

December 4, 2013

Mr. Derrick Williams, Program Manager Response & Remediation Program Land Protection Branch Suite 1054, East Tower 2 Martin Luther King, Jr. Drive SE Atlanta, Georgia 30334

RE: Voluntary Remediation Program – Compliance Status Report Former Vogue Cleaners
Tax Parcel ID Map J 10, Parcel 079/087
Columbia Square Shopping Center
Martinez, Georgia
HSI Site #10394

Dear Mr. Williams,

Genesis Project, Inc. is pleased to submit this Voluntary Remediation Program – Compliance Status Report (VRP-CSR) for the Former Vogue Cleaners located on Tax Parcel ID *Map J 10*, *Parcel 079/087 (Property)* within the Columbia Square Shopping Center in Martinez, Georgia. This VRP-CSR summarizes the existing soil, groundwater and vapor conditions on the subject Property and is submitted in lieu of the second 2013 Semi-Annual Progress Report and completes the Voluntary Remediation Program corrective action process per the application approved on March 21, 2011. Based on the findings to date:

- 1. The Property is in compliance with VRP Clean-up Criteria for soil;
- 2. Groundwater conditions have been delineated and fate and transport modeling of impacted groundwater illustrates no human or environmental receptors;
- 3. Site specific data demonstrates that vapor intrusion is not an exposure pathway with unacceptable risk to human health; and
- 4. No non-qualifying property is affected by the release from the Property.

On behalf of The AXA Equitable Life Insurance Company, Genesis Project respectfully requests the EPD delist this parcel from the Hazardous Site Inventory.

If you have any questions regarding this submittal, please do not hesitate to call.

Sincerely,

Genesis Project, Inc.

Mark D. Mitchell, P.G.

Principal

Cc: Mr. Robert Poole, Morgan Stanley

Mr. Doug Cloud, Kazmerek Mowrey Cloud Laseter, LLP

Voluntary Compliance Status Report Former Vogue Cleaners Columbia Square Shopping Center Martinez, Columbia County, Georgia HSI No. 10394

Submitted to:

Georgia Environmental Protection Division Hazardous Sites Response Program 2 Martin Luther King Jr. Drive, Suite 1462 Atlanta, Georgia 30334

Prepared for:

The AXA Equitable Life Insurance Company

c/o Morgan Stanley Real Estate Advisor, Inc. 3424 Peachtree Road Suite 800 Floor 09 Atlanta GA 30326-1118

Prepared by

Genesis Project, Inc. 1258 Concord Road Smyrna, Georgia 30080 (770) 319-7217

Genesis Project, Inc.

EXECUTIVE SUMMARY

On behalf of The AXA Equitable Life Insurance Company, Genesis Project, Inc. has prepared this Voluntary Remediation Program - Compliance Status Report (VRP-CSR) for the former Vogue Dry Cleaning operation located within the Columbia Square Shopping Center – Phase II (Property). The Property is located at 4018 Washington Road, in Martinez, Columbia County, Georgia as described in Appendix A (the "Property") and within land parcel number 079/087.

The property was placed on the State of Georgia, Hazardous Sites Inventory due to a release of tetrachloroethene to the environment. Over a period of 13 years, extensive assessment and remediation activities have been conducted at the Property to mitigate any risk to human health and the environment. These actions have included soil excavation, chemical treatment, dual-phase extraction events, air sparging of groundwater and soil vapor extraction within the vadose zone, which has resulted in a dramatic reduction of tetrachloroethene and associated chemicals at the Property.

The purpose of this report is to satisfy the requirements of the Georgia Voluntary Remediation Program (VRP). The objectives and findings of this VRP-CSR are summarized below:

- ◆ Investigation and remediation activities, including but not limited to the development of exposure scenarios and site-specific cleanup standards, were developed based on the optional standards and policies set forth in section 12-8-108 of the State of Georgia Voluntary Remediation Program Act.
- ♦ All soil sample analysis results collected from the Property are less than the calculated Voluntary Remediation Program (VRP) Cleanup Standards for on-site soil.
- ♦ Although exposure to groundwater has been classified as an incomplete pathway on the Property, groundwater-sampling results from the August 2013 groundwater-sampling event meet the Risk Reduction Criteria calculated for on-site groundwater in the source area and no impact is present at the point of demonstration.
- ♦ A Uniform Environmental Covenant is proposed for this parcel to confirm that future site use continue to eliminate any potential exposure risk to human health and the environment.

Based on the information provided, Genesis Project requests approval of the VRP-CSR, and proceed with activities to complete de-listing of the Property from the Hazardous Site Inventory.

CERTIFICATION OF COMPLIANCE

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report, I have determined that former Vogue Cleaners previously located in the Columbia Square Shopping Center – Phase II (Tax Parcel ID Map J 10, Parcel 079/087) is in compliance with the Voluntary Remediation Program (VRP) cleanup standards developed for soil and groundwater as set forth in section 12-8-108 of the State of Georgia, Voluntary Remediation Program Act.

Signature

Date

The AXA Equitable Life Insurance Company

c/o Mr. Robert Poole

Morgan Stanley Real Estate Advisor, Inc.

3424 Peachtree Road

Suite 800 Floor 09

Atlanta GA 30326-1118

Registered Professional Geologist Certification

I certify that I am a qualified groundwater scientist who has received a baccalaureate or postgraduate degree in the natural sciences or engineering and have sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport.

I further certify that this Voluntary Remediation Program - Compliance Status Report for Hazardous Site Inventory Site No. 10394 was prepared by me or by a subordinate working under my direction.

Name: Mark D. Mitchell, P. G.

Signature:

Date: DEC. 4, 7013

ANIEL MITCHEL MITCHEL

Georgia Stamp or Seal

Table of Contents

1	INTRO	ODUCTION	1
2	SITE	BACKGROUND	2
	2.1	Property Description	3
	2.2	Surrounding Land Use	3
	2.3	Site History of Land Use and Operations	3
	2.4	Source of Contamination	4
	2.5	Historic Corrective Action	4
	2.6	Future Property Use	5
3	SITE	CHARACTERISTICS	6
	3.1	Physical Setting	6
	3.2	Regional Geology	6
	3.3	Regional Hydrogeology	6
	3.4	Surface Water	7
	3.5	Public/Private Water Wells Survey	7
	3.6	Site Geology	8
	3.7	Site Hydrogeology	
4	CONC	CEPTUAL SITE MODEL	10
	4.1	Soil Exposure Pathway	10
	4.2	Groundwater Exposure Pathway	
		4.2.1 Groundwater Fate and Transport Modeling	12

	4.3	Surfac	e Water Exposure Pathway	13
	4.4	Vapor	Intrusion Exposure Pathway	14
		4.4.1	Vapor Intrusion Assessment	14
		4.4.2	Vapor Intrusion Attenuation Factor Calculation	
5	EXTE	NT OF	CONTAMINATION	18
	5.1	Drillin	g and Soil Classification Procedures	18
	5.2	Soil In	vestigation	18
		5.2.1	Vadose Zone Sampling	18
		5.2.2	Soil Sample Laboratory Results	19
	5.3	Groun	dwater Investigation	20
		5.3.1	Monitoring Wells	20
		5.3.2	Water Level Measurements	20
		5.3.3	Groundwater Sample Collection	2
		5.3.4	Groundwater Sample Laboratory Results	2
	5.4	Vapor	Intrusion Investigation	22
		5.4.1	Soil Gas Sampling	22
		5.4.2	Soil Gas Laboratory Results & Risk Calculations	2.
6	VRP (CLEAN	-UP STANDARDS AND SITE COMPLIANCE	20
	6.1	VRP C	Clean-up Standards for Soil	20
	6.2	VRP C	Clean-up Standards for Groundwater	20
7	UNIF	ORM E	INVIRONMENTAL COVENANT	28
8	SITE	CLOSU	JRE	29
9	PUBL	IC NO	ГІСЕ	30
RI	EFERE	NCES		3

Tables

- 1. Soil Analytical Results
- 2. Summary of Groundwater Elevations
- 3. Summary of Groundwater Analytical Results
- 4. Summary of Sub-slab Soil Gas Analytical Results
- 5. Sub-slab Soil Vapor Cumulative Risk Calculations

Figures

- 1 Site Location Map
- 2 Site Plan
- 3a Cross-Section A-A'
- 3b Cross-Section B-B'
- 4a Conceptual Site Model A-A"
- 4b Conceptual Site Model B-B"
- 5 Summary of Soil Analytical Results
- 6 Potentiometric Surface Map
- 7a Summary of Groundwater Analytical Results Horizontal
- 7b Summary of Groundwater Analytical Results Vertical
- 8a 2011 Sub-slab Soil Gas Analytical Results
- 8b 2013 Sub-slab Soil Gas Analytical Results

Appendices

- A. Legal Description of Property
- B. Public/Private Water Well Survey
- C. Supplemental Data In-situ Permeability/Fate and Transport Modeling/Vapor Intrusion Modeling
- D. Field Methods
- E. Soil Boring Logs/Monitor Well Construction Logs
- F. Laboratory Analytical Reports
- G. VRP Cleanup Standard Calculations

1 INTRODUCTION

On behalf of AXA Equitable Life Insurance Company, Genesis Project, Inc. has prepared this Voluntary Remediation Program - Compliance Status Report (VRP-CSR) for the Property located at 4018 Washington Road, Martinez, Columbia County, Georgia. The purpose of this report is to satisfy the criteria of the State of Georiga, Volutatry Remediation Program Act and obtain a delisting of this Property from the State of Georgia Hazardous Sites Inventory under the Hazardous Sites Response Act. This VRP-CSR includes:

- A general description of site background and site characteristics;
- Presentation of the Conceptual Site Model and Exposure Pathways Analysis;
- · A summary of the site soil and groundwater investigations; and
- Applicable VRP Cleanup Standard calculations.

Each of these investigation and remediation activities, including but not limited to the development of exposure scenarios and site-specific cleanup standards, were developed based on the optional standards and policies set forth in section 12-8-108 of the State of Georgia Voluntary Remediation Program Act.

2 SITE BACKGROUND

The former Vogue Cleaners facility is located in the Columbia Square Shopping Center – Phase II in Martinez, Columbia County, Georgia (Figure 1). The site is currently listed on the Georgia Hazardous Site Inventory (HSI No.10394), pursuant to the Hazardous Site Response Act (HSRA) program administered by the Georgia Environmental Protection Division (GAEPD), due to a release of tetrachloroethene (PCE) along with its associated degradation products (constituents of concern [COCs]). Several investigations were conducted and a HSRA Compliance Status Report was submitted to GAEPD in April 1999.

The AXA Equitable Life Insurance Company (formerly known as The Equitable Life Assurance Society of the United States) sold the site on September 14, 2001, retaining the right of access and with express permission for performance of corrective action.

In February 2007, Genesis Project Inc. submitted to GAEPD a Corrective Action Plan Addendum, which presented the results of a pilot test and recommended the use of ART technology as an appropriate remedial alternative. The approved ART remediation technology was fully implemented in October 2007.

On March 21, 2011, the GAEPD approved an application for this Property to enter into the Voluntary Remediation Program (VRP). Upon acceptance into the program, additional investigation and remediation activities were conducted at the Property until it was determined that conditions met the exposure scenarios and site-specific cleanup standards developed for the Property.

2.1 Property Description

The Property is located at 4018 Washington Road, Martinez, Georgia, and consists of a single story building constructed with steel beams, brick and concrete block on a concrete slab. Comprised of a 4.14 acres land, the parcel is located within Tax Parcel *Map J 10, Parcel 079/087*. The building is subdivided into several spaces leased by a variety of businesses. Vogue Cleaners was formerly located near the north end of the building (Figure 2). The Plat Map and Warranty Deed are included in Appendix A.

The current tenant of the space occupied by the former Vogue Cleaners is Quest Church. The church uses the space on Sundays and periodically during the week for meetings and gathering areas.

2.2 Surrounding Land Use

The Property is located in a commercial area and the surrounding area is comprised of:

- To the North Commercial businesses, including the Monterrey Mexican Restaurant and Washington Road;
- To the East Commercial businesses, including the Columbia Car Care Center (HSI No. 10394);
- To the South Columbia Square Shopping Center (current tenants are Cici's Pizza, Hair Obsession Portman's Music and Kings Crown Barber);
- To the West Gerald Jones Automobile Dealerships.

2.3 Site History of Land Use and Operations

Vogue Cleaners performed dry cleaning operations at the Property from 1976 until September 1996. The store continued to operate as a drop-off and pick-up location until

December 1997. The dry-cleaning equipment was removed from the building sometime after June of 1997.

Since that time, a variety of commercial tenants have occupied the former Vogue Cleaners space. At this time, the Quest Church leases the space.

2.4 Source of Contamination

The source of the soil and groundwater contamination originated from the operation of Vogue Cleaners, a dry-cleaning facility formerly located at Columbia Square Shopping Center Phase II (Figure 2). The release originated from fluids (tetrachloroethene [PCE]) contained within storage containers and equipment used within the premises of the former Vogue Cleaners dry-cleaning facility. This conceptual site model is based on the results of shallow soil sampling, which confirms that the source of the impacts occurred immediately beneath the dry-cleaning equipment at the former Vogue Cleaners. There is no data to suggest that disposal of the source materials occurred outside of the confines of the facility.

2.5 Historic Corrective Action

Remedial activities have been ongoing at this site since May 2000. These activities have included the implementation of soil remediation (excavation) as well as active soil and groundwater remediation, including the use of chemical injection as well as air sparge and soil vapor extraction (SVE) via the use of ARTTM remedial technology. A summary of these activities is as follows:

2000: Williams Environmental Services initiated soil removal activities for the
Former Vogue Cleaners facility. A total of 183.8 tons of soil and concrete
were removed from areas within and around the former Vogue Cleaners facility.

- 2002 2006: Two (2) firms, Williams Environmental Services and URS
 Corporation conducted corrective action activities, which included chemical
 injection of hydrogen release compound (HRCTM) into the subsurface. The
 activities included both a pilot test and implementation of full-scale injections.
- 2007 2012: Genesis Project submitted a Corrective Action Plan Addendum for the implementation of ARTTM Technology at the site. . After entering the Voluntary Remediation Program (VRP) in 2011, soil vapor sampling was conducted in the interior of the building, and a soil vapor extraction system was installed within the building at the end of 2011. The ARTTM / SVE system operated at the site until August 2013.
- 2012-2013: Genesis Project conducted interim corrective actions due to an apparent new release of PCE into an onsite monitor well. Corrective actions included two (2) enhanced fluid recovery events (EFR), two (2) chemical injections events and replacement of impacted wells.

Active corrective action activities have been terminated at the Property. On-going site activities include monitoring the video surveillance system on a regular basis to identify any unauthorized activities within the remediation enclosure and tampering with on-site monitor wells.

2.6 Future Property Use

The future use of the Property will continue to be commercial development. A Georgia Uniform Environmental Covenant is proposed to ensure that future site use is protective to human health and the environment.

3 SITE CHARACTERISTICS

3.1 Physical Setting

The site is located on the southern edge of the Washington Slope District of the Piedmont Physiographic Province (Hetrick, 1992). The Piedmont Physiographic Province is characterized by rolling to hilly geographic regions and broad, smooth uplands. The local topography is approximately 385 feet above mean sea level (MSL) and relatively flat.

3.2 Regional Geology

Geologic formations within the Southern Piedmont Province are composed primarily of igneous and metamorphic rocks consisting of granite, gneiss, and schist. According to the *Georgia Geological Survey Bulletin 96* (1984), the site is within the Washington Slope District. The Washington Slope District is bounded, on the south, by the Fall Line and the Coastal Plane. Boring logs recorded at the site described the surface soils as predominantly sandy clays to sandy clay loams.

3.3 Regional Hydrogeology

According to the *Groundwater Pollution Susceptibility Map of Georgia* (Georgia Geological Survey, 1992), the site lies in an area of lower susceptibility for the migration of pollutants to drinking water supplies and is not located in a significant ground water recharge area.

Groundwater in this area occupies joints, fractures, and other secondary openings in the bedrock formations. Water recharges the water table via infiltration of precipitation.

3.4 Surface Water

The property is located in a lower groundwater pollution susceptibility area and the nearest surface water body to the subject property is a tributary to Reed Creek, which is located approximately 1,200 feet west-northwest of the Property.

3.5 Public/Private Water Wells Survey

A Well and Water Resources Survey was conducted within a 3-mile radius of the Property (Appendix B). This survey included a search of groundwater resource databases from the GA EPD and the United States Geological Survey (USGS), a search from the GAEPD water supply database, as well as a drive-by search of the immediate surrounding area. The survey identified thirty (30) water wells within three (3) miles of the Property. One (1) private water supply well was identified within one (1) mile of the Property. However, no wells were identified within a 0.25-mile radius of the site. While these wells were found to exist within the search radius, site-specific and regional data indicate that the on-site dissolved substance and the water wells are not hydrogeologically connected. In addition, an interview was conducted with a representative of the Columbia County Water Authority confirming the subject Property is being supplied by county water. Furthermore, recent potentiometric surface data indicate that the onsite direction of groundwater flow is to the north-northeast, and a majority (29 of 30) of the wells were located to the south, southeast of the Property. Previous investigations conducted at the Property indicate a high water table that most likely discharges into the creek. The nearest surface water body to the Property is 1,200 feet northwest from the site. The locations of all identified water wells are depicted on Figure 1 in Appendix B, along with the documentation of this survey.

3.6 Site Geology

The site geology is consistent with the regional geologic framework. Each of the soil borings contained sandy clays and sandy clay loam in the shallow subsurface. Two soil types are located in the local area including the Bibb silt loam originating from alluvium and the Wagram loamy sand, originating from marine sediments. These two soil types illustrates that the site is located near the contact between the Piedmont Physiographic Province and the Coastal Plan. All available boring logs are provided in Appendix E, and geologic cross-sections are presented as Figures 3a and 3b.

3.7 Site Hydrogeology

The investigation of site hydrogeology consisted of site-specific observations and a review of local hydrogeological data and published regional data. The occurrence of groundwater was determined by a review of historical soil boring logs as well as depth-to-water measurements recorded from all accessible, on-site temporary monitoring wells. The unconfined water-bearing zone at the site is approximately 6 feet below ground surface.

The observed on-site lithology as well as historical geological information suggests that the aquifers in this area are composed of unconsolidated sediments in the unconfined aquifer overlying a network of fractures and geologic discontinuities in non-porous metamorphic and igneous rock.

3.7.1 In-Situ Permeability Testing

In-situ-permeability testing was evaluated to calculate a hydraulic conductivity at the site. Hydraulic conductivity (K) was estimated using Bower and Rice methods from slug tests (rising head) in monitor wells MW-22 and POD-1 in September 2011. Estimated hydraulic conductivity values for these monitor wells are:

	K _(cm/sec)	
MW-22 ^{\lambda}	6.9 x 10 ⁻³	
MW-22 ^{\2}	7.1 x 10 ⁻³	
POD-1	2.4×10^{-2}	

These values are representative of published K values for the Sandy Clays, Sandy Loams and Sandy Clay Loams identified in the study area and consistent with hydraulic conductivity values presented in the April 1999 Compliance Status Report prepared by Williams Environmental. The average hydraulic gradient was calculated to be approximately 0.0034 for the Property via three-point problem (MW-2R, MW-5, MW-7). Utilizing the geometric mean for the K value (1.27 x 10⁻² cm/sec) and a 0.23 effective porosity for Sandy Loams, groundwater flow velocities were conservatively calculated at 194.2 ft./year for the site. Slug Test analysis results are included in Appendix C.

4 CONCEPTUAL SITE MODEL

The primary objective of the Conceptual Site Model (CSM) is to identify complete and incomplete exposure pathways. A CSM describes the criteria necessary to have a completed exposure pathway including 1) contaminant sources, 2) release and transport mechanisms, 3) receiving media, 4) exposure media, 5) exposure routes and 6) potentially exposed populations. The three-dimensional CSM is presented in Figures 4a and 4b. Each component of the CSM is presented in detail in the following sections.

Based on the current and potential land/water use for the site, the primary exposure media of potential concern are:

- Soil;
- · Groundwater:
- Soil Vapor originating from impacted soil and groundwater.

A site-specific exposure pathway will be considered complete "if there are no discontinuities on or impediments to constituent of concern movement, including without limitation controls, from the source of the release to the receptor". Otherwise, the exposure pathway will be considered incomplete and no further evaluation is necessary (Section 12-8-108[2] VRP Act).

4.1 Soil Exposure Pathway

The potential for direct exposure of impacted soil at the Site is considered negligible since all impacted soils is covered by asphalt pavement or the commercial building.

The direct exposure to impacted subsurface soil would be possible in the case of future subsurface disturbance activities. As a result, the potential exposure scenario for this Property includes Construction and Utility Workers.

The potential exposure pathways for these individuals would include:

- · Inhalation;
- · Ingestion; and
- Dermal contact

Since there were no identified impediments or discontinuities to prevent exposure of impacted soils to future construction/utility workers, VRP Cleanup Standard calculations were prepared for this potentially completed pathway and are presented in Section 6.0.

4.2 Groundwater Exposure Pathway

Two (2) potential groundwater exposure pathways were evaluated and consisted of:

- Direct exposure of impacted groundwater via discharge to a surface water body or drinking water well; and
- 2) Direct exposure to groundwater on-site.

The Property is located in an area of commercial development with no drinking water wells located within 1,000 feet or likely to be so in the foreseeable future. In addition, there are no surface water bodies within 1,000 feet of the Property.

The potential for direct exposure on-site groundwater is considered an incomplete pathway since asphalt pavement or the commercial building covers all impacted groundwater. In addition, the depth of groundwater is > 5 feet below grade, which is deeper than utility structures present in the local area.

As a result, the groundwater exposure pathway will only be considered a potentially complete pathway at the downgradient property boundary. This compliance point consists of the "point of

demonstration" well (POD-1), which is located within 6 feet of the downgradient property boundary (Figure 2).

4.2.1 Groundwater Fate and Transport Modeling

Genesis Project utilized BIOCHLOR in order to simulate contaminant fate and transport at the former Vogue Cleaners located in Martinez, Georgia. The objective of the modeling process was to determine the theoretical maximum concentration of tetrachloroethene (PCE) in the former source area, identified as monitor well MW-2R, which should not impact groundwater at the point of demonstration (POD) above the acceptable risk criteria for off-site groundwater. The point of demonstration consists of monitor well POD-1, which is located at the downgradient property boundary of the Columbia Square Shopping Center and the Monterrey Mexican Restaurant.

Three Constituents of Concern (COCs) were considered for this modeling effort and included:

- Tetrachloroethene;
- · Trichloroethene; and
- Cis-1.2 dichloroethene.

The acceptable risk criteria for off-site groundwater (section 6.0), utilized in this model for the point of demonstration, are as follows:

Compound	Risk Criteria at Point of Demonstration
Tetrachloroethene	19 ug/L
Trichloroethene	5 ug/L
Cis-1,2 Dichloroethene	70 ug/L

The modeling process included calibration of the model to pre-remedial site conditions, followed by predictive modeling to determine the maximum source concentration that would not impact the point of demonstration well POD-1 above the allowable risk exposure criteria.

Based on that effort, site-specific Source Area Concentration Criteria, for each COC, were developed to predict the source concentration what would not impact groundwater above the acceptable risk criteria for off-site groundwater at the point of demonstration. The calculated Source Area Concentration Criteria are as follows:

Compound	Source Area Concentration Criteria	
Tetrachloroethene	600 ug/L	
Trichloroethene	150 ug/L	
Cis-1,2 dichloroethene	2,000 ug/L	

These Source Area Concentration Criteria are much greater that the highest concentrations currently present in the source area for tetrachloroethene (25 ug/L), Trichloroethene (16 ug/L) or cis-1,2 dichloroethene (5 ug/L). As a result, the concentration of COCs in the source area could not impact the point of demonstration (POD-1) above the acceptable risk criteria for off-site groundwater; therefore, on-site groundwater exposure is an incomplete pathway. A detailed description of this modeling effort is presented in Appendix C.

4.3 Surface Water Exposure Pathway

The nearest downgradient surface water body is approximately 1,200 feet west-northwest of the Property. The groundwater fate and transport modeling confirmed that COCs above the applicable acceptable risk criteria for off-site groundwater could not impact a hypothetical "point of exposure" 1,000 feet downgradient of the Property. Therefore, exposure to impacted groundwater at the nearest downgradient surface water body is an incomplete pathway.

4.4 Vapor Intrusion Exposure Pathway

The potential for exposure of impacted soil vapor at the Property is limited to the interior of the commercial building at Columbia Square Shopping Center. The potential for direct exposure to soil vapors (originating from impacted soil and/or groundwater) in the interior of the commercial building include:

- · Commercial Workers and Visitors; and
- Utility/Construction Workers.

The potential exposure pathway is inhalation.

Based on this potential exposure pathway, a vapor intrusion assessment and associated modeling was completed to determine if this potential exposure pathway is complete.

4.4.1 Vapor Intrusion Assessment

The United States Environmental Protection Agency (USEPA) Vapor Intrusion Screening Level (VISL) Calculator (Ver.3.0, November 2012 RSLs), was used to develop the screening criteria for the vapor intrusion pathway at this site. The criteria for the screening included:

Parameter	Value	Description
Exposure Scenario	Commercial	Commercial Workers and Visitors
Target Risk for Carcinogens	1.0 x 10 ⁻⁵	Established Cancer Risk Criteria
Hazard Quotient	1	Established Non-Cancer Hazard Quotient
GW Temperature	25°	Average Annual Groundwater Temperature

Based on these criteria, target indoor air concentrations were developed for COCs present at the site. From these baseline exposure criteria, the VISL calculator computes target concentrations for both subslab and exterior gas as well as target groundwater concentrations. However, these target concentrations

are calculated from very conservative attenuation factors for the sub-slab gas (0.1) and groundwater (0.001). Rather than utilizing unrealistic default attenuation factors, a site investigation was conducted to calculate an empirical attenuation factor for the building.

All soil gas samples were collected according to the procedures presented in the Appendix D (Field Methods).

4.4.2 Vapor Intrusion Attenuation Factor Calculation

The calculation for the development of a site-specific attenuation factor is as follows:

$$AF_{vi} = \frac{C_{IA-VI}}{C_{SV}}$$

Where:

AF_{VI} - Attenuation Factor (vapor intrusion)

C_{IA-VI} - Concentration in Indoor Air

C_{SV} - Concentration in sub slab soil vapor

In order to calculate an empirical site-specific attenuation factor, Genesis Project collected paired sub-slab soil gas and indoor air samples utilizing the conservative tracer radon. Radon was selected as the tracer since:

- · Radon is naturally occurring in the vadose zone;
- Radon is not found in building materials nor can it be present due to any indoor sources;
- Radon is a conservative tracer because it is an inert noble gas and would not be expected
 to attenuate due to chemical or physical reactions with vadose zone soils or building
 materials;
- Radon is easily sampled and analyzed.

The basis for this investigation was taken from the technical paper "Use of Radon to Determine Attenuation between Subslab and Indoor Air for Vapor Intrusion Evaluation at Military Housing Units at Fort Wainwright, Alaska (King et al, 2010).

Three radon samples were collected from three locations in random locations within the former Vogue Cleaners. The results from each pair and associated attenuation factors are as follows:

Sample Designation	Sub-slab (SG) (pCi/L)	Indoor Air (IA) (pCi/L)	Attenuation Factor
SV-1	293	0.91	0.0031
SV-3	\1	0.81	
SV-5	258	0.71	0.0028
Average	275.5	0.81	0.003

^{\1} Sample could not be analyzed

The laboratory results for this investigation are presented in Appendix F.

Although this attenuation factor is significantly lower than the default values presented in the 2002 USEPA OSWER Draft Guidance Document (0.1) or the proposed USEPA Final Guidance document (0.03), these values are within the range of values presented in the USEPA's Vapor Intrusion Database (USEPA 530-R-10-002).

Based on this data, the attenuation factor utilized to determine site-specific target sub-slab concentrations at this site is 0.0031. For the COCs at this site, these target concentrations are as follows:

Compound	Target Indoor Air Concentration (ug/m³)	Attenuation Factor	Target Sub-slab Gas Concentration (ug/m³)
Tetrachloroethene	180	0.0031	58,065
Trichloroethene	8.8	0.0031	2,839
Cis-1,2 dichloroethene	NA	NA	NA

EPA VISL Screening Criteria

These target sub-slab gas concentrations are considered conservative since they do not take into consideration commercial building air exchange rate, which would substantially increase these target levels for sub-slab soil.

5 EXTENT OF CONTAMINATION

In an effort to fulfill the requirements set forth by the VRP and prepare this CSR, all current and historical site assessments performed by the various environmental consulting firms were compiled, as necessary, to complete the characterization of soil and groundwater on the Property. A description of routine field methods is included in Appendix D.

5.1 Drilling and Soil Classification Procedures

Subsurface soils encountered during all investigations were classified using the Unified Soil Classification System and accepted standardized geologic practices for soil and rock descriptions. Soils encountered included sandy clays, sandy loams, and sandy clay loams.

5.2 Soil Investigation

Numerous soil investigations have been completed at the site over the last 13 years. The purpose of these investigations has been to delineate soil impacts to the approved delineation standards and determine whether soil impacts were present above the applicable VRP Clean-up Standards developed for the Property. The location of current and historical soil samples is depicted in Figure 5.

5.2.1 Vadose Zone Sampling

On May 2000, Williams Environmental Services initiated soil removal activities for the former Vogue Cleaners facility. Prior to soil excavation, the concrete foundation of the building was saw cut and removed. Soil was then removed within the vicinity of the former Vogue Cleaners facility and the excavation was extended to areas outside the building as designated by previously conducted sampling events. Soil excavation continued to depths ranging from 2 to 7

feet bgs until no visual or olfactory evidence of contamination was detected. Twelve (12) verification samples were collected during the soil excavation and confirmed the removal of potential source materials above delineation standards. A total of 183.8 tons of soil and concrete were removed from areas within and around the former Vogue Cleaners facility.

As a result, confirmation soil samples were collected during the implementation of the Preliminary Remediation Plan to validate that all soils are below the applicable VRP delineation standards and VRP Cleanup Standards developed for the site.

In October 2011, a total of five (5) discrete soil-boring locations were installed on-site to determine if soils had been fully delineated. Subsurface soil samples collected at each of these locations were from intervals ranging from (0-2') and (2-4') bgs. The soil samples were analyzed for total volatile organic compounds VOCs via Method 8260B. Analytical results verified that soils were not fully delineated to the west within the former Vogue Cleaners facility. Four (4) of the soil samples indicated concentrations exceeding the delineation standard for PCE of (0.5mg/kg). As discussed previously, Genesis Project completed additional corrective action within the building, via the addition of two (2) SVE wells, to address impacted soil.

Following the completion of corrective action, subsequent soil samples were collected within the interior of the former Vogue Cleaners to confirm delineation and soils were below applicable VRP Clean-up Standards. Three (3) soil locations were collected in May 2013, and are identified as SB-25, SB-26, and SB-27. All locations collected soil intervals ranging from (0-2) and (2-4') below ground surface. Soil samples indicated that all soils were below the delineation standard of (0.5 mg/kg). All delineation samples are depicted on Figure 5.

5.2.2 Soil Sample Laboratory Results

A summary of all recent and previously completed soil analytical results is provided in Table 1 and depicted in Figure 5. The laboratory analytical reports are presented in Appendix F.

The results of this extensive soil-sampling program have concluded that the site is defined to the appropriate delineation standards. As a result, there is no evidence of soil impacts in excess of delineation standards or above the applicable VRP Cleanup Standards at the Property.

5.3 Groundwater Investigation

The most recent groundwater-sampling event was completed on August 8-9, 2013 and August 23rd 2013. The second groundwater-monitoring event was completed for monitor wells MW-8R and MW-5 on August 23rd after redevelopment of these wells. The purpose of the investigation was to evaluate the current impacts to groundwater present at the Property.

5.3.1 Monitoring Wells

A total of thirty-one groundwater-monitoring wells were installed on and off-site during the history of site investigations completed on this Property. A majority of these wells have been properly abandoned, over time. As approved under the VRP application, monitor wells MW-1, MW-2R, MW-4, MW-5, MW-6, MW-7, MW-8R, MW-8D, MW-12D, MW-22 and POD-1 have been utilized in this investigation.

5.3.2 Water Level Measurements

Water level measurements were recorded from each of the designated monitor wells to calculate the gradient and groundwater flow direction across the Property. Based on survey results, groundwater flow direction is apparently to the north-northeast. The groundwater flow direction was determined based on updated survey data as well as the most recent groundwater level measurements. The hydrologic gradient was also calculated at this Property of 0.0034 via a three-point problem utilizing monitor wells MW-2R, MW-5 and MW-7. A summary of the

water level measurements from all accessible monitoring wells is provided in Table 2 and a potentiometric surface map is included in Figure 6.

5.3.3 Groundwater Sample Collection

Groundwater samples were collected utilizing both low-flow sampling techniques and traditional purging of 3-4 well volumes, prior to groundwater sample collection. In accordance with the US Environmental Protection Agency (US EPA) standard operating procedure (SOP) [Low Stress (low-flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells], water quality parameters such as pH, conductivity, temperature, and groundwater drawdown rate were evaluated during purging to ensure groundwater samples are representative of formational groundwater. Once the parameters were consistent for a minimum of three consecutive readings, the samples were collected within laboratory provided containers, placed in an ice-filled cooler, and submitted to Analytical Environmental Services (AES) for Total VOCs.

In addition, groundwater samples were collected from monitor wells MW-5 and MW-8R when it was determined that these wells needed to be redeveloped when it was suspected that the low-flow sampling procedures did not evacuate sufficient groundwater to collect a sample representative of formational groundwater. The samples were collected after purging each monitor well of 3-5 well volumes utilizing polyethylene bailers and placed into the appropriate sample containers for the analysis of Total VOCs via Method 8260B.

5.3.4 Groundwater Sample Laboratory Results

Groundwater analytical results revealed several constituents above laboratory reporting limits during the August 2013 sampling events. The constituents above laboratory limits are as follows:

- · Cis-1,2-Dichloroethene;
- Tetrachloroethene; and
- · Trichloroethene.

The results continued to confirm that impacts to groundwater have dropped substantially over the most recent period, especially in the source area. A summary of recent and historic groundwater analytical results are provided in Table 3 and Figures 7a and 7b. The laboratory analytical reports are presented in Appendix D.

5.4 Vapor Intrusion Investigation

Two sub-slab soil gas investigations have been completed at this Property. The purpose of these investigations was to determine if vapor intrusion is a completed pathway at this location. The initial investigation was completed in 2011 and the final investigation was completed in 2013.

5.4.1 Soil Gas Sampling

In 2011, an initial sub-slab soil gas survey was completed that the Property. The investigation included the installation of four (4) implants. Each implant was installed and sampled as discussed in the Field Protocols presented in Appendix D. The results of this investigation are presented on Table 4 and Figure 8a. Based on these results, additional corrective action was implemented within the interior of the building and included the installation of two (2) SVE wells. These SVE wells were incorporated into the existing remediation system and operated until July 2013.

In August 2013, a second sub-slab soil gas survey was completed at the Property. The objective of this investigation was to complete a survey of sub-slab soil gas concentrations and evaluate the effectiveness of the corrective action completed in this area. The investigation included the

installation of five (5) implants, with one (SV-3R) placed in the immediate vicinity of the highest level of impact at the Property. The results of this investigation are presented on Table 4 and Figure 8b.

5.4.2 Soil Gas Laboratory Results & Risk Calculations

The results of the sub-slab soil vapor survey confirmed that COCs are present in the sub-slab soil gas beneath the building. The results from both of the investigations also confirm that corrective action completed in the vadose zone underneath the building was successful in reducing COCs in the sub-slab soil gas.

The results from the 2013 investigation were utilized to complete risk calculations for sub-slab soil gas to evaluate whether the additional corrective action was necessary to eliminate the vapor intrusion exposure pathway. Using the risk criteria presented in section 4.4.1, the results from each sample location were input into the EPAs VISL spreadsheet (soil gas forward calculator) in order to calculate the risk criteria for each compound reported in the sub-slab soil gas (Appendix C). These results were placed in a spreadsheet to evaluate the cumulative risk associated with each of the COCs present in sub-slab soil gas samples. The two COCs present in sub-slab soil gas were PCE and TCE.

Several other compounds were reported in the laboratory results but are considered to represent laboratory artifacts since they have not been reported in soil or groundwater samples on the Property and are close to the method detection limit. Although these results are not considered representative of sub-slab soil gas, they were included in the cumulative risk calculations. In all cases, these compounds did not influence the cumulative risk calculations for the building.

In all sample locations, the calculated cumulative Cancer Risk for PCE and TCE were below the cancer risk criteria of 1.0×10^{-5} (Table 5). As a result, there is no cancer risk associated with the PCE and TCE present in sub-slab soil gas.

With the exception of soil gas sample SV-4R, the calculated cumulative Non-Cancer Hazard Quotient for COCs in each of the samples was also below the hazard Quotient of 1 (Table 5). In the case of SV-4R, this sample is located in the vicinity of the former dry cleaning equipment.

In order to determine if the sub-slab soil gas is a risk to indoor air, the results were evaluated on a surface-weighted average basis. Each of the samples were assigned space within the existing commercially delimited space and assigned a specific square footage of floor space (Figure 8b) as shown below:

Sample Designation	Square Footage	% Square Footage
SV-1R	2175	45%
SV-2R	1,223	25%
SV-3R/SV-5R	1,181	24%
SV-4R	312	6%

Since two (2) of the samples were collected in the same delimited space, the sample with the highest sub-slab soil gas concentration (SV-5R) was used in this evaluation. The calculated concentration of the COCs is presented on Table 5. Based on this evaluation, the non-cancer hazard quotient for the surface weighted average is below 1 and therefore not a risk to human health. It should be noted that this evaluation is considered to be a conservative assessment of the potential risks at the Property since the air exchange rate for the building was not considered in the calculated Indoor Air Concentration.

Based on this evaluation of sub-slab soil gas results and the associated potential risk of human exposure, it was determined that calculated indoor air concentrations of each of the COCs would not exceed the target indoor air concentration presented in the EPAs VISL Calculator.

6 VRP CLEAN-UP STANDARDS AND SITE COMPLIANCE

The Property is zoned as a "commercial" property. This property use will continue pursuant to the proposed Uniform Environmental Covenant. As a result, VRP Cleanup Standards were calculated based on this current and future use of the Property.

6.1 VRP Clean-up Standards for Soil

Based on the conceptual site model of this Property, the site-specific VRP Cleanup Standards for soil are based on construction worker exposure factors for subsurface soil (VRPA 12-8-108 [5][B]). As a result, the VRP Cleanup Standards were calculated for each of the COCs using RAGs equations 6 (carcinogenic) and 7 (non-carcinogenic) and are as follows:

Constituent of Concern	Calculated VRP Clean-up Standards
Tetrachloroethene	346 mg/kg
Trichloroethene	16.9 mg/kg
Cis 1,2 dichloroethene	1,550 mg/kg

The detailed calculations for these VRP Clean-up Standards are included in Appendix G.

These VRP Clean-up Standards are substantially higher than the concentrations currently present at the Property for Tetrachloroethene (0.430 mg/kg), Trichloroethene (0.060 mg/kg) or cis-1,2 dichloroethene (< 0.0036 mg/kg). As a result, the soil at the former Vogue Cleaners are in compliance with these VRP Cleanup Standards.

6.2 VRP Clean-up Standards for Groundwater

Although the groundwater exposure pathway is classified as an incomplete at the Property, acceptable risk criteria for off-site groundwater have been calculated for each of the COCs present on the Property. The point of compliance for groundwater is the point of demonstration

(POD-1), which is \sim 78 feet from source wells MW-2R and MW-8R. Under the VRP, the acceptable risk criteria for off-site groundwater at this point of compliance are as follows:

Constituent of Concern	Calculated VRP Clean-up Standards	
Tetrachloroethene	19 ug/L	
Trichloroethene	5 ug/L	
Cis 1,2 dichloroethene	70 ug/L	

A detailed presentation of these acceptable risk criteria for off-site groundwater are included in Appendix G.

Based on the incomplete exposure pathway to groundwater on the subject Property and the acceptable risk criteria for off-site groundwater at the point of demonstration, groundwater at the former Vogue Cleaners is in compliance with the VRP.

7 UNIFORM ENVIRONMENTAL COVENANT

A Uniform Environmental Covenant is proposed for this parcel. The covenant will include:

- 1. Restrictions on the use of groundwater; and
- 2. Limit property use to commercial uses only.

A copy of the proposed Uniform Environmental Covenant will be provided to EPD at a future date.

8 SITE CLOSURE

Upon EPDs concurrence that de-listing of the parcel (ID *Map J 10*, *Parcel 079/087*) from the HSI (HSI #10394) is appropriate, Genesis Project will implement closure activities at the site. Closure activities will include:

- 1. Decommissioning of the remediation system;
- 2. Abandonment of all on-site monitor wells and SVE wells; and
- 3. Removal of the video surveillance system.

A report will be submitted to EPD certifying that the system and all monitor/SVE wells have been properly abandoned. Upon approval of these closure activities, EPD will de-list parcel 079/087 from the HSI Site 10394.

9 PUBLIC NOTICE

As required by the Georgia Rules for the Voluntary Remediation Program, a Public Notice will be published in The Augusta Chronicle indicating that the public may submit comments to EPD on the VRP-CSR within thirty-(30) days of notification. A notice will also be submitted to Mr. Scott D. Johnson, Columbia County Administrator. In addition, an electronic copy of the VRP-CSR will be sent to the following current and adjacent property owners:

- Columbia Square Investors c/o Darren Meadows Hull Barrett, PC 801 Broad Street Augusta, GA 30901
- Columbia Car Care Center c/o Dr. Harindorjit Singh 3685 Wheeler Road Suite 201 Augusta, GA 30909
- Monterrey Restaurante Mexicano 4016 Washington Road August, GA 30907

REFERENCES

- Georgia Department of Natural Resources, Environmental Protection Division (EPD), 1995a. Guidance on Target Soil Concentrations for Type 1 and Type 3 Risk Reduction Standards; dated March 9, 1995.
- Georgia Department of Natural Resources, Environmental Protection Division (EPD), 1985. Hydrogeology of the Dublin and Midville Aquifer Systems of East Central Georgia.
- Georgia Voluntary Remediation Program Act: OCGA 12-8-100
- Georgia Soil Survey, 2008: Columbia, McDuffie and Warren Counties, Georgia,
- Georgia Department of Natural Resources, Environmental Protection Division (EPD), 1995b. Rules of EPD Chapter 391-3-19 Hazardous Site Response; effective December 31, 1995.
- Georgia Geological Survey, 1992. Groundwater Pollution Susceptibility Map of Georgia.
- King, Shelton and Blei, 2010: Use of Radon to Determine Attenuation between Subslab and Indoor Air for Vapor Intrusion Evaluation at Military Housing at For t Wainwright, Alaska
- United States Environmental Protection Agency, February 1993. USEPA Contract Laboratory Program National Functional Guidelines For Organic Data Review.
- United States Geological Survey, 2009. Martinez, 7.5-Minute Topographic Quadrangle.
- Williams Environmental Services, 2000: Report of Soil Removal Activities, Former Vogue Cleaners, Martinez, Georgia HSI No. 10394
- Williams Environmental Services, 4-1999: Compliance Status Report, Former Vogue Cleaners, Martinez, Georgia
- Williams Environmental Services, 10-1999: Compliance Status Report Addendum, Former Vogue Cleaners, Martinez, Georgia

TABLES

Table 1 Soil Analytica Results (mg/kg) Columbia Square Shopping Center Martinez, Georgia

Sample I.D.	Sample Depth (ft	Sample Date			
	bls)		PCE	TCE	DCE
EA-1	2.5-3	Feb-00	0.061	0.064	NA
EA-3	2.5-3	Feb-00	<0.230	<0.230	NA
EA-4	2.5-3	Feb-00	<0.250	<0.250	NA
EA-5	2.5-3	Feb-00	0.430	<0.240	NA
EA-6	2.5-3	Feb-00	<0.240	<0.240	NA
ESB-1	4-5	May-00	0.043	<00.22	NA
ESB-4	4-5	May-00	0.038	<0.022	NA
ESB-8	4-5	May-00	<0.250	<0.250	NA
ESB-9	4-5	May-00	0.170	0.044	NA
ESB-10	4-5	May-00	0.029	0.008	NA
D-8\1	4-5	May-00	0.003	0.019	NA
E-10\1	4-5	May-00	0.017	0.031	NA
F-6\1	4-5	May-00	0.008	< 0.500	NA
SB-6	0-2'	Jul-11	0.044	< 0.0028	< 0.0028
SB-13W	0-2'	Jul-11	0.110	< 0.0033	< 0.0033
SB-15	0-2'	Jul-11	0.018	< 0.0033	< 0.0033
SB-17	0-2	Jul-11	0.019	< 0.0030	< 0.0030
SB-25	0-2'	May-13	< 0.30	< 0.0036	< 0.0036
SB-25	2-4'	May-13	< 0.0035	< 0.0035	< 0.0035
SB-26	0-2'	May-13	0.041	< 0.0035	< 0.0035
SB-26	2-4'	May-13	0.011	< 0.0027	< 0.0027
SB-27	0-2'	May-13	< 0.0031	< 0.0031	< 0.0031
SB-27	2-4'	May-13	0.025	< 0.0033	< 0.0033

I.D. Identification

Ft bls feet below land surface
VOCs Volatile Organic Compounds
mg/kg milligrams per kilograms

DCE dichloroethene
PCE tetrachloroethene
TCE trichloroethene

<5.0 Below Laboratory Detection Limit

NA Not Analyzed

U = Sample below laboratory detection limits

J = Estimated concentration, analyte below quantitation limits

\1 = Data Presented in 11/14/2000 Williams Report but not on table or in analytical results

NA = Not Analyzed

Bold values Above Delineation Standards

Sample ID	Sample Date	Top of Casing Elevation	Depth to Water (feet bls)	Corrected Groundwater Elevation
MW-1	09/20/06	363.61	5.40	358.21
	01/23/07		5.41	358.20
	06/27/07		NA	NA
	10/08/07		5.51	358.10
	01/14/08		5.57	358.04
	04/01/08		5.32	358.29
	07/22/08		NA	NA
	10/07/08		NA	NA
	01/28/09		NA	NA
	07/02/09		5.38	358.23
	01/12/10		NA	NA
	08/03/10		5.21	358.40
	01/19/11		NA	NA
	07/26/11		5.43	358.18
	02/22/12		5.54	358.07
	08/15/12		5.53	358.08
	02/26/13		5.49	358.12
	08/07/13	356.91	5.21	351.70
MW-2	09/20/06	363.54	5.61	357.93
	01/23/07		5.55	357.99
	06/27/07		5.56	357.98
	10/08/07		5.69	357.85
	01/14/08		5.71	357.83
	04/01/08		5.58	357.96
	07/22/08		5.60	357.94
	10/07/08		5.70	357.84
	01/28/09		5.62	357.92
	07/02/09		5.61	357.93
	01/12/10		5.52	358.02
	08/03/10		5.50	358.04
	01/19/11		5.66	357.88
	07/26/11		5.55	357.99
	02/22/12		5.71	357.83
	08/15/12		5.73	357.81
			ABANDO	ONED
MW-2R	02/26/12	363.50	5.67	357.83
	08/08/13	356.39	5.53	350.86
MW-3	01/27/09	362.47	4.31	358.16
	07/02/09		4.29	358.18
	01/12/10		NA 101	NA 050.00
	08/03/10		4.21	358.26
	02/22/12		ABANDO	JNED I
NA\A/ 4	00/20/06	262.00	4.05	2F7 04
MW-4	09/20/06	362.89	4.95 4.80	357.94
	01/23/07			358.09
	06/27/07		4.88	358.01
	10/08/07 01/14/08		4.96 5.05	357.93 357.84
	04/01/08		4.91	357.98
	07/22/08		4.95	357.94
	10/07/08 01/27/09		5.09	357.80
	01/27/09		4.95	357.94
			4.96	357.93
	01/12/10		4.51	358.38
	08/03/10		4.87	358.02
	01/19/11		5.08	357.81
	07/26/11		4.99	357.90
	02/22/12		5.03	357.86
	08/15/12		5.04	357.85
	02/26/13		5.00	357.89
	08/07/13	355.74	4.90	350.84

Sample ID	Sample Date	Top of Casing Elevation	Depth to Water (feet bls)	Corrected Groundwate Elevation
MW-5	09/20/06	363.37	5.74	357.63
	01/23/07		5.70	357.67
	06/26/07		5.55	357.82
	10/09/07		5.81	357.56
	01/14/08		5.80	357.57
	04/01/08		5.75	357.62
	07/22/08		5.76	357.61
	10/07/08		5.83	357.54
	01/27/09		5.85	357.52
	07/02/09		5.75	357.62
	01/12/10		5.75	357.62
	08/03/10		5.75	357.62
	01/19/11		5.84	357.53
	07/26/11		5.78	357.59
	02/22/12		5.80	357.57
	08/15/12		5.82	357.55
	02/26/13		5.77	357.60
	08/07/13	356.26	5.71	350.55
	00/01/10	000.20	0.71	000.00
MW-5D	09/20/06	365.66	7.65	358.01
10100-3D	01/23/07	303.00	11.12	354.54
	06/26/07		6.72	358.94
			8.44	357.22
	10/09/07			
	01/14/08		7.19	358.47
	04/01/08		10.28	355.38
	07/22/08		8.42	357.24
	10/07/08		5.83	359.83
	01/27/09		6.52	359.14
	07/02/09		5.39	360.27
	01/12/10		4.39	361.27
	08/03/10		6.90	358.76
	01/19/11		7.79	357.87
	07/26/11		7.80	357.86
	02/22/12		NA	NA
	08/15/12		NA	NA
	02/26/13		NA	NA
	08/07/13		NA	NA
MW-6	09/20/06	363.71	6.01	357.70
·	01/23/07		5.95	357.76
	06/26/07		6.00	357.71
	10/08/07		6.10	357.61
	01/14/08		6.06	357.65
	04/01/08		6.02	357.69
-	07/22/08		6.08	357.63
	10/07/08		6.12	357.59
	01/27/09		6.03	357.68
	07/02/09		6.67	357.04
	01/12/10		5.99	357.72
	08/03/10		5.96	357.75
	01/19/11		6.09	357.62
	07/26/11		6.08	357.63
	02/22/12		6.08	357.63
	08/15/12		6.07	357.64
	02/26/13		6.00	357.71
	08/07/13	356.53	5.86	350.67
		223.00		

Sample ID	Sample Date	Top of Casing Elevation	Depth to Water (feet bls)	Corrected Groundwater Elevation
MW-7	09/20/06	364.43	5.11	359.32
	01/23/07		5.68	358.75
	06/26/07		5.68	358.75
	10/08/07		5.82	358.61
	01/14/08		5.81	358.62
	04/01/08		5.75	358.68
	07/22/08		5.76	358.67
	10/07/08		5.83	358.60
	01/27/09		5.73	358.70
	07/02/09		5.78	358.65
	01/12/10		5.70	358.73 358.45
	08/03/10 01/19/11		5.98 5.80	358.63
	07/26/11		5.76	358.67
	02/22/12		5.79	358.64
	08/15/12		5.76	358.67
	02/26/13		5.72	358.71
	08/07/13	356.26	5.64	350.62
MW-8	09/20/06	364.01	6.21	357.80
	01/23/07	-	6.15	357.86
	06/27/07		6.21	357.80
	10/09/07		6.09	357.92
	01/14/08		6.32	357.69
	04/01/08		6.22	357.79
	07/22/08		6.23	357.78
	10/07/08		6.32	357.69
	01/28/09		6.22	357.79
	07/02/09		5.62	358.39
	01/12/10		6.15	357.86
	08/03/10		6.18	357.83
	01/19/11		6.27	357.74
	07/26/11		6.28	357.73
	02/22/12		6.33	357.68
	08/15/12		6.30	357.71
	08/30/12		5.76	358.25
	10/02/12		5.68	358.33
	10/30/12		NM	NM
			ABANI	JON
MW-8R	02/26/42	262.4	6.50	256 50
IVIVV-OIX	02/26/13 08/08/13	363.1 360.93	6.52 10.20	356.58 350.73
	06/06/13	300.93	10.20	330.73
MW-8D	09/20/06	363.90	5.96	357.94
IVIVY-OD	01/23/07	505.50	6.04	357.86
	06/27/07		6.31	357.59
	10/09/07		6.32	357.58
	01/14/08		6.59	357.31
	04/01/08		6.33	357.57
	07/22/08		6.14	357.76
	10/07/08		2.67	361.23
	01/28/09		5.64	358.26
	07/02/09		6.29	357.61
	01/12/10		6.62	357.28
	08/03/10		6.74	357.16
	01/19/11		6.01	357.89
	07/26/11		6.18	357.72
	02/22/12		7.85	356.05
			6 00	357.67
	08/15/12		6.23	
	08/15/12 02/26/13 08/08/13	356.75	6.52 5.87	357.38 350.88

Sample ID	Sample Date	Top of Casing Elevation	Depth to Water (feet bls)	Corrected Groundwater Elevation
MW-12D	09/20/06	363.58	15.09	348.49
	01/23/07		15.30	348.28
	06/26/07		14.64	348.94
	10/09/07		14.93	348.65
	01/14/08		16.82	346.76
	04/01/08		17.23	346.35
	07/22/08		17.23	346.35
	10/07/08		17.90	345.68
	01/27/09		18.26	345.32
	07/02/09		18.73	344.85
	01/12/10		17.99	345.59
	08/03/10		17.09	346.49
	01/19/11		17.79	345.79
	07/26/11		15.70	347.88
	02/22/12		10.30	353.28
	08/15/12		10.18	353.40
	02/26/13		0.15	363.43
	08/07/13	356.45	14.50	341.95
MW-13	01/14/08	363.99	6.20	357.79
10100-13	04/01/08	303.99	6.06	357.93
	07/22/08		6.10	357.89
	10/07/08		6.73	357.26
	01/27/09		6.10	357.89
	07/02/09		6.19	357.80
	01/12/10		5.78	358.21
	08/03/10		5.94	358.05
	01/19/11		6.13	357.86
	07/26/11		6.48	357.51
	02/22/12		6.18	357.81
	08/15/12		6.16	357.83
	02/26/13		5.91	358.08
	08/08/13	356.99	5.97	351.02
	22, 30, 10	223.00	2.01	551.02

Sample ID	Sample Date	Top of Casing Elevation	Depth to Water (feet bls)	Corrected Groundwater Elevation
MW-15	10/09/07	365.57	7.45	358.12
	01/04/08		7.35	358.22
	07/22/08		7.41	358.16
	10/07/08		7.58	357.99
	02/02/09		7.41	358.16
	07/02/09		NA	NA
	01/12/10		NA	NA
	08/03/10		7.36	358.21
	01/19/11		7.47	358.10
	07/26/11		7.44	358.13
	02/22/12		ABANDO	ONED
MW-16	01/27/09	362.65	4.75	357.90
	07/02/09		5.06	357.59
	01/12/10		NA	NA
	08/03/10		5.70	356.95
	01/19/11		3.78	358.87
	07/26/11		NA	NA
	02/22/12		ABANDO	ONED
MW-18	01/14/08	364.55	6.76	357.79
	04/01/08		6.71	357.84
	07/22/08		6.78	357.77
	10/07/08		6.79	357.76
	01/27/09		6.70	357.85
	07/02/09		6.83	357.72
	01/12/10		6.65	357.90
	08/03/10		6.65	357.90
	01/19/11		6.72	357.83
	07/26/11		NA	NA
	02/22/12		ABANDO	DNED
MW-22	07/26/11	363.1	5.49	357.61
	02/22/12	-	5.55	357.55
	08/15/12	-	5.55	357.55
	02/26/13	-	5.50	357.60
	08/07/13	356.05	5.41	350.64
POD-1	07/26/11	362.86	5.55	357.31
	02/22/12		5.60	357.26
	08/15/12		5.59	357.27
	02/26/13		5.54	357.32
	08/07/13	356.06	5.45	350.61

Notes: NA ft bls: Not Accessible Feet Below Land Surface

Table 3 Summary of Groundwater Analytical Results Vogue Cleaners Martinez, Georgia

Sample ID	Sample Date	Screened Interval				VOCs				
ID	Date	(ft bls)	cis-1,2-DCE	PCE	TCE	(ug/L) Vinyl Cloride	trans-1,2-DCE	Benzene	Toluene	Xylenes
MW-1	10/17/06	2.05 - 12.05	<5	<5	<5	<2	<5	<5	<5	<10
	01/01/07	2.05 - 12.05	3J	19	3J	<2	<5	8	<5	<10
	06/07/07	2.05 - 12.05	NA	NA	NA	NA	NA	NA	NA	NA
	10/10/07	2.05 - 12.05	<5	< 5	< 5	< 10	NA	9	BDL	BDL
	01/01/08 04/01/08	2.05 - 12.05 2.05 - 12.05	<1 <5	<u>1</u> < 5	<1 < 5	<1 < 2	<1 < 5	9 14	<1 < 5	<2 <10
	07/01/08	2.05 - 12.05	NS NS	NS NS	NS	NS	NS NS	NS	NS	NS
	10/08/08	2.05 - 12.05	NS	NS	NS	NS	NS	NS	NS	NS
	01/09/09	2.05 - 12.05	NS	NS	NS	NS	NS	NS	NS	NS
	07/02/09	2.05 - 12.05	NS	NS	NS	NS	NS	NS	NS	NS
	01/13/10	2.05 - 12.05	NS	NS	NS	NS	NS	NS	NS	NS
	08/03/10 01/19/11	2.05 - 12.05 2.05 - 12.05	< 5 NS	< 5 NS	< 5 NS	< 2 NS	< 5 NS	6 NS	< 5 NS	< 10 NS
	07/27/11	2.05 - 12.05	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	02/23/12	2.05 - 12.05	< 5	< 5	< 5	< 2	< 5	13	< 5	< 10
	08/15/12	2.05 - 12.05	<5	<5	<5	<2	<5	<5	<5	<10
	02/28/13	2.05 - 12.05	<5	<5	<5	<2	<5	<5	< 5	<10
	08/07/13	2.05 - 12.05	<5	<5	<5	<2	<5	<5	<5	<10
MANA/ O	40/47/00	2.25 42.25	700	1.000	200	.0	.5	44	·E	.10
MW-2	10/17/06 01/01/07	3.25 - 13.25 3.25 - 13.25	708 1,340	1,980 7,820	360 947	<2 <2	<5 <5	11 10	<5 <5	<10 <10
	06/07/07	3.25 - 13.25	600	6,400	110	<10	<10	12	<10	<20
	10/01/07	3.25 - 13.25	109	1,100	35	< 2	< 5	< 5	< 5	<10
	01/01/08	3.25 - 13.25	93	1,500	35	<1	<1	<1	<1	<2
	04/01/08	3.25 - 13.25	130	1,570	37	< 2	< 5	4J	< 5	<10
	07/08/08	3.25 - 13.25	34	575	14	< 2	< 5	5	< 5	< 10
	10/09/08 01/09/09	3.25 - 13.25	25 24	403	9	< 2 < 2	< 5	< 5	< 5	< 10 < 10
	07/02/09	3.25 - 13.25 3.25 - 13.25	110	166 68	37	< 1	< 5 < 1	< 5 < 1	< 5 < 1	< 10
	01/13/10	3.25 - 13.25	26	18	8	< 2	< 5	< 5	< 5	< 15
	08/03/10	3.25 - 13.25	8	100	< 5	< 2	< 5	< 5	< 5	< 15
	01/19/11	3.25 - 13.25	6	210	14	< 2	< 5	< 5	< 5	< 10
ļ	07/27/11	3.25 - 13.25	<5 . F	420	32	< 2	< 5	< 5	< 5	< 10
<u> </u>	09/01/11 01/12/12	3.25 - 13.25 3.25 - 13.25	< 5 8.5	97 160	9.7 11.0	< 2 < 2	< 5 < 5	< 5 < 5	< 5 < 5	< 10 < 10
 	02/23/12	3.25 - 13.25	6.5 < 5	360	30.0	< 2	< 5 < 5	< 5 < 5	< 5 < 5	< 10
	08/16/12	3.25 - 13.25	<5	<5	<5	<2	<5	<5	<5	<10
	10/11/12	3.25 - 13.25	5	8	5	<2	<5	<5	<5	<10
						ABANDON WE	LL			
MW-2R	02/28/13	2.00-22.05	<5	<5	<5	<2	<5	<5	<5	<10
.2144 213	08/07/13	2.00-22.05	5.4	25	16	<2	<5	<5	<5	<10
MW-4	10/17/06	2.6 - 13.12	<5	5	<5	<2	<5	<5	<5	<10
	01/01/07	2.6 - 13.12	<5	3J	<5	<2	<5	3J	<5	<10
<u> </u>	06/07/07 10/01/07	2.6 - 13.12 2.6 - 13.12	<1 <5	<1 < 5	<1 < 5	<1 < 2	<1 <5	<1 6.0	<1 < 15	<2 <10
 	01/01/07	2.6 - 13.12	< 5 <1	2	< 5 <1	<1	< 5 <1	7	< 15	<10
	04/01/08	2.6 - 13.12	< 5	< 5	< 5	< 2	< 5	9	< 5	<10
	07/08/08	2.6 - 13.12	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	10/08/08	2.6 - 13.12	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
ļ	01/09/09	2.6 - 13.12	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
 	07/02/09 01/13/10	2.6 - 13.12	< 1 < 5	< 1 < 5	< 1 < 5	<1	< 1 < 5	< 1 < 5	< 1	< 2 < 15
	01/13/10	2.6 - 13.12 2.6 - 13.12	< 5 < 5	< 5 < 5	< 5 < 5	< 2 < 2	< 5 < 5	< 5 < 5	< 5 < 5	< 15
	01/19/11	2.6 - 13.12	< 5	< 5	< 5	<2	< 5	< 5	< 5	< 10
	07/27/11	2.6 - 13.12	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	02/23/12	2.6 - 13.12	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
-	08/16/12	2.6 - 13.12	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	02/27/13 08/07/13	2.6 - 13.12 2.6 - 13.12	< 5 < 5	< 5 < 5	< 5 < 5	< 2 < 2	< 5 < 5	< 5 < 5	< 5 < 5	< 10 < 10
	00/01/13	2.0 - 13.12	\ \	ν,	\ \ \	~ ~ ~	\ J	, ,	\)	× 10
MW-5	10/17/06	3.08 - 13.08	<5	<5	<5	<2	<5	<5	<5	<10
	01/01/07	3.08 - 13.08	27	231	26	<2	<5	<5	<5	<10
	06/07/07	3.08 - 13.08	3	10	5	<1	<1	<1	<1	<2
-	10/01/07 01/01/08	3.08 - 13.08 3.08 - 13.08	77 7	557 170	99	< 2	< 5	< 5	< 5 <1	<10 <2
	04/01/08	3.08 - 13.08	< 5	8	3 < 5	<1 < 2	<1 < 5	<1 < 5	< 5	<10
	07/08/08	3.08 - 13.08	< 5	< 5	< 5	<2	< 5	< 5	< 5	< 10
	10/08/08	3.08 - 13.08	< 5	13	< 5	< 2	< 5	< 5	< 5	< 10
	01/09/09	3.08 - 13.08	< 5	22	< 5	< 2	< 5	< 5	< 5	< 10
	07/02/09	3.08 - 13.08	< 1	5	< 1	< 1	< 1	< 1	< 1	< 2
	01/13/10	3.08 - 13.08	< 5	160	< 5	< 2	< 5	< 5	< 5	< 15
<u> </u>	08/03/10	3.08 - 13.08	< 5	90	< 5	< 2	< 5	< 5	< 5	< 15
	01/19/11 07/27/11	3.08 - 13.08 3.08 - 13.08	6 < 5	11 8.8	< 5 < 5	< 2 < 2	< 5 < 5	6 < 5	< 5 < 5	< 10 < 10
	02/23/12	3.08 - 13.08	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	08/15/12	3.08 - 13.08	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	02/27/13	3.08 - 13.08	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	08/07/13	3.08 - 13.08	9.2	820	180	< 2	< 5	< 5	< 5	< 10
i e	08/23/13	3.08 - 13.08	< 5	140	26	< 2	< 5	< 5	< 5	< 10
	1									

Table 3 Summary of Groundwater Analytical Results Vogue Cleaners Martinez, Georgia

Display	Sample	Sample	Screened				VOCs				
MW-8D 1917/06 28.55 38.55 65 65 65 62 65 65 65			Interval								
0107107 2655-3858 c\$ c\$ c\$ c\$ c\$ c\$ c\$ c			(ft bls)	cis-1,2-DCE	PCE	TCE	Vinyl Cloride	trans-1,2-DCE	Benzene	Toluene	Xylenes
	MW-5D							<5			<10
100107 26.55 : 36.56 c5 c5 c5 c4 c1 c1 c1 c1 c1 c1 c1											<10
0107108 2655-3656 c1 2 c1 c1 c1 c1 c1 c1											
Quantities Qua											
07/88082 2655-3856 c5 c5 c5 c5 c5 c5 c5											<10
01/09/09/12 26.55 - 36.55 4.5											<10
OFFICE OF STATE CT CT CT CT CT CT CT											<10
O117310 2865-38655 <5 <5 <5 <5 <5 <5 <5							_				<10
G802010 26.65-36.55 c.5 c.5											
0179911 26.55-36.55 <5 <5 <5 <5 <5 <5 <5											< 15
0772711											< 10
08/15/12 26.55-36.55 NA			26.55 - 36.55								< 10
											NA
MW-9 1017708 3.15 - 13.15 45 45 45 45 45 45 45											NA
MW-6											
01010107 3.15-13.15 45 45 45 45 45 45 41 41		08/07/13	26.55 - 36.55	NA NA	NA NA	NA	NA	NA	NA	NA	NA
01010107 3.15-13.15 45 45 45 45 45 45 41 41	MW-6	10/17/06	3.15 - 13.15	<5	<5	<5	<2	<5	<5	<5	<10
06010/07 3.15 13.15 c1			3.15 - 13.15								<10
0010108 3.15-13.15 c1 3 c1 c1 c1 c1 c1 c1			3.15 - 13.15						<1	<1	<2
04010/8 3.15-13.15											<10
070808 3.15-13.15 <5 <5 <5 <5 <2 <5 <5 <											<2
1008008 3.15-13.15 <5 <5 <5 <5 <5 <2 <5 <5											
01/09/09 3.15-13.15 <5 <5 <5 <5 <5 <5 <5											<10
0702099 3.15-13.15 1.0											<10
08003/10 3.15-13.15 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5											< 2
01/19/11 3.15-13.15 <5 <5 <5 <5 <2 <55 <5 <											< 15
07/27/11 3.15-13.15 < 5											< 15
02/23/12 3.15-13.15 <5 <5 <5 <5 <2 <5 9.4 <5 <1							_				
09/15/12 3.15-13.15 <5 <5 <5 <5 <2 <5 <5 <											< 10
02/28/13 3.15-13.15 <5 <5 <5 <5 <5 <5 <5											< 10
MW-7											< 10
01/01/07		08/07/13	3.15 - 13.15	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
01/01/07											
08/01/07 2.95 - 12.95	MVV-7										
10/01/07 2.95 - 12.95											
01/01/08											<10
07/08/08 2.95 - 12.95 <5 <5 <5 <5 <5 <5 <5											<2
10/08/08					< 5	< 5		< 5	< 5	< 5	<10
01/09/09											<10
07/02/09											
01/13/10											
08/03/10											< 15
07/27/11				< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 15
02/23/12 2.95 - 12.95 <5 <5 <5 <5 <5 <5 <5											< 10
08/15/12 2.95 - 12.95 <5 <5 <5 <5 <5 <5 <5											< 10
MW-8											< 10
MW-8							_				< 10
MW-8											< 10
01/01/07											
06/01/07	MW-8										<10
10/01/07											
01/01/08											<2 <10
04/01/08											<2
07/08/08											<10
01/09/09		07/08/08	4.425 - 19.45	< 5	159	5					<10
07/02/09 4.425 - 19.45 <1 110 1 <1 <1 <1 <1 <1 <1 <2 01/13/10 4.425 - 19.45 <5 290 <5 <2 <5 <5 <5 <1 08/03/10 4.425 - 19.45 <5 160 <5 <2 <5 <5 <5 <1 01/19/11 4.425 - 19.45 <5 120 <5 <2 <5 <5 <5 <1 07/27/11 4.425 - 19.45 <5 23 <5 <2 <5 <5 <5 <1 02/23/12 4.425 - 19.45 <5 48 <5 <2 <5 <5 <5 <1 08/16/12 4.425 - 19.45 <5 310 <5 <2 <5 <5 <5 <1											<10
01/13/10											<10
08/03/10 4.425 - 19.45 <5 160 <5 <2 <5 <5 <1 01/1/9/11 4.425 - 19.45 <5 120 <5 <2 <5 <5 <5 <1 07/27/11 4.425 - 19.45 <5 23 <5 <2 <5 <5 <5 <1 02/23/12 4.425 - 19.45 <5 48 <5 <2 <5 <5 <5 <1 08/16/12 4.425 - 19.45 <5 310 <5 <2 <5 <5 <5 <5											< 2
01/19/11 4.425 - 19.45 <5 120 <5 <2 <5 <5 <1 07/27/11 4.425 - 19.45 <5 23 <5 <2 <5 <5 <5 <1 02/23/12 4.425 - 19.45 <5 48 <5 <2 <5 <5 <5 <1 08/16/12 4.425 - 19.45 <5 310 <5 <2 <5 <5 <5 <1											< 15
07/27/11 4.425 - 19.45 <5 23 <5 <2 <5 <5 <1 02/23/12 4.425 - 19.45 <5 48 <5 <2 <5 <5 <5 <1 08/16/12 4.425 - 19.45 <5 310 <5 <2 <5 <5 <5 <1											< 10
02/23/12 4.425-19.45 <5 48 <5 <2 <5 <5 <1 08/16/12 4.425-19.45 <5 310 <5 <2 <5 <5 <5 <1											< 10
			4.425 - 19.45				_				< 10
ABANDON WELL		08/16/12	4.425 - 19.45	< 5	310	< 5			< 5	< 5	< 10
		ļ		ļ ,		ı	ABANDON WE	LL		ı	1

Table 3 Summary of Groundwater Analytical Results Vogue Cleaners Martinez, Georgia

Sample	Sample	Screened				VOCs				
ID	Date	Interval				(ug/L)				
		(ft bls)	cis-1,2-DCE	PCE	TCE		trans-1,2-DCE	Benzene	Toluene	Xylenes
MW-8R	02/28/13	2.00-19.05	17	2,600	840	< 2	< 5	< 5	< 5	< 10
	08/07/13	2.00-19.05	43	1,800	1,300	< 2	< 5	< 5	< 5	< 10
	08/23/13	2.00-19.05	< 5	16	< 5	< 2	< 5	< 5	< 5	< 10
104/00	40/47/00	00.40.00.40								10
MW-8D	10/17/06 01/01/07	29.42 - 39.42 29.42 - 39.42	<5 <5	12 11	<5 <5	<2 <2	<5 <5	<5 <5	<5 <5	<10 <10
	06/01/07	29.42 - 39.42	<1	<1	<1	<1	<1	<1	<1	<2
	10/01/07	29.42 - 39.42	<5	<5	<5	<2	<5	<5	<5	<10
	01/01/08	29.42 - 39.42	<1	51	<1	<1	<1	<1	<1	<2
	04/01/08	29.42 - 39.42	< 5	< 5	< 5	< 2	< 5	< 5	< 5	<10
	07/08/08	29.42 - 39.42	< 5	< 5	< 5	< 2	< 5	< 5	< 5	<10
	10/08/08	29.42 - 39.42	< 5	< 5	< 5	< 2	< 5	< 5	< 5	<10
	01/09/09	29.42 - 39.42	< 5	< 5	< 5	< 2	< 5	< 5	< 5	<10
	07/02/09	29.42 - 39.42	< 1	1	< 1	< 1	< 1	< 1	< 1	< 2
	01/13/10	29.42 - 39.42	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 15
<u> </u>	08/03/10 01/19/11	29.42 - 39.42 29.42 - 39.42	< 5 < 5	< 5 < 5	< 5 < 5	< 2 < 2	< 5 < 5	< 5 < 5	< 5 < 5	< 15 < 10
	07/27/11	29.42 - 39.42	< 5 < 5	< 5 < 5	< 5 < 5	< 2	< 5 < 5	< 5 < 5	< 5 < 5	< 10
	02/23/13	29.42 - 39.42	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	08/07/13	29.42 - 39.42	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
MW-12D	10/17/06	28.47 - 38.47	99	340	19	<2	<5	7	8	<10
	01/01/07	28.47 - 38.47	44	752	19	<2	<5	3J	12	<10
	06/01/07	28.47 - 38.47	32	540	12	<1	<1	5	7	<2
	10/01/07	28.47 - 38.47	21	338	9	< 2	< 5	4J	5	<10
	01/01/08	28.47 - 38.47	8	99	2	<1	<1	6	2	<2
	04/01/08 07/08/08	28.47 - 38.47 28.47 - 38.47	<u>8</u> 5	118 118	< 5 < 5	< 2 < 2	< 5 < 5	< 5 < 5	< 5 < 5	<10 <10
	10/08/08	28.47 - 38.47	5	72	< 5	< 2	< 5	< 5	< 5	<10
	01/09/09	28.47 - 38.47	117	16	< 5	< 2	< 5	< 5	< 5	<10
	07/02/09	28.47 - 38.47	120	52	10	< 1	< 1	2	1	< 2
	01/13/10	28.47 - 38.47	160	15	< 5	< 2	< 5	< 5	< 5	< 15
	08/03/10	28.47 - 38.47	120	12	6	< 2	< 5	8	< 5	< 15
	01/19/11	28.47 - 38.47	150	8	< 5	< 2	< 5	7	< 5	< 10
	07/27/11	28.47 - 38.47	120	<5	< 5	< 2	< 5	5.9	< 5	< 10
	02/23/12	28.47 - 38.47	54	<5	< 5	< 2	< 5	< 5	< 5	< 10
	08/15/12 02/27/13	28.47 - 38.47 28.47 - 38.47	13 11	12 <5	< 5 < 5	< 2 < 2	< 5 < 5	< 5 < 5	< 5 < 5	< 10 < 10
	08/07/13	28.47 - 38.47	< 5	19	< 5	< 2	< 5	< 5	< 5	< 10
	00/01/10	20.47 - 30.47	`	10	``	``	```	``	` ` `	1 10
MW-22	07/08/11	3.6 - 13.6	14	8	< 5	< 2	< 5	< 5	< 5	< 10
	07/27/11	3.6 - 13.6	11	11	< 5	< 2	< 5	< 5	< 5	< 10
	01/12/12	3.6 - 13.6	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	02/23/12	3.6 - 13.6	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	08/16/12	3.6 - 13.6	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	02/27/13	3.6 - 13.6	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	08/07/13	3.6 - 13.6	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
POD-1	07/08/11	3.1 - 13.1	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
1 00-1	07/08/11	3.1 - 13.1	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	02/23/12	3.1 - 13.1	< 5	22	< 5	< 2	< 5	< 5	< 5	< 10
	08/15/12	3.1 - 13.1	< 5	12	< 5	< 2	< 5	< 5	< 5	< 10
	10/29/12	3.1 - 13.1	< 5	6	< 5	< 2	< 5	< 5	< 5	< 10
	02/27/13	3.1 - 13.1	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
	08/07/13	3.1 - 13.1	< 5	< 5	< 5	< 2	< 5	< 5	< 5	< 10
					<u> </u>	<u> </u>				

Notes:

VOCs ug/L ft bls DCE PCE TCE <5 Volatile Organic Compounds micrograms per Liter feet below land surface dichloroethene
tetrachloroethene
trichloroethene
Below Laboratory Detection Limit

Table 4 **Summary of Sub-slab Soil Gas Analytical Results Vogue Cleaners** Martinez, Georgia

Date 07/11/11 07/11/11	cis-1,2-DCE < 40	PCE 15,000	TCE < 55	(mg/m³) Vinyl Cloride	trans-1,2-DCE	Benzene	Toluene	Xylenes
	< 40			1	trans-1,2-DCE	Benzene	Toluene	Xylenes
		15,000	< 55					
07/11/11				< 26	< 80	110	280	140
	1300	420,000	10,000	< 260	< 800	< 320	< 380	< 44
07/11/11	< 400	66,000	770	< 260	< 800	< 320	< 380	< 880
06/12/13	< 8.0	2,300	< 11	< 5.2	< 16	<6.5	7.8	< 18
06/12/13	< 4.0	480	<5.5	< 2.6	< 8.0	< 3.2	11	31.2
06/12/13	< 20	7,800	100	< 13	< 40	< 16	< 19	< 66
06/12/13	130	47,000	1,400	< 26	< 80	< 32	< 38	< 88
06/12/13	< 40	29,000	680	< 26	< 80	< 30	< 38	< 132
	06/12/13 06/12/13 06/12/13 06/12/13	06/12/13 < 8.0 06/12/13 < 4.0 06/12/13 < 20 06/12/13 130	06/12/13 < 8.0	06/12/13 < 8.0	06/12/13 < 8.0	06/12/13 < 8.0	06/12/13 < 8.0	06/12/13 < 8.0

Notes:

VOCs Volatile Organic Compounds ug/m³ DCE micrograms per cubic meter of air

dichloroethene PCE tetrachloroethene TCE <5 trichloroethene

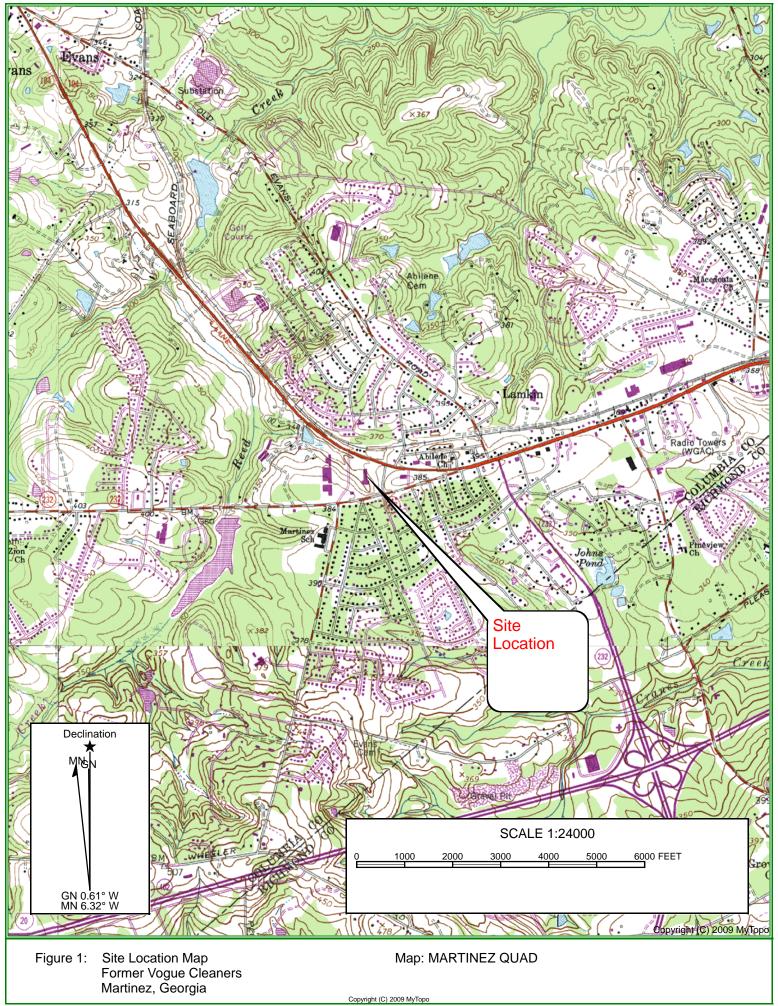
Below Laboratory Detection Limit

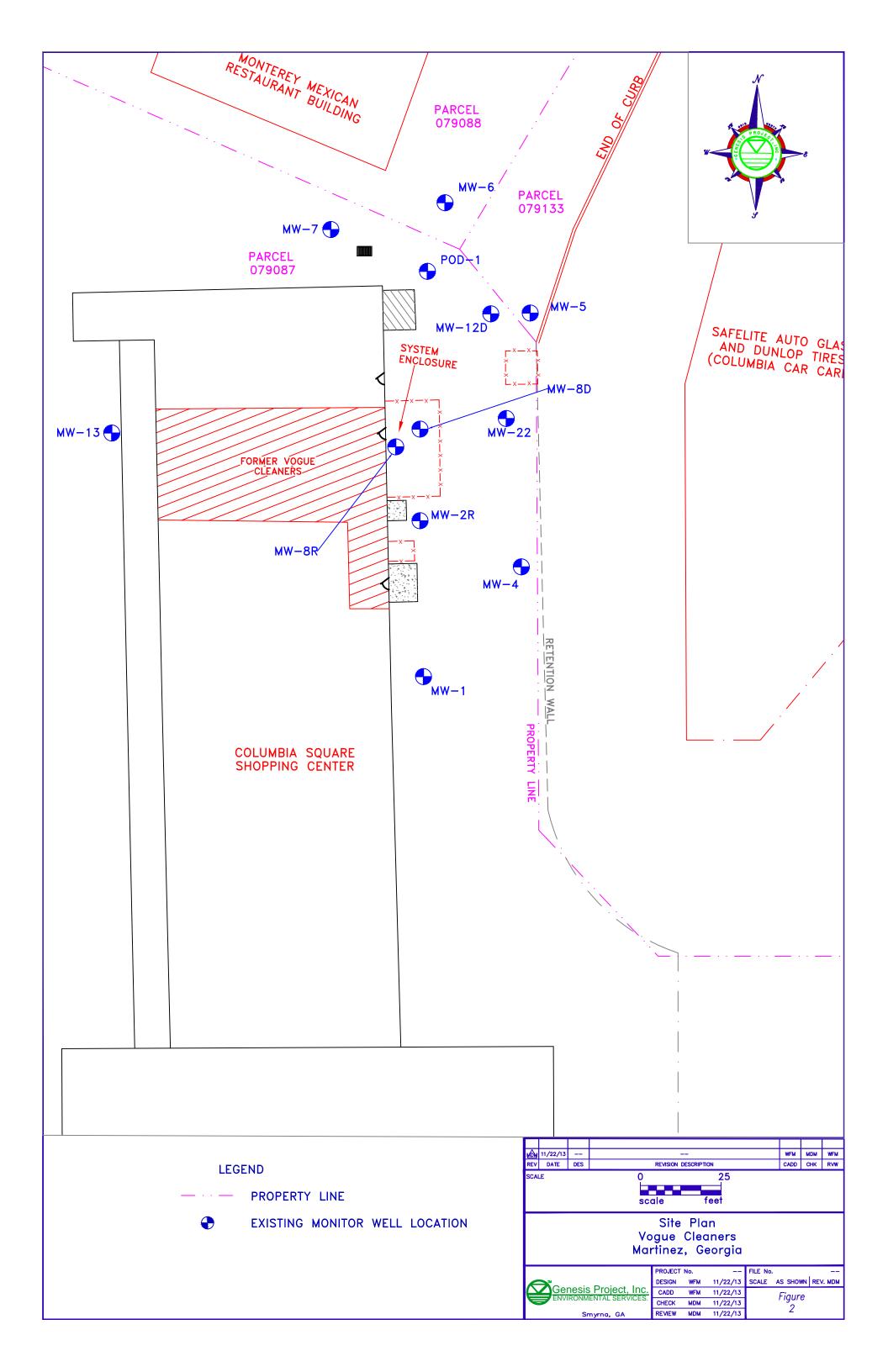
TABLE 5: Cumulative Risk Calculations - Vogue Cleaners
Allowed Indoor Air Values from the EPA Regional Screening Values Updated April 2012

Sub-slab Soil Gas Data

		SV-1		SV-2		SV-3		S	V-4		SV-5		Surface We	ighted Average
Compound	Soil Gas	Measured		Measured		Measured		Mea	sured		Measured		Calculated	<u> </u>
·	Screening Value*	Conc	Calculated	Conc	Calculated	Conc	Calculated	c	onc	Calculated	Conc	Calculated	Conc	Calculated
	ug/m3	ug/m3	Risk	ug/m3	Risk	ug/m3	Risk	ug	g/m3	Risk	ug/m3	Risk	ug/m3	Risk
Cancer Risk														
Tetrachloroethyelene (PCE)	156,667	2300	1.5E-07	480	3.20E-08	7800	5.10E-07	47	7000	3.10E-06	29000	1.90E-06	10935	7.20E-07
Trichloroethene (TCE)	10,000	11	1.1E-08	5.5	5.70E-09	100	1.00E-07	1	400	1.50E-06	680	7.00E-07	254	2.60E-07
Cumlative Risk			1.61E-07		3.77E-08		6.10E-07			4.60E-06		2.60E-06		9.80E-07
Non-Cancer Hazard Quotient (HQ)			HQ		HQ		HQ			HQ		HQ		HQ
Acetone	46,666,667	84	1.9E-06	69	1.6E-06	120	2.7E-06	2	240	5.5E-06	240	5.5E-06	127	2.4E-06
Toluene	7,333,333	7.8	1.1E-06	11	1.6E-06	19	2.7E-06		38	5.4E-06	38	5.4E-06	18	2.0E-06
Tetrachloroethyelene (PCE)	58,065	2300	4.1E-02	480	8.5E-03	7800	1.4E-01	47	7000	8.3E-01	29000	5.1E-01	10935	1.9E-01
Trichloroethylene (TCE)	2,933	11	3.9E-03	5.5	1.9E-03	100	3.5E-02	1	400	5.0E-01	680	2.4E-01	254	9.2E-02
4-Methyl-2-Pentanone (MIBK)	4,333,333	17	4.0E-06	12	2.8E-06	41	9.7E-06		83	2.0E-05	83	2.0E-05	36	6.6E-06
Xylenes	146,667	26.8	1.9E-04	31.2	2.2E-04	66	4.7E-04	1	132	9.3E-04	132	9.3E-04	59	3.4E-04
1,2,4-Trimethylbenzene	10,333	10	1.0E-03	20	2.0E-03	25	2.5E-03		50	5.1E-03	50	5.1E-03	25	2.5E-03
Cumulative Hazard Quotient			0.046		0.013		0.178			1.336		0.756		0.285

 $^{{\}bf 11}$ - Results below the detection limit. Value presented in the reporting limit


Default Values Used in These Calculations:


Soil gas attenuation factor of 0.0031 (based on emperical data)

Assume commercial room ventilation rate of 1 room exchange/hour or twice the residental rate

^{*} As discussed in text, sub-slab screening level = commercial indoor air RSL/ Attenuation Factor or = RSL/0.0031

FIGURES

Genesis Project, Inc. 1258 Concord Rd Smyrna, Georgia 30080 Telephone: 770-319-7217 Fax: 770-319-7219

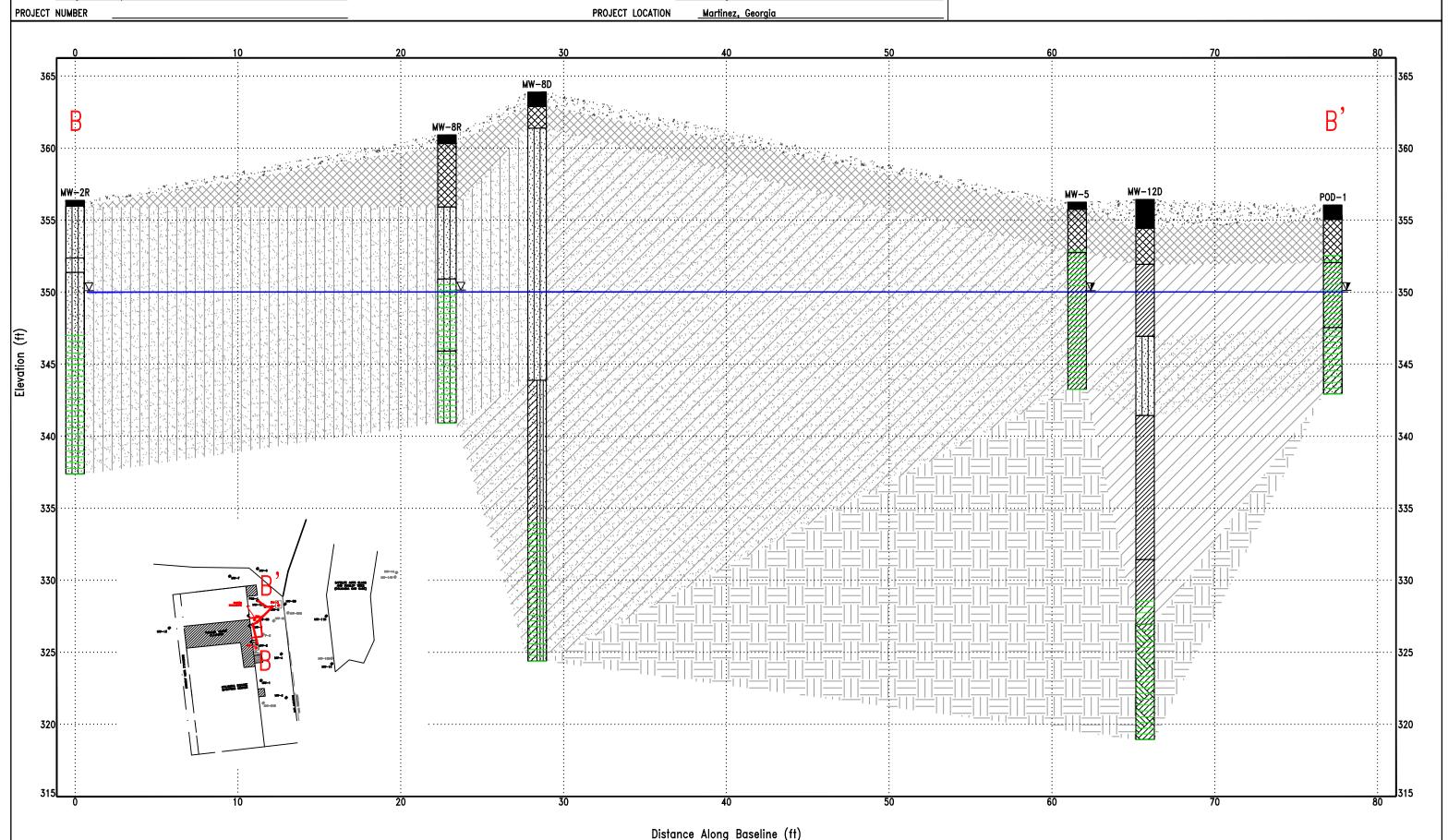
FIGURE 3A SUBSURFACE DIAGRAM A-A'

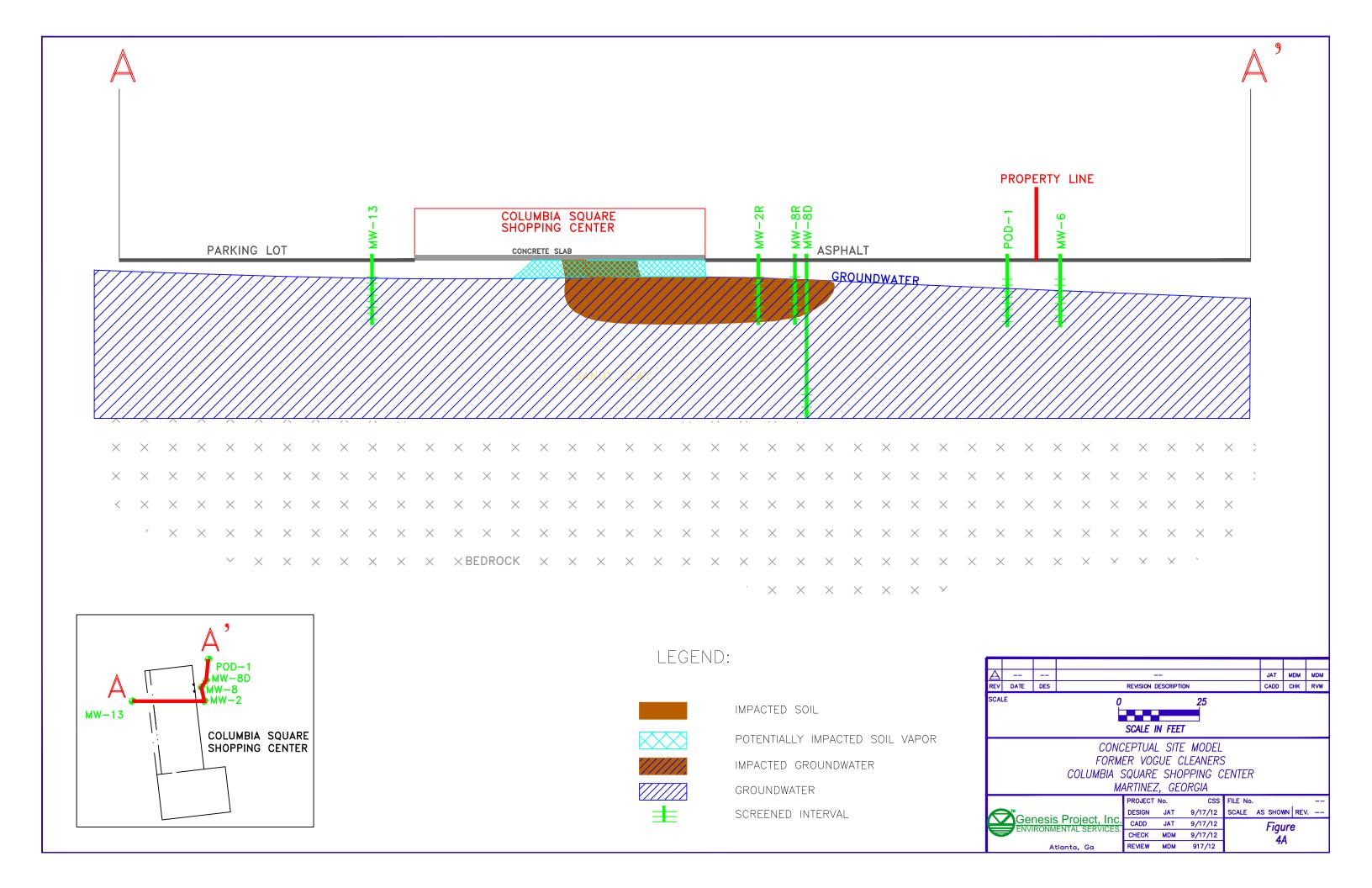
USCS Low Plasticity Clay
USCS Low Plasticity
Sandy Clay

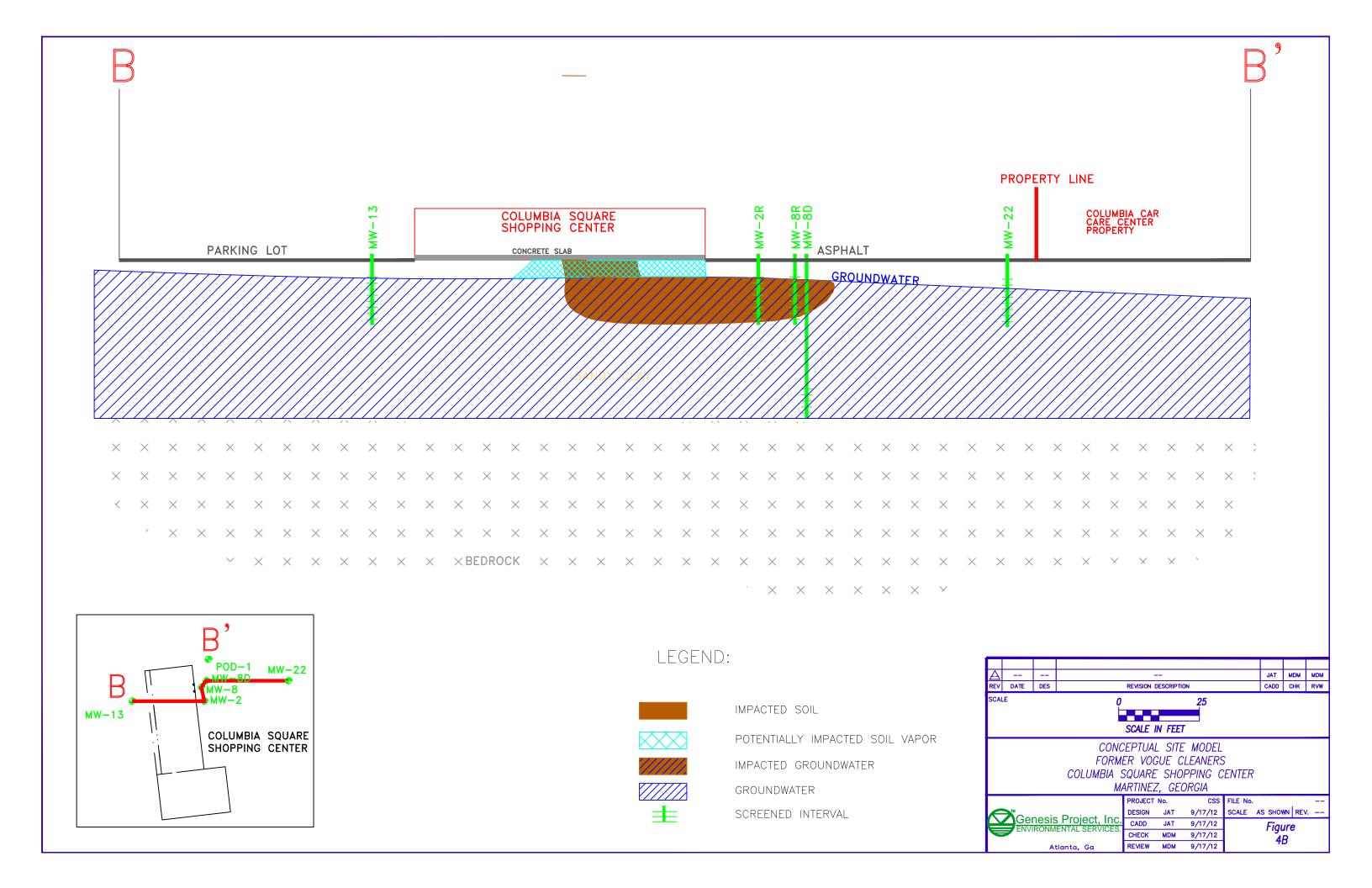
USCS Clayey Sand PROJECT NAME CLIENT <u>Morgan Stanley</u> Former Vogue Cleaners PROJECT NUMBER PROJECT LOCATION Martinez, Georgia MW÷13 MW-12D 355 Elevation (ft) 335 330

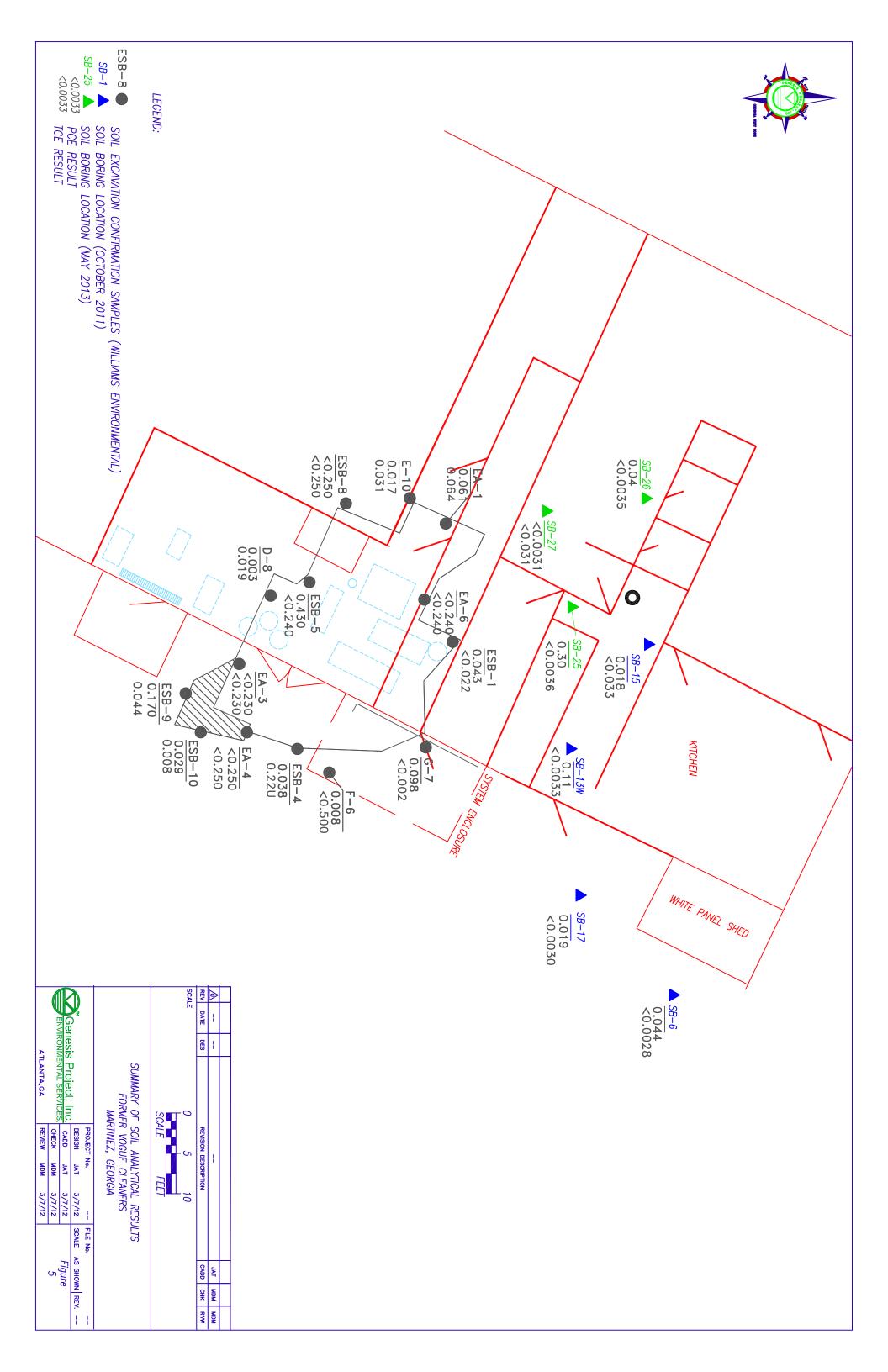
Distance Along Baseline (ft)

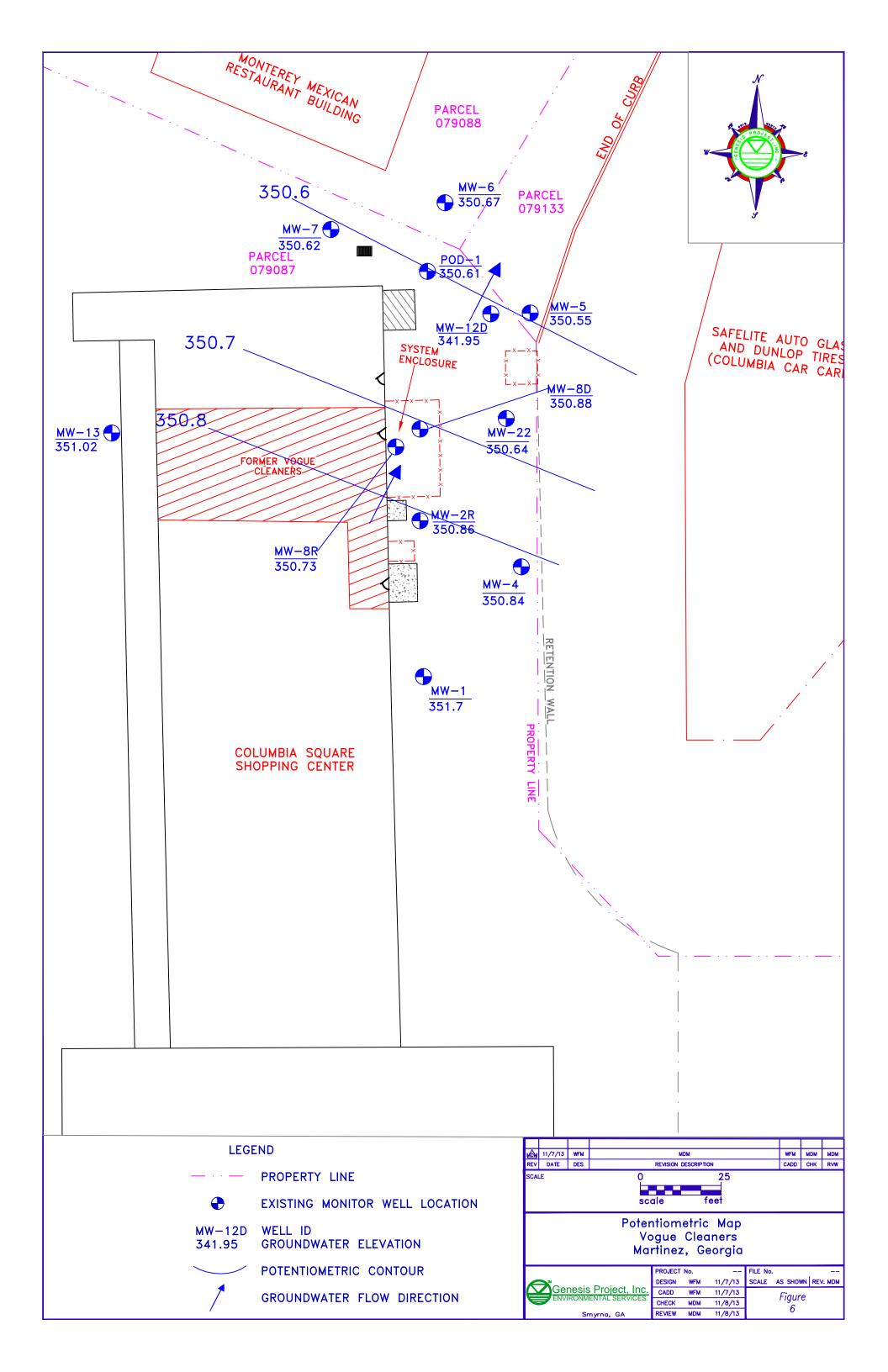
Genesis Project, Inc.
1258 Concord Rd
Smyrna, Georgia 30080
Telephone: 770-319-7217
Fax: 770-319-7219

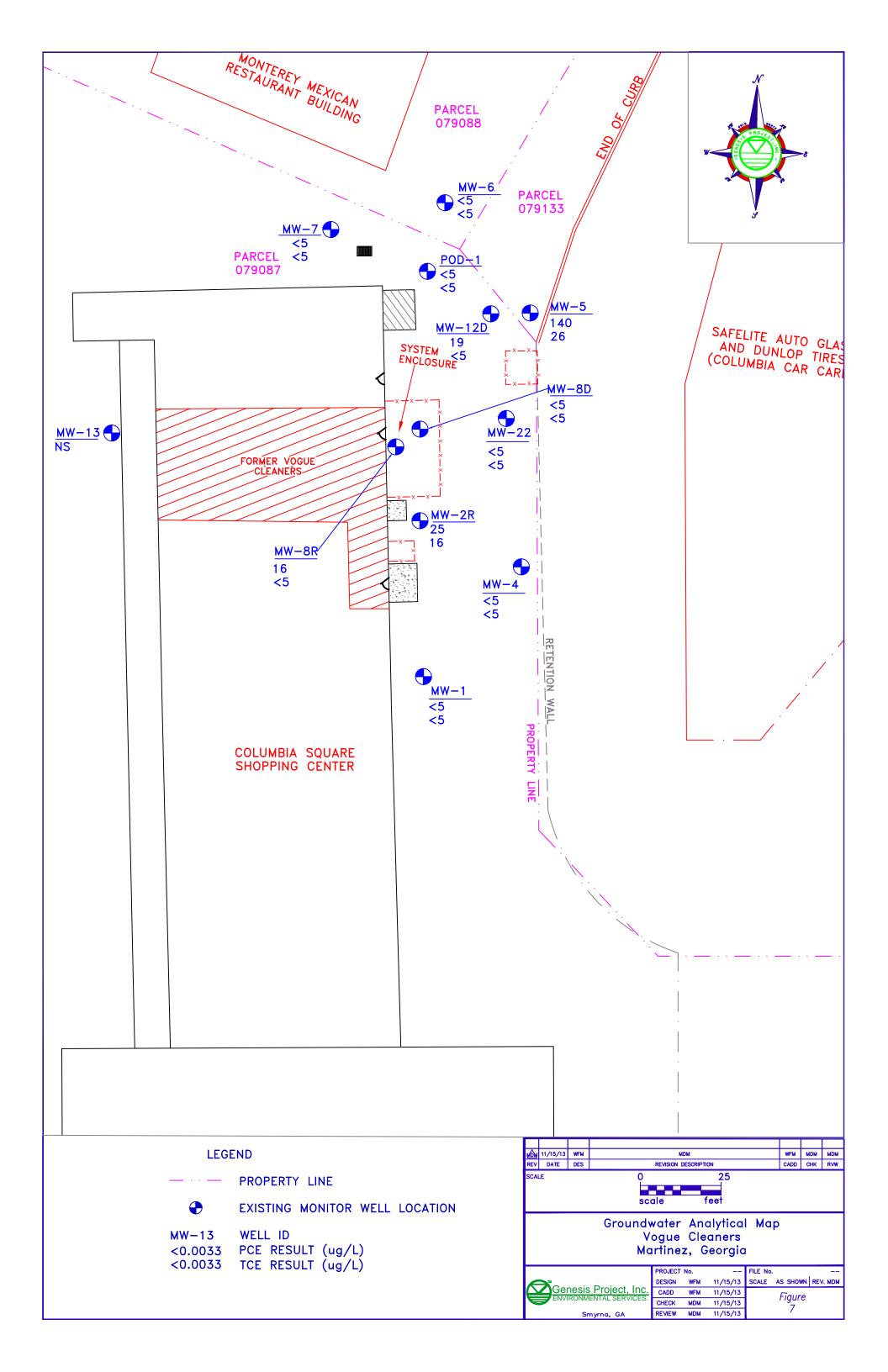

FIGURE 3B SUBSURFACE DIAGRAM B-B' AUGUST 23, 2013

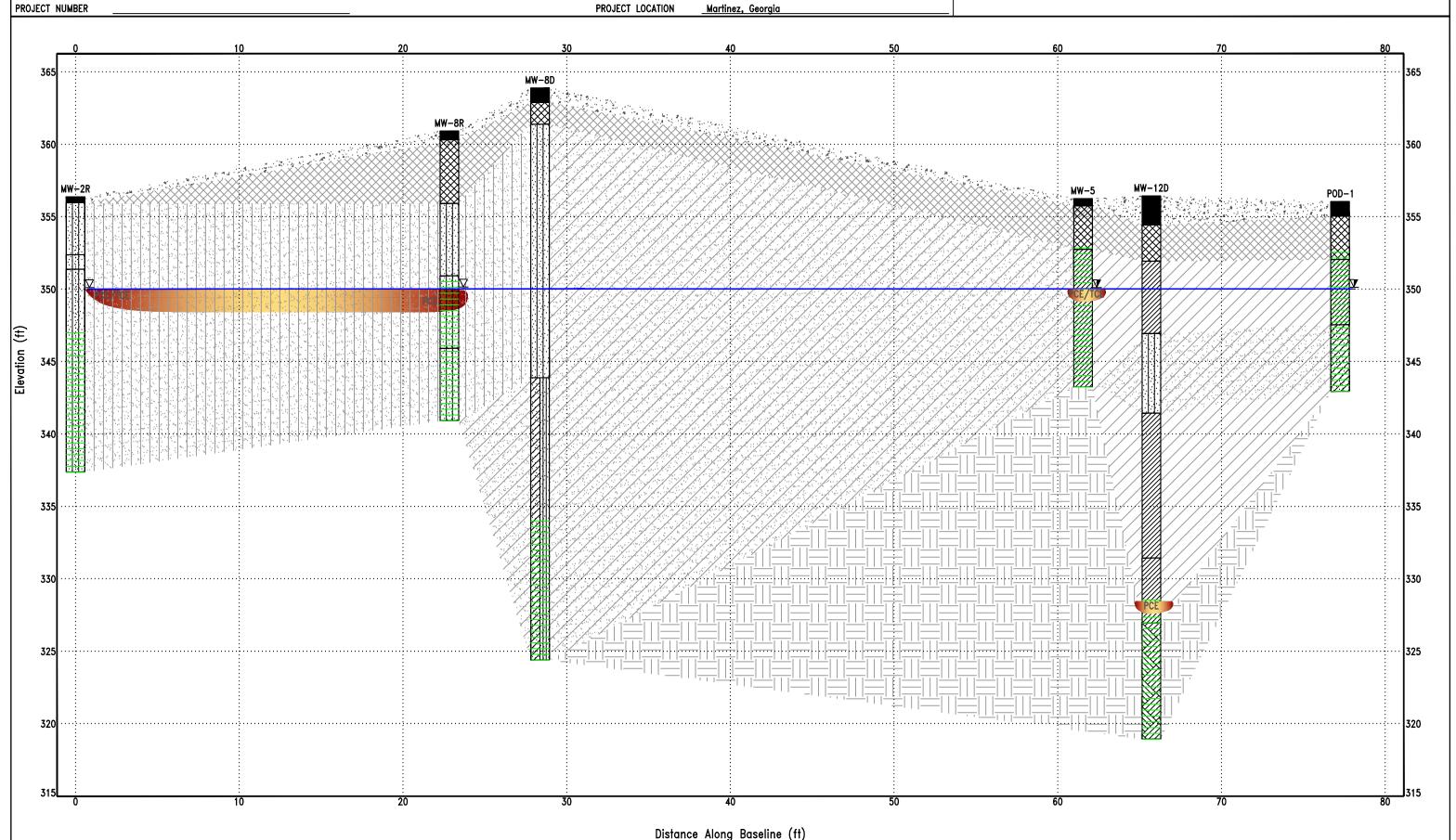

Asphalt Fill (made ground) USCS Low Plasticity Clay USCS Clayey Sand Screened Interval

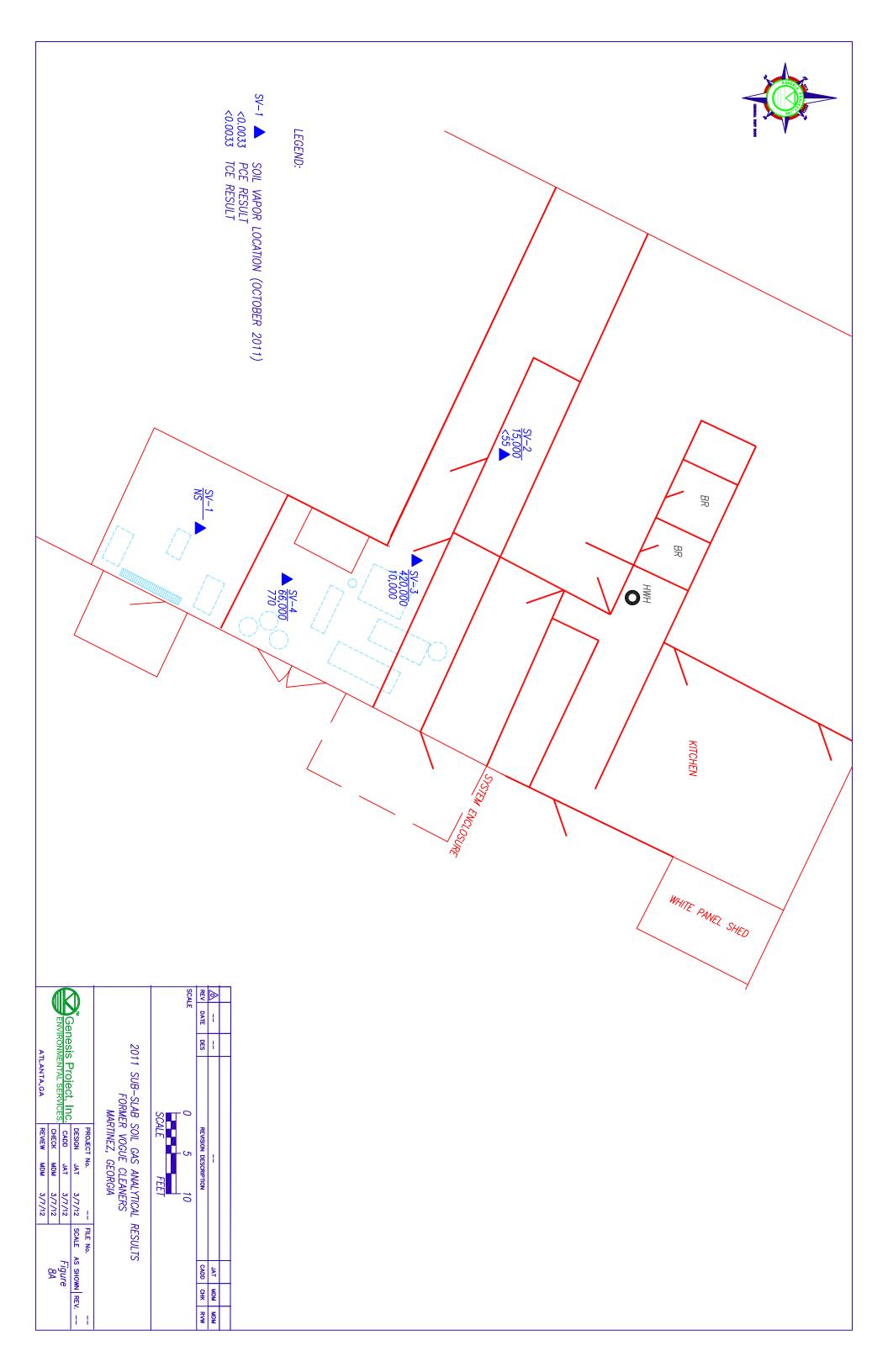

USCS Clayey Sand

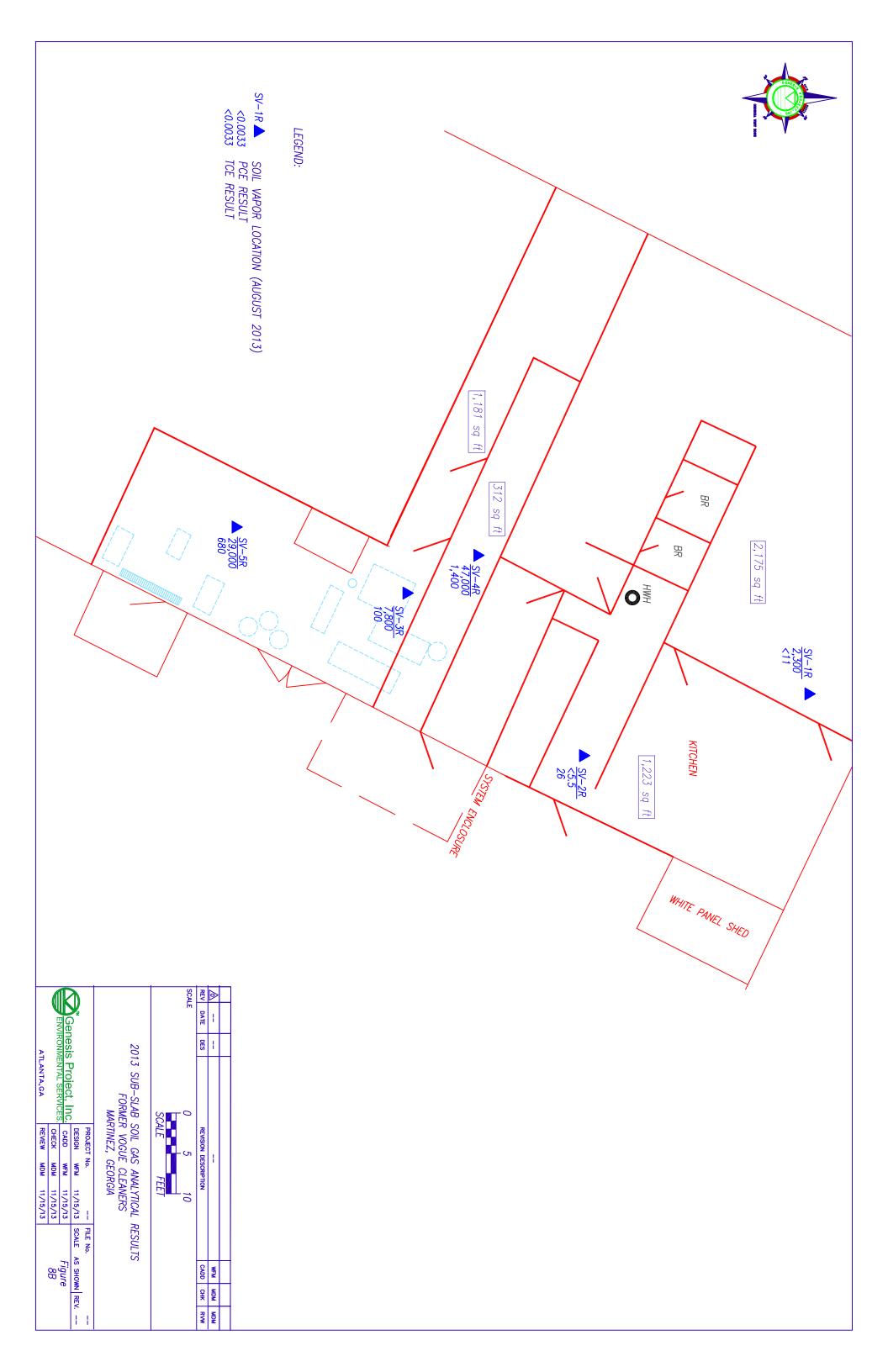

USCS Silty Sand


CLIENT <u>Morgan Stanley</u> PROJECT NAME Former Vogue Cleaners






FIGURE 7B PCE/TCE RESULTS AUGUST 23, 2013


Asphalt Fill (made ground) USCS Low Plasticity Clay Screened Interval

USCS Clayey Sand USCS Silty Sand

USCS Clayey Sand CLIENT <u>Morgan Stanley</u> PROJECT NAME Former Vogue Cleaners

APPENDIX A LEGAL DESCRIPTION OF PROPERTY

Vogue Cleaners-Columbia Square

4020 Washington Road Augusta, GA 30907

Inquiry Number: 2777972.1

June 01, 2010

The EDR Environmental LienSearch™ Report

The EDR Environmental LienSearch™ Report

The EDR Environmental LienSearch Report provides results from a search of available current land title records for environmental cleanup liens and other activity and use limitations, such as engineering controls and institutional controls.

A network of professional, trained researchers, following established procedures, uses client supplied address information to:

- · search for parcel information and/or legal description;
- · search for ownership information;
- research official land title documents recorded at jurisdictional agencies such as recorders' offices, registries of deeds, county clerks' offices, etc.;
- access a copy of the deed;
- search for environmental encumbering instrument(s) associated with the deed;
- provide a copy of any environmental encumbrance(s) based upon a review of key words in the instrument(s) (title, parties involved, and description); and
- provide a copy of the deed or cite documents reviewed.

Thank you for your business.

Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2010 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

The EDR Environmental LienSearch™ Report

TARGET PROPERTY INFORMATION

ADDRESS

4020 Washington Road Vogue Cleaners-Columbia Square Augusta, GA 30907

RESEARCH SOURCE

Source 1:

Columbia Clerk of Court Columbia, GA

PROPERTY INFORMATION

Deed 1:

Type of Deed: Limited Warranty Deed

Title is vested in: Columbia Square Investors, LLC

Title received from: The Equitable Life Assurance Society of the United

 Deed Dated
 11/20/2001

 Deed Recorded:
 12/4/2001

 Book:
 2879

 Page:
 123

 Volume:
 NA

 Instrument:
 NA

 Docket:
 NA

Land Record Comments:
Miscellaneous Comments:

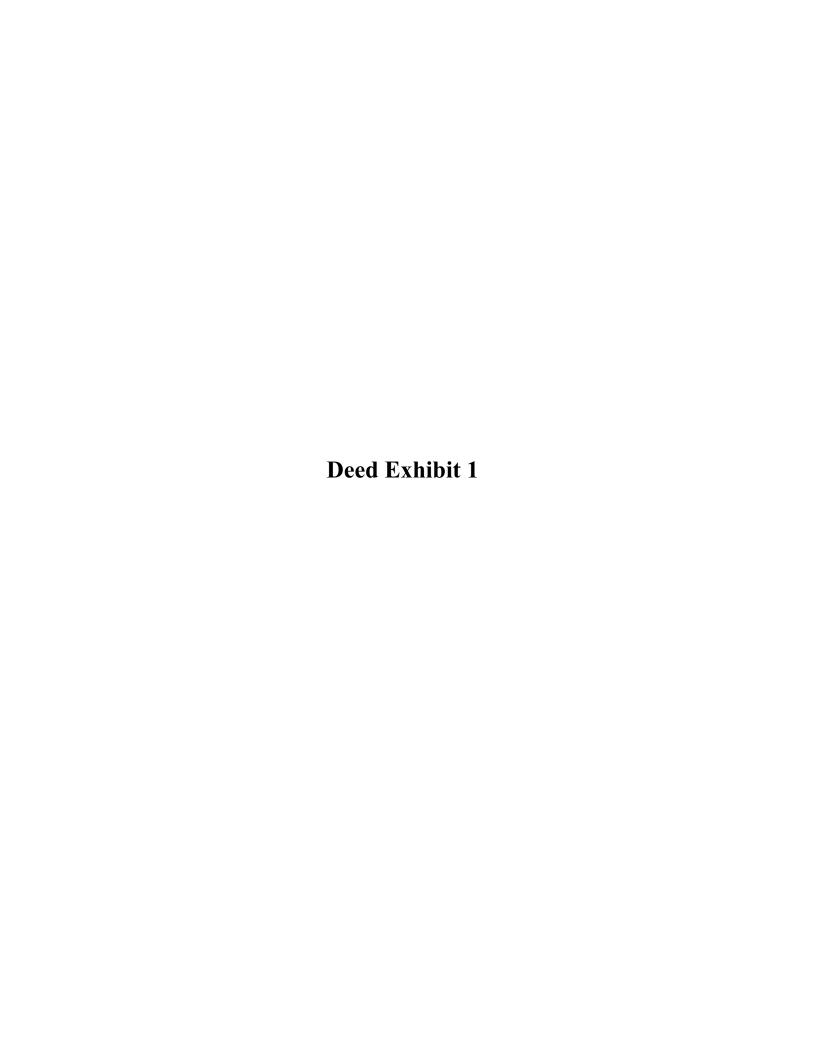
Legal Description: see exhibit

Legal Current Owner: Columbia Square Investors, LLC

Property Identifiers: 079-087

Comments: see exhibit

ENVIRONMENTAL LIEN


Environmental Lien: Found Not Found

The EDR Environmental LienSearch™ Report

OTHER ACTIVITY AND USE LIMITATIONS (AULS)

Miscellaneous Comments:

AULs:	Found 🔀	Not Found	
If found:			
1st Party:	NA		
2nd Party:	NA		
Dated:	9/18/2006		
Recorded:	9/18/2006		
Book:	5636		
Page:	289		
Docket:	NA		
Volume:	NA		
Instrument:	NA		
Comments:			

Cangle, Columbia County That is to cartify that \$_ Countie Roul Estate Trapsfer Tax

Clerk Superior Court

Filed In This Office Columbia County

2001 DEC -4 AS 181 46

Cindy Wason Clark Superior Court

Upon recording return to:

GOTT A GLOSSON & AGOVEN A GENERAL CA VILSON COLE A TOURT A GENERAL SOON

CLERK OF SUPERIOR COURT OLYDY PAASON, CLERK

COLUMNIA COUNTY, GEORGIA 19477

LIMITED WARRANTY DEED

STATE OF GEORGIA

COUNTY OF FULTON

THIS INDENTURE, made this 20th day of November, 2001, between THE EQUITABLE LIFE ASSURANCE SOCIETY OF THE UNITED STATES, a New York corporation, (herein collectively called "Grantor") and COLUMBIA SQUARE INVESTORS, LLC, a Georgia limited liability company, (herein called "Grantee").

WITNESSETH: That Grantor, for and in consideration of the sum of Ten Dollars (\$10.00) and other good and valuable consideration, in hand paid at and before the sealing and delivery of these presents, the receipt and sufficiency of which are hereby acknowledged, has granted, bargained, sold, aliened, conveyed and confirmed and by these presents does grant, bargain, sell, alien, convey and confirm unto Grantee all that tract or parcel of land described on Exhibit A attached hereto and made a part hereof (the "Land").

TO HAVE AND TO HOLD the Land, together all buildings, structures and improvements thereon and with all and singular the rights, easements, members and appurtenances thereof, (the Land, together with the foregoing, is hereinafter referred to as the "Property") to the same being, belonging or in any wise appertaining, to the only proper use, benefit and behoof of Grantee, forever, IN FEE SIMPLE.

This Deed and the warranty of title contained herein are made expressly subject to the items set forth on Exhibit B attached hereto and made a part hereof (the "Permitted Exceptions").

Except for the Permitted Exceptions, Grantor will warrant and forever defend the right and title to the Property unto Grantee against the lawful claims of all persons owning, holding or claiming by, through or under Grantor, but not otherwise.

(The words "Grantor" and "Grantee" include all genders, plural and singular, and their respective heirs, successors and assigns where the context requires or permits.)

Equitable/Deed

125

EXHIBIT A Legal Description

All that tract or parcel of land lying and being in Columbia County, Georgia, and being more particularly described as follows:

From the Northeast intersection of the right-of-way of Columbia Road (150 foot right-of-way) and the right-of-way of Flowing Wells Road (80 foot right-of-way), go North 38°35' East along the Easterly right-of-way of Flowing Wells Road a distance of 107.8 feet to a point; thence continue along said rightof-way around a curve a lineal distance of 97.59 feet (said lineal distance being the arc of a curve having a radius of 421.9 feet) to an iron pin and the POINT OF BEGINNING; thence continue along said rightof-way following the curvature thereof a lineal distance of 176.21 feet (said lineal distance being the arc of a curve having a radius of 421.9 feet) to an iron pin; thence continue along said right-of-way North 1º23' East a distance of 294.68 feet to an iron pin; thence South 88°32'30" East a distance of 204.65 feet to an iron pin; thence North 1°27'30" East a distance of 168.35 feet to an iron pin lying on the Southerly right-of-way line of Washington Road (100 foot right-of-way); thence South 65°33'45" East along said right-of-way a distance of 32.59 feet to an iron pin; thence South 1°27'30" West a distance of 150.0 feet in an iron pin; thence South 66°22' East a distance of 70.00 feet to an iron pin; thence South 87°52' East 53.50 feet to an iron pin; thence South 44°43'20" East 53.16 feet to an iron pin; thence South 1°23' West a distance of 142.93 feet to an iron pin; thence South 46°59' East a distance of 60.21 feet to an iron pin; thence South 1°23' West a distance of 135.0 feet to an iron pin; thence South 80°42' West a distance of 175.0 feet to an iron pin; thence South 9°18' East a distance of 146.49 feet to an iron pin set on the Northerly right-of-way line of Columbia Road (150 foot right-of-way); thence South 79°12' West along said right-of-way a distance of 30.01 feet to an iron pin; thence North 9°18' West a distance of 147.27 feet to an iron pin; thence South 80°42' West a distance of 150.0 feet to an iron pin; thence South 80°42' West a distance of 125.73 feet to an iron pin and the POINT OF BEGINNING, said tract containing 4.14 acres as shown by Plat for Columbia Square Corporation by Baldwin & Cranston Associates, Inc., dated June 10, 1977.

IN WITNESS WHEREOF, Grantor has caused this Indenture to be executed and scaled the day

and year first above written. THE EQUITABLE LIFE ASSURANCE SOCIETY OF THE UNITED STATES Signed, sealed and delivered in the presence of: Mark Hillis Investment Officer Mark Hills Title:_ [NOTARY SEAL] Notary Public, Fulton County, Georgia My Commission Expires February 13, 2005

-2-

Equitable/Deed

~0043041

diskamil je i

EXHIBIT B

PERMITTED TITLE EXCEPTIONS

- 1. All taxes for the year 2001 and subsequent years, not yet due and payable.
- Taxes or special assessments which are not shown as existing liens by the public records.
- Easement from Mrs. Charles Abraham to Georgia Fower Company, dated July 12, 1937, recorded in Deed Book 19, page 71(b), Columbia County Records.
- Right-of-Way Deed to State Highway Department of Georgia, dated January 7, 1946, recorded at Deed Book 25, Page 473, Columbia County Records.
- Easement from Nelson Cash to Georgia Power Company, dated November 7, Deed Book 26, page 336(a), Columbia County Records.
- Easement from Nelson Cash to Georgia Power Company, dated December 11, Deed Book 26, page 470(a), Columbia County Records.
- Easement from Nelson Cash to Georgia Power Company, dated October 28, Deed Book 70, page 67(b), Columbia County Records.
- Right-of-Way Deed from Timothy J. O'Neill, et. al., to Columbia County, dated August 10, 1973, recorded at Deed Book 143, page 817, Columbia County Records, as affected or modified by Right-of-Way Deed from Timothy J. O'Neill to Columbia County, dated August 30, 1973, recorded at Deed Book 144, page 693, Columbia County Records.
- Memorandum of Lease to Roses Stores, Inc., dated July 19, 1973, recorded at Deed Book 145, page 255, as amended by instrument recorded at Deed Book 160, page 26, Columbia County Records.
- Easements and Restrictions contained in Deed to First Federal Savings, dated July 23, 1974, recorded at Deed Book 155, page 36, Columbia County Records.
- Declaration of Covenants, dated December 20, 1974, recorded at Deed Book 159, page 713, Columbia County Records.
- Easements contained in Warranty Deed dated December 30, 1974, recorded at page 794, Columbia County Records.
- Easement from Hadco, Inc. to Georgia Power Company, dated March 11, 1974, recorded at Deed Book 160, page 454, Columbia County Records.
- Easements granted in Warranty Deed recorded at Deed Book 163, page 603, and as shown on Plat recorded at Plat Book 5, page 88, Columbia County Records.
- Easement Agreement, dated October 16, 1975, recorded at Deed Book 171, page 583, Columbia County Records, as corrected, supplemented and modified by Easement dated August 16, 1977, recorded at Deed Book 201, page 35, Columbia County Records.

#11086773 v2 · Closing Documents · Columbia Square/Phase II

Equitable/Deed

- Easement Agreement, dated June 6, 1976, recorded at Deed Book 179, page 770, Columbia County Records, as re-recorded to add Exhibit "B" at Deed Book 181, page 447, Columbia County Records.
- 17. Easement from Columbia Square Co., Inc. to Georgia Power Company, dated October 13, 1976, recorded at Deed Book 194, page 551, Columbia County Records.
 - Easement to Columbia County recorded at Deed Book 195, page 658, Columbia County Records, and supporting Plat recorded at Plat Book 7, page 41, Columbia County Records.
 - Easement from The Equitable Life Assurance Society of the United States to Georgia Power Company, filed April 30, 1980, recorded at Deed Book 247, page 642, Columbia County Records.
 - O. Matters shown on that certain ALTA/ACSM Land Title Survey for The Equitable Life
 Assurance Society of the United States, Lend Lease Real Estate Investments, Inc., Chicago Title
 Insurance Company, Anthony E. Jones, Automali of Georgia, LLC and Columbia Square
 Investors, LLC, prepared by East Metro Surveyors & Engineers, Inc., dated November 15,
 2001, sealed by E.G. Davis, Georgia RLS No. 2363.

PLAT CABINET D SLIDE 130 NO. 8

Recorded 09/18/2006 03:45PM
Georgia Intangible Tax Paid: \$0.00
CINDY MASON

CINDY MASON Clerk Superior Court, Columbia County B 05636 p 0289-0294

Deed Doc: AFF CINDY MASON, CLERK

PLEASE

Darren G. Meadows

RETURN TO: Hull, Towill, Norman, Barrett & Salley P.C.

P. O. Box 1564 Augusta, GA 30903

STATE OF GEORGIA

COUNTY OF COLUMBIA

AFFIDAVIT PURSUANT TO THE GEORGIA HAZARDOUS SITE RESPONSE ACT O.C.G.A. '12-8-97(c) and O.C.G.A. '44-2-20

RE: Property of the **COLUMBIA SQUARE INVESTORS, LLC** described as all that tract or parcel of land lying and being in Columbia County, Georgia, and being more particularly described as follows:

From the Northeast intersection of the right-of-way of Columbia Road (150 foot right-of-way) and the right-ofway of Flowing Wells Road (80 foot right-of-way), go North 38°35' East along the Easterly right-of-way of Flowing Wells Road a distance of 107.8 feet to a point; thence continue along said right-of-way around a curve a lineal distance of 97.59 feet (said lineal distance being the arc of a curve having a radius of 421.9 feet) to an iron pin and the POINT OF BEGINNING; thence continue along said right-of-way following the curvature thereof a lineal distance of 176.21 feet (said lineal distance being the arc of a curve having a radius of 421.9 feet) to an iron pin; thence continue along said right-of-way North 1°23' East a distance of 294.68 feet to an iron pin; thence South 88°32'30" East a distance of 204.65 feet to an iron pin; thence North 1°27'30" East a distance of 168.35 feet to an iron pin lying on the Southerly right-of-way line of Washington Road (100 foot right-of-way); thence South 65°33'45" East along said right-of-way a distance of 32.59 feet to an iron pin; thence South 1°27'30" West a distance of 150.0 feet to an iron pin; thence South 66°22' East a distance of 70.00 feet to an iron pin; thence South 87°52' East 53.50 feet to an iron pin; thence South 44°43'20" East 53.16 feet to an iron pin; thence South 1°23' West a distance of 142.93 feet to an iron pin; thence South 46°59' East a distance of 60.21 feet to an iron pin; thence South 1°23' West a distance of 135.0 feet to an iron pin; thence South 80°42' West a distance of 175.0 feet to an iron pin; thence South 9°18' East a distance of 146.49 feet to an iron pin set on the Northerly right-of-way line of Columbia Road (150 foot right-of-way); thence South 79°12' West along said right-of-way a distance of 30.01 feet to an iron pin; thence North 9°18' West a distance of 147.27 feet to an iron pin; thence South 80°42' West a distance of 150.0 feet to an iron pin; thence South 80°42' West a distance of 125.73 feet to an iron pin and the POINT OF BEGINNING, said tract containing 4.14 acres as shown by Plat for Columbia Square Corporation by Baldwin & Cranston Associates, Inc., dated June 10, 1977, recorded in Deed Book 2879, Pages 123-127.

Vogue Cleaners Site, Georgia HSI #10394

BK5636 PG290

Personally appeared before me, the undersigned attesting officer duly authorized to administer oaths, 4. Klasusk., who, after having been first duly sworn, depose and on oath says: 1) That Scott J. Klosinski is the Attorney for Columbia Square Investors, LLC. 2) That Columbia Square Investors, LLC owns the Property described in the deed referenced above. 3) That Columbia Square Investors, LLC has been instructed by the Georgia Environmental Protection Division that the following notice is required to be placed in the real estate records in the Office of the Clerk of Superior Court for Columbia County, Georgia: "This property has been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this property. This notice is provided in compliance with the Georgia Hazardous Site Response Act." 4) Inquiries should be directed to the Georgia Environmental Protection Division at (404) 657-8600. IN WITHESS WHEREOF, the said Affiant has hereunto set their hand and seal this the day of .2006. Signed, sealed and delivered in our presence in **AFFIANT** Richmond County, Georgia (SEAL) minimining My commission expires:

3K5636 PG291

Georgia Department of Natural Resources

2 Martin Luther King, Jr. Drive SE Suite 1462 East, Atlanta, Georgia 30334
Noel Holcomb, Commissioner
Environmental Protection Division
Carol A. Couch, Ph.D., Director
Hazardous Waste Management Branch
404/657-8600

April 26, 2006

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Columbia Square Investors, LLC c/o Scott Klosinski, P.C. #7 George C. Wilson Court Augusta, GA 30909

Re: Reclassification of Site from Class II to Class V Hazardous Site Inventory, Site No. 10394 Vogue Cleaners Martinez, Columbia County, Georgia

Dear Mr. Klosinski:

Because corrective action is being performed at the above referenced property in accordance with an approved corrective action plan, EPD is hereby reclassifying it from Class II to Class V and designating it as needing corrective action as provided for in Section 391-3-19-.06(6) of the Rules for Hazardous Site Response.

Within 45 days of this letter, you are required by Section 12-8-97(c) of the Hazardous Site Response Act to file an affidavit stating that your property has been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. This affidavit is to be filed with the clerk of the superior court of each county in which your property or any part thereof lies and recorded in the clerk's deed records pursuant to O.C.G.A. § 44-2-20 [full copy attached].

Section 12-8-97(f) of the Hazardous Site Response Act also requires that you place the following notice in any deed, mortgage, deed to secure debt, lease, rental agreement or other instrument given or caused to be given by the property owner which creates an interest in or grants a use of the property:

"This property has been listed on the state's hazardous site inventory and has been designated as needing corrective action due to the presence of hazardous wastes, hazardous constituents, or hazardous substances regulated under state law. Contact the property owner or the Georgia Environmental Protection Division for further information concerning this property. This notice is provided in compliance with the Georgia Hazardous Site Response Act."

Within 30 days of recording the affidavit, please send a copy of the receipt of the recorded affidavit to the Hazardous Sites Response Program, Georgia Environmental Protection Division, 2 Martin Luther King Jr. Drive, SE, Suite 1462 East, Atlanta, GA 30334.

Section 12-8-97(f) of the Hazardous Site Response Act provides that the requirements for property record notices at O.C.G.A. §12-8-97(b) & (c) shall be stayed by the filing of a petition for a hearing within 30 days of this letter.

BK5636 PG292

Scott Klosinski April 26, 2006 Page 2

EPD will also publish a notice in the Columbia News-Times and the Augusta Chronicle no sooner than thirty days from the date of this letter announcing that your property has been designated as needing corrective action.

If you have any questions regarding this matter, please contact Amanda Howell at $(404)\,657-8600$.

Carol A Couch Ph D

Carol A. Couch, Ph.D. Director

CAC:ah

Encl: O.C.G.A. §44-2-20 (2 pages)

c: Mr. Robert Poole, Morgan Stanley

File: HSI No. 10394

44-2-20. Recorded affidavits relating to land as notice of facts cited therein; admissibility of such affidavits in evidence; presumption as to facts recited; filing and recording.

- (a) Recorded affidavits shall be notice of the facts therein recited, whether taken at the time of a conveyance of land or not, where such affidavits show:
 - (1) The relationship of parties or other persons to conveyances of land;
 - (2) The relationship of any parties to any conveyance with other parties whose names are shown in the chain of title to lands;
 - (3) The age or ages of any person or persons connected with the chain of title;
 - (4) Whether the land embraced in any conveyance or any part of such land or right therein has been in the actual possession of any party or parties connected with the chain of title;
 - (5) The payment of debts of an unadministered estate;
 - (6) The fact or date of death of any person connected with such title:
 - (7) Where such affidavits relate to the identity of parties whose names may be shown differently in chains of title;
 - (8) Where such affidavits show the ownership or adverse possession of lands or that other persons have not owned such lands nor been in possession of same; or
 - (9) Where such affidavits state any other fact or circumstance affecting title to land or any right, title, interest in, or lien or encumbrance upon land.

Any such affidavits may be made by any person, whether connected with the chain of title or not.

44-2-20 PROPERTY 44-2-20

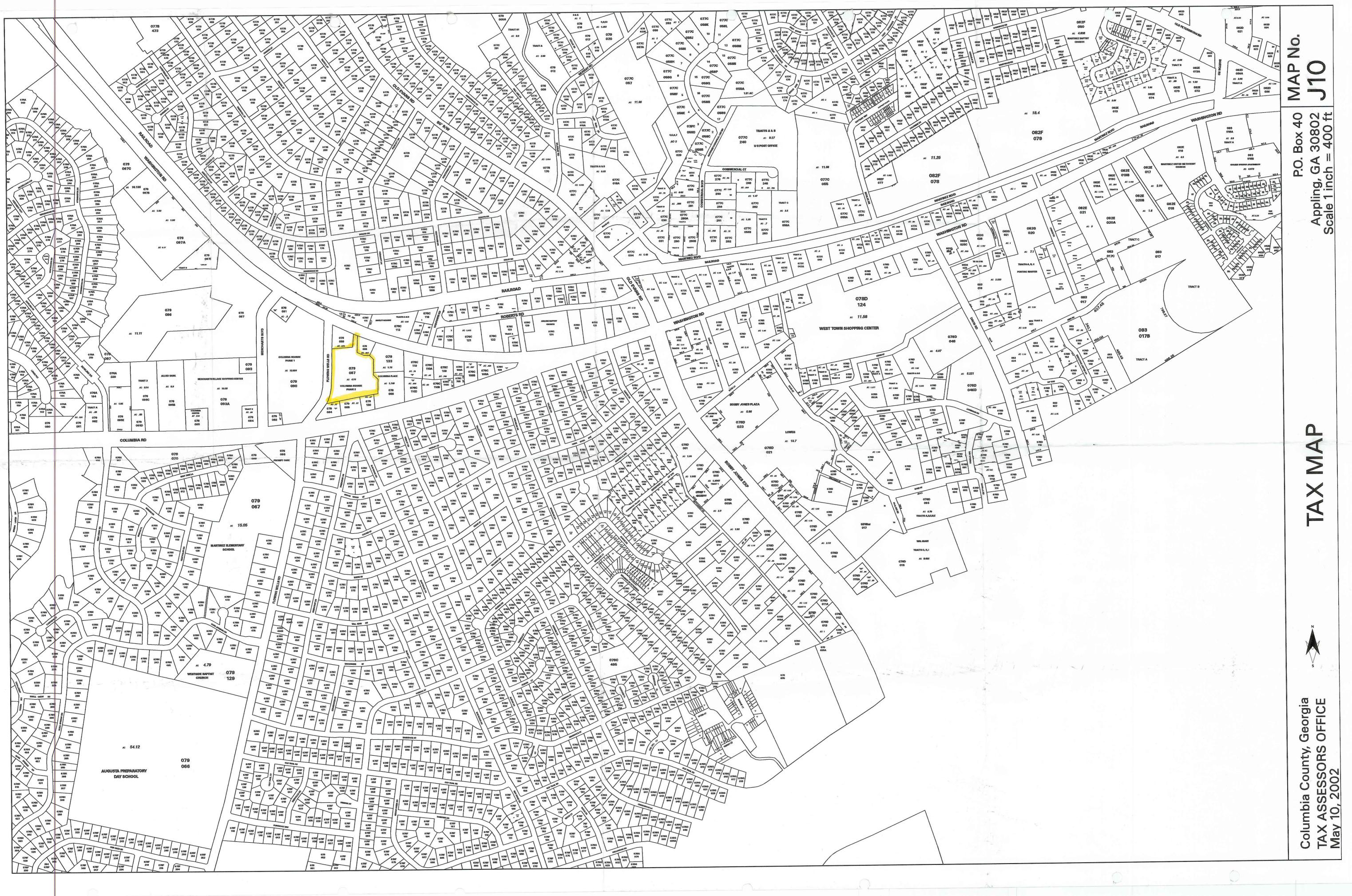
(b) In any litigation over any of the lands referred to and described in any of the affidavits referred to in subsection (a) of this Code section in any court in this state or in any proceedings in any such court involving the title to such lands wherein the facts recited in such affidavits may be material, the affidavits or certified copies of the record thereof shall be admissible in evidence and there shall be a rebuttable presumption that the statements in said affidavits are true. The affidavits or certified copies thereof shall only be admissible as evidence in the event the parties making the affidavits are deceased; they are nonresidents of the state; their residences are unknown to the parties offering the affidavits; or they are too old, infirm, or sick to attend court.

(c) Affidavits referred to in subsections (a) and (b) of this Code section shall be filed by the clerk of the superior court of the county where the land is located and shall contain a caption referring to the current owner and to a deed or other recorded instrument in the chain of title of the affected land. The clerk of the superior court shall record such affidavits, shall enter on the deed or other recorded instrument so referred to the book and page number on which such affidavit may be recorded. . and shall index same in the name of the purported owner as shown by such caption in both grantor and grantee indexes in deed records as conveyances of lands are recorded and indexed; and he shall receive the same compensation therefor as for recording deeds to lands. (Ga. L. 1955, p. 614, §§ 1-3; Ga. L. 1982, p. 3, § 44.)

scission Problems in Truth-In-Lending, as 315 (1971).

Law reviews. - For article, "Some Re- Viewed From Georgia," see 7 Ga. St. B.J.

JUDICIAL DECISIONS


Section will be strictly construed by the court. Dollar v. Thompson, 212 Ga. 831, 96 S.E.2d 493 (1957).

Contents of affidavit. - Properly recorded affidavit "shall" contain a caption showing the information enumerated in this section. This is made mandatory by the use of the word "shall," rather than permissive language. Dollar v. Thompson, 212 Ga. 831, 96 S.E.2d 493 (1957).

Section provides an exception to both the hearsay rule and to \$ 24-9-1, relating to competency of witnesses. King v. King, 238 Ga. 268, 232 S.E.2d 549 (1977).

Affidavit admissible only if affiant unavailable. — Affidavits shall be admissible only when the person making them is not available as a witness for stated reasons. Dollar v. Thompson, 212 Ga. 851, 96 S.E.2d 493 (1957).

Cited in Parker v. Adamson, 109 Ga. App. 172, 135 S.E.2d 487 (1964); Jones v. Van Vleck, 224 Ga. 796, 164 S.E.2d 724 (1968); Crane v. Gaddis, 224 Ga. 804, 164 S.E.2d 844 (1968); Minor v. Ray, 122 Ga. App. 531, 177 S.E.2d 842 (1970).

APPENDIX B PUBLIC /PRIVATE DRINKING WATER WELL SURVEY

Well and Water Resources Survey Results

Former Vogue Cleaners 4020 Washington Road Martinez, Columbia County, Georgia HSI # 10394

Latitude: 33° 30' 35.69" Longitude: 82° 06' 13.07"

A well and water resources survey was conducted to identify any public and non-public water supply sources within a 3-mile radius of the subject property. The survey included:

- 1. A search by the United States Geological Survey (USGS) from the Ground Water Database;
- 2. A search of the GAEPD water supply database;
- 3. A field reconnaissance within the vicinity of the subject site;
- 4. Interviews with local official.

The field reconnaissance included a drive-by search for wells within the 0.25-mile radius of the subject site as well as a specific search for each of the wells found in the USGS Database. No wells were observed within or reported within a 0.25-mile radius of the site. One (1) private water supply well was observed and reported within a one (1)-mile radius of the Subject Property. The nearest surface water body to the Subject Property is 1,444 feet north-west from the subject site.

WITHIN 3-MILE RADIUS

FACILITY NAME	NUMBER OF WELLS	WELL ID	ADDRESS	CURRENT USE	LOCATION
Annie Anderson	1	unknown	114 Shaw Street	Unknown	0.56 Miles NE
Unidentified	1	25BB25	Unknown	Unknown	2.77 Miles SW
Unidentified	1	28BB15	Unknown	Unknown	2.96 Miles South
Unidentified	1	28BB18	Unknown	Unknown	2.85 Miles South
Unidentified	1	28BB26	Unknown	Unknown	2.99 Miles SW
Unidentified	1	29BB43	Unknown	Unknown	2.98 Miles South
Unidentified	1	28BB28	Unknown	Unknown	2.92 Miles SW
Unidentified	1	29BB44	Unknown	Unknown	2.88 Miles SW
Unidentified	1	29BB54	Unknown	Unknown	2.90 Miles South
Unidentified	1	29BB42	Unknown	Unknown	2.82 Miles SW
Unidentified	1	29BB21	Unknown	Unknown	2.72 Miles South
Unidentified	1	29BB46	Unknown	Unknown	2.71 Miles South
Unidentified	1	29BB93	Unknown	Unknown	2.72 Miles South
Unidentified	1	29BB92	Unknown	Unknown	2.67 Miles South
Unidentified	1	29BB64	Unknown	Unknown	2.61 Miles South

FACILITY NAME	NUMBER OF WELLS	WELL ID	ADDRESS	CURRENT USE	LOCATION
Unidentified	1	29BB62	Unknown	Unknown	2.76 Miles South
Unidentified	1	29BB34	Unknown	Unknown	2.71 Miles SW
Unidentified	1	29BB41	Unknown	Unknown	2.46 Miles South
Unidentified	1	29BB52	Unknown	Unknown	2.47 Miles SW
Unidentified	1	29BB45	Unknown	Unknown	2.41 Miles South
Unidentified	1	29BB47	Unknown	Unknown	2.49 Miles SW
Unidentified	1	29BB36	Unknown	Unknown	2.26 Miles SW
Unidentified	1	29BB33	Unknown	Unknown	2.33 Miles SW
Unidentified	1	29BB51	Unknown	Unknown	2.22 Miles SE
Windy Acres Mobile Home Park	1	28BB106	Old South Belair Road	Unknown	2.83 Miles SW
Windy Acres Mobile Home Park	1	28BB105	Old South Belair Road	Unknown	2.81 Miles SW
Unidentified	1	29BB56	Unknown	Unknown	1.02 Miles South
Unidentified	1	28CC02	Unknown	Unknown Unknown 2.20	
Unidentified	1	28CC01	Unknown	Unknown	2.24 Miles SW
Unidentified	1	29CC30	Unknown	Unknown	2.42 Miles NW

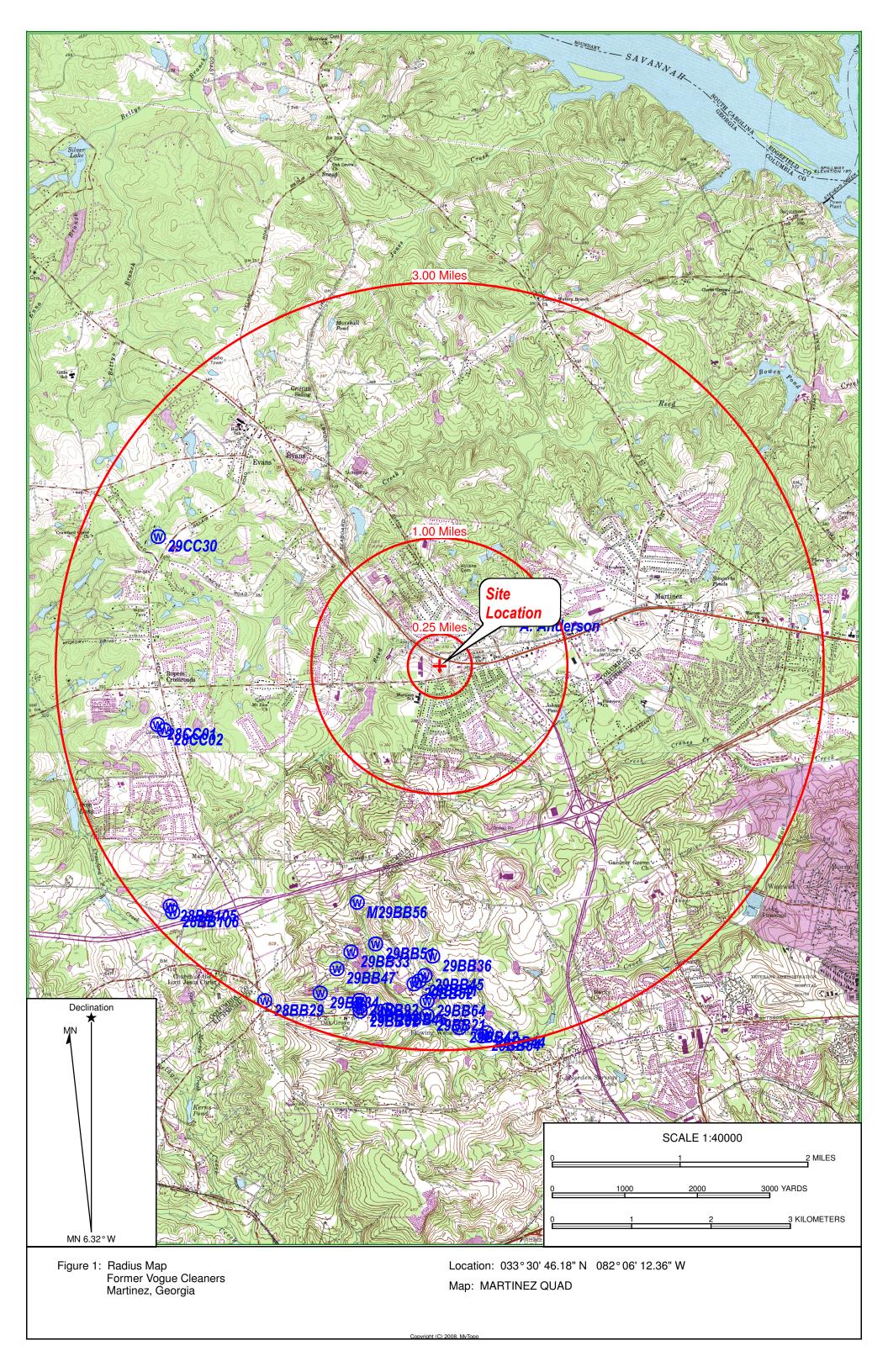
Site Investigations were completed after review of Federal and State databases. The purpose of this investigation was to:

- 1. Determine whether the identified water wells are currently used as a potable source of water; and
- 2. Complete a hydrogeologic evaluation to determine whether a hydrogeologic connection is present between groundwater located at the Former Vogue Cleaners site (subject property) and the suspected water wells.

SITE INVESTIGATION

On August 8, 2013 Genesis Project, Inc. completed an investigation of suspected water well on the property identified as 114 Shaw Road. The suspected water well is associated with a resident's home. Several attempts have been made to contact the owner; however no contact has been established over time. Following the site inspection, an interview was conducted with a representative of the Columbia County Water Board Authority. This interview confirmed that the property is being supplied by city water.

A hydrogeologic evaluation was conducted using data from the subject property as well as information from the Martinez Quad, Georgia USGS topographic map (2008). A summary of this evaluation is as follows:


- 1. The suspected water wells are located to the south, southeast, southwest and northeast of the subject property.
- 2. No public drinking water wells are within 0.5 miles of the subject property.
- 3. Available topographical information as well as the direction of groundwater flow on-site indicates that twenty-nine (29) of the suspected wells are not down gradient of the subject property.
- 4. The one (1) private water well located within a one (1) mile radius is not hydrogeolgically connected with the Property, and is not a potential receptor of the impacted groundwater from the former Vogue Cleaners.

These features are highlighted on the Radius Map (Figure 1).

Based on these observations, Genesis Project, Inc. has concluded that if these wells still exist, they would not be considered hydrogeologically connected to the subject property.

Conclusion

In conclusion, no drinking water wells were identified within 3-miles of the subject property. In addition, suspected wells identified in the USGS database are not considered to be potential receptors of the impacted groundwater present on the subject property.

FAX COVER SHEET

U.S. Department of the Interior U.S. Geological Survey Georgia District Office 1770 Corporate Drive, Suite 5000 Norcross, GA 30093

To: Tiffany Messier

Office: Genesis Project Inc

Fax: (770) 319-7219

Phone: (770) 319-7217

Message:

Phone: 678-924-6700 Fax: 678-924-6710 http://www.ga.usgs.gov

USGS

Total Number of Pages Including Cover Sheet: 3

Date: 10252013

From: Gary Holloway

Phone: (678) 924-6655

E-mail: ghollowa@usgs.gov

The ground-water database search you requested for a radius of 3 miles from 333035.69 0820613.07 is enclosed.

1DATE: 10/25/13

29CC30 1DATE: 10/25/13	288B106 288B105 29BB56 29CC02 28CC01	29BB47 29BB36 29BB33 29BB51	28BB29 29BB34 29B841 29B852 29B852	298893 298892 298864 298862 298862	298844 298854 298842 298821 298821 298826	LOCAL WELL NUMBER
PAGE						
333128.60 1b	332855.42 332856.86 332859 333009.00 333011	332832 332837 332839 332842	332819 332822 332827 332827 332827 332829	332816.52 332817.21 332819 332816.68	332806 332806 332808.80 332813 332815	LATITUDE (DUMNSS)
0820456.77	0820824.19 0820825.81 0820654 0820828.00 0820831	0820704 0820617 0820657 0820645	0820739 0820712 0820624 0820625 0820625	0820652.51 0820652.70 0820624 0820652.60	0820551 0820552 0820604.10 0820620 0820639	LONGITUDE (DDDMMSS)
NAD83	NAD83 NAD83 NAD27 NAD83 NAD27	NAD27 NAD27 NAD27 NAD27 NAD27	NAD27 NAD27 NAD27 NAD27 NAD27 NAD27	NAD83 NAD83 NAD27 NAD83	NAD27 NAD27 NAD83 NAD27 NAD27	LAT/LONG DATUK (CODE)
1	420	395 395 374 380	512 415 362 362 362	340 445.58	347 348 355 334,00 402	ALTITUDE OF LAND SURFACE (FEET)
ı	NGVD29	NGVD29 NGVD29 NGVD29 NGVD29	NGVD29 NGVD29 NGVD29 NGVD29 NGVD29	NGVD29	NGVD29 NGVD29 NGVD29 NGVD29 NGVD29	ALTITUDE DATUM (CODE)
;	403	100 122 80 18	38.91 120 12 9.9 15.6	90	17.10 26 502 89 117.5	DEPTH OF WELL (FEET)
1	150	80 92 122 60 18	38.91 100 12 9.9 15.6	115	17.10 26 450 80 114.5	BOTTOM OF CASING (FEET)
-1		2 ~ ~ ~ ~			36 22 2	DIAMETER OF CASING (IN)
1	1968 1956	1900 091981 071981 1963	1961 1961 1961	07-20-1946 051985	1900 1900 1	DATE OF CONSTRUCTION

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Site Information	~	Georgia	~	GO

Click to hideNews Bulletins

- August 23, 2013
- Read the <u>Mobile Site Tutorial</u> Try it (http://m.waterdata.usgs.gov) from your mobile device!
- New improved user interface.
- Full News

Site Inventory for Georgia

Click to hide state-specific text

- All times for Georgia stations are Eastern Standard Time.
- <u>USGS Water Resources of Georgia</u>: the place to start for all USGS water information in Georgia.
- Sign up for <u>Georgia Water Science Center E-mail Notices</u>: publication releases, gage shutdown notifications, and so forth
- Sign up for <u>custom Water Alerts by text or email</u>
- Additional information:
 - <u>Annual data report--approved data online from the 2006 water year to current.</u>
 - <u>Instantaneous Data Archive</u> for intra-day discharge data prior to October 1, 2007
 - Low-flow statistics for selected stations
 - Flood-frequency information for selected stations

Site Selection Results -- 33 sites found

lat_long_bounding_box

Position	Latitude	Longitude	
Corner 1	33°33'14"	82°09'27"	
Corner 2	33°27'53"	82°03'05"	

Position	Latitude	Longitude						
Coordinates are entered as Degrees-Minutes-								
Seconds (DM	IS). DMS values a	are converted to						
Decimal degree	Decimal degrees using NAD83 as the datum. Make							
your bounding box bigger if you are using NAD27								
Dat	um for your DMS	values						

Save file of selected sites to local disk for future upload

Data for individual sites can be obtained by selecting the site number below

Agency	Site Number	Site Name
SGS	02196486	REED CREEK (SR 104) NEAR EVANS, GA
SGS	02196488	REED CREEK AT GA 28 NEAR MARTINEZ, GA
SGS	332755082073701	28BB25
SGS	332756082073501	28BB15
SGS	332756082073502	28BB18
SGS	332757082075401	28BB26
SGS	332759082053801	29BB43
SGS	332805082080101	28BB28
SGS	332806082055101	29BB44
SGS	332806082055201	29BB54
SGS	332809082060501	29BB42
SGS	332812082074201	28BB27
SGS	332813082062001	29BB21
SGS	332815082063901	29BB46
SGS	332816082065201	29BB93
SGS	332817082065201	29BB92
SGS	332819082062401	29BB64
SGS	332819082065201	29BB62
SGS	332819082073901	28BB29
SGS	332822082071201	29BB34

Agency	Site Number	Site Name
USGS	332827082062401	29BB41
USGS	332827082062501	29BB52
USGS	332829082062101	29BB45
USGS	332832082070401	29BB47
USGS	332837082061701	29BB36
USGS	332839082065701	29BB33
USGS	332842082064501	29BB51
USGS	332855082082401	28BB106
USGS	332856082082501	28BB105
USGS	332859082065401	29BB56
USGS	333008082082701	28CC02
USGS	333011082083101	28CC01
USGS	333128082045601	29CC30

Questions about sites/data? Feedback on this web site

<u>Automated retrievals</u>

Help

Data Tips

Explanation of terms

Subscribe for system changes

News

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Site Inventory -- 33 sites found

URL: http://waterdata.usgs.gov/ga/nwis/inventory?

Page Contact Information: Georgia Water Data Maintainer

Page Last Modified: 2013-10-23 12:03:08 EDT

0.39 0.33 vaww01

Tiffany J. Messier

From: Noakes, Bo <Bo.Noakes@dnr.state.ga.us>

Sent: Friday, October 18, 2013 2:12 PM

To: Tiffany J. Messier

Subject: RE: Public/Private Well Research

Attachments: Wellmap.pdf

Here is the well map that you requested.

In the future we will not be able to do well maps for the general public due to being short staffed.

If you have any questions please feel free to contact me.

Bo Noakes GISP GIS Specialist III

Georgia Department of Natural Resources

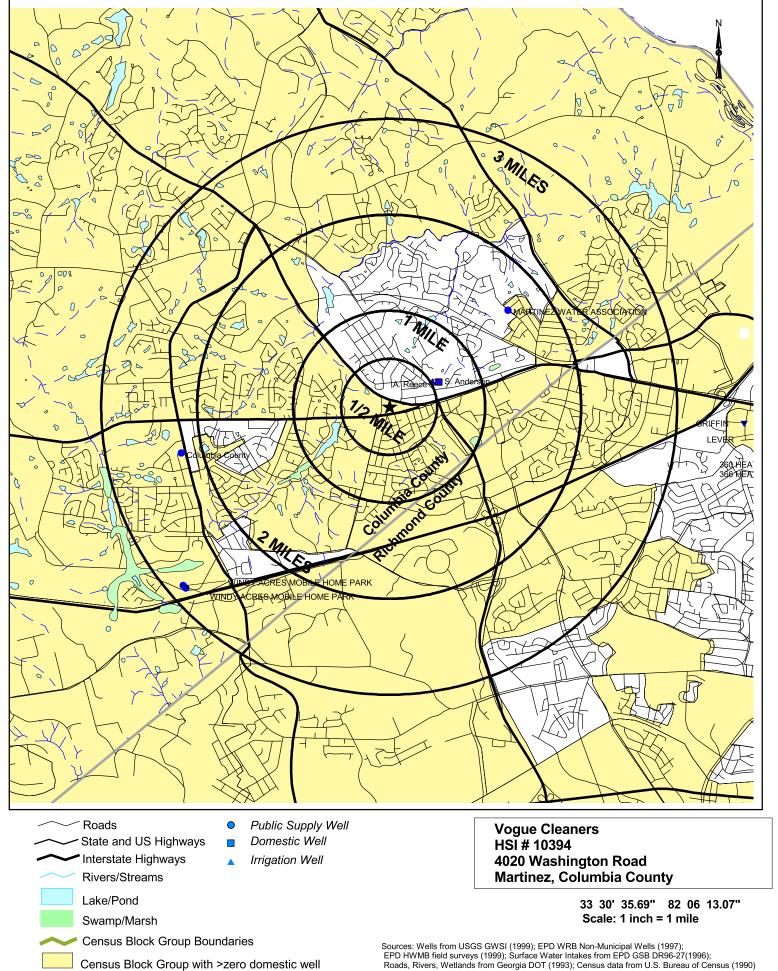
Land Protection Branch

From: Tiffany J. Messier [mailto:tmessier@genproject.com]

Sent: Wednesday, October 16, 2013 1:53 PM

To: Noakes, Bo

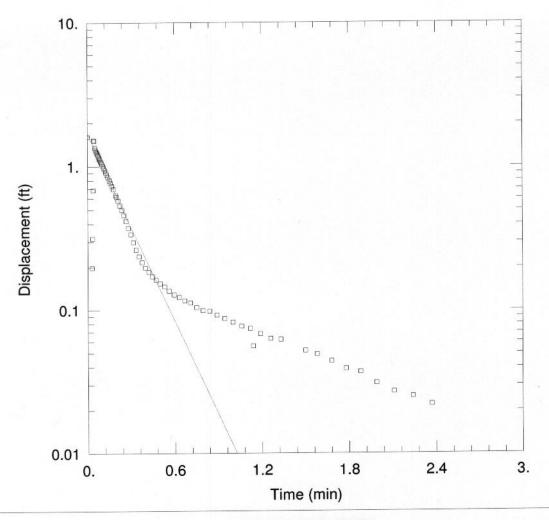
Subject: Public/Private Well Research


Mr. Noaks- We are conducting a Compliance Status report for an HSI site located at 4020 Washington Road, Martinez,

GA. The coordinates are as follows:

Lat 33 30 35.69 Long 82 06 13.07

Could you please located and document any public or private water wells within a three (3) mile radius.


Tiffany Messier Project Geologist Genesis Project, Inc. 770-319-7217 (office) 770-391-7219 (fax) 770-241-6321 (cell)

Sources: Wells from USGS GWSI (1999); EPD WRB Non-Municipal Wells (1997); EPD HWMB field surveys (1999); Surface Water Intakes from EPD GSB DR96-27(1996); Roads, Rivers, Wetlands from Georgia DOT (1993); Census data from U.S. Bureau of Census (1990)

APPENDIX C
SUPPLEMENTAL DATA
In-situ Permeability Testing
Fate and Transport Modeling
Vapor Intrusion Evaluation

MW-22 SLUG TEST

Data Set: G:\Morgan Stanley\CSR\Slug Test - Receptor Survey\MW-22SO2.aqt

Date: 04/04/13 Time: 08:56:26

PROJECT INFORMATION

Company: Genesis Project

Client: Vogue

Location: Martinez, GA
Test Well: MW-22 OUT
Test Date: 9/2011

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (New Well)

Initial Displacement: 1.6 ft

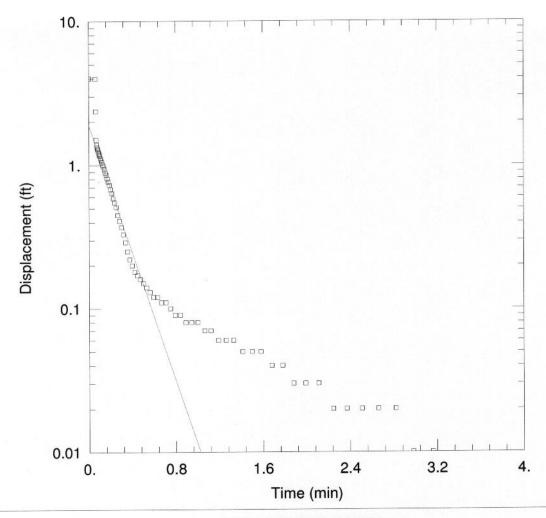
Total Well Penetration Depth: 15. ft

Casing Radius: 0.0833 ft

Static Water Column Height: 1. ft

Screen Length: 10. ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.22


SOLUTION

Aquifer Model: Unconfined

K = 0.007066 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.686 ft

WELL TEST ANALYSIS

Data Set: G:\Morgan Stanley\CSR\Slug Test - Receptor Survey\MW-22SO1.aqt

Date: 04/04/13 Time: 08:58:19

PROJECT INFORMATION

Company: Genesis Project

Client: Vogue

Location: Martinez, GA
Test Well: MW-22 OUT 2

Test Date: 9/2011

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (MW-22)

Initial Displacement: 4. ft

Total Well Penetration Depth: 12.5 ft

Casing Radius: 0.0833 ft

Static Water Column Height: 10. ft

Screen Length: 10. ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.22


SOLUTION

Aguifer Model: Unconfined

K = 0.00694 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.885 ft

WELL TEST ANALYSIS

Data Set: G:\Morgan Stanley\CSR\Slug Test - Receptor Survey\POD-1SO.aqt

Date: 04/04/13 Time: 08:53:51

PROJECT INFORMATION

Company: Genesis Project

Client: Vogue

Location: Martinez, GA
Test Well: POD-1 OUT
Test Date: 9/2011

AQUIFER DATA

Saturated Thickness: 20. ft Anisotropy Ratio (Kz/Kr): 0.5

WELL DATA (POD-1)

Initial Displacement: 3.65 ft

Total Well Penetration Depth: 12.5 ft

Casing Radius: 0.083 ft

Static Water Column Height: 120. ft

Screen Length: 10. ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.22

SOLUTION

Aquifer Model: Unconfined

K = 0.02415 cm/sec

Solution Method: Bouwer-Rice

y0 = 2.932 ft

Contaminant Fate and Transport Model BIOCHLOR Version 2.2

Former Vogue Cleaners
Columbia Square Shopping Center
Martinez, Columbia County, Georgia
HSI No. 10394

INTRODUCTION

Genesis Project utilized BIOCHLOR in order to simulate contaminant fate and transport at the former Vogue Cleaners located in Martinez, Georgia. The objective of the modeling process was to determine the theoretical maximum concentration of tetrachloroethene (PCE) in former source area that should not impact groundwater at the point of demonstration (POD) above Type 2 Risk Reduction Standards. As presented in the CSR, the point of demonstration consists of monitor well POD-1, which is located at the downgradient property boundary of the Columbia Square Shopping Center and the Monterrey Mexican Restaurant.

MODEL ASSUMPTIONS

The model was constructed with the following assumptions and input data is presented on Tables 1 & 2.

- The objective was to evaluate the concentration of PCE that may remain in the source area and not exceed current Type 2 Risk Reduction Standards for groundwater (19 ug/L).
- PCE was the only COC addressed during calibration since it was the only COC present in downgradient monitor wells.
- The modeled aquifer consists of unconsolidated sediments above the bedrock surface located approximately 35 feet bls.
- The source area consists of the former dry cleaning equipment and estimated to be 10 feet in width
- The thickness of the source area is estimated to be 10 feet thick and is based on data from MW-8 and MW-8D in 1999.
- Advection Dispersion Adsorption: Parameters were either site specific or acceptable Georgia peer reviewed literature values (Table 1)

- Biotransformation: Parameters were based on average BIOCHLOR literature values.
- General Parameters: The source is assumed to be a continuous planar source;

MODEL CALIBRATION

- The model calibration was developed to estimate the actual fate and transport of PCE using groundwater analysis results from March 1999. This data was selected since it was the last data collected prior to active corrective action activities at the site.
- The simulation time was set to 4 years based on a source material termination date of 1996, which is consistent with the timeframe when dry cleaning activities ceased at this location.
- The source well consisted of monitor well MW-2 (1,800 ug/L) and target well was monitor well MW-5 (50 ug/L).
- Calibration consisted of adjusting adsorption criteria including soil bulk density and the fraction of organic carbon. Soil bulk density went from a default value to empirical data collected in previous investigations. The Fraction of Organic Carbon was adjusted from actual data results to a EPD default value. All of these modifications are shown on the BioChlor Input Data Table (attached).
- Results of the calibration are presented below.

MODEL PREDICTION

Once the model was calibrated to the target well MW-5, prediction simulations were completed to determine what concentration of the COCs in the source area would not results in a the point of demonstration (POD-1) above the State of Georgia Type 2 Risk Reduction Standards (Section 6.0). Model Assumptions included:

- All criteria remained the same;
- General Parameters: The source is assumed to be a continuous planar source
- Source area concentrations were modified for each COC to determine what concentration may remain in source area groundwater and not exceed risk criteria at the point of demonstration well POD-1.

The COCs considered in this exercise were:

Compound	Risk Criteria at Point of Demonstration
Tetrachloroethene	19 ug/L
Trichloroethene	5 ug/L
Cis-1,2 Dichloroethene	70 ug/L

Simulations were completed for both 10 years and 20 years. Additional simulations were not necessary since the models stabilized during those simulations. The models predicted that the following source concentrations for each COC would not cause an impact to groundwater above the Type 2 RRS.

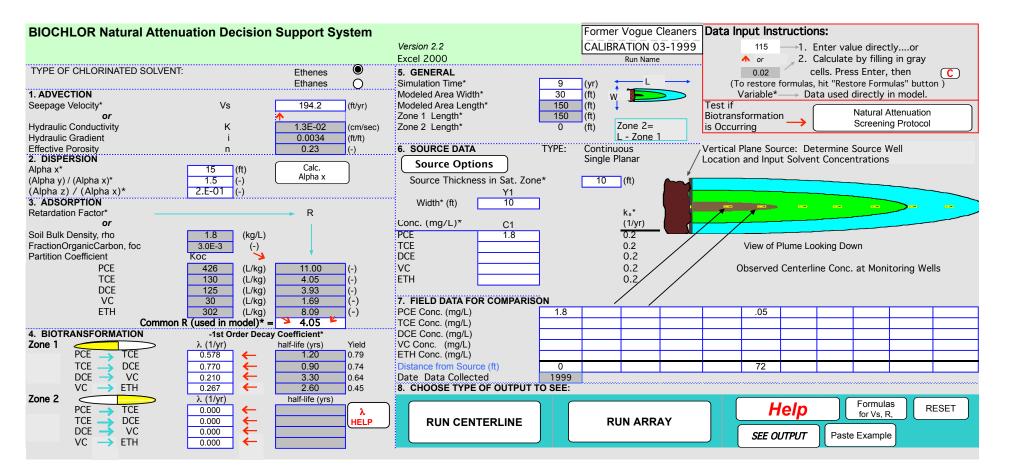
Compound	Acceptable Source Area Concentration
Tetrachloroethene	600 ug/L
Trichloroethene	150 ug/L
Cis-1,2 Dichloroethene	2,000 ug/L

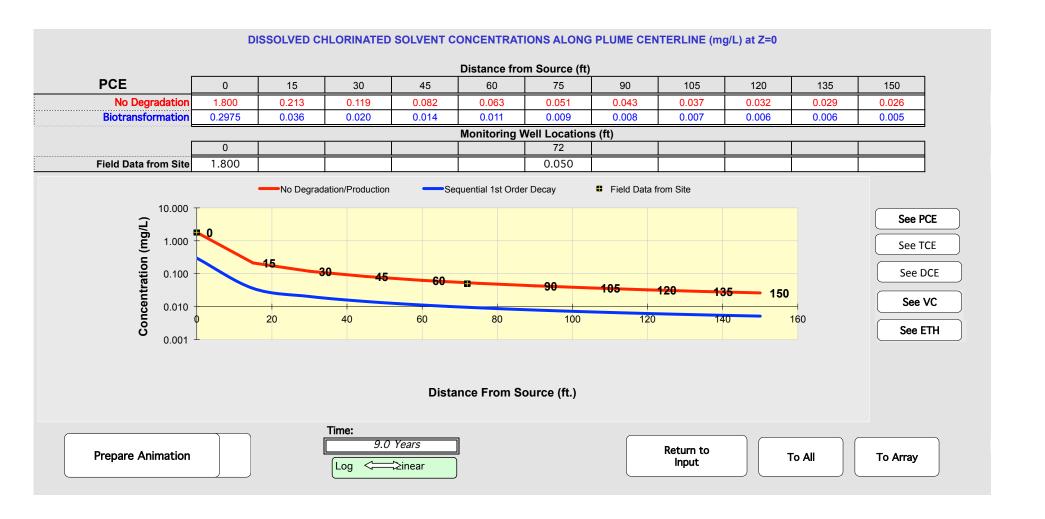
SUMMARY

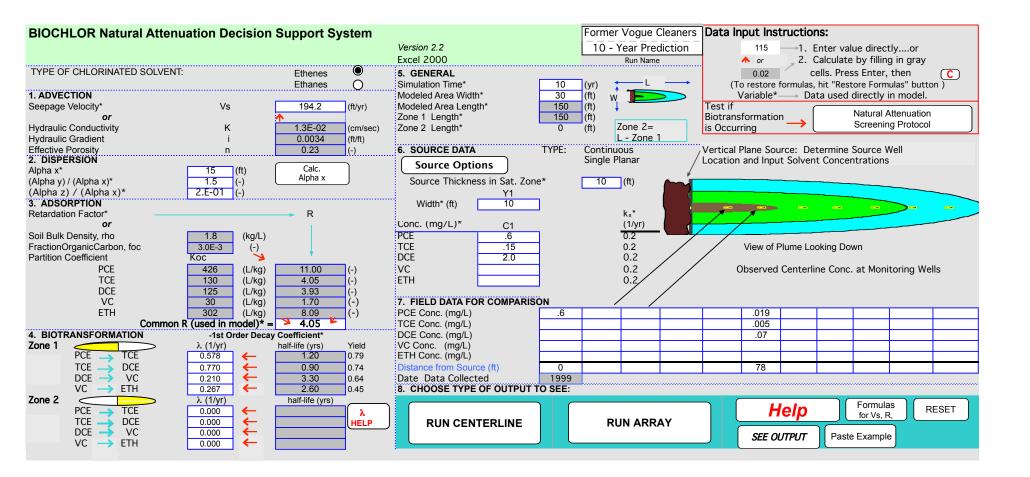
Groundwater contaminate fate and transport modeling was completed for the Vogue Cleaners site to evaluate the concentration of source area concentrations that would not results in an impact at the point of demonstration. These values will be used as the groundwater monitoring criteria for the source area during the post closure-monitoring period.

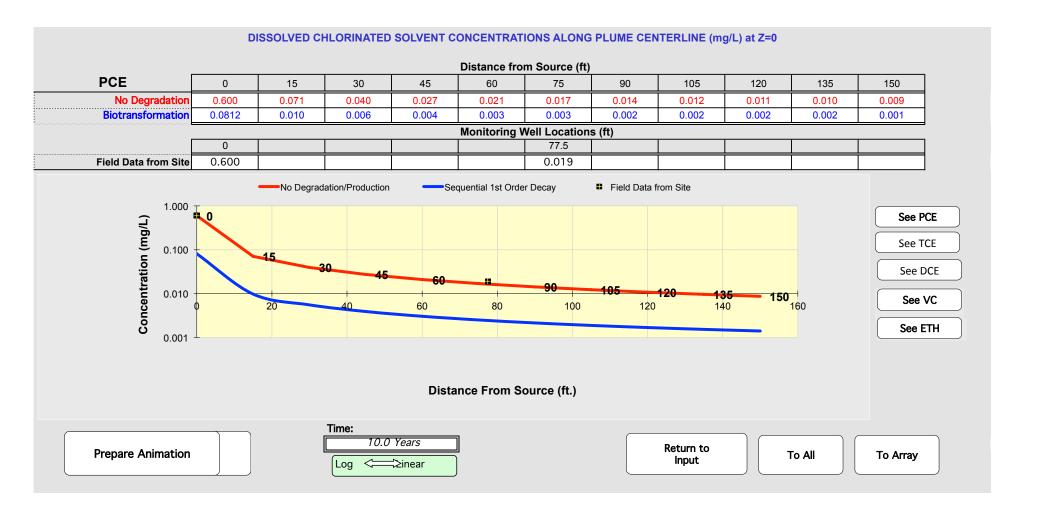
Table 1 BIOCLOR INPUT DATA

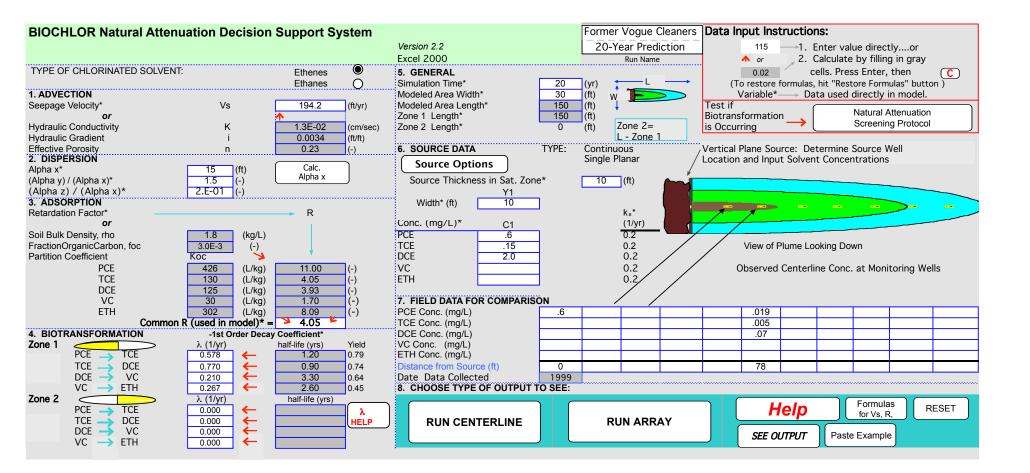
Former Vogue Cleaners

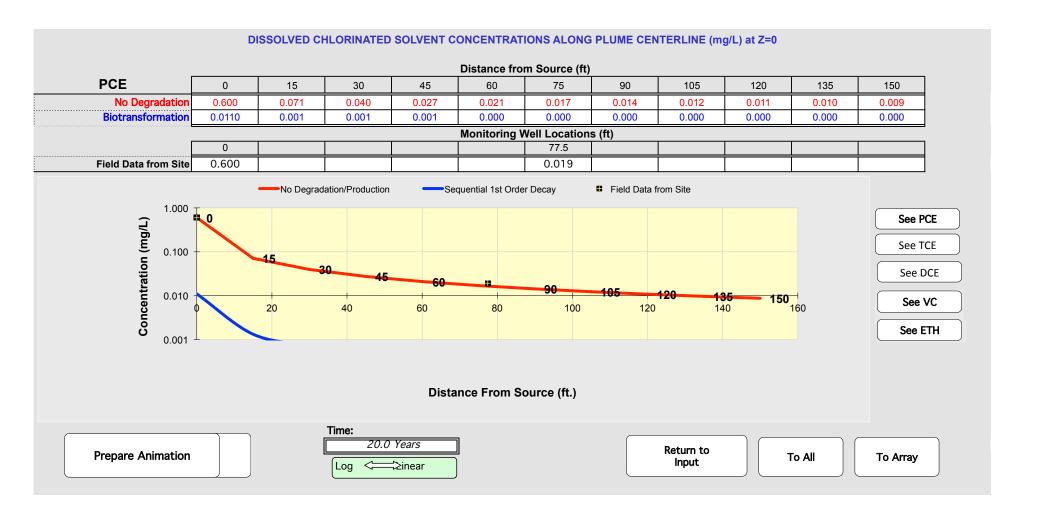

Washington Road, Martinez, GA

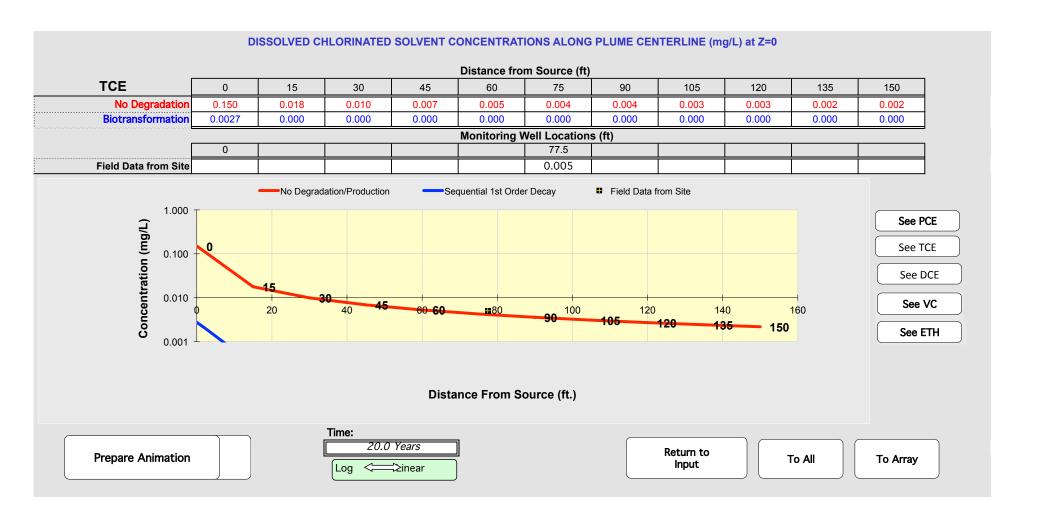

October 2013

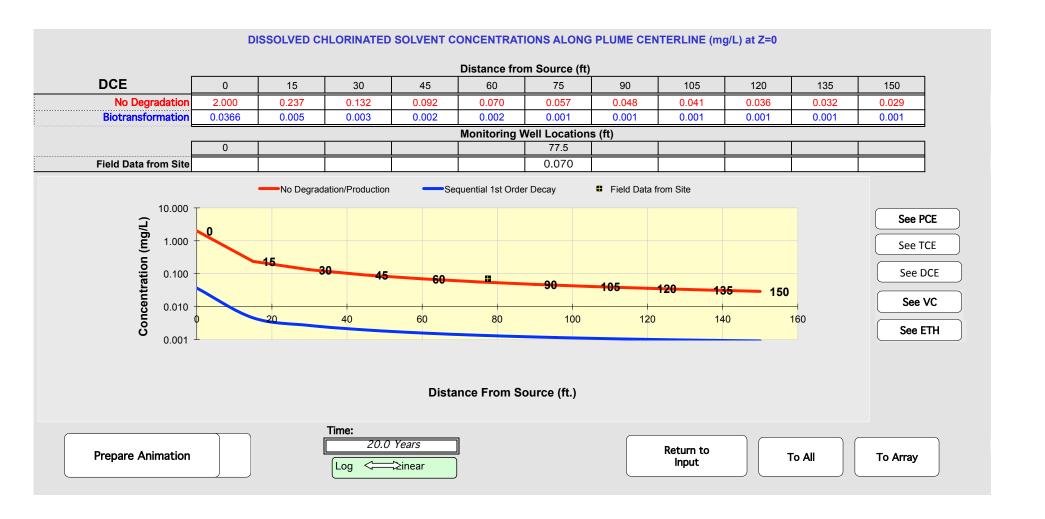

Input Parameters	Symbol	Initial Value	Adjusted Value	Units	Comments
ADVECTION					
Seepage Velocity		194.2	-	ft/yr	Calculated by Biochlor
Hydraulic Conductivity		0.013	-	cm/sec	Average of in-situ permeability testing
Hydraulic Gradient		0.0034	-	ft/ft	Calculated via 3-point problem (MW-2R, MW-5, MW-7)
Porosity		0.23	-	dim.less	Taken from Analytical Results (Qore March 1999)
DISPERSION					
Longitudinal Dispersivity		15	-	ft	10% of plume length in 1999 MW-2 to MW-6 (~150 feet
Transverse Dispersivity		1.5	-	ft	Alpha y = alpha x * 0.10
Vertical Dispersivity		1.50E-01	-	ft	Alpha z = Alpha x * 0.05
ADSROPTION					
Retardation Factor		2.27	4.05	dim.less	Calculated by Biochlor
Soil Bulk Density		1.6	1.8	kg/L	Average of analytical results (Qore - March 1999)
Partition Coeffecient		Various	-	L/kg	Values taken from EPD Reference documentation
Fraction Organic Carbon		0.0755	0.003	dim.less	Average Value from imperical data (Appendix _)
BIOTRANSFORMATION					
Zone 1					
1st Order Decay Coeficient					
or Solute half-life					
PCE-TCE		1.2	-	year	Conservative Values taken from Biochlor Guidance
TCE-DCE		0.9	-	year	Conservative Values taken from Biochlor Guidance
DCE-VC		3.3	-	year	Conservative Values taken from Biochlor Guidance
VC-ETH		2.6	-	vear	Conservative Values taken from Biochlor Guidance

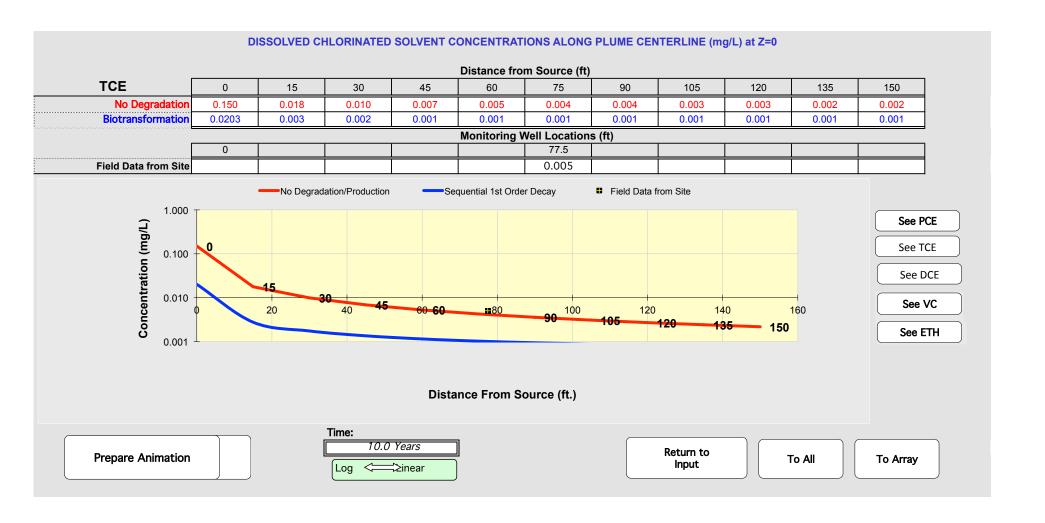

Table 2 BIOCHLOR INPUT DATA Former Vogue Cleaners Wahington Road, Martinez, GA October 2013

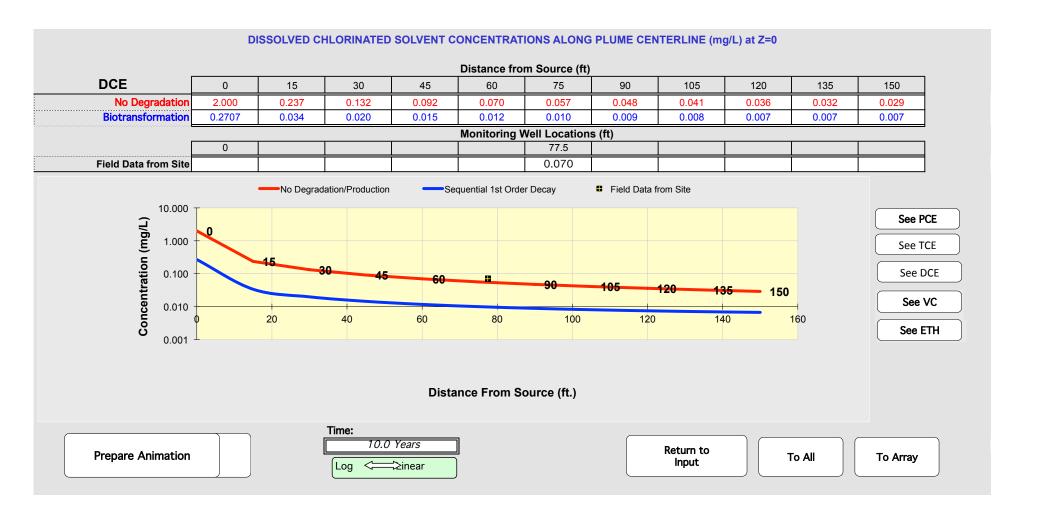

Input Parameters	Symbol	Initial Value	Adjusted Value	Units	Comments
GENERAL					
Model Area Length		150	-	ft	Approximate Length of Dissolved Plume
Model Area Width		30	-	ft	Approximate Width of Dissolved Plume
Simulation Time		9	-	ft	Approximate Time from Equipment Removal to Sampling Date
SOURCE DATA					
Source Thickness		15	10	ft	
SourceOption		Continuous Single Planar	-	ft	
Source Area Width		10	-	ft	Approximte Width of Equipment Area
PCE Source Concentration		1.8	-	mg/L	Results from MW-2 in March 1999
PCE Concentration Downgradient		0.05	-	mg/L	Results from MW-5 in March 1999
FIELD DATA	Conc (mg/L)	Distance from Source (ft)			Comments
MW-5 PCE		72			
POD-1 PCE		78			
Property Line		85			











OSWER VAPOR INTRUSION ASSESSMENT Vapor Intrusion Screening Level (VISL) Calculator Version 3.0, November 2012 RSLs

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-05	Enter target risk for carcinogens
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens
Average Groundwater Temperature (°C)	Tgw	25	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Is Chemical Sufficiently	Is Chemical Sufficiently			Target Sub-Slab							g,
		Volatile and Toxic to	Volatile and Toxic to			and Exterior Soil	Target Ground					1	1 5
		Pose Inhalation Risk Via	Pose Inhalation Risk Via	Target Indoor Air		Gas Conc. @	Water Conc. @	Is Target Ground			Temperature for	Lower	Sou
		Vapor Intrusion from	Vapor Intrusion from	Conc. @ TCR = 10E	Toxicity	TCR = 10E-06 or	TCR = 10E-06 or	Water Conc. <	Pure Phase Vapor	Groundwater Vapor	Groundwater	Explosive	
		Soil Source?	Groundwater Source?	06 or THQ = 1	Basis	THQ = 1	THQ = 1	MCL?	Conc. @ 25°C	Conc.	Vapor Conc.	Limit**	핔
		Cvp > Cia,target?	Chc > Cia,target?	MIN(Cia,c;Cia,nc)		Csg	Cgw	Cgw <mcl?< td=""><td>Cvp</td><td>Chc</td><td>Tgw or 25</td><td>LEL</td><td></td></mcl?<>	Cvp	Chc	Tgw or 25	LEL	
								Yes/No					
CAS	Chemical Name	Yes/No	Yes/No	(ug/m³)	C/NC	(ug/m³)	(ug/L)	(MCL ug/L)	(ug/m³)	(ug/m³)	С	(% by vol)	
x 67-64-1	Acetone	Yes	Yes	1.4E+05	NC	1.4E+06	9.5E+07		7.25E+08	1.43E+09	25	2.6	Е
x 156-59-2	Dichloroethylene, 1,2-cis-	No Inhal. Tox. Info	No Inhal. Tox. Info					No (70)	1.05E+09	1.07E+09	25	9.7	M
x 108-10-1	Methyl Isobutyl Ketone (4-methyl-2-pentanone)	Yes	Yes	1.3E+04	NC	1.3E+05	2.3E+06		1.07E+08	1.07E+08	25	1.2	N
x 127-18-4	Tetrachloroethylene	Yes	Yes	1.8E+02	NC	1.8E+03	2.4E+02	No (5)	1.65E+08	1.49E+08	25		
x 108-88-3	Toluene	Yes	Yes	2.2E+04	NC	2.2E+05	8.1E+04	No (1000)	1.41E+08	1.43E+08	25	1.1	N
x 79-01-6	Trichloroethylene	Yes	Yes	8.8E+00	NC	8.8E+01	2.2E+01	No (5)	4.88E+08	5.15E+08	25	8	Ν
x 95-63-6	Trimethylbenzene, 1,2,4-	Yes	Yes	3.1E+01	NC	3.1E+02	1.2E+02		1.36E+07	1.44E+07	25	0.9	N
x 1330-20-7	Xylenes	Yes	Yes	4.4E+02	NC	4.4E+03	2.1E+03	Yes (10000)	4.78E+07	2.24E+07	25		

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator	Target Indoor Air Conc. for Carcinogens @ TCR = 10E-06	Target Indoor Air Conc. for Non- Carcinogens @ THQ = 1
IUR		RfC		i	Cia,c	Cia,nc
(ug/m ³) ⁻¹		(mg/m³)			(ug/m³)	(ug/m³)
		3.10E+01	Α			1.4E+05
		3.00E+00	I			1.3E+04
2.60E-07	I	4.00E-02	I		4.7E+02	1.8E+02
		5.00E+00	I			2.2E+04
see note	I	2.00E-03	I	TCE	3.0E+01	8.8E+00
		7.00E-03	Р			3.1E+01
		1.00E-01				4.4E+02

(2)

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Resi	idential	Comm	ercial	Selecte	d (based on so	cenario in cell E5
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value	
	Averaging time for carcinogens	(yrs)	ATc_R	70	ATc_C	70	ATc	70	
	Averaging time for non-carcinogens	(yrs)	ATnc_R	30	ATnc_C	25	ATnc	25	
	Exposure duration	(yrs)	ED_R	30	ED_C	25	ED	25	
	Exposure frequency	(days/yr)	EF_R	350	EF_C	250	EF	250	
	Exposure time	(hr/day)	ET_R	24	ET_C	8	ET	8	

Generic Attenuation Factors:		Resi	dential	Comm	ercial	Selected (based on scenario in cell E5)
Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol Value
Groundwater Sub-Slab and Exterior Soil Gas	(-) (-)	AFgw_R AFss_R	0.001 0.1	AFgw_C AFss_C	0.001 0.1	AFgw 0.001 AFss 0.1

(3)

Formulas
Cia, target = MIN(Cia,c; Cia,nc)

Cia, c (ug/m3) = TCR xATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR)
Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

Special Case Chemicals Selected (based on scenario in cell E5) Symbol mIURTCE IURTCE Symbol mIURTCE_C IURTCE_C Value Value Value mIURTCE_R
IURTCE_R 1.00E-06 3.10E-06 0.00E+00 0.00E+00 4.10E-06

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below

Note: This section applies to trichloroethylene and other	Age Cohort	Exposure Duration (years)	Age-dependent adjustment factor
mutagenic chemicals, but not to vinyl chloride.	0 - 2 years	2	10
,	2 - 6 years	4	3
	6 - 16 years	10	3
	16 - 30 years	14	1

Mutagenic-mode-of-action (MMOA) adjustment factor 25 This factor is used in the equations for mutagenic chemicals.

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation: NVT = Not sufficiently volatile and/or toxic to pose inhalation risk in selected exposure scenario for the indicated medium C = Carcinogenic

NC = Non-carcinogenic

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

http://www.atsdr.cdc.gov/mrls/index.html http://www.oehha.ca.gov/risk/ChemicalDB/index.asp http://epa-heast.ornl.gov/heast.shtml

H = HEAST. EPA Superfund relatin Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

E = The Engineering ToolBox. Available online at http://www.engineeringtoolbox.com/explosive-concentration-limits-d_423.html

N = Centers for Disease Control and Prevention (CDC) National Institute for Occupational Safety and Health (NIOSH). Pocket Guide to Chemical Hazards. Available online at:

M = Chemical-specific MSDS

M = Chemical-specific MSDS

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

**Lower explosive limit is the minimum concentration of the compound in air (% by volume) that is needed for the gas to ignite and explode.

VISL Calculator version 3.0, November 2012 RSLs Page 1 of 1

 $\underline{\text{http://www.cdc.gov/niosh/npg/default.html}} \qquad \underline{\text{http://www.cdc.gov/niosh/npg/default.html}}$

Soil Gas Sample SV-1R

OSWER VAPOR INTRUSION ASSESSMENT
Sub-slab or Exterior Soil Gas Concentration to Indoor Air Concentration (SGC-IAC) Calculator Version 3.0, November 2012 RSLs

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

			Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
			Csg	Cia	CR	HQ
	CAS	Chemical Name	(ug/m³)	(ug/m³)	- CK	nu
Х	127-18-4	Tetrachloroethylene	2.3E+03	7.13E+00	1.5E-07	4.1E-02
Х	79-01-6	Trichloroethylene	1.1E+01	3.41E-02	1.1E-08	3.9E-03
Х	95-63-6	Trimethylbenzene, 1,2,4-	1.0E+01	3.10E-02	No IUR	1.0E-03

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
IUR	Source	RfC	Source	
(ug/m³)-1		(ma/m³)		
2.60E-07	I	4.00E-02	I	
see note	I	2.00E-03	I	TCE
		7.00E-03	Р	

Soil Gas Sample SV-2R

OSWER VAPOR INTRUSION ASSESSMENT

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

			Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	l Rick I	VI Hazard
			Csg	Cia	CR	HQ
	CAS	Chemical Name	(ug/m³)	(ug/m³)	CK	nq
Х	127-18-4	Tetrachloroethylene	4.8E+02	1.49E+00	3.2E-08	8.5E-03
х	79-01-6	Trichloroethylene	5.5E+00	1.71E-02	5.7E-09	1.9E-03
х	95-63-6	Trimethylbenzene, 1,2,4-	2.0E+01	6.20E-02	No IUR	2.0E-03

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
IUR	Source	RfC	Source	
(ua/m³)-1		(ma/m³)		i
2.60E-07	I	4.00E-02	I	
see note	I	2.00E-03	I	TCE
		7.00E-03	Р	

Soil Gas Sample SV-3R

OSWER VAPOR INTRUSION ASSESSMENT

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

			Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	l Rick I	VI Hazard	
			Csg	Cia	CR	НQ	
	CAS	Chemical Name	(ug/m³)	(ug/m³)	- CK	nu	
Х	127-18-4	Tetrachloroethylene	7.8E+03	2.42E+01	5.1E-07	1.4E-01	
Х	79-01-6	Trichloroethylene	1.0E+02	3.10E-01	1.0E-07	3.5E-02	
х	95-63-6	Trimethylbenzene, 1,2,4-	2.5E+01	7.75E-02	No IUR	2.5E-03	

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
IUR	Source	RfC	Source	
(ua/m³)-1		(ma/m³)		i
2.60E-07	I	4.00E-02	I	
see note	I	2.00E-03	I	TCE
		7.00E-03	Р	

Soil Gas Sample SV-4R

OSWER VAPOR INTRUSION ASSESSMENT

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

			Site Sub-slab or Exterior Soil Gas Concentration	Calculated Indoor Air Concentration	l Rick I	VI Hazard
			Csg	Cia	CR	НQ
	CAS	Chemical Name	(ug/m³)	(ug/m³)	- CK	ΠQ
Х	127-18-4	Tetrachloroethylene	4.7E+04	1.46E+02	3.1E-06	8.3E-01
Х	79-01-6	Trichloroethylene	1.4E+03	4.34E+00	1.5E-06	5.0E-01
Х	95-63-6	Trimethylbenzene, 1,2,4-	5.0E+01	1.55E-01	No IUR	5.1E-03

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
IUR	Source	RfC	Source	
(ua/m³)-1		(ma/m³)		i
2.60E-07	I	4.00E-02	I	
see note	I	2.00E-03	I	TCE
		7.00E-03	Р	

Soil Gas Sample SV-5R

OSWER VAPOR INTRUSION ASSESSMENT

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Commercial	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR_SG	1.00E-05	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ_SG	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)

			Site Sub-slab or Exterior Soil Gas Concentration A				
			Csg	Cia	CR	HQ	
	CAS	Chemical Name	(ug/m³)	(ug/m³)	OK	nu	
Х	127-18-4	Tetrachloroethylene	2.9E+04	8.99E+01	1.9E-06	5.1E-01	
Х	79-01-6	Trichloroethylene	6.8E+02	2.11E+00	7.0E-07	2.4E-01	
Х	95-63-6	Trimethylbenzene, 1,2,4-	5.0E+01	1.55E-01	No IUR	5.1E-03	

Inhalation Unit Risk	IUR Source*	Reference Concentration	RFC Source*	Mutagenic Indicator
IUR	Cource	RfC	Cource	
(ug/m³)-1		(ma/m³)		
2.60E-07	I	4.00E-02	I	
see note	I	2.00E-03	I	TCE
		7.00E-03	Р	

APPENDIX D FIELD METHODS

SOIL AND GROUNDWATER SAMPLING PROCEDURES

SOIL SAMPLING

Soil sampling will be conducted in general accordance with protocols described in Section 4.0 of the USEPA Region IV Standard Operating Procedures/Quality Assurance Manual (SOP/QAM) dated February 1991. The samples will be collected using grab sampling methods. The excavation equipment will assist with the sampling. Care will be exercised to collect a sample that has not been exposed or aerated during excavation process and immediately placed in the appropriate containers.

Immediately upon completion of the sampling process, each of the samples will be placed in an ice-filled cooler before being transported to the laboratory. Sample collection date, time, location, depth, as well as soil description will be recorded in the field logbook or sample log.

Waste characterization samples will be collected from each soil stockpile created at the Site. The samples will be collected at a rate of one per every 100 CY of soil. At a minimum, however, two samples will be collected from each stockpile. The samples will be analyzed for TCLP VOCs, SVOCs and Metals. The results of the analyses will be used to make a final decisions concerning disposal.

All sampling equipment will be decontaminated between samples. The decontamination process will include; a phosphate-free laboratory grade detergent wash followed by a potable water rinse. In the case of the excavation equipment, the bucket will be cleaned of any residual debris prior to the collection of the grab sample.

GROUNDWATER SAMPLING

Prior to groundwater sampling, the depth to water will be recorded for each temporary monitoring well and purged of groundwater. Each of the temporary monitoring

Genesis Project, Inc.

wells will be purged of a minimum three well volumes or pumped dry using a peristaltic pump with dedicated plastic tubing for each well. All monitoring wells were sampled utilizing low-flow sampling techniques. Low-flow techniques were utilized in this investigation to remove any soil particles present in groundwater, verified through the use of turbidity measurements, and provide an accurate representation of RCRA Metals in groundwater. Water quality parameters such as pH, conductivity, temperature, and groundwater drawdown rate were evaluated during purging to ensure groundwater samples were representative of formational groundwater. Groundwater samples were collected following the stabilization of these parameters. Specifically, stabilization is achieved when three successive readings of pH range within +/- 0.10, conductivity within +/- 0.30 (S/cm), and turbidity less than 10 ntu.

VAPOR ASSESSMENT INVESTIGATION

A total of five (5) sub-slab samples locations were installed in the interior of the former Vogue Cleaners. Five sub-slab vapor probes were installed in each potentially affected area where vapor may be of concern. A rotatory hammer drill was used to create a small diameter hole through the concrete and into the sub-slab material. The open cavity created by the drilling process was filled with sand to prevent obstruction of probes by the external material. A quick drying Portland cement was used to ensure a tight seal into the annular space between the probe and outside of the hole.

The sub-slab samples were collected in Summa canisters using a peristaltic pump and dedicated tubing and analyzed for a list of target compounds vial EPA Method TO-15. Three (3) of the five (5) samples collected were also analyzed for Radon and were collected in 1L Tedlar bags. Radon was utilized to support site specific attenuation factors for the contaminants of concern.

APPENDIX E SOIL BORING LOGS MONITOR WELL CONSTRUCTION LOGS

BORING LOG

BORING MUMB		NN-21	PAGE	1	0#	1	PROJECT	NUMB			1525-0100			
PROJECT	VOGUE (LEANERS					DRILLING	G CON	TRACTO	OR .	A-E Drilling			
BORING LOCA	ATION	sounds of MW-1					GROUND	ELEV	ATION		N/A			
DRILLING ME AND EQUIPMI		police acm me	en/split sp	can			TOP OF C		3		N/A			
DATE	6/2/99	START	1445		FINISH	1730				LOGGE				
_			SAMPL	E	_						SOIL DESCRIPTION/COMMENTS			
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE Interval	TYPE AND NUMBER	TIME	REC.	OVM PEAK/ AVG. (ppm)	R	emarks		SYMBOLIC LOG	DISTRU	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, IBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY INSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL			
	0- l'				na.					<u>0-1': aspi</u>	nain and gravel base			
											· ·			
	r-3'			100%	n.a.	3,6,4,5				1'-2': 2'-3':	black, silty sand and pieces of wood light gray and ten clayey sand; moist			
	3'-5'			100%	па	7,3,8,8				<u>3'-5':</u>	same as 2'-3' with some used. To coarse-grained sand			
5														
	5'-7'			75%		7,9,10,11				<u>\$'-6,5</u> ':	white & light yellow clayey, coarse-grained sand; moist			
_											-			
_	7-9			100%	na	9,11,15,	16		7-9':		Same as 5'-6.5'; wel			
	1	İ								_	-			
10	9-11'			100%	11.8	10,12,15,	15			9-11':	NAME to 5'-6.5'			
	1	ļ	'											
l –	1113.			100%	па	12,12,14.	15			11°-13':	same es 5-6.5			
-	{										-			
	13'-15			100%	Drah	12,13.15,	16			13'-15':	SMATRE 23 5'-6.5'			
15														
	15-17			100%	44	16,18,20,	21			15-17':	clayey sand with gravel (16.5'-17')			
]													
	17-19			100%	20.0	not record	led			17'-18.5':	white & tan fine-grained dayey sand; dry			
											_			
28	197-21			75%	nå	not recore	led			19*-20.5*:	dry, white & gray silty sand w/modcourse grained and			
<u> </u>]													
											Split spoon refusal @ 20.5' bgs Continued suggring to refusal @ 35.5' bgs			
<u> </u>	1)		Ì				Ì			Commercial and property of the Commercial and the C			
	1		[_	-			
	1													

FACILITY	Vogue Cleaners		GA FA	C. ID#:		PROJE	ECT #		BOR	RING	/ WELL:	DRAWN BY: JAT	pg 1 of 1
LOCATIO	N MAP:		START	DATE & TIM	E: 9/21/06					_	RW-1		of 1
			COMP.	DATE & TIM	9/21/06 9/21/06	<u>, </u>			-			TM _	
			LOGGE	D BY:	3/21/00	-	GA. I	IC#:			-	Genesis Project. Inc	
			DRILLE	D-			RIVE					Project, Inc	c.
			7,000	Geol	rap							Environmental Ser	rvices
				IG METHOD:							STANDARD FIELD	NOTE FORM	
			ELEV (MSL):		.D. (N	(SL):				Comments: Grain size	and relative percentages appro- nated. Soil type classified with	ximate. No unusual
			WATER	ENCOUNTER	ED (BGS):		-	∇	7		Classification System.	Mansell color descriptions give	In order of
			WATER	LEVEL (BGS)):			Y			6" Recovery Well / 4'	of Sheel Coolean	
	COMPLETION					*		S	CORE	S	Nacoraly wan / 4	or siem cosing	
MSL	COMPLETION DIAGRAM	WATER LEVEL	WELL DESCRIPTION	DEPTH	GRAPHIC LITHOLOGY	ETEATE PARTE	Q (Mdd)	m m	-			DESCRIPTION lor, Texture, Structure, etc	
	BOREHOLE DIAMETER: 10- Inches	LEVEL			LITHOLOGY	2	"	TYPE	RECOV	ANAL	(Col	or, Texture, Structure, etc)
	07.07.61.1	4' Steel Ris	r										
	8"x8" Steel Casing 4" PVC				1								
				١.									
	/ (80)		1	0 -	SOUNT.						Asphalt		
	(0) 200	-		-			-	1			- 7839	A. S	
	\$20 60d]			4.5			-	_ silt, clay	wish orange couar	se sand,
				3			1	54		3			
	-	1		-	100000	-	-	1			-		
	ACT AND A STATE OF]							Les a		
											4-6', Light	brown clay, medi	ium
			-	5 —							stiffness.		
]											
			2										
		J		-							- 177		
				3		-							
						-					7-9', SAA		
		1		-		-	1	-					
			-	10 -	The same of the				- (19)				
				1			1.59	-			clay, saturd	ay white coarse so	and, silty
		1		-		2					_ ciay, salare	ned .	
		ļ	3			-		3			_		
						4							
		1									12-14', SA	A	
	_	-		-									
	200								2				
				15	1)00			18		Y			
	-	1		-	Y XX	4					_ 14-16', PW	/R granite, gray ta	n
										3			
		y					12			3 10	17-10' Ma	dium grained sand	d band
				-							clay, brown	ish white	a, nara
					1220	7			13	-			
							1	1.5	1		19-21', Wh	nite gray clay sand ained to fine coar	i, silt,
			1	20 —								dium grained sand	
				2				-		- 1	- clay, brown	ilsh white	u, nara
	Action of the second								100				
		1		1				1			_ 22-24', SA	A	
		-		4				-		3	_		
	15 p. 34						21		1.9				
	10 Tak	1						1			24-24', Co	arse sand, gray	
			+	25 —	=	3		-	-		-		
]									27-29' T-	ın clay, fine graine	he
			1								27-29, 10	ii ciay, iiile graine	ou.
		1		1 -		-	+	1			- 29-31' H	ard clay, dry.	
												no olay, dry.	
											32-34' Va	ery hard clay	
				-			+	1			_ 52 54, 16	.,	
				30 -		-		-	-				
											TD = 34.5	0' bls	

FACILITY	NAME:	/ogu	е (Clean	ers		GA	FAC. ID#:		PROJI	ECT #		BOR	ING ,	WELL: RW-2	DRAWN BY: JAT	pg 1 of 1		
LOCATION							STA	ART DATE & TIM	E: 6/19/0	7		_		_	KW-2	JAI	of 1		
							CO	MP. DATE & TIM	6/19/0			43				TM			
							LOC	GGED BY: TJM		100	GA. L	JC∦:				Genesis			
								LLER: Geol	Lab	1.0					E	Project. Inc	vices		
							DRI	DRILLING METHOD: HSA							STANDARD FIELD NOTE FORM				
								V (MSL):		T.D. (A	(SL):				Comments: Grain size	and relative percentages approx	Imale. No unusual		
							WA	TER ENCOUNTER	ED (BGS):		-	∇			Classification System. predominance.	oted. Soil type classified with Mansell color descriptions give in	United Soll n order of		
							WA	TER LEVEL (BGS):			V			6" Recovery Well / 4"	of Steel Casing			
		COMP	ETIC	ON I						HOLL	00	8	CORE	S					
MSL	BOREHOI	_	_		Inches	WATER LEVEL	WELL DESCRIPT	TION DEPTH	GRAPHIC	ENETR	ONG.	TYPE	RECOV	ANAL	(Cole	DESCRIPTION or, Texture, Structure, etc.)		
-	1 1	1 1		111		- 4' Steel Ris				-		-	-	`					
	8"x8" Casing	Steel		6", P	vc	- Sieer Kis	Ţ												
	CASSES.			1								J.		Z en	a large				
	0000		/		000			0 —							Asphalt				
	000	000000		000	6000			-											
	0000	000		0000	0000			-							Orange, soft	fine to medium (grained		
	0000	000	-	0000	0000			-											
	14:14	1 1										1							
	4	200 1																	
	245	2.		1 20				5 —							Orange, very	stiff fine to med	ium coarse		
	10 m	Part of		Salvery.		_						-			— sandy clay,	moist			
	W. The	2 3																	
	4		\vdash	W. W.															
						Y		1											
	4.34		H	A. Oa		Static													
	1							10 —		-					N/1. 11				
				100	and the second										- coarse grain	dense clay, mediur led sand, wet.	n to		
	2. 7.		H	100	4000														
																	46.5		
				164	The good of												7/10		
			-														4		
		1		5.7	See to a			15 —							White ten d	ense medium grain			
			-		100										— willie lan a	ense medium grain	iea sana		
					Sec. Oak	V-			3										
	7 8	1000			11.00						NP.								
	10/2			1				1											
			F		- E			100											
	Same of	10			12.14			20 —							Elanine -				
			F	4-1											A/A				
	Sec. Sec.		F	19	100														
	-	-	-																
	1.3.3.		F	2	1815			- 1						3.1					
	97.5			1	- 4			1											
	1	100	H					25 —	}										
	5 1-2m m		F		an M								7		Weathered s				
	Service Control	-			and the second										Molted sand Auger refus	, silt white clay.			
		7 1	No.	1000				-	1			1	1						
	1 1 1 1		a other	14 TH		l		-	-		1.1	-	1						
								-	1		+	_			_				
								30 -	1		_								
									=										

FACILITY	Vogue Cleaners						GA FAC	GA FAC. ID#: PROJECT # BORING						/ WELL: RW-3 DRAWN BY: JAT Pg 1				
LOCATION	MAP:						START	DATE & TIM	E: 6/19/07	7						VAI	01	
							COMP.	DATE & TIM	6/19/07 (E: 6/19/07	7			20			TM Consocia		
							LOGGET	BY: TJM			GA. I	JC#:	19	7.1		Project. Inc		
							DRILLER	Geol	Lab							Environmental Ser	vices	
							DRILLIN	G METHOD:	HSA		7				STANDARD FIELD			
							ELEV (MSL):	-4	T.D. (N	(SL):			6	Comments: Grain size	and relative percentages approx	lenate. No unusu	
								ENCOUNTER				∇			Classification System.	oted. Soil type classified with dansell color descriptions give in	order of	
		_					WATER	LEVEL (BGS):			Y		- 111	6" Recovery Well / 4" o	of Steel Casing		
777-24		COMPL	ETIC	N						N L	00	S.	CORE	S				
MSL	BOREHOL				Inches	WATER LEVEL	WELL DESCRIPTION	DEPTH	GRAPHIC LITHOLOGY	ENETR	ON (MAA)	TYPE	RECON	ANAL	(Colo	DESCRIPTION or, Texture, Structure, etc.)	
	1				1 1	- 4' Steel Ris	1_				1 - 0	-	-	-				
	8"x8" Casing	Steel		,		- Sieer Kir												
	网络伊	400		1	412										100			
	0000		1		0000		1	0 -							Asphalt			
		35			0.0			-										
	4	1		1 100				-							Orange, so	ft fine to medium , moist. (cl)	grained	
	10 4 7	ale of			4 - 7.			_								(5.)		
	b. 1.	R-		1	6 4 7 7 5								20					
	The Control	30, 10			4													
	14	1.	H	of all				5 —						1	Brown stiff	clayey fine-media	ım sand	
		100 M		1	<u>-</u>	_		-		-								
	1 11			e 1 % 1	-													
				A W														
						_												
	10,000			A	-	Static	2.0											
					-			10 -										
					A 11 %		36								_ A/A			
				A. A.	2.													
				19									1					
				1.,4	in the		24.5			-								
								-							-0.00			
	07 37 5			1	200 P. T.			15										
	100	- 1			8,5		16						2 4		Weathered	sandstone		
	No.	and list			10.5 W.					N.		1			Orange cla	yey, sand medium	-fine	
	e r	4.7	-	1 1 mg	4				a di santani			-		n	_ grained mo	oist		
	1			147				-	1 1 1 1 1 1						_			
	12 4 7 8 1			3	100		100		11/2	0	10							
	B. Chi	No.	-		1.1			20 —			3							
				4			1		100 miles			- 1			White claye sands wet	y fine to medium	grained	
	1	17/1		34	1			1 5 1							_ salias wat			
	1	200 25						-		4		1	-		weathered	sandstone		
	1 mm	1		200				-			1							
					1								L-S		2015 A 1244			
	-	1		1	2 2]	25 —		7					1.00			
								. 23	1			1			Auger refu	sal		
					_				-		1							
					-			-		+	-							
								_	<u> </u>	\perp					_			
									=					-				
									=									
								30 -	1						1			

	Gene ENVIR	esis l	Proje ENTA	Ct, Inc. Ct, Inc. L SERVICES. Genesis Project, Inc 1258 Concord Road Smyrna, Ga 30080 Telephone: 770-319-7217 Fax: 770-3197219	WELL N	UMBER MW-22 PAGE 1 OF
CLIEN	IT Morg	an St	anley		PROJECT NAME Former Vogue Cleaners	
PROJ	ECT NUI	MBER			PROJECT LOCATION Martinez, Georgia	
DATE	STARTE	ED _7/	14/11	COMPLETED _7/14/11	GROUND ELEVATION 365.7 ft MSL HOLE S	SIZE <u>6"</u>
DRILL	ING CO	NTRA	CTOR			
	ING ME					
				CHECKED BY		
NOTE	s				<u>✓</u> 3hrs AFTER DRILLING <u>5.51 ft / Elev 360.</u>	19 ft
OEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG		RIAL DESCRIPTION	WELL DIAGRAM
 - <u>-</u> 2.5				Asphalt and Base 2.0 FILL with some stone	363.7	Bentonite Seal PVC Riser

GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 9/14/11 16:27 - G:MORGAN STANLEY!VRP/FIGURES!WELL LOGS.GPJ 5.0 Ā CL ■Sand Filter 7.5 0.010" Screen 356.2 (SM) White SAND, coarse, wet 10.0 SM Bottom of borehole at 13.6 feet.

Genesis Project, Inc 1258 Concord Road Smyrna, Ga 30080 Telephone: 770-319-7217 Fax: 770-3197219

WELL NUMBER POD-1
PAGE 1 OF 1

ax: 770-3197219

CLIEN	T Morga	an Sta	nley									
PROJE	ECT NUM	BER .										
DATE	STARTE	D <u>7/1</u>	4/11	COMPLETED _7/14/11								
DRILLI	ING CON	TRAC	TOR _		GROUND WATER LEVELS:							
DRILLI	ING MET	HOD	HSA		AT TIME OF DRILLING							
LOGGI	ED BY _			CHECKED BY	AT END OF DRILLING							
NOTES	S				Y 3hrs AFTER DRILLING _5.56 ft / Elev 358	.14 ft						
0.0 DEBALH (#)				Asphalt/Gravel FILL, orange, soft, fine to medium s		WELL DIAGRAM Bentonite Seal PVC Riser						
GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 9/14/11 16:27 - G.:MORGAN STANLEYVRPVFIGURESWELL LOGS.GPJ 0.0 0		SC	8.	(SC) White, very dense, clayey, me	adium to coarse SAND, wet 355.2 borehole at 13.1 feet.							

Genesis Project, Inc 1258 Concord Road

PAGE 1 OF 1

WELL NUMBER MW-2R

Smyrna, Ga 30080 ENVIRONMENTAL SERVICES. Telephone: 770-319-7217 Fax: 770-3197219 PROJECT NAME Former Vogue Cleaners CLIENT Morgan Stanley PROJECT NUMBER _____ PROJECT LOCATION Martinez, Georgia DATE STARTED <u>8/29/12</u> COMPLETED <u>8/29/12</u> GROUND ELEVATION <u>364.01 ft MSL</u> HOLE SIZE <u>6</u>" GROUND WATER LEVELS: DRILLING CONTRACTOR ____ DRILLING METHOD HSA $\sqrt{2}$ AT TIME OF DRILLING 6.00 ft / Elev 358.01 ft LOGGED BY _____ CHECKED BY _____ AT END OF DRILLING ---NOTES AFTER DRILLING _---SAMPLE TYPE NUMBER GRAPHIC LOG DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 0 Asphalt/Gravel 363.6 (SC) SAND, tan, some silt, moist, low to non plastic Grout SC ■Bentonite Seal PVC Riser 360.0 4.0 (SC) SAND, orange, some silt, moist, low to non plastic SC 5 359.0 5.0 (SC) SAND, white, some silt, trace clay, wet, low plastic ∇ GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 4/4/13 09:56 - C:\USERS\JAT\DESKTOP\VOGUE CLEANERS\WELL LOGS.GPJ 10 Sand Filter SC 0.010" Screen 15 Bottom of borehole at 19.0 feet.

Genesis Project, Inc 1258 Concord Road Smyrna, Ga 30080 Telephone: 770-319-7217

WELL NUMBER MW-8R PAGE 1 OF 1

DRILLING CONTE DRILLING METHO LOGGED BY	RACTOR DD HSA		AT TIME OF DRILLING AT END OF DRILLING	HOLE SIZE _6"
O DEPTH (ft) (SAMPLE TYPE NUMBER	GRAPHIC LOG		ATERIAL DESCRIPTION	WELL DIAGRAM
5	GC GC	5.0 (SC) SAND, medium grained, line 10.0 (SC) SAND, white, wet	ght brown, well sorted, some gravel	Sand Filter 0.0010" PVC Screen
20		20.0		

GENESIS PROJECT/VOGUE CLEANERS/GA SUMMARY OF SOIL DATA

Sample Identification	Sample Type	Sample Depth		Soil sification	Natural Moisture %	ure Limits			% Finer	Grain Size Distribution % Finer No. 200		Compaction Maximum Optimum Dry Density Moisture		Unit Weight Moisture Dry		Additional Tests Conducted	
			USCS	USDA		L.L.	P.L.	P.I.	L.I.	Sieve	Sieve	mm	(lb/cuft)	%	%	(lb/cuft)	(See Notes)
MW-2	Bag	1.0-3.0'	(SC)	Sandy Loam	14.3	-	-		-	99.4	24.1	15.5	-	-	-	-	_
MW-2	Bag	3.0-6.0'	(SC)	Sandy Clay Loam	14.2	_	-	-	-	99.6	27.8	24.0	-	-	-	_	_
MW-8	Bag	1.0-3.0'	(SC)	Sandy Clay	19.6	_	-		_	99.0	48.3	43.0	-	-	-	_	-
MW-8	Bag	3.0-6.0'	(SC)	Sandy Loam	13.6	-	-		-	98.5	19.9	15.5	-	-	-	_	_
															-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
											-						
											·						

ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)

MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST
DS = DIRECT SHEAR TEST
O = ORGANIC CONTENT

P = pH

123-90158 AUGUST 2012 PARTICLE SIZE DISTRIBUTION & ATTERBERG LIMITS ASTM D421, D422, D4318 PROJECT NAME: GENESIS PROJECT/VOGUE CLEANERS/GA 1.0-3.0 SAMPLE ID: MW-2 TYPE: Bag 100 90 80 70 % Р 60 а s 50 s 40 n g 30 20 10 Ω 10 0.1 0.01 0.001 100 1000 Particle size in millimeters Medium Coarse Fine Coarse Silt or Clay SAND FINES COBBLES GRAVEL Particle Size Particle Size % Passing Classification Percentage (mm) 304.8 100.0 12.0" PLASTICITY CHART 3.0" 75.0 100.0 0.00 60 Cobbles Standard Sieves Sizes and Numbers 2.5" 63.5 100.0 100.0 2.0" 50.0 50 1.5" 37.5 100.0 PLASTICITY INDEX (PI) 1.0" 25.0 100.0 40 0.75" 19.0 100.0 Coarse Gravel 0.00 0.50" 12.7 100.0 0.375" 9.5 100.0 30 4.8 99.4 0.60 #4 Fine Gravel MH or OH 2.00 95.0 4.45 #10 Coarse Sand #20 0.85 66.5 #40 0.43 52.28 42.7 Medium Sand U.S. #60 0.25 33.4 0.15 #100 28.4 0.075 18.56 #200 24.1 Fine Sand 100 110 10 30 50 60 (mm) %Finer 20 LIQUID LIMIT (LL) 0.035 23.1 Hydrometer Analysis 0.022 21.4 ATTERBERG LIMITS 0.013 19.7 Fines Method -B (Dry preparation) 0.0091 18.0 Silt or Clay 24.11 0.0065 16.3 14.3 0.0032 12.8 0.0014 9.4 LL (oven-dried) < 0.75 = ORGANIC Light Gray, MEDIUM TO FINE SAND, some silty TECH TW/TJ DESCRIPTION: (OL/OH) clay, trace fine gravel. 8/31/12 DATE am CHECK (SC) USCS: WI USDA: Sandy Loam REVIEW APPROVE

TECH

DATE

CHECK

REVIEW

APPROVE

TW/TJ

8/31/12 aem

DESCRIPTION:

USCS:

sity clay, trace fine gravel.

(SC)

USDA: Sandy Clay Loam

AUGUST 2012 123-90158 PARTICLE SIZE DISTRIBUTION & ATTERBERG LIMITS ASTM D421, D422, D4318 GENESIS PROJECT/VOGUE CLEANERS/GA PROJECT NAME: MW-8 3.0-6.0 SAMPLE ID: Depth: TYPE: Bag #20 #40 #60 #100 #200 100 90 80 70 % Ρ 60 а s 50 s i 40 n g 30 20 10 0 0.1 0.01 0.001 1000 100 10 Particle size in millimeters Coarse Coarse Fine Medium Silt or Clay FINES COBBLES GRAVEL SAND Particle Size Particle Size % Passing Classification (mm) Percentage 12.0" 304.8 100.0 PLASTICITY CHART 3.0" 100.0 0.00 60 75.0 Cobbles Standard Sieves Sizes and Numbers 2.5' 63.5 100.0 2.0' 50.0 100.0 50 1.5 37.5 100.0 PLASTICITY INDEX (PI) CH o 1.0" 25.0 100.0 40 0.00 0.75" 100.0 19.0 Coarse Gravel 0.50" 12.7 100.0 0.375" 100.0 9.5 #4 4.8 98.5 Fine Gravel 1.54 #10 2.00 93.1 Coarse Sand 5.36 #20 0.85 74.5 #40 0.43 44.2 Medium Sand 48.91 U.S. #60 0.25 27.6 22.8 #100 0.15 0.075 19.9 #200 Fine Sand 24.30 10 30 50 60 %Finer (mm) LIQUID LIMIT (LL) 0.035 19.4 Hydrometer Analysis 0.022 17.7 0.013 17.7 ATTERBERG LIMITS Fines Method -B (Dry preparation) 0.0092 16.9 Silt or Clay 19.89 0.0065 16.0 0.0032 14.3 13.6 0.0014 9.3 LL (oven-dried) DESCRIPTION: Reddish Yellow, MEDIUM TO FINE SAND, some < 0.75 = ORGANIC (OL/OH) TECH TW/TJ silty clay, trace fine gravel. 8/31/12 DATE (SC) CHECK USCS [w] REVIEW USDA: Sandy Loam APPROVE

APPENDIX F LABORATORY ANALYTICAL REPORTS

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

August 15, 2013

Tiffany Messier Genesis Project, Inc. 1258 Concord Rd. SE

Smyrna

GA 30016

TEL: (770) 319-7217 FAX: (770) 319-7219

RE: Vogue Cleaners

Dear Tiffany Messier:

Order No: 1308732

Analytical Environmental Services, Inc. received 12 samples on 8/8/2013 12:26:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

- -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/13-06/30/14.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) effective until 09/01/15.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Dorothy deBruyn

Project Manager

CHAIN OF CUSTODY

ANALYTICAL ENVIRONMENTAL SERVICES, INC 3785 Presidential Parkway, Atlanta GA 30340-3704

TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

OMPANY

Work Order:

No # of Containers 70 3 C ≥ to check on the status of your results, place bottle www.aesatlanta.com Same Day Rush (auth req.) **Turnaround Time Request** Standard 5 Business Days Next Business Day Rush Fax? Y/N Visit our website 2 Business Day Rush Total # of Containers rovided by Jab orders, etc. REMARKS STATE PROGRAM (if any): Page E-mail? 🚫 N; Other Ø0000 SEND REPORT TO: 4 messier @genprized, Com ANALYSIS REQUESTED PRESERVATION (See codes) PROJECT INFORMATION Cleaners INVOICE TO: (IF DIFFERENT FROM ABOVE) Vegue ROJECT NAME: SITE ADDRESS: ROECT# FJON 1969 DATE/TIME 8/8/13 (See codes) 3 3 Маціх FedEx UPS MAIL COURIER 1258 Concered Rd SE Smyrna, 64 30080 SHIPMENT METHOD FAX: 720-319-7219 Grab × OTHER 0/191 1240 1450 0900 1505 8/7/13 1635 1520 0855 10 8/7/13 1200 OREYHOUND SAMPLED CLIENT 8/2/13 RECEIVED BY 8/1/13 8/8/13 8/8/3 8/11/3 OGT. Z SATINE SATIS SAMPLE ID Genesia Praject 726-319-7217 M 12-218 PECIAL INSTRUCTIONS/COMMENTS: X P M 12-4 クロータス M 12-8D ria Blant M W - 120 P 0.D-1 M W S インコン MW-22 <u>e</u> ≥ ^ < ≥ トコメ SAMPLED BY **VELINQUISHED BY**

07

SAMPLES RECEIVED AFTER 3PM OR ON SATURDAY ARE CONSIDERED RECEIVED THE NEXT BUSINESS DAY. IF TURNAROUND TIME IS NOT INDICATED, AES WILL PROCEED WITH STANDARD TAT OF SAMPLES. SAMPLES ARE DISPOSED 30 DAYS AFTER REPORT COMPLETION UNLESS OTHER ARRANGEMENTS ARE MADE. GW = Groundwater SE = Sediment SO = Soil SW = Surface Water W = Water (Blanks) DW = Drinking Water (Blanks) O = Other (specify) WW = Waste Water PRESERVATIVE CODES: H+I = Hydrochloric acid + ice I = Ice only

Analytical Environmental Services, Inc

Client: Genesis Project, Inc. Client Sample ID: POD-1

Project Name: Vogue Cleaners Collection Date: 8/7/2013 12:40:00 PM

Lab ID: 1308732-001 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS			(SV	V5030B)					
1,1,1-Trichloroethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,1,2,2-Tetrachloroethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,1,2-Trichloroethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,1-Dichloroethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,1-Dichloroethene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,2-Dibromo-3-chloropropane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,2-Dibromoethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,2-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,2-Dichloroethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,2-Dichloropropane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,3-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
1,4-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
2-Butanone		BRL	50		ug/L	179700	1	08/12/2013 16:26	GK
2-Hexanone		BRL	10		ug/L	179700	1	08/12/2013 16:26	GK
4-Methyl-2-pentanone		BRL	10		ug/L	179700	1	08/12/2013 16:26	GK
Acetone		150	50		ug/L	179700	1	08/12/2013 16:26	GK
Benzene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Bromodichloromethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Bromoform		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Bromomethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Carbon disulfide		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Carbon tetrachloride		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Chlorobenzene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Chloroethane		BRL	10		ug/L	179700	1	08/12/2013 16:26	GK
Chloroform		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Chloromethane		BRL	10		ug/L	179700	1	08/12/2013 16:26	GK
cis-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
cis-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Cyclohexane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Dibromochloromethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Dichlorodifluoromethane		BRL	10		ug/L	179700	1	08/12/2013 16:26	GK
Ethylbenzene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Freon-113		BRL	10		ug/L	179700	1	08/12/2013 16:26	GK
Isopropylbenzene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
m,p-Xylene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Methyl acetate		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Methyl tert-butyl ether		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Methylcyclohexane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Methylene chloride		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
o-Xylene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK

Qualifiers:

BRL Below reporting limit

Date:

15-Aug-13

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: POD-1

Project Name: Vogue Cleaners Collection Date: 8/7/2013 12:40:00 PM

Date:

15-Aug-13

Lab ID: 1308732-001 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SV	V5030B)			
Styrene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Tetrachloroethene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Toluene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
trans-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
trans-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Trichloroethene		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Trichlorofluoromethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:26	GK
Vinyl chloride		BRL	2.0		ug/L	179700	1	08/12/2013 16:26	GK
Surr: 4-Bromofluorobenzene		97	64.6-123		%REC	179700	1	08/12/2013 16:26	GK
Surr: Dibromofluoromethane		102	76.6-133		%REC	179700	1	08/12/2013 16:26	GK
Surr: Toluene-d8		102	77.8-120		%REC	179700	1	08/12/2013 16:26	GK

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-1

Project Name:Vogue CleanersCollection Date:8/7/2013 4:40:00 PMLab ID:1308732-002Matrix:Groundwater

Reporting Dilution Result Qual Units BatchID Analyses Date Analyzed Analyst Limit Factor TCL VOLATILE ORGANICS SW8260B (SW5030B) BRL ug/L 179700 GK 5.0 08/12/2013 16:56 1,1,1-Trichloroethane 179700 BRL 5.0 ug/L 08/12/2013 16:56 GK 1,1,2,2-Tetrachloroethane ug/L 179700 1,1,2-Trichloroethane BRL 5.0 08/12/2013 16:56 GK BRL 5.0 ug/L 179700 1 08/12/2013 16:56 GK 1,1-Dichloroethane 1,1-Dichloroethene **BRL** 5.0 ug/L 179700 08/12/2013 16:56 GK BRL 5.0 ug/L 179700 08/12/2013 16:56 GK 1,2,4-Trichlorobenzene BRL ug/L 179700 08/12/2013 16:56 GK 1,2-Dibromo-3-chloropropane 5.0 ug/L 179700 GK 1,2-Dibromoethane BRL 5.0 08/12/2013 16:56 1,2-Dichlorobenzene **BRL** 5.0 ug/L 179700 08/12/2013 16:56 GK ug/L 179700 **BRL** 5.0 08/12/2013 16:56 GK 1,2-Dichloroethane BRL 5.0 ug/L 179700 08/12/2013 16:56 GK 1,2-Dichloropropane ug/L 179700 GK 1,3-Dichlorobenzene BRL 5.0 1 08/12/2013 16:56 BRL 5.0 ug/L 179700 08/12/2013 16:56 GK 1,4-Dichlorobenzene 1 2-Butanone BRL 50 ug/L 179700 08/12/2013 16:56 GK BRL 10 ug/L 179700 GK 08/12/2013 16:56 2-Hexanone 4-Methyl-2-pentanone **BRL** 10 ug/L 179700 08/12/2013 16:56 GK BRL 50 ug/L 179700 08/12/2013 16:56 GK Acetone BRL ug/L 179700 08/12/2013 16:56 GK Benzene 5.0 ug/L BRL 5.0 179700 1 08/12/2013 16:56 GK Bromodichloromethane ug/L 179700 08/12/2013 16:56 Bromoform **BRL** 5.0 GK ug/L 179700 **BRL** 5.0 08/12/2013 16:56 GK Bromomethane ug/L Carbon disulfide BRL 5.0 179700 08/12/2013 16:56 GK ug/L 179700 GK Carbon tetrachloride BRL 5.0 08/12/2013 16:56 Chlorobenzene BRL 5.0 ug/L 179700 08/12/2013 16:56 GK ug/L 179700 Chloroethane BRL 10 08/12/2013 16:56 GK BRL ug/L 179700 GK Chloroform 5.0 1 08/12/2013 16:56 Chloromethane **BRL** 10 ug/L 179700 08/12/2013 16:56 GK BRL 5.0 ug/L 179700 08/12/2013 16:56 GK cis-1,2-Dichloroethene cis-1,3-Dichloropropene BRL 5.0 ug/L 179700 08/12/2013 16:56 GK ug/L 179700 GK BRL 5.0 08/12/2013 16:56 Cyclohexane ug/L 179700 08/12/2013 16:56 Dibromochloromethane **BRL** 5.0 GK ug/L 179700 **BRL** 10 08/12/2013 16:56 GK Dichlorodifluoromethane Ethylbenzene BRL 5.0 ug/L 179700 08/12/2013 16:56 GK Freon-113 BRL 10 ug/L 179700 1 08/12/2013 16:56 GK BRL 5.0 ug/L 179700 08/12/2013 16:56 GK Isopropylbenzene 1 ug/L m,p-Xvlene BRL 5.0 179700 08/12/2013 16:56 GK BRL ug/L 179700 GK 5.0 08/12/2013 16:56 Methyl acetate ug/L Methyl tert-butyl ether **BRL** 5.0 179700 08/12/2013 16:56 GK Methylcyclohexane BRL 5.0 ug/L 179700 08/12/2013 16:56 GK BRL ug/L 179700 08/12/2013 16:56 GK Methylene chloride 5.0

Qualifiers:

o-Xylene

BRL

5.0

179700

Date:

15-Aug-13

Narr See case narrative

ug/L

08/12/2013 16:56

GK

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Second Second

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-1

Project Name: Vogue Cleaners Collection Date: 8/7/2013 4:40:00 PM

Lab ID:1308732-002Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SW	V5030B)			
Styrene		BRL	5.0		ug/L	179700	1	08/12/2013 16:56	GK
Tetrachloroethene		BRL	5.0		ug/L	179700	1	08/12/2013 16:56	GK
Toluene		BRL	5.0		ug/L	179700	1	08/12/2013 16:56	GK
trans-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/12/2013 16:56	GK
trans-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/12/2013 16:56	GK
Trichloroethene		BRL	5.0		ug/L	179700	1	08/12/2013 16:56	GK
Trichlorofluoromethane		BRL	5.0		ug/L	179700	1	08/12/2013 16:56	GK
Vinyl chloride		BRL	2.0		ug/L	179700	1	08/12/2013 16:56	GK
Surr: 4-Bromofluorobenzene		97.2	64.6-123		%REC	179700	1	08/12/2013 16:56	GK
Surr: Dibromofluoromethane		105	76.6-133		%REC	179700	1	08/12/2013 16:56	GK
Surr: Toluene-d8		103	77.8-120		%REC	179700	1	08/12/2013 16:56	GK

Date:

15-Aug-13

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-2R

Project Name: Vogue Cleaners Collection Date: 8/8/2013 9:00:00 AM

Lab ID:1308732-003Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS	SW8260B				(SV	V5030B)			
1,1,1-Trichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,1,2,2-Tetrachloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,1,2-Trichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,1-Dichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,1-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,2-Dibromo-3-chloropropane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,2-Dibromoethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,2-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,2-Dichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,2-Dichloropropane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,3-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
1,4-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
2-Butanone		BRL	50		ug/L	179700	1	08/13/2013 02:16	GK
2-Hexanone		BRL	10		ug/L	179700	1	08/13/2013 02:16	GK
4-Methyl-2-pentanone		BRL	10		ug/L	179700	1	08/13/2013 02:16	GK
Acetone		BRL	50		ug/L	179700	1	08/13/2013 02:16	GK
Benzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Bromodichloromethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Bromoform		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Bromomethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Carbon disulfide		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Carbon tetrachloride		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Chlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Chloroethane		BRL	10		ug/L	179700	1	08/13/2013 02:16	GK
Chloroform		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Chloromethane		BRL	10		ug/L	179700	1	08/13/2013 02:16	GK
cis-1,2-Dichloroethene		5.4	5.0		ug/L	179700	1	08/13/2013 02:16	GK
cis-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Cyclohexane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Dibromochloromethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Dichlorodifluoromethane		BRL	10		ug/L	179700	1	08/13/2013 02:16	GK
Ethylbenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Freon-113		BRL	10		ug/L	179700	1	08/13/2013 02:16	GK
Isopropylbenzene		BRL	5.0		ug/L	179700		08/13/2013 02:16	GK
m,p-Xylene		BRL	5.0		ug/L	179700		08/13/2013 02:16	GK
Methyl acetate		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Methyl tert-butyl ether		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Methylcyclohexane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Methylene chloride		BRL	5.0		ug/L	179700		08/13/2013 02:16	GK
o-Xylene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK

Qualifiers:

BRL Below reporting limit

Date:

15-Aug-13

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-2R

Project Name:Vogue CleanersCollection Date:8/8/2013 9:00:00 AM

Lab ID:1308732-003Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SV	V5030B)			
Styrene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Tetrachloroethene		25	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Toluene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
trans-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
trans-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Trichloroethene		16	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Trichlorofluoromethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:16	GK
Vinyl chloride		BRL	2.0		ug/L	179700	1	08/13/2013 02:16	GK
Surr: 4-Bromofluorobenzene		98	64.6-123		%REC	179700	1	08/13/2013 02:16	GK
Surr: Dibromofluoromethane		99.1	76.6-133		%REC	179700	1	08/13/2013 02:16	GK
Surr: Toluene-d8		98.9	77.8-120		%REC	179700	1	08/13/2013 02:16	GK

Date:

15-Aug-13

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-4

Project Name: Vogue Cleaners Collection Date: 8/7/2013 4:35:00 PM

Lab ID:1308732-004Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS S	W8260B				(SW	/5030B)			
1,1,1-Trichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,1,2,2-Tetrachloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,1,2-Trichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,1-Dichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,1-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,2-Dibromo-3-chloropropane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,2-Dibromoethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,2-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,2-Dichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,2-Dichloropropane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,3-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
1,4-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
2-Butanone		BRL	50		ug/L	179700	1	08/13/2013 02:46	GK
2-Hexanone		BRL	10		ug/L	179700	1	08/13/2013 02:46	GK
4-Methyl-2-pentanone		BRL	10		ug/L	179700	1	08/13/2013 02:46	GK
Acetone		BRL	50		ug/L	179700	1	08/13/2013 02:46	GK
Benzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Bromodichloromethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Bromoform		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Bromomethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Carbon disulfide		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Carbon tetrachloride		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Chlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Chloroethane		BRL	10		ug/L	179700	1	08/13/2013 02:46	GK
Chloroform		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Chloromethane		BRL	10		ug/L	179700	1	08/13/2013 02:46	GK
cis-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
cis-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Cyclohexane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Dibromochloromethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Dichlorodifluoromethane		BRL	10		ug/L	179700	1	08/13/2013 02:46	GK
Ethylbenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Freon-113		BRL	10		ug/L	179700	1	08/13/2013 02:46	GK
Isopropylbenzene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
m,p-Xylene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Methyl acetate		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Methyl tert-butyl ether		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Methylcyclohexane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Methylene chloride		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
o-Xylene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK

Qualifiers:

BRL Below reporting limit

Date:

15-Aug-13

Narr See case narrative

Less than Result value

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-4

Project Name: Vogue Cleaners Collection Date: 8/7/2013 4:35:00 PM

Lab ID: 1308732-004 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SW	/5030B)			
Styrene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Tetrachloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Toluene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
trans-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
trans-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Trichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Trichlorofluoromethane		BRL	5.0		ug/L	179700	1	08/13/2013 02:46	GK
Vinyl chloride		BRL	2.0		ug/L	179700	1	08/13/2013 02:46	GK
Surr: 4-Bromofluorobenzene		96.8	64.6-123		%REC	179700	1	08/13/2013 02:46	GK
Surr: Dibromofluoromethane		101	76.6-133		%REC	179700	1	08/13/2013 02:46	GK
Surr: Toluene-d8		97.6	77.8-120		%REC	179700	1	08/13/2013 02:46	GK

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

15-Aug-13

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-5

Project Name:Vogue CleanersCollection Date:8/7/2013 3:05:00 PMLab ID:1308732-005Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS SW820	50B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,1,2-Trichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,1-Dichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,1-Dichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,2-Dibromoethane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,2-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,2-Dichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,2-Dichloropropane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,3-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
1,4-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
2-Butanone	BRL	50		ug/L	179700	1	08/13/2013 03:15	GK
2-Hexanone	BRL	10		ug/L	179700	1	08/13/2013 03:15	GK
4-Methyl-2-pentanone	BRL	10		ug/L	179700	1	08/13/2013 03:15	GK
Acetone	BRL	50		ug/L	179700	1	08/13/2013 03:15	GK
Benzene	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Bromodichloromethane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Bromoform	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Bromomethane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Carbon disulfide	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Carbon tetrachloride	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Chlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Chloroethane	BRL	10		ug/L	179700	1	08/13/2013 03:15	GK
Chloroform	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Chloromethane	BRL	10		ug/L	179700	1	08/13/2013 03:15	GK
cis-1,2-Dichloroethene	9.2	5.0		ug/L	179700	1	08/13/2013 03:15	GK
cis-1,3-Dichloropropene	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Cyclohexane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Dibromochloromethane	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Dichlorodifluoromethane	BRL	10		ug/L	179700	1	08/13/2013 03:15	GK
Ethylbenzene	BRL	5.0		ug/L	179700	1	08/13/2013 03:15	GK
Freon-113	BRL	10		ug/L	179700	1	08/13/2013 03:15	GK
Isopropylbenzene	BRL	5.0		ug/L	179700		08/13/2013 03:15	GK
m,p-Xylene	BRL	5.0		ug/L	179700		08/13/2013 03:15	GK
Methyl acetate	BRL	5.0		ug/L	179700		08/13/2013 03:15	GK
Methyl tert-butyl ether	BRL	5.0		ug/L	179700		08/13/2013 03:15	GK
Methylcyclohexane	BRL	5.0		ug/L	179700		08/13/2013 03:15	GK
Methylene chloride	BRL	5.0		ug/L	179700		08/13/2013 03:15	GK
o-Xylene	BRL	5.0		ug/L	179700		08/13/2013 03:15	GK

Qualifiers:

BRL Below reporting limit

Date:

15-Aug-13

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-5

Project Name:Vogue CleanersCollection Date:8/7/2013 3:05:00 PMLab ID:1308732-005Matrix:Groundwater

Reporting **Dilution** Result Qual Units BatchID Date Analyzed Analyst Analyses Limit Factor TCL VOLATILE ORGANICS SW8260B (SW5030B) BRL ug/L 179700 GK 5.0 08/13/2013 03:15 Styrene ug/L 179700 GK Tetrachloroethene 820 50 10 08/13/2013 16:06 ug/L 179700 Toluene BRL 5.0 08/13/2013 03:15 GK trans-1,2-Dichloroethene BRL 5.0 ug/L 179700 1 08/13/2013 03:15 GK ug/L trans-1,3-Dichloropropene BRL 5.0 179700 08/13/2013 03:15 GK 180 5.0 ug/L 179700 08/13/2013 03:15 GK Trichloroethene Trichlorofluoromethane BRL 5.0 ug/L179700 08/13/2013 03:15 GK ug/L BRL 179700 GK Vinyl chloride 2.0 08/13/2013 03:15 %REC Surr: 4-Bromofluorobenzene 97.3 64.6-123 179700 08/13/2013 16:06 GK %REC 179700 98.7 64.6-123 08/13/2013 03:15 GK Surr: 4-Bromofluorobenzene 1 Surr: Dibromofluoromethane 98.4 76.6-133 %REC 179700 10 08/13/2013 16:06 GK %REC 76.6-133 179700 GK Surr: Dibromofluoromethane 101 08/13/2013 03:15 99.3 77.8-120 %REC 179700 Surr: Toluene-d8 1 08/13/2013 03:15 GK %REC Surr: Toluene-d8 99.2 77.8-120 179700 10 08/13/2013 16:06 GK

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

15-Aug-13

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-6

Project Name: Vogue Cleaners Collection Date: 8/7/2013 12:00:00 PM

Date:

15-Aug-13

Lab ID:1308732-006Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS S	W8260B				(SV	/5030B)			
1,1,1-Trichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,1,2,2-Tetrachloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,1,2-Trichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,1-Dichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,1-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,2-Dibromo-3-chloropropane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,2-Dibromoethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,2-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,2-Dichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,2-Dichloropropane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,3-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
1,4-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
2-Butanone		BRL	50		ug/L	179700	1	08/13/2013 03:45	GK
2-Hexanone		BRL	10		ug/L	179700	1	08/13/2013 03:45	GK
4-Methyl-2-pentanone		BRL	10		ug/L	179700	1	08/13/2013 03:45	GK
Acetone		BRL	50		ug/L	179700	1	08/13/2013 03:45	GK
Benzene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Bromodichloromethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Bromoform		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Bromomethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Carbon disulfide		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Carbon tetrachloride		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Chlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Chloroethane		BRL	10		ug/L	179700	1	08/13/2013 03:45	GK
Chloroform		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Chloromethane		BRL	10		ug/L	179700	1	08/13/2013 03:45	GK
cis-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
cis-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Cyclohexane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Dibromochloromethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Dichlorodifluoromethane		BRL	10		ug/L	179700	1	08/13/2013 03:45	GK
Ethylbenzene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Freon-113		BRL	10		ug/L	179700	1	08/13/2013 03:45	GK
Isopropylbenzene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
m,p-Xylene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Methyl acetate		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Methyl tert-butyl ether		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Methylcyclohexane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Methylene chloride		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
o-Xylene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK

Qualifiers:

Narr See case narrative
NC Not confirmed

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-6

Project Name: Vogue Cleaners Collection Date: 8/7/2013 12:00:00 PM

Date:

15-Aug-13

Lab ID: 1308732-006 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SW	V5030B)			
Styrene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Tetrachloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Toluene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
trans-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
trans-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Trichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Trichlorofluoromethane		BRL	5.0		ug/L	179700	1	08/13/2013 03:45	GK
Vinyl chloride		BRL	2.0		ug/L	179700	1	08/13/2013 03:45	GK
Surr: 4-Bromofluorobenzene		95.6	64.6-123		%REC	179700	1	08/13/2013 03:45	GK
Surr: Dibromofluoromethane		102	76.6-133		%REC	179700	1	08/13/2013 03:45	GK
Surr: Toluene-d8		98.2	77.8-120		%REC	179700	1	08/13/2013 03:45	GK

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-7

Project Name: Vogue Cleaners Collection Date: 8/7/2013 12:55:00 PM

Lab ID:1308732-007Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS	SW8260B				(SW	/5030B)			
1,1,1-Trichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,1,2,2-Tetrachloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,1,2-Trichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,1-Dichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,1-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,2-Dibromo-3-chloropropane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,2-Dibromoethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,2-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,2-Dichloroethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,2-Dichloropropane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,3-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
1,4-Dichlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
2-Butanone		BRL	50		ug/L	179700	1	08/13/2013 04:14	GK
2-Hexanone		BRL	10		ug/L	179700	1	08/13/2013 04:14	GK
4-Methyl-2-pentanone		BRL	10		ug/L	179700	1	08/13/2013 04:14	GK
Acetone		BRL	50		ug/L	179700	1	08/13/2013 04:14	GK
Benzene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Bromodichloromethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Bromoform		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Bromomethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Carbon disulfide		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Carbon tetrachloride		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Chlorobenzene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Chloroethane		BRL	10		ug/L	179700	1	08/13/2013 04:14	GK
Chloroform		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Chloromethane		BRL	10		ug/L	179700	1	08/13/2013 04:14	GK
cis-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
cis-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Cyclohexane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Dibromochloromethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Dichlorodifluoromethane		BRL	10		ug/L	179700	1	08/13/2013 04:14	GK
Ethylbenzene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Freon-113		BRL	10		ug/L	179700	1	08/13/2013 04:14	GK
Isopropylbenzene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
m,p-Xylene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Methyl acetate		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Methyl tert-butyl ether		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Methylcyclohexane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Methylene chloride		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
o-Xylene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK

Qualifiers:

BRL Below reporting limit

Date:

15-Aug-13

Narr See case narrative
NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-7

Project Name: Vogue Cleaners Collection Date: 8/7/2013 12:55:00 PM

Lab ID:1308732-007Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SV	V5030B)			
Styrene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Tetrachloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Toluene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
trans-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
trans-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Trichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Trichlorofluoromethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:14	GK
Vinyl chloride		BRL	2.0		ug/L	179700	1	08/13/2013 04:14	GK
Surr: 4-Bromofluorobenzene		99.2	64.6-123		%REC	179700	1	08/13/2013 04:14	GK
Surr: Dibromofluoromethane		99.2	76.6-133		%REC	179700	1	08/13/2013 04:14	GK
Surr: Toluene-d8		97.9	77.8-120		%REC	179700	1	08/13/2013 04:14	GK

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

15-Aug-13

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-8R

Project Name: Vogue Cleaners Collection Date: 8/8/2013 10:10:00 AM

Date:

15-Aug-13

Lab ID: 1308732-008 Matrix: Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW826	60B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,1,2-Trichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,1-Dichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,1-Dichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,2-Dibromoethane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,2-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,2-Dichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,2-Dichloropropane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,3-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
1,4-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
2-Butanone	BRL	50		ug/L	179700	1	08/13/2013 04:44	GK
2-Hexanone	BRL	10		ug/L	179700	1	08/13/2013 04:44	GK
4-Methyl-2-pentanone	BRL	10		ug/L	179700	1	08/13/2013 04:44	GK
Acetone	BRL	50		ug/L	179700	1	08/13/2013 04:44	GK
Benzene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Bromodichloromethane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Bromoform	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Bromomethane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Carbon disulfide	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Carbon tetrachloride	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Chlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Chloroethane	BRL	10		ug/L	179700	1	08/13/2013 04:44	GK
Chloroform	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Chloromethane	BRL	10		ug/L	179700	1	08/13/2013 04:44	GK
cis-1,2-Dichloroethene	43	5.0		ug/L	179700	1	08/13/2013 04:44	GK
cis-1,3-Dichloropropene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Cyclohexane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Dibromochloromethane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Dichlorodifluoromethane	BRL	10		ug/L	179700	1	08/13/2013 04:44	GK
Ethylbenzene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Freon-113	BRL	10		ug/L	179700	1	08/13/2013 04:44	GK
Isopropylbenzene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
m,p-Xylene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Methyl acetate	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Methyl tert-butyl ether	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Methylcyclohexane	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Methylene chloride	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
o-Xylene	BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK

Qualifiers:

Narr See case narrative

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-8R

Project Name: Vogue Cleaners Collection Date: 8/8/2013 10:10:00 AM

Date:

15-Aug-13

Lab ID:1308732-008Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B								
Styrene		BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Tetrachloroethene		1800	100		ug/L	179700	20	08/13/2013 15:36	GK
Toluene		BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
trans-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
trans-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Trichloroethene		1300	100		ug/L	179700	20	08/13/2013 15:36	GK
Trichlorofluoromethane		BRL	5.0		ug/L	179700	1	08/13/2013 04:44	GK
Vinyl chloride		BRL	2.0		ug/L	179700	1	08/13/2013 04:44	GK
Surr: 4-Bromofluorobenzene		96.9	64.6-123		%REC	179700	1	08/13/2013 04:44	GK
Surr: 4-Bromofluorobenzene		97.4	64.6-123		%REC	179700	20	08/13/2013 15:36	GK
Surr: Dibromofluoromethane		102	76.6-133		%REC	179700	20	08/13/2013 15:36	GK
Surr: Dibromofluoromethane		101	76.6-133		%REC	179700	1	08/13/2013 04:44	GK
Surr: Toluene-d8		101	77.8-120		%REC	179700	20	08/13/2013 15:36	GK
Surr: Toluene-d8		98.4	77.8-120		%REC	179700	1	08/13/2013 04:44	GK

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-8D

Project Name: Vogue Cleaners Collection Date: 8/8/2013 8:55:00 AM

Lab ID:1308732-009Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS SWE	3260B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,1,2-Trichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,1-Dichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,1-Dichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,2-Dibromoethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,2-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,2-Dichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,2-Dichloropropane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,3-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
1,4-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
2-Butanone	BRL	50		ug/L	179700	1	08/13/2013 05:13	GK
2-Hexanone	BRL	10		ug/L	179700	1	08/13/2013 05:13	GK
4-Methyl-2-pentanone	BRL	10		ug/L	179700	1	08/13/2013 05:13	GK
Acetone	280	50		ug/L	179700	1	08/13/2013 05:13	GK
Benzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Bromodichloromethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Bromoform	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Bromomethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Carbon disulfide	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Carbon tetrachloride	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Chlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Chloroethane	BRL	10		ug/L	179700	1	08/13/2013 05:13	GK
Chloroform	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Chloromethane	BRL	10		ug/L	179700	1	08/13/2013 05:13	GK
cis-1,2-Dichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
cis-1,3-Dichloropropene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Cyclohexane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Dibromochloromethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Dichlorodifluoromethane	BRL	10		ug/L	179700	1	08/13/2013 05:13	GK
Ethylbenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Freon-113	BRL	10		ug/L	179700	1	08/13/2013 05:13	GK
Isopropylbenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
m,p-Xylene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Methyl acetate	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Methyl tert-butyl ether	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Methylcyclohexane	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Methylene chloride	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
o-Xylene	BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK

Qualifiers:

BRL Below reporting limit

Date:

15-Aug-13

Narr See case narrative

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-8D

Project Name: Vogue Cleaners Collection Date: 8/8/2013 8:55:00 AM

Lab ID:1308732-009Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW	8260B				(SW	/5030B)			
Styrene		BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Tetrachloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Toluene		BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
trans-1,2-Dichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
trans-1,3-Dichloropropene		BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Trichloroethene		BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Trichlorofluoromethane		BRL	5.0		ug/L	179700	1	08/13/2013 05:13	GK
Vinyl chloride		BRL	2.0		ug/L	179700	1	08/13/2013 05:13	GK
Surr: 4-Bromofluorobenzene		96.8	64.6-123		%REC	179700	1	08/13/2013 05:13	GK
Surr: Dibromofluoromethane		100	76.6-133		%REC	179700	1	08/13/2013 05:13	GK
Surr: Toluene-d8		99.5	77.8-120		%REC	179700	1	08/13/2013 05:13	GK

Date:

15-Aug-13

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-12D

Project Name:Vogue CleanersCollection Date:8/7/2013 2:50:00 PMLab ID:1308732-010Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS SW826	60B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,1,2-Trichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,1-Dichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,1-Dichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,2-Dibromoethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,2-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,2-Dichloroethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,2-Dichloropropane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,3-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
1,4-Dichlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
2-Butanone	BRL	50		ug/L	179700	1	08/13/2013 05:42	GK
2-Hexanone	BRL	10		ug/L	179700	1	08/13/2013 05:42	GK
4-Methyl-2-pentanone	BRL	10		ug/L	179700	1	08/13/2013 05:42	GK
Acetone	BRL	50		ug/L	179700	1	08/13/2013 05:42	GK
Benzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Bromodichloromethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Bromoform	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Bromomethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Carbon disulfide	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Carbon tetrachloride	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Chlorobenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Chloroethane	BRL	10		ug/L	179700	1	08/13/2013 05:42	GK
Chloroform	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Chloromethane	BRL	10		ug/L	179700	1	08/13/2013 05:42	GK
cis-1,2-Dichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
cis-1,3-Dichloropropene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Cyclohexane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Dibromochloromethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Dichlorodifluoromethane	BRL	10		ug/L	179700	1	08/13/2013 05:42	GK
Ethylbenzene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Freon-113	BRL	10		ug/L	179700	1	08/13/2013 05:42	GK
Isopropylbenzene	BRL	5.0		ug/L	179700		08/13/2013 05:42	GK
m,p-Xylene	BRL	5.0		ug/L	179700		08/13/2013 05:42	GK
Methyl acetate	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK
Methyl tert-butyl ether	BRL	5.0		ug/L	179700		08/13/2013 05:42	GK
Methylcyclohexane	BRL	5.0		ug/L	179700		08/13/2013 05:42	GK
Methylene chloride	BRL	5.0		ug/L	179700		08/13/2013 05:42	GK
o-Xylene	BRL	5.0		ug/L	179700		08/13/2013 05:42	GK

Qualifiers:

BRL Below reporting limit

Date:

15-Aug-13

Narr See case narrative
NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-12D

Project Name: Vogue Cleaners Collection Date: 8/7/2013 2:50:00 PM

Lab ID:1308732-010Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst				
TCL VOLATILE ORGANICS SW82	60B	B (SW5030B)										
Styrene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK				
Tetrachloroethene	19	5.0		ug/L	179700	1	08/13/2013 05:42	GK				
Toluene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK				
trans-1,2-Dichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK				
trans-1,3-Dichloropropene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK				
Trichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK				
Trichlorofluoromethane	BRL	5.0		ug/L	179700	1	08/13/2013 05:42	GK				
Vinyl chloride	BRL	2.0		ug/L	179700	1	08/13/2013 05:42	GK				
Surr: 4-Bromofluorobenzene	97.2	64.6-123		%REC	179700	1	08/13/2013 05:42	GK				
Surr: Dibromofluoromethane	101	76.6-133		%REC	179700	1	08/13/2013 05:42	GK				
Surr: Toluene-d8	97.6	77.8-120		%REC	179700	1	08/13/2013 05:42	GK				

Date:

15-Aug-13

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW-22

Project Name:Vogue CleanersCollection Date:8/7/2013 3:20:00 PMLab ID:1308732-011Matrix:Groundwater

Reporting Dilution Result Qual Units BatchID Analyses Date Analyzed Analyst Limit Factor TCL VOLATILE ORGANICS SW8260B (SW5030B) BRL ug/L 179700 GK 5.0 08/13/2013 06:12 1,1,1-Trichloroethane ug/L 179700 BRL 5.0 08/13/2013 06:12 GK 1,1,2,2-Tetrachloroethane ug/L 179700 1,1,2-Trichloroethane BRL 5.0 08/13/2013 06:12 GK BRL 5.0 ug/L 179700 1 08/13/2013 06:12 GK 1,1-Dichloroethane 1,1-Dichloroethene **BRL** 5.0 ug/L 179700 08/13/2013 06:12 GK BRL 5.0 ug/L 179700 08/13/2013 06:12 GK 1,2,4-Trichlorobenzene 1 BRL ug/L 179700 08/13/2013 06:12 GK 1,2-Dibromo-3-chloropropane 5.0 ug/L 179700 GK 1,2-Dibromoethane BRL 5.0 08/13/2013 06:12 1,2-Dichlorobenzene **BRL** 5.0 ug/L 179700 08/13/2013 06:12 GK ug/L 179700 **BRL** 5.0 08/13/2013 06:12 GK 1,2-Dichloroethane BRL 5.0 ug/L 179700 08/13/2013 06:12 GK 1,2-Dichloropropane ug/L 179700 GK 1,3-Dichlorobenzene **BRL** 5.0 1 08/13/2013 06:12 BRL 5.0 ug/L 179700 1 08/13/2013 06:12 GK 1,4-Dichlorobenzene 2-Butanone **BRL** 50 ug/L 179700 08/13/2013 06:12 GK BRL 10 ug/L 179700 GK 08/13/2013 06:12 2-Hexanone 4-Methyl-2-pentanone **BRL** 10 ug/L 179700 08/13/2013 06:12 GK BRL 50 ug/L 179700 08/13/2013 06:12 GK Acetone BRL ug/L 179700 08/13/2013 06:12 GK Benzene 5.0 ug/L **BRL** 5.0 179700 1 08/13/2013 06:12 GK Bromodichloromethane ug/L 179700 08/13/2013 06:12 GK Bromoform **BRL** 5.0 1 ug/L 179700 GK **BRL** 5.0 08/13/2013 06:12 Bromomethane Carbon disulfide BRL 5.0 ug/L 179700 08/13/2013 06:12 GK ug/L 179700 GK Carbon tetrachloride **BRL** 5.0 08/13/2013 06:12 Chlorobenzene BRL 5.0 ug/L 179700 08/13/2013 06:12 GK ug/L 179700 Chloroethane **BRL** 10 08/13/2013 06:12 GK BRL ug/L 179700 GK Chloroform 5.0 1 08/13/2013 06:12 Chloromethane **BRL** 10 ug/L 179700 1 08/13/2013 06:12 GK BRL 5.0 ug/L 179700 08/13/2013 06:12 GK cis-1,2-Dichloroethene 1 cis-1,3-Dichloropropene BRL 5.0 ug/L 179700 08/13/2013 06:12 GK ug/L 179700 GK **BRL** 5.0 08/13/2013 06:12 Cyclohexane ug/L 179700 08/13/2013 06:12 Dibromochloromethane **BRL** 5.0 GK ug/L 179700 **BRL** 10 08/13/2013 06:12 GK Dichlorodifluoromethane Ethylbenzene BRL 5.0 ug/L 179700 1 08/13/2013 06:12 GK ug/L Freon-113 **BRL** 10 179700 1 08/13/2013 06:12 GK BRL 5.0 ug/L 179700 1 08/13/2013 06:12 GK Isopropylbenzene ug/L m,p-Xvlene **BRL** 5.0 179700 08/13/2013 06:12 GK BRL ug/L 179700 GK 5.0 08/13/2013 06:12 Methyl acetate ug/L Methyl tert-butyl ether **BRL** 5.0 179700 08/13/2013 06:12 GK Methylcyclohexane BRL 5.0 ug/L 179700 08/13/2013 06:12 GK BRL ug/L 179700 08/13/2013 06:12 GK Methylene chloride 5.0 BRL ug/L 179700 08/13/2013 06:12 GK o-Xylene 5.0

Qualifiers:

BRL Below reporting limit

Date:

15-Aug-13

Narr See case narrative
NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Second Second

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-22

Project Name: Vogue Cleaners Collection Date: 8/7/2013 3:20:00 PM

Lab ID:1308732-011Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst		
TCL VOLATILE ORGANICS SW82	260B	B (SW5030B)								
Styrene	BRL	5.0		ug/L	179700	1	08/13/2013 06:12	GK		
Tetrachloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 06:12	GK		
Toluene	BRL	5.0		ug/L	179700	1	08/13/2013 06:12	GK		
trans-1,2-Dichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 06:12	GK		
trans-1,3-Dichloropropene	BRL	5.0		ug/L	179700	1	08/13/2013 06:12	GK		
Trichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 06:12	GK		
Trichlorofluoromethane	BRL	5.0		ug/L	179700	1	08/13/2013 06:12	GK		
Vinyl chloride	BRL	2.0		ug/L	179700	1	08/13/2013 06:12	GK		
Surr: 4-Bromofluorobenzene	99.1	64.6-123		%REC	179700	1	08/13/2013 06:12	GK		
Surr: Dibromofluoromethane	99.6	76.6-133		%REC	179700	1	08/13/2013 06:12	GK		
Surr: Toluene-d8	98.6	77.8-120		%REC	179700	1	08/13/2013 06:12	GK		

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

15-Aug-13

S Spike Recovery outside limits due to matrix

Narr See case narrative NC Not confirmed

< Less than Result value

Client:Genesis Project, Inc.Client Sample ID:TRIPBLANKProject Name:Vogue CleanersCollection Date:8/8/2013Lab ID:1308732-012Matrix:Aqueous

Reporting Dilution Result Qual Units BatchID Analyses Date Analyzed Analyst Limit Factor TCL VOLATILE ORGANICS SW8260B (SW5030B) BRL ug/L 179700 GK 5.0 08/13/2013 01:47 1,1,1-Trichloroethane ug/L 179700 BRL 5.0 08/13/2013 01:47 GK 1,1,2,2-Tetrachloroethane ug/L 179700 1,1,2-Trichloroethane **BRL** 5.0 08/13/2013 01:47 GK BRL 5.0 ug/L 179700 1 08/13/2013 01:47 GK 1,1-Dichloroethane 1,1-Dichloroethene **BRL** 5.0 ug/L 179700 08/13/2013 01:47 GK BRL 5.0 ug/L 179700 08/13/2013 01:47 GK 1,2,4-Trichlorobenzene 1 BRL ug/L 179700 08/13/2013 01:47 GK 1,2-Dibromo-3-chloropropane 5.0 ug/L 179700 GK 1,2-Dibromoethane **BRL** 5.0 08/13/2013 01:47 1,2-Dichlorobenzene **BRL** 5.0 ug/L 179700 08/13/2013 01:47 GK ug/L 179700 **BRL** 5.0 08/13/2013 01:47 GK 1,2-Dichloroethane BRL 5.0 ug/L 179700 08/13/2013 01:47 GK 1,2-Dichloropropane ug/L 179700 GK 1,3-Dichlorobenzene BRL 5.0 1 08/13/2013 01:47 BRL 5.0 ug/L 179700 1 08/13/2013 01:47 GK 1,4-Dichlorobenzene 2-Butanone BRL 50 ug/L 179700 08/13/2013 01:47 GK BRL 10 ug/L 179700 08/13/2013 01:47 GK 2-Hexanone 4-Methyl-2-pentanone **BRL** 10 ug/L 179700 08/13/2013 01:47 GK BRL 50 ug/L 179700 08/13/2013 01:47 GK Acetone BRL ug/L 179700 08/13/2013 01:47 GK Benzene 5.0 ug/L BRL 5.0 179700 1 08/13/2013 01:47 GK Bromodichloromethane ug/L 179700 08/13/2013 01:47 GK Bromoform **BRL** 5.0 1 ug/L 179700 GK **BRL** 5.0 08/13/2013 01:47 Bromomethane Carbon disulfide BRL 5.0 ug/L 179700 08/13/2013 01:47 GK ug/L 179700 GK Carbon tetrachloride BRL 5.0 08/13/2013 01:47 Chlorobenzene BRL 5.0 ug/L 179700 08/13/2013 01:47 GK ug/L 179700 Chloroethane BRL 10 08/13/2013 01:47 GK BRL ug/L 179700 GK Chloroform 5.0 1 08/13/2013 01:47 Chloromethane **BRL** 10 ug/L 179700 1 08/13/2013 01:47 GK BRL 5.0 ug/L 179700 08/13/2013 01:47 GK cis-1,2-Dichloroethene 1 cis-1,3-Dichloropropene BRL 5.0 ug/L 179700 08/13/2013 01:47 GK ug/L 179700 GK BRL 5.0 08/13/2013 01:47 Cyclohexane ug/L 179700 Dibromochloromethane **BRL** 5.0 08/13/2013 01:47 GK ug/L 179700 **BRL** 10 08/13/2013 01:47 GK Dichlorodifluoromethane Ethylbenzene BRL 5.0 ug/L 179700 1 08/13/2013 01:47 GK ug/L Freon-113 BRL 10 179700 1 08/13/2013 01:47 GK BRL 5.0 ug/L 179700 1 08/13/2013 01:47 GK Isopropylbenzene ug/L m,p-Xvlene BRL 5.0 179700 08/13/2013 01:47 GK BRL ug/L 179700 GK 5.0 08/13/2013 01:47 Methyl acetate ug/L Methyl tert-butyl ether **BRL** 5.0 179700 08/13/2013 01:47 GK Methylcyclohexane BRL 5.0 ug/L 179700 08/13/2013 01:47 GK BRL ug/L 179700 08/13/2013 01:47 GK Methylene chloride 5.0 BRL ug/L 179700 08/13/2013 01:47 GK o-Xylene 5.0

Qualifiers:

BRL Below reporting limit

Date:

15-Aug-13

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

Second Second

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client:Genesis Project, Inc.Client Sample ID:TRIPBLANKProject Name:Vogue CleanersCollection Date:8/8/2013Lab ID:1308732-012Matrix:Aqueous

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst			
TCL VOLATILE ORGANICS SW8260	OB (SW5030B)										
Styrene	BRL	5.0		ug/L	179700	1	08/13/2013 01:47	GK			
Tetrachloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 01:47	GK			
Toluene	BRL	5.0		ug/L	179700	1	08/13/2013 01:47	GK			
trans-1,2-Dichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 01:47	GK			
trans-1,3-Dichloropropene	BRL	5.0		ug/L	179700	1	08/13/2013 01:47	GK			
Trichloroethene	BRL	5.0		ug/L	179700	1	08/13/2013 01:47	GK			
Trichlorofluoromethane	BRL	5.0		ug/L	179700	1	08/13/2013 01:47	GK			
Vinyl chloride	BRL	2.0		ug/L	179700	1	08/13/2013 01:47	GK			
Surr: 4-Bromofluorobenzene	96.8	64.6-123		%REC	179700	1	08/13/2013 01:47	GK			
Surr: Dibromofluoromethane	100	76.6-133		%REC	179700	1	08/13/2013 01:47	GK			
Surr: Toluene-d8	98.5	77.8-120		%REC	179700	1	08/13/2013 01:47	GK			

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

15-Aug-13

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Sample/Cooler Receipt Checklist

Client Genesis Project		Work Order Number <u>1306732</u>
Checklist completed by Haylun Maylum Date	8/9/13	
Carrier name: FedEx UPS Courier Client US	S Mail Othe	r
Shipping container/cooler in good condition?	Yes	No Not Present
Custody seals intact on shipping container/cooler?	Yes	No Not Present
Custody seals intact on sample bottles?	Yes	No Not Present
Container/Temp Blank temperature in compliance? (4°C±2)*	Yes _	No
Cooler #1 3.2°C Cooler #2 Cooler #3	Cooler #4 _	Cooler#5 Cooler #6
Chain of custody present?	Yes :	No
Chain of custody signed when relinquished and received?	Yes 🖊	No
Chain of custody agrees with sample labels?	Yes /	No
Samples in proper container/bottle?	Yes i	No
Sample containers intact?	Yes 🖊	No
Sufficient sample volume for indicated test?	Yes /	No
All samples received within holding time?	Yes 💆	No
Was TAT marked on the COC?	Yes .	No
Proceed with Standard TAT as per project history?	Yes _	No Not Applicable
Water - VOA vials have zero headspace? No VOA vials su	ibmitted	Yes No _
Water - pH acceptable upon receipt?	Yes 🔏	No Not Applicable
Adjusted? Sample Condition: Good Other(Explain)	Che	cked by
* * * * * * * * * * * * * * * * * * * *		
(For diffusive samples or AIHA lead) Is a known blank included	led? Yes	No

See Case Narrative for resolution of the Non-Conformance.

 $\verb|L|Quality Assurance| Checklists Procedures Sign-Off Templates| Checklists Sample Receipt Che$

^{*} Samples do not have to comply with the given range for certain parameters.

Rpt Lim Reporting Limit

Client:

ANALYTICAL QC SUMMARY REPORT

Date:

15-Aug-13

Vogue Cleaners

Genesis Project, Inc.

BatchID: 179700

Project Name: 1308732 Workorder: Sample ID: MB-179700 Client ID: ug/L Prep Date:

Sample ID: MB-179700 SampleType: MBLK	Client ID: TestCode: TC	L VOLATILE ORGA	NICS SW8260	В	Un Ba	its: ug/L tchID: 179700		rep Date:	08/12/2013 08/12/2013	Run No: 24972 0 Seq No: 52343 3	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limi	t RPD Ret	f Val %RPI	O RPD Limit	Qual
1,1,1-Trichloroethane	BRL	5.0									
1,1,2,2-Tetrachloroethane	BRL	5.0									
1,1,2-Trichloroethane	BRL	5.0									
1,1-Dichloroethane	BRL	5.0									
1,1-Dichloroethene	BRL	5.0									
1,2,4-Trichlorobenzene	BRL	5.0									
1,2-Dibromo-3-chloropropane	BRL	5.0									
1,2-Dibromoethane	BRL	5.0									
1,2-Dichlorobenzene	BRL	5.0									
1,2-Dichloroethane	BRL	5.0									
1,2-Dichloropropane	BRL	5.0									
1,3-Dichlorobenzene	BRL	5.0									
1,4-Dichlorobenzene	BRL	5.0									
2-Butanone	BRL	50									
2-Hexanone	BRL	10									
4-Methyl-2-pentanone	BRL	10									
Acetone	BRL	50									
Benzene	BRL	5.0									
Bromodichloromethane	BRL	5.0									
Bromoform	BRL	5.0									
Bromomethane	BRL	5.0									
Carbon disulfide	BRL	5.0									
Carbon tetrachloride	BRL	5.0									
Chlorobenzene	BRL	5.0									
Chloroethane	BRL	10									
Chloroform	BRL	5.0									
Chloromethane	BRL	10									
Qualifiers: > Greater than Result v	value		< Less	than Result value			В	Analyte detected	in the associated metho	d blank	
BRL Below reporting limi				nated (value above quantit	ation range)		Н	_	r preparation or analysis	exceeded	
J Estimated value det	ected below Reporting Limi	it	N Anal	yte not NELAC certified			R	RPD outside lim	its due to matrix		

S Spike Recovery outside limits due to matrix

Client: Genesis Project, Inc.

Genesis Project, Inc.
Vogue Cleaners

Project Name: Vogue Cl **Workorder:** 1308732

ANALYTICAL QC SUMMARY REPORT

BatchID: 179700

Date:

15-Aug-13

Sample ID: MB-179700 SampleType: MBLK	Client ID:	CL VOLATILE ORGA	NICS SW8260	В	Uni	ts: ug/L chID: 179700	_	Date: 08/12 lysis Date: 08/12	2/2013	Run No: 249720 Seq No: 5234318
SampleType. WIBLK	resicode.	ez vezinzzene.	31100		Dat	CIIID. 179700	Alla	1ysis Date. 06/12	72013	3eq 110. 3234316
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
cis-1,2-Dichloroethene	BRL	5.0								
cis-1,3-Dichloropropene	BRL	5.0								
Cyclohexane	BRL	5.0								
Dibromochloromethane	BRL	5.0								
Dichlorodifluoromethane	BRL	10								
Ethylbenzene	BRL	5.0								
Freon-113	BRL	10								
Isopropylbenzene	BRL	5.0								
m,p-Xylene	BRL	5.0								
Methyl acetate	BRL	5.0								
Methyl tert-butyl ether	BRL	5.0								
Methylcyclohexane	BRL	5.0								
Methylene chloride	BRL	5.0								
o-Xylene	BRL	5.0								
Styrene	BRL	5.0								
Tetrachloroethene	BRL	5.0								
Toluene	BRL	5.0								
trans-1,2-Dichloroethene	BRL	5.0								
trans-1,3-Dichloropropene	BRL	5.0								
Trichloroethene	BRL	5.0								
Trichlorofluoromethane	BRL	5.0								
Vinyl chloride	BRL	2.0								
Surr: 4-Bromofluorobenzene	49.83	0	50.00		99.7	64.6	123			
Surr: Dibromofluoromethane	51.56	0	50.00		103	76.6	133			
Surr: Toluene-d8	50.33	0	50.00		101	77.8	120			

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Genesis Project, Inc.
e: Vogue Cleaners

Project Name: Vogue Clear Workorder: 1308732

Client:

ANALYTICAL QC SUMMARY REPORT

Date:

15-Aug-13

BatchID: 179700

Sample ID: LCS-179700 SampleType: LCS	Client ID: TestCode: TO	L VOLATILE ORGA	ANICS SW8260	В	Uni Bat	its: ug/L chID: 179700		Date: (allysis Date: (Run No: 249720 Seq No: 5234317
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	Val %RPD	RPD Limit Qual
1,1-Dichloroethene	59.14	5.0	50.00		118	61.1	142			
Benzene	54.74	5.0	50.00		109	73.5	130			
Chlorobenzene	56.24	5.0	50.00		112	72.4	123			
Γoluene	56.71	5.0	50.00		113	73.6	130			
Trichloroethene	62.65	5.0	50.00		125	70	135			
Surr: 4-Bromofluorobenzene	49.15	0	50.00		98.3	64.6	123			
Surr: Dibromofluoromethane	53.38	0	50.00		107	76.6	133			
Surr: Toluene-d8	50.46	0	50.00		101	77.8	120			
Sample ID: 1308732-002AMS SampleType: MS	Client ID: MTTestCode: TC	W-1 L VOLATILE ORGA	ANICS SW8260	В	Uni Bat	its: ug/L chID: 179700		p Date: (alysis Date: (Run No: 249720 Seq No: 5235516
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	Val %RPD	RPD Limit Qual
1,1-Dichloroethene	58.18	5.0	50.00		116	60	168			
Benzene	56.25	5.0	50.00	2.560	107	66.6	148			
Chlorobenzene	59.20	5.0	50.00		118	71.9	135			
Γoluene	55.51	5.0	50.00		111	68	149			
Trichloroethene	60.99	5.0	50.00		122	71.1	154			
Surr: 4-Bromofluorobenzene	49.25	0	50.00		98.5	64.6	123			
Surr: Dibromofluoromethane	52.86	0	50.00		106	76.6	133			
Surr: Toluene-d8	50.05	0	50.00		100	77.8	120			
Sample ID: 1308732-002AMSD SampleType: MSD	Client ID: M TestCode: TO	W-1 L VOLATILE ORGA	ANICS SW8260	В	Uni Bat	its: ug/L chID: 179700		p Date: (alysis Date: (Run No: 249720 Seq No: 5235518
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	Val %RPD	RPD Limit Qual
,1-Dichloroethene	55.05	5.0	50.00		110	60	168	58.18	5.53	18.6
Benzene	55.17	5.0	50.00	2.560	105	66.6	148	56.25	1.94	20
Qualifiers: > Greater than Result value BRL Below reporting limit J Estimated value detected Rpt Lim Reporting Limit	ne ed below Reporting Lim	it	E Estim N Analy	than Result value ated (value above quantit te not NELAC certified Recovery outside limits o			Н	-	the associated method be preparation or analysis ex	

Client: Genesis Project, Inc. ANALYTICAL QC SUMMARY REPORT

Date:

15-Aug-13

BatchID: 179700

Vogue Cleaners **Project Name:** Workorder: 1308732

Sample ID: 1308732-002AMSD SampleType: MSD	Client ID: MT TestCode: TC	W-1 L VOLATILE ORGA	NICS SW8260	В	Uni Bat	ts: ug/L chID: 179700		Date: 08/12 / lysis Date: 08/12 /		Run No: 249720 Seq No: 5235518
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chlorobenzene	58.82	5.0	50.00		118	71.9	135	59.20	0.644	20
Toluene	55.60	5.0	50.00		111	68	149	55.51	0.162	20
Trichloroethene	60.11	5.0	50.00		120	71.1	154	60.99	1.45	20
Surr: 4-Bromofluorobenzene	48.96	0	50.00		97.9	64.6	123	49.25	0	0
Surr: Dibromofluoromethane	53.00	0	50.00		106	76.6	133	52.86	0	0
Surr: Toluene-d8	50.89	0	50.00		102	77.8	120	50.05	0	0

Qualifiers: Greater than Result value

> BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

August 29, 2013

Tiffany Messier Genesis Project, Inc. 1258 Concord Rd. SE

Smyrna

GA 30016

TEL: (770) 319-7217 FAX: (770) 319-7219

RE: Vogue Cleaners

Dear Tiffany Messier:

Order No: 1308M82

Analytical Environmental Services, Inc. received 2 samples on 8/23/2013 3:18:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

- -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/13-06/30/14.
- -AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) effective until 09/01/15.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Dorothy deBruyn

Project Manager

CHAIN OF CUSTODY

ANAL YTICAL ENVIRONMENTAL SERVICES, INC

3785 Presidential Parkway, Atlanta GA 30340-3704

AES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188

BOSMIL oţ. Date: 8/33/13 Page_ Work Order:

No # of Containers Œ Œ J your results, place bottle to check on the status of www.aesatlanta.com Same Day Rush (auth req.) Tumaround Time Request Standard 5 Business Days Visit our website DATA PACKAGE: 1 11 III Next Business Day Rush Fax? Y/N AMPLES RECEIVED AFTER 3PM OR ON SATURDAY ARE CONSIDERED RECEIVED THE NEXT BUSINESS DAY. IF TURNAROUND TIME IS NOT INDICATED, AES WILL PROCEED WITH STANDARD TAT OF SAMPLES.

AATRIX CODES: A = Air GW = Groundwater SE = Sediment SO = Soil SW = Surface Water W = Water (Blanks) DW = Drinking Water (Blanks) O = Other (specify) WW = Waste Water orders, etc. 2 Business Day Rush Total # of Containers REMARKS STATE PROGRAM (if any): Other E-mail? SEND REPORT TO: 4 Messier & genoral et. com ANALYSIS REQUESTED PRESERVATION (Sec codes) PROJECT INFORMATION INVOICE TO: (IF DIFFERENT FROM ABOVE) PROJECT NAME: SITE ADDRESS: PROJECT #: boto 200 3 ა 3 3/88/8 (See codes) Matrix Hedex UPS MAIL COURIER 1258 Concord Rd SF Smyrna 164 30080 SHIPMENT METHOD FAX: 720-319-7219 Grab GREYHOUND OTHER 1235 SAMPLED CLIENT SIGNATURE S/23/13 RECEIVED BY 1/33/13 SI23(13 SAMPLE ID 720-314-221 MW 8R MW 5 PECIAL INSTRUCTIONS/COMMENTS: Genesis Prajed ELINQUISHED BY AMPLED BY: PHONE 97

PRESERVATIVE CODES: H+1 = Hydrochloric acid + ice [** loc only N = Nitric acid ** S+1 = Sulfuric acid + ice S/M+1 = Sodium Bisulfate/Methanol + ice MATRIX CODES: A = Air

1

O = Other (specify)

NA = None White Copy - Original; Yellow Copy - Client

Client: Genesis Project, Inc. Client Sample ID: MW 5

Project Name: Vogue Cleaners Collection Date: 8/23/2013 12:35:00 PM

Date:

29-Aug-13

Lab ID: 1308M82-001 Matrix: Groundwater

TCL VOLATILE ORGANICS SW8260B							
			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,1,2,2-Tetrachloroethane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,1,2-Trichloroethane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,1-Dichloroethane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,1-Dichloroethene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,2,4-Trichlorobenzene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,2-Dibromo-3-chloropropane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,2-Dibromoethane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,2-Dichlorobenzene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,2-Dichloroethane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,2-Dichloropropane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,3-Dichlorobenzene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
1,4-Dichlorobenzene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
2-Butanone	BRL	50	ug/L	180460	1	08/28/2013 17:09	AK
2-Hexanone	BRL	10	ug/L	180460	1	08/28/2013 17:09	AK
4-Methyl-2-pentanone	BRL	10	ug/L	180460	1	08/28/2013 17:09	AK
Acetone	BRL	50	ug/L	180460	1	08/28/2013 17:09	AK
Benzene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Bromodichloromethane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Bromoform	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Bromomethane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Carbon disulfide	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Carbon tetrachloride	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Chlorobenzene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Chloroethane	BRL	10	ug/L	180460	1	08/28/2013 17:09	AK
Chloroform	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Chloromethane	BRL	10	ug/L	180460	1	08/28/2013 17:09	AK
cis-1,2-Dichloroethene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
cis-1,3-Dichloropropene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Cyclohexane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Dibromochloromethane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Dichlorodifluoromethane	BRL	10	ug/L	180460	1	08/28/2013 17:09	AK
Ethylbenzene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Freon-113	BRL	10	ug/L	180460	1	08/28/2013 17:09	AK
Isopropylbenzene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
m,p-Xylene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Methyl acetate	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Methyl tert-butyl ether	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Methylcyclohexane	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
Methylene chloride	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK
o-Xylene	BRL	5.0	ug/L	180460	1	08/28/2013 17:09	AK

Qualifiers:

BRL Below reporting limit

Narr See case narrative
NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW 5

Project Name: Vogue Cleaners Collection Date: 8/23/2013 12:35:00 PM

Date:

29-Aug-13

Lab ID: 1308M82-001 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst		
TCL VOLATILE ORGANICS	SW8260B	(SW5030B)									
Styrene		BRL	5.0		ug/L	180460	1	08/28/2013 17:09	AK		
Tetrachloroethene		140	5.0		ug/L	180460	1	08/28/2013 17:09	AK		
Toluene		BRL	5.0		ug/L	180460	1	08/28/2013 17:09	AK		
trans-1,2-Dichloroethene		BRL	5.0		ug/L	180460	1	08/28/2013 17:09	AK		
trans-1,3-Dichloropropene		BRL	5.0		ug/L	180460	1	08/28/2013 17:09	AK		
Trichloroethene		26	5.0		ug/L	180460	1	08/28/2013 17:09	AK		
Trichlorofluoromethane		BRL	5.0		ug/L	180460	1	08/28/2013 17:09	AK		
Vinyl chloride		BRL	2.0		ug/L	180460	1	08/28/2013 17:09	AK		
Surr: 4-Bromofluorobenzene		86.2	64.6-123		%REC	180460	1	08/28/2013 17:09	AK		
Surr: Dibromofluoromethane		106	76.6-133		%REC	180460	1	08/28/2013 17:09	AK		
Surr: Toluene-d8		95.1	77.8-120		%REC	180460	1	08/28/2013 17:09	AK		

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative NC Not confirmed

< Less than Result value

Client: Genesis Project, Inc. Client Sample ID: MW 8R

Project Name: Vogue Cleaners Collection Date: 8/23/2013 12:15:00 PM

Date:

29-Aug-13

Lab ID:1308M82-002Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys		
TCL VOLATILE ORGANICS SW82	260B	(SW5030B)								
1,1,1-Trichloroethane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,1,2-Trichloroethane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,1-Dichloroethane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,1-Dichloroethene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,2-Dibromoethane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,2-Dichlorobenzene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,2-Dichloroethane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,2-Dichloropropane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,3-Dichlorobenzene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
1,4-Dichlorobenzene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
2-Butanone	BRL	50		ug/L	180460	1	08/28/2013 18:33	AK		
2-Hexanone	BRL	10		ug/L	180460	1	08/28/2013 18:33	AK		
4-Methyl-2-pentanone	BRL	10		ug/L	180460	1	08/28/2013 18:33	AK		
Acetone	BRL	50		ug/L	180460	1	08/28/2013 18:33	AK		
Benzene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Bromodichloromethane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Bromoform	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Bromomethane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Carbon disulfide	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Carbon tetrachloride	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Chlorobenzene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Chloroethane	BRL	10		ug/L	180460	1	08/28/2013 18:33	AK		
Chloroform	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Chloromethane	BRL	10		ug/L	180460	1	08/28/2013 18:33	AK		
cis-1,2-Dichloroethene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
cis-1,3-Dichloropropene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Cyclohexane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Dibromochloromethane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Dichlorodifluoromethane	BRL	10		ug/L	180460	1	08/28/2013 18:33	AK		
Ethylbenzene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Freon-113	BRL	10		ug/L	180460	1	08/28/2013 18:33	AK		
Isopropylbenzene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
m,p-Xylene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Methyl acetate	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Methyl tert-butyl ether	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Methylcyclohexane	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Methylene chloride	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
o-Xylene	BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		

Qualifiers:

Narr See case narrative
NC Not confirmed

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW 8R

Project Name: Vogue Cleaners Collection Date: 8/23/2013 12:15:00 PM

Date:

29-Aug-13

Lab ID: 1308M82-002 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst		
TCL VOLATILE ORGANICS	SW8260B	(SW5030B)									
Styrene		BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Tetrachloroethene		16	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Toluene		BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
trans-1,2-Dichloroethene		BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
trans-1,3-Dichloropropene		BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Trichloroethene		BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Trichlorofluoromethane		BRL	5.0		ug/L	180460	1	08/28/2013 18:33	AK		
Vinyl chloride		BRL	2.0		ug/L	180460	1	08/28/2013 18:33	AK		
Surr: 4-Bromofluorobenzene		87.4	64.6-123		%REC	180460	1	08/28/2013 18:33	AK		
Surr: Dibromofluoromethane		104	76.6-133		%REC	180460	1	08/28/2013 18:33	AK		
Surr: Toluene-d8		96.9	77.8-120		%REC	180460	1	08/28/2013 18:33	AK		

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

Sample/Cooler Receipt Checklist

Client Genesis		Work Order Number	1308M82
Checklist completed by Signature D	d/23/13	· 	
Carrier name: FedEx UPS Courier Client	/ US Mail Oth	er	
Shipping container/cooler in good condition?	Yes _	No Not Present _	
Custody seals intact on shipping container/cooler?	Yes	No Not Present _	
Custody seals intact on sample bottles?	Yes	No Not Present _	
Container/Temp Blank temperature in compliance? (4°C±2)		No _	
Cooler #1 30 Cooler #2 Cooler #3	Cooler #4	Cooler#5	Cooler #6
Chain of custody present?	Yes _	No	
Chain of custody signed when relinquished and received?	Yes	No /	
Chain of custody agrees with sample labels?	Yes	No	
Samples in proper container/bottle?	Yes _	No	
Sample containers intact?	Yes	No	
Sufficient sample volume for indicated test?	Yes	No	
All samples received within holding time?	Yes	No	
Was TAT marked on the COC?	Yes	No	
Proceed with Standard TAT as per project history?	Yes	No Not Applicable	
Water - VOA vials have zero headspace? No VOA vials s	ubmitted	YesNo	
Water - pH acceptable upon receipt?	Yes	No Not Applicable	e
Adjusted? Sample Condition: Good Other(Explain)	Chec	cked by	
For diffusive samples or AIHA lead) Is a known blank include	ded? Yes	No	

See Case Narrative for resolution of the Non-Conformance.

\L\Quality Assurance\Checklists Procedures Sign-Off Templates\Checklists\Sample Receipt Checklists\Sample_Cooler_Receipt_Checklist

^{*} Samples do not have to comply with the given range for certain parameters.

Workorder:

1308M82

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

ANALYTICAL QC SUMMARY REPORT

Date:

29-Aug-13

BatchID: 180460

Client: Genesis Project, Inc. **Project Name:** Vogue Cleaners

Analyte Result 1,1,1-Trichloroethane BRL 1,1,2,2-Tetrachloroethane BRL 1,1,2-Trichloroethane BRL 1,1-Dichloroethane BRL 1,1-Dichloroethane BRL 1,2-Dichloroethene BRL 1,2-Dibromo-3-chloropropane BRL 1,2-Dibromoethane BRL 1,2-Dichlorobenzene BRL 1,2-Dichlorobenzene BRL 1,2-Dichloroethane BRL 1,2-Dichloropropane BRL 1,2-Dichloropropane BRL 1,2-Dichloropropane BRL 1,2-Dichloropropane BRL 1,2-Dichloropropane BRL 1,2-Dichloropropane BRL 1,3-Dichlorobenzene BRL 1,4-Dichlorobenzene BRL 2-Butanone BRL 2-Hexanone BRL 4-Methyl-2-pentanone BRL Bromodichloromethane BRL Bromodichloromethane BRL Bromodichloromethane BRL Bromomethane BRL Bromomethane BRL	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	lue SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	√al %RPD	RPD Limit	Qual
1,1,2,2-TetrachloroethaneBRL1,1,2-TrichloroethaneBRL1,1-DichloroethaneBRL1,1-DichloroethaneBRL1,2,4-TrichlorobenzeneBRL1,2-Dibromo-3-chloropropaneBRL1,2-DibromoethaneBRL1,2-DichlorobenzeneBRL1,2-DichloroethaneBRL1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLBenzeneBRLBromodichloromethaneBRLBromodichloromethaneBRL	5.0 5.0 5.0 5.0 5.0 5.0								
1,1,2-TrichloroethaneBRL1,1-DichloroethaneBRL1,1-DichloroetheneBRL1,2,4-TrichlorobenzeneBRL1,2-Dibromo-3-chloropropaneBRL1,2-DibromoethaneBRL1,2-DichlorobenzeneBRL1,2-DichloroethaneBRL1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLBenzeneBRLBromodichloromethaneBRLBromodichloromethaneBRL	5.0 5.0 5.0 5.0 5.0								
1,1-DichloroethaneBRL1,1-DichloroetheneBRL1,2,4-TrichlorobenzeneBRL1,2-Dibromo-3-chloropropaneBRL1,2-DibromoethaneBRL1,2-DichlorobenzeneBRL1,2-DichloroethaneBRL1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLAcetoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL	5.0 5.0 5.0 5.0 5.0								
1,1-DichloroetheneBRL1,2,4-TrichlorobenzeneBRL1,2-Dibromo-3-chloropropaneBRL1,2-DibromoethaneBRL1,2-DichlorobenzeneBRL1,2-DichloroethaneBRL1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLAcetoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL	5.0 5.0 5.0 5.0								
1,2,4-TrichlorobenzeneBRL1,2-Dibromo-3-chloropropaneBRL1,2-DibromoethaneBRL1,2-DichlorobenzeneBRL1,2-DichloroethaneBRL1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL	5.0 5.0 5.0								
1,2-Dibromo-3-chloropropaneBRL1,2-DibromoethaneBRL1,2-DichlorobenzeneBRL1,2-DichloroethaneBRL1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLAcetoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL	5.0 5.0								
1,2-DibromoethaneBRL1,2-DichlorobenzeneBRL1,2-DichloroethaneBRL1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLAcetoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL	5.0								
1,2-DichlorobenzeneBRL1,2-DichloroethaneBRL1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLAcetoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL									
1,2-DichloroethaneBRL1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLAcetoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL	5.0								
1,2-DichloropropaneBRL1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLAcetoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL	5.0								
1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLAcetoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL	5.0								
1,3-DichlorobenzeneBRL1,4-DichlorobenzeneBRL2-ButanoneBRL2-HexanoneBRL4-Methyl-2-pentanoneBRLAcetoneBRLBenzeneBRLBromodichloromethaneBRLBromoformBRL	5.0								
2-Butanone BRL 2-Hexanone BRL 4-Methyl-2-pentanone BRL Acetone BRL Benzene BRL Bromodichloromethane BRL Bromoform BRL	5.0								
2-Hexanone BRL 4-Methyl-2-pentanone BRL Acetone BRL Benzene BRL Bromodichloromethane BRL Bromoform BRL	5.0								
4-Methyl-2-pentanone BRL Acetone BRL Benzene BRL Bromodichloromethane BRL Bromoform BRL	50								
Acetone BRL Benzene BRL Bromodichloromethane BRL Bromoform BRL	10								
Acetone BRL Benzene BRL Bromodichloromethane BRL Bromoform BRL	10								
Bromodichloromethane BRL Bromoform BRL	50								
Bromoform BRL	5.0								
	5.0								
Dramomathana DDI	5.0								
Bromomethane BKL	5.0								
Carbon disulfide BRL	5.0								
Carbon tetrachloride BRL	5.0								
Chlorobenzene BRL	5.0								
Chloroethane BRL	10								
Chloroform BRL	5.0								
Chloromethane BRL	10								
Qualifiers: > Greater than Result value	<	Less than Result value			В	Analyte detected in	the associated method b	lank	
BRL Below reporting limit	E	Estimated (value above quantita	ation range)		Н	Holding times for p	reparation or analysis ex	ceeded	

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

R RPD outside limits due to matrix

1308M82

Workorder:

ANALYTICAL QC SUMMARY REPORT

Date:

29-Aug-13

BatchID: 180460

Client: Genesis Project, Inc. Vogue Cleaners **Project Name:**

Sample ID: MB-180460 SampleType: MBLK	Client ID: TestCode: TO	CL VOLATILE ORGA	NICS SW8260	В	Uni Bat	ts: ug/L chID: 180460		Date: lysis Date:	08/28/2013 08/28/2013	Run No: Seq No:		
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref	Val %RPD	RPD	Limit	Qual
cis-1,2-Dichloroethene	BRL	5.0										
cis-1,3-Dichloropropene	BRL	5.0										
Cyclohexane	BRL	5.0										
Dibromochloromethane	BRL	5.0										
Dichlorodifluoromethane	BRL	10										
Ethylbenzene	BRL	5.0										
Freon-113	BRL	10										
Isopropylbenzene	BRL	5.0										
m,p-Xylene	BRL	5.0										
Methyl acetate	BRL	5.0										
Methyl tert-butyl ether	BRL	5.0										
Methylcyclohexane	BRL	5.0										
Methylene chloride	BRL	5.0										
o-Xylene	BRL	5.0										
Styrene	BRL	5.0										
Tetrachloroethene	BRL	5.0										
Toluene	BRL	5.0										
trans-1,2-Dichloroethene	BRL	5.0										
trans-1,3-Dichloropropene	BRL	5.0										
Trichloroethene	BRL	5.0										
Trichlorofluoromethane	BRL	5.0										
Vinyl chloride	BRL	2.0										
Surr: 4-Bromofluorobenzene	44.39	0	50.00		88.8	64.6	123					
Surr: Dibromofluoromethane	50.27	0	50.00		101	76.6	133					
Surr: Toluene-d8	47.40	0	50.00		94.8	77.8	120					

Qualifiers: Greater than Result value

> BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

1308M82

Genesis Project, Inc. Client: **Project Name:** Vogue Cleaners

Workorder:

ANALYTICAL QC SUMMARY REPORT

Date:

29-Aug-13

BatchID: 180460

Sample ID: LCS-180460	Client ID:				Uni	U	Pre	p Date: 08/	/28/2013	Run No: 250855
SampleType: LCS	TestCode: To	CL VOLATILE ORGA	ANICS SW8260	В	Bat	chID: 180460	Ana	alysis Date: 08/	/28/2013	Seq No: 5263985
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Va	l %RPD	RPD Limit Qual
1,1-Dichloroethene	52.95	5.0	50.00		106	61.1	142			
Benzene	47.79	5.0	50.00		95.6	73.5	130			
Chlorobenzene	56.27	5.0	50.00		113	72.4	123			
Toluene	49.57	5.0	50.00		99.1	73.6	130			
Crichloroethene	49.82	5.0	50.00		99.6	70	135			
Surr: 4-Bromofluorobenzene	48.53	0	50.00		97.1	64.6	123			
Surr: Dibromofluoromethane	51.88	0	50.00		104	76.6	133			
Surr: Toluene-d8	51.57	0	50.00		103	77.8	120			
Sample ID: 1308M82-001AMS	Client ID: M				Uni	its: ug/L	Pre	p Date: 08/	/28/2013	Run No: 250855
SampleType: MS	TestCode: To	CL VOLATILE ORGA	ANICS SW8260	В	Bat	chID: 180460	Ana	alysis Date: 08/	/28/2013	Seq No: 5263990
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Va	l %RPD	RPD Limit Qual
,1-Dichloroethene	55.80	5.0	50.00		112	60	168			
Benzene	51.41	5.0	50.00		103	66.6	148			
Chlorobenzene	59.93	5.0	50.00		120	71.9	135			
Toluene	53.11	5.0	50.00		106	68	149			
Trichloroethene	81.21	5.0	50.00	25.82	111	71.1	154			
Surr: 4-Bromofluorobenzene	49.21	0	50.00		98.4	64.6	123			
Surr: Dibromofluoromethane	53.82	0	50.00		108	76.6	133			
Surr: Toluene-d8	48.60	0	50.00		97.2	77.8	120			
Sample ID: 1308M82-001AMSD SampleType: MSD		IW 5 CL VOLATILE ORGA	ANICS SW8260	В	Uni Bat	its: ug/L chID: 180460		p Date: 08 /alysis Date: 08 /	/28/2013 /28/2013	Run No: 250855 Seq No: 5263991
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Va	l %RPD	RPD Limit Qual
,1-Dichloroethene	52.87	5.0	50.00		106	60	168	55.80	5.39	18.6
Benzene	50.79	5.0	50.00		102	66.6	148	51.41	1.21	20
Qualifiers: > Greater than Result value	ie		< Less	than Result value			В	Analyte detected in the	associated method	blank
BRL Below reporting limit			E Estim	nated (value above quantit	tation range)			Holding times for prep		
J Estimated value detect	ed below Reporting Lin	nit	N Anal	yte not NELAC certified			R	RPD outside limits du	e to matrix	
Rpt Lim Reporting Limit			S Spike	Recovery outside limits	due to matrix					

Client: Genesis Project, Inc. ANALYTICAL QC SUMMARY REPORT

Date:

29-Aug-13

BatchID: 180460

Vogue Cleaners **Project Name:** Workorder: 1308M82

Sample ID: 1308M82-001AMSD					Uni	ts: ug/L	Prep	Date: 08/28	/2013	Run No: 250855	
SampleType: MSD	TestCode: T	CL VOLATILE ORGA	NICS SW82601	В	Bate	chID: 180460	Ana	Analysis Date: 08/28/2013 Seq No: 526399			
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual	
Chlorobenzene	60.18	5.0	50.00		120	71.9	135	59.93	0.416	20	
Toluene	51.48	5.0	50.00		103	68	149	53.11	3.12	20	
Trichloroethene	82.00	5.0	50.00	25.82	112	71.1	154	81.21	0.968	20	
Surr: 4-Bromofluorobenzene	49.52	0	50.00		99.0	64.6	123	49.21	0	0	
Surr: Dibromofluoromethane	52.70	0	50.00		105	76.6	133	53.82	0	0	
Surr: Toluene-d8	48.08	0	50.00		96.2	77.8	120	48.60	0	0	

Qualifiers: Greater than Result value

> BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

R RPD outside limits due to matrix

Mr. Jim Fineis Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009

H&P Project: AG061413-11 Client Project: Genesis Augusta

Dear Mr. Jim Fineis:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 14-Jun-13 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- · Case Narrative (if applicable)
- Sample Results
- Quality Control Summary

Janis Villarreal

- Notes and Definitions / Appendix
- Chain of Custody

Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11

120 Nottaway LaneProject Number: Genesis AugustaReported:Alpharetta, GA 30009Project Manager: Mr. Jim Fineis25-Jun-13 12:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-1	E306081-01	Vapor	12-Jun-13	14-Jun-13
SV-2	E306081-02	Vapor	12-Jun-13	14-Jun-13
SV-4	E306081-03	Vapor	12-Jun-13	14-Jun-13
SV-3	E306081-04	Vapor	12-Jun-13	14-Jun-13
SV-5	E306081-05	Vapor	12-Jun-13	14-Jun-13

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11 120 Nottaway Lane Project Number: Genesis Augusta Reported: Alpharetta, GA 30009 Project Manager: Mr. Jim Fineis 25-Jun-13 12:13 DETECTIONS SUMMARY E306081-01 Sample ID: SV-1 Laboratory ID: Reporting Analyte Method Notes Result Limit Units Acetone 84 48 ug/m3 EPA TO-15 Toluene 7.6 EPA TO-15 7.8 ug/m3Tetrachloroethene 2300 ug/m3 EPA TO-15 Sample ID: SV-2 E306081-02 Laboratory ID: Reporting Analyte Method Notes Result Limit Units EPA TO-15 Acetone 69 24 ug/m3 EPA TO-15 4-Methyl-2-pentanone (MIBK) 12 8.3 ug/m3 EPA TO-15 Toluene 11 3.8 ug/m3 EPA TO-15 Tetrachloroethene 480 6.9 ug/m3 EPA TO-15 m,p-Xylene 22 8.8 ug/m3 o-Xylene 9.2 ug/m3 EPA TO-15 44 1,3,5-Trimethylbenzene 8.9 5.0 ug/m3 EPA TO-15 1,2,4-Trimethylbenzene EPA TO-15 5.0 20 ug/m3 Sample ID: SV-4 E306081-03 Laboratory ID: Reporting Analyte Method Notes Result Limit Units EPA TO-15 cis-1,2-Dichloroethene 130 40 ug/m3 EPA TO-15 Trichloroethene 1400 55 ug/m3 EPA TO-15 Tetrachloroethene 47000 280 ug/m3 Sample ID: SV-3 Laboratory ID: E306081-04 Reporting Analyte Limit Units Method Notes Result ug/m3 Trichloroethene 100 27 EPA TO-15 Tetrachloroethene 7800 34 ug/m3 EPA TO-15 Sample ID: SV-5 E306081-05 Laboratory ID: Reporting Analyte Method Notes Result Limit Units Trichloroethene 680 ug/m3 EPA TO-15 55 Tetrachloroethene 29000 69 ug/m3 EPA TO-15

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11

120 Nottaway LaneProject Number: Genesis AugustaReported:Alpharetta, GA 30009Project Manager: Mr. Jim Fineis25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E306081-01) Vapor Sampled: 12-Jun-1	3 Received: 14	-Jun-13							
Dichlorodifluoromethane (F12)	ND	10	ug/m3	2	EF31905	19-Jun-13	19-Jun-13	EPA TO-15	
Chloromethane	ND	4.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	14	"	"	"	"	"	"	
Vinyl chloride	ND	5.2	"	"	"	"	"	"	
Bromomethane	ND	32	"	"	"	"	"	"	
Chloroethane	ND	16	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	11	"	"	"	"	"	"	
Acetone	84	48	"	"	"	"	"	"	
1,1-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	15	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	7.1	"	"	"	"	"	"	
Carbon disulfide	ND	13	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	16	"	"	"	"	"	"	
1,1-Dichloroethane	ND	8.2	"	"	"	"	"	"	
2-Butanone (MEK)	ND	60	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
Chloroform	ND	9.9	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	11	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	8.2	"	"	"	"	"	"	
Benzene	ND	6.5	"	"	"	"	"	"	
Carbon tetrachloride	ND	13	"	"	"	"	"	"	
Trichloroethene	ND	11	"	"	"	"	"	"	
1,2-Dichloropropane	ND	19	"	"	"	"	"	"	
Bromodichloromethane	ND	14	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	9.2	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	17	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	9.2	"	"	"	"	"	"	
Toluene	7.8	7.6	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	11	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	17	"	"	"	"	"	"	
Dibromochloromethane	ND	17	"	"	"	"	"	"	
Tetrachloroethene	2300	14	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	16	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	14	"	"	"	"	"	"	
Chlorobenzene	ND	9.4	"	"	"	"	"	"	
Ethylbenzene	ND	8.8	"	"	"	"	"	"	
m,p-Xylene	ND	18	"	"	"	"	"	"	
Styrene	ND	8.6	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11

120 Nottaway LaneProject Number: Genesis AugustaReported:Alpharetta, GA 30009Project Manager: Mr. Jim Fineis25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E306081-01) Vapor Sampled: 12-Jun-13				1 uctol	2000	- repuied	, 200	11101104	
o-Xylene	ND	8.8	"	"	"	"	"	"	
Bromoform	ND	21	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	14	"	"	"	"	"	"	
4-Ethyltoluene	ND	10	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	10	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	10	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	24	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	"	"	"	"	"	"	
Hexachlorobutadiene	ND	21	"	n.	"	n .	II.	"	
Surrogate: 1,2-Dichloroethane-d4		117 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		103 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	77-		"	"	"	"	
SV-2 (E306081-02) Vapor Sampled: 12-Jun-13	Received: 14								
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EF31905	19-Jun-13	19-Jun-13	EPA TO-15	
Chloromethane	ND	2.1	ug/III3	"	"	"	1)-Juli-13	" "	
Dichlorotetrafluoroethane (F114)	ND	7.1	,,	"	,,	"	"	"	
Vinyl chloride	ND	2.6	,,	,,	,,	"	"	"	
Bromomethane	ND	16	,,	"	,,	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.6	,,	"	,,	"	"	"	
Acetone	69	24	,,	"	,,	"	"	"	
1,1-Dichloroethene	ND	4.0	,,	,,	,,	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	,,	"	,,	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1		"	,,	"	"	"	
2-Butanone (MEK)	ND	30		"	,,	"	"	"	
cis-1,2-Dichloroethene	ND	4.0		"	,,	"	"	"	
Chloroform	ND ND	4.0		"	,,	"	"	"	
1,1,1-Trichloroethane	ND	4.9 5.5		"	,,	"	"	"	
1,2-Dichloroethane (EDC)	ND	5.5 4.1	,,	"	,,	"	"	"	
Benzene	ND ND	3.2	,,	"	"	"	"	"	
Carbon tetrachloride			,,	"	"	"	"	"	
Caroon tenaemonae	ND	6.4							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company

Project: AG061413-11 Project Number: Genesis Augusta

120 Nottaway Lane Reported: Alpharetta, GA 30009 Project Manager: Mr. Jim Fineis 25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2 (E306081-02) Vapor Sampled: 12-J	un-13 Received: 14	-Jun-13							
Trichloroethene	ND	5.5	"	"	"	"	"	"	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	12	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	11	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	480	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	22	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	9.2	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	8.9	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	20	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	II.	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		119 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		106 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %		127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11

120 Nottaway LaneProject Number: Genesis AugustaReported:Alpharetta, GA 30009Project Manager: Mr. Jim Fineis25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-4 (E306081-03) Vapor Sampled: 12-Jun-1	13 Received: 14	-Jun-13							
Dichlorodifluoromethane (F12)	ND	50	ug/m3	10	EF31905	19-Jun-13	19-Jun-13	EPA TO-15	
Chloromethane	ND	21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	71	"	"	"	"	"	"	
Vinyl chloride	ND	26	"	"	"	"	"	"	
Bromomethane	ND	160	"	"	"	"	"	"	
Chloroethane	ND	80	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	56	"	"	"	"	"	"	
Acetone	ND	240	"	"	"	"	"	"	
1,1-Dichloroethene	ND	40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	35	"	"	"	"	"	"	
Carbon disulfide	ND	63	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	41	"	"	"	"	"	"	
2-Butanone (MEK)	ND	300	"	"	"	"	"	"	
cis-1,2-Dichloroethene	130	40	"	"	"	"	"	"	
Chloroform	ND	49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	41	"	"	"	"	"	"	
Benzene	ND	32	"	"	"	"	"	"	
Carbon tetrachloride	ND	64	"	"	"	"	"	"	
Trichloroethene	1400	55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	94	"	"	"	"	"	"	
Bromodichloromethane	ND	68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	46	"	"	"	"	"	"	
Toluene	ND	38	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	83	"	"	"	"	"	"	
Dibromochloromethane	ND	86	"	"	"	"	"	"	
Tetrachloroethene	47000	280	"	40	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	78	"	10	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	70	"	"	"	"	"	"	
Chlorobenzene	ND	47	"	"	"	"	"	"	
Ethylbenzene	ND	44	"	"	"	"	"	"	
m,p-Xylene	ND	88	"	"	"	"	"	"	
Styrene	ND	43	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11

120 Nottaway LaneProject Number: Genesis AugustaReported:Alpharetta, GA 30009Project Manager: Mr. Jim Fineis25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-4 (E306081-03) Vapor Sampled: 12-Jul	n-13 Received: 14					•	,		
o-Xylene	ND	44	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	70	"	"	"	"	"	"	
4-Ethyltoluene	ND	50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	75	"	"	"	"	"	"	
Hexachlorobutadiene	ND	110	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		118 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		99.3 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.8 %	77-	127	"	"	"	"	
SV-3 (E306081-04) Vapor Sampled: 12-Ju	n-13 Received: 14	-Jun-13							
Dichlorodifluoromethane (F12)	ND	25	ug/m3	5	EF31905	19-Jun-13	19-Jun-13	EPA TO-15	
Chloromethane	ND	10	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	35	"	"	"	"	"	"	
Vinyl chloride	ND	13	"	"	"	"	"	"	
Bromomethane	ND	79	"	"	"	"	"	"	
Chloroethane	ND	40	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	28	"	"	"	"	"	"	
Acetone	ND	120	"	"	"	"	"	"	
1,1-Dichloroethene	ND	20	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	39	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	18	"	"	"	"	"	"	
Carbon disulfide	ND	32	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	40	"	"	"	"	"	"	
1,1-Dichloroethane	ND	21	"	"	"	"	"	"	
2-Butanone (MEK)	ND	150	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	20	"	"	"	"	"	"	
Chloroform	ND	25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	28	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	21	"	"	"	"	"	"	
Benzene	ND	16	"	"	"	"	"	"	
Carbon tetrachloride	ND	32	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company

Project: AG061413-11

120 Nottaway Lane Alpharetta, GA 30009 Project Number: Genesis Augusta Project Manager: Mr. Jim Fineis Reported: 25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3 (E306081-04) Vapor Sampled: 12-Jun-1	Received: 14-	-Jun-13							
Trichloroethene	100	27	"	"	"	"	"	"	
1,2-Dichloropropane	ND	47	"	"	"	"	"	"	
Bromodichloromethane	ND	34	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	41	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	23	"	"	"	"	"	"	
Toluene	ND	19	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	28	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	41	"	"	"	"	"	"	
Dibromochloromethane	ND	43	"	"	"	"	"	"	
Tetrachloroethene	7800	34	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	39	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
Chlorobenzene	ND	23	"	"	"	"	"	"	
Ethylbenzene	ND	22	"	"	"	"	"	"	
m,p-Xylene	ND	44	"	"	"	"	"	"	
Styrene	ND	22	"	"	"	"	"	"	
o-Xylene	ND	22	"	"	"	"	"	"	
Bromoform	ND	52	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	35	"	"	"	"	"	"	
4-Ethyltoluene	ND	25	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	61	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		119 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		99.2 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.5 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11

120 Nottaway LaneProject Number: Genesis AugustaReported:Alpharetta, GA 30009Project Manager: Mr. Jim Fineis25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-5 (E306081-05) Vapor Sampled: 12-Jun-1	3 Received: 14	-Jun-13							
Dichlorodifluoromethane (F12)	ND	50	ug/m3	10	EF31905	19-Jun-13	19-Jun-13	EPA TO-15	
Chloromethane	ND	21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	71	"	"	"	"	"	"	
Vinyl chloride	ND	26	"	"	"	"	"	"	
Bromomethane	ND	160	"	"	"	"	"	"	
Chloroethane	ND	80	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	56	"	"	"	"	"	"	
Acetone	ND	240	"	"	"	"	"	"	
1,1-Dichloroethene	ND	40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	35	"	"	"	"	"	"	
Carbon disulfide	ND	63	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	41	"	"	"	"	"	"	
2-Butanone (MEK)	ND	300	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	40	"	"	"	"	"	"	
Chloroform	ND	49	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	41	"	"	"	"	"	"	
Benzene	ND	32	"	"	"	"	"	"	
Carbon tetrachloride	ND	64	"	"	"	"	"	"	
Trichloroethene	680	55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	94	"	"	"	"	"	"	
Bromodichloromethane	ND	68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	46	"	"	"	"	"	"	
Toluene	ND	38	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	83	"	"	"	"	"	"	
Dibromochloromethane	ND	86	"	"	"	"	"	"	
Tetrachloroethene	29000	69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	70	"	"	"	"	"	"	
Chlorobenzene	ND	47	"	"	"	"	"	"	
Ethylbenzene	ND	44	"	"	"	"	"	"	
m,p-Xylene	ND	88	"	"	"	"	"	"	
Styrene	ND	43	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company

Project: AG061413-11

120 Nottaway Lane Alpharetta, GA 30009 Project Number: Genesis Augusta Project Manager: Mr. Jim Fineis Reported: 25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-5 (E306081-05) Vapor Sampled: 12-Ju	n-13 Received: 14-	Jun-13							
o-Xylene	ND	44	"	"	"	"	"	"	
Bromoform	ND	100	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	70	"	"	"	"	"	"	
4-Ethyltoluene	ND	50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	75	"	"	"	"	"	"	
Hexachlorobutadiene	ND	110	"	"	"	"	II .	"	
Surrogate: 1,2-Dichloroethane-d4		119 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		104 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11

120 Nottaway LaneProject Number: Genesis AugustaReported:Alpharetta, GA 30009Project Manager: Mr. Jim Fineis25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch EF31905 - TO-15				
Blank (EF31905-BLK1)				Prepared & Analyzed: 19-Jun-13
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	
Chloromethane	ND	2.1	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	
Vinyl chloride	ND	2.6	"	
Bromomethane	ND	16	"	
Chloroethane	ND	8.0	"	
Trichlorofluoromethane (F11)	ND	5.6	"	
Acetone	ND	24	"	
1,1-Dichloroethene	ND	4.0	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	
Carbon disulfide	ND	6.3	"	
trans-1,2-Dichloroethene	ND	8.0	"	
1,1-Dichloroethane	ND	4.1	"	
2-Butanone (MEK)	ND	30	"	
cis-1,2-Dichloroethene	ND	4.0	"	
Chloroform	ND	4.9	"	
1,1,1-Trichloroethane	ND	5.5	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	
Benzene	ND	3.2	"	
Carbon tetrachloride	ND	6.4	"	
Trichloroethene	ND	5.5	"	
1,2-Dichloropropane	ND	9.4	"	
Bromodichloromethane	ND	6.8	"	
cis-1,3-Dichloropropene	ND	4.6	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	
trans-1,3-Dichloropropene	ND	4.6	"	
Toluene	ND	3.8	"	
1,1,2-Trichloroethane	ND	5.5	"	
2-Hexanone (MBK)	ND	8.3	"	
Dibromochloromethane	ND	8.6	"	
Tetrachloroethene	ND	6.9	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

%REC

Atlas Geo-Sampling Company

Project: AG061413-11 120 Nottaway Lane Project Number: Genesis Augusta

Reported: Alpharetta, GA 30009 Project Manager: Mr. Jim Fineis 25-Jun-13 12:13

Reporting

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EF31905 - TO-15										
Blank (EF31905-BLK1)				Prepared &	Analyzed:	19-Jun-13				
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	38	"							
Hexachlorobutadiene	ND	54	"							
Surrogate: 1,2-Dichloroethane-d4	250		"	214		117	76-134			
Surrogate: Toluene-d8	208		"	207		101	78-125			
Surrogate: 4-Bromofluorobenzene	362		"	364		99.4	77-127			
LCS (EF31905-BS1)				Prepared &	Analyzed:	19-Jun-13				
Dichlorodifluoromethane (F12)	100	5.0	ug/m3	101		101	65-135			
Vinyl chloride	44	2.6	ug/ms	52.0		83.9	65-135			
Chloroethane	42	8.0	"	53.6		79.2	65-135			
Trichlorofluoromethane (F11)	110	5.6	"	113		96.0	65-135			
1,1-Dichloroethene	75	4.0	"	80.8		92.9	65-135			
1,1,2-Trichlorotrifluoroethane (F113)	130	7.7	"	155		81.2	65-135			
Methylene chloride (Dichloromethane)	54	3.5	"	70.8		76.8	65-135			
trans-1,2-Dichloroethene	64	8.0	"	80.8		79.5	65-135			
1,1-Dichloroethane	68	4.1	"	82.4		82.8	65-135			
cis-1,2-Dichloroethene	69	4.0	"	80.0		85.9	65-135			
Chloroform	94	4.9	"	99.2		94.4	65-135			
1,1,1-Trichloroethane	110	5.5	"	111		96.1	65-135			
1,2-Dichloroethane (EDC)	80	4.1	,,	82.4		96.5	65-135			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11
120 Nottaway Lane Project Number: Genesis Augusta

120 Nottaway LaneProject Number: Genesis AugustaReported:Alpharetta, GA 30009Project Manager: Mr. Jim Fineis25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF31905 - TO-15										
LCS (EF31905-BS1)				Prepared &	Analyzed:	19-Jun-13				
Benzene	58	3.2	ug/m3	64.8		89.9	65-135			
Carbon tetrachloride	130	6.4	"	128		99.1	65-135			
Trichloroethene	110	5.5	"	110		97.1	65-135			
Toluene	69	3.8	"	76.8		89.4	65-135			
1,1,2-Trichloroethane	96	5.5	"	111		86.5	65-135			
Tetrachloroethene	130	6.9	"	138		95.0	65-135			
1,1,1,2-Tetrachloroethane	130	7.0	"	140		95.7	65-135			
Ethylbenzene	96	4.4	"	88.4		109	65-135			
m,p-Xylene	190	8.8	"	177		106	65-135			
o-Xylene	95	4.4	"	88.4		107	65-135			
1,1,2,2-Tetrachloroethane	130	7.0	"	140		95.9	65-135			
Surrogate: 1,2-Dichloroethane-d4	239		"	214		112	76-134			
Surrogate: Toluene-d8	203		"	207		97.9	78-125			
Surrogate: 4-Bromofluorobenzene	381		"	364		104	77-127			
LCS Dup (EF31905-BSD1)				Prepared &	Analyzed:	19-Jun-13				
Dichlorodifluoromethane (F12)	100	5.0	ug/m3	101		102	65-135	1.03	35	
Vinyl chloride	48	2.6	"	52.0		91.6	65-135	8.75	35	
Chloroethane	48	8.0	"	53.6		89.3	65-135	12.0	35	
Trichlorofluoromethane (F11)	95	5.6	"	113		84.1	65-135	13.2	35	
1,1-Dichloroethene	84	4.0	"	80.8		104	65-135	11.3	35	
1,1,2-Trichlorotrifluoroethane (F113)	140	7.7	"	155		87.9	65-135	7.94	35	
Methylene chloride (Dichloromethane)	64	3.5	"	70.8		89.9	65-135	15.7	35	
trans-1,2-Dichloroethene	73	8.0	"	80.8		90.0	65-135	12.4	35	
1,1-Dichloroethane	67	4.1	"	82.4		81.6	65-135	1.45	35	
cis-1,2-Dichloroethene	76	4.0	"	80.0		95.6	65-135	10.6	35	
Chloroform	94	4.9	"	99.2		95.1	65-135	0.788	35	
1,1,1-Trichloroethane	110	5.5	"	111		94.8	65-135	1.40	35	
1,2-Dichloroethane (EDC)	82	4.1	"	82.4		100	65-135	3.65	35	
Benzene	60	3.2	"	64.8		92.0	65-135	2.31	35	
Carbon tetrachloride	130	6.4	"	128		98.5	65-135	0.657	35	
Trichloroethene	110	5.5	"	110		98.2	65-135	1.12	35	
Toluene	68	3.8	"	76.8		87.9	65-135	1.63	35	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company

120 Nottaway Lane Alpharetta, GA 30009 Project: AG061413-11

Project Number: Genesis Augusta Project Manager: Mr. Jim Fineis Reported: 25-Jun-13 12:13

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EF31905 - TO-15										
LCS Dup (EF31905-BSD1)				Prepared &	ል Analyzed:	19-Jun-13				
1,1,2-Trichloroethane	98	5.5	ug/m3	111		87.9	65-135	1.59	35	
Tetrachloroethene	130	6.9	"	138		93.1	65-135	2.01	35	
1,1,1,2-Tetrachloroethane	140	7.0	"	140		97.2	65-135	1.55	35	
Ethylbenzene	96	4.4	"	88.4		108	65-135	0.183	35	
m,p-Xylene	190	8.8	"	177		107	65-135	0.374	35	
o-Xylene	96	4.4	"	88.4		108	65-135	0.924	35	
1,1,2,2-Tetrachloroethane	140	7.0	"	140		97.7	65-135	1.90	35	
Surrogate: 1,2-Dichloroethane-d4	238		"	214		111	76-134			
Surrogate: Toluene-d8	200		"	207		96.4	78-125			
Surrogate: 4-Bromofluorobenzene	370		"	364		101	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG061413-11

120 Nottaway LaneProject Number:Genesis AugustaReported:Alpharetta, GA 30009Project Manager:Mr. Jim Fineis25-Jun-13 12:13

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory (Certification # L11-175) in accordance with the DoD-ELAP program. H&P is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods:

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1,2,4-Trichlorobenzene by EPA TO-15 & TO-14A Hexachlorobutadiene by EPA TO-15 & TO-14A Bromodichloromethane by EPA TO-15 & TO-14A 1,2-Dichlorobenzene by EPA TO-15 & TO-14A 1,4-Dichlorobenzene by EPA TO-15 & TO-14A Dichlorobenzene by EPA TO-15 & TO-14A Benzene by EPA TO-15 & TO-14A Chlorobenzene by EPA TO-15 & TO-14A Ethyl benzene by EPA TO-15 & TO-14A Styrene by EPA TO-15 & TO-14A Toluene by EPA TO-15 & TO-14A Toluche Toluche By EPA TO-15 & TO-14A Tolu

1,1,1-Trichloroethane by EPA TO-15 & TO-14A 1,1,2,2-Tetrachloroethane by EPA TO-15 & TO-14A 1,1,2-Trichloroethane by EPA TO-15 & TO-14A 1,1-Dichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethene by EPA TO-15 & TO-14A 1,2-Dichloroethane by EPA TO-15 & TO-14A

1,2-Dichloropropane by EPA TO-15 & TO-14A Benzyl Chloride by EPA TO-15 & TO-14A Bromoform by EPA TO-15 Bromomethane by EPA TO-15 & TO-14A

Carbon tetrachloride by EPA TO-15 & TO-14A Chloroethane by EPA TO-15 & TO-14A Chloroform by EPA TO-15 & TO-14A

Chloromethane by EPA TO-15 & TO-14A cis-1,2-Dichloroethene by EPA TO-15 & TO-14A cis-1,3-Dichloropropene by EPA TO-15 & TO-14A

Methylene chloride by EPA TO -15 & TO-14A Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15 trans-1,3-Dichloropropene by EPA TO-15 & TO-14A

trans-1,3-Dichloropropene by EPA TO-15 & Trichloroethene by EPA TO-15 & TO-14A Vinyl chloride by EPA TO -15 & TO-14A

2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15 Hexane by EPA TO-15

Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

This certification applies to samples analyzed in summa canisters.

Dibromochloromethane by EPA TO-15
1,3-Dichlorobenzene by EPA TO-15 & TO-14A
Trichlorofluoromethane by EPA TO-15 & TO-14A
Naphthalene by H&P SOP TO-15/GC-MS
1,2-Dibromochtane (EDB) by EPA TO-15 & TO-14A
1,2-Dibromo-3-chloropropane by EPA TO-15
1,3-Butadiene by EPA TO-15
1,1,2-Trichlorotrifluoroethane by EPA TO-15 & TO-14A
Carbon disulfide by EPA TO-15
1,4-Dioxane by EPA TO-15

Chain of Custody Rec

	13-11				2		ا ا N ^ر]Os			AZAZ Seg pax Jethane	!±	5)	4.9	7.6	-2.0	.2.6		Time:	Time:	Time:
	AGOGIY	Page			1 _		G1-OT		560		сошьо		O SISAIN							Date:	Date: C / 7 - / 3	
Date:	H&P Project # Outside Lab:			Project Contact:			<u>9</u> ۱-		80	09Z8 [] 09Z8 [] 09Z8 []	Sə.	aphthale	SOIL VAPOR/AIR			-::-				(company)	(company)	(company)
	ıx 760.804.9159	\	1,1,1,1	4 / CA / A	2 6/2 Eav			8	 09Z		tsiJ III TO\tsiJ ho		Λ Λ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	//							:
3 2 2 2 2	760.804.9678 • fax 5 • ph 800.834.9888	'n Firer	4	., C/C-1/2	83 3379		'			BTEX/C	tsiJ Ilu	260B Fu	% %									
	sbad, CA 92010 • ph Signal Hill, CA 90755	Collector] ;	Client Project # 6	770	11		¥ □ ×		- · ·	0202,0	,	Container	**	1	_ "	4	1 11		d by: (Signature)	d by: (Signoture)	d by: (Signature)
	Impata Dr., Carl Coronado Ave.,						:] <u>چ</u>	% 	nperature: / ¬				Sample Date Type	-6-6-13	36 11 11	56 " 58	25 1, 56	55 11 55		npany) Received	npany)	Receive
	2470		٠,٠٠	200	200 / DW		장 물 .	\$ \ <u>\ \</u>	Ten	7751 8657			Purge Time	6	1, 19	103	11 /01	115		(compo	odwoo)	(Auodwoo)
	nistry, Inc.	Samoling	1, 1, 1	179 / 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 11/45	'				1 68 192 1		8-1	C ★ W F Field Point Name	2	135	212	279	616				
	Geochen	A+1/25 600	~<	3	·		EDF: Yes No [No. No.		ctions: Actor (2 93		£3000	Sample Name	1	ر م	h-	1 55	7		uished by (Signature)	uished by: (Signature)	Approved/Relinquished by: (Signature)
F	12.	Client		Address:	 	' ·	Geofracker E	Global IV:Excel FDD:	LAVOI LOD.	Special Instructions: 人育く イタネにに		Lab Work Order #	Sar	2	7 \	71.	3 /	511-		Approved/Relingu	Approved/Refinquished by:	Approved/Relinqu

Rn_H&P_AtlasGeo_20130614.xls 6/17/133:13 PM

1100 (4.1 0 0 "					1	L.,	L	l	L	l							
H&P/Atlas Geo Sampling	<u> </u>						P AG0613	13-14R	(AG# G	enesis A	ugust	a)					
Samples Collected by: Jim Fine	eis				Dates: 6												
						ers: Tedlar											
Site: Agusta GA				Assum	ed Site P			atm									
Analysts: Doug Hammond	1				based or	an eleva	tion of 900) ft									
Phone: 310-490-7896				Time 7	one adius	tment: ac	ld to decay	v time									
email: dhammond@usc.edu	 				3			Collect	(FDT)								
ornam anarmionae accida	 					110010			(PDT)							 	
Cumaman	Collec	tion	Analys	oio.				Lab Du	,								
Summary	Collec		Analy														
	Date	time	Date		Vol run		±1 sig		±1ssd	Notes							
		(EDT)		(PDT)	(cc)	pCi/L	pCi/L	pCi/L	pCi/L								
ceived 6/14/13																	
SV1-SG	6/12/13	9:45	6/14/13	11:09	40	293	15										
SV1-IA	6/12/13	9:50	6/14/13	11:16	120	0.91	0.08										
SV3-IA	6/12/13	11:20	6/14/13	11:19	120	0.81	0.07										
SV5-SG	6/12/13	11:40		11:11	40	258	13	256	3								
lab dupe	6/12/13	11:40	6/14/13	11:13	40	253	13		ا ا							 	
SV5-IA	6/12/13	11:45		11:21	120	0.71	0.07										
) 3 V 3-IA	0/12/13	11.45	0/14/13	11.41	120	0.71	0.07	ļ	ļ					ļ	 		
Uncertainty given in pCi/liter is base	d on counting s	tatistics f	or low activity	samples.	For high a	ctivity sam	ples uncertai	inty is ±5	%.								
The Lower Limit of Detection for Rn					402-R-95-	012, Oct. 9	7) IS U. 14 PU	Ji/liter.	L								
Results are reported based on stand									i							1 1	
									·	لـــــــــــــــــــــــــــــــــــــ							
These results are for application of r	naturally-occurri	ng radon a	as a tracer of s	oil vapor	intrusion,	but are not	intended for	evaluation	on of rado	n hazards							
These results are for application of r	naturally-occurri	ng radon i	as a tracer of s	soil vapor	intrusion,	but are not	intended for	evaluation	on of rado	n hazards							
			as a tracer of s	soil vapor	intrusion,	but are not	intended for	evaluation	on of rado	n hazards							
Results corrected to in situ pressure	as noted above			soil vapor	intrusion,	but are not	intended for	evaluation	on of rado	n hazards	:						
Results corrected to in situ pressure	as noted above			soil vapor	intrusion,	but are not	intended for	evaluation	on of rado	n hazards							
Results corrected to in situ pressure	as noted above	tical De	tails		intrusion,	but are not	intended for	evaluation	on of rado	n hazards							
Results corrected to in situ pressure W Data, Calculation factors,	as noted above , and Analyi Collectio	tical De	tails Analysi	s								Docay T	Docay	Concentra	tion	count	
Results corrected to in situ pressure	as noted above	tical De	tails	s Time	Count in	He	Air/He	Vol run	Press	obs	sig	Decay T		Concentra		stats	Notes
Results corrected to in situ pressure W Data, Calculation factors,	as noted above , and Analyi Collectio	tical De	tails Analysi	s								Decay T (hours)		Concentra dpm/liter		stats pCi/liter	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID	as noted above , and Analyi Collectio	tical De	tails Analysi	s Time	Count in	He	Air/He	Vol run	Press	obs	sig					stats	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID	as noted above , and Analyt Collectio Date	n Time (EDT)	tails Analysi Date	s Time (PDT)	Count in cell/ch	He eff	Air/He eff	Vol run (cc)	Press factor	obs dpm	sig dpm	(hours)	factor	dpm/liter	pCi/liter	stats pCi/liter ±1 sig	Notes
Results corrected to in situ pressure IW Data, Calculation factors, Sample ID Deleved 6/14/13 SVI-SG	as noted above , and Analyt Collectio Date 6/12/13	n Time (EDT)	Analysi Date 6/14/13	s Time (PDT)	Count in cell/ch	He eff	Air/He eff	Vol run (cc)	Press factor	obs dpm	sig dpm	(hours)	factor 1.486	dpm/liter 651	pCi/liter	stats pCi/liter ±1 sig	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID Leived 6/14/13 ISV1-SG SV1-IA	as noted above , and Analyt Collectio Date	n Time (EDT) 9:45 9:50	tails Analysi Date	s Time (PDT)	Count in cell/ch	He eff 0.948 0.743	Air/He eff 0.99 0.97	Vol run (cc) 40	Press factor 0.96 0.96	obs dpm 17.14 0.12	sig dpm 0.19 0.01	(hours)	1.486 1.486	651 2.01	pCi/liter	stats pCi/liter ±1 sig	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID Leeved 6/14/13 SV1-SG SV1-IA SV3-IA	as noted above , and Analyi Collectio Date 6/12/13 6/12/13	n Time (EDT)	Analysi Date 6/14/13 6/14/13 6/14/13	s Time (PDT)	Count in cell/ch 74/34 82/32 81/31	He eff	Air/He eff 0.99 0.97 0.97	Vol run (cc)	Press factor 0.96 0.96 0.96	obs dpm 17.14 0.12 0.12	sig dpm 0.19 0.01	(hours) 52.4 52.4	1.486 1.486 1.470	651 2.01 1.81	293 0.91	stats pCi/liter ±1 sig 3 0.08	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID Leeved 6/14/13 SV1-SG SV1-IA SV3-IA	as noted above , and Analy Collectio Date 6/12/13 6/12/13 6/12/13	n Time (EDT) 9:45 9:50 11:20	Analysi Date 6/14/13 6/14/13	S Time (PDT)	Count in cell/ch	He eff 0.948 0.743 0.818	Air/He eff 0.99 0.97 0.97	Vol run (cc) 40 120 120	Press factor 0.96 0.96 0.96 0.96	obs dpm 17.14 0.12	sig dpm 0.19 0.01	52.4 52.4 51.0	1.486 1.486	651 2.01	293 0.91 0.81	stats pCi/liter ±1 sig 3 0.08 0.07	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID Leived 6/14/13 1,SV1-Sc 2,SV1-IA 3,SV3-IA 4,SV5-SG lab dupe	as noted above and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13	n Time (EDT) 9:45 9:50 11:20 11:40	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13	S Time (PDT) 11:09 11:16 11:19 11:11	Count in cell/ch 74/34 82/32 81/31 61/33	He eff 0.948 0.743 0.818 0.819	Air/He eff 0.99 0.97 0.97	Vol run (cc) 40 120 120 40	Press factor 0.96 0.96 0.96 0.96	obs dpm 17.14 0.12 0.12 13.22	sig dpm 0.19 0.01 0.01 0.17	52.4 52.4 51.0 50.5	1.486 1.486 1.470 1.465	651 2.01 1.81 573	293 0.91 0.81 258	stats pCi/liter ±1 sig 3 0.08 0.07	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID Leived 6/14/13 1,SV1-Sc 2,SV1-IA 3,SV3-IA 4,SV5-SG lab dupe	as noted above , and Analyte Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13	9:45 9:45 9:11:40	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13	S Time (PDT) 11:09 11:16 11:19 11:11	Count in cell/ch 74/34 82/32 81/31 61/33 Z13/22	He eff 0.948 0.743 0.818 0.819 0.818	Air/He eff 0.99 0.97 0.97 0.99	Vol run (cc) 40 120 120 40 40	Press factor 0.96 0.96 0.96 0.96 0.96	obs dpm 17.14 0.12 0.12 13.22 12.96	sig dpm 0.19 0.01 0.01 0.17 0.17	52.4 52.4 51.0 50.5 50.6	1.486 1.486 1.470 1.465 1.465	651 2.01 1.81 573 563	293 0.91 0.81 258 253	stats pCi/liter ±1 sig 3 0.08 0.07 3	Notes
Results corrected to in situ pressure IW Data, Calculation factors, Sample ID Leived 6/14/13 1SV1-Sc 2SV1-IA 1SV3-IA 1SV3-IA 1SV5-SG Iab dupe	as noted above , and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13	9:45 9:45 9:11:40	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13	S Time (PDT) 11:09 11:16 11:19 11:11	74/34 82/32 81/31 61/33 Z13/22 84/11	He eff 0.948 0.743 0.818 0.819 0.785	Air/He eff 0.99 0.97 0.97 0.99	Vol run (cc) 40 120 120 40 40 120	Press factor 0.96 0.96 0.96 0.96 0.96	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10	sig dpm 0.19 0.01 0.01 0.17 0.17 0.01	52.4 52.4 51.0 50.5 50.6 50.6	1.486 1.486 1.470 1.465 1.465	651 2.01 1.81 573 563 1.59	293 0.91 0.81 258 253 0.71	stats pCi/liter ±1 sig 3 0.08 0.07 3 0.07	Notes
Results corrected to in situ pressure IW Data, Calculation factors, Sample ID Leived 6/14/13 ISV1-SG SSV1-IA 3 ISV3-IA 4 SV5-SG lab dupe SV5-IA Decay corrections based on Rn dec	as noted above , and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13	9:45 9:45 9:11:40	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 0.1813	S Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21	Count in cell/ch 74/34 82/32 81/31 61/33 Z13/22 84/11	He eff 0.948 0.743 0.818 0.819 0.785	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99	Vol run (cc) 40 120 120 40 40 120	Press factor 0.96 0.96 0.96 0.96 0.96	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10	sig dpm 0.19 0.01 0.01 0.17 0.17 0.01	52.4 52.4 51.0 50.5 50.6 50.6	1.486 1.486 1.470 1.465 1.465	651 2.01 1.81 573 563 1.59	293 0.91 0.81 258 253 0.71	stats pCi/liter ±1 sig 3 0.08 0.07 3 0.07	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID Decived 6/14/13 SV1-SG SV1-IA SV3-SG Iab dupe SV5-IA Decay corrections based on Rn decay	as noted above , and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13	9:45 9:45 9:11:40	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 0.1813	s Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21 per day	Count in cell/ch 74/34 82/32 81/31 61/33 Z13/22 84/11	He eff 0.948 0.743 0.818 0.819 0.785	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99 0.99	Vol run (cc) 40 120 120 40 40 120	Press factor 0.96 0.96 0.96 0.96 0.96	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10	sig dpm 0.19 0.01 0.01 0.17 0.17 0.01	52.4 52.4 51.0 50.5 50.6 50.6	1.486 1.486 1.470 1.465 1.465	651 2.01 1.81 573 563 1.59	293 0.91 0.81 258 253 0.71	stats pCi/liter ±1 sig 3 0.08 0.07 3 0.07	Notes
Results corrected to in situ pressure w Data, Calculation factors, sample ID ewed 6/14/13 SV1-36 SV1-1A SV3-3A SV3-3A SV3-3A SV5-SG lab dupe SV5-IA Decay corrections based on Rn decc Conversion from dpm based on Blanks are negligible.	as noted above , and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13	9:45 9:45 9:11:40	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 0.1813	s Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21 per day	Count in cell/ch 74/34 82/32 81/31 61/33 Z13/22 84/11	He eff 0.948 0.743 0.818 0.819 0.785	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99 0.99	Vol run (cc) 40 120 120 40 40 120	Press factor 0.96 0.96 0.96 0.96 0.96	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10	sig dpm 0.19 0.01 0.01 0.17 0.17 0.01	52.4 52.4 51.0 50.5 50.6 50.6	1.486 1.486 1.470 1.465 1.465	651 2.01 1.81 573 563 1.59	293 0.91 0.81 258 253 0.71	stats pCi/liter ±1 sig 3 0.08 0.07 3 0.07	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID eived 6/14/13 SV1-9G SV1-1A SV3-1A SV3-1A SV3-5G Iab dupe SV5-1A Decay corrections based on Rn deca Conversion from dpm based on Blanks are negligible. Definitions:	as noted above, and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 ay constant of	9:45 9:50 11:20 11:40 11:45	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 0.1813 0.4504	s Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21 per day	Count in cell/ch 74/34 82/32 81/31 61/33 Z13/22 84/11	He eff 0.948 0.743 0.818 0.819 0.785	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99 0.99	Vol run (cc) 40 120 120 40 40 40(1000)	Press factor 0.96 0.96 0.96 0.96 0.96	obs dpm 17.14 0.12 13.22 12.96 0.10	sig dpm 0.19 0.01 0.01 0.17 0.07 0.01	52.4 52.4 51.0 50.5 50.6 50.6	1.486 1.486 1.470 1.465 1.465 1.466	dpm/liter 651 2.01 1.81 573 563 1.59 sed)(He e	293 0.91 0.81 258 253 0.71	stats pCi/liter ±1 sig 3 0.08 0.07 3 0.07	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID eived 6/14/13 SV1-16 SV3-14 SV3-34 SV3-36 lab dupe SV5-1A Decay corrections based on Rn decay Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch:	as noted above, and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 Constant of	9:45 9:45 9:11:20 11:40 11:40 11:45	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 0.1813 0.4504	s Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21 per day pCi/dpm	Count in cell/ch 74/34 82/32 81/31 61/33 Z13/22 84/11	He eff 0.948 0.743 0.818 0.819 0.785	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99 0.99	Vol run (cc) 40 120 120 40 40 120 3)(1000)	Press factor 0.96 0.96 0.96 0.96 0.96 0.96 (obs dpm	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10 0(decay fa	sig dpm 0.19 0.01 0.17 0.17 0.01 ector)(F	52.4 52.4 51.0 50.5 50.6 50.6 ress facto	1.486 1.486 1.470 1.465 1.465 1.466 r)}/{(cc u	dpm/liter 651 2.01 1.81 573 563 1.59 sed)(He e	293 0.91 0.81 258 253 0.71	stats pCi/liter ±1 sig 3 0.08 0.07 3 0.07	Notes
Results corrected to in situ pressure W Data, Calculation factors, W Data, Calculation factors, Sample ID envel 6/14/13 SV1-SG SV1-IA SV3-IA ISV5-SG lab dupe SV5-IA Decay corrections based on Rn decay Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff:	as noted above, and Analyt Collection Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 constant of Counting cell a Cell and counted	9:45 9:50 11:40 11:45	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 0.1813 0.4504	Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21 per day pCi/dpm	Count in cell/ch 74/34 82/32 81/31 61/33 Z13/22 84/11	He eff 0.948 0.743 0.818 0.819 0.785	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99 0.99	Vol run (cc) 40 120 120 40 40 40 120 3)(1000))	Press factor 0.96 0.96 0.96 0.96 0.96 0.96 0.96	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10 0(decay fa	sig dpm 0.19 0.01 0.01 0.17 0.17 0.01 ector)(P	(hours) 52.4 52.4 51.0 50.5 50.6 50.6 7ress facto	1.486 1.486 1.470 1.465 1.465 1.466 r)}/{(cc u	dpm/liter 651 2.01 1.81 573 563 1.59 sed)(He e	pCi/liter 293 0.91 0.81 258 253 0.71 fff)(Air/Heilight) g statistic	stats pCi/liter ±1 sig 3 0.08 0.07 3 0.07	Notes
Results corrected to in situ pressure W Data, Calculation factors, Sample ID Deived 6/14/13 SV1-SG SV1-IA SV3-SG Iab dupe SV5-IA Decay corrections based on Rn decc Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Air/He:	as noted above, and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 constant of Counting cell a Cell and counter Correction for	p: cical De n Time (EDT) 9:45 9:50 11:20 11:40 11:45 nd channer efficien	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 0.1813 0.4504	Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21 per day pCi/dpm	Count in cell/ch 74/34 82/32 81/31 61/33 Z13/22 84/11	He eff 0.948 0.743 0.818 0.819 0.785	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99 0.99	Vol run (cc) 40 120 40 40 120 (100)) sig dpm Decay T: Decay T:	Press factor 0.96 0.96 0.96 0.96 0.96 (obs dpm	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10)(decay fa	sig dpm 0.19 0.01 0.01 0.17 0.17 0.01 ector)(F	(hours) 52.4 52.4 51.0 50.5 50.6 70.6 70.6 70.6 70.6 70.6 70.6 70.6 7	1.486 1.486 1.470 1.465 1.465 1.466 r)}/{(cc u	dpm/liter 651 2.01 1.81 573 563 1.59 sed)(He e	pCi/liter 293 0.91 0.81 258 253 0.71 fff)(Air/He	stats pCi/liter ±1 sig 3 0.08 0.07 3 3 0.07	
Results corrected to in situ pressure IW Data, Calculation factors, Sample ID Leived 6/14/13 SSV1-1A SSV1-1A SV5-1A Decay corrections based on Rn decay Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Air/He: Sample vol:	as noted above, and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 constant of Counting cell a Cell and counte	9:45 9:50 11:20 11:40 11:45 11:45	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 10.4504	Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21 per day pCi/dpm	Count in cell/ch 74/34 82/32 81/31 61/33 Z13/22 84/11	He eff 0.948 0.743 0.818 0.819 0.785	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99 0.99	Vol run (cc) 40 120 120 40 120 120 100 100 100 100 100 100 100 10	Press factor 0.96 0.96 0.96 0.96 0.96 (obs dpm	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10 (decay fa	sig dpm 0.19 0.01 0.07 0.07 0.17 0.17 0.17 0.17 0.17	52.4 52.4 51.0 50.5 50.6 50.6 ress facto	1.486 1.486 1.470 1.465 1.465 1.466 r)}/{(cc u	dpm/liter 651 2.01 1.81 573 563 1.59 sed)(He e	pCi/liter 293 0.91 0.81 258 253 0.71 fff)(Air/He	stats pCi/liter ±1 sig 3 0.08 0.07 3 3 0.07	
Results corrected to in situ pressure W Data, Calculation factors, Sample ID Eleved 6/14/13 I SV1-SG SV1-IA SV3-SG Ilab dupe 5 SV5-IA Decay corrections based on Rn deca Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Air/He: Sample vol: Press factor:	as noted above, and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 constant of Counting cell a Cell and counter Correction for Volume analyzi	n (EDT) 9:45 9:50 11:20 11:40 11:45 11:45 nnd channer efficienmatrix cored (cc) n situ present	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 0.1813 0.4504 bl used cy using helium urting gas den	S Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21 per day pCi/dpm	Count in cell/ch 74/34 82/32 81/31 61/33 213/22 84/11	0.948 0.743 0.819 0.819 0.819 0.785 Radon Con	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99 0.99	Vol run (cc) 40 120 120 40 120 120 120 40 120 120 120 120 120 120 120 120 120 12	Press factor 0.96 0.96 0.96 0.96 0.96 0.96 0.96 cobs dpm	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10 O(decay fa	sig dpm 0.19 0.01 0.01 0.17 0.01 0.17 0.17 sector)(F	(hours) 52.4 52.4 51.0 50.5 50.6 50.6 ress facto ress facto resident of decaytion in piction in pi	1.486 1.486 1.470 1.465 1.465 1.466 r)}/{(cc u	dpm/liter 651 2.01 1.81 573 563 1.59 sed)(He e	pCi/liter 293 0.91 0.81 258 253 0.71 ff)(Air/Height) g statistic analysis ute per lit	stats pCi/liter ±1 sig 3 0.08 0.07 3 3 0.07	
Results corrected to in situ pressure sw Data, Calculation factors, Sample ID celved 6/14/13 15V1-5C 25V1-1A 35V3-1A 45V5-SG lab dupe 55V5-1A Decay corrections based on Rn deca Conversion from dpm based on Blanks are negligible. Definitions: Cell/ch: He eff: Air/He: Sample vol:	as noted above, and Analyt Collectio Date 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 6/12/13 constant of Counting cell a Cell and counte	n (EDT) 9:45 9:50 11:20 11:40 11:45 11:45 nnd channer efficienmatrix cored (cc) n situ present	Analysi Date 6/14/13 6/14/13 6/14/13 6/14/13 6/14/13 0.1813 0.4504 bl used cy using helium urting gas den	S Time (PDT) 11:09 11:16 11:19 11:11 11:13 11:21 per day pCi/dpm	Count in cell/ch 74/34 82/32 81/31 61/33 213/22 84/11	0.948 0.743 0.819 0.819 0.819 0.785 Radon Con	Air/He eff 0.99 0.97 0.97 0.99 0.99 0.99 0.99	Vol run (cc) 40 120 120 40 120 120 100 100 100 100 100 100 100 10	Press factor 0.96 0.96 0.96 0.96 0.96 0.96 0.96 cobs dpm	obs dpm 17.14 0.12 0.12 13.22 12.96 0.10 O(decay fa	sig dpm 0.19 0.01 0.01 0.17 0.01 0.17 0.17 sector)(F	52.4 52.4 51.0 50.5 50.6 50.6 ress facto	1.486 1.486 1.470 1.465 1.465 1.466 r)}/{(cc u	dpm/liter 651 2.01 1.81 573 563 1.59 sed)(He e	pCi/liter 293 0.91 0.81 258 253 0.71 ff)(Air/Height) g statistic analysis ute per lit	stats pCi/liter ±1 sig 3 0.08 0.07 3 3 0.07	

Chain of Custody Record

Mobile

2470 Impala Dr., Carlsbad, CA 92010 • ph 760.804.9678 • fax 760.804.9159 1855 Coronado Ave., Signal Hill, CA 90755 • ph 800.834.9888

16061313-4R H&P Project # (3)

Date:

Time: 30 0 123 91 ŏ CO2 Fixed Gases SN 🗌 70 025 Methane Leak Check Compound |], I DFA | OTHER の子に Page: SOIL VAPOR/AIR ANALYSI 6-12-13 Turn around time: GI-OT□ 808<u>\$</u>8 Other 91-01 ■ 8560B Ketones PT (\$0) Project Contact: TPHv gas □ 8560B 91-01 Outside Lab: が伊 Oxygenates ■ 8500B G I-OT □ (company) (company) Naphthalene 91-01 ■ 8260B FLAT WOO Return to client VOC's: SAM, 8260B A MAS 8 MAS VOC's: Short List/DTSC □ 85e0B なるかれ 1215 GI-0T [8260B VOC's: Full List Fax 12 to 12 to 25 418.1 TRPH Die Kiners B ☐ H9T M8 [08/T]UJ N9/TIOS p 🗌 Disposal 883 3 3 1 0 47274 P Client Project # Crencs/S q ☐ BTEX/OXY ☐ TPH gas 8260B 8260B Full List Total # of containers Sample Receipt 8/3-5G: TEDUARE Intact: | Yes Ero NOTEOS Sedi Intact: Tes No PN/A るとして Phone: 220 Sample disposal instruction: Container Received by: (Signature) Received by: (Signature) Reçeived by: (Signature) Location: Collector: 77 456 Sample Type オイオ Cold: \ \ Yes \ \ \ \ \ \ \ \ \ S Date Pa_b Temperature: (company) 533 120 25 (company) (company) Time 3 スプリー たこった たのしき ユ コのか Signature constitutes authorization to proceed with analysis and acceptance of condition on back 7-Purge Vol Special 0 and the 1 96556 ANTER SUB-IA NIFFET COPPES PRIONE SC Second. ġ, 200 EN JOHN MON AIR Geochemistry, Inc. De De 4 がする人 Field Point Name かのな Sei 000 1 n d coo? Se Se 10 - 14 a 20 1000 \ 0 V 0 60 0 11 m 60 m 616 □ 8 2 が一世がなるころろ Yes 🗆 Approved/Relinquished by: (Signature) Approved/Relinduished by: (Signature) Approved/Relinquished by: (Signature) 2793 Þ Yes Sample Name Special Instructions: Geotracker EDF: Lab Work Order # Excel EDD: Global ID: Address: Client: Email:

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

July 14, 2011

Tiffany Messier Genesis Project, Inc. 1258 Concord Rd.

Smyrna

GA 30080

TEL: (770) 319-7217 FAX: (770) 319-7219

RE:

Vogue Cleaners

Dear Tiffany Messier:

Order No: 1107569

Analytical Environmental Services, Inc. received 8 samples on 7/8/2011 2:15:00 PM for the analyses presented in following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

- -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/11-06/30/12.
- -AIHA Certification ID #100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) effective until 09/01/11.

These results relate only to the items tested. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

James Forrest

Project Manager

3785 Presidential Parkway, Atlanta GA 30340-3704

CHAIN OF CUSTODY

AES TEL.: (770) 457-8177 / TOLL-FREE (800) 972-4889 / FAX: (770) 457-8188	72-4889 / FAX: (770) 457-8188	Date:	X V Page of)
COMPANY:	ADDRESS:	ANALYSIS REOUESTED	- 11 1
_ ,	Come Come 1 4		Visit our website
Genesis Trace The	OTA O		www.aesatlanta.com
			your results, place bottle
SAMPLED BY: Ky/ Norm mul + Josh Through!	SIGNATURE:		orders, etc.
			No # 6
* # SAMPLE ID	posit ix code	PRESERVATION (See codes)	
	Grab Comp Matri (See	2/m(2	REMARKS
, POD-)	7/7/11 1400 < 0W	2	2
2 RW-3	7/7/4 1200 X GW	2	*
3 MW-22	χ.	2	7
1 58-6 (0-2)	711/11 1620 x SO	4	4
5 SP 174 (6.5)	1 1450 1		/
6 SB-14 (0-2)	1400		
> SB-15 (02)	V 1426 V		W
8 56-17 (0-2)	7/2/11 1650 2 50	4	4
9			
10			
11			
12			
13			
14			
RELINQUISHED BY DATE/TIME	SCEIVED BY		RECEIPT
1/4/11 1415	The 7/8/11	PROJECT NAME: (169 MR CREMPERS	Total # of Containers
ià	2 / Vol	PROJECT#:	
3.	3:	SITE ADDRESS:	Standard 5 Business Days 2 Business Day Rush
		SEND REPORT TO: TMOS; EU (a) gun prosett com	Next Business Day Rush
SPECIAL INSTRUCTIONS/COMMENTS:	SHIPMENT METHOD VIA:	INVOICE TO: U I I I I I I I I I I I I I I I I I I	O Same Day Rush (auth req.)
	IN / / VIA: CLIENT Fedex UPS MAIL COURIER		STATE PROGRAM (if any): E-mail? \(\frac{\text{V}}{\text{N}} \) Fax? \(\frac{\text{Y}}{\text{N}} \)
SAMPLES RECEIVED AFTER 3PM OR ON SATURDAY ARE CONSIDERED RECEIVED THE NEXT BUSINESS DAY, IF TURN AROUND TIME	OREYHOUND OTHER NSIDERED RECEIVED THE NEXT BUSINESS DAY, IF TI	QUOTE #: DATA PACKAGE: I II RNAROUND TIME IS NOT INDICATED. AFS WILL PROCEED WITH STANDARD TAT OF SAMPLES.	DATA PACKAGE: I II III IV
IDANIFEED RECEIVED AFTER JOM OR ON JATORDAY ARE CO	プン・レス スピーク・マラー・コピーン・アント ひこうごうごう しみて・コマート		

Page 2 of 28

WW = Waste Water

SAMPLES ARE DISPOSED 30 DAYS AFTER REPORT COMPLETION UNLESS OTHER ARRANGEMENTS ARE MADE.

MATRIX CODES. A = Air GW = Groundwater SE = Sediment SO = Soil SW = Surface Water W = Water (Blanks) DW = Drinking Water (Blanks)

Client: Genesis Project, Inc.
Project: Vogue Cleaners

Project: Vogue Cleaners

Lab ID: 1107569

Case Narrative

Date:

14-Jul-11

Volatile Organic Compounds Analysis by Method 8260B:

Percent recovery for the internal standard compound 1,4-Dichlorobenzene-d4 on sample 1107569-006A was outside control limits biased low due to suspected matrix interference.

Client: Genesis Project, Inc. Client Sample ID: POD-1

 Project Name:
 Vogue Cleaners
 Collection Date:
 7/7/2011 2:00:00 PM

 Lab ID:
 1107569-001
 Matrix:
 Groundwater

Reporting Dilution BatchID Analyses Result Qual Units Date Analyzed Analyst **Factor** Limit TCL VOLATILE ORGANICS SW8260B (SW5030B) BRL 5.0 ug/L 148779 07/11/2011 16:38 MC 1,1,1-Trichloroethane BRL 5.0 148779 MC 1,1,2,2-Tetrachloroethane ug/L 07/11/2011 16:38 1,1,2-Trichloroethane BRL 5.0 ug/L 148779 1 07/11/2011 16:38 MC 1,1-Dichloroethane **BRL** 5.0 ug/L 148779 1 07/11/2011 16:38 MC BRL 5.0 ug/L 148779 1 07/11/2011 16:38 MC 1,1-Dichloroethene BRL 148779 MC1,2,4-Trichlorobenzene 5.0 ug/L 1 07/11/2011 16:38 BRL 5.0 ug/L 148779 1 07/11/2011 16:38 MC 1,2-Dibromo-3-chloropropane BRL 5.0 ug/L 148779 07/11/2011 16:38 MC 1.2-Dibromoethane BRL 5.0 ug/L 148779 MC 1 07/11/2011 16:38 1,2-Dichlorobenzene 1.2-Dichloroethane **BRL** 5.0 ug/L 148779 1 07/11/2011 16:38 MC MC BRL 5.0 ug/L 148779 1 07/11/2011 16:38 1,2-Dichloropropane BRL 5.0 148779 07/11/2011 16:38 MC 1,3-Dichlorobenzene ug/L BRL 5.0 ug/L 148779 07/11/2011 16:38 MC 1.4-Dichlorobenzene 1 BRL 148779 2-Butanone 50 ug/L 07/11/2011 16:38 MC 2-Hexanone **BRL** 10 ug/L 148779 07/11/2011 16:38 MC BRL 10 ug/L 148779 07/11/2011 16:38 MC 4-Methyl-2-pentanone BRL 50 148779 Acetone ug/L 1 07/11/2011 16:38 MC Benzene BRL 5.0 ug/L 148779 1 07/11/2011 16:38 MC Bromodichloromethane BRL 5.0 ug/L 148779 1 07/11/2011 16:38 MC BRL 5.0 148779 MC ug/L 1 07/11/2011 16:38 Bromoform Bromomethane **BRL** 5.0 ug/L 148779 07/11/2011 16:38 MC BRL 148779 5.0 ug/L 07/11/2011 16:38 MC Carbon disulfide Carbon tetrachloride BRL 5.0 ug/L 148779 07/11/2011 16:38 MC BRL 5.0 148779 MC Chlorobenzene ug/L 1 07/11/2011 16:38 BRL Chloroethane 10 ug/L 148779 1 07/11/2011 16:38 MC Chloroform **BRL** 5.0 ug/L 148779 1 07/11/2011 16:38 MC BRL 10 ug/L 148779 1 07/11/2011 16:38 MC Chloromethane MC cis-1,2-Dichloroethene BRL 5.0 ug/L 148779 1 07/11/2011 16:38 BRL 5.0 ug/L 148779 1 07/11/2011 16:38 MC cis-1,3-Dichloropropene BRL 5.0 ug/L 148779 07/11/2011 16:38 MC Cyclohexane Dibromochloromethane BRL 5.0 ug/L 148779 MC 1 07/11/2011 16:38 Dichlorodifluoromethane **BRL** 10 ug/L 148779 07/11/2011 16:38 MC Ethylbenzene BRL 5.0 ug/L 148779 1 07/11/2011 16:38 MC BRL 10 ug/L 148779 07/11/2011 16:38 MC Freon-113 BRL 5.0 148779 MC ug/L 07/11/2011 16:38 Isopropylbenzene 1 BRL 148779 m,p-Xylene 5.0 ug/L 07/11/2011 16:38 MC 148779 Methyl acetate **BRL** 5.0 ug/L 1 07/11/2011 16:38 MC Methyl tert-butyl ether BRL 5.0 ug/L 148779 1 07/11/2011 16:38 MC BRL 148779 Methylcyclohexane 5.0 ug/L 07/11/2011 16:38 MC BRL 5.0 ug/L 148779 MC Methylene chloride 1 07/11/2011 16:38 BRL 5.0 ug/L 148779 1 07/11/2011 16:38 MC o-Xylene

Qualifiers:

BRL Below reporting limit

Date:

14-Jul-11

Narr See case narrative

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: POD-1

Project Name: Vogue Cleaners Collection Date: 7/7/2011 2:00:00 PM

Lab ID: 1107569-001 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SV	V5030B)			
Styrene		BRL	5.0		ug/L	148779	1	07/11/2011 16:38	MC
Tetrachloroethene		BRL	5.0		ug/L	148779	1	07/11/2011 16:38	MC
Toluene		BRL	5.0		ug/L	148779	1	07/11/2011 16:38	MC
trans-1,2-Dichloroethene		BRL	5.0		ug/L	148779	1	07/11/2011 16:38	MC
trans-1,3-Dichloropropene		BRL	5.0		ug/L	148779	1	07/11/2011 16:38	MC
Trichloroethene		BRL	5.0		ug/L	148779	1	07/11/2011 16:38	MC
Trichlorofluoromethane		BRL	5.0		ug/L	148779	1	07/11/2011 16:38	MC
Vinyl chloride		BRL	2.0		ug/L	148779	1	07/11/2011 16:38	MC
Surr: 4-Bromofluorobenzene		92.6	64.7-130		%REC	148779	1	07/11/2011 16:38	MC
Surr: Dibromofluoromethane		87.1	80.7-129		%REC	148779	1	07/11/2011 16:38	MC
Surr: Toluene-d8		98.1	71.1-120		%REC	148779	1	07/11/2011 16:38	MC

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

14-Jul-11

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: RW-3

Project Name: Vogue Cleaners Collection Date: 7/7/2011 12:00:00 PM

Lab ID:1107569-002Matrix:Groundwater

Analyses]	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SV	V8260B				(SV	V5030B)			
1,1,1-Trichloroethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,1,2,2-Tetrachloroethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,1,2-Trichloroethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,1-Dichloroethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,1-Dichloroethene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,2,4-Trichlorobenzene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,2-Dibromo-3-chloropropane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,2-Dibromoethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,2-Dichlorobenzene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,2-Dichloroethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,2-Dichloropropane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,3-Dichlorobenzene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
1,4-Dichlorobenzene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
2-Butanone		BRL	50		ug/L	148779	1	07/11/2011 17:05	MC
2-Hexanone		BRL	10		ug/L	148779	1	07/11/2011 17:05	MC
4-Methyl-2-pentanone		BRL	10		ug/L	148779	1	07/11/2011 17:05	MC
Acetone		530	500		ug/L	148779	10	07/11/2011 19:32	MC
Benzene		7.9	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Bromodichloromethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Bromoform		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Bromomethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Carbon disulfide		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Carbon tetrachloride		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Chlorobenzene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Chloroethane		BRL	10		ug/L	148779	1	07/11/2011 17:05	MC
Chloroform		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Chloromethane		BRL	10		ug/L	148779	1	07/11/2011 17:05	MC
cis-1,2-Dichloroethene		25	5.0		ug/L	148779	1	07/11/2011 17:05	MC
cis-1,3-Dichloropropene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Cyclohexane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Dibromochloromethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Dichlorodifluoromethane		BRL	10		ug/L	148779	1	07/11/2011 17:05	MC
Ethylbenzene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Freon-113		BRL	10		ug/L	148779	1	07/11/2011 17:05	MC
Isopropylbenzene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
m,p-Xylene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Methyl acetate		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Methyl tert-butyl ether		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Methylcyclohexane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Methylene chloride		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
o-Xylene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC

Qualifiers:

BRL Below reporting limit

Date:

14-Jul-11

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: RW-3

Project Name: Vogue Cleaners Collection Date: 7/7/2011 12:00:00 PM

Date:

14-Jul-11

Lab ID:1107569-002Matrix:Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SW	/5030B)			
Styrene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Tetrachloroethene		280	50		ug/L	148779	10	07/11/2011 19:32	MC
Toluene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
trans-1,2-Dichloroethene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
trans-1,3-Dichloropropene		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Trichloroethene		5.4	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Trichlorofluoromethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:05	MC
Vinyl chloride		BRL	2.0		ug/L	148779	1	07/11/2011 17:05	MC
Surr: 4-Bromofluorobenzene		93.4	64.7-130		%REC	148779	10	07/11/2011 19:32	MC
Surr: 4-Bromofluorobenzene		94.2	64.7-130		%REC	148779	1	07/11/2011 17:05	MC
Surr: Dibromofluoromethane		86.7	80.7-129		%REC	148779	1	07/11/2011 17:05	MC
Surr: Dibromofluoromethane		90.5	80.7-129		%REC	148779	10	07/11/2011 19:32	MC
Surr: Toluene-d8		99.8	71.1-120		%REC	148779	1	07/11/2011 17:05	MC
Surr: Toluene-d8		101	71.1-120		%REC	148779	10	07/11/2011 19:32	MC

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-22

Project Name: Vogue Cleaners Collection Date: 7/8/2011 11:15:00 AM

Date:

14-Jul-11

Lab ID:1107569-003Matrix:Groundwater

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS SW	8260B			(SV	V5030B)			
1,1,1-Trichloroethane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,1,2,2-Tetrachloroethane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,1,2-Trichloroethane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,1-Dichloroethane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,1-Dichloroethene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,2,4-Trichlorobenzene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,2-Dibromo-3-chloropropane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,2-Dibromoethane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,2-Dichlorobenzene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,2-Dichloroethane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,2-Dichloropropane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,3-Dichlorobenzene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
1,4-Dichlorobenzene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
2-Butanone	BRL	50		ug/L	148779	1	07/11/2011 17:33	MC
2-Hexanone	BRL	10		ug/L	148779	1	07/11/2011 17:33	MC
4-Methyl-2-pentanone	BRL	10		ug/L	148779	1	07/11/2011 17:33	MC
Acetone	BRL	50		ug/L	148779	1	07/11/2011 17:33	MC
Benzene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Bromodichloromethane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Bromoform	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Bromomethane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Carbon disulfide	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Carbon tetrachloride	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Chlorobenzene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Chloroethane	BRL	10		ug/L	148779	1	07/11/2011 17:33	MC
Chloroform	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Chloromethane	BRL	10		ug/L	148779	1	07/11/2011 17:33	MC
cis-1,2-Dichloroethene	14	5.0		ug/L	148779	1	07/11/2011 17:33	MC
cis-1,3-Dichloropropene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Cyclohexane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Dibromochloromethane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Dichlorodifluoromethane	BRL	10		ug/L	148779	1	07/11/2011 17:33	MC
Ethylbenzene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Freon-113	BRL	10		ug/L	148779	1	07/11/2011 17:33	MC
Isopropylbenzene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
m,p-Xylene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Methyl acetate	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Methyl tert-butyl ether	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Methylcyclohexane	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Methylene chloride	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
o-Xylene	BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC

Qualifiers:

BRL Below reporting limit

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: MW-22

Project Name: Vogue Cleaners Collection Date: 7/8/2011 11:15:00 AM

Date:

14-Jul-11

Lab ID: 1107569-003 Matrix: Groundwater

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS	SW8260B				(SW	/5030B)			
Styrene		BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Tetrachloroethene		8.2	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Toluene		BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
trans-1,2-Dichloroethene		BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
trans-1,3-Dichloropropene		BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Trichloroethene		BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Trichlorofluoromethane		BRL	5.0		ug/L	148779	1	07/11/2011 17:33	MC
Vinyl chloride		BRL	2.0		ug/L	148779	1	07/11/2011 17:33	MC
Surr: 4-Bromofluorobenzene		93.4	64.7-130		%REC	148779	1	07/11/2011 17:33	MC
Surr: Dibromofluoromethane		86.6	80.7-129		%REC	148779	1	07/11/2011 17:33	MC
Surr: Toluene-d8		99.5	71.1-120		%REC	148779	1	07/11/2011 17:33	MC

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See case narrative

NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: SB-6 (0-2)

Project Name: Vogue Cleaners Collection Date: 7/7/2011 4:20:00 PM

Lab ID: 1107569-004 **Matrix:** Soil

Analyses	F	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW	/8260B				(SW	5035)			
1,1,1-Trichloroethane		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,1,2,2-Tetrachloroethane		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,1,2-Trichloroethane		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,1-Dichloroethane		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,1-Dichloroethene		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,2,4-Trichlorobenzene		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,2-Dibromo-3-chloropropane		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,2-Dibromoethane		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,2-Dichlorobenzene		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,2-Dichloroethane		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,2-Dichloropropane		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
1,3-Dichlorobenzene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
1,4-Dichlorobenzene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
2-Butanone		BRL	0.028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
2-Hexanone		BRL	0.0055		mg/Kg-dry		1	07/12/2011 13:08	JE
4-Methyl-2-pentanone		BRL	0.0055		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
Acetone		BRL	0.055		mg/Kg-dry		1	07/12/2011 13:08	JE
Benzene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
Bromodichloromethane		BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
Bromoform		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
Bromomethane		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
Carbon disulfide		BRL	0.0055		mg/Kg-dry		1	07/12/2011 13:08	JE
Carbon tetrachloride		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
Chlorobenzene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JЕ
Chloroethane		BRL	0.0055		mg/Kg-dry		1	07/12/2011 13:08	JЕ
Chloroform		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JЕ
Chloromethane		BRL	0.0055		mg/Kg-dry		1	07/12/2011 13:08	JЕ
cis-1,2-Dichloroethene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
cis-1,3-Dichloropropene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
Cyclohexane		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JЕ
Dibromochloromethane		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
Dichlorodifluoromethane		BRL	0.0055		mg/Kg-dry		1	07/12/2011 13:08	JE
Ethylbenzene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
Freon-113		BRL	0.0055		mg/Kg-dry		1	07/12/2011 13:08	JE
Isopropylbenzene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
m,p-Xylene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
Methyl acetate		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JE
Methyl tert-butyl ether		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JЕ
Methylcyclohexane		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JЕ
Methylene chloride		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JЕ
o-Xylene		BRL	0.0028		mg/Kg-dry		1	07/12/2011 13:08	JЕ
O 21 y lone		2111	0.0020		<i>56 **)</i>	1 10030		0,,12,2011 15.00	JL

Qualifiers:

Date:

14-Jul-11

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: SB-6 (0-2)

Project Name: Vogue Cleaners Collection Date: 7/7/2011 4:20:00 PM

Lab ID: 1107569-004 **Matrix:** Soil

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW82	60B			(SW:	5035)			
Styrene	BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
Tetrachloroethene	0.044	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
Toluene	BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
trans-1,2-Dichloroethene	BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
trans-1,3-Dichloropropene	BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
Trichloroethene	BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
Trichlorofluoromethane	BRL	0.0028		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
Vinyl chloride	BRL	0.0055		mg/Kg-dry	148858	1	07/12/2011 13:08	JE
Surr: 4-Bromofluorobenzene	96.3	56-137		%REC	148858	1	07/12/2011 13:08	JE
Surr: Dibromofluoromethane	94.3	73.7-137		%REC	148858	1	07/12/2011 13:08	JE
Surr: Toluene-d8	94.9	69.2-126		%REC	148858	1	07/12/2011 13:08	JE
PERCENT MOISTURE D2216								
Percent Moisture	11.5	0		wt%	R201065	1	07/14/2011 09:30	AS

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

14-Jul-11

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client Sample ID: SB-13W (0-2) Client: Genesis Project, Inc. Project Name: Vogue Cleaners **Collection Date:**

7/7/2011 2:50:00 PM

Date:

14-Jul-11

Lab ID: 1107569-005 Matrix: Soil

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS SW8260B				(SW	5035)			
1,1,1-Trichloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,1,2,2-Tetrachloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,1,2-Trichloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,1-Dichloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,1-Dichloroethene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,2,4-Trichlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,2-Dibromo-3-chloropropane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,2-Dibromoethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,2-Dichlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,2-Dichloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,2-Dichloropropane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,3-Dichlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
1,4-Dichlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
2-Butanone	BRL	0.033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
2-Hexanone	BRL	0.0066		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
4-Methyl-2-pentanone	BRL	0.0066		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Acetone	BRL	0.066		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Benzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Bromodichloromethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Bromoform	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Bromomethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Carbon disulfide	BRL	0.0066		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Carbon tetrachloride	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Chlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Chloroethane	BRL	0.0066		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Chloroform	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Chloromethane	BRL	0.0066		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
cis-1,2-Dichloroethene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
cis-1,3-Dichloropropene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Cyclohexane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Dibromochloromethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Dichlorodifluoromethane	BRL	0.0066		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Ethylbenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Freon-113	BRL	0.0066		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Isopropylbenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
m,p-Xylene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Methyl acetate	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Methyl tert-butyl ether	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Methylcyclohexane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Methylene chloride	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
o-Xylene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE

Qualifiers:

Narr See case narrative

Value exceeds maximum contaminant level

BRL Below reporting limit

Н Holding times for preparation or analysis exceeded

Analyte not NELAC certified

Analyte detected in the associated method blank

Greater than Result value

Estimated (value above quantitation range)

Spike Recovery outside limits due to matrix

Not confirmed

Less than Result value

Estimated value detected below Reporting Limit

Client Sample ID: SB-13W (0-2) Client: Genesis Project, Inc. Project Name: Vogue Cleaners **Collection Date:**

7/7/2011 2:50:00 PM Soil

Date:

14-Jul-11

Lab ID: 1107569-005 Matrix:

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW82	60B			(SW:	5035)			
Styrene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Tetrachloroethene	0.11	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Toluene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
trans-1,2-Dichloroethene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
trans-1,3-Dichloropropene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Trichloroethene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Trichlorofluoromethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Vinyl chloride	BRL	0.0066		mg/Kg-dry	148858	1	07/11/2011 22:29	JE
Surr: 4-Bromofluorobenzene	81.5	56-137		%REC	148858	1	07/11/2011 22:29	JE
Surr: Dibromofluoromethane	97.8	73.7-137		%REC	148858	1	07/11/2011 22:29	JE
Surr: Toluene-d8	91.3	69.2-126		%REC	148858	1	07/11/2011 22:29	JE
PERCENT MOISTURE D2216								
Percent Moisture	13.5	0		wt%	R201065	5 1	07/14/2011 09:30	AS

Qualifiers:

Value exceeds maximum contaminant level

BRL Below reporting limit

Η Holding times for preparation or analysis exceeded

Analyte not NELAC certified

Analyte detected in the associated method blank

Greater than Result value

E Estimated (value above quantitation range)

Spike Recovery outside limits due to matrix

Narr See case narrative Not confirmed

Less than Result value

Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: SB-14 (0-2)

Project Name: Vogue Cleaners Collection Date: 7/7/2011 2:00:00 PM

Lab ID: 1107569-006 **Matrix:** Soil

Analyses		Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS S	SW8260B				(SW	5035)			
1,1,1-Trichloroethane		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
1,1,2,2-Tetrachloroethane		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
1,1,2-Trichloroethane		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
1,1-Dichloroethane		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
1,1-Dichloroethene		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
1,2,4-Trichlorobenzene		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
1,2-Dibromo-3-chloropropane		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
1,2-Dibromoethane		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
1,2-Dichlorobenzene		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JЕ
1,2-Dichloroethane		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JЕ
1,2-Dichloropropane		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JЕ
1,3-Dichlorobenzene		BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JЕ
1,4-Dichlorobenzene		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE
2-Butanone		BRL	0.032		mg/Kg-dry		1	07/11/2011 22:55	JE
2-Hexanone		BRL	0.0065		mg/Kg-dry		1	07/11/2011 22:55	JE
4-Methyl-2-pentanone		BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
Acetone		0.085	0.065		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
Benzene		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE
Bromodichloromethane		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE
Bromoform		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE
Bromomethane		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Carbon disulfide		BRL	0.0065		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Carbon tetrachloride		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Chlorobenzene		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Chloroethane		BRL	0.0065		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Chloroform		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Chloromethane		BRL	0.0065		mg/Kg-dry		1	07/11/2011 22:55	JЕ
cis-1,2-Dichloroethene		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
cis-1,3-Dichloropropene		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Cyclohexane		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Dibromochloromethane		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Dichlorodifluoromethane		BRL	0.0065		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Ethylbenzene		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Freon-113		BRL	0.0065		mg/Kg-dry		1	07/11/2011 22:55	JЕ
Isopropylbenzene		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JЕ
m,p-Xylene		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE
Methyl acetate		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE
Methyl tert-butyl ether		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE
Methylcyclohexane		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE
Methylene chloride		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE
o-Xylene		BRL	0.0032		mg/Kg-dry		1	07/11/2011 22:55	JE

Qualifiers:

BRL Below reporting limit

Date:

14-Jul-11

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: SB-14 (0-2)

Project Name: Vogue Cleaners Collection Date: 7/7/2011 2:00:00 PM

Lab ID: 1107569-006 **Matrix:** Soil

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW8260B				(SW	5035)			
Styrene	BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
Tetrachloroethene	7.5	1.6		mg/Kg-dry	148858	500	07/14/2011 13:14	MC
Toluene	BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
trans-1,2-Dichloroethene	BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
trans-1,3-Dichloropropene	BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
Trichloroethene	BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
Trichlorofluoromethane	BRL	0.0032		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
Vinyl chloride	BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 22:55	JE
Surr: 4-Bromofluorobenzene	76.6	56-137		%REC	148858	1	07/11/2011 22:55	JE
Surr: 4-Bromofluorobenzene	93.8	56-137		%REC	148858	500	07/14/2011 13:14	MC
Surr: Dibromofluoromethane	95	73.7-137		%REC	148858	1	07/11/2011 22:55	JE
Surr: Dibromofluoromethane	99.6	73.7-137		%REC	148858	500	07/14/2011 13:14	MC
Surr: Toluene-d8	89.3	69.2-126		%REC	148858	1	07/11/2011 22:55	JE
Surr: Toluene-d8	101	69.2-126		%REC	148858	500	07/14/2011 13:14	MC
PERCENT MOISTURE D2216								
Percent Moisture	7.18	0		wt%	R201065	5 1	07/14/2011 09:30	AS

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

14-Jul-11

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: SB-15 (0-2)

Project Name: Vogue Cleaners Collection Date: 7/7/2011 2:20:00 PM

Lab ID: 1107569-007 **Matrix:** Soil

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS SW8	3260B			(SW	5035)			
1,1,1-Trichloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,1,2,2-Tetrachloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,1,2-Trichloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,1-Dichloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,1-Dichloroethene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,2,4-Trichlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,2-Dibromo-3-chloropropane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,2-Dibromoethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,2-Dichlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,2-Dichloroethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,2-Dichloropropane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,3-Dichlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
1,4-Dichlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
2-Butanone	BRL	0.033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
2-Hexanone	BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
4-Methyl-2-pentanone	BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Acetone	BRL	0.065		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Benzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Bromodichloromethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Bromoform	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Bromomethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Carbon disulfide	BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Carbon tetrachloride	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Chlorobenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Chloroethane	BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Chloroform	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Chloromethane	BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
cis-1,2-Dichloroethene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
cis-1,3-Dichloropropene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Cyclohexane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Dibromochloromethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Dichlorodifluoromethane	BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Ethylbenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Freon-113	BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Isopropylbenzene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
m,p-Xylene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Methyl acetate	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Methyl tert-butyl ether	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Methylcyclohexane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Methylene chloride	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
o-Xylene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE

Qualifiers:

BRL Below reporting limit

Date:

14-Jul-11

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: SB-15 (0-2)

Project Name: Vogue Cleaners Collection Date: 7/7/2011 2:20:00 PM

Lab ID: 1107569-007 **Matrix:** Soil

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW82	60B			(SW:	5035)			
Styrene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Tetrachloroethene	0.018	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Toluene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
trans-1,2-Dichloroethene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
trans-1,3-Dichloropropene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Trichloroethene	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Trichlorofluoromethane	BRL	0.0033		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Vinyl chloride	BRL	0.0065		mg/Kg-dry	148858	1	07/11/2011 23:20	JE
Surr: 4-Bromofluorobenzene	94.4	56-137		%REC	148858	1	07/11/2011 23:20	JE
Surr: Dibromofluoromethane	99	73.7-137		%REC	148858	1	07/11/2011 23:20	JE
Surr: Toluene-d8	99.8	69.2-126		%REC	148858	1	07/11/2011 23:20	JE
PERCENT MOISTURE D2216								
Percent Moisture	8.13	0		wt%	R201065	1	07/14/2011 09:30	AS

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

14-Jul-11

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: SB-17 (0-2)

Project Name: Vogue Cleaners Collection Date: 7/7/2011 4:50:00 PM

Lab ID: 1107569-008 **Matrix:** Soil

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analys
TCL VOLATILE ORGANICS SW826	50B			(SW	5035)			
1,1,1-Trichloroethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,1,2,2-Tetrachloroethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,1,2-Trichloroethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,1-Dichloroethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,1-Dichloroethene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,2,4-Trichlorobenzene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,2-Dibromo-3-chloropropane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,2-Dibromoethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,2-Dichlorobenzene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,2-Dichloroethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,2-Dichloropropane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,3-Dichlorobenzene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
1,4-Dichlorobenzene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
2-Butanone	BRL	0.030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
2-Hexanone	BRL	0.0060		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
4-Methyl-2-pentanone	BRL	0.0060		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Acetone	BRL	0.060		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Benzene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Bromodichloromethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Bromoform	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Bromomethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Carbon disulfide	BRL	0.0060		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Carbon tetrachloride	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Chlorobenzene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Chloroethane	BRL	0.0060		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Chloroform	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Chloromethane	BRL	0.0060		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
cis-1,2-Dichloroethene	0.0055	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
cis-1,3-Dichloropropene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Cyclohexane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Dibromochloromethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Dichlorodifluoromethane	BRL	0.0060		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Ethylbenzene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Freon-113	BRL	0.0060		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Isopropylbenzene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
m,p-Xylene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Methyl acetate	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Methyl tert-butyl ether	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Methylcyclohexane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Methylene chloride	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
o-Xylene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE

Qualifiers:

BRL Below reporting limit

Date:

14-Jul-11

Narr See case narrative

NC Not confirmed

^{*} Value exceeds maximum contaminant level

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

< Less than Result value

J Estimated value detected below Reporting Limit

Client: Genesis Project, Inc. Client Sample ID: SB-17 (0-2)

Project Name: Vogue Cleaners Collection Date: 7/7/2011 4:50:00 PM

Lab ID: 1107569-008 **Matrix:** Soil

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
TCL VOLATILE ORGANICS SW82	60B			(SW	5035)			
Styrene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Tetrachloroethene	0.019	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Toluene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
trans-1,2-Dichloroethene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
trans-1,3-Dichloropropene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Trichloroethene	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Trichlorofluoromethane	BRL	0.0030		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Vinyl chloride	BRL	0.0060		mg/Kg-dry	148858	1	07/11/2011 23:46	JE
Surr: 4-Bromofluorobenzene	97.6	56-137		%REC	148858	1	07/11/2011 23:46	JE
Surr: Dibromofluoromethane	96.3	73.7-137		%REC	148858	1	07/11/2011 23:46	JE
Surr: Toluene-d8	94.6	69.2-126		%REC	148858	1	07/11/2011 23:46	JE
PERCENT MOISTURE D2216								
Percent Moisture	18.8	0		wt%	R201065	1	07/14/2011 09:30	AS

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated method blank

> Greater than Result value

E Estimated (value above quantitation range)

Date:

14-Jul-11

S Spike Recovery outside limits due to matrix

Narr See case narrative
NC Not confirmed

< Less than Result value

J Estimated value detected below Reporting Limit

Sample/Cooler Receipt Checklist

Client Cenelis		Work Order	Number	1107569
Checklist completed by Male Signature Date	8/11			
Carrier name: FedEx UPS Courier Client US	S Mail Other	r	_	
Shipping container/cooler in good condition?	Yes _	No _	Not Present	
Custody seals intact on shipping container/cooler?	Yes	No	Not Present	
Custody seals intact on sample bottles?	Yes	No	Not Present 🖊	
Container/Temp Blank temperature in compliance? (4°C±2)*	Yes _	No		
Cooler #1 Cooler #2 Cooler #3	Cooler #4	Cool	ler#5	Cooler #6
Chain of custody present?	Yes 🖊	No		
Chain of custody signed when relinquished and received?	Yes 🖊	No		
Chain of custody agrees with sample labels?	Yes 🖊	No		
Samples in proper container/bottle?	Yes _	No		
Sample containers intact?	Yes _	No		
Sufficient sample volume for indicated test?	Yes 🖊	No		
All samples received within holding time?	Yes 🖊	No		
Was TAT marked on the COC?	Yes 🖊	No _		
Proceed with Standard TAT as per project history?	Yes	No _	Not Applicable	
Water - VOA vials have zero headspace? No VOA vials su	bmitted	Yes 🖊	No	
Water - pH acceptable upon receipt?	Yes 🖊	No	Not Applicable	_
Adjusted?				
Sample Condition: Good/ Other(Explain)				
(For diffusive samples or AIHA lead) Is a known blank includ	ed? Yes	Ne	o /	

See Case Narrative for resolution of the Non-Conformance.

\L\Quality Assurance\Checklists Procedures Sign-Off Templates\Checklists\Sample Receipt Checklists\Sample_Cooler_Receipt_Checklists

^{*} Samples do not have to comply with the given range for certain parameters.

Client: Genesis Project, Inc.

ANALYTICAL QC SUMMARY REPORT

Date:

14-Jul-11

Project Name: Vogue Cleaners **Workorder:** 1107569

BatchID: 148779

Sample ID: MB-148779 SampleType: MBLK	Client ID: TestCode: TC	L VOLATILE ORGA	NICS SW8260	В	Uni Bat	its: ug/L chID: 148779		Date: 07/09 lysis Date: 07/09		un No: 200764 eq No: 4193901
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
1,1,1-Trichloroethane	BRL	5.0	0	0	0	0	0	0	0	0
1,1,2,2-Tetrachloroethane	BRL	5.0	0	0	0	0	0	0	0	0
1,1,2-Trichloroethane	BRL	5.0	0	0	0	0	0	0	0	0
1,1-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	0
1,1-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0
1,2,4-Trichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
1,2-Dibromo-3-chloropropane	BRL	5.0	0	0	0	0	0	0	0	0
1,2-Dibromoethane	BRL	5.0	0	0	0	0	0	0	0	0
1,2-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
1,2-Dichloroethane	BRL	5.0	0	0	0	0	0	0	0	0
1,2-Dichloropropane	BRL	5.0	0	0	0	0	0	0	0	0
1,3-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
1,4-Dichlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
2-Butanone	BRL	50	0	0	0	0	0	0	0	0
2-Hexanone	BRL	10	0	0	0	0	0	0	0	0
4-Methyl-2-pentanone	BRL	10	0	0	0	0	0	0	0	0
Acetone	BRL	50	0	0	0	0	0	0	0	0
Benzene	BRL	5.0	0	0	0	0	0	0	0	0
Bromodichloromethane	BRL	5.0	0	0	0	0	0	0	0	0
Bromoform	BRL	5.0	0	0	0	0	0	0	0	0
Bromomethane	BRL	5.0	0	0	0	0	0	0	0	0
Carbon disulfide	BRL	5.0	0	0	0	0	0	0	0	0
Carbon tetrachloride	BRL	5.0	0	0	0	0	0	0	0	0
Chlorobenzene	BRL	5.0	0	0	0	0	0	0	0	0
Chloroethane	BRL	10	0	0	0	0	0	0	0	0
Chloroform	BRL	5.0	0	0	0	0	0	0	0	0
Chloromethane	BRL	10	0	0	0	0	0	0	0	0

Qualifiers:

Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

ANALYTICAL QC SUMMARY REPORT

BatchID: 148779

Date:

14-Jul-11

Client: Genesis Project, Inc. Project Name: Vogue Cleaners Workorder: 1107569

Sample ID: MB-148779	Client ID:				Uni	its: ug/L	Prep	Date: 07/09	/2011 F	Run No: 200764
SampleType: MBLK	TestCode: TC	L VOLATILE ORGA	ANICS SW8260	В	Bat	chID: 148779	A na	lysis Date: 07/09	/ 2011 S	leq No: 4193901
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limi	t High Limit	RPD Ref Val	%RPD	RPD Limit Qual
cis-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0
cis-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0
Cyclohexane	BRL	5.0	0	0	0	0	0	0	0	0
Dibromochloromethane	BRL	5.0	0	0	0	0	0	0	0	0
Dichlorodifluoromethane	BRL	10	0	0	0	0	0	0	0	0
Ethylbenzene	BRL	5.0	0	0	0	0	0	0	0	0
Freon-113	BRL	10	0	0	0	0	0	0	0	0
Isopropylbenzene	BRL	5.0	0	0	0	0	0	0	0	0
m,p-Xylene	BRL	5.0	0	0	0	0	0	0	0	0
Methyl acetate	BRL	5.0	0	0	0	0	0	0	0	0
Methyl tert-butyl ether	BRL	5.0	0	0	0	0	0	0	0	0
Methylcyclohexane	BRL	5.0	0	0	0	0	0	0	0	0
Methylene chloride	BRL	5.0	0	0	0	0	0	0	0	0
o-Xylene	BRL	5.0	0	0	0	0	0	0	0	0
Styrene	BRL	5.0	0	0	0	0	0	0	0	0
Tetrachloroethene	BRL	5.0	0	0	0	0	0	0	0	0
Toluene	BRL	5.0	0	0	0	0	0	0	0	0
trans-1,2-Dichloroethene	BRL	5.0	0	0	0	0	0	0	0	0
trans-1,3-Dichloropropene	BRL	5.0	0	0	0	0	0	0	0	0
Trichloroethene	BRL	5.0	0	0	0	0	0	0	0	0
Trichlorofluoromethane	BRL	5.0	0	0	0	0	0	0	0	0
Vinyl chloride	BRL	2.0	0	0	0	0	0	0	0	0
Surr: 4-Bromofluorobenzene	45.54	0	50	0	91.1	64.7	130	0	0	0
Surr: Dibromofluoromethane	48.01	0	50	0	96	80.7	129	0	0	0
Surr: Toluene-d8	51.76	0	50	0	104	71.1	120	0	0	0

Qualifiers:

Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

1107569

Date: 14-Jul-11

Client: Genesis Project, Inc.

Project Name: Vogue Cleaners

Rpt Lim Reporting Limit

Workorder:

ANALYTICAL QC SUMMARY REPORT

BatchID: 148779

Sample ID: LCS-148779 SampleType: LCS	Client ID: TestCode: TC	L VOLATILE ORGA	ANICS SW8260	В	Un Bat	its: ug/L tchID: 148779		p Date: 07/09 alysis Date: 07/09		Run No: 200764 Seq No: 419389	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
,1-Dichloroethene	44.84	5.0	50	0	89.7	60	140	0	0	0	
Benzene	50.02	5.0	50	0	100	70	130	0	0	0	
Chlorobenzene	48.16	5.0	50	0	96.3	70	130	0	0	0	
Toluene	52.26	5.0	50	0	105	70	130	0	0	0	
Trichloroethene	50.15	5.0	50	0	100	70	130	0	0	0	
Surr: 4-Bromofluorobenzene	49.50	0	50	0	99	64.7	130	0	0	0	
Surr: Dibromofluoromethane	48.89	0	50	0	97.8	80.7	129	0	0	0	
Surr: Toluene-d8	52.47	0	50	0	105	71.1	120	0	0	0	
Sample ID: 1107342-001AMS SampleType: MS	Client ID: TestCode: TC	L VOLATILE ORGA	ANICS SW8260	В	Un Bat	its: ug/L tchID: 148779		p Date: 07/09 alysis Date: 07/09		Run No: 200764 Seq No: 419403	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
,1-Dichloroethene	54.98	5.0	50	0	110	46.2	183	0	0	0	
Benzene	64.16	5.0	50	0	128	62.2	143	0	0	0	
Chlorobenzene	59.95	5.0	50	0	120	72.2	137	0	0	0	
Toluene	68.98	5.0	50	0	138	57.8	149	0	0	0	
Trichloroethene	61.86	5.0	50	0	124	70.5	149	0	0	0	
Surr: 4-Bromofluorobenzene	50.99	0	50	0	102	64.7	130	0	0	0	
Surr: Dibromofluoromethane	50.35	0	50	0	101	80.7	129	0	0	0	
Surr: Toluene-d8	57.19	0	50	0	114	71.1	120	0	0	0	
Sample ID: 1107342-001AMSD SampleType: MSD	Client ID: TestCode: TC	L VOLATILE ORGA	ANICS SW8260	В	Un Bat	its: ug/L tchID: 148779		p Date: 07/09 alysis Date: 07/09	0/2011 0/2011	Run No: 200764 Seq No: 419404	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit	Qual
,1-Dichloroethene	51.34	5.0	50	0	103	46.2	183	54.98	6.85	20	
Benzene	58.55	5.0	50	0	117	62.2	143	64.16	9.14	20	
Qualifiers: > Greater than Result value < Less than Result value							В	Analyte detected in the ass	ociated method	blank	
BRL Below reporting limit E Estimated (value above q			ated (value above quantit	ration range)		Н	Holding times for preparat	ion or analysis	exceeded		
J Estimated value detected below Reporting Limit N Analyte not NELAC certified R RPD outside I				RPD outside limits due to	matrix						

S Spike Recovery outside limits due to matrix

Client: Genesis Project, Inc. ANALYTICAL QC SUMMARY REPORT

Date:

14-Jul-11

BatchID: 148779

Vogue Cleaners **Project Name:** Workorder: 1107569

Sample ID: 1107342-001AMSD	Client ID:				Uni	ts: ug/L	Prep	Date: 07/09/	/2011	Run No: 200764
SampleType: MSD	TestCode: Te	Bat	chID: 148779	Ana	lysis Date: 07/09 /	/2011	Seq No: 4194040			
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chlorobenzene	54.79	5.0	50	0	110	72.2	137	59.95	8.99	20
Toluene	62.37	5.0	50	0	125	57.8	149	68.98	10.1	20
Trichloroethene	57.06	5.0	50	0	114	70.5	149	61.86	8.07	20
Surr: 4-Bromofluorobenzene	50.28	0	50	0	101	64.7	130	50.99	0	0
Surr: Dibromofluoromethane	50.95	0	50	0	102	80.7	129	50.35	0	0
Surr: Toluene-d8	55.49	0	50	0	111	71.1	120	57.19	0	0

Qualifiers: Greater than Result value

> BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

1107569

Workorder:

ANALYTICAL QC SUMMARY REPORT

Date:

14-Jul-11

BatchID: 148858

Client: Genesis Project, Inc. Vogue Cleaners **Project Name:**

1,1,1-Trichloroethane BRL 0,0050 0 0 0 0 0 0 0 0 0	No: 200814 No: 4196384
1,1,2,2-Tetrachloroethane	RPD Limit Qual
1,1,2-Trichloroethane BRL 0.0050 0 0 0 0 0 0 0 0 0	0
1,1-Dichloroethane BRL 0.0050 0 0 0 0 0 0 0 0 0	0
1,1-Dichloroethene	0
1,2,4-Trichlorobenzene BRL 0.0050 0	0
1,2-Dibromo-3-chloropropane BRL 0.0050 0	0
1,2-Dibromoethane	0
1,2-Dichlorobenzene BRL 0.0050 0 0 0 0 0 0 0 0 0	0
1,2-Dichloroethane	0
1,2-Dichloropropane BRL 0.0050 0 0 0 0 0 0 0 0 0	0
1,3-Dichlorobenzene BRL 0.0050 0 0 0 0 0 0 0 0 0	0
1,4-Dichlorobenzene BRL 0.0050 0 0 0 0 0 0 0 2-Butanone BRL 0.050 0	0
2-Butanone BRL 0.050 0 0 0 0 0 0 0 2-Hexanone BRL 0.010 0 0 0 0 0 0 0 4-Methyl-2-pentanone BRL 0.010 0	0
2-Hexanone BRL 0.010 0 0 0 0 0 0 0 4-Methyl-2-pentanone BRL 0.010 0	0
4-Methyl-2-pentanone BRL 0.010 0 </td <td>0</td>	0
Acetone BRL 0.10 0 <t< td=""><td>0</td></t<>	0
Benzene BRL 0.0050 0	0
Bromodichloromethane BRL 0.0050 0<	0
Bromoform BRL 0.0050 0	0
Bromomethane BRL 0.0050 0	0
Carbon disulfide BRL 0.010 0 0 0 0 0 0 0 0 Carbon tetrachloride BRL 0.0050 0	0
Carbon tetrachloride BRL 0.0050 0 0 0 0 0 0 0	0
	0
CIL 1	0
Chlorobenzene BRL 0.0050 0 0 0 0 0 0	0
Chloroethane BRL 0.010 0 0 0 0 0 0	0
Chloroform BRL 0.0050 0 0 0 0 0 0	0
Chloromethane BRL 0.010 0 0 0 0 0 0 0	0

Qualifiers:

Greater than Result value

BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

Workorder:

1107569

ANALYTICAL QC SUMMARY REPORT

Date:

14-Jul-11

BatchID: 148858

Client: Genesis Project, Inc. Vogue Cleaners **Project Name:**

Sample ID: MB-148858 SampleType: MBLK	Client ID: TestCode: TCI	L VOLATILE ORGA	NICS SW8260	В	Uni Bat	its: mg/Kg chID: 148858		Date: 07/11 lysis Date: 07/11		eq No: 4196384
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
cis-1,2-Dichloroethene	BRL	0.0050	0	0	0	0	0	0	0	0
cis-1,3-Dichloropropene	BRL	0.0050	0	0	0	0	0	0	0	0
Cyclohexane	BRL	0.0050	0	0	0	0	0	0	0	0
Dibromochloromethane	BRL	0.0050	0	0	0	0	0	0	0	0
Dichlorodifluoromethane	BRL	0.010	0	0	0	0	0	0	0	0
Ethylbenzene	BRL	0.0050	0	0	0	0	0	0	0	0
Freon-113	BRL	0.010	0	0	0	0	0	0	0	0
Isopropylbenzene	BRL	0.0050	0	0	0	0	0	0	0	0
m,p-Xylene	BRL	0.0050	0	0	0	0	0	0	0	0
Methyl acetate	BRL	0.0050	0	0	0	0	0	0	0	0
Methyl tert-butyl ether	BRL	0.0050	0	0	0	0	0	0	0	0
Methylcyclohexane	BRL	0.0050	0	0	0	0	0	0	0	0
Methylene chloride	BRL	0.0050	0	0	0	0	0	0	0	0
o-Xylene	BRL	0.0050	0	0	0	0	0	0	0	0
Styrene	BRL	0.0050	0	0	0	0	0	0	0	0
Tetrachloroethene	BRL	0.0050	0	0	0	0	0	0	0	0
Toluene	BRL	0.0050	0	0	0	0	0	0	0	0
trans-1,2-Dichloroethene	BRL	0.0050	0	0	0	0	0	0	0	0
trans-1,3-Dichloropropene	BRL	0.0050	0	0	0	0	0	0	0	0
Trichloroethene	BRL	0.0050	0	0	0	0	0	0	0	0
Trichlorofluoromethane	BRL	0.0050	0	0	0	0	0	0	0	0
Vinyl chloride	BRL	0.010	0	0	0	0	0	0	0	0
Surr: 4-Bromofluorobenzene	0.04665	0	0.05	0	93.3	56	137	0	0	0
Surr: Dibromofluoromethane	0.04692	0	0.05	0	93.8	73.7	137	0	0	0
Surr: Toluene-d8	0.04671	0	0.05	0	93.4	69.2	126	0	0	0

Qualifiers:

Greater than Result value

BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

1107569

Below reporting limit

Rpt Lim Reporting Limit

Estimated value detected below Reporting Limit

Date: 14-Jul-11

Client: Genesis Project, Inc.

Project Name: Vogue Cleaners

Workorder:

ANALYTICAL QC SUMMARY REPORT

BatchID: 148858

Sample ID: LCS-148858	Client ID:				Un	0 0		Date: 07/11		Run No: 200814	
SampleType: LCS	TestCode: To	CL VOLATILE ORGA	ANICS SW8260	В	Bat	chID: 148858	Ana	lysis Date: 07/11	/2011	Seq No: 4196385	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit ()ual
1,1-Dichloroethene	0.04271	0.0050	0.05	0	85.4	60	140	0	0	0	
Benzene	0.05313	0.0050	0.05	0	106	70	130	0	0	0	
Chlorobenzene	0.05410	0.0050	0.05	0	108	70	130	0	0	0	
Toluene	0.05163	0.0050	0.05	0	103	70	130	0	0	0	
Trichloroethene	0.05332	0.0050	0.05	0	107	70	130	0	0	0	
Surr: 4-Bromofluorobenzene	0.04640	0	0.05	0	92.8	56	137	0	0	0	
Surr: Dibromofluoromethane	0.04633	0	0.05	0	92.7	73.7	137	0	0	0	
Surr: Toluene-d8	0.04680	0	0.05	0	93.6	69.2	126	0	0	0	
Sample ID: 1107324-011AMS SampleType: MS	Client ID: TestCode: TO	CL VOLATILE ORGA	ANICS SW8260	В	Un Bat	its: mg/Kg- chID: 148858		Date: 07/11 lysis Date: 07/11		Run No: 200814 Seq No: 4196387	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit ()ual
1,1-Dichloroethene	0.06419	0.0078	0.0776	0	82.7	55.2	163	0	0	0	
Benzene	0.08228	0.0078	0.0776	0	106	67.4	144	0	0	0	
Chlorobenzene	0.08175	0.0078	0.0776	0	105	73.6	140	0	0	0	
Toluene	0.08239	0.0078	0.0776	0	106	64.6	145	0	0	0	
Γrichloroethene	0.08040	0.0078	0.0776	0	104	70.1	149	0	0	0	
Surr: 4-Bromofluorobenzene	0.07309	0	0.0776	0	94.2	56	137	0	0	0	
Surr: Dibromofluoromethane	0.07115	0	0.0776	0	91.7	73.7	137	0	0	0	
Surr: Toluene-d8	0.07502	0	0.0776	0	96.7	69.2	126	0	0	0	
Sample ID: 1107324-011AMSD SampleType: MSD	Client ID: TestCode: TO	CL VOLATILE ORGA	ANICS SW8260	В	Un: Bat	its: mg/Kg- chID: 148858		Date: 07/11 lysis Date: 07/11		Run No: 200814 Seq No: 4196389	
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit ()ual
1,1-Dichloroethene	0.06285	0.0078	0.0776	0	81	55.2	163	0.06419	2.1	34.9	
Benzene	0.08414	0.0078	0.0776	0	108	67.4	144	0.08228	2.24	27.2	
Qualifiers: > Greater than Result value	ie e		< Less	than Result value			В	Analyte detected in the asso	ociated method	blank	—

E Estimated (value above quantitation range)

S Spike Recovery outside limits due to matrix

N Analyte not NELAC certified

H Holding times for preparation or analysis exceeded

Genesis Project, Inc. Client:

ANALYTICAL QC SUMMARY REPORT

Date:

14-Jul-11

BatchID: 148858

Chent.	deliesis Floject, III
Project Name:	Vogue Cleaners
Workorder:	1107569

Sample ID: 1107324-011AMSD	Client ID:				Uni	ts: mg/Kg-	dry Prep	Date: 07/11	/2011	Run No: 200814
SampleType: MSD	TestCode: TO	CL VOLATILE ORGA	NICS SW8260	В	Bate	chID: 148858	Ana	lysis Date: 07/11	/2011	Seq No: 4196389
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref Val	%RPD	RPD Limit Qual
Chlorobenzene	0.08464	0.0078	0.0776	0	109	73.6	140	0.08175	3.47	33.4
Toluene	0.08399	0.0078	0.0776	0	108	64.6	145	0.08239	1.92	26.8
Trichloroethene	0.08076	0.0078	0.0776	0	104	70.1	149	0.08040	0.443	34
Surr: 4-Bromofluorobenzene	0.07503	0	0.0776	0	96.7	56	137	0.07309	0	0
Surr: Dibromofluoromethane	0.07216	0	0.0776	0	93	73.7	137	0.07115	0	0
Surr: Toluene-d8	0.07503	0	0.0776	0	96.7	69.2	126	0.07502	0	0

Qualifiers: Greater than Result value

> BRL Below reporting limit

Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

B Analyte detected in the associated method blank

H Holding times for preparation or analysis exceeded

TNI Lyboratori

Mr. Jim Fineis Atlas Geo-Sampling Company 120 Nottaway Lane Alpharetta, GA 30009

H&P Project: AG071211-13

Client Project: Morgan Stanley / Vogue Cleaners

Dear Mr. Jim Fineis:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 12-Jul-11 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody

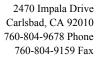
Unless otherwise noted, all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Villarreal Laboratory Director

H&P Mobile Geochemistry, Inc. operates under CA Environmental Lab Accreditation Program Numbers 2579, 2740, 2741, 2742, 2743, 2745 and 2754. National Environmental Laboratory Accreditation Conference (NELAC) Standards Lab #11845

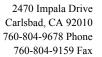

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG071211-13

120 Nottaway LaneProject Number:Morgan Stanley / Vogue CleanersReported:Alpharetta, GA 30009Project Manager:Mr. Jim Fineis18-Jul-11 08:47

ANALYTICAL REPORT FOR SAMPLES

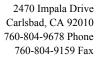
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DRAFT: SV-2	E107032-02	Vapor	07-Jul-11	12-Jul-11
DRAFT: SV-3	E107032-03	Vapor	07-Jul-11	12-Jul-11
DRAFT: SV-4	E107032-04	Vapor	07-Jul-11	12-Jul-11
DRAFT: EQ-1	E107032-05	Vapor	07-Jul-11	12-Jul-11



120 Nottaway LaneProject Number:Morgan Stanley / Vogue CleanersReported:Alpharetta, GA 30009Project Manager:Mr. Jim Fineis18-Jul-11 08:47

DRAFT: Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
DRAFT: SV-2 (E107032-02) Vapor S	ampled: 07-Jul-11 Reco	eived: 12-Jul-	11						
Dichlorodifluoromethane (F12)	ND	50	ug/m3	10	EG11504	15-Jul-11	15-Jul-11	EPA TO-15	
Chloromethane	ND	21	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	71	"	"	"	"	"	"	
Vinyl chloride	ND	26	"	"	"	"	"	"	
Bromomethane	ND	160	"	"	"	"	"	"	
Chloroethane	ND	80	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	57	"	"	"	"	"	"	
Acetone	430	240	"	"	"	"	"	"	
1,1-Dichloroethene	ND	40	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	77	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	35	"	"	"	"	"	"	
Carbon disulfide	89	63	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	80	"	"	"	"	"	"	
1,1-Dichloroethane	ND	41	"	"	"	"	"	"	
2-Butanone (MEK)	ND	300	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	40	"	"	"	"	"	"	
Chloroform	ND	50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	55	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	41	"	"	"	"	"	"	
Benzene	110	32	"	"	"	"	"	"	
Carbon tetrachloride	ND	64	"	"	"	"	"	"	
Trichloroethene	ND	55	"	"	"	"	"	"	
1,2-Dichloropropane	ND	94	"	"	"	"	"	"	
Bromodichloromethane	ND	68	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	46	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	83	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	46	"	"	"	"	"	"	
Toluene	280	38	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	55	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	83	"	"	"	"	"	"	
Dibromochloromethane	ND	86	"	"	"	"	"	"	
Tetrachloroethene	15000	69	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	78	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	70	"	"	"	"	"	"	
Chlorobenzene	ND	47	"	"	"	"	"	"	
Ethylbenzene	46	44	"	"	"	"	"	"	
m,p-Xylene	140	88	"	"	"	"	"	"	
Styrene	ND	43	"	"	"	"	"	"	
	מא	70							

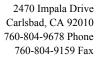

Atlas Geo-Sampling Company

Project: AG071211-13

120 Nottaway Lane Alpharetta, GA 30009 Project Number: Morgan Stanley / Vogue Cleaners Reported:
Project Manager: Mr. Jim Fineis 18-Jul-11 08:47

DRAFT: Volatile Organic Compounds by EPA TO-15

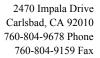
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
DRAFT: SV-2 (E107032-02) Vapor	Sampled: 07-Jul-11 Reco	eived: 12-Jul-	11						
o-Xylene	ND	44	ug/m3	10	EG11504	15-Jul-11	15-Jul-11	EPA TO-15	
Bromoform	ND	100	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	70	"	"	"	"	"	"	
4-Ethyltoluene	ND	50	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	50	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	120	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	75	"	"	"	"	"	"	
Hexachlorobutadiene	ND	110	"	"	"	II .	n .	"	
Surrogate: 1,2-Dichloroethane-d4		98.1 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		99.3 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	77-	127	"	"	"	"	
DRAFT: SV-3 (E107032-03) Vapor	Sampled: 07-Jul-11 Reco	eived: 12-Jul-	11						
Dichlorodifluoromethane (F12)	ND	500	ug/m3	100	EG11504	15-Jul-11	15-Jul-11	EPA TO-15	
Chloromethane	ND	210	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	710	"	"	"	"	"	"	
Vinyl chloride	ND	260	"	"	"	"	"	"	
Bromomethane	ND	1600	"	"	"	"	"	"	
Chloroethane	ND	800	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	570	"	"	"	"	"	"	
Acetone	ND	2400	"	"	"	"	"	"	
1,1-Dichloroethene	ND	400	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	770	"	"	"	"	"	"	
Methylene chloride (Dichloromethane		350	"	"	"	"	"	"	
Carbon disulfide	ND	630	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	800	"	"	"	"	"	"	
1,1-Dichloroethane	ND	410	"	"	"	"	"	"	
2-Butanone (MEK)	ND	3000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	1300	400	"	"	"	"	"	"	
Chloroform	ND	500	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	550	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	410	"	"	"	"	"	"	
Benzene	ND	320	"	"	"	"	"	"	
Carbon tetrachloride	ND	640	"	"	"	"	"	"	



120 Nottaway LaneProject Number:Morgan Stanley / Vogue CleanersReported:Alpharetta, GA 30009Project Manager:Mr. Jim Fineis18-Jul-11 08:47

DRAFT: Volatile Organic Compounds by EPA TO-15

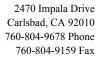
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
DRAFT: SV-3 (E107032-03) Vapor	Sampled: 07-Jul-11 Reco	eived: 12-Jul-	11						
Trichloroethene	10000	550	ug/m3	100	EG11504	15-Jul-11	15-Jul-11	EPA TO-15	
1,2-Dichloropropane	ND	940	"	"	"	"	"	"	
Bromodichloromethane	ND	680	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	460	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	830	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	460	"	"	"	"	"	"	
Toluene	ND	380	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	550	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	830	"	"	"	"	"	"	
Dibromochloromethane	ND	860	"	"	"	"	"	"	
Tetrachloroethene	420000	6900	"	1000	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	780	"	100	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	700	"	"	"	"	"	"	
Chlorobenzene	ND	470	"	"	"	"	"	"	
Ethylbenzene	ND	440	"	"	"	"	"	"	
m,p-Xylene	ND	880	"	"	"	"	"	"	
Styrene	ND	430	"	"	"	"	"	"	
o-Xylene	ND	440	"	"	"	"	"	"	
Bromoform	ND	1000	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	700	"	"	"	"	"	"	
4-Ethyltoluene	ND	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	500	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1200	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1200	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1200	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	750	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1100	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.3 %	70	5-134	"	"	"	"	
Surrogate: Toluene-d8		102 %		3-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.1 %		7-127	"	"	"	"	



120 Nottaway LaneProject Number:Morgan Stanley / Vogue CleanersReported:Alpharetta, GA 30009Project Manager:Mr. Jim Fineis18-Jul-11 08:47

DRAFT: Volatile Organic Compounds by EPA TO-15

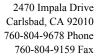
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
DRAFT: SV-4 (E107032-04) Vapor	Sampled: 07-Jul-11 Reco	eived: 12-Jul-	11						
Dichlorodifluoromethane (F12)	ND	500	ug/m3	100	EG11504	15-Jul-11	15-Jul-11	EPA TO-15	
Chloromethane	ND	210	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	710	"	"	"	"	"	"	
Vinyl chloride	ND	260	"	"	"	"	"	"	
Bromomethane	ND	1600	"	"	"	"	"	"	
Chloroethane	ND	800	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	570	"	"	"	"	"	"	
Acetone	ND	2400	"	"	"	"	"	"	
1,1-Dichloroethene	ND	400	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	770	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	350	"	"	"	"	"	"	
Carbon disulfide	ND	630	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	800	"	"	"	"	"	"	
1,1-Dichloroethane	ND	410	"	"	"	"	"	"	
2-Butanone (MEK)	ND	3000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	400	"	"	"	"	"	"	
Chloroform	ND	500	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	550	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	410	"	"	"	"	"	"	
Benzene	ND	320	"	"	"	"	"	"	
Carbon tetrachloride	ND	640	"	"	"	"	"	"	
Trichloroethene	770	550	"	"	"	"	"	"	
1,2-Dichloropropane	ND	940	"	"	"	"	"	"	
Bromodichloromethane	ND	680	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	460	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	830	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	460	"	"	"	"	"	"	
Toluene	ND	380	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	550	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	830	"	"	"	"	"	"	
Dibromochloromethane	ND	860	"	"	"	"	"	"	
Tetrachloroethene	66000	690	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	780	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	700	"	"	"	"	"	"	
Chlorobenzene	ND ND	470	"	"	"	"	"	"	
Ethylbenzene	ND ND	440	"	"	"	"	"	"	
m,p-Xylene	ND ND	880	"	"	,,	"	"	"	
Styrene	ND ND	430	"	"	,,	"	"	"	
or, rene	טאו	430							



120 Nottaway LaneProject Number:Morgan Stanley / Vogue CleanersReported:Alpharetta, GA 30009Project Manager:Mr. Jim Fineis18-Jul-11 08:47

DRAFT: Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
DRAFT: SV-4 (E107032-04) Vapor	Sampled: 07-Jul-11 Rece	eived: 12-Jul-	11						
o-Xylene	ND	440	ug/m3	100	EG11504	15-Jul-11	15-Jul-11	EPA TO-15	
Bromoform	ND	1000	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	700	"	"	"	"	"	"	
4-Ethyltoluene	ND	500	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	500	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	500	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1200	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1200	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1200	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	750	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1100	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.1 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8		101 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.5 %	77-	127	"	"	"	"	
DRAFT: EQ-1 (E107032-05) Vapor	Sampled: 07-Jul-11 Rec	eived: 12-Jul-	-11						
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EG11504	15-Jul-11	15-Jul-11	EPA TO-15	
Chloromethane	2.3	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"	"	"	
Bromomethane	ND	16	"	"	"	"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	5.7	"	"	"	"	"	"	
Acetone	100	24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane) ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"	
2-Butanone (MEK)	ND	30	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"	



120 Nottaway LaneProject Number:Morgan Stanley / Vogue CleanersReported:Alpharetta, GA 30009Project Manager:Mr. Jim Fineis18-Jul-11 08:47

DRAFT: Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
DRAFT: EQ-1 (E107032-05) Vapor	Sampled: 07-Jul-11 R	eceived: 12-Jul	-11						
Trichloroethene	ND	5.5	ug/m3	1	EG11504	15-Jul-11	15-Jul-11	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"	"	"	
Bromodichloromethane	ND	6.8	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"	"	"	
Toluene	11	3.8	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"	"	"	
Dibromochloromethane	ND	8.6	"	"	"	"	"	"	
Tetrachloroethene	180	6.9	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
Chlorobenzene	ND	4.7	"	"	"	"	"	"	
Ethylbenzene	ND	4.4	"	"	"	"	"	"	
m,p-Xylene	9.7	8.8	"	"	"	"	"	"	
Styrene	ND	4.3	"	"	"	"	"	"	
o-Xylene	ND	4.4	"	"	"	"	"	"	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.1 %	76-	-134	"	"	"	"	
Surrogate: Toluene-d8		100 %	78-	-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.1 %		-127	"	"	"	"	

RPD

Limit

Notes

Atlas Geo-Sampling Company

Project: AG071211-13

120 Nottaway Lane Alpharetta, GA 30009

Analyte

Project Number: Morgan Stanley / Vogue Cleaners Reported:
Project Manager: Mr. Jim Fineis 18-Jul-11 08:47

Source

Result

%REC

%REC

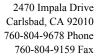
Limits

RPD

DRAFT: Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Units

Reporting


Limit

Result

Spike

Level

Blank (EG11504-BLK1)			
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3
Chloromethane	ND	2.1	"
Dichlorotetrafluoroethane (F114)	ND	7.1	"
Vinyl chloride	ND	2.6	"
Bromomethane	ND	16	"
Chloroethane	ND	8.0	"
Trichlorofluoromethane (F11)	ND	5.7	"
Acetone	ND	24	"
1,1-Dichloroethene	ND	4.0	"
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"
Methylene chloride (Dichloromethane)	ND	3.5	"
Carbon disulfide	ND	6.3	"
trans-1,2-Dichloroethene	ND	8.0	"
1,1-Dichloroethane	ND	4.1	"
2-Butanone (MEK)	ND	30	
cis-1,2-Dichloroethene	ND	4.0	
Chloroform	ND	5.0	"
1,1,1-Trichloroethane	ND	5.5	"
1,2-Dichloroethane (EDC)	ND	4.1	"
Benzene	ND	3.2	"
Carbon tetrachloride	ND	6.4	"
Trichloroethene	ND	5.5	"
1,2-Dichloropropane	ND	9.4	"
Bromodichloromethane	ND	6.8	"
cis-1,3-Dichloropropene	ND	4.6	"
4-Methyl-2-pentanone (MIBK)	ND	8.3	"
trans-1,3-Dichloropropene	ND	4.6	"
Toluene	ND	3.8	"
1,1,2-Trichloroethane	ND	5.5	"
2-Hexanone (MBK)	ND	8.3	"
Dibromochloromethane	ND	8.6	"
Tetrachloroethene	ND	6.9	"
1,2-Dibromoethane (EDB)	ND	7.8	"
1,1,1,2-Tetrachloroethane	ND	7.0	,,

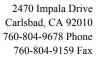
RPD

Atlas Geo-Sampling Company

Project: AG071211-13

120 Nottaway Lane Alpharetta, GA 30009 Project Number: Morgan Stanley / Vogue Cleaners Reported:
Project Manager: Mr. Jim Fineis 18-Jul-11 08:47

Source


%REC

DRAFT: Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

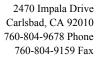
Spike

Reporting

		Reporting		Spike	Source		%KEC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG11504 - TO-15										
Blank (EG11504-BLK1)				Prepared &	Analyzed:	15-Jul-11				
Chlorobenzene	ND	4.7	ug/m3							
Ethylbenzene	ND	4.4	"							
m,p-Xylene	ND	8.8	"							
Styrene	ND	4.3	"							
o-Xylene	ND	4.4	"							
Bromoform	ND	10	"							
1,1,2,2-Tetrachloroethane	ND	7.0	"							
4-Ethyltoluene	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	12	"							
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12	"							
1,2,4-Trichlorobenzene	ND	7.5	"							
Hexachlorobutadiene	ND	11	"							
Surrogate: 1,2-Dichloroethane-d4	206		"	214		96.3	76-134			
Surrogate: Toluene-d8	205		"	207		99.1	78-125			
Surrogate: 4-Bromofluorobenzene	347		"	365		95.3	77-127			
LCS (EG11504-BS1)				Prepared &	z Analyzed:	15-Jul-11				
Dichlorodifluoromethane (F12)	83	5.0	ug/m3	101		82.7	65-135			
Vinyl chloride	40	2.6	"	52.0		76.6	65-135			
Chloroethane	46	8.0	"	53.6		86.2	65-135			
Trichlorofluoromethane (F11)	90	5.7	"	113		79.7	65-135			
1,1-Dichloroethene	62	4.0	"	80.8		76.8	65-135			
1,1,2-Trichlorotrifluoroethane (F113)	140	7.7	"	155		87.8	65-135			
Methylene chloride (Dichloromethane)	55	3.5	"	70.8		77.3	65-135			
trans-1,2-Dichloroethene	62	8.0	"	80.8		76.4	65-135			
1,1-Dichloroethane	69	4.1	"	82.4		84.3	65-135			
cis-1,2-Dichloroethene	59	4.0	"	80.0		74.1	65-135			
Chloroform	85	5.0	"	99.2		85.5	65-135			
1,1,1-Trichloroethane	94	5.5	"	111		84.8	65-135			
1,2-Dichloroethane (EDC)	68	4.1	"	82.4		83.0	65-135			

Atlas Geo-Sampling Company

Project: AG071211-13


120 Nottaway Lane Alpharetta, GA 30009 Project Number: Morgan Stanley / Vogue Cleaners

Project Manager: Mr. Jim Fineis

Reported: 18-Jul-11 08:47

DRAFT: Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EG11504 - TO-15										
LCS (EG11504-BS1)		Prepared & Analyzed: 15-Jul-11								
Benzene	53	3.2	ug/m3	64.8		82.4	65-135			
Carbon tetrachloride	110	6.4	"	128		88.2	65-135			
Trichloroethene	97	5.5	"	110		88.3	65-135			
Toluene	63	3.8	"	76.8		82.5	65-135			
1,1,2-Trichloroethane	99	5.5	"	111		89.2	65-135			
Tetrachloroethene	120	6.9	"	138		83.5	65-135			
1,1,1,2-Tetrachloroethane	150	7.0	"	140		107	65-135			
Ethylbenzene	85	4.4	"	88.4		95.8	65-135			
m,p-Xylene	180	8.8	"	177		101	65-135			
o-Xylene	93	4.4	"	88.4		106	65-135			
1,1,2,2-Tetrachloroethane	170	7.0	"	140		118	65-135			
Surrogate: 1,2-Dichloroethane-d4	206		"	214		96.3	76-134			
Surrogate: Toluene-d8	201		"	207		97.2	78-125			
Surrogate: 4-Bromofluorobenzene	383		"	365		105	77-127			
V 60 D				Dranger d 0	r Anglyssa 1.	15 151 11				
LCS Dup (EG11504-BSD1)	22				Analyzed:		65.125	5.10	2.5	
Dichlorodifluoromethane (F12)	88	5.0	ug/m3	101		87.0	65-135	5.10	35	
Vinyl chloride	46	2.6		52.0		89.2	65-135	15.3	35	
Chloroethane	49	8.0	"	53.6		91.2	65-135	5.63	35	
Trichlorofluoromethane (F11)	91	5.7	"	113		80.7	65-135	1.26	35	
1,1-Dichloroethene	63	4.0	"	80.8		78.1	65-135	1.74	35	
1,1,2-Trichlorotrifluoroethane (F113)	130	7.7		155		83.4	65-135	5.11	35	
Methylene chloride (Dichloromethane)	55	3.5	"	70.8		77.2	65-135	0.129	35	
trans-1,2-Dichloroethene	62	8.0		80.8		76.3	65-135	0.130	35	
1,1-Dichloroethane	69	4.1	"	82.4		83.5	65-135	0.950	35	
cis-1,2-Dichloroethene	58	4.0	"	80.0		71.9	65-135	3.03	35	
Chloroform	82	5.0	"	99.2		82.7	65-135	3.32	35	
1,1,1-Trichloroethane	90	5.5	"	111		81.4	65-135	4.18	35	
1,2-Dichloroethane (EDC)	66	4.1	"	82.4		80.0	65-135	3.73	35	
Benzene	53	3.2	"	64.8		82.4	65-135	0.00	35	
Carbon tetrachloride	110	6.4	"	128		86.5	65-135	2.00	35	
Trichloroethene	98	5.5	"	110		89.8	65-135	1.68	35	
Toluene	63	3.8	"	76.8		82.1	65-135	0.544	35	

Atlas Geo-Sampling Company

Project: AG071211-13

120 Nottaway Lane Alpharetta, GA 30009 Project Number: Morgan Stanley / Vogue Cleaners

Project Manager: Mr. Jim Fineis

Reported: 18-Jul-11 08:47

DRAFT: Volatile Organic Compounds by EPA TO-15 - Quality Control **H&P** Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EG11504 - TO-15										
LCS Dup (EG11504-BSD1)				Prepared &	ኔ Analyzed:	15-Jul-11				
1,1,2-Trichloroethane	100	5.5	ug/m3	111		90.0	65-135	0.886	35	
Tetrachloroethene	120	6.9	"	138		84.3	65-135	0.888	35	
1,1,1,2-Tetrachloroethane	140	7.0	"	140		103	65-135	3.74	35	
Ethylbenzene	83	4.4	"	88.4		94.3	65-135	1.62	35	
m,p-Xylene	180	8.8	"	177		100	65-135	0.915	35	
o-Xylene	94	4.4	"	88.4		106	65-135	0.612	35	
1,1,2,2-Tetrachloroethane	160	7.0	"	140		117	65-135	1.15	35	
Surrogate: 1,2-Dichloroethane-d4	199		"	214		93.0	76-134			
Surrogate: Toluene-d8	203		"	207		98.1	78-125			
Surrogate: 4-Bromofluorobenzene	386		"	365		106	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Atlas Geo-Sampling Company Project: AG071211-13

120 Nottaway LaneProject Number:Morgan Stanley / Vogue CleanersReported:Alpharetta, GA 30009Project Manager:Mr. Jim Fineis18-Jul-11 08:47

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the Environmental Laboratory Accreditation Program (CA) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste for the following methods:

Certificate# 2741, 2743, 2579, 2754 & 2740 approved for EPA 8260 and LUFT GC/MS Certificate# 2742, 2745, & 2741 approved for LUFT Certificate# 2745 & 2742 approved for EPA 418.1

H&P Mobile Geochemistry, Inc. is approved as an Environmental Laboratory in conformance with the National Environmental Accreditation Conference Standards for the category Environmental Analysis Air and Emissions for the following analytes and methods:

1,2,4-Trichlorobenzene by EPA TO-15 & TO-14A
Hexachlorobutadiene by EPA TO-15 & TO-14A
1,2,4-Trimethylbenzene by EPA TO-15 & TO-14A
1,2,3-F.Trimethylbenzene by EPA TO-15 & TO-14A
1,3,5-Trimethylbenzene by EPA TO-15 & TO-14A
1,4-Dichlorobenzene by EPA TO-15 & TO-14A
Benzene by EPA TO-15 & TO-14A
Chlorobenzene by EPA TO-15 & TO-14A
Styrene by EPA TO-15 & TO-14A
Toluene by EPA TO-15 & TO-14A
Toluene by EPA TO-15 & TO-14A
Toluene by EPA TO-15 & TO-14A
1,1,1-Trichloroethane by EPA TO-15 & TO-14A
1,1,2-Trichloroethane by EPA TO-15 & TO-14A
1,1,2-Trichloroethane by EPA TO-15 & TO-14A
1,1,2-Trichloroethane by EPA TO-15 & TO-14A
1,1-Dichloroethane by EPA TO-15 & TO-14A

1,1-Dichloroethene by EPA TO-15 & TO-14A 1,2-Dichloroethane by EPA TO-15 & TO-14A 1,2-Dichloropropane by EPA TO-15 & TO-14A Bromoform by EPA TO-15

Bromoform by EPA TO-15 Bromomethane by EPA TO-15 & TO-14A Carbon tetrachloride by EPA TO-15 & TO-14A

Carbon tetracnioride by EPA TO-15 & TO-14A Chloroethane by EPA TO-15 & TO-14A Chloroform by EPA TO-15 & TO-14A Chloromethane by EPA TO-15 & TO-14A

cis-1,2-Dichloroethene by EPA TO-15 & TO-14A cis-1,2-Dichloropropene by EPA TO-15 & TO-14A Methylene chloride by EPA TO-15 & TO-14A

Tetrachloroethane by EPA TO-15 & TO-14A trans-1,2-Dichloroethene by EPA TO-15 trans-1,2-Dichloropropene by EPA TO-15 & TO-14A

Trichloroethene by EPA TO-15 & TO-14A Vinyl chloride by EPA TO -15 & TO-14A

2-Butanone by EPA TO-15 4-Methyl-2-Pentanone by EPA TO-15

4-Methyl-2-Pentanone by EPA TO-15 Hexane by EPA TO-15

Methyl tert-butyl ether by EPA TO-15 Vinyl acetate by EPA TO-15

This certification applies to samples analyzed in summa canisters

Date: 05-May-00

CLIENT:

Williams Environmental Services, Inc

0005086

Client Sample ID: EA-1

Lab Order:

Tag Number: EXCAVATION

Project:

Vogue Cleaner/1525-0180

Collection Date: 5/3/00 3:30:00 PM Matrix: SOIL

0005086-001A Lab ID:

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	SW8260B				Analyst: AB	
Tetrachloroethene	61	2.9		μg/Kg	1	5/4/00 1:26:00 PM
Trichloroethene	64	2.9		μg/Kg	1	5/4/00 1:26:00 PM
Surr: 4-Bromofluorobenzene	83.8	70-112		%REC	1	5/4/00 1:26:00 PM
Surr: Dibromofluoromethane	101	67-133		%REC	1	5/4/00 1:26:00 PM
Surr: Toluene-d8	97.7	80-121		%REC	1	5/4/00 1:26:00 PM

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 15-May-00

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: EA - 3

Lab Order:

0005282

int Sample ID. Ere's

Project:

Vogue Cleaners

Tag Number: EXCAVATION WALL Collection Date: 5/11/00 2:00:00 PM

Lab ID:

0005282-001A

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	SW8260B				Analyst: AB	
Tetrachloroethene	BRL	230		µg/Kg	50	5/15/00 10:08:00 AM
Trichloroethene	BRL	230		μg/Kg	50	5/15/00 10:08:00 AM
Surr: 4-Bromofluorobenzene	100	70-112		%REC	50	5/15/00 10:08:00 AM
Surr: Dibromofluoromethane	95.5	67-133		%REC	50	5/15/00 10:08:00 AM
Surr: Toluene-d8	97.0	80-121		%REC	50	5/15/00 10:08:00 AM

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 15-May-00

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: EA - 4

Lab Order:

0005282

Tag Number: EXCAVATION WALL

Project:

Vogue Cleaners

Collection Date: 5/11/00 1:30:00 PM

Lab ID:

0005282-002A

Matrix: SOIL

	Result	Limit	Limit Qual Units DF			Date Analyzed	
Analyses	Result	Limit	Quai	Units			
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS	SW8260B				Analyst: AB	
Tetrachloroethene	BRL	250		µg/Kg	50	5/15/00 10:52:00 AM	
Trichloroethene	BRL	250		μg/Kg	50	5/15/00 10:52:00 AM	
Surr: 4-Bromofluorobenzene	101	70-112		%REC	50	5/15/00 10:52:00 AM	
Surr: Dibromofluoromethane	94.7	67-133		%REC	50	5/15/00 10:52:00 AM	
Surr: Toluene-d8	96.3	80-121		%REC	50	5/15/00 10:52:00 AM	

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 15-May-00

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: EA - 5

Lab Order:

0005282

Tag Number: EXCAVATION WALL

Project:

Vogue Cleaners

Collection Date: 5/11/00 1:45:00 PM

Lab ID:

0005282-003A

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260B				Analyst: MJL
Tetrachloroethene	430	240		µg/Kg	50	5/15/00 3:36:00 PM
Trichloroethene	BRL	240		µg/Kg	50	5/15/00 3:36:00 PM
Surr: 4-Bromofluorobenzene	99.1	70-112		%REC	50	5/15/00 3:36:00 PM
	97.7	67-133		%REC	50	5/15/00 3:36:00 PM
Surr: Dibromofluoromethane Surr: Toluene-d8	97.7	80-121		%REC	50	5/15/00 3:36:00 PM

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 15-May-00

CLIENT:

Williams Environmental Services, Inc

Lab Order: 000

0005282

Project:

Vogue Cleaners

Lab ID:

0005282-004A

.

Client Sample ID: EA - 6

Tag Number: EXCAVATION WALL

Collection Date: 5/11/00 1:01:00 PM

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS		SW8260B				Analyst: MJL
Tetrachloroethene	BRL	240		μg/Kg	50	5/15/00 4:20:00 PM
Trichloroethene	BRL	240		μg/Kg	50	5/15/00 4:20:00 PM
Surr: 4-Bromofluorobenzene	99.7	70-112		%REC	50	5/15/00 4:20:00 PM
Surr: Dibromofluoromethane	95.8	67-133		%REC	50	5/15/00 4:20:00 PM
Surr: Toluene-d8	96.6	80-121		%REC	50	5/15/00 4:20:00 PM

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: Williams Environmental Services, Inc

Lab Order:

Project:

Lab ID:

0004501

Vogue Cleaner

0004501-001A

Date: 28-Apr-00

Client Sample ID: ESB-01 C03

Tag Number:

Collection Date: 4/24/00 10:30:00 AM

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	SW8260B				Analyst: MJL	
Tetrachloroethene	43	22		μg/Kg	1	4/27/00 3:55:00 PM
Trichloroethene	BRL	22		μg/Kg	1	4/27/00 3:55:00 PM
Surr: 4-Bromofluorobenzene	92.7	70-112		%REC	1	4/27/00 3:55:00 PM
Surr: Dibromofluoromethane	101	67-133		%REC	1	4/27/00 3:55:00 PM
Surr: Toluene-d8	99.5	80-121		%REC	1	4/27/00 3:55:00 PM

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 28-Apr-00

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: ESB-04 C03

Lab Order:

0004501

Tag Number:

Project: Lab ID: Vogue Cleaner 0004501-004A Collection Date: 4/25/00 10:00:00 AM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260B				Analyst: MJL
Tetrachloroethene	38	22		μg/Kg	1	4/27/00 6:08:00 PM
Trichloroethene	BRL	22		µg/Kg	1	4/27/00 6:08:00 PM
Surr: 4-Bromofluorobenzene	90.9	70-112		%REC	1	4/27/00 6:08:00 PM
Surr: Dibromofluoromethane	. 101	67-133		%REC	1	4/27/00 6:08:00 PM
Surr: Toluene-d8	99.7	80-121		%REC	1	4/27/00 6:08:00 PM

* - Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding Time exceeded

Date: 18-May-00

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: ESB-8

Lab Order:

0005230

Tag Number:

Project: Lab ID:

Vogue Cleaners 0005230-002A Collection Date: 5/10/00 10:45:00 AM

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS		SW8260B				Analyst: MJL
Tetrachloroethene	BRL	250		μg/Kg	50	5/15/00 5:05:00 PM
Trichloroethene	BRL	250		µg/Kg	50	5/15/00 5:05:00 PM
Surr: 4-Bromofluorobenzene	98.1	70-112		%REC	50	5/15/00 5:05:00 PM
Surr: Dibromofluoromethane	98.7	67-133		%REC	50	5/15/00 5:05:00 PM
Surr: Toluene-d8	97.6	80-121		%REC	50	5/15/00 5:05:00 PM

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 18-May-00

CLIENT:

Williams Environmental Services, Inc

Client Sample ID: ESB-9

Lab Order:

0005322

Tag Number: Outside wall

Project:

Vogue Cleaners

. Collection Date: 5/15/00 4:00:00 PM

Lab ID:

0005322-001A

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	SW8260B				Analyst: AB	
Tetrachloroethene	170	8.5		μg/Kg	1	5/16/00 6:21:00 PM
Trichloroethene	44	8.5		μg/Kg	1	5/16/00 6:21:00 PM
Surr: 4-Bromofluorobenzene	97.9	70-112		%REC	1	5/16/00 6:21:00 PM
Surr: Dibromofluoromethane	98.1	67-133		%REC	1	5/16/00 6:21:00 PM
Surr: Toluene-d8	98.3	80-121		%REC	- 1	5/16/00 6:21:00 PM
Surr: Toluene-d8	98.3	80-121		%REC	1	5/16/0

E - Value above quantitation range

Analytical Environmental Services, Inc.

Date: 18-May-00

CLIENT:

Williams Environmental Services, Inc

Lab Order:

0005322

Project:

Vogue Cleaners

Lab ID:

0005322-002A

Client Sample ID: ESB-10

Tag Number: Outside wall

Collection Date: 5/15/00 4:30:00 PM

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS	SW8260B				Analyst: AB
Tetrachloroethene	29	7.5		μg/Kg	1	5/17/00 8:43:00 PM
Trichloroethene	8.3	7.5		μg/Kg	1	5/17/00 8:43:00 PM
Surr: 4-Bromofluorobenzene	88.1	70-112		%REC	1	5/17/00 8:43:00 PM
Surr: Dibromofluoromethane	98.7	67-133		%REC	1	5/17/00 8:43:00 PM
Surr: Toluene-d8	98.0	80-121		%REC	1	5/17/00 8:43:00 PM

R - RPD outside accepted recovery limits

E - Value above quantitation range

APPENDIX G RISK REDUCTION STANDARD CALCULATIONS

Summary of Risk Calculations with Soil and Groundwater Data Maximum Concentration On-Site and Point of Demonstration Former Vogue Cleaners 4020 Washington Road Martinez, Georgia

Soil (mg/kg)

Constituent	Maximum Concentration	Location	RAGs Car	RAGs Non-Car
Cis-1,2 DCE	< 0.0036	SB-25	NC	1,550.0
Tetrachloroethene	0.43	EA-5	23,700.0	346.0
Trichloroethene	0.06	EA-1	1,340.0	16.9

NC – Not Calculated

Groundwater (mg/L)

Constituent	Maximum Concentration	Location	Concentration Point of Compliance	Location	RAGS Car	RAGs Non-Car	MCL
Cis-1,2 DCE	0.005	MW-2	< 0.005	POD-1	NC	0.031	0.070
Tetrachloroethene	0.140	MW-5	< 0.005	POD-1	0.018	0.018	0.005
Trichloroethene	0.026	MW-5	< 0.005	POD-1	0.001	0.001	0.005

NC – Not Calculated

Table 2. Calculation of Type 3 Non-Carcinogenic Effects

cis-1,2-Dichloroethene Equation 7 (Non-Carcinogenic Effects)

Data Input Description		Value	Units
C THI	Concentration in Soil Target Hazard Index	1.55E+03	mg/kg
RfDi	Reference Dose inhalation	NA	mg/kg/day
RfDo BW	Reference Dose oral Body Weight	2.00E-03 70	mg/kg/day kg
AT	Averaging Time	1	years
EF	Exposure Frequency	100	days (construction)
ED	Exposure Duration	1	years (construction)
IRsoil	Soil Ingestion Rate	330	mg/day
			m³/day
IRair	Daily Inhalation Rate	20	(construction)
PEF	Particulate emission factor	4.63E+09	m³/kg
VF	Soil to air Volatilization factor	3.16E+03	m³/kg

Table 3. Calculation of Volatilization Factor

Soil to Air Volatilization Values cis-1,2-Dichloroethene

Data Input	Description	Value	Units	Equation (calculated values)
	Volatilization Factor			
VF	(calculated)	3.16E+03	m³/kg	
LS	Length of side	45	m	
V	wind speed	2.25	m/sec	
DH	diffusion height	2	m	
Α	area of contamination	2.03E+07	cm ²	
Pi	Pi	3.14159		
alpha	calculated	1.94E-03		
Т	exposure interval	7.90E+08	sec	
rho	density of soils	2.65	g/cm	
OC	soil organic carbon	0.02		
Dei	effective diffusivity		2.	0 33
	(calculated)	0.052	cm ² /sec	Di* E ^{0.33}
Di	molecular diffusivity	0.0736	cm ² /sec	
E	soil porosity	0.35		
Kas	soil/air partition coeff			
	(calculated)	1.91E-01		H/Kd*41
Н	Henry's Law Constant	4.07E-03	atm-m3/mol	
Kd	soil-water partition coeff	0.7505.04		// 00 * OC
	(calculated)	8.758E-01		Koc * OC
Koc	organic carbon partition coeff	4.38E+01	cm3/g	
			5 <i>5, 9</i>	

Table 1. Calculation of Type 1 Carcinogenic Effects

Tetrachloroethene Equation 6 (Carcinogenic Effects)

Data Input Description		Value	Units
C TR	Concentration in Soil Target Excess Cancer Risk	2.37E+04 1.00E-05	mg/kg
Sfi Sfo	Inhalation Cancer Slope Factor Oral Cancer Slope Factor	9.10E-04 2.10E-03	mg/kg/day mg/kg/day
BW AT	Body Weight Averaging Time	70 70	kg years
EF	Exposure Frequency	100	days (construction)
ED	Exposure Duration	1	years (construction)
IRsoil	Soil Ingestion Rate	330	mg/day
IRair	Daily Inhalation Rate	20	m ³ /day (construction)
PEF	Particulate emission factor	1.36E+09	m³/kg
VF	Soil to air Volatilization factor	2.66E+03	m³/kg

Table 2. Calculation of Type 1 Non-Carcinogenic Effects

Tetrachloroethene Equation 7 (Non-Carcinogenic Effects)

Data Input Description		Value	Units
C THI	Concentration in Soil Target Hazard Index	3.46E+02 1	mg/kg
RfDi RfDo	Reference Dose inhalation Reference Dose oral	1.10E-02 6.00E-03	mg/kg/day mg/kg/day
BW AT	Body Weight Averaging Time	70 1	kg years
EF	Exposure Frequency	100	days (construction)
ED	Exposure Duration	1	years (construction)
IRsoil	Soil Ingestion Rate	330	mg/day m³/day
IRair	Daily Inhalation Rate	20	(construction)
PEF VF	Particulate emission factor Soil to air Volatilization factor	4.63E+09 2.66E+03	m³/kg m³/kg

Table 3. Calculation of Volatilization Factor

Soil to Air Volatilization Values Tetrachloroethene

Data Input	Description	Value	Units	Equation (calculated values)
	Volatilization Factor			
VF	(calculated)	2.66E+03	m³/kg	
LS	Length of side	45	m	
V	wind speed	2.25	m/sec	
DH	diffusion height	2	m	
Α	area of contamination	2.03E+07	cm ²	
Pi	Pi	3.14159		
alpha	calculated	2.55E-03		
Т	exposure interval	7.90E+08	sec	
rho	density of soils	2.65	g/cm	
OC	soil organic carbon	0.02		
Dei	effective diffusivity		2.	0 33
	(calculated)	0.035	cm ² /sec	Di* E ^{0.33}
Di	molecular diffusivity	0.05	cm²/sec	
E	soil porosity	0.35		
Kas	soil/air partition coeff			
	(calculated)	3.82E-01		H/Kd*41
Н	Henry's Law Constant	1.77E-02	atm-m3/mol	
Kd	soil-water partition coeff	4 0005 00		14 * 00
-	(calculated)	1.898E+00		Koc * OC
Koc	organic carbon partition coeff	9.49E+01	cm3/g	

Table 1. Calculation of Type 3 Carcinogenic Effects

Trichloroethene Equation 6 (Carcinogenic Effects)

Data Input Description		Value	Units
C TR	Concentration in Soil Target Excess Cancer Risk	1.34E+03 1.00E-05	mg/kg
Sfi	Inhalation Cancer Slope Factor	1.43E-02	mg/kg/day
Sfo BW	Oral Cancer Slope Factor Body Weight	4.60E-02 70	mg/kg/day kg
AT	Averaging Time	70	years
EF	Exposure Frequency	100	days (construction)
ED	Exposure Duration	1	years (construction)
IRsoil	Soil Ingestion Rate	330	mg/day
			m³/day
IRair	Daily Inhalation Rate	20	(construction)
PEF	Particulate emission factor	4.63E+09	m³/kg
VF	Soil to air Volatilization factor	2.42E+03	m³/kg

Table 2. Calculation of Type 3 Non-Carcinogenic Effects

Trichloroethene Equation 7 (Non-Carcinogenic Effects)

Data Input Description		Value	Units
C THI	Concentration in Soil Target Hazard Index	1.69E+01 1	mg/kg
RfDi RfDo	Reference Dose inhalation Reference Dose oral	5.71E-04 5.00E-04	mg/kg/day mg/kg/day
BW AT	Body Weight Averaging Time	70 1	kg years
EF	Exposure Frequency	100	days (construction)
ED	Exposure Duration	1	years (construction)
IRsoil	Soil Ingestion Rate	330	mg/day
IRair	Daily Inhalation Rate	20	m ³ /day (construction)
PEF VF	Particulate emission factor Soil to air Volatilization factor	1.36E+09 2.42E+03	m³/kg m³/kg

Table 3. Calculation of Volatilization Factor

Soil to Air Volatilization Values Trichloroethene

Data Input	Description	Value	Units	Equation (calculated values)
	Volatilization Factor			
VF	(calculated)	2.42E+03	m³/kg	
LS	Length of side	45	m	
V	wind speed	2.25	m/sec	
DH	diffusion height	2	m	
Α	area of contamination	2.03E+07	cm ²	
Pi	Pi	3.14159		
alpha	calculated	3.19E-03		
Т	exposure interval	7.90E+08	sec	
rho	density of soils	2.65	g/cm	
OC	soil organic carbon	0.02		
Dei	effective diffusivity		2,	0.33
	(calculated)	0.056	cm ² /sec	Di* E ^{0.33}
Di	molecular diffusivity	0.079	cm ² /sec	
E	soil porosity	0.35		
Kas	soil/air partition coeff			
	(calculated)	2.98E-01		H/Kd*41
Н	Henry's Law Constant	9.83E-03	atm-m3/mol	
Kd	soil-water partition coeff	1 2545,00		Koc * OC
	(calculated)	1.354E+00		NOC OC
Koc	organic carbon partition coeff	6.77E+01	cm3/g	

Cis-1,2 Dichloroethene Groundwater - Child Non-Carcinogenic

$$C(mg/L;_{risk-based}) = \frac{THI \times BW \times AT \times 365 \, days/yr}{EF \times ED \times \left[(1/RfD_i \times K \times IR_a) + (1/RfD_o \times IR_w) \right]}$$
(1)

cis-1,2-D	ichloroethene
C	3.13E-02
THI	1
RfDi	NA
RfDo	2.00E-03
BW	15
AT	6
EF	350
ED	6
IR_a	15
IR_{w}	1
K	0.5

Tetrachloroethene Groundwater - Child Carcinogenic

$$C(mg/L;_{risk-based}) = \frac{TR \times BW \times AT \times 365 \, days/yr}{EF \times ED \times [(SF_i \times K \times IR_a) + (SF_o \times IR_w)]}$$
(1)

Tetrachloroethene

C	1.75E-02
TR	1.00E-05
SFi	9.10E-04
SFo	2.10E-03
BW	15
AT	6
EF	350
ED	6
IR_a	15
$IR_{\rm w}$	1
K	0.5

Tetrachloroethene Groundwater - Child Non-Carcinogenic

$$C(mg/L;_{risk-based}) = \frac{THI \times BW \times AT \times 365 \, days/yr}{EF \times ED \times \left[(1/RfD_i \times K \times IR_a) + (1/RfD_o \times IR_w) \right]}$$
(1)

Tetrachloroethene				
C	1.84E-02			
THI	1			
RfDi	1.10E-02			
RfDo	6.00E-03			
BW	15			
AT	6			
EF	350			
ED	6			
IR_a	15			
IR_w	1			
K	0.5			

Trichloroethene Groundwater - Child Carcinogenic

$$C(mg/L;_{risk-based}) = \frac{TR \times BW \times AT \times 365 \, days/yr}{EF \times ED \times [(SF_i \times K \times IR_a) + (SF_o \times IR_w)]}$$
(1)

Trichloroethene

\mathbf{C}	1.02E-03
TR	1.00E-05
SFi	1.43E-02
SFo	4.60E-02
BW	15
AT	6
EF	350
ED	6
IR_a	15
IR_w	1
K	0.5

Trichloroethene Groundwater - Child Non-Carcinogenic

$$C(mg/L;_{risk-based}) = \frac{THI \times BW \times AT \times 365 \, days/yr}{EF \times ED \times \left[(1/RfD_i \times K \times IR_a) + (1/RfD_o \times IR_w) \right]}$$
(1)

_					
- 1	ri	^	h	oroethe	nn
		ι.			

C	1.03E-03
THI	1
RfDi	5.71E-04
RfDo	5.00E-04
BW	15
AT	6
EF	350
ED	6
IR_a	15
IR_w	1
K	0.5