OPERATIONS PLAN

PLANT BOWEN COAL COMBUSTION RESIDUALS (CCR) LANDFILL BARTOW COUNTY, GEORGIA

FOR

AUGUST 2022

REVISED JANUARY 2024

HODGES, HARBIN, NEWBERRY & TRIBBLE, INC. Consulting Engineers

TABLE OF CONTENTS

1.	GENE	RAL SITE INFORMATION1
	A.	Volumes and Estimated Life1
	В.	Description of Waste1
	C.	Zoning2
	D.	Buffers2
	Ε.	Site Survey Control2
	F.	Limited Access
	G.	Posted Information3
	Н.	Communication3
	I.	First Aid
	J.	Employee Facilities
2.	OPER	ATIONAL PROCEDURES4
	A.	Supervision4
	В.	Exclusion of Prohibited Wastes
	C.	Prohibited Acts
	D.	Erosion and Sediment Control4
	E.	Access Roads4
	F.	Fire Protection
	G.	Site Equipment5
	Н.	Recovered Materials Processing Operations5
	I.	Controlled Unloading of Waste6
	J.	Solid Waste Processing Operations6
	К.	Waste Requiring Special Handling6
	L.	Spreading, Compaction and Stability6
	М.	Daily and Intermediate Cover8
	N.	Disease Vector Control
	0.	Litter Control
	Ρ.	Dust Control8
	Q.	Explosive Gas Control (Methane Gas)9
	R.	Run-On/Run-Off Control10
	S.	Surface Water Requirements10
	Т.	Final Grading10
	U.	Vegetation10
	V.	Continuity of Operation11

3.	ENVIRG	DNMENTAL PROTECTION	12
	A.	Inspections	12
	В.	Annual Reporting	12
	C.	Leachate Management (Cells 3-10)	13
	D.	Groundwater Monitoring Plan	13
4.	RECOR	DKEEPING, NOTIFICATION, AND PUBLICLY ACCESSIBLE INTERNET SITE REQUIREMENTS	14
	A.	Recordkeeping	14
	В.	Notification and Internet Posting Requirements.	15
	C.	Measuring and Reporting Requirements	15
5. 6.		MITATIONS EERING MEASURES/PREPARATION PROTOCOL	
	A.	Cell Investigation and Preparation Protocol	18
	В.	Engineering Measures	18

APPENDIX

Appendix 1 – Initial Run-On and Run-Off Control Plan [40 C.F.R. Part 257.81] Plant Bowen Private Industry Solid Waste Disposal Facility (Ash Landfill), Georgia Power Company

Appendix 2 – Periodic Run-On and Run-Off Control Plan Revision 3 [391-3-4-.10(5) and 40 C.F.R. Part 257.81] Plant Bowen Private Industry Solid Waste Disposal Facility (Ash Landfill), Georgia Power Company

1. GENERAL SITE INFORMATION

This Operations Plan was developed to meet the requirements set forth in Rule 391-3-4-.10 (5)(a) of the Georgia Solid Waste Rules & Regulations (CCR Rules) which address the Operation Criteria of Coal Combustion Residuals (CCR) Landfills.

A. Volumes and Estimated Life

The total area of the Plant Bowen Coal Combustion Landfill (CCR) is 504.1 acres (within permit boundary). The waste disposal area occupies 139.3 acres and is divided in ten (10) cells as follows:

Cell	Excavation (cy)	Earthfill (cy)	CCR volume (cy)	Life (yrs) ⁽¹⁾	24" Clay Liner ⁽²⁾	24" Liner Prot. Cover ⁽²⁾	18" Cap Infiltration layer (cy)	18" Cap Prot. Cover Soil (cy)	6" Topsoil (cy)
1&2	-	-	1,704,592	3.4	N/A ⁽²⁾	N/A	69,196	69,196	23,065
3-8	-	-	7,202,869	14.4	170,415	170,415	196,729	196,729	65,576
9&10	-	-	1,936,003	3.9	N/A	N/A	67,639	67,639	22,546
Total	485,787 ⁽³⁾	501,696 ⁽ 3)	10,843,464	21.7	170,415	170,415	333,564	333,564	111,187

Note:

⁽¹⁾ The disposal life of the facility is based on a projected annual disposal rate of 500,000 tons/yr. The estimated life of all parcels is based on 1 ton per cubic yard.

⁽²⁾ Cells 1 through 4 and Cells 9&10 are existing.

⁽³⁾ Excavation and earthfill quantities represent the total volume of excavation and earthfill for the remaining proposed cells to be constructed (Cells 5-8).

The actual site life may differ depending on the amount of gypsum and other CCR produced by the plant and the amount removed from the site for beneficial re-use.

B. Description of Waste

The facility will receive solid waste produced from the generation of electricity from coal as defined in Rule 391-3-4-.01, and materials containing CCR or used to contain or absorb CCR (truck liners, truck wash sediments containing ash, etc.) generated by Georgia Power Company. Allowable wastes include:

- (i) CCR (fly ash, bottom ash, flue gas desulfurization materials, and boiler slag).
- (ii) Materials in contact with or that contain CCR, or used to collect or absorb CCR, that were generated by Georgia Power Company.
- (iii) Other waste generated from milling coal in preparation for the combustion process.
- (iv) Coal combustion water treatment residuals (as described below and in Section 2.K and 2.L of this Operations Plan).

- a. Coal combustion water treatment residuals are generated primarily from processes that support the combustion of coal or other fossil fuels that are co-disposed with fly ash waste, bottom ash waste, slag waste, and flue gas emission control waste. The residuals result from the treatment of the following wastewaters: coal pile run-off, boiler cleaning solutions, boiler blowdown, process water treatment and demineralizer regeneration wastes, cooling tower blowdown, air heater and precipitator washes, and effluents from floor and yard drains and sumps.
- (v) Wastewater treatment residuals from the treatment of water generated during ash pond dewatering activities.

As required by the Rules, CCRs do not include putrescible or hazardous materials regulated under Subtitle C of the Resource Conservation Recovery Act (RCRA).

C. Zoning

The site received confirmation of compliance with zoning approval from the Bartow County Board of Commissioners in a letter dated February 20, 2018. This letter is included in Section 3 of this permit application package.

D. Buffers

The CCR landfill permitted site boundary is shown on drawing H-15062 and corner markers consisting of 1/2-inch diameter rebars and 4x4 inch marker posts are installed to delineate this boundary. A permanent survey control monument is established at the location indicated on drawing H-15062 for vertical and horizontal control. During filling, standard survey practices will be used to establish vertical and horizontal control of the filling operations.

A minimum 200-foot undisturbed buffer exists inside the permitted site boundary as indicated on permit drawings H-15063. A minimum 500-foot undisturbed buffer exists between the CCR disposal boundary and any adjacent residences and/or water supply wells.

A minimum 25-foot buffer exists between the CCR disposal boundary and any on-site springs and surface waters (perennial or intermittent). All erosion control measures and/or diversion ditches conform to the Erosion and Sedimentation Control Act and are protective of all streams in the landfill watershed and any associated perennial or intermittent tributaries.

Disturbance of wetland areas is prohibited, except as permitted by the United States Army Corps of Engineers. A statement certifying that wetlands will not be impacted as a result of construction activities at the site will be submitted to EPD, signed and stamped by the professional engineer responsible for construction.

E. Site Survey Control

The permitted site boundary is shown on drawing H-15063 included in Section 10 of the permit application. Corner markers consisting of 1/2-inch diameter rebars with GPC Red Cap have been installed to delineate this boundary. A permanent survey control monument is maintained at the location indicated on drawing H-15063 for vertical and horizontal control.

F. Limited Access

This CCR landfill is for exclusive use by Georgia Power Company for CCR disposal and is located entirely within the Plant Bowen property boundary. Only authorized personnel are allowed on the plant property. Access to the landfill is further restricted by the Etowah River and a chain link security fence and gated access from the Plant Bowen generating site, as well as the railroad and transmission line to the south of the site.

G. Posted Information

The CCR landfill is for exclusive use by Georgia Power Company for CCR disposal, and is not open to, or accessible by the public. Signage indicating the specific waste that can be placed in the CCR landfill is posted at the entrance. Also, signage denoting the limits of the buffer zone and the location of groundwater and surface water monitoring points is in place. Reference drawing H-15097 for details.

H. Communication

Communications are by cell phone or two-way radio with Plant Bowen. Telephone communications are maintained at the plant.

I. First Aid

First aid supplies are available at the plant.

J. Employee Facilities

Employee restroom facilities are available at Plant Bowen, as well as portable toilets in select locations around the landfill.

2. OPERATIONAL PROCEDURES

A. Supervision

The CCR landfill is under the supervision of an operator who is present at all times during operation and who is properly trained in the operation of landfills and the implementation of the CCR landfill's permit.

The CCR landfill may operate twenty-four (24) hours a day. Personnel trained in landfill operations will be present at all times. Supervision is provided by Georgia Power Company trained personnel.

Training in the operation of CCR landfills and the implementation of the approved permit is provided by Georgia Power Company with documentation of training maintained in the facility's operating records.

B. Exclusion of Prohibited Wastes

No hazardous, putrescible wastes or other non-approved wastes will be deposited at this site. To ensure the exclusion of prohibited wastes, the supervisor and/or operator regularly performs random inspections of the CCR material placement operation (generally referred to as "stacking operations"). The results of each inspection are recorded and maintained as part of the facility's operating record. Facility personnel receive training to recognize prohibited wastes.

If prohibited wastes are detected at any time, Georgia Power will remove such waste and ensure it is transported to a properly permitted solid waste handling facility. Any incident of prohibited waste will be described in a report and placed in the facility's operating record.

C. Prohibited Acts

The CCR landfill is operated and maintained in a manner described herein, to prevent open burning, scavenging, and the open dumping of waste.

D. Erosion and Sediment Control

All necessary erosion and sediment control measures will be constructed or installed in accordance with Best Management Practices (BMPs) that meet the requirements of the latest version of the Manual for Erosion and Sediment Control in Georgia (E&S Manual). Any required diversion berms, ditches and other stormwater management structures will be constructed in accordance with the E&S Manual.

E. Access Roads

Temporary access roads, covered with bottom ash, gravel, or a graded aggregate base will be provided for ease of access to the working area of each cell, including during inclement weather. All temporary access roads, covered with bottom ash, will only be constructed within the limits of the lined areas. Final access roads are designed to provide continued access for maintenance and inspection. Reference permit drawing H-15097 for details of permanent access roads.

Additionally, access roads may be paved at Georgia Power's discretion to enhance all-weather performance.

F. Fire Protection

Fly ash, bottom ash and boiler slag are by-products of the coal combustion process and consist of non-combustible coal minerals. Synthetic gypsum is a by-product of the flue gas desulfurization process in which flue gas is forced through a fluidized bed of calcium carbonate (limestone). The oxidation process produces calcium sulfate (gypsum) and water, neither one is a combustible material. Coal combustion water treatment residuals and other wastes generated from milling coal are also not fire hazards. Litter and other putrescible wastes are not permitted for disposal at this landfill and as a result, the occurrence of fire related to CCRs disposal is not possible, and therefore no soil fire protection is required. Fly ash and gypsum are available for fire control if needed.

G. Site Equipment

The following is a list of typical equipment that is used during operation of this CCR Landfill:

- CAT D5H-5S dozer or equivalent,
- Excavators,
- Drum Rollers,
- Water truck with spray attachment,
- Off-road trucks,
- Backup and/or specialized equipment will be leased or subcontracted on an as-needed basis, and
- Other equipment, as needed.

H. Recovered Materials Processing Operations

CCRs may be recovered (removed) from the CCR landfill for beneficial re-use in construction, manufacturing, agriculture and other industries. During recovery operations, personnel will leave two (2) feet minimum depth of in-place CCR material over the protective soil cover on the bottom of the cells.

When recovered materials are removed by truck, the truck tires will be cleaned to avoid tracking of recovered materials offsite.

Georgia Power will maintain a record of the volume of CCR material that is recovered for beneficial re-use and will report it to EPD in accordance with Rule 391-3-4-.17(5). See Section 4.C. of this Operations Plan. On-going recovery of CCR material will cause the site life to vary.

I. Controlled Unloading of Waste

CCRs will be hauled to the disposal cells in dump trucks and unloaded at the working face. See Section 2.L. of this plan for spreading, compaction, and stability procedures and Section 2.P. for dust control procedures.

Georgia Power will maintain a record of the volume of CCR that is placed in the CCR landfill and will report it to EPD in accordance with Rule 391-3-4-.17(5). See Section 4.C of this Operations Plan.

J. Solid Waste Processing Operations

No on-site waste processing is performed at this CCR landfill.

K. Waste Requiring Special Handling

This section will be updated prior to receipt of any new waste streams or changes in wastewater treatment processes that require special handling.

L. Spreading, Compaction and Stability

Initial Fill

For the initial fill operations of Cells 5-6, temporary rain flap berms constructed of protective cover sand will be installed upgradient of the initial working area. The 24 inches of sand drainage and protective layer for the LCRS upgradient of the rain flap berms will be covered with a sacrificial HDPE rain cover to prevent excessive stormwater from entering the LCRS and prevent erosion of the protective layer. The stormwater trapped by the rain cover berms will be pumped to the perimeter drainage ditch and routed to the sediment basins. Sandbags placed generally on a 10 ft. by 10 ft. grid will be used to prevent wind uplift of the rain tarp. As the CCR is placed over the initial working area, the upgradient rain flap berm and rain tarp will be removed to create a larger working area for CCR placement.

For the initial fill operations of Cells 7-10, a temporary containment berm will be constructed no farther than 100 ft. down gradient from edge of CCR placement, defining the initial working area. The 24 inches of sand drainage and protective layer for the LCRS down gradient of the temporary containment berm will be covered with a sacrificial 40mil HDPE geomembrane (rain cover), or approved equivalent material, to prevent excessive storm-water run-off from entering the LCRS and prevention of erosion of the protective layer. Sandbags placed generally on a 10 ft. by 10 ft. grid will be used to prevent wind uplift of the rain cover. As the working face and working area are advanced, the berm and rain flap will be removed and constructed farther down-gradient to define the new working area.

The initial fill will consist of 2 to 3 ft. of compacted ash covering the working area defined by the containment berm. The compacted ash will be compacted with smooth drum roller to create a smooth surface minimizing infiltration of storm water and facilitating run-off. The leachate collected by the LCRS will be routed to the leachate pond or leachate sump. The storm water run-

off will be routed through the constructed BMPs (sedimentation basin and clear pool) to a permitted discharge location.

On-Going Operations

CCRs including coal combustion water treatment residuals will be uniformly spread in approximately 6 to 8-inch lifts (nominal loose thickness) and compacted to achieve a minimum 92% of its maximum dry density as determined by ASTM D698. Proper placement of CCR includes stabilization of wet materials by mixing with dry materials or by drying, no downhill pushing and/or compaction of CCR, and benching lifts of CCR material when placing against existing CCR slopes.

The surface of the compacted material will be rolled with a smooth drum roller to seal the surface to reduce infiltration and graded to prevent ponding of precipitation. Efforts will be made to achieve conditioning at a moisture content suitable for ease of handling, transporting, placement, compaction and testing.

Moisture Conditioning

Georgia Power will utilize an irrigation type system or other forms of moisture conditioning, such as the use of water trucks, at the Plant Bowen CCR Landfill. The irrigation system will be installed in phases as CCR waste is placed in the constructed cells. If needed, the system may also be extended to the surface of each additional lift of CCR disposed. Water for the system will be pumped from one of the landfill clear pools or sediment ponds. All water from the system will be sprayed over lined areas and all runoff will be contained within the lined waste footprint or lined containment ditches. Water will be applied at a rate that minimizes runoff and does not oversaturate the waste. Any potential runoff will be directed to one of the landfill's lined sediment or clear pool ponds. Spray nozzles and pipe sizes will be sized and adjusted by the landfill operator as necessary to meet operational requirements and minimize runoff. Pipe material for the irrigation system will be HDPE but may be modified at the operator's discretion.

Coal Combustion water treatment residuals received at the facility may require moisture conditioning and/or mixing with fly ash to achieve the required moisture conditions and shear strength of the waste. If necessary, coal combustion water treatment residuals will be unloaded and spread at the working face of the facility. CCR comprised of fly ash and/or bottom ash, including fines, will be added at appropriate volumes, as determined by prior testing, and mixed using a dozer, excavator, or disc harrow as necessary to achieve the required shear strength and moisture content.

Long-Term Stability Considerations

The long-term stability of the active and future cells (Cells 1 through 10) has been confirmed assuming that the CCR material is placed as discussed in this section of the Operations Plan and has the minimum shear strength discussed in the engineering report calculations. In all Cells, the CCR material shall have a minimum drained shear strength of 30 degrees and undrained shear strength of 18 degrees, or a combination of friction and cohesion equal to or greater than the shear strength envelope represented by 30 degrees for drained conditions and 18 degrees for undrained conditions.

The strength of the CCR materials placed within each cell shall be evaluated at least annually to confirm that the minimum strength required for stability is being achieved. A test pad section constructed using the field methods representative of placement conditions shall be built to obtain representative samples for testing in the laboratory.

CCR materials placement operations should be conducted in a manner to minimize the infiltration of water into the waste. The landfill shall be regularly monitored for standing water, leachate outbreaks, pumping and rutting of CCR materials under traffic loading, or other signs that may indicate that liquids are not draining properly. Additionally, waste placement procedures should not be modified in a manner that may create impermeable zones of waste. If waste permeabilities change or signs of saturated waste conditions are observed, the stability of the landfill slopes shall be re-evaluated based on the new conditions.

Additionally, CCR material will be placed and compacted in uniform and continuous lifts beginning in the bottom of the cell with CCR materials abutting the perimeter berm. If needed, intermediate CCR slopes with a maximum slope inclination of 3H:1V and maximum height of 25 feet can be formed in the bottom of the cell without abutting the exterior berm of the cell to maintain intermediate stability conditions. Intermediate slopes higher than 25 feet must be buttressed by the perimeter berm.

M. Daily and Intermediate Cover

CCRs are predominantly inorganic by-products of the coal combustion process. Synthetic gypsum is a by-product of the flue-gas desulfurization process in which the flue gas is forced through a fluidized bed of calcium carbonate (limestone). Additionally, litter and other putrescible wastes are not allowed to be disposed at this CCR landfill. Therefore, daily and intermediate covers are not necessary for the control of disease vectors, odor, fires, scavenging, and litter.

Additionally, the CCRs will be deposited in a moistened condition thus reducing the possibility of fugitive dust. The possibility of fugitive dust from this CCR landfill will be further controlled by water spray from water trucks or irrigation type systems (See Section 2.P. of this plan).

N. Disease Vector Control

The CCR landfill is used only for the disposal of materials described in Section 1.B. Vector controls are not required at this CCR landfill since no litter or putrescible wastes are disposed.

O. Litter Control

The Plant Bowen CCR Landfill is used exclusively for disposal of CCR materials. These materials do not contain litter or contribute to blowing refuse. Routine inspection of the CCR landfill site is conducted regularly, and any litter and/or waste blown onto the CCR landfill, is removed.

P. Dust Control

The purpose of this fugitive dust control plan is to demonstrate compliance with the fugitive dust requirements in CCR Rule 391-3-4-.10(5)(a).

This fugitive dust control plan identifies and describes the CCR fugitive dust control measures that Georgia Power Plant Bowen uses to minimize CCR from becoming airborne at the facility, including CCR fugitive dust originating from CCR units, roads, and other CCR management and material handling activities.

CCR Rule 391-3-4-.10(2)(a), by reference to 40 CFR 257.53, defines "CCR fugitive dust" as "solid airborne particulate matter that contains or is derived from CCR, emitted from any source other than through a stack, or chimney". Fugitive dust originating from the landfill facility is controlled using water suppression and compaction.

The fugitive dust control measures identified and described in this plan were adopted and implemented based upon an evaluation of site-specific conditions and are determined to be applicable and appropriate for the Bowen CCR Landfill. Evaluation included assessing the effectiveness of the fugitive dust control measures for the facility, taking into consideration various factors such as site conditions, weather conditions, and operating conditions.

CCR that is transported via truck to the landfill facility is conditioned to appropriate moisture content to reduce the potential for fugitive dust.

Water suppression will be used as needed to control fugitive dust on facility roads used to transport CCR and on other CCR management areas.

Speed limits are also utilized to reduce the potential for fugitive dust.

Trucks used to transport CCR are filled to or under capacity to reduce the potential for material spillage.

Plant personnel assess the effectiveness of the control measures by performing visual observations of all CCR units and surrounding areas and implementing appropriate corrective actions for fugitive dust, as necessary. Logs are used to record the utilization of water-spray equipment.

When complaints are received from a citizen regarding a CCR fugitive dust event at the facility, the complaints are documented and investigated. Appropriate steps are taken if needed, including any corrective action.

CCR Annual Fugitive Dust Control Reports for the Plant Bowen CCR Units are published in the Georgia Power website under Environmental Compliance.

Q. Explosive Gas Control (Methane Gas)

Methane gas is not generated in the disposal area because the FGD and the coal combustion processes do not produce waste that generate methane gas. Also, waste that may generate methane gas, such as putrescible wastes and litter, is not allowed at this CCR landfill; thus, a methane gas monitoring system is not required.

R. Run-On/Run-Off Control

CCR is contained within earthen berms to prevent stormwater from the surrounding area from entering the disposal cells (run-on). CCR placement is confined to within this berm. Run-off from active cells, as well as any disturbed areas, is routed into the lined sediment ponds designed to collect and control the flow resulting from a 24-hour, 25-year storm. The details for erosion and sediment control structures are included in the permit drawings.

The Initial Run-On and Run-Off Control Plan that Georgia Power developed in October 2016 to meet the requirements of the Federal CCR Rule is included in Appendix 1. Additionally, the plan has been revised as part of the periodic assessment and also includes calculations for proposed Cells No. 5-8. The most recent Run-On and Run-Off Control Plan, is provided in Appendix 2. The Run-On and Run-Off Control Plan will be reviewed and updated every 5 years. Georgia Power may amend the written run-on and run-off control system plan at any time provided the revised plan is placed in the facility's operating record. Georgia Power must amend the written run-on and run-off control system plan whenever there is a change in conditions that would substantially affect the written plan in effect.

S. Surface Water Requirements

Lined sediment ponds, clear pools capture all stormwater run-off from the CCR disposal cells. Ditches constructed in the perimeter berms convey all run-off to these ponds. The only discharge from the site is from the clear pool ponds. The discharge from the clear pools during operation is monitored under a NPDES General Permit for Industrial Activities.

T. Final Grading

The final slopes were designed to remain permanently stable, to control erosion, to allow placement, compaction, and seeding of cover material, to minimize percolation of precipitation into the final cover, and to provide diversion of surface run-off from the disposal area. The final surface slopes are between 3% and 33% (3H:1V). Final grading plans and final cover system details are provided in the permit drawings.

U. Vegetation

All areas of the landfill required to be vegetated, as well as all ponds, will be maintained throughout the life of the CCR landfill. The following schedule indicates the recommended species, planting dates, and fertilization requirements. Reference the latest edition of the Manual for Erosion and Sediment Control in Georgia.

	VEGETATION SCHEDULE													
BROADCAST														
SPECIES	RATES					PLA		IG DA	ATES					COMMENTS
	-	J	F	м	Α	м	J	J	Α	S	0	Ν	D	
Wilimington Bahia alone	60 lbs./ac				_				+				+	Low growing.
Wilimington Bahia w/ other perennials	30 lbs./ac													Mix with service alespedeza. Low growing.
Tall Fescue alone	50 lbs./ac										-	-		
Tall Fescue w/ other perennials	30 lbs./ac													Mix with service alespedeza.
Reed Canary alone	50 lbs./ac											-		
Reed Canary w/ other perennials	30 lbs./ac											-		
Ambro Virgataor Appalow Lespedeza scarified	60 lbs./ac													Mix with bahai or tall fescue. Do not mix with service alespedeza.
Ambro Virgataor Appalow Lespedeza unscarified	75 lbs./ac													Mix with bahai or tall fescue. Do not mix with service alespedeza.

Note: Solid lines indicate optimum dates, dotted lines indicate permissible but marginal dates.

FERTILIZATION (Warm Season Grasses)								
YEAR	N-P-K RATE		N TOP DRESSING RATE					
First	6-12-12	1500 lbs./ac	50 - 100 lbs./ac					
Second	6-12-12	800 lbs./ac	50 - 100 lbs./ac					
Maintenance	10-10-10	400 lbs./ac	30 lbs./ac					

V. Continuity of Operation

Access roads and ramps are provided to the active disposal cells. The permanent access road to the CCR landfill is an all-weather road and allows access to the CCR landfill during inclement weather for disposal, inspection, and maintenance or replacement of equipment. The access roads will be maintained at all times during landfill operations.

3. ENVIRONMENTAL PROTECTION

A. Inspections

1. 7-day Inspections

Georgia Power will inspect the CCR landfill at intervals not exceeding seven (7) days. The 7-day inspections will be made by a Qualified Person and include observation and documentation of any appearance of actual or potential structural weakness and other conditions which are disrupting or have the potential to disrupt the operation or safety of the landfill.

Georgia Power will record the results of these inspections on a self-generated form that will be filed in the facility's operating record. If a potential deficiency or release is identified during an inspection, Georgia Power will remedy the deficiency or release as soon as feasible. Georgia Power will prepare documentation detailing the corrective measures taken and place it in the facility's operating record.

2. Annual Inspections

As required by Chapter 391-3-4-.10(5)(a) of the Georgia Solid Waste Rules, a Professional Engineer registered in Georgia will inspect the CCR landfill on an annual basis. The inspection includes, at a minimum:

- a. A visual inspection of the CCR landfill to identify signs of distress or malfunction of the CCR landfill.
- b. A review of available information regarding the status and condition of the CCR landfill, including, but not limited to, files available in the facility's operating record such as:
 - i. The results of the 7-day inspections and the results of previous annual inspections,
 - ii. Files available in the operating record and other conditions which have disrupted or have the potential to disrupt the operation or safety of the CCR landfill.
- c. If a potential deficiency or release is identified during an inspection, Georgia Power will remedy the deficiency or release as soon as feasible. Georgia Power will prepare documentation detailing the corrective measures taken and place it in the facility's operating record.

B. Annual Reporting

At the completion of each annual inspection, the Professional Engineer who completed the inspection will prepare an annual inspection report that includes the following:

- a. Any changes in geometry of the CCR landfill components since the previous annual inspection.
- b. The approximate volume of CCR contained in the unit at the time of the inspection.

- c. Any appearances of an actual or potential structural weakness of the CCR within the CCR landfill, or any existing conditions that are disrupting or have the potential to disrupt the operation and stability of the CCR landfill.
- d. Any other change(s) which may have affected the stability or operation of the CCR landfill since the previous annual inspection.

Annual Inspection Reports for the Plant Bowen CCR landfill, which meet the requirement of Chapter 391-3-4-.10(5) of the Georgia Rules, can be found online at the Georgia Power website under Environmental Compliance.

C. Leachate Management (Cells 3-10)

Leachate will be collected above the composite liner as detailed on the Composite Liner & Leachate Collection & Removal System Detail on Sheet H-15084 of the Permit Drawings. Leachate in Cells 3, 4, 7, and 8 is designed to gravity drain to the leachate pond for each cell where it will be pumped to the leachate storage tank. The leachate force main will consist of dual contained piping as described in the permit drawings. Leachate from Cells 5, 6, 9 and 10 will be pumped to the leachate storage tank directly from the leachate sump and riser system located within the cell. The leachate force main from Cells 5, 6, 9 and 10 will consist of dual contained piping as described on Sheet H15073, H15075, H52268 and H52269.

From the leachate storage tank, leachate may be transferred to the plant for re-use or to a water treatment facility on Plant property or off-site to a privately-owned water treatment system.

Pumps in the leachate ponds may also pump water to water trucks for use inside the cells for dust control. Slope markers indicating water levels will be added to the leachate ponds to help prevent overflow discharges. These markers will be maintained for the life of the facility.

The leachate ponds will operate under varying heads over their lifetime. Georgia Power will maintain permanent pumps in the leak detection sumps and will operate them as needed to maintain liquids in the leak detection system lower than one (1) foot.

D. Groundwater Monitoring Plan

Groundwater monitoring will be performed in accordance with the schedule and requirements indicated in the Plant Bowen CCR Landfill Groundwater Monitoring Plan included in Section 7 of this permit application. The plan meets the requirements of Georgia CCR Rule 391-3-4-.10(6).

4. RECORDKEEPING, NOTIFICATION, AND PUBLICLY ACCESSIBLE INTERNET SITE REQUIREMENTS

The Plant Bowen CCR Landfill complies and will continue to comply with the recordkeeping, notification, and publicly accessible internet site requirements set forth in Georgia CCR Rule 391-3-4-.10(8).

The publicly accessible internet site for the Plant Bowen CCR facilities is found at the Georgia Power website under Environmental Compliance.

A. Recordkeeping

Georgia Power maintains and will continue to maintain the facility's operating record at all times during the life of the CCR landfill including the closure and post closure period. These records are maintained by plant personnel and are located at Plant Bowen. The following records are maintained as part of the facility's operating record:

- 1. A copy of the permit and any operating conditions including location restrictions.
- 2. Inspection records, training procedures, and notification procedures required by this Plan and by Rule 391-3-4-.10(5) and (8).
- 3. Any demonstration, certification, finding, monitoring, testing, or analytical data pertaining to groundwater monitoring and as required by rule 391-3- 4 -.10(6).
- 4. Closure and post-closure care plans and any monitoring, testing, or analytical data required by those Plans and Rules 391-3-4.10(7).
- 5. Any cost estimates and financial assurance documentation.
- 6. A copy of the permit documents for the CCR landfill.
- 7. A copy of the groundwater monitoring plan for the CCR landfill.
- 8. A copy of the Construction Quality Assurance Plan, construction certifications, closure certifications, and post-closure certifications.
- 9. The fugitive dust control plan, and any subsequent amendment of the plan, required by 40 CFR 257.80(b), except that only the most recent control plan must be maintained in the facility's operating record irrespective of the time requirement of 5 years.
- 10. The annual CCR fugitive dust control report as required by 40 CFR 257.80(c).
- 11. The initial and periodic run-on and run-off control system plans.

All information contained in the facility's operating record will be furnished to the Georgia EPD or be made available at all reasonable times for inspection by EPD staff.

B. Notification and Internet Posting Requirements.

Unless otherwise specified by the Rules, Georgia Power will provide notifications to EPD within 30 days of placing documents in the facility's operating record. The notifications will be sent before the close of business on or before the day the notification is required to be completed. Notifications to EPD will be postmarked or sent by electronic mail. If a notification deadline falls on a weekend or federal holiday, the notification deadline will be extended to the next business day. Georgia Power will state in the notification to EPD if the relevant information was also placed on the Georgia Power website under Environmental Compliance. Information required to be posted on the Georgia Power website under Environmental Compliance will be available to the Public for at least five (5) years following the date on which the information was first posted.

C. Measuring and Reporting Requirements

In accordance with Rule 391-3-4-.17(5), on July 1 of each year after the first full year that the CCR Landfill solid waste handling permit is issued, Georgia Power will report to EPD the total volume of the CCR waste disposed in the CCR Landfill, and the CCR removed, recovered, or diverted for beneficial re-use. The required data will be submitted to EPD on forms issued by EPD.

5. SITE LIMITATIONS¹

- 1. Engineering measures must be included in the design and operational (D&O) plan for this site, as presented in Section II of Addendum 1 referenced below².
- 2. The area considered for suitability includes only that area labeled Surveyed Site Boundary, as shown on Southern Company Services, Inc.'s Plate 2-1: Plant Bowen Composite Geologic Map, Revision 2, dated March 7, 2004.
- 3. Waste placement shall be limited to the Favorable Areas, and no waste shall be placed within the Unfavorable Areas, as delineated on Plate 2-1.
- 4. Only two borings were performed in the northern "Favorable Area" (Site B) that were located significantly north of the blue-dashed lineament shown on Plate 2-1. As such, no waste shall be placed north of an imaginary straight line drawn from boring BLFR20 through BLFR53 to the edge of the Surveyed Site Boundary, as shown on Plate 2-1. Modification of this limitation may be considered once additional information from the area is obtained.
- 5. A minimum 500-foot undisturbed buffer shall be maintained between the waste disposal area and any residential structures and/or water supply wells.
- 6. A minimum 200-foot undisturbed buffer shall be maintained between the waste disposal area and the Surveyed Site Boundary shown on Plate 2-1.
- 7. The spring shown along the northeastern edge of the proposed site (Plate 2-1), as well as any other on-site or adjacent springs or seeps, shall be incorporated into the facility's groundwater monitoring plan. Protective measures shall be incorporated into the facility's D&O plan such that landfill activities will not adversely affect any on-site springs or seeps.
- 8. Topographic elevations of 670 feet and lower, as shown on Plate 2-1, shall remain undisturbed in areas adjacent to the Etowah River.
- 9. Bottom of waste elevations shall be kept a minimum of 5 feet above seasonal high groundwater elevations. Since seasonal high groundwater elevations have not been specifically determined for the subject site, the bottom of waste elevations shall be kept a minimum of 15 feet above the water level elevations shown for the date of December 18, 2002 on PELA, Inc.'s Table 3-1: Ground-Water Levels and Top of Unweathered Bedrock, dated January 6, 2004, provided as part of Addendum 1 referenced below³.
- 10. All borings/piezometers located in the proposed waste footprint shall be abandoned in accordance with the Water Well Standards Act. The well casing shall be removed, and the borings

¹ Approved by EPD on December 8, 2004

² Southern Company Services, Inc.'s Georgia Power Company, Plant Bowen, Proposed Coal Combustion By-Product Monofill/, Addendum 1, Site Acceptability Report, Hydrogeological Assessment and Demonstration of Engineering Measures, dated July 2004.

³ Ditto.

shall be overdrilled and filled with a non-- shrinking cement/bentonite mixture via tremie pipe to within 10 feet of the maximum depth of waste. Within 10 feet of the maximum depth of waste, the boring can be filled with bentonite. Above the maximum depth of waste, the annular space can be backfilled with soil. Borings/piezometers located outside of the proposed waste footprint may be abandoned by backfilling with bentonite. The abandonment of all on-site wells shall be supervised by a professional geologist (PG) or professional engineer (PE) registered to practice in the State of Georgia. The supervising PG/PE shall submit a report of the abandonment to EPD and certify that the borings/wells were abandoned in accordance with the Water Well Standards Act.

- 11. Groundwater and surface water monitoring systems, conforming to EPD's Rules of Solid Waste Management, shall be installed at the site. The applicant must be aware that, due to the unpredictable nature of the karstic subsurface, a more comprehensive groundwater monitoring system will be necessary to adequately monitor the site. Well nests, consisting of shallow and deep (rock) wells, will be necessary. The well nests shall be installed along obvious and inferred lineaments on-site in addition to any other areas of potential leachate migration.
- 12. As the site is located within a seismic impact zone, all design engineering drawings included in the D&O plan shall stipulate that all structures are engineered to withstand a maximum horizontal acceleration of 0.22g.
- 13. All erosion control measures and/or diversion ditches shall conform to the Erosion and Sediment Control Act (as amended through 2003) and be protective of the Etowah River and any associated wetlands and perennial or intermittent tributaries.

6. ENGINEERING MEASURES/PREPARATION PROTOCOL

This Section is based on and referenced from Southern Company Services, Inc.'s report entitled "Georgia Power Company, Plant Bowen, Proposed Coal Combustion By-Product Monofill, Addendum I, Site Acceptability Report, Hydrogeologic Assessment and Demonstration of Engineering Measures," dated July 2004. The protocol and engineering measures presented therein, and summarized below, have been designed to prevent the collapse of potential subsurface voids and subsequent ground subsidence beneath the facility's waste footprint.

A. Cell Investigation and Preparation Protocol

The specific Cell Investigation and Preparation Protocol is summarized as follows:

- 1. Overburden material will be excavated and replaced with a minimum of 15 feet of compacted structural earth fill to the base grade elevations. This activity will verify the absence of voids within the upper 15 feet of the foundation.
- Once the limits of the excavation grade are established, loaded off-road trucks will be used to proof-roll the entire cell subgrade. This will verify the absence of any appreciably sized void (i.e., typically >1 foot diameter) to a depth of approximately 5 feet below the excavation grade.
- 3. Any depressions encountered during execution of this Protocol will be photo-documented and reported to EPD. Should these features be encountered below the excavation grade, they will be photo-documented, repaired, and reported to EPD.
- 4. The model analysis results presented in Section II of Addendum I can be used to demonstrate the absence of any large (i.e., >10 feet diameter) voids to a depth of 15 feet below the excavation grade (i.e., an additional 10 feet below Zone 2).

B. Engineering Measures

The Engineering Measures, incorporated into the design of the disposal facility, are summarized as follows:

1. Excavation and Foundation Preparation

A "void free" interval of soil immediately beneath the cell base grade will be provided by a combination of excavating residual and terrace soils and backfilling with 13 ft. of compacted structural earth fill and 2 ft. of compacted clay liner.

In accordance with the Protocol, an additional 5 ft. interval of overburden soil beneath the proposed excavation limit will be "free of significant voids" as a result of proof-rolling and possibly repairing the excavation subgrade with loaded, off road, construction equipment. These combined activities will result in a 15 ft. thick zone below the final base grade of the cells that is free of voids. This zone will overlie a 5 ft. zone that is free of voids of any engineering significance.

The combined 20 ft. thick zone will be capable of spanning voids up to 10 ft. in diameter that may exist deeper than 20 ft. below the planned bottom of waste elevations.

A minimum of 5 ft. of overburden soils will be excavated in order to investigate the existing foundation conditions.

The compacted earth fill will consist of excavated residual and terrace soils (overburden) generally consisting of fine-grained silty and clayey soils.

An extensive Construction Quality Assurance Plan (CQAP) has been developed and will be executed during excavation, backfill and compaction of the overburden soils to assure that a competent, relatively low permeability, structural earth fill layer is provided.

Proof-rolling of the subgrade will be conducted utilizing pneumatic-tired, off - road trucks (such as a Caterpillar D400E or equivalent type vehicle). The gross machine weight, including a payload of approximately 40 tons of soil, will impart a minimum 7600 psf subgrade loading over a minimum tire width of 2 feet.

2. Sinkhole Repairs

It is explicitly noted that any depressions encountered during execution of this Protocol will be photo-documented and reported to EPD. Should these features be encountered below the excavation grade, they will be photo-documented, repaired, and reported to EPD. The procedures to be followed for repair of any collapse feature are included in the CQAP, Section 3.D.3.

3. Base Grades

The base grades will generally follow existing topography and range from 2.0% to 2.75%.

Upon excavation of the overburden soils to the excavation limits, subgrade proof-rolling, and collapse repairs (if any), 15 feet of cell base material will be placed and compacted to establish the cell base grades.

Specific construction procedures for a structural earth fill are provided in the CQAP. The CQAP will provide placement and compaction criteria for the fill soils.

A maximum permeability of $1x10^{-6}$ cm/sec for the lower 13 feet of the compacted fill will be specified.

Requirements for confirmation testing to ensure that this maximum permeability is achieved are included in Section 3.G. of the CQAP.

The upper 2 ft. (minimum) of the compacted earth fill for the stacking area shall have a maximum hydraulic conductivity of 1×10^{-7} cm/sec. Thereby, the compaction requirements for the upper 2 ft. of the compacted structural earth fill will be adjusted, if necessary, in order to provide a minimum 2 ft. compacted layer that meets the above permeability requirement.

4. Storm Water Management

The following storm water controls are incorporated into the design of the Facility:

- a. Properly designed and constructed perimeter containment berms for control of storm water run-on and control of run-off from cell operations.
- b. Diversion and perimeter conveyance ditches for run-on and run-off control.
- c. Perimeter containment berms and conveyance ditches will be constructed of compacted residual and terrace deposit clayey soils.
- d. Final base cell grades will be utilized to facilitate run-off from within the active cell. Actual grades vary from 2.0% to 2.5%.
- e. Run-off from CCB fill operations and final grades will be routed to sediment basins. The run-off will be directed into a primary sediment basin and then through a secondary basin, or "clear pool," providing optimum opportunity for settling of the suspended solids. Sediment basins will be designed for a 24 hr., 25 yr. storm.
- f. The sediment basins will be lined with a composite liner system since storm water will be allowed to pool in these structures.
- g. The composite liner system for the sediment basins will consist of a minimum 30 mil flexible membrane liner or a 60 mil high density polyethylene (HDPE) geomembrane overlain by a heavy weight (14 oz to 16 oz) geotextile in turn overlain by 12 inches of #89 stone and 6 inches of #3 stone. The HDPE will overlie the compacted structural earth fill (base grade).
- 5. CQA Monitoring Activities During Construction

The CQAP developed for the facility includes the specific inspection procedures that will be implemented during cell construction.

6. Inspections and Reporting

Guidelines for inspection and reporting during the operation, closure and post-closure of the Facility are provided below. These guidelines will focus on storm water management and controls to assure that storm water will not be allowed to pond in the cells and conveyance ditches. A notification protocol, which describes the notification procedures to be followed if anomalous conditions are identified during the inspections are included.

The inspections will be performed on a weekly basis by the Qualified Person during the operation and closure of the Facility. Post construction inspections will be performed, at a minimum, on a quarterly basis.

The area shall be thoroughly inspected to delineate, as a minimum, the following:

- i) Areas of ponding of surface storm water in the cell or in the CCR fill area.
- ii) Formation of concentric cracking that could be an early indication of a foundation Instability and potential collapse.
- iii) Newly developed depressions and/or collapse features.

The ponding of any surface storm water within the cell area identified during operation, closure, and post-closure shall be immediately corrected by grading to facilitate run-off.

Any area exhibiting potential foundation instability, potential collapse, newly developed depressions and/or collapse features shall be located by survey. The conditions of the area shall be documented. The location and documentation shall be maintained in the CQA records and operating records of the facility.

If any occurrence and/or reoccurrence of instability is identified during the operation, closure, and post closure periods, the area shall be documented and repaired in accordance the Sinkhole Repair Procedures included in the CQAP.

The surveyed location of any of the above conditions shall be determined and the location depicted on the cell development drawing as a permanent record. The resulting location map shall be maintained in the CQA record for Cell construction and the operating record for the facility.

Upon identification of potential foundation instability, potential collapse, newly developed depressions and/or collapse features, the Notification Procedure outlined in the following Section 7 shall be followed.

a. Surface water body inspections:

The weekly inspection shall include the existing surface waters of the site, most notably the Etowah River and the existing spring identified as being located in the northern favorable area.

b. Storm water management system inspections:

Storm water monitoring will be in accordance with the NPDES General Permit for Stand-Alone Construction Activities (Permit No. GAR 100001) During Construction (Construction Storm Water Permit) as well as in accordance with NPDES General Permit for Industrial Activities during operations (Industrial Storm Water Permit, Permit No. GAR 100000).

c. Groundwater monitoring:

Groundwater sampling, testing, and reporting will be in accordance with the Groundwater and Surface Water Monitoring Plan.

7. Notification Protocol

The location and condition of any area exhibiting potential foundation instability, potential collapse, and/or newly developed depressions and/or collapse features detected during the construction and post - construction period, to include the operation, closure, and post-closure periods, shall be immediately communicated to the Plant Manager, Environmental Manager, Land and Remediation, and Owner's Engineer. Upon receipt of this notification, the Environmental Manager, Land anager, Land and Remediation, shall immediately notify the Georgia EPD.

APPENDIX 1 – INITIAL RUN-ON AND RUN-OFF CONTROL PLAN [40 C.F.R. PART 257.81] PLANT BOWEN PRIVATE INDUSTRY SOLID WASTE DISPOSAL FACILITY (ASH LANDFILL), GEORGIA POWER COMPANY

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257.81 PLANT BOWEN PRIVATE INDUSTRY SOLID WASTE DISPOSAL FACILITY (ASH LANDFILL) GEORGIA POWER COMPANY

EPA's "Disposal of Coal Combustion Residuals from Electric Utilities Final Rule" (40 C.F.R. Part 257 and Part 261), §257.81, requires the owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill to prepare a run-on and run-off control system plan to document how these control systems have been designed and constructed to meet the applicable requirements of this section of the Rule.

The CCR Landfill known as the Plant Bowen Ash Landfill is located in Bartow County, just west of Cartersville, Georgia on Plant Bowen property. Active Cells 1&2 and 9&10 were permitted and constructed with a minimum 2-ft. compacted clay liner with a maximum hydraulic conductivity of 1×10^{-7} cm/sec, underlain with a structural fill layer with a maximum hydraulic conductivity of 1×10^{-6} cm/sec. Active Cells 3 & 4 were permitted and constructed with a composite liner system consisting of a HDPE geomembrane and a minimum 2-ft. compacted clay layer with a maximum hydraulic conductivity of 1×10^{-6} cm/sec. The composite liner is underlain with a structural fill layer with a maximum hydraulic conductivity of 1×10^{-7} cm/sec. The composite liner is underlain with a structural fill layer with a maximum hydraulic conductivity of 1×10^{-7} cm/sec. The composite liner is underlain with a structural fill layer with a maximum hydraulic conductivity of 1×10^{-6} cm/sec. The structural fill layers varied in thickness from a minimum of 5 ft. to 13 ft. The facility consists of the CCR storage cells, leachate ponds for Cell 3 and 4, and separate sedimentation ponds and clear pools. Future Cells 5-8 will be constructed in the same manner as Cells 3 & 4.

The storm water flows have been calculated using the Natural Resources Conservation Service (NRCS) method (also known as the Soil Conservation Service (SCS) method) using the 25-yr, 24-hr storm event. The storm water detention system has been designed in accordance with the Georgia Soil and Water Conservation Commission requirements and Technical Release 55 (TR-55) as well as other local, city, and government codes. The post developed storm water discharge was designed to be less than the pre-developed storm water discharge in accordance with the State of Georgia.

Run-off curve number data was determined using Table 2.1.5-1 from the Georgia Stormwater Management Manual. Run-off coefficient data was determined by utilizing Table 2.1.5-2. The rainfall distribution for Plant Bowen (Type II) was determined from Technical Release 55 (TR-55). NOAA Atlas 14 was used to determine the 24 hour precipitation for the design storm event of 25-yr for Plant Bowen.

The NRCS provides information on soil characteristics and hydrologic groups present at the site. It was determined that the hydrological group "C" for Cells 1&2 and "B" for Cells 3&4 and Cells 9&10 should be used to best reflect the characteristics of the soils on site. This information was placed into Hydraflow Hydrographs 2011 and used to generate appropriate precipitation curves, runoff curve numbers and storm basin run-off values. This methodology will be utilized for future cells within the unit.

The Plant Bowen Ash Landfill Cells are designed and constructed with perimeter berms and drainage ditches around the cells that prevent stormwater run-on during the peak discharge of a 24-hr, 25-yr storm from flowing onto the active portion of the landfill. The leachate from the Cells 3&4 and future Cells 5-8 leachate collection and removal system is routed to the leachate ponds where it is collected and controlled. The ponds are designed to hold the anticipated amount of leachate generated from the leachate collection system over a period of 6 days as well as the quantity of rainfall from a 24-hr, 100-yr storm event that falls directly into the leachate pond. For the purposes of the run-off calculations, the drainage area for the leachate pond is not included. Storm water run-off from Cells 1&2, Cells 9&10, and Cells 3&4, is routed through a system of sedimentation pond designed to handle the run-off from a 24-hr, 25-yr storm. This plan is supported by appropriate engineering calculations which are attached. Future Cells 5 – 8 will be designed and constructed in this same manner.

The facility is operated subject to and in accordance with § 257.3-3 of EPA's regulations.

I hereby certify that the run-on and run-off control system plan meets the requirements of 40 C.F.R. Part 257.81.

James C./Pegues, P.E. Lisensed State of Georgia, PE No. 17419

Run-on and Run-off Control System Plan for Landfills: Calculation Summary

for

Plant Bowen Ash Landfill Cells 1 and 2

Prepared by:

Southern Company Services Technical Services

Originator: Journy Koron Jefemy K Brown 10 16/16 Date 10 Reviewer: Jeson S. Wilson Date Date 16 Approval: Jam Peques

1.0 Purpose of Calculation

The purpose of this report is to demonstrate the run-on and run-off controls of the Plant Bowen Ash Landfill Cells 1 and 2 in order to prepare a run-on and run-off control system plan as required by the United States Environmental Protection Agency's (EPA) final rule for Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (EPA 40 CFR 257).

2.0 Summary of Conclusions

2.1 Site Overview

The Plant Bowen Ash Landfill Cells 1 and 2 are located on Plant Bowen property approximately 1.5 miles east of Euharlee, Georgia and 6 miles southwest of Cartersville, Georgia. The total area occupied by the Ash landfill Cells 1 and 2 is 34.88 acres. Runoff from this area is directed through perimeter ditches that are inside the cells' perimeter dike. Flow from the perimeter ditches discharge into a sedimentation pond via three 36" diameter pipes. The sedimentation pond is connected to a clear pool via two 72" diameter risers and two 48" diameter pipes. Storm water from the clear pool is discharged through a 72" diameter riser and 42" diameter pipe. Discharge from the clear pool goes into a stone lined ditch that flows to the east towards the Etowah River.

An overview of the Plant Bowen Ash Landfill Cells 1 & 2 is provided in Table 1 below.

Pond Description	Storage Cells	Sedimentation Pond	Clear Pool
Size (Acres)	31.12	2.53	1.23
Outlet Type	Three 36" pipes	Two 72" Risers connected to two 48" pipes	72" Riser connected to a 48" pipe
Outlets To	Sedimentation Pond	Clear Pool	Ditch

Table 1 – Ash Landfill Cells 1 and 2 Site Characteristics

2.2 Run-on Control System Plan

There is no stormwater run-on into the facility because it is contained within earthen berms that prevent stormwater from the surrounding area to enter the CCR facility.

2.3 Run-off Control System Plan

A hydrologic and hydraulic model was developed for the Plant Bowen Ash Landfill to determine the hydraulic capacity of Cells 1 and 2. The design storm for the purposes of run-off control system plans is the 24-hour, 25-year rainfall event. The results of routing the design storm event through the landfill are presented in Table 2 below:

1							
	Plant Bowen	Normal Pool El (ft)	Top of Embankment El (ft)	Peak Water Surface El (ft)	Freeboard* (ft)	Peak Inflow (cfs)	Peak Outflow (cfs)
	Cells 1 & 2	691.00	700.00	693.88	6.12	78.47	0.00**

Table 2 - Flood Routing Results for Plant Bowen Ash Landfill Cells 1 and 2

*Freeboard is measured from the top of embankment to the peak water surface elevation

**The peak outflow is negligible because the riser is perforated with 0.5" holes that are covered by filter stone which drains the clear pool slowly. The elevation of the clear pool does not reach the elevation of the primary spillway during the design storm.

3.0 Methodology

HYDROLOGIC ANALYSES 3.1

The design storm for all run-on/run-off analyses is a 24-hour, 25-year rainfall event. A summary of the design storm parameters and rainfall distribution methodology for these calculations is summarized below in Table 3.

Table 3 - Plant Bowen Ash Landfill Cells 1 and 2 Design Storm Distribution									
Return	Storm	Rainfall		Storm					
Frequency	Duration	Total	Rainfall Source	Distribution					
(years)	(hours)	(Inches)		DISTIDUTION					
25	24	6.07	NOAA Atlas 14	SCS Type II					

. . . alfill Calle 4 and 0 Decision Otomo Distributi

The drainage area for the Plant Bowen Ash Landfill Cells 1 and 2 was delineated based on LiDAR data acquired for the Plant in 2004. Run-off characteristics were developed based on the Soil Conservation Service (SCS) methodologies as outlined in TR-55. An overall SCS curve number for the drainage area was developed based on methods prescribed in TR-55. Soil types were obtained from the Natural Resources Conservation Service. Land use areas were delineated based on aerial photography. Time of Concentration and Lag Time calculations were also developed based on methodologies prescribed in TR-55.

A table of the pertinent basin characteristics of the landfill is provided below in Table 4.

Table 4 - Landini Hydrologic Information (Cells 1 & 2)					
Drainage Basin Area (acres)	34.88				
Hydrologic Curve Number, CN	64				
Hydrologic Methodology	SCS Method				
Time of Concentration (minutes)	20.60				
Hydrologic Software	Hydroflow Hydrographs				

Table 4 Londfill Hydrologic Information (Calle 1.8.2)

Run-off values were determined by importing the characteristics developed above into a hydrologic model with the Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2013.

3.2 HYDRAULIC ANALYSES

Storage values for the landfill were determined by developing a stage-storage relationship utilizing contour data. The spillway system at the Plant Bowen Ash Landfill Cells 1 and 2 consists of a primary spillway and an auxiliary spillway which are both located in the clear pool. The primary spillway consists of a sharp crested riser weir of 18.85 foot length which conveys flow to a corrugated metal pipe. The top of the riser weir is at elevation of 694.50 feet. The pipe is 48-inches in diameter and has a length of approximately 128 feet. The auxiliary spillway is a concrete trapezoidal weir that is 8' wide with 6:1 side slopes sloped at 1% with a crest elevation of 696.00. A summary of spillway information is presented below in Table 5.

Spillway Component	US Invert El (ft)	DS Invert El (ft)	Dimension (ft)	Slope (ft/ft)	Length (ft)	Spillway Capacity (cfs)
Primary	674.00	673.50	4' Diameter	0.40%	128	52.46
Auxiliary	696.00	695.65	8' span 4' rise	1.00%	35	1,296

Table 5 -	Spillway	Attribute	Table
-----------	----------	-----------	-------

Based on the spillway attributes listed above, the data was inserted into Hydraflow Hydrographs to determine the pond performance during the design storm. Results are shown in Table 2.

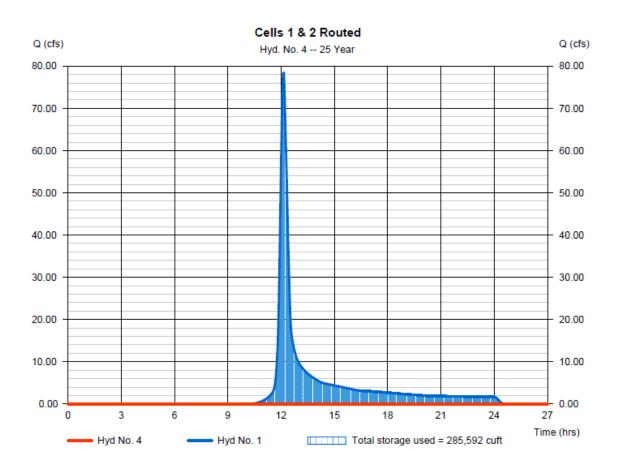
4.0 SUPPORTING INFORMATION

4.1 CURVE NUMBER

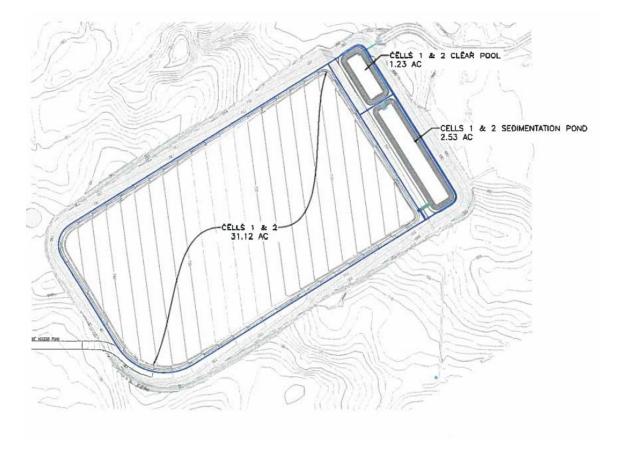
Terrain Type	Area	Curve Number
Grass	31.17	61
Gravel	2.56	85
HDPE	1.15	98

4.2 STAGE-STORAGE TABLE

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	689.00	15,324	0	0
1.00	690.00	56,131	33,591	33,591
2.00	691.00	60,622	58,356	91,947
3.00	692.00	65,193	62,887	154,835
4.00	693.00	69,840	67,496	222,331
5.00	694.00	74,567	72,183	294,515
6.00	695.00	79,374	76,950	371,465
7.00	696.00	84,257	81,795	453,260


4.3 TIME OF CONCENTRATION

Description	A	B	<u>c</u>	Totals		
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 3.79 = 7.50	0.011 0.0 0.00 0.00 0.00	0.011 0.0 0.00 0.00			
Travel Time (min)	= 12.78 +	0.00 +	0.00 =	12.78		
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 202.00 = 18.56 = Unpaved =6.95	0.00 0.00 Paved 0.00	0.00 0.00 Paved 0.00			
Travel Time (min)	= 0.48 +	0.00 +	0.00 =	0.48		
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 6.00 = 8.47 = 1.95 = 0.030 =5.51	0.00 0.00 0.00 0.015 0.00	0.00 0.00 0.00 0.015 0.00			
Flow length (ft)	({0})2387.0	0.0	0.0			
Travel Time (min)	= 7.23 +	0.00 +	0.00 =	7.23		
Total Travel Time, Tc						


4.4 RESULTS

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 25 yrs	Time to peak	= n/a
Time interval	= 3 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 1 - Cells 1 & 2	Max. Elevation	= 693.88 ft
Reservoir name	= Cell 1&2 Sed Pond/Clear Po	ol Max. Storage	= 285,592 cuft

Storage Indication method used.

4.5 DRAINAGE BASIN

Run-on and Run-off Control System Plan for Landfills: Calculation Summary

for

Plant Bowen Ash Landfill Cells 3 and 4

Prepared by:

Southern Company Services Technical Services

Originator: _ Jeremy K. Brown 10/11/16 Date Reviewer: Jason S. Wilson Lof 12/15 Approval: Fegues Jame

1.0 Purpose of Calculation

The purpose of this report is to demonstrate the run-on and run-off controls of the Plant Bowen Ash Landfill in order to prepare a run-on and run-off control system plan as required by the United States Environmental Protection Agency's (EPA) final rule for Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (EPA 40 CFR 257).

2.0 Summary of Conclusions

2.1 Site Overview

The Plant Bowen Ash Landfill Cells 3 & 4 are located on Plant Bowen property approximately 1.5 miles east of Euharlee, Georgia and 6 miles southwest of Cartersville, Georgia. The total area occupied by the Ash Landfill Cells 3 and 4 is 36.45 acres. The active drainage area for run-off purposes is 35.36 acres which does not include the area for the leachate ponds.

Run-off from Cell 3 is directed through perimeter ditches that are inside the cell's perimeter dike. Flow from the perimeter ditches discharge into a sedimentation pond via a concrete channel. The Cell 3 sedimentation pond is connected to a clear pool via two 48" diameter risers and two 30" diameter pipes. Storm water from the Cell 3 clear pool is discharged through two 54" diameter risers and two 36" diameter pipes. Discharge from the clear pool goes into a ditch that flows to the east into the Etowah River.

Run-off from Cell 4 is directed through perimeter ditches that are inside the cell's perimeter dike. Flow from the perimeter ditches discharge into a sedimentation pond via a concrete channel. The Cell 4 sedimentation pond is connected to a clear pool via two 48" diameter risers and two 30" diameter pipes. Storm water from the Cell 4 clear pool is discharged through a 66" diameter riser and a 42" diameter pipe. Discharge from the clear pool goes into a ditch that flows to the north towards the Etowah River.

An overview of the Bowen Ash Landfill Cells 3 & 4 is provided in Tables 1a and 1b below.

Pond Description	Storage Cell	Sedimentation Pond	Clear Pool	
Size (Acres)	18.81	1.93	0.62	
Outlet Type	Concrete channel	Two 48" Risers connected to two 30" pipes	Two 54" Risers connected to two 36" pipes	
Outlets To	Sedimentation Pond	Clear Pool	Ditch	

Table 1a – Bowen Ash Landfill Cell 3 Site Charac	teristics
--	-----------

Table Tb Dewen Ash Eandhin Och b One Onalacteristics				
Pond Description	Storage Cell	Sedimentation Pond	Clear Pool	
Size (Acres)	12.65	0.92	0.43	
Outlet Type	Concrete channel	Two 48" Risers connected to two 30" pipes	A 66" Riser connected to a 42" pipe	
Outlets To	Sedimentation Pond	Clear Pool	Ditch	

Table 1b – Bowen Ash Landfill Cell b Site Characteristics

2.2 Run-on Control System Plan

There is no stormwater run-on into the facility because it is contained within earthen berms that prevent stormwater from the surrounding area to enter the CCR facility.

2.3 Run-off Control System Plan

A hydrologic and hydraulic model was developed for the Plant Bowen Ash Landfill to determine the hydraulic capacity of Cells 3 and 4. The design storm for the purposes of run-off control system plans is the 24-hour, 25-year rainfall event. The results of routing the design storm event through the landfill are presented in Table 2 below:

10	rabie 2 Theed Redding Results for Flank Bertein Aler Landin Berte e and T					
Plant	Normal	Top of	Peak Water	Freeboard*	Peak	Peak
	Pool El	Embankment El	Surface El		Inflow	Outflow
Bowen	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)
Cell 3	685.50	694.00	689.11	4.89	150.99	3.50
Cell 4	698.50	704.00	701.89	2.11	98.96	70.77

Table 2 - Flood Routing Results for Plant Bowen Ash Landfill Cells 3 and 4

*Freeboard is measured from the top of embankment to the peak water surface elevation

3.0 Methodology

3.1 HYDROLOGIC ANALYSES

The design storm for all run-on/run-off analyses is a 24-hour, 25-year rainfall event. A summary of the design storm parameters and rainfall distribution methodology for these calculations is summarized below in Table 3.

Table 3 - Plant Bowen Ash Landhii Design Storm Distribution					
Return Frequency (years)	Storm Duration (hours)	Rainfall Total (Inches)	Rainfall Source	Storm Distribution	
25	24	6.07	NOAA Atlas 14	SCS Type II	

Table 3 - Plant Bowen Ash Landfill Design Storm Distribution

The drainage area for the Plant Bowen Ash Landfill Cells 3 and 4 was delineated based on LiDAR data acquired for the Plant in 2005. Run-off characteristics were developed based on the Soil Conservation Service (SCS) methodologies as outlined in TR-55. An overall SCS curve number for the drainage area was developed based on methods prescribed in TR-55. Soil types were obtained from the Natural Resources Conservation Service. Land use areas were delineated based on aerial photography. Time of Concentration and Lag Time calculations were also developed based on methodologies prescribed in TR-55.

A table of the pertinent basin characteristics of the landfill is provided below in Tables 4a through 4b.

I able 4a - Landfill Hydrologic Information (Cell 3)			
Drainage Basin Area (acres)	21.36		
Hydrologic Curve Number, CN	94		
Hydrologic Methodology	SCS Method		
Time of Concentration (minutes)	11.80		
Hydrologic Software	Hydroflow Hydrographs		

14.00				
94				
SCS Method				
10.40				
Hydroflow Hydrographs				

Table 4b - Landfill Hydrologic Information (Cell 4)
	0011 1	,

Run-off values were determined by importing the characteristics developed above into a hydrologic model with the Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2013.

3.2 HYDRAULIC ANALYSES

Storage values for the landfill were determined by developing a stage-storage relationship utilizing contour data. The spillway systems at the Plant Bowen Cells 3 and 4 consist of a primary spillway and an auxiliary spillway which are located in the clear pools for Cell 3 and Cell 4 respectively. The Cell 3 primary spillway consists of two sharp crested riser weirs of 28.28 foot length which conveys flow to two HDPE pipes. The top of the riser weirs is at elevation of 689.00 feet. The pipes are 36-inches in diameter and have a length of approximately 117 feet each. The Cell 3 auxiliary spillway is a concrete trapezoidal weir that is 20' wide with 6:1 side slopes and is sloped at 1% with a crest elevation of 690.50. The Cell 4 primary spillway consists of a sharp crested riser weir of 25.13 foot length which conveys flow to an hdpe pipe. The top of the riser weir is at elevation of 701.00 feet. The pipe is 42-inches in diameter and has a length of approximately 113 feet. The Cell 4 auxiliary spillway is a concrete trapezoidal weir that is 18' wide with 6:1 side slopes and is sloped at 1% with a crest elevation of 702.00.

A summary of spillway information is presented below in Tables 5a through 5b.

Spillway Component	US Invert El (feet)	DS Invert El (feet)	Dimension (ft)	Slope (ft/ft)	Length (ft)	Spillway Capacity (cfs)
Primary	671.00	670.71	3' Diameter	0.20%	117	68.90
Auxiliary	690.50	690.16	20' span 3.5' rise	0%	34.50	1,445

Table 5a - Spillway Attribute Table (Cell 3)

Table 5b - Spillway Attribute Table (Cell 4)

Spillway Component	US Invert El (feet)	DS Invert El (feet)	Dimension (ft)	Slope (ft/ft)	Length (ft)	Spillway Capacity (cfs)
Primary	682.00	680.98	3.5' Diameter	0.90%	113	110.20
Auxiliary	702.00	701.71	18' span 2' rise	1.00%	29	235.5

Based on the spillway attributes listed above, the data was inserted into Hydraflow Hydrographs to determine the pond performance during the design storm. Results are shown in Table 2.

4.0 SUPPORTING INFORMATION

4.1 CURVE NUMBER

4.1.1 CELL 3

Terrain Type	Area	Curve Number
Grass	1.56	61
Gravel	2.22	85
HDPE/Concrete	17.58	98

4.1.2 CELL 4

Terrain Type	Area	Curve Number
Grass	1.14	61
Gravel	1.29	85
HDPE/Concrete	11.57	98

4.2 STAGE-STORAGE TABLE

4.2.1 CELL 3

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	683.00	9.025	0	0	
1.00	684.00	53,992	28,361	28.361	
2.00	685.00	57,714	55,837	84,198	
2.50	685.50	59,604	29.325	113,523	
3.00	686.00	61,514	30,275	143,799	
4.00	687.00	65,394	63,438	207,236	
5.00	688.00	69,352	67,357	274,593	
6.00	689.00	73,388	71,353	345,946	
7.00	690.00	77,502	75,428	421,374	
7.50	690.50	79,590	39,268	460,642	

4.2.2 CELL 4

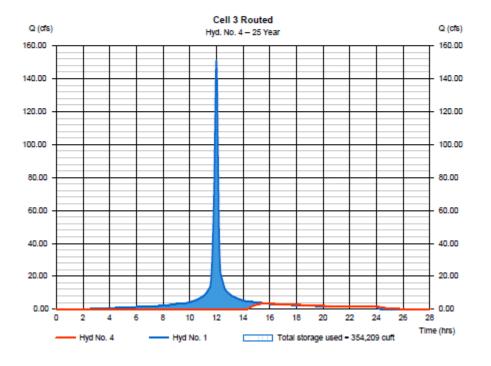
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	697.00	6,653	0	0
1.00	698.00	23,565	14,245	14,245
1.50	698.50	25,207	12,189	26,434
2.00	699.00	26,868	13,015	39,450
3.00	700.00	30,248	28,538	67,988
4.00	701.00	33,707	31,959	99,947
5.00	702.00	37,215	35,443	135,390

4.3 TIME OF CONCENTRATION

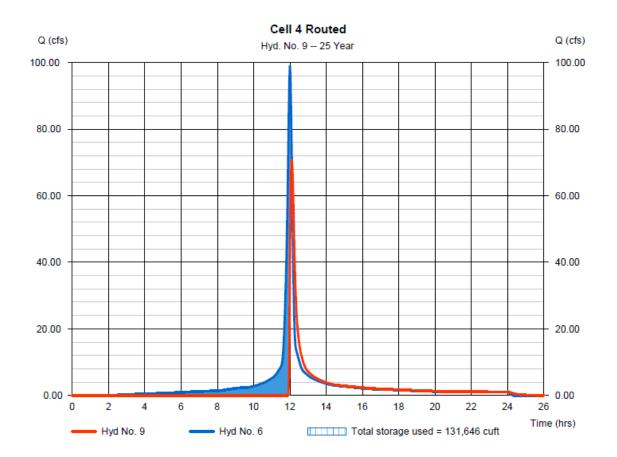
4.3.1 CELL 3

Description	A	B		<u>c</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 3.0 = 3.79 = 0.67	0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.84 +	0.00	+	0.00	=	0.84
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 9.00 = 38.89 = Unpaved =10.06	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.01 +	0.00	+	0.00	=	0.01
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.64 = 5.57 = 1.66 = 0.030 =2.83	20.22 22.52 0.50 0.013 7.54		0.00 0.00 0.01 0.015		
Flow length (ft)	({0})1821.0	77.0		0.0		
Travel Time (min)	= 10.74 +	0.17	+	0.00	=	10.91
Total Travel Time, Tc						11.77 min

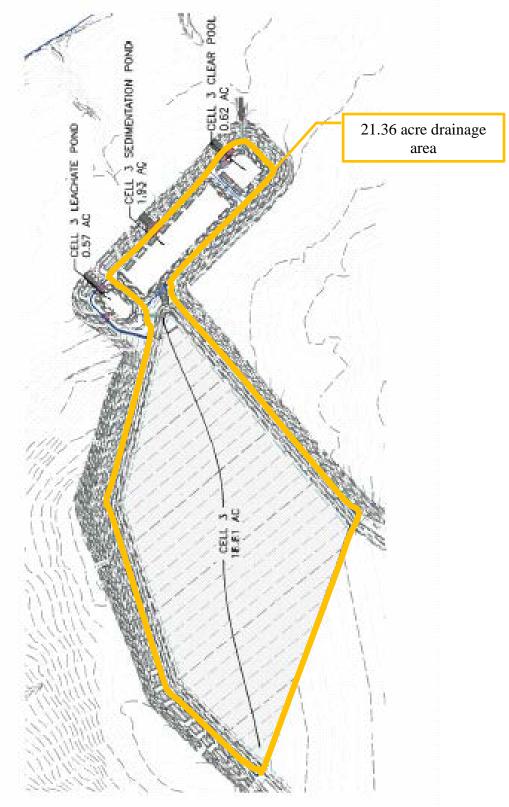
4.3.2 CELL 4

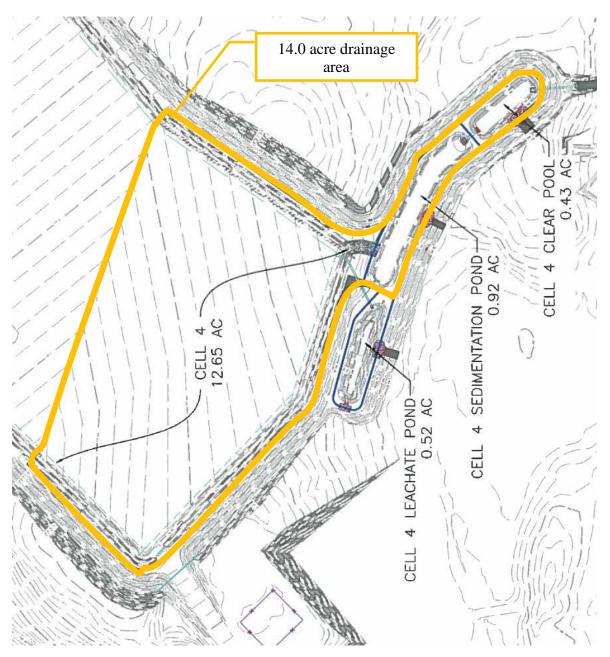

Description	Α		B		<u>c</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 3.0 = 3.79 = 0.67		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 0.84	+	0.00	+	0.00	=	0.84
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 9.00 = 38.89 ≈ Unpaved =10.06	1	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.01	+	0.00	+	0.00	=	0.01
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.49 = 5.43 = 1.36 = 0.030 =2.44		11.65 17.76 0.99 0.013 8.60		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})1379.0		74.0		0.0		
Travel Time (min)	= 9.44	+	0.14	+	0.00	=	9.58
Total Travel Time, Tc		•••••				•••••	10.44 min

4.4 RESULTS


4.4.1 CELL 3

	= Reservoir	Peak discharge	= 3.496 cfs
	= 25 yrs	Time to peak	= 15.70 hrs
Time interval	= 2 min	Hyd. volume	= 83,112 cuft
	= 1 - Cell 3	Max. Elevation	= 689.11 ft
	= Cell 3 Sed Pond/Clear Pool	Max. Storage	= 354,209 cuft


Storage Indication method used.


4.4.2 CELL 4

4.5.1 CELL 3

4.5.2 CELL 4

Run-on and Run-off Control System Plan for Landfills: Calculation Summary

for

Plant Bowen Ash Landfill Cells 9 and 10

Prepared by:

Southern Company Services Technical Services

Originator: 10/6/16 Jeremy K. Brown Date 10/11/16 **Reviewer:** Jason S. Wilson Date 10/12/16 Date Approval: C. Pegues Jan

1.0 Purpose of Calculation

The purpose of this report is to demonstrate the run-on and run-off controls of the subject Plant Bowen Ash Landfill Cells 9 and 10 in order to prepare a run-on and run-off control system plan as required by the United States Environmental Protection Agency's (EPA) final rule for Disposal of Coal Combustion Residuals (CCR) from Electric Utilities (EPA 40 CFR 257).

2.0 Summary of Conclusions

2.1 Site Overview

The Plant Bowen Ash Landfill Cells 9 and 10 are located on Plant Bowen property approximately 1.5 miles east of Euharlee, Georgia and 6 miles southwest of Cartersville, Georgia. The total area occupied by the Ash landfill Cells 9 and 10 is 34.71 acres. Runoff from this area is directed through perimeter ditches that are inside the cells' perimeter dike. Flow from the perimeter ditches discharge into a sedimentation pond via four 30" diameter pipes. The sedimentation pond is connected to a clear pool via two 48" diameter risers and two 30" diameter pipes. Storm water from the clear pool is discharged through a 66" diameter riser and 42" diameter pipe. Discharge from the clear pool goes into a stone lined ditch that flows to the east into the Etowah River.

An overview of Cells 9 & 10 is provided in Table 1 below.

Pond Description	Storage Cells	Sedimentation Pond	Clear Pool
Size (Acres)	31.67	2.12	0.92
Outlet Type	Four 30" pipes	Two 48" Risers connected to two 30" pipes	66" Riser connected to a 42" pipe
Outlets To	Sedimentation Pond	Clear Pool	Ditch

2.2 Run-on Control System Plan

There is no stormwater run-on into the facility because it is contained within earthen berms that prevent stormwater from the surrounding area to enter the Ash Landfill area.

2.3 Run-off Control System Plan

A hydrologic and hydraulic model was developed for the Plant Bowen Ash Landfill to determine the hydraulic capacity of Cells 9 and 10. The design storm for the purposes of run-off control system plans is the 24-hour, 25-year rainfall event. The results of routing the design storm event through the landfill are presented in Table 2 below:

Plant Bowen	Normal Pool El (ft)	Top of Embankment El (ft)	Peak Water Surface El (ft)	Freeboard* (ft)	Peak Inflow (cfs)	Peak Outflow (cfs)
Cells 9 & 10	697.00	706.00	701.50	4.5	65.64	0.00**

Table 2 - Flood Routing Results for Plant Bowen Ash Landfill Cells 9 and 10

*Freeboard is measured from the top of embankment to the peak water surface elevation

**The peak outflow is negligible because the riser is perforated with 0.5" holes that are covered by filter stone which drains the clear pool slowly. The elevation of the clear pool does not reach the elevation of the primary spillway during the design storm.

3.0 Methodology

3.1 HYDROLOGIC ANALYSES

The design storm for all run-on/run-off analyses is a 24-hour, 25-year rainfall event. A summary of the design storm parameters and rainfall distribution methodology for these calculations is summarized below in Table 3.

Return	Storm	Rainfall		Storm					
Frequency	Duration	Total	Rainfall Source	•••••					
(years)	(hours)	(Inches)		Distribution					
25	24	6.07	NOAA Atlas 14	SCS Type II					

Table 3 - Plant Bowen Ash Landfill Cells 9 and 10 Design Storm Distribution

The drainage area for the Plant Bowen Ash Landfill Cells 9 and 10 was delineated based on LiDAR data acquired for the Plant in 2005. Run-off characteristics were developed based on the Soil Conservation Service (SCS) methodologies as outlined in TR-55. An overall SCS curve number for the drainage area was developed based on methods prescribed in TR-55. Soil types were obtained from the Natural Resources Conservation Service. Land use areas were delineated based on aerial photography. Time of Concentration and Lag Time calculations were also developed based on methodologies prescribed in TR-55.

A table of the pertinent basin characteristics of the landfill is provided below in Table 4.

Table 4 - Landfill Hydrologic Information (Cells 9 & 10)						
Drainage Basin Area (acres)	34.71					
Hydrologic Curve Number, CN	64					
Hydrologic Methodology	SCS Method					
Time of Concentration (minutes)	31.50					
Hydrologic Software	Hydroflow Hydrographs					

Run-off values were determined by importing the characteristics developed above into a hydrologic model with the Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2013.

3.2 HYDRAULIC ANALYSES

Storage values for the landfill were determined by developing a stage-storage relationship utilizing contour data. The spillway system at the Plant Bowen Ash Landfill Cells 9 and 10 consists of a primary spillway and an auxiliary spillway which are located in the clear pool. The primary spillway consists of a sharp crested riser weir of 17.28 foot length which conveys flow to an HDPE pipe. The top of the riser weir is at elevation of 701.50 feet. The pipe is 42-inches in diameter and has a length of approximately 200 feet. The auxiliary spillway is a concrete trapezoidal weir that is 24' wide with 6:1 side slopes sloped at 1% with a crest elevation of 703.50. A summary of spillway information is presented below in Table 5.

Spillway Component	US Invert El (ft)	DS Invert El (ft)	Dimension (ft)	Slope (ft/ft)	Length (ft)	Spillway Capacity (cfs)
Primary	680.00	679.00	3.5' Diameter	0.50%	200	82.16
Auxiliary	703.50	703.21	24' span 2.5' rise	1.00%	29.5	628.9

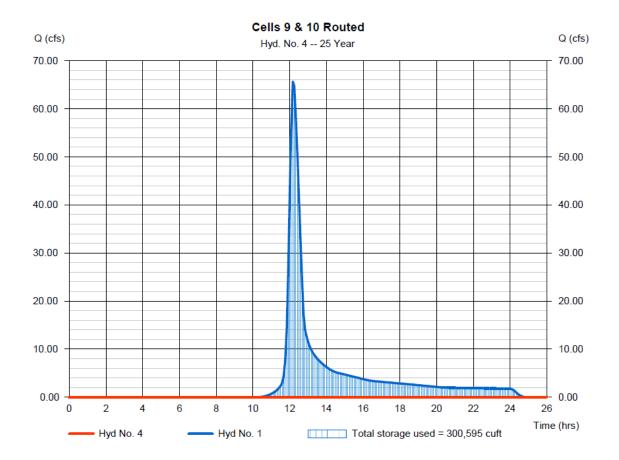
Table 5 -	Spillway	/ Attribute	Table
-----------	----------	-------------	-------

Based on the spillway attributes listed above, the data was inserted into Hydraflow Hydrographs to determine the pond performance during the design storm. Results are shown in Table 2.

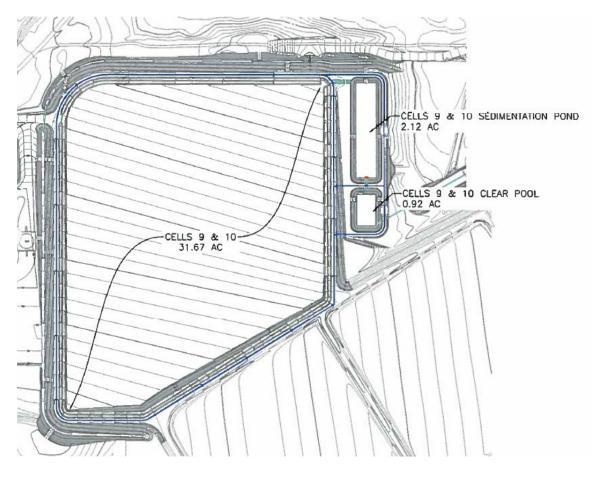
4.0 SUPPORTING INFORMATION

4.1 CURVE NUMBER

Terrain Type	Area	Curve Number
Grass	31.17	61
Gravel	2.48	85
HDPE	0.76	98


4.2 STAGE-STORAGE TABLE

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	695.00	9,369	0	0
1.00	696.00	40,876	23,269	23,269
2.00	697.00	44,230	42,538	65,807
3.00	698.00	47,663	45,931	111,738
4.00	699.00	51,173	49,403	161,141
5.00	700.00	54,762	52,952	214,093
6.00	701.00	58,431	56,581	270,674
7.00	702.00	62,177	60,288	330,962
8.00	703.00	66,002	64,074	395,036
8.50	703.50	67,945	33,482	428,518


4.3 TIME OF CONCENTRATION

Description	A	B	C	<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 3.79 = 2.17	0.011 0.0 0.00 0.00	0.011 0.0 0.00 0.00	
Travel Time (min)	= 20.99 +	0.00 +	0.00 =	20.99
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 353.00 = 15.43 = Unpaved =6.34	0.00 0.00 Paved 0.00	0.00 0.00 Paved 0.00	•
Travel Time (min)	= 0.93 +	0.00 +	0.00 =	0.93
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 6.57 = 8.79 = 1.45 = 0.030 =4.92	1.79 3.39 1.51 0.013 9.18	0.00 0.00 0.00 0.015 0.00	
Flow length (ft)	({0})2773.0	102.0	0.0	
Travel Time (min)	= 9.39 +	0.19 +	0.00 =	9.58
Total Travel Time, Tc				31.49 min

4.4 RESULTS

4.5 DRAINAGE BASIN

APPENDIX 2 – PERIODIC RUN-ON AND RUN-OFF CONTROL PLAN REVISION 3 [391-3-4-.10(5) AND 40 C.F.R. PART 257.81] PLANT BOWEN PRIVATE INDUSTRY SOLID WASTE DISPOSAL FACILITY (ASH LANDFILL), GEORGIA POWER COMPANY

PERIODIC RUN-ON AND RUN-OFF CONTROL PLAN REVISION 3 391-3-4-.10(5) and 40 C.F.R. PART 257.81 PLANT BOWEN PRIVATE INDUSTRY SOLID WASTE DISPOSAL FACILITY (ASH LANDFILL) GEORGIA POWER COMPANY

The Federal CCR Rule, and, for existing CCR Landfills where applicable, the Georgia CCR Rule (391-3-4-.10) require the owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill to prepare a run-on and run-off control system plan to document how these control systems have been designed and constructed to meet the applicable requirements of this section of the Rule. *See* 40 C.F.R. § 257.81; Ga. Comp. R. & Regs. r. 391.3-4-.10(5)(a). In addition, the Rules require periodic run-on and run-off control system plans every five years. *See* 40 C.F.R. § 257.81(c)(4); Ga. Comp. R. & Regs. r. 391.3-4-.10(5)(a).

The CCR Landfill known as the Plant Bowen CCR Landfill is located in Bartow County, just west of Cartersville, Georgia on Plant Bowen property. Active Cells 1 & 2 and 9 & 10 were permitted and constructed with a minimum 2-ft. compacted clay liner with a maximum hydraulic conductivity of 1×10^{-7} cm/sec, underlain with a structural fill layer with a maximum hydraulic conductivity of 1×10^{-6} cm/sec. Cells 9 & 10 were subsequently retrofitted with a composite liner and leachate collection system. Active Cells 3 & 4 were permitted and constructed with a composite liner system consisting of a HDPE geomembrane and a minimum 2-ft. compacted clay layer with a maximum hydraulic conductivity of 1×10^{-7} cm/sec. The composite liner is underlain with a structural fill layer svaried in thickness from 5 ft. (minimum) to 13 ft. The facility consists of the CCR storage cells, leachate ponds for Cell 3 and 4, and separate sedimentation ponds and clear pools. Future Cells 5-8 will be constructed in the same manner as Cells 3 & 4.

The storm water flows have been calculated using the Natural Resources Conservation Service (NRCS) method (also known as the Soil Conservation Service (SCS) method) using the 25-yr, 24hr storm event. The storm water detention system has been designed in accordance with the Georgia Soil and Water Conservation Commission requirements and Technical Release 55 (TR-55) as well as other local, city, and government codes. The post-developed storm water discharge was designed to be less than the pre-developed storm water discharge in accordance with the requirements of the State of Georgia.

Run-off curve number data was determined using Table 2.1.5-1 from the Georgia Stormwater Management Manual. Run-off coefficient data was determined by utilizing Table 2.1.5-2. The rainfall distribution for Plant Bowen (Type II) was determined from Technical Release 55 (TR-55). National Oceanic and Atmospheric Administration (NOAA) Atlas 14 was used to determine the 24-hr precipitation for the design storm event of 25-yr for Plant Bowen.

The NRCS provides information on soil characteristics and hydrologic groups present at the site. It was determined that the hydrological group "C" for Cells 1 & 2 and "B" for Cells 3 through 8 and Cells 9 & 10 should be used to best reflect the characteristics of the soils on site. This information was placed into Hydraflow Hydrographs 2019 and used to generate appropriate precipitation curves, runoff curve numbers and storm basin run-off values. This methodology has also been utilized for future cells within the unit.

The Plant Bowen CCR Landfill Cells are designed and constructed with perimeter berms and drainage ditches around the cells that prevent stormwater run-on during the peak discharge of a 24-hr, 25-yr storm from flowing onto the active portion of the landfill. The leachate from Cells 3 & 4, future Cells 5 through 8 and Cells 9 & 10 is collected and treated separately from all storm water run-off in the cells. Storm water run-off from Cells 1 & 2, Cells 9 & 10 and Cells 3 through 8, is routed through a system of sedimentation ponds designed to handle the run-off from a 24-hr, 25-yr storm. This plan is supported by appropriate engineering calculations (attached) and was reviewed to reflect current conditions.

The facility is operated subject to and in accordance with § 257.3-3 of EPA's regulations.

I hereby certify that the run-on and run-off control system plan meets the requirements of 40 C.F.R. Part 257.81.

R G 0 SISIE CA \star No 24/24 PROVES James C. Pegues, P. Licensed State of Georgia PE No **4**19 G

Calculation Number:
DC-BN-735210-004

Project/Plant:	Unit(s):	Discipline/Area:			
Bowen	1 - 4	Civil			
Title/Subject:					
Run-on and Run-off Study for Bowen Cells 1 & 2		2			
Purpose/Objective:	Purpose/Objective:				
To determine if the Cell's stormwater manageme	To determine if the Cell's stormwater management can safely manage and pass the design				
storm event.					
System or Equipment Tag Numbers:	Originator:	(#)			
N/A	Jeremy Brown				

.

Contents

Торіс	Page	Attachments (Computer Printouts, Tech. Papers, Sketches, Correspondence)	# of Pages
Purpose of Calculation	1		1
Summary of Conclusions	1		1
Project Narrative	1-2		2
Methodology	2	95	ୀ ି
Assumptions/Criteria	2		1
Design Inputs/References	3-9		7
Body of Calculation	10-23		14
Total # of pages including cover sheet & attachments:	24		

Revision Record

Rev. No.	Description	Originator Initial / Date	Reviewer Initial / Date	Approver Initial / Date
0	Issued for Review	JKB 2/9/21	AOG 3/1/21	JWM 6/7/21
	· · · · · · · · · · · · · · · · · · ·		· · · · · ·	1

Notes:

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 1 of 23

Purpose of Calculation

The purpose of this calculation is to determine if the existing sedimentation ponds and clear pools can sufficiently handle run-on/run-off during a minimum 25-yr, 24-hr storm event per federal stormwater requirements Title 40 CFR Part 257.81 and the Georgia Environmental Protection Division's (EPD) Georgia CCR Rule (391-3-4-.10).

Summary of Conclusions

Based on our analysis, the detention pond system is adequate to collect and control the volume of water resulting from a 24-hour 25-year storm, as required.

Chause David Name	Normal Pool Elevation (feet,	Maximum 25 year pool elevation	Spillway/Top of Dike Elevation (feet,	Freeboard to Spillway (feet,
Storage Pond Name	NAVD 88)	(feet, NAVD 88)	NAVD 88)	NAVD 88)
Clear Pool	691.00	693.88	696.00/700.00	2.12/6.12
Sedimentation Pond	691.00	693.88	696.00/700.00	2.12/6.12

Project Narrative

The Plant Bowen CCB Disposal Facility Cells 1 & 2 site is located in Bartow County and is approximately 1.5 miles East of Euharlee, Georgia and 6 miles southwest of Cartersville, Georgia. The plant is bordered on the north and east by the Etowah River and on the south and west by farmland.

Cells 1 & 2 cover 34.88 acres and the two disposal cells are not divided by any means. (See Image 1).

Cells 1 & 2 are comprised of a 31.12 acres storage cell, 2.53 acres sedimentation pond, 1.23 acres clear pool, berms, access roads and ditches. (See Image 2) Cells 1 & 2 include a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for these cells. Run-off from this area is directed through interior perimeter ditches and through 3 - 36" diameter HDEP pipes into a sedimentation pond that is connected to a clear pool via two 72" diameter risers and two 48" diameter pipes. Stormwater from the clear pool is discharged through a 72" diameter riser and 48" diameter pipe.

2 of 23

Design Calculations Project Prepared by Date 2/9/21 Plant Bowen Run-on Run-off Control Jeremy Brown Subject/Title Reviewed by Date Provide run-on and run-off system 3/1/21 Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2 Calculation Number Sheet

The clear pool has an auxiliary spillway that is a grassed trapezoidal weir. The auxiliary spillway is 8' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cells 1 & 2.

DC-BN-735210-004

Methodology

The stormwater flows were calculated using the National Resources Conservation Service method (also known as the Soil Conservation Service (SCS) method) using a 25-yr, 24-hr design storm event.

Storm basin calculation information was gathered from a number of sources to include the Georgia Stormwater Manual and Technical Release 55.

The National Resources Conservation Service (NCRS) provided information on the soil characteristics and hydrologic groups. The soil types found on the site are Urban Land, Wax Silt Loam and Waynesboro Clay Loam. (See Images 3 & 4). Almost the entire site (99.9%) is considered Urban Land because the cells currently have some waste stacked in it. The soils in Cells 9 & 10 that are adjacent to the North and Cells 3 & 4 that are in the vicinity to the Northwest both consist of hydrological group "B". Therefore, hydrological group "B" should be used to best reflect the characteristics of the soils on site.

Run-off curve number data was determined using Table 2.1.5-1 from the Georgia Stormwater Management Manual. Run-off coefficient data was determined by utilizing Table 2.1.5-2 from the Georgia Stormwater Management Manual and Manning's n for Channels (Chow, 1959).

Appendix B from the TR-55 was used to determine the rain distribution for Plant Bowen is Type II. (See Image 5)

NOAA Atlas 14 was used to determine the 24-hour precipitation for the design storm event of 25-yr for Plant Bowen is 6.07 in. (See Image 6)

Assumptions/Criteria

- Refer to Title 40 CFR Part 257.81 Hydrologic and hydraulic capacity requirements for the runon and run-off controls for CCR landfills.
- Other assumptions are listed on attached calculation sheets.

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 3 of 23

Design Inputs/References

- AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Hydrographs Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Express Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- NOAA Atlas 14, Volume 9, Version 2 for Taylorsville, GA.
- Georgia Stormwater Manual
- TR-55 Urban Hydrology for Small Watersheds, Appendix B, National Resources Conservation Service, Conservation Engineering Division, 1986.
- Georgia Power Company Plant Bowen CCB Disposal Facility Design and Operation Plans H15061 H15097, H15296 H15315 and H52258 H52260.

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown2/9/21Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 1 & 2Reviewed byDateCalculation Number
DC-BN- 735210-004Sheet
4 of 2323

Image 1

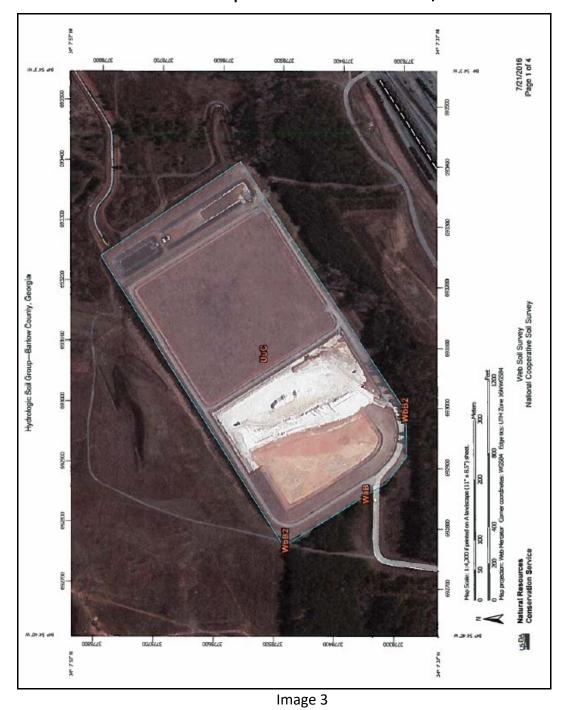

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown2/9/21Subject/TitleReviewed byAshley GrissomProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 1 & 2Reviewed by
Ashley GrissomDate
3/1/21Calculation Number
DC-BN- 735210-004Sheet
5 of 23

Image 2

Design Calculations		Company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 6 of 23

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 7 of 23

Hydi	rologic Soil Gr	oup		
Hy	drologic Soil Group—Sur	mmary by Map Unit — B	artow County, Georgia (GA0	15)
Map unit symbol	Map unit name	Rating	Acres In AOI	Percent of AOI
UuC	Urban land-Udorthents complex. 0 to 10 percent slopes		40.2	99.9 %
WaB	Wax silt loam, 2 to 6 percent slopes, rarely flooded	D	0.0	0.03
WbB2	Waynesboro clay loam,2 to 6 percent slopes, moderately eroded	B	0.1	0.1 9
Totals for Area of Inte	rest		40.2	100.0%
soils ar from lo The so three d	re not protected by veg ng-duration storms, ils in the United States lual classes (A/D, B/D,	etation, are thorough are assigned to fou and C/D). The group	ate of water infiltration wh nly wet, and receive prece r groups (A, B, C, and D) ps are defined as follows runoff potential) when tho	ipitation) and ::
soils ar from lo The so three d Group wet, Th gravell Group consist soils th	re not protected by veg ng-duration storms, ills in the United States lual classes (A/D, B/D, A. Soils having a high rese consist mainly of y sands. These soils h B. Soils having a mode t chiefly of moderately of	etation, are thorough are assigned to fou and C/D), The group infiltration rate (low r deep, well drained to ave a high rate of wa erate infiltration rate deep or deep, moder to texture to moderal	r groups (A, B, C, and D) ps are defined as follows runoff potential) when tho o excessively drained sar	ipitation) and :: proughly nds or drained
soils ar from lo The so three d Group wet, Tr gravell Group consist soils th have a Group chiefly	re not protected by veg ng-duration storms, ills in the United States lual classes (A/D, B/D, A. Soils having a high nese consist mainly of y sands. These soils h B. Soils having a mode t chiefly of moderately fin moderate rate of wate C. Soils having a slow of soils having a layer f moderately fine texture	etation, are thorough are assigned to fou and C/D), The group infiltration rate (low r deep, well drained to ave a high rate of wa erate infiltration rate deep or deep, moder the texture to moderate r transmission. infiltration rate when that impedes the do	r groups (A, B, C, and D) ps are defined as follows unoff potential) when tho o excessively drained sar ater transmission. when thoroughly wet. Th ately well drained or well	ipitation and coughly nds or drained e solls consist ater or
soils ar from lo The so three d Group wet, Tr gravell Group consist soils th have a Group chiefly soils of transm Group thorouy potenti at or no	re not protected by veg ng-duration storms, ills in the United States lual classes (A/D, B/D, A. Soils having a high rese consist mainly of y sands. These soils h B. Soils having a mode t chiefly of moderately fin moderate rate of wate C. Soils having a slow of soils having a layer f moderately fine texture ission. D. Soils having a very ghly wet. These consis ial, soils that have a high	etation, are thorough are assigned to fou and C/D). The group infiltration rate (low r deep, well drained to ave a high rate of wat erate infiltration rate of wat erate infiltration rate of wat that impedes the do a or fine texture. The slow infiltration rate the tohiefly of clays that in water table, soils bills that are shallow of	nly wet, and receive preci- r groups (A, B, C, and D) ps are defined as follows runoff potential) when tho o excessively drained sar aler transmission. when thoroughly wet. The ately well drained or well tely coarse texture. These in thoroughly wet. These is soils have a slow rate of (high runoff potential) wh that have a high shrink-swell that have a claypan or cla pover nearly impervious m	ipitation ipitation and ic ic oroughly nds or drained e soils consist ater or of water nen ll ay layer
soils ar from lo The so three d Group wet, Tr gravell Group consist soils th have a Group chiefly soils of transm Group thorou; potenti at or n These If a soi for drai	re not protected by veg ng-duration storms, ills in the United States lual classes (A/D, B/D, A. Soils having a high rese consist mainly of a y sands. These soils h B. Soils having a mode t chiefly of moderately fin moderate rate of wate C. Soils having a slow of soils having a layer moderately fine texture ission. D. Soils having a very ghly wet. These consis ial, soils that have a hig ear the surface, and so soils have a very slow I is assigned to a dual	etation, are thorough are assigned to fou and C/D), The group infiltration rate (low r deep, well drained to ave a high rate of wa erate infiltration rate of deep or deep, moder to the texture to moderate r transmission. infiltration rate when that impedes the do e or fine texture, The slow infiltration rate when that impedes the do e or fine texture, The slow infiltration rate when that impedes the do e or fine texture, The slow infiltration rate the thiefly of clays that gh water table, soils is that are shallow or rate of water transm hydrologic group (A/ ond is for undrained	nly wet, and receive preci- r groups (A, B, C, and D) ps are defined as follows unoff potential) when tho b excessively drained sar aler transmission. when thoroughly wet. The ately well drained or well tely coarse texture. These in thoroughly wet. These is soils have a slow rate of winward movement of was se soils have a slow rate of (high runoff potential) whit t have a high shrink-swell that have a claypan or cla over nearly impervious m hission. (D, B/D, or C/D), the first areas, Only the soils thal	ipitation ipitation is inoughly nds or drained e soils consist ater or of water hen ll ay layer haterial.

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/9/21 Subject/Title Reviewed by Date Provide run-on and run-off system calculations for the peak discharge from 3/1/21 Ashley Grissom a 24-hr 25-year storm Cells 1 & 2 Calculation Number Sheet DC-BN-735210-004 8 of 23

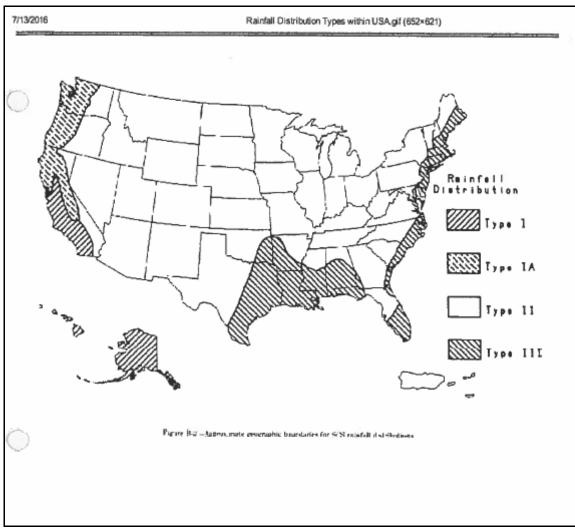


Image 5

Design Calculations	company	
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 9 of 23

itation	Frequenc	y Data Se	erver							Page 1
NOAA Atias 14, Volume 9, Version 2 TAYLORSVILLE Station ID: 09-5600 Location name: Taylorsville, Georgia, US* Latitude: 34.0861*, Longitude: -84.9828* Elevation: Elevation (station metadata): 711 ft* *sure: Georgie Maps										
				RECIPITATIO						
		Şanja Perici			el Yekta, Geoffe	ry Bonnin		aluk, Dale		
				National Weath						
					tabular					
PDS	based po	int precipi	tation free			/ith 90% (confiden	ce interva	als (in inc	hes) ¹
Duration					recurrence					
	0.406	2	5 0.568	10	25	50	100	200	500	1000
6-min	(0.321-0.518)		0.568	(0.520-0.849)	0.804 (0.519-1.05)	0.924 (0.695-1.23)	1.05 (0.768-1.42)	1.19 (0.838~1.62)	1.39 (0.943-1.92)	1.55 (1.02-2.14)
10-min	0.594 (0.471-0.759)	0.679 (0.537-0.868)	0.831 (0.655-1.06)	0.969 (0.761-1.24)	1.18 (0.907-1.56)	1.35 (1.02-1.80)	1.54 (1.12-2.07)	1.75 (1.23-2.38)	2.03 (1.38-2.81)	2.27 (1.50-3.14)
15-min	0.725 (0.574-0.926)	0.828 (0.655-1.06)	1.01 (0.799~1.30)	1.18 (0.928-1.52)	1.44 (1.11-1.90)	1.65 (1.24-2.19)	1.88 (1.37-2.53)	2.13 (1.50-2.90)	2.48 (1.68-3.43)	2.77 (1.83-3.83)
30-min	1.02	1.17	1.43	1.66 (1.31-2.13)	2.02	2.33	2.65	3.01	3.52	3.93
60-min	1.33	1.52 (1.20-1.94)	1.85 (1.46-2.36)	2.15 (1.69-2.78)	2.61 (2.01-3.45)	3.00 (2.25-3.98)	3.41 (2.49-4.58)	3.86	4,49	5.01
2-hr	1.64 (1.31-2.06)	1.86 (1.49-2.35)	2.27 (1.81-2.86)	2,64 (2.10-3.34)	3.20	3.66	4.16	4.70	5.47 (3.77-7.46)	6.09
3-hr	1.84 (1.49-2.30)	2.10 (1.69-2.62)	2.55 (2.05-3.19)	2.96	3.56	4.07	4.60	5.18 (3.73-6.91)	6.00 (4.17-8,12)	6.66
6-hr	2.27 (1.86-2.79)	2.57	3.10 (2.53-3.83)	3.57	4,26 (3.38-5.41)	4.82	5.42	6.05	6.94	7.65
12-hr	2.79 (2.32-3.39)	3.15 (2.61-3.83)	3.77 (3.12-4.58)	4.31 (3.54-5.25)	5.08 (4.08-6.34)	5.70 (4.49-7.17)	6.36 (4.67-8.10)	7.04	7.99	8.73
24-hr	3.34	3.79 (3.18-4.53)	4.54	5.18 (4.32-6.21)	6,07 (4.93-7.43)	6.77 (5.40-8.36)	7.48 (5.61-9.38)	8.22 (6.17-10.5)	9.21 (6.70-11.9)	9.9B (7.10-13.0)
2-day	3.87 (3.29-4.55)	4.43 (3.77-5.21)	5.34 (4.54-6.30)	6.10 (5.18-7.22)	7.14	7.95	8.75 (6.85-10.5)	9.56 (7.27-12.0)	10.6 (7.84-13.6)	11.4 (8.27-14.6)
3-day	4,24	4.81	5.76 (4.93-6.73)	6.56	7.66	8.53	9.40	10.3 (7.92-12.6)	11.5 (8.57-14.6)	12.4 (9.06-15.9)
4-day	4.56 (3.94-5.28)	5.14 (4.43-5.95)	6.10 (5.25-7.08)	6.92	8.07	8.98 (7.38-10.8)	9.92	10.9 (8.43-13.5)	12.2 (9.16-15.4)	13.2 (972-16 8)
7-day	5.37 (4.69-6.14)	5.99 (5.22-8.88)	7.04	7.94	9,24 (7.84-10.9)	10.3 (8.56-12.2)	11.3 (9.21-13.7)	12.5	14.0 (10.7-17.5)	15.2 (11.3-19.2)
10-day	6.07 (5.34-6.89)	6.74 (5.92-7.66)	7.88	8.87 (7.74-10.1)	10.3 (8.79-12.0)	11.4	12.6	13.8 (11.0-16.8)	15.5 (11.9-19.3)	16.8 (12.7-21.1)
20-day	8.08	8.91 (7.95-9.96)	10.3 (9.17-11.5)	11.5	13.2	14.6	16.0	17.4	19.4 (15.2-23.7)	21.0
30-day	9.86	10.8 (9.75-12.0)	12.5	13.9 (12.4-15.4)	15.8 (13.8-17.9)	17.3	18.8	(14.0-20.9) 20.4 (16.6-24.2)	22.5 (17.8-27.3)	24.1 (18.7-29.6)
45-day	12.2	13.5	15.4 (14.0-17.0)	17.1 (15.4-18.8)	19.3 (16.9-21.6)	20.9	22.6 (19,1-26.1)	24.3 (19.9-28.5)	26.4	28.1 (22.0-34,1)
60-day	14.4 (13.1-15.6)	15.8 (14.4-17.2)	18.1 (16.5-19.6)	19.9	22.4 (19.8-24.9)	24.2	25.9 (22.0-29.7)	27.7 (22.8-32.2)	29.8 (23.9-35.5)	31.4
¹ Precipitat	ion frequency (i	PF) estimates in	this table are	based on freque	ency analysis	of partial durat	ion series (PD	25).		(24.8-37.9)
(for a given bounds are	duration and a not checked a	e PF estimates verage recurrer gainst probable	nce interval) wil maximum prec	l be greater tha cipitation (PMP)	in the upper bo	und (or less ti	han the lower	bound) is 5%.	Estimates at r	cy estimates upper
Please refe	TID NOAA ABa	s 14 document	for more inform		ack to Top					
					graphica					

Image 6

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 10 of 23

Body of Calculation

See detailed calculations and software output.

```
Drainage Area = 34.88 AC (See Map 1)
Curve Number = 64 (See Attached Table 1)
       31.17 AC @ CN 61 (Grass)
      2.56 AC @ CN 85 (Gravel)
       1.15 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool)
      ((31.17*61)+(2.56*85)+(1.15*98))/34.88 = 63.98 = 64
Time of Concentration = 20.49 Min (See Attached TR55 Worksheet and Map 2)
      Sheet Flow
             Manning's n-Value = 0.15 (Short Grass) (See Table 2)
             Flow Length = 300 \text{ LF}
             Land Slope = (806.50-784.00)/300 = 0.075 = 7.50%
       Shallow Concentrated
             Flow Length = 202 LF
             Watercourse Slope = (784.00-746.50)/202 = 0.1856 = 18.56%
             Surface is Unpaved
       Channel Flow (See Channel Report 1)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
             Cross Sectional Area = 6.00 SF
             Wetted Perimeter = 8.47 LF
              Channel Slope = (746.50-700.01)/2387 = 0.0195 = 1.95%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 2387 LF
       Channel Flow (See Channel Report 2)
             3 - 36" Dia. HDPE Pipes @ 2.75%
             Cross Section Area = 2.079 SF
             Wetted Perimeter = 3.70 LF
             Channel Slope = (700.01-698.00)/74 = 0.0272 = 2.72%
              Manning's n-Value = 0.013 (HDPE Pipes) (See Table 4)
             Flow Length = 74 LF
```

Time Interval = 3 Min Tc*0.1333 = 20.49*0.1333 = 2.73 = 3

Project	Prepared by	Date		
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21		
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21		
	Calculation Number DC-BN- 735210-004	Sheet 11 of 23		

Storm Distribution = Type II

Q₂₅ = 78.47 CFS (See Hydrograph Report 1)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
689	0	15,324	15,324	0*
690	39,353	16,778	56,131	33,591*
691	42,351	18,271	60,622	91,947
692	45,389	19,804	65,193	154,835
693	48,465	21,375	69,840	222,331
694	51,581	22,986	74,567	294,515
695	54,737	24,637	79,374	371,465
696	57,931	26,326	84,257	453,260

Note: Stage storage is based on topographic information from 2020. *Dead Storage

Spillways

- Principal Spillway consists of a 72" Dia. Riser with a 48" Dia. CMP.
- Auxiliary Spillway consist of a grass lined trapezoidal weir that is 8' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

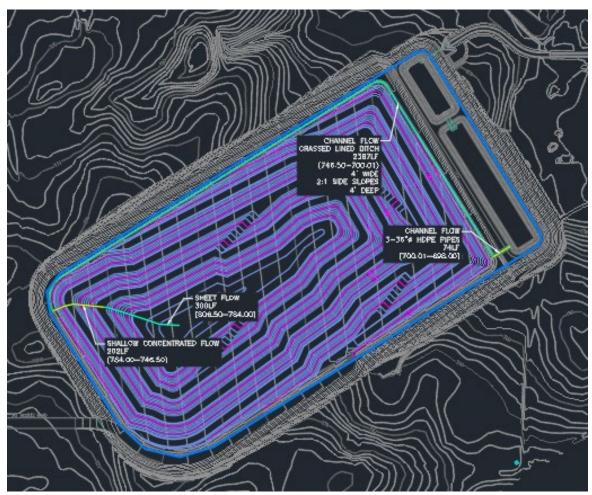
High Water Elevation is 693.88 (See Pond Reports 1 & 2)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown2/9/21Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 1 & 2Reviewed byCalculation Number
DC-BN- 735210-004Sheet
12 of 23

Map 1

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 13 of 23

Table 2.1.5-1 Runoff C	urve Numbers ¹					
Cover description		Curve numbers for hydrologic soil groups				
Cover type and		Average percent				
hydrologic condition		impervious area ²	A	в	С	D
Cultivated land:	without conserv with conservation	ation treatment	72 62	81 71	88 78	91 81
Pasture or range land	poor condition good condition		68 39	79 61	86 74	89 80
Meadow: good condition	n		30	58	71	78
Wood or forest land:	thin stand, poor good cover	rcover	45 25	66 55	77 70	83 77
Poor condition Fair condition (Good condition	Open space (lawns, parks, golf courses, cemeteries, etc.) ³ Poor condition (grass cover <50%)					84
Impervious areas. Paved parking (excluding right	lots, roofs, drivev -of-way)	ways, etc.	98	98	98	98
right-of-way) Paved; open di	nd storm drains (tches (including ng right-of-way) ight-of-way)	right-of-way)	98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 89
Urban districts: Commercial and busi Industrial	ness	85% 72%	89 81	92 88	94 91	95 93
Residential districts 1/8 acre or less (town 1/4 acre 1/3 acre 1/2 acre 1 acre 2 acres		ize: 65% 38% 30% 25% 20% 12%	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 85 84 82
Developing urban an Newly graded areas only, no vegetation)	(pervious areas	1	77	86	91	94
¹ Average runoff condition, and I _a = 0.2S ² The average percent impervious area shown was used to develop the composite CNs. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 38, and pervious areas are considered equivalent to open space in good hydrologic condition. If the impervious area is not connected, the SCS method has an adjustment to reduce the effect. ³ CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space cover type.						


Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 14 of 23

TR55 Tc Worksheet Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12 Hyd. No. 2 Ditch Description B C Totals <u>A</u> Sheet Flow = 0.150 0.011 0.011 Manning's n-value = 300.0 0.0 Flow length (ft) 0.0 Two-year 24-hr precip. (in) = 3.79 0.00 0.00 = 7.50 Land slope (%) 0.00 0.00 Travel Time (min) = 12.78 + 0.00 0.00 12.78 + = Shallow Concentrated Flow = 202.00 0.00 0.00 Flow length (ft) 0.00 Watercourse slope (%) = 18.56 0.00 Paved Paved Surface description = Unpaved =6.95 0.00 Average velocity (ft/s) 0.00 Travel Time (min) = 0.48 0.00 0.00 0.48 + = + Channel Flow X sectional flow area (sqft) = 6.00 0.00 0.00 Wetted perimeter (ft) = 8.47 0.00 0.00 Channel slope (%) 0.00 0.00 = 1.95 Manning's n-value = 0.030 0.015 0.015 Velocity (ft/s) =5.51 0.00 0.00 Flow length (ft) ({0})2387.0 0.0 0.0 Travel Time (min) = 7.23 0.00 0.00 7.23 + + = Total Travel Time, Tc 20.49 min

TR55 Worksheet

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/9/21 Subject/Title Reviewed by Date Provide run-on and run-off system calculations for the peak discharge from Ashley Grissom 3/1/21 a 24-hr 25-year storm Cells 1 & 2 Calculation Number DC-BN- 735210-004 Sheet 15 of 23

Map 2

8			
Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21	
	Calculation Number DC-BN- 735210-004	Sheet 16 of 23	

Surface Description	<u>n</u>
Smo oth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils	0.00
Residue cover < 20%	0.06
Residue cover > 20%	0.17
Grass	0, 11
Short grass prairie	0.15
Dense grasses ²	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods ³	
Light underbrush	0.40
Dense underbrush	0.80
The n values are a composite of information by Engman (1988).	
ncludes species such as weeping lovegrass, bluegrass, buffalo (grass, blue grama grass, and native grass mixtures

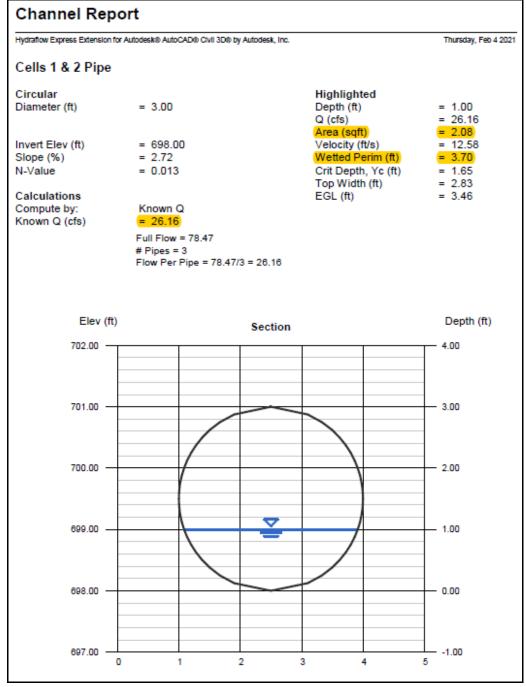
Table 2

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 17 of 23

Hydraflow Express Extension	for Autodesk® AutoCAD® Civ	11 3D® by Autodesk, Inc.		Thursday, Feb 4 2021
Cells 1 & 2 Ditch	1			
Trapezoidal Bottom Width (ft) Side Slopes (z:1) Total Depth (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs)	= 4.00 = 700.01 = 1.95 = 0.030		Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft)	= 1.06
Elev (ft)		0		Depth (f
705.00		Section	1	4.99
704.00				3.99
703.00				2.99
702.00				1.99
701.00				0.99
700.00				-0.01

Channel Report 1

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/9/21 Reviewed by Ashley Grissom Subject/Title Date Provide run-on and run-off system calculations for the peak discharge from 3/1/21 a 24-hr 25-year storm Cells 1 & 2 Sheet 18 of 23 Calculation Number DC-BN-735210-004


λ

s n Values			Pag
3. finished, with gravel on bottom	0.015	0.017	0.020
4. unfinished	0.014	0.017	0.020
5. gunite, good section	0.016	0.019	0.023
6. gunite, wavy section	0.018	0.022	0.025
7. on good excavated rock	0.017	0.020	
8. on irregular excavated rock	0.022	0.027	
d. Concrete bottom float finish with sides of:			
1. dressed stone in mortar	0.015	0.017	0.020
2. random stone in mortar	0.017	0.020	0.024
3. cement rubble masonry, plastered	0.016	0.020	0.024
4. cement rubble masonry	0.020	0.025	0.030
5. dry rubble or riprap	0.020	0.030	0.035
e. Gravel bottom with sides of:		1	
1. formed concrete	0.017	0.020	0.025
2. random stone mortar	0.020	0.023	0.026
3. dry rubble or riprap	0.023	0.033	0.036
f. Brick			1
1. glazed	0.011	0.013	0.015
2. in cement mortar	0.012	0.015	0.018
g. Masonry			
1. cemented rubble	0.017	0.025	0.030
2. dry rubble	0.023	0.032	0.035
h. Dressed ashlar/stone paving	0.013	0.015	0.017
i. Asphalt			1
1. smooth	0.013	0.013	
2. rough	0.016	0.016	

Table 3

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 19 of 23

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/9/21
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2	Reviewed by Ashley Grissom	Date 3/1/21
	Calculation Number DC-BN- 735210-004	Sheet 20 of 23

ning's n Values			Page
7. Concrete:		I	
Culvert, straight and free of debris	0.010	0.011	0.013
Culvert with bends, connections, and some debris	0.011	0.013	0.014
Finished	0.011	0.012	0.014
Sewer with manholes, inlet, etc., straight	0.013	0.015	0.017
Unfinished, steel form	0.012	0.013	0.014
Unlinished, smooth wood form	0.012	0.014	0.016
Unfinished, rough wood form	0.015	0.017	0.020
8. Wood:			
Stave	0.010	0.012	0.014
Laminated, treated	0.015	0.017	0.020
9. Clay:			
Common drainage tile	0.011	0.013	0.017
Vitrified sewer	0.011	0.014	0.017
Vitrilied sewer with manholes, inlet, etc.	0.013	0.015	0.017
Vitrified Subdrain with open joint	0.014	0.016	0.018
10. Brickwork:			
Glazed	0.011	0.013	0.015
Lined with cement mortar	0.012	0.015	0.017
Sanitary sewers coated with sewage slime with bends and connections	0.012	0.013	0.016
Paved invert, sewer, smooth bottom	0.016	0.019	0.020
Rubble masonry, cemented	0.018	0.025	0.030

Table 4

Design Calculations Project Prepared by Date 2/9/21 Plant Bowen Run-on Run-off Control Jeremy Brown Subject/Title Reviewed by Date Provide run-on and run-off system 3/1/21 Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 1 & 2 Calculation Number Sheet 21 of 23 DC-BN-735210-004 Hydrograph Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12 Thursday, 02 / 4 / 2021 Hyd. No. 3 Pipe Hydrograph type = SCS Runoff Peak discharge = 78.47 cfs Storm frequency = 25 yrs = 12.15 hrs Time to peak Time interval = 3 min Hyd. volume = 285,591 cuft Drainage area = 34,880 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 = 20.60 min Time of conc. (Tc) Total precip. = 6.07 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) = [(31.170 x 61) + (2.560 x 85) + (1.150 x 98)] / 34.880 Pipe Q (cfs) Q (cfs) Hyd. No. 3 -- 25 Year 80.00 80.00 70.00 70.00 60.00 60.00 50.00 50.00 40.00 40.00 30.00 30.00 20.00 20.00 10.00 10.00 0.00 0.00 9 12 15 18 21 27 0 3 6 24 Time (hrs) Hyd No. 3

Hydrograph Report 1

691.00

_____ 689.00 120.0

Discharge (cfs)

100.0

90.0

110.0

	ulatio	115									-	_	Compa
t						Prepared by					Date		
nt Bowen Run-on Run-off Control				J	leremy	y Brown					2/9/21		
lations	for th	nd run- ne peak torm C	discha	arge fr	I	Reviewo Ashley	ed by y Grissor	n				Date 3/1/21	
111 20 9	your o						tion Numb N- 73521)4			Sheet 22 o	ıf 23
Por	nd R	eport											
Pond Pond Contou	No. 1 - Data Irs -User-c	Cell 1&2	Sed Pond	/Clear Po	ool		esk, Inc. v12 culation. Begin	ing Ele	vation = 6	89.00 ft		Frida	ay, 02 / 5 / 2021
Stage (rt)	Elevatio	n (ft)	Contour a	rea (sqft)	Incr.	Storage (cuft)	Т	otal stor	age (cuft)			
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00		689.00 690.00 691.00 693.00 693.00 694.00 695.00		15,324 56,131 60,622 65,193 69,840 74,567 79,374 84,257			0 33,591 58,356 62,887 67,496 67,496 72,183 76,950 81,795		33,5 91,9 154,8 222,3 294,5 371,4 453,2	47 35 31 15 65			
Culve	rt / Orifi	ice Struct	ures			Weir Structures							
		[A]	[B]	[C]	[PrfRsr	1			[A]	[B]	[C]	[D]	
Rise (in Span (i No. Bar Invert E	n) rrels	 48.00 48.00 1 673.50 	0.00 0.00 0	0.00 0.00 0 0.00	0.00 0.00 0 0.00	C W	rest Len (ft) rest El. (ft) /eir Coeff. /eir Type	- 6	18.85 594.50 3.33	0.00 0.00 3.33	0.00 0.00 3.33	0.00 0.00 3.33	
Length Slope (* N-Value	(ft) %) 9	 128.00 0.40 .024 	0.00 0.00 .013	0.00 0.00 .013	0.00 n/a n/a	м	luiti-Stage	- 1	(es	No	No	No	
Onflice Multi-St		= 0.60 = n/a	0.60 No	0.60 No	0.60 No	D Exfil.(In/hr) = 0.000 (by Contour) TW Elev. (ft) = 0.00							
			Note	Culvert/Orific	e outflows are a	inalyzed und	eriniet (ic) and out	let (oc) co	ntrol. Weir r	isers checked	tor orifice oc	nditiona (ic) a	nd submergence (s).
tana (B)						ane / D	ischarge						
tage (ft) 8.00													Elev (ft) 697.00
6.00 -	-												695.00
4.00 -											+		693.00
	1		I						1				

70.0

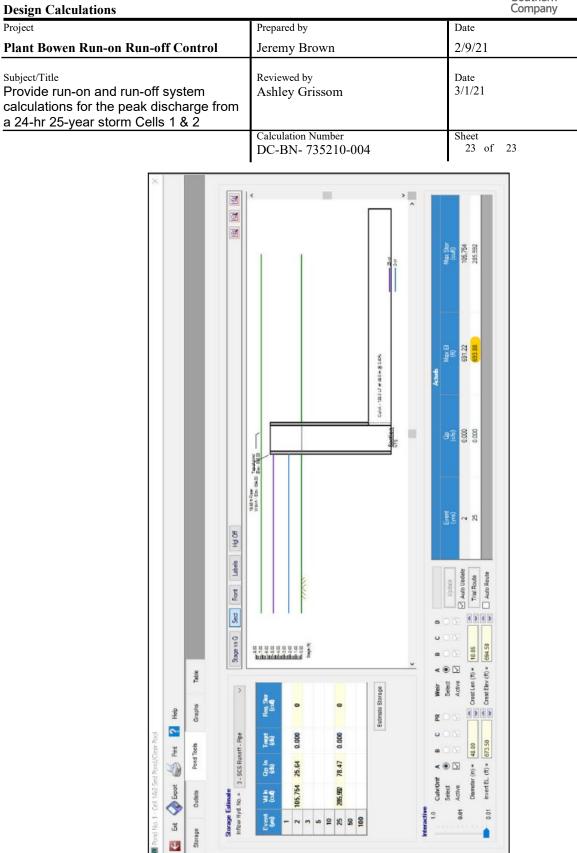
80.0

50.0 60.0

2.00 -

0.00 <u>|</u> 0.0

10.0


Total Q

20.0

30.0

40.0

Pond Report 2

Technical and Project Solutions Calculation

Calculation Number: DC-BN-735210-002

Project/Plant: Bowen	Unit(s): 1 - 4	Discipline/Area: Civil
Title/Subject: Run-on and Run-off Study for Bowen Cells 3	3-8	
Purpose/Objective: To determine if the Cell's stormwater manag storm event.	ement can safely man	age and pass the design
System or Equipment Tag Numbers: N/A	Originator: Jeremy Brown	

Contents

Торіс	Page	Attachments (Computer Printouts, Tech. Papers, Sketches, Correspondence)	# of Pages
Purpose of Calculation	1		1
Summary of Conclusions	1		1
Project Narrative	1-3		3
Methodology	3-4		2
Assumptions/Criteria	4		1
Design Inputs/References	5-10		6
Body of Calculation	11-70		59
Total # of pages including cover sheet & attachments:	70		

Revision Record

Rev. No.	Description	Originator Initial / Date	Reviewer Initial / Date	Approver Initial / Date
0	Issued for Review	JKB 3/19/21	AOG 4/1/21	JWM 4/6/21
1	Replace concrete flumes with pipes and changes to leachate system in Cells 5&6.	JKB 9/15/23	AOG 9/21/23	JWM 9/25/23

Notes:

	eepairij	
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 1 of 70

Purpose of Calculation

The purpose of this calculation is to determine if the existing sedimentation ponds and clear pools can sufficiently handle run-on/run-off during a minimum 25-yr, 24-hr storm event per federal stormwater requirements Title 40 CFR Part 257.81 and the Georgia Environmental Protection Division's (EPD) Georgia CCR Rule (391-3-4-.10).

Summary of Conclusions

Based on our analysis, the detention pond system is adequate to collect and control the volume of water resulting from a 24-hour 25-year storm, as required.

	Normal Pool	Maximum 25	Spillway/Top of Dike	Freeboard to
	Elevation (feet,	year pool elevation	Elevation (feet,	Spillway (feet,
Storage Pond Name	NAVD 88)	(feet, NAVD 88)	NAVD 88)	NAVD 88)
Cells 3, 5 & 7 Clear Pool	685.5	688.37	690.50/694.00	2.13/5.63
Cells 3, 5 & 7 Sediment Pond	685.5	688.37	690.50/694.00	2.13/5.63
Cell 4 Clear Pool	698.50	701.04	702.00/704.00	0.96/2.96
Cell 4 Sediment Pond	698.50	701.04	702.00/704.00	0.96/2.96
Cell 6 Clear Pool	686	688.25	689.50/692.00	1.25/3.75
Cell 6 Sediment Pond	686	688.25	689.50/692.00	1.25/3.75
Cell 8 Clear Pool	686	688.03	689.50/692.00	1.47/3.97
Cell 8 Sediment Pond	686	688.03	689.50/692.00	1.47/3.97

Project Narrative

The Plant Bowen CCB Disposal Facility Cells 3-8 site is located in Bartow County and is approximately 1.5 miles East of Euharlee, Georgia and 6 miles southwest of Cartersville, Georgia. The plant is bordered on the north and east by the Etowah River and on the south and west by farmland.

Since Cells 3-8 share an interconnected cap the storage area information below is based on the drainage area for each cells' sedimentation and clear pool. It should be noted that Cells 3, 5 & 7 share a sedimentation pond and clear pool.

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control 9/15/23 Jeremy Brown Subject/Title Reviewed by Date 9/21/23 Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet 2 of 70 DC-BN-735210-002

<u>Cells 3, 5 & 7</u>

Cells 3, 5 & 7 cover 41.47 acres and their cap is not divided by any means. (See Image 1).

Cells 3, 5 & 7 are comprised of a 43.27 acres storage cell, 2.25 acres sedimentation pond, 0.73 acres clear pool, berms, access roads and ditches. (See Image 2) Cells 3, 5 & 7 include a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for these cells. Run-off from this area is directed through a down drain system into an interior perimeter ditch and is conveyed by pipe(s) into a sedimentation pond that is connected to a clear pool via two 48" diameter risers and two 30" diameter pipes. Stormwater from the clear pool is discharged through two 54" diameter risers and two 36" diameter pipes.

The sediment pond and clear pool both have an auxiliary spillway that is a concrete trapezoidal weir. The auxiliary spillway is 20' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cells 3, 5 & 7.

<u>Cell 4</u>

Cell 4 covers 12.83 acres and its cap is not divided by any means. (See Image 1).

Cell 4 is comprised of a 12.24 acres storage cell, 1.27 acres sedimentation pond, 0.45 acres clear pool, berms, access roads and ditches. (See Image 2) Cell 4 includes a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for this cell. Run-off from this area is directed through a down drain system into an interior perimeter ditch and is conveyed by pipes into a sedimentation pond that is connected to a clear pool via two 48" diameter risers and two 30" diameter pipes. Stormwater from the clear pool is discharged through a 66" diameter riser and 42" diameter pipe.

The sediment pond and clear pool both have an auxiliary spillway that is a concrete trapezoidal weir. The auxiliary spillway is 18' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cell 4.

<u>Cell 6</u>

Cell 6 covers 28.61 acres and its cap is not divided by any means. (See Image 1).

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control 9/15/23 Jeremy Brown Subject/Title Reviewed by Date 9/21/23 Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet 3 of 70 DC-BN-735210-002

Cell 6 is comprised of a 16.37 acres storage cell, 1.52 acres sedimentation pond, 0.31 acres clear pool, berms, access roads and ditches. (See Image 2) Cell 6 includes a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for these cells. Run-off from this area is directed through a down drain system into an interior perimeter ditch and is conveyed by pipes into a sedimentation pond that is connected to a clear pool via a 36" diameter riser and six 24" diameter pipes. Stormwater from the clear pool is discharged through a 36" diameter riser and two 24" diameter pipes.

The sediment pond and clear pool both have an auxiliary spillway that is a grassed trapezoidal weir. The auxiliary spillway is 8' wide with 3:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cell 6.

<u>Cell 8</u>

Cell 8 cover 10.49 acres and its cap is not divided by any means. (See Image 1).

Cell 8 is comprised of a 13.51 acres storage cell, 0.74 acres sedimentation pond, 0.34 acres clear pool, berms, access roads and ditches. (See Image 2) Cell 8 includes a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for this cell. Run-off from this area is directed through a down drain system into an interior perimeter ditch into a sedimentation pond that is connected to a clear pool via a 36" diameter riser and five 24" diameter pipes. Stormwater from the clear pool is discharged through a 36" diameter riser and two 24" diameter pipes.

The sediment pond and clear pool both have an auxiliary spillway that is a grassed trapezoidal weir. The auxiliary spillway is 8' wide with 3:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cell 8.

Methodology

The stormwater flows were calculated using the National Resources Conservation Service method (also known as the Soil Conservation Service (SCS) method) using a 25-yr, 24-hr design storm event.

Design Calculations		Sompany
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 4 of 70
		•

Storm basin calculation information was gathered from a number of sources to include the Georgia Stormwater Manual and Technical Release 55.

The National Resources Conservation Service (NCRS) provided information on the soil characteristics and hydrologic groups. The soil types found on the site are Etowah Loam (17.1%), Waynesboro Clay Loam (81.8%) and Whitwell Silt Loam (1.1%) (See Images 3 & 4). Therefore, hydrological group "B" should be used to best reflect the characteristics of the soils on site.

Run-off curve number data was determined using Table 2.1.5-1 from the Georgia Stormwater Management Manual. Run-off coefficient data was determined by utilizing Table 2.1.5-2 from the Georgia Stormwater Management Manual and Manning's n for Channels (Chow, 1959).

Appendix B from the TR-55 was used to determine the rain distribution for Plant Bowen is Type II. (See Image 5)

NOAA Atlas 14 was used to determine the 24-hour precipitation for the design storm event of 25-yr for Plant Bowen is 6.07 in. (See Image 6)

Assumptions/Criteria

- Refer to Title 40 CFR Part 257.81 Hydrologic and hydraulic capacity requirements for the runon and run-off controls for CCR landfills.
- Other assumptions are listed on attached calculation sheets.

Design Inputs/References

- AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Hydrographs Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Express Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- NOAA Atlas 14, Volume 9, Version 2 for Taylorsville, GA.
- TR-55 Urban Hydrology for Small Watersheds, Appendix B, National Resources Conservation Service, Conservation Engineering Division, 1986.
- Georgia Power Company Plant Bowen CCB Disposal Facility Design and Operation Plans H15061 H15097, H15296 H15315 and H52258 H52260.

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byCalculation Number
DC-BN- 735210-002Sheet
5 of 70

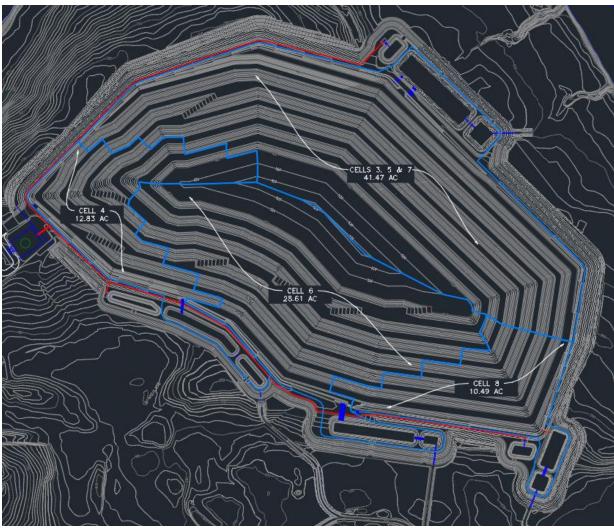


Image 1

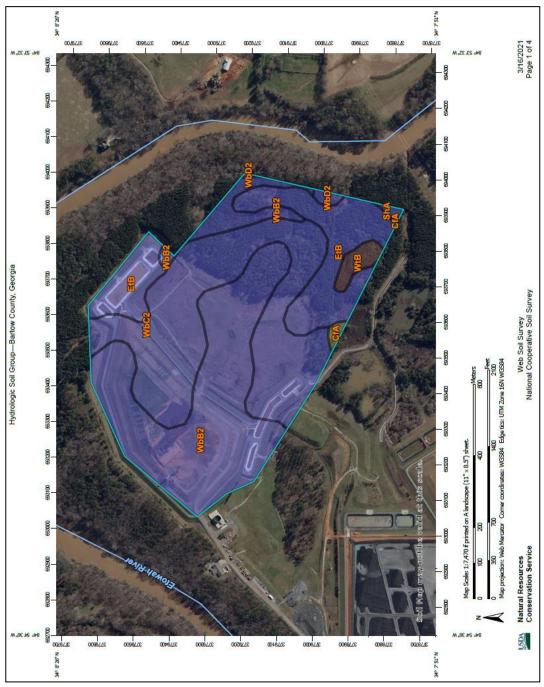

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
6 of 70Sheet

Image 2

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
7 of 7070

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 8 of 70

	,	ologic Soil G		
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
CfA	Cedarbluff loam, 0 to 2 percent slopes, occasionally flooded	C/D	0.0	0.05
EtB	Etowah loam, 2 to 6 percent slopes	в	19.9	17.15
WbB2	Waynesboro clay loam, 2 to 6 percent slopes, moderately eroded	В	50.0	42.95
WbC2	Waynesboro clay loam, 6 to 10 percent slopes, moderately eroded	В	45.0	38.65
WbD2	Waynesboro clay loam, 10 to 15 percent slopes, moderately eroded	В	0.3	0.35
WtB	Whitwell silt loam, 1 to 5 percent slopes, rarely flooded	B/D	1.3	1.15
Totals for Area of Inte	erest		116.5	100.09
groups according	oups are based on estir	tration when the soil	ntial. Soils are assigned t is are not protected by ve storms.	

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

USDA	Natural Resources	Web Soil Survey	3/17/2021
	Conservation Service	National Cooperative Soil Survey	Page 3 of 4

Design Calculations Prepared by Project Date Plant Bowen Run-on Run-off Control 9/15/23 Jeremy Brown Date 9/21/23 Subject/Title Reviewed by Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 9 of 70

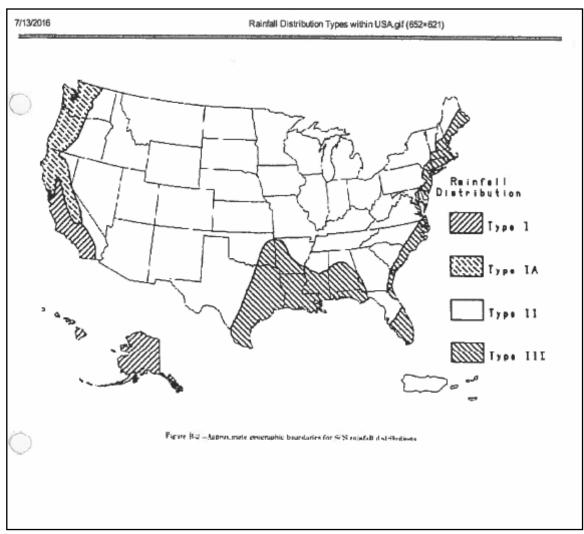


Image 5

	1 3	
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 10 of 70

cipitation	Frequenc	y Data Se	erver							Page 1 c
		Ě	Local Latit	Station tion name: T tude: 34.086 E evation (stat source	LORSVILLE in ID: 09-86 aylorsville, 1*, Longitu levation: tion metada ce: Geogle Map	5 00 , Georgia, I de: -84.982 sta): 721 ft' s	US* 8*			
		Sania Perica		RECIPITATIO				abik Date		
				in, Sendre Pavlov Uhrsh, Michae National Weather						
				abular PF g						
				PF	tabular					
PDS	-based po	int precipi	tation fre	quency es	timates v	vith 90%	confiden	ce interva	als (in inc	hes) ¹
Duration		2	5	Average 10	25	Interval (ye	ars)	200	500	1000
5-min	0.406	0.464 (0.367-0.593)	0.568	0.662	0.804	0.924	1.05	1.19	1.39	1.55
10-min	0.594	0.679 (0.537-0.868)	0.831 (0.655-1.06)	0.969	1.18	(0.695-1.23) 1.35 (1.02-1.80)	(0.768-1.42) 1.54 (1.12-2.07)	(0.838-1.62) 1.75 (1.23-2.38)	2.03	(1.02-2.14) 2.27 (1.50-3.14)
15-min	0.725	0.828	1.01	1.18	1.44	1.65 (1.24-2.19)	1.88 (1.37-2.53)	2.13	(1.38-2.81) 2.48 (1.68-3.43)	2.77
30-min	1.02	1.17 (0.924-1.49)	1.43 (1.13-1.83)	1.66 (1.31-2.13)	2,02 (1.56-2.68)	2.33 (1.75-3.09)	2.65	3.01	3.52	3.93
60-min	1.33	1.52 (1.20-1.94)	1.85 (1.46-2.36)	2.15 (1.69-2.76)	2.61 (2.01-3.45)	3.00 (2.25-3.98)	3.41 (2.49-4.58)	3.86	4,49 (3.05-6.21)	5.01 (3.31-6.93)
2-hr	1.64 (1.31-2.06)	1.86 (1.49-2.35)	2.27 (1.81-2.86)	2,64 (2.10-3.34)	3.20	3.66	4.16	4.70	5.47 (3.77-7.46)	6.09 (4.09-8.32)
3-hr	1.84 (1.49-2.30)	2.10 (1.69-2.62)	2.55 (2.05-3.19)	2.96 (2.37-3.71)	3.56 (2.80-4.60)	4.07	4.60	5.18 (3.73-6.91)	6.00 (4.17-8,12)	6.66
6-hr	2.27 (1.86-2.79)	2.57 (2.10-3.17)	3.10 (2.53-3.83)	3.57 (2.90-4.41)	4,26 (3.38-5.41)	4.82 (3.75-6.16)	5.42 (4.10-7.02)	6.05 (4.42-7.96)	6.94 (4.90-9.27)	7.65
12-hr	2.79 (2.32-3.39)	3.15 (2.61-3.63)	3.77 (3.12-4.58)	4.31 (3.54-5.25)	5.08 (4.08~6.34)	5.70 (4.49-7.17)	6.36 (4.67-8.10)	7.04 (5.21-9.11)	7.99 (5.72-10.5)	8.73 (6,11-11,6)
24-hr	3.34 (2.81-3.99)	3.79 (3.18-4.53)	4.54 (3.80-5.44)	5.18 (4.32-6.21)	6,07 (4.93-7.43)	6.77 (5.40-8.35)	7.48 (5.61-9.38)	8.22 (6.17-10.5)	9.21 (6.70-11.9)	9.98 (7,10-13.0)
2-day	3.87 (3.29-4.55)	4.43 (3.77-5.21)	5.34 (4.54_6.30)	6.10 (5.16-7.22)	7.14 (5.88-8.60)	7.95 (6,42-9.65)	8.75 (6.85-10.5)	9.55 (7.27-12.0)	10.6 (7.84-13.6)	11.4 (8.27-14.6)
3-day	4.24 (3.64-4.95)	4.81 (4,13-5.62)	5.76 (4.93-6.73)	6.56 (5.59-7.68)	7.66 (6.37-9.16)	8.53 (6.95-10.3)	9.40 (7.47-11.5)	10.3 (7.92-12.6)	11.5 (8.57-14.6)	12.4 (9.06-15.9)
4-day	4.56 (3.94-5.28)	5.14 (4.43-5.95)	6.10 (5.25-7.08)	6.92 (5 93-8.06)	8.07 (6.76-9.61)	8.98 (7.38-10.8)	9.92 (7.94-12.1)	10.9 (8.43-13.5)	12.2 (9.16-15.4)	13.2 (972-16 6)
7-day	5.37 (4.69-6.14)	5.99 (5.22-8.88)	7.04 (6.13-8.07)	7.94 (6 88-9 14)	9,24 (7.84-10.9)	10.3 (8.56-12.2)	11.3 (9.21-13.7)	12.5 (9.80-15.3)	14.0 (10.7-17.5)	15.2 (11.3-19.2)
10-day	6.07 (5.34-6.69)	6.74 (5.92-7.66)	7.88 (6.91-8.97)	8.87 (7.74-10.1)	10.3 (8.79-12,0)	11.4 (9.58-13.5)	12.6 (10 3-15.1)	13.8 (11.0-16.8)	15.5 (11.9-19.3)	16.8 (12.7-21.1)
20-day	8.08 (7.21-9.03)	8.91 (7.95-9.96)	10.3 (9.17-11.5)	11.5 (10.2-12.9)	13.2 (11.5-15.2)	14.6 (12.4-16.9)	16.0 (13.3-18.8)	17.4 (14.0-20.9)	19.4 (15.2-23.7)	21.0 (16.1-25.9)
30-day	9.86 (8.87-10.9)	10.8 (9.75-12.0)	12.5 (11.2-13.8)	13.9 (12.4-15.4)	15.8 (13.8-17.9)	17.3 (14.9-19.8)	18.8 (15.8-22.0)	20.4 (16.6-24.2)	22.5 (17.8-27.3)	24.1 (18.7-29.5)
45-day	12.2 (11.1-13.4) 14.4	13.5 (12.2-14.8) 15.8	15.4 (14.0-17.0) 18.1	17.1 (15.4-18.8) 19.9	19.3 (16.9-21.6)	20.9 (18.1-23.7)	22.6 (19.1-28.1)	24.3 (19.9-28.5)	26.4 (21.1-31.7)	28.1 (22.0-34.1)
60-day	(13.1-15.6)	(14.4-17.2)	(16.5-19.6)	(18.1-21.8)	22.4 (19.8-24.9)	24.2 (21.0-27.2)	25.9 (22.0-29.7)	27.7 (22.8-32.2)	29.8 (23.9-35.5)	31.4 (24.8-37.9)
Numbers i (for a giver bounds an	tion frequency (In parenthesis ar In duration and a e not checked a er to NOAA Atla	e PF estimates verage recurrer gainst probable	at lower and u tce interval) wi maximum pres	pper bounds of It be greater that cipitation (PMP) nation.	the 90% confi n the upper bo estimates and	dence interva	The probabil	ity that precipi bound) is 5%	Estimates at	cy estimates upper
				_	ack to Top					
				PF	graphica	al				

Image 6

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 11 of 70

See detailed calculations and software output.

<u>Cells 3, 5 & 7</u>

Cells 3, 5 & 7 is broken down into 3 smaller subbasins (1A, 1B & 1C)

Drainage Area = 11.20 AC (See Map 1A)

Curve Number = 64 (See Table 1) 10.88 AC @ CN 61 (Grass) 0.32 AC @ CN 85 (Gravel) ((10.88*61)+(0.32*85))/10.88 = 63.50 = 64

```
Time of Concentration = 22.18 Min (See TR55 Worksheet 1A and Map 2A)
       Sheet Flow
             Manning's n-Value = 0.15 (Short Grass) (See Table 2)
             Flow Length = 167 LF
             Land Slope = (826.25-821.50)/167 = 0.0284 = 2.84%
       Shallow Concentrated
             Flow Length = 161 LF
             Watercourse Slope = (821.50-820.50)/161 = 0.0062 = 0.62%
             Surface is Unpaved
       Channel Flow (See Channel Report 1A1)
             15" Dia. HDPE Downdrain Pipes
             Cross Sectional Area = 0.23 SF
             Wetted Perimeter = 1.28 LF
             Channel Slope = (820.50-724.00)/1099 = 0.0878 = 8.78%
             Manning's n-Value = 0.012 (HDPE Pipe)(See Table 4)
             Flow Length = 1099 LF
       Channel Flow (See Channel Report 1A2)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
             Cross Sectional Area = 4.99 SF
             Wetted Perimeter = 7.89 LF
             Channel Slope = (724.00-694.00)/1847 = 0.0162 = 1.62%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 1847 LF
       Channel Flow (See Channel Report 1A3)
```


Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 12 of 70

2 – 30" Dia. HDPE Pipes Cross Sectional Area = 1.00 SF Wetted Perimeter = 2.66 LF Channel Slope = (694.00-692.00)/60 = 0.0333 = 3.33% Manning's n-Value = 0.012 (HDPE Pipes) (See Table 4) Flow Length = 60 LF

Time Interval = 3 Min

Tc*0.1333 = 22.18*0.1333 = 2.96 = 3

Storm Distribution = Type II

Q₂₅1A = 23.05 CFS (See Hydrograph Report 1A)

Drainage Area = 27.35 AC (See Map 1B)

```
Curve Number = 64 (See Table 1)
27.06 AC @ CN 61 (Grass)
0.29 AC @ CN 85 (Gravel)
((27.06*61)+(0.29*85))/27.35 = 61.25 = 61
```

```
Time of Concentration = 37.23 Min (See TR55 Worksheet 1B and Map 2B)

Sheet Flow

Manning's n-Value = 0.15 (Short Grass) (See Table 2)

Flow Length = 300 LF

Land Slope = (828.50-824.95)/300 = 0.0118 = 1.18\%

Shallow Concentrated

Flow Length = 92 LF

Watercourse Slope = (824.95-822.00)/92 = 0.0321 = 3.21\%

Surface is Unpaved

Channel Flow (See Channel Report 1B1)

15" Dia. HDPE Downdrain Pipes

Cross Sectional Area = 0.65 SF

Wetted Perimeter = 2.02 LF

Channel Slope = (822.00-705.75)/1957 = 0.0594 = 5.94\%

Manning's n-Value = 0.012 (HDPE Pipe)(See Table 4)
```


besign eureununons		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 13 of 70

Flow Length = 1957 LF Channel Flow (See Channel Report 1B2) Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep Cross Sectional Area = 8.67 SF Wetted Perimeter = 9.86 LF Channel Slope = (705.75-694.67)/1673 = 0.0066 = 0.66%Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3) Flow Length = 1673 LF Channel Flow (See Channel Report 1B3) 4 - 30" Dia. HDPE Pipes Cross Sectional Area = 0.70 SF Wetted Perimeter = 2.32 LF Channel Slope = (694.67-692.00)/60 = 0.0445 = 4.45%Manning's n-Value = 0.012 (HDPE Pipes) (See Table 4) Flow Length = 60 LF

Time Interval = 5 Min Tc*0.1333 = 37.23*0.1333 = 4.96 = 5

```
Storm Distribution = Type II
```

```
Q<sub>25</sub>1B = 32.02 CFS (See Hydrograph Report 1B)
```

Drainage Area = 2.92 AC (See Map 1C)

Curve Number = 64 (See Table 1) 1.97 AC @ CN 85 (Gravel) 0.95 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool) ((1.97*85)+(0.95*98))/2.92 = 89.23 = 89

```
Time of Concentration = 5.00 Min (See TR55 Worksheet 1C)
*Use Tc of 5.00 minutes due to small drainage area and only receiving what stormwater
falls directly in the ponds and the small area around them.
```

Time Interval = 1 Min Tc*0.1333 = 5.00*0.1333 = 0.67= 1

Design Calculations Project Prepared by Date 9/15/23 Plant Bowen Run-on Run-off Control Jeremy Brown Subject/Title Reviewed by Date 9/21/23 Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet 14 of 70 DC-BN-735210-002

Storm Distribution = Type II

 $Q_{25}1C = 24.05 \text{ CFS}$ (See Hydrograph Report 1C)

Q₂₅1Total = 57.16 CFS (See Hydrograph Report 1 Total)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
683	0	9,025	9,025	0*
684	43,996	9,996	53,992	28,361*
685	46,707	11,007	57,714	84,198*
685.5	48,077	11,527	59,604	113,523*
686	49,457	12,057	61,514	143,799
687	52,247	13,147	65,394	207,236
688	55,076	14,276	69,352	274,593
689	57,944	15,444	73,388	345,946
690	60,851	16,651	77,502	421,374
690.5	62,320	17,270	79,590	460,642

*Dead Storage

Spillways

- Principal Spillway consists of two 54" Dia. Risers with two 36" Dia. HDPE Pipes.
- Auxiliary Spillway consist of a concrete lined trapezoidal weir that is 20' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 688.37 (See Pond Reports 1 & 2)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
15 of 70Sheet

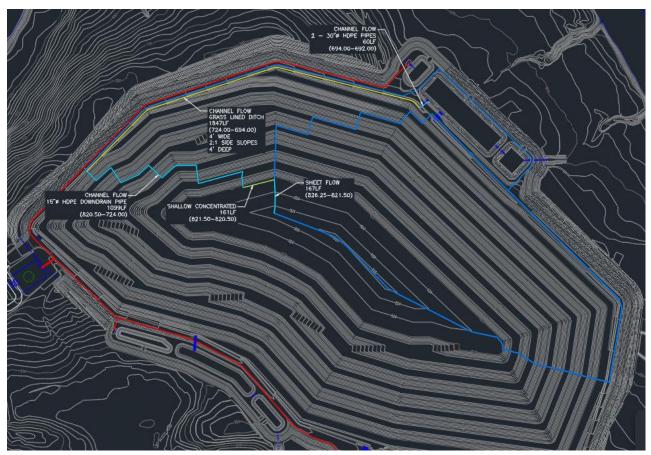
Map 1A

Design Culculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 16 of 70

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12

TR55 Tc Worksheet

Hyd. No. 4	

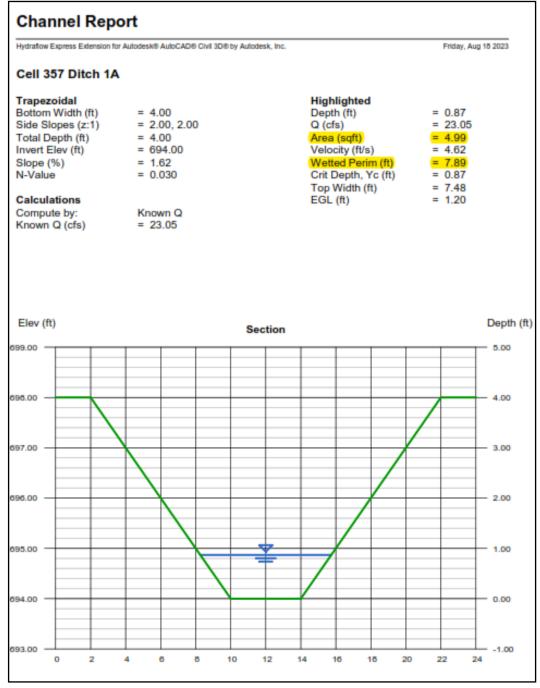

Cell 3, 5 & 7 Pipes 1A

Description	<u>A</u>	B	<u>c</u>	Totals
Sheet Flow	= 0.150	0.011	0.011	
Manning's n-value Flow length (ft)	= 167.0	0.0	0.0	
Two-year 24-hr precip. (in)	= 3.79	0.00	0.00	
Land slope (%)	= 2.84	0.00	0.00	
Travel Time (min)	= 11.79 +	0.00 +	0.00 =	11.79
Shallow Concentrated Flow				
Flow length (ft)	= 161.00	0.00	0.00	
Watercourse slope (%) Surface description	= 0.62 = Unpaved	0.00 Paved	0.00 Paved	
Average velocity (ft/s)	= 011paved =1.27	0.00	0.00	
Travel Time (min)	= 2.11 +	0.00 +	0.00 =	2.11
Channel Flow				
X sectional flow area (sqft)	= 0.23	4.99	1.00	
Wetted perimeter (ft)	= 1.28	7.89	2.66	
Channel slope (%) Manning's n-value	= 8.78 = 0.012	1.62 0.030	3.33 0.012	
		0.000		
Velocity (ft/s)	=11.65		0.012	
Velocity (ft/s)	=11.65	4.65	0.012	
Velocity (ft/s)	=11.65	4.65	11.76	
Velocity (ft/s) Flow length (ft)	=11.65 ({0})1099.0	4.65 1847.0		
			11.76	8.28

TR55 Worksheet 1A

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
17 of 70Tot

Map 2A


Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 18 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD® Ci	vil 3D® by Autodesk, Inc.		Thursday, Sep 7 2023
Cell 357 Downd	rain 1A1			
Circular Diameter (ft)	= 1.25		Highlighted Depth (ft) Q (cfs)	= 0.30 = 2.550
Invert Elev (ft) Slope (%) N-Value	= 724.00 = 8.78 = 0.012		Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 0.23 = 11.23 = 1.28 = 0.64 = 1.07
Calculations Compute by: Known Q (cfs)	Known Q = 2.55		EGL (ft)	= 2.26
Elev (ft)			Section	
726.00				
725.50				
725.50				
725.00		\bigwedge	\searrow	
725.00				

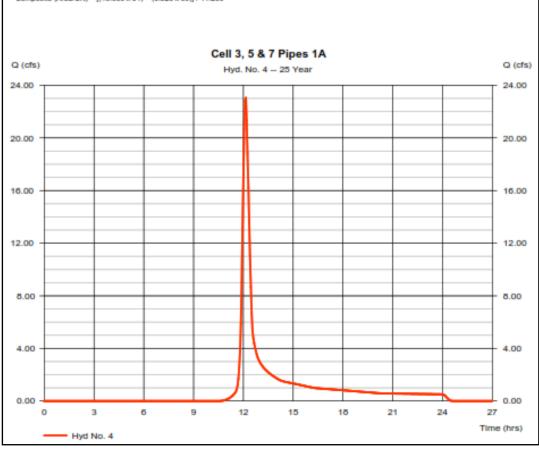
Channel Report 1A1

Prepared by	Date
Jeremy Brown	9/15/23
Reviewed by Ashley Grissom	Date 9/21/23
Calculation Number DC-BN- 735210-002	Sheet 19 of 70
	Jeremy Brown Reviewed by Ashley Grissom Calculation Number

Channel Report 1A2

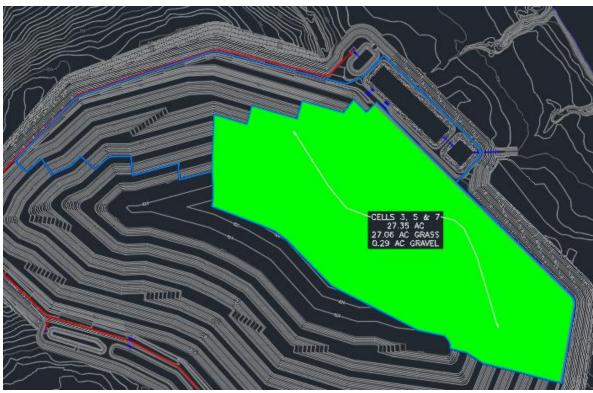
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 20 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD®	Civil 3D® by Autodesk, I	inc.	Wednesday, Sep 6 2023
Cell357_Pipes1/	λ.			
Circular Diameter (ft)	= 2.50		Highlighted Depth (ft) Q (cfs)	= 0.64 = 11.53
Invert Elev (ft)	= 692.00		Area (sqft) Velocity (ft/s)	= 1.00 = 11.51
Slope (%)	= 3.33		Wetted Perim (ft)	
N-Value	= 0.012		Crit Depth, Yc (ft)	= 1.14
Calculations			Top Width (ft) EGL (ft)	= 2.19 = 2.70
Compute by:	Known Q		EGE (ii)	- 2.10
Known Q (cfs)	= 11.53			
Full flow of 23.05 is di are two pipes.	video by 2 since th	ere		
Elev (f	0		Section	
695.00 -				
694.50 -				
694.00 -		+/	\rightarrow	
		1		
693.50 -		/		
000.00				
000.00				
693.00 -				
693.00 —			/	
			₹ /	
693.00 —			≚	
693.00 —			≚	
693.00 - 692.50 -			₽	
693.00 - 692.50 -			≥	


Channel Report 1A3

Ι

sign Calculations			
roject		Prepared by	Date
lant Bowen Run-on	Run-off Control	Jeremy Brown	9/15/23
ubject/Title Provide run-on and run-off system alculations for the peak discharge from 24-hr 25-year storm Cells 3-8		Reviewed by Ashley Grissom	Date 9/21/23
		Calculation Number DC-BN- 735210-002	Sheet 21 of 70
Hydrograph F	Report on for Autodesk® Civil 3D® 2019 by A	Autodesk, Inc. v12	Thursday, 09 / 7 / 2023
Hydraflow Hydrographs Extensi Hyd. No. 4	on for Autodesk® Civil 3D® 2019 by A	Autodesk, Inc. v12	Thursday, 09 / 7 / 2023
Hydraflow Hydrographs Extensi Hyd. No. 4 Cell 3, 5 & 7 Pipes 1/	on for Autodesk® Civil 3D® 2019 by J		
Hydraflow Hydrographs Extensi Hyd. No. 4	on for Autodesk® Civil 3D® 2019 by A	Autodesk, Inc. v12 Peak discharge Time to peak Hyd. volume	= 23.05 cfs = 12.15 hrs
Hydraflow Hydrographs Extensi Hyd. No. 4 Cell 3, 5 & 7 Pipes 1/ Hydrograph type Storm frequency	on for Autodesk® Civil 3D® 2019 by A A = SCS Runoff = 25 yrs	Peak discharge Time to peak	 23.05 cfs 12.15 hrs 84,769 cuft 62*
Hydraftow Hydrographs Extensi Hyd. No. 4 Cell 3, 5 & 7 Pipes 1/ Hydrograph type Storm frequency Time interval Drainage area	on for Autodesk® Civil 3D® 2019 by A = SCS Runoff = 25 yrs = 3 min = 11.200 ac	Peak discharge Time to peak Hyd. volume Curve number	 23.05 cfs 12.15 hrs 84,769 cuft 62*


* Composite (Area/CN) = [(10.880 x 61) + (0.320 x 85)] / 11.200

Hydrograph Report 1A

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
22 of 70Sheet

Map 1B

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 23 of 70

TR55 Tc Worksheet

	H	ydraflov	w Hydrographs	Exten	sion for Autod	esk® Ci	vil 3D® 2019 by Aut
Hyd. No. 6							
Cell 3, 5 & 7 1B							
Description	A		B		<u>c</u>		<u>Totals</u>
Sheet Flow							
Manning's n-value	= 0.150		0.011		0.011		
Flow length (ft)	= 300.0		0.0		0.0		
Two-year 24-hr precip. (in)	= 3.79		0.00		0.00		
Land slope (%)	= 1.18		0.00		0.00		
Travel Time (min)	= 26.78	+	0.00	+	0.00	=	26.78
Shallow Concentrated Flow							
Flow length (ft)	= 92.00		0.00		0.00		
Watercourse slope (%)	= 3.21		0.00		0.00		
Surface description	= Unpaveo	b	Paved		Paved		
Average velocity (ft/s)	=2.89		0.00		0.00		
Travel Time (min)	= 0.53	+	0.00	+	0.00	=	0.53
Channel Flow							
X sectional flow area (sqft)	= 0.65		8.67		0.70		
Wetted perimeter (ft)	= 2.02		9.86		2.32		
Channel slope (%)	= 5.94		0.66		4.45		
Manning's n-value	= 0.012		0.030		0.012		
Velocity (ft/s)	=14.16						
			3.70				
					11.74		
Flow length (ft)	({0})1957.0)	1673.0		60.0		
Travel Time (min)	= 2.30	+	7.53	+	0.09	=	9.92
Total Travel Time, Tc							37.23 min
Total Haver Hile, To							01.20 1111

TR55 Worksheet 1B

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
24 of 70Sheet

Map 2B

-

Design Calculations

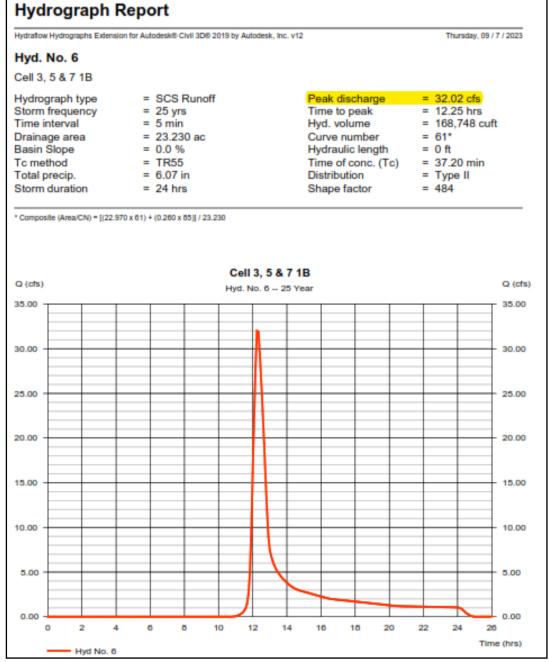

Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 25 of 70

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.				Thursday, Sep 7 2023
Cell 357 Downd	rain 1B1			
Circular Diameter (ft)	= 1.25		Highlighted Depth (ft) Q (cfs)	= 0.65 = 9.110 = 0.65
Invert Elev (ft) Slope (%) N-Value	= 705.75 = 5.94 = 0.012		Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 14.06
Calculations Compute by: Known Q (cfs)	Known Q = 9.11		EGL (ft)	= 3.72
Elev (ft)		Section		
707.50				
707.00				
707.00		✓		
706.50				

Channel Report 1B1

Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 26 of 70

Channel Report 1B2

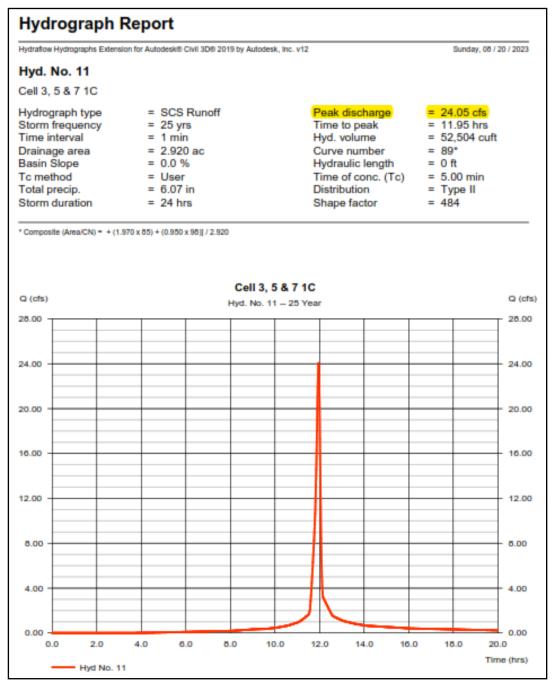

Design Culculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 27 of 70

Hydraflow Express Extension	for Autodesk® AutoCA	D® Civil 3D® by Autod	esk, Inc.		Thursday, Sep 7 202
Cell357_Pipes1	B3				
Circular Diameter (ft)	= 2.50		Dep Q (d		= 0.50 = 8.010
Invert Elev (ft)	= 692.00			a (sqft) ocity (ft/s)	= 0.70 = 11.37
Slope (%)	= 4.45			tted Perim (ft)	
N-Value	= 0.012		Crit	Depth, Yc (ft)	= 0.94
Calculations				Width (ft) L (ft)	= 2.00 = 2.51
Compute by:	Known Q		20		
Known Q (cfs)					
Full flow 32.02 is div are 4 pipes. Elev (ft)	vided by 4 since t	here			
			Section	1	
695.00			Section	n	
			Section		
695.00			Section		
			Section	, 	
695.00		_	Section		
695.00 694.50 694.00		_	Section		
695.00			Section		
695.00 694.50 694.00			Section		
695.00 694.50 694.00			Section		
695.00 694.50 694.00 693.50			Section		
695.00 694.50 694.00 693.50 693.00			Section		
695.00 694.50 694.00 693.50			Section		
695.00 694.50 694.00 693.50 693.00			Section		
695.00 694.50 694.00 693.50 693.00			Section		
695.00 694.50 694.00 693.50 693.00 693.00			Section		
695.00 694.50 694.00 693.50 693.00 693.00			Section		

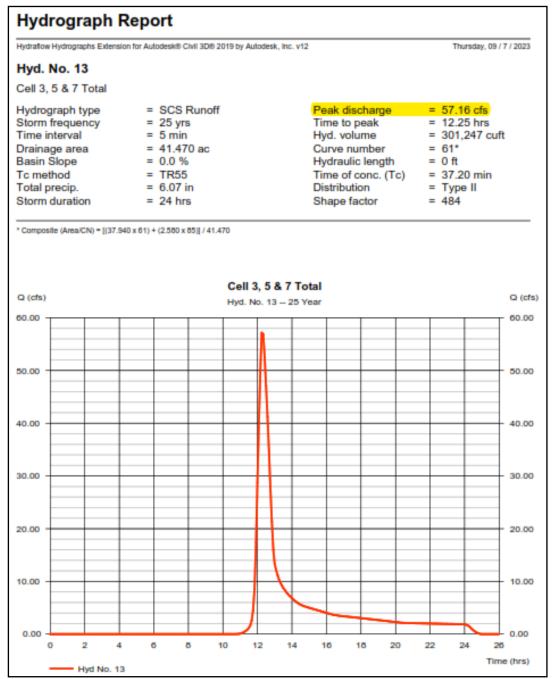
Channel Report 1B3

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 28 of 70

Hydrograph Report 1B


Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byDateCalculation Number
DC-BN- 735210-002Sheet
29 of 70Sheet

Map 1C


Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 30 of 70	

Hydrograph Report 1C

Project Plant Bowen Run-on Run-off Control	Prepared by	Date
Plant Bowen Run-on Run-off Control		
	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 31 of 70

Hydrograph Report 1Total

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 32 of 70	

	ographs Extension	n for Auto	desk® Civil	3D® 2019 by	Autodesk, Inc. v12				Monday	, 04 / 12 / 2021
Pond No. 1	- Cell 3 Sed F	Pond/C	lear Pool							
Pond Data										
Contours -Use	r-defined contour	areas. Co	onic method	l used for volu	me calculation. Begini	ng Elevation =	683.00 ft			
Stage / Stor	age Table									
Stage (ft)	Elevation (ft)	Contour a	rea (sqft)	Incr. Storage (cuft)	Total sto	rage (cuft)			
0.00	683.00		9.025		0		0			
1.00	684.00		53,992		28,361	28,				
2.00 2.50	685.00 685.50		57,714 59,604		55,837 29,325	84, 113,				
3.00	686.00		61,514		30,275	143,	799			
4.00 5.00	687.00 688.00		65,394 69,352		63,438 67,357	207. 274.				
6.00	689.00		73,388	3	71,353	345,	946			
7.00 7.50	690.00 690.50		77,502 79,590		75,428 39,268	421, 460,				
Culvert / Or	ifice Structure	es			Weir Structu					
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 36.00	0.00	0.00	0.00	Crest Len (ft)	= 28.28	0.00	0.00	0.00	
Span (in)	= 36.00	0.00	0.00	0.00	Crest El. (ft)	= 690.10	0.00	0.00	0.00	
No. Barrels	= 2	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33	
Invert El. (ft)	= 670.00	0.00	0.00	0.00	Weir Type	= 1				
Length (ft)	= 117.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%)	= 0.25	0.00	0.00	n/a						
M Malue	- 012	040	040							
	= .013 = 0.60	.013 0.60	.013	n/a 0.60	Exfil (in/br)	= 0.000 (by	(Contour)			
Orifice Coeff.	= .013 = 0.60 = n/a	0.60 No	0.60 No	0.60 No	Exfil.(in/hr) TW Elev. (ft) lyzed under iniet (ic) and outle	= 0.000 (by = 0.00		i for orflice co	nditions (ic) ar	nd submergence (s)
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orffice co	nditions (ic) ar	_
N-Value Orifice Coeff. Multi-Stage age (ft) 8.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage age (ft)	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orffice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage age (ft)	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage age (ft)	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orffice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage age (ft) 8.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (091.0
Orifice Coeff. Multi-Stage age (ft)	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orffice co	nditions (ic) ar	Elev (091.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (891.0 689.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (891.0 689.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (891.0 689.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (891.0 689.0
Age (ft) 8.00 6.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditions (ic) ar	Elev (091.0 089.0 689.0
Orifice Coeff. Multi-Stage	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0 089.0 689.0
Age (ft) 8.00 6.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0 089.0 689.0
Orifice Coeff. Multi-Stage 8.00 6.00 4.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0
Age (ft) 8.00 6.00	= 0.60	0.60 No	0.60 No	0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		i for orifice co	nditons (ic) ar	Elev (091.0 089.0 689.0

Design Calculations Prepared by Project Date 9/15/23 Plant Bowen Run-on Run-off Control Jeremy Brown Date 9/21/23 Subject/Title Reviewed by Provide run-on and run-off system Ashley Grissom calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 33 of 70

Drainage Area = 12.83 AC (See Map 3)

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 34 of 70	

<u>Cell 4</u>

```
Curve Number = 64 (See Table 1)
       10.84 AC @ CN 61 (Grass)
       1.49 AC @ CN 85 (Gravel)
      0.50 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool)
      ((10.84*61)+(1.49*85)+(0.50*98))/12.83 = 65.23 = 65
Time of Concentration = 20.51 Min (See TR55 Worksheet 2 and Map 4)
      Sheet Flow
              Manning's n-Value = 0.15 (Short Grass) (See Table 2)
             Flow Length = 167 LF
             Land Slope = (826.66-822.00)/167 = 0.0279 = 2.79%
       Shallow Concentrated
             Flow Length = 161 \text{ LF}
             Watercourse Slope = (822.00-820.90)/161 = 0.0068 = 0.68%
              Surface is Unpaved
       Channel Flow (See Channel Report 4)
              12" Dia. HDPE Downdrain Pipes
             Cross Sectional Area = 0.59 SF
             Wetted Perimeter = 1.98 LF
             Channel Slope = (820.90-723.50)/1089 = 0.0894 = 8.94%
             Manning's n-Value = 0.12 (HDPE Pipe)(See Table 4)
             Flow Length = 1089 LF
       Channel Flow (See Channel Report 5)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
             Cross Sectional Area = 5.07 SF
             Wetted Perimeter = 7.94 LF
             Channel Slope = (723.50-705.82)/1379 = 0.0128 = 1.28%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 1379 LF
       Channel Flow (See Channel Report 6)
             2 – 30" Dia. HDPE Pipes
             Cross Sectional Area = 0.70 SF
             Wetted Perimeter = 2.32 LF
```


besign curculations			
Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 35 of 70	

Channel Slope = (705.82-701.00)/60 = 0.0803 = 8.03%Manning's n-Value = 0.012 (HDPE Pipe) (See Table 4) Flow Length = 60 LF

Time Interval = 3 Min

Tc*0.1333 = 20.51*0.1333 = 2.73 = 3

Storm Distribution = Type II

 $Q_{25} = 30.10$ CFS (See Hydrograph Report 2)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
697	740	5,913	6,653	0*
698	16,648	6,917	23,565	14,245*
698.5	17,772	7,435	25,207	26,434*
699	18,906	7,962	26,868	39,450
700	21,203	9,045	30,248	67,988
701	23,539	10,168	33,707	99,947
702	25,915	11,330	37,215	135,390

*Dead Storage

Spillways

- Principal Spillway consists of a 66" Dia. Riser with a 42" Dia. HDPE Pipe.
- Auxiliary Spillway consist of a concrete lined trapezoidal weir that is 18' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 701.04 (See Pond Reports 3 & 4)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byCalculation Number
DC-BN- 735210-002Sheet
36 of 70

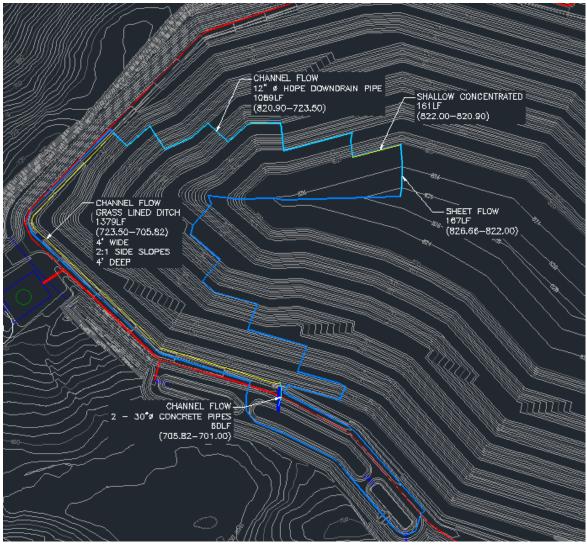
Мар 3

Prepared by	Date		
Jeremy Brown	9/15/23		
Reviewed by Ashley Grissom	Date 9/21/23		
Calculation Number DC-BN- 735210-002	Sheet 37 of 70		
	Jeremy Brown Reviewed by Ashley Grissom Calculation Number		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12

TR55 Tc Worksheet

Hyd. No. 16


Cell 4

Description	Δ		B		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 167.0 = 3.79 = 2.79		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 11.88	+	0.00	+	0.00	=	11.88
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 161.00 = 0.68 = Unpaved =1.33		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.02	+	0.00	+	0.00	=	2.02
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.59 = 1.98 = 8.94 = 0.012 =16.50 ({0})1089.0		5.22 8.02 1.28 0.030 4.21 1379.0		0.70 2.32 8.03 0.012 15.77 60.0		
Flow length (ft)	({0})1089.0		1379.0		60.0		
Travel Time (min)	= 1.10	+	5.45	+	0.06	=	6.62

TR55 Worksheet 2

Design Calculations Prepared by Date Project 9/15/23 Plant Bowen Run-on Run-off Control Jeremy Brown Subject/Title Reviewed by Date Provide run-on and run-off system Ashley Grissom 9/21/23 calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 38 of 70

Map 4

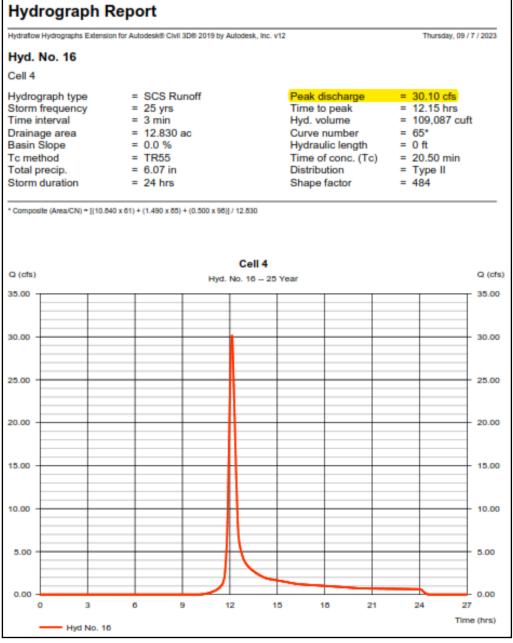
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 39 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD® Civil 3D	8 by Aufodesk, Inc.	Thursday, Sep 7 202
Cell 4 Downdrai	n		
Circular Diameter (ft)	= 1.00	Highlighted Depth (ft) Q (cfs)	= 0.70 = 9.560
Invert Elev (ft) Slope (%) N-Value	= 723.50 = 8.94 = 0.012	Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft)	= 1.00
Calculations Compute by: Known Q (cfs)	Known Q = 9.56	Top Width (ft) EGL (ft)	= 0.92 = 4.80
Elev (ft)		Section	
724.50			
		✓ ¥	
724.00			
724.00			

2 congin ouroundhons		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 40 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD® Civil 3D® by Au	odesk, Inc.	Sunday, Aug 20 2023
Cell 4 Ditch 1			
Trapezoidal Bottom Width (ft) Side Slopes (z:1) Total Depth (ft) Invert Elev (ft) Slope (%) N-Value	= 4.00 = 2.00, 2.00 = 4.00 = 704.73 = 1.28 = 0.030	Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	
Calculations Compute by:	Known Q	EGL (ft)	= 1.17
Known Q (cfs)			
Elev (ft)	5	Section	Depth (
00.00			4.27
00.00			3.27
			3.27
17.00			
17.00		*	2.27
86.00			2.27
17.00			2.27

Channel Report 5

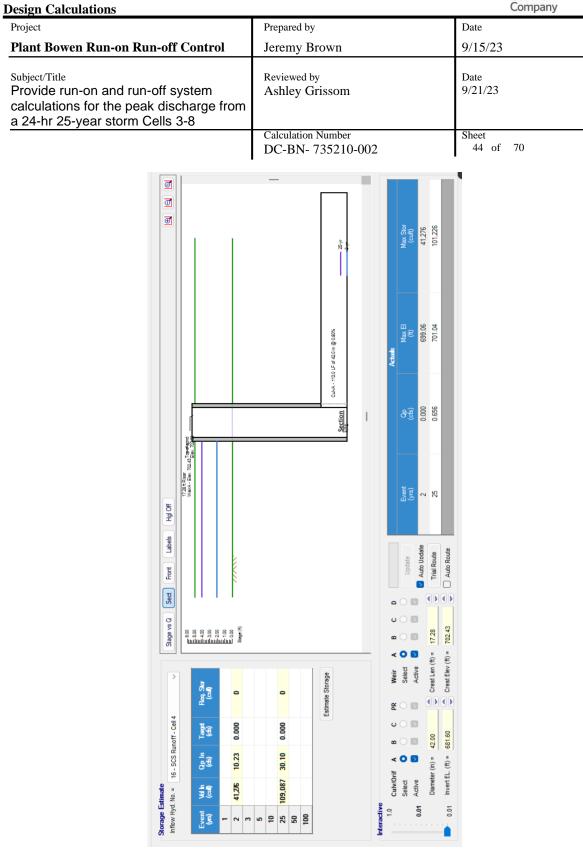


		1 3
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 41 of 70
	DC DI(755210 002	1

Hydraflow Express Extension fo	or Autodesk® AutoCAD®	Civil 3D® by Autodesk,	Inc.		Monday, Sep 18 202
Cell 4 Pipes					
Circular Diameter (ft)	= 2.50		Highlighted Depth (ft) Q (cfs)		= 0.50 = 10.85
Invert Elev (ft) Slope (%) N-Value	= 701.00 = 8.03 = 0.012		Area (sqft) Velocity (ft/s) Wetted Perim Crit Depth, Yo	(ft)	= 0.70 = 15.40 = 2.32 = 1.10 = 2.00
Calculations Compute by: Known Q (cfs)	Known Q = 10.85		Crit Depth, Yo Top Width (ft) EGL (ft)	1	= 4.19
21.70/2=10.85 Total Flow of 21.70 is o by 2 since there are 2					
Elev (ft))		Section		
704.00 —					
703.50 —					
703.00 —				\setminus	
702.50 —		(
702.00 —					
701.50 —		\setminus	<u> </u>		
701.00 —			\leftarrow		

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 42 of 70

Hydrograph Report 2



Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 43 of 70

Hydranow Hydro	ographs Extension	n for Auto	odesk® CM	II 3D® 2019 by	Autodesk, Inc. v12				Thursday	, 09 / 7 / 2023
Pond No. 2	- Cell 4 Sed F	ond/C	lear Poo							
Pond Data										
Contours -Use	r-defined contoura	areas. C	onic method	d used for volu	me calculation. Beginir	g Elevation =	097.00 ft			
Stage / Stor	age Table									
Stage (ft)	Elevation (ft)	Contour a	area (sqft)	Incr. Storage (cuft)	Total sto	rage (cuft)			
0.00	697.00		6,653		0		0			
1.00	698.00 698.50		23,565 25,207		14,245	14,2	245			
2.00	699.00		26,668	5	13,015	39,4	450			
3.00	700.00		30,248		28,538	67,				
4.00 5.00	701.00 702.00		33,707 37,215		31,959 35,443	99,1 135,1				
Culvert / Or	fice Structure				Weir Structu	res				
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 42.00	0.00	0.00	0.00	Crest Len (ft)	= 17.28	0.00	0.00	0.00	
Span (In)	= 42.00	0.00	0.00	0.00	Crest El. (ft)	= 702.43	0.00	0.00	0.00	
No. Barrels	= 1	0	0	0	Weir Coeff.	- 3.33	3.33	3.33	3.33	
Invert EI. (ft)	- 681.60	0.00	0.00	0.00	Weir Type	= 1				
Length (ft)	= 113.00 = 0.80	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%) N-Value	013	0.00	0.00	n/a n/a						
Orlfloe Coeff					Exfl (in/hr)	= 0.000 (by	Wet area)			
	= 0.60 = n/a	0.60 No	0.60 No	0.60 No	Exfil.(In/hr) TW Elev. (ft)	= 0.000 (by = 0.00 t (oc) control. Wein			nditions (ic) and	(submergence (s)
Ortfice Coeff. Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	f submergence (s). Elery (f
Multi-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			ndilona (ic) and	Elev (1
Multi-Stage age (ft)	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	
Multi-Stage age (fl)	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	Elev (1
Multi-Stage age (ft)	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	Elev (1
Mutti-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	Elev (1
Multi-Stage age (fl)	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditora (ic) and	Elev (1
Mutti-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditons (ic) and	Elev (1
Mutti-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (ic) and	Elev (1
Mutti-Stage age (fl) 5.00 4.00	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			ndiions (ic) and	Elev (1
Mutti-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	Elev (1
Mutti-Stage age (fl) 5.00 4.00	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	Elev (1
Mutti-Stage age (fl) 5.00 4.00	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditons (ic) and	Elev (1
Auti-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditons (ic) and	Elev (1 702.00 701.00 700.00
Mutti-Stage age (fl) 5.00 4.00	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditons (ic) and	Elev (1
Auti-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditons (ic) and	Elev (1 702.00 701.00 700.00
Auti-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	Elev (1 702.00 701.00 700.00
Auti-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditions (ic) and	Elev (1 702.00 701.00 700.00
Auti-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditons (ic) and	Elev (1 702.00 701.00 700.00
Autit-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (ic) and	Elev (1 702.00 701.00 700.00 699.00
Autit-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditons (ic) and	Elev (1 702.00 701.00 700.00 699.00
Autit-Stage	- 0.60	0.60 No	0.60 No	0.60 No	TW Elev. (ft)	- 0.00			nditors (ic) and	Elev (1 702.00 701.00 700.00 699.00

Pond	Report	3
------	--------	---

Pond Report 4

Drainage Area = 28.61 AC (See Map 5)

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 45 of 70

<u>Cell 6</u>

```
Curve Number = 64 (See Table 1)
       26.50 AC @ CN 61 (Grass)
       1.53 AC @ CN 85 (Gravel)
       0.58 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool)
       ((26.50^{\circ}61) + (1.53^{\circ}85) + (0.58^{\circ}98))/28.61 = 63.03 = 63
Time of Concentration = 47.04 Min (See TR55 Worksheet 3 and Map 6)
       Sheet Flow
              Manning's n-Value = 0.15 (Short Grass) (See Table 2)
              Flow Length = 300 LF
              Land Slope = (828.25-826.75)/300 = 0.0050 = 0.50%
       Shallow Concentrated
              Flow Length = 403 LF
              Watercourse Slope = (826.75-822.00)/403 = 0.0118 = 1.18%
              Surface is Unpaved
       Channel Flow (See Channel Report 7)
              18" Dia. HDPE Downdrain Pipes
              Cross Sectional Area = 1.01 SF
              Wetted Perimeter = 2.52 LF
              Channel Slope = (822.00-703.63)/1778 = 0.0666 = 6.66%
              Manning's n-Value = 0.12 (HDPE Pipe) (See Table 4)
              Flow Length = 1778 LF
       Channel Flow (See Channel Report 8)
              Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
              Cross Sectional Area = 7.95 SF
              Wetted Perimeter = 9.50 LF
              Channel Slope = (703.63-697.94)/810 = 0.0070 = 0.70%
              Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
              Flow Length = 810 LF
       Channel Flow (See Channel Report 9)
              5 – 30" Dia. HDPE Pipes
              Cross Sectional Area = 0.42 SF
              Wetted Perimeter = 1.92 LF
```


Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 46 of 70
		-

Channel Slope = (697.65-690.00)/79 = 0.0968 = 9.68%Manning's n-Value = 0.012 (HDPE Pipe) (See Table 4) Flow Length = 79 LF

Time Interval = 3 Min

Tc*0.1333 = 47.04*0.1333 = 6.27 = 7

Storm Distribution = Type II

Q₂₅ = 34.28 CFS (See Hydrograph Report 3)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
685	0	4,531	4,531	0*
686	20,795	5,195	25,990	13,790*
687	22,799	5,899	28,698	41,120
688	24,842	6,642	31,484	71,197
689	26,925	7,245	34,170	104,011
689.50	27,981	7,831	35,812	121,504

*Dead Storage

Spillways

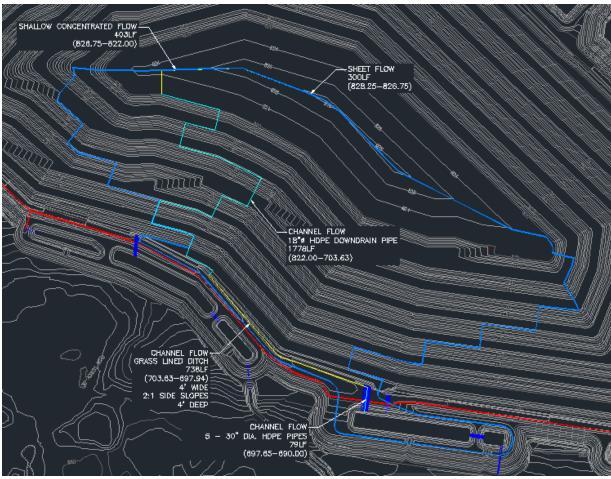
- Principal Spillway consists of a 36" Dia. Riser with two 24" Dia. HDPE Pipes.
- Auxiliary Spillway consist of a grass lined trapezoidal weir that is 8' wide with 3:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 688.25 (See Pond Reports 5 & 6)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byCalculation Number
DC-BN- 735210-002Sheet
47 of 70

Map 5

		Contract Contraction
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 48 of 70

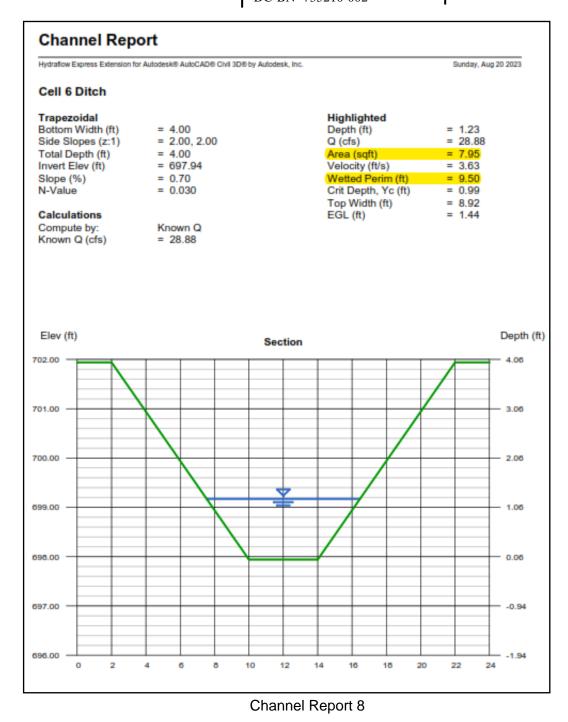

TR55 Tc Worksheet

	н	ydrafio	w Hydrographs	s Extens	sion for Autode	ask® C	wil 3D8 2019 by A
yd. No. 22							
ell 6							
escription	Δ		B		<u>c</u>		Totals
heet Flow							
Manning's n-value	= 0.150		0.011		0.011		
Flow length (ft)	= 300.0		0.0		0.0		
wo-year 24-hr precip. (in)	= 3.79		0.00		0.00		
and slope (%)	= 0.50		0.00		0.00		
avel Time (min)	= 37.75	+	0.00	+	0.00	=	37.75
hallow Concentrated Flow							
low length (ft)	= 403.00		0.00		0.00		
Vatercourse slope (%)	= 1.18		0.00		0.00		
Surface description	= Unpave	d	Paved		Paved		
Average velocity (ft/s)	=1.75		0.00		0.00		
avel Time (min)	= 3.83	+	0.00	+	0.00	=	3.83
nannel Flow							
(sectional flow area (sqft)	= 1.01		7.95		0.42		
Vetted perimeter (ft)	= 2.52		9.50		1.92		
hannel slope (%)	= 6.66		0.70		10.05		
lanning's n-value	= 0.012		0.030		0.012		
/elocity (ft/s)	=17.37						
			3.69				
					14.22		
Flow length (ft)	({0})1778.0)	810.0		79.0		
ravel Time (min)	= 1.71	+	3.66	+	0.09	=	5.46
otal Travel Time, Tc							47.04 min

TR55 Worksheet 3

Design Calculations Prepared by Project Date Plant Bowen Run-on Run-off Control 9/15/23 Jeremy Brown Subject/Title Provide run-on and run-off system Reviewed by Ashley Grissom Date 9/21/23 calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 49 of 70

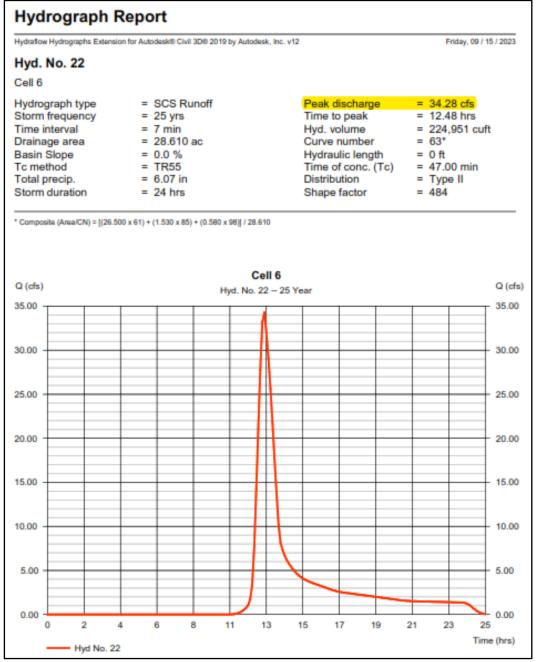
Map 6


Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 50 of 70

Hydraflow Express Extension	for Autodesk® AutoCAD®	vil 3D® by Autodesk, Inc.		Thursday, Sep 7 202
Cell 6 Downdrai	'n			
Circular Diameter (ft)	= 1.50		Highlighted Depth (ft) Q (cfs)	= 0.83 = 17.28
Invert Elev (ft)	= 703.63		Area (sqft) Velocity (ft/s)	= 1.01 = 17.18
Slope (%)	= 6.66		Wetted Perim (ft)	= 2.52
N-Value	= 0.012		Crit Depth, Yc (ft)	= 1.45
			Top Width (ft)	= 1.49
Calculations	KO		EGL (ft)	= 5.42
Compute by: Known Q (cfs)	Known Q = 17.28			
Elev (ft)				
Elev (it)		Sec	ction	
706.00		Sec	ction	
		Sec	tion	
		Sec	stion	
706.00		Sec	ction	
		Sec	ction	
706.00		Sec		
705.50		Sec	ction	
706.00		Sec	ction	
705.50		Sec	ction	
705.50		Sec	ction	
705.50		Sec	ction	
705.50		Sec	ction	
706.00 705.50 705.00 704.50		Sec	etion	
705.50		Sec	etion	
706.00 705.50 705.00 704.50		Sec	ction	
706.00 705.50 705.00 704.50		Sec	etion	
706.00 705.50 705.00 704.50		Sec	etion	
706.00 705.50 705.00 704.50		Sec	etion	
706.00 705.50 705.00 704.50		Sec	etion	

Channel Report 7

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 51 of 70

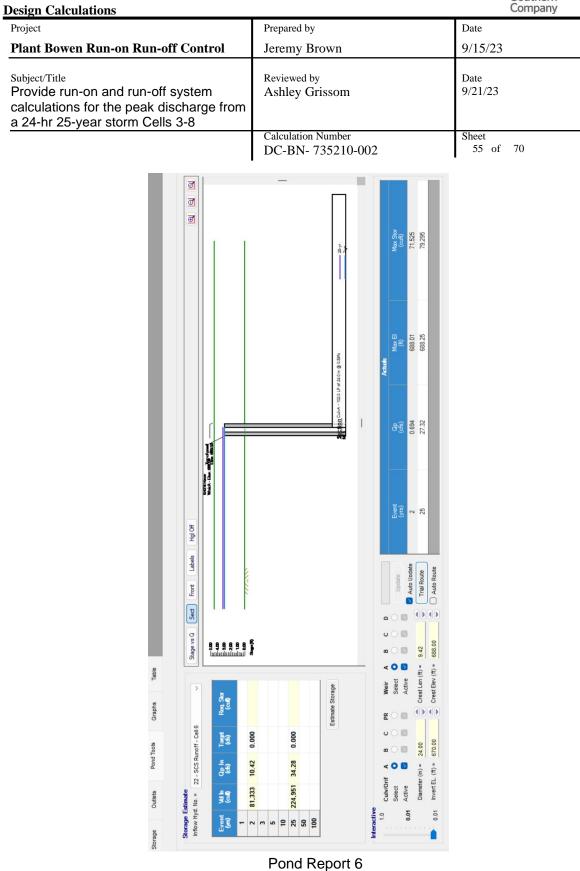

		1 3
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 52 of 70
	DC-DIN- 755210-002	52 01 70

Hydraflow Express Extension for	r Autodesk® AutoCAD®	Civil 3D® by Autodesk, Inc.		Monday, Sep 18 202
Cell 6 Pipes				
Circular Diameter (ft)	= 2.50		Highlighted Depth (ft) Q (cfs) Area (sqft)	= 0.35 = 5.780 = 0.42
Invert Elev (ft) Slope (%) N-Value	= 690.00 = 9.68 = 0.012		Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft)	= 13.6 ⁹
Calculations Compute by: Known Q (cfs)	Known Q = 5.78		Top Width (ft) EGL (ft)	= 1.74 = 3.26
28.92/5=5.78 Total Flow of 28.92 is d by 5 since there are 5 p	livided			
Elev (ft)			Section	
693.00				
692.50 —				
692.00 —				
		/		\land
691.50 —		1		
691.50 — 691.00 —				
			↓	
691.00 —				

Channel Report 9

Design Calculations		Contraction Provide State
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 53 of 70

Hydrograph Report 3



Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 54 of 70

Hydraflow Hydri	ographs Extension	n for Auto	desk® Civi	3D8 2019 by	Autodesk, Inc. v12				Friday,	09/15/2023
Pond No. 3	- Cell 6 Sed F	ond/Cl	ear Pool	1						
Pond Data										
Contours .Use	r-defined contour	areas. Co	nic method	l used for volu	me calculation. Beginin	g Elevation =	685.00 ft			
Stage / Stor	age Table									
Stage (ft)	Elevation (ft)	Contour a	irea (sqft)	Incr. Storage (cuft)	Total sto	rage (cuft)			
0.00	685.00		4,531		0		0			
1.00 2.00	686.00 687.00		25,990 28,698		13,790 27,330	13,3				
3.00	688.00		31,484		30,077	71,1	197			
4.00 4.50	689.00 689.50		34,170 35,812		32,815 17,492	104,0				
			30,612				004			
Culvert / Ori	ifice Structure				Weir Structu					
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in) Span (in)	= 24.00 = 24.00	0.00	0.00	0.00	Crest Len (ft) Crest El. (ft)	= 9.42 = 688.00	0.00	0.00	0.00	
span (in) No. Barrels	= 24.00	0.00	0.00	0.00	Weir Coeff.	= 688.00	3.33	3.33	3.33	
invert EL (ft)	= 670.00	0.00	0.00	0.00	Weir Type	= 1				
Length (ft)	= 102.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%)	= 0.59	0.00	0.00	n/a						
N-Value	= .013	.013	.013	n/a						
Orifice Coeff.										
	= 0.60 = n/a	0.60 No	0.60 No	0.60 No	Exfil.(in/hr) TW Elev. (ft) lyzed under inlet (ic) and outle	= 0.00	Wet area)	for orifice car	uditions (ic) an	d submergence (s).
Multi-Stage		No	No	No	TW Elev. (ft)	= 0.00		for orifice-cor	nditions (ic) an	d submergence (s).
		No	No	No	TW Elev. (ft)	= 0.00		for or filos con	uditions (ic) an	f submergence (s).
		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifica-con	ditons (ic) an	
Multi-Stage		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifica-con	uditions (ic) an	Elev (f
Multi-Stage 19e (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	ditions (ic) an	Elev (f
Multi-Stage 19e (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for online con	ditions (ic) and	Elev (ft
Multi-Stage 19e (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	nditions (ic) and	Elev (f
Multi-Stage 19e (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	ditions (ic) an	Elev (ft
99 (ft) 5.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for online con	ditions (ic) an	Elev (ft
99 (ft) 5.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for online con	ditors (c) av	Elev (ft
99 (ft) 5.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifica cor	nditions (c) an	Elev (ft
ge (ft)		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifica cor	nditions (c) an	Elev (ft
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice cor	nditions (ic) and	Elev (f
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	nditions (ic) and	Elev (f
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice cor	nditions (ic) an	Elev (f
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice cor	nditions (c) an	Elev (f 690.00 689.00 688.00
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice cor	nditions (c) an	Elev (f 690.00 689.00 688.00
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice-cor	nditions (c) an	Elev (f 690.00 689.00 688.00
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00		for orifice con	ditions (ic) and	Elev (f 690.00 689.00 688.00
ge (ft) 5.00 4.00 3.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00			aditions (ic) an	Elev (f 690.00 689.00 688.00 688.00
ge (ft) 5.00 4.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev (f 690.00 689.00 688.00 688.00
ge (ft) 5.00 4.00 3.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00			nditions (c) an	Elev (f 690.00 689.00 688.00 688.00
ge (ft) 5.00 4.00 3.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00			nditions (c) an	Elev (f 690.00 689.00 688.00 688.00
ge (ft) 5.00 4.00 3.00		No	No	No te outflows are and	TW Elev. (ft)	= 0.00				Elev (f 690.00 689.00 688.00

Pond Report 5

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 56 of 70

<u>Cell 8</u>

```
Drainage Area = 10.41 AC (See Map 7)
Curve Number = 64 (See Table 1)
      9.10 AC @ CN 61 (Grass)
      0.97 AC @ CN 85 (Gravel)
      0.34 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool)
      ((9.10*61)+(0.97*85)+(0.34*98))/10.41 = 64.44 = 64
Time of Concentration = 19.37 Min (See TR55 Worksheet 4 and Map 8)
       Sheet Flow
             Manning's n-Value = 0.15 (Short Grass) (See Table 2)
             Flow Length = 99 LF
             Land Slope = (806.00-805.10)/99 = 0.0091 = 0.91\%
       Channel Flow (See Channel Report 10)
              15" Dia. HDPE Downdrain Pipes
             Cross Sectional Area = 0.62 SF
             Wetted Perimeter = 1.97 LF
             Channel Slope = (805.10-696.77)/1541 = 0.0703 = 7.03%
             Manning's n-Value = 0.12 (HDPE Pipe)(See Table 4)
             Flow Length = 1541 LF
       Channel Flow (See Channel Report 11)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep
             Cross Sectional Area = 5.76 SF
             Wetted Perimeter = 8.34 LF
             Channel Slope = (696.77-692.14)/895 = 0.0052 = 0.52%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 895 LF
       Channel Flow (See Channel Report 12)
             Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 2' Deep
             Cross Sectional Area = 2.87 SF
             Wetted Perimeter = 6.50 LF
             Channel Slope = (692.14-688.00)/52 = 0.0796 = 7.96%
             Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3)
             Flow Length = 52 LF
```


Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 57 of 70

Time Interval = 3 Min

Tc*0.1333 = 19.37*0.1333 = 2.58 = 3

Storm Distribution = Type II

Q₂₅ = 27.43 CFS (See Hydrograph Report 4)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
685	0	6,230	6,230	0*
686	15,795	6,995	22,790	13,644*
687	17,149	7,789	24,948	37,502
688	18,542	8,642	27,184	63,558
689	19,975	9,525	29,500	91,889
689.50	20,706	9,981	30,687	106,933

*Dead Storage

Spillways

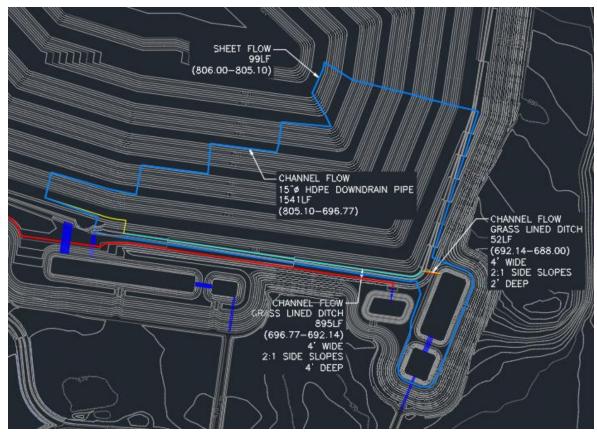
- Principal Spillway consists of a 36" Dia. Riser with two 24" Dia. HDPE Pipes.
- Auxiliary Spillway consist of a grass lined trapezoidal weir that is 8' wide with 3:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 688.03 (See Pond Reports 7 & 8)

Design CalculationsCompanyProjectPrepared byDatePlant Bowen Run-on Run-off ControlJeremy Brown9/15/23Subject/TitleReviewed byDateProvide run-on and run-off system
calculations for the peak discharge from
a 24-hr 25-year storm Cells 3-8Reviewed byCalculation Number
DC-BN- 735210-002Sheet
58 of 70

Map 7

Design Culculations			
Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 59 of 70	

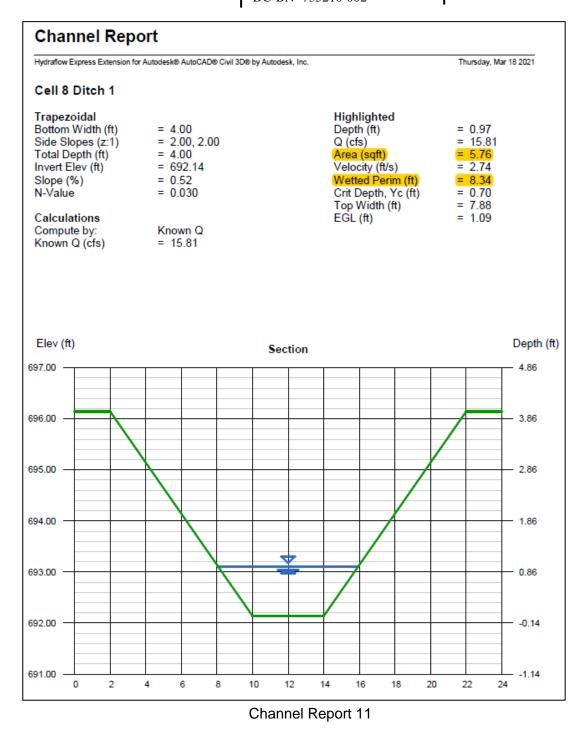

TR55 Tc Worksheet

	H	lydrafio	w Hydrographs	s Extern	sion for Autode	isk® C	MI 3D® 2019 by Au
Hyd. No. 28							
Cell 8							
Description	Δ		B		<u>c</u>		Totals
Sheet Flow							
Manning's n-value	= 0.150		0.011		0.011		
Flow length (ft)	= 99.0		0.0		0.0		
Two-year 24-hr precip. (in)	= 3.79		0.00		0.00		
Land slope (%)	= 0.91		0.00		0.00		
Travel Time (min)	= 12.24	+	0.00	+	0.00	=	12.24
Shallow Concentrated Flow							
Flow length (ft)	= 0.00		0.00		0.00		
Watercourse slope (%)	= 0.00		0.00		0.00		
Surface description	= Unpave	d	Paved		Paved		
Average velocity (ft/s)	=0.00		0.00		0.00		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Channel Flow							
X sectional flow area (sqft)	= 0.62		5.76		2.87		
Wetted perimeter (ft)	= 1.97		8.34		6.50		
Channel slope (%)	= 7.03		0.52		7.96		
Manning's n-value	= 0.012		0.030		0.030		
Velocity (ft/s)	=15.17						
			2.79				
					8.10		
		_					
Flow length (ft)	({0})1541.0	J	895.0		52.0		
Travel Time (min)	= 1.69	+	5.34	+	0.11	=	7.14
Total Travel Time, Tc							19.37 min

TR55 Worksheet 3

Design Calculations Prepared by Date Project Plant Bowen Run-on Run-off Control Jeremy Brown 9/15/23 Subject/Title Reviewed by Date Provide run-on and run-off system Ashley Grissom 9/21/23 calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 60 of 70

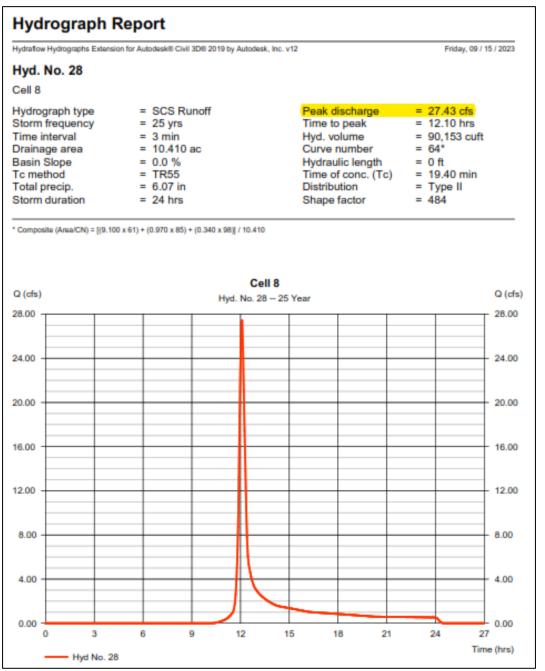
Map 8



Prepared by	Date
Jeremy Brown	9/15/23
Reviewed by Ashley Grissom	Date 9/21/23
Calculation Number DC-BN- 735210-002	Sheet 61 of 70
	Jeremy Brown Reviewed by Ashley Grissom Calculation Number

Hydraflow Express Extension fo	or Autodesk® AutoCAD® Civil 3D	8 by Autodesk, Inc.		Friday, Sep 15 2023
Cell 8 Downdrain	ı			
Circular			Highlighted	
Diameter (ft)	= 1.25		Depth (ft) Q (cfs)	= 0.63 = 9.380
nvert Elev (ft)	= 696.77		Area (sqft) Velocity (ft/s)	= 0.62 = 15.11
Slope (%)	= 7.03		Wetted Perim (ft)	
N-Value	= 0.012		Crit Depth, Yc (ft)	= 1.17
v-value	- 0.012		Top Width (ft)	= 1.17
Calculations			EGL (ft)	= 4.18
Compute by:	Known Q		202(0)	
Known Q (cfs)	= 9.38			
Elev (ft)	2	8	Section	
699.00				
698.50 -				
090.00				
698.00			<hr/>	+
		/		
		/		
		/		
807.50		/		
697.50 —		/ 		
697.50 —		/ 		
697.50 —		<u>∕</u> 		
697.50		/ 		
697.00 —				
697.00 —				
697.00 —				
697.00 —				

Prepared by	Date		
Jeremy Brown	9/15/23		
Reviewed by Ashley Grissom	Date 9/21/23		
Calculation Number DC-BN- 735210-002	Sheet 62 of 70		
	Jeremy Brown Reviewed by Ashley Grissom Calculation Number		

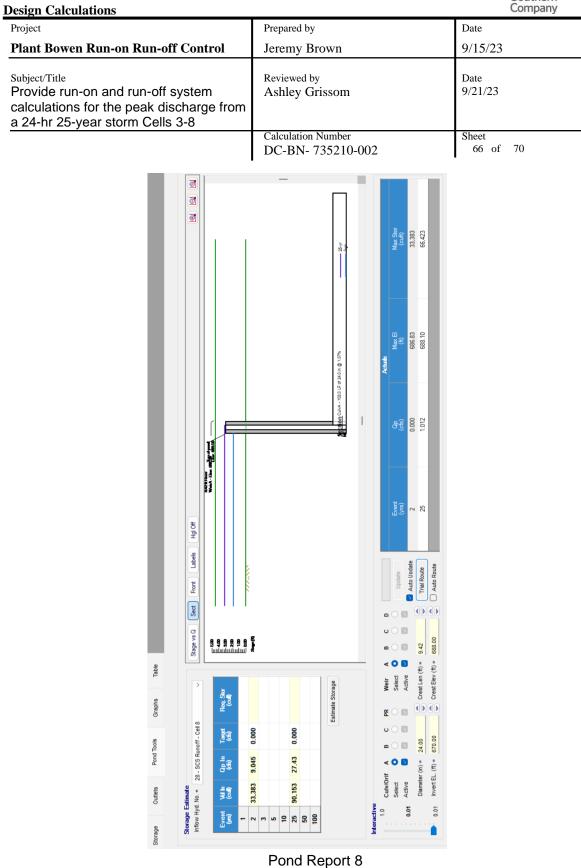

Design Culculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 63 of 70

Hydraflow Express Extension 1	ior Autodesk® AutoCAD® Civil 3D®	Autodesk, Inc. Ti	hursday, Mar 18 2021
Cell 8 Ditch 2			
Trapezoidal Bottom Width (ft) Side Slopes (z:1) Total Depth (ft) Invert Elev (ft) Slope (%) N-Value Calculations Compute by: Known Q (cfs)	= 4.00 = 2.00, 2.00 = 2.00 = 688.00 = 7.96 = 0.030 Known Q = 22.51	Q (cfs) = Area (sqft) = Velocity (ft/s) = Wetted Perim (ft) = Crit Depth, Yc (ft) = Top Width (ft) =	0.56 22.51 2.87 7.85 6.50 0.86 6.24 1.52
Elev (ft) 91.00		Section	Depth (
390.50			2.50
590.00 N			2.00
89.50			1.50
689.00			1.00
688.50			0.50
			0.00
88.00			

Channel Report 12

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 64 of 70

Hydrograph Report 4



Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 65 of 70

Hydraflow Hydro	ographs Extension	n for Aut	odesk® Civi	3D8 2019 by	Autodesk, Inc. v12				Friday, (09 / 15 / 2023
Pond No. 4	- Cell 8 Sed F	ond/C	lear Pool	1						
Pond Data										
Contours -User	r-defined contour	areas. C	onic method	l used for volu	me calculation. Beginin	g Elevation =	685.00 ft			
Stage / Stor	age Table									
Stage (ft)	Elevation (ation (ft) 0		rea (sqft)	Incr. Storage (cuft)	Total stor	rage (cuft)			
0.00	685.00		6,230		0		0			
1.00 2.00	686.00 687.00		22,790 24,948		13,644 23,858	13,644 37,502 63,558				
3.00	688.00		27,184		26,055					
4.00 4.50	689.00 689.50		29,500 30,687		28,331 15,044	91,8				
			30,667				V33			
Culvert / Ori	fice Structure				Weir Structu					
	[A]	[B]	[C]	[PrfRsr]		[A]	(B)	[C]	[D]	
Rise (in)	= 24.00 = 24.00	0.00	0.00	0.00	Crest Len (ft)	= 9.42 = 688.00	0.00	0.00	0.00	
Span (in) No. Barreis	= 24.00	0.00	0.00	0.00	Crest El. (ft) Weir Coeff.	= 688.00	3.33	3.33	3.33	
Invert EI. (ft)	= 670.00	0.00	0.00	0.00	Weir Type	= 1	0.00	0.00	0.00	
Length (ft)	= 103.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%)	= 1.07	0.00	0.00	n/a						
N-Value	= .013	.013	.013	n/a						
Orifice Coeff.										
	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)		Wet area)			
	= 0.60 = n/a	No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifice cor	nditions (ic) and	submergence (s)
Multi-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for or ilicae cor	rditions (ic) and	
Multi-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifica-cor	nditions (ic) and	Elev (
Multi-Stage age (ft)		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifice-cor	uditions (ic) and	Elev (
Multi-Stage age (ft)		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifice cor	utitions (ic) and	Elev (
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		ter oritica cor	nditions (ic) and	Elev (1
Multi-Stage age (ft)		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		ter orifica cor	ditors (c) and	Elev (
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor	uliions (ic) and	Elev (1
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifice cor	ditions (c) and	Elev (1
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		ter cellica cor	ditions (ic) and	Elev () 690.00 689.00
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		to orifice cor	utitions (ic) and	Elev (1
Multi-Stage Ige (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor	utitions (c) and	Elev () 690.00 689.00
Multi-Stage 199 (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifica cor	utitions (c) and	Elev () 690.00 689.00
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orifica cor	ditions (c) and	Elev (690.0 689.0 688.0
Multi-Stage Ige (ft) 5.00		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		ter orifica cor		Elev () 690.00 689.00
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00				Elev (690.0 689.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor	ditions (ic) and	Elev (690.0 689.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor		Elev (690.0 689.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00		for orfice cor		Elev (690.0 689.0 688.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00				Elev (1
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00				Elev (690.0 689.0 688.0 688.0
Autti-Stage		No	No	No te cutilove are ana	TW Elev. (ft)	= 0.00				Elev (690.0 689.0 688.0 688.0

Pond Report 7

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23
	Calculation Number DC-BN- 735210-002	Sheet 67 of 70

Table 2.1.5-1 Runoff C	urve Numbers ¹					
Cover description				numbe		ns
Cover type and		Average percent				
hydrologic condition		impervious area ²	А	в	с	D
Cultivated land:	without conservation		72 62	81 71	88 78	91 81
Pasture or range land	poor condition good condition		68 39	79 61	86 74	89 80
Meadow: good condition	n	30	58	71	78	
Wood or forest land:	thin stand, poor good cover	cover	45 25	66 55	77 70	83 77
Fair condition (earks, golf cours (grass cover <50%) grass cover 50% (grass cover > 7)	%) to 75%)	68 49 39	79 69 61	86 79 74	89 84 80
Paved parking (excluding right	lots, roofs, drivew l-of-way)	ays, etc.	98	98	98	98
right-of-way) Paved; open di	nd storm drains (tches (including r ng right-of-way) right-of-way)		98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 89
Urban districts: Commercial and busi Industrial		85% 72%	89 81	92 88	94 91	95 93
Residential districts 1/8 acre or less (town 1/4 acre 1/3 acre 1/2 acre 1 acre 2 acres		ze: 65% 38% 30% 25% 20% 12%	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82
Developing urban an Newly graded areas only, no vegetation)	(pervious areas		77	86	91	94
¹ Average runoff condition. ² The average percent imp follows, impervious areas a areas are considered equiv SCS method has an adjust ³ CNs shown are equivaler cover type.	ervious area shown w re directly connected t alent to open space in ment to reduce the effi	to the drainage system. Im good hydrologic condition ect.	pervious are If the impe	ervious are	CN of 98. Is not o	and pervicus onnected, the

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 68 of 70	

Surface Description	n
	-
Smooth surfaces (concrete, asphalt	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils	
Residue cover < 20%	0.06
Residue cover > 20%	0.17
Grass:	0, 11
Short grass prairie	0.15
Dense grasses ²	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods ³	
Light underbrush	0.40
Dense underbrush	0.80
	10
The n values are a composite of information by Engman (1986).	
Includes species such as weeping lovegrass, bluegrass, buffalo g	rass, blue grama grass, and native grass mixtures
When selecting n, consider cover to a height of about 0.1 ft. This obstruct sheet flow	-

Table 2

Design Calculations Prepared by Date Project Plant Bowen Run-on Run-off Control Jeremy Brown 9/15/23 Subject/Title Provide run-on and run-off system Reviewed by Ashley Grissom Date 9/21/23 calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8 Calculation Number Sheet DC-BN-735210-002 69 of 70

Ν

s n Values			Page	
3. linished, with gravel on bottom	0.015	0.017	0.020	
4. unfinished	0.014	0.017	0.020	
5. gunite, good section	0.016	0.019	0.023	
6. gunite, wavy section	0.018	0.022	0.025	
7. on good excavated rock	0.017	0.020		
8. on irregular excavated rock	0.022	0.027		
d. Concrete bottom float finish with sides of:				
1. dressed stone in mortar	0.015	0.017	0.020	
2. random stone in mortar	0.017	0.020	0.024	
3. cement rubble masonry, plastered	0.016	0.020	0.024	
4. cement rubble masonry	0.020	0.025	0.030	
5. dry rubble or riprap	0.020	0.030	0.035	
e. Gravel bottom with sides of:				
1. formed concrete	0.017	0.020	0.025	
2. random stone mortar	0.020	0.023	0.026	
dry rubble or riprap	0.023	0.033	0.036	
f. Brick				
1. glazed	0.011	0.013	0.01	
2. in cement mortar	0.012	0.015	0.01	
g. Masonry				
1. cemented rubble	0.017	0.025	0.03	
2. dry rubble	0.023	0.032	0.03	
h. Dressed ashlar/stone paving	0.013	0.015	0.01	
i Asphalt				
1. smooth	0.013	0.013		
2. rough	0.016	0.016		

Table 3

Project	Prepared by	Date	
Plant Bowen Run-on Run-off Control	Jeremy Brown	9/15/23	
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 3-8	Reviewed by Ashley Grissom	Date 9/21/23	
	Calculation Number DC-BN- 735210-002	Sheet 70 of 70	

ADS N-12 WT IB Pipe (per AASHTO) Specification

Scope

This specification describes 4- through 60-inch (100 to 1500 mm) ADS N-12 WT IB pipe (per AASHTO) for use in gravity-flow land drainage applications.

Pipe Requirements

ADS N-12 WT IB pipe (per AASHTO) shall have a smooth interior and annular exterior corrugations.

- 4- through 60-inch (100 to 250 mm) shall meet AASHTO M252, Type S
- 12-through 60-inch (300 to 1500 mm) pipe shall meet AASHTO M294, Type S or ASTM F2306
- Manning's "n" value for use in design shall be 0.012.

Joint Performance

Pipe shall be joined using a bell & spigot joint meeting the requirements of AASHTO M252, AASHTO M294, or ASTM F2306. The joint shall be watertight according to the requirements of ASTM D3212. Gaskets shall meet the requirements of ASTM F477. Gaskets shall meet the requirements of ASTM F477. Gaskets shall be installed by the pipe manufacturer and covered with a removable, protective wrap to ensure the gasket is free from debris. A joint lubricant available from the manufacturer shall be used on the gasket and bell during assembly. 12- through 60inch (300 to 1500 mm) diameters shall have an exterior bell wrap installed by the manufacturer.

Fittings

Fittings shall conform to AASHTO M252, AASHTO M294 or ASTM F2306. Bell and spigot connections shall utilize a welded bell and valley or saddle gasket meeting the watertight joint performance requirements of AASHTO M252, AASHTO M294 or ASTM F2306.

Field Pipe and Joint Performance

To assure watertightness, field performance verification may be accomplished by testing in accordance with ASTM F2487. Appropriate safety precautions must be used when field testing any pipe material. Contact the manufacturer for recommended leakage rates.

Material Properties

Material for pipe and fitting production shall be high-density polyethylene conforming with the minimum requirements of cell classification 424420C for 4- through 10-inch (100 to 250 mm) diameters, and 435400C for 12- through 60-inch (300 to 1500 mm) diameters, as defined and described in the latest version of ASTM D3350, except that carbon black content should not exceed 4%. The 12- through 60-inch (300 to 1500 mm) pipe material shall comply with the notched constant ligament-stress (NCLS) test as specified in Sections 9.5 and 5.1 of AASHTO M294 and ASTM F2306, respectively.

Installation

Installation shall be in accordance with ASTM D2321 and ADS' recommended installation guidelines, with the exception that minimum cover in trafficked areas for 4- through 48-inch (100 to 1200 mm) diameters shall be one foot (0.3 m) and for 60-inch (1500 mm) diameter, the minimum cover shall be two feet (0.6 m) in single run applications. Backfill for minimum cover situations shall consist of Class 1 (compacted), Class 2 (minimum 90% SPD) or Class 3 (minimum 95%) material. Maximum fill heights depend on embedment material and compaction level; please refer to Technical Note 2.01. Contact your local ADS representative or visit our website *adspipe.com* for a copy of the latest installation guidelines.

Build America, Buy America (BABA)

ADS N-12 WT IB pipe (per AASHTO), manufactured in accordance with AASHTO M252, AASHTO M294 or ASTM F2306, complies with the requirements in the Build America, Buy America (BABA) Act.

Pipe Dimensions*

Pipe I.D.	4	6	8	10	12	15	18	24	30	36	42	48	60
in (mm)	(100)	(150)	(200)	(250)	(300)	(375)	(450)	(600)	(750)	(900)	(1050)	(1200)	(1500)
Pipe O.D.	4.8 (122)	6.9	9.1	11.4	14.5	18	22	28	36	42	48	54	67
in (mm)		(175)	(231)	(290)	(368)	(457)	(559)	(711)	(914)	(1067)	(1219)	(1372)	(1702)

Technical and Project Solutions Calculation

Calculation Number: DC-BN-735210-003

Project/Plant:	Unit(s):	Discipline/Area:
Bowen	1 - 4	Civil
Title/Subject:		
Run-on and Run-off Study for Bowen Cells 9	& 10	
Purpose/Objective: To determine if the Cell's stormwater manage storm event.	ment can safely mana	age and pass the design
System or Equipment Tag Numbers: N/A	Originator: Jeremy Brown	-51er

Contents

		Attachments	# of
Торіс	Page	(Computer Printouts, Tech. Papers, Sketches, Correspondence)	Pages
Purpose of Calculation	1		1
Summary of Conclusions	1		1
Project Narrative	1-2		2
Methodology	2.		1
Assumptions/Criteria	2	• C	1
Design Inputs/References	3-9		7
Body of Calculation	10-23		14
Total # of pages including cover sheet & attachments:	24		

Revision Record

Rev. No.	Description	Originator Initial / Date	Reviewer Initial / Date	Approver Initial / Date
0	Issued for Review	JKB 2/12/21	AOG 3/1/21	JWM 6/7/21
1	Revised per as-builts	JKB 2/10/22	AOG 2/11/22	JWM 2/11/22

Notes:

8		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 1 of 23

Purpose of Calculation

The purpose of this calculation is to determine if the existing sedimentation ponds and clear pools can sufficiently handle run-on/run-off during a minimum 25-yr, 24-hr storm event per federal stormwater requirements Title 40 CFR Part 257.81 and the Georgia Environmental Protection Division's (EPD) Georgia CCR Rule (391-3-4-.10).

Summary of Conclusions

Based on our analysis, the detention pond system is adequate to collect and control the volume of water resulting from a 24-hour 25-year storm, as required.

Storage Pond Name	Normal Pool Elevation (feet, NAVD 88)	Maximum 25 year pool elevation (feet, NAVD 88)	Spillway/Top of Dike Elevation (feet, NAVD 88)	Freeboard to Spillway (feet, NAVD 88)
Clear Pool	697.00	701.44	703.50/706.00	2.06/4.56
Sedimentation Pond	697.00	701.44	703.50/706.00	2.06/4.56

Project Narrative

The Plant Bowen CCB Disposal Facility Cells 9 & 10 site is located in Bartow County and is approximately 1.5 miles East of Euharlee, Georgia and 6 miles southwest of Cartersville, Georgia. The plant is bordered on the north and east by the Etowah River and on the south and west by farmland.

Cells 9 & 10 cover 34.71 acres and are not divided by any means. (See Image 1).

Cells 9 & 10 are comprised of a 31.67 acres storage cell, 2.12 acres sedimentation pond, 0.92 acres clear pool, berms, access roads and ditches. (See Image 2) Cells 9 & 10 include a perimeter dike to control surface rainfall run-off. There is no stormwater run-on for these cells. Run-off from this area is directed through interior perimeter ditches and through $4 - 42^{"}$ diameter HDPE pipes into a sedimentation pond that is connected to a clear pool via two 54" diameter risers and two 36" diameter pipes. Stormwater from the clear pool is discharged through a 54" diameter riser and 42" diameter pipe.

The sediment pond and clear pool have identical auxiliary spillways that are concrete trapezoidal weirs. The auxiliary spillways are 24' wide with 6:1 side slopes and sloped at 1% in

Design Calculations		= = ,
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 2 of 23

the direction of flow with a 3:1 slope on the discharge channel at the downstream end. Following pages will show the analysis for Cells 9 & 10.

Leachate is collected separately from stormwater run-off in a sump. From there leachate is pumped to a 592,000 gallon leachate storage tank and then sent to the Low Volume Waste Treatment System.

Methodology

The stormwater flows were calculated using the National Resources Conservation Service method (also known as the Soil Conservation Service (SCS) method) using a 25-yr, 24-hr design storm event.

Storm basin calculation information was gathered from a number of sources to include the Georgia Stormwater Manual and Technical Release 55.

The National Resources Conservation Service (NCRS) provided information on the soil characteristics and hydrologic groups. The soil types found on the site are Etowah Loam and Waynesboro Clay Loam. (See Images 3 & 4). It was determined that the hydrological group "B" should be used to best reflect the characteristics of the soils on site.

Run-off curve number data was determined using Table 2.1.5-1 from the Georgia Stormwater Management Manual. Run-off coefficient data was determined by utilizing Table 2.1.5-2 from the Georgia Stormwater Management Manual and Manning's n for Channels (Chow, 1959).

Appendix B from the TR-55 was used to determine the rain distribution for Plant Bowen is Type II. (See Image 5)

NOAA Atlas 14 was used to determine the 24-hour precipitation for the design storm event of 25-yr for Plant Bowen is 6.07 in. (See Image 6)

Assumptions/Criteria

- Refer to Title 40 CFR Part 257.81 Hydrologic and hydraulic capacity requirements for the runon and run-off controls for CCR landfills.
- Other assumptions are listed on attached calculation sheets.

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 3 of 23

Design Inputs/References

- AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Hydrographs Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- Hydraflow Express Extension for AutoCad Civil 3D 2019, Autodesk, Inc.
- NOAA Atlas 14, Volume 9, Version 2 for Taylorsville, GA.
- Georgia SW Manual
- TR-55 Urban Hydrology for Small Watersheds, Appendix B, National Resources Conservation Service, Conservation Engineering Division, 1986.
- Georgia Power Company Plant Bowen CCB Disposal Facility Design and Operation Plans H15061 H15097, H15296 H15315 and H52258 H52260.
- Cells 9&10 As-built drawing from 2014 titled "13471-Plant Bowen-CCB Facility CELL9_10 2014.dwg"

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 4 of 23

Image 1

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 5 of 23

Image 2

Design Calculations Company Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/10/22 Subject/Title Reviewed by Date Provide run-on and run-off system calculations for the peak discharge from Ashley Grissom 2/11/22 a 24-hr 25-year storm Cells 9 & 10 Calculation Number DC-BN- 735210-003 (Rev1) Sheet 6 of 23

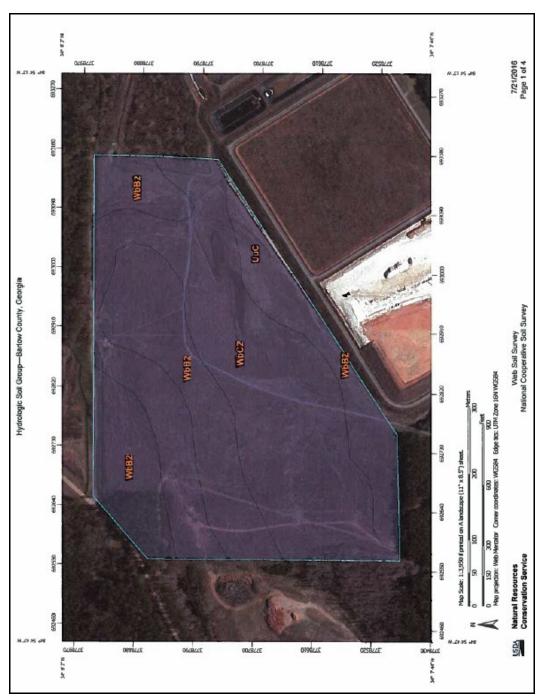


Image 3

Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 7 of 23

	rologic Soil Gr	oup		
Н	ydrologic Solt Group— Sur	nmary by Map Unit — B	artow County, Georgia (GA0	15)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
UuC	Urban land-Udorthents complex. 0 to 10 percent slopes		0.3	0.5%
WbB2	Waynesboro clay loam. 2 to 6 percent slopes. moderately eroded	в	25.4	46-6%
WbC2	Waynesboro clay loam. 6 to 10 percent slopes. moderately eroded	В	28.8	52.9%
Totals for Area of Inte	erest		54.5	100.0%
Group	• • •	and C/D). The group	r groups (A, B, C, and D) ps are defined as follows unoff potential) when tho	:
wet, T gravel Group consis soils ti have a Group chiefly soils o	A. Soils having a high hese consist mainly of ly sands. These soils having B. Soils having a mode at chiefly of moderately fin a moderate rate of wate C. Soils having a slow of soils having a layer	and C/D). The group infiltration rate (low r deep, well drained to ave a high rate of wa erate infiltration rate deep or deep, moderat e texture to moderat r transmission. infiltration rate wher that impedes the do	ps are defined as follows unoff potential) when tho p excessively drained sar	consist ater or

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 8 of 23

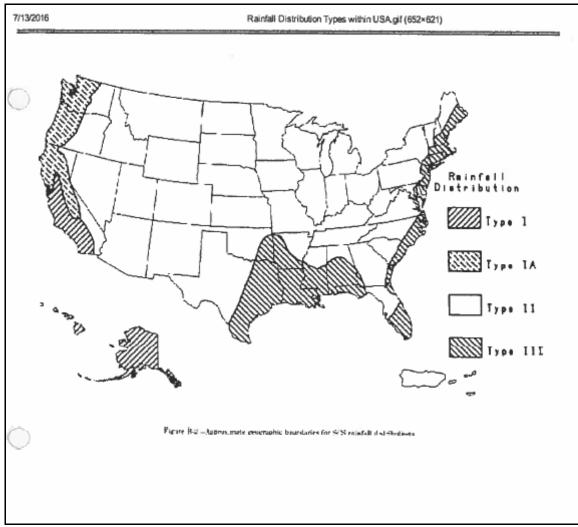


Image 5

Design Calculations		company		
Project	Prepared by	Date		
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22		
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22		
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 9 of 23		

cipitation Freque	ncy Data Serve	r						Page 1 of		
	NOAA Atlas 14, Volume B, Version 2 TAYLORSVILLE Station ID: 09-8600 Location name: Taylorsville, Georgia, US* Latitude: 34.0861*, Longitude: -84.9828* Elevation: Elevation: Elevation: POINT PRECIPITATION FREQUENCY ESTIMATES									
	Sanja Perica, Debo	rah Martin, Sendre Pavlov Uhruh, Michae NOAA, National Weathe	el Yekta, Geoffery	Bonnin		iluk, Dille				
		PE_tabular PF_g	raphical Mar	os & aeri	als					
r		PF	tabular							
PDS-based (oint precipitatio	COMPANY AND ADDRESS OF TAXABLE PARTY.				e interva	ls (in inc	hes) ¹		
Duration 1	2	5 10	25	50 50	ans) 100	200	500	1000		
5-min 0.406		568 0.662	0.804	0.924	1.05 (0.768-1.42)	1.19	1.39	1.55 (1.02-2.14)		
10-min 0.594 (0.471-0.7	0.679 0.1	831 0.969 (0.761-1.24)	1.18	1.35 1.02-1.80)	1.54 (1.12-2.07)	1.75 (1.23-2.38)	2.03 (1.38-2.81)	2.27 (1.50-3.14)		
15-min 0.725 (0.574-0.9		.01 1.18 9~1.30) (0.928-1.52)	1.44 (1.11-1.90) (1.65 1.24-2.19)	1.88 (1.37-2.53)	2.13 (1.50-2.90)	2.48 (1.68-3.43)	2.77 (1.83-3.83)		
30-min 1.02 (0.811-1.3		43 1.66 -1.83) (1.31-2.13)	2.02 (1.56-2.68) (2.33 1.75-3.09)	2.65 (1.94-3.57)	3.01 (2.12-4.11)	3.52 (2.39-4.85)	3.93 (2.60-5.44)		
60-min 1.33 (1.05-1.7		.85 2.15 -2.36) (1.69-2.76)	2.61 (2.01-3.45) (3.00 2.25-3.98)	3.41 (2.49-4.58)	3.86 (2.71-5.26)	4,49 (3.05-6.21)	5.01 (3.31-6.93)		
2-hr 1.64 (1.31-2.0		27 2,64 (2.10-3.34)	3.20	3.66	4.16 (3.08-5.52)	4.70 (3.36-6.33)	5.47 (3.77-7.48)	6.09 (4.09-8.32)		
3-hr 1.84 {1.49-2.3	0) (1.69-2.62) (2.05	.55 2.96 (2.37-3.71)	and the second s	4.07 3.12-5.28)	4.60 (3.43- 5.05)	5.18 (3.73-6.91)	6.00 (4.17-8.12)	6.66 (4.51-9.04)		
6-hr 2.27 (1.86-2.7		.10 3.57 (2.90-4.41)	4,26 (3.38-5.41) (4.82 3.75-6.16)	5.42 (4.10-7.02)	6.05 (4.42-7.96)	6.94 (4 90-9.27)	7.65 (5.27-10.3)		
12-hr 2.79 (2.32-3.3		.77 4,31 (3.54-5.25)	5,08 (4.08-6.34) (5.70 4.49-7.17}	6.36 (4.67-8,10)	7.04 (5.21-9.11)	7.99 (5.72-10.5)	8.73 (6,11-11,6)		
24-hr 3.34 (2.81-3.9		.54 5.18 -5.44) (4.32-6.21)	6,07 (4.93-7.43) (6.77 5.40-8.36)	7.48 (5.61-9.38)	8.22 (6.17-10.5)	9.21 (6.70-11.9)	9.98 (7.10-13.0)		
2-day 3.87 (3.29-4.5		34 6.10 (5.16-7.22)	7.14 (5.88-8.60) (7.95 6.42-9.65}	8.75 (6.85-10.5)	9.56 (7.27-12.0)	10.6 (7.84-13.6)	11.4 (8.27-14.6)		
3-day 4.24 (3.64-4.9		.76 6.56 (5.59-7.68)	7.66 (6.37-9.16)	8.53 6.95-10.3)	9.40 (7.47-11.5)	10.3 (7.92-12.6)	11.5 (8.57-14.6)	12.4 (9.06-15.9)		
4-day 4.56 (3.94-5.2		10 6.92 (5 93-8.06)	8.07 (6.76-9.61) (8.98 7.38-10.8)	9.92 (7 94-12.1)	10.9 (8.43-13.5)	12.2 (9.16-15.4)	13.2 (9.72-16.6)		
7-day 5.37 (4.69-6.1		.04 7.94 (6 88-9.14)	9.24 (7.84-10.9) (10.3 8.56-12.2)	11.3 (9.21-13.7)	12.5 (9.80-15.3)	14.0 (10.7-17.5)	15.2 (11.3-19.2)		
10-day 6.07 (5.34-6.6		.88 8.87 -8.97) (7.74-10.1)	10.3 (8.79-12.0)	11.4 9.58-13.5)	12.6 (10 3-15.1)	13.8 (11.0-16.8)	15.5 (11.9-19.3)	16.8 (12.7-21.1)		
20-day 8.08 (7.21-9.0	8.91 1	0.3 11.5 (10.2-12.9)	13.2 (11.5-15.2) (14.6 12.4-16.9)	16.0 (13.3-18.8)	17.4 (14.0+20.9)	19.4 (15.2-23.7)	21.0 (16.1-25.9)		
30-day 9.86 (8.87-10		2.5 13.9 (12.4-15.4)	15.8 (13.8-17.9) (17.3 14.9-19.8)	18.8 (15.8-22.0)	20.4 (16.6-24.2)	22.5 (17.8-27.3)	24.1 (18.7-29.5)		
45-day 12.2 (11.1-13.	13.5 1	5.4 17.1 (15.4-18.8)	19.3	20.9 18.1-23.7)	22.6 (19.1-26.1)	24.3 (19.9-28.5)	26.4 (21.1-31.7)	28.1 (22.0-34.1)		
60-day 14.4 (13.1-15	15.8 1	8.1 19.9 (18.1-21.8)	22.4	24.2 21.0-27.2)	25.9 (22.0-29.7)	27.7 (22.8-32.2)	29.8	31.4		
Numbers in parenthesi (for a given duration an bounds are not checke	¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked digating trobable maintum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.							cy estimates		
		B	ack to Top							
		PF	graphical							

Image 6

Body of Calculation

See detailed calculations and software output.

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 10 of 23

Drainage Area = 34.71 AC (See Map 1)

Curve Number = 64 (See Attached Table 1) 31.47 AC @ CN 61 (Grass) 2.48 AC @ CN 85 (Gravel) 0.76 AC @ CN 98 (Impervious – Liner in Sediment Pond and Clear Pool) ((31.47*61)+(2.48*85)+(0.76*98))/34.88 = 63.52 = 64Time of Concentration = 31.49 Min (See Attached TR55 Worksheet and Map 2) Sheet Flow Manning's n-Value = 0.15 (Short Grass) (See Table 2) Flow Length = 300 LF Land Slope = (805.50-799.00)/300 = 0.0217 = 2.17% Shallow Concentrated Flow Length = 353 LF Watercourse Slope = (799.00-744.54)/353 = 0.1543 = 15.43% Surface is Unpaved Channel Flow (See Channel Report 1) Grass Lined 4' Wide Ditch with 2:1 Side Slopes and 4' Deep Cross Sectional Area = 6.57 SF Wetted Perimeter = 8.79 LF Channel Slope = (744.54-704.46)/2773 = 0.0145= 1.45% Manning's n-Value = 0.030 (Vegetal Lining) (See Table 3) Flow Length = 2773 LF Channel Flow (See Channel Report 2) 4 – 42" Dia. HDPE Pipes @ 1.51% Cross Section Area = 1.85 SF Wetted Perimeter = 3.64 LF Channel Slope = (704.46-702.92)/102 = 0.0151 = 1.51% Manning's n-Value = 0.013 (HDPE Pipes) (See Table 4) Flow Length = 102 LFTime Interval = 3 Min Tc*0.1333 = 31.49*0.1333 = 4.20 = 5

Storm Distribution = Type II

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 11 of 23

 $Q_{25} = 65.64$ CFS (See Hydrograph Report 1)

To Evaluate for Storage Capacity, Treat The Sediment Pond and Clear Pool As One Pond Since They Are Interconnected.

Elevation	Sed. Pond Area	Clear Pool Area	Total Area	Volume
(FT)	(SF)	(SF)	(SF)	(CF)
695	0	9369	9369	0*
696	30,498	10,378	40,876	23,269*
697	32,804	11,426	44,230	65,807
698	35,149	12,514	47,663	111,738
699	37,533	13,640	51,173	161,141
700	39,956	14,806	54,762	214,093
701	42,419	16,012	58,431	270,674
702	44,921	17,256	62,177	330,962
703	47,462	18,540	66,002	395,036
703.5	48,748	19,197	67,945	428,518

Note: Stage storage is based on topographic information from 2020. *Dead Storage

Spillways

- Principal Spillway consists of a 54" Dia. Riser with a 42" Dia. HDPE Pipe.
- Auxiliary Spillways in the Clear Pool and Sediment Pond consist of a concrete trapezoidal weir that is 24' wide with 6:1 side slopes and sloped at 1% in the direction of flow with a 3:1 slope on the discharge channel at the downstream end.

High Water Elevation is 701.44 (See Pond Reports 1 & 2)

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 12 of 23

Map 1

Design Calculations		Company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 13 of 23

Table 2.1.5-1 Runoff C	urve Numbers ¹						
Cover description				Curve numbers for hydrologic soil groups			
Cover type and	A	verage percent					
hydrologic condition	in	npervious area ²	A	в	С	D	
Cultivated land:	without conservat with conservation		72 62	81 71	88 78	91 81	
Pasture or range land	poor condition good condition		68 39	79 61	86 74	89 80	
Meadow: good condition	n		30	58	71	78	
Wood or forest land:	thin stand, poor c good cover	over	45 25	66 55	77 70	83 77	
Open space (lawns, parks, golf courses, cemeteries, etc.) Poor condition (grass cover <50%) Fair condition (grass cover 50% to 75%) Good condition (grass cover > 75%) Impervious areas: Paved parking lots, roofs, driveways, etc.				79 69 61	86 79 74	89 84 80	
(excluding right			98	98	98	98	
right-of-way) Paved; open di	nd storm drains (e) tches (including rig ng right-of-way) ight-of-way)	•	98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 89	
Urban districts: Commercial and busi Industrial		85% 72%	89 81	92 88	94 91	95 93	
Residential districts by average lot size: 72.9 1/8 acre or less (town houses) 65% 1/4 acre 38% 1/3 acre 30% 1/2 acre 25% 1 acre 20% 2 acres 12%			77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82	
Developing urban areas and Newly graded areas (pervious areas only, no vegetation) 77 86 91 9					94		
¹ Average runoff condition, and I _a = 0.2S ² The average percent impervious area shown was used to develop the composite CNs. Other assumptions are as follows impervious areas are directly connected to the drainage system, impervious areas have a CN of 96, and pervious areas are considered equivalent to open space in good hydrologic condition. If the impervious area is not connected, the SCS method has an adjustment to reduce the effect. ³ CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space cover type.							

Design Calculations		Company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 14 of 23

TR55 Tc Worksheet							
	H	/drafio	w Hydrograph:	s Extens	sion for Autode	esk® Ci	vil 3D® 2019 by Autodesk, Inc. v12
Hyd. No. 1							
Cells 9 & 10							
Description	Α		B		<u>C</u>		Totals.
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 300.0 = 3.79 = 2.17		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 20.99	+	0.00	+	0.00	=	20.99
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 353.00 = 15.43 = Unpaved =6.34	1	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.93	+	0.00	+	0.00	=	0.93
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 6.57 = 8.79 = 1.45 = 0.030 =4.92		1.79 3.39 1.51 0.013 9.18		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})2773.0		102.0		0.0		
Travel Time (min)	= 9.39	+	0.19	+	0.00	=	9.58
Total Travel Time, Tc							31.49 min

TR55 Worksheet

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 15 of 23

Map 2

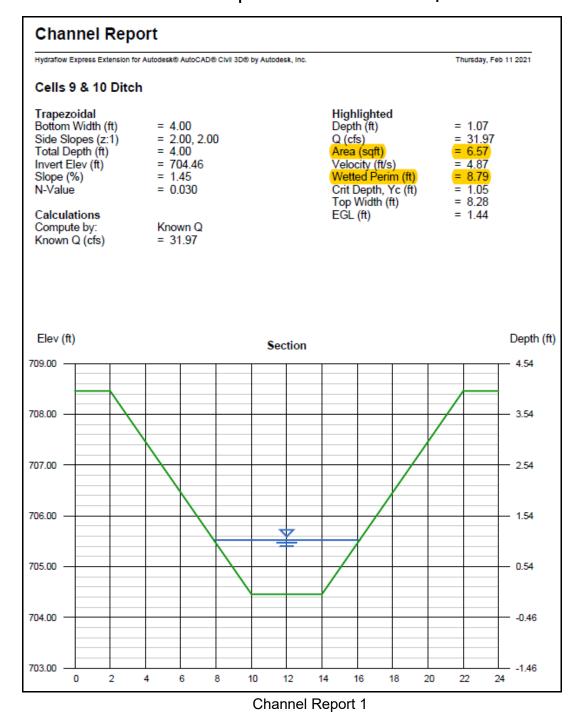

Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 16 of 23

Table 2.1.5-2 Roughness Coefficients (Manning's n) for Sheet Flow ¹
Surface Description	n
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils	
Residue cover < 20%	0.06
Residue cover > 20%	0.17
Grass:	2, 1 1
Short grass prairie	0.15
Dense grasses ²	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods	
Light underbrush	0.40
Dense underbrush	0,80
1 The purples are a comparing of information by Economy (1995).	
The n values are a composite of information by Engman (1986).	
Includes species such as weeping lovegrass, bluegrass, buffalo	-
When selecting n, consider cover to a height of about 0.1 ft. This obstruct sheet flow.	s is the only part of the plant cover that will
Source: SCS, TR-55, Second Edition, June 1986,	

Table 2

Design Calculations		
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 17 of 23

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 18 of 23

ng's n Values			Page
3. finished, with gravel on bottom	0.015	0.017	0.020
4. unfinished	0.014	0.017	0.020
5. gunite, good section	0.016	0.019	0.023
6. gunite, wavy section	0.018	0.022	0.025
on good excavated rock	0.017	0.020	
on irregular excavated rock	0.022	0.027	
d. Concrete bottom float finish with sides of:			
1. dressed stone in mortar	0.015	0.017	0.020
2. random stone in mortar	0.017	0.020	0.024
3. cement rubble masonry, plastered	0.016	0.020	0.024
4. cement rubble masonry	0.020	0.025	0.030
5. dry rubble or riprap	0.020	0.030	0.035
e. Gravel bottom with sides of:			
1. formed concrete	0.017	0.020	0.025
2. random stone mortar	0.020	0.023	0.026
dry rubble or riprap	0.023	0.033	0.036
f. Brick			
1. glazed	0.011	0.013	0.015
2. in cement mortar	0.012	0.015	0.018
g. Masonry			
1. cemented rubble	0.017	0.025	0.030
2. dry rubble	0.023	0.032	0.035
h. Dressed ashlar/stone paving	0.013	0.015	0.017
i. Asphalt			
1. smooth	0.013	0.013	
2. rough	0.016	0.016	
J. Vegetal lining	0.030		0.500

Table 3

Design Calculations		Company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 19 of 23

Hydraflow Express Extension for	Autodesk® AutoCAD® Civil 3D®	y Autodesk, Inc.	Thursday, Feb 10 2022
Cells 9 & 10 Pipe			
C ircular Diameter (ft)	= 3.50	Highlighted Depth (ft) Q (cfs)	= 0.86 = 16.41
Invert Elev (ft) Slope (%) N-Value	= 702.92 = 1.51 = 0.013	Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft)	= 1.24
Calculations Compute by: <mark>Known Q (cfs)</mark>	Known Q = 16.41	EGL (ft)	= 3.02 = 2.09
	Full Flow = 65.64 # Pipes = 4 Flow Per Pipe = 65.64/4 = 16.41		
Elev (ft)		Section	Depth (ft)
707.00			4.08
706.00			3.08
705.00			2.08
704.00		<u> </u>	1.08
703.00			0.08
702.00			-0.92
701.00	1 2	3 4 5	-1.92

Channel Report 2

Design Calculations		company
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 20 of 23

nning's n Values			Page 4
7. Concrete:		I	
Culvert, straight and free of debris	0.010	0.011	0.013
Culvert with bends, connections, and some debris	0.011	0.013	0.014
Finished	0.011	0.012	0.014
Sewer with manholes, inlet, etc., straight	0.013	0.015	0.017
Unfinished, steel form	0.012	0.013	0.014
Unlinished, smooth wood form	0.012	0.014	0.016
Unfinished, rough wood form	0.015	0.017	0.020
8. Wood:			
Stave	0.010	0.012	0.014
Laminated, treated	0.015	0.017	0.020
9. Clay:			
Common drainage tile	0.011	0.013	0.017
Vitrified sewer	0.011	0.014	0.017
Vitrilied sewer with manholes, inlet, etc.	0.013	0.015	0.017
Vitrified Subdrain with open joint	0.014	0.016	0.018
10. Brickwork:			
Glazed	0.011	0.013	0.015
Lined with cement mortar	0.012	0.015	0.017
Sanitary sewers coated with sewage slime with bends and connections	0.012	0.013	0.016
Paved invert, sewer, smooth bottom	0.016	0.019	0.020
Rubble masonry, cemented	0.018	0.025	0.030

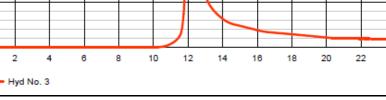
Table 4

30.00

20.00

10.00

0.00


26

Time (hrs)

- 1

24

70.00 Transformed and the second seco	Southerr Company
bject/Title rovide run-on and run-off system alculations for the peak discharge from 24-hr 25-year storm Cells 9 & 10 Calculation Number DC-BN- 735210-003 (Rev1) Calculation Number DC-BN- 735210-003 (Rev1) Sheet 21 of 23 Hydrograph Report Hydrafow Hydrograph Extension for Autodesk® Civil 30® 2019 by Autodesk, inc. v12 Hydr No. 3 Pipe Hydrograph type = SCS Runoff Storm frequency = 25 yrs Time ito peak Storm frequency = 5 min Drainage area = 34.710 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of Hydraulic length = 0 ft Storm duration = 24 hrs Curve number = 484 * Composite (ArealCN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710 Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe Q (efs) Pipe P	
Ashley Grissom 2/11/22 Ashley Grissom 2/11/22 24-hr 25-year storm Cells 9 & 10 Calculation Number DC-BN- 735210-003 (Rev1) Sheet 21 of 23 Hydrograph Report Thursday, 02/11/2 Hydrograph Report Hydrograph Report Thursday, 02/11/2 Hydrograph Report Thursday, 02/11/2 Hydrograph Report Hydrograph type SCS Runoff Peak discharge G5.64 cfs Storm frequency E SCS Runoff Drainage area Basin Slope Distribution Time of conc. (Tc) Type II Storm frequency Type I Time of conc. (Tc) Type II Storm duration Pipe Not 3.2 25 Year Q Yeight Start Yeight Start <	
Calculation Number DC-BN- 735210-003 (Rev1) Sheet 21 of 23 Hydrograph Report Thureday, 02 / 11 / 2 Hydrafow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v12 Thureday, 02 / 11 / 2 Hydr No. 3 Pipe Hydrograph type = SCS Runoff Pipe Fine to peak Hydrograph type = SCS Runoff Drainage area = 34.710 ac Drainage area = 34.710 ac Basin Slope = 0.0 % Hydraulic length = 0 ft Total precip. = 6.07 in Storm duration = 24 hrs ' composite (Area(CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710	
Pipe Hydraforw Hydrograph Stetension for Autodesk@ Civil 3D@ 2019 by Autodesk, Inc. v12 Thursday, 02 / 11 / 2 Hydr. No. 3 Pipe Peak discharge = 65,64 cfs Hydrograph type = SCS Runoff Peak discharge = 12.17 hrs Time interval = 5 min Hyd. volume = 300,595 cuft Drainage area = 34.710 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 31.50 min Total precip. = 6.07 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98]] / 34.710	
Hyd. No. 3 Pipe Hydrograph type = SCS Runoff Storm frequency = 25 yrs Time interval = 5 min Drainage area = 34,710 ac Basin Slope = 0.0 % Tc method = TR55 Time of conc. (Tc) = 31.50 min Total precip. = 6.07 in Storm duration = 24 hrs * Composite (Area/CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710	
Pipe Hydrograph type = SCS Runoff Peak discharge = 65.64 cfs Storm frequency = 25 yrs Time to peak = 12.17 hrs Time interval = 5 min Hyd. volume = 300,595 cuft Drainage area = 34.710 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 31.50 min Total precip. = 6.07 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710	2021
Storm frequency = 25 yrs Time to peak = 12.17 hrs Time interval = 5 min Hyd. volume = 300,595 cuft Drainage area = 34.710 ac Curve number = 64* Basin Slope = 0.0 % Hydraulic length = 0 ft Tc method = TR55 Time of conc. (Tc) = 31.50 min Total precip. = 6.07 in Distribution = Type II Storm duration = 24 hrs Shape factor = 484 * Composite (Area/CN) - [(31.470 x 61) + (2.480 x 85) + (0.760 x 98)] / 34.710 Pipe Q (cfs) Hyd. No. 3 - 25 Year 7 70.00	
Pipe Q (cfs) Hyd. No. 3 25 Year Q 70.00	
Q (cfs) Hyd. No. 3 25 Year Q	
	Q (cfs)
60.00	70.00
60.00	
	60.00
50.00	50.00
40.00	40.00

30.00

20.00

10.00

0.00

0

2

Hydrograph Report 1

Design Calculations		eepa,
Project	Prepared by	Date
Plant Bowen Run-on Run-off Control	Jeremy Brown	2/10/22
Subject/Title Provide run-on and run-off system calculations for the peak discharge from a 24-hr 25-year storm Cells 9 & 10	Reviewed by Ashley Grissom	Date 2/11/22
	Calculation Number DC-BN- 735210-003 (Rev1)	Sheet 22 of 23

	ographs Extensio	n for Auto	odesk® Civil	3D@ 2019 by	Autodesk, Inc. v12				Monday,	01/31/202
Pond No. 1	- Cell 9&10 S	ed Por	d/Clear F	Pool						
Pond Data										
Contours -Use	r-defined contour	areas. Co	onic method	used for volu	me calculation. Beginir	ng Elevation = (895. 00 f t			
Stage / Stor	age Table									
Stage (ft)	Elevation ((ft)	Contour a	rea (sqft)	Incr. Storage (cuft)	Total stor	rage (cuft)			
0.00	695.00 696.00		9,369		0 23,269	23.2	0			
2.00	697.00		40,876 44,230		42,538	65,8				
3.00	698.00		47,663		45,931	111,7	738			
4.00 5.00	699.00 700.00		51,173 54,762		49,403 52,952	161,1 214,0				
6.00	701.00		58,431		56,581	270,6				
7.00	702.00		62,177		60,288	330,9	962			
8.00 8.50	703.00 703.50		66,002 67,945		64,074 33,482	395,0 428,5				
Culvert / Ori	ifice Structur	es			Weir Structu	res				
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]	
Rise (in)	= 42.00	0.00	0.00	0.00	Crest Len (ft)	= 14.13	0.00	0.00	0.00	
Span (in)	= 42.00	0.00	0.00	0.00	Crest El. (ft)	= 701.40	0.00	0.00	0.00	
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33	
Invert El. (ft)	= 679.90	0.00	0.00	0.00	Weir Type	= 1				
Length (ft) Slope (%)	= 200.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No	
Slope (%)										
	= 2.45	0.00	0.00	n/a						
N-Value	= .013	.013	.013	n/a	F	- 0.000 /bu	Contour			
		.013 0.60 No	.013 0.60 No	n/a 0.60 No	Exfil.(in/hr) TW Elev. (ft)	= 0.000 (by = 0.00 t (oc) control. Weir		for orflice co	nditions (ic) an	i submergence (;
N-Value Orifice Coeff.	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orifice co	nditions (ic) an	
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for office co	nditions (ic) an	Elev 705.
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0 703.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0 703.0
N-Value Orifice Coeff. Multi-Stage age (ft) 10.00 8.00 6.00	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00		for orffice co	nditions (ic) an	Elev 705.0 703.0 703.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 703.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 703.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 701.0 699.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 701.0 699.0
N-Value Orifice Coeff. Multi-Stage	= .013 = 0.60	.013 0.60 No	.013 0.60 No	n/a 0.60 No e outflows are ana	TW Elev. (ft)	= 0.00			nditions (ic) an	Elev 705.0 703.0 701.0 699.0

Pond Report 1

Design Calculations Project Prepared by Date Plant Bowen Run-on Run-off Control Jeremy Brown 2/10/22 Subject/Title Reviewed by Date Provide run-on and run-off system calculations for the peak discharge from 2/11/22Ashley Grissom a 24-hr 25-year storm Cells 9 & 10 Calculation Number Sheet 23 of 23 DC-BN-735210-003 (Rev1) > đ ₫ € Max Stor (cuft) 111.312 297.335 697.99 701.44 Max El (ft) - 200.0 LF of 42.0 in @ 2.45% child - Avla 0.000 1.254 Weith-Day, 2016 Law, 2010 Event (yrs) 25 25 Hol Off Labels Front Sect 0 υ Stage vs Q 701.40 14.13 8 < 🖲 🗖 Crest Len (ft) = Crest Elev (ft) = Weir Select Active > Estimate Storage Req. Star (cul) 0 0 ()() Inflow Hyd. No. = 1 - SCS Runoff - Cells 9 & 10 **K** O D U 0.000 0.000 679.90 42.00 8 65.64 20.90 а В < 🖲 🗖 = (u) =(1)= Invert EL. Culv/Orit 111.312 300,995 Diameter Select A P Activ Storage Estimate 0.01 0.01 2 2 5 50 100 (vent .

Pond Report 2