VOLUNTARY REMEDIATION PROGRAM APPLICATION

Former Seaboard Freight Station 703 Louisville Road Savannah, Chatham County, Georgia

> May 14, 2019 Terracon Project No. ES187351

> > **Prepared for:**

WEDP FUND I, LLC Atlanta, Georgia

and

Georgia Environmental Protection Division Atlanta, Georgia

Prepared by:

Terracon Consultants, Inc. Savannah, Georgia

May 14, 2019

Georgia Environmental Protection Division Response and Remediation Program Land Protection Branch 2 Martin Luther King, Jr. Drive, SE Suite 1054, East Tower Atlanta, Georgia 30334

- Attn: Mr. Gordon Terhune / Environmental Engineer E: gordon.terhune@dnr.ga.gov
- Re: Voluntary Remediation Program Application Former Seaboard Freight Station 703 Louisville Road Savannah, Chatham County, Georgia Terracon Project No. ES187351

Dear Mr. Terhune:

On behalf of WEDP Fund I, LLC, Terracon Consultants, Inc. (Terracon) is submitting this Voluntary Remediation Program (VRP) Application and Voluntary Investigation and Remediation Plan (VIRP) for the above-referenced facility. The VRP Application and VIRP have been completed in general accordance with the Georgia Voluntary Remediation Program Act (O.C.G.A. § 12-8-100). The VRP Application fee is attached.

If you have any questions concerning this document, please contact us at (912) 629 4000.

Sincerely, Terracon Consultants, Inc.

Justin J. Johnson, PG Senior Geologist

Environmental

Stewart A. Dixon, PG Principal / Environmental Department Manager

Geotechnical

Materials

cc: Georgia EPD (1 hard copy; 2 electronic copies) Client (1 electronic copy)

Terracon Consultants, Inc. 2201 Rowland Avenue Savannah, Georgia 31404 P (912) 629 4000 F (912) 629 4001 terracon.com

Facilities

TABLE OF CONTENTS

1.0	INTRC 1.1 1.2 1.3	DUCTION 1 Purpose 1 Property Eligibility 1 Participant Eligibility 2
2.0	BACK 2.1 2.2 2.3	GROUND
3.0	Previc 3.1 3.2 3.3	Phase I Environmental Site Assessment.3Limited Phase II Environmental Site Assessment33.2.1 Soil.43.2.2 Groundwater4Additional Site Investigation43.3.1 Soil.5
4.0	PREL 4.1 4.2 4.3 4.4 4.4	IMINARY CONCEPTUAL SITE MODEL5Geologic Setting.54.1.1 Regional Geology.64.1.2 Regional Hydrogeology84.1.3 Site Geology.94.1.4 Site Hydrogeology9Contaminants of Potential Concern.9Potential Environmental Receptors114.3.1 Human Receptors114.3.2 Ecological Receptors11Potential Exposure Pathways.124.4.1 Drinking Water.124.4.2 Soil Ingestion, Inhalation, or Direct Contact.124.4.3 Groundwater Ingestion, Inhalation, or Direct Contact.124.4.4 Vapor Intrusion134.4.5 Surface Water / Sediment13Fate and Transport Modeling13Cleanup Standards13
5.0	VRP II 5.1	NVESTIGATION PLAN
6.0	REME 6.1	DIATION PLAN
7.0	MILES	TONE SCHEDULE
8.0	REFE	RENCES

APPENDICES

APPENDIX A	VRP APPLICATION AND CHECKLIST					
APPENDIX B	TAX PLAT AND WARRANTY DEED					
APPENDIX C	FIGURES					
Figure 1:	Site Vicinity Map					
Figure 2:	Topographic Map					
Figure 3:	Site Diagram					
Figure 4:	Sample Location Map					
Figure 5:	Proposed Sample Location Map					
APPENDIX D	TABLES					
Table 1:	Summary of Soil Analytical Results					
Table 2:	Summary of Groundwater Analytical Results					
Table 3:	Summary of Field Screening Results					
APPENDIX E	LABORATORY ANALYTICAL RESULTS					
APPENDIX F	MILESTONE SCHEDULE					

VOLUNTARY REMEDIATION PROGRAM APPLICATION

Former Seaboard Freight Station 703 Louisville Road Savannah, Chatham County, Georgia

> Terracon Project No. ES187351 May 14, 2019

1.0 INTRODUCTION

Terracon Consultants, Inc. (Terracon) has prepared this Voluntary Remediation Program (VRP) Application and Voluntary Investigation and Remediation Plan (VIRP) on behalf of West End Development Partners (WEDP) Fund I, LLC (property owner) for the Former Seaboard Freight Station located at 703 Louisville Road in Savannah, Chatham County, Georgia (Property).

This VRP Application and VIRP have been completed in general accordance with the Georgia Voluntary Remediation Program Act (O.C.G.A. § 12-8-100). The VRP Application and Checklist are provided in Appendix A. The tax map and warranty deed documentation for the property are included in Appendix B. A Site Vicinity Map (Figure 1) and Site Topographic Map (Figure 2) are included in Appendix C.

1.1 Purpose

The purpose of this document is to provide justification for enrollment of the property into the VRP by presenting a current understanding of site conditions based on existing data and a plan for site remediation.

1.2 **Property Eligibility**

Under O.C.G.A § 12-8-105, the following criteria must be met in order to be considered a qualifying property for the VRP:

- 1. The property must be listed on the inventory under Part 2 of this article or be a property which meets the criteria of O.C.G.A. § 12-8-105 or otherwise have a release of regulated substances into the environment;
- 2. The property shall not:
 - a. Be listed on the federal National Priorities List pursuant to the federal Comprehensive Environmental Response, Compensation, and Liability Act, 42 U.S.C. § 9601, et seq;

- b. Be currently undergoing response activities required by an order of the regional administrator of the federal Environmental Protection Agency; or
- c. Be a facility required to have a permit under O.C.G.A. § 12-8-66
- 3. Qualifying the property under this part would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or similar authorization from the United States Environmental Protection Agency; and
- 4. Any lien filed under subsection (e) of O.C.G.A. § 12-8-96 or subsection (b) of O.C.G.A. § 12-13-12 against the property shall be satisfied or settled and released by the director pursuant to O.C.G.A. § 12-8-94 or O.C.G.A. § 12-13-6.

Based on the criteria listed above, the Former Seaboard Freight Station is a "qualifying property" under the VRP.

1.3 Participant Eligibility

Under O.C.G.A. § 12-8-106, the following criteria must be met in order for the participant to meet the qualifications of the VRP:

- 1. Be the property owner of the voluntary remediation property or have express permission to enter another's property to perform corrective action including, to the extent practical, implementing controls for the site pursuant to written lease, order, or indenture;
- 2. Not be in violation of any order, judgment, statute, rule, or regulation subject to the enforcement authority of the director; and
- 3. Meet other such criteria as may be established by the board pursuant to O.C.G.A. § 12-8-103.

The participant, WEDP Fund I, LLC, meets all of the criteria stated above, and is therefore "qualified" under the VRP. The contact for the applicant and owner of the site is as follows:

WEDP Fund I, LLC Mr. Robert DeMoura / Property Owner 1835 High Trail Atlanta, Georgia 30339 (843) 670 0955 Voluntary Remediation Program Application Former Seaboard Freight Station Savannah, Chatham County, Georgia May 14, 2019 Terracon Project No. ES187351

2.0 BACKGROUND

2.1 Site Description

The site is a single parcel (Parcel ID No. 2-0030-05-001) consisting 1.64 acres zoned as planned residential institutional professional medium density (P-RIP-D) land located at 703 Louisville Road in the City of Savannah, Chatham County, Georgia. The site is improved with an approximately 15,390-square foot, single story brick and concrete structure with a concrete paved parking lot. A diagram of the site is shown on Figure 3 in Appendix C.

2.2 Site History

In the mid-1910s, the site was occupied by the South Atlantic Packing & Provision Company. Onsite structures included cold storage buildings, dry storage buildings, freezing tanks, ammonia condensers, water tanks, ice machines, a roller house, and a sausage grinding room. By the late 1920s, the site was developed with the Seaboard freight depot building and associated railroad tracks. By the early 1990s, the railroad tracks were removed, and the former Seaboard freight depot building was converted to commercial use.

2.3 Compliance Status

Based on the results of previous site investigations, WEDP Fund I, LLC submitted a Release Notification/Reporting Form with a 90-day Listing Deferral Extension Request to Georgia Environmental Protection Division (EPD) on August 31, 2018. It is Terracon's understanding that the Georgia EPD reviewed this release notification and approved the 90-day deferment.

3.0 PREVIOUS INVESTIGATIONS

3.1 Phase I Environmental Site Assessment

A Limited Phase I Environmental Site Assessment (ESA) was conducted for the site by Dominion Due Diligence Group (D3G). D3G identified various historical activities at the site as recognized environmental conditions (RECs), including a rail spur, Seaboard Freight Depot, S.A.L. RY Motor Freight Station, and railroad tracks.

3.2 Limited Phase II Environmental Site Assessment

A Limited Phase II ESA was performed by D3G in June 2018 to determine if historical operations identified in the Phase I ESA have impacted the environmental integrity of the site. As part of the Phase II ESA, six (6) soil borings (denoted as SB-1 through SB-6) were advanced at the site. A

total of eight (8) soil samples were selected from the six (6) borings for laboratory analysis. Four borings (denoted as SB-1 though SB-4) were converted into temporary monitoring wells to facility the collection of groundwater samples for laboratory analysis. D3G sample locations are depicted on Figure 4 in Appendix C.

3.2.1 Soil

The six soil samples were analyzed for one or more of the following: volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), Resource Conservation and Recovery Act (RCRA) 8 metals, and/or total petroleum hydrocarbons (TPH) – gasoline range organics (GRO) and diesel range organics (DRO).

Benzene was detected at a concentration of 0.0822 milligrams per kilogram (mg/kg) in the soil sample collected from soil boring SB-3 at a depth of 4 to 5 feet below ground surface (bgs). This benzene detection exceeds the Georgia EPD Hazardous Site Response Act (HSRA) Type 1 risk reduction standard (RRS) of 0.0511 mg/kg. Additionally, benzo(a)pyrene was detected at a concentration of 2.04 mg/kg in the shallow soil sample (1 - 2 feet bgs) collected from soil boring SB-3. This benzo(a)pyrene detection exceeds the Type 1 RRS of 1.15 mg/kg. No other constituents of potential concern (COPCs) were detected at concentrations exceeding Type 1 RRS. Benzene and benzo(a)pyrene detections exceeding Type 1 RRS in the soil are shown on Figure 4 in Appendix C. A summary of soil analytical results is included in Table 1 of Appendix D. The laboratory analytical report is provided in Appendix E.

3.2.2 Groundwater

No COPCs were detected in the three (3) groundwater samples at concentrations exceeding Type 1 RRS. A summary of groundwater analytical results is included in Table 2 of Appendix D. The laboratory analytical report is provided in Appendix E.

3.3 Additional Site Investigation

On January 11, 2019, Terracon completed additional site investigation activities to further delineate the horizontal and vertical extent of soil contamination at the site. Soil borings were initially completed at 10 to 30 foot intervals in each cardinal direction from boring SB-3. The delineation borings are bounded by the existing building to the north, wooded area to the east, the Springfield Canal to the south, and D3G boring SB-2 to the west. The soil boring locations are depicted on Figure 4 in Appendix C.

The soil borings were advanced with a stainless-steel hand auger to depths ranging from 1 to 4 feet bgs. Each boring was completed to the top of the saturated zone (approximately 4 feet bgs) unless buried debris (i.e., bricks, concrete, cinder, and coal slag) prevented further advancement

of the hand auger at shallower depths. Soil samples were collected at 1 foot intervals and screened for organic vapors with a photo-ionization detector (PID). Field screening results are presented in Table 3 in Appendix D.

Surface (0.5 to 1.0 feet bgs) and subsurface (> 1 feet bgs) soil samples were collected for laboratory analysis from two borings in each cardinal direction from SB-3. The soil samples selected for analysis were placed in laboratory prepared containers, labeled, and stored on ice in insulated coolers secured with custody seals. The sealed coolers were hand delivered to Avery Laboratories and Environmental Services, LLC (NELAC No. E87941) in Savannah, Georgia. The soil samples were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) by USEPA Method 8260 and PAHs by USEPA Method 8270.

3.3.1 Soil

Soil analytical results were compared to Type 1 RRS. Benzo(a)pyrene was detected at concentrations exceeding Type 1 RRS (1.15 mg/kg) in soil samples B-3-N-4-2 (3.66 mg/kg), B-3-W-7-1 (2.00 mg/kg) and B-3-W-7-2 (1.48 mg/kg). No other BTEX or PAH parameters were detected at concentrations exceeding Type 1 RRS in the 16 soil samples submitted for laboratory analysis. Benzo(a)pyrene detections exceeding Type 1 RRS in the soil are shown on Figure 4 in Appendix C. Soil analytical results and applicable Type 1 RRS are summarized in Table 1 in Appendix D. The laboratory analytical report is provided in Appendix E.

4.0 PRELIMINARY CONCEPTUAL SITE MODEL

A preliminary CSM has been developed using data collected during previous site investigations and information obtained from reviews of published literature. It is intended that the CSM will be updated as new information is gathered for the site. The CSM illustrates the site's surface and subsurface setting; potential human health and ecological receptors; and the complete and incomplete exposure pathways that exist for the site.

4.1 Geologic Setting

The following subsections summarize the regional and site-specific geomorphic, stratigraphic, and hydrogeologic settings. Geologic data for this area are based on numerous published reports, previous environmental studies conducted at the site, and discussions with other researchers familiar with the geology and hydrogeology of the area.

4.1.1 Regional Geology

The site is located in the Coastal Plain physiographic province of Georgia. The stratigraphy of the Coastal Plain of Georgia and Chatham County has been described by numerous authors (e.g., Herrick, 1961; Herrick and Vorhis, 1963; Counts and Donsky, 1963; Furlow, 1969; Chowns and Williams, 1983; Clarke et al., 1990; Weems and Edwards, 2001; Williams and Gill, 2010; and Clarke et al., 2011) and is summarized in the following paragraphs. The area stratigraphic units are discussed in ascending order, from the deepest Paleocene units to the surficial Holocene deposits. Cretaceous and pre-Cretaceous rock units are typically found at depths of several thousand feet below ground surface in the area; therefore, only a general description of the lithologic character is included in this report.

Cretaceous and pre-Cretaceous Stratigraphy

Pre-Cretaceous strata underlying the area are considered "basement" rocks. These "basement" rocks consist of igneous intrusive rocks and low-grade metamorphic rocks of Paleozoic age, and sedimentary rocks and volcanic rocks of Triassic to Early Jurassic Age (Chowns and Williams, 1983). Upper Cretaceous sediments consist of inter-bedded sands and clayey silts at depths of 1,600 feet below ground surface (Herrick, 1961).

Paleocene Stratigraphy

Paleocene units in the area mark the beginning of a regional transgression of the sea that lasted through the late Eocene (Clarke et al., 1990). Paleocene units unconformably overlie strata of Late Cretaceous age. The Clayton Formation and the Cedar Keys Formation make up the Paleocene units in the area. The upper portion of the Clayton Formation is a hard, sandy glauconitic, fossiliferous limestone, while the remaining portion of the formation consists of glauconitic sand, argillaceous sand, and small amounts of medium-to-dark gray clay (Clarke et al., 1990). The Cedar Keys Formation is a Paleocene carbonate-evaporite facies. The Cedar Keys Formation consists of thick beds of anhydrite and dolomite (Clarke et al., 1990).

Eocene Stratigraphy

The early Eocene Oldsmar Formation unconformably overlies the Paleocene Clayton Formation (Clarke et al., 1990). Glauconitic limestone and dolomite are characteristic lithologies of the Oldsmar Formation (Miller, 1986; Clarke et al., 1990). The Oldsmar Formation may also contain an upper layer of sand in some areas (Clarke et al., 1990).

The middle Eocene Avon Park Formation unconformably overlies the Oldsmar formation (Miller, 1986; Clarke et al., 1990). The Avon Park, a glauconitic dolomite and limestone, has a thickness in the range of 700 to 500 feet in the Chatham County area.

The Ocala Limestone is a massive, fossiliferous limestone. Fossils identified in the Ocala include bryozoan remains, foraminiferal tests, and mollusk shells (Furlow, 1969; Miller, 1986; Clarke et al., 1990). The Ocala Limestone unconformably overlies the dolomite and limestone of the Avon

Park Formation (Furlow, 1989; Krause and Randolph, 1989; and Clarke et al., 1990). The thickness of the Ocala is more than 200 feet thick, and in some areas exceeds 400 feet (Clarke et al., 1990).

Oligocene Stratigraphy

Buff-colored, porous fossiliferous (foraminiferal tests, micrite, and non-particulate ubiquitous phosphate) limestone describe the sediments of Oligocene age (Clarke et al., 1990). Huddleston (1988) named these sediments the Lazaretto Creek Formation and the Tiger Leap Formation. Weems and Edwards (2001) refined the descriptions of the two formations. The Lazaretto Creek Formation includes the lower Oligocene sediments in the study area and the Tiger Leap Formation includes the upper Oligocene sediments marked by an increase in phosphate. The abundance of miliolid foraminifera in the Oligocene sediments is used to differentiate the unit from the underlying Ocala Limestone, and the absence of particulate phosphate is used to differentiate the the overlying Miocene carbonate sediments.

Miocene Stratigraphy

There are three units of Miocene age in Chatham County. These units have been described lithologically and by geophysical markers by several authors (Furlow, 1969; Huddleston, 1988; Clarke et al., 1990; Weems and Lewis, 2001). The three (3) layers are lithologically similar and are only differentiated based on stratigraphic position, geophysical characteristics, and limited paleontologic evidence (Clarke et al., 1990).

The lowermost Miocene unit in the Chatham County area was designated as Unit C by Clarke and others (1990). Unit C is correlative to the Parachucla Formation of Huddleston (1988) and the Tampa Limestone equivalent of Furlow (1969). Typically, only the lower portion of Unit C is found in the area, which is generally a sandy, phosphatic dolomite or limestone (Clarke et al., 1990). The middle clay and upper sandy layers have been removed by erosion (Clarke et al., 1990).

The middle Miocene unit has been designated as Miocene Unit B (Miller, 1986, and Clarke et al., 1990). Unit B is correlative to the Hawthorn Formation of Counts and Donsky (1963) and Miller (1986); the Marks Head Formation of Woolsey (1977) and Huddlestun (1988). The Marks Head Formation name has been used for this study after the work of Weems and Edwards (2001). The basal carbonate layer on Unit B typically consists of olive-green dolomite and limestone that contains very fine to coarse quartz sand, shiny brown to black phosphatic sand, and contains some fossils, typically mollusk molds and shark teeth. (Furlow, 1969; Clarke et al., 1990). Distinguishing the basal layer of Unit B from Unit C is difficult because both Unit C and Unit B are lithologically similar, therefore requiring paleontological evidence and/or borehole geophysical logs (Clarke et al., 1990). The two (2) basal units are juxtaposed because the middle and upper clastic layers of Unit C have been eroded away (Clarke et al., 1990). The middle layer of Unit B typically consists of olive-green phosphatic silty clay and clayey silt and grades upward to the upper sandy layer (Furlow, 1969; and Clarke et al., 1990). The upper sandy unit of Unit B typically

consists of poorly sorted, very fine to coarse sand and locally a thin very dense dolomite layer (Furlow, 1969; and Clarke et al., 1990). Unit B (Hawthorn Formation) ranges in thickness from 20 to 55 feet thick (Furlow, 1969).

Miocene Unit A overlies Unit B and is included in the Hawthorn Formation of Counts and Donsky (1963) and Miller (1986) and correlates with the Coosawhatchie Formation of Woolsey (1977) and Huddleston (1988). The name Coosawhatchie Formation is adopted for this study based on the work of Weems and Edwards (2001). The Coosawhatchie Formation contains two (2) members. The basal layer, which is the Tybee Phosphorite Member, consists of a sandy phosphatic limestone and dolomite with some fossils (Clarke et al., 1990). In Chatham County, clay is the matrix material surrounding most of the phosphate grains instead of dolomite (Clarke et al., 1990). The sand in the basal unit generally consists of very fine to coarse quartz and brown to black phosphate. The middle clay layer consists of fossiliferous clay and silt laminae and the upper sand unit consists of a very fine to coarse, poorly sorted sand (Clarke et al., 1990). The upper portion of this unit is equivalent to the Berryville Clay Member. Unit A is about 20 feet thick in the Savannah Area.

Pliocene, Pleistocene, and Holocene Stratigraphy

Sediments of Pliocene age are generally accepted as absent in Chatham County, with Pleistocene sediments unconformably overlying Miocene sediments (Herrick, 1965; Furlow, 1969; and Clarke et al., 1990). Pleistocene sediments typically consist of arkosic sand and gravel with discontinuous clay beds. Basal Pleistocene sediments contain reworked olive-green clay from the underlying Miocene units (Furlow, 1969). Lignitic and fossiliferous clay and micaceous sandy sediment ranging in thickness from 10 to 60 feet are typical of Pleistocene sediments. The Penholoway Formation is the principal surficial Pleistocene deposit in Chatham County (Weems and Edwards, 2001). The Penholoway is one of many remnants of former shoreline complexes through the area, which were the result of numerous transgressions and regressions of the sea, the result of extensive glaciations in North American during the Pleistocene Epoch.

4.1.2 Regional Hydrogeology

Hydrologic units in Chatham County, Georgia include (in descending order), the surficial aquifer system, consisting of the water-table zone, upper confined zone; the Upper Floridan Aquifer; middle confining; the lower Floridan Aquifer; and the lower confining unit (Williams and Gill, 2010).

In the vicinity of the site, the surficial aquifer system is present from land surface to approximately 60 feet bgs (Williams and Gill, 2010). For this study, the surficial aquifer is undifferentiated; however, the surficial aquifer is typically informally divided into a water-table zone, an upper confined zone, and a lower confined zone. The confining unit underlying the surficial aquifer system is identified on natural-gamma radiation logs by the A-marker horizon. The bottom of the confining unit is determined by the location of the C-marker horizon, which coincides with the top of the Upper Floridan Aquifer (Clarke et al., 1990).

The principal source for all drinking water uses in the coastal area of Georgia is the Floridan Aquifer system. The Floridan Aquifer system is composed of carbonate rocks of varying permeability (Clarke et al., 1990; Clark et al., 2011). There are several water-bearing zones within the Floridan Aquifer system that are separated by layers of relatively dense limestone and dolostone that act as semi-confining units (Krause and Randolph, 1989; Clarke et al., 1990; Williams and Gill, 2010).

The Chatham County area, the two shallowest water bearing zones of the five that comprise Floridan Aquifer system are part of the upper Floridan Aquifer (McCollum and Counts, 1964; Krause and Randolph, 1989; Clark et al., 1990; Williams and Gill, 2010). The upper Floridan Aquifer is overlain by a confining unit consisting of layers of silty clay and dense phosphatic Oligocene dolomite identified by a distinct response on gamma-ray logs (Clarke et al., 1990). Clarke and others (1990) identified the base of the confining unit as the C-marker horizon. The C-marker horizon is present near the top of the Suwannee Limestone and is considered to be the top of the upper Floridan Aquifer in the study area (Williams and Gill, 2010). Based on well log information for nearby Meddin Package Co. No. 2 Well (USGS Well ID 36Q038), the top of the upper Floridan Aquifer is encountered at a depth of 215 feet. The D-marker horizon represents the top of the permeable zone of the Upper Floridan Aquifer and is present at the top of the Ocala Limestone at a depth of 309 feet in the study area (Williams and Gill, 2010).

4.1.3 Site Geology

Based on previous site investigations, the general lithology of the site consists of asphalt-like fill material and sand to an approximate depth of 4 feet bgs, underlain by clay and sandy silt to total boring depths (approximately 15 feet bgs).

4.1.4 Site Hydrogeology

Saturated soil conditions were encountered during the advancement of the Limited Phase II ESA borings at approximately 9 to 10 feet bgs. Insufficient groundwater data are available to develop a potentiometric surface map and determine the shallow groundwater flow direction for the site.

4.2 Contaminants of Potential Concern

COPCs at the site include VOCs, SVOCs, and RCRA metals that have been detected at concentrations above the laboratory method reporting limits. These contaminants are listed in the table on the following page along with the impacted media. Contaminants that have been detected in soil at concentrations above Type 1 RRS are indicated in **bold** typeface. No regulated constituents have been detected above Type 1 RRS in shallow groundwater at the site.

Table 4.2 – Constituents of Potential Concern

Analyta	Media				
Analyte	Soil	Groundwater			
Arsenic	Х	X			
Barium	Х				
Cadmium	Х				
Chromium	Х				
Lead	Х				
Mercury	Х				
Acetone	Х				
Benzene	X				
2-Butanone (MEK)	Х				
Ethylbenzene	Х				
Isopropylbenzene	Х				
p-Isopropyltoluene	Х				
Methyl tert-butyl ether (MTBE)	Х				
n-Propylbenzene	Х				
1,2,4-Trimethylbenzene	Х				
1,2,3-Trimethylbenzene	Х				
1,3,5-Trimethylbenzene	Х				
Toluene	Х				
Xylenes (Total)	Х				
1-Methylnaphthalene	Х	X			
2-Methylnaphthalene	Х	X			
Acenaphthene	Х	X			
Acenaphthylene	Х				
Anthracene	Х	X			
Benzo(a)anthracene	Х	X			
Benzo(a)pyrene	X	X			
Benzo(b)fluoranthene	Х	X			
Benzo(g,h,i)perylene	Х	X			
Benzo(k)fluoranthene	Х				
Chrysene	Х	X			
Dibenzo(a,h)anthracene	Х				
Fluoranthene	Х	X			
Fluorene	Х	X			
Indeno(1,2,3-cd)pyrene	Х				
Naphthalene	Х	X			
Phenanthrene	Х	X			
Pyrene	Х	X			

4.3 **Potential Environmental Receptors**

4.3.1 Human Receptors

The site is zoned residential institutional professional medium density (P-RIP-D) and is developed with a 15,390-square foot vacant commercial building. Based on the current use of the site, on-site commercial workers and on-site residents are not considered potential human receptors.

The building is secured with door locks and barred windows. Currently, there is no surveillance system or fence to prevent unauthorized access to the exterior of the site. Based on the current accessibility of the site, trespassers are considered potential human receptors.

WEDP Fund I, LLC plans to redevelop the site for residential and commercial use. Based on the proposed use of the site, future construction workers, future on-site residents and future on-site commercial workers are considered potential human receptors.

The site is bound to the north by Louisville Road followed by vacant land and an apartment complex. The site is bound to the east by the Savannah & Ogeechee canal followed by West Boundary Street. The western adjoining property consists vacant land and the U.S. Highway 17 offramp. The site is bound to the south by the Savannah & Ogeechee canal and an apartment complex. Based on the surrounding land use and distance from residential structures, off-site residents and off-site commercial workers are considered potential human receptors.

Based on the current and proposed use of the site and adjoining properties, the potential exposure pathways were evaluated for the following potential human receptors:

- n Future on-site residents
- n Future on-site construction workers
- n Future on-site commercial workers
- n Current and future off-site residents
- n Current and future off-site commercial workers
- n Current and future on-site trespassers

4.3.2 Ecological Receptors

The site is developed with a commercial building and does not provide a suitable habitat for plants or animals. In the absence of natural habitats, vegetation, and surface water, as well as the significant amount of anthropogenic disturbance, biologically significant populations of wildlife receptors are not likely to be present at the site.

4.4 Potential Exposure Pathways

An evaluation of potential exposure pathways was conducted for the site. The exposure pathways evaluated include drinking water, soil, groundwater, vapor intrusion, and sediment and/or surface water from impacted soil and groundwater.

4.4.1 Drinking Water

The site and surrounding properties receive water from the Main System of the City of Savannah Water Supply and Treatment Department. According to the City of Savannah's 2017 Water Quality Report (most recently published report available), the drinking water for the Main System is drawn from 22 wells installed within the Floridan Aquifer at depths between 414 and 1,006 feet deep.

According to information from the USGS National Water Information System (NWIS) database, 21 water wells exist within a 1-mile radius of the site. The closest water well IS USGS Well No. 37Q098 located approximately 2,400 feet to the southeast of the site. Based on the data provided by the NWIS database, the off-site wells within a 1-mile radius are cased to withdraw from the Floridan Aquifer system, specifically the upper Floridan Aquifer.

The Floridan Aquifer system in the Savannah, Chatham County area is hydraulically separated from the surficial aquifer system by a series confining units. In addition, no COPCs have been detected above Type 1 RRS in the shallow groundwater at the site. Therefore, the drinking water exposure pathway is considered incomplete for the site.

4.4.2 Soil Ingestion, Inhalation, or Direct Contact

The soil exposure pathway is potentially complete, as COPCs exceeding Type 1 RRS have been identified in certain soil borings across the site at this time. The proposed VRP remediation will include the excavation and removal of soils impacted with COPCs exceeding Type 1 RRS. Upon completion of remediation activities, the potential soil exposure pathway will be reevaluated for the site.

4.4.3 Groundwater Ingestion, Inhalation, or Direct Contact

The groundwater exposure pathway for ingestion, inhalation, or direct contact by on-site and offsite construction workers and residents during future excavation activities is not complete. No COPCs have been detected above Type 1 RRS in the shallow groundwater at the site.

4.4.4 Vapor Intrusion

The soil vapor intrusion pathway will be initially evaluated using the USEPA Vapor Intrusion Screening Level (VISL) Calculator. The VISL calculations will based on a commercial exposure scenario with a target hazard quotient (THQ) of 0.1 and a target risk (TR) of 1x10⁻⁵. Target groundwater concentrations (TGCs) for residential properties will be calculated for the regulated VOCs detected in the groundwater samples collected from the site. The results of the initial vapor intrusion evaluation will be presented in the first semi-annual progress report.

4.4.5 Surface Water / Sediment

No surface water bodies or drainage ditches are present at the site. Based on the absence of surface water bodies and drainage features, surface water and sediment are not considered complete exposure pathways at this time.

4.5 Fate and Transport Modeling

No COPCs have been detected above Type 1 RRS in the shallow groundwater at the site. Therefore, a fate and transport model (F&T Model) is not warranted at this time.

4.6 Cleanup Standards

Soil contamination will be subject to residential RRS. Groundwater contamination, if identified, will be subject to Type 5 RRS. Type 5 RRS allows contamination to remain in place, provided the principal exposure pathways at the site are mitigated by engineering and institutional controls. These controls could include, but are not limited to, a uniform environmental covenant governing site activity and use limitations (AULs), restricted access, and 24-hour security measures.

5.0 VRP INVESTIGATION PLAN

5.1 Soil Investigation

The soil investigation will include the completion of up to ten (10) soil borings to further delineate the extent of impacts at the site. The proposed boring locations are depicted on Figure 5 in Appendix C.

Each soil boring will be initially advanced with a stainless steel hand auger to a depth of 5 feet below grade in order to verify underground utility clearance. Once cleared, the borings will be advanced using direct push methods up to 15 feet below grade. Soil samples will be continuously collected to total boring depth to screen for organic vapors with a PID as well as document soil

lithology and saturated zone depths. Terracon will use this information to prepare stratigraphic cross-sections of the area of concern and further develop the CSM.

One (1) surface soil sample (≤ 2 feet below grade) and one (1) subsurface soil sample will be collected from each boring for laboratory analysis. The subsurface soil sample will be collected from the interval exhibiting the highest PID reading. If no elevated PID reading is observed within the boring; the sample will be collected from the interval of most likely environmental impact above the saturated zone as determined in the field by the sampling professional.

The soil samples selected for analysis will be placed in laboratory prepared containers, labeled, and placed on ice in a cooler which will be secured with a custody seal. The samples and completed chain-of-custody forms will be transported to an independent Georgia-certified laboratory for analysis of the following parameters:

- § BTEX by USEPA Method 8260
- § PAHs by USEPA Method 8270

The soil analytical data will be evaluated to confirm the constituents of concern (COCs) for the site. Terracon will continue investigation activities as practical until COCs are delineated to Type 1 RRS.

6.0 **REMEDIATION PLAN**

6.1 Soil Remediation

As part of site development activities, WEDP Fund I, LLC will excavate areas of contaminated soil exceeding residential RRS. The contaminated soil will be transported in compliance with applicable regulations to a pre-approved disposal facility permitted to accept the designated waste.

Confirmatory soil samples will be collected from each excavation area to demonstrate compliance with residential RRS. Confirmatory sidewall samples will be collected every 25 linear feet of sidewall with a minimum of four (4) sidewall samples per excavation area. Confirmatory floor samples will be collected from the center of every 625 square feet of excavation bottom with a minimum of one (1) floor sample per excavation area, except for areas where groundwater is encountered in the excavation. It is not necessary to collect confirmatory floor samples from excavation bottoms below the groundwater table. Confirmatory soil samples will be submitted to a Georgia certified laboratory and analyzed for BTEX by USEPA Method 8260 and PAHs by USEPA Method 8270 . Excavation activities will continue until confirmatory soil sample results show BTEX and PAH concentrations are below residential RRS.

Following the completion of soil remediation activities, Terracon will prepare a Compliance Status Report (CSR) for submittal to the Georgia EPD. The report will be prepared under the direction of a Georgia Professional Geologist or Professional Engineer and will summarize soil excavation and disposal activities, the results of the confirmatory soil sampling, and appropriate cleanup standards.

7.0 MILESTONE SCHEDULE

The schedule for the implementation of the VIRP is presented in Appendix F. Progress reports will be submitted to the Georgia EPD on a semi-annual basis during the implementation period until the final VRP CSR is submitted. A discussion of the VRP milestones is below:

- Horizontal/Vertical Delineation of Soil Impacts The results of soil delineation activities will be completed within the 6-month period specified under the VRP. The results of the delineation effort will be presented in Semi-Annual Progress Report No. 1.
- Updated CSM Submittal with Final Remediation Plan An updated CSM and final remediation plan will be submitted as part of Semi-Annual Progress Report No. 2 within 12 months following VRP enrollment.
- VRP Compliance Status Report A VRP CSR certifying compliance with applicable rules and regulations will be submitted within 18 months following VRP enrollment.

8.0 REFERENCES

- Chowns, T.M., and Williams, C.T., 1983, Pre-Cretaceous rocks beneath the Georgia Coastal Plain- Regional Implications: *in* Gohn, G.S., *ed.,* Studies related to the Charleston, South Carolina Earthquake of 1886-tectonics and seismicity: U.S. Geologic Survey Professional Paper, p. L1- L42
- Clarke, J.S., Hacke, C.M., and Peck, M.F., 1990, Geology and Ground-Water Resources of the Coastal Area of Georgia: Georgia Geologic Survey Bulletin 113, 106 pages.
- Clarke, J.S., Cherry, G.C., and Gonthier, G.J., 2011, Hydrogeology and water quality of the Floridan aquifer system and effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Fort Stewart, Georgia: U.S. Geological Survey Scientific Investigations Report 2011–5065, p. 59
- Clarke, W.Z., and Zisa, A.C., 1976, *Physiographic Map of Georgia*: Georgia Department of Natural Resources, 1 plate.
- Counts, H.B., and Donsky, E., 1963, Salt-water encroachment, geology, and ground-water resources of the Savannah area, Georgia and South Carolina: U.S. Geological Survey Water Supply Paper 1611, 100 pages, 6 plates, 9 figures.
- Furlow, J.W., 1969, Stratigraphy and Economic Geology of the Eastern Chatham County Phosphate Deposit: Georgia Department of Natural Resources, Division of Mines, Mining, and Geology Bulletin 82, 40 pages.
- Georgia Department of Natural Resources (GDNR), 1976, Geologic Map of Georgia, Atlanta, Georgia.
- Herrick, S.M., 1961, Well Logs of the Coastal Plain of Georgia: Georgia Geologic Survey Bulletin 70, 426 p.
- Herrick, S.M., 1965, A subsurface study of Pleistocene deposits in coastal Georgia: Georgia Dept. of Natural Resources, Division of Mines, Mining, and Geology Information Circular 31, 8 p.
- Herrick, S.M., and Vorhes, R.C., 1963, Subsurface Geology of the Georgia Coastal Plain, Georgia: State Division Conservation, Department of Mines, Mining and Geology, Geological Survey Information Circular 25, 79 p.
- Huddlestun, P.F., 1988, A revision of the Lithostratigraphic Units of the Coastal Plain of Georgia, the Miocene through Holocene: Georgia Geologic Survey Bull 104, 162 p.
- Krause, R.E., and Randolph, R.B., 1989, Hydrology of the Floridian Aquifer System in Southeast Georgia and Adjacent Parts of Florida and South Carolina: U.S. Geologic Survey Professional Paper 1403-D, 65 pages.

- Miller, J. A., 1986, Hydrogeologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina: U.S. Geological Survey Professional Paper 1403-B, 91 pages.
- United States Geologic Survey (USGS), 2017, National Water Information System: Mapper.
- Weems, R.E., and Edwards, L.E., 2001, Geology of Oligocene, Miocene, and Younger Deposits in the Coastal Area of Georgia: Georgia Geologic Survey Bulletin 131, 124 p.
- Williams, L.J., and Gill, H.E., 2010, Revised hydrogeologic framework of the Floridan aquifer system in the northern coastal area of Georgia and adjacent parts of South Carolina: U.S. Geological Survey Scientific Investigations Report 2010–5158, 103 p., 3 plates.

APPENDIX A

VRP APPLICATION AND CHECKLIST

Voluntary Investigation and Remediation Plan Application Form and Checklist

	_	VRP	APPLICANT INFO	ORMATION			
COMPANY NAME	WEDP-FUND I, LLC						
CONTACT PERSON/TITLE	L. Robert DeMoura / Mana	iging Mem	ber				
ADDRESS	1835 High Trail, Atlanta, G	A 30339					
PHONE	(843) 670 0955	FAX	n/a	E-MAIL	robert.dem	noura@gmail.com	
GEORGIA CE	RTIFIED PROFESSION	AL GEO	LOGIST OR PRO	FESSIONAL		R OVERSEEING CLEANUP	
NAME	Justin J. Johnson			GA PE/PG	NUMBER	2196	
COMPANY	Terracon Consultants, Inc.						
ADDRESS	2201 Rowland Avenue, Sa	vannah, G	A 31404				
PHONE	(912) 662 8481	FAX	(912) 629 4001	E-MAIL	jjjohnson@	@terracon.com	
ē		APP	LICANT'S CERTI	FICATION			
 (1) The property must have a reference (2) The property shall not be: (A) Listed on the federal M 9601. (B) Currently undergoing (C) A facility required to has the property undersimilar authorization from the Urfer (4) Any lien filed under subsective director pursuant to Code Section 10 and the participant must b (2) The participant must b (2) The participant must not considered a part (1) The participant must not be considered a part (2) The participant must not considered a part (3) The participant must not considered a part (3) The participant must not considered a part (1) The participant must not considered a part (1) The participant must not considered a part (2) The participant must not not (2) The participant the part (2) The participant must not considered a part (2) The participant must not not (2) The participant must not not (2) The participant must not (2) The participant must not (2) The participant must not not (2) The participant must not (2) The pa	Alease of regulated substance National Priorities List pursual response activities required I ave a permit under Code Sec r this part would not violate the bited States Environmental P on (e) of Code Section 12-8- on 12-8-94 or Code Section icipant under the VRP: e the property owner of the v ot be in violation of any order this document and all attach valuate the information subm formation submitted is, to the uding the possibility of fine a eligible for the Voluntary Rem	es into the Int to the fer by an order ction 12-8- he terms a rotection A 96 or subs 12-13-6. voluntary re- r, judgmen ments were best of m ind imprison mediation P	environment; deral Comprehensive r of the regional admin 66. nd conditions under w gency. ection (b) of Code Sec emediation property or t, statute, rule, or regul e prepared under my di ed on my inquiry of the p y knowledge and belie nment for knowing viol rogram (VRP) as defin	Environmental I istrator of the fe hich the division tion 12-13-12 a have express p lation subject to rection or super person or perso f, true, accurate ations. ed in Code Sec	Response, Conderal Environment operates and gainst the properties of the enforcement vision in accomplete and complete tion 12-8-105	mpensation, and Liability Act, 42 U.S.C. Section mental Protection Agency; or administers remedial programs by delegation or perty shall be satisfied or settled and released by the meter another's property to perform corrective action. ent authority of the director. dance with a system designed to assure that qualified ge the system, or those persons directly responsible for e. I am aware that there are significant penalties for and I am eligible as a participant as defined in Code	

QUALIFYING	PROPERTY INFORMATION (For	additional qualifying properties please refer to the	last name of application	form		
	HAZARDOU	S SITE INVENTORY INFORMATION (if applicable)	last page of application	i torm)		
HSI Number	n/a	Date HSI Site listed	n/a			
HSI Facility Name	n/a	NAICS CODE	n/a			
		PROPERTY INFORMATION	1//4			
TAX PARCEL ID	2-0030-05-001	PROPERTY SIZE (ACRES)	1 64			
PROPERTY ADDRESS	703 Louisville Road		1.01			
CITY	Savannah	COUNTY	Chatham			
STATE	Georgia	ZIPCODE	31415			
LATITUDE (decimal format)	32.077255	LONGITUDE (decimal format)	-81,105061			
		PROPERTY OWNER INFORMATION				
PROPERTY OWNER(S)	WEDP-FUND I, LLC	PHONE #	(843) 670 0955			
MAILING ADDRESS	1835 High Trail					
CITY	Atlanta	STATE/ZIPCODE	GA 30339			
ITEM #	DESCR	IPTION OF REQUIREMENT	Location in VRP (i.e. pg., Table #, Figure #, etc.)	For EPD Comment Only (Leave Blank)		
1. \$5,000 APPLICATION FEE IN THE FORM OF A CHECK PAYABLE TO THE GEORGIA DEPARTMENT OF NATURAL RESOURCES. (PLEASE LIST CHECK DATE AND CHECK NUMBER IN COLUMN TITLED "LOCATION IN VRP." PLEASE DO NOT INCLUDE A SCANNED COPY OF CHEC IN ELECTRONIC COPY OF APPLICATION.)			Check included with submittal. Check # 1022 Dated: 4/25/2019	(Louis Diank)		
2.	WARRANTY DEED(S) FOR QU	ALIFYING PROPERTY.	Appendix B			
3.	TAX PLAT OR OTHER FIGURE BOUNDARIES, ABUTTING PRO NUMBER(S).	INCLUDING QUALIFYING PROPERTY OPERTIES, AND TAX PARCEL IDENTIFICATION	Appendix C Figure 3			
4.	ONE (1) PAPER COPY AND TW VOLUNTARY REMEDIATION PL FORMAT (PDF).	O (2) COMPACT DISC (CD) COPIES OF THE AN IN A SEARCHABLE PORTABLE DOCUMENT	Included with submittal.			
5.	The VRP participant's initial pl reasonably available current in application, a graphic three-di (CSM) including a preliminary standards, brief supporting tex total) that illustrates the site's a suspected source(s) of contant the environment, the potential complete or incomplete expose preliminary CSM must be update progresses and an up-to-date status report submitted to the environment of	an and application must include, using all information to the extent known at the time of mensional preliminary conceptual site model remediation plan with a table of delineation at, charts, and figures (no more than 10 pages, surface and subsurface setting, the known or mination, how contamination might move within human health and ecological receptors, and the sure pathways that may exist at the site; the ated as the investigation and remediation CSM must be included in each semi-annual director by the participant; a PROJECTED	Sections 4 & 7 Appendices C - E			

during the preceding period. A Gantt chart format is preferred for the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's new tapplicable semi-annual reports to the director. The director may extend the time for or wave these or other milestones in the participant's plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary: 5.a. Within the first 12 months after enrollment, the participant must complete horizonal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment; Sections 7 Appendix E 5.b. Within the first 24 months after enrollment, the participant must complete horizonal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment; Sections 7 Appendix E 5.c. within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation and associated continuing actions; and Sections 7 Appendix E 5.d. SiGNED AND SEALED PE/PG CENTIFICATION AND SUPPORTING DOCUMENTATION: Sections 7 Appendix E DOCUMENTATION: 1 cartify under sensity of law this the program actif cation and encoders of the release of regulated addition and cation and cassociated of the networks of the section of cartifications. Sections 7 Appendix E 5.d. SIGNED AND SEALED PE/PG CENTIFICATION AND SUPPORTING DOCUMENTATION: Sections 7 A		Printed Name and GA PE/PG Number Date	ALLS.	TTC.
6. during the preceding period. A Gantt chart format is preferred for the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant, that a longer time period is reasonably necessary: 5.a. Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment; Sections 7 Appendix E 5.b. Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment; Sections 7 Appendix E 5.b. Within 30 months after enrollment, the participant must complete horizontal delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated constituents of concern extending onto property during the requisite certifications. Sections 7 Appendix E 5.c. Within 50 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated constituents. Sections 7 Appendix E 5.d. Within 50 months after enrollment, the participant must submit the compliance status report required under the VP. includ		The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations." Justin Johnson PG # 2196 $5/8$ 2019	THE ISTERED	ROFESSION
during the preceding period. A Gantt chart format is preferred for the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant's plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary. 5.a. Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment; extending on to property for which access was not available at the time of enrollment; Sections 7 Appendix E 5.b. Within 30 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending on to property for which access was not available at the time of enrollment; Sections 7 Appendix E 5.c. Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a prefiminary cost estimate for implementation of remediation and associated continuing actions; and Sections 7 Appendix E 5.d. Within 60 months after enrollment, the participant must submit the compliance stands for implementation of remediation sected delineation. Sections 7 Appendix E 5.d. SigNED AND SEALED PE/PG CERTIFICATION AND SUPPORTING DOCUMENTATION: Sections 7 Appendix E SigNED AND SEALED PE/PG CERTIFICA	6.	Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring. I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division.		Delsi *
during the preceding period. A Gantt chart format is preferred for the milestone schedule. Image: Construct of the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant's plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary: 5.a. Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment; Sections 7 Appendix E 5.b. Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment; Sections 7 Appendix E 5.b. Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation plan and provide a continuing actions; and Sections 7 Appendix E 5.c. Within 60 months after enrollment, the participant must submit the compliance status report required under the VRP, including the requisite certifications. Sections 7 Appendix E 5.d. Withi		"I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, <u>et seq.</u>). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.	STATISTICS OF	DHNSON
during the preceding period. A Gantt chart format is preferred for the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant, that a longer time period is reasonably necessary: 5.a. Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment; Sections 7 Appendix E 5.b. Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment; Sections 7 Appendix E 5.b. Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and Sections 7 Appendix E 5.d. Within 60 months after enrollment, the participant must submit the compliance status reporties and associated constituents of concern preliminary cost estimate for implementation of remediation and associated constituents of Appendix E Sections 7 5.d. Within 60 months after enrollment, the participant must submit the compliance sections 2 appendix E Sections 7 5.d. Within 60 months after enrollment, the participant must subm		SIGNED AND SEALED PE/PG CERTIFICATION AND SUPPORTING DOCUMENTATION:		
during the preceding period. A Gantt chart format is preferred for the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant, that a longer time period is reasonably necessary: 5.a. Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment; Sections 7 Appendix E 5.b. Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment; Sections 7 Appendix E 5.b. Within 30 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment; Sections 7 Appendix E 5.c. Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and Sections 7 Appendix E	5.d.	Within 60 months after enrollment, the participant must submit the compliance status report required under the VRP including the requisite certifications	Sections 7 Appendix F	
during the preceding period. A Gantt chart format is preferred for the milestone schedule. Image: Constraint of the preceding period of the participant is next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant is plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary: 5.a. Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment; Sections 7 Appendix E 5.b. Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment; Sections 7 Appendix E	5.c.	Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and	Sections 7 Appendix E	
during the preceding period. A Gantt chart format is preferred for the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant's plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary: 5.a. Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment; Sections 7 Appendix E	5.b.	Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment;	Sections 7 Appendix E	
during the preceding period. A Gantt chart format is preferred for the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant's plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary:	5.a.	Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment;	Sections 7 Appendix E	
during the preceding period. A Gantt chart format is preferred for the milestone schedule.		The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant's plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary:		
after enrollment as a participant, must update the schedule in each semi- annual status report to the director describing implementation of the plan		after enrollment as a participant, must update the schedule in each semi- annual status report to the director describing implementation of the plan during the preceding period. A Gantt chart format is preferred for the milestone schedule.		

APPENDIX B

TAX PLAT AND WARRANTY DEED

2018 Chatham County Board of Assessors

Property Record Card

APPRAISER	AYONCE	SEABOARD RAILROAD TCT WILLIAMS WARD
LAST INSP	01/23/2018	
APPR ZONE	000009	

2-0030-05-001 703 LOUISVILLE RD SAVANNAH

JSR PROPERTIES LLC	CAMA	ASMT		
PO BOX 23588	71,400	71,400	LAND	1
SAVANNAH GA 31403	403,900	403,900	BLDG	1
	98,800	98,800	OBXF	6
	574,100	574,100	Cost - MS	
CODES				
	0004			

UTA 0002 Savannah NBHD 009800.00 I800 TELFAIR RD/LOUI EXEMPTIONS Industrial Flex Building COMMCATEG 453 Industrial Flex Building HISTORY LAND IMPR TOTAL 2017 71,400 522,400 593,800 Cama 2016 650,100 539,800 1,189,900 Cama 2015 650,100 556,600 1,206,700 Cama 2014 650,100 581,300 1,21,400 Cama 2012 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2010 500,000 490,000 990,000 Cama 2001 500,000 490,000 990,000 Cama 2005 228,500 382,000 Cama 2005 228,500 382,000 Cama 2005 228,500 382,000 449,500 Cama 2002 51,500 398,000 449,500	PROPERTY	USE	0004	4	INE	DUSTRIA	L	
NBHD 009800.00 I800 TELFAIR RD/LOUI EXEMPTIONS Industrial Flex Building COMMCATEG 453 Industrial Flex Building HISTORY LAND IMPR TOTAL 2017 71,400 522,400 593,800 Cama 2016 650,100 536,600 1,206,700 Cama 2014 650,100 561,200 1,220,600 Cama 2013 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2010 500,000 490,000 990,000 Cama 2011 500,000 490,000 990,000 Cama 2001 500,000 490,000 990,000 Cama 2005 228,500 382,000 Cama 2005 228,500 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500	UTA		000	2	Sav	vannah		
EXEMPTIONS Industrial Flex Building HISTORY LAND IMPR TOTAL 2017 71,400 522,400 593,800 Cama 2016 650,100 539,800 1,189,900 Cama 2015 650,100 556,600 1,206,700 Cama 2014 650,100 561,200 1,220,600 Cama 2013 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2010 500,000 490,000 990,000 Cama 2001 500,000 490,000 990,000 Cama 2001 500,000 490,000 990,000 Cama 2005 228,500 382,000 Cama 2005 228,500 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2002	NBHD		009	800.00	180	0 TELFA	IR RI)/LOUI
COMMCATEG 453 Industrial Flex Building HISTORY LAND IMPR TOTAL 2017 71,400 522,400 593,800 Cama 2016 650,100 539,800 1,189,900 Cama 2015 650,100 556,600 1,206,700 Cama 2014 650,100 561,200 1,221,400 Cama 2013 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2010 500,000 490,000 990,000 Cama 2011 500,000 490,000 990,000 MAV 2009 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2002 </td <td>EXEMPTION</td> <td>٧S</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	EXEMPTION	٧S						
HISTORY LAND IMPR TOTAL 2017 71,400 522,400 593,800 Cama 2016 650,100 539,800 1,189,900 Cama 2015 650,100 556,600 1,206,700 Cama 2014 650,100 570,500 1,220,600 Cama 2013 650,100 581,300 1,231,400 Cama 2012 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2009 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 382,000 B82,000 Cama 2005 228,500 382,000 Gama 2002 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 <	COMMCATE	G	453		Ind	ustrial FI	ex Bı	uilding
HISTORYLANDIMPRIOTAL201771,400522,400593,800Cama2016650,100539,8001,189,900Cama2015650,100556,6001,206,700Cama2014650,100570,5001,220,600Cama2013650,100581,3001,231,400Cama2014650,100561,2001,211,300Cama2012650,100561,2001,211,300Cama2011500,000490,000990,000MAV2009500,000490,000990,000Cama2007500,000490,000990,000Cama2006500,000382,000882,000Cama2005228,500382,000610,500Cama200251,500398,000449,500Cama200351,500398,000449,500Cama200051,500419,500471,000Cama200151,500419,500471,000Cama200351,500419,500471,000Cama200451,500419,500471,000Cama2005228,500350,000411,600Over199961,600350,000411,600Over199561,600350,000411,600Over199561,600280,750342,350Over199361,600280,750342,350Over199261,600280,750342,350								
2017 71,400 522,400 593,800 Cama 2016 650,100 539,800 1,189,900 Cama 2015 650,100 556,600 1,206,700 Cama 2014 650,100 570,500 1,220,600 Cama 2013 650,100 581,300 1,221,400 Cama 2014 650,100 581,300 1,221,400 Cama 2012 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2009 500,000 490,000 990,000 Cama 2006 500,000 490,000 990,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2003 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000	HISTORY)	IMPR		TOTAL		•
2016 650,100 539,800 1,189,900 Cama 2015 650,100 556,600 1,206,700 Cama 2014 650,100 570,500 1,220,600 Cama 2013 650,100 581,300 1,231,400 Cama 2012 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2009 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 490,000 990,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000	2017	71,40	0	522,40	0	593,800)	Cama
2015 650,100 556,600 1,206,700 Cama 2014 650,100 570,500 1,220,600 Cama 2013 650,100 581,300 1,221,400 Cama 2012 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2010 500,000 490,000 990,000 Over 2008 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 490,000 990,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2001 51,500 419,500 471,000	2016	650,1	00	539,80	0	1,189,9	00	Cama
2014 650,100 570,500 1,220,600 Cama 2013 650,100 581,300 1,231,400 Cama 2012 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2010 500,000 490,000 990,000 MAV 2009 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 490,000 990,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2001 51,500 419,500 441,000	2015	650,1	00	556,60	0	1,206,7	00	Cama
2013 650,100 581,300 1,231,400 Cama 2012 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2010 500,000 490,000 990,000 MAV 2009 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 490,000 990,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 441,000 Cama 1999 61,600 350,000 411,600 <td< td=""><td>2014</td><td>650,1</td><td>00</td><td>570,50</td><td>00</td><td>1,220,6</td><td>00</td><td>Cama</td></td<>	2014	650,1	00	570,50	00	1,220,6	00	Cama
2012 650,100 561,200 1,211,300 Cama 2011 500,000 490,000 990,000 MAV 2010 500,000 490,000 990,000 MAV 2009 500,000 490,000 990,000 MAV 2008 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 490,000 990,000 Cama 2005 228,500 382,000 B82,000 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 471,000 Cama 1998 61,500 419,500 481,000 Ca	2013	650,1	00	581,30	00	1,231,4	00	Cama
2011 500,000 490,000 990,000 MAV 2010 500,000 490,000 990,000 MAV 2009 500,000 490,000 990,000 Over 2008 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 490,000 990,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2003 51,500 398,000 449,500 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 481,000 Cama 1999 61,600 350,000 411,600 Over 1997 61,600 350,000 411,600 Over	2012	650,1	00	561,20	00	1,211,3	00	Cama
2010 500,000 490,000 990,000 MAV 2009 500,000 490,000 990,000 Over 2008 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 382,000 882,000 Cama 2005 228,500 382,000 610,500 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 481,000 Cama 1999 61,600 350,000 411,600 Over 1997 61,600 350,000 411,600 Ove	2011	500,0	000	490,00	00	990,000)	MAV
2009 500,000 490,000 990,000 Over 2008 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 382,000 882,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2003 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 471,000 Cama 1999 61,600 350,000 411,600 Over 1996 61,600 350,000 411,600 Over 1995 61,600 280,750 342,350 Over	2010	500,0	000	490,00	00	990,000)	MAV
2008 500,000 490,000 990,000 Cama 2007 500,000 490,000 990,000 Cama 2006 500,000 382,000 882,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 471,000 Cama 1999 61,500 419,500 480,500 Cama 1998 61,600 350,000 411,600 Over 1996 61,600 350,000 411,600 Over 1995 61,600 280,750 342,350 Over<	2009	500,0	000	490,00	0	990,000)	Over
2007 500,000 490,000 990,000 Cama 2006 500,000 382,000 882,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2003 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 471,000 Cama 1999 61,500 419,500 471,000 Cama 1998 61,600 350,000 411,600 Over 1997 61,600 350,000 411,600 Over 1995 61,600 280,750 342,350 Over 1993 61,600 280,750 342,350 Over </td <td>2008</td> <td>500,0</td> <td>000</td> <td>490,00</td> <td>00</td> <td>990,000</td> <td>)</td> <td>Cama</td>	2008	500,0	000	490,00	00	990,000)	Cama
2006 500,000 382,000 882,000 Cama 2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2003 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2000 51,500 419,500 471,000 Cama 2000 51,500 419,500 471,000 Cama 1999 61,500 419,500 481,000 Cama 1998 61,600 350,000 411,600 Over 1997 61,600 350,000 411,600 Over 1995 61,600 280,750 342,350 Over 1993 61,600 280,750 342,350 Over 1992 61,600 280,750 342,350 Over <td>2007</td> <td>500,0</td> <td>00</td> <td>490,00</td> <td>0</td> <td>990,000</td> <td>)</td> <td>Cama</td>	2007	500,0	00	490,00	0	990,000)	Cama
2005 228,500 382,000 610,500 Cama 2004 51,500 398,000 449,500 Cama 2003 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 471,000 Cama 1999 61,500 419,500 481,000 Cama 1998 61,500 419,000 480,500 Cama 1997 61,600 350,000 411,600 Over 1996 61,600 350,000 411,600 Over 1995 61,600 280,750 342,350 Over 1993 61,600 280,750 342,350 Over 1992 61,600 280,750 342,350 Over	2006	500,0	00	382,00	00	882,000)	Cama
2004 51,500 398,000 449,500 Cama 2003 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 471,000 Cama 1999 61,500 419,500 481,000 Cama 1998 61,500 419,000 480,500 Cama 1997 61,600 350,000 411,600 Over 1996 61,600 350,000 411,600 Over 1995 61,600 280,750 342,350 Over 1994 61,600 280,750 342,350 Over 1993 61,600 280,750 342,350 Over 1992 61,600 280,750 342,350 Over	2005	228,5	00	382,00	00	610,500)	Cama
2003 51,500 398,000 449,500 Cama 2002 51,500 398,000 449,500 Cama 2001 51,500 398,000 449,500 Cama 2001 51,500 419,500 471,000 Cama 2000 51,500 419,500 471,000 Cama 1999 61,500 419,500 481,000 Cama 1998 61,500 419,000 480,500 Cama 1997 61,600 350,000 411,600 Over 1996 61,600 350,000 411,600 Over 1995 61,600 427,600 489,200 Cama 1994 61,600 280,750 342,350 Over 1993 61,600 280,750 342,350 Over 1992 61,600 280,750 342,350 Over	2004	51,50	0	398,00	00	449,500)	Cama
200251,500398,000449,500Cama200151,500419,500471,000Cama200051,500419,500471,000Cama199961,500419,500481,000Cama199861,500419,000480,500Cama199761,600350,000411,600Over199661,600350,000411,600Over199561,600427,600489,200Cama199461,600280,750342,350Over199261,600280,750342,350Over	2003	51,50	0	398,00	00	449,500)	Cama
200151,500419,500471,000Cama200051,500419,500471,000Cama199961,500419,500481,000Cama199861,500419,000480,500Cama199761,600350,000411,600Over199661,600350,000411,600Over199561,600427,600489,200Cama199461,600280,750342,350Over199361,600280,750342,350Over199261,600280,750342,350Over	2002	51,50	0	398,00	0	449,500)	Cama
2000 51,500 419,500 471,000 Cama 1999 61,500 419,500 481,000 Cama 1998 61,500 419,000 480,500 Cama 1997 61,600 350,000 411,600 Over 1996 61,600 350,000 411,600 Over 1995 61,600 280,750 342,350 Over 1994 61,600 280,750 342,350 Over 1992 61,600 280,750 342,350 Over	2001	51,50	0	419,50	00	471,000)	Cama
199961,500419,500481,000Cama199861,500419,000480,500Cama199761,600350,000411,600Over199661,600350,000411,600Over199561,600427,600489,200Cama199461,600280,750342,350Over199361,600280,750342,350Over199261,600280,750342,350Over	2000	51,50	0	419,50	0	471,000)	Cama
1998 61,500 419,000 480,500 Cama 1997 61,600 350,000 411,600 Over 1996 61,600 350,000 411,600 Over 1995 61,600 350,000 411,600 Over 1995 61,600 427,600 489,200 Cama 1994 61,600 280,750 342,350 Over 1993 61,600 280,750 342,350 Over 1992 61,600 280,750 342,350 Over	1999	61,50	0	419,50	0	481,000)	Cama
199761,600350,000411,600Over199661,600350,000411,600Over199561,600427,600489,200Cama199461,600280,750342,350Over199361,600280,750342,350Over199261,600280,750342,350Over	1998	61,50	0	419,00	0	480,500)	Cama
1996 61,600 350,000 411,600 Over 1995 61,600 427,600 489,200 Cama 1994 61,600 280,750 342,350 Over 1993 61,600 280,750 342,350 Over 1992 61,600 280,750 342,350 Over	1997	61,60	0	350,00	0	411,600)	Over
1995 61,600 427,600 489,200 Cama 1994 61,600 280,750 342,350 Over 1993 61,600 280,750 342,350 Over 1992 61,600 280,750 342,350 Over	1996	61,60	0	350,00	00	411,600)	Over
1994 61,600 280,750 342,350 Over 1993 61,600 280,750 342,350 Over 1992 61,600 280,750 342,350 Over	1995	61,60	0	427,60	00	489,200)	Cama
199361,600280,750342,350Over199261,600280,750342,350Over	1994	61,60	0	280,75	50	342,350)	Over
1992 61,600 280,750 342,350 Over	1993	61,60	0	280,75	50	342,350)	Over
	1992	61,60	0	280,75	50	342,350)	Over

SALES	BOOł	< / PAGE	INS	V	QU	RSN	PRICE
09 Feb 2015 GRANTOR:M GRANTEE:JS	469 1 IERRITT SR PROF	72 ROBERT PERTIES	WD JET/ LLCE	I AL* TAI	U *	ΡI	900,000
09 Feb 2015 GRANTOR:J GRANTEE:JS	469 1 SR PROI SR PROF	76 PERTIES PERTIES	NA LLC E LLC	I TA	U L*	UR	
01 Jul 2008 GRANTOR:B GRANTEE:M	343E ART MIC ERRITT	0401 CHAEL E ROBERT	QC J <i>ETA</i>	۱ ۱ ۱	U	UQ	
30 Oct 2000 GRANTOR:R GRANTEE:M	216H OBERT ERRITT	0169 J MERRI ROBERT	NA TT ET/ J ET/	 4 <i>L</i> 4 <i>L</i> *	U	UG	
31 May 1984 GRANTOR:S GRANTEE:R	123U EABOAF OBERT .	0530 RD RAILR J. MERRI	WD OAD TT et a	l a/	Q	QX	265,000
PERMITS	TYPE	DATE				Δ٨	
15-03686-BC	00	DATE				Na	N
15-03686-BC	00	27 Oct 3	2015	С	omr	Na Na	N
15-03686-BC	00	27 Oct 2	2015	C	omp	Na Na	N
13-06231-EC	FI	02 lan '	2014	c	omp	69	6
12-1563E	FI	24 Anr 1	2017	c	omr	, 00 1 2	100
12-1564E	FI	24 Apr 1	2012	c	omr	, ,- , 1.2	100
27613	CM	01 Jan	1086	C	omp	, 1,-	900
26422	CM		08/	le Ie	eno	4 35	2 000
20422		10 001 1	504	10	Suc	u 00	2,000
COMMENTS:							
05 Jun 2015	TY16 MERF GERF TRUS	469/172 RITT AS RALD, M STEE	: *et/ trus Iche	AL: Ste Lle	roe E, C Na	BERT CARR RY A	J OLL E S
09 Dec 2009	TY01 ARLE	0 MADD	CHG	ΕF	PER	FAX ł	<im< td=""></im<>
19 Aug 2008	*2160 MERF REV/ **343 MICH	G169:INT RITT TO TRUST F E401:IN IELLE N	ERES ROBI ROBT T OF ARY 1	ST ER JN MIC	of F T J N Mer Chei Jste	ROBE MERR RITT L E B, EE OF	RT J ITT TRSEE ART TO
16 Feb 2000	5/31/ J. V. (J. S. I 0030- 1989 137P- buildin "econ Buildi reflec remod	1984 Ow Gordy; C Reese. 2 04-023 4.169 ac -0527. 10 ng value iomic obs ng value t additior deling. 7/	ners i F G 000 1 PRB re spl 0/16/8 to \$2 solese chan o of pa (11/19	ncli erra 43 16F lit fo 9 E 38, 9 E 38, 9 E 38, 9 E 38, 9 E 38, 9 E 38, 9 E 38, 9 E	ude: ald; f 6 Ac 9-77 or rig 8OE 400 e". S 400 e". S 1 to S men Prop	R.J. split 12/27 ht of reduc due to WC 280, t and perty	Merritt; Bart; and to 2- /1999. way ed 0 1990 750 to

EXTRA FEATURES

EXIRA	A FEATU	RES																
ID#	BLDG #	SYSTEM	DESC			DIM 1	DIM 2	UNITS	QL	. UNIT PRIC	E RCN	AYB	EYB	DT ECO	N FUNC	SP SP%	6 RCNLD	MKT VALUE
66057		CONCRE	TE PAVE 500)		0	0	16868.00	3	2.73	46,050	1989	1989	40			22,104	19,900
66058	38479	CAN STY 14 FR CHEAP Located in rear of bldg.					8	2272.00	3	12.60	28,627	1929	1929	40			5,725	5,200
66059	38479	Uncoded I Descriptio	Feature n=Loading D	ock Section	14, Page 27.	284	8	2272.00	3	12.45	28,286	1984	1984	40			9,900	8,900
66060	38479	Uncoded I Descriptio	Feature <i>n=Loading R</i>	amp Sectior	n 14, Page 27.	52	8	416.00	3	34.03	14,156	1984	1984	40			4,955	4,500
66061	38479	Uncoded I Descriptio	Feature <i>n=Dock Hei</i> g	ht Floors Se	ection 14, Page 2	342	45	15390.00	3	2.55	39,245	1984	1984	40			13,736	12,400
66062	38479	EXCESS 6,162 SF	ND OFF AV vs 1,847 SF.	3		0	0	4315.00	3	35.26	152,147	1984	1984	40			53,251	47,900
LAND																		
ID#	USE	DESC	FRONT	DEPTH	UNITS / TYPE	PF	RICE	ZONING		LCTN TO	DPO 01	HER	AD	J1 ADJ	J2 AD	J3 AD	J4 MKT	Γ VALUE
47247	Indus	strial 3	0	0	71,438.40-SF	1.0	00	I-H									714	00

[Click for larger picture]

2018 Chatham County Board of Assessors Property Record Card

2-0030-05-001 703 LOUISVILLE RD SAVANNAH

BUILDING SECTION 38479-1-2018	CONSTRUCTION TYPE Commercial	RCN AY 684,547 19	B EYB 29 1984	DEP TYPE MS	PHYS 41.00	ECON 0.00	FUNC 0.00	OBSV / % 0.00	TOTAL DEP % 41.00	RCN 403,	NLD U.F 883	ACTOR	MKT VAL 403,883
		604,347 19		<u>MS</u>	41.00	ARI STC PEF OC 453 453 453 453 453 453 453 453 453 453	CUPANC Indust Indust Indust Indust Indust Indust Indust Indust Indust Indust	R / SHAPE CIES rial Flex Build rial Flex Build	AREA ding 672 ding 672 ding 588 ding 2520 ding 2478 ding 2250 ding 1980 ding 1752	% 4.37 4.37 3.82 16.37 16.10 16.10 14.62 12.87 11.38	CLASS C C C C C C C C C C C C C C C	15390 1.0 774 HEIGHT 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	QUAL 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0
						CO C4 C1	MPONE 683 882	NTS Wet Sprink Stud -Brick	lers Veneer	Un	its % 10 10	0.00	QUAL
Warehouse. Built 19 6,612 square feet	[Click for larger picts 29; renovated 1984;one story of office space; 12 OHDs 12' > subdivided into 6 sepera	ure] prick; 12' tall; ha (10'; OHS; 30 te units.	as dock h plumbing	eight floor; fixtures;									

Type: WD Kind: WARRANTY DEED Recorded: 4/27/2018 11:49:00 AM Fee Amt: \$2,650.00 Page 1 of 6 Transfer Tax: \$2,630.00 Chatham, Ga. Clerk Superior Court Tammie Mosley Clerk Superior Court

Participant ID(s): 3689977576, 7067927936

BK 1333 PG 170 - 175

STATE OF GEORGIA COUNTY OF CHATHAM Return to: (JPG) Oliver Maner LLP 218 West State Street Savannah, GA 31401 (912) 236-3311

LIMITED WARRANTY DEED

)

)

)

THIS DEED made this <u>25/4</u> day of April, 2018, between JSR PROPERTIES, LLC, a Georgia limited liability company ("Grantor"), and WEDP – FUND I, LLC, a Georgia limited liability company ("Grantee") (the words "Grantor" and "Grantee" to include their respective successors and assigns where the context requires or permits).

WITNESSETH:

THAT Grantor, for and in consideration of the sum of Ten and No/100 (\$10.00) Dollars in hand paid at and before the sealing and delivery of these presents, and other good and valuable consideration, the receipt, adequacy and sufficiency of which are hereby acknowledged, has granted, bargained, sold, aliened, conveyed, transferred, and confirmed, and by these presents does grant, bargain, sell, alien, convey, transfer, and confirm unto Grantee, the following:

ALL THAT TRACT OR PARCEL OF LAND lying and being in Williams Ward, 1st G.M. District, Savannah, Chatham County, Georgia, and being more particularly described in <u>Exhibit "A"</u> attached hereto and incorporated by this reference herein; TOGETHER with any and all easements, rights-of-way, appurtenances, or rights appertaining or in anywise belonging thereto; and, TOGETHER with any and all improvements, structures or fixtures located therein or thereon (the "Property").

TO HAVE AND TO HOLD the Property, together with all and singular the rights,

members, hereditaments, and appurtenances thereof, to the same being or in anywise appertaining,

to the only proper use, benefit, and behoof of Grantee, forever in Fee Simple, subject only to those matters (hereinafter referred to as "Permitted Exceptions") set forth in the attached Exhibit "B", which Exhibit is incorporated herein.

AND, Grantor will WARRANT and forever DEFEND the right and title to the Property unto Grantee against the claims of all persons owning, holding or claiming by, through, or under Grantor, except for claims arising under or by virtue of the Permitted Exceptions.

IN WITNESS WHEREOF, Grantor has caused this Limited Warranty Deed to be executed and delivered under seal on the day and year first above written.

JSR PROPERTIES, LLC, a Georgia limited ljability company

By:

John S. Reese, Sole Manager/Member (Manager Certification Attached)

(SEAL)

Signed, sealed and delivered on the <u>25</u>²⁵ day of April, 2018, in the presence of:

9ø/V13 Witness unnunnun 1990 Notary Public AN STREET BARANES Ô.,

CHATTY CHATTY

EXHIBIT "A"

Legal Description

All that certain lot, tract or parcel of land situate, lying and being in Williams Ward, 1st G.M. District, Savannah, Chatham County, Georgia, and being shown as Lots 8 through 13 of the R. L. Pritchard Subdivision of Lot 18 of Springfield Plantation, Lots "B" through "K" and a portion of Lot "A" of a subdivision of Lot 19, Springfield Plantation, and a portion of the former Springfield Canal right of way and being more particularly described as follows:

Beginning at a concrete monument located at the intersection of the southern right of way line of Louisville Road with the western right of way line of the Savannah and Ogeechee Canal; thence South 37 degrees 10 minutes 10 seconds West along the western right of way line of the Savannah and Ogeechee Canal a distance of 114.82 feet to a concrete monument; thence continuing along said right of way line (which at this point becomes the northern right of way line) South 84 degrees 29 minutes 50 seconds West a distance of 154.73 feet to a concrete monument; thence continuing along the northern right of way line of the Savannah and Ogeechee Canal North 83 degrees 06 minutes 05 second West a distance of 1,145.98 feet to a concrete monument that marks the intersection of the northern right of way line of the Savannah and Ogeechee Canal with the eastern right of way line of Pritchard Street; thence North 20 degrees 23 minutes 25 seconds East along the eastern right of way line of Pritchard Street a distance of 214.81 feet to a concrete monument; thence South 71 degrees 10 minutes 00 seconds East a distance of 66.04 feet to a concrete monument; thence South 71 degrees 10 minutes 00 seconds East a distance of 66.04 feet to a concrete monument; thence North 32 degrees 59 minutes 20 seconds East a distance of 97.98 feet to a concrete monument; thence South 71 degrees 10 minutes 00 seconds East a distance of 145.38 feet to a concrete monument; thence North 18 degrees 50 minutes 00 seconds East a distance of 100.00 feet to a concrete monument on the southern right of way line of Louisville Road; thence South 71 degrees 10 minutes 00 seconds East along the southern right of way line of Louisville Road a distance of 1,057.10 feet to the Point of Beginning; containing 7.25 acres, more or less, as shown on a plat of survey dated January 16, 1984, revised March 6, 1984, prepared by Helmly & Associates, Inc., and recorded in the Office of the Clerk of the Superior Court of Chatham County, Georgia, in Plat Record Book 5-P, Page 106.

LESS AND EXCEPT the following:

All that certain lot, tract or parcel of land situate, lying and being in Williams Ward, 1st G.M. District, Savannah, Chatham County, Georgia, measuring 4.69 acres, more or less, conveyed as part of the Talmadge Bridge Replacement Project No. BRF-009-2(61) in a Right of Way Deed to the Georgia Department of Transportation dated March 9, 1988, filed for record and recorded on March 10, 1988, in the Office of the Clerk of the Superior Court of Chatham County, Georgia, in Deed Record Book 137-P, Page 527, as more particularly shown on the plat attached to said right of way deed dated July 17, 1985, and revised February 18, 1988.

FURTHER LESS AND EXCEPT the following:

All that certain lot, tract, or parcel of land situate, lying and being in Williams Ward, 1st G.M. District, Savannah, Chatham County, Georgia, known as Lot A of a portion of Lots 8 through 13 of the R.L. Pritchard Subdivision of Lot 18 of Springfield Plantation, and a portion of Lot A of a subdivision of Lot 19, Springfield Plantation, consisting of 1.436 acres, and being more particularly shown on a plat prepared by Carl L. Jackson, Georgia Registered Land Surveyor No. 2555, and recorded in the Office of the Clerk of the Superior Court of Chatham County, Georgia, in Plat Record Book 16-P, Page 77, to which express reference is hereby made for a more particular description of the excepted Lot A, being conveyed to Diane Brannen by a warranty deed from Robert J. Merritt, J. Vernon Gordy, Michael E. Bart, and John S. Reese, dated September 30, 1999, filed for record and recorded on October 1, 1999, in the aforesaid Clerk's Office in Deed Record Book 207-A, Page 438.

EXHIBIT "B"

Permitted Exceptions

1. County and City taxes for 2018 and for all subsequent years, and any additional taxes which may result from reassessment of the subject property are inchoate liens but not due or payable.

2. The exact amount of acreage contained in the subject property.

3. Those certain covenants contained in that certain deed from Seaboard System Railroad, Inc. to Robert J. Merritt, J. Vernon Gordy, Carroll E. Gerrald, Michael E. Bart, and John S. Reese, dated April 13, 1984, recorded in Deed Book 123-U, Page 530, in the Office of the Clerk of the Superior Court of Chatham County, Georgia.

4. Limitation of Access Rights contained in the Right of Way Deed to the Department of Transportation dated March 9, 1988, recorded in Deed Book 137-P, Page 527, in the Office of the Clerk of the Superior Court of Chatham County, Georgia.

5. All those matters shown upon that certain map or plat surveyed for Seaboard System Railroad, prepared by Helmly & Associates, Inc., dated January 10, 1984, revised March 6, 1984, and recorded in Plat Book 5-P, Page 106-A, in the Office of the Clerk of the Superior Court of Chatham County, Georgia.

6. All those matters shown upon that certain map or plat of subject property entitled "An ALTA/SPA Land Title Survey of Portions of Lots G, H, I, J, & K Being A Subdivision of Lot 19, Springfield Plantation, Williams Ward, 2nd G.M. District, City of Savannah, Chatham County, Georgia," dated May 3, 2017, last revised February 23, 2018, prepared by Brewer Land Surveying, including, without limitation, the following:

- overhead power lines located in the northern portion of subject property; (a)
- (b) 6' chain-link fence running along the western portion of subject property;

parking spaces located partly on and partly off the eastern portion of subject (c) property;

- Wetlands located in the southwestern portion of subject property; (d)
- concrete walks along northern boundary encroach over boundary line; and, (e)
- (f) Surveyor's Notes state the property lies within a special flood hazard zone.

MANAGER CERTIFICATION FOR JSR PROPERTIES, LLC

I, John S. Reese, hereby certify that I am the sole Manager of JSR Properties, LLC, a Georgia limited liability company (the "Company"); that as such, I am familiar with the proceedings of that Company; that pursuant to the requirement of the Company's Operating Agreement, effective August 23, 2007(the "Operating Agreement"), this instrument acknowledges my approval, as the Company's Manager, of the sale of certain real property consisting of approximately 1.54 acres, known as Lots 8 through 13 of the R.L. Pritchard Subdivision of Lot 18 of Springfield Plantation Lots "B" through "K" and a portion of Lot "A" of a subdivision of Lot 19, Springfield, and a portion of the former Springfield Canal right of way, in Williams Ward, 2nd G.M. District, Savannah, Chatham County, Georgia, a/k/a 703 Louisville Road, Savannah, Georgia 31415, pursuant to a Purchase and Sale Agreement dated October 16, 2017, by and between the Company, as seller, and Demoura Holdings, LLC, as purchaser, as amended by that certain First Amendment to Purchase and Sale Agreement dated February 11, 2018, and as assigned with respect to the purchaser's rights and obligations thereunder from Demoura Holdings, LLC, to WEDP-FUND I, LLC; and that pursuant to Paragraph 4.1 of the Operating Agreement. I, as the Manager of the Company, acting alone, am authorized, empowered and directed to execute and deliver, on behalf of the Company, the closing statement, the deed and such other documents, instruments, certificates and agreements to be signed in connection with the sale, along with any amendments or supplements thereto, and assignments or terminations thereof.

I further certify that:

- 1. All documents executed by the Company shall be conclusively presumed to be the act of the Company and fully authorized by the members of the Company.
- 2. The Company is in good standing with all license, income and franchise taxes paid.
- 3. No proceeding for the dissolution or liquidation of the Company has been commenced or is pending.

WITNESS my hand and seal as of this 25^{K} day of April, 2018 (L.S.) John R. Reese

APPENDIX C

FIGURES

0 20' 60'	Project Mngr:	JJJ	Project No. ES187351		SITE DIAGRAM	Figure
	Drawn By:	MLM	AS SHOWN	lienacon	Former Seaboard Freight Station	
1" = 60'	Checked By:	JJJ	File Name: ES187351.dwg	Consulting Engineers & Scientists	703 Louisville Road	3
SCALE IN FEET	Approved By:	SAD	Date: May 7, 2019	2201 Rowland Avenue Savannah, Georgia 31404 Phone (912) 629 4000 Fax. (912) 629 4001	Savannah, Chatham County, Georgia	

APPENDIX D

TABLES

Former Seaboard Freight Station

703 Louisville Road Savannah, Chatham County, Georgia Terracon Project No. ES187351

TABLE 1: SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS

	Georgia EPD	SB-2	SB-2	SB-3	SB-3	SB-4	SB-5	SB-6	B-3-N-2-1	B-3-N-2-2	B-3-N-4-1	B-3-N-4-2	B-3-W-4-1	B-3-W-4-2	B-3-W-7-1	B-3-W-7-2
Compound	HSRA	1 -3 ft bgs	6 -8 ft bgs	1 - 2 ft bgs	4 - 5 ft bgs	1 - 3 ft bgs	1 - 3 ft bgs	1 - 3 ft bgs	0 - 1 ft bgs	1 - 2 ft bgs	1 - 2 ft bgs	2 - 3 ft bgs	0 - 1 ft bgs	1 - 2 ft bgs	0 - 1 ft bgs	1 - 2 ft bgs
	Type 1 RRS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Resource Conservation an	d Recovery Act (RCRA	A) Metals - USEPA Me	thods 6010B & 7471A													
Arsenic	20.0	9.88	ns	4.99	ns	3.65	0.982 J	1.24 J	ns							
Barium	1,600	114	ns	49.9	ns	42.2	11.6	12.5	ns							
Cadmium	7.50	0.565	ns	0.966	ns	<0.0902	0.204 J	0.087 J	ns							
Chromium	100	9.66	ns	10.5	ns	13.4	4.53	6.41	ns							
Lead	270	650	ns	72.4	ns	17.1	4.96	11.0	ns							
Mercury	2.10	0.971	ns	0.151	ns	0.0469	<0.0221	<2.29	ns							
Total Petroleum Hydrocarb	oons (TPH) - USEPA Me	ethod 8015	•	·	·	·	•		·	-	-	•	•	•	-	•
TPH - DRO		53.9	3.08 J	79.6	10.8	2.20 J	ns									
TPH - GRO		<0.0258	<0.0275	4.55	1.34	0.0610 J	ns									
Volatile Organic Compound	ds (VOCs) - USEPA Me	ethod 8260B	•	•	•	•		·		•	•		•	•	•	•
Acetone	57.4	ns	<0.0174	ns	0.0677	ns										
Isopropylbenzene	21.9	ns	<0.00109	ns	0.00176 J	ns										
p-Isopropyltoluene		ns	0.0441	ns	0.0508	ns										
2-Butanone (MEK)	23.4	ns	0.0318	ns	0.0685	ns										
Methyl tert-butyl ether		ns	<0.000374	ns	0.0790	ns										
Naphthalene	100	ns	< 0.00396	ns	0.179	ns										
n-Propylbenzene		ns	<0.00150	ns	0.00254 J	ns										
1,2,4-Trimethylbenzene		ns	<0.00147	ns	0.1940	ns										
1,2,3-Trimethylbenzene		ns	<0.00146	ns	0.00710 J	ns										
1,3,5-Trimethylbenzene		ns	<0.00137	ns	0.00597 J	ns										
Benzene	0.0511	ns	<0.000508	ns	0.0822	ns	ns	ns	0.000764	0.0509	<0.00131	0.00153 J	0.00448 J	0.00163 J	0.00103 J	0.0178 J
Ethylbenzene	20.0	ns	<0.000672	ns	0.143	ns	ns	ns	0.000370	0.00229 J	<0.000440	0.000444 J	<0.000230	0.000399 J	0.000498 J	0.000513 J
Toluene	14.4	ns	<0.00159	ns	0.128	ns	ns	ns	<0.00120	0.00713	<0.00280	0.00177 J	0.00188 J	0.00128 J	<0.00160	0.00154 J
Xylenes (Total)	197.9	ns	<0.00606	ns	0.477	ns	ns	ns	<0.001460	0.002054 J	<0.00339	0.00258 J	<0.00174	<0.00122	<0.00190	<0.001492
Polycyclic Aromatic Hydro	carbons (PAHs) - USE	PA Method 8270C - SI	ІМ													
1-Methylnaphthalene		0.171	<0.00254	0.949	0.0154 J	<0.00258	<0.0221	0.00584 J	0.755	0.0405	0.999	0.883	0.667	<0.386	0.756	0.800
2-Methylnaphthalene		0.190	<0.00254	1.09	0.0417	<0.00258	<0.0221	0.00733 J	0.857	0.508	1.14	1.08	0.777	<0.405	0.889	0.935
Acenaphthene	300	0.218	<0.000761	0.0221	0.0157	<0.000773	<0.00664	<0.00687	<0.0675	<0.0146	<0.0741	<0.0675	<0.675	<0.0663	<0.679	<0.0678
Acenaphthylene	130	0.00505 J	<0.000761	0.481	0.0362	<0.000773	<0.00664	<0.00687	<0.0769	<0.0166	0.0949	0.637	0.140 J	<0.0755	0.399 J	0.270 J
Anthracene	500	0.132	<0.000761	0.424	0.188	<0.000773	<0.00664	0.00126 J	<0.0669	0.0204 J	<0.0735	0.418 J	0.187 J	<0.0657	0.364 J	0.213 J
Benzo(a)anthracene	5	0.525	<0.000761	2.12	0.0362	0.00107 J	0.00143 J	0.00531 J	0.251 J	0.154	0.480 J	2.72	0.803	0.358 J	1.90	1.36
Benzo(a)pyrene	1.15	0.442	<0.000761	2.04	0.928	0.000856 J	0.00166 J	0.00579 J	0.188 J	0.157	0.407 J	3.66	0.848	0.353 J	2.00	1.48
Benzo(b)fluoranthene	11.5	0.729	<0.000761	3.45	1.07	0.00146 J	0.00273 J	0.0100	0.335 J	0.295	0.85	7.33	1.59	0.565	3.12	2.44
Benzo(g,h,i)perylene	500	0.331	<0.000761	1.30	0.459	0.00100 J	0.00295 J	0.00661 J	0.182 J	0.178	0.38	3.08	0.721	0.271 J	1.48	1.07
Benzo(k)fluoranthene	115	0.197	<0.000761	1.36	0.444	0.000791 J	0.000809 J	0.00298 J	0.182 J	0.126	0.42	3.01	0.504	0.244 J	1.21	0.863
Chrysene	1,150	0.532	<0.000761	1.60	0.894	0.00127 J	0.00163 J	0.00690	0.335 J	0.224	0.585	3.68	1.05	0.406 J	2.22	1.78
Dibenzo(a,h)anthracene	1.15	0.0977	<0.000761	0.472	0.139	<0.000773	<0.00664	0.00139 J	<0.0957	0.0331 J	<0.105	0.542 J	0.168 J	<0.0939	0.350 J	0.273 J
Fluoranthene	1,780	0.703	<0.000761	2.39	1.69	0.00198 J	0.00287 J	0.0107	0.350	0.360	0.565	3.62	1.61	0.425 J	3.32	2.29
Fluorene	360	0.0246	<0.000761	0.0220	0.0379	<0.000773	<0.00664	<0.00687	<0.314	<0.0678	<0.345	<0.314	<0.314	<0.308	<0.316	<0.315
Indeno(1,2,3-cd)pyrene	11.5	0.264	<0.000761	1.19	0.414	0.000800 J	0.00136 J	0.00442 J	0.120 J	0.134	0.256	2.43	0.587	0.209 J	1.20	0.877
Naphthalene	100	0.177	<0.00254	0.763	0.171	<0.00258	<0.0221	0.00664 J	0.62	0.328	0.707	0.760	0.615	0.229 J	0.680	0.691
Phenanthrene	110	0.433	<0.000761	0.610	0.476	0.00106 J	0.00116 J	0.00851	0.679	0.368	1.00	0.928	1.45	0.353 J	1.97	1.42
Pyrene	500	0.770	0.000804	3.48	1.53	0.00181 J	0.0026 J	0.00943	0.335 J	0.322	0.630	4.60	1.48	0.514	3.18	2.26

NOTES:

mg/kg = milligrams per kilogram

ft bgs = feet below ground surface

BOLD = Concentration detected above laboratory method detection limit (MDL)

RED = Concentration detected above Type 1 RRS

< = Laboratory analytical result is below laboratory reporting limit

 $\mathsf{J}=\mathsf{Reported}$ value is between the MDL and the practical quantitation limit (RL)

-- = No Type 1 RRS currently established for this compound

ns = Sample not analyzed for particular constituent

RRS = Risk Reduction Standard

EPD = Environmental Protection Division

HSRA = Hazardous Site Response Act

Former Seaboard Freight Station

703 Louisville Road Savannah, Chatham County, Georgia Terracon Project No. ES187351

TABLE 2: SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS

	Georgia EPD	GW-1	GW-2	GW-3	GW-4					
Compound	HSRA	10 ft bgs	10 ft bgs	9 ft bgs	9 ft bgs					
	Type 1 RRS	(µg/L)	(µg/L)	(µg/L)	(µg/L)					
Total Petroleum Hydrocarbo	ons (TPH) - USE	EPA Methods 3	511 & 8015							
TPH - High Fraction		177	281	211 J	213					
Polycyclic Aromatic Hydrocarbons (PAHs) - USEPA Method 8270C - SIM										
1-Methylnaphthalene		0.0135 J	0.0553 J	0.0246 J	0.0473 J					
2-Methylnaphthalene		0.0169 J	0.0422 J	0.0332 J	0.0753 J					
Acenaphthene	540	<0.0500	0.102	<0.0105	<0.0100					
Anthracene		<0.0500	0.0662 J	<0.0147	<0.0140					
Benzo(a)anthracene	0.300	<0.0500	0.0206 J	0.0218 J	0.0195 J					
Benzo(a)pyrene	0.200	<0.0500	<0.0154	0.0157J	0.0128 J					
Benzo(b)fluoranthene	2.50	0.00789 J	0.0144 J	0.0243 J	0.0200 J					
Benzo(g,h,i)perylene		<0.0500	0.0109 J	0.0127 J	0.0158 J					
Chrysene	250	<0.0500	<0.0144	0.0163 J	0.0159 J					
Fluoranthene	800	<0.0500	0.0963	<0.0165	<0.0157					
Fluorene	290	0.00956 J	0.121	<0.00892	0.00881 J					
Naphthalene	6.10	0.0702 J	0.127 J	0.102 J	0.157 J					
Phenanthrene		0.0179 J	0.318	0.0297 J	<0.00820					
Pyrene	120	<0.0500	0.0711	0.0401 J	0.0288 J					

NOTES:

µg/L = micrograms per liter

ft bgs = feet below ground surface

BOLD = Concentration detected above laboratory method detection limit (MDL)

< = Laboratory analytical result is below laboratory reporting limit

J = Reported value is between the MDL and the practical quantitation limit (RL)

-- = No Type 1 RRS currently established for this compound

RRS = Risk Reduction Standard

EPD = Environmental Protection Division

HSRA = Hazardous Site Response Act

Former Seaboard Freight Station

703 Louisville Road Savannah, Chatham County, Georgia Terracon Project No. ES187351

TABLE 3: SUMMARY OF FIELD SCREENING RESULTS

Location	B-3-N-1	B-3-N-2	B-3-N-3	B-3-N-4	B-3-E-1	B-3-W-1	B-3-W-2	B-3-W-3	B-3-W-4	B-3-W-5	B-3-W-6	B-3-W-7
0 - 1 ft bgs				25.8	33.1	167.1	46.9	66.3	38.4	33.1	34.1	38.8
1 - 2 ft bgs	20.4	12.0	19.7	42.0	42.1	199.2	49.4	R	78.8	R	32.8	41.2
2 - 3 ft bgs	20.8	15.8	38.1	36.9	41.4	172.4	30.4		R		30.9	39.8
3 - 4 ft bgs	15.1	S	S	45.6	R	119.1	41.2				R	R

Notes:

Bold = Soil sample collected for laboratory analysis.

= Exceeds Type I RRS

= Below Type I RRS

RRS = Risk Reduction Standard

-- = Not screened

ft bgs = feet below ground surface

R = hand auger refusal

S = saturated soil

APPENDIX E

LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Dominion Due Diligence Group

Sample Delivery Group: Samples Received: Project Number: L1001666 06/14/2018 2018-001031 Proposed Seaboard Station Apartments

Report To:

Description:

Ms. Diane Groom 201 Wylderose Dr Midlothian, VA 23113

Entire Report Reviewed By:

Hamill

T. Alan Harvill Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1

DE.	*
	¹ Cp
	² Tc
	³ Ss
	⁴ Cn
	⁵ Sr
	⁶ Qc
	⁷ Gl
	⁸ Al
	⁹ Sc

Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
GW-1 L1001666-01	7
GW-2 L1001666-02	9
GW-3 L1001666-03	12
GW-4 L1001666-04	15
TB COOLER 1 L1001666-05	17
SB-1 L1001666-06	19
SB-2 SHALLOW L1001666-07	22
SB-2 DEEP L1001666-08	24
SB-3 SHALLOW L1001666-09	27
SB-3 DEEP L1001666-10	29
SB-4 SHALLOW L1001666-11	32
SB-5 L1001666-12	34
SB-6 L1001666-13	35
SB-7 L1001666-14	36
TB COOLER 2 L1001666-15	38
Qc: Quality Control Summary	40
Total Solids by Method 2540 G-2011	40
Mercury by Method 7471A	42
Metals (ICP) by Method 6010B	43
Volatile Organic Compounds (GC) by Method 8015D/GRO	44
Volatile Organic Compounds (GC/MS) by Method 8260B	47
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	61
Semi-Volatile Organic Compounds (GC) by Method 8015	62
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	63
GI: Glossary of Terms	69
Al: Accreditations & Locations	70
Sc: Sample Chain of Custody	71

Cp: Cover Page

SDG: L1001666 DATE/TIME: 06/20/18 16:53

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

-

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

GW-1 L1001666-01 GW			Collected by Diane E. Groom	Collected date/time 06/13/18 08:20	Received date/time 06/14/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126134	1	06/18/18 14:51	06/18/18 14:51	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1124939	1	06/15/18 03:51	06/15/18 03:51	LRL
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG1125732	1.14	06/17/18 08:13	06/18/18 01:34	SHG
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125717	1	06/17/18 08:11	06/17/18 16:26	KM
GW-2 L1001666-02 GW			Collected by Diane E. Groom	Collected date/time 06/13/18 08:54	Received date/time 06/14/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126134	1	06/18/18 15:15	06/18/18 15:15	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1124939	1	06/15/18 04:11	06/15/18 04:11	LRL
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG1125732	1.43	06/17/18 08:13	06/18/18 01:51	SHG
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125717	1.33	06/17/18 08:11	06/17/18 16:48	KM
GW-3 L1001666-03 GW			Collected by Diane E. Groom	Collected date/time 06/13/18 09:36	Received date/time 06/14/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126134	1	06/18/18 15:40	06/18/18 15:40	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1124939	1	06/15/18 04:32	06/15/18 04:32	LRL
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG1125732	2.42	06/17/18 08:13	06/18/18 02:08	SHG
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125717	1.05	06/17/18 08:11	06/17/18 17:10	KM
GW-4 L1001666-04 GW			Collected by Diane E. Groom	Collected date/time 06/13/18 10:00	Received date/time 06/14/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126134	1	06/18/18 16:18	06/18/18 16:18	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1124939	1	06/15/18 04:53	06/15/18 04:53	LRL
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG1125732	1.33	06/17/18 08:13	06/18/18 02:25	SHG
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125717	1	06/17/18 08:11	06/17/18 17:32	KM
			Collected by	Collected date/time	Received date/time
TB COOLER 1 L1001666-05 GW			Diane E. Groom	06/13/18 12:40	06/14/18 08:45
Method	Batch	Dilution	Preparation	Analysis date/time	Analyst
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1124939	1	06/15/18 01:23	06/15/18 01:23	LRL
			Collected by	Collected date/time	Received date/time
SB-1 L1001666-06 Solid			Diane E. Groom	06/13/18 08:20	06/14/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1125517	1	06/19/18 09:01	06/19/18 09:09	KDW
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126298	1	06/13/18 08:20	06/19/18 02:30	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1125376	1	06/13/18 08:20	06/16/18 03:13	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1124831	20	06/14/18 22:41	06/15/18 15:33	MTJ
			0.0.117.110.10.01	0000000000	

PROJECT: 2018-001031

SDG: L1001666

PAGE: 3 of 72

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

-

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

SB-2 SHALLOW L1001666-07 Solid			Collected by Diane E. Groom	Collected date/time 06/13/18 08:35	Received date/time 06/14/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1125517	1	06/19/18 09:01	06/19/18 09:09	KDW
Mercury by Method 7471A	WG1125876	1	06/18/18 09:25	06/19/18 09:32	EL
Metals (ICP) by Method 6010B	WG1124879	1	06/17/18 13:58	06/19/18 23:48	CCE
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126298	1	06/13/18 08:35	06/19/18 02:51	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1124831	10	06/14/18 22:41	06/15/18 17:11	MTJ
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125931	1	06/17/18 18:31	06/18/18 06:38	KM
			Collected by	Collected date/time	Received date/tim
SB-2 DEEP L1001666-08 Solid			Diane E. Groom	06/13/18 08:45	06/14/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1125517	1	06/19/18 09:01	06/19/18 09:09	KDW
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126611	1	06/13/18 08:45	06/19/18 16:50	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1126338	1	06/13/18 08:45	06/19/18 00:47	DWR
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1124831	1	06/14/18 22:41	06/15/18 12:49	MTJ
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125931	1	06/17/18 18:31	06/18/18 04:49	KM
SB-3 SHALLOW L1001666-09 Solid			Collected by Diane E. Groom	Collected date/time 06/13/18 09:00	Received date/tim 06/14/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1125517	1	06/19/18 09:01	06/19/18 09:09	KDW
Mercury by Method 7471A	WG1125876	1	06/18/18 09:25	06/19/18 09:35	EL
Metals (ICP) by Method 6010B	WG1124879	1	06/17/18 13:58	06/19/18 23:51	CCE
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126298	1	06/13/18 09:00	06/19/18 03:33	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1124831	10	06/14/18 22:41	06/15/18 17:22	MTJ
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125932	1	06/19/18 15:31	06/20/18 06:04	DMG
			Collected by	Collected date/time	Received date/tim
SB-3 DEEP L1001666-10 Solid			Diane E. Groom	06/13/18 09:10	06/14/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Total Salida by Mathed 2E40 C 2011	W/C112EE17	1			KDW
Volatile Organic Compounds (CC) by Mathed 2015D/CDO	WC112031/ WC1126611	1	06/13/10 03.01	00/13/10 03.03	
Volatile Organic Compounds (GC/MS) by Method 8260P	WG1120011 WIC1126220	1	06/13/19 00:10	06/19/18 01:05	מאוט מואום
volatile Organic Compounds (GC/MS) by Method 8260B	WG1120338 WC1124031	1	06/11/12 22.41	06/15/10 01.05	DWK
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125932	1	06/19/18 15:31	06/20/18 06:26	DMG
			Collected by	Collected date/time	Received date/tim
SB-4 SHALLOW L1001666-11 Solid			Diane E. Groom	06/13/18 10:00	06/14/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1125517	1	06/19/18 09:01	06/19/18 09:09	KDW
Mercury by Method 7471A	WG1125876	1	06/18/18 09:25	06/19/18 09:39	EL
Metals (ICP) by Method 6010B	WG1124879	1	06/17/18 13:58	06/19/18 23:53	CCE
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126298	1	06/13/18 10:00	06/19/18 04:15	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1124831	1	06/14/18 22:41	06/15/18 12:38	MTJ
	WC112E022	1	06/10/10 15:21	06/20/19 02:21	DMC

ACCOUNT: Dominion Due Diligence Group PROJECT: 2018-001031

SDG: L1001666

PAGE: 4 of 72

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

-

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by Diane F. Groom	Collected date/time	Received date/time
5B-5 LIUU1000-12 SUIIU				00,10,10 12.10	00,11,10 00.10
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1125517	1	06/19/18 09:01	06/19/18 09:09	KDW
Mercury by Method 7471A	WG1125876	1	06/18/18 09:25	06/19/18 09:42	EL
Metals (ICP) by Method 6010B	WG1124879	1	06/17/18 13:58	06/19/18 23:56	CCE
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125932	1	06/19/18 15:31	06/20/18 03:52	DMG
			Collected by	Collected date/time	Received date/time
SB-6 L1001666-13 Solid			Diane E. Groom	06/13/18 11:35	06/14/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1125517	1	06/19/18 09:01	06/19/18 09:09	KDW
Mercury by Method 7471A	WG1125876	1	06/18/18 09:25	06/19/18 09:44	EL
Metals (ICP) by Method 6010B	WG1124879	1	06/17/18 13:58	06/19/18 23:58	CCE
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125932	1	06/19/18 15:31	06/20/18 04:14	DMG
			Collected by	Collected date/time	Received date/time
SB-7 L1001666-14 Solid			Diane E. Groom	06/13/18 12:00	06/14/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1125518	1	06/18/18 16:09	06/18/18 16:22	JD
Mercury by Method 7471A	WG1125876	1	06/18/18 09:25	06/19/18 09:47	EL
Metals (ICP) by Method 6010B	WG1124879	1	06/17/18 13:58	06/20/18 00:01	CCE
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1126298	1	06/13/18 12:00	06/19/18 04:36	LRL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1124831	2	06/14/18 22:41	06/15/18 13:54	MTJ
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG1125932	1	06/19/18 15:31	06/20/18 06:48	DMG
			Collected by	Collected date/time	Received date/time
TB COOLER 2 L1001666-15 GW			Diane E. Groom	06/13/18 12:40	06/14/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
	W04424020	4			
volatile organic compounds (GC/MS) by Method 82608	WG1124939	1	06/15/18 01:44	06/15/18 01:44	LKL

SDG: L1001666 DATE/TIME: 06/20/18 16:53

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

T. Alan Harvill Technical Service Representative

SDG: L1001666 DATE/TIME: 06/20/18 16:53

PAGE:

6 of 72

SAMPLE RESULTS - 01 L1001666

Ср

⁴Cn

Qc

GI

Â

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l	ug/l		date / time		2
TPH (GC/FID) Low Fraction	U		31.4	100	1	06/18/2018 14:51	WG1126134	Tc
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-122		06/18/2018 14:51	WG1126134	3
								SS

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Acetone	U		10.0	50.0	1	06/15/2018 03:51	WG1124939	
Acrolein	U		8.87	50.0	1	06/15/2018 03:51	WG1124939	
Acrylonitrile	U		1.87	10.0	1	06/15/2018 03:51	WG1124939	
Benzene	U		0.331	1.00	1	06/15/2018 03:51	WG1124939	
Bromobenzene	U		0.352	1.00	1	06/15/2018 03:51	WG1124939	
Bromodichloromethane	U		0.380	1.00	1	06/15/2018 03:51	WG1124939	
Bromoform	U		0.469	1.00	1	06/15/2018 03:51	WG1124939	
Bromomethane	U		0.866	5.00	1	06/15/2018 03:51	WG1124939	
n-Butylbenzene	U		0.361	1.00	1	06/15/2018 03:51	WG1124939	
sec-Butylbenzene	U		0.365	1.00	1	06/15/2018 03:51	WG1124939	
tert-Butylbenzene	U		0.399	1.00	1	06/15/2018 03:51	WG1124939	
Carbon tetrachloride	U		0.379	1.00	1	06/15/2018 03:51	WG1124939	
Chlorobenzene	U		0.348	1.00	1	06/15/2018 03:51	WG1124939	
Chlorodibromomethane	U		0.327	1.00	1	06/15/2018 03:51	WG1124939	
Chloroethane	U		0.453	5.00	1	06/15/2018 03:51	WG1124939	
2-Chloroethyl vinyl ether	U		3.01	50.0	1	06/15/2018 03:51	WG1124939	
Chloroform	U		0.324	5.00	1	06/15/2018 03:51	WG1124939	
Chloromethane	U		0.276	2.50	1	06/15/2018 03:51	WG1124939	
2-Chlorotoluene	U		0.375	1.00	1	06/15/2018 03:51	WG1124939	
4-Chlorotoluene	U		0.351	1.00	1	06/15/2018 03:51	WG1124939	
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	06/15/2018 03:51	WG1124939	
1,2-Dibromoethane	U		0.381	1.00	1	06/15/2018 03:51	WG1124939	
Dibromomethane	U		0.346	1.00	1	06/15/2018 03:51	WG1124939	
1,2-Dichlorobenzene	U		0.349	1.00	1	06/15/2018 03:51	WG1124939	
1,3-Dichlorobenzene	U		0.220	1.00	1	06/15/2018 03:51	WG1124939	
1,4-Dichlorobenzene	U		0.274	1.00	1	06/15/2018 03:51	WG1124939	
Dichlorodifluoromethane	U		0.551	5.00	1	06/15/2018 03:51	WG1124939	
1,1-Dichloroethane	U		0.259	1.00	1	06/15/2018 03:51	WG1124939	
1,2-Dichloroethane	U		0.361	1.00	1	06/15/2018 03:51	WG1124939	
1,1-Dichloroethene	U		0.398	1.00	1	06/15/2018 03:51	WG1124939	
cis-1,2-Dichloroethene	U		0.260	1.00	1	06/15/2018 03:51	WG1124939	
trans-1,2-Dichloroethene	U		0.396	1.00	1	06/15/2018 03:51	WG1124939	
1,2-Dichloropropane	U		0.306	1.00	1	06/15/2018 03:51	<u>WG1124939</u>	
1,1-Dichloropropene	U		0.352	1.00	1	06/15/2018 03:51	<u>WG1124939</u>	
1,3-Dichloropropane	U		0.366	1.00	1	06/15/2018 03:51	<u>WG1124939</u>	
cis-1,3-Dichloropropene	U		0.418	1.00	1	06/15/2018 03:51	<u>WG1124939</u>	
trans-1,3-Dichloropropene	U		0.419	1.00	1	06/15/2018 03:51	WG1124939	
2,2-Dichloropropane	U		0.321	1.00	1	06/15/2018 03:51	<u>WG1124939</u>	
Di-isopropyl ether	U		0.320	1.00	1	06/15/2018 03:51	WG1124939	
Ethylbenzene	U		0.384	1.00	1	06/15/2018 03:51	WG1124939	
Hexachloro-1,3-butadiene	U		0.256	1.00	1	06/15/2018 03:51	WG1124939	
Isopropylbenzene	U		0.326	1.00	1	06/15/2018 03:51	WG1124939	
p-Isopropyltoluene	U		0.350	1.00	1	06/15/2018 03:51	WG1124939	
2-Butanone (MEK)	U		3.93	10.0	1	06/15/2018 03:51	WG1124939	
Methylene Chloride	U		1.00	5.00	1	06/15/2018 03:51	WG1124939	
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	06/15/2018 03:51	WG1124939	
Methyl tert-butyl ether	U		0.367	1.00	1	06/15/2018 03:51	WG1124939	
Naphthalene	U		1.00	5.00	1	06/15/2018 03:51	WG1124939	
n-Propylbenzene	U		0.349	1.00	1	06/15/2018 03:51	WG1124939	
1000				DPO JECT.		SDC.		DACE
ACCC Dominion Duo [)iliaence Group			2018-001031		11001666	06/20/18 16:53	7 of 72
Dominion Duc L				20.0 001001		2.001000	0.0,20,10,10,00	/ 01/2

*

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte ug/l ug/l date / time Styrene U 0.307 1.00 1 06/15/2018 03:51 WG1124939 1112 Total bland bland U 0.307 1.00 1 06/15/2018 03:51 WG1124939	² Tc ³ Ss
Styrene U 0.307 1.00 1 06/15/2018 03:51 WG1124939 1112 Tetra blanching H 0.305 1.00 1 06/15/2018 03:51 WG1124939	² Tc ³ Ss
	³ Ss
1,1,1,2-1etracnioroetnane U 0.385 1.00 1 06/15/2018 0.3:51 WG124939	³ Ss
1,1,2,2-Tetrachloroethane U 0.130 1.00 1 06/15/2018 03:51 <u>WG1124939</u>	Ss
1,1,2-Trichlorotrifluoroethane U 0.303 1.00 1 06/15/2018 03:51 WG1124939	
Tetrachloroethene U 0.372 1.00 1 06/15/2018 03:51 WG1124939	
Toluene U 0.412 1.00 1 06/15/2018 03:51 WG1124939	⁴ Cn
1,2,3-Trichlorobenzene U 0.230 1.00 1 06/15/2018 03:51 <u>WG1124939</u>	
1,2,4-Trichlorobenzene U 0.355 1.00 1 06/15/2018 03:51 WG1124939	5
1,1,1-Trichloroethane U 0.319 1.00 1 06/15/2018 03:51 WG1124939	Sr
1,1,2-Trichloroethane U 0.383 1.00 1 06/15/2018 03:51 WG1124939	
Trichloroethene U 0.398 1.00 1 06/15/2018 03:51 WG1124939	6 00
Trichlorofluoromethane U 1.20 5.00 1 06/15/2018 03:51 WG1124939	<u> </u>
1,2,3-Trichloropropane U 0.807 2.50 1 06/15/2018 03:51 WG1124939	7
1,2,4-Trimethylbenzene U 0.373 1.00 1 06/15/2018 03:51 WG1124939	GI
1,2,3-Trimethylbenzene U 0.321 1.00 1 06/15/2018 03:51 WG1124939	
1,3,5-Trimethylbenzene U 0.387 1.00 1 06/15/2018 03:51 WG1124939	8
Vinyl chloride U 0.259 1.00 1 06/15/2018 03:51 WG1124939	7.4
Xylenes, Total U 1.06 3.00 1 06/15/2018 03:51 WG1124939	9
(S) Toluene-d8 105 80.0-120 06/15/2018 03:51 WG1124939	Sc
(S) Dibromofluoromethane 93.0 76.0-123 06/15/2018 03:51 WG1124939	
(S) 4-Bromofluorobenzene 99.8 80.0-120 06/15/2018 03:51 WG1124939	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH (GC/FID) High Fraction	177		28.2	114	1.14	06/18/2018 01:34	WG1125732
(S) o-Terphenyl	107			31.0-160		06/18/2018 01:34	WG1125732

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0140	0.0500	1	06/17/2018 16:26	WG1125717
Acenaphthene	U		0.0100	0.0500	1	06/17/2018 16:26	WG1125717
Acenaphthylene	U		0.0120	0.0500	1	06/17/2018 16:26	WG1125717
Benzo(a)anthracene	U		0.00410	0.0500	1	06/17/2018 16:26	WG1125717
Benzo(a)pyrene	U		0.0116	0.0500	1	06/17/2018 16:26	WG1125717
Benzo(b)fluoranthene	0.00789	J	0.00212	0.0500	1	06/17/2018 16:26	WG1125717
Benzo(g,h,i)perylene	U		0.00227	0.0500	1	06/17/2018 16:26	WG1125717
Benzo(k)fluoranthene	U		0.0136	0.0500	1	06/17/2018 16:26	WG1125717
Chrysene	U		0.0108	0.0500	1	06/17/2018 16:26	WG1125717
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	06/17/2018 16:26	WG1125717
Fluoranthene	U		0.0157	0.0500	1	06/17/2018 16:26	WG1125717
Fluorene	0.00956	J	0.00850	0.0500	1	06/17/2018 16:26	WG1125717
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	06/17/2018 16:26	WG1125717
Naphthalene	0.0702	J	0.0198	0.250	1	06/17/2018 16:26	WG1125717
Phenanthrene	0.0179	J	0.00820	0.0500	1	06/17/2018 16:26	WG1125717
Pyrene	U		0.0117	0.0500	1	06/17/2018 16:26	WG1125717
1-Methylnaphthalene	0.0135	J	0.00821	0.250	1	06/17/2018 16:26	WG1125717
2-Methylnaphthalene	0.0169	J	0.00902	0.250	1	06/17/2018 16:26	WG1125717
2-Chloronaphthalene	U		0.00647	0.250	1	06/17/2018 16:26	WG1125717
(S) Nitrobenzene-d5	64.7			31.0-160		06/17/2018 16:26	WG1125717
(S) 2-Fluorobiphenyl	91.2			48.0-148		06/17/2018 16:26	WG1125717
(S) p-Terphenyl-d14	95.8			37.0-146		06/17/2018 16:26	WG1125717

ACCOUNT:
Dominion Due Diligence Group

PROJECT: 2018-001031

SDG: L1001666 DATE/TIME: 06/20/18 16:53

PAGE: 8 of 72 Collected date/time: 06/13/18 08:54

SAMPLE RESULTS - 02 L1001666

Ср

⁴Cn

Qc

GI

Â

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l	ug/l		date / time		2
TPH (GC/FID) Low Fraction	U		31.4	100	1	06/18/2018 15:15	WG1126134	Tc
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-122		06/18/2018 15:15	WG1126134	3
								SS

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Acetone	U		10.0	50.0	1	06/15/2018 04:11	WG1124939	
Acrolein	U		8.87	50.0	1	06/15/2018 04:11	WG1124939	
Acrylonitrile	U		1.87	10.0	1	06/15/2018 04:11	WG1124939	
Benzene	U		0.331	1.00	1	06/15/2018 04:11	WG1124939	
Bromobenzene	U		0.352	1.00	1	06/15/2018 04:11	WG1124939	
Bromodichloromethane	U		0.380	1.00	1	06/15/2018 04:11	WG1124939	
Bromoform	U		0.469	1.00	1	06/15/2018 04:11	WG1124939	
Bromomethane	U		0.866	5.00	1	06/15/2018 04:11	WG1124939	
n-Butylbenzene	U		0.361	1.00	1	06/15/2018 04:11	WG1124939	
sec-Butylbenzene	U		0.365	1.00	1	06/15/2018 04:11	WG1124939	
tert-Butylbenzene	U		0.399	1.00	1	06/15/2018 04:11	WG1124939	
Carbon tetrachloride	U		0.379	1.00	1	06/15/2018 04:11	WG1124939	
Chlorobenzene	U		0.348	1.00	1	06/15/2018 04:11	WG1124939	
Chlorodibromomethane	U		0.327	1.00	1	06/15/2018 04:11	WG1124939	
Chloroethane	U		0.453	5.00	1	06/15/2018 04:11	WG1124939	
2-Chloroethyl vinyl ether	U		3.01	50.0	1	06/15/2018 04:11	WG1124939	
Chloroform	U		0.324	5.00	1	06/15/2018 04:11	WG1124939	
Chloromethane	U		0.276	2.50	1	06/15/2018 04:11	WG1124939	
2-Chlorotoluene	U		0.375	1.00	1	06/15/2018 04:11	WG1124939	
4-Chlorotoluene	U		0.351	1.00	1	06/15/2018 04:11	WG1124939	
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	06/15/2018 04:11	WG1124939	
1,2-Dibromoethane	U		0.381	1.00	1	06/15/2018 04:11	WG1124939	
Dibromomethane	U		0.346	1.00	1	06/15/2018 04:11	WG1124939	
1,2-Dichlorobenzene	U		0.349	1.00	1	06/15/2018 04:11	WG1124939	
1,3-Dichlorobenzene	U		0.220	1.00	1	06/15/2018 04:11	WG1124939	
1,4-Dichlorobenzene	U		0.274	1.00	1	06/15/2018 04:11	WG1124939	
Dichlorodifluoromethane	U		0.551	5.00	1	06/15/2018 04:11	WG1124939	
1,1-Dichloroethane	U		0.259	1.00	1	06/15/2018 04:11	WG1124939	
1,2-Dichloroethane	U		0.361	1.00	1	06/15/2018 04:11	WG1124939	
1,1-Dichloroethene	U		0.398	1.00	1	06/15/2018 04:11	WG1124939	
cis-1,2-Dichloroethene	U		0.260	1.00	1	06/15/2018 04:11	WG1124939	
trans-1,2-Dichloroethene	U		0.396	1.00	1	06/15/2018 04:11	WG1124939	
1,2-Dichloropropane	U		0.306	1.00	1	06/15/2018 04:11	WG1124939	
1,1-Dichloropropene	U		0.352	1.00	1	06/15/2018 04:11	WG1124939	
1,3-Dichloropropane	U		0.366	1.00	1	06/15/2018 04:11	WG1124939	
cis-1,3-Dichloropropene	U		0.418	1.00	1	06/15/2018 04:11	WG1124939	
trans-1,3-Dichloropropene	U		0.419	1.00	1	06/15/2018 04:11	WG1124939	
2,2-Dichloropropane	U		0.321	1.00	1	06/15/2018 04:11	WG1124939	
Di-isopropyl ether	U		0.320	1.00	1	06/15/2018 04:11	WG1124939	
Ethylbenzene	U		0.384	1.00	1	06/15/2018 04:11	WG1124939	
Hexachloro-1,3-butadiene	U		0.256	1.00	1	06/15/2018 04:11	WG1124939	
Isopropylbenzene	U		0.326	1.00	1	06/15/2018 04:11	WG1124939	
p-lsopropyltoluene	U		0.350	1.00	1	06/15/2018 04:11	WG1124939	
2-Butanone (MEK)	U		3.93	10.0	1	06/15/2018 04:11	WG1124939	
Methylene Chloride	U		1.00	5.00	1	06/15/2018 04:11	WG1124939	
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	06/15/2018 04:11	WG1124939	
Methyl tert-butyl ether	U		0.367	1.00	1	06/15/2018 04:11	WG1124939	
Naphthalene	U		1.00	5.00	1	06/15/2018 04:11	WG1124939	
n-Propylbenzene	U		0.349	1.00	1	06/15/2018 04:11	WG1124939	
ACCC	OUNT:			PROJECT:		SDG:	DATE/TIME:	PAGE:
Dominion Due D	Diligence Group			2018-001031		L1001666	06/20/18 16:53	9 of 72

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	_ 'Ср
Analyte	ug/l		ug/l	ug/l		date / time		
Styrene	U		0.307	1.00	1	06/15/2018 04:11	WG1124939	^{2}Tc
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	06/15/2018 04:11	WG1124939	10
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	06/15/2018 04:11	WG1124939	3
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	06/15/2018 04:11	WG1124939	Ss
Tetrachloroethene	U		0.372	1.00	1	06/15/2018 04:11	WG1124939	
Toluene	U		0.412	1.00	1	06/15/2018 04:11	WG1124939	⁴ Cn
1,2,3-Trichlorobenzene	U		0.230	1.00	1	06/15/2018 04:11	WG1124939	011
1,2,4-Trichlorobenzene	U		0.355	1.00	1	06/15/2018 04:11	WG1124939	5_
1,1,1-Trichloroethane	U		0.319	1.00	1	06/15/2018 04:11	WG1124939	Sr
1,1,2-Trichloroethane	U		0.383	1.00	1	06/15/2018 04:11	WG1124939	
Trichloroethene	U		0.398	1.00	1	06/15/2018 04:11	WG1124939	ာဂ
Trichlorofluoromethane	U		1.20	5.00	1	06/15/2018 04:11	WG1124939	<u> </u>
1,2,3-Trichloropropane	U		0.807	2.50	1	06/15/2018 04:11	WG1124939	7
1,2,4-Trimethylbenzene	U		0.373	1.00	1	06/15/2018 04:11	WG1124939	GI
1,2,3-Trimethylbenzene	U		0.321	1.00	1	06/15/2018 04:11	WG1124939	
1,3,5-Trimethylbenzene	U		0.387	1.00	1	06/15/2018 04:11	WG1124939	⁸ A I
Vinyl chloride	U		0.259	1.00	1	06/15/2018 04:11	WG1124939	2.0
Xylenes, Total	U		1.06	3.00	1	06/15/2018 04:11	WG1124939	9
(S) Toluene-d8	104			80.0-120		06/15/2018 04:11	WG1124939	Sc
(S) Dibromofluoromethane	92.8			76.0-123		06/15/2018 04:11	WG1124939	
(S) 4-Bromofluorobenzene	98.1			80.0-120		06/15/2018 04:11	WG1124939	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH (GC/FID) High Fraction	281		35.3	143	1.43	06/18/2018 01:51	WG1125732
(S) o-Terphenyl	108			31.0-160		06/18/2018 01:51	WG1125732

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Pocult	Qualifier	MDI	וחפ	Dilution	Analycic	Patch
Arrahar	Result	Quaimer		KDL	Dilution	Alidiysis	Batch
Analyte	ug/i		ug/i	ug/i		date / time	
Anthracene	0.0662	J	0.0186	0.0665	1.33	06/17/2018 16:48	WG1125717
Acenaphthene	0.102		0.0133	0.0665	1.33	06/17/2018 16:48	WG1125717
Acenaphthylene	U		0.0160	0.0665	1.33	06/17/2018 16:48	WG1125717
Benzo(a)anthracene	0.0206	J	0.00545	0.0665	1.33	06/17/2018 16:48	WG1125717
Benzo(a)pyrene	U		0.0154	0.0665	1.33	06/17/2018 16:48	WG1125717
Benzo(b)fluoranthene	0.0144	J	0.00282	0.0665	1.33	06/17/2018 16:48	WG1125717
Benzo(g,h,i)perylene	0.0109	J	0.00302	0.0665	1.33	06/17/2018 16:48	WG1125717
Benzo(k)fluoranthene	U		0.0181	0.0665	1.33	06/17/2018 16:48	WG1125717
Chrysene	U		0.0144	0.0665	1.33	06/17/2018 16:48	WG1125717
Dibenz(a,h)anthracene	U		0.00527	0.0665	1.33	06/17/2018 16:48	WG1125717
Fluoranthene	0.0963		0.0209	0.0665	1.33	06/17/2018 16:48	WG1125717
Fluorene	0.121		0.0113	0.0665	1.33	06/17/2018 16:48	WG1125717
Indeno(1,2,3-cd)pyrene	U		0.0197	0.0665	1.33	06/17/2018 16:48	WG1125717
Naphthalene	0.127	J	0.0263	0.333	1.33	06/17/2018 16:48	WG1125717
Phenanthrene	0.318		0.0109	0.0665	1.33	06/17/2018 16:48	WG1125717
Pyrene	0.0711		0.0156	0.0665	1.33	06/17/2018 16:48	WG1125717
1-Methylnaphthalene	0.0553	J	0.0109	0.333	1.33	06/17/2018 16:48	WG1125717
2-Methylnaphthalene	0.0442	J	0.0120	0.333	1.33	06/17/2018 16:48	WG1125717
2-Chloronaphthalene	U		0.00860	0.333	1.33	06/17/2018 16:48	WG1125717
(S) Nitrobenzene-d5	63.4			31.0-160		06/17/2018 16:48	WG1125717
(S) 2-Fluorobiphenyl	88.7			48.0-148		06/17/2018 16:48	WG1125717
(S) p-Terphenyl-d14	92.9			37.0-146		06/17/2018 16:48	WG1125717

Sample Narrative:

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Dominion Due Diligence Group	2018-001031	L1001666	06/20/18 16:53	10 of 72

*

Τс

Ss

Cn

Qc

Gl

Â

Sc

Collected date/time:06/13/18 08:54L1001666Semi Volatile Organic Compounds(GC/MS) by Method 8270C-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	

L1001666-02 WG1125717: Dilution due to sample volume

Collected date/time: 06/13/18 09:36

SAMPLE RESULTS - 03 L1001666

⁴Cn

Qc

GI

Â

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		Ср	
Analyte	ug/l		ug/l	ug/l		date / time			2	
TPH (GC/FID) Low Fraction	U		31.4	100	1	06/18/2018 15:40	WG1126134		Tc	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-122		06/18/2018 15:40	WG1126134		3	
									Ss	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Acetone	U		10.0	50.0	1	06/15/2018 04:32	WG1124939	
Acrolein	U		8.87	50.0	1	06/15/2018 04:32	WG1124939	
Acrylonitrile	U		1.87	10.0	1	06/15/2018 04:32	WG1124939	
Benzene	U		0.331	1.00	1	06/15/2018 04:32	WG1124939	
Bromobenzene	U		0.352	1.00	1	06/15/2018 04:32	WG1124939	l
Bromodichloromethane	U		0.380	1.00	1	06/15/2018 04:32	WG1124939	
Bromoform	U		0.469	1.00	1	06/15/2018 04:32	WG1124939	
Bromomethane	U		0.866	5.00	1	06/15/2018 04:32	WG1124939	Ī
n-Butvlbenzene	U		0.361	1.00	1	06/15/2018 04:32	WG1124939	
sec-Butylbenzene	U		0.365	1.00	1	06/15/2018 04:32	WG1124939	l
tert-Butylbenzene			0.399	1.00	1	06/15/2018 04:32	WG1124939	[
Carbon tetrachloride			0.379	1.00	1	06/15/2018 04:32	WG1124939	
Chlorobenzene			0.348	1.00	1	06/15/2018 04:32	WG1124939	
Chlorodibromomethane	0		0.327	1.00	1	06/15/2018 04:32	WG1124939	
Chloroethane	0		0.327	5.00	1	06/15/2018 04:32	WG1124939	
2-Chloroethyl vinyl ether			3.01	50.0	1	06/15/2018 04:32	WG112/1939	
Chloroform	0		0.324	5.00	1	06/15/2018 04:32	WG1124939	
Chloromethane			0.324	2.50	1	06/15/2018 04:32	WG1124939	
	0		0.275	1.00	1	06/15/2018 04:32	WG1124939	
			0.373	1.00	1	06/15/2018 04:32	WG1124939	
12 Dibromo 3 Chloropropano	0		1.32	5.00	1	06/15/2018 04:32	WC1124939	
1.2 Dibromosthano	0		0.201	1.00	1	06/15/2018 04.32	WC1124939	
I,Z-DIDIOIIIOEtildile	U		0.301	1.00	1	00/15/2018 04:32	WG1124939	
	U		0.340	1.00	1	06/15/2018 04:32	WG1124939	
1,2-Dichlorobenzene	U		0.349	1.00	1	06/15/2018 04.32	WG1124939	
1,3-Dichlorobenzene	U		0.220	1.00	1	06/15/2018 04:32	WG1124939	
I,4-DICHIOIODEIIZEIIE	U		0.274	1.00 E 00	1	06/15/2018 04.32	WG1124939	
11 Dichleresthans	U		0.001	5.00	1	00/15/2018 04.32	WG1124939	
1, I-Dichloroothano	U		0.259	1.00	1	06/15/2018 04.32	WC1124939	
1,2-Dichloroothono	U		0.301	1.00	1	06/15/2018 04.32	WC1124939	
ris 1.2 Dichloroothono	0		0.390	1.00	1	06/15/2018 04.32	WC1124939	
trans 1.2 Dichlereethone	U		0.200	1.00	1	06/15/2018 04:32	WG1124939	
1.2 Dichleropropopo	U		0.390	1.00	1	06/15/2018 04.32	WG1124939	
1,2-Dicilioropropane	U		0.300	1.00	1	06/15/2018 04:32	WG1124959	
	U		0.352	1.00	1	06/15/2018 04:32	WG1124959	
	U		0.300	1.00	1	06/15/2018 04:32	WG1124959	
trans 1.2 Dichleropropono	U		0.410	1.00	1	06/15/2018 04.32	WG1124939	
trans-1,3-Dichloropropene	U		0.419	1.00	1	06/15/2018 04:32	WG1124939	
2,2-Dichloropropane	U		0.321	1.00	1	06/15/2018 04:32	WG1124939	
DI-Isopropyi etner	U		0.320	1.00	1	06/15/2018 04:32	WG1124939	
Euryidenzene	U		0.384	1.00	1	06/15/2018 04:32	WG1124939	
Hexachioro-1,3-butadiene	U		0.256	1.00	1	06/15/2018 04:32	WG1124939	
Isopropyibenzene	U		0.326	1.00	1	06/15/2018 04:32	WG1124939	
p-isopropyitoluene	U		0.350	1.00	1	06/15/2018 04:32	WG1124939	
Z-Butanone (MEK)	U		3.93	10.0	1	06/15/2018 04:32	WG1124939	
Methylene Chloride	U		1.00	5.00	1	06/15/2018 04:32	WG1124939	
4-metnyi-2-pentanone (MIBK)	U		2.14	10.0	1	06/15/2018 04:32	WG1124939	
metnyi tert-butyi ether	U		0.367	1.00	1	06/15/2018 04:32	WG1124939	
Naphthalene	U		1.00	5.00	1	06/15/2018 04:32	WG1124939	
n-Propyibenzene	U		0.349	1.00	1	06/15/2018 04:32	WGT124939	
۵۲۵۵	DUNT:			PRO IFCT.		SDG	DΔΤΕ/ΤΙΜΕ·	PAGE
Dominion Due I	Diligence Group			2018-001031		L1001666	06/20/18 16:53	12 of 72

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	— ГСр
Analyte	ug/l		ug/l	ug/l		date / time		
Styrene	U		0.307	1.00	1	06/15/2018 04:32	WG1124939	^{2}Tc
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	06/15/2018 04:32	WG1124939	10
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	06/15/2018 04:32	WG1124939	3
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	06/15/2018 04:32	WG1124939	Ss
Tetrachloroethene	U		0.372	1.00	1	06/15/2018 04:32	WG1124939	
Toluene	U		0.412	1.00	1	06/15/2018 04:32	WG1124939	⁴ Cn
1,2,3-Trichlorobenzene	U		0.230	1.00	1	06/15/2018 04:32	WG1124939	On
1,2,4-Trichlorobenzene	U		0.355	1.00	1	06/15/2018 04:32	WG1124939	5
1,1,1-Trichloroethane	U		0.319	1.00	1	06/15/2018 04:32	WG1124939	Sr
1,1,2-Trichloroethane	U		0.383	1.00	1	06/15/2018 04:32	WG1124939	
Trichloroethene	U		0.398	1.00	1	06/15/2018 04:32	WG1124939	⁶ Oc
Trichlorofluoromethane	U		1.20	5.00	1	06/15/2018 04:32	WG1124939	<u> </u>
1,2,3-Trichloropropane	U		0.807	2.50	1	06/15/2018 04:32	WG1124939	7
1,2,4-Trimethylbenzene	U		0.373	1.00	1	06/15/2018 04:32	WG1124939	Gl
1,2,3-Trimethylbenzene	U		0.321	1.00	1	06/15/2018 04:32	WG1124939	
1,3,5-Trimethylbenzene	U		0.387	1.00	1	06/15/2018 04:32	WG1124939	8 ΔΙ
Vinyl chloride	U		0.259	1.00	1	06/15/2018 04:32	WG1124939	7.0
Xylenes, Total	U		1.06	3.00	1	06/15/2018 04:32	WG1124939	9
(S) Toluene-d8	104			80.0-120		06/15/2018 04:32	WG1124939	Sc
(S) Dibromofluoromethane	93.9			76.0-123		06/15/2018 04:32	WG1124939	
(S) 4-Bromofluorobenzene	93.8			80.0-120		06/15/2018 04:32	WG1124939	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH (GC/FID) High Fraction	211	J	59.8	242	2.42	06/18/2018 02:08	WG1125732
(S) o-Terphenyl	94.6			31.0-160		06/18/2018 02:08	WG1125732

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0147	0.0525	1.05	06/17/2018 17:10	WG1125717
Acenaphthene	U		0.0105	0.0525	1.05	06/17/2018 17:10	WG1125717
Acenaphthylene	U		0.0126	0.0525	1.05	06/17/2018 17:10	WG1125717
Benzo(a)anthracene	0.0218	J	0.00430	0.0525	1.05	06/17/2018 17:10	WG1125717
Benzo(a)pyrene	0.0157	J	0.0122	0.0525	1.05	06/17/2018 17:10	WG1125717
Benzo(b)fluoranthene	0.0243	J	0.00223	0.0525	1.05	06/17/2018 17:10	WG1125717
Benzo(g,h,i)perylene	0.0127	J	0.00238	0.0525	1.05	06/17/2018 17:10	WG1125717
Benzo(k)fluoranthene	U		0.0143	0.0525	1.05	06/17/2018 17:10	WG1125717
Chrysene	0.0163	J	0.0113	0.0525	1.05	06/17/2018 17:10	WG1125717
Dibenz(a,h)anthracene	U		0.00416	0.0525	1.05	06/17/2018 17:10	WG1125717
Fluoranthene	U		0.0165	0.0525	1.05	06/17/2018 17:10	WG1125717
Fluorene	U		0.00892	0.0525	1.05	06/17/2018 17:10	WG1125717
Indeno(1,2,3-cd)pyrene	U		0.0155	0.0525	1.05	06/17/2018 17:10	WG1125717
Naphthalene	0.102	J	0.0208	0.263	1.05	06/17/2018 17:10	WG1125717
Phenanthrene	0.0297	J	0.00861	0.0525	1.05	06/17/2018 17:10	WG1125717
Pyrene	0.0401	J	0.0123	0.0525	1.05	06/17/2018 17:10	WG1125717
1-Methylnaphthalene	0.0246	J	0.00862	0.263	1.05	06/17/2018 17:10	WG1125717
2-Methylnaphthalene	0.0332	J	0.00947	0.263	1.05	06/17/2018 17:10	WG1125717
2-Chloronaphthalene	U		0.00679	0.263	1.05	06/17/2018 17:10	WG1125717
(S) Nitrobenzene-d5	65.2			31.0-160		06/17/2018 17:10	WG1125717
(S) 2-Fluorobiphenyl	93.2			48.0-148		06/17/2018 17:10	WG1125717
(S) p-Terphenyl-d14	92.5			37.0-146		06/17/2018 17:10	WG1125717

Sample Narrative:

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Dominion Due Diligence Group	2018-001031	L1001666	06/20/18 16:53	13 of 72

*

Τс

Ss

Cn

Qc

Gl

Â

Sc

Collected date/time:06/13/18 09:36L1001666Semi Volatile Organic Compounds(GC/MS) by Method 8270C-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	

L1001666-03 WG1125717: Dilution due to sample volume

Collected date/time: 06/13/18 10:00

SAMPLE RESULTS - 04 L1001666

Ср

Cn

Qc

GI

Â

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Pocult	Qualifier	MDI	וחמ	Dilution	Analysis	Patch	 Ср
∆ nalvte	ua/l	Quaimer			Dilution	date / time	Batch	
TPH (GC/FID) Low Fraction	U		31.4	100	1	06/18/2018 16:18	WG1126134	² Tc
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-122		06/18/2018 16:18	WG1126134	3
								Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Acetone	U		10.0	50.0	1	06/15/2018 04:53	WG1124939	
Acrolein	U		8.87	50.0	1	06/15/2018 04:53	WG1124939	
Acrylonitrile	U		1.87	10.0	1	06/15/2018 04:53	WG1124939	1
Benzene	U		0.331	1.00	1	06/15/2018 04:53	WG1124939	
Bromobenzene	U		0.352	1.00	1	06/15/2018 04:53	WG1124939	
Bromodichloromethane	U		0.380	1.00	1	06/15/2018 04:53	WG1124939	
Bromoform	U		0.469	1.00	1	06/15/2018 04:53	WG1124939	
Bromomethane	U		0.866	5.00	1	06/15/2018 04:53	WG1124939	1
n-Butylbenzene	U		0.361	1.00	1	06/15/2018 04:53	WG1124939	
sec-Butylbenzene	U		0.365	1.00	1	06/15/2018 04:53	WG1124939	L
tert-Butylbenzene	U		0.399	1.00	1	06/15/2018 04:53	WG1124939	
Carbon tetrachloride	U		0.379	1.00	1	06/15/2018 04:53	WG1124939	
Chlorobenzene	U		0.348	1.00	1	06/15/2018 04:53	WG1124939	
Chlorodibromomethane	U		0.327	1.00	1	06/15/2018 04:53	WG1124939	
Chloroethane	U		0.453	5.00	1	06/15/2018 04:53	WG1124939	
2-Chloroethyl vinyl ether	U		3.01	50.0	1	06/15/2018 04:53	WG1124939	
Chloroform	U		0.324	5.00	1	06/15/2018 04:53	WG1124939	
Chloromethane	U		0.276	2.50	1	06/15/2018 04:53	WG1124939	
2-Chlorotoluene	U		0.375	1.00	1	06/15/2018 04:53	WG1124939	
4-Chlorotoluene	U		0.351	1.00	1	06/15/2018 04:53	WG1124939	
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	06/15/2018 04:53	WG1124939	
1,2-Dibromoethane	U		0.381	1.00	1	06/15/2018 04:53	WG1124939	
Dibromomethane	U		0.346	1.00	1	06/15/2018 04:53	WG1124939	
1,2-Dichlorobenzene	U		0.349	1.00	1	06/15/2018 04:53	WG1124939	
1,3-Dichlorobenzene	U		0.220	1.00	1	06/15/2018 04:53	WG1124939	
1,4-Dichlorobenzene	U		0.274	1.00	1	06/15/2018 04:53	WG1124939	
Dichlorodifluoromethane	U		0.551	5.00	1	06/15/2018 04:53	WG1124939	
1,1-Dichloroethane	U		0.259	1.00	1	06/15/2018 04:53	WG1124939	
1,2-Dichloroethane	U		0.361	1.00	1	06/15/2018 04:53	WG1124939	
1,1-Dichloroethene	U		0.398	1.00	1	06/15/2018 04:53	WG1124939	
cis-1,2-Dichloroethene	U		0.260	1.00	1	06/15/2018 04:53	WG1124939	
trans-1,2-Dichloroethene	U		0.396	1.00	1	06/15/2018 04:53	WG1124939	
1,2-Dichloropropane	U		0.306	1.00	1	06/15/2018 04:53	WG1124939	
1,1-Dichloropropene	U		0.352	1.00	1	06/15/2018 04:53	WG1124939	
1,3-Dichloropropane	U		0.366	1.00	1	06/15/2018 04:53	WG1124939	
cis-1,3-Dichloropropene	U		0.418	1.00	1	06/15/2018 04:53	WG1124939	
trans-1,3-Dichloropropene	U		0.419	1.00	1	06/15/2018 04:53	WG1124939	
2,2-Dichloropropane	U		0.321	1.00	1	06/15/2018 04:53	WG1124939	
Di-isopropyl ether	U		0.320	1.00	1	06/15/2018 04:53	WG1124939	
Ethylbenzene	U		0.384	1.00	1	06/15/2018 04:53	WG1124939	
Hexachloro-1,3-butadiene	U		0.256	1.00	1	06/15/2018 04:53	WG1124939	
Isopropylbenzene	U		0.326	1.00	1	06/15/2018 04:53	WG1124939	
p-Isopropyltoluene	U		0.350	1.00	1	06/15/2018 04:53	WG1124939	
2-Butanone (MEK)	U		3.93	10.0	1	06/15/2018 04:53	WG1124939	
Methylene Chloride	U		1.00	5.00	1	06/15/2018 04:53	WG1124939	
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	1	06/15/2018 04:53	WG1124939	
Methyl tert-butyl ether	U		0.367	1.00	1	06/15/2018 04:53	WG1124939	
Naphthalene	U		1.00	5.00	1	06/15/2018 04:53	WG1124939	
n-Propylbenzene	U		0.349	1.00	1	06/15/2018 04:53	WG1124939	
						05.5		
ACCC				PROJECT:		SDG:		PAGE:
Dominion Due L	mgence Group			2018-001031		L1001666	06/20/18 16:53	15 of /2

Collected date/time: 06/13/18 10:00

SAMPLE RESULTS - 04

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l	ug/l		date / time		
Styrene	U		0.307	1.00	1	06/15/2018 04:53	WG1124939	^{2}Tc
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	06/15/2018 04:53	WG1124939	
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	06/15/2018 04:53	WG1124939	3
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	06/15/2018 04:53	WG1124939	Ss
Tetrachloroethene	U		0.372	1.00	1	06/15/2018 04:53	WG1124939	
Toluene	U		0.412	1.00	1	06/15/2018 04:53	WG1124939	⁴ Cn
1,2,3-Trichlorobenzene	U		0.230	1.00	1	06/15/2018 04:53	WG1124939	
1,2,4-Trichlorobenzene	U		0.355	1.00	1	06/15/2018 04:53	WG1124939	5
1,1,1-Trichloroethane	U		0.319	1.00	1	06/15/2018 04:53	WG1124939	Sr
1,1,2-Trichloroethane	U		0.383	1.00	1	06/15/2018 04:53	WG1124939	
Trichloroethene	U		0.398	1.00	1	06/15/2018 04:53	WG1124939	ိုဂ္ဂ
Trichlorofluoromethane	U		1.20	5.00	1	06/15/2018 04:53	WG1124939	de
1,2,3-Trichloropropane	U		0.807	2.50	1	06/15/2018 04:53	WG1124939	7
1,2,4-Trimethylbenzene	U		0.373	1.00	1	06/15/2018 04:53	WG1124939	GI
1,2,3-Trimethylbenzene	U		0.321	1.00	1	06/15/2018 04:53	WG1124939	
1,3,5-Trimethylbenzene	U		0.387	1.00	1	06/15/2018 04:53	WG1124939	⁸ ΔI
Vinyl chloride	U		0.259	1.00	1	06/15/2018 04:53	WG1124939	7.4
Xylenes, Total	U		1.06	3.00	1	06/15/2018 04:53	WG1124939	9
(S) Toluene-d8	102			80.0-120		06/15/2018 04:53	WG1124939	Sc
(S) Dibromofluoromethane	91.3			76.0-123		06/15/2018 04:53	WG1124939	
(S) 4-Bromofluorobenzene	95.9			80.0-120		06/15/2018 04:53	WG1124939	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH (GC/FID) High Fraction	213		32.8	133	1.33	06/18/2018 02:25	WG1125732
(S) o-Terphenyl	97.8			31.0-160		06/18/2018 02:25	WG1125732

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Anthracene	U		0.0140	0.0500	1	06/17/2018 17:32	WG1125717
Acenaphthene	U		0.0100	0.0500	1	06/17/2018 17:32	WG1125717
Acenaphthylene	U		0.0120	0.0500	1	06/17/2018 17:32	WG1125717
Benzo(a)anthracene	0.0195	J	0.00410	0.0500	1	06/17/2018 17:32	WG1125717
Benzo(a)pyrene	0.0128	J	0.0116	0.0500	1	06/17/2018 17:32	WG1125717
Benzo(b)fluoranthene	0.0200	J	0.00212	0.0500	1	06/17/2018 17:32	WG1125717
Benzo(g,h,i)perylene	0.0158	J	0.00227	0.0500	1	06/17/2018 17:32	WG1125717
Benzo(k)fluoranthene	U		0.0136	0.0500	1	06/17/2018 17:32	WG1125717
Chrysene	0.0159	J	0.0108	0.0500	1	06/17/2018 17:32	WG1125717
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	06/17/2018 17:32	WG1125717
Fluoranthene	U		0.0157	0.0500	1	06/17/2018 17:32	WG1125717
Fluorene	0.00881	J	0.00850	0.0500	1	06/17/2018 17:32	WG1125717
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	06/17/2018 17:32	WG1125717
Naphthalene	0.157	J	0.0198	0.250	1	06/17/2018 17:32	WG1125717
Phenanthrene	U		0.00820	0.0500	1	06/17/2018 17:32	WG1125717
Pyrene	0.0288	J	0.0117	0.0500	1	06/17/2018 17:32	WG1125717
1-Methylnaphthalene	0.0473	J	0.00821	0.250	1	06/17/2018 17:32	WG1125717
2-Methylnaphthalene	0.0753	J	0.00902	0.250	1	06/17/2018 17:32	WG1125717
2-Chloronaphthalene	U		0.00647	0.250	1	06/17/2018 17:32	WG1125717
(S) Nitrobenzene-d5	68.2			31.0-160		06/17/2018 17:32	WG1125717
(S) 2-Fluorobiphenyl	93.5			48.0-148		06/17/2018 17:32	WG1125717
(S) p-Terphenyl-d14	91.3			37.0-146		06/17/2018 17:32	WG1125717

ACCOUNT:
Dominion Due Diligence Group

PROJECT: 2018-001031

SDG: L1001666 DATE/TIME: 06/20/18 16:53 PAGE: 16 of 72

Volatile Organic Compounds (GC/MS) by Method 8260B

	1	· · · · · · · · · · · · · · · · · · ·	,					——————————————————————————————————————
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		2
Acetone	U		10.0	50.0	1	06/15/2018 01:23	WG1124939	T
Acrolein	U		8.87	50.0	1	06/15/2018 01:23	WG1124939	
Acrylonitrile	U		1.87	10.0	1	06/15/2018 01:23	WG1124939	³ <i>C</i> ⁷
Benzene	U		0.331	1.00	1	06/15/2018 01:23	WG1124939	5.
Bromobenzene	U		0.352	1.00	1	06/15/2018 01:23	WG1124939	4
Bromodichloromethane	U		0.380	1.00	1	06/15/2018 01:23	WG1124939	[*] C
Bromoform	U		0.469	1.00	1	06/15/2018 01:23	WG1124939	
Bromomethane	U		0.866	5.00	1	06/15/2018 01:23	WG1124939	5
n-Butvlbenzene	U		0.361	100	1	06/15/2018 01:23	WG1124939	S
sec-Butylbenzene	11		0.365	1.00	1	06/15/2018 01:23	WG1124939	
tert-Butylbenzene	11		0.300	1.00	1	06/15/2018 01:23	WG112/1939	ိဂ
Carbon totrachlorido	0		0.333	1.00	1	06/15/2018 01.23	WC1124939	
Calpointetrachionue	U		0.379	1.00	1	06/15/2018 01.23	WG1124939	7
Chlorobenzene	U		0.348	1.00	1	06/15/2018 01:23	WG1124939	΄G
Chlorodibromomethane	U		0.327	1.00	1	06/15/2018 01:23	WG1124939	
Chloroethane	U		0.453	5.00	1	06/15/2018 01:23	<u>WG1124939</u>	8
2-Chloroethyl vinyl ether	U		3.01	50.0	1	06/15/2018 01:23	<u>WG1124939</u>	A
Chloroform	U		0.324	5.00	1	06/15/2018 01:23	WG1124939	
Chloromethane	U		0.276	2.50	1	06/15/2018 01:23	WG1124939	°5
2-Chlorotoluene	U		0.375	1.00	1	06/15/2018 01:23	WG1124939	
4-Chlorotoluene	U		0.351	1.00	1	06/15/2018 01:23	WG1124939	
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	1	06/15/2018 01:23	WG1124939	
1,2-Dibromoethane	U		0.381	1.00	1	06/15/2018 01:23	WG1124939	
Dibromomethane	U		0.346	1.00	1	06/15/2018 01:23	WG1124939	
1,2-Dichlorobenzene	U		0.349	1.00	1	06/15/2018 01:23	WG1124939	
1.3-Dichlorobenzene	U		0.220	1.00	1	06/15/2018 01:23	WG1124939	
14-Dichlorobenzene	U		0 274	100	1	06/15/2018 01:23	WG1124939	
Dichlorodifluoromethane	0		0.551	5.00	1	06/15/2018 01:23	WG1124939	
11-Dichloroethane	11		0.259	1.00	1	06/15/2018 01:23	WG112/1939	
1.2 Dichloroothano	0		0.255	1.00	1	06/15/2018 01:23	WG1124939	
1,2-Dichloroothono	U		0.301	1.00	1	06/15/2018 01.23	WG1124939	
i, i-Dicilioroetileile	U		0.390	1.00	1	06/15/2018 01.23	WG1124959	
cis-1,2-Dichloroethene	U		0.260	1.00	1	06/15/2018 01:23	WG1124939	
trans-1,2-Dichloroethene	U		0.396	1.00	1	06/15/2018 01:23	WG1124939	
1,2-Dichloropropane	U		0.306	1.00	1	06/15/2018 01:23	WG1124939	
1,1-Dichloropropene	U		0.352	1.00	1	06/15/2018 01:23	WG1124939	
1,3-Dichloropropane	U		0.366	1.00	1	06/15/2018 01:23	WG1124939	
cis-1,3-Dichloropropene	U		0.418	1.00	1	06/15/2018 01:23	WG1124939	
trans-1,3-Dichloropropene	U		0.419	1.00	1	06/15/2018 01:23	WG1124939	
2,2-Dichloropropane	U		0.321	1.00	1	06/15/2018 01:23	WG1124939	
Di-isopropyl ether	U		0.320	1.00	1	06/15/2018 01:23	WG1124939	
Ethylbenzene	U		0.384	1.00	1	06/15/2018 01:23	WG1124939	
Hexachloro-1,3-butadiene	U		0.256	1.00	1	06/15/2018 01:23	WG1124939	
Isopropylbenzene	U		0.326	1.00	1	06/15/2018 01:23	WG1124939	
p-Isopropyltoluene	U		0.350	1.00	1	06/15/2018 01:23	WG1124939	
2-Butanone (MEK)	11		3 93	10.0	1	06/15/2018 01:23	WG1124939	
Methylene Chloride			1.00	5.00	1	06/15/2018 01:23	WG112/030	
4 Mothyl 2 pontanono (MIRK)	11		2.14	10.0	1	06/15/2018 01:23	WG1124939	
4-methyl-z-pentanone (mibk)	U		0.267	10.0	1	00/15/2018 01.25	WG1124939	
Nerbiblere	U		1.00	T.00	1	00/15/2018 01.25	WG1124939	
Napritrialerie	U		1.00	5.00	1	06/15/2018 01:23	WG1124939	
n-Propyidenzene	U		0.349	1.00	1	06/15/2018 01:23	WG1124939	
Styrene	U		0.307	1.00	1	06/15/2018 01:23	WG1124939	
1,1,1,2-Tetrachloroethane	U		0.385	1.00	1	06/15/2018 01:23	WG1124939	
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	06/15/2018 01:23	WG1124939	
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	1	06/15/2018 01:23	WG1124939	
Tetrachloroethene	U		0.372	1.00	1	06/15/2018 01:23	WG1124939	
Toluene	U		0.412	1.00	1	06/15/2018 01:23	WG1124939	
1,2,3-Trichlorobenzene	U		0.230	1.00	1	06/15/2018 01:23	WG1124939	
ACCO	DUNT:			PROJECT:		SDG:	DATE/TIME:	PAGE:

Dominion Due Diligence Group

2018-001031

L1001666

DATE/TIME: 06/20/18 16:53 PAGE: 17 of 72

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

-			-					1	
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	(Ср
Analyte	ug/l		ug/l	ug/l		date / time			
1,2,4-Trichlorobenzene	U		0.355	1.00	1	06/15/2018 01:23	WG1124939	2_	Тс
1,1,1-Trichloroethane	U		0.319	1.00	1	06/15/2018 01:23	WG1124939		10
1,1,2-Trichloroethane	U		0.383	1.00	1	06/15/2018 01:23	WG1124939	3	
Trichloroethene	U		0.398	1.00	1	06/15/2018 01:23	WG1124939		Ss
Trichlorofluoromethane	U		1.20	5.00	1	06/15/2018 01:23	WG1124939		
1,2,3-Trichloropropane	U		0.807	2.50	1	06/15/2018 01:23	WG1124939	4	Cn
1,2,4-Trimethylbenzene	U		0.373	1.00	1	06/15/2018 01:23	WG1124939		011
1,2,3-Trimethylbenzene	U		0.321	1.00	1	06/15/2018 01:23	WG1124939	5	
1,3,5-Trimethylbenzene	U		0.387	1.00	1	06/15/2018 01:23	WG1124939		Sr
Vinyl chloride	U		0.259	1.00	1	06/15/2018 01:23	WG1124939		
Xylenes, Total	U		1.06	3.00	1	06/15/2018 01:23	WG1124939	6	Oc
(S) Toluene-d8	105			80.0-120		06/15/2018 01:23	WG1124939		<u> </u>
(S) Dibromofluoromethane	93.9			76.0-123		06/15/2018 01:23	WG1124939	7	
(S) 4-Bromofluorobenzene	95.6			80.0-120		06/15/2018 01:23	WG1124939	(Gl

SDG: L1001666

Collected date/time: 06/13/18 08:20

SAMPLE RESULTS - 06 L1001666

.

Total Solids by Method 2540 G-2011

Dominion Due Diligence Group

								l' Co
	Result	Qualifier	Dilution	Analysis	Batch			Ср
Analyte	%			date / time				2
Total Solids	84.2		1	06/19/2018 09:09	WG1125	517		Tc
Volatile Organic Comp	oounds (GC)	by Metho	d 8015	D/GRO				³ Ss
	Result (dry)	Qualifier	MDL (dry) RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg) mg/kg		date / time		4 Cn
TPH (GC/FID) Low Fraction	0.258		0.025	8 0.119	1	06/19/2018 02:30	WG1126298	
(C) T : (I (EID)	00.4			77 0 100		0.0 /10 /2010 02 20	11/04/10/00/00	-

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.258		0.0258	0.119	1	06/19/2018 02:30	WG1126298
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120		06/19/2018 02:30	WG1126298

Volatile Organic Compounds (GC/MS) by Method 8260B

(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120		06/19/2018 02:30	WG1126298	5
								Sr
Volatile Organic Com	pounds (GC/N	/IS) by Met	hod 8260:	В				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	ီQc
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	U		0.0163	0.0297	1	06/16/2018 03:13	WG1125376	7
Acrylonitrile	U		0.00226	0.0148	1	06/16/2018 03:13	WG1125376	U
Benzene	0.00373		0.000475	0.00119	1	06/16/2018 03:13	WG1125376	8
Bromobenzene	U		0.00125	0.0148	1	06/16/2018 03:13	WG1125376	Ă
Bromodichloromethane	U		0.000936	0.00297	1	06/16/2018 03:13	WG1125376	
Bromoform	U		0.00710	0.0297	1	06/16/2018 03:13	WG1125376	°SC
Bromomethane	U		0.00439	0.0148	1	06/16/2018 03:13	WG1125376	50
n-Butylbenzene	U		0.00456	0.0148	1	06/16/2018 03:13	WG1125376	
sec-Butylbenzene	U		0.00301	0.0148	1	06/16/2018 03:13	WG1125376	
tert-Butylbenzene	U		0.00184	0.00594	1	06/16/2018 03:13	WG1125376	
Carbon tetrachloride	U		0.00128	0.00594	1	06/16/2018 03:13	WG1125376	
Chlorobenzene	U		0.000681	0.00297	1	06/16/2018 03:13	WG1125376	
Chlorodibromomethane	U		0.000535	0.00297	1	06/16/2018 03:13	WG1125376	
Chloroethane	U		0.00128	0.00594	1	06/16/2018 03:13	WG1125376	
Chloroform	U		0.000493	0.00297	1	06/16/2018 03:13	WG1125376	
Chloromethane	U		0.00165	0.0148	1	06/16/2018 03:13	WG1125376	
2-Chlorotoluene	U		0.00109	0.00297	1	06/16/2018 03:13	WG1125376	
4-Chlorotoluene	U		0.00134	0.00594	1	06/16/2018 03:13	WG1125376	
1,2-Dibromo-3-Chloropropane	U		0.00606	0.0297	1	06/16/2018 03:13	WG1125376	
1,2-Dibromoethane	U		0.000624	0.00297	1	06/16/2018 03:13	WG1125376	
Dibromomethane	U		0.00119	0.00594	1	06/16/2018 03:13	WG1125376	
1,2-Dichlorobenzene	U	J4	0.00172	0.00594	1	06/16/2018 03:13	WG1125376	
1,3-Dichlorobenzene	U		0.00202	0.00594	1	06/16/2018 03:13	WG1125376	
1,4-Dichlorobenzene	U		0.00234	0.00594	1	06/16/2018 03:13	WG1125376	
Dichlorodifluoromethane	U		0.000972	0.00297	1	06/16/2018 03:13	WG1125376	
1,1-Dichloroethane	U		0.000683	0.00297	1	06/16/2018 03:13	WG1125376	
1,2-Dichloroethane	U		0.000564	0.00297	1	06/16/2018 03:13	WG1125376	
1,1-Dichloroethene	U		0.000594	0.00297	1	06/16/2018 03:13	WG1125376	
cis-1,2-Dichloroethene	U	<u>J4</u>	0.000820	0.00297	1	06/16/2018 03:13	WG1125376	
trans-1,2-Dichloroethene	U		0.00170	0.00594	1	06/16/2018 03:13	WG1125376	
1,2-Dichloropropane	U		0.00151	0.00594	1	06/16/2018 03:13	WG1125376	
1,1-Dichloropropene	U		0.000831	0.00297	1	06/16/2018 03:13	WG1125376	
1,3-Dichloropropane	U		0.00208	0.00594	1	06/16/2018 03:13	WG1125376	
cis-1,3-Dichloropropene	U		0.000805	0.00297	1	06/16/2018 03:13	WG1125376	
trans-1,3-Dichloropropene	U		0.00182	0.00594	1	06/16/2018 03:13	WG1125376	
2,2-Dichloropropane	U		0.000942	0.00297	1	06/16/2018 03:13	WG1125376	
Di-isopropyl ether	U		0.000416	0.00119	1	06/16/2018 03:13	WG1125376	
Ethylbenzene	0.0155		0.000630	0.00297	1	06/16/2018 03:13	WG1125376	
Hexachloro-1,3-butadiene	U		0.0151	0.0297	1	06/16/2018 03:13	WG1125376	
Isopropylbenzene	0.00476		0.00103	0.00297	1	06/16/2018 03:13	WG1125376	
p-Isopropyltoluene	0.00406	J	0.00277	0.00594	1	06/16/2018 03:13	WG1125376	
2-Butanone (MEK)	0.0331		0.0148	0.0297	1	06/16/2018 03:13	WG1125376	
Methylene Chloride	U		0.00789	0.0297	1	06/16/2018 03:13	WG1125376	
4-Methyl-2-pentanone (MIBK)	U		0.0119	0.0297	1	06/16/2018 03:13	WG1125376	
1000	τ.			т.	-			DAGE
ACCOUN	L.		PROJEC	1.	SL	JG.	DATE/ HIME:	PAGE:

2018-001031

L1001666

19 of 72

06/20/18 16:53

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	C
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Methyl tert-butyl ether	U		0.000350	0.00119	1	06/16/2018 03:13	WG1125376	² T
Naphthalene	0.0425		0.00371	0.0148	1	06/16/2018 03:13	WG1125376	
n-Propylbenzene	0.00615		0.00140	0.00594	1	06/16/2018 03:13	WG1125376	3
Styrene	U		0.00324	0.0148	1	06/16/2018 03:13	WG1125376	S
1,1,1,2-Tetrachloroethane	U		0.000594	0.00297	1	06/16/2018 03:13	WG1125376	
1,1,2,2-Tetrachloroethane	U		0.000463	0.00297	1	06/16/2018 03:13	WG1125376	⁴
1,1,2-Trichlorotrifluoroethane	U		0.000802	0.00297	1	06/16/2018 03:13	WG1125376	
Tetrachloroethene	U		0.000831	0.00297	1	06/16/2018 03:13	WG1125376	5
Toluene	0.0403		0.00148	0.00594	1	06/16/2018 03:13	WG1125376	S
1,2,3-Trichlorobenzene	U		0.000742	0.00297	1	06/16/2018 03:13	WG1125376	
1,2,4-Trichlorobenzene	U		0.00573	0.0148	1	06/16/2018 03:13	WG1125376	⁶ C
1,1,1-Trichloroethane	U		0.000327	0.00297	1	06/16/2018 03:13	WG1125376	
1,1,2-Trichloroethane	U		0.00105	0.00297	1	06/16/2018 03:13	WG1125376	7
Trichloroethene	U		0.000475	0.00119	1	06/16/2018 03:13	WG1125376	e
Trichlorofluoromethane	U		0.000594	0.00297	1	06/16/2018 03:13	WG1125376	
1,2,3-Trichloropropane	U		0.00606	0.0148	1	06/16/2018 03:13	WG1125376	8
1,2,4-Trimethylbenzene	0.0291		0.00138	0.00594	1	06/16/2018 03:13	WG1125376	
1,2,3-Trimethylbenzene	0.0139		0.00137	0.00594	1	06/16/2018 03:13	WG1125376	9
Vinyl chloride	U		0.000811	0.00297	1	06/16/2018 03:13	WG1125376	S
1,3,5-Trimethylbenzene	0.0112		0.00128	0.00594	1	06/16/2018 03:13	WG1125376	
Xylenes, Total	0.137		0.00568	0.00772	1	06/16/2018 03:13	WG1125376	
(S) Toluene-d8	102			80.0-120		06/16/2018 03:13	WG1125376	
(S) Dibromofluoromethane	97.6			74.0-131		06/16/2018 03:13	WG1125376	
(S) 4-Bromofluorobenzene	107			64.0-132		06/16/2018 03:13	WG1125376	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	211		18.3	95.0	20	06/15/2018 15:33	WG1124831
(S) o-Terphenyl	80.8	<u>J7</u>		18.0-148		06/15/2018 15:33	WG1124831

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.392		0.000713	0.00713	1	06/18/2018 06:17	<u>WG1125931</u>
Acenaphthene	0.115		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Acenaphthylene	0.0190		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Benzo(a)anthracene	0.716		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Benzo(a)pyrene	0.485		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Benzo(b)fluoranthene	0.630		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Benzo(g,h,i)perylene	0.283		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Benzo(k)fluoranthene	0.165		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Chrysene	0.650		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Dibenz(a,h)anthracene	0.0855		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Fluoranthene	1.35		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Fluorene	0.274		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Indeno(1,2,3-cd)pyrene	0.232		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Naphthalene	0.137		0.00238	0.0238	1	06/18/2018 06:17	WG1125931
Phenanthrene	1.36		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
Pyrene	1.19		0.000713	0.00713	1	06/18/2018 06:17	WG1125931
1-Methylnaphthalene	0.146		0.00238	0.0238	1	06/18/2018 06:17	WG1125931
2-Methylnaphthalene	0.125		0.00238	0.0238	1	06/18/2018 06:17	WG1125931
2-Chloronaphthalene	U		0.00238	0.0238	1	06/18/2018 06:17	WG1125931
(S) p-Terphenyl-d14	53.6			23.0-120		06/18/2018 06:17	WG1125931
(S) Nitrobenzene-d5	54.5			14.0-149		06/18/2018 06:17	<u>WG1125931</u>

ACCOUNT: Dominion Due Diligence Group PROJECT: 2018-001031

SDG: L1001666 DATE/TIME: 06/20/18 16:53

PAGE: 20 of 72

*

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
(S) 2-Fluorobiphenyl	63.8			34.0-125		06/18/2018 06:17	WG1125931	

SDG: L1001666 DATE/TIME: 06/20/18 16:53

SB-2 SHALLOW Collected date/time: 06/13/18 08:35

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

*

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	84.0		1	06/19/2018 09:09	WG1125517	Tc

Mercury by Method 7471A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.971		0.00333	0.0238	1	06/19/2018 09:32	WG1125876

Metals (ICP) by Method 6010B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ(
Arsenic	9.88		0.774	2.38	1	06/19/2018 23:48	WG1124879	
Barium	114		0.202	0.595	1	06/19/2018 23:48	WG1124879	⁷ CI
Cadmium	0.565	J	0.0834	0.595	1	06/19/2018 23:48	WG1124879	
Chromium	9.66		0.167	1.19	1	06/19/2018 23:48	WG1124879	8
Lead	350		0.226	0.595	1	06/19/2018 23:48	WG1124879	Ă
Selenium	U		0.881	2.38	1	06/19/2018 23:48	WG1124879	
Silver	U		0.333	1.19	1	06/19/2018 23:48	WG1124879	⁹ Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0258	0.119	1	06/19/2018 02:51	WG1126298
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120		06/19/2018 02:51	WG1126298

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	53.9		9.16	47.6	10	06/15/2018 17:11	WG1124831
(S) o-Terphenyl	72.4			18.0-148		06/15/2018 17:11	WG1124831

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.132		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Acenaphthene	0.0218		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Acenaphthylene	0.00505	J	0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Benzo(a)anthracene	0.525		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Benzo(a)pyrene	0.442		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Benzo(b)fluoranthene	0.729		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Benzo(g,h,i)perylene	0.331		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Benzo(k)fluoranthene	0.197		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Chrysene	0.532		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Dibenz(a,h)anthracene	0.0977		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Fluoranthene	0.703		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Fluorene	0.0246		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Indeno(1,2,3-cd)pyrene	0.264		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Naphthalene	0.177		0.00238	0.0238	1	06/18/2018 06:38	WG1125931
Phenanthrene	0.433		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
Pyrene	0.770		0.000714	0.00714	1	06/18/2018 06:38	WG1125931
1-Methylnaphthalene	0.171		0.00238	0.0238	1	06/18/2018 06:38	WG1125931
2-Methylnaphthalene	0.190		0.00238	0.0238	1	06/18/2018 06:38	WG1125931
2-Chloronaphthalene	U		0.00238	0.0238	1	06/18/2018 06:38	WG1125931
(S) p-Terphenyl-d14	75.6			23.0-120		06/18/2018 06:38	WG1125931

ACCOUNT: Dominion Due Diligence Group PROJECT: 2018-001031

SDG: L1001666

.

SB-2 SHALLOW Collected date/time: 06/13/18 08:35	(SAMPL	E RESUI	LTS - (07		ONE LAB. NATIONWIDE.
Semi Volatile Organic Compound	s (GC/MS)	by Method	d 8270C-SI	М			
Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	'Ср
Analyte	mg/kg		mg/kg	mg/kg		date / time		
(S) Nitrobenzene-d5	66.1			14.0-149		06/18/2018 06:38	WG1125931	2 TC
(S) 2-Fluorobiphenyl	69.3			34.0-125		06/18/2018 06:38	WG1125931	

SDG: L1001666 DATE/TIME: 06/20/18 16:53 PAGE:

23 of 72

SAMPLE RESULTS - 08 L1001666

ONE LAB. NATIONWIDE.

.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	78.8		1	06/19/2018 09:09	WG1125517	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time				
Total Solids	78.8		1	06/19/2018 09:09	WG11255	517		
Volatile Organic Comp	oounds (GC)	by Metho	d 8015	D/GRO				3
	Result (dry)	Qualifier	MDL (iry) RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
TPH (GC/FID) Low Fraction	U		0.0275	0.127	1	06/19/2018 16:50	WG1126611	
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120		06/19/2018 16:50	WG1126611	5
Volatile Organic Com	oounds (GC/	MS) by Me	ethod 8	260B				
	Result (dry)	Qualifier	MDL (iry) RDL (dry)	Dilution	Analysis	Batch	6

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	Qc
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	U		0.0174	0.0317	1	06/19/2018 00:47	WG1126338	7
Acrylonitrile	U		0.00241	0.0159	1	06/19/2018 00:47	WG1126338	G
Benzene	U		0.000508	0.00127	1	06/19/2018 00:47	WG1126338	8
Bromobenzene	U		0.00133	0.0159	1	06/19/2018 00:47	WG1126338	Ă
Bromodichloromethane	U		0.00100	0.00317	1	06/19/2018 00:47	WG1126338	
Bromoform	U		0.00759	0.0317	1	06/19/2018 00:47	WG1126338	9 S C
Bromomethane	U		0.00469	0.0159	1	06/19/2018 00:47	WG1126338	50
n-Butylbenzene	U		0.00487	0.0159	1	06/19/2018 00:47	WG1126338	
sec-Butylbenzene	U		0.00321	0.0159	1	06/19/2018 00:47	WG1126338	
tert-Butylbenzene	U		0.00197	0.00634	1	06/19/2018 00:47	WG1126338	
Carbon tetrachloride	U		0.00137	0.00634	1	06/19/2018 00:47	WG1126338	
Chlorobenzene	U		0.000727	0.00317	1	06/19/2018 00:47	WG1126338	
Chlorodibromomethane	U		0.000571	0.00317	1	06/19/2018 00:47	WG1126338	
Chloroethane	U		0.00137	0.00634	1	06/19/2018 00:47	WG1126338	
Chloroform	U		0.000527	0.00317	1	06/19/2018 00:47	WG1126338	
Chloromethane	U	<u>J4</u>	0.00176	0.0159	1	06/19/2018 00:47	WG1126338	
2-Chlorotoluene	U	_	0.00117	0.00317	1	06/19/2018 00:47	WG1126338	
4-Chlorotoluene	U		0.00143	0.00634	1	06/19/2018 00:47	WG1126338	
1,2-Dibromo-3-Chloropropane	U		0.00647	0.0317	1	06/19/2018 00:47	WG1126338	
1,2-Dibromoethane	U		0.000666	0.00317	1	06/19/2018 00:47	WG1126338	
Dibromomethane	U		0.00127	0.00634	1	06/19/2018 00:47	WG1126338	
1,2-Dichlorobenzene	U		0.00184	0.00634	1	06/19/2018 00:47	WG1126338	
1,3-Dichlorobenzene	U		0.00216	0.00634	1	06/19/2018 00:47	WG1126338	
1,4-Dichlorobenzene	U		0.00250	0.00634	1	06/19/2018 00:47	WG1126338	
Dichlorodifluoromethane	U		0.00104	0.00317	1	06/19/2018 00:47	WG1126338	
1,1-Dichloroethane	U		0.000730	0.00317	1	06/19/2018 00:47	WG1126338	
1,2-Dichloroethane	U		0.000603	0.00317	1	06/19/2018 00:47	WG1126338	
1,1-Dichloroethene	U		0.000634	0.00317	1	06/19/2018 00:47	WG1126338	
cis-1,2-Dichloroethene	U		0.000875	0.00317	1	06/19/2018 00:47	WG1126338	
trans-1,2-Dichloroethene	U		0.00181	0.00634	1	06/19/2018 00:47	WG1126338	
1,2-Dichloropropane	U		0.00161	0.00634	1	06/19/2018 00:47	WG1126338	
1,1-Dichloropropene	U		0.000888	0.00317	1	06/19/2018 00:47	WG1126338	
1,3-Dichloropropane	U		0.00222	0.00634	1	06/19/2018 00:47	WG1126338	
cis-1,3-Dichloropropene	U		0.000860	0.00317	1	06/19/2018 00:47	WG1126338	
trans-1,3-Dichloropropene	U		0.00194	0.00634	1	06/19/2018 00:47	WG1126338	
2,2-Dichloropropane	U		0.00101	0.00317	1	06/19/2018 00:47	WG1126338	
Di-isopropyl ether	U		0.000444	0.00127	1	06/19/2018 00:47	WG1126338	
Ethylbenzene	U		0.000672	0.00317	1	06/19/2018 00:47	WG1126338	
Hexachloro-1,3-butadiene	U		0.0161	0.0317	1	06/19/2018 00:47	WG1126338	
Isopropylbenzene	U		0.00109	0.00317	1	06/19/2018 00:47	WG1126338	
p-lsopropyltoluene	0.0441		0.00296	0.00634	1	06/19/2018 00:47	WG1126338	
2-Butanone (MEK)	0.0318		0.0159	0.0317	1	06/19/2018 00:47	WG1126338	
Methylene Chloride	U		0.00842	0.0317	1	06/19/2018 00:47	WG1126338	
4-Methyl-2-pentanone (MIBK)	U		0.0127	0.0317	1	06/19/2018 00:47	WG1126338	
IUODDA	NT:		PROJEC	T:	SE	DG:	DATE/TIME:	PAGE:

Dominion Due Diligence Group

2018-001031

L1001666

24 of 72

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		L
Methyl tert-butyl ether	U		0.000374	0.00127	1	06/19/2018 00:47	WG1126338	2
Naphthalene	U		0.00396	0.0159	1	06/19/2018 00:47	WG1126338	
n-Propylbenzene	U		0.00150	0.00634	1	06/19/2018 00:47	WG1126338	3
Styrene	U		0.00346	0.0159	1	06/19/2018 00:47	WG1126338	
1,1,1,2-Tetrachloroethane	U		0.000634	0.00317	1	06/19/2018 00:47	WG1126338	
1,1,2,2-Tetrachloroethane	U		0.000495	0.00317	1	06/19/2018 00:47	WG1126338	4
1,1,2-Trichlorotrifluoroethane	U		0.000856	0.00317	1	06/19/2018 00:47	WG1126338	
Tetrachloroethene	U		0.000888	0.00317	1	06/19/2018 00:47	WG1126338	5
Toluene	U		0.00159	0.00634	1	06/19/2018 00:47	WG1126338	
1,2,3-Trichlorobenzene	U		0.000793	0.00317	1	06/19/2018 00:47	WG1126338	
1,2,4-Trichlorobenzene	U		0.00612	0.0159	1	06/19/2018 00:47	WG1126338	6
1,1,1-Trichloroethane	U		0.000349	0.00317	1	06/19/2018 00:47	WG1126338	
1,1,2-Trichloroethane	U		0.00112	0.00317	1	06/19/2018 00:47	WG1126338	7
Trichloroethene	U		0.000508	0.00127	1	06/19/2018 00:47	WG1126338	
Trichlorofluoromethane	U		0.000634	0.00317	1	06/19/2018 00:47	WG1126338	L
1,2,3-Trichloropropane	U		0.00647	0.0159	1	06/19/2018 00:47	WG1126338	8
1,2,4-Trimethylbenzene	U		0.00147	0.00634	1	06/19/2018 00:47	WG1126338	
1,2,3-Trimethylbenzene	U		0.00146	0.00634	1	06/19/2018 00:47	WG1126338	9
Vinyl chloride	U		0.000867	0.00317	1	06/19/2018 00:47	WG1126338	
1,3,5-Trimethylbenzene	U		0.00137	0.00634	1	06/19/2018 00:47	WG1126338	L
Xylenes, Total	U		0.00606	0.00825	1	06/19/2018 00:47	WG1126338	
(S) Toluene-d8	101			80.0-120		06/19/2018 00:47	WG1126338	
(S) Dibromofluoromethane	93.7			74.0-131		06/19/2018 00:47	WG1126338	
(S) 4-Bromofluorobenzene	103			64.0-132		06/19/2018 00:47	WG1126338	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	3.08	J	0.976	5.08	1	06/15/2018 12:49	WG1124831
(S) o-Terphenyl	98.2			18.0-148		06/15/2018 12:49	WG1124831

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000761	0.00761	1	06/18/2018 04:49	<u>WG1125931</u>
Acenaphthene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Acenaphthylene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Benzo(a)anthracene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Benzo(a)pyrene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Benzo(b)fluoranthene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Benzo(g,h,i)perylene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Benzo(k)fluoranthene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Chrysene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Dibenz(a,h)anthracene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Fluoranthene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Fluorene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Indeno(1,2,3-cd)pyrene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Naphthalene	U		0.00254	0.0254	1	06/18/2018 04:49	WG1125931
Phenanthrene	U		0.000761	0.00761	1	06/18/2018 04:49	WG1125931
Pyrene	0.000804	J	0.000761	0.00761	1	06/18/2018 04:49	WG1125931
1-Methylnaphthalene	U		0.00254	0.0254	1	06/18/2018 04:49	WG1125931
2-Methylnaphthalene	U		0.00254	0.0254	1	06/18/2018 04:49	WG1125931
2-Chloronaphthalene	U		0.00254	0.0254	1	06/18/2018 04:49	WG1125931
(S) p-Terphenyl-d14	77.0			23.0-120		06/18/2018 04:49	WG1125931
(S) Nitrobenzene-d5	67.3			14.0-149		06/18/2018 04:49	<u>WG1125931</u>

ACCOUNT: Dominion Due Diligence Group PROJECT: 2018-001031

SDG: L1001666 DATE/TIME: 06/20/18 16:53

PAGE: 25 of 72

SB-2 DEEP	
Collected date/time:	06/13/18 08:45

*

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

								.1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		_
(S) 2-Fluorobiphenyl	70.6			34.0-125		06/18/2018 04:49	WG1125931	2

SDG: L1001666 DATE/TIME: 06/20/18 16:53
*

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	79.5		1	06/19/2018 09:09	WG1125517	Tc

Mercury by Method 7471A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.151		0.00352	0.0251	1	06/19/2018 09:35	WG1125876

Metals (ICP) by Method 6010B

	D (())	0 110			D:1	A 1 1	B	
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
Arsenic	4.99		0.817	2.51	1	06/19/2018 23:51	WG1124879	
Barium	49.9		0.214	0.629	1	06/19/2018 23:51	WG1124879	7
Cadmium	0.966		0.0880	0.629	1	06/19/2018 23:51	WG1124879	
Chromium	10.5		0.176	1.26	1	06/19/2018 23:51	WG1124879	8
Lead	72.4		0.239	0.629	1	06/19/2018 23:51	WG1124879	Ă
Selenium	U		0.931	2.51	1	06/19/2018 23:51	WG1124879	
Silver	U		0.352	1.26	1	06/19/2018 23:51	WG1124879	⁹ Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	4.55		0.0273	0.126	1	06/19/2018 03:33	WG1126298
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		06/19/2018 03:33	WG1126298

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	79.6		9.67	50.3	10	06/15/2018 17:22	WG1124831
(S) o-Terphenyl	65.8			18.0-148		06/15/2018 17:22	WG1124831

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.424		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Acenaphthene	0.0221		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Acenaphthylene	0.481		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Benzo(a)anthracene	2.12		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Benzo(a)pyrene	2.04		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Benzo(b)fluoranthene	3.45		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Benzo(g,h,i)perylene	1.30		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Benzo(k)fluoranthene	1.36		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Chrysene	1.60		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Dibenz(a,h)anthracene	0.472		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Fluoranthene	2.39		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Fluorene	0.0220		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Indeno(1,2,3-cd)pyrene	1.19		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Naphthalene	0.763		0.00251	0.0251	1	06/20/2018 06:04	WG1125932
Phenanthrene	0.610		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
Pyrene	3.48		0.000754	0.00754	1	06/20/2018 06:04	WG1125932
1-Methylnaphthalene	0.949		0.00251	0.0251	1	06/20/2018 06:04	WG1125932
2-Methylnaphthalene	1.09		0.00251	0.0251	1	06/20/2018 06:04	WG1125932
2-Chloronaphthalene	U		0.00251	0.0251	1	06/20/2018 06:04	WG1125932
(S) p-Terphenyl-d14	76.2			23.0-120		06/20/2018 06:04	WG1125932

ACCOUNT: Dominion Due Diligence Group PROJECT: 2018-001031

SDG: L1001666

SB-3 SHALLOW Collected date/time: 06/13/18	09:00	S	AMPLE	RESUL	_TS - (09		ONE LAB. NATIONWIDE
Semi Volatile Organic (Compounds	(GC/MS) k	y Method	8270C-SII	M			
Analyte	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		

Analyte	mg/kg	mg/kg	mg/kg	date / time	
(S) Nitrobenzene-d5	107		14.0-149	06/20/2018 06:04	WG1125932
(S) 2-Fluorobiphenyl	71.6		34.0-125	06/20/2018 06:04	WG1125932

L

Ср

SDG: L1001666 DATE/TIME: 06/20/18 16:53 PAGE:

28 of 72

SAMPLE RESULTS - 10 L1001666

ONE LAB. NATIONWIDE.

.

Total Solids by Method 2540 G-2011

Dominion Due Diligence Group

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	68.4		1	06/19/2018 09:09	WG1125517	£

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time				2
Total Solids	68.4		1	06/19/2018 09:09	WG11255	517		² T(
Volatile Organic Comp	oounds (GC)	by Metho	d 8015	D/GRO				³ Ss
	Result (dry)	Qualifier	MDL (dry) RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴
TPH (GC/FID) Low Fraction	1.34		0.0317	0.146	1	06/19/2018 16:26	WG1126611	
(S) a,a,a-Trifluorotoluene(FID)	98.3			77.0-120		06/19/2018 16:26	WG1126611	⁵ S
Volatile Organic Comp	oounds (GC/	MS) by Me	ethod 8	260B				
	Result (dry)	Qualifier	MDL (d	dry) RDL (dry)	Dilution	Analysis	Batch	⁶ Q

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	Qc
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Acetone	0.0677		0.0200	0.0366	1	06/19/2018 01:05	WG1126338	⁷ Cl
Acrylonitrile	U		0.00278	0.0183	1	06/19/2018 01:05	WG1126338	UI
Benzene	0.0822		0.000585	0.00146	1	06/19/2018 01:05	WG1126338	8
Bromobenzene	U		0.00154	0.0183	1	06/19/2018 01:05	WG1126338	Ă١
Bromodichloromethane	U		0.00115	0.00366	1	06/19/2018 01:05	WG1126338	
Bromoform	U		0.00874	0.0366	1	06/19/2018 01:05	WG1126338	9 S c
Bromomethane	U		0.00541	0.0183	1	06/19/2018 01:05	WG1126338	50
n-Butylbenzene	U		0.00561	0.0183	1	06/19/2018 01:05	WG1126338	
sec-Butylbenzene	U		0.00370	0.0183	1	06/19/2018 01:05	WG1126338	
tert-Butylbenzene	U		0.00227	0.00731	1	06/19/2018 01:05	WG1126338	
Carbon tetrachloride	U		0.00158	0.00731	1	06/19/2018 01:05	WG1126338	
Chlorobenzene	U		0.000838	0.00366	1	06/19/2018 01:05	WG1126338	
Chlorodibromomethane	U		0.000658	0.00366	1	06/19/2018 01:05	WG1126338	
Chloroethane	U		0.00158	0.00731	1	06/19/2018 01:05	WG1126338	
Chloroform	U		0.000607	0.00366	1	06/19/2018 01:05	WG1126338	
Chloromethane	U	J4	0.00203	0.0183	1	06/19/2018 01:05	WG1126338	
2-Chlorotoluene	U	_	0.00135	0.00366	1	06/19/2018 01:05	WG1126338	
4-Chlorotoluene	U		0.00165	0.00731	1	06/19/2018 01:05	WG1126338	
1,2-Dibromo-3-Chloropropane	U		0.00746	0.0366	1	06/19/2018 01:05	WG1126338	
1,2-Dibromoethane	U		0.000768	0.00366	1	06/19/2018 01:05	WG1126338	
Dibromomethane	U		0.00146	0.00731	1	06/19/2018 01:05	WG1126338	
1,2-Dichlorobenzene	U		0.00212	0.00731	1	06/19/2018 01:05	WG1126338	
1.3-Dichlorobenzene	U		0.00249	0.00731	1	06/19/2018 01:05	WG1126338	
1.4-Dichlorobenzene	U		0.00288	0.00731	1	06/19/2018 01:05	WG1126338	
Dichlorodifluoromethane	U		0.00120	0.00366	1	06/19/2018 01:05	WG1126338	
1,1-Dichloroethane	U		0.000841	0.00366	1	06/19/2018 01:05	WG1126338	
1,2-Dichloroethane	U		0.000695	0.00366	1	06/19/2018 01:05	WG1126338	
1.1-Dichloroethene	U		0.000731	0.00366	1	06/19/2018 01:05	WG1126338	
cis-1,2-Dichloroethene	U		0.00101	0.00366	1	06/19/2018 01:05	WG1126338	
trans-1,2-Dichloroethene	U		0.00209	0.00731	1	06/19/2018 01:05	WG1126338	
1,2-Dichloropropane	U		0.00186	0.00731	1	06/19/2018 01:05	WG1126338	
1.1-Dichloropropene	U		0.00102	0.00366	1	06/19/2018 01:05	WG1126338	
1.3-Dichloropropane	U		0.00256	0.00731	1	06/19/2018 01:05	WG1126338	
cis-1,3-Dichloropropene	U		0.000991	0.00366	1	06/19/2018 01:05	WG1126338	
trans-1,3-Dichloropropene	U		0.00224	0.00731	1	06/19/2018 01:05	WG1126338	
2,2-Dichloropropane	U		0.00116	0.00366	1	06/19/2018 01:05	WG1126338	
Di-isopropyl ether	U		0.000512	0.00146	1	06/19/2018 01:05	WG1126338	
Ethylbenzene	0.143		0.000775	0.00366	1	06/19/2018 01:05	WG1126338	
Hexachloro-1,3-butadiene	U		0.0186	0.0366	1	06/19/2018 01:05	WG1126338	
Isopropylbenzene	0.00176	J	0.00126	0.00366	1	06/19/2018 01:05	WG1126338	
p-lsopropyltoluene	0.0508	-	0.00341	0.00731	1	06/19/2018 01:05	WG1126338	
2-Butanone (MEK)	0.0685		0.0183	0.0366	1	06/19/2018 01:05	WG1126338	
Methylene Chloride	U		0.00971	0.0366	1	06/19/2018 01:05	WG1126338	
4-Methyl-2-pentanone (MIBK)	U		0.0146	0.0366	1	06/19/2018 01:05	WG1126338	
ACCOUN	NT:		PROJEC	T:	SE	DG:	DATE/TIME:	PAGE:

2018-001031

L1001666

29 of 72

06/20/18 16:53

SB-3 DEEP Collected date/time: 06/13/18 09:10

SAMPLE RESULTS - 10

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Methyl tert-butyl ether	0.0790		0.000431	0.00146	1	06/19/2018 01:05	WG1126338
Naphthalene	0.179		0.00456	0.0183	1	06/19/2018 01:05	WG1126338
n-Propylbenzene	0.00254	J	0.00173	0.00731	1	06/19/2018 01:05	WG1126338
Styrene	U		0.00399	0.0183	1	06/19/2018 01:05	WG1126338
1,1,1,2-Tetrachloroethane	U		0.000731	0.00366	1	06/19/2018 01:05	WG1126338
1,1,2,2-Tetrachloroethane	U		0.000570	0.00366	1	06/19/2018 01:05	WG1126338
1,1,2-Trichlorotrifluoroethane	U		0.000987	0.00366	1	06/19/2018 01:05	WG1126338
Tetrachloroethene	U		0.00102	0.00366	1	06/19/2018 01:05	WG1126338
Toluene	0.128		0.00183	0.00731	1	06/19/2018 01:05	WG1126338
1,2,3-Trichlorobenzene	U		0.000914	0.00366	1	06/19/2018 01:05	WG1126338
1,2,4-Trichlorobenzene	U		0.00705	0.0183	1	06/19/2018 01:05	WG1126338
1,1,1-Trichloroethane	U		0.000402	0.00366	1	06/19/2018 01:05	WG1126338
1,1,2-Trichloroethane	U		0.00129	0.00366	1	06/19/2018 01:05	WG1126338
Trichloroethene	U		0.000585	0.00146	1	06/19/2018 01:05	WG1126338
Trichlorofluoromethane	U		0.000731	0.00366	1	06/19/2018 01:05	WG1126338
1,2,3-Trichloropropane	U		0.00746	0.0183	1	06/19/2018 01:05	WG1126338
1,2,4-Trimethylbenzene	0.194		0.00170	0.00731	1	06/19/2018 01:05	WG1126338
1,2,3-Trimethylbenzene	0.00710	J	0.00168	0.00731	1	06/19/2018 01:05	WG1126338
Vinyl chloride	U		0.000999	0.00366	1	06/19/2018 01:05	WG1126338
1,3,5-Trimethylbenzene	0.00597	J	0.00158	0.00731	1	06/19/2018 01:05	WG1126338
Xylenes, Total	0.477		0.00699	0.00950	1	06/19/2018 01:05	WG1126338
(S) Toluene-d8	94.4			80.0-120		06/19/2018 01:05	WG1126338
(S) Dibromofluoromethane	95.7			74.0-131		06/19/2018 01:05	WG1126338
(S) 4-Bromofluorobenzene	105			64.0-132		06/19/2018 01:05	WG1126338

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (drv)	Qualifier	MDL (drv)	RDL (drv)	Dilution	Analysis	Batch
A 1.	nesur (ury)	Guanner	(ary)	(ary)	Dilution	Andrysis	Bateri
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	10.8		1.12	5.85	1	06/15/2018 13:33	WG1124831
(S) o-Terphenyl	33.2			18.0-148		06/15/2018 13:33	WG1124831

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.188		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Acenaphthene	0.0157		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Acenaphthylene	0.0362		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Benzo(a)anthracene	1.12		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Benzo(a)pyrene	0.928		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Benzo(b)fluoranthene	1.07		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Benzo(g,h,i)perylene	0.459		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Benzo(k)fluoranthene	0.444		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Chrysene	0.894		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Dibenz(a,h)anthracene	0.139		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Fluoranthene	1.69		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Fluorene	0.0379		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Indeno(1,2,3-cd)pyrene	0.414		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Naphthalene	0.171		0.00292	0.0292	1	06/20/2018 06:26	WG1125932
Phenanthrene	0.476		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
Pyrene	1.53		0.000877	0.00877	1	06/20/2018 06:26	WG1125932
1-Methylnaphthalene	0.0154	Ţ	0.00292	0.0292	1	06/20/2018 06:26	WG1125932
2-Methylnaphthalene	0.0417		0.00292	0.0292	1	06/20/2018 06:26	WG1125932
2-Chloronaphthalene	U		0.00292	0.0292	1	06/20/2018 06:26	WG1125932
(S) p-Terphenyl-d14	78.0			23.0-120		06/20/2018 06:26	WG1125932
(S) Nitrobenzene-d5	68.0			14.0-149		06/20/2018 06:26	<u>WG1125932</u>

ACCOUNT: Dominion Due Diligence Group PROJECT: 2018-001031

SDG: L1001666 DATE/TIME: 06/20/18 16:53

PAGE: 30 of 72

*

Collected date/time: 06/13/18 09:10

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		_
(S) 2-Fluorobiphenyl	79.6			34.0-125		06/20/2018 06:26	<u>WG1125932</u>	2

² Tc
³ Ss
⁴Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ AI
9

SDG: L1001666 DATE/TIME: 06/20/18 16:53

SB-4 SHALLOW Collected date/time: 06/13/18 10:00

SAMPLE RESULTS - 11

ONE LAB. NATIONWIDE.

*

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	77.6		1	06/19/2018 09:09	WG1125517	Tc

Mercury by Method 7471A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.0469		0.00361	0.0258	1	06/19/2018 09:39	WG1125876

Metals (ICP) by Method 6010B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		_ି ଭ
Arsenic	3.65		0.838	2.58	1	06/19/2018 23:53	WG1124879	
Barium	42.2		0.219	0.645	1	06/19/2018 23:53	WG1124879	⁷ G
Cadmium	U		0.0902	0.645	1	06/19/2018 23:53	WG1124879	
Chromium	13.4		0.180	1.29	1	06/19/2018 23:53	WG1124879	8
Lead	17.1		0.245	0.645	1	06/19/2018 23:53	WG1124879	A
Selenium	U		0.954	2.58	1	06/19/2018 23:53	WG1124879	
Silver	U		0.361	1.29	1	06/19/2018 23:53	WG1124879	9

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0610	J	0.0280	0.129	1	06/19/2018 04:15	WG1126298
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		06/19/2018 04:15	WG1126298

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	2.20	J	0.991	5.16	1	06/15/2018 12:38	WG1124831
(S) o-Terphenyl	45.4			18.0-148		06/15/2018 12:38	WG1124831

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Acenaphthene	U		0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Acenaphthylene	U		0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Benzo(a)anthracene	0.00107	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Benzo(a)pyrene	0.000856	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Benzo(b)fluoranthene	0.00149	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Benzo(g,h,i)perylene	0.00100	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Benzo(k)fluoranthene	0.000791	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Chrysene	0.00127	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Dibenz(a,h)anthracene	U		0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Fluoranthene	0.00198	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Fluorene	U		0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Indeno(1,2,3-cd)pyrene	0.000800	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Naphthalene	U		0.00258	0.0258	1	06/20/2018 03:31	WG1125932
Phenanthrene	0.00106	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
Pyrene	0.00181	J	0.000773	0.00773	1	06/20/2018 03:31	WG1125932
1-Methylnaphthalene	U		0.00258	0.0258	1	06/20/2018 03:31	WG1125932
2-Methylnaphthalene	U		0.00258	0.0258	1	06/20/2018 03:31	WG1125932
2-Chloronaphthalene	U		0.00258	0.0258	1	06/20/2018 03:31	WG1125932
(S) p-Terphenyl-d14	61.0			23.0-120		06/20/2018 03:31	WG1125932

ACCOUNT: Dominion Due Diligence Group PROJECT: 2018-001031

SDG: L1001666

D 06

DATE/TIME: 06/20/18 16:53 PAGE: 32 of 72

SB-4 SHALLO	W	
Collected date/time:	06/13/18	10:00

*

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

Ср	Batch	Analysis	Dilution	RDL (dry)	MDL (dry)	Qualifier	Result (dry)	
		date / time		mg/kg	mg/kg		mg/kg	Analyte
2 Tc	WG1125932	06/20/2018 03:31		14.0-149			79.8	(S) Nitrobenzene-d5
	WG1125932	06/20/2018 03:31		34.0-125			63.1	(S) 2-Fluorobiphenyl
2	WG1125932 WG1125932	date / time 06/20/2018 03:31 06/20/2018 03:31	Diation	mg/kg 14.0-149 34.0-125	mg/kg	Guainer	mg/kg 79.8 63.1	Analyte (S) Nitrobenzene-d5 (S) 2-Fluorobiphenyl

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

SDG: L1001666 DATE/TIME: 06/20/18 16:53

Collected date/time: 06/13/18 12:15

SAMPLE RESULTS - 12 L1001666

ONE LAB. NATIONWIDE.

.

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	90.4		1	06/19/2018 09:09	WG1125517	Tc

Mercury by Method 7471A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	U		0.00310	0.0221	1	06/19/2018 09:42	WG1125876

Metals (ICP) by Method 6010B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQc
Arsenic	0.982	J	0.719	2.21	1	06/19/2018 23:56	WG1124879	
Barium	11.6		0.188	0.553	1	06/19/2018 23:56	WG1124879	⁷ Gl
Cadmium	0.204	J	0.0775	0.553	1	06/19/2018 23:56	WG1124879	0
Chromium	4.53		0.155	1.11	1	06/19/2018 23:56	WG1124879	8
Lead	4.96		0.210	0.553	1	06/19/2018 23:56	WG1124879	A
Selenium	U		0.819	2.21	1	06/19/2018 23:56	WG1124879	
Silver	U		0.310	1.11	1	06/19/2018 23:56	WG1124879	9 50

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Acenaphthene	U		0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Acenaphthylene	U		0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Benzo(a)anthracene	0.00143	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Benzo(a)pyrene	0.00166	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Benzo(b)fluoranthene	0.00273	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Benzo(g,h,i)perylene	0.00205	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Benzo(k)fluoranthene	0.000809	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Chrysene	0.00163	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Dibenz(a,h)anthracene	U		0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Fluoranthene	0.00287	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Fluorene	U		0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Indeno(1,2,3-cd)pyrene	0.00136	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Naphthalene	U		0.00221	0.0221	1	06/20/2018 03:52	WG1125932
Phenanthrene	0.00116	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
Pyrene	0.00260	J	0.000664	0.00664	1	06/20/2018 03:52	WG1125932
1-Methylnaphthalene	U		0.00221	0.0221	1	06/20/2018 03:52	WG1125932
2-Methylnaphthalene	U		0.00221	0.0221	1	06/20/2018 03:52	WG1125932
2-Chloronaphthalene	U		0.00221	0.0221	1	06/20/2018 03:52	WG1125932
(S) p-Terphenyl-d14	86.6			23.0-120		06/20/2018 03:52	WG1125932
(S) Nitrobenzene-d5	100			14.0-149		06/20/2018 03:52	WG1125932
(S) 2-Fluorobiphenyl	93.5			34.0-125		06/20/2018 03:52	WG1125932

PROJECT: 2018-001031

SDG: L1001666

DATE/TIME: 06/20/18 16:53

PAGE: 34 of 72

Collected date/time: 06/13/18 11:35

SAMPLE RESULTS - 13 L1001666

ONE LAB. NATIONWIDE.

.

Ss

Cn

Ŝr

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	87.3		1	06/19/2018 09:09	WG1125517	Tc

Mercury by Method 7471A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.00369	J	0.00321	0.0229	1	06/19/2018 09:44	WG1125876

Metals (ICP) by Method 6010B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQ¢
Arsenic	1.24	J	0.745	2.29	1	06/19/2018 23:58	WG1124879	
Barium	12.5		0.195	0.573	1	06/19/2018 23:58	WG1124879	⁷ GI
Cadmium	0.0870	J	0.0802	0.573	1	06/19/2018 23:58	WG1124879	0
Chromium	6.41		0.160	1.15	1	06/19/2018 23:58	WG1124879	8
Lead	11.0		0.218	0.573	1	06/19/2018 23:58	WG1124879	A
Selenium	U		0.848	2.29	1	06/19/2018 23:58	WG1124879	
Silver	U		0.321	1.15	1	06/19/2018 23:58	WG1124879	⁹ Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00126	J	0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Acenaphthene	U		0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Acenaphthylene	U		0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Benzo(a)anthracene	0.00531	J	0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Benzo(a)pyrene	0.00579	J	0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Benzo(b)fluoranthene	0.0100		0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Benzo(g,h,i)perylene	0.00661	J	0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Benzo(k)fluoranthene	0.00298	J	0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Chrysene	0.00690		0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Dibenz(a,h)anthracene	0.00139	J	0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Fluoranthene	0.0107		0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Fluorene	U		0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Indeno(1,2,3-cd)pyrene	0.00442	J	0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Naphthalene	0.00664	J	0.00229	0.0229	1	06/20/2018 04:14	WG1125932
Phenanthrene	0.00851		0.000687	0.00687	1	06/20/2018 04:14	WG1125932
Pyrene	0.00943		0.000687	0.00687	1	06/20/2018 04:14	WG1125932
1-Methylnaphthalene	0.00584	J	0.00229	0.0229	1	06/20/2018 04:14	WG1125932
2-Methylnaphthalene	0.00733	J	0.00229	0.0229	1	06/20/2018 04:14	WG1125932
2-Chloronaphthalene	U		0.00229	0.0229	1	06/20/2018 04:14	WG1125932
(S) p-Terphenyl-d14	85.9			23.0-120		06/20/2018 04:14	WG1125932
(S) Nitrobenzene-d5	92.5			14.0-149		06/20/2018 04:14	WG1125932
(S) 2-Fluorobiphenyl	81.9			34.0-125		06/20/2018 04:14	WG1125932

Collected date/time: 06/13/18 12:00

SAMPLE RESULTS - 14 L1001666

ONE LAB. NATIONWIDE.

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	84.9		1	06/18/2018 16:22	WG1125518	Tc

Mercury by Method 7471A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	U		0.00330	0.0236	1	06/19/2018 09:47	WG1125876

Metals (ICP) by Method 6010B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		ČQc
Arsenic	18.2		0.766	2.36	1	06/20/2018 00:01	WG1124879	
Barium	223		0.200	0.589	1	06/20/2018 00:01	WG1124879	
Cadmium	0.199	J	0.0825	0.589	1	06/20/2018 00:01	WG1124879	
Chromium	12.0		0.165	1.18	1	06/20/2018 00:01	WG1124879	8
Lead	61.5		0.224	0.589	1	06/20/2018 00:01	WG1124879	A
Selenium	1.00	BJ	0.872	2.36	1	06/20/2018 00:01	WG1124879	
Silver	U		0.330	1.18	1	06/20/2018 00:01	WG1124879	⁹ SC

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0317	J	0.0256	0.118	1	06/19/2018 04:36	WG1126298
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120		06/19/2018 04:36	WG1126298

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	31.7		1.81	9.43	2	06/15/2018 13:54	WG1124831
(S) o-Terphenyl	62.0			18.0-148		06/15/2018 13:54	WG1124831

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.191		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Acenaphthene	0.00786		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Acenaphthylene	U		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Benzo(a)anthracene	1.62		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Benzo(a)pyrene	1.34		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Benzo(b)fluoranthene	1.82		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Benzo(g,h,i)perylene	0.808		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Benzo(k)fluoranthene	0.634		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Chrysene	1.23		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Dibenz(a,h)anthracene	0.300		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Fluoranthene	2.39		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Fluorene	0.0259		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Indeno(1,2,3-cd)pyrene	0.690		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Naphthalene	0.101		0.00236	0.0236	1	06/20/2018 06:48	WG1125932
Phenanthrene	0.643		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
Pyrene	2.22		0.000707	0.00707	1	06/20/2018 06:48	WG1125932
1-Methylnaphthalene	0.0975		0.00236	0.0236	1	06/20/2018 06:48	WG1125932
2-Methylnaphthalene	0.107		0.00236	0.0236	1	06/20/2018 06:48	WG1125932
2-Chloronaphthalene	U		0.00236	0.0236	1	06/20/2018 06:48	WG1125932
(S) p-Terphenyl-d14	78.2			23.0-120		06/20/2018 06:48	WG1125932

ACCOUNT: Dominion Due Diligence Group

PROJECT: 2018-001031

SDG: L1001666

DATE/TIME: 06/20/18 16:53 PAGE:

36 of 72

*

Collected date/time: 06/13/18 12:00 L1001666 Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

							1
Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	Ср
mg/kg		mg/kg	mg/kg		date / time		
86.0			14.0-149		06/20/2018 06:48	WG1125932	2 TC
68.0			34.0-125		06/20/2018 06:48	WG1125932	
	Result (dry) mg/kg 86.0 68.0	Result (dry) Qualifier mg/kg 86.0 68.0 68.0	Result (dry) Qualifier MDL (dry) mg/kg mg/kg 86.0 68.0	Result (dry) Qualifier MDL (dry) RDL (dry) mg/kg mg/kg mg/kg mg/kg 86.0 14.0-149 34.0-125	Result (dry) Qualifier MDL (dry) RDL (dry) Dilution mg/kg mg/kg mg/kg mg/kg 14.0-149 14.0-149 14.0-125 14.0-12	Result (dry) Qualifier MDL (dry) RDL (dry) Dilution Analysis mg/kg mg/kg mg/kg date / time 86.0 14.0-149 06/20/2018 06:48 68.0 34.0-125 06/20/2018 06:48	Result (dry) mg/kg Qualifier mg/kg MDL (dry) mg/kg RDL (dry) mg/kg Dilution mg/kg Analysis date / time Batch 86.0 14.0-149 06/20/2018 06:48 WG1125932 68.0 34.0-125 06/20/2018 06:48 WG1125932

³ Ss
4
Cn
-
ືSr
6
ĞQc
⁷ Gl
0
ÅI
0
Sc

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Docult Qualifier	MDI	וחמ	Dilution	Analycic	Datab	Ср
Analyta		IVIDL	RDL	Dilution	Alidiysis	Batch	
Analyte	ug/i	ug/i	ug/i	4		11/04/24/22/	2 Tc
Acetone	U	10.0	50.0	1	06/15/2018 01:44	WG1124939	IC
Acrolein	U	8.87	50.0	1	06/15/2018 01:44	WG1124939	
Acrylonitrile	U	1.87	10.0	1	06/15/2018 01:44	<u>WG1124939</u>	ໍSs
Benzene	U	0.331	1.00	1	06/15/2018 01:44	<u>WG1124939</u>	
Bromobenzene	U	0.352	1.00	1	06/15/2018 01:44	<u>WG1124939</u>	4
Bromodichloromethane	U	0.380	1.00	1	06/15/2018 01:44	WG1124939	Cn
Bromoform	U	0.469	1.00	1	06/15/2018 01:44	WG1124939	
Bromomethane	U	0.866	5.00	1	06/15/2018 01:44	WG1124939	⁵ Sr
n-Butylbenzene	U	0.361	1.00	1	06/15/2018 01:44	WG1124939	01
sec-Butylbenzene	U	0.365	1.00	1	06/15/2018 01:44	WG1124939	6
tert-Butylbenzene	U	0.399	1.00	1	06/15/2018 01:44	WG1124939	Qc
Carbon tetrachloride	U	0.379	1.00	1	06/15/2018 01:44	WG1124939	
Chlorobenzene	U	0.348	1.00	1	06/15/2018 01:44	WG1124939	
Chlorodibromomethane	U	0.327	1.00	1	06/15/2018 01:44	WG1124939	G
Chloroethane	U	0.453	5.00	1	06/15/2018 01:44	WG1124939	
2-Chloroethyl vinyl ether	U	3.01	50.0	1	06/15/2018 01:44	WG1124939	Å
Chloroform	U	0.324	5.00	1	06/15/2018 01:44	WG1124939	
Chloromethane		0.276	2 50	1	06/15/2018 01:44	WG1124939	9
2-Chlorotoluene	1	0.375	1.00	1	06/15/2018 01:44	WG1124939	Sc
	U	0.373	1.00	1	06/15/2018 01:44	WG1124939	
12 Dibromo 2 Chloropropano	U	1.22	F.00	1	06/15/2019 01:44	WC1124933	
1.2 Dibromosthono	U	0.201	5.00	1	00/15/2018 01:44	WG1124935	
1,2-Dibromoethane	U	0.381	1.00	1	06/15/2018 01:44	WG1124939	
Dibromometnane	U	0.346	1.00	1	06/15/2018 01:44	WG1124939	
1,2-Dichlorobenzene	U	0.349	1.00	1	06/15/2018 01:44	WG1124939	
1,3-Dichlorobenzene	U	0.220	1.00	1	06/15/2018 01:44	WG1124939	
1,4-Dichlorobenzene	U	0.274	1.00	1	06/15/2018 01:44	<u>WG1124939</u>	
Dichlorodifluoromethane	U	0.551	5.00	1	06/15/2018 01:44	<u>WG1124939</u>	
1,1-Dichloroethane	U	0.259	1.00	1	06/15/2018 01:44	<u>WG1124939</u>	
1,2-Dichloroethane	U	0.361	1.00	1	06/15/2018 01:44	WG1124939	
1,1-Dichloroethene	U	0.398	1.00	1	06/15/2018 01:44	WG1124939	
cis-1,2-Dichloroethene	U	0.260	1.00	1	06/15/2018 01:44	WG1124939	
trans-1,2-Dichloroethene	U	0.396	1.00	1	06/15/2018 01:44	WG1124939	
1,2-Dichloropropane	U	0.306	1.00	1	06/15/2018 01:44	WG1124939	
1,1-Dichloropropene	U	0.352	1.00	1	06/15/2018 01:44	WG1124939	
1,3-Dichloropropane	U	0.366	1.00	1	06/15/2018 01:44	WG1124939	
cis-1,3-Dichloropropene	U	0.418	1.00	1	06/15/2018 01:44	WG1124939	
trans-1,3-Dichloropropene	U	0.419	1.00	1	06/15/2018 01:44	WG1124939	
2,2-Dichloropropane	U	0.321	1.00	1	06/15/2018 01:44	WG1124939	
Di-isopropyl ether	U	0.320	1.00	1	06/15/2018 01:44	WG1124939	
Ethylbenzene	U	0.384	1.00	1	06/15/2018 01:44	WG1124939	
Hexachloro-1,3-butadiene	U	0.256	1.00	1	06/15/2018 01:44	WG1124939	
Isopropylbenzene	U	0.326	1.00	1	06/15/2018 01:44	WG1124939	
p-lsopropyltoluene		0.350	100	1	06/15/2018 01:44	WG1124939	
2-Butanone (MEK)		3 93	10.0	1	06/15/2018 01:44	WG1124939	
Methylene Chloride	1	1.00	5.00	1	06/15/2018 01:44	WG1124939	
A-Methyl-2-pentanone (MIRK)	0	2 1/	10.0	1	06/15/2018 01:44	WG112/030	
Methyl tert-butyl ether	0	0.367	10.0	1	06/15/2018 01:44	WG1124939	
Naphthalono	U	1.00	F.00	1	06/15/2019 01:44	WC1124030	
n Propylhonzono		0.3/0	1.00	1	06/15/2010 01:44	WC1124030	
Chiropo		0.349	1.00	1	06/15/2010 01.44	W01124933	
Styrene	0	0.307	1.00	1	00/15/2018 01:44	WG1124939	
I, I, I, Z-Tetrachloroethane	U	0.385	1.00	1	06/15/2018 01:44	WG1124939	
1,1,2,2-Tetrachloroethane	U	0.130	1.00	1	06/15/2018 01:44	WG1124939	
1,1,2-Trichlorotrifluoroethane	U	0.303	1.00	1	06/15/2018 01:44	WG1124939	
Tetrachloroethene	U	0.372	1.00	1	06/15/2018 01:44	<u>WG1124939</u>	
Toluene	U	0.412	1.00	1	06/15/2018 01:44	<u>WG1124939</u>	
1,2,3-Trichlorobenzene	U	0.230	1.00	1	06/15/2018 01:44	WG1124939	
	DUNT		PRO IECT.		SDG.		÷.

Dominion Due Diligence Group

2018-001031

L1001666

DATE/TIME: 06/20/18 16:53 P 38

38 of 72

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte ug/l ug/l date / time 1.2.4-Trichlorobenzene U 0.355 1.00 1 06/15/2018 01:44 WG1124939	² Tc
1.2.4-Trichlorobenzene U 0.355 1.00 1 06/15/2018 01:44 WG1124939	² Tc
	10
1,1,1-Trichloroethane U 0.319 1.00 1 06/15/2018 01:44 WG1124939	
1,1,2-Trichloroethane U 0.383 1.00 1 06/15/2018 01:44 WG1124939	3
Trichloroethene U 0.398 1.00 1 06/15/2018 01:44 WG1124939	Ss
Trichlorofluoromethane U 1.20 5.00 1 06/15/2018 01:44 WG1124939	
1,2,3-Trichloropropane U 0.807 2.50 1 06/15/2018 01:44 <u>WG1124939</u>	⁴ Cn
1,2,4-Trimethylbenzene U 0.373 1.00 1 06/15/2018 01:44 WG1124939	U II
1,2,3-Trimethylbenzene U 0.321 1.00 1 06/15/2018 01:44 WG1124939	5
1,3,5-Trimethylbenzene U 0.387 1.00 1 06/15/2018 01:44 WG1124939	Sr
Vinyl chloride U 0.259 1.00 1 06/15/2018 01:44 WG1124939	
Xylenes, Total U 1.06 3.00 1 06/15/2018 01:44 WG1124939	6 00
(S) Toluene-d8 105 80.0-120 06/15/2018 01:44 WG1124939	~~ Ŭ
(S) Dibromofluoromethane 90.2 76.0-123 06/15/2018 01:44 WG1124939	7
(S) 4-Bromofluorobenzene 96.4 80.0-120 06/15/2018 01:44 WG1124939	Gl

	G-2011
	2540
17	Method
വ	bу
1125	Solids
0	Total

QUALITY CONTROL SUMMARY <u>11001666-06,07,08,09,10,11,12,13</u>

-

Method Blank (MB)

) (<u>}</u>	¢	⁴ Tc		°SS		4 (5	ы С Г	วิ	0 C C
		01							DUP Qualifier DUP RPD Limits	%	2
		MDL MB RC	%			ĺ	te (DUP)	/18 09:09	ion DUP RPD	%	0.245
		alifier MB I	%			: (• Duplica	349-3 06/19	sult Dilut		-
		MB Qué				()	ple (US)	(DUP) R3319;	esult DUP Re	%	84.4
k (MB)	06/19/18 09:09	MB Result	%	0.00100		((Uriginal Sam	. 06/19/18 09:09	Original R	%	84.2
Method Blan	(MB) R3319349-1 (Analyte	Total Solids			L1001666-06	(OS) L1001666-06		Analyte	Total Solids

I aboratory Control Sample (I CS)

רמט של אין	מוווחות (די	(0)				Ū
(LCS) R3319349-2 06/19/18 0	9:09					
SF	oike Amount	LCS Result	LCS Rec.	Rec. Limits	s LCS Qualifier	~
Analyte %		%	%	%		4
Total Solids 50	00	50.0	100	85 0-115		
	2	2	2			° S C

~

DATE/TIME: 06/20/18 16:53

	G-2011
	2540
30	Method
С С	bу
112	Solids
© ≥	Total

QUALITY CONTROL SUMMARY

*

Method Blank (MB)

	_	
ſ)	
>	>	
ļ	,	
C	2	
ſ)	
2	2	
-	2	
1	5	
-	_	

					Ċ
(MB) R3318927-1 06/18/1	8 16:22				}
	MB Result	MB Qualifier	MB MDL	MB RDL	0
Analyte	%		%	%	ЧС НС
Total Solids	0.000				
					°SS
FINDID32-01 01191	aldi lac ilai	Idna · (co)			4

אוורמוב (החב)	06/18/18 16:22
	R3318927-3
שולוווג	• (DUP)
л і дії таї ос	06/18/18 16:22
	1001692-01 (
5	I (SC

(OS) L1001692-01 06/18/	18 16:22 • (DUI	P) R3318927-3 (06/18/18 16	:22			5
	Original Resu	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	ں ۲
Analyte	%	%		%		%	วิ
Total Solids	86.3	85.7	-	0.623		ß	0 O C

Laboratory Control Sample (LCS)

7 GI		- 0	4		° Sc
		LCS Qualifier			
		Rec. Limits	%	0E // 11E	01-0.00
		LCS Rec.	%	100	001
-CS)		t LCS Result	%	50.0	0.00
N Sample (L	/18 16:22	Spike Amount	%	50.0	0.00
aboratory Contrc	LCS) R3318927-2 06/18,		Analyte	Total Colide	

DATE/TIME: 06/20/18 16:53

()
2
00
=
Ù
≥

QUALITY CONTROL SUMMARY 1001666-07.09.11.12.13.14

Ч Ss Б ğ Ū പ് ₹ **RPD** Limits % 20 6.89 LCSD Qualifier RPD % LCS Qualifier L1001846-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) Rec. Limits Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) 80.0-120 % LCSD Rec. 88.6 % LCSD Result LCS Rec. MB RDL 0.0200 mg/kg 82.7 % (LCS) R3319014-2 06/19/18 09:08 • (LCSD) R3319014-3 06/19/18 09:11 MB MDL 0.00280 mg/kg mg/kg 0.266 MB Qualifier Spike Amount LCS Result mg/kg 0.248 **MB** Result mg/kg mg/kg 0.300 (MB) R3319014-1 06/19/18 09:06 Mercury by Method 7471A ⊃ Method Blank (MB) Analyte Analyte Mercury Mercury

5		₽₀		ိ လ
	RPD Limits	%	20	
	MSD Qualifier RPD	%	7.27	
	MS Qualifier			
	Rec. Limits	%	75.0-125	
	Dilution		Ļ	
09:30	MSD Rec.	%	95.4	
4-5 06/19/18	MS Rec.	%	103	
· (MSD) R331901	MSD Result	mg/kg	0.303	
06/19/18 09:27	ult MS Result	mg/kg	0.326	
R3319014-4 (nt Original Res	mg/kg	QN	
19/18 09:13 • (MS)	Spike Amour	mg/kg	0.300	
(OS) L1001846-19 06/		Analyte	Mercury	

06/20/18 16:53 DATE/TIME:

თ
\sim
00
4
\sim
1
Ù
>
5

QUALITY CONTROL SUMMARY L1001666-07.09.11.12.13.14

ð

Metals (ICP) by Method 6010B

Method Blank (MB)

(MB) R3319203-1 06/19/18 23:12

	0	υ Η		ູ້)	4	ű		ی ۲
	Ч	D		0	0		0		
		mg/k	2.00	0.500	0.500	1.00	0.500	2.00	1.00
		mg/kg	0.650	0.170	0.0700	0.140	0.190	0.740	0.280
P Ouslifior									
M +Inc									
		mg/kg	⊃	Π	Π	Π	0.223	0.782	
		Analyte	Arsenic	3arium	Cadmium	Chromium	.ead	Selenium	Silver

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

ğ

Ū

Sc

₹

Analyte	Spike Amount mg/kg	LCS Result mg/kg	LCSD Result mg/kg	LCS Rec. %	LCSD Rec. %	Rec. Limits % 80.0-120	LCS Qualifier LCSD Qualifier	RPD %	RPD Limits %
Barium	100	<i>1</i> 03	33.2 104	<i>33.0</i> 103	33.2 104	80.0-120		0.416	20
Cadmium	100	96.7	96.7	96.7	96.7	80.0-120		0.0586	20
Chromium	100	101	101	101	101	80.0-120		0.167	20
Lead	100	95.0	95.5	95.0	95.5	80.0-120		0.495	20
Selenium	100	99.8	9.6	99.8	99.6	80.0-120		0.202	20
Silver	20.0	19.6	19.5	97.9	97.5	80.0-120		0.449	20

L1001587-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1001587-01 06/19/18 23:20 • (MS) R3319203-6 06/19/18 23:27 • (MSD) R3319203-7 06/19/18 23:29

						07.0						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier M3	SD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		0 -	%	%
Arsenic	113	4.65	104	104	87.6	87.5	-	75.0-125		0	0.151	20
Barium	113	93.8	195	223	89.1	114	-	75.0-125		<i>(</i>	13.4	20
Cadmium	113	0.114	98.4	97.7	86.9	86.2	-	75.0-125)	0.788	20
Chromium	113	39.5	140	139	88.9	88.1	-	75.0-125)	0.646	20
Lead	113	18.9	119	116	88.3	86.3	-	75.0-125		<i>(</i>	.93	20
Selenium	113		99.8	99.3	88.2	87.8	-	75.0-125)	0.451	20
Silver	22.6	n	19.6	19.4	86.5	85.7	-	75.0-125)	0.871	20

PROJECT: 2018-001031

SDG: L1001666

06/20/18 16:53 DATE/TIME:

43 of 72 PAGE

<	7	F
(Y)
ξ	2)
<u>(</u>		1
77		
()
1	5	5

QUALITY CONTROL SUMMARY

-

с О

С,

ğ

Ū

₹

ភ

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

12:20
06/18/18
R3319045-3
(B)

	07.71				
	MD Docult	MB Oualifior			
					0
Analyte	l/bn		ng/l	/bn	U H
TPH (GC/FID) Low Fraction	П		31.4	100	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-122	³ SS

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3319045-1 06/18,	/18 10:14 • (LCSD)	R3319045-2	06/18/18 11:32							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RP	D RP	D Limits
Analyte	l/bn	l/bn	l/bn	%	%	%		%	%	
TPH (GC/FID) Low Fraction	5500	5740	5410	104	98.3	71.0-136		5.5	96 20	
(S) a, a, a-Trifluorotoluene(FID)				95.3	96.4	77.0-122				

PAGE: 44 of 72

(GC) by Method 8015D/GRO Volatile Oraș

QUALITY CONTROL SUMMARY 001666-06 07 09 11 14

-

	(DD) enunodi	הא ואובוווסת מ			- 1	10,00-001001	,00,11,14					
Method Blank (ME	3)											; (
(MB) R3319003-3 06/18/	18 21:55											3
	MB Result	MB Qualifier	MB MDL	MB RDL								6
Analyte	mg/kg		mg/kg	mg/kg								Tc
TPH (GC/FID) Low Fraction	D		0.0217	0.100								
(S) a, a, a-Trifluorotoluene(FID)	99.5			77.0-120								³ SS
Laboratory Contro	ol Sample (I	-CS) • Labc	ratory Cont	trol Sampl	∋ Duplicat	(LCSD) و						5
(LCS) R3319003-1 06/18/	18 20:52 • (LCS	5D) R3319003-2	2 06/18/18 21:13									U U Z
	Spike Amoun	t LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifie	r LCSD Qualifier RPD	RPD Limits	(ō
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%			Q
TPH (GC/FID) Low Fraction	5.50	5.24	5.10	95.3	92.7	70.0-136		2.78	20			ğ
(S) a, a, a-Trifluorotoluene(FID)				94.8	96.9	77.0-120						
												פ
L1001245-01 Origi	nal Sample	(OS) • Mat	rix Spike (N	1S) • Matri×	Spike Du	olicate (MSE	$(\subset$					م کا
(OS) L1001245-01 06/19/	18 04:58 • (MS)	R3319003-4 C)6/19/18 05:19 •	(MSD) R33190	03-5 06/19/18	05:40						
	Spike Amoun (dry)	t Original Resul (dry)	lt MS Result (dry)) MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	ec. Limits MS Qualifi	er MSD Qualifier	RPD	RPD Limits	° S C
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	~			%	%]
TPH (GC/FID) Low Fraction	6.01	189	464	466	45.7	46.0	100 10	0.0-147		0.359	30	

	Spike Amount (dry)	Uriginal Kesult (dry)	MS Result (dry)	MSD Kesult (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	6.01	189	464	466	45.7	46.0	100	10.0-147			0.359	30
(S) a,a,a-Trifluorotoluene(FID)					98.7	98.2		77.0-120				

ACCOUNT: Dominion Due Diligence Group

PROJECT: 2018-001031

SDG: L1001666

DATE/TIME: 06/20/18 16:53

PAGE: 45 of 72

7	-	
7	-	
C	C)
C	C)
ſ		Į
7	-	
7	-	
(5)
-		
<	<	1
-		

QUALITY CONTROL SUMMARY

*

0 U Ч

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

MB) R3319167-3 06/19/18	8 11:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	υĝ/kg
TPH (GC/FID) Low Fraction	П		0.0217	0.100
(S) 1 a a-Triffinaratolinene/EID)	102			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

С О ğ

20

7.85

70.0-136 77.0-120

81.2 106

87.8 107

4.46

4.83

5.50

TPH (GC/FID) Low Fraction

Ū

₹

ភ

Sc

	RPD Limits	%
	LCSD Qualifier RPD	%
	LCS Qualifier	
	Rec. Limits	%
	LCSD Rec.	%
	LCS Rec.	%
06/19/18 10:20	LCSD Result	mg/kg
) R3319167-2	LCS Result	mg/kg
5/19/18 09:56 • (LCSD	Spike Amount	mg/kg
(LCS) R3319167-1 0(Analyte

(S) a,a,a-Trifluorotoluene(FID) **PAGE:** 46 of 72

WG1124939 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1001666-01.02.03.04.05.15

*

					2		
Method Blank (MB)							-
(MB) R3318227-3 06/15/18 0	0:41						<u>ვ</u>
E	MB Result MB Qualifier	MB MDL	MB RDL				C
Analyte	l/6r	l/bn	l/bn				Tc
Acetone		10.0	50.0				
Acrolein		8.87	50.0				3
Acrylonitrile		1.87	10.0)
Benzene		0.331	1.00				4
Bromobenzene		0.352	1.00				Ð
Bromodichloromethane		0.380	1.00				
Bromoform		0.469	1.00				ی ک
Bromomethane		0.866	5.00				5
n-Butylbenzene		0.361	1.00				9
sec-Butylbenzene		0.365	1.00				ğ
tert-Butylbenzene		0.399	1.00				
Carbon tetrachloride		0.379	1.00				ت ۲
Chlorobenzene		0.348	1.00				ō
Chlorodibromomethane		0.327	1.00				0
Chloroethane		0.453	5.00				A
2-Chloroethyl vinyl ether		3.01	50.0				
Chloroform		0.324	5.00				ر س
Chloromethane		0.276	2.50)
2-Chlorotoluene		0.375	1.00				
4-Chlorotoluene		0.351	1.00				
1,2-Dibromo-3-Chloropropane		1.33	5.00				
1,2-Dibromoethane		0.381	1.00				
Dibromomethane		0.346	1.00				
1,2-Dichlorobenzene		0.349	1.00				
1,3-Dichlorobenzene		0.220	1.00				
1,4-Dichlorobenzene		0.274	1.00				
Dichlorodifluoromethane		0.551	5.00				
1,1-Dichloroethane		0.259	1.00				
1,2-Dichloroethane		0.361	1.00				
1,1-Dichloroethene		0.398	1.00				
cis-1,2-Dichloroethene		0.260	1.00				
trans-1,2-Dichloroethene		0.396	1.00				
1,2-Dichloropropane		0.306	1.00				
1,1-Dichloropropene		0.352	1.00				
1,3-Dichloropropane		0.366	1.00				
cis-1,3-Dichloropropene		0.418	1.00				
trans-1,3-Dichloropropene		0.419	1.00				
2,2-Dichloropropane		0.321	1.00				
Di-isopropyl ether		0.320	1.00				
Ethylbenzene		0.384	1.00				
ACC	OUNT.		PRO IFCT		SDG.	DATE/TIME-	-4GF-
	Dilinence Groun		2018-0010	. .	1001666	06/20/18 16:53	7 of 72
				ō			1.0

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY 10001666-01.02.03.04.05.15

-

Ss

Ч

Б

ğ

 $\overline{\mathbb{O}}$

₹

ភ

SC

Method Blank (MB)					
(MB) R3318227-3 06/15/18	3 00:41				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	l/gu		l/gu	ng/l	
Hexachloro-1,3-butadiene	∍		0.256	1.00	
Isopropylbenzene			0.326	1.00	
p-lsopropyltoluene	Э		0.350	1.00	
2-Butanone (MEK)			3.93	10.0	
Methylene Chloride	П		1.00	5.00	
4-Methyl-2-pentanone (MIBK)			2.14	10.0	
Methyl tert-butyl ether	П		0.367	1.00	
Naphthalene			1.00	5.00	
n-Propylbenzene			0.349	1.00	
Styrene	П		0.307	1.00	
1,1,1,2-Tetrachloroethane	П		0.385	1.00	
1,1,2,2-Tetrachloroethane			0.130	1.00	
Tetrachloroethene			0.372	1.00	
Toluene			0.412	1.00	
1,1,2-Trichlorotrifluoroethane	N		0.303	1.00	
1,2,3-Trichlorobenzene			0.230	1.00	
1,2,4-Trichlorobenzene	Π		0.355	1.00	
1,1,1-Trichloroethane	П		0.319	1.00	
1,1,2-Trichloroethane	П		0.383	1.00	
Trichloroethene			0.398	1.00	
Trichlorofluoromethane	D		1.20	5.00	
1,2,3-Trichloropropane	П		0.807	2.50	
1,2,3-Trimethylbenzene	П		0.321	1.00	
1,2,4-Trimethylbenzene			0.373	1.00	
1,3,5-Trimethylbenzene	N		0.387	1.00	
Vinyl chloride	D		0.259	1.00	
Xylenes, Total	D		1.06	3.00	
(S) Toluene-d8	106			80.0-120	
(S) Dibromofluoromethane	91.0			76.0-123	
(S) 4-Bromofluorobenzene	95.9			80.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3318227-1 06/14/18 23:38 • (LCSD) R3318227-2 06/14/18 23:59

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	l/bn	l/gu	l/gu	%	%	%			%	%	
Acetone	125	110	109	87.8	86.8	10.0-160			1.08	23	
Acrolein	125	169	163	135	131	10.0-160			3.24	20	
Acrylonitrile	125	117	113	93.6	90.3	60.0-142			3.57	20	
	ACCOUNT:			PRC	JECT:		SDG:			DATE/TIME:	PAGE
	Dominion Due Diligence Gro	dno		2018-	-001031		L100166	90		06/20/18 16:53	48 of 72

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY 110011666-01.02.03.04.05.15

-

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

			(-							E
(LCS) R3318227-1 06/14/15	3 23:38 • (LCSE)) R3318227-2	06/14/18 23:59								3
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		2
Analyte	l/bn	l/bn	ng/l	%	%	%		%	%		
Benzene	25.0	23.4	22.6	93.7	9.06	69.0-123		3.42	20		
Bromobenzene	25.0	24.8	23.8	99.2	95.1	79.0-120		4.22	20		ູ້
Bromodichloromethane	25.0	23.9	24.0	95.6	95.9	76.0-120		0.378	20)
Bromoform	25.0	23.4	23.1	93.7	92.4	67.0-132		1.41	20		4
Bromomethane	25.0	9.28	9.76	37.1	39.1	18.0-160		5.11	20		5 Ö
n-Butylbenzene	25.0	25.6	24.6	103	98.6	72.0-126		4.00	20		
sec-Butylbenzene	25.0	24.7	24.1	98.9	96.6	74.0-121		2.42	20		یں م
tert-Butylbenzene	25.0	23.6	23.0	94.5	91.9	75.0-122		2.86	20		5
Carbon tetrachloride	25.0	22.5	22.1	0.06	88.5	63.0-122		1.77	20		9
Chlorobenzene	25.0	26.2	25.9	105	104	79.0-121		1.12	20		ğ
Chlorodibromomethane	25.0	25.1	25.4	100	102	75.0-125		1.31	20		
Chloroethane	25.0	29.5	28.3	118	113	47.0-152		4.08	20		<u>ה</u>
2-Chloroethyl vinyl ether	125	132	131	106	105	10.0-160		1.08	22		5
Chloroform	25.0	23.8	23.5	95.1	94.1	72.0-121		1.07	20		0
Chloromethane	25.0	16.7	16.6	6.9	66.5	48.0-139		0.620	20		₹
2-Chlorotoluene	25.0	24.0	23.2	96.0	92.8	74.0-122		3.42	20		
4-Chlorotoluene	25.0	24.3	23.7	97.1	94.8	79.0-120		2.41	20		о С
1,2-Dibromo-3-Chloropropane	25.0	25.0	23.8	100	95.3	64.0-127		4.86	20)
1,2-Dibromoethane	25.0	25.0	24.7	99.8	98.6	77.0-123		1.22	20		
Dibromomethane	25.0	24.5	24.0	98.1	95.9	78.0-120		2.28	20		
1,2-Dichlorobenzene	25.0	25.8	24.5	103	98.2	80.0-120		5.15	20		
1, 3-Dichlorobenzene	25.0	25.6	24.5	103	98.2	72.0-123		4.41	20		
1,4-Dichlorobenzene	25.0	25.6	24.7	102	98.9	77.0-120		3.38	20		
Dichlorodifluoromethane	25.0	24.2	24.2	96.7	96.6	49.0-155		0.0584	20		
1,1-Dichloroethane	25.0	23.7	23.4	94.7	93.4	70.0-126		1.30	20		
1,2-Dichloroethane	25.0	25.2	24.5	101	98.0	67.0-126		2.98	20		
1,1-Dichloroethene	25.0	22.3	22.7	89.3	90.6	64.0-129		1.42	20		
cis-1,2-Dichloroethene	25.0	23.1	22.2	92.4	89.0	73.0-120		3.83	20		
trans-1, 2-Dichloroethene	25.0	22.0	22.1	88.1	88.6	71.0-121		0.538	20		
1,2-Dichloropropane	25.0	24.7	24.7	98.9	0.66	75.0-125		0.0577	20		
1,1-Dichloropropene	25.0	24.0	23.5	95.8	93.9	71.0-129		2.03	20		
1,3-Dichloropropane	25.0	26.4	26.1	106	104	80.0-121		1.17	20		
cis-1,3-Dichloropropene	25.0	25.8	25.6	103	102	79.0-123		0.864	20		
trans-1,3-Dichloropropene	25.0	26.2	26.1	105	104	74.0-127		0.567	20		
2,2-Dichloropropane	25.0	28.3	27.8	113	111	60.0-125		1.75	20		
Di-isopropyl ether	25.0	23.8	23.3	95.3	93.4	59.0-133		2.04	20		
Ethylbenzene	25.0	25.8	25.9	103	103	77.0-120		0.387	20		
Hexachloro-1,3-butadiene	25.0	25.2	24.3	101	97.1	64.0-131		3.90	20		
Isopropylbenzene	25.0	24.0	23.4	96.1	93.7	75.0-120		2.48	20		
p-lsopropyltoluene	25.0	24.4	24.1	97.5	96.2	74.0-126		1.27	20		
V	COLINT.			Jad	, IECT.		SDG.		DATE/TIME.	PAGF	
	La Diligence Gro			2010 810 6	-001031		1100166			10 of 70	

Volatile Organic Compounds (GC/MS) by Method 8260B WG1124939

QUALITY CONTROL SUMMARY 110011666-01.02.03.04.05.15

*

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Laboratory Control	sample (LCS	o) • Laboré	atory Conti	rol sample	Duplicate	(LCSD)					<u>د</u>
(LCS) R3318227-1 06/14/18	23:38 • (LCSD) R	3318227-2 0	6/14/18 23:59								<u>}</u>
	Spike Amount L	.CS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	2
Analyte	n l/bn	l/bi	l/bn	%	%	%			%	%	С Н
2-Butanone (MEK)	125 11	23	119	98.1	95.3	37.0-158			2.88	20	
Methylene Chloride	25.0 2	2.0	21.4	88.1	85.5	66.0-121			2.96	20	ູ້
4-Methyl-2-pentanone (MIBK)	125 1:	34	133	107	106	59.0-143			1.15	20)
Methyl tert-butyl ether	25.0 2	3.6	23.1	94.5	92.5	64.0-123			2.17	20	4
Naphthalene	25.0 2	5.7	24.8	103	99.2	62.0-128			3.70	20	5
n-Propylbenzene	25.0 2	94.0	23.2	95.9	93.0	79.0-120			3.03	20	
Styrene	25.0 2	14.1	23.1	96.6	92.3	78.0-124			4.50	20	ں ۲
1,1,1,2-Tetrachloroethane	25.0 2	36.1	24.6	104	98.3	75.0-122			5.85	20	5
1,1,2,2-Tetrachloroethane	25.0 2	5.0	24.1	99.8	96.4	71.0-122			3.48	20	9
Tetrachloroethene	25.0 2	9.6.0	26.3	104	105	70.0-127			1.02	20	ğ
Toluene	25.0 2	5.0	24.7	100	98.9	77.0-120			1.21	20	
1,1,2-Trichlorotrifluoroethane	25.0 2	14.7	24.8	98.8	99.1	61.0-136			0.280	20	ل ۲
1,2,3-Trichlorobenzene	25.0 2	0.95	25.4	104	102	61.0-133			2.13	20	5
1,2,4-Trichlorobenzene	25.0 2	2.6.2	25.2	105	101	69.0-129			3.94	20	0
1,1,1-Trichloroethane	25.0 2	3.5	23.2	94.1	92.8	68.0-122			1.41	20	⊲
1,1,2-Trichloroethane	25.0 2	0.75	26.1	108	105	78.0-120			3.35	20	
Trichloroethene	25.0 2	3.2	23.5	92.7	93.9	78.0-120			1.38	20	о С
Trichlorofluoromethane	25.0 2	0.6	28.5	116	114	56.0-137			1.68	20)
1,2,3-Trichloropropane	25.0 2	14.7	24.2	98.9	97.0	72.0-124			2.00	20	
1, 2, 3-Trimethylbenzene	25.0 2	24.8	24.1	99.3	96.6	75.0-120			2.75	20	
1, 2, 4-Trimethylbenzene	25.0 2	0.4.0	24.0	96.0	95.8	75.0-120			0.160	20	
1, 3, 5-Trimethylbenzene	25.0 2	24.0	23.1	95.8	92.3	75.0-120			3.74	20	
Vinyl chloride	25.0 2	3.9	23.6	95.4	94.3	64.0-133			1.15	20	
Xylenes, Total	75.0 7	6.5	76.7	102	102	77.0-120			0.261	20	
(S) Toluene-d8				105	103	80.0-120					
(S) Dibromofluoromethane				93.0	93.1	76.0-123					
(S) 4-Bromofluorobenzene				94.5	92.8	80.0-120					

Dominion Due Diligence Group ACCOUNT:

PROJECT: 2018-001031

SDG: L1001666

DATE/TIME: 06/20/18 16:53

PAGE: 50 of 72

WG1125376 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

-

Method Blank (MB)

	α	٦
	È	Ś
	ç	4
	Ċ	1
	\geq	<
	C	ر
	~	~
	U	J
	5	
	((ĥ
	2	_
	~	
	Q	0
	ē	5
	\sim	-
	C	٦
	÷.,	ſ
	Ċ	5
	C	
	CCC	
	0000	
	0000	
	000010	
	000010	
	0000100	
	02210020	

Method Blank (MB)							<u>د</u>
(MB) R3318830-3 06/16/18 C	0:03)
	MB Result MB G	ualifier MB MDL	_	AB RDL			7
Analyte	mg/kg	mg/kg	-	ng/kg			Ч
Acetone		0.0137	0	0.0250			
Acrylonitrile		0.00190	0	0.0125			ູ້
Benzene	Π	0.00040	00	0.00100)
Bromobenzene		0.00105	0).0125			4
Bromodichloromethane		0.00078).00250			C
Bromoform	П	0.00598	~	0.0250][
Bromomethane	Л	0.00370	0).0125			ى م
n-Butylbenzene	П	0.00384	-	0.0125			;
sec-Butylbenzene	Л	0.00253	<u> </u>).0125			(9
tert-Butylbenzene	C	0.00155	0	0.00500			ğ
Carbon tetrachloride	Л	0.00108	0	0.00500			
Chlorobenzene	C	0.00057	73 (0.00250			۲ ک
Chlorodibromomethane	Л	0.00045	50 ().00250			;
Chloroethane	C	0.00108	0	0.00500			
Chloroform	Π	0.000415	5	0.00250			A
Chloromethane		0.00139	0	0.0125			
2-Chlorotoluene		0.00092	20 (0.00250			ر م
4-Chlorotoluene		0.00113	0	0.00500			2
1,2-Dibromo-3-Chloropropane		0.00510	0	0.0250			
1,2-Dibromoethane		0.00052	25 (0.00250			
Dibromomethane		0.00100	0	0.00500			
1,2-Dichlorobenzene		0.00145	0	0.00500			
1,3-Dichlorobenzene	n	0.00170	0	0.00500			
1,4-Dichlorobenzene		0.00197	0	0.00500			
Dichlorodifluoromethane		0.000818	8	0.00250			
1,1-Dichloroethane		0.00057	75 (0.00250			
1,2-Dichloroethane		0.00047	5 (0.00250			
1,1-Dichloroethene		0.00050	00	0.00250			
cis-1,2-Dichloroethene	Π	0.00069) 06	0.00250			
trans-1,2-Dichloroethene		0.00143	0	0.00500			
1,2-Dichloropropane	П	0.00127	0	0.00500			
1,1-Dichloropropene		0.00070	00	0.00250			
1,3-Dichloropropane		0.00175	0	0.00500			
cis-1,3-Dichloropropene		0.00067	78 (0.00250			
trans-1,3-Dichloropropene		0.00153	0	0.00500			
2,2-Dichloropropane		0.00079	33 (0.00250			
Di-isopropyl ether	n	0.00035	50 (0.00100			
Ethylbenzene	П	0.00053	30 (0.00250			
Hexachloro-1,3-butadiene	Л	0.0127	0).0250			
Isopropylbenzene	П	0.00086	33).00250			
	-ENILO					DATE/TIME.	ú
					- 100-100-100-100-100-100-100-100-100-10		L L
	Diligence Group			2018-001031	LIUU IDDD	0 IC 50:01 21/07/90	7/

(()
٢	-	-
(Y)
L	()
(1
7		
(1)
-		5
~	5	>

QUALITY CONTROL SUMMARY

-

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)					-
(MB) R3318830-3 06/16/18	\$ 00:03				3
	MB Result	MB Qualifier	MB MDL	MB RDL	0
Analyte	mg/kg		mg/kg	mg/kg	U H
p-lsopropyltoluene	N		0.00233	0.00500	
2-Butanone (MEK)	П		0.0125	0.0250	ູ້
Methylene Chloride	N		0.00664	0.0250)
4-Methyl-2-pentanone (MIBK)			0.0100	0.0250	4
Methyl tert-butyl ether	Π		0.000295	0.00100	5
Naphthalene			0.00312	0.0125	
n-Propylbenzene	Π		0.00118	0.00500	о С
Styrene			0.00273	0.0125	5
1,1,1,2-Tetrachloroethane	N		0.000500	0.00250	Q
1,1,2,2-Tetrachloroethane	Π		0.000390	0.00250	ğ
Tetrachloroethene	N		0.000700	0.00250	
Toluene			0.00125	0.00500	<u>ה</u>
1,1,2-Trichlorotrifluoroethane	Π		0.000675	0.00250	ō
1,2,3-Trichlorobenzene			0.000625	0.00250	0
1,2,4-Trichlorobenzene	N		0.00482	0.0125	4
1,1,1-Trichloroethane	П		0.000275	0.00250	
1,1,2-Trichloroethane	Π		0.000883	0.00250	ں س
Trichloroethene	П		0.000400	0.00100)
Trichlorofluoromethane	П		0.000500	0.00250	
1,2,3-Trichloropropane	П		0.00510	0.0125	
1,2,3-Trimethylbenzene	Π		0.00115	0.00500	
1,2,4-Trimethylbenzene	П		0.00116	0.00500	
1,3,5-Trimethylbenzene	Π		0.00108	0.00500	
Vinyl chloride	Π		0.000683	0.00250	
Xylenes, Total	Π		0.00478	0.00650	
(S) Toluene-d8	106			80.0-120	
(S) Dibromofluoromethane	99.9			74.0-131	
(S) 4-Bromofluorobenzene	107			64.0-132	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3318830-1 06/15,	/18 22:13 • (LCSD)) R3318830-2	06/15/18 22:32								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Acetone	0.625	0.531	0.572	85.0	91.5	11.0-160			7.45	23	
Acrylonitrile	0.625	0.579	0.600	92.6	96.0	61.0-143			3.61	20	
Benzene	0.125	0.123	0.127	98.3	102	71.0-124			3.55	20	
Bromobenzene	0.125	0.110	0.124	88.2	99.4	78.0-120			12.0	20	
Bromodichloromethane	0.125	0.0978	0.0975	78.2	78.0	75.0-120			0.267	20	
	ACCOUNT:			PRO	JECT:		SDG:			DATE/TIME:	PAGE:
Dominion	Due Diligence Gro	dno		2018-	001031		L100166	9		06/20/18 16:53	52 of 72

WG1125376 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

*

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Laboratory Control	Sample (L'		ratory Cont	rol sample	e Duplicate	(LUSU)				-C
(LCS) R3318830-1 06/15/18	3 22:13 • (LCSD) R3318830-2	06/15/18 22:32							<u>)</u>)
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	2 H
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	<u>ں</u>
Bromoform	0.125	0.127	0.133	102	106	65.0-133		4.70	20	
Bromomethane	0.125	0.135	0.142	108	114	26.0-160		5.22	20	ې کې
n-Butylbenzene	0.125	0.116	0.123	92.8	98.7	73.0-126		6.20	20	2
sec-Butylbenzene	0.125	0.125	0.134	7.66	108	75.0-121		7.55	20	4
tert-Butylbenzene	0.125	0.110	0.112	88.1	89.8	74.0-122		1.84	20	5
Carbon tetrachloride	0.125	0.111	0.118	88.5	94.6	66.0-123		6.65	20	
Chlorobenzene	0.125	0.129	0.133	103	106	79.0-121		2.76	20	ى ك
Chlorodibromomethane	0.125	0.134	0.133	107	107	74.0-128		0.514	20	5
Chloroethane	0.125	0.142	0.148	113	118	51.0-147		4.13	20	Q
Chloroform	0.125	0.113	0.113	90.2	90.8	73.0-123		0.643	20	Q
Chloromethane	0.125	9660.0	0.104	79.7	83.2	51.0-138		4.30	20	
2-Chlorotoluene	0.125	0.111	0.111	88.4	88.6	72.0-124		0.166	20	_ م
4-Chlorotoluene	0.125	0.117	0.118	94.0	94.3	78.0-120		0.352	20	ō
1,2-Dibromo-3-Chloropropane	0.125	0.128	0.131	102	105	65.0-126		2.97	20	
1,2-Dibromoethane	0.125	0.0994	0.106	79.5	84.6	78.0-122		6.17	20	Ā
Dibromomethane	0.125	0.125	0.130	100	104	79.0-120		3.71	20	
1,2-Dichlorobenzene	0.125	0.0989	0.104	79.1	83.3	80.0-120	<u>14</u>	5.18	20	ر س
1,3-Dichlorobenzene	0.125	0.0991	0.103	79.3	82.2	72.0-123		3.64	20)
1,4-Dichlorobenzene	0.125	0.113	0.116	90.7	92.8	77.0-120		2.30	20	
Dichlorodifluoromethane	0.125	0.114	0.117	91.2	93.3	49.0-155		2.17	20	
1,1-Dichloroethane	0.125	0.106	0.111	84.9	88.5	70.0-128		4.21	20	
1, 2-Dichloroethane	0.125	0.0999	0.103	79.9	82.4	69.0-128		3.01	20	
1,1-Dichloroethene	0.125	0.0983	0.0970	78.6	77.6	63.0-131		1.25	20	
cis-1,2-Dichloroethene	0.125	0.155	0.163	124	131	74.0-123	4 <u></u>	<u>J4</u> 5.50	20	
trans-1,2-Dichloroethene	0.125	0.142	0.147	114	118	72.0-122		3.18	20	
1,2-Dichloropropane	0.125	0.110	0.112	88.2	89.5	75.0-126		1.52	20	
1,1-Dichloropropene	0.125	0.133	0.135	107	108	72.0-130		0.931	20	
1,3-Dichloropropane	0.125	0.142	0.142	113	114	80.0-121		0.401	20	
cis-1,3-Dichloropropene	0.125	0.111	0.118	89.0	94.7	80.0-125		6.19	20	
trans-1,3-Dichloropropene	0.125	0.100	0.0986	80.0	78.8	75.0-129		1.51	20	
2,2-Dichloropropane	0.125	0.107	0.112	85.8	89.5	60.0-129		4.21	20	
Di-isopropyl ether	0.125	0.133	0.133	106	106	62.0-133		0.135	20	
Ethylbenzene	0.125	0.117	0.119	93.2	95.0	77.0-120		1.87	20	
Hexachloro-1, 3-butadiene	0.125	0.138	0.152	110	121	68.0-128		9.42	20	
Isopropylbenzene	0.125	0.115	0.112	92.2	89.6	75.0-120		2.86	20	
p-lsopropyltoluene	0.125	0.115	0.120	92.0	95.8	74.0-125		4.03	20	
2-Butanone (MEK)	0.625	0.720	0.735	115	118	37.0-159		2.12	21.3	
Methylene Chloride	0.125	0.121	0.121	96.6	96.5	67.0-123		0.172	20	
4-Methyl-2-pentanone (MIBK)	0.625	0.605	0.620	96.8	99.2	60.0-144		2.48	20	
Methyl tert-butyl ether	0.125	0.116	0.122	92.9	97.7	66.0-125		5.12	20	
DQ.	COUNT			DRO	JECT.		SDG		DATE/TIME-	РДСЕ
Dominion Du	Pilinence Gro	ç		2018-	001031		L100166	U	06/20/18 16:53	53 of 72
	יום הווואבווירב כיור	dn		100			L C C C	D	UU/20/10 10.00	7/ 10 00

ဖ
\sim
$^{\circ}$
വ
N
\sum
U
-
\leq

QUALITY CONTROL SUMMARY

E

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3318830-1 06/15/18	3 22:13 • (LCSD) R3318830-2 (06/15/18 22:32							-
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	0
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	μ
Naphthalene	0.125	0.0915	0.0969	73.2	77.5	64.0-125		5.68	20	
n-Propylbenzene	0.125	0.109	0.112	87.2	89.3	78.0-120		2.33	20	ູ້
Styrene	0.125	0.135	0.131	108	105	78.0-124		3.09	20)
1,1,1,2-Tetrachloroethane	0.125	0.140	0.149	112	119	74.0-124		5.91	20	4
1,1,2,2-Tetrachloroethane	0.125	0.126	0.136	101	109	73.0-120		7.80	20	ő
Tetrachloroethene	0.125	0.113	0.112	90.3	0.06	70.0-127		0.351	20	
Toluene	0.125	0.136	0.134	108	107	70.0-120		0.903	20	یں س
1,1,2-Trichlorotrifluoroethane	0.125	0.117	0.123	93.8	98.8	64.0-135		5.12	20	5
1,2,3-Trichlorobenzene	0.125	0.118	0.137	94.6	110	68.0-126		14.7	20	9
1,2,4-Trichlorobenzene	0.125	0.0994	0.115	79.5	91.7	70.0-127		14.1	20	ğ
1,1,1-Trichloroethane	0.125	0.107	0.110	86.0	87.6	69.0-125		1.91	20	
1,1,2-Trichloroethane	0.125	0.125	0.131	99.7	105	78.0-120		4.83	20	ت ∼
Trichloroethene	0.125	0.115	0.117	92.3	93.7	79.0-120		1.50	20	5
Trichlorofluoromethane	0.125	0.125	0.135	100	108	59.0-136		7.58	20	0
1,2,3-Trichloropropane	0.125	0.100	0.106	80.4	84.9	73.0-124		5.46	20	Ā
1,2,3-Trimethylbenzene	0.125	0.123	0.120	98.6	96.2	76.0-120		2.43	20	
1,2,4-Trimethylbenzene	0.125	0.0969	0.103	77.5	82.7	75.0-120		6.52	20	ں م
1,3,5-Trimethylbenzene	0.125	0.112	0.113	89.6	90.6	75.0-120		1.14	20)
Vinyl chloride	0.125	0.130	0.132	104	106	63.0-134		1.92	20	
Xylenes, Total	0.375	0.337	0.357	89.9	95.2	77.0-120		5.76	20	
(S) Toluene-d8				104	105	80.0-120				
(S) Dibromofluoromethane				104	107	74.0-131				
(S) 4-Bromofluorobenzene				106	104	64.0-132				

L1001715-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1001715-12 06/16/18	3 06:33 • (MS) R:	3318830-4 06/1	16/18 07:13 • (N	ASD) R3318830	-5 06/16/18 0	7:33						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acetone	0.625	П	0.0204	0.0146	3.26	2.34	-	10.0-160	9	9	33.1	36
Acrylonitrile	0.625	n	0.0630	0.0369	10.1	5.90	-	14.0-160	<u> 9</u>	<u> 13 JG</u>	52.3	33
Benzene	0.125	0.000505	0.0266	0.0165	20.8	12.8	-	13.0-146		<u> 13 JG</u>	46.8	27
Bromobenzene	0.125	N	0.0314	0.0178	25.1	14.3	-	10.0-149		ег Г	55.2	33
Bromodichloromethane	0.125	Π	0.0238	0.0147	19.0	11.8	-	15.0-142		<u> 13 JG</u>	47.0	28
Bromoform	0.125	n	0.0282	0.0167	22.6	13.4	-	10.0-147		ମ ଅ	51.1	31
Bromomethane	0.125	N	0.0310	0.0178	24.8	14.3	-	10.0-160		EL S	53.9	32
n-Butylbenzene	0.125	N	0.0370	0.0239	29.6	19.1	-	10.0-154		ег Г	43.0	37
sec-Butylbenzene	0.125	Π	0.0369	0.0268	29.5	21.4	-	10.0-151			31.8	36
tert-Butylbenzene	0.125	Л	0.0350	0.0224	28.0	17.9	-	10.0-152		ମ୍ <mark>ଚ</mark>	44.1	35
7	ACCOUNT:			PRO.	JECT:		0)	DG:		DATE/1	'IME:	PAGE
Dominion [Due Diligence Gro	dna		2018-0	001031		L10	01666		06/20/18	16:53	54 of 72

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

-

L1001715-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

		natri	INI) ayıdc x		dna exide	(UCIN) etcal						ں م
(OS) L1001/15-12 06/16/18	06:33 • (MS) Spike Amoun	K3318830-4 06 t Original Result	5/16/18 07:13 • (i • MS Result	MSD) R3318830 MSD Result)-5 06/16/18 0 MS Rec.	V:33 MSD Rec. Dii	lution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%			- %	%	² Tc
Carbon tetrachloride	0.125	n	0.0258	0.0161	20.7	12.8 1	13.0-140		J3 J6	46.7	30	
Chlorobenzene	0.125		0.0314	0.0193	25.1	15.5 1	10.0-149		е Г	47.6	31	ູ້
Chlorodibromomethane	0.125	N	0.0307	0.0192	24.6	15.4 15	12.0-147		ମ ଅ	46.0	29)))
Chloroethane	0.125		0.0378	0.0215	30.2	17.2 1	10.0-159		<u>در</u>	54.8	33	4
Chloroform	0.125	N	0.0243	0.0151	19.4	12.1 1	18.0-148		<u>J3 J6</u>	46.8	28	Ü
Chloromethane	0.125		0.0221	0.0145	17.7	11.6 1	10.0-146		ମ୍ ଅ	41.8	29	
2-Chlorotoluene	0.125		0.0288	0.0204	23.1	16.3 1	10.0-151			34.4	35	ں ۲
4-Chlorotoluene	0.125		0.0293	0.0160	23.4	12.8 1	10.0-150		сГ СГ	58.3	35	5
1,2-Dibromo-3-Chloropropane	0.125	Π	0.0215	0.0147	17.2	11.7 1	10.0-149		<u>ଜ</u> ୍ମ	37.8	34	G
1,2-Dibromoethane	0.125		0.0237	0.0134	18.9	10.7 1	14.0-145		<u>J3 J6</u>	55.7	28	ğ
Dibromomethane	0.125	Π	0.0264	0.0166	21.1	13.3 1	18.0-144		J3 J6	45.6	27	
1,2-Dichlorobenzene	0.125		0.0241	0.0178	19.3	14.2 1	10.0-153			30.1	34	ں م
1,3-Dichlorobenzene	0.125	П	0.0241	0.0174	19.3	13.9 1	10.0-150			32.5	35	5
1,4-Dichlorobenzene	0.125		0.0288	0.0196	23.1	15.7 1	10.0-148		сГ СГ	37.9	34	ω
Dichlorodifluoromethane	0.125		0.0352	0.0209	28.1	16.7 1	10.0-162		ег Г	50.9	30	Ā
1,1-Dichloroethane	0.125		0.0230	0.0140	18.4	11.2 1	19.0-148	9	J3 J6	48.7	28	
1,2-Dichloroethane	0.125		0.0209	0.0133	16.7	10.6 1	17.0-147	90	J3 J6	44.7	27	ر س
1,1-Dichloroethene	0.125		0.0203	0.0134	16.2	10.7 1	10.0-150		ମ୍ ଅ	40.9	31	3
cis-1,2-Dichloroethene	0.125	N	0.0277	0.0214	22.2	17.1 1	16.0-145			25.6	28	
trans-1,2-Dichloroethene	0.125		0.0298	0.0183	23.8	14.7 1	11.0-142		<u>در</u>	47.5	29	
1,2-Dichloropropane	0.125	N	0.0233	0.0168	18.6	13.4 1	17.0-148		<u>J3 J6</u>	32.3	28	
1,1-Dichloropropene	0.125	Π	0.0287	0.0171	22.9	13.7 1	10.0-150		ମ୍ ଅ	50.5	30	
1,3-Dichloropropane	0.125	Π	0.0313	0.0199	25.0	15.9 1	16.0-148		<u>J3 J6</u>	44.7	27	
cis-1,3-Dichloropropene	0.125		0.0266	0.0164	21.3	13.1 1	13.0-150		<u>ور</u>	47.7	28	
trans-1,3-Dichloropropene	0.125	Π	0.0238	0.0139	19.0	11.1	10.0-152		<u>с</u> Г	52.6	29	
2,2-Dichloropropane	0.125		0.0233	0.0147	18.6	11.8 1	16.0-143		<u>J3 J6</u>	45.3	30	
Di-isopropyl ether	0.125	N	0.0258	0.0166	20.7	13.3 1	16.0-149		<u>J3 J6</u>	43.7	28	
Ethylbenzene	0.125		0.0298	0.0190	23.8	15.2 1	10.0-147		ମ ଅ	44.4	31	
Hexachloro-1,3-butadiene	0.125	Π	0.0602	0.0414	48.2	33.1 1	10.0-154			37.0	40	
Isopropylbenzene	0.125		0.0311	0.0209	24.9	16.7 1	10.0-147		ମ ଅ	39.0	33	
p-lsopropyltoluene	0.125	Π	0.0318	0.0247	25.5	19.8 1	10.0-156			25.2	37	
2-Butanone (MEK)	0.625	0.0161	0.132	0.0768	18.6	9.73 1	10.0-160		<u>J3 J6</u>	53.1	33	
Methylene Chloride	0.125	Π	0.0268	0.0163	21.5	13.0 1	16.0-139		<u>J3 J6</u>	48.9	29	
4-Methyl-2-pentanone (MIBK)	0.625		0.103	0.0608	16.4	9.74 1	12.0-160		<u>J3 J6</u>	51.2	32	
Methyl tert-butyl ether	0.125	Π	0.0209	0.0132	16.7	10.5 1	21.0-145	<u> 16</u>	<u>J3 J6</u>	45.4	29	
Naphthalene	0.125		0.0186	0.0148	14.9	11.8 1	10.0-153			22.8	36	
n-Propylbenzene	0.125	Π	0.0290	0.0208	23.2	16.6 1	10.0-151			33.0	34	
Styrene	0.125		0.0368	0.0225	29.4	18.0 1	10.0-155		ମ ଅ	48.4	34	
1,1,1,2-Tetrachloroethane	0.125	Π	0.0344	0.0191	27.5	15.3 15	10.0-147		<u>с</u> Г	57.4	30	
1,1,2,2-Tetrachloroethane	0.125	Π	0.0289	0.0181	23.1	14.5 14	10.0-155		ମ ଅ	45.9	31	
UV V	COLINT.			Cad	IFCT.		SDG.			TIME.	PAGF	
	e Diligence			19100	10102		11001666		31/00/90	16-Б.3		
הטוווווווויוי הי	n niigeire o	Loup		20102	001031		LIUUIDOD		2012/00	0.03		7

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

-

0 U

L1001715-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1001715-12 06/16/18 06:33 • (MS) R3318830-4 06/16/18 07:13 • (MSD) R3318830-5 06/16/18 07:33

4	<u>ں</u>		ي ک	2		4	⁴ Cn	C C	n C C C	S S T	⁴ Cn Sr	° Sr Sr	⁵ S C C	⁴ Cn Sr	G G G C S S T	G G S S T	⁴ Cn ⁷ G ⁷ G		
	%	32	28	33	55	40	40 40	40 29 29	20 29 28	40 40 28 29 29	20 94 28 29 29 34	20 40 29 32 32 32	20 40 29 33 33 33	20 40 23 33 33 33 33 34 58 33 34 58 58 58 58 58 58 58 58 58 58 58 58 58	29 29 29 33 33 33 33 33 33 33 33 33 33 33 33 33	29 40 33 33 33 29 29 33 32 29 29 29 29 29	20 40 33 33 33 33 33 33 33 34 32 33 33 33 33 33 33 33 33 33 33 33 33	40 29 33 33 33 33 33 33 34 32 33 33 33 33 33 33 33 33 33 33 33 33	40 40 33 33 33 33 33 33 33 33 33 33 34 33 33
UN AUGILIEL KED	%	3 46.1	3 44.3	3 40.4		22.4	22.4	22.4 25.1 3.16 55.6	22.4 25.1 <u>3 J6</u> 55.6 3 45.8	22.4 25.1 3J6 55.6 3 45.8 3 58.5	22.4 25.1 25.6 3 <u>3</u> 3 3 58.5 47.3	22.4 25.1 25.6 3 <u>3</u> 6 55.6 45.8 3 3 3 41.2 41.2	2.2.4 2.5.1 2.5.1 2.5.6 2.5.6 45.8 3.3 5.8.5 3.3 41.2 29.4	2.2.4 2.2.4 2.5.6 2.5.6 2.5.6 2.5.6 2.5.6 2.5.6 2.6 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.9.4 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.	2.2.4 2.2.4 2.5.1 2.5.6 2.5.6 2.5.6 4.5.8 3.3 4.7.3 2.3 4.1.2 2.9.4 2.9.4 2.9.4 2.9.4 3.3.6 3.5.6	2.2.4 2.5.1 2.5.1 2.5.1 2.5.1 2.5.1 2.5.6 47.3 3.3 47.3 47.3 2.9.4 41.2 2.9.4 2.9.4 2.9.4 3.5.6 5.5.6 5.5.5 5.5.6 5.5.5 5.5.6 5.5.5 5.5.6 5.5.5 5.5.6 5.5.6 5.5.5 5.5.6 5.5.5.5 5.5.	22.4 25.1 25.1 25.6 25.6 25.6 45.8 33 41.2 29.4 29.4 29.4 29.4 29.4 35.6 33 35.6 33 35.6 33 35.6 33 35.6 33 35.6 33 35.6 33 35.6 33 35.6 33 35.6 33 35.6 33 35.6 33 35.6 33 35.6 35.6	2.2.4 2.5.1 2.5.1 2.5.6 2.5.6 2.5.6 45.8 3.3 3.41.2 2.9.4 47.3 2.9.4 2.00 3.3 3.5.6 4.7.3 3.5.6 3.5.6 4.7.3 3.5.6 4.7.3 3.5.6 4.7.3 4.7.3 4.7.3 4.7.3 4.7.3 3.5.6 4.7.3 4.7.4 4.7.3 4.7.4 4.7.3 4.7.4 4.7.3 4.7.4 4.7.4 4.7.3 4.7.44 4.7.44 4.7.44444444	2.2.4 2.2.4 2.5.1 2.5.6 2.5.6 2.5.6 2.5.6 2.7 47.3 2.8.5 47.3 2.9.4 2.00 3.5.6 5.6.6 5.6.6 5.6.6 5.6.6 5.5.6.7 5.6.6 5.6.6.6 5.6.6.6 5.6.6.7 5.6.6.7 5.6.6.7 5.6.7 5.6.7 5.6.7 5.6.7 5.6.7 5.6.6.7 5.6.6.7 5
		SL EL	СL Г	23			1	ा हा	। । ।	। जा हा	에 있다.	। हो हो हो हो हो	। हो हो हो हो	। जो हो हो हो हो।	ि हो हो हो हो हो हो	। जा हो हो हो हो हो हो हो। स	। हो	। स्व स्व स्व स्व स्व स्व	। जा हो हो हो हो हो हो हो
JIIUTION KEC. LIMITS	%	10.0-144	10.0-144	10.0-153		10.0-153	10.0-153 10.0-156	10.0-153 10.0-156 18.0-145	10.0-153 10.0-156 18.0-145 12.0-151	10.0-153 10.0-156 18.0-145 12.0-151 11.0-148	10.0-153 10.0-156 18.0-145 12.0-151 11.0-148 10.0-157	10.0-153 10.0-156 18.0-145 12.0-151 11.0-148 10.0-157 10.0-154	10.0-153 10.0-156 18.0-145 12.0-151 11.0-148 10.0-157 10.0-154	10.0-153 10.0-156 18.0-145 12.0-151 11.0-148 10.0-157 10.0-150 10.0-150	10.0-153 10.0-156 18.0-145 12.0-151 10.0-154 10.0-154 10.0-151 10.0-151	10.0-153 10.0-156 18.0-145 18.0-145 12.0-151 10.0-154 10.0-150 10.0-150 10.0-150 10.0-150	10.0-153 10.0-156 18.0-145 12.0-151 10.0-157 10.0-150 10.0-150 10.0-150 10.0-150	10.0-153 10.0-156 18.0-145 12.0-151 11.0-154 10.0-157 10.0-150 10.0-150 10.0-150 10.0-150 10.0-150 10.0-150 10.0-150	10.0-153 10.0-156 18.0-145 12.0-151 11.0-148 10.0-157 10.0-150 10.0-150 10.0-150 10.0-150 10.0-150 20.0-120 80.0-120
	%	14.5 14	16.2 1	12.4 1		21.2 1	21.2 1 17.3 1	21.2 1 17.3 1 12.1 1	21.2 1 17.3 1 12.1 1 14.6 1	21.2 1 17.3 1 12.1 1 14.6 1 11.7 1	21.2 1 7.3 1 12.1 1 14.6 1 11.7 1 13.3 1	21.2 1 17.3 1 12.1 1 12.1 1 14.6 1 14.6 1 11.7 1 13.3 1 11.1 1	21.2 1 17.3 1 17.3 1 12.1 1 14.6 1 14.6 1 14.6 1 11.7 1 13.3 1 17.1 1	21.2 21.2 1 17.3 1 12.1 1 14.6 1 14.6 1 14.6 1 11.7 1 11.7 1 11.1 1 17.1 1 0.000 1	21.2 21.2 1 17.3 1 12.1 1 14.6 1 14.6 1 11.7 1 11.1 1 13.3 1 13.3 1 11.1 1 17.1 1 16.4 1	21.2 1 17.3 1 12.1 1 12.1 1 14.6 1 11.7 1 11.7 1 13.3 1 13.3 1 13.3 1 13.3 1 11.1 1 17.1 1 17.1 1 17.1 1 17.1 1 17.1 1 17.3 1 16.4 1 17.8 11.1 17.8 11.1 17.8 11.1 17.8 11.1 17.8 11.1 17.8 111	21.2 1 17.3 1 12.1 1 12.1 1 14.6 1 11.7 1 13.3 1 13.3 1 13.3 1 13.3 1 13.3 1 13.3 1 13.3 1 13.3 1 17.1 1 17.1 1 17.1 1 17.1 1 17.8 1 16.4 1 17.8 1 17.8 1 17.8 1 17.8 1 17.1 1 17.8 1 17.1 11.1 11	21.2 1 17.3 1 12.1 1 12.1 1 14.6 1 14.7 1 17.1 1 17.1 1 17.1 1 17.1 1 17.1 1 17.1 1 16.4 1 16.4 1 17.8 1 16.4 1 17.8 1 16.4 1 17.8 1 16.4 1 17.8 1 16.7 1 17.8 1 16.7 1 17.8 1 16.7 1 17.8 1 17.8 1 17.8 1 17.8 1 17.7 1 17.8 1 17.7 1 17.8 1 17.7 1 17.8 1 17.7 1 17.8 1 17.1 17.1	21.2 11 17.3 11 12.1 12.1 11 14.6 11 11.7 11 11.1 11 11.1 11 11.1 11 11.1 11 11.1 11 11.1 11 11.8 11 16.4 11 17.8 11 16.4 11 17.8 11 16.4 11 17.8 11 16.4 11 17.1 11 1
UIL IND KEC.	%	23.2	26.6	18.7		26.5	26.5 22.3	26.5 22.3 21.3	26.5 22.3 21.3 23.3	26.5 22.3 21.3 23.3 21.3	26.5 22.3 21.3 21.3 21.3 21.3 21.5	26.5 22.3 21.3 21.3 23.3 21.3 21.5 16.9	26.5 22.3 21.3 21.3 21.3 21.5 16.9 23.0	26.5 22.3 21.3 21.3 21.3 21.3 21.5 16.9 16.9 23.0 20.1	26.5 22.3 21.3 21.3 21.3 21.3 21.5 21.5 23.0 23.5 23.5	26.5 22.3 21.3 21.3 21.3 21.5 21.5 16.9 23.0 23.0 23.5 20.1 23.5 20.1	26.5 22.3 21.3 21.3 21.3 21.5 76.9 23.5 23.5 23.5 23.5 23.5 23.5	26.5 22.3 21.3 21.3 21.3 21.3 21.3 23.0 23.5 23.5 23.5 23.5 23.6 23.5 23.6 23.6	26.5 22.3 21.3 21.3 21.3 21.5 16.9 16.9 23.0 23.0 23.5 23.5 23.5 29.6 29.6 29.6 29.6 29.6 29.6
Suit incivi	mg/kg	0.0182	7 0.0228	1 0.0156	DODO C	CQ70.0 7	cozu.u 6	0.0151	0.0183 0.0183	cozuu (7120.0 1510.0 2 2 0.0183 8 0.0146	cozou 7120.0 1510.0 1610.0 16 10.0183 6 10.0166 8 8 0.0166	 2000 200151 200151 200166 8 00166 20139 	colorul coloru	cozuu 71200 16100 200183 200183 500183 500186 800139 700139 700139	 0.0217 0.051 0.0151 0.0183 0.0146 0.0146 0.0146 0.0146 0.0139 0.0139 0.0139 0.0205 	 0.0217 0.0151 0.0161 0.0183 0.0183 0.0186 0.0166 0.0139 0.0139 0.0139 0.0139 0.0139 0.0139 0.0130 0.0139 0.0130 0.0139 0.0139 0.0130 0.0205 	 0.0210 0.0151 0.0161 0.0146 0.0146 0.0139 0.0205 0.0251 	 0.0217 0.0151 0.0151 0.0183 0.0146 0.0166 0.0139 0.0130 0.0131 0.0131	 0.0220 0.0151 0.0151 0.0183 0.0146 0.0139 0.0151
גפא כואו אואפא ומחונ	'kg mg/kg	0.0290	0245 0.0357	0.0234	0.0332		0.0279	0.0267	0.0279 0.0267 0.0267 0.0292	0.0279 0.0267 0.0292 0.0292 0.0266	0.0279 0.0267 0.0292 0.0266 0.0268	0.0279 0.0267 0.0267 0.0292 0.0268 0.0268 0.02712	0.0279 0.0267 0.0267 0.0266 0.0268 0.0268 0.0272 0.0287	0.0279 0.0267 0.0267 0.0268 0.0268 0.0268 0.0287 0.0287 0.0287	0.0267 0.0267 0.0262 0.0268 0.0268 0.0272 0.0271 0.0271 0.0271	0.0267 0.0267 0.0267 0.0268 0.0268 0.0287 0.0287 0.0287 0.02970 0.0370	0.0279 0.0267 0.0266 0.0268 0.0268 0.02787 0.02794 0.0270 0.0270 0.0370	0.0279 0.0267 0.0268 0.0268 0.0268 0.0276 0.0270 0.0270 0.0270 0.0370 0.0370	0.0267 0.0267 0.0268 0.0268 0.0287 0.0287 0.0287 0.0287 0.0370 0.0370 0.0337
рике Аглоилт Олд	ng/kg mg/k).125 U	0.125 0.00).125 U	0.125 U		0.125 U).125 U 0.125 U).125 U).125 U).125 U),125 U),125 U),125 U),125 U	1125 U 1125 U 1125 U 1125 U 0125 U	1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 0,125 U	1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U	1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U	1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,2125 U 1,2125 U 2,125 U	1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U	1,125 U 1,125 U	1,125 U 1,125 U	1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 1,125 U 2,125 U 2,125 U 2,125 U
	Analyte	Tetrachloroethene	Toluene	1,1,2-Trichlorotrifluoroethane	1,2,3-Trichlorobenzene		1,2,4-Trichlorobenzene	1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	1,2,4 Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	1,2,4 Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene	1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethene	1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane	1,2,4 Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trichloroptopane 1,2,3-Trimethylbenzene	1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethene 1,2,3-Trichloropane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	1,2,4 Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethene 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	1,2,4 Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethene 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,5-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride	1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trichloropropane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl chloride Xylenes, Total	1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trichloropropane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,5-Trimethylbenzene Xylenes, Total (S) Toluene-d8	1,2,4 Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trichlorophane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Xylenes, Total (<i>S</i>) <i>Dibromethane</i> (<i>S</i>) <i>Dibromethane</i>

Dominion Due Diligence Group ACCOUNT:

PROJECT: 2018-001031

SDG: L1001666

06/20/18 16:53 DATE/TIME:

PAGE: 56 of 72

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

-

	poullas (ac/ Ma) by Me		L1001000-00,10			
Aethod Blank (ME						-
MB) R3319278-2 06/18/	8 21:09					<u>ද</u>
	MB Result MB Qualif.	ier MB MDL	MB RDL			2
nalyte	mg/kg	mg/kg	mg/kg			Υ
cetone	Л	0.0137	0.0250			
crylonitrile	П	0.00190	0.0125			°S S
enzene	П	0.000400	0.00100			
romobenzene		0.00105	0.0125			4
romodichloromethane	П	0.000788	0.00250			5
romoform	П	0.00598	0.0250][
romomethane	П	0.00370	0.0125			л Г
-Butylbenzene		0.00384	0.0125			5
ec-Butylbenzene		0.00253	0.0125			9
ert-Butylbenzene	Э	0.00155	0.00500			ğ
arbon tetrachloride	Π	0.00108	0.00500			
hlorobenzene		0.000573	0.00250			ر م
hlorodibromomethane	Π	0.000450	0.00250)
hloroethane		0.00108	0.00500			0
hloroform	Л	0.000415	0.00250			A
hloromethane	П	0.00139	0.0125			
-Chlorotoluene	Л	0.000920	0.00250			ر م
-Chlorotoluene	Π	0.00113	0.00500			2
2-Dibromo-3-Chloropropane	Π	0.00510	0.0250			
2-Dibromoethane	Π	0.000525	0.00250			
ibromomethane	N	0.00100	0.00500			
2-Dichlorobenzene	Л	0.00145	0.00500			
3-Dichlorobenzene	Л	0.00170	0.00500			
4-Dichlorobenzene	П	0.00197	0.00500			
ichlorodifluoromethane	Π	0.000818	0.00250			
1-Dichloroethane	Л	0.000575	0.00250			
2-Dichloroethane	П	0.000475	0.00250			
1-Dichloroethene		0.000500	0.00250			
is-1,2-Dichloroethene	Π	0.000690	0.00250			
ans-1,2-Dichloroethene		0.00143	0.00500			
2-Dichloropropane	N	0.00127	0.00500			
1-Dichloropropene	Л	0.000700	0.00250			
3-Dichloropropane	Л	0.00175	0.00500			
is-1,3-Dichloropropene		0.000678	0.00250			
ans-1,3-Dichloropropene	Л	0.00153	0.00500			
,2-Dichloropropane		0.000793	0.00250			
ii-isopropyl ether	П	0.000350	0.00100			
thylbenzene	Π	0.000530	0.00250			
lexachloro-1,3-butadiene	П	0.0127	0.0250			
sopropylbenzene	N	0.000863	0.00250			
	CCOUNT.		PRO IECT.	.5 C V	DATE/TIME-	Ļ
Dominion	Due Diligence Group		2018-001031	11001666	06/20/18 16:53	
						1

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

-

(MB)
od Blank

Metl (MB) F

ואופנווטט פומווא (ואופ)					_(
(MB) R3319278-2 06/18/18	21:09				<u>}</u>
	MB Result	MB Qualifier	MB MDL	MB RDL	5
Analyte	mg/kg		mg/kg	mg/kg	Ч Ч
p-lsopropyltoluene	n		0.00233	0.00500	
2-Butanone (MEK)	Π		0.0125	0.0250	ູ້
Methylene Chloride	n		0.00664	0.0250)
4-Methyl-2-pentanone (MIBK)	П		0.0100	0.0250	4
Methyl tert-butyl ether	N		0.000295	0.00100	5
Naphthalene	П		0.00312	0.0125	
n-Propylbenzene	N		0.00118	0.00500	ى م
Styrene	Π		0.00273	0.0125	5
1,1,1,2-Tetrachloroethane	N		0.000500	0.00250	9
1,1,2,2-Tetrachloroethane	Π		0.000390	0.00250	ğ
Tetrachloroethene	N		0.000700	0.00250	
Toluene	П		0.00125	0.00500	<u>ت</u>
1,1,2-Trichlorotrifluoroethane	n		0.000675	0.00250	5
1,2,3-Trichlorobenzene	Π		0.000625	0.00250	0
1,2,4-Trichlorobenzene	N		0.00482	0.0125	4
1,1,1-Trichloroethane	Π		0.000275	0.00250	
1,1,2-Trichloroethane	n		0.000883	0.00250	ر م
Trichloroethene	Π		0.000400	0.00100)
Trichlorofluoromethane	N		0.000500	0.00250	
1,2,3-Trichloropropane	Π		0.00510	0.0125	
1,2,3-Trimethylbenzene	N		0.00115	0.00500	
1,2,4-Trimethylbenzene	П		0.00116	0.00500	
1,3,5-Trimethylbenzene	N		0.00108	0.00500	
Vinyl chloride	П		0.000683	0.00250	
Xylenes, Total	N		0.00478	0.00650	
(S) Toluene-d8	111			80.0-120	
(S) Dibromofluoromethane	94.3			74.0-131	
(S) 4-Bromofluorobenzene	103			64.0-132	

Laboratory Control Sample (LCS)

LCS) R3319278-1 06/18.	/18 20:14							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Acetone	0.625	0.690	110	11.0-160				
Acrylonitrile	0.625	0.539	86.3	61.0-143				
Benzene	0.125	0.115	91.6	71.0-124				
Bromobenzene	0.125	0.120	96.3	78.0-120				
Bromodichloromethane	0.125	0.116	92.9	75.0-120				
	ACCOUNT:			PRO.	JECT:	SDG:	DATE/TIME:	
Dominion	Due Diligence Gro			2018-	001031	1 1001666	06/20/18 16-53	

WG1126338 Volatile Organic Compounds (GC/MS) by Method 82608

QUALITY CONTROL SUMMARY

-

Mathematic (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	LCS) R3319278-1 06/18/16	3 20:14							
Ante Total S S Antentine CC CC SCO SCO Antentine CC SCO SCO SCO <		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			2
(1) (1) <th>Analyte</th> <th>mg/kg</th> <th>mg/kg</th> <th>%</th> <th>%</th> <th></th> <th></th> <th></th> <th><u> </u></th>	Analyte	mg/kg	mg/kg	%	%				<u> </u>
Anomenie D3 CG <	Bromoform	0.125	0.123	98.5	65.0-133				
Biologeneric 0.05 0.05 0.06	Bromomethane	0.125	0.115	92.0	26.0-160				<u>س</u>
collophication 0.20 0.20 0.20 0.20 control molece 0.30 0.30 0.30 0.30 control molece 0.30 0.30 0	n-Butylbenzene	0.125	0.126	101	73.0-126)
Answer Display Display <thdisplay< th=""> <thdisplay< th=""> <thdi< td=""><td>sec-Butylbenzene</td><td>0.125</td><td>0.122</td><td>97.6</td><td>75.0-121</td><td></td><td></td><td></td><td>4</td></thdi<></thdisplay<></thdisplay<>	sec-Butylbenzene	0.125	0.122	97.6	75.0-121				4
Control from for indicatione CIC	tert-Butylbenzene	0.125	0.114	91.5	74.0-122				0
And constraints CIC SS SA CIL Consolutionmentances CIC SS SA CIL Consolutionmentances CIC SS SA CIL Consolutionmentances CIC CIC SS	Carbon tetrachloride	0.125	0.117	93.7	66.0-123				
International DDD R N	Chlorobenzene	0.125	0.121	96.8	79.0-121				ک ۵
Operationation 0.33 0.34 0.54 0.54 Operationation 0.55 0.12 0.53 2.012 Operationation 0.55 0.17 0.56 2.012 Operationation 0.55 0.17 0.56 2.012 Operationation 0.55 0.17 0.56 5.013 Operationation 0.55 0.16 0.57 5.013 Operationation 0.55 0.17 0.56 5.013 Operationation 0.55 0.17 0.05 5.013 Operationation 0.55 0.12 0.25 5.013 Operation 0.55 0.12	Chlorodibromomethane	0.125	0.120	96.3	74.0-128)
Condenier 0.15 0.11 8.2 7.0.23 Condeniere 0.15 0.12 9.3 7.0.24 Condeniere 0.15 0.17 8.3 7.0.24 Condeniere 0.15 0.17 8.4 9.3 5.0.34 Condeniere 0.15 0.17 8.4 9.3 5.0.34 Condeniere 0.15 0.17 8.4 9.3 5.0.34 Condeniere 0.15 0.13 9.3 5.0.34 9.3 5.0.34 Condeniere 0.15 0.16 9.3 5.0.34 5.0.34 5.0.34 Condeniere 0.15 0.16 9.3 5.0.34 5.0.34 5.0.34 Condeniere 0.15 0.16 9.3 6.0.36 5.0.34 5.0.34 Condeniere 0.15 0.16 9.3 6.0.36 5.0.34 5.0.34 Condeniere 0.15 0.16 9.3 6.0.36 5.0.34 5.0.34 Condeniere 0.15	Chloroethane	0.125	0.124	99.4	51.0-147				g
Otherentere 0.25 0.014 0.35 0.013 0.3 0.013 0.3 0.013 <th< td=""><td>Chloroform</td><td>0.125</td><td>0.112</td><td>89.2</td><td>73.0-123</td><td></td><td></td><td></td><td>0</td></th<>	Chloroform	0.125	0.112	89.2	73.0-123				0
Chicoloue 0.15 0.17 5.2 2.014 Chicoloue 0.15 0.11 8.6 6.003 Chicoloue 0.15 0.11 8.6 5.003 Chicoloue 0.15 0.12 0.02 9.3 7.002 Domonochene 0.15 0.15 0.15 0.02 9.3 7.002 Domonochene 0.15 0.15 0.13 0.02 9.2 7.002 Domonochene 0.15 0.15 0.13 9.12 7.012 1.016 Domonochene 0.15 0.15 0.12 9.2 7.012 1.016 Domonochene 0.15 0.12 0.12 0.12 1.016 1.016 Domonochene 0.15 0.12 0.12 0.012 1.016 1.016 Domonochene 0.15 0.12 0.12 0.016 1.016 1.016 Domonochene 0.15 0.12 0.12 0.016 1.016 1.016 1.016 1.016 </td <td>Chloromethane</td> <td>0.125</td> <td>0.174</td> <td>139</td> <td>51.0-138</td> <td><u>ل</u></td> <td></td> <td></td> <td></td>	Chloromethane	0.125	0.174	139	51.0-138	<u>ل</u>			
Collocatione 0.03 0.11 9.36 36.120 Collocatione 0.12 0.11 8.60 36.013 Collocatione 0.12 0.13 8.60 36.013 Collocationemente 0.15 0.13 9.24 36.013 Collocationemente 0.15 0.13 9.24 36.013 Collocatione 0.15 0.13 9.24 36.013 Collocatione 0.15 0.13 9.24 36.013 Collocationemente 0.15 0.24 36.013 36.013 Collocatione 0.15 0.13 9.24 36.013 Collocatione 0.15 0.24 36.013 36.013 Collocatione 0.15 <t< td=""><td>2-Chlorotoluene</td><td>0.125</td><td>0.122</td><td>97.5</td><td>72.0-124</td><td></td><td></td><td></td><td>را ۲</td></t<>	2-Chlorotoluene	0.125	0.122	97.5	72.0-124				را ۲
JD blomes-Allowengenie 0.15 0.11 8.6 6.6-06 JD blomes-Allowengenie 0.15 0.13 0.03 0.03 0.03 JD blomestenene 0.15 0.13 0.24 0.03 0.03 JD blomestenene 0.15 0.13 0.24 0.03 0.03 JD blomestenene 0.15 0.13 0.24 0.043 0.043 JD blomestenene 0.15 0.13 0.04 0.043 0.043 JD blomestenene 0.15 0.13 0.043 0.043 0.043 JD blomestenene 0.15 0.13 0.043 0.043 0.043 JD blomestenene 0.15 0.13 0.043 0.043 0.043 JD blomestenene 0.15 0.13	1-Chlorotoluene	0.125	0.117	93.6	78.0-120)
2.01000006186 0.02 <th0.02< th=""> 0.02 0.02</th0.02<>	,2-Dibromo-3-Chloropropane	0.125	0.111	88.6	65.0-126				0
Discontentine 015 010 39.010 2.0000rotensere 025 013 92.0 20.012 2.0000rotensere 025 013 93.0 20.012 2.0000rotensere 025 013 93.0 20.012 2.0000rotensere 025 013 93.0 30.013 2.0000rotensere 025 013 90.015 30.013 2.0000rotensere 025 013 90.012 30.013 2.0000rotensere 025 013 90.12 30.013 2.0000rotensere 025 013 90.12 30.013 2.0000rotensere 025 013 20.012 30.013 2.0000rotensere 025 013	,2-Dibromoethane	0.125	0.124	99.3	78.0-122				<
2.01000 observee 0.15 0.16 2.5 80.010 2.070100 observee 0.25 0.13 9.2 7.0.13 3.070100 observee 0.25 0.13 9.2 7.0.13 3.070100 observee 0.25 0.14 9.0 5.0.13 3.07000 observee 0.25 0.14 9.0 5.0.13 3.0100 observee 0.25 0.12 9.0 5.0.13 3.0100 observee 0.25 0.10 5.0.13 5.0.13 3.6.12.0000 observee 0.25 0.01 7.0.12 3.6.12.0000 observee 0.25 0.20 2.0.13 5.0.13 3.6.12.0000 observee 0.25 0.20 2.0.13 5.0.13 3.6.12.0000 opservee 0.25 0.20 2.0.13 5.0.13 3.6.12.0000 opservee 0.25 0.10 5.0.13 5.0.13 3.6.12.0000 opservee 0.25 0.10 5.0.13 5.0.13 3.6.12.0000 opservee 0.25 0.10 5.0.13 5.0.13 3.6.12	Dibromomethane	0.125	0.126	101	79.0-120				
3.3.Dichlobeneree 012 0123 024 024 3.3.Dichlobeneree 015 012 03 00 Dichlobeneree 015 012 03 00 00 Dichlobeneree 015 012 03 60 00 Dichlobeneree 015 012 03 60 00 Dichlobeneree 015 012 03 60 02 Dichlobeneree 015 013 60 20 20 Dichlobeneree 015 013 60 20 20 Si J.Dichlobeneree 015 013 20 20 20 Jochlobeneree 015 013 <t< td=""><td>I,2-Dichlorobenzene</td><td>0.125</td><td>0.116</td><td>92.6</td><td>80.0-120</td><td></td><td></td><td></td><td><u>о</u></td></t<>	I,2-Dichlorobenzene	0.125	0.116	92.6	80.0-120				<u>о</u>
(4.0bitotionetrene 015 012 035 70.20 0.choloneentene 015 013 90.55 013 2.choloneentene 015 013 90.55 013 2.choloneentene 015 013 90.56 2.choloneentene 015 013 90.128 2.choloneentene 015 013 90.128 2.choloneentene 015 013 70.120 2.choloneentene 015 013 <t< td=""><td>l,3-Dichlorobenzene</td><td>0.125</td><td>0.123</td><td>98.2</td><td>72.0-123</td><td></td><td></td><td></td><td>)</td></t<>	l,3-Dichlorobenzene	0.125	0.123	98.2	72.0-123)
Dick foot offuture in the image of	1,4-Dichlorobenzene	0.125	0.124	99.5	77.0-120				
(1)Debioorethane 012 012 012 012 (2)Debioorethane 012 012 012 (2)Debioorethane 012 013 00 30.13 (2)Debioorethane 012 013 00 30.13 (2)Debioorethene 012 013 00 30.13 (2)Debioorethene 012 013 00 7.0.12 (2)Debioorethene 012 013 01 7.0.12 (2)Debioorethene 012 013 98 7.0.12 (2)Debioorethene 012 013 90 7.0.12 (3)Debioorethene 012 013 7.0.12 7.0.12 (4)Debioorethene 012 013 7.0.12 7.0.12 (4)Debioorethene 012 013 7.0.12 7.0.1	Dichlorodifluoromethane	0.125	0.149	119	49.0-155				
2. Definocethane 012 016 330 63018 1. Defeneethee 012 013 04 63013 1. Defeneethee 012 013 981 72.012 1. Defeneethee 012 013 981 72.013 1. Defeneothee 012 013 981 72.013 2. Definoopoare 012 013 901 50.126 3. Definoopoare 013 011 50.126 3. Definoopoare 013 011 50.126 3. Definoopoare 013 011 50.126 3. Definoopoare 013 013 80.012 1. Statabaltionopoare 013 014 80.013 2. Sublicoopoare 013 014 60.013 2. Sublicoopoare 015 013 60.013 2. Sublicoopoare 015 013 60.013 2. Sublicoopoare 015 013	1,1-Dichloroethane	0.125	0.122	97.9	70.0-128				
I-Dicthoosthere 0.15 0.13 0.14 6.3.0-31 1-S-L2-Dichoosthere 0.125 0.12 0.0 7.0-122 1-S-L2-Dichoosthere 0.15 0.12 0.0 7.0-122 1-S-L2-Dichoosthere 0.15 0.12 0.10 7.0-122 1-S-L2-Dichoosthere 0.15 0.16 9.29 7.0-132 2.3-Dichoosthere 0.15 0.16 9.29 7.0-132 3.3-Dichoosthere 0.15 0.17 5.0-136 3.3-Dichoosthere 0.15 0.13 5.0 3.3-Dichoosthere 0.15 0.13 5.0 3.3-Dichoosthere 0.15 0.13 5.0 3.3-Dichoosthere 0.15 0.14 50.12 3.3-Dichoosthere 0.15 0.14 6.0 3.3-Dichoosthere 0.15 0.14 10 5.0 3.	1,2-Dichloroethane	0.125	0.116	93.0	69.0-128				
Is-I2-Dichlorechene 012 010 740-12 ins:I2-Dichlorechene 0125 012 981 22012 I2-Dichloropopene 0125 013 981 20012 I2-Dichloropopene 0125 011 92,9 20013 I3-Dichloropopene 0125 011 92,6 20013 I3-Dichloropopene 0125 011 96,8 75,012 I3-Dichloropopene 0125 013 901 800-125 I3-Dichloropopene 0125 013 750-126 I3-Dichloropopene 0125 013 750-126 I3-Dichloropopene 0125 013 750-126 I3-Dichloropopene 0125 013 700-126 I3-Dichloropopene 0125 013 700-126 I3-Dichloropopene 0125 013 700-126 I3-Dichlo	I,1-Dichloroethene	0.125	0.130	104	63.0-131				
ans.1.2 Definitionethene 012 012 2.0-122 2.2 Definitionethene 0125 013 501 75.0126 2.3 Definitionethene 0125 013 50 32.0130 2.4 Definitionethene 0125 012 55.0126 2.3 Definitionethene 0125 012 56.5 80.0121 2.4 Definitionethene 0125 012 56.5 80.0121 2.4 Definitionethene 0125 013 80.0125 5.0129 2.4 Definitionethene 0125 013 80.0121 2.5 Definitionethene 0125 013 80.0123 2.5 Definitionethene 0125 013 80.0123 2.5 Definitionethene 0125 013 80.0123 2.5 Definitionethene 0125 014 910 62.0133 2.5 Definitionethene 0125 013 80.0133 2.5 Definitionethene 0125 013 80.0133 2.5 Definitionethene 0125 013 80.013 2.6 Definitionethene 0125 013 80.013 2.6 Definitionethene 0125 013 92.013 2.6 Definitionethene 0125 013 92.013 2.6 Definitionethene	cis-1,2-Dichloroethene	0.125	0.125	100	74.0-123				
1.2 Dichloropropene 012 012 01 50-15 1.3 Dichloropropene 012 011 50-13 3.3 Dichloropropene 012 011 96 80-013 3.3 Dichloropropene 012 013 901 80-013 1.3 Dichloropropene 012 013 901 80-013 Disporpyl ether 012 014 910 50-013 Ethylbenzene 012 014 910 50-013 Ethylbenzene 012 013 91 7.0-120 Ethylbenzene 0125 013 91 7.0-120 <td>trans-1,2-Dichloroethene</td> <td>0.125</td> <td>0.123</td> <td>98.1</td> <td>72.0-122</td> <td></td> <td></td> <td></td> <td></td>	trans-1,2-Dichloroethene	0.125	0.123	98.1	72.0-122				
I.Jbichloopropene 015 016 929 7.2.0430 J.Jbichloopropene 0125 0121 96.5 80.0121 J.Sbichloopropene 0125 0121 96.6 75.0130 J.Sbichloopropene 0125 0121 96.8 75.0129 J.Stabiloopropene 0125 0121 96.8 75.0129 J.Stabiloopropene 0125 0130 104 80.0129 J.Stabiloopropene 0125 0140 910 82.0139 J.Stapinopylether 0125 0160 931 77.0120 J.Stapinopylether 0125 0170 82.0133 86.0123 Lexachoro-1.3 butadiene 0125 0170 82.013 104 Lexachoro-1.3 butadiene 0125 0170 50.120 104 Lexachoro-1.3 butadiene 0125 0170 50.120 104 Lexachoro-1.3 butadiene 0125 0170 50.120 104.125 Lexachoro-1.3 butadiene 0125 0170 50.123 104.125 <td>, 2-Dichloropropane</td> <td>0.125</td> <td>0.126</td> <td>101</td> <td>75.0-126</td> <td></td> <td></td> <td></td> <td></td>	, 2-Dichloropropane	0.125	0.126	101	75.0-126				
3-Dichloropropane 0125 0121 965 800-121 ans:13-Dichloropropene 0125 013 901 800-125 ans:13-Dichloropropene 0125 0131 968 756-129 ans:13-Dichloropropene 0125 0131 968 756-129 2.2-Dichloropropene 0125 0130 014 600-129 Lisopropy ether 0125 0131 014 600-129 Lisopropy ether 0125 0131 014 600-129 Lisopropy ether 0125 0139 931 77.0-120 Lisopropy ether 0125 0139 954 74.0-125 Lisopropy ether 0125 0139 954 954 954 954 954 954 954 954 954 95	,1-Dichloropropene	0.125	0.116	92.9	72.0-130				
Cis-13-Dicthioropropene 012 0.013 0.012 Cis-13-Dicthioropropene 0125 0.121 9.68 7.50-129 Z-2-Dicthioropropene 0125 0.130 0.4 600-129 Di-sopropy ether 0125 0.14 910 62.0-133 Di-sopropy ether 0125 0.16 931 7.0-120 Ethylbenzene 0125 0.17 947 7.0-120 Ethylbenzene 0125 0.13 7.0-120 1.0 Ethylbenzene 0125 0.13 7.0-120 1.0 Ethylbenzene 0.125 0.13 7.0-120 1.0 Septopyltenzene 0.125 0.13 7.0-120 1.0 Septopyltenzene 0.125 0.13 3.0-125 1.0 Antilyltenzene 0.125 0.13 3.0-125 1.0 Septopyltenzene 0.125 0.13 3.0-125 1.0 Antilyltenzene 0.125<	1,3-Dichloropropane	0.125	0.121	96.5	80.0-121				
trans-1,3-0ichloropopene 0.12 0.20 55.0-129 2.2-Dichloropopane 0.125 0.130 104 60.0-129 Di-soproyi ether 0.125 0.14 910 62.0-133 Ethylbenzene 0.125 0.16 931 77.0-120 Hexachloro-1,3-butadiene 0.125 0.176 931 77.0-120 Hexachloro-1,3-butadiene 0.125 0.18 947 75.0-120 Stopropylbenzene 0.125 0.19 95.4 74.0-125 Stopropylbenzene 0.125 0.19 95.4 74.0-125 Stopropylbenzene 0.125 0.19 95.4 74.0-125 Statanone (MEK) 0.625 0.690 111 37.0-159 Mettylene Choride 0.125 0.14 913 67.0-123 Mettylene Choride 0.155 0.169 916 60.0-143 Mettylene Choride 0.125 0.169 913 67.0-123 Mettylene Choride 0.125 0.16 913 67.0-123 Mettylene Choride 0.125 0.16 913 67.0-123 Mettylene Choride 0.125 0.16 913 67.0-123	cis-1,3-Dichloropropene	0.125	0.113	90.1	80.0-125				
2.2 Dichloropropane 0125 0.130 104 60.0129 Di-sopropyletter 0125 0.14 910 62.0433 Ettylbenzene 0125 0.16 931 77.0-120 Hexachloro-13-butadiene 0125 0.18 937 75.0-120 Sopropylbenzene 0125 0.18 947 75.0-120 P-sopropylouene 0.125 0.19 95.4 74.0-125 Authyluer Choide 0.125 0.19 37.0-159 Authyluer Choide 0.125 0.19 95.4 74.0-125 Authyluer Choide 0.125 0.19 95.4 74.0-125 Authyluer Choide 0.125 0.19 95.4 74.0-125 Authyluer Choide 0.12 0.12 913 67.0-123 Authyluer Choide 0.12 0.13 913 67.0-123 Authyluer Choide 0.15 916 60.0-13 91.4 Authyluer Choide 0.15 91.6 60.0-13 91.4	trans-1,3-Dichloropropene	0.125	0.121	96.8	75.0-129				
Di-Isopropylether 0.125 0.14 910 6.20-133 Ethylbenzene 0.125 0.18 931 77.0-120 Hexachloro-13-butladiene 0.125 0.135 108 680-128 Sopropylbenzene 0.125 0.136 94.7 75.0-120 Sopropylbenzene 0.125 0.118 94.7 75.0-120 Sopropylbenzene 0.125 0.139 95.4 74.0-125 Sopropylbenzene 0.125 0.139 95.4 74.0-125 Subtrono (MIS) 0.625 0.633 111 37.0-159 Authylene Chloride 0.125 0.149 913 6.0-123 Authylene Chloride 0.125 0.140 913 6.0-123	2,2-Dichloropropane	0.125	0.130	104	60.0-129				
Ethylbenzene 0.125 0.116 93.1 77.0-120 Hexachloro-1,3-butadiene 0.125 108 68.0-128 Hexachloro-1,3-butadiene 0.125 0.135 108 68.0-128 Pispropylbenzene 0.125 0.118 94.7 75.0-120 Pispropylbenzene 0.125 0.119 95.4 74.0-125 Pispropylbenzene 0.125 0.119 95.4 74.0-125 Pispropylbenzene 0.125 0.114 37.0-159 56.0-128 Authone (MEK) 0.625 0.693 111 37.0-159 Methyl-1-2-pentanone (MEK) 0.625 0.614 57.0-123 Methylere Choide 0.125 0.144 57.0-125 Methylere Choide 0.125 0.169 66.0-125	Di-isopropyl ether	0.125	0.114	91.0	62.0-133				
Hexachloro-1,3-butadiene 0.15 0.35 108 68.0-128 Sopropylbenzene 0.125 0.118 94.7 75.0-120 Sopropylbenzene 0.125 0.119 95.4 74.0-125 O-slopropylbenzene 0.125 0.119 95.4 74.0-125 O-slopropylbenzene 0.125 0.119 95.4 74.0-125 O-slopropylbenzene 0.125 0.193 111 37.0-159 Authylene Chloride 0.125 0.149 91.3 67.0-123 Methyl-zpentanone (MBK) 0.625 0.640 102 60.0-144 Methyl-zpentanone (MBK) 0.625 0.640 102 60.0-144 Methyl-zpentanone (MBK) 0.625 0.640 102 60.0-144 Methyl-zpentanone (MBK) 0.155 0.165 60.0-144 102 60.0-144 Methyl-zpentanone (MBK) 0.155 0.165 60.0-144 102 60.0-144	Ethylbenzene	0.125	0.116	93.1	77.0-120				
sopropylbenzene 0.125 0.118 94.7 75.0-120 -lsopropylbenzene 0.125 0.119 95.4 74.0-125 -lsopropylbenzene 0.125 0.119 95.4 74.0-125 2-Butanone (MEK) 0.625 0.693 11 37.0-159 Methylene Chloride 0.125 0.144 91.3 67.0-123 Methylene Chloride 0.125 0.640 102 60.0-144 Methylene Chloride 0.125 0.163 102 60.0-144 Methylene Chloride 0.125 0.164 102 60.0-144 Methylene Chloride 0.125 0.16 60.0-144 102	Hexachloro-1,3-butadiene	0.125	0.135	108	68.0-128				
-isopropylouene 0.125 0.119 95.4 74.0-125 2-Butanone (MEK) 0.625 0.693 11 37.0-159 Vettylene Chloride 0.125 0.14 91.3 67.0-123 Vettylene Chloride 0.125 0.14 91.3 67.0-123 Vettylene Chloride 0.125 0.14 91.3 67.0-123 Vettylene Chloride 0.125 0.16 102 60.0-144 Vettylene Chloride 0.125 0.16 66.0-125 102 Vettylene Chloride 0.125 0.16 102 66.0-124 Authylene Chloride 0.125 0.16 66.0-124 102	sopropylbenzene	0.125	0.118	94.7	75.0-120				
2-Butanone (MEK) 0.625 0.693 111 37.0-159 Methylene Chloride 0.125 0.144 913 67.0-123 4-Methyl-2-pentanone (MBK) 0.625 0.640 102 60.0-144 Methyl tert-butyl ether 0.125 0.115 91.6 66.0-125 Methyl tert-butyl ether 0.125 0.115 91.6 66.0-125 Account: Account: Account: Account Accou	p-lsopropyltoluene	0.125	0.119	95.4	74.0-125				
Methylene Chloride 0.125 0.114 91.3 67.0-123 4-Methyl-2-pentanone (MBK) 0.625 0.640 102 60.0-144 A-Methyl tert-butyl ether 0.125 0.115 91.6 66.0-125 Methyl tert-butyl ether 0.125 0.115 91.6 66.0-125 Methyl tert-butyl ether 0.125 0.115 91.6 66.0-125	2-Butanone (MEK)	0.625	0.693	111	37.0-159				
4-Methyl-2-pentanone (MIBK) 0.625 0.640 102 60.0-144 Methyl tert-butyl ether 0.125 0.115 91.6 66.0-125 Account: Account: BDATE/TIME: BATE/TIME: Account: Account BR0/BCT: BDATE/TIME: Account BR0/BCT: BR0/BCT: BCT: BCT: BCT: BCT: BCT: BCT: BCT:	Methylene Chloride	0.125	0.114	91.3	67.0-123				
Methyl tert-butyl ether 0.125 0.115 91.6 66.0-125 ACCOUNT: PROJECT: SDG: DATE/TIME:	4-Methyl-2-pentanone (MIBK)	0.625	0.640	102	60.0-144				
ACCOUNT: PROJECT: SDG: DATE/TIME: SDG: DATE/TIME: ACCOUNT: ACCOUNT	Methyl tert-butyl ether	0.125	0.115	91.6	66.0-125				
	AC	COUNT:			PROJ	ECT:	SDG:	DATE/TIME:	PAGE
		linanca Gro	2		2018-C	101031	11001666	06/20/18 16.53	50 of 72

QUALITY CONTROL SUMMARY

-

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS)

						2
(LCS) R3319278-1 06/18/18	3 20:14					<u>}</u>
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	2
Analyte	mg/kg	mg/kg	%	%		С Н
Naphthalene	0.125	0.0996	79.7	64.0-125		
n-Propylbenzene	0.125	0.120	95.7	78.0-120		ູ້
Styrene	0.125	0.116	93.1	78.0-124)
1,1,1,2-Tetrachloroethane	0.125	0.122	97.8	74.0-124		4
1,1,2,2-Tetrachloroethane	0.125	0.116	92.7	73.0-120		5
Tetrachloroethene	0.125	0.134	107	70.0-127		
Toluene	0.125	0.120	96.0	70.0-120		ی ۲
1,1,2-Trichlorotrifluoroethane	0.125	0.133	106	64.0-135		5
1,2,3-Trichlorobenzene	0.125	0.107	85.8	68.0-126		9
1,2,4-Trichlorobenzene	0.125	0.114	91.3	70.0-127		ğ
1,1,1-Trichloroethane	0.125	0.118	94.7	69.0-125		
1,1,2-Trichloroethane	0.125	0.127	101	78.0-120		ت ۲
Trichloroethene	0.125	0.122	97.7	79.0-120		5
Trichlorofluoromethane	0.125	0.122	97.8	59.0-136		0
1,2,3-Trichloropropane	0.125	0.113	90.5	73.0-124		4
1,2,3-Trimethylbenzene	0.125	0.115	92.1	76.0-120		
1,2,4-Trimethylbenzene	0.125	0.118	94.8	75.0-120		с С
1,3,5-Trimethylbenzene	0.125	0.120	96.3	75.0-120)
Vinyl chloride	0.125	0.112	89.8	63.0-134		
Xylenes, Total	0.375	0.370	98.7	77.0-120		
(S) Toluene-d8			104	80.0-120		
(S) Dibromofluoromethane			97.5	74.0-131		
(S) 4-Bromofluorobenzene			97.9	64.0-132		

Dominion Due Diligence Group ACCOUNT:

PROJECT: 2018-001031

SDG: L1001666

DATE/TIME: 06/20/18 16:53

PAGE: 60 of 72

2
\mathcal{O}
വ
2
1
Ù
>
>

QUALITY CONTROL SUMMARY

*

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

Method Blank (MB)

ļ	C	<u>)</u>	2	С Н		ູ້)
			MB RDL	l/bn	100	31.0-160	
			MB MDL	l/bn	24.7		
			Qualifier				
			MBO				
		22:26	MB Result	l/bn	Π	107	
INR (MR)		1 06/17/18			Fraction		
^{thod} Bl ⁶		R3318736-		te	GC/FID) High	o-Terphenyl	
N)	(MB)		Analy	TPH (((S)	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Laboratory Contro	I Sample (L(CS) • Labor	atory Contr	ol Sample	Duplicate	(LCSD)				0 ⁴
(LCS) R3318736-2 06/17/	18 22:43 • (LCSE	D) R3318736-3	06/17/18 23:00							L
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	°ى م
Analyte	l/bn	ng/l	l/bn	%	%	%		%	%	
TPH (GC/FID) High Fraction	1500	1580	1590	105	106	50.0-150		0.646	20	0 0 0
(S) o-Terphenyl				105	106	31.0-160				ر ک

Sc

Ū

₹

~
ω
00
4
N
ഗ
-
\leq
-

QUALITY CONTROL SUMMARY

Ч Ss Б ğ പ് $\overline{\mathbb{O}}$ ₹ -**RPD** Limits % 20 1.70 LCSD Qualifier RPD % L1001666-06,07,08,09,10,11,14 LCS Qualifier Rec. Limits 50.0-150 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) 18.0-148 % LCSD Rec. 83.4 72.3 % 18.0-148 LCSD Result LCS Rec. MB RDL mg/kg 4.00 80.4 71.1 % (LCS) R3318252-2 06/15/18 09:55 • (LCSD) R3318252-3 06/15/18 10:06 Semi-Volatile Organic Compounds (GC) by Method 8015 MB MDL mg/kg mg/kg 0.769 36.1 MB Qualifier Spike Amount LCS Result mg/kg 35.5 **MB** Result mg/kg mg/kg 59.5 50.0 (MB) R3318252-1 06/15/18 09:44 ⊃ Method Blank (MB) TPH (GC/FID) High Fraction TPH (GC/FID) High Fraction (S) o-Terphenyl (S) o-Terphenyl Analyte Analyte

SC

Dominion Due Diligence Group ACCOUNT:

2018-001031 **PROJECT:**

L1001666 SDG:

06/20/18 16:53 DATE/TIME:

62 of 72 PAGE
WG1125717

QUALITY CONTROL SUMMARY

F

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

(MB)	
Blank	
Method	

15:41
/17/18
3 06
3632-0
R3318
(MB)

(MB) R3318632-3 06/17/1	18 15:41				<u>)</u>)
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	l/bn		l/bn	ng/l	С Н
Anthracene	Л		0.0140	0.0500	
Acenaphthene	П		0.0100	0.0500	ູ ທູ
Acenaphthylene	n		0.0120	0.0500)
Benzo(a)anthracene			0.00410	0.0500	4
Benzo(a)pyrene	П		0.0116	0.0500	ő
Benzo(b)fluoranthene			0.00212	0.0500	
Benzo(g,h,i)perylene	П		0.00227	0.0500	ں ۲
Benzo(k)fluoranthene			0.0136	0.0500	5
Chrysene	П		0.0108	0.0500	9
Dibenz(a,h)anthracene			0.00396	0.0500	ğ
Fluoranthene	Π		0.0157	0.0500	
Fluorene			0.00850	0.0500	_ ح
Indeno(1,2,3-cd)pyrene	n		0.0148	0.0500	5
Naphthalene			0.0198	0.250	0
Phenanthrene	Π		0.00820	0.0500	∢
Pyrene			0.0117	0.0500	
1-Methylnaphthalene	Π		0.00821	0.250	С О
2-Methylnaphthalene			0.00902	0.250))
2-Chloronaphthalene	Π		0.00647	0.250	
(S) Nitrobenzene-d5	63.9			31.0-160	
(S) 2-Fluorobiphenyl	92.5			48.0-148	
(S) p-Terphenyl-d14	95.8			37.0-146	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

														PAGE	CJ 05 77
	RPD Limits	%	20	20	20	20	20	20	20	20	20	20	20	DATE/TIME:	06/00/10 16-E3
	LCSD Qualifier RPD	%	1.80	1.13	1.10	1.12	0.241	1.21	0.709	0.915	1.30	0.455	1.87		
	LCS Qualifier													SDG:	
	Rec. Limits	%	64.0-142	66.0-132	65.0-132	59.0-134	61.0-145	57.0-136	54.0-140	57.0-141	63.0-140	49.0-141	65.0-143		
	LCSD Rec.	%	99.4	88.1	88.3	87.0	91.2	90.4	98.5	89.6	90.2	96.5	99.7	DJECT:	
	LCS Rec.	%	97.6	87.1	87.3	86.0	91.0	89.3	97.8	90.4	89.1	96.1	97.8	PRC	0.00
06/17/18 15:19	LCSD Result	l/gu	1.99	1.76	1.77	1.74	1.82	1.81	1.97	1.79	1.80	1.93	1.99		
R3318632-2	LCS Result	l/gu	1.95	1.74	1.75	1.72	1.82	1.79	1.96	1.81	1.78	1.92	1.96		
3 14:57 • (LCSD)	Spike Amount	l/ɓn	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	CCOUNT:	
(LCS) R3318632-1 06/17/18		Analyte	Anthracene	Acenaphthene	Acenaphthylene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	A	

\sim
-
വ
2
G
-
\leq

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

-

0 U

Ч

Ss

Б

ğ

Ū

ភ

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

06/17/10 15:10 11 CC1 D3318632-1 06/17/18 14:57

(LUS) K3318032-1 00/1//	12 14:27 • (LUSU)) K3318032-2 (21:CI 21//1/00						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits Lt	CS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	l/bn	l/bn	ng/l	%	%	%		%	%
Fluorene	2.00	1.77	1.81	88.5	90.5	64.0-129		2.24	20
Indeno(1,2,3-cd)pyrene	2.00	1.92	1.93	96.2	96.3	53.0-141		0.115	20
Naphthalene	2.00	1.67	1.69	83.7	84.3	68.0-129		0.719	20
Phenanthrene	2.00	1.71	1.74	85.5	87.0	62.0-132		1.63	20
Pyrene	2.00	1.74	1.76	86.8	87.8	58.0-156		1.20	20
1-Methylnaphthalene	2.00	1.83	1.85	91.4	92.5	68.0-137		1.11	20
2-Methylnaphthalene	2.00	1.74	1.76	87.2	87.8	68.0-134		0.746	20
2-Chloronaphthalene	2.00	1.73	1.72	86.5	86.0	65.0-129		0.627	20
(S) Nitrobenzene-d5				67.1	65.8	31.0-160			
(S) 2-Fluorobiphenyl				91.8	90.0	48.0-148			
(S) p-Terphenyl-d14				99.5	98.0	37.0-146			

L1001732-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1001732-04 06/17.	/18 21:34 • (MS) R	3318632-4 06/1	7/18 21:56 • (N	1SD) R3318632-	5 06/17/18 22	.18						<u>ک</u>
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec. Dilu	ition Rec. Limits	MS Qualifier	MSD Qualifier	ZPD	RPD Limits	c
Analyte	ng/l	l/bn	l/gu	l/bn	%	%	%			%	%	s S C
Anthracene	2.00	ND	1.80	1.83	90.2	91.3 1	60.0-142			.25	20	
Acenaphthene	2.00	ND	1.65	1.70	82.3	85.0 1	46.0-149			3.21	20	
Acenaphthylene	2.00	ND	1.65	1.70	82.6	85.0 1	54.0-142			2.85	20	
Benzo(a)anthracene	2.00	ND	1.59	1.61	79.7	80.4 1	55.0-134		0	0.915	20	
Benzo(a)pyrene	2.00	ND	1.56	1.58	78.2	79.2 1	58.0-136			.28	20	
Benzo(b)fluoranthene	2.00	ND	1.47	1.50	73.4	74.7 1	54.0-130		~	1.75	20	
Benzo(g,h,i)perylene	2.00	ND	1.47	1.43	73.7	71.6 1	46.0-135			2.94	20	
Benzo(k)fluoranthene	2.00	ND	1.60	1.65	80.1	82.7 1	52.0-131			3.22	20	
Chrysene	2.00	ND	1.64	1.67	82.0	83.5 1	55.0-137		—	.81	20	
Dibenz(a,h)anthracene	2.00	ND	1.42	1.36	70.9	67.8 1	36.0-140		7	1.38	20	
Fluoranthene	2.00	ND	1.78	1.78	89.2	89.1 1	58.0-144		0	0.162	20	
Fluorene	2.00	ND	1.69	1.76	84.6	87.8 1	49.0-142			3.74	20	
Indeno(1,2,3-cd)pyrene	2.00	ND	1.46	1.42	72.9	71.2 1	46.0-134			2.26	20	
Naphthalene	2.00	ND	1.54	1.63	74.8	79.2 1	29.0-154			5.57	20	
Phenanthrene	2.00	ND	1.59	1.64	79.1	81.7 1	44.0-145			3.18	20	
Pyrene	2.00	ND	1.64	1.68	82.0	83.9 1	62.0-150			2.37	20	
1-Methylnaphthalene	2.00	ND	1.74	1.81	86.0	89.7 1	26.0-160		7	1.24	20	
2-Methylnaphthalene	2.00	ND	1.63	1.72	80.2	84.7 1	51.0-150			5.31	20	
2-Chloronaphthalene	2.00	ND	1.65	1.76	82.7	87.8 1	57.0-136)	5.00	20	
(S) Nitrobenzene-d5					61.9	63.0	31.0-160					
(S) 2-Fluorobiphenyl					90.8	98.4	48.0-148					
(S) p-Terphenyl-d14					91.6	94.0	37.0-146					
	ACCOUNT:			PROJI	ECT:		SDG:		DATE/TII	ME:	PAGE	
Dominion	Due Diligence Gro	dn		2018-0	01031		L1001666		06/20/18 1	6:53	64 of 72	

WG1125931

QUALITY CONTROL SUMMARY

-

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

Method Blank (MB)

(MB) R3318710-3 06/18/1	18 01:09				<u>)</u>
	MB Result	MB Qualifier	MB MDL	MB RDL	7
Analyte	mg/kg		mg/kg	mg/kg	Ч Н
Anthracene	Π		0.000600	0.00600	
Acenaphthene	Γ		0.000600	0.00600	°. C
Acenaphthylene	N		0.000600	0.00600))
Benzo(a)anthracene	П		0.000600	0.00600	4
Benzo(a)pyrene	N		0.000600	0.00600	Ь С
Benzo(b)fluoranthene	П		0.000600	0.00600	
Benzo(g,h,i)perylene	N		0.000600	0.00600	ى س
Benzo(k)fluoranthene	П		0.000600	0.00600	5
Chrysene	N		0.000600	0.00600	9
Dibenz(a,h)anthracene	Γ		0.000600	0.00600	ğ
Fluoranthene	N		0.000600	0.00600	
Fluorene	П		0.000600	0.00600	ل ۲
Indeno(1,2,3-cd)pyrene	N		0.000600	0.00600	<u>)</u>
Naphthalene	П		0.00200	0.0200	0
Phenanthrene	N		0.000600	0.00600	∢
Pyrene	Π		0.000600	0.00600	
1-Methylnaphthalene	N		0.00200	0.0200	о С
2-Methylnaphthalene	П		0.00200	0.0200)
2-Chloronaphthalene	N		0.00200	0.0200	
(S) Nitrobenzene-d5	85.2			14.0-149	
(S) 2-Fluorobiphenyl	94.3			34.0-125	
(S) p-Terphenyl-d14	84.0			23.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3318710-1 06/18/18	3 00:26 • (LCSD)) R3318710-2 (36/18/18 00:48						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%
Anthracene	0.0800	0.0716	0.0697	89.5	87.1	50.0-125		2.76	20
Acenaphthene	0.0800	0.0667	0.0662	83.4	82.8	52.0-120		0.741	20
Acenaphthylene	0.0800	0.0701	0.0703	87.7	87.9	51.0-120		0.228	20
Benzo(a)anthracene	0.0800	0.0692	0.0666	86.5	83.2	46.0-121		3.87	20
Benzo(a)pyrene	0.0800	0.0545	0.0518	68.1	64.8	42.0-121		5.10	20
Benzo(b)fluoranthene	0.0800	0.0594	0.0581	74.3	72.7	42.0-123		2.21	20
Benzo(g,h,i)perylene	0.0800	0.0677	0.0658	84.7	82.2	43.0-128		2.98	20
Benzo(k)fluoranthene	0.0800	0.0649	0.0624	81.2	78.0	45.0-128		4.03	20
Chrysene	0.0800	0.0684	0.0659	85.5	82.4	48.0-127		3.68	20
Dibenz(a,h)anthracene	0.0800	0.0690	0.0666	86.3	83.3	43.0-132		3.58	20
Fluoranthene	0.0800	0.0606	0.0690	75.8	86.3	49.0-129		12.9	20
A	CCOUNT:			PRO	JECT:		SDG:		DATE/TIME: PAGE:
	Diligono Cro	Ē		1 0100	100100		1100166	Ű	06/J0/10 16:53

WG1125931

QUALITY CONTROL SUMMARY

-

0 U Ч

Ss

Б

പ്

ğ

 $\overline{\mathbb{O}}$

₹

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3318710-1 06/18/18 00:26 • (LCSD) R3318710-2 06/18/18 00:48

S Result LCSD Result LCS Rec. L /kg mg/kg % <t< th=""><th>LCSD Rec. Rec. Limits LCS Oualifier LCSD Ou % % % LCSD Ou 93.2 50.0-120 % % 80.9 44.0-131 % % 87.3 48.0-120 % % 787 48.0-120 % % 90.4 52.0-120 % % 85.7 52.0-120 % % 85.7 52.0-120 % % 83.9 44.0-149 % %</th><th>Jalifier RPD % % 1.30 3.05 0.383 2.95 4.27 3.63 0.585 2.65 2.65</th><th>RPD Limits % 20 20 20 20 20 20 20 20 20 20 20</th></t<>	LCSD Rec. Rec. Limits LCS Oualifier LCSD Ou % % % LCSD Ou 93.2 50.0-120 % % 80.9 44.0-131 % % 87.3 48.0-120 % % 787 48.0-120 % % 90.4 52.0-120 % % 85.7 52.0-120 % % 85.7 52.0-120 % % 83.9 44.0-149 % %	Jalifier RPD % % 1.30 3.05 0.383 2.95 4.27 3.63 0.585 2.65 2.65	RPD Limits % 20 20 20 20 20 20 20 20 20 20 20
89.5 9	91.7 34.0-125 81.0 23.0-120		
2			

ACCOUNT: Dominion Due Diligence Group

PROJECT: 2018-001031

WG1125932 Semi Volatile Organic	Compounds	(GC/MS) by I	Method 8270	QU c-sim	ALITY C	CONTROL 01666-09,10,11,12,13	SUMMARY <u>3.14</u>	0	DNE LAB. NATIONWIDE.	*
Method Blank (ME	3)									C -
(MB) R3319210-3 06/19/1	8 22:45									<u>-</u>)
	MB Result	MB Qualifier	MB MDL	MB RDL						2
Analyte	mg/kg		mg/kg	mg/kg						Ч Н
Anthracene	Л		0.000600	0.00600						
Acenaphthene			0.000600	0.00600						ູ້
Acenaphthylene	П		0.000600	0.00600)
Benzo(a)anthracene			0.000600	0.00600						4
Benzo(a)pyrene	Ω		0.000600	0.00600						Б.
Benzo(b)filuoranthene			0.000600	0.00600						
Benzo(g,h,i)perylene	Π		0.000600	0.00600						л Г
Benzo(k)fluoranthene			0.000600	0.00600						5
Chrysene	n		0.000600	0.00600						9
Dibenz(a,h)anthracene			0.000600	0.00600						ğ
Fluoranthene	n		0.000600	0.00600						
Fluorene			0.000600	0.00600						ں م
Indeno(1,2,3-cd)pyrene	Π		0.000600	0.00600						5
Naphthalene			0.00200	0.0200						0
Phenanthrene	N		0.000600	0.00600						Ā
Pyrene			0.000600	0.00600						
1-Methylnaphthalene	Π		0.00200	0.0200						U O O
2-Methylnaphthalene			0.00200	0.0200))
2-Chloronaphthalene	N		0.00200	0.0200						
(S) Nitrobenzene-d5	86.4			14.0-149						
(S) 2-Fluorobiphenyl	77.5			34.0-125						
(S) p-Terphenyl-d14	67.6			23.0-120						
Laboratory Contro	il Sample (Lu	CS) • Labor	atory Contr	ol Sample	Duplicate	(LCSD)				
(LCS) R3319210-1 06/19/1	'8 22:01 • (LCSD)) R3319210-2 0	06/19/18 22:23							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits LCS G	Qualifier LCSD Qualifier RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%	%	%		
Anthracene	0.0800	0.0635	0.0647	79.4	80.8	50.0-125	1.78	20		
Acenaphthene	0.0800	0.0617	0.0614	77.1	76.7	52.0-120	0.557	20		
Acenaphthylene	0.0800	0.0636	0.0631	79.5	78.9	51.0-120	0.754	20		
Benzo(a)anthracene	0.0800	0.0611	0.0609	76.4	76.2	46.0-121	0.292	20		
Benzo(a)pyrene	0.0800	0.0494	0.0520	61.7	65.0	42.0-121	5.26	20		
Benzo(b)fluoranthene	0.0800	0.0603	0.0609	75.3	76.1	42.0-123	1.06	20		
Benzo(g,h,i)perylene	0.0800	0.0620	0.0625	77.5	78.1	43.0-128	067.0	20		
Benzo(k)fluoranthene	0.0800	0.0627	0.0620	78.4	77.5	45.0-128	1.09	20		
Chrysene	0.0800	0.0625	0.0621	78.1	77.6	48.0-127	0.622	20		
Dibenz(a,h)anthracene	0.0800	0.0626	0.0626	78.3	78.2	43.0-132	0.0590	20		

PAGE: 67 of 72

DATE/TIME: 06/20/18 16:53

SDG: L1001666

PROJECT: 2018-001031

ACCOUNT: Dominion Due Diligence Group

20

1.31

49.0-129

84.2

83.1

0.0674

0.0665

0.0800

Fluoranthene

,	(1
1	C	Y)
1	C	5)
	L	ſ)
1	C		١
1	7		
,	ì	<u>_</u>)
1		>	>
	2		>

QUALITY CONTROL SUMMARY 11001666-09.10.11.12.13.14

ONE LAB. NATIONWIDE.

E

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

			ard y com			10001				(
(LCS) R3319210-1 06/19/1	8 22:01 • (LCSD)	R3319210-2 0	16/19/18 22:23							}
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	2
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	Tc
Fluorene	0.0800	0.0630	0.0632	78.7	79.1	50.0-120		0.420	20	
Indeno(1,2,3-cd)pyrene	0.0800	0.0617	0.0620	77.2	77.4	44.0-131		0.375	20	ې کې
Naphthalene	0.0800	0.0637	0.0609	79.7	76.1	50.0-120		4.54	20)
Phenanthrene	0.0800	0.0625	0.0628	78.1	78.5	48.0-120		0.444	20	4
Pyrene	0.0800	0.0618	0.0617	77.2	77.2	48.0-135		0.0620	20	5
1-Methylnaphthalene	0.0800	0.0619	0.0606	77.4	75.7	52.0-122		2.15	20	
2-Methylnaphthalene	0.0800	0.0643	0.0607	80.4	75.9	52.0-120		5.69	20	J N N
2-Chloronaphthalene	0.0800	0.0615	0.0611	76.8	76.4	50.0-120		0.604	20	5
(S) Nitrobenzene-d5				97.2	95.7	14.0-149				Q
(S) 2-Fluorobiphenyl				81.6	80.3	34.0-125				ğ
(S) p-Terphenyl-d14				72.2	68.6	23.0-120				
										GI

L1001565-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1001565-01 06/19/	8 23:07 • (MS) F	3319210-4 06/	19/18 23:29 • (1	MSD) R3319210	-5 06/19/18 23	3:51						<u>ک</u>
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec. Di	lution Rec. Limits	MS Qualifier	MSD Qualifier R	DD	RPD Limits	c
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%		%		%	SC
Anthracene	0.0800	DN	0.0797	0.0738	9.66	92.2 1	20.0-136		7.		24	
Acenaphthene	0.0800	QN	0.0726	0.0673	90.8	84.2 1	29.0-124		7.	.57	20	
Acenaphthylene	0.0800	ND	0.0745	0.0690	93.1	86.2 1	35.0-120		7.	.73	20	
Benzo(a)anthracene	0.0800	ND	0.0723	0.0673	89.3	83.0 1	13.0-132		7.	.19	27	
Benzo(a)pyrene	0.0800	ND	0.0737	0.0664	6.06	81.7 1	14.0-138		1(0.5	27	
Benzo(b)fluoranthene	0.0800	DN	0.0711	0.0625	87.0	76.3 1	10.0-129		1	2.9	31	
Benzo(g,h,i)perylene	0.0800	ND	0.0775	0.0708	94.7	86.4 1	10.0-133		6	.03	30	
Benzo(k)fluoranthene	0.0800	ND	0.0731	0.0708	90.5	87.7 1	15.0-131		Υ. Υ	.16	27	
Chrysene	0.0800	ND	0.0757	0.0695	93.6	85.9 1	15.0-137		œ	.53	25	
Dibenz(a,h)anthracene	0.0800	DN	0.0742	0.0684	92.7	85.5 1	15.0-132		00	.04	27	
Fluoranthene	0.0800	ND	0.0796	0.0735	98.3	90.6 1	13.0-139		Ø	.05	28	
Fluorene	0.0800	DN	0.0750	0.0692	93.8	86.5 1	27.0-122		7.	. 66.	22	
Indeno(1,2,3-cd)pyrene	0.0800	ND	0.0741	0.0683	91.4	84.1 1	11.0-133		Ø	.19	29	
Naphthalene	0.0800	DN	0.0734	0.0681	91.8	85.1 1	18.0-136		7.	.55	21	
Phenanthrene	0.0800	ND	0.0740	0.0683	92.5	85.4 1	15.0-133		Ø	.06	25	
Pyrene	0.0800	DN	0.0746	0.0689	92.0	84.9 1	11.0-146		00	.01	29	
1-Methylnaphthalene	0.0800	ND	0.0723	0.0673	90.4	84.2 1	24.0-137		7.	.08	22	
2-Methylnaphthalene	0.0800	QN	0.0731	0.0678	91.3	84.7 1	23.0-136		7.	.51	22	
2-Chloronaphthalene	0.0800	ND	0.0731	0.0681	91.3	85.2 1	36.0-120		7.	.01	20	
(S) Nitrobenzene-d5					114	100	14.0-149					
(S) 2-Fluorobiphenyl					95.0	84.0	34.0-125					
(S) p-Terphenyl-d14					80.9	71.5	23.0-120					
1	CCOUNT:			PROJI	ECT:		SDG:		DATE/TIN	1E:	PAGE	
Dominion I	Due Diligence Gro	dn		2018-0	01031		L1001666		06/20/18 16	5:53	68 of 72	

GLOSSARY OF TERMS

¥

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 2018-001031

SDG: L1001666 DATE/TIME: 06/20/18 16:53

PAGE: 69 of 72

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ^{1 4}	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Dominion Due Diligence Group

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

2018-001031

L1001666

PAGE: 70 of 72

06/20/18 16:53

Τс Ss Cn Sr Qc Gl AI Sc

		8	illing Intorna	ation:					-						
Jominion Due Diligence	e Group	4	vccounts P	ayable		Pres									ノ
(01 Wylderose Dr Aidlothian, VA 23113		NE	01 Wylde Aidlothiar	rose Ur 1, VA 23113			In the Co			-			+		autoritary of Activation
eport to: As Diana Groom			mail To: J.tu	rner@d3g.com; r g.com; e.fisher@	.james@d3g.con 9d3g.com;	2	sal		0-11	0.2141			5!7	Maunt Juliet, TN Phone: 615-758 Phone: 800-757-	
roject secretation: Proposed Seaboard St.	ation Apartr	nents		City/State Collected:			I-MON-JI	5		TW-	18	Pres	Imy	Fax: 615-758-58	
hone: 804-358-2020 2	lient Project # 018-001031			Lab Project # D3GVA-2018(001031		7204 2	HOAN		NOPres	res	oN-1/22		Table #	
ollected by (print):	ite/Facility ID #			P.O.#			I 'WIS	1/2/1/5/	÷	-quuy	90 <i>N</i> -1	07 51	dmAl	Acctnum: D	3GVA 37160
Dilected by (signature):	Rush? (Lat	MUST Be N	iotified)	Quote #			HAG	SiBel	H qu	XTL	Dzoz	'MIS		Prelogin: PI	58303
Divin E Dur	Same Day Next Day Two Day Three Day	5 Day (ry Rad Only) (Rad Only)	Date Resu	its Needed	No.	0/28/5	N/Im04 (tAlm04 (09787(sitim At	HA9072	X318097	PB: U-II PB: U-III Shipped Via	Alan Harvill 18 CM FedEX Standard
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	ова	ова	eue	289	RCF	885	284	Remarks	Sample II (Jab only)
	170	55	2-4	6/12/18	820	9	×	×		×			×		30
1-96	Crab	SS	1.1	1	835	2	×	×			×				0
SB-2 SHALLUW	r.h	SS	10.8		345	9	×	×		×		_	×		00
SB-4 UCET	(b	SS	10		00/00	7	×	×			×			-	0
	Crab	SS	4-5		0110	9	×	×		×	-	-	*	-	2
20-3 ULLT	41	SS	1-3		1000	7	×	×		-	×		X		-
SB-4 SHALLOW	Urer	5	1		1	9	×	+		*	-	_	×		
absurger -	rich	SS	6-1		SIEI	2					×	×		-	10
20-0	Creb R	SS	1.3		1135	2				-	×	×			
0-02	Coch	SS	8-9	Þ	1200	7	×	×		-	~			1	L about 1 de
- Matrix: - Matrix: SS - Soli AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks: A	ror VO	Trip B	larks for l	Cod or #1 V 8260	\$	161	24	PH		Temp Other		COC Se COC S1 Bottle Correc	Sample Mccult nl Procent/In Ined/Accurate s arrive ints t bottles use tent volume s	act: RP Y
DW - Drinking Water OT - Other	Samples retur UPSFe	ned via: dExCo	urier	1	Tracking #			Call of the					VOA Ze	11 Appl ro Headspace: vation Correc	Lcable Y
Relinquished by : (Signature)		Date:	1.0	Time: 13,55	Received by: (Sign	nature)			Trip Bla	ik Receiv		No _/ MeoH			
Relinquished by: (Signature)		Date:	011	Time:	Received by: (Sign	nature)		1000	Temp:	El	Bottles	Received:	If prese	rvation required	oy Login: Date/Hime
Relinquished by : (Signature)		Date:		Time:	Received for lab t	oy: (Signa	(ure)		Date:	- last	Time:		Hold:		NCF / 0

		8	ling Inform	ation:				A	J / Sizylar	DUCATURE	PIESETVai		1000		
Dominion Due Diligence	eroup	A N	ccounts 01 Wylde	Payable Prose Dr	5,0.19	Pres Chk								X	ころ
201 Wylderose Dr Midiothian, VA 23113		2	lidiothia	n, VA 23113						н				szteks Lahanen Rd	
Report to: Ms. Diane Groom		י סר עו 	mail To: j.t. groom@d	Irner@d3g.com; 3g.com; e.fisher(r.James@d3g.con @d3g.com;	8	5314			D9M\/			45:	Mount Hulet, TN 373 Phone: 615-758-5851 Phone: 800-767-585	
Project Description: Proposed Seaboard St	ation Apart	ments		City/State Collected:	NG.		ON-JI			1/5/20	1.11-5	Pres	בייח ו	La 1.101	1 loblo
Phone: 804-358-2020 2	lient Project # 018-001031			Lab Project # D3GVA-2018	001031		JZ04 2	HOaN		SHEN/	NoPres	scir-No	I DH-	E09	
Collected by (print):	Ite/Facility ID #	-		P.O.#			L'WIS	1245/	CI	/1007	-dmA	07 51	dmAl	Acctnum: D36	VA 7160
Of and K. Vroom Collected by (signature):	EU) frank	6 MUST Be N	otified)	Quote #			SHA90	Sigen	H dm	X310	Im04	'WISH	107)	Prelogin: P65	3303 an Harvill
Divin E. M.	Same Day Next Day Two Day Three Day	5 Day (1 10 Day	y tad Only} {Rad Only}	Date Res	ults Needed	o vo	LZ8AS	1/1007 1A7	Alm04 (09287(0		A90728	5160916	PBI. (P.11	© CAA edEX Standard
Sample ID	Comp/Grab	Matrix *	Depth	Date	11me	STITES	ояа	ево DRO	פאכ	esc	444	BAS	84	Remarks	- Sample # (lab ovly)
		GW	10	16/13/18	02.80	6		×	×		×		×		10-
T-MO		GW	5))	0354	6		X	×		×		×		53
GW-2		GW	a		R36	6		×	×		×		×		10 01
GW-3		GW	0	Þ	1000	6		×	×		×	1	×h		5.
GW-4		GW		6/12-18	oher	2							~	MA	10
IKIF BLANN		GW				6		×	×		×		×		
		SS				7	×					×			
		SS				9	×	_		×		+			
						-		+	+						
• Matrix: SS-Solt AlR-Air F-Filter	Remarks:										Temp		and COC	Buncle Mocelal Sual Present/Int Signed/Accurate: Ses arrive intec	an and
GW - Groundwater B - Bloassay									E.	WO	Other		Cor	titient volume se	The state
WW - Wastewater DW - Drinking Water DT - Other	Samples retu	med via: edExCo	uter		Tracking# 43	8	0877	3.4	2 10	F		17.17	9 A	žeró Neadspace: servation Collect	charked:
Refinquished by : (Signature)		Date:		Time:	Received by: (Sil	(nature)			Trip	Blank Ret	elved:	ED/Meo	 		
Winne E. Shor	3	6/13	8	1305	Received by: (Sk	snature)			Tem	ä	nes Do	les Racelver	11 1	eservation required b	/Login: Date/Time
Relinquished by : (Signature)		Date		.21111					X	5-6-		Se			Condition
Relinguished by : (Signature)		Date:		Time:	Received for lab	by: (Sign	ature)	1 :	Dat	luntro	는 oc	e: rear	Pr	ŝ	NGF /0

Environmental Server Laborator Environmental Server Address: Clig/Slales/ip: Clig/Slales/ip: Contact: Contact: Phone: Pho	ries G ices, LLC Restand Au Restand Au Anon Con Con Con Con Con Con Con Con Con	Parge of C Parge of C Sampleter: Sampleter: C Turrn Arcounnil Time (Place 24 Hours 24 Hours 23 Hours 23 Hours 23 Hours 72 Hours 72 Hours 72 Hours 74 Hours 74 Hours 75 Hours 74 Hours 74 Hours 75 Hours 74 Hours	912 944 email: p Rr X holow) Rr X holow)	-3748 F 912 grimm@avcry aject Number: 25[2	2 234-92 /lab.com	94		1901140
Clikent Information Clikent Information Customer: Customer: Address: Addres	Reusland And Reusland And Mason 29-400 Ken C - 400 Ken	Page of C Sampter: Sampter: Samptur: Samptur: Samptur: Samptur: Samptur: Samptur: Statig Variant Variant Samptur: Statig Samptur: Statig Samptur: Statig Samptur: Statig Samptur: Statig Samptur: Samptur: Samptur: Samptur: Samptur: Date Think Vitit Variant	email: p X helow) R d (tantainen A A A	grimm@avcry	/lab.com		1	KOH11051
Clisical failorand Clisical failorand Customer: Customer: Address:	Reusland And Reusland And Mason 29-400 Mason Mason Mason Mason	Page of Sampler: Sampler: Nurri Arounni 'Jime (Place 24 Hours 24 Hours 24 Hours 24 Hours 72 Hours 74 Hours 100her: 1111/14 100 1111/14 100 1111/14 100	A Constinuent of the constinuent	vject Number: 25/2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Customer: Terru Address: Zeb (City/Stale/7ip: Sum/ Conlact: T. J. Phone: T. J.	Reusland Aur Reusland Aur Anson Sen C- 4000 Sen C- 4000 Incertion	Sampler: Turn Around Time (Place 24 Ilours 24 Ilours 22 Ilours 22 Ilours 22 Ilours 23 Vocking Days 2 Vocking Da	X helow) X helow)	vject Numher: 25/8.	が むき	when Apy		Subcontract Laboratory
Address: Ziver Ziver Conlact: City/State/Tip: Conlact: T, J, J, Phone: Hinone: Hino: Hino: T, J, J, Phone: T, J, Phone: Phone: T, Phone: T, Phone: T, Phone: T, Phone: T, Ph	Reusland And Aneon See 29-4000 Concerten com Incertion	Turn Around Time (Place 24 Ilouis 24 Ilouis 25 Ilouis 72 Ilouis 74 Working Ibays Other: Date 11111 100 11111 100 11111 100 11111 1111 1111	X holow)		7351	State where work on gunat	tert;	Name / Address/ Phone
Cily/State/Tip: Cuntact: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	MARON SA MARON SA - 4000 SA - 4000 Mason Mason Mason	24 Ilours 48 Ilours 72 Hours 7 Working IJaya 7 Working IJaya Other: Date Thne Matrhy UIII/16 Icon S	A Street				z	
Conlact: <u>1</u> , <u>1</u> Phone: <u>1</u> , <u>1</u> , <u>1</u> , Email: <u>1</u> , <u>1</u> , <u>1</u> , Project Manager: <u>1</u> , <u>1</u> , Project Manager: <u>1</u> , <u>1</u> , 1 , , 1 , 1 , 1 , 1 , 1 , 1 ,	Annon 29-400 Kane Terkcon - 204 Annon Annon	48 I lours 72 Haurs 5 Working, Daya 1 Wonking, Daya Other: Date Thne Matrix <i>UTTY tool S</i>	A Stransier					
Phone: 412 C Email: T. Zulv Project Manager: T. Ja Project Manager: T. Ja BB-N-4-2 BB-N-4-2 BB-N-4-2	29-4000 SARC TENKLON - 2011 Anson Anson	72 Haures 5 Working Days 7 Working Days Other: Date Thic Matrix Date Thic S	A State				×	
Email: 1. T. A. Purchase Ordor #: 1. T. A. Purchase Ordor #: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Kingen Kusen fication	5 Working Days 7 Working Days Other: Date Thic Matrix UTTTY toop 5 UTTTY toop 5 UTTTY toop 5		1				
Projocit Marrager: <u>7</u> , <u>1</u> , Projocit Marrager: <u>7</u> , <u>1</u> , <u>8</u> , <u>8</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>8</u> , <u>8</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>8</u> , <u>8</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>8</u> , <u>8</u> , <u>1</u> , <u>1</u> , <u>1</u> , <u>8</u> , <u>8</u> , <u>1</u>	Action	7 Working: Jaya Other: Date Thine Matrix UTTIT tooo 5 UTTITY tooo 5		体				
Project Marrager: <u>5</u> , <u>4</u> , <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u>	hoter fileation	Other: Date Thic Matrix UTIT/R toop 5 UTIT/R toop 5 UTIT/R toop 5	A Statistic	Va			a	
Sample Identi 8-3-N-4-2 8-3-N-4-2 8-3-1-4-2 8-3-6-7-1	(fication	Date Thic Matrix Thic Matrix Thic Thic Matrix Thic Matrix Thic Matrix Thic Matrix	A al Construction					
8-3-N-4-2 3-3-N-4-2 3-3-N-4-2 6-3-6-7-1		1/11/14 1000 5 1/11/14 12005 5 1/11/14 12005 5	hhy				1.	
8-8-1-4-2 3-3-1-4-2 3-3-1-4-2 6-3-6-7-1		1/11/14 1000 5 1/11/14 12005 5	yng					Kemarks
B-3-N-4-2 B-3-6-7-1		1/11/14 1205 5 5 2000 1/11/14	ny					
1-2-2-6-1-1 D-3-6-7-1		1111 We S	y	~				
B-3-6-7-1		C COM UNITY	b					
B-3-6-7-1					Y			
8-3-6-7-1		1111 S 11 S 11	4	1				
		11111111315 5	V	>				
) 1	4				10
D-2-6-1-2		111/11/220 5	2	×	ALC: N			2
B-3-1-1-1		1/11/19 1000 S	5	.>				
B-3-11-2-1		ILALONDS S	v	.7				
R. 2 0 1		Vara - 2 - 2 - 1		* 7				
S-Y-N-C		C ACININ	1	*				
D-3-6-4-1		1/11/19/350 5	S A	X				
Matrix Type: A = Alr W	Water S-Solid	N Norraquenza (solvent, aci	d. e(c.)	Preservative: 1= None 2 8 = Sodium Bisulfate 9 =	2 = H2SO4 3 = Other	= HN03 4 = HCL 5 :	= MeOH 6 = NA	ISO4 7 = Water
Intractions or Special Requirements:		1/11/19 1355 5	x v	×				
		()					
Temperature: 3.14	C. 6.6 . (Custody Seals: / Yeg	No	Custoc	dy Seals In	ntact: (Yes)	No	
Relinquished hum	·····	Date/Time: VII/R	1700	Received hy:	abut	Pir	Date	11mm 11/19 16
Relinquished by:		Date/Time:		Received hy:			DHC	vlitue:
Rulinquished by:		Date/Lime:		Received by:	×	いた	DBC	Alfines

Fffective Date: 09.15.15

F86-02

Aver	v oborotoriac fe	Ship	To: 27	20 Gre	gory St., Unit 200 Savannah, Ga. 31404	Serial Number: 78452
Environ	y Laboratories of mental Services, LLC			T 912 ema	944-3748 F 912 234-9294 ll: pgrimm@averylab.com	19011404
	Client Information	Page 2 of	2		Project Name: the Sentend Water A such	Subcontract Laboratory
Customer:	Terracon .	Sampler:	د.		Project Number: Sig 795/ State where work originated	Name / Address/ Phone
Adóress:	220) Row and Arc	Turn Arout	nd Time (P	lace X below		z
City/State/Zip:	Sevannah DA	24 Hours				
Contact:	Tuttin Johnson	48 Hours				4
Phone:	012690 4000	72 Hours				
Purchase Order #*		5 Working Days				0
Project Manager:	T. Tellican	/ working Days			6	
			_		Proserva	
52	Sample Identification	Date Ti	ne Mat.	rix # of Contail		Remarks
8-3-6	5-6-1	UNIVA 15	10 3	5	×××	
3.3.	6-2	1 15	5	N.	> > >	
8-3.	5-3-1	15.	2	5		
8-3-5	1.3.2	15	<u> </u>	5		
B-3-W	1-2-1	160	18	v		
B-3-2	-4-2	14	ñ	s	7	
B-4-7		16	N N	5		
3.3.4.	7-2	16;	2	5		
				-		
Mateiv Tunne	EH-2 -3	N - N	the fundaments	Very Dare		
addr yrmaru	A - Ali = 7 118167 - 7 2= 5010	N = Nonaqueo	us (solvent,	acid, etc.)	Preservauve: 1■ None 2 = H2504 3 = HN03 4 = HCL 5 = MeOH 6 8 = Sodium Bisuitate 9 = Other	- NAHSO4 7 = Water
Instructions or Spec.	lal Requirements:					
Temperature:	3.) 10.6000	Custody Sea	IIS: Ye	No	Custody Seals Intact: Yes No	
Relinquished by:	2.61	Date/Time: 1/1	\$111	100	Received by: Ruh Per r	Date/Time: 1/1/1 a 1 a 54
Relinquished by:		Date/Time:			Received by:	Date/Time:
Relinquished by:		Date/Time:			Received by:	Date/Time:
	×					

Effective Date: 09.15.15

F86-02

RP19012219

LABORATORY ANALYSIS REPORT

Job ID: 19011404

2720 Gregory St. Unit 200 Savannah, Georgia 31404 Tel: (912) 944-3748 Fax: (912) 234-9294

Client Project ID : Seaboard Station Apartments

Report To :	Client Name:	Terracon
	Client Address:	2201 Rowland Ave.
	City, State, Zip:	Savannah, GA, 31404

Attn: Justin Johnson P.O.#.:

Dear Justin Johnson

The following test results meet all NELAC requirements for analytes for which certification is available. Any deviations from these quality systems will be noted in this case narrative. All analyses performed by Avery Laboratories & Environmental Services, LLC unless noted. Parameters not performed by Avery Laboratories will be listed in the case narrative section of this report.

This report shall not be reproduced, except in its entirety, without the written approval of Avery Laboratories. The test results in this report relate only to the samples analyzed.

For questions regarding this report, contact Robert Paul Grimm at (912)944-3748.

Sincerely,

Robert Paul Grimm (Technical Director)

This Laboratory is NELAP accredited.

I am the laboratory manager, or his/her designee, and I am responsible for the release of this data package. This laboratory data package has been reviewed and is complete and technically compliant with the requirements of the methods used, except where noted in the attached exception reports. I affirm, to the best of my knowledge that all problems/anomalies observed by this laboratory (and if applicable, any and all laboratories subcontracted through this laboratory) that might affect the quality of the data, have been identified in the Laboratory Review Checklist, and that no information or data have been knowingly withheld that would affect the quality of the data.

Job ID: 19011404

Client Name:	Terracon					Att	:n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404				9	Sample Matrix:		Soil	
Client Sample I	D: B-3-N-4-2				I	Date Collected:		01/11/2019	
Job Sample ID:	19011404.01				-	Fime Collected:		10:05	
Other Informat	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	15.3	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	0.00153	mg/kg dw	1.21	0.00700	0.000670	J	01/16/2019 17:14	HDM
	Ethylbenzene	0.000444	mg/kg dw	1.21	0.00700	0.000230	J	01/16/2019 17:14	HDM
	Toluene	0.00177	mg/kg dw	1.21	0.00700	0.00140	J	01/16/2019 17:14	HDM
	xylene-o	0.000931	mg/kg dw	1.21	0.00700	0.000710	J	01/16/2019 17:14	HDM
	xylenes (m&P)	0.00165	mg/kg dw	1.21	0.0140	0.00103	J	01/16/2019 17:14	HDM
	Dibromofluoromethane(surr)	122.0	%	1.21	61.2-143			01/16/2019 17:14	HDM
	p-Bromofluorobenzene(surr)	74.4	%	1.21	69.4-143			01/16/2019 17:14	HDM
	Toluene-d8(surr)	94.2	%	1.21	62.3-146			01/16/2019 17:14	HDM
SW-846 8270	D Semivolatile Organic Comp	ounds - Soi	ls						
	1-Methylnaphthalene	0.883	mg/kg dw	4.97	0.489	0.392		01/21/2019 16:24	RPG
	2-Methylnaphthalene	1.08	mg/kg dw	4.97	0.489	0.412		01/21/2019 16:24	RPG
	Acenaphthene	BDL	mg/kg dw	4.97	0.489	0.0675		01/21/2019 16:24	RPG
	Acenaphthylene	0.637	mg/kg dw	4.97	0.489	0.0769		01/21/2019 16:24	RPG
	Anthracene	0.418	mg/kg dw	4.97	0.489	0.0669	J	01/21/2019 16:24	RPG
	Benzo(a)anthracene	2.72	mg/kg dw	4.97	0.489	0.172		01/21/2019 16:24	RPG
	Benzo(a)pyrene	3.66	mg/kg dw	4.97	0.489	0.0510		01/21/2019 16:24	RPG
	Benzo(b)fluoranthene	7.33	mg/kg dw	4.97	0.489	0.0469		01/21/2019 16:24	RPG
	Benzo(g,h,i)perylene	3.08	mg/kg dw	4.97	0.489	0.119		01/21/2019 16:24	RPG
	Benzo(k)fluoranthene	3.01	mg/kg dw	4.97	0.489	0.0945		01/21/2019 16:24	RPG
	Chrysene	3.68	mg/kg dw	4.97	0.489	0.0669		01/21/2019 16:24	RPG
	Dibenzo(a,h)anthracene	0.542	mg/kg dw	4.97	0.489	0.0956	J	01/21/2019 16:24	RPG
	Fluoranthene	3.62	mg/kg dw	4.97	0.489	0.310		01/21/2019 16:24	RPG
	Fluorene	BDL	mg/kg dw	4.97	0.489	0.314		01/21/2019 16:24	RPG
	Indeno(1,2,3-cd)pyrene	2.43	mg/kg dw	4.97	0.489	0.0810		01/21/2019 16:24	RPG
	Naphthalene	0.760	mg/kg dw	4.97	0.489	0.0704		01/21/2019 16:24	RPG
	Phenanthrene	0.928	mg/kg dw	4.97	0.489	0.0945		01/21/2019 16:24	RPG
	Pyrene	4.60	mg/kg dw	4.97	0.489	0.255		01/21/2019 16:24	RPG
	2,4,6-Tribromophenol(surr)	63.3	%	4.97	49.3-138			01/21/2019 16:24	RPG
	2-Fluorobiphenyl(surr)	77.4	%	4.97	41.4-111			01/21/2019 16:24	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apar	tments				Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample ID	B-3-N-4-2					Date Collected:		01/11/2019	
Job Sample ID:	19011404.01					Time Collected:		10:05	
Other Information	on:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D	Semivolatile Orga	nic Compounds ·	Soils						
	2-Fluorophenol(surr)	61.4	%	4.97	37.1-101			01/21/2019 16:24	RPG
	Nitrobenzene-d5(sur	r) 61.3	%	4.97	35.2-104	ł		01/21/2019 16:24	RPG
	Phenol-d5(surr)	57.3	%	4.97	36.1-96.2	7		01/21/2019 16:24	RPG
	p-Terphenyl-d14(sur	r) 79.7	%	4.97	54.9-118	}		01/21/2019 16:24	RPG

Job ID: 19011404

Client Name:	Terracon					Att	:n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample I	D: B-3-E-7-1					Date Collected:		01/11/2019	
Job Sample ID:	19011404.02					Time Collected:		13:15	
Other Information	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	18.4	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	0.00135	mg/kg dw	1.19	0.00700	0.000690	J	01/16/2019 17:38	HDM
	Ethylbenzene	0.00147	mg/kg dw	1.19	0.00700	0.000230	J	01/16/2019 17:38	HDM
	Toluene	0.00172	mg/kg dw	1.19	0.00700	0.00150		01/16/2019 17:38	HDM
	xylene-o	BDL	mg/kg dw	1.19	0.00700	0.000730		01/16/2019 17:38	HDM
	xylenes (m&P)	0.00123	mg/kg dw	1.19	0.0150	0.00105		01/16/2019 17:38	HDM
	Dibromofluoromethane(surr)	121.0	%	1.19	61.2-143			01/16/2019 17:38	HDM
	p-Bromofluorobenzene(surr)	75.6	%	1.19	69.4-143			01/16/2019 17:38	HDM
	Toluene-d8(surr)	101.0	%	1.19	62.3-146			01/16/2019 17:38	HDM
SW-846 8270	D Semivolatile Organic Comp	ounds - So	oils						
	1-Methylnaphthalene	BDL	mg/kg dw	4.97	0.508	0.408		01/21/2019 16:51	RPG
	2-Methylnaphthalene	BDL	mg/kg dw	4.97	0.508	0.428		01/21/2019 16:51	RPG
	Acenaphthene	BDL	mg/kg dw	4.97	0.508	0.0701		01/21/2019 16:51	RPG
	Acenaphthylene	BDL	mg/kg dw	4.97	0.508	0.0798		01/21/2019 16:51	RPG
	Anthracene	0.0711	mg/kg dw	4.97	0.508	0.0695	J	01/21/2019 16:51	RPG
	Benzo(a)anthracene	0.183	mg/kg dw	4.97	0.508	0.179		01/21/2019 16:51	RPG
	Benzo(a)pyrene	0.170	mg/kg dw	4.97	0.508	0.0530	J	01/21/2019 16:51	RPG
	Benzo(b)fluoranthene	0.372	mg/kg dw	4.97	0.508	0.0487	J	01/21/2019 16:51	RPG
	Benzo(g,h,i)perylene	0.177	mg/kg dw	4.97	0.508	0.124	J	01/21/2019 16:51	RPG
	Benzo(k)fluoranthene	0.158	mg/kg dw	4.97	0.508	0.0981	J	01/21/2019 16:51	RPG
	Chrysene	0.275	mg/kg dw	4.97	0.508	0.0695	J	01/21/2019 16:51	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	4.97	0.508	0.0993		01/21/2019 16:51	RPG
	Fluoranthene	BDL	mg/kg dw	4.97	0.508	0.322		01/21/2019 16:51	RPG
	Fluorene	BDL	mg/kg dw	4.97	0.508	0.326		01/21/2019 16:51	RPG
	Indeno(1,2,3-cd)pyrene	0.112	mg/kg dw	4.97	0.508	0.0841	J	01/21/2019 16:51	RPG
	Naphthalene	0.213	mg/kg dw	4.97	0.508	0.0731	J	01/21/2019 16:51	RPG
	Phenanthrene	0.318	mg/kg dw	4.97	0.508	0.0981	J	01/21/2019 16:51	RPG
	Pyrene	0.270	mg/kg dw	4.97	0.508	0.265	J	01/21/2019 16:51	RPG
	2,4,6-Tribromophenol(surr)	75.3	%	4.97	49.3-138			01/21/2019 16:51	RPG
	2-Fluorobiphenyl(surr)	72.6	%	4.97	41.4-111			01/21/2019 16:51	RPG

Job ID: 19011404

Client Name:	Terra	acon					Att	n:	Justin Johnson	
Project ID:	Seab	oard Station Apartments					Da	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample II	D:	B-3-E-7-1					Date Collected:		01/11/2019	
Job Sample ID:		19011404.02					Time Collected:		13:15	
Other Information	on:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D) Se	mivolatile Organic Com	pounds - So	bils						
	2-F	-luorophenol(surr)	62.9	%	4.97	37.1-101	L		01/21/2019 16:51	RPG
	Nit	robenzene-d5(surr)	58.0	%	4.97	35.2-104	ł		01/21/2019 16:51	RPG
	Ph	enol-d5(surr)	54.7	%	4.97	36.1-96.2	7		01/21/2019 16:51	RPG
	р-1	Terphenyl-d14(surr)	73.9	%	4.97	54.9-118	3		01/21/2019 16:51	RPG

Job ID: 19011404

Client Name:	Terracon					Att	:n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample I	ID: B-3-E-7-2					Date Collected:		01/11/2019	
Job Sample ID:	: 19011404.03					Time Collected:		13:20	
Other Informat	tion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	19.0	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	0.00111	mg/kg dw	0.842	0.00500	0.000490	J	01/16/2019 18:03	HDM
	Ethylbenzene	0.000478	mg/kg dw	0.842	0.00500	0.000170	J	01/16/2019 18:03	HDM
	Toluene	0.00222	mg/kg dw	0.842	0.00500	0.00100	J	01/16/2019 18:03	HDM
	xylene-o	BDL	mg/kg dw	0.842	0.00500	0.000520		01/16/2019 18:03	HDM
	xylenes (m&P)	BDL	mg/kg dw	0.842	0.0100	0.000750		01/16/2019 18:03	HDM
	Dibromofluoromethane(surr)	114.0	%	0.842	61.2-143	:		01/16/2019 18:03	HDM
	p-Bromofluorobenzene(surr)	87.9	%	0.842	69.4-143	}		01/16/2019 18:03	HDM
	Toluene-d8(surr)	102.0	%	0.842	62.3-146	9		01/16/2019 18:03	HDM
SW-846 8270	D Semivolatile Organic Comp	ounds - Soi	ls						
	1-Methylnaphthalene	BDL	mg/kg dw	0.996	0.102	0.0823		01/21/2019 17:18	RPG
	2-Methylnaphthalene	BDL	mg/kg dw	0.996	0.102	0.0864		01/21/2019 17:18	RPG
	Acenaphthene	BDL	mg/kg dw	0.996	0.102	0.0141		01/21/2019 17:18	RPG
	Acenaphthylene	BDL	mg/kg dw	0.996	0.102	0.0161		01/21/2019 17:18	RPG
	Anthracene	BDL	mg/kg dw	0.996	0.102	0.0140		01/21/2019 17:18	RPG
	Benzo(a)anthracene	BDL	mg/kg dw	0.996	0.102	0.0362		01/21/2019 17:18	RPG
	Benzo(a)pyrene	0.0309	mg/kg dw	0.996	0.102	0.0107	J	01/21/2019 17:18	RPG
	Benzo(b)fluoranthene	0.0519	mg/kg dw	0.996	0.102	0.00980	J	01/21/2019 17:18	RPG
	Benzo(g,h,i)perylene	0.0333	mg/kg dw	0.996	0.102	0.0250	J	01/21/2019 17:18	RPG
	Benzo(k)fluoranthene	0.0309	mg/kg dw	0.996	0.102	0.0198	J	01/21/2019 17:18	RPG
	Chrysene	0.0395	mg/kg dw	0.996	0.102	0.0140	J	01/21/2019 17:18	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	0.996	0.102	0.0200		01/21/2019 17:18	RPG
	Fluoranthene	BDL	mg/kg dw	0.996	0.102	0.0650		01/21/2019 17:18	RPG
	Fluorene	BDL	mg/kg dw	0.996	0.102	0.0658		01/21/2019 17:18	RPG
	Indeno(1,2,3-cd)pyrene	0.0222	mg/kg dw	0.996	0.102	0.0170	J	01/21/2019 17:18	RPG
	Naphthalene	0.0185	mg/kg dw	0.996	0.102	0.0148	J	01/21/2019 17:18	RPG
	Phenanthrene	0.0432	mg/kg dw	0.996	0.102	0.0198	J	01/21/2019 17:18	RPG
	Pyrene	BDL	mg/kg dw	0.996	0.102	0.0535		01/21/2019 17:18	RPG
	2,4,6-Tribromophenol(surr)	67.8	%	0.996	49.3-138	}		01/21/2019 17:18	RPG
	2-Fluorobiphenyl(surr)	68.7	%	0.996	41.4-111			01/21/2019 17:18	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartmer	nts				Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample ID	: B-3-E-7-2					Date Collected:		01/11/2019	
Job Sample ID:	19011404.03					Time Collected:		13:20	
Other Information	n:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D	Semivolatile Organic O	Compounds - Soil	s						
	2-Fluorophenol(surr)	58.1	%	0.996	37.1-101			01/21/2019 17:18	RPG
	Nitrobenzene-d5(surr)	54.4	%	0.996	35.2-104	ļ		01/21/2019 17:18	RPG
	Phenol-d5(surr)	52.4	%	0.996	36.1-96.7	7		01/21/2019 17:18	RPG
	p-Terphenyl-d14(surr)	71.5	%	0.996	54.9-118			01/21/2019 17:18	RPG

CLIENT SAMPLE RESULTS

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample II	D: B-3-N-4-1					Date Collected:		01/11/2019	
Job Sample ID:	19011404.04					Time Collected:		10:00	
Other Informati	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	23.0	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	BDL	mg/kg dw	2.14	0.0140	0.00131		01/16/2019 18:28	HDM
	Ethylbenzene	BDL	mg/kg dw	2.14	0.0140	0.000440		01/16/2019 18:28	HDM
	Toluene	BDL	mg/kg dw	2.14	0.0140	0.00280		01/16/2019 18:28	HDM
	xylene-o	BDL	mg/kg dw	2.14	0.0140	0.00139		01/16/2019 18:28	HDM
	xylenes (m&P)	BDL	mg/kg dw	2.14	0.0280	0.00200		01/16/2019 18:28	HDM
	Dibromofluoromethane(surr)	108.0	%	2.14	61.2-143			01/16/2019 18:28	HDM
	p-Bromofluorobenzene(surr)	85.0	%	2.14	69.4-143			01/16/2019 18:28	HDM
	Toluene-d8(surr)	97.2	%	2.14	62.3-146	•		01/16/2019 18:28	HDM
SW-846 8270	D Semivolatile Organic Comp	ounds - S	oils						
	1-Methylnaphthalene	0.999	mg/kg dw	4.96	0.537	0.431		01/21/2019 17:45	RPG
	2-Methylnaphthalene	1.14	mg/kg dw	4.96	0.537	0.453		01/21/2019 17:45	RPG
	Acenaphthene	BDL	mg/kg dw	4.96	0.537	0.0741		01/21/2019 17:45	RPG
	Acenaphthylene	0.0949	mg/kg dw	4.96	0.537	0.0844		01/21/2019 17:45	RPG
	Anthracene	BDL	mg/kg dw	4.96	0.537	0.0735		01/21/2019 17:45	RPG
	Benzo(a)anthracene	0.480	mg/kg dw	4.96	0.537	0.190	J	01/21/2019 17:45	RPG
	Benzo(a)pyrene	0.407	mg/kg dw	4.96	0.537	0.0561	J	01/21/2019 17:45	RPG
	Benzo(b)fluoranthene	0.854	mg/kg dw	4.96	0.537	0.0516		01/21/2019 17:45	RPG
	Benzo(g,h,i)perylene	0.376	mg/kg dw	4.96	0.537	0.131	J	01/21/2019 17:45	RPG
	Benzo(k)fluoranthene	0.417	mg/kg dw	4.96	0.537	0.104	J	01/21/2019 17:45	RPG
	Chrysene	0.585	mg/kg dw	4.96	0.537	0.0735	J	01/21/2019 17:45	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	4.96	0.537	0.105		01/21/2019 17:45	RPG
	Fluoranthene	0.565	mg/kg dw	4.96	0.537	0.341	J	01/21/2019 17:45	RPG
	Fluorene	BDL	mg/kg dw	4.96	0.537	0.345		01/21/2019 17:45	RPG
	Indeno(1,2,3-cd)pyrene	0.256	mg/kg dw	4.96	0.537	0.0890	J	01/21/2019 17:45	RPG
	Naphthalene	0.707	mg/kg dw	4.96	0.537	0.0773		01/21/2019 17:45	RPG
	Phenanthrene	1.00	mg/kg dw	4.96	0.537	0.104		01/21/2019 17:45	RPG
	Pyrene	0.630	mg/kg dw	4.96	0.537	0.280	J	01/21/2019 17:45	RPG
	2,4,6-Tribromophenol(surr)	40.4	%	4.96	49.3-138	1	S	01/21/2019 17:45	RPG
	2-Fluorobiphenyl(surr)	47.9	%	4.96	41.4-111			01/21/2019 17:45	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Ap	artments				Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample ID): B-3-N-4-1					Date Collected:		01/11/2019	
Job Sample ID:	19011404.04					Time Collected:		10:00	
Other Information	on:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D	Semivolatile Org	anic Compounds - S	Soils						
	2-Fluorophenol(su	rr) 37.8	%	4.96	37.1-101			01/21/2019 17:45	RPG
	Nitrobenzene-d5(s	urr) 37.8	%	4.96	35.2-104	ļ		01/21/2019 17:45	RPG
	Phenol-d5(surr)	35.1	%	4.96	36.1-96.7	7	S	01/21/2019 17:45	RPG
	p-Terphenyl-d14(s	urr) 49.5	%	4.96	54.9-118	}	S	01/21/2019 17:45	RPG

Job ID: 19011404

Client Name:	Terracon					Att	:n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404				:	Sample Matrix:		Soil	
Client Sample I	ID: B-3-N-2-1				1	Date Collected:		01/11/2019	
Job Sample ID:	: 19011404.05				i i	Time Collected:		13:25	
Other Informat	tion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	15.5	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	0.000764	mg/kg dw	1.01	0.00600	0.000560	J	01/18/2019 23:56	HDM
	Ethylbenzene	0.000370	mg/kg dw	1.01	0.00600	0.000190	J	01/18/2019 23:56	HDM
	Toluene	BDL	mg/kg dw	1.01	0.00600	0.00120		01/18/2019 23:56	HDM
	xylene-o	BDL	mg/kg dw	1.01	0.00600	0.000600		01/18/2019 23:56	HDM
	xylenes (m&P)	BDL	mg/kg dw	1.01	0.0120	0.000860		01/18/2019 23:56	HDM
	Dibromofluoromethane(surr)	108	%	1.01	61.2-143			01/18/2019 23:56	HDM
	p-Bromofluorobenzene(surr)	97.4	%	1.01	69.4-143			01/18/2019 23:56	HDM
	Toluene-d8(surr)	103	%	1.01	62.3-146			01/18/2019 23:56	HDM
SW-846 8270	D Semivolatile Organic Comp	ounds - Soi	ls						
	1-Methylnaphthalene	0.755	mg/kg dw	4.96	0.489	0.393		01/21/2019 18:12	RPG
	2-Methylnaphthalene	0.857	mg/kg dw	4.96	0.489	0.413		01/21/2019 18:12	RPG
	Acenaphthene	BDL	mg/kg dw	4.96	0.489	0.0675		01/21/2019 18:12	RPG
	Acenaphthylene	BDL	mg/kg dw	4.96	0.489	0.0769		01/21/2019 18:12	RPG
	Anthracene	BDL	mg/kg dw	4.96	0.489	0.0669		01/21/2019 18:12	RPG
	Benzo(a)anthracene	0.251	mg/kg dw	4.96	0.489	0.173	J	01/21/2019 18:12	RPG
	Benzo(a)pyrene	0.188	mg/kg dw	4.96	0.489	0.0511	J	01/21/2019 18:12	RPG
	Benzo(b)fluoranthene	0.350	mg/kg dw	4.96	0.489	0.0470	J	01/21/2019 18:12	RPG
	Benzo(g,h,i)perylene	0.182	mg/kg dw	4.96	0.489	0.119	J	01/21/2019 18:12	RPG
	Benzo(k)fluoranthene	0.182	mg/kg dw	4.96	0.489	0.0945	J	01/21/2019 18:12	RPG
	Chrysene	0.335	mg/kg dw	4.96	0.489	0.0669	J	01/21/2019 18:12	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	4.96	0.489	0.0957		01/21/2019 18:12	RPG
	Fluoranthene	0.350	mg/kg dw	4.96	0.489	0.310		01/21/2019 18:12	RPG
	Fluorene	BDL	mg/kg dw	4.96	0.489	0.314		01/21/2019 18:12	RPG
	Indeno(1,2,3-cd)pyrene	0.120	mg/kg dw	4.96	0.489	0.0810	J	01/21/2019 18:12	RPG
	Naphthalene	0.620	mg/kg dw	4.96	0.489	0.0704		01/21/2019 18:12	RPG
	Phenanthrene	0.679	mg/kg dw	4.96	0.489	0.0945		01/21/2019 18:12	RPG
	Pyrene	0.335	mg/kg dw	4.96	0.489	0.255	J	01/21/2019 18:12	RPG
	2,4,6-Tribromophenol(surr)	64.8	%	4.96	49.3-138			01/21/2019 18:12	RPG
	2-Fluorobiphenyl(surr)	61.1	%	4.96	41.4-111			01/21/2019 18:12	RPG

Job ID: 19011404

Client Name:	Terra	acon					Att	n:	Justin Johnson	
Project ID:	Seab	oard Station Apartments					Da	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample II	D:	B-3-N-2-1					Date Collected:		01/11/2019	
Job Sample ID:		19011404.05					Time Collected:		13:25	
Other Information	on:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270) Se	mivolatile Organic Com	pounds - Sc	bils						
	2-F	-luorophenol(surr)	50.9	%	4.96	37.1-101	L		01/21/2019 18:12	RPG
	Nit	robenzene-d5(surr)	49.2	%	4.96	35.2-104	ł		01/21/2019 18:12	RPG
	Ph	enol-d5(surr)	42.7	%	4.96	36.1-96.2	7		01/21/2019 18:12	RPG
	p-T	Ferphenyl-d14(surr)	58.6	%	4.96	54.9-118	3		01/21/2019 18:12	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample I	D: B-3-N-2-2					Date Collected:		01/11/2019	
Job Sample ID:	19011404.06					Time Collected:		13:30	
Other Informat	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	21.4	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ds-Soil							
	Benzene	0.0509	mg/kg dw	0.862	0.00500	0.000520		01/16/2019 19:17	HDM
	Ethylbenzene	0.00229	mg/kg dw	0.862	0.00500	0.000180	J	01/16/2019 19:17	HDM
	Toluene	0.00713	mg/kg dw	0.862	0.00500	0.00110		01/16/2019 19:17	HDM
	xylene-o	0.000834	mg/kg dw	0.862	0.00500	0.000550	J	01/16/2019 19:17	HDM
	xylenes (m&P)	0.00122	mg/kg dw	0.862	0.0110	0.000790	J	01/16/2019 19:17	HDM
	Dibromofluoromethane(surr)	116.0	%	0.862	61.2-143			01/16/2019 19:17	HDM
	p-Bromofluorobenzene(surr)	92.8	%	0.862	69.4-143			01/16/2019 19:17	HDM
	Toluene-d8(surr)	104.0	%	0.862	62.3-146			01/16/2019 19:17	HDM
SW-846 8270	D Semivolatile Organic Comp	oounds - Soi	ls						
	1-Methylnaphthalene	0.405	mg/kg dw	0.996	0.106	0.0848		01/21/2019 18:39	RPG
	2-Methylnaphthalene	0.508	mg/kg dw	0.996	0.106	0.0891		01/21/2019 18:39	RPG
	Acenaphthene	BDL	mg/kg dw	0.996	0.106	0.0146		01/21/2019 18:39	RPG
	Acenaphthylene	BDL	mg/kg dw	0.996	0.106	0.0166		01/21/2019 18:39	RPG
	Anthracene	0.0204	mg/kg dw	0.996	0.106	0.0144	J	01/21/2019 18:39	RPG
	Benzo(a)anthracene	0.154	mg/kg dw	0.996	0.106	0.0373		01/21/2019 18:39	RPG
	Benzo(a)pyrene	0.157	mg/kg dw	0.996	0.106	0.0110		01/21/2019 18:39	RPG
	Benzo(b)fluoranthene	0.295	mg/kg dw	0.996	0.106	0.0101		01/21/2019 18:39	RPG
	Benzo(g,h,i)perylene	0.178	mg/kg dw	0.996	0.106	0.0257		01/21/2019 18:39	RPG
	Benzo(k)fluoranthene	0.126	mg/kg dw	0.996	0.106	0.0204		01/21/2019 18:39	RPG
	Chrysene	0.224	mg/kg dw	0.996	0.106	0.0144		01/21/2019 18:39	RPG
	Dibenzo(a,h)anthracene	0.0331	mg/kg dw	0.996	0.106	0.0207	J	01/21/2019 18:39	RPG
	Fluoranthene	0.360	mg/kg dw	0.996	0.106	0.0671		01/21/2019 18:39	RPG
	Fluorene	BDL	mg/kg dw	0.996	0.106	0.0678		01/21/2019 18:39	RPG
	Indeno(1,2,3-cd)pyrene	0.134	mg/kg dw	0.996	0.106	0.0175		01/21/2019 18:39	RPG
	Naphthalene	0.328	mg/kg dw	0.996	0.106	0.0152		01/21/2019 18:39	RPG
	Phenanthrene	0.368	mg/kg dw	0.996	0.106	0.0204		01/21/2019 18:39	RPG
	Pyrene	0.322	mg/kg dw	0.996	0.106	0.0551		01/21/2019 18:39	RPG
	2,4,6-Tribromophenol(surr)	73.0	%	0.996	49.3-138	1		01/21/2019 18:39	RPG
	2-Fluorobiphenyl(surr)	65.9	%	0.996	41.4-111			01/21/2019 18:39	RPG

Job ID: 19011404

Client Name:	Terra	acon					Att	n:	Justin Johnson	
Project ID:	Seab	oard Station Apartments					Dat	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample II	D:	B-3-N-2-2					Date Collected:		01/11/2019	
Job Sample ID:		19011404.06					Time Collected:		13:30	
Other Information	on:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 82700) Se	mivolatile Organic Com	pounds - Soi	ls						
	2-F	-luorophenol(surr)	59.9	%	0.996	37.1-101	L		01/21/2019 18:39	RPG
	Nit	robenzene-d5(surr)	56.4	%	0.996	35.2-104	ł		01/21/2019 18:39	RPG
	Ph	enol-d5(surr)	53.6	%	0.996	36.1-96.2	7		01/21/2019 18:39	RPG
	p-	Terphenyl-d14(surr)	73.2	%	0.996	54.9-118	3		01/21/2019 18:39	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample I	D: B-3-E-4-1					Date Collected:		01/11/2019	
Job Sample ID:	19011404.07					Time Collected:		13:50	
Other Informat	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	14.8	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ds-Soil							
	Benzene	BDL	mg/kg dw	1.84	0.0110	0.00102		01/16/2019 19:42	HDM
	Ethylbenzene	0.000497	mg/kg dw	1.84	0.0110	0.000350	J	01/16/2019 19:42	HDM
	Toluene	BDL	mg/kg dw	1.84	0.0110	0.00220		01/16/2019 19:42	HDM
	xylene-o	BDL	mg/kg dw	1.84	0.0110	0.00108		01/16/2019 19:42	HDM
	xylenes (m&P)	BDL	mg/kg dw	1.84	0.0220	0.00156		01/16/2019 19:42	HDM
	Dibromofluoromethane(surr)	118.0	%	1.84	61.2-143			01/16/2019 19:42	HDM
	p-Bromofluorobenzene(surr)	69.6	%	1.84	69.4-143			01/16/2019 19:42	HDM
	Toluene-d8(surr)	87.0	%	1.84	62.3-146			01/16/2019 19:42	HDM
SW-846 8270	D Semivolatile Organic Comp	ounds - Soi	ls						
	1-Methylnaphthalene	4.57	mg/kg dw	4.98	0.487	0.391		01/21/2019 19:06	RPG
	2-Methylnaphthalene	5.79	mg/kg dw	4.98	0.487	0.411		01/21/2019 19:06	RPG
	Acenaphthene	BDL	mg/kg dw	4.98	0.487	0.0672		01/21/2019 19:06	RPG
	Acenaphthylene	0.113	mg/kg dw	4.98	0.487	0.0766	J	01/21/2019 19:06	RPG
	Anthracene	0.136	mg/kg dw	4.98	0.487	0.0666	J	01/21/2019 19:06	RPG
	Benzo(a)anthracene	0.825	mg/kg dw	4.98	0.487	0.172		01/21/2019 19:06	RPG
	Benzo(a)pyrene	0.566	mg/kg dw	4.98	0.487	0.0509		01/21/2019 19:06	RPG
	Benzo(b)fluoranthene	1.00	mg/kg dw	4.98	0.487	0.0468		01/21/2019 19:06	RPG
	Benzo(g,h,i)perylene	0.463	mg/kg dw	4.98	0.487	0.119	J	01/21/2019 19:06	RPG
	Benzo(k)fluoranthene	0.396	mg/kg dw	4.98	0.487	0.0941	J	01/21/2019 19:06	RPG
	Chrysene	1.17	mg/kg dw	4.98	0.487	0.0666		01/21/2019 19:06	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	4.98	0.487	0.0953		01/21/2019 19:06	RPG
	Fluoranthene	1.64	mg/kg dw	4.98	0.487	0.309		01/21/2019 19:06	RPG
	Fluorene	BDL	mg/kg dw	4.98	0.487	0.313		01/21/2019 19:06	RPG
	Indeno(1,2,3-cd)pyrene	0.301	mg/kg dw	4.98	0.487	0.0807	J	01/21/2019 19:06	RPG
	Naphthalene	4.24	mg/kg dw	4.98	0.487	0.0702		01/21/2019 19:06	RPG
	Phenanthrene	3.93	mg/kg dw	4.98	0.487	0.0941		01/21/2019 19:06	RPG
	Pyrene	1.50	mg/kg dw	4.98	0.487	0.254		01/21/2019 19:06	RPG
	2,4,6-Tribromophenol(surr)	58.1	%	4.98	49.3-138			01/21/2019 19:06	RPG
	2-Fluorobiphenyl(surr)	60.1	%	4.98	41.4-111			01/21/2019 19:06	RPG

Job ID: 19011404

Client Name	Torr	acon					Δ++	'n	Justin Johnson	
chefte Name.	Terre	acon					All			
Project ID:	Seab	ooard Station Apartments					Da	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample II	D:	B-3-E-4-1					Date Collected:		01/11/2019	
Job Sample ID:		19011404.07					Time Collected:		13:50	
Other Information	on:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270) Se	emivolatile Organic Com	pounds - Sc	oils						
	2-	Fluorophenol(surr)	50.6	%	4.98	37.1-101	L		01/21/2019 19:06	RPG
	Ni	trobenzene-d5(surr)	54.7	%	4.98	35.2-104	ł		01/21/2019 19:06	RPG
	Ph	enol-d5(surr)	45.7	%	4.98	36.1-96.2	7		01/21/2019 19:06	RPG
	p-	Terphenyl-d14(surr)	62.6	%	4.98	54.9-118	3		01/21/2019 19:06	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404				:	Sample Matrix:		Soil	
Client Sample II	D: B-3-E-4-2				1	Date Collected:		01/11/2019	
Job Sample ID:	19011404.08				i	Time Collected:		13:55	
Other Informati	on:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	19.1	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	BDL	mg/kg dw	1.28	0.00800	0.000740		01/15/2019 20:48	RPG
	Ethylbenzene	BDL	mg/kg dw	1.28	0.00800	0.000250		01/15/2019 20:48	RPG
	Toluene	BDL	mg/kg dw	1.28	0.00800	0.00160		01/15/2019 20:48	RPG
	xylene-o	BDL	mg/kg dw	1.28	0.00800	0.000790		01/15/2019 20:48	RPG
	xylenes (m&P)	BDL	mg/kg dw	1.28	0.0160	0.00114		01/15/2019 20:48	RPG
	Dibromofluoromethane(surr)	130.0	%	1.28	61.2-143			01/15/2019 20:48	RPG
	p-Bromofluorobenzene(surr)	64.1	%	1.28	69.4-143		S	01/15/2019 20:48	RPG
	Toluene-d8(surr)	90.6	%	1.28	62.3-146			01/15/2019 20:48	RPG
SW-846 8270	D Semivolatile Organic Comp	ounds - S	oils						
	1-Methylnaphthalene	0.596	mg/kg dw	0.996	0.103	0.0824		01/21/2019 19:33	RPG
	2-Methylnaphthalene	0.679	mg/kg dw	0.996	0.103	0.0866		01/21/2019 19:33	RPG
	Acenaphthene	BDL	mg/kg dw	0.996	0.103	0.0142		01/21/2019 19:33	RPG
	Acenaphthylene	0.0210	mg/kg dw	0.996	0.103	0.0161	J	01/21/2019 19:33	RPG
	Anthracene	0.0272	mg/kg dw	0.996	0.103	0.0140	J	01/21/2019 19:33	RPG
	Benzo(a)anthracene	0.141	mg/kg dw	0.996	0.103	0.0362		01/21/2019 19:33	RPG
	Benzo(a)pyrene	0.121	mg/kg dw	0.996	0.103	0.0107		01/21/2019 19:33	RPG
	Benzo(b)fluoranthene	0.214	mg/kg dw	0.996	0.103	0.00990		01/21/2019 19:33	RPG
	Benzo(g,h,i)perylene	0.120	mg/kg dw	0.996	0.103	0.0250		01/21/2019 19:33	RPG
	Benzo(k)fluoranthene	0.0717	mg/kg dw	0.996	0.103	0.0198	J	01/21/2019 19:33	RPG
	Chrysene	0.299	mg/kg dw	0.996	0.103	0.0140		01/21/2019 19:33	RPG
	Dibenzo(a,h)anthracene	0.0346	mg/kg dw	0.996	0.103	0.0201	J	01/21/2019 19:33	RPG
	Fluoranthene	0.245	mg/kg dw	0.996	0.103	0.0651		01/21/2019 19:33	RPG
	Fluorene	BDL	mg/kg dw	0.996	0.103	0.0659		01/21/2019 19:33	RPG
	Indeno(1,2,3-cd)pyrene	0.0705	mg/kg dw	0.996	0.103	0.0170	J	01/21/2019 19:33	RPG
	Naphthalene	0.448	mg/kg dw	0.996	0.103	0.0148		01/21/2019 19:33	RPG
	Phenanthrene	0.645	mg/kg dw	0.996	0.103	0.0198		01/21/2019 19:33	RPG
	Pyrene	0.252	mg/kg dw	0.996	0.103	0.0536		01/21/2019 19:33	RPG
	2,4,6-Tribromophenol(surr)	26.3	%	0.996	49.3-138		S	01/21/2019 19:33	RPG
	2-Fluorobiphenyl(surr)	40.5	%	0.996	41.4-111		S	01/21/2019 19:33	RPG

Job ID: 19011404

Client Name:	Terra	con					Att	n:	Justin Johnson	
Project ID:	Seabo	oard Station Apartments					Dai	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample II):	В-3-Е-4-2					Date Collected:		01/11/2019	
Job Sample ID:		19011404.08					Time Collected:		13:55	
Other Information	on:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270) Se	mivolatile Organic Com	pounds - So	ils						
	2-F	luorophenol(surr)	34.9	%	0.996	37.1-101	L	S	01/21/2019 19:33	RPG
	Niti	robenzene-d5(surr)	33.0	%	0.996	35.2-104	ŀ	S	01/21/2019 19:33	RPG
	Phe	enol-d5(surr)	32.2	%	0.996	36.1-96.7	7	S	01/21/2019 19:33	RPG
	p-T	erphenyl-d14(surr)	42.9	%	0.996	54.9-118	}	S	01/21/2019 19:33	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Dai	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample ID): B-3-S-6-1					Date Collected:		01/11/2019	
Job Sample ID:	19011404.09					Time Collected:		15:10	
Other Information	on:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	22.6	%	1				01/16/2019 11:17	HDM
SW-846 8260B	Volatile Organic Compound	ls-Soil							
	Benzene	0.00349	mg/kg dw	1.04	0.00700	0.000630	J	01/15/2019 21:13	RPG
	Ethylbenzene	0.000335	mg/kg dw	1.04	0.00700	0.000220	J	01/15/2019 21:13	RPG
	Toluene	0.00194	mg/kg dw	1.04	0.00700	0.00130	J	01/15/2019 21:13	RPG
	xylene-o	BDL	mg/kg dw	1.04	0.00700	0.000670		01/15/2019 21:13	RPG
	xylenes (m&P)	BDL	mg/kg dw	1.04	0.0130	0.000970		01/15/2019 21:13	RPG
	Dibromofluoromethane(surr)	113.0	%	1.04	61.2-143			01/15/2019 21:13	RPG
	p-Bromofluorobenzene(surr)	71.2	%	1.04	69.4-143			01/15/2019 21:13	RPG
	Toluene-d8(surr)	92.3	%	1.04	62.3-146	1		01/15/2019 21:13	RPG
SW-846 8270D	Semivolatile Organic Comp	ounds - Soi	ls						
	1-Methylnaphthalene	BDL	mg/kg dw	0.995	0.107	0.0860		01/21/2019 20:00	RPG
	2-Methylnaphthalene	BDL	mg/kg dw	0.995	0.107	0.0904		01/21/2019 20:00	RPG
	Acenaphthene	BDL	mg/kg dw	0.995	0.107	0.0148		01/21/2019 20:00	RPG
	Acenaphthylene	BDL	mg/kg dw	0.995	0.107	0.0168		01/21/2019 20:00	RPG
	Anthracene	BDL	mg/kg dw	0.995	0.107	0.0147		01/21/2019 20:00	RPG
	Benzo(a)anthracene	0.0594	mg/kg dw	0.995	0.107	0.0378	J	01/21/2019 20:00	RPG
	Benzo(a)pyrene	0.0517	mg/kg dw	0.995	0.107	0.0112	J	01/21/2019 20:00	RPG
	Benzo(b)fluoranthene	0.136	mg/kg dw	0.995	0.107	0.0103		01/21/2019 20:00	RPG
	Benzo(g,h,i)perylene	0.0556	mg/kg dw	0.995	0.107	0.0261	J	01/21/2019 20:00	RPG
	Benzo(k)fluoranthene	0.0452	mg/kg dw	0.995	0.107	0.0207	J	01/21/2019 20:00	RPG
	Chrysene	0.107	mg/kg dw	0.995	0.107	0.0147	J	01/21/2019 20:00	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	0.995	0.107	0.0210		01/21/2019 20:00	RPG
	Fluoranthene	0.0969	mg/kg dw	0.995	0.107	0.0680	J	01/21/2019 20:00	RPG
	Fluorene	BDL	mg/kg dw	0.995	0.107	0.0688		01/21/2019 20:00	RPG
	Indeno(1,2,3-cd)pyrene	0.0452	mg/kg dw	0.995	0.107	0.0177	J	01/21/2019 20:00	RPG
	Naphthalene	0.0491	mg/kg dw	0.995	0.107	0.0154	J	01/21/2019 20:00	RPG
	Phenanthrene	0.115	mg/kg dw	0.995	0.107	0.0207		01/21/2019 20:00	RPG
	Pyrene	0.0788	mg/kg dw	0.995	0.107	0.0559	J	01/21/2019 20:00	RPG
	2,4,6-Tribromophenol(surr)	65.5	%	0.995	49.3-138			01/21/2019 20:00	RPG
	2-Fluorobiphenyl(surr)	70.9	%	0.995	41.4-111			01/21/2019 20:00	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartn	nents				Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample ID	: B-3-S-6-1					Date Collected:		01/11/2019	
Job Sample ID:	19011404.09					Time Collected:		15:10	
Other Informatio	n:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D	Semivolatile Organi	c Compounds - So	oils						
	2-Fluorophenol(surr)	59.6	%	0.995	37.1-101			01/21/2019 20:00	RPG
	Nitrobenzene-d5(surr)	57.0	%	0.995	35.2-104	ļ		01/21/2019 20:00	RPG
	Phenol-d5(surr)	52.1	%	0.995	36.1-96.7	7		01/21/2019 20:00	RPG
	p-Terphenyl-d14(surr)	69.8	%	0.995	54.9-118			01/21/2019 20:00	RPG

RP19012219

CLIENT SAMPLE RESULTS

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample I	D: B-3-S-6-2					Date Collected:		01/11/2019	
Job Sample ID:	19011404.10					Time Collected:		15:15	
Other Informati	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	15.6	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	BDL	mg/kg dw	1.39	0.00800	0.000770		01/15/2019 21:38	RPG
	Ethylbenzene	BDL	mg/kg dw	1.39	0.00800	0.000260		01/15/2019 21:38	RPG
	Toluene	BDL	mg/kg dw	1.39	0.00800	0.00160		01/15/2019 21:38	RPG
	xylene-o	BDL	mg/kg dw	1.39	0.00800	0.000820		01/15/2019 21:38	RPG
	xylenes (m&P)	BDL	mg/kg dw	1.39	0.0160	0.00119		01/15/2019 21:38	RPG
	Dibromofluoromethane(surr)	89.2	%	1.39	61.2-143			01/15/2019 21:38	RPG
	p-Bromofluorobenzene(surr)	80.6	%	1.39	69.4-143			01/15/2019 21:38	RPG
	Toluene-d8(surr)	83.5	%	1.39	62.3-146	1		01/15/2019 21:38	RPG
SW-846 8270	D Semivolatile Organic Comp	ounds - S	oils						
	1-Methylnaphthalene	BDL	mg/kg dw	0.991	0.0979	0.0786		01/21/2019 20:27	RPG
	2-Methylnaphthalene	BDL	mg/kg dw	0.991	0.0979	0.0826		01/21/2019 20:27	RPG
	Acenaphthene	BDL	mg/kg dw	0.991	0.0979	0.0135		01/21/2019 20:27	RPG
	Acenaphthylene	BDL	mg/kg dw	0.991	0.0979	0.0154		01/21/2019 20:27	RPG
	Anthracene	BDL	mg/kg dw	0.991	0.0979	0.0134		01/21/2019 20:27	RPG
	Benzo(a)anthracene	BDL	mg/kg dw	0.991	0.0979	0.0345		01/21/2019 20:27	RPG
	Benzo(a)pyrene	BDL	mg/kg dw	0.991	0.0979	0.0102		01/21/2019 20:27	RPG
	Benzo(b)fluoranthene	0.0178	mg/kg dw	0.991	0.0979	0.00940	J	01/21/2019 20:27	RPG
	Benzo(g,h,i)perylene	BDL	mg/kg dw	0.991	0.0979	0.0238		01/21/2019 20:27	RPG
	Benzo(k)fluoranthene	BDL	mg/kg dw	0.991	0.0979	0.0189		01/21/2019 20:27	RPG
	Chrysene	BDL	mg/kg dw	0.991	0.0979	0.0134		01/21/2019 20:27	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	0.991	0.0979	0.0191		01/21/2019 20:27	RPG
	Fluoranthene	BDL	mg/kg dw	0.991	0.0979	0.0621		01/21/2019 20:27	RPG
	Fluorene	BDL	mg/kg dw	0.991	0.0979	0.0628		01/21/2019 20:27	RPG
	Indeno(1,2,3-cd)pyrene	BDL	mg/kg dw	0.991	0.0979	0.0162		01/21/2019 20:27	RPG
	Naphthalene	BDL	mg/kg dw	0.991	0.0979	0.0141		01/21/2019 20:27	RPG
	Phenanthrene	BDL	mg/kg dw	0.991	0.0979	0.0189		01/21/2019 20:27	RPG
	Pyrene	BDL	mg/kg dw	0.991	0.0979	0.0511		01/21/2019 20:27	RPG
	2,4,6-Tribromophenol(surr)	67.0	%	0.991	49.3-138			01/21/2019 20:27	RPG
	2-Fluorobiphenyl(surr)	66.7	%	0.991	41.4-111			01/21/2019 20:27	RPG

Job ID: 19011404

Client Name:	Terra	icon					Att	n:	Justin Johnson	
Project ID:	Seab	oard Station Apartments					Da	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample II	D:	B-3-S-6-2					Date Collected:		01/11/2019	
Job Sample ID:		19011404.10					Time Collected:		15:15	
Other Information	on:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D) Se	mivolatile Organic Com	pounds - So	ils						
	2-F	-luorophenol(surr)	60.7	%	0.991	37.1-101	L		01/21/2019 20:27	RPG
	Nit	robenzene-d5(surr)	56.3	%	0.991	35.2-104	ł		01/21/2019 20:27	RPG
	Ph	enol-d5(surr)	53.6	%	0.991	36.1-96.2	7		01/21/2019 20:27	RPG
	р-1	Ferphenyl-d14(surr)	72.1	%	0.991	54.9-118	3		01/21/2019 20:27	RPG

RP19012219

CLIENT SAMPLE RESULTS

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404				:	Sample Matrix:		Soil	
Client Sample I	D: B-3-S-3-1					Date Collected:		01/11/2019	
Job Sample ID:	19011404.11				i	Time Collected:		15:30	
Other Information	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	25.0	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	BDL	mg/kg dw	1.18	0.00800	0.000740		01/15/2019 22:02	RPG
	Ethylbenzene	BDL	mg/kg dw	1.18	0.00800	0.000250		01/15/2019 22:02	RPG
	Toluene	BDL	mg/kg dw	1.18	0.00800	0.00160		01/15/2019 22:02	RPG
	xylene-o	BDL	mg/kg dw	1.18	0.00800	0.000790		01/15/2019 22:02	RPG
	xylenes (m&P)	BDL	mg/kg dw	1.18	0.0160	0.00113		01/15/2019 22:02	RPG
	Dibromofluoromethane(surr)	105.0	%	1.18	61.2-143			01/15/2019 22:02	RPG
	p-Bromofluorobenzene(surr)	103.0	%	1.18	69.4-143			01/15/2019 22:02	RPG
	Toluene-d8(surr)	100.0	%	1.18	62.3-146			01/15/2019 22:02	RPG
SW-846 8270	D Semivolatile Organic Comp	ounds - S	oils						
	1-Methylnaphthalene	BDL	mg/kg dw	0.992	0.110	0.0885		01/21/2019 20:54	RPG
	2-Methylnaphthalene	BDL	mg/kg dw	0.992	0.110	0.0929		01/21/2019 20:54	RPG
	Acenaphthene	BDL	mg/kg dw	0.992	0.110	0.0152		01/21/2019 20:54	RPG
	Acenaphthylene	BDL	mg/kg dw	0.992	0.110	0.0173		01/21/2019 20:54	RPG
	Anthracene	BDL	mg/kg dw	0.992	0.110	0.0151		01/21/2019 20:54	RPG
	Benzo(a)anthracene	BDL	mg/kg dw	0.992	0.110	0.0389		01/21/2019 20:54	RPG
	Benzo(a)pyrene	BDL	mg/kg dw	0.992	0.110	0.0115		01/21/2019 20:54	RPG
	Benzo(b)fluoranthene	0.0160	mg/kg dw	0.992	0.110	0.0106	J	01/21/2019 20:54	RPG
	Benzo(g,h,i)perylene	BDL	mg/kg dw	0.992	0.110	0.0268		01/21/2019 20:54	RPG
	Benzo(k)fluoranthene	BDL	mg/kg dw	0.992	0.110	0.0213		01/21/2019 20:54	RPG
	Chrysene	BDL	mg/kg dw	0.992	0.110	0.0151		01/21/2019 20:54	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	0.992	0.110	0.0216		01/21/2019 20:54	RPG
	Fluoranthene	BDL	mg/kg dw	0.992	0.110	0.0699		01/21/2019 20:54	RPG
	Fluorene	BDL	mg/kg dw	0.992	0.110	0.0707		01/21/2019 20:54	RPG
	Indeno(1,2,3-cd)pyrene	BDL	mg/kg dw	0.992	0.110	0.0182		01/21/2019 20:54	RPG
	Naphthalene	0.0187	mg/kg dw	0.992	0.110	0.0159	J	01/21/2019 20:54	RPG
	Phenanthrene	0.0213	mg/kg dw	0.992	0.110	0.0213	J	01/21/2019 20:54	RPG
	Pyrene	BDL	mg/kg dw	0.992	0.110	0.0575		01/21/2019 20:54	RPG
	2,4,6-Tribromophenol(surr)	66.3	%	0.992	49.3-138			01/21/2019 20:54	RPG
	2-Fluorobiphenyl(surr)	63.0	%	0.992	41.4-111			01/21/2019 20:54	RPG

Job ID: 19011404

Client Name:	Terra	con					Att	n:	Justin Johnson	
Project ID:	Seab	oard Station Apartments					Da	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample II	D:	B-3-S-3-1					Date Collected:		01/11/2019	
Job Sample ID:		19011404.11					Time Collected:		15:30	
Other Information	on:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D) Se	mivolatile Organic Com	pounds - Soil	s						
	2-F	-luorophenol(surr)	59.9	%	0.992	37.1-101	L		01/21/2019 20:54	RPG
	Nit	robenzene-d5(surr)	54.5	%	0.992	35.2-104	ł		01/21/2019 20:54	RPG
	Phe	enol-d5(surr)	53.2	%	0.992	36.1-96.2	7		01/21/2019 20:54	RPG
	р-1	Ferphenyl-d14(surr)	76.7	%	0.992	54.9-118	3		01/21/2019 20:54	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404				:	Sample Matrix:		Soil	
Client Sample I	D: B-3-S-3-2				1	Date Collected:		01/11/2019	
Job Sample ID:	19011404.12				i	Time Collected:		15:35	
Other Information	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	19.8	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ds-Soil							
	Benzene	BDL	mg/kg dw	0.923	0.00600	0.000540		01/16/2019 20:06	HDM
	Ethylbenzene	BDL	mg/kg dw	0.923	0.00600	0.000180		01/16/2019 20:06	HDM
	Toluene	BDL	mg/kg dw	0.923	0.00600	0.00120		01/16/2019 20:06	HDM
	xylene-o	BDL	mg/kg dw	0.923	0.00600	0.000580		01/16/2019 20:06	HDM
	xylenes (m&P)	BDL	mg/kg dw	0.923	0.0120	0.000830		01/16/2019 20:06	HDM
	Dibromofluoromethane(surr)	104.0	%	0.923	61.2-143			01/16/2019 20:06	HDM
	p-Bromofluorobenzene(surr)	86.7	%	0.923	69.4-143			01/16/2019 20:06	HDM
	Toluene-d8(surr)	95.3	%	0.923	62.3-146			01/16/2019 20:06	HDM
SW-846 8270	D Semivolatile Organic Comp	oounds - S	oils						
	1-Methylnaphthalene	BDL	mg/kg dw	4.96	0.515	0.414		01/21/2019 21:20	RPG
	2-Methylnaphthalene	BDL	mg/kg dw	4.96	0.515	0.435		01/21/2019 21:20	RPG
	Acenaphthene	BDL	mg/kg dw	4.96	0.515	0.0711		01/21/2019 21:20	RPG
	Acenaphthylene	BDL	mg/kg dw	4.96	0.515	0.0810		01/21/2019 21:20	RPG
	Anthracene	BDL	mg/kg dw	4.96	0.515	0.0705		01/21/2019 21:20	RPG
	Benzo(a)anthracene	0.242	mg/kg dw	4.96	0.515	0.182	J	01/21/2019 21:20	RPG
	Benzo(a)pyrene	0.198	mg/kg dw	4.96	0.515	0.0538	J	01/21/2019 21:20	RPG
	Benzo(b)fluoranthene	0.340	mg/kg dw	4.96	0.515	0.0495	J	01/21/2019 21:20	RPG
	Benzo(g,h,i)perylene	0.231	mg/kg dw	4.96	0.515	0.126	J	01/21/2019 21:20	RPG
	Benzo(k)fluoranthene	0.107	mg/kg dw	4.96	0.515	0.0995	J	01/21/2019 21:20	RPG
	Chrysene	0.265	mg/kg dw	4.96	0.515	0.0705	J	01/21/2019 21:20	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	4.96	0.515	0.101		01/21/2019 21:20	RPG
	Fluoranthene	0.363	mg/kg dw	4.96	0.515	0.327	J	01/21/2019 21:20	RPG
	Fluorene	BDL	mg/kg dw	4.96	0.515	0.331		01/21/2019 21:20	RPG
	Indeno(1,2,3-cd)pyrene	0.157	mg/kg dw	4.96	0.515	0.0853	J	01/21/2019 21:20	RPG
	Naphthalene	0.580	mg/kg dw	4.96	0.515	0.0742		01/21/2019 21:20	RPG
	Phenanthrene	0.429	mg/kg dw	4.96	0.515	0.0995	J	01/21/2019 21:20	RPG
	Pyrene	0.315	mg/kg dw	4.96	0.515	0.269	J	01/21/2019 21:20	RPG
	2,4,6-Tribromophenol(surr)	33.3	%	4.96	49.3-138		S	01/21/2019 21:20	RPG
	2-Fluorobiphenyl(surr)	75.2	%	4.96	41.4-111			01/21/2019 21:20	RPG
Job ID: 19011404

Client Name:	Terra	con					Att	n:	Justin Johnson	
Project ID:	Seabo	oard Station Apartments					Da	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample II	D:	B-3-S-3-2					Date Collected:		01/11/2019	
Job Sample ID:		19011404.12					Time Collected:		15:35	
Other Information	on:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D) Se	mivolatile Organic Com	pounds - Soi	ls						
	2-F	luorophenol(surr)	59.2	%	4.96	37.1-101	L		01/21/2019 21:20	RPG
	Nit	robenzene-d5(surr)	61.4	%	4.96	35.2-104	ł		01/21/2019 21:20	RPG
	Phe	enol-d5(surr)	59.2	%	4.96	36.1-96.2	7		01/21/2019 21:20	RPG
	p-T	erphenyl-d14(surr)	80.5	%	4.96	54.9-118	3		01/21/2019 21:20	RPG

Job ID: 19011404

Client Name:	Terracon					Att	n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample I	D: B-3-W-4-1					Date Collected:		01/11/2019	
Job Sample ID:	19011404.13					Time Collected:		16:00	
Other Informat	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	15.1	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	0.00448	mg/kg dw	1.21	0.00700	0.000670	J	01/16/2019 20:31	HDM
	Ethylbenzene	BDL	mg/kg dw	1.21	0.00700	0.000230		01/16/2019 20:31	HDM
	Toluene	0.00188	mg/kg dw	1.21	0.00700	0.00140	J	01/16/2019 20:31	HDM
	xylene-o	BDL	mg/kg dw	1.21	0.00700	0.000710		01/16/2019 20:31	HDM
	xylenes (m&P)	BDL	mg/kg dw	1.21	0.0140	0.00103		01/16/2019 20:31	HDM
	Dibromofluoromethane(surr)	134.0	%	1.21	61.2-143			01/16/2019 20:31	HDM
	p-Bromofluorobenzene(surr)	71.1	%	1.21	69.4-143			01/16/2019 20:31	HDM
	Toluene-d8(surr)	89.3	%	1.21	62.3-146			01/16/2019 20:31	HDM
SW-846 8270	D Semivolatile Organic Comp	ounds - So	oils						
	1-Methylnaphthalene	0.667	mg/kg dw	4.98	0.489	0.392		01/21/2019 21:47	RPG
	2-Methylnaphthalene	0.777	mg/kg dw	4.98	0.489	0.412		01/21/2019 21:47	RPG
	Acenaphthene	BDL	mg/kg dw	4.98	0.489	0.0675		01/21/2019 21:47	RPG
	Acenaphthylene	0.140	mg/kg dw	4.98	0.489	0.0769	J	01/21/2019 21:47	RPG
	Anthracene	0.187	mg/kg dw	4.98	0.489	0.0669	J	01/21/2019 21:47	RPG
	Benzo(a)anthracene	0.803	mg/kg dw	4.98	0.489	0.172		01/21/2019 21:47	RPG
	Benzo(a)pyrene	0.848	mg/kg dw	4.98	0.489	0.0510		01/21/2019 21:47	RPG
	Benzo(b)fluoranthene	1.59	mg/kg dw	4.98	0.489	0.0469		01/21/2019 21:47	RPG
	Benzo(g,h,i)perylene	0.721	mg/kg dw	4.98	0.489	0.119		01/21/2019 21:47	RPG
	Benzo(k)fluoranthene	0.504	mg/kg dw	4.98	0.489	0.0944		01/21/2019 21:47	RPG
	Chrysene	1.05	mg/kg dw	4.98	0.489	0.0669		01/21/2019 21:47	RPG
	Dibenzo(a,h)anthracene	0.168	mg/kg dw	4.98	0.489	0.0956	J	01/21/2019 21:47	RPG
	Fluoranthene	1.61	mg/kg dw	4.98	0.489	0.310		01/21/2019 21:47	RPG
	Fluorene	BDL	mg/kg dw	4.98	0.489	0.314		01/21/2019 21:47	RPG
	Indeno(1,2,3-cd)pyrene	0.587	mg/kg dw	4.98	0.489	0.0810		01/21/2019 21:47	RPG
	Naphthalene	0.615	mg/kg dw	4.98	0.489	0.0704		01/21/2019 21:47	RPG
	Phenanthrene	1.45	mg/kg dw	4.98	0.489	0.0944		01/21/2019 21:47	RPG
	Pyrene	1.48	mg/kg dw	4.98	0.489	0.255		01/21/2019 21:47	RPG
	2,4,6-Tribromophenol(surr)	56.6	%	4.98	49.3-138			01/21/2019 21:47	RPG
	2-Fluorobiphenyl(surr)	75.2	%	4.98	41.4-111			01/21/2019 21:47	RPG

Job ID: 19011404

Client Name:	Terra	icon					Att	n:	Justin Johnson		
Project ID:	Seab	oard Station Apartments					Da	te:	01/22/2019		
Job ID :		19011404					Sample Matrix:		Soil		
Client Sample ID):	B-3-W-4-1					Date Collected:		01/11/2019		
Job Sample ID:		19011404.13					Time Collected:		16:00		
Other Information	nation:										
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst	
SW-846 8270D) Se	mivolatile Organic Com	pounds - Sc	bils							
	2-F	-luorophenol(surr)	59.9	%	4.98	37.1-101	L		01/21/2019 21:47	RPG	
	Nit	robenzene-d5(surr)	60.4	%	4.98	35.2-104	1		01/21/2019 21:47	RPG	
	Ph	enol-d5(surr)	55.4	%	4.98	36.1-96.2	7		01/21/2019 21:47	RPG	
	р-1	Ferphenyl-d14(surr)	74.8	%	4.98	54.9-118	3		01/21/2019 21:47	RPG	

Job ID: 19011404

Client Name:	Terracon					Att	:n:	Justin Johnson	
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019	
Job ID :	19011404					Sample Matrix:		Soil	
Client Sample I	ID: B-3-W-4-2					Date Collected:		01/11/2019	
Job Sample ID:	19011404.14					Time Collected:		16:05	
Other Informat	ion:								
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SM2540b	% Moisture								
	% Moisture	13.9	%	1				01/16/2019 11:17	HDM
SW-846 8260	B Volatile Organic Compound	ls-Soil							
	Benzene	0.00163	mg/kg dw	0.858	0.00500	0.000470	J	01/16/2019 20:56	HDM
	Ethylbenzene	0.000399	mg/kg dw	0.858	0.00500	0.000160	J	01/16/2019 20:56	HDM
	Toluene	0.00128	mg/kg dw	0.858	0.00500	0.00100	J	01/16/2019 20:56	HDM
	xylene-o	BDL	mg/kg dw	0.858	0.00500	0.000500		01/16/2019 20:56	HDM
	xylenes (m&P)	BDL	mg/kg dw	0.858	0.0100	0.000720		01/16/2019 20:56	HDM
	Dibromofluoromethane(surr)	117.0	%	0.858	61.2-143			01/16/2019 20:56	HDM
	p-Bromofluorobenzene(surr)	88.6	%	0.858	69.4-143			01/16/2019 20:56	HDM
	Toluene-d8(surr)	103.0	%	0.858	62.3-146			01/16/2019 20:56	HDM
SW-846 8270	D Semivolatile Organic Comp	ounds - Soi	ls						
	1-Methylnaphthalene	BDL	mg/kg dw	4.96	0.480	0.386		01/21/2019 22:14	RPG
	2-Methylnaphthalene	BDL	mg/kg dw	4.96	0.480	0.405		01/21/2019 22:14	RPG
	Acenaphthene	BDL	mg/kg dw	4.96	0.480	0.0663		01/21/2019 22:14	RPG
	Acenaphthylene	BDL	mg/kg dw	4.96	0.480	0.0755		01/21/2019 22:14	RPG
	Anthracene	BDL	mg/kg dw	4.96	0.480	0.0657		01/21/2019 22:14	RPG
	Benzo(a)anthracene	0.358	mg/kg dw	4.96	0.480	0.169	J	01/21/2019 22:14	RPG
	Benzo(a)pyrene	0.353	mg/kg dw	4.96	0.480	0.0501	J	01/21/2019 22:14	RPG
	Benzo(b)fluoranthene	0.565	mg/kg dw	4.96	0.480	0.0461		01/21/2019 22:14	RPG
	Benzo(g,h,i)perylene	0.271	mg/kg dw	4.96	0.480	0.117	J	01/21/2019 22:14	RPG
	Benzo(k)fluoranthene	0.244	mg/kg dw	4.96	0.480	0.0928	J	01/21/2019 22:14	RPG
	Chrysene	0.406	mg/kg dw	4.96	0.480	0.0657	J	01/21/2019 22:14	RPG
	Dibenzo(a,h)anthracene	BDL	mg/kg dw	4.96	0.480	0.0939		01/21/2019 22:14	RPG
	Fluoranthene	0.425	mg/kg dw	4.96	0.480	0.305	J	01/21/2019 22:14	RPG
	Fluorene	BDL	mg/kg dw	4.96	0.480	0.308		01/21/2019 22:14	RPG
	Indeno(1,2,3-cd)pyrene	0.209	mg/kg dw	4.96	0.480	0.0795	J	01/21/2019 22:14	RPG
	Naphthalene	0.229	mg/kg dw	4.96	0.480	0.0692	J	01/21/2019 22:14	RPG
	Phenanthrene	0.353	mg/kg dw	4.96	0.480	0.0928	J	01/21/2019 22:14	RPG
	Pyrene	0.514	mg/kg dw	4.96	0.480	0.251		01/21/2019 22:14	RPG
	2,4,6-Tribromophenol(surr)	73.0	%	4.96	49.3-138	1		01/21/2019 22:14	RPG
	2-Fluorobiphenyl(surr)	75.9	%	4.96	41.4-111			01/21/2019 22:14	RPG

Job ID: 19011404

Client Name:	Terra	icon					Att	n:	Justin Johnson	
Project ID:	Seab	oard Station Apartments					Da	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample ID	D:	B-3-W-4-2					Date Collected:		01/11/2019	
Job Sample ID:		19011404.14					Time Collected:		16:05	
Other Information	rmation:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D) Se	mivolatile Organic Com	pounds - So	oils						
	2-F	Fluorophenol(surr)	69.7	%	4.96	37.1-101	L		01/21/2019 22:14	RPG
	Nit	robenzene-d5(surr)	62.6	%	4.96	35.2-104	ł		01/21/2019 22:14	RPG
	Ph	enol-d5(surr)	61.4	%	4.96	36.1-96.2	7		01/21/2019 22:14	RPG
	р-1	Ferphenyl-d14(surr)	80.5	%	4.96	54.9-118	3		01/21/2019 22:14	RPG

Job ID: 19011404

Client Name:	Terracon					Att	:n:	Justin Johnson		
Project ID:	Seaboard Station Apartments					Da	te:	e: 01/22/2019		
Job ID :	19011404					Sample Matrix:		Soil		
Client Sample II	D: B-3-W-7-1					Date Collected:		01/11/2019		
Job Sample ID:	19011404.15				i	Time Collected:		16:15		
Other Informati	on:									
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst	
SM2540b	% Moisture									
	% Moisture	15.6	%	1				01/16/2019 11:17	HDM	
SW-846 8260	8 Volatile Organic Compound	ds-Soil								
	Benzene	0.00103	mg/kg dw	1.31	0.00800	0.000730	J	01/16/2019 21:20	HDM	
	Ethylbenzene	0.000498	mg/kg dw	1.31	0.00800	0.000250	J	01/16/2019 21:20	HDM	
	Toluene	BDL	mg/kg dw	1.31	0.00800	0.00160		01/16/2019 21:20	HDM	
	xylene-o	BDL	mg/kg dw	1.31	0.00800	0.000780		01/16/2019 21:20	HDM	
	xylenes (m&P)	BDL	mg/kg dw	1.31	0.0160	0.00112		01/16/2019 21:20	HDM	
	Dibromofluoromethane(surr)	108.0	%	1.31	61.2-143			01/16/2019 21:20	HDM	
	p-Bromofluorobenzene(surr)	77.9	%	1.31	69.4-143			01/16/2019 21:20	HDM	
	Toluene-d8(surr)	94.7	%	1.31	62.3-146			01/16/2019 21:20	HDM	
SW-846 82701	D Semivolatile Organic Com	oounds - Soi	ls							
	1-Methylnaphthalene	0.756	mg/kg dw	4.98	0.492	0.395		01/21/2019 22:41	RPG	
	2-Methylnaphthalene	0.889	mg/kg dw	4.98	0.492	0.415		01/21/2019 22:41	RPG	
	Acenaphthene	BDL	mg/kg dw	4.98	0.492	0.0679		01/21/2019 22:41	RPG	
	Acenaphthylene	0.399	mg/kg dw	4.98	0.492	0.0773	J	01/21/2019 22:41	RPG	
	Anthracene	0.364	mg/kg dw	4.98	0.492	0.0673	J	01/21/2019 22:41	RPG	
	Benzo(a)anthracene	1.90	mg/kg dw	4.98	0.492	0.174		01/21/2019 22:41	RPG	
	Benzo(a)pyrene	2.00	mg/kg dw	4.98	0.492	0.0513		01/21/2019 22:41	RPG	
	Benzo(b)fluoranthene	3.12	mg/kg dw	4.98	0.492	0.0472		01/21/2019 22:41	RPG	
	Benzo(g,h,i)perylene	1.48	mg/kg dw	4.98	0.492	0.120		01/21/2019 22:41	RPG	
	Benzo(k)fluoranthene	1.21	mg/kg dw	4.98	0.492	0.0950		01/21/2019 22:41	RPG	
	Chrysene	2.22	mg/kg dw	4.98	0.492	0.0673		01/21/2019 22:41	RPG	
	Dibenzo(a,h)anthracene	0.350	mg/kg dw	4.98	0.492	0.0962	J	01/21/2019 22:41	RPG	
	Fluoranthene	3.32	mg/kg dw	4.98	0.492	0.312		01/21/2019 22:41	RPG	
	Fluorene	BDL	mg/kg dw	4.98	0.492	0.316		01/21/2019 22:41	RPG	
	Indeno(1,2,3-cd)pyrene	1.20	mg/kg dw	4.98	0.492	0.0814		01/21/2019 22:41	RPG	
	Naphthalene	0.680	mg/kg dw	4.98	0.492	0.0708		01/21/2019 22:41	RPG	
	Phenanthrene	1.97	mg/kg dw	4.98	0.492	0.0950		01/21/2019 22:41	RPG	
	Pyrene	3.18	mg/kg dw	4.98	0.492	0.257		01/21/2019 22:41	RPG	
	2,4,6-Tribromophenol(surr)	88.8	%	4.98	49.3-138			01/21/2019 22:41	RPG	
	2-Fluorobiphenyl(surr)	82.7	%	4.98	41.4-111			01/21/2019 22:41	RPG	

Job ID: 19011404

Client Name:	Terra	icon					Att	n:	Justin Johnson	
Project ID:	Seab	oard Station Apartments					Da	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample II	D:	B-3-W-7-1					Date Collected:		01/11/2019	
Job Sample ID:		19011404.15					Time Collected:		16:15	
Other Information	on:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D) Se	mivolatile Organic Com	pounds - So	oils						
	2-F	-luorophenol(surr)	70.4	%	4.98	37.1-101	L		01/21/2019 22:41	RPG
	Nit	robenzene-d5(surr)	64.1	%	4.98	35.2-104	ł		01/21/2019 22:41	RPG
	Ph	enol-d5(surr)	61.4	%	4.98	36.1-96.2	7		01/21/2019 22:41	RPG
	p-1	Ferphenyl-d14(surr)	79.7	%	4.98	54.9-118	3		01/21/2019 22:41	RPG

Job ID: 19011404

Client Name:	e: Terracon					Attn: Justin Johnson						
Project ID:	Seaboard Station Apartments					Da	te:	01/22/2019				
Job ID :	19011404					Sample Matrix:		Soil				
Client Sample II	D: B-3-W-7-2					Date Collected:		01/11/2019				
Job Sample ID:	19011404.16				i	Time Collected:		16:20				
Other Informati	on:											
Test Method	Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst			
SM2540b	% Moisture											
	% Moisture	15.6	%	1				01/16/2019 11:17	HDM			
SW-846 8260	B Volatile Organic Compound	ds-Soil										
	Benzene	0.00178	mg/kg dw	1.03	0.00600	0.000570	J	01/16/2019 21:45	HDM			
	Ethylbenzene	0.000513	mg/kg dw	1.03	0.00600	0.000200	J	01/16/2019 21:45	HDM			
	Toluene	0.00154	mg/kg dw	1.03	0.00600	0.00120	J	01/16/2019 21:45	HDM			
	xylene-o	BDL	mg/kg dw	1.03	0.00600	0.000610		01/16/2019 21:45	HDM			
	xylenes (m&P)	BDL	mg/kg dw	1.03	0.0120	0.000880		01/16/2019 21:45	HDM			
	Dibromofluoromethane(surr)	130.0	%	1.03	61.2-143			01/16/2019 21:45	HDM			
	p-Bromofluorobenzene(surr)	64.1	%	1.03	69.4-143		S	01/16/2019 21:45	HDM			
	Toluene-d8(surr)	89.3	%	1.03	62.3-146			01/16/2019 21:45	HDM			
SW-846 8270	D Semivolatile Organic Comp	ounds - Soi	ls									
	1-Methylnaphthalene	0.800	mg/kg dw	4.97	0.491	0.394		01/21/2019 23:08	RPG			
	2-Methylnaphthalene	0.935	mg/kg dw	4.97	0.491	0.414		01/21/2019 23:08	RPG			
	Acenaphthene	BDL	mg/kg dw	4.97	0.491	0.0678		01/21/2019 23:08	RPG			
	Acenaphthylene	0.270	mg/kg dw	4.97	0.491	0.0772	J	01/21/2019 23:08	RPG			
	Anthracene	0.213	mg/kg dw	4.97	0.491	0.0672	J	01/21/2019 23:08	RPG			
	Benzo(a)anthracene	1.36	mg/kg dw	4.97	0.491	0.173		01/21/2019 23:08	RPG			
	Benzo(a)pyrene	1.48	mg/kg dw	4.97	0.491	0.0513		01/21/2019 23:08	RPG			
	Benzo(b)fluoranthene	2.44	mg/kg dw	4.97	0.491	0.0471		01/21/2019 23:08	RPG			
	Benzo(g,h,i)perylene	1.07	mg/kg dw	4.97	0.491	0.120		01/21/2019 23:08	RPG			
	Benzo(k)fluoranthene	0.863	mg/kg dw	4.97	0.491	0.0949		01/21/2019 23:08	RPG			
	Chrysene	1.78	mg/kg dw	4.97	0.491	0.0672		01/21/2019 23:08	RPG			
	Dibenzo(a,h)anthracene	0.273	mg/kg dw	4.97	0.491	0.0960	J	01/21/2019 23:08	RPG			
	Fluoranthene	2.29	mg/kg dw	4.97	0.491	0.312		01/21/2019 23:08	RPG			
	Fluorene	BDL	mg/kg dw	4.97	0.491	0.315		01/21/2019 23:08	RPG			
	Indeno(1,2,3-cd)pyrene	0.877	mg/kg dw	4.97	0.491	0.0813		01/21/2019 23:08	RPG			
	Naphthalene	0.691	mg/kg dw	4.97	0.491	0.0707		01/21/2019 23:08	RPG			
	Phenanthrene	1.42	mg/kg dw	4.97	0.491	0.0949		01/21/2019 23:08	RPG			
	Pyrene	2.26	mg/kg dw	4.97	0.491	0.256		01/21/2019 23:08	RPG			
	2,4,6-Tribromophenol(surr)	64.0	%	4.97	49.3-138			01/21/2019 23:08	RPG			
	2-Fluorobiphenyl(surr)	82.7	%	4.97	41.4-111			01/21/2019 23:08	RPG			

Job ID: 19011404

Client Name:	Terra	icon					Justin Johnson			
Project ID:	Seab	oard Station Apartments					Dat	te:	01/22/2019	
Job ID :		19011404					Sample Matrix:		Soil	
Client Sample ID):	B-3-W-7-2					Date Collected:		01/11/2019	
Job Sample ID:		19011404.16					Time Collected:		16:20	
Other Information	ation:									
Test Method		Parameter	Result	Units	DF	RL	MDL	Q	Date/Time Analyzed	Analyst
SW-846 8270D) Se	mivolatile Organic Com	pounds - Sc	oils						
	2-F	-luorophenol(surr)	69.3	%	4.97	37.1-101	L		01/21/2019 23:08	RPG
	Nit	robenzene-d5(surr)	62.9	%	4.97	35.2-104	ł		01/21/2019 23:08	RPG
	Ph	enol-d5(surr)	61.4	%	4.97	36.1-96.2	7		01/21/2019 23:08	RPG
	p-T	Ferphenyl-d14(surr)	84.2	%	4.97	54.9-118	3		01/21/2019 23:08	RPG

Job ID: 19011404

RP19012219

2720 Gregory St. Unit 200 Savannah, Georgia 31404 Tel: (912) 944-3748 Fax: (912) 234-9294

Analysis: Volatile C	Organic Compounds-Soil	Method:	SW-846 8260B	Reporting Un	its: mg/kg dw
QC Batch ID: Qb190	011607	Created D	Date: 01/22/2019 (00:00 Created By:	hmckinnon
Samples in this QC B	atch: 19011404,01,02,0	3,04,05,06,07,08,09,10,11,12,1	3,14,15,16		
Sample Preparation	PB19011607	SW5035			hmckinnon

QC Type: Method Blank Parameter CAS Result Units DF RL MDL Qual Method Blank Benzene 71-43-2 0.0050 BDL mg/kg dw 1 Method Blank Ethylbenzene 100-41-4 BDL mg/kg dw 1 0.0050 Method Blank Toluene 108-88-3 BDL mg/kg dw 1 0.0050 Method Blank 95-47-6 BDL mg/kg dw 0.0050 xylene-o 1 0.010 Method Blank xylenes (m&P) 108-38-3&106-42-3 BDL mg/kg dw 1 Method Blank Dibromofluoromethane (Surr) 1868-53-7 106.0 5.00 108.0 5.00 Method Blank p-Bromofluorobenzene (Surr) 460-00-4 Method Blank Toluene-d8 (Surr) 2037-26-5 102.0 5.00

QC Type: LCS/LCSD										
	LCS Spk		LCS %	LCSD Spk	LCSD			RPD	% Rec	
Parameter	Amt	LCS Result	Rec	Amt	Result	LCS % Rec	RPD	CtrlLimit	CtrlLimit	Qual
Benzene	0.1	0.0820	82.0	0.1	0.0800	80.0	2.50	30	57.3-122	
Ethylbenzene	0.1	0.0880	88.0	0.1	0.0880	88.0	0.00	30	56.3-139	
Toluene	0.1	0.0850	85.0	0.1	0.0840	84.0	1.20	30	67.3-133	
xylene-o	0.1	0.0940	94.0	0.1	0.0960	96.0	2.10	30	51.4-144	
xylenes (m&P)	0.200	0.180	90.0	0.200	0.181	90.5	0.60	30	53.7-146	

QC Ty	pe: MS/MSD												
			Sample	MS Spk	MS	MS %	MS Spk	MSD	MSD %		RPD	% Rec	
	QC Sample ID	Parameter	Result	Amt	Result	Rec	Amt	Result	Rec	RPD	CtrlLimit	CtrlLimit	Qual
MS	19011404.09	Benzene	0.00270	0.067	0.0510	72.6	0.046	0.0340	67.6	40.00	30	57.3-122	М
MS	19011404.09	Ethylbenzene	0.000259	0.067	0.0440	65.8	0.046	0.0340	72.9	25.60	30	56.3-139	
MS	19011404.09	Toluene	0.00150	0.067	0.0380	54.9	0.046	0.0280	57.2	30.30	30	67.3-133	М
MS	19011404.09	xylene-o	0.000238	0.067	0.0360	53.8	0.046	0.0300	64.3	18.20	30	51.4-144	
MS	19011404.09	xylenes (m&P)	0.000528	0.133	0.0770	57.5	0.093	0.0630	67.5	20.00	30	53.7-146	

Refer to the Definition page for terms.

Job ID: 19011404

RP19012219

LBarlow

2720 Gregory St. Unit 200 Savannah, Georgia 31404 Tel: (912) 944-3748 Fax: (912) 234-9294

Analysis: Semivolatile Orga	nic Compounds - Soils	Method: SV	/-846 8270D	Reporting Uni	its: mg/kg dw
QC Batch ID: Qb19011706		Created Date	01/22/2019 00:00	Created By:	LBarlow
Samples in this QC Batch:	19011404,01,02,03,04,05,06,07,08,09	,10,11,12,13,14	15,16		

-vtra	ction
LAUU	CUOIL

PB19011706

SW3550c

QC Type: Method Blank Parameter CAS Result Units DF RL MDL Qual Method Blank .333 1-Methylnaphthalene 90-12-0 BDL mg/kg dw 1 BDL Method Blank .333 2-Methylnaphthalene 91-57-6 mg/kg dw 1 Method Blank Acenaphthene BDL .333 83-32-9 mg/kg dw 1 Method Blank Acenaphthylene 208-96-8 BDL mg/kg dw 1 .333 Anthracene Method Blank 120-12-7 BDL mg/kg dw 1 .333 Method Blank Benzo(a)anthracene 56-55-3 BDL 1 .333 mg/kg dw Method Blank Benzo(a)pyrene BDL .333 50-32-8 mg/kg dw 1 Method Blank Benzo(b)fluoranthene 205-99-2 BDL mg/kg dw 1 .333 Method Blank Benzo(q,h,i)perylene 191-24-2 BDL mg/kg dw 1 .333 Method Blank Benzo(k)fluoranthene BDL 1 .333 207-08-9 mg/kg dw Method Blank .333 Chrysene 218-01-9 BDL mg/kg dw 1 Method Blank Dibenzo(a,h)anthracene 53-70-3 BDL mg/kg dw 1 .333 Method Blank Fluoranthene BDI .333 206-44-0 mg/kg dw 1 Method Blank Fluorene 86-73-7 BDL mg/kg dw 1 .333 Method Blank Indeno(1,2,3-cd)pyrene 193-39-5 BDL mg/kg dw 1 .333 Method Blank Naphthalene 91-20-3 BDL mg/kg dw 1 .333 Method Blank Phenanthrene 85-01-8 BDL mg/kg dw 1 .333 Method Blank Pyrene 129-00-0 BDL mg/kg dw 1 .333 Method Blank 2,4,6-Tribromophenol (Surr) 118-79-6 88.8 1 Method Blank 2-Fluorobiphenyl (Surr) 132-60-8 88.7 1 Method Blank 2-Fluorophenol (Surr) 367-12-4 86.5 1 Method Blank Nitrobenzene-d5 (Surr) 4165-60-0 78.2 1 Method Blank Phenol-d5 (Surr) 77.2 1 Method Blank p-Terphenyl-d14 (Surr) 102.0 1718-51-0 1

QC Type: LCS/LCSD										
	LCS Spk		LCS %	LCSD Spk	LCSD			RPD	% Rec	
Parameter	Amt	LCS Result	Rec	Amt	Result	LCS % Rec	RPD	CtrlLimit	CtrlLimit	Qual
1-Methylnaphthalene	1.67	1.49	89.2	1.67	1.20	71.9	21.60	40	41.8-129	
2-Methylnaphthalene	1.67	1.49	89.2	1.67	1.20	71.9	21.60	40	52.9-114	
Acenaphthene	1.67	1.50	89.8	1.67	1.28	76.6	15.80	40	50.1-117	
Acenaphthylene	1.67	1.55	92.8	1.67	1.28	76.6	19.10	40	42.9-117	
Anthracene	1.67	1.61	96.4	1.67	1.36	81.4	16.80	40	60.4-122	
Benzo(a)anthracene	1.67	1.60	95.8	1.67	1.35	80.8	17.00	40	64.7-124	
Benzo(a)pyrene	1.67	1.70	102.0	1.67	1.42	85.0	18.00	40	56-118	
Benzo(b)fluoranthene	1.67	1.63	97.6	1.67	1.44	86.2	12.40	40	56.9-122	
Benzo(g,h,i)perylene	1.67	1.59	95.2	1.67	1.32	79.0	18.60	40	32.9-150	

Job ID: 19011404

2720 Gregory St. Unit 200 Savannah, Georgia 31404 Tel: (912) 944-3748 Fax: (912) 234-9294

Analysis: Semivolatile Orga	nic Compounds - Soils	Method: SW	-846 8270D	Reporting Un	its: mg/kg dw
QC Batch ID: Qb19011706		Created Date:	01/22/2019 00:00	Created By:	LBarlow
Samples in this QC Batch:	19011404,01,02,03,04,05,06,07,08,09	,10,11,12,13,14,1	.5,16		

QC Type: LCS/LCSD										
	LCS Spk		LCS %	LCSD Spk	LCSD			RPD	% Rec	
Parameter	Amt	LCS Result	Rec	Amt	Result	LCS % Rec	RPD	CtrlLimit	CtrlLimit	Qual
Benzo(k)fluoranthene	1.67	1.74	104.0	1.67	1.47	88.0	16.80	40	47.8-122	
Chrysene	1.67	1.55	92.8	1.67	1.32	79.0	16.00	40	58-128	
Dibenzo(a,h)anthracene	1.67	1.24	74.3	1.67	1.04	62.3	17.50	40	25.9-174	
Fluoranthene	1.67	1.72	103.0	1.67	1.44	86.2	17.70	40	46.8-137	
Fluorene	1.67	1.61	96.4	1.67	1.37	82.0	16.10	40	48.1-123	
Indeno(1,2,3-cd)pyrene	1.67	1.21	72.5	1.67	1.02	61.1	17.00	40	30-158	
Naphthalene	1.67	1.40	83.8	1.67	1.14	68.3	20.50	40	52.8-108	
Phenanthrene	1.67	1.60	95.8	1.67	1.34	80.2	17.70	40	59.3-122	
Pyrene	1.67	1.54	92.2	1.67	1.34	80.2	13.90	40	58.8-117	
2,4,6-Tribromophenol (Surr)	2.67	2.56	95.9	2.67	2.14	80.1			49.3-138	
2-Fluorobiphenyl (Surr)	1.33	1.18	88.7	1.33	1.00	75.2			41.4-111	
2-Fluorophenol (Surr)	2.67	2.26	84.6	2.67	1.90	71.2			37.1-101	
Nitrobenzene-d5 (Surr)	1.33	1.08	81.2	1.33	0.866	65.1			35.2-104	
Phenol-d5 (Surr)	2.67	2.10	78.7	2.67	1.75	65.5			36.1-96.7	
p-Terphenyl-d14 (Surr)	1.33	1.40	105.0	1.33	1.18	88.7			54.9-118	

QC Ty	pe: MS/MSD												
			Sample	MS Spk	MS	MS %	MS Spk	MSD	MSD %		RPD	% Rec	
	QC Sample ID	Parameter	Result	Amt	Result	Rec	Amt	Result	Rec	RPD	CtrlLimit	CtrlLimit	Qual
MS	19011404.11	1-Methylnaphthalene	0.0150	1.66	0.955	56.3	1.66	0.978	57.7	2.40	40	41.8-129	
MS	19011404.11	2-Methylnaphthalene	0.0190	1.66	0.972	57.1	1.66	0.955	56.0	1.80	40	52.9-114	
MS	19011404.11	Acenaphthene	0	1.66	0.990	59.3	1.66	1.08	64.7	8.70	40	50.1-117	
MS	19011404.11	Acenaphthylene	0	1.66	1.01	60.5	1.66	1.11	66.5	9.40	40	42.9-117	
MS	19011404.11	Anthracene	0	1.66	1.02	61.1	1.66	1.12	67.1	9.40	40	60.4-122	
MS	19011404.11	Benzo(a)anthracene	0.00930	1.66	1.00	59.3	1.66	1.10	65.3	9.50	40	64.7-124	М
MS	19011404.11	Benzo(a)pyrene	0.00690	1.66	1.09	64.9	1.66	1.18	70.2	7.90	40	56-118	
MS	19011404.11	Benzo(b)fluoranthene	0.0120	1.66	1.09	64.6	1.66	1.19	70.5	8.80	40	56.9-122	
MS	19011404.11	Benzo(g,h,i)perylene	0.00890	1.66	1.16	68.9	1.66	1.26	74.9	8.30	40	32.9-150	
MS	19011404.11	Benzo(k)fluoranthene	0.00530	1.66	0.995	59.3	1.66	1.06	63.2	6.30	40	47.8-122	
MS	19011404.11	Chrysene	0.0100	1.66	1.00	59.3	1.66	1.07	63.5	6.80	40	58-128	
MS	19011404.11	Dibenzo(a,h)anthracene	0	1.66	0.932	55.8	1.66	0.979	58.6	4.90	40	25.9-174	
MS	19011404.11	Fluoranthene	0.00890	1.66	1.03	61.1	1.66	1.14	67.7	10.10	40	46.8-137	
MS	19011404.11	Fluorene	0	1.66	1.04	62.3	1.66	1.11	66.5	6.50	40	48.1-123	
MS	19011404.11	Indeno(1,2,3-cd)pyrene	0.00730	1.66	0.919	54.6	1.66	0.976	58.0	6.00	40	30-158	
MS	19011404.11	Naphthalene	0.0140	1.66	0.944	55.7	1.66	0.929	54.8	1.60	40	52.8-108	
MS	19011404.11	Phenanthrene	0.0160	1.66	1.01	59.5	1.66	1.10	64.9	8.50	40	59.3-122	
MS	19011404.11	Pyrene	0.00990	1.66	1.07	63.5	1.66	1.13	67.1	5.50	40	58.8-117	

Refer to the Definition page for terms.

Г

Job ID: 19011404

Analysis: Semivolatile Orga	nic Compounds - Soils	Method:	sw-	846 8270D	Reporting Uni	ts: mg/kg dw
QC Batch ID: Qb19011706		Created D	ate:	01/22/2019 00:00	Created By:	LBarlow
Samples in this QC Batch:	19011404,01,02,03,04,05,06,07,08,09	,10,11,12,13	8,14,1	5,16		

CASE NARRATIVE

Job ID: 19011404

Avery Laboratories & Environmental Services, LLC

2720 Gregory St. Unit 200 Savannah, Georgia 31404 Tel: (912) 944-3748 Fax: (912) 234-9294

Client Name:	Terracon
Project ID:	Seaboard Station Apartments
Date Received:	01/11/2019
Collected By:	

Matrix Spikes

Method(s) SW8260b, SW8270d: The matrix spike/ matrix spike duplicate recoveries were outside the established laboratory control limits for several analytes. The lab spike recoveries were inside acceptable limits, so the data was reported. The matrix spikes have been qualified accordingly.

SW8260b: The internal standards were outside the method specified limits for the following samples: 1901404.02,1901404.03,1901404.06,1901404.07,1901404.08,1901404.12,1901404.13,1901404.14,1901404.15, and 1901404.16. The samples were reanalyzed with comparable results obtained.

SW8260b, SW8270d; The surrogate and/or surrogates were outside the established laboratory control limits for several samples. The data has been qualified accordingly.

Released By: PGrimm

Title: Technical Director

TERM AND QUALIFIER DEFINITION

Job ID: 19011404

General Term Def	finition
Conc.	Concentration
DF	Dilution Factor - the factor applied to the reported data due to sample preparation, dilution, or moisture content
ND	Non Detect - Not Detected at or above adjusted reporting limit
J	Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit
RL	adjusted Reporting Limit (QL – Quantification Limit)
MDL	adjusted Method Detection Limit (LOD – Limit of Detection)
RegLimit	Regulatory Limit
mg/l	Milligrams per Liter
mg/kg	Milligrams per Kilogram
ppm	Parts per Million
µg/L	Micrograms per Liter
µg/g	Micrograms per Gram
ppb	Parts per Billion
gr/gal	Grains per Gallon
SU	Standard Units
CCU	Cobalt Color Units
NTU	Nephelometric Turbidity Units
µS/cm	Microsiemens per cm at 25C
P/A	Presence/Absence
CFU	Colony Forming Units
MPN	Most Probable Number
RB	Reagent Blank
MB	Method Blank
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LFM	Laboratory Fortified Matrix (MS – Matrix Spike)
LFMD	Laboratory Fortified Matrix Duplicate (MSD – Matrix Spike Duplicate)
DUP	Sample Duplicate
RPD	Relative Percent Difference
%Rec	Percent Recovery
TNTC	Too numerous to count
NC	Not Calculable
SG	Silica Gel - Clean-Up
BRL	Below Reporting Limit
BDL	Below Detection Limit
Qualifier Definitio	n
J	The reported values is between the limit of detection (MDL) and the practical quantitation limit (RL).
М	Estimated value-The reported value failed the established quality control criteria for accuracy and /or precision.
S	The surrogate recovery was outside the established laboratory recovery limit.

SAMPLE SUMMARY

Job ID: 19011404

Client Project ID : Seaboard Station Apartments								
Report To :	Client Name: Client Address: City, State, Zip:	Terracon 2201 Rowland Ave. Savannah, GA, 31404		Attn: J P.O.#.:	lustin Johnson			
The laboratory has	analyzed the follo	wing samples:						
Client Sa	ample ID	Matrix	Sample ID	Date Received	Date Collected	Collected by		
B-3-N-4-	2	Soil	19011404.01	1/11/2019 16:54	1/11/2019 10:05			
B-3-E-7-	1	Soil	19011404.02	1/11/2019 16:54	1/11/2019 13:15			
B-3-E-7-	2	Soil	19011404.03	1/11/2019 16:54	1/11/2019 13:20			
B-3-N-4-	1	Soil	19011404.04	1/11/2019 16:54	1/11/2019 10:00			
B-3-N-2-	1	Soil	19011404.05	1/11/2019 16:54	1/11/2019 13:25			
B-3-N-2-	2	Soil	19011404.06	1/11/2019 16:54	1/11/2019 13:30			
B-3-E-4-	1	Soil	19011404.07	1/11/2019 16:54	1/11/2019 13:50			
B-3-E-4-	2	Soil	19011404.08	1/11/2019 16:54	1/11/2019 13:55			
B-3-S-6-	1	Soil	19011404.09	1/11/2019 16:54	1/11/2019 15:10			
B-3-S-6-	2	Soil	19011404.10	1/11/2019 16:54	1/11/2019 15:15			
B-3-S-3-	1	Soil	19011404.11	1/11/2019 16:54	1/11/2019 15:30			
B-3-S-3-	2	Soil	19011404.12	1/11/2019 16:54	1/11/2019 15:35			
B-3-W-4	-1	Soil	19011404.13	1/11/2019 16:54	1/11/2019 16:00			
B-3-W-4	-2	Soil	19011404.14	1/11/2019 16:54	1/11/2019 16:05			
B-3-W-7	-1	Soil	19011404.15	1/11/2019 16:54	1/11/2019 16:15			
B-3-W-7	-2	Soil	19011404.16	1/11/2019 16:54	1/11/2019 16:20			

SAMPLE PREPARATION INFORMATION

Job ID: 19011404

Client Name:	Terracon			Attn: Justin	Johnson
Project Name:	Seaboard Station Apartments			Date: 01/22,	/2019
Sample ID	Test	Prep Method	Date Prepared	Analyst	Prep Batch ID
19011404.01	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.01	SVOA-Terracon Soil	SW3550c	01/17/2019 09:00	LBarlow	PB19011706
19011404.01	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.02	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.02	SVOA-Terracon Soil	SW3550c	01/17/2019 09:00	LBarlow	PB19011706
19011404.02	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.03	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.03	SVOA-Terracon Soil	SW3550c	01/17/2019 09:00	LBarlow	PB19011706
19011404.03	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.04	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.04	SVOA-Terracon Soil	SW3550c	01/17/2019 09:00	LBarlow	PB19011706
19011404.04	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.05	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.05	SVOA-Terracon Soil	SW3550c	01/17/2019 09:00	LBarlow	PB19011706
19011404.05	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.06	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.06	SVOA-Terracon Soil	SW3550c	01/17/2019 09:00	LBarlow	PB19011706
19011404.06	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.07	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.07	SVOA-Terracon Soil	SW3550c	01/17/2019 09:00	LBarlow	PB19011706
19011404.07	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.08	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.08	SVOA-Terracon Soil	SW3550c	01/17/2019 09:00	LBarlow	PB19011706
19011404.08	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.09	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.09	SVOA-Terracon Soil	SW3550c	01/17/2019 09:00	LBarlow	PB19011706
19011404.09	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.10	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.10	SVOA-Terracon Soil	SW3550c	01/18/2019 09:00	LBarlow	PB19011706
19011404.10	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.11	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.11	SVOA-Terracon Soil	SW3550c	01/18/2019 09:00	LBarlow	PB19011706
19011404.11	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.12	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.12	SVOA-Terracon Soil	SW3550c	01/18/2019 09:00	LBarlow	PB19011706

RP19012219

19011404.12	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.13	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.13	SVOA-Terracon Soil	SW3550c	01/18/2019 09:00	LBarlow	PB19011706
19011404.13	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.14	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.14	SVOA-Terracon Soil	SW3550c	01/18/2019 09:00	LBarlow	PB19011706
19011404.14	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.15	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.15	SVOA-Terracon Soil	SW3550c	01/18/2019 09:00	LBarlow	PB19011706
19011404.15	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607
19011404.16	% Moisture	SM2540b	01/15/2019 11:14	hmckinnon	PB19012108
19011404.16	SVOA-Terracon Soil	SW3550c	01/18/2019 09:00	LBarlow	PB19011706
19011404.16	VOC-Terracon Soil	SW5035	01/15/2019 14:17	hmckinnon	PB19011607

SAMPLE CONDITION CHECKLIST

Job ID: 19011404

2720 Gregory St. Unit 200 Savannah, Georgia 31404 Tel: (912) 944-3748 Fax: (912) 234-9294

Client Name : Terracon		Contact :	Justin Johnson				
Client Address : 2201 Rowland Ave.		Contact Phone :	912-662-8481				
JobID : 19011404	Date Received : 01/11/2019	Time Received : 04:54 PM					
Temperature : 3.1, 6.6	Chlorine Check Lot # :	·					
ThermometerID : 170145743pH Paper Lot # :							
Comments : Include actions taken to resolve discrepancies/problem: On ice							

	Check Points	Yes	No	N/A
1	All samples were logged or labeled.	~		
2	Bottle count on C-O-C matches bottle found.	~		
3	C-O-C signed and dated.	~		
4	Cooler seal present and signed.	~		
5	If requested, sample(s) received with signed sample custody seal			~
6	Sample amount is sufficient for analyses requested	~		
7	Sample containers arrived in tact. (if no, comment)	~		
8	Sample ID lables Match C-O-C ID's	~		
9	Sample received at 6°C or Less		~	
10	Sample(s) in a cooler.	~		
11	Sample(s) were received at the proper pH.	~		
12	Sample(s) were received in appropriate contatiner. (If no, comment)	~		
13	Samples accepted.	~		
14	Samples received within holding time for analysis requested	~		
15	Zero headspace in liquid VOA vials	~		

CheckIn By :

Elizabeth Grimm

CheckIn Date : 01/14/2019

COMMERCIAL LABORATORY STIPULATION

Georgia Rules for Commercial Environmental Laboratory Accreditation

Chapter 391-3-26

Job ID: 19011404

2720 Gregory St. Unit 200 Savannah, Georgia 31404 Tel: (912) 944-3748 Fax: (912) 234-9294

Laboratory:	Avery Laboratories and Environmental Service	es, LLC					
Accreditor:	NELAC: State of Florida, Department of Health, Bureau of Laboratories						
Accreditation ID:	E87941						
Scope:	NON-POTABLE WATER - EXTRACTABLE ORG, GENERAL CHEMISTRY, NON-POTABLE WATE - PESTICIDES-HERBICIDES-PCB'S, NON-POT, ORGANICS, SOLID AND CHEMICAL MATERIA SOLID AND CHEMICAL MATERIALS - GENERA CHEMICAL MATERIALS - METALS, SOLID AND VOLATILE ORGANICS	ANICS, NON-POTABLE R - METALS, NON-POT ABLE WATER - VOLAT LS - EXTRACTABLE OF AL CHEMISTRY, SOLID D CHEMICAL MATERIA	WATER - TABLE WATER ILE RGANICS, AND ILS -				
Effective Date:	July 1, 2018	Expiration Date:	July 1, 2019				

As per the Georgia EPD Rules and Regulations for Commercial Laboratories, Avery Laboratories and Environmental Services - Savannah is accredited by the Florida Department of Health under the National Environmental Laboratory Approval Program (NELAP). If you have any further questions regarding accreditation status for Avery Laboratories and Environmental Services, please contact: Paul Grimm.

> Avery Laboratories and Environmental Services, LLC 2720 Gregory St. Unit 200 Savannah, GA 31404 Phone: (912) 944-3748 Fax: (912) 234-9294

APPENDIX F

MILESTONE SCHEDULE

VRP Project Milestone Schedule Former Seaboard Freight Station 703 Louisville Road Savannah, Chatham County, Georgia

					,	<i>,</i>			
ID	Task Name	Start	Finish	Duration		2019			
					Q1	Q2	Q3	Q4	
1	Submit VRP Application	Wed 5/8/19	Wed 5/8/19	0 wks		♦ 5/8			
2	Horizontal / Vertical Delineation	Mon 6/10/19	Fri 12/6/19	26 wks					
3	Updated CSM with Final Remediation Plan	Mon 12/9/19	Fri 6/5/20	26 wks					
4	Semi-Annual Progress Report #2	Mon 12/9/19	Fri 6/5/20	26 wks					
5	Soil Remediation	Mon 6/8/20	Fri 12/4/20	26 wks					
6	VRP Compliance Status Report	Mon 6/8/20	Fri 12/4/20	26 wks					

Task		Project Summary	I1	Manual Task		Start-only	C	Dead
Split		Inactive Task		Duration-only		Finish-only	3	Progr
Milestone	♦	Inactive Milestone	\diamond	Manual Summary Rollup		External Tasks		Manı
Summary		Inactive Summary	0	Manual Summary	I1	External Milestone	\diamond	

