1270 Winchester Prkwy. Suite 202 Smyrna, GA 30080 770-434-1997 Ext. 210

Attn Brant Teets

Project Fountain Oaks

CASE NARRATIVE

Client: Property Solutions Report: 213051809

Gulf Coast Analytical Laboratories received and analyzed the sample(s) listed on the sample cross-reference page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was resubmitted on 05/24/13. The client revised the ID for sample 21305180911 (MW17).

VOLATILES MASS SPECTROMETRY

In the SW-846 8260B analysis, samples 21305180904 (MW22), 21305180902 (MW16), 21305180905 (MW20), 21305180906 (MW5) and 21305180912 (MW2) had to be diluted to bracket the concentration of target compounds within the calibration range of the instrument. The dilution is reflected in elevated detection limits.

In the SW-846 8260B analysis for analytical batch 507518, the LCS and/or LCSD recoveries are above the upper control limit for 1,2-Dibromo-3-Chloropropane. This compound was not detected in the associated samples.

Laboratory Endorsement

Sample analysis was performed in accordance with approved methodologies provided by the Environmental Protection Agency or other recognized agencies. The samples and their corresponding extracts will be maintained for a period of 30 days unless otherwise arranged. Following this retention period the samples will be disposed in accordance with GCAL's Standard Operating Procedures.

Common Abbreviations Utilized in this Report

ND Indicates the result was Not Detected at the specified RDL DO Indicates the result was Diluted Out МІ Indicates the result was subject to Matrix Interference TNTC Indicates the result was Too Numerous To Count **SUBC** Indicates the analysis was Sub-Contracted FLD Indicates the analysis was performed in the Field PQL Practical Quantitation Limit MDL Method Detection Limit RDL Reporting Detection Limit 00:00 Reported as a time equivalent to 12:00 AM

Reporting Flags Utilized in this Report

- J Indicates the result is between the MDL and RDL
- U Indicates the compound was analyzed for but not detected
- **B** Indicates the analyte was detected in the associated Method Blank

Sample receipt at GCAL is documented through the attached chain of custody. In accordance with NELAC, this report shall be reproduced only in full and with the written permission of GCAL. The results contained within this report relate only to the samples reported. The documented results are presented within this report.

This report pertains only to the samples listed in the Report Sample Summary and should be retained as a permanent record thereof. The results contained within this report are intended for the use of the client. Any unauthorized use of the information contained in this report is prohibited.

I certify that this data package is in compliance with the NELAC standard and terms and conditions of the contract and Statement of Work both technically and for completeness, for other than the conditions in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted has been authorized by the Quality Assurance Manager or his/her designee, as verified by the following signature.

Estimated uncertainty of measurement is available upon request. This report is in compliance with the DOD QSM as specified in the contract if applicable.

Authorized Signature GCAL REPORT 213051809

Report Sample Summary

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
21305180901	MW33	Water	05/17/2013 08:56	05/18/2013 10:20
21305180902	MW16	Water	05/17/2013 09:31	05/18/2013 10:20
21305180903	MW19	Water	05/17/2013 10:08	05/18/2013 10:20
21305180904	MW22	Water	05/17/2013 10:42	05/18/2013 10:20
21305180905	MW20	Water	05/17/2013 11:20	05/18/2013 10:20
21305180906	MW5	Water	05/17/2013 11:31	05/18/2013 10:20
21305180907	MW29	Water	05/17/2013 12:17	05/18/2013 10:20
21305180908	MW30	Water	05/17/2013 13:05	05/18/2013 10:20
21305180909	MW13D	Water	05/17/2013 14:10	05/18/2013 10:20
21305180910	MW13S	Water	05/17/2013 14:45	05/18/2013 10:20
21305180911	MW17	Water	05/17/2013 15:47	05/18/2013 10:20
21305180912	MW2	Water	05/17/2013 16:10	05/18/2013 10:20
21305180913	MW27	Water	05/17/2013 16:40	05/18/2013 10:20
21305180914	MW18	Water	05/17/2013 17:10	05/18/2013 10:20
21305180915	TRIP BLANK	Water	05/17/2013 00:00	05/18/2013 10:20

Summary of Compounds Detected

GCAL ID 21305180902	Client ID MW16	Matrix Water	Collect Date/Time 05/17/2013 09:31		Receive Date/Time 05/18/2013 10:20	
SW-846 82			00,11/2010 00.01		00/10/2010 10:20	
CAS#	Parameter		Result	RDL	REG LIMIT	Units
156-59-2	cis-1,2-Dichloroethene		96.2	50.0		ug/L
1634-04-4	tert-Butyl methyl ether (MTBE)		961	50.0		ug/L
GCAL ID	Client ID	Matrix	Collect Date/Time		Receive Date/Time	
21305180903	MW19	Water	05/17/2013 10:08		05/18/2013 10:20	
SW-846 82	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
127-18-4	Tetrachloroethene		19.3	5.00		ug/L
GCAL ID	Client ID	Matrix	Collect Date/Time		Receive Date/Time	
21305180904	MW22	Water	05/17/2013 10:42		05/18/2013 10:20	
SW-846 82	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
540-59-0	1,2-Dichloroethene(Total)		83.8	50.0		ug/L
127-18-4	Tetrachloroethene		989	25.0		ug/L
79-01-6	Trichloroethene		37.5	25.0		ug/L
156-59-2	cis-1,2-Dichloroethene		83.8	25.0		ug/L
GCAL ID	Client ID	Matrix	Collect Date/Time		Receive Date/Time	
21305180905	MW20	Water	05/17/2013 11:20		05/18/2013 10:20	
SW-846 82	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
540-59-0	1,2-Dichloroethene(Total)		79.1	50.0		ug/L
71-43-2	Benzene		95.3	25.0		ug/L
127-18-4	Tetrachloroethene		200	25.0		ug/L
156-59-2	cis-1,2-Dichloroethene		79.1	25.0		ug/L
GCAL ID	Client ID	Matrix	Collect Date/Time		Receive Date/Time	
21305180906	MW5	Water	05/17/2013 11:31		05/18/2013 10:20	
SW-846 82	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
540-59-0	1,2-Dichloroethene(Total)		72.1	50.0		ug/L
71-43-2	Benzene		26.6	25.0		ug/L
127-18-4	Tetrachloroethene		246	25.0		ug/L
156-59-2	cis-1,2-Dichloroethene		72.1	25.0		ug/L

Summary of Compounds Detected (con't)

GCAL ID	Client ID		Collect Date/Time		Receive Date/Time	
21305180907	MW29	Water	05/17/2013 12:17		05/18/2013 10:20	
SW-846 82	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
540-59-0	1,2-Dichloroethene(Total)		11.8	10.0		ug/l
156-59-2	cis-1,2-Dichloroethene		11.8	5.00		ug/L
1634-04-4	tert-Butyl methyl ether (MTBE)		14.9	5.00		ug/L
GCAL ID	Client ID	Matrix	Collect Date/Time		Receive Date/Time	
21305180908	MW30	Water	05/17/2013 13:05		05/18/2013 10:20	
SW-846 82	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
127-18-4	Tetrachloroethene		17.9	5.00		ug/L
GCAL ID	Client ID	Matrix	Collect Date/Time		Receive Date/Time	
21305180909	MW13D	Water	05/17/2013 14:10		05/18/2013 10:20	
SW-846 82	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
78-93-3	2-Butanone		10.5	5.00		ug/L
67-64-1	Acetone		54.5	5.00		ug/L
GCAL ID	Client ID	Matrix	Collect Date/Time		Receive Date/Time	
21305180910	MW13S	Water	05/17/2013 14:45		05/18/2013 10:20	
SW-846 82	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
127-18-4	Tetrachloroethene		54.1	5.00		ug/L
156-59-2	cis-1,2-Dichloroethene		6.31	5.00		ug/L
GCAL ID	Client ID	Matrix	Collect Date/Time		Receive Date/Time	
21305180912	MW2	Water	05/17/2013 16:10		05/18/2013 10:20	
SW-846 82	60B					
CAS#	Parameter		Result	RDL	REG LIMIT	Units
127-18-4	Tetrachloroethene		2470	100		ug/L
79-01-6	Trichloroethene		170	100		ug/L

Summary of Compounds Detected (con't)

GCAL ID 21305180913	Client ID MW27	Matrix Water	Collect Date/Time 05/17/2013 16:40		Receive Date/Time 05/18/2013 10:20		
SW-846 82	60B						
CAS#	Parameter		Result	RDL	REG LIMIT	Units	
540-59-0	1,2-Dichloroethene(Total)		11.2	10.0		ug/L	
127-18-4	Tetrachloroethene		47.8	5.00		ug/L	
79-01-6	Trichloroethene		5.80	5.00		ug/L	
156-59-2	cis-1,2-Dichloroethene		11.2	5.00		ug/L	
GCAL ID	Client ID	Matrix	Collect Date/Time		Receive Date/Time		
21305180914	MW18	Water	05/17/2013 17:10		05/18/2013 10:20		
SW-846 82	60B						
CAS#	Parameter		Result	RDL	REG LIMIT	Units	
540-59-0	1,2-Dichloroethene(Total)		22.5	10.0		ug/L	
127-18-4	Tetrachloroethene		43.5	5.00		ug/L	
79-01-6	Trichloroethene		34.5	5.00		ug/L	

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
<mark>21305180901</mark>	MW33	Water	05/17/2013 08:56	05/18/2013 10:20
SW-846 82	60B			

Prep Date	Prep Batch	Prep Method	Dilution 1	Analyzed 05/18/2013 15:39	By AMD	Analytical Ba 507518	tch
CAS#	Parameter		Result	RDL	R	REG LIMIT	Units
630-20-6	1,1,1,2-Tetrachloroethane		<5.00	5.00			ug/L
71-55-6	1,1,1-Trichloroethane		<5.00	5.00			ug/L
79-34-5	1,1,2,2-Tetrachloroethane		<5.00	5.00			ug/L
79-00-5	1,1,2-Trichloroethane		<5.00	5.00			ug/L
75-34-3	1,1-Dichloroethane		<5.00	5.00			ug/L
75-35-4	1,1-Dichloroethene		<5.00	5.00			ug/L
563-58-6	1,1-Dichloropropene		<5.00	5.00			ug/L
96-18-4	1,2,3-Trichloropropane		<5.00	5.00			ug/L
120-82-1	1,2,4-Trichlorobenzene		<5.00	5.00			ug/L
95-63-6	1,2,4-Trimethylbenzene		<5.00	5.00			ug/L
96-12-8	1,2-Dibromo-3-chloropropan	e	<5.00	5.00			ug/L
106-93-4	1,2-Dibromoethane		<5.00	5.00			ug/L
95-50-1	1,2-Dichlorobenzene		<5.00	5.00			ug/L
107-06-2	1,2-Dichloroethane		<5.00	5.00			ug/L
540-59-0	1,2-Dichloroethene(Total)		<10.0	10.0			ug/L
78-87-5	1,2-Dichloropropane		<5.00	5.00			ug/L
108-67-8	1,3,5-Trimethylbenzene		<5.00	5.00			ug/L
541-73-1	1,3-Dichlorobenzene		<5.00	5.00			ug/L
142-28-9	1,3-Dichloropropane		<5.00	5.00			ug/L
106-46-7	1,4-Dichlorobenzene		<5.00	5.00			ug/L
594-20-7	2,2-Dichloropropane		<5.00	5.00			ug/L
78-93-3	2-Butanone		<5.00	5.00			ug/L
95-49-8	2-Chlorotoluene		<5.00	5.00			ug/L
591-78-6	2-Hexanone		<5.00	5.00			ug/L
106-43-4	4-Chlorotoluene		<5.00	5.00			ug/L
99-87-6	4-Isopropyltoluene		<5.00	5.00			ug/L
108-10-1	4-Methyl-2-pentanone		<5.00	5.00			ug/L
67-64-1	Acetone		<5.00	5.00			ug/L
71-43-2	Benzene		<5.00	5.00			ug/L
108-86-1	Bromobenzene		<5.00	5.00			ug/L
74-97-5	Bromochloromethane		<5.00	5.00			ug/L
75-27-4	Bromodichloromethane		<5.00	5.00			ug/L
75-25-2	Bromoform		<5.00	5.00			ug/L
74-83-9	Bromomethane		<5.00	5.00			ug/L
75-15-0	Carbon disulfide		<5.00	5.00			ug/L
56-23-5	Carbon tetrachloride		<5.00	5.00			ug/L
108-90-7	Chlorobenzene		<5.00	5.00			ug/L
75-00-3	Chloroethane		<5.00	5.00			ug/L
67-66-3	Chloroform		<5.00	5.00			ug/L
74-87-3	Chloromethane		<5.00	5.00			ug/L
124-48-1	Dibromochloromethane		<5.00	5.00			ug/L
74-95-3	Dibromomethane		<5.00	5.00			ug/L
74-95-3 75-71-8	Dichlorodifluoromethane		<5.00	5.00			-
100-41-4	Ethylbenzene		<5.00 <5.00	5.00			ug/L ug/L
100-41-4 87-68-3	Hexachlorobutadiene		<5.00 <5.00	5.00			-
87-68-3 98-82-8			<5.00 <5.00	5.00			ug/L
98-82-8 74-88-4	Isopropylbenzene (Cumene)		<5.00 <5.00	5.00			ug/L
	Methyl iodide						ug/L
75-09-2	Methylene chloride		<5.00	5.00			ug/L
91-20-3	Naphthalene		<5.00	5.00			ug/L
100-42-5	Styrene		<5.00	5.00			ug/l

AL ID	Client ID	Matrix	Collect Date	/Time	Receive	e Date/Time		
05180901	MW33	Water	05/17/2013 0	8:56	05/18/2013 10:20			
V-846 826	0B							
Prep Date	Prep Batch	Prep Method	Dilution	Analyzed	Ву	Analytical	Batch	
	·	·	1	05/18/2013 15:39	AMD	507518		
CAS#	Parameter		Result	RDL	RE	EG LIMIT	Uni	
127-18-4	Tetrachloroethene		<5.00	5.00			ug	
108-88-3	Toluene		<5.00	5.00			ug	
79-01-6	Trichloroethene		<5.00	5.00			ug	
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug	
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug	
75-01-4	Vinyl chloride		<5.00	5.00			ug	
1330-20-7	Xylene (total)		<15.0	15.0			ug	
156-59-2	cis-1,2-Dichloroethene		<5.00	5.00			ug	
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			ug	
136777-61-2	m,p-Xylene		<10.0	10.0			ug	
104-51-8	n-Butylbenzene		<5.00	5.00			ug	
103-65-1	n-Propylbenzene		<5.00	5.00			ug	
95-47-6	o-Xylene		<5.00	5.00			ug	
135-98-8	sec-Butylbenzene		<5.00	5.00			ug	
1634-04-4	tert-Butyl methyl ether (M	TBE)	<5.00	5.00			ug	
98-06-6	tert-Butylbenzene		<5.00	5.00			ug	
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			ug	
10061-02-6	trans-1,3-Dichloropropene	e	<5.00	5.00			ug	
110-57-6	trans-1,4-Dichloro-2-buter	ne	<5.00	5.00			ug	
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Rec	overy	Rec Limi	
460-00-4	4-Bromofluorobenzene	50	56.6	ug/L		113	78 - 13	
1868-53-7	Dibromofluoromethane	50	50.5	ug/L		101	77 - 12	
2037-26-5	Toluene d8	50	50.6	ug/L		101	76 - 1	
17060-07-0	1,2-Dichloroethane-d4	50	46	ug/L		92	71 - 12	

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
21305180902	MW16	Water	05/17/2013 09:31	05/18/2013 10:20

SW-84	16 82	60B

Prep Date	Prep Batch Prep Method	Dilution 10	Analyzed 05/18/2013 15:16	By AMD	Analytical Batch 507518	
CAS#	Parameter	Result	RDL	RE	G LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethane	<50.0	50.0			ug/l
71-55-6	1,1,1-Trichloroethane	<50.0	50.0			ug/l
79-34-5	1,1,2,2-Tetrachloroethane	<50.0	50.0			ug/l
79-00-5	1,1,2-Trichloroethane	<50.0	50.0			ug/l
75-34-3	1,1-Dichloroethane	<50.0	50.0			ug/l
75-35-4	1,1-Dichloroethene	<50.0	50.0			ug/l
563-58-6	1,1-Dichloropropene	<50.0	50.0			ug/l
96-18-4	1,2,3-Trichloropropane	<50.0	50.0			ug/l
120-82-1	1,2,4-Trichlorobenzene	<50.0	50.0			ug/l
95-63-6	1,2,4-Trimethylbenzene	<50.0	50.0			ug/l
96-12-8	1,2-Dibromo-3-chloropropane	<50.0	50.0			ug/l
106-93-4	1,2-Dibromoethane	<50.0	50.0			ug/l
95-50-1	1,2-Dichlorobenzene	<50.0	50.0			ug/l
107-06-2	1,2-Dichloroethane	<50.0	50.0			ug/l
540-59-0	1,2-Dichloroethene(Total)	<100	100			ug/l
78-87-5	1,2-Dichloropropane	<50.0	50.0			ug/l
108-67-8	1,3,5-Trimethylbenzene	<50.0	50.0			ug/l
541-73-1	1,3-Dichlorobenzene	<50.0	50.0			ug/l
142-28-9	1,3-Dichloropropane	<50.0	50.0			ug/l
106-46-7	1,4-Dichlorobenzene	<50.0	50.0			ug/l
594-20-7	2,2-Dichloropropane	<50.0	50.0			ug/l
78-93-3	2-Butanone	<50.0	50.0			ug/l
95-49-8	2-Chlorotoluene	<50.0	50.0			ug/l
591-78-6	2-Hexanone	<50.0	50.0			ug/l
106-43-4	4-Chlorotoluene	<50.0	50.0			ug/l
99-87-6	4-Isopropyltoluene	<50.0	50.0			ug/l
108-10-1	4-Methyl-2-pentanone	<50.0	50.0			ug/l
67-64-1	Acetone	<50.0	50.0			ug/l
71-43-2	Benzene	<50.0	50.0			ug/l
108-86-1	Bromobenzene	<50.0	50.0			ug/l
74-97-5	Bromochloromethane	<50.0	50.0			ug/l
75-27-4	Bromodichloromethane	<50.0	50.0			
75-25-2	Bromoform	<50.0	50.0			ug/l
73-25-2 74-83-9	Bromomethane	<50.0	50.0			ug/l
	Carbon disulfide					ug/l
75-15-0		<50.0	50.0			ug/l
56-23-5	Carbon tetrachloride	<50.0	50.0			ug/l
108-90-7	Chlorobenzene	<50.0	50.0			ug/l
75-00-3	Chloroethane	<50.0	50.0			ug/l
67-66-3	Chloroform	<50.0	50.0			ug/l
74-87-3	Chloromethane	<50.0	50.0			ug/l
124-48-1	Dibromochloromethane	<50.0	50.0			ug/l
74-95-3	Dibromomethane	<50.0	50.0			ug/l
75-71-8	Dichlorodifluoromethane	<50.0	50.0			ug/l
100-41-4	Ethylbenzene	<50.0	50.0			ug/l
87-68-3	Hexachlorobutadiene	<50.0	50.0			ug/l
98-82-8	Isopropylbenzene (Cumene)	<50.0	50.0			ug/
74-88-4	Methyl iodide	<50.0	50.0			ug/
75-09-2	Methylene chloride	<50.0	50.0			ug/l
91-20-3	Naphthalene	<50.0	50.0			ug/l
100-42-5	Styrene	<50.0	50.0			ug/l

AL ID	Client ID	Matrix	Collect Date/	/Time	Receive	Date/Time	
05180902	MW16	Water	05/17/2013 09:31		05/18/2013 10:20		
V-846 826	0B						
Prep Date	Prep Batch	Prep Method	Dilution	Analyzed	Ву	Analytical	Batch
•	•	·	10	05/18/2013 15:16	AMD	507518	
CAS#	Parameter		Result	RDL	RE	G LIMIT	Unit
127-18-4	Tetrachloroethene		<50.0	50.0			ug
108-88-3	Toluene		<50.0	50.0			ug
79-01-6	Trichloroethene		<50.0	50.0			ug
75-69-4	Trichlorofluoromethane		<50.0	50.0			ug
76-13-1	Trichlorotrifluoroethane		<50.0	50.0			ug
75-01-4	Vinyl chloride		<50.0	50.0			ug
1330-20-7	Xylene (total)		<150	150			ug
156-59-2	cis-1,2-Dichloroethene		96.2	50.0			ug
10061-01-5	cis-1,3-Dichloropropene		<50.0	50.0			ug
136777-61-2	m,p-Xylene		<100	100			ug
104-51-8	n-Butylbenzene		<50.0	50.0			ug
103-65-1	n-Propylbenzene		<50.0	50.0			ug
95-47-6	o-Xylene		<50.0	50.0			ug
135-98-8	sec-Butylbenzene		<50.0	50.0			ug
1634-04-4	tert-Butyl methyl ether (M	TBE)	961	50.0			ug
98-06-6	tert-Butylbenzene		<50.0	50.0			ug
156-60-5	trans-1,2-Dichloroethene		<50.0	50.0			ug
10061-02-6	trans-1,3-Dichloropropene		<50.0	50.0			ug
110-57-6	trans-1,4-Dichloro-2-butene		<50.0	50.0			ug
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Rec	overy	Rec Limi
460-00-4	4-Bromofluorobenzene	500	564	ug/L		113	78 - 13
1868-53-7	Dibromofluoromethane	500	493	ug/L		99	77 - 12
2037-26-5	Toluene d8	500	511	ug/L		102	76 - 13
17060-07-0	1,2-Dichloroethane-d4	500	440	ug/L		88	71 - 12

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
<mark>21305180903</mark>	MW19	Water	05/17/2013 10:08	05/18/2013 10:20
014/ 0.40.00				

Prep Date	Prep Batch Prep	Method	Dilution 1	Analyzed 05/18/2013 23:05	By AMD	Analytical Batch 507587	
CAS#	Parameter		Result	RDL	RE	G LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethane		<5.00	5.00			ug
71-55-6	1,1,1-Trichloroethane		<5.00	5.00			ug/
79-34-5	1,1,2,2-Tetrachloroethane		<5.00	5.00			ug/
79-00-5	1,1,2-Trichloroethane		<5.00	5.00			ug,
75-34-3	1,1-Dichloroethane		<5.00	5.00			ug
75-35-4	1,1-Dichloroethene		<5.00	5.00			ug
563-58-6	1,1-Dichloropropene		<5.00	5.00			ug
96-18-4	1,2,3-Trichloropropane		<5.00	5.00			ug
120-82-1	1,2,4-Trichlorobenzene		<5.00	5.00			ug
95-63-6	1,2,4-Trimethylbenzene		<5.00	5.00			ug
96-12-8	1,2-Dibromo-3-chloropropane		<5.00	5.00			ug
106-93-4	1,2-Dibromoethane		<5.00	5.00			ug
95-50-1	1,2-Dichlorobenzene		<5.00	5.00			ug
107-06-2	1,2-Dichloroethane		<5.00	5.00			ug
540-59-0	1,2-Dichloroethene(Total)		<10.0	10.0			ug
78-87-5	1,2-Dichloropropane		<5.00	5.00			ug
108-67-8	1,3,5-Trimethylbenzene		<5.00	5.00			ug
541-73-1	1,3-Dichlorobenzene		<5.00	5.00			ug
142-28-9	1,3-Dichloropropane		<5.00	5.00			ug
106-46-7	1,4-Dichlorobenzene		<5.00	5.00			ug
594-20-7	2,2-Dichloropropane		<5.00	5.00			ug
78-93-3	2-Butanone		<5.00	5.00			ug
95-49-8	2-Chlorotoluene		<5.00	5.00			ug
591-78-6	2-Hexanone		<5.00	5.00			uç
106-43-4	4-Chlorotoluene		<5.00	5.00			ug
99-87-6	4-Isopropyltoluene		<5.00	5.00			ug
99-07-0 108-10-1	4-Methyl-2-pentanone		<5.00	5.00			-
67-64-1	Acetone		<5.00	5.00			ug
71-43-2	Benzene		<5.00	5.00			ug
108-86-1	Bromobenzene		<5.00	5.00			ug
	Bromochloromethane						ug
74-97-5 75-27-4			<5.00	5.00			ug
	Bromodichloromethane		<5.00	5.00			ug
75-25-2	Bromoform		<5.00	5.00			ug
74-83-9	Bromomethane		<5.00	5.00			ug
75-15-0	Carbon disulfide		<5.00	5.00			ug
56-23-5	Carbon tetrachloride		<5.00	5.00			ug
108-90-7	Chlorobenzene		<5.00	5.00			ug
75-00-3	Chloroethane		<5.00	5.00			ug
67-66-3	Chloroform		<5.00	5.00			ug
74-87-3	Chloromethane		<5.00	5.00			ug
124-48-1	Dibromochloromethane		<5.00	5.00			ug
74-95-3	Dibromomethane		<5.00	5.00			ug
75-71-8	Dichlorodifluoromethane		<5.00	5.00			ug
100-41-4	Ethylbenzene		<5.00	5.00			ug
87-68-3	Hexachlorobutadiene		<5.00	5.00			ug
98-82-8	Isopropylbenzene (Cumene)		<5.00	5.00			ug
74-88-4	Methyl iodide		<5.00	5.00			ug
75-09-2	Methylene chloride		<5.00	5.00			ug
91-20-3	Naphthalene		<5.00	5.00			ug
100-42-5	Styrene		<5.00	5.00			ug

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180903	MW19	Water	05/17/2013 10:08	05/18/2013 10:20	

Prep Date	Prep Batch Pr	ep Method	Dilution 1	Analyzed 05/18/2013 23:05	By AMD	Analytical Batc 507587	h
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
127-18-4	Tetrachloroethene		19.3	5.00			ug/L
108-88-3	Toluene		<5.00	5.00			ug/L
79-01-6	Trichloroethene		<5.00	5.00			ug/L
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug/L
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug/L
75-01-4	Vinyl chloride		<5.00	5.00			ug/L
1330-20-7	Xylene (total)		<15.0	15.0			ug/L
156-59-2	cis-1,2-Dichloroethene		<5.00	5.00			ug/L
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			ug/L
136777-61-2	m,p-Xylene		<10.0	10.0			ug/L
104-51-8	n-Butylbenzene		<5.00	5.00			ug/L
103-65-1	n-Propylbenzene		<5.00	5.00			ug/L
95-47-6	o-Xylene		<5.00	5.00			ug/L
135-98-8	sec-Butylbenzene		<5.00	5.00			ug/L
1634-04-4	tert-Butyl methyl ether (MTBE)		<5.00	5.00			ug/L
98-06-6	tert-Butylbenzene		<5.00	5.00			ug/L
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			ug/L
10061-02-6	trans-1,3-Dichloropropene		<5.00	5.00			ug/L
110-57-6	trans-1,4-Dichloro-2-butene		<5.00	5.00			ug/L
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Re	covery Re	c Limits
460-00-4	4-Bromofluorobenzene	50	53	ug/L		106	78 - 130
1868-53-7	Dibromofluoromethane	50	51.8	ug/L		104	77 - 127
2037-26-5	Toluene d8	50	51.1	ug/L		102	76 - 134
17060-07-0	1,2-Dichloroethane-d4	50	44.7	ug/L		89	71 - 127

GCAL ID Client ID		Matrix	Collect Date/Time	Receive Date/Time	
21305180904	MW22	Water	05/17/2013 10:42	05/18/2013 10:20	
SW-846 82	60B				
Prop Date	Bron Batch	Prop Mothod	Dilution Analyzod	By Analytical Batch	

Prep Date	Prep Batch	Prep Method	Dilution 5	Analyzed 05/18/2013 14:31	By AMD	Analytical Batch 507518	ı
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
630-20-6	1,1,1,2-Tetrachloroethane		<25.0	25.0			ug/L
71-55-6	1,1,1-Trichloroethane		<25.0	25.0			ug/L
79-34-5	1,1,2,2-Tetrachloroethane		<25.0	25.0			ug/L
79-00-5	1,1,2-Trichloroethane		<25.0	25.0			ug/L
75-34-3	1,1-Dichloroethane		<25.0	25.0			ug/L
75-35-4	1,1-Dichloroethene		<25.0	25.0			ug/L
563-58-6	1,1-Dichloropropene		<25.0	25.0			ug/L
96-18-4	1,2,3-Trichloropropane		<25.0	25.0			ug/L
120-82-1	1,2,4-Trichlorobenzene		<25.0	25.0			ug/L
95-63-6	1,2,4-Trimethylbenzene		<25.0	25.0			ug/L
96-12-8	1,2-Dibromo-3-chloropropa	ne	<25.0	25.0			ug/L
106-93-4	1,2-Dibromoethane		<25.0	25.0			ug/L
95-50-1	1,2-Dichlorobenzene		<25.0	25.0			ug/L
107-06-2	1,2-Dichloroethane		<25.0	25.0			ug/L
540-59-0	1,2-Dichloroethene(Total)		83.8	50.0			ug/L
78-87-5	1,2-Dichloropropane		<25.0	25.0			ug/L
108-67-8	1,3,5-Trimethylbenzene		<25.0	25.0			ug/L
541-73-1	1,3-Dichlorobenzene		<25.0	25.0			
142-28-9	1,3-Dichloropropane		<25.0	25.0			ug/L
							ug/L
106-46-7	1,4-Dichlorobenzene		<25.0	25.0			ug/L
594-20-7	2,2-Dichloropropane		<25.0	25.0			ug/L
78-93-3	2-Butanone		<25.0	25.0			ug/L
95-49-8	2-Chlorotoluene		<25.0	25.0			ug/L
591-78-6	2-Hexanone		<25.0	25.0			ug/L
106-43-4	4-Chlorotoluene		<25.0	25.0			ug/L
99-87-6	4-Isopropyltoluene		<25.0	25.0			ug/L
108-10-1	4-Methyl-2-pentanone		<25.0	25.0			ug/L
67-64-1	Acetone		<25.0	25.0			ug/L
71-43-2	Benzene		<25.0	25.0			ug/L
108-86-1	Bromobenzene		<25.0	25.0			ug/L
74-97-5	Bromochloromethane		<25.0	25.0			ug/L
75-27-4	Bromodichloromethane		<25.0	25.0			ug/L
75-25-2	Bromoform		<25.0	25.0			ug/L
74-83-9	Bromomethane		<25.0	25.0			ug/L
75-15-0	Carbon disulfide		<25.0	25.0			ug/L
56-23-5	Carbon tetrachloride		<25.0	25.0			ug/L
108-90-7	Chlorobenzene		<25.0	25.0			ug/L
75-00-3	Chloroethane		<25.0	25.0			ug/L
67-66-3	Chloroform		<25.0	25.0			ug/L
74-87-3	Chloromethane		<25.0	25.0			ug/L
124-48-1	Dibromochloromethane		<25.0	25.0			ug/L
74-95-3	Dibromomethane		<25.0	25.0			ug/L
75-71-8	Dichlorodifluoromethane		<25.0	25.0			ug/L
100-41-4	Ethylbenzene		<25.0	25.0			ug/L
87-68-3	Hexachlorobutadiene		<25.0	25.0			ug/L
98-82-8	Isopropylbenzene (Cumene	.)	<25.0	25.0			ug/L
74-88-4	Methyl iodide	/	<25.0	25.0			ug/L
75-09-2	Methylene chloride		<25.0	25.0			ug/L
91-20-3	Naphthalene		<25.0	25.0 25.0			ug/L
100-42-5	•		<25.0	25.0 25.0			ug/L
100-42-9	Styrene		<20.0	25.0			ug/

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180904	MW22	Water	05/17/2013 10:42	05/18/2013 10:20	
SW-846 826	60B				

Prep Date	Prep Batch Pre	ep Method	Dilution 5	Analyzed 05/18/2013 14:31	By AMD	Analytical Ba	atch
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
127-18-4	Tetrachloroethene		989	25.0			ug/L
108-88-3	Toluene		<25.0	25.0			ug/l
79-01-6	Trichloroethene		37.5	25.0			ug/l
75-69-4	Trichlorofluoromethane		<25.0	25.0			ug/l
76-13-1	Trichlorotrifluoroethane		<25.0	25.0			ug/l
75-01-4	Vinyl chloride		<25.0	25.0			ug/l
1330-20-7	Xylene (total)		<75.0	75.0			ug/l
156-59-2	cis-1,2-Dichloroethene		83.8	25.0			ug/l
10061-01-5	cis-1,3-Dichloropropene		<25.0	25.0			ug/l
136777-61-2	m,p-Xylene		<50.0	50.0			ug/l
104-51-8	n-Butylbenzene		<25.0	25.0			ug/l
103-65-1	n-Propylbenzene		<25.0	25.0			ug/l
95-47-6	o-Xylene		<25.0	25.0			ug/l
135-98-8	sec-Butylbenzene		<25.0	25.0			ug/l
1634-04-4	tert-Butyl methyl ether (MTBE)		<25.0	25.0			ug/l
98-06-6	tert-Butylbenzene		<25.0	25.0			ug/l
156-60-5	trans-1,2-Dichloroethene		<25.0	25.0			ug/l
10061-02-6	trans-1,3-Dichloropropene		<25.0	25.0			ug/l
110-57-6	trans-1,4-Dichloro-2-butene		<25.0	25.0			ug/l
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Red	covery	Rec Limits
460-00-4	4-Bromofluorobenzene	250	286	ug/L		114	78 - 130
1868-53-7	Dibromofluoromethane	250	251	ug/L		100	77 - 12
2037-26-5	Toluene d8	250	255	ug/L		102	76 - 134
17060-07-0	1,2-Dichloroethane-d4	250	224	ug/L		90	71 - 12

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
<mark>21305180905</mark>	MW20	Water	05/17/2013 11:20	05/18/2013 10:20	
SW-846 82	60B				

Prep Date	Prep Batch Prep Method	Dilution 5	Analyzed 05/19/2013 02:12	By AMD	Analytical Batcl 507587	n
CAS#	Parameter	Result	RDL	R	EG LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethane	<25.0	25.0			ug/
71-55-6	1,1,1-Trichloroethane	<25.0	25.0			ug/
79-34-5	1,1,2,2-Tetrachloroethane	<25.0	25.0			ug/
79-00-5	1,1,2-Trichloroethane	<25.0	25.0			ug/
75-34-3	1,1-Dichloroethane	<25.0	25.0			ug/
75-35-4	1,1-Dichloroethene	<25.0	25.0			ug/
563-58-6	1,1-Dichloropropene	<25.0	25.0			ug/
96-18-4	1,2,3-Trichloropropane	<25.0	25.0			ug/
120-82-1	1,2,4-Trichlorobenzene	<25.0	25.0			ug/
95-63-6	1,2,4-Trimethylbenzene	<25.0	25.0			ug/
96-12-8	1,2-Dibromo-3-chloropropane	<25.0	25.0			ug/
106-93-4	1,2-Dibromoethane	<25.0	25.0			ug/
95-50-1	1.2-Dichlorobenzene	<25.0	25.0			ug/
107-06-2	1,2-Dichloroethane	<25.0	25.0			ug/
540-59-0	1,2-Dichloroethene(Total)	79.1	50.0			ug/
78-87-5	1,2-Dichloropropane	<25.0	25.0			ug/
108-67-8	1,3,5-Trimethylbenzene	<25.0	25.0			ug/
541-73-1	1,3-Dichlorobenzene	<25.0	25.0			ug/
142-28-9	1,3-Dichloropropane	<25.0	25.0			ug/
106-46-7	1,4-Dichlorobenzene	<25.0	25.0			ug/
594-20-7	2,2-Dichloropropane	<25.0	25.0			ug/
78-93-3	2-Butanone	<25.0	25.0			ug,
95-49-8	2-Chlorotoluene	<25.0	25.0			ug/
591-78-6	2-Hexanone	<25.0	25.0			ug/
106-43-4	4-Chlorotoluene	<25.0	25.0			ug/
99-87-6	4-Isopropyltoluene	<25.0	25.0			ug/
108-10-1	4-Methyl-2-pentanone	<25.0	25.0			ug/
67-64-1	Acetone	<25.0	25.0			ug/
71-43-2	Benzene	95.3	25.0			ug/
108-86-1	Bromobenzene	<25.0	25.0			ug/
74-97-5	Bromochloromethane	<25.0	25.0			ug/
75-27-4	Bromodichloromethane	<25.0	25.0			ug/
75-25-2	Bromoform	<25.0	25.0			ug/
74-83-9	Bromomethane	<25.0	25.0			ug/
74-03-9 75-15-0	Carbon disulfide	<25.0	25.0			ug/ ug/
56-23-5		<25.0	25.0			
108-90-7	Carbon tetrachloride	<25.0	25.0			ug/
	Chlorobenzene					ug/
75-00-3	Chloroethane	<25.0	25.0			ug/
67-66-3 74 87 3	Chloroform	<25.0	25.0			ug/
74-87-3	Chloromethane	<25.0	25.0			ug/
124-48-1	Dibromochloromethane	<25.0	25.0			ug/
74-95-3	Dibromomethane	<25.0	25.0			ug/
75-71-8	Dichlorodifluoromethane	<25.0	25.0			ug/
100-41-4	Ethylbenzene	<25.0	25.0			ug/
87-68-3	Hexachlorobutadiene	<25.0	25.0			ug/
98-82-8	Isopropylbenzene (Cumene)	<25.0	25.0			ug/
74-88-4	Methyl iodide	<25.0	25.0			ug
75-09-2	Methylene chloride	<25.0	25.0			ug/
91-20-3	Naphthalene	<25.0	25.0			ug/
100-42-5	Styrene	<25.0	25.0			ug/

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180905	MW20	Water	05/17/2013 11:20	05/18/2013 10:20	

Prep Date	Prep Batch Pre	ep Method	Dilution 5	Analyzed 05/19/2013 02:12	By AMD	Analytical Batc 507587	'n
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
127-18-4	Tetrachloroethene		200	25.0			ug/L
108-88-3	Toluene		<25.0	25.0			ug/L
79-01-6	Trichloroethene		<25.0	25.0			ug/L
75-69-4	Trichlorofluoromethane		<25.0	25.0			ug/L
76-13-1	Trichlorotrifluoroethane		<25.0	25.0			ug/L
75-01-4	Vinyl chloride		<25.0	25.0			ug/L
1330-20-7	Xylene (total)		<75.0	75.0			ug/L
156-59-2	cis-1,2-Dichloroethene		79.1	25.0			ug/L
10061-01-5	cis-1,3-Dichloropropene		<25.0	25.0			ug/L
136777-61-2	m,p-Xylene		<50.0	50.0			ug/L
104-51-8	n-Butylbenzene		<25.0	25.0			ug/L
103-65-1	n-Propylbenzene		<25.0	25.0			ug/L
95-47-6	o-Xylene		<25.0	25.0			ug/L
135-98-8	sec-Butylbenzene		<25.0	25.0			ug/L
1634-04-4	tert-Butyl methyl ether (MTBE)		<25.0	25.0			ug/L
98-06-6	tert-Butylbenzene		<25.0	25.0			ug/L
156-60-5	trans-1,2-Dichloroethene		<25.0	25.0			ug/L
10061-02-6	trans-1,3-Dichloropropene		<25.0	25.0			ug/L
110-57-6	trans-1,4-Dichloro-2-butene		<25.0	25.0			ug/L
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Re	covery Re	c Limits
460-00-4	4-Bromofluorobenzene	250	269	ug/L		108	78 - 130
1868-53-7	Dibromofluoromethane	250	254	ug/L		102	77 - 127
2037-26-5	Toluene d8	250	254	ug/L		102	76 - 134
17060-07-0	1,2-Dichloroethane-d4	250	228	ug/L		91	71 - 127

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
<mark>21305180906</mark>	MW5	Water	05/17/2013 11:31	05/18/2013 10:20
SW-846 82	60B			

Prep Date	Prep Batch	Prep Method	Dilution 5	Analyzed 05/19/2013 02:35	By AMD	Analytical E 507587	Batch
CAS#	Parameter		Result	RDL	R	EG LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethar	ie	<25.0	25.0			ug/
71-55-6	1,1,1-Trichloroethane		<25.0	25.0			ug/
79-34-5	1,1,2,2-Tetrachloroethan	ie	<25.0	25.0			ug/
79-00-5	1,1,2-Trichloroethane		<25.0	25.0			ug/
75-34-3	1,1-Dichloroethane		<25.0	25.0			ug/
75-35-4	1,1-Dichloroethene		<25.0	25.0			ug/
563-58-6	1,1-Dichloropropene		<25.0	25.0			ug/
96-18-4	1,2,3-Trichloropropane		<25.0	25.0			ug/
120-82-1	1,2,4-Trichlorobenzene		<25.0	25.0			ug/
95-63-6	1,2,4-Trimethylbenzene		<25.0	25.0			ug/
96-12-8	1,2-Dibromo-3-chloropro	nane	<25.0	25.0			ug/
106-93-4	1,2-Dibromoethane	pune	<25.0	25.0			ug/
95-50-1	1,2-Dichlorobenzene		<25.0	25.0			ug/
107-06-2	1,2-Dichloroethane		<25.0	25.0			ug/
540-59-0	1,2-Dichloroethene(Tot	al)	72.1	50.0			ug/
78-87-5	1,2-Dichloropropane	aij	<25.0	25.0			ug/
108-67-8	1,3,5-Trimethylbenzene		<25.0	25.0			ug/
541-73-1	1,3-Dichlorobenzene		<25.0	25.0			-
142-28-9	1,3-Dichloropropane		<25.0	25.0			ug/
142-20-9 106-46-7			<25.0	25.0			ug/
	1,4-Dichlorobenzene			25.0			ug/
594-20-7	2,2-Dichloropropane		<25.0				ug/
78-93-3	2-Butanone		<25.0	25.0			ug/
95-49-8	2-Chlorotoluene		<25.0	25.0			ug/
591-78-6	2-Hexanone		<25.0	25.0			ug/
106-43-4	4-Chlorotoluene		<25.0	25.0			ug/
99-87-6	4-Isopropyltoluene		<25.0	25.0			ug/
108-10-1	4-Methyl-2-pentanone		<25.0	25.0			ug/
67-64-1	Acetone		<25.0	25.0			ug/
71-43-2	Benzene		26.6	25.0			ug/
108-86-1	Bromobenzene		<25.0	25.0			ug/
74-97-5	Bromochloromethane		<25.0	25.0			ug/
75-27-4	Bromodichloromethane		<25.0	25.0			ug/
75-25-2	Bromoform		<25.0	25.0			ug/
74-83-9	Bromomethane		<25.0	25.0			ug/
75-15-0	Carbon disulfide		<25.0	25.0			ug/
56-23-5	Carbon tetrachloride		<25.0	25.0			ug/
108-90-7	Chlorobenzene		<25.0	25.0			ug/
75-00-3	Chloroethane		<25.0	25.0			ug/
67-66-3	Chloroform		<25.0	25.0			ug/
74-87-3	Chloromethane		<25.0	25.0			ug/
124-48-1	Dibromochloromethane		<25.0	25.0			ug/
74-95-3	Dibromomethane		<25.0	25.0			ug/
75-71-8	Dichlorodifluoromethane		<25.0	25.0			ug/
100-41-4	Ethylbenzene		<25.0	25.0			ug/
87-68-3	Hexachlorobutadiene		<25.0	25.0			ug/
98-82-8	Isopropylbenzene (Cume	ene)	<25.0	25.0			ug/
74-88-4	Methyl iodide		<25.0	25.0			ug/
75-09-2	Methylene chloride		<25.0	25.0			ug/
91-20-3	Naphthalene		<25.0	25.0			ug/
100-42-5	Styrene		<25.0	25.0			ug/

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180906	MW5	Water	05/17/2013 11:31	05/18/2013 10:20	

Prep Date	Prep Batch P	rep Method	Dilution 5	Analyzed 05/19/2013 02:35	By AMD	Analytical Batc 507587	h
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
127-18-4	Tetrachloroethene		246	25.0			ug/L
108-88-3	Toluene		<25.0	25.0			ug/L
79-01-6	Trichloroethene		<25.0	25.0			ug/L
75-69-4	Trichlorofluoromethane		<25.0	25.0			ug/L
76-13-1	Trichlorotrifluoroethane		<25.0	25.0			ug/L
75-01-4	Vinyl chloride		<25.0	25.0			ug/L
1330-20-7	Xylene (total)		<75.0	75.0			ug/L
156-59-2	cis-1,2-Dichloroethene		72.1	25.0			ug/L
10061-01-5	cis-1,3-Dichloropropene		<25.0	25.0			ug/L
136777-61-2	m,p-Xylene		<50.0	50.0			ug/L
104-51-8	n-Butylbenzene		<25.0	25.0			ug/L
103-65-1	n-Propylbenzene		<25.0	25.0			ug/L
95-47-6	o-Xylene		<25.0	25.0			ug/L
135-98-8	sec-Butylbenzene		<25.0	25.0			ug/L
1634-04-4	tert-Butyl methyl ether (MTBE)	1	<25.0	25.0			ug/L
98-06-6	tert-Butylbenzene		<25.0	25.0			ug/L
156-60-5	trans-1,2-Dichloroethene		<25.0	25.0			ug/L
10061-02-6	trans-1,3-Dichloropropene		<25.0	25.0			ug/L
110-57-6	trans-1,4-Dichloro-2-butene		<25.0	25.0			ug/L
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Red	covery Re	ec Limits
460-00-4	4-Bromofluorobenzene	250	263	ug/L		105	78 - 130
1868-53-7	Dibromofluoromethane	250	264	ug/L		106	77 - 127
2037-26-5	Toluene d8	250	255	ug/L		102	76 - 134
17060-07-0	1,2-Dichloroethane-d4	250	226	ug/L		90	71 - 127

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180907	MW29	Water	05/17/2013 12:17	05/18/2013 10:20	
SW-846 82	60B				

Prep Date	Prep Batch	Prep Method	Dilution 1	Analyzed 05/18/2013 23:30	By AMD	Analytical Batch 507587	
CAS#	Parameter		Result	RDL	RE	G LIMIT	Units
630-20-6	1,1,1,2-Tetrachloroethane		<5.00	5.00			ug/L
71-55-6	1,1,1-Trichloroethane		<5.00	5.00			ug/L
79-34-5	1,1,2,2-Tetrachloroethane		<5.00	5.00			ug/L
79-00-5	1,1,2-Trichloroethane		<5.00	5.00			ug/L
75-34-3	1,1-Dichloroethane		<5.00	5.00			ug/L
75-35-4	1,1-Dichloroethene		<5.00	5.00			ug/L
563-58-6	1,1-Dichloropropene		<5.00	5.00			ug/L
96-18-4	1,2,3-Trichloropropane		<5.00	5.00			ug/L
120-82-1	1,2,4-Trichlorobenzene		<5.00	5.00			ug/L
95-63-6	1,2,4-Trimethylbenzene		<5.00	5.00			ug/L
96-12-8	1,2-Dibromo-3-chloropropa	ane	<5.00	5.00			ug/L
106-93-4	1,2-Dibromoethane		<5.00	5.00			ug/L
95-50-1	1,2-Dichlorobenzene		<5.00	5.00			ug/L
107-06-2	1,2-Dichloroethane		<5.00	5.00			ug/L
540-59-0	1,2-Dichloroethene(Total)		11.8	10.0			ug/L
78-87-5	1,2-Dichloropropane		<5.00	5.00			ug/L
108-67-8	1,3,5-Trimethylbenzene		<5.00	5.00			ug/L
541-73-1	1,3-Dichlorobenzene		<5.00	5.00			ug/L
142-28-9	1,3-Dichloropropane		<5.00	5.00			ug/L
142-26-9	1,4-Dichlorobenzene		<5.00	5.00			
594-20-7			<5.00	5.00			ug/L
78-93-3	2,2-Dichloropropane 2-Butanone		<5.00	5.00			ug/L
95-49-8				5.00			ug/L
	2-Chlorotoluene		<5.00				ug/L
591-78-6	2-Hexanone		<5.00	5.00			ug/L
106-43-4	4-Chlorotoluene		<5.00	5.00			ug/L
99-87-6	4-Isopropyltoluene		<5.00	5.00			ug/L
108-10-1	4-Methyl-2-pentanone		<5.00	5.00			ug/L
67-64-1	Acetone		<5.00	5.00			ug/L
71-43-2	Benzene		<5.00	5.00			ug/L
108-86-1	Bromobenzene		<5.00	5.00			ug/L
74-97-5	Bromochloromethane		<5.00	5.00			ug/L
75-27-4	Bromodichloromethane		<5.00	5.00			ug/L
75-25-2	Bromoform		<5.00	5.00			ug/L
74-83-9	Bromomethane		<5.00	5.00			ug/L
75-15-0	Carbon disulfide		<5.00	5.00			ug/L
56-23-5	Carbon tetrachloride		<5.00	5.00			ug/L
108-90-7	Chlorobenzene		<5.00	5.00			ug/L
75-00-3	Chloroethane		<5.00	5.00			ug/L
67-66-3	Chloroform		<5.00	5.00			ug/L
74-87-3	Chloromethane		<5.00	5.00			ug/L
124-48-1	Dibromochloromethane		<5.00	5.00			ug/L
74-95-3	Dibromomethane		<5.00	5.00			ug/L
75-71-8	Dichlorodifluoromethane		<5.00	5.00			ug/L
100-41-4	Ethylbenzene		<5.00	5.00			ug/L
87-68-3	Hexachlorobutadiene		<5.00	5.00			ug/L
98-82-8	Isopropylbenzene (Cumen	e)	<5.00	5.00			ug/L
74-88-4	Methyl iodide	,	<5.00	5.00			ug/L
75-09-2	Methylene chloride		<5.00	5.00			ug/L
91-20-3	Naphthalene		<5.00	5.00			ug/L
			<5.00	5.00			ug/L

AL ID	Client ID	Matrix	Collect Date	/Time	Receive Date/Time		
05180907	MW29	Water	05/17/2013 12:17		05/18/2013 10:20		
V-846 826	0B						
Prep Date	Prep Batch	Prep Method	Dilution	Analyzed	Ву	Analytical	Batch
•		•	1	05/18/2013 23:30	AMD	507587	
CAS#	Parameter		Result	RDL	RE	EG LIMIT	Uni
127-18-4	Tetrachloroethene		<5.00	5.00			ug
108-88-3	Toluene		<5.00	5.00			ug
79-01-6	Trichloroethene		<5.00	5.00			ug
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug
75-01-4	Vinyl chloride		<5.00	5.00			ug
1330-20-7	Xylene (total)		<15.0	15.0			ug
156-59-2	cis-1,2-Dichloroethene	•	11.8	5.00			ug
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			ug
136777-61-2	m,p-Xylene		<10.0	10.0			ug
104-51-8	n-Butylbenzene		<5.00	5.00			ug
103-65-1	n-Propylbenzene		<5.00	5.00			ug
95-47-6	o-Xylene		<5.00	5.00			ug
135-98-8	sec-Butylbenzene		<5.00	5.00			ug
1634-04-4	tert-Butyl methyl ether	(MTBE)	14.9	5.00			ug
98-06-6	tert-Butylbenzene		<5.00	5.00			ug
156-60-5	trans-1,2-Dichloroethene	e	<5.00	5.00			ug
10061-02-6	trans-1,3-Dichloroproper	ne	<5.00	5.00			ug
110-57-6	trans-1,4-Dichloro-2-but	ene	<5.00	5.00			ug
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Rec	overy	Rec Limi
460-00-4	4-Bromofluorobenzene	50	52.7	ug/L		105	78 - 13
1868-53-7	Dibromofluoromethane	50	51.5	ug/L		103	77 - 12
2037-26-5	Toluene d8	50	50.3	ug/L		101	76 - 1
17060-07-0	1,2-Dichloroethane-d4	50	45.6	ug/L		91	71 - 12

GCAL ID Client ID		Matrix	Collect Date/Time	Receive Date/Time
21305180908	MW30	Water	05/17/2013 13:05	05/18/2013 10:20
SW-846 82	260B			

Prep Date	Prep Batch	Prep Method	Dilution 1	Analyzed 05/18/2013 23:53	By AMD	Analytical I 507587	Batch
CAS#	Parameter		Result	RDL	R	EG LIMIT	Units
630-20-6	1,1,1,2-Tetrachloroethar	e	<5.00	5.00			ug/l
71-55-6	1,1,1-Trichloroethane		<5.00	5.00			ug/l
79-34-5	1,1,2,2-Tetrachloroethar	e	<5.00	5.00			ug/l
79-00-5	1,1,2-Trichloroethane		<5.00	5.00			ug/l
75-34-3	1,1-Dichloroethane		<5.00	5.00			ug/l
75-35-4	1,1-Dichloroethene		<5.00	5.00			ug/l
563-58-6	1,1-Dichloropropene		<5.00	5.00			ug/l
96-18-4	1,2,3-Trichloropropane		<5.00	5.00			ug/l
120-82-1	1,2,4-Trichlorobenzene		<5.00	5.00			ug/l
95-63-6	1,2,4-Trimethylbenzene		<5.00	5.00			ug/l
96-12-8	1,2-Dibromo-3-chloropro	pane	<5.00	5.00			ug/l
106-93-4	1,2-Dibromoethane	P 4110	<5.00	5.00			ug/l
95-50-1	1,2-Dichlorobenzene		<5.00	5.00			ug/l
107-06-2	1,2-Dichloroethane		<5.00	5.00			ug/l
540-59-0	1,2-Dichloroethene(Tota	D)	<10.0	10.0			ug/l
78-87-5	1,2-Dichloropropane	1)	<5.00	5.00			ug/l
108-67-8	1,3,5-Trimethylbenzene		<5.00	5.00			ug/l
541-73-1	1,3-Dichlorobenzene		<5.00	5.00			
142-28-9	,		<5.00	5.00			ug/l
142-26-9	1,3-Dichloropropane 1,4-Dichlorobenzene		<5.00	5.00			ug/l
594-20-7			<5.00	5.00			ug/l
78-93-3	2,2-Dichloropropane 2-Butanone		<5.00	5.00			ug/l
							ug/l
95-49-8	2-Chlorotoluene		<5.00	5.00			ug/l
591-78-6	2-Hexanone		<5.00	5.00			ug/l
106-43-4	4-Chlorotoluene		<5.00	5.00			ug/l
99-87-6	4-Isopropyltoluene		<5.00	5.00			ug/l
108-10-1	4-Methyl-2-pentanone		<5.00	5.00			ug/l
67-64-1	Acetone		<5.00	5.00			ug/l
71-43-2	Benzene		<5.00	5.00			ug/l
108-86-1	Bromobenzene		<5.00	5.00			ug/l
74-97-5	Bromochloromethane		<5.00	5.00			ug/l
75-27-4	Bromodichloromethane		<5.00	5.00			ug/l
75-25-2	Bromoform		<5.00	5.00			ug/l
74-83-9	Bromomethane		<5.00	5.00			ug/l
75-15-0	Carbon disulfide		<5.00	5.00			ug/l
56-23-5	Carbon tetrachloride		<5.00	5.00			ug/l
108-90-7	Chlorobenzene		<5.00	5.00			ug/l
75-00-3	Chloroethane		<5.00	5.00			ug/l
67-66-3	Chloroform		<5.00	5.00			ug/l
74-87-3	Chloromethane		<5.00	5.00			ug/l
124-48-1	Dibromochloromethane		<5.00	5.00			ug/l
74-95-3	Dibromomethane		<5.00	5.00			ug/l
75-71-8	Dichlorodifluoromethane		<5.00	5.00			ug/l
100-41-4	Ethylbenzene		<5.00	5.00			ug/l
87-68-3	Hexachlorobutadiene		<5.00	5.00			ug/l
98-82-8	Isopropylbenzene (Cume	ene)	<5.00	5.00			ug/l
74-88-4	Methyl iodide		<5.00	5.00			ug/l
75-09-2	Methylene chloride		<5.00	5.00			ug/l
91-20-3	Naphthalene		<5.00	5.00			ug/l
100-42-5	Styrene		<5.00	5.00			ug/l

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180908	MW30	Water	05/17/2013 13:05	05/18/2013 10:20	

Prep Date	Prep Batch Pre	ep Method	Dilution	Analyzed 05/18/2013 23:53	By AMD	Analytical Batcl 507587	ı	
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units	
127-18-4	Tetrachloroethene		17.9	5.00			ug/L	
108-88-3	Toluene		<5.00	5.00			ug/L	
79-01-6	Trichloroethene		<5.00	5.00			ug/L	
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug/L	
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug/L	
75-01-4	Vinyl chloride		<5.00	5.00			ug/L	
1330-20-7	Xylene (total)		<15.0	15.0			ug/L	
156-59-2	cis-1,2-Dichloroethene		<5.00	5.00			ug/L	
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			ug/l	
136777-61-2	m,p-Xylene		<10.0	10.0			ug/L	
104-51-8	n-Butylbenzene		<5.00	5.00			ug/L	
103-65-1	n-Propylbenzene		<5.00	5.00			ug/L	
95-47-6	o-Xylene		<5.00	5.00			ug/l	
135-98-8	sec-Butylbenzene		<5.00	5.00			ug/L	
1634-04-4	tert-Butyl methyl ether (MTBE)		<5.00	5.00			ug/L	
98-06-6	tert-Butylbenzene		<5.00	5.00			ug/L	
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			ug/L	
10061-02-6	trans-1,3-Dichloropropene		<5.00	5.00			ug/L	
110-57-6	trans-1,4-Dichloro-2-butene		<5.00	5.00			ug/l	
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Re	covery Re	c Limits	
460-00-4	4-Bromofluorobenzene	50	52.9	ug/L		106	78 - 130	
1868-53-7	Dibromofluoromethane	50	52.3	ug/L		105	77 - 127	
2037-26-5	Toluene d8	50	51.1	ug/L		102	76 - 134	
17060-07-0	1,2-Dichloroethane-d4	50	44.9	ug/L		90	71 - 127	

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
21305180909	MW13D	Water	05/17/2013 14:10	05/18/2013 10:20
SW-846 82	60B			

Prep Date	Prep Batch	Prep Method	Dilution 1	Analyzed 05/19/2013 00:16	By AMD	Analytical 507587	Batch
CAS#	Parameter		Result	RDL	R	EG LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethane		<5.00	5.00			ug/l
71-55-6	1,1,1-Trichloroethane		<5.00	5.00			ug/l
79-34-5	1,1,2,2-Tetrachloroethane		<5.00	5.00			ug/l
79-00-5	1,1,2-Trichloroethane		<5.00	5.00			ug/l
75-34-3	1,1-Dichloroethane		<5.00	5.00			ug/l
75-35-4	1,1-Dichloroethene		<5.00	5.00			ug/l
563-58-6	1,1-Dichloropropene		<5.00	5.00			ug/l
96-18-4	1,2,3-Trichloropropane		<5.00	5.00			ug/l
120-82-1	1,2,4-Trichlorobenzene		<5.00	5.00			ug/l
95-63-6	1,2,4-Trimethylbenzene		<5.00	5.00			ug/l
96-12-8	1,2-Dibromo-3-chloropropane	6	<5.00	5.00			ug/l
106-93-4	1,2-Dibromoethane		<5.00	5.00			ug/l
95-50-1	1,2-Dichlorobenzene		<5.00	5.00			ug/l
107-06-2	1,2-Dichloroethane		<5.00	5.00			ug/l
540-59-0	1,2-Dichloroethene(Total)		<10.0	10.0			ug/l
78-87-5	1,2-Dichloropropane		<5.00	5.00			ug/l
108-67-8	1,3,5-Trimethylbenzene		<5.00	5.00			ug/l
541-73-1	1,3-Dichlorobenzene		<5.00	5.00			ug/l
142-28-9	1,3-Dichloropropane		<5.00	5.00			ug/l
106-46-7	1,4-Dichlorobenzene		<5.00	5.00			ug/l
594-20-7	2,2-Dichloropropane		<5.00	5.00			ug/l
78-93-3	2-Butanone		10.5	5.00			ug/l
95-49-8	2-Chlorotoluene		<5.00	5.00			ug/l
591-78-6	2-Hexanone		<5.00	5.00			ug/l
106-43-4	4-Chlorotoluene		<5.00	5.00			ug/l
99-87-6	4-Isopropyltoluene		<5.00	5.00			ug/l
108-10-1	4-Methyl-2-pentanone		<5.00	5.00			ug/l
67-64-1	Acetone		54.5	5.00			ug/l
71-43-2	Benzene		<5.00	5.00			ug/l
108-86-1	Bromobenzene		<5.00	5.00			ug/l
74-97-5	Bromochloromethane		<5.00	5.00			ug/l
75-27-4	Bromodichloromethane		<5.00	5.00			ug/l
75-25-2	Bromoform		<5.00	5.00			ug/l
74-83-9	Bromomethane		<5.00	5.00			ug/l
75-15-0	Carbon disulfide		<5.00	5.00			ug/l
56-23-5	Carbon tetrachloride		<5.00	5.00			ug/l
108-90-7	Chlorobenzene		<5.00	5.00			ug/l
75-00-3	Chloroethane		<5.00	5.00			ug/l
67-66-3	Chloroform		<5.00	5.00			ug/l
74-87-3	Chloromethane		<5.00	5.00			ug/l
124-48-1	Dibromochloromethane		<5.00	5.00			
74-95-3	Dibromomethane		<5.00	5.00			ug/l ug/l
74-95-3 75-71-8	Dichlorodifluoromethane		<5.00	5.00			ug/l
100-41-4	Ethylbenzene		<5.00	5.00			-
100-41-4 87-68-3	Hexachlorobutadiene		<5.00	5.00			ug/l
07-00-3 98-82-8			<5.00	5.00			ug/l
98-82-8 74-88-4	Isopropylbenzene (Cumene)		<5.00 <5.00	5.00			ug/l
	Methyl iodide						ug/l
75-09-2	Methylene chloride		<5.00	5.00			ug/l
91-20-3	Naphthalene		<5.00	5.00			ug/l
100-42-5	Styrene		<5.00	5.00			ug/

AL ID	Client ID	Collect Date	Receive Date/Time				
05180909	MW13D	Water	05/17/2013 1	4:10	05/18/2	013 10:20	
V-846 826	0B						
Prep Date	Prep Batch	Prep Method	Dilution	Analyzed	Ву	Analytical	Batch
	•		1	05/19/2013 00:16	AMD	507587	
CAS#	Parameter		Result	RDL	RE	EG LIMIT	Uni
127-18-4	Tetrachloroethene		<5.00	5.00			ug
108-88-3	Toluene		<5.00	5.00			ug
79-01-6	Trichloroethene		<5.00	5.00			ug
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug
75-01-4	Vinyl chloride		<5.00	5.00			ug
1330-20-7	Xylene (total)		<15.0	15.0			uį
156-59-2	cis-1,2-Dichloroethene		<5.00	5.00			u
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			uį
136777-61-2	m,p-Xylene		<10.0	10.0			uį
104-51-8	n-Butylbenzene		<5.00	5.00			u
103-65-1	n-Propylbenzene		<5.00	5.00			u
95-47-6	o-Xylene		<5.00	5.00			u
135-98-8	sec-Butylbenzene		<5.00	5.00			u
1634-04-4	tert-Butyl methyl ether (M	1TBE)	<5.00	5.00			u
98-06-6	tert-Butylbenzene		<5.00	5.00			u
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			u
10061-02-6	trans-1,3-Dichloropropen	e	<5.00	5.00			u
110-57-6	trans-1,4-Dichloro-2-bute	ene	<5.00	5.00			u
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Rec	overy	Rec Lim
460-00-4	4-Bromofluorobenzene	50	58.6	ug/L		117	78 - 1
1868-53-7	Dibromofluoromethane	50	51.6	ug/L		103	77 - 1
2037-26-5	Toluene d8	50	50.6	ug/L		101	76 - 1
17060-07-0	1,2-Dichloroethane-d4	50	44.9	ug/L		90	71 - 1

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180910	MW13S	Water	05/17/2013 14:45	05/18/2013 10:20	
SW-846 82		Walei	03/11/2013 14.43	05/10/2013 10:20	

Prep Date	Prep Batch	Prep Method	Dilution 1	Analyzed 05/19/2013 00:38	By AMD	Analytical E 507587	Batch
CAS#	Parameter		Result	RDL	R	EG LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethane	9	<5.00	5.00			ug/
71-55-6	1,1,1-Trichloroethane		<5.00	5.00			ug/
79-34-5	1,1,2,2-Tetrachloroethane	9	<5.00	5.00			ug/
79-00-5	1,1,2-Trichloroethane		<5.00	5.00			ug/
75-34-3	1,1-Dichloroethane		<5.00	5.00			ug/
75-35-4	1,1-Dichloroethene		<5.00	5.00			ug/
563-58-6	1,1-Dichloropropene		<5.00	5.00			ug/
96-18-4	1,2,3-Trichloropropane		<5.00	5.00			ug/
120-82-1	1,2,4-Trichlorobenzene		<5.00	5.00			ug/
95-63-6	1,2,4-Trimethylbenzene		<5.00	5.00			ug/
96-12-8	1,2-Dibromo-3-chloroprop	ana	<5.00	5.00			ug/
106-93-4	1,2-Dibromoethane	alle	<5.00	5.00			ug/
95-50-1	1,2-Dichlorobenzene		<5.00	5.00			-
107-06-2	1,2-Dichloroethane		<5.00	5.00			ug/
540-59-0			<10.0	10.0			ug/
	1,2-Dichloroethene(Total)						ug/
78-87-5	1,2-Dichloropropane		<5.00	5.00			ug/
108-67-8	1,3,5-Trimethylbenzene		<5.00	5.00			ug/
541-73-1	1,3-Dichlorobenzene		<5.00	5.00			ug/
142-28-9	1,3-Dichloropropane		<5.00	5.00			ug/
106-46-7	1,4-Dichlorobenzene		<5.00	5.00			ug/
594-20-7	2,2-Dichloropropane		<5.00	5.00			ug/
78-93-3	2-Butanone		<5.00	5.00			ug/
95-49-8	2-Chlorotoluene		<5.00	5.00			ug/
591-78-6	2-Hexanone		<5.00	5.00			ug/
106-43-4	4-Chlorotoluene		<5.00	5.00			ug/
99-87-6	4-Isopropyltoluene		<5.00	5.00			ug/
108-10-1	4-Methyl-2-pentanone		<5.00	5.00			ug/
67-64-1	Acetone		<5.00	5.00			ug/
71-43-2	Benzene		<5.00	5.00			ug/
108-86-1	Bromobenzene		<5.00	5.00			ug/
74-97-5	Bromochloromethane		<5.00	5.00			ug/
75-27-4	Bromodichloromethane		<5.00	5.00			ug/
75-25-2	Bromoform		<5.00	5.00			ug/
74-83-9	Bromomethane		<5.00	5.00			ug/
75-15-0	Carbon disulfide		<5.00	5.00			ug/
56-23-5	Carbon tetrachloride		<5.00	5.00			ug/
108-90-7	Chlorobenzene		<5.00	5.00			ug/
75-00-3	Chloroethane		<5.00	5.00			ug/
67-66-3	Chloroform		<5.00	5.00			ug/
74-87-3	Chloromethane		<5.00	5.00			ug/
124-48-1	Dibromochloromethane		<5.00	5.00			ug/
74-95-3	Dibromomethane		<5.00	5.00			ug/
75-71-8	Dichlorodifluoromethane		<5.00	5.00			ug/
100-41-4	Ethylbenzene		<5.00	5.00			ug/
87-68-3	Hexachlorobutadiene		<5.00	5.00			ug/
98-82-8	Isopropylbenzene (Cume	ne)	<5.00	5.00			ug/
74-88-4	Methyl iodide		<5.00	5.00			ug/
75-09-2	Methylene chloride		<5.00	5.00			ug/
91-20-3	Naphthalene		<5.00	5.00			ug/
100-42-5	Styrene		<5.00	5.00			ug/

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180910	MW13S	Water	05/17/2013 14:45	05/18/2013 10:20	

SW-846 8260B

Prep Date	Prep Batch Pr	ep Method	Dilution 1	Analyzed 05/19/2013 00:38	By AMD	Analytical Batc 507587	h
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
127-18-4	Tetrachloroethene		54.1	5.00			ug/L
108-88-3	Toluene		<5.00	5.00			ug/L
79-01-6	Trichloroethene		<5.00	5.00			ug/L
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug/L
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug/L
75-01-4	Vinyl chloride		<5.00	5.00			ug/L
1330-20-7	Xylene (total)		<15.0	15.0			ug/L
156-59-2	cis-1,2-Dichloroethene		6.31	5.00			ug/L
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			ug/L
136777-61-2	m,p-Xylene		<10.0	10.0			ug/L
104-51-8	n-Butylbenzene		<5.00	5.00			ug/L
103-65-1	n-Propylbenzene		<5.00	5.00			ug/L
95-47-6	o-Xylene		<5.00	5.00			ug/L
135-98-8	sec-Butylbenzene		<5.00	5.00			ug/L
1634-04-4	tert-Butyl methyl ether (MTBE)		<5.00	5.00			ug/L
98-06-6	tert-Butylbenzene		<5.00	5.00			ug/L
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			ug/L
10061-02-6	trans-1,3-Dichloropropene		<5.00	5.00			ug/L
110-57-6	trans-1,4-Dichloro-2-butene		<5.00	5.00			ug/L
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Re	covery R	ec Limits
460-00-4	4-Bromofluorobenzene	50	52.8	ug/L		106	78 - 130
1868-53-7	Dibromofluoromethane	50	52.3	ug/L		105	77 - 127
2037-26-5	Toluene d8	50	51.2	ug/L		102	76 - 134
17060-07-0	1,2-Dichloroethane-d4	50	45.1	ug/L		90	71 - 127

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
<mark>21305180911</mark>	MW17	Water	05/17/2013 15:47	05/18/2013 10:20
SW-846 82	:60B			

Prep Date	Prep Batch	Prep Method	Dilution 1	Analyzed 05/19/2013 01:02	By AMD	Analytical B 507587	atch
CAS#	Parameter		Result	RDL	R	EG LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethane	9	<5.00	5.00			ug/l
71-55-6	1,1,1-Trichloroethane		<5.00	5.00			ug/l
79-34-5	1,1,2,2-Tetrachloroethane	9	<5.00	5.00			ug/l
79-00-5	1,1,2-Trichloroethane		<5.00	5.00			ug/l
75-34-3	1,1-Dichloroethane		<5.00	5.00			ug/l
75-35-4	1,1-Dichloroethene		<5.00	5.00			ug/l
563-58-6	1,1-Dichloropropene		<5.00	5.00			ug/l
96-18-4	1,2,3-Trichloropropane		<5.00	5.00			ug/l
120-82-1	1,2,4-Trichlorobenzene		<5.00	5.00			ug/l
95-63-6	1,2,4-Trimethylbenzene		<5.00	5.00			ug/l
96-12-8	1,2-Dibromo-3-chloroprop	ane	<5.00	5.00			ug/l
106-93-4	1,2-Dibromoethane		<5.00	5.00			ug/l
95-50-1	1,2-Dichlorobenzene		<5.00	5.00			ug/l
107-06-2	1,2-Dichloroethane		<5.00	5.00			ug/l
540-59-0	1,2-Dichloroethene(Total)		<10.0	10.0			ug/l
78-87-5	1,2-Dichloropropane		<5.00	5.00			ug/l
108-67-8	1,3,5-Trimethylbenzene		<5.00	5.00			ug/l
541-73-1	1,3-Dichlorobenzene		<5.00	5.00			-
	-		<5.00				ug/l
142-28-9	1,3-Dichloropropane			5.00			ug/
106-46-7	1,4-Dichlorobenzene		<5.00	5.00			ug/
594-20-7	2,2-Dichloropropane		<5.00	5.00			ug/
78-93-3	2-Butanone		<5.00	5.00			ug/
95-49-8	2-Chlorotoluene		<5.00	5.00			ug/l
591-78-6	2-Hexanone		<5.00	5.00			ug/l
106-43-4	4-Chlorotoluene		<5.00	5.00			ug/l
99-87-6	4-Isopropyltoluene		<5.00	5.00			ug/
108-10-1	4-Methyl-2-pentanone		<5.00	5.00			ug/
67-64-1	Acetone		<5.00	5.00			ug/
71-43-2	Benzene		<5.00	5.00			ug/
108-86-1	Bromobenzene		<5.00	5.00			ug/
74-97-5	Bromochloromethane		<5.00	5.00			ug/l
75-27-4	Bromodichloromethane		<5.00	5.00			ug/l
75-25-2	Bromoform		<5.00	5.00			ug/
74-83-9	Bromomethane		<5.00	5.00			ug/
75-15-0	Carbon disulfide		<5.00	5.00			ug/
56-23-5	Carbon tetrachloride		<5.00	5.00			ug/
108-90-7	Chlorobenzene		<5.00	5.00			ug/
75-00-3	Chloroethane		<5.00	5.00			ug/l
67-66-3	Chloroform		<5.00	5.00			ug/
74-87-3	Chloromethane		<5.00	5.00			ug/l
124-48-1	Dibromochloromethane		<5.00	5.00			ug/
74-95-3	Dibromomethane		<5.00	5.00			ug/
75-71-8	Dichlorodifluoromethane		<5.00	5.00			ug/
100-41-4	Ethylbenzene		<5.00	5.00			ug/
87-68-3	Hexachlorobutadiene		<5.00	5.00			ug/
98-82-8	Isopropylbenzene (Cume	ne)	<5.00	5.00			ug/
74-88-4	Methyl iodide	,	<5.00	5.00			ug/
75-09-2	Methylene chloride		<5.00	5.00			ug/l
91-20-3	Naphthalene		<5.00	5.00			ug/l
100-42-5	Styrene		<5.00	5.00			ug/

AL ID	D Client ID N		Client ID Matrix Collect Da		Collect Date	/Time	Receive Date/Time 05/18/2013 10:20		
05180911	MW17	Water	05/17/2013 1	5:47					
V-846 826	0B								
Prep Date	Prep Batch	Prep Method	Dilution	Analyzed	Ву	Analytical Ba	atch		
		•	1	05/19/2013 01:02	-	507587			
CAS#	Parameter		Result	RDL	REG		Uni		
127-18-4	Tetrachloroethene		<5.00	5.00			ug		
108-88-3	Toluene		<5.00	5.00			ug		
79-01-6	Trichloroethene		<5.00	5.00			ug		
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug		
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug		
75-01-4	Vinyl chloride		<5.00	5.00			ug		
1330-20-7	Xylene (total)		<15.0	15.0			ug		
156-59-2	cis-1,2-Dichloroethene		<5.00	5.00			ug		
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			ug		
136777-61-2	m,p-Xylene		<10.0	10.0			ug		
104-51-8	n-Butylbenzene		<5.00	5.00			ug		
103-65-1	n-Propylbenzene		<5.00	5.00			ug		
95-47-6	o-Xylene		<5.00	5.00			ug		
135-98-8	sec-Butylbenzene		<5.00	5.00			ug		
1634-04-4	tert-Butyl methyl ether (MT	BE)	<5.00	5.00			ug		
98-06-6	tert-Butylbenzene		<5.00	5.00			ug		
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			ug		
10061-02-6	trans-1,3-Dichloropropene		<5.00	5.00			ug		
110-57-6	trans-1,4-Dichloro-2-butene	9	<5.00	5.00			ug		
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Reco	very	Rec Lim		
460-00-4	4-Bromofluorobenzene	50	52.2	ug/L		104	78 - 1		
1868-53-7	Dibromofluoromethane	50	51.7	ug/L		103	77 - 1		
2037-26-5	Toluene d8	50	50.1	ug/L		100	76 - 1		
17060-07-0	1,2-Dichloroethane-d4	50	45.9	ug/L		92	71 - 1		

21305180912 MW2 Water 05/17/2013 16:10 05/18/2013 10:20	GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
	21305180912	MW2	Water	05/17/2013 16:10	05/18/2013 10:20	

Prep Date	Prep Batch Prep Meth	nod Dilution 20	Analyzed 05/19/2013 03:20	By AMD	Analytical Batch 507587	
CAS#	Parameter	Result	RDL	RE	EG LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethane	<100	100			ug/
71-55-6	1,1,1-Trichloroethane	<100	100			ug/
79-34-5	1,1,2,2-Tetrachloroethane	<100	100			ug/
79-00-5	1,1,2-Trichloroethane	<100	100			ug/
75-34-3	1,1-Dichloroethane	<100	100			ug/
75-35-4	1,1-Dichloroethene	<100	100			ug/
563-58-6	1,1-Dichloropropene	<100	100			ug/
96-18-4	1,2,3-Trichloropropane	<100	100			ug/
120-82-1	1,2,4-Trichlorobenzene	<100	100			ug/
95-63-6	1,2,4-Trimethylbenzene	<100	100			ug/
96-12-8	1,2-Dibromo-3-chloropropane	<100	100			ug/
106-93-4	1,2-Dibromoethane	<100	100			ug/
95-50-1	1,2-Dichlorobenzene	<100	100			ug/
107-06-2	1,2-Dichloroethane	<100	100			ug,
540-59-0	1,2-Dichloroethene(Total)	<200	200			ug,
78-87-5	1,2-Dichloropropane	<100	100			ug,
108-67-8	1,3,5-Trimethylbenzene	<100	100			ug
541-73-1	1,3-Dichlorobenzene	<100	100			ug
142-28-9	1,3-Dichloropropane	<100	100			ug
106-46-7	1,4-Dichlorobenzene	<100	100			ug
594-20-7	2,2-Dichloropropane	<100	100			ug
78-93-3	2-Butanone	<100	100			ug
95-49-8	2-Chlorotoluene	<100	100			ug
591-78-6	2-Hexanone	<100	100			ug
106-43-4	4-Chlorotoluene	<100	100			ug
99-87-6	4-Isopropyltoluene	<100	100			ug
108-10-1	4-Methyl-2-pentanone	<100	100			ug
67-64-1	Acetone	<100	100			-
71-43-2	Benzene	<100	100			ug ug
108-86-1	Bromobenzene	<100	100			-
74-97-5	Bromochloromethane	<100	100			ug
	Bromodichloromethane	<100				ug
75-27-4			100			ug
75-25-2 74-83-9	Bromoform	<100	100			ug
	Bromomethane	<100	100			ug
75-15-0	Carbon disulfide	<100	100			ug
56-23-5	Carbon tetrachloride	<100	100			ug
108-90-7	Chlorobenzene	<100	100			ug
75-00-3	Chloroethane	<100	100			ug
67-66-3	Chloroform	<100	100			ug
74-87-3	Chloromethane	<100	100			ug
24-48-1	Dibromochloromethane	<100	100			ug
74-95-3	Dibromomethane	<100	100			ug
75-71-8	Dichlorodifluoromethane	<100	100			ug
00-41-4	Ethylbenzene	<100	100			ug
37-68-3	Hexachlorobutadiene	<100	100			ug
98-82-8	Isopropylbenzene (Cumene)	<100	100			ug
74-88-4	Methyl iodide	<100	100			ug
75-09-2	Methylene chloride	<100	100			ug
91-20-3	Naphthalene	<100	100			ug
100-42-5	Styrene	<100	100			ug

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180912	MW2	Water	05/17/2013 16:10	05/18/2013 10:20	

Prep Date	Prep Batch P	rep Method	Dilution 20	Analyzed 05/19/2013 03:20	By AMD	Analytical Ba 507587	tch
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
127-18-4	Tetrachloroethene		2470	100			ug/L
108-88-3	Toluene		<100	100			ug/L
79-01-6	Trichloroethene		170	100			ug/L
75-69-4	Trichlorofluoromethane		<100	100			ug/L
76-13-1	Trichlorotrifluoroethane		<100	100			ug/L
75-01-4	Vinyl chloride		<100	100			ug/L
1330-20-7	Xylene (total)		<300	300			ug/L
156-59-2	cis-1,2-Dichloroethene		<100	100			ug/L
10061-01-5	cis-1,3-Dichloropropene		<100	100			ug/L
136777-61-2	m,p-Xylene		<200	200			ug/L
104-51-8	n-Butylbenzene		<100	100			ug/L
103-65-1	n-Propylbenzene		<100	100			ug/L
95-47-6	o-Xylene		<100	100			ug/L
135-98-8	sec-Butylbenzene		<100	100			ug/L
1634-04-4	tert-Butyl methyl ether (MTBE)	<100	100			ug/L
98-06-6	tert-Butylbenzene		<100	100			ug/L
156-60-5	trans-1,2-Dichloroethene		<100	100			ug/L
10061-02-6	trans-1,3-Dichloropropene		<100	100			ug/L
110-57-6	trans-1,4-Dichloro-2-butene		<100	100			ug/L
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Red	covery	Rec Limits
460-00-4	4-Bromofluorobenzene	1000	1060	ug/L		106	78 - 130
1868-53-7	Dibromofluoromethane	1000	1060	ug/L		106	77 - 127
2037-26-5	Toluene d8	1000	1020	ug/L		102	76 - 134
17060-07-0	1,2-Dichloroethane-d4	1000	897	ug/L		90	71 - 127

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time		
<mark>21305180913</mark>	MW27	Water	05/17/2013 16:40	05/18/2013 10:20		
SW-846 8260B						

Prep Date	Prep Batch Prep Method	Dilution 1	Analyzed 05/19/2013 01:25	By Analytical Ba AMD 507587	atch
CAS#	Parameter	Result	RDL	REG LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethane	<5.00	5.00		ug/
71-55-6	1,1,1-Trichloroethane	<5.00	5.00		ug/
79-34-5	1,1,2,2-Tetrachloroethane	<5.00	5.00		ug/
79-00-5	1,1,2-Trichloroethane	<5.00	5.00		ug/
75-34-3	1,1-Dichloroethane	<5.00	5.00		ug/
75-35-4	1,1-Dichloroethene	<5.00	5.00		ug/
563-58-6	1,1-Dichloropropene	<5.00	5.00		ug/
96-18-4	1,2,3-Trichloropropane	<5.00	5.00		ug/
120-82-1	1,2,4-Trichlorobenzene	<5.00	5.00		ug/
95-63-6	1,2,4-Trimethylbenzene	<5.00	5.00		ug/
96-12-8	1,2-Dibromo-3-chloropropane	<5.00	5.00		ug/
106-93-4	1,2-Dibromoethane	<5.00	5.00		ug/
95-50-1	1,2-Dichlorobenzene	<5.00	5.00		ug/
107-06-2	1.2-Dichloroethane	<5.00	5.00		ug/
540-59-0	1,2-Dichloroethene(Total)	11.2	10.0		ug/
78-87-5	1,2-Dichloropropane	<5.00	5.00		ug
108-67-8	1,3,5-Trimethylbenzene	<5.00	5.00		ug/
541-73-1	1,3-Dichlorobenzene	<5.00	5.00		ug
142-28-9	1,3-Dichloropropane	<5.00	5.00		ug,
106-46-7	1,4-Dichlorobenzene	<5.00	5.00		ug,
594-20-7	2,2-Dichloropropane	<5.00	5.00		ug
78-93-3	2-Butanone	<5.00	5.00		ug, ug,
95-49-8	2-Chlorotoluene	<5.00	5.00		
591-78-6	2-Hexanone	<5.00	5.00		ug,
106-43-4	4-Chlorotoluene	<5.00	5.00		ug,
99-87-6					ug
	4-Isopropyltoluene	<5.00	5.00		ug
108-10-1	4-Methyl-2-pentanone	<5.00	5.00		ug
67-64-1	Acetone	<5.00	5.00		ug
71-43-2	Benzene	<5.00	5.00		ug
108-86-1	Bromobenzene	<5.00	5.00		ug
74-97-5	Bromochloromethane	<5.00	5.00		ug
75-27-4	Bromodichloromethane	<5.00	5.00		ug
75-25-2	Bromoform	<5.00	5.00		ug
74-83-9	Bromomethane	<5.00	5.00		ug
75-15-0	Carbon disulfide	<5.00	5.00		ug
56-23-5	Carbon tetrachloride	<5.00	5.00		ug
108-90-7	Chlorobenzene	<5.00	5.00		ug
75-00-3	Chloroethane	<5.00	5.00		ug
67-66-3	Chloroform	<5.00	5.00		ug
74-87-3	Chloromethane	<5.00	5.00		ug
124-48-1	Dibromochloromethane	<5.00	5.00		ug
74-95-3	Dibromomethane	<5.00	5.00		ug
75-71-8	Dichlorodifluoromethane	<5.00	5.00		ug
100-41-4	Ethylbenzene	<5.00	5.00		ug
87-68-3	Hexachlorobutadiene	<5.00	5.00		ug
98-82-8	Isopropylbenzene (Cumene)	<5.00	5.00		ug
74-88-4	Methyl iodide	<5.00	5.00		ug
75-09-2	Methylene chloride	<5.00	5.00		ug
91-20-3	Naphthalene	<5.00	5.00		ug
100-42-5	Styrene	<5.00	5.00		ug

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21305180913	MW27	Water	05/17/2013 16:40	05/18/2013 10:20	

SW-846 8260B

Prep Date	Prep Batch Pre	ep Method	Dilution 1	Analyzed 05/19/2013 01:25	By AMD	Analytical Bate 507587	ch
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
127-18-4	Tetrachloroethene		47.8	5.00			ug/L
108-88-3	Toluene		<5.00	5.00			ug/L
79-01-6	Trichloroethene		5.80	5.00			ug/L
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug/L
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug/L
75-01-4	Vinyl chloride		<5.00	5.00			ug/L
1330-20-7	Xylene (total)		<15.0	15.0			ug/L
156-59-2	cis-1,2-Dichloroethene		11.2	5.00			ug/L
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			ug/L
136777-61-2	m,p-Xylene		<10.0	10.0			ug/L
104-51-8	n-Butylbenzene		<5.00	5.00			ug/L
103-65-1	n-Propylbenzene		<5.00	5.00			ug/L
95-47-6	o-Xylene		<5.00	5.00			ug/L
135-98-8	sec-Butylbenzene		<5.00	5.00			ug/L
1634-04-4	tert-Butyl methyl ether (MTBE)		<5.00	5.00			ug/L
98-06-6	tert-Butylbenzene		<5.00	5.00			ug/L
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			ug/L
10061-02-6	trans-1,3-Dichloropropene		<5.00	5.00			ug/L
110-57-6	trans-1,4-Dichloro-2-butene		<5.00	5.00			ug/L
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Re	covery R	Rec Limits
460-00-4	4-Bromofluorobenzene	50	53.1	ug/L		106	78 - 130
1868-53-7	Dibromofluoromethane	50	52.4	ug/L		105	77 - 127
2037-26-5	Toluene d8	50	51	ug/L		102	76 - 134
17060-07-0	1,2-Dichloroethane-d4	50	45.6	ug/L		91	71 - 127

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time		
<mark>21305180914</mark>	MW18	Water	05/17/2013 17:10	05/18/2013 10:20		
SW-846 8260B						

Prep Date	Prep Batch Prep Method	Dilution 1	Analyzed 05/19/2013 01:47	ByAnalytical BatcAMD507587	h
CAS#	Parameter	Result	RDL	REG LIMIT	Unit
630-20-6	1,1,1,2-Tetrachloroethane	<5.00	5.00		ug/
71-55-6	1,1,1-Trichloroethane	<5.00	5.00		ug/
79-34-5	1,1,2,2-Tetrachloroethane	<5.00	5.00		ug/
79-00-5	1,1,2-Trichloroethane	<5.00	5.00		ug/
75-34-3	1,1-Dichloroethane	<5.00	5.00		ug/
75-35-4	1,1-Dichloroethene	<5.00	5.00		ug
563-58-6	1,1-Dichloropropene	<5.00	5.00		ug
96-18-4	1,2,3-Trichloropropane	<5.00	5.00		ug
120-82-1	1,2,4-Trichlorobenzene	<5.00	5.00		ug
95-63-6	1,2,4-Trimethylbenzene	<5.00	5.00		ug
96-12-8	1,2-Dibromo-3-chloropropane	<5.00	5.00		ug
106-93-4	1,2-Dibromoethane	<5.00	5.00		ug
95-50-1	1,2-Dichlorobenzene	<5.00	5.00		ug
107-06-2	1,2-Dichloroethane	<5.00	5.00		ug
540-59-0	1,2-Dichloroethene(Total)	22.5	10.0		ug
78-87-5	1,2-Dichloropropane	<5.00	5.00		ug
108-67-8	1,3,5-Trimethylbenzene	<5.00	5.00		ug
541-73-1	1,3-Dichlorobenzene	<5.00	5.00		ug
142-28-9	1,3-Dichloropropane	<5.00	5.00		ug
142-26-9 106-46-7	1,4-Dichlorobenzene	<5.00	5.00		ug ug
594-20-7	2,2-Dichloropropane	<5.00	5.00		ug
78-93-3	2-Butanone	<5.00	5.00		ug
95-49-8	2-Chlorotoluene	<5.00	5.00		ug
591-78-6	2-Hexanone	<5.00	5.00		ug
106-43-4	4-Chlorotoluene	<5.00	5.00		ug
99-87-6	4-Isopropyltoluene	<5.00	5.00		ug
108-10-1	4-Methyl-2-pentanone	<5.00	5.00		ug
67-64-1	Acetone	<5.00	5.00		ug
71-43-2	Benzene	<5.00	5.00		ug
108-86-1	Bromobenzene	<5.00	5.00		ug
74-97-5	Bromochloromethane	<5.00	5.00		ug
75-27-4	Bromodichloromethane	<5.00	5.00		ug
75-25-2	Bromoform	<5.00	5.00		ug
74-83-9	Bromomethane	<5.00	5.00		ug
75-15-0	Carbon disulfide	<5.00	5.00		ug
56-23-5	Carbon tetrachloride	<5.00	5.00		ug
108-90-7	Chlorobenzene	<5.00	5.00		ug
75-00-3	Chloroethane	<5.00	5.00		ug
67-66-3	Chloroform	<5.00	5.00		ug
74-87-3	Chloromethane	<5.00	5.00		ug
124-48-1	Dibromochloromethane	<5.00	5.00		uç
74-95-3	Dibromomethane	<5.00	5.00		uç
75-71-8	Dichlorodifluoromethane	<5.00	5.00		uç
100-41-4	Ethylbenzene	<5.00	5.00		uç
37-68-3	Hexachlorobutadiene	<5.00	5.00		uç
98-82-8	Isopropylbenzene (Cumene)	<5.00	5.00		uç
90-82-8 74-88-4		<5.00 <5.00	5.00		
	Methyl iodide				ug
75-09-2	Methylene chloride	<5.00	5.00		ug
91-20-3	Naphthalene	<5.00	5.00		ug
100-42-5	Styrene	<5.00	5.00		ug

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
21305180914	MW18	Water	05/17/2013 17:10	05/18/2013 10:20

Prep Date	Prep Batch Pre	ep Method	Dilution	Analyzed 05/19/2013 01:47	By AMD	Analytical Bate 507587	h
			I	05/19/2013 01.47	AIVID	507587	
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
127-18-4	Tetrachloroethene		43.5	5.00			ug/L
108-88-3	Toluene		<5.00	5.00			ug/L
79-01-6	Trichloroethene		34.5	5.00			ug/L
75-69-4	Trichlorofluoromethane		<5.00	5.00			ug/L
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug/L
75-01-4	Vinyl chloride		<5.00	5.00			ug/L
1330-20-7	Xylene (total)		<15.0	15.0			ug/L
156-59-2	cis-1,2-Dichloroethene		22.5	5.00			ug/L
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			ug/L
136777-61-2	m,p-Xylene		<10.0	10.0			ug/L
104-51-8	n-Butylbenzene		<5.00	5.00			ug/L
103-65-1	n-Propylbenzene		<5.00	5.00			ug/L
95-47-6	o-Xylene		<5.00	5.00			ug/L
135-98-8	sec-Butylbenzene		<5.00	5.00			ug/L
1634-04-4	tert-Butyl methyl ether (MTBE)		<5.00	5.00			ug/L
98-06-6	tert-Butylbenzene		<5.00	5.00			ug/L
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			ug/L
10061-02-6	trans-1,3-Dichloropropene		<5.00	5.00			ug/L
110-57-6	trans-1,4-Dichloro-2-butene		<5.00	5.00			ug/L
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Red	covery R	ec Limits
460-00-4	4-Bromofluorobenzene	50	53.4	ug/L		107	78 - 130
1868-53-7	Dibromofluoromethane	50	51.2	ug/L		102	77 - 127
2037-26-5	Toluene d8	50	50.2	ug/L		100	76 - 134
17060-07-0	1,2-Dichloroethane-d4	50	45.2	ug/L		90	71 - 127

GCAL ID	Client ID	Matrix	Collect Date	/Time	Receiv	e Date/Time	
21305180915	TRIP BLANK	Water	05/17/2013 0			013 10:20	
SW-846 826	50B						
Prep Date	Prep Batch	Prep Method	Dilution 1	Analyzed 05/18/2013 13:16	By AMD	Analytical Batch 507518	
CAS#	Parameter		Result	RDL	RI	EG LIMIT	Units
630-20-6	1,1,1,2-Tetrachloroethane		<5.00	5.00			ug/L
71-55-6	1,1,1-Trichloroethane		<5.00	5.00			ug/L
79-34-5	1,1,2,2-Tetrachloroethane		<5.00	5.00			ug/L
79-00-5	1,1,2-Trichloroethane		<5.00	5.00			ug/L
75-34-3	1,1-Dichloroethane		<5.00	5.00			ug/L
75-35-4	1,1-Dichloroethene		<5.00	5.00			ug/L
563-58-6	1,1-Dichloropropene		<5.00	5.00			ug/L
96-18-4	1,2,3-Trichloropropane		<5.00	5.00			ug/L
120-82-1	1,2,4-Trichlorobenzene		<5.00	5.00			ug/L
95-63-6	1,2,4-Trimethylbenzene		<5.00	5.00			ug/L
96-12-8	1,2-Dibromo-3-chloropropa	ane	<5.00	5.00			ug/L
106-93-4	1,2-Dibromoethane		<5.00	5.00			ug/L
95-50-1	1,2-Dichlorobenzene		<5.00	5.00			ug/L
107-06-2	1,2-Dichloroethane		<5.00	5.00			ug/L
540-59-0	1,2-Dichloroethene(Total)		<10.0	10.0			ug/L
78-87-5	1,2-Dichloropropane		<5.00	5.00			ug/L
108-67-8	1,3,5-Trimethylbenzene		<5.00	5.00			ug/L
541-73-1	1,3-Dichlorobenzene		<5.00	5.00			ug/L
142-28-9	1,3-Dichloropropane		<5.00	5.00			ug/L
106-46-7	1,4-Dichlorobenzene		<5.00	5.00			ug/L
594-20-7	2,2-Dichloropropane		<5.00	5.00			ug/L
78-93-3	2-Butanone		<5.00	5.00			ug/L
95-49-8	2-Chlorotoluene		<5.00	5.00			ug/L
591-78-6	2-Hexanone		<5.00	5.00			ug/L
106-43-4	4-Chlorotoluene		<5.00	5.00			ug/L
99-87-6	4-Isopropyltoluene		<5.00	5.00			ug/L
108-10-1	4-Methyl-2-pentanone		<5.00	5.00			ug/L
67-64-1	Acetone		<5.00	5.00			ug/L
71-43-2	Benzene		<5.00	5.00			ug/L
108-86-1	Bromobenzene		<5.00	5.00			ug/L
74-97-5	Bromochloromethane		<5.00	5.00			ug/L
75-27-4	Bromodichloromethane		<5.00	5.00			ug/L
75-25-2	Bromoform		<5.00	5.00			ug/L
74-83-9	Bromomethane		<5.00	5.00			ug/L
75-15-0	Carbon disulfide		<5.00	5.00			ug/L
56-23-5	Carbon tetrachloride		<5.00	5.00			ug/L
108-90-7	Chlorobenzene		<5.00	5.00			ug/L
75-00-3	Chloroethane		<5.00	5.00			ug/L
67-66-3	Chloroform		<5.00	5.00			ug/L
74-87-3	Chloromethane		<5.00	5.00			ug/L
124-48-1	Dibromochloromethane		<5.00	5.00			ug/L
74-95-3	Dibromomethane		<5.00	5.00			ug/L
75-71-8	Dichlorodifluoromethane		<5.00	5.00			ug/L
100-41-4	Ethylbenzene		<5.00	5.00			ug/L
87-68-3	Hexachlorobutadiene		<5.00	5.00			ug/L
98-82-8	Isopropylbenzene (Cumen	e)	<5.00	5.00			ug/L
74-88-4	Methyl iodide	,	<5.00	5.00			ug/L
75-09-2	Methylene chloride		<5.00	5.00			ug/L
91-20-3	Naphthalene		<5.00	5.00			ug/L
100-42-5	Styrene		<5.00	5.00			ug/L
	Styrono		\$0.00	0.00			ч <u>9</u> , с

AL ID	Client ID	Matrix	Collect Date/	/Time	Receive	Date/Time	
05180915	TRIP BLANK	Water	05/17/2013 0	0:00	05/18/20	13 10:20	
V-846 826	0B						
Prep Date	Prep Batch	Prep Method	Dilution	Analyzed	Ву	Analytical	Batch
•	·	·	1	05/18/2013 13:16	AMD	507518	
CAS#	Parameter		Result	RDL	RE	G LIMIT	Uni
127-18-4	Tetrachloroethene		<5.00	5.00			ug
108-88-3	Toluene		<5.00	5.00			ug
79-01-6	Trichloroethene		<5.00	5.00			ug
75-69-4	Trichlorofluoromethane		<5.00	5.00			uç
76-13-1	Trichlorotrifluoroethane		<5.00	5.00			ug
75-01-4	Vinyl chloride		<5.00	5.00			uį
1330-20-7	Xylene (total)		<15.0	15.0			uį
156-59-2	cis-1,2-Dichloroethene		<5.00	5.00			u
10061-01-5	cis-1,3-Dichloropropene		<5.00	5.00			u
136777-61-2	m,p-Xylene		<10.0	10.0			u
104-51-8	n-Butylbenzene		<5.00	5.00			u
103-65-1	n-Propylbenzene		<5.00	5.00			u
95-47-6	o-Xylene		<5.00	5.00			u
135-98-8	sec-Butylbenzene		<5.00	5.00			u
1634-04-4	tert-Butyl methyl ether (MT	BE)	<5.00	5.00			u
98-06-6	tert-Butylbenzene		<5.00	5.00			u
156-60-5	trans-1,2-Dichloroethene		<5.00	5.00			u
10061-02-6	trans-1,3-Dichloropropene		<5.00	5.00			u
110-57-6	trans-1,4-Dichloro-2-buten	e	<5.00	5.00			u
CAS#	Surrogate	Conc. Spiked	Conc. Rec	Units	% Rec	overy	Rec Lim
460-00-4	4-Bromofluorobenzene	50	59.3	ug/L		119	78 - 1
1868-53-7	Dibromofluoromethane	50	51	ug/L		102	77 - 1
2037-26-5	Toluene d8	50	51.4	ug/L		103	76 - 1
17060-07-0	1,2-Dichloroethane-d4	50	44.2	ug/L		88	71 - 1

Analytical Bat	ch 507518	Client ID	MB507518			LCS507518			LCSD507518			
Prep Bat	ch N/A	GCAL ID	1192728			1192729			1192730			
		Sample Type	Method Blank			LCS			LCSD			
		Analytical Date	05/18/2013 11:50			05/18/2013 10:21			05/18/2013 10:42			
		Matrix	Water			Water			Water			
	SW-846 82	60B	Units	ug/L Spike Result			Control	Result			RPD	
		000	Result	RDL	Added		% R	Limits % R		% R	RPD	Limit
67-64-1	Acetone		<5.00	5.00	50.0	46.5	93	44 - 156	52.1	104	11	30
107-02-8	Acrolein		<25.0	25.0	250	242	97	30 - 160	284	114	16	30
107-13-1	Acrylonitrile		<25.0	25.0	250	231	92	64 - 137	263	105	13	30
74-97-5	Bromochlorom		<5.00	5.00	50.0	55.9	112	76 - 130	57.3	115	2	30
75-27-4	Bromodichloro	methane	<5.00	5.00	50.0	52.6	105	74 - 125	53.6	107	2	30
75-25-2	Bromoform		<5.00	5.00	50.0	51.6	103	64 - 122	55.7	111	8	30
74-83-9	Bromomethan	e	<5.00	5.00	50.0	44.8	90	47 - 138	58.5	117	27	30
75-15-0	Carbon disulfic	de	<5.00	5.00	50.0	56.3	113	69 - 136	53.4	107	5	30
56-23-5	Carbon tetrach	nloride	<5.00	5.00	50.0	51.4	103	76 - 128	48.5	97	6	30
75-00-3	Chloroethane		<5.00	5.00	50.0	54.3	109	62 - 141	53.5	107	1	30
136777-61-2	m,p-Xylene		<10.0	10.0	100	109	109	74 - 126	99.9	100	9	30
67-66-3	Chloroform		<5.00	5.00	50.0	51.6	103	75 - 122	52.3	105	1	30
74-87-3	Chloromethan	е	<5.00	5.00	50.0	43.3	87	59 - 132	43.7	87	1	30
124-48-1	Dibromochloro	methane	<5.00	5.00	50.0	48.9	98	71 - 123	52.2	104	7	30
74-95-3	Dibromometha	ine	<5.00	5.00	50.0	54.9	110	72 - 129	59.8	120	9	30
75-71-8	Dichlorodifluor	omethane	<5.00	5.00	50.0	49.3	99	58 - 140	48.4	97	2	30
75-34-3	1,1-Dichloroet	nane	<5.00	5.00	50.0	51.0	102	74 - 127	51.2	102	0	30
107-06-2	1,2-Dichloroet	nane	<5.00	5.00	50.0	47.6	95	71 - 129	49.8	100	5	30
156-59-2	cis-1,2-Dichlor	oethene	<5.00	5.00	50.0	48.2	96	73 - 130	49.7	99	3	30
156-60-5	trans-1,2-Dich	oroethene	<5.00	5.00	50.0	52.4	105	69 - 132	51.2	102	2	30
75-09-2	Methylene chlo	oride	<5.00	5.00	50.0	46.7	93	68 - 132	48.6	97	4	30
78-87-5	1,2-Dichloropr	opane	<5.00	5.00	50.0	50.2	100	72 - 128	51.1	102	2	30
10061-01-5	cis-1,3-Dichlor	opropene	<5.00	5.00	50.0	46.3	93	71 - 132	49.0	98	6	30
10061-02-6	trans-1,3-Dich	loropropene	<5.00	5.00	50.0	45.2	90	71 - 131	48.6	97	7	30
100-41-4	Ethylbenzene		<5.00	5.00	50.0	58.1	116	74 - 126	55.6	111	4	30
591-78-6	2-Hexanone		<5.00	5.00	50.0	39.3	79	50 - 135	46.2	92	16	30
98-82-8	Isopropylbenzo	ene (Cumene)	<5.00	5.00	50.0	61.3	123	71 - 125	52.6	105	15	30
78-93-3	2-Butanone	· · · · /	<5.00	5.00	50.0	44.5	89	58 - 137	49.2	98	10	30
74-88-4	Methyl iodide		<5.00	5.00	50.0	50.9	102	57 - 141	59.3	119	15	30
108-10-1	4-Methyl-2-per	ntanone	<5.00	5.00	50.0	41.6	83	57 - 132	47.4	95	13	30
103-65-1	n-Propylbenze		<5.00	5.00	50.0	50.7	101	75 - 129	45.6	91	11	30
100-42-5	Styrene		<5.00	5.00	50.0	51.5	103	71 - 127	50.2	100	3	30
127-18-4	Tetrachloroeth	ana	<5.00	5.00	50.0	63.8	128	68 - 128	54.8	110	15	30
121-10-4	retractionOeth	CIIC	<0.00	5.00	50.0	03.0	120	00 - 120	54.0	110	10	3

Analytical Batc	h 507518	Client ID	MB507518			LCS507518			LCSD507518			l
Prep Batc	h N/A	GCAL ID	1192728			1192729			1192730			
-		Sample Type	Method Blank			LCS			LCSD			
		Analytical Date	05/18/2013 11:50			05/18/2013 10:21			05/18/2013 10:42			
		Matrix	Water			Water			Water			
	SW-846 826	60B	Units	ug/L	Spike Added	Result	0/ D	Control Limits % R	Result	0/ D		RPD
630-20-6	1 1 1 0 Totrock	laraathana	Result <5.00	RDL 5.00		55.2	% R 110	75 - 124	55.4	% R 111	RPD	Limit 30
630-20-6 79-34-5	1,1,1,2-Tetrach 1,1,2,2-Tetrach		<5.00 <5.00	5.00 5.00	50.0 50.0	55.2 45.8	92	75 - 124 70 - 122	55.4 53.2	106	0 15	30 30
120-82-1			<5.00		50.0	45.8	92 97	61 - 135		92	6	30
71-55-6	1,2,4-Trichloro		<5.00 <5.00	5.00		48.6 55.8	-	76 - 126	45.8 54.1	92 108	6 3	30 30
	1,1,1-Trichloro			5.00	50.0		112 107		58.4	108	3 9	30 30
79-00-5	1,1,2-Trichloro		<5.00	5.00	50.0	53.4	-				9	
75-69-4	Trichlorofluoro		<5.00	5.00	50.0	55.4	111	72 - 136 70 - 120	54.8	110	15	30
96-18-4	1,2,3-Trichloro		<5.00	5.00	50.0	43.9	88		51.2	102	-	30
95-63-6	1,2,4-Trimethy		<5.00	5.00	50.0	47.5	95	74 - 125	43.6	87	9	30
108-67-8	1,3,5-Trimethy	Ibenzene	<5.00	5.00	50.0	53.1	106	71 - 132	47.3	95	12	30
75-01-4	Vinyl chloride		<5.00	5.00	50.0	46.0	92	68 - 132	46.9	94	2	30
95-47-6	o-Xylene		<5.00	5.00	50.0	50.8	102	73 - 130	48.6	97	4	30
96-12-8	1,2-Dibromo-3		<5.00	5.00	50.0	55.8	112	57 - 121	62.5	125*	11	30
106-93-4	1,2-Dibromoeth	nane	<5.00	5.00	50.0	49.3	99	70 - 124	54.9	110	11	30
108-05-4	Vinyl acetate		<5.00	5.00	50.0	0.00	0*	54 - 147	0.00	0*	0	30
1634-04-4	•	yl ether (MTBE)	<5.00	5.00	50.0	52.6	105	71 - 125	57.2	114	8	30
540-59-0	1,2-Dichloroeth	()	<10.0	10.0	100	101	101	74 - 128	101	101	0	30
99-87-6	4-Isopropyltolu	ene	<5.00	5.00	50.0	48.2	96	71 - 129	42.2	84	13	30
1330-20-7	Xylene (total)		<15.0	15.0	150	160	107	74 - 127	148	99	8	30
110-57-6	trans-1,4-Dichl		<5.00	5.00	50.0	36.8	74	56 - 132	44.8	90	20	30
594-20-7	2,2-Dichloropro	•	<5.00	5.00	50.0	48.7	97	77 - 124	48.8	98	0	30
76-13-1	Trichlorotrifluor		<5.00	5.00	50.0	56.9	114	72 - 136	52.2	104	9	30
563-58-6	1,1-Dichloropro	-	<5.00	5.00	50.0	53.7	107	72 - 131	50.9	102	5	30
110-75-8	2-Chloroethylv		<5.00	5.00	50.0	37.4	75	56 - 124	42.2	84	12	30
142-28-9	1,3-Dichloropro		<5.00	5.00	50.0	50.5	101	74 - 122	53.1	106	5	30
108-86-1	Bromobenzene	-	<5.00	5.00	50.0	43.0	86	71 - 120	44.1	88	3	30
95-49-8	2-Chlorotoluen	-	<5.00	5.00	50.0	46.8	94	72 - 127	44.8	90	4	30
106-43-4	4-Chlorotoluen	-	<5.00	5.00	50.0	47.7	95	75 - 126	46.3	93	3	30
98-06-6	tert-Butylbenze		<5.00	5.00	50.0	49.8	100	72 - 126	44.2	88	12	30
135-98-8	sec-Butylbenze		<5.00	5.00	50.0	54.1	108	70 - 136	46.5	93	15	30
541-73-1	1,3-Dichlorobe	nzene	<5.00	5.00	50.0	51.0	102	74 - 126	48.0	96	6	30
106-46-7	1,4-Dichlorobe		<5.00	5.00	50.0	49.0	98	72 - 122	47.4	95	3	30
104-51-8	n-Butylbenzen	e	<5.00	5.00	50.0	45.6	91	69 - 134	39.6	79	14	30
95-50-1	1,2-Dichlorobe	nzene	<5.00	5.00	50.0	51.5	103	71 - 126	50.3	101	2	30

Analytical Bat	t ch 507518	Client ID	MB507518			LCS507518			LCSD507518			
Prep Bat	t ch N/A	GCAL ID	1192728			1192729			1192730			
		Sample Type	Method Blank			LCS			LCSD			
		Analytical Date	05/18/2013 11:50			05/18/2013 10:21			05/18/2013 10:42			
		Matrix	Water			Water			Water			
SW/ 94C 92C0D			Units	ug/L	Spike	Decult		Control	Decult			RPD
	SW-846 8260B		Result	RDL	Added	Result	% R	Limits % R	Result	% R	RPD	Limit
87-68-3	Hexachlorobut	adiene	<5.00	5.00	50.0	53.7	107	61 - 144	43.9	88	20	30
91-20-3	Naphthalene		<5.00	5.00	50.0	43.9	88	57 - 138	51.9	104	17	35
75-35-4	1,1-Dichloroetl	nene	<5.00	5.00	50.0	59.9	120	69 - 129	58.5	117	2	20
71-43-2	Benzene		<5.00	5.00	50.0	53.6	107	70 - 129	53.7	107	0	20
79-01-6	Trichloroethen	e	<5.00	5.00	50.0	60.0	120	76 - 129	57.6	115	4	20
108-88-3	Toluene		<5.00	5.00	50.0	54.5	109	72 - 120	52.9	106	3	20
108-90-7	Chlorobenzen	э	<5.00	5.00	50.0	55.1	110	74 - 123	54.0	108	2	20
Surrogate												
460-00-4	4-Bromofluoro	benzene	54.2	108	50	55.8	112	78 - 130	55.5	111		
1868-53-7	Dibromofluoro	methane	53.7	107	50	51.8	104	77 - 127	53.2	106		
2037-26-5	Toluene d8		51.1	102	50	48.6	97	76 - 134	48.8	98		
17060-07-0	1,2-Dichloroetl	nane-d4	46.5	93	50	46.1	92	71 - 127	47.5	95		

Analytical Batc	n 507587	Client ID	MB507587			LCS507587			LCSD507587			
Prep Batcl	n N/A	GCAL ID	1193196			1193197			1193198			
		Sample Type	Method Blank	Method Blank			LCS			LCSD		
		Analytical Date	05/18/2013 22:43			05/18/2013 20:35			05/18/2013 21:39			
	Matrix					Water			Water			
SW-846 8260B			Units	ug/L	Spike	Decult		Control	Decult			RPD
	SW-846 8260B		Result	RDL	Added	Result	% R	Limits % R	Result	% R	RPD	Limit
67-64-1	Acetone		<5.00	5.00	50.0	38.4	77	44 - 156	40.4	81	5	30
107-02-8	Acrolein		<25.0	25.0	250	231	92	30 - 160	227	91	2	30
107-13-1	Acrylonitrile <25.0 25.0 250				250	206	82	64 - 137	202	81	2	30
74-97-5	Bromochlorom	ethane	<5.00	5.00	50.0	50.5	101	76 - 130	52.1	104	3	30
75-27-4	Bromodichloro	methane	<5.00	5.00	50.0	47.9	96	74 - 125	48.1	96	0	30
75-25-2	Bromoform		<5.00	5.00	50.0	44.8	90	64 - 122	46.1	92	3	30
74-83-9	Bromomethane	e	<5.00	5.00	50.0	51.7	103	47 - 138	49.1	98	5	30
75-15-0	Carbon disulfic	le	<5.00	5.00	50.0	54.0	108	69 - 136	51.5	103	5	30
56-23-5	Carbon tetrach	loride	<5.00	5.00	50.0	47.2	94	76 - 128	45.3	91	4	30
75-00-3	Chloroethane		<5.00	5.00	50.0	50.5	101	62 - 141	50.8	102	1	30
136777-61-2	-2 m,p-Xylene		<10.0	10.0	100	101	101	74 - 126	95.3	95	6	30
67-66-3	Chloroform		<5.00	5.00	50.0	47.9	96	75 - 122	48.8	98	2	30

Analytical Bate	h 507587	Client ID	MB507587			LCS507587			LCSD507587			
Prep Bato	h N/A	GCAL ID	1193196			1193197			1193198			
		Sample Type	Method Blank			LCS			LCSD			
		Analytical Date	05/18/2013 22:43			05/18/2013 20:35			05/18/2013 21:39			
		Matrix	Water			Water			Water			
	SW-846 82	60B	Units	ug/L	RASIIIT			Control	Result			RPD
			Result	RDL	Added		% R	Limits % R		% R	RPD	Limit
74-87-3	Chloromethan		<5.00	5.00	50.0	47.5	95	59 - 132	44.8	90	6	30
124-48-1	Dibromochloro	omethane	<5.00	5.00	50.0	44.9	90	71 - 123	45.9	92	2	30
74-95-3	Dibromometha		<5.00	5.00	50.0	49.6	99	72 - 129	51.4	103	4	30
75-71-8	Dichlorodifluor		<5.00	5.00	50.0	53.2	106	58 - 140	51.9	104	2	30
75-34-3	1,1-Dichloroet		<5.00	5.00	50.0	46.4	93	74 - 127	46.9	94	1	30
107-06-2	1,2-Dichloroet		<5.00	5.00	50.0	43.2	86	71 - 129	44.4	89	3	30
156-59-2	cis-1,2-Dichlor	oethene	<5.00	5.00	50.0	46.8	94	73 - 130	46.7	93	0	30
156-60-5	trans-1,2-Dich	loroethene	<5.00	5.00	50.0	47.7	95	69 - 132	47.6	95	0	30
75-09-2	Methylene chlo	oride	<5.00	5.00	50.0	41.8	84	68 - 132	42.1	84	1	30
78-87-5	1,2-Dichloropr	•	<5.00	5.00	50.0	47.2	94	72 - 128	47.6	95	1	30
10061-01-5	cis-1,3-Dichlor		<5.00	5.00	50.0	43.2	86	71 - 132	43.5	87	1	30
10061-02-6	trans-1,3-Dich	loropropene	<5.00	5.00	50.0	41.7	83	71 - 131	42.4	85	2	30
100-41-4	Ethylbenzene		<5.00	5.00	50.0	54.9	110	74 - 126	51.4	103	7	30
591-78-6	2-Hexanone		<5.00	5.00	50.0	35.6	71	50 - 135	37.3	75	5	30
98-82-8	Isopropylbenz	ene (Cumene)	<5.00	5.00	50.0	57.5	115	71 - 125	52.3	105	9	30
78-93-3	2-Butanone		<5.00	5.00	50.0	38.9	78	58 - 137	39.8	80	2	30
74-88-4	Methyl iodide		<5.00	5.00	50.0	51.0	102	57 - 141	49.4	99	3	30
108-10-1	4-Methyl-2-per	ntanone	<5.00	5.00	50.0	36.4	73	57 - 132	38.1	76	5	30
103-65-1	n-Propylbenze	ne	<5.00	5.00	50.0	51.0	102	75 - 129	45.7	91	11	30
100-42-5	Styrene		<5.00	5.00	50.0	48.1	96	71 - 127	45.8	92	5	30
127-18-4	Tetrachloroeth	ene	<5.00	5.00	50.0	58.0	116	68 - 128	52.9	106	9	30
630-20-6	1,1,1,2-Tetrac	hloroethane	<5.00	5.00	50.0	51.5	103	75 - 124	50.2	100	3	30
79-34-5	1,1,2,2-Tetrac	hloroethane	<5.00	5.00	50.0	42.7	85	70 - 122	45.0	90	5	30
120-82-1	1,2,4-Trichloro	benzene	<5.00	5.00	50.0	53.5	107	61 - 135	40.8	82	27	30
71-55-6	1,1,1-Trichloro	ethane	<5.00	5.00	50.0	51.9	104	76 - 126	51.8	104	0	30
79-00-5	1,1,2-Trichloro	ethane	<5.00	5.00	50.0	48.6	97	72 - 121	51.4	103	6	30
75-69-4	Trichlorofluoro	methane	<5.00	5.00	50.0	53.1	106	72 - 136	51.6	103	3	30
96-18-4	1,2,3-Trichloro	propane	<5.00	5.00	50.0	40.9	82	70 - 120	43.3	87	6	30
95-63-6	1,2,4-Trimethy	Ibenzene	<5.00	5.00	50.0	48.8	98	74 - 125	42.6	85	14	30
108-67-8	1,3,5-Trimethy	Ibenzene	<5.00	5.00	50.0	52.9	106	71 - 132	47.6	95	11	30
75-01-4	Vinyl chloride		<5.00	5.00	50.0	46.7	93	68 - 132	45.2	90	3	30
95-47-6	o-Xylene		<5.00	5.00	50.0	49.0	98	73 - 130	46.8	94	5	30
96-12-8	1,2-Dibromo-3	-chloropropane	<5.00	5.00	50.0	45.8	92	57 - 121	48.8	98	6	30

Analytical Bate	h 507587	Client ID	MB507587			LCS507587			LCSD507587			
Prep Bate	h N/A	GCAL ID	1193196			1193197			1193198			
-		Sample Type	Method Blank			LCS			LCSD			
		Analytical Date	05/18/2013 22:43			05/18/2013 20:35			05/18/2013 21:39			
		Matrix	Water			Water			Water			
	SW-846 82	60B	Units	ug/L	Spike	Result		Control	Result			RPD
			Result	RDL	Added	Rooun	% R	Limits % R	nooun	% R	RPD	Limit
106-93-4	1,2-Dibromoet	hane	<5.00	5.00	50.0	46.0	92	70 - 124	47.3	95	3	30
108-05-4	Vinyl acetate		<5.00	5.00	50.0	0.00	0*	54 - 147	0.00	0*	0	30
1634-04-4	tert-Butyl meth	yl ether (MTBE)	<5.00	5.00	50.0	47.9	96	71 - 125	48.0	96	0	30
540-59-0	1,2-Dichloroet	nene(Total)	<10.0	10.0	100	94.5	95	74 - 128	94.3	94	0	30
99-87-6	4-Isopropyltolu	iene	<5.00	5.00	50.0	50.7	101	71 - 129	42.6	85	17	30
1330-20-7	Xylene (total)		<15.0	15.0	150	150	100	74 - 127	142	95	5	30
110-57-6	trans-1,4-Dich	oro-2-butene	<5.00	5.00	50.0	33.4	67	56 - 132	35.4	71	6	30
594-20-7	2,2-Dichloropr	opane	<5.00	5.00	50.0	44.8	90	77 - 124	45.6	91	2	30
76-13-1	Trichlorotrifluo	roethane	<5.00	5.00	50.0	53.4	107	72 - 136	49.9	100	7	30
563-58-6	1,1-Dichloropr	opene	<5.00	5.00	50.0	52.0	104	72 - 131	50.6	101	3	30
110-75-8	2-Chloroethylv	inyl ether	<5.00	5.00	50.0	36.8	74	56 - 124	37.6	75	2	30
142-28-9	1,3-Dichloropr		<5.00	5.00	50.0	46.4	93	74 - 122	47.1	94	1	30
108-86-1	Bromobenzen		<5.00	5.00	50.0	38.3	77	71 - 120	37.8	76	1	30
95-49-8	2-Chlorotoluer	ie	<5.00	5.00	50.0	46.8	94	72 - 127	43.0	86	8	30
106-43-4	4-Chlorotoluer	e	<5.00	5.00	50.0	47.9	96	75 - 126	44.3	89	8	30
98-06-6	tert-Butylbenze	ene	<5.00	5.00	50.0	50.6	101	72 - 126	44.3	89	13	30
135-98-8	sec-Butylbenz	ene	<5.00	5.00	50.0	55.6	111	70 - 136	47.2	94	16	30
541-73-1	1,3-Dichlorobe	nzene	<5.00	5.00	50.0	49.5	99	74 - 126	45.3	91	9	30
106-46-7	1,4-Dichlorobe	nzene	<5.00	5.00	50.0	47.7	95	72 - 122	45.2	90	5	30
104-51-8	n-Butylbenzen	e	<5.00	5.00	50.0	48.7	97	69 - 134	39.7	79	20	30
95-50-1	1,2-Dichlorobe	nzene	<5.00	5.00	50.0	50.3	101	71 - 126	46.7	93	7	30
87-68-3	Hexachlorobut	adiene	<5.00	5.00	50.0	53.9	108	61 - 144	44.9	90	18	30
91-20-3	Naphthalene		<5.00	5.00	50.0	45.8	92	57 - 138	38.7	77	17	35
75-35-4	1,1-Dichloroet	nene	<5.00	5.00	50.0	56.7	113	69 - 129	56.8	114	0	20
71-43-2	Benzene		<5.00	5.00	50.0	50.4	101	70 - 129	50.9	102	1	20
79-01-6	Trichloroethen	e	<5.00	5.00	50.0	54.4	109	76 - 129	54.3	109	0	20
108-88-3	Toluene		<5.00	5.00	50.0	49.9	100	72 - 120	49.7	99	0	20
108-90-7	Chlorobenzen	9	<5.00	5.00	50.0	50.7	101	74 - 123	50.2	100	1	20
Surrogate		-			2010	2.5.1						
460-00-4	4-Bromofluoro	benzene	52.8	106	50	56.6	113	78 - 130	55.6	111		
1868-53-7	Dibromofluoro		51.3	103	50	51.6	103	77 - 127	52.6	105		
2037-26-5	Toluene d8		50.8	100	50	48.7	97	76 - 134	49.4	99		
17060-07-0	1.2-Dichloroet	nane-d4	43.2	86	50	44.9	90	71 - 127	45.5	91		
11000-01-0	1,2-Dichiol0eti		+J.Z	00	50	-+.3	50	11 121	-5.5	51		

	CHAIN OF CUSTODY RECORD							GCAL USE ONLY			
7979 GSRI Ave., Baton Rou Phone: 225.769.4900 • Fax	ge, LA 70820-74 : 225.767.5717 •	402 • www.gcal.comPROPERTY SOUT	2UD	142	48	21305	1809/0	15/20/B			
Address: 1270 c	124-1agn	Address:			Ana	lytical Reques	sts & Method	GCAL use on Custody Seal used U yes intact U yes Temperature	s 🖬 no		
P.O. Number Sampled By:	Project Name/ M Lawrence	/Number Fountain Oalus / brant teets		NV N					Analysis Requested d filtered filtered		
Matrix ¹ Date Time (2400)	Comp Gra	ab Sample Description	No Con- tainers	Ka				Preservative			
GW 10412 GW 10412 GW 10412 11120 11120 11217 1305 1410 1445 1547 1610	· · · · · · · · · · · · · · · · · · ·	χ MW 33 MW16 MW19 MW22 MW22 MW20 MW20 MW29 MW29 MW29 MW130 MW130 MW135 MW135 MW2 MW2	3						-2 m + 15 9 7 8 9 0 -2 m + 15 9 7 8 9 0 -2 2 2 2		
Air Bill No:	1 <u> </u>			<u>i i</u>		1		1	<u> </u>		
Turn Around Time (B Relinguistic day: (Signature) Relinguistical by: (Signature)	Da	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date Date	r Cont 1/3 8,E	Time:) ^{Note:} JGG	n G427	to GCAL's terms and schedule of services.			

Matrix ¹ : W = water,	, S = solid, L =	liquid, T = tissue
----------------------------------	------------------	--------------------

dittered privation and the en-

and the second second

(i) A start of the start of

A strategy of the strategy of the

i,

We cannot accept verbal changes. Please email written changes to your PM.

GCAL	CHAIN OF CUSTO	oy Re c	ORD				
7979 GSRI Avenue, Baton Rouge, Louisiana 70820-7402 Phone 225.769.4900 • Fax 225.767.5717	Hab use only PEOPERT SOUTIONS Client Name		48	US Client #	230	51809 Workorder #	Def 2013 Due Date
Report to: Client: Property Solutions Address:	Bill to: Client:	-	Analytica		& Method	Lab use only: Custody Sea used intact	
Sampled By:Matrix1DateTime (2400) $\overset{\circ}{p}$ $\overset{\circ}{s}$ $\overset{\circ}{s}$ Sample DescriptionGul5-171640XMu27Gul5-171710XMu185-17Trip	n Preservatives No Con- HQ 3 HQ 3 Blaun K HCL 3			577.6	5]20]13	Remarks:	Lab ID 05/18 13 14
Relinquished by: (Signature) Received by	3 days 1 week Standard (Signature) Date: Time: S-17 I8 30 Date: Time: Time: Time:	Oth		942- Pg 24	3270 f2		
Pellinguished by: (Signature) Received by	r: (Signature) Date: 5-18-13 10-20			· · ·	u agree to the terr recent schedule c	ns and If services.	

Matrix1: W = water, S = soil, SD = solid, L = liquid, SL = sludge, o = oil, CT = charcoal tube, A = air bag

113

We cannot accept verbal changes. Please fax written changes to (225) 767-5717

SAMPLE RECEIVING CHECKLIST

SAMPLE DELIVERY GROUP	213051809)	CHECKLIST							
Client 4848 - Property Solutions	Transport N FEDEX	fethod	Were all samples received using proper thermal preservation? When used, were all custody seals intact?		I Yes I Yes	∏ No				
Profile Number 243146	Received By Law , Brittany		Were all samples received in proper containers? Were all samples received using proper chemical preservation? Was preservative added to any container at the lab?	>	♥ Yes ♥ Yes ♥ Yes ♥ Yes	I No I No				
Line Item(s) 1 - RUSH VOC	Receive Dat 05/18/13	e(s)	Were all containers received in good condition? Were all VOA vials received with no head space? Do all sample labels match the Chain of Custody? Did the Chain of Custody list the sampling technician? Was the COC maintained i.e. all signatures, dates and time of re	Were all VOA vials received with no head space? Do all sample labels match the Chain of Custody?						
COOLERS			DISCREPANCIES	LABORATORY PRESERV	ATIONS					
Airbill		Temp(oC)	None	None						
7997 9427 3270		3.8 (E20)								
NOTES		1								

Revision 1.4

21 May 2013

Mr. Jim Fineis Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009

H&P Project: AG051713-10 Client Project: PS Roswell Rd.

Dear Mr. Jim Fineis:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 17-May-13 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal

Accreditation Conference (NELAC) Standards Lab #11845

Laboratory Director

2470 Impala Drive, Carlsbad, California 92010 - 760.804.9678 - Fax 760.804.9159 1855 Coronado Avenue, Signal Hill, California 90755 www.HandPmg.com 1-800-834-9888

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory

Page 1 of 19

Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009	Project Number: PS Roswell	Project: AG051713-10 Project Number: PS Roswell Rd. Project Manager: Mr. Jim Fineis										
ANALYTICAL REPORT FOR SAMPLES												
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received								
SV-1	E305067-01	Vapor	16-May-13	17-May-13								
SV-2	E305067-02	Vapor	16-May-13	17-May-13								
SV-3	E305067-03	Vapor	16-May-13	17-May-13								

SV-4	E305067-04	Vapor	16-May-13	17-May-13
SV-5	E305067-05	Vapor	16-May-13	17-May-13
SV-6	E305067-06	Vapor	16-May-13	17-May-13

Atlas Geo-Sampling Company		Pr	oject: AG	051713-10					
120 Nottaway Lane				Roswell Rd.				Reported:	
Alpharetta, GA 30009		Project Mar						21-May-13 10:32	
	Volatile	Organic (Compou	nds by H	EPA TO-	-15			
		&P Mobil	-	·					
	Result	Reporting		Dilution					Nataa
Analyte		Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E305067-01) Vapor Sampled: 16-May-		•							
Dichlorodifluoromethane (F12)	11	5.0	ug/m3	1	EE32008	20-May-13	20-May-13	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"		
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16		"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Frichlorofluoromethane (F11)	ND	5.6		"	"	"	"	"	
Acetone	39	24		"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"		"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"		"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"		"	
Carbon disulfide	ND	6.3	"	"	"	"		"	
rans-1,2-Dichloroethene	ND	8.0	"	"	"			"	
1,1-Dichloroethane	ND	4.1		"	"	"		"	
2-Butanone (MEK)	ND	30		"	"	"		"	
cis-1,2-Dichloroethene	ND	4.0		"	"	"		"	
Chloroform	ND	4.9	"	"	"	"		"	
1,1,1-Trichloroethane	ND	5.5	"	"	"			"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"			"	
Benzene	8.4	3.2	"	"	"			"	
Carbon tetrachloride	ND	6.4		"	"	"		"	
Trichloroethene	ND	5.5	"	"	"			"	
1,2-Dichloropropane	ND	9.4	"	"	"	"		"	
Bromodichloromethane	ND	6.8	"	"	"	"		"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"		"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"		"	
rans-1,3-Dichloropropene	ND	4.6	"	"	"	"		"	
Foluene	48	3.8	"	"	"	"		"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"		"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"		"	
Dibromochloromethane	ND	8.6	"	"	"	"		"	
Fetrachloroethene	1200	6.9		"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0		"	"	"	"	"	
Chlorobenzene	ND	4.7		"	"		"	"	
Ethylbenzene	12	4.4		"	"			"	
n,p-Xylene	40	8.8		"	"	"	"	"	
Styrene	ND	4.3		"	"	"	"	"	

trans-1,2-Dichloroethene

1,1-Dichloroethane

2-Butanone (MEK)

Chloroform

Benzene

cis-1,2-Dichloroethene

1,1,1-Trichloroethane

Carbon tetrachloride

1,2-Dichloroethane (EDC)

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone

Geochemisny inc.								760-804	-9159 Fax
Atlas Geo-Sampling Company 120 Nottaway Lane			5	051713-10 Roswell Rd				Reported:	
Alpharetta, GA 30009		Project Ma						21-May-13 10:32	
1 /	Volatila	Organic (-		TDA TO	15		21	
		&P Mobil	-	•		-13			
				•	, 1110.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E305067-01) Vapor Sampled: 16-Ma	ay-13 Received: 17	-May-13							
o-Xylene	13	4.4	ug/m3	1	EE32008	20-May-13	20-May-13	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	14	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		<i>98.2 %</i>	76-	134	"	"	"	"	
Surrogate: Toluene-d8		100 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	77-	127	"	"	"	"	
SV-2 (E305067-02) Vapor Sampled: 16-Ma	ay-13 Received: 17	-May-13							
Dichlorodifluoromethane (F12)	31	5.0	ug/m3	1	EE32008	20-May-13	20-May-13	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	58	5.6	"	"	"	"	"	"	
Acetone	61	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	7.0	6.3	"	"	"	"	"	"	

"

..

8.0

4.1

30

4.0

4.9

5.5

4.1

3.2

6.4

ND

ND

ND

ND

ND

ND

ND

37

ND

"

..

"

...

"

"

"

.. ..

"

"

...

"

..

"

..

..

...

"

..

...

"

"

"

..

..

...

r									
Atlas Geo-Sampling Company		Pr	oject: AC	6051713-10					
120 Nottaway Lane		Project Nu	mber: PS	Roswell Rd				Reported:	
Alpharetta, GA 30009		Project Mar	nager: Mr	. Jim Fineis				21-May-13 10:32	
	Volatile	Organic (Compo	unds by I	EPA TO-	-15			
	Н	&P Mobil	e Geoc	hemistry	, Inc.				
		Reporting		Dilution					
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2 (E305067-02) Vapor Sampled: 16-M	lay-13 Received: 1'	7-May-13							
Frichloroethene	7.2	5.5	ug/m3	1	EE32008	20-May-13	20-May-13	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6		"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	14	8.3		"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6		"	"	"	"	"	
Toluene	110	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5		"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	780	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8		"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0		"	"	"	"	"	
Chlorobenzene	8.5	4.7		"	"	"	"	"	
Ethylbenzene	30	4.4		"	"	"	"	"	
m,p-Xylene	90	8.8		"	"	"	"	"	
Styrene	ND	4.3		"		"	"	"	
o-Xylene	27	4.4		"		"	"	"	
Bromoform	ND	10		"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0		"	"		"	"	
4-Ethyltoluene	10	5.0		"	"	"	"	"	
1,3,5-Trimethylbenzene	11	5.0		"		"	"	"	
1,2,4-Trimethylbenzene	34	5.0		"		"	"	"	
1,3-Dichlorobenzene	ND	12		"	"	"	"	"	
1,4-Dichlorobenzene	ND	12		"	"	"	"	"	
1,2-Dichlorobenzene	ND	12		"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5		"	"	"	"	"	
Hexachlorobutadiene	ND	11		"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-	-134	"	"	"	"	
Surrogate: Toluene-d8		102 %		-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %		-127	"	"	"	"	

Atlas Geo-Sampling Company		Pr	oject: AG	051713-10					
120 Nottaway Lane			-	Roswell Rd.				Reported:	
Alpharetta, GA 30009		Project Mai						21-May-13 10:32	
· · ·	Volatile	Organic (•		EPA TO.	.15			
		&P Mobil	-	·		15			
		Reporting		Dilution	, 11101				
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3 (E305067-03) Vapor Sampled: 16-Mag	y-13 Received: 1	7-May-13							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EE32008	20-May-13	20-May-13	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"		"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"		"	
Vinyl chloride	ND	2.6	"	"	"	"		"	
Bromomethane	ND	16	"	"	"			"	
Chloroethane	ND	8.0	"	"	"	"		"	
Frichlorofluoromethane (F11)	ND	5.6	"	"	"	"		"	
Acetone	32	24	"	"	"	"		"	
1.1-Dichloroethene	ND	4.0	"	"	"			"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"		"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"		"	
Carbon disulfide	ND	6.3	"	"	"	"		"	
rans-1,2-Dichloroethene	ND	8.0	"	"	"	"		"	
1,1-Dichloroethane	ND	4.1	"	"	"				
2-Butanone (MEK)	ND	30	"	"				"	
cis-1,2-Dichloroethene	ND	4.0	"	"				"	
Chloroform	ND	4.0	"	"	"				
1,1,1-Trichloroethane	ND	4.9 5.5	"	"	"	"			
					"				
l,2-Dichloroethane (EDC)	ND	4.1							
Benzene	13	3.2			"				
Carbon tetrachloride	ND	6.4							
Frichloroethene	ND	5.5	"						
l,2-Dichloropropane	ND	9.4	"					"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"		"	
rans-1,3-Dichloropropene	ND	4.6	"	"	"	"		"	
Foluene	27	3.8	"	"	"	"		"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"		"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"		"	
Dibromochloromethane	ND	8.6	"	"	"	"		"	
Fetrachloroethene	87	6.9	"	"	"	"	"	"	
,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	6.9	4.4	"	"	"	"	"	"	
n,p-Xylene	25	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"			"	

Atlas Geo-Sampling Company		Pr	oject: AG	051713-10					
120 Nottaway Lane		Project Nu	mber: PS	Roswell Rd				Reported:	
Alpharetta, GA 30009		Project Mar	nager: Mr.	Jim Fineis				21-May-13 10:32	
	Volatile	Organic (Compou	nds by l	EPA TO-	15			
	На	&P Mobil	le Geoch	nemistry	, Inc.				
		Reporting		Dilution					
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3 (E305067-03) Vapor Sampled: 16-	May-13 Received: 17-	-May-13							
o-Xylene	9.1	4.4	ug/m3	1	EE32008	20-May-13	20-May-13	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	12	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		108 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.2 %	77-	127	"	"	"	"	
SV-4 (E305067-04) Vapor Sampled: 16-	May-13 Received: 17	-May-13							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EE32008	20-May-13	20-May-13	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"		"	"	"	

Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"		"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
Acetone	92	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	7.9	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	8.6	4.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	140	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	

Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009			mber: PS	051713-10 Roswell Rd. Jim Fineis				Reported: 21-May-13 10:32	
· ·	Volatile	Organic	-		EPA TO.	.15			
		&P Mobil	-	-		10			
		Reporting		Dilution	,				
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
8V-4 (E305067-04) Vapor Sampled: 16-M	Iay-13 Received: 1	7-May-13							
Trichloroethene	ND	5.5	ug/m3	1	EE32008	20-May-13	20-May-13	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	21	8.3	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Foluene	170	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Fetrachloroethene	180	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	20	4.7	"	"	"	"	"	"	
Ethylbenzene	32	4.4	"	"	"	"	"	"	
m,p-Xylene	91	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	27	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	5.5	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	6.7	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	23	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		114 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		101 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.5 %	70		"	"	"	"	

Atlas Geo-Sampling Company		п	aiaat A.C.	051712 10						
120 Nottaway Lane			-	051713-10 Roswell Rd.				D . 1		
-								Reported:		
Alpharetta, GA 30009		Project Mar	-					21-May-13 10:32		
	Volatile	Organic	Compou	inds by E	EPA TO-	-15				
	Н	&P Mobil	le Geoch	nemistry,	, Inc.					
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes	
SV-5 (E305067-05) Vapor Sampled: 16-Ma	y-13 Received: 1	7-May-13								
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EE31706	17-May-13	17-May-13	EPA TO-15		
Chloromethane	ND	2.1	"	"	"			"		
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"		"		
Vinyl chloride	ND	2.6	"	"	"	"		"		
Bromomethane	ND	16	"	"	"	"		"		
Chloroethane	ND	8.0	"	"	"			"		
Frichlorofluoromethane (F11)	ND	5.6	"	"	"			"		
Acetone	100	24	"	"	"			"		
1.1-Dichloroethene	ND	4.0	"	"	"	"		"		
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"		"		
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"			"		
Carbon disulfide	7.7	6.3	"	"	"			"		
rans-1,2-Dichloroethene	ND	8.0	"	"	"			"		
1,1-Dichloroethane	ND	4.1	"	"	"	"		"		
2-Butanone (MEK)	ND	30	"	"	"					
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"		"		
Chloroform	ND	4.9	"	"	"			"		
1,1,1-Trichloroethane	ND	5.5	"	"	"			"		
1,2-Dichloroethane (EDC)	ND	4.1	"	"				"		
Benzene	17	3.2	"	"	"	"		"		
Carbon tetrachloride	ND	5.2 6.4	"	"	"					
Trichloroethene		5.5	"	"			"			
	ND									
l,2-Dichloropropane	ND	9.4		"						
Bromodichloromethane	ND	6.8								
cis-1,3-Dichloropropene	ND	4.6								
4-Methyl-2-pentanone (MIBK)	15	8.3								
rans-1,3-Dichloropropene	ND	4.6								
Foluene	65	3.8								
1,1,2-Trichloroethane	ND	5.5			"		"	"		
2-Hexanone (MBK)	ND	8.3	"	"						
Dibromochloromethane	ND	8.6	"	"	"	"	"			
(Tetrachloroethene	ND	6.9	"	"	"		"	"		
l,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"		
Chlorobenzene	8.3	4.7	"	"	"	"	"	"		
Ethylbenzene	21	4.4	"	"	"	"	"	"		
n,p-Xylene	64	8.8	"	"	"	"	"	"		
Styrene	ND	4.3	"	"				"		

2-Butanone (MEK)

Chloroform

Benzene

cis-1,2-Dichloroethene

1,1,1-Trichloroethane

Carbon tetrachloride

1,2-Dichloroethane (EDC)

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Geochemisny inc.						760-804-9159 Fax					
Atlas Geo-Sampling Company				051713-10							
120 Nottaway Lane				Roswell Rd			Reported:				
Alpharetta, GA 30009		Project Mar	nager: Mr.	Jim Fineis				21-May-13 10:32			
	Volatile	Organic	Сотрои	ınds by l	ЕРА ТО-	-15					
	H	&P Mobi	le Geocl	nemistry	, Inc.						
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes		
SV-5 (E305067-05) Vapor Sampled: 16-Ma	ay-13 Received: 17	-May-13				_					
o-Xylene	22	4.4	ug/m3	1	EE31706	17-May-13	17-May-13	EPA TO-15			
Bromoform	ND	10	"		"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"			
4-Ethyltoluene	5.9	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	5.8	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	20	5.0	"	"	"	"	"	"			
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"			
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"			
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"			
Hexachlorobutadiene	ND	11	"	"	"	"	"	"			
Surrogate: 1,2-Dichloroethane-d4		98.1 %	76-	134	"	"	"	"			
Surrogate: Toluene-d8		103 %		125	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		95.5 %		125	"	"	"	"			
	12 Decide 17		//-	127							
SV-6 (E305067-06) Vapor Sampled: 16-Ma Dichlorodifluoromethane (F12)	7.6	-May-13	ug/m3	1	EE31706	17-May-13	17-May-13	EPA TO-15			
Chloromethane	ND	5.0 2.1	ug/1115 "	"	EE51700 "	"	"	LIA 10-15 "			
Dichlorotetrafluoroethane (F114)	ND	7.1		"		"		"			
Vinyl chloride	ND	2.6			"		"	"			
Bromomethane	ND	2.0 16		"				"			
Chloroethane	ND	8.0			"		"	"			
Frichlorofluoromethane (F11)	19	5.6		"	"	"	"	"			
Acetone	250	24		"		"	"	"			
1,1-Dichloroethene	ND	4.0			"		"	"			
1,1,2-Trichlorotrifluoroethane (F113)	ND	4.0 7.7			"		"	"			
Methylene chloride (Dichloromethane)	ND	3.5			"		"	"			
Carbon disulfide	ND	6.3			"		"	"			
rans-1,2-Dichloroethene	ND	8.0			"		"	"			
1.1-Dichloroethane	ND	4.1			"		"	"			
	10	4.1									

 n
 n
 n

 n
 n
 n

 n
 n
 n

 n
 n
 n

 n
 n
 n

 n
 n
 n

 n
 n
 n

 n
 n
 n

 n
 n
 n

..

..

"

..

43

ND

ND

ND

ND

25

ND

30

4.0

4.9

5.5

4.1

3.2

6.4

"

"

"

" "

"

"

...

"

..

..

"

"

..

..

..

..

Atlas Geo-Sampling Company			5	051713-10								
120 Nottaway Lane				Roswell Rd			Reported:					
Alpharetta, GA 30009		Project Mar	nager: Mr	. Jim Fineis				21-May-13 10:32				
	Volatile	Organic (Compou	inds by I	EPA TO-	15						
	Н	&P Mobil	e Geoc	hemistry	, Inc.							
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes			
SV-6 (E305067-06) Vapor Sampled: 16-M	May-13 Received: 1	7-May-13										
Trichloroethene	ND	5.5	ug/m3	1	EE31706	17-May-13	17-May-13	EPA TO-15				
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"				
Bromodichloromethane	ND	6.8	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"		"				
4-Methyl-2-pentanone (MIBK)	36	8.3	"	"	"	"		"				
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"				
Toluene	84	3.8	"	"	"	"		"				
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"				
2-Hexanone (MBK)	ND	8.3	"	"	"	"		"				
Dibromochloromethane	ND	8.6	"	"	"	"	"	"				
Tetrachloroethene	24	6.9	"	"	"	"	"	"				
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"				
Chlorobenzene	5.7	4.7	"	"	"	"	"	"				
Ethylbenzene	26	4.4	"	"	"	"	"	"				
m,p-Xylene	79	8.8	"	"	"	"	"	"				
Styrene	ND	4.3	"	"	"	"	"	"				
o-Xylene	24	4.4	"	"	"	"	"	"				
Bromoform	ND	10	"	"	"	"		"				
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"				
4-Ethyltoluene	9.3	5.0	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	8.4	5.0	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	33	5.0	"	"	"	"	"	"				
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"				
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"				
Hexachlorobutadiene	ND	11	"	"	"	"	"	"				
Surrogate: 1,2-Dichloroethane-d4		101 %	76-	134	"	"	"	"				
Surrogate: Toluene-d8		99.8 %	78-	125	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		99.3 %	77-	127	"	"	"	"				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG051713-10	
120 Nottaway Lane	Project Number: PS Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	21-May-13 10:32

Volatile Organic Compounds by EPA TO-15 - Quality Control

H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE31706 - TO-15										
Blank (EE31706-BLK1)				Prepared &	Analyzed:	17-May-13	5			
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3							
Chloromethane	ND	2.1	"							
Dichlorotetrafluoroethane (F114)	ND	7.1	"							
Vinyl chloride	ND	2.6	"							
Bromomethane	ND	16	"							
Chloroethane	ND	8.0	"							
Trichlorofluoromethane (F11)	ND	5.6	"							
Acetone	ND	24	"							
1,1-Dichloroethene	ND	4.0	"							
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"							
Methylene chloride (Dichloromethane)	ND	3.5	"							
Carbon disulfide	ND	6.3	"							
trans-1,2-Dichloroethene	ND	8.0	"							
1,1-Dichloroethane	ND	4.1	"							
2-Butanone (MEK)	ND	30	"							
cis-1,2-Dichloroethene	ND	4.0	"							
Chloroform	ND	4.9	"							
1,1,1-Trichloroethane	ND	5.5	"							
1,2-Dichloroethane (EDC)	ND	4.1	"							
Benzene	ND	3.2	"							
Carbon tetrachloride	ND	6.4	"							
Trichloroethene	ND	5.5	"							
1,2-Dichloropropane	ND	9.4	"							
Bromodichloromethane	ND	6.8	"							
cis-1,3-Dichloropropene	ND	4.6	"							
4-Methyl-2-pentanone (MIBK)	ND	8.3	"							
trans-1,3-Dichloropropene	ND	4.6	"							
Toluene	ND	3.8	"							
1,1,2-Trichloroethane	ND	5.5	"							
2-Hexanone (MBK)	ND	8.3	"							
Dibromochloromethane	ND	8.6	"							
Tetrachloroethene	ND	6.9	"							
1,2-Dibromoethane (EDB)	ND	7.8	"							
1,1,1,2-Tetrachloroethane	ND	7.0	"							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project:	AG051713-10	
120 Nottaway Lane	Project Number:	PS Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager:	Mr. Jim Fineis	21-May-13 10:32

Volatile Organic Compounds by EPA TO-15 - Quality Control

H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE31706 - TO-15										
Blank (EE31706-BLK1)				Prepared &	Analyzed:	17-May-13	3			
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	7.5	"							
Hexachlorobutadiene	ND	11	"							
Surrogate: 1,2-Dichloroethane-d4	243		"	214		113	76-134			
Surrogate: Toluene-d8	202		"	207		97.7	78-125			
Surrogate: 4-Bromofluorobenzene	352		"	364		96.5	77-127			

LCS (EE31706-BS1)				Prepared & Ana	alyzed: 17-May-13		
Dichlorodifluoromethane (F12)	100	5.0	ug/m3	101	100	65-135	
Vinyl chloride	44	2.6	"	52.0	84.8	65-135	
Chloroethane	50	8.0	"	53.6	93.3	65-135	
Trichlorofluoromethane (F11)	120	5.6	"	113	110	65-135	
1,1-Dichloroethene	94	4.0	"	80.8	116	65-135	
1,1,2-Trichlorotrifluoroethane (F113)	150	7.7	"	155	99.7	65-135	
Methylene chloride (Dichloromethane)	78	3.5	"	70.8	111	65-135	
trans-1,2-Dichloroethene	97	8.0	"	80.8	120	65-135	
1,1-Dichloroethane	93	4.1	"	82.4	113	65-135	
cis-1,2-Dichloroethene	94	4.0	"	80.0	117	65-135	
Chloroform	92	4.9	"	99.2	92.8	65-135	
1,1,1-Trichloroethane	110	5.5	"	111	95.6	65-135	
1,2-Dichloroethane (EDC)	81	4.1	"	82.4	98.6	65-135	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG051713-10	
120 Nottaway Lane	Project Number: PS Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	21-May-13 10:32

Volatile Organic Compounds by EPA TO-15 - Quality Control

H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE31706 - TO-15										

LCS (EE31706-BS1)				Prepared & Ana	ulyzed: 17-May-13	3
Benzene	65	3.2	ug/m3	64.8	101	65-135
Carbon tetrachloride	140	6.4	"	128	108	65-135
Trichloroethene	99	5.5	"	110	90.8	65-135
Toluene	65	3.8	"	76.8	85.2	65-135
1,1,2-Trichloroethane	99	5.5	"	111	89.4	65-135
Tetrachloroethene	120	6.9	"	138	86.2	65-135
1,1,1,2-Tetrachloroethane	130	7.0	"	140	94.6	65-135
Ethylbenzene	88	4.4	"	88.4	99.7	65-135
m,p-Xylene	180	8.8	"	177	102	65-135
o-Xylene	90	4.4	"	88.4	102	65-135
1,1,2,2-Tetrachloroethane	140	7.0	"	140	97.7	65-135
Surrogate: 1,2-Dichloroethane-d4	229		"	214	107	76-134
Surrogate: Toluene-d8	205		"	207	98.9	78-125
Surrogate: 4-Bromofluorobenzene	365		"	364	100	77-127

LCS Dup (EE31706-BSD1)	Prepared & Analyzed: 17-May-13										
Dichlorodifluoromethane (F12)	89	5.0	ug/m3	101	88.2	65-135	12.6	35			
Vinyl chloride	41	2.6	"	52.0	78.4	65-135	7.88	35			
Chloroethane	44	8.0	"	53.6	81.4	65-135	13.6	35			
Trichlorofluoromethane (F11)	110	5.6	"	113	96.8	65-135	12.8	35			
1,1-Dichloroethene	82	4.0	"	80.8	101	65-135	13.8	35			
1,1,2-Trichlorotrifluoroethane (F113)	150	7.7	"	155	93.8	65-135	6.11	35			
Methylene chloride (Dichloromethane)	68	3.5	"	70.8	96.1	65-135	14.0	35			
trans-1,2-Dichloroethene	79	8.0	"	80.8	98.1	65-135	20.4	35			
1,1-Dichloroethane	80	4.1	"	82.4	97.3	65-135	15.0	35			
cis-1,2-Dichloroethene	81	4.0	"	80.0	101	65-135	14.4	35			
Chloroform	92	4.9	"	99.2	92.6	65-135	0.215	35			
1,1,1-Trichloroethane	100	5.5	"	111	90.7	65-135	5.27	35			
1,2-Dichloroethane (EDC)	75	4.1	"	82.4	90.9	65-135	8.10	35			
Benzene	58	3.2	"	64.8	89.4	65-135	12.1	35			
Carbon tetrachloride	120	6.4	"	128	90.8	65-135	16.9	35			
Trichloroethene	100	5.5	"	110	91.5	65-135	0.873	35			
Toluene	67	3.8	"	76.8	86.9	65-135	1.96	35			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG051713-10	
120 Nottaway Lane	Project Number: PS Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	21-May-13 10:32

Volatile Organic Compounds by EPA TO-15 - Quality Control

H&P Mobile Geochemistry, Inc.

Amplyta	Degult	Reporting	Unita	Spike	Source	% DEC	%REC	DDD	RPD Limit	Notos
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE31706 - TO-15										
LCS Dup (EE31706-BSD1)				Prepared &	Analyzed:	17-May-13	3			
1,1,2-Trichloroethane	100	5.5	ug/m3	111		89.7	65-135	0.332	35	
Tetrachloroethene	120	6.9	"	138		84.9	65-135	1.51	35	
1,1,1,2-Tetrachloroethane	130	7.0	"	140		94.2	65-135	0.369	35	
Ethylbenzene	89	4.4	"	88.4		101	65-135	0.993	35	
m,p-Xylene	180	8.8	"	177		99.2	65-135	2.94	35	
o-Xylene	87	4.4	"	88.4		98.3	65-135	3.48	35	
1,1,2,2-Tetrachloroethane	130	7.0	"	140		93.8	65-135	4.00	35	
Surrogate: 1,2-Dichloroethane-d4	218		"	214		102	76-134			
Surrogate: Toluene-d8	206		"	207		99.6	78-125			
Surrogate: 4-Bromofluorobenzene	362		"	364		99.3	77-127			

Batch EE32008 - TO-15

Blank (EE32008-BLK1)				Prepared & Analyzed: 20-May-13
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	
Vinyl chloride	ND	2.6	"	
Bromomethane	ND	16	"	
Chloroethane	ND	8.0	"	
Trichlorofluoromethane (F11)	ND	5.6	"	
Acetone	ND	24	"	
1,1-Dichloroethene	ND	4.0	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	
Carbon disulfide	ND	6.3	"	
trans-1,2-Dichloroethene	ND	8.0	"	
1,1-Dichloroethane	ND	4.1	"	
2-Butanone (MEK)	ND	30	"	
cis-1,2-Dichloroethene	ND	4.0		
Chloroform	ND	4.9	"	
1,1,1-Trichloroethane	ND	5.5	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG051713-10	
120 Nottaway Lane	Project Number: PS Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	21-May-13 10:32

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source	a (B = -	%REC	D.F.=	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE32008 - TO-15										
Blank (EE32008-BLK1)				Prepared &	Analyzed:	20-May-13	3			
Benzene	ND	3.2	ug/m3							
Carbon tetrachloride	ND	6.4	"							
Trichloroethene	ND	5.5	"							
1,2-Dichloropropane	ND	9.4	"							
Bromodichloromethane	ND	6.8	"							
cis-1,3-Dichloropropene	ND	4.6	"							
4-Methyl-2-pentanone (MIBK)	ND	8.3	"							
trans-1,3-Dichloropropene	ND	4.6	"							
Toluene	ND	3.8	"							
1,1,2-Trichloroethane	ND	5.5	"							
2-Hexanone (MBK)	ND	8.3	"							
Dibromochloromethane	ND	8.6	"							
Tetrachloroethene	ND	6.9	"							
1,2-Dibromoethane (EDB)	ND	7.8	"							
1,1,1,2-Tetrachloroethane	ND	7.0	"							
Chlorobenzene	ND	4.7	"							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	7.5	"							
Hexachlorobutadiene	ND	11	"							
Surrogate: 1,2-Dichloroethane-d4	230		"	214		107	76-134			
Surrogate: Toluene-d8	202		"	207		97.4	78-125			
Surrogate: 4-Bromofluorobenzene	345		"	364		94.8	77-127			

Batch EE32008 - TO-15

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG051713-10	
120 Nottaway Lane	Project Number: PS Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	21-May-13 10:32

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (EE32008-BS1)				Prepared & Ana	lyzed: 20-May-1	3
Dichlorodifluoromethane (F12)	85	5.0	ug/m3	101	84.8	65-135
Vinyl chloride	37	2.6	"	52.0	70.8	65-135
Chloroethane	42	8.0	"	53.6	79.1	65-135
Trichlorofluoromethane (F11)	99	5.6	"	113	87.1	65-135
1,1-Dichloroethene	79	4.0	"	80.8	98.0	65-135
1,1,2-Trichlorotrifluoroethane (F113)	140	7.7	"	155	93.2	65-135
Methylene chloride (Dichloromethane)	65	3.5	"	70.8	92.2	65-135
trans-1,2-Dichloroethene	73	8.0	"	80.8	89.9	65-135
1,1-Dichloroethane	71	4.1	"	82.4	86.0	65-135
cis-1,2-Dichloroethene	82	4.0	"	80.0	103	65-135
Chloroform	91	4.9	"	99.2	91.3	65-135
1,1,1-Trichloroethane	100	5.5	"	111	89.8	65-135
1,2-Dichloroethane (EDC)	76	4.1	"	82.4	91.6	65-135
Benzene	56	3.2	"	64.8	86.5	65-135
Carbon tetrachloride	120	6.4	"	128	91.0	65-135
Trichloroethene	100	5.5	"	110	92.7	65-135
Toluene	67	3.8	"	76.8	86.7	65-135
1,1,2-Trichloroethane	100	5.5	"	111	90.2	65-135
Tetrachloroethene	120	6.9	"	138	84.9	65-135
1,1,1,2-Tetrachloroethane	130	7.0	"	140	93.0	65-135
Ethylbenzene	88	4.4	"	88.4	99.7	65-135
m,p-Xylene	170	8.8	"	177	98.8	65-135
o-Xylene	89	4.4	"	88.4	100	65-135
1,1,2,2-Tetrachloroethane	130	7.0	"	140	96.0	65-135
Surrogate: 1,2-Dichloroethane-d4	212		"	214	99.1	76-134
Surrogate: Toluene-d8	205		"	207	98.9	78-125
Surrogate: 4-Bromofluorobenzene	365		"	364	100	77-127

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG051713-10	
120 Nottaway Lane	Project Number: PS Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	21-May-13 10:32

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE32008 - TO-15										
LCS Dup (EE32008-BSD1)				Prepared &	k Analyzed:	20-May-13	3			
Dichlorodifluoromethane (F12)	100	5.0	ug/m3	101		99.7	65-135	16.1	35	
Vinyl chloride	47	2.6	"	52.0		89.9	65-135	23.8	35	
Chloroethane	52	8.0	"	53.6		96.9	65-135	20.2	35	
Trichlorofluoromethane (F11)	120	5.6	"	113		107	65-135	20.9	35	
1,1-Dichloroethene	91	4.0	"	80.8		113	65-135	14.4	35	
1,1,2-Trichlorotrifluoroethane (F113)	150	7.7		155		97.7	65-135	4.69	35	
Methylene chloride (Dichloromethane)	77	3.5		70.8		108	65-135	16.2	35	
trans-1,2-Dichloroethene	94	8.0		80.8		116	65-135	25.1	35	
1,1-Dichloroethane	89	4.1	"	82.4		107	65-135	22.2	35	
cis-1,2-Dichloroethene	85	4.0	"	80.0		106	65-135	2.98	35	
Chloroform	92	4.9	"	99.2		92.9	65-135	1.73	35	
1,1,1-Trichloroethane	110	5.5	"	111		101	65-135	12.2	35	
1,2-Dichloroethane (EDC)	85	4.1	"	82.4		103	65-135	11.3	35	
Benzene	64	3.2	"	64.8		99.4	65-135	13.9	35	
Carbon tetrachloride	130	6.4	"	128		102	65-135	11.8	35	
Trichloroethene	100	5.5		110		91.4	65-135	1.40	35	
Toluene	64	3.8	"	76.8		82.7	65-135	4.69	35	
1,1,2-Trichloroethane	97	5.5	"	111		87.1	65-135	3.53	35	
Tetrachloroethene	120	6.9	"	138		83.5	65-135	1.71	35	
1,1,1,2-Tetrachloroethane	130	7.0	"	140		90.8	65-135	2.38	35	
Ethylbenzene	88	4.4	"	88.4		99.0	65-135	0.701	35	
m,p-Xylene	170	8.8	"	177		98.5	65-135	0.302	35	
o-Xylene	88	4.4	"	88.4		99.3	65-135	1.10	35	
1,1,2,2-Tetrachloroethane	130	7.0	"	140		94.0	65-135	2.04	35	
Surrogate: 1,2-Dichloroethane-d4	244		"	214		114	76-134			
Surrogate: Toluene-d8	204		"	207		98.8	78-125			
Surrogate: 4-Bromofluorobenzene	364		"	364		99.7	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG051713-10	
120 Nottaway Lane	Project Number: PS Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	21-May-13 10:32

Notes and Definitions

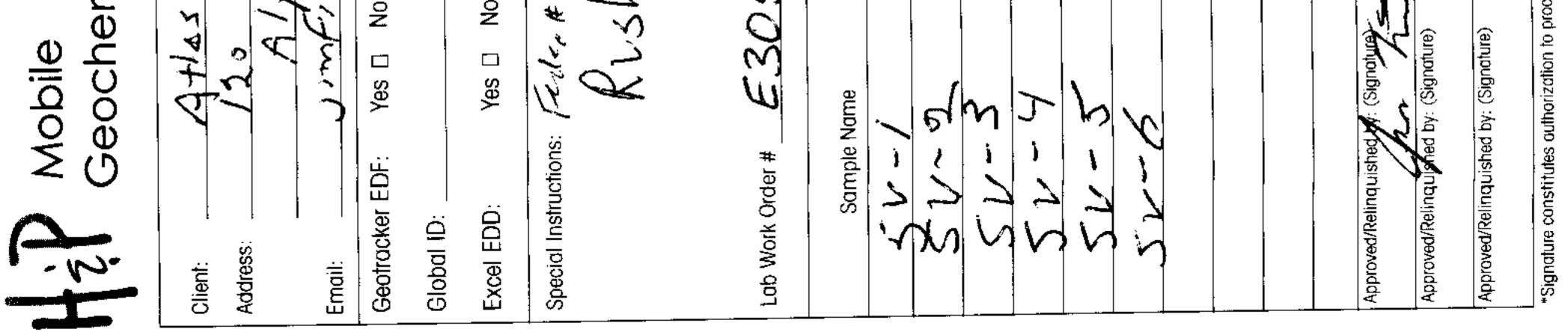
DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods:

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1


H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A Bromodichloromethane by EPA TO-15 & TO-14A 1,2-Dichlorobenzene by EPA TO-15 & TO-14A Dichlorotetrafluoroethane by EPA TO-14A 1,4-Dichlorobenzene by EPA TO-15 & TO-14A Benzene by EPA TO-15 & TO-14A Chlorobenzene by EPA TO-15 & TO-14A Ethyl benzene by EPA TO-15 & TO-14A Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A Total Xylenes by EPA TO-15 & TO-14A 1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A 1,1,2-Trichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethene by EPA TO-15 & TO-14A 1.2-Dichloroethane by EPA TO-15 & TO-14A 1,2-Dichloropropane by EPA TO-15 & TO-14A Benzyl Chloride by EPA TO-15 & TO-14A Bromoform by EPA TO-15 Bromomethane by EPA TO-15 & TO-14A Carbon tetrachloride by EPA TO-15 & TO-14A Chloroethane by EPA TO-15 & TO-14A Chloroform by EPA TO-15 & TO-14A Chloromethane by EPA TO-15 & TO-14A cis-1,2-Dichloroethene by EPA TO-15 & TO-14A cis-1,3-Dichloropropene by EPA TO-15 & TO-14A Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15 trans-1,3-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A Vinvl chloride by EPA TO -15 & TO-14A 2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15 Hexane by EPA TO-15 Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

Dibromochloromethane by EPA TO-15 1,3-Dichlorobenzene by EPA TO-15 & TO-14A Trichloroflovomethane by EPA TO-14A Naphthalene by H&P SOP TO-15/GC-MS 1,2-Dibromo-dischloropropane by EPA TO-15 1,3-Butadiene by EPA TO-15 1,3-Butadiene by EPA TO-15 1,4-Dioxane by EPA TO-15 (4-Dioxane by EPA TO-15

This certification applies to samples analyzed in summa canisters.

5		וא אפר					Date:								
2470 Impala Dr.	., Carlsbad, CA 9201	760.8	•	760.804.	9159	G	H&P	Project	# AG	0	C12	5	0		
mistry, Inc.) Ave., Signal Hill, CA 90755	ч ч	800.834.9888				Outside	ide Lab:							
Keo Scholar	Collector:	mFin	<i>د</i> 15								Page:		ot		
Nottone land	Client Project #	S. R.	גון ו	2			Project	- -	Contact:)	-			
10, 1, 1, 1, 1, 1, 2000 1, 1, 2000	× .	-	5												
12013 9 6+102740, 2A	Phone: 223 &	2333		Fax:				— Turn	ı around	d time:	*	-0-1	HOG	d	
Vo Vo Cold: Temperature:	PI No No No No No No No No No No No No No		V □ TPH gas	9l-01 []	9t-01 🖻 809	A MAZ A N		· · · · · · · · · · · · · · · · · · ·		GI-OT 808	ЯЗНТО 🗆 АЭО І	····-	05 [] N2		
* 8022 3887 9433 h . Ser SUZIC - A	ELLINS BY (1) Zilija Noon (1)	tsij	Ш ТРН Ш д		28 🔲 OSTO\teij t	IAS 🔲 80828 (80928 🗍	80928	28 🗌	(I D punodmo)		s0	424	
SD67		8260B Full	418.1 TRP 418.1 TRP	NUL L'OL⊅	VOC's: Shor	VOC's: SAM	Naphthaler	TPHV gas Oxygenates	Ketones	Other	Геак Среск	Methane	Fixed Gase	γ	
Field Point Name Vol Time Date	Sample Container Type Type		Nev		,	SOIL	-	VAPOR/AIR	IR AN	ALYS	<u>S</u>		Τ		
Post 120 144554	1356													0,7	
7 1506	iy		-											<u>`2</u>	1 1
HP 197 1515		·····									_	• =		∞ 	
40202 1535															
41238 1550												_		in in	<u>τ</u>
HO 155 Y 1620 1	~													т. С	<u> </u>
															- j
(company) みどよく	I I)	(company)		Defe Defe	-16	51,	Time	59	5	1
(company)	ž Š						(company)		<u>ت</u> م	-17-	13		9535	1	
(company)	Received by: (Signature)					0	(company)	~	Dat			lime	ë		
coord with analysis and accentance of condition on hack	Samula dianaral inclusion:		Diennenl		Daturn	n oliant		Pick	- UIR						1

23 May 2013

Mr. Jim Fineis Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009

H&P Project: AG052013-13 Client Project: PS Roswell Rd. / 4910 Roswell Rd.

Dear Mr. Jim Fineis:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 20-May-13 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Ent for

Janis Villarreal Laboratory Director

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

Quality. Accuracy. Experience.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA P 1.800.834.9888 / 760.804.9678 F 760.804.9159 W handpmg.com

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG052013-13	
120 Nottaway Lane	Project Number: PS Roswell Rd. / 4910 Roswell	l Rd. Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	23-May-13 11:41
	ANALVERAL DEBODE FOD CAMPLES	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
IA1	E305083-01	Vapor	16-May-13	20-May-13
IA2	E305083-02	Vapor	16-May-13	20-May-13
IA3	E305083-03	Vapor	16-May-13	20-May-13
IA4	E305083-04	Vapor	16-May-13	20-May-13
IA5	E305083-05	Vapor	16-May-13	20-May-13
IA6	E305083-06	Vapor	16-May-13	20-May-13

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009	Project N	Project: AG052 Jumber: PS Ros Janager: Mr. Jin	well Rd. / 4910 F	Roswell Rd.		Reported: 23-May-13 11:41					
DETECTIONS SUMMARY											
Sample ID: IA1	Laboratory ID:	E305083-01									
			Reporting								
Analyte Dichlorodifluoromethane (F12)		Result 1.8	Limit 1.0	Units	Method	Notes					
Chloromethane		1.8	0.21	ug/m3	EPA TO-15						
Trichlorofluoromethane (F11)		7.4	0.21	ug/m3 ug/m3	EPA TO-15 EPA TO-15						
Acetone		31	1.2		EPA TO-15 EPA TO-15						
Acetone Methylene chloride (Dichloromethane)		0.72	0.35	ug/m3 ug/m3	EPA TO-15 EPA TO-15						
Carbon disulfide		3.0	0.35	ug/m3 ug/m3	EPA TO-15 EPA TO-15						
2-Butanone (MEK)		3.0 3.4	0.52	ug/m3 ug/m3	EPA TO-15 EPA TO-15						
Chloroform		0.95	0.80	ug/m3	EPA TO-15 EPA TO-15						
Benzene		1.0	0.23	ug/m3	EPA TO-15 EPA TO-15						
Carbon tetrachloride		0.57	0.10	ug/m3	EPA TO-15 EPA TO-15						
Toluene		4.5	0.52	ug/m3	EPA TO-15						
Ethylbenzene		0.64	0.70	ug/m3	EPA TO-15						
m,p-Xylene		1.7	0.44	ug/m3	EPA TO-15						
Styrene		0.65	0.43	ug/m3	EPA TO-15						
o-Xylene		0.66	0.43	ug/m3	EPA TO-15						
1,2,4-Trimethylbenzene		0.73	0.50	ug/m3	EPA TO-15						
1,2,1 11111011/10012010		0.75	0.50	ug/illo							
Sample ID: IA2	Laboratory ID:	E305083-02									
			Reporting								
Analyte		Result	Limit	Units	Method	Notes					
Dichlorodifluoromethane (F12)		2.3	1.0	ug/m3	EPA TO-15						
Chloromethane		1.6	0.21	ug/m3	EPA TO-15						
Trichlorofluoromethane (F11)		8.4	0.56	ug/m3	EPA TO-15						
Acetone		33	1.2	ug/m3	EPA TO-15						
Methylene chloride (Dichloromethane)		0.60	0.35	ug/m3	EPA TO-15						
2-Butanone (MEK)		3.6	0.60	ug/m3	EPA TO-15						
Chloroform		1.1	0.25	ug/m3	EPA TO-15						
Benzene		0.95	0.16	ug/m3	EPA TO-15						
Carbon tetrachloride		0.59	0.32	ug/m3	EPA TO-15						
Toluene		3.6	0.76	ug/m3	EPA TO-15						
Ethylbenzene		0.50	0.44	ug/m3	EPA TO-15						
m,p-Xylene		1.3	0.44	ug/m3	EPA TO-15						
Styrene		0.75	0.43	ug/m3	EPA TO-15						
o-Xylene		0.54	0.44	ug/m3	EPA TO-15						
1,2,4-Trimethylbenzene		0.59	0.50	ug/m3	EPA TO-15						

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company		Project: AG052				
20 Nottaway Lane	Project N	umber: PS Ros	well Rd. / 4910 F	Reported:		
Alpharetta, GA 30009	Project M	anager: Mr. Jin	n Fineis		23-May-13 11:41	
Sample ID: IA3	Laboratory ID:	E305083-03				
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)		2.4	1.0	ug/m3	EPA TO-15	
Chloromethane		1.4	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)		13	0.56	ug/m3	EPA TO-15	
Acetone		26	1.2	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)		0.41	0.35	ug/m3	EPA TO-15	
Carbon disulfide		0.73	0.32	ug/m3	EPA TO-15	
2-Butanone (MEK)		1.9	0.60	ug/m3	EPA TO-15	
Benzene		0.75	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride		0.40	0.32	ug/m3	EPA TO-15	
Toluene		2.2	0.76	ug/m3	EPA TO-15	
m,p-Xylene		1.2	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene		0.52	0.50	ug/m3	EPA TO-15	
ample ID: IA4	Laboratory ID:	E305083-04				
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)		2.8	1.0	ug/m3	EPA TO-15	
Chloromethane		1.1	0.21	ug/m3	EPA TO-15	
Trichlorofluoromethane (F11)		16	0.56	ug/m3	EPA TO-15	
Acetone		29	1.2	ug/m3	EPA TO-15	
1,1,2-Trichlorotrifluoroethane (F113)		2.8	0.77	ug/m3	EPA TO-15	
Methylene chloride (Dichloromethane)		0.43	0.35	ug/m3	EPA TO-15	
Carbon disulfide		0.48	0.32	ug/m3	EPA TO-15	
2-Butanone (MEK)		1.8	0.60	ug/m3	EPA TO-15	
Chloroform		0.28	0.25	ug/m3	EPA TO-15	
Benzene		0.76	0.16	ug/m3	EPA TO-15	
Carbon tetrachloride		0.34	0.32	ug/m3	EPA TO-15	
Toluene		2.6	0.76	ug/m3	EPA TO-15	
Ethylbenzene		0.45	0.44	ug/m3	EPA TO-15	
m,p-Xylene		1.4	0.44	ug/m3	EPA TO-15	
Styrene		0.65	0.43	ug/m3	EPA TO-15	
o-Xylene		0.55	0.44	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene		0.55	0.50	ug/m3	EPA TO-15	
Sample ID: IA5	Laboratory ID:	E305083-05				
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Dichlorodifluoromethane (F12)		3.4	1.0	ug/m3	EPA TO-15	
Chloromethane		1.5	0.21	ug/m3	EPA TO-15	

1,2,4-Trimethylbenzene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009	Project N	Project:AG052013-13Project Number:PS Roswell Rd. / 4910 Roswell Rd.RepoProject Manager:Mr. Jim Fineis23-M						
Sample ID: IA5	Laboratory ID:	E305083-05						
			Reporting			N . (
Analyte Trichlorofluoromethane (F11)		Result 22	Limit 0.56	Units ug/m3	Method EPA TO-15	Notes		
Acetone		22	1.2	ug/m3	EPA TO-15 EPA TO-15	Е		
1,1,2-Trichlorotrifluoroethane (F113)		16	0.77	ug/m3	EPA TO-15 EPA TO-15	E		
Methylene chloride (Dichloromethane)		0.62	0.35	ug/m3	EPA TO-15			
2-Butanone (MEK)		2.3	0.55	ug/m3	EPA TO-15			
Chloroform		1.0	0.00	ug/m3	EPA TO-15			
1,1,1-Trichloroethane		3.1	0.25	ug/m3	EPA TO-15			
Benzene		0.82	0.16	ug/m3	EPA TO-15			
Carbon tetrachloride		0.43	0.32	ug/m3	EPA TO-15			
Toluene		4.0	0.76	ug/m3	EPA TO-15			
Tetrachloroethene		3.1	0.69	ug/m3	EPA TO-15			
Ethylbenzene		0.92	0.44	ug/m3	EPA TO-15			
m,p-Xylene		2.6	0.44	ug/m3	EPA TO-15			
Styrene		2.0	0.43	ug/m3	EPA TO-15			
o-Xylene		0.88	0.44	ug/m3	EPA TO-15			
1,2,4-Trimethylbenzene		0.51	0.50	ug/m3	EPA TO-15			
Sample ID: IA6	Laboratory ID:	E305083-06						
			Reporting					
Analyte		Result	Limit	Units	Method	Notes		
Dichlorodifluoromethane (F12)		3.1	1.0	ug/m3	EPA TO-15			
Chloromethane		1.5	0.21	ug/m3	EPA TO-15			
Trichlorofluoromethane (F11)		23	0.56	ug/m3	EPA TO-15			
Acetone		36	1.2	ug/m3	EPA TO-15			
1,1,2-Trichlorotrifluoroethane (F113)		1.2	0.77	ug/m3	EPA TO-15			
Methylene chloride (Dichloromethane)		0.42	0.35	ug/m3	EPA TO-15			
2-Butanone (MEK)		2.0	0.60	ug/m3	EPA TO-15			
Chloroform		0.49	0.25	ug/m3	EPA TO-15			
Benzene		0.61	0.16	ug/m3	EPA TO-15			
Carbon tetrachloride		0.42	0.32	ug/m3	EPA TO-15			
Toluene		2.8	0.76	ug/m3	EPA TO-15			
Tetrachloroethene		1.2	0.69	ug/m3	EPA TO-15			
m,p-Xylene		1.2	0.44	ug/m3	EPA TO-15			

0.65

0.50

ug/m3

EPA TO-15

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009	Project: AG052013-13 Project Number: PS Roswell Rd. / 49 Project Manager: Mr. Jim Fineis	10 Roswell Rd. Reported: 23-May-13 11:41
	Volatile Organic Compounds by FPA	TO 15

Volatile Organic Compounds by EPA TO-15

				•	,				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA1 (E305083-01) Vapor Sampled: 16-May-	-13 Received: 20-M	May-13							
Dichlorodifluoromethane (F12)	1.8	1.0	ug/m3	1	EE32209	22-May-13	22-May-13	EPA TO-15	
Chloromethane	1.4	0.21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
Bromomethane	ND	0.39	"	"	"	"	"	"	
Chloroethane	ND	0.27	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	7.4	0.56	"	"	"	"		"	
Acetone	31	1.2	"	"	"	"		"	
1,1-Dichloroethene	ND	0.40	"	"		"		"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"	"		"		"	
Methylene chloride (Dichloromethane)	0.72	0.35	"	"	"	"	"	"	
Carbon disulfide	3.0	0.32	"	"		"		"	
trans-1,2-Dichloroethene	ND	0.40	"	"		"		"	
1,1-Dichloroethane	ND	0.41	"	"	"			"	
2-Butanone (MEK)	3.4	0.60	"	"	"			"	
cis-1,2-Dichloroethene	ND	0.40	"	"	"	"	"	"	
Chloroform	0.95	0.25	"	"	"			"	
1,1,1-Trichloroethane	ND	0.55	"	"	"			"	
1,2-Dichloroethane (EDC)	ND	0.41	"	"		"		"	
Benzene	1.0	0.16	"	"	"	"	"	"	
Carbon tetrachloride	0.57	0.32	"	"	"	"	"	"	
Trichloroethene	ND	0.55	"	"	"			"	
1,2-Dichloropropane	ND	0.47	"	"	"			"	
Bromodichloromethane	ND	0.68	"	"		"		"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"		"		"	
trans-1,3-Dichloropropene	ND	0.46	"	"		"		"	
Toluene	4.5	0.76	"	"		"		"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83	"	"		"		"	
Dibromochloromethane	ND	0.86	"	"				"	
Tetrachloroethene	ND	0.69	"	"				"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.64	0.44	"	"		"	"	"	
m,p-Xylene	1.7	0.44	"	"		"	"	"	
Styrene	0.65	0.43	"	"	"	"	"	"	
~	0.00	0.40							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG052013-13	
120 Nottaway Lane	Project Number: PS Roswell Rd. / 4910 Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	23-May-13 11:41

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA1 (E305083-01) Vapor Sampled: 16-May-	-13 Received: 20-	May-13							
o-Xylene	0.66	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"		"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"		"	
4-Ethyltoluene	ND	0.50	"	"	"	"		"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"		"	
1,2,4-Trimethylbenzene	0.73	0.50	"	"	"	"		"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"		"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"		"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"		"	
1,2,4-Trichlorobenzene	ND	0.75	"	"	"	"		"	
Hexachlorobutadiene	ND	2.1	"	"	"	"	"	"	
		105.01		10.4	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		105 %	76-		"	"			
Surrogate: Toluene-d8		104 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	77-	127	"	"	"	"	
IA2 (E305083-02) Vapor Sampled: 16-May-	-13 Received: 20-	May-13							
Dichlorodifluoromethane (F12)	2.3	1.0	ug/m3	1	EE32209	22-May-13	22-May-13	EPA TO-15	
Chloromethane	1.6	0.21	"	"	"	"		"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"		"	
Vinyl chloride	ND	0.13	"	"	"	"	"	"	
		0.15							
Bromomethane	ND	0.39	"	"	"	"	"	"	
Bromomethane Chloroethane			"	"		"	"	"	
	ND	0.39			"		"	"	
Chloroethane	ND ND	0.39 0.27	"	"		"	"	"	
Chloroethane Trichlorofluoromethane (F11) Acetone	ND ND 8.4	0.39 0.27 0.56		"		"	"	"	
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	ND ND 8.4 33	0.39 0.27 0.56 1.2	" "	"	"	"	"		
Chloroethane Trichlorofluoromethane (F11)	ND ND 8.4 33 ND	0.39 0.27 0.56 1.2 0.40		"	"	"	"		
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND 8.4 33 ND ND	0.39 0.27 0.56 1.2 0.40 0.77		" " "	" " " "	" " "	" " "		
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND 8.4 33 ND ND 0.60	0.39 0.27 0.56 1.2 0.40 0.77 0.35		" " "	" " " " " "		" " "		
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND 8.4 33 ND ND 0.60 ND	0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32			" " " "	" " " "			
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND 8.4 33 ND ND 0.60 ND ND	0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40			" " " "	" " " " "			
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND 8.4 33 ND ND 0.60 ND ND ND	0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41		" " " "	11 11 11 11 11 11 11 11	" " " " " "		" " " " " "	
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND 8.4 33 ND ND 0.60 ND ND ND ND 3.6	0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32 0.40 0.41 0.60		" " " "		" " " " " "			
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND 8.4 33 ND ND 0.60 ND ND ND 3.6 ND	$\begin{array}{c} 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.40\\ \end{array}$		" " " " "					
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND 8.4 33 ND ND 0.60 ND ND 3.6 ND 1.1 ND	$\begin{array}{c} 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.40\\ 0.25\\ \end{array}$		" " " " "					
Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND 8.4 33 ND ND 0.60 ND ND 3.6 ND 1.1	$\begin{array}{c} 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.40\\ 0.25\\ 0.55\\ \end{array}$		"" " " " " "					

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

Surrogate: Toluene-d8

1,2,4-Trichlorobenzene

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009			mber: PS	052013-13 Roswell Rd. Jim Fineis	/ 4910 Ros	well Rd.		Reported: 23-May-13 11:41				
	Volatile Organic Compounds by EPA TO-15 H&P Mobile Geochemistry, Inc.											
H&P Mobile Geochemistry, Inc.												
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes			
A2 (E305083-02) Vapor Sampled: 16-1	May-13 Received: 20-N	Aay-13										
Frichloroethene	ND	0.55	"	"	"	"	"	"				
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"				
Bromodichloromethane	ND	0.68	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"		"				
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"				
rans-1,3-Dichloropropene	ND	0.46	"	"	"	"		"				
Foluene	3.6	0.76	"	"	"	"	"	"				
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"				
2-Hexanone (MBK)	ND	0.83	"	"	"	"	"	"				
Dibromochloromethane	ND	0.86	"	"	"	"	"	"				
Fetrachloroethene	ND	0.69	"	"	"	"	"	"				
,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"				
Chlorobenzene	ND	0.47	"	"	"	"	"	"				
Ethylbenzene	0.50	0.44	"	"	"	"	"	"				
n,p-Xylene	1.3	0.44	"	"	"	"	"	"				
Styrene	0.75	0.43	"	"	"	"	"	"				
o-Xylene	0.54	0.44	"	"	"	"	"	"				
Bromoform	ND	1.0	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"				
4-Ethyltoluene	ND	0.50	"	"	"	"	"	"				

..

..

..

..

"

..

..

76-134

78-125

77-127

...

.,

.,

"

"

...

"

"

,,

.,

"

...

"

"

"

.,

...

"

"

"

.,

"

..

0.50

0.50

0.61

0.61

0.61

0.75

2.1

103 %

103 %

101 %

ND

0.59

ND

ND

ND

ND

ND

"

"

"

"

"

"

"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009	Project: AG052013-13 Project Number: PS Roswell Rd. / 4910 Roswell Rd. Project Manager: Mr. Jim Fineis	Reported: 23-May-13 11:41
	Volatile Organic Compounds by EPA TO-15	
	H&P Mobile Geochemistry, Inc.	

Received: 20- 2.4 1.4 ND ND ND ND 13	Limit May-13 1.0 0.21 0.71 0.13 0.39 0.27	Units ug/m3 "	Factor 1 "	Batch EE32209	Prepared 22-May-13	Analyzed 22-May-13	Method EPA TO-15	Notes
2.4 1.4 ND ND ND ND 13	1.0 0.21 0.71 0.13 0.39		"			-		
1.4 ND ND ND 13	0.21 0.71 0.13 0.39		"			-		
ND ND ND 13	0.71 0.13 0.39						"	
ND ND ND 13	0.13 0.39			"		"		
ND ND 13	0.39		"	"	"	"	"	
ND 13		"	"	"	"	"	"	
13				"	"			
	0.56			"	"			
26	1.2			"	"			
ND	0.40		"	"	"	"		
			"	"	"	"		
			"	"	"	"	"	
			"	"	"	"	"	
			"	"	"	"		
				"	"	"	"	
			"	"	"	"		
			"	"	"	"		
				"	"			
		"	"	"	"	"	"	
		"	"	"	"	"	"	
			"	"	"	"	"	
		"	"	"	"	"	"	
		"	"	"	"	"	"	
			"	"	"	"	"	
		"	"	"	"	"	"	
			"	"	"	"	"	
		"	"	"	"	"	"	
			"	"	"	"	"	
2.2		"	"	"	"	"	"	
ND			"	"	"	"	"	
ND	0.83	"	"	"	"	"	"	
			"	"	"	"	"	
ND	0.69	"	"	"	"	"	"	
ND	0.78		"	"	"	"	"	
ND	0.70		"	"	"	"	"	
ND			"	"	"	"	"	
	0.44		"	"	"	"	"	
1.2	0.44		"	"	"	"	"	
		"	"	"	"	"	"	
	ND ND ND ND ND ND ND	0.41 0.35 0.73 0.32 ND 0.40 ND 0.41 1.9 0.60 ND 0.42 ND 0.40 ND 0.41 1.9 0.60 ND 0.25 ND 0.55 ND 0.41 0.75 0.16 0.40 0.32 ND 0.41 0.75 0.16 0.40 0.32 ND 0.41 0.75 0.16 0.40 0.32 ND 0.47 ND 0.68 ND 0.46 ND 0.46 2.2 0.76 ND 0.83 ND 0.83 ND 0.69 ND 0.70 ND 0.47 ND 0.44 1.2 0.44	0.41 0.35 " 0.73 0.32 " ND 0.40 " ND 0.41 " 1.9 0.60 " ND 0.41 " 1.9 0.60 " ND 0.40 " ND 0.25 " ND 0.55 " ND 0.41 " 0.75 0.16 " 0.40 0.32 " ND 0.41 " 0.75 0.16 " 0.40 0.32 " ND 0.47 " ND 0.47 " ND 0.46 " ND 0.46 " ND 0.46 " ND 0.46 " ND 0.83 " ND 0.83 " ND 0.78 " ND 0.78 " ND 0.47 " ND<	0.41 0.35 " 0.73 0.32 " ND 0.40 " ND 0.41 " 1.9 0.60 " ND 0.41 " ND 0.40 " ND 0.40 " ND 0.40 " ND 0.25 " ND 0.55 " ND 0.41 " 0.75 0.16 " ND 0.41 " 0.75 0.16 " ND 0.41 " 0.40 0.32 " ND 0.41 " ND 0.46 " ND 0.46 " ND 0.46 " ND 0.46 " ND 0.83 " ND 0.83 " ND 0.69 " ND 0.70 " ND 0.70 " ND <td>0.41 0.35 " " " 0.73 0.32 " " " ND 0.40 " " " ND 0.41 " " " ND 0.41 " " " ND 0.40 " " " ND 0.40 " " " ND 0.40 " " " ND 0.41 " " " ND 0.55 " " " ND 0.41 " " " 0.75 0.16 " " " ND 0.41 " " " ND 0.47 " " " ND 0.46 " " " ND 0.46 " " " ND 0.83 " " " ND 0.86 " " " ND 0.70 " "</td> <td>0.41 0.35 " " " " ND 0.40 " " " " ND 0.41 " " " " 1.9 0.60 " " " " ND 0.41 " " " " ND 0.40 " " " " ND 0.41 " " " " ND 0.25 " " " " ND 0.55 " " " " ND 0.41 " " " " ND 0.55 " " " " ND 0.55 " " " " ND 0.68 " " " " ND 0.46 " " " " ND 0.46 " " " " ND 0.46 " " " " ND</td> <td>0.41 0.35 "<!--</td--><td>0.41 0.35 "<!--</td--></td></td>	0.41 0.35 " " " 0.73 0.32 " " " ND 0.40 " " " ND 0.41 " " " ND 0.41 " " " ND 0.40 " " " ND 0.40 " " " ND 0.40 " " " ND 0.41 " " " ND 0.55 " " " ND 0.41 " " " 0.75 0.16 " " " ND 0.41 " " " ND 0.47 " " " ND 0.46 " " " ND 0.46 " " " ND 0.83 " " " ND 0.86 " " " ND 0.70 " "	0.41 0.35 " " " " ND 0.40 " " " " ND 0.41 " " " " 1.9 0.60 " " " " ND 0.41 " " " " ND 0.40 " " " " ND 0.41 " " " " ND 0.25 " " " " ND 0.55 " " " " ND 0.41 " " " " ND 0.55 " " " " ND 0.55 " " " " ND 0.68 " " " " ND 0.46 " " " " ND 0.46 " " " " ND 0.46 " " " " ND	0.41 0.35 " </td <td>0.41 0.35 "<!--</td--></td>	0.41 0.35 " </td

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG052013-13	
120 Nottaway Lane	Project Number: PS Roswell Rd. / 4910 Roswell R	d. Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	23-May-13 11:41

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA3 (E305083-03) Vapor Sampled: 16-May-1.	3 Received: 20-	May-13							
o-Xylene	ND	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"		"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"		"	
4-Ethyltoluene	ND	0.50	"	"	"	"		"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"		"	
1,2,4-Trimethylbenzene	0.52	0.50	"	"	"	"		"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"		"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"		"	
1,2-Dichlorobenzene	ND	0.61			"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.75			"	"	"	"	
Hexachlorobutadiene	ND	2.1	"	"	"	"	"	"	
					"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		101 %	76-1			"	"	"	
Surrogate: Toluene-d8		103 %	78-1						
Surrogate: 4-Bromofluorobenzene		102 %	77	127	"	"	"	"	
IA4 (E305083-04) Vapor Sampled: 16-May-1.	3 Received: 20-	May-13							
Dichlorodifluoromethane (F12)	2.8	1.0	ug/m3	1	EE32209	22-May-13	22-May-13	EPA TO-15	
Chloromethane	1.1	0.04	"	"	"				
Chloromethane	1.1	0.21				"		"	
Dichlorotetrafluoroethane (F114)	ND	0.71		"	"	"		"	
						"			
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"		"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride	ND ND	0.71 0.13			"	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	ND ND ND	0.71 0.13 0.39		"	"	"	"	"	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	ND ND ND ND	0.71 0.13 0.39 0.27		"	" " "	"	" " "	" " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	ND ND ND 16	0.71 0.13 0.39 0.27 0.56	""	" " "	" " " "	"""	" " "	" " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone	ND ND ND 16 29	0.71 0.13 0.39 0.27 0.56 1.2			" " " "	" " "	" " "	" " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	ND ND ND 16 29 ND	0.71 0.13 0.39 0.27 0.56 1.2 0.40		" " " "	" " " "	" " "	" " " "	" " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND 16 29 ND 2.8	0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77			" " " "		" " " "	" " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND 16 29 ND 2.8 0.43	0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35					" " " " "	" " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND 16 29 ND 2.8 0.43 0.43	0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32		" " " " "			" " " " " "	" " " " " " "	
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND ND 16 29 ND 2.8 0.43 0.43 0.48 ND	$\begin{array}{c} 0.71 \\ 0.13 \\ 0.39 \\ 0.27 \\ 0.56 \\ 1.2 \\ 0.40 \\ 0.77 \\ 0.35 \\ 0.32 \\ 0.40 \end{array}$							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND 16 29 ND 2.8 0.43 0.43 0.48 ND ND	$\begin{array}{c} 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ \end{array}$							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND 16 29 ND 2.8 0.43 0.43 0.48 ND ND 1.8	$\begin{array}{c} 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ \end{array}$							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND ND 16 29 ND 2.8 0.43 0.43 0.48 ND ND 1.8 ND	$\begin{array}{c} 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.40\\ \end{array}$							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1-Dichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND ND 16 29 ND 2.8 0.43 0.43 0.43 ND ND 1.8 ND 0.28 ND	$\begin{array}{c} 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.40\\ 0.25\\ 0.55\\ \end{array}$							
Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1-Dichlorootrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND ND 16 29 ND 2.8 0.43 0.43 0.48 ND ND 1.8 ND 0.28	$\begin{array}{c} 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.40\\ 0.25\\ \end{array}$							

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

Surrogate: Toluene-d8

1,2,4-Trichlorobenzene

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009			nber: PS	052013-13 Roswell Rd. Jim Fineis	/ 4910 Ros	well Rd.		Reported: 23-May-13 11:41	
		Organic (-	•		-15			
	Н	&P Mobil	e Geocl	nemistry,	Inc.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
A4 (E305083-04) Vapor Sampled: 16-May	-13 Received: 20-	May-13							
Frichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47		"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46		"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	0.46		"	"	"	"	"	
Foluene	2.6	0.76		"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	0.83		"	"	"	"	"	
Dibromochloromethane	ND	0.86		"	"	"	"	"	
Fetrachloroethene	ND	0.69		"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.70		"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.45	0.44	"	"	"	"	"	"	
n,p-Xylene	1.4	0.44		"		"	"	"	
Styrene	0.65	0.43				"	"	"	
p-Xylene	0.55	0.44				"	"	"	
Bromoform	ND	1.0	"	"		"	"		
1,1,2,2-Tetrachloroethane	ND	0.70	"	"		"	"		
4-Ethyltoluene	ND	0.50	"	"		"	"		
1,3,5-Trimethylbenzene	ND	0.50		"	"	"	"		
1,2,4-Trimethylbenzene	0.55	0.50	"	"	"	"	"		

..

..

"

..

..

76-134

78-125

77-127

.,

"

"

...

"

"

"

"

"

...

"

"

"

.,

...

"

"

"

.,

"

"

..

0.61

0.61

0.61

0.75

2.1

84.4 %

101 %

101 %

ND

ND

ND

ND

ND

"

"

"

"

"

"

"

Styrene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company		Pr	oject: AG	052013-13					
120 Nottaway Lane		Project Nu	mber: PS	Roswell Rd.	. / 4910 Ros	well Rd.		Reported:	
Alpharetta, GA 30009		Project Mai	nager: Mr.	Jim Fineis				23-May-13 11:41	
	Volatile	Organic (Compou	inds by H	EPA TO-	-15			
	Н	[&P Mobil	e Geoch	nemistry	, Inc.				
		Reporting		Dilution					
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
A5 (E305083-05) Vapor Sampled: 16-May-13	Received: 20	-May-13							
Dichlorodifluoromethane (F12)	3.4	1.0	ug/m3	1	EE32209	22-May-13	22-May-13	EPA TO-15	
Chloromethane	1.5	0.21	"	"	"	"		"	
Dichlorotetrafluoroethane (F114)	ND	0.71	"	"	"	"	"	"	
Vinyl chloride	ND	0.13	"	"	"	"		"	
Bromomethane	ND	0.39	"	"	"	"		"	
Chloroethane	ND	0.27	"	"	"	"		"	
Frichlorofluoromethane (F11)	22	0.56	"	"	"	"		"	
Acetone	250	1.2	"	"	"	"		"	I
,1-Dichloroethene	ND	0.40	"	"	"	"		"	
,1,2-Trichlorotrifluoroethane (F113)	16	0.77	"	"	"			"	
Methylene chloride (Dichloromethane)	0.62	0.35	"	"	"	"		"	
Carbon disulfide	ND	0.32	"	"	"	"		"	
rans-1,2-Dichloroethene	ND	0.40	"	"	"			"	
,1-Dichloroethane	ND	0.41	"			"		"	
2-Butanone (MEK)	2.3	0.60	"			"		"	
eis-1,2-Dichloroethene	ND	0.40	"		"	"		"	
Chloroform	1.0	0.25	"		"	"		"	
1,1.4-Trichloroethane	3.1	0.55	"		"			"	
,2-Dichloroethane (EDC)	ND	0.41	"			"		"	
Senzene	0.82	0.16	"		"			"	
Carbon tetrachloride	0.43	0.32	"			"		"	
Frichloroethene	ND	0.55	"					"	
,2-Dichloropropane	ND	0.33				"		"	
Bromodichloromethane	ND	0.47				"		"	
cis-1,3-Dichloropropene	ND	0.08	"					"	
· • •			"		"			"	
-Methyl-2-pentanone (MIBK)		0.83							
rans-1,3-Dichloropropene	ND	0.46						"	
Foluene	4.0	0.76							
,1,2-Trichloroethane	ND	0.55							
2-Hexanone (MBK)	ND	0.83						"	
Dibromochloromethane	ND	0.86			"			"	
Fetrachloroethene	3.1	0.69		"	"	"			
,2-Dibromoethane (EDB)	ND	0.78	"						
,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	0.92	0.44	"	"	"	"	"	"	
n,p-Xylene	2.6	0.44	"	"	"	"	"		

"

0.43

2.0

"

"

"

"

"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG052013-13	
120 Nottaway Lane	Project Number: PS Roswell Rd. / 4910 F	Roswell Rd. Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	23-May-13 11:41

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA5 (E305083-05) Vapor Sampled: 16-May-	13 Received: 20-	May-13							
o-Xylene	0.88	0.44	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"		"	
4-Ethyltoluene	ND	0.50	"	"	"	"		"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"			
1,2,4-Trimethylbenzene	0.51	0.50	"	"	"	"		"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"		"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"		"	
1,2-Dichlorobenzene	ND	0.61	"	"	"	"		"	
1,2,4-Trichlorobenzene	ND	0.75	"	"	"	"		"	
Hexachlorobutadiene	ND	2.1	"	"	"	"	"		
Surrogate: 1,2-Dichloroethane-d4		102 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-1	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	77-1	127	"	"	"	"	
IA6 (E305083-06) Vapor Sampled: 16-May-	13 Received: 20-	Mav-13							
(
Dichlorodifluoromethane (F12)	3.1	1.0	ug/m3	1	EE32209	22-May-13	22-May-13	EPA TO-15	
		-	ug/m3 "	1 "	EE32209	22-May-13	22-May-13	EPA TO-15 "	
Dichlorodifluoromethane (F12)	3.1	1.0	-		EE32209 "		22-May-13 "		
Dichlorodifluoromethane (F12) Chloromethane	3.1 1.5	1.0 0.21	"	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114)	3.1 1.5 ND	1.0 0.21 0.71	"	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride	3.1 1.5 ND ND ND	1.0 0.21 0.71 0.13 0.39	"	"	"	"	"	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane	3.1 1.5 ND ND	1.0 0.21 0.71 0.13 0.39 0.27	"	"	"	" " "	" " "	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane	3.1 1.5 ND ND ND ND	1.0 0.21 0.71 0.13 0.39		"	"	" " " "	" " "	"	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11)	3.1 1.5 ND ND ND 23 36	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2	" " " "		" " " "	" " "	1 11 11 11 11 11	" " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone	3.1 1.5 ND ND ND 23 36 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40	" " " "		" " " "	" " " "	" " " "	" " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	3.1 1.5 ND ND ND 23 36 ND 1.2	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77	" " " "		" " " "		" " " "	" " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene	3.1 1.5 ND ND ND 23 36 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35		" " " " "	" " " "			" " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	3.1 1.5 ND ND ND 23 36 ND 1.2 0.42 ND	1.0 0.21 0.71 0.13 0.39 0.27 0.56 1.2 0.40 0.77 0.35 0.32		" " " " "	" " " " "			" " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	3.1 1.5 ND ND ND 23 36 ND 1.2 0.42 ND ND	$\begin{array}{c} 1.0\\ 0.21\\ 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\end{array}$		" " " " " "	" " " " " " " " " " " " " " " " " " "			" " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	3.1 1.5 ND ND ND 23 36 ND 1.2 0.42 ND ND ND ND ND ND	$\begin{array}{c} 1.0\\ 0.21\\ 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ \end{array}$		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	" " " " " " " " " " " " " " " " " " "			" " " "	
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	3.1 1.5 ND ND ND 23 36 ND 1.2 0.42 ND ND ND ND ND 2.0	$\begin{array}{c} 1.0\\ 0.21\\ 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ \end{array}$		" " " " " " " " " " " " " " " " " " "					
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1-2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	3.1 1.5 ND ND ND 23 36 ND 1.2 0.42 ND ND ND ND ND ND ND ND ND ND	$\begin{array}{c} 1.0\\ 0.21\\ 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.40\\ \end{array}$							
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1-2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	3.1 1.5 ND ND ND 23 36 ND 1.2 0.42 ND ND ND ND 2.0 ND 0.49	$\begin{array}{c} 1.0\\ 0.21\\ 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.41\\ 0.60\\ 0.40\\ 0.25\end{array}$							
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1-Dichloroethene 1,1-Z-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethene 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	3.1 1.5 ND ND ND 23 36 ND 1.2 0.42 ND ND ND 2.0 ND 0.49 ND	$\begin{array}{c} 1.0\\ 0.21\\ 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.41\\ 0.60\\ 0.40\\ 0.25\\ 0.55\\ \end{array}$							
Dichlorodifluoromethane (F12) Chloromethane Dichlorotetrafluoroethane (F114) Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane (F11) Acetone 1,1-Dichloroethene 1,1-2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	3.1 1.5 ND ND ND 23 36 ND 1.2 0.42 ND ND ND ND 2.0 ND 0.49	$\begin{array}{c} 1.0\\ 0.21\\ 0.71\\ 0.13\\ 0.39\\ 0.27\\ 0.56\\ 1.2\\ 0.40\\ 0.77\\ 0.35\\ 0.32\\ 0.40\\ 0.41\\ 0.60\\ 0.41\\ 0.60\\ 0.40\\ 0.25\end{array}$							

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009			mber: PS	052013-13 Roswell Rd. Jim Fineis	/ 4910 Ros	well Rd.		Reported: 23-May-13 11:41	
	Volatile	Organic (Compou	inds by E	PA TO-	-15			
	На	&P Mobil	le Geocl	nemistry,	Inc.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
IA6 (E305083-06) Vapor Sampled: 16-M	ay-13 Received: 20-N	May-13							
Trichloroethene	ND	0.55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.47	"	"	"	"	"	"	
Bromodichloromethane	ND	0.68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.83	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	0.46	"	"	"	"	"	"	
Foluene	2.8	0.76	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.55	"	"	"	"		"	
2-Hexanone (MBK)	ND	0.83	"	"	"	"		"	
Dibromochloromethane	ND	0.86	"	"	"	"		"	
Tetrachloroethene	1.2	0.69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.78	"	"	"	"		"	
1,1,1,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
Chlorobenzene	ND	0.47	"	"	"	"	"	"	
Ethylbenzene	ND	0.44	"	"	"	"	"	"	
m,p-Xylene	1.2	0.44	"	"	"	"		"	
Styrene	ND	0.43	"	"	"	"	"	"	
o-Xylene	ND	0.44	"	"	"	"		"	
Bromoform	ND	1.0	"	"	"	"		"	
1,1,2,2-Tetrachloroethane	ND	0.70	"	"	"	"	"	"	
1-Ethyltoluene	ND	0.50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.65	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.61	"	"	"	"	"	"	
		0.04							

Hexachlorobutadiene ND 2.1 101 % 76-134 " " " " Surrogate: 1,2-Dichloroethane-d4 " " " " 78-125 Surrogate: Toluene-d8 104~%" " " 77-127 Surrogate: 4-Bromofluorobenzene 101 %

"

..

..

0.61

0.75

ND

ND

"

"

...

"

..

"

"

...

"

"

...

"

"

"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG052013-13	
120 Nottaway Lane	Project Number: PS Roswell Rd. / 4910 Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	23-May-13 11:41

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE32209 - TO-15										
Blank (EE32209-BLK1)				Prepared &	k Analyzed:	22-May-13	3			
Dichlorodifluoromethane (F12)	ND	1.0	ug/m3							
Chloromethane	ND	0.21	"							
Dichlorotetrafluoroethane (F114)	ND	0.71	"							
Vinyl chloride	ND	0.13	"							
Bromomethane	ND	0.39	"							
Chloroethane	ND	0.27	"							
Trichlorofluoromethane (F11)	ND	0.56	"							
Acetone	ND	1.2	"							
1,1-Dichloroethene	ND	0.40	"							
1,1,2-Trichlorotrifluoroethane (F113)	ND	0.77	"							
Methylene chloride (Dichloromethane)	ND	0.35	"							
Carbon disulfide	ND	0.32	"							
trans-1,2-Dichloroethene	ND	0.40	"							
1,1-Dichloroethane	ND	0.41	"							
2-Butanone (MEK)	ND	0.60	"							
cis-1,2-Dichloroethene	ND	0.40	"							
Chloroform	ND	0.25	"							
1,1,1-Trichloroethane	ND	0.55	"							
1,2-Dichloroethane (EDC)	ND	0.41	"							
Benzene	ND	0.16	"							
Carbon tetrachloride	ND	0.32	"							
Trichloroethene	ND	0.55	"							
1,2-Dichloropropane	ND	0.47	"							
Bromodichloromethane	ND	0.68	"							
cis-1,3-Dichloropropene	ND	0.46	"							
4-Methyl-2-pentanone (MIBK)	ND	0.83	"							
trans-1,3-Dichloropropene	ND	0.46	"							
Toluene	ND	0.76	"							
1,1,2-Trichloroethane	ND	0.55	"							
2-Hexanone (MBK)	ND	0.83	"							
Dibromochloromethane	ND	0.86	"							
Tetrachloroethene	ND	0.69	"							
1,2-Dibromoethane (EDB)	ND	0.78	"							
1,1,1,2-Tetrachloroethane	ND	0.70	"							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG052013-13	
120 Nottaway Lane	Project Number: PS Roswell Rd. / 4910 Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	23-May-13 11:41

Volatile Organic Compounds by EPA TO-15 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EE32209 - TO-15										

Blank (EE32209-BLK1)				Prepared & Ana	lyzed: 22-May-1	3	
Chlorobenzene	ND	0.47	ug/m3				
Ethylbenzene	ND	0.44	"				
m,p-Xylene	ND	0.44	"				
Styrene	ND	0.43	"				
o-Xylene	ND	0.44	"				
Bromoform	ND	1.0	"				
1,1,2,2-Tetrachloroethane	ND	0.70	"				
4-Ethyltoluene	ND	0.50	"				
1,3,5-Trimethylbenzene	ND	0.50	"				
1,2,4-Trimethylbenzene	ND	0.50	"				
1,3-Dichlorobenzene	ND	0.61	"				
1,4-Dichlorobenzene	ND	0.61	"				
1,2-Dichlorobenzene	ND	0.61	"				
1,2,4-Trichlorobenzene	ND	0.75	"				
Hexachlorobutadiene	ND	2.1	"				
Surrogate: 1,2-Dichloroethane-d4	233		"	214	109	76-134	
Surrogate: Toluene-d8	208		"	207	101	78-125	
Surrogate: 4-Bromofluorobenzene	363		"	364	99.6	77-127	

LCS (EE32209-BS1)				Prepared & Anal	lyzed: 22-May-13	3	
Dichlorodifluoromethane (F12)	10	1.0	ug/m3	10.1	99.1	65-135	
Vinyl chloride	4.4	0.13	"	5.20	84.3	65-135	
Chloroethane	4.8	0.27	"	5.36	88.9	65-135	
Trichlorofluoromethane (F11)	10	0.56	"	11.3	92.7	65-135	
1,1-Dichloroethene	7.1	0.40	"	8.08	88.1	65-135	
1,1,2-Trichlorotrifluoroethane (F113)	14	0.77	"	15.5	88.4	65-135	
Methylene chloride (Dichloromethane)	5.9	0.35	"	7.08	83.9	65-135	
trans-1,2-Dichloroethene	6.8	0.40	"	8.08	84.0	65-135	
1,1-Dichloroethane	7.6	0.41	"	8.24	91.7	65-135	
cis-1,2-Dichloroethene	6.6	0.40	"	8.00	82.0	65-135	
Chloroform	8.7	0.25	"	9.92	87.2	65-135	
1,1,1-Trichloroethane	9.8	0.55	"	11.1	88.3	65-135	
1,2-Dichloroethane (EDC)	7.4	0.41		8.24	89.9	65-135	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project: AG052013-13	
120 Nottaway Lane	Project Number: PS Roswell Rd. / 4910 Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager: Mr. Jim Fineis	23-May-13 11:41

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE32209 - TO-15							
LCS (EE32209-BS1)				Prepared & Ana	lyzed: 22-May-1	3	
Benzene	5.3	0.16	ug/m3	6.48	82.0	65-135	
Carbon tetrachloride	11	0.32	"	12.8	89.8	65-135	
Trichloroethene	9.8	0.55	"	11.0	89.0	65-135	
Toluene	6.2	0.76	"	7.68	80.3	65-135	
1,1,2-Trichloroethane	8.9	0.55	"	11.1	80.1	65-135	
Tetrachloroethene	11	0.69	"	13.8	81.6	65-135	
1,1,1,2-Tetrachloroethane	11	0.70	"	14.0	80.2	65-135	
Ethylbenzene	7.6	0.44	"	8.84	85.7	65-135	
m,p-Xylene	15	0.44	"	17.7	86.4	65-135	
o-Xylene	7.9	0.44	"	8.84	89.0	65-135	
1,1,2,2-Tetrachloroethane	12	0.70	"	14.0	83.0	65-135	
Surrogate: 1,2-Dichloroethane-d4	236		"	214	110	76-134	
Surrogate: Toluene-d8	210		"	207	101	78-125	
Surrogate: 4-Bromofluorobenzene	384		"	364	105	77-127	

LCS Dup (EE32209-BSD1)				Prepared & Ana	lyzed: 22-May-13			
Dichlorodifluoromethane (F12)	9.9	1.0	ug/m3	10.1	98.5	65-135	0.655	35
Vinyl chloride	5.0	0.13	"	5.20	95.4	65-135	12.3	35
Chloroethane	4.8	0.27	"	5.36	89.9	65-135	1.06	35
Trichlorofluoromethane (F11)	11	0.56	"	11.3	93.6	65-135	0.963	35
1,1-Dichloroethene	7.1	0.40	"	8.08	88.4	65-135	0.339	35
1,1,2-Trichlorotrifluoroethane (F113)	14	0.77	"	15.5	88.1	65-135	0.282	35
Methylene chloride (Dichloromethane)	6.1	0.35	"	7.08	86.0	65-135	2.58	35
trans-1,2-Dichloroethene	6.8	0.40	"	8.08	84.0	65-135	0.00	35
1,1-Dichloroethane	7.5	0.41	"	8.24	90.4	65-135	1.42	35
cis-1,2-Dichloroethene	6.6	0.40	"	8.00	82.9	65-135	1.16	35
Chloroform	8.6	0.25	"	9.92	87.0	65-135	0.228	35
1,1,1-Trichloroethane	9.6	0.55	"	11.1	86.7	65-135	1.81	35
1,2-Dichloroethane (EDC)	7.2	0.41	"	8.24	86.9	65-135	3.49	35
Benzene	5.2	0.16	"	6.48	79.7	65-135	2.84	35
Carbon tetrachloride	11	0.32	"	12.8	86.8	65-135	3.39	35
Trichloroethene	9.5	0.55	"	11.0	87.0	65-135	2.26	35
Toluene	6.1	0.76	"	7.68	78.9	65-135	1.75	35

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project:	AG052013-13	
120 Nottaway Lane	Project Number:	PS Roswell Rd. / 4910 Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager:	Mr. Jim Fineis	23-May-13 11:41

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE32209 - TO-15										
LCS Dup (EE32209-BSD1)				Prepared &	Analyzed:	22-May-13	3			
1,1,2-Trichloroethane	8.8	0.55	ug/m3	11.1		79.5	65-135	0.746	35	
Tetrachloroethene	11	0.69		13.8		78.9	65-135	3.41	35	
1,1,1,2-Tetrachloroethane	11	0.70		14.0		79.4	65-135	0.998	35	
Ethylbenzene	7.5	0.44		8.84		85.1	65-135	0.757	35	
m,p-Xylene	15	0.44		17.7		84.6	65-135	2.12	35	
o-Xylene	7.6	0.44		8.84		86.3	65-135	3.12	35	
1,1,2,2-Tetrachloroethane	11	0.70	"	14.0		80.9	65-135	2.55	35	
Surrogate: 1,2-Dichloroethane-d4	233		"	214		109	76-134			
Surrogate: Toluene-d8	208		"	207		100	78-125			
Surrogate: 4-Bromofluorobenzene	382		"	364		105	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

	Atlas Geo-Sampling Company	Project:	AG052013-13	
	120 Nottaway Lane	Project Number:	PS Roswell Rd. / 4910 Roswell Rd.	Reported:
l	Alpharetta, GA 30009	Project Manager:	Mr. Jim Fineis	23-May-13 11:41

Notes and Definitions

- E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate (CLP E-flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company	Project:	AG052013-13	
120 Nottaway Lane	Project Number:	PS Roswell Rd. / 4910 Roswell Rd.	Reported:
Alpharetta, GA 30009	Project Manager:	Mr. Jim Fineis	23-May-13 11:41

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory (Certification # L11-175) in accordance with the DoD-ELAP program. H&P is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods:

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1.2.4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A Bromodichloromethane by EPA TO-15 & TO-14A 1,2-Dichlorobenzene by EPA TO-15 & TO-14A Dichlorotetrafluoroethane by EPA TO-14A 1,4-Dichlorobenzene by EPA TO-15 & TO-14A Benzene by EPA TO-15 & TO-14A Chlorobenzene by EPA TO-15 & TO-14A Ethyl benzene by EPA TO-15 & TO-14A Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A Total Xylenes by EPA TO-15 & TO-14A 1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A 1,1,2-Trichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethene by EPA TO-15 & TO-14A 1,2-Dichloroethane by EPA TO-15 & TO-14A 1,2-Dichloropropane by EPA TO-15 & TO-14A Benzyl Chloride by EPA TO-15 & TO-14A Bromoform by EPA TO-15 Bromomethane by EPA TO-15 & TO-14A Carbon tetrachloride by EPA TO-15 & TO-14A Chloroethane by EPA TO-15 & TO-14A Chloroform by EPA TO-15 & TO-14A Chloromethane by EPA TO-15 & TO-14A cis-1,2-Dichloroethene by EPA TO-15 & TO-14A cis-1,3-Dichloropropene by EPA TO-15 & TO-14A Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15 trans-1,3-Dichloropropene by EPA TO-15 & TO-14A Trichloroethene by EPA TO-15 & TO-14A Vinyl chloride by EPA TO -15 & TO-14A 2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15 Hexane by EPA TO-15 Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

This certification applies to samples analyzed in summa canisters.

Dibromochloromethane by EPA TO-15 1,3-Dichlorobenzene by EPA TO-15 & TO-14A Trichlorofluoromethane by EPA TO-15 & TO-14A Naphthalene by H&P SOP TO-15/GC-MS 1,2-Dibromocthane (EDB) by EPA TO-15 & TO-14A 1,2-Dibromo-3-chloropropane by EPA TO-15 1,3-Butadiene by EPA TO-15 1,12-Trichlorotrifluoroethane by EPA TO-15 & TO-14A Carbon disulfide by EPA TO-15 1,4-Dioxane by EPA TO-15

	05 2013-13	Page: of	PUISH REPUERTED. 24 HOULRY (5/23)		COS	eq Gases hane k Check Con	Led Met	рөЛ РФМ	рөЛ	οί <u>ο</u> Well Mell	Del Mel Mel VI Fixe V V V V V V V V V V V V V V V V V V V	ред Портиски Геодиника Мен Улики Историја ИСТорија ИСТориј ИСТориј ИСТориј ИСТориј ИСТориј ИСТориј ИСТориј ИСТориј ИСТориј ИСТориј ИС ИСТориј И ИСТориј И ИСТориј И ИСТориј И ИСТориј И И И ИСТориј И И		ОС ОС	Heik Heik Heik Heik Heik Heik	Т Т Т Т Т Т Т Т Т Т Т Т Т Т	Mei 347-2. 26 AM Jane 26 AM 26 AM	Leo Mei Fix S-1017-1. S-1017-1
	H&P Project # <u>HG</u> C Outside Lab:	Project Contract	122 : 1130 - 1 Turn around time:	9l-01	80928	_	TPH/	ଝ୍ରା	KAIR ANA Kaira	KAIR AN Keton	VHGT RAR AN Ketos	VHQT RAIR ANA ROTAN	VHQT RAR AN Ketos	VHGT RAR AN Ketos	VHGT RANK AN Ketos			
	760.804.9159 (A) H			91-01 🗌		oC's: Full List OC's: SAM, 82 OC's: SAM, 82		N Soll	N N N	<pre> N N N N N N N N N N N N N N N N N N N</pre>								
Record	804.9678 • fax 7 800.834.9888	Rochell R	3 2	A 6xt		418.1 TRPH LUFT/8015M TF B260B Full List		SOIL/GW	SolL/GW	SOIL/GW								
or custoay	CA 92010 • ph 76	Collector: X n K		1 1 1 1	1e 1 1	# of containers		e Container e Type	Container Type	Container Type 6 L S v v	Container Type 6 L S v v v A	Container Type 6 L S v v v v	Container Type Container			Container Type K (Signoture)	Container Type 6 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Container Type 6 2 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Impala Dr., Carl Coronado Ave.,	0 1145		imple Receipt oct: Iteres No oct: Iteres No old: Yes No Id: Yes No Id:	- S - S	5 4 4 5 C		Time Date Type	ie Date رجنج رب	ne Date کنرن			Botte Date					any) any)
	JC. 1855	3 6ry Samp	50009 +/257840.20m	∽ ⊑ ౫ॅॅ ⊢ ́	561825	51 4745 4262 33 4641 7429		Purge Vol	Purge Vol	Purge Vol	Purge	Purge	Pride	Pride	Bind Constant of the second se			
-	olle ichemistry, Ir	Bres Atta	Chartan (4)	No N	the had	12 937 761 12 937 761 6 30508		e Field Point Name										
6	Anobile Geoch	North C		i ID: EDD: EDD:	Special Instructions:	UPS TPAKK		Sample Name	L Sample Name	しん く	エム L エム L イム L イム Sample Name	Sample Name	Sample Name Sample Name	Sample Name NA A A A A A A A A A A A A A A A A A A	Sample Name Sample Name AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Sample Name Sample Name ZAAA Approved/Relingershed px. (S		Approved/Reling also by: (S)

door, Ambient)

Departure Time: フ ケ のか くそ 5-16,13 830 Arrival Time: Date:

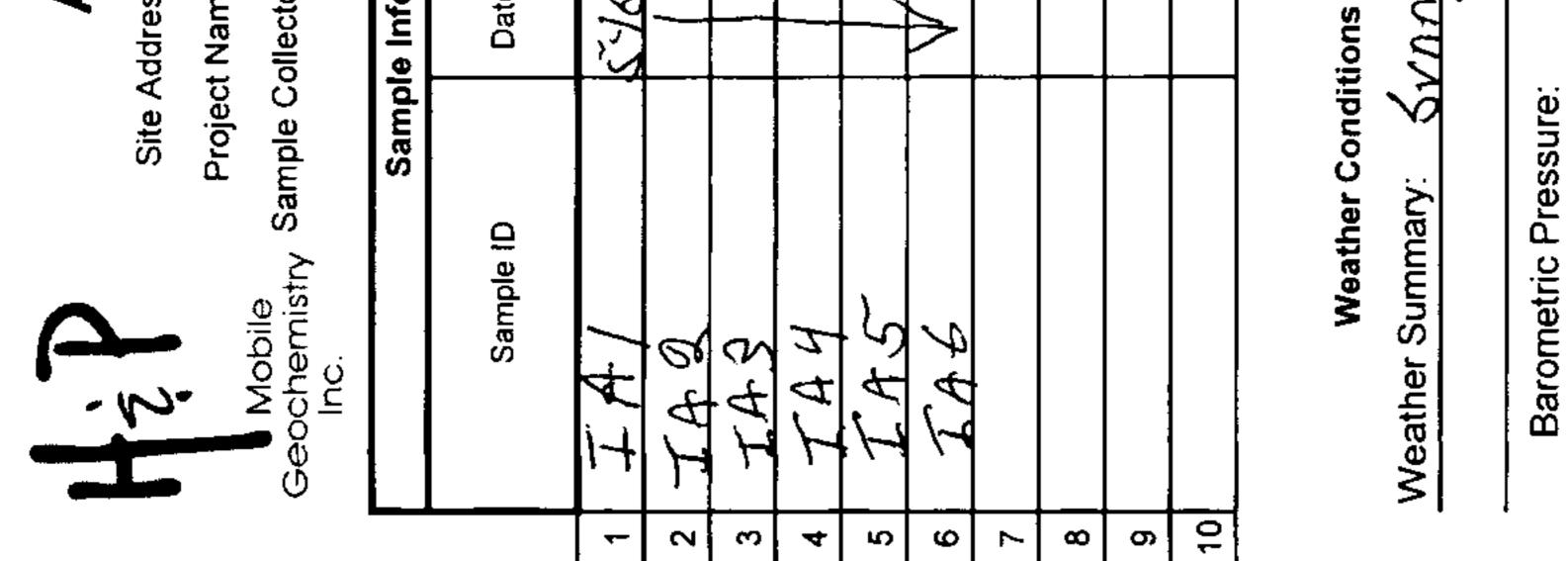
Samp	Sample Information	nation		Sample Start	Start	Sample	Sample Check	Sample Check	Check	Sampl	Sample End	
	Date	Summa ID #	 Flow Flow Controller Rate (hrs ID # or cc/min)	Start Time	Initial Vacuum (" Hg)	Check Time	Check Vacuum (" Hg)	Check Time	Check Vacuum (" Hg)	End Time	End Vacuum (" Hg)	Field Notes
	5-16-13			1020	Ba		10			1820	с С	krever
				10251	30		0			1225	ろ.	Kroser
				1.30	31		9			1915	3	Beer
				10 00	30		11			1815	م	Open
				955	30) 0			1805	5	Co.n
	\checkmark			11/0	S		9			1910	5	ARTS

Household Products

Potential Outdoor Sources of Pollution

Ingredient(s)				
Type				

•	
je:	
am	
z	
lect	
Proj	
D.	


Sample Collector:

eather Summary: くいん	Barometric Pressure:	Ambient Temp Avg:	nbient Temp High/Low: 88/68	Indoor Air Temp Avg: フラ	Wind Speed/Direction: 1/4

Ambient Temp

Other:

Location				
Source				

APPENDIX E PROFESSIONAL QUALIFICATIONS

EDUCATION	B.S. Earth Sciences, 1997 State University of New York College at Brockport Brockport, New York
ACCREDITATIONS	40 Hour OSHA Hazardous Materials Training; Asbestos in Buildings: Air Sampling and Analysis (NIOSH 582 Equivalent); Asbestos in Buildings: Inspection and Assessment; Asbestos in Buildings: The Management Plan; Lead Inspector: EPA (Target Housing and Child-Occupied Facilities); Landfill Gas System Technician Training

SUMMARY OF QUALIFICATIONS

Mr. Teets has over thirteen years of advanced education, training and experience in environmental site assessments, oversight/management/monitoring of large asbestos abatement projects, AHERA inspections and management plans, hydrological investigations, and site remediation for private and municipal sites throughout the United States. Mr. Teets' experience includes involvement in different phases of hazardous waste investigation projects involving: soil and groundwater assessments; use of conventional and innovative treatment technologies to remediate contaminated media; hydrogeological investigations; regulatory negotiation and compliance; and design and operation of groundwater/soil remediation systems.

REPRESENTATIVE PROJECT EXPERIERNCE

Phase I ESAs – Nationwide

Projects typically include conducting on-site evaluations for the presence/absence of environmental concerns, conducting regulatory records research, and reviewing historical documentation of the subject property. Property types range from undeveloped rural land to complex industrial facilities in developed urban areas.

Phase II ESAs – Nationwide

Projects typically include conducting subsurface evaluations to determine the presence/absence of soil/ groundwater contamination. Subsurface evaluations are typically accomplished by installing borings in areas of concern and collecting soil, vapor, and/or groundwater samples for submittal to an accredited laboratory for appropriate analysis.

Site Remediation Projects – Southeastern United States

Projects typically include overseeing and/or conducting various remedial activities at contaminated sites. Remedial activities may include excavation and removal of contaminated media, implementation and operation of various soil/groundwater remediation systems, or in-situ remediation via injection of a biological or chemical treatment to the subsurface. Remediation is typically performed until regulatory closure is granted.

Asbestos Abatement Projects – Various sites in Georgia

Projects typically include preparation of Asbestos Abatement Specifications, oversight and management of abatement process to ensure abatement is performed in accordance with applicable state and federal regulations, air monitoring during abatement, and final clearance air sampling and analysis at completion of abatement activities. Clients include commercial, municipal, and education (K-12).

Appendix I

Compliance Status Report & Progress Report - Electronic Copy (Compact Disc)