VOLUNTARY REMEDIATION PLAN APPLICATION

HUNTING CREEK SHOPPING PLAZA 1820 GEORGIA HIGHWAY 20 SOUTH CONYERS, ROCKDALE COUNTY, GEORGIA HSI SITE NO. 10832

Submitted to:

Georgia Department of Natural Resources Hazardous Waste Management Branch Suite 1462, East Tower 2 Martin Luther King Jr. Drive SE Atlanta, Georgia 30334

Prepared for:

F.S. Associates, L.P.
c/o Kazmarek Geiger & Laseter LLP
One Securities Center
Suite 201
3490 Piedmont Road, NE
Atlanta, Georgia 30305

Prepared by:

MACTEC Engineering and Consulting, Inc. 396 Plasters Avenue Atlanta, Georgia 30324

February 2010

engineering and constructing a better tomorrow

February 25, 2010

Ms. Alex Cleary
Program Manager
Georgia Department of Natural Resources
Hazardous Waste Management Branch
Suite 1462, East Tower
2 Martin Luther King Jr. Drive SE
Atlanta; Georgia 30334

Subject:

Voluntary Remediation Plan Application

Hunting Creek Shopping Plaza 1820 Georgia Highway South

Conyers, Rockdale County, Georgia

HSI Site No. 10832

Dear Ms. Cleary:

On behalf of F.S. Associates, L.P. as the responsible party, and with the expressed consent of Fred Damavandi, principal of the property owner Rose City Village Affordable Housing Limited Partnership, MACTEC Engineering and Consulting, Inc. respectfully submits this Voluntary Remediation Plan, completed application form and attached \$5000.00 application fee to enroll the subject site in the Georgia Voluntary Remediation Program.

Please contact Chuck Ferry at 404-873-4761 with any questions you may have regarding this submittal.

Sincerely,

MACTEC Engineering and Consulting, Inc.

Tyler J. Royles
Project Geologist

Charles T. Ferry, P.E.

Senior Principal Engineer

cc:

Mr. Scott Lasester, Kazmarek Geiger & Laseter LLP

Project No. 6121-10-0013

TABLE OF CONTENTS

			Page
1.0	VOLUNTARY	$ar{\ell}$ REMEDIATION PLAN APPLICATION FORM AND CHECKLIST .	1-1
2.0		ND	
		OUS DOCUMENTS	
		NOLOGY OF EVENTS	
3.0	REGULATED	SUBSTANCES	3-1
4.0	ASSESSMEN'	T ACTIVITIES	4-1
	4.1 SOIL I	DATA	4-1
	4.2 SITE H	IYDROGEOLOGY	4-2
	4.3 GROU	NDWATER DATA	4-3
		LING AND ANALYSIS PROCEDURES	
	4.5 SUMM	IARY OF PERTINENT GROUNDWATER TESTING DATA	4-4
5.0	POTENTIAL	RECEPTORS AND RISK REDUCTION STANDARDS	5-1
	5.1 WATE	R USAGE	5-1
	5.2 ENVIR	ONMENTAL RECEPTORS	5-1
	5.3 VAPO	R INTRUSION	5-2
	5.4 RISK I	REDUCTION STANDARDS	5-2
	5.4.1	Soil Criteria	5-2
	5.4.2	Groundwater Criteria	5-2
6.0	PROPOSED O	CORRECTIVE ACTION	6-1
	6.2 GROU	NDWATER	6-2
	6.3 VAPO	R INTRUSION	6-3
7.0		SMITTALS	
LIST (OF ATTACHM ES	ENTS	
	Table 1: Table 2:	Summary of Groundwater Test Results, Historical Events Summary of Groundwater Elevations, January 2010 Sampling Event	
FIGU	RES		
	Figure 1: Figure 2: Figure 3: Figure 4:	Site Location/Topographic Map Aerial Photograph of Site and Vicinity Summary of Groundwater Test Results Potentiometric Surface Map	
APPE	NDICIES		
	Appendix A - Appendix B - Appendix C - Appendix D - Appendix E -	Legal Description and Plat Map Tables from Prospective Purchaser Compliance Status Report Figures from Prospective Purchaser Compliance Status Report Laboratory Results for 2010 Sampling Event Risk Reduction Standard Calculations from Prospective Purchaser Comp Status Report	pliance

1.0 VOLUNTARY REMEDIATION PLAN APPLICATION FORM AND CHECKLIST

The Georgia Environmental Protection Division (EPD) has set certain criteria for a property and a responsible party to apply for the Voluntary Remediation Program (VRP). Refer to the completed Voluntary Remediation Plan Application Form and Checklist which follows.

Voluntary Remediation Plan Application Form and Checklist

		VRP APP	LICANT INFORM	IATION				
COMPANY NAME	F.S. Associates , L.P. c/o	Kazmarek G	eiger & Laseter LLP					
CONTACT PERSON/TITLE	Scott Laseter							
ADDRESS	One Securities Center, Si	One Securities Center, Suite 201, 3490 Piedmont Road NE, Atlanta, Georgia 30305						
PHONE	404-812-0844 FAX 404-812-0845 E-MAIL slaseter@kglattorneys.com							
GEORGIA CERTI	FIED PROFESSIONAL	GEOLOG	SIST OR PROFES	SSIONAL EN	IGINEER C	VERSEEING CLEANUP		
NAME	Charles T. Ferry		No.	GA PE/PG N	UMBER	PE 10957		
COMPANY	MACTEC Engineering an	d Consulting,	, Inc.					
ADDRESS	396 Plasters Avenue							
PHONE	404-873-4761	FAX	404-817-0183	E-MAIL	CTFERRY@	DMACTEC.com		
	á:	APPLICA	ANT'S CERTIFIC	ATION				
(3) Qualifying the property und delegation or similar authoriza(4) Any lien filed under subse	ation from the United States action (e) of Code Section 1	te the terms a Environment 2-8-96 or su	and conditions under tal Protection Agency bsection (b) of Code	9		and administers remedial programs by e property shall be satisfied or settled and		
	articipant under the VRP:			have express p	ermission to e			
In order to be considered a pa (1) The participant must action.	articipant under the VRP: be the property owner of the	voluntary re	mediation property or	575.		enter another's property to perform corrective ement authority of the director.		
In order to be considered a participant must action. (2) The participant must action. I certify under penalty of law the that qualified personnel proper persons directly responsible fraware that there are significant	articipant under the VRP: be the property owner of the not be in violation of any or at this document and all atta- arly gather and evaluate the or gathering the information at penalties for submitting fa	e voluntary reader, judgment achments were information the information the information	mediation property or nt, statute, rule, or reg re prepared under my submitted. Based on tion submitted is, to the ion, including the pos	gulation subject direction or sup my inquiry of t ne best of my k sibility of fine a	to the enforce pervision in ac he person or nowledge and nd imprisonm	enter another's property to perform corrective ement authority of the director. cordance with a system designed to assure persons who manage the system, or those belief, true, accurate, and complete. I am		
In order to be considered a participant must action. (2) The participant must action. I certify under penalty of law the that qualified personnel proper persons directly responsible for aware that there are significant	articipant under the VRP: be the property owner of the not be in violation of any or at this document and all atta- erly gather and evaluate the or gathering the information at penalties for submitting fa-	e voluntary reader, judgment achments were information the information the information	mediation property or nt, statute, rule, or reg re prepared under my submitted. Based on tion submitted is, to the ion, including the pos	gulation subject direction or sup my inquiry of t ne best of my k sibility of fine a	to the enforce pervision in ac he person or nowledge and nd imprisonm	enter another's property to perform corrective ement authority of the director. Ecordance with a system designed to assure persons who manage the system, or those I belief, true, accurate, and complete. I ament for knowing violations.		

Mail completed Voluntary Remediation Plan Application Form and Checklist, Voluntary Remediation Plan, and \$5,000 Application Fee to: Georgia Hazardous Sites Response Program VRP Coordinator, Suite 1462
2 Martin Luther King Jr. Drive, SE Atlanta, GA 30334

	QUALIFYING PROPERTY IN	FORMATION -PROP	ERTY #1
TAX PARCEL ID	075001034A	PROPERTY SIZE (ACR	ES) 10.39
PROPERTY ADDRESS	1820 SE Highway 20		
CITY	Conyers	COUNTY	Rockdale
LATITUDE	33.640763	LONGITUDE	-84.013249
PROPERTY OWNER(S)	Hunting Creek Retail LLC	PHONE #	
MAILING ADDRESS	PO Box 450233		
CITY	Atlanta	STATE/ZIP	Georgia 31145
	QUALIFYING PROPERTY IN	FORMATION -PROP	ERTY #2
TAX PARCEL ID	07500134T	PROPERTY SIZE (ACR	ES) 0.65
PROPERTY ADDRESS	1830 SE Highway 20		
CITY	Conyers	COUNTY	Rockdale
LATITUDE	33.640763	LONGITUDE	-84.013249
PROPERTY OWNER(S)	Hunting Creek Retail LLC	PHONE #	
MAILING ADDRESS	PO Box 450233		
CITY	Atlanta	STATE/ZIP	Georgia 31145
	QUALIFYING PROPERTY IN	FORMATION -PROP	ERTY #3
TAX PARCEL ID	075001034U	PROPERTY SIZE (ACR	ES) 0.8
PROPERTY ADDRESS	1840 SE Highway 20		
CITY	Conyers	COUNTY	Rockdale
LATITUDE	33.640763	LONGITUDE	-84.013249
PROPERTY OWNER(S)	Hunting Creek Retail LLC	PHONE #	
MAILING ADDRESS	PO Box 450233		
CITY	Atlanta	STATE/ZIP	Georgia 31145
	QUALIFYING PROPERTY IN	FORMATION -PROP	ERTY #4
TAX PARCEL ID		PROPERTY SIZE (ACR	ES)
PROPERTY ADDRESS			
CITY		COUNTY	
LATITUDE		LONGITUDE	
PROPERTY OWNER(S)		PHONE #	
MAILING ADDRESS			
CITY		STATE/ZIP	

Please add additional sheets as necessary to include all qualifying properties.

ITEM#	DESCRIPTION OF REQUIREMENT	Location in VRP (i.e. pg., Table #, Figure #, etc.)	For EPD Comment Only (leave Blank)
1	\$5,000 APPLICATION FEE IN THE FORM OF A CHECK PAYABLE TO THE GEORGIA DEPARTMENT OF NATURAL RESOURCES.	Attached	
2	WARRANTY DEED(S) FOR EACH QUALIFYING PROPERTY(IES).	Appendix A	_
3	TAX PLAT OR OTHER FIGURE INCLUDING QUALIFYING PROPERTY(IES) BOUNDARIES, ABUTTING PROPERTIES, AND TAX PARCEL IDENTIFICATION NUMBERS.	Appendix A	
4	ONE (1) PAPER COPY AND TWO (2) COMPACT DISC (CD) COPIES OF THE VOLUNTARY REMEDIATION PLAN IN A SEARCHABLE PORTABLE DOCUMENT FORMAT (PDF).	Attached	
а	TABLE OF REGULATED SUBSTANCES RELEASED AT THE QUALIFYING PROPERTY.	Section 3.0	
b	TABLE OF SITE DELINEATION CONCENTRATION FOR EACH REGULATED SUBSTANCE ALONG WITH A REFERENCE TO THE SPECIFIC DELINEATION CRITERIA USED [i.e. 12-8-108(1)(A), 12-8-108(1)(B), 12-8-108(1)(C), 12-8-108(1)(E) FOR EACH REGULATED SUBSTANCE. CALCULATIONS FOR 12-8-108(1)(E) MUST BE INCLUDED TO DEMONSTRATE OTHER CRITERIA DO NOT EXCEED 12-8-108(1)(E)].	Appendix B	
i	SITE DELINEATION MAP OF MINIMUM SCALE OF 1"= 200' AND VERTICAL CROSS- SECTIONS SHOWING DELINEATION OF REGULATED SUBSTANCES TO SITE DELINEATION CONCENTRATIONS HORIZONTALLY AND VERTICALLY, INCLUDING PROPERTY BOUNDARIES. SITE DELINEATION MAY NOT BE EXTRAPOLATED.	Appendix C: Figures 6A, 6B, 7, 8, 9, 10, 11A and 11B	
С	TABLE OF CLEANUP STANDARDS FOR EACH REGULATED SUBSTANCE AND EACH MEDIA LISTED BELOW ALONG WITH A REFERENCE TO THE SPECIFIC CLEANUP STANDARD USED [i.e. DEFAULT TYPE 1 RRS, SITE SPECIFIC TYPE 2 RRS, DEFAULT TYPE 3 RRS, SITE SPECIFIC TYPE 4 RRS, OR TYPE 5 RRS]. COMPLETE CALCULATIONS MUST BE PROVIDED FOR EACH REGULATED SUBSTANCE IN EACH MEDIA.	Appendix E	
i	SOURCE	Section 4.0	
ii	SOIL (SOIL HORIZONS MUST BE SPECIFIED WHERE DEPTH-SPECIFIC SOIL CRITERIA ARE APPLIED)	Section 4.2 and Figures 10, 11A and 11B in Appendix C	
iii	GROUNDWATER IF THE APPLICANT IS REQUESTING REMOVAL FROM THE HAZARDOUS SITE INVENTORY PURSUANT TO 12-8-107(g)(2), A NOTATION TO THAT EFFECT MUST BE INCLUDED IN THE TABLE.	Section 6.2	
iv	VAPOR INTRUSION (PLEASE REFER TO THE FOLLOWING LINK: http://www.epa.gov/epawaste/hazard/correctiveaction/eis/vapor/complete.pdf)	Section 6.3	
v	SURFACE WATER (INCLUDING ECOLOGICAL RISK ASSESSMENT (http://www.gaepd.org/Documents/hsraquideCSRRRS.html - Ecological))	Section 5.2	
d	CURRENT STATUS OF QUALIFYING PROPERTY(IES)	Section 2.0 and 2.1	

i	NARRATIVE AND TABULAR SUMMARY OF ALL PERTINENT FIELD DATA AND THE RESULTS OF ALL FINAL LAB ANALYSES THAT ARE SUPPORTED BY SUFFICIENT QA/QC CONTROL DATA TO VALIDATE THE RESULTS. (NOTE: MOST RECENT GROUNDWATER DATA MUST HAVE BEEN COLLECTED WITHIN 6 MONTHS OF RECEIPT OF APPLICATION.)	Existing field and laboratory results have been summarized in previous submittals: PPCSR 2007, Amended PPCSR 2008, Response to GA EPD May 2009. QA/QC data from the most recent groundwater sampling is included in Appendix D.
ii	MAPS AND VERTICAL CROSS-SECTIONS OF APPROPRIATE SCALE DEPICTING CONCENTRATIONS FOR ALL REGULATED SUBSTANCES SUPERIMPOSED UPON SITE STRATIGRAPHIC FEATURES AND MONITORING WELLS. POINT OF DEMONSTRATION (POD) WELL MUST BE INCLUDED, IF APPLICABLE.	Appendix C: Figures 10, 11A and 11B
iii	DESCRIPTION OF ANY HUMAN OR ENVIRONMENTAL RECEPTORS WHO MAY HAVE BEEN OR COULD POTENTIALLY BE EXPOSED TO A RELEASE AT THE SITE.	Section 5.1 and 5.2
е	MAP (MINIMUM SCALE OF 1" = 200') OR LESS DEPICTING THE POTENTIOMETRIC SURFACE OF GROUNDWATER. POD WELL MUST BE INCLUDED, IF APPLICABLE.	Figure 4
f	FIGURE OF GROUNDWATER USAGE (DRINKING, IRRIGATION, ETC.) AND SURFACE WATER (RECREATIONAL, FISHING, ETC.) WITHIN THE AREA OF THE RELEASE AND 1,000' DOWNGRADIENT.	Not included at this time
g	ENUMERATE AND DESCRIBE ACTIONS PLANNED TO BRING THE QUALIFYING PROPERTY(IES) INTO COMPLIANCE WITH THE CLEANUP STANDARDS SPECIFIED IN 4.c. ABOVE. IF UTILIZING REPRESENTATIVE CONCENTRATIONS, DOCUMENTATION REGARDING THE EXPOSURE UNIT, EXPOSURE DURATION, EXPOSURE POINT CONCENTRATION, ETC. MUST BE INCLUDED.	Section 6.0
h	MODEL FOR POINT OF EXPOSURE: APPLICANT MUST EITHER PROVIDE A COPY OF THE MODEL OR LICENSE FOR USE, OR PURCHASING INFORMATION (PURCHASE OF A MODEL WILL BE BILLED TO THE APPLICANT BY EPD) ALONG WITH A TABLE OF ALL INPUT AND OUTPUT PARAMETERS AND SUPPORTING DOCUMENTATION. A SENSITIVITY ANALYSIS MUST ALSO BE INCLUDED.	Not included at this time
i	MILESTONE SCHEDULE INLCUDING SEMI-ANNUAL REPORTING AND SUBMITTAL OF A FINAL COMPLIANCE STATUS REPORT. GANTT CHART FORMAT PREFERRED.	Not included at this time
j	COST ESTIMATE FOR IMPLEMENTING THE CORRECTIVE ACTION AND ANY CONTINUING ACTIONS SPECIFED IN THE VOLUNTARY REMEDIATION PLAN.	Not included at this time

SIGNED AND SEALED PE/PG CERTIFICATION AND SUPPORTING DOCUMENTATION: "I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.) or excerpted from one or more previous reports submitted to the Georgia Environmental Protection Division and certified by a PE or PG. I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective k action, and long term monitoring. I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division. The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Signature and Stamp No. 10957 PROFESSIONAL

2.0 BACKGROUND

The subject site ("Site") is located at 1820, 1830 and 1840 Georgia Highway 20 South in Conyers, Rockdale County, Georgia, and is currently developed with an 136,871 square-foot strip shopping center and associated parking. The subject site consists of a shopping center, Hunting Creek Plaza, which contains of a variety of retail tenant spaces. A former dry cleaner, Esquire Cleaners, was located on the south end of the building.

The subject shopping center site consists of approximately 12 acres, comprised of three parcels identified on the Rockdale County Tax Assessor's website as Tax Parcel IDs 075001034A, 075001034T and 075001034U. The former dry cleaner was located on parcel A. A legal description of the property and plat map are included in Appendix A.

Several previous environmental assessments have been conducted at the property since 1997 which revealed the presence of volatile organic compounds (VOCs) in soil and groundwater. In 1997, an initial soil assessment was conducted at the subject site. Results of the 1997 soil assessment were submitted to Georgia Environmental Protection Division (EPD) as part of a Hazardous Site Response Act (HSRA) Release Notification. At that time, the Site was not listed on the Hazardous Site Inventory (HSI). Follow-up environmental assessments were conducted in 2005, as part of a potential property transaction, which consisted of both a soil and groundwater assessment. Results of the 2005 soil and groundwater assessment were submitted to the Georgia EPD. The Georgia EPD listed the subject site on the HSI as site number 10832 due to the presence of VOCs in groundwater at levels exceeding reportable quantities.

The only reason the Reportable Quantity Screening Method (RQSM) score for the Site exceeded the threshold was the presence of a private drinking water well located approximately ½-mile upgradient. F.S. Associates has requested re-evaluation of the original score for the Site because subsequent evaluation has shown that no DNAPL was present. This request is currently pending. F.S. Associates requests reconsideration under OCGA 12.8.107(g)(1) on these grounds.

2.1 PREVIOUS DOCUMENTS

The Site has been the subject of a number of environmental assessments conducted by various consultants between 1997 and 2008. Results of soil and groundwater assessment activities indicate that a release of

regulated substances to soil and groundwater has occurred at the Site. This Voluntary Remediation Plan (VRP) Application are based at least partly on information obtained from the following reports.

- Initial HSRP Initial Release Notification, submitted by F.S. Associates, L.P., dated December 19, 1997.
- Letter by Georgia EPD to F.S. Associates, L.P., "No Listing" on Hazardous Site Inventory, dated December 24, 1997.
- HSRP Release Notification, submitted by F.S. Associates, L.P., dated January 30, 2006.
- Letter by Georgia EPD to F.S. Associates, L.P., Listing of Hunting Creek Plaza on Hazardous Site Inventory, dated March 21, 2006.
- Prospective Purchaser Corrective Action Plan, prepared by Peachtree Environmental for Rose City Village Affordable Housing LP, Dylan/Bristol, LLC, and Bristol Equities, Inc., dated August 2006.
- Letter by Georgia EPD to Rose City Village Affordable Housing LP, Dylan/Bristol, LLC, and Bristol Equities, Inc., Approval of Prospective Purchaser Corrective Action Plan, dated September 6, 2006.
- Prospective Purchaser Compliance Status Report, prepared by Peachtree Environmental for Rose City Village Affordable Housing LP, Dylan/Bristol, LLC, and Bristol Equities, Inc., dated July 2007.
- Amended Prospective Purchaser Compliance Status Report, prepared by Peachtree Environmental for Rose City Village Affordable Housing LP, Dylan/Bristol, LLC, and Bristol Equities, Inc., dated March 2008,
- Summary of Corrective Actions for Hunting Creek Shopping Center, prepared by Peachtree Environmental for F.S. Associates, L.P., dated August 29, 2008.
- Draft Petition for the Site to be "delisted" from the Hazardous Site Inventory, prepared by Kazmarek Geiger & Laseter LLP, dated February 9, 2009.
- Letter by Georgia EPD to Kazmarek Geiger & Laseter LLP, requesting additional information, dated April 9, 2009.
- Response to Georgia EPD request for additional information, prepared by Peachtree Environmental, dated May 20, 2009.

It is assumed that each of the above documents are in the possession of EPD for purposes of this application.

2.2 CHRONOLOGY OF EVENTS

In December 1997, a limited environmental investigation was performed at the subject site, which focused on the area of Esquire Cleaners. At that time, only soil samples were collected during the investigation and tetrachloroethene (PCE) was detected above the HSRA notification concentration. No groundwater samples were collected. The Georgia EPD was notified as to the presence of PCE in soil. Because no groundwater impact was reported, the EPD scored the Site as having a "suspected" release to groundwater with the nearest drinking water well within ½-mile of the Site. Based on EPD's evaluation, the Site was not listed on the HSI and a "no listing" letter was issued on December 24, 1997.

In September 2005 and again in November 2005, follow-up limited environmental investigations were performed which included the installation of several soil test borings along with three shallow groundwater monitoring wells and two deep bedrock groundwater monitoring wells. PCE was detected above the notification concentration in several of the soil borings. Additionally, PCE was also detected in the groundwater. As a result, a second HSRA release notification was submitted to the Georgia EPD in January 2006. The Site was listed on the HSI as Site No. 10832 because the PCE detected in groundwater was at a concentration above 1% of solubility, which EPD interpreted as indicative of the possible presence of dense non-aqueous phase liquid (DNAPL), combined with the previous finding of a drinking water well present within ½-mile of the Site.

A Prospective Purchaser Corrective Action Plan (PPCAP) was submitted to EPD in August 2006 on behalf of Rose City Village Affordable Housing LP, Dylan/Bristol, LLC, and Bristol Equities, Inc. This PPCAP was approved by EPD in September 2006. The PPCAP was implemented from August to December 2006. The soil corrective actions implemented at the Site consisted of the excavation and offsite disposal of approximately 45 tons of impacted soil and in-situ chemical oxidation treatments of the remaining impacted soil.

Following completion of the soil corrective action activities, there has been various submittals to the Georgia EPD as noted in the preceding list.

3.0 REGULATED SUBSTANCES

Results of soil and groundwater assessment activities indicate that a release of regulated substances to soil and groundwater has occurred at the Site.

According to the July 2007 "Prospective Purchaser Compliance Status Report" prepared by Peachtree Environmental, Inc., the most likely source of the release at the Site was the previous operation (1988 to 2005) of a dry cleaning facility located at the south end of the shopping center building.

The regulated substances identified in soil at the Site include: tetrachloroethene (CAS No. 127-18-4), trichloroethene (CAS No. 79-01-6), acetone (CAS No. 67-64-1), chloroform (CAS No. 67-66-3), methyl acetate (CAS No. 79-20-9), xylenes (CAS No. 133-020-7), ethylbenzene (CAS No. 100-41-4), toluene (CAS No. 108-88-3) and 2-butanone (CAS No. 78-93-3).

The regulated substances identified in groundwater at the Site include: tetrachloroethene (CAS No. 127-18-4), acetone (CAS No. 67-64-1) and chloroform (CAS No. 67-66-3).

4.0 ASSESSMENT ACTIVITIES

Results of soil and groundwater assessment activities indicate that a release of regulated substances to soil and groundwater has occurred at the Site. The data collected during these investigations and assessment conclusions have been summarized in various submittals to the Hazardous Site Response Program (HSRP) which include: July 2007 PPCSR, March 2008 Amended PPCSR and May 2009 Response to Georgia EPD Request for Additional Information. However, in support for the preparation of this VRP, MACTEC has conducted a limited groundwater assessment in order to characterize the current conditions of groundwater at the Site.

4.1 SOIL DATA

The potential for soil contamination was investigated over a period of time between December 1997 and January 2008. The assessment of soil contamination was accomplished through the installation and sampling of drilled soil borings, Geoprobe borings and hand auger borings.

The results of the previous assessments were summarized in the July 2007 PPCSR and the March 2008 Amended PPCSR. Refer to the attached tables and figures in Appendix B and C, respectively.

Refer to these documents for sampling methodology and laboratory reports, including all quality assurance/quality control procedures.

Remediation of the PCE contaminated soil was initiated between August to December 2006. The remediation efforts consisted of both excavation and offsite disposal of approximately 45 tons of soil and in-situ chemical oxidation treatments through the injection of persulfate and permanganate.

Completion of the remediation activities were confirmed through verification samples which were summarized in the July 2007 PPCSR and the March 2008 Amended PPCSR. Refer to the attached tables and figures in Appendix B and C, respectively.

Refer to these documents for sampling methodology and laboratory reports, including all quality assurance/quality control procedures.

4.2 SITE HYDROGEOLOGY

The subject site is located in the Piedmont Physiographic Province. The Piedmont parallels the eastern edge of the North American continent south of New England and east of the Blue Ridge Province. The Piedmont is the non-mountainous part of the Appalachians, and slopes generally from the mountains toward the Coastal Plain. In general, the northwest boundary of the Piedmont is at the foot of the mountains. The southeastern boundary is located where the crystalline rocks of the Piedmont are overlain by the younger sediments of the Coastal Plain.

The subject site is underlain by late Precambrian to early Paleozoic bedrock of the Clairmont Formation of the Atlanta Group. The Clairmont Formation in the area of the Site is mapped as consisting of interlayered medium-grained biotite-plagioclase gneiss and fine to medium grained hornblende-plagioclase amphibolite. The residual soils present in this geologic area have been formed by the in-place chemical and physical weathering of the parent rock types. Weathering is facilitated by fractures, joints, and by the presence of less resistant rock types. The typical residual soil profile consists of clayey soils near the ground surface, where soil weathering is more advanced, transitioning to sandy silts and silty sands that generally become harder with depth to the top of parent rock.

Numerous investigative borings have been completed at the Site. Across the Site, 2 to 10 feet of fill comprised the upper portion of the soil profile. The fill is underlain by typical residual soils and the depth to bedrock, as previously reported, was encountered at a depth ranging from 6 to 18 feet. The extent of VOCs present in soil at the Site were depicted on the cross-section presented in the July 2007 PPCSR, the March 2008 Amended PPCSR and the May 2009 EPD Response letter prepared by Peachtree Environmental. These cross-sections have been included in Appendix C.

In the Piedmont Geologic Region, groundwater generally occurs under water table conditions and is stored in the overlying mantle of residuum and in the structural features (i.e., joints, fractures, faults) present in the underlying rock. Recharge to the water table occurs primarily through precipitation infiltrating the upper soils and percolating downward, under the influence of gravity, to the groundwater table. Typically, the water table is not a level surface, but a subdued reflection of the land surface. Depth to the water table is variable, being dependent on many factors which include: the amount of rainfall, the permeability of the soil, the extent of fracturing in the underlying rock, and the amount of groundwater being pumped from the underlying aquifer.

Groundwater beneath the HSI Site occurs under unconfined or water table conditions.

As stated earlier, the water table is generally a subdued replica of the topographic surface. Therefore, groundwater at the Site is expected to flow from northwest to southeast. The depth to groundwater was measured by MACTEC in each well from the top of the well casing in all five monitoring wells on Site on January 21, 2010. These depths were used to calculate the elevation of the groundwater in each well, develop groundwater elevation contours and interpret the flow direction. Depths to groundwater ranged from approximately 5.4 feet to 13.7 feet, as tabulated in Table 2. The water table surface for the Site is shown on Figure 4 and confirms a general groundwater flow direction to the east-southeast in the impacted portion of the Site.

4.3 GROUNDWATER DATA

During Peachtree Environmental's December 2005 assessment, five groundwater monitoring wells were installed, one along the western and southern end and three along the eastern end in the parking area behind the dry cleaning premises. Three shallow groundwater monitoring wells (MW-1, MW-3, MW-4) and two deep bedrock monitoring wells (MW-2, MW-5) were installed. Refer to the July 2007 PPCSR and the March 2008 Amended PPCSR for the well installation and construction methods. The locations of the groundwater monitoring wells and the groundwater testing results, previously submitted to EPD, are shown on the attached tables and figures in Appendices B and C, respectively. Refer to these documents for sampling methodology and laboratory reports, including all quality assurance/quality control procedures. Groundwater testing indicated PCE was present in two of the five wells, at concentrations ranging from 92 μ g/L (micrograms per Liter) up to 2,400 μ g/L along the eastern end in the parking area behind the dry cleaning premises.

4.4 SAMPLING AND ANALYSIS PROCEDURES

In support of this application, MACTEC sampled four of the five monitoring wells in order to characterize the current conditions of groundwater at the Site. The fifth well, MW-2, was not sampled because the well is situated over 300 feet upgradient from the former dry cleaner and the documented release to groundwater. In addition, historical groundwater testing at this well has shown no impacts of regulated constituents. The collected samples were submitted to Analytical Environmental Services, Inc. (AES) and tested for the presence of VOCs. AES maintains a current National Environmental Laboratory Accreditation Conference (NELAC) certification for the analysis of VOCs.

Prior to sampling, the wells were purged by removing a minimum of three well volumes of water using a peristaltic pump for the three shallow monitoring wells (MW-1, MW-4 and MW-5) and a submersible pump for the deep monitoring well (MW-3). The water quality parameters of temperature, pH, specific conductivity and turbidity were measured during well development. Development of the wells continued until these parameters stabilized, indicating the presence of representative formation water in the well.

Groundwater samples were collected by MACTEC and poured into clean sample containers, supplied by the laboratory, which contained the preservative appropriate for each test. Clean latex gloves were worn during all purging and sampling activities and were changed between each well location.

Following sample collection, the bottles were stored on ice in a cooler until they were transferred to the laboratory. The samples were maintained under chain-of-custody control from the time they were collected until they were relinquished to the laboratory. Chain-of-Custody records documenting the transfer of the samples to the laboratory were maintained and are included in the laboratory reports in Appendix D. Trip blanks prepared by the laboratory were also submitted for testing. QA/QC was conducted in accordance with the laboratory analysis selected. Backup QA/QC data for these samples is included in the laboratory reports in Appendix D.

Following delivery to the laboratory, the groundwater samples were analyzed for VOCs (SW-846 Test Method 8260B).

4.5 SUMMARY OF PERTINENT GROUNDWATER TESTING DATA

This recent groundwater testing indicated that PCE was detected in wells MW-4 and MW-5 at concentrations of $77 \mu g/L$ and $980 \mu g/L$, respectively, which has decreased significantly since the last sampling event conducted by Peachtree Environmental in July 2008. VOCs were not detected in groundwater samples collected from MW-1 and MW-3.

The complete results of the recent groundwater testing, along with previous test results reported to the Georgia EPD, are presented in Table 1 and graphically depicted on Figure 3. The complete laboratory reports for the 2010 groundwater sampling event conducted by MACTEC are presented in Appendix D.

5.0 POTENTIAL RECEPTORS AND RISK REDUCTION STANDARDS

The information presented in this section is restated from previous reports and, inpart, supplemented by recent research.

5.1 WATER USAGE

In 2005 Peachtree Environmental conducted a water usage survey to identify drinking water sources within a one mile radius of the Site. Four drinking water wells were identified within ½ to 1 mile of the Site. According to an EPD trip report dated March 1, 2006, EPD confirmed that two of the wells no longer exist, one of the wells is used only for irrigation and one of the wells is used as a potable water source. The active private drinking water well was reportedly located at 2150 Miller Chapel Road which is approximately a distance of ½-mile.

On February 1, 2010 MACTEC contacted Mr. Alvin Vaughn, current property owner at 2150 Miller Chapel Road, in order to confirm the current use of the private drinking water well. According to Mr. Vaughn, the private residence located at 2150 Miller Chapel Road was converted to an office in 2007. He indicated that the private well is being used to supply drinking water to office space located at 2150 Miller Chapel Road. Based on measurements obtained using Rockdale County Parcel Maps, MACTEC has determined the distance between the private well and the nearest impacted on-Site monitoring well MW-5 to be at least 2760 feet, which is slightly more than ½-mile. Further, based on potentiometric measurements and regional topography, this well is located upgradient from the Site.

5.2 ENVIRONMENTAL RECEPTORS

The subject Site is located in an area of commercial and multi-family residential development. Common environmental receptors in such areas are typically limited to surface water bodies and wetland areas. An exposure assessment was evaluated and reported in the July 2007 PPCSR and the March 2008 Amended PPCSR. In summary, soil testing has detected VOCs in subsurface soils and potential exposure pathways would most likely be vis-à-vis ground disturbing and/ or excavation activities. The potential exposure to ecological receptors through surface water bodies was previously regarded as low.

5.3 VAPOR INTRUSION

The results of the subsurface investigations identified the presence of chlorinated solvents in the groundwater on the southern end of the subject site. To date, an evaluation of the potential for vapor intrusion from the groundwater contamination has not been performed. As such, the potential for vapor intrusion will be evaluated in accordance with the February 22, 2004 USEPA "User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings."

5.4 RISK REDUCTION STANDARDS

The subject site is a commercial property in Conyers, Georgia. The Site lies in an area upgradient of additional commercial properties for a considerable distance. Therefore, non-residential risk reduction standards (RRS) apply.

5.4.1 Soil Criteria

One HSRA regulated constituent, PCE, was detected in soil above its HSRA notification concentration (NC) during previous environmental assessments. Nine additional regulated VOCs were also detected, but not at concentrations above their respective NC concentrations.

The applicable RRS for all constituents detected in soil on Site were presented in the July 2007 PPCSR and the March 2008 Amended PPCSR. The RRS calculations have been included in Appendix E.

5.4.2 Groundwater Criteria

Three HSRA regulated constituents, tetrachloroethene, acetone and chloroform, were detected in groundwater at the subject site. To date, applicable RRS have not been calculated for the regulated constituents released to groundwater. However, since the applicant proposes to use the applicable Type 1/3 RRS concentrations provided in Appendix III Table 1 of the Georgia Rules for Hazardous Site Response 391-3-19, no further calculations appear to be necessary.

6.0 PROPOSED CORRECTIVE ACTION

It is the intent of the responsible party, F.S. Associates, L.P., to remove the Site from the HSI through implementation of an efficient voluntary remediation plan which is protective of human health and the environment. This section outlines the proposed correction actions anticipated to satisfy the requirements set forth in the Georgia Voluntary Remediation Program Act.

6.1 SOIL

A Prospective Purchaser Corrective Action Plan (PPCAP) was submitted to EPD in August 2006 by Rose City Village Affordable Housing LP, Dylan/Bristol, LLC, and Bristol Equities, Inc. The PPCAP was approved by EPD via a letter dated September 6, 2006.

During the implementation of the approved PPCAP, soil corrective actions were conducted which consisted of the excavation and off-site disposal of approximately 45 tons of impacted soil and in-situ chemical oxidation treatments of the remaining impacted soil.

Following completion of the soil corrective action activities, there have been various submittals to the Georgia EPD including: Prospective Purchaser Compliance Status Report dated July 2007, Amended Prospective Purchaser Compliance Status Report dated March 2008, Summary of Corrective Actions dated August 2008 and Response to Georgia EPD request for additional information dated May 20, 2009.

In summary, EPD has requested additional soil testing be conducted at the Site to determine if contamination exists along and below the underground utilities in the vicinity of the former dry cleaners. It is our understanding that the EPD has drafted a response to Peachtree Environmental's May 20, 2009 Response to Georgia EPD Request for Additional Information, which has not yet been issued. Following receipt of EPD's comments, the soil conditions will be further evaluated which may include additional soil sampling and analysis for the constituents detailed in Section 3.0..

Identified areas of impacted soil will be treated in-situ and/or excavated to the limits determined through delineation sampling to demonstrate compliance with applicable criteria, which may incorporate provisions of the VRP, including but not limited to code sections 12-8-102 and 12-8-108. Delineation

samples will be collected at intervals to be negotiated with EPD, depending on the remediation methodology and practical considerations.

Excavated material that requires off-site disposal will be placed into roll-off boxes, stockpiled with appropriate cover and erosion control, or direct loaded onto trucks for immediate transport. Handling, transport, and disposal of the source material/soil will be performed using methods that 1) prevent contamination of the surrounding environment (soil, water, air), 2) are in accordance with federal, state, and local laws, and 3) protect personnel in the excavation area and adjacent areas.

Disposal characterization samples of materials to be removed from the Site will be collected and analyzed by a qualified laboratory for parameters specified by a permitted disposal facility. Excavated impacted soil will be transported in compliance with all applicable regulations for transporting such wastes and disposed at a pre-approved disposal facility permitted to accept the designated waste.

The work will involve the handling of materials containing substances that are potentially detrimental to the health and safety of construction personnel. The work will be performed in compliance with applicable OSHA regulations in accordance with a project-specific Health, Safety and Emergency Response Plan.

6.2 GROUNDWATER

As described in Section 4.3, regulated substances have been detected in the groundwater on-site and documented through the submittals to the Georgia EPD. In support for the preparation of this application, MACTEC sampled four of the monitoring wells, designated as MW-1, MW-3, MW-4 and MW-5, in order to characterize the current conditions of groundwater at the Site. Recent groundwater testing indicated that PCE in groundwater at MW-4 and MW-5 has decreased significantly since the last sampling event conducted by Peachtree Environmental in 2008. No VOCs were detected in the groundwater samples collected from MW-1 and MW-3.

According to a March 1, 2006 EPD memorandum, the groundwater pathway score exceeded the threshold value using the reportable quantity screening method, despite the fact that the private drinking water well located 2150 Miller Chapel Road is located hydraulically upgradient from the Site. EPD asserted that DNAPL may be present given that PCE was detected in one monitoring well (MW-5) at a concentration

above 1% of the solubility of PCE. As such, EPD indicated the private drinking water well located at 2150 Miller Chapel Road, which is upgradient from the Site, is a potential receptor.

The current groundwater analytical data exhibits a maximum PCE concentration on-Site of 980 μ g/L in MW-5, which is less than 1% solubility. Therefore, the applicant requests re-evaluation of RQSM as part of this application because there appears to have been no material DNAPL at the time of the original scoring. As such, no groundwater exposure pathway exists in relation to the private well or downgradient of the contaminant plume.

If warranted, supplemental well locations may be selected for the purpose of completing delineation of the contaminant plume in groundwater. Groundwater samples from any new wells will be analyzed for VOCs. Additionally, in-situ hydraulic conductivity tests will be performed at selected monitoring well locations for use in the preparation of a fate and transport model acceptable to EPD. A hypothetical point of drinking water exposure and a demonstration well will then be established for fate and transport model verification monitoring.

6.3 VAPOR INTRUSION

The results of the subsurface investigations identified the presence of chlorinated solvents in the groundwater on the southern end of the subject site. To date, there has been no evaluation of the potential for vapor intrusion from the groundwater contamination. As such, the potential for vapor intrusion will be evaluated in accordance with the February 22, 2004 USEPA "User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings."

7.0 FUTURE SUBMITTALS

Upon acceptance of the VRP application, a milestone schedule and cost estimate to implement the planned activities will be submitted to EPD.

The applicant requests guidance from EPD on how the agency proposes to conduct re-evaluation under OCGA 12.8.107(g)(1).

Upon completion of the planned activities, a Compliance Status Report (CSR) will be submitted to EPD for review. The CSR will be prepared in accordance with the statute and applicable rules.

At the time of submittal, it is anticipated that certification of compliance with applicable soil criteria will be made along with a request for delisting from the HSI.

TABLES

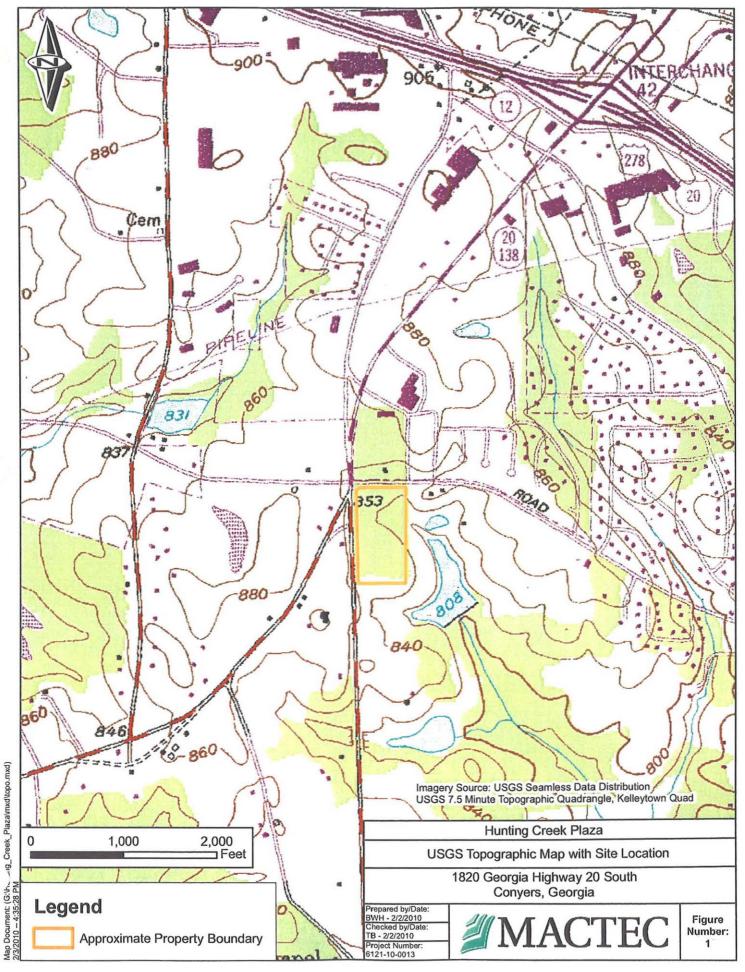
HUNTING CREEK PLAZA 1820 GEORGIA HIGHWAY 20 SOUTH CONYERS, GEORGIA

TABLE 1 - GROUNDWATER ELEVATION DATA JANUARY 2010 SAMPLING EVENT

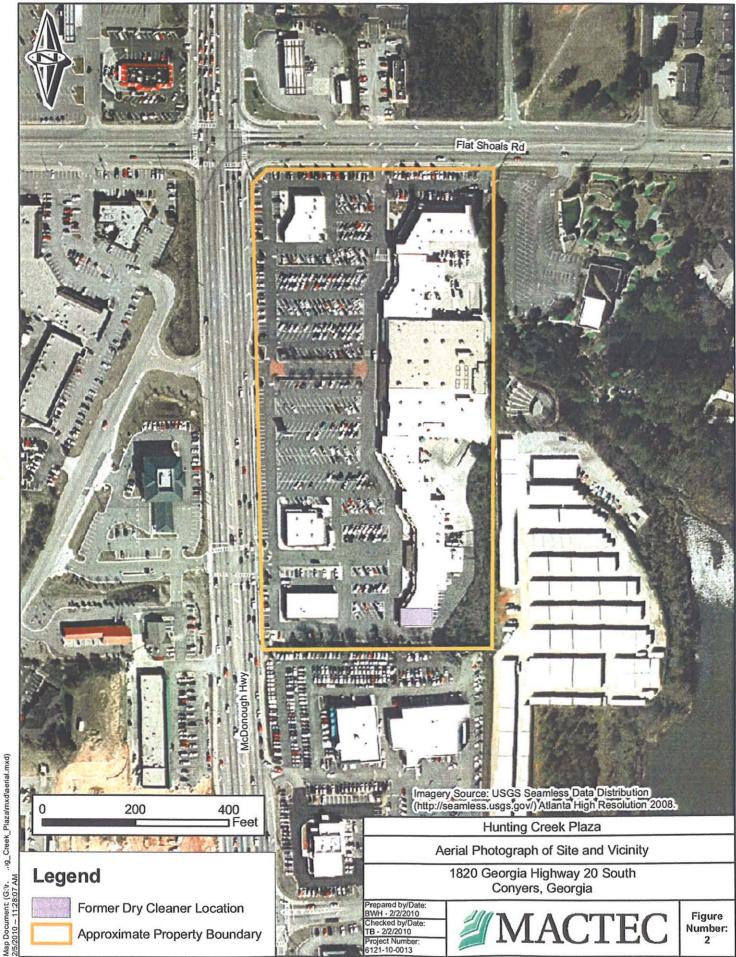
Well ID	Well Elevation, FT*	Depth of Well, FT	Well Screen Interval, FT	Depth to Water, FT	Groundwater Elevation, FT
MW-1	845.42	18.5	8-18	13.17	832.25
MW-2	852.10	57	Open Hole	5.48	846.62
MW-3	845.08	61	Open Hole	12.34	832.74
MW-4	844.78	17	7-17	12.75	832.03
MW-5	845.81	16.85	6.85-16.85	13.73	832.08

^{*} Relative to documented geodetic elevations

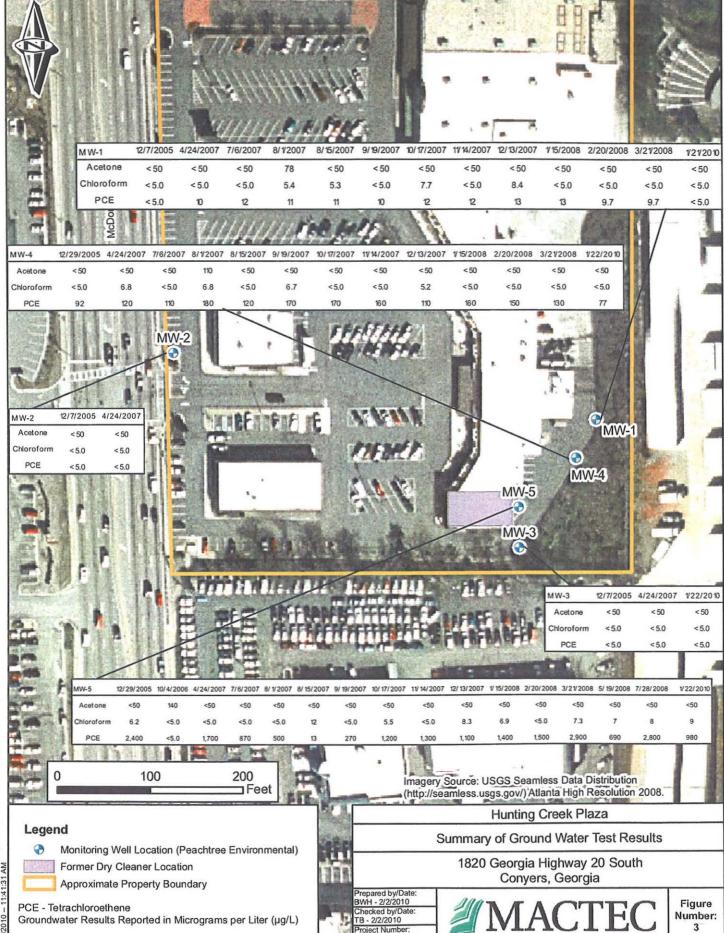
HUNTING CREEK SHOPPING CENTER 1820 GEORGIA HIGHWAY 20 SOUTH MARIETTA. GEORGIA


TABLE 2 - SUMMARY OF GROUNDWATER TESTING RESULTS HISTORICAL EVENTS

			VOCs, µg/L		
Sample ID	Date	Tetrachloroethene	Chloroform	Acetone	
	12/7/2005	<5.0	< 5.0	<50	
	4/24/2007	10	<5.0	<50	
	7/6/2007	12	<5.0	<50	
	8/1/2007	11	5.4	78	
	8/15/2007	11	5.3	<50	
	9/19/2007	10	<5.0	<50	
MW-1	10/17/2007	12	7.7	<50	
	11/14/2007	12	<5.0	<50	
	12/13/2007	13	8.4	<50	
	1/15/2008	13	<5.0	<50	
	2/20/2008	9.7	<5.0	<50	
	3/21/2008	9.7	<5.0	<50	
	1/21/2010	<5.0	<5.0	<50	
MW-2	12/7/2005	<5.0	<5.0	<50	
IVI W -2	4/27/2007	<5.0	<5.0	<50	
	12/7/2005	<5.0	<5.0	<50	
MW-3	4/27/2007	<5.0	<5.0	<50	
	1/22/2010	<5.0	<5.0	<50	
	12/29/2005	92	<5.0	<50	
	4/24/2007	120	6.8	<50	
	7/6/2007	110	<5.0	<50	
	8/1/2007	180	6.8	110	
	8/15/2007	120	<5.0	<50	
	9/19/2007	170	6.7	<50	
MW-4	10/17/2007	170	<5.0	<50	
	11/14/2007	160	<5.0	<50	
	12/13/2007	110	5.2	<50	
	1/15/2008	160	<5.0	<50	
	2/20/2008	150	<5.0	<50	
	3/21/2008	130	< 5.0	<50	
	1/22/2010	77	<5.0	<50	
	12/29/2005	2400	6.2	<50	
	10/4/2006	<5.0	<5.0	140	
	4/24/2007	1700	<5.0	<50	
	7/6/2007	870	<5.0	<50	
	8/1/2007	500	<5.0	<50	
	8/15/2007	13	12	<50	
	9/19/2007	270	< 5.0	<50	
N4137 5	10/17/2007	1200	5.5	<50	
MW-5	11/14/2007	1300	<5.0	<50	
	12/13/2007	1100	8.3	<50	
	1/15/2008	1400	6.9	<50	
	2/20/2008	1590	< 5.0	<50	
	3/21/2008	2900	<5.0	< 50	
	5/19/2008	690	7	<50	
	7/28/2008	2800	8	<50	
	1/22/2010	980	9	<50	


Notes:

Results in $\mu g/L$ - micrograms per liter Bold type denotes above laboratory detection limits Non-bold type denotes laboratory detectin limits


FIGURES

...g_Creek_Plaza\mxd\topo.mxd)

...g_Creek_Plaza\mxd\aerial.mxd)

6121-10-0013

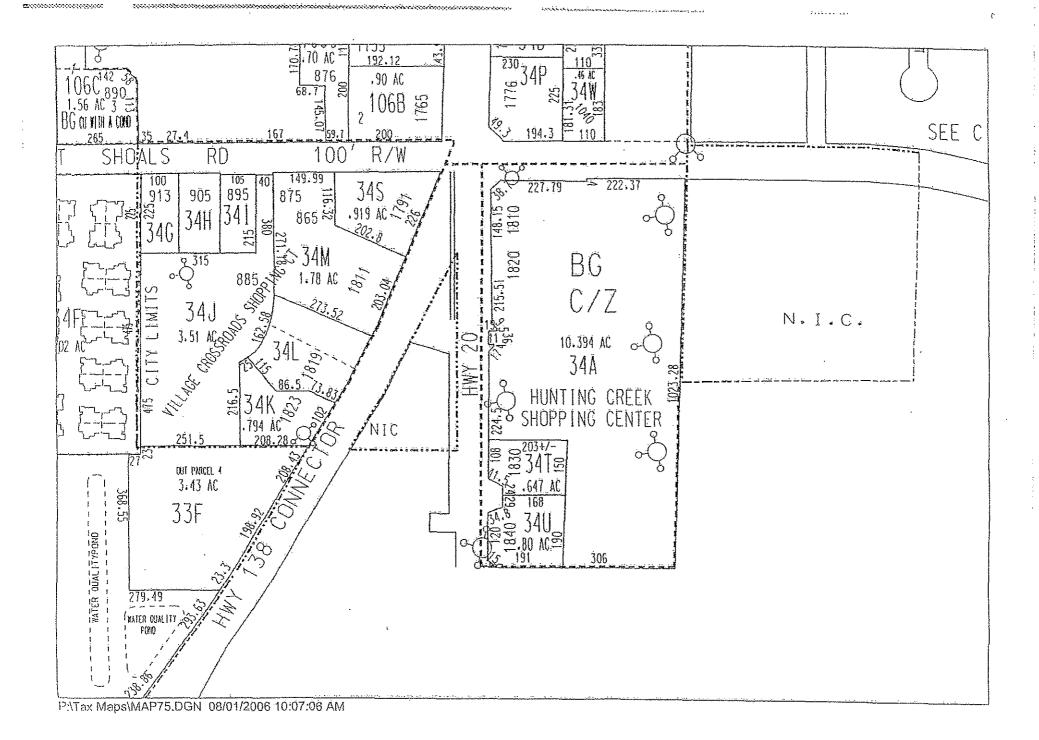
Map Document: (G:\h._..ng_Creek_Plaza\mxd\GW_Test_Results.mxd) 2/5/2010 – 11:41:31 AM

5:1. .g_Creek_Plaza\mxd\Potentiometric_Surface3.mxd)

Map Document (G:\v. .g_C 2/9/2010 — 3:42:59 PM APPENDIX A
LEGAL DESCRIPTION

All that tract or parcel of land lying and being in Land Lot 243 of the 10th District of Rockdale County, Georgia, and being more particularly described as follows:

Beginning at a one-half inch rebar at the intersection of the southerly right-of-way line of Flat Shoals Road (100 foot right-of-way) and the easterly right-of-way line of McDonough Highway (Georgia Route No. 20 and No. 138) (80 foot right-of-way); running thence South 88 degrees 45 minutes 00 seconds Bast along the southerly right-of-way line of Flat Shoals Road 546.12 feet to a concrete right-of-way monument; running thence South 01 degrees 19 minutes 30 seconds West 1022.90 feet to a one-half inch rebar; running thence North 89 degrees 01 minutes 40 seconds West 504.00 feet to a one-half inch rebar on the easterly right-of-way line of said McDonough Highway; running thence North 01 degrees 01 minutes 40 seconds West along the easterly right-of-way line of said McDonough Highway 1026.15 feet to a one-half inch rebar and the point of beginning; as per survey for F.S. Associates, Ltd., dated July 14, 1986, last revised September 25, 1986, by Loo-Turley & Associates, P.C., Richard Loo, Registered Land Surveyor No. 2129; and containing 12.3449 acres according to said survey.


LESS AND EXCEPT:

Rights to property contained in that certain Limited Warranty Deed from F.S. Associates, Ltd., a Georgia limited partnership, whose general partners are Charles A. Lotz, Jr., and Henry H. Wirth to The Georgia Department of Transportation, dated Angust 17, 1987, filed for record August 18, 1987 at 11:53 o'clock a.m., recorded in Deed Book 378, page 71, aforesaid records.

Rights to property conveyed in that certain Conveyance of Access Rights from F.S. Associates, Ltd. to Georgia Department of Transportation, dated August 18, 1987, filed for record August 19, 1987 at 10:35 o'clock a.m., recorded in Deed Book 378, page 157, aforesaid records.

Easements contained in that certain Right of Way Deed from F.S. Associates, L.P. to Georgia Department of Transportation, dated April 25, 1995, filed for record July 12, 1995 at 2:39 o'clock p.m., recorded in Deed Book 1129, page 221, aforesaid records.

Easements contained in that certain Condemnation Suit No. 97-CV-2062V by and between Department of Transportation (Plaintiff) and 0.3303 acres of land; and certain easement rights; and P.S. Asso. Ltd.; The Lomas and Nettlton Company a/k/a Lomas Mortgage USA. Inc.; Household Bank, FSB; McMichael's Construction Co. Inc.; et al., filed for record July 17, 1997, recorded in Deed Book 1436, page 1, aforesaid records.

PRECEIVED TAKE AND THE 2006 5:03PN FAX Station : PRACHIRE SERVIRONMENTAL TINE.

BODY 039 197 401

STATE OF GEORGIA COUNTY OF FULTON

WARRANTY DEED

TRIS INDENTURE made as of the and day of October, 1986, by and between ELAT SHOALS, LID., a Caorgia Limited partnership, whose general partners are JAMES T. ROE, 111, and HENRY H. WIRTH, party of the first part, hereinafter referred to as "Grantor", and F.S. ASSOCIATES, LTD., a Georgia limited partnership, whose general partners are CHARLES A. LOTZ. JR., and HENRY W. WIRTH, party of the second part, hereinafter referred to as "Grantee". The words "Grantor" and "Grantee" to include the neuter, masculine and feminine genders, the singular and the plural:

WITNESSETH:

FOR AND IN CONSIDERATION of the sum of Ten Dollars in hand paid and other good and Valuable consideration delivered to Grantor by Grantee at and before the execution, seeling and delivery hereof, the receipt and sufficiency of which is hereby acknowledged, Grantor has and hereby does grant, bargain, sell and convey unto Grantee:

All that tract or parcel of land lying and being in Land Lot 243 of the 10th District of Rockdale County, Georgia, being more particularly described on Exhibit "A" attached hereto and incorporated herein by reference.

TO HAVE AND TO HOLD said tract or parcel of land, together with any and all of the rights, members and appurtenances thereof to the same being, belonging or in envuise appertaining to the only proper use, benefit and behoof of the Grantee and the heirs. legal representatives, successors and assigns of Grantee, forever, in fee simple.

AND, subject to those encumbrances and other exceptions to title described on Exhibit "B" attached hereto and incorporated herein by reference, Drantor shall warrant and forever defend the right and title to said tract or parcel of land unto the Grantee and the heirs, legal representatives, successors and exeigns of Grantee, against the claims of all persons whomspever.

IN WITNESS WHEREOF, the Grantor has signed and sealed this

	deed, the day and year first above	written.		
	Signed, sealed and delivered in the presence of: Witness J. Marilla	By: James T. Roe. 111 General Partner	EAŢ.)	
	Noticy Public Operations State as Luige (SEAT) COM Manufactures State as Luige (SEAT) COM Manufactures Com M	By: Many H. With 15E	ğ.)	
,ť	Microse () Microse Euglisc Hotists Euglisc 10129 80		OB OCT 30	ANCKDALE C
	Acid	8001 53 mold Transfer To 1 2072 10 10.31-86 FOUR D. HODAUD	M 9: 39	County CHORS

2002

Received tax: Aug 36-2006-5-03PM Fax Station; PEACHTREE2ENVIRONMENTAL INC. 3 pc 3

appn: 339 - 151 402

EXHIBIT "A"

All that tract or parcel of land lying and being in Land Lot 243 of the 10th District of Rockdale County. Georgia, and being more particularly described as follows:

Beginning at a one-half inch rebar at the intersection of the coutherly right-of-way line of flat Shoals Read (100 foot right-of-way) and the easterly right-of-way line of McDonough Mighway (Georgia Route No. 20 and No. 138) (80 foot Mighway (Georgia Route No. 20 and No. 138) (80 foot Mighway); running thence South BB degrees 45 minutes 00 right-of-way); running the southerly right-of-way line of Flat Shoals Road 546.12 feet to a concrete right-of-way monument: running thence South 01 degrees 19 minutes 30 seconds West running thence North 99 feet to a one-half inch rebar; running thence North 99 inch rebar on the easterly right-of-way line of said McDonough Highway; running thence North 01 degrees 01 minutes 40 seconds West along the easterly right-of-way line of said McDonough West along the easterly right-of-way line of said McDonough West along the easterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDonough West along the sasterly right-of-way line of said McDono

UNITY SK

Received Fax: Aug 16-2006/55/03PN Fax Station: PEACHIREC ENVIRONMENTAL INC. p. 4

BOOY 339 PAGE 403

EXHIBIT "B"

- A sanitary sever easement from Flat Shoals, Ltd: to City of Convers, Georgia, executed on April 4, 1985, and recorded on July 12, 1985 in Deed Book 285, Page 58, Rockdale County Records.
- 2. A sanitary sewer easement from Flat Shoals, Ltd. to City of Conyers, Georgia, dated October 2, 1986, and recorded in Deed Book 339, Page 198, aforesaid Report.
- A Right-of-Way Deed from Mrs. E. A. Armstrong to State Highway Department of Georgia, dated September 7, 1962, recorded September 25, 1962 in Deed Book 45, Page 394, Rockdale County Records.
- All matters shown on survey for F.S. Associates, Ltd., dated July 14, 1986, last revised September 25, 1986 by Loo-Turley & Associates, P.C., Richard Loo, Georgia Registered Land Surveyor No. 2129.

149

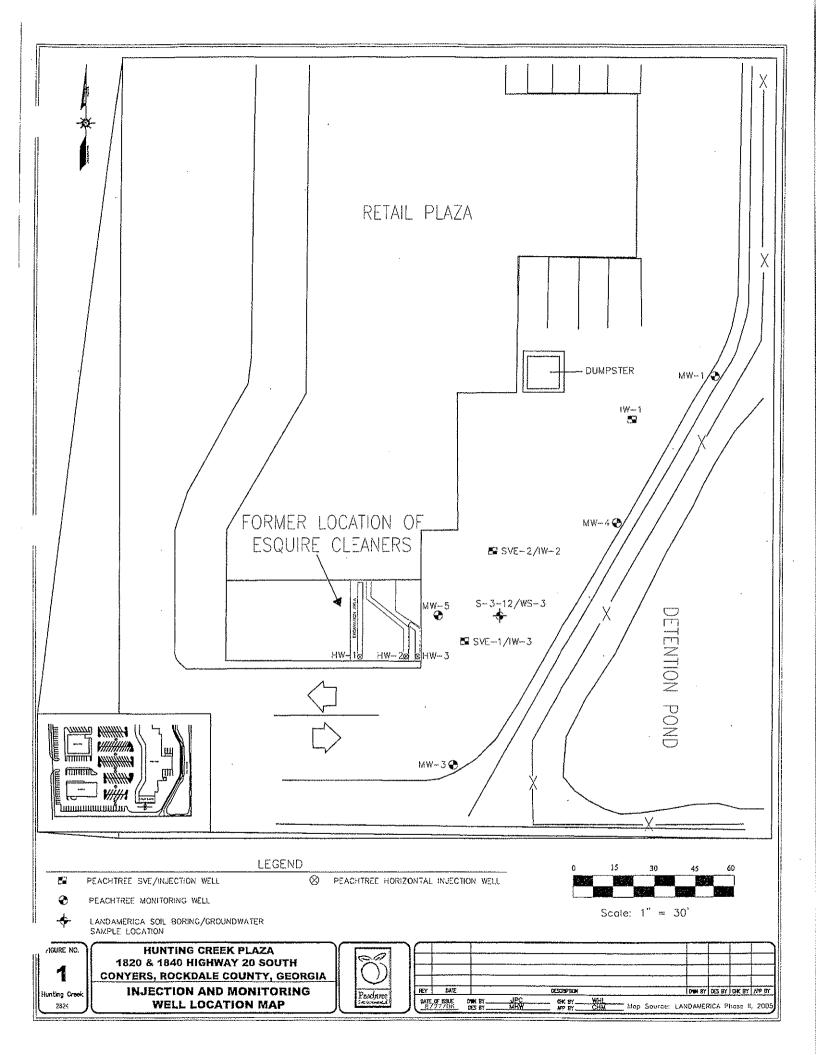
Mar ya

APPENDIX B TABLES FROM PROSPECTIVE PURCHASER COMPLIANCE STATUS REPORT

HÜNTING CREEK PLAZA CONYERS, ROCKDALE COUNTY, GEÖRGIA

TABLE 1 SUMMARY OF HISTORIC SOIL ANALYTICAL RESULTS

Sample ID	Date	Depth (fast)	2-BUTANONE	ACETONE	ETHYLBENZENE	M.P-XYLENE	МЕТНҮС АСЕТАТЕ	TOLUENE	PCE	TCE
					All Results in mg/K	g				
MAXIMUM DETECTED CONCENTRATION AT SITE		ļ	0.099	0.840	0.006	0.020	0.015	0.110	2.600	0.100
TYPE 1/3 RISK REDUCTION STANDARDS			200	490	70	20	NA ·	100	0.5	0.5
GP-1-1	11/2/05	1	<0.087	<0.170	<0.0087	< 0.017	<0.0087	<0.0087	0.013	<0.0087
GP-2-1	11/2/05	1	<0.095	<0.190	<0.0095	<0.019	<0.0095	<0.0095	<0.0095	<0.0095
GP-3-1	11/2/05	1	<0.090	<0.180	<0,0090	<0.018	<0.0090	<0.0090	<0.0090	<0.0090
GP-4-12*	11/2/05	12	<0.091	<0.180	<0.0091	<0.018	<0.0091	<0,0091	0.190	< 0.0091
GP-5-3	11/2/05	3	<0.088	<0.180	<0,0088	<0,018	<0.0088	<0.0088	0.120	<0.0088
GP-6-16*	11/2/05	16	<0.062	<0,120	< 0.0062	<0.012	<0.0062	<0.0062	1.900	< 0.0062
GP-7-141	11/2/05	14	<0.080	<0.160	<0.0080	<0.016	<0.0080	<0.0080	0.076	<0.0080
GP-8-13*	11/28/05	13	<1.500	<2.900	<0.150	<0.290	<0.150	<0.150	0.210	< 0.150
GP-9-11°	11/28/05	11	<1.800	<3.500	<0.180	<0,350	<0.180	<0.180	0.180	<0.180
GP-10-15*	11/28/05	15	<1.700	<3.400	<0.170	<0.340	<0.170	<0.170	0.170	<0.170
GP-11-15*	11/28/05	15	<1.700	<3.500	<0.170	<0.350	<0.170	<0.170	0.140	< 0.170
GP-12-14*	11/28/05	14	<0.023	<0.046	<0,0023	<0.0046	<0.0023	<0,0023	0.0035	<0.0023
SVE-1-5	11/28/05	5	<2.300	<4.500	<0.230	<0.450	<0.230	<0.230	0,250	8,100
HA-1-DETENTION POND-0.5	12/7/05	0.5	<0.072	<0.140	<0.0072	<0.014	<0.0072	<0.0072	<0.0072	<0.0072
HA-2-DETENTION POND-1	12/7/05		<0.078	<0.160	<0.0078	<0,016	<0.0078	<0.0078	<0.0078	<0,0078
HA-1-DRAIN-3	12/15/05	3	<0.091	<0,180	<0.0091	<0.018	<0.0091	<0,0091	0.075	<0.0091
HA-1-DRAIN-8.5	12/15/05	8.5	<0.070	<0,140	<0.0070	<0.014	<0.0070	<0.0070	0.210	<0.0070
HA-2-DRAIN-3	12/15/05	3	<0.091	<0,180	<0.0091	<0.018	<0.0091	<0.0091	0.270	<0.0091
HA-3-DRAIN-4	12/15/05	4	<0.077	<0.150	<0.0077	<0.015	<0.0077	<0.0077	1.300	<0.0077
MACHINE-1	8/4/06	1 -	<0.077	<0.150	<0.0077	<0.015 <0.0083	<0.0077	<0.0077	<0.0077	<0,0077
HA-BOILER-5	8/29/06 8/29/06	5 10	<0.041 <0.042	<0.083 <0.084	<0.0041 <0.0042	<0.0083	<0.0041 <0.0042	<0.0041 <0.0042	2.600	<0.0041
HA-BOILER-10	8/29/06	12	<0.042 <0.052	<0.084	<0.0042	<0.0084 <0.010	<0.0042 <0.0052	<0.0042	0.570 0.170	<0.0042
HA-BOILER-12	8/29/06	5	<0.038	<0.075	<0.0038	<0.0075	<0.0038	<0.0052	<0.0038	<0.0052
HA-DUMPSTER-5 HA-DUMPSTER-10	8/29/05	10	<0.036	<0.094	<0.0035	<0.0073	<0.0038	<0,0047	<0.0035	<0.0038
HA-DUMPSTER-14	8/29/06	14	<0.038	<0.076	<0.0047	<0.0076	<0.0038	<0.0038	<0.0047 <0.0038	<0.0047 <0.0038
DP-1-5'	1/10/07	5	<0.036	<0.150	<0.0075	<0.015	<0.0035	<0.0038	<0.0038	<0.0075
DP-2-5'	1/10/07	5	<0,0,0	<0.160	<0,0010	<0.016	<0.0080	<0.0070	<0.0075	
DP-3-8'	1/10/07	5	<0.073	<0.150	<0.0073	<0.015	<0.0060	<0.0080		<0.0080
DP-4-5'	1/10/07	5	<0.073	0.180	<0.0073	<0.0099	<0.0073	<0.0073	<0.0073	<0,0073
DP-5-6	1/10/07	5	<0.059	<0.120	<0.0059	<0.0099	<0.0059	<0.0049 <0.0059	0.030	<0,0049
DP-6-6"	1/10/07	0.5	<0.059	<0.120	0.006	0.020	<0.0059	0.110	<0.0059	<0.0059
DP-6-5'	1/10/07	5	<0.050	<0.160	<0.0050	<0.010	<0.0050	<0.0050	<0,0955	<0.0055
DP-6-8'	1/10/07	8	<0.055	<0.100	<0.0055	<0.010	<0.0055	<0.0055	0.011	<0.0050
DP-6-8"	1/10/07	0.5	<0.046	<0.092	<0.0046	<0,011	<0.0055		<0.0055	<0.0055
DP-10-10'	1/7/08	10	<0.046 <0.095	<0.092	<0.0095	<0,0092	<0.0046	<0,0046 <0,0095	<0.0046 0.250	<0,0046 <0,0095


Notes: * - Sample collected at groundwater interface, not indicative of soil impact. PCE was the only constituent detected above Type 1/3 RRS for soil.

Hunting Creek Plaza Conyers, rockdale County, georgia

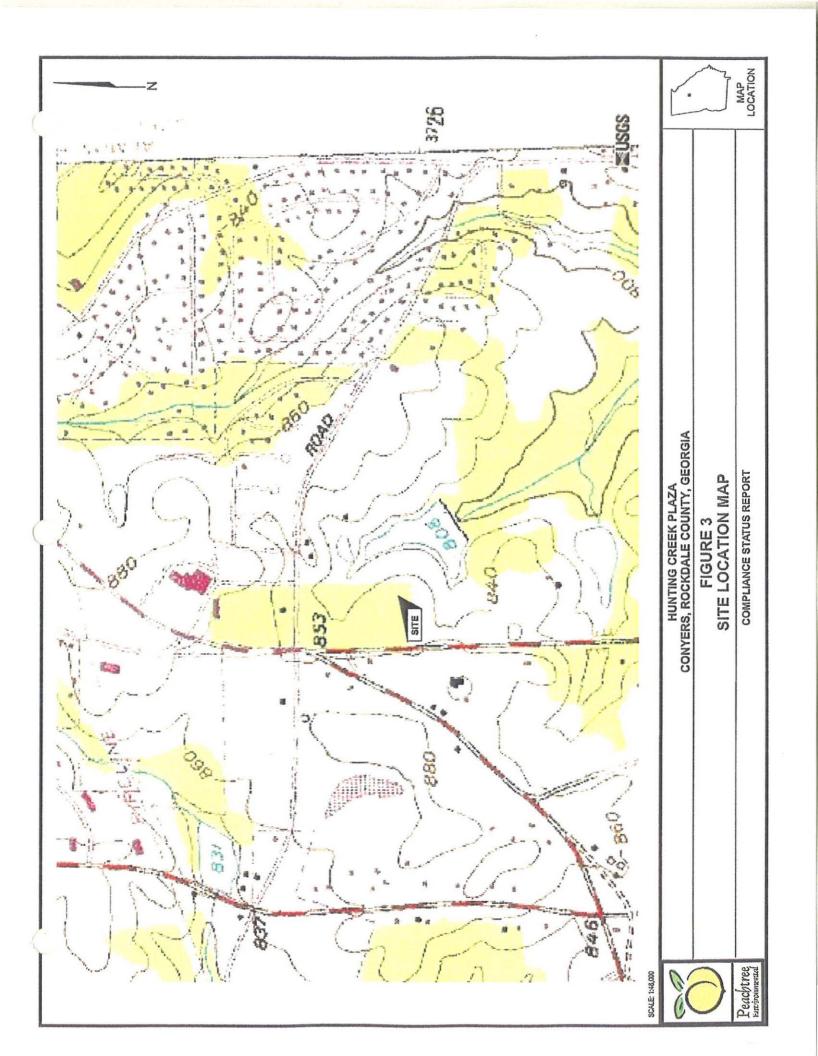
TABLE 2 SOIL CONFIRMATION SAMPLE ANALYTICAL RESULTS

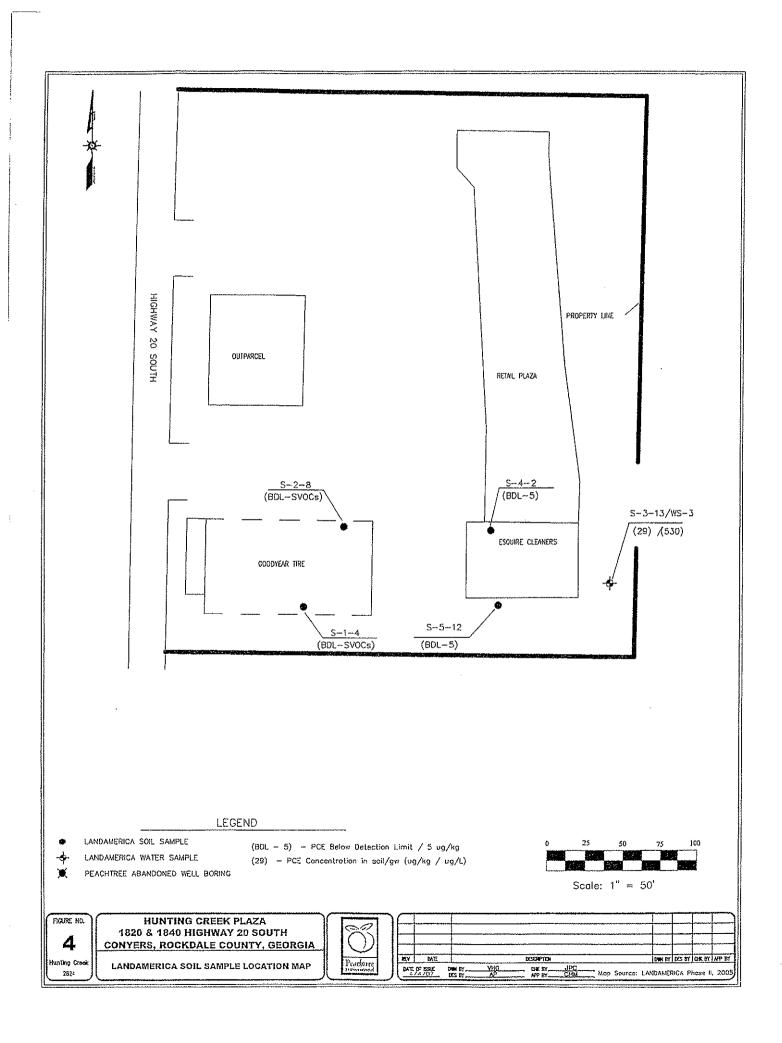
Sampte ID	Date	Depth (feet)	2-BUTANONE	ACETONE	ETHYLBENZENE	M,P-XYLENE	METHYL ACETATE	Тоциеме	30 <i>d</i>	TCE			
					All Results in mg/K	g	, , , ,			······································			
MAXIMUM DETECTED CONCENTRATION AT SITE			0.099	0,840	0.006	0.020	0.015	0.110	2.600	0.100			
TYPE 1/3 RISK REDUCTION STANDARDS			200	400	70	20	NA	100	0.5	0.5			
POST-EXCAVATION CONFIRMATORY SAMPLE RESULTS													
CS-01-2'	8/4/06	2	<0.057	<0,110	< 0.0057	<0,011	<0.0057	<0.0057	<0.0057	<0.0057			
C\$-02-2*	8/4/06	Z	<0.080	<0,160	<0.0080	< 0.016	<0,0090	<0.0080	<0.0080	<0.0080			
CS-03-2'	8/4/06	2	<0.067	<0.130	<0.0087	<0.013	<0.0067	<0,0057	<0.0067	< 0.0067			
CS-04-8'	8/4/06	8	<0.080	<0.160	<0.0080	<0,016	<0.0080	<0.0080	0.083	<0.0080			
CS-05-8'	8/4/06	8	<0,058	<0.120	<0,0058	<0.012	<0.0058	<0.0059	0.026	<0.0058			
CS-05-4'	8/4/06	4	<0.074	<0.150	<0.0074	<0.015	<0.0074	< 0.0074	<0.0074	< 0.0074			
CS-07-3'	8/4/06	3	<0.084	<0.170	<0.0094	<0.017	<0.0084	<0.0084	0.027	<0,0084			
CS-08-3'	8/4/06	3	<0,120	<0.240	<0.012	<0,024	<0.012	<0.012	<0,012	<0.012			
CS-09-3'	8/4/06	3	<0.100	<0.200	<0.010	<0.020	<0.010	<0.010	<0.010	<0,010			
CS-10-BTM-3"	8/4/06	3	<0.085	<0.170	<0.0085	<0.017	<0.0085	<0.0085	< 0.0085	<0.0085			
CS-11-BTM-8'	8/4/05	8	<0.081	<0.160	<0.0081	<0.016	<0.0081	<0.0081	0.130	<0.0081			
				POST-ISCO TREAT									
DP-8-6"	1/10/07	0.5	0.099	0.840	<0.0049	<0.0099	<0,0049	<0.0049	0.029	< 0.0049			
DP-8-5*	1/10/07	5	<0.056	<0.110	<0.0056	<0.011	0.015	<0.0056	0,220	< 0.0055			
DP-8-9'	1/10/07	9	<0.052	9.130	<0.0052	<0.010	<0.0052	<0.0052	0.013	<0.0052			
DP-9-6"	1/10/07	0.5	<0.056	<0.110	<0.0056	<0.011	<0.0056	<0.0055	<0.0055	<0.005\$			
DP-9-5'	1/10/07	5	<0,056	<0.110	<0.0056	<0.011	<0.0056	<0,0056	<0,0056	<0,0055			
DP-9-9'	1/10/07	9	<0.053	<0.110	<0.0053	<0.011	<0.0053	<0.0053	0.240	<0.0053			

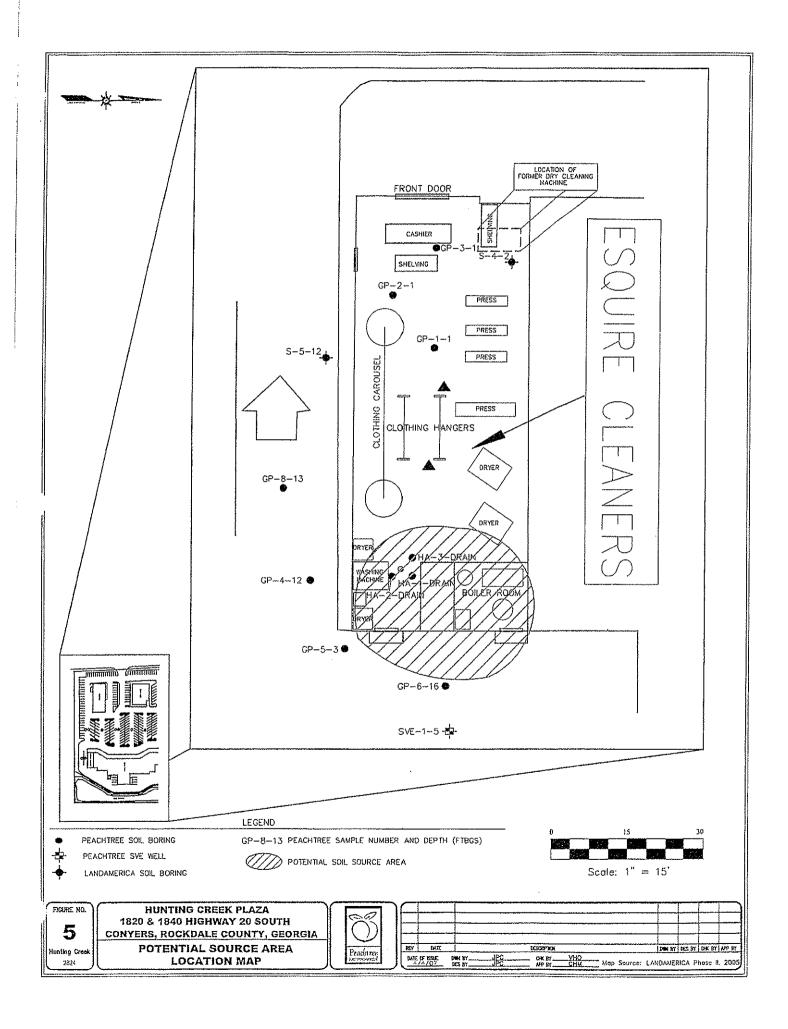
APPENDIX C FIGURES FROM PROSPECTIVE PURCHASER COMPLIANCE STATUS REPORT

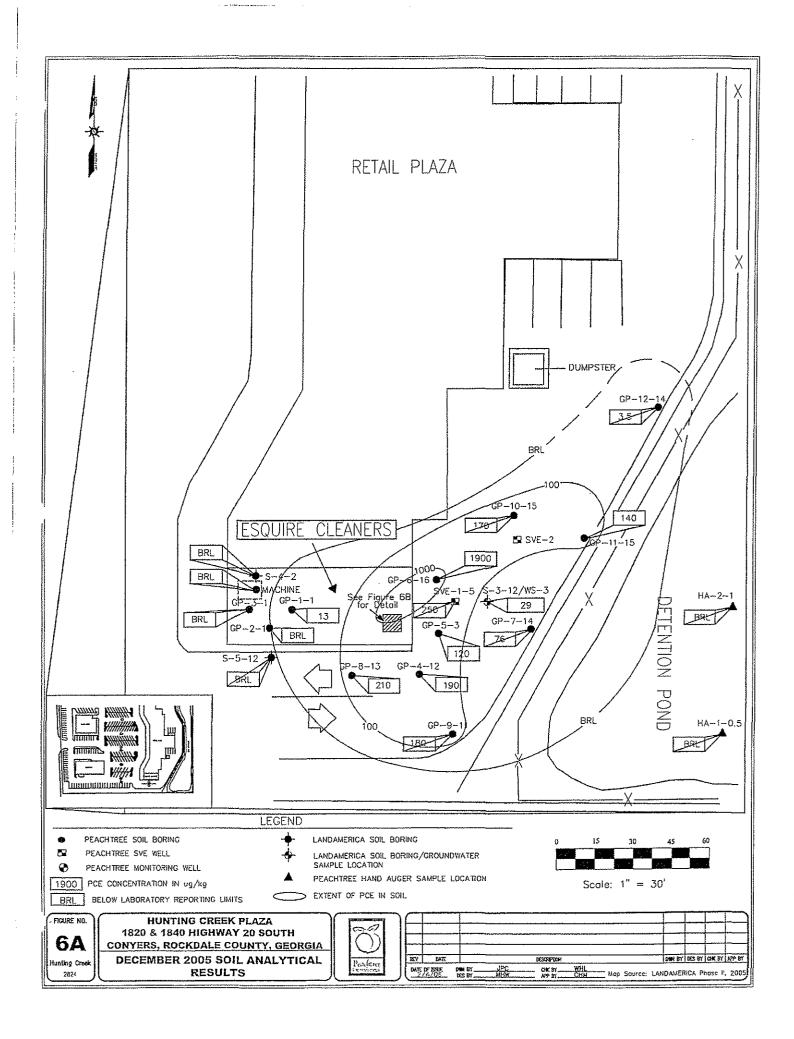
MAJOR VIDEO RETAIL PLAZA GOODYEAR ESQUIRE CLEANERS

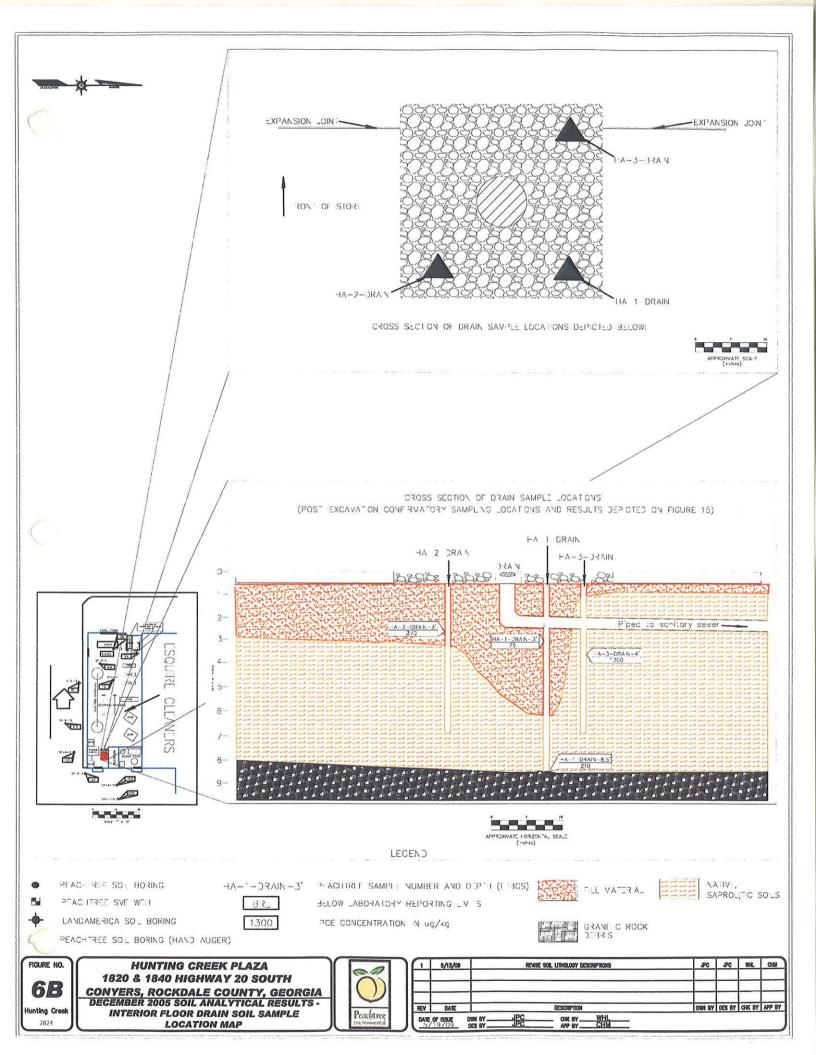
FIGURE NO.

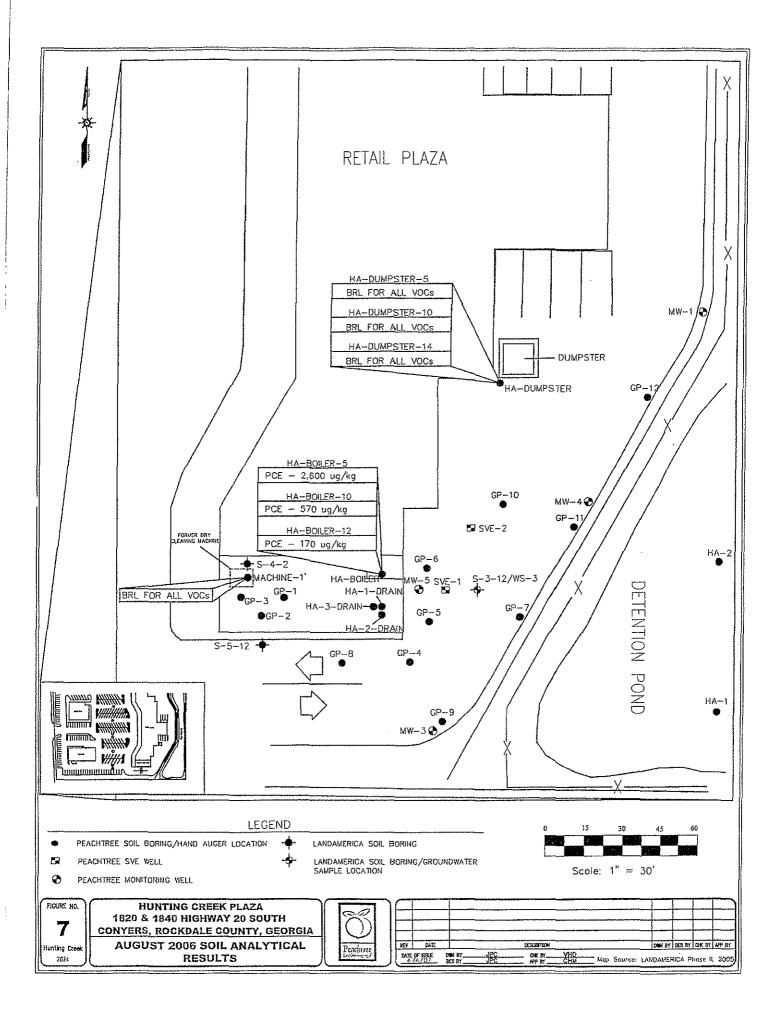

2824

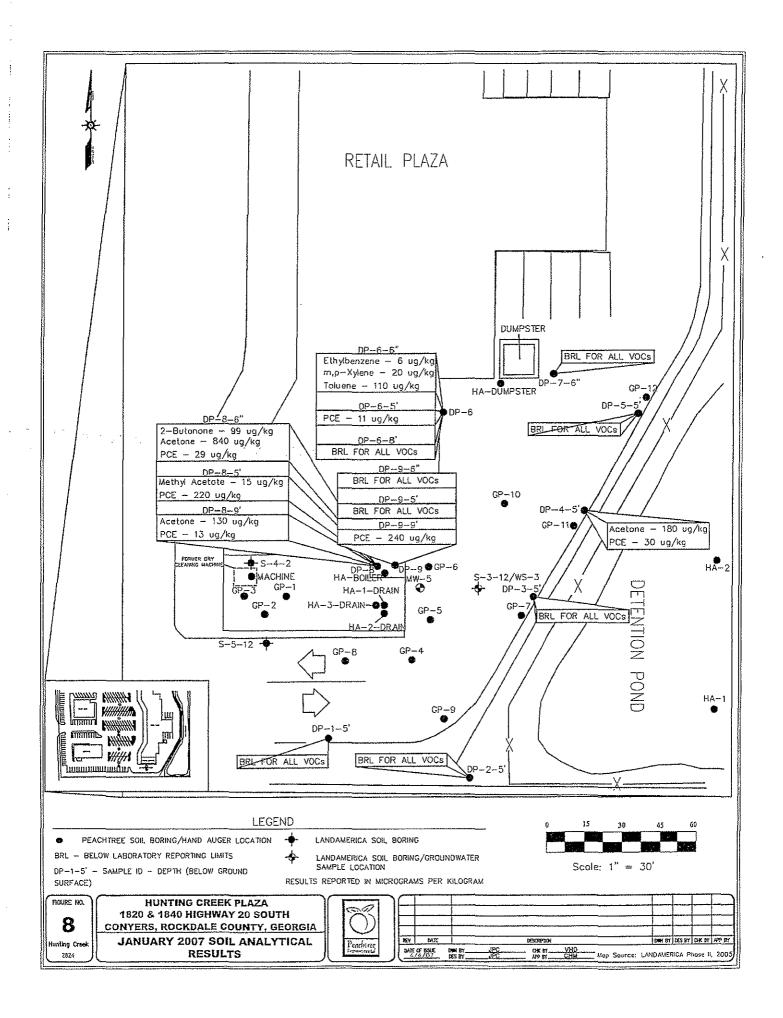

HUNTING CREEK PLAZA 1820 & 1840 HIGHWAY 20 SOUTH CONYERS, ROCKDALE COUNTY, GEORGIA

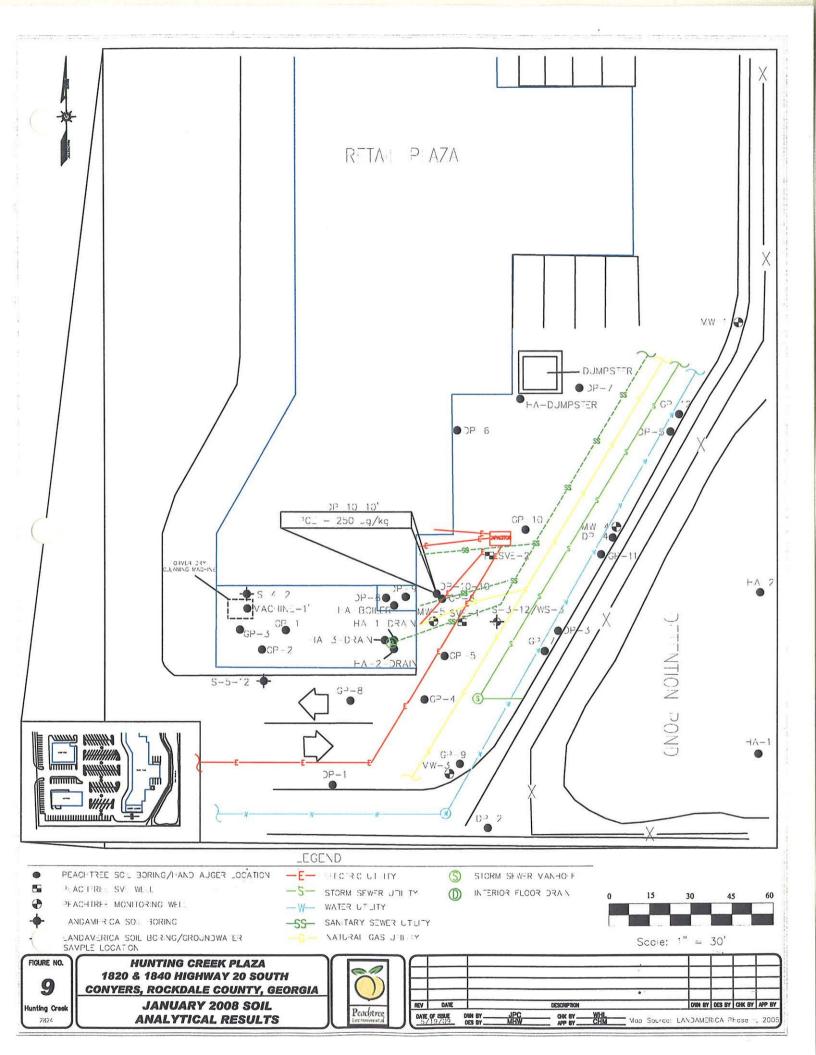

SITE LAYOUT MAP

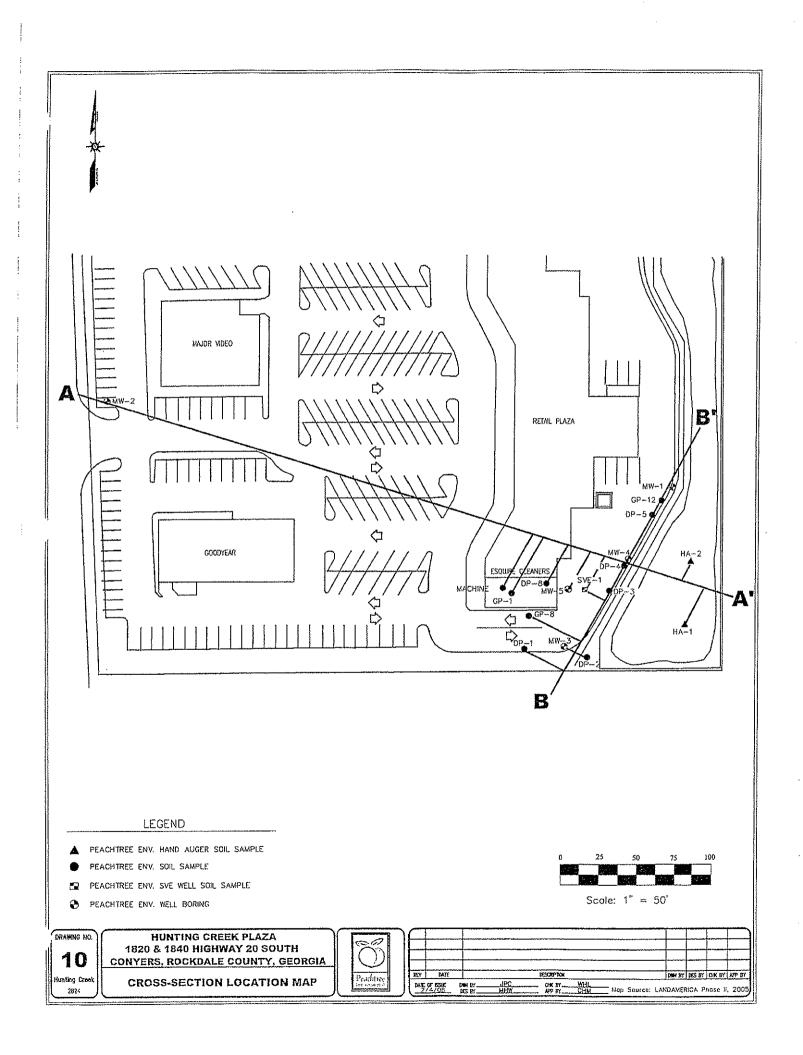


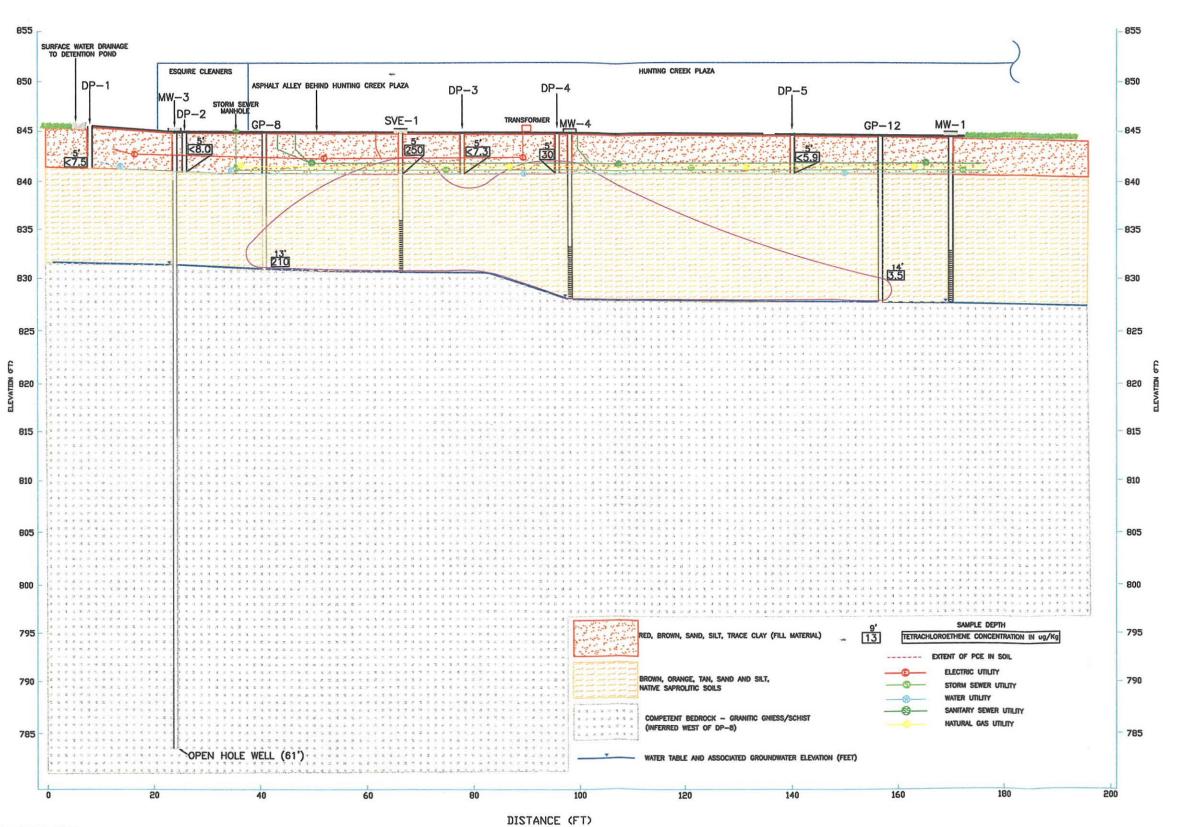

)									
l									
1		ļ				 	<u> </u>		
ſ	ĦΣV	DATE		DESCRIPTION		DWK BY	DES BY	CHK BY	APP BY
J	DATE	0f ISSUE /18/07	DEN BY JPC	CHK BY YHO	Hop Source: LAI	IDAME	RICA PI	hase II,	. 2005

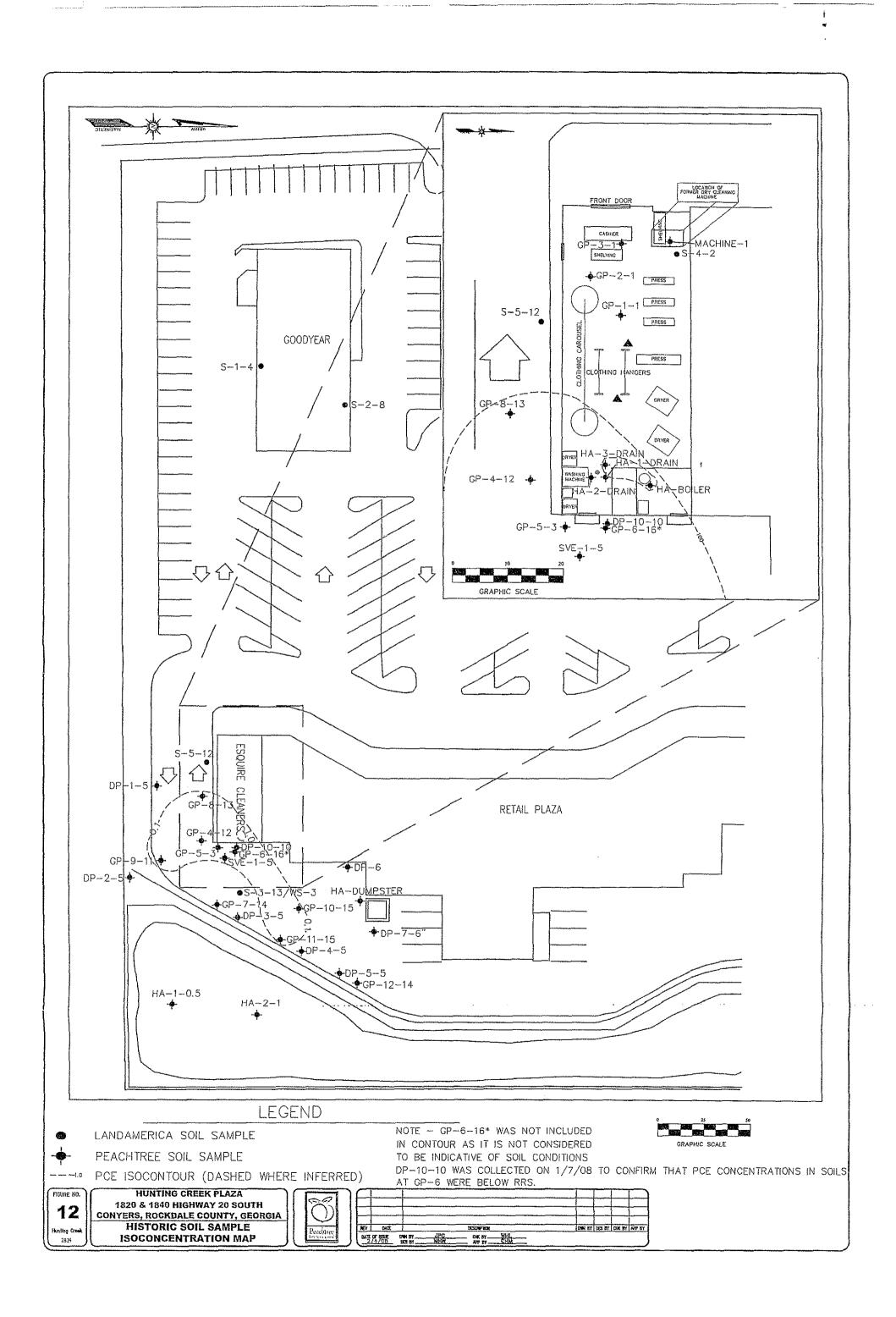


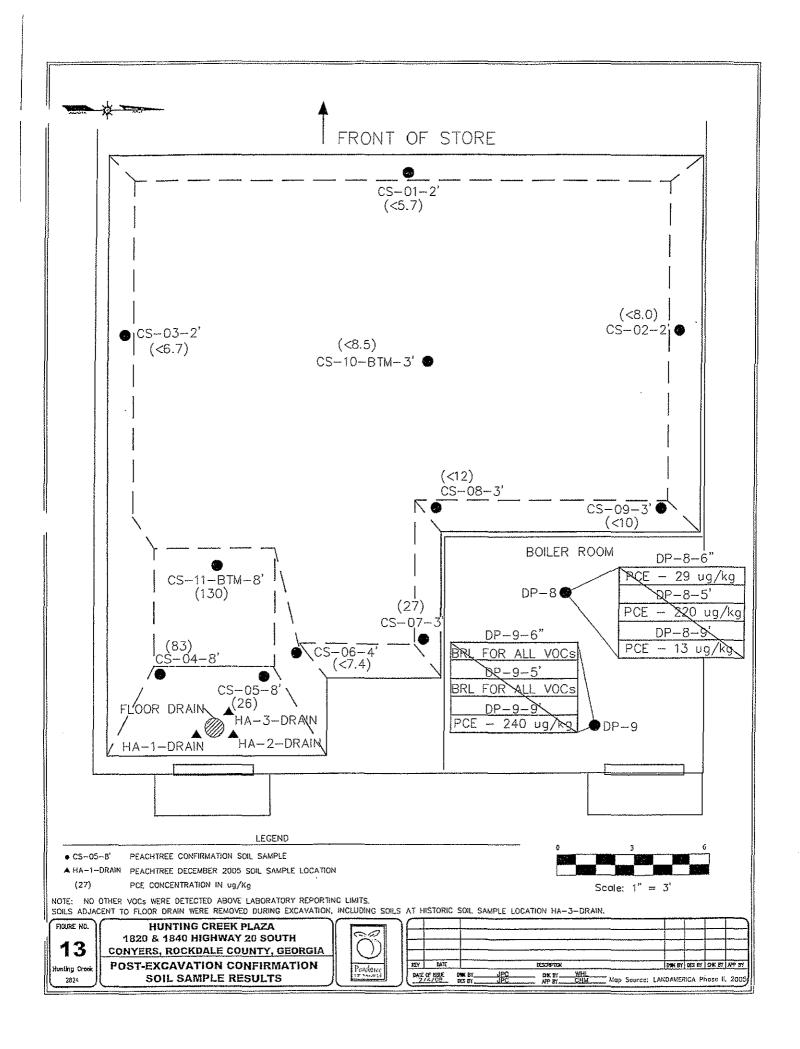




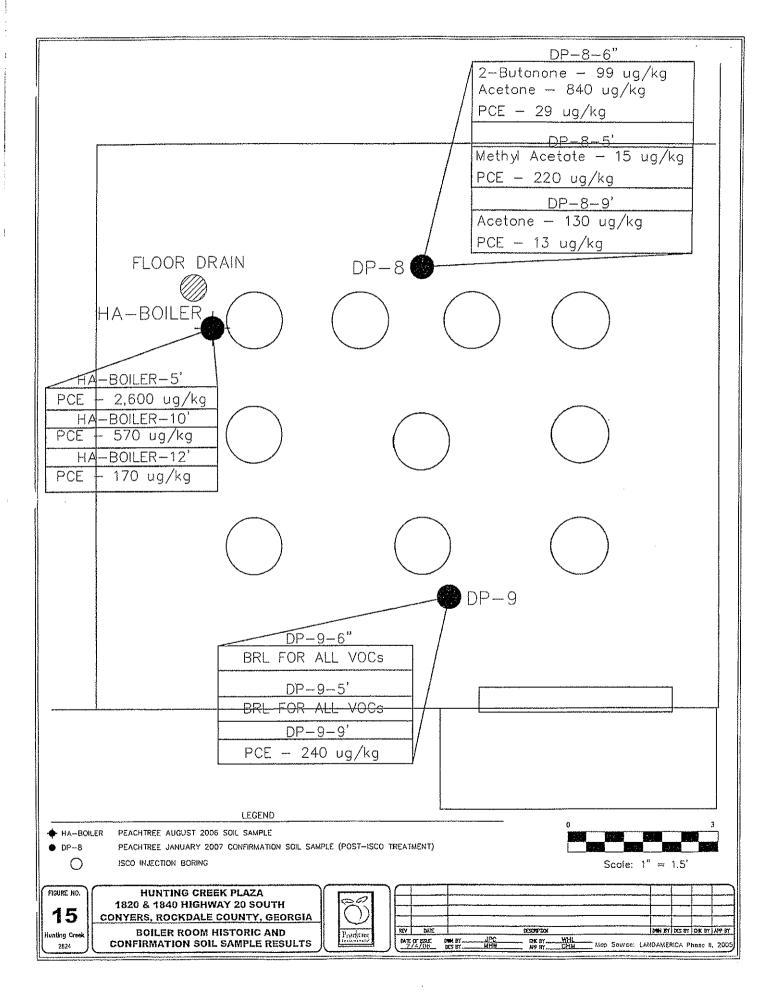




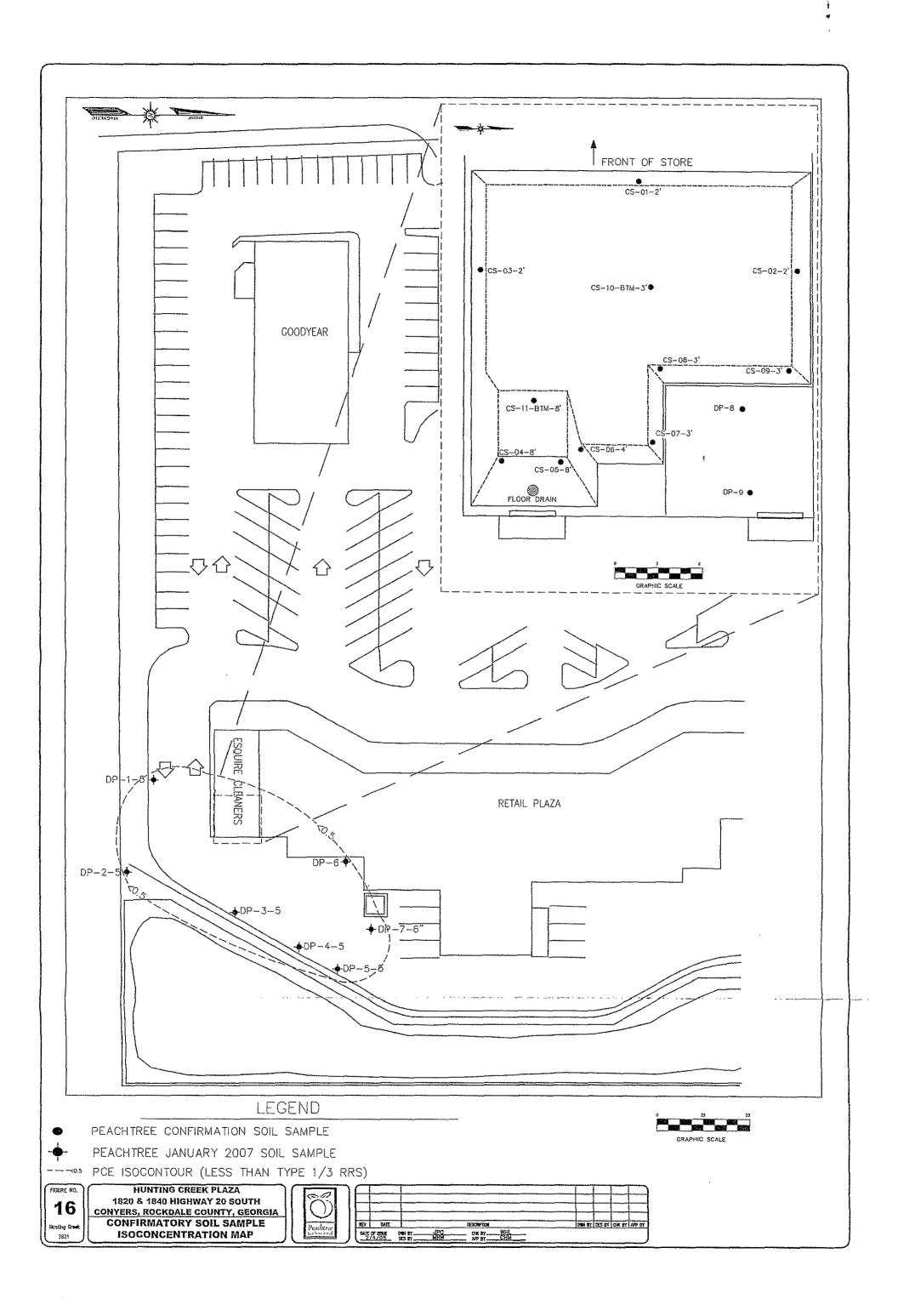



SECTION


Parior Rev Date CESSTON


Parior Date CESST

SCALE: 1" = 20' HORIZONTAL 1" = 5' VERTICAL FIGURE NO.



.

APPENDIX D LABORATORY REPORTS FOR 2010 SAMPLING EVENT

January 27, 2010

Bill Updyke Mactec Engineering and Consulting, Inc. 396 Plasters Ave

Atlanta

30324

TEL: (404) 873-4761 FAX: (404) 817-0183

Hunting Creek Plaza

Dear Bill Updyke:

Order No: 1001D93

Analytical Environmental Services, Inc. received 5 samples on January 22, 2010 1:25 pm for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/09-06/30/10. -AIHA Certification ID #100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) effective until 09/01/11.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Blair Stout

Project Manager

ANALYTICAL ENVIRONMENTAL SERVICES, INC 3785 Presidential Parkway, Atlanta GA 30340-3704 TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

CHAIN OF CUSTODY

1001100

	Work Order: _	1001	<u>1195</u>
Date: 1/22/1	O Page	t of	

COMPAN		ADDRESS:					Ī	~~~		AN	TASIS	REQU	ESTE			Visit our website	
	MACTEC 404-817-0231 B. Updyk						\Box			\top	Π		T-			www.aesatlanta.com	
PHONE.	(1-11 020 -073)	FAX:		·			2760									to check on the status of	51
SAMPLE	959-017-0CS	SIGNATURE:		-			4 (İ							your results, place bottle	taine
	B. Updyka	SIGNATURA					\$BCs	ŀ								orders, etc.	of Containers
		SAN	IPLED .		ñ	ନ୍ତି	>										No #
8	SAMPLE ID			_ α	Composite	Matrix (See codes)	ļ,		—	PRE	SERVA	TION (S	ee codes	· · · · · · · · · · · · · · · · · · ·		REMARKS	
		DATE	TIME	Grab	S	Mat	1121	,								ICHINICIO	
	MW-	1/21/10	1400	X		GW	X										2
2	MW-3	1/22/10	1135	X		1	n										2
3	MW-4	1/22/10	1055	. ₇ 0		V.	ð										ک
4	MW-5	1/21/10	1525	X		GW	\vee										7)
5																	
6	TOP Blank						$ \lambda $										7
7																	
8																	
9																	
10																	
11																	
12					<u> </u>												
13																	
14																	
RELINQ	UISHED BY DATE/TIME	RECEIVED B				DATE/FIME				PRO	JECT)	NFOR	TOTTAL	1		RECEIPT	
12	1/22/10 1325	1:	roife 11	122/	0/:	Z5	PROJ		JAME:	1941	2(11	K F	lazi	î		Total # of Containers	16
2.	, , , , , , , , , , , , , , , , , , , ,	2: /						ECT#	i: (121	-10) O	<u>013</u>			Tumaround Time Request	
3.		3:			···		SITE	ADDI	RESS:	His	nha	926	Δ			Standard 5 Business Days	
		اء:					SEM) DED	ORT T		und		<u>/ </u>	Bou	(18	2 Business Day Rush Next Business Day Rush	
SPECIAL	LINSTRUCTIONS/COMMENTS:	-	SHIPMEN	T METH	OD			DICE 1	~~	<u></u>	upper	1 CC		الكالما	va	Same Day Rush (noth req.)	.
		OUT /	1	VIA:						ROM AB	OVE)					Other	
		IN T	~ } /	VIA:												STATE PROGRAM (if any):	-
 		CLIE		PS MA THER_	IL CO	RIER	017.0	TT V					`\u-			E-mail? 10/N; Fax? Y/N	.,
SAMPL	es received after 1PM or saturday are con	SIDERED AS R	ECEIVED ON	THENEX	CT BUSE	NESS DAY:	IF NO	TE #:_ TAT I	S MAF	KED ON	COCA		∆#: L PRO	CEED AS	STANDAR	DATA PACKAGE: I II III D TAT.	17
SAMPL	ES ARE DISPOSED OF 30 DAYS AFTER COMPLETION	OF REPORT	UNLESS OTHE	IR ARRA	NGEM	ENTS ARE M	ADE.			·	-					•	Ì

Client: Mactec Engineering and Consulting, Inc.

Project: Hunting Creek Plaza

Lab ID: 1001D93-001

Date: 27-Jan-10

Client Sample ID: MW-1

Collection Date:

1/21/2010 2:00:00 PM

Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SV	V5030B)			
1,1,1-Trichloroethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,1,2,2-Tetrachloroethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,1,2-Trichloroethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,1-Dichloroethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,1-Dichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,2-Dibromo-3-chloropropane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,2-Dibromoethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,2-Dichlorobenzene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,2-Dichloroethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,2-Dichloropropane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,3-Dichlorobenzene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
1,4-Dichlorobenzene		BRL	5.0		ng/L	124270	1	01/25/2010 17:32	GK
2-Butanone		BRL	50		ug/L	124270	1	01/25/2010 17:32	GK
2-Hexanone		BRL	10		ug/L	124270	1	01/25/2010 17:32	GK
4-Methyl-2-pentanone		BRL	10		ug/L	124270	1	01/25/2010 17:32	GK
Acetone		BRL	50		ug/L	124270	1	01/25/2010 17:32	GK
Benzene		BRL	5.0		ug/L	124270	. 1	01/25/2010 17:32	GK
Bromodichloromethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Bromoform		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK.
Bromomethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	Ġĸ
Carbon tetrachloride		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Chlorobenzene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Chloroethane		BRL	10		ug/L	124270	1	01/25/2010 17:32	GK.
Chloroform		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Chloromethane		BRL	10		ug/L	124270	1	01/25/2010 17:32	GK
cis-1,2-Dichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
cis-1,3-Dichloropropene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Cyclohexane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Dibromochloromethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Dichlorodifluoromethane		BRL	10		ug/L	124270	1	01/25/2010 17:32	GK.
Ethylbenzene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Freon-113		BRL	10		ug/L	124270	1	01/25/2010 17:32	GK
Isopropylbenzene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
m,p-Xylene		BRL	10		ug/L	124270	1	01/25/2010 17:32	GK
Methyl acetate		BRL	5.0		ug/L	124270	ĵ	01/25/2010 17:32	GK
Methyl tert-butyl ether		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK.
Methylcyclohexane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Methylene chloride		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
o-Xylene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK
Styrene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK

Qualifiers;

- Value exceeds maximum contaminant level
- BRL Below reporting limit
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

Date:

27-Jan-10

Client: Mactec Engineering and Consulting, Inc.

Client Sample ID:

MW-1

Project: Hunting Creek Plaza Lab ID: 1001D93-001 Collection Date:

1/21/2010 2:00:00 PM

Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys			
TCL VOLATILE ORGANICS	SW8260B	(SW5030B)										
Tetrachloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK			
Toluene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK			
trans-1,2-Dichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK			
trans-1,3-Dichloropropene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK			
Trichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK			
Trichlorofluoromethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:32	GK			
Vinyl chloride		BRL	2.0		ug/L	124270	1	01/25/2010 17:32	GK			
Surr: 4-Bromofluorobenzene		88	60.1-127		%REC	124270	1	01/25/2010 17:32	GK			
Surr: Dibromofluoromethane		96.7	79.6-126		%REC	124270	1	01/25/2010 17:32	GK			
Surr: Toluene-d8		98.2	78-116		%REC	124270	1	01/25/2010 17:32	GK			

Qualifiers:

Value exceeds maximum contaminant level

BRL. Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

Date: 27

27-Jan-10

Client: Mactec Engineering and Consulting, Inc.

Project: Hunting Creek Plaza Lab ID: 1001D93-002 Client Sample ID: Collection Date: MW-3

Matrix:

1/22/2010 11:35:00 AM

trix:	Groundwater
******	O TOURING WAILU

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS SW820	60B			(SV	V5030B)			
1.1.1-Trichloroethane	BRL	5.0		ug/L	124270	ì	01/25/2010 18:30	GK
1,1,2,2-Tetrachloroethane	BRL	5.0		ng/L	124270	1	01/25/2010 18:30	GK
1,1,2-Trichloroethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
1.1-Dichloroethane	BRL	5.0		սց/Լ	124270	1	01/25/2010 18:30	GK
1.1-Dichloroethene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
1.2-Dibromoethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK.
1,2-Dichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
1,2-Dichloroethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
1,2-Dichloropropane	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
1,3-Dichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
1,4-Dichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
2-Butanone	BRL	50		ug/L	124270	1	01/25/2010 18:30	GK
2-Hexanone	BRL	10		ug/L	124270	1	01/25/2010 18:30	GK
4-Methyl-2-pentanone	BRL	10		ug/L	124270	1	01/25/2010 18:30	GK
Acetone	BRL	50		ng/L	124270	1	01/25/2010 18:30	GK
Benzene	BRL	5.0		ug/L	124270	1.	01/25/2010 18:30	GK
Bromodichloromethane	BRL	5.0	•	ug/L	124270	1	01/25/2010 18:30	GK
Bromoform	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
Bromomethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
Carbon tetrachloride	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
Chlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
Chloroethane	BRL	10		ug/L	124270	1	01/25/2010 18:30	GK
Chloroform	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
Chloromethane	BRL	10		ug/L	124270	I	01/25/2010 18:30	GK.
cis-1,2-Dichloroethene	BRL	5.0		ug/L	124270	I	01/25/2010 18:30	GK
cis-1,3-Dichloropropene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
Cyclohexane	BRL	5.0		ng/L	124270	1	01/25/2010 18:30	GK
Dibromochloromethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK.
Dichlorodifluoromethane	BRL	10		ug/L	124270	1	01/25/2010 18:30	GK
Ethylbenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
Freon-113	BRL	10		ug/L	124270		01/25/2010 18:30	GK
Isopropylbenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK.
m,p-Xylene	BRL	10		ug/L	124270	1	01/25/2010 18:30	GK
Methyl acetate	BRL	5.0		ug/L	124270		01/25/2010 18:30	GK
Methyl tert-butyl ether	BRL	5.0		ug/L	124270		01/25/2010 18:30	GK
Methylcyclohexane	BRL	5.0		ug/L	124270		01/25/2010 18:30	GK
Methylene chloride	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK
o-Xylene	BRL	5.0		ug/L	124270		01/25/2010 18:30	GK
Styrene	BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK

Qualifiers:

Narr See case narrative

NC Not confirmed

Value exceeds maximum conteminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Client: Mactec Engineering and Consulting, Inc.

Project: Hunting Creek Plaza

Lab ID: 1001D93-002

Date: 2

27-Jan-10

Client Sample ID: MW-3

Collection Date:

Matrix:

1/22/2010 11:35:00 AM

Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys			
TCL VOLATILE ORGANICS	SW8260B	(SW5030B)										
Tetrachloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK			
Toluene		BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK			
trans-1,2-Dichloroethene		BRL	5.0		ug/L	124270	1 -	01/25/2010 18:30	GK			
trans-1,3-Dichloropropene		BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK			
Trichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK			
Trichlorofluoromethane		BRL	5.0		ug/L	124270	1	01/25/2010 18:30	GK			
Vinyl chloride		BRL	2.0		ug/L	124270	1	01/25/2010 18:30	GK			
Surr: 4-Bromofluorobenzene		89.7	60.1-127		%REC	124270	1	01/25/2010 18:30	GK			
Surr: Dibromofluoromethane		98.9	79.6-126		%REC	124270	1	01/25/2010 18:30	GK			
Surr: Toluene-d8		96.8	78-116		%REC	124270	1	01/25/2010 18:30	GK			

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyse not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

Date: 27-Jan-10

Client: Mactec Engineering and Consulting, Inc.

Project: Hunting Creek Plaza

Lab ID: 1001D93-003

Client Sample ID: MW-4

Collection Date: 1/22/2010 10:55:00 AM

Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analysi
TCL VOLATILE ORGANICS SW82	60B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
1,1,2-Trichloroethane	BRL	5.0		սը/Լ	124270	1	01/25/2010 18:59	GK
1,1-Dichloroethane	BRL	5.0		ug/I_	124270	1	01/25/2010 18:59	GK
1,1-Dichloroethene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK.
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
1,2-Dibromoethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
1,2-Dichlorobenzene	BRL	5.0		ug/L	124270	j	01/25/2010 18:59	GK
1,2-Dichloroethane	BRL	5.0		ug/L	124270]	01/25/2010 18:59	GK
1,2-Dichloropropane	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
1,3-Dichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
1,4-Dichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK.
2-Butanone	BRL	50		ug/L	124270	1	01/25/2010 18:59	GK
2-Hexanone	BRL	10		ug/L	124270	1	01/25/2010 18:59	GK
4-Methyl-2-pentanone	BRL	10		ug/L	124270	1	01/25/2010 18:59	GK
Acetone	BRL	50		ug/L	124270	1	01/25/2010 18:59	GK
Benzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Bromodichloromethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Bromoform	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Bromomethane	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Carbon tetrachloride	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Chlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Chloroethane	BRL	10		ug/L	124270	1	01/25/2010 18:59	GK.
Chloroform	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Chloromethane	BRL	10		υg/L	124270	1	01/25/2010 18:59	GK
cis-1,2-Dichloroethene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
cis-1,3-Dichloropropene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Cyclohexane	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Dibromochloromethane	BRL	5.0		ug/L	124270)	01/25/2010 18:59	GK.
Dichlorodifluoromethane	BRL	10		ug/L	124270	3	01/25/2010 18:59	GK.
Ethylbenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Freon-113	BRL	10		ug/L	124270	1	01/25/2010 18:59	GK
Isopropylbenzene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
m,p-Xylene	BRL	10		ug/L	124270	1	01/25/2010 18:59	GK
Methyl acetate	BRL	5.0		ug/L	124270	1	01/25/2010-18:59	GK
Methyl tert-butyl ether	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Methylcyclohexane	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Methylene chloride	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK.
o-Xylene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK
Styrene	BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK

Qualifiers:

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Nam See case namative

NC Not confirmed

< Less than Result value

Date:

27-Jan-10

Client: Mactec Engineering and Consulting, Inc.

Project: Hunting Creek Plaza 1001D93-003

Lab ID:

Client Sample ID:

MW-4

Collection Date:

1/22/2010 10:55:00 AM

Matrix:

Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys			
TCL VOLATILE ORGANICS	SW8260B	(SW5030B)										
Tetrachloroethene		77	5.0		ug/L	124270	1	01/25/2010 18:59	GK			
Toluene		BRL	5.0	•	ug/L	124270	1	01/25/2010 18:59	GK			
trans-1,2-Dichloroethene		BRL	5.0		ng/L	124270	1	01/25/2010 18:59	GK			
trans-1,3-Dichloropropene		BRL	5.0		ng/L	124270	1	01/25/2010 18:59	GK			
Trichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 18:59	GK			
Trichlorofluoromethane		BRL	5.0		ug/L	124270]	01/25/2010 18:59	GK			
Vinyl chloride		BRL	2.0		ug/L	124270]	01/25/2010 18:59	GK			
Surr: 4-Bromofluorobenzene		89.9	60.1-127		%REC	124270	1	01/25/2010 18:59	GK			
Surr: Dibromofluoromethane		98.6	79.6-126		%REC	124270	1	01/25/2010 18:59	GK			
Surr: Toluene-d8		99.9	78-116		%REC	124270	1	01/25/2010 18:59	GK			

Qualifiers:

Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

Analyte not NELAC certified

Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

See case narrative

Date: 27-Jan-10

Client: Mactec Engineering and Consulting, Inc.

Project: Hunting Creek Plaza

Collection Date: 1/21/2010 3:25:00 PM

Lab ID: 1001D93-004

Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS	SW8260B				(SV	/5030B)			
1,1,1-Trichloroethane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
1,1,2,2-Tetrachloroethane		BRL	5.0		ng/L	124270	1	01/25/2010 19:28	GK
1,1,2-Trichloroethane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK.
1,1-Dichloroethane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
1,1-Dichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
1,2-Dibromo-3-chloropropane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
1,2-Dibromoethane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
1.2-Dichlorobenzene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
1,2-Dichloroethane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
1,2-Dichloropropane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK.
1,3-Dichlorobenzene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
1,4-Dichlorobenzene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
2-Butanone		BRL	50		ug/L	124270	1	01/25/2010 19:28	GK
2-Hexanone		BRL	10		ug/L	124270	1	01/25/2010 19:28	GK
4-Methyl-2-pentanone		BRL	10		ug/L	124270	1	01/25/2010 19:28	GK
Acetone		BRL	50		ug/L	124270	1	01/25/2010 19:28	GK
Benzene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
Bromodichloromethane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
Bromoform		BRL	5.0		ug/L	124270]	01/25/2010 19:28	GK
Bromomethane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
Carbon tetrachloride		BRL	5.0		ug/L	124270	·1	01/25/2010 19:28	GK
Chlorobenzene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
Chloroethane		BRL	10		ug/L	124270	1	01/25/2010 19:28	GK
Chloroform		9.0	5.0		ug/L	124270	1	01/25/2010 19:28	GK
Chloromethane		BRL	10		ug/L	124270	1	01/25/2010 19:28	GK
cis-1,2-Dichloroethene		BRL	5.0	•	ug/L	124270	1	01/25/2010 19:28	GK
cis-1,3-Dichloropropene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
Cyclohexane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
Dibromochloromethane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
Dichlorodifluoromethane		BRL	10		ug/L	124270	1	01/25/2010 19:28	GK
Ethylbenzene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK.
Freon-113		BRL	10		ug/L	124270	1	01/25/2010 19:28	GK.
Isopropylbenzene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
m,p-Xylene		BRL	10		ug/L	124270	1	01/25/2010 19:28	GK
Methyl acetate		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK.
Methyl tert-butyl ether		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK.
Methylcyclohexane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK
Methylene chloride		BRL	5.0		ug/L	124270		01/25/2010 19:28	GK
o-Xylene		BRL	5.0		ug/L	124270		01/25/2010 19:28	GK.
Styrene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK

Qualifiers:

- Value exceeds maximum contaminant level
- BRL Below reporting limit
- H Holding times for preparation or analysis exceeded
- N Analyse not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

27-Jan-10 Date:

Mactec Engineering and Consulting, Inc. Client:

Project: Hunting Creek Plaza

Lab ID:

1001D93-004

Client Sample ID:

MW-5

Collection Date:

1/21/2010 3:25:00 PM

Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analysi			
TCL VOLATILE ORGANICS	SW8260B	(SW5030B)										
Tetrachloroethene		980	50		ug/L	124270	10	01/26/2010 18:04	NK			
Toluene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK			
trans-1,2-Dichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK			
trans-1,3-Dichloropropene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK			
Trichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK.			
Trichlorofluoromethane		BRL	5.0		ug/L	124270	1	01/25/2010 19:28	GK			
Vinyl chloride		BRL	2.0		ug/L	124270	1	01/25/2010 19:28	GK			
Surr: 4-Bromofluorobenzene		88.3	60.1-127		%REC	124270	1	01/25/2010 19:28	GK			
Surr: 4-Bromofluorobenzene		97.7	60.1-127		%REC	124270	10	01/26/2010 18:04	NK			
Surr: Dibromofluoromethane		99.7	79.6-126		%REC	124270	1	01/25/2010 19:28	GK			
Surr: Dibromofluoromethane		101	79.6-126		%REC	124270	10	01/26/2010 18:04	NK			
Surr: Toluene-d8		98	78-116		%REC	124270	10	01/26/2010 18:04	NK			
Surr: Toluene-d8		98.8	78-116		%REC	124270	1	01/25/2010 19:28	GK.			

Qualifiers:

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Date: 27-Jan-10

Client: Mactec Engineering and Consulting, Inc.

Project: Hunting Creek Plaza

Lab ID: 1001D93-005

Client Sample ID: TRIP BLANK

Collection Date: 1/22/2010

Matrix: Aqueous

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260	В			(SV	V503 0B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1,1,2-Trichloroethane	BRL	5.0		ug/L	124270	I	01/25/2010 17:03	GK
1,1-Dichloroethane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1,1-Dichloroethene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1,2-Dibromoethane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1,2-Dichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1,2-Dichloroethane	BRL	5.0		ug/L	124270]	01/25/2010 17:03	GK.
1,2-Dichloropropane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1.3-Dichlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
1.4-Dichlorobenzene	BRL	5.0		ug/L	124270	Ī	01/25/2010 17:03	GK
2-Butanone	BRL	50		ug/L	124270	1	01/25/2010 17:03	GK
2-Hexanone	BRL	10		ug/L	124270	1	01/25/2010 17:03	GK
4-Methyl-2-pentanone	BRL	10		ug/L	124270	1	01/25/2010 17:03	GK
Acetone	BRL	50		ug/L	124270	1	01/25/2010 17:03	GK
Benzene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK.
Bromodichloromethane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Bromoform	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Bromomethane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Carbon tetrachloride	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Chlorobenzene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Chloroethane	BRL	10		ug/L	124270	1	01/25/2010 17:03	GK
Chloroform	BRL	5.0		ug/L	124270]	01/25/2010 17:03	GK
Chloromethane	BRL	10		ug/L	124270	1	01/25/2010 17:03	GK.
cis-1,2-Dichloroethene	BRL	5.0		ug/L	124270	l	01/25/2010 17:03	GK.
cis-1,3-Dichloropropene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Cyclohexane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Dibromochloromethane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Dichlorodifluoromethane	BRL	10		ug/L	124270	1	01/25/2010 17:03	GK
Ethylbenzene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Freon-113	BRL	10		ug/L	124270	1	01/25/2010 17:03	GK
Isopropylbenzene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
m,p-Xylene	BRL	10		ug/L	124270	1	01/25/2010 17:03	GK
Methyl acetate	BRL	5.0		ug/L	124270	j	01/25/2010 17:03	GK
Methyl tert-butyl ether	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Methylcyclohexane	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Methylene chloride	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
o-Xylene Styrene	BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK

Qualifiers:

- Value exceeds maximum contaminant level
- BRL Below reporting limit
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

Client: Mactec Engineering and Consulting, Inc. Client Sample ID: TRIP BLANK
Project: Hunting Creek Plaza Collection Date: 1/22/2010
Lab ID: 1001D93-005 Matrix: Aqueous

Date:

27-Jan-10

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS	SW8260B				(SV	V5030B)			
Tetrachloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Toluene		BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
trans-1,2-Dichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
trans-1,3-Dichloropropene		BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Trichloroethene		BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Trichlorofluoromethane		BRL	5.0		ug/L	124270	1	01/25/2010 17:03	GK
Vinyl chloride		BRL	2.0		ug/L	124270	1	01/25/2010 17:03	GK
Sun: 4-Bromofluorobenzene		90.6	60. I-127		%REC	124270	1	01/25/2010 17:03	GK
Surr: Dibromofluoromethane		97.7	79.6-126		%REC	124270	1	01/25/2010 17:03	GK.
Surr: Toluene-d8		96.9	78-116		%REC	124270	1	01/25/2010 17:03	GK

Qualifiers;

Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

Sample/Cooler Receipt Checklist

Client Marte C		Work Order	r Number	1001D92
Checklist completed by Dunfy / Date	/22/1	<u>a</u> .		
Carrier name: FedEx UPS Courier Client US	Mail Other	r	_	
Shipping container/cooler in good condition?	Yes L	No	Not Present	_
Custody seals intact on shipping container/cooler?	Yes _	No	Not Present	<i>L</i>
Custody seals intact on sample bottles?	Yes _	No	Not Present	<u>L</u>
Container/Temp Blank temperature in compliance? (4°C±2)*	Yes —	No		
Cooler #1 4 Cooler #2 Cooler #3	Cooler #4	Coo	ler#5	Cooler #6
Chain of custody present?	Yes 🗸	No		
Chain of custody signed when relinquished and received?	Yes 🗸	No		
Chain of custody agrees with sample labels?	Yes 🕖	No		
Samples in proper container/bottle?	Yes U	No		
Sample containers intact?	Yes 💆	No <u>.</u>		
Sufficient sample volume for indicated test?	Yes <u></u>	No		
All samples received within holding time?	Yes <u></u>	No		
Was TAT marked on the COC?	Yes	No		
Proceed with Standard TAT as per project history?	Yes	No	Not Applica	ble
Water - VOA vials have zero headspace? No VOA vials su	bmitted	Yes <u></u>	No	
Water - pH acceptable upon receipt?	Yes	No	Not Applica	ble
Adjusted?	Chec	ked by		_
Sample Condition: GoodOther(Explain)				
(For diffusive samples or AIHA lead) Is a known blank includ	ed? Yes	и	01	

See Case Narrative for resolution of the Non-Conformance.

 $\verb|L|Quality Assurance| Checklists Procedures Sign-Off Templates| Checklists | Sample Receipt Checklists | Sample$

^{*} Samples do not have to comply with the given range for certain parameters.

Date: 27-Jan-10

Client:

Project Name:

Mactec Engineering and Consulting, Inc.

Hunting Creek Plaza

1001D93 Workorder:

ANALYTICAL QC SUMMARY REPORT

BatchID: 124270

Sample ID: MB-124270 SampleType: MBLK	Client ID: TestCode: TC	L VOLATILE ORGA	NICS SW8260	В	.Un Bat	its: ug/L chID: 124270	•	Date: 01/25/ lysis Date: 01/25/		Run No: 164175 Seq No: 3399349
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
1,1,1-Trichloroethane	BRL	5.0	0	0	0	0	0	0	0	0
1,1,2,2-Tetrachloroethane	BRL	5.0	0	0	0	0	0	0	0	0
1,1,2-Trichloroethane	BRL	5.0	. 0	0	0	0	0	0	0	0
,1-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	0
,1-Dichloroethene	BRL	5.0	. 0	0	0	0	0	0	0	0
,2,4-Trichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
,2-Dibromo-3-chloropropane	BRL	5.0	0	. 0	0	0	0	0	0	0
1,2-Dibromoethane	BRL	5.0	0 -	0	0	0	. 0	0 .	0	0
,2-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
,2-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	0
,2-Dichloropropane	BRL	5.0	0	0	0	0	0	0	0	0
,3-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	. 0	0
,4-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
2-Butanone	BRL	50	0	0	0	0	0	0	0	0
?-Hexanone	BRL	10	0	0	0	0	0	. 0	0	0
I-Methyl-2-pentanone	BRL	10	0	0	0	0	0	0	0	0
\cetone	BRL	50	0	0	0	0	0	0	0	0
Benzene	BRL	5.0	0	0	0	. 0	0	0	0	0 .
Bromodichloromethane	BRL	5.0	0	0	0	0	0	0	0	0
Broinoform	BRL	5.0	0	0	0	0	0	0	0	0
Bromomethane	BRL	5.0	0	0	0	0	0	0	0	. 0
Carbon tetrachloride	BRL	5.0	0	0	0	0	0	0	0	0
Chlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
Chloroethane	BRL	10	0	.0	0	0	0	0	0	0
Chloroform	BRL	5.0	0	0	0	0	0	0	0	0
Chloromethane	BRL	10	0	0	0	0	0	0	0	0
sis-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	. 0	0	0

Qualifiers:

Greater than Result value

BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Page 14 of 17

- Less than Result value
- E Estimated (value above quantitation range)
- N Analyte not NELAC certified
- S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

Date: 27-Jan-10

Client:

Mactec Engineering and Consulting, Inc.

Hunting Creek Plaza Project Name:

Workorder:

1001D93

ANALYTICAL QC SUMMARY REPORT

BatchID: 124270

Sample ID: MB-124270 Sample Type: MBLK	Client ID: TestCode: TC	L VOLATILE ORGA	NICS SW8260	В	Uni Bat	its: ug/L chID: 124270		Date: 01/25/ lysis Date: 01/25/		Run No: 164175 Seq No: 3399349
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
cis-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0
Cyclohexane	BRL	5.0	0	0	0	0	0	0	0	0
Dibromochloromethane	BRL	5.0	0	0	0	0	0	0	0	0
Dichlorodifluoromethane	BRL	10	0	0	0	0	0	0	0	0
Ethylbenzene	BRL	5.0	0	0	0	0	0	0	0	0
Freon-113	BRL	10	0	0	0	0	0	0	0	0
Isopropylbenzene	BRL	5.0	0	0	0	0	0	0	0	0
m,p-Xylene	BRL	10	0	0	0	0	0	0	0	0
Methyl acetate	BRL	5.0	0	0	0	0	0	0	0	0
Methyl tert-butyl ether	BRL	5.0	0	0	0	0	0	0	0	. 0
Methylcyclohexane	BRL	5.0	0	0	0	0	0	0	0	0
Methylene chloride	BRL	5.0	0	0	0	0	0	0	0	0
o-Xylene	BRL	5.0	0	0	0	0	0	0	0	0
Styrene	BRL	5.0	0	0	0	0	0	0	0	0
Tetrachioroethene	BRL	5.0	0	0	0	0	0	0	0	0
Toluene	BRL	5.0	0	0	0	0	0	0	0	0
trans-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0
trans-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0
Trichloroethene	BRL	5.0	0	0	0	0	0	0	0	0
Trichlorofluoromethane	BRL	5.0	0	0	0	0	0	0	0	0
Vinyl chloride	BRL	2.0	0	0	0	0	0	0	0	0
Surr: 4-Bromofluorobenzene	44.59	0	50	0	89.2	60.1	127	0	0	0
Surr: Dibromofluoromethane	47.42	0	50	0	94.8	79.6	126	0	0	0
Surr: Toluene-d8	48.19	0	50	0	96.4	78	116	. 0	0	0

Qualifiers:

Greater than Result value

BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Page 15 of 17

Date: 27-Jan-10

Client:

Mactec Engineering and Consulting, Inc.

Hunting Creek Plaza

Workorder:

Project Name:

1001D93

ANALYTICAL QC SUMMARY REPORT

BatchID: 124270

Sample ID: LCS-124270 SampleType: LCS	Client ID: TestCode: TC	L VOLATILE ORGA	NICS SW8260	В	Uni Bat	ts: ug/L chID: 124270		Date: 01/25/ lysis Date: 01/25/		Run No: 164175 Seq No: 3399348
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
1,1-Dichloroethene	43.02	5.0	50	0	86	61.4	146	0	0	0
3enzene	44.28	5.0	50	0	88.6	72.8	131	0	0	0
Chlorobenzene	42.90	5.0	50	0	85.8	76	123	0	0	0
Politiene Politiene	43.70	5.0	50	0	87.4	74.7	128	0	0	0
Prichloroethene	44.53	5.0	50	0	89.1	74.4	130	0	0	0
Surr: 4-Bromofluorobenzene	48.44	0	50	0	96.9	60.1	127	0	0	0
Surr: Dibromofluoromethane	47.82	0	50	0	95.6	79.6	126	0	0	0
Surr: Toluene-d8	49.77	0	50	. 0	99.5	78	116	0	0	0
Sample ID: 1001C25-001AMS	Client ID:			······································	Un	ts: ug/L	Prep	Date: 01/25	/2010	Run No: 164175
SampleType: MS	TestCode: TC	L VOLATILE ORGA	ANICS SW8260	В	Bat	chID: 124270	Ana	lysis Date: 01/25	/2010	Seq No: 3399556
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
,1-Dichloroethene	53.57	5.0	50	0	107	48.8	172	0	0	0
3enzene	53.58	5.0	50	0	107	64.5	143	0	0	0
Chlorobenzene	48.69	5.0	50	0	97.4	74.5	129	0	0	0
Toluene	50.70	5.0	50	0	101	62	145	0	0	Ö
Frichloroethene	51.53	5.0	50	0	103	70.3	140	0	0	0
Surr: 4-Bromofluorobenzene	45.53	0	50	0	91.1	60.1	127	0	0	0
Surr: Dibromofluoromethane	47.70	0	50	0	95.4	79.6	126	0	0	0
Surr: Toluene-d8	48.41	0	50	0	96.8	78	116	0	0	0
Sample 1D: 1001C25-001AMSD SampleType: MSD	Client ID: TestCode: TC	L VOLATILE ORG/	ANICS SW8260	В	Un Bat	ts: ug/L chID: 124270	•	Date: 01/25/ lysis Date: 01/25/		Run No: 164175 Seq No: 3399557
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
1,1-Dichloroethene	49.24	5.0	50	0	98.5	48.8	172	53.57	8.42	21.6
Benzene	50.59	5.0	50	0	101	64.5	143	53.58	5.74	18.3

Qualifiers:

Greater than Result value

Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD entside limits due to matrix

Page 16 of 17

1001D93

Date:

27-Jan-10

Client:

Mactec Engineering and Consulting, Inc.

ANALYTICAL QC SUMMARY REPORT

Project Name: Workorder: Hunting Creek Plaza

BatchID: 124270

Sample ID: 1001C25-001AMSD SampleType: MSD	Client ID: TestCode: TO	L VOLATILE ORGA	В	Un Bat	its: ug/L chID: 124270		Date: 01/25/ lysis Date: 01/25/		Run No: 164175 Seq No: 3399557	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Vai	%RPD	RPD Limit Qual
Chlorobenzene	46.46	5.0	50	0	92.9	74.5	129	48.69	4.69	19.2
Toluene	48.04	5.0	50	0	96.1	62	145	50.70	5.39	21.2
Trichloroethene	48.94	5.0	50	0	97.9	70.3	140	51.53	5.16	20.3
Surr: 4-Bromofluorobenzene	46.34	0	50	0	92.7	60.1	127	45.53	0	0
Surr: Dibromofluoromethane	47.74	0	50	0	95.5	79.6	126	47.70	0	0
Surr: Toluene-d8	48.42	0	50	0	96.8	78	116	48.41	0	0

Qualifiers:

Greater than Result value

BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

APPENDIX E RISK REDUCTION STANDARD CALCULATIONS FROM PROSPECTIVE PURCHASER COMPLIANCE STATUS REPORT

Hunting Creek Plaza Conyers, Rockdale County, Georgia HSI# 10832

Type 1 Risk Reduction Standard Residential Soil Exposure

	App I NC (Item A)	(ite	eria x 100 im B) g/kg)	App III Table 2 (Item C)	Leachate Test (Ilem D)	Greatest of Items A (Item E)	RAGS Equation 7 (Item F)	RAGS Equation 6 (item G)	Type 1 RRS (Lowest of items E through G)
coc	(mg/kg)	GW Criteria	GW Criteria x100	(mg/kg) .	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Acetone	2.74	4	400	NL .	TBD	400	0.47	N/A	0.47
2-Butanone	0.79	2	200	NL	TBD	200	0.11	N/A	0.11
Ethylbenzene	20	0.7	70	NL	TBD	70	0.65	N/A	0.65
Toluene	14.4	1	100	NL	TBD	100	0.27	N/A	0.27
Xylenes	20	10	1000	NL	TBD	1000	5,05	N/A	20.00
Tetrachloroethene	0.18	0,005	0.5	NL	TBD	0.5	3.60	9.85	0.50
Trichloroethene	0.13	0.005	0.5	NL	TBD	0.5	60.88	0.80	0.50
cis-1,2 Dichloroethene	0.53	ΝL	N/A	NL	TBD	0.53-	0,83	N/A	0,53

Note:

COC:

Constituent of Concern

TBD: App I NC: To be determined

GW Criteria x100:

Appendix I of the Georgia Rules for Hazardous Site Response 391-3-19

App III Table 2:

100 times concentration listed in Table 1 (Groundwater Criteria) in Appendix III of the Rules for Hazardous Site Response

Table 2 (Type 1 Soil Criteria) in Appendix III of the Rules of Hazardous Response Not Listed

Hunting Creek Plaza HSI# 10832

SOIL NON-CARCINOGENIC EFFECTS - RESIDENTIAL SCENARIO RAGS EQUATION 7

Constituent of Concern emical concentration in soil get Hezard Index I Chronic Reference Dose	mg/L unitless		Acetone	2-Butanone	Ethylbenzene	Toluene	m-Xylene	p-Xylene
get Hazard Index			CASHELLAR BUILDING	Property Commencer and Administration of				
	Lucitions		1.10	(Andre Control				
Chennia Reference Doce	UI III E S S	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1,00E+00	1.00E+00	1.00E+00
continue Reference Dose	chemical spec	zific	9.00E-01	6.00E-01	1.00E-01	8.00E-02	2.00E-01	2.00E-01
alation Chronic Reference Dose	chemical spec	cific	9,00E-01	1.40E+00	2,90E-01	1.40E+00	2.90E-02	2.90E-02
ly Weight	kg	70	70	70 .	70	70	70	70
raging Time	yr	30	30	30	30	30	30	30
osure Frequency	days/yr	350	350	350	350	350	350	350
osure Duration	lyr	30	30	.30	30	30	30	30
Ingestion Rate	mg/day	114	114	114	114	114	114	114
elation Rate	L/day	15	15	15	15	15	15	15
to air volatilization	chemical sper	cific	2663	8.56E+03	6.70E+03	4.81E+03	7532	7532
liculate emission factor	m3/kg	4,63E+09	4.63E+09	4.63E+09	4.63E+09	4,63E+09	4.63E+09	4.63E+09
			Adult Exposure S	cenario		·		
THI*BW*AT*365	=		7.67E+05	7.67E+05	7.67E+05	7.67E+05	7.67E+05	7.67E+05
EF*ED	=		10500	10500	10500	10500	10500	10500
(1/RtDo)*1.0E-6*IR soil	æ		1.27E-04	1.90E-04	1.14E-03	1.43E-03	5.70E-04	5.70E-04
(1/RfDi)*IR air	듺		1.67E+01	1.07E+01	5.17E+01	1.07E+01	5.17E+02	5.17E+02
1/VF	≅		3.76E-04	1.17E-04	1.49E-04	2.08E-04	1.33E-04	1.33E-04
1/PEF	. =		2.16E-10	2.16E-10	2.16E-10	2.16E-10	2,16E-10	2.16E-10
1NF + 1/PEF	<u> </u>	programme and the second se	3.76E-04	1.17E-04	1,49E-04	2.08E-04	1,33E-04	1.33E-04
THI*BW*AT*365		C=	0.466 mg/kg	0.105 mg/kg	0.647 mg/kg	0.267 mg/kg	5.055 mg/kg	5.055 mg/kg
	aging Time sure Frequency sure Duration ngestion Rate ation Rate to air volatilization culate emission factor THI*BW*AT*365 EF*ED (1/RfDo)*1.0E-6*IR soil (1/RfDi)*IR air 1/VF 1/PEF 1/VF + 1/PEF THI*BW*AT*365	### Sure Frequency days/yr	aging Time yr 30 sure Frequency days/yr 350 sure Duration yr 30 ngestion Rate mg/day 114 ation Rate U/day 15 to air volatilization chemical specific m3/kg 4.63E+09 THI*BW*AT*365 EF*ED = (1/RfDo)*1.0E-6*IR soil = 1/VF + 1/PEF = 1/VF + 1/VF + 1/PEF = 1/VF + 1/PEF = 1/VF + 1/VF	aging Time yr 30 30 30 sure Frequency days/yr 350 350 350 sure Duration yr 30 30 30 ngestion Rate mg/day 114 114 114 114 114 115 15 15 15 15 15 15 15 15 15 15 15 15	aging Time yr 30 30 30 30 30 30 30 sure Frequency days/yr 350 350 350 350 350 sure Duration yr 30 30 30 30 30 30 30 ngestion Rate mg/day 114 114 114 114 114 ation Rate L/day 15 15 15 15 15 15 15 15 15 15 15 15 15	aging Time yr 30 30 30 30 sure Frequency days/yr 350 350 350 350 sure Duration yr 30 30 30 30 sure Duration yr 30 30 30 30 ngestion Rate mg/day 114	aging Time yr 30 30 30 30 30 30 30 30 30 30 30 30 30	30 30 30 30 30 30 30 30

Calculation Elements	Units	HSRA Values			
Constituent of Concern			cis-1,2-DCE	PCE	TCE
Chemical concentration in soil	mg/L			And the second s	
Target Hazard Index	unitless	1.00E+00	1.00E+00	1.00E+00	1.00E+00
Oral Chronic Reference Dose	chemical s	pecific .	1.00E-02	1.00E-02	3.00E-04
Inhalation Chronic Reference Dose	chemical s	pecific	NA	1.40E-01	1.14E-02
Body Weight	kg	70	70	70	70
Averaging Time	yr	30	30	30	30
Exposure Frequency	days/yr	350	350	350	350
Exposure Duration	уг	30	30	30	30
Soil Ingestion Rate	mg/day	114	114	114	114
Inhalation Rate	L/day	15	15	15	15
soil to air volatilization	chemical s	pecific	2663	2828	2898
particulate emission factor	m3/kg	4.63E+09	4.63E+09	4.63E+09	4.63E+09
	Residential Exp	osure Scenario			
THI*BW*AT*365	=		7.67E+05	7.67E+05	7.67E+05
EF*ED	=		10500	10500	10500
(1/RfDo)*1.0E-6*IR soil	± .		1.14E-02	1.14E-02	3.80E-01
(1/RfDl)*IR air	=		0.00E+00	1.07E+02	1,32E+03
1/VF	æ		3.76E-04	3.54E-04	3.45E-04
1/PEF	=		2.16E-10	2,16E-10	2.16E-10
1/VF + 1/PEF	======================================		3.76E-04	3.54E-04	3.45E-04
THI*BW*AT*365		C≒	0.832 mg/kg	3.598 mg/kg	60.884 mg/kg
	Constituent of Concern Chemical concentration in soil Target Hazard Index Oral Chronic Reference Dose Inhalation Chronic Reference Dose Body Weight Averaging Time Exposure Frequency Exposure Duration Soil Ingestion Rate Inhalation Rate soil to air volatilization particulate emission factor THI*BW*AT*366 EF*ED (1/RfDi)*1.0E-6*IR soil (1/RfDi)*1R air 1/VF 1/PEF	Constituent of Concern Chemical concentration in soil mg/L	Constituent of Concern Chemical concentration in soil mg/L	Constituent of Concern Cis-1,2-DCE	Constituent of Concern Cis-1,2-DCE PCE

Hunting Creek Plaza HSI# 10832

SOIL CARCINOGENIC EFFECTS - RESIDENTIAL SCENARIO RAGS EQUATION 6

	Calculation Elements	Units	HSRA Values	<u></u>					·
	Constituent of Concern	1		Acetone	2-Butanone	Ethylbenzene	Toluene	m-Xylene	p-Xylenes
	Chemical concentration in soil	mg/L							
R	target excess individual lifetime target risk	unitless	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05
fi	inhalation cancer slope factor	chemical	specific	N/A	N/A	N/A	N/A	N/A	N/A
fo	oral cancer slope factor chemical s		specific	N/A	N/A	N/A	· N/A	N/A	N/A
N	Body Weight, Adult	kg	70	70	70	70	70	70	70
T	Averaging Time, Adult	yr	70	70	70	70	70	70	70
F	Exposure Frequency	days/yr	350	350	350	350	350	350	350
D	Exposure Duration, Adult	уг	30	30	30	30	30	30	30
soil	Soil Ingestion Rate, Adult	mg/day.	114	114	114	114	114	114	114
air	Inhalation Rate, Adult	L/day	15	15	15	15	15	15	15
F	soil to air volatilization	chemical	specific	2663	2828	2898	3868	7532	7532
EF	particulate emission factor	m3/kg	4.63E+09	4.63E+09	4.63E+09	4.63E+09	4.63E+09	4.63E+09	4.63E+09
	volatilization factor	unitless	0.5	0.5	0.5	0.5	0.5	0.5	0,5
وسيفون وسيدون				Adult Expos	ure Scenario				
	TR*BW*AT*365			1.79E+01	1.79E+01	1.79E+01	1.79E+01	1.79E+01	1,79E+01
	EF*ED ·	=		10500	10500	10500	10500	10500	10500
	Sfo*1.0E-6*IR soil	=		N/A	N/A	N/A	N/A	N/A	N/A
	Sfi*IR air	= .		N/A	N/A	N/A	- N/A	N/A	N/A
	1/VF	Ξ.	,	3.76E-04	3.54E-04	3.45E-04	2.59E-04	N/A	N/A
==	TR*BW*AT*365	•	C (Adult)=	N/A	N/A	N/A	N/A	N/A	N/A

	Calculation Elements	Units	HSRA Values			
Constituent of Concern				cis- 1,2-DCE	PCE	TCE
C	Chemical concentration in soil	mg/L	State Lines:			
TR	target excess individual lifetime target risk	unitless	1.00E-05	1,00E-05	1.00E-05	1.00E-05
Sfi	inhalation cancer slope factor	chemical	specific	N/A	2.10E-02	4.00E-01
Sfo	oral cancer slope factor	chemical specific		N/A	5.40E-01	4.00E-01
BW	Body Weight, Adult	kg	70	70	70	70
AT	Averaging Time, Adult	уг	70	70	70	70
EF	Exposure Frequency	days/yr	350	350	350	350
ED	Exposure Duration, Adult	уг	30	30	30	30
IR soil	Soil Ingestion Rate, Adult	mg/day	114	114	114	114
IR air	Inhalation Rate, Adult	L/day	15	15	· 15	15
VF	soii to air volatilization	chemical specific		2663	2828	2898
PEF	particulate emission factor	m3/kg	4.63E+09	4.63E+09	4.63E+09	4.63E+09
К	volatilization factor	unitless	0.5	0.5	0.5	0.5
posure	Scenario					
	TR*BW*AT*365	<u> </u>		1.79E+01	1.79E+01	1.79E+01
	EF*ED	=		10500	10500	10500
	Sfo*1.0E-6*IR soil	=		N/A	6.16E-05	4.56E-05
	Sfi*IR air	· =		N/A	3,15E-01	6.00E+00
	1/VF	=		3.76E-04	3.54E-04	3.45E-04
C=	TR*BW*AT*365		C (Adult)=	N/A	9.849 mg/kg	0.805 mg/kg
	EF*ED*[(SFo*1.0E-6*IR soil) + [Sfi*IR air*(1/VF)]		_ ` ` '			.,s