VOLUNTARY REMEDIATION PROGRAM APPLICATION MIDTOWN CLEANERS ATLANTA, GEORGIA

Prepared by:

Environmental Planning Specialists, Inc. 900 Ashwood Parkway, Suite 350
Atlanta, Georgia 30338
Tel: 404-315-9113

March 2011

VOLUNTARY REMEDIATION PROGRAM APPLICATION MIDTOWN CLEANERS ATLANTA, GEORGIA

Prepared For:
North Highland Associates, LLC
Midtown Cleaners And Laundry, Inc.
599 North Highland Avenue
Atlanta, Georgia 30308

Prepared by:

Environmental Planning Specialists, Inc.
900 Ashwood Parkway, Suite 350
Atlanta, Georgia 30338
Tel: 404-315-9113

March 2011

VOLUNTARY REMEDIATION PROGRAM APPLICATION MIDTOWN CLEANERS
 ATLANTA, GEORGIA
 TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Overview 1
1.2 Site Location and Description 1
1.3 Environmental History 1
1.4 Media of Concern for VRP Application. 2
1.5 Purpose 3
1.6 Property Eligibility 3
1.7 Participant Eligibility 4
2 Conceptual Site Model 5
2.1 Ground Surface Features 5
2.2 The Subsurface Features 5
2.2.1 Geological Setting 5
2.2.2 Hydrogeological Setting 7
2.3 Environmental Conditions 8
2.4 Potential Receptors and Exposure Pathways 9
2.4.1 Environmental Receptors 9
2.4.2 Potential Human Receptors 10
2.4.3 Exposure Media and Pathways 10
2.5 Conceptual Site Model (CSM) 11
3 Remedial Action Plan 13
4 References 14

APPENDICES

APPENDIX A Voluntary Remediation Program Application Form and Checklist
APPENDIX B Tax Map and Warranty Deed
APPENDIX C Figures
Figure 1 Site Location Map
Figure 2 Site Topographic Map
Figure 3 Site Plan
Figure 4 Cross-Section Plan View
Figure 5 Cross-Section A-A'Figure 6 Cross-Section B-B'Figure $7 \quad$ Potentiometric Surface Map (October 2010)Figure 8 Extent of PCE in Soil to Non-DetectFigure $9 \quad$ Extent of PCE in Soil Post Injection (2005-2006)Figure 10 Simplified Conceptual Site Model
APPENDIX D EPD Agreement of Compliance to RRS
APPENDIX E Previous Site Characterization and Response Actions
APPENDIX F Soil Vapor Intrusion Modeling

1 INTRODUCTION

1.1 Overview

This Voluntary Remediation Program (VRP) Application is being submitted on behalf of North Highland Associates, LLC for the Midtown Cleaners and Laundry, Inc. property (Midtown) Hazardous Site Inventory (HSI) Site located at 599 North Highland Avenue in Atlanta, Georgia. Midtown is owned by North Highland Associates, L.L.C. and is operating as Midtown Cleaners and Laundry, Inc. The Site began its dry cleaning operations in the early 1980s. The property tax ID number is 14-0015-0003-0274. Under Hazardous Site Response Act (HSRA) regulation, the HSI Site sublists two adjacent properties. The adjacent properties include Buddy's Convenience Store (Tax Parcel ID\# 14-0015-0003-080-3) to the north and east, an alley way owned by the City of Atlanta, and residential property (Tax Parcel ID\# 14-0016-0013-043-8). A Voluntary Remediation Program Application and Checklist are included in Appendix A. A tax map and warranty deed information are provided in Appendix B.

1.2 Site Location and Description

The facility currently operates as Midtown Cleaners and Laundry Inc. and encompasses one parcel of property located near the intersection of North Highland Avenue and North Avenue in Atlanta, Fulton County, Georgia (refer to Figure 1, which is located in Appendix C). The parcel is owned by North Highland Associates, L.L.C. and is approximately $3 / 4$ of an acre. The entire parcel includes a dry cleaning facility and associated parking. Surrounding land elevations are depicted on a Topographic Map included as Figure 2. The cleaners and adjacent properties are illustrated on Figure 3. Adjacent properties include:

North: Alley owned by the City of Atlanta and then Buddy's Gas Station UST pits and dispenser islands
West: North Highland Avenue followed by Manuel's Tavern
South: Atlanta Book Exchange
East: Alley owned by the City of Atlanta followed by Buddy’s Convenience Store building followed by residential properties

1.3 Environmental History

The Midtown Cleaners building was constructed in the early 1980s and has operated as a dry cleaner from that time until the present. It is not known if the original cleaners used PCE and if
so, where the machines were located. According to the information provided in a prior report by Advanced Environmental Management (AEM), in 1999 the facility contained one dry cleaning machine in the northeastern corner of the building.

The tetrachloroethene (PCE)-containing dry cleaning unit used on site from 1993-2003 was a Wasoclean DONINI D50. The machine utilized three PCE storage tanks totaling 165 gallons in capacity. PCE was dispensed from 20-gallon drums stored on a steel plate adjacent to and underneath the machine. Spent PCE was distilled to a residue in a distillation tank located at the base of the machine. The machine was replaced with a non-PCE, hydrocarbon machine in 2003.

Chlorinated volatile organic compounds (VOCs) are the chemicals of interest at this Site. The primary VOC attributed to the release at Midtown Cleaners is PCE. Other chlorinated and nonchlorinated VOCs have been detected; however, these are attributed to a petroleum release at the adjacent Buddy's Gas Station and Convenience Store. Buddy's is identified as a Leaking Underground Storage Tank (LUST) site by the EPD's Underground Storage Tank Management Program. Thus, this VRP application will address only those constituents related to Midtown Cleaners. PCE and its degradation products [trichloroethene (TCE), cis-1,2-dichloroethene (DCE) and vinyl chloride] are the contaminants of potential concern at this Site.

Subsurface investigations conducted by AEM in 1999 found the presence of PCE in the soil and groundwater. A HSRA Release Notification was submitted on May 31, 1999 and the Site was listed on the Hazardous Site Inventory on October 15, 1999 for a release of PCE to soil. The site was not listed for groundwater. A Compliance Status Report and Corrective Action Plan was submitted in March 2003 (EPS, 2003). Corrective action was initiated in November 2004. Corrective action included In Situ Chemical Oxidation (ISCO) using potassium permanganate. Injections were made in June through December 2005. In 2006 a Compliance Status Report (CSR) was submitted to the EPD (EPS, 2006a). The CSR demonstrated that PCE in both the soil and groundwater at the Site had been delineated to background.

The ISCO injections in 2005 resulted in a nearly 100-fold decrease in PCE concentrations at well MW-1; however, the groundwater at the Site was not in compliance with the Type 3 RRSs for PCE and TCE. Thus, a Corrective Action Plan Addendum (EPS, 2006a), which was subsequently modified (EPS, 2006b), was submitted in 2006 to address the groundwater at the Site. Four hydraulic fracture wells were installed in June 2007, through which potassium permanganate was injected into the subsurface in August 2007 and January 2008. Groundwater quality has been monitored since that time.

1.4 Media of Concern for VRP Application

As of January 2006, all PCE concentrations in the soil were below the Type 1 Risk Reduction Standards (RRS). In the 2003 CSR, the soils were certified to be in compliance with Type 3 RRSs. It should be noted that the certification should have also included Type 1 RRSs. In a letter (included as Appendix D) dated September 26, 2006, the EPD approved of the
certification: "This letter is to inform you that we agree that the soil at the site (Tax Parcel 14-0015-0003-0274) does not exceed Type 3 risk reduction standards (RRS) for PCE." Therefore, no additional corrective action with respect to soils at the Site is needed.

As mentioned previously, the Site was not listed on the HSI for groundwater. Although PCE and daughter compounds were present in the groundwater, no drinking water receptors were identified within the applicable down-gradient distance, and the Site did not score above the Groundwater Pathway Threshold of "10" when applying the Reportable Quantities Screening Method at the time of HSI listing. These conditions are still applicable today; thus, the Site does not currently have a release exceeding a reportable quantity ${ }^{1}$ for groundwater. Additionally, concentrations in soil are below the Type 1 RRS and are, thus, protective of groundwater quality. According to Section 12-8-107(g)(2) of the VRP Act:
"The participant shall not be required to perform corrective action or to certify compliance for groundwater if the voluntary remediation property was listed on the inventory as a result of a release to soil exceeding a reportable quantity for soil but was not listed on the inventory as a result of a release to groundwater exceeding a reportable quantity, and if the participant further demonstrates to the director at the time of enrollment that a release exceeding a reportable quantity for groundwater does not exist at the voluntary remediation property; and the groundwater protection requirements for soils shall be based on protection of the established point of exposure for groundwater as provided under this part."

Midtown believes that the conditions of this section of the VRP Act have been met. Therefore, it is not necessary to perform corrective action or to certify compliance for groundwater at this Site.

1.5 Purpose

The purpose of this document is to support an application for enrollment into the Voluntary Remediation Program. This document presents a current understanding of conditions at the Site with a Conceptual Site Model (CSM).

1.6 Property Eligibility

The Site meets the eligibility criteria for the Voluntary Remediation Program. A historical release of regulated substances on the Site has been confirmed. The Site is not listed on the National Priorities List, is not currently undergoing response activities required by an order of the Regional Administrator of the United States Environmental Protection Agency (USEPA),

[^0]and is not required to have a permit under Code Section 12-8-66. Qualifying the Site under the VRP program would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or by similar authorization from the USEPA. There are no, and never have been any, outstanding liens filed against the Site pursuant to Code Sections 12-8-96 and 12-13-12.

1.7 Participant Eligibility

North Highland Associate, LLC is the Voluntary Remediation Program applicant and is in compliance with all orders, judgments, statutes, rules, and regulations subject to the enforcement authority of the Director with respect to this Site.

2 Conceptual Site Model

The CSM is intended to establish a common knowledge base about the Site and its environmental condition, to facilitate the development of basic remedial action objectives, and to allow an informed decision regarding possible future actions. This section describes the surface and subsurface features at the Site, discusses the extent of contamination at the Site and discusses the potential receptors and exposure pathways.

2.1 Ground Surface Features

The Site is in an urban setting and is covered in concrete.

2.2 The Subsurface Features

2.2.1 Geological Setting

The geologic and hydrogeologic characteristics of the Site and surrounding area are summarized in this section and are described in detail in the 2006 CSR (EPS, 2006a). This section also includes a discussion of regional physiography and Site topography. The discussion of regional characteristics was derived from published sources. Site specific characteristics were determined based on a review of field data.

2.2.1.1 Regional Physiography and Topography

The City of Atlanta lies within the southern part of the Piedmont Physiographic Province. Regionally, the Piedmont Province is topographically characterized by rolling hills and dendritic stream drainage. The Piedmont Province is divided into northern and southern segments by the Brevard Zone, a broad, northeast/southwest striking, structural shear zone (Higgins, 1981). A review of the Physiographic Map of Georgia (Clark and Zisa, 1987) indicates that Atlanta is located on the far eastern side of the Greenville Slope District. The Greenville District is generally characterized by rolling topography with elevations of 1,000 feet in the northeast (near Atlanta) to 600 feet in the southwest. Topographic relief varies from 150-200 feet in the east to 100-150 feet in the west.

2.2.1.2 Regional Geological Setting

Atlanta is located in the Southern Piedmont Province south of the Brevard Shear Zone. Structural features within the Piedmont, particularly near the Brevard Zone, are generally oriented along a southwest-northeast strike imparted from regional tectonic events. The bedrock consists of a complex series of highly metamorphosed, multiply-folded, plutonic, meta-igneous and meta-sedimentary rocks of Pre-Cambrian to Paleozoic age. The bedrock units in the area may also reveal evidence of subsequent igneous intrusions including batholith and dike structures. Lithologic units range in thickness from 10 to more than 10,000 feet in some areas. Rock types include gneisses, schists, granites, amphibolites, meta-basalts, quartzites, and ultramafics. Outcrops are rarely visible due to heavy vegetation and the high degree of chemical weathering. The chemical weathering generally produces a mantle of residual soils over the bedrock with thicknesses ranging from a few feet below surface to up to 50 feet. These soils generally consist of micaceous-silt and sand mixtures and clays grading into saprolite and partially weathered rock near the bedrock surface. The saprolite retains most of the original rock structure but is often highly permeable to groundwater flow (Cressler et al., 1983).

The City of Atlanta and surrounding areas southwest of the Brevard Zone are underlain by the Atlanta Group which consists of late Pre-Cambrian to early Paleozoic age rock units. The geologic structure of this formation group has been interpreted as a synformal anticline or synformal syncline (Higgins and Atkins, 1981). Many of the rock units in the Atlanta Group are lithologically similar to units northwest of the Brevard Zone. Atlanta is underlain by the Camp Creek Formation. This formation consists of massive granite gneiss interlayered with thin, finegrained hornblende-plagioclase amphibolite (McConnell and Abrams, 1984).

2.2.1.3 Site Geology

The Site geology has been investigated by EPS through the advancement of direct push borings, shallow monitoring wells, and one top-of-rock well. The direct push borings and shallow wells were advanced/installed at depths ranging from approximately 8 to 44 ft bls through soil and saprolite residuum. The top-of-rock well was installed at a depth of 65 ft bls on the northeastern end of the building adjacent to MW-1.

The subsurface geology (see cross-sections shown on Figures 4-6) consists of a silt and fine to medium-grained sand soil transitioning into a weathered saprolite at approximately 12 ft bls. The shallow soils also appeared to contain some fill.

The silt and sand soil was micaceous and clay-rich at the top and appeared to be the product of in situ weathering. The saprolite was generally observed to contain coarser sand and was identified by metamorphic relict foliation from the parent bedrock. The saprolite contained abundant muscovite and phlogopite mica along with quartz and weathered feldspar and had the appearance of a weathered schist or granite gneiss. Saprolite was determined to extend to a depth of 65 ft bls in the location of DW-1 where competent bedrock was encountered.

2.2.2 Hydrogeological Setting

2.2.2.1 Regional Hydrogeological Setting

The upper boundary of unconfined groundwater in the Piedmont is formed by the water table or surficial water bearing zone. The water table can be loosely defined as the boundary between saturated and unsaturated soil zones. The depth to the water table may range from a few feet below ground surface to up to 50 feet along hilly terrain. In the Piedmont, the water table is usually situated within the soil-saprolite residuum and the upper portion of the fractured crystalline bedrock. In areas where saprolite thicknesses are minimal, the water table may reside almost entirely in fractured bedrock. The soil-saprolite residuum generally has a relatively large storage capacity with a low to moderate transmissivity. Conversely, the bedrock fracture system generally has a relatively low storage capacity with a high transmissivity where fracture systems are interconnected (LeGrand, 1989). If bedrock fracturing is significant, a hydraulic connection between the surficial water bearing zone and deeper groundwater sources may occur at varying depths within the bedrock.

Groundwater flow in the soil-saprolite/fractured bedrock zone often mimics surface topography except where controlled by subsurface geologic structures or preferential pathways. These pathways may be caused by heterogeneities in the soil, weathering patterns of the saprolite, foliated bedding planes, faults, fractures, or other relict bedrock features. Groundwater flow is usually unconfined with recharge occurring from rainfall penetrating upland areas and discharge occurring as base flow to streams and creeks in low lying areas. These flow regimes are commonly referred to as slope aquifer systems. Depending on the interconnection of fracture zones, a downward gradient is commonly observed in upland areas with an upward gradient present in lowlands.

Productive groundwater wells in the Piedmont may be located in the saprolite residuum, fractured crystalline bedrock, or a combination of both. Water in the bedrock is transmitted via connected fractures within the rock unit. The quantity, size, and degree of connection between these fractures or discontinuities are generally more significant than lithology in determining the amount of water available for withdrawal. Rates of withdrawal are often higher along contact zones between rock units. Secondary permeability and fracture size generally decreases with depth due to overburden pressures except in areas where deep thrust fractures are present. In most places in the Piedmont, well yields are insignificant below a depth of 350 feet (LeGrand, 1989).

2.2.2.2 Site Hydrogeology

The surficial water bearing zone or uppermost aquifer beneath the Site includes the saprolite unit and presumably some portion of the upper fractured bedrock. Since bedrock drilling has not been performed, a hydraulic connection between the saprolite and bedrock has not been
determined. Likewise, the depth and nature of a deeper bedrock aquifer has not been determined.

Figure 7 displays a potentiometric map for the saprolite water-bearing zone. A review of the figure indicates that groundwater flow is predicted to occur to the east across most of the study area. However, groundwater mounding with a predicted flow component to the northwest was observed on the Buddy's Convenience Store property in the vicinity of the dispenser islands.

No perennial streams or other surface water bodies were identified on the facility property or on adjacent properties. The nearest creek is the Lullwater Creek, a minor tributary to the Chattahoochee River located more than 1.5 miles east of the Site. Based on the distance and surrounding topographic conditions, this creek is not suspected to be hydraulically connected to groundwater flow across the Site.

2.3 Environmental Conditions

The facility has been investigated on several occasions since 1999. Appendix E contains a summary of the previous Site investigations and corrective actions.

This section provides information related to the extent of chlorinated VOCs in soil. The only chlorinated VOC detected in the soil was PCE. The delineation standard (shown in Table 1) is background (detection limit) for soil. This section also provides a comparison of the PCE concentrations detected in soil to cleanup standards. The cleanup criterion (also shown in Table 1) selected for chlorinated VOCs at this Site are Type 1 RRSs. Following the procedure defined in Section 391-3-19-. 07 of the HSRA Act, the Type 1 and Type 3 RRS for PCE is based on 100 times the Type 1 HSRA groundwater concentration.

Table 1 Delineation and Cleanup Criteria (mg/kg)

Constituent	Delineation Standard (Background)	Clean-up Criteria (Type 1 RRS)	Type 3 RRS	Maximum Soil Concentration Prior to Corrective Action	Maximum Soil Concentration after Corrective Action
PCE	DL	0.5	0.5	0.67	0.0098

DL: Detection limit
As per the HSRA requirements for the CSR, PCE in the soil was horizontally and vertically delineated to background, which is the detection limit for VOCs. Delineation of soil was demonstrated in the 2006 CSR (EPS, 2006a):

The horizontal extent of PCE in the soil has been delineated to the west by SB-13, to the north by SB-4, SB-5, SB-6, and SB-11, to the east by SB-1, SB-3, SB-14 and MW-9, and in the south by SB-7 and SB-8. The vertical extent of PCE has been delineated to a depth of 44 ft -bls adjacent to the dry cleaning machine and 28 ft -bls near the interior drain. The source of the PCE contamination inside the building is assumed to be low level permeation through the concrete slab floor primarily around the dry cleaning machine.

Corrective action (ISCO) was implemented in 2005. On December 2, 2005 soil borings SB-1C, 2C, 3C, 4C, and 5C (Figure 9) were installed and soil samples collected with the intent of certifying the soil to RRS. All PCE concentrations were below Type 1 RRSs with the exception of SB-3C ($1.4 \mathrm{mg} / \mathrm{kg}$). Subsequent permanganate injections were performed on December 19 21, 2005.

On January 3, 2006 soil borings SB-5, SB-6, and SB-7 were installed and soil samples were again collected for certification. SB-7 was collected by the previous soil boring SB-3C, thus replacing the results from SB-3C. The highest PCE concentration was $0.009 \mathrm{mg} / \mathrm{kg}$ in SB-7 (0-4 ft-bls). All PCE concentrations are below the Type $1 / 3$ RRSs. The soils at the Site were certified to be in compliance with Type 3 RRSs in the 2006 CSR; however, the certification should have stated Type 1 RRS in addition to Type 3.

2.4 Potential Receptors and Exposure Pathways

This section describes potential environmental and human exposures.

2.4.1 Environmental Receptors

The Site is located in a predominantly suburban commercial setting. Common environmental receptors in this type setting may include protected species, wetland areas, and surface water bodies.

2.4.1.1 Protected Species

Information compiled by the Georgia Natural Heritage Program (GNHP) was reviewed for Fulton County to identify sensitive wildlife receptors or protected species near the facility. The information reviewed indicated that wildlife receptors residing in the area of the facility may include small mammals such as chipmunks, squirrels, rabbits, raccoons, and opossums. Birds may include cardinals, robins, blue jays, crows, sparrows, morning doves, and other song birds. Due to the depth to groundwater (27-35 ft bls), no exposed soil, and soil meeting Type 1 RRSs, exposure to wildlife receptors appears unlikely.

2.4.1.2 Wetlands and Surface Water Bodies

A review of a National Wetland Inventory (NWI) Map for Atlanta, Georgia, prepared by the U.S. Fish and Wildlife Service, indicates that the Site and adjacent properties are not located in identified wetland areas. EPS did not identify any wetland areas.

No perennial streams or other surface water bodies were identified on the facility property or on adjacent properties. The nearest creek is the Lullwater Creek, a minor tributary to the Chattahoochee River located more than 1.5 miles east of the Site. Based on the distance and surrounding topographic conditions, this creek is not suspected to be hydraulically connected to groundwater flow across the Site and is therefore not considered a likely receptor.

2.4.2 Potential Human Receptors

Human receptors at the Site include building occupants and others that may utilize the property. Potential human receptors in the area include the dry cleaner personnel and general public. Due to the retail nature of the facility, access to the Site is unrestricted.

2.4.3 Exposure Media and Pathways

2.4.3.1 Soil

Migration of or contact with impacted soil is not a concern because there is no longer impacted soil at the Site. Therefore, direct human exposure to PCE contaminated soil is an incomplete pathway.

2.4.3.2 Groundwater

Chlorinated VOCs released at the Site have migrated to the groundwater beneath the Site. Impacted groundwater from the Site has migrated to the east and Site-related chemicals have been identified in down-gradient wells. However, corrective action at the Site has significantly reduced chlorinated VOC concentrations in the groundwater and a release above a reportable quantity is not present, due in large part to the lack of a drinking water well within a mile of the Site (see the following paragraph). Thus, exposure to groundwater does not need to be evaluated as the Site does not have a release of a reportable quantity.

The facility and neighboring properties are connected to the municipal water supply supplied by Fulton County. The county obtains potable water from surface reservoirs. Groundwater obtained from water wells or other sources is not utilized on the facility or adjacent properties. In order to identify nearby private or public water wells, water well surveys were performed by AEM and EPS. The AEM well survey tentatively identified five private wells within a one-mile search radius: two water wells were located at the Callenwolde Art Center ($>4,500$ feet southeast); two irrigation wells were located at the Jimmy Carter Presidential Center (>2,300 feet southwest) and an abandoned private well was located (1,400 feet east). According to the Release Notification prepared by AEM, "no potable wells were found within a one-mile radius of the Site." The EPS well survey identified four additional wells within a larger search radius.

2.4.3.3 Surface Water

No perennial streams or other surface water bodies were identified on the facility property or on adjacent properties. The nearest creek is the Lullwater Creek, a minor tributary to the Chattahoochee River located more than 1.5 miles east of the Site. Based on the distance and surrounding topographic conditions, this creek is not suspected to be hydraulically connected to groundwater flow across the Site and is therefore not considered a likely exposure route.

2.4.3.4 Volatilization to Indoor Air

The volatilization of PCE and its degradation products (TCE, DCE and VC) from groundwater to indoor air has been identified as a potential pathway. The impacted groundwater associated with the Site lies underneath Midtown, Buddy's Gas Station and Buddy’s Convenience Store. Thus, commercial workers at these facilities are considered potential receptors. Additionally, there is a residence located downgradient of the Site. Impacted groundwater is not underneath this residence. However, the residence is within 100 feet of the impacted groundwater, and the USEPA recommends evaluating structures within 100 feet of plumes.

Therefore, for the purposes of this assessment, potential exposures were evaluated for the following areas:

- Midtown Cleaners - Commercial Worker
- Buddy's Gas Station - Commercial Worker
- Buddy's Convenience Store - Commercial Worker
- Downgradient Residence - Resident

Other potential human receptors, such as a customer to Midtown and/or Buddy's and trespasser, were not evaluated explicitly. This is because exposure of these will be lower than other potential receptors (e.g., on-site commercial worker).

A model was used to determine risk-based groundwater concentrations that would be protective of human health under these scenarios. The soil vapor intrusion modeling using the JohnsonEttinger model is discussed in Appendix F. The modeling shows that there is not an unacceptable risk due to soil vapor intrusion of PCE or TCE.

2.5 Conceptual Site Model (CSM)

The aforementioned cross-sections and plan-view figures give a graphical 3-dimensional picture of the Site. This section summarizes the CSM and Figure 10 provides a simplified image of the CSM. Through historical spills and leaks in the dry cleaning process, PCE migrated into the subsurface soil and groundwater underneath Midtown. Midtown discontinued the use of PCE in 2003. Corrective action (ISCO) at the Site resulted in the destruction of PCE in the Site soils to
concentrations below the Type 1 RRSs and caused over a 100-fold decrease in concentrations in the groundwater. Currently, PCE and TCE remain in groundwater under the Site, but the condition is such that a release of a reportable quantity has not occurred. Due to the volatile nature of PCE and TCE, the constituents could volatilize from the groundwater, migrate through the vadose zone, and enter the overlying buildings resulting in a potential inhalation risk or hazard. However, soil vapor intrusion modeling demonstrates that there is not an unacceptable risk due to soil vapor intrusion pathway.

3 Remedial Action Plan

No further remedial action is proposed for the Site for the following reasons:

- The soils are in compliance with Type $1 / 3$ RRS.
- The groundwater is not a medium of concern as there is not a release above a reportable quantity.
- Modeling has shown that soil vapor intrusion does not pose an unacceptable risk.

Because no further remedial action is proposed, a projected milestone schedule is not necessary.

4 REFERENCES

Agency for Toxic Substances and Disease Register (ATSDR). Evaluating Vapor Intrusion Pathways at Hazardous Waste Sites.
http://www.atsdr.cdc.gov/document/evaluating_vapor_intrusion.pdf
Clark \& Zisa, A Physiographic Map of Georgia, Department of Natural Resources, Georgia Geologic Survey, 1987.

Cressler, C.W., Thurmond, C.J., and Hester, W.G., 1983, Groundwater in the Greater Atlanta Region, Georgia, Georgia Geological Survey Information Circular 63.

Environmental Planning Specialists (EPS), 2003. Compliance Status Report and Corrective Action Plan. March.

Environmental Planning Specialists (EPS), 2006a. Compliance Status Report. April.
EPS 2006b Corrective Action Plan Addendum No. 1. December.
EPS 2007. Corrective Action Plan Modification. May.
EPS 2008. Corrective Action Progress Report. April.
Higgins, M.W. and Atkins, R.L.,1981, The Stratigraphy of the Piedmont Southeast of the Brevard Zone in the Atlanta, Georgia Area, in Wigley, P.B., ed. Latest Thinking of the Stratigraphy of Selected Areas in Georgia, Georgia Geological Survey Information Circular 54-A, p. 3-40.

Johnson, P.C., and R.A. Ettinger. 1991. Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors in Buildings. Environ. Sci. Technol. 25:1445-1452.

LeGrand, Harry E. , 1989, A Conceptual Model of Ground Water Settings in the Piedmont Region, in Ground Water in the Piedmont, Charles c. Daniel III et. al. eds., Clemson University, Clemson, SC, 317-327.

McConnell, K. and Abrams, C., 1984, Geology of Greater Atlanta Region, Bulletin 96, Department of Natural Resources, Georgia Geologic Survey.
U.S. Environmental Protection Agency, 2002. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). November.

APPENDIX A
VOLUNTARY REMEDIATION PROGRAM APPLICATION AND CHECKLIST

Voluntary Investigation and Remediation Plan Application Form and Checklist VRP APPLICANT INFORMATION

QUALIFYING PROPERTY INFORMATION (For additional qualifying properties, please refer to the last page of application form) HAZARDOUS SITE INVENTORY INFORMATION (if applicable)

HAZARDOUS SITE INVENTORY INFORMATION (if applicable)				
HSI Number	10584	Date HSI Site listed	10/15/1999	
HSI Facility Name	Midtown Cleaners \& Laundry, Inc.	NAICS CODE	812320	
PROPERTY INFORMATION				
TAX PARCEL ID	14001500030274	PROPERTY SIZE (ACRES)	0.15	
PROPERTY ADDRESS	599 North Highland Avenue			
CITY	Atlanta	COUNTY	Fulton	
STATE	Georgia	ZIPCODE	30307	
LATITUDE (decimal format)	33.770556 N	LONGITUDE (decimal format)	84.352222 W	
PROPERTY OWNER INFORMATION				
PROPERTY OWNER(S)	North Highland Associates, LLC.	PHONE \#	404-307-5794	
MAILING ADDRESS	2520 Peachtree Road NE, Suite 301			
CITY	Atlanta	STATE/ZIPCODE TN	Georgia 30305	
ITEM \#	DESCRIPTION OF REQUIREMENT		Location in VRP (i.e. pg., Table \#, Figure \#, etc.)	For EPD Comment Only (Leave Blank)
1.	\$5,000 APPLICATION FEE IN THE FORM OF A CHECK PAYABLE TO THE GEORGIA DEPARTMENT OF NATURAL RESOURCES. (PLEASE LIST CHECK DATE AND CHECK NUMBER IN COLUMN TITLED "LOCATION IN VRP." PLEASE DO NOT INCLUDE A SCANNED COPY OF CHECK IN ELECTRONIC COPY OF APPLICATION.)		Check \# 1194 March 29, 2011	
2.	WARRANTY DEED(S) FOR QUALIFYING PROPERTY.		Appendix B	
3.	TAX PLAT OR OTHER FIGURE INCLUDING QUALIFYING PROPERTY BOUNDARIES, ABUTTING PROPERTIES, AND TAX PARCEL IDENTIFICATION NUMBER(S).		Appendix B	
4.	ONE (1) PAPER COPY AND TWO (2) COMPACT DISC (CD) COPIES OF THE VOLUNTARY REMEDIATION PLAN IN A SEARCHABLE PORTABLE DOCUMENT FORMAT (PDF).			
5.	The VRP participant's initial plan and application must include, using all reasonably available current information to the extent known at the time of application, a graphic three-dimensional preliminary conceptual site model (CSM) including a preliminary remediation plan with a table of delineation standards, brief supporting text, charts, and figures (no more than 10 pages, total) that illustrates the site's surface and subsurface setting, the known or suspected source(s) of contamination, how contamination might move within the environment, the potential human health and ecological receptors, and the complete or incomplete exposure pathways that may exist at the site; the preliminary CSM must be updated as the investigation and remediation progresses and an up-to-date CSM must be included in each semi-annual status report submitted to the director by the participant; a PROJECTED MILESTONE SCHEDULE for investigation and remediation of the site, and after enrollment as a participant, must update the schedule in each semiannual status report to the director describing implementation of the plan		CSM: Section 2; Figures 4-10 Preliminary Remediation Plan: Section 3 Delineation standards: Tables 1 Setting/contami nant	

	during the preceding period. A Gantt chart format is preferred for the milestone schedule. The following four (4) generic milestones are required in all initial plans with the results reported in the participant's next applicable semi-annual reports to the director. The director may extend the time for or waive these or other milestones in the participant's plan where the director determines, based on a showing by the participant, that a longer time period is reasonably necessary:	migration/recep tors: Section 2 Schedule: Not applicable	
5.a.	Within the first 12 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment;	Completed in CSR	
5.b.	Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment;	Not applicable	
5.c.	Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and	Completed in CSR	
5.d.	Within 60 months after enrollment, the participant must submit the compliance status report required under the VRP, including the requisite certifications.	Not applicable	
6.	SIGNED AND SEALED PE/PG CERTIFICATION AND SUPPORTING DOCUMENTATION: "I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances. Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring, I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division. The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations." Printed Name and GA PE/PG Number		

ADDITIONAL QUALIFYING PROPERTIES (COPY THIS PAGE AS NEEDED)

Time by Job Detail

January 1, 2007 through March 27, 2011

Midtown Cleaners
 February 2011

SRI-Sr Eng/Geol/Sci'tistl:SRI-Document Preparation

Total SRI-Sr Eng/Geol/Sci'tistl:SRI-Document Preparation

SRI-Sr Eng/Geol/Sci'tistl:SRI-Project Management

Total SRI-Sr Eng/Geol/Sci'tistl:SRI-Project Management

March 2011

SRI-Sr Eng/Geol/Sci'tistl:SRI-Document Preparation

$$
41.00
$$

03/02/2011	Bullman, Timmerly Y
03/03/2011	Bullman, Timmerly Y
03/28/2011	Bullman, Timmerly Y
03/29/2011	Bullman, Timmerly Y

Notes

$02 / 21 / 2011$	Bullman, Timmerly Y
$02 / 22 / 2011$	Bullman, Timmerly Y
$02 / 23 / 2011$	Bullman, Timmerly Y
$02 / 24 / 2011$	Bullman, Timmerly Y
$02 / 25 / 2011$	Bullman, Timmerly Y
$02 / 28 / 2011$	Bullman, Timmerly Y

8.00	VRP application
7.50	VRP application
8.00	VRP application
6.00	VRP application
5.50	VRP application

02/17/2011 Bullman, Timmerly Y

APPENDIX B

TAX MAPS AND WARRANTEE DEEDS

STATE OP GEORGIA

FULTON COUNTY

THIS INDENTURE In the year one thousand nine hundred eighty 20 th day of November,

> VANTOSH COMPANY, INC.,
> A Georgia Corporation,
of the County of Fulton, and State of Georgia, as party or parties
narter called Grantor, and
MYRA ABRAMS (7.5\%), AARON I. ALEMBIK (1.6\%), RITA
BARON (5.04)
BARON (5.0%), DAVID N, CUNNINGHAM (12.5%), HARRY
VANTOSH (7.5%), JILL WELYG (7.5\%), JEFFREY P.
WARONKER (5.0\%), AND NORMANTOSH (43\%) DR. STEVE
as party or parties of the (the words "Grantor" and "Grantee" to incluer called Grantee successors and assigns where the context ro include their heirs, WITNESSETH (hat

- the sum of TEN DOLLARS ($\$ 10.00$) and other in consideration of
consideration in hand consideration in hand paid at and before ther good and valuable of these presents, the receipt whereof is hereby acknowindedivery granted, bargained, sold, aliened, conveyed and acknowledged, has these presents does grant, bargain, senveyed and confirmed, and by unto the said Grantees, their heirs, successor, convey and confirm

All that tract
All that tract or parcel of land lying and being in Land
Lot 15 , of the i4th District consisting of Tract I, Tract II andton County, Georgia, hereto and made a part hereof, II and Tract III, attached (marked Exhibit M."
TOGETHER with all of grantor's right, title and interest abutting or adjoining said real property. real propert.y.
and interest in and to the improvegranter's right, title any of the property herein described now standing upon right, title and interest of Grantor and all of the fixtures located upoin or within trantor in and to all improvements and attached or within the buildings and in connection with any of to, or insta:led in, or used including, but not limited to aildings and improvements, dynamos, screens, awnings, motors and all partitions, furnaces, screens, awnings, motors, engines, boilers, sprinkler systems, fire extinguishings, cleaning and tanks, heating, ventilating, air conditioningt, water cooling equipment, and gas and eonditioning and air appurtenances and equipment. and eleciric machinery,
All of the right
to all furniture, title and interest of Grantor in and all other parsonal property now, equipment:, machinery and the said property and the buildings in, upon or about located thereon. The property herain described is the sama conveyed to Grantor by Deed of Trustee-in-Bankruptcy sama property 20, 1989 , recorded in Deed Book 12983 . painepty, dated November county Racords, Georgia. 12983. paga $15 /$
soor 1:3120f6213

with all 1 thereor to and singular the rights, mambers and appurtenances thereof, to the same being, belonging, or in anywisa appertaining, to the only proper use, benefit and behoof of the said Grantees forever in FEE SIMPLE.

AND THE SAID Grantor will warrant and forever defend the right and title to the above described property unto the siid right and title to the above described property unto the sidd claiming by, through or under the said Party of the first part.

IN WITNESS WHEREOF, the Grantor has signed and sealed this deed, the day and year above written through its duly authorized officer.
vantosh company, inc.

(CORPORATE SEAL)

(Notary Seal)

000K 13120 PG 214

EXHIBIT "A"

TRACT I
ALL that tract or parcel of land lying and being in Land Lot 15 , of the 14 th District of Fulton County, Georgia, and being more.particularly described as Eoly, Georgia,
BEGINNING at a point on the east
Avenue ninety-six and five east side of Morth Highland the southeast corner of North tenths (96.5) feet south of Avenue, said beginning point Highland Avenue and North an eighteen (18) foot alley; being at the south side of an eighteen (18) foot alley; running thence south along fifteen hundredths (65.15) fhland Avenue sixty-five and twenty (120) feet to the sour feet; thence east one hundred (18) foot alley; thence nort side of said eighteen southwestern side of said all northwesterly along the a point where said alley alley ninety-nine (99) feet to south side of said alley turns; thence west along the (63.3) feet to the point sixty-three and three-tenths property known as $597-601$ North binning; being improved according to the present system of highland fivenue, N.E., the city of Atlanta.

TRACT II
ALL that tract or parcel of land lying and being in Land Lot 15 , 14 th District, Fulton County, Georgia, and being more particularly described as follows:

BEGINNING at an iron pin placed on the easterly side of North Highland Avenue two hundred seventy-seven (277) North Highland Avenue from along the easterly side of intersection of the easterly side of the formed by the Avenue with the northerly side side of North Highland easterly along the line thate of Vaud Avenue; run thence 90 degrees 08 minutes with therms an interior angle of Highland Avenue one hundred fifty-six (156) feot North iron pin found on the southwesterly (156) feet to an alley; run thence northwesterly side of said 15 foot alley sixty along the southwesterly pin found; run thence westerly one (62) feet: to an iron feet to an iron pin found on the easterly twenty (120) Highland Avenue; run thence southeasterly side of North side of North Highland Avenue fifty 50 along tie easterly pin placod at the point of beginning, beirg improved property having a one-story frame house there.jn improved 591 North Highland Avenue according to the prese known as of numbering houses in the city of to the present system being more particularly shown on survey Georgia, and Georgia Land Surveying Co., dated September 23 , 1980 . by

EXHIBIT NAn

(Continued)

TRACT III

ALL that tract or parcel of land lying and being in Land Lot 15 of the 14 th District, Fulton County, Georgia, and being more particularly described as follows:

BEGINNING at a point where the northeasterly side of a 15 foot alley intersects with the southerly side of a 10 foot alley, said 15 foot alley running parallel to the rear property line of No. 597-601 North Highland Avenue; thence following the northeasterly side of the 15 foot alley South 26 degrees 5 minutes East a distance of 64.5 feet to a point; thence following the easterly side of said alley (now a 10 foot alley) South 2 degrees 49 minutes West a distance of 104.0 feet to the north side of a 10 foot alley; thence following the northerly side of said 10 foot alley lorth 83 degrees 39 minutes East a distance of 100.45 feet to a point on the right-of-way of a proposed State of Georgia Road (Presidential Parkway); thence along the right-of-way of said proposed road North 69 degrees 04 minutes East a distance of 20.67 feet to a point; thence North 77 degrees 56 minutes East a distance of 22.07 feet to a point on the westerly side of a 10 foot alley; thence along the westerly side of said 10 foot alley North 0 degrees 42 minutes East a distance of 129.66 feet to a point on the south side of a 10 foot alley; thence along the southerly side of said 10 foot alley North 87 degrees 22 minutes West a distance of 167.0 feet to a point on the northeasterly side of a 15 foot alley and point of beginning.

\qquad

APPENDIX C

FIGURES

Source: Google Earth
Midtown Cleaners
599 N. Highland Ave
Atlanta GA

FIGURE 1

- Existing Soil Boring Location
- Deep Well
- Monitoring Well

GM Gas Main

Graphic Scale

ERS
Environmental Planning Specialists, Inc. 900 Ashwood Parkway, Suite 350 Atlanta, GA 30338
Phone: (404) 315-9113
Fax: (404) 315-8509

Midtown Cleaners 599 N. Highland Ave. Atlanta, Georgia

Not to scale

APPENDIX D

EPD AGREEMENT OF COMPLIANCE TO RRS

Georgia Department of Natural Resources
 2 Martin Luther King, Jr. Drive. S.E., Suite 1462 East, Atlanta, Georgia 30334

Noel Holcomb, Commissioner Environmental Protection Division Carol A. Couch, Ph.D., Director Hazardous Waste Management Branch 404-657-8600
September 26, 2006

CERTIFIED MAIL RETURN RECEIPT REQUESTED

North Highland Associates, LLC
c/o Mr. Jeff Vantosh
Vantosh Co., Inc.
1477 Spring Street
Atlanta, Georgia 30309

Re: Notice of Deficiency
Compliance Status Report
Midtown Cleaners and Laundry
Atlanta, Fulton County, Georgia
HSI Site No. 10584

Dear Mr. Vantosh:

The Environmental Protection Division (EPD) has completed its review of the May 15, 2006 letter and Compliance Status Report (CSR) submitted in response to EPD's August 11, 2005 CSR/CAP NOD letter for the Midtown Cleaners and Laundry Site. This letter is to inform you that we agree that the soil at the site (Tax Parcel 14-0015-0003-0274) does not exceed Type 3 risk reduction standards (RRS) for PCE. The following comments discuss certain aspects that require further work and/or correction before this report can be considered complete with respect to Georgia's Rules for Hazardous Site Response Chapter 391-3-19 (Rules).

CSR Deficiencies:

1. The conversion of hydraulic conductivity values from cm / s to $\mathrm{ft} /$ day was corrected in the May 11,2006 letter; however, these values were not updated in the text of the CSR. The correct values listed in the May 11, 2006 letter should be used in future calculations.
2. Section 7 and 10 of the CSR appears to be incorrect, and therefore EPD is reconsidering Comment 13C of our August 11, 2005 letter. Based on information on the Fulton County Tax Assessor website (www. fultonassessor.org), properties located downgradient (east) of the Midtown Cleaners site include Tax Parcels 14001500030803 (William Corey/UST tank owner), 1400150003114 (U.S. Enterprises/Buddy's Convenience Store), 1400150003005 (Ryan Florence) and 14001500030068 (Victoria Alembik). It is very important to identify which neighboring parcels are part of the site for certifying compliance, delineation, and corrective action for groundwater at the site. The following comments should be addressed in an addendum to the CSR, or the groundwater CAP.
a. By overlaying a site figure and a tax assessor map, it appears MW-4 is located on Victoria Alembik's property, rather than a vacant property owned by Jeff Vantosh. Please review the location of MW-4 with the Fulton County tax parcel maps and clarify which parcels are part of the Site. If property transactions have taken place, or if the information provided by the tax assessor is inaccurate, please provided documentation. Attached is the tax map overlaid on top of Figure 8 for your review.
b. The Carmichael property (Tax Parcel 14001600130438) is located side-gradient (northeast) of Midtown Cleaners and has not been sampled. Therefore, certification for the Carmichael property is not appropriate.
3. Soil data collected in 2005 and 2006 presented on Table 2 are slightly different than those shown on the laboratory data sheets. Please review the values shown on this Table.
4. Table 3 is missing the groundwater samples collected at MW-1 and TW-1 on December 2, 2005. Additionally, groundwater data for SB-1C should be included on this table.
5. The data from the MACHINE sample is missing from Figure 7.
6. SB-3C is shown on Figure 7, but should be taken off this Figure, since this sample was collected in 2005. This sample should be added to Figure 10, with a note that states that SB-7 was a confirmation sample after permanganate injection.
7. Temporary well MW-9 was installed in September 2005. Please provide a description of the purpose of this temporary well. Will this temporary well be used to collect groundwater quality samples, water levels or serve as an injection point for permanganate?
8. Horizontal delineation of PCE impacted groundwater should be conducted between MW-8 and MW-4, to determine where corrective action needs to be performed between these locations, and to allow you to certify compliance on these properties.
9. Active remediation is recommended at MW-8 and TW-1, since source/DNAPL concentrations are present at these locations.
10. Based on a detection of $6.4 \mathrm{ug} / \mathrm{L}$ at DW-1, vertical delineation has not been achieved. You may chose to monitor DW-1 quarterly for 1 year to evaluate if this concentration will attenuate over time, and what effects permanganate injections may have on groundwater quality at the site.
11. Although QA/QC samples are being collected during groundwater and soil sampling, they are not discussed in the text, nor are duplicated samples identified in Tables 2 and 3. Please add the data for duplicate samples onto the appropriate tables and include a discussion of them in the text.

EPD requests the submittal of a CAP for groundwater stating how you plan to come into compliance with RRS for groundwater. Please include a plan to collect water levels, and a full round of groundwater samples from each well on the site (BCMW-1, BCMW-2, BCMW-3, BCMW-4, BCMW-5, BCMW-6, TW-1, MW-1, DW-1, MW-2, MW-3, MW-4, MW-5, MW-6 and MW-9). Remaining deficiencies for the CSR may be addressed in a groundwater corrective action plan. Please submit a CAP by December 22, 2006. If you have any questions, please contact Katie Ross at (404) 657-8600.

[^1]

Figure 8 from April 2006 CSR with Tax Parcel map of area overlaid.

APPENDIX E

PREVIOUS SITE INVESTIGATIONS AND CORRECTIVE ACTIONS

APPENDIX E

PREVIOUS SITE INVESTIGATIONS AND CORRECTIVE ACTION

This Appendix gives a summary of investigations and corrective action activities that have occurred at the Site. The first section describes the investigations conducted prior to corrective action. The second section describes the corrective action activities and the last section summarizes the groundwater monitoring events that have taken place since corrective action was initiated.

E. 1 Pre-Corrective Action Investigations

This section provides a summary of soil and groundwater investigations that have been conducted at the Site. AEM and EPS conducted investigations at the Site since 1999. Details of the sampling procedures and well installation methods used by EPS are presented in the CSR (EPS, 2006a). Figure E-1 shows the locations of where soil samples were collected and Figure E-2 shows the locations of groundwater samples. The analytical results for constituents detected in soil are shown in Table E-1. The analytical results for constituents analyzed in groundwater are shown in Tables E-2 through E-4 for chlorinated organics, non-chlorinated organics and inorganics, respectively.

AEM Investigations

AEM April 1999 Subsurface Investigation

In April 1999, AEM conducted a subsurface investigation on the Site. The investigation entailed the advancement of three soil borings. Boring locations included one adjacent to the dry cleaning machine, one adjacent to a floor drain, and one outside near the dumpsters.

The soil borings were advanced at the Site using a hand auger. Two soil borings completed inside the dry cleaners were designated DRAIN and MACHINE. One soil boring outside the dry cleaners near the dumpsters was designated DUMPSTER. The locations of the borings are shown on Figure E-1. The three borings were advanced to a depth of 2 feet below ground surface (ft-bls) at the MACHINE and DUMPSTER location, and 6.25 ft -bls at the DRAIN.

One soil sample from each hand auger location was selected for laboratory analysis. The selected samples were collected from the terminating depths of each boring. Soil samples were analyzed for VOCs using USEPA Method 8260B. PCE was detected in the DRAIN and

MACHINE samples at concentrations of 0.065 and 0.670 milligrams per kilogram ($\mathrm{mg} / \mathrm{kg}$) respectively. No other VOCs were detected in these samples.

Halogenated VOCs were not detected in the soil sample collected from the sample designated as DUMPSTER. Other VOCs detected included benzene ($0.35 \mathrm{mg} / \mathrm{kg}$), ethylbenzene ($0.03 \mathrm{mg} / \mathrm{kg}$), toluene ($0.44 \mathrm{mg} / \mathrm{kg}$), and total xylenes $(0.13 \mathrm{mg} / \mathrm{kg})$.

AEM May 1999 Subsurface Investigation

In May 1999, AEM installed and sampled one groundwater monitoring well, conducted a well survey, and submitted Reportable Quantities Screening Method and Release Notification Screening Forms to EPD.

Groundwater monitoring well (MW-1) was located at the exterior of the northeastern corner of the building (adjacent to the dry cleaning machine). The well boring was advanced to a depth of $35 \mathrm{ft}-\mathrm{bls}$. The monitoring well was constructed with the screen interval at $24.5-34.5 \mathrm{ft}-\mathrm{bls}$. Soils encountered during drilling included silt and sandy clays associated with the in situ weathering of the parent bedrock. One groundwater sample was collected from MW-1 and analyzed for VOCs using USEPA Method 8260B. The following VOCs were detected: PCE, 1,1,1-trichloroethane, 1,1-dichloroethene, chloroform, methylene chloride, benzene, ethylbenzene, toluene and total xylenes.

AEM Well Survey

In 1999, AEM completed a well survey within a 1-mile search radius of the Site. The well survey identified five private wells: two water wells were located at the Callanwolde Art Center ($>4,500$ feet southeast); two irrigation wells were located at the Jimmy Carter Presidential Center ($>2,300$ feet southwest) and an abandoned private well was located 1,400 feet east of the Site.

EPS Subsurface Investigations

EPS field investigations included a subsurface assessment inside the dry cleaners and outside the building. The assessments conducted inside the building included the advancement of borings with hand augers and direct push sampling devices. The assessments conducted outside the building involved the advancement of borings by direct push and with a hollow stem auger drill rig. Temporary and permanent monitoring wells were installed for groundwater sampling.
These investigations were performed to delineate the extent of VOC constituents in soil and groundwater and to identify pertinent geological and hydrogeological characteristics of the study area.

August 2001 Subsurface Investigation

In August, 2001, EPS sampled an existing on-Site monitoring well, MW-1, and was granted permission to access and sample five existing monitoring wells BCMW-1, BCMW-2, BCMW-3, BCMW-7, and BCMW-8, located on the adjacent Buddy's Convenience Store property. BCMW-4 could not be located to sample. BCMW-5 was excluded from sampling due to its location relative to the other monitoring wells. BCMW-6 could not be sampled due to the presence of excess LNAPL recharging into the well. These groundwater samples were collected to evaluate the horizontal extent of dissolved chlorinated VOCs north of the dry cleaning facility prior to performing any additional assessment.

PCE was detected at a concentration of $1,500 \mu \mathrm{~g} / \mathrm{l}$ in MW-1. No degradation products of PCE were detected. PCE was detected at $8.5 \mu \mathrm{~g} / \mathrm{l}$ in monitoring well BCMW-1. PCE and its degradation products were not detected in the other BC wells.

Elevated concentrations of petroleum hydrocarbons associated with an apparent UST release were also detected in MW-1 and the BC wells. The petroleum hydrocarbon concentrations reported for BCMW-2 and BCMW-3 are not representative due to the presence of measurable LNAPL in these two wells. The compounds detected primarily consisted of BTEX constituents, common derivatives or breakdown products, and gasoline additives. The gasoline additives include lead scavangers (1,2-dichloroethane and 1,2-dichloromethane) and MTBE.

October 2001 Subsurface Investigation

In October, 2001, EPS advanced three monitoring wells (DW-1, MW-2, and MW-3) to evaluate the horizontal and vertical extent of VOCs on the Midtown property. EPS installed MW-2 at the southwest corner of the building, MW-3 near the southeastern property boundary, and DW-1 adjacent to MW-1 as shown on Figure E-2. The new wells were sampled in November 2001 along with monitoring well MW-1 to determine the extent of dissolved chlorinated hydrocarbon VOCs. PCE was detected at $1,660 \mu \mathrm{~g} / \mathrm{l}$ in MW-1 and $14.2 \mu \mathrm{~g} / \mathrm{l}$ in DW-1. No other chlorinated VOCs were detected in the samples collected from these wells.

Eight soil borings were advanced by EPS in November 2001 inside the dry cleaners. One of the borings (SB-1) was advanced in close proximity to the prior AEM boring (Machine). Soil samples were collected at varying depths intervals ranging from $0.5-1,3-3.5$, or $6-7 \mathrm{ft}$ bls and field screened with a Photo-Ionization Detector (PID). None of the PID readings were above background levels; therefore, shallow and deep samples were submitted from each boring for laboratory analysis. The samples were analyzed for chlorinated VOCs only.

The shallow samples were submitted to the laboratory for VOC analysis on the assumption that these samples would have the highest concentration of VOCs if permeation occurred through the concrete slab. Deeper samples were submitted for laboratory analysis in an attempt to vertically delineate potentially impacted soils.

A review of the laboratory results in Table E-1 indicates that PCE was the only VOC detected. PCE was detected in only two shallow samples: SB-3-1 ($0.031 \mathrm{mg} / \mathrm{kg}$) and SB-4-1 (0.005 $\mathrm{mg} / \mathrm{kg}$).

Five split spoon soil samples were collected during the drilling of MW-3 and DW-1. Each of the samples were analyzed for chlorinated VOC. PCE was detected in DW-1 samples at 0.012 $\mathrm{mg} / \mathrm{kg}$ at $36 \mathrm{ft}-\mathrm{bls}, 0.01 \mathrm{mg} / \mathrm{kg}$ at 46 ft bls, and $0.018 \mathrm{mg} / \mathrm{kg}$ at 65 ft bls. No other chlorinated VOCs were detected in DW-1. No chlorinated VOCs were detected at 36 ft bls and 41 ft bls in MW-3.

January 2002 Subsurface Investigation

In January 2002, a direct push boring (GP-1) was advanced downgradient of MW-1 to delineate the horizontal extent of chlorinated VOCs. A downgradient well, MW-4, was installed on an off-Site property to delineate the extent of VOCs to background levels.

GP1-01 was advanced to a depth of 36 ft -bls, approximately 40 feet southeast and down gradient of MW-1 in an alley separating the Midtown Cleaners and Buddy's Convenience Store. PCE was not detected in this groundwater sample. Petroleum hydrocarbons similar to the compounds detected in the BC wells were detected in the sample.

MW-4 was installed on a vacant lot owned by Jeff Vantosh. The well was installed in this location after failing to obtain drilling access from Buddy's Convenience Store. No VOCs were detected in the sample collected from the well.

December 2002 and February 2003 Subsurface Investigations

In response to EPD comments, in December 2002 and February 2003, three interior soil borings (SB-1, SB-2, and SB-5) were deepened and six additional soil borings, SB-9 through SB-14 were advanced. A total of six additional samples were collected from the deepened borings. Twelve samples were collected from the new borings. All of the samples were analyzed for VOCs.

Petroleum VOCs were detected in samples collected from SB-11 and SB-14. No VOCs were detected in SB-13 located in the sidewalk adjacent to Highland Avenue. The petroleum VOCs detected included BTEX constituents, trimethylbenzenes, naphthalene, methyl-tertiary-butylether (MTBE), and related BTEX derivatives. The presence of MTBE in SB-11 suggests an unleaded gasoline source. An unleaded gasoline UST is located approximately 20 feet northwest and hydraulically upgradient of SB-11. The detection of petroleum hydrocarbons in SB-14 may be attributed to the stockpiling of petroleum contaminated soils near the dumpsters and migration through the groundwater from Buddy's Convenience Store.

PCE was detected in several of the samples in concentrations ranging from $0.0053 \mathrm{mg} / \mathrm{kg}$ (SB-1-$29-30$) to $0.140 \mathrm{mg} / \mathrm{kg}$ (SB-9-28).

The vertical extent of PCE near the dry cleaning machine was defined to a depth of 44 ft -bls as indicated by a concentration below laboratory reporting levels in SB-9-44. VOCs other than PCE were not detected in any of the borings except SB-12. Trace levels of petroleum hydrocarbon VOCs were detected in SB-12 at depths of 6, 15, and 28 ft -bls. The compounds detected included toluene, ethylbenzene, xylenes, and trimethylbenzenes. These compounds are attributed to petroleum releases from the UST system located at the Buddy’s Convenience Store. The nearest UST is located approximately 30 feet north of the building.

In December 2002, a one-inch temporary well (TW-1) was installed after advancing direct push boring SB-9 below the water table. A groundwater sample was collected from this well for VOC analysis. The results indicated the presence of $160 \mu \mathrm{~g} / \mathrm{l}$ PCE. Low levels of VOCs attributed to the adjacent petroleum release were also detected. These compounds included benzene ($5 \mu \mathrm{~g} / \mathrm{l}$), xylenes ($5.9 \mu \mathrm{~g} / \mathrm{l}$), MTBE ($6.6 \mu \mathrm{~g} / \mathrm{l}$), and 1,2-dichloroethane.

In order to complete the groundwater delineation, four additional monitoring wells were installed. Three of the wells (MW-5, MW-6, and MW-7) were constructed immediately adjacent to the building as one-inch temporary wells (Figure E-2). MW-5 was constructed in boring SB11 located on the north side of the building. MW-6 was installed in SB-13 located on the west side of the building in the sidewalk adjacent to Highland Avenue. MW-7 was installed in SB-14 on the east side of the building. An additional permanent 2-inch monitoring well, MW-8, was installed northeast of the building in the alley.

PCE was detected in MW-5 (29.7 $\mu \mathrm{g} / \mathrm{l})$, MW-7 (10.9 $\mu \mathrm{g} / \mathrm{l}$), and MW-8 (498 $\mu \mathrm{g} / \mathrm{l})$. PCE was not detected in MW-6. Petroleum hydrocarbons were detected in all of the wells except MW-6. Low levels of 1,2-dichloroethane ($12.5 \mu \mathrm{~g} / \mathrm{l}$) and chloroform (12.9 $\mu \mathrm{g} / \mathrm{l}$) were also detected in MW-8.

A sample was also collected from DW-1 to verify the previous PCE detection. VOCs were not detected in the sample collected.

November 2004 through July 2005 Sampling Events

Eight groundwater sampling events occurred between November 2004 and July 2005. The purpose of the events was to access the effectiveness of the remediation. The results are shown in Tables E-2 through E-4. As shown in the Table E-2, TCE was detected in the January 2005 sampling event in MW-1 and TW-1 at $6.3 \mu \mathrm{~g} / \mathrm{l}$ and $14 \mu \mathrm{~g} / \mathrm{l}$, respectively. This is the first time that TCE was detected on-Site.

September 2005 Subsurface Investigation

At the request of EPD, in September 2005, soil boring SB-1 (2005) was installed adjacent to MW-1 since a soil sample was not collected from MW-1 when the well was installed by AEM in 1999. Samples were collected at $8-12 \mathrm{ft}$-bls and $24-28 \mathrm{ft}$-bls. No VOCs were detected in the soil samples.

E. 2 Corrective Action

This section summarizes the corrective action that has been conducted to date at the Site.

2005 In-situ Chemical Oxidation

General Scope of Corrective Action

Corrective action began in November 2004. The soils were considered to be remediated to below Type $1 / 3$ RRS in January 2006. The corrective action program basically consisted of monitoring/injection well installation, oxidant injection/gravity drip, and soil and groundwater sampling as described below. Corrective action at this Site was limited to PCE present in the groundwater and soil, attributable to releases from Midtown's operations, and that was present above Type 1/3 RRS.

In Situ Chemical Oxidation

Based on the review of the available technologies, in situ chemical oxidation (ISCO) was selected as the chosen technology for corrective action at this Site. Initially, the use of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ was pilot tested at the Site. Based on the pilot test results, and the bench scale test, sodium and potassium permanganate (herein referred to as permanganate) were chosen as the oxidizing agents. The application of this methodology for this Site involved the injection of a concentrated oxidizer into the plume through PVC injection wells.

Technology Overview

Remediation of soil and groundwater contamination using ISCO involves injecting and gravity dripping oxidants directly into the source zone and downgradient plume. The oxidant chemicals react with the contaminant, producing innocuous substances such as carbon dioxide, water, and inorganic chloride. ISCO has several advantages over conventional treatment technologies such as it does not generate waste materials and is implemented over a relatively short time frame.

Permanganate is an oxidizing agent with an affinity for oxidizing organic compounds containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile, the permanganate ion is strongly attracted to the electrons in carbon-carbon double bonds found in chlorinated alkenes, borrowing electron density from these bonds to form a bridged, unstable oxygen compound known as a hypomanganate diester. This intermediate product further reacts by a number of mechanisms including hydroxylation, hydrolysis or cleavage. The carbon-carbon
double bond of alkenes is broken spontaneously and the unstable intermediates are converted to carbon dioxide through either hydrolysis or further oxidation by the permanganate ion. There are two forms of permanganate, KMnO_{4} and NaMnO_{4}. The balanced oxidation-reduction reactions of NaMnO_{4} with the various species of chlorinated ethenes can be written as follows:

$$
\begin{aligned}
& \text { Perchloroethene }(\mathrm{PCE}) \\
& 4 \mathrm{NaMnO}_{2}+3 \mathrm{C}_{2} \mathrm{Cl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{CO}_{2}+4 \mathrm{MnO}_{2}+4 \mathrm{Na}^{+}+12 \mathrm{Cl}^{-}+8 \mathrm{H}^{+} \\
& \text {Trichloroethene }(\text { TCE }) \\
& 2 \mathrm{NaMnO}^{+} \mathrm{C}_{2} \mathrm{HCl}_{3} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{MnO}_{2}+3 \mathrm{Cl}^{-}+\mathrm{H}^{+}+2 \mathrm{Na}^{+} \\
& \text {Dichloroethene }(D C E) \\
& 8 \mathrm{NaMnO}_{4}+3 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}+2 \mathrm{H}^{+} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{MnO}_{2}+8 \mathrm{~K}^{+}+6 \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O} \\
& \text { Vinyl Chloride }(V C)_{10 \mathrm{KMnO}_{4}+3 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} \rightarrow 6 \mathrm{CO}_{2}+10 \mathrm{MnO}_{2}+10 \mathrm{~K}^{+}+3 \mathrm{Cl}^{-}+7 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

The byproducts of the reactions shown above are reaction end-points. Intermediate reaction products of TCE oxidation using permanganate ion consists mainly of esters and short-chain acids. Carbon dioxide exists naturally in the subsurface from biological processes and bicarbonate partitioning in the groundwater. Manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ is a natural mineral found in the soils.

Chlorine gas reacts immediately with groundwater and pore water to form hypochlorous acid (HOCl). This acid may react with methane to form trace concentrations of chloromethanes in the groundwater immediately after treatment. However, this phenomenon is typically short-lived as the subsurface conditions are converted from an anoxic state to an oxidized state.

Bench-Scale Test

In August and September 2002, Carus Chemical Company (CCC), LaSalle, Illinois, performed a treatability study using potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$ to determine the groundwater oxidant demand required to reduce the chlorinated hydrocarbons detected in Midtown soils. The soil natural oxidant demand (NOD) for the low KMnO_{4} dose ranged from an average of $3 \mathrm{mg} / \mathrm{kg}$ at 3 hours to $47 \mathrm{mg} / \mathrm{kg}$ at 48 hours. The NOD for the medium KMnO_{4} dose ranged from an average of $38 \mathrm{mg} / \mathrm{kg}$ at 3 hours to $164 \mathrm{mg} / \mathrm{kg}$ at 48 hours. The NOD for the high KMnO_{4} dose ranged from an average of $250 \mathrm{mg} / \mathrm{kg}$ at 3 hours to $399 \mathrm{mg} / \mathrm{kg}$ at 48 hours. Based on these values, permanganate was considered a viable option for remediation of this Site.

Corrective Action Approach

Sodium permanganate was initially injected on Site. After the evaluation of the effectiveness of the sodium permanganate, potassium permanganate was used by gravity drip for the deliver method. This decision to use potassium permanganate was based on the on cost effectiveness in
comparison to sodium permanganate. The choice to change delivery methods from injection to gravity drip was based on literature review and soil lithology.

Subsurface Injection Method
Injection of liquid permanganate into the treatment zone was performed utilizing PVC injection wells installed using direct push technology. The injection wells were constructed of 1 -inch, machine slotted, 0.020 -inch screen in 5 to 10 -foot sections, flush threaded to Schedule 40 solid riser pipe and completed flush with surface grade. A total of 17 injection wells were installed; 7 for the remediation of soil, and 10 for the remediation of groundwater. Four injection wells were installed inside the building.

Injection was performed using an injection skid consisting of totes, 1-inch braided poly tubing, injection manifold, and a compressor (when drip was not used). Fresh water was mixed with the permanganate in the totes as required for adjusting the concentration of the permanganate prior to the injection. The specific concentration of permanganate, injection quantity, and injection rate varied based upon injection well. The typical permanganate injection concentration was 56\%.

The remediation process was monitored as a quality control measure. Process monitoring consisted primarily of the following:

Confirmation of oxidant injection concentrations, volumes, and flow rates;
Measurement of oxidant;
Measurement of oxidant persistence;
Analysis for PCE.
Prior to determining the final level of treatment obtained, monitoring for presence of residual oxidant level will help determine if chemical reactions are completed. Due to adsorption and desorption equilibrium, contaminant concentrations may rebound.

Accordingly, after initial injections, sampling events of select groundwater monitoring wells were collected to assess the initial effectiveness of the corrective action. All wells were purged a minimum of three volumes using a dedicated bailer or submersible pump and baseline samples were obtained. Soil and groundwater samples were analyzed for VOCs by USEPA Method 8260b. General water quality parameters such as temperature, oxidation-reduction potential, pH and conductivity were measured in select wells. Note, the groundwater samples were collected only for the purpose of evaluating the effectiveness of the remediation, therefore, only the minimal required operating procedures were performed in order obtain the relative effectiveness and remain cost effective.

Summary of Injection Events

The injection events are summarized below.

Date Activity

11/18/04 Collect groundwater samples from MW-1, MW-8, and TW-1. PCE concentrations were detected in MW-1 at 3,200 $\mu \mathrm{g} / \mathrm{L}, \mathrm{MW}-8$ at $2,700 \mu \mathrm{~g} / \mathrm{L}$, and TW-1 at $2,200 \mu \mathrm{~g} / \mathrm{L}$.
Install temporary borings adjacent to MW-1 and inject 165 gallons $15 \% \mathrm{H}_{2} \mathrm{O}_{2}$ at 20 pounds per square inch (PSI).
12/17/04 Collect groundwater samples from MW-1, MW-8, and TW-1. PCE concentrations detected in MW-1 at 3,100 $\mu \mathrm{g} / \mathrm{L}$, MW-8 at 2,400 $\mu \mathrm{g} / \mathrm{L}$, and TW-1 at $2,400 \mu \mathrm{~g} / \mathrm{L}$.
1/26/05 Collect groundwater samples from MW-1, MW-8, and TW-1 to assess the effectiveness of the $\mathrm{H}_{2} \mathrm{O}_{2}$ injection. PCE concentrations were detected in MW-1 at $3,700 \mu \mathrm{~g} / \mathrm{L}$, MW-8 at $3,100 \mu \mathrm{~g} / \mathrm{L}$, and TW-1 at $2,600 \mu \mathrm{~g} / \mathrm{L}$.
6/15-17/05 Install injection wells IW-1 through IW-12 to treat soil and groundwater. 6/19/05 Inject 110 gallons $10 \% \mathrm{KMO}_{2}$ at 40 PSI into injection wells IW-2-6,
6/22/05 Collect groundwater samples from MW-1, DW-1, and MW-8. PCE concentrations were detected in MW-1, DW-1, and MW-8.
Deliver 330 gallons 10\% NaMNO4 by gravity feed into injection wells IW 1-6.
7/6/05 Sample MW-1 before delivery of KMNO_{4}. PCE concentrations detected at 2,400 $\mu \mathrm{g} / \mathrm{L}$.
Deliver 300 gallons 5\% KMO_{4} into injection wells IW-5, IW-6, IW-11, and IW12.

Collect a groundwater sample from MW-1 prior to KMO_{4} delivery. MW-1 PCE concentration detected at $1,400 \mu \mathrm{~g} / \mathrm{L}$.
Install boring IW-17 and deliver 75 gallons $5 \% \mathrm{KMO}_{4}$.
Collect a groundwater sample from MW-1 after delivery. MW-1 PCE concentration below laboratory detection limits.
7/11/05 Collect groundwater sample from MW-1 to assess PCE rebound. PCE concentration detected at $38 \mu \mathrm{~g} / \mathrm{L}$.
09/30/05 Install additional borings SB-1 and MW-9, then deliver 300 gallons $5 \% \mathrm{KMO}_{4}$ into Injection wells IW-1 through IW-8
10/03/05 Deliver 125 gallons 5\% KMO_{4} into injection wells IW-9 through IW-12
10/20/05 Deliver 125 gallons 5\% KMO_{4} into injection wells IW-9 through IW-12
10/25/05 Deliver 150 gallons 5\% KMO_{4} into injection wells IW-1 through IW-8
10/26/05 Deliver 100 gallons 5\% KMO_{4} into injection wells IW-9 through IW-12
10/29/05 Deliver 200 gallons 5\% KMO_{4} into injection wells IW-1 through IW-8
11/13/05 Install injection wells IW-14, IW-15, IW-16.
Deliver 50 gallons of $5 \% \mathrm{KMNO}_{4}$ into these wells.
11/22/05 Deliver 125 gallons KMO_{4} into injection wells IW-14 through IW-16
11/29/05 Deliver 150 gallons KMO_{4} into injection wells IW-14 through IW-16

12/02/05 Install borings SB-1C, 2C, 3C, 4C, 5C and collect soil samples for certification. Laboratory reports indicate that all PCE concentrations are below RRS with exception of SB-3C ($1.4 \mathrm{mg} / \mathrm{kg}$)
12/19/05 Deliver 200 gallons 5\% KMO_{4} into IW-9 - IW-12
12/20/05 Deliver 200 gallons 5\% KMO_{4} into IW-9 - IW-12
12/21/05 Deliver 200 gallons 5\% KMO_{4} into IW-9 - IW-12
01/03/06 Install borings SB-5, SB-6, and SB-7 and collect soil samples for certification. Laboratory reports indicate that all PCE concentrations are below RRS.

July 2005 Sampling \{Should this before previous section???\}

Pilot test injections were performed in July 2005 in one injection well located immediately adjacent to monitoring well MW-1. Tetrachloroethene (PCE) concentrations decreased from $1,400 \mu \mathrm{~g} / \mathrm{L}$ to non-detect in MW-1. PCE concentrations rebounded to $320 \mu \mathrm{~g} / \mathrm{L}$ in MW-1 in March 2007.

2007-2008 In Situ Chemical Oxidation

In December 2006, a Corrective Action Plan Addendum 1 (EPS, 2006) was submitted to the EPD and was modified in a letter dated May 25, 2007 (EPS, 2007). The modified CAP Addendum was approved by the EPD in a letter dated May 31, 2007. The objective of the modified CAP Addendum was to propose corrective action to bring the Site’s groundwater into compliance with RRS using ISCO and monitored natural attenuation (MNA).

The following activities have taken place since the CAP Amendment:

1. Baseline Groundwater Monitoring Event - May 2007
2. Injection Well Installation - June 2007
3. Soil Oxygen Demand Sampling - June 2007
4. Well Abandonment - June 2007
5. Monitoring Well Installation - August 2007
6. Phase I Injections - August 2007
7. Interim Sampling Event 1 - November 2007
8. Phase II Injections - January 2008
9. Interim Sampling Event 2 - March 2008
10. Interim Sampling Event 3 - September 2008
11. Interim Sampling Event 4 - April 2009
12. Interim Sampling Event 5 - October 2010

This section discusses each of the items listed above in addition to results of previously performed pilot testing.

May 2007 Baseline Groundwater Monitoring Event

EPS performed the Baseline Groundwater Monitoring Event on May 22-24, 2007 prior to beginning Phase I of the remediation project (i.e., permanganate injections). During the event, an obstruction was encountered in MW-7 and the well could not be sampled. In addition, the EPD requested that a monitoring well (MW-10) be installed to delineate the plume in the downgradient and easterly direction.

Due to off-Site access issues, MW-10 could not be installed prior to the Baseline Sampling Event. On August 2, 2007, MW-7R and MW-10 were installed and sampled. MW-7R was installed adjacent to MW-7 as its replacement, and MW-10 was installed east of Buddy's Convenience Store. The monitoring well installation and sampling methods are discussed further in a Corrective Action Progress Report (EPS, 2008). The locations of these wells are shown on Figure E-2.

For the purpose of this report, sample results from the August 2007 sampling of MW-7R and MW-10 are included with the discussion of the Baseline Monitoring Event.

During the Baseline Monitoring Event, ten 2-inch diameter wells, MW-1, MW-2, MW-3, MW-6, MW-7R, MW-8, MW-10, DW-1, BCMW-1, and BCMW-6, and one 1-inch diameter well, MW5, were gauged, purged, and sampled for VOC analysis. TW-1 and MW-4 could not be found, MW-9 was dry, and BCMW-5 had petroleum light non-aqueous phase liquid through the entire wetted interval. Therefore, these well were not sampled during the Baseline Event.

Injection Well Construction

The CAP Addendum No. 1, dated December 2006, proposed the installation of 13 standard injection wells in the main source area and an additional three standard injection wells near MW2. The CAP Modification dated May 25, 2007 modified the CAP Addendum No. 1 to include the installation of 4 hydraulic fracture (frac) injection wells in place of the 13 source area standard injection wells and the removal of injections in the area of MW-2.

According to FRX, Inc., the frac well installation contractor, frac wells tend to allow injection rates between 10 and 20 times faster than standard injection wells in soils similar to those in the Atlanta area. This is mainly attributed to the large area of contact between the sand frac and the formation. In a standard one-inch diameter injection well having 10 feet of screen and installed with a direct push rig, the area of contact between the sand pack and the formation is approximately 10 square feet (ft^{2}). A 2-inch injection well installed with an auger may have an area of contact between the sand pack and the formation of approximately $25 \mathrm{ft}^{2}$. In contrast, a frac well with only one sand fracture may have an area of contact between the sand and the formation of approximately $1,400 \mathrm{ft}^{2}$ to $2,500 \mathrm{ft}^{2}$. This allows direct contact with significantly more zones of higher permeability than a standard injection well would allow. Once the injectant is spread out through the aquifer, it can diffuse into lower permeable zones.

The four frac wells were installed June 6-15, 2007, using direct push technology in conjunction with sand injection equipment. Direct push rods were pushed to the desired depth using an expendable tip in each of the injection locations. The total depths of frac wells FW-1, FW-2, FW-3, and FW-4 are 35 feet below the land surface (ft bls), $37 \mathrm{ft} \mathrm{bls}$,33 ft bls , and 35 ft bls, respectively. Fractures were created at the bottom of each of the wells. In addition, a second fracture was created at 35 ft bls in FW-2. More information about the construction of the frac wells can be found in the Corrective Action Progress Report (EPS, 2008).

Well Abandonment

In June 2007, while installing the frac injection wells, EPS abandoned MW-7, which had an obstruction, and MW-9, which was originally installed as a temporary well and was shallower than the water table. All of the exterior injection wells (IW-1 through IW-8 and IW-13 through IW-16) were also abandoned. The wells were abandoned by first filling each with grout to the ground surface. The grout was allowed to settle, topped off, and finished flush with the ground surface.

Permanganate Soil Oxygen Demand (PSOD) Sampling

In June 2007, during direct push probing activities associated with the installation of the frac wells, two PSOD samples were collected from just below the water table, one each from borings FW-1 and FW-4. The samples were analyzed by Carus Corporation, a manufacturer of permanganate. The PSOD results ranged from $0.3 \mathrm{~g} / \mathrm{kg}$ to $7.4 \mathrm{~g} / \mathrm{kg}$ with an average of $3.8 \mathrm{~g} / \mathrm{kg}$. Using site specific inputs, the Carus Corporation model predicted that 2,700 pounds of potassium permanganate would be required to treat the PCE in groundwater.

Phase I Potassium Permanganate Injections

On August 3, 7, and 8, 2007, EPS injected approximately 1,200 pounds of potassium permanganate into the frac wells. A 2% to 2.5% solution of permanganate was mixed in 275gallon totes and pumped, using a diaphragm pump, through a manifold into each of the four injection wells. Flow rates and total flow for each well were measured with water meters located on each leg of the manifold.

Throughout the Phase I injections, each of the manifold legs were fully open to allow a maximum overall volume of injection. Injection wells FW-1 through FW-4 accepted flow rates of 1.3 gallons per minute (gpm), $2.7 \mathrm{gpm}, 0.33 \mathrm{gpm}$, and 2.4 gpm , respectively. This amounts to $244 \mathrm{lbs}, 494 \mathrm{lbs}, 23 \mathrm{lbs}$, and 439 lbs of potassium permangate into each of the wells respectively.

Monitoring Well Installation

As previously discussed, on August 2, 2008, EPS installed monitoring wells MW-7R and MW10. Well MW-7R was installed immediately adjacent to MW-7 as a replacement well for MW-7. As requested in Comment \#8 in EPD's letter dated September 26, 2006, MW-10 was installed between MW-8 and MW-4. Well locations are shown on Figure E-2.

Boring MW-10 was first advanced using direct push methods and continuous soil samples were collected using a macro-core sampler. Borings MW-7R and MW-10 were then drilled using 4¼inch outside diameter solid stem augers. Both borings were drilled to 35 ft bls

Phase II Potassium Permanganate Injections

On January 23, 24, 30, and 31, 2008, EPS injected approximately 500 pounds of potassium permanganate into the frac wells. A 2% solution of permanganate was mixed in 275-gallon totes and pumped using a diaphragm pump through a manifold into each of the four injection wells. Ambient air temperatures during these days were slightly above freezing. It is estimated that the water temperature was approximately 10° to $20^{\circ} \mathrm{F}$ lower than it was during the August 2007 injection event. The solubility of permanganate decreases as water temperature decreases. Therefore, during the cold weather injections in January, as opposed to the warm weather injections in August, a larger injection volume was required to inject the same mass of permanganate. Flow rates and total flow for each well was measured with water meters located on each leg of the manifold.

During the Phase II event, injections were first targeted to well FW-3, which received the least amount of permanganate during the Phase I injections in August 2007. Throughout the remainder of the Phase II injections, flow to wells FW-2, FW-3, and FW-4 was restricted to allow similar injection volumes to each of the four wells. Injection wells FW-1 through FW-4 had average flow rates of $0.55 \mathrm{gpm}, 1.3 \mathrm{gpm}, 1.2 \mathrm{gpm}$, and 1.3 gpm , respectively. For the entire Phase II injections, $70 \mathrm{lbs}, 134 \mathrm{lbs}, 141 \mathrm{lbs}$, and 155 lbs of potassium permangate were injected into FW-1 through FW-4, respectively.

During the March 2008 groundwater sampling event, unreacted potassium permanganate was observed in wells MW-5 and MW-8. Therefore, no additional injections were conducted.

E. 3 Interim Groundwater Monitoring Events

November 2007 Interim Groundwater Monitoring Event

On November 28, 2007, MW-1, MW-7R, and MW-8 were sampled as part of the first Interim Groundwater Monitoring Event. Each of the wells were sampled for VOCs and inorganic compounds including arsenic, barium, cadmium, total chromium, hexavalent chromium, copper, iron, lead, selenium, and chloride. VOCs were analyzed by Method SW8260B. Inorganic compounds, not including hexavalent chromium and chloride, were analyzed by Method SW6010B. Hexavalent chromium was analyzed by Method M3500-CR D, and chloride was analyzed by Method SW9056.

March 2008 Interim Groundwater Monitoring Event

On March 24, 2007, MW-5, MW-7R, and MW-8 were sampled as part of the second Interim Groundwater Monitoring Event. Each of the wells were sampled for VOCs and inorganics, including arsenic, barium, cadmium, total chromium, hexavalent chromium, copper, iron, lead, selenium, and chloride.

September 2008 Interim Groundwater Monitoring Event

During the March 2008 sampling event, unreacted potassium permanganate was observed in wells MW-5 and MW-8. Therefore, no additional injections were conducted. EPS conducted the third post-injection sampling event on September $25-26,2008$. Prior to the sampling event, the GA EPD agreed that wells MW-1, MW-2, MW-3, MW-5, MW-6, MW-7R, MW-8, DW-1, and TW-1 would be sampled for volatile organic compounds and wells MW-1, MW-5, MW-7R, and MW-8 would be sampled for inorganics. During the event, MW-1, MW-7R, and TW-1 were dry and could not be sampled.

April 2009 Interim Groundwater Monitoring Event

Based on a request from the EPD in a letter dated December 23, 2008, an additional round of groundwater monitoring was conducted. On April 8, 2009, EPS attempted to collect groundwater samples from monitoring wells MW-1, MW-5, MW-7R, and MW-8. Wells MW-1 and MW-7R were dry. Next, EPS attempted to sample MW-6 and MW-2, but these were both dry as well. Finally, deep well DW-1 was sampled.

October 2010 Interim Groundwater Monitoring Event

On October 4-6, 2010, a groundwater monitoring event was conducted. Wells MW-1, MW-2, MW-3, MW-5, MW-6, MW-7R, MW-8, MW-10, DW-1, BCMW-1 and BCMW-6 were sampled and analyzed for VOCs. Samples from wells MW-1, MW-3 MW-5, MW-7R, MW-8, MW-10 and DW-1 were analyzed for inorganics.

APPENDIX E

TABLES
Table E-1. Analytical Results for Constituents Detected in Soil (mg/kg)

Table E-1. Analytical Results for Constituents Detected in Soil (mg/kg)

$\mathrm{mg} / \mathrm{kg}$ - milligrams per kilogram
blank cell - Constituent not analyzed
<0.005 - denotes that the sample result was below the laboratory practical quantitation limit

Table E-2. Analytical Results for Chlorinated VOCs in Groundwater ($\mu \mathrm{g} / \mathrm{L}$)

Table E-2. Analytical Results for Chlorinated VOCs in Groundwater ($\mu \mathrm{g} / \mathrm{L}$)

Table E-2. Analytical Results for Chlorinated VOCs in Groundwater ($\mu \mathrm{g} / \mathrm{L}$)

Notes:

* = Method detection limits are shown for PCE, TCE, cis-DCE, trans-DCE, and VC.

Laboratory reporting limits are shown for all other components.
VOCs = Voaltile Organic Compounds
$\mu \mathrm{g} / \mathrm{L}$ - micrograms per liter
$N A=$ Constituent not analyzed
<5.0 - denotes that the sample result was below the laboratory practical quantitation limit

Table E-3. Analytical Results for Non-Chlorinated VOCs in Groundwater ($\mu \mathrm{g} / \mathrm{L}$)

$\mu \mathrm{g} / \mathrm{L}$ - micrograms per liter
<5.0 - denotes that the sample result was below the laboratory practical quantitation limi
Table E-4. Analytical Results for Inorganics in Groundwater (mg/L)

<5.0 - denotes that the sample result was below the laboratory practical quantitation limit

APPENDIX E

FIGURES

APPENDIX F

Soil Vapor Intrusion Modeling

APPENDIX F SOIL VAPOR INTRUSION MODELING

Three chlorinated VOCs were detected in groundwater at the Site in the most recent sampling event. All of these compounds (PCE, TCE, DCE) are sufficiently toxic and volatile, according to Table 1 from the Subsurface Vapor Intrusion Guidance (USEPA, 2002), to warrant consideration of soil vapor intrusion. Groundwater containing PCE and TCE underlies three structures: Midtown, Buddy's Gas Station and Buddy's Convenience Store. Due to the volatility of these constituents, there is a potential for these constituents to volatilize from the groundwater, migrate through the vadose zone and then enter the buildings through a process called soil vapor intrusion. Additionally, the USEPA recommends considering structures that are within 100 feet of the groundwater plume (USEPA, 2002). The residence located east of Buddy's Convenience Store is less than 100 feet from groundwater containing detectable concentrations of chlorinated VOCs. Thus, the following four scenarios were considered for soil vapor intrusion:

- Midtown Cleaners - Commercial Worker
- Buddy’s Gas Station - Commercial Worker
- Buddy's Convenience Store - Commercial Worker
- Residence - Resident

These constituents were taken through a screening process to determine if modeling would be applicable. The following table compares the highest concentrations observed in the 2010 groundwater sampling to generic screening levels assuming a 10^{-5} risk (USEPA, 2002):

Table F-1. Comparison of Maximum Concentrations to Target Groundwater Concentrations (TGC)

	PCE $(\mu \mathrm{g} / \mathrm{L})$	TCE $(\mu \mathrm{g} / \mathrm{L})$	DCE $(\mu \mathrm{g} / \mathrm{L})$
Groundwater Concentration	890	9	120
Table 2b TGC	11	5	210
Table 3b* TGC	54	5	1,000

*using attenuation factor 2×10^{-4} (based on loam soil with groundwater 30 feet below surface)

As the maximum PCE and TCE concentrations exceeded the screening criteria, it was determined that both constituents would be modeled. The maximum DCE concentration was less than the screening values and was, therefore, dropped from further consideration.

The USEPA Office of Emergency and Remedial Response published a series of models based on the analytical solutions of Jonson and Ettinger for estimating indoor air concentrations and associated health risks from subsurface vapor intrusion into buildings. Johnson and Ettinger (1991) developed a screening-level model that incorporates convective and diffusive mechanisms for vapor transport emanating from either subsurface soils or groundwater into indoor spaces located directly above the sources of contamination. The USEPA's Excel-based models use default values recommended in their Guidance (USEPA, 2002).

For this analysis, the advanced models were used to determine "acceptable" groundwater concentrations using a given risk level. The table below shows the site-specific parameters used for each scenario. Midtown, the gas station and convenience store are all slabs on grade. The construction of the residence is unknown; thus, models were run for both slab on grade and basement construction. It is possible that the residence is built on a crawl space, but this model is not designed to work for crawl space construction. Residences with crawl spaces and dirt floors may actually have lower levels of vapor-phase VOCs indoors than homes with concrete basements (ATSDR). Thus, modeling based on a slab or basement is more conservative. The input and output sheets for the modeling are attached.

Table F-2. Model Input Parameters

	Midtown	Gas Station	Convenience Store	Residence
Average Temperature	$20^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$
Depth below grade to bottom of enclosed space floor	15 cm (slab)	15 cm (slab)	15 cm (slab)	15 cm (slab) 200 cm (basement)
Depth below grade to water table	930 cm	930 cm	930 cm	930 cm
Assume one soil stratum with thickness	930 cm	930 cm	930 cm	930 cm
Soil type	SC	SC	SC	SC
Enclosed space floor thickness	10 cm (default)	10 cm (default)	10 cm (default)	10 cm (default)
Enclosed space floor length	2257 cm	767 cm	3929 cm	3929 cm
Enclosed space floor width	1580 cm	993 cm	677 cm	677 cm
Enclosed space height	366 cm	366 cm	366 cm	244 cm (slab) 366 cm (basement)
Indoor air exchange rate	$\begin{gathered} 1 / \mathrm{hr} \text { (for } \\ \text { commercial) } \end{gathered}$	1/hr (for commercial)	1/hr (for commercial)	0.25/hr (default)
NC averaging time	$\begin{gathered} 25 \text { years } \\ \text { (commercial) } \end{gathered}$	$\begin{gathered} 25 \text { years } \\ \text { (commercial) } \end{gathered}$	$\begin{gathered} 25 \text { years } \\ \text { (commercial) } \end{gathered}$	30 years (commercial)
ED	25 yrs	25 yrs	25 yrs	30 yrs
EF	250 d/yr	250 d/yr	250 d/yr	$350 \mathrm{~d} / \mathrm{yr}$
TR	10^{-5}	10^{-5}	10^{-5}	10^{-6}

The results of the modeling are shown in the table below. The output of the model was a riskbased groundwater concentration that is protective of human health at a given risk level $\left(10^{-5}\right.$ for the commercial properties and 10^{-6} for the residence). Also shown on this table are the groundwater concentrations observed in 2010 at the wells nearest each building. None of the actual groundwater concentrations are higher than the risk-based screening values. Thus, the current groundwater concentrations do not pose an unacceptable risk. If the highest groundwater concentrations were in the groundwater below the residence, there would be a potential risk and additional analysis (such as soil-gas measurement) may be needed. However, there is no reason to expect that there currently is an unacceptable risk to the residence nor is one expected in the future.

Table F-3 Results of Soil Vapor Intrusion Modeling ($\mu \mathrm{g} / \mathrm{L}$)

Receptor	Nearest Well	Risk-based PCE Screening Value	Groundwater PCE Concentration	Risk-based TCE Screening Value	Groundwater TCE Concentration
Midtown	MW-1	5,490	180	350	ND
Gas Station	MW-8	5,250	890	350	9
Convenience Store	MW-3	5,380	6.2	359	ND
Resident - Slab	MW-10	53.3	ND	3.56	ND
Resident - Basement	MW-10	49.9	ND	3.25	ND

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

		Midto	$n-P C E$	Results
RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:				
Indoor exposure groundwater conc., carcinogen ($\mu \mathrm{g} / \mathrm{L}$)	Indoor exposure groundwater conc., noncarcinogen ($\mu \mathrm{g} / \mathrm{L}$)	Risk-based indoor exposure groundwater conc., ($\mu \mathrm{g} / \mathrm{L}$)	\qquad	Final indoor exposure groundwater conc., ($\mu \mathrm{g} / \mathrm{L}$)
$5.49 \mathrm{E}+03$	$6.94 \mathrm{E}+05$	$5.49 \mathrm{E}+03$	$2.00 \mathrm{E}+05$	$5.49 \mathrm{E}+03$

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

		Midto	wn - TC	Results
RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:				
Indoor exposure groundwater conc., carcinogen $(\mu \mathrm{g} / \mathrm{L})$	Indoor exposure groundwater conc., noncarcinogen ($\mu \mathrm{g} / \mathrm{L}$)	Risk-based indoor exposure groundwater conc., ($\mu \mathrm{g} / \mathrm{L}$)	Pure component water solubility, S $(\mu \mathrm{g} / \mathrm{L})$	Final indoor exposure groundwater conc., ($\mu \mathrm{g} / \mathrm{L}$)
$3.50 \mathrm{E}+02$	$5.50 \mathrm{E}+04$	$3.50 \mathrm{E}+02$	$1.47 \mathrm{E}+06$	$3.50 \mathrm{E}+02$
MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS				
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are				
MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-roter				

Buddy's Gas Station - PCE Results
RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

Buddy's Gas Station - TCE Results

> MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

Buddy's Convenience Store - TCE Results
RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREMENTAL RISK CALCULATIONS:
MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.

		esidenc	Basem	ment - PC	ults	
RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:					INCREMENTAL RISK CALCULATIONS:	
Indoor exposure groundwater conc., carcinogen ($\mu \mathrm{g} / \mathrm{L}$)	Indoor exposure groundwater conc., noncarcinogen $(\mu \mathrm{g} / \mathrm{L})$	Risk-based indoor exposure groundwater conc., ($\mu \mathrm{g} / \mathrm{L}$)	Pure component water solubility, S $(\mu \mathrm{g} / \mathrm{L})$	Final indoor exposure groundwater conc., ($\mu \mathrm{g} / \mathrm{L}$)	Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
$4.89 \mathrm{E}+01$	$7.42 \mathrm{E}+04$	$4.89 \mathrm{E}+01$	$2.00 \mathrm{E}+05$	$4.89 \mathrm{E}+01$	NA	NA

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

GW-ADV
Version $3.1 ; 02 / 04$

Reset to
Defaults

Residence Basement - TCE Results MESSAGE: Risk/HQ or risk-based groundwater concentration is based on a route-to-route extrapolation.
CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

Residence Slab - PCE Results
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.
Residence Slab - TCE Input
CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

Residence Slab - TCE Results
RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

[^0]: ${ }^{1}$ The HSRA regulations define a reportable quantity as "the amount of any released regulated substance which causes a Site to meet the criteria for listing on the Hazardous Site Inventory."

[^1]: cc: Ted Peyser, Environmental Planning Specialists, Inc.
 Ranchhod Desai and Dennis Desai, Midtown Cleaners \& Laundry, Inc.

