

Aaron Williams Ph.D. Principal

(678) 336-8537 Direct Line awilliams@envplanning.com

Suite 550 Atlanta, Georgia 30338

(404) 315-9113 Telephone (404) 315-8509 Fax

June 30, 2017

David Hayes Georgia Environmental Protection Division **Response and Remediation Program** 2 Martin Luther King, Jr. Drive, S.E. East Tower, Suite 1054 Atlanta, Georgia 30334

Re: Voluntary Remediation Program Application, former Lowe's Site, HSI#10808

Dear Mr. Hayes,

On behalf of Light of Joy, Inc., please find enclosed an application for enrollment into the Georgia Voluntary Remediation Program (VRP) for the former Lowe's Site (HSI#10808) located at 7458 Georgia Highway 85 in Riverdale, Georgia (the "Site"). The Site was purchased by Light of Joy, Inc. for use as a church in April 2016.

As described in the VRP application, corrective action for Site soil was completed in 2006 and the Site received a Brownfield Limitation of Liability from the Georgia Environmental Protection Division (EPD) on April 9, 2007. The remaining corrective action task for the Site is monitored natural attenuation assessment for metals in groundwater, for which only lead in a single well remains above a Site Risk Reduction Standard following nine years of monitoring. The groundwater lead condition is delineated vertically and horizontally and is generally improved over the past nine years. No route of exposure to Site groundwater exists as the Site and the surrounding community are serviced by a public water supply.

It is anticipated that review of the Site VRP application and a closure resolution will require limited resources on behalf of the EPD based on the status of Site. For this reason and as Light of Joy, Inc. is a non-profit organization, a waiver from the standard VRP application fee as offered by Section 12-8-104(7) of the Georgia Code is respectfully requested. Certification from the State of Georgia identifying Light of Joy, Inc. as a domestic non-profit corporation is attached including proof of up-to-date registration.

Thank you for your consideration and please contact me directly with any questions.

Sincerely,

Aavon Williams

Aaron Williams Principal

I Kanala

Kirk J. Kessler, P.G. Senior Principal

Prepared for:

LIGHT OF JOY, INC. 7458 Georgia Highway 85 Riverdale, GA 30274

VOLUNTARY INVESTIGATION AND REMEDIATION PLAN Former Lowe's Store (HSI #10808) Riverdale, Georgia

Prepared by:

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338 Tel: 404-315-9113

June 2017

VOLUNTARY INVESTIGATION AND REMEDIATION PLAN

Former Lowe's Store (HSI #10808) Riverdale, Georgia

Prepared For:

LIGHT OF JOY, INC. 7458 Georgia Highway 85 Riverdale, GA 30274

Prepared by:

1050 Crown Pointe Parkway, Suite 550 Atlanta, Georgia 30338 Tel: 404-315-9113

Kirk Kessler, P.G. Senior Principal

Nillians

Aaron Williams, PhD Principal

VOLUNTARY INVESTIGATION AND REMEDIATION PLAN FORMER LOWE'S STORE (HSI #10808) RIVERDALE, GEORGIA

June 2017

TABLE OF CONTENTS

1	INTRO	DDUCTION
	1.1	Background1
	1.2	Site Location and Features
	1.3	Release Notification2
	1.4	Property Eligibility2
	1.5	Participant Eligibility
	1.6	Document Organization
2	SITE	Overview
	2.1	Summary of Site Assessment
		2.1.1 Overview
		2.1.2 2004 Initial Assessment
		2.1.3 2005 Assessments
		2.1.4 2006 Soil Assessment
		2.1.5 2006 Well Installation and Groundwater Monitoring
	2.2	Constituents of Potential Concern
	2.3	Corrective Actions Performed to Date7
		2.3.1 Overview
		2.3.2 Soil Corrective Action
		2.3.3 Groundwater Corrective Action
3	Prel	IMINARY CSM
	3.1	Overview9
	3.2	Ground Surface Features9
		3.2.1 Regional Surface Features
		3.2.2 Site Surface Features
	3.3	Site Subsurface Composition9
		3.3.1 Site Geologic and Hydrogeologic Setting
		3.3.2 Groundwater Direction and Flow Velocity
	3.4	Environmental Conditions On- and Off-Site
		3.4.1 Overview
		3.4.2 Nature and Extent of Environmental Conditions On-Site

35	3.4.3 Nature and Extent of Environmental Conditions Off-Site .	
5.5	3.5.1 On-Site Receptors and Exposure Pathways	12
	3.5.2 Off-Site Receptors and Exposure Pathways	
FINAL	CLOSURE STRATEGY	13
Refe	RENCES	

APPENDICES

4

5

Appendix A	Voluntary Remediation Program Application Form and Chec	klist

- Appendix B Tax Map and Warranty Deed
- Appendix C Figures
- Appendix D Tables
- Appendix E Compliance Status Report

1 INTRODUCTION

1.1 Background

This Voluntary Investigation and Remediation Plan (VIRP) is being submitted on behalf of Light of Joy, Inc. for the former Lowe's facility located at 7458 GA Highway 85 in Riverdale, Georgia (the "Site"). The purpose of this document is to support application for enrollment into the Georgia Voluntary Remediation Program (VRP) by presenting a current understanding of conditions at the Site, based on existing environmental data and a Conceptual Site Model (CSM), and a plan for final closure for the Site. A completed VRP Application Form and Checklist is included in Appendix A. Tax map and warranty deed information for the Site property are included in Appendix B.

The Site received a Brownfield Limitation of Liability (LoL) from the Georgia Environmental Protection Division (EPD) in a letter dated April 9, 2007. The LoL and the groundwater Corrective Action Plan (CAP) requirements, including annual groundwater monitoring, were transferred from Lowe's to Light of Joy, Inc. Church following sale of the property in April 2016.

1.2 Site Location and Features

The Site is situated on a 15.5-acre parcel in Clayton County, Georgia (Parcel ID 13183D C001). The Site was redeveloped as a Lowe's Home Improvement store in 2007, which operated until 2011. The general improvements made to the Site during the redevelopment remain to the present. The Site is improved with a 138,822 square foot building and is covered with asphalt, except for grassed islands in the parking lot and grassed areas around the perimeter of the parcel. The land surrounding the Site is commercial and residential with scattered vacant woodland parcels. Previous Site assessments have documented four recognized environmental concerns in close proximity to the Site: two historical dry cleaners with documented releases of solvents to the subsurface and two former Chevron gas stations that reported a release from their underground storage tank systems. These businesses were located adjacent and south/southwest of the Site. A Site Location Map is included as Figure 1 (all figures are included in Appendix C of this application).

Prior to redevelopment, twelve smaller commercial and residential parcels occupied the Site; three of the parcels were undeveloped, three consisted of residential properties, and the remaining six were developed with a variety of small businesses. The parcels were designated 001, 002, 013, 014, 015, 015A, 016, 017, 018, 019, 020, and Gore Exchange Parcel as shown on Figure 2. Figure 2 also shows the location of three former small business facilities where releases of regulated constituents occurred, as described in Section 1.3 below.

1.3 Release Notification

During the initial environmental assessment activities in 2004, regulated constituents were detected in soil and groundwater above Hazardous Site Response Act (HSRA) notification criteria at three of the former parcels that occupied the Site:

- Parcel 013, which was occupied by an automotive repair facility (Fast Auto/Fast Radiator);
- Parcel 018, which was occupied by a battery repair facility (Miller Battery); and
- Parcel 019, which was occupied by a truck painting facility (Parkway Truck Painting).

Accordingly, release notifications were submitted to the EPD pursuant to the HSRA in May 2005 on behalf of the previous property owners and the Site was listed on the Georgia Hazardous Site Inventory (HSI) as $\#10808^{1}$.

1.4 Property Eligibility

The Site meets the eligibility criteria for the VRP. A release of regulated substances on the Site has been confirmed. The Site is not listed on the National Priorities List, is not currently undergoing response activities required by an order of the Regional Administrator of the United States Environmental Protection Agency (EPA), and is not required to have a permit under Code Section 12-8-66. Qualifying the Site under this VRP would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or by similar authorization from the EPA. There are no, and never have been any, outstanding liens filed against the Light of Joy, Inc. property pursuant to Code Sections 12-8-96 and 12-13-12.

1.5 Participant Eligibility

Light of Joy, Inc. is both the owner of the property and the VRP applicant. Furthermore, Light of Joy, Inc. is not in violation of any order, judgment, statute, rule, or regulation subject to the enforcement authority of the Director of the EPD.

¹ Parcel 019 was removed from the listing in November 2005.

1.6 Document Organization

This document is organized into five sections, following this introduction:

- Section 2.0 presents an overview of the Site including a summary of assessment activities and corrective actions taken to date and the regulated constituents detected at the Site;
- Section 3.0 presents the CSM;
- Section 4.0 presents a final closure strategy for the Site; and
- Section 5.0 provides document references.

2 SITE OVERVIEW

2.1 Summary of Site Assessment

2.1.1 Overview

Assessment events for soil and groundwater were completed between 2004 and 2007 during redevelopment of the Site. All events are detailed in a Compliance Status Report (CSR) submitted to the EPD in July 2007 following completion of soil corrective action (MACTEC, 2007a). The CSR is attached in Appendix E for reference. A summary of the assessment events in provided below.

2.1.2 2004 Initial Assessment

A progression of assessment events was conducted by Contour Engineering, LLC (Contour) from May-December 2004 and consisted of collection of soil and groundwater samples with testing for RCRA metals, volatile organic compounds (VOCs), and, in some instances, polycyclic aromatic hydrocarbons (PAHs).

Soil samples were collected from thirty-two distinct locations at depth intervals of 0-8 and/or 9-15 feet below ground surface ("ft-bgs") as shown on Figure 5 of the CSR and described below:

- 11 locations in Parcel 013 near the former Fast Auto/Fast Radiator facility, where spillage and stained soils were observed in the area surrounding several vats and holding tanks;
- 7 locations in Parcel 018 near the former Miller Battery facility, where numerous containers and drums (primarily used to hold used oil) were observed, as well as staining on the floor inside of the facility;
- 6 locations in Parcel 019 near the former Parkway Truck Painting facility, where numerous drums containing paint, solvents, and aluminum cleaners were observed;
- 4 locations in Parcel 015A near the former Nice Cars of America facility, where numerous containers and drums of unknown content were observed; and
- 4 locations along the eastern boundary of the Site.

The soil analytical results are summarized on Figure 5 and on Tables 1-3 and 5-9 of the CSR (Appendix E herein). Barium, chromium and lead were detected across the Site; samples collected from three locations exhibited lead or chromium exceeding HSRA notification criteria (B-1, B-9, and B-23). These samples were collected from the footprint of the Fast Auto/Fast Radiator and the Parkway Truck Painting facilities. Additionally, trace concentrations of tetrachloroethylene (PCE) were detected in boring B-16 located near the Miller Battery facility and boring B-22 near the southern boundary of the Site; both detections were below the HSRA notification criteria and were

noted as likely being collected at or below the water table where VOC plumes emanating from off-Site were identified.

Groundwater samples were collected from 19 monitoring wells across the Site, as shown on Figure 13 of the CSR and described below:

- 2 temporary wells installed on Parcel 015A;
- 8 temporary and 3 permanent wells installed on Parcel 018;
- 3 temporary wells installed on Parcel 019; and
- 1 temporary well each on Parcels 001, 002, and 015.

The groundwater analytical results are summarized on Figure 13 and on Tables 1A, 2A, 5A, 6A, 8A, and 9A of the CSR. Lead was detected above the HSRA notification criteria in groundwater samples collected from two monitoring wells near the former Miller Battery facility (MW-1 and MW-2) and one temporary monitoring well near the Parkway Truck Painting facility (TW-25). PCE was detected at concentrations exceeding the HSRA notification criteria in a groundwater sample collected from a temporary monitoring well near the former Parkway Truck Paint facility (TW-24) at the southern edge of the Site. Benzene was also detected above the HSRA notification criteria in the groundwater sample collected from TW-24, as well as in groundwater samples collected from three additional wells in the southern portion the Site (B-2, TW-23, and TW-26).

2.1.3 2005 Assessments

Two additional assessments were conducted by MACTEC in June and September 2005 and consisted of collection and laboratory analysis of soil and groundwater samples. Soil samples were analyzed for RCRA metals, and groundwater samples were analyzed for RCRA metals and VOCs. Three soil samples were collected on the Gore Exchange Parcel at depth intervals of 3-5 ft-bgs to establish the background condition; trace concentrations of barium, chromium, and lead were detected in these samples. Groundwater samples were collected from the three permanent monitoring wells sampled in December 2004 and fourteen newly installed temporary monitoring wells. The location of the fourteen temporary wells are as follows (and shown on Figure 13 of the CSR):

- 2 temporary wells installed on Parcel 017;
- 11 wells installed on Parcel 018; and
- 1 well installed on both the Gore Exchange Parcel and Parcel 013.

The groundwater sampling results are summarized on Figure 13 and on Tables 2A, 4A, 7, and 8A of the CSR. None of the samples exhibited elevated concentrations of metals. One groundwater sample collected east of the former Parkway Truck Painting facility in the southern portion of the Site (TW-41) detected PCE. Three groundwater samples collected from monitoring wells in the southern portion of the Site (TW-32, TW-40, and TW-42) exhibited elevated benzene concentrations.

2.1.4 2006 Soil Assessment

Follow-up assessments were conducted by MACTEC in January, March, and June 2006 that consisted of sampling and, in some instances, screening (using a handheld X-ray fluorescence unit) of soils to delineate, both laterally and vertically, the elevated metals condition. Samples were collected from 67 distinct locations that were selected in areas where metal concentrations exceeded background:

- 11 locations in Parcel 013 from the footprint of the former Fast Auto/Fast Radiator facility;
- 41 locations in Parcel 018 from the footprint of the former Miller Battery facility;
- 1 location in Parcel 018 in the vicinity of Contour boring B-16, where PCE was detected;
- 12 locations in Parcel 019 from the footprint of the former Parkway Truck Painting facility; and
- 2 locations in the Gore Exchange Parcel.

The soil delineation results are summarized on Figures 6 through 8 and on Tables 3, 8, and 9 of the CSR. These results were used to guide remedial action to bring Site soils into compliance during corrective action. Soil corrective action is described in Section 2.3.2 of this application.

2.1.5 2006 Well Installation and Groundwater Monitoring

All existing monitoring wells were abandoned in late 2005 due to construction grading activities associated with the redevelopment, and replaced with 13 new permanent monitoring wells between June and November 2006 (as shown on Figure 3):

- 6 wells located at or downgradient of the former Miller Battery facility (EW-1 EW-2, EW-3, EW-9, EW-10 and EW-11);
- 6 wells located at or downgradient of the former Parkway Truck Painting facility and downgradient of the off-Site dry cleaners and former Chevron facilities (EW-5 through EW-8, EW-8A and DW-1); and
- 1 well up-gradient of the Miller Battery facility (EW-4).

Well construction data is provided in Table 1 (all tables are included in Appendix D of this application). The groundwater analytical results obtained from the new wells in 2006 and 2007 are summarized in Table 8A of the CSR. Elevated concentrations of metals were detected in groundwater samples collected from EW-9 (lead, nickel, and zinc) and EW-10 (lead and cadmium). PCE was detected in EW-5 and benzene was detected in EW-7.

2.2 Constituents of Potential Concern

Soil corrective action was performed in February 2006 with removal of all soil reporting constituent concentrations above the approved Risk Reduction Standards (RRS), thus no Constituents of Potential Concern (COPC) currently exist for soil at the Site (Section 3.4.2.1 describes the current soil condition at the Site). Of the nineteen regulated constituents detected in

groundwater, four are COPCs: cadmium, lead, nickel, and zinc. Benzene and PCE are not considered COPCs in groundwater; the presence of benzene and PCE in groundwater is related to releases that occurred off-Site (see Section 3.4.3).

2.3 Corrective Actions Performed to Date

2.3.1 Overview

An initial CAP was submitted for the Site on June 27, 2005 and was approved by EPD on July 22, 2005 (MACTEC, 2005); the initial CAP focused on soil remediation. A second CAP was submitted for groundwater that proposed a 10-year monitored natural attenuation (MNA) program for select metals (MACTEC, 2007b). In a letter dated December 11, 2007, EPD agreed that the groundwater monitoring program could commence. Section 2.3.2 discusses the soil correction actions taken to date and Section 2.3.3 summarizes the groundwater activity and the MNA program outlined in the groundwater CAP.

2.3.2 Soil Corrective Action

Soil remediation was conducted in February 2006 in the vicinity of the former Parkway Truck Painting, Miller Battery, and Fast Auto/Fast Radiator facilities (Parcels 013, 018 and 019). Excavation was performed by Collins and Arnold. The following activities were conducted in accordance with the CAP:

- approximately 745 tons of soil was removed from footprint of the former Parkway Truck Painting facility (Parcel 019); this area was excavated to a depth ranging from 2 to 13 ft-bgs.
- approximate 663 tons of soil was removed near the former Miller Battery facility (Parcel 018); this area was excavated to a depth approximately 2 ft-bgs; and
- approximately 104 tons of soil was removed near the former Fast Auto/Fast Radiator facility (Parcel 013); this area was excavated to a depth of approximately 3 to 4 ft-bgs.

Waste characterization sampling was conducted prior to removal to determine proper disposal methods for the excavated soils. Soil removed in the vicinity of the former Parkway Truck Painting and near the former Fast Auto/Fast Radiator facilities was classified as non-hazardous and transported off-Site to the Pine Ridge Landfill in Griffin, Georgia. Soil removed near the former Miller Battery facility was classified as hazardous waste and transported off-Site to Envirite Landfill, a permitted hazardous waste disposal facility in Canton, Ohio.

An additional 5,000 cubic yards of low-pH soil was removed from the area of the former Miller Battery facility, immediately up-gradient of where metal-impacted groundwater was previously identified. The low-pH condition in this area was assumed to be related to improper disposal of battery acids. In consultation with the EPD, the low-pH soil was approved for reuse as on-Site fill material as the soil did not exceed applicable RRS.

Verification soil testing following exaction of soil from each area confirmed impacted soil had been removed and applicable RSS were attained as documented in the CSR (MACTEC, 2007a).

2.3.3 Groundwater Corrective Action

2.3.3.1 Limestone Treatment Drain

During the construction of a storm water drainage line, MACTEC installed a limestone-filled treatment drain downgradient of the former Miller Battery facility to treat the metal-impacted groundwater in this area. The limestone drain was installed beneath the drainage line, perpendicular to the direction of groundwater flow, as shown on Figure 9 of the CSR. An approximate 180-foot long section of the drainage line excavation was extended to a depth approximately four feet below the water table and filled with crushed limestone to a height approximately one foot above the water table. The drainage line was then constructed at its prescribed level above the limestone. Exposure of the impacted groundwater to the limestone aggregate elevates the pH to the point where dissolved metals precipitate, thereby reducing concentrations in groundwater downgradient of the treatment drain.

2.3.3.2 MNA Program

In accordance with the groundwater CAP, monitoring wells EW-1, EW-2, EW-3, EW-4, EW-9R², EW-11, and EW-12 have been sampled at an annual frequency for analysis of barium, cadmium, copper, lead, nickel, and zinc. The groundwater analytical data is compared to the non-residential RRSs established in the CAP. To date, nine monitoring events have been conducted (sampling was initiated in April 2008) and the groundwater analytical results obtained during these events (discussed in Section 3.4.2.2 of this application) support closure of the Site.

² Monitoring wells EW-9 and EW-10 were abandoned and replaced by deeper monitoring well EW-9R in May 2013; EW-9R was included in the monitoring program in place of EW-9 and EW-10

3 PRELIMINARY CSM

3.1 Overview

The CSM is intended to establish a common knowledge base about the Site and its environmental condition, to facilitate the development of remedial action objectives, and to allow an informed decision regarding possible remedial action measures. The CSM discusses: (i) the surface and subsurface features at the Site, (ii) nature and extent of current environmental condition, (iii) fate and transport characteristics of chemicals of concern at the Site, and (iv) potential receptors and exposure pathways.

3.2 Ground Surface Features

3.2.1 Regional Surface Features

The Site is in Clayton County, which falls in the Greenville Slope District of the Piedmont Physiographic Province (Piedmont Province) in Georgia. The Greenville Slope District is characterized by rolling topography that decreases gradually in elevation from 1000 feet in the northeast to 600 feet in the southwest. The southern boundary of the district follows the base of the northern side of Pine Mountain. All streams in the Greenville Slope District eventually drain to the Gulf Mexico; those flowing to the southwest occupy shallow, open valleys with broad, rounded divides while those flowing to the southeast occupy narrower, deeper valleys with narrow, rounded divides.

3.2.2 Site Surface Features

The following description of the Site's surface features is taken from the CSR (MACTEC, 2007a). The Site is located topographically in an area of rolling terrain, at an original elevation ranging from approximately 950 to 930 feet above mean sea level. The Site is characterized by the presence of a large east-sloping drainage swale. This swale has been largely filled in during Site redevelopment. The nearest stream to the Site, an unnamed tributary of the Flint River, is located approximately 1,200 feet northeast of the downgradient boundary of the Site.

3.3 Site Subsurface Composition

3.3.1 Site Geologic and Hydrogeologic Setting

Soils in the Piedmont, such as at the Site, are derived from underlying metamorphic and/or igneous rocks through weathering, disintegration, and decay. The typical soil profile consists of clayey

soils near the ground surface transitioning to sandy silts and silty sands that generally become more dense with depth to the top of the parent rock. The following description of the Site's subsurface composition is taken from the CSR (MACTEC, 2007a). The soil test borings generally encountered fill soils at the surface which overlaid residual soils (see Boring Logs in Appendix D of the CSR for soil descriptions). Residual soils on Site generally consists of clayey sandy silts in the upper horizons, trending to sandy silts and silty sands derived from the gneiss and amphibolite found on Site. The depth to rock varies across the Site, ranging in depth from as little as four feet below ground surface in several of the borings drilled and one excavation dug in the northern portion of the Site to over 65 feet in a deep well in the southern portion of the Site. The rock exposed through excavation was described as light gray, muscovite-biotite gneiss (see Figures 13 and 14 of the CSR for cross sections).

Groundwater in the Piedmont Province occurs under unconfined conditions where the potentiometric surface mimics the ground surface topography. Along topographically low areas, the water table typically occurs within the soil to saprolite portions of the hydrogeological profile. Along topographically high areas, the water table often occurs in underlying crystalline bedrock. The saprolite portion of the hydrogeological system generally contains significantly more fluid compared to the same volume of bedrock. The crystalline bedrock exhibits essentially no primary porosity/permeability and relies upon secondary permeability features such as fractures and faults for the transmission and storage of groundwater. These secondary permeability features generally are not abundant and of a relatively small apertures, which limits the amount of fluid flowing through the bedrock.

3.3.2 Groundwater Direction and Flow Velocity

Groundwater elevation data was obtained during each annual groundwater monitoring event since May 2011; this data is summarized in Table 2. Figure 4 posts the groundwater elevation measured in each monitoring well during the April 2016 monitoring event, indicating groundwater flow direction to the north/northeast with a gradient of approximately 0.015 ft/ft.

Groundwater velocity at the Site can be estimated using the modified Darcy equation, applying the hydraulic conductivity value presented in the CSR ($7.8 \times 10^{-5} \text{ cm/s}$) and the hydraulic gradient observed during the April 2016 groundwater monitoring event (0.015 ft/ft):

$$V = \frac{K \times i}{n_e}$$

where

V = average linear groundwater velocity

K = hydraulic conductivity

i = hydraulic gradient

 $n_e = effective porosity$

Assuming the effective porosity of the aquifer is approximately 20%, the groundwater velocity at the Site is calculated at approximately 6 ft/yr.

3.4 Environmental Conditions On- and Off-Site

3.4.1 Overview

EPS has reviewed available environmental data records pertaining to the Site. The focus of Site investigations to date have been the characterization of Site groundwater for metals and VOCs and Site soil for metals, VOCs, and PAHs. The discussion that follows includes review of prior COPCs reported for soil (*i.e.* prior to the 2006 soil corrective action) and current groundwater COPCs.

3.4.2 Nature and Extent of Environmental Conditions On-Site

3.4.2.1 Site Soil Condition

Based on historical information and sampling conducted to date, the release(s) of metals appear to be related to operations conducted at the former Fast Auto/Fast Radiator, Miller Battery, and Parkway Truck Painting facilities. Stained soils/floors were observed in these areas and elevated concentrations of metals were detected in soils collected from the footprint of these facilities. This soil condition has been abated and post-excavation soil sampling (summarized in Tables 5 and 6 of the CSR) shows the condition is now below residential RRS. EPD agreed that soil cleanup met RRSs in a letter dated December 11, 2007; thus, metals are no longer COPCs in soil at the Site.

3.4.2.2 Site Groundwater Condition

Groundwater analytical data for metals obtained from June 2006 to April 2016 are summarized in Table 3. Metal-impacted groundwater has been identified at the Site; this condition is limited to a relatively confined area at and immediately downgradient of the former Miller Battery facility (EW-9R). Cadmium, lead, nickel, and zinc have all been detected at or above their respective RRS in this area since the start of the MNA program in 2007. Of these metal constituents detected in groundwater, only lead is believed to be related to the surface release(s) that occurred at the former Miller Battery facility due to its elevated condition in soil prior to soil corrective action. The presence of other metals is attributed to the low-pH condition in groundwater in this area, which generally facilitates the mobilization of naturally-occurring cationic metals.

Currently, the only exceedance of a non-residential groundwater RRS occurs in EW-9R for lead. Other metals previously reported above RRS in EW-9R (or the wells EW-9R replaced), cadmium and zinc, have decreased to below RRS during the MNA period (2008-2017). Concentrations of lead in EW-9R have recently been stable, but are improved with respect to the condition in 2007 prior to the start of the MNA program.

3.4.3 Nature and Extent of Environmental Conditions Off-Site

Two VOC groundwater plumes containing benzene and PCE, respectively, have been identified in southern portion of the site extending beneath the former Lowe's store. The soil analytical data does not indicate a VOC release occurred on-Site (neither benzene nor PCE has been detected

above their respective Type 1 RRS); thus, the groundwater plumes are attributed to documented off-Site release(s). Based on the groundwater flow direction at the Site, the groundwater plumes appear to be related to releases that occurred at the former Professional Cleaners (PCE) and former Chevron gas station (benzene) located at the intersection of GA Highway 85 and GA Highway 138.

3.5 Potential Receptors and Exposure Pathways

3.5.1 On-Site Receptors and Exposure Pathways

Unrestricted use of shallow groundwater at the Site could potentially result in ingestion, dermal, and inhalation exposure of future occupants to regulated substances detected in groundwater at the Site. If groundwater is extracted for potable use, ingestion is the primary exposure route for the metals and VOCs. VOCs may be inhaled if groundwater is used for domestic or commercial purposes. Use of groundwater for domestic or commercial purposes may also expose users to VOCs and metals through the skin.

Exposure to VOCs through vapor intrusion was addressed at the time of construction of the former Lowe's facility. A vapor intrusion mitigation system comprised of a sub slab polyethylene vapor barrier was installed across the entire footprint of the building.

3.5.2 Off-Site Receptors and Exposure Pathways

In 2004, Contour conducted a water well survey to identify drinking water sources within a three mile radius of the Site. Four drinking water wells were identified within one or two miles of the Site; however, local residential and non-residential properties are documented to be connected to municipal water supplies mitigating any exposure to the Site groundwater.

4 FINAL CLOSURE STRATEGY

As provided in Section 3.4, the on-Site soil condition has already been abated and post-excavation soil sampling has verified the soil condition is below RRS. EPD concurred that soil cleanup met RRSs in a letter dated December 11, 2007. In groundwater, lead is the only metal to currently exceed a Site RRS and the exceedance is limited to one monitoring well (EW-9R). The lead condition in EW-9R has been monitored annually for ten years and is found to be spatially stable (*i.e.* not migrating), and is delineated to a non-detect condition by adjacent monitoring wells. Additionally, the concentration of lead in EW-9R has generally improved since 2007 and is expected to further improve as the low-pH groundwater condition is abated with time. Based on these Site-specific conditions, a no further action remedy supplemented with an environmental covenant prohibiting future use of Site groundwater is appropriate to close the Site. Future use of Site groundwater is improbable as the Site and surrounding community is serviced by a municipal water supply and the current property owner has no intention or need to install an on-Site water supply well.

5 References

- MACTEC (2005). Application for Limitation of Liability and Corrective Action Plan, MACTEC Engineering and Consulting, Inc., prepared for H/S Riverlo, LLC, dated June 27, 2005.
- MACTEC (2007a). Compliance Status Report, HSI Site No. 10808. MACTEC Engineering and Consulting, Inc., dated July 20, 2007.
- MACTEC (2007b). Groundwater Corrective Action Plan, HSI Site No. 10808. MACTEC Engineering and Consulting, Inc., dated October 29, 2007.

APPENDIX A

Voluntary Remediation Program Application and Checklist

Voluntary Remediation Plan Application Form and Checklist

Т

VRP APPLICANT INFORMATION							
COMPANY NAME	Light of Joy, Inc						
CONTACT PERSON/TITLE	Frank Salters, CEO						
ADDRESS	8622 Wood Springs Co	urt, Douglas	ville, GA 30135				
PHONE	404-384-0654	FAX		E-MAIL	franksait@	comcast	.net
GEORGIA CE	RTIFIED PROFESSIO	NAL GEOL	OGIST OR PROF	ESSIONAL	ENGINEEF	R OVER	SEEING CLEANUP
NAME	Kirk Kessler			GA PE/PG	NUMBER	685	
COMPANY	EPS Inc.						
ADDRESS	1050 Crown Pointe Par	kway, Suite	550, Atlanta, Georg	ia 30338			
PHONE 404-315-9113 FAX 404-315-8509 E-MAIL kkessler@envplanning.com							
APPLICANT'S CERTIFICATION							
In order to be considered a qualifying property for the VRP:							
 (2) The property shall not be: (A) Listed on the federal National Priorities List pursuant to the federal Comprehensive Environmental Response, Compensation, and Liability Act, 42 U.S.C. Section 9601. (B) Currently undergoing response activities required by an order of the regional administrator of the federal Environmental Protection Agency; or (C) A facility required to have a permit under Code Section 12-8-66. (3) Qualifying the property under this part would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or similar authorization from the United States Environmental Protection Agency. (4) Any lien filed under subsection (e) of Code Section 12-8-96 or subsection (b) of Code Section 12-13-12 against the property shall be satisfied or settled and released by the director pursuant to Code Section 12-8-94 or Code Section 12-13-6. 							
In order to be considered a participant under the VRP: (1) The participant must be the property owner of the voluntary remediation property or have express permission to enter another's property to perform corrective action. (2) The participant must not be in violation of any order, judgment, statute, rule, or regulation subject to the enforcement authority of the director. i certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for persons persons directly responsible for the person of person of persons and complete. Lam aware that the term are similar penalties for							
gathering the information, the information submitted is, to the best of my knowledge and beint, due, accurate, and complete. Take availability of fine and imprisonment for knowing violations.							
Falso certify that this property a Section 12-8-106.	s eligible for the voluntary R	emediation P	rogram (vrcr-) as deline				organie ao a parricipant ao aonio an obaro
APPLICANT'S SIGNATURE	Frank.	Salt	Tin				
APPLICANT'S NAME/TITLE (PRINT)	FRANKS	ALTE	RS		DA	TE	6/28/17

	QUALIFYING PRO						
TAX PARCEL ID	TAX PARCEL ID 13183D C001 PROPERTY SIZE (ACRES)						
PROPERTY ADDRESS	7458 Georgia Highway 85, Riverdale, Georgia 30274						
CITY	Riverdale	COUNTY	Clayton				
LATITUDE	33.551396	LONGITUDE	-84.413006				
PROPERTY OWNER(S)	Light of Joy, Inc.	PHONE #	404-384-0654				
MAILING ADDRESS	8622 Wood Springs Court						
CITY	Douglasville	STATE/ZIP	GA, 30135				
ITEM #	DESCRIPTION OF REC	QUIREMENT	Location in VRP (i.e. pg., Table #, Figure #, etc.)	For EPD Comment Only (Leave Blank)			
1.	\$5,000 APPLICATION FEE IN THE FORM OF A GEORGIA DEPARTMENT OF NATURAL RESO	A CHECK PAYABLE TO THE DURCES.	See Cover Letter, Waiver Request Attached				
2.	WARRANTY DEED(S) FOR QUALIFYING PRO	PERTY.	Appendix B				
3.	TAX PLAT OR OTHER FIGURE INCLUDING Q BOUNDARIES, ABUTTING PROPERTIES, AND NUMBER(S).	UALIFYING PROPERTY) TAX PARCEL IDENTIFICATION	Appendix B				
4.	Enclosed						
5.	The VRP participant's initial plan and application, a graphic three-dimensional prediction, a graphic three-dimensional prediction, a graphic three-dimensional prediction, a graphic three-dimensional prediction (CSM) including a preliminary remediation product (S) of contamination, how the environment, the potential human health complete or incomplete exposure pathways preliminary CSM must be updated as the investigation of the director submitted to the director by the MILESTONE SCHEDULE for investigation a after enrollment as a participant, must update annual status report to the director describin during the preceding period. A Gantt chart for the results reported in the participant's next the director. The director may extend the timmilestones in the participant, that a longer time showing by the participant, that a longer time.	ation must include , using all the extent known at the time of liminary conceptual site model lan with a table of delineation figures (no more than 10 pages, ubsurface setting, the known or contamination might move within and ecological receptors, and the that may exist at the site; the vestigation and remediation e included in each semi-annual e participant; a PROJECTED and remediation of the site, and te the schedule in each semi- ing implementation of the plan format is preferred for the e required in all initial plans with applicable semi-annual reports to be for or waive these or other e director determines, based on a e period is reasonably necessary:	Sections 1-5 of the VRP Application				

5.a.	Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment;	Complete; See Appendix E (CSR) of VRP Applicati
5.b.	Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment;	Complete; See Appendix E (CSR) of VRP Application
5.c.	Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and	Section 5 of VRP Application
5.d.	Within 60 months after enrollment, the participant must submit the compliance status report required under the VRP, including the requisite certifications.	Section 5 of VRP Application
6.	SIGNED AND SEALED PE/PG CERTIFICATION AND SUPPORTING DOCUMENTATION: "I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances. Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring. I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division. The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonmentfor knowing violations. Printed Name and GA/PE/PG-Number Date Signature and Stamp Date	
	12 No 685	

APPENDIX B Tax Map and Warranty Deed

Property Description Over-All Tract Riverdale Lowe's Clayton County, Georgia

All that tract or parcel of land lying and being in Land Lot 183 of the 13th District, Clayton County, Georgia, and being more particularly described as follows:

Commencing at a point at the intersection of the northerly right-of-way of Georgia Highway 138 (a variable width right-of-way) with the easterly right-of-way of Georgia Highway 85 (a 170 foot right-ofway); Thence departing the said northerly right-of-way of Georgia Highway 138 and continuing with the said easterly right-of-way of Georgia Highway 85, North 04 degrees 25 minutes 41 seconds East, a distance of 172.99 feet to a 5/8 inch rebar set in the division line between L.G. Properties, Ltd. (Deed Book 848 at Page 694) on the south and Hughes & Hughes Properties, Inc. (Deed Book 6698 at Page 162) on the north, said 5/8 inch rebar set being the TRUE POINT OF BEGINNING. Thence continuing with the said easterly right-of-way of Georgia Highway 85 the following two courses: North 04 degrees 32 minutes 28 seconds East, a distance of 700.25 feet to a 3/4 inch open top pipe found; Thence North 04 degrees 04 minutes 11 seconds East, a distance of 199.50 feet to a 1/2 inch rebar found in the division line between Larry J. Wallace (Deed Book 925 at Page 522) on the south and Charlotte Gore (Deed Book 1726 at Page 369) on the north; Thence departing the said easterly right-of-way of Georgia Highway 85 and continuing with the said division line, South 88 degrees 56 minutes 10 seconds East, a distance of 404.10 feet to a 5/8 inch rebar set in the division line between the said Larry J. Wallace on the west and Carlos A. Woodward and Sara Agnes Woodward (Deed Book 1017 at Page 271) on the east; Thence continuing with the said division line, South 04 degrees 23 minutes 13 seconds West, a distance of 101.18 feet to a 1 inch bolt found in the said division line between the said Carlos A. Woodward and Sara Agnes Woodward on the north and James L. Chapman, Jr. (Deed Book 1415 at Page 883) on the south; Thence continuing with the said division line, South 89 degrees 32 minutes 50 seconds East, a distance of 395.79 feet to a 3/4 inch open top pipe found in the westerly right-of-way of Pine Road (a 40 foot right-of-way); Thence continuing with the said westerly right-of-way of Pine Road, South 04 degrees 34 minutes 55 seconds West, a distance of 803.42 feet to a 5/8 inch rebar set in the said division line between the said L.G. Properties, Ltd. on the south and Wilson E. Miller (Deed Book 394 at Page 412, Deed Book 438 at Page 207 and Deed Book 533 at Page 610) on the north; Thence departing the said westerly right-of-way of Pine Road and continuing with the said division line between the said L.G. Properties, Ltd. on the south and the said Wilson E. Miller and continuing with the said Hughes & Hughes Properties, Inc. all on the north, North 88 degrees 53 minutes 58 seconds West, a distance of 797.63 feet to a 5/8 inch rebar set in the said easterly right-of-way of Georgia Highway 85, said 5/8 inch rebar set being the TRUE POINT OF BEGINNING.

Said tract of land contains 15.564 Acres.

CONNECTICUT NATIONAL

MCELROYDRIVE (30' R/W) DEED BOOK 3014 / PAGE 257 DEED BOOK 3014 / PAGE 300 / PAG

RIVERDALE CHURCH OF GOD

PINE ROAD BOWERFE BOWE

RIVERDAL	RIVERDALE, GA 30274								
			LEGAL D	ESC	DISTRICT 6 NBRHOOD I	RIVER	RDALE ALE LARGE LOT		
DESCRIPT DESCRIPT ROAD FRC	ION NOT IN SU ION SEMI-PAV INT 878.0 8	JBDIVISION - ALL UT ED ROAD 03.4	ILITIES		D	ISCOUNT STOR	ES		
	******* CUF	RRENT YR APV/LUV	VALUE OVEF	RRIDE E	XISTS FOR:	LAND IMPR	OVEMENTS		
	SALES HISTORY								
DEED PAG BOOK	E SALE DATE	SALES INSTRUMENT			SALE AMT				
10878 624 9376 502 8347 001 4553 321 4423 110 1054 371	4/15/18 2/22/08 10/03/05 9/26/00 5/31/00 1/01/82	WARRANTY DEED WARRANTY DEED WARRANTY DEED QUIT CLAIM WARRANTY DEED	OTHER QUALIFIED RELATED RELATED		2,000,100 17,943,046 271,676	LOWES HOME H/S RIVERLO L SANCHEZ VICH ROBINSON BE ROBINSON JAI	INC CENTERS INC LC (I A TTY J MES E & BETTY J		
			LAND SEGN	IENTS					
LND# 1 MAP ACRE	ZONE GB S 15.487	Ξ	LAND TYPE SF 1	/CODE		LA 674	ND QTY ,614.000		
		IMPRO	OVEMENT#1	MISC II	MPR-Y				
GROUND F	ELOOR AREA .		ہ ۲	ACT/EFF DESCRI	TYR/AGE PTION F	2006 11 ORMER LOWES	3		
		BUILD	9 DINGS 1	% COMF 00	P SQ FC 13882	DOTAGE 22.00	STORY		
Total Par APV	CEL VALUES	LAND / OVR 1,999,100	k IMPRO∖ J	/EMEN ⁻ 1,000	TS / OVR J	2017 VALUE 2,000,100	2016 VALUE 4,859,000		
YEAR OF C	YEAR OF OVR 2017								

Clayton County Property Card For Year 2017 PARCEL ID . . 13183D C001

LOCATION ... 7458 HIGHWAY 85

LIGHT OF JOY INC

PO BOX 961750

New Search Current Year Asses

Current Year Assessment Notice

Sales Data Previous Parcel

APPENDIX C Figures

500

Feet

Legend

Approximate Site Boundary

Former Lowe's Store HSI# 10808 Site Location Map

Figure No. 1

Figure No. 4

APPENDIX D Tables

Well ID	TOC Elevation	Total Depth	Screen Length	Elevation of Screened Interval	Status
	(ft amsl)	(ft below TOC)	(ft)	(ft amsl)	
EW-1	947.42	22.75	10	934.67 - 924.67	Annual Testing
EW-2	948.31	30.40	10	927.91 - 917.91	Annual Testing
EW-3	948.22	19.90	10	938.32 - 928.32	Annual Testing
EW-4	953.20	28.00	10	935.20 - 925.20	Annual Testing
EW-5	948.65	23.60	10	935.20 - 925.20	Water Depth Only
EW-6	948.03	29.20	10	928.83 - 918.83	Water Depth Only
EW-7	948.68	26.90	10	931.78 - 921.78	Water Depth Only
EW-8	948.18	22.50	2.5	928.18 - 925.68	Water Depth Only
EW-8A	947.98	20.20	10	937.78 - 927.78	Water Depth Only
EW-9	947.67	22.05	2	927.62 - 925.62	Abondoned
EW-9R	947.67	29.70	15	932.97 - 917.97	Annual Testing
EW-10	947.57	20.00	10	937.57 - 927.57	Abondoned
EW-11	947.56	53.00	2	896.56 - 894.56	Annual Testing
EW-12	953.33	29.50	10	933.83 - 923.83	Annual Testing
DW-1	948.60	60.20	2	890.40 - 888.40	Water Depth Only

Table 1. Well Construction Details

Notes:

TOC = Top of Casing

ft amsl= feet above mean sea level

¢	5
*	2
2	2
F	٦.
-	-
2	Ξ.
.,	4
*	2
5	2
2	6
-	Ę.
2	-
٠	
2	D
÷	5
S	9
Ľ	\$
Ż	5
2	
5	3
2	5
ŝ	
۲	5
-	
~	i
`.	
_	2
(2
6	5
Ē	Ĩ.
•	1

	May 31	1, 2011	May 1:	5, 2012	May 15	5, 2013	April 2	4, 2014	April 23	2, 2015	April 25	, 2016
	Depth to	Groundwater										
	Water	Elevation										
Well ID	(ft below TOC)	(ft amsl)										
EW-1	20.60	926.81*	22.07	925.35	21.50	925.92	20.35	927.07	20.50	926.92	18.10	929.32
EW-2	20.33	928.02*	21.50	926.81	20.90	927.41	19.86	928.45	19.84	928.47	18.17	930.14
EW-3	18.62	929.60	Dry	Dry	18.99	929.23	18.05	930.17	17.62	930.60	16.63	931.59
EW-4	23.52	929.68	25.06	928.14	24.52	928.68	23.20	930.00	23.27	929.93	20.97	932.23
EW-5	18.97	929.68	19.31	929.34	19.11	929.54	18.41	930.24	17.44	931.21	17.30	931.35
EW-6	21.61	926.42	21.98	926.05	21.04	926.99	21.07	926.96	20.39	927.64	19.95	928.08
EW-7	22.09	926.59	22.48	926.20	21.91	926.77	21.41	927.27	20.77	927.91	20.98	927.70
EW-8	18.25	929.93	18.90	929.28	18.54	929.64	17.43	930.75	16.45	931.73	16.11	932.07
EW-8A	17.82	930.16	18.34	929.64	18.18	929.80	17.45	930.53	16.18	931.80	16.02	931.96
EW-9	18.90	928.77	20.49	927.18				ABANL	DONED			
EW-9R		NOT INS	STALLED		19.91	927.76	18.77	928.90	18.76	928.91	16.67	931.00
EW-10	18.95	928.62	Dry	Dry				ABANL	DONED			
EW-11	20.29	927.27	21.72	925.84	21.09	926.47	19.97	927.60	20.12	927.45	17.75	929.81
EW-12	25.65	927.68	27.14	926.19	26.60	926.73	25.37	927.96	25.56	927.77	23.11	930.22
DW-1	18.95	929.65	19.05	929.55	19.02	929.58	18.45	930.15	17.48	931.12	17.39	931.21

Notes:

*Groundwater elevation based on pre-2012 TOC surveying data.

TOC = Top of Casing

ft amsl = feet above mean sea level

Location	Date Sampled	Barium	Cadmium	Copper	Lead	Nickel	Zinc
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Type 3 RRS					15		
Туре	4 RRS	20,400	51	4,090		2,040	3,070
	6/2006	21.8	NA	NA	<10	N/A	N/A
	4/2007	Dry	Dry	Dry	Dry	Dry	Dry
	4/3/2008	Dry	Dry	Dry	Dry	Dry	Dry
	4/16/2009	36.7	<5	<10	<10	<20	<20
	4/15/2010	39.2	<5	<10	<10	<20	<20
EW-1	5/31/2011	41.0	<1	<20	3.0 J	<3	<8
	5/16/2012	64.8	<1	<10	<5	<10	<50
	5/15/2013	53.2	<1	<10	<7.5	<10	<50
	4/24/2014	43.9	<1	18.3	<5	<10	110
	4/22/2015	36.6	<1	<10	<5	<10	<50
	4/25/2016	36.9	<1	19.3	<5	<10	62.3
	6/2006	56.9	N/A	N/A	<10	N/A	N/A
	4/2007	29.9	N/A	4.1	<10	<20	27.2
	4/3/2008	Dry	Dry	Dry	Dry	Dry	Dry
	4/16/2009	42.7	<5	<10	<10	<20	<20
	4/15/2010	27.3	<5	<10	<10	<20	<20
EW-2	5/31/2011	27.0	<1	<2	<2	<3	14.0 J
	5/16/2012	21.0	<1	<10	<5	<10	<50
	5/15/2013	25.8	<1	11.5	<5	<10	<50
	4/24/2014	32.2	<1	64.1	<5	<10	210
	4/22/2015	34.2	<1	<10	<5	<10	<50
	4/25/2016	44.0	<1	37.0	<5	<10	95.0
EW-3	6/2006	36.8	N/A	N/A	<10	N/A	N/A
	4/2007	36.4	N/A	2.8	<10	<20	3.4
	4/3/2008	24.6	<5	<10	<10	<20	<20
	4/16/2009	<20	<5	<10	<10	<20	<20
	4/15/2010	<20	<5	<10	<10	<20	<20
EW-3	5/31/2011	13.0	<1	<2	2.8 J	<3	<8
EW-3	5/16/2012	Dry	Dry	Dry	Dry	Dry	Dry
	5/15/2013	17.8	<1	<10	7.7	<10	<50
	4/24/2014	18.9	<1	90.5	<5	<10	307
	4/22/2015	20.2	<1	<10	<5	<10	<50
	4/25/2016	18.9	<1	<10	<5	<10	<50
	6/2006	<20	N/A	N/A	<10	N/A	N/A
	4/2007	37.1	N/A	3.0	<10	<20	5.2
	4/3/2008	33.9	<5	<10	<10	<20	<20
	4/16/2009	30.4	<5	<10	<10	<20	<20
	4/15/2010	28.7	<5	<10	<10	<20	<20
EW-4	5/31/2011	26.0	<1	<2	3.6 J	<3	<8
	5/16/2012	24.3	<1	<10	<5	<10	<50
	5/15/2013	20.6	<1	<10	6.2	<10	<50
	4/24/2014	24.2	<1	49.0	<5	<10	161
	4/22/2015	20.4	<1	<10	<5	<10	<50
	4/25/2016	22.0	<1	14.7	<5	<10	132

Table 3. Summary Historical Groundwater Data (Metals)

Notes:

 $\mu g/L = micrograms per liter$

exceeds applicable Risk Reduction Standard (RRS)
Location	Date Sampled	Barium	Cadmium	Copper	Lead	Nickel	Zinc
	-	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Type 3 RRS					15		
Type 4 RRS		20,400	51	4,090		2,040	3,070
	6/2006	299	94.4	N/A	494	N/A	N/A
	4/2007	178	99.3	1410	481 140	135	5400
EW-9	4/3/2008	160	20.3	513		42.0	2430
(Replaced by	4/16/2009	38.2	15.8	450	118	<20	646
MW-9R)	4/15/2010	46.0	57.0	504	171	41.6	1230
	5/31/2011	7.4 J	49.0	440	190	58.0	3100
	5/16/2012	<10	38.9	401	437	108	4860
	5/16/2013	94.0	11.2	121	34.2	20.8	635
EW OP	4/24/2014	22.1	12.3	390	149	22.9	940
L W - 9K	4/22/2015	17.3	14.4	225	128	23.0	1140
	4/25/2016	15.9	16.9	348	147	23.8	1240
	11/2006	300	15.4	N/A	204	N/A	N/A
	4/2007	46.0	5.4	404.0	289	<20	3190
EW-10	4/3/2008	266	<5	58.1	294	35.1	2380
(Replaced by	4/16/2009	Dry	Dry	Dry Dry		Dry	Dry
MW-9R)	4/15/2010	67.4	<5	52.0	154	<20	681
	5/31/2011	13.0	3.5 J	64.0	130	21.0	670
	5/16/2012	Dry	Dry	Dry	Dry	Dry	Dry
	11/2006	30.6	<5	N/A	<10	N/A	N/A
	4/2007	39.6	<5	6.4	<10	<20	10.8
	4/3/2008	72.1	<5	<10	<10	<20	<20
	4/16/2009	100	<5	11.6	<10	<20	66.7
	4/15/2010	<20	<5	<10 <10		<20	<20
EW-11	5/31/2011	18.0	<1	<2	3.6 J	<3	19.0 J
	5/15/2012	19.7	<1	<10	<5	<10	<50
	5/15/2013	16.7	<1	<10	8.4	<10	<50
	4/24/2014	16.0	<1	<10	<5	<10	52.8
	4/22/2015	13.9	<1	<10	<5	<10	<50
	4/25/2016	16.0	<1	<10	<5	<10	<50
	9/25/2007	38.5	<5	<10	<10	<20	20.0
	4/3/2008	37.9	<5	<10	<10	<20	<20
	4/16/2009	40.8	<5	<10	<10	<20	<20
	4/15/2010	48.0	<5	<10	<10	<20	<20
EW-12	5/31/2011	62.0	<1	<2	<2	<3	11.0 J
	5/16/2012	67.1	<1	<10	<5	<10	<50
	5/15/2013	65.6	<1	<10	<5	<10	<50
	4/24/2014	58.4	<1	40.9	<5	<10	113
	4/22/2015	58.2	<1	<10	<5	<10	<50
	4/25/2016	58.9	<1	11.7	<5	<10	58.0

Table 3. Summary Historical Groundwater Data (Metals)

Notes:

 $\mu g/L = micrograms per liter$

exceeds applicable Risk Reduction Standard (RRS)

APPENDIX E 2007 Compliance Status Report

COMPLIANCE STATUS REPORT

HSI SITE NO. 10808 GEORGIA HIGHWAY 85 RIVERDALE, CLAYTON COUNTY, GEORGIA

Prepared for Submission to:

Georgia Environmental Protection Division Hazardous Site Response Program Suite 1462, East Tower 2 Martin Luther King Jr. Drive Atlanta, Georgia 30334

Prepared by:

MACTEC Engineering and Consulting, Inc. 396 Plasters Ave. Atlanta, Georgia 30324

MACTEC Project No. 6305-05-0303

Volume 1 of 2

July 2007

TABLE OF CONTENTS

1.0	BACKGROUND	1
1.1	PREVIOUS ASSESSMENTS	1
1.1.1	ON-Site Conditions	3
1.1.2	Off-Site Conditions	3
2.0	PURPOSE	5
3.0	DESCRIPTION OF THE RELEASE SOURCES	6
3.1	SOURCES OF RELEASE	6
3.2	REGULATED SUBSTANCES RELEASED FROM THE SOURCE	6
3.3	DESCRIPTION OF THE SOURCES	7
3.4	CHRONOLOGY OF THE RELEASE	7
4.0	DELINEATION OF SOIL CONTAMINATION	8
4.1 A	NALYTICAL PARAMETERS SELECTED	8
4.2 SA 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2	AMPLING AND ANALYSIS PROCEDURES	8 8 9 9 9 9
4.3 SU	UMMARY OF PERTINENT SOIL TESTING DATA	.10
4.4	BACKGROUND SOIL CONCENTRATIONS	.13
5.0 D	ELINEATION OF GROUNDWATER CONTAMINATION	.14
5.2	CHARACTERIZATION OF SUBSURFACE GEOLOGY	.14
5.3 5.3. 5.3. 5.3.	CHARACTERIZATION OF HYDROGEOLOGY 1 Surface Water Drainage 3 Hydraulic Conductivity 4 Vertical Hydraulic Conductivity	.15 .15 .17 .18
5.4 METH 5.4. 5.4.	GROUNDWATER MONITORING WELL LOCATIONS, INSTALLATION AND CONSTRUCTION HODS 1 Type of Well Casing Material 2 Description of Well Intake Design	. 18 . 18 . 18
5 5	.4.2.1 Screen Slot Size and Length .4.2.2 Filter Pack Materials and Length	.18 .19

5.	.4.2.3 Method of Filter Pack Emplacement	
5.	.4.2.4 Surface Seal	
5.	.4.2.5 Well Development Methods and Procedures	
5.5	SAMPLING AND ANALYSIS PROCEDURES	20
5.5.	1 Groundwater Elevation	
5.5.2	2 Well Evacuation Procedures	
5.5.	3 Groundwater Sampling, Handling and Preservation	
5.5.4	4 Decontamination Procedures	
5.5.	5 Laboratory Analytical Techniques	
5.	.5.5.1 Analytical Procedures	
5.	.5.5.2 Quality Control Samples	
5.	.5.5.3 Chain-of-Custody Procedures	
5.6	BACKGROUND GROUNDWATER QUALITY	
5.7	ANALYTICAL PARAMETERS SELECTED	
5.8	SUMMARY OF GROUNDWATER TESTING RESULTS	23
6.0	POTENTIAL RECEPTORS	
6.1	WATER USAGE	
6.2	ENVIRONMENTAL RECEPTORS	
6.3 6.3.	RISK REDUCTION STANDARDS	
7.0	DESCRIPTION OF RESPONSIBLE PERSON FOR THE CONTAMINAT PROPERTY	TION DETECTED AT THE
8.0	ACTIONS TAKEN TO ELIMINATE, CONTROL, OR MINIMIZE ANY F SITE	POTENTIAL RISK AT THE
9.0	SUMMARY OF PROPOSED CORRECTIVE ACTION	

LIST OF APPENDICES

APPENDIX A - LEGAL DESCRIPTION

APPENDIX B – FIGURES

- 1. Site Location/Topographic Map
- 2. 2002 Aerial Photograph of Site and Vicinity
- 3. Site Plan
- 4. XRF Soil Screening Results
- 5. Soil Testing Results Contour Engineering 2004-2005
- 6A. Hughes Parcel 019 Soil Assessment/Delineation Results
- 6B. Hughes Parcel 019 Confirmation Sample Results
- 7A. Miller Parcel 018 Soil Assessment/Delineation Results
- 7B. Miller Parcel 018 Confirmation Sample Results
- 8A. Wallace Parcel 013 Soil Assessment/Delineation Results
- 8B. Wallace Parcel 013 Confirmation Sample Results
- 9. Potentiometric Surface Map (7/11/06)
- 10. Potentiometric Surface Map (9/8/05)
- 11. Potentiometric Surface Map (1/24/05)
- 12. Potentiometric Surface Map (4/27/07)
- 13. Groundwater Testing Results 2004-2006
- 14A. Delineation of Chlorinated VOCs in Groundwater
- 14B. Delineation of Petroleum VOCs in Groundwater
- 14C. Delineation of Lead, Cadmium, Chromium, Copper, Nickel and Zinc in Groundwater
- 14D. Delineation of Mercury in Groundwater
- 14E. Delineation of Chromium and Selenium in Groundwater
- 15. Cross Sections A-A' and B-B'

APPENDIX C - LABORATORY DATA SUMMARY TABLES

- 1. Parcel 001 Soil Testing Results
- 1A. Parcel 001 Groundwater Testing Results
- 2. Parcel 002 Soil Testing Results
- 2A. Parcel 002 Groundwater Testing Results
- 3. Parcel 013 Soil Testing Results
- 3A. Parcel 013 Groundwater Testing Results
- 4. Gore Parcel Soil Testing Results
- 4A. Gore Parcel Groundwater Testing Results
- 5. Parcel 015 Soil Testing Results
- 5A. Parcel 015 Groundwater Testing Results
- 6. Parcel 015A Soil Testing Results
- 6A. Parcel 015A Groundwater Testing Results
- 7. Parcel 017 Groundwater Testing Results
- 8. Parcel 018 Soil Testing Results
- 8A. Parcel 018 Groundwater Testing Results
- 9 Parcel 019 Soil Testing Results
- 9A. Parcel 019 Groundwater Testing Results

APPENDIX D - BORING LOGS

APPENDIX E - SOIL BACKGROUND CALCULATIONS

APPENDIX F - RISK REDUCTION STANDARD CALCULATIONS

APPENDIX G - WASTE DISPOSAL MANIFESTS

APPENDIX H - GA-EPD CORRESPONDENCE

APPENDIX I - LABORATORY RESULTS

APPENDIX J - XRF SCREENING PROCEDURES

APPENDIX K - FIELD SAMPLING RECORDS

APPENDIX L - CONTOUR ENGINEERING WELL CONSTRUCTION DETAILS

1.0 BACKGROUND

The subject Site currently consists of a 15.564-acre tract of land located along Georgia Highway 85 in Riverdale, Clayton County, Georgia which is currently under development with a Lowe's Home Improvement Center. The subject Site consists of an assemblage of eleven parcels which were owned by six individuals. The eleven parcels were designated 001, 002, 013, 014, 015, 015A, 016, 017, 018, 019 and 020. At the time the property was acquired by H/S Riverlo, two of the parcels were undeveloped (016 and 017); three consisted of residential properties (001, 002 and 015) and the remaining six were at least partly commercially developed with a variety of small businesses. A legal description and boundary survey of the property are included in Appendix A. Figure 1 in Appendix B depicts the Site location and area topography. Figure 2 provides a pre-development aerial view of the Site and surrounding area and Figure 3 is a Site plan which illustrates the various parcels from which the subject Site was assembled and their previous owners.

HSRA notifications for releases to soil and groundwater were submitted on behalf of the various previous property owners in May 2005, resulting in the listing of Parcel 013, owned by Mr. Larry Wallace, Parcel 018, owned by Mr. Wilson Miller and Parcel 019, owned by Mr. Hughes and Hughes Properties, Inc. on the Georgia Hazardous Site Inventory (HSI). The property was assigned HSI Site No. 10808 and appears on the HSI as a single site under the designation Lowes Home Improvement Warehouse (Proposed). We note that the Hughes Parcel (Parcel 019) was subsequently removed from the listing as per the attached correspondence from GA-EPD in Appendix H.

Based on the data obtained by Contour Engineering, LLC (Contour), an Application for Limitation of Liability and Corrective Action Plan (CAP) was prepared by MACTEC Engineering and Consulting, Inc. (MACTEC) and submitted to the GA-EPD on June 27, 2005. The application and CAP were approved by the GA-EPD on July 22, 2005. As discussed in subsequent sections of this report, MACTEC then conducted additional soil testing on Site in order to delineate the extent of constituents present above applicable RRS. The Site was cleaned up and received a Brownfield Limitation of Liability on April 9, 2007. This terminated any regulatory obligation on the part of H/S Riverlo

1.1 PREVIOUS ASSESSMENTS

Several previous environmental assessments have been conducted at the subject Site between December 2003 and February 2005. The following lists the previous reports utilized by MACTEC in preparation of this CSR.

- Draft Phase I Environmental Site Assessment, Contour Engineering, LLC, prepared for Hendon Properties, dated December 22, 2003;
- Draft Limited Phase II Site Investigation, Contour Engineering, LLC, prepared for Home Depot USA, Inc., dated August 24, 2004;
- Draft Corrective Action Plan, Contour Engineering, LLC, prepared for Hull Storey Acquisitions, dated February 7, 2005;
- Application for Limitation of Liability and Corrective Action Plan, MACTEC Engineering and Consulting, Inc., prepared for H/S Riverlo, LLC, dated June 27, 2005; and
- Compliance Status Report, MACTEC Engineering and Consulting Inc., prepared for H/S Riverlo, LLC, dated December 14, 2006.

Previous historical research indicates the Site consisted primarily of residential or undeveloped property from at least the 1950s until the 1960s or 1970s when most commercial development in the area began. Three of the parcels (001, 002 and 015) remained residential properties until the time they were acquired by H/S Riverlo. Two of the homes were connected to septic systems. Parcels 016, 017, the eastern portion of Parcel 018 and Parcel 020 remained historically undeveloped. The remaining parcels were occupied by various commercial establishments at the time of acquisition by H/S Riverlo.

During the previous Phase I assessment conducted by Contour in 2003, recognized environmental conditions (RECs) were identified on four of the eleven parcels. RECs were also identified in the immediate upgradient watershed. These RECs are summarized in the following sections:

1.1.1 On-Site Conditions

Parcel 013 (Wallace) – Parcel 013, located in the northwestern corner of the Site, was occupied most recently by 1) Fast Auto Parts, 2) Stone and Sons Plumbing and 3) Fast Radiator and Fast Air Conditioner Service. This facility has also been occupied in the past by several environmentally suspect businesses, including: Riverdale Radiator, Hatcher Welding and Mobil Hydraulics. Numerous containers and drums of anti-freeze, used oil and other unknown materials, as well as several vats and holding tanks, were observed on this Parcel. Spillage and staining were noted in the area surrounding the tanks and containers. Ultimately, soil remediation was performed on this Parcel as part of the Brownfield CAP.

Parcel 015A (Chapman) – Parcel 015A, located in the northwestern portion of the Site, was occupied by Nice Cars of America. Numerous containers and drums of unknown content were identified on this parcel. In addition, a hydraulic lift was located within one of the service bays. This building was also serviced by a septic system. Ultimately, soil remediation was not required on this Parcel as part of the Brownfield CAP.

Parcel 018 (Miller) – The western portion of Parcel 018 was most recently occupied by Discount Auto Service Center. Numerous containers and drums, primarily containing used oil, were identified as well as staining of the floor inside the facility. The building on this parcel was constructed in 1965 and was occupied by Miller Battery, a battery repair facility, through the 1970s. A second building, located just south of Discount Auto Service Center, was occupied by Tubs Unlimited and C&A Automotive Service Center. This facility was constructed in 1968 and was previously used as a parts shop and repair center. Tubs Unlimited began leasing a part of the building in 1974. Both of these facilities were serviced by septic systems. Ultimately, soil remediation was performed on this Parcel as part of the Brownfield CAP.

Parcel 019 (Hughes) – The western portion of Parcel 019 was occupied by a vacant restaurant which operated between the 1940s and 2000s. Parkway Truck Painting, constructed in 1980, was located in the eastern portion of the parcel. Numerous containers and drums containing paint, solvents and aluminum cleaners were identified at this facility. Several floor drains were identified within the building which was serviced by a septic system. Ultimately, soil remediation was performed on this Parcel as part of the Brownfield CAP.

1.1.2 Off-Site Conditions

The subject Site is located in an area characterized by a combination of residential and commercial development. The Site is bound to the east by Pine Road, beyond which is an area of single-family residential development. The area south of the Site is occupied by the Parkwood Village Shopping Center which contains a dry cleaner tenant space, and several free standing retail stores, one of which is also a dry cleaner. Both dry cleaners have documented releases of solvents into the subsurface. A Chevron gas station, previously located adjacent to the southwest corner of the Site, was demolished in the early 1990s. This station had reported a release from their UST system. Further to the south is Georgia Highway 138, beyond which is the relocated Chevron station that has also reported a UST release. The Site is bound to the west by Georgia Highway 85, beyond which is a variety of commercial

and retail facilities including a muffler shop, several pawn shops, a hardware store and a farmers market. The northeastern portion of the Site is bound to the north by residential property while the northwestern portion is bound to the north by commercial property.

Previous groundwater elevation data obtained by Contour indicated groundwater flows in a generally northeasterly direction. Based on this data, our review of local topography and drainage features and our review of groundwater data collected from nearby LUST facilities, the Site's upgradient watershed appears to extend to the south, just south of GA Highway 138 (see Figure 1). Nearby properties to the south, including Professional Cleaners, Riverdale Cleaners, an active Chevron Station and a former Chevron Station (see Figure 2) are interpreted to be located upgradient of the Site.

Based on our research and previous assessment findings, it appears that off-Site environmental conditions have impacted the property. In particular, releases from the former Chevron station and possibly the current Chevron station, as well as the Professional Cleaners facility, appear to have impacted groundwater on Parcels 018 and 019 in the southern portion of the Site.

The other nearby dry cleaner, Riverdale Cleaners, was listed on the Hazardous Site Inventory (HSI) as a result of a release of chlorinated solvents to groundwater. This property has since been remediated and was removed from the HSI. The contamination from this property did not impact the Site.

.

2.0 PURPOSE

The purpose of this Compliance Status Report (CSR) is to document the current status of the Site with regard to the Hazardous Site Response Act for all regulated substances associated with releases at the property. This CSR was compiled on the basis of property conditions which were primarily characterized through a series of investigations and remedial activities performed at the Site by Contour and MACTEC between December 2003 and June 2007.

3.0 DESCRIPTION OF THE RELEASE SOURCES

Results of soil and groundwater assessment activities indicate releases of regulated substances in soil and groundwater have occurred at the Site. This section of the CSR provides a description of the source(s) of the release.

3.1 SOURCES OF RELEASE

Information obtained to date and documented in subsequent sections of this report indicates that three primary on-Site release sources have been identified, including: a former radiator repair facility and auto repair facility on the "Wallace" Parcel 013 (lead and chromium), a former battery facility on the "Miller" Parcel 018 (lead) and the former Parkway Truck Painting facility on "Hughes" Parcel 019 (chromium and lead).

In addition, testing indicates that the Site has been impacted by off-Site groundwater contamination migrating from the former Chevron gas station and the Professional Cleaners facility located adjacent to the Site to the south.

HSRA notifications for releases to soil and groundwater were submitted on behalf of the various previous property owners in May, 2005, resulting in the listing of the Wallace, Miller and Hughes parcels (Parcels 013, 018 and 019) on the Georgia Hazardous Site Inventory (HSI). The property was assigned HSI Site No. 10808. However, the Hughes Parcel 019 was subsequently removed from the listing as per the attached correspondence from GA-EPD in Appendix H.

3.2 REGULATED SUBSTANCES RELEASED FROM THE SOURCE

The substances identified in soil at the Site include: acetone, cis-1,2-dichloroethene, methyl tertiary butyl ether (MTBE), tetrachloroethene, toluene, arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel and zinc.

The substances identified in groundwater at the Site include: acetone, benzene, n-butylbenzene, chloroform, cyclohexane, cis-1,2-dichloroethene, diisopropyl ether, ethylbenzene, isopropylbenzene, methylcyclohexane, MTBE, naphthalene, n-propylbenzene, tetrachloroethene, toluene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene, xylenes, arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium and zinc.

3.3 DESCRIPTION OF THE SOURCES

Based on the information obtained during the assessments of the Site, the metals contamination identified in soil on Parcels 013, 018 and 019 appear to be associated with various automotive service related facilities which previously operated at these locations on Site. A release of lead, cadmium, chromium, copper, nickel and zinc was identified in groundwater on Parcel 018 which appears to be related to the former Miller Battery facility previously located on this Parcel. The chlorinated VOCs (CVOCs) identified in groundwater on Parcel 019 and 018 appear to be related to off-Site dry cleaning operations at the Professional Cleaners facility located adjacent to the Site to the south. Petroleum hydrocarbon impacts to groundwater identified in the southern portion of the Site (Parcels 018 and 019) appear to be related to a Chevron gas station formerly located at the northeast corner of Highway 138 and Highway 85. This facility was closed in 1991 and remediation of soil and groundwater contamination on the former Chevron property was conducted following demolition of the facility. Remediation of groundwater did not extend onto the subject property.

3.4 CHRONOLOGY OF THE RELEASE

Specific information regarding the chronology of the releases is not available. The businesses suspected of being responsible for the identified releases and their approximate periods of operation are summarized as follows: Wallace Parcel 013 consisted of residential property until approximately the early 1970s and has been commercially developed since that time. A variety of tenants including auto and radiator service companies have occupied this Parcel but information regarding specific tenant histories has not been obtained. The former Miller Battery facility was located in the western portion of the Miller Parcel 018 during the 1960s and 1970s, after which this facility was used as an auto repair facility. The Parkway Truck Painting facility operated from the early 1980s until 2005 in the eastern portion of the Hughes Parcel 019. The former Chevron gas station located south of the Site operated until 1991 when it was demolished. The off-Site dry cleaner (Professional Cleaners) has been present immediately south of the Site since at least the mid 1990s. This facility has recently ceased operation at this location.

4.0 DELINEATION OF SOIL CONTAMINATION

Soil sampling was conducted on Site during the installation of 38 groundwater monitoring wells, 50 Geoprobe borings, 11 soil borings and 2 hand auger borings between 2004 and 2006. Refer to Figures 5-8 for plans of the soil boring locations and Appendices C and D for a summary of the laboratory data and the complete laboratory reports, respectively. The sampling procedures employed by MACTEC are described in the following sections. Available information regarding Contour's sampling procedures is also presented.

4.1 ANALYTICAL PARAMETERS SELECTED AND RATIONALE

Soil samples collected during the various assessments conducted by MACTEC and Contour were analyzed for volatile organic compounds (VOCs, SW-846 Test Method 8260B), polynuclear aromatic hydrocarbons (PAHs, SW-846 Test Method 8270C) and RCRA Metals (SW-846 Test Method 6010B and 7471A). These parameters were appropriately selected based on the type of historical business operation identified on the subject Site and in the immediate upgradient vicinity.

4.2 SAMPLING AND ANALYSIS PROCEDURES

4.2.1 Sampling Equipment and Collection Techniques

Soil samples from Geoprobe borings were collected using a four-foot long stainless steel sampling tube which is lined with a polyethylene sleeve and driven into the ground to the desired sampling depth. Soil samples collected from auger borings were collected using a split-spoon sampler and the standard penetration test method. Other samples were collected using a stainless steel hand auger. Confirmation samples obtained during the soil remediation activities were collected from the appropriate depth on the sidewalls of the excavation by hand or using a backhoe bucket, depending on the depth of the sample. Samples collected by MACTEC were discreet samples collected from the designated depths. In order to reduce the loss of VOCs from the collected samples, the soil samples were not homogenized prior to packing in the appropriate containers.

4.2.2 Soil Sample Handling and Preservation Techniques

The collected soil samples were removed from the sampling device and placed in clean sample containers supplied by the laboratory. Soil samples for laboratory testing for VOCs were collected using the syringe method, in accordance with SW-846 Method 5035. Samples for PAH and metals analyses were collected in four-ounce glass jars. Clean latex gloves were worn during all sampling activities and the gloves were then discarded. Following sample collection, the samples were maintained on ice in a cooler until they were transferred to the laboratory.

4.2.3 Equipment Decontamination Procedures

Soil sampling tools and equipment, including drill rigs were decontaminated by steam cleaning prior to beginning work on the Site. During drilling operations, only clean drilling tools were used in each borehole. The split spoons and Geoprobe sampling tubes were decontaminated between samples using non-phosphate detergent and then rinsed with distilled water. New polyethylene liners were used for each Geoprobe sample. Clean latex gloves were used during the collection of all soil samples. Gloves were changed prior to the collection of each soil sample.

4.2.4 Chain-of-Custody Procedures

All collected samples were logged on a chain-of-custody form that was signed by the MACTEC field representative and the laboratory representative upon release of the samples to the laboratory. Chain-of-custody documentation is provided with the laboratory reports in Appendix I. We note that, according to Contour's August 2004 draft report, chain-of-custody records were completed for the samples from this assessment which were submitted to Pace Analytical Services. However, the laboratory reports available for our review did not include chain-of-custody records. Chains-of-custody were available for subsequent sampling events in which the samples were submitted to Analytical Services, Inc. and are included with the laboratory reports.

4.2.5 Laboratory Analytical Procedures

4.2.5.1 Standard Analytical Methods

Following delivery to the laboratory, soil samples collected by Contour and MACTEC were analyzed for VOCs using SW-846 Test Method 8260B, polynuclear aromatic hydrocarbons (SW-846 Test Method 8270C) and RCRA metals (SW-846 Test Method 6010B and 7471A).

4.2.5.2 Quality Assurance/Quality Control Procedures

Quality control samples were prepared and analyzed during the assessment. Duplicate soil samples were tested. Trip blanks were included with the samples submitted to the laboratory. The trip blanks were provided by the laboratory and consisted of 40-ml vials filled with water. Results of the trip blank analyses are included in the laboratory reports. Results of Surrogate analysis are also included in the laboratory reports. Backup QA/QC data for these samples are included in laboratory reports in Appendix I.

The soil samples collected by Contour were submitted to Pace Analytical Services, Inc. (Pace) or Analytical Environmental Services, Inc. (AES) for laboratory analysis. The soil samples collected by MACTEC were submitted to AES for laboratory analysis. Both Pace and AES maintain a National Environmental Laboratory Accreditation Conference (NELAC) certification for the analysis of VOCs, PAHs, and metals.

4.3 SUMMARY OF PERTINENT SOIL TESTING DATA

Early due diligence assessment was performed by Contour, while follow-up assessment was performed by MACTEC.

4.3.1 Early Due Diligence

The soil testing results are summarized on Figures 4 through 8 in Appendix B and in Tables 1 through 9 in Appendix C.

The initial subsurface assessment of soil at the Site was conducted by Contour in 2004 and 2005. These assessments included the installation of three monitoring wells (MW-1, MW-2 and MW-3) in June 2004 which were used to collect soil samples from Parcel 018. In December 2004, an additional assessment was conducted which included the installation of 30 Geoprobe borings (B/TW 1 through B/TW-30). Soil samples were generally laboratory tested for VOCs, RCRA metals and, in some instances, PAHs.

We note that the laboratory reports and chains-of-custody for the soil samples tested by Contour in December 2004 indicate sampling intervals of either 0-8 feet or 9-15 feet and that the samples collected were grab samples. The draft reports prepared by Contour, in which the soil sampling is described, state that the samples were collected from depths of either 6-8 feet or 13-15 feet. For consistency, we have presented the sampling depths as those reported on the laboratory reports. However, in our opinion, it is more likely that the 6-8 and 13-15 foot sampling intervals were correct, based on common sampling procedures. The results of the laboratory analyses from Contour's assessments are summarized by Parcel on Figure 5 in Appendix B and in Tables 1 through 9 in Appendix C.

VOCs were detected in soil in the southern and central portions of the Site on Parcels 018 and 019. Tetrachloroethene (PCE), toluene and methyl tertiary butyl ether (MTBE) were detected in soil samples on Parcel 019 in the vicinity of the Parkway Truck Painting facility. We note that, based on groundwater elevation data, the soil sample from Parcel 019 which exhibited toluene appears to have been collected from below the water table. It appears that the PCE and MTBE detected in soil on this Parcel were also collected very close to the water table, likely within the smear zone created by fluctuations in groundwater levels. Each of the VOCs detected on Parcel 019 were collected from an area underlain by groundwater plumes emanating from off-Site which exhibited the same constituents detected in the soil samples. PCE, MTBE and cis-1,2-dichloroethene (DCE) were also detected on Parcel 018 in the area of Discount Auto Service Center, the former location of the Miller Battery facility. VOCs were not detected in soils on Site above either the HSRA notification concentration or the Type 1 risk reduction standard (RRS).

Contour detected the metals barium, chromium and lead in soils throughout the Site, typically at concentrations consistent with naturally occurring background levels. Three exceptions were noted, including: two soil samples collected from the area immediately behind the Fast Auto facility on Parcel 013 which exhibited lead and chromium in excess of Type 1 RRS and one sample collected from within the Parkway Auto Painting facility which exhibited chromium at a concentration above the Type 1 RRS. Elevated metals concentrations were not detected in soil on Parcel 018. However, as discussed in Section 5.7, lead was detected in groundwater at the former Miller Battery facility location. Based on the groundwater findings and the presence of a former battery service facility, lead impacted soil was suspected at this location during the due diligence assessment period.

Based on the data obtained by Contour, an Application for Limitation of Liability and Corrective Action Plan (CAP) was prepared by MACTEC and submitted to the GA-EPD on June 27, 2005. The application and CAP were approved by the GA-EPD on July 22, 2005. MACTEC then conducted additional soil testing on Site in order to delineate the extent of constituents present above applicable RRS.

4.3.2 Follow-Up Assessment

The initial phase of MACTEC's soil assessment consisted of sampling and screening of shallow soils in a grid pattern in each of the three Parcels (013, 018 and 109) which previously exhibited elevated metals concentrations in soil. Samples were collected using a Geoprobe on twenty-foot centers over a 100 x 100 foot grid in each of the Parcel's area of concern, and the grid was expanded as necessary. Three samples were collected from each boring at depths of 3-6, 12-15 and 21-24 inches below ground surface and scanned for the presence of RCRA metals using a hand-held X-ray fluorescence (XRF) unit. The screening results for the metals of concern in each area are summarized on Figure 4. We note that the other RCRA metals, with the exception of barium, were included in the XRF scan, but none were found to exceed applicable RRS and were, therefore, not included in the summary tables in Appendix C.

The XRF scan identified a number of locations within each of the sampling grids which contained metals in excess of applicable RRS. In particular, lead and chromium were identified on Parcel 013, lead was identified on Parcel 018 and lead and chromium were identified on Parcel 019. In order to confirm the XRF results, five soil samples from each area were initially selected for laboratory testing for all eight RCRA metals. In addition, in order to further delineate the areas, both laterally and vertically, a number of additional samples were submitted for testing of one or more metals. Further sampling and testing was also required in several areas outside of the original grids in order to complete the delineation of the various metals to below background. The soil delineation laboratory testing results for Parcels 013, 018 and 019 are summarized on Figure 6 through 8 in Appendix B and in Tables 3, 8 and 9 in Appendix C.

In addition to the follow-up assessment of metals in soil, one additional soil sample was collected from Parcel 018 to check the previous finding of a very low concentration of PCE in soil detected in Contour boring B-16 in a sample identified as coming from 0-8 feet. In March 2007, MACTEC installed a shallow hand auger boring, B-59, in the vicinity of B-16. A soil sample was collected from a depth of two feet below the existing grade (corresponding to a depth of approximately six feet below the original grade) and tested for the presence of PCE. As shown on Figure 7A, PCE was not detected in this sample above the reporting limit of 5.0 ug/kg. We note the PCE concentration was also below the method detection limit of 0.19 ug/kg.

4.4 BACKGROUND SOIL CONCENTRATIONS

Because the suspected VOC compounds in soil are not characteristic of naturally occurring conditions in Piedmont soils, naturally occurring background conditions on the affected property were assumed to be below laboratory detection limits. The metals detected on Site are naturally occurring components of Piedmont soils. In order to evaluate the background concentrations of these metals in soil, metals concentrations from samples collected throughout the Site, exclusive of those samples which exhibited apparent concentrations indicative of potential releases were statistically evaluated using 95% tolerance limits. Data were determined to be log-normally distributed, so tolerance limits were calculated on log-transformed data and the results were back transformed. The statistical analyses indicate the following background concentrations for barium, chromium and lead as shown on Table I. Refer to the calculations in Appendix E.

Constituent	Background Concentration Upper Limits, mg/kg				
Barium	310				
Chromium	47				
Lead	34				

Table I – Background Concentrations of Metals

Other metals detected in soil on Site included arsenic, cadmium, copper, mercury, nickel and zinc. During the various assessments, soil samples were typically analyzed for RCRA metals. The concentrations detected of these metals, as well as barium, were consistent with established naturally occurring conditions as reported in The Geochemical Atlas of Georgia or as calculated. Analysis of soil testing data indicated that three areas of the Site, Parcels 013, 018 and 019 exhibited concentrations of lead and chromium in soil which exceeded background concentrations.

5.0 DELINEATION OF GROUNDWATER CONTAMINATION

Groundwater assessment activities on Site have been conducted by MACTEC and others between 2004 and 2006. A total of 41 groundwater monitoring wells have been installed on Site, 28 of which have been properly closed as a result of site redevelopment. Thirteen wells remain intact at this time. Refer to Figure 11 for a plan of the existing monitoring well locations.

5.1 CHARACTERIZATION OF SUBSURFACE GEOLOGY

The geology and hydrogeology of the Site discussed below are based on the data obtained and review of published literature.

The property is located in the Piedmont Geologic Region of the Appalachian Province. The Piedmont parallels the eastern edge of the North American continent south of New England and east of the Blue Ridge Geologic Region. The Piedmont is the non-mountainous part of the Appalachians, and slopes generally from the mountains toward the Coastal Plain Geologic Region. In general, the northwest boundary of the Piedmont is at the foot of the mountains. The southeastern boundary is located where the crystalline rocks of the Piedmont are overlain by the younger marine sediments of the Coastal Plain.

The Piedmont landscape typically consists of rolling terrain of gentle slope, cut or bounded by valleys of steeper slope and greater depth. The Site is located topographically in an area of rolling terrain, at an original elevation ranging from approximately 950 to 930 feet above mean sea level. Recent Site grading activities have changed the contour of the Site somewhat. The Site was characterized by the presence of a large east-sloping drainage swale. This swale has been largely filled in during Site redevelopment. The nearest stream to the Site, an unnamed tributary of the Flint River, is located approximately 1,200 feet northeast of the downgradient boundary of the Site.

The subject Site is mapped by the Georgia Geologic Survey as being underlain by the Camp Creek Formation (McConnell and Abrams, 1984). The Camp Creek Formation in this area is composed of massive granite gneiss interlayered with thin fine grained hornblende-plagioclase amphibolite. The residual soils present in this geologic area have been formed by in-place chemical and physical weathering of the parent rock types. Weathering is facilitated by fractures, joints, and by the presence of less resistant rock types. The typical soil profile consists of clayey soils near the ground surface transitioning to sandy silts and silty sands that generally become harder with depth to the top of the parent rock.

The soil test borings generally encountered fill soils at the surface which overlaid residual soils (see Boring Logs in Appendix D for soil descriptions). Residual soils on Site generally consisted of clayey sandy silts in the upper horizons, trending to sandy silts and silty sands derived from the gneiss and amphibolite found on Site. The depth to rock varied across the Site, ranging in depth from as little as four feet below ground surface in several of the borings drilled and one excavation dug in the northern portion of the Site to over 65 feet in a deep well in the southern portion of the Site. The rock exposed through excavation was described as light gray, muscovite-biotite gneiss (see Figures 13 and 14 for cross sections).

5.2 CHARACTERIZATION OF HYDROGEOLOGY

In the Piedmont Physiographic Province, groundwater generally occurs under water table (unconfined) conditions and is stored in the overlying mantle of residuum and in the structural features (i.e., joints, fractures, faults) present in the underlying rock. Recharge to the water table is primarily by precipitation infiltrating the upper soils and percolating downward, under the influence of gravity, to the groundwater table. Typically, the water table is not a level surface, but a subdued reflection of the land surface. Also, depth to the water table is variable, being dependant on many factors which include: the amount of rainfall, the permeability of the residuum, the extent of fracturing in the underlying rock, and the amount of groundwater being pumped from the area.

5.2.1 Surface Water Drainage

Pre-redevelopment surface water drainage in the area of the Site was controlled by curbs and gutters along the streets and is intercepted by storm sewer intakes and routed to local surface water bodies. In general, the surface drainage of the Site was to the southeast, toward a low lying area at the southeast corner of Parcel 018. A drainage swale located in this area flows in a north-northeasterly direction toward an unnamed tributary of the Flint River, located approximately 1,200 feet northeast the Site. Grading operations associated with Site redevelopment have not changed the general surface water drainage patterns, although all surface water runoff is currently routed through storm drains into two detention basins located in series along the southern boundary of the Site prior to discharge to the drainage swale described above.

The Site's upgradient watershed is interpreted to extend a short distance to the west, across Georgia Highway 85 and to the south as far as Georgia Highway 138. Refer to Figure 1 for a depiction of the interpreted upgradient watershed. However, because of extensive development in the area, off-Site surface water drainage is controlled through curbs, gutters and storm drains along the roadways.

Following well installation, the monitoring wells were surveyed to determine their elevations and the depth to groundwater measured. The water depth measurements were made within an approximately 30 minute time period. These depths were used to calculate the elevation of the groundwater in each well and develop groundwater elevation contours to evaluate groundwater flow direction.

The water level information is tabulated below in Table II.

Well No.	Top of Casing Elevation*, Ft.	Depth to Groundwater, Ft.	Relative Groundwater Elevation, Ft.
EW-1	947.66	Dry	NA
EW-2	948.59	18.60	929.99
EW-3	948.22	16.73	931.49
EW-4	953.20	21.58	931.62
EW-5	948.65	17.33	931.32
EW-6	948.03	20.48	927.55
EW-7	948.68	21.23	927.45
DW-1	948.60	17.35	931.25
EW-8	948.18	17.79	930.39
EW-8A	947.98	16.08	931.90
EW-9	947.67	17.37	930.30
EW-10	947.57	17.17	930.40
EW-11	947.56	17.72	929.84

Table II – Groundwater Elevations, 4/30/06

*Tied to drop inlet elevation presented on Site Grading Plan prepared by Haines, Gipson and Associates, Inc.

Based on the measured groundwater elevations, the interpreted groundwater flow direction within the shallow aquifer across the subject Site is generally in a northeasterly direction (see Figure 9). Previous potentiometric surface maps prepared for the Site in 2004 and 2005 by Contour and 2006 by MACTEC utilized considerably more wells than are currently available and these events are depicted on Figures 10 and 11. All of the previous wells have since been closed. The previous data also indicated a northeasterly groundwater flow direction.

5.2.3 Hydraulic Conductivity

In their February 2005 draft CAP, Contour presented an estimated hydraulic conductivity of 7.8×10^{-5} cm/sec or 0.225 feet per day for the Site. Based on the data obtained from the July 2006 groundwater elevation measurements, the horizontal groundwater gradient within the shallow portion of the aquifer on Site appears to vary from approximately 1.1% to 1.5% with an average value of approximately 1.3%. These values were utilized for the purpose of calculating the groundwater flow rate which has not been quantified.

Effective porosity was assumed to be 15% (Applied Hydrology, C.W. Fetter, 1994). The formula used to calculate the groundwater flow rate is as follows (Applied Hydrology, C.W. Fetter, 1994):

$Velocity = \underline{K i}$	
n _e	
where: K = hydraulic conductivity (feet per day) i = hydraulic gradient (feet per foot)	= 0.225 ft/day = 0.013 ft/ft
$n_e = effective porosity (unitless)$	= 0.15

Based on the data input, an estimated groundwater velocity ranging of approximately 0.0195 feet/day or approximately 7.1 feet per year was calculated for the Site. We note, however, that organic and inorganic constituents do not migrate at the same rate as groundwater and also attenuate as they migrate. Organic constituents break down or volatilize and inorganic constituents may precipitate out of solution or are adsorbed to soil particles.

Groundwater generally flows in directions subparallel to the ground surface slopes and under the influence of gravity toward points of discharge such as creeks, swamps, drainage swales or pumped groundwater wells. The depth to groundwater on Site ranged from approximately 16 to 21 feet during the April 2007 monitoring event.

5.2.4 Vertical Hydraulic Conductivity

The vertical hydraulic gradient at the Site was calculated by comparing groundwater elevations within two pairs of shallow and deep wells, the deep well DW-1 and the adjacent shallow well, EW-5, and the deep well EW-11 and the adjacent shallow well EW-10, as measured in April 2007. The differences in groundwater elevations between the well pairs were 0.07 and 0.56 feet, respectively with the deeper wells exhibiting the lower groundwater elevation, indicating a downward hydraulic gradient. A vertically downward gradient of 0.0015 ft/ft was measured in the EW-5/DW-1 well pair. A vertically downward gradient of 0.0137 was measured in the EW-11/EW-10 well pair.

5.3 GROUNDWATER MONITORING WELL LOCATIONS, INSTALLATION AND CONSTRUCTION METHODS

A total of 43 groundwater monitoring wells were installed on the subject Site between 2004 and 2006. The locations of these groundwater monitoring wells are shown on Figure 12. Fourteen wells (TW-3, TW-11, TW-13, TW-17, TW-19, TW-20 and TW-23 through TW-30) were constructed in borings installed using a Geoprobe. The remaining wells (TW-31 through TW-42, TW-44, MW-1 through MW-3, EW-1 through EW-11 and DW-1) were constructed in borings installed using a truck-mounted drill rig and hollow-stem augers. In addition to the wells which were installed, groundwater samples were collected directly from five auger borings (B-1 through B-5) during Contour's May 2004 assessment. Three of these borings were later converted to permanent wells (MW-1 through MW-3) and resampled.

5.3.1 Type of Well Casing Material

The monitoring wells installed on Site consist of Schedule 40 PVC well casing and screen with threaded joints. Monitoring wells MW-1 through MW-3, TW-31 through TW-42, TW-44, EW-1 through EW-11 and DW-1 were two inches in diameter while the remaining monitoring wells were one inch in diameter.

5.3.2 Description of Well Intake Design

5.3.2.1 Screen Slot Size and Length

Each of the drilled wells on Site was constructed with 0.01-inch factory slotted PVC well screen. Each of the wells utilized a 10-foot screen length with the exception of DW-1 which utilized a five-foot screen length and EW-8, EW-9 and EW-11 which utilized two-foot screen lengths.

5.3.2.2 Filter Pack Materials and Length

Washed 20/30 sieve size quartz sand was used to create the filter pack around the well screen in each of the wells. The sand generally extended to a height of approximately two feet above the top of the screen (see boring logs in Appendix D). We note that boring logs were not prepared by Contour for the Geoprobe wells that they installed in 2004. Contour did indicate in a letter dated March 20, 2007, that their Geoprobe wells were constructed with a sand pack which extended approximately two feet above the screen (see Appendix L).

5.3.2.3 Method of Filter Pack Emplacement

The sand pack in the augered wells was placed around the screen by pouring the sand through the hollow-stem augers while simultaneously raising the augers to prevent bridging of the sand within the augers. Sand was placed around the Geoprobe well screen by pouring the sand around the well screen from the surface. The filter pack was then sealed from above with at least a two-foot layer of hydrated bentonite clay.

5.3.2.4 Surface Seal

The permanent wells (MW-1 through MW-3, EW-1 through EW-7 and DW-1) were grouted to within approximately six inches of the ground surface with portland cement grout (Type II well construction). These wells were then topped with flush-mount lockable steel covers. The Geoprobe wells installed by Contour were backfilled with bentonite chips to the ground surface. The remaining wells were constructed as temporary wells (TW wells) which were backfilled with auger cuttings above the bentonite seal. No surface covers were installed on these wells.

5.3.2.5 Well Development Methods and Procedures

Following installation, the monitoring wells were developed to remove fine grained formation materials. A minimum of five well volumes of water were removed during well development. The parameters temperature, pH and specific conductivity were periodically monitored during well development. Development continued until these parameters stabilized pursuant to EPA methodology.

5.3.2.6 Well Abandonment

Prior to commencement of Site grading activities in March 2006, all existing wells on Site were properly abandoned in accordance with Georgia well abandonment procedures. Note that the thirteen wells installed after Site grading remain intact (EW-1 through EW-11 and DW-1).

5.4 SAMPLING AND ANALYSIS PROCEDURES

The monitoring wells were sampled by Contour and MACTEC between May 2004 and June 2006. The collected samples were submitted to Pace or AES and tested for the presence of VOCs, PAHs and/or RCRA metals.

5.4.1 Groundwater Elevation

Groundwater levels were measured in each well from the top of the well casing. As discussed in Section 5.3.3, a survey was conducted to measure the elevation of the top of each well casing (see Figure 9).

5.4.2 Well Evacuation Procedures

Well development/purging were accomplished using a peristaltic pump. During well purging, the parameters temperature, pH and specific conductivity were monitored. Purging continued until these parameters stabilized pursuant to EPA methodology. In order to minimize the amount of purge water generated, the deep well, DW-1, was purged using a low-flow/low-volume technique as described in the EPA document Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (EISOPQAM). The well was purged with a peristaltic pump with the pump inlet set at the midpoint of the well screen. Purging continued until the water quality parameters stabilized, thereby ensuring the introduction of representative formation water into the pump. Immediately following stabilization of the water quality parameters, the sample was collected.

5.4.3 Groundwater Sampling, Handling and Preservation

Groundwater samples were collected using a peristaltic pump and low-flow sampling procedures. Clean latex gloves were worn during all development and sampling activities and were changed between each well location.

Samples were collected in clean sample containers, supplied by the laboratory, which contained the appropriate preservative. 40ml glass vials were used for the collection of groundwater samples for VOC analysis. Following sample collection, the bottles were stored on ice in a cooler until they were transferred to the laboratory. The samples were maintained under strict chain-of-custody control from the time they were collected until they were relinquished to the laboratory.

5.4.4 Decontamination Procedures

Decontamination procedures consisted of the use of clean, unused disposable bailers and rope at each sampling location. Latex gloves were also worn and changed between each sampling location. Bailers were disposed of after each use. No equipment was used to sample more than one well.

5.4.5 Laboratory Analytical Techniques

5.4.5.1 Analytical Procedures

Following delivery to the laboratory, the groundwater samples were analyzed for VOCs (SW-846 Test Method 8260B), PAHs (SW-846 Test Method 8270C) and/or RCRA metals (SW-846 Test Method 6010B and 7471A).

5.4.5.2 Quality Control Samples

The groundwater samples were maintained under chain-of-custody control and submitted to the analytical laboratory for testing. Trip blanks prepared by the laboratory were also submitted for testing. QA/QC was conducted in accordance with the laboratory analysis selected. Backup QA/QC data for these samples is included in the laboratory reports in Appendix I.

5.4.5.3 Chain-of-Custody Procedures

Samples collected during the assessment were delivered to the analytical laboratory under strict chain-of-custody protocol. From the time of collection until they were released to the laboratory, the samples were stored in ice-filled coolers. Chain-of-Custody records documenting the transfer of the samples to the laboratory were maintained and are included in the laboratory reports in Appendix I. As discussed in Section 4.2.4, chain-of-custody records were missing from several of the laboratory reports from Contour's initial site investigations from 2004.

5.5 BACKGROUND GROUNDWATER QUALITY

Because the VOCs and PAHs in question are not typical of naturally occurring substances in the Piedmont, naturally occurring background conditions for these constituents at the subject property were assumed to be below laboratory detection limits.

Metals are naturally occurring in groundwater and several metals were identified in groundwater samples taken at various times. In most cases, the metals concentrations were elevated by sample turbidity as demonstrated by later retesting. Barium was consistently identified in groundwater throughout the site at concentrations well below the EPA maximum contaminant level (MCL) for barium in drinking water of 2 mg/l. The only metals above their respective MCLs were lead, cadmium, and copper on Parcel 018. Zinc was also identified on Parcel 018 above its secondary drinking water standard.

Elevated concentrations of cadmium, chromium, copper, lead, nickel and zinc were detected in the area of the former Miller Battery facility on Parcel 018. These metals were delineated to background concentrations or below detection limits both vertically and in the downgradient direction from the source area. Background concentrations of metals in groundwater were calculated from samples collected throughout the Site, exclusive of those samples which exhibited apparent concentrations indicative of potential releases, and were statistically evaluated using 99% nonparametric confidence limits when sufficient data was available (N>6). Due to the preponderance of results below laboratory detection limits for most samples, background concentrations were calculated for chromium, copper, lead and zinc. Because copper and zinc were not generally detected outside of the release area, the laboratory results for copper and zinc were reviewed utilizing method detection limits instead of standard reporting limits in order to statistically evaluate their site specific background concentrations. The results indicated that copper and zinc were present in nearly all of the samples which had previously been reported as below detection limits. The statistical analyses indicate the following background concentrations above the method detection limits, but below the standard reporting limits. The statistical analyses indicate the following background concentrations for chromium, lead and zinc as shown below. Refer to the calculations in Appendix E.

 Chromium
 <0.0122 mg/l</td>

 Copper
 0.0158 mg/l

 Lead
 <0.01 mg/l</td>

 Zinc
 0.0779 mg/l

Barium was not suspected to have been released on site, so the maximum detected value (0.112 mg/L) is considered indicative of background. Cadmium, mercury and nickel were detected at isolated locations on Site and have been delineated to below laboratory detection limits.

5.6 ANALYTICAL PARAMETERS SELECTED AND RATIONALE

The wells installed on Site were intended to evaluate the horizontal and vertical extent of contamination. Groundwater samples were analyzed for VOCs and/or metals. In addition, several samples were also analyzed for PAHs. These parameters were appropriately selected based on the type of historical business operation identified on the subject Site and in the immediate upgradient vicinity.

5.7 SUMMARY OF GROUNDWATER TESTING RESULTS

Early due diligence assessment was performed by Contour, while follow-up assessment was performed by MACTEC. A summary of all groundwater testing results is presented on Figure 13 in Appendix B and in Tables 1A through 9A in Appendix C. Delineation of regulated constituents in groundwater is presented on Figures 14A through 14E in Appendix B. The laboratory reports are presented in Appendix I.

5.7.1 Early Due Diligence

The initial groundwater samples were collected by Contour in May 2004 from five auger borings (B-1 through B-5) located on Parcels 015A, 018 and 019. Each of the water samples was tested for VOCs and PAHs. Water from two of the five borings, located near the former Miller Battery facility, were also tested for RCRA metals. A number of petroleum VOCs, as well as chloroform were detected in boring B-2, located on Parcel 019 in the south-central portion of the Site. The two borings located near the former Miller Battery facility each exhibited elevated concentrations of lead in groundwater, although it is assumed that these results were heavily influenced by suspended sediment content because the samples were obtained from uncased boreholes. No other VOCs, PAHs or metals were detected on Site during this initial sampling event. The May 2004 assessment also included sampling and testing of groundwater from two off-Site monitoring wells (MW-NE and MW-NW) located immediately behind the Professional Cleaners facility south of the Site. The results obtained from these wells indicated CVOCs were present in the area located immediately upgradient of the subject Site at significantly higher concentrations than had been detected on Site (up to 5,200 ug/l of PCE).

The three Contour borings located on Parcel 018 were converted to permanent wells (MW-1 through MW-3) and resampled. During the first sampling event in June 2004, these wells were tested only for metals. The June 2004 data indicated the presence of arsenic, cadmium, copper, lead, nickel and selenium at generally low concentrations in groundwater. Lead, however, was identified at higher concentrations in the two wells located on the former Miller Battery property, although the concentrations were significantly lower than those obtained in May 2004 from the uncased borehole sampling. These three wells were then resampled for metals in July 2004 by Contour. The results identified both lead and cadmium at concentrations above the EPA maximum contaminant levels (MCLs) in the two of the three wells.

During Contour's December 2004/January 2005 assessment, 14 Geoprobe borings installed at various locations around the Site were converted to temporary one-inch diameter wells. The wells were primarily located in areas of concern on Parcels 013, 015A, 018 and 019, although four of the wells were located along the Site's eastern (downgradient) boundary. Groundwater was not encountered in two of the Geoprobe wells, TW-3 and TW-19 and they could not be sampled. Contour also resampled the permanent wells MW-1 through MW-3. All samples were tested for VOCs and RCRA metals.

The December 2004/January 2005 groundwater testing confirmed the presence of lead and cadmium in groundwater in the vicinity of the former Miller Battery facility (Parcel 018) at concentrations above their respective MCLs. Lead was also identified in several other wells located on Parcel 013 and 019 above its MCL although these results were likely influenced by high sediment content in the samples. In addition, barium was detected in a number of wells across the Site and chromium and mercury were detected in one well on Parcel 019. Barium, chromium and mercury were not detected at concentrations above their respective MCLs. A number of VOCs, including both petroleum and CVOCs, were detected in groundwater in 2004, primarily in the southern portion of the Site on Parcels 018 and 019. These constituents are believed to have migrated from the adjacent former Chevron station and the Professional Cleaners located immediately south of the Site. The only VOCs detected in groundwater elsewhere on the Site included chloroform adjacent to the former Miller Battery facility (Parcel 018) and acetone in two locations in the northern portion of the Site, on Parcels 013 and 015A. Chloroform is a common component of municipal water systems and is likely indicative of a leaking water line or sewer line in the area. Furthermore, no obvious sources of acetone were identified on Parcels 013 and 015A and it was not detected in soil during the 2004 assessment or in groundwater from nearby wells during subsequent assessments. This compound is a common laboratory contaminant and its presence in this area is not interpreted to be indicative of a release.

5.7.2 Follow-Up Assessment

In 2005, MACTEC was hired by H/S Riverlo to conduct additional assessment of the Site as part of the Brownfield redevelopment. MACTEC's initial activities involved additional sampling and testing of groundwater on-Site in June 2005. Monitoring well TW-11, located on Parcel 013 in the northern portion of the Site was also resampled and tested for metals as barium and lead had previously been detected in this area. Lead was not detected and barium was present at a lower concentration than was previously detected. The Parcel 018 monitoring wells, MW-1 through MW-3, were resampled and tested for total and dissolved RCRA metals. The testing confirmed the presence of lead in groundwater in the two wells located downgradient of the former Miller Battery facility.

A subsequent assessment, conducted in August 2005, focused primarily on the southern and central portions of the Site. Three wells were installed in the area downgradient of the former Miller Battery facility to delineate the extent of lead-impacted groundwater previously identified. The testing indicated that the lead-impacted groundwater was confined to a relatively small area immediately east of the former facility. Eight additional wells were installed on Parcel 018 to further evaluate the petroleum and chlorinated VOC plumes entering the Site from the south and to assess whether the plumes extended beneath the proposed Lowe's building footprint on the east-central portion of the Site. Testing in this area confirmed that the petroleum and CVOC groundwater plumes did extend beneath the southern end of the proposed building.

Due to on-Site grading and construction activities, all monitoring wells existing at that time were properly abandoned in late 2005. Between June and November 2006, once the soil remediation had been completed and Site grading and construction associated with the redevelopment had been largely completed, 13 new permanent wells were installed on Site to provide additional delineation data and allow for continued monitoring of groundwater conditions, if desired. These included six wells (EW-1 EW-2, EW-3, EW-9, EW-10 and EW-11) located at or downgradient of the former Miller Battery facility, six wells (EW-5 through EW-8, EW-8A and DW-1) located at or downgradient of the former Parkway Truck Painting facility (Hughes) and downgradient of the off-Site Professional Cleaners and former Chevron facilities and one upgradient well (EW-4) located near GA Highway 85. Groundwater testing results obtained from the new wells were consistent with those previously obtained on Site. Metals derived from on-Site sources were detected in the shallow wells located in the area of the former Miller Battery facility and the Parkway Truck Painting facility. Both petroleum and CVOCs derived from off-Site sources were identified in groundwater in the southern portion of the Site. Regulated constituents were not detected in the remaining wells, including two deep wells, installed in the areas of metals impacts.

Based on the findings of the groundwater sampling, it is evident that two groundwater contaminant plumes are entering the Site from the south. These partially overlapping plumes appear to emanate from the former Chevron gas station and the off-Site Professional Cleaners facility located immediately south of the Site, extending in a northeasterly direction nearly to Pine Street along the eastern Site boundary. Based on the results of the off-Site testing conducted by Contour, it is likely that the CVOC concentrations in groundwater on the subject Site will increase over time as the concentrations of CVOCs detected on the Professional Cleaners property were significantly higher than those detected immediately downgradient, on the subject Site. We also note that, to date, only one constituent of PCE degradation (cis-1,2-DCE) has been detected on Site. Other daughter products of PCE breakdown, including trichloroethene, trans-1,2-dichloroethene and vinyl chloride have not been detected on Site to date. Trichloroethene was detected at low concentrations in the off-Site wells. It is likely that, as the CVOC plume migrates and ages, the degradation of PCE in the groundwater will result in the future detection of these other CVOCs on the subject Site. As such, the detection of these constituents on Site would be considered as part of the same release.

At the request of GA-EPD, another round of groundwater sampling of all remaining wells (EW-1 through EW-11 and DW-1) was conducted in April 2007. This testing event was limited to metals and included the eight RCRA metals as well as copper, nickel and zinc. Copper nickel and zinc had been tested from three wells in two groundwater sampling events conducted in 2004, but had not been tested since and were specified in order that site specific background values could be calculated for these metals. The RCRA metals testing results obtained were generally consistent with those previously obtained. Elevated concentrations of several metals were detected in the area of the former Miller Battery facility, including barium, cadmium, copper, lead, nickel and zinc. In our opinion, with the exception of lead, the presence of these metals in groundwater is likely not related to a spill or other surface releases of the metals themselves. Rather, the lowered pH of the soil due to the release of battery acids from the former Miller Battery facility resulted in the mobilization of the natural soil constituent metals. The impacted groundwater in the immediate area of the acid release was therefore the result of migration of these metals. As such, the zone of metals-impacted groundwater is limited to a relatively confined area in and immediately downgradient of the Miller Battery facility release.

The extent of impacted groundwater has been delineated within the Site boundaries based on data obtained between 2004 and 2007. In addition, the vertical extent of impacted groundwater has been delineated based on the absence of VOCs and metals above background in the deep wells, DW-1 and EW-11. We note that one monitoring well, EW-1, located north (sidegradient) of the former Miller Battery facility, was dry at the time of the most recent sampling event and could not be sampled. Previous testing from this well had identified no evidence of metals impact from the Miller Battery facility release. Specifically, all RCRA metals, including those found to be elevated to the south of EW-1, were consistent with background concentrations. Due to its hydrologic position with respect to the release, no impact associated with other metals detected in the vicinity of the former Miller Battery facility is suspected. This well will be monitored in the future and, when appropriate, will be resampled and tested for metals to confirm the groundwater delineation in this area.

6.0 POTENTIAL RECEPTORS

6.1 WATER USAGE

In 2004 Contour conducted a water usage survey to identify drinking water sources within a three mile radius of the Site. At least four active drinking water wells were identified within one to two miles of the Site. Based on the locations of the wells with respect to hydrogeology, exposure to contaminated groundwater is considered unlikely for both the residential and non-residential properties in the Site vicinity due to the fact that local properties are all connected to municipal water supplies.

6.2 ENVIRONMENTAL RECEPTORS

The original topography of the subject Site was characterized by the presence of a large east-sloping drainage swale. This swale has been largely filled in during Site redevelopment. The nearest stream to the Site, an unnamed tributary of the Flint River, is located approximately 1,200 feet northeast of the downgradient boundary of the Site. In our opinion, the potential for impacted groundwater from the Site to affect this stream is negligible, based on its distance from the Site and the limited impact to groundwater on Site. Our review of local topography and the National Wetlands Inventory Map did not indicate other surface water features or mapped wetlands in the immediate vicinity of the Site.

6.3 RISK REDUCTION STANDARDS

The subject Site is located in Riverdale, Georgia in an area of both commercial and residential properties. The properties immediately north and south of the Site and across GA Highway 85 to the west are commercially developed. Properties east of the Site, across Pine Road are developed with single family residences. The subject Site is being redeveloped as a retail home improvement store and, therefore, the future Site use would be considered "non-residential" property as defined under HSRA.

6.3.1 Soil Criteria

Two HSRA-regulated constituents, lead and chromium, were detected in soil above HSRA notification concentrations during Contour's and MACTEC's assessments. Soil verification testing conducted following the remedial activities conducted in February 2006 indicated that these constituents were no longer above their respective RRS. Five VOCs and seven additional metals were also detected, but not at concentrations above any RRS. Type 1-4 RRS for all constituents detected in soil on Site are presented below in Table III along with the highest concentration of each constituent detected in the post remediation testing.

	Highest Concentration (Post Remediation) mg/kg	Depth	Location	Residential		Non-Residential	
Regulated Substance				Type 1 RRS Criteria, mg/kg	Type 2 RRS Criteria, mg/kg	Type 3 RRS Criteria, mg/kg	Type 4 RRS Criteria, mg/kg
VOCs							
Acetone	0.170	3'	B-54	400	60	400	390
Cis-1,2-dichloroethene	0.0045	0-8'	B-19	0.53	2.90	0.53	19
MTBE*	6.2	21-24"	3-5B	0.50	0.51	0.50	0.93
Tetrachloroethene	0.073	9-15'	B-22	0.50	0.34	0.50	0.34
Toluene	0.021	9-15'	B-21	100	77	100	400
Metals	Metals						
Arsenic	5.92	12-15"	3 - 4B	20	5.8	38	5.8
Barium	247	21-24"	1-4C	1,000	2,600	1,000	17,000
Cadmium	5.54	3-6"	1-1B	2.0	12.0	39	77
Chromium	52.6	21-24"	3-5D	100	38	1,200	120
Copper	22.0	10-12'	B-5/MW-1	100	3,100	1,500	35,000
Lead	156	1.5'	A2-J	75	270	400	270
Mercury	0.428	3-6"	3-6F	0.50	4.9	17	32
Nickel	1.4	10-12'	B-5/MW-1	50	410	420	100
Zinc	6.1	10-12'	B-5/MW-1	100	5,800	2,800	38,000

Table III - Risk Reduction Standards for Soil

mg/kg - milligrams per kilogram (equivalent to parts per million)

* - Not regulated under the Rules for Hazardous Site Response

No Petroleum or CVOCs were detected in soil on Site at concentrations above residential RRS. All areas on Site which exhibited concentrations of metals above residential risk reduction standards were included within the excavation areas described in Section 8.0. Based on the soil testing data collected to date, including the soil verification testing completed as part of the 2006 remediation effort, the subject Site is in compliance with Type 1 or Type 2 RRS for soil (see Figures 6 through 8).

6.3.2 Groundwater Criteria

Type 1-4 RRS for all constituents detected in groundwater on Site are presented below in Table IV. HSRA RRS criteria for groundwater for the detected constituents are shown compared to their highest concentrations detected on Site.
	Highest			Resid	ential	Non-Re	sidential
Regulated Substance	Concentration mg/L	Sample Date	Location	Type 1 RRS Criteria, mg/L	Type 2 RRS Criteria, mg/L	Type 3 RRS Criteria, mg/L	Type 4 RRS Criteria, mg/L
VOCs		ununtara	la de para esta construcción de la			·	
Acetone	0.027	12/04	TW-13	4.0	14.1	4.0	92
Benzene	0.960	9/05	TW-40	0.005	0.00448	0.005	0.0088
n-Butylbenzene*	0.0025	5/04	B-2	0.005	0.626	0.005	4.09
Chloroform	0.0053	6/06	EW-1	0.10	0.0021	0.10	0.00353
Cyclohexane*	0.036	9/05	TW-40	0.005	3.55	0.005	17.4
Cis-1,2-dichloroethene	0.005	6/06	EW-5	0.005	0.156	0.005	1.02
Diisopropyl ether*	0.038	5/04	B-2	0.005	0.229	0.005	1.12
Ethylbenzene	0.190	9/05	TW-40	0.70	0.436	0.70	2.3
Isopropylbenzene	0.016	5/04	B-2	0.005	0.20	0.005	1.01
Methylcyclohexane*	0.023	9/05	TW-40	0.005	1.79	0.005	8.79
Methyl tertiary butyl ether*	0.390	9/05	TW-40	0.005	0.0789	0.005	0.145
Naphthalene	0.052	5/04	B-2	0.02	0.00178	0.02	0.00875
n-Propylbenzene*	0.017	5/04	B-2	0.005	0.626	0.005	4.09
Tetrachloroethene	0.270	12/04	TW-24	0.005	0.00132	0.005	0.00382
Toluene	0.720	9/05	TW-40	1.0	0.876	1.0	5.2
1,2,4-Trimethylbenzene*	0.084	5/04	B-2	0.005	0.00353	0.005	0.0173
1,3,5-Trimethylbenzene*	0.110	5/04	B-2	0.005	0.00353	0.005	0.0173
Xylenes	0.83	9/05	TW-40	10.0	0.0593	10.0	0.292
Metals							
Arsenic	0.0064	7/04	MW-2	0.01	0.000568	0.01	0.01
Barium	0.557	12/04	TW-25	2.0	3.13	2.0	20.4
Cadmium	0.0903	4/07	EW-9	0.005	0.00782	0.005	0.0511
Chromium	0.0465	12/04	TW-25	0.10	0.0469	0.10	0.307
Copper	1.41	4/07	EW-9	1.3	0.626	1.3	4.09
Lead	4.1**	5/04	B-4	0.015	ND	0.015	ND
Mercury	0.00047	12/04	TW-25	0.002	0.00469	0.002	0.0307
Nickel	0.135	4/07	EW-9	0.10	0.313	0.10	2.04
Selenium	0.0055	7/04	MW-3	0.05	0.0782	0.05	0.511
Zinc	5.40	4/07	EW-9	2.0	4.69	2.0	3.07

Table IV - Risk Reduction Standards for Groundwater

ug/l - micrograms per liter ** - Sample collected from open borehole

 Not regulated under the Rules for Hazardous Site Response Shaded values exceed all 4 types of Risk Reduction Standards

Based on the groundwater testing data collected to date and presented herein, groundwater at the Site related to the listing of HSI Site No. 10808 does not currently comply with groundwater RRS for the following HSRA-regulated constituents which have been identified as emanating from the site: cadmium, lead and zinc. The following HSRA-regulated substances associated with off-Site sources are not in compliance with groundwater RRS: benzene, naphthalene, tetrachloroethene

7.0 DESCRIPTION OF RESPONSIBLE PERSON FOR THE CONTAMINATION DETECTED AT THE PROPERTY

During the course of the various assessments conducted at the Site, the extent of soil contamination and groundwater contamination have been delineated within the Site boundaries. Based on the available data, it is apparent that two VOC plumes in groundwater are entering the Site from the south. The sources of these plumes are believed to be the Professional Cleaners and the former Chevron gas station located immediately south of the Site near the intersection of GA Highway 138 and GA Highway 85. The suspected sources of the metals contamination in soil on Site are Fast Auto/Fast Radiator on Parcel 013, Miller Battery Company on Parcel 018 and Parkway Truck Painting on Parcel 019. We note, however, that various tenants have occupied the buildings on Parcels 013 and 018 and the exact source of the soil impacts in these areas cannot be definitively identified. The lead in groundwater plume on Parcel 018 is associated with the lead release to soil on that Parcel which was remediated. This release is also believed to be responsible for elevated concentrations of several other metals in this area, including barium, cadmium, copper, nickel and zinc. Low levels of chromium, selenium and mercury were identified in groundwater immediately adjacent to the former Parkway Truck Painting facility and may be related to the soil release in this area. Other sources of significant soil or groundwater contamination have not been identified on Site during extensive assessments completed since 2004.

8.0 ACTIONS TAKEN TO ELIMINATE, CONTROL, OR MINIMIZE ANY POTENTIAL RISK AT THE SITE

Corrective actions to achieve and document compliance were accomplished between February and June 2006.

8.1 SOIL IMPACTS

In order to address the soil contamination present on Site at concentrations above applicable RRS, in February 2006, H/S Riverlo, in conjunction with their contractor, Collins and Arnold, completed the remediation of metals-impacted soils on Parcel 013, 018 and 019. This action was performed voluntarily to implement the approved Brownfield CAP. The excavations were conducted following demolition of the on-Site structures in each area and were observed by representatives of MACTEC. The lateral and vertical extents of the three excavations had been largely delineated during the previous soil sampling events; however, in several instances, excavations had to be extended based on the failure of certain verification samples.

MACTEC's field representatives also collected verification samples from each excavation in accordance with the Brownfield CAP in order to confirm that the removal of impacted soil was complete and the Site soils met applicable RRS. Confirmation soil samples were collected at 25-foot horizontal intervals and five-foot vertical intervals along the sidewalls of the excavations. Bottom confirmation samples were collected at the rate of at least one sample per 1,000 square feet of excavation area. Extensive testing prior to the soil excavation had identified the constituents of concern in each of the three areas (refer to Section 4.3). Therefore, the verification testing was limited to those particular constituents which had been found in excess of applicable RRS.

Excavation Area 1 was located on Parcel 019, at the former location of the Parkway Truck Painting facility. This excavation was extended to depths ranging from approximately two feet in the southern portion of the excavation to approximately 13 feet in the northern portion. This excavation was largely contained within the footprint of the former building except for a small area to the south and southwest. Prior to excavation, impacted soils were characterized to determine proper disposal methods. Waste characterization testing indicated the soils were non-hazardous. Impacted soils in this area were transported to the Pine Ridge Landfill in Griffin, Georgia for disposal. A total of approximately 745 tons of soil from Parcel 013 were excavated and properly disposed as non-hazardous waste.

Excavation Area 2 was located on Parcel 018, at the former location of the Miller Battery/Discount Auto Service Center. A small portion of the excavation was located within the former building footprint. This excavation was initially extended to a depth of approximately two feet below grade. The bulk of the soil was removed from the area behind the building. Waste characterization testing indicated that much of the soil in this area was classified as hazardous waste. Therefore, the soil removed from Parcel 018 was handled separately from other soils on Site. The removal and transportation of this soil was handled by Greenleaf Environmental. The soil was transported to the Envirite landfill, a permitted hazardous waste disposal facility located in Canton, Ohio. A total of approximately 663 tons of lead-impacted soil were excavated from Parcel 018 and properly disposed as hazardous waste.

Following the removal of soils impacted with lead above applicable RRS, additional soil was removed from the area of the former Miller Battery/Discount Auto Service Center. The purpose of this additional excavation was to remove soils from the area which exhibited low pH. As discussed in Section 8.2, it was shown that the low pH condition of the soil and groundwater in this area was a contributing factor in the presence and migration of lead in the groundwater in this area. The removal of the low pH soils was intended to positively affect the groundwater condition through the eventual elevation of the groundwater pH, thereby resulting in the precipitation of the dissolved lead and other metals over time. As illustrated on Figure 7B, soils were excavated down to the water table from the area encompassing Excavation Area 2. After consultation with EPD, it was decided that, because these excavated soils were in compliance with applicable RRS, they could be reused on Site as fill material. Approximately 5,000 cubic yards of low pH soil were excavated and spread in a very thin (six inches or less) lift over other portions of the Site requiring structural fill.

Excavation Area 3 was located on Parcel 013, at the former location of Fast Auto/Fast Radiator and other businesses which previously occupied the building in this area. Shallow rock was encountered in this excavation area. Therefore, this excavation was extended to a depth of three to four feet, the vertical limit to which the excavation equipment could penetrate. Prior to excavation, the impacted soils were characterized to determine proper disposal methods. Waste characterization testing indicated the soils were non-hazardous. Impacted soils in this area were transported to the Pine Ridge Landfill in Griffin, Georgia for disposal. A total of approximately 104 tons of soil from Parcel 013 were excavated and properly disposed as non-hazardous waste.

The results of the soil verification testing are summarized below in Tables V through VII and on Figures 6 through 8 in Appendix B. Disposal manifests are attached in Appendix G. Following removal of the soil, the excavations were backfilled with clean fill soil.

Sample ID	Date	Sample Depth, Ft.*	Chromium	Lead
A1-A	2/7/06	0.5-1	273**	NT
A1-B	2/7/06	0.5-1	159**	NT
A1-C	2/7/06	2	223**	NT
A1-D	2/7/06	2	34.1	NT
A1-E	2/8/06	4	42.0	NT
A1-E	2/7/06	8	18.5	NT
A1-F	2/8/06	5	19.1	NT
A1-F	2/7/06	8	14.3	NT
A1-G	2/8/06	3	12.8	NT
A1-G	2/7/06	8	14.3	NT
A1-H	2/7/06	2	31.6	21.2
A1-I	2/7/06	0.5-1	641**	NT
A1-J	2/10/06	2	612**	NT
A1-K	2/10/06	2	20.8	NT
A1-L	2/10/06	2	13.6	NT
A1-M	2/10/06	2	17.7	NT
A1-N	2/14/06	2	20.0	NT
A1-0	2/14/06	2	35.1	NT
A1-P	2/14/06	2	30.3	NT
A1-Q	2/14/06	2	19.7	NT
A1@1'	2/7/06	1	1410**	NT
A1@3'	2/7/06	3	13.9	NT
A1@10'	2/7/06	10	7.1	NT
A1-3A	2/8/06	3	13.1	NT
A1-3B	2/14/06	3	18.5	NT
A1-1A	2/14/06	3	157**	NT
A1-1B	2/14/06	3	19.8	NT
A1-1C	2/14/06	3	34.8	NT
A1-D	2/16/06	6	18.1	NT
A1-D	2/16/06	8	11.3	NT

Table V - Summary of Soil Confirmation Testing Results – Area 1 (Parcel 019)

All results presented in mg/kg * Recorded in feet below original surface grade ** - Additional excavation conducted as result was above applicable RRS

Table VI - Summary of Soil Confirmation Testing Results - Area 2 (Parcel 018)

Sample ID	Date	Sample Depth, Ft.*	Lead
A2-A	2/9/06	1.5	73.8
A2-B	2/9/06	1.5	12.8
A2-C	2/9/06	1.5	11.1
A2-D	2/9/06	1.5	139
А2-Е	2/9/06	1.5	58.1
A2-F	2/9/06	1.5	35.2
A2-G	2/9/06	1.5	7.03
А2-Н	2/9/06	1.5	67.6
A2-I	2/9/06	1.5	6,730**
A2-J	2/9/06	1.5	156
A2-K	2/9/06	1.5	70.8
A2-L	2/9/06	1.5	19
A2-M	2/10/06	1.5	6.37
A2-N	2/10/06	1.5	5.72
A2-O	2/10/06	1.5	14.3
A2-P	2/10/06	1.5	9.39
A2-Q	2/10/06	1.5	378**
A2-R	2/10/06	1.5	5.37
A2-S	2/14/06	1	4.85
A2-T	2/14/06	1	29.4
A2-U	2/14/06	· 1	44.4
A2-V	2/14/06	2	4.68
A2-W	2/14/06	2	5.82
A2-X	2/16/06	1	7.39
A2-Y	2/10/06	1.5	15.8
A2-Z	2/16/06	1	22,600**
A2-AA	2/20/06	1.5	77.5
A2-1	2/9/06	1.5	18.3
A2-2	2/9/06	1.5	8.04
A2-3	2/9/06	1.5	30.7
A2-4	2/9/06	1.5	42.4
A2-5	2/10/06	2	54.2
A2-6	2/10/06	2	20.1
A2-7	2/14/06	2	<4.11
A2-8	2/14/06	2	<4.06
A2-9	2/14/06	2	9.00
A2-10	2/16/06	1.5	13.4
A2-10	2/16/06	3	5.20

All results presented in mg/kg * Recorded in feet below original surface grade ** - Additional excavation conducted as result was above applicable RRS

Sample ID	Date	Sample Depth, Ft.*	Chromium	Lead
A3-A	2/15/06	3	10.7	10.2
A3-B	2/15/06	5	49.5	10.7
A3-C	2/15/06	2.5	11.5	9.68
A3-D	2/15/06	2.5	6.28	6.12
А3-Е	2/15/06	2	12.6	13.2
A3-1	2/15/06	5	45.2	13.0
A3-2	2/15/06	3	308**	10.5
A3-3+	2/18/06	4	3.31	NT

Table VII - Summary of Soil Confirmation Testing Results - Area 3 (Parcel 013)

All results presented in mg/kg

* Recorded in feet below original surface grade ** Additional excavation conducted as result was above applicable RRS

⁺ Repeat sample after additional excavation NT - Not Tested

8.2 **GROUNDWATER IMPACTS**

Lead-impacted groundwater had previously been identified in the area immediately downgradient of the former Miller Battery facility on Parcel 018. Delineation testing of groundwater indicated that the area of lead impact was confined to a relatively small area. Testing of groundwater in the source area indicated the groundwater exhibited a pH in the range of 3.5 to 4.5. The soils in this area also exhibited low pH. The low pH condition in the soil and groundwater was assumed to be related to improper disposal of battery acids in this area and was believed to facilitate the leaching and migration of lead and other metals, such as cadmium, copper, nickel and zinc from the shallow soils into groundwater.

Although it had been shown that the metals-impacted groundwater had not migrated a great distance, and despite the fact that H/S Riverlo is not responsible for groundwater remediation under the Brownfield CAP, H/S Riverlo took a proactive approach with respect to the condition of lead in groundwater in order to reduce the concern associated with the lead plume and minimize the potential for future Site activities which could be disruptive to facility operations (ie. active remediation). MACTEC investigated the effect of raising the pH of the groundwater in the affected area through exposure to limestone. Testing indicated that a relatively short exposure duration of the impacted groundwater to limestone aggregate was sufficient to raise the pH to the point where the dissolved lead would precipitate, thereby significantly lowering the lead concentration in the groundwater (Refer to sample A2-4D on Table 8A in Appendix C). Therefore, it was decided that a "precipitation barrier" consisting of a trench filled with crushed limestone would be placed immediately downgradient of the affected area.

A stormwater drainage line was to be installed in the area immediately downgradient of the Parcel 018 soil excavation area perpendicular to the direction of groundwater migration. An approximate 180-foot long section of the storm sewer excavation was extended to a depth approximately four feet below the water table and filled with crushed limestone to a height approximately one foot above the water table (see Figure 9 for location of the precipitation barrier). The storm sewer was then constructed at its prescribed level above the limestone. In the future, as impacted groundwater migrates through the barrier the pH will be raised resulting in the precipitation of the lead. Although the precipitation barrier will not affect groundwater in the source area, the impacted groundwater will be contained within a limited area and the lead levels will eventually decrease as the plume migrates eastward.

Two VOC plumes have also been identified in groundwater in the southern portion of the Site which appear to be emanating from a former off-site dry cleaner and a former gas station located immediately south of the Site. The plumes extend beneath the southernmost portion of the proposed Lowe's building footprint. A 6mil polyethylene vapor barrier was utilized beneath the slab in the northern portion of the building and a 20mil vapor barrier, with seams taped to prevent breakthrough, was constructed beneath approximately the southern third of the Lowe's building (see Figure 9).

9.0 SUMMARY OF PROPOSED CORRECTIVE ACTION

Following the soil remediation activities described in Section 8.0, the subject Site is in compliance with Type 1 or Type 2 RRS for soil. No sources of metals or VOCs remain at the property. Therefore, additional corrective action related to soil and/or source material is not anticipated. Based on the provisions of the Hazardous Site Response Act, H/S Riverlo, LLC, as current owner of the subject Site, is not liable for existing groundwater contamination. Nevertheless, a Groundwater Corrective Action Plan has been submitted by MACTEC under separate cover at the request of H/S Riverlo, LLC.

APPENDIX A LEGAL DESCRIPTION

Property Description Over-All Tract Riverdale Lowe's Clayton County, Georgia

All that tract or parcel of land lying and being in Land Lot 183 of the 13th District, Clayton County, Georgia, and being more particularly described as follows:

Commencing at a point at the intersection of the northerly right-of-way of Georgia Highway 138 (a variable width right-of-way) with the easterly right-of-way of Georgia Highway 85 (a 170 foot right-ofway); Thence departing the said northerly right-of-way of Georgia Highway 138 and continuing with the said easterly right-of-way of Georgia Highway 85, North 04 degrees 25 minutes 41 seconds East, a distance of 172.99 feet to a 5/8 inch rebar set in the division line between L.G. Properties, Ltd. (Deed Book 848 at Page 694) on the south and Hughes & Hughes Properties, Inc. (Deed Book 6698 at Page 162) on the north, said 5/8 inch rebar set being the TRUE POINT OF BEGINNING. Thence continuing with the said easterly right-of-way of Georgia Highway 85 the following two courses: North 04 degrees 32 minutes 28 seconds East, a distance of 700.25 feet to a 3/4 inch open top pipe found; Thence North 04 degrees 04 minutes 11 seconds East, a distance of 199.50 feet to a 1/2 inch rebar found in the division line between Larry J. Wallace (Deed Book 925 at Page 522) on the south and Charlotte Gore (Deed Book 1726 at Page 369) on the north; Thence departing the said easterly right-of-way of Georgia Highway 85 and continuing with the said division line, South 88 degrees 56 minutes 10 seconds East, a distance of 404.10 feet to a 5/8 inch rebar set in the division line between the said Larry J. Wallace on the west and Carlos A. Woodward and Sara Agnes Woodward (Deed Book 1017 at Page 271) on the east; Thence continuing with the said division line, South 04 degrees 23 minutes 13 seconds West, a distance of 101.18 feet to a 1 inch bolt found in the said division line between the said Carlos A. Woodward and Sara Agnes Woodward on the north and James L. Chapman, Jr. (Deed Book 1415 at Page 883) on the south; Thence continuing with the said division line, South 89 degrees 32 minutes 50 seconds East, a distance of 395.79 feet to a 3/4 inch open top pipe found in the westerly right-of-way of Pine Road (a 40 foot right-of-way); Thence continuing with the said westerly right-of-way of Pine Road, South 04 degrees 34 minutes 55 seconds West, a distance of 803.42 feet to a 5/8 inch rebar set in the said division line between the said L.G. Properties, Ltd. on the south and Wilson E. Miller (Deed Book 394 at Page 412, Deed Book 438 at Page 207 and Deed Book 533 at Page 610) on the north; Thence departing the said westerly right-of-way of Pine Road and continuing with the said division line between the said L.G. Properties, Ltd. on the south and the said Wilson E. Miller and continuing with the said Hughes & Hughes Properties, Inc. all on the north, North 88 degrees 53 minutes 58 seconds West, a distance of 797.63 feet to a 5/8 inch rebar set in the said easterly right-of-way of Georgia Highway 85, said 5/8 inch rebar set being the TRUE POINT OF BEGINNING.

Said tract of land contains 15.564 Acres.

CONNECTICUT NATIONAL

MCELROY DRIVE (30' R/W) DEED BOOK 3014 / PAGE 257 DEED BOOK 3014 / PAGE 257 DEED BOOK 2014 / PAGE 257

N/F PROPERTY OF IVERDALE CHURCH OF GOD DEED BOOK 1105 / PAGE 425

PINE ROAD BURGENE B

APPENDIX B FIGURES

P:\Atlanta CAD\05 JOBS\5-0303 PROPOSED LOWES HWY 85\SITE-TOPO.dwg - TOPO 07/19/2007 11:36am rthorpe

	(
(404) 873-4761	ATLANTA, GEORGIA 30324	396 PLASTERS AVENUE, N.E.	Mactec Engineering and Consulting, Inc.	

XRF

JIOS

SCREENING

RESULTS

CONTRACT

S

© COPYRIGHT 2007 MACTEC

AS SHOWN

6305-05-0303 d Revpaceno 4 0 N/A

σ

0

60

120

SCALE IN FEET

HSI SITE No. 10808 georgia highway 85, riverdale, georgia

^{te} JULY 2006	CHARGE	ECKED	A W N	

	Depth	3–6" 12–15" 21–24"	3-6" 12-15" 21-24"	3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3-6" 12-15" 21-24"
	Chromium Conc., mg/kg	<91.6 <97.6 <96.8	<87.9 <92.7 <95.8	<97.2 <90.2 <93.4	<97.0 <98.9 <93.9	<101.6 <104.6 <91.7	<102.3 <98.7 <95.4
	Depth	3–6" 12–15" 21–24"	3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"
	Chromium Conc., mg/kg	<95.3 <91.2 <92.4	<95.6 <97.0 <96.8	<96.1 <93.1 <97.7	<102.7 <91.4 <94.6	<93.7 <97.6 <94.7	<102.1 <102.7 <97.2
ω	Depth	3–6" 12–15" 21–24"	3-6" 12-15" 21-24"	3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3-6" 12-15" 21-24"
	Chromium Conc., mg/kg	<91.1 <91.5 <89.2	<92.2 <932 <98.9	<94.9 <102.6 <98.9	<96.0 <98.2 <99.7	356.7 <88.4 <94.8	<92.8 <99.7 <94.8
	Depth	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"
4	Chromium Conc., mg/kg	<93.4 <98.3 <96.1	<97.2 <98.1 <91.8	<89.9 <99.8 <97.8	<97.7 <101.4 511.8	<98.9 <104.1 <107.7	<103.5 <95.2 <94.6

ω

3–6" 12–15" 21–24"

<99.8 <103.8 <91.8

3–6" 12–15" 21–24"

<102.4 <98.1 <94.8

3–6" 12–15" 21–24"

<91.2 <101.6 <97.5

3–6" 12–15" 21–24"

<98.1 <102.9 <103.0

3–6" 12–15" 21–24"

3–6" 12–15" 21–24"

3–6" 12–15" 21–24"

3–6" 12–15" 21–24"

<102.6 <96.8 <94.3 <107.4 <101.2 <101.9

<89.4 176.1 <96.1 <96.8 <93.1 <94.6

⊳

C

ш

П

3–6" 12–15" 21–24"

3–6" 12–15" 21–24"

Depth

Chromium Conc., mg/kg

Depth

Chromium Conc., mg/kg

ი

3–6" 12–15" 21–24"

3–6" 12–15" 21–24"

<108.4 <93.4 <96.4 <103.2 <100.4

<94.6 <98.7 <101.4 <96.4 <88.9 <95.6

PARCEL 019 - INITIAL GRID SAMPLING XRF SOIL TESTING RESULTS FOR CHROMIUM

⊳	ω	0		ш	гт		
3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth	_
347.1 <14.5 <11.8	862.7 <12.1 <12.1	131.8 <12.5 <14.8	18.7 <14.7 28.7	<14.4 24.4 22.0	22.5 <14.7 <11.2	Lead Conc., mg/kg	
3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth	N
<17.7 <11.9 <14.4	514.1 908 93.3	72.7 37.9 <14.4	36.5 <11.8 22.3	35.4 <14.8 25.9	14.6 <11.7 <11.8	Lead Conc., mg/kg	
3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth	۲)
509.4 684.9 <11.7	38.8 <12.0 <11.8	<14.8 5,344 <12.0	24.4 <14.6 42.9	260.4 78.7 <13.7	28.8 20.6 <11.4	Lead Conc., mg/kg	
3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth	4
<11.4 <12.2 <11.3	321 82.0 39.1	113.0 <12.4 <11.4	2,140 58,200 211.7	33.1 107.7 39.2	199.4 14.7 14.1	Lead Conc., mg/kg	-
3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth	(л
379.4 28.7 <12.4	165.3 58.9 19.9	608.4 72.6 51.3	74.3 118.4 61.8	297.6 65.0 77.2	145.9 23.7 <15.5	Lead Conc., mg/kg	0,
3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth	
544.8 49.8 <12.8	510.1 25.7 <11.3	4,009 99.6 40.8	199.3 <11.7 67.5	44.9 34.8 <12.8	84.7 214.3 67.1	Lead Conc., mg/kg	
3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3-6" 12-15" 21-24"	3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	Depth	7
532.7	100.7	56.7				Lead Conc., mg/kg	

16.3 13.8 <12.7	17.5 16.7 <10.8	15.3 13.6 16.5	35.5 10.9 <9. 8	11.1 11.5 12.2	<10.1 <9.5 <10.2	Lead	Metals,	<u>د</u>	
<102.8 <81.2 <94.4	<90.3 <93.1 <96.6	<87.9 <103.5 <97.5	<99.3 <101.6 <100.6	<97.1 <97.0 <92.8	<94.7 <96.1 <96.2	Chromium	mg/kg		
3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth			
27.4 14.5 <1 0.3	38.2 <12.1 <9.1	19.4 18.0 <10.9	<10.4 11.3 <10.8	20.3 <9.9 16.3	11.7 <10.1 10.2	Lead	Metals		
<94.4 <96.0 <95.6	<88.8 <98.4 <90.1	<95.0 <103.2 <98.9	<105.4 <92.6 <111.5	<96.5 <91.9 <100.4	<98.4 <104.5 <104.0	Chromium	₃, mg∕kg	2	
3-6" 12-15" 21-24"	3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth			PAR(XRF S
48.0 14.4 <9.4	34.7 12.5 10.6	20.3 17.9 <9.7	47.1 13.8 <10.3	<10.7 14.0 <9.5	<12.8 <11.9 <9.6	Lead	Metals		SOIL TE
<91.5 <85.5 <84.4	<88.5 <96.7 <97.5	<99.4 <102.2 <98.8	<98.4 <102.3 <100.4	<104.6 <99.4 <92.1	<97.4 <96.0 <86.3	Chromium	s, mg∕kg	З	3 - INITIAL ESTING RE
3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth			GRID S/ ESULTS F
<9.5 <8.7 23.9	98.7 <9.3 12.8	19.4 <10.1 <12.1	29.8 15.9 23.5	27.2 14.2 16.7	<11.3 12.8 <10.1	Lead	Metals		=OR CH
<89.1 <92.3 <105.8	<87.6 <92.5 <90.9	<103.8 <96.4 <97.3	<117.5 <97.6 <90.8	110.2 <98.9 99.3	<103.4 <97.8 <94.3	Chromium	, mg/kg	4	G
3-6" 12-15" 21-24"	3-6" 12-15" 21-24"	3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	Depth			
45.8 16.2 10.3	14.8 14.7 12.6	<12.2 <12.7 <10.1	78.3 19.3 17.0	88.9 <10.1 <12.1	<12.1 40.4 <14.8	Lead	Metals		
<83.7 <99.1 <95.7	<91.3 <99.5 <98.2	<96.8 <96.4 <94.9	<105.0 <103.8 217.1	<97.9 <101.2 <96.3	<99.1 <101.2 <98.5	Chromium	, mg/kg	വ	
3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	3-6" 12-15" 21-24"	3–6" 12–15" 21–24"	3–6" 12–15" 21–24"	Depth			
<12.1 <10.3 <10.1	21.2 <9.2 <10.1	22.4 <9.8 <8.7	21.1 17.3 15.0	105.0 12.6 11.6	116.7 15.1 20.7	Lead	Metals		
<94.5 <98.2 <96.7	<86.9 <88.3 <84.5	<88.6 <98.7 <86.1	<88.6 <98.1 <106.8	<102.8 <100.3 <93.4	<97.7 <98.3 <100.6	Chromium	, mg/kg	6	
			-	-		-			-

PARCEL 018 - INITIAL GRID SAMPLING XRF SOIL TESTING RESULTS FOR LEAD

							XRF S		STING RE		OR CH	ROMIUM						
									ω			4			ഗ			6
	;	Metals	, mg/kg	;	Metals	, mg/kg	;	Metals	s, mg∕kg	;	Metals,	mg/kg	;	Metals,	mg/kg	;	Metals,	mg/kg
	Depth	Lead	Chromium	Depth	Lead	Chromium	Depth	Lead	Chromium	Depth	Lead	Chromium	Depth	Lead	Chromium	Depth	Lead	Chromium
П	3–6"	<10.1	<94.7	3–6"	11.7	<98.4	3–6"	<12.8	<97.4	3–6"	<11.3	<103.4	3–6"	<12.1	<99.1	3–6"	116.7	<97.7
	12–15"	<9.5	<96.1	12–15"	<10.1	<104.5	12–15"	<11.9	<96.0	12–15"	12.8	<97.8	12–15"	40.4	<101.2	12–15"	15.1	<98.3
	21–24"	<10.2	<96.2	21–24"	10.2	<104.0	21–24"	<9.6	<86.3	21–24"	<10.1	<94.3	21–24"	<14.8	<98.5	21–24"	20.7	<100.6
т	3–6"	11.1	<97.1	3–6"	20.3	<96.5	3–6"	<10.7	<104.6	3–6"	27.2	110.2	3–6"	88.9	<97.9	3–6"	105.0	<102.8
	12–15"	11.5	<97.0	12–15"	<9.9	<91.9	12–15"	14.0	<99.4	12–15"	14.2	<98.9	12–15"	<10.1	<101.2	12–15"	12.6	<100.3
	21–24"	12.2	<92.8	21–24"	16.3	<100.4	21–24"	<9.5	<92.1	21–24"	16.7	99.3	21–24"	<12.1	<96.3	21–24"	11.6	<93.4
D	3-6"	35.5	<99.3	3–6"	<10.4	<105.4	3–6"	47.1	<98.4	3–6"	29.8	<117.5	3–6"	78.3	<105.0	3–6"	21.1	<88.6
	12-15"	10.9	<101.6	12–15"	11.3	<92.6	12–15"	13.8	<102.3	12–15"	15.9	<97.6	12–15"	19.3	<103.8	12–15"	17.3	<98.1
	21-24"	<9. 8	<100.6	21–24"	<10.8	<111.5	21–24"	<10.3	<100.4	21–24"	23.5	<90.8	21–24"	17.0	217.1	21–24"	15.0	<106.8
ဂ	3-6"	15.3	<87.9	3–6"	19.4	<95.0	3–6"	20.3	<99.4	3–6"	19.4	<103.8	3–6"	<12.2	<96.8	3–6"	22.4	<88.6
	12-15"	13.6	<103.5	12–15"	18.0	<103.2	12–15"	17.9	<102.2	12–15"	<10.1	<96.4	12–15"	<12.7	<96.4	12–15"	<9.8	<98.7
	21-24"	16.5	<97.5	21–24"	<10.9	<98.9	21–24"	<9.7	<98.8	21–24"	<12.1	<97.3	21–24"	<10.1	<94.9	21–24"	<8.7	<86.1
ω	3–6"	17.5	<90.3	3–6"	38.2	<88.8	3–6"	34.7	<88.5	3–6"	98.7	<87.6	3–6"	14.8	<91.3	3–6"	21.2	<86.9
	12–15"	16.7	<93.1	12–15"	<12.1	<98.4	12–15"	12.5	<96.7	12–15"	<9.3	<92.5	12–15"	14.7	<99.5	12–15"	<9.2	<88.3
	21–24"	<10.8	<96.6	21–24"	<9.1	<90.1	21–24"	10.6	<97.5	21–24"	12.8	<90.9	21–24"	12.6	<98.2	21–24"	<10.1	<84.5
A	3–6"	16.3	<102.8	3–6"	27.4	<94.4	3–6"	48.0	<91.5	3–6"	<9.5	<89.1	3–6"	45.8	<83.7	3–6"	<12.1	<94.5
	12–15"	13.8	<81.2	12–15"	14.5	<96.0	12–15"	14.4	<85.5	12–15"	<8.7	<92.3	12–15"	16.2	<99.1	12–15"	<10.3	<98.2
	21–24"	<12.7	<94.4	21–24"	<1 0.3	<95.6	21–24"	<9.4	<84.4	21–24"	23.9	<105.8	21–24"	10.3	<95.7	21–24"	<10.1	<96.7

 INITIAL GRID SAMPLE LOCATI
19/kg MILLIGRAMS PER KILOGRAM
AREA OF EXCAVATION
LEGEND

P: \Atlanta	1 CAD/02 JOB2/2-0	-0303 PROPOSED LOWES HWT 83 (30303-311E.dwg - 1E31 RESULTS-SUL 07/19/2007		
REV				
DAT				
m				
۳ ۲ ۲				
י ס ס				<u> </u>
DESCRIPTION		LEAD LEAD 103 103 103 1	B-2 0-8ft. 0 0 0 VOCs, μg/kg BARIUM CHROMIUM CHROMIUM METALS, mg/kg BDL LEAD	BARIUM CHROMIUM LEAD BARIUM BARIUM BARIUM BARIUM BARIUM CHROMIUM BARIUM
קק די קר ס		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8ft. BDL 9 126 113 11.6	UUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A T E				8ft.
B ≺				BDL 55.3 11.9
S C				
B A P				
ס				
DESCRIPTION		FORMER LUCES PROPER SERVICE CENTER SERVICE CENTER B /TW-16 B /TW-16 B /TW-16 B /TW-16 B /TW-16 B /TW-16 B /TW-16 B /TW-16 B /TW-16 B /TW-17 B /TW-3 CORVS C & A UNUMITED SERVICE CENTER FORMER TUBS UNUMITED SERVICE CENTER FORMER TO B /TW-17 B / TW-3 B / TW-	FAST RADIATOR & STONE & FAST	

BORATORY TESTING PRESENTED IN IR KILOGRAM (mg/kg) SCALE IN FEET 30 60	SENIC RIUM DMIUM ROMIUM RCURY AD LENIUM LENIUM	TATIONS		ON OF LEAD IN SOIL ON OF CADMIUM IN SOIL ON OF CHROMIUM IN	ND SAMPLE LOCATION	ENGINEERING BORING		Z
MACTEC Mactec Enginee 396 PLASTERS AV	ering and Consulting, Inc.	HSI SIT GEORGIA RIVERDA	E No. 108 HIGHW/ LE, GEO	308 AY 85 RGIA		HUG SOIL DELIN	HES PARG ASSESS EATION F 2006	CEL 019 MENT / RESULTS
ATLANTA, GEORGIA	A 30324 (404)873-4761	Job Number 6305-05-0303	Task 01	Date JULY 2006	Scale 1"=100'	Drawn RBT	Approv.	Figure 6A

AILANIA, GEURGIA 30324 (404)8/3-4/61	Job Number 6305–05–0303	<i>Task Date</i> 01 JULY 2006	Scale 1"=100'	Drawn RBT	Approv.	Figure 6B
MACTEC Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E.	HSI S GEORG RIVERI	GITE No. 10808 GIA HIGHWAY 85 DALE, GEORGIA		HUG CONFI	HES PARO RMATION RESULT	CEL 019 SAMPLE S
ORATORY TESTING RESULTS SENTED IN MILLIGRAMS PER 1 (mg/kg) G REMEDIATION, THE AREA STH OF APPROXIMATELY TO ALLOW FOR CTION OF STORMWATER CTION OF STORMWATER SCALE IN FEET	TOUR ENGINEERING BORING ATION OMIUM CONCENTRATION, 'kg (LABORATORY TEST JLTS)	AVATION DEPTH ROXIMATELY 13 FT. WALL CONFIRMATION SAMPLE ATION ATION CONFIRMATION SAMPLE ATION	ROXIMATELY 2-3 FT. ROXIMATELY 3 FT. AVATION DEPTH ROXIMATELY 4-6 FT.	LEGEND AVATION DEPTH		

E: SOIL LABORATORY TESTING ULTS ARE PRESENTED IN JGRAMS PER KILOGRAM (mg/kg) SCALE IN FEET	Cr CHROMIUM Hg MERCURY Pb LEAD Se SELENIUM Ag SILVER	ABBREVIATIONS As ARSENIC Bd BARIUM Cd CADMIUM	10.4	10,	- DELINEATION OF LEAD IN SOIL - DELINEATION OF ARSENIC AND CADMIUM IN SOIL	CONFIRMATION SAMPLE LOCATION ADDITIONAL DELINEATION SAMPLE LOCATION	LEGEND INITIAL GRID SAMPLE LOCATION	Z
MACTEC Mactec Engineering and Cor 396 PLASTERS AVENUE, N.E.	nsulting, Inc.		HSI SITE N GEORGIA HI RIVERDALE,	o. 10808 GHWAY 85 GEORGIA		MILL SOIL DELIN	ER PARC ASSESS EATION F 2006	EL 018 MENT / RESULTS
ATLANTA, GEORGIA 30324 (404)	873–4761	Job Number 6305–05–03	303 Task 01	Date JULY 2006	Scale 1"=100'	Drawn RBT	Approv.	Figure 7A

S: LABORATORY TESTING RESULTS PRESENTED IN MILLIGRAMS PER GRAM (mg/kg) ORIGINAL DEPTH OF EXCAVATION APPROXIMATELY 2 FT. OWING REMOVAL AND OFF-SITE SAL OF SOILS ABOVE RISK UCTION STANDARDS, ADDITIONAL SWERE REMOVED FROM THE A DOWN TO THE GROUNDWATER E AND USED AS FILL MATERIAL THER PORTIONS OF THE SITE SCALE IN FEET 0 20 20 40	SIDEWALL CONFIRMATION SAMPLE LOCATION CONFIRMATION SAMPLE LOCATION LEAD CONCENTRATION, mg/kg (LABORATORY TEST RESULTS)	LEGEND AREAS OF EXCAVATION TO MEET RISK REDUCTION STANDARD AREA OF SUBSEQUENT EXCAVATION TO GROUNDWATER TABLE				
MACTEC Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E.	HSI SITE No. 10808 GEORGIA HIGHWAY 85 RIVERDALE, GEORGIA MILLER PARCEL 018 CONFIRMATION SAMPLE RESULTS					
ATLANTA, GEORGIA 30324 (404)873–4761	Job Number 6305–05–0303	Task Date 01 JULY 2006	Scale 1"=20'	Drawn RBT	Approv.	Figure 7B

d CADMIUM g MERCURY g SELENIUM g SILVER g	3BREVIATIONS s ARSENIC d BARIUM	LINEATION OF CADMIUM IN SOIL	ELINEATION OF MERCURY IN SOIL DIL	ELINEATION OF LEAD IN SOIL	LEGEND DNTOUR ENGINEERING SOIL	
MACTEC Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E.	HSI SITE No. 10808 GEORGIA HIGHWAY 85 RIVERDALE, GEORGIA 2006					
AILANIA, GEUKGIA 30324 (404)873-4761	Job Number 6305–05–0303	TaskDate01JULY2006	Scale 1"=100'	Drawn RBT	Approv.	Figure 8A

S SCALE IN FEET		AD CONCENTRATION, mg/kg ABORATORY TEST RESULTS)	DTTOM CONFIRMATION SAMPLE DCATION NUTOUR ENGINEERING BORING DCATION	DEWALL CONFIRMATION SAMPLE	LEGEND REA OF EXCAVATION		Z		
MACTEC Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E.	HSI S GEORO RIVERI	SITE No. ⁻ BIA HIGH DALE, GE	10808 WAY 85 EORGIA		WALI CONF	WALLACE PARCEL 013 CONFIRMATION SAMPLE RESULTS			
ATLANTA, GEORGIA 30324 (404)873–4761	Job Number 6305-05-0303	Task 01	Date JULY 2006	Scale 1"=100'	Drawn RBT	Approv.	Figure 8B		

0 SCALE IN FEET	IN IERPKE IEU GROUNDWATER FLOW DIRECTION 20-MIL VAPOR BARRIER BENEATH CONCRETE SLAB(6-MIL VAPOR BARRIER ELSEWHERE) LEAD IN GROUNDWATER PRECIPITATION BARRIER PRECIPITATION BARRIER (LIMESTONE-FILLED TRENCH)	GROUNDWATER ELEVATION GROUNDWATER CONTOUR	WELL LOCATION DW=DEEP WELL LOCATION (NOT INCLUDED IN POTENTIOMETRIC SURFACE CALCULATIONS)	LEGEND EW=ENVIRONMENTAL MONITORING			
MACTEC Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E.	HSI SITE No. 10808 GEORGIA HIGHWAY 85 RIVERDALE, GEORGIA (7/11/06)))
ATLANTA, GEORGIA 30324 (404)873–4761	Job Number 6305–05–0303	Task 01	Date JULY 2006	Scale 1"=100'	Drawn RBT	Approv.	Figure 9

P:\Atlanta CAD\05 JOBS\5-0303 PROPOSED LOWES HWY 85\50303-SITE_GW-DATA.dwg - GW 9-05 07/19/2007 11:29am rthorpe

0 100 200	APRE IED GROUNDWAIER FLOW STION IL VAPOR BARRIER BENEATH RETE SLAB (6-MIL VAPOR IER ELSEWHERE) IN GROUNDWATER IPITATION BARRIER IPITATION BARRIER IPITATION BARRIER STONE-FILLED TRENCH)	INDWATER CONTOUR	ORARY 2 INCH MONITORING	LEGEND				
MACTEC Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E.	HSI SITE No. 10808 GEORGIA HIGHWAY 85 RIVERDALE, GEORGIA (9/8/05)							
ATLANTA, GEORGIA 30324 (404)873–4761	Job Number 6305-05-0303	Task 01	Date JULY 2006	Scale 1"=100'	Drawn RBT	Approv.	<i>Figure</i> 10	

O 100	ENGINEERING, LLC.	WATER ELEVATION	END NG LOCATION				
MACTEC Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E. ATLANTA, GEORGIA 30324 (404)873–4761	HSI SI GEORGI RIVERD Job Number 6305-05-0303	TE No. 10 A HIGHW ALE, GEC	808 AY 85 DRGIA	Scale	POTENT	IOMETRIC MAP (1/24/05	SURFACE

0 SCALE IN FEET	LEAD IN GROUNDWATER PRECIPITATION BARRIER (LIMESTONE-FILLED TRENCH)	20-MIL VAPOR BARRIER BENEATH CONCRETE SLAB(6-MIL VAPOR BARRIER ELSEWHERE)	GROUNDWATER ELEVATION	DW-1 AND MW-11 DEEP WELL LOCATIONS (NOT INCLUDED IN POTENTIOMETRIC SURFACE CALCULATIONS)	EW=ENVIRONMENTAL MONITORING				
MACTEC Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E.		HSI SI GEORG RIVERD	TE No. ´ IA HIGH' ALE, GE	10808 WAY 85 ORGIA			POTENT	IOMETRIC MAP (4/30/07	C SURFACE
ATLANTA, GEORGIA 30324 (404)873–4761	Job Number 6305–05–	0303	<i>Task</i> 01	Date JUNE 2007	Scale	00,	Drawn RBT	Approv.	Figure 12

GEOPROBE BORING/WELL BY CONTOUR FORMER 2 INCH MONITORING WELL BY CONTOUR OR MACTEC EXISTING 2 INCH MONITORING WELL BY MACTEC DELINEATION OF PETROLEUM VOCs IN GROUNDWATER ABOVE RISK REDUCTION STANDARDS ESTIMATED EXTENT OF NAPHTHALENE IN GROUNDWATER ABOVE RISK REDUCTION STANDARDS SCALE IN FEET O	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-28 12/04 -29 12/04 Cs, µg/L BDL ARIUM BDL
MACTEC Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E. ATLANTA, GEORGIA 30324 (404)873–4761	HSI SITE No. 10808 GEORGIA HIGHWAY 85 RIVERDALE, GEORGIA Job Number 6305-05-0303 01 JUNE 2007 1"=100'	DELINEATION OF PETROLEUM IN GROUNDWATER Drawn Approv. Figure RBT 14B

				•	Ð	د	PAHs	VOCs	N	BDL	mg/L	J/br			(DUP)			
SCALE IN FEET	ESTIMATED EXTENT OF CADMIUM AND ZINC IN GROUNDWATER ABOVE RISK REDUCTION STANDARDS ESTIMATED EXTENT OF LEAD IN GROUNDWATER ABOVE RISK REDUCTION STANDARDS	DELINEATION OF CADMIUM, CHROMIUM, COPPER, LEAD, NICKEL AND ZINC IN GROUNDWATER TO BACKGROUND	EXISTING 2 INCH MONITORING WELL BY MACTEC	FORMER 2 INCH MONITORING WELL BY MACTEC	FORMER 2 INCH MONITORING WELL BY CONTOUR	ESTIMATED VALUE	POLYNUCLEAR AROMATIC HYDROCARBONS	VOLATILE ORGANIC COMPOUNDS	NOT TESTED	BELOW DETECTION LIMIT	MILLIGRAMS PER LITER	MICROGRAMS PER LITER						
MAC Macter 396 PL/ ATLANT	TEC c Engineering asters avenue a, georgia 303	and Cor , N.E. 24 (404)8	nsulting 873–47	g, Inc. ⁷⁶¹		Job	Numbe 6305-	r -05-	-030	H: GEC RIV	SI S DRG ERC	ITE N IA HI DALE, <i>Task</i> 0	No. 1 IGH\ , GE 1	10808 WAY 85 EORGIA <i>Date</i> JUNE 2007	<i>Scale</i> 1"=100'	DELIN CADM COPPEF IN C Drawn RBT	IEATION (11UM, CHF R, NICKEL GROUNDV Approv.	DF LEAD, ROMIUM, . AND ZINC VATER <i>Figure</i> 14C

P:\Atlanta CAD\05 JOBS\5-0303 PROPOSED LOWES HWY 85\50303-SITE_GW-DATA.dwg - X-SECT 07/19/2007

APPENDIX C SUMMARY OF LABORATORY DATA
Boring No.	B-29*	HSRA Notification Concentrations	Risk R Star	eduction dards
Depth	9-15 Ft.			
Collection Method	Geoprobe			
Sample Date	12/04		Type 1	Type 2
VOCs, ug/kg	BDL	NA	NA	NA
Metals, mg/kg				
Barium	15.5	500	1,000	910
Chromium	10.5	1,200	100	38
Lead	<4.09	400	75	270

TABLE 1 - PARCEL 001 - SOIL TESTING RESULTS

ug/kg - micrograms per kilogram (parts per billion)

mg/kg - milligrams per kilogram (parts per million)

BDL - Below detection limits

NA - Not applicable

*

- Data from boring used in calculation of background metals concentrations

TABLE 1A - PARCEL 001 – GROUNDWATER TESTING RESULTS

Well No.	TW-29
Well Type	Temp. 1" dia.
Well Depth, Ft.	18.22
Screened Interval, Ft.	13-18
Depth to water, 1/05, Ft.	6.13
Sample Date	12/04
VOCs, ug/l	BDL
Metals, mg/l	
Barium	0.0631

ug/l - micrograms per liter (parts per billion) - milligrams per liter (parts per million) mg/l

BDL - Below detection limits

Boring No.	B-28*	HSRA Notification Concentration	Risk Ro Stan	eduction dards
Depth	9-15 Ft.			
Collection Method	Geoprobe			
Sample Date	12/04	-	Type 1	Type 2
VOCs, ug/kg	BDL	NA	NA	NA
Metals, mg/kg				
Barium	116	500	1,000	910
Chromium	<2.18	1,200	100	38
Lead	6.48	400	75	270

TABLE 2 - PARCEL 002 – SOIL TESTING RESULTS

- micrograms per kilogram (parts per billion) ug/kg

mg/kg - milligrams per kilogram (parts per million)

- Below detection limits BDL

- Data from boring used in calculation of background metals concentrations *

TABLE 2A - PARCEL 002 – GROUNDWATER TESTING RESULTS

Well No.	TW-28
Well Type	Temp. 1" dia.
Well Depth, Ft.	17.21
Screened Interval, Ft.	15-17
Depth to water, 1/05, Ft.	13.22
Sample Date	12/04
VOCs, ug/l	BDL
Metals, mg/l	BDL

ug/l - micrograms per liter (parts per billion) mg/l - milligrams per liter (parts per million) BDL - Below detection limits

2007	age 3
23,	P_{c}
July	

Boring No.	B-1	B-2*	B-3*	B-4*	B-4*	B-5	B-6*	HSRA Notification Concentration	Risk Re Stanc	duction lards
Depth	0-8 Ft.	0-8 Ft.	0-8 Ft.	0-8 Ft.	9-15 Ft.	0-8 Ft.	0-8 Ft.			
Collection Method	Geoprobe									
Sample Date	12/04	12/04	12/04	12/04	12/04	12/04	12/04		Type 1	Type 2
PAHs, ug/kg	NT	NT	BDL	BDL	BDL	BDL	BDL			
VOCs, ug/kg	BDL	NA	NA	NA						
Metals, mg/kg										
Barium	126	81	84.8	31.3	65.2	53.6	31	500	1,000	910
Chromium	113	4.39	8.26	19.6	46.1	19.6	5.54	1,200	100	38
Lead	11.6	10.9	10.7	9.45	41.4	14.6	12	400	75	270

TABLE 3 - PARCEL 013 – SOIL TESTING RESULTS

ug/kg - micrograms per kilogram (parts per billion)
mg/kg - milligrams per kilogram (parts per million)
HSRA - Hazardous Site Response Act
HSRA - Below Detection Limits
NA - Not Applicable
* - Data from boring used in calculation of background metals concentrations

Boring No.	B-7*	B-8*	B-9	B-10*	B-10*	B-11*	HSRA Notification Concentration	Risk Re Stane	duction lards
Depth	0-8 Ft.	0-8 Ft.	0-8 Ft.	0-8 Ft.	9-15 Ft.	0-8 Ft.			
Collection Method	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe			
Sample Date	12/04	12/04	12/04	12/04	12/04	12/04		Type 1	Type 2
PAHs, ug/kg	BDL	BDL	NT	NT	LN	NT			
VOCs, ug/kg	BDL	BDL	BDL	BDL	BDL	BDL	NA	NA	NA
Metals, mg/kg									
Barium	37.1	72.2	56.1	125	55.8	55.3	500	1,000	910
Chromium	15.3	4.68	9.59	2.61	<2.14	14.6	1,200	100	38
Lead	11.4	16.3	428	8.59	<4.29	11.9	400	75	270

TABLE 3 - PARCEL 013 – SOIL TESTING RESULTS (CONTINUED)

ug/kg - micrograms per kilogram (parts per billion) mg/kg - milligrams per kilogram (parts per million) HSRA - Hazardous Site Response Act * - Data from boring used in calculation of background metals concentrations

TABLE 3 - PARCEL 013 – SOIL TESTING RESULTS (CONTINUED)

Sample No.	3-1C	3-	3C	3-4A	3-	4B	3-4E	3-4F	HSRA Notification Concentration	Risk Re Stanc	duction lards
Depth	21-24"	12-15"	21-24"	12-15"	3-6"	12-15"	3-6"	12-15"			
Collection Method	Geoprobe										
Sample Date	1/06	1/06	1/06	1/06	1/06	1/06	1/06	1/06		Type 1	Type 2
VOCs, ug/kg											
MTBE	<4.6	NT	9.2	NT	NT	NT	NT	NT	NA	NA	NA
Metals, mg/kg			•								
Arsenic	NT	NT	NT	NT	NT	5.92	<4.16	NT	41	20	5.8
Barium	NT	NT	NT	NT	NT	59.2	37.0	NT	500	1,000	910
Cadmium	NT	NT	NT	NT	NT	3.07	<2.08	NT	39	2.0	12.0
Chromium	NT	NT	NT	NT	NT	14.0	13.4	NT	1,200	100	38
Lead	NT	13.5	NT	9.19	66.3	12.4	7.9	11.1	400	75	270

ug/kg - micrograms per kilogram (parts per billion) mg/kg - milligrams per kilogram (parts per million) NT - Not tested

HSRA - Hazardous Site Response Act

TABLE 3 - PARCEL 013 – SOIL TESTING RESULTS (CONTINUED)

Sample No.	3-5B	3-	5D	3-5E	3-6E	3-	-6F	HSRA Notification Concentration	Risk Re Stand	duction lards
Depth	21-24"	3-6"	21-24"	3-6"	3-6"	3-6"	21-24"			
Collection Method	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe			
Sample Date	1/06	1/06	1/06	1/06	1/06	1/06	1/06		Type 1	Type 2
VOCs, ug/kg		A	• · · · · · · · · · · · · · · · · · · ·							
MTBE	6,200	NT	NT	NT	NT	NT	NT	NA	NA	NA
Metals, mg/kg										
Barium	NT	NT	185	NT	NT	83.0	78.9	500	1,000	910
Chromium	NT	NT	52.6	NT	NT	15.7	8.97	1,200	100	38
Lead	NT	22.6	10.9	123	72.7	227	12.1	400	75	270
Mercury	NT	NT	<0.0988	NT	NT	0.428	<0.0986	17	0.50	4.9
TCLP Metals, mg/l		L		· · · · · · · · · · · · · · · · · · ·						
Chromium	NT	NT	NT	NT	NT	< 0.05	NT	NA	NA	NA
Lead	NT	NT	NT	NT	NT	0.101	NT	NA	NA	NA

ug/kg - micrograms per kilogram (parts per billion) mg/kg - milligrams per kilogram (parts per million) NT - Not tested

HSRA - Hazardous Site Response Act

mg/l - milligrams per liter (parts per million)

minon) iiste

Well No.	TW	/-11	
Well Type	Temp.	2" dia.	
Well Depth, Ft.	40	.33	
Screened Interval, Ft.	35	-40	
Depth to water, 1/05, Ft.	37	.75	
Sample Date	1/05*	6/05	
VOCs, ug/l			
Acetone	24 NT		
Metals, mg/l			
Barium	0.136	0.0570 (T) 0.0566 (D)	
Mercury	BDL	0.00062(T) 0.00032(D)	
Lead	0.0543	<0.010 (T) <0.010 (D)	

TABLE 3A - PARCEL 013 - GROUNDWATER TESTING RESULTS

ug/l - micrograms per liter (parts per billion) mg/l - milligrams per liter (parts per million) NT - Not tested T - Total metals

D - Dissolved metals

* - Reported in Contour Draft CAP, laboratory report not available

TABLE 4 – GORE FARCEL EACHANGE AREA – SOIL TESTING RESULTS
--

Boring No.	B-43*	TW-44*	B-45*	HZ	4-1	B-56	HSRA Notification Concentration	Risk Re Stan	eduction dards
Depth	3-5 Ft.	3-5 Ft.	3-5 Ft.	6"	12"	12"			
Collection Method	Split Spoon	Split Spoon	Split Spoon	Hand Auger	Hand Auger	Hand Auger			
Sample Date	9/05	9/05	9/05	1/06	1/06	6/06		Type 1	Type 2
VOCs, ug/kg	BDL	BDL	BDL	BDL	NT	NT	NA	NA	NA
Metals, mg/kg	-								
Barium	98.2	16.6	8.45	145	130	NT	500	1,000	910
Chromium	3.42	13.0	21.5	20.5	15.7	NT	1,200	100	38
Lead	9.28	9.87	7.08	103	12.8	13.9	400	75	270

ug/kg - micrograms per kilogram (parts per billion)

mg/kg - milligrams per kilogram (parts per million) BDL - Below detection limit

HSRA - Hazardous Site Response Act

* - Data from boring used in calculation of background metals concentrations

TABLE 4A - GORE PARCEL EXCHANGE AREA - GROUNDWATER TESTING RESULTS

Well No.	TW-44
Well Type	Temp. 2" dia.
Well Depth, Ft.	34.5
Screened Interval, Ft.	24.5-34.5
Depth to water, 9/05, Ft.	31.0
Sample Date	9/05
VOCs, ug/l	BDL

ug/l - micrograms per liter (parts per billion) BDL - Below detection limit

Boring No.	B-27*	HSRA Notification Concentration	Risk Re Stand	duction lards
Depth	9-15 Ft.			
Collection Method	Geoprobe			
Sample Date	12/04		Type 1	Type 2
VOCs, ug/kg	BDL	NA	NA	NA
Metals, mg/kg				
Barium	138	500	1,000	910
Chromium	60.4	1,200	100	38
Lead	10.2	400	75	270

TABLE 5 - PARCEL 015 - SOIL TESTING RESULTS

ug/kg - micrograms per kilogram (parts per billion) mg/kg - milligrams per kilogram (parts per million) BDL - Below detection limit HSRA - Hazardous Site Response Act

* - Data from boring used in calculation of background metals concentrations

TABLE 5A - PARCEL 015 - GROUNDWATER TESTING RESULTS

Well No.	TW-27
Well Type	Temp. 1" dia.
Well Depth, Ft.	25.01
Screened Interval, Ft.	20-25
Depth to water, 1/05, Ft.	17.74
Sample Date	12/04
VOCs, ug/l	BDL
Metals, mg/l	
Barium	0.112

ug/l - micrograms per liter (parts per billion) mg/l - milligrams per liter (parts per million) BDL - Below detection limit

Boring No.	B-12*	B-13*	B-14*	B-14*	B-15*	HSRA Notification Concentration	Risk Re Stan	duction dards
Depth	0 -8 Ft.	0-8 Ft.	0-8 Ft.	9-15 Ft.	9-15 Ft.			
Collection Method	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe			
Sample Date	12/04	12/04	12/04	12/04	12/04		Type 1	Type 2
PAHs, ug/kg	NT	NT	NT	NT	NT	NA	NA	NA
VOCs, ug/kg	BDL	BDL	NT	NT	BDL	NA	NA	NA
Metals, mg/kg								
Barium	121	67.7	12.7	71.4	25.7	500	1,000	910
Chromium	4.16	2.43	18.4	<1.72	<2.14	1,200	100	38
Lead	7.90	<4.61	8.14	6.84	13.9	400	75	270

TABLE 6 - PARCEL 015A - SOIL TESTING RESULTS

ug/kg - micrograms per kilogram (parts per billion)

mg/kg - milligrams per kilogram (parts per million)

HSRA - Hazardous Site Response Act

BDL - Below Detection Limits

NA - Not Applicable * Data from boring used in calculation of background metals concentrations

TABLE 6A - PARCEL 015A - GROUNDWATER TESTING RESULTS

Well No.	B-1	TW-13		
Well Type	Geoprobe Boring	Temp. 1" dia.		
Well Depth, Ft.	30	39.99		
Screened Interval, Ft.	None	35-40		
Depth to water, 1/05, Ft.	Not measured	29.61		
Sample Date	5/04	12/04		
VOCs, ug/l				
Acetone	<10	27		
PAHs, ug/l	BDL	NT		

ug/l - micrograms per liter (parts per billion)

mg/l - milligrams per liter (parts per million)

NT - Not tested

BDL - Below Detection Limits

Well No.	TW-34	TW-35
Well Type	2" dia.	2" dia.
Well Depth, Ft.	18	18
Screened Interval, Ft.	8-18	8-18
Sample Date	9/05	9/05
VOCs, ug/l		
Acetone	BDL	BDL
Metals, mg/l		•••••••••••••••••••••••••••••••••••••••
Barium	<0.020 (T) <0.020 (D)	0.139 (T) 0.127 (D)

TABLE 7 - PARCEL 017 – GROUNDWATER TESTING RESULTS

ug/l - micrograms per liter (parts per billion) mg/l - milligrams per liter (parts per million) NT - Not tested

July 23, 2007 Page 11

Boring No.	MW-1/B-5	MW-2/B-4	B-16*	B-17*	B-17*	B-18*	B-18*	B-19*	B-19*	HSRA Notification Concentration	Risk Re Stan	duction lards
Depth	10-12 Ft.	10-12 Ft.	0-8 Ft.	0-8 Ft.	9-15 Ft.	0-8 Ft.	9-15 Ft.	0-8 Ft.	9-15 Ft.			
Collection Method	Split Spoon	Split Spoon	Geoprobe									
Sample Date	6/04	6/04	12/04	12/04	12/04	12/04	12/04	12/04	12/04		Type 1	Type 2
VOCs, ug/kg												
Cis-1,2-DCE	NT	NT	<4.4	<160	<3.3	<3.3	<3.6	4.5	<3.3	530	530	3,000
MTBE	NT	NT	<4.4	<160	<3.3	39	<3.6	<3.5	<3.3	NA	NA	NA
Tetrachloroethene	NT	NT	4.5	<160	<3.3	<3.3	<3.6	<3.5	<3.3	180	500	340
Metals, mg/kg												
Barium	ΓN	NT	42.1	<3.67	5.97	<4.59	4.45	<3.57	38.4	500	1,000	910
Chromium	8.9	2.6	9.59	5.94	<2.18	6.06	<2.22	13	12.2	1,200	100	38
Copper	22.0	9.8	NT	NT	NT	LN	NT	ΓN	NT	1,500	100	3,100
Lead	23.0	9.1	18.3	<3.67	<4.36	10.9	10.5	5.56	5.19	400	75	270
Nickel	1.4	<0.62	LN	NT	NT	NT	NT	NT	NT	420	50	400
Zinc	6.1	3.4	LN	NT	NT	LN	NT	ΝΤ	NT	2,800	100	5,800

TABLE 8 - PARCEL 018 - SOIL TESTING RESULTS

ug/kg - micrograms per kilogram (parts per billion) mg/kg - milligrams per kilogram (parts per million) NT - Not tested HSRA - Hazardous Site Response Act * - Data from boring used in calculation of background metals concentrations

A
H
Z
F
õ
ŭ
-
2
5
\square
S I
2
r B
Z
5
Ē
[-
Ξ
ō
Ś
13
0
E
ž
1
<u> </u>
8
5
1
B
Ľ
r ,

Boring No.	B-20*	B-20*	B-25*	B-25*	B-26*	B-26*	B-30*	HSRA Notification Concentration	Risk Re Stane	duction lards
Depth	0-8 Ft.	9-15 Ft.	0-8 Ft.	9-15 Ft.	0-8 Ft.	9-15 Ft.	9-15 Ft.			
Collection Method	Geoprobe									
Sample Date	12/04	12/04	12/04	12/04	12/04	12/04	12/04		Type 1	Type 2
VOCs, ug/kg		-								
Cis-1,2-DCE	<3.3	<3.5	<3.1	<3.2	<3.7	<7.8	<3.5	530	530	3,000
MTBE	<3.3	<3.5	<3.1	<3.2	<3.7	<7.8	<3.5	NA	NA	NA
Tetrachloroethene	<3.3	<3.5	<3.1	<3.2	<3.7	<7.8	<3.5	180	500	340
Metals, mg/kg										
Barium	<3.85	5.9	11.1	36.1	42.5	32.9	21.8	500	1,000	910
Chromium	3.77	4.72	26.4	3.05	6.17	7.83	30	1,200	100	38
Copper	NT	1,500	100	3,100						
Lead	9.01	<4.08	15.5	8.08	10.1	18.1	6.19	400	75	270
Nickel	LN	IN	LN	NT	NT	NT	NT	420	50	400
Zinc	IN	NT	NT	NT	NT	NT	LN	2,800	100	5,800

ug/kg - micrograms per kilogram (parts per billion) mg/kg - milligrams per kilogram (parts per million) NT - Not tested HSRA - Hazardous Site Response Act * - Data from boring used in calculation of background metals concentrations

duction lards			Type 2		5.8	910	910	38	270		NA	
Risk Re Stand			Type 1		20	1,000	1,000	100	75		NA	-
HSRA Notification Concentration					41	39	500	1,200	400		NA	
2-4B	3-6"	Geoprobe	1/06		NT	NT	NT	LΝ	51.3		NT	
2-AA4	3-6"	Geoprobe	1/06		ΝΤ	IN	NT	NT	23.9		NT	
2-AA3	3-6"	Geoprobe	1/06		LN	ΤN	ΓN	ΓN	85.3		ΤN	se Act
ш	12-15"	Geoprobe	1/06		<4.65	<2.30	ΤN	ΤN	NT		<u> </u>	Site Respons
2-3	3-6"	Geoprobe	1/06		NT	NT	TN	LN	147		LN	Not tested Hazardous S
	10,	Geoprobe	1/06		ΓN	NT	NT	ΓN	<3.52		ΓN	NT - HSRA -
2-3C	5;	Geoprobe	1/06		IN	ΤN	ΓN	ΤN	7.17		LΝ	
	12-15"	Geoprobe	1/06		<4.67	<2.33	40.8	14.0	3,840		180	
2-3A	3-6"	Geoprobe	1/06		NT	NT	NT	IN	6,890		NT	ber billion) er million)
2-2B	21-24"	Geoprobe	1/06		<4.76	<2.38	40.2	7.23	14.3		NT	ram (parts p am (parts p
2-1C	3-6"	Geoprobe	1/06		ΤN	NT	LN	NT	3,040		LΝ	ns per kilog s per kilogr
2-1B	3-6"	Geoprobe	1/06		NT	NT	NT	NT	65.5	-	NT	- micrograr - milligram
2-1A	3-6"	Geoprobe	1/06		NT	NT	NT	NT	16.5		NT	ug/kg mg/kg
Sample No.	Depth	Collection Method	Sample Date	Metals, mg/kg	Arsenic	Cadmium	Barium	Chromium	Lead	TCLP Metals, mg/l	Lead	

TABLE 8 - PARCEL 018 - SOIL TESTING RESULTS (CONTINUED)

mg/kg - milligrams per kilogram (parts per million) mg/l - milligrams per liter (parts per million)

July 23, 2007 Page 13

HSI Site No. 10808 MACTEC Project No. 6305-05-0303

July 23, 2007 Page 14

MACTEC Project No. 6305-05-0303 HSI Site No. 10808

eduction dards			Type 2		5.8	910	12	38	270	4.9		NA
Risk Re Stan			Type 1		20	1,000	2	100	75	0.50		NA
HSRA Notification Concentration					41	500	39	1,200	400	17		NA
2-5F	3-6"	Geoprobe	1/06		TN	NT	NT	NT	160	NT		NT
2-5E	3-6"	Geoprobe	1/06		NT	NT	NT	NT	189	NT		NT
2-5C	3-6"	Geoprobe	1/06		NT	IN	ΤN	LN	619	NT		LN
2-5B	3-6"	Geoprobe	1/06		NT	NT	ΤN	ΤN	16.2	NT		NT
2-5A	3-6"	Geoprobe	1/06		NT	NT	NT	NT	218	NT		NT
2-4F	3-6"	Geoprobe	1/06		NT	NT	NT	ΤN	207	NT		NT
	10'	Geoprobe	1/06		ΝΤ	NT	NT	NT	6.91	ΤN		NT
Ð	5,	Geoprobe	1/06		4.16	ΤN	TN	NT	5.70	NT		ΝΤ
2-4	21-24"	Geoprobe	1/06		5.71	10.7	<2.38	13.1	149	<0.0982		1.24
	12-15"	Geoprobe	1/06		23.8	70.8	3.12	18.0	61,300	0.109		289
2-4C	3-6"	Geoprobe	1/06		NT	ΤN	NT	NT	103	NT		ΝΤ
Sample No.	Depth	Collection Method	Sample Date	Metals, mg/kg	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	TCLP Metals, mg/l	Lead

TABLE 8 - PARCEL 018 - SOIL TESTING RESULTS (CONTINUED)

ug/kg - micrograms per kilogram (parts per billion) mg/kg - milligrams per kilogram (parts per million) NT - Not tested HSRA - Hazardous Site Response Act

July 23, 2007 Page 15

TABLE 8 - PARCEL 018 - SOIL TESTING RESULTS (CONTINUED)

duction lards			Type 2		5.8	910	12	38	270		NA	
Risk Re Stan			Type 1		20	1,000	2	100	52		NA	
HSRA Notification Concentration					41	500	39	1,200	400		NA	
2-AA3	3-6"	Geoprobe	1/06		NT	NT	NT	NT	85.3		NT	
2-7C	3-6"	Geoprobe	1/06		NT	NT	NT	NT	26.6		ΤN	
2-7B	3-6"	Geoprobe	1/06		NT	IN	ΝΤ	ΝΤ	32.0		ΝΤ	
2-7A/2-A7	3-6"	Geoprobe	1/06		NT	NT	NT	NT	378		5.89	
2-6E	21-24	Geoprobe	1/06		<3.69	NT	<1.85	LΝ	NT		NT	- Not tested
2-6D	3-6"	Geoprobe	1/06		NT	NT	NT	NT	202		NT	NT
	10,	Geoprobe	1/06		NT	NT	NT	NT	10.4		NT	
2-6C	5'	Geoprobe	1/06		NT	NT	NT	ΤN	9.68		NT	(ui
	3-6"	Geoprobe	1/06		<4.67	16.2	<2.33	27.0	1,230		87.4	rts ner hillig
2-6B	3-6"	Geoprobe	1/06		NT	ΛΤ	NT	ΝT	242		ΝΤ	cilooram (na
2-6A	3-6"	Geoprobe	1/06		NT	ΤN	NT	NT	385		4.62	orame ner k
Sample No.	Depth	Collection Method	Sample Date	Metals, mg/kg	Arsenic	Barium	Cadmium	Chromium	Lead	TCLP Metals, mg/l	Lead	na/ka - micro

ug/kg - micrograms per kilogram (parts per billion) mg/kg - milligrams per kilogram (parts per million) mg/l - milligrams per liter (parts per million)

HSRA - Hazardous Site Response Act

TABLE 8 - PARCEL 018 - SOIL TESTING RESULTS (CONTINUED)

	11.5'	Hand Auger	3/06	3.78
	9.5'	Hand Auger	3/06	4.04
A2-4D	7.5'	Hand Auger	3/06	4.06
	5.5	Hand Auger	3/06	3.94
	3.5'	Hand Auger	3/06	3.77
A2-13	1.5'	Hand Auger	3/06	3.49
A2-12	1.5'	Hand Auger	3/06	4.51
A2-11	1.5'	Hand Auger	3/06	4.33
Sample No.	Depth	Collection Method	Sample Date	hЧ

TABLE 8 - PARCEL 018 - SOIL TESTING RESULTS (CONTINUED)

Sample No.	B-46	B-48	B-49	B-50	Duplicate (B-50)	B-52	B-53	B-54	B-55	B-57	B-58	B-59	HSRA Notification Concentration	Risk Re Stand	luction ards
Depth	1,	1,	1,	1,	1,	1.	1,	3,	1,	1,	1,	2,			
Collection Method	Split Spoon	Split Spoon	Split Spoon	Split Spoon	Split Spoon	Split Spoon	Split Spoon	Split Spoon	Split Spoon	Split Spoon	Split Spoon	Hand Auger			
Sample Date	90/9	90/9	6/06	6/06	90/9	90/9	90/9	90/9	6/06	6/06	90/9	3/07		Type 1	Type 2
Metals, mg/kg															
Lead	14.6	22.2	8.93	5.47	6.23	17.3	13.5	NT	NT	20.6	15.2	NT	400	75	270
VOCs, ug/kg															
Acetone	ΤN	NT	ΤN	NT	NT	NT	TN	170	140	NT	NT	NT	2740	400	60
Tetrachloroethene	ΤN	NT	ΤN	NT	NT	NT	NT	<0.003	<0.0044	NT	NT	<0.005	180	0.50	0.34
ug/kg - mi mg/kg - mi	crograms p	er kilogram x kilogram ((parts per b parts per mi	illion) illion)			NT - Noi ISRA - Haz	tested tardous Site	: Response	Act					

July 23, 2007 Page 16

July 23, 2007 Page 17

TABLE 8A - PARCEL 018 – GROUNDWATER TESTING RESULTS

Well No.	B-5			1	I-WM			B-4			Ŵ	W-2		
Well Type	Temp. 1"			Perma	ment 2" dia.			Temp. 1"			Permane	ent 2" dia.		
Well Depth, Ft.	20				24.98			20			25	5.14		
Screened Interval	Unknown			1	4.9-24.9			Unknown			15	-25		
Depth to water, 1/05, Ft.	Not measured				13.01			Not measured			13	1.21		
Sample Date	5/04	6/04	7/04	7/04 (dup)	12/04	2/05	6/05	5/04	6/04	7/04	7/04 (dup)	12/04	2/05	6/05
VOCs, ug/l	BDL	NT	NT	NT	BDL	NT	NT	BDL	NT	NT	NT	BDL	ΝΤ	NT
PAHs, ug/l	BDL	NT	NT	NT	NT	NT	NT	BDL	NT	NT	NT	NT	NT	NT
Metals, mg/l				×										
Arsenic	NT	<0.005	<0.005	<0.005	<0.050	NT	<0.050	NT	<0.005	0.0064	<0.005	<0.050	NT	<0.050 (T) <0.050 (D)
Barium	NT	NT	NT	NT	0.0353	NT	0.0401 (T) 0.0416 (D)	NT	NT	NT	NT	0.219	NT	0.238 (T) 0.229 (D)
Cadmium	NT	<0.001	0.010	0.010	0.0255	NT	0.0105 (T) 0.0112 (D)	NT	0.0038	0.0052	0.0055	0.0073	ΝΤ	0.00793 (T) 0.00708 (D)
Copper	NT	0.002	0.59	0.62	NT	NT	NT	NT	0.019	0.020	0.022	NT	NT	NT
Lead	1.0	<0.005	0.071	0.077	0.0685	0.0743 (T) 0.0706 (D)	0.0389 (T) 0.0431 (D)	4.1	0.77	0.60	0.62	0.363	0.136 (T) 0.135 (D)	0.103 (T) 0.105 (D)
Nickel	NT	<0.005	0.014	0.015	NT	NT	NT	NT	0.015	0.0072	0.0079	NT	NT	NT
Selenium	NT	<0.005	0.0051	<0.005	<0.020	NT	<0.02 (T) <0.02 (D)	ΓN	<0.005	<0.005	<0.005	<0.020	NT	<0.020 (T) <0.020 (D)
Zinc	NT	0.014	0.80	0.85	NT	NT	NT	NT	0.33	0.43	0.46	ΤN	NT	NT
	u <u>g/l - micr</u> m <u>g</u> /l - milli	rograms pe igrams per	er liter (parts) liter (parts)	s per billion) per million)		(T)- Total (D)- Disso	metals Ived metals							

(D)- Dissolved metals BDL – Below Detection Limit

NT - Not tested

Well No.	B-3			MW-3			TW-17	TW-20	TW-25	TW-26	TW-30
Well Type	Temp. 1"			Permanent 2"			Temp. 1"	Temp. 1"	Temp. 1"	Temp. 1"	Temp. 1"
Well Depth, Ft.	24			25.14			23.28	27.00	14.20	12.21	15.10
Screened Interval	Unknown			15-25			18-23	22-27	9-14	7-12	10-15
Depth to water, 1/05, Ft.	Not measured			17.49			13.61	13.44	13.20	10.30	3.00
Sample Date	5/04	6/04	7/04	7/04 (dup)	12/04	6/05	12/04	12/04	12/04	12/04	12/04
VOCs, ug/l											
Benzene	<1.0	NT	NT	NT	<5.0	NT	<5.0	, <5.0 ×	<5.0	110	<5.0
Chloroform	<1.0	NT	NT	NT	<5.0	NT	<5.0	6.3	<5.0	<5.0	<5.0
Ethylbenzene	<1.0	NT	NT	NT	<5.0	NT	<5.0	<5.0	<5.0	9.7	<5.0
MTBE	<1.0	NT	NT	NT	<5.0	NT	<5.0	<5.0	<5.0	150	<5.0
Xylenes	<1.0	NT	NT	NT	<10	NT	<10	<10	<10	72	<10
PAHs, ug/l	BDL	NT	NT	NT	ΤN	NT	NT	NT	NT	NT	NT
Metals, mg/l											
Barium	LΝ	NT	NT	IN	0.065	0.0352 (T) 0.0347 (D)	0.0764	0.0237	0.557	0.0543	<0.020
Cadmium	ΓN	0.0096	<0.001	<0.001	<0.005	<0.005 (T) <0.005 (D)	<0.005	<0.005	<0.005	<0.005	<0.005
Chromium	NT	<0.002	<0.002	<0.002	<0.010	<0.010 (T) <0.010 (D)	<0.010	<0.010	0.0465	0.010	<0.010
Copper	NT	0.67	0.0047	0.0049	ΝΤ	NT	NT	NT	NT	ΓN	NT
Lead	NT	0.25	0.0066	0.0063	<0.010	<0.010 (T) <0.010 (D)	<0.010	<0.010	0.260	<0.010	<0.010
Mercury	NT	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002 (T) <0.0002 (D)	<0.0002	<0.0002	0.00021	<0.0002	<0.0002
Nickel	NT	0.017	<0.005	<0.005	NT	NT	NT	NT	NT	NT	NT
Selenium	NT	<0.005	0.0055	<0.005	<0.020	<0.020 (T) <0.020 (D)	<0.020	<0.020	<0.020	<0.020	<0.020
Zinc	NT	0.97	<0.010	<0.010	NT	ΤN	ΤN	NT	NT	NT	NT
- l/gu - I/gm	nicrograms per li nilligrams per lite	ter (parts per er (parts per n	billion) nillion)	E O) - Total met:) - Dissolvec	als metals		NT - Not te: BDL - Below	sted Detection Limit		

TABLE 8A - PARCEL 018 - GROUNDWATER TESTING RESULTS (CONTINUED)

HSI Site No. 10808 MACTEC Project No. 6305-05-0303

July 23, 2007 Page 19

TABLE 8A - PARCEL 018 – GROUNDWATER TESTING RESULTS (CONTINUED)

Well No.	TW-31	TW-32	TW-33	TW-36	TW-37	TW-38	TW-39	TW-40	TW-41	TW-42
Well Type	Temp. 2"	Temp. 2"	Temp. 2"	Temp. 2"	Temp. 2"	Temp. 2"	Temp. 2"	Temp. 2"	Temp. 2"	Temp. 2"
Well Depth, Ft.	17.5	15	15	20	25	20	20	20	13.5	17
Screened Interval	7.5-17.5	5-15	5-15	10-20	15-25	10-20	10-20	8-18	3.5-13.5	7-17
Sample Date	9/05	9/05	9/05	9/05	9/05	9/05	9/05	9/05	9/05	9/05
VOCs, ug/l										
Benzene	\$	55	< <u>\$</u>	\$°.	\$	\$	\$	096	\$	190
Cyclohexane	\$	< <u>\$</u>	Ś	\$	Ś	\$	Ş	36	\$	14
Ethylbenzene	\$	\$	\$	\$	\$	Ś	\$	190	\$	10
Isopropyl Benzene	\$	\$	Ş	\$	Ş	Ş	Ş	13	\$	\$
Methylcyclohexane	< <u>\$</u>	-S	<5	\$	Ş	Ş	<2	23	\$	6.0
MTBE	<2	57	<5	\$	40	95	Ş	390	Ş	86
Tetrachloroethene	< <u>\$</u>	25	Ş	\$	Ş	Ş	Ş	<2	37	\$
Toluene	\$	\$	\$	\$	\$	Ś	\$	720	Ş	14
Xylenes	<10	22	<10	<10	<10	<10	<10	830	<10	60
Metals, mg/l										
Barium	NT	LN	LΝ	0.0544 (T) 0.0496 (D)	ΗN	IN	ΤN	NT	ΝΤ	ΤN
ug/1 - microgi mg/1 - milligra NT - Not test	rams per liter (p ums per liter (pa ed	arts per billion) uts per million)		T - Total met D - Dissolvec	als I metals					

23, 2007	Page 20
July	

TABLE 8A - PARCEL 018 – GROUNDWATER TESTING RESULTS

Sample No.	A2-4D	A2-4D	A2-4D-LS ⁺
Well Type	Hand Auger Boring	Hand Auger Boring	Hand Auger Boring
Well Depth, Ft.	12	12	12
Screened Interval, Ft.	None	None	None
Sample Date	3/3/06	3/9/06	3/9/06
Hd	3.96	NT	NT
Metals, mg/l			
Lead	1.19 (T) 1.07 (D)	1.75 (D)	0.0191 (D)
mg/l - milligrams per liter (parts	per million)		

NT - Not tested + - Sample tested after overnight exposure to limestone aggregate

MACTEC Project No. 6305-05-0303 HSI Site No. 10808

July 23, 2007 Page 21

1	nt 2"		55	4/07		TN	TN	NT	NT	NT	NT	NT		<0.020 (T)	<0.010 (T)	<0.010 (T)	<0.010 (T)	<0.020 (T)	<0.020 (T)	0.0229 (T)	
DW.	Permane	65	63 - (90/9		\$	\$	Ş	ŝ	S	\$	<10		<0.020 (T) <0.020 (D)	<0.010 (T) <0.010 (D)	NT	<0.010 (T) <0.010 (D)	NT	<0.020 (T) <0.020 (D)	NT	
	ıt. 2"		6	4/07		NT	NT	NT	NT	NT	NT	NT		0.0519 (T)	<0.010 (T)	<0.010 (T)	<0.010 (T)	<0.020 (T)	<0.020 (T)	<0.020 (T)	
EW-	Permaner	29	19 - 2	90/9		Ś	\$	\$	\$	Ś	Ś	<10		<0.020 (T) <0.020 (D)	0.0122 (T) 0.0123 (D)	NT	<0.010 (T) <0.010 (D)	NT	0.0229 (T) <0.0200 (D)	NT	
	nt 2."		4	4/07		NT	NT	NT	NT	NT	NT	NT		<0.020 (T)	<0.010 (T)	0.0021 J (T)	<0.010 (T)	<0.020 (T)	<0.020 (T)	0.0056 J (T)	alue
EW-5	Permaner	24	14 - 2	90/9		ŝ	ŝ	Ŷ	5.0	160	Ş	<10		0.0306 (T) 0.0280 (D)	<0.010 (T) <0.010 (D)	NT	<0.010 (T) <0.010 (D)	NT	<0.020 (T)<0.020 (D)	NT	Estimated vi
	nt 2"		8	4/07		NT	NT	NT	NT	NT	NT	NT		0.0371 (T)	<0.010 (T)	0.0030 J (T)	<0.010 (T)	<0.020 (T)	<0.020 (T)	0.0052 J (T)	<u>-</u>
EW-	Permane	28	18-2	90/9		S	S	S	S	S	S	<10		<0.020 (T) <0.020 (D)	<0.010 (T) <0.010(D)	ΤN	<0.010 (T) <0.010 (D)	NT	<0.020 (T)<0.020 (D)	NT	tals d metals pled
3	ıt. 2"		_	4/07		NT	NT	NT	ΓN	NT	NT	NT		0.0364 (T)	<0.010 (T)	0.0028 J (T)	<0.010	<0.020 (T)	<0.020 (T)	0.0034 J (T)	- Total me - Dissolve - Not sam
EW-	Permaner	21	10 - 2	90/9		\$	Ś	\$	\$	Ś	\$	<10		0.0368 (T) 0.0255 (D)	<0.010 (T) <0.010(D)	NT	<0.010 (T) <0.010 (D)	NT	<0.020 (T)<0.020 (D)	NT	T Q N
2	nt 2"		1	4/07		NT	NT	NT	NT	NT	NT	NT		0.0299 (T)	<0.010 (T)	0.0041 J (T)	<0.010 (T)	<0.020 (T)	<0.020 (T)	0.0272 (T)	(u) (u)
EW-	Permane	21	10 - 2	90/9		s	Ş	\$	\$	Ś	\$	<10		0.0569 (T) 0.0489 (D)	<0.010 (T) <0.010 (D)	NT	<0.010 (T) <0.010 (D)	NT	<0.020 (T)<0.020 (D)	NT	arts per billic rts per millio
	ıt 2"			4/07		NT	NT	NT	NT	NT	NT	ΝΤ		NS (DRY)	NS (DRY)	NS (DRY)	NS (DRY)	NS (DRY)	NS (DRY)	NS (DRY)	oer liter (pa er liter (pa
EW-1	Permanen	20	10 - 20	90/9		s S	5.3	Ś	s	S	\$	<10		0.0218 (T) <0.020 (D)	<0.010 (T) <0.010 (D)	NT	<0.010 (T) <0.010 (D)	NT	<0.020 (T) <0.020 (D)	NT	micrograms p milligrams pe Not tested
Well No.	Well Type	Well Depth, Ft.	Screened Interval	Sample Date	VOCs, ug/l	Benzene	Chloroform	MTBE	Cis-1,2-Dichloroethene	Tetrachloroethene	Toluene	Xylenes	Metals, mg/l	Barium	Chromium	Copper	Lead	Nickel	Selenium	Zinc	- l/gu I/gm [- TN

TABLE 8A - PARCEL 018 - GROUNDWATER TESTING RESULTS (CONTINUED)

July 23, 2007 Page 22

Well No.	EV	V-7	EW	/-8	EW.	-8A	EW	6-7	EW	-10		EW-11	
Well Type	Регта	nent 2"	Perman	tent 2"	Permar	tent 2"	Perman	ent. 2"	Permar	ient 2"		Permanent 2"	
Well Depth, Ft.	2	1	22	.5	5	0	23	.5	20	5		53	
Screened Interval	17	- 27	20	22.5	10 -	- 20	21.5 -	- 23.5	10.5	- 20.5		51-53	
Sample Date	90/9	4/07	11/06	4/07	11/06	4/07	11/06	4/07	11/06	4/07	11/06	4/07	4/07 (DUP)
VOCs, ug/l													
Benzene	5.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chloroform	S	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
MTBE	6.0	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Cis-1,2-Dichloroethene	S	NT	ΤN	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Tetrachloroethene	<5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Toluene	<5	NT	NT	NT	NT	NT	NT	NT	ΝΤ	NT	NT	NT	NT
Xylenes	<10	NT	NT	NT	NT	NT	NT	ΤN	NT	NT	NT	NT	NT
Metals, mg/l													
Barium	<0.020 (T) <0.020 (D)	0.0268 (T)	0.0921 (T) 0.0707 (D)	<0.020 (T)	0.0234 (T) 0.0210 (D)	<0.020 (T)	0.299 (T) 0.235 (D)	0.178 (T)	0.300 (T) 0.213 (D)	0.271 (T)	0.0306 (T) 0.0280 (D)	0.0396 (T)	0.0386 (T)
Cadmium	<0.005 (T) <0.005 (D)	<0.005 (T)	<0.005 (T) <0.005 (D)	<0.005 (T)	<0.005 (T) <0.005 (D)	<0.005 (T)	0.0944 (T) 0.0834 (D)	0.0993 (T)	0.0154 (T) 0.0122 (D)	0.0054 (T)	<0.005 (T) <0.005 (D)	<0.005 (T)	<0.005 (T)
Chromium	<0.010 (T) <0.010 (D)	<0.010 (T)	<0.010 (T) <0.010 (D)	<0.010 (T)	<0.010 (T) <0.010 (D)	<0.010 (T)	0.0208 (T) 0.0109 (D)	0.0145 (T)	<0.010 (T) <0.010(D)	<0.010 (T)	<0.010 (T) <0.010 (D)	<0.010 (T)	<0.010 (T)
Copper	ΝΤ	0.0018 J (T)	NT	<0.010 (T)	LN	0.0027 J (T)	NT	1.41 (T)	NT	0.404 (T)	NT	0.0064 J (T)	0.0067 J (T)
Lead	<0.010 (T) <0.010 (D)	<0.020 (T)	<0.010 (T) <0.010 (D)	<0.010 (T)	<0.010 (T) <0.010 (D)	<0.010 (T)	0.494 (T) 0.426 (D)	0.481 (T)	0.204 (T) 0.150 (D)	0.289 (T)	<0.010 (T) <0.010 (D)	<0.010 (T)	<0.010 (T)
Mercury	<0.0002 (T) <0.0002 (D)	<0.0002 (T)	0.00047 (T) 0.00040 (D)	0.00026 (T)	0.00028 (T) <0.0002 (D)	0.00045 (T)	<0.0002 (T) <0.0002 (D)	<0.0002 (T)	<0.0002 (T) <0.0002 (D)	<0.0002 (T)	<0.0002 (T) <0.0002 (D)	<0.0002 (T)	<0.0002 (T)
Nickel	NT	<0.020 (T)	LN	<0.020 (T)	NT	<0.020 (T)	NT	0.135 (T)	NT	<0.020 (T)	NT	<0.020 (T)	<0.020 (T)
Selenium	<0.020 (T)<0.020 (D)	<0.010 (T)	<0.020 (T) <0.020 (D)	<0.020 (T)	<0.020 (T) <0.020 (D)	<0.020 (T)	<0.020 (T) <0.020 (D)	<0.020 (T)	<0.020 (T) <0.020 (D)	<0.020 (T)	<0.020 (T) <0.020 (D)	<0.020 (T)	<0.020 (T)
Zinc	NT	0.0088 J (T)	NT	0.0060 J (T)	ΓN	0.0051 J (T)	NT	5.4 (T)	NT	3.19 (T)	L	0.0108 J (T)	0.0149 J (T)
/gn LN	 I - micrograr I - milligram - Not tested 	ns per liter (p s per liter (pa l	arts per billic rts per millio.	(uc)	Т - Т D - D J - Е	otal metals issolved meta	als centration						

TABLE 8A - PARCEL 018 - GROUNDWATER TESTING RESULTS (CONTINUED)

July 23, 2007 Page 23

Boring No.	B-21*	B-22*	B-22*	B-23*	B-23	B-24*	HSRA Notification Concentration	Risk Re Stanc	duction lards
Depth, Ft.	9-15	0-8	9-15	0-8	9-15	0-8			
Collection Method	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe			
Sample Date	12/4	12/4	12/4	12/4	12/4	12/04			
PAHs	BDL	BDL	BDL	LN	NT	NT		Type 1	Type 2
VOCs, ug/kg									
MTBE	<3.6	<3.2	<3.3	<3.2	8.5	<4.7	NA	NA	NA
Toluene	21	<3.2	<3.3	<3.2	-3.1	<4.7	14,400	100,000	77,000
Tetrachloroethene	<3.6	<3.2	73	<3.2	<3.1	<4.7	180	500	340
Metals, mg/kg									
Barium	108	25.7	109	8.96	25.2	21.4	500	1,000	910
Chromium	14.4	90.6	4.77	4.19	108	16.3	1,200	100	38
Lead	8.48	43.1	34.8	22.8	9.29	8.66	400	75	270
ug/kg - micrograms [oer kilogram (part	s per billion)	· ·						

TABLE 9 - PARCEL 019 - SOIL TESTING RESULTS

mg/kg - milligrams per kilogram (parts per million)
NT - Not tested
* - Data from boring used in calculation of background metals concentrations

July 23, 2007 Page 24

Reduction Indards	:		Type 2		910	12	38	270		NA
Risk F Sta			Type 1		1,000	2	100	75		NA
HSRA Notification Concentration					500	39	1,200	400		NA
1-4C	21-24"	Geoprobe	1/06		247	<2.46	762	68.2		<0.05
1-1C	12-15"	Geoprobe	1/06		NT	<1.96	NT	13.2		NT
	10,	Geoprobe	1/06		NT	ΤN	3.63	NT		NT
1-3B/1-B3	5,	Geoprobe	1/06		NT	NT	14.1	ΤN		NT
	3-6"	Geoprobe	1/06		232	<2.45	944	63.1		<0.05
1-2B	21-24"	Geoprobe	1/06		NT	NT	NT	8.09		NT
В	21-24"	Geoprobe	1/06		NT	<1.70	ΤN	10.6		NT
Ξ	3-6"	Geoprobe	1/06		234	5.54	23.1	79.1		NT
1-0.5B	21-24"	Geoprobe	1/06		ΤN	<1.64	ΤN	11.3		NT
I-IA	12-15"	Geoprobe	1/06		NT	<2.43	NT	35.4		NT
Sample No.	Depth	Collection Method	Sample Date	Metals, mg/kg	Barium	Cadmium	Chromium	Lead	TCLP Metals, mg/l	Chromium

TABLE 9 - PARCEL 019 – SOIL TESTING RESULTS (CONTINUED)

mg/kg - milligrams per kilogram (parts per million) NT - Not tested

HSRA - Hazardous Site Response Act

TABLE 9 - PARCEL 019 - SOIL TESTING RESULTS (CONTINUED)

-						1		1
eduction Idards			Type 2		910	38	270	
Risk R Stan			Type 1		1,000	100	75	
HSRA Notification Concentration					500	1,200	400	
	10,	Geoprobe	1/06		NT	11.0	NT	Trans
1-6D	5,	Geoprobe	1/06		NT	73.5	NT	
	12-15"	Geoprobe	1/06		25.5	41.7	12.1	onse Act
1-5A	12-15"	Geoprobe	1/06		NT	NT	19.6	us Site Resp
Щ	10,	Geoprobe	1/06		NT	16.1	NT	A - Hazardoi
7	5,	Geoprobe	1/06		ΤN	20.5	NT	HSRA
	10,	Geoprobe	1/06		ΤN	5.74	NT	
1-4D	5'	Geoprobe	1/06		NT	14.2	NT	per million)
	21-24"	Geoprobe	1/06		69.4	230	21.6	gram (parts
ŋ	10,	Geoprobe	1/06		ΝΤ	12.0	NT	ums per kilog
1	5,	Geoprobe	1/06		NT	11.6	4.18	kg - milligra
Sample No.	Depth	Collection Method	Sample Date	Metals, mg/kg	Barium	Chromium	Lead	mg/
				1	L	decase and the second		1

NT - Not tested

Well No.	B-2	TW-23	TW-24
Well Type	Geoprobe Boring	Temp. 1" dia.	Temp. 1" dia.
Well Depth, Ft.	24	20.05	20.60
Screened Interval, Ft.	None	15-20	15-20
Depth to water, 1/05, Ft.	Not measured	16.59	16.42
Sample Date	5/04	12/04	12/04
VOCs, ug/l			
Benzene	630	140	49
n-Butylbenzene	2.5	NT	NT
Chloroform	4.0	<5.0	<5.0
Cis-1,2-dichloroethene	<1.0	<5.0	12
Ethylbenzene	44	17	<5.0
Diisopropyl ether	38	NT	NT
Isopropyl benzene	16	NT	NT
MTBE	330	280	12
n-Propylbenzene	17	NT	NT
Tetrachloroethene	<1.0	<5.0	270
Toluene	7.1	<5.0	<5.0
1,2,4-Trimethylbenzene	84	NT	NT
1,3,5-Trimethylbenzene	110	NT	NT
Xylenes	490	113	22
PAHs, ug/l			
Naphthalene	21	NT	NT
Metals, mg/l			1
Barium	NT	0.038	0.0221

TABLE 9A - PARCEL 019 - GROUNDWATER TESTING RESULTS

ug/l - micrograms per liter (parts per billion) mg/l - milligrams per liter (parts per million) NT - Not tested

APPENDIX D BORING LOGS

OJE	CT NU	MBER	EO Pror		L:03	's Ho	me impr	ovement	BORING/WELL NUMBER	MW-1		
OJE		Rive	erdale,	Geo	rgia				CASING TYPE/DIAMETER	Slotted		
	ING ME	THOD	<u> H</u>	ollow	-Stem /	Auger			GROUT TYPE			
MPI	LING M	ETHOD)	Split-	-spoon	samp	pier		BORING/WELL NUMBER ht DATE DRILLED CASING TYPE/DIAMETER SCREEN TYPE/SLOT GROUT TYPE DEPTH TO WATER DEPTH TO WATER ELEVA Image: Comparison of the standy start of the standy start of the standy start (ML), with mica Number of the standy start (ML), with mica			
ROU	ND EL	EVATIO	N _	945	.60				GROUND WATER ELEVATI	ON	32.65	
OP O	F CAS	ING Sh	<u>945</u> ave Ye	kich					-			
)66 ≈m∆	RKS											
				П							δE	
Ê	V TS	ERY	С Ш	Ł	£₽	S.	Ξg	LITH	OLOGIC DESCRIPTION		NT/	WELL DIAGRAM
dd)	NON NON	Ś€	APL.	Ę	H. B.	J.S.(LC R		- ·		80	
	^m S	REC	SAN	Ш		-	σ				0.5	
				++				Asphalt ~ 4 incl	nes sandy SILT (ML), with mica			
								DIOWII allu ieu		· ·		
											3.0	
					- +		┽┼┦┦┤	Brown red and	white sandy SILT (ML), with m	ica		
					_ +			and some rock	fragments			
					í "							
					- 5 -							
												Demonster C
												- Bentonite S
											10.0	
					10-			D	silby SAND (SM), with mica		- 10.0	
					_ 10 _			Gray and led a				
					F 7	1						
						-				Ţ		
						-						
					Ļ .	-						
					-15-							
	1						脚					
					Γ			-			1	
					F	-		•				
					┢	1		•				
					+	4						Slotted Sc
					-20-	_						with sand
·												
					T	7						
					F .	1						
					╞	-						
											26.0	
							<u></u>	R R	ottom of boring at 24.98 feet.			
									•		ł	
		1						1				

.

COJECT NU COJECT NA COJECT NA COLLING ME AMPLING ME AMPLING ME COUND EL DO OF CAS DOGGED BY EMARKS	MBER E ME Pro Riverdale THOD H ETHOD H EVATION ING 944 Steve Y	04HUL:03 posed Low , Georgia iollow-Stem Split-spool 944.64 4.64 ekich	e's Home Impre Auger n sampler	BORING Wement DATE I CASING SCREE GROUT DEPTH GROUI	GIVELL NUMBERM DRILLED G TYPE/DIAMETER IN TYPE/SLOTSlotte TYPE TO WATER ND WATER ELEVATION	W-2 PVC ad 	
	COVERY (ft) MPLE ID.	XTENT DEPTH (f. BGL)	J.S.C.S. BRAPHIC LOG	LITHOLOGIC	DESCRIPTION	CONTACT DEPTH	WELL DIAGRAM
				Brown red and white san and some rock fragment Gray and red silty SANE	dy SILT (ML), with mica s	4,0	-Bentonite S Slotted So with sand packing

CONTOUR ENCINEERING, LLC

(

BORING/WELL CONSTRUCTION LOG

PROJECT NUMBERE PROJECT NAMEPro LOCATIONRiverdale DRILLING METHODH SAMPLING METHODH GROUND ELEVATION TOP OF CASING945 LOGGED BYSteve YI REMARKS	04HUL:03 posed Lowe's Hon , Georgia follow-Stem Auger Split-spoon sample 949.75 9.75 ekich	e Improvement	BORING/WELL NUMBER DATE DRILLED CASING TYPE/DIAMETER SCREEN TYPE/SLOT GROUT TYPE DEPTH TO WATER GROUND WATER ELEVATION	3 0 932.26	
PID (ppm) BLOW COUNTS RECOVERY (ft) SAMPLE ID.	EXTENT DEPTH (ft. BGL) U.S.C.S.	CLOG CRAPHIC C	OLOGIC DESCRIPTION	CONTAC DEPTH	WELL DIAGRAM
ENVIRONMENTAL BORING/WELL LOG LOGS.GPJ CONTOUR.GDT 2/24/05		Asphalt ~ 4 inch Brown and red s Brown red and v and some rock to Gray and red s Bot	es sandy SILT (ML), with mica white sandy SILT (ML), with mica fragments ity SAND (SM), with mica	12.0	- Bentonite Seal

D	SOIL CLASSIFICATION	L	E	S	AN	IPLES	F	PL (%)	NM	(%)	Ι	LL (%)	
E P	AND REMARKS	E G	L E	I	Т	N-COUNT		0-		FIN) ES (%)	·····	-0	
T H	SEE KEY SHEET FOR EXPLANATION OF	E N	v	E	Y P	6" 6"			-	• SPT	(bpf)			
(ft)	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	T	E	1st 2nc 3rd	1(0 20	30	40 50	0 60	7 0	80 90) 100
	Red brown to brown micaceous sandy clayey SILT.						_							
			·				-							-88
	Red brown sandy SILT.						-							-22
							-							
							_							- 2. 2.
			. – –				-							
-	Red brown to purple brown very micaceous sandy SILT. $-$		-				-							- 目
- 10 -														
			: 				-							
• -							-							
					ŀ									- 8
- 15 -														
· •							-							- =
-	Boring terminated at 17.5 feet		· – –				-							
-														_
- 20 -														
-							$\left \right $							_
]														
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			· .							
- 25 -			<u> </u>					\rightarrow						
-							-							
-							-							_
-							-							-
- 30 -							_							
	<i>,</i>						-							-
-							-							-
- 35 -							-	-						-
-							-							_
-							-					·		-
- 40 -														
- 4							-							-
														-
-							-							_
45 —	·	I	<u> </u>			1 (0 10) 20	30	40 50	0 60	70	80 90) 100
ORILLER	R: MACTEC]			SO	TT TEST	RO	BD	JCE	FCO	חסר			
EQUIPM METHOI	ENT: CME 75 D: Hollow Stem Auger						00	axal			<i></i>			
HOLE DI REMARK	IA.: 8 inches	B	ORIN	G NO.	:	TW-31								
	co. Type Twen insuried.		ROJE	CT:		Lowe's -]	Rive	erda	le					
			RILLF	Div:		August 3	z, Go 1. 20	eorg 005	,ıa					
		Í L P	ROJE	CT NO).:	6305-05-(030	3]	PAG	E 1	$\mathbf{OF} 1$
HIS REC	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION					1111 -					\sim			
OCATIC	JN. SUBSURFACE CONDITIONS AT OTHER JNS AND AT OTHER TIMES MAY DIFFER.						A		Ï	Ή)				
NIERFA RANSIT	IONS BETWEEN STRATA ARE APPROXIMATE.	L			2						<u> </u>			
n in teachairtí ar d	n og kunnen i er som en en sekter kannalisten er en i månsen på som från en førere en er er er er er en er er e T									va vy soli i tili.	1999 (Barr	a ang sang Ng sang	Constraints	ener in andre in in

D	SOIL CLASSIFICATION	L	E	S	AN	1PLES	Р	PL (%)		NM (%	6)	LL (%)
	AND REMARKS	G .	E V	l D	T	N-COUNT		v		FINES	5 (%)		
H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW	N D	(ft)	E N T	P E	1st 6" 2nd 6" 3rd 6"			() SPT (bpf)		
- 0 -	Red brown to gray micaceous to very micaceous sandy			1			10	0 20	30 4	40 50	60 70	80 9	
	SILI.			-			-						
							-						
- 5 -													
	, na sa sa ¥ L												
				-			-						
- 10 -				-									
							-						
				-			- ·						
				-					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	Boring terminated at 15 feet.						-						-
				- -									
							$\left \right $						
- 20 -				-			-						
				-			-						-
							-						
- 25 -				-			-						
							-						-
1/1/2							-						
- 30 - 30 -													
A GI				-			-						
							-						
35 – 35 –				_									
						·							-
- AES							-						_
40 -													
BORI													-
L							-						
							$\begin{bmatrix} \\ 0 \end{bmatrix}$) 20	30 4	0 50	60 70	80.90	100
DRILLE	R: MACTEC				60	II TECT	PO	DINI	ית ר				
EQUIPM METHO	IENT: CME 75 D: Hollow Stem Auger				00 	AL 1E31	DU	MIN	JK				
HOLE D REMAR	IA.: 8 inches KS: Type I well installed.	B	ORINO ROJEC	G NO. TT:	:	TW-32 Lowe's -	Rive	erdale					
			OCAT	ION:		Riverdale	e, Ge	eorgia	1				
			RILLE ROJEC	ED: CT NO) .:	August 3 6305-05-	1, 20 030	005 3			РА	.GE 1	OF 1
THIS RE	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION						A					1	
LOCATIO	ON SOBSOLFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE.					″ M	A	Ľ	Ľ.	E(
TRANSI	TIONS BETWEEN STRATA MAY BE GRADUAL	L											

	D	SOIL CLASSIFICATION		L	E	S	AN	/IPLES	PL	(%)		NM (%)	LL (%)	
	P P	AND REMARKS		E G	L E	I	Т	N-COUNT		0	٨	FINES	(%)		
	H H	SEE KEY SHEET FOR EXPLANATION OF		E N	V	EN	Y P	t 6" d 6" d 6"			•	SPT (b	pf)		
	- 0 -	STMBOLS AND ABBRE VIATIONS USED BELOW.		D	(ft)	T	E	1s 3r	10	20	30 40	0 50	60 70	80 90	100
		Brown clayey saildy SILT.				4			-						
		Brown to gray very micaceous sandy SILT.	- +						-						
			∇						-						
	- 5 -	-													
			· ·			-			-						
						1			-						十日
															18
	- 10 -					-									
						-									
			. ·						-						_
	- 15 -	Boring terminated at 15 feet.	[:.											+	
			TANK TRANSPORT												
						-			-						-
						-									
									_						_
									-						_
						-			-						-
	- 25 -														-
						-			-						_
و									-						-
0/9/L															-
GDT	- 30 -														
GIBB									-						-
LAW									_						-
GPJ									-						-
DALE	- 35 -														-
VERI															
E'S RI									-						-
TOW				-					-						
SUNG	- 40 -			. ĵ					-						
T BOI				-					-						-
TES									-						-
SOII	- 45]								-						-
Г				Laute groupse				() 10	20 3	0 40) 50 6	50 70	80 90	100
	EQUIPM	K: MACTEC IENT: CME 75					so	IL TEST	BOR	ING	RE	COR	D		
	METHO HOLE D	D: Hollow Stem Auger IA.: 8 inches		D	ODING			Τ₩/ 22							
	REMARI	KS: Type I well installed.			ROJEC	T:	•	1 w-33 Lowe's - 1	River	dale					
				L	OCAT	ION:		Riverdale	, Gec	orgia					
and the				D	RILLE	D:		August 3	1,200)5			n : -	~ ~ ·	
]	THIS REC	CORD IS A REASONABLE INTERPRETATION OF		<u> </u>	KUJEC	_1 N().: 	6305-05-0	J303				PAC	E 1	OF 1
	LOCATIO	DN. SUBSURFACE CONDITIONS AT OTHER DN. SUBSURFACE CONDITIONS AT OTHER DNS AND AT OTHER TIMES MAY DIFFED					/		Δ		ΓΤ	76	۲		
I	INTERFA	ACES BEWEEN STRATA ARE APPROXIMATE. IONS BETWEEN STRATA ANAY BE GRADUAL								<u> </u>	LÍ	L	4		
 And the second se		CONTRACT DESTINATION DE LA PRATE DE UNADUAL.	eler v el er secret e	Pol Country controls and	Selection device, trace.	ang an ang ang ang ang ang ang ang ang a		When the second state of the second	water and the second	a hariosa por est	dan sheron				

	D	SOIL CLASSIFICATION	L	E	S	AN	APLES		PL (9	%)		NM (%)	LL	. (%)	
	E P	AND REMARKS	E G	L E	I	T	N-COUNT		¢			FINE	S (%)		e	
	T H	SEE KEY SHEET FOR EXPLANATION OF	E N	V	EN	Y P	16" d6" 16"				•	SPT	(bpf)			
	(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	T	E	1st 2m 3rc		0 2	0 3	0 4	0 50	60	70 80	90	100
		Brown slightly sandy clayey SILT.			-			-								
					-			-								
				· - ·	-			-								
	- 5 -	Brown micaceous to very micaceous sandy SILT.						-								
								-								
					-			-								
					-			-								
	- 10 -								ļ							
		_	☑		-			-								
					-			-								
	- 15 -				-											」目
					-			-								
					-			-								
					-											
	- 20 -	Boring terminated at 20 feet.			-											
								F								-
			-					- -								-
								-								
	- 25 -															
								-								-
/06				[-				[
T 7/6					-			-								-
B.GD	- 30 -				-											-
GIB					-											
LAW					-			-								-
GPJ								F								-
DALI	- 35															
IVER					-			F								
/E'S R								-								-
TOW	- 10 -							-								-
SING																
T BOI								-								-
TES														-		
SOII	- 45 l							<u> </u>								-
Г								0 1	0 2	0 30) 4() 50	60 7	0 80	90	100
	DRILLEJ EQUIPM	R: MACTEC IENT: CME 75				SC	IL TEST	BC	RI	NG	RE	CO	RD			
	METHOI HOLE D	D: Hollow Stem Auger					TTYL of									
	REMARI	KS: Type I well installed.		ORIN(З NO. ≅т∙	:	TW-34 Lowe's	Div	ard	ala						
				OCAT	ION:		Riverdale	e, G	eor	gia						
L			_ D	RILLE	D:		August 3	1, 2	.005	5						
7	THIS REC	CORD IS A REASONABLE INTERPRETATION OF	P	ROJEC	CT NO).:	6305-05-	030	3		destores		P	AGF	2 1	\mathbf{OF} 1
1	SUBSURI LOCATIO	FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER				/		٨	<u></u>		דר		7			
Ī	LOCATIC NTERFA	ONS AND AT OTHER TIMES MAY DIFFER. CES BEWEEN STRATA ARE APPROXIMATE.						A	L	ا ر		二(
]	FRANSIT	IONS BETWEEN STRATA MAY BE GRADUAL			ation satisfies											

	D		SOIL CLASSIFICATION	L		Е	S	AN	1PLES	PL	(%)]	VM (%	5)	LL (%)	
	P		AND REMARKS	· 6	i i	L E	I D	T	N-COUNT		U	A]	FINES	(%)		
	H	I.	SEE KEY SHEET FOR EXPLANATION OF	E N	i I	V	EN	P P	t6" d6" d6"			۲	SPT (ł	opf)		
	(n - 0		SYMBOLS AND ABBREVIATIONS USED BELOW.)	(ft)	Ť	E	1s 2n 3r	10	20	30 40	50	60 70	80 90) 100
	-	-	Red brown micaceous clayey sandy SILT.				-									-88
	-	-					-			-						
	_	-					-			-						
	- 5	_					1									
	-	-								-						
	-	-														_
	-	1	Red brown to purple brown very micaceous fine sandy													
	- 10													_		
	-	-		\mathbf{V}		-				-						
	-	-				~ •				-						
	_	_														
	- 15	5 -										+				
	-	-								-						
	_															
	-	_	11 - ¹⁴							-						_
	- 20) +	Boring terminated at 20 feet.	<u> . _</u>	<u>.</u>											
										-						-
		-														
		-								-						-
	- 25 -	5 –														
	-	-														-
90/9	-	-			+					-						-
17 TC	- 20	_			ł					-						-
BB.GI	- 30	, _								_						
W GI	-	-			-					-						-
J LA	-	-			ŀ					-						-
.E.GP	- 35	;]			ļ		-			-						-
RDAI	-	-								-						_
RUVE	-	-								-						-
WE'S	-									-						-
OT E	- 40															
ORUN	-	-								-						-
STB	-					-				-						-
IL TE	-	-								-						-
S	- 45) 10	20	30 40	50	60 70	80 90	100
ſ	DRII	LEF	R: MACTEC					~ ~]
	EQU	IPM.	ENT: CME 75 Hallow Stom Auger					SC	DIL TEST	BOF		; RE	COF	2D		
	HOL	e di	A.: 8 inches	1	B	ORINO	F NO.	.:	TW-35							
	REM	ARK	S: Type I well installed.		Pl	ROJEC	CT:		Lowe's -	River	dale					
					L	OCAT	ION:		Riverdale	e, Geo	orgia					
L					D. Pl	KILLE ROJEC	D: TNO) •	August 3	1,200	J5			PA	CF 1	OF 1
ļ	THIS SUBS	REC	CORD IS A REASONABLE INTERPRETATION OF ACE CONDITIONS AT THE EXPLORATION											I A		
1	LOCA	ATIO ATIO	N. SUBSURFACE CONDITIONS AT OTHER NS AND AT OTHER TIMES MAY DIFFER							A		ΓF	76	1		
ļ	NTE	RFA SIT	CES BEWEEN STRATA ARE APPROXIMATE. IONS BETWEEN STRATA MAY BE GRADUAL.					Ż		Γ Ι'				1	10 kolonia and 10 and	
	100 100 ACC		 Werkbark winder an erstellt and erst erstellt and erstellt and erste 	and which you a	-											

	D	SOIL CLASSIFICATION		L	E	S	AN	APLES	F	°L (%)	NI	A (%)		LL (%))	
	Е Р Т	AND REMARKS		E G F	L E V	I D	T	N-COUNT		U		▲ FI	NES (%)	€.		
	H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.		L N D	v (ft)	E N	P E	lst 6" 2nd 6" 3rd 6"				• SI	PT (bp	f)			
-	0 -	Dark brown to red brown sandy SILT.				1			1	0 20	30	40	50 6	0 70	80 9	0 10	'0 X
-	-					-			-								Ì
-	-					-			-				. [ÿ
F	5 -					-			-				_				Ň
-	4					-		-	-								Y
F	-								-			-					
L	10 -								-							-	
F	-		_						-							-	
F	-	<u>\</u>	¥ : :						-							_	
-	-	Red brown to purple brown very micaceous fine to medium sandy SILT .						r and a second se	-							_	
-	15 -												-				
-	4					-			-								
						-			-								
L_	20 +	Boring terminated at 20 feet.	 			-							-		-		
-	-								-			-					1
F	-			-		-			-								1
_	25 -					-			-				_				
-	-					-			-							_	
-	-								-							-	1
-	30 -					-			-							-	
• .	-								-								
-	-					-			-								
-	35 -								-							-	
-	-					-			-	Ī					-		1
-	-					-		-	-								
╞	-								-								
-	40 -								-								
-									-							-	
-	-					-			-								
	45						L]	0	1	0 20) 30	40	50 6	0 70	80 9	₩ 10 10	10
DF EC	RILLEF QUIPM	R: MACTEC ENT: CME 75					SC	DIL TEST	BO	RI	NG	REC	OR	D			
MI HC	ETHOI OLE DI	D: Hollow Stem Auger		P	ORINO	C NO	•	TW-36									
DT	EMARF	KS: Type I well installed.		P	ROJE	CT:	••	Lowe's - I	Riv	erda	le						
KL				L D	OCAT	ION: ED:		Riverdale Septembe	, G r 1	eorg	gia 15						
ĸı																	
		ORD IS A REASONARI E INTERPRETATION OF		P	ROJE	CT NO	D. :	6305-05-0)30	3				PA	GE 1	1 0	F
TH	IIS REC BSURI CATIC	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER		P	ROJE	CT NO).:	6305-05-()30 	3					GE 1	1 0	F

	D	SOIL CLASSIFICATION	L	E	S	AN	APLES	PL	(%)]	NM (%)	LL (%)	
	E P	AND REMARKS	E G	L E	I D	Т	N-COUNT				FINES	(%)	v	
	H (ff)	SEE KEY SHEET FOR EXPLANATION OF	E N		E N	P P	st 6" 1d 6" d 6"			•	SPT (b	pf)		
-	· 0 -	Red brown clayer sandy SH T		+ (11)	Т	E	1: 21 31	10	20	30 40	50	60 70	80 90) 100
-	- 5 -							-						
		Purple brown very micaceous fine sandy SILT.						-						<u>Kalakak</u>
-	- 10													
-	- 15 -	_ - _ _												
-	- 20													
	- 25	Boring terminated at 25 feet.			-								2	
	- 30 -													
-	- 35													
	- 40 —							-						-
	45 —						C	-	20	30 40	50 (50 70	80 90	
D E M	RILLE QUIPM IETHO	ER: MACTEC MENT: CME 75 DD: Hollow Stem Auger				SC	DIL TEST	BOR	INC	G RE	COR	Ð		
H R	IOLE D	DIA.: 8 inches KS: Type I well installed.		BORING PROJEC LOCATI PRILLE PROJEC	G NO. CT: ON: D: CT NO	:).:	TW-37 Lowe's - I Riverdale Septembe 6305-05-0	River , Geo er 1, 2 0303	dale orgia 2005	; 1		PA	GE 1	OF 1
II SU LO LO IN TH	HS RE JBSUR DCATI DCATI ITERF RANSI	LOKD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN STRATA MAY BE GRADUAL.					Μ.	A(C	Π	EC			
DF	SOIL CLASSIFICATION	L	E	S	AN	IPLES	Р	L (%)		NM	(%)	LL (%)	
------------------	--	----------	------------------	--------------	--------	---------------------------	------------------	----------	------------	-------	---------------	-------	--------	
P T	AND REMARKS	G E	E V	I D F	T Y	. =		·	٨	FINI	ES (%)			
H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	P E	1st 6" 2nd 6 3rd 6'	10) 20	30 4	SPT	(bpf) 0 60	70 80	90 100	
	Brown fine clayey sandy SILT.							Ī						
							$\left \right $							
							-	-						
- 5 -	Red brown very micaceous slightly sandy SILT.													
				•									-	
							-							
- 10 -				-										
	$\overline{\Sigma}$	<u>7</u>					-							
							-							
- 15 -				-			-							
							-							
				-			-							
							-							
	Boring terminated at 20 feet.			-			-						-	
							-							
				-			-							
			-				_							
							-							
5							-							
				1										
d → 35 →														
				-			-				-			
				-										
				-									_	
							-							
5L 45 L							0 10) 20	30 4	40 50	0 60	70 80	90 100	
DRILLEI	R: MACTEC				61	II TROT	PO	DIN	<u>с</u> р	ECC	100			
EQUIPM METHOI	ENT: CME 75 D: Hollow Stem Auger				51	AL 1191	DO	MIN	U K		JKD			
HOLE DI	IA.: 8 inches KS: Type I well installed.		BORING PROJE	G NO ≏t∙	.:	TW-38 Lowe's	Riv	ardal	ρ					
			OCAT	ION:		Riverdale	e, G	eorgi	a					
L			DRILLE PROJEC	ED: CT No	0.:	September 6305-05-	er 1,	200 3	5		P	AGF	1 OF 1	
THIS REC	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION	F											I OL	
LOCATIC	DN. SUBSURFACE CONDITIONS AT OTHER				4		Λ	1	1		ſ			

	D	SOIL CLASSIFICATION	L	Е	S	AN	1PLES]]	PL (%	6)	N	۷M (%	6)	LL	(%)	
	Е Р Т	AND REMARKS	E G F	L E	I D	T	N-COUNT		¢-		▲ F	FINES	5 (%)		C	
	H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	v (ft)	E N	P E	lst 6" 2nd 6" 3rd 6"				•	SPT (bpf)			
-	- 0	Red brown clayey sandy SILT.						1	0 2	0 30) 40	50	60	70 80	90	100
Ē	-							-								
-	-							-								-
F	- 5 -	Red brown to purple-brown very micaceous fine sandy						-					_			
-	-	SILT.						-								
-	_							-								
-	- 10 -													·,		-
-	-							-								
-	-	Z	7					-								- 8
+	-	-						F								18
-	- 15 -															
-	-							-								
F	-	Gray to brown fine sandy SILT.						-								
-	- 20 -	Boring terminated at 20 feet.		·												
-	-							-								-
F	-		, ,					-								-
-	- 25 -							-					_			-
-	-															-
/6/06	-							-								-
GDT 7	- 30 -							-								-
GIBB.	-							-								-
LAW								-								-
.E.GPJ	- 35 -							~								-
ERDAI	-							-								-
S RUV	-							-								
TOWE	-							-								-
RING	- 0						ł	-								
ESTBC	-							-								
	_		-					-								-
	45						1 C) 1(20) 30	40	50	60 7	0 80	90 1	00
E E	ORILLEF QUIPM	R: MACTEC ENT: CME 75				so	IL TEST	BO	RI	NG (REC	COF	Ð			
N H	AETHOI IOLE DI	D: Hollow Stem Auger A.: 8 inches	R	ORING		•	TW-30						er en en el tels			
R	EMAR	KS: Type I well installed.	PI	ROJEC	T:	•	Lowe's -]	Rive	erda	le						
				OCATI RILLE	ON: D:		Riverdale Septembe	, Ge r 1	eorg 200	gia)5						
TI	HIS REC	CORD IS A REASONABLE INTERPRETATION OF		ROJEC	T NC).:	6305-05-()30	3				P	AGE	1 0)F 1
St LO	JBSURF	ACE CONDITIONS AT THE EXPLORATION N. SUBSURFACE CONDITIONS AT OTHER				1	Ш Л	٨	6	1	דר	10	7			
	JUATIO	INS AND AT OTHER TIMES MAY DIFFER	11			1000		- 101	-		Edward and					

D	SOUL CLASSIELCATION	1	F	S	AN	IPLES	PL (%)	NM (%	5)	LL (%)
E. P	AND REMARKS	Ē	L E	1	Т	N-COUNT	e-		O	(%)	®,	
T H	SEE KEY SHEET FOR EXPLANATION OF	E N	v		Y P	6" 16" 16"		-	SPT (1	(fq)		
(\overline{ft})	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	T	E	1st 2nc 3rd	10 20	30	40 50	<u>60</u> 70	80 9	0 100
	Yellow brown to brown clayey sandy SILT.			_			-					
				-			-					
				-			-					
5							-					
							_					
				-								
	Brown very micaceous fine sandy SILT.			-			-					
	- <u></u>			-								
				_			_					
				-			-					
				-			-					
				-			$ \mid \uparrow$					
			· - ·	_								
F -				-								
			· [_	-								
	Boring terminated at 20 feet.		-	-			-					
				-			-					
- 25 -				_								
				-			-					-
				-			-					
- 30 -				-								
			-				-					-
				-								-
			_	-			-					-
- 35 -				-								
				-			-			-		
				1								
			-	-								_
- 40 -				-								
				-			-					
				-			-					
— 45 <u> </u>				<u> </u>			0 10 20) 30	40 50	60 70	80 9	0 100
DRILLE	R: MACTEC				Sr	II. TFST	BORD	NC F	FCO	RD		
EQUIPM METHO	IENT: CME 75 D: Hollow Stem Auger				~~							
HOLE D	IA.: 8 inches	E	BORIN	G NO	.:	TW-40						
INDIVI/N			PROJE	CT:		Lowe's -	Riverda	ale ric				
			DCAI	ED:		Septembe	er 1. 20	31a 05				
		- F	PROJE	CT N	0.:	6305-05-	0303			PA	GE	$1 \text{ of } 1 \parallel$
THIS REC	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION						A /	A b - x -		~		
LOCATIO	ON. SUBSURFACE CONDITIONS AT OTHER DNS AND AT OTHER TIMES MAY DIFFER.						A(Ή.	1		
TRANSI	ACES BEWEEN STRATA ARE APPROXIMATE. FIONS BETWEEN STRATA MAY BE GRADUAL	de brei diamatria			2							

D	SOIL CLASSIFICATION	L	E	S.	AN	IPLES	Р	L (%)		NM	(%)		LL (9	6)
E P	AND REMARKS	E G	L E	I	Т	N-COUNT		6	4	FIN) ES (%	5)	{0	
H H (ft)	SEE KEY SHEET FOR EXPLANATION OF	E N	V (ft)	E N	Y P E	st 6" nd 6" rd 6"			(● SP	Г (bpf)		
- 0 -	Dark brown to vellow brown clavey sandy SILT			Т	E	31 16	10	20	30	40 5	0 60	70	80	90 100
						-	-							-
				-		-	-							
				-		-	-							
- 5 -				_										
	7	Z		-			-							
				-		-	-							
- 10 -							-			_				
+ +	Brown very micaceous sandy SILT.	-	-	-			-							
							-							
	Boring terminated at 13.5 feet.			-			-							-
- 15 -							_							
				-			-							
				-			-							
- 20 -				-			-							
				-			-							-
							-							
				-			-							-
- 25 -				-						-				
				-			-							
							-							-
<u>-</u> 30 -				-										
				-			-							
							-							
							-							-
				-			-							
							-							-
				-			-							
<u>−</u> 40 −				-					_					
				-			-							
				-			-							-
							-							-
						C) 10	20	30	40 5	0 60	70	80	90 100
DRILLEF EQUIPM	R: MACTEC ENT: CME 75				SC	OIL TEST	BO	RIN	G R	EC	ORI)		
METHOI HOLE DI	D: Hollow Stem Auger IA.: 8 inches	R	ORING	GNO	•	TW-11								
REMAR	KS: Type I well installed.		ROJE	CT:	•	Lowe's -]	Rive	erdal	e					
			OCAT	ION:		Riverdale	, Ge	eorgi	a					
L		- Р Р	ROJE	עב: CT NC).:	6305-05-0	r 1, 0303	200: 3)			PA	GE	1 OF 1
THIS REC	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION						A							
LOCATIO LOCATIC INTEREA	IN SOBSURFACE CONDITIONS AT OTHER INS AND AT OTHER TIMES MAY DIFFER. CES BEWEEN STRATA ARE APPROXIMATE						A	Ľ	Ţ	E	C			
TRANSIT	IONS BETWEEN STRATA MAY BE GRADUAL	<u> </u>			2]

	D	SOIL CLASSIFICATION		L		Е	S	AN	<u>APLES</u>	_	PL (%)		NM (9	%)	LL (%	5)	
	E P	AND REMARKS		E G		L E	D	T	N-COUNT		U		FINE	S (%)	v C		
	H H	SEE KEY SHEET FOR EXPLANATION OF		E N		V	Ē	Y P	t 6" d 6" d 6"			(SPT ((bpf)			
	(ft) = 0	SYMBOLS AND ABBREVIATIONS USED BELOW.		D		(ft)	T	E	Ist 2n 3rd		10 20	30	40 50	60 7	0 80 9	90 10)0
		Red brown to brown micaceous clayey fine sandy SILT.								-							SF
										F						-4	$\langle \rangle$
										-						-	
	_ 5 _															-	
							-			-						_	
					-					F						-	
			∇		· -					ŀ							
	- 10 -																
					-	· -				F							
										-						-	E
						-				 _							
	- 15 -												ļ				
						-	-			-						_	E
		Boring terminated at 17 feet.	t	<u>alili</u>	<u> </u>	· · -				F							
					ļ	· _				ļ.							
	- 20 -				-												
					ŀ	-				F						-	
					Ĺ	-				[.							
-					-	· -				-							
and the second sec	- 25 -																
					Ĺ	-											
90/9					-	· •				-							
0/ <u>7</u> /(+	-				-							
3B.GI	_ 30 _				Ľ												
N GII					F					Ļ							
I LAV					-	-				-						-	
E.GP	- 35 -				Ľ					-						-	
RDAL					-	-				_							
RIVE					-	-				F							
WE'S					F	· _				-							
oro	- 40 -									[
ORING					-	-				-						-	
ST B(Ľ		-			-						-	
]											
SC	- 45 -								(0 1	0 20	30 4	40 50	60 70) 80 9	0 10	0
	DRILLER	R: MACTEC															-
	EQUIPM	ENT: CME 75						SC	DIL TEST	BC	PRIN	GR	ECO	RD			
	HOLE DI	IA.: 8 inches		$\left[\right]$	BC	ORINO	G NO.	:	TW-42	-							
	REMARK	KS: Type I well installed.			PF	ROJEC	CT:		Lowe's -	Riv	erdal	е					
1					L(ION:		Riverdale	e, G	eorgi	a					
e na stati]		bł Nł	KILLE ROJEC	d: TNO) •	Septembe 6305-05-	er 1 030	, 2005 13	>		P	GF	0	F 1
	THIS REC SUBSURF	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION		F										1 /			
I I	LOCATIO LOCATIO	DN. SUBSURFACE CONDITIONS AT OTHER DNS AND AT OTHER TIMES MAY DIFFER.								A	C	Γ	FC	-			
	NTERFA IRANSIT	CES BEWEEN STRATA ARE APPROXIMATE. IONS BETWEEN STRATA MAY BE GRADUAL.	Jugo Presidente				analis uta -	Ż		<u> </u>		<u>ــــــــــــــــــــــــــــــــــــ</u>					
	1	a na ang ang ang ang ang ang ang ang ang	aan dahala aan dahara	ale de la come			مراجع والمحادث معالم المحادث والمحادث المحادث		an a	1.01							

D	SOIL CLASSIFICATION	L	E	S	AN	IPLES	PL	(%)		NM (%)	LI	_ (%)	
E P	AND REMARKS	E G	L E	I	Т	N-COUNT	ć	0	۸		S (%)		V	
T H	SEE KEY SHEET FOR EXPLANATION OF	E N	V	E N	Y P	it 6" 1d 6" d 6"			۲	SPT	(bpf)			
(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	T	E	ls 2n 3rd	10	20 3	0 40	50	60	70 8	<u>90 C</u>	100
	Keu orown micaceous tine sandy SILT.		Ļ .	_			-							-
				-			-							-
							-							
- 5 -	Brown micaceous silty SAND with partially weathered			-				_				-		
	rock.		-	-			-							-
							-							
			-				-							_
- 10 -				-										
			Ļ			,	-							
	Auger refusal at 12 feet.		-	-			-							-
			-	-			-							4
- 15 -				1 ,			_							15
			-	-			-							-
			-	-			-							-
- 20 -			<u> </u>						ļ				\square	20
	-		-	-			-							-
		-	-	-			-							-
			-											
- 25 -				-										
			-	-			-							-
- ·			-	-			-							
			-	-										_
- 30 -			-	-								-		
		-	-	_]
			-	-			$\left \right $							-
- ·			- -	-			-							- 35
			-	_			-							-
	4		-	-			$\left \right $							-
			-				È.							
- 40 -	-			_										
	4		-	-			$\left \right $							-
			-	-										
			-	-			-							_
- 45 -	1						0 10	20	30 4	L L 10 50) 60	70 8	30 90) 100
DRILLE	ER: MACTEC MENT CME 75				S	DIL TEST	BOH	RINC	G R	ECC	ORD			
METHO	DD: Hollow Stem Auger			<u> </u>		D 10								
REMAR	RKS: No groundwater encountered.		SORIN PROJE	G NO CT:	.:	B-43 Lowe's -	Rive	rdale						
			LOCA]	rion:		Riverdal	e, Ge	orgia	L					
			DRILL	ED:	\mathbf{a}	Septemb	er 2, 2	2005					י קורו	OF
THIS RE	CORD IS A REASONABLE INTERPRETATION OF		·KOJE		0.:	6305-05-	0303				1	AG		
GT 100	A REAL AND A	11												
SUBSUI	(ON: SUBSURFACE CONDITIONS AT OTHER ION: SUBSURFACE CONDITIONS AT OTHER				4		Δ	\bigcap^{r}	Г	F	\cap			

	D	SOIL CLASSIFICATION		L	E		S/	4N	IPLES	1	PL (%))	N	M (%)	LL (%	%)
	Е Р т	AND REMARKS		E G E		I		T	N-COUNI -		v		▲ F	INES	(%)	v	
	H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW		D N	(ft)		Ē	P E	st 6" hud 6" hrd 6"				• 5	SPT (b	pf)		
. -	- 0 -	Red brown micaceous fine sandy SILT with quartz		ातन जनन	+ (11)		[- 0 6	1	0 20	30	40	50	60 70	80	90 100
E	_	fragments.			·	-				-							
+	-				.[. -												
╞	-					-				-							
	- 5 -																
F	-				· · ·	-				-							-
	-								*	-							
-	- 10				: 	_						_					
F	· _				-	-				-							
	-	Red brown to white fine to medium SAND with partially weathered rock fragments.	- +						ļ	-							
-	-				-	-				-							
	- 15 -									-							
L	-					-				-							
F	-					-			1	-							
F	- 20 -				Ļ												
-	_				-	_				-							
_	-			 													
_		while to dark brown very micaceous silty SAND.			-	-				-							
-	- 25 -																
-	_									-							
-	-					-											
_	- 30 -		-		-					-							
	-		Ā			-				-							
-	-																
F	-					-				-							
	- 35 -																
F	-	Auger refusal at 36 feet.			-	-				-							-
	-					-				_							-
	- 40 —				-	_											
F	-				Ĺ	-			-	-							
_	_				-	_				-							
-	- 45 -				-	-				-							-
				ſ					C) 1	0 20	30	40	50	50 70	80	90 100
I E	ORILLEI EQUIPM	R: MACTEC IENT: CME 550						so	IL TEST	BO	RIN	łG	REC	COR	D		
N H	METHOI HOLE DI	D: Hollow Stem Auger IA.: 8 inches			SUBI	NG N		•	TW-44								
F	REMARI	KS: Type I well installed.		H H	PROJ	ECT		•	Lowe's -]	Riv	erda	le					
			(resonance)	I	JOCA	TIO	N:		Riverdale	e, G	eorg	ia					
L]		PRILI	LED: ECT	NC).:	Septembe 6305-05-0	er 2. 030	, 200 13	S			РА	GE	1 OF
T S	HIS RECUBSURI	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION							16161						- ^ I		- ~×
L	OCATIO	JN. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. VERS REWEEN STRATA ADE ADDOVIMANTE								A		"	`F		1		
ιľ Τ	RANSII	TIONS BETWEEN STRATA ARE APPROXIMATE.	Story James					_		ef							

Γ	D	SOIL CLASSIFICATION	L	E	E	S	AN	1PLES	P	L (%)	NN	A (%)		LL ((%)	
	E P	AND REMARKS	E G	L	i E	I D	T	N-COUNT		v		▲ FI	NES (%)		,	
	$\begin{bmatrix} 1 \\ H \\ (ff) \end{bmatrix}$	SEE KEY SHEET FOR EXPLANATION OF			/ h	E N	P F	.st 6" .nd 6" .rd 6"				• SF	PT (bp	of)			
-	- 0 -	Red brow to brown micaceous to very micaceous sandy		+ (1	·/	T		й 7 –	10) 20	30	40	50 6	0 7	0 <u>80</u>	90 10)0
-	-	SILT.		- - -	. –				-								
_	-			-	-			-	-								
-	-				-				-							_	
	- 5 -				_								_				5
-	-				-			-	-							-	
-	-				-				-							-	
-	- 10 -			:L	_]	10
+	_				-				-							-	
	-	Ded because because and seen references to me - microscope		. - . 	-			-	-							-	
	-	silty fine to medium SAND with partially weathered rock fragments.			-				-							-	
	- 15 -				-			r T T	_								15
╞	-			:	-				-								
F					-				-								
-	- 20 -				_							_				_	20
F	-				-				-							-	
-	-			- - -	-				-								
-	- 25 _			· -	-				-								25
	-			· · ·	_				-							-	د ــــــــــــــــــــــــــــــــــــ
,06 7	-				-				-								
2/12	-			-	-				_								
B.GDI	- 30 -			· - -	_												30
V GIB		Auger refusal at 32 feet		Ţ	-				-								
1 LAV	-			-	-				-							-	
LE.GP	- 35 -			F	-												35
ERDA	-			-	-				-								
S'S RIV	-			F	-				-								
LOWE	-			-	-				-							-	
	- 40 -			-	-			ŀ	-				-				40
ST BOI	-			F	-				-							_	
	-			F	-												
S	- 45 🔟					•••••		0) 10) 20) 30	40	50 6	0 7	0 80	90 10	00
I	ORILLEI	R: MACTEC					sr	TPTT II	RO	BI	NCI	8FC	ΩΩ	D			
H N	EQUIPM METHOI	ENT: CME 75 D: Hollow Stem Auger					51			a vili	101			1 /			
H F	HOLE DI REMARI	IA.: 8 inches KS: No groundwater encountered.	I	BOR	INC	J NO	.:	B-45		- mal	la						
				LOC	JEC AT	DI: ION:		Riverdale	rive ., Ge	erda eorg	ue gia						
)RII	LE	D:	0	(205.05.	0.000		-			***	. ~-		
T	HIS REC	CORD IS A REASONABLE INTERPRETATION OF		'KO	JEC		U.:	6305-05-0	0302	5				PA	1GE) F' 1
L	OCATIC	DN. SUBSURFACE CONDITIONS AT OTHER					4		٨	$\boldsymbol{\mathcal{C}}$		רר	1	٧			
		INS AND AT CHEEK TRACK WAY TREEER	8 1						A			1					

	D	SOIL CLASSIFICATION	L	Е	S	AN	1PLES]]	PL (%	6)	NM	1 (%)	L	L (%)	
	E P	AND REMARKS	E G	L E	I	Т	N-COUNT		0 -		▲ FIN	⊖ √ES (%)		-0	
	T H	SEE KEY SHEET FOR EXPLANATION OF	E N	V	E N	Y P	t 6" d 6" d 6"				• SP	'T (bpf)			-
	(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	T	Е	1st 2n 3rc	1	0 2	0 30	40 :	50 60	70	<u>30 90</u>) 100
╞		FILL						-							-88
-		RESIDUAL						-							
								-							
╞	- 5 -	0.0 ppm													
┢	-		-					-							
	-							E							
-	-				-			-							
F	- 10 -	0.0 ppm										+			
Ĺ	-														
F	-				_			-							
-	- 15	\Box						-							
╞		0.0 ppm			-			-							
┝	-							-							
	-							_							
\vdash	- 20 -	Boring terminated at 20 feet.													
F	-	5 bags grade 1A sand						-							-
	-	l bag medium bentonite chips						- ·							-
-	-							-							-
_	- 25 -		-												
-9	-				-			-							-
0/11/2	-							-							-
GDT	- 30 -				-										
GIBB.	-				-			-							-
WA	-														-
GPJ	-							F							-
DALE	- 35														
IVER	-							-							-
VE'S R	-							-							-
<u>[</u>]	- 40 —														
DRINC	-							-							-
ST B(-							-							-
								-							_
ЯГ	- 45 —						(0 1	0 2	0 30	40 5	50 60	70 8	<u> </u>	100
I	ORILLE	R: MACTEC				sr	TFST	RC)D1	NC	BEC	UDD			
E N	EQUIPN METHO	IENT: Truck Mounted Rig D: Hollow Stem Auger						DC							
F	HOLE D REMAR	IA.: 6.25 inches KS: 10 ft. screen, slot size 0.001 inches, DTW-17.88,	B	ORIN(G NO.	•	EW-1		1	1					
		TD-19.50		NOJE(ION:		Riverdale	riv 2, G	era	aie gia					
				RILLE	ED:		June 12, 2	200	6						
T	HIS RE	CORD IS A REASONABLE INTERPRETATION OF		'ROJE(JT NO).:	6305-05-	030	93]	PAG	E 1	OF 1
	UBSUR OCATI	FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFEED					M/N/T	Δ	(٦L	Γ			
і Т	NTERF/ RANSI	ACES BEWEEN STRATA ARE APPROXIMATE FIONS BETWEEN STRATA MAY BE GRADUAL				é		<u>د ۲</u>	ľ		نا ۔	U U			

D	SOIL CLASSIFICATION	L	E	S	AN	1PLES	PI	. (%)		NM (·%)	LL	. (%)	
Ē	AND REMARKS	Ē	Ĺ	Ι	Т	N-COUNT	1	Ø		0			e í	
r T		E	L E V	DE	Y				A	FINE	S (%)			
H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS LISED BELOW	N	(ff)	N	P F	st 6" nd 6 rd 6'			(SPT	(bpf)			
	En l			T		- 0 m	10	20	30 4	10 50	60	70 80	90 1	00
	FILL		L .											
														N N
		-												Y Y
_ 5 _														\mathbb{N}
	0.0 ppm													
	RESIDUAL													
			L											
]. .
- 10 -														
	0.0 ppm		_											
			Ļ .											
- 15 -	<u> </u>	Z	L _	4								_		
	0.0 ppm		Ļ .	4.										
			Ļ .				_							
			Ļ .	-										「日日
			Ļ .	4										月日
- 20 -	0.0 mm			4										
	v.v ppm		÷.	4										
	Boring terminated at 21 feet.		Ļ .	-			-							_
	7 bags grade 1A sand 1 bag medium bentonite chips		- ·	-										-
	i oug medium contoine emps		<u> </u>	4									-	-
- 25 -				-										4
				-			-							
			Ļ .	-			-				-			-
			- ·	-										4
			- ·	-			-							-
- 30 -				-										-
			-	-			-							-
			- ·	-			-							-
				-			-							-
				-			$\left \right $							-
- 35 -				-					-					-
				-										·
				-			- .							-
				-			-							-
				1			-							
F 40 -				1					+	+				1
r 1				1										1
Γ 1			F .	1										1
[]			F .	1										1
$\lfloor 15 \rfloor$				1										1
4,5					1	() 10	20	30 4	10 50	60	70 80	90-1	00
DRILLEI	R: MACTEC				~ ~									
EQUIPM	ENT: Truck Mounted Rig				SC	ML TEST	ROI	(IN)	<i>3</i> R	ECO	RD			
METHO	D: Hollow Stem Auger			~										
REMARI	S: 10 ft. screen, slot size 0.001 inches. DTW-17.79		BORIN	G NO.	:	EW-2								
	TD-19.95		'ROJE	CT:		Lowe's -	River	rdale	;					
			JOCAT	10N:		Riverdale	e, Ge	orgia	l					
			VRILLI	SD:	•	June 12, 2	2006				-			
THIS REC	CORD IS A REASONABLE INTERPRETATION OF	L	'KOJE	UT NO).:	6305-05-0	0303				P	AGI	<u> </u>)F 1
SUBSURI	FACE CONDITIONS AT THE EXPLORATION					lain -	A	\sim						
LOCATIC	DN. SUBSUKFACE CONDITIONS AT OTHER DNS AND AT OTHER TIMES MAY DIFFER.				Å		A			H(
INTERFA	CES BEWEEN STRATA ARE APPROXIMATE. JONS BETWEEN STRATA MAY BE CRADUM	يشار وخدر					Υ Γ Υ		<u> </u>	× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		a Maria	e transfer an 1963 to	
212/214314	IONO DEI WEEN OINATA WAT DE UKABUAL					25		1000 100						

D	SOIL CLASSIFICATION	L	Е	S	AN	1PLES	PL ((%)	N	IM (%)	LL (%	6)
E P	AND REMARKS	E G	L E	I	Т	N-COUNT	e e	,	▲ F	INES	(%)		
Т Н	SEE KEY SHEET FOR EXPLANATION OF	E N	V	E E	Y P	6" 6				SPT (h	nf)		
(ft)	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	N T	E	1st 2nd 3rd	10	20 30	• • •	50	60 7) 80	90 100
- 0 -	FILL												
	RESIDUAL											1	
			- ·	4			-						
				-									
- 5 -	0.0 ppm			-							_		$+- \emptyset$
				-			-						
]									
							-						
- 10 -	0.0 ppm			-									
				-			-						
				1									
	∇]									
- 15 -	0.0 mm			-									
	o.o ppm		- ·	-			-						
				-			-						
				1									
- 20 -													
	0.0 ppm Boring terminated at 21 feet		ļ .	-			-						1 <u></u> E
	7 hogs grade 1.4 sand			-			-						
	1 bag medium bentonite chips			-			-						-
- 25 -			- ·										-
				-			_						
			Ļ .	-									-
				1			-						-
							-						
				_			_						
			- ·	-			-						-
				-			-						
			- ·	1			F						
- 33 -							_						
			Ļ .	1.									
			F .	-			$\left \right $						-
		***		1									-
- 40 -			F .										
			Ļ .	-									
		1		_			$\left \right $						
				-			-						
- 45 -			•••••				0 10	20 30	40	50	60 7	0 80	90 100
DRILLE	R: MACTEC				SC)IL TEST	BOR	ING	RF	COF	20		
EQUIPM METHO	IENT: Truck Mounted Rig D: Hollow Stem Auger				~~					~ ~ 1	****		
HOLE D	IA.: 6.25 inches KS: 10 ft. sorren slot size 0.001 inches DTW 15.65	(B	ORIN	G NO	.:	EW-3							
KEWAK	TD-19.85	P F	ROJE	CT:		Lowe's -	River	dale					
			NCAT	IUN: ED:		Kiverdale	e, Geo 2006	rgia					
			ROJE	CT NO	0.:	6305-05-	2000				P,	AGE	1 OF
THIS RE	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION	F				404							- ~*
3()[]		1				a(a(a)~~~ e=	R A	$\neg \neg$			1		
	JN. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER				Å		A	Ľ.	Ì		,		

DF	SOIL CLASSIFICATION	L	E	S	AN	1PLES	Pl	(%)		NM	1 (%)		LL (%)
P T	AND REMARKS	G E		I D T	T Y			-	4	FIN	JES (%	<i>(</i> 0)	v	
H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	P E	1st 6" 2nd 6' 3rd 6"	10	20	•	SP	T (bpi	f)	0.0	
- 0 -	FILL		-					20	30	40 :	$\frac{50}{1}$	<u> </u>	80	
	RESIDUAL			-										
				-										
- 5 -	0.0 ppm													
				-			-							
- 10 -	0.0 ppm			-										
							-							
							-							
- 15 -	0.0 ppm													
				-										
				-			-							
- 20 -	0.0 ppm									-				
	······································						-							
				-										
- 25 -	0.0 ppm								-					
	Boring terminated at 28 feet.						-							
- 30 -	4 bags grade 1A sand 1 bag medium bentonite chips						-							
														-
				-			-							-
- 35 -							-							
						:	-							-
							-							
- 40 -										-				
							-							
			-											
L 45 L						(0 10	20	30	40 5	50 60) 70	80	90 100
DRILLE	R: MACTEC				SC	II. TFST	BOI	RIN	СÞ	FC	0.51))		
EQUIPM METHO	ENT: Truck Mounted Rig D: Hollow Stem Auger							ALF.						
REMARI	 0.25 incnes 10 ft. screen, slot size 0.001 inches, DTW-20.25, TD-28.05 	B B P	ORIN(ROJE(G NO CT:	.:	EW-4 Lowe's -	Rive	rdal	e					
	117-20.03		OCAT	ION:		Riverdale	e, Ge	orgi	a					
			ROJE	D: CT NO	0.:	June 19, 2 6305-05-	2006 0303					PA	GE	1 OF
THIS REC SUBSURI	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION DN. SUBSURFACE CONDITIONS AT OTHER						٨							
LOCIUM		11									-81			

D	SOIL CLASSIFICATION	L	E	S	SAN	/IPLES		PL (%	6)	N	IM (%))	LL (%)
E P	AND REMARKS	E G	L E	I D	T	N-COUNT		v-		▲ F	INES ((%)	¥	
H H	SEE KEY SHEET FOR EXPLANATION OF	E N	V	E N	Y P	t 6" d 6" 1 6"				• 5	SPT (bj	pf)		
$\begin{bmatrix} (ff) \\ 0 \end{bmatrix} =$	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	T	E	1st 2n 3rc	1	10 2	0 30) 40	50	50 7	0 80	90 100
	ASPHALT and base. FILL			4			-							-8
				-			-							
				-			-							
							-							
	0.0 ppm			_			-							
				-			F							
				-			-							
	RESIDUAL													
	0.0 ppm		- · -	-			-							
				-			-							
				-			-							- 1
- 15 -														
	o.o ppm			-			-							
		7		-			╞							
		-												
- 20 -	0.0 mm		ļ	-										
	Fb			-			F							
			-	-			F							
	During termineted at 04 Feet]										
- 25 -	bornig terminated at 24 feet.			-								$\left - \right $		
	1 bag medium bentonite chips			-			F							
							F							
-				-		×	-				****			-
- 30 -				-										
			t -	-			Ē							
				-			Ľ							
				-			F							-
												$\left - \right $		
				1			Ľ							
				-			F			Î				
				-			F							
														+
							-							
							╞							
							F							
							0 1	0 2	0 30) 40	50 (50 70) 80	90 100
DRILLE	R: MACTEC ENT: Truck Mounted Big				SC	DIL TEST	BC)RI	NG	REC	COR	D		
METHO	D: Hollow Stem Auger													
HOLE D	tA.: 6.25 inches tS: 10 ft. screen, slot size 0.001 inches, DTW-17.18.	B	ORINO	G NO	.:	EW-5	р·		1					
	TD-23.60		KOJE(OCAT	UT: ION·		Lowe's -	K1V • G	erda	ale ria					
	· · · · · · · · · · · · · · · · · · ·		RILLE	ED:		June 13.	3, G 200	6	gið					
TLUC DE		Р	ROJE	CTN	0.:	6305-05-	030)3				PA	GE	1 OF 1
SUBSUR	FACE CONDITIONS AT THE EXPLORATION OF					lille r	A	6				•		
LOCATIC	IN SUBSURACE CONDITIONS AT OTHER INS AND AT OTHER TIMES MAY DIFFER.						A		ا ز	ŀ	j(, ,		
TRANSIT	IONS BETWEEN STRATA AKE APPKOXIMATE. IONS BETWEEN STRATA MAY BE GRADUAL				P								ومبر شاخت	<u>ang a Bank ta ang ang</u>

(%)	LL (%)	NM (%)	PL (%)	PLES	M	SAN	E	L	D SOIL CLASSIFICATION	D
,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	▲ FINES (%	v	N-COUNT	Г	I D T	L E	E G	E AND REMARKS	E P
	f)	 SPT (bpf 		t6" 1d6" d6"	P	E P N P	V	E N	T H SEE KEY SHEET FOR EXPLANATION OF	T H
90 100	0 70 80 90	0 40 50 60	10 20 3	1s 2r 3r		T E	(ft)	D A A A	 (π) SYMBOLS AND ABBREVIATIONS USED BELOW. 0 CONCRETE 	
			-	_				4	- FILL	-
						-			_	-
				-						-
🕅 🕅									- 5 - 0.0 ppm	- 5
				-						-
				-						
				-						-
						-			- 10 - 0.0 ppm	- 10
				-						
				-					_	-
				-					-	-
									15 RESIDUAL	- 15
				-		-	- ·		0.0 ppm	-
				-		-				-
				-					- 20	- 20
				-		4			0.0 ppm	-
				-						
										aan Mari
						-			-25 - 0.0 ppm	- 25
				-						
				-						90/
				F		-	+ .		Boring terminated at 29 feet.	1// 1
									- 30 - 4 bags grade 1A sand	
_				-					- bag medium bentonite chips	A GIE
-				-		-				I LAV
				-					- 35 -	$\frac{10}{10}$
_				-						RDAI
-				-					-	RIVE
				-						I T
									- 40 —	01 <u>0</u> 40
-				-						ORIN
				Ę						EST B
-				-						1 10
90 100	0 70 80 90	0 40 50 60	10 20 3	0	l	II			45	∽L 45.
	D	RECORI	BORING	L TEST B	50	SI			DRILLER: MACTEC	DRIL
									METHOD: Hollow Stem Auger	METI
			ivandala	EW-6		G NO.:	BORIN	B	HOLE DIA.: 6.25 inches REMARKS: 10 ft. screen, slot size 0.001 inches, DTW-20.42,	HOLE REM/
			Georgia	Riverdale.		ION:	JOCAT		TD-29.05	
			006	June 19, 20		ED:	RILLI			
1 OF 1	PAGE 1		303	6305-05-03	.:	UT NO.:	'ROJE		HIS RECORD IS A REASONABLE INTERPRETATION OF	THIS
	ł	FE							UBSURFACE CONDITIONS AT THE EXPLORATION OCATION. SUBSURFACE CONDITIONS AT OTHER OCATIONS AND AT OTHER TIMES MAAY DIFFE	SUBSI LOCA
	1				é	ĺ			NTERFACES BEWEEN STRATA ARE APPROXIMATE. RANSITIONS BETWEEN STRATA MAY BE GRADIAL	LOCA INTEF TRAN
90	0 70 80 90 D	0 40 50 60 RECORI	10 20 3 BORING iverdale Georgia 006 303	0 L TEST B EW-6 Lowe's - Ri Riverdale, ' June 19, 20 6305-05-03	.: .:	G NO.: CT: ION: ED: CT NO.:	BORIN(PROJE(PROJE(B P L D P	Boring terminated at 29 feet. 4 bags grade 1A sand 1 bag medium bentonite chips - 35 - - 40 - - 40 - - 45	THIS SUBS LOCA LOCA TRAN

	D	SOIL CLASSIFICATION	L	E	S	AN	APLES	PI	. (%)		NM (%)	L	L (%)
	E P	AND REMARKS	E G	L E	I	T	N-COUNT		0		FINES (%)	- 6
	H (fft)	SEE KEY SHEET FOR EXPLANATION OF	E N		E N	P P	st 6" nd 6" d 6"			۲	SPT (bp	f)	
	- 0 -	CONCRETE	D	(ft)	T	E	1s 3r 3r	10	20	30 40	50 6	0 70 8	0 90 100
		FILL			_			-					
					-								
-								-					
	- 5 -	0.0 ppm											
-					-								
-					-			-					
ŀ								-				-	
		0.0 ppm			-			-					
ŀ					-			-					
F				~ .									
ŀ	- 15 -	RESIDUAL	-		-								
ļ		0.0 ppm											
-					-			-					
-		\sim	7					-					
F		0.0 ppm						-					
					-			-					
				[· .	-								
	- 25 -	0.0 ppm											
		Doring terminated at 27 fact											
/11/06		5 bags grade 1A sand											-
DT 7	- 30 -	1 bag medium bentonite chips		- ·				-					
SIBB.C								-					
AW O								-					
GPJ I					-			-			-		-
DALE.	- 35 -							$\left \right $					
IVERI													
VE'S R								-					_
	- 40 -				-			Ē					
ORING								-					-
ESTB													
OIT T								-					_
νL	- 45 -				I	I	-	0 10	20	30 40) 50 6	0 70 8	0 90 100
	DRILLE	R: MACTEC				SC	DIL TEST	BO	UNC	G RF	COR	D	
	METHO	D: Hollow Stem Auger											
	HOLE D	 6.25 inches 5.25 inches 10 ft. screen, slot size 0.001 inches, DTW-21.34, 		ORIN(G NO. CT+	.:	EW-7 Lowe's	Rive	rdalo				
		TD-27.00		OCAT	ION:		Riverdal	e, Ge	orgia	Ĺ			
				RILLE	D:	2	June 13,	2006	J			D	
Ţ	THIS REC	CORD IS A REASONABLE INTERPRETATION OF		KOJE(J.:	6305-05-	-0303		Acta Marco Desirente		PAG	E 1 OF 1
	OCATIC	N. SUBSURFACE CONDITIONS AT OTHER DN. SUBSURFACE CONDITIONS AT OTHER DNS AND AT OTHER TIMES MAY DIFFER						Δ	\bigcap	ΓI	FC	I	
Ī	NTERFA	CES BEWEEN STRATA ARE APPROXIMATE.			and the second states	Í		1 1	L	L L	J	l .	an ann an Anna ann an Anna

D	SOIL CLASSIFICATION	L	E	S	AN	APLES	F	PL (%)	NM	(%)	I	L (%)
E P	AND REMARKS	E G	L E	I	Т	N-COUNT				FIN) IES (%)	-0	
T H	SEE KEY SHEET FOR EXPLANATION OF	E N	V	E	Y P	6" 16" 16"				• SP	T (bpf)			
(ft)	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	T	E	lst 2nc 3rc	1(0 20	30	40 5	i0 60	70	80 9	0 100
	ASPHALT and base.						_							
				-			-							-88
				-			-							-22 🕅
							-							
	0.0 ppm								-					
				 -			-							-22
				-			$\left - \right $							-88
	RESIDUAL						-							
	0.0 ppm			-			_							
							-							-88
				-			-							
15							-							
	0.0 ppm	-												
				-										
+ -	$\overline{\Sigma}$			-			-							
				-			-							-
	0.0 ppm													
							-							
				-			-							-22 12
							-							-88
- 25 -	0.0 ppm									-				
90							-							-88
							-							
	0.0 ppm													
				-			-							-88
							-							
	0.0 ppm													
							-				-			
							-							
							-							- 🛛 🕅
40 -	0.0 ppm					-								
							-							
							-							
45					l.	1 C) 1() 20	30	40 5	0 60	70	80 90) 100
DRILLEI	R: MACTEC				60	MI TROF	DO	1212			713 Pr	(epoly la cole		
EQUIPM	ENT: CME 75 D: Hollow Stem Auger				30	ML TEST	BO	KIN	IG R	ECC	JKD			
HOLE DI	IA.: 6.25 inches	B	ORINO	G NO.	:	DW-1								
REMARI	XS: 5 ft. screen, slot size 0.001 inches, DTW-17.20, TD-60.10	P	ROJEC	CT:		Lowe's -]	Rive	erda	le					
		L	OCAT	ION:		Riverdale	, Ge	eorg	ia					
L			RILLE	D: TTNC	.	June 14, 2	2006 2201						• م ال	
THIS REC	CORD IS A REASONABLE INTERPRETATION OF		RUJE		J.:	-20-2020	J3U.	3				PAG	E I	OF 2)
LOCATIC	FACE CONDITIONS AT THE EXPLORATION N. SUBSURFACE CONDITIONS AT OTHER N.S. AND AT OTHER TAXIED AT OTHER						٨	Γ	'n	D	\cap			
INTERFA	INS AND AT OTHER TIMES MAY DIFFER. ICES BEWEEN STRATA ARE APPROXIMATE.						Π	L	1	Ľ				
IKANSIT	IUNS BEIWEEN STRATA MAY BE GRADUAL			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -										

	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L F	SAMPLES		PL (%) NM (%) ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔			LL (%)					
	T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	(ft)	D E N T	Ý P E	1st 6" 2nd 6" 3rd 6"				SF	YES (f)		
	- 45 -	RESIDUAL 0.0 ppm			1]		30	40	50 6	<u>) 70</u>	80 9	<u>) 100</u> -
	- 50 -	0.0 ppm					•	-							-
								-							
	- 55							-							
							•	-							
							-	-							
	- 60 -	0.0 ppm						-							
								-		-					
	- 65 -	Boring terminated at 65 feet.													
		4 bags grade 1A sand 1 bag medium bentonite chips					r	-							-
	- 70 -							-							
7/06								-		`					T
GDT 7/1	- 75 -						-								
\W_GIBB						ļ		-		-					
E.GPJ L/	- 80 -							-							-
IVERDAI								-			-				-
OWE'S R								-							-
ORING L	- 85 -											-			
L TEST B							-	-							
SO	90 -	· · · · · · · · · · · · · · · · · · ·					0	1	0 20	30	40 :	50 60) 70	80 91	0 100
	DRILLE EQUIPM METHO	R: MACTEC IENT: CME 75 D: Hollow Stem Auger				SO	IL TEST	BC	ORIN	NG I	REC	ORI)		
	HOLE D REMAR	IA.: 6.25 inches KS: 5 ft. screen, slot size 0.001 inches, DTW-17.20, TD-60.10	B P	ORINO ROJEC	G NO. CT:		DW-1 Lowe's - I	Riv	verda	le					
				OCAT	ION: D:	2	Riverdale June 14, 2	, G 200	eorg 6	jia			m i i	- -	
	THIS RE SUBSUR	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION		ROJEC		ر.: === إ	6305-05-0)30 ==== •	13 	۹r-۳-	17-1		PA(JE 2	OF 2
an an an sing of a first start of the	LOCATIO INTERFA TRANSI	NS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN.STRATA MAY BE.GRADUAL					IVI.	A		1	E		1		

APPENDIX E SOIL AND GROUNDWATER BACKGROUND CALCULATIONS

BACKGROUND SOIL CONCENTRATIONS LOWE'S HOME IMPROVEMENT CENTER RIVERDALE, GEORGIA MACTEC PROJECT NO. 6305-05-0303

Original	Data				Log10 Data		
Barium	Chromiur	n Lead			logBa	logCr	logPb
55.8	⁻ 9.06	43.1			1.746634	0.957128	1.634477
8.96	8.26	41.4			0.952308	0.91698	1.617
37.1	26.4	34.8			1.569374	1.421604	1.541579
25.2	4.68	23			1.401401	0.670246	1.361728
126	7.83	22.8			2.100371	0.893762	1.357935
21.4	3.77	18.3			1.330414	0.576341	1.262451
5.97	8.9	18.1			0.775974	0.94939	1.257679
116	6.06	16.3		, di	2.064458	0.782473	1.212188
125	4.19	15.5			2.09691	0.622214	1.190332
42.5	19.6	13.9			1.628389	1.292256	1.143015
3.67	4.72	12			0.564666	0.673942	1.079181
72.2	13	11.9			1.858537	1.113943	1.075547
67 7	60.4	11.6			1.830589	1.781037	1.064458
84.8	4 16	11.6			1.928396	0.619093	1.064458
31 3	14 4	11.4			1.495544	1.1 i8362	1.056905
56 1	5 54	10.9			1.748963	0.74351	1.037426
3 57	6.17	10.7			0.552668	0.790285	1.029384
65.2	2.18	10.5	•		1.814248	0.338456	1.021189
38 /	30	10.2			1.584331	1.477121	1.0086
15.5	5 94	10.1			1.190332	0.773786	1.004321
10.0	10.5	9.87			2.139879	1.021189	0.994317
21	16.3	9.45		· .	1.491362	1.212188	0.975432
44 4	10.3	9.40			1.045323	1.663701	0.968016
0.45	261	0.28			0,926857	0.416641	0.967548
0.40	2.01	9.20 Q 1	1.19		1,908485	0.346353	0.959041
01 400	2.22	0.01			2.033424	0.4843	0.954725
108	3.00	9.01			1.557507	1.164353	0.937518
30.1	14.0	8.00			1,742725	0.385606	0.933993
55.3	2.40	0.35			2.037426	1.113943	0.928396
109	15 2	8.40 8.1/			1,409933	1.184691	0.910624
25.7	10.0	8.08			1,517196	0.414973	0.907411
32.9	2.0	70			1.103804	0.534026	0.897627
12.7	J.42 10 A	7.5			1,624282	1.264818	0.850033
42.1	10.4	6.84			1,338456	0.330414	0.835056
21.0	2.14	648			1,220108	1.332438	0.811575
10.0	42.0	6 10			0.585461	1.08636	0.791691
3.00	0.50	5 56			0.770852	0.981819	0.745075
5.9 74 4	9.09	5 19			1.853698	0.338456	0.715167
11.4	2.10	4.61			0.64836	0.330414	0.663701
4.40	4 79	4.36			2.082785	0.235528	0.639486
121	0.50	4.00			1.992111	0.981819	0.632457
96.2	9.09	4.25			1,409933	0.642465	0.611723
20.7	4.35	4.03			0.661813	0.678518	0.61066
4.59	4.77	3.67					0.564666
···					0 400070	4 704007	1 624477
			max		2.1398/9	0.725576	1.004477
			min		0.002000	0.200020	0.004000
			mean		1.4/293/	0.00041/	0.330041
			SD		0.486/15	0.391424	+ 0.204711

* Upper tolerance limit calculated using method from "Statistical Analysis of Ground-Water Monitoring Data att RCRA Facilities, Intrim Final Guidance, April 1989" Section 5.3. UTL = mean + K * SD

n

Κ

UTL*

UTL_antilog**

44

2.092

43

2.092

2.491144 1.672277 1.528896

309.8447 47.01937 33.79839

43

2.092

** Since original data was log-transformed, results have to be anti-logged to determine actual concentrations.

Data minus MW-1, MW-2, B4, B5, TW-25, MW-3

	Original	Data		
	Barium	Chromium	Lead	
TW-11	0.136	0.01	0.0543	
TW-11	0.057	0.01	0.01	
TW-17	0.0764	0.01	0.01	
TW-20	0.0237	0.01	0.01	
TW-23	0.038	0.01	0.01	
TW-24	0.0221	0.01	0.01	
TW-25				
TW-26	0.0543	0.01	0.01	
TW-27	0.112	0.01	0.01	
TW-28	0.02	0.01	0.01	
TW-29	0.0631	0.01	0.01	
TW-30	0.02	0.01	0.01	
TW-34	0.02	0.01	0.01	
TW-35	0.139	0.01	0.01	
TW-36	0.0544	0.01	0.01	
EW-1	0.0218	0.01	0.01	
EW-2	0.0569	0.01	0.01	
EW-3	0.0368	0.01	0.01	
EW-4	0.02	0.01	0.01	
EW-5	0.0306	0.01	0.01	
EW-6	0.02	0.0122	0.01	
EW-7	0.02	0.01	0.01	
DW-1	0.02	0.01	0.01	

Log10 Data

logBa	logCr	logPb
-0.866461	-2	-1.2652
-1.244125	-2	-2
-1.116907	-2	-2
-1.625252	-2	-2
-1.420216	-2	-2
-1.655608	-2	-2
-1.2652	-2	-2
-0.950782	-2	-2
-1.69897	-2	-2
-1.199971	-2	-2
-1.69897	-2	-2
-1.69897	-2	-2
-0.856985	-2	-2
-1.264401	-2	-2
-1.661544	-2	-2
-1.244888	-2	-2
-1.434152	-2	-2
-1.69897	-2	-2
-1.514279	-2	-2
-1.69897	-1.91364	-2
-1.69897	-2	-2
-1.69897	-2	-2

	Barium	Chromiu	Lead
		m	
max	-0.856985	-1.91364	-1.2652
min	-1.69897	-2	-2
mean	-1.418798	-1.996075	-1.9666
SD	0.293048	0.018412	0.15666
n	22	22	22
K	2.35	2.35	2.35
UTL*	-0.730136	-1.952806	-1.598449
UTL_antile	0.18615	0.011148	0.025209

* Upper tolerance limit calculated using method from "Statistical Analysis of ** Since original data was log-transformed, results have to be anti-logged to

Background Calculations for Nickel Copper and Zinc in Groundwater

Combining guidance from ""Statistical Analysis of Ground-water Monitoring Data at RCRA Facilities – Interim Final Guidance" April 1989 and "Statistical Analysis of Ground-water Monitoring Data at RCRA Facilities – Addendum to Interim Final Guidance" July 1992, the following decisions will lead to an acceptable statistical analysis of sample values being tested for exceedances.

- 1. Is the proportion of non-detected values greater than 90%? (If so, use Wilcoxon Rank Sum test to compare against a background set, or Poisson Limits for comparison to a single value limit such as a regulatory value)
- 2. Is the proportion of non-detected values between 50% and 90%? (If so, use Wilcoxon Rank Sum test to compare against a background set, or Nonparametric Limits for comparison to a single value limit such as a regulatory value)
- 3. Is the proportion of non-detected values between 15% and 50%? (If so, use Wilcoxon Rank Sum test to compare against a background set, or use Cohen's or Aitchison's adjustments to mean/SD and Parametric limits (Cohen assumes analyte all samples at some concentration while Aitchison assumes analyte is absent in ND samples, but both assume normal/lognormal distributions) for comparison to a single value limit such as a regulatory value)
- 4. Is the proportion of non-detected values between 0% and 15%? (If so, ½ of the reporting limit for ND values and use ANOVA or t test to compare against a background set, or use Parametric limits for comparison to a single value limit such as a regulatory value)
- 5. If there are no NDs use ANOVA or t test to compare against a background set, or use Parametric limits for comparison to a single value limit such as a regulatory value

Nickel

Only two of the four analytes under consideration have ND values (nickel 100%, copper 22.2%) (See table 1). Since there are no detected values for nickel in the background data set, it is prudent to assume that any analysis that exceeds the reporting limit of 0.01 mg/L is not representative of background.

Copper

Copper is a naturally-occurring metal in soils in Georgia, so it is appropriate to use Cohen's adjustments rather than Aitchison's.

Copper does not fail a Shapiro-Wilks test for normality. It is assumed to be normally distributed.

Mean of detected values (xbar) = 0.003071Variance of detected values (S²_d) = 1.259E-06Number of detected values (m) = 7 Number of total values (n) = 9 Detection Limit (DL) = 0.01 h = (n-m)/n = (9-7)/9 = 2/9 = 0.2222 γ = S²_d/(xbar-DL)² = 0.026223

 λ (from table A-5 in Addendum) = 0.25

Xadj = xbar- λ (xbar-DL)= 0.004803 SDadj = SQRT(S²_d + λ (xbar-DL)²)= 0.003642

Upper Tolerance limit = $Xadj + 3.031^*$ SDadj = $0.004803 + 3.031^* 0.003642 = 0.015842 \text{ mg/L}$

Zinc

Zinc fails a Shapiro-Wilks test for normality but does not fail the same test for lognormality. It is assumed to be lognormally distributed

Zinc is a naturally-occurring metal in soils in Georgia, so it is appropriate to use Cohen's adjustments rather than Aitchison's.

Zinc analyses are log10 transformed, then after calculating the adjusted mean and standard deviation, a tolerance limit is calculated and back-transformed by an antilog transform.

<u>Zinc</u>

(data are log10 transformed) Mean of values (X) = -2.069Variance of values $(S^2) = 0.1004$ Number of detected values (m) = 9Number of total values (n) = 9Detection Limit (DL) = 0.02

Then

Upper Tolerance limit = $X + 3.031^* S = -2.069 + 3.031^* sqrt(0.1004) = -1.1086$

Antilog transforming:

Upper Tolerance limit = $10^{()}$ = <u>0.07788 mg/L</u>

Then

Well_ID	date	param	t_value	stat_value	ND_	Flag	valqual	MDL	RL
EW-2	4/30/2007	Arsenic	BRL	0.025	ND			0.0033	0.05
EW-2	4/30/2007	Barium	0.0299	0.0299				0.0016	0.02
EW-2	4/30/2007	Cadmium	BRL	0.0025	ND			0.0026	0.005
EW-2	4/30/2007	Chromium	BRL	0.005	ND			0.0077	0.01
EW-2	4/30/2007	Copper	0.0041	0.0041			J	0.0017	0.01
EW-2	4/30/2007	Lead	BRL	0.005	ND			0.0036	0.01
EW-2	4/30/2007	Nickel	BRL	0.01	ND			0.0034	0.02
EW-2	4/30/2007	Selenium	BRL	0.01	ND			0.0059	0.02
EW-2	4/30/2007	Silver	0.0007	0.0007			J	0.0004	0.01
EW-2	4/30/2007	Zinc	0.0272	0.0272				0.0033	0.02
EW-2	4/30/2007	Mercury	0.00005	0.00005			J	0.00004	0.0002
EW-3	4/30/2007	Arsenic	BRL	0.025	ND			0.0033	0.05
EW-3	4/30/2007	Barium	0.0364	0.0364				0.0016	0.02
EW-3	4/30/2007	Cadmium	BRL	0.0025	ND			0.0026	0.005
EW-3	4/30/2007	Chromium	BRL	0.005	ND			0.0077	0.01
EW-3	4/30/2007	Copper	0.0028	0.0028			J	0.0017	0.01
EW-3	4/30/2007	Lead	0.0039	0.0039			J	0.0036	0.01
EW-3	4/30/2007	Nickel	BRL	0.01	ND			0.0034	0.02
EW-3	4/30/2007	Selenium	BRL	0.01	ND			0.0059	0.02
EW-3	4/30/2007	Silver	BRI	0.005	ND			0 0004	0.01
EW-3	4/30/2007	Zinc	0 0034	0 0034			J	0.0033	0.02
EW-3	4/30/2007	Mercury	0 00006	0 00006			J	0.00004	0 0002
EW-4	4/30/2007	Arsenic	BRI	0.025	ND		-	0.0033	0.05
EW-4	4/30/2007	Barium	0.0371	0.0371				0.0016	0.02
EW-4	4/30/2007	Cadmium	BRL	0.0025	ND			0.0026	0.005
EW-4	4/30/2007	Chromium	BRI	0.005	ND			0.0077	0.01
EW-4	4/30/2007	Copper	0 003	0.003	n.		J	0.0017	0.01
EW-4	4/30/2007	Lead	0.0042	0 0042			J	0.0036	0.01
EW-4	4/30/2007	Nickel	BRI	0.001	ND		Ũ	0.0034	0.02
EW-4	4/30/2007	Selenium	BRI	0.01	ND			0.0059	0.02
EW-4	4/30/2007	Silver	BRI	0.005	ND			0.0004	0.01
EW-4	4/30/2007	Zinc	0 0052	0.0052	ND		.1	0.0033	0.02
E\//_4	4/30/2007	Mercury	BRI	0.0001	ND		U	0 00004	0 0002
EW-5	4/30/2007	Arsenic	BRI	0.025	ND			0.0033	0.05
EW-5	4/30/2007	Barium	0 0087	0.020			.1	0.0016	0.02
EW-5	4/30/2007	Cadmium	BRI	0.0025	ND		U	0.0026	0.005
EW-5	4/30/2007	Chromium	BRI	0.005	ND			0.0077	0.01
EW-5	4/30/2007	Conner	0 0021	0.000			.1	0.0017	0.01
	4/30/2007	Lead	BRI	0.0021			U	0.0036	0.01
EW-5	4/30/2007	Nickel	BRI	0.00	ND			0.0000	0.01
EW-5	4/30/2007	Selenium	BRI	0.01				0.0004	0.02
EVV-5	4/30/2007	Silver	0 0008				I	0.0000	0.02
E\V-5	4/30/2007	Zinc	0.0000	0.0000			J	0.0004	0.01
E\//_5	4/30/2007	Mercury	BDI	0.0000			5	0.0000	0.02
	A/30/2007		BRI	0.0001				0.00004	0.0002
	A/20/2007	Rarium	0 0101	0.020			.1	0.0000	0.00
	A/20/2007	Cadmium	BDI	0.0191			J .	0.0010	0.02
	A/20/2007	Chromium	BRI	0.0020				0.0020	0.000
	A/20/2007	Copper	BRI	0.000				0.0077	0.01
	A/20/2007	Lead	BRI	0.000				0.0017	0.01
DM_{-1}	A/30/2007	Nickel	BRI	0.000				0.0030	0.01
		NUCLO		0.01	110			0.0004	0.02

DW-1	4/30/2007	Selenium	0.0064	0.0064	J	0.0059	0.02
DW-1	4/30/2007	Silver	BRL	0.005 ND		0.0004	0.01
DW-1	4/30/2007	Zinc	0.0229	0.0229		0.0033	0.02
DW-1	4/30/2007	Mercury	BRL	0.0001 ND		0.00004	0.0002
EW-6	4/30/2007	Arsenic	BRL	0.025 ND		0.0033	0.05
EW-6	4/30/2007	Barium	0.0519	0.0519		0.0016	0.02
EW-6	4/30/2007	Cadmium	BRL	0.0025 ND		0.0026	0.005
EW-6	4/30/2007	Chromium	BRL	0.005 ND		0.0077	0.01
EW-6	4/30/2007	Copper	0.005	0.005	J	0.0017	0.01
EW-6	4/30/2007	Lead	BRL	0.005 ND		0.0036	0.01
EW-6	4/30/2007	Nickel	BRL	0.01 ND		0.0034	0.02
EW-6	4/30/2007	Selenium	0.007	0.007	J	0.0059	0.02
EW-6	4/30/2007	Silver	BRL	0.005 ND		0.0004	0.01
EW-6	4/30/2007	Zinc	0.0145	0.0145	J	0.0033	0.02
EW-6	4/30/2007	Mercury	BRI	0 0001 ND	-	0.00004	0.0002
EW-7	4/30/2007	Arsenic	BRI	0.025 ND		0.0033	0.05
EW-7	4/30/2007	Barium	0.0268	0.0268		0.0016	0.02
EW-7	4/30/2007	Cadmium	BRI	0.0025 ND		0.0026	0 005
EW-7	4/30/2007	Chromium	BRI	0.005 ND		0.0077	0.01
	4/30/2007	Copper	0.0018	0.0018	.1	0.0017	0.01
	4/30/2007	Lead	BRI		0	0.0036	0.01
	4/30/2007	Nickol	BRI	0.000 ND		0.0034	0.07
	4/30/2007	Solonium	BDI			0.0004	0.02
	4/30/2007	Silver		0.001 ND	I	0.0003	0.02
	4/30/2007	Zino	0.0003	0.0000	J	0.0004	0.01
	4/30/2007	Morouny	DDI		5	0.0000	0.02
	4/30/2007	Arecenie		0.0001 ND		0.00004	0.0002
	4/30/2007	Arsenic		0.023 ND	I	0.0035	0.00
	4/30/2007	Darium		0.0110	J	0.0010	0.02
	4/30/2007	Cadmium		0.0025 ND		0.0020	0.000
	4/30/2007	Chromium		0.005 ND		0.0017	0.01
	4/30/2007	Copper	BRL	0.005 ND		0.0017	0.01
	4/30/2007	Lead	BRL			0.0030	0.01
	4/30/2007		BRL	0.01 ND		0.0054	0.02
	4/30/2007	Selenium	BRL			0.0059	0.02
	4/30/2007	Silver	BRL	0.005 ND		0.0004	0.01
	4/30/2007	Zinc	0.000	0.000	J	0.0033	0.02
EVV-8	4/30/2007	Mercury	0.00026	0.00026		0.00004	0.0002
EVV-8A	4/30/2007	Arsenic	BRL	0.025 ND		0.0033	0.05
EVV-8A	4/30/2007	Barium	0.0175	0.0175	J	0.0016	0.02
EVV-8A	4/30/2007	Cadmium	BRL	0.0025 ND		0.0026	0.005
EVV-8A	4/30/2007	Chromium	BRL	0.005 ND		0.0077	0.01
EVV-8A	4/30/2007	Copper	0.0027	0.0027	J	0.0017	0.01
EW-8A	4/30/2007	Lead	BRL	0.005 ND		0.0036	0.01
EW-8A	4/30/2007	Nickel	BRL	0.01 ND		0.0034	0.02
EW-8A	4/30/2007	Selenium	BRL	0.01 ND		0.0059	0.02
EW-8A	4/30/2007	Silver	BRL	0.005 ND		0.0004	0.01
EW-8A	4/30/2007	Zinc	0.0051	0.0051	J	0.0033	0.02
EW-8A	4/30/2007	Mercury	0.00045	0.00045		0.00004	0.0002
EW-9	4/30/2007	Arsenic	BRL	0.025 ND		0.0033	0.05
EW-9	4/30/2007	Barium	0.178	0.178		0.0016	0.02
EW-9	4/30/2007	Cadmium	0.0993	0.0993		0.0026	0.005
EW-9	4/30/2007	Chromium	0.0145	0.0145		0.0077	0.01

	4/20/2007	Connor	1 11	1 4 1		0.0017	0.01	
	4/30/2007	Lood	0.481	0.481		0.0017	0.01	
	4/30/2007	Leau	0.401	0.401		0.0030	0.01	
	4/30/2007	Solonium	0.100			0.0054	0.02	
	4/30/2007	Silvor	BDI			0.0003	0.02	
	4/30/2007	Zino	51	0.000 ND		0.0004	0.01	
	4/30/2007	Moroup	DDI J.4			0.0000	0.02	
EVV-9	4/30/2007	Arecenie		0.0001 ND		0.00004	0.0002	
	4/30/2007	Risenic	0.071	0.023 ND		0.0035	0.00	
EVV-10	4/30/2007	Cadmium	0.271	0.271		0.0010	0.02	
EVV-10	4/30/2007	Caumum	0.0034	0.005 ND		0.0020	0.005	
EVV-10	4/30/2007	Chronnum		0.005 ND		0.0077	0.01	
EVV-10	4/30/2007	Copper	0.0404	0.0404		0.0017	0.01	
EVV-10	4/30/2007	Lead	0.209	0.209		0.0030	0.01	
	4/30/2007	Nickei	0.0152	0.0152	J	0.0034	0.02	
	4/30/2007	Selenium	0.0109	0.0159	J	0.0059	0.02	
EVV-10	4/30/2007	Sliver	BRL 2 10	0.005 ND		0.0004	0.01	
EVV-10	4/30/2007		5.19	3.19 0.0001 ND		0.0033	0.02	
	4/30/2007	Mercury	BRL	0.0001 ND		0.0004	0.0002	
	4/30/2007	Arsenic	BRL	0.025 ND		0.0033	0.05	
	4/30/2007	Barium	0.0390	0.0390		0.0016	0.02	
	4/30/2007	Cadmium	BRL	0.0025 ND		0.0026	0.005	
EVV-11	4/30/2007	Chromium	BRL	0.005 ND		0.0077	0.01	
EVV-11	4/30/2007	Copper	0.0064	0.0064	J	0.0017	0.01	
EVV-11	4/30/2007	Lead	BRL	0.005 ND		0.0036	0.01	
EVV-11	4/30/2007	Nickel	BRL	0.01 ND		0.0034	0.02	
EVV-11	4/30/2007	Selenium	BRL	0.01 ND		0.0059	0.02	
EVV-11	4/30/2007	Silver	BRL	0.005 ND		0.0004	0.01	
EVV-11	4/30/2007	Zinc	0.0108	0.0108	J	0.0033	0.02	
EVV-11	4/30/2007	Mercury	BRL	0.0001 ND		0.00004	0.0002	
Ew-11Dup	4/30/2007	Arsenic	BRL	0.025 ND		0.0033	0.05	
Ew-11Dup	4/30/2007	Barium	0.0386	0.0386		0.0016	0.02	
Ew-11Dup	4/30/2007	Cadmium	BRL	0.0025 ND		0.0026	0.005	
Ew-11Dup	4/30/2007	Chromium	BRL	0.005 ND		0.0077	0.01	
Ew-11Dup	4/30/2007	Copper	0.0067	0.0067	J	0.0017	0.01	
Ew-11Dup	4/30/2007	Lead	BRL	0.005 ND		0.0036	0.01	
Ew-11Dup	4/30/2007	Nickel	BRL	0.01 ND		0.0034	0.02	
Ew-11Dup	4/30/2007	Selenium	BRL	0.01 ND		0.0059	0.02	
Ew-11Dup	4/30/2007	Silver	0.0005	0.0005	J	0.0004	0.01	
Ew-11Dup	4/30/2007	Zinc	0.0149	0.0149	J	0.0033	0.02	
Ew-11Dup	4/30/2007	Mercury	BRL	0.0001 ND		0.00004	0.0002	

APPENDIX F

RISK REDUCTION STANDARD CALCULATIONS

SUMMARY SOIL RRS

			Type 3	Type 3	MI	
	Type 1 Soil RRS	Type 2 Soil RRS	Subsurface Soil RRS	Surface Soil RRS	Type 4 Soil RRS	
SUBSTANCE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) (a)	
<u>Metals</u> Arsenic	2 0F+01	5 8F+00	4 1F+01	3 8F+01	5 8F+00	
Barium	1.0E+03	2.6E+03	1.0E+03	1.0E+03	1.7E+04	
Cadmium	2.0E+00	1.2E+01	3.9E+01	3.9E+01	7.7E+01	
Chromium	1.0E+02	3.8E+01	1.2E+03	1.2E+03	1.2E+02	
Copper	1.0E+02	3.1E+03	1.5E+03	1.5E+03	3.5E+04	
Lead	7.5E+01	2.7E+02	4.0E+02	4.0E+02	2.7E+02	
Mercury	5.0E-01	4 .9E+00	1.7E+01	1.7E+01	3.2E+01	
Nickel	5.0E+01	4 .1E+02	4.2E+02	4.2E+02	2.7E+03	
Selenium	2.0E+00	8.1E+00	3.6E+01	3.6E+01	1.0E+02	
Zinc	1.0E+02	5.8E+03	2.8E+03	2.8E+03	3.8E+04	
Volatile Organic Compounds (VOCs)						
1,2,4-Trimethylbenzene	5.0E-01	7.4E+00	5.0E-01	5.0E-01	2.6E+01	
1,3,5-Trimethylbenzene	5.0E-01	1.7E+00	5.0E-01	5.0E-01	5.8E+00	
Acetone	4.0E+02	6.0E+01	4.0E+02	4.0E+02	3.9E+02	
Benzene	5.0E-01	1.4E-01	5.0E-01	5.0E-01	2.5E-01	
Benzene (mid-point)	5.0E-01	1.4E-01	5.0E-01	5.0E-01	2.6E-01	
n-Butylbenzene	5.0E-01	7.0E+02	5.0E-01	5.0E-01	4.6E+03	
Chloroform	3.7E+00	2.0E+00	1.0E+01	4.7E+00	2.0E+00	
cis-1,2-Dichloroethene	5.3E-01	2.9E+00	5.3E-01	5.3E-01	1.9E+01	
Cyclohexane	5.0E-01	2.9E+02	5.0E-01	5.0E-01	1.4E+03	
Diisopropyl ether	5.0E-01	1.9E+00	5.0E-01	5.0E-01	9.2E+00	
Ethylbenzene	7.0E+01	1.0E+02	7.0E+01	7.0E+01	3.4E+02	
Isopropylbenzene	2.2E+01	2.6E+01	2.2E+01	2.2E+01	1.3E+02	
Methylcyclohexane	5.0E-01	1.6E+03	5.0E-01	5.0E-01	8.1E+03	
MTBE	5.0E-01	5.1E-01	5.0E-01	5.0E-01	9.3E-01	
n-Propylbenzene	5.0E-01	7.0E+02	5.0E-01	5.0E-01	4.6E+03	
Tetrachloroethene	5.0E-01	3.4E-01	5.0E-01	5.0E-01	3.4E-01	
Toluene	1.0E+02	7.7E+01	1.0E+02	1.0E+02	4.0E+02	
Xylenes	1.0E+03	2.2E+02	1.0E+03	1.0E+03	1.1E+03	
Polvevelje Aromatic Hydrocarhons (PAHs)						
a offertations (Artonnaus Artar) of over a one of a caraol	1 06103	1 66101	1 NELOO	1 05+03	1 GE+01	
Naphthalene	1.05+02	1.05701	1.05+02	1.011102	1.01-101	

IW Industrial Worker RRS Risk Reduction Standard ND No Data Prepared by: MKB 3/15/06 Checked by: LMS 7/5/06

1 of 1

Ty	Ta
pe	ble
-	
h	
ģ	
<u>n</u>	
Ĥ,	
¥	
6	
5	
Ŧ.	
Ĕ	
ď	
۶	
ate	
H.	
RF	
õ	
3	
ē	
٣	

i orrerene ar oniacie intorocal bolls (1 Attis)	Polycyclic Aromatic Hydrocarhons (PAHs)	Xylenes, mixed	Toluene	Tetrachloroethene	n-Propylbenzene	Methyl tert-butyl ether (MTBE)	Methylcyclohexanc	Isopropylbenzene	Ethylbenzne	Diisopropyl ether	Cyclohexane	cis-1,2-Dichloroethene	Chloroform	n-Butylbenzene	Benzene (mid-point)	· Benzenc ·	Acetone	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzenc	Volatile Organic Compounds (VOCs)	Zinc	Selenium	Nickel	Mercury	Lead	Copper	Chromium	Cadimum	Barium	Arsenic	Metals		Parameter		
2.00E-02		2.00E-01	8.00E-02	1.00E-02	4.00E-02	ND	ND	1.00E-01	1.00E-01	DN	ND	1.00E-02	1.00E-02	4.00E-02	4.00E-03	4.00E-03	9.00E-01	5.00E-02	5.00E-02		3.00臣-01	5.00E-03	2.00E-02	3.00E-04	ND	4.00E-02	3.00E-03	5.00E-04	2.00E-01	3.00E-04		(mg/kg/day)	(RfDo)	Oral	Chronic F
8.60E-04		2.90E-02	1.40E+00	1.00E-02	ND	8.60E-01	8.60E-01	1.10E-01	2.90E-01	1.10E-01	1.70E+00	ND	1.40E-02	ND	.8.60E-03	8.60E-03	ND	1.70E-03	1.70E-03		ND	dN	ND	8.60E-05 *	ND	ND	3.00E-05 *	ND	1.4.E-04 *	ND		(mg/kg/day)	(RfDi)	Inhalation	leference Dose
ND		ND	ND	5.40E-01	ND	1.80E-03	ND	ND	ND	ND	dN	ND	ND	dN	3.50E-02	5.50E-02	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	1.50E+00		(mg/kg/day)-1	(SFo)	Oral	Cancer
ND		ND	ND	2.10E-02	ND	1.80E-03	ND	ND	ND	ND	ND	ND	8.10E-02	dN	2.70E-02	2.70E-02	ND	ND	dN		ND	dN	ND	ND	ND	ND	NA	6.3E+00 *	ND	1.51E+01 *		(mg/kg/day)-1	(SFi)	Inhalation	Slope Factor
с		D	D	B-C2	D	ND	NA	ND	D	D	NA	D	B2	D	A	A	D	D	D		σ	D	ND	с	B2	σ	Bl	BI	Ð	A			Evidence	Weight of	
IRIS		IRIS	IRIS	IRIS, Cal EPA	NCEA	IRIS, Cal EPA	HEAST	ND	IRIS	PPRTV	IRIS	PPRTV	IRIS, NCEA	NCEA	IRIS	IRIS	IRIS	PPRTV	PPRTV		IRIS	IRIS	IRIS	IRIS	IRIS	HEAST	IRIS 1	IRIS	IRIS	IRIS			RfDs and SFs	Source for Chronic	
2.00E-02		1.00E+01	1.00E+00	5.00E-03	5.00E-03	5.00E-03	5.00E-03	5.00E-03	7.00E-01	5.00E-03	5.00E-03	5.00E-03	1.00E-01	5.00E-03	5.00E-03	5.00E-03	4.00E+00	5.00E-03	5.00E-03		2.00E+00	5.00E-02	1.00E-01	2.00E-03	1.50E-02	1.30E+00	1.00E-01	5.00E-03	2.00E+00	1.00E-02		(mg/L) (a)	Groundwater RRS	Type 1/ Type3	
6		2	2	6	RL 1	RL 6	RL 6	RL 6	1	RL 8	RL 1	RL 3	7	RL	4	4	ω	RL 1	RL · 1		1	1	7	1			_	1	. 7	1		(1)	None		
22E-03		.06E-01	27E+00	.08E-02	46E+00	28E+00	28E+00	.58E-01	34E+00	.03E-01	24E+01	.65E-01	.98E-02	46E+00	.39E-02	.39E-02	29E+01	.23E-02	.23E-02		10E+01	.83E-01	.30E-01	.10E-02	ND	46E+00	.10E-01	.83E-02	30E+00	.10E-02		1g/L) (b)	arcinogenic	Adult	Type 2 Star
ND		ND	UN	1.32E-03	ND	7.89E-02	ND	ND	ND	dN	ND	ND	2.10E-03	ND	5.01E-03	4.48E-03	ND	ND	ND		ND	ND	ND	ND	ND	ND	NA	ND	ND	5.68E-04		(mg/L) (c)	Carcinogenic		Idard
1.78E-03		5.93E-02	8.76E-01	1.84E-02	6.26E-01	1.79E+00	1.79E+00	2.00E-01	4.36E-01	2.29E-01	3.55E+00	1.56E-01	2.46E-02	6.26E-01	1.39E-02	1.39E-02	1.41E+01	3.53E-03	3.53E-03		4.69E+00	7.82E-02	3.13E-01	4.69E-03	ND	6.26E-0]	4.69E-02	7.82E-03	3.13E+00	4.69E-03		(mg/L) (b)	Noncarcinogenic	Ch	Type 2 S
ND		ND	QN	2.62E-03	ND	1.19E-01	ND	ND	ND	ND	ND	ND	3.00E-03	N D	7.68E-03	7.09E-03	ND	ND	ND		ND	ND	ND	ND	ND	ND	NA	ND	ND	1.22E-03		(mg/L) (c)	Carcinogenic	Id	andard
1.78E-03		5.93E-02	8.76E-01	1.32E-03	6.26E-01	7.89E-02	1.79E+00	2.00E-01	4.36E-01	2.29E-01	3.55E+00	1.56E-01	2.10E-03	6.26E-01	5.01E-03	4.48E-03	1.41E+01	3.53E-03	3.53E-03		4.69E+00	7.82E-02	3.13E-01	4.69E-03	ND	6.26E-01	4.69E-02	7.82E-03	3.13E+00	5.68E-04		(mg/L) (d)	RRS	Overall	Type 2
2.00E-02		1.00E+01	1.00E+00	5.00E-03	6.26E-01	7.89E-02	1.79E+00	2.00E-01	7.00E-01	2.29E-01	3.55E+00	1.56E-01	1.00E-01	6.26E-01	5.01E-03	5.00E-03	1.41E+01	5.00E-03	5.00E-03		4.69E+00	7.82E-02	3.13E-01	4.69E-03	1.50E-02	1.30E+00	1.00E-01	7 87E-03	3.13E+00	1.00E-02		(mg/L) (e)	RRS	Residential	Overall
8.75E-03		2.92E-01	5.20E+00	9.29E-02	4.09E+00	8.79E+00	8.79E+00	1.01E+00	2.30E+00	1.12E+00	1.74E+01	1.02E+00	1.26E-01	4.09E+00	7.23E-02	7.23E-02	9.20E+01	1.73E-02	1.73E-02		3.07E+01	5.11E-01	2.04E+00	3.07E-02	CN	4.09E+00	3.07E-01	5 11E-02	2.04E+01	3.07E-02		(mg/L) (b)	Noncarcinogenic	Industrial	Type 4 (1
dN		ND	N	3.82E-03	ND	1.45E-01	ND	ND	ND	DN	ND	ND	3.53E-03	ND	9.38E-03	8.80E-03	dN	ND	ND		ND	ND	ND	ND	A S	ND	NA	UN 1	ND	1.91E-03		(mg/L) (c)	Carcinogenic	Worker	ng/L)
8 75E-03		2.92E-01	5.20E+00	3.82E-03	4.09E+00	1.45E-01	8.79E+00	1.01E+00	2.30E+00	1.12E+00	1.74E+01	1.02E+00	3.53E-03	4.09E+00	9.38E-03	8.80E-03	9.20E+01	1.73E-02	1.73E-02		3.07E+0]	5.11E-01	2.04E+00	3.07E-02	N	4.09E+00	3 07E-01	5 11F-02	2.04E+01	1.91E-03		(mg/L) (f)	RRS	Overall	Type 4
2 00F-0		1.00E+01	5.20E+00	5.00E-03	4.09E+00	1.45E-01	8.79E+00	1.01E+00	2.30E+00	1.12E+00	1.74E+01	1.02E+00	1.00E-01	4.09E+00	9.38E-03	8.80E-03	9.20E+01	1.73E-02	1.73E-02		3.07E+01	5.11E-01	2.04E+00	3.07E-02	1 50E-02	4.09E+00	3 07F-01	5 11 E-02	2.04E+01	1.00E-02		(mg/L) (g	RRS	Nonresident	Overall

.

(a) Value from Appendix III. Table 1 of the Rules of the Georgia Department of Natural Resources, Environmental Protection Division, Hazardous Site Reponse, Chapter 319-3-19, For those constituents not listed, the reporting limit (RL) used as the Type 1/3 RRS.

THI x BW x ATn x 365davs/year EF x ED x [(1/RfDi x K x IRa) + (1/RfDo x IRw)]

(b)

(c) TR x BW x ATc x 365days/year EF x ED x [(SFi x K x IRa) + (SFo x IRw)]

* 🕤 🖻 🖨

Value is the minimum of the Type 2 Standard noncarcinogenic and carcinogenic concentration calculations. Value is the maximum concentration of the Type 1/3 Groundwater RRS and the Overall Type 2 RRS Value is the minimum of the Type 4 noncarcinogenic and carcinogenic concentration calculations. Value is the maximum concentration of the overall residential RRS and the overall Type 4 RRS Inorganics are not volatile during showering and the inhalation pathway is not applicable.

IRUS HEAST NCEA PPRTV CalEPA GaEPD RfD SF ND RRS RL

Integrated Risk Information System, USEPA Health Effects Assessment Summary Table FY1997, USEPA National Center for Environmental Assessment, USEPA Provisional Peer Reviewed Toxicity Values, USEPA Georgia Environmental Protection Agency Georgia Environmental Protection Division Reference Dose Cancer Slope Factor Not Determined/Not Available. Risk Reduction Slandard Reporting Limit Charled International Properties of the Prepared by:

Prepared by: MKB 3/6/06 Checked by: LMS 7/5/06

l of l

Table 2 Type 1 and 3 Soil Calculations, mg/kg

Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene	1,3,5-Trimethylbenzene Aeetone Benzene Benzene Chloroform cis-1,2-Dichlorothene Cyclohexane Diisopropyl ether Ethylbenzene Methylcyclohexane MrtBE n-Propylbenzene Toluene Toluene Xylenes	Metals Arsenic Barium Cadmium Chromium Copper Lead Mercury Nickel Selenium Zinc Volatile Organic Compounds (VOCs) 1,2,4-Trimethylbenzene	PARAMETER
7.07E+04	1.00E+64 2.88E+03 2.87E+03 1.43E+04 1.43E+04 2.87E+03 2.84E+03 6.84E+03 2.95E+03 2.95E+03 1.43E+04 2.95E+03 1.43E+04 1.43E+04 1.43E+04 3.7.21E+03	(m.7kg) 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Volatilization Factor
ND	3 3 3 3 3 8 3 3 3 4 3 3 3 4 3 3 3 4 3 4 3 4	(mg/kg) (a) 2.0E+01 1.0E+03 2.0E+00 1.0E+02 1.0E+02 7.5E+01 5.0E+02 7.5E+01 5.0E+02 7.0E+02 1.0E+02 1.0E+02 1.0E+02	HSRA Type I Soil Criteria
1.0E+02	ND 2.7E+00 2.00E+02 2.00E+02 2.00E+02 6.80E+01 3.1E+02 ND 2.00E+01 2.19E+01 2.19E+01 1.80E-01 1.80E-01 1.44E+01 1.44E+01	(mg/kg) (b) 4.1E+01 5.0E+02 3.9E+01 1.2E+03 1.5E+03 1.7E+01 4.2E+02 3.6E+01 2.8E+03 ND	HSRA Appendix I Value
2.0E-02	4.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.0E-03 5.0E-03 5.0E-03 5.0E-03 5.0E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 1.00E+00 1.00E+00	(mg/L) (c) 1.00E-02 2.00E-00 5.00E-01 1.30E+00 1.50E-02 2.00E-03 1.00E-03 1.00E-03 1.00E-03 5.00E-02 2.00E+00 5.00E-03	Type I Groundwater RRS
	REFERENCE REFERENCE	R.	G
2.00E+00	4.00E-01 4.00E-02 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01	(mg/kg) 1.00E+00 2.00E+02 5.00E-01 1.00E+02 1.30E+02 1.30E+02 2.00E-01 1.00E+01 1.00E+00 2.00E+01 2.00E+02 2.00E+02 2.00E+02	Type 1 / RRS x 100
1.0E+02	4.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01	(mg/kg) (d) 4.1E+01 5.0E+02 3.9E+01 1.2E+03 1.5E+03 1.5E+03 1.7E+01 4.2E+02 3.6E+01 2.8E+03 5.0E-01	Number 1
2.9E+02	8.3E+01 5.8E+05 1.1E+02 1.1E+02 2.6E+04 1.8E+02 5.7E+03 5.7E+03 1.0E+03 8.1E+03 8.1E+03 1.2E+03 1.2E+04 2.6E+04 1.3E+02 2.6E+04 1.3E+02 1.2E+04	(mg/kg) (e) 1.9E+02 1.2E+05 3.2E+02 1.9E+03 2.6E+04 1.9E+02 1.3E+04 3.2E+03 1.9E+05 1.9E+05	Risk-J Residenti Noncarcinogenic
ND	ND ND 1.16E+01 1.17E+01 1.17E+01 ND ND ND ND ND ND ND ND ND ND ND ND ND	(mg/kg) (f) 9.96E+00 8.35E+04 1.25E+04 ND ND ND ND ND ND ND ND	Based al Type 1 Carcinogenic
2.9E+02	8.3E+01 5.5E+05 1.2E+01 1.2E+01 1.2E+04 3.7E+03 5.7E+03 1.0E+03 8.1E+03 1.0E+03 1.8E+02 2.6E+04 9.2E+02 2.6E+04 1.0E+03 1.8E+02	(mg/kg) (g) 1.0E+01 1.2E+02 3.2E+02 1.9E+03 VD 1.9E+03 3.2E+02 1.3E+03 3.2E+05 2.0E+02 2.0E+02	Risk-Based Soil Type 1 RRS
1.0E+02	5 0E-01 4.0E+02 5.0E-01 5.0E-01 5.0E-01 3.7E+00 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 5.0E-01 1.0E+02 1.0E+02	(mg/kg) (h) 2.0E+01 1.0E+03 2.0E+00 1.0E+02 1.0E+02 7.5E+01 5.0E+01 5.0E+01 2.0E+00 1.0E+02 1.0E+02 5.0E-01	Overall Type 1 RRS
3.E+02	9 E+01 2 E+06 1 .E+02 8 E+04 2 .E+02 2 .E+02 2 .E+02 2 .E+03 3 .E+04 1 .E+03 1 .E+03 1 .E+04 1 .3E+04 1 .E+04 3 .E+04 1 .E+02	(mg/kg) (e) 6.E+02 4.E+05 1.0E+03 6.E+03 8.E+04 ND 6.E+02 4.E+02 4.E+04 1.E+04 1.E+04 5.E+05 2.E+02	Risk-I Nonresiden Noncarcinogenic

Notes: (a) (b) (c) (d) (e)

 Table 2, Appendix III of HSRA regulations

 Appendix 1 of HSRA regulations.
 Value is the soil concentration that triggers notification requirements.

 Table 1, Appendix III of HSRA regulations.
 For those substances not listed, reporting limit used as the Type 1 groundwater RRS.

 Value is the highest of the Appendix 1 value and the groundwater RRS x 100.

THI x BW x ATn x 365days/year EF x ED x [(1/RfDi x (1/K + 1/PEF) x lnhR) + (1/RfDo x IRs)]

TR x BW x ATc x 365days/year EF x ED x [(SFi x (1/K + 1/PEF) x InhR) + (SFo x IRs)]

Ð

ND RRS RE (E) (E) (E) (E)

Minimum of noncarcinogenic and carcinogenic concentrations. Minimum concentration of Number 1 and Type 1 RRS. Minimum concentration of Number 1 and HSRA Type 1 Soil Criteria. Minimum concentration of the risk-based soil Type 3 RRS and the subsurface soil Type 3 RRS. Reporting Limit Risk Reduction Standard Groundwater Not Determined

] of]

PREPARED/DATE: <u>MKB 2/20</u> CHECKED/DATE: <u>LMS 7/</u>		
2/20/06 7/5/06		

Carcinogenic Type 3 (mg/kg) (f) (mg/kg ND 1.05E+00 3.8E+ ND 3.6E+ ND 3.6E+ ND 4.12E+ ND 6.1E+ ND 6.1E+ ND 6.1E+ ND 1.5E+01 1.5E+ ND 1.5E+01 1.5E+ 1.51E+01 1.5E+ ND 2.2E+ ND 1.5E+01 1.5E+ ND 2.2E+ ND 2.2E+ ND 1.5E+01 1.5E+ ND 2.2E+ ND 1.1E+ ND 1.1E+ ND 1.1E+ ND 1.1E+ ND 1.1E+ ND 1.1E+ ND 3.1E+ ND 3.1E+	ed Type 3	Risk-Based Soil	Subsurface Soil	Surface Soil
(mg/kg) (f) (mg/kg) 3.81E+01 3.81E+01 3.8E+ ND 1.05E+05 1.0E+ 1.05E+05 1.0E+ 1.0E+ ND ND 6.1E+ ND 4.1E+ ND ND 1.5E+01 1.5E+ ND 1.5E+01 1.5E+ 1.50E+01 1.5E+ 1.5E+ ND 4.12E+ ND ND 4.12E+ ND ND 1.5E+ 1.5E+ ND 4.72E+ 8.2E+ ND 1.5E+ 1.1E+ ND 2.3E+ 9.3E+ ND 1.3E+ 1.1E+ ND 1.3E+ 1.1E+ ND 1.3E+ 1.1E+ ND 1.1E+ 1.1E+	Carcinogenic	Type 3 RRS	Type 3 RRS	Type 3 RRS
3.81E+01 3.8E+ ND 3.6E+ ND 3.6E+ ND 3.6E+ ND ND 4.1E- ND ND 6.1E+ ND 6.1E+ ND 6.1E+ ND 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.51E- ND 4.1E+ ND 4.1E+ ND 4.1E+ ND 5.9E+00 1.1E+ ND 5.9E+00 4.7E+ ND 5.9E+00 1.1E+ ND 5.9E+01 1.5E+ ND 5.9E+02 2.3E+ ND 1.63E+01 1.5E+ ND 1.1E+ ND 5.9E+02 2.3E+ ND 1.1E+ ND 5.9E+02 2.3E+ ND 1.1E+ ND 5.9E+03 1.1E+ ND 5.9E+04 1.1E+04	(mg/kg) (f)	(mg/kg) (g)	(mg/kg) (i)	(mg/kg) (j)
ND 3.6E+ ND 1.05E+05 1.6E+ ND 0.1E+ ND 0.1E+ ND 0.1E+ ND 0.1E+ ND 0.1E+ ND 0.1E+ ND 0.1E+ ND 1.50E+01 1.5E+ ND 1.50E+01 1.5E+ ND 1.50E+01 1.5E+ ND 1.50E+01 1.5E+ ND 2.2E+ ND 2.3E+00 4.7E+ ND 2.3E+01 1.5E+ ND 2.3E+02 2.3E+ ND 1.5E+01 1.5E+ ND 3.1E+ ND 3.1E+ ND 3.1E+	3.81E+01	3.8E+01	4.1E+01	3.8E+01
1.58E+05 1.0E+ ND 8.2E+ ND ND 6.1E+ ND ND 6.1E+ ND 1.50E+00 1.50E+00 1.50E+00 1.50E+01 1.51E+01 1.51E+01 1.51E+01 1.51E+00 4.7E+ ND 4.72E+00 4.7E+ ND 8.7E+ ND 2.2E+ ND 2.33E+02 8.2E+ ND 1.52E+01 1.51E+01 1.51E+00 4.7E+ ND 1.51E+01 1.51E+01 1.51E+00 4.7E+ ND 1.51E+01 1.51E+01 1.51E+00 4.7E+01 1.51E+01 1.52E+01 1.52E+0	ND	3.6E+05	1.0E+03	1.0E+03
ND 8.2EH ND 8.2EH ND 8.2EH ND 6.1EH ND 6.1EH ND 6.1EH ND 6.1EH ND 1.50EH0 1.5EH 1.51EH00 1.5EH ND 1.50EH0 1.5EH ND 2.2EH ND 2.33EH0 2.33EH ND 2.33EH0 2.33E ND 2.33EH0 2.33E ND 1.1EH ND 1.1EH	1.056+05	1.0E+03	3.9E+01	3.9E+01
ND ND 00 ND 00 ND 4.1EH ND 4.1EH ND 6.1EH ND 6.1EH ND 6.1EH ND 1.50E+01 1.5EH 1.51E+00 1.5EH ND 1.51EH ND 2.2EH ND 1.5EH ND 1.5EH ND 1.5EH ND 1.5EH ND 1.1EH ND 1.1EH	ND	8.2E+04	1.5E+03	1.5E+03
ND 6.1E+ ND 1.0E+ ND 6.1E+ ND 6.1E+ ND 6.1E+ ND 1.5E+01 1.5E+ 1.5E+00 1.5E+ ND 1.5E+01 1.5E+ ND 1.5E+01 1.5E+ ND 2.2E+ ND 2.3E+02 1.5E+ ND 2.3E+02 2.3E+ ND 1.1E+ ND 1.1E+ ND 1.1E+ ND 1.1E+ ND 3.1E+ ND 3.1E+ ND 3.1E+ ND 3.1E+	ND	ND	4.0E+02	4.0E+02
ND 4.1E4 ND 6.1E4 ND 6.1E4 ND 2.2E4 ND 2.2E4 ND 1.50E401 1.5E4 ND 1.50E401 1.5E4 ND 1.5E400 1.15E4 ND 1.5E400 1.15E4 ND 2.2E4 ND 2.2E4 ND 2.2E4 ND 1.5E401 1.5E4 ND 1.15E401 1.5E4 ND 1.15E401 1.5E4 ND 1.15E401 1.5E4 ND 1.1E4 ND 2.2E4 ND 1.1E4 ND 2.2E4 ND 1.1E4 ND 2.2E4 ND 1.1E4 ND 2.2E4 ND 1.1E4 ND 1	Ŋ	6.1E+02	1.7E+01	1.7E+01
ND 1.064 ND 6.174 ND 8.775 ND 2.284 ND 1.5024-01 1.589 ND 1.5024-01 1.589 ND 1.5124-00 1.589 ND 1.5204 ND 2.264 ND 2.264 ND 2.264 ND 2.264 ND 9.364 ND 9.364 ND 9.364 ND 1.164 ND 9.364 ND 1.164 ND 1.164	ß	4.1E+04	4.2E+02	4.2E+02
ND 2.2E+ ND 8.7E+ ND 1.50E+01 1.51E+01 1.51E+01 1.51E+01 1.51E+01 1.51E+01 1.51E+01 1.51E+01 1.51E+01 1.51E+01 1.51E+00 2.01E+00 2.01E+00 2.01E+00 2.01E+00 1.11E+00 2.01E+00 1.11E+00 1.01E+00 1.01E+00 1.01E+00 1.11E+00 1.01E+00 1.01E+000	ND	6.1E+04	3.0E+01 2.8E+03	2.8E+03
ND 8.7E ND 1.8E 1.50E+00 1.5E 1.51E+00 1.5E ND 2.0E ND 2.0E ND 2.0E ND 1.5E ND 2.0E ND 2.0E ND 1.1E ND 1.1E ND 1.1E ND 2.3E ND 1.1E ND 2.3E ND 1.1E ND 2.3E ND 1.1E ND 3.1E	ND	2.2E+02	5.0E-01	5.0E-01
ND 1.50E+00 1.50E 1.51E+00 1.5E+ ND 8.2E+ ND 4.72E+00 4.72E ND 2.0E+ ND 1.5E+ ND 1.5E+ ND 2.0E+ ND 1.1E+ ND 1.1E+ ND 2.33E+02 2.3E+ ND 1.6E+ ND 1.1E+ ND 1.1E+ ND 1.1E+ ND 3.1E- ND 3.1E+	j U	8.7E+01	5.0E-01	5.0E-01
1.51E+01 1.5E+ ND 8.2E+00 4.7E+ ND 1.15E+ ND 2.0E+ ND 2.0E+ ND 1.1E+ ND 1.1E+ 1.63E+01 1.6E+ ND 1.1E+ ND 1.1E+ ND 1.1E+ ND 1.1E+ ND 3.1E-	1.50E+01	1.5E+01	4.0E-01	4.0E+02 5.0E-01
4.72E+00 ND ND ND ND ND ND 2.33E+02 1.63E+01 1.63E+01 ND ND ND 1.1E+ ND 1.62E+01 1.62E+01 1.62E+01 1.62E+01 1.62E+01 1.1E+ ND 3.1E	1.51E+01	1.5E+01	5.0E-01	5.0E-01
ND 2.000 ND 5.900 ND 1.100 ND 9.300 ND 1.300 ND 1.300 ND 1.300 ND 1.300 ND 1.400 ND 1.400 ND 1.400 ND 1.400 ND 1.100 ND 1.100 ND 1.100 ND 3.100 ND 1.100 ND 1.100	4 72F+00	8.2E+04 4 7E+00	5.0E-01	5.0E-01 4 7E+00
ND 3.92 ND 1.1E4 ND 9.3E4 ND 9.3E4 ND 1.23E402 2.33E ND 1.63E401 1.63 ND 1.163 ND 1.163 ND 1.163 ND 1.18 ND 1.18 ND 1.18	i I	2.0E+04	5.3E-01	5.3E-01
ND 9.3E4 ND 1.3E4 ND 9.6E4 ND 1.63E401 1.6E4 ND 1.63E401 1.6E4 ND 1.1E4 ND 1.1E4	ND	1.1E+03	5.0E-01	5.0E-01
ND 1.35 ND 9.6E ND 8.2E ND 1.63E+01 1.63 ND 1.16 ND 1.1E ND 1.1E ND 3.1E	N	9.3E+03	7.0E+01	7.0E+01
2.33E+02 2.3E ND 8.2E ND 1.63E+01 1.63 ND 1.1E ND 1.1E ND 3.1E	y s	9.6E+03	2.2E+01	2.2ETUI
ND 82E- 1.63E+01 1.6E- ND 2.8E- ND 1.1E- ND 3.1E-	2.33E+02	2.3E+02	5.0E-01	5.0E-01
ND 2.8E- ND 1.1E- ND 3.1E-	ND	8.2E+04	5.0E-01	5.0E-01
ND 1.1E- ND 3.1E-	ND	1.0E+04	1.0E+02	1.0E+02
ND 3.IE	UD	1.1E+03	1.0E+03	1.0E+03
	Ŋ	3.1E+02	1.0E+02	1.0E+02
		a de la compañía de l		

		Recidential		Recidential			Desidential	
PARAMETER	Volatilization Factor	Soil Leaching Criteria	Noncarcinogenic	Child - Type 2 Carcinogenic	Type 2 RRS	Noncarcinogenic	Adult - Type 2 Carcinogenic	Type 2 RRS
	(m ³ /kg)	(mg/kg) (a)	(mg/kg) (b)	(mg/kg) (c)	(mg/kg) (d)	(mg/kg) (b)	(mg/kg) (c)	(mg/kg) (d)
Metals								
Arsenic	U.UE+UU	5.8E+00	2.3E+01	6.1E+00	6.1E+00	2.2E+02	1.1E+01	1.1E+01
Barium	0.0E+00	2.6E+03	1.5E+04	ND	1.5E+04	1.4E+05	ND	1.4E+05
Cadmium	0.0E+00	1.2E+01	3.9E+01	8.9E+04	3.9E+01	3.7E+02	6.3E+04	3.7E+02
Chromium	0.0E+00	3.8E+01	2.3E+02	1.3E+04	2.3E+02	2.2E+03	9.4E+03	2.2F+03
Copper	0.0E+00	1.1E+04	3.1E+03	ND	3.1E+03	2.9E+04	ND	2 9E+04
Lead	0.0E+00	2.7E+02	UN	CLN		ND		
Merchry	0.0F+00		2 2 E + O 1					
		4.7ETVU	4.JETVI	NL NL	2.35+01	2.28+02	NL	2.2E+02
NICKEI	0.02+00	4.1±+02	1.6E+03	NL	1.6E+03	1.5E+04	ND	1.5E+04
Selenium	0.0E+00	8.1E+00	3.9E+02	ND	3.9E+02	3.7E+03	ND	3.7E+03
Zinc	0.0E+00	5.8E+03	2.3E+04	ND	2.3E+04	2.2E+05	ND	2.2E+05
Valatila Organia Composed A MOCA								
1 9 4-Trimethylhenzene	VUT38V C	7 JET00	A 10-01					
1.3.5-Trimethylhenzene	1 00F+04	1 7E±00	1 2 1 1 1		4.4ETUI	1.3E+U2		1.5E+02
A patona	+01-T001	1./ETUU	1.0ETU1	ND ND	1.86+01	6.2E+01	ND	6.2E+01
Renzene	2.88E+U3	0.0E+01	2 4E - 01		7.0E+04	6.6E+05	ND	6.6E+05
Denzana (mid naint)	2.0/ETU3	1.40-01	2.4E+U1	1.20+01	1.26+01	8.7E+01	8.8E+00	8.8E+00
n Dutylkonzono	2.8/E+U3	1.4E-01	2.4E+01	1.2E+01	1.2E+01	8.7E+01	8.9E+00	8.9E+00
Chlonoform Chlonoform	1.43E+04	201-02	3.1E+03	UN	3.1E+03	2.9E+04	ND	2.9E+04
	2.0/E+U3	2.0E+00	3.7E+01	4.0E+00	4.0E+00	1.3E+02	2.8E+00	2.8E+00
C::-]aharana	2.84E+03	2.9E+00	7.8E+02	ND	7.8E+02	7.3E+03	ND	7.3E+03
Difference of the second s	0.84E+U2	2.96+02	1.2E+03	UD	1.2E+03	4.2E+03	ND	4.2E+03
Ethvilhenzene	1.94E+U3	1.96+00	2.26+02	ND	2.2E+02	7.8E+02	ND	7.8E+02
Teopropylhanzana	0.JAETU3	1.0E+02	1.66403	UN NU	1.6E+03	6.4E+03	UN	6.4E+03
Methylovichevane	2.31E+U2	3.36+01	2.6E+01	ND	2.6E+01	9.2E+01	ND	9.2E+01
MTBE	2.19E+03	1.6E+U3	2.0E+03	UN	2.0E+03	6.9E+03	ND	6.9E+03
	2.956+03	5.1E-01	2.6E+03	1.9E+02	1.9E+02	9.3E+03	1.4E+02	1.4E+02
n-Propylbenzene	1.43E+04	7.0E+02	3.1E+03	ND	3.1E+03	2.9E+04	ND	2.9E+04
Tetrachloroethene	2.82E+03	3.4E-01	2.8E+01	8.3E+00	8.3E+00	1.0E+02	8.4E+00	8.4E+00
Toluene	4.70E+03	7.7E+01	3.3E+03	ND	3.3E+03	1.7E+04	ND	1.7E+04
Xylenes	7.21E+03	1.6E+03	2.2E+02	ND	2.2E+02	7.6E+02	ND	7.6E+02
Polycyclic Aromatic Hydrocarbons (PAHs) Naphthalene	7.07E+04	1.6E+01	6.1E+01	ND	6.1E+01	2.2E+02	ND	2.2E+02
From Table A-7								
FIUILI LAULE A-7								
THI x BW x ATn x 365days/year								
$EF \times ED \times [(1/RfDi \times (1/K + 1/PEF) \times InhR) + (1/RfDo)]$	(IRs)]							
TD V DW V ATA V 265 Across								
IK X BW X A1C X 365days/year EF x ED x [(SFi x (1/K + 1/PEF) x IRa) + (SFo x IRw)]								
Minimum concentration of the noncarcinogenic and carci	nogenic values.							
Minimum concentration of the Child Type 2 RRS, Adult	Type 2 RRS, and the resid	lential soil leaching cri	lteria.					
Noncarcinogen								
Carcinogen								
Risk Reduction Standard								

Table 3 Type 2 Soil Calculations, mg/kg

Groundwater Not Determined

c

(b)

Notes: (a)

CHECKED/DATE: LMS 7/5/	PREPARED/DATE: MKB 2/20/
/5/06	20/06

1 of 1

5.8E+00 2.6E+03 1.2E+01 3.8E+01 3.1E+03 2.7E+02 4.9E+00 4.1E+02 8.1E+00 5.8E+03 7.4E+00 1.7E+00 6.0E+01 1.4E-01 1.4E-01 7.0E+02 2.9E+00 2.9E+00 2.9E+00 1.9E+00 1.0E+02 2.6E+01 1.6E+03 5.1E-01 7.7E+01 7.7E+01 1.6E+01

Overall Type 2 RRS (mg/kg) (e)

	Volatilization	Type 4	Co	nstruction Worker		CW	Industrial	Warker		Inductrial Tune 4
	Factor	Leaching		Type 4		Type 4 Soil	Туре	4		Soil RRS
SUBSTANCE	(m ³ /kg)	Criteria (mg/kg) (a)	Noncarcinogenic	Carcinogenic	Type 4 RRS	RRS (mg/kg) (b)	Noncarcinogenic	Carcinogenic	Type 4 RRS	(mg/kg) (c)
Metals										
Arsenic	0.0E+00	5.8E+00	1.9E+02	2.9E+02	1.9E+02	5.8E+00	6 1E+02	3 8F+01	3 8F+01	5 85+00
Barium	0.0E+00	1.7E+04	1.2E+05	ND	1.2E+05	1.7E+04	3.6E+05	UN	3 6E+05	1 7F+04
Cadmium	0.0E+00	7.7E+01	3.1E+02	5.3E+06	3.1E+02	7.7E+01	1.0E+03	1.1E+05	1 0F+03	7 7F+01
Chromium	0.0E+00	1.2E+02	1.9E+03	7.9E+05	1.9E+03	1.2E+02	6.1E+03	1.6E+04	6.1E+03	1.2E+02
Copper	0.0E+00	3.5E+04	2.5E+04	ND	2.5E+04	2.5E+04	8.2E+04	UN	8.2E+04	3.5E+04
Lead	0.0E+00	-2.7E+02	9.0E+02	ND	9.0E+02	2.7E+02	9.0E+02	ND	9.0E+02	2.7E+02
Mercury	0.0E+00	3.2E+01	1.9E+02	ND	1.9E+02	3.2E+01	6.1E+02	ND	6.1E+02	3.2E+01
Nickel	0.0E+00	2.7E+03	1.2E+04	ND	1.2E+04	2.7E+03	4.1E+04	ND	4.1E+04	2.7E+03
Selenium	0.0E+00	1.0E+02	3.1E+03	ND	3.1E+03	1.0E+02	1.0E+04	ND	1.0E+04	1.0E+02
Zinc	0.0E+00	3.8E+04	1.9E+05	ND	1.9E+05	3.8E+04	6.1E+05	ND	6.1E+05	3.8E+04
Volatile Organic Compounds (VOCs)										
1,2,4-Trimethylbenzene	2.48E+04	2.6E+01	4.3E+02	ND	4.3E+02	2.6E+01	2.2E+02	ND	2.2E+02	2.6E+01
1,3,5-Trimethylbenzene	1.00E+04	5.8E+00	1.7E+02	ND	1.7E+02	5.8E+00	8.7E+01	ND	8.7E+01	5.8E+00
Danzano	2.88E+03	3.9E+02	5.6E+05	ND	5.6E+05	3.9E+02	1.8E+06	ND	1.8E+06	3.9E+02
Benzene (mid-noint)	2.8/E+03	2.5E-01	2.3E+02	6.9日+02 7 3日+02	2.3E+02	2.5E-01	1.2E+02	1.5E+01	1.5E+01	2.5E-01
n-Butylbenzene	1.43E+04	4.6E+03	2.5E+04	ND	2.5E+04	4.6E+03	8.2E+04	ND	8.2E+04	4.6E+01
Chloroform	2.67E+03	2.0E+00	3.6E+02	2.4E+02	2.4E+02	2.0E+00	1.9E+02	4.7E+00	4.7E+00	2.0E+00
cis-1,2-Dichloroethene	2.84E+03	1.9E+01	6.2E+03	ND	6.2E+03	1.9E+01	2.0E+04	ND	2.0E+04	1.9E+01
Cyclohexane	6.84E+02	1.4E+03	1.2E+04	ND	1.2E+04	1.4E+03	5.9E+03	ND	5.9E+03	1.4E+03
Diisopropyl ether	1.94E+03	9.2E+00	2.2E+03	ND	2.2E+03	9.2E+00	1.1E+03	ND	1.1E+03	9.2E+00
Ethylbenzene	6.58E+03	3.4E+02	1.5E+04	ND	1.5E+04	3.4E+02	9.3E+03	DN	9.3E+03	3.4E+02
Isopropylbenzene	2.31E+02	1.8E+02	2.6E+02	ND	2.6E+02	1.8E+02	1.3E+02	ND	1.3E+02	1.3E+02
Methylcyclohexane	2.19E+03	8.1E+03	1.9E+04	ND	1.9E+04	8.1E+03	9.6E+03	ND	9.6E+03	8.1E+03
MTBE	2.95E+03	9.3E-01	2.6E+04	1.1E+04	1.1E+04	9.3E-01	1.3E+04	2.3E+02	2.3E+02	9.3E-01
n-Propylbenzene	1.43E+04	4.6E+03	2.5E+04	ND	2.5E+04	4.6E+03	8.2E+04	ND	8.2E+04	4.6E+03
Tetrachloroethene	2.82E+03	3.4E-01	2.8E+02	4.4E+02	2.8E+02	3.4E-01	1.4E+02	1.6E+01	1.6E+01	3.4E-01
Toluene	4.70E+03	4.0E+02	2.9E+04	ND	2.9E+04	4.0E+02	2.8E+04	ND	2.8E+04	4.0E+02
Xylenes	7.21E+03	1.6E+03	2.1E+03	ND	2.1E+03	1.6E+03	1.1E+03	ND	1.1E+03	1.1E+03
Polycyclic Aromatic Hydrocarbons (PAHs)										
Naphthalene	7.07E+04 °	1.6E+01	5.9E+02	ND	5.9E+02	1.6E+01	3.1E+02	ND	3.1E+02	1.6E+01
Based on the higher of Type 1, Type 2, or Type 4 (indu- Lower of Type 4 Leaching Criteria and Construction V Lower of Type 4 Leaching Criteria and Industrial Wor	ustrial worker) ground-wat Norker soil RRS. ker soil RRS.	er RRS, but no greater than	1 100,000 mg/kg.							
Noncarcinogen										
Carrinnoen										

Risk Reduction Standard Groundwater Not Determined

Table 4 Type 4 Soil Calculations, mg/kg

Notes: (a) (b) (c) (c) NC NC RRS GW ND

PREPARED/DATE: MKB 2/20/06 CHECKED/DATE: LMS 7/5/06

Exposure Parameters for Soil and Ground Water Table 5

	;				
Exposure Farameters for Type 4 Soll	Construction	Industrial	Exposure Parameters for Type 4 Ground Water	Industrial	Construction
-	Worker	Worker		Worker	Worker Units
Hazard Index	, T	*	Hazard Index		
Target Risk	1E-05	1E-05	Target Risk	1E-05	1E-05 (Class A and B):
Body Weight	. 70	70 kg		1E-04	1E-04 (Class C)
Averaging Time, Carcinogen	20	70 years	Body Weight	20	70 kg
Averaging Time, Noncarcinogen	1(a)	25 years	Averaging Time, Carcinogen		70 years
Exposure Duration	1 (a)	25 years	Averaging Time, Noncarcinogen	25	1(a) years
Exposure Frequency	125 (a)	250 days/yr	Exposure Duration	. 25	1 (a) years
Soil Ingestion Rate	330 (b)	50 mg/day	Exposure Frequency	250	125 (a) day/year
Air Inhalation Rate	20	20 m ³ /day	Water Ingestion Rate	~	0.08 (c) L/day
PEF	4.63E+09	4.63E+09 m ³ /ka	Air Inhalation Rate	20	20 m³/dav
CF	1E-06	1E-06 kg/mg	Volatilization Factor = 0.0005 x 1000 L/m3 =	0.5	0.5 L/m3
	Residential	Residential		Residential F	Residential
Exposure Parameters for Type 2 Soil:	Child	Adult Units	Exposure Parameters for Type 2 Ground Water:	Child	Adult Units
Hazard Index	-	-	Hazard Index	ب	-
Target Risk	1E-05	1E-05	Target Risk	1E-05	1E-05 (Class A and B):
Body Weight	15	70 kg		1E-04	1E-04 (Class C)
Averaging Time, Carcinogen	70	70 vears	Body Weight	15	70 kg
Averaging Time, Noncarcinogen	9	30 years	Averaging Time, Carcinogen	20	70 years
Exposure Duration	9	30 years	Averaging Time, Noncarcinogen	9	30 years
Exposure Frequency	350	350 days/yr	Exposure Duration	9	30 years
Soil Ingestion Rate	200	100 mg/day	Exposure Frequency	350	350 day/year
Air Inhalation Rate	15	20 m ³ /day	Water Ingestion Rate	÷	2 L/day
PEF	4.63E+09	4.63E+09 m ³ /ka	Air Inhalation Rate	15	20 m ³ /dav
CF	1E-06	1E-06 kg/mg	Volatilization Factor = 0.0005 x 1000 L/m3 =	0.5	0.5 L/m3
	Residential	Nonresidential			
Exposure Parameters for Type 1 and Type 3 Soils:	Type 1	Type 3 Units			
Hazard Index	-	~			
Target Risk	1.E-05	1E-05			
Body Weight	20	70 kg			
Averaging Time, Carcinogen	70	70 years			
Averaging Time, Noncarcinogen	30	25 years			
Exposure Duration	30	25 years			
Exposure Frequency	350	250 days/yr			
Soil Ingestion Rate	114	50 mg/day			
Air Inhalation Rate	15	20 m ³ /day			
PEF	4.63E+09	4.63E+09 m ³ /kg			
CF	1E-06	1E-06 kg/mg			

(a) Soll-intrusive construction work assumed to occur for a 6-month period - Site-specific assumption.
i.e., work days = 125 days and exposure duration = 1 year, AT = ED x 365 days
(b) Soil ingestion rate for construction worker, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, OSWER 9355.4-24, USEPA, December 2002
(c) USEPA Region 4 Human Health Risk Assessment Bulletins, May 2000, incidental ingestion of surface water during wading, 0.01 L/hour x 8 hour workday.

Page1

	Values
Table 6	Toxicity

	Chronic Refe	rence Dose	Cancer Slo	pe Factor		
PARAMETER	Oral (RfDo) (mg/kg/day)	Inhalation (RfDi) (mg/kg/day)	Oral (SFo) (mg/kg/day)-1	Inhalation (SFi) (mg/kg/day)-1	Weight of Evidence	Source for Chronic RfDs and SFs
						Annual and a second
Metals		!				
Arsenic	3.00E-04	ND	1.50E+00	1.51E+01	A	IRIS
Barium	2.00E-01	1.40E-04	DN	ND	D	IRIS
Cadmium	5.00E-04	ND	QN	6.30E+00	B1	IRIS
Chromium	3.00E-03	3.00E-05	ND	4.20E+01	B1	IRIS
Copper	4.00E-02	QN	QN	DN	Q	HEAST
Lead	ND	QN	ND	ND	B2	IRIS
Mercury	3.00E-04	8.60E-05	ND	ND	J	IRIS
Nickel	2.00E-02	DN	ND	ND	QN	IRIS
Selenium	5.00E-03	ND	ND	ND	D	IRIS
Zinc	3.00E-01	QN	ND	ND	D	IRIS
Volatile Organic Compounds (VOCs)						
1,2,4-Trimethylbenzene	5.00E-02	1.70E-03	ND	ND	D	PPRTV
1,3,5-Trimethylbenzene	5.00E-02	1.70E-03	ND	ND	D	PPRTV
Acetone	9.00E-01	DN	QN	ND	NA	IRIS
Benzene	4.00E-03	8.60E-03	5.50E-02	2.70E-02	A	IRIS
Benzene (mid-point)	4.00E-03	8.60E-03	3.50E-02	2.70E-02	A	IRIS
n-Butylbenzene	4.00E-02	DN	ND	QN	D	NCEA
Chloroform	1.00E-02	1.40E-02	QN	8.10E-02	B2	IRIS, NCEA
cis-1,2-Dichloroethene	1.00E-02	ND	ND	ND	D	PPRTV
Cyclohexane	QN	1.70E+00	ND	ND	NA	IRIS
Diisopropyl ether	DN	1.10E-01	ND	ND	D	PPRTV
Ethylbenzene	1.00E-01	2.90E-01	QN	ND	D	IRIS
Isopropylbenzene	1.00E-01	1,10E-01	ND	ND	ND	ND
Methylcyclohexane	ND	8.60E-01	ND	ND	NA	HEAST
MTBE	ND	8.60E-01	1.80E-03	1.80E-03	D	IRIS, Cal EPA
n-Propylbenzene	4.00E-02	DN	ND	ND	D	NCEA
Tetrachloroethene	1.00E-02	1.00E-02	5.40E-01	2.10E-02	B-C2	IRIS, Cal EPA
Toluene	8.00E-02	1.40E+00	ON .	ND	D	IRIS
Xylenes	2.00E-01	2.90E-02	ND	ND	D	IRIS
Polycyclic Aromatic Hydrocarhons (PAHs)						
	2.00E-02	8.60E-04	QN	ND	U	IRIS
_));::

PREPARED/DATE: MKB 2/20/06 CHECKED/DATE: LMS 7/5/06

Soil to Gr	Table 7
buno.	
water	
Leachability	

Soil to Ground water Leachability								Groundwater	Groundwater Ty
	K _d (a)	$\mathbf{K}_{oc}(\mathbf{b})$	Source			H,		Type 1/3 RRS	RRS x 20
	(L/kg)	(L/kg)		Øw	Øa	(unitless)	Øw+Øa*H'/pb	(mg/L) (c)	(Cw) (mg/L
Metals/Inorganics									
Arsenic	2.90E+01	NA	SSG	0.3	0.13	0.00E+00	0.20000	1.0E-02	2.0E-01
Barium	4.10E+01	NA	SSG	0.3	0.13	0.00E+00	0.20000	2.0E+00	4.0E+01
Cadmium	7.50E+01	NA	SSG	0.3	0.13	0.00E+00	0.20000	5.0E-03	1.0E-01
Chromium	1.90E+01	NA	SSG	0.3	0.13	0.00E+00	0.20000	1.0E-01	2.0E+00
Copper	4.30E+02	NA	SCDM	0.3	0.13	0.00E+00	0.20000	1.3E+00	2.6E+01
Lead	9.00E+02	NA	SCDM	0.3	0.13	0.00E+00	0.20000	1.5E-02	3.0E-01
Mercury	5.20E+01	NA	SSG -	0.3	0.13	0.00E+00	0.20000	2.0E-03	4.0E-02
Nickel	6.50E+01	NA	SSG	0.3	0.13	0.00E+00	0.20000	1.0E-01	2.0E+00
Selenium	5.00E+00	NA	SSG	0.3	0.13	0.00E+00	0.20000	5.0E-02	1.0E+00
Zinc	6.20E+01	NA	SSG	0.3	0.13	0.00E+00	0.20000	2.0E+00	4.0E+01
Volatile Organic Compounds (VOCs)									
1,2,4-Trimethylbenzene	7.40E+01	3.70E+03	Region 9	0.3	0.13	2.30E-01	0.2199	5.0E-03	1.0E-01
1,3,5-Trimethylbenzene	1.64E+01	8.20E+02	Region 9	0.3	0.13	3.20E-01	0.2277	5.0E-03	1.0E-01
Acetone	1.15E-02	5.75E-01	SSG	0.3	0.13	1.59E-03	0.20014	4.0E+00	8.0E+01
Benzene	1.18E+00	5.89E+01	ŞSG	0.3	0.13	2.28E-01	0.21976	5.0E-03	1.0E-01
Benzene (mid-point)	1.18E+00	5.89E+01	SSG	0.3	0.13	2.28E-01	0.21976	5.0E-03	1.0E-01
n-Butylbenzene	5.60E+01	2.80E+03	Region 9	0.3	0.13	5.40E-01	0.24680	5.0E-03	1.0E-01
Chloroform	7.96E-01	3.98E+01	SSG	0.3	0.13	1.50E-01	0.21300	1.0E-01	2.0E+00
cis-1,2-Dichloroethene	7.10E-01	3.55E+01	SSG	0.3	0.13	1.67E-01	0.21447	5.0E-03	1.0E-01
Cyclohexane	3.20E+00	1.60E+02	Region 9	0.3	0.13	8.20E+00	0.91067	5.0E-03	1.0E-01
Diisopropyl ether	2.10E-01	1.05E+01	ORNL	0.3	0.13	2.42E-02	0.20210	5.0E-03	1.0E-01
Ethylbenzene	7.26E+00	3.63E+02	SSG	0.3	0.13	3.23E-01	0.2280	7.0E-01	1.4E+01
Isopropylbenzene	4.40E+00	2.20E+02	Region 9	0.3	0.13	4.90E+01	4.4467	5.0E-03	1.0E-01
Methylcyclohexane	4.40E+01	2.20E+03	Region 9	0.3	0.13	1.80E+01	1.7600	5.0E-03	1.0E-01
MTBE	1.20E-01	6.00E+00	Region 9	0.3	0.13	2.42E-02	0.20210	5.0E-03	1.0E-01
n-Propylbenzene	5.60E+01	2.80E+03	Region 9	0.3	0.13	5.40E-01	0.24680	5.0E-03	1.0E-01
Tetrachloroethene	3.10E+00	1.55E+02	SSG	0.3	0.13	7.54E-01	0.26535	5.0E-03	1.0E-01
Toluene	3.64E+00	1.82E+02	SSG	0.3	0.13	2.72E-01	0.22357	1.0E+00	2.0E+01
Xylenes	7.72E+00	3.86E+02	SSG AV	0.3	0.13	2.76E-01	0.22392	1.0E+01	2.0E+02
Polycyclic Aromatic Hydrocarbons (PAHs)									
Naphthalene	4.00E+01	2.00E+03	SSG	0.3	0.13	1.98E-02	0.2017	2.0E-02	4.0E-01

Notes:

(a) For Inorganics/metals: Kd values taken from USEPA, Soil Screening Guidance: Technical Background Document, EPA/540/R95/129, May 1996, unless otherwise indicated. For all other constituents, Kd = Koc * foc where foc equal 0.02 (Georgia EPD HSRA Rules)
(b) Values taken from USEPA, Soil Screening Guidance: Technical Background Document, EPA/540/R95/129, May 1996, unless otherwise indicated.
(c) Value from Appendix III, Table 1 of the Rules of the Georgia Department of Natural Resources, Environmental Protection Division, Hazardous Site Reponse, Chapter 319-3-19.

For those constituents not listed, the reporting limit (RL) used as the Type 1/3 RRS.

(d) $[Kd + (\emptyset w + \emptyset a^{H'/\rho b})] Cw$

(e) From Table 1.

(f) Value is the maxium soil screening Level (Cs) of Pathway 1/3 and Pathway 2.(g) Value is the maxium soil screening Level (Cs) of Pathway 1/3, Pathway 2, and Pathway 4.(h) Type 1/Type 3 based value higher than Type 4 based values.

(i) If value greater than 100,000 mg/kg, 100,000 mg/kg used as surrogate.

Equation - Leaching value = $Cw [Kd + (\theta w + \theta aH')/\rho b]$

SSG Soil Screening Guidance (US Environmental Protection Agency, 1996) SCDM Superfund Chemical Data Matrix (US Environmental Protection Agency, 2004) Region 9 Value from chemical parameter table, USEPA Region 9 Preliminary Remediation Goals Table.

NA Not Applicable Kd Soil-Water Partition Coefficient (L/kg)

Koc Soil organic carbon-water partition coefficient (L/kg) foc Organic carbon content of soil (kg/kg) Øw Water-filled soil porosity = 0.3 (L/L)

Øa Air-filled soil porosity = 0.13 (L/L) H' Dimensionless Henry Law Constant (HLC x 41) (unitless)

pb Dry soil bulk density = 1.5 kg/L
RRS Risk Reduction Standard
Cw Target Leachate Concentration (mg/L)
Cs Screening Level in soil (mg/kg)

Page 1 of 2

		7.4E+00 1.7E+00 1.7E+01 1.4E-01 1.4E-01 5.6E+00 9.2E-02 4.1E-01 4.1E-02 5.6E+00 3.2E-02 5.6E+00 3.4E-01 1.6E+03 1.6E+01	pe 1/3 Pathway Type 1/3 Soil Screening Level) (Cs) (mg/kg) (d) 5.8E+00 1.6E+03 7.5E+00 3.8E+01 1.1E+04 2.7E+02 2.1E+00 1.3E+02 5.2E+00 2.5E+03
PREPARED/DATE: MKB 2/20/06 CHECKED/DATE: LMS 7/5//06			

Table 7				Residential			
Soil to Ground water Leachability	Groundwater	Groundwater Type 2	Pathway Type 2	Soil Screening	Groundwater	Groundwater Type 4	Pathway
	Type 2 RRS	RRS x 20	Soil Screening Level	Level (Cs)	Type 4 RRS	RRS x 20	Soil Screet
	(mg/L) (e)	(Cw) (mg/L)	(Cs) (mg/kg) (d)	(mg/kg) (f)	(mg/L) (e)	(Cw) (mg/L)	(Cs) (mg
Metals/Inorganics							
Arsenic	5.7E-04	1.1E-02	3.3E-01	5.8E+00	1.9E-03	3.8E-02	1.1E
Barium	3.1E+00	6.3E+01	2.6E+03	2.6E+03	2.0E+01	4.1E+02	1.7E
Cadmium	7.8E-03	1.6E-01	1.2E+01	1.2E+01	5.1E-02	1.0E+00	7.7E
Chromium	4.7E-02	9.4E-01	1.8E+01	3.8E+01	3.1E-01	6.1E+00	1.2E
Copper	6.3E-01	1.3E+01	5.4E+03	1.1E+04	4.1E+00	8.2E+01	3.5E
Lead	ND	ND	ND	2.7E+02	ND	ND	Z
Mercury	4.7E-03	9.4E-02	4.9E+00	4.9E+00	3.1E-02	6.1E-01	3.2E
Nickel	3.1E-01	6.3E+00	4.1E+02	4.1E+02	2.0E+00	4.1E+01	2.7E
Selenium	7.8E-02	1.6E+00	8.1E+00	8.1E+00	5.1E-01	1.0E+01	1.0E
Linc	4.7E+00	9.4E+01	5.8E+03	5.8E+03	3.1E+01	6.1E+02	3.8E
Volatile Organic Compounds (VOCs)							
1,2,4-Trimethylbenzene	3.5E-03	7.1E-02	5.2E+00	7.4E+00	1.7E-02	3.5E-01	2.6E
1,3,5-Trimethylbenzene	3.5E-03	7.1E-02	1.2E+00	1.7E+00	1.7E-02	3.5E-01	5.8E
Acetone	1.4E+01	2.8E+02	6.0E+01	6.0E+01	9.2E+01	1.8E+03	3.9E
Benzene	4.5E-03	9.0E-02	1.3E-01	1.4E-01	8.8E-03	1.8E-01	2.5F
Benzene (mid-point)	5.0E-03	1.0E-01	1.4E-01	1.4E-01	9.4E-03	1.9E-01	2.6I
n-Butylbenzene	6.3E-01	1.3E+01	7.0E+02	7.0E+02	4.1E+00	8.2E+01	4.6E
Chloroform	2.1E-03	4.2E-02	4.2E-02	2.0E+00	3.5E-03	7.1E-02	7.11
cis-1,2-Dichloroethene	1.6E-01	3.1E+00	2.9E+00	2.9E+00	1.0E+00	2.0E+01	1.9E
Cyclohexane	3.6E+00	7.1E+01	2.9E+02	2.9E+02	1.7E+01	3.5E+02	1.4E
Diisopropyl ether	2.3E-01	4.6E+00	1.9E+00	1.9E+00	1.1E+00	2.2E+01	9.2H
Ethylbenzene	4.3E-01	8.6E+00	6.4E+01	1.0E+02	2.3E+00	4.6E+01	3.4E
Isopropylbenzene	2.0E-01	4.0E+00	3.5E+01	3.5E+01	1.0E+00	2.0E+01	1.8E
Methylcyclohexane	1.8E+00	3.6E+01	1.6E+03	1.6E+03	8.8E+00	1.8E+02	8.1E
MTBE	7.9E-02	1.6E+00	5.1E-01	5.1E-01	1.4E-01	2.9E+00	9.31
n-Propylbenzene	6.3E-01	1.3E+01	7.0E+02	7.0E+02	4.1E+00	8.2E+01	4.6E
Tetrachloroethene	1.3E-03	2.6E-02	8.9E-02	3.4E-01	3.8E-03	7.6E-02	2.61
Toluene	8.8E-01	1.8E+01	6.8E+01	7.7E+01	5.2E+00	1.0E+02	4.0F
Xylenes	5.9E-02	1.2E+00	9.4E+00	1.6E+03	2.9E-01	5.8E+00	4.6I
Polveyclic Aromatic Hydrocarbons (PAHs)							
Naphthalene	1.8E-03	3.6E-02	1.4E+00	1.6E+01	8.8E-03	1.8E-01	7.1H

For Inorganics/metals: Kd values taken from USEPA, Soil Screening C For all other constituents, Kd = Koc * foc where foc equal 0.02 (Georg Values taken from USEPA, Soil Screening Guidance: Technical Backg Value from Appendix III, Table 1 of the *Rules of the Georgia Departm* For those constituents not listed, the reporting limit (RL) used as the Ty [Kd + (Øw+Øa*H/pb)] *Cw From Table 1.

Value is the maxium soil screening Level (Cs) of Pathway 1/3 and Path Value is the maxium soil screening Level (Cs) of Pathway 1/3, Pathway Type 1/Type 3 based value higher than Type 4 based values. If value greater than 100,000 mg/kg, 100,000 mg/kg used as surrogate.

Equation - Leaching value = $Cw [Kd + (\theta w + \theta aH')/\rho b]$

Soil Screening Guidance (US Environmental Protection Agency, 1996) Superfund Chemical Data Matrix (US Environmental Protection Agency Value from chemical parameter table, USEPA Region 9 Preliminary R-Not Applicable Soil-Water Partition Coefficient (L/kg) Soil organic carbon-water partition coefficient (L/kg) Organic carbon content of soil (kg/kg) Water-filled soil porosity = 0.3 (L/L) Air-filled soil porosity = 0.13 (L/L) Dimensionless Henry Law Constant (HLC x 41) (unitless) Dry soil bulk density = 1.5 kg/L Risk Reduction Standard Target Leachate Concentration (mg/L)

Screening Level in soil (mg/kg)

Page 2 of 2

Non-Residential
soil Screening
Level (Cs)
(mg/kg) (d) (mg/kg) (g)Level (Cs)
(mg/kg) (d) (mg/kg) (g)1.1E+005.8E+00
1.7E+011.7E+041.7E+01
1.7E+011.2E+021.2E+02
3.2E+013.2E+04
3.2E+013.2E+01
2.7E+03
3.2E+012.6E+01
2.5E-012.6E+01
2.5E+012.6E+01
2.5E+012.6E+01
2.5E+012.6E+01
2.5E+012.6E+01
2.5E+012.6E+01
2.5E+011.9E+02
2.5E+012.6E+03
3.4E+021.4E+03
9.3E-014.6E+03
9.3E+011.4E+03
9.3E-014.6E+03
2.6E-014.6E+03
4.6E+034.6E+03
2.6E-011.4E+03
9.3E-014.6E+03
4.6E+036.6E+03
4.6E+034.6E+03
2.6E-011.6E+03
4.6E+034.6E+03
4.6E+036.6E+03
4.6E+034.6E+03
4.6E+036.6E+03
4.6E+034.6E+03
4.6E+036.6E+03
4.6E+034.6E+03
4.6E+036.6E+03
4.6E+034.6E+03
4.6E+036.6E+03
4.6E+034.6E+03
4.6E+036.6E+03
4.6E+034.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03
4.6E+036.6E+03

SUMMARY SOIL RRS

				Type 3	Type 3	M	
	•	Type 1	Type 2	Subsurface	Surface	Type 4 Soil	
SUBSTANCE	• •	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) (a)	
Metals							
Arsenic		2.0E+01	5.8E+00	4.1E+01	3.8E+01	5.8E+00	
Barium		1.0E+03	2.6E+03	1.0E+03	1.0E+03	1.7E+04	
Cadmium		2.0E+00	1.2E+01	3.9E+01	3.9E+01	7.7E+01	
Chromium		1.0E+02	3.8E+01	1.2E+03	1.2E+03	1.2E+02	
Copper		1.0E+02	3.1E+03	1.5E+03	1.5E+03	3.5E+04	
Lead		7.5E+01	2.7E+02	4.0E+02	4.0E+02	2.7E+02	
Mercury		5.0E-01	4 .9E+00	1.7E+01	1.7E+01	3.2E+01	
Nickel		5.0E+01	4 .1E+02	4.2E+02	4.2E+02	2.7E+03	
Selenium		2.0E+00	8.1E+00	3.6E+01	3.6E+01	1.0E+02	
Zinc		1.0E+02	5.8E+03	2.8E+03	2.8E+03	3.8E+04	
Volatile Organic Compounds (VOCs)							
1,2,4-Trimethylbenzene		5.0E-01	7.4E+00	5.0E-01	5.0E-01	2.6E+01	
1,3,5-Trimethylbenzene		5.0E-01	1.7E+00	5.0E-01	5.0E-01	5.8E+00	
Acetone		4.0E+02	6.0E+01	4.0E+02	4.0E+02	3.9E+02	
Benzene		5.0E-01	1.4E-01	5.0E-01	5.0E-01	2.5E-01	
Benzene (mid-point)		5.0E-01	1.4E-01	5.0E-01	5.0E-01	2.6E-01	
n-Butylbenzene		5.0E-01	7.0E+02	5.0E-01	5.0E-01	4 .6E+03	
Chloroform		3.7E+00	2.0E+00	1.0E+01	4.7E+00	2.0E+00	
cis-1,2-Dichloroethene		5.3E-01	2.9E+00	5.3E-01	5.3E-01	1.9E+01	
Cyclohexane		5.0E-01	2.9E+02	5.0E-01	5.0E-01	1.4E+03	
Diisopropyl ether		5.0E-01	1.9E+00	5.0E-01	5.0E-01	9.2E+00	
Ethylbenzene		7.0E+01	1.0E+02	7.0E+01	7.0E+01	3.4E+02	
Isopropylbenzene		2.2E+01	2.6E+01	2.2E+01	2.2E+01	1.3E+02	
Methylcyclohexane		5.0E-01	1.6E+03	5.0E-01	5.0E-01	8.1E+03	
MTBE		5.0E-01	5.1E-01	5.0E-01	5.0E-01	9.3E-01	
n-Propylbenzene		5.0E-01	7.0E+02	5.0E-01	5.0E-01	4 .6E+03	
Tetrachloroethene		5.0E-01	3.4E-01	5.0E-01	5.0E-01	3.4E-01	
Toluene		1.0E+02	7.7E+01	1.0E+02	1.0E+02	4.0E+02	
Xylenes		1.0E+03	2.2E+02	1.0E+03	1.0E+03	1.1E+03	
Polycyclic Aromatic Hydrocarbons (PAHs)							
Nanhthalene		1.0E+02	1.6E+01	1.0E+02	1.0E+02	1.6E+01	

IW Industrial Worker RRS Risk Reduction Standard ND No Data Prepared by: MKB 3/15/06 Checked by: LMS 7/5/06

1 of 1
APPENDIX H GA-EPD CORRESPONDENCE

Georgia Departmen. of Natural Resources

2 Martin Luther King, Jr. Dr., Suite 1462 East, Atlanta, Georgia 30334

Noel Holcomb, Commissioner Environmental Protection Division Carol A. Couch, Ph.D., Director Hazardous Sites Response Program 404/657-8600

November 21, 2005

CERTIFIED MAIL RETURN RECEIPT REQUESTED Hughes & Hughes Properties, Inc. 1225 Hwy 138 SW Riverdale, GA 30896

RE:

Delisting from Hazardous Site Inventory Parcel 019, Proposed Lowe's Home Improvement Warehouse 7494 Highway 85, Riverdale, Clayton County HSI Site Number: 10808

Dear Sir or Madam:

In July 2005, the Environmental Protection Division (EPD) evaluated the above referenced site to determine whether a release exceeding a reportable quantity had occurred. Based upon the information available to EPD at the time this evaluation was done, specifically the Release Notification provided to the EPD by Morris, Manning & Martin, dated June 29, 2005, it was determined that a release exceeding a reportable quantity had occurred at this site. In its initial review of the site, EPD noted that the distance to the nearest well or spring used as a drinking water source was less than one-half mile from the site. Consequently, the notification was scored as such and the release received a Reportable Quantity Screening Method (RQSM) score of 16.26 for the groundwater pathway that exceeded the reportable quantity threshold of 10 for that pathway. Therefore, the site was listed on the Hazardous Site Inventory (HSI) on July 22, 2005.

EPD received correspondences from Morris, Manning & Martin dated August 9, 2005 and October 18, 2005 requesting the revisiting of the original determination concerning the distance to the nearest drinking water well and the delisting of the site. Subsequent research by EPD determined that the nearest well is between one and two miles from the site, which results in a score of 6.5 for the groundwater pathway. Therefore, EPD has determined that a reportable quantity did not exist at the time of listing. The site will be delisted from the HSI pursuant to Rules for Hazardous Site Response § 391-3-19.05(4)(a).

EPD is not required to provide notice to the public of the removal of a site from the HSI when that removal is made pursuant to Rule 391-3-19-.05(4)(a). If you wish to provide such notice, you are not restrained from doing so by the Hazardous Site Response Act, or Rules promulgated pursuant thereto. However, if the language of your planned public notice includes interpretation of the site removal that implies that EPD would concur with that interpretation, I would ask that you allow EPD the opportunity to review and comment on such language prior to publication.

If you have any questions, please contact Ms. Regina Campbell at (404) 657-8600.

Sincerely,

Mark Smith

Mark Smith, Chief Hazardous Waste Management Branch

c: Gerald L. Pouncey, Morris, Manning & Martin

File: HSI 10808 S:\RDRIVE\REGINA\Sites\10808 - Lowes Riverdale\7494 delisting itr rev.doc

APPENDIX J XRF SCREENING PROCEDURES

Soil Screening by X-Ray Fluorescence

Soil samples were collected in three areas of the Site where previous soil testing had identified potentially elevated metals concentrations in soil. Sampling grids were laid out in each of the three areas of concern measuring 100 x 100 feet. Samples were collected on 20-foot centers for a total of 36 sampling locations per area. At each location, soil samples from three depth intervals, 3-6", 12-15" and 21-24", were collected in Ziploc bags for screening using a hand-held X-ray fluorescence (XRF) unit..

The XRF detector used for the field screening of soil samples was a NITON Model XLt 700 which utilizes x-ray tube excitation. Each time the unit is started it was internally calibrated. The unit is also recalibrated annually by the manufacturer.

The sampling method employed involved collected a sample of approximately eight ounces of soil from the designated depth and placing in a sealed plastic bag. If possible, the sample was crushed using hand pressure and mixed to homogenize the material. We note that due to the cohesive nature of many of the soil samples, thorough homogenization was not always possible. The instrument was then placed firmly against the bag and engaged for an approximate 120 second exposure period.

The detection limits for the various metals vary depending upon soil matrix and exposure duration. Detection limits published by NITON for this instrument are outlined below. The values presented represent expected detection limits based on a 120 second exposure duration with either a standard reference material (SRM) soil matrix (lower limit) or sand matrix (upper limit). Actual detection limits measured will vary depending upon the site specific-soil matrix encountered.

Element	Expected Instrument Detection Limit Range
Arsenic	8-15 mg/kg
Cadmium	45-65 mg/kg
Chromium	40-45 mg/kg
Lead	12-20 mg/kg
Mercury	8-12 mg/kg
Selenium	3-15 mg/kg
Silver	35-50 mg/kg

Barium was not included in the field screening as the XRF unit was not capable of detecting barium with the x-ray source employed. Barium is known to be a naturally occurring element in Site soils but was not suspected of being part of a release at the Site.

The detection limits observed by MACTEC during our field screening were generally within the ranges outlined above for arsenic, lead, mercury and selenium. The detection limits observed for cadmium and silver were generally somewhat lower than the published values (approximately 22-30 mg/kg for cadmium and 24-28 mg/kg for silver) while that of chromium was generally higher (typically 90-100 mg/kg).

APPENDIX K FIELD SAMPLING RECORDS

JOB NAME:	Lows - KNEVELLA JOB No.	JOB NAME:	JOB No.	
FIELD REPRESEN	(TATIVE: Date: $b/(bb)$	FIELD REPRESENTATIVE:	Date:	and the second se
Well No. DW-	Depth to Water 23.13 Depth to Bottom 66.00	Well No Depth to W	ater Depth to Bottom	
	Initial Intermediary Final Sample	Initial	Intermediary Final Sam	mple
Appearance Odor	Clear Clar Clar Clar	Appearance		
Temperature	215 228 26.4 19.9	Odor Temnerature		
hII d	7.21 7.54 7.56 6.83	lld		
Specific Conduct. (965). Turbidity (NTUs)	122 203, 100, 14	Specific Conduct. ()		
Gallons Removed	0 7 14 21 28 35	Turbidity (NTUs) Galling Removed ()		
	c/22 c/23			
MELL	DEVELOPMENT / PURGE RECORD	VAOTSIASIA TTSIAA	IENT / PURGE RECORD	
JOB NAME:	JOB No.	JOB NAME:	JOB No.	
FIELD REPRESEL	VTATIVE: Date:	FIELD REPRESENTATIVE:	Date:	A manufacture of the second seco
Well No.	Depth to Water Depth to Bottom	Well No. Depth to V	Vater Depth to Bottom	
	Initial Intermediary Final Sample	Initial	Intermediäry [Final Sa	Տուոր
Appearance		Appearance		
Odor		Odor		
Temperature		Temperature		
		Id		
Specific Conduct. (Specific Conduct. ()		
Lurbidity (NTUS)		Tarbidity (NTUs)		
Gallons Kemoved		Gallons Removed 0		

REPRESENTATIVE:	Date: 6/15/06	FIELD REPRESENT	ATIVE: B. Uphyle.	Date	6/1×10
Depth to Water 21 Depth to Botton	1 57 S	Well No. EW2	Depth to Water Roof	Depth to Bottom Z	12
Initial Intermediary	Final Sample		Initial Intern	ediary Final	Sampl
Clear clady clady claudy claudy	lowly clear	Appearance	cher clerky clore al	Clow	1 Cle
20.6 17.16,6 16.7 11.4	1,0 N/N 1,0	Udor Temperature	N/N N/N N/N		112
5.43 4.674.175 4.64 4.65	LIG SIX	IId	12.1 A.1 12.1	<i>e</i> /, <i>G</i>	5.5 2.5
10ct. 44(2) , 073 , 0351, 032 , 030, 029	020 . 02 le	Specific Conduct. (m3/23)	N.C. 610. 810	, of	1 . 6
ved 0 10/20 20/10	11 68	Turbidity (NTUS)	30 141 364 1		0
	0/10/0	Callons Removed	0 0.34 1 268 40		
WELL DEVELOPMENT / PURGE RECORD		WELL.	NEVELOPATENT/ PU	AGE RECORD	
Circle JOB No.	•	JOB NAME:		JOB No.	
PRESENTATIVE:	Date: (1/5/00	FIELD REPRESEN	rative:	Dat	
Depth to Water 100 Depth to Botto	1810 m	Well No.	Depth to Water	Depth to Bottom	
Initial Intermediary	Final Sample		Initial Inter	mediary Fin	l Sam
clothed charlichardy	Jouly Clear	Appearance			
M/M/M/M/N/N/	N/A N/A	Odor			
184 182	N.2 16.9	Temperature.			
er. 46 483 4.79	4.65 4.56	bll		· · ·	
duct. (project : 06/ ; 0671, 033	X67 9,064	Specific Conduct. (
TUS) [10] (28) 999	681 15	Turbidity (NTUs)			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.1	Gallons Removed			
	10/10/02				NO. 200

JOB NAME:	U25-121,00 Lale JOB No. (305-05-030)	JOB NAME:	JOB No.
FIELD REPRESEN	TATIVE: B. Up dy la Date: 6/15/60	FIELD REPRESENTATIVE:	Date: Wixlo
Well No. EW-7-	Depth to Water A.S. Depth to Bottom 20.15	Well No. EW-3 Depth to Water 162 De	oth to Bottom 20.10
Appearance	Initial Intermediary Final Sample	Initiat Intermed	ry (1994) Final Sample
Odor	N/N N/N N/N N/N N/N N/N N/N N/N N/N	Appearance Charl Clark Clark Clark Clark	struck South Clark @
Temperature	123 121 121 14 14 17.0 3.19	Temperature N/A M/A N/A N/A	HIN WIN WAY HIN
pH Specific Conduct. (#4/14)	4.91 4.84 21.64 4.65 9.64 9.64 2111	pll 21.87 Sort S. S. 17.6	1. 10 101 101 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Turbidity (NTUs)	55 9/2 10 589 201 0.312 2.091 , 113	Specific Conduct. (set a) 2. of 2. 275 - 276 - 2075	2.075 0.000 - 361
Gallons Removed	0 034 068 1.32 1.36 1.7 1	Gallons Removed 0 27 1.4 2.1	2.8 3.1 101
	Durg on the		Yeven
	5 weiling		an star 1 an star 13
MELL	DEVELOPMENT / PURGE RECORD	WELL DEVELOPMENT / PURC	S RECORD
JOB NAME:	JOB No.	JOB NAME:	JOB No.
FIELD REPRESENT	TATIVE: Date: USDC	FIELD REPRESENTATIVE:	Date:
Well No. EW	Depth to Water Bepth to Bottom 20.10	Well No. EW-5 Depth to Water 16.90D	pth to Bottom 27.80
	Initial Intermediary Final Sample	Initial Intermet	ary Final Samp
Appearance	Check dur	Appearance Cloudy Cloudy Cloudy ichedy	cloredy: right
Odor	N/N W/N W/N	Odor A/A R/A N/A	N/N
Temperature	22.3 20.5	Tempecature R.C. R.O. D.L. 17.0	241 211
put Specific Conduct (1986)	6.20 5.16 5.31	PH 5.29 5.74 5.92 4.86	4.82 4.75
Turbidity (NTUS)	1/201 1001	Specific Conduct. (3) (3) + 074 ; 068 , 069, 074	1076 JC30
Gallons Removed	186 74 10 10 10 10 20 3	Turbidity (NTUS) 999 999 999	631 496
	6/14/6	Gallons Removed 0 1.2 2.4 3.4	0.2 5.10

10B No.	Date:) Bottom	Final Sample								CORD	JOB No.	Date:	to Bottom	Final Samp								
		ater Depth to	Intermediary			-					AN ADMUG AN			/ater Depth_	Intermediäry	·							
	NTATIVE:	Depth to W	Initial						0		INAOTEASIC T		NTATIVE:	Depth to W	Initial					(0	
JOB NAME:	FIELD REPRESE	Well No.		Appearance	Odor	lemperature 	pri Specific Conduct. (Turbidity (NTUs)	Gallons Removed		<u>I I I I I I I I I I I I I I I I I I I </u>	JOB NAME:	FIELD REPRESE	Well No.		Appearance	Odor	Temperature	11	Specific Conduct. (Turbidity (NTUs)	Gallons Removed	
(20-20-202) ON 8	Date: (0/20/0 V	ottom 28.81 (811 stickup)	Final Sample	clerky clar	N/N M/N	23.2 24.9	214 61.0	999 23.4	6.5	70/12/2		B No. Contracto	Date: (122)06	ottom 2F9Y	Final Sample	Clowly Clear	N/A N/A	19.7 R.1	11.31 10.67	· 587 . 479	89 7.23	7.5	a dot 1/
Redall JO	B. Updyfor	to Water ^{2/15} Depth to B	Intermediary	Could open to be clark	22 21 21 21 21 22 2	Cont 100 100 100 100	6 ho 120" 220" 160"	199 944 999 944	13 2.6 3.9 5.2		DPMENT / PURGE RECC	Oſ		to Water 23.2 Depth to I	Intermediary	cient could cloud cloudy	N/A N/A N/A	129 19.5 21.2 19.2	11.56 11.57 11.49 11.50	1324,921,816.538	399 711 749	1.5 3.2 4.5 6.0	
JOB NAME: Loncs-R	FIELD REPRESENTATIVE	Well No. $\frac{\ell W}{M} = \frac{V}{M}$ Depth	In the second	Appearance Che.	Temperature N/N	pll <	Specific Conduct. (vy/c), 093	Turbidity (NTUs)	Gallons Removed 0		WELL DEVEL	JOB NAME:	FIELD REPRESENTATIVE	Well No. EW-6 Depth	Initial	Appearance Cloudy	Odor N/M	Temperature	pH //	Specific Conduct. (2) , 62 V	Turbidity (NTUs) 78	Gallons Kenioved U	

rarara A a

JOB NAME: JOB No.	DU FIELD REPRESENTATIVE:	Well No. Depth to Water Depth to Bottom	ple Initial Intermediary Final Sample	Odor	Temperature	Specific Conduct. ()	Turbidity (NTUs)	WELL DEVELOPMENT / PURGE RECORD	JOB NAME: JOB NAME:	FIELD REPRESENTATIVE: Date:	Well No. Depth to Water Depth to Bottom	ple Initial Initial Intermediary Final Sampl	Appearance	Odor	Temperature		Specific Conduct. ()	Turbidity (NTUs)	Gallons Removed 0 1 1 1
JOB NAME: JOUXS - RINENAL JOB 1	FIELD REPRESENTATIVE: 8. (10 Mg/k	Well No. E_{M-5} Depth to Water $I_{A}^{A} b_{epth}$ to Bott	Appearance Luck CGAL CGAL	Odor N/A N/A N/A N/A	pll 479 21.59 4.64	Specific Conduct. (***() 17 / 2017, 2017, 2014 Turbidity (NTUs) 2017, 2017	Gallons Removed 0 7.12.2	WELL DEVELOPMENT / PURGE RECORD	JOB NAME: JOB	FIELD REPRESENTATIVE:	Well No Depth to Water Depth to Bot	Initial Intermediary	Appearance	Odor	Temperature	pII	Specific Conduct. ()	Turbidity (NTUs)	Gallons Removed 0 1

Attachment 4.4

WELL PURGING - FIELD WATER QUALITY MEASUREMENTS FORM

ろって

Location: Lowes-RWerddle

Field Sampling Personnel: B. U.P. Clurk DW-1 Well ID:

Identify Measuring Point (MP): (e.g. Top of Casing) Depth to Screen below MP:

60.00 5'5.10

page / of]

of screen

	Bottom		
or screen		1.00	*

Bottom	c
Top 57.60	peris talf

		1						~~~>			· · · · · · · · · · · · · · · · · · ·		 	 		 		 		 		
			Comments		-			is sed / gmothe for jurbidit				Samok, well Stabilized										
		dder pump, etc.)	Hach	Iron	mg/L										·				-			
	c	c pump, bailer, bla	CHEMetrics	mg/L	(low)																	
57.60	is tail	ed pump, peristalti	Cum. Volume	r ui dea	gallons	0.21			01		× 5'										-	
-	per	(e.g. Dedicate	Redox Potential		- mV	1	1	1	l	l)											
low MP):	Type):		Temp.		ပံ	20. l	19.7	19.4	19.6	19.9	19.8	•										
ke at (ft. be	svice (Pum)		Elow cell		mg/L	١	1)	I	1)								-			
Pump Inta	Purging De		I urbidity		NTUS	5	/	3.13	2.23	1.92	ב.דל											
		c	Spec		mS/cm	. ,36	, 103	ce1 :	66a.	\$ 20.4	, 059						-					
			Hd		pH units	6.84	8.41	8. <<	8.62	8.65	Y. 67											
,			Purge Kate		mL/min	500	150	011	CCI	Cel	120											
-			Water	Below MP	Ħ	16.25	17,95	19.80	30.22	23.0	24.30											
		Time	IIIIe		24 hr	c& 11	0,111	1120	CE11	chll	C>11	Cert										
		cieC	Dale			6/22/2																

<u>Notes:</u> Note when "Stabilization " has occurred. Stabilization Criteria (achieved after a minimum of three successive readings):

If stabilization does not occur within 2 hours, contact Site Manager for action. If well goes dry prior to stabilization, stop, allow well to recharge, and collect sample.

<u>+0.1</u> for pH +10 mV for redox <u>+3%</u> for specific cond. +10% for DO <20 NTUs for turbidity NA for temperature

040002.03

LOWCS RIVERDAL GAZZO 10/30/06 meet with BoBSmith Storr MANAGER + Contractor To counte spots For wells. Also Lighting of Lot. 6406cd Qwell For DTW 15:30 +15.92 10/31/06 - 11-1-06 ONSITE 10:00 Pm WAITING FOR DRILLEIS PRILLERS ON SITE 11:00 Pm Studied EWS At 11:30 Pm (12:30 Pm Listas wont OFF USCD 1 D TRUCK LISATS) At 12:30 Rm DRILLed to 17' AND WANTED For WAter IN Nell to STABLIZE 13:30 PM- 1:30 Am At 1:00 15.60 1:30 DTW 15.30 At 2:00 Am Set well At 22.55' SET SEC BORNING LOOP Cut out + Sct PAO+ COUCR ORIUCRS OF SITE 3:00 Am EW8 DTW 1495 DTB 22.55 Developed 6.5 GAL 4.37 PH 4.43 4.27 4.26 4.26 CONP .935 .908 ,901 .902 .902 TURS 28 2.9 26.8 1.8 1.7 5.82 8.84 8.68 4.77 8.84 Do Tenl 19.80 19.19 18.59 18.61 19.13 ORP 298 324 413 4.13 408 4:15 5:25 Tinc 4:45 3:30 5:10

								$\overline{2}$
s and antimation of the star of the polymological scalar	lowe	5 RIUR	Date 1	1/2/06	SAN	Le 364	L	
EW 8	5 T 1702	T 10:45	20	'R 2's	CREEN	for the second second to the second second		
DTW	15.34	15.65	15.75	15.78		fer fer och der er en haftaffanke foran och Nagaran	de la francessa en esta	
PA	4.91	4.97	4.84	4.84		en en en en la marticle à charlear a un		annan an air air ann an Arrainn an Arrainn an Annan Anna
COND	.166	. 104	.118	.119		n annan an a' sharan an a	Man Manuel (1994) (1994) and and and	namene en endere e el reconomiserar e colaboradore e der defensandere en ender especies e de e
TURS	75	27.7	0.01	0.01				<pre></pre>
DD	4.10	3.82	7.53	7.50		n an is successive and		 La de la construcción de la definidad de la definidad de la definidad de la construcción de la construcción de la construcción de la construcción de la
TenP	19.80	20.20	20.14	20.14			and (* 1999) - Sector of the Sector and the paper of the sec	nanonen erinte (Kreffer - fri derstallsondere sammangalit), sons -
ORP	227	491	542	643			(1) Control Control Systems and solar systems and syste systems and systems	- en procher constante en con desenvoluente en la soluzione antidescon accessos e processos e processos de la constante e processo de la const Constante e processo de la constante e processo de la constante e processo de la constante e processo de la const Constante e processo de la constante e processo de la constante e processo de la constante e processo de la const Constante e processo de la constante e constante e processo de la constante e processo de la constante e processo de la constante e proceso de la constante e pr
Time	10:50 pm	1100Pm	11:30 pm	12:00 pm s	5 Andre		and the second	1. Berlinde für Mehr effer Gemeine für de standarden um gemeinen eine eine der standarden eine eine eine eine eine eine eine e
anget som her and a company of the second data at the same		-	10 - 10-10-10-10-10-10-10-10-10-10-10-10-10-1	e ar i mini de Status groupe de la magnitica de la				
Ø	PILLERS,	onsite	10:50 fm	s - See Solg ages a week of the state of the state of			. Star	n an
	ivell	installe	el			Townshield Collection and the Spinisher Spinisher Spinisher	÷ 2	- Construction of the c
	Ewio	Sec Bo	ENIY LOG			an the most server a many sector and the sector and		
en bije etter biene were of the Witching Witching of success (ge were engine get	<u>1</u> 2	"R 10"	SCREEN	en manada kan en ang kan ang ka	а. 11. мартика талар кала калариан или талар калариан ала са са с	n	ر	
Éw10	en se	ana a ann an an ann an an an an an an an	Develop	4642	communication of the contract of the contract of the		and a she was a set of a set o	
P4	3.92	392	3-90	3.90		1991 - 100 100 8 1 14 (1. p. t. 1.) 4 101 (2.4.5 p. t. 1.)		
CONS	1.30	1.20	1.17	1.15	•	erre steriften verste de skeldenstelste stere ogsjoer stere		naan oo oo oo oo oo oo ahaayaa daaxaa ahaa ahaa ahaa
TURB	222	8.3	1.38	1.00	naanggeselah oo ku ana ku oo shina shina shina shina s	r - na off Mildonian at to sty 14 yr Stoling (fg.) (Sarayo		ana ana ang ang ang ang ang ang ang ang
po	5.37	5.62	5.94	6.06		n a 111 Mah dag dala da - a Maghando dangan		
TemP	19.42	20.57	20-68	20.68	n management and an an management of a constraint against	namena kan an ay a ka kapinan Mandara Juga kata baga kapi		n i na seconda e a companya de la co
ORP	288	299	305	310	annan ann an State a	1949 - 19 19 19 19 19 19 19 19 19 19 19 19 19		n na matte de anterestado de la construcción de la construcción de la construcción de la construcción de la const
Time	2:05	2:15	2:30	2:45		nd an analasi na di ta na di bangadalahan nasa	an and the state of the state o	
1		.	 More and the end of the end of			ang na mang ng	· · ·	
	mana (m. 17). Las que marchena administra en com com		n a sa 1999. Na ma kana ka sa ma gan ga ma sa 200, sana s	a - mathematical and a sum of property of the state of the sum of			Annual de lago. To have a fait a surger ou have a statement	ener en com men a sener com en com en com a com a com a com
and the second of the second s	ene (1961-1990) - materialment en trage VPA					ne - ne energia de actuar ou data y a		
(1) ANY(1) = −10 ¹ (1 − 1) (b ₁ − 1) (a) (2) (2) (1) (1) Villand	new state of the s	·	a a an a tao a manada a sa			n den antar e si properti e successi de se ana		
Mi · · · · · · · · · · · · · · · · ·	111 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		4 					

	Lowes	Ruck	DALE	11-2-01	6
Ewio			Puble 5	2.5 GAL	Southe
PH	3.88	3.89	3. 89	3.89	
COND	1.44	1.27	1.27	1.19	
TJEB	3.50	1.74	1.74	1.01	
Do	5.00	3.66	3.66	3.81	
Tenp	Ð.18	20.46	20.46	20.54	
ORP	295	300	302	301	
Time	3.45	4:00	4:10	4.20	
anna a tha an	n S	New York of Martin Andrews and a stand of some frances and an angle of the standard standard of the standard standard of the standard			
	• • • • • • • • • • • • • • • • • • •	the definition of the definition of the state of the stat			
	n gebouwentetoriet				
To charactery photo and photo bet a result of the set	рания (1993) В манитерия 1	•			
	: 29999				
	n 1999 - Maria Maria, an Salan ann an Anna an Salanna an Salanna an Salanna an Salanna an Salanna 1	Night an an annual popular is all un spingerson proving a family and the			
, 	My former de Respônsers () et la sur par autorio, com anna and			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
anti-communitation for the second of the second	a r i				
	: (1997)	Malalan ang mang mang mang mang mang mang man			
	Manana kata ang kata ang kata ang kata pang kata ang kata pang kata ang kata pang kata pang kata pang kata pang	al d'active descent d'a serie (, serie annu s according to according to according to a series) an			
	Ry Analasan Uniter Astronomica ini dalam Patro Astronomica	Niho had ya 1990an jiwaki 40 a da na kwala na mata kwa K			
	Mi Colineline de la colonia de la colonia de la colonia de la co	anders an Line of Bernstein State of Second Seco			
	y i a trag francisco con a contra (), for the contract of a contract of a contract of a contract of a contract	алан ал ангандар ан ан ангандар андаг ан анган ал ал ан			
		and a many of the second s			
e - come co estano constructiva desensaria	n na na n				

			•								. · · ·
			a da ante da casa da se Statu da casa da se Statu da se se se Statu da se								i v i
											an a
	i Aliana Matrixa										
		, 									
Drue	15.33	DTB	20 . 7.5	- 46 n	c Dev	Ew & A	TO'SCR	en po	rp <i>ise</i> n	16 .11	106
- Ewio			AT HE			owerop	DTW 148	9 DTP	20.33		
- PA	3.92	3.92	3.90	3,90		PH	5,11	5.22	5.27	5.19	2
Com	1.30	1.20	1.17	1.15		cons	,120	.104	-099	1095	-
TURB	222	8.3	1.38	1.00		TURB	345	225	\$83	20.1	
DO	5.37	5-62	5.99	6.06.		DO	5.38	5.12	5.83	6.23	
Temp	19.42	20.57	20.68	20.68		Tanp	17.25	17.47	17.60	17.69	
ORP	288	299	305	310		ORP	203	204	212	220	
Time	2:05	215	2:30	245		Time	2:30	245	300	315	
Porze 2.5			1	~		ENRA	84				2
PH	3.88	3.89	3.89	3.89		SANTHE DTW					
COMD	1.44	1.27	1.19	1.19		P4	5.17	5.16	516	5.15	
TVEB	350	1.74	1.25	1.01.		Con	.094	,094	10 94	093	
ØO	5,00	3.66	3.80	381		TUER	23.1	15.0	9.1	2.2	
TENP	Zo.48	20.46	20,58	20.54		00	6,20	6.10	6.17	6.11	
ORP	295	300	302	301		Tent	17.70	17.66	17.65	17.71	
Time	3:45	400	4110	4:20		DRS	22 I	221	221	321	
				· .		Tml	4:30	445	500	515	
				:			•				

 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (1) (1) (1) (1) (3) (1) (1) (1) (1) (4) (1) (1) (1) (1) (4) (1) (1) (1) (1) (4) (1) (1) (1) (4) (1) (1) (1) (4) (1												
		ан 1									•	
												al and a second
		a de	341 0		-419-55 (1994) 		n ^{an} (Internetation		the diamtype:			
	Ewe	15.70	22.90	,	11/4/06		<u> </u>	4/06	love?	.		
	Dur M		DTBA		<i>i</i>		DR	lin	owsit	2 10:3	om	
1.	PA	3.75	3,67	3.66	3.62		OFF	1:00	Am			
	ConD	2.09	2.24	2.28	2.33		·					
.	TURB	629	350	95	28		En 90	w 16.70	15.61	1558	15.31	DEU
	po	6:04	2.75	2.60	2.26			15.70	15.55	15.51	15.27	5 with
	Jul	17.65	18.45	18.73	18.46					00		
the second s	opp	3.46	349	351	354		111/6/0	6 51	AUS	BP	-	
- L - L - L - L - L - L - L - L - L - L	Ame.	1:30	1:45	2:00	2:15							
	SANCE	x				-						
	PA	3.55	3.54	3.54	3.53	_						
	CON	2.36	2.36	2,36	2,37	-					-	
-	TURB	20.0	16.3	9.5	1.6	-						
	PO	1.88	1.88	1.73	1.80	-		-				
	TENP	18.65	18.66	-18-67	18.68							
	orep	3,55	3055	354	354							
	The	3:30	345	400	415	-						
		1										
Ň												

MACTEC						JOB NO. 6305050303 SHEET (OF PHASE TASK 02				
MACTEC Engineering 396 Plasters Avenue, Atlanta, GA 30324			BY	: <u>20</u> и -ИZЮ ВУ		DATE 11/22/06				
1//20/06-11/-	zi106									
DRILLoel i	Deep un	ell E	ωı	40 5	3' 120	ck Ret	ESAL			
J'SCREON	51' R18	seR.	· · · ·			(I w 10	~~Eug	- Ew11		
11/21/06 - 11/22/0	\$6		·····							
Developed	+ SAm	Plece	nell	Ļ _						
DTW 17.96	DTB 5:	2.50								
Developect	30 GA	L Fron	n ucl	(.				
DTW AFTER	SGAL	18.52		5+1	Antel	ECAD	123 A.H	RSGAL		
	10 GAL 1 18 0 AZ	18.61		5	Droms	8012	KFF	cite		
e e e	20 GNL 1 25 GAL,	8.66						37		
	30 GHL 35 GAL 1	18.92 8.999								
Ewn	Devia	2 Repo	JES							
PH 622	5.94	6.40	6.20	1,05	6.03	e perso 6.03	6.03	6.02	6.03	
Con 137	1099	• 114	1 1 6	.09Z	.090	0.098	-088	087	1.80	
TURB 236	2 48	180	138	100	65	47	45	12	7	. 1
DO •19	0.00	0.00	00.0	0.00	e.00	0.00	0.00	0.00	0.00	
Tenp 17.27	15.92	15.75	15:51	1601	16.12	16.12	16:08	15.83	15.88	
ORP 170.	148	100	102	130	119	118	108	107	106	
Time 0000	00.30	-1.06	1:30	2:00	2:30	3:00	5:30	900	433	
								5	male	

APPENDIX L CONTOUR ENGINEERING WELL CONSTRUCTION DETAILS

APPENDIX L CONTOUR ENGINEERING WELL CONSTRUCTION DETAILS

CONTOUR ENGINEERING, LLC

Geotechnical Services • Materials Testing Services • Environmental Services

March 20, 2007

Ms. Kendal R. Jones Vice President/Development 3632 Wheeler Road Augusta, Georgia 30909

RE: Draft Summary of Well installation Proposed Lowe's Riverdale Project State Highway 85 Riverdale, Clayton County, Georgia Contour Project: CE04HUL:03

Dear Ms. Jones:

As you know, Contour Engineering, LLC (Contour) completed a Draft Corrective Action Plan (CAP) on the above-referenced property on February 5, 2005. The Draft CAP methodology and findings were presented in a report and was completed for Hull Storey Retail Group.

Contour completed two subsurface assessments within the Site. A Limited Phase II ESA was completed on Parcels 015A and 018 in August 2004. The assessment involved collecting groundwater samples from two nearby, pre existing monitoring wells (MW-NE and MW-NW), the advancement of five (5) soil borings (SB-1 through SB-5) using direct push technology (DPT) for the collection of groundwater, the conversion of those temporary monitoring wells to permanent Monitoring Wells (MW-1, MW-2, and MW-3), and two rounds of groundwater sampling. A second Phase II (January 2005) involved the advancement of 30 borings (B-1 through B-30) using DPT and the conversion of 14 of those borings to shallow, temporary monitoring wells (TW-3, TW-11, TW-13, TW-17, TW-19, TW-20, and TW-23 through TW-30).

The assessment in January 2005 consisted of the installation of 14, one-inch temporary, shallow groundwater monitoring wells. The temporary wells were installed by Atlas-Geo Sampling using DPT. Temporary wells were constructed using 1-inch diameter,

schedule 40, flush threaded PVC pipe with 5-foot, 0.010 inch slotted well screen sections threaded to the solid riser pipe. Disposable gloves were worn when handling the well screens and materials to lessen the potential for cross-contamination between wells. After installing the wells, silica sand was added to the borehole annulus surrounding the wells and was extended a minimum of two feet above the top of each well screen. A bentonite seal was then formed from the top of each sand pack to surface grade by hydrating bentonite chips. The top of each PVC casing was allowed to extend approximately 0.5 - 1 foot above ground surface. The temporary wells were finished with locking caps.

The field investigation was performed under the direct supervision of a Georgia Registered Professional Geologist and/or a Georgia Registered Professional Engineer. Field sampling was conducted in accordance with the Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (EISOPQAM), revised Nov. 2001.

If you have any questions concerning this project, please contact us

Sincerely, CONTOUR ENGINEERING, LLC

Stevent. Yekut

Print name: Mr. Steven H. Yekich

Title: Vice President

