Voluntary Investigation and Remediation Plan Application Form and Checklist

		VRP	APPLICANT INFO	ORMATION		
COMPANY NAME	BTR Properties, Inc.	BTR Properties, Inc.				
CONTACT PERSON/TITLE	Todd Rambo	Todd Rambo				
ADDRESS	141 Hammond Street,	141 Hammond Street, Carrollton, Georgia 30117				
PHONE	(770) 832-2000 FAX (770) 832-2095 E-MAIL toddr@bometals.com					
GEORGIA CER	RTIFIED PROFESSI	ONAL GEO	LOGIST OR PRO	FESSIONA	L ENGINE	ER OVERSEEING CLEANUP
NAME	Steven W. Hart			GA PE/PG	NUMBER	660
COMPANY	Peachtree Environmental					
ADDRESS	ADDRESS 3000 Northwoods Parkway, Suite 105, Norcross, Georgia 30071					
PHONE	PHONE (770) 824-3136 FAX (770) 449-6119 E-MAIL shart@peachtreeenvironmental.com					
1		APP	LICANT'S CERTI	FICATION		

In order to be considered a qualifying property for the VRP:

(1) The property must have a release of regulated substances into the environment;

(2) The property shall not be:

- (A) Listed on the federal National Priorities List pursuant to the federal Comprehensive Environmental Response, Compensation, and Liability Act, 42 U.S.C. Section 9601.
- (B) Currently undergoing response activities required by an order of the regional administrator of the federal Environmental Protection Agency; or

(C) A facility required to have a permit under Code Section 12-8-66.

- (3) Qualifying the property under this part would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or similar authorization from the United States Environmental Protection Agency.
- (4) Any lien filed under subsection (e) of Code Section 12-8-96 or subsection (b) of Code Section 12-13-12 against the property shall be satisfied or settled and released by the director pursuant to Code Section 12-8-94 or Code Section 12-13-6.

In order to be considered a participant under the VRP:

- (1) The participant must be the property owner of the voluntary remediation property or have express permission to enter another's property to perform corrective action.
- (2) The participant must not be in violation of any order, judgment, statute, rule, or regulation subject to the enforcement authority of the director.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

I also certify that this property is eligible for the Voluntary Remediation Program (VRP) as defined in Code Section 12-8-105 and I am eligible as a participant as defined in Code Section 12-8-106.

APPLICANT'S SIGNATURE	Jule RABO		
APPLICANT'S NAME/TITLE (PRINT)	TOUR RAMBO BTR PROPERTIES, UC	DATE	12/19/16

QUALIF TING F	HAZARDOUS	additional qualifying properties, please refer to the SITE INVENTORY INFORMATION (if applicable)	last page of application	n form)
HSI Number	10604	Date HSI Site listed	2/15/2000	
HSI Facility Name	Trent Tube Division	NAICS CODE	27.1072000	
Tier r dollity rvairie	THE TABLE DIVISION	PROPERTY INFORMATION		
TAX PARCEL ID	C02-043-0003	PROPERTY SIZE (ACRES)	36.25	
PROPERTY ADDRESS	141 Hammond Street	THO ENT OLE (NONES)	00.20	
CITY	Carrollton	COUNTY	Carroll	The state of the s
STATE	Georgia	ZIPCODE	30117	
LATITUDE (decimal format)	33.59009	LONGITUDE (decimal format)	-85.093404	
E (11 ODE (decimal format)	AND THE RESIDENCE OF THE PARTY	PROPERTY OWNER INFORMATION	-03.033404	
PROPERTY OWNER(S)	BTR Properties, LLC	PHONE # (770) 832-2000		
MAILING ADDRESS	141 Hammond Street	1110HE # (110) 002-2000		
CITY	Carrollton	STATE/ZIPCODE	Georgia 30117	
ITEM#	DESCRIPTION OF REQUIREMENT		Location in VRP (i.e. pg., Table #, Figure #, etc.)	For EPD Comment Only (Leave Blank)
1.	\$5,000 APPLICATION FEE IN THE FORM OF A CHECK PAYABLE TO THE GEORGIA DEPARTMENT OF NATURAL RESOURCES. (PLEASE LIST CHECK DATE AND CHECK NUMBER IN COLUMN TITLED "LOCATION IN VRP." PLEASE DO NOT INCLUDE A SCANNED COPY OF CHECK IN ELECTRONIC COPY OF APPLICATION.)		Attached	
2.	WARRANTY DEED(S) FOR QUALIFYING PROPERTY.		Attached	
3.	TAX PLAT OR OTHER FIGURE INCLUDING QUALIFYING PROPERTY BOUNDARIES, ABUTTING PROPERTIES, AND TAX PARCEL IDENTIFICATION NUMBER(S).		Appendix A	
4.	ONE (1) PAPER COPY AND TWO (2) COMPACT DISC (CD) COPIES OF THE VOLUNTARY REMEDIATION PLAN IN A SEARCHABLE PORTABLE DOCUMENT FORMAT (PDF).		Attached	
5.	The VRP participant's initial plan and application must include, using all reasonably available current information to the extent known at the time of application, a graphic three-dimensional preliminary conceptual site model (CSM) including a preliminary remediation plan with a table of delineation standards, brief supporting text, charts, and figures (no more than 10 pages, total) that illustrates the site's surface and subsurface setting, the known or suspected source(s) of contamination, how contamination might move within the environment, the potential human health and ecological receptors, and the complete or incomplete exposure pathways that may exist at the site; the preliminary CSM must be updated as the investigation and remediation progresses and an up-to-date CSM must be included in each semi-annual status report submitted to the director by the participant; a PROJECTED MILESTONE SCHEDULE for investigation and remediation of the site, and after enrollment as a participant, must update the schedule in each semi-		Section 3.0	

	annual status report to the director describing implementation of the plan during the preceding period. A Gantt chart format is preferred for the		
	milestone schedule.		
	milestoric scriedule.		
	The following four (4) generic milestones are required in all initial plans with		
	the results reported in the participant's next applicable semi-annual reports to		
	the director. The director may extend the time for or waive these or other		
	milestones in the participant's plan where the director determines, based on a		
	showing by the participant, that a longer time period is reasonably necessary:		
	Within the first 12 months after enrollment, the participant must complete		
5.a.	horizontal delineation of the release and associated constituents of concern		
	on property where access is available at the time of enrollment;		
	Within the first 24 months after enrollment, the participant must complete		
5.b.	horizontal delineation of the release and associated constituents of concern		
5.0.	extending onto property for which access was not available at the time of		
	enrollment;		
	Within 30 months after enrollment, the participant must update the site CSM		
5.c.	to include vertical delineation, finalize the remediation plan and provide a		
3.6.	preliminary cost estimate for implementation of remediation and associated		
	continuing actions; and		
5.d.	Within 60 months after enrollment, the participant must submit the compliance		
	status report required under the VRP, including the requisite certifications.		
	SIGNED AND SEALED PE/PG CERTIFICATION AND SUPPORTING		
1	DOCUMENTATION:		
	"I certify under penalty of law that this report and all attachments were prepared by me or under my direct		
	supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seg.). I am		
1	a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I		
	have the necessary experience and am in charge of the investigation and remediation of this release of regulated	l l	
	substances.		
	Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of		
	corrective action, and long term monitoring, I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the	2	
6.	Georgia Environmental Protection Division.		
1	The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that		
	there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."		
	2		
	STEVEN U. NAM (668 Printed Name and GA PE/PG Number) Date		
	Printed Name and GA PE/PG Number) Date		
	1/1 0-1		
	Signature and Stamp		
/			

ADDITIONAL QUALIFYING PROPERTIES (COPY THIS PAGE AS NEEDED)

	P	PROPERTY INFORMATION		
TAX PARCEL ID	C02 0430015	PROPERTY SIZE (ACRES)	20	
PROPERTY ADDRESS	1065 Alabama Street			
CITY	Carrollton	COUNTY	Carroll	
STATE	Georgia	ZIPCODE	30117	
LATITUDE (decimal format)	33.591493	LONGITUDE (decimal format)	-85.096295	
	PROF	PERTY OWNER INFORMATION		
PROPERTY OWNER(S)	Lawrence Properties, Inc.	PHONE #	(770) 834-3307	
MAILING ADDRESS 1065 Alabama Street, Suite 36D				
CITY	Carrollton	STATE/ZIPCODE	Georgia 30117	

	PROPERTY INFORMATION	
TAX PARCEL ID	PROPERTY SIZE (ACRES)	
PROPERTY ADDRESS		
CITY	COUNTY	
STATE	ZIPCODE	
LATITUDE (decimal format)	LONGITUDE (decimal format)	
	PROPERTY OWNER INFORMATION	
PROPERTY OWNER(S)	PHONE#	
MAILING ADDRESS		
CITY	STATE/ZIPCODE	

	PROPERTY INFORMATION	
TAX PARCEL ID	PROPERTY SIZE (ACRES)	
PROPERTY ADDRESS		
CITY	COUNTY	
STATE	ZIPCODE	
LATITUDE (decimal format)	LONGITUDE (decimal format)	
	PROPERTY OWNER INFORMATION	
PROPERTY OWNER(S)	PHONE #	
MAILING ADDRESS		
CITY	STATE/ZIPCODE	

3753 287

(3)

PT-61 022-200 (a OC 7.579)
CARROLL COUNTY, GEORGIA
REAL ESTATE TRANSFER TAX
PAID
DATE 101 2410 (c)

CLERK OF SUPERIOR COURT

GA C. L'ON CUNTY
L'ER SUBERIOR COUR

06 OCT 24 PH 3: 16

/ Januare My Cour

Please Return Recorded Document to:

Raymond J. Kearns, Esquire

Kearns Harp & Brumby

5775-B Glenridge Drive, #210

Atlanta, GA 30328

Attn: Sue Despres (06090995)

STATE OF GEORGIA COUNTY OF FULTON Transfer Tax Due: \$0.00

LIMITED WARRANTY DEED

THIS INDENTURE, made this 19TH day of October, 2006 between BOMETALS, INC., a Georgia corporation, as party of the first part ("Grantor"), and BTR PROPERTIES, LLC, a Georgia limited liability company, as party of the second part ("Grantee").

WITNESSETH:

That the said Grantor, for and in consideration of the sum of Ten and No/100 Dollars (\$10.00) and other good and valuable consideration, in hand paid by Grantee at and before the execution and delivery of these presents, the receipt, adequacy and sufficiency of which are hereby acknowledged by Grantor, has granted, bargained, sold, aliened, conveyed and confirmed, and by these presents does grant, bargain, sell, alien, convey and confirm unto Grantee and to its heirs, administrators, successors and assigns, all that tract or parcel of land lying and being in Land Lot 131, 158 and 159, 10th District, Carroll County, Georgia, and being more particularly described on Exhibit "A" attached hereto and by this reference incorporated herein.

TOGETHER WITH all and singular rights, members and appurtenances in and to the above-described property in anywise appertaining or belonging.

This conveyance and the warranties contained herein are expressly made subject only to those items set forth on Exhibit "B" attached hereto and by this reference incorporated herein.

TO HAVE AND TO HOLD the above-described property with all and singular the rights, members and appurtenances thereof, to the same being, belonging or in anywise appertaining to

LIMITED WARRANTY DEED.doc

BK PG 3753 288

the only proper use, benefit and behoof of the said Grantee, its heirs, administrators, successors and assigns, forever, in FEE SIMPLE.

AND THE SAID GRANTOR, for its successors and assigns will warrant and forever defend the right and title to the above-described property unto the said Grantee, its heirs, administrators, successors and assigns, against the lawful claims of all persons claiming by, through or under Grantor.

IN WITNESS WHEREOF, the Grantor has set hereunto its hand and seal as of the day and year first above written.

Grantor

BoMetals, Inc.

By:

(SEAL)

Todd A. Rambo, President

Ву: _____

Treasurer /

(SEAL)

Signed, sealed and delivered in presence of:

Unofficial Witness

Notary Public

My Commission Expires: June

27,2009

(NOTARIAL SEAL)

AMANDA T MILLS
Notery Public, State of Georgia
Cerroll County
My Commission Expires
June 27, 2009

EXHIBIT "A" LEGAL DESCRIPTION

All that tract or parcel of land lying and being in Land Lots 130, 131, 158 and 159 of the 10th District of Carroll County, Georgia, and being more particularly described as follows:

BEGINNING at a point located on the northwesterly right-of-way line of the Central of Georgia Railroad (a 100-foot right-of-way), 1,186.00 feet northeasterly, as measured along said Railroad right-of-way, from the point of intersection of said right-of-way with the northerly right-of-way line of Alabama Street (a 60-foot right-of-way); thence leaving the northwesterly right-of-way line of the Central of Georgia Railroad and running south 88 degrees 46 minutes 00 seconds west, 815.11 feet to a point located on the easterly right-of-way line of Hammond Street (a 60foot right-of-way); running thence northerly along the easterly right-of-way line of Hammond Street, the following courses and distances: north 02 degrees 02 minutes 50 seconds west, 194.05 feet to a point; north 01 degree 04 minutes 35 seconds west, 134.92 feet to a point; and, north 00 degrees 41 minutes 16 seconds west, 187.75 feet to a point; running thence south 89 degrees 18 minutes 44 seconds west, along the terminus of the right-of-way of Hammond Street, 30.00 feet to a point; running thence north 00 degrees 41 minutes 16 seconds west, 275.03 feet to a point; continuing thence north 00 degrees 41 minutes 16 seconds west, 530.73 feet to a point; continuing thence north 00 degrees 41 minutes 16 seconds west, 69.27 feet to a point located on the center line of the Little Tallapoosa River; running thence in a generally northeasterly direction along the center line of said river, the following courses and distances: north 88 degrees 23 minutes 06 seconds east, 225.45 feet to a point; north 86 degrees 43 minutes 45 seconds east, 73.47 feet to a point; north 78 degrees 08 minutes 14 seconds east, 226.47 feet to a point; north 60 degrees 20 minutes 45 seconds east, 282.28 feet to a point; north 67 degrees 13 minutes 14 seconds east, 106.34 feet to a point; and, north 70 degrees 53 minutes 52 seconds east, 175.76 feet to the point of intersection of the center line of said river with the southwesterly right-of-way line of the aforementioned Central of Georgia Railroad; running thence southeasterly, southerly and southwesterly along the southwesterly, westerly and northwesterly right-of-way line of said Railroad right-of-way, the following courses and distances: south 25 degrees 39 minutes 56 seconds east, 189.91 feet to a point; south 20 degrees 26 minutes 17 seconds east, 106.35 feet to a point; south 13 degrees 48 minutes 25 seconds east, 107.99 feet to a point; south 07 degrees 06 minutes 10 seconds east, 84.47 feet to a point; south 01 degree 06 minutes 57 seconds east, 95.72 feet to a point; south 05 degrees 41 minutes 32 seconds west, 101.16 feet to a point; south 12 degrees 13 minutes 13 seconds west, 107.39 feet to a point; south 16 degrees 08 minutes 34 seconds west, 88.11 feet to a point; and, south 17 degrees 42 minutes 04 seconds west, 864.53 feet to the POINT OF BEGINNING; and being a tract or parcel of land containing 36.10 acres according to a plat of survey entitled "Property Survey for: Crucible Materials Corporation, BoMetals, Inc., Old Republic National Title Insurance Company and Chesnut & Livingston, PC", prepared by Crawford & Associates, Inc., bearing the seal and certification of Douglas C. Crawford, Georgia Registered Land Surveyor No. 1833, dated April 28, 2005.

Exhibit "B"

Permitted Encumbrances

- 1. Those matters which would be disclosed by a survey or inspection of the property, including, without limitation, those matters shown on that certain Property Survey of the Property as prepared by Crawford & Associates, Inc., dated April 28, 2005, at Job No. JN910610, including, but not limited to, the following:
- (A) EMC power line (Deed Book 54, Page 158, aforesaid records) traversing southeasterly portion of subject property.
- (B) Central of Georgia Railroad spur track located on southeasterly portion of subject property;
- (C) Georgia Power Company easement with power poles and power service lines therein located along easterly portion of subject property adjacent to Central of Georgia Railroad right-of-way (Deed Book 135, Page 511, Deed Book 136, Page 372, Deed Book 136, Page 404 and Deed Book 266, Page 259, aforesaid records);
- (D) 30-inch sanitary sewer line and manholes associated therewith traversing northerly portion of subject property;
- (E) 10-foot sewer easement (Deed Book 135, Page 543, aforesaid records) with 8-inch sanitary sewer line therein traversing easterly and northeasterly portions of subject property;
- (F) Portion of subject property adjacent to Little Tallapoosa River lying within 100-year flood plain;
- (G) Metal building, outbuilding, gas valves, gas tanks, gas pump and shed, power station, concrete tanks, fencing, asphalt parking area, and other improvements located on and within the boundaries of subject property; and,
- (H) 14-inch water main traversing central portion of subject property.
- City, State and County taxes for 2006, which are liens but are not yet due or payable and all taxes for years subsequent to 2006.
- 3. Right-of-Way Easement from O.L. Hammond to Carroll County, Rural Electric Membership Corporation, dated April 15, 1937, recorded at Deed Book 54, Page 158, Carroll County, Georgia records.
- Easements for Channel Improvements in favor of West Soil Conservation District, as follows:
 - from D.L. Hammond, dated February 5, 1959, recorded at Deed Book 124, Page 221, aforesaid records; and
 - (b) from D.L. Hammond, dated February 5, 1959, recorded at Deed Book 124, Page 241, aforesaid records.

- 5. Easement from Trent Tube Company to Georgia Power Company, dated January 29, 1962, recorded at Deed Book 135, Page 543, aforesaid records.
- Sewer Easement from Trent Tube Company to Georgia Power Company to The City of Carrollton, Georgia, dated December 27, 1961, recorded at Deed Book 135, Page 543, aforesaid records.
- Right-of-Way easements in favor of Georgia Power Company, as follows:
 - from D.L. Hammond, dated January 5, 1962, recorded at Deed Book 136, Page 372, aforesaid records; and
 - (b) from O.L. Hammond, dated January 5, 1962, recorded in Deed Book 136, Page 404, aforesaid records.
- 8. General Permit from O.L. Hammond to Southern Bell Telephone and Telegraph Company, recorded at Deed Book 138, Page 186, aforesaid records.
- 9. Right-of-Way Easement from Crucible, Inc. to Georgia Power Company, dated March 29, 1972, recorded at Deed Book 266, Page 259, aforesaid records.
- Riparian rights, if any.
- 11. The reserved easements and restrictions as set forth in this Limited Warranty Deed.
- 12. Security Deed from BoMetals, Inc. to Wachovia Bank, National Association, dated September 29, 2005, recorded in Deed Book 3304, Page 135, aforesaid records.

VOLUNTARY INVESTIGATION AND REMEDIATION PLAN

141 Hammond Street Carrollton, Carroll County, Georgia

Prepared for:

Mr. Todd Rambo BTR Properties, LLC 141 Hammond Street Carrollton, GA 30117

DOCUMENT PREPARED BY:

PEACHTREE ENVIRONMENTAL
3000 NORTHWOODS PARKWAY, SUITE 105
NORCROSS, GEORGIA 30071
(770) 449-6100 · (770) 449-6119 FAX
WWW.PEACHTREEENVIRONMENTAL.COM

DECEMBER 2016

CERTIFICATION

I certify that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Todd Rambo

BTR Properties, LLC

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND	1
1.1 1.2 1.3	Site Description	1
2.0 S	SITE INVESTIGATION HISTORY	4
2.1 2.2 2.3	Regulated Substances Released	6
3.0 C	CONCEPTUAL SITE MODEL	9
3.1 3.2 3.3 3.4	Potential Sources	11 13
4.0 C	COMPLIANCE WITH RISK REDUCTION STANDARDS	17
4.1 4.2		
5.0	CORRECTIVE ACTION PLAN	20
6.0 F	REFERENCES	21

LIST OF FIGURES

Figure	1	Site	Location Map

Figure 2 Site Plan

Figure 3 Conceptual Site Model

Figure 4 Extent of Regulated Substances in Soil

Figure 5 Nickel Concentrations in Groundwater (mg/L) – July 2016
Figure 6 Fluoride Concentrations in Groundwater (mg/L) – July 2016
Figure 7 TCE Concentrations in Groundwater (mg/L) – July 2016

LIST OF TABLES

Table 1 Summary of Soil Analyses

Table 2 Summary of Groundwater Analyses

LIST OF ATTACHMENTS

Attachment A Legal Description

Attachment B Groundwater Monitoring Report: July 2016

Attachment C Plume Stability Analysis
Attachment D Risk Reduction Standards
Attachment E Environmental Covenant

LIST OF ACRONYMS

CAP Corrective Action Plan
CSR Compliance Status Report

ECS Environmental Compliance Services
EPA Environmental Protection Agency
EPD Environmental Protection Division

GPM Gallons Per Minute

HSRA Georgia Hazardous Site Response Act

MCL Maximum Contaminant Level

mg/kg Milligrams per Kilogram (same as ppm)

mg/L Milligrams per Liter

NAVD North American Vertical Datum

RRS Risk Reduction Standard

TCE Trichloroethene

USGS United States Geological Survey

VIRP Voluntary Investigation and Remediation Plan

VOCs Volatile Organic Compounds

1.0 INTRODUCTION AND BACKGROUND

1.1 Introduction

PEACHTREE ENVIRONMENTAL, INC. (Peachtree) is submitting this Voluntary Investigation and Remediation Plan (VIRP) on behalf of the applicant, BTR Properties, LLC (BTR, or the Applicant), current owner of the property located at 141 Hammond Street, Carrollton, Carroll County, Georgia, occupied by BoMetals, Inc. (the Subject Site). In February 2000, the Subject Site was listed on the Georgia Hazardous Site Inventory (HSI) as the Trent Tube Division facility (HSI Site No. 10604). The purpose of this VIRP is to provide documentation as required to allow the delisting of the Subject Site from the HSI.

1.2 Site Description

The Subject Site consists of 36.25 acres of land located at 141 Hammond Drive in Carrollton, Carroll County, Georgia. The Site has a latitude coordinate 33° 35' 24" North and a longitude coordinate of 85° 05' 39" West. A Site Location Map is included as **Figure 1 – Site Location Map**.

The property is bordered to the south by Southern States farmers' co-op, to the west by a residential trailer park (Elizabeth Village), to the north by the Little Tallapoosa River, and to the east by Central of Georgia Railroad property.

Prior to purchase by BoMetals, the Subject Site was formerly occupied by the Trent Tube Division of Crucible Materials Corporation (Crucible). The 170,000-square-foot Trent Tube building was built in 1962 for the manufacture of stainless steel pipe and tubing products. Between 1973 and 1987, wastewater from the facility was directed to a former on-site wastewater treatment plant (WWTP), which consisted of a lime house, lime silo, and a 20,000-gallon holding tank. The water was then directed to three small settling ponds/basins. Clear water from the settling ponds was discharged to the Little Tallapoosa River, and sludge from the ponds was periodically removed by vacuum truck for off-site disposal. The settling ponds were closed between 1987 and 1989. A Site Plan showing the location of the former WWTP and settling ponds/basins is provided as **Figure 2 – Site Plan**.

The Trent Tube Division facility was closed in 2004. In 2005, BoMetals entered into an Agreement for Purchase and Sale of Real Property with Crucible, the former owner of the Trent Tube facility. Following the purchase of the Subject Site by BoMetals, ownership was transferred to BTR.

1.3 Qualifications of the Site and Applicant

BTR is submitting this VIRP under the Georgia Voluntary Remediation Act (the Act) for the former Trent Tube facility (HSI No. 10604). According to O.C.G.A. 12-8-105, in order to be considered a qualifying property, the Property must be listed on the Georgia Hazardous Site Inventory (HSI), or meet the criteria of the Georgia Brownfields Act (O.C.G.A. 12-8-205), or have a release of regulated substances to the environment. Under O.C.G.A. 12-8-105 the property shall also not:

- 1) Be listed on the federal National Priorities List;
- 2) Be currently undergoing response activities required by an Order of the Regional Administration of the United States Environmental Protection Agency;
- 3) Be a facility required to have a permit under the Georgia Hazardous Waste Management Act (HWMA);
- 4) Violate the terms and conditions under which the Environmental Protection Division operates and administers remedial programs by delegation or similar authorization from the United States Environmental Protection Agency; and
- 5) Have any unsatisfied or unsettled lien filed under subsection (e) of the HWMA or subsection (b) of the Georgia Underground Storage Tank Management Act.

The Property is listed as HSI No. 10604. None of the other criteria listed in items 1 - 5 apply. Therefore, the Property is a qualifying property under the Act.

In order for the Participant to meet the qualifications of the Voluntary Remediation Program (VRP) according to O.C.G.A. 12-8-106, the following additional criteria must be met:

- 1) The Applicant must be the owner of the VRP property or have express permission to enter another's property to perform corrective action including, to the extent applicable, implementing controls for the site pursuant to written lease, license, order or indenture;
- 2) Not be in violation of any order, judgement, statue, rule or regulation subject to the enforcement authority of the Director; and
- 3) Meet other such criteria as may be established by the DNR Board pursuant to O.C.G.A. 12-8-103.

As the Participant meets all the criteria stated above, the Participant is qualified for admission into the VRP.

The contact for the Applicant is as follows:

BTR Properties, LLC Mr. Todd Rambo 3003 Springs Industrial Drive Powder Springs, Georgia 30127-3858 (770) 832-2000

Appendix A – Legal Description contains the Warranty Deed(s) and Tax Plat(s) for the Qualifying Property(s).

2.0 SITE INVESTIGATION HISTORY

2.1 Summary of Previous Studies Conducted at the Site

As part of a 1996 potential property transfer, Triad Engineering, Inc. of Milwaukee and Civil & Environmental Consultants, Inc. of Pittsburgh conducted an environmental investigation of the Subject Site. Fifteen soil test borings (B-1 through B-15) and fourteen groundwater monitoring wells (MW-1 through MW-9 and MW-11 through MW-15) were installed as part of the 1996 investigation; monitoring wells MW-7 through MW-9 and MW-15 were subsequently abandoned. In 1997, Williams Environmental Services, LLC (Williams) of Birmingham, Alabama installed an additional, deep monitoring well (MW-12R).

The Subject Site was subsequently listed on the HSI as the Trent Tube Division facility (HSI No. 10604) in February 2000. An initial Compliance Status Report (CSR) for the Subject Site was prepared by Williams and submitted to the Georgia Environmental Protection Division (EPD) on November 22, 2002. Following receipt of Georgia EPD's September 15, 2003 comments, a revised CSR was submitted by Williams on September 20, 2004. The revised CSR documented that soils at the facility were in compliance with applicable risk reduction standards; therefore, corrective action was not required for soil at the Subject Site. However, nickel, fluoride and trichloroethene (TCE) were found to exceed Type 4 risk reduction standards in groundwater. Additional revisions to the CSR were submitted on March 14, 2005, and August 1, 2005 in response to Georgia EPD comments.

As part of the CSR investigation, Williams sampled soils at 22 locations (SB-5 through SB-26) and four background locations (BGSB-1 through BGSB-4), and installed twelve additional monitoring wells (MW-16 through MW-25, MW-21D and MW-24D), between 2002 and 2004. The groundwater investigations indicated that shallow groundwater flows to the north and west with discharge to the Little Tallapoosa River. Vertical hydraulic gradients between the shallow and deeper groundwater is upward, as typical in groundwater discharge zones, implying that deeper groundwater also discharges to the Little Tallapoosa River.

An initial Corrective Action Plan (CAP) was submitted by Williams on November 30, 2004. A Revised CAP was prepared by Williams in September 2005 in response to Georgia EPD comments dated May 24, 2005. The Revised CAP addressed the presence of nickel, fluoride, and TCE in groundwater at the Subject Site at concentrations above the applicable risk reduction standards (RRS). Georgia EPD conditionally approved the CAP in a November 22, 2005 letter, adding nitrate and nitrite to the analyte list.

In May 2005, BoMetals submitted a Prospective Purchaser CSR prepared by Peachtree Environmental (Peachtree). According to the Prospective Purchaser CSR, a general sampling rationale had been developed as a result of a meeting among Georgia EPD and representatives of BoMetals and Crucible. The sampling strategy included investigation of additional source areas which might have been present within the facility building associated with former process areas, as well as other potential source areas that may have been impacted by constituents of concern. The results of these investigations were summarized in the May 2005 Prospective Purchaser CSR, which certified that soil at the site was in compliance with Type 1 risk reduction standards for various volatile organic compounds (acetone, toluene and tetrachloroethene) and Type 3 risk reduction standards for fluoride and nickel (Peachtree, 2005).

Georgia EPD reviewed the May 2005 Prospective Purchaser CSR and in a September 22, 2005 letter concurred with the certification for soils. Georgia EPD further granted BoMetals, Inc. a limitation of liability for pre-existing releases at the site. In September 2005, BoMetals, Inc. submitted an Addendum to the Prospective Purchaser CSR which included the results of Crucible's August 1, 2005 revised CSR.

The groundwater monitoring program described in the September 2005 Revised CAP included quarterly sampling of selected monitoring wells (MW-1 through MW-5, MW-12, MW-12D, MW-13, MW-18, MW-20, MW-24, MW-25, and MW-26). Groundwater monitoring was initiated in March 2006 by Crucible following purchase of the property by BoMetals, although changes to the monitoring program have occurred over time.

On May 1, 2007, Georgia EPD informed Crucible that analysis for nitrites was no longer required, based on the absence of nitrites above detection limits in the quarterly groundwater samples obtained in 2006. Additionally, in an April 27, 2007 letter, Georgia EPD agreed that monitoring wells MW-12D, MW-18 and MW-24 only needed to be sampled annually. On February 5, 2009, Georgia EPD agreed that the sampling frequency at monitoring well MW-13 could also be reduced to an annual basis.

On July 23, 2007, Georgia EPD agreed that analyses for TCE could be discontinued at monitoring wells MW-3, MW-5, MW-12D, MW-18, MW-20, MW-24, MW-25 and MW-26, based on the absence of TCE above detection limits in groundwater samples from these wells during previous monitoring events. However, on February 5, 2009, Georgia EPD requested that biodegradation products for TCE be included in future monitoring for those remaining wells analyzed for TCE.

Groundwater monitoring well MW-4 had been dry on numerous occasions and was incapable of providing samples representative of groundwater quality. On January 19, 2009, Crucible requested permission to abandon monitoring well MW-4 and install a deeper replacement well (MW-4R) due to the frequent lack of water in the well. On

January 23, 2009, EPD concurred with the request to install monitoring well MW-4R but required continued sampling of monitoring well MW-4, when possible, until sufficient data was collected from MW-4R to determine comparability to monitoring well MW-4. Monitoring well MW-4R was installed on February 3, 2009.

Crucible filed for bankruptcy protection on May 6, 2009. The groundwater monitoring program continued under the direction of the Bankruptcy Court between May 2009 and August 2010. There has not been environmental compliance monitoring or corrective action activities performed at the Subject Site since August 2010 until Georgia EPD retained Environmental Compliance Services, Inc (ECS) of Woodstock, Georgia to perform sampling on July 20, 2016. A copy of the ECS report is included as **Appendix B - Groundwater Monitoring Report: July 2016**.

2.2 Regulated Substances Released

As a result of prior investigation activities, the following regulated substances have been identified in soil and/or groundwater:

Metals

- Barium (CAS No: 7440-39-3) Soil only
- Chromium (CAS No: 7440-47-3) Soil only
- Fluoride (CAS No. 16984-48-8) Soil and groundwater
- Lead (CAS No: 7439-92-1) Soil only
- Mercury (CAS No. 7439-97-6) Soil only
- Nickel (CAS No. 7440-02-0) Soil and groundwater

Volatile Organic Compounds

- Acetone (CAS No. 67-64-1) Soil only
- Toluene (CAS No. 108-88-3) Soil only
- Trichloroethene (CAS No. 79-01-6) Soil and groundwater

Polychlorinated Biphenyls (PCBs)

• Aroclor 1248 (CAS No. 12672-29-6) – Soil only

As previously noted, the May 2005 Prospective Purchaser CSR certified that soil at the site was in compliance with Type 1 and Type 3 RRS. On September 22, 2005, Georgia EPD concurred with the certification for soils. The September 2005 Revised CAP was prepared to address the presence of nickel, fluoride, and TCE in groundwater at concentrations above the RRS.

2.3 Site Delineation Standards

The Georgia VRP allows the following standards for horizontal and vertical delineation of regulated substances in soil and groundwater:

- (A) Concentrations from an appropriate number of samples that are representative of local ambient or anthropogenic background conditions not affected by the subject site release;
- (B) Soil concentrations less than those concentrations that require notification under hazardous site response act (HSRA);
- (C) Two times the laboratory lower detection limit concentration using an applicable analytical test method recognized by the U.S. Environmental Protection Agency, provided that such concentrations do not exceed all cleanup standards;
- (D) For metals in soils, the concentrations reported for Georgia undisturbed native soil samples as reported in the United States Geological Survey (USGS) Open File Report 8 1-197 (Boerngen and Shacklette, 1981), or such later version as may be adopted by rule or regulation of the board; or
- (E) Default, residential cleanup standards;

The Type 1 residential RRS will serve as the soil delineation standards for the Subject Site. The current soil delineation standards are listed as follows:

SOIL DELINEATION STANDARDS

REGULATED CONSTITUENT	HIGHEST DETECTED CONCENTRATION (MG/KG)	Type 1 RRS (MG/KG)
METALS	•	· ·
Barium	187	1,000
Chromium	6,400	100
Fluoride	502	400
Lead	87.8	75
Mercury	2.88	0.5
Nickel	393	50
VOLATILE ORGANIC COMPO	UNDS	
Acetone	0.66	400
Toluene	0.0041	100
Trichloroethene	0.0088	0.5
PCBs		
Arochlor 1248	0.12	1.55

The Type 1 residential RRS will also serve as the groundwater delineation standards for the Subject Site. The current groundwater delineation standards are listed as follows:

GROUNDWATER DELINEATION STANDARDS

REGULATED CONSTITUENT	HIGHEST DETECTED CONCENTRATION (MG/L)	Type 1 RRS (MG/L)		
METALS				
Fluoride	302	4		
Nickel	12.4	0.1		
VOLATILE ORGANIC COMPOUNDS				
Trichloroethene	0.051	0.005		

Calculation of the RRS are discussed in Section 4.0.

3.0 CONCEPTUAL SITE MODEL

3.1 Hydrogeologic Setting

The Subject Site is located in the southwestern portion of the Central Uplands District of the Southern Piedmont Physiographic Province (Clark and Zisa, 1976). Streams in the southwestern portion of the Central Uplands District exhibit rectangular drainage and generally lie 100 to 500 feet below the surrounding land surface.

The Subject Site occurs at elevations between 980 and approximately 1,040 feet above the North American Vertical Datum (NAVD) of 1988 (NAVD is approximately mean sea level). The ground surface slopes gently to the north toward the Little Tallapoosa River, which forms the northern boundary of the property. In Carroll County, the Little Tallapoosa River is a southwest-flowing stream. Approximately 35 miles southwest of the Subject Site, the Little Tallapoosa River flows into the Tallapoosa River in Randolph County, Alabama. The Tallapoosa River joins the Coosa River about 10 miles northeast of Montgomery near Wetumpka (Elmore County, Alabama) to form the Alabama River, a south-flowing tributary to the Gulf of Mexico.

In Carrollton, the Little Tallapoosa River has a 7-day, 10-year minimum flow (7Q10) of 3.3 million gallons per day, and the City of Carrollton is required to ensure that the flow does not decrease below this level (Environ, 2005). The City adds water from three reservoirs to the River during drought conditions to maintain the 7Q10 minimum flow.

Soil beneath the Subject Site consists of Madison gravelly clay loam and Madison gravelly fine sandy loam (USDA, 2016). Both soils are well drained and typically occupy the side slopes and shoulders of hills, and are derived from residuum weathered from mica schist and/or gneiss. At the Subject Site, the clay loam occurs at higher elevations and underlies the main facility building, while the fine sandy loam occurs at lower elevations between the building and the Little Tallapoosa River.

The Georgia Geological Survey (1976) indicates that bedrock beneath the Subject Site consists of a garnet mica schist. Higgins et al (1988) proposed that all the bedrock in western Georgia and eastern Alabama occurs as an enormous stack or stacks of folded thrust sheets. Mapping by Higgins et al (1988) show the vicinity of the Subject Site to be underlain by eroded remnants of the Bill Arp and Zebulon thrust sheets, the lowermost of the stacked thrust sheets, along with remnants of the overlying Sandy Springs thrust sheet. Mapped formations within the Bill Arp thrust sheet include the Wacoochee Complex (Woodland Gneiss, Cunningham Granite, Apalachee Formation, and Sparks Schist). The Zebulon thrust sheet mainly contains rocks of the Zebulon Formation. Rocks in the Sandy Springs thrust sheet are assigned to the Sandy Springs Group (Powers Ferry Formation, Chattahoochee Palisades Quartzite, and Factory Shoals Formation).

Bedrock in the Southern Piedmont is overlain by unconsolidated material called regolith, which includes saprolite, a layer of earthy, decomposed rock developed by weathering of bedrock, residual soil that develops in the upper part of the saprolite, and alluvium, which is mainly confined to stream valleys and may overlie residual soil, saprolite, and bedrock. The saprolite is by far the thickest component of the regolith; although highly variable, the thickness of saprolite in Georgia ranges up to 150 feet in places. Where saturated, the unconsolidated materials form the uppermost water-bearing zone in the Piedmont. Groundwater in the regolith is generally under unconfined (water table) conditions.

Metamorphic rocks of the Southern Piedmont are generally not considered good producers of groundwater, except where secondary porosity occurs in the form of fractures and joints. Groundwater may occupy fractures, joints, and other secondary openings in the underlying bedrock, as well as pore spaces in the overlying residual mantle of regolith. Water recharges the underground openings in bedrock by the seeping of precipitation through the overlying regolith or by flowing directly into openings in exposed rock. These openings tend to decrease in number and thickness with depth. Locally, artesian conditions exist when wells penetrate deeply buried fractures that are hydraulically connected to recharge areas at higher altitudes, or in places where the overlying regolith is clayey and forms a confining unit.

Based on the assumption that the groundwater flow direction approximates the drop in land surface topography, groundwater in the vicinity of the Subject Site is assumed to flow toward the north and discharge to the Little Tallapoosa River. The assumed groundwater flow direction has been confirmed by water-level measurements from the on-site monitoring wells and development of potentiometric maps. It is not possible for groundwater to flow beyond the Little Tallapoosa River, as there is no groundwater discharge point at a lower elevation than the Little Tallapoosa for groundwater to flow toward. Surrounding streams and creeks are all higher-elevation tributaries to the lower Little Tallapoosa, and the Little Tallapoosa does not discharge to another river until it travels another 35 miles west to its confluence in Alabama with the Tallapoosa River.

Since the ground surface on the opposite (north) side of the Little Tallapoosa River from the Subject Site also slopes toward the river, groundwater on the opposite side of the river is expected to flow to the south, with groundwater discharging to the Little Tallapoosa. Groundwater from both sides of the river is then carried downstream as streamflow. As a result, there is no property (other than the narrow Little Tallapoosa River itself) downgradient from the Subject Site.

In summary, groundwater in the Little Tallapoosa River basin is recharged by rainfall across the basin, which infiltrates to the water table and then migrates laterally toward the Little Tallapoosa or its tributaries (where present). Groundwater that enters the river or

its tributaries is eventually conveyed to the Tallapoosa River and then the Alabama River and ultimately the Gulf of Mexico.

A block diagram showing the general hydrogeologic characteristics of the Subject Site and vicinity, along with groundwater transport pathways, is provided as **Figure 3 – Conceptual Site Model**.

3.2 Potential Sources

Sources that potentially have or are contributing to a release of hazardous substances at the Subject Site include the former settling ponds and areas where facility wastewater was stored or transported.

The potential sources are described in further detail below

- Settling Basin No. 1 Settling Basin No. 1 was described in a Closure Plan dated August 31, 1987 as 84 feet by 99 feet at the surface, 30 feet by 45 feet at the base, and 9 feet deep. The closure plan indicated that four feet of sludge, four to six inches of clay liner, and concrete structures were to be removed from the basin, and the underground PVC pipes would be capped and left in place. In 2002, soil boring SB-15 was advanced adjacent to former Settling Basin No. 1; nickel was detected in the soil samples from 0-2 feet and 15-17 feet at concentrations greater than the Type 1 RRS but below the Type 2 RRS (see Table 1 Summary of Soil Analyses).
- Settling Basin No. 2 Settling Basin No. 2 was reportedly the same dimensions as Settling Basin No. 1 and was scheduled for closure in a manner similar to Settling Basin No. 1. In 1996, soil boring B-2 was advanced adjacent to former Settling Basin No. 2 and a soil sample was obtained at a depth of 3-5 feet; the concentrations of metals were below the Type 1 RRS (see Table 1). In addition, monitoring well MW-1 was installed within former Settling Basin No. 2; fluoride concentrations in groundwater from MW-1 have historically been above the Type 4 RRS, including the recent (July 2016) groundwater sampling event (see Table 2 Summary of Groundwater Analyses). Although concentrations of nickel in groundwater were historically also above Type 4 RRS, since November 2009, nickel concentrations in groundwater from MW-1 have been below the Type 4 RRS, including during the July 2016 sampling event.
- <u>Settling Basin No. 3</u> The dimensions of Settling Basin No. 3 were reported in the Closure Plan as 55 feet across at the base. The Carroll County Georgia Tax Map indicated that the pond was approximately 150 feet by

100 feet at the surface. The Closure Plan indicated that one and a half feet of sludge were to be removed before back filling and that the concrete effluent pad would be left in place and covered. In 1996, soil borings B-3 and B-4 were advanced within former Settling Basin No. 3 and soil samples were obtained at depths of 3-5 feet (B-3) and 6-8 feet (B-4); concentrations of chromium and nickel in both samples exceeded the Type 1 RRS but were less than the Type 2 RRS (see **Table 1**). In 2002, soil boring SB-16 was also installed within former Settling Basin No. 3; as at B-3 and B-4, concentrations of chromium and nickel exceeded the Type 1 but were less than the Type 2 RRS in the soil samples obtained. In addition, the concentration of fluoride in an SB-16 soil sample from a depth of 5-7 feet exceeded the Type 1 but was less than the Type 2 RRS. Finally, monitoring well MW-2 was installed in 1996 within former Settling Basin No. 3. Nickel has never exceeded the Type 4 RRS in groundwater from MW-2, but concentrations of fluoride and TCE have historically exceeded the Type 4 RRS in groundwater from MW-2, including during the recent (July 2016) sampling event (see Table 2).

- Wastewater Lines Contact and non-contact cooling water was transported through wastewater lines to the sanitary sewer. The old lines were reported removed in January 2003 and replaced with new conduits with secondary containment piping.
- Hydrofluoric Acid Vats and Pickle Rinse Lines Acid pickling was used in metal casting to remove scale, rust, oxides, oil, grease, and dirt from the surface of the product. The pickling process involved the cleaning of the metal surface with inorganic acids such as hydrochloric acid, sulfuric acid, or nitric acid. Castings generally pass from the pickling bath through a series of rinses. Hydrofluoric acid was used at the Trent Tube facility in vats in at least three areas including Bay A, Bay B, and Bay C. The acid was stored in tanks adjacent to the vats. The spent pickle rinse was transported through pipelines to the wastewater treatment plant for neutralization. In 2002, shallow (0-2 feet) soil samples were obtained at borings SB-24 and SB-25 inside of the building near the pickling process operations. Concentrations of metals were below the Type 1 RRS in both samples, with the exception of nickel at SB-24, which exceeded the Type 1 RRS but was below the Type 2 RRS (see **Table 1**). Monitoring well MW-5 was installed outside of the western end of the building near soil boring SB-25. Concentrations of fluoride and nickel in groundwater from MW-5 have historically exceeded the Type 4 RRS, including the recent, July 2016 sampling event (see **Table 2**).

The former settling ponds were closed between 1987 and 1989 and soil sampling has not detected inorganics (metals and fluoride) at concentrations greater than Type 2 RRS, although groundwater beneath the former settling ponds has been impacted by nickel, fluoride and TCE. The wastewater lines were removed by January 2003 and replaced with conduits with secondary containment piping. Groundwater near the former Crucible acid pickling process on the western end of the building has been impacted by nickel and fluoride. BoMetals no longer operates the former pickling process. Therefore, these potential sources are no longer active.

3.3 Soil Concentrations

The extent of hazardous substances in soil has previously been delineated to background concentrations; documentation of the lateral and horizontal extent of hazardous substances in soil and certification of compliance with risk reduction standards was provided to Georgia EPD in the Application for Limitation of Liability and Prospective Purchaser Compliance Status Report for the Former Trent Tube Facility, Carrollton, Carroll County, Georgia (Peachtree, 2005) prepared for BoMetals and dated May 2005.

Acetone, trichloroethene, toluene, Aroclor 1248, barium, chromium, lead, mercury, nickel and fluoride were each detected above background standards in one or more soil samples. The analytical results are summarized in **Table 1**. Of these substances, the maximum concentrations of acetone, trichloroethene, toluene, Aroclor 1248, barium, and chromium in soil were less than the Type 1 RRS. The maximum concentrations of lead and nickel in soil were less than the Type 2 RRS. The maximum concentration of mercury and fluoride were less than the Type 3 RRS.

As the maximum concentration of any detected regulated substance in soil did not exceed the Type 3 RRS and the Subject Site is not being used for residences, corrective action was not required for soils.

The lateral extent of the detected regulated substances in soil was delineated to the Type 1 residential RRS listed in Section 2.3. Although some regulated substances were detected in soil above background on the adjacent, residential property, none of the soil samples on the adjacent property has concentrations exceeding the residential Type 2 RRS.

A summary of soil analytical testing results is presented in **Table 1** and on **Figure 4** – **Extent of Regulated Substances in Soil**. Regulated substances in soil have been delineated on the BTR property to the Type 1 RRS, and off-site soil on the adjacent parcel to the west complies with Type 1 RRS.

3.4 Groundwater Concentrations

As discussed in Section 2.1, the groundwater monitoring program at the Subject Site was initiated in Match 2006 by Crucible and continued under the direction of the Bankruptcy Court between May 2009 and August 2010. On July 20, 2016, Georgia EPD retained Environmental Compliance Services, Inc (ECS) of Woodstock, Georgia to sample the existing monitoring wells. The analytical data are included in **Table 2**. Georgia EPD provided BTR with a copy of the ECS sampling report (see **Attachment B**).

As indicated by the July 2016 report, nickel and fluoride have been detected in groundwater samples from the Subject Site at concentrations exceeding the Type 4 RRS in one of more wells. TCE has been detected in groundwater samples from monitoring well MW-2 at concentrations exceeding the Type 4 RRS.

As part of a June 2009 Addendum to the CAP, a groundwater plume stability analysis was prepared for nickel and fluoride in groundwater. The analysis considered the area, average concentration, contaminant mass, and center of mass of the nickel and fluoride plumes at the Subject Site between March 2006 and May 2009. Because TCE has only been detected in one monitoring well (MW-2), plume maps were not generated and TCE plume stability was evaluated based solely of the concentration trend at MW-2. Copies of the plume maps and trend analyses are provided as **Attachment C – Plume Stability Analysis**.

The Plume Stability Analysis provided "very strong" evidence that the nickel plume area, average concentration, and contaminant mass were decreasing. The average concentration and contaminant mass for the fluoride plume were also shown to be decreasing based on the observed trend lines, although the trends were statistically considered "stable." The TCE plume was also shown to be stable based on a time-trend analysis of the concentrations at monitoring well MW-2. No plume characteristics (area, average concentration, or mass) were observed to be increasing for nickel, fluoride or TCE.

The decreasing trends are attributed to the removal of the former sources. The former settling ponds were closed between 1987 and 1989 and the wastewater lines were replaced by January 2003 with secondary containment piping. BoMetals no longer operates the former Crucible acid pickling process. With no source, the groundwater plumes are attenuating through dispersion and advection, as well as biodegradation in the case of TCE.

As shown in **Table 2**, groundwater concentrations have continued to decrease since the June 2009 Plume Stability Analysis. Concentrations in groundwater of nickel at source-area monitoring well MW-4 have decreased from 9.19 milligrams per liter (mg/L) in March

2006 to 4.84 mg/L in July 2016, and concentrations of fluoride have decreased over the same period of time from 230 mg/L to 182 mg/L.

Downgradient of the source area, nickel concentrations have decreased from 3.04 mg/L (March 2006) to 0.450 mg/L (July 2016) in groundwater from monitoring well MW-1 and from 1.42 mg/L to 0.698 mg/L in groundwater from MW-2. Similarly, fluoride concentrations decreased over the same time period from 110 mg/L to 32.3 mg/L in groundwater from monitoring well MW-1 and from 40.0 mg/L to 22.4 mg/L in groundwater from monitoring well MW-2.

Similar results are also observed further downgradient near the groundwater discharge area along the Little Tallapoosa River. At monitoring well MW-12, nickel concentrations decreased from 1.27 mg/L (March 2006) to 0.360 mg/L (July 2016) and fluoride concentrations decreased from 56 mg/L to 34.1 mg/L. Nickel has not been detected in groundwater from deep monitoring well MW-12D above laboratory Reporting Limits, but concentrations of fluoride decreased from 0.65 mg/L (March 2006) to 0.372 mg/L (July 2016) in groundwater from the well.

The concentration trends at downgradient/sidegradient monitoring well MW-20 are more complex. Concentrations of nickel and fluoride generally increased in groundwater from the well between March 2006 and November 2008 as the plume migrated to the MW-20 location. However, since that time, concentrations of nickel have decreased from 0.884 mg/L (November 2008) to 0.484 (August 2010) and concentrations of fluoride decreased from 47 mg/L to 21 mg/L. Monitoring well MW-20 was not sampled in July 2016 as the well was apparently removed or destroyed during recent construction of a Riverwalk along the Little Tallapoosa River.

TCE has only been detected in groundwater from monitoring well MW-2. In July 2016, the concentration of TCE was 0.00618 mg/L, less than the March 2006 concentration of 0.015 mg/L and almost an order of magnitude less than the maximum observed concentration of 0.034 mg/L (January 2008). Degradation products of TCE (e.g., dichloroethene and vinyl chloride) have not been detected in groundwater samples from MW-2 or from other monitoring wells.

The current extent of substances in groundwater is shown in Figure 5 - Nickel Concentrations in Groundwater (mg/L) - July 2016, Figure 6 - Fluoride Concentrations in Groundwater (mg/L) - July 2016, and Figure 7 - TCE Concentrations in Groundwater (mg/L) - July 2016. As shown on the figures, the extent of substances in groundwater above the Type 1 RRS is generally limited to the Subject Site. The exception to this trend is the historical presence of fluoride in groundwater in off-site monitoring well MW-25, where fluoride has been detected at concentrations exceeding the Type 4 RRS. Monitoring well MW-25 has reportedly been

destroyed during recent construction activities along the Little Tallapoosa River and was not sampled during the July 2016 monitoring event.

Contaminants in groundwater on the Subject Property enter the Little Tallapoosa River where they mix with the streamflow, maintained at a 7Q10 of 3.3 million gallons per day by the City of Carrollton by adding water as required from three reservoirs. After mixing with the streamflow, the diluted concentrations of contaminants are eventually conveyed to the Tallapoosa River and then the Alabama River, ultimately emptying into the Gulf of Mexico. Therefore, the Little Tallapoosa River is considered the Point of Exposure for groundwater.

As explained in **Section 3.1**, groundwater on the opposite side of the Little Tallapoosa River is expected to flow to the south and discharge into the river. As groundwater from both sides of the Little Tallapoosa discharges into the river, contaminants present in groundwater on the Subject Site do not cross the Little Tallapoosa and there is no property downgradient from the Subject Site.

4.0 COMPLIANCE WITH RISK REDUCTION STANDARDS

RRS were calculated for the constituents of potential concern in soil and groundwater (barium, chromium, lead, mercury, nickel, fluoride, acetone, trichloroethene, toluene, and Aroclor 1248). The calculations used the toxicity values (reference doses and cancer slope factors) provided in the on-line U.S. Environmental Protection Agency (EPA) Regional Screening Level (RSL) tables (May 2016 update). As previous RRS calculations used toxicity values from older data bases (i.e., IRIS and HEAST), some of the RRS values changed from previous submittals (e.g., Peachtree, 2005), particularly with regard to fluoride. **Attachment D** contains the RRS calculations.

Since chromium, lead, nickel, mercury and fluoride were each present in one or more soil samples at concentrations exceeding the Type 1 RRS, Type 2 RRS were calculated for those specific inorganic substances. Further, since mercury was present in soil at concentrations exceeding the Type 2 RRS, the Type 3 RRS for mercury was also calculated.

The soil-to-groundwater portioning calculation for total chromium generates unrealistically large values, and there are no EPA-approved toxicity values for total chromium. As a result, it is not possible to calculate a Type 2 RRS for total chromium. Therefore, the Type 2 RRS for total chromium assumes the chromium is present in the trivalent state, and the calculation of the Type 2 RRS for total chromium used the trivalent chromium toxicity values.

4.1 Soil

The maximum concentrations detected in soil for acetone, trichloroethene, toluene, Aroclor 1248, and barium were less than the Type 1 RRS. The maximum concentrations of chromium, lead, nickel and fluoride in soil were less than the Type 2 RRS. The maximum concentration of mercury in soil less than the Type 3 RRS. Therefore, the Subject Site meets at least the Type 3 RRS for soil for the Subject Site constituents of potential concern.

4.2 Groundwater

As stated earlier, the groundwater Point of Exposure for the Subject Site is the Little Tallapoosa River. Downgradient monitoring well MW-12, located near the Little Tallapoosa River, is considered the Point of Demonstration well for the Subject Site. Point of Demonstration well MW-12 is downgradient of monitoring well MW-2, where TCE was detected at a concentration of 0.00618 mg/L. TCE was not detected above the laboratory Reporting Limit (0.005 mg/L) in groundwater from Point of Demonstration well MW-12.

The concentration of nickel in groundwater from monitoring well MW-12 (0.360 mg/L) exceeds the Type 1/3 RRS (0.10 mg/L) and Type 2 RRS (0.31), but is currently less than the Type 4 RRS (2.0 mg/L) and has never exceeded the Type 4 RRS (see **Table 2**).

However, the concentration of fluoride in groundwater from monitoring well MW-12 (34.1 mg/L) during the July 2016 sampling is greater than the Type 4 RRS for fluoride (12.2 mg/L). It is assumed that groundwater with concentrations of fluoride greater than the Type 4 RRS reaches the Point of Exposure at the Little Tallapoosa River. However, as explained below, upon reaching the river, the groundwater discharges to the river and the seepage mixes with the streamflow, mixing the concentrations present in groundwater with the flow in the river. Since the river is naturally intercepting and assimilating the groundwater plume, there is no unacceptable risk to human health of the environment.

The groundwater seepage rate into the Little Tallapoosa River has been estimated at approximately 4.9 gallons per minute (gpm) along the roughly 900 feet where the river intercepts the fluoride plume (see plume maps in **Attachment C**) based on Darcy's law:

Q_{gw}=kiA

where:

Q_{gw} = groundwater discharge rate k = hydraulic conductivity (0.00282 ft/min) i = hydraulic gradient (0.052 feet/foot) A = cross-sectional area (900 feet x 5 feet = 4,500 feet²)

The hydraulic conductivity and gradient were estimated from slug tests and water-level measurement performed as part of the 2002 CSR investigation (Williams, 2005). The cross-sectional area was derived from the width of the fluoride plume as it enters the river (see **Figure 6**) and the saturated thickness between the water table at MW-12 and the top of bedrock.

Conservatively assuming that all of the groundwater passing through the 4,500 feet² cross-sectional area has the 34.1 mg/L fluoride concentration observed at MW-12 (in other words, ignoring the lower concentrations historically observed at MW-20 and MW-25, and assuming no attenuation between monitoring well MW-12 and the river), and conservatively assuming the minimum stream flow of 3.3 million gallons per day (2,292 gpm), the fluoride concentration after mixing with river water in the Little Tallapoosa River can be estimated using the following equation:

$$Q_{gw} * C_{gw} = Q_{sw} * C_{sw}$$

where:

 Q_{gw} = groundwater flow rate (4.9 gpm)

 C_{gw} = fluoride concentration in groundwater (34.1 mg/L)

 Q_{sw} = stream flow rate (2,292 gpm)

 C_{sw} = fluoride concentration in groundwater

Assuming that the groundwater seepage mixes homogeneously with the river water, and ignoring potential upstream contributions of fluoride to the river, the resulting fluoride concentration in the Little Tallapoosa River is 0.073 mg/L. This concentration is below the Type 1 RRS for fluoride (2 mg/L). The federal drinking water Maximum Contaminant Level (MCL) for chloride is also 2 mg/L; there is no Georgia In-Stream Water Quality Standard for fluoride.

Substituting the concentration of nickel (0.360 mg/L) in groundwater from monitoring well MW-12 for fluoride into the above equation results in a nickel concentration in the river of 0.000775 mg/L, well below both the Type 1 RRS and also the MCL for nickel (both 0.10 mg/L), as well as both the acute Georgia In-Stream Water Quality Standard for nickel (0.029 mg/L) and typical laboratory Reporting Limits for nickel (0.02 mg/L).

As discussed in **Section 5.0**, BTR, current owner of the Subject Property, is placing an Environmental Covenant on the Subject Site forbidding the use of groundwater on the property as a potable water source. A draft version of the Environmental Covenant is attached as **Appendix E – Environmental Covenant.** Therefore, there will be no ingestion of groundwater on the Subject Site. Since groundwater from off-site monitoring well MW-25 has historically had concentrations of fluoride greater than the Type 4 RRS, the owner of the adjacent Lawrence property is also implementing an Environmental Covenant forbidding the use of groundwater as a potable water source.

The Little Tallapoosa River assimilates the fluoride and nickel in groundwater to levels below the drinking water MCL and Type 1 RRS, based on the concentrations measured at Point of Demonstration monitoring well MW-12. Therefore, there is no unacceptable risk associated with groundwater or surface water ingestion, and in accordance with the Georgia VRP, the Environmental Covenant restricting groundwater use and the concentrations measured at MW-12 demonstrates that groundwater at the Subject Property is in compliance with the Type 1 RRS.

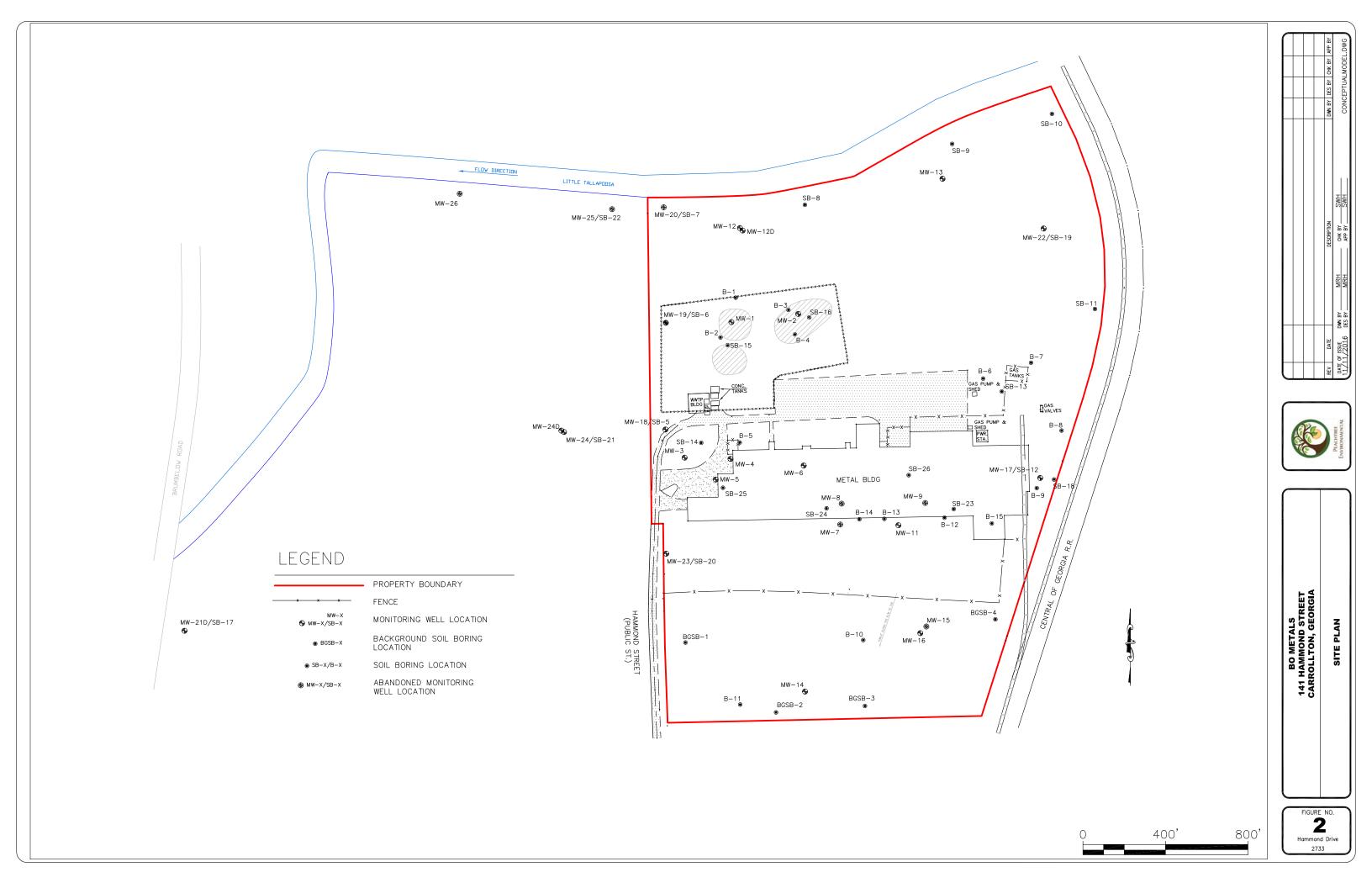
5.0 CORRECTIVE ACTION PLAN

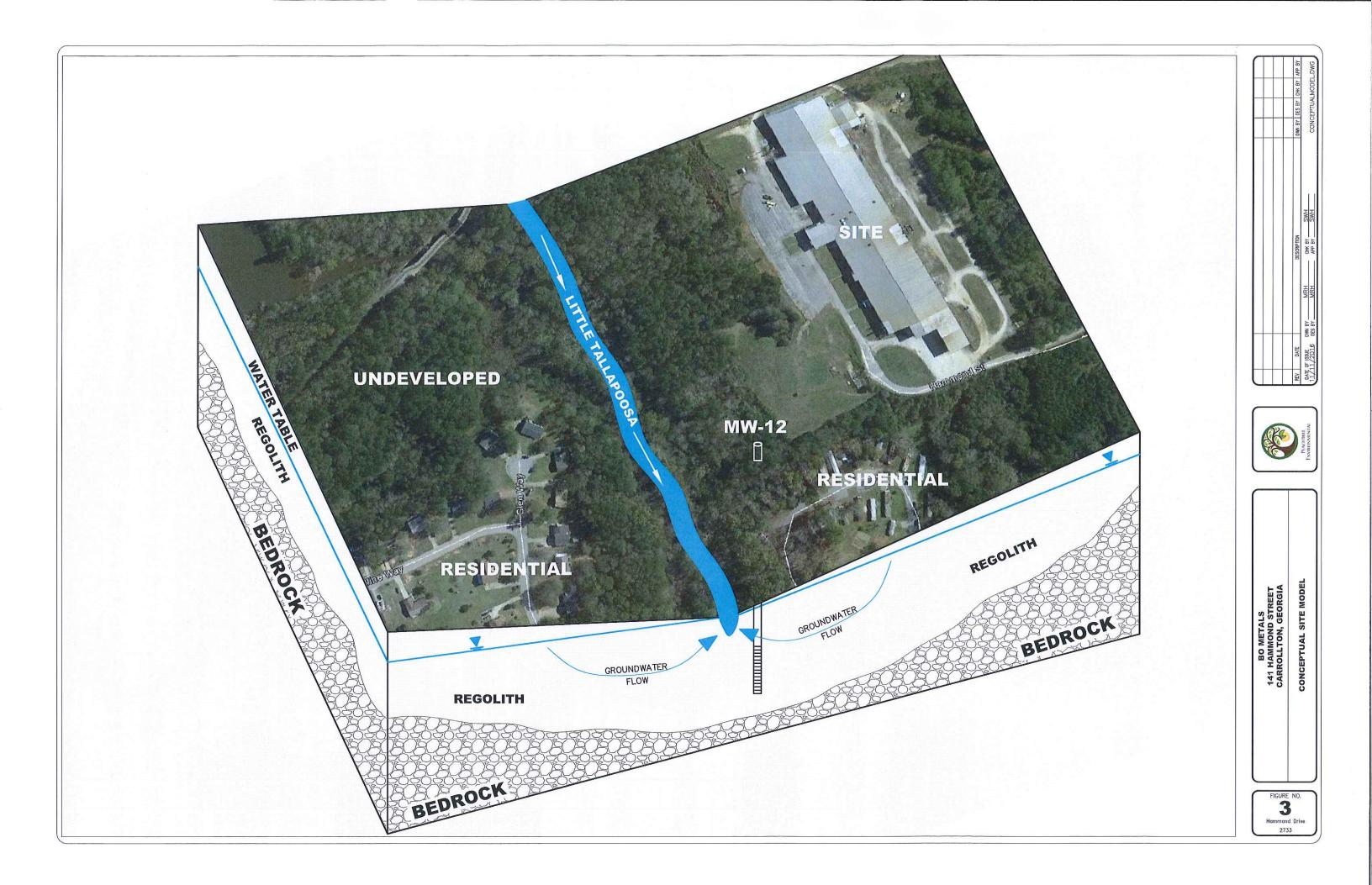
The use of groundwater at the Subject Site as a potable water source will be prohibited by Environmental Covenants on the BTR property and the adjacent Lawrence property. The Environmental Covenant (**Appendix E**) for the Subject Site conforms to the Georgia Uniform Environmental Covenants Act, and include the following:

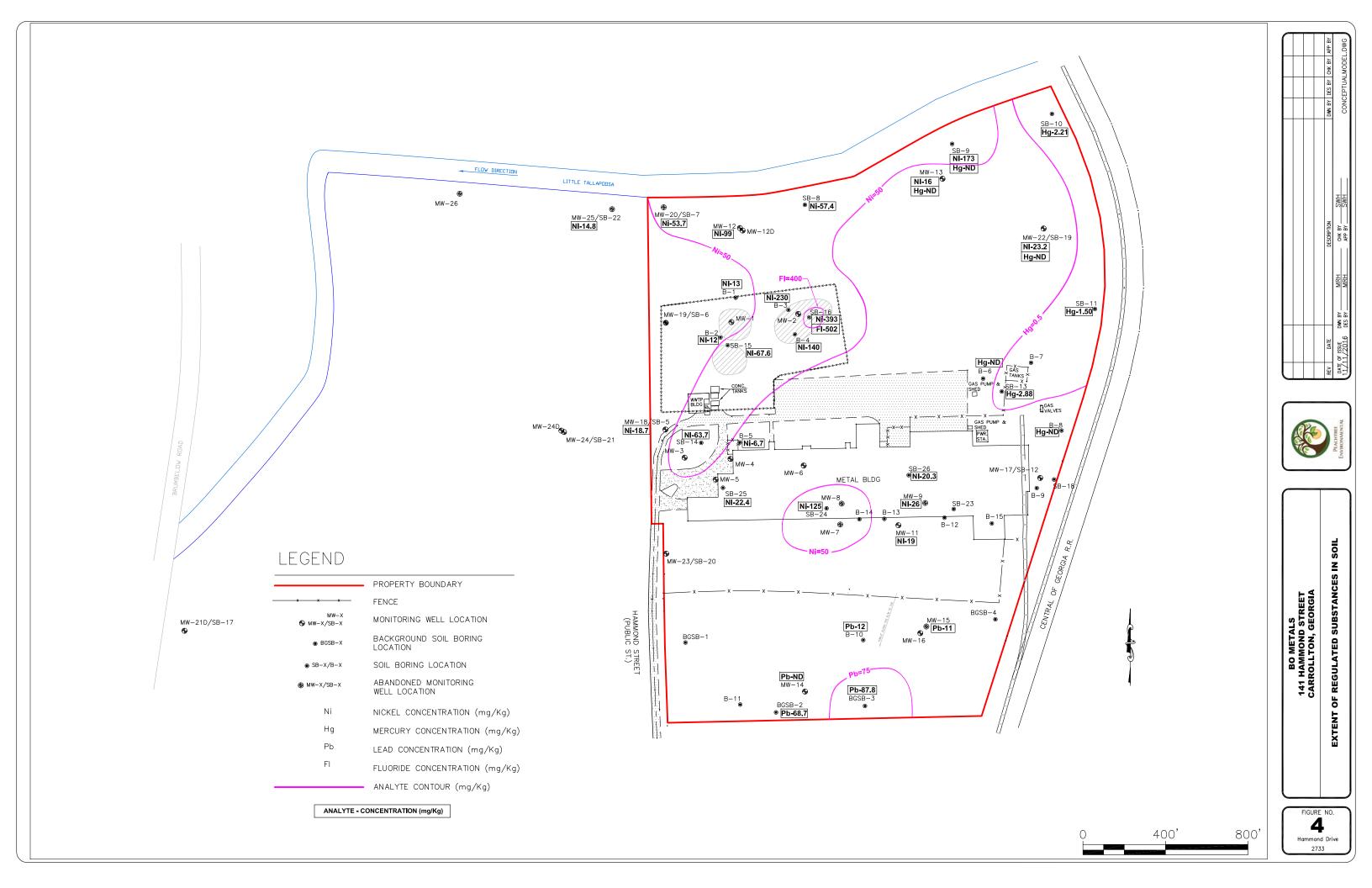
- Groundwater use is prohibited;
- Regulatory agency right of access will be granted when requested.

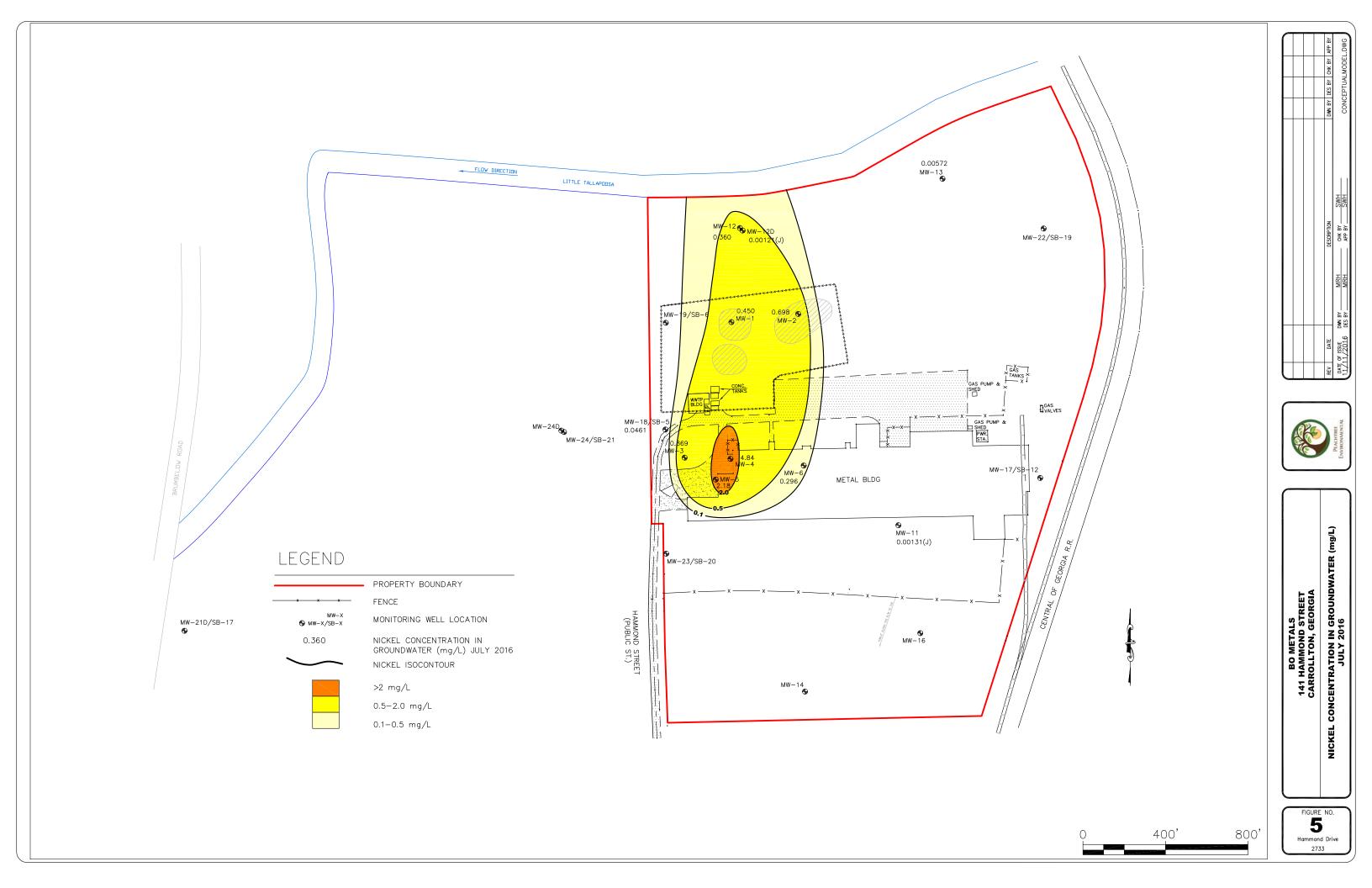
As the extent of substances in soil and groundwater has been delineated to the Type 1 RRS, no further investigation and sampling is necessary. As on-site soil meets the Type 3 RRS, corrective action is not needed on site (off-site soil concentrations are below the Type 1 RRS). With the proposed Environmental Covenants prohibiting exposure to groundwater, groundwater meets the Type 1 RRS at the Point of Exposure as demonstrated by the concentrations at Point of Demonstration well MW-12. Therefore, corrective action is not necessary for groundwater.

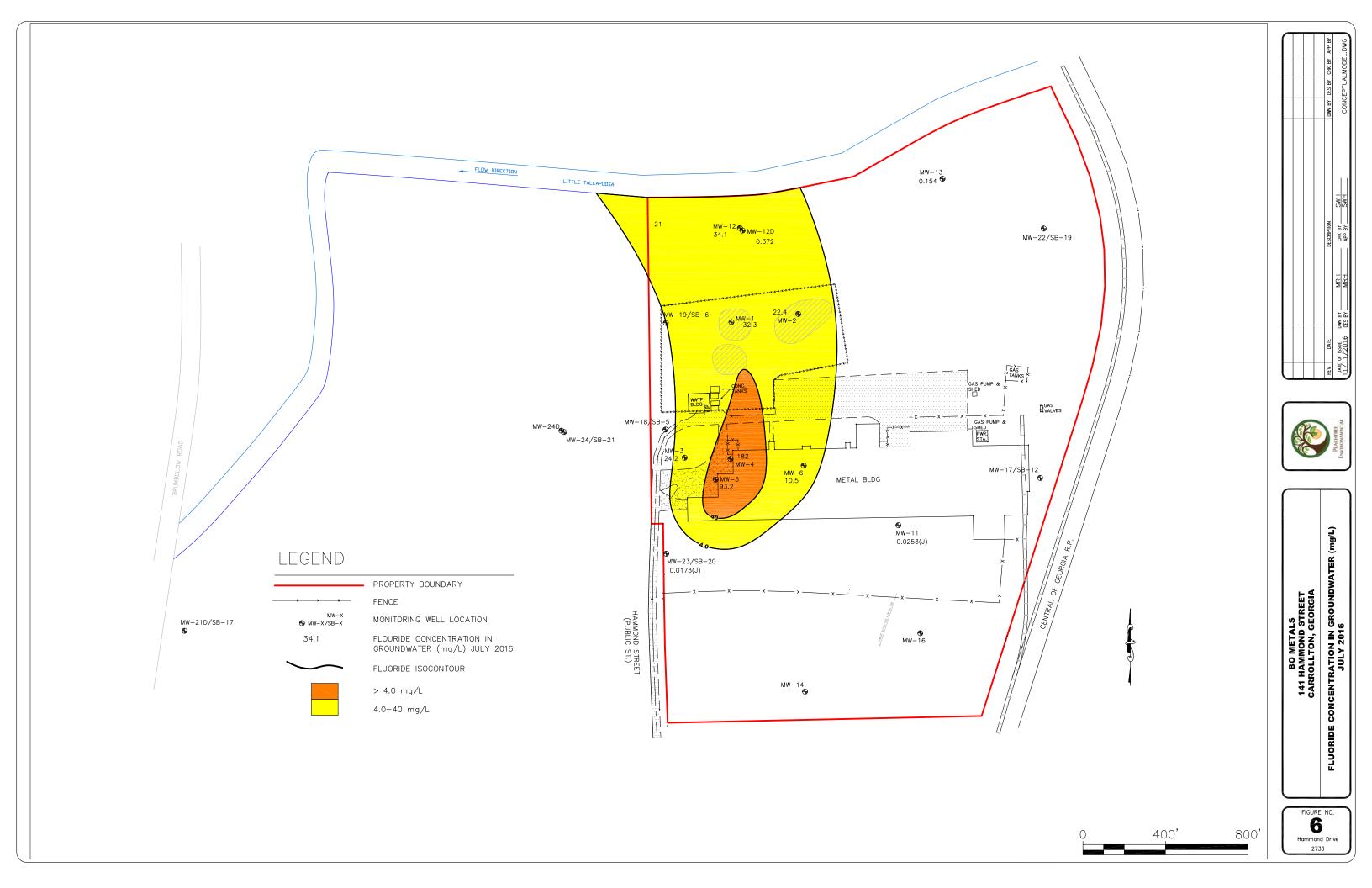

Following completion and approval of the Environmental Covenants, BTR respectfully requests that the Trent Tube Division HSI Site (No. 10604) be removed from the Hazardous Site Inventory.

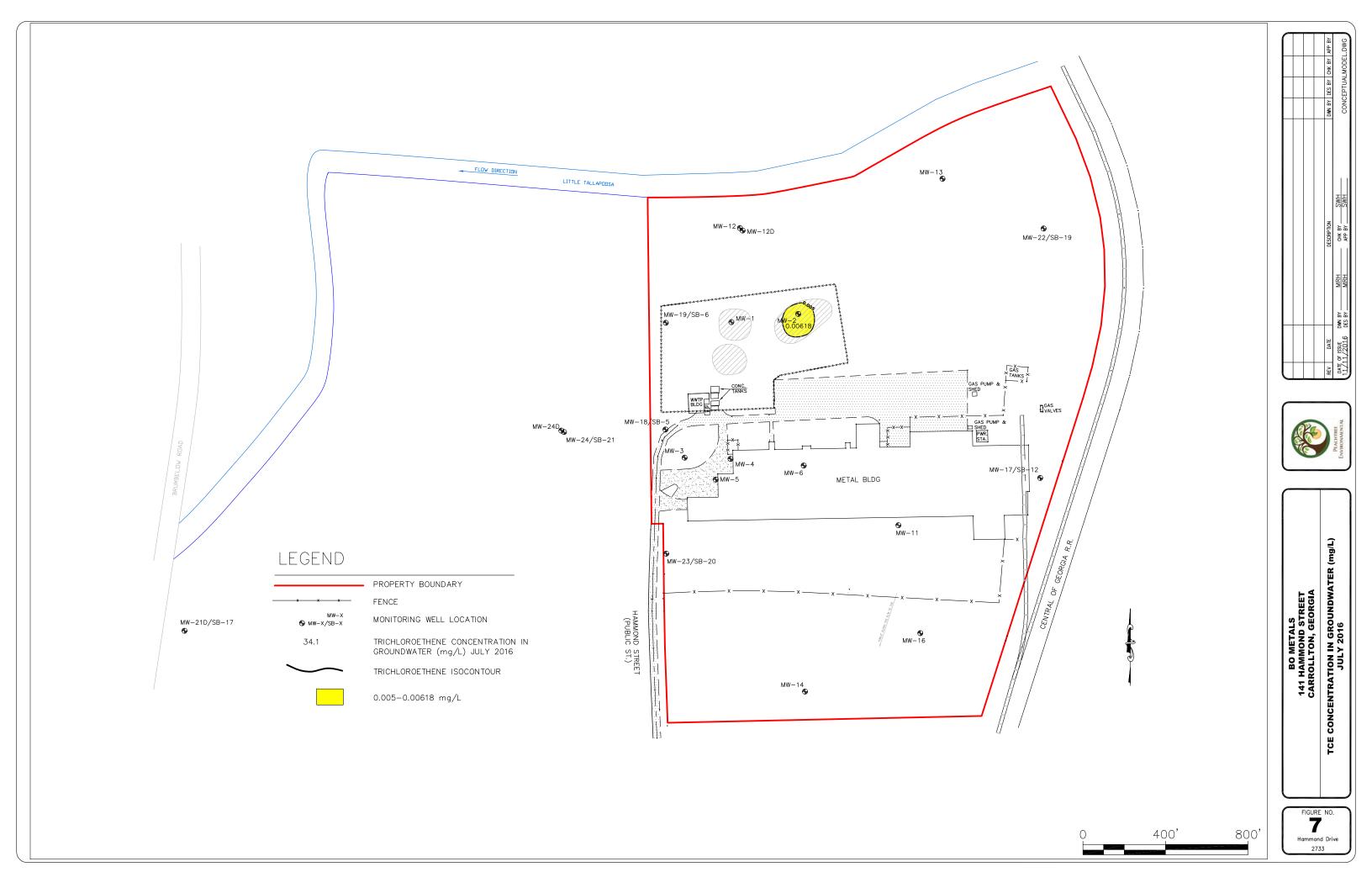

6.0 REFERENCES


- Clark, W.Z., and A.C. Zisa, 1976, Physiographic Map of Georgia; Georgia Geological Survey Map SM-4, 1: 2,000,000
- Environ, 2005, Revised Corrective Action Plan, Crucible Materials Corporation, Trent Tube Division Site (HSI# 10604), Carrollton, Georgia; Atlanta, Georgia; September 2005
- Georgia Geologic Survey, 1976, Geologic Map of Georgia; Georgia Geologic Survey Map SM-3, 1: 500,000
- Higgins, M.L., R.L. Atkins, T.J. Crawford, R.F. Crawford, R. Brooks, and R.B. Cook, 1988, The Structure, Stratigraphy, Tectonostratigraphy, and Evolution of the Southernmost Part of the Appalachian Orogen; U.S. Geological Survey Professional Paper 1475
- Peachtree, 2005, Application for Limitation of Liability/Prospective Purchaser Agreement and Compliance Status Report for the Former Trent Tube Facility, Carrollton, Carroll County, Georgia; May 2005
- USDA, 2016, Web Soil Survey, http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
- Williams, 2005, Compliance Status Report, Crucible Materials Corporation, Trent Tube Division Site (HSI # 10604); August 2005




FIGURES





TABLES

TABLE 1
SUMMARY OF SOIL ANALYSES

				Maximum	B-1	B-2	B-3	B-4	B-5	B-6
	Risk Re	duction Sta	ndards	Concentrations	0-2	3-5	3-5	6-8	6-8	6-8
	Type 1	Type 2	Type 3	Detected	4/23/1996	4/23/1996	4/23/1996	4/24/1996	4/23/1996	4/25/1996
Volatile Organic Co	ompounds ((ug/kg)								
Acetone	400,000			660						
Trichloroethene	500			8.8						
Toluene	100,000			4.1						
PCBs (ug/kg)										
Aroclor1248	1,550			120						
Metals (mg/kg)										
Barium	1,000			187	88	30	14	29	7.4	54
Chromium	100	117,321		6,400	40	23	2800	2600	21	45
Lead	75.0	270		87.8	27	34	38	29	33	30
Nickel	50.0	409		393	13	12	230	140	6.7	29
Fluoride	400	3,123		502						
Mercury	0.500	2.09	17.0	2.88	ND	ND	ND	ND	ND	ND

 $\mbox{\bf Bold values}$ indicate the concentration exceeds the Type 1 RRS.

Data from Williams, 2005

TABLE 1
SUMMARY OF SOIL ANALYSES

				B-7	B-8	B-9	B-10	B-11	B-12	B-13	B-14
	Risk Re	duction Sta	ndards	12-14	18-20	9-11	18-19.5	6-8	15-17	3-5	3-5
	Type 1	Type 2	Type 3	4/24/1996	4/24/1996	4/25/1996	4/19/1996	4/20/1996	4/23/1996	4/22/1996	4/21/1996
Volatile Organic Co	ompounds ((ug/kg)									
Acetone	400,000										
Trichloroethene	500										
Toluene	100,000										
PCBs (ug/kg)											
Aroclor1248	1,550								ND	ND	45
Metals (mg/kg)											
Barium	1,000			43	8.8	1.1	63	27			
Chromium	100	117,321		190	18	6.5	2.5	21			
Lead	75.0	270		35	31	13	12	ND			
Nickel	50.0	409		29	5.7	2	4.4	9.9			
Fluoride	400	3,123									
Mercury	0.500	2.09	17.0	ND	ND	ND	ND	ND			

TABLE 1
SUMMARY OF SOIL ANALYSES

				B-15	MW-9	MW-11	MW-12	MW-13	MW-14	MW-15
	Risk Re	duction Sta	ndards	6-8	6-8	9-11	0-2	0-2	6-8	33-35
	Type 1	Type 2	Type 3	4/26/1996	4/27/1996	4/22/1996	4/24/1996	4/25/1996	4/20/1996	4/19/1996
Volatile Organic Co	ompounds ((ug/kg)								
Acetone	400,000									
Trichloroethene	500							-		-
Toluene	100,000									
PCBs (ug/kg)										
Aroclor1248	1,550			ND	ND	120				
Metals (mg/kg)										
Barium	1,000				68	100	55	82	48	49
Chromium	100	117,321			24	11	100	20	13	8.7
Lead	75.0	270			10	ND	19	28	ND	11
Nickel	50.0	409			26	19	99	16	13	30
Fluoride	400	3,123								
Mercury	0.500	2.09	17.0		ND	ND	ND	ND	ND	ND

TABLE 1
SUMMARY OF SOIL ANALYSES

					BGSB-1			BGSB-2			BGSB-3	
	Risk Re	duction Sta	ndards	0-2	5-7	12-13	0-2	10-12	19-20	0-2	10-12	15-17
	Type 1	Type 2	Type 3	4/1/2002	4/1/2002	4/1/2002	4/2/2002	4/3/2002	4/4/2002	4/3/2002	4/3/2002	4/3/2002
Volatile Organic Co	ompounds ((ug/kg)										
Acetone	400,000		-						-	240	ND	ND
Trichloroethene	500		-						-	ND	ND	ND
Toluene	100,000									ND	ND	ND
PCBs (ug/kg)												
Aroclor1248	1,550									ND	ND	ND
Metals (mg/kg)												
Barium	1,000			8.31	43.9	100	55.5	108	79.8	139	49.3	36.7
Chromium	100	117,321		32.1	23.8	38.9	30.4	3.69	2.95	13.9	181	23.4
Lead	75.0	270		12.5	11.3	11.2	15.0	68.6	44.9	87.8	13.9	5.60
Nickel	50.0	409		ND	11.8	18.2	ND	13.6	ND	10.4	31.1	16.5
Fluoride	400	3,123		0.247	ND	ND	0.325	ND	ND	ND	ND	ND
Mercury	0.500	2.09	17.0	ND								

TABLE 1
SUMMARY OF SOIL ANALYSES

				BGSB-3A		BGSB-4			SB-5	
	Risk Re	duction Sta	ndards	0-2	0-2	5-7	10-12	0-2	8-10	18-20
	Type 1	Type 2	Type 3	11/12/2003	4/2/2002	4/2/2002	4/2/2002	4/8/2002	4/8/2002	4/8/2002
Volatile Organic C	ompounds ((ug/kg)								
Acetone	400,000		1	660	-			ND	ND	ND
Trichloroethene	500		-	ND	-	-		ND	ND	ND
Toluene	100,000		-	ND	-	-		ND	ND	ND
PCBs (ug/kg)										
Aroclor1248	1,550							ND	ND	ND
Metals (mg/kg)										
Barium	1,000				33.5	16.8	7.15	50.3	14.2	68.3
Chromium	100	117,321			122	15.2	16.2	38.4	24.8	42.2
Lead	75.0	270			12.2	12.5	7.86	9.71	19.0	21.2
Nickel	50.0	409	-		13.7	ND	ND	14.7	ND	18.7
Fluoride	400	3,123	-		ND	ND	ND	ND	ND	ND
Mercury	0.500	2.09	17.0		ND	ND	ND	ND	0.342	ND

TABLE 1
SUMMARY OF SOIL ANALYSES

					SB-6		SB	3-7	SB	i-8	SE	3-9
	Risk Re	duction Sta	ndards	0-2	8-10	18-20	0-2	7-8	0-2	5-7	0-2	3-5
	Type 1	Type 2	Type 3	4/9/2002	4/9/2002	4/9/2002	4/2/2002	4/2/2002	4/2/2002	4/2/2002	4/10/2002	4/10/2002
Volatile Organic Co	ompounds ((ug/kg)										
Acetone	400,000		-	ND	ND	ND	97	ND	180	ND	170	280
Trichloroethene	500		-	ND	ND	ND	ND	ND	ND	8.8	ND	ND
Toluene	100,000		-	ND	ND							
PCBs (ug/kg)												
Aroclor1248	1,550			ND	ND							
Metals (mg/kg)												
Barium	1,000			47.6	92.2	117	80.7	67.7	97.6	102	69.5	111
Chromium	100	117,321		35.0	24.9	28.9	30.4	33.6	21.7	31.1	27.6	70.3
Lead	75.0	270		14.4	9.40	8.02	11.8	11.2	9.53	8.05	12.0	28.8
Nickel	50.0	409		6.35	24.4	28.4	14.6	53.7	22.8	57.4	102	173
Fluoride	400	3,123		ND	ND	0.512	ND	27.2	0.357	6.36	ND	0.607
Mercury	0.500	2.09	17.0	ND	ND							

TABLE 1
SUMMARY OF SOIL ANALYSES

				SB-	-10	SB	-11		SB-12		SB-12A
	Risk Re	duction Sta	ndards	0-2	7-8	0-2	10-12	0-2	8-10	18-20	0-2
	Type 1	Type 2	Type 3	4/2/2002	4/2/2002	4/3/2002	4/3/2002	4/3/2002	4/9/2002	4/9/2002	11/11/2003
Volatile Organic Co	ompounds ((ug/kg)									
Acetone	400,000			ND	ND	ND	ND	120	ND	ND	ND
Trichloroethene	500			ND							
Toluene	100,000			ND							
PCBs (ug/kg)											
Aroclor1248	1,550			ND							
Metals (mg/kg)											
Barium	1,000			115	187	24.0	75.9	31.1	9.08	41.0	
Chromium	100	117,321		29.4	25.8	72.4	ND	25.9	16.6	265	
Lead	75.0	270		12.6	6.67	11.9	56.2	9.49	7.59	12.4	
Nickel	50.0	409		17.8	22.2	ND	ND	13.9	ND	28.9	
Fluoride	400	3,123		ND							
Mercury	0.500	2.09	17.0	ND	2.21	ND	1.50	ND	ND	ND	

TABLE 1
SUMMARY OF SOIL ANALYSES

					SB-13			SB-14			SB-15	
	Risk Re	duction Sta	ndards	0-2	10-12	20-22	0-2	10-12	20-21	0-2	5-7	15-17
	Type 1	Type 2	Type 3	4/2/2002	4/2/2002	4/2/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002	4/3/2002
Volatile Organic Co	ompounds ((ug/kg)										
Acetone	400,000			140	ND							
Trichloroethene	500			ND								
Toluene	100,000			ND								
PCBs (ug/kg)												
Aroclor1248	1,550			ND								
Metals (mg/kg)												
Barium	1,000			74.1	108	112	44.9	45.6	78.1	41.4	21.8	27.8
Chromium	100	117,321		27.6	31.5	29.8	81.3	241	28.4	86.4	14.2	31.5
Lead	75.0	270		16.3	9.09	10.5	13.5	14.8	10.4	12.8	15.6	12.0
Nickel	50.0	409		33.0	26.3	29.5	34.9	63.7	32.0	67.6	ND	54.2
Fluoride	400	3,123		6.13	ND	0.293	11.6	45.8	8.89	10.5	0.264	7.61
Mercury	0.500	2.09	17.0	2.88	0.840	1.34	ND	ND	ND	ND	ND	0.222

TABLE 1
SUMMARY OF SOIL ANALYSES

					SB-16			SB	-17		SB-18
	Risk Re	duction Sta	ndards	0-2	5-7	12-14	0-2	3-5	13-15	18-20	18-20
	Type 1	Type 2	Type 3	4/3/2002	4/3/2002	4/3/2002	10/9/2002	10/9/2002	10/9/2002	10/9/2002	11/11/2003
Volatile Organic Co	ompounds ((ug/kg)									
Acetone	400,000			ND	ND	ND					
Trichloroethene	500			ND	ND	ND					
Toluene	100,000			ND	ND	ND					
PCBs (ug/kg)											
Aroclor1248	1,550			ND	ND	ND					
Metals (mg/kg)											
Barium	1,000			46.1	72.9	84.2	19.9	29.6	17.9	65.1	
Chromium	100	117,321		6400	4330	335	30.2	24.6	44.5	22.1	16.8
Lead	75.0	270		13.6	17.7	9.80	19.20	8.67	11.6	8.72	
Nickel	50.0	409		393	109	321	ND	ND	ND	26.3	
Fluoride	400	3,123		11.9	502	22.0	ND	ND	ND	ND	
Mercury	0.500	2.09	17.0	ND	ND	ND	0.298	ND	0.165	ND	

TABLE 1
SUMMARY OF SOIL ANALYSES

					SB	-19			SB-20	
	Risk Re	duction Sta	ndards	0-2	8-10	18-20	38-40	0-1.5	8.5-10	13.5-15
	Type 1	Type 2	Type 3	11/11/2003	11/11/2003	11/11/2003	11/11/2003	11/10/2003	11/10/2003	11/10/2003
Volatile Organic Co	ompounds ((ug/kg)								
Acetone	400,000			210	ND	ND	ND	ND	ND	ND
Trichloroethene	500			ND						
Toluene	100,000			ND						
PCBs (ug/kg)										
Aroclor1248	1,550			ND						
Metals (mg/kg)										
Barium	1,000			20.5	19.4	64.7	114	38.4	41.6	65.1
Chromium	100	117,321		36.9	11.8	26.3	26.6	32.1	18.3	22.2
Lead	75.0	270		12.6	7.55	12.9	10.2	13.6	10.1	10.5
Nickel	50.0	409		ND	7.08	23.2	21.1	15.3	14.4	18.8
Fluoride	400	3,123		ND	ND	ND	ND	0.264	0.546	ND
Mercury	0.500	2.09	17.0	ND						

TABLE 1
SUMMARY OF SOIL ANALYSES

					SB	-21		SB	-22	SB-23
	Risk Re	duction Sta	ndards	0-2	3.5-5.5	8.5-10.5	13.5-15.5	0-2	3.5-5.5	0-2
	Type 1	Type 2	Type 3	8/10/2004	8/10/2004	8/10/2004	8/10/2004	8/10/2004	8/10/2004	2/4/2005
Volatile Organic Co	ompounds ((ug/kg)								
Acetone	400,000		1	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	500		-	ND	ND	ND	ND	ND	ND	ND
Toluene	100,000		-	ND	ND	ND	ND	ND	ND	ND
PCBs (ug/kg)										
Aroclor1248	1,550			ND	ND	ND	ND	ND	ND	ND
Metals (mg/kg)										
Barium	1,000			42	69.5	83.5	70.9	55	65.9	17.3
Chromium	100	117,321		17.2	33.1	24.7	15.5	21.9	35	78.2
Lead	75.0	270		10.8	5.81	8.54	11	9.65	11.8	11.7
Nickel	50.0	409	-	33.7	26	15.4	33.7	10.6	14.8	8.93
Fluoride	400	3,123	-	8.4	2.5	2.6	ND	ND	ND	ND
Mercury	0.500	2.09	17.0	ND	ND	ND	ND	ND	ND	ND

TABLE 1
SUMMARY OF SOIL ANALYSES

				SB-24	SB-25	SB-26
	Risk Re	duction Sta	ndards	0-2	0-2	0-2
	Type 1	Type 2	Type 3	2/4/2005	2/4/2005	2/4/2005
Volatile Organic Co	ompounds ((ug/kg)				
Acetone	400,000	-	1	ND	ND	ND
Trichloroethene	500		-	ND	ND	ND
Toluene	100,000			ND	4.1	ND
PCBs (ug/kg)						
Aroclor1248	1,550			ND	ND	ND
Metals (mg/kg)						
Barium	1,000			54.2	6.29	105
Chromium	100	117,321		29.3	7.48	24.4
Lead	75.0	270		8.19	ND	9.00
Nickel	50.0	409		125	22.4	20.3
Fluoride	400	3,123		19	4.3	ND
Mercury	0.500	2.09	17.0	ND	ND	ND

TABLE 2 SUMMARY OF GROUNDWATER ANALYSES Milligrams per Liter (mg/L)

		RRS	Nickel (total)	Fluoride	Trichloroethene	cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride	Nitrate	Nitrit
		Type 1/3	0.10	4.0	0.005	-					
	1 <u> </u>	Type 2	0.31	0.626	0.005			-			
Location	Date	Type 4	2.0	4.09	0.005					-	-
laximum 2016 Coi	centration (Sitewide) 03/09/06		4.84	182	0.00618	<0.001	<0.001	<0.001	<0.001		
	06/07/06		3.04 3.28	110 92	<0.005 <0.005					49 57	<0.25
	09/08/06		3.49	130	<0.005					64	<0.25
	11/29/		3.95	110	< 0.005					67	< 0.25
	5/21/2		3.59	120	<0.005			-		65	
	8/14/2		3.65	130	<0.005					65	
	11/1/2		4.11	150	<0.005					81	
	1/30/2		4.22	84 100	<0.005			-		71	
	5/12/2008 8/6/2008		2.96 2.93	110	<0.005 <0.005					57 54	
MW-1	11/5/2008		3.19	130	<0.005					69	-
	2/16/2		2.80	81	<0.005	< 0.005	< 0.005	< 0.005	< 0.002	58	
	5/18/2		2.28	51	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002	49	
	8/3/2009		2.15	59	< 0.005	< 0.005	< 0.005	< 0.005	<0.002	42	
	11/4/2009		1.55	61	<0.005	<0.005	<0.005	<0.005	<0.002	33	
	11/4/2009		1.55	61	<0.005	<0.005	<0.005	<0.005	<0.002	33	
	2/1/2010		1.51	23	<0.005	<0.005	<0.005	<0.005	<0.002	14	
	5/18/2010		1.17 1.34	56 67	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.002 <0.002	25 29	
	8/25/2010 7/20/2016		0.450	32.3	<0.005	<0.005	<0.005	<0.005	<0.002		
	03/08/2006		1.42	40	0.015		_			8.4	<0.25
	06/07/		1.44	51	0.015					8.0	<0.25
	09/07/		1.01	63	0.021			-		9.7	<0.2
	11/29/2006		1.28	39	0.030					11	<0.2
	5/21/2		1.06	28	0.025					7.8	-
	8/14/2		1.00	43	0.023					7.9	
	11/1/2007		1.05	58	0.018					9.3	
	1/30/2		1.05 0.783	27 29	0.034 0.020					8.0	
	5/12/2 8/6/2		0.785	35	0.020					3.9 5.2	-
MW-2	11/05		0.783	46	0.033					6.3	
	02/16		0.850	39	0.028	<0.005	< 0.005	<0.005	<0.002	6.2	
	05/18		0.798	20	0.016	< 0.005	< 0.005	< 0.005	< 0.002	3.6	
	8/3/2	009	0.839	30	0.017	< 0.005	< 0.005	<0.005	< 0.002	4.3	
	11/4/2009		0.816	37	0.019	< 0.005	< 0.005	< 0.005	<0.002	2.9	
	2/1/2		0.887	36	0.019	<0.005	<0.005	< 0.005	<0.002	2.6	
	5/18/2		0.819	30	0.012	<0.005	<0.005	<0.005	<0.002	3.9	
	5/18/2		0.826	32	0.012	<0.005	<0.005	<0.005	<0.002	3.9	
	8/25/2 7/20/2		0.987 0.698	37 22.4	0.014 0.00618	<0.005 <0.001	<0.005 <0.001	<0.005 <0.001	<0.002 <0.001	4.9 NA	NA
	03/09/		1.42	32	<0.005				<0.001 	23	<0.2
	06/06/		1.50	31	<0.005					25	<0.2
	09/06/2		2.21	43	< 0.005					37	<0.2
	11/29/		2.38	38	< 0.005					36	<0.2
	5/22/2	2007	1.82	38	< 0.005					27	
	8/14/2		1.48	41						21	
	11/1/2		1.68	38						23	
	1/30/2		1.90	19						19	
MMA/ 2	5/12/2		0.95	20						14	
MW-3	8/6/2 11/5/2		1.69 1.73	47 49						26 25	
	2/16/2		1.60	41						22	
	5/18/2		0.47	5.6						7.3	
	8/3/2		1.26	16						18	
	11/4/2		0.47	13						6.7	
	2/1/2		0.45	6.1						7.5	
	5/18/2		0.39	8.8						9.9	
	8/25/2		0.96	21						31	
	7/20/2 03/10/2		0.869	24.2						110	-0.0
MW-4	06/06/		9.19 6.69	230 180	<0.005 <0.005					110 90	<0.2
	09/06/		8.26	190	<0.005					110	<0.2
	11/29/		9.14	180	<0.005					110	<0.2
	5/21/2		NS	NS	NS			-		NS	
	8/14/2	2007	NS	NS	NS					NS	
	11/1/2		NS	NS	NS			-		NS	
	1/30/2		NS	NS	NS					NS	
	5/12/2		5.27	150	<0.005			-		76	
	8/6/2 11/5/2		4.36 NS	180 NS	<0.005 NS					70 NS	
	2/16/2		4.50	190	<0.005	<0.005	<0.005	<0.005	<0.002	70	
	5/18/2		5.26	100	<0.005	<0.005	<0.005	<0.005	<0.002	85	
	8/3/2		3.37	120	<0.005	<0.005	<0.005	<0.005	<0.002	50	
	11/4/2		3.53	160	<0.005	<0.005	<0.005	<0.005	<0.002	66	
	2/1/2		3.05	87	<0.005	<0.005	<0.005	<0.005	<0.002	44	
	5/18/2		2.31	107	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002	40	
	8/25/2010		4.28	200	<0.005	< 0.005	<0.005	<0.005	<0.002	65	
	7/20/2016		4.84	182							
	02/16		1.90	140	<0.005	<0.005	<0.005	<0.005	<0.002	31	
	05/18		2.07	59	<0.005	<0.005	<0.005	<0.005	<0.002	32	
	8/3/2 11/4/2		2.18 2.15	98 120	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.002 <0.002	29 29	
MW-4R			2.15	120	<0.005	<0.005	<0.005	<0.005	<0.002	37	
	2/1/2010 5/18/2010		1.98	90	<0.005	<0.005	<0.005	<0.005	<0.002	23	
			2.41	180	<0.005	<0.005	<0.005	<0.005	<0.002	31	
	8/25/2010 7/20/2016										

TABLE 2 SUMMARY OF GROUNDWATER ANALYSES Milligrams per Liter (mg/L)

		RRS	Nickel (total)	Fluoride	Trichloroethene	cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride	Nitrate	Nitrite
		Type 1/3 Type 2	0.10 0.31	4.0 0.626	0.005 0.005	-					
Location	Date	Type 4	2.0	4.09	0.005	-		-		-	
		9/2006	4.15	110	<0.005	1		1		42	<0.25
		6/2006	4.22	110 94	<0.005					44	<0.25
	09/06/2006 11/29/2006		3.84 4.68	100	<0.005 <0.005					45 53	<0.25 <0.25
	5/21/2007		4.15	97	<0.005					47	
	8/14/2007		3.17	87						34	
	11/1/2007 1/30/2008		3.31	82						37	
	5/12/2008		3.20 2.71	62 60						29 31	
MW-5	8/6/2008		3.24	82						40	
		/2008	2.88	93						32	
		/2009	4.70	130						53	
		/2009 2009	5.05 3.97	66 77		-				53 44	
		/2009	5.00	100						61	
		2010	5.93	77						46	
		18/10	4.48	82 70		-		-		37	
	08/25/10 07/20/16		3.76 2.18	93.2						40	
MW-6	07/20/16		0.246	10.5							
MW-11		19/16	0.00131 (J)	0.0253 (J)							
		3/2006	1.27	56	<0.005			-		27	<0.25
		7/2006 7/2006	1.24 1.27	53 61	<0.005 <0.005					26 32	<0.25
		0/2006	1.56	44	<0.005			-		31	<0.25
	5/22	/2007	1.37	60	<0.005			-		30	
		/2007	1.26	54	<0.005			-		27	
		/2007 /2008	1.43 1.48	42 24	<0.005 <0.005					35 30	
	5/13/2008		1.22	38	<0.005	-		-		25	
MW-12		2008	1.26	50	<0.005	-				28	
		/2008 /2009	1.38 1.41	61 65	<0.005 <0.005	<0.005	<0.005	<0.005	<0.002	28 32	
		/2009	1.20	20	<0.005	<0.005	<0.005	<0.005	<0.002	23	
		2009	1.13	33	<0.005	< 0.005	<0.005	< 0.005	<0.002	24	
		/2009 2010	1.04 0.929	45 30	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.002 <0.002	23 13	
	2/2/	2010	0.950	40	<0.005	<0.005	<0.005	<0.005	<0.002	13	
		/2010	0.700	29	<0.005	<0.005	<0.005	<0.005	<0.002	12	
		/2010 /2016	0.833 0.360	76 34.1	<0.005	<0.005	<0.005	<0.005	<0.002	18	
	03/09	9/2006	<0.0200	0.65	< 0.005	1		1		< 0.25	< 0.25
		7/2006	<0.0200	0.45	<0.005					<0.25	<0.25
		7/2006 0/2006	<0.0200 <0.0200	0.51 0.36	<0.005 <0.005					<0.25 <0.25	<0.25 <0.25
MW-12D		/2007	<0.0200	2.3	<0.005					<0.25	
		/2008	<0.0200	<0.20		-		-		<0.25	
		/2009	<0.0200	0.29						<0.25	
		2010 /2016	<0.0200 0.00121 (J)	0.25 0.372						<0.25	
		3/2006	<0.0200	<0.20	<0.005					<0.25	<0.25
		3/2006	<0.0200	<0.20	<0.005	-		-		<0.25	<0.25
		7/2006	<0.0200	<0.20	<0.005					<0.25	<0.25
)/2006 /2007	<0.0200 <0.0200	1.4 0.25	<0.005 <0.005	-				<0.25 <0.25	<0.25
		/2007	<0.0200	<0.20	<0.005			-		<0.25	
MW-13	11/1	/2007	<0.0200	0.53	<0.005					<0.25	
		/2008	<0.0200	<0.20	<0.005			-		<0.25	
		/2008 2008	<0.0200 <0.0200	<0.20 0.36	<0.005 <0.005					<0.25 <0.25	
		/2008	<0.0200	<0.20	<0.005			-		<0.25	
	2/17	/2009	<0.0200	0.21	<0.005	<0.005	<0.005	<0.005	<0.002	<0.25	
		2010	<0.0200	0.90	<0.005	<0.005	<0.005	<0.005	<0.002	<0.25	
		/2016 7/2006	0.00572 <0.0200	0.154 0.44	<0.005					1.5	<0.25
MW-18		6/2006	0.089	3.2	<0.005			-		1.6	<0.25
	09/06	6/2006	0.145	6.8	<0.005	-				4.6	< 0.25
		0/2006 /2007	0.165	6.7	<0.005					3.2	<0.25
		/2007 /2008	0.146 0.303	7.5 7.4	<0.005	-		-		1.5 4.2	
		/2009	0.110	3.2		-		-		<2.5	
	2/1/	2010	<0.0200	0.46						0.61	
		/2016	0.0461	1.71	 -0.00E	-		-		 4 F	25
		3/2006 3/2006	0.322 0.651	12 20	<0.005 <0.005	-		-		4.5 14	<0.25 <0.25
MW-20		7/2006	NS NS	NS NS	NS NS			-		NS	NS
	11/30	0/2006	0.241	19	<0.005					9.9	<0.25
		/2007	NS NC	NS NC	NS NC			-		NS NC	
	8/14/2007 11/1/2007		NS NS	NS NS	NS NS	-				NS NS	
	1/31/2008		0.936	24				-		16	
	5/12/2008		0.428	10		-		-		6.2	
	8/6/2008		NS 0.004	NS 47		-		-		NS 40	
	11/5/2008 2/17/2009		0.884 0.670	47 28		-				19 14	
		/2009	0.510	11		-		-		8.8	
	8/3/	2009	0.763	28		-		-		19	
		/2009	0.441	14 8.5						7.1	
		2010 19/10	0.279 0.307	8.5 9.0		-		-		2.9 5.4	
	08/2	25/10	0.484	21		-		-		9.8	
MW-23		19/16	0.00160 (J)	0.0173 (J)				-			
MW-23 Dup.	07/	19/16	0.00173 (J)	0.0175 (J)							

TABLE 2 SUMMARY OF GROUNDWATER ANALYSES Milligrams per Liter (mg/L)

		RRS	Nickel (total)	Fluoride	Trichloroethene	cis-1,2-DCE	trans-1,2-DCE	1,1-DCE	Vinyl Chloride	Nitrate	Nitrite
		Type 1/3	0.10	4.0	0.005			-			-
		Type 2	0.31	0.626	0.005						
Location	Date	Type 4	2.0	4.09	0.005					-	
	03/09	9/2006	0.085	3.5	< 0.005					1.3	< 0.25
	06/07/2006		0.074	0.48	< 0.005					1.4	< 0.25
	09/08	3/2006	< 0.0200	3.9	< 0.005					0.28	< 0.25
MW-24	12/01/2006		0.045	0.57	< 0.005					< 0.25	< 0.25
10100-24	5/22/2007		0.079	0.41	< 0.005					0.61	
	1/30/2008		0.095	0.32						0.66	-
	2/16/2009		0.091	5.6						<2.5	-
	2/1/2010		0.065	0.36				-		2.3	-
	03/08	3/2006	0.302	5.8	< 0.005			-		5.6	< 0.25
	06/07/2006		0.328	6.4	< 0.005					7.3	< 0.25
	09/07/2006		0.272	7.3	< 0.005			-		9.6	< 0.25
	11/30/2006		0.399	5.0	< 0.005			-		8.8	< 0.25
	5/22/2007		0.318	6.3	< 0.005			-		7.3	
	8/14/2007		0.353	9.9				-		8.0	
	11/1/2007		0.408	7.6				-		8.9	
	1/31/2008		0.571	6.6				-		12	
MW-25	5/12/2008		0.221	3.7				-		3.1	
WW-25	8/6/2008		0.304	6.4				-		6.9	
	11/5/2008		0.371	8.2				-		9.5	
	2/17/2009		0.308	9.2				-		7.1	
	5/18/2009		0.267	4.5						5.0	
	8/3/2009		0.375	7.1						9.9	
	11/4/2009		0.247	5.0						4.5	
	2/2/2010		0.199	4.2						2.5	
	5/19/2010		0.190	5.4						3.1	
	8/25/2010		0.260	7.6						5.3	
	03/08/2006		0.110	0.95	< 0.005					3.2	< 0.25
			0.165	1.2	< 0.005					4.1	< 0.25
	09/07/2006		<0.0200	1.7	< 0.005			-		< 0.25	< 0.25
		0/2006	0.085	1.4	< 0.005			-		1.6	< 0.25
	5/22/2007		0.116	0.73	< 0.005			-		3.2	
		/2007	0.092	0.57				-		1.2	
	11/1/2007		0.106	1.1				-		1.6	
		/2008	0.233	0.81						8.2	
MW-26	5/12/2008		0.087	1.3				-		0.94	
.7111 20	8/6/2008		0.097	0.70				-		0.57	
	11/5/2008		0.106	0.82						0.88	
	2/17/2009		0.094	0.78						1.7	
		/2009	0.092	1.6						1.7	
		2009	0.088	0.83						0.57	
	11/4/2009		0.090	1.4						<0.25	
		2010	0.052	0.49						0.40	
		/2010	0.101	0.71						0.51	
	8/25/2010		0.097	1.2						0.27	

All results in milligrams per liter (mg/L).
RRS - Risk-Reduction Standards
Bold values indicate concentration exceeds applicable RRS.
DCE - Dichioroethene
NS - Not Sampled due to well being dry
Data from multiple sources, including Peachtree, 2005 and ECS, 2013

ATTACHMENT A

LEGAL DESCRIPTION

EXHIBIT "A"

FIRST: All that tract or parcel of land lying and being in the City of Carrollton in Land Lots 130, 131, 158 and 159 of the 10th District of Carroll County, Georgia, and being more particularly described as follows, all as per plat by Harrison Engineering Company, dated May 27, 1961, a copy of which is recorded in Plat Book 5, page 27, which plat and the record thereof are by reference incorporated herein.

BEGINNING at a point in Land Lot 131 on the northwestern side of the right-of-way of the Central of Georgia Railroad, which point of beginning is at a stake 1467.3 feet northerly and northeasterly from the center line of Alabama Street in the City of Carrollton, Georgia, as measured along the northwestern side of said right-of-way of said railroad and following the curvature thereof; and running thence north 73 degrees 30 minutes west a distance of 427 feet to a stake; thence north 2 degrees 0 minutes west a distance of 1085 feet to a point in land Lot 158 in the center of the channel of the Little Tallapoosa River; thence along the center of said channel in an easterly and northeasterly direction to a point where said channel intersects the southwestern side of the right-of-way of the Central of Georgia Railroad, said point being further determined as being a distance of 575 feet from the preceding point as measured in a straight line in the direction of north 61 degrees 40 minutes east; thence in a southeasterly, southerly and southwesterly direction along the southwestern, western and northwestern side of the right-of-way of the Central of Georgia Railroad in land Lots 158, 159, 130 and 131 and following the curvature of said right-of-way a distance of 1540 feet to the point of beginning; said tract containing 15.6 acres, more or less.

SUBJECT to an easement granted by Trent Tube Company to Georgia Power Company for an electric transmission line, dated January 29, 1962, and recorded in the Clerk's Office, Superior Court, County of Carroll and State of Georgia on February 1,1962 in Deed Book 135, page 511.

SECOND. All that tract or parcel of land lying and being in the City of Carrollton, Georgia, in Land Lots 131 and 158 of the 10th District of said County containing 12.8 acres and being the West most tract identified by "12.8 Acres" on a plat prepared by Harrison Engineering Company dated August 2, 1961, recorded in Plat Book 5, page 32 Carroll County Public Records, which plat and the record thereof are by reference incorporated herein. Said property is more particularly described as beginning at a point which is Northeasterly along the west right of way line of the Central of Georgia Railway 1,467.3 feet from the intersection of said right of way with the center line of Alabama Street and thence north 73 degrees 30 minutes west 427 feet. Said beginning point is further described as being the Southwest corner of that property shown on a plat prepared by Harrison Engineering on May 27, 1961, and recorded in Plat Book 5, page 27, Carroll County Public Records, which plat and

the record thereof are by reference incorporated herein. From said point of beginning as thus established thence South 88 degrees West 511.5 feet; thence North two degrees 30 minutes West 1,071 feet to the center of the channel of the Little Tallapoosa River; thence along the center of the said channel in an easterly direction to a point measured in a straight line North 87 degrees east 523 feet; thence South two degrees east 1,085 feet to the point of-beginning. Said property is bound on the North by the Little Tallapoosa River, on the east by property of Trent Tube Company, on the south by O. L. Hammond and on the west by property of W. T. Green and Carl Barnes.

Excepting and reserving thereout and therefrom that portion of land lot 131 of the Tenth district of Carroll County, Georgia which was conveyed by Trent Tube Company by quit-claim deed to the Mayor and City Council of Carrollton for a right of way for a public street, CONVEYING HEREWITH HOWEVER to grantee herein the reversion retained by Trent Tube Company in said deed, which deed is recorded in the Clerk's Office, Superior Court, County of Carroll and State of Georgia in Book 135, Page 336.

SUBJECT to an easement granted by Trent Tube Company to The City of Carrollton, Georgia, for a sewer line, dated December 27, 1961 and recorded in the Clerk's Office, Superior Court, County of Carroll and State of Georgia on February 16, 1962 in Deed Book 135, page 543.

SUBJECT to an easement and right of way granted by Crucible Inc to Georgia Power Company for a transmission tap line, dated March 29, 1972, and recorded in the Clerk's Office, Superior Court, County of Carroll and State of Georgia on April 17, 1972 in Deed Book 266, page 259.

THIRD. All that tract or parcel of land lying and being in Land Lot No. 131 of the 10th District of Carroll County, Georgia, containing six (6) acres, as shown and delineated on a plat entitled "Property of Crucible Steel Company of America, Trent Tube Division", prepared by Harrison Engineering, Registered Land Surveyor No. 1134, dated June 20, 1967, a copy of which is recorded in Plat Book 8, page 69, Carroll County, Georgia Public Real Estate Records, which plat and the record thereof are each specifically by reference incorporated herein. Said property is further described in detail as BEGINNING at a point in the east boundary of Hammond Road, also sometimes know and referred to as Trent Tube Road, which point is 791 feet northward along the east boundary of Hammond Road from a point where the projection of the east boundary thereof intersects the center line of Alabama Street, which point of beginning is marked by an iron monument; and from thence running along the east boundary of Hammond Road in a compass bearing of north 2 degrees 17 minutes west, for a distance of 330 feet to an iron pin monument; thence on a compass bearing of north 88 degrees 00 minutes east, a distance of 481.5 feet to a corner; thence on a compass bearing of south 17 degrees 30 minutes east, for a distance of 427 feet to the west boundary of the right of way of the Central of

Georgia Railway Company; thence along said boundary, south 73 degrees 26 minutes west, for a distance of 217.8 feet to a corner in said right of way of said Railway Company's road bed; thence on a compass bearing of south 88 degrees 46 minutes west, for a distance of 812 feet and to the point of beginning. Said property is bounded on the north by the property known as the Trent Tube Manufacturing Company Site, on the south by the property of O.L. Hammond and D.L. Hammond, on the east by the Central of Georgia Railway Company right of way, and on the west by the Hammond Road.

ALSO,

ALL THAT TRACT OR PARCEL OF LAND lying and being in Land Lot 131 of the 10th District of Carroll County, Georgia, being more particularly described as follows:

To find the true point of beginning start at the intersection of the west right-of-way of the Central of Georgia Railroad and the north right-of-way of Alabama Street; thence proceed northerly along the west right-of-way of said railroad 1186.00 feet to a point; thence proceed South 86°46'00" West for a distance of 815.11 feet to a point on the east right-of-way of Hammond Street; thence proceed along the east right-of-way of Hammond Street North 02°02'50" West for a distance of 194.05 feet to a point; thence North 01°04'35" for a distance of 134.92 feet to a point; thence North 00°41'16" West for a distance of 187.75 feet to the true point of beginning;

Thence proceed South 89°18'44" West for a distance of 30.00 feet to a point; thence North 00°41'16" West a distance of 275.03 feet to a point; thence North 84°30'04" East for a distance of 435.00 feet to a point; thence South 05°29'56" East for a distance of 60.00 feet to a point; thence South 84°30'04" West for a distance of 409.94 feet to a point; thence South 00°41'16" East for a distance of 217.35 feet to the point of beginning. Said tract of land containing 0.75 acres.

The foregoing legal description of the property is based on a survey prepared by Crawford & Associates, Inc., dated May 9, 1996 at Job No. JN910610.

ATTACHMENT B

GROUNDWATER MONITORING REPORT: JULY 2016

9874 Main Street, Woodstock, GA 30188 tel 770.926.8883 fax 770.926.5383 www.ecsconsult.com

August 11, 2016

Mr. Yue Han Georgia Environmental Protection Division Hazardous Site Response Program 2 Martin Luther King Jr. Drive, Suite 1462 East Atlanta, Georgia 30334

RE: Groundwater Monitoring Report: July 2016
Crucible Materials Corp.- Trent Tube Division
Carrollton, Carroll County, Georgia
HSI No. 10604
ECS Project No. 27-225273.00

Dear Mr. Han:

On behalf of the Georgia Environmental Protection Division (GEPD) Hazardous Site Response Program, Environmental Compliance Services, Inc. (ECS), is pleased to submit the July 2016 Groundwater Monitoring Report for the above-referenced site.

If you have any questions regarding this report, please contact me at 770.926.8883, extension 139.

Sincerely,

ENVIRONMENTAL COMPLIANCE SERVICES, INC.

Dean R. McCartney Program Manager

9874 Main Street, Woodstock, GA 30188 tel 770.926.8883 fax 770.926.5383 www.ecsconsult.com

August 11, 2016

Mr. Yue Han Georgia Environmental Protection Division Hazardous Site Response Program 2 Martin Luther King Jr. Drive, Suite 1462 East Atlanta, Georgia 30334

RE: Groundwater Monitoring Report: July 2016
Crucible Materials Corp. - Trent Tube Division
Carrollton, Carroll County, Georgia
HSI No. 10604
ECS Project No. 27-225273.00

Dear Mr. Han:

Environmental Compliance Services, Inc., (ECS) is pleased to provide this semiannual groundwater monitoring report for the former Crucible Materials Corporation (Crucible) - Trent Tube Division facility located at 141 Hammond Street in Carrollton, Carroll County, Georgia. Referenced as the "Former Trent Tube" site (site) in several documents, it is currently operated by Bo Metals, Inc. (Bo Metals), which manufactures a wide variety of concrete accessory products. A site location map is included as **Figure 1**. This report summarizes the field sampling activities, conditions encountered, and analytical results for the July 19 and 20, 2016, groundwater monitoring event. These tasks were performed in accordance with the Project Assignment Form for Contractor Services, Contract Number 46200-741-DNR0000365-0002.

SITE BACKGROUND INFORMATION

The sources of the two previously identified on-site releases are presumed to be from the wastewater and on-site settling ponds associated with the former stainless-steel pipe and tubing manufacturing as performed by Crucible, the former site operator. The site was listed on the Hazardous Site Inventory (HSI) on February 15, 2000, as a result of nickel impact to groundwater. In 2005, Bo Metals submitted a Prospective Purchaser Compliance Status Report (PPCSR), as part of a Brownfield Limitation of Liability (LOL) Application. The Georgia Environmental Protection Division (GEPD) approved the PPCSR certification, that site soils met the residential risk reduction standards for fluoride and nickel. However, nickel, fluoride, and trichloroethene (TCE) were not in compliance with established Risk Reduction Standards (RRS). As a result, in 2009 Crucible proposed to implement Monitored Natural Attenuation (MNA) as a groundwater corrective measure.

Prior to concurrence, the GEPD required additional groundwater data and associated modeling for the nickel and fluoride impacts to groundwater. Crucible filed for bankruptcy (Chapter 7) in 2010, and additional groundwater information was not provided to GEPD. There has not been additional environmental compliance monitoring or corrective action activities completed at the site since 2010, with the exception of the Bo Metals LOL annual certifications.

SITE DESCRIPTION

The 37-acre site is located at 141 Hammond Street, Carrollton, Carroll County, Georgia, identified as Carroll County tax parcel no. CO2 0430003. The site property is fenced and consists of one approximately 170,000-square foot building, which is used for the manufacturing and storage of the Bo Metals concrete accessory products. Most of the remainder of the ground surface at the site is covered with asphalt parking, gravel roads, or natural vegetative cover. Surrounding land uses consist of Southern States (a farmers cooperative) to the south, a residential trailer park to the west, the Little Tallapoosa River to the north, and Central of Georgia Railroad property to the east. Elevations at the site range from 960 to 1,060 feet above mean sea level (AMSL) and slopes gradually to the north toward the Little Tallapoosa River. According to the information listed in an August 1, 2005, Compliance Status Report (CSR) for the site, the soils on site consist of sand/clay/gravel/concrete fill materials, clayey sand/clayey silty sand/silty clay containing quartz and garnet fragments, alluvium soils, saprolite, and schist bedrock. The depth to groundwater at the site generally ranges from 10 to 20 feet below ground surface (BGS), with shallower depths as the locations approach the Little Tallapoosa River to the north. Groundwater flow mimics the general topography of the site and flows generally in a northerly trending direction, toward the Little Tallapoosa River. Based on the above referenced 2005 CSR, the nearest drinking water well was located approximately 3,000 feet west of the site.

JULY 2016 FIELD ACTIVITIES

The objective of this work is to further characterize groundwater impacts at the site by collecting additional groundwater data. The conditions of the existing groundwater monitoring locations were assessed, and minor repairs and modifications were made prior to sampling collection. The PAF requested the gauging and sampling of sixteen groundwater monitoring wells, including:MW-1, MW-2, MW-3, MW-4, MW-4R, MW-5, MW-6, MW-7, MW-12, MW-12D, MW-13, MW-20, MW-23, MW-24, MW-25, and MW-26. Groundwater samples were to be submitted for laboratory analysis of nickel and fluoride, with monitoring wells MW-2 and MW-23 additionally analyzed for volatile organic compounds (VOCs).

The Carrollton Greenbelt Trail (Greenbelt) construction is ongoing along the northern boundary of the site, along the southern banks of the Little Tallapoosa River. Based on visual observations of this area, it appears that Greenbelt construction activities have destroyed some monitoring wells. ECS has been provided copies of five segments of the Construction Plan by Georgia & West, Inc. (segments CP-04 through CP-09), for the construction segment comprised of Alabama Street to Avalon Drive, in Carrollton, Georgia. Based on the Construction Plan and site maps, it appears that monitoring wells MW-20, MW-25, and MW-26 are be located in the vicinity of the Greenbelt construction.

On June 16, 2016, ECS personnel mobilized to the site to identify monitoring well locations, gauge the wells, and to make minor repairs and modifications prior to sampling collection. During the initial site visit, the following wells were unable to be located: MW-14, MW-16, MW-17, MW-19, MW-20, MW-21D, MW-22, MW-24, MW-24D, MW-25, and MW-26. In addition, monitoring wells MW-7, MW-8, MW-9, and MW-15 were listed as abandoned in previous reports.

ECS conducted an additional site visit on July 19, 2016, prior to performing groundwater gauging and sampling activities. With the assistance of Bo Metals personnel, the following wells were unable to be located and the following presumptions are made:

- Monitoring wells MW-20, MW-25, and MW-26 are presumed to be destroyed, due to their location within the Greenbelt construction activities zone;
- Monitoring wells MW-24 and MW-24D were unable to be located and are presumed to have been destroyed; and
- Monitoring wells MW-7, MW-8, and MW-9 were reported as abandoned on historical reports and were unable to be located during site visits.

On July 19 and 20, 2016, ECS recorded groundwater level data from thirteen existing monitoring wells: MW-1, MW-2, MW-3, MW-4, MW-4R, MW-5, MW-6, MW-11, MW-12, MW-12D, MW-13, MW-18, and MW-23. Monitoring well locations are shown on the site map provided as **Figure 2**. Note: monitoring well MW-11 was gauged and sampled in the place of abandoned MW-7, following correspondence with the GEPD.

The groundwater level in each monitoring well was measured using an electronic water-level meter. After the water-level data was recorded, the monitoring wells were purged utilizing low-flow techniques with a peristaltic pump fitted with clean, disposable tubing. The monitoring wells were purged until the hydrogen ion concentration (pH), specific conductance, and temperature of the groundwater stabilized and the turbidity had either stabilized or was below 10 Nephelometric Turbidity Units (NTUs).

In accordance with SESDPROC-301-R3 Section 3, Groundwater Sampling Methods - Purging (time required to sample, quantities of investigation derived waste (IDW) requiring management, etc.), the alternate purge procedures or sampling strategies available are the "Tubing-in-Screened Interval", also known as the "Low Flow/Low Volume" method. This method described in SESDPROC-301-R3 Section 3.2.2 was utilized for purging of sampled wells...Justification for using the "Low Flow/Low Volume" method is as described in Section 3.2.2 of SESDPROC-301-R3. Section 3.2.2 "Tubing-in-Screened-Interval" Method indicates the "Tubing-in-Screen" method, sometimes referred to as the "Low Flow" method, is used primarily when calculated purge volumes for the traditional purging method are excessive and present issues related to timely completion of the project and/or management of investigative derived waste (IDW).

A peristaltic pump with clean, disposable Teflon tubing was used for purging monitoring wells MW-1, MW-2, MW-3, MW-4, MW-4R, MW-5, MW-6, MW-11, MW-12, MW-13, MW-18, and MW-23. These wells were purged with tubing placed within the screen interval. Based on the screened interval location of MW-12D, located at depths of 84 to 94 feet below ground surface, purging was conducted using a decontaminated downwell electric submersible pump. A summary of purging information is presented in **Table 4**.

Purge water was containerized and staged at the site in one 55-gallon drum for future disposal pending analytical results. ECS may propose disposing of the containerized purge water by discharging to the municipal wastewater treatment system via an onsite drain connection. While this disposal method is pending approval, it is noted that this disposal method has been utilized by prior environmental consultants during historical groundwater monitoring events.

Upon completion of purging activities, groundwater samples from a total of thirteen monitoring wells were sampled and analyzed for nickel, via US Environmental Protection Agency (EPA) Method 6020B, fluoride via EPA Method 9056A, and routine indicator parameters consisting of temperature, specific conductivity, pH, and turbidity. Groundwater samples obtained from MW-23 and MW-2, were also analyzed for VOCs per EPA Method 8260B. A duplicate groundwater sample, identified as DUP-01, was collected from monitoring well MW-23.

The groundwater samples for analysis of TCE and its biodegradation daughter products were collected from the intake end of the discharge tubing, after the peristaltic pump was stopped and the tubing removed from the monitoring well. The nickel and fluoride samples were collected directly from the discharge end of the tubing during uninterrupted, low-flow peristaltic pump operation. The groundwater samples were placed into clean, laboratory-provided containers, labeled, and recorded on a Chain-of-Custody form.

The containerized groundwater samples were stored in an ice-filled cooler and were transported to TestAmerica Laboratory Services, located in Nashville, Tennessee, for analysis. Field sampling records are provided in **Attachment A**.

GROUNDWATER SAMPLING AND GAUGING RESULTS:

Depths to groundwater were measured to have varied between approximately 0.11 feet below top of casing (BTOC) in MW-12D to 24.92 feet BTOC in MW-18. Neither high density nor low density free phase product was detected in site wells. Groundwater flow direction is interpreted to trend primarily northerly, towards the Little Tallapoosa River. In July 2016, groundwater elevations were 1.94 to 3.88 feet lower than the levels observed during the May 2010 quarterly sampling event. The hydraulic gradient, calculated between upgradient monitoring well MW-4R and downgradient monitoring well MW-1, was approximately 0.016 ft/ft. The groundwater elevation summaries for the historical and the current gauging events are included in **Table 1**. The groundwater potentiometric surface map for July 19, 2016, is shown as **Figure 3**.

Current and historical nickel, fluoride, nitrate, nitrite, TCE, cis-1,2 dichloroethene (cis-1,2 DCE), trans-1,2 dichloroethene (trans-1,2 DCE), 1,1 dichloroethene (1,1 DCE), and vinyl chloride groundwater analytical data is summarized in **Table 2** and are presented on **Figure 4**. The field parameters collected during sampling (turbidity, pH, specific conductance, and temperature) are summarized in **Table 3**. The laboratory analytical report is provided as **Attachment B**.

Nickel

During the July 2016 sampling event, nickel was reported to exceed the laboratory method-detection limits (MDL) in all thirteen groundwater samples (MW-1, MW-2, MW-3, MW-4, MW-4R, MW-5, MW-6, MW-11, MW-12, MW-12D, MW-13, MW-18, and MW-23) analyzed for this constituent. The nickel concentrations in the groundwater samples from monitoring wells MW-4 (4.84 milligrams per liter [mg/L]) and MW-5 (2.18 mg/L) exceeded the applicable Type 4 Risk Reduction Standard (RRS) of 2.0 mg/L. The nickel concentrations in the groundwater samples from the remaining monitoring wells were less than either the Type 4 or Type 2 RRS, as applicable.

In July 2016, the concentrations of nickel in groundwater had increased from the May 2010 levels at monitoring wells MW-3 (from 0.39 mg/L to 0.869 mg/L), MW-4 (from 2.31 mg/L to 4.84 mg/L), MW-12D (from <0.0200 mg/L to 0.00121 [J] mg/L), MW-13 (from <0.0200 mg/L to 0.00572 mg/L), and MW-18 (from <0.0200 mg/L to 0.0461 mg/L). Concentrations of nickel decreased in July 2016 from the May 2010 levels in groundwater samples from monitoring wells MW-1 (from 1.17 mg/L to 0.450 mg/L), MW-2 (from 0.826 mg/L to 0.698 mg/L), MW-4R (from

1.98 mg/L to 1.65 mg/L), MW-5 (from 4.48 mg/L to 2.18 mg/L), and MW-12 (from 0.700 mg/L to 0.360 mg/L).

Fluoride

During the July 2016 sampling event, fluoride was reported to exceed the laboratory MDL in all thirteen groundwater samples (MW-1, MW-2, MW-3, MW-4, MW-4R, MW-5, MW-6, MW-11, MW-12, MW-12D, MW-13, MW-18, and MW-23) analyzed for this constituent. The fluoride concentrations in the groundwater samples from monitoring wells MW-1 (32.3 mg/L), MW-2 (22.4 mg/L), MW-3 (24.2 mg/L), MW-4 (182 mg/L), MW-4R (125 mg/L), MW-5 (93.2 mg/L), and MW-12 (34.1 mg/L) exceeded the applicable Type 4 Risk Reduction Standard (RRS) of 12.2 mg/L. The fluoride concentrations in the groundwater samples from the remaining monitoring wells were less than either the Type 4 or Type 2 RRS, as applicable.

In July 2016, the concentrations of fluoride in groundwater had increased from the May 2010 levels at monitoring wells MW-3 (from 8.8 mg/L to 24.2 mg/L), MW-4 (from 107 mg/L to 182 mg/L), MW-4R (from 90 mg/L to 125 mg/L), MW-5 (from 82 mg/L to 93.2 mg/L), MW-12 (from 29 mg/L to 34.1 mg/L), MW-12D (from 0.25 mg/L to 0.372 mg/L), and MW-18 (from 0.46 mg/L to 1.71 mg/L). Concentrations of nickel decreased in July 2016 from the May 2010 levels in groundwater samples from monitoring wells MW-1 (from 56 mg/L to 32.3 mg/L), MW-2 (from 32 mg/L to 22.4 mg/L), and MW-13 (from 0.90 mg/L to 0.154 mg/L).

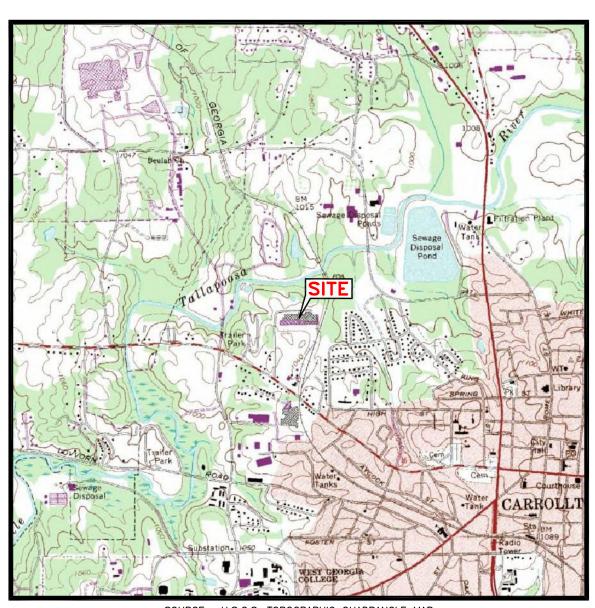
TCE

During the July 2016 sampling event, TCE was reported to exceed the laboratory MDL in one of the two groundwater samples (MW-2) analyzed for this constituent. The TCE concentration in the groundwater sample from monitoring well MW-2 (0.00618 mg/L) exceeded the Type 4 RRS of 0.005 mg/L. The TCE concentration decreased in MW-2 from 0.012 mg/L in May 2010 to 0.00618 mg/L in July 2016. TCE biodegradation products (cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethene, and vinyl chloride) were not reported to have exceeded the MDL in the two groundwater samples analyzed for these constituents.

CONCLUSIONS

Based on the groundwater monitoring activities conducted at the former Trent Tube facility and a review of historical data, the following conclusions for the site are as follows:

 During the initial site visit in July 2016 gauging activities, ECS collected groundwater water level data from thirteen monitoring wells: MW-1, MW-2, MW-3, MW-4, MW-4R, MW-5, MW-6, MW-11, MW-12, MW-12D, MW-13, MW-18, and MW-23;


- Monitoring wells MW-14, MW-16, MW-17, MW-19, MW-20, MW-21D, MW-22, MW-24, MW-24D, MW-25, and MW-26 were unable to be located and are presumed to have been destroyed;
- Monitoring wells MW-7, MW-8, MW-9, and MW-15 were reported to have been abandoned, per review of historical reports;
- Monitoring well MW-11 was sampled in the place of abandoned MW-7, following correspondence with GEPD; and
- Laboratory results from the July 2016 sampling event reported that nickel concentrations in groundwater samples obtained from monitoring wells MW-4 and MW-5 exceeded the Type 4 RRS for this constituent. The fluoride concentrations reported in groundwater samples obtained from monitoring wells MW-1, MW-2, MW-3, MW-4, MW-4R, MW-5, and MW-12 were reported to have exceeded the applicable Type 4 RRS. The TCE concentration in the groundwater sample obtained from monitoring well MW-2 was reported to have exceeded the applicable Type 4 RRS.

Georgia Professional Engineer's Certification

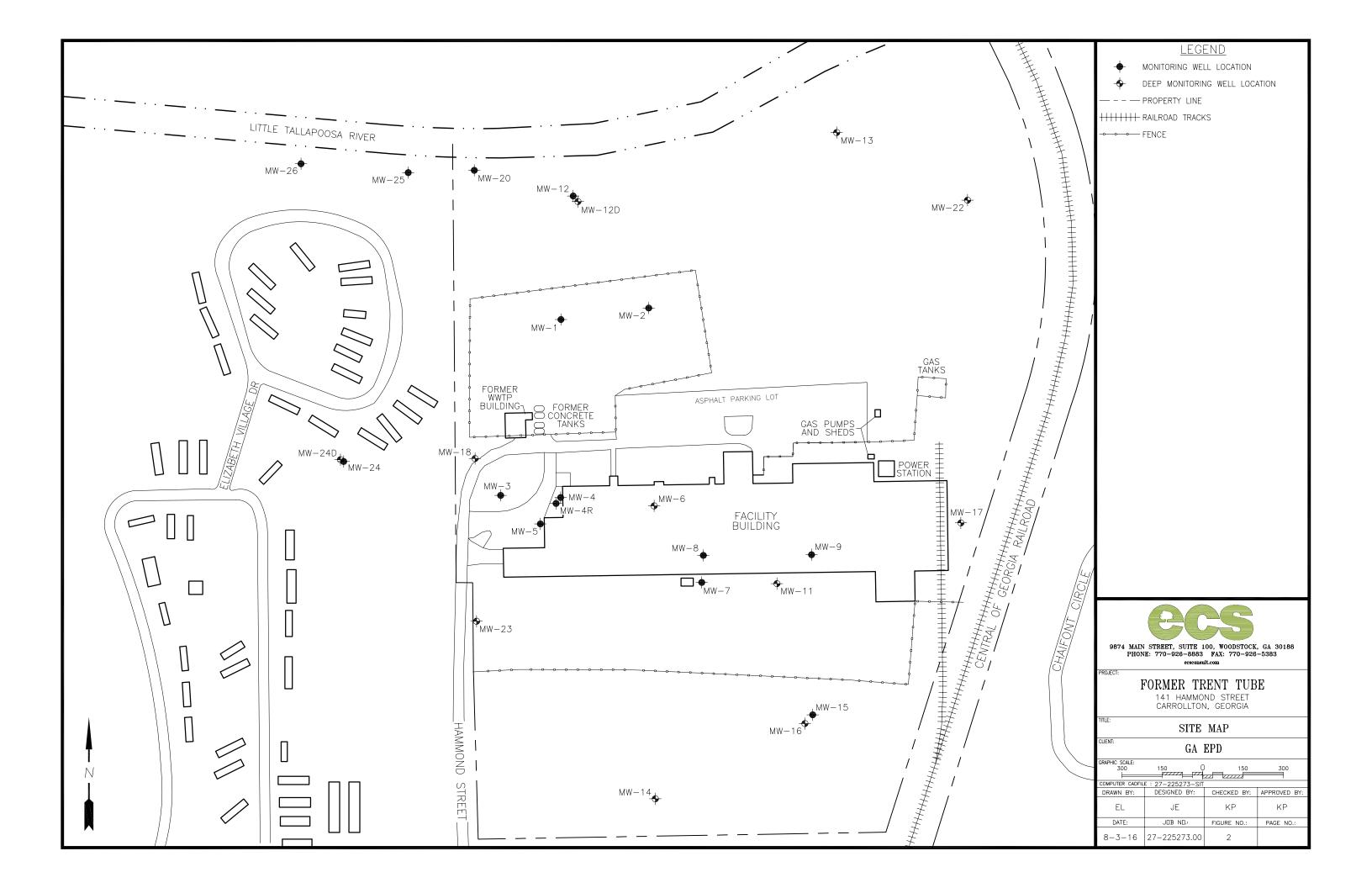
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

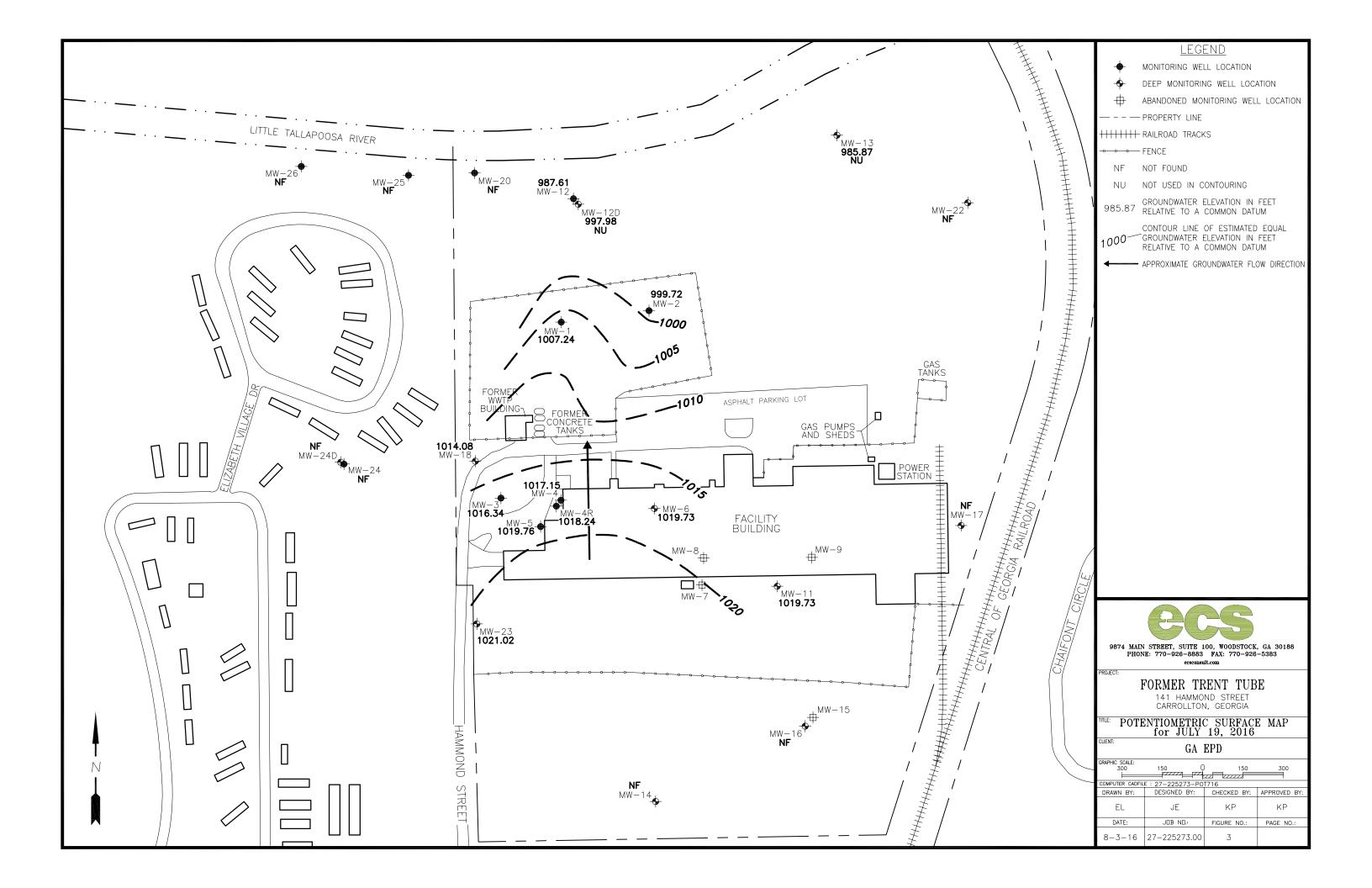
Kenneth J. Perignat, P.E. Georgia Registered Professional Engineer No. 32249

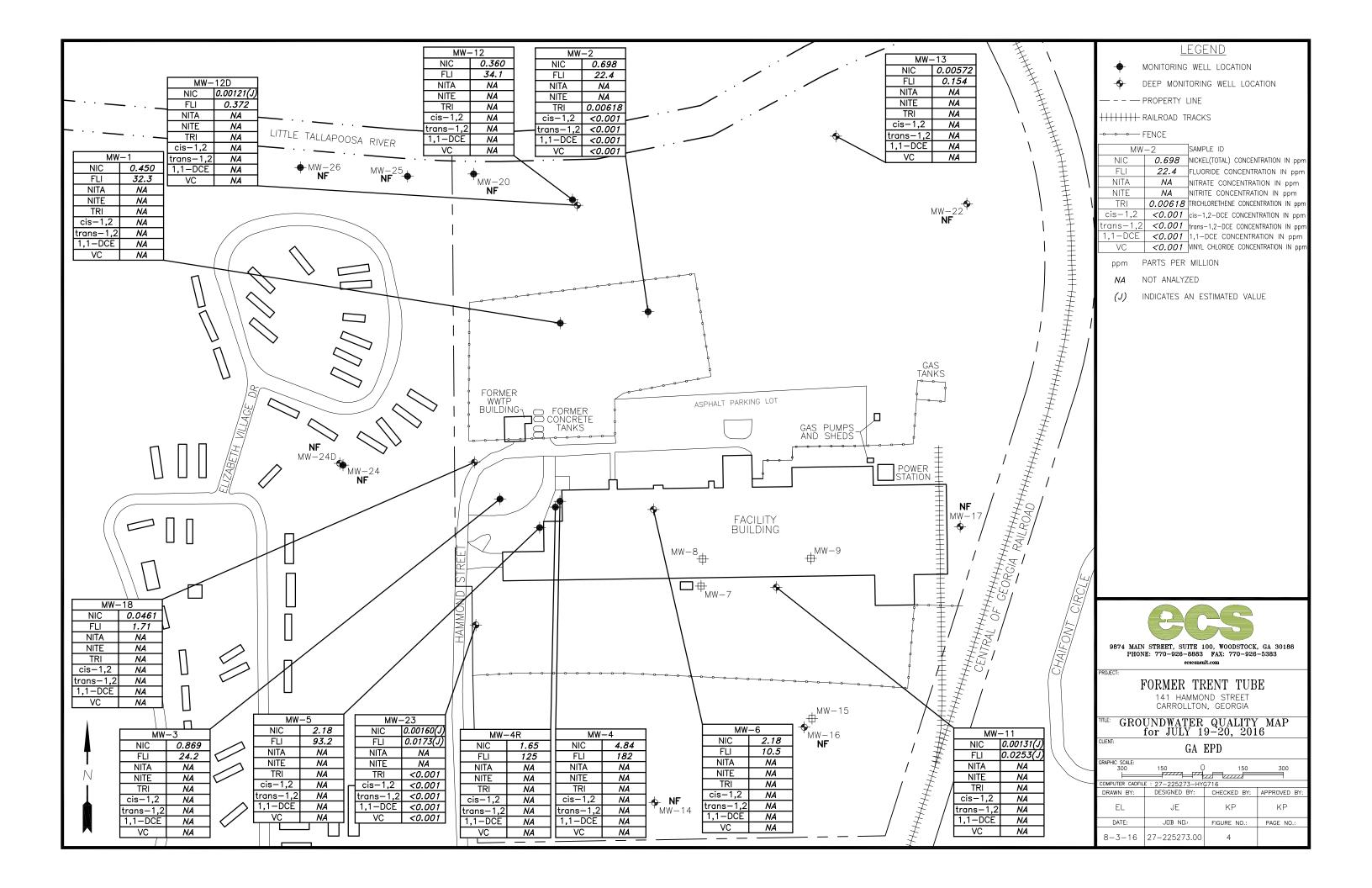
ECS Certificate of Authorization - Engineering Firm, No. PEF006594

SOURCE: U.S.G.S. TOPOGRAPHIC QUADRANGLE MAP
MAP SOURCE: 7.5 MINUTE SERIES, CARROLLTON, GEORGIA, 1982

9874 Main Street, Suite 100, Woodstock, Ga. 30188 Phone: 770—926—8883 Fax: 770—926—5383 ecsconsult.com


- NOLUI.	FORMER	TRENT	TUBE


141 HAMMOND STREET CARROLLTON, GEORGIA


SITE	LOCATION	MAP
------	----------	-----

COMPUTER CADE	TLE: 27-2252	73-8.5X11QUA	D
DRAWN BY:	DESIGNED BY:	CHECKED BY:	-

L	DRAWN BY:	DESIGNED BY:	CHECKED BY:	APPROVED BY:
	EL	JE	KP	KP
ſ	SCALE:	DATE:	JOB NO.:	FIGURE NO.:
Ī	1:2,000	8-3-16	27-225273.00	1

(All measurements in feet)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Measured	Top of Casing Elevation	Screen Interval	Depth of Free Product	Water Depth	Product Thickness	Specific Gravity Adjustment	Corrected Groundwater Elevation
	08/23/04				13.39			1008.00
	03/09/06				11.27			1010.12
	06/07/06				12.29			1009.10
	09/08/06				14.18			1007.21
	11/29/06				13.45			1007.94
	05/21/07				14.04			1007.35
	08/14/07				15.07			1006.32
	11/01/07				16.03			1005.36
	01/30/08				15.74			1005.65
MW-1	05/12/08	1021.39	10-20		12.11			1009.28
	08/06/08				14.00			1007.39
	11/05/08				15.34			1006.05
	02/16/09				13.81			1007.58
	05/18/09				11.53			1009.86
	08/03/09				13.32			1008.07
	11/04/09				10.96			1010.43
	02/01/10				10.99			1010.40
	05/18/10				12.11			1009.28
	07/19/16				14.15			1007.24
	08/23/04				11.84			1000.14
	03/08/06				8.38			1003.60
	06/07/06				9.99			1001.99
	09/07/06				13.20			998.78
	11/29/06				12.16			999.82
	05/21/07				13.03			998.95
	08/14/07				14.25			997.73
	11/01/07				15.60			996.38
	01/30/08				14.97			997.01
MW-2	05/12/08	1011.98	7-17		9.82		-	1002.16
	08/06/08				12.87			999.11
	11/05/08				14.34			997.64
	02/16/09				12.37		-	999.61
	05/18/09				8.45		-	1003.53
	08/03/09				11.60		-	1000.38
	11/04/09				7.56			1004.42
	02/01/10				6.44			1005.54
	05/18/10				8.38			1003.60
	07/19/16			-	12.26	-		999.72

Tables Page 1 of 6

(All measurements in feet)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

W-II ID	Date	Top of	Screen	Depth of	Water	Product	Specific	Corrected
Well ID	Measured	Casing Elevation	Interval	Free Product	Depth	Thickness	Gravity	Groundwater Elevation
	08/23/04	Elevation		Product	19.60		Adjustment	1016.38
	03/09/06	•			17.19			1018.79
	06/06/06	•			18.01			1017.97
	09/06/06				20.22			1017.97
	11/29/06	1			20.23			1015.75
	05/22/07				20.65			1015.33
	08/14/07				21.74			1014.24
	11/01/07				22.82			1013.16
	01/30/08	1			22.84			1013.14
MW-3	05/12/08	1035.98	15-25		19.03			1016.95
	08/06/08				20.31			1015.67
	11/05/08				21.73			1014.25
	02/16/09	1			20.74			1015.24
	05/18/09				17.80			1018.18
	08/03/09				19.26			1016.72
	11/04/09	1			17.21			1018.77
	02/01/10				15.56			1020.42
	05/18/10				16.60			1019.38
	07/19/16			-	19.64		-	1016.34
	08/23/04				19.74			1018.97
	03/10/06				19.74			1018.97
	06/06/06				19.97			1018.74
	09/06/06			-	22.89		-	1015.82
	11/29/06				23.74			1014.97
	05/21/07				23.82			1014.89
	08/14/07				24.65			1014.06
	11/01/07	1			24.89			1013.82
	01/30/08				24.93			1013.78
MW-4	05/12/08	1038.71	15-25	-	21.52			1017.19
	08/06/08			1	22.39		-	1016.32
	11/05/08]			24.34			1014.37
	02/16/09]			23.45			1015.26
	05/18/09]			19.58			1019.13
	08/03/09				20.98			1017.73
	11/04/09				19.31			1019.40
	02/01/10				17.06			1021.65
	05/18/10				17.92			1020.79
	07/19/16			-	21.56		-	1017.15
	02/16/09				22.24			1016.04
	05/18/09				18.57			1019.71
	08/03/09				19.76			1018.52
MW-4R	11/04/09	1038.28	24.5-34.5		18.32			1019.96
	02/01/10				16.02			1022.26
	05/18/10				16.91			1021.37
	07/19/16			-	20.04			1018.24

Tables Page 2 of 6

(All measurements in feet)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Measured	Top of Casing Elevation	Screen Interval	Depth of Free Product	Water Depth	Product Thickness	Specific Gravity Adjustment	Corrected Groundwater Elevation
	08/23/04				20.22			1018.49
	03/09/06				17.32			1021.39
	06/06/06				17.51			1021.20
	09/06/06				20.27			1018.44
	11/29/06				21.22			1017.49
	05/21/07				21.08			1017.63
	08/14/07				22.12			1016.59
	11/01/07				23.05			1015.66
	01/30/08				23.80			1014.91
MW-5	05/12/08	1038.71	15-25		19.55			1019.16
	08/06/08				20.05			1018.66
	11/05/08				21.95			1016.76
	02/16/09				21.48			1017.23
	05/18/09				17.65			1021.06
	08/03/09				18.69			1020.02
	11/04/09				17.57			1021.14
	02/01/10				14.77			1023.94
	05/18/10				15.49			1023.22
	07/19/16				18.95			1019.76
MW-6	08/23/04	1042.40	17-27		23.22			1019.18
IVIVV-0	07/19/16	1042.40	17-27		22.67			1019.73
MW-7	08/23/04	UNK	UNK			Abandor	ned	
10100-7	07/19/16	OINK	OINK			Abandor	ned	
MW-8	08/23/04	UNK	UNK			Abandor	ned	
IVIVV-0	07/19/16	ONIX	ONIX			Abandor	ned	
MW-9	08/23/04	UNK	UNK			Abandor		
WW 5	07/19/16	ONIX	OIVIC			Abandor	ned	
MW-11	08/23/04	1042.47	17-27		23.11			1019.36
10100-11	07/19/16	1042.47	17-27		22.74			1019.73
	08/23/04				11.52			987.21
	03/08/06				9.01			989.72
	06/07/06				10.18			988.55
	09/07/06				12.27			986.46
	11/30/06				10.24			988.49
	05/22/07				11.90			986.83
	08/14/07				12.65			986.08
	11/01/07]			13.38			985.35
	01/30/08				12.05			986.68
MW-12	05/12/08	998.73	8-18		8.95			989.78
	08/06/08				12.33			986.40
	11/05/08				12.49			986.24
	02/16/09				10.90			987.83
	05/18/09				8.73			990.00
	08/03/09				10.98			987.75
	11/04/09				8.47			990.26
	02/02/10				7.80			990.93
	05/19/10				9.18			989.55
	07/19/16				11.12			987.61

Tables Page 3 of 6

(All measurements in feet)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

		Top of	1	Depth of			Specific	Corrected
Well ID	Date	Casing	Screen	Free	Water	Product	Gravity	Groundwater
Well ID	Measured	Elevation	Interval	Product	Depth	Thickness	Adjustment	Elevation
	08/23/04	Lievation		Froduct	0.00		Aujustinent	998.09
	03/09/06	-			0.00			998.09
	06/07/06	-			0.00			998.09
	09/07/06	-			0.00			998.09
	11/30/06				0.00			998.09
MW-12D	05/22/07	998.09	84-94		0.00			998.09
WW 12D	11/01/07	330.03	04 34		0.69			997.40
	01/30/08				0.08			998.01
	02/16/09	1			0.00			998.09
	02/02/10	1			0.00			998.09
	07/19/16	1			0.11			997.98
	08/23/04				8.52			984.76
	03/08/06				5.74			987.54
	06/08/06				7.56			985.72
	09/07/06				9.31			983.97
	11/30/06	1			6.14			987.14
	05/22/07				8.88			984.40
	08/14/07	1			10.45			982.83
	11/01/07				9.76			983.52
MW-13	01/30/08	993.28	8-18		8.07			985.21
	05/12/08				5.75			987.53
	08/06/08				9.67			983.61
	11/05/08				8.94			984.34
	02/16/09				7.68			985.60
	05/18/09				5.94			987.34
	08/03/09				8.45			984.83
	02/02/10				5.35			987.93
	07/19/16				7.41			985.87
MW-14	08/23/04	1046.61	10-20		16.49			1030.12
10100-14	07/19/16	1040.01	10-20		ı	Not Found/De	estroyed	
MW-15	08/23/04	UNK	UNK			Abandor	ned	
10100-13	07/19/16	ONIX	ONIX			Abandor	ned	
MW-16	08/23/04	1049.07	20-35		28.78			1020.29
10100-10	07/19/16	1049.07	20-33		1	Not Found/De	estroyed	
MW-17	08/23/04	1037.30	19-34		29.03			1008.27
10100-17	07/19/16	1037.30	19-34		1	Not Found/De	estroyed	
	08/23/04				24.85			1014.15
	03/07/06]			22.99			1016.01
	06/06/06				23.78			1015.22
	09/06/06				25.38			1013.62
	11/30/06				24.99			1014.01
MW-18	05/21/07	1039.00	20-30		25.56			1013.44
	11/01/07				27.87			1011.13
	01/30/08				27.47			1011.53
	02/16/09				25.35			1013.65
	02/01/10				21.93			1017.07
	07/19/16				24.92			1014.08

Tables Page 4 of 6

(All measurements in feet)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Measured	Top of Casing Elevation	Screen Interval	Depth of Free Product	Water Depth	Product Thickness	Specific Gravity Adjustment	Corrected Groundwater Elevation			
MW-19	08/23/04	1033.52	5-20		19.37			1014.15			
10100-19	07/19/16	1033.32	3-20	,	ı	Not Found/De	stroyed	•			
	08/23/04				6.18			984.49			
	03/08/06				5.92			984.75			
	06/07/06				7.22			983.45			
	09/07/06				DRY			DRY			
	11/30/06				6.44			984.23			
	05/22/07				7.67			983.00			
	08/14/07				8.10			982.57			
	11/01/07				8.49			982.18			
	01/30/08				7.13			983.54			
MW-20	05/12/08	990.67	4-9		3.65			987.02			
	08/06/08				8.08			982.59			
	11/05/08				7.56			983.11			
	02/16/09				6.91			983.76			
	05/18/09				5.07			985.60			
	08/03/09				7.62			983.05			
	11/04/09				5.65			985.02			
	02/02/10				5.26			985.41			
	05/19/10				6.51			984.16			
	07/19/16				ı	Not Found/De	estroyed				
MW 24D	08/23/04	1017.01	25.45		24.66			992.65			
MW-21D	07/19/16	1017.31	35-45			Not Found/De	estroyed				
1414/ 00	08/23/04	4000.05	00.47		42.95			987.10			
MW-22	07/19/16	1030.05	32-47		ı	Not Found/De	estroyed	•			
NAVA / 00	08/23/04	4044 44	40.5.00.5		21.50			1019.94			
MW-23	07/19/16	1041.44	13.5-23.5		20.42			1021.02			
	08/23/04				2.85			1001.49			
	03/09/06				1.98		-	1002.36			
	06/08/06				2.08			1002.26			
	09/08/06				3.19			1001.15			
NAVA 04	12/01/06	4004.04	40.40		2.05			1002.29			
MW-24	05/22/07	1004.34	13-18		3.95			1000.39			
	01/30/08				3.44			1000.90			
-	02/16/09				2.52			1001.82			
	02/01/10				1.46			1002.88			
	07/19/16				ı	Not Found/De	estroyed				
MW 04D	08/23/04	4000.04	00.00		2.93			1000.91			
MW-24D	07/19/16	1003.84	89-99		ı	Not Found/De	estroyed	•			

Tables Page 5 of 6

(All measurements in feet)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Measured	Top of Casing Elevation	Screen Interval	Depth of Free Product	Water Depth	Product Thickness	Specific Gravity Adjustment	Corrected Groundwater Elevation
	08/23/04				5.77			991.14
-	03/08/06				4.19			992.72
	06/07/06				5.44			991.47
-	09/07/06				6.29			990.62
	11/30/06				4.76			992.15
	05/22/07				5.48			991.43
-	08/14/07				6.57			990.34
-	11/01/07				6.28			990.63
-	01/30/08				5.34			991.57
MW-25	05/12/08	996.91	4-14		1.82			995.09
-	08/06/08				6.68			990.23
-	11/05/08				5.75			991.16
	02/16/09				5.26			991.65
	05/18/09				3.27			993.64
-	08/03/09				5.80			991.11
	11/04/09				3.90			993.01
	02/02/10				3.42			993.49
	05/19/10				4.79			992.12
	07/19/16					Not Found/De	estroyed	
	03/08/06				3.88			NM
	06/07/06				4.94			NM
	09/07/06				5.82			NM
	11/30/06				4.39			NM
	05/22/07				5.49			NM
	08/14/07				6.10			NM
	11/01/07				5.85			NM
	01/30/08				4.94			NM
MM	05/12/08	NC	F 10		1.40			NM
MW-26	08/06/08	NS	5-10		6.20			NM
	11/05/08				5.34			NM
	02/16/09				4.89			NM
	05/18/09				2.87			NM
	08/03/09				5.34			NM
	11/04/09				3.57			NM
	02/02/10		-		3.10			NM
-	05/19/10				4.29			NM
	07/19/16				ı	Not Found/De	estroyed	•

NOTES:

ND - Not Detected NM - Not Measured

NA - Not Applicable UNK - Unknown

NS - Not Surveyed

Tables Page 6 of 6

(All results reported in parts per million)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Sampled	Nickel (Total)	Fluoride	Nitrate	Nitrite	Trichlorethene	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	Vinyl Chloride
	03/09/06	3.04	110	49	<0.25	<0.005				
	06/07/06	3.28	92	57	<0.25	< 0.005				
	09/08/06	3.49	130	64	< 0.25	< 0.005				
	11/29/06	3.95	110	67	< 0.25	< 0.005				
	05/21/07	3.59	120	65		< 0.005				
	08/14/07	3.65	130	65		< 0.005				
	11/01/07	4.11	150	81		< 0.005				
	01/30/08	4.22	84	71		< 0.005				
	05/12/08	2.96	100	57		< 0.005				
MW-1	08/06/08	2.93	110	54		< 0.005				
	11/05/08	3.19	130	69		< 0.005				
	02/16/09	2.80	81	58		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	05/18/09	2.28	51	49		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	08/03/09	2.15	59	42		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	11/04/09	1.55	61	33		< 0.005	< 0.005	<0.005	< 0.005	< 0.002
	11/04/09	1.55	61	33		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	02/01/10	1.51	23	14		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	05/18/10	1.17	56	25		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	07/20/16	0.450	32.3	NA	NA	NA	NA	NA	NA	NA
	03/09/06	1.42	40	8.4	< 0.25	0.015				
	06/07/06	1.44	51	8.0	<0.25	0.015				
	09/07/06	1.01	63	9.7	<0.25	0.021				
	11/29/06	1.28	39	11.0	< 0.25	0.030				
	05/21/07	1.06	28	7.8		0.025				
	08/14/07	1.00	43	7.9		0.023				
	11/01/07	1.05	58	9.3		0.018				
	01/30/08	1.05	27	8.0		0.034			-	
	05/12/08	0.783	29	3.9		0.020				
MW-2	08/06/08	0.785	35	5.2		0.021			-	
	11/05/08	0.818	46	6.3		0.033				
	02/16/09	0.850	39	6.2		0.028	< 0.005	<0.005	< 0.005	<0.002
	05/18/09	0.798	20	3.6		0.016	< 0.005	<0.005	< 0.005	< 0.002
	08/03/09	0.839	30	4.3		0.017	< 0.005	<0.005	< 0.005	< 0.002
	11/04/09	0.816	37	2.9		0.019	<0.005	<0.005	< 0.005	<0.002
	02/01/10	0.887	36	2.6		0.019	< 0.005	< 0.005	< 0.005	< 0.002
	05/18/10	0.819	30	3.9		0.012	<0.005	<0.005	<0.005	<0.002
	05/18/10	0.826	32	3.9		0.012	<0.005	<0.005	< 0.005	<0.002
	07/20/16	0.698	22.4	NA	NA	0.00618	<0.001	<0.001	<0.001	<0.001

Tables Page 1 of 8

(All results reported in parts per million)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Sampled	Nickel (Total)	Fluoride	Nitrate	Nitrite	Trichlorethene	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	Vinyl Chloride
	03/09/06	1.42	32	23	<0.25	< 0.005				
	06/06/06	1.50	31	25	< 0.25	< 0.005				
	09/06/06	2.21	43	37	< 0.25	< 0.005				
	11/29/06	2.38	38	36	< 0.25	< 0.005				
	05/22/07	1.82	38	27		< 0.005				
	08/14/07	1.48	41	21						
	11/01/07	1.68	38	23						
	01/30/08	1.90	19	19						
MW-3	05/12/08	0.95	20	14						
10100-3	08/06/08	1.69	47	26						
	11/05/08	1.73	49	25						
	02/16/09	1.60	41	22						
	05/18/09	0.47	5.6	7.3						
	08/03/09	1.26	16	18						
	11/04/09	0.47	13	6.7						
	02/01/10	0.45	6.1	7.5						
	05/18/10	0.39	8.8	9.9						
	07/20/16	0.869	24.2	NA	NA	NA	NA	NA	NA	NA
	03/10/06	9.19	230	110	< 0.25	< 0.005				
	06/06/06	6.69	180	90	< 0.25	<0.005				
	09/06/06	8.26	190	110	<0.25	<0.005				
	11/29/06	9.14	180	110	< 0.25	<0.005				
	05/21/07	NS	NS	NS		NS				
	08/14/07	NS	NS	NS		NS				
	11/01/07	NS	NS	NS		NS				
	01/30/08	NS	NS	NS		NS				
MW-4	05/12/08	5.27	150	76		<0.005				
10100 4	08/06/08	4.36	180	70		<0.005				
	11/05/08	NS	NS	NS		NS				
	02/16/09	4.50	190	70		<0.005	<0.005	<0.005	<0.005	<0.002
	05/18/09	5.26	100	85		<0.005	<0.005	<0.005	<0.005	<0.002
	08/03/09	3.37	120	50		<0.005	<0.005	<0.005	<0.005	<0.002
	11/04/09	3.53	160	66		<0.005	<0.005	<0.005	<0.005	<0.002
	02/01/10	3.05	87	44		<0.005	<0.005	<0.005	<0.005	<0.002
	05/18/10	2.31	107	40		<0.005	<0.005	<0.005	<0.005	<0.002
	07/20/16	4.84	182	NA	NA	NA	NA	NA	NA	NA

Tables Page 2 of 8

(All results reported in parts per million)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Sampled	Nickel (Total)	Fluoride	Nitrate	Nitrite	Trichlorethene	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	Vinyl Chloride
	02/16/09	1.90	140	31		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	05/18/09	2.07	59	32		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	08/03/09	2.18	98	29		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
MW-4R	11/04/09	2.15	120	29		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	02/01/10	2.24	120	37		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	05/18/10	1.98	90	23		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002
	07/20/16	1.65	125	NA	NA	NA	NA	NA	NA	NA
	03/09/06	4.15	110	42	< 0.25	< 0.005				
	06/06/06	4.22	110	44	< 0.25	< 0.005				
	09/06/06	3.84	94	45	< 0.25	< 0.005				
	11/29/06	4.68	100	53	< 0.25	< 0.005				
	05/21/07	4.15	97	47		< 0.005				
	08/14/07	3.17	87	34						
	11/01/07	3.31	82	37						
	01/30/08	3.20	62	29						
MW-5	05/12/08	2.71	60	31						
10100-5	08/06/08	3.24	82	40						
	11/05/08	2.88	93	32						
	02/16/09	4.70	130	53						
	05/18/09	5.05	66	53						
	08/03/09	3.97	77	44						
	11/04/09	5.00	100	61						
	02/01/10	5.93	77	46						
	05/18/10	4.48	82	37						
	07/20/16	2.18	93.2	NA	NA	NA	NA	NA	NA	NA

Tables Page 3 of 8

(All results reported in parts per million)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Sampled	Nickel (Total)	Fluoride	Nitrate	Nitrite	Trichlorethene	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	Vinyl Chloride			
MW-6	07/20/16	0.246	10.5	NA	NA	NA	NA	NA	NA	NA			
MW-7						Well Abandoned							
MW-8						Well Abandoned							
MW-9						Well Abandoned							
MW-11	07/19/16	0.00131 (J)	0.0253 (J)	NA	NA	NA	NA	NA	NA	NA			
	03/08/06	1.27	56	27	< 0.25	< 0.005							
	06/07/06	1.24	53	26	< 0.25	< 0.005							
	09/07/06	1.27	61	32	< 0.25	< 0.005							
	11/30/06	1.56	44	31	<0.25	< 0.005							
	05/22/07	1.37	60	30		< 0.005							
	08/14/07	1.26	54	27		< 0.005			-				
	11/01/07	1.43	42	35		< 0.005							
	01/30/08	1.48	24	30		< 0.005			-				
	05/12/08	1.22	38	25		< 0.005							
MW-12	08/06/08	1.26	50	28		< 0.005			-				
	11/05/08	1.38	61	28		< 0.005							
	02/16/09	1.41	65	32		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002			
	05/18/09	1.20	20	23		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002			
	08/03/09	1.13	33	24		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002			
	11/04/09	1.04	45	23		< 0.005	< 0.005	< 0.005	<0.005	< 0.002			
	02/02/10	0.929	30	13		< 0.005	<0.005	< 0.005	< 0.005	< 0.002			
	02/02/10	0.950	40	13		< 0.005	< 0.005	< 0.005	< 0.005	< 0.002			
	05/19/10	0.700	29	12		<0.005	<0.005	<0.005	<0.005	<0.002			
	07/20/16	0.360	34.1	NA	NA	NA	NA	NA	NA	NA			

Tables Page 4 of 8

(All results reported in parts per million)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Sampled	Nickel (Total)	Fluoride	Nitrate	Nitrite	Trichlorethene	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	Vinyl Chloride
	03/09/06	< 0.0200	0.65	< 0.25	< 0.25	< 0.005				
	06/07/06	ed (Total) Fluoride Nitrate 06 <0.0200	< 0.25	< 0.005						
	09/07/06	< 0.0200	0.51	< 0.25	< 0.25	< 0.005				
	11/30/06	< 0.0200	0.36	<0.25	< 0.25	< 0.005				
MW-12D	05/22/07	<0.0200	2.3	<0.25		< 0.005				
	01/31/08	<0.0200	<0.20	< 0.25						
	02/17/09	<0.0200	0.29	<0.25						
	02/02/10	<0.0200	0.25	<0.25						
	07/19/16	0.00121 (J)	0.372	NA	NA	NA	NA	NA	NA	NA
	03/08/06	< 0.0200	<0.20	<0.25	< 0.25	< 0.005				
	06/08/06	<0.0200	<0.20	<0.25	< 0.25	< 0.005				
	09/07/06	< 0.0200	<0.20	<0.25	< 0.25	< 0.005				
	11/30/06	< 0.0200	1.4	<0.25	< 0.25	< 0.005				
	05/22/07	<0.0200	0.25	<0.25		< 0.005	0.005			
	08/14/07	<0.0200	<0.20	< 0.25		< 0.005				
MW-13	11/01/07	< 0.0200	0.53	<0.25		< 0.005				
10100-13	01/31/08	< 0.0200	<0.20	<0.25		< 0.005				
	05/13/08	<0.0200	<0.20	< 0.25		< 0.005				
	08/07/08	< 0.0200	0.36	<0.25		< 0.005				
	11/06/08	<0.0200	<0.20	< 0.25		< 0.005				
	02/17/09	< 0.0200	0.21	<0.25		< 0.005	< 0.005	< 0.005	<0.005	< 0.002
	02/02/10	<0.0200	0.90	<0.25		< 0.005	< 0.005	< 0.005	<0.005	< 0.002
	07/19/16	0.00572	0.154	NA	NA	NA	NA	NA	NA	NA
MW-14	07/19/16					Destroyed/Not Four	nd			•
MW-15	07/19/16					Destroyed/Not Four	nd			
MW-16	07/19/16					Destroyed/Not Four				
MW-17	07/19/16					Destroyed/Not Four	nd			

Tables Page 5 of 8

(All results reported in parts per million)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Sampled	Nickel (Total)	Fluoride	Nitrate	Nitrite	Trichlorethene	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	Vinyl Chloride
	03/07/06	< 0.0200	0.44	1.5	< 0.25	< 0.005				
	06/06/06	0.089	3.2	1.6	< 0.25	< 0.005				
	09/06/06	0.145	6.8	4.6	<0.25	< 0.005				
	11/30/06	0.165	6.7	3.2	< 0.25	< 0.005				
MW-18	05/21/07	0.146	7.5	1.5		< 0.005				
	01/30/08	0.303	7.4	4.2						
	02/16/09	0.110	3.2	<2.5						
	02/01/10	< 0.0200	0.46	0.61				-		
	07/20/16	0.0461	1.71	NA	NA	NA	NA	NA	NA	NA
MW-19	07/19/16		Destroyed/Not Found		nd					
	03/08/06	0.322	12	4.5	< 0.25	< 0.005		-		
	06/08/06	0.651	20	14	< 0.25	< 0.005				
	09/07/06	NS	NS	NS	NS	NS				
	11/30/06	0.241	19	9.9	<0.25	< 0.005				
	05/21/07	NS	NS	NS		NS				
	08/14/07	NS	NS	NS		NS				
	11/01/07	NS	NS	NS		NS				
	01/31/08	0.936	24	16						
MW-20	05/12/08	0.428	10	6.2						
IVIVV-20	08/06/08	NS	NS	NS						
	11/05/08	0.884	47	19						
	02/17/09	0.670	28	14						
	05/18/09	0.510	11	8.8						
	08/03/09	0.763	28	19						
	11/04/09	0.441	14	7.1						
	02/02/10	0.279	8.5	2.9						
	05/19/10	0.307	9	5.4						
	07/19/16					estroyed/Not Four	nd		•	•

Tables Page 6 of 8

(All results reported in parts per million)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

MW-22 07/19 MW-23 07/19 MW-23 Dup. 07/19 03/09 06/00 12/00 MW-24 05/22 01/30 02/01	7/19/16 7/19/16 7/19/16 7/19/16 7/19/16 7/19/16 7/09/06 7/08/06 7/08/06 7/01/06 7/22/07 7/30/08	0.00160 (J) 0.00173 (J) 0.085 0.074 <0.0200 0.045	0.0173 (J) 0.0175 (J) 3.5 0.48	NA NA 1.3			nd						
MW-23 07/19 MW-23 Dup. 07/19 03/09 06/00 09/00 12/0 MW-24 05/22 01/30 02/10 02/00	7/19/16 7/19/16 8/09/06 8/08/06 8/08/06 8/01/06 8/22/07	0.00173 (J) 0.085 0.074 <0.0200	0.0175 (J) NA NA <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002										
MW-23 Dup. 07/19 03/09 06/00 09/00 12/0 MW-24 05/22 01/30 02/10 02/00	7/19/16 7/09/06 7/08/06 7/08/06 7/01/06 7/22/07	0.00173 (J) 0.085 0.074 <0.0200	0.0175 (J) 3.5 0.48	NA		<0.001							
03/09 06/00 09/00 12/0 MW-24 05/23 01/30 02/10 02/00	6/09/06 6/08/06 6/08/06 6/01/06 6/22/07	0.085 0.074 <0.0200	3.5 0.48	73 (J) 0.0175 (J) NA NA <0.001 <0.001 <0.0									
06/06 09/06 12/0 MW-24 05/23 01/36 02/16 02/06	6/08/06 6/08/06 6/01/06 6/22/07	0.074 <0.0200	0.48	1.3		<0.001	< 0.001	< 0.001	< 0.001	< 0.001			
09/00 12/0 MW-24 05/2: 01/30 02/10 02/0	0/08/06 0/01/06 0/22/07	<0.0200				< 0.005			-				
MW-24 05/2: 01/3(02/1) 02/0	2/01/06 5/22/07								1				
MW-24 05/22 01/30 02/10 02/0	/22/07	0.045							-				
01/30 02/10 02/0					< 0.25				-				
02/10 02/0	/30/08	0.079	0.41	0.61		< 0.005			-				
02/0		0.095							-				
	/16/09	0.091	5.6	<2.5					1				
07/19	/01/10	0.065	0.36	2.3					-				
	7/19/16						nd						
03/08	8/08/06	0.302	5.8		< 0.25	< 0.005			I				
	5/07/06	0.328	-	7.3		< 0.005							
09/0	/07/06	0.272	7.3	9.6	< 0.25	< 0.005							
11/30	/30/06	0.399	5.0	8.8	< 0.25	< 0.005							
05/22	/22/07	0.318	6.3	7.3		< 0.005							
08/14	/14/07	0.353	9.9	8.0									
11/0	/01/07	0.408	7.6	8.9									
01/3	/31/08	0.571	6.6	12									
MW-25 05/12	/12/08	0.221	3.7	3.1					-				
08/00	/06/08	0.304	6.4	6.9									
11/0	/05/08	0.371	8.2	9.5									
02/1	/17/09	0.308	9.2	7.1									
05/18	/18/09	0.267	4.5	5.0									
08/03	/03/09	0.375	7.1	9.9									
11/04	/04/09	0.247	5.0	4.5									
02/02	/02/10	0.199	4.2	2.5									
05/19	/19/10	0.190	5.4	3.1									
07/19		Destroyed/Not Found											

Tables Page 7 of 8

(All results reported in parts per million)

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Sampled	Nickel (Total)	Fluoride	Nitrate	Nitrite	Trichlorethene	cis-1,2-DCE	trans-1,2- DCE	1,1-DCE	Vinyl Chloride
	03/08/06	0.110	0.95	3.2	< 0.25	< 0.005				
	06/07/06	0.165	1.2	4.1	< 0.25	< 0.005				
	09/07/06	<0.0200	1.7	<0.25	< 0.25	< 0.005				
	11/30/06	0.085	1.4	1.6	< 0.25	< 0.005				
	05/22/07	0.116	0.73	3.2		< 0.005				
	08/14/07	0.092	0.57	1.2						
	11/01/07	0.106	1.1	1.6						
	01/31/08	0.233	0.81	8.2						
MANA/ OC	05/12/08	0.087	1.3	0.94				-		
MW-26	08/06/08	0.097	0.70	0.57						
	11/05/08	0.106	0.82	0.88						
	02/17/09	0.094	0.78	1.7						
	05/18/09	0.092	1.6	1.7						
	08/03/09	0.088	0.83	0.57						
	11/04/09	0.090	1.4	<0.25						
	02/02/10	0.052	0.49	0.40						
	05/19/10	0.101	0.71	0.51						
	07/19/16					Destroyed/Not Four	nd			•
Risk-Reduction	on Standards	•	•	•			·		·	•
Туре	1/3	0.10	4.0	0.25	0.25	0.005	NA	0.1	0.007	0.002
Тур	e 2	0.31	4.4	25	1.6	0.005	NA	0.1	0.007	0.002
Тур	e 4	2.0	12.2	164	10.00	0.005	NA	0.1	0.007	0.002

Notes:

NR = Not Reported

NA = Not Analyzed

NS = Not Sampled due to well being dry

All data before July 19, 2016, was provided by others. Bold values indicate concentration exceeds applicable RRS.

cis-1,2-DCE = cis-1,2-dichloroethene trans-1,2-DCE = trans-1,2-dichloroethene 1,1-DCE = 1,1-dichloroethene Risk Reduction Standards (RRS)

Type 1 = RRS will pose no significant risk on the basis of standardized exposure assumptions and defined risk level for residential properties.

Type 2 = RRS will pose not significant risk on the basis of site-specific risk

assessment for residential properties

Type 3 = RRS will pose no significant risk on the basis of standardized exposure assumptions and defined risk level for non-residential properties.

Type 4 = RRS will pose no significant risk on the basis of site-specific risk

assessment for non-residential properties.

Tables Page 8 of 8

Well ID	Date	Turbidity	pH (SU)	Sp. Cond.	Temp. (deg.
Well ID	Measured	(NTU)	pri (30)	(µs/cm)	C)
	03/09/06	4.7	4.54	407	17.1
	06/07/06	1.1	4.34	455	18.9
	09/08/06	3.1	4.17	498	19.3
	11/29/06	4.6	4.46	524	18.8
	05/21/07	1.2	3.61	487	18.4
	08/14/07	1.6	3.85	512	19.8
	11/01/07	2.1	3.82	524	19.2
	01/30/08	5.1	4.16	564	16.1
MW-1	05/12/08	0.3	4.62	413	16.7
10100-1	08/06/08	0.4	4.22	440	20.3
	11/05/08	0.2	4.29	473	19.1
	02/16/09	3.5	4.52	389	16.0
	05/18/09	1.6	4.16	352	16.2
	08/03/09	1.0	6.35	345	19.4
	11/04/09	3.2	5.11	258	20.1
	02/01/10	1.3	4.21	283	16.6
	05/18/10	2.8	4.44	253	19.0
	07/20/16	11.4	4.72	125	20.3
	03/08/06	3.2	4.92	155	16.3
	06/07/06	0.4	4.93	152	18.3
	09/07/06	0.8	4.93	154	19.2
	11/29/06	1.1	5.04	154	18.9
	05/21/07	0.3	4.08	119	18.0
	08/14/07	0.4	4.29	119	18.4
	11/01/07	0.7	4.20	113	19.5
	01/30/08	2.8	4.70	117	15.2
MW-2	05/12/08	0.2	5.01	92	16.4
10100-2	08/06/08	0.5	4.11	97	19.8
	11/05/08	0.2	4.60	104	19.7
	02/16/09	3.6	4.84	92	15.2
	05/18/09	0.4	4.70	93	15.9
	08/03/09	1.4	6.05	115	19.7
	11/04/09	0.3	4.97	121	20.0
	02/01/10	0.3	5,17	181	14.6
	05/18/10	4.4	4.88	120	17.1
	07/20/16	9.5	5.04	92	19.4

	Date	Turbidity		Sp. Cond.	Temp. (deg.
Well ID	Measured	(NTU)	pH (SU)	(µs/cm)	C)
	03/09/06	2.6	4.64	217	17.4
	06/06/06	1.1	4.51	243	19.5
	09/06/06	1.2	4.02	329	19.3
	11/29/06	3.7	4.48	312	18.3
	05/22/07	0.8	3.64	247	17.7
	08/14/07	0.8	3.78	194	19.2
	11/01/07	0.8	3.85	168	19.2
	01/30/08	0.2	4.23	189	16.9
MW-3	05/12/08	0.4	4.76	121	17.2
10100-3	08/06/08	0.7	4.14	220	20.6
	11/05/08	0.2	4.16	204	19.2
	02/16/09	0.7	4.35	167	17.5
	05/18/09	0.5	4.46	88	16.8
	08/03/09	0.5	6.19	191	19.2
	11/04/09	0.5	4.81	107	19.6
	02/01/10	0.9	5.07	121	16.4
	05/18/10	5.9	4.60	126	18.8
	07/20/16	6.6	4.52	165	19.8
	03/10/06	3.0	4.62	863	17.4
	06/06/06	3.6	4.63	717	19.8
	09/06/06	1.3	4.42	825	21.6
	11/29/06	1.1	4.73	831	18.5
	05/21/07	NS	NS	NS	NS
	08/14/07	NS	NS	NS	NS
	11/01/07	NS	NS	NS	NS
	01/30/08	NS	NS	NS	NS
MW-4	05/12/08	0.5	4.70	581	16.7
10100-4	08/06/08	0.7	4.35	546	20.8
	11/05/08	NS	NS	NS	NS
	02/16/09	5.2	4.84	515	12.6
	05/18/09	2.4	4.45	735	16.7
	08/03/09	1.9	5.12	457	20.2
	11/04/09	6.5	4.78	495	17.9
	02/01/10	2.4	4.47	506	17.4
	05/18/10	4.9	4.59	474	18.0
	07/20/16	11.0	4.65	464	20.5

Well ID	Date	Turbidity	pH (SU)	Sp. Cond.	Temp. (deg.
	Measured	(NTU)		(µs/cm)	C)
	02/16/09	11.7	4.74	229	16.0
	05/18/09	5.7	4.62	266	17.1
NAVA 4 D	08/03/09	0.9	5.81	282	19.4
MW-4R	11/04/09	12.0	4.86	278	17.8
	02/01/10	2.1	4.57	284	17.2
	05/18/10	5.5	4.67	279	18.2
	07/20/16	25.2	4.97	221	19.8
	03/09/06	8.6	4.74	346	17.5
	06/06/06	6.2	4.66	339	19.3
	09/06/06	0.9	4.37	352	19.6
	11/29/06	1.0	4.77	358	18.4
	05/21/07	0.3	3.83	356	18.3
	08/14/07	0.2	3.90	276	18.3
	11/01/07	0.2	3.81	294	18.2
	01/30/08	0.7	4.14	316	13.7
MW-5	05/12/08	0.2	4.62	233	17.1
	08/06/08	0.4	4.14	329	19.0
	11/05/08	0.3	4.39	254	18.1
	02/16/09	0.6	4.66	388	16.9
	05/18/09	1.3	4.07	398	16.4
	08/03/09	0.9	5.43	357	18.7
	11/04/09	0.4	4.65	441	17.9
	02/01/10	0.3	4.63	405	16.1
	05/18/10	1.9	4.40	415	17.4
104/0	07/20/16	19.7	4.52	226	20.9
MW-6	07/20/16	2.4	4.51	45	20.2
MW-11	07/19/16	5.0	4.79	46	25.4
	03/08/06	1.2	4.84	237	16.1
	06/07/06	0.3	4.60	231	19.3
	09/07/06	0.6	4.50	272	18.6
	11/30/06	0.7	4.93	268	17.8
	05/22/07	0.4	4.17	252	17.7
	08/14/07	4.1	4.07	228	17.0
	11/01/07	1.3	3.75	234	17.4
	01/31/08	1.5	4.73	234	14.6
MW-12	05/13/08	0.6	4.91	211	14.7
	08/07/08	0.8	4.44	229	17.4
	11/05/08	0.5	4.49	233	17.1
	02/17/09	4.9	4.95	251	14.4
	05/18/09	2.9	4.45	195	15.0
	08/03/09	1.3	5.45	228	17.8
	11/04/09	1.1	4.62	189	17.3
	02/02/10	0.6	4.96	164	11.6
	05/19/10	0.8	4.59	162	14.5
	07/20/16	4.3	4.91	102	19.2

Well ID	Date	Turbidity	»H (CII)	Sp. Cond.	Temp. (deg.
Well ID	Measured	(NTU)	pH (SU)	(µs/cm)	C)
	03/09/06	1.8	7.62	164	16.9
	06/07/06	1.7	7.38	164	19.1
	09/07/06	2.9	7.17	167	19.1
	11/30/06	1.8	7.56	166	17.3
MW-12D	05/22/07	1.4	6.90	153	18.4
	01/31/08	1.3	7.26	150	14.1
	02/17/09	2.3	7.46	159	12.4
	02/02/10	1.6	7.78	174	12.1
	07/19/16	8.6	7.72	152	18.7
	03/08/06	30.0	6.25	119	15.5
	06/08/06	36.0	6.21	144	19.1
	09/07/06	19.0	6.03	159	21.1
	11/30/06	48.0	6.24	193	18.6
	05/22/07	50.0	5.52	162	18.2
	08/14/07	177.0	5.29	89	21.3
MW-13	11/01/07	13.0	5.03	86	17.6
10100-13	01/31/08	8.8	5.58	116	15.0
	05/13/08	61.9	6.00	61	15.9
	08/07/08	25.3	5.30	61	20.7
	11/06/08	18.2	5.48	84	16.9
	02/17/09	12.6	5.99	106	14.1
	02/02/10	21.5	5.56	41	11.4
	07/19/16	8.5	6.47	233	21.2
	03/07/06	2.3	4.89	43	18.9
	06/06/06	0.8	4.71	41	19.7
	09/06/06	0.9	4.69	66	22.9
	11/30/06	0.8	5.09	52	18.7
MW-18	05/21/07	0.5	4.09	33	18.7
	01/30/08	0.4	4.52	55	16.5
	02/16/09	0.3	4.72	26	15.9
	02/01/10	0.5	5.02	30	15.4
	07/20/16	2.9	4.38	63	19.8
MW-23	07/19/16	2.1	4.40	38	22.2

TABLE 4 SUMMARY OF PURGING DATA

Former Trent Tube Facility 141 Hammond Street Carrollton, Carroll County, Georgia GEPD Facility ID HSI-10604

Well ID	Date Purged	Purge Rate (GPM)	Purge Duration (min)	Purge Volume (gal)
MW-1	07/20/16	0.04	35	1.36
MW-2	07/20/16	0.04	34	1.36
MW-3	07/20/16	0.04	33	1.36
MW-4	07/20/16	0.04	34	1.36
MW-4R	07/20/16	0.05	57	2.85
MW-5	07/20/16	0.04	34	1.36
MW-6	07/20/16	0.04	34	1.36
MW-11	07/19/16	0.04	34	1.37
MW-12	07/20/16	0.04	46	1.84
MW-12D	07/19/16	0.05	87	4.35
MW-13	07/19/16	0.04	52	2.08
MW-18	07/20/16	0.04	34	1.36
MW-23	07/19/16	0.04	88	3.60

Notes:

GPM: gallons per minute

min: minutes gal: Gallons

ATTACHMENT A

Sampling Logs

GROUNDWATER SAMPLING LOG

SITE NAME:	For	mor t	rent T	inte		SITE LOCATION:	141 H	i ha k	- 1 5t	Calco	م الحام	n 64		
WELL NO:		nw-1		SAMPL		mw		, , , , ,	and st	DATE:	7-	70.16		
		<u>, , , , , , , , , , , , , , , , , , , </u>		<u>-</u>	PUR	GING DA			L	***************************************	····			
WELL DIAMETER	R (inches): ユ	TUBIN	TER (inches):	DE DE	PTH: I a fe	N INTERVAL	TOV	VATE	EPTH R (feet): 14, /	5 1	PURGE OR BAI	E PUMP T	YPE PP	
WELL VOI (only fill ou	LUME PURGE: t if applicable)	1 WELL VO	LUME = (TO = (TAL WELL DE		ATIC DEPTH	TO WATER)	Х	WELL CAPACI	TY			194 gallons	
EQUIPME (only fill ou	NT VOLUME PO	JRGE: 1 EQI	JIPMENT VO	L. = PUMP VO	LUME + (TI	JBING CAPAC	ITY X	TU	BING LENGTH)	+ FLOW	s/foot / CELL		17 gallons	
INITIAL DI	JMP OR TUBIN	<u> </u>	CINAL DI	= g	gallons + (BUBON	ons/foot X		feet)	+	T-	gallons		
	WELL (feet):	(7,)		WELL (feet):	1G 17,	PURGII INITIAT	ED AT: 19	1:10	PURGING ENDED AT:	14:4	5 P	OTAL VOL URGED (9	Jallons): 1.36	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle uni µmhos/ci or µS/cr	ts) m	DISSOLVED OXYGEN (circle units) mg/L or % saturation	(NT		COLO (describ		ORP
64:35	1.0	1.0	0.04	14.88	4.71	20.33	0-126		1.62	12.	4	cle-	nord	277.
14:38		1.12	0.04	14.90	4.72	20,30	0.125		1.65	12.0	?	olein	nona	275.
14:42		1.24	0.04	14.91	4.72	20.32	0.125		1.66	11,50	2	olen	. hone	273.4
14545	0.12	1.36	0,07	14.91	4.72	20.33	0.125		1.68	11.4	<u> </u>	clerr	. hone	274.7
TUBING II	PACITY (Gallon NSIDE DIA, CAI EQUIPMENT (PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0 3 = Bailer;	1" = 0.04; 0.0006; 3/16 BP = Bladder	" = 0.0014; Pump;	1/4" = 0.00 ESP = Electric	26; 5/16" Submersible	= 0.0	04; 3/8" = 0.		1/2" = (0.010;	12" = 5.88 5/8" = 0.016 ther (Specify)	
SAMPLEC	BY (PRINT) / A			SAMPLER(S	SAIVI SIGNATU	PLING DA	AIA		SAMPLING			SAMPLIN	<u> </u>	
PUMP OR	TUBING	<u> </u>		TUBING	M	25	T FI	ELD-F	INITIATED AT		. 62	ENDED A		
	WELL (feet): CONTAMINATION	17 ON: PUI		MATERIAL (CODE: TUBING	PC Y Nu			DUPLICATE:			(P)		
	PLE CONTAINE					PRESERVATION			INTENDE			PLING	SAMPLE PUMP	,-
1	# CONTAINERS			PRESERVA USED	TIVE	TOTAL VOL	FIN	AL.	1	ND/OR	EQUI	PMENT DDE	FLOW RATE (mL per minute)	
muel	1	RE	250-C	HNOS	P	répresor.	1 4	2_	Nickel		بمفر	pr	125 ~~	
mw.1	1	p?	250 ~~	none		Nans	NYs		Fluori	de	Αγ	οp	125~~	
						*******								-
REMARKS														_
NEWANN	Tuj	ge Place	· wrth	m Some	en. 7	included s	iliby his	٨, ١	Pump Slow.	as I c	onld.			
MATERIA			Glass; CG	= Clear Glass;	PE = Po	olyethylene;	PP = Polyp	ropyle	ne; S = Silico	ne; T	= Teflon	; O = 0	ther (Specify)	
SAMPLIN	G EQUIPMENT			eristaltic Pump se Flow Perist			Bladder Pui Method (Tu		ESP = Electri Gravity Drain);		rsible P ther (Sp			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	For	mor 1	rent t	иbc		TE CATION:	141	Har	mmand st.	CAM	rollton,	64	
WELL NO:	M	W-2		SAMPLE	ID:	m-	r. 2				7.20.16		
					PURG	SING DA	ATA					*	_
WELL VOL		TUBING DIAME	TER (inches):	DEF	LL SCREEN TH: ") feet	to 77 feet	то	ATIC DI WATE	EPTH R (feet): リュ. Z WELL CAPACI	6 OR	RGE PUMP T BAILER:	YPE PP	
Annalis CD	if applicable)							•	0.16	gallons/fo	ot = 0,	S/ gallons	
	IT VOLUME PU if applicable)	IRGE: 1 EQL	JIPMENT VOL		.UME + (TUE allons + (ITY X ons/foot X		BING LENGTH) feet)		ELL VOLUME gallons		
	MP OR TUBINO WELL (feet):	3 15.20		MP OR TUBING WELL (feet):	3				PURGING ENDED AT:	····	TOTAL VO	LUME / , ,	1
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	CONI (circle u µmhos	D. nits) /cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)	TY COLO	R ODOR	ores
12:10	1.0	1.0	0.04	12.57	5.05	1919	0,09	2	3,35	11.7	Cloren	none	783
12:13	0.12	1.12	0.04	12.57	5.04	19.40	0,09		3. 25	9.94	C 6 x-		252.
12:18	0,12	1.24	0.04	12.57	5, 34	19.38	0.09		3 27	9.88	Glan		781.
12:15	0.12	1,34	0.04	12,57	5.04	19.37	0.09		3.29	9.51	clen	- no-r	281
		3											
													1
	PACITY (Gallon									5" = 1.02;	6" = 1.47;	12" = 5.88	-
	ISIDE DIA. CAI EQUIPMENT C		/Ft.):	.0006; 3/16 ¹ BP = Bladder		1/4" = 0.00 SP = Electric				.006; 1/2 eristaltic Pun	2" = 0.010; np;	5/8" = 0.016 Other (Specify)	-
***	***************************************					LING D					. F.		
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S		E(S):	• • •		SAMPLING INITIATED AT	: 12:15	SAMPLIN ENDED	NG AT: 12:24	
PUMP OR DEPTH IN	TUBING WELL (feet):	15.2		TUBING MATERIAL C	ODE:	R			FILTERED: Y on Equipment Typ		FILTER S	SIZE: μm	
FIELD DEC	ONTAMINATIO	NUP :NC	AP Ø I	١	TUBING	YN	replaced)		DUPLICATE:	Y	(ID)		
SAMF SAMPLE	PLE CONTAINE			PRESERVAT		RESERVATION TOTAL VOL		INAL	INTENDE ANALYSIS AN		SAMPLING QUIPMENT	SAMPLE PUMP FLOW RATE	
ID CODE	CONTAINERS	MATERIAL CODE		USED	ADDE	ED IN FIELD	(mL)	pН	METHO		CODE	(mL per minute)	_
Mr. 2	<u> </u>	78	250 ml	µN03		nepresen		<u> </u>	Mickel		APP	125mL	4
mw - Z	7	PE	250ML	none		None		V/A	Plyon		APY	1250	_
mar 2	3	CG	Yome	Hc)	Pr Pr	epreserva	1 2	こ	Noc 85	.46	5	<100~	-
DEM S				,									_
REMARKS	Tube	Place	h, the	serce	~								
MATERIAL	CODES:	AG = Amber	Glass; CG	= Clear Glass;	PE = Pol	yethylene;	PP = Pol	ypropyle	ene; S = Silico	ne; T=T	eflon; O =	Other (Specify)	1
SAMPLING	EQUIPMENT			eristaltic Pump			= Bladder F w Method (ESP = Electri Gravity Drain);		ble Pump; er (Specify)		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	Forh	ner Ti	remail to	a be		SITE	ATION:	14	1 Hami	mond st,	حريب	1-0 H	Han 6	.Δ	•	7
WELL NO:		1m 3		SAMPLE	ID:		w-3				DATE:	7 -	20.16	v= }—		1
					PU		NG DA									J
WELL DIAMETER		,	TER (inches):	7/4 DEF	TH: IS	feet to	TERVAL 25 feet		STATIC D	R (feet): 19.	64 6	PURGI OR BA	E PUMP T	YPE	rp	
WELL VOL (only fill out	UME PURGE: if applicable)	1 WELL VO		TAL WELL DEF 24.4					•	WELL CAPAC				76		
	NT VOLUME PU	JRGE: 1 EQI	UIPMENT VOI	= PUMP VOL	.UME +	(TUBIN	G CAPACI	ΤΥ	X TL	IBING LENGTI	gallons H) + FLOW	CELL			gallons	-
INITIAL DU	MD OD TUDIN		FINAL DU		allons +	(ns/fo			t) +	-1 -	gallons		gallons	4
	MP OR TUBING WELL (feet):	23,6		MP OR TUBING WELL (feet):	23.	6	PURGIN INITIATE	ED AT	r: 9:50	PURGING ENDED AT			OTAL VOI): 1.34]
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (stand unit	ard	TEMP. (°C)	(cir μn	COND. cle units) nhos/cm : µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBI (NTL		COLO (describ		ODOR (describe)	ORP
9:55	1.0	1.0	0.04	20,06	9.53		9,65		166	1,24	11.0	,	clear		nont	295.5
9:58	0.12	1.12	0.04	20,07			9.78		165 /	12S		9.55 den			man C	290,6
10:01	0.12-	1.29	0.04	20.08	4,5		9.80		165	1.23	8.29		Glear	_	nor	292.3
10:03	0.12	1.34	0.04	20,09	4.5	2/	9.79	0.	165	1,22	6.61		cleu		hone	292.6
TUBING IN	PACITY (Gallon	PACITY (Gal.	0.75" = 0.02; /Ft.): 1/2" = 0	.0006; 3/16	' = 0.00°	14; 1	/4" = 0.002	26;	5/16" = 0.0	004; 3/8" =			= 1.47; 0.010;	12" = 5/8" =		
PURGING	EQUIPMENT C	ODES: I	B = Bailer,	BP = Bladder					nersible Pur	np; PP = 1	Peristaltic P	ump;	0 = 0	ther (S	pecify)	J
SAMPLED	BY (PRINT) / A			SAMPLER(S) SIGNA		•	AIA	<u>\</u>	SAMPLING INITIATED	T. 1010	<u>څ</u>	SAMPLIN ENDED A	IG /	0:08	1
PUMP OR DEPTH IN		23.1		TUBING MATERIAL C		1	PV			FILTERED:	Y (N)		FILTER S			
FIELD DE	CONTAMINATIO	ON: PUI	MP (A)	٧	TUBI	ING	Y N (10	epląc		DUPLICATE			0			1
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMPL	LE PRE	SERVATIO	N		INTEN			/PLING		PLE PUMP	1
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED			TAL VOL IN FIELD (FINAL pH	ANALYSIS METH			IPMENT ODE		OW RATE per minute)	
muuz	i	re	250 W	14003			presoned		<2	Nickel		-0 7	pp	L	snl	
mw. 3	1	Pe .	2.50 mc	None	_	<u>h</u>	lone		N.A.	=1400.	de	ي مد	9	12	sml_	-
										 		·····				1
																1
	>															
REMARKS	The.	e Plus	e with	m Scree	,											
MATERIAL	L CODES:	AG = Ambe	r, Glass; CG	= Clear Glass;	PE =	= Polyet	hylene;	PP =	Polypropyl	ene; S = Sili	cone; T=	Teflo	n; O = (Other (Specify)	1
SAMPLING	G EQUIPMENT			eristaltic Pump se Flow Perista		= Bailer np; S	•		der Pump; nod (Tubing	ESP = Elec Gravity Drain);						

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	F	mo	Trent	Tubc	SIT LO	TE CATION:	141	Han	mond 51.	an ne	Itam ax	,	
WELL NO:		mw-4		SAMPLE	ID:	mw	Y		ı	DATE:	7.20.10		
					PURG	ING DA	TA						-
WELL DIAMETER	(inches): "Z	TUBING DIAME	TER (inches):	1/16 DEP	L SCREEN I TH: 15 feet	to ≥≤ feet	1	STATIC DE	R (feet): 21.5	6 OR	RGE PUMP TO BAILER:	YPE Pr	
WELL VOLU	JME PURGE:	1 WELL VO	UME = (TOT	AL WELL DEP			O WAT	ER) X	WELL CAPACIT	Y		FF /	
		IRGE: 1 EQL	= (IIPMENT VOL	15.25 . = PUMP VOL	feet - 2 UME + (TUB	ING CAPACI	TY f	feet) X X TUI	0.16 BING LENGTH)	gallons/fo + FLOW CI	oot = (). ELL VOLUME	S← gallons	-
` ,	if applicable)			= ga	illons + (gallo	ons/foot	х	feet)	+	gallons	= gallons	
INITIAL PUN DEPTH IN V	MP OR TUBING VELL (feet):	3 23.5	FINAL PUI DEPTH IN	MP OR TUBING WELL (feet):	235	PURGIN INITIATE	IG ED AT:	18:45	PURGING ENDED AT:	19:19	TOTAL VOL PURGED (9		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	(circle	OND. e units) os/cm iS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)			ORP
19:10	1.0	1.0	0.04	22.70	4,70	20,47		114	4.72	16.7	c1c	- nona	281.0
19:13	6.12	1.12	0.04	22.71	4,67	29.49			4.69	11,4	close	none	287.2
19:16	0.12	1.24	0.04	22.72	4.66	20.51	0.4		4.71	10.5	clen-		297.6
19:19	0,12	1,36	0.04	22.73	4.65	2a.52	a.4	69	4.69	11.0	c le-m	nome	271.0
		·	-	-		 	 			·····			1
				+		 	 						1
			 			 	 						1
14(5) 1 645	A CITY (Called	- D 5W	0.75% = 0.00	4" = 0.04:	4.05" = 0.0	S: 2" = 0.1	10. 31	» = 0.27·	4" = 0.65; 5	77 - 4 00	6" = 1.47;	12" = 5.88	_
				.0006; 3/16"	= 0.0014;	1/4" = 0.002	26; 5	5/16" = 0.0	004; 3/8" = 0.			5/8" = 0.016	
PURGING I	EQUIPMENT C	ODES: E	B = Bailer;	BP = Bladder F		SP = Electric		rsible Pun	np; PP = Pe	ristaltic Pur	np;	ther (Specify)	ا
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	SIGNATURI	E(S):	HIM		SAMPLING		SAMPLIN	IG //	7
1		. Kn			Ab	By			INITIATED AT			1G 19:24	
PUMP OR	TUBING WELL (feet):	73.3	5	TUBING MATERIAL C	ODE:	PE			FILTERED: Y In Equipment Typ	ne: (N)	FILTER S	IZE:μm	
LD DEC	ONTAMINATIO	ON: PUI	AP (Ÿ) 1	٧	TUBING	Y N(Ir	eplaced	y)	DUPLICATE:	Υ	(N ₂)		
	PLE CONTAIN					RESERVATIO	N		INTENDE ANALYSIS AN		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE	
É Æ	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD ((mL)	FINAL pH	METHO		CODE	(mL per minute)	
	1	Pb	250mL	HN03	Pm	epresoved		<2	Nickel		rpp	125 ml]
¥		PE	rsome	nanc		ranc		NIA	Fluorid	<u>e</u>	1.00	125 ml	1
	· 								ļ				-
	}								 				\dashv
	\			,									1
	7	hhe P	Vace :	Withins 3	Scrept~				L			l	1
	, , , ,					·		·					
	, <u> </u>	AG = Amber		= Clear Glass;	·····	yethylene;		olypropyle				Other (Specify)	-
	`,	\	RFPP = Reve	eristaltic Pump; se Flow Perista	Itic Pump;	SM = Straw	Method		ESP = Electri Gravity Drain);		ole Pump; er (Specify)]
		a not cons	stitute all of	the informat	ion require	ed by Chan	ter 62-	160 F A	C				

PRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

perature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	For	mor t	rent T	hi-li		SITE LOCATION:	14	1 4	larmon si	i, C	nr	Mon ,	CA .	
WELL NO:	in	1W-42	rent T	SAMPLE		mw.L	1 K		lammon st	DATE:	7.	20-16		7
					PUR	GING DA	TA							
WELL DIAMETER			TER (inches):	DEF	PTH: fe	N INTERVAL et to feet	l	STATIC D	ER (feet): ZG 🗸	' '	URGE OR BA	E PUMP TY	PE PP	
	UME PURGE: if applicable)	1 WELL VO	-				IO WA	TER) X	WELL CAPACI	TY				
	NT VOLUME PU	IRGE: 1 EQI	= (JIPMENT VOL	34.85 = PUMP VOL	feet .UME + (Tl	JBING CAPAC	ITY	feet) X X TU	0.76 JBING LENGTH)	gallons + FLOW	foot CELL	VOLUME	SA gallon	3
	if applicable)				allons + (galle	ons/foo	t X	feet)	+		gallons :	= gallon	<u>.</u>
INITIAL PU DEPTH IN	MP OR TUBINO	25.0		MP OR TUBINO WELL (feet):	29.0	PURGIN INITIAT	NG ED AT:	17:25	PURGING ENDED AT:	1802	2 T	OTAL VOL URGED (g	UME 2.83	5
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	(circ	OND. le units) hos/cm μS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBII (NTU		COLOI (describ	1	ORP
18:13	2.40	2.40	0.05	21,30	4.99	19.80	0.	221	1.60	27.3		Clem	none	2241
19:16	0,15	2.55	کو.ه	21.30	4.78	19.78	+	221	1.57	25.4		ctor	none	222
10.7 To the state of the state												227.		
13:22	0,15	2.85	0.05	21.30	1.97	19.75	0. 6	22 1	1.55	25.2		Gleen	- hone	≥27,6
227.6														
														_
					<u></u>		 			ļ				_
					<u> </u>		-	·····				<u> </u>		_
	PACITY (Gallon							3" = 0.37;		5" = 1.02;		= 1.47;	12" = 5.88	_
	NSIDE DIA. CAI EQUIPMENT C		3 = Bailer;	BP = Bladder I		ESP = Electric		5/16" = 0. ersible Pu		eristaltic P			5/8" = 0.016 ther (Specify)	
						PLING D	ATA							
SAMPLED	BY (PRINT) / A	FFILIATION: 以、 いー		SAMPLER(S)		RE(S):			SAMPLING INITIATED AT	Γ:		SAMPLIN ENDED A	G 18:27	
PUMP OR DEPTH IN	TUBING WELL (feet):	23.0		TUBING MATERIAL C		O.			-FILTERED: Y			FILTER S	IZE:μm	
	CONTAMINATIO	ON: PUI	MP (P)	N	TUBING	Y M	eplace		DUPLICATE:		(N.		
<u> </u>	PLE CONTAINE					PRESERVATION	МС		INTENDE ANALYSIS AI			IPLING	SAMPLE PUM FLOW RATE	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL DED IN FIELD	(mL)	FINAL pH	METHO	. 1		ODE	(mL per minut	. ;
mucyx		PE	2 Same	4403	P,	represerval		<u> </u>	Nickel		AF	7	125 mg/c	
mwyk	- 1	re	~San-	hone		none		MA	Huorida	e	AM	P	125 ml	
								· · · · · · · · · · · · · · · · · · ·						_
														_
				,							·			
REMARKS	S:	luce to	ibra in	midle o	& 20c	eb, 430	but	Fort F	for botune	metho	-A			
MATERIA		Tarnb.	Als 5/45	134 High	1 Pm	ge 5/2	As	I a	and of				Other (Cresife)	_
MATERIA	L CODES: G EQUIPMENT	AG = Amber		= Clear Glass; eristaltic Pump;		olyethylene; Bailer; BP :		Polypropy ler Pump;	lene; S = Silico ESP = Electr		Teflo		Other (Specify)	\dashv
				rse Flow Perista					Gravity Drain);	O = Ot				

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	Former	Trent	Tube	SI LC	CATION:	141 1	Hamnon St	, cany	allton, 6	12.
VELL NO:	Former MW-5		SAMPLE	ID:	mw-5			DATE: プ		
				PURG	ING DA	TA		· · · · · · · · · · · · · · · · · · ·		
VELL DIAMETER (inches): 4 VELL VOLUME PURG	TUBING DIAME	G TER (inches): LUME = (TOT	フ _{/6} WEL DEP	L SCREEN	to 25 feet	STATIC D	R (feet): 18.9	S OR B	SE PUMP TYP AILER:	PE PY
only fill out if applicable		•							_ Q,°] gallons
only fill out if applicable)	JIPMENT VOL		ulions + (108		ir X II	feet)		gallons =	gallons
NITIAL PUMP OR TUB DEPTH IN WELL (feet):	~~ ~	FINAL PUI DEPTH IN	MP OR TUBING WELL (feet):	22.0			PURGING ENDED AT:	16:59	TOTAL VOLU PURGED (ga	IME Ilons): 1.36
TIME VOLUME PURGED (gallons)	PURGED	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe	ODOR (describe)
16:50 1.0	1.0	0.04	19.39		20.92	0.226	1.00	24.20	Ckm	howe
16:53 0.12	1.12	0,04	19.39	4.52	20.89	9.227	1.01	23.5	der	hons
16:36 0.12	1.24	0.04	19.39	4.52	2087	0.226	1.01	22.8	ciem	inspel
16:59 0.12	1.36	0,04	19.39	4.32	20.89	0.226	1.01	19.7	cless	hone
WELL CAPACITY (GA TUBING INSIDE DIA. (PURGING EQUIPMEN	CAPACITY (Gal.) T CODES: E	/Ft.): 1/8" = 0 3 = Bailer;	.0006; 3/16" BP = Bladder F	= 0.0014; Pump; E SAMP	1/4" = 0.002 SP = Electric	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0		= 0.010; 5	2" = 5.88 /8" = 0.016 er (Specify)
SAMPLED BY (PRINT)	AFFILIATION:		SAMPLER(S)	SIGNATURI A	E(S):		SAMPLING INITIATED AT	n: 16:59	SAMPLING ENDED AT	17:04
PUMP OR TUBING DEPTH IN WELL (feet)	· ファ	~0	TUBING MATERIAL C	ODE: 4	PE		-FILTERED: Y on Equipment Ty		FILTER SIZ	E:μm
FIELD DECONTAMINA		$\overline{}$	V	TUBING		eplaced)	DUPLICATE:	·	Ø.	
SAMPLE CONTA				SAMPLE PR	RESERVATIO		INTENDE			SAMPLE PUMP
SAMPLE # CONTAINER		VOLUME		ADDE	TOTAL VOL D IN FIELD (7	ANALYSIS AI METHO	ND/OR EQI	JIPMENT CODE	FLOW RATE (mL per minute)
WW.5 /	PE	250mil	HN03	Pr	epreserved	/ <2	Nickel		Apr	125mc
mic 5 1	PE	250 ml	None		None	MA	Fluoride	6 A	pr	125-
REMARKS:	Тивс	Place	within	Screen	r: Thub	edity Stight	y High Pi	inp 3/02	es J Ga	
MATERIAL CODES: SAMPLING EQUIPME	AG = Amber		= Clear Glass; eristaltic Pump;		yethylene;	PP = Polypropy Bladder Pump;		one; T = Tefle		her (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

GROUNDWATER SAMPLING LOG

SITE NAME:	F	omec	Trant	Tu6	H	SIT	E CATION:	141	Ham	mon st	Cal	ral	Itm. C	DA .	7
WELL NO:	nw	-2		SAM	IPLE ID:		m				DATE:		29-16		7
						URG	ING DA	TA		L					
WELL DIAMETER	(inches):		TER (inches):	1	DEPTH:	77 feet	NTERVAL to 2 Ifeet		STATIC E	ER (feet): ノス	.6/ 0	PURGE OR BAI	E PUMP TYF ILER:	PE PP	
(only fill out	if applicable)		•					3	ATER) X	WELL CAPAC	ITY		G,	.69	
	NT VOLUME PU	IRGE: 1 EQL	JIPMENT VOL	= PUMP	VOLUME	+ (TUBI	ING CAPACI	ITY	feet) X X TI	JBING LENGTH	gallons) + FLOW	CELL	=	¹ gallons	1
				=	gallons	+ (ons/fo	ot X	feet) +		gallons =	gallons	
	MP OR TUBING WELL (feet):	3 24,7	FINAL PUI DEPTH IN		_	147	PURGIN INITIATE	IG ED AT	10:40	PURGING ENDED AT:	11:16	/ T	OTAL VOLU URGED (gal	ME Ilons): 136	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPT TO WATE (feel	ER (sta	pH ndard nits)	TEMP. (°C)	(cire	COND. cle units) nhos/cm µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBII (NTU		COLOR (describe)	ODOR (describe)	orp
11:05	Loo	1.00	0.04	22.7	5 4.	49	20.10	<i>a</i> .	046	6,13	5.2	8	Clem	hone	252.
11:08	6.12	1.12	0.04		22.75 4.50		39.17	<u>a</u>	445	6.00	3.63		cler	none	54.3
11:11	0.12	1,29	0.04	22.			20.18	 	. 044	6.02	1.0		010-	none	255.
11:14	9.12	1.36	0.04	12.	75 4	.51	20.16	0	240	6.03	2.4	2.43 de-		nome	257
	<u> </u>									···			ļ		4
															-
	 			+									<u> </u>		-
	 														-
ļ	 												 		-
	 		 	-				-			 		<u> · </u>	-	-
	_ PACITY (Gallon NSIDE DIA, CAI)4; 1.25 3/16" = 0.0	i" = 0.06 0014:	3; 2" = 0.1 1/4" = 0.002		3" = 0.37; 5/16" = 0.		5" = 1.02; 0.006:	6" 1/2" =		2" = 5.88 /8" = 0.016	1
	EQUIPMENT O		B = Bailer;		lder Pump		SP = Electric				eristaltic P			er (Specify)]
CAMPLES	DV (DDI) = (A						LING DA	ATA	<u> </u>			·····			- 7
SAMPLED	BY (PRINT) / A	IFFILIATION:		SAMPLE	R(S) SIGN	VATURE	(S):			SAMPLING INITIATED A	T. 1176	4	SAMPLING ENDED AT	11:19	
PUMP OR		24,		TUBING	AL CODE:		P		FIELD	-FILTERED: Y	(N)		FILTER SIZ		-
	CONTAMINATION			V		BING	Y (N(r	eplace		DUPLICATE			<u> </u>		1
SAMI	PLE CONTAINE	R SPECIFIC	ATION		SAM	PLE PR	RESERVATION			INTEND				SAMPLE PUMP	1
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME		RVATIVE ED	T	OTAL VOL D IN FIELD (FINAL pH	ANALYSIS A	ND/OR	EQUI	IPMENT	FLOW RATE (mL per minute)	
mur 6	1	PE	256 mil	MM	03		egre 10-vc		てこ	Nicke	1	ړم	0	125 mgc	
mur b	1	16	250mi	n _o	nc		hone		MA	Kluor			99	125ml	
										-					-
 									·						-
							······							······································	-
REMARKS	3:	<u>اا</u>	· · · · · · · · · · · · · · · · · · ·			L				<u> </u>					\dashv
	Du	66 P	Ince I	~,\\;	√ Si	7 ~ ee	\sim								
MATERIAL	L CODES:	AG = Amber	Glass; CG	= Clear Gl	ass; Pi	E = Poly	ethylene;	PP =	Polypropy	lene; S = Silic	one; T=	Teflor	n; O = Oti	her (Specify)	1
SAMPLING	G EQUIPMENT		APP = After P		ump;	B = Bai	ler; BP =		der Pump;	ESP = Elect	tric Submer				1

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME:	From	81 1n	ent The	£		SITE	ATION: /	41	Hann	nd St.	Cannal		GVA	,	7
WELL NO:			int the	SAMPLE	ID:			·/	m ₁ o-	<u> </u>	DATE:	7			
	<u> </u>	1m-1)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		PI		NG DA	ТΔ					7.19-4		J
WELL		TUBIN	G	, WE			TERVAL		STATIC D	EPTH		PURG	E PUMP TY	/PE _	7
	R (inches): と		TER (inches):	الله الله الله الله الله الله الله الله	PTH: 1	7 feet to	27 feet		TO WATE	R (feet): 2	274	OR BA	ILER:	<i>^^^</i>	_
	UME PURGE: t if applicable)) WELL VO	LUME = (10	TAL WELL DEF				O W	•					A 55°	
EQUIPMEN	NT VOLUME PL	/ JRGE: 1 EQI	= (JIPMENT VOI	<u> </u>	feet - UME +		CAPACI	TY	feet) X	のいん JBING LENG	galloi TH) + FLO\	ns/foot N CELL		68 gallons	-
	t if applicable)				allons +	,			oot X		eet) +		gallons =	= gallons	
INITIAL PU	IMP OR TUBING	 G	FINAL PU	MP OR TUBING WELL (feet):	G		PURGIN	iG		T ===		1/ 7	TOTAL VOL	UME	
DEPTH IN	WELL (feet):	25.0	DEPTH IN	WELL (feet):	25	.c	INITIATI	ED A	T: 14.00	ENDED	G AT: 14: 3	7 F	PURGED (g		4
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pl (stan uni	dard	TEMP. (°C)	(Cit	COND. rcle units) mhos/cm r_ µS/cm	OXYGEN OXYGEN (circle unit mg/L or % saturation	turi s) Turi (N	BIDITY TUs)	COLOF (describ		ORA
14:17	0.68	a.68	0.04	23.35	5.4	6 :	26.13	9.	055	7.10	21.	9	cku	none	₹9. (
14:25	1.00	1.90	004	23,51	47		25.50	0.	.05)	7.04	6.5	57	Jem	have	יאַד ³ ,3
14: 28	14:28 a.12 1.12 0.04 23.55 4.81 25.45 6.048 7.03 7.48 clear nane 174.7														
14:34	arz	1,24	0.44	23.58	4.7		15.41	а.	.052	7.67	6.0		Clear	home	176.9
19:34	0.12	1.37	0.04	23.60	4, 7	9 2	5,38	0,	046	7.10	4.9	15	Glen	honz	1776
					ļ							***************************************			
								ļ							4
								-							
					 										4
					 			-					-		-
WELL CA	 PACITY (Gallon	s Per Foot):	0.75" = 0.02:	1" = 0.04:	1.25"	= 0.06:	2" = 0.1	6:	3" = 0.37:	4" = 0.65:	5 " = 1.0	2: 6"	' = 1.47:	12" = 5.88	_
TUBING IN	ISIDE DIA. CAF	PACITY (Gal.	/Ft.): 1/8" = 0	.0006; 3/16	" = 0.00)14; 1	/4" = 0.002	26;	5/16" = 0.0	004; 3/8"	= 0.006;	1/2" =	0.010;	5/8" = 0.016	-
PURGING	EQUIPMENT C	ODES: I	3 = Bailer;	BP = Bladder			ING DA		mersible Pur	mp; PP	= Peristaltic	Pump;	O = Ot	her (Specify)	
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S				117	1	SAMPLIN	G		SAMDI INI	G	7
	AL	n m		·		16	6 12			INITIATE	DAT: 14	:34	ENDED A	G T: 14:39	
PUMP OR	TUBING WELL (feet):	25,0	7	TUBING MATERIAL C	ODE:	PE	-		FIELD-	FILTERED: on Equipmen	Y		FILTER SI	ZE: μm	
	CONTAMINATION			V		ING	Y NTF	eplac	ed)>	DUPLICA	······································	((₩ .		1
SAM	PLE CONTAINE	R SPECIFIC	ATION		SAMP	LE PRE	SERVATIO			INTE	NDED	1	MPLING	SAMPLE PUMP	
SAMPLE		MATERIAL	VOLUME	PRESERVAT					FINAL	ANALYSI	S AND/OR HOD	EQU	IPMENT ODE	FLOW RATE (mL per minute)	
ID CODE	CONTAINERS	CODE PS	250mc	USED USED			IN FIELD (,	PH	Nick		 			-
mhrll	1	PC	250~	10ne					NIA	Fluor		1	Pr	125 mc	\dashv
			23010	// Grec		No	/16			7,40	-in-e	,000	u u	· · · · · · · ·	-
									 			-			1
												1			7
				,								T			1
REMARKS	5: ブレ	te pino	e mitha	Screen				************							
MATERIA		AG = Ambe		= Clear Glass;		= Polyet				ene; S = S		= Teflo		ther (Specify)	_
SAMPLIN	G EQUIPMENT			eristaltic Pump rse Flow Perista		B = Bailer mp; S			lder Pump; hod (Tubing	ESP = E Gravity Drain	lectric Subm	nersible Other (S			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 GROUNDWATER SAMPLING LOG

SITE NAME:	Form	er Tr	ant Tu	ьс		SITE LOCATION:	141	Har	nmond :	st, C	ivra	-1Han, 1	SA	7
WELL NO:	'n	1W-12		SAMPLE	ID:		mr	-12		DATE:		Z0.16		1
						GING DA								J
WELL DIAMETER			TER (inches):	776 DEP	TH: 👉 fe	NINTERVAL et to 1/2 feet		STATIC D	R (feet): //.	12 1	PURGI OR BA	E PUMP TY ILER:	PE PP	
	UME PURGE: t if applicable)	1 WELL VO	LUME = (TOT = (ZO.3		ATIC DEPTH		•	WELL CAPAC	gallons	:/foot	_	1.46 gallons	
	NT VOLUME PU	JRGE: 1 EQI	JIPMENT VOL	= PUMP VOL	JME + (TU		ITY	X TL	JBING LENGTH) + FLOW		VOLUME		
	JMP OR TUBIN	G 14-1	\$	MP OR TUBING	llons + (T 5115 611	ons/foo		feet PURGING	75.25		gallons FOTAL VOL	UME , 2.14	-
DEPTH IN	WELL (feet):		DEPTHIN	WELL (feet):	14.1	INITIAT	1	12:50	DISSOLVED	73.3°	<u> F</u>	PURGED (g	allons): ()	4
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	(circ	le units) hos/cm μS/cm	OXYGEN (circle units) mg/L <u>or</u> % saturation	TURB (NT		COLOI (describ		QRP
13:27	1.48	1.48	0,04	12.53	4.90	19.02	0.	103	1.62	6.7)	Ckar	none	181.3
13:30	0.12	1.60	0,04	12,54	4.91	19.16	·	103	1. 45	7.2		cle-	nanc	200.8
13:33	0.12	1.72	0.04	12.54	4.92	19.15		103	1.63	4.12		Clem.		277.2
13:36	0.12	1.84	0.04	12.54	4.91	19.15	0.	102	1.65	7.3	<u> </u>	cler	hand	280.5
							 		**************************************					1
														7
	<u> </u>									1				1
												-		1
														1
	PACITY (Gallon NSIDE DIA. CAI				1.25" = 0 = 0.0014;			3" = 0.37; 5/16" = 0.		5" = 1.02 0.006;			12" = 5.88 5/8" = 0.016	
PURGING	EQUIPMENT (CODES:	3 = Bailer;	BP = Bladder P		ESP = Electric			mp; PP = F	eristaltic F	omp;	0 = 0	ther (Specify)	
SAMPLED	BY (PRINT) / A	VEEII IATIONI		SAMPLER(S)		PLING D	ATA		· · · · · · · · · · · · · · · · · · ·		т			7
	An	L Km			At	15 V			SAMPLING INITIATED A		36	SAMPLIN ENDED A	IG 13:4/	
PUMP OR DEPTH IN	TUBING WELL (feet):	14.1		TUBING MATERIAL CO	DDE:	Æ			-FILTERED: Yon Equipment To			FILTER S	IZE:μm	
FIELD DE	CONTAMINATION	ON: PUI	UP GY 1	١	TUBING	Y N(I	replace		DUPLICATE		(B]
SAM	PLE CONTAIN	ER SPECIFIC	ATION			PRESERVATION	NC		INTEND			MPLING	SAMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		TOTAL VOL	(mL)	FINAL pH	ANALYSIS A METHO	1	_	IIPMENT CODE	FLOW RATE (mL per minute)	
m412	i	PC	250ml	HNO3		Prepresor		۷2	Nicke	/		y p p	125mi	
mu-12	1	PO	250mm	none		None		N/A	Pluori	de	,	ją	125 m	
														_
														4
							_		-					-
REMARKS	<u> </u> 3:		¥1×											\dashv
	Tub	e Place	with:	n Sone	2									
	L CODES:	AG = Amber	Glass; CG	= Clear Glass;	PE = P	olyethylene;	PP =	Polypropy	lene; S = Silic	one; T	= Teflo	on; O = 0	Other (Specify)]
SAMPLIN	G EQUIPMENT			eristaltic Pump; se Flow Perista				der Pump; od (Tubing	ESP = Elec Gravity Drain);			Pump; Specify)		

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

GROUNDWATER SAMPLING LOG

SITE NAME:	Fo	ormer Tr	ent The	·c	S	OCATION:	14 Hami	nord st.	Ginnoll	Hong GA		7
WELL NO:	m	W-12D		SAMPLE		MW-121		· · · · · · · · · · · · · · · · · · ·	DATE:	7-19-16		1
			***************************************		PUR	GING DA	\TA					لــ
WELL VOL	(inches): 7		ER (inches):	DEI	PTH: 84fee	INTERVAL et to ? //feet	TO WA	C DEPTH	3.//	PURGE PUMP OR BAILER:	TYPE EST	
(only fill out	if applicable)		= (feet		feet)	X	gallon	s/foot =	gallons	
	IT VOLUME PU if applicable)	JRGE: 1 EQU	IPMENT VOL		•		ons/foot X		GTH) + FLOW feet) + 24	CELL VOLUM	E s = 43 gallons	
	MP OR TUBING	G 90.0		MP OR TUBING WELL (feet):		T DUDO!	NG m		1G (0.13			
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units µmhos/cm or µS/cm		N its) TURE (NT	SIDITY COL (Us) (desc	OR ODOR	one
19:13	3,9	3.9	0.05	29.95	7.74	18.82	9.155	4.55	9, 0	55 cle	- hone	- 58.2
19:16	0.15	4.05	0.05	34. 7 0	7.73	18.81	0.154	952	9. 7		~ none	-100.
19:19	0.15	4.20	20.05	31.46	7.73	18.70	9.153	0.49	9.6	5 1-	non:	-/03.
19:22	0, 15	4.35	۵.۵5	31.97	7.72	18.68	a.152	<i>a</i> , so	8.3	55 <u>c</u> le.	rono	- 100
												1
												-
												1
				 								-
	PACITY (Gallon ISIDE DIA. CAI					06; 2" = 0. 1/4" = 0.00			; 5" = 1.02 " = 0.006;	2; 6" = 1.47; 1/2" = 0.010;	12" = 5.88 5/8" = 0.016	
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder			Submersible	Pump; PP	= Peristaltic	Pump; 0 =	Other (Specify)	
CAMPLED	BY (PRINT) / A	EEN IATION!		SAMPLER(S		PLING D	ATA					٦
	Ath) 31314A107	HP -	···		DAT: 19		DAT: /パム/	
PUMP OR DEPTH IN	TUBING WELL (feet):			TUBING MATERIAL C	ODE:	PE		LD-FILTERED		FILTER	SIZE:μm	
FIELD DEC	CONTAMINATIO	ON: PUM	R I	V	TUBING	Y _N(replaced)	DUPLICA		N		7
SAME	PLE CONTAINE	ER SPECIFICA	TION		SAMPLE F	PRESERVATION	ON		ENDED	SAMPLING	SAMPLE PUMP	7
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	ADD	ED IN FIELD	FINA (mL) pH	L NAC	IS AND/OR THOD	EQUIPMENT CODE	(mL per minute)	
120	/	PE	25an-	HNOS	P	represent		Nici		APP	20041	4
たり		PF.	2500	None		none	NA	F120	eride	APP	2000	-
												1
						· · · · · · · · · · · · · · · · · · ·						-
REMARKS	Tube	Place	inth	en Ser	cor		t			L		
MATERIAL	_ CODES: G EQUIPMENT		APP = After P	= Clear Glass; eristaltic Pump se Flow Perista	; B=B		PP = Polypro		lectric Subm	ersible Pump;	= Other (Specify)	_
LNOTES: 1.	The above								, U = C	Other (Specify)		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24

GROUNDWATER SAMPLING LOG

SITE NAME:	Formes	Truth	Tute	_	SI LC	TE CATION: '	14/ Hamm	and st	Carnally	om GA	
WELL NO:		w-13		SAMPLE	ID.	mv-13				19.16	
						ING DA	TA				
	(inches):		ER (inches):	W DEF	LL SCREEN PTH:	to of feet	STATIC D	ER (feet): スヤ	OR B	SE PUMP TYPE AILER:	PY
(only fill out	if applicable)		= (18	feet -	7.41	feet) X	WELL CAPACI	gallons/foot		Ç gallons
EQUIPMEN (only fill out	IT VOLUME PU if applicable)	JRGE: 1 EQU	IPMENT VOI		.UME + (TUE allons + (TY X TO	UBING LENGTH)		L VOLUME gallons =	gallons
	MP OR TUBING			MP OR TUBING WELL (feet):		BUBCIA		DUDCING		TOTAL VOLUM PURGED (galle	/E
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or	TURBIDITY (NTUs)	1	ODOR (describe)
16:38	1.72	1.72	0.04	12.45	6.39	22.11	4.188	% saturation	0.9	حردهاء	nene +
16:41	0.12	1.84	0.34	12.70	6.40	21.37		2.79	9.75	cles	hont 8
14: 44	0.12	1.96	0.04	1284	6.43	21.31	0.208	2.71	9.57	cle-	hone #
16:47	0.12	2.08	0.04	12.98	6.47	21.22	a. 233	0.68	8.51	den	nonc -
TUBING IN	PACITY (Gallon ISIDE DIA. CAI EQUIPMENT O	PACITY (Gal./I			' = 0.0014;	1/4" = 0.002		.004; 3/8" = 0		= 0.010; 5/8	" = 5.88 " = 0.016 r (Specify)
· ortonto	Lacon militi	,0020. 0	- Daner,	DI - Diaduci i		LING D		тр, гг-г	enstallic Fullip,	, O-One	(Opecity)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)				SAMPLING INITIATED A	r: 16:47	SAMPLING ENDED AT:	16:52
PUMP OR DEPTH IN	TUBING WELL (feet):	13.4		TUBING MATERIAL C	ODE:	-		-FILTERED: Y on Equipment Ty	(N)	FILTER SIZE	
FIELD DEC	CONTAMINATIO	ON: PUM	IP CY	N	TUBING	Y N(I	eplaced)	DUPLICATE:		(B)	
SAMPLE	PLE CONTAINE #	R SPECIFICA	VOLUME	PRESERVAT		RESERVATION TOTAL VOL)N FINAL	INTEND	ND/OR EQ	UIPMENT	AMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE		USED		D IN FIELD (7	METHO			mL per minute)
mm3	<u>'</u>	Pe	250mc	How	- 1	epoeserou Mana	MA	Fluoris		'' ———	25 mc
REMARKS): Th	ti fla	e mith	n Jerec	u. Pi	us sla	r ons Par	ISNUT 64	sat-	talk stall	Ding Quad
	G EQUIPMENT	F	APP = After P RFPP = Reve	= Clear Glass; eristaltic Pump rse Flow Perista	; B = Ba altic Pump;	SM = Straw	PP = Polypropy Bladder Pump; Method (Tubing	ESP = Electi Gravity Drain);	one; T = Tefl ric Submersible O = Other (Pump;	er (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

Form FD 9000-24

GROUNDWATER SAMPLING LOG

ITE NAME:	For	mer 7	rond i	THE	SI	TE CATION:	141 Has	mmon St.	Carroll-	ton, GA		
WELL NO:		Nº18		SAMPLE			w.18			-Za-26		
					PURG	ING DA	TA					_
WELL	(inches):	TUBING DIAME	TER (inches):	WELL DEP	L SCREEN TH: 🛵 feet	INTERVAL	STATIO TO WA	DEPTH TER (feet): 24. X WELL CAPAC	92 PURC OR B	GE PUMP TYPI AILER:	**************************************	
(only fill out	if applicable)	TWELL VO	= (3 e.25	feet -	24.92	feet)	X WELL CAPAC X O./L TUBING LENGTH	gallons/foot	= 0.8	≤ gallons	
(only fill out	if applicable)			= ga	llons + (ons/foot X	feel		gallons =	gallons	
INITIAL PU	MP OR TUBING WELL (feet):	327.5	FINAL PUN	IP OR TUBING WELL (feet):	27.9				·	TOTAL VOLUM	ΛE ,	1
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) μmhos/cm or μS/cm	DISSOLVED	TURBIDITY (NTUs)		ODOR (describe)	0)
15:45	100	1,0	0.04	25.90	4. 38	19.86	0.075	1/33	2.58	den	none	12
15948	012	1,12	0.04	25.90	4.37	19.76	0,069	1.33	2.33	clen-	hone	24
15:51	9,12	1,24	0.04	25.90	4.38	19.79	0,064	1.31	3,06	cler	none	24
15:54	a. 12	1. 36	0,04	25.90	438_	19.81	0,063	1.33	2.89	clen	nort -	20
						 			ļ		-	-
<u></u>						<u> </u>						1
	PACITY (Gallon NSIDE DIA. CAI							7; 4" = 0.65; 0.004; 3/8" =			" = 5.88 " = 0.016	1
	EQUIPMENT C			BP = Bladder F	oump; E	SP = Electric	Submersible I		Peristaltic Pump		r (Specify)]
						LING DA	ATA		·		\$1	_
		AFFILIATION:		SAMPLER(S)		E(S):			NT: 15:54	SAMPLING ENDED AT:		
PUMP OR DEPTH IN	TUBING WELL (feet):	27.9		TUBING MATERIAL CO	ODE: /	e C		LD-FILTERED: Y ation Equipment T		FILTER SIZE	.: μm	
FIELD DE	CONTAMINATION		7,	l	TUBING	Y N (r	eplaced)	DUPLICATE		(N)]
SAM	PLE CONTAINE					RESERVATIO	N	INTEND			AMPLE PUMP	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED	IVE ADDE	TOTAL VOL ED IN FIELD (FINAL mL) pH	ANALYSIS A METHO			FLOW RATE mL per minute)	
MW18	/	P ಶ	25076	i-iNog	P	represarvo	1 22	Nock		App 1	こよいし	
murit		Pi	ZSOML	none		none	NA	Fluor	ide ,	QqA	125~	-
												-
REMARKS	S: \mathcal{T}_{l}	nbo F	Place h	itien 5	creen							1
MATERIA	L CODES:	AG = Amber	Glass; CG:	= Clear Glass;	PE = Poi	yethylene;	PP = Polypro	pylene; S = Silic	cone; T = Teff	on: O = Oth	er (Specify)	\dashv
	G EQUIPMENT	CODES:	APP = After Pe	eristaltic Pump; se Flow Perista	B = Ba	iler; BP =	Bladder Pum		tric Submersible O = Other (Pump;		1
NOTES: 4						0,,411						

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24 **GROUNDWATER SAMPLING LOG**

SITE NAME:	Forme	Tren	Thee			SITE LOCATION:	141	Ham	mond St.	Car	roll	ton, GA	4]
WELL NO:		w-23	<u>-</u>	SAMPLE	ID:	mw.	23			DATE:	7	-19-16		
					PUF	RGING DA	ATA							_
WELL DIAMETER	(inches): 2	TUBING	TER (inches):	7/4 DEP	TH:33 S fe	N INTERVAL		STATIC E	ER (feet): スロー	42	PURGE OR BA	PUMP TY	PE PP	
	UME PURGE: if applicable)	1 WELL VOL	.UME = (TOT = (TATIC DEPTH 20, 42		ATER) X	WELL CAPAC	CITY	s/foot	<u> </u>	/ G gallons	
EQUIPMEN (only fill out	IT VOLUME PU if applicable)	RGE: 1 EQU	IPMENT VOL	= PUMP VOL	UME + (T	UBING CAPAC	CITY	X T	UBING LENGTH	i) + FLOW		VOLUME		
INITIAL DU	MD OD TUDINO		TENNAL BUIL	= ga MP OR TUBINO	allons + (BURG	lons/fo		fee . PURGING			gallons = OTAL VOL	11145	4
	MP OR TUBINO WELL (feet):	23.4		WELL (feet):	23.4	INITIA	red A	r: 11:25	ENDED AT	:12:5	3 P	URGED (g		_
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standar units)	TEMP.	(cir µп	COND. cle units) nhos/cm : µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURB (NT		COLOF (describ	1	OR
11:53	1.12	1.12	0.04	20.61	4.53	21.59	G	10 45	10.11	10,	18	clear	none	106.
, 2: 21	1.12	2,24	chay	24.61	4.51		c.	047	12.7	6,7	74	18~	non6	ומר[
12:49	1.12	3.34	0.04	20.67	4.48	23, 05	a	.041	12.40	3, 4.	と	-رويل	none	22.
12:52	0,12	3.48	0.04	20.61	4.42	22.24	a.	a ye	12,17	2.3	5	dien	none	32.
12:53	a.12	3.60	0.04	20.61	4.40	22.20	ø,	038	1Z, 11	2.00	5	den	none	33.
							-			+				
							1							1
					ļ				<u> </u>			<u> </u>		4
WELL CAL	PACITY (Gallon	s Per Foot):	0.75" = 0.02	1" = 0.04:	1 25" =	0.06; 2" = 0	16:	3" = 0.37;	4" = 0.65;	5" = 1.02	. <u>E</u> "	= 1.47;	12" = 5.88	4
	ISIDE DIA. CAF							5/16" = 0		0.006;	1/2" =		5/8" = 0.016	_
PURGING	EQUIPMENT C	ODES: E	s = Bailer,	BP = Bladder		ESP = Electr			imp; PP =	Peristaltic I	Pump;	0 = 0	ther (Specify)	
SAMPLED	BY (PRINT) / A	EEU IATION:		SAMPLER(S		IPLING D	AIA	<u> </u>	·		 1			٦
	Ath					45 m	······································		SAMPLING INITIATED	AT: /2/3	53	SAMPLIN ENDED A	G .T: 12:58	
PUMP OR DEPTH IN	TUBING WELL (feet):	23.4		TUBING MATERIAL C	ODE:	8E		FIELD)-FILTERED:	Y NO.		FILTER S	IZE: μm	
	CONTAMINATIO	ON: PUN	1P 00 1	٧	TUBIN	G Y Ņ	(replac		DUPLICATE		3	N		7
SAM	PLE CONTAINE	R SPECIFICA	ATION		SAMPLE	PRESERVAT	ION		INTEN	DED	SAN	/PLING	SAMPLE PUMP	7
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL		FINAL pH	ANALYSIS METH			IPMENT ODE	FLOW RATE (mL per minute)	
mres	r	e E	250 m	ANON		Brepre so-	1	<2	Nickel 1	6020	1	سروج. ۱	125 ms	
mr2B		SE	250 mm	hend		hone		N/A	Fluorid	Ç.		جرم ا	125 ml	
moss	3	c <i>G</i>	40-2	1407		represum		22	Vac' 82	á a	5	<u>.</u>	<100 m]
			·····			·						*		-
REMARKS	s: Pu			without t							/			7
MATERIA									fly 31/6				Other (Co : £ A	-
	L CODES: G EQUIPMENT		APP = After P	= Clear Glass; eristaltic Pump	; B=		= Blac	= Polypropy Ider Pump;	ESP = Elec		ersible	Pump;	Other (Specify)	-
NOTES: 1	The above			se Flow Perista					Gravity Drain);	0 = 0	Other (S	Specify)		

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Revision Date: February 12, 2009

ATTACHMENT B

Analytical Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-108145-1

TestAmerica Sample Delivery Group: 27-225273.00/00/1

Client Project/Site: Former Trent Tube

For:

Environmental Compliance Services, Inc. 9874 Main Street, Suite 100 Woodstock, Georgia 30188-6619

Attn: Mr. Dean McCartney

Kuth Hayer

Authorized for release by: 8/4/2016 2:22:42 PM Ken Hayes, Project Manager II (615)301-5035 ken.hayes@testamericainc.com

Designee for

Heather Baker, Project Manager I (615)301-5043

heather.baker@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	6
QC Sample Results	17
QC Association	29
Chronicle	32
Method Summary	36
Certification Summary	37
Chain of Custody	38
Receipt Checklists	41

6

8

9

10

12

Sample Summary

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-108145-1	MW-1	Water	07/20/16 14:50	07/21/16 09:20
490-108145-2	MW-2	Water	07/20/16 12:24	07/21/16 09:20
490-108145-3	MW-3	Water	07/20/16 10:08	07/21/16 09:20
490-108145-4	MW-4	Water	07/20/16 19:24	07/21/16 09:20
490-108145-5	MW-4R	Water	07/20/16 18:27	07/21/16 09:20
490-108145-6	MW-5	Water	07/20/16 17:04	07/21/16 09:20
490-108145-7	MW-6	Water	07/20/16 11:19	07/21/16 09:20
490-108145-8	MW-11	Water	07/19/16 14:39	07/21/16 09:20
490-108145-9	MW-12	Water	07/20/16 13:41	07/21/16 09:20
490-108145-10	MW-13	Water	07/19/16 16:52	07/21/16 09:20
490-108145-11	MW-18	Water	07/20/16 15:59	07/21/16 09:20
490-108145-12	MW-12D	Water	07/19/16 19:27	07/21/16 09:20
490-108145-13	MW-23	Water	07/19/16 12:58	07/21/16 09:20
490-108145-14	Trip Blank	Water	07/19/16 00:01	07/21/16 09:20
490-108145-15	Rinsate	Water	07/19/16 19:45	07/21/16 09:20
490-108145-16	Field Duplicate	Water	07/19/16 00:01	07/21/16 09:20

4

5

8

9

10

12

Case Narrative

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Job ID: 490-108145-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-108145-1

Comments

No additional comments.

Receipt

The samples were received on 7/21/2016 9:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

GC/MS VOA

Method 8260B: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 490-357218 recovered outside control limits for the following analytes: Trichlorofluoromethane.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 9056A: The following samples was diluted due to the nature of the sample matrix: MW-1 (490-108145-1), MW-2 (490-108145-2), MW-3 (490-108145-3), MW-4 (490-108145-4), MW-4R (490-108145-5), MW-5 (490-108145-6), MW-6 (490-108145-7), MW-12 (490-108145-9). and MW-18 (490-108145-11). Elevated reporting limits (RLs) are provided.

Method 9056A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 490-359127 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

-

6

_

8

9

10

12

1,

Definitions/Glossary

Client: Environmental Compliance Services, Inc.

Qualifier Description

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Qualifiers

GC/MS VOA

Qualifier

F2	MS/MSD RPD exceeds control limits
*	RPD of the LCS and LCSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

These commonly used abbreviations may or may not be present in this report.

HPLC/IC

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.

Metals

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
E	Result exceeded calibration range.

Glossary Abbreviation

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

2

J

6

9

10

11

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

Client Sample ID: MW-1

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Lab Sample ID: 490-108145-1

Matrix: Water

Date Collected: 07/20/16 14:50
Date Received: 07/21/16 09:20

Method: 9056A - Anions, Ion ChromatographyAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacFluoride32.34.000.400mg/L0.4000.04000.0400

 Method: 6020A - Metals (ICP/MS)

 Analyte
 Result Nickel
 Qualifier
 RL O.00200
 MDL Unit O.000500
 D O.724/16 12:38
 Analyzed O7/25/16 14:57
 Dil Fac O7/25/16 14:57

Client Sample ID: MW-2 Lab Sample ID: 490-108145-2

Date Collected: 07/20/16 12:24

Matrix: Water

Date Received: 07/21/16 09:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.00	0.150	ug/L			07/22/16 19:42	1
1,1,1-Trichloroethane	ND		1.00	0.190	ug/L			07/22/16 19:42	1
1,1,2,2-Tetrachloroethane	ND		1.00	0.190	ug/L			07/22/16 19:42	1
1,1,2-Trichloroethane	ND		1.00	0.190	ug/L			07/22/16 19:42	1
1,1-Dichloroethane	ND		1.00	0.240	ug/L			07/22/16 19:42	1
1,1-Dichloroethene	ND		1.00	0.250	ug/L			07/22/16 19:42	1
1,1-Dichloropropene	ND		1.00	0.200	ug/L			07/22/16 19:42	1
1,2,3-Trichlorobenzene	ND		1.00	0.230	ug/L			07/22/16 19:42	1
1,2,3-Trichloropropane	ND		1.00	0.230	ug/L			07/22/16 19:42	1
1,2,4-Trichlorobenzene	ND		1.00	0.200	ug/L			07/22/16 19:42	1
1,2,4-Trimethylbenzene	ND		1.00	0.170	ug/L			07/22/16 19:42	1
1,2-Dibromo-3-Chloropropane	ND		10.0	0.940	ug/L			07/22/16 19:42	1
1,2-Dibromoethane (EDB)	ND		1.00	0.210	ug/L			07/22/16 19:42	1
1,2-Dichlorobenzene	ND		1.00	0.190	ug/L			07/22/16 19:42	1
1,2-Dichloroethane	ND		1.00	0.200	ug/L			07/22/16 19:42	1
1,2-Dichloropropane	ND		1.00	0.250	ug/L			07/22/16 19:42	1
1,3,5-Trimethylbenzene	ND		1.00	0.170	ug/L			07/22/16 19:42	1
1,3-Dichlorobenzene	ND		1.00	0.180	ug/L			07/22/16 19:42	1
1,3-Dichloropropane	ND		1.00	0.190	ug/L			07/22/16 19:42	1
1,4-Dichlorobenzene	ND		1.00	0.170	ug/L			07/22/16 19:42	1
2,2-Dichloropropane	ND		1.00	0.160	ug/L			07/22/16 19:42	1
2-Butanone (MEK)	ND		50.0	2.64	ug/L			07/22/16 19:42	1
2-Chlorotoluene	ND		1.00	0.180	ug/L			07/22/16 19:42	1
2-Hexanone	ND		10.0	1.28	ug/L			07/22/16 19:42	1
4-Chlorotoluene	ND		1.00	0.170	ug/L			07/22/16 19:42	1
4-Methyl-2-pentanone (MIBK)	ND		10.0	0.810	ug/L			07/22/16 19:42	1
Acetone	ND		25.0	2.66	ug/L			07/22/16 19:42	1
Benzene	ND		1.00	0.200	ug/L			07/22/16 19:42	1
Bromobenzene	ND		1.00	0.210	ug/L			07/22/16 19:42	1
Bromochloromethane	ND		1.00	0.150	ug/L			07/22/16 19:42	1
Bromodichloromethane	ND		1.00	0.170	ug/L			07/22/16 19:42	1
Bromoform	ND		1.00	0.290				07/22/16 19:42	1
Bromomethane	ND		1.00	0.350	ug/L			07/22/16 19:42	1
Carbon disulfide	ND		1.00	0.220	ug/L			07/22/16 19:42	1
Carbon tetrachloride	ND		1.00	0.180	ug/L			07/22/16 19:42	1
Chlorobenzene	ND		1.00	0.180	-			07/22/16 19:42	1
Chlorodibromomethane	ND		1.00	0.250				07/22/16 19:42	1
Chloroethane	ND		1.00	0.360	•			07/22/16 19:42	1

TestAmerica Nashville

Page 6 of 41

3

5

6

9

10

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

Date Received: 07/21/16 09:20

Analyte

Fluoride

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Lab Sample ID: 490-108145-2

Client Sample ID: MW-2 Date Collected: 07/20/16 12:24

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa		
Chloroform	ND		1.00	0.230	ug/L			07/22/16 19:42			
Chloromethane	ND		1.00	0.360	ug/L			07/22/16 19:42			
cis-1,2-Dichloroethene	ND		1.00	0.210	ug/L			07/22/16 19:42			
cis-1,3-Dichloropropene	ND		1.00	0.170	ug/L			07/22/16 19:42			
Dibromomethane	ND		1.00	0.450	ug/L			07/22/16 19:42			
Dichlorodifluoromethane	ND		1.00	0.170	ug/L			07/22/16 19:42			
Ethylbenzene	ND		1.00	0.190	ug/L			07/22/16 19:42			
Hexachlorobutadiene	ND		2.00	0.380	ug/L			07/22/16 19:42			
Isopropylbenzene	ND		1.00	0.330				07/22/16 19:42			
Methyl tert-butyl ether	ND		1.00	0.170	ug/L			07/22/16 19:42			
Methylene Chloride	ND		5.00		ug/L			07/22/16 19:42			
Naphthalene	ND		5.00	0.210				07/22/16 19:42			
n-Butylbenzene	ND		1.00	0.240				07/22/16 19:42			
N-Propylbenzene	ND		1.00	0.170				07/22/16 19:42			
p-Isopropyltoluene	ND		1.00	0.170	-			07/22/16 19:42			
sec-Butylbenzene	ND		1.00	0.170	-			07/22/16 19:42			
Styrene	ND		1.00	0.280				07/22/16 19:42			
tert-Butylbenzene	ND		1.00	0.170	-			07/22/16 19:42			
Tetrachloroethene	0.298	1	1.00	0.140	•			07/22/16 19:42			
Toluene	ND		1.00	0.170	•			07/22/16 19:42			
trans-1,2-Dichloroethene	ND		1.00	0.230				07/22/16 19:42			
trans-1,3-Dichloropropene	ND		1.00	0.170	J			07/22/16 19:42			
Trichloroethene			1.00	0.200	.			07/22/16 19:42			
Trichloroethene Trichlorofluoromethane	6.18 ND	*	1.00	0.200	-			07/22/16 19:42			
Vinyl chloride	ND ND		1.00	0.180	-			07/22/16 19:42			
					.						
Xylenes, Total	ND		3.00	0.580	ug/L			07/22/16 19:42			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa		
1,2-Dichloroethane-d4 (Surr)	92		70 - 130					07/22/16 19:42			
4-Bromofluorobenzene (Surr)	111		70 - 130					07/22/16 19:42			
Dibromofluoromethane (Surr)	95		70 - 130					07/22/16 19:42			
Toluene-d8 (Surr)	101		70 - 130					07/22/16 19:42			
Method: 9056A - Anions, Ion Chron	natography										
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa		
Fluoride	22.4		2.00	0.200	mg/L			08/01/16 18:47	2		
Method: 6020A - Metals (ICP/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa		
Nickel	0.698		0.00200	0.000500	mg/L		07/24/16 12:38	07/25/16 15:24			
Client Sample ID: MW-3							Lah Samn	le ID: 490-10	8145-		
ate Collected: 07/20/16 10:08	·							Lab Sample ID: 490-108145-3 Matrix: Water			
ate Received: 07/21/16 09:20											

TestAmerica Nashville

Analyzed

08/01/16 19:07

Prepared

2.00

MDL Unit

0.200 mg/L

Result Qualifier

24.2

Dil Fac

Client: Environmental Compliance Services, Inc. Project/Site: Former Trent Tube

Client Sample ID: MW-3

Date Collected: 07/20/16 10:08 Date Received: 07/21/16 09:20

Lab Sample ID: 490-108145-3

Matrix: Water

	Method: 6020A - Metals (ICP/MS)									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
L	Nickel	0.869		0.00200	0.000500	mg/L		07/24/16 12:38	07/25/16 15:30	1

Lab Sample ID: 490-108145-4 Client Sample ID: MW-4 Date Collected: 07/20/16 19:24 Matrix: Water

Date Received: 07/21/16 09:20

Method: 9056A - Anions, Ion Chrom	natography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	182		20.0	2.00	mg/L			08/01/16 19:27	200

Method: 6020A - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.0200 07/24/16 12:38 07/26/16 20:31 Nickel 4.84 0.00500 mg/L

Client Sample ID: MW-4R Lab Sample ID: 490-108145-5 Date Collected: 07/20/16 18:27 **Matrix: Water**

Date Received: 07/21/16 09:20

Method: 9056A - Anions, Ion Chron	atography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	125		10.0	1.00	mg/L			08/01/16 19:47	100
Mothod: 6020A Motals (ICP/MS)									

Result Qualifier RL MDL Unit Dil Fac Analyte Prepared Analyzed 07/25/16 15:51 0.00200 07/24/16 12:38 **Nickel** 1.65 0.000500 mg/L

Client Sample ID: MW-5 Lab Sample ID: 490-108145-6 Date Collected: 07/20/16 17:04 **Matrix: Water**

Date Received: 07/21/16 09:20

Method: 9056A - Anions, Ion Chroma Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	93.2		5.00	0.500	mg/L			07/30/16 01:03	50
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	2.18		0.0100	0.00250	mg/L		07/24/16 12:38	07/26/16 20:37	5

Client Sample ID: MW-6 Lab Sample ID: 490-108145-7

Date Collected: 07/20/16 11:19 Date Received: 07/21/16 09:20

Method: 9056A - Anions, Ion Chror	natography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	10.5		1.00	0.100	mg/L			08/03/16 13:54	10
Mathada Cooo A Matala (ICD/MC)									

Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	0	Prepared	Analyzed	Dil Fac
Nickel	0.246		0.00200	0.000500	mg/L		07/24/16 12:38	07/25/16 16:03	1

Matrix: Water

Project/Site: Former Trent Tube

Client Sample ID: MW-11
Date Collected: 07/19/16 14:39

Date Received: 07/21/16 09:20

Lab Sample ID: 490-108145-8

Matrix: Water

Matrix: Water

Method: 9056A - Anions, Ion Chron	natography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.0253	J	0.100	0.0100	mg/L			07/23/16 02:48	1
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	0.00131	J	0.00200	0.000500	mg/L		07/24/16 12:38	07/25/16 16:08	1
									

Client Sample ID: MW-12

Date Collected: 07/20/16 13:41

Lab Sample ID: 490-108145-9

Matrix: Water

Date Received: 07/21/16 09:20

Method: 9056A - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Fluoride 2.00 08/03/16 15:37 0.200 mg/L 20 34.1

Method: 6020A - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Nickel 0.360 0.00200 0.000500 mg/L 07/24/16 12:38 07/25/16 16:14

Client Sample ID: MW-13

Date Collected: 07/19/16 16:52

Lab Sample ID: 490-108145-10

Matrix: Water

Date Received: 07/21/16 09:20

Method: 9056A - Anions, Ion Chrom	natography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.154		0.100	0.0100	mg/L			07/23/16 03:05	1
Method: 6020A - Metals (ICP/MS)									

 Analyte
 Result Nickel
 Qualifier
 RL Nickel
 MDL Unit Nickel
 D Nickel
 Prepared No.00570
 Analyzed Nickel
 Dil Fac No.00200

Client Sample ID: MW-18

Date Collected: 07/20/16 15:59

Lab Sample ID: 490-108145-11

Matrix: Water

Date Received: 07/21/16 09:20

Method: 9056A - Anions, Ion Chrom	atography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	1.71		0.500	0.0500	mg/L			07/30/16 02:29	5
Method: 6020A - Metals (ICP/MS)									

 Method: 6020A - Metals (ICP/MS)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Nickel
 0.0461
 0.00200
 0.000500
 mg/L
 07/24/16 12:38
 07/25/16 16:25
 1

Client Sample ID: MW-12D

Date Collected: 07/19/16 19:27

Lab Sample ID: 490-108145-12

Matrix: Water

Date Received: 07/21/16 09:20

Method: 9056A - Anions, Ion Chror	natography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.372		0.100	0.0100	mg/L			07/23/16 03:22	1

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Client Sample ID: MW-12D

Date Collected: 07/19/16 19:27 Date Received: 07/21/16 09:20 Lab Sample ID: 490-108145-12

Matrix: Water

Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	כ	Prepared	Analyzed	Dil Fac
Nickel	0.00121	J	0.00200	0.000500	mg/L		07/24/16 12:38	07/25/16 16:30	1

Client Sample ID: MW-23 Lab Sample ID: 490-108145-13

Matrix: Water

Date Collected: 07/19/16 12:58 Date Received: 07/21/16 09:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.00	0.150	ug/L			07/22/16 20:11	1
1,1,1-Trichloroethane	ND		1.00	0.190	ug/L			07/22/16 20:11	1
1,1,2,2-Tetrachloroethane	ND		1.00	0.190	ug/L			07/22/16 20:11	1
1,1,2-Trichloroethane	ND		1.00	0.190	ug/L			07/22/16 20:11	1
1,1-Dichloroethane	ND		1.00	0.240	ug/L			07/22/16 20:11	1
1,1-Dichloroethene	ND		1.00	0.250	ug/L			07/22/16 20:11	1
1,1-Dichloropropene	ND		1.00	0.200	ug/L			07/22/16 20:11	1
1,2,3-Trichlorobenzene	ND		1.00	0.230	ug/L			07/22/16 20:11	1
1,2,3-Trichloropropane	ND		1.00	0.230	ug/L			07/22/16 20:11	1
1,2,4-Trichlorobenzene	ND		1.00	0.200	ug/L			07/22/16 20:11	1
1,2,4-Trimethylbenzene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
1,2-Dibromo-3-Chloropropane	ND		10.0	0.940	ug/L			07/22/16 20:11	1
1,2-Dibromoethane (EDB)	ND		1.00	0.210	ug/L			07/22/16 20:11	1
1,2-Dichlorobenzene	ND		1.00	0.190	ug/L			07/22/16 20:11	1
1,2-Dichloroethane	ND		1.00	0.200	ug/L			07/22/16 20:11	1
1,2-Dichloropropane	ND		1.00	0.250	ug/L			07/22/16 20:11	1
1,3,5-Trimethylbenzene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
1,3-Dichlorobenzene	ND		1.00	0.180	ug/L			07/22/16 20:11	1
1,3-Dichloropropane	ND		1.00	0.190	ug/L			07/22/16 20:11	1
1,4-Dichlorobenzene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
2,2-Dichloropropane	ND		1.00	0.160	ug/L			07/22/16 20:11	1
2-Butanone (MEK)	ND		50.0	2.64	ug/L			07/22/16 20:11	1
2-Chlorotoluene	ND		1.00	0.180	ug/L			07/22/16 20:11	1
2-Hexanone	ND		10.0	1.28	ug/L			07/22/16 20:11	1
4-Chlorotoluene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
4-Methyl-2-pentanone (MIBK)	ND		10.0	0.810	ug/L			07/22/16 20:11	1
Acetone	ND		25.0	2.66	ug/L			07/22/16 20:11	1
Benzene	ND		1.00	0.200	ug/L			07/22/16 20:11	1
Bromobenzene	ND		1.00	0.210	ug/L			07/22/16 20:11	1
Bromochloromethane	ND		1.00	0.150	_			07/22/16 20:11	1
Bromodichloromethane	ND		1.00	0.170	ug/L			07/22/16 20:11	1
Bromoform	ND		1.00	0.290	ug/L			07/22/16 20:11	1
Bromomethane	ND		1.00	0.350	-			07/22/16 20:11	1
Carbon disulfide	ND		1.00	0.220				07/22/16 20:11	1
Carbon tetrachloride	ND		1.00	0.180	_			07/22/16 20:11	1
Chlorobenzene	ND		1.00	0.180	-			07/22/16 20:11	1
Chlorodibromomethane	ND		1.00	0.250				07/22/16 20:11	1
Chloroethane	ND		1.00	0.360	-			07/22/16 20:11	1
Chloroform	ND		1.00	0.230	-			07/22/16 20:11	1
Chloromethane	ND		1.00	0.360				07/22/16 20:11	1
cis-1,2-Dichloroethene	ND		1.00	0.210				07/22/16 20:11	1
cis-1,3-Dichloropropene	ND		1.00	0.170	_			07/22/16 20:11	1

TestAmerica Nashville

Page 10 of 41

8/4/2016

4

5

6

0

9

11

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

Date Received: 07/21/16 09:20

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Lab Sample ID: 490-108145-13

Client Sample ID: MW-23 Date Collected: 07/19/16 12:58

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		1.00	0.450	ug/L			07/22/16 20:11	1
Dichlorodifluoromethane	ND		1.00	0.170	ug/L			07/22/16 20:11	1
Ethylbenzene	ND		1.00	0.190	ug/L			07/22/16 20:11	1
Hexachlorobutadiene	ND		2.00	0.380	ug/L			07/22/16 20:11	1
Isopropylbenzene	ND		1.00	0.330	ug/L			07/22/16 20:11	1
Methyl tert-butyl ether	ND		1.00	0.170	ug/L			07/22/16 20:11	1
Methylene Chloride	ND		5.00	1.00	ug/L			07/22/16 20:11	1
Naphthalene	ND		5.00	0.210	ug/L			07/22/16 20:11	1
n-Butylbenzene	ND		1.00	0.240	ug/L			07/22/16 20:11	1
N-Propylbenzene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
p-Isopropyltoluene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
sec-Butylbenzene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
Styrene	ND		1.00	0.280	ug/L			07/22/16 20:11	1
tert-Butylbenzene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
Tetrachloroethene	ND		1.00	0.140	ug/L			07/22/16 20:11	1
Toluene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
trans-1,2-Dichloroethene	ND		1.00	0.230	ug/L			07/22/16 20:11	1
trans-1,3-Dichloropropene	ND		1.00	0.170	ug/L			07/22/16 20:11	1
Trichloroethene	ND		1.00	0.200	ug/L			07/22/16 20:11	1
Trichlorofluoromethane	ND	*	1.00	0.210	ug/L			07/22/16 20:11	1
Vinyl chloride	ND		1.00	0.180	ug/L			07/22/16 20:11	1
Xylenes, Total	ND		3.00	0.580	ug/L			07/22/16 20:11	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	70 - 130		07/22/16 20:11	1
4-Bromofluorobenzene (Surr)	110	70 - 130		07/22/16 20:11	1
Dibromofluoromethane (Surr)	93	70 - 130		07/22/16 20:11	1
Toluene-d8 (Surr)	103	70 - 130		07/22/16 20:11	1

Method: 9056A - Anions, Ion Chromatography										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Fluoride	0.0173	J	0.100	0.0100	mg/L			07/23/16 03:39	1

Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	0.00160	J	0.00200	0.000500	mg/L		07/26/16 08:35	07/26/16 22:06	1

Client Sample ID: Trip Blank Lab Sample ID: 490-108145-14 **Matrix: Water**

Date Collected: 07/19/16 00:01 Date Received: 07/21/16 09:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.00	0.150	ug/L			07/22/16 16:51	1
1,1,1-Trichloroethane	ND		1.00	0.190	ug/L			07/22/16 16:51	1
1,1,2,2-Tetrachloroethane	ND		1.00	0.190	ug/L			07/22/16 16:51	1
1,1,2-Trichloroethane	ND		1.00	0.190	ug/L			07/22/16 16:51	1
1,1-Dichloroethane	ND		1.00	0.240	ug/L			07/22/16 16:51	1
1,1-Dichloroethene	ND		1.00	0.250	ug/L			07/22/16 16:51	1
1,1-Dichloropropene	ND		1.00	0.200	ug/L			07/22/16 16:51	1

TestAmerica Nashville

Page 11 of 41

8/4/2016

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Lab Sample ID: 490-108145-14

Matrice Matrice Matrice

Matrix: Water

Client Sample ID: Trip Blank

Date Collected: 07/19/16 00:01 Date Received: 07/21/16 09:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,3-Trichlorobenzene	ND ND	1.00	0.230	ug/L			07/22/16 16:51	
1,2,3-Trichloropropane	ND	1.00	0.230	ug/L			07/22/16 16:51	
1,2,4-Trichlorobenzene	ND	1.00	0.200	ug/L			07/22/16 16:51	
1,2,4-Trimethylbenzene	ND	1.00	0.170	ug/L			07/22/16 16:51	
1,2-Dibromo-3-Chloropropane	ND	10.0	0.940	ug/L			07/22/16 16:51	
1,2-Dibromoethane (EDB)	ND	1.00	0.210	ug/L			07/22/16 16:51	
1,2-Dichlorobenzene	ND	1.00	0.190	ug/L			07/22/16 16:51	
1,2-Dichloroethane	ND	1.00	0.200	ug/L			07/22/16 16:51	
1,2-Dichloropropane	ND	1.00	0.250	ug/L			07/22/16 16:51	
1,3,5-Trimethylbenzene	ND	1.00	0.170	ug/L			07/22/16 16:51	
1,3-Dichlorobenzene	ND	1.00	0.180	ug/L			07/22/16 16:51	
1,3-Dichloropropane	ND	1.00	0.190	.			07/22/16 16:51	
1,4-Dichlorobenzene	ND	1.00	0.170	_			07/22/16 16:51	
2,2-Dichloropropane	ND	1.00	0.160	-			07/22/16 16:51	
2-Butanone (MEK)	ND	50.0		ug/L			07/22/16 16:51	
2-Chlorotoluene	ND	1.00	0.180	_			07/22/16 16:51	
2-Hexanone	ND	10.0		ug/L			07/22/16 16:51	
4-Chlorotoluene	ND	1.00	0.170				07/22/16 16:51	
4-Methyl-2-pentanone (MIBK)	ND	10.0	0.810	_			07/22/16 16:51	
Acetone (MISIN)	ND	25.0		ug/L			07/22/16 16:51	
Benzene	ND	1.00	0.200				07/22/16 16:51	
Bromobenzene	ND	1.00	0.210	_			07/22/16 16:51	
Bromochloromethane	ND	1.00	0.150	_			07/22/16 16:51	
Bromodichloromethane	ND	1.00	0.170	.			07/22/16 16:51	
Bromoform	ND ND	1.00		_			07/22/16 16:51	
	ND ND	1.00	0.290	_				
Bromomethane Carbon disulfide			0.350				07/22/16 16:51	
	ND ND	1.00					07/22/16 16:51	
Carbon tetrachloride	ND	1.00	0.180	-			07/22/16 16:51	
Chlorobenzene	ND	1.00	0.180	.			07/22/16 16:51	
Chlorodibromomethane	ND	1.00	0.250	-			07/22/16 16:51	
Chloroethane	ND	1.00	0.360				07/22/16 16:51	
Chloroform	ND	1.00	0.230				07/22/16 16:51	
Chloromethane	ND	1.00	0.360	-			07/22/16 16:51	
cis-1,2-Dichloroethene	ND	1.00	0.210	-			07/22/16 16:51	
cis-1,3-Dichloropropene	ND	1.00	0.170				07/22/16 16:51	
Dibromomethane	ND	1.00	0.450				07/22/16 16:51	
Dichlorodifluoromethane	ND	1.00	0.170				07/22/16 16:51	
Ethylbenzene	ND	1.00	0.190				07/22/16 16:51	
Hexachlorobutadiene	ND	2.00	0.380				07/22/16 16:51	
sopropylbenzene	ND	1.00	0.330	-			07/22/16 16:51	
Methyl tert-butyl ether	ND	1.00	0.170				07/22/16 16:51	
Methylene Chloride	ND	5.00		ug/L			07/22/16 16:51	
Naphthalene	ND	5.00	0.210	-			07/22/16 16:51	
n-Butylbenzene	ND	1.00	0.240	.			07/22/16 16:51	
N-Propylbenzene	ND	1.00	0.170	-			07/22/16 16:51	
o-Isopropyltoluene	ND	1.00	0.170	ug/L			07/22/16 16:51	
sec-Butylbenzene	ND	1.00	0.170	ug/L			07/22/16 16:51	
Styrene	ND	1.00	0.280	ug/L			07/22/16 16:51	
tert-Butylbenzene	ND	1.00	0.170	ug/L			07/22/16 16:51	

TestAmerica Nashville

3

4

6

8

10

12

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Lab Sample ID: 490-108145-14

Client Sample ID: Trip Blank Date Collected: 07/19/16 00:01 Matrix: Water

Date Received: 07/21/16 09:20

Method: 8260B - Volatile Orga	nic Compounds ((GC/MS) (C	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.00	0.140	ug/L			07/22/16 16:51	1
Toluene	ND		1.00	0.170	ug/L			07/22/16 16:51	1
trans-1,2-Dichloroethene	ND		1.00	0.230	ug/L			07/22/16 16:51	1
trans-1,3-Dichloropropene	ND		1.00	0.170	ug/L			07/22/16 16:51	1
Trichloroethene	ND		1.00	0.200	ug/L			07/22/16 16:51	1
Trichlorofluoromethane	ND	*	1.00	0.210	ug/L			07/22/16 16:51	1
Vinyl chloride	ND		1.00	0.180	ug/L			07/22/16 16:51	1
Xylenes, Total	ND		3.00	0.580	ug/L			07/22/16 16:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 130			_		07/22/16 16:51	1
4-Bromofluorobenzene (Surr)	111		70 - 130					07/22/16 16:51	1
Dibromofluoromethane (Surr)	94		70 - 130					07/22/16 16:51	1
Toluene-d8 (Surr)	102		70 - 130					07/22/16 16:51	1

Lab Sample ID: 490-108145-15 **Client Sample ID: Rinsate**

Date Collected: 07/19/16 19:45 Matrix: Water

Date Received: 07/21/16 09:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	1.00	0.150	ug/L			07/22/16 17:19	1
1,1,1-Trichloroethane	ND	1.00	0.190	ug/L			07/22/16 17:19	1
1,1,2,2-Tetrachloroethane	ND	1.00	0.190	ug/L			07/22/16 17:19	1
1,1,2-Trichloroethane	ND	1.00	0.190	ug/L			07/22/16 17:19	1
1,1-Dichloroethane	ND	1.00	0.240	ug/L			07/22/16 17:19	1
1,1-Dichloroethene	ND	1.00	0.250	ug/L			07/22/16 17:19	1
1,1-Dichloropropene	ND	1.00	0.200	ug/L			07/22/16 17:19	1
1,2,3-Trichlorobenzene	ND	1.00	0.230	ug/L			07/22/16 17:19	1
1,2,3-Trichloropropane	ND	1.00	0.230	ug/L			07/22/16 17:19	1
1,2,4-Trichlorobenzene	ND	1.00	0.200	ug/L			07/22/16 17:19	1
1,2,4-Trimethylbenzene	ND	1.00	0.170	ug/L			07/22/16 17:19	1
1,2-Dibromo-3-Chloropropane	ND	10.0	0.940	ug/L			07/22/16 17:19	1
1,2-Dibromoethane (EDB)	ND	1.00	0.210	ug/L			07/22/16 17:19	1
1,2-Dichlorobenzene	ND	1.00	0.190	ug/L			07/22/16 17:19	1
1,2-Dichloroethane	ND	1.00	0.200	ug/L			07/22/16 17:19	1
1,2-Dichloropropane	ND	1.00	0.250	ug/L			07/22/16 17:19	1
1,3,5-Trimethylbenzene	ND	1.00	0.170	ug/L			07/22/16 17:19	1
1,3-Dichlorobenzene	ND	1.00	0.180	ug/L			07/22/16 17:19	1
1,3-Dichloropropane	ND	1.00	0.190	ug/L			07/22/16 17:19	1
1,4-Dichlorobenzene	ND	1.00	0.170	ug/L			07/22/16 17:19	1
2,2-Dichloropropane	ND	1.00	0.160	ug/L			07/22/16 17:19	1
2-Butanone (MEK)	ND	50.0	2.64	ug/L			07/22/16 17:19	1
2-Chlorotoluene	ND	1.00	0.180	ug/L			07/22/16 17:19	1
2-Hexanone	ND	10.0	1.28	ug/L			07/22/16 17:19	1
4-Chlorotoluene	ND	1.00	0.170	ug/L			07/22/16 17:19	1
4-Methyl-2-pentanone (MIBK)	ND	10.0	0.810	ug/L			07/22/16 17:19	1
Acetone	ND	25.0	2.66	ug/L			07/22/16 17:19	1
Benzene	ND	1.00	0.200	ug/L			07/22/16 17:19	1
Bromobenzene	ND	1.00	0.210	ug/L			07/22/16 17:19	1

TestAmerica Nashville

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Client Sample ID: Rinsate

Date Collected: 07/19/16 19:45 Date Received: 07/21/16 09:20

Nickel

Lab Sample ID: 490-108145-15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromochloromethane	ND		1.00	0.150	ug/L			07/22/16 17:19	
Bromodichloromethane	ND		1.00	0.170	ug/L			07/22/16 17:19	
Bromoform	ND		1.00	0.290	ug/L			07/22/16 17:19	
Bromomethane	ND		1.00	0.350	ug/L			07/22/16 17:19	
Carbon disulfide	ND		1.00	0.220	ug/L			07/22/16 17:19	
Carbon tetrachloride	ND		1.00	0.180	ug/L			07/22/16 17:19	
Chlorobenzene	ND		1.00	0.180	ug/L			07/22/16 17:19	
Chlorodibromomethane	ND		1.00	0.250	ug/L			07/22/16 17:19	
Chloroethane	ND		1.00	0.360	ug/L			07/22/16 17:19	
Chloroform	ND		1.00	0.230	ug/L			07/22/16 17:19	
Chloromethane	ND		1.00	0.360	ug/L			07/22/16 17:19	
cis-1,2-Dichloroethene	ND		1.00	0.210	ug/L			07/22/16 17:19	
cis-1,3-Dichloropropene	ND		1.00	0.170	ug/L			07/22/16 17:19	
Dibromomethane	ND		1.00	0.450				07/22/16 17:19	
Dichlorodifluoromethane	ND		1.00	0.170	-			07/22/16 17:19	
Ethylbenzene	ND		1.00	0.190				07/22/16 17:19	
Hexachlorobutadiene	ND		2.00	0.380				07/22/16 17:19	
Isopropylbenzene	ND		1.00	0.330	_			07/22/16 17:19	
Methyl tert-butyl ether	ND		1.00	0.170				07/22/16 17:19	
Methylene Chloride	ND		5.00		ug/L			07/22/16 17:19	
Naphthalene	ND		5.00	0.210				07/22/16 17:19	
n-Butylbenzene	ND		1.00	0.240				07/22/16 17:19	
N-Propylbenzene	ND		1.00	0.170				07/22/16 17:19	
p-Isopropyltoluene	ND		1.00	0.170				07/22/16 17:19	
sec-Butylbenzene	ND		1.00	0.170	-			07/22/16 17:19	
Styrene	ND		1.00	0.280				07/22/16 17:19	
tert-Butylbenzene	ND		1.00	0.170	-			07/22/16 17:19	
Tetrachloroethene	ND		1.00	0.140				07/22/16 17:19	
Toluene	ND		1.00	0.170				07/22/16 17:19	
trans-1,2-Dichloroethene	ND		1.00	0.230				07/22/16 17:19	
trans-1,3-Dichloropropene	ND		1.00	0.170				07/22/16 17:19	
Trichloroethene	ND		1.00	0.200				07/22/16 17:19	
Trichlorofluoromethane	ND	*	1.00	0.210				07/22/16 17:19	
Vinyl chloride	ND		1.00	0.180	_			07/22/16 17:19	
Xylenes, Total	ND		3.00	0.580				07/22/16 17:19	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	92		70 - 130			-		07/22/16 17:19	
4-Bromofluorobenzene (Surr)	112		70 - 130					07/22/16 17:19	
Dibromofluoromethane (Surr)	94		70 - 130					07/22/16 17:19	
Toluene-d8 (Surr)	102		70 - 130					07/22/16 17:19	
- Method: 9056A - Anions, Ion Chror	natography								
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Fluoride	ND		0.100	0.0100	mg/L			07/23/16 03:56	
Method: 6020A - Metals (ICP/MS)	Poor!4	Qualifier	RL	MDI	Unit		Droporod	Anglyzod	Dil Fa
Analyte	Result	Quanner	- KL	INIDL	Unit	D	Prepared	Analyzed	יווע ra

TestAmerica Nashville

07/26/16 22:12

07/26/16 08:35

0.00200

0.000500 mg/L

0.000790 J

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

Lab Sample ID: 490-108145-16

TestAmerica Job ID: 490-108145-1

SDG: 27-225273.00/00/1

Matrix: Water

Client Sample ID: Field Duplicate

Date Collected: 07/19/16 00:01 Date Received: 07/21/16 09:20

Analyte	Result Qualifier	RL	MDI	Linit	D			
4.4.4.0. T. (L L		NL	MDL			Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	1.00	0.150	ug/L			07/22/16 20:39	1
1,1,1-Trichloroethane	ND	1.00	0.190	ug/L			07/22/16 20:39	1
1,1,2,2-Tetrachloroethane	ND	1.00	0.190	ug/L			07/22/16 20:39	1
1,1,2-Trichloroethane	ND	1.00	0.190	ug/L			07/22/16 20:39	1
1,1-Dichloroethane	ND	1.00	0.240	ug/L			07/22/16 20:39	1
1,1-Dichloroethene	ND	1.00	0.250	ug/L			07/22/16 20:39	1
1,1-Dichloropropene	ND	1.00	0.200	ug/L			07/22/16 20:39	1
1,2,3-Trichlorobenzene	ND	1.00	0.230	ug/L			07/22/16 20:39	•
1,2,3-Trichloropropane	ND	1.00	0.230	ug/L			07/22/16 20:39	1
1,2,4-Trichlorobenzene	ND	1.00	0.200	ug/L			07/22/16 20:39	
1,2,4-Trimethylbenzene	ND	1.00	0.170	ug/L			07/22/16 20:39	
1,2-Dibromo-3-Chloropropane	ND	10.0	0.940	ug/L			07/22/16 20:39	1
1,2-Dibromoethane (EDB)	ND	1.00	0.210	ug/L			07/22/16 20:39	1
1,2-Dichlorobenzene	ND	1.00	0.190	ug/L			07/22/16 20:39	1
1,2-Dichloroethane	ND	1.00	0.200	ug/L			07/22/16 20:39	1
1,2-Dichloropropane	ND	1.00	0.250	ug/L			07/22/16 20:39	,
1,3,5-Trimethylbenzene	ND	1.00		-			07/22/16 20:39	
1,3-Dichlorobenzene	ND	1.00	0.180	-			07/22/16 20:39	1
1,3-Dichloropropane	ND	1.00	0.190				07/22/16 20:39	_. 1
1,4-Dichlorobenzene	ND	1.00	0.170				07/22/16 20:39	
2,2-Dichloropropane	ND	1.00	0.160	-			07/22/16 20:39	1
2-Butanone (MEK)	ND	50.0		ug/L			07/22/16 20:39	1
2-Chlorotoluene	ND	1.00	0.180				07/22/16 20:39	1
2-Hexanone	ND	10.0		ug/L			07/22/16 20:39	1
4-Chlorotoluene	ND	1.00	0.170				07/22/16 20:39	1
4-Methyl-2-pentanone (MIBK)	ND	10.0	0.810	_			07/22/16 20:39	1
Acetone	ND	25.0		ug/L			07/22/16 20:39	1
Benzene	ND	1.00	0.200				07/22/16 20:39	
Bromobenzene	ND	1.00	0.210	_			07/22/16 20:39	1
Bromochloromethane	ND	1.00	0.150	-			07/22/16 20:39	1
Bromodichloromethane	ND	1.00	0.170				07/22/16 20:39	
Bromoform	ND	1.00	0.290	_			07/22/16 20:39	1
Bromomethane	ND	1.00	0.350				07/22/16 20:39	1
Carbon disulfide	ND	1.00	0.220	.			07/22/16 20:39	· · · · · .
	ND			_				,
Carbon tetrachloride		1.00	0.180				07/22/16 20:39	
Chlorobenzene Chlorodibromomethane	ND ND	1.00	0.180				07/22/16 20:39	1
	ND	1.00	0.250				07/22/16 20:39	1
Chloroethane	ND	1.00	0.360	•			07/22/16 20:39	1
Chloroform	ND	1.00	0.230				07/22/16 20:39	1
Chloromethane	ND	1.00	0.360	-			07/22/16 20:39	1
cis-1,2-Dichloroethene	ND	1.00	0.210	_			07/22/16 20:39	1
cis-1,3-Dichloropropene	ND	1.00	0.170				07/22/16 20:39	
Dibromomethane	ND	1.00	0.450	_			07/22/16 20:39	•
Dichlorodifluoromethane	ND	1.00	0.170	_			07/22/16 20:39	,
Ethylbenzene	ND	1.00	0.190				07/22/16 20:39	1
Hexachlorobutadiene	ND	2.00	0.380				07/22/16 20:39	1
Isopropylbenzene	ND	1.00	0.330				07/22/16 20:39	1
Methyl tert-butyl ether	ND	1.00	0.170	ug/L			07/22/16 20:39	1
Methylene Chloride	ND	5.00	1.00	ug/L			07/22/16 20:39	

TestAmerica Nashville

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Client Sample ID: Field Duplicate

Date Collected: 07/19/16 00:01 Date Received: 07/21/16 09:20

Nickel

Lab Sample ID: 490-108145-16

07/26/16 08:35

07/26/16 22:18

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		5.00	0.210	ug/L			07/22/16 20:39	1
n-Butylbenzene	ND		1.00	0.240	ug/L			07/22/16 20:39	1
N-Propylbenzene	ND		1.00	0.170	ug/L			07/22/16 20:39	1
p-Isopropyltoluene	ND		1.00	0.170	ug/L			07/22/16 20:39	1
sec-Butylbenzene	ND		1.00	0.170	ug/L			07/22/16 20:39	1
Styrene	ND		1.00	0.280	ug/L			07/22/16 20:39	1
tert-Butylbenzene	ND		1.00	0.170	ug/L			07/22/16 20:39	1
Tetrachloroethene	ND		1.00	0.140	ug/L			07/22/16 20:39	1
Toluene	ND		1.00	0.170	ug/L			07/22/16 20:39	1
trans-1,2-Dichloroethene	ND		1.00	0.230	ug/L			07/22/16 20:39	1
trans-1,3-Dichloropropene	ND		1.00	0.170	ug/L			07/22/16 20:39	1
Trichloroethene	ND		1.00	0.200	ug/L			07/22/16 20:39	1
Trichlorofluoromethane	ND	*	1.00	0.210	ug/L			07/22/16 20:39	1
Vinyl chloride	ND		1.00	0.180	ug/L			07/22/16 20:39	1
Xylenes, Total	ND		3.00	0.580	ug/L			07/22/16 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 130			-		07/22/16 20:39	1
4-Bromofluorobenzene (Surr)	109		70 - 130					07/22/16 20:39	1
Dibromofluoromethane (Surr)	97		70 - 130					07/22/16 20:39	1
Toluene-d8 (Surr)	103		70 - 130					07/22/16 20:39	1
Method: 9056A - Anions, Ion C	hromatography								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.0175	J	0.100	0.0100	mg/L			07/23/16 04:13	1
Method: 6020A - Metals (ICP/M	IS)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00200

0.000500 mg/L

0.00173 J

QC Sample Results

Client: Environmental Compliance Services, Inc.

TestAmerica Job ID: 490-108145-1 Project/Site: Former Trent Tube SDG: 27-225273.00/00/1

MB MB

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-357218/7 **Matrix: Water**

Ethylbenzene

Hexachlorobutadiene

Methyl tert-butyl ether

Isopropylbenzene

Analysis Batch: 357218

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.00	0.150	ug/L			07/22/16 15:44	1
1,1,1-Trichloroethane	ND		1.00	0.190	ug/L			07/22/16 15:44	1
1,1,2,2-Tetrachloroethane	ND		1.00	0.190	ug/L			07/22/16 15:44	1
1,1,2-Trichloroethane	ND		1.00	0.190	ug/L			07/22/16 15:44	1
1,1-Dichloroethane	ND		1.00	0.240	ug/L			07/22/16 15:44	1
1,1-Dichloroethene	ND		1.00	0.250	ug/L			07/22/16 15:44	1
1,1-Dichloropropene	ND		1.00	0.200	ug/L			07/22/16 15:44	1
1,2,3-Trichlorobenzene	ND		1.00	0.230	ug/L			07/22/16 15:44	1
1,2,3-Trichloropropane	ND		1.00	0.230	ug/L			07/22/16 15:44	1
1,2,4-Trichlorobenzene	ND		1.00	0.200	ug/L			07/22/16 15:44	1
1,2,4-Trimethylbenzene	ND		1.00	0.170	ug/L			07/22/16 15:44	1
1,2-Dibromo-3-Chloropropane	ND		10.0	0.940	ug/L			07/22/16 15:44	1
1,2-Dibromoethane (EDB)	ND		1.00	0.210	ug/L			07/22/16 15:44	1
1,2-Dichlorobenzene	ND		1.00	0.190	ug/L			07/22/16 15:44	1
1,2-Dichloroethane	ND		1.00	0.200	ug/L			07/22/16 15:44	1
1,2-Dichloropropane	ND		1.00	0.250	ug/L			07/22/16 15:44	1
1,3,5-Trimethylbenzene	ND		1.00	0.170	ug/L			07/22/16 15:44	1
1,3-Dichlorobenzene	ND		1.00	0.180	ug/L			07/22/16 15:44	1
1,3-Dichloropropane	ND		1.00	0.190	ug/L			07/22/16 15:44	1
1,4-Dichlorobenzene	ND		1.00	0.170	ug/L			07/22/16 15:44	1
2,2-Dichloropropane	ND		1.00	0.160	_			07/22/16 15:44	1
2-Butanone (MEK)	ND		50.0	2.64				07/22/16 15:44	1
2-Chlorotoluene	ND		1.00	0.180				07/22/16 15:44	1
2-Hexanone	ND		10.0	1.28	-			07/22/16 15:44	1
4-Chlorotoluene	ND		1.00	0.170				07/22/16 15:44	1
4-Methyl-2-pentanone (MIBK)	ND		10.0	0.810	_			07/22/16 15:44	1
Acetone	ND		25.0	2.66	_			07/22/16 15:44	1
Benzene	ND		1.00	0.200				07/22/16 15:44	1
Bromobenzene	ND		1.00	0.210	-			07/22/16 15:44	1
Bromochloromethane	ND		1.00	0.150				07/22/16 15:44	1
Bromodichloromethane	ND		1.00	0.170				07/22/16 15:44	1
Bromoform	ND		1.00	0.290	_			07/22/16 15:44	1
Bromomethane	ND		1.00	0.350				07/22/16 15:44	1
Carbon disulfide	ND		1.00	0.220				07/22/16 15:44	
Carbon tetrachloride	ND		1.00	0.180	_			07/22/16 15:44	1
Chlorobenzene	ND		1.00	0.180				07/22/16 15:44	1
Chlorodibromomethane	ND		1.00	0.250				07/22/16 15:44	
Chloroethane	ND		1.00	0.360				07/22/16 15:44	1
Chloroform	ND		1.00	0.230	_			07/22/16 15:44	1
Chloromethane	ND		1.00	0.360				07/22/16 15:44	
cis-1,2-Dichloroethene	ND		1.00	0.210	-			07/22/16 15:44	1
cis-1,3-Dichloropropene	ND		1.00	0.210	_			07/22/16 15:44	1
Dibromomethane	ND		1.00	0.170				07/22/16 15:44	1
Dichlorodifluoromethane	ND ND		1.00		-			07/22/16 15:44	1
Dichiorodiliuorometriane	ND		1.00	0.170	ug/L			01122110 13.44	ı

TestAmerica Nashville

8/4/2016

07/22/16 15:44

07/22/16 15:44

07/22/16 15:44

07/22/16 15:44

1.00

2.00

1.00

1.00

0.190 ug/L

0.380 ug/L

0.330 ug/L

0.170 ug/L

ND

ND

ND

ND

TestAmerica Job ID: 490-108145-1

Client: Environmental Compliance Services, Inc. Project/Site: Former Trent Tube SDG: 27-225273.00/00/1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-357218/7

Matrix: Water

Analysis Batch: 357218

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND		5.00	1.00	ug/L			07/22/16 15:44	1
Naphthalene	ND		5.00	0.210	ug/L			07/22/16 15:44	1
n-Butylbenzene	ND		1.00	0.240	ug/L			07/22/16 15:44	1
N-Propylbenzene	ND		1.00	0.170	ug/L			07/22/16 15:44	1
p-Isopropyltoluene	ND		1.00	0.170	ug/L			07/22/16 15:44	1
sec-Butylbenzene	ND		1.00	0.170	ug/L			07/22/16 15:44	1
Styrene	ND		1.00	0.280	ug/L			07/22/16 15:44	1
tert-Butylbenzene	ND		1.00	0.170	ug/L			07/22/16 15:44	1
Tetrachloroethene	ND		1.00	0.140	ug/L			07/22/16 15:44	1
Toluene	ND		1.00	0.170	ug/L			07/22/16 15:44	1
trans-1,2-Dichloroethene	ND		1.00	0.230	ug/L			07/22/16 15:44	1
trans-1,3-Dichloropropene	ND		1.00	0.170	ug/L			07/22/16 15:44	1
Trichloroethene	ND		1.00	0.200	ug/L			07/22/16 15:44	1
Trichlorofluoromethane	ND		1.00	0.210	ug/L			07/22/16 15:44	1
Vinyl chloride	ND		1.00	0.180	ug/L			07/22/16 15:44	1
Xylenes, Total	ND		3.00	0.580	ug/L			07/22/16 15:44	1

мв мв

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	70 - 130		07/22/16 15:44	1
4-Bromofluorobenzene (Surr)	109	70 - 130		07/22/16 15:44	1
Dibromofluoromethane (Surr)	95	70 - 130		07/22/16 15:44	1
Toluene-d8 (Surr)	102	70 - 130		07/22/16 15:44	1

Lab Sample ID: LCS 490-357218/3

Matrix: Water

Analysis Batch: 357218

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	20.0	17.14		ug/L		86	70 - 130
1,1,1-Trichloroethane	20.0	15.95		ug/L		80	70 - 135
1,1,2,2-Tetrachloroethane	20.0	18.79		ug/L		94	69 - 131
1,1,2-Trichloroethane	20.0	18.23		ug/L		91	70 - 130
1,1-Dichloroethane	20.0	19.31		ug/L		97	70 - 130
1,1-Dichloroethene	20.0	19.13		ug/L		96	70 - 132
1,1-Dichloropropene	20.0	17.84		ug/L		89	70 - 130
1,2,3-Trichlorobenzene	20.0	16.87		ug/L		84	46 - 150
1,2,3-Trichloropropane	20.0	17.90		ug/L		90	70 - 131
1,2,4-Trichlorobenzene	20.0	17.12		ug/L		86	58 ₋ 147
1,2,4-Trimethylbenzene	20.0	20.51		ug/L		103	70 - 130
1,2-Dibromo-3-Chloropropane	20.0	15.65		ug/L		78	45 - 138
1,2-Dibromoethane (EDB)	20.0	17.85		ug/L		89	70 - 130
1,2-Dichlorobenzene	20.0	19.11		ug/L		96	70 - 130
1,2-Dichloroethane	20.0	17.19		ug/L		86	70 - 130
1,2-Dichloropropane	20.0	20.13		ug/L		101	70 - 130
1,3,5-Trimethylbenzene	20.0	20.51		ug/L		103	70 - 130
1,3-Dichlorobenzene	20.0	19.27		ug/L		96	70 - 130
1,3-Dichloropropane	20.0	18.38		ug/L		92	70 - 130
1,4-Dichlorobenzene	20.0	18.87		ug/L		94	70 - 130

TestAmerica Nashville

Page 18 of 41

8/4/2016

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1

SDG: 27-225273.00/00/1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-357218/3

Matrix: Water

Analysis Batch: 357218

Client Sample ID: Lab Control Sample Prep Type: Total/NA

-	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
2,2-Dichloropropane	20.0	15.74	ug/L	79	60 - 143
2-Butanone (MEK)	100	74.91	ug/L	75	55 ₋ 143
2-Chlorotoluene	20.0	18.49	ug/L	92	70 - 130
2-Hexanone	100	87.10	ug/L	87	54 - 142
4-Chlorotoluene	20.0	20.60	ug/L	103	70 - 130
4-Methyl-2-pentanone (MIBK)	100	88.82	ug/L	89	60 - 137
Acetone	100	78.06	ug/L	78	39 _ 150
Benzene	20.0	18.96	ug/L	95	70 - 130
Bromobenzene	20.0	20.17	ug/L	101	70 - 130
Bromochloromethane	20.0	17.23	ug/L	86	70 ₋ 130
Bromodichloromethane	20.0	18.62	ug/L	93	70 - 130
Bromoform	20.0	15.57	ug/L	78	70 ₋ 137
Bromomethane	20.0	19.28	ug/L	96	53 ₋ 150
Carbon disulfide	20.0	16.66	ug/L	83	64 - 135
Carbon tetrachloride	20.0	15.93	ug/L	80	70 - 147
Chlorobenzene	20.0	19.27	ug/L	96	70 - 130
Chlorodibromomethane	20.0	16.53	ug/L	83	70 - 133
Chloroethane	20.0	18.17	ug/L	91	60 - 138
Chloroform	20.0	17.56	ug/L	88	70 - 130
Chloromethane	20.0	17.84	ug/L	89	33 - 150
cis-1,2-Dichloroethene	20.0	18.75	ug/L	94	70 - 130
cis-1,3-Dichloropropene	20.0	17.86	ug/L	89	70 ₋ 133
Dibromomethane	20.0	17.89	ug/L	89	70 - 130
Dichlorodifluoromethane	20.0	17.29	ug/L	86	48 - 150
Ethylbenzene	20.0	19.49	ug/L	97	70 ₋ 130
Hexachlorobutadiene	20.0	17.66	ug/L	88	70 - 138
Isopropylbenzene	20.0	19.78	ug/L	99	70 ₋ 131
Methyl tert-butyl ether	20.0	16.06	ug/L	80	70 - 130
Methylene Chloride	20.0	18.19	ug/L	91	70 - 130
Naphthalene	20.0	18.44	ug/L	92	54 ₋ 150
n-Butylbenzene	20.0	18.96	ug/L	95	68 - 137
N-Propylbenzene	20.0	19.21	ug/L	96	70 - 134
p-Isopropyltoluene	20.0	19.21	ug/L	96	66 - 130
sec-Butylbenzene	20.0	19.39	ug/L	97	70 ₋ 135
Styrene	20.0	19.28	ug/L	96	70 - 130
tert-Butylbenzene	20.0	19.87	ug/L	99	70 - 130
Tetrachloroethene	20.0	19.09	ug/L	95	70 ₋ 130
Toluene	20.0	19.54	ug/L	98	70 - 130
trans-1,2-Dichloroethene	20.0	19.65	ug/L	98	70 ₋ 130
trans-1,3-Dichloropropene	20.0	16.61	ug/L	83	63 - 142
Trichloroethene	20.0	19.41	ug/L	97	70 - 130
Trichlorofluoromethane	20.0	17.30	ug/L	86	59 ₋ 150
Vinyl chloride	20.0	19.76	ug/L	99	57 ₋ 137
Xylenes, Total	40.0	39.13	ug/L	98	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95	70 - 130
4-Bromofluorobenzene (Surr)	112	70 - 130

TestAmerica Nashville

_

5

7

9

10

12

QC Sample Results

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-357218/3

Lab Sample ID: LCSD 490-357218/4

Matrix: Water

Analysis Batch: 357218

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	89		70 - 130
Toluene-d8 (Surr)	101		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 357218

	Spike	LCSD	LCSD				%Rec.		RPI
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
1,1,1,2-Tetrachloroethane	20.0	17.28		ug/L		86	70 - 130	1	1:
1,1,1-Trichloroethane	20.0	15.75		ug/L		79	70 - 135	1	1
1,1,2,2-Tetrachloroethane	20.0	18.45		ug/L		92	69 - 131	2	1
1,1,2-Trichloroethane	20.0	18.29		ug/L		91	70 - 130	0	1
1,1-Dichloroethane	20.0	19.09		ug/L		95	70 - 130	1	1
1,1-Dichloroethene	20.0	19.71		ug/L		99	70 - 132	3	2
1,1-Dichloropropene	20.0	17.54		ug/L		88	70 - 130	2	1
1,2,3-Trichlorobenzene	20.0	17.32		ug/L		87	46 - 150	3	1
1,2,3-Trichloropropane	20.0	17.68		ug/L		88	70 - 131	1	1
1,2,4-Trichlorobenzene	20.0	17.22		ug/L		86	58 - 147	1	1
1,2,4-Trimethylbenzene	20.0	20.33		ug/L		102	70 - 130	1	1
1,2-Dibromo-3-Chloropropane	20.0	15.34		ug/L		77	45 - 138	2	1
1,2-Dibromoethane (EDB)	20.0	17.91		ug/L		90	70 - 130	0	1
1,2-Dichlorobenzene	20.0	19.09		ug/L		95	70 - 130	0	1:
1,2-Dichloroethane	20.0	17.49		ug/L		87	70 - 130	2	1
1,2-Dichloropropane	20.0	20.02		ug/L		100	70 - 130	1	1:
1,3,5-Trimethylbenzene	20.0	20.03		ug/L		100	70 - 130	2	1
1,3-Dichlorobenzene	20.0	19.50		ug/L		97	70 - 130	1	1
1,3-Dichloropropane	20.0	18.43		ug/L		92	70 - 130	0	1:
1,4-Dichlorobenzene	20.0	18.87		ug/L		94	70 - 130	0	1:
2,2-Dichloropropane	20.0	15.20		ug/L		76	60 - 143	3	2
2-Butanone (MEK)	100	76.64		ug/L		77	55 - 143	2	1
2-Chlorotoluene	20.0	18.09		ug/L		90	70 - 130	2	1:
2-Hexanone	100	87.31		ug/L		87	54 - 142	0	1
4-Chlorotoluene	20.0	20.29		ug/L		101	70 - 130	2	1:
4-Methyl-2-pentanone (MIBK)	100	88.67		ug/L		89	60 - 137	0	2
Acetone	100	76.13		ug/L		76	39 - 150	3	2
Benzene	20.0	19.04		ug/L		95	70 - 130	0	1:
Bromobenzene	20.0	20.08		ug/L		100	70 - 130	0	1
Bromochloromethane	20.0	16.61		ug/L		83	70 - 130	4	1
Bromodichloromethane	20.0	18.36		ug/L		92	70 - 130	1	1
Bromoform	20.0	15.64		ug/L		78	70 - 137	0	1-
Bromomethane	20.0	19.11		ug/L		96	53 - 150	1	1
Carbon disulfide	20.0	16.69		ug/L		83	64 - 135	0	1
Carbon tetrachloride	20.0	15.39		ug/L		77	70 - 147	3	1
Chlorobenzene	20.0	19.43		ug/L		97	70 - 130	1	1:
Chlorodibromomethane	20.0	16.96		ug/L		85	70 - 133	3	 1:
Chloroethane	20.0	18.07		ug/L		90	60 - 138	1	1:
Chloroform	20.0	17.51		ug/L		88	70 - 130	0	1
Chloromethane	20.0	17.85		ug/L		89	33 - 150		<u>.</u> 2

TestAmerica Nashville

Page 20 of 41

8/4/2016

Project/Site: Former Trent Tube

Client: Environmental Compliance Services, Inc. TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 490-357218/4

Matrix: Water

Analysis Batch: 357218

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	20.0	18.39		ug/L		92	70 - 130	2	15
cis-1,3-Dichloropropene	20.0	17.77		ug/L		89	70 - 133	0	15
Dibromomethane	20.0	17.47		ug/L		87	70 - 130	2	14
Dichlorodifluoromethane	20.0	17.11		ug/L		86	48 - 150	1	16
Ethylbenzene	20.0	19.63		ug/L		98	70 - 130	1	12
Hexachlorobutadiene	20.0	17.54		ug/L		88	70 - 138	1	16
Isopropylbenzene	20.0	20.01		ug/L		100	70 - 131	1	13
Methyl tert-butyl ether	20.0	16.51		ug/L		83	70 - 130	3	16
Methylene Chloride	20.0	18.18		ug/L		91	70 - 130	0	15
Naphthalene	20.0	18.53		ug/L		93	54 - 150	0	15
n-Butylbenzene	20.0	18.54		ug/L		93	68 - 137	2	14
N-Propylbenzene	20.0	19.08		ug/L		95	70 - 134	1	14
p-Isopropyltoluene	20.0	19.06		ug/L		95	66 - 130	1	13
sec-Butylbenzene	20.0	19.06		ug/L		95	70 - 135	2	14
Styrene	20.0	19.41		ug/L		97	70 - 130	1	12
tert-Butylbenzene	20.0	19.75		ug/L		99	70 - 130	1	14
Tetrachloroethene	20.0	18.72		ug/L		94	70 - 130	2	17
Toluene	20.0	19.54		ug/L		98	70 - 130	0	13
trans-1,2-Dichloroethene	20.0	19.65		ug/L		98	70 - 130	0	15
trans-1,3-Dichloropropene	20.0	16.65		ug/L		83	63 - 142	0	13
Trichloroethene	20.0	19.08		ug/L		95	70 - 130	2	14
Trichlorofluoromethane	20.0	12.23	*	ug/L		61	59 - 150	34	22
Vinyl chloride	20.0	19.41		ug/L		97	57 - 137	2	15
Xylenes, Total	40.0	39.50		ug/L		99	70 - 132	1	11

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	112		70 - 130
Dibromofluoromethane (Surr)	91		70 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: 490-108128-A-1 MS

Matrix: Water

Analysis Batch: 357218

Client Sample ID: N	iatrix Spike
Prep Typ	e: Total/NA

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	ND		20.0	17.18		ug/L		86	70 - 131	
1,1,1-Trichloroethane	ND		20.0	16.34		ug/L		82	68 - 144	
1,1,2,2-Tetrachloroethane	ND		20.0	19.57		ug/L		98	56 ₋ 145	
1,1,2-Trichloroethane	ND		20.0	19.38		ug/L		97	70 - 130	
1,1-Dichloroethane	0.516	J	20.0	20.01		ug/L		97	61 ₋ 139	
1,1-Dichloroethene	ND		20.0	20.35		ug/L		102	54 ₋ 150	
1,1-Dichloropropene	ND		20.0	18.24		ug/L		91	54 ₋ 150	
1,2,3-Trichlorobenzene	ND		20.0	15.63		ug/L		78	36 _ 150	
1,2,3-Trichloropropane	ND		20.0	17.62		ug/L		88	65 ₋ 131	
1,2,4-Trichlorobenzene	ND		20.0	16.11		ug/L		81	47 ₋ 147	
1,2,4-Trimethylbenzene	ND		20.0	20.00		ug/L		100	64 ₋ 136	
1,2-Dibromo-3-Chloropropane	ND		20.0	15.09		ug/L		75	38 - 138	

TestAmerica Nashville

Page 21 of 41

QC Sample Results

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-108128-A-1 MS

Matrix: Water

Client	Sample ID:	Matrix	Spike
	Prep Ty	/pe: Tot	al/NA

Analysis Batch: 357218	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND		20.0	19.02		ug/L		95	65 _ 137	
1,2-Dichlorobenzene	ND		20.0	19.32		ug/L		97	70 - 130	
1,2-Dichloroethane	ND		20.0	18.21		ug/L		91	64 - 136	
1,2-Dichloropropane	ND		20.0	20.93		ug/L		105	67 _ 130	
1,3,5-Trimethylbenzene	ND		20.0	20.19		ug/L		101	69 _ 139	
1,3-Dichlorobenzene	ND		20.0	19.32		ug/L		97	68 - 131	
1,3-Dichloropropane	ND		20.0	19.41		ug/L		97	70 _ 130	
1,4-Dichlorobenzene	ND		20.0	19.11		ug/L		96	70 ₋ 130	
2,2-Dichloropropane	ND		20.0	14.46		ug/L		72	50 - 146	
2-Butanone (MEK)	ND		100	82.51		ug/L		83	50 _ 143	
2-Chlorotoluene	ND		20.0	18.22		ug/L		91	67 - 138	
2-Hexanone	ND		100	93.71		ug/L		94	44 - 150	
4-Chlorotoluene	ND		20.0	20.65		ug/L		103	69 - 138	
4-Methyl-2-pentanone (MIBK)	ND		100	96.22		ug/L		96	50 - 140	
Acetone	ND		100	71.90		ug/L		72	39 - 150	
Benzene	0.224		20.0	19.25		ug/L		95	55 - 147	
Bromobenzene	ND	-	20.0	20.19		ug/L		101	60 - 133	
Bromochloromethane	ND		20.0	17.86		ug/L		89	59 ₋ 132	
Bromodichloromethane	ND		20.0	18.79		ug/L		94	70 - 140	
Bromoform	ND		20.0	15.78		ug/L		79	53 - 150	
Bromomethane	ND		20.0	17.46		ug/L		87	30 - 150	
Carbon disulfide	ND		20.0	16.74		ug/L		84	35 - 150	
Carbon tetrachloride	ND		20.0	16.58		ug/L		83	56 ₋ 150	
Chlorobenzene	ND		20.0	19.68		ug/L		98	70 - 130	
Chlorodibromomethane	ND		20.0	17.60		ug/L		88	66 - 140	
Chloroethane	ND		20.0	20.27		ug/L		101	58 - 141	
Chloroform	ND		20.0	17.67		ug/L		88	66 - 138	
Chloromethane	ND		20.0	20.28		ug/L		101	10 - 150	
cis-1,2-Dichloroethene	26.7		20.0	46.78		ug/L		100	68 - 131	
cis-1,3-Dichloropropene	ND		20.0	18.31		ug/L		92	70 - 133	
Dibromomethane	ND		20.0	18.56		ug/L		93	70 - 130	
Dichlorodifluoromethane	ND		20.0	20.15		ug/L ug/L		101	10 - 150	
Ethylbenzene	ND		20.0	19.73		ug/L ug/L		99	65 - 139	
Hexachlorobutadiene	ND		20.0	16.66		ug/L		83	61 - 141	
Isopropylbenzene	ND		20.0	20.94		ug/L ug/L		105	70 - 137	
Methyl tert-butyl ether	0.724	1	20.0	18.07		ug/L ug/L		87	55 - 141	
Methylene Chloride	ND		20.0	18.59		ug/L		93	64 - 130	
Naphthalene	ND		20.0	17.30		ug/L ug/L		86	32 - 150	
n-Butylbenzene	ND		20.0	18.67		ug/L ug/L		93	61 - 141	
N-Propylbenzene	ND		20.0	19.27		ug/L		96	53 - 150	
	ND		20.0	19.32				97	66 - 137	
p-IsopropyItoluene sec-ButyIbenzene	ND ND		20.0	19.52		ug/L ug/L		98	55 ₋ 136	
				20.25					70 - 130	
Styrene tert-Butylbenzene	ND ND		20.0 20.0	19.99		ug/L		101 100	70 - 130 70 - 138	
			20.0			ug/L				
Tetrachloroethene	1.19			20.97		ug/L		99	57 - 138	
Toluene trans 1.2 Dichloroothene	ND 0.801		20.0	19.95		ug/L		100	64 - 136 50 - 143	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.801 ND	J	20.0 20.0	20.95 17.29		ug/L ug/L		101 86	59 ₋ 143 63 ₋ 142	

TestAmerica Nashville

8/4/2016

2

3

7

9

1 U

QC Sample Results

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-108128-A-1 MS

Matrix: Water

Analysis Batch: 357218

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichloroethene	3.72		20.0	23.99		ug/L		101	63 - 135	
Trichlorofluoromethane	ND	F2 *	20.0	19.70		ug/L		98	44 - 150	
Vinyl chloride	3.76		20.0	27.49		ug/L		119	57 ₋ 150	
Xylenes, Total	ND		40.0	40.23		ug/L		101	69 - 132	

MS MS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 70 - 130 97 4-Bromofluorobenzene (Surr) 111 70 - 130 Dibromofluoromethane (Surr) 70 - 130 90 Toluene-d8 (Surr) 104 70 - 130

Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Lab Sample ID: 490-108128-A-1 MSD

Prep Type: Total/NA

Analysis Batch: 357218	Comple	Sample	Spike	MSD	MSD			%Rec.		RPD
Analyte	•	Qualifier	Added		Qualifier Unit	D	%Rec	%Rec.	RPD	Limit
1,1,1,2-Tetrachloroethane	ND	Qualifier	20.0	17.29	ug/L		86	70 ₋ 131	1	16
1,1,1-Trichloroethane	ND		20.0	16.19	ug/L		81	68 - 144	1	17
1,1,2,2-Tetrachloroethane	ND		20.0	19.27	ug/L		96	56 ₋ 145	2	19
1,1,2-Trichloroethane	ND		20.0	19.05	ug/L ug/L		95	70 - 130	2	18
1,1-Dichloroethane	0.516		20.0	20.08	ug/L		98	61 ₋ 139	0	23
1,1-Dichloroethene	ND	3	20.0	19.76	ug/L		99	54 ₋ 150	3	24
1,1-Dichloropropene	ND		20.0	18.34	ug/L		92	54 - 150		24
1,2,3-Trichlorobenzene	ND		20.0	17.23	ug/L		86	36 ₋ 150	10	43
1,2,3-Trichloropropane	ND		20.0	17.59	ug/L		88	65 - 131	0	19
1,2,4-Trichlorobenzene	ND		20.0	17.14	ug/L		86	47 - 147	6	24
1,2,4-Trimethylbenzene	ND ND		20.0	20.23	ug/L ug/L		101	64 - 136	1	18
1,2-Dibromo-3-Chloropropane	ND		20.0	15.50	ug/L		78	38 - 138	3	26
1,2-Dibromoethane (EDB)	ND		20.0	18.31	ug/L ug/L		92	65 - 137	4	21
1,2-Dichlorobenzene	ND ND		20.0	19.37	ug/L		92 97	70 - 130	0	15
1.2-Dichlorobenzene	ND ND		20.0	18.02	•		90	70 - 130 64 - 136		22
,					ug/L		104	67 - 130	1	19
1,2-Dichloropropane	ND		20.0	20.74	ug/L				1	
1,3,5-Trimethylbenzene	ND		20.0	20.36	ug/L		102	69 - 139	1	17
1,3-Dichlorobenzene	ND		20.0	19.36	ug/L		97	68 - 131		14
1,3-Dichloropropane	ND		20.0	19.43	ug/L		97	70 - 130	0	17
1,4-Dichlorobenzene	ND		20.0	19.15	ug/L		96	70 - 130	0	14
2,2-Dichloropropane	ND		20.0	14.37	ug/L		72	50 - 146	1	20
2-Butanone (MEK)	ND		100	79.18	ug/L		79	50 - 143	4	28
2-Chlorotoluene	ND		20.0	18.43	ug/L		92	67 ₋ 138	1	17
2-Hexanone	ND		100	90.12	ug/L		90	44 - 150	4	21
4-Chlorotoluene	ND		20.0	20.18	ug/L		101	69 - 138	2	15
4-Methyl-2-pentanone (MIBK)	ND		100	95.00	ug/L		95	50 - 140	1	24
Acetone	ND		100	74.27	ug/L		74	39 _ 150	3	28
Benzene	0.224	J	20.0	19.22	ug/L		95	55 - 147	0	22
Bromobenzene	ND		20.0	20.70	ug/L		104	60 - 133	2	18
Bromochloromethane	ND		20.0	17.76	ug/L		89	59 - 132	1	21
Bromodichloromethane	ND		20.0	18.66	ug/L		93	70 - 140	1	196
Bromoform	ND		20.0	16.01	ug/L		80	53 - 150	1	20

TestAmerica Nashville

Page 23 of 41

TestAmerica Job ID: 490-108145-1

SDG: 27-225273.00/00/1

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-108128-A-1 MSD

Matrix: Water

Analysis Batch: 357218

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromomethane	ND		20.0	19.49		ug/L		97	30 - 150	11	44
Carbon disulfide	ND		20.0	16.18		ug/L		81	35 - 150	3	34
Carbon tetrachloride	ND		20.0	16.28		ug/L		81	56 - 150	2	18
Chlorobenzene	ND		20.0	19.72		ug/L		99	70 - 130	0	15
Chlorodibromomethane	ND		20.0	17.25		ug/L		86	66 - 140	2	19
Chloroethane	ND		20.0	20.26		ug/L		101	58 - 141	0	31
Chloroform	ND		20.0	17.62		ug/L		88	66 - 138	0	21
Chloromethane	ND		20.0	19.63		ug/L		98	10 - 150	3	43
cis-1,2-Dichloroethene	26.7		20.0	46.54		ug/L		99	68 - 131	1	21
cis-1,3-Dichloropropene	ND		20.0	18.12		ug/L		91	70 - 133	1	19
Dibromomethane	ND		20.0	18.26		ug/L		91	70 - 130	2	19
Dichlorodifluoromethane	ND		20.0	19.73		ug/L		99	10 - 150	2	50
Ethylbenzene	ND		20.0	19.87		ug/L		99	65 - 139	1	18
Hexachlorobutadiene	ND		20.0	16.90		ug/L		84	61 - 141	1	26
Isopropylbenzene	ND		20.0	20.81		ug/L		104	70 - 137	1	17
Methyl tert-butyl ether	0.724	J	20.0	17.12		ug/L		82	55 - 141	5	24
Methylene Chloride	ND		20.0	18.23		ug/L		91	64 - 130	2	22
Naphthalene	ND		20.0	18.50		ug/L		92	32 - 150	7	40
n-Butylbenzene	ND		20.0	18.67		ug/L		93	61 - 141	0	17
N-Propylbenzene	ND		20.0	19.36		ug/L		97	53 - 150	0	18
p-Isopropyltoluene	ND		20.0	19.69		ug/L		98	66 - 137	2	16
sec-Butylbenzene	ND		20.0	19.33		ug/L		97	55 - 136	1	50
Styrene	ND		20.0	20.04		ug/L		100	70 - 130	1	16
tert-Butylbenzene	ND		20.0	20.20		ug/L		101	70 - 138	1	17
Tetrachloroethene	1.19		20.0	21.28		ug/L		100	57 - 138	1	17
Toluene	ND		20.0	20.11		ug/L		101	64 - 136	1	18
trans-1,2-Dichloroethene	0.801	J	20.0	20.73		ug/L		100	59 - 143	1	25
trans-1,3-Dichloropropene	ND		20.0	16.98		ug/L		85	63 - 142	2	18
Trichloroethene	3.72		20.0	23.90		ug/L		101	63 _ 135	0	17
Trichlorofluoromethane	ND	F2 *	20.0	14.10	F2	ug/L		71	44 - 150	33	32
Vinyl chloride	3.76		20.0	26.70		ug/L		115	57 - 150	3	37
Xylenes, Total	ND		40.0	40.37		ug/L		101	69 - 132	0	17
	Men	MCD									

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		70 - 130
4-Bromofluorobenzene (Surr)	111		70 - 130
Dibromofluoromethane (Surr)	90		70 - 130
Toluene-d8 (Surr)	104		70 - 130

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 490-357365/6

Matrix: Water

Analysis Batch: 357365

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier MDL Unit Prepared Analyzed Dil Fac Fluoride ND 0.100 0.0100 mg/L 07/22/16 21:06

TestAmerica Nashville

Page 24 of 41

8/4/2016

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 490-357365/7 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357365

Spike LCS LCS %Rec. Added Qualifier Limits Analyte Result Unit D %Rec 80 - 120 Fluoride 1.00 1.050 mg/L 105

Lab Sample ID: LCSD 490-357365/8 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357365

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Fluoride 1.00 1.043 mg/L 104 80 - 120 20

Lab Sample ID: 490-108050-B-1 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357365

MS MS %Rec. Spike Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.255 0.200 Fluoride 0.4154 mg/L 80 - 120

Lab Sample ID: 490-108050-B-1 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 357365

RPD Sample Sample Spike MSD MSD %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits Limit 0.255 0.200 Fluoride 0.4137 mg/L 80 80 120 20

Lab Sample ID: MB 490-359120/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 359120

MR MR

RL MDL Unit Analyte Result Qualifier D Dil Fac Prepared Analyzed 0.100 07/30/16 00:12 Fluoride ND 0.0100 mg/L

Lab Sample ID: LCS 490-359120/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 359120

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits Fluoride 1 00 1.006 mg/L 101 80 - 120

Lab Sample ID: LCSD 490-359120/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 359120

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Fluoride 1.00 1.010 mg/L 101 80 - 120

Lab Sample ID: 490-108145-6 MS Client Sample ID: MW-5 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 359120

Spike MS MS %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Fluoride 93.2 10.0 126.2 E 4 mg/L 330 80 - 120

TestAmerica Nashville

8/4/2016

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Client Sample ID: MW-5

Prep Type: Total/NA

Lab Sample ID: 490-108145-6 MSD Matrix: Water

Analysis Batch: 359120

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	93.2		10.0	144.5	E 4	mg/L		513	80 - 120	14	20

Lab Sample ID: MB 490-359587/3 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 359587

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Fluoride	ND		0.100	0.0100	mg/L				08/01/16 16:26	1

Lab Sample ID: LCS 490-359587/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 359587

		Spike	LCS	LCS					%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%F	Rec	Limits	
Fluoride	 	1.00	0.9694	-	mg/L			97	80 - 120	

Lab Sample ID: LCSD 490-359587/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 359587

	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	RPD	Limit
Fluoride	1.00	0.9523		mg/L	95	80 - 120	2	20

Lab Sample ID: MB 490-360033/6 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 360033

мв мв

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	ND ND	0.100	0.0100	mg/L			08/03/16 10:12	1

Lab Sample ID: LCS 490-360033/7 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 360033

	Spike	LCS LCS				%Rec.	
Analyte	Added	Result Qualifie	er Unit	D	%Rec	Limits	
Fluoride	1.00	0.9914	ma/L		99	80 - 120	

Lab Sample ID: LCSD 490-360033/8 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 360033

Analysis Baton. 666666								
	Spike	LCSD LCSD				%Rec.		RPD
Analyte	Added	Result Qualif	ier Unit	D	%Rec	Limits	RPD	Limit
Fluoride	1.00	0.9727	mg/L		97	80 - 120	2	20

Prep Type: Total/NA

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 490-357520/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 357905 **Prep Batch: 357520**

мв мв

Result Qualifier RL MDL Unit D Prepared Dil Fac Analyte Analyzed 0.00200 07/24/16 12:38 Nickel ND 0.000500 mg/L 07/25/16 14:46

Lab Sample ID: LCS 490-357520/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 357905

Prep Batch: 357520 LCS LCS Spike Added Analyte Result Qualifier Unit %Rec Limits Nickel 0.100 0.09524 mg/L 95 80 - 120

Lab Sample ID: 490-108145-1 MS Client Sample ID: MW-1 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 357905 **Prep Batch: 357520** MS MS Sample Sample Spike %Rec.

Result Qualifier Added Result Qualifier Unit D %Rec Limits Nickel 0.450 0.100 0.5193 70 75 _ 125 mg/L

Lab Sample ID: 490-108145-1 MSD Client Sample ID: MW-1 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 357905 Prep Batch: 357520 Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Limit

Nickel 0.450 0.100 0.5426 mg/L 93 75 - 125 Lab Sample ID: MB 490-357881/1-A Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA Analysis Batch: 358232 **Prep Batch: 357881**

MR MR

Qualifier RL MDL Unit D Dil Fac Analyte Result Prepared Analyzed 07/26/16 08:35 Nickel 0.00200 07/26/16 20:59 ND 0.000500 mg/L

Lab Sample ID: LCS 490-357881/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water Analysis Batch: 358232

Spike LCS LCS

%Rec. Result Qualifier Added Analyte Unit D %Rec Limits 0.100 80 - 120 Nickel 0.1005 mg/L 101

Lab Sample ID: LCSD 490-357881/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water Analysis Batch: 358442

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit

Nickel 0.100 0.1048 mg/L 105 80 - 120

Prep Batch: 357881

Prep Batch: 357881

QC Sample Results

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

050.2

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 490-108190-A-1-B M	S			Client Sample ID: Matrix Spike
Matrix: Water				Prep Type: Total/NA
Analysis Batch: 358232				Prep Batch: 357881
	Sample Sample	Spike	MS MS	%Rec.

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nickel	884	E	0.100	1018	E 4	mg/L		13400	75 - 125	
								0		

Lab Sample ID: 490-108190-A-	Lab Sample ID: 490-108190-A-1-C MSD						Client Sa	ample ID): Matrix S _l	pike Dup	licate
Matrix: Water									Prep T	ype: Tot	al/NA
Analysis Batch: 358232									Prep	Batch: 3	57881
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nickel	884	E	0.100	931.0	E 4	mg/L		47000	75 - 125	9	20

TestAmerica Nashville

2

6

7

8

9

10

12

II.

QC Association Summary

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

GC/MS VOA

Analysis Batch: 357218

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-108145-2	MW-2	Total/NA	Water	8260B	_
490-108145-13	MW-23	Total/NA	Water	8260B	
490-108145-14	Trip Blank	Total/NA	Water	8260B	
490-108145-15	Rinsate	Total/NA	Water	8260B	
490-108145-16	Field Duplicate	Total/NA	Water	8260B	
MB 490-357218/7	Method Blank	Total/NA	Water	8260B	
LCS 490-357218/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 490-357218/4	Lab Control Sample Dup	Total/NA	Water	8260B	
490-108128-A-1 MS	Matrix Spike	Total/NA	Water	8260B	
490-108128-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	

HPLC/IC

Analysis Batch: 357365

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-108145-8	MW-11	Total/NA	Water	9056A	_
490-108145-10	MW-13	Total/NA	Water	9056A	
490-108145-12	MW-12D	Total/NA	Water	9056A	
490-108145-13	MW-23	Total/NA	Water	9056A	
490-108145-15	Rinsate	Total/NA	Water	9056A	
490-108145-16	Field Duplicate	Total/NA	Water	9056A	
MB 490-357365/6	Method Blank	Total/NA	Water	9056A	
LCS 490-357365/7	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-357365/8	Lab Control Sample Dup	Total/NA	Water	9056A	
490-108050-B-1 MS	Matrix Spike	Total/NA	Water	9056A	
490-108050-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	9056A	

Analysis Batch: 359120

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-108145-6	MW-5	Total/NA	Water	9056A	
490-108145-11	MW-18	Total/NA	Water	9056A	
MB 490-359120/3	Method Blank	Total/NA	Water	9056A	
LCS 490-359120/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-359120/5	Lab Control Sample Dup	Total/NA	Water	9056A	
490-108145-6 MS	MW-5	Total/NA	Water	9056A	
490-108145-6 MSD	MW-5	Total/NA	Water	9056A	

Analysis Batch: 359587

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
490-108145-1	MW-1	Total/NA	Water	9056A	
490-108145-2	MW-2	Total/NA	Water	9056A	
490-108145-3	MW-3	Total/NA	Water	9056A	
490-108145-4	MW-4	Total/NA	Water	9056A	
490-108145-5	MW-4R	Total/NA	Water	9056A	
MB 490-359587/3	Method Blank	Total/NA	Water	9056A	
LCS 490-359587/4	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-359587/5	Lab Control Sample Dup	Total/NA	Water	9056A	

TestAmerica Nashville

Page 29 of 41

QC Association Summary

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

HPLC/IC (Continued)

Analysis Batch: 360033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-108145-7	MW-6	Total/NA	Water	9056A	
490-108145-9	MW-12	Total/NA	Water	9056A	
MB 490-360033/6	Method Blank	Total/NA	Water	9056A	
LCS 490-360033/7	Lab Control Sample	Total/NA	Water	9056A	
LCSD 490-360033/8	Lab Control Sample Dup	Total/NA	Water	9056A	

Metals

Prep Batch: 357520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
490-108145-1	MW-1	Total/NA	Water	3010A	
490-108145-2	MW-2	Total/NA	Water	3010A	
490-108145-3	MW-3	Total/NA	Water	3010A	
490-108145-4	MW-4	Total/NA	Water	3010A	
490-108145-5	MW-4R	Total/NA	Water	3010A	
490-108145-6	MW-5	Total/NA	Water	3010A	
490-108145-7	MW-6	Total/NA	Water	3010A	
490-108145-8	MW-11	Total/NA	Water	3010A	
490-108145-9	MW-12	Total/NA	Water	3010A	
490-108145-10	MW-13	Total/NA	Water	3010A	
490-108145-11	MW-18	Total/NA	Water	3010A	
490-108145-12	MW-12D	Total/NA	Water	3010A	
MB 490-357520/1-A	Method Blank	Total/NA	Water	3010A	
LCS 490-357520/2-A	Lab Control Sample	Total/NA	Water	3010A	
490-108145-1 MS	MW-1	Total/NA	Water	3010A	
490-108145-1 MSD	MW-1	Total/NA	Water	3010A	

Prep Batch: 357881

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-108145-13	MW-23	Total/NA	Water	3010A	_
490-108145-15	Rinsate	Total/NA	Water	3010A	
490-108145-16	Field Duplicate	Total/NA	Water	3010A	
MB 490-357881/1-A	Method Blank	Total/NA	Water	3010A	
LCS 490-357881/2-A	Lab Control Sample	Total/NA	Water	3010A	
LCSD 490-357881/3-A	Lab Control Sample Dup	Total/NA	Water	3010A	
490-108190-A-1-B MS	Matrix Spike	Total/NA	Water	3010A	
490-108190-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	3010A	

Analysis Batch: 357905

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-108145-1	MW-1	Total/NA	Water	6020A	357520
490-108145-2	MW-2	Total/NA	Water	6020A	357520
490-108145-3	MW-3	Total/NA	Water	6020A	357520
490-108145-5	MW-4R	Total/NA	Water	6020A	357520
490-108145-7	MW-6	Total/NA	Water	6020A	357520
490-108145-8	MW-11	Total/NA	Water	6020A	357520
490-108145-9	MW-12	Total/NA	Water	6020A	357520
490-108145-10	MW-13	Total/NA	Water	6020A	357520
490-108145-11	MW-18	Total/NA	Water	6020A	357520
490-108145-12	MW-12D	Total/NA	Water	6020A	357520

TestAmerica Nashville

Page 30 of 41

QC Association Summary

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1

SDG: 27-225273.00/00/1

Metals (Continued)

Analysis Batch: 357905 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 490-357520/1-A	Method Blank	Total/NA	Water	6020A	357520
LCS 490-357520/2-A	Lab Control Sample	Total/NA	Water	6020A	357520
490-108145-1 MS	MW-1	Total/NA	Water	6020A	357520
490-108145-1 MSD	MW-1	Total/NA	Water	6020A	357520

Analysis Batch: 358232

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-108145-13	MW-23	Total/NA	Water	6020A	357881
490-108145-15	Rinsate	Total/NA	Water	6020A	357881
490-108145-16	Field Duplicate	Total/NA	Water	6020A	357881
MB 490-357881/1-A	Method Blank	Total/NA	Water	6020A	357881
LCS 490-357881/2-A	Lab Control Sample	Total/NA	Water	6020A	357881
490-108190-A-1-B MS	Matrix Spike	Total/NA	Water	6020A	357881
490-108190-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	6020A	357881

Analysis Batch: 358233

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-108145-4	MW-4	Total/NA	Water	6020A	357520
490-108145-6	MW-5	Total/NA	Water	6020A	357520

Analysis Batch: 358442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 490-357881/3-A	Lab Control Sample Dup	Total/NA	Water	6020A	357881

TestAmerica Nashville

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Lab Sample ID: 490-108145-1

Matrix: Water

Client Sample ID: MW-1 Date Collected: 07/20/16 14:50 Date Received: 07/21/16 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		40	359587	08/01/16 18:27	JHS	TAL NSH
Total/NA	Prep	3010A			357520	07/24/16 12:38	RDF	TAL NSH
Total/NA	Analysis	6020A		1	357905	07/25/16 14:57	KKK	TAL NSH

Client Sample ID: MW-2 Lab Sample ID: 490-108145-2 Date Collected: 07/20/16 12:24

Matrix: Water

Date Received: 07/21/16 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	357218	07/22/16 19:42	AK1	TAL NSH
Total/NA	Analysis	9056A		20	359587	08/01/16 18:47	JHS	TAL NSH
Total/NA	Prep	3010A			357520	07/24/16 12:38	RDF	TAL NSH
Total/NA	Analysis	6020A		1	357905	07/25/16 15:24	KKK	TAL NSH

Client Sample ID: MW-3 Lab Sample ID: 490-108145-3

Date Collected: 07/20/16 10:08 Matrix: Water Date Received: 07/21/16 09:20

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Lab Analyst Total/NA Analysis 9056A 20 359587 08/01/16 19:07 JHS TAL NSH TAL NSH Total/NA 3010A RDF Prep 357520 07/24/16 12:38 Total/NA Analysis 6020A 357905 07/25/16 15:30 KKK TAL NSH

Client Sample ID: MW-4 Lab Sample ID: 490-108145-4

Date Collected: 07/20/16 19:24 Matrix: Water Date Received: 07/21/16 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		200	359587	08/01/16 19:27	JHS	TAL NSH
Total/NA	Prep	3010A			357520	07/24/16 12:38	RDF	TAL NSH
Total/NA	Analysis	6020A		10	358233	07/26/16 20:31	KKK	TAL NSH

Client Sample ID: MW-4R Lab Sample ID: 490-108145-5

Date Collected: 07/20/16 18:27 **Matrix: Water** Date Received: 07/21/16 09:20

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 9056A 100 359587 08/01/16 19:47 JHS TAL NSH Total/NA Prep 3010A 357520 07/24/16 12:38 RDF TAL NSH Total/NA Analysis 6020A 357905 07/25/16 15:51 KKK TAL NSH 1

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Lab Sample ID: 490-108145-6

Matrix: Water

Client Sample ID: MW-5
Date Collected: 07/20/16 17:04
Date Received: 07/21/16 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		50	359120	07/30/16 01:03	NC	TAL NSH
Total/NA	Prep	3010A			357520	07/24/16 12:38	RDF	TAL NSH
Total/NA	Analysis	6020A		5	358233	07/26/16 20:37	KKK	TAL NSH

Client Sample ID: MW-6 Lab Sample ID: 490-108145-7

Matrix: Water

Date Collected: 07/20/16 11:19 Date Received: 07/21/16 09:20

Batch Batch Dilution Batch Prepared Method Run Prep Type Туре Factor Number or Analyzed Analyst Lab Total/NA Analysis 9056A 10 360033 08/03/16 13:54 LDC TAL NSH Total/NA 3010A 357520 07/24/16 12:38 RDF TAL NSH Prep Total/NA Analysis 6020A 1 357905 07/25/16 16:03 KKK TAL NSH

Client Sample ID: MW-11 Lab Sample ID: 490-108145-8

Matrix: Water

KKK

TAL NSH

Date Collected: 07/19/16 14:39 Date Received: 07/21/16 09:20

Dilution Batch **Batch** Batch Prepared Prep Type Method Run Factor Number or Analyzed Type Analyst Lab Total/NA 9056A 357365 07/23/16 02:48 KS TAL NSH Analysis Total/NA Prep 3010A 357520 07/24/16 12:38 RDF TAL NSH

Client Sample ID: MW-12 Lab Sample ID: 490-108145-9

1

357905

07/25/16 16:08

Date Collected: 07/20/16 13:41 Matrix: Water

Date Received: 07/21/16 09:20

6020A

Analysis

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		20	360033	08/03/16 15:37	LDC	TAL NSH
Total/NA	Prep	3010A			357520	07/24/16 12:38	RDF	TAL NSH
Total/NA	Analysis	6020A		1	357905	07/25/16 16:14	KKK	TAL NSH

Client Sample ID: MW-13 Lab Sample ID: 490-108145-10

Date Collected: 07/19/16 16:52

Date Received: 07/21/16 09:20

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1	357365	07/23/16 03:05	KS	TAL NSH
Total/NA	Prep	3010A			357520	07/24/16 12:38	RDF	TAL NSH
Total/NA	Analysis	6020A		1	357905	07/25/16 16:19	KKK	TAL NSH

Δ

5

6

0

9

10

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

Lab Sample ID: 490-108145-11

Matrix: Water

Date Collected: 07/20/16 15:59 Date Received: 07/21/16 09:20

Client Sample ID: MW-18

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A	<u> </u>	5	359120	07/30/16 02:29	NC	TAL NSH
Total/NA	Prep	3010A			357520	07/24/16 12:38	RDF	TAL NSH
Total/NA	Analysis	6020A		1	357905	07/25/16 16:25	KKK	TAL NSH

Client Sample ID: MW-12D Lab Sample ID: 490-108145-12

Matrix: Water

Date Collected: 07/19/16 19:27 Date Received: 07/21/16 09:20

Batch Batch Dilution Batch Prepared Method Run Prep Type Туре Factor Number or Analyzed Analyst Lab Total/NA Analysis 9056A 357365 07/23/16 03:22 KS TAL NSH Total/NA 3010A 357520 07/24/16 12:38 RDF TAL NSH Prep Total/NA Analysis 6020A 1 357905 07/25/16 16:30 KKK TAL NSH

Client Sample ID: MW-23 Lab Sample ID: 490-108145-13

Date Collected: 07/19/16 12:58 Matrix: Water

Date Received: 07/21/16 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	357218	07/22/16 20:11	AK1	TAL NSH
Total/NA	Analysis	9056A		1	357365	07/23/16 03:39	KS	TAL NSH
Total/NA	Prep	3010A			357881	07/26/16 08:35	RDF	TAL NSH
Total/NA	Analysis	6020A		1	358232	07/26/16 22:06	KKK	TAL NSH

Client Sample ID: Trip Blank Lab Sample ID: 490-108145-14

Date Collected: 07/19/16 00:01 **Matrix: Water**

Date Received: 07/21/16 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	357218	07/22/16 16:51	AK1	TAL NSH

Client Sample ID: Rinsate Lab Sample ID: 490-108145-15

Date Collected: 07/19/16 19:45 Matrix: Water Date Received: 07/21/16 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	357218	07/22/16 17:19	AK1	TAL NSH
Total/NA	Analysis	9056A		1	357365	07/23/16 03:56	KS	TAL NSH
Total/NA	Prep	3010A			357881	07/26/16 08:35	RDF	TAL NSH
Total/NA	Analysis	6020A		1	358232	07/26/16 22:12	KKK	TAL NSH

Lab Chronicle

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

Client Sample ID: Field Duplicate

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Lab Sample ID: 490-108145-16

Date Collected: 07/19/16 00:01 Matrix: Water

Date Received: 07/21/16 09:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	357218	07/22/16 20:39	AK1	TAL NSH
Total/NA	Analysis	9056A		1	357365	07/23/16 04:13	KS	TAL NSH
Total/NA	Prep	3010A			357881	07/26/16 08:35	RDF	TAL NSH
Total/NA	Analysis	6020A		1	358232	07/26/16 22:18	KKK	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

4

5

6

8

9

11

12

Method Summary

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
9056A	Anions, Ion Chromatography	SW846	TAL NSH
6020A	Metals (ICP/MS)	SW846	TAL NSH

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Certification Summary

Client: Environmental Compliance Services, Inc.

Project/Site: Former Trent Tube

TestAmerica Job ID: 490-108145-1 SDG: 27-225273.00/00/1

Laboratory: TestAmerica Nashville

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Florida	NELAP	4	E87358	06-30-17

6

Λ

8

11

12

Cooler Received/Opened On 7/21/2016 @ 0920	_
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking #(a 3 te 4 digits, FedEx) Courier: _FedEx	
IR Gun ID 17960357 pH Strip Lot HC564992 Chlorine Strip Lot 012516A	
2. Temperature of rep. sample or temp blank when opened: Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO MA
4. Were custody seals on outside of cooler?	YE3NONA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	€8NONA
I certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNO(NA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubulewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
9. Cooling process: (ce) Ice-pack Ice (direct contact) Dry ice	e Other None
10. Did all containers arrive in good condition (unbroken)?	YES.).NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	XES NONA
12. Did all container labels and tags agree with custody papers?	YESNONA
13a. Were VOA vials received?	(FES)NONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
14. Was there a Trip Blank in this cooler? YESNONA If multiple coolers, sequen	ice # NA
I certify that I unloaded the cooler and answered questions 7-14 (intial)	A823
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNONA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	1000
17. Were custody papers properly filled out (ink, signed, etc)?	(YESNONA
18. Did you sign the custody papers in the appropriate place?	E8NONA
19. Were correct containers used for the analysis requested?	(E8NONA
20. Was sufficient amount of sample sent in each container?	VESNONA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	1005 1005
certify that I attached a label with the unique LIMS number to each container (intial)	Hers
21. Were there Non-Conformance issues at login? YESNO Was a NCM generated? YES	169# <u>MA</u>
	_

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 12/15/15

	7901	STANDARD	-8883, ext. 139	00/1	Panaman 1771	Street			Loc: 490 108145												. Z		
FedEx Tracking #:		Requested TAT:	Report To: Dean McCartney 770-926-8883, ext. 139	PO#: 27-225273	Quote #: HIS 10604	Project ID: Former Trent Tube	Project #: 27-225273	Analyze For:	TEMP Conductivity PH DO Turbidity Vapor VOC's &vor BTEX (EPA18) Vapor VOC's tull list (TO-14) 8 RCRA metals 4 RCRA Metals (As, Cr, Pb)		****								* * * *	Laboratory Comments:	Temperature Upon Receipt: VOCs Free of Headspace?	Time	_
CHAIN OF CUSTODY RECORD Quote# GUST #\$/A	#2054	0	Re		Fax No.: 770-926-5383	Pro-	id		Matrix Field Filtered Ice HVO ₃ (Red Label) HOI (Blue Label) H ₂ SO ₄ (Basel (SW-846 6020B) H ₂ SO ₄ (Basel Cyellow Label) H ₂ SO ₅ (Basel Cyellow Label) H ₂ SO ₄ (Basel Cyellow Label) H ₂ SO ₅ (Basel Cyellow Label) H ₂ SO ₄ (Basel Cyellow Label) H ₂ SO ₅ (Basel Cyellow Label)	* × × × × × × × × × × × × × × × × × × ×	X X X III		* × × · · · · · · · · · · · · · · · · ·		X	* × ×	****	*	* × × × · · · · · · · · · · · · · · · ·		Method of Shipment:		_
dres	Client Name: Pangean-CMD/ECS Client #2054	Address: 9874 Main Street, Suite 100	City/State/Zip: Woodstock, GA 30188	Dean McCartney	770-926-8883 x139	<u></u> ₹	the w		Date Sampled Time Sampled No. of Containers Shipped	7.2016 1450 2 B	1 12,24 5	7 20:01	19:24 2	1 18.27 2	17:04	-+	14:39	13.41	7-16 16:52 2 1			Date Time 1	_
Test/Mmerica TA account # :	Client Name:	Address	City/State/Zip:	Project Manager: Dean McCartney	Telephone Number: 770-926-8883 x139	Sampler Name: (Print)	Sampler Signature:	1	Sample ID / Description	MVV-1	MW-2	MW-3	MW-4	MW-4R			man na-d	WW-12	MW-13			Relinquished by: THE Y	1

Login Sample Receipt Checklist

Client: Environmental Compliance Services, Inc.

Job Number: 490-108145-1

SDG Number: 27-225273.00/00/1

Login Number: 108145 List Source: TestAmerica Nashville

List Number: 1

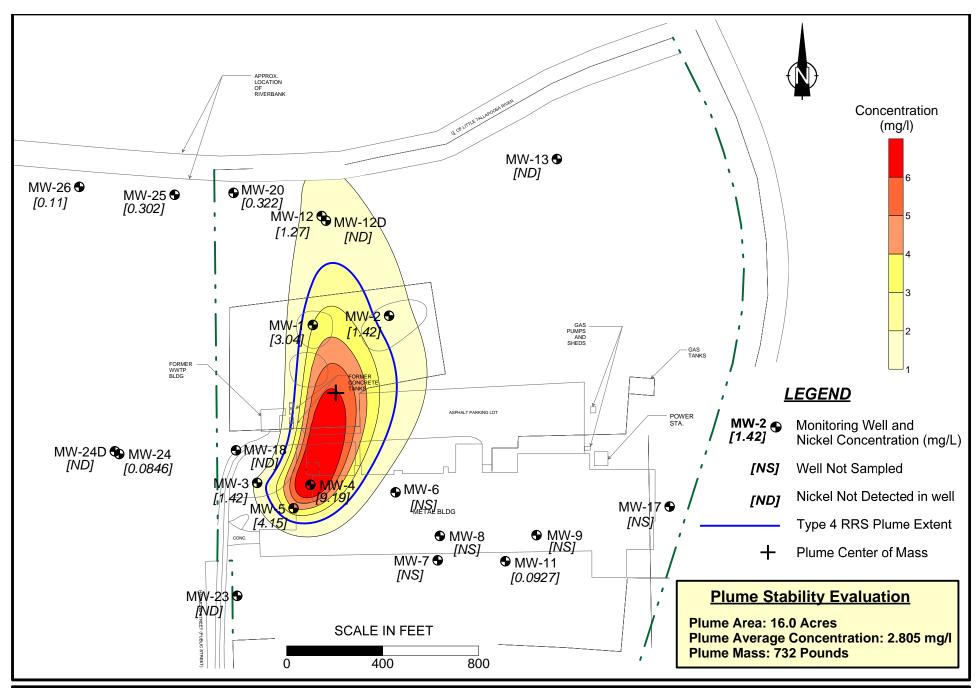
Creator: Stvartak, Anthony Q

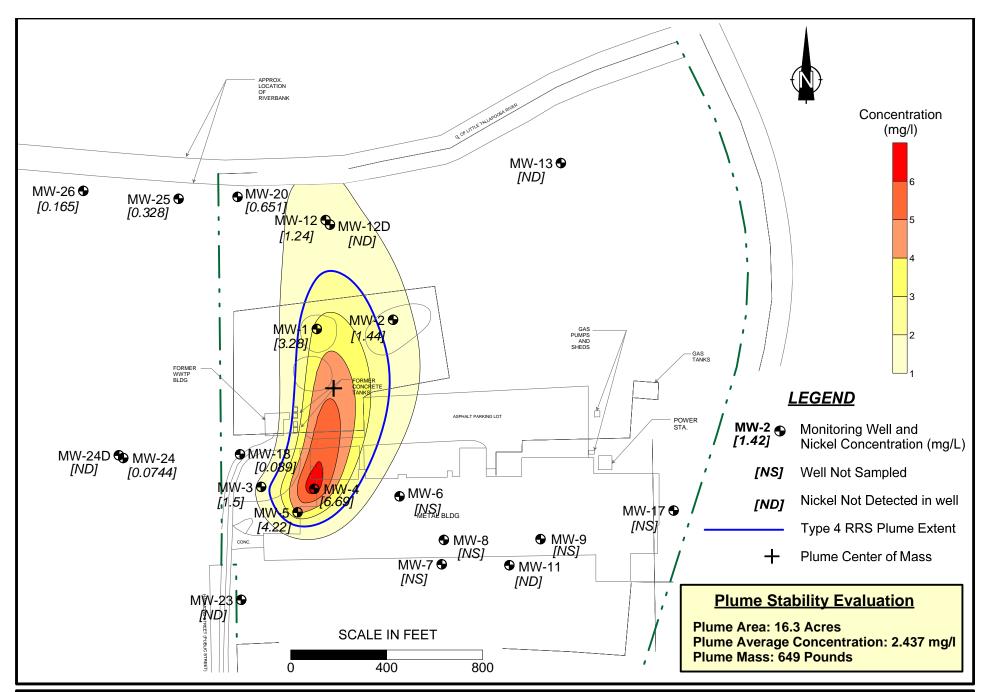
Cleator. Stvartak, Anthony Q		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

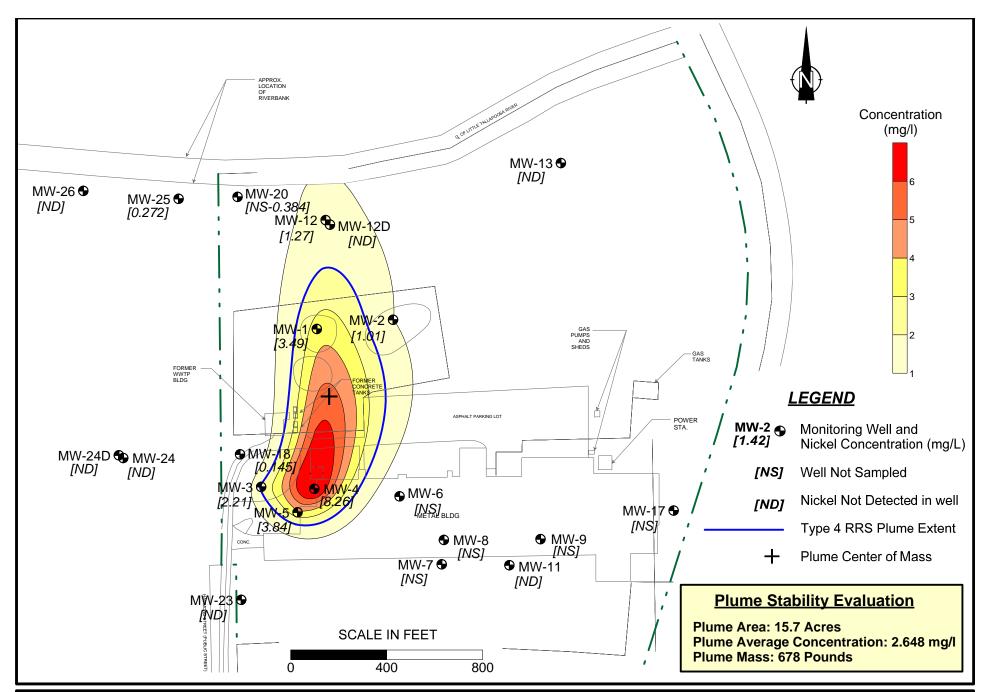
6

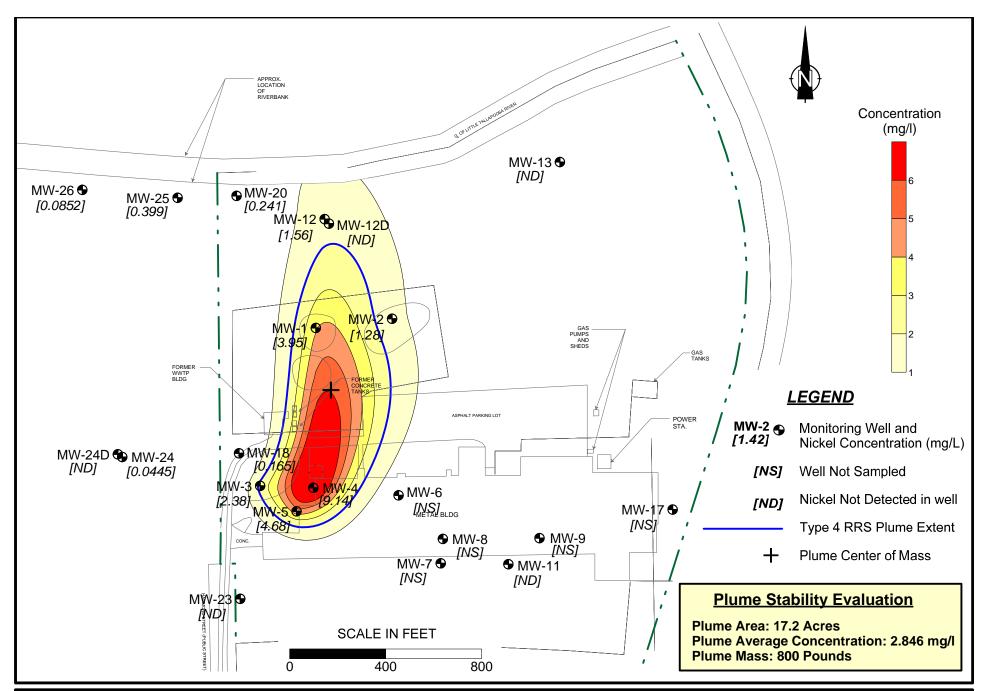
8

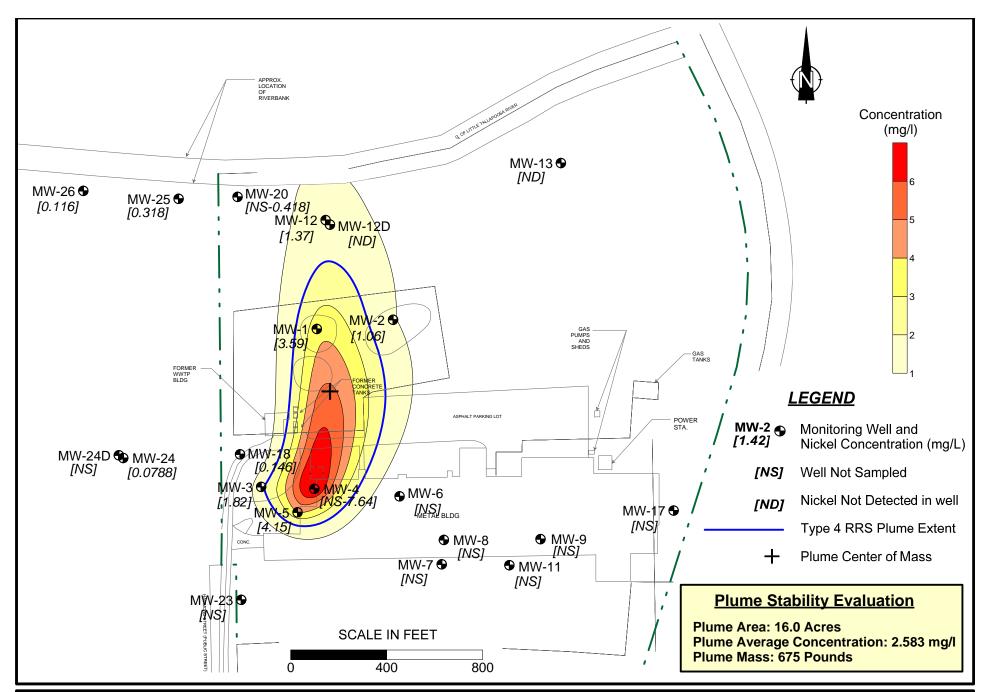
10

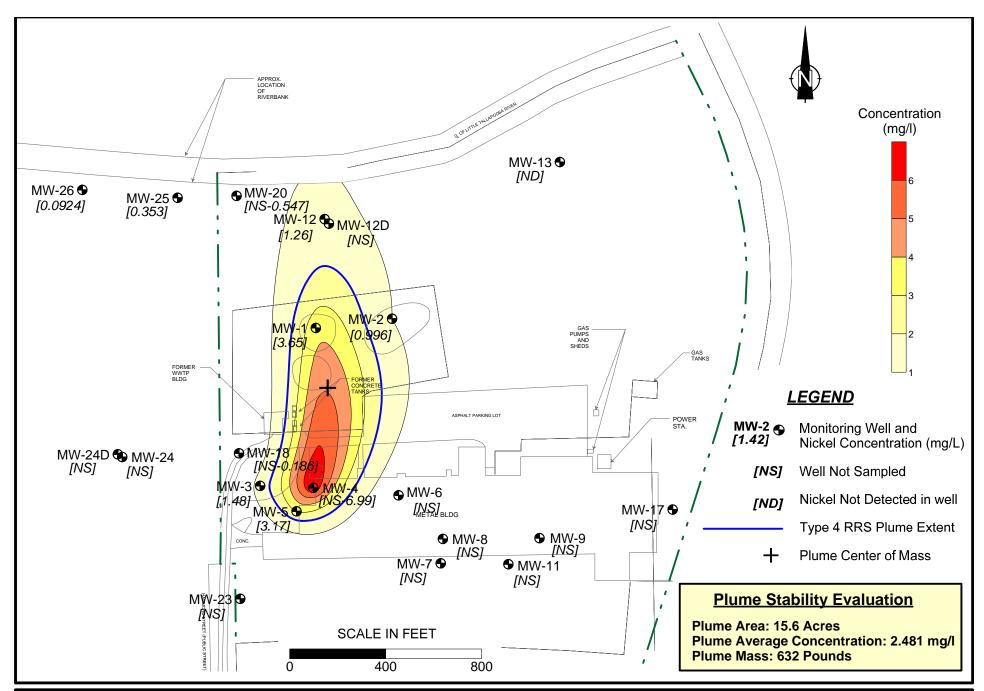

11

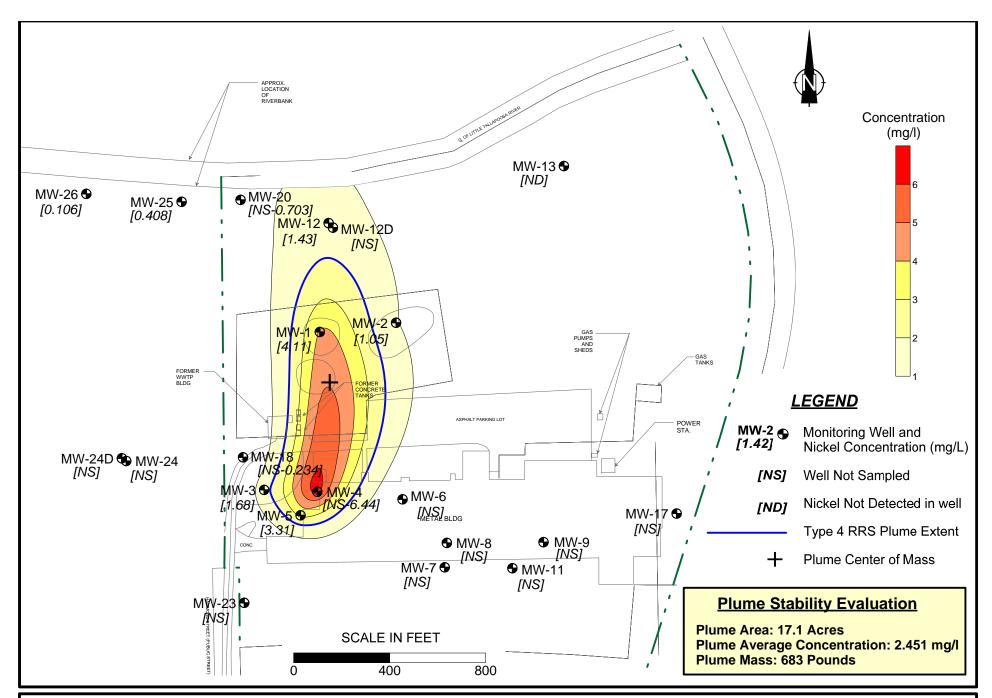

12

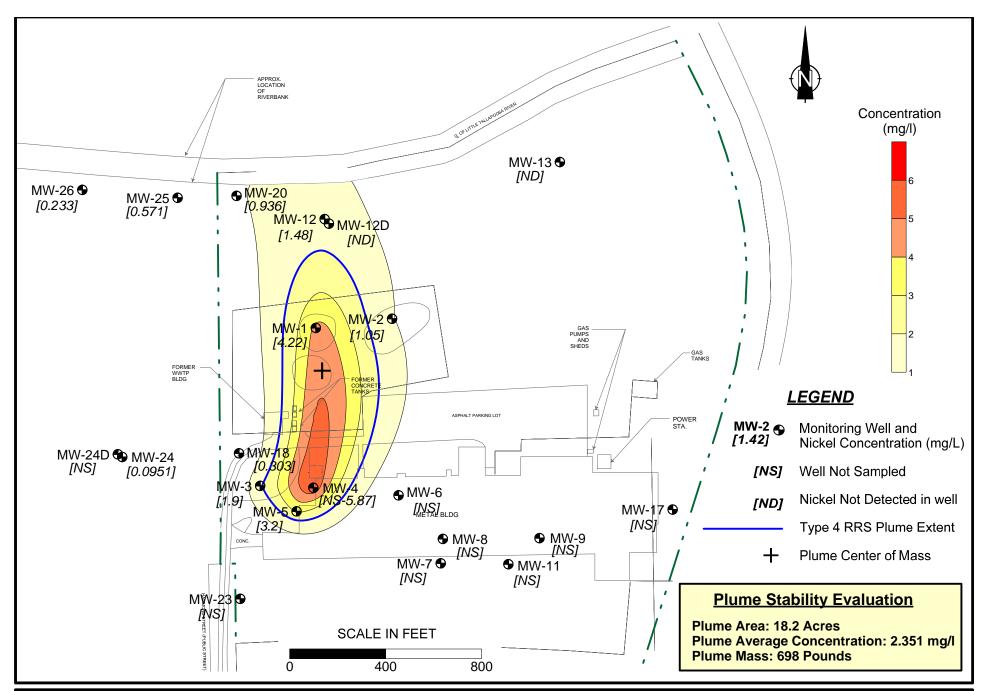


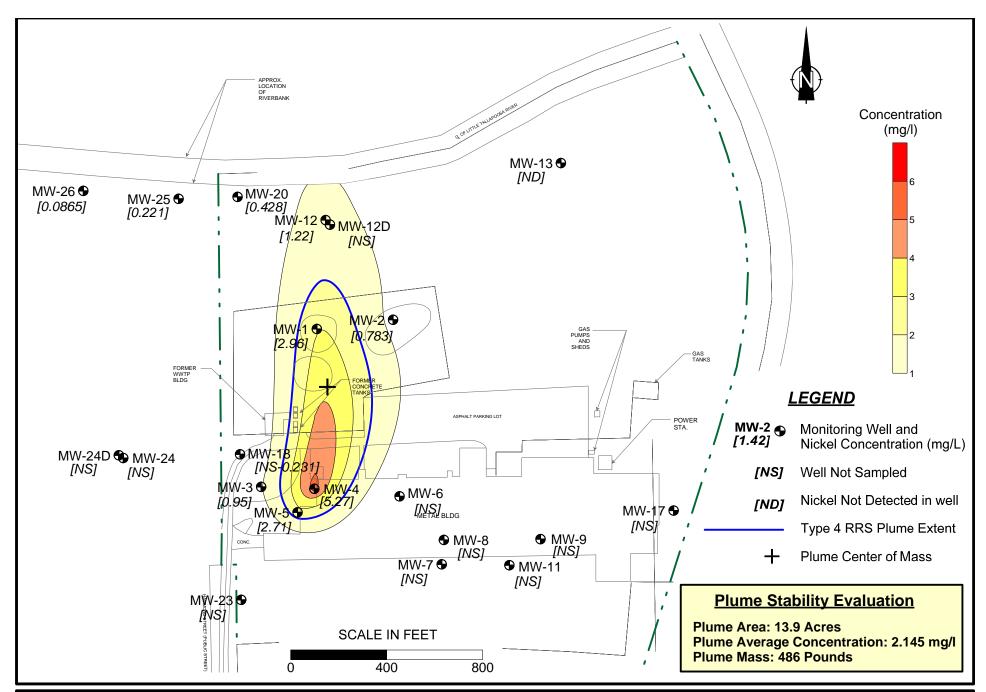

ATTACHMENT C

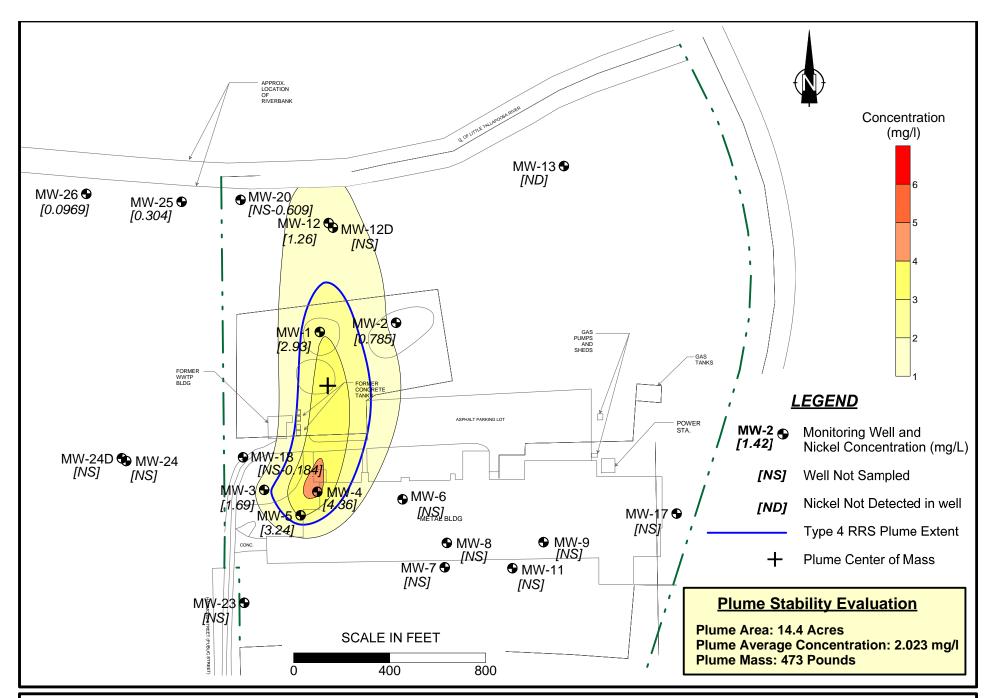

PLUME STABILITY ANALYSIS

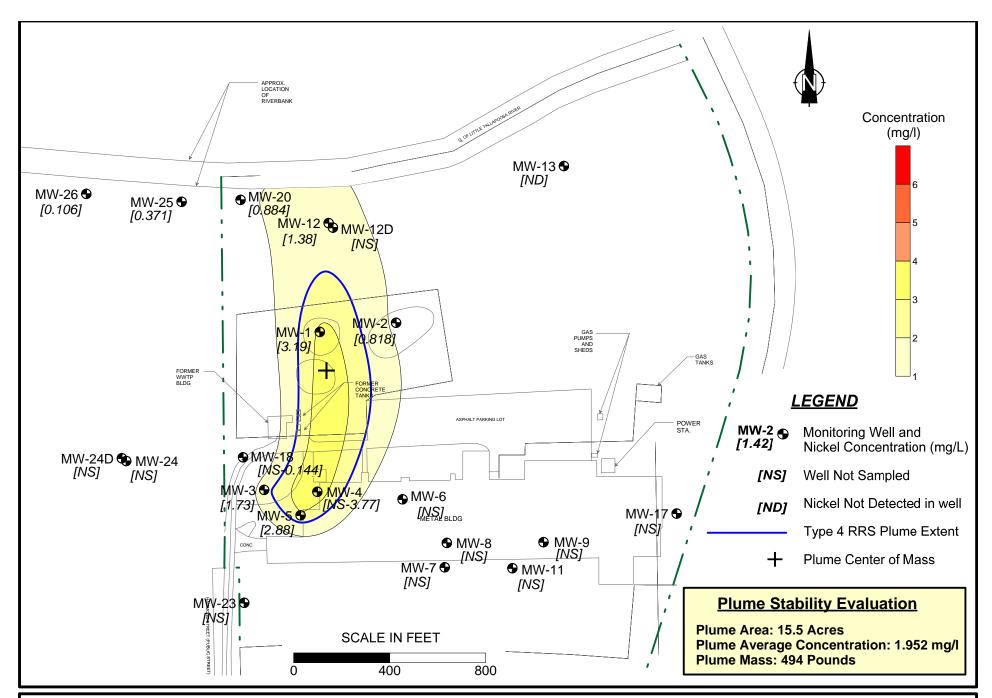


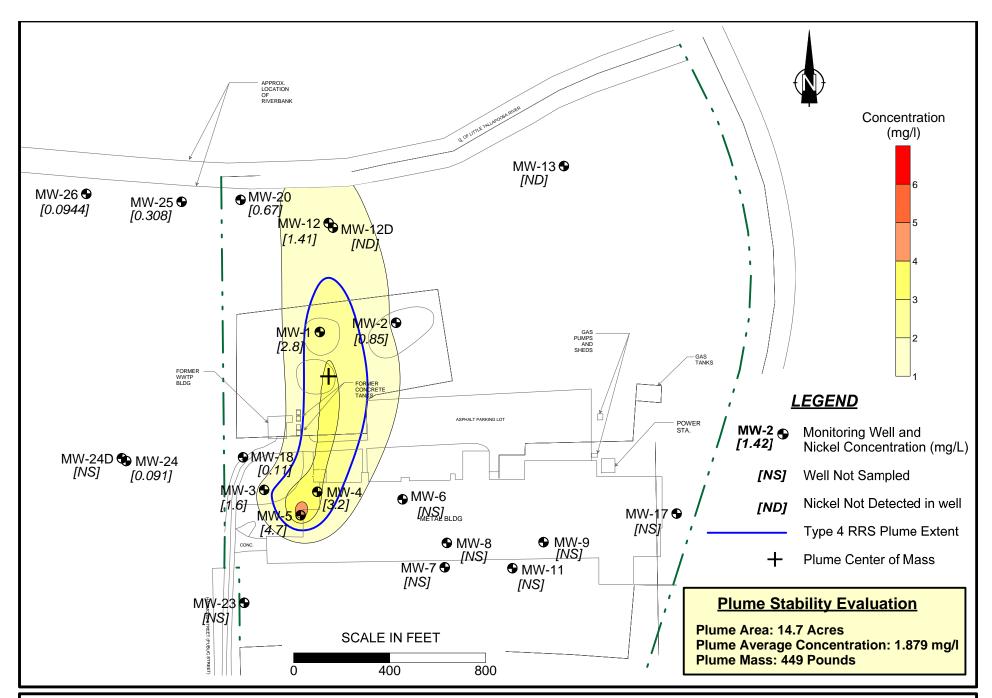


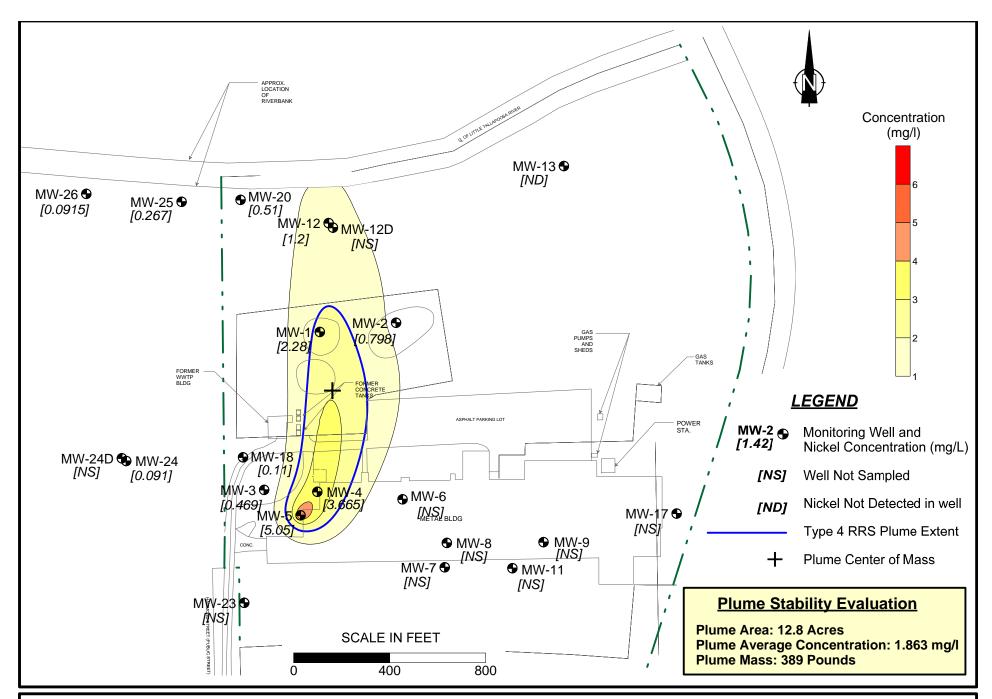


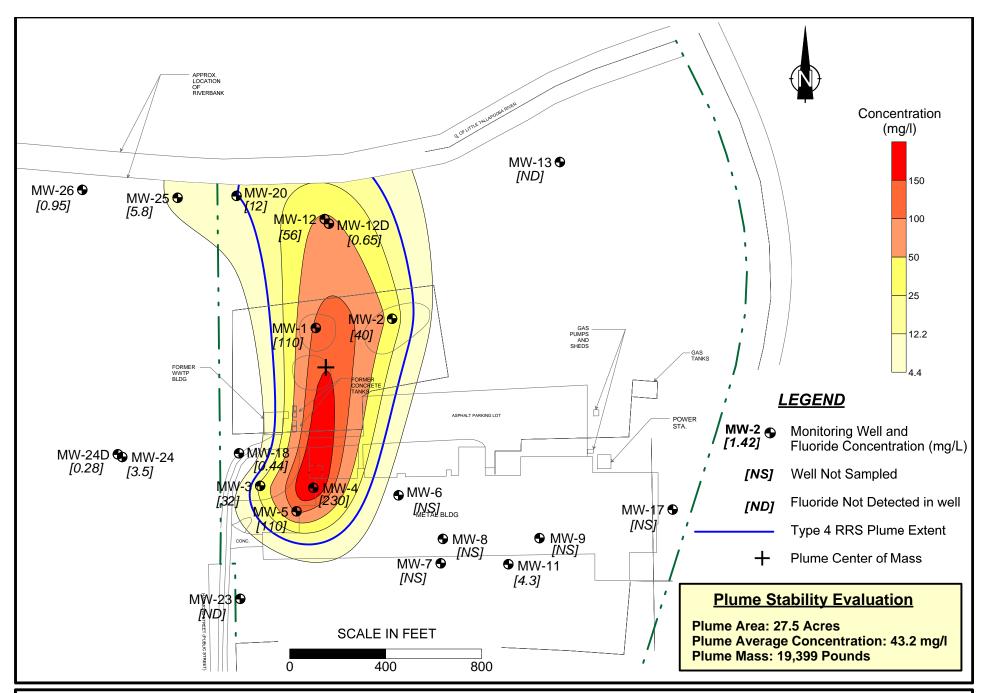


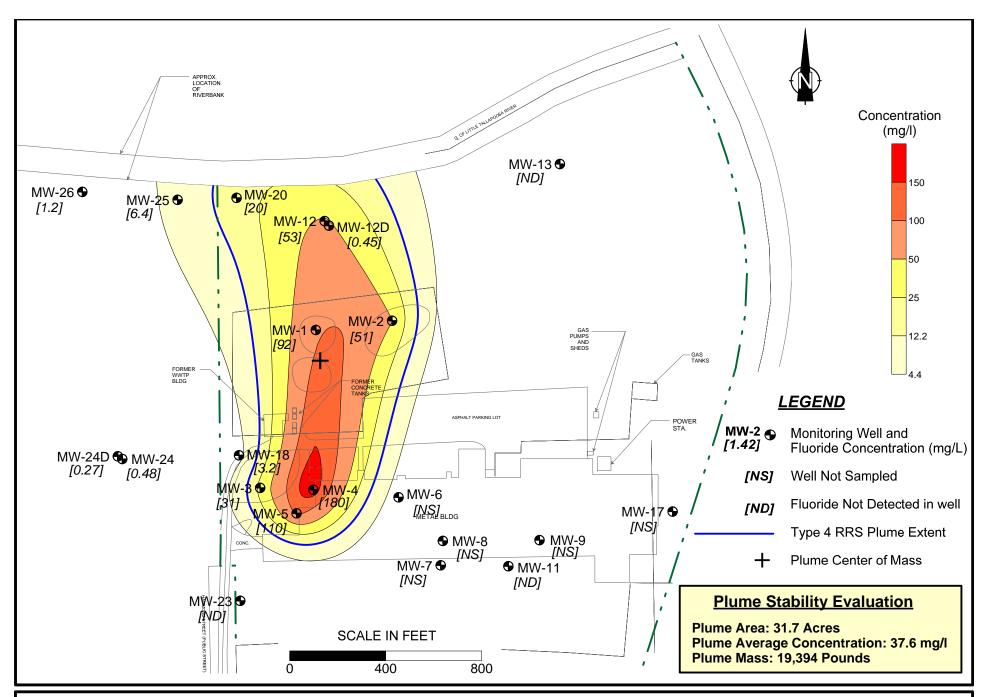


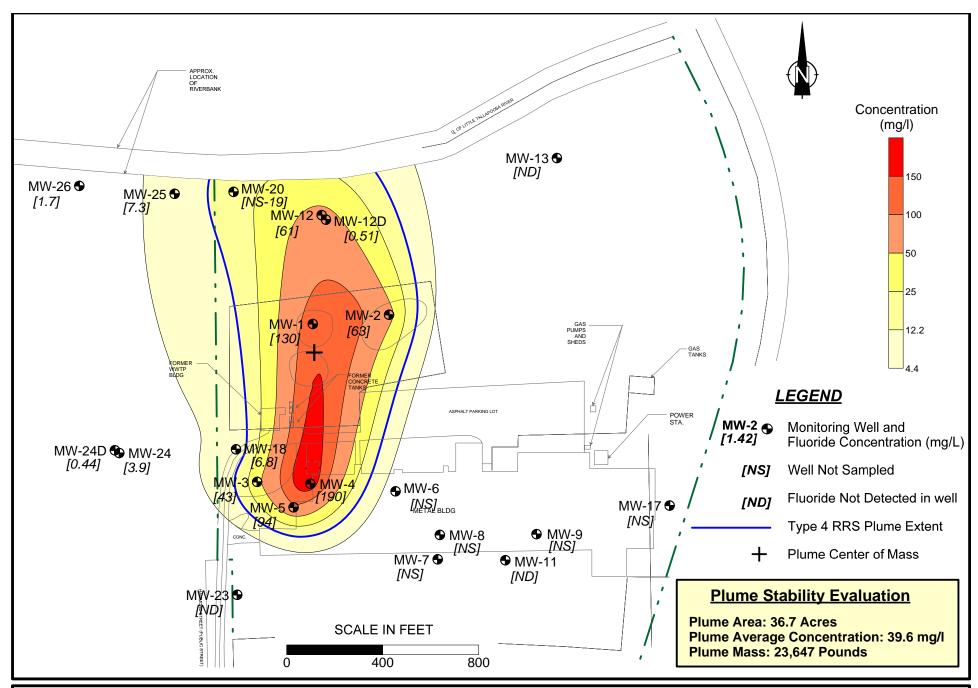


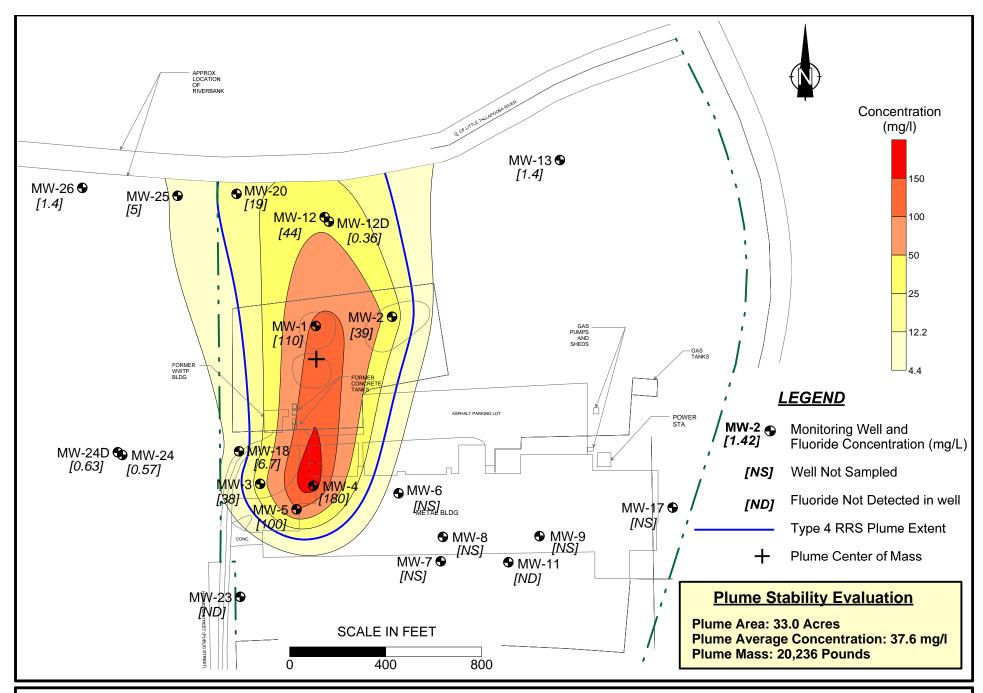


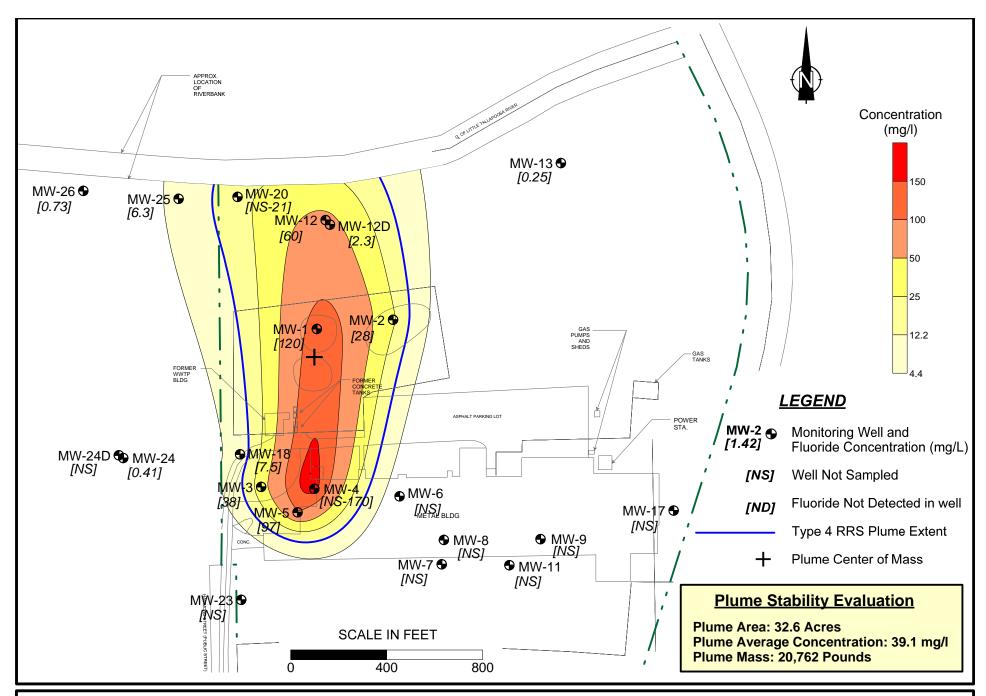


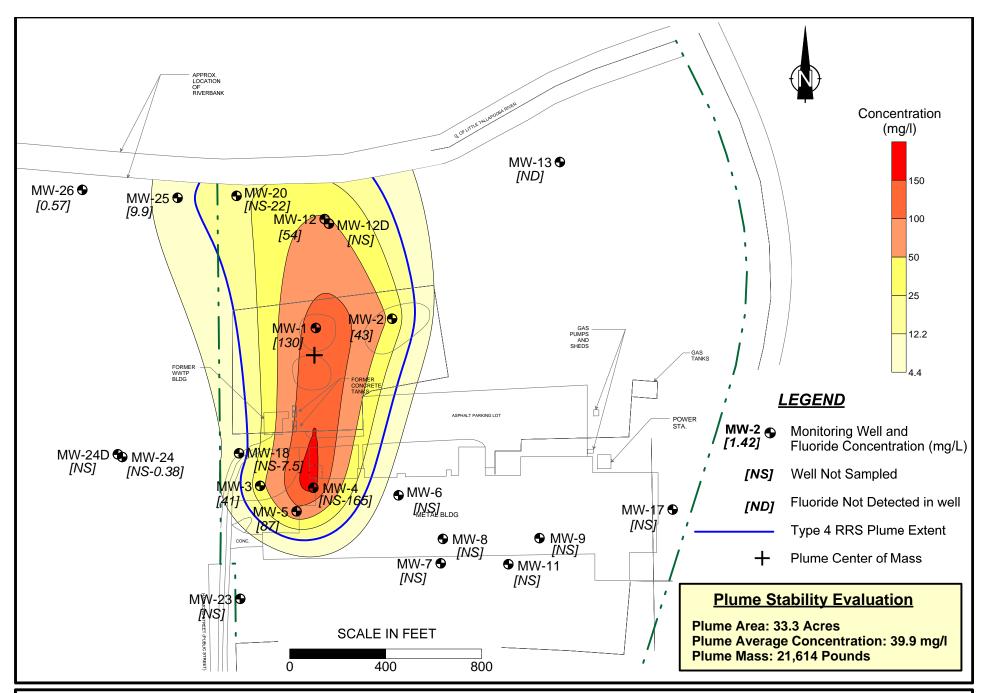


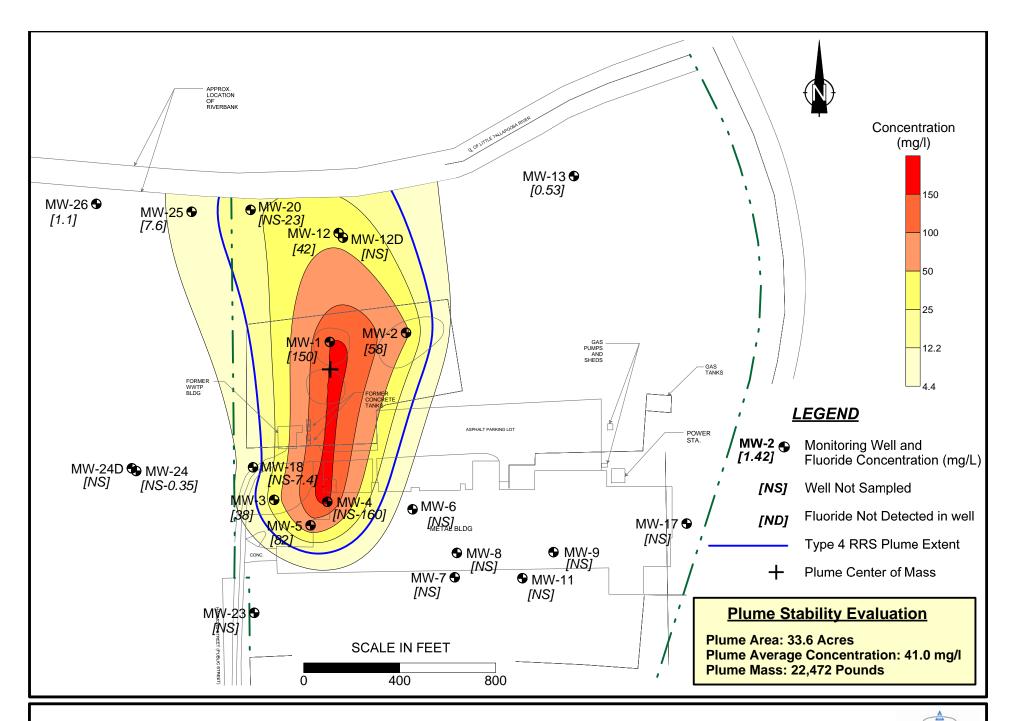


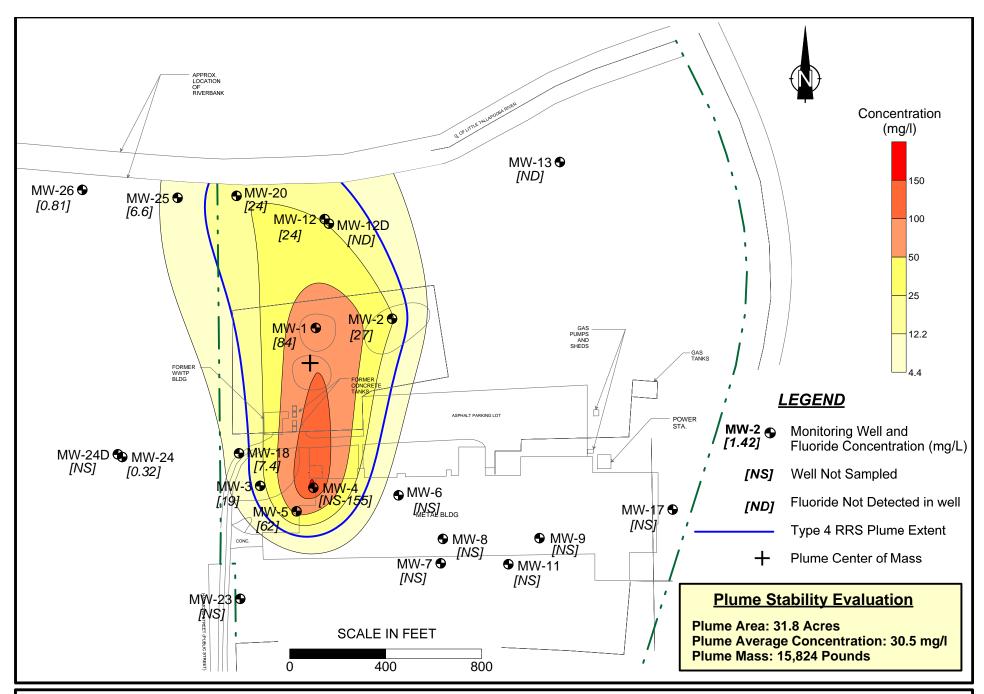


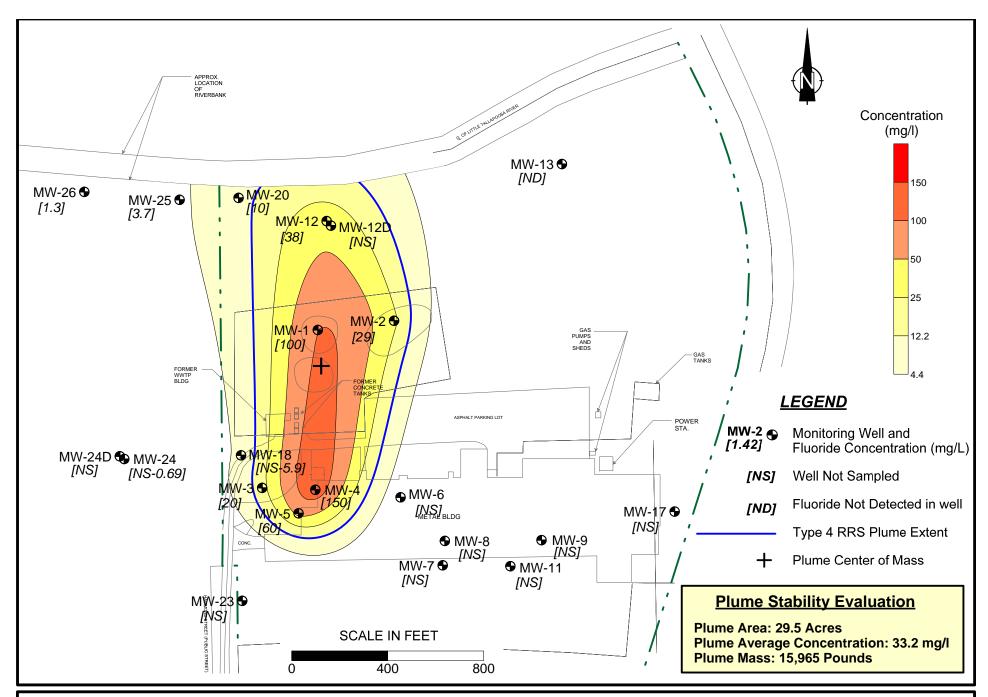


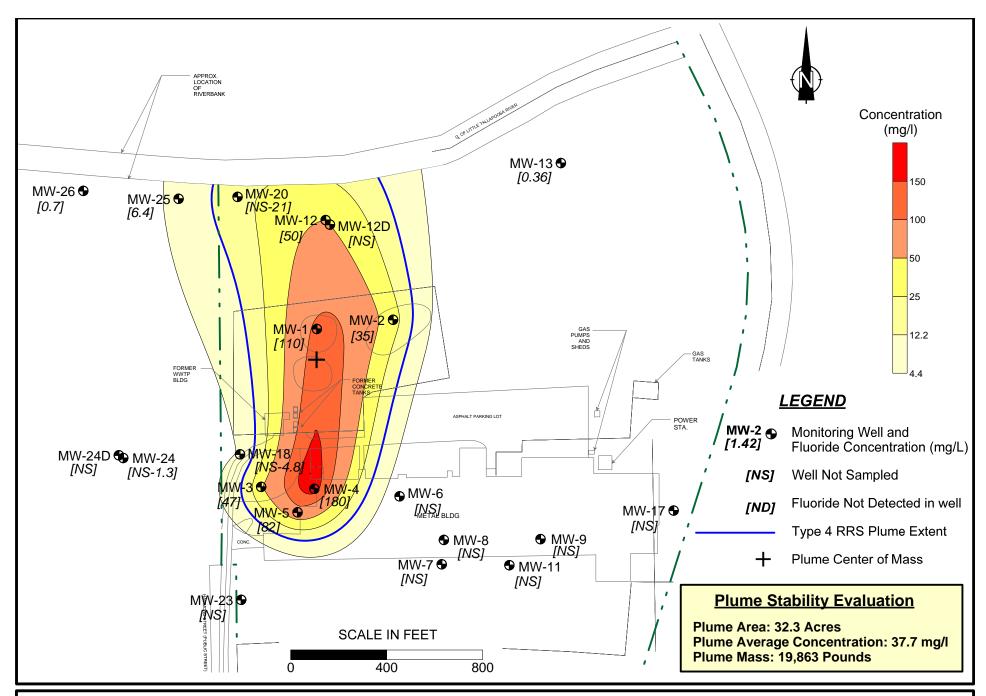


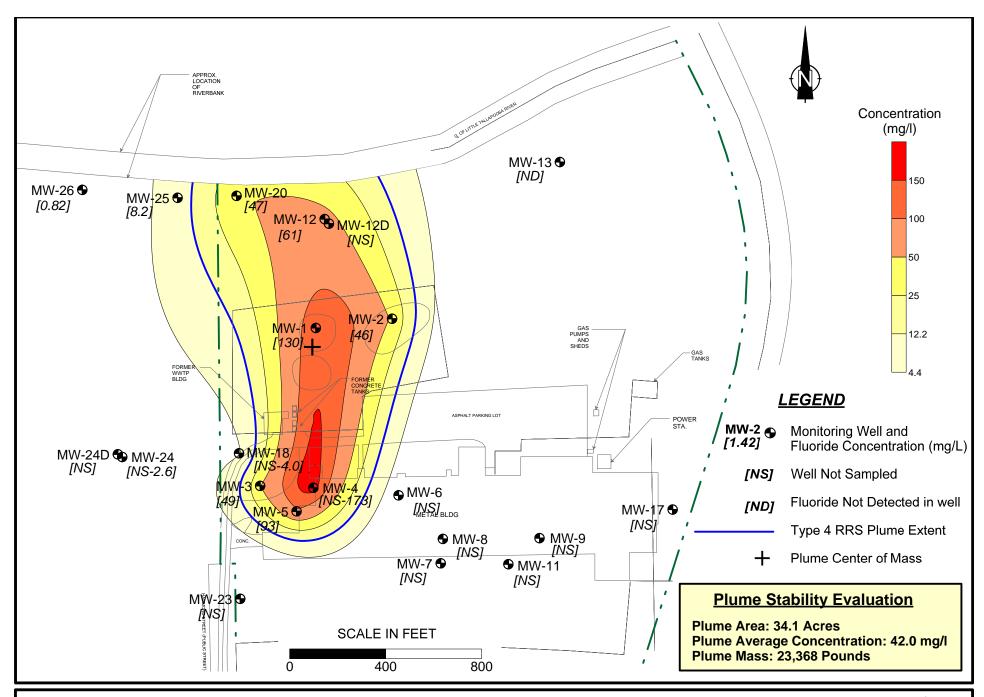


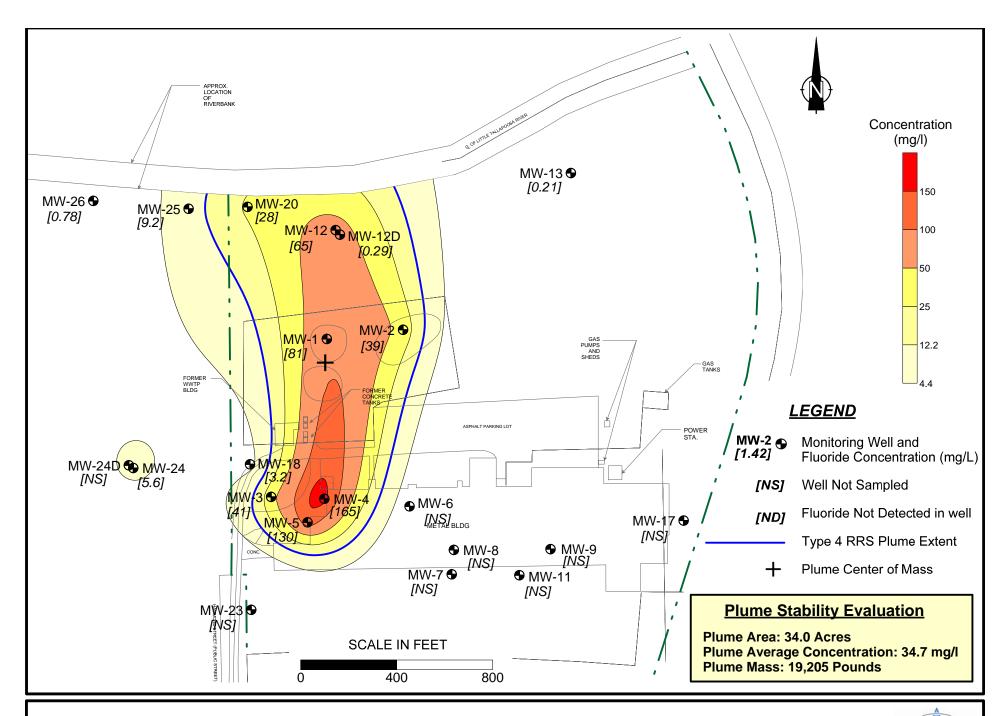












ATTACHMENT D

RISK REDUCTION STANDARDS

Summary: Risk Reduction Standards for Groundwater

Constituents	CAS Number	Type 1/3 GW RRS (mg/L)	Type 2 GW RRS (mg/L)	Type 4 GW RRS (mg/L)
<u>Inorganics</u>				
Chromium(III), Insoluble Salts (not regulated substance)	16065-83-1		23.5	
Lead and Compounds	7439-92-1	0.015	0.010	
Nickel Soluble Salts	7440-02-0	0.100	0.313	2.04
Mercury (elemental)	7439-97-6	0.002	0.0002	
Fluoride	16984-48-8	4.00	0.626	4.09
<u>VOCs</u>				
Trichloroethene (TCE)	79-01-6	0.005	0.005	0.005

Except where otherwise noted, RRS calculations based on standard default values of Georgia HSRA regulations (§391-3-19), U.S. EPA Mid-Atlantic Risk Assessment toxicity factors and physio-chemical properties (May 2016 update), and project-specific detection limits. Values derived using site-specific exposure factors such as water ingestion rate, exposure duration, etc., other detection limits, or updated toxicity factors and physio-chemical properties, will differ from the calculations contained herein.

Type 2 Risk Reduction Standards for Groundwater[Rule 391-3-19-.07(7)(b)]

	Ite	m 1	Ite	m 2	Least of		
	RAGS (Equ 2)	RAGS (Equ 2)	RAGS (Equ 1)	RAGS (Equ 1)	Items 1 & 2	Detection	TYPE 2 RRS
Constituents (mg/L)	Non-Carc Adult	Non-Carc Child	Carc Adult	Carc Child		Limit	
<u>Inorganics</u>							
Chromium(III), Insoluble Salts (not regulated substance)	5.48E+01	2.35E+01			2.35E+01	1.00E-02	2.35E+01
Lead and Compounds						1.00E-02	1.00E-02
Nickel Soluble Salts	7.30E-01	3.13E-01			3.13E-01	2.00E-02	3.13E-01
Mercury (elemental)						2.00E-04	2.00E-04
Fluoride	1.46E+00	6.26E-01			6.26E-01	1.00E-01	6.26E-01
<u>VOCs</u>							
Trichloroethene (TCE)	4.26E-03	1.03E-03	8.53E-03	1.19E-02	1.03E-03	5.00E-03	5.00E-03

Type 2 Non-Carcinogenic Evaluation for Groundwater; Residential Adult (RAGS Equ. 2)

Constituents	THI	BW (kg)		CF (d/yr)	EF (d/yr)			Oral RfD (mg/kg-d)	IR a (m3/d)	K (L/m³)	Inh. RfD (mg/kg-d)	Type 2 GW Stnd (mg/L)	Remarks
Inorganics													
Chromium(III), Insoluble Salts (not regulated substance)	1	70	30	365	350	30	2	1.5E+00	15	0.5		5.48E+01	oral only
Lead and Compounds		70	30	365	350	30	2		15	0.5			no tox values
Nickel Soluble Salts	1	70	30	365	350	30	2	2.0E-02	15	0.5	2.6E-05	7.30E-01	not volatile
Mercury (elemental)	1	70	30	365	350	30	2		15	0.5	8.6E-05		not volatile
Fluoride	1	70	30	365	350	30	2	4.0E-02	15	0.5	3.7E-03	1.46E+00	not volatile
VOCs													
Trichloroethene (TCE)	1	70	30	365	350	30	2	5.0E-04	15	0.5	5.7E-04	4.26E-03	oral & inh.

Type 2 Non-Carcinogenic Evaluation for Groundwater; Residential Child (RAGS Equ. 2)

Constituents	THI	BW (kg)		CF (d/yr)	EF (d/yr)			Oral RfD (mg/kg-d)	IR a (m3/d)	K (L/m³)	Inh. RfD (mg/kg-d)	Type 2 GW Stnd (mg/L)	Remarks
Inorganics													
Chromium(III), Insoluble Salts (not regulated substance)	1	15	6	365	350	6	1	1.5E+00	15	0.5		2.35E+01	oral only
Lead and Compounds		15	6	365	350	6	l i		15	0.5			no tox values
Nickel Soluble Salts	1	15	6	365	350	6	1	2.0E-02	15	0.5	2.6E-05	3.13E-01	not volatile
Mercury (elemental)	1	15	6	365	350	6	1		15	0.5	8.6E-05		not volatile
Fluoride	1	15	6	365	350	6	1	4.0E-02	15	0.5	3.7E-03	6.26E-01	not volatile
VOCs													
Trichloroethene (TCE)	1	15	6	365	350	6	1	5.0E-04	15	0.5	5.7E-04	1.03E-03	oral & inh.

Type 2 Carcinogenic Evaluation for Groundwater; Residential Adult (RAGS Equ. 1)

Constituents	TR	BW (kg)		CF (d/yr)	EF (d/yr)		IR w (L/d)	Oral SF (mg/kg-d)-1	IR a (m3/d)	K (L/m³)	Inh. SF (mg/kg-d)-1	Type 2 GW Stnd (mg/L)	Remarks
<u>Inorganics</u>													
Chromium(III), Insoluble Salts (not regulated substance)	1.00E-05	70	70	365	350	30	2		15	0.5			no tox value
Lead and Compounds	1.00E-05	70	70	365	350	30	2		15	0.5			no tox value
Nickel Soluble Salts	1.00E-05	70	70	365	350	30	2		15	0.5	9.1E-01		not volatile
Mercury (elemental)	1.00E-05	70	70	365	350	30	2		15	0.5			no tox value
Fluoride	1.00E-05	70	70	365	350	30	2		15	0.5			no tox value
<u>VOCs</u>													
Trichloroethene (TCE)	1.00E-05	70	70	365	350	30	2	4.6E-02	15	0.5	1.4E-02	8.53E-03	oral & inh.

Type 2 Carcinogenic Evaluation for Groundwater; Residential Child (RAGS Equ. 1)

Constituents	TR	BW (kg)		_	EF (d/yr)		IR w (L/d)	Oral SF (mg/kg-d)-1	IR a (m3/d)	K (L/m³)	Inh. SF (mg/kg-d)-1	Type 2 GW Stnd (mg/L)	Remarks
<u>Inorganics</u>													
Chromium(III), Insoluble Salts (not regulated substance)	1.00E-05	15	70	365	350	6	1		15	0.5			no tox value
Lead and Compounds	1.00E-05	15	70	365	350	6	1		15	0.5			no tox value
Nickel Soluble Salts	1.00E-05	15	70	365	350	6	1		15	0.5	9.1E-01		no tox value
Mercury (elemental)	1.00E-05	15	70	365	350	6	1		15	0.5			no tox value
Fluoride	1.00E-05	15	70	365	350	6	1		15	0.5			no tox value
<u>VOCs</u>													
Acetone	1.00E-05	15	70	365	350	6	1		15	0.5			no tox value
Toluene	1.00E-05	15	70	365	350	6	1		15	0.5			no tox value
Trichloroethene (TCE)	1.00E-05	15	70	365	350	6	1	4.6E-02	15	0.5	1.4E-02	1.19E-02	oral & inh.

Type 4 Risk Reduction Standards for Groundwater [Rule 391-3-19-.07(9)(c)]

	Item 1	Item 2	Least of		
	RAGS (Equ 2)	RAGS (Equ 1)	Items 1 & 2	Detection	TYPE 4 RRS
Constituents (mg/L)	Non-Carc Adult	Carc Adult		Limit	
<u>Inorganics</u>					
Nickel Soluble Salts	2.04E+00		2.04E+00	2.00E-02	2.04E+00
Fluoride	4.09E+00		4.09E+00	1.00E-01	4.09E+00
<u>VOCs</u>					
Trichloroethene (TCE)	5.24E-03	1.51E-02	5.24E-03	5.00E-03	5.24E-03

Type 4 Non-Carcinogenic Evaluation for Groundwater; Non-Residential Adult (RAGS Equ. 2)

Constituents		BW (kg)		CF (d/yr)			IR w (L/d)		IR a (m3/d)	K (L/m³)	Inh. RfD (mg/kg-d)	Type 4 GW Stnd (mg/L)	Remarks
<u>Inorganics</u>													
Nickel Soluble Salts	1	70	25	365	250	25	1	2.0E-02	20	0.5	2.6E-05	2.04E+00	not volatile
Fluoride	1	70	25	365	250	25	1	4.0E-02	20	0.5	3.7E-03	4.09E+00	not volatile
<u>VOCs</u>													
Trichloroethene (TCE)	1	70	25	365	250	25	1	5.0E-04	20	0.5	5.7E-04	5.24E-03	oral & inh.

Type 4 Carcinogenic Evaluation for Groundwater; non-Residential Adult (RAGS Equ. 1)

Constituents	TR	BW (kg)		CF (d/yr)	EF (d/yr)		IR w (L/d)		IR a (m3/d)	K (L/m³)	Inh. SF (mg/kg-d)-1	Type 4 GW Stnd (mg/L)	Remarks
Inorganics													
Nickel Soluble Salts	1.00E-05	70	70	365	250	25	1		20	0.5	9.1E-01		no tox value
Fluoride	1.00E-05	70	70	365	250	25	1		20	0.5			no tox value
<u>VOCs</u>													
Trichloroethene (TCE)	1.00E-05	70	70	365	250	25	1	4.6E-02	20	0.5	1.4E-02	1.51E-02	oral & inh.

		Type 1	Type 2		3 Soil RRS
		Soil RRS	Soil RRS	Surface Soil	Subsurface Soil
Constituents	CAS Number	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
<u>PCBs</u>					
Aroclor 1248	12672-29-6	1.55			
<u>Inorganics</u>					
Barium	7440-39-3	1,000			
Chromium, Total	7440-47-3	100	117,321		
Lead and Compounds	7439-92-1	75.0	270		
Nickel Soluble Salts	7440-02-0	50.0	409		
Mercury (elemental)	7439-97-6	0.500	2.09	17.0	17.0
Fluoride	16984-48-8	400	3,128		
<u>VOCs</u>					
Acetone	67-64-1	400			
Toluene	108-88-3	100			
Trichloroethene (TCE)	79-01-6	0.500			

Except where otherwise noted, RRS calculations based on standard default values of Georgia HSRA regulations (§391-3-19), U.S. EPA Mid-Atlantic Risk Assessment toxicity factors and physio-chemical properties (May 2016 update), Partioning Equation for Migration to Groundwater (Equation 4-10) of U.S. EPA Supplemental Guidance for Developing Soil Screening Levels at Superfund Sites (December 2002), and project-specific detection limits. Values derived using site-specific factors such as fraction of organic carbon (foc), SPLP test results, etc., updated toxicity factors and physio-chemical properties, or other detection limits will differ from the calculations contained herein.

Type 2 risk reduction standard for chromium assumes trivalent state

Type 1 Risk Reduction Standards for Soil [Rule 391-3-19-.07(6)(c)]

		Item 1 (i)	Item 1 (ii)		Item 2	Item 3	
	Appendix III	Appendix I	Type 1 GW	Greatest of	RAGS (Equ 7)	RAGS (Equ 6)	Type 1 RRS
Constituents (mg/kg)	Table 2 Value	Concentration	Criteria x 100	Item i - iii	Non-Carcinogenic	Carcinogenic	(mg/kg)
PCBs							
Aroclor 1248		1.55	0.05	1.55		7.47E+00	1.55
<u>Inorganics</u>							
Barium	1,000						1,000
Chromium, Total	100						100
Lead and Compounds	75.0						75.0
Nickel Soluble Salts	50.0						50.0
Mercury (elemental)	0.500						0.500
Fluoride			400	400	2.56E+04		400
<u>VOCs</u>							
Acetone		2.74	400	400	5.65E+05		400
Toluene		14.40	100	100	5.05E+04		100
Trichloroethene (TCE)		0.13	0.500	0.500	2.03E+02	2.69E+02	0.500

Type 1 Non-Carcinogenic Evaluation for Soil; Residential Use Scenario (RAGS Equ. 7)

Constituents	THI	BW (kg)		CF (d/yr)	EF (d/yr)	ED (yr)	IR s (mg/d)	CF (kg/mg)	Oral RfD (mg/kg-d)	IR a (m3/d)	VF (m3/kg)	PEF (m3/kg)	Inh. RfD (mg/kg-d)	Type 1 Soil Std. (mg/kg)	Remarks
PCBs															
Aroclor 1248	1	70	30	365	350	30	114	1.0E-06		15		4.63E+09			no tox values
<u>Inorganics</u>															
Barium	1	70	30	365	350	30	114	1.0E-06	2.0E-01	15		4.63E+09	1.4E-04	1.23E+05	oral & inh.
Chromium, Total	1	70	30	365	350	30	114	1.0E-06		15	-	4.63E+09			no tox values
Lead and Compounds	1	70	30	365	350	30	114	1.0E-06		15		4.63E+09			no tox values
Nickel Soluble Salts	1	70	30	365	350	30	114	1.0E-06	2.0E-02	15		4.63E+09	2.6E-05	1.25E+04	oral & inh.
Mercury (elemental)	1	70	30	365	350	30	114	1.0E-06		15		4.63E+09	8.6E-05	1.93E+06	inh only
Fluoride	1	70	30	365	350	30	114	1.0E-06	4.0E-02	16		4.63E+09	3.7E-03	2.56E+04	inh only
<u>VOCs</u>															
Acetone	1	70	30	365	350	30	114	1.0E-06	9.0E-01	15	6.42E+05	4.63E+09	8.9E+00	5.65E+05	oral & inh.
Toluene	1	70	30	365	350	30	114	1.0E-06	8.0E-02	15	5.17E+05	4.63E+09	1.4E+00	5.05E+04	oral & inh.
Trichloroethene (TCE)	1	70	30	365	350	30	114	1.0E-06	5.0E-04	15	2.00E+05	4.63E+09	5.7E-04	2.03E+02	oral & inh.

Type 1 Carcinogenic Evaluation for Soil; Residential Use Scenario (RAGS Equ. 6)

Constituents	TR	BW (kg)		CF (d/yr)	EF (d/yr)	ED (yr)	IR s (mg/d)	CF (kg/mg)	Oral SF (mg/kg-d)-1	IR a (m3/d)	VF (m3/kg)	PEF (m3/kg)	Inh. SF (mg/kg-d)-1	Type 1 Soil Std. (mg/kg)	Remarks
PCBs															
Aroclor 1248	1.00E-05	70	70	365	350	30	114	1.0E-06	2.0E+00	15		4.63E+09	2.0E+00	7.47E+00	oral & inh.
<u>Inorganics</u>															
Barium	1.00E-05	70	70	365	350	30	114	1.0E-06		15		4.63E+09			no tox values
Chromium, Total	1.00E-05	70	70	365	350	30	114	1.0E-06		15		4.63E+09			no tox values
Lead and Compounds	1.00E-05	70	70	365	350	30	114	1.0E-06		15		4.63E+09			no tox values
Nickel Soluble Salts	1.00E-05	70	70	365	350	30	114	1.0E-06		15		4.63E+09	9.1E-01	5.78E+05	inh only
Mercury (elemental)	1.00E-05	70	70	365	350	30	114	1.0E-06		15		4.63E+09			no tox values
	1.00E-05	70	70	365	350	30	114	1.0E-06		15		4.63E+09			no tox values
<u>VOCs</u>															
Acetone	1.00E-05	70	70	365	350	30	114	1.0E-06		15	6.42E+05	4.63E+09			no tox values
Toluene	1.00E-05	70	70	365	350	30	114	1.0E-06		15	5.17E+05	4.63E+09			no tox values
Trichloroethene (TCE)	1.00E-05	70	70	365	350	30	114	1.0E-06	4.6E-02	15	2.00E+05	4.63E+09	1.4E-02	2.69E+02	oral & inh.

Type 2 Risk Reduction Standards for Soil [Rule 391-3-19-.07(7)(c)]

	Item 1	Iter	m 2	Iter	n 3			
	Groundwater	RAGS	(Equ 7)	RAGS	(Equ 6)	Least of	IEUBK	TYPE 2 RRS
Constituents (mg/kg)	Protection Standard	Non-Carc Adult	Non-Carc Child	Carc Adult	Carc Child	Items 1 - 3	Model	(mg/kg)
<u>Inorganics</u>								
Chromium(III), Insoluble Salts (not regulated substance)	(a)	1.10E+06	1.17E+05			1.17E+05		117,321
Lead and Compounds	270					2.70E+02	4.18E+02	270
Nickel Soluble Salts	409	1.42E+04	1.54E+03	5.78E+05	6.19E+05	4.09E+02		409
Mercury (elemental)	2.09	1.93E+06	4.14E+05			2.09E+00		2.09
Fluoride	12,023	2.92E+04	3.13E+03			3.13E+03		3,128

⁽a) Chemical-specific properties are such that this pathway is not of concern at any soil contaminant concentration

Type 2 Non-Carcinogenic Evaluation for Soil; Residential Adult (RAGS Equ. 7)

Constituents	THI	BW (kg)		CF (d/yr)	EF (d/yr)	ED (yr)	IR s (mg/d)	CF (kg/mg)	Oral RfD (mg/kg-d)	IR a (m3/d)	VF (m3/kg)	PEF (m3/kg)	Inh. RfD (mg/kg-d)	Type 2 Soil Std. (mg/kg)	Remarks
<u>Inorganics</u>															
Chromium(III), Insoluble Salts (not regulated substance)	1	70	30	365	350	30	100	1.0E-06	1.5E+00	15		4.63E+09		1.10E+06	oral only
Lead and Compounds	1	70	30	365	350	30	100	1.0E-06		15		4.63E+09			no tox values
Nickel Soluble Salts	1	70	30	365	350	30	100	1.0E-06	2.0E-02	15		4.63E+09	2.6E-05	1.42E+04	oral & inh.
Mercury (elemental)	1	70	30	365	350	30	100	1.0E-06		15		4.63E+09	8.6E-05	1.93E+06	inh only
Fluoride	1	70	30	365	350	30	100	1.0E-06	4.0E-02	15		4.63E+09	3.7E-03	2.92E+04	oral & inh.

Type 2 Non-Carcinogenic Evaluation for Soil; Residential Child (RAGS Equ. 7)

Constituents	THI	BW (kg)	AT (yr)	CF (d/yr)	EF (d/yr)	ED (yr)	IR s (mg/d)	CF (kg/mg)	Oral RfD (mg/kg-d)	IR a (m3/d)	VF (m3/kg)	PEF (m3/kg)	Inh. RfD (mg/kg-d)	Type 2 Soil Std. (mg/kg)	Remarks
<u>Inorganics</u>															
Chromium(III), Insoluble Salts (not															
regulated substance)	1	15	6	365	350	6	200	1.0E-06	1.5E+00	15		4.63E+09		1.17E+05	oral only
Lead and Compounds	1	15	6	365	350	6	200	1.0E-06		15	;	4.63E+09			no tox values
Nickel Soluble Salts	1	15	6	365	350	6	200	1.0E-06	2.0E-02	15		4.63E+09	2.6E-05	1.54E+03	oral & inh.
Mercury (elemental)	1	15	6	365	350	6	200	1.0E-06		15		4.63E+09	8.6E-05	4.14E+05	inh only
Fluorene	1	15	6	365	350	6	200	1.0E-06	4.0E-02	15		4.63E+09	3.7E-03	3.13E+03	,

Type 2 Carcinogenic Evaluation for Soil; Residential Adult (RAGS Equ. 6)

Constituents	TR	BW (kg)	AT (yr)	CF (d/yr)	EF (d/yr)	ED (yr)	IR s (mg/d)	CF (kg/mg)	Oral SF (mg/kg-d)-1	IR a (m3/d)	VF (m3/kg)	PEF (m3/kg)	Inh. SF (mg/kg-d)-1	Type 2 Soil Std. (mg/kg)	Remarks
<u>Inorganics</u>															
Chromium(III), Insoluble Salts (not regulated substance)	1.00E-05	70	70	365	350	30	100	1.0E-06		15		4.63E+09			no tox values
Lead and Compounds	1.00E-05	70	70	365	350	30	100	1.0E-06		15		4.63E+09			no tox values
Nickel Soluble Salts	1.00E-05	70	70	365	350	30	100	1.0E-06		15		4.63E+09	9.1E-01	5.78E+05	inh only
Mercury (elemental)	1.00E-05	70	70	365	350	30	100	1.0E-06		15		4.63E+09			no tox values
Fluoride	1.00E-05	70	70	365	350	30	100	1.0E-06		16		4.63E+09			no tox values

Type 2 Carcinogenic Evaluation for Soil; Residential Child (RAGS Equ. 6)

Constituents	TR	BW (kg)	AT (yr)	CF (d/yr)	EF (d/yr)	ED (yr)	IR s (mg/d)	CF (kg/mg)	Oral SF (mg/kg-d)-1	IR a (m3/d)	VF (m3/kg)	PEF (m3/kg)	Inh. SF (mg/kg-d)-1	Type 2 Soil Std. (mg/kg)	Remarks
Inorganics															
<u>inorganics</u>															
Chromium(III), Insoluble Salts (not regulated															
substance)	1.00E-05	15	70	365	350	6	200	1.0E-06		15		4.63E+09			no tox values
Lead and Compounds	1.00E-05	15	70	365	350	6	200	1.0E-06		15		4.63E+09			no tox values
Nickel Soluble Salts	1.00E-05	15	70	365	350	6	200	1.0E-06		15		4.63E+09	9.1E-01	6.19E+05	inh only
Mercury (elemental)	1.00E-05	15	70	365	350	6	200	1.0E-06		15		4.63E+09			no tox values
Fluoride	1.00E-05	15	70	365	350	6	200	1.0E-06		16	-	4.63E+09		1	no tox values

Type 2 Soil Screening Level for Migration to Groundwater

	Cw	1										
	Type 1 or 2					Ow**						Soil Screening
	GW Criteria	DAF	Kd*	Koc	foc	(Lwater/	Oa	n	Pb**	Ps**	H'	Level
Constituents	(mg/L)	(unitless)	(L/kg)	(L/kg)	(g/g)	Lsoil)	(Lair/Lsoil)	(Lpore/Lsoil)	(kg/L)	(kg/L)	(unitless)	(mg/kg)
<u>Inorganics</u>												
Chromium(III), Insoluble Salts (not regulated												
substance)	23.5	20	1.80E+06		0.002	0.3	0.134	0.434	1.5	2.65		(a)
Lead and Compounds	0.015	20	9.00E+02		0.002	0.3	0.134	0.434	1.5	2.65		270
Nickel Soluble Salts	0.313	20	6.50E+01		0.002	0.3	0.134	0.434	1.5	2.65		409
Mercury (elemental)	0.002	20	5.20E+01		0.002	0.3	0.134	0.434	1.5	2.65		2.09
Fluoride	4.00	20	1.50E+02		0.002	0.3	0.134	0.434	1.5	2.65		12023

Notes:

Physical/chemical parameters obtained from U.S. EPA Mid-Atlantic Risk Assessment Regional Screening Tables (http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm) except as noted below.

** Values for Ow, Pb, and Ps obtained from Appendix B (Equation 13) of Supplemental Guidance for Developing Sol Screening Levels for Superfund Sites (EPA, 2002)

(a) Chemical-specific properties are such that this pathway is not of concern at any soil contaminant concentration

Soil screening level = Cw [Kd + (Ow + Oa*H')/Pb]

Cw = target soil leachate concentration (mg/L)

Cw = groundwater critieria * dilultion attenuation factor (DAF)

Kd = soil-water partition coefficient (L/kg) = Koc x foc

Koc=soil organic carbon-water partition coefficient (L/kg)

foc = fraction organic carbon-water partition coefficient (g/g)

Ow = water-filled soil porosity (Lwater/Lsoil)

Oa = air-filled soil porosity (Lair/Lsoil) = n-Ow

n = soil porosity (Lpore/Lsoil) = 1-(Pb/Ps)

Pb = dry soil bulk density (kg/L)

Ps = soil particle density (kg/L)

H' = dimensionless Henry's Law Constant

Type 3 Risk Reduction Standards for Soil [Rule 391-3-19-.07(8)(d)]

		Item 1 (i)	Item 1 (ii)	Type 3 RRS	Item 2	Item 3	Type 3 RRS
	Appendix III	Appendix I	Type 1 GW	(subsurface)	RAGS (Equ 7)	RAGS (Equ 6)	(surficial)
Constituents (mg/kg)	Table 2 Value	Concentration	Criteria x 100	(mg/kg)	Non-Carcinogenic	Carcinogenic	(mg/kg)
<u>Inorganics</u>							
Mercury (elemental)	0.500	17.0	0.200	17.0	2.03E+06		17.0

Type 3 Non-Carcinogenic Evaluation for Soil; Non-Residential Adult (RAGS Equ. 7)

Constituents	THI	BW (kg)		CF (d/yr)	EF (d/yr)	ED (yr)	IR s (mg/d)	CF (kg/mg)	Oral RfD (mg/kg-d)	IR a (m3/d)	VF (m3/kg)	PEF (m3/kg)	Inh. RfD (mg/kg-d)	Type 3 Soil Std. (mg/kg)	Remarks
<u>Inorganics</u>															
Mercury (elemental)	1	70	25	365	250	25	50	1.0E-06		20		4.63E+09	8.6E-05	2.03E+06	inh only

Type 3 Carcinogenic Evaluation for Soil; Non-Residential Adult (RAGS Equ. 6)

	TR	BW	АТ	CF	EF	ED	IR s	CF	Oral SF	IR a	VF	PEF	Inh. SF	Type 3 Soil Std.	Remarks
Constituents		(kg)	(yr)	(d/yr)	(d/yr)	(yr)	(mg/d)	(kg/mg)	(mg/kg-d)-1	(m3/d)	(m3/kg)	(m3/kg)	(mg/kg-d)-1	(mg/kg)	
<u>Inorganics</u>															
Mercury (elemental)	1.00E-05	70	70	365	250	25	50	1.0E-06		20		4.63E+09			no tox values

Calculation of the Volatilization Factor

Parameter	Default Value
LS, Length of side of contaminated area (m)	45
V, Wind speed in mixing zone (m/s)	2.25
DH, Diffusion height, m	2
A, Area of contamination (sq. m)	2030
A, Area of contamination (sq. cm)	2.03E+07
E, True soil porosity (unitless)	0.35
ps, true soil density, g/cc	2.65
T, exposure interval, s	7.90E+08
G, fraction of vegetative cover (unitless)	0
OC, Soil organic carbon content (fraction)	0.02

Constituent	Molecular Wt. (g/mol)	Diffusivity (cm²/s)	Henry's Law constant (atm-m³/mol)	Kd	Koc (cm³/g)	Dei (cm²/s)	Kas (g/cm³)	alpha (cm²/s)	VF (m³/kg)
VOCs									
Acetone	58.08	1.15E-05	3.50E-05	0.0	2.364	8.13E-06	3.04E-02	4.98E-08	6.42E+05
Toluene	92.14	9.20E-06	6.64E-03	4.7	233.9	6.51E-06	5.82E-02	7.61E-08	5.17E+05
Trichloroethene (TCE)	131.39	1.02E-05	9.85E-03	1.2	60.7	7.21E-06	3.33E-01	4.57E-07	2.00E+05

Default parameters are from Appendix III, Table 3 of the HSRA regulations.

Physical/chemical parameters obtained from U.S. EPA Mid-Atlantic Risk Assessment Regional Screening Tables (http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm) unless otherwise noted..

ATTACHMENT E

ENVIRONMENTAL COVENANT

After Recording Return to:

Georgia Environmental Protection Division Response and Remediation Program 2 Martin Luther King, Jr. Drive, SE Suite 1462 East Atlanta, Georgia 30334

Environmental Covenant

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, OCGA § 44-16-1, et seq. This Environmental Covenant subjects the Property identified below to the activity and/or use limitations specified in this document. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with OCGA § 44-16-8(a).

Fee Owner of Property/Grantor:

BTR Properties, LLC

3003 Springs Industrial Drive Powder Springs, GA 30127-3858

Grantee/Entity with

express power to enforce:

State of Georgia

Department of Natural Resources Environmental Protection Division 2 Martin Luther King Jr. Drive, SE

Suite 1152 East Tower Atlanta, GA 30334

Property:

The property subject to this Environmental Covenant is the BoMetals, Inc. property (hereinafter "Property"), located on 141 Hammond Street in Carrollton, Carroll County, Georgia. The Property is located in Land Lots 130, 131, 158 & 159 of the 10th District of Carroll County, Georgia. The Property contains approximately 36.25 acres. A complete legal description of the area is attached as **Exhibit A**.

Tax Parcel Number(s):

C02 0430003 of Carroll County, Georgia

Name and Location of Administrative Records:

The corrective action at the Property that is the subject of this Environmental Covenant is described in the following document:

• Voluntary Investigation and Remediation Plan, prepared by Peachtree Environmental for BTR Properties, LLC., dated December 2016.

This document is available at the following locations:

Georgia Environmental Protection Division

Response and Remediation Program 2 MLK Jr. Drive, SE, Suite 1462 East Tower Atlanta, GA 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

Description of Contamination and Corrective Action:

This Property has been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.

This Declaration of Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 et seq. by BTR Properties, LLC ("BTR Properties"), its successors and assigns, and the State of Georgia, Department of Natural Resources, Environmental Protection Division (hereinafter "EPD"), its successors and assigns. This Environmental Covenant is required because a release of nickel, flouride, trichloroethene, nitrate and nitrite occurred on the Property. These substances are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 et seq., and the rules promulgated thereunder (hereinafter "HSRA" and "Rules", respectively). The Corrective Action consists of institutional controls to restrict the use of groundwater to protect human health and the environment.

Grantor, BTR Properties, LLC (hereinafter "BTR"), hereby binds Grantor, its successors and assigns to the activity and use restriction(s) for the Property identified herein and grants such other rights under this Environmental Covenant in favor of the EPD. EPD shall have full right of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 et seq., and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from excising any authority under applicable law.

BTR makes the following declaration as to limitations, restrictions, and uses to which the Property may be put and specifies that such declarations shall constitute covenants to run with the land, pursuant to O.C.G.A. § 44-16-5(a); is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to O.C.G.A. § 44-16-9; and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property occur before such time as this Environmental Covenant has been amended or revoked then said Environmental Covenant shall be binding on the transferee(s) or purchaser(s).

The Environmental Covenant shall inure to the benefit of EPD, BTR, and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns, BTR, or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Activity and/or Use Limitation(s)

- 1. <u>Registry.</u> Pursuant to O.C.G.A. § 44-16-12, this Environmental Covenant and any amendment or termination thereof, may be contained in EPD's registry for environmental covenants.
- 2. <u>Notice of Limitation in Future Conveyances.</u> The Owner of the Property must give thirty (30) day advance written notice to EPD of the Owner's intent to convey any interest in the Property. Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the activity and use limitations set forth in this Environmental Covenant and shall provide the recorded location of the Environmental Covenant.
- 3. <u>Groundwater Limitation.</u> The use or extraction of groundwater beneath the Property for drinking water or for any other non-remedial purposes shall be prohibited.
- 4. <u>Right of Access.</u> In addition to any rights already possessed by EPD, the Owner shall allow authorized representatives of EPD the right to enter the Property at reasonable times for the purpose of evaluating the Corrective Action; to take samples, to inspect the Corrective Action conducted at the Property, to determine compliance with this Environmental Covenant, and to inspect records that are related to the Corrective Action.
- 5. Recording of Environmental Covenant and Proof of Notification. Within thirty (30) days after the date of the Director's signature, the Owner shall file this Environmental Covenant with the Recorders of Deeds for each County in which the Property is located, and send a file stamped copy of this Environmental Covenant to EPD within thirty (30) days of recording. Within that time period, the Owner shall also send a file-stamped copy to each of the following: (1) BTR, (2) each person holding a recorded interest in the Property subject to the covenant, (3) each person in possession of the real property subject to the covenant, (4) each municipality, county, consolidated government, or other unit of local government in which real property subject to the covenant is located, and (5) each owner in fee simple whose property abuts the property subject to the Environmental Covenant.
- 6. Termination or Modification. The Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-5-60, unless and until the Director determines that the Property is in compliance with the Type 1, 2, 3, or 4 Risk Reduction Standards, as defined in Georgia Rules of Hazardous Site Response (Rules) Section 391-3-19-.07 and removes the Property from the Hazardous Site Inventory, whereupon the Environmental Covenant may be amended or revoked in accordance with Section 391-3-19-08(7) of the Rules and O.C.G.A. § 44-16-1 et seq.
- 7. <u>Severability</u>. If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.
- 8. No Property Interest Created in EPD. This Environmental Covenant does not in any way create any interest by EPD in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

Representations and Warranties.

Grantor hereby represents and warrants to the other signatories hereto:

- a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;
- b) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;

- c) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- d) That the Grantor has served each of the people or entities referenced in Activity 6 above with an identical copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-4(d).
- e) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- f) That this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.

Notices.

Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

Georgia Environmental Protection Division Branch Chief Land Protection Branch 2 Martin Luther King Jr. Drive SE Suite 1154 East Tower Atlanta, GA 30334

Todd Rambo BoMetals, Inc. 141 Hammond Street Carrollton, GA 30117

Grantor has caused this Environmental C Environmental Covenants Act, on the			o The	Georgia	Uniforn
BTR Properties, LLC				e2	
T. 11 D. 1					
Todd Rambo Member					
Dated:					
STATE OF GEORGIA ENVIRONMENTAL PROTECTION DI	VISION				

[Name of Person Acknowledging Receipt]

[Title]		
Dated:		

[CORPORATE ACKNOWLEDGMENT]

STATE OF GEORGIA COUNTY OF CARROLL

On this day of, 20, I certify that person appeared before me, acknowledged that he/she is the of the corp that executed the within and foregoing instrument, and signed said instrument by free and volun and deed of said corporation, for the uses and purposes therein mentioned, and on oath stated that was authorized to execute said instrument for said corporation.	
that executed the within and foregoing instrument, and signed said instrument by free and volunt and deed of said corporation, for the uses and purposes therein mentioned, and on oath stated that	ally
and deed of said corporation, for the uses and purposes therein mentioned, and on oath stated that	oration
and deed of said corporation, for the uses and purposes therein mentioned, and on oath stated that	tary act
was authorized to execute said instrument for said corporation.	he/she
Notary Public in and for the State of	
Georgia, residing at	
My appointment expires	

Exhibit A Legal Description

After Recording Return to:

Georgia Environmental Protection Division Response and Remediation Program 2 Martin Luther King, Jr. Drive, SE Suite 1462 East Atlanta, Georgia 30334

Environmental Covenant

This instrument is an Environmental Covenant executed pursuant to the Georgia Uniform Environmental Covenants Act, OCGA § 44-16-1, et seq. This Environmental Covenant subjects the Property identified below to the activity and/or use limitations specified in this document. The effective date of this Environmental Covenant shall be the date upon which the fully executed Environmental Covenant has been recorded in accordance with OCGA § 44-16-8(a).

Fee Owner of Property/Grantor:

Lawrence Properties, Inc.

1065 Alabama Street, Suite 36D

Carrollton, GA 30117

Grantee/Entity with

express power to enforce:

State of Georgia

Department of Natural Resources

Environmental Protection Division 2 Martin Luther King Jr. Drive, SE

Suite 1152 East Tower Atlanta, GA 30334

Property:

The property subject to this Environmental Covenant is the Lawrence Properties, Inc. property (hereinafter "Property"), located on 1065 Alabama Street, Carrollton, Carroll County, Georgia. The Property is located in Land Lot 131 of the 10th District of Carroll County, Georgia. The Property contains approximately 20 acres. A complete legal description of the area is attached as **Exhibit A**.

Tax Parcel Number(s):

C02 0430015 of Carroll County, Georgia

Name and Location of Administrative Records:

The corrective action at the Property that is the subject of this Environmental Covenant is described in the following document:

• Voluntary Investigation and Remediation Plan, prepared by Peachtree Environmental for BTR Properties, LLC., dated December 2016.

This document is available at the following locations:

Georgia Environmental Protection Division

Response and Remediation Program 2 MLK Jr. Drive, SE, Suite 1462 East Tower Atlanta, GA 30334 M-F 8:00 AM to 4:30 PM excluding state holidays

Description of Contamination and Corrective Action:

This Property has been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this Property. This notice is provided in compliance with the Georgia Hazardous Site Response Act.

This Declaration of Covenant is made pursuant to the Georgia Uniform Environmental Covenants Act, O.C.G.A. § 44-16-1 et seq. by BTR Properties, LLC ("BTR Properties"), its successors and assigns, and the State of Georgia, Department of Natural Resources, Environmental Protection Division (hereinafter "EPD"), its successors and assigns. This Environmental Covenant is required because a release of nickel, flouride, trichloroethene, nitrate and nitrite occurred on the Property. These substances are "regulated substances" as defined under the Georgia Hazardous Site Response Act, O.C.G.A. § 12-8-90 et seq., and the rules promulgated thereunder (hereinafter "HSRA" and "Rules", respectively). The Corrective Action consists of institutional controls to restrict the use of groundwater to protect human health and the environment.

Grantor, Lawrence Properties, Inc. (hereinafter "Lawrence"), hereby binds Grantor, its successors and assigns to the activity and use restriction(s) for the Property identified herein and grants such other rights under this Environmental Covenant in favor of the EPD. EPD shall have full right of enforcement of the rights conveyed under this Environmental Covenant pursuant to HSRA, O.C.G.A. § 12-8-90 et seq., and the rules promulgated thereunder. Failure to timely enforce compliance with this Environmental Covenant or the use or activity limitations contained herein by any person shall not bar subsequent enforcement by such person and shall not be deemed a waiver of the person's right to take action to enforce any non-compliance. Nothing in this Environmental Covenant shall restrict EPD from excising any authority under applicable law.

Lawrence makes the following declaration as to limitations, restrictions, and uses to which the Property may be put and specifies that such declarations shall constitute covenants to run with the land, pursuant to O.C.G.A. § 44-16-5(a); is perpetual, unless modified or terminated pursuant to the terms of this Covenant pursuant to O.C.G.A. § 44-16-9; and shall be binding on all parties and all persons claiming under them, including all current and future owners of any portion of or interest in the Property (hereinafter "Owner"). Should a transfer or sale of the Property occur before such time as this Environmental Covenant has been amended or revoked then said Environmental Covenant shall be binding on the transferee(s) or purchaser(s).

The Environmental Covenant shall inure to the benefit of EPD, Lawrence, and their respective successors and assigns and shall be enforceable by the Director or his agents or assigns, Lawrence, or its successors and assigns, and other party(ies) as provided for in O.C.G.A. § 44-16-11 in a court of competent jurisdiction.

Activity and/or Use Limitation(s)

- 1. <u>Registry.</u> Pursuant to O.C.G.A. § 44-16-12, this Environmental Covenant and any amendment or termination thereof, may be contained in EPD's registry for environmental covenants.
- 2. <u>Notice of Limitation in Future Conveyances.</u> The Owner of the Property must give thirty (30) day advance written notice to EPD of the Owner's intent to convey any interest in the Property. Each instrument hereafter conveying an interest in the Property subject to this Environmental Covenant shall contain a notice of the activity and use limitations set forth in this Environmental Covenant and shall provide the recorded location of the Environmental Covenant.
- 3. <u>Groundwater Limitation.</u> The use or extraction of groundwater beneath the Property for drinking water or for any other non-remedial purposes shall be prohibited.
- 4. <u>Right of Access.</u> In addition to any rights already possessed by EPD, the Owner shall allow authorized representatives of EPD the right to enter the Property at reasonable times for the purpose of evaluating the Corrective Action; to take samples, to inspect the Corrective Action conducted at the Property, to determine compliance with this Environmental Covenant, and to inspect records that are related to the Corrective Action.
- 5. Recording of Environmental Covenant and Proof of Notification. Within thirty (30) days after the date of the Director's signature, the Owner shall file this Environmental Covenant with the Recorders of Deeds for each County in which the Property is located, and send a file stamped copy of this Environmental Covenant to EPD within thirty (30) days of recording. Within that time period, the Owner shall also send a file-stamped copy to each of the following: (1) Lawrence, (2) each person holding a recorded interest in the Property subject to the covenant, (3) each person in possession of the real property subject to the covenant, (4) each municipality, county, consolidated government, or other unit of local government in which real property subject to the covenant is located, and (5) each owner in fee simple whose property abuts the property subject to the Environmental Covenant.
- 6. Termination or Modification. The Environmental Covenant shall remain in full force and effect in accordance with O.C.G.A. § 44-5-60, unless and until the Director determines that the Property is in compliance with the Type 1, 2, 3, or 4 Risk Reduction Standards, as defined in Georgia Rules of Hazardous Site Response (Rules) Section 391-3-19-.07 and removes the Property from the Hazardous Site Inventory, whereupon the Environmental Covenant may be amended or revoked in accordance with Section 391-3-19-08(7) of the Rules and O.C.G.A. § 44-16-1 et seq.
- 7. <u>Severability</u>. If any provision of this Environmental Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.
- 8. No Property Interest Created in EPD. This Environmental Covenant does not in any way create any interest by EPD in the Property that is subject to the Environmental Covenant. Furthermore, the act of approving this Environmental Covenant does not in any way create any interest by EPD in the Property in accordance with O.C.G.A. § 44-16-3(b).

Representations and Warranties.

Grantor hereby represents and warrants to the other signatories hereto:

a) That the Grantor has the power and authority to enter into this Environmental Covenant, to grant the rights and interests herein provided and to carry out all obligations hereunder;

- b) That the Grantor has identified all other parties that hold any interest (e.g., encumbrance) in the Property and notified such parties of the Grantor's intention to enter into this Environmental Covenant;
- c) That this Environmental Covenant will not materially violate, contravene, or constitute a material default under any other agreement, document or instrument to which Grantor is a party, by which Grantor may be bound or affected;
- d) That the Grantor has served each of the people or entities referenced in Activity 6 above with an identical copy of this Environmental Covenant in accordance with O.C.G.A. § 44-16-4(d).
- e) That this Environmental Covenant will not materially violate or contravene any zoning law or other law regulating use of the Property; and
- f) That this Environmental Covenant does not authorize a use of the Property that is otherwise prohibited by a recorded instrument that has priority over the Environmental Covenant.

Notices.

Any document or communication required to be sent pursuant to the terms of this Environmental Covenant shall be sent to the following persons:

Georgia Environmental Protection Division Branch Chief Land Protection Branch 2 Martin Luther King Jr. Drive SE Suite 1154 East Tower Atlanta, GA 30334

Lawrence Properties, Inc. 1065 Alabama Street, Suite 36D Carrollton, GA 30117

Carrollton, GA 30117	
Grantor has caused this Environmental Covenant to be executed pursuant to The Georgia Unit Environmental Covenants Act, on the day of, 20	form
Lawrence Properties, Inc.	
Title:	
Dated:	
STATE OF GEORGIA ENVIRONMENTAL PROTECTION DIVISION	
[Name of Person Acknowledging Receipt] [Title]	

222			
Dated:			
Dated.			
~	 	 	

[CORPORATE ACKNOWLEDGMENT]

STATE OF GEORGIA COUNTY OF CARROLL

On this	, 20, I certify that	
appeared before me,		of the corporation
	instrument, and signed said instrum	
-	es and purposes therein mentioned, a ent for said corporation.	and on oath stated that he/sh
	Notary Public in and fo	or the State of
	Georgia, residing at	
	My appointment expire	es .

Exhibit A Legal Description