VOLUNTARY REMEDIATION PLAN APPLICATION

Former Imperial Cleaners 1233B Alpharetta Street Roswell, Fulton County, Georgia

Prepared For:

PM, Ltd. 25 Park Place Atlanta, Georgia 30003

Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC. 396 Plasters Avenue, NE Atlanta, Georgia 30024

October 14, 2010

MACTEC PROJECT: 6305-05-0319

October 14, 2010 MACTEC Project No. 6122-09-0322

Voluntary Remediation Plan Former Imperial Cleaners HSI 10690

TABLE OF CONTENTS

Page No.

1.0	Introduction1
2.0	Site Setting
2.1	Site Specific Geology4
2.2	Site Specific Hydrogeology
2	2.1 Hydraulic Conductivity
2	2.2 Vertical Hydraulic Gradient
2	2.3 Groundwater Flow Direction
3.0	Regulated Constituents
3.1.	Source
3.2	Soil Quality Conditions10
3.3	Groundwater Quality Conditions14
3.4	Surface Water Quality Conditions
~ ~	Indeen Air Overlity Conditions
3.5	Indoor Air Quality Conditions
3.5 4.0	Delineation Criteria
3.5 4.0 4.1	Delineation Criteria
3.5 4.0 4.1 4.2	Delineation Criteria
 3.5 4.0 4.1 4.2 4.3 	Indoor Air Quanty Conditions 18 Delineation Criteria 19 Soil 19 Groundwater 19 Surface Water 19
 3.5 4.0 4.1 4.2 4.3 5.0 	Indoor Air Quality Conditions 18 Delineation Criteria 19 Soil 19 Groundwater 19 Surface Water 19 Remediation Criteria and Exposure 20
3.5 4.0 4.1 4.2 4.3 5.0 5.1	Indoor An Quanty Conditions 18 Delineation Criteria 19 Soil 19 Groundwater 19 Surface Water 19 Remediation Criteria and Exposure 20 Soil Criteria 20
3.5 4.0 4.1 4.2 4.3 5.0 5.1 5.2	Indoor An Quanty Conditions 18 Delineation Criteria 19 Soil 19 Groundwater 19 Surface Water 19 Remediation Criteria and Exposure 20 Soil Criteria 20 Groundwater Criteria 21
3.5 4.0 4.1 4.2 4.3 5.0 5.1 5.2 5.3	Induor All Quality Conditions 18 Delineation Criteria 19 Soil 19 Groundwater 19 Surface Water 19 Remediation Criteria and Exposure 20 Soil Criteria 20 Groundwater Criteria 21 Source 22
3.5 4.0 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4	Indoor All Quality Conditions 18 Delineation Criteria 19 Soil 19 Groundwater 19 Surface Water 19 Remediation Criteria and Exposure 20 Soil Criteria 20 Groundwater Criteria 21 Source 22 Surface Water 23
3.5 4.0 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4 5.5	Indoor Air Quarty Conditions18Delineation Criteria19Soil19Groundwater19Surface Water19Remediation Criteria and Exposure20Soil Criteria20Soil Criteria20Groundwater Criteria21Source22Surface Water23Air24
3.5 4.0 4.1 4.2 4.3 5.0 5.1 5.2 5.3 5.4 5.5 6.0	Indoor All Quality Conductions 18 Delineation Criteria 19 Soil 19 Groundwater 19 Surface Water 19 Remediation Criteria and Exposure 20 Soil Criteria 20 Groundwater Criteria 20 Soil Criteria 20 Source 21 Source 22 Surface Water 23 Air 24 Planned Corrective Actions 25

ATTACHMENT

(

Voluntary Remediation Plan Application Form and Checklist

LIST OF TABLES

Table 1 – Summary of Soil Testing Data

Table 2 - Summary of Groundwater/Surface Water Testing Data

Table 3 – Summary of Well Construction/Water Level Data

Table 4 – Summary of Slug Test Data

Table 5 – Summary of Air Monitoring Data

Table 6 - Summary of Natural Attenuation Parameters in Groundwater

Table 7 – Summary of Soil Leachability Testing Data

Table 8 – Summary of Soil and Groundwater Risk Reduction Standards

LIST OF FIGURES

Figure 1 – Site Location/Topographic Map

Figure 2 – Site and Vicinity Aerial Photograph

Figure 3 – Cross Section A-A'

Figure 4 – Cross Section B-B'

Figure 5 – Cross Section C-C'

Figure 6 – Cross Section D-D'

Figure 7 – Potentiometric Surface Map

Figure 8 – Summary of Soil Testing Results

Figure 9 - Summary of Groundwater Testing Results

Figure 10 – Summary of Indoor Air Testing Results

LIST OF APPENDICES

Appendix A – Legal Description, Survey Plat and Tax Map

Appendix B – Risk Reduction Standard Calculations

Appendix C – Fate and Transport of Constituents of Concern in Groundwater

Appendix D – Monitoring Well and Soil Boring Logs

1.0 INTRODUCTION

MACTEC Engineering and Consulting, Inc. (MACTEC) has prepared this Voluntary Remediation Plan Application (VRPA) for the Former Imperial Cleaners site (Site). The Site is located within the King's Creek Shopping Center (Shopping Center) property at 1233B Alpharetta Highway in Roswell, Fulton County, Georgia which consists of one building containing several tenants and associated parking areas. The Site is listed on the Hazardous Site Inventory (HSI) as Site No. 10690. A Site Location/Topographic Map is provided as Figure 1.

A Legal Description and Survey Plat are provided in Appendix A, along with a Tax Map showing the Site located within tax parcels 12-1993-0450-063-5 and 12-1993-0450-062-7. Note that the VRPA Site boundary covers a total of 3.935 acres of the northern portion of the shopping center, which is different than the 9.11 acres described in the HSI listing. A Site and Vicinity Aerial Photograph (Figure 2) shows the Shopping Center property and the designated Site boundary as described in the Legal Description.

The subject Site is currently owned by PM, Ltd. with Wright Management, Inc. as the sole general partner. PM Ltd. is a Georgia Limited Partnership. Wright Management, Inc is the sole general partner of PM Ltd. Partnership shares of PM Ltd. are held in two or three trusts which are managed by SunTrust Bank as Trustee. These trusts were established under the will of William Wright for the benefit of his widow, his two children and their descendents. The real estate asset (Kings Creek) is managed out of an Investment Advisory Account of which SunTrust is the investment advisor. Title has been held this way and the property managed this way since PM Ltd. was set up sometime around 1986. The Site meets the criteria of a "qualifying property" as defined by the Act.

On January 5, 2001, the Georgia Environmental Protection Division (EPD) listed the Site on the HSI due to the detection of tetrachloroethene (PCE) in soil and vinyl chloride (VC) in groundwater. PCE, cis-1,2-dichloroethene (cis-1,2-DCE) and trans-1,2-dichloroethene (trans-1,2-DCE) were also found in groundwater. PM, Ltd. has submitted several documents to EPD presenting the results of various investigations to characterize the geologic and hydrogeologic conditions and to assess the presence, concentrations, and limits of releases of constituents to Site soils, groundwater, surface water and indoor air. These include a Compliance Status Report (CSR) and Revised CSR, a Corrective Action Plan (CAP) for Groundwater with subsequent revisions and six Semi-Annual Groundwater Monitoring Reports prepared in accordance with the approved CAP.

The previous reports have summarized the Site history and facility operations, presented the results of all previous Site investigations, and described the horizontal and vertical extent of regulated substances in Site soils and groundwater in relation to risk-reduction standards (RRS). This voluntary remediation plan describes proposed corrective actions consistent with provisions of the Georgia Voluntary Remediation Program Act (the "Act").

This VRPA is submitted with the intention of moving the Site from the Hazardous Sites Response and Remediation Program into the Voluntary Remediation Program and activities under the approved CAP have been suspended pending EPD's review and approval of this VRP application. Background

Imperial Cleaners was a tenant dry cleaning business located in Suite B, at the northern end of the Shopping Center and operated on Site between 1991 and 2000. Another dry cleaner at the same location operated on Site as early as 1986. In 2000, the dry cleaner operations terminated at the Shopping Center and the dry cleaning machine and related equipment were removed from the building. The dry cleaner was the subject of two environmental assessments conducted by Boykin & Associates (Boykin) in March 1993 and Environmental Corporation of America (ECA) in June and July, 2000. The results of these assessments identified PCE and several of its breakdown products in soil and groundwater on Site, both beneath the building floor slab and outside the building.

Based on the soil and groundwater testing results, on August 15, 2000, PM Ltd. notified the Georgia Environmental Protection Division (GA-EPD), pursuant to Hazardous Site Response Act (HSRA) requirements, of the presence of a release to soil and groundwater at the Shopping Center property.

The property was placed on the HSI on January 5, 2001 as a Class II site, designated as HSI Site Number 10690. Following the listing of the Site on the HSI, LAW Engineering and Environmental Services, Inc. (predecessor by merger to MACTEC) was engaged to conduct additional assessment to delineate the soil and groundwater contamination at the Site. LAW/MACTEC (MACTEC) then prepared a CSR for the subject Site which was submitted to the GA-EPD on behalf of PM Ltd. on August 9, 2002. The CSR was revised on the basis of EPD comments in August 2005.

A Corrective Action Plan (CAP) and a Revised CAP were submitted in 2005 and 2006, respectively. The CAP recommended a program of monitored natural attenuation (MNA) and was approved by EPD on January 11, 2007. Since that time, quarterly monitoring of groundwater and surface water have been reported semi-annually by MACTEC. This work has also included additional sampling and testing of soils and four indoor air monitoring events to further investigate potential source areas and the potential for vapor intrusion into the building.

2.0 SITE SETTING

Understanding the site setting is important in evaluating the fate and transport of contaminants in the subsurface.

2.1 SITE SPECIFIC GEOLOGY

The property is located in the Piedmont Geologic Region of the Appalachian Province in an area underlain by late Precambrian to early Paleozoic bedrock of the Powers Ferry Formation which is part of the Sandy Springs Group (McConnell and Abrams, 1984). The Powers Ferry Formation in the area of the Site is mapped as consisting of gneiss, mica schist and amphibolite. The residual soils present in this geologic area have been formed by the in-place chemical and physical weathering of the parent rock types. Weathering is facilitated by fractures, joints, and by the presence of less resistant rock types. The typical residual soil profile consists of clayey soils near the ground surface, transitioning to sandy silts and silty sands that generally become harder with depth to the top of parent rock.

The subject property is located within a south-trending stream valley, typical of the surrounding area. This valley is occupied by Hog Wallow Creek which forms the eastern boundary of the Site.

The original topography of the Site sloped east toward Hog Wallow Creek. During construction of the Shopping Center, the western portion of the property was cut into the slope and the eastern portion was filled to level the ground surface. The depth to bedrock and the thickness of the overlying material (either fill material, alluvial sediment or residual soil) varies significantly at the Site, depending on the depth of fill and the proximity to the valley bottom (see boring logs in Appendix E and Figures 3 through 6). Rock is exposed within the creek bed of Hog Wallow Creek and was found at a maximum depth of approximately 37 feet in MW-3.

The soil test borings generally encountered a significant amount of fill soil which consisted of silty fine to medium sand with small rock fragments (see Boring Logs in Appendix E for soil descriptions). Undisturbed virgin soils, including both alluvial sediments and residual soils, were encountered at depths ranging from less than one foot to 24 feet. The presence of deep fill behind (east of) the shopping center building is consistent with filling this area during Site development, above the flood plain of Hog Wallow Creek, located near the eastern corner of the shopping center. MW-8, installed in the western portion of

the Shopping Center, did not encounter fill material as this area of the property had been cut into the original ground slope. Immediately beyond the Shopping Center's rear driveway, the land surface drops off sharply to Hog Wallow Creek or the creek's flood plain. A thin layer of alluvium was also encountered in several borings in the eastern portion of the Site. This alluvium is believed to be associated with the flood plain of Hog Wallow Creek, a portion of which has been covered by fill soil. Because of the substantial clay content of the alluvial soils, the hydraulic conductivity of such soils is expected to be lower than that of the residual soils or fill material.

Partially weathered rock was encountered at depths ranging from 10 to 25 feet below ground surface in the area near the building. The partially weathered rock was generally characterized as silty fine to coarse sand which exhibited standard penetration resistances of greater than 100 blows per foot. Bedrock is distinguished from the overlying partially weathered rock by its greater density, generally resulting in hollow-stem auger refusal. The contact between the bedrock and the overlying partially weathered rock is gradational and was selected as the depth of auger refusal. The rock/partially weathered rock contact, as defined by auger refusal, was encountered in several borings installed by MACTEC at depths ranging up to 37 feet below ground surface. The depth to rock was shallowest in the western portion of the Site, where cuts had been made in the original ground slope and deepest in the eastern portion of the Site where significant filling had occurred.

The rock/partially weathered rock contact occurred at the highest elevation in the northern portion of the Site, near MW-6, and at the lowest elevation in the eastern portion of the Site, in the vicinity of Hog Wallow Creek. The rock elevation data indicates a general downward sloping of the rock surface from west to east, toward the creek, paralleling the original topography.. Rock outcroppings form the creek bottom along the stretch of creek behind the former dry cleaner space.

Rock core samples obtained from monitoring well MW-3 indicate that the underlying bedrock on Site consists predominantly of interlayered muscovite-biotite gneiss and hornblende amphibolite (see Appendix E for well logs). The rock obtained from MW-3 tended to alternate between highly weathered amphibolite and lightly weathered gneiss. The rock core recovered during the initial ten-foot coring run consisted primarily of lightly to highly weathered gray, muscovite-biotite gneiss which exhibited numerous fractures. However, the first core run exhibited a recovery of only 30%, indicating that much of the material was too highly weathered to remain intact. The pattern of weathering observed in MW-3 was also evident during the drilling of MW-6, MW-7, MW-13, MW-14 and MW-15 which were extended

into rock using an air hammer. Although core samples were not obtained, substantial variations in the hardness of the rock were noted during air hammer advancement. MW-8 was terminated at auger refusal at a depth of 20 feet. Difficult drilling conditions were noted in the lower 10 feet of this boring as the rock alternated between thin layers of relatively hard rock and thicker layers of softer, more highly weathered material. These wells also required the use of an air hammer to extend the borings to sufficient depth to allow well installation.

Significant fracturing was noted in relatively shallow rock in MW-3. These fractures tended to be small in scale and their orientations were widely distributed. The relatively random distribution of fracture orientations indicates that numerous intersections of fracture planes are likely. The presence of a layer of highly weathered rock and large numbers of randomly oriented fractures with numerous intersections indicates that flow through the rock would likely replicate flow through a porous medium. Under such conditions, it is very unlikely that a preferred flow direction would be established as a result of the rock structure. Therefore, groundwater within the fractured rock is expected to flow in a direction similar to the groundwater above the top of rock.

Because original grain boundaries and pore-space relationships within the rocks of the Atlanta area have been altered through metamorphic recrystallization, the primary permeability of the local bedrock is very low. Groundwater flow through the bedrock aquifer occurs primarily through fractures in the bedrock. Groundwater recharge to fractured bedrock occurs primarily through seepage of precipitation through the overlying mantle of residual material. In parts of the Site, the groundwater table lies beneath the top of rock, which could potentially alter groundwater flow patterns depending on fracture orientation. However, due to the highly fractured nature of the shallow rock, as observed in MW-3, groundwater flow is expected to follow a path similar to that within the soil overburden.

2.2 SITE SPECIFIC HYDROGEOLOGY

Hog Wallow Creek is a tributary of Big Creek, which is located approximately one mile south of the Site. Big Creek enters the Chattahoochee River approximately two miles south of the subject Site.

2.2.1 Hydraulic conductivity

As detailed in the Revised CSR, Slug tests were performed in three wells on Site to evaluate hydraulic conductivity. The three wells were selected on the basis of the type of media in which they were

screened. MW-3 was screened in rock, MW-8 was screened in residual soil/partially weathered rock and MW-9 was screened across the boundaries of fill, alluvium and residuum. The slug tests were performed by lowering a solid "slug" into each well and measuring the recovery rate of the water within the well (slug in). After the water level within the well had stabilized, the slug was removed and the recharge rate was measured (slug out). The hydraulic conductivities calculated from the slug test data are summarized in Table 4.

The slug test results indicate hydraulic conductivities vary at the Site from approximately $9x10^{-5}$ cm/sec in the fill/alluvial soil, 2 to $6x10^{-5}$ cm/sec in the residual soil and 20 to $30x10^{-5}$ cm/sec within the upper portion of the bedrock aquifer.

Based on the groundwater elevation data, the horizontal groundwater gradient within the shallow portion of the aquifer on Site appears to be relatively consistent at approximately 4.0%. This value was utilized for the purpose of calculating the groundwater flow rate.

The hydraulic conductivity values obtained from the slug tests performed at the Site are equivalent to approximately 0.06 to 0.58 ft/day. The deep well, MW-3, exhibited a somewhat higher hydraulic conductivity; however, the difference between this well and MW-8 was relatively minor (less than one order of magnitude). As it appears that the bulk of the groundwater contaminant plume occurs within the zone of fill soil behind the Shopping Center building, the slug-in hydraulic conductivity value measured for MW-9, which was screened primarily in fill and alluvium, was utilized in the calculation of groundwater flow velocity. This hydraulic conductivity (0.27 ft/day) is also between the values exhibited by the strata within the highest (rock) and lowest (residuum) values measured on Site.

Effective porosity was assumed to be 15% (Applied Hydrology, C.W. Fetter, 1994). The formula used to calculate the groundwater flow rate is as follows (Applied Hydrology, C.W. Fetter, 1994):

Velocity = $\underline{K} \underline{i}$ n_e

where:	K = hydraulic conductivity (feet per day)	= 0.27 ft/day
	i = hydraulic gradient (feet per foot)	= 0.04 ft/ft
	$n_e = effective porosity (unitless)$	= 0.15

Based on the data input, an estimated groundwater velocity of 0.072 feet/day, or approximately 26 feet/year was calculated. We note, however, that PCE does not migrate at the same rate as groundwater and also is diluted as it migrates. This is evidenced by the substantial drop off in contaminant concentrations in wells located in the vicinity of Hog Wallow Creek, located approximately 100 feet from the suspected source area.

2.2.2 Vertical Hydraulic Gradient

The vertical hydraulic gradient at the Site was calculated by comparing groundwater elevations within the deep well MW-3 and nearby shallow wells. MW-2 and MW-3 are located relatively close to one another (approximately 20 feet apart) and are screened at different depths within the upper aquifer. In July 2005, the relative elevations of the groundwater within each well were measured and determined to be within 0.86 feet of each other. This differential in water table elevation is consistent with the hydraulic gradient measured in the wells screened within the upper aquifer. Given the slope of the potentiometric surface between the two wells, the groundwater elevation measured in MW-3 is consistent with those of the surrounding wells. This indicates that there is little or no vertical gradient in the vicinity of MW-3. MW-7 and DW-1 are located adjacent to one another near the building. Comparison of groundwater elevations from these two wells indicates an upward hydraulic gradient of approximately 0.02 ft/ft. Such conditions are not unexpected in the vicinity of a surface water body such as Hog Wallow Creek, which is shown by the data to act as a groundwater discharge zone.

A stronger upward hydraulic gradient would be expected in the area closer to the creek as the creek acts as a local groundwater discharge area. The lack of a significant downward vertical hydraulic gradient reduces the chance for dissolved contamination to migrate downward through the water column or beyond the creek alignment. This effect is evidenced by the lack of significant levels of PCE or its breakdown constituents within the deep groundwater of MW-3 or DW-1 and the lack of contamination in MW-12 on the opposite side of the creek from the Shopping Center.

2.2.3 Groundwater flow Direction

The monitoring wells were surveyed to determine their elevations relative to the National Geodetic Vertical Datum (NGVD). On March 30, 2010, the depth to groundwater from the top of each well casing was measured by MACTEC in all monitoring wells on Site in conjunction with the most recent quarterly

groundwater monitoring event. The water level data, along with well construction data are tabulated in Table 3. The groundwater depths were used to develop the groundwater elevation contours presented on the attached potentiometric surface map (see Figure 7).

The groundwater elevations and the interpreted flow direction indicate that groundwater flow across the Site is generally eastward on the southern portion of the Shopping Center property. Although minor variations in depth to water and groundwater flow direction have been observed over time, groundwater flow is consistently in an easterly direction toward Hog Wallow Creek. Groundwater in this region typically discharges into creeks or impoundments that lie in topographically low areas and is expected to discharge to Hog Wallow Creek located along the eastern boundary of the Site. No other obvious variations in the local geologic conditions were identified which would be expected to cause changes in the groundwater flow direction in the area.

3.0 REGULATED CONSTITUENTS

The presence of regulated constituents was characterized in various media between 1993 and 2010.

3.1 SOURCE

With the removal of the dry cleaner and associated equipment in 2000, all known ongoing contributions to subsurface impacts have been eliminated.

3.2 SOIL QUALITY CONDITIONS

Since 2001, MACTEC has conducted extensive soil sampling and testing, both within and outside of the former dry cleaner space. The regulated substances identified in soil at the Site are tetrachloroethene (CAS No. 127-18-4), trichloroethene (CAS No. 79-01-6), acetone (CAS No. 67-64-1) and toluene (CAS No. 108-88-3). As detailed in the Revised CSR, based on the results of the soil sampling and testing conducted by MACTEC, delineation of the lateral and vertical extent of contamination has been completed (see Figures 8 and 9). Laboratory results from all soil samples analyzed to date are summarized on Table 1.

Dry cleaners reportedly operated on Site from approximately 1986 until 2000. The former dry cleaner was the subject of two environmental assessments prior to MACTEC's involvement at the Site in 2001. MACTEC conducted a series of investigations in 2001 and 2002, prior to the submission of the original CSR. Additional assessments have been conducted by MACTEC in 2005, 2009 and 2010 to further characterize soil conditions at the Site. The results of all soil testing activities conducted on Site are summarized in Table 1 and on Figure 8.

The first assessment was conducted by Boykin and Associates (Boykin) in March 1993 and included the installation of four hand auger borings outside the building (designated B-1 through B-4, see Figure 8 for locations). PCE was detected in each of these soil samples at concentrations ranging from 20 to 260 parts per billion (ppb). The highest concentrations were detected just outside the back door of the dry cleaner in boring B-1. Other VOCs were not detected in soil during this assessment.

In June and July, 2000 Environmental Corporation of America (ECA) performed additional environmental assessment at approximately the time that Imperial Cleaners was vacating the property. ECA installed a total of six soil test borings on the Site (designated SB-1 through SB-6, see Figure 8 for locations of all soil test borings). Borings SB-1 through SB-3 were drilled soil test borings located outside the building in the rear parking area and driveway of the shopping center. Borings SB-1 and SB-2 were intended to be converted to groundwater monitoring wells. However, SB-1 encountered refusal above the groundwater table and was terminated. Boring SB-2, was advanced to below the groundwater table and converted to monitoring well MW-2. A shallow (1-foot deep) soil sample was collected from SB-3. ECA also installed three hand auger borings within the dry cleaner's space (SB-4 through SB-6) to assess shallow soil conditions in the immediate vicinity of the dry cleaning equipment.

The results of the first two sampling events indicated that a notifiable release to soil, as defined under the Hazardous Site Response Act (HSRA) had occurred at the Site. A release to groundwater was also identified as discussed in Section 5.0. On August 15, 2000, PM Ltd. submitted a release notification package to the Georgia EPD. On January 5, 2001, the Site was listed on the Hazardous Site Inventory (Site No. 10690) for releases to both soil and groundwater.

Following the Site's listing on the HSI, MACTEC was requested by PM Ltd. to conduct additional assessment at the Site prior to the renovation of the then vacant Imperial Cleaners tenant space. This work initially included the installation of five Geoprobe borings within the building to begin the delineation of soil contamination.

In May 2001, five Geoprobe soil borings (GP-1 through GP-5) were installed on the subject Site to further assess the extent and concentration of soil contamination. One boring, GP-5, was located by the former dry cleaning machine, adjacent to ECA boring SB-6, which had previously exhibited the highest PCE concentrations. This boring was extended to Geoprobe refusal and sampled throughout to allow vertical profiling of the soil contamination in the suspected source area. The remaining borings were spaced just outside of this area.

Three additional soil test borings (MW-3, SB-7 and SB-8) were installed by MACTEC outside the building to further investigate the extent of soil contamination and attempt to identify the source of the groundwater contamination. MW-3 was located in the rear driveway of the shopping center, in an area interpreted to be downgradient of the former dry cleaner. This boring was converted to a deep groundwater monitoring well

to attempt to provide vertical delineation of the extent of groundwater impact. Boring SB-7 was located just outside the rear door of the former dry cleaner in an area of stained and corroded pavement. This stained area was believed to be related to a condensate discharge line which exited the building at this location. This boring was intended to characterize the vertical distribution of soil contamination in this area and evaluate it as a possible source of groundwater contamination and was extended to auger refusal, which occurred several feet above the groundwater table. Boring SB-8 was located in the grassy area northeast of the parking lot and was intended to provide lateral delineation of soil contamination in this area.

Soil samples were collected at five-foot intervals above the top of rock using a split-spoon sampling device and the standard penetration test method. One sample each from borings MW-3 and SB-8 were selected for laboratory testing. All of the samples collected from SB-7 were tested in order to characterize the vertical distribution of contamination within this boring as this area had been identified as a potential source area. With the exception of the uppermost sample, PCE was detected throughout the depth of SB-7. VOCs were not detected in SB-8. Very low levels of PCE were detected in MW-3.

In March 2002, MACTEC installed a series of four additional soil test borings (MW-6, MW-8, MW-9 and MW-10) in an attempt to complete the lateral delineation of contamination at the Site. These borings were then converted to groundwater monitoring wells. MW-6 was located in the parking area north of the former dry cleaner. MW-8 was located in the main Shopping Center parking lot, west of the former dry cleaner. MW-9 was located in the rear driveway of the Shopping Center and MW-10 was located along Hog Wallow Creek, east of the former dry cleaner, near the bottom of the fill slope.

MW-6, MW-8, and MW-9 were drilled using a truck-mounted drill rig and were extended to a depth approximately five feet below the groundwater table. In the case of MW-6, an air hammer attachment was necessary to extend the boring below the top of rock. MW-8 was terminated at the top of rock. Soil samples were collected at five-foot intervals using a split-spoon sampler and the standard penetration test method. MW-10 was located adjacent to Hog Wallow Creek and was installed using a hand auger. The two-foot sample was collected as the only soil sample above the groundwater table from this boring. The shallowest sample from each of these boring was selected for laboratory testing.

Following the receipt of the soil testing results from MW-6 through MW-10, MACTEC installed two additional hand auger borings to continue the lateral delineation of soil contamination. HA-1 and HA-2 were both installed along Hog Wallow Creek. HA-1 was located in the vicinity of MW-11, while HA-2 was located adjacent to MW-5. VOCs were not detected in either of the samples tested.

At the request of GA-EPD, in July 2005 two additional soil delineation samples were collected along Hog Wallow Creek in the areas downgradient of Borings B-2 and B-4. HA-3 was located downgradient of B-2, while HA-4 was located downgradient of B-4. Chlorinated VOCs were not detected in either of the samples tested. However, acetone and toluene were detected in HA-3, located near the creek, downgradient of boring B-3.

No obvious source of either the acetone or toluene has been identified and neither compound has previously been detected in either soil or groundwater on Site. Acetone is commonly detected as a false positive due to laboratory contamination. Laboratory representatives indicated that no evidence of laboratory induced contamination was evident and that the acetone detected may be an artifact of the sample preservation method as sodium bisulfate has been shown to react with certain soils to produce acetone.

Toluene has not been previously detected in soil on Site and does not appear to be related to the dry cleaner release. The extent of the toluene contamination has been delineated to the south, west and north by existing borings. Boring HA-3, in which the toluene was detected, was located near Hog Wallow Creek. The eastward extent of the toluene in soil is limited by the creek, as the creek bottom is the top of rock in this area.

Between January 2006 and August 2009, eight Geoprobe borings (SB-10 through SB-17) and nine auger drilled soil test borings (SB-10 through SB-28) were installed inside the building. The purpose of these borings was to further attempt to pinpoint the source of the release or any remaining source materials. The borings were extended to Geoprobe or auger refusal. Three of the auger borings were then extended into rock and converted to monitoring wells as discussed in Section 3.3.

PCE was the only chlorinated VOC detected in the 36 soil samples tested during these two phases of the assessment. No other degradation products of PCE were detected in soil. These findings were generally consistent with previous soil testing results obtained from the Site. The highest PCE concentrations were detected in the western portion of the former dry cleaners space. None of the soil samples tested exhibited PCE concentrations in excess of the Type 4 RRS of 1,200 ug/kg approved for the Site. Acetone

was the only other constituent detected, at concentrations below its approved RRS. As discussed in Section 3.3. Groundwater testing conducted within the building had failed to identify an obvious source area for the groundwater impacts in MW-2 and MW-7.

At GA-EPD's request, in March 2010, six more soil test borings (SB-29 through SB-34) were installed around MW-7 to again try to identify a specific source for the groundwater impacts identified in MW-7. SB-29 through SB-31 were installed closest to MW-7, while SB-32 through SB-34 were located farther out from MW-7. The plan was to test soil samples from the inner ring of borings and, if warranted by the initial findings, test additional samples from the outer ring of borings. The borings were extended to Geoprobe refusal which was encountered just below the water table. The laboratory testing results again identified PCE as the only chlorinated VOC detected in the nine soil samples tested, at a maximum concentration well below the Type 4 RRS. Two samples also exhibited acetone, at concentrations well below its approved RRS. These findings were generally consistent with previous soil testing results obtained from the Site.

Based on the relatively low concentrations of VOCs detected in the borings immediately surrounding MW-7, soils from the outer ring of borings were not tested. The soil testing results obtained from this area were consistent with the findings of the previous soil assessments and did not identify an obvious source of groundwater contamination.

3.3 GROUNDWATER QUALITY CONDITIONS

Refer to Figure 9 for the locations of groundwater monitoring wells, along with the following discussion. The regulated substances identified in groundwater at the Site are tetrachloroethene (CAS No. 127-18-4), trichloroethene (CAS No. 79-01-6), 1,2-dichloroethene (CAS No. 253-32-3302), vinyl chloride (CAS No. 75-01-4) and chloroform (CAS No. 67-66-3). Laboratory results from all groundwater samples analyzed to date are summarized on Table 2.

In July, 2000, ECA performed an Environmental Site Investigation in the surrounding area of the former Imperial Cleaners facility to explore the potential for a release from the dry cleaning facility. ECA initially installed four soil borings (SB-1 through SB-4) around and within the dry cleaning facility which was just being vacated at that time. One soil boring, SB-2, was extended below the groundwater table and converted to a groundwater monitoring well (MW-2). Boring SB-1 was also intended to be converted to a well (MW-

1), but auger refusal was encountered above the water table and the boring was discontinued. ECA collected a groundwater sample from MW-2 and analyzed it for VOCs. The laboratory results identified PCE, TCE, DCE and vinyl chloride in the groundwater sample at concentrations above the laboratory detection limits.

In August, 2001, MACTEC installed three monitoring wells (MW-3 through MW-5) at the subject Site. MW-3 was a deep Type III well located behind and downgradient of the former dry cleaners. This well was intended to evaluate whether deep groundwater within the rock had been impacted by the release from the former dry cleaner. MW-4 and MW-5 were located near Hog Wallow Creek to attempt to define the downgradient extent of the plume. PCE and cis-1,2-DCE were detected in the groundwater sample collected from MW-4 at very low concentrations. Chloroform was detected in the deep well, MW-3, at a low concentration. The chloroform is thought to be related to the use of potable water during rock coring, and is not related to the reported release. Neither PCE nor any of its breakdown products were detected in MW-3. VOCs were not detected in MW-5.

In March, 2002, MACTEC installed five additional monitoring wells (MW-6, MW-7, MW-8, MW-9 and MW-10) on the Site to attempt to delineate the lateral extent of groundwater contamination. MW-6 was installed in the parking lot north of the former dry cleaner. MW-7 was located near a condensate discharge line just outside the back door of the former dry cleaner and was intended to investigate groundwater conditions in this potential source area. MW-8 was located in the front parking lot of the shopping center, northwest of the former dry cleaner. MW-9 was located in the rear driveway of the shopping center, southwest of the former dry cleaner. MW-10 was located along Hog Wallow Creek, near the upstream boundary of the shopping center property.

Groundwater samples from the five additional wells were collected and analyzed for VOCs. Of the five wells installed, only one, MW-7 exhibited VOCs related to the former dry cleaning operations. This well was located just outside the rear door of the former dry cleaners. Chloroform was detected in MW-9, southwest of the former dry cleaners. The chloroform detected is believed to be related to a leaking water line located behind the shopping center building which was in the process of being replaced at the time of MACTEC's assessment and was not detected in a subsequent sampling event.

In April 2002, MACTEC installed an additional monitoring well, MW-11, along the western bank of Hog Wallow Creek. This well was installed in the area interpreted to be directly downgradient of the source of the groundwater contamination, based on the March 2002 groundwater elevation data. Low levels of PCE and its breakdown products were detected in MW-11.

In order to confirm that the creek represented the horizontal delineation of groundwater contamination downgradient of the suspected source area, MACTEC obtained permission from the adjacent property owner, Mr. Maxwell Thomas, to install an additional well on the eastern bank of Hog Wallow Creek. Based on the local hydrogeology, Hog Wallow Creek was expected to act as a discharge zone for shallow groundwater in the Site vicinity. MW-12 was located in the area downgradient of the former dry cleaner, across the creek to the east of MW-11. VOCs were not detected in MW-12.

In July 2005, MACTEC resampled each of the wells on Site. The July 2005 sampling event indicated groundwater conditions were generally similar to those encountered in the previous assessments with the exception that VOCs were not detected in monitoring well MW-11, whereas low concentrations had previously been detected. VOC concentrations in MW-2 were somewhat higher than those measured in 2000, the last time that well had been sampled. VOC concentrations in MW-4 and MW-7 remained consistent with previously measured values.

The 2007 CAP approval stipulated that groundwater samples be collected from six wells located on Site. Two of the wells (MW-2 and MW-7) are located just outside the former dry cleaner space. Three of the wells (MW-4R, MW-5 and MW-11R) are located downgradient, near Hog Wallow Creek. The sixth well (MW-12R) is located off Site, just across Hog Wallow Creek. MW-5 and MW-12R are considered sentinel wells as no VOCs have been detected in either of these wells during previous assessments. EPD subsequently requested that the two deep bedrock wells located on Site (MW-3 and DW-1) also be sampled during regular monitoring events.

The cumulative results of the quarterly groundwater monitoring events conducted on Site are summarized on the attached Table 2 and Figure 9. In summary, VOCs have not been detected in the sentinel wells MW-5 and MW-12. Monitoring wells MW-3, MW-4, MW-11 and DW-1 have exhibited sporadic occurrences of low concentrations of PCE and its breakdown products. Monitoring wells MW-2 and MW-7 have exhibited consistently elevated concentrations of VOCs.

In 2007, three 24-hour high vacuum extraction (HVE) events were completed at the Site. This procedure involved the high vacuum extraction of impacted groundwater and vapors from monitoring wells MW-2 and MW-7. Subsequent monitoring indicated the VOC concentrations dropped considerably following the three HVE events. Subsequently, VOC concentrations rebounded for a time in MW-2 but have dropped considerably since. VOC concentrations in MW-7 also rebounded but have not yet followed the decreasing trend observed in MW-2.

A fourth 24-hour HVE event has recently been completed at the Site. In addition to extraction from MW-2 and MW-7, as conducted previously, this HVE event also included two wells (MW-13 and MW-14) located inside the building. Although only very low concentrations of chlorinated VOCs had previously been detected in groundwater from the wells inside the building, these interior wells were included in the recent HVE event to aid in the removal of soil vapors contained within the vadose zone beneath the building. The four HVE events have resulted in the cumulative removal of approximately 950 gallons of water and 7.52 pounds of non-methane VOCs.

3.4 SURFACE WATER QUALITY CONDITIONS

During the July 2001 sampling event, MACTEC collected surface water samples from two locations along Hog Wallow Creek to evaluate potential impact to the surface water from the groundwater plume. SW-1 was collected near the upstream boundary of the Site and was intended as a background sample location for comparison purposes. The second surface water sample, SW-2, was collected just downstream of monitoring well MW-4. VOCs were not detected in the surface water samples.

In July 2005 another round of surface water sampling was completed which included a third sample collected from the area between MW-11 and MW-12, directly downgradient of the former dry cleaner. No VOCs were detected in this surface water sampling event.

Since March 2007, surface water samples have been collected during each of the quarterly groundwater monitoring events. To date, no chlorinated VOCs have been detected in the surface water. Styrene was detected in each sample, including the upstream sample, during the March 2010 event. However this compound is not related to any cleaning products and it was apparent from the findings that it was related to an off-Site release. Styrene was not detected in the subsequent June 2010 sampling event.

3.5 INDOOR AIR QUALITY CONDITIONS

MACTEC has conducted indoor air monitoring within the former dry cleaner space, the former Tuesday Morning retail space which encompassed the dry cleaner space and the adjacent Thai House restaurant adjacent to the former Tuesday Morning space. The initial testing, conducted in 2001, shortly after the dry cleaner space was vacated, identified PCE in the two air samples tested. Follow-up testing conducted in January 2008 at the request of GA-EPD, identified PCE concentrations which were significantly lower than those measured in 2001. However, both PCE and TCE still exceeded Target Indoor Air Concentration (TIAC). Two additional testing events were conducted in March 2008 and April 2008 following maintenance to and minor modifications of the HVAC system. Those results indicated that VOC concentrations had decreased further, although PCE concentrations in three of the four interior samples remained just slightly above the TIAC.

At EPD's request, in July 2010 an air sample from the nearest currently occupied tenant space, the Thai House restaurant, was also tested. The results identified a very low concentration of PCE which was below the TIAC. TCE or other breakdown products of PCE were not detected. Refer to Figure 10 and Table 5 for a summary of the air monitoring data.

October 14, 2010 MACTEC Project No. 6122-09-0322

4.0 DELINEATION CRITERIA

The data collected in MACTEC's assessments conducted between 2001 and 2005 were used to delineate the extent of regulated constituents in soil, groundwater and surface water on Site.

4.1 SOIL

As detailed in the Revised CSR, extensive soil testing conducted on Site has delineated the lateral extent of PCE and its breakdown products to background concentrations (i.e. laboratory reporting limits) within the boundaries of the Kingscreek Shopping Center (see Figure 8). Vertical delineation sampling indicates that the vertical extent of impacted soil extends to the water table in some locations (see Figures 3 and 4). With the exception of one soil sample (SB-6) collected by ECA in 2000, no soils on Site have been found to exceed the approved Type 4 RRS. Extensive soil testing conducted by MACTEC in the very near vicinity of ECA's SB-6 has not confirmed the presence of the elevated concentration of PCE reported by ECA.

4.2 GROUNDWATER

Groundwater testing conducted between 2000 and 2005 indicates that the lateral extent of impacted groundwater has been delineated to background within the Site boundaries (see Figure 9). Chlorinated VOCs have not been detected to date in the sentinel wells MW-5 and MW-12, nor in any of the surface water samples collected. Minor VOC impacts have been detected recently in the deep well DW-1 (see Figure 5). As noted in Section 3.1.2 an upward hydraulic gradient in the vicinity of Hog Wallow Creek will limit potential vertical migration of chlorinated VOCs in the downgradient vicinity of the release. Groundwater analytical results are summarized in Table 2 and on Figure 9.

4.3 SURFACE WATER

Surface water samples collected by MACTEC between 2001 and 2010 have not identified chlorinated VOC impacts to Hog Wallow Creek. Based on data obtained to date, surface water is not being impacted above laboratory reporting limits as a result of the groundwater plume discharging to Hog Wallow Creek. Surface water analytical results are summarized in Table 2 and on Figure 9.

5.0 **REMEDIATION CRITERIA AND EXPOSURE**

An examination of potential exposure pathways and receptors was conducted for the Site. Based on the data collected to date, the potential exposure pathways include:

- Potential exposure to regulated constituents in soil;
- Potential exposure to regulated constituents in groundwater;
- Potential exposure to regulated constituents in surface water;
- Potential exposure to regulated constituents due to vapor intrusion from impacted soil or groundwater beneath the building.

5.1 SOIL CRITERIA

The potential for direct exposure of commercial workers to impacted soil at the Site is incomplete as the primary area of soil impact is located beneath the building while other impacted areas are covered by asphalt pavement. In addition, soil concentrations are below the approved direct exposure risk reduction standards for construction workers and utility workers in the event that ground-disturbing activities are performed in the future.

Although the Site consists of non-residential property, MACTEC calculated both residential and nonresidential Risk Reduction Standards (RRS) for constituents detected in soil. Type 1, 2, 3 and 4 RRS were calculated for PCE, TCE, acetone and toluene using default exposure assumptions (see Appendix B). As shown in Appendix B, the Site satisfies all RRS criteria calculated for potential exposure to soil for TCE, acetone and toluene. The HSRA Type 1 through Type 4 RRS criteria for soil for the regulated substances are shown below along with the highest concentration detected and the corresponding sample location.

The maximum concentration of PCE detected by MACTEC in soil between 2001 and 2006 was 1,200 μ g/kg. This concentration is well below the direct contact RRS of 16,000 μ g/kg. Only one other sample collected by another consultant during an earlier assessment in 2000 reported a higher concentration of PCE in soil (7,700 μ g/kg) which was also below the direct contact RRS. MACTEC has resampled soils in that same area on three separate occasions and has not been able to replicate the previous elevated finding. Based on the data collected, we believe the area of higher impact has been attenuated such that VOCs are no longer present at such elevated concentrations as those observed in 2000.

In order to evaluate the potential for VOCs to leach from the contaminated soils and impact groundwater, in 2003, two samples were collected from the beneath the former dry cleaners where PCE concentrations were detected up to 1,200 μ g/kg (the maximum concentration ever detected by MACTEC). The samples were tested for leachability using the Synthetic Precipitation Leaching Procedure (SPLP). As a result of the leachability testing results, GA-EPD has previously approved a Type 4 RRS for PCE of 1,200 μ g/kg for the Site. The results of the leachability tests are presented in Table 7.

5.2 GROUNDWATER CRITERIA

As detailed in the Revised CSR, MACTEC previously conducted a water usage survey for the area surrounding the Site to identify active drinking water sources in the Site vicinity. The nearest domestic drinking water well is located approximately 0.8 miles from the Site. This well is located along a tributary of Hog Wallow Creek, upstream of the subject Site and will not be impacted by the release. No active domestic drinking water wells are located downgradient within one mile of the Site. Another unconfirmed domestic drinking water well in the general vicinity of the Site is located approximately 1.5 miles to the southeast across both Hog Wallow Creek and across Big Creek along Grimes Bridge Road. The regional groundwater flow in this area is toward the Chattahoochee River to the south. Therefore, this well is located sidegradient of the regional groundwater flow path and separated from the Site by two drainage divides, Hog Wallow Creek and Big Creek. As stated above, in our opinion, only the shallow groundwater at the subject Site has been affected by the release and there is an upward hydraulic gradient in the area of the release. The Grimes Bridge Road well is set within the bedrock aquifer, at a depth of over 300 feet. In addition, it is located across both Hog Wallow Creek and Big Creek from the Site, both of which would serve as barriers to prevent the migration of shallow groundwater from the Site to this well. Based on our research, no drinking water wells have been identified which could be impacted by the release from the Site.

The City of Roswell obtains much of its water from the Fulton County municipal water system, although it also maintains a surface water intake on Big Creek, located just upstream from the confluence with Hog Wallow Creek. Because the City of Roswell intake on Big Creek is located upstream from the Hog Wallow Creek confluence, there is no potential for impact to the surface water intake. For these reasons, the groundwater exposure pathway is also incomplete.

Previous groundwater testing results as well as groundwater fate and transport modeling results indicate that migration of groundwater will be limited to the area of the Site located between the former dry cleaner and Hog Wallow Creek. Lateral migration of impacted groundwater off the Shopping Center property has not been identified in the past and is not predicted in the future based on Site hydrogeology and groundwater modeling results.

MACTEC calculated RRS for the constituents detected in groundwater on Site. Again the Type 1, 2, 3 and 4 RRS criteria were derived using default exposure assumptions. Based on the groundwater samples obtained from MW-2 and MW-7, the Site does not comply with any of the groundwater RRS for PCE, TCE or vinyl chloride. The Site currently meets Type 4 RRS for cis-1,2-dichloroethene and trans-1,2-dichloroethene. As documented in the previously submitted Addendum to Revised CSR, dated April 11, 2006 and our Response to Comments dated October 4, 2006, although groundwater conditions are not currently in compliance with applicable RRS, the risk to human health and the environment posed by the groundwater on Site is negligible. Further, the condition of the groundwater on Site is expected to improve over time due to the natural attenuation of regulated constituents as observed in MW-2 in recent sampling events.

5.3 SOURCE

Concentrations of dissolved VOCs in groundwater are all well below the aqueous solubilities for the various compounds detected on Site. No evidence of highly contaminated soils indicative of a potential free product condition has been identified. The concentrations of PCE detected in groundwater from MW-7 have been slightly in excess of 1% of the aqueous solubility of PCE during some of the monitoring events. However, the PCE concentrations detected to date are still well below those that would strongly indicate the presence of a dense non-aqueous phase liquid (DNAPL) condition and no direct indications of a DNAPL condition have been observed. The latest PCE concentration in MW-7 is 4,800 µg/L as of June 2010.

There is the possibility that a small amount of DNAPL has infiltrated the subsurface down to the water table. Because the water table roughly coincides with the top of rock in the apparent source area, it is possible that some DNAPL may have infiltrated the rock. Groundwater testing from the two deep wells near the source area indicates this is unlikely. However, should DNAPL be present in the rock, there is currently no practicable manner in which to actively remediate such a condition. As detailed in Section

6.4, even if such a condition exists, the slow release of PCE into the groundwater over time from a DNAPL source is not expected to impact Hog Wallow Creek in excess of regulatory thresholds.

5.4 SURFACE WATER

On-Site groundwater discharges into Hog Wallow Creek located along the Site's eastern boundary. To date, VOCs have not been detected in surface water samples tested or in groundwater across the creek from the Site. Because the creek acts as a groundwater discharge feature for shallow groundwater in the area, VOCs in groundwater are not expected to migrate beyond the creek and impact other properties. Testing of deep groundwater on Site indicates that the extent of groundwater impact is primarily confined to the upper portion of the aquifer. In addition, a vertically upward hydraulic gradient has been measured on Site near the source area. This upward gradient will reduce the tendency of dissolved constituents to migrate into the deeper portions of the groundwater.

As discussed in Appendix C, MACTEC modeled the fate and transport of VOCs in the groundwater on Site and the potential impact of regulated constituents in groundwater on the surface water quality of Hog Wallow Creek. The mixing of impacted groundwater and surface water in Hog Wallow Creek was calculated based on recent groundwater testing data and measured hydrogeologic conditions on Site. MACTEC calculated maximum allowable concentrations of VOCs in MW-11R that would still be protective of applicable in-stream water quality standards. These calculations were conservatively based on anticipated low flow conditions within Hog Wallow Creek. As detailed in Appendix C, the modeling results indicate that the most recent concentrations in MW-11R are at least approximately two orders of magnitude below the predicted maximum allowable concentration. In addition, the maximum allowable VOC concentrations in MW-11R are well below the maximum VOC concentrations historically detected anywhere on Site, including the source area.

The field-observed concentrations of COCs dissolved in groundwater at the Site, the results of the analytical groundwater fate and transport model for the VOCs in question and the results of the analytical model of mixing between the impacted water and surface water in Hog Wallow Creek show that instream water quality standards are not exceeded currently, and are not predicted to be exceeded in the future.

Voluntary[,] Remediation Plan Former Imperial Cleaners HSI 10690

5.5 AIR

The results of the April 2008 indoor air testing in 2008 within the Tuesday Morning store showed that PCE and TCE concentrations were just slightly above their respective target indoor air concentration (TIAC) in at least one sample. No other breakdown products of PCE have been detected in the air samples tested. The Tuesday Morning Store has been vacant since August 2009. Testing conducted in July 2010 indicated the tenant space adjacent to the former Tuesday Morning store had not been impacted above applicable thresholds.

Over 30 organic compounds have been detected in the air samples tested. The vast majority of these compounds must have emanated from interior sources as they have not been previously detected in soil or groundwater on Site. The exact source or sources of VOCs is not known but was suspected to be primarily merchandise brought into the Tuesday Morning store for retail sale and cleaning products used in the store. It is possible that at least some of these goods/supplies may have contained low levels of residual PCE and/or TCE which could have increased their measured concentrations in the indoor air.

Note that chlorinated VOC concentrations in the indoor air decreased significantly following the implementation of the HVAC system modifications completed in early 2008 and were only slightly in excess of applicable TIACs. The two elevated PCE readings were less than 2 μ g/m³ above the TIAC. The one elevated TCE reading was 0.04 μ g/m³ above the TIAC. The store goods and/or cleaning supplies could have contributed this much to the indoor air. Some seasonal fluctuation is also to be expected which could slightly raise or lower the measured concentrations of VOCs.

The recent HVE event discussed in Section 4.3 included vacuum extraction from two wells located inside the building to aid in reducing vadose zone concentrations of chlorinated VOCs. Prior to a new tenant leasing the vacant space, additional upgrades of the existing HVAC system are planned. These changes will likely further improve the indoor air quality. MACTEC plans to conduct the next air monitoring event when the vacant tenant space is leased.

6.0 PLANNED CORRECTIVE ACTIONS

It is PM, Ltd's intent to remove the Site from the Hazardous Site Inventory (HSI) through implementation of a voluntary remediation plan that is protective of human health and the environment. Based on the completed delineation of constituents in soil and groundwater and the absence of complete pathways of exposure to constituents in soil and groundwater and to the limited potential risk posed to surface waters, PM, Ltd. proposes the following voluntary remediation remedies:

- The horizontal and vertical extents of contaminants in surface and subsurface soils have been adequately delineated; soil-sampling locations with chlorinated VOC concentrations exceeding approved RRS have not been identified by MACTEC. The floor slab and asphalt pavement precludes direct exposure of facility personnel to impacted soils or soil leaching to groundwater, rendering potential exposure pathways incomplete. For these reasons, PM, Ltd. proposes no additional corrective action related to on-Site soils.
 - The horizontal and vertical extents of constituents in groundwater have been adequately delineated. No impacted groundwater flows off Site. Minimal impact to the deeper waterbearing zone has been detected. Significant natural attenuation of chlorinated VOCs has been observed in on-Site wells downgradient from the source area and is expected to continue in the future. On-Site groundwater is not a current source of potable or industrial use at the facility and no downgradient drinking water wells or withdrawal points have been identified within one mile of the Site. As such, there are no complete pathways for exposure of on-Site or off-Site receptors to impacted groundwater. PM, Ltd. proposes a deed restriction to prevent future use of groundwater on Site for human consumption in order to ensure the maintenance of an incomplete pathway.
- An additional "point of demonstration" well is proposed to be installed in the area downgradient of MW-7. This well will be located approximately half way between MW-7 and MW-11R and will be used to provide additional data regarding the migration and attenuation of the plume downgradient of the potential source area. Within six months of the Site's enrollment in the Voluntary Remediation Program, a groundwater fate and transport model will be submitted to include projected concentration trends for the point of demonstration well.

- No impacts to surface water in Hog Wallow Creek have been detected to date. Surface water modeling presented in Section 6.4 indicates that the potential to impact the creek in the future above in-stream water quality standards is negligible.
- PM, Ltd. proposes to continue the existing quarterly groundwater monitoring program, including surface water monitoring, for a period of three years to demonstrate the continued attenuation of the contaminant plume and to confirm the groundwater and surface water modeling results.
- Future workers in the former Tuesday Morning tenant space (currently vacant) may be subject to vapors emanating from residual constituents, primarily PCE and TCE that remain in soils below the floor slab in these areas. MACTEC's most recent indoor air quality testing found only slight exceedences of TIACs for PCE and TCE. Recent remedial activities and planned HVAC upgrades are expected to reduce indoor air concentrations of PCE and TCE to acceptable levels. Prior to the next occupancy of the space with encompasses the former dry cleaner, the indoor air of the space will be sampled and tested again to confirm that indoor air meets applicable TIACs for PCE and TCE. Testing prior to tenant occupancy will eliminate the contributions of store goods and cleaning supplies thought to have compromised previous air sampling events. Should the test results meet TIAC criteria, further corrective action regarding the air pathway will not be performed.
- PM, Ltd. proposes that compliance with the following criteria by the end of the three year monitoring period will warrant removal of the Site from the HSI:
 - Stabilization or decrease in VOC concentrations in MW-2;
 - Stabilization or decrease in VOC concentrations in MW-7;
 - VOC concentrations in "point of demonstration" well are consistent with values predicted by the groundwater fate and transport model;
 - VOC concentrations in MW-7, MW-11 and the "point of demonstration" well do not exceed values established through surface water modeling which would result in impacts to Hog Wallow Creek in excess of ISWQS;
 - No exceedences of ISWQS are measured in surface water samples collected from Hog Wallow Creek;

7.0 MILESTONE SCHEDULE AND COST ESTIMATE

Upon acceptance of the VRP Application, a schedule will be prepared that describes the planned activities and a schedule for their implementation and reporting and an estimate of the anticipated cost. PM, Ltd. has issued a letter of credit for \$300,000 as its financial assurance instrument to cover the cost of the approved HSRA CAP, which will be extended as necessary to cover the planned activities herein as approved by EPD.

engineering and constructing a better tomorrow

October 14, 2010

Ms. Alexandra Cleary Hazardous Sites Response Program Georgia Environmental Protection Division 2 Martin Luther King, Jr. Drive, SE Suite 1462 East Floyd Tower Atlanta, Georgia 30334

Subject: Voluntary Remediation Plan Application and Fee Pursuant to the Georgia Voluntary Remediation Program Act Former Imperial Cleaners – Kingscreek Shopping Center 1233B Alpharetta Highway Roswell, Georgia HSI Site No. 10690 MACTEC Project 6305-05-0319

Dear Ms. Cleary:

On behalf of PM, Ltd., MACTEC Engineering and Consulting, Inc. (MACTEC) respectfully submits this Voluntary Remediation Plan Application along with the attached \$5,000.00 application fee to enroll this site under the Georgia Voluntary Remediation Program Act.

Please contact the undersigned if any questions arise.

Sincerely,

MACTEC Engineering and Consulting, Inc.

Stephen R. Foley, P.G. Senior Geologist

Enclosures

Senior Principal Engineer

cc: Ms. Nancy Shannon, PM, Ltd. c/o SunTrust Bank Barbara Gallo, Krevolin & Horst, LLC

T:\6305-J\05-319 Imperial Cleaners\V'RP\V'RP Application.docx

Voluntary Remediation Plan Checklist

i.	VRP APPLICANT INFORMATION						
COMPANY NAME	COMPANY NAME PM, LTD. with Wright Management, Inc. as the sole general partner						
CONTACT PERSON/TITLE	DNTACT PERSON/TITLE Nancy Shannon						
ADDRESS	25 Park Place, 2 nd Floor, Atlanta, Georgia 30303						
PHONE	E 404-588-7234 FAX 404-588-7875 E-MAIL Nancy.shannon@suntrust.com						ist.com
GEORGIA CER	TIFIED PROFESSION	IAL GEOL	OGIST OR PROF	ESSIONAL	ENGINEER C	VERSE	EEING CLEANUP
NAME	Charles T. Ferry			GA PE/PG N	UMBER P	E 10957	
COMPANY	MACTEC Engineering and	d Consulting,	Inc.				÷
ADDRESS	396 Plasters Avenue						
PHONE	404-873-4761	FAX	404-817-0183	E-MAIL	ctferry@mactec.com		
		APPL	ICANT'S CERTIFI	CATION			
 In order to be considered a quistion order to be considered a quistion of the property shall not be: (A) Listed on the federal Section 9601. (B) Currently undergoing (C) A facility required to (3) Qualifying the property uncertained or similar authorizar (4) Any lien filed under subsect the director pursuant to Code In order to be considered a patential (1) The participant must I (2) The participant must I (2) The participant must I certify under penalty of law the qualified personnel properly gar responsible for gathering the is significant penalties for submit I also certify that this property Code Section 12-8-106. 	PHONE 404-873-4761 FAX 404-817-0183 E-MAIL ctterry@mactec.com APPLICANT'S CERTIFICATION In order to be considered a qualifying property for the VRP: (1) The property must have a release of regulated substances into the environment; (2) The property shall not be: (A) Listed on the federal National Priorities List pursuant to the federal Comprehensive Environmental Response, Compensation, and Liability Act, 42 U.S.C. Section 9601. (B) Currently undergoing response activities required by an order of the regional administrator of the federal Environmental Protection Agency; or (C) A facility required to have a permit under Code Section 12-8-66. (3) Qualifying the property under this part would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or similar authorization from the United States Environmental Protection (b) of Code Section 12-13-12 against the property shall be satisfied or settled and released by the director pursuant to Code Section 12-8-66. In order to be considered a participant must be the VRP: (1) The participant must be the property owner of the voluntary remediation property or have express permission to enter another's property to perform corrective action. (2) The participant must not be in violation of any order, judgment, statute, rule, or regulation subject to the enforcement authority of the director. In certify under						
APPLICANT'S NAME/TITLE Nancy G. Shannon/President Wright Management, Inc DATE October 7, 2010							

5.a.	Within the first 12 months after enrollment, the rarticipant must complete horizontal delineation of the release and associated constituents of concern on property where access is available at the time of enrollment;	Section 4.0
5.b.	Within the first 24 months after enrollment, the participant must complete horizontal delineation of the release and associated constituents of concern extending onto property for which access was not available at the time of enrollment;	Section 4.0
5.c.	Within 30 months after enrollment, the participant must update the site CSM to include vertical delineation, finalize the remediation plan and provide a preliminary cost estimate for implementation of remediation and associated continuing actions; and	Section 4.0 Section 7.0
5.d.	Within 60 months after enrollment, the participant must submit the compliance status report required under the VRP, including the requisite certifications.	Appendix C
6.	SIGNED AND SEALED PE/PG CERTIFICATION AND SUPPORTING DOCUMENTATION: T certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, <u>efs</u>). I am a professional engineer/professional geologist who is registered with the Georgia State Board of Registration for Professional Geologists and I have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances. Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring. I have attached a monthly summary of hours invoiced and description of services provided by me to the Voluntary Remediation Program participant since the previous submittal to the Georgia Environmental Protection Division. The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.* Charles T. Ferry #10957 Printed Name and GA PE/PG Number Signature and Stamp Signature and Sta	

TABLES

October 14, 2010 MACTEC Project No. 6122-09-0322

LIST OF TABLES

Table 1 - Summary of Soil Testing Data

Table 2 - Summary of Groundwater/Surface Water Testing Data

Table 3 – Summary of Well Construction/Water Level Data

Table 4 – Summary of Slug Test Data

Table 5 – Summary of Air Monitoring Data

Table 6 - Summary of Natural Attenuation Parameters in Groundwater

Table 7 – Summary of Soil Leachability Testing Data

Table 8 - Summary of Soil and Groundwater Risk Reduction Standards

LIST OF FIGURES

Figure 1 – Site Location/Topographic Map

Figure 2 – Site and Vicinity Aerial Photograph

Figure 3 – Cross Section A-A'

Figure 4 – Cross Section B-B'

Figure 5 – Cross Section C-C'

Figure 6 – Cross Section D-D'

Figure 7 – Potentiometric Surface Map

Figure 8 – Summary of Soil Testing Results

Figure 9 – Summary of Groundwater Testing Results

Figure 10 - Summary of Indoor Air Testing Results

LIST OF APPENDICES

Appendix A - Legal Description/Survey Plat and Tax Map

Appendix B - Risk Reduction Standard Calculations

Appendix C - Fate and Transport of Constituents of Concern in Groundwater

Appendix D - Monitoring Well and Soil Boring Logs

Sample Mo	Denth Et	Date Collected	TOG	$T \cap E$	Acatona	Toluene		
Bampie 140.					Acetone			
B-1	1	3/93	100	<10	<100	<10		
B-1	5	3/93	260	<10	<100	<10		
B-2	1	3/93	32	<10	<100	<10		
B-2	5	3/93	20	<10	<100	<10		
B-3	8	3/93	60	<10	<100	<10		
B-4	5	3/93	20	<10	<100	<10		
ENVIRONMENTAL CORPORATION OF AMERICA – June-July 2000								
Sample No.	Depth, Ft.	Date Collected	PCE	TCE	Acetone	Toluene		
SB-1	5	6-7/00	<5	<5	<100	<5		
SB-2/MW-2	5	6-7/00	14	<5	<100	<5		
SB-3	1	6-7/00	532	<5	<100	<5		
SB-4	2	6-7/00	210	<্য	<100	<5		
SB-5	1.5	6-7/00	359	<5	<100	<5		
SB-6	2	6-7/00	7,700	<5	<100	<5		
LAW ENGINEERI	NG AND EN	VIRONMENT	AL SERVIC	ES. INC. (M	ACTEC) – M	av 2001		
Sample No.	Depth, Ft.	Date Collected	PCE	TCE	Acetone	Toluene		
GP-1-2	2	5/01	<5	<5	NT	NT		
GP-1-10	10	5/01	<5	<5	NT	NT		
GP-2-6	6	5/01	25	<5	NT	NT		
GP-2-10	10	5/01	1,100	<5	NT	NT		
GP-3-4	4	5/01	650	<5	NT	NT		
GP-3-10	10	5/01	310	<5	NT	NT		
GP-4-2	2	5/01	8	<5	NT	NT		
GP-4-10	10	5/01	410	<5	NT	NT		
GP-5-4	4	5/01	10	<5	NT	NT		
GP-5-8	8	5/01	11	<5	NT	NT		
GP-5-12	12	5/01	270	<5	NT	NT		
GP-5-16	16	5/01	1,200	<5	NT	NT		
OD 5 00	20	5/01	-5		NT			

TABLE 1 - SUMMARY OF SOIL TESTING RESULTS, ug/kg

µg/kg - micrograms per kilogram (equivalent to parts per billion)
LAW ENGINEERI	NG AND EN	VIRONMENT	TAL SERVIC	CES, INC. (M	ACTEC) – A	ugust 2001
Sample No.	Depth, Ft.	Date Collected	PCE	TCE	Acetone	Foluene
SB-7	5	8/01	<5.9	<5.9	<120	<5.9
SB-7	10	8/01	110	<5.9	<120	<5.9
SB-7	15	8/01	260	<6.3	<130	<6.3
SB-7	20	8/01	84	<6.1	<120	<6.1
SB-7	25	8/01	10	6.5	<120	<5.8
SB-8	5	8/01	<7.1	<7.1	<140	<7.1
MW-3	5	8/01	7.0	<5.7	<110	<5.7
LAW ENGINEERI	NG AND EN	VIRONMENT	TAL SERVIC	ES, INC. (M	ACTEC) – M	arch 2002
Sample No.	Depth, Ft.	Date Collected	PCE	TCE	Acetone	Toluene
MW-6	5	3/02	<6.1	<6.1	<120	<6.1
MW-8	5	3/02	<5.6	<5.6	<110	<5.6
, MW-9	5	3/02	<6.1	<6.1	<120	<6.1
MW-10	2	3/02	<6.2	<6.2	<120	<6.2
HA-1	2	4/02	<6.9	<6.9	<140	<6.9
HA-2	2	4/02	<5.9	<5.9	<120	<5.9
MACTEC ENGINE	ERING AN	D CONSULTI	NG, INC. – Ji	1ly 2005		
Sample No.	Depth, Ft.	Date Collected	PCE	TCE	Acetone	Toluene
HA-3	2	7/05	<3.6	<3.6	150	13
HA-4	2	7/05	<7.8	<7.8	<160	<7.8
HA-5	1	7/05	8.5	<5.5	<110	<5.5
HA-5 (Dup)	1	7/05	6.9	<5.5	<110	<5.5
HA-5	3	7/05	20	<5.2	<100	<5.2

TABLE 1 - SUMMARY OF SOIL TESTING RESULTS, ug/kg (Continued)

µg/kg - micrograms per kilogram (equivalent to parts per billion)

MACTEC ENGINE	ERING AN	D CONSULTI	NG, INC. – JA	ANUARY 20)06	
Sample No.	Depth, Ft.	Date Collected	PCE	TCE	Acetone	Toluene
SB-10	4	1/06	34	<6.3	<130	<6.3
SB-11	12	1/06	55	<5.3	<110	<5.3
SB-11	16	1/06	77	<6.1	<110	<6.1
SB-11	20	1/06	930	7.8	<120	<6.1
SB-12	8	1/06	. 34	<6.5	<130	<6.5
SB-12	16	1/06	230	<7.2	<140	<7.2
SB-12	20	1/06	21	<6.3	<130	<6.3
SB-13	8	1/06	41	<6.2	<120	<6.2
SB-13	12	1/06	100	<6.6	<130	<6.6
SB-13	16	1/06	640	<5.8	<120	<5.8
SB-16	8	1/06	<6.3	<6.3	<130	<6.3
SB-16	12	1/06	530	<6.0	<120	<6.0
SB-16	16	1/06	130	<6.3	<130	<6.3
SB-17	8	1/06	9	<7.4	<110	<7.4
SB-17	12	1/06	730	<6.5	<130	<6.5
SB-17	16	1/06	390	<7.1	<140	<7.1

TABLE 1 - SUMMARY OF SOIL TESTING RESULTS, ug/kg (Continued)

µg/kg - micrograms per kilogram (equivalent to parts per billion)

MACTEC ENGINE	ERING AN	D CONSULTI	NG, INC. – A	UGUST 200	9	
Sample No.	Depth, Ft.	Date Collected	PCE	TCE	Acetone	Toluene
SB-21-20	20	8/09	<5.0	<7.3	<150	<7.3
SB-22-2.5	2.5	8/09	16	<6.3	<130	<6.3
SB-22-7.5	7.5	8/09	38	<4.9	<98	<4.9
SB-22-12.5	12.5	8/09	180	<5.4	<110	<5.4
SB-23-2	2	8/09	11	<5.8	<120	<5.8
SB-23-7.5	7.5	8/09	6.2	<5.8	<120	<5.8
SB-23-12.5	12.5	8/09	37	<5.3	<110	<5.3
SB-24-2	2	8/09	<5.0	<5.7	<110	<5.7
SB-24-5	5	8/09	5.5	<4.8	<96	<4.8
SB-24-7.5	7.5	8/09	13	<5.9	<120	<5.9
SB-25-2.5	2.5	8/09	<4.8	<4.8	<96	<4.8
SB-25-7.5	7.5	8/09	<5.4	<5.4	<110	<5.4
SB-25-12.5	12.5	8/09	390	<4.9	<98	<4.9
SB-26-5	5	8/09	35	<5.9	<120	<5.9
SB-26-17.5	17.5	8/09	<4.8	<4.8	<96	<4.8
SB-26-17.5 Ft. (Dup)	17.5	8/09	<5.0	<5.0	<100	<5.0
SB-27-12.5	12.5	8/09	960	<4.8	<96	<4.8
SB-28-12.5	12.5	8/09	240	<5.9	<120	<5.9
SB-28-12.5 Ft. (Dup)	12.5	8/09	200	<5.9	<120	<5.9
SB-28-20	20	8/09	1,100	<4.6	<93	<4.6
MACTEC ENGINE	ERING AN	D CONSULTI	NG, INC. – M	ARCH 2010)	
Sample No.	Depth, Ft.	Date Collected	PCE	TCE	Acetone	Toluene
SB-29	2	3/10	<7.3	<7.3	<150	<7.3
SB-29	12	3/10	48	<6.2	<120	<6.2
SB-29	20	3/10	180	<7.0	150	<7.0
SB-30	2	3/10	<7.5	<7.5	<150	<7.5
SB-30	12	3/10	440E	<8.1	<160	<8.1
SB-30	20	3/10	230	<7.7	<150	<7.7
SB-31	2	3/10	<6.0	<6.0	<120	<6.0
SB-31	12	3/10	<6.8	<6.8	<140	<6.8
SB-31	20	3/10	49	<7.8	<160	<7.8

TABLE 1 - SUMMARY OF SOIL TESTING RESULTS, ug/kg (Continued)

μg/kg - micrograms per kilogram (equivalent to parts per billion)

TABLE 2 – SUMMARY OF GROUNDWATER/SURFACE WATER TESTING, $\mu g/l$

Well No.	Sampling Date	PCE	TCE	Trans-1,2-DCE	Cis-1,2-DCE	Vinyl Chlarida	Chloroform	Styrene
2					7	Cilionde		
	7/00	790	303	171	626	3 .	<2	\triangleleft
	7/8/05	880	440	450	2600	55	<5	<5
	9/11/06	2700	560	98	2200	150	<5	<5
	3/21/07	1200	280	160	2000	620	<5	<5
	7/3/07	1200	140	30	600	710	<5	<5
	8/17/07	250	61	37	540	1100	<5	<5
	11/07	660	220	16	590	660	<5	<5
	1/18/08	370	120	8.8	340	160	<5	<5
MW-2	4/29/08	410	150	14	390	310	<5	<5
	8/15/08	510	170	10	260	390	<5	<5
	10/28/08	350	130	10	320	190	<5	<5
	2/22/08	620	220	61	300	490	~5	-5
	Z/Z //09 B/10/00	020	230	0.1	400	100		7
	8/19/09	220	240	7.2	400	190		0
	12/16/09	160	840	70	1100	43	<>	<>>
	3/30/10	270	920	78	790	93	<>	<>
	6/30/10	43	690	83	1200	100	<5	<5
	8/15/01	<2	<2	<2	<2	<2	10	<2
	7/13/05	<5	<5	<5	<5	<2	<5	<5
	10/28/08	<5	<5	<5	<5	<2	<5	<5
	10/28/08(dup)	<5	<5	<5	<5	<2	<5	<5
	2/27/09	<5	<5	<5	<5	<2	<5	<5
MW-3	8/19/09	<5	<5	<5	<5	\triangleleft	<5	<5
	12/16/09	<5	<5	<5	<5	$\overline{\mathbf{a}}$	<5	<5
	3/30/10	64	<5	<5	~	~	<5	<5
	6/20/10	-5	-5	<5				-5
	0/30/10	-5			~ ~ ~		2	
	6/30/10 (dup)	S		< >	< <u> </br></br></u>	~~~~~	<>>	<>>
1 1	8/15/01	3	<2	<2	10	<2	<2	<2
MW-4	7/13/05	. 15	<5	<5	<5	<2	<5	<5
	9/11/06	<5	<5	<5	14	2	<5	<5
	3/21/07	5.9	<5	<5	<5	<2	<5	<5
	7/3/07	6.9	<5	<5	6.9	<2	<5	<5
	11/07	8.4	<5	<5	<5	<2	<5	<5
	1/18/08	<5	<5	<5	<5	<2	<5	<5
	4/29/08	<5	<5	<5	<5	<2	<5	<5
	8/15/08	No Sample	No Sample	No Sample	No Sample	No Sample	No Sample	No Sample
MW-4R	10/28/08	<5	<5	<5	<5	<2	<5	<5
	2/27/09	<5	<5	<5	<5	~	<5	<5
•	8/10/00	-5	<5	65	<5		<5	<5
	12/16/00	5.0	-5	~5	-5		<5	-5
	12/10/09	5.0		<5				
	5/30/10		3.8	<u></u>	9.8	· ¥	<5	
	0/30/10	<>	0.5	<>	9.8	<2	<u>``</u>	<u></u>
	8/15/01	<2	<2	<2	<2	<2	<2	<2
	7/8/05	<5	<5	. <5	<5	<2	<5	<5
	3/21/07	<5	<5	<5	<5	<2	<5	<5
	7/3/07	<5	<5	<5	<5	<2	<5	<5
	11/07	<5	<5	<5	<5	<2	<5	<5
	1/18/08	<5	<5	<5	<5	<2	<5	<5
	4/29/08	<5	<5	<5	<5	<2	<5	<5
MW-5	8/15/08	<5	<5	<5	<5	<2	<5	<5
	10/28/08	<5	<5	<5	<5	<2	<5	<5
	2/27/09	<5	<5	<5	<5	<2	<5	<5
	2/27/00 (dup)	<5	<5	<5	<5	27	<5	<5
	2/2//09 (dup)	~ ~ ~	~ ~ ~					
	3/19/09		< 5					
	12/16/09	<>>	<5	<5	<>>	<2	<>>	<>>
	3/30/10	<5	<5	<5	<5	<2	<5	<5
	6/30/10	<5	<5	<5	<5	<2	<5	<5
	2/14/02	-	-			~		
MW-6	5/14/02	<2			~2	<2	~2	<2
	//8/05	<>	<>	<>>	<>	<>	<>>	<>
1	1	1	1		1	1	1	

TABLE 2 - SUMMARY OF GROUNDWATER/SURFACE WATER TESTING, µg/l (CONT.)

·····						1		
Well No.	Sampling Date	PCE	TCE	Trans-1,2-DCE	Cis-1,2-DCE	Vinyl Chloride	Chiloroform	Styrene
	3/14/02	830	130	18	45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	<5
	7/8/05	1000	180	18	67	<2	<5	<5
	0/11/06	1800	260	50	100	~	-5	-5
	9/11/00	1800	200	20	100	~2	N	2
	3/21/07	2200	270	30	98	<2	<5	<5
	7/3/07	2900	210	37	87	<2	<5	<5
	7/3/07 (dup)	2400	200	29	96	~	<5	<5
	8/17/07	1400	85	<5	43	<2	<5	<5
	11/07	1900	240	27	180	<2	<5	<5
	11/07 (4)	1600	290	27	110	~	-5	~5
	11/07 (dup)	1000	200	14	05	24	>	2
MW-7	1/18/08	1700	130	14	85	<2	<>	<>
	1/18/08 (dup)	1800	140	11	70	<2	<5	<5
	4/29/08	3100	220	, 11	75	<2	<5	<5
	4/29/08 (dup)	3100	190	12	84	<2	<5	<5
	8/15/08	2100	190	6	91	<2	<5	<5
	10/28/08	2100	350	12	100	<2	<5	<5
	2/27/00	1800	370	00	120	2	-5	-5
	2/2/109	1000	270	2.2	120	~2		
	8/19/09	2900	. 370	13	89	<2	<>	<>
	12/16/09	4400	680	47	250	<2	<5	<5
	3/30/10	3800	560	47	210	\sim	<5	<5
	6/30/10	4800	830	69	280	<2	<5	<5
	3/14/02	<2	<2	<2	<2	<2	<2	<2
MW-8	7/8/05	<5	<5	<5	<5	<2	. <5	<5
		-	-	_	-	-	-	-
MWO	3/14/02	<2	<2	<2	<2	<2	7	<2
101 00 -9	7/8/05	<5	<5	<5	<5	<2	<5	<5
					~			
MW-10	3/14/02	<2	<2	<2	<2	<2	<2 .	<2
1111110	7/8/05	<5	<5	<5	<i< td=""><td><5</td><td><5</td><td><5</td></i<>	<5	<5	<5
								·
	4/4/02	18	18	4	28	2	<2	<2
MW-11	7/8/05	<5	<5	<5	<5	<2	<5	<5
	3/21/07	<5	<5	<5	<5	<2	<5	<5
	7/2/07			-5	5.6	~	-5	~~~~~
	1/5/07	\$	<2	< 3	5.0	2		~2
	11/07	<>	<>	<>	<>	<2	<5	<>
	1/18/08	<5	<5	<5	5.5	<2	<5	<5
	4/29/08	<5	8.6	<5	26	2.2	<5	<5
	8/15/08	<5	<5	<3	<5	<2	<5	<3
MW-11R	10/28/08	<5	<5	<5	<5	<2	<5	<5
	2/27/09	<5	<5	<5	7.6	-	<5	<5
	R/10/00	-5	-5	~5		~	15	~
	8/19/09			2		~2		>
	12/16/09	<>	<>	<>	<>	<2	<5	<>
	3/30/10	110	65	11	170	5.7	<5	<5
	6/30/10	No Sample	No Sample	No Sample	No Sample	No Sample	No Sample	No Sample
	6/12/02	$\langle \rangle$	<2	</td <td><2</td> <td><?</td><td>0</td><td><?</td></td></td>	<2	</td <td>0</td> <td><?</td></td>	0	</td
1/11/12	7/12/05	-5	-5	-5	-5	2	-5	-5
101 00 -1.2	2/21/07	- 5	 5 	-5	~5	14	~	-5
	5/21/07	<u> </u>	S			~4	· · · ·	~
ŀ	7/3/07	<5	<5	<5	<5	<2	<5	<5
	11/07	<5	<5	<5	<5	<2	<5	<5
	1/18/08	<5	<5	<5	<5	<2	<5	<5
	4/29/08	<5	<5	<5	<5	<2	<5	<5
	9/15/00	-5	-5			~	-5	-5
	0/15/00				< <u>,</u>	12		5
MW-12R	10/28/08	<>	<>	<>	<>	~	<>	<>
	2/27/09	<5	<5	<5	<5	<2	<5	<5
	8/19/09	<5	<5	<5	<5	<2	<5	<5
	12/16/09	<5	<5	<5	<5	<2	<5	<5
	3/30/10	<5	<5	<5	<5	<2	<5	<5
	6/30/10	-5	-5	-5	<5	~	-5	-5
	2/20/10					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~
	5/22/06		<>		5	~2	< >	<>
	10/28/08	6.6	<5	<5	<5	<2	<5	<5
	2/27/09	8.5	<5	<5	<5	<2	<5	<5
	8/19/09	<5	<5	<5	<5	<2	<5	<5
DW-1	12/16/09	<5	<5	<5	<5	<2	<5	<5
	12/16/09 (dup)	<5	<5	5	<		<5	<5
	2/20/10	24			~		~	
	2/20/10	20	-5					
	3/30/10 (dup)	27	<5	<	<5	<2	<5	<5
L	6/30/10	34	6.4	<5	<5		<5	<5

µg/l - micrograms per liter

TABLE 2 – SUMMARY OF GROUNDWATER/SURFACE WATER TESTING, $\mu g/l$ (CONT.)

Well No.	Sampling Date	PCE	TCE	Trans-1,2-DCE	Cis-1.2-DCE	Vinyl Chloride	Chloroform	Styrene
MW-13	8/19/09	43	9.5	<5	6.3	<2	<5	<5
MW-14	8/19/09 8/19/09 (dup)	<5 <5	<5 <5	<5 <5	<5 <5	<2 <2	<5 <5	<5 <5
MW-15	8/19/09	<5	<5	<5	<5	\$	<5	<5
	8/15/01 3/21/07 7/3/07 11/07 1/18/08 4/29/08	ব্য ব্য ব্য ব্য ব্য ব্য ব্য	<5 <5 <5 <5 <5 <5	ব্য ব্য ব্য ব্য ব্য ব্য ব্য	<5 <5 <5 <5 <5 <5 <5	2 2 2 2 2 2 2 2 2 2 2 2 2	ও <	ও ও ও ও ও ও
SW-1	8/15/08 10/28/08 2/27/09 8/19/09 12/16/09 3/30/10 6/30/10		৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩			2 2 2 2 5 2 2 4 5 5 5 5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
SW-2	8/15/01 3/21/07 7/3/07 11/07 1/18/08 4/29/08 8/15/08 10/28/08 2/27/09 8/19/09 12/16/09 3/30/10 6/30/10	* * * * * * * * * * * *	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ও ও ও ও ও ও ও ও ও ও ও ও ও ও	* * * * * * * * * * * *	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
SW-3	7/8/05 3/2107 7/3/07 11/07 1/18/08 4/29/08 8/15/08 10/28/08 2/27/09 8/19/09 12/16/09 3/30/10 6/30/10	ও ও ও ও ও ও ও ও ও ও ও ও ও ও	৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩ ৩	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ব্য ব্য ব্য ব্য ব্য ব্য ব্য ব্য ব্য ব্য

µg/l - micrograms per liter

Well No.	Well Depth, BGS, Ft.	Screened Interval, Ft	Ground Surface Elevation, Ft.	Top of Casing Elevation, Ft	Depth to Water, TOC Rt.	Water Table Elevation, Ft
MW-2	24	14 - 24	1027.15	1026.80	21.15	1005.65
MW-3	52	47 - 52	1026.99	1026.83	22.91	1003.92
MW-4R	7	5 - 7	1006.87	1009.62	8.12	1001.50
MW-5	6	4-6	1005.06	1007.51	5.71	1001.80
MW-6	33	23 – 33	1030.35	1030.08	24.11	1005.97
MW-7	33	23 -33	1029.91	1029.59	23.91	1005.68
MW-8	21	11 - 21	1029.96	1029.61	21.04	1016.32
MŴ-9	30	20 - 30	1027.69	1027.44	21.04	1006.40
MW-10	3.5	1.5 - 3.5	1002.65	1006.56	4.46	1002.10
MW-11R	5.5	3 - 5.5	1005.32	1007.52	Dry	NA
MW-12R	5.5	3 – 5.5	1003.57	1004.82	4.06	1000.76
MW-13	35	25 - 35	1032.12	1031.92	NM	NM
MW-14	35	25 - 35	1032.15	1031.84	NM	NM ·
MW-15	35	25 – 35	1032.10	1031.94	NM	NM
DW-1	55.5	50.5 - 55.5	1029.76	1029.46	24.21	1005.25

TABLE 3 - MONITORING WELL CONSTRUCTION DATA AND **GROUNDWATER LEVELS - 3/30/10**

BGS - Below Ground Surface

TOC- Top of Casing NM - Not measured

TABLE 4 – SUMMARY OF SLUG TEST DATA

Well No.	Hydraulic Conductivity, cm/sec (Slug-In)	Hydraulic Conductivity, cm/sec (Slug-Out)	Strata Measured
MW-3	20.05x10 ⁻⁵	30.08x10 ⁻⁵	Fractured Rock
MW-8	2.140x10 ⁻⁵	6.553x10 ⁻⁵	Residual Soil/Partially Weathered Rock
MW-9	9.396x10 ⁻⁵	9.194x10 ⁻⁵	Fill, Alluvial Soil, Residual Soil

cm/sec - centimeters per second

٠

TABLE 5 - CUMULATIVE SUMMARY OF AIR MONITORING DATA, 2001 - 2010, mg/m³

Sample	Constituent	5/01	1/08	3/08	4/08	7/10	Target Indoor Air
Location							Concentration
	Tetrachloroethene	780	33	9:4	8.0	NT	7.0
	Trichloroethene	<60	0.43	0.22	0.34	NT	0.36
AS-1	Cis-1,2-Dichloroethene	<60	<0.25	<0.13	<0.13	NT	35
	Trans-1,2-Dichloroethene	<60	<0.25	<0.13	<0.13	NT	70
	Vinyl Chloride	<60	<2.5	<0.13	<0.13	NT	5.0
	Tetrachloroethene	630	. 44	12	9.7	NT	7.0
	Trichloroethene	<60	0.64	0.21	0.24	NT	0.36
AS-2	Cis-1,2-Dichloroethene	<60	<0.26	<0.13	<0.13	NT	35
	Trans-1,2-Dichloroethene	<60	<0.26	<0.13	<0.13	NT	70
	Vinyl Chloride	<60	<2.5	<0.13	<0.13	NT	5.0
	Tetrachloroethene	NT	50	10	7.0	NT	7.0
	Trichloroethene	NT	0,76	0.17	0.40	NT	0.36
AS-3	Cis-1,2-Dichloroethene	NT	<0.27	<0.13	<0.13	NT	35
-	Trans-1,2-Dichloroethene	NT	<0.27	<0.13	<0.13	NT	70
	Vinyl Chloride	NT	<2.5	<0.13	<0.13	NT	5.0
	Tetrachloroethene	NT	35	10	6.2	NT	7.0
	Trichloroethene	NT	0.55	0.25	0.33	NT	0.36
AS-4	Cis-1,2-Dichloroethene	NT	<0.26	<0.13	<0.13	NT	35
	Trans-1,2-Dichloroethene	NT	<0.26	<0.13	<0.13	NT	70
	Vinyl Chloride	NT	<2.6	<0.13	<0.13	NT	5.0
	Tetrachloroethene	NT	<0.54	NT	NT	NT	7.0
	Trichloroethene	NT	<0.27	NT	NT	NT	0.36
AS-5 (Background)	Cis-1,2-Dichloroethene	NT	<0.27	NT	NT	NT	35
	Trans-1,2-Dichloroethene	NT	<0.27	NT	NT	NT	70
	Vinyl Chloride	NT	<2.7	NT	NT	NT	5.0
	Tetrachloroethene	NT	NT	NT	NT	3.2	7.0
	Trichloroethene	NT	NT	NT	NT	<0.21	0.36
TH-1 (Thai House)	Cis-1,2-Dichloroethene	NT	NT	NT	NT	<0.79	35
	Trans-1,2-Dichloroethene	NT	NT	NT	NT	<0.79	70
	Vinyl Chloride	NT	NT	NT	NT	<0.51	5.0

µg/m³ - micrograms per cubic meter

NT - Not tested

Shaded values exceed Target Indoor Air Concentrations

Voluntary Remediation Program Former Imperial Cleaners HSI Site 10690 October 13, 2010 MACTEC Project No. 6305-05-0319

Well No.	Sampling Date	pH	Specific Conductivity mS/cm	Turbidity NTU	Dissolved Oxygen mg/L	Oxidation- Reduction Potential mV
MW-2	3/30/10	5.71	0.287	168	6.00	270
	6/30/10	5.90	0.910	7.8	2.02	-39
MW-5	3/30/10	5.68	0.198	11	6.71	157
	6/30/10	5.29	1.32	10.2	1.53	98
MW-7	3/30/10	4.81	0.231	2.91	4.64	479
	6/30/10	4.80	0.191	10.4	2.32	331

TABLE 6 – SUMMARY OF NATURAL ATTENUATION PARAMETERS IN GROUNDWATER

mg/l - milligrams per liter (parts per million)

µg/l - micrograms per liter (parts per billion)

mS/cm - microSiemens per centimeter

mV - millivolts

NTU - Nephelometric Turbidity Units

TABLE 6 – SUMMARY OF NATURAL ATTENUATION PARAMETERS IN GROUNDWATER (Continued)

Well No.	Sampling Date	Alkalinity mg/L	Sülfide mg/L	Ferrous Iron .mg/L	Methane µg/l	Ethene μg/l	Ethane µg/l	Chloride mg/l	Nitrate mg/l	Nitrite mg/l	Sülfate mg/l
MW-2	3/30/10	102	<2.0	27.0	1400	11	<9	NT	NT	NT	NT
	6/30/10	103	<2.0	33.4	1100	10	<9	11	<0.25	<0.25	6.8
MW-5	3/30/10	45.5	<2.0	1.40	21	<7	<9	NT	NT	NT	NT
	6/30/10	32.8	<2.0	1.38	44	<7	<9	15	0.71	<0.25	4.8
MW-7	3/30/10	15.0	<2.0	<0.10	5.0	<7	<9	NT	NT	NT	NT
	6/30/10	15.9	<2.0	<0.10	14	<7	<9	24	4.7	<0.25	15

mg/l - milligrams per liter (parts per million)

µg/l - micrograms per liter (parts per billion)

	GP-3- 4	/LCH-1	GP=5-16/LCH-2		
Constituent	Total VOC Result, μg/kg	SPLP Result, mg/l	Total VOC Result, µg/kg	SPLP Result, mg/l	
PCE	650	<0.2	1,200	<0.2	
TCE	<5	<0.2	<5	<0.2	
Cis-1,2-DCE	<5	<0.2	<5	<0.2	
Trans-1,2-DCE	<5	<0.2	<5	<0.2	
Vinyl Chloride	<5	<0.2	<5	<0.2	

TABLE 7 – SOIL LEACHABILITY TESTING RESULTS

µ/kg - micrograms per kilogram

mg/l - milligrams per liter

TABLE 8 – SUMMARY OF SOIL AND GROUNDWATER RISK REDUCTION STANDARDS

SOIL						
Regulated Substance	Highest ℃Concentration, µg/kg	Location	Type 1 RRS Criteria, µg/kg (Residential Default)	Type 2 RRS Criteria, µg/kg (Residential Calculated)	Type 3 RRS Criteria, µg/kg (Non-Residential Default)	Type 4 RRS Criteria, μg/kg (Non-Residential Calculated)
Tetrachloroethene	7,700	SB-6	500	340	500	1,200
Trichloroethene	7.8	SB-11	500	360	500	360
Acetone	150	HA-3	400,000	22,000	400,000	.22,000
Toluene	13	HA-3	100,000	77,000	100,000	77,000
GROUNDWATER	Highest Concentration, µg/l		Type 1 RRS Criteria; µg/l	Type 2 RRS Criteria, µg/l	Type 3 RRS Criteria, µg/l	Type 4 RRS Criteria, µg/l
Incegulated Substance	3/30/10	Location	(residential Default)	(acesidential Calculated)	Default)	Calculated)
Tetrachloroethene	4,800	MW-7	5	1.3	5	3.8
Trichloroethene	830 ′	MW-2	5	0.35	· 5	0.65
Cis-1,2- Dichloroethene	280	MW-2	2.5	160	2.5	1,000
Trans-1,2- Dichloroethene	83	MW-2	100	310	100	.2,000
Vinyl Chloride	100	MW-2	2	2	2	3.2

µg/kg - micrograms per kilogram (equivalent to parts per billion)

 $\mu g/L$ - micrograms per liter (equivalent to parts per billion) Note - Shaded values indicate compliance with RRS

FIGURES

	LEGEND:
PCE	TETRACHLOROETHENE
TCE	TRICHLOROETHENE
DCE	DICHLOROETHENE
C-DCE	CIS-1,2-DICHLOROETHENE
T-DCE	TRANS-1,2-DICHLOROE THENE
VC	VINYL CHLORIDE
	FILL
	RESIDUAL SOILS
<u></u>	ALLUVIUM

NOTE: ALL RESULTS PRESENTED IN MICROGRAMS PER LITER (μg/l)

CLEANERS RGIA	CRC RECEI TE	ISS SECTION NT GROUND STING RESU	N C-C' WATER JLTS	
Date Scale	<i>Drawn By</i>	Approved By	Figure	
SEPT. 2010 AS SHOWN	RBT	SRF	5	

Mactec Engineering and Consulting, Inc. 396 PLASTERS AVENUE, N.E.

Job Number

6305-05-0319

ATLANTA, GEORGIA 30324

(404)873-4761

PCE TCE DCE VC	<5 <5 <5 <2						
			NOTE:	ALL I MICRO	RESULTS PRE OGRAMS PER	ESENTED IN LITER (μg/I)
			10'				
			٥L		5	0'	
			SCA	<u>LE</u> : VERT HORI	ICAL: 1"= ZONTAL: 1"=	=10' =50'	
MER IN ROSW	/IPERIAL (/ELL, GEC	CLEANERS PRGIA	3		CROS RECEN TES	SS SECTION T GROUND TING RESU	N D-D' WATER ILTS
	Task 12	Date SEPT. 20	Scale	NWC	Drown By RBT	Approved By SRF	Figure 6

PCE	TETRACHLOROETHENE
TCE	TRICHLOROETHENE
DCE	DICHLOROETHENE
C-DCE	CIS-1,2-DICHLOROETHENE
T-DCE	TRANS-1,2-DICHLOROETHENE
VC	VINYL CHLORIDE
	FILL
	RESIDUAL SOILS
6.22	ALLUVIUM

LEGEND:

				_
	LEGEND:			
-	GROUNDW WELL (EC)	ATER MONITO A 7/00)	RING	
	GROUNDW WELL (LAN 4/02)	ATER MONITO W/MACTEC 7	RING /01, 3/02,	
-	GROUNDW (MACTEC	ATER MONITO 3/06)	RING WELL	
(MACTEC F (6/07).	REPLACEMENT	WELL	
(1000.3	0) GROUNDW (MEASURE	ATER ELEVAT D 3/30/201	110N 0)	
100	5 GROUNDW	ATER CONTO	UR	
NOT	ES:			
1. 2. 3.	WATER TAB THOSE WELL BELOW THE NOT INCORE POTENTIOME MW-13 THR ACCESSIBLE WELLS HIGH INCLUDED II MONITORING	LE ELEVATIO LS SCREENED TOP OF RO PORATED INT ETRIC SURFA ROUGH MW-1 LIGHTED IN I N QUARTERL PROGRAM.	NS FROM) AT OR CK WERE O THE CE PLAN. 5 WERE NOT RED ARE Y	
CLEANERS RGIA		POTENTIO MA	METIC SUR ARCH 30, 20	FACE MAP
Date SEPT. 2010	Scale AS SHOWN	Drawn By TG	Approved By SRF	Figure 7

J: _PLASTERS CAD\Atlanta Projects\FORMER IMPERIAL CLEANERS\0319-SITEPLAN.dwg - CROSS-SECTION B-B 09/30/2010 2:02pm rthorpe

				E	
	5/01	1/08	3/08	4/08	
,2-DCE S-1,2-DCE CHLORIDE	780 <60 <60 <60 <60	33 0.43 <0.25 <0.25 <2.5	9.4 0.22 <0.13 <0.13 <0.13	8.0 0.34 <0.13 <0.13 <0.13	
5 ,2-DCE S-1,2-DCE CHLORIDE	1/08 <0.54 <0.27 <0.27 <0.27 <0.27 <2.7				
ORMER IMPER EANERS	RIAL				
2	5 /01 I	1 /00	7/00	4 /00	-
-2	630	44	12	9.7	
-1,2-DCE NS-1,2-DCE YL CHLORIDE	<60 <60 <60 <60	0.64 <0.26 <0.26 <2.5	0.21 <0.13 <0.13 <0.13	0.24 <0.13 <0.13 <0.13	
		FORMER DISCHAR LEGEN	CONDENS GE LINE	SATE	7
		AIR S	AMPLING		
		-		COA HON	
	DCE	DICHL	ORETHENE		
	TCE	TRICH	LOROETHEN	IE	
	PCE	TETRA	CHLOROETH	HENE	
	NT		ESTED		
	NOTE: I	RESULTS I MICORGRA METER (µ	PRESENTED MS PER CL g/M³)	IN JBIC	
CLEANERS DRGIA			AIR TES	STING ILTS	
Date	Scale	Drawn By	Approve	d By Figu	re
MAR. 2008	AS SHOWN	RBT			10

APPENDIX A

LEGAL DESCRIPTION SURVEY PLAT TAX MAP

LEGAL DESCRIPTION

All that tract or parcel of land lying and being in Land Lots 449 and 450 of the 1st District, 2nd Section, City of Roswell, Fulton County, Georgia as shown on a survey prepared for P. M. Properties by Bush-Steed and Boyd, Inc. Land Surveyors, dated 4/20/81, and more particularly described as follows.

Beginning at a point located at the intersection of the easterly right-of-way of Thomas Drive and the southern right-of-way of Alpharetta Street (U.S. Highway No. 19) running along said right of way North 56 degrees 28 minutes East, 571.4 feet, thence North 56 degrees 19 minutes East, 213.4 feet to an iron pin which marks the True Point of Beginning, thence leaving said right of way, running South 39 degrees 52 minutes East, 150.0 feet to an iron pin, thence South 85 degrees 24 minutes East, 223.0 feet to the centerline of Hog Wallow Creek, thence South 8 degrees 48 minutes West, 488.2 feet along the center line of Hog Wallow Creek, thence, thence South 47 degrees 20 minutes West, 60.1 feet along the center line of Hog Wallow Creek, thence, thence South 56 degrees 15 minutes West, 12.0 feet, thence North 33 degrees 45 minutes East, 440.0 feet, thence North 56 degrees 28 minutes East, 20.0 feet, thence North 56 degrees 19 minutes, 213.4 feet to the Point of Beginning, said parcel containing 3.935 acres, more or less.

APPENDIX B

RISK REDUCTION STANDARD CALCULATIONS

~ *

Table A-1 Type 1 through Type 4 Ground Water RRS, mg/L

-

	<u>Chronic Ref</u> Otal	arence Dose Inhalation	Cancer : Oral	Slope Factor Inhalation	Weight of	Source for Chronic	Type 1/ Type 3 (mg/L)	Type 2 Star Ad	idard (mg/L) iult	Type 2 Star Ch	dard (mg/L) ild	Type 2 Overali	Type 4 (i Industrial	mg/L) Worker	Type 4 Overall
rameter	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)-1	(mg/kg/day)-1	Evidence	Rfds and CSFs		Noncarcinogenic	Carcinogenic	Noncarcinogenic	Carcinogenic		Noncarcinogenic	Carcinogenic	01010
elone	9.00E-02	ND	ND	ND	D	IRIS	4	3.3	ND	1,4	ND	1.4	62	ND	6.9
1,2-Dichloroethene	1.002-02	ND	ND	NÐ	D	PPRTV	0.07 GaEPD	0.37	ND	0.16	ND	0.16	10	ND	3.2
ns-1.2-Dichloroethene	2.002-02	ND	ND	ND	D	IRIS	0.1	0.73	ND	0.31	ND	0.31	20	ND	2.6
rachloroelinene	1.00E-02	1.00E-02	5.40E-01	2.102-02	B-C2	IRIS, Cal EPA	0.005	0.06	0.0013	0.02	0.0026	0.0013	0.09	0.004	0.0029
iene	2.00E-01	1.14E-01	ND	ND	D	IRIS	1	0.75	ND	0.22	ND	0.22	1.1	ND	4.4
hloroethene	3.00E-04	1.00E-02	4.00E-01	4.00E-01	B2	NCEA	0.005	0.010	0.00035	0.0038	0.00054	0.00035	0.024	0.00065	0.00005
4 chloride (lifetime)	3.00E-03	2.86E-02	1.50E+00	3,105-02	4	IRIS	0.002	0.072	0.00051	0.026	0.0011	0.00051	0.15	0.00000	0.00065
A Chloride (adull)	3.00E-03	2.865-02	7.50E-01	1.546-02	А	IRIS	0.002	0.072	0.0010	0.026	0.0021	0.0010	0.15	0.0010	0.0016

Source Description: IRIS - Integrated Risk Information System, USEPA, HEAST - Health Effects Assessment Summary Table FY1997, USEPA, NCEA - National Center for Exposure Assessment, USEPA, PPRTV - Provisional Peer Reviewed Toxicity Values, USEPA, Cal EPA - California Environmental Protection Agency

ND Toxicity values not available

Equation 2 (Noncarcinogens):

Equation 2 (Noncarcinogens);	Equation 1 (Carcinogens):	
THIXBW x AT x 365days/year	TR x BW x AT x 305daysAyear	
EF x ED x [(1/R/D) x K x IRa) + (1/R/Do x IRw)]	EF x ED x [(SFi x K x !Ra) + (SFo x !Rw)]	
Where: THI # Target Hazard Index = BW # Body Weight = AT # Averaging Time = EF # Exposure Frequency =	Type 2 Adult Type 2 Parameters Chilled 1 1 70 kg 30 years (noncarc.): 70 (caromoger 350 days/year	
ED = Exposure Duration = RIDi = Inhalation Reference Dose = K = Volatilization Rate for = 0.0005 x 1000 L/m3 = IRa = Inhalaton Rate for Air = RR0 = Coll Reference Dose = IRw = Ingestion Rate for Water = TR = Target Risk = CSFo = Oral Cancer Slope Factor = CSFo = Oral Cancer Slope Factor =	30 years 6 years Chemical Specific Chemical Specific 0.5 L/m3 0.5 L/m3 20 m3/day 15 m3/day Chemical Specific Chemical Specific 2 L/day 1 L/day 1 L/day 1 L/day 0.00001 (Class A and B); 0.00001 (Class A) 0.00001 (Class C) 0.00001 (Class C) Chemical Specific Chemical Specific Chemical Specific Chemical Specific	

ND Toxicity values not available

Type 4 Industrial Worker Parameters

1 70 kg 25 years for noncarcinogens, 70 years for carcinogens 250 day/year 25 year Chemical Specific 0.5 L/m3 20 m3/day Chemical Specific 1 L/day 0.00001 (Class C and B). 0.00001 (Class C) Chemical Specific Chemical Specific

Table A-2 Type 1 and 3 Soil Calculations, mg/kg

	Volatilization Factor	Appendix I	Type 1 GW x	Number 1		Risk-Based Residential Typ	e 1	Least of 1,2, &	Overall	Risk Nonreside	-Based ential Type 3	Surface Soil	Subsurface Soil	Overall Soil
SUBSTANCE	(m ³ /kg)		100		NC-Type 1	C-Type 1	Type 1 RRS	3	Type 1 RRS	NC-Type 3	C-Type 3	Type 3 RRS	Type 3 RRS	Type 3 RRS
trans-1,2-Dichloroethene	2.29E+03	5.30E-01	1.00E+01	1.0Ë+01	1.3E+04	ND	1.3E+04	1.0E+01	1.0E+01	4.1E+04	ND	1.0E+01	1.0E+01	1.0E+01
Acetone	2.88E+03	2.74E+00	4.00E+02	4.0E+02	1.8E+05	ND	1.8E+05	4.0E+02	4.0E+02	1.8E+05	ND	4.0E+02	4.0E+02	4.0E+02
Dichloroethylene, N.O.S.	2.84E+03	5.30E-01	7.00E+00	7.0E+00	6.4E+03	ND	6.4E+03	7.0E+00	7.0E+00	2.0E+04	ND	7.0E+00	7.0E+00	7.0E+00
Tetrachloroethene	2.82E+03	1.80E-01	5.00E-01	5.0E-01	1.5E+03	9.8E+00	9.8E+00	5.0E-01	5.0E-01	1.8E+03	1.6E+01	5.0E-01	5.0E-01	5.0E-01
Toluene	4.70E+03	1.44E+01	1.00E+02	1.0E+02	2.6E+03	ND	2.6E+03	1.0E+02	1.0E+02	2.7E+03	ND	2.7E+03	1.0E+02	1.0E+02
Trichloroethene	3.76E+03	1.30E-01	5.00E-01	5.0E-01	9.4E+01	1.0E+00	1.0E+00	5.0E-01	5.0E-01	1.5E+02	1.3E+00	5.0E-01	5 0E-01	5 0E-01
Vinyl Chloride (lifetime)	5.37E+02	4.00E-02	2.00E-01	2.0E-01	7.2E+01	1.6E+00	1.6E+00	2.0E-01	2.0E-01	7.7E+01	2.3E+00	2.3E+00	2 0E-01	2.0E-01
Vinyl Chloride (adult)	5.37E+02	4.00E-02	2.00E-01	2.0E-01	7.2E+01	3.3E+00	3.3E+00	2.0E-01	2.0E-01	7.7E+01	4.7E+00	4.7E+00	2.0E-01	2.0E-01

NC Noncarcinogen C Carcinogen RRS Risk Reduction Standard DL Detection Limit NA Not Available

Summary of Soil Risk Reduction Standards Type 1 through Type 4, mg/kg

,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,			Type 2			Type 4
Parameter	Type 1 RRS	Type 2 RRS	w/o Leaching RRS	Type 3 RRS	Type 4 RRS	w/o Leaching RRS
Acetone	400	59	7040	400	390	1.84E+05
trans-1.2-Dichloroethylene	10	8.0	1560	10	51	4.09E+04
Dichloroethylene, N.O.S.	7.0	3.0	780	7.0	18	20440
Tetrachloroethylene	0.50	0.34	8.3	0.50	0.34	16
Toluene	100	77	540	77	85	2720
Trichloroethene	0.50	0.36	0.79	0.50	0.36	1.3
Vinyl Chloride	0.20	0.027	1.3	0.20	0.042	4.7

RRS Risk Reduction Standard

Table A-4 Type 4 Soil Calculations, mg/kg

	Volatilization Factor	Nonresidential Leaching	ĺnď	ustrial	Industrial Worker Overall	Industrial Worker (w/o Leaching)
SUBSTANCE	(m ³ /kg)	Criteria	NC-Type 4	C-Type 4	Type 4 RRS	Type 4 RRS
Acetone	2.88E+03	3.89E+02	1.84E+05	ND	3.89E+02	1.84E+05
trans-1,2-Dichloroethene	2.295+03	5.10E+01	4.09E+04	ND	5.10E+01	4.09臣+04
Dichloroethylene, N.O.S.	2.84E+03	1.80E+01	2.04E+04	ND	1.80E+01	2.04世+04
Tetrachloroethene	2.82E+03	3.40E-01	1.43E+02	1.63E+01	3,40E-01	1.63E+01
Toluene	4.70E+03	8.50E+01	2.72E+03	ND	8.50E+01	2.72E+03
Trichloroethene	3,76E+03	3.60E-01	1.46E+02	1,33E+00	3.60E-01	1.33E+00
Vinyl Chloride (adult)	5.37E+02	4.20E-02	7.75E+01	4.68E+00	4.20E-02	4.68E+00

NC Noncarcinogen C Carcinogen RRS Risk Reduction Standard ND No Data

Table A-5 Exposure Parameters for Soil and Ground Water

Exposure Parameters for Type 4 Soil		Industrial	Exposure Parameters for Type 4 Ground Water	Industrial	
		Worker Units		Worker	Units
liazard Index		1	Hazard Index	1	
Target Risk		1E-05	Target Risk	1E-05 (Clas	s A and B);
Body Weight		70 kg		1E-04 (Clas	ss C)
Averaging Time, Carcinogen		70 years	Body Weight	70 kg	
Averaging Time, Noncarcinogen		25 years	Averaging Time, Carcinogen	70 years	3
Exposure Duration		25 years	Averaging Time, Noncarcinogen	25 years	5
Exposure Frequency	· · ·	250 days/yr	Exposure Duration	25 years	3
Soil Indestion Rate		50 mg/day	Exposure Frequency	250 day/j	/ear
Air Inhalation Rate		20 m³/day	Water Ingestion Rate	1 L/day	ý.
PEE		4 63E+09 m ³ /kg	Air Inhalation Rate	20 m ³ /d	- av
CE		1E-06 ka/ma	Volatilization Factor = 0 0005 x 1000 L/m3 =	0.25 L/m3	
	Residential	Residential		Residential Resi	dential
Exposure Parameters for Type 2 Soil:	Child	Adult <u>Units</u>	Exposure Parameters for Type 2 Ground Water:	Child Adul	t <u>Units</u>
Hazard Index	1	1	Hazard Index	1	1
Target Risk	1E-05	1E-05	Target Risk	1E-05	1E-05 (Class A and B);
Body Weight	15	70 kg		1E-04	1E-04 (Class C)
Averaging Time, Carcinogen	70	70 years	Body Weight	15	70 kg
Averaging Time, Noncarcinogen	6	30 years	Averaging Time, Carcinogen	70	70 years
Exposure Duration	6	30 years	Averaging Time, Noncarcinogen	6	30 years
Exposure Frequency	350	350 days/yr	Exposure Duration	6	30 years
Soil Ingestion Rate	200	100 mg/day	Exposure Frequency	350	350 day/year
Air Inhalation Rate	15	20 m ³ /day	Water Ingestion Rate	1	2 L/day
PEF	4.63E+09	4.63E+09 m ³ /kg	Air Inhalation Rate	15	20 m ³ /day
CF	1E-06	1E-06 kg/mg	Volatilization Factor = 0 0005 x 1000 L/m3 =	0 5	0 5 L/m3
	Residential	Nonresidential			
Exposure Parameters for Type 1 and Type 3 Soils:	Type 1	Type 3 Units			
Hazard Index	1	1			
Terget Risk	1.E-05	1E-05			
Body Weight	70	70 kg			
Averaging Time, Carcinogen	70	70 years			
Averaging Time, Noncarcinogen	30	25 years			
Exposure Duration	30	25 years			
Exposure Frequency	350	250 days/yr			
Soil Ingestion Rate	114	50 mg/day			
Air Inhalation Rate	15	20 m³/day			
PEF	4 63E+09	4.63E+09 m ³ /kg			
CF	1E-06	1E-06 kg/mg	<u> </u>		

Table A-6 Toxicity Values

	ORAL	INHALATION	ORAL CANCER	INH. CANCER			······································
	RFD	RFD	SLOPE FACTOR	SLOPE FACTOR	CARCINOGEN		
SUBSTANCE	(mg/kg-day)	(mg/kg-day)	(mg/kg-day) ⁻¹	(mg/kg-day)	CLASS	SOURCE	COMMENTS
Acetone	9.00E-02	ND	ND	ND	0	IRIS	
Irans-1,2-Dichloroethene	2 0E-02	ND	ND	ND	D	IRIS	
Dichloroethylene, N.O.S	1.00E-02	ND	ND	ND	D	PPRTV	Value for cis 1,2-DCE isomer from HEAST
Tetrachloroethylene	1 00E-02	1 40E-01	5.40E-01	2.10E-02	C-82	IRIS, Cal EPA	
Toluene	2.00E-01	1.14E-01	ND	ND	Ð	IRIS	
Trichlorcethene	3 00E-04	1.00E-02	4.00E-01	4.00E-01	B2 [`]	NCEA	
Vinyl Chloride	3 0E-03	2.86E-02	1.5E+00	3.1E-02	А	IRIS	
Vinyl Chloride (adult)	3.0E-03	2 86E-02	7.5E-01	1 54E-02	А	IRIS	

.

.

Table A-7

~ *

Soil to Ground water Leachability								Groundwater		Pathway	Groundwater		Pathway	Residential	Groundwater		Pathway	Overali	
	К _е (а)	Koc	Source			H,		Type 1/3 RRS	C _w *20	Type 1/3 C _s	Type 2 RRS	C _w *20	Type 2 C _o	Cs	Type 4 RRS	C _w *20	Type 4 C _s	Cs	
	(L/kg)	(L/kg)		Øw	Øa	(unitless)	Øw+Øa*H'/Þ _b	(mg/L)		(mg/kg)	(mg/L)			(mg/kg)	(C _w , mg/L)		(mg/kg)	(mg/kg)	
Acetone	1.15E-02	5.75E-01	SSG	0.3	0.13	1.59E-03	0.2001	4.0E+00	8.0E+01	1.7E+01	1.4E+01	2.8E+02	5.9E+01	5.9E+01	9.2E+01	1.8E+03	3.9E+02	3.9E+02	
cis-1,2-Dichloroethene	7.10E-01	3.55E+01	SSG	0.3	0.13	1.67E-01	0.2145	7.0E-02	1.4E+00	1.3E+00	1.6E-01	3.2E+00	3.0E+00	3.0E+00	1.0E+00	2.0E+01	1.8E+01	1.8E+01	
trans-1,2-Dichloroethene	1.05E+00	5.25E+01	SSG	0.3	0.13	3.85E-01	0.233366667	1.0E-01	2.0E+00	2.6E+00	3.1E-01	6.2E+00	8.0E+00	8.0E+00	2.0E+00	4.0E+01	5.1E+01	5.1E+01	
Tetrachloroethene	3.10E+00	1.55E+02	SSG	0.3	0.13	7.54E-01	0.265346667	5.0E-03	1.0E-01	3.4E-01	1.3E-03	2.6E-02	8.7E-02	3.4E-01	3.8E-03	7.6E-02	2.6E-01	3.4E-01 (b)	
Toluene	3.64E+00	1.82E+02	SSG	0.3	0.13	2.72E-01	0.223573333	1.0E+00	2.0E+01	7.7E+01	2.2E-01	4.4E+00	1.7E+01	7.7E+01	1.1E+00	2.2E+01	8.5E+01	8.5E+01	
Trichloroefhene	3,32E+00	1.66E+02	SSG	0.3	0.13	4.22E-01	0.236573333	5.0E-03	1.0E-01	3.6E-01	3.5E-04	7.0E-03	2.5E-02	3.6E-01	6.5E-04	1.3E-02	4.6E-02	3.6E-01 (b)	
Vinyl Chloride	3.72E-01	1.86E+01	SSG	0.3	0.13	1.11E+00	0.2962	2.0E-03	4.0E-02	2.7E-02	5.1E-04	1.0E-02	6.8E-03	2.7E-02	3.2E-03	6.3E-02	4.2E-02	4.2E-02	

Kd values taken from USEPA, Soil Screening Guidance: Technical Background Document, EPA/540/R95/129, May 1996.
 Kd values taken from the Superfund Chemical Data Matrix, June 1996.
 Values used for the Cw term are Type 1 RRS rather Type 2. SSG Soil Screening Guidance (US Environmental Protection Agency, 1996)
 Ø_w Water-filled soil porosity = 0.3 (L/L)

Ø₂ Air-filled soil porosity = 0.13 (L/L)

H' Dimensionless Henry Law Constant (HLC x 41) (unitless) bb Dry soil bulk density = 1.5 kg/L RRS Risk Reduction Standard

Cw Target Leachate Concentration (mg/L)

C_s Screening Level in soil (mg/kg)

(a) $K_d = K_{oc} + f_{oc}$ where f_{oc} equal 0.02 (Georgia EPD HSRA Rules)

(b) C_s based on Type 1 RRS higher than C_s based on Type 4 RRS

APPENDIX C

FATE AND TRANSPORT OF CONSTITUENTS OF CONCERN IN GROUNDWATER
APPENDIX C

FATE AND TRANSPORT OF CONSTITUENTS OF CONCERN IN GROUNDWATER FORMER IMPERIAL CLEANERS, ROSWELL, GA

C1.0 Introduction

The future fate and transport of the constituents of concern (COCs) in groundwater underlying the Former Imperial Cleaners site in Roswell, Georgia (the Site) were modeled using the software program BIOCHLOR. This program, approved by the U.S. Environmental Protection Agency, is an analytical model that simulates remediation by the natural attenuation of dissolved solvents in groundwater (Aziz et al., 2000; Aziz, Newel and Gonzales, 2002). The software, programmed in a Microsoft© Excel spreadsheet environment and based on the Domenico analytical solute transport model (Domenico, 1987), has the ability to simulate one-dimensional advection, 3-dimensional dispersion, linear adsorption, and biotransformation via reductive dechlorination which is the dominant biotransformation process at most chlorinated solvent to daughter product is assumed to be a first-order process. The daughter products are produced by the first-order degradation of the preceding parent compound. Therefore, the daughter product can simultaneously undergo both production and degradation in the model area. The COCs at the Site include tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2- and trans-1,2-dichloroethene (DCE), and vinyl chloride (VC).

The model predicts the extent of dissolved-phase plume migration and concentration of COCs within the plume, which may then be compared to the applicable protection standards at the point of exposure to groundwater. When the groundwater discharges into a surface water body such as Hog Wallow Creek at the Site, the concentrations of COCs predicted by the model can be used to calculate the resulting concentrations in the surface stream after mixing and compare them with the applicable in-stream water quality standards. Analytical groundwater transport models have seen wide application for this purpose for over 15 years now (e.g., ASTM, 1995) and experience has shown such models can produce reliable results when site conditions in the plume area are relatively uniform. As stated by the U.S. EPA, BIOCHLOR allows groundwater remediation managers to identify sites where natural attenuation is most likely to be protective of human health and the environment. It also allows regulators to carry out an independent assessment of treatability studies and remedial investigations that propose the use of natural attenuation (Aziz et al., 2000).

BIOCHLOR is used to simulate the fate and transport of chlorinated solvents at the Site because of the clear evidence of biodegradation, namely a decrease of contaminant concentrations downgradient of the source area and the presence of degradation (daughter) products of PCE such as TCE, cis-1,2-DCE and VC.

The concentrations of the COCs observed in the field and the results of the analytical fate and transport model are used to calculate current and predict future impacts of groundwater discharge to Hog Wallow Creek and compare them with applicable in-stream water quality standards.

C2.0 Model Input Parameters

C2.1 Groundwater Velocity

The representative seepage velocity (v) of groundwater flow through the interstitial space of the saturated porous media is calculated by multiplying hydraulic conductivity (K) by hydraulic gradient (i) and dividing by effective porosity (n_e)

 $v = (K \ge i)/n_e$

As emphasized by the BIOCHLOR manual, it is strongly recommended that actual site data be used for hydraulic conductivity and hydraulic gradient data parameters whereas effective porosity can be estimated based on predominant soil type in the saturated zone (aquifer).

The site-specific representative hydraulic conductivity is 0.27 ft/day (see Section 3.2.1 of the VRP Application) and the average hydraulic gradient of 0.04 at the Site is calculated from the March 2010 potentiometric map (see attached Figure C1) as the change in the hydraulic head between the southeast corner of the Former Imperial Cleaners building (contour line 1005.5 ft) and Hog Wallow Creek (elevation 1001.5 ft) divided by the distance between these two elevations along a groundwater flow path: (1005.5 ft - 1001.5 ft) / 100 ft = 0.04. The effective porosity is estimated at 15% and the resulting seepage velocity used in the model is 2.54×10^{-5} cm/s or 26.3 ft/year.

2.2 Dispersion

Dispersion refers to the process by which a dissolved solvent will be spatially distributed longitudinally (along the direction of groundwater flow), transversely (perpendicular to groundwater flow), and vertically (downward) because of mechanical mixing and chemical diffusion in the aquifer. These processes develop the common plume shape that is the spatial distribution of the dissolved solvent mass in the aquifer. The selection of dispersivity values is a difficult process, given the impracticability of measuring dispersion in the field. However, simple estimation techniques based on the length of the plume are available from a compilation of field test data (Aziz et al., 2000). Based on the 2010 field data, the plume of COCs is estimated to be approximately 100 feet long as it has reached MW-11R or the monitoring well adjacent to Hog Wallow Creek. The longitudinal dispersivity (alpha x) of 10 feet is estimated based on the default option in BIOCHLOR which assumes that alpha x is 10% of the estimated plume length. By default, the transverse dispersivity is estimated as alpha y: alpha x = 0.10. To yield a conservative estimate of vertical dispersion, the default value used in BIOCHLOR is set to a very low number (E-99).

September 30, 2010 MACTEC Project No. 6305-05-0319

2.3 Adsorption

Adsorption to the soil matrix can reduce the concentration of dissolved contaminants moving through the groundwater. In BIOCHLOR this process is described with the retardation factor (R) which is the ratio of the groundwater seepage velocity to the rate that organic chemicals migrate in the groundwater. The degree of retardation depends on both aquifer and constituent properties. The model calculates R from the values of distribution (partition) coefficient for the solute (K_d), soil bulk density (ρ_b), effective porosity (n), organic carbon partition coefficient (K_{oc}), and soil fraction organic carbon (f_{oc}) using the following equation:

$$R = 1 + \frac{K_d \rho_b}{n}$$

where $K_d = K_{oc} \times f_{oc}$

Organic carbon partition coefficients (K_{oc}) for PCE, TCE, DCE and VC at 20°C are 426 L/kg, 130 L/kg, 125 L/kg and 29.6 L/kg respectively (BIOCHLOR manual), and aquifer (soil) bulk density is estimated to be 1.6 kg/L (default value in BIOCHLOR). The fraction organic carbon of 0.00157 for the saturated soils is estimated as the average of two deepest soil samples from the Site which were collected slightly above the water table: 1,690 mg/Kg and 1,450 mg/Kg at soil borings SB-21 and SB-21 respectively (see Figure 8 of the VRP Application). Based on the values of the required input parameters, the representative R for the four COCs calculated by the model is 3.18.

It should be noted that BIOCHLOR uses one retardation factor for all the constituents, not individual retardation factors. It calculates the median retardation factor and uses that value in all calculations. Alternatively, the user can select another retardation value that may result in a better overall model calibration for all modeled constituents combined. At the Site, the calibrated common value for R is 2.75 resulting in a better model match for VC which is the most mobile solute of the four COCs. The sensitivity analysis described in Section 2.7 is conducted to evaluate the effect of the common retardation factor on the model results.

2.4 Biotransformation Rate Constants

The best approach for determining biotransformation rate constants is to calibrate BIOCHLOR to field data for a given sampling event (Aziz et al., 2000; Aziz, Newel and Gonzales, 2002). Rate constants are estimated by changing the rate constant for PCE degradation until the PCE predicted concentrations match the TCE field data. Then, the TCE rate constant is adjusted until the TCE predicted concentrations match the field data; and the same is repeated for DCE and VC. In this way, site-specific rate constants are estimated, and the model is then considered calibrated for the given set of model input parameters including hydraulic conductivity, hydraulic gradient, sorption (retardation), and dispersion. Using the site-specific rate constants, predictive simulations can be conducted by increasing the simulation time to estimate future plume behavior (Aziz et al., 2000; Aziz, Newel and Gonzales, 2002).

Table C1 shows the site-specific information used for the model calibration. The three monitoring wells are generally aligned within the bounding groundwater flow lines from the assumed source zone to Hog Wallow Creek as schematically shown in the attached Figure C1. MW-7 is the monitoring well assumed to represent a source zone, and MW-11R is the farthest away.

Well ID	Distance from	Concentration (µg/L) March 2010									
	Source (ft)	PCE	TCE	DCE	VC						
MW-7	0	4800	830	349	(1.0)*						
MW-2	20	43	690	1283	100						
MW-11R	90	100	65	181	5.7						

Table C1 - Site-specific information used for model calibration

*The value in parentheses of ½ detection limit for VOC was used in the model

Generally, the more highly chlorinated the compound, the more rapidly it is reduced by reductive dechlorination (Vogel and McCarty, 1985; Vogel and McCarty, 1987). Therefore, it is possible for daughter products to increase in concentration before they decrease (Aziz et al., 2000) as evident for VC at MW-2 for example (all historic groundwater analytical results are summarized in Table 2 and on Figure 9 of the VRP Application).

Table C2 shows the calibrated biotransformation rate constants for the four COCs. These constants were adjusted so that the best overall match is achieved for the observed PCE and VC concentrations downgradient of the assumed source zone because these two COCs have the most stringent in-stream water quality standards. The model closely matches the observed PCE concentrations at MW-11R and has the best prediction for VC at two downgradient monitoring wells (see Section 2.6).

Constituent	λ	Equivalent half-life in years
PCE	0.231	3.0
TCE	0.330	2.1
DCE	0.365	1.9
VC	2.772	0.25

Table C2 - Biotransformation rate constants (λ), in 1/yr.

It should be noted that the prevalent geochemical conditions that drive natural biotransformation processes and therefore the estimated rate constants, may change spatially as the COCs migrate with the groundwater downgradient of the assumed source zone. For example, it appears that PCE may be degrading faster and/or retarding more than what was simulated between the assumed source zone and MW-2. In general, the calibrated biotransformation constants fall within ranges of typical values reported

in the BIOCHLOR manual: PCE 0.07 to 1.20 yr⁻¹; TCE 0.05 to 0.9 yr⁻¹; cis-1,2-DCE 0.18 to 3.3 yr⁻¹; VC 0.12 to 2.6 yr⁻¹. **C2.5 Source Data**

The source of COCs dissolved in groundwater at the Site is assumed to be in close proximity to the monitoring well MW-7 (see attached Figure C1) which currently has the highest dissolved concentration of PCE of 4800 μ g/L (as of June 2010). The concentrations in excess of 1 to 10% of the aqueous solubility for PCE (which is approximately 150 mg/L) may be indicative of the possible presence of free-phase or residual phase dense non-aqueous phase liquids or DNAPLs (Pankow and Cherry, 1996). Although the concentrations of PCE detected in groundwater from MW-7 have been slightly in excess of 1% of the aqueous solubility of PCE during some of the monitoring events, these concentrations detected to date are still well below those that would strongly indicate the presence of a DNAPL condition. In addition, numerous soil borings in and around the Former Imperial Cleaners building, including those in close proximity to MW-7, as well as the soil leachability testing results did not indicate the presence of potential vadose zone sources that would impact future groundwater quality above applicable criteria (see Section 6.1 of the VRP Application text).

However, in order to conservatively represent possible DNAPL conditions at the Site, the source area in the model is assumed to be a plane 75 feet long and 10 feet deep (thickness of the impacted saturated zone at MW-7) as schematically shown on the attached Figure C1. This source zone extends from MW-7 to some distance upgradient from MW-2 even though all historic analytical results for MW-2 do not indicate a DNAPL condition and the PCE concentrations at MW-2 have decreased two orders of magnitude in less than four years: from 2700 μ g/L in September 2006 to 43 μ g/L in June 2010.

Source Strength

Free-phase or residual phase DNAPLs can act as continuing sources of groundwater contamination. The rate at which constituents in the DNAPL or source dissolve into the groundwater ultimately determines the concentration of dissolved contaminants in the plume and the lifetime of a dissolved plume. The historic analytical results for MW-2 indicate that any free-phase or residual-phase DNAPL that may have been present upgradient from it has been dissipated to the extent that it does not represent a constant source of groundwater contamination anymore. In contrast, several recent sampling results at MW-7 show that dissolved concentrations of PCE have slightly increased. At the same time, based on the results of extensive field investigations in the assumed source area, it appears that the aquifer volume that may still have residual DNAPL impacting MW-7, if any, is very limited. Nevertheless, the entire assumed source zone shown schematically on the attached Figure C1 is simulated in the model as a constant, non-decaying source of groundwater contamination.

Initial Source Concentrations and Simulation Time

In order to calibrate the model to the field-observed concentrations of COCs in March 2010, the concentrations of four COCs for the source zone represented by MW-7 had to be taken into account for some time prior to 2010 due to the transient (time-dependent) nature of the fate and transport of dissolved COCs. The initial source concentrations and the model run time were estimated based on the calculated groundwater velocity of 26.3 ft/year, the attenuating effects of longitudinal dispersion and retardation, and

the effects of biodegradation. The model run time of 4 years and the initial source concentrations for COCs observed at MW-7 in November 2006 were ultimately selected during model calibration.

The attached Figure C2 shows the BIOCHLOR model input screen with all input parameters required to run the model.

2.6 Model Results

The attached Figures C3 through C5 show the model-calculated concentrations of COCs at the monitoring wells vs. the field-observed concentrations in March 2010. The predicted future concentrations of all four COCs at the Site for years 2013 and 2020 are shown in attached Figures C7 through C14. It should be noted that these future predictions are conservative because both the concentrations of COCs in the assumed source zone and the areal extent of the source zone are kept constant for the entire simulated future period of 10 years through 2020.

As mentioned earlier, the prevalent geochemical conditions that drive natural biotransformation processes and therefore the estimated rate constants may change spatially as the COCs migrate with the groundwater. For example, this is evident in the case of PCE at the Site, as seen in attached Figure C3. Namely, it appears that PCE may be degrading faster in a segment between the assumed source zone (represented by the dissolved concentration at MW-7) and monitoring well MW-2. Nevertheless, the calibrated model shows a high degree of accuracy in simulating the overall field-observed distribution of all four COCs.

For comparison, on all the figures showing the results of the analytical fate and transport model incorporating the documented sequential degradation of PCE, TCE, DCE and VC at the Site, there is also a graph of concentration vs. distance from the source if no degradation were taking place. Even under this unrealistic assumption and assuming a constant non-decaying source in an unrealistically wide area, the model predicts that the concentrations of all four COCs at the monitoring well MW-11R would be protective of the water quality standard in Hog Wallow Creek for the entire simulated future period of 20 years as demonstrated in Section 2.7.

2.7 Resulting Concentrations of COCs in Hog Wallow Creek

As described in Section 4.4 of the VRP Application, none of the four COCs present in groundwater at the Site was detected in Hog Wallow Creek since surface water monitoring began in 2001, including during the last sampling event in June 2010. This is consistent with the BIOCHLOR modeling results and a quantitative analysis of COC concentrations in Hog Wallow Creek resulting from the discharge of impacted groundwater and mixing with surface water. The schematic below shows key elements of this analysis where:

September 30, 2010 MACTEC Project No. 6305-05-0319

 Q_1 is the flow rate of impacted groundwater entering the stream segment (in ft³/sec) Q_2 is the 7Q10 low flow in the stream immediately upgradient of the Site (in ft³/sec) Q_3 is the 7Q10 low flow in the stream immediately downgradient of the Site; $Q_3 = Q_2$ since $Q_2 >> Q_1$ C_1 is dissolved concentration of COC in groundwater (in µg/L) represented by MW-11R. C_3 is the resulting concentration of COC in the stream after mixing (in µg/L) C_2 is the upgradient concentration in the stream (assumed 0). L is the length of the stream segment receiving impacted groundwater.

The representative 7Q10 minimum flow in Hog Wallow Creek is calculated based on information compiled by Carter and Putnam (1978) and provided on the U.S. Geological Survey web page at http://ga2.er.usgs.gov/lowflow/mappicksite.cfm. Since Hog Wallow Creek does not have direct long term stream flow measurements by the USGS, the applicable 7Q10 low flow is calculated from the USGS 7Q10 yields (i.e., cfs per square mile of drainage area) reported at the four closest USGS gage sites with similar hydrologic characteristics:

Big Creek near Alpharetta, GA Drainage area is 72 mi²; 7Q10 is 5.9 cubic feet per second (cfs) or 0.08 cfs/mi²

Rottenwood Creek (Terrell Mill Road) near Marietta, GA Drainage area is 14 mi²; 7Q10 is 3.6 cfs or 0.26 cfs/mi²

Nf Peachtree Creek at Clairmont Road near Atlanta, GA Drainage area is 28 mi²; 7Q10 is 0.85 cfs or 0.03cfs/mi²

Nancy Creek at W. Paces Ferry Road at Atlanta, GA Drainage area is 37 mi²; 7Q10 is 3.7 cfs or 0.1 cfs/mi2

The average 7Q10 flow for all four watersheds is 0.12 cfs/mi^2 and the drainage area of Hog Wallow Creek at the Site is 3.14 mi^2 . This gives 0.38 cfs as the representative 7Q10 low flow at the Site.

The flux of impacted groundwater discharging into Hog Wallow Creek (Q_1) is calculated using the following equations (see also schematic below):

September 30, 2010 MACTEC Project No. 6305-05-0319

 $Q_1 = A \ge v_D$ $Q_1 = L \ge H \ge K \le i$

where

 v_D is the groundwater (Darcy) velocity A is the cross-sectional area of discharge a is the half-width of the surface stream b is the depth of water in the stream H is the side-face of groundwater discharge calculated from a and b.

Table C3 shows the result of calculation for the given input parameters together with the applicable instream water quality criteria for the four COCs detected in MW-11R adjacent to the Hog Wallow Creek. As can be seen, concentrations of all four COCs in Hog Wallow Creek after mixing of surface water with the impacted groundwater are currently orders of magnitude below applicable in-stream water quality criteria and also less than the laboratory detection limits.

<i>K</i> (ft/s)	i	L (ft)	<i>a</i> (ft)	<i>b</i> (ft)	<i>H</i> (ft)	A (ft ²)	v_D (ft/s)	Q_I (cfs)
0.0000031	0.05	85	10.00	0.50	10.01	851.06	0.000000155	0.000131915

Table C3 - Calculation of current COC concentrations in Hog Wallow Creek afte	r
mixing with impacted groundwater	

COC	$C_l(ug/L)$	$Q_l(cfs)$	$Q_2 = Q_3 = 7Q10$ (cfs)	C_3 (ug/L)	In-stream Criteria (ug/L)
PCE	110	0.000131915	0.38	0.0381859	3.3
TCE	65	0.000131915	0.38	0.0225644	30
DCE	181	0.000131915	0.38	0.0628332	10,000
VC	5.7	0.000131915	0.38	0.0019787	2.4

Note: in-stream criterion for DCE is utilized for trans-1,2-DCE as there is no in-stream criterion for cis-1,2-DCE

The maximum allowable concentrations of COCs at MW-11R that would still be protective of the applicable in-stream water quality criteria are shown in Table C4 (value C_1). The concentrations for the four COCs are many times higher than the maximum concentrations observed in the field to date. When compared with the results of the predictive analytical groundwater fate and transport model shown in attached Figures C7 through C14, it can be seen that even for the simulated unrealistically conservative source zone conditions the predicted concentrations of all four COCs at MW-11R, which is located approximately 90 feet from the assumed source zone, would still be significantly lower than the maximum concentration allowed.

сос	C ₁ (ug/L)	Q ₁ (cfs)	$Q_2 = Q_3 = 7Q10$ (cfs)	C ₃ (ug/L)	In-stream Criteria (ug/L)
PCE	9,500	0.000131915	0.38	3.297875	3.3
TCE	86,500	0.000131915	0.38	30.0280197	30
DCE	28,810,000	0.000131915	0.38	10001.2399	10,000
VC	6,900	0.000131915	0.38	2.39529868	2.4

Table C4 - Maximum allowable concentrations of COCs at MW-11R protective of in-stream water quality standards, parameter C₁

2.8 Sensitivity Analysis

Sensitivity analysis of the following BIOCHLOR model input parameters was performed by increasing and decreasing their baseline values for the calibrated model: hydraulic conductivity, longitudinal dispersivity, retardation factor and biotransformation/degradation rates expressed as degradation half-life of individual constituents. The results of the analysis are shown in Table C5 for monitoring well MW-11R which is the farthest downgradient well with detectable concentrations of COCs. This well is adjacent to Hog Wallow Creek and, therefore, most representative of potential groundwater impacts on the in-stream water quality.

As discussed in Section 2 Model Input Parameters, the model has several built-in default values which help explain why certain parameters have varying degrees of sensitivity for individual COCs. For example, the common baseline value of the calibrated retardation factor, R=2.75, is used by default for all four COCs but it is higher than the 1.50 calculated by the model individually for VC. However, Table C4 shows that using R 1.5x lower than the baseline value results in a significant over prediction of VC at MW-11R. Table C5 therefore clearly demonstrates that the baseline (calibrated) model input parameters provide the best overall match for all four COCs.

Hydraulic Condu	Hydraulic Conductivity (Baseline = 9.52×10^{-5} cm/s)											
Constituent	Concentration (ug/L or ppb)											
	1.5x Baseline	Baseline	0.5xBaseline*	Observed								
PCE	491.0	96.9	0.51	100								
TCE	182.1	37.3	0.20	65								
DCE	370.8	73.1	0.38	181								
VC	34.0	6.7	0.03	5.7								

Table C5 - Model sensitivity analysis; concentrations are calculated for March 2010 at MW-11R

Longitudinal Dis	Longitudinal Dispersivity (Baseline = 10 feet)											
Constituent	Concentration (ug/L or ppb)											
	1.5x Baseline*	Baseline	0.5xBaseline	Observed								
PCE	202.7	96.9	12.4	100								
TCE	75.9	37.3	4.9	65								
DCE	153.1	73.1	9.3	181								
VC	14.1	6.7	0.9	5.7								

Retardation Fact	Retardation Factor (Baseline = 2.75)											
Constituent	Concentration (ug/L or ppb)											
	1.5x Baseline*	Baseline	0.5xBaseline	Observed								
PCE	8.0	96.9	793.2	100								
TCE	2.6	37.3	397.8	65								
DCE	6.1	73.1	605.6	181								
VC	0.6	6.7	55.6	5.7								

Biotransformatio (Baseline: PCE =	on Half-life in Years 3.0; TCE = 2.1; DCE	=1.9; VC=0.25)								
Constituent Concentration (ug/L or ppb)										
	1.5x Baseline	Baseline	0.5xBaseline	Observed						
PCE	106.6	96.9	72.9	100						
TCE	34.5	37.3	40.2	65						
DCE	81.0 73.1		56.2	181						
VC	7.3	6.7	5.1	5.7						

2.9 Predicted Concentrations of COCs at Point of Demonstration Well

An additional "point of demonstration" well is proposed to be installed in the area downgradient of MW-7. This well will be located approximately half way between MW-7 and MW-11R and will be used to provide additional data regarding the migration and attenuation of the plume downgradient of the potential source area. Within six months of the Site's enrollment in the Voluntary Remediation Program, a groundwater fate and transport model will be submitted to include projected concentration trends for the point of demonstration well.

2.10 Conclusion

Based on the field-observed concentrations of COCs dissolved in groundwater at the Former Imperial Cleaners site in Roswell, Georgia, the results of the analytical groundwater fate and transport model for the four COCs, and the results of the analytical model of mixing between the impacted water and surface water in Hog Wallow Creek show that in-stream water quality criteria are not exceeded currently, and are not predicted to be exceeded in the future.

References

American Society for Testing and Materials (ASTM), 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. ASTM E-1739-95, Philadelphia, PA.

Aziz, C.E., Newell, C.J., Gonzales, J.R., Haas, P., Clement, T.P., and Sun, Y-W., 2000. BIOCHLOR Version 1.0 User's Manual. EPA/600/R-00/008.

Aziz, C.E., Newell, C.J., and Gonzales, J.R., 2002. BIOCHLOR Natural Attenuation Decision Support System, Version 2.2, March 2002, User's Manual Addendum

Carter, R.F., and Putnam, S.A., 1978. Low Flow Frequency of Georgia Streams: U.S. Geological Survey Water-Resources Investigations Report 77-127, 104 p.

Domenico, P.A., 1987. An Analytical Model for Multidimensional Transport of a Decaying Contaminant Species. J. Hydrol. 91:49-58.

Pankow, J.F., and Cherry, J.A., 1996. Dense Chlorinated Solvents and Other DNAPLs in Groundwater. Waterloo Press, Guelph, Ontario, 522 p.

Sun, Y., and Clement, T.P., 1999. A Decomposition Method for Solving Coupled Multi-species Reactive Transport Problems, Transp. in Porous Media, 37:327-346.

Sun, Y., Petersen, J.N., and Clement, T.P., 1999. A New Analytical Solution for Multiple Species Reactive Transport in Multiple Dimensions. *J. Contam. Hydrol.*, 35(4): 429-440.

September 30, 2010 MACTEC Project No. 6305-05-0319

Vogel, T.M. and McCarty, P.L., 1985. Biotransformation of Tetrachloroethylene to Trichloroethylene, Dichloroethylene, Vinyl Chloride, and Carbon Dioxide under Methanogenic Conditions. *Appl. Environ. Microbiol.*, 49(5): 1080-1083.

Vogel, T.M. and P.L. McCarty, 1987, Abiotic and Biotic Transformations of 1,1,1-Trichloroethane under Methanogenic Conditions. *Environ. Sci. Technol.*, 21(12): 1208-1213.

Wiedemeier, T.H., Rifai, H.S., Newell, C.J., and Wilson, J.W., 1999. Natural Attenuation of Fuels and Chlorinated Solvents. John Wiley & Sons, New York.

Figure C-1 Schematic of assumed source zone (orange quadrangle) and flow of impacted groundwater flow toward Hog Wallow Creek (arrow lines). Potentiometric contour lines, in feet asl, are for March 2010.

MACTEC

Figure C-2 BIOCHLOR Input Screen

Figure C-3 PCE concentration vs. distance from source for the calibrated model.

m.

Figure C-4 TCE concentration vs. distance from source for the calibrated model.

20mg

Figure C-5 DCE concentration vs. distance from source for the calibrated model.

-

Figure C-6 VC concentration vs. distance from source for the calibrated model.

Figure C-7 Predicted PCE concentration in year 2013 vs. distance from source.

٣

Figure C-8 Predicted TCE concentration in year 2013 vs. distance from source.

MACTEC

DISSOLVED CHLORINATED SOLVENT CONCENTRATIONS ALONG PLUME CENTERLINE (ug/L) at Z=0

Figure C-9 Predicted DCE concentration in year 2013 vs. distance from source.

-

Figure C-10 Predicted VC concentration in year 2013 vs. distance from source.

MACTEC

DISSOLVED CHLORINATED SOLVENT CONCENTRATIONS ALONG PLUME CENTERLINE (ug/L) at Z=0

Figure C-11 Predicted PCE concentration in year 2020 vs. distance from source.

Figure C-12 Predicted TCE concentration in year 2020 vs. distance from source.

Figure C-13 Predicted DCE concentration in year 2020 vs. distance from source.

Figure C-14 Predicted VC concentration in year 2020 vs. distance from source.

-

1

APPENDIX D

MONITORING WELL AND SOIL BORING LOGS

TRANSITIONS BETWEEN STRATA MAY BE GRADUAL.

	D E P AND REMARKS H		L E G E N	E L E V	I D E	AN T Y P	VIPLES N-COUNT]	PL (%)		NM FIN	(%) ES (%	1	L (%)		
	L	(ft) 45	· · · · · · · · · · · · · · · · · · ·	D	(ft)	N T	Ē	1st 6 2nd (3rd 6	1	0 20	30	<u>40 5</u>	0 60	70	80 90	100
		50	Core Run No. 2 47-52 feet Recovery: 100% RQD: 21% Rock Type: Lightly weathered grey muscovite-biotite gneiss.						-							
			Boring terminated at 52 feet.	192929216091					-							
		55							-							
	-								-							
		60		,					-							
	-	65							-							
									-							-
	L	70							-							-
	╞							-	-	ŀ						-
	F								-							-
	L	75 -							-							
	-								-							-
10/2									-							
DT 9/26		80							-	····				-		
w GIBB.GI									-							
PJ LA		85							_							-
IMPERIALC				•					-							-
lios	5	90) 1	0 20	30	40 5	0 60	70	<u> </u> 80 90	100
	D E M	DRILLER: Oglesby EQUIPMENT: CME 75 METHOD: Hollow Stem Auger/Core Drill HOLE DIA.: 8"/4" REMARKS: Type III well installed. Stabilized groundwater depth 22.80 feet on 8/23/01. SEE KEY SHEET FOR EXPLANATION OF SYMBOLS					ŜC	OLL TEST	BC	RIN	GR	EC)RD)		
	H R				BORING NO: MW-3 PROJECT: Imperial Cleaners											
and a second	S				DRILLED: August 7, 2001 PROJECT No: 12110-1-0013 PAGE 2 OF 2								OF 2			
		τ. Π					l		Gro	oup N	Лет	ber	4			

	D E P T	SOIL CLASSIFICATION AND REMARKS		E L E	S. I D		MPLES N-COUNT	I	PL (%)		NM FIN	(%) ES (%))	LL (%)	
	H (ft)		e N D	v (ft)	E N T	P E	l st 6" 2nd 6" 3rd 6"	ī	0 20	3 0 4	SP3	Г (bpf) 70	80 90	100
$\langle \cdot \rangle$	- '0'	FILL - Red-brown micaceous silty fine to medium SAND.		• -				-							-
		ALLUVIAL - Grey clayey fine to coarse SAND.						-							
	- 5 -	¥and auger refusal						-		_					
								-							-
								-							-
	- 10 -														
								-							
								-							-
	- 15 -							-							-
								-							-
	- 20 -			 				-							_
								-							
								-							
	- 25 -									_					
· 2								1					•		-
								-							
								-							-
JT 9/5/0	- 35 -					-	w.								
GIBB.GI								-							
I LAW	- 40 -							-							
AL.GP								-							-
L IMPEI								-							
SOI	<u> </u>			<u> </u>				0 1	0 20	30 4	40 5	0 60) 70	80 90	100
	DRILLE	SR: Foley MENT: Hand Auger				S	OIL TEST	BC	RIN	GR	EÇ	0RI) :		
	METHO HOLE I REMAN	DD: DIA.: 4" UKS: Type I groundwater monitoring well installed.	E P	BORINO	G NO CT:	:	MW-4 Imperial (Clea	aners						
\smile	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS				ED: CT N	0:	August 14 12110-1-0	, 2(013	001	-			PA	GE 1	OF 1
	AND .	ABBREVIATIONS USED ABOVE.				;	LAWGIBB	Gr	oup l	Viem	ber	4			

i

	D	SOIL CLASSIFICATION	L	E	S	AM	1PLES	PL (%)	NM (%)	LL (%)
	P T	AND REMARKS	E G F	L E V	I D	T	N-COUNT	~	▲ FINES (%)	v
	H (ft)		й D	(ft)	N T	P E	st 6" end 6" ird 6"	10 20	• SPT (bpf)	70 80 00 100
()	- 0 -	ALLUVIAL - Light brown silty fine SAND.					- (1 6)			
							-			
		Grey-brown to grey clayey fine to coarse SAND.					ľ	•		
	- 5 -	·		 _ ·			-			
		Hand auger refusal.			-		-			
					1		-			
	- 10 -						-			
				· ·			-			
					-		-			
					-		-			
			-		-					
	 - 20				-		-			
		· · ·		 			·			
					-		-			
	- 25 -									
$\left(\begin{array}{c} \end{array} \right)$				 	-		ļ			
				- ·	-					
	- 30 -				-		-			
							-	-		
0				- · ·	-			-		
DT 9/5	- 35 	· · ·					-	-		
GIBB.G							-	-		
LAW					-		-	-		
AL.GPJ	- 40 -]		-	-		
MPERL				-				-		
SOIL 1	45				-			-		
	DRILLE	R: Foley	1000		1.2.2.50					··· •0 90 100
÷	EQUIPM METHO	IENT: Hand Auger D:				્ઝહ	JILTEST	BORIN	5 KECUKD	
	HOLE D	IA.: 4" KS: Type I groundwater monitoring well installed.	B	ORIN ROJE	G NO CT:) ; ·	MW-5 Imperial (Cleaners		
$\chi = \frac{1}{L}$							August 14	2001		
\sim	SEE K	EY SHEET FOR EXPLANATION OF SYMBOLS		ROJE	CT N	0:	12110-1-0	013	Р	AGE 1 OF 1
	AND A	ABBREVIATIONS USED ABOVE.					LAW	7	<u> </u>	
						Ī	LAWGIBB	Group M	lember 🛦	

ſ	D E P	SOIL CLASSIFICATION AND REMARKS	L E	E L F	S I		1PLES N-COUNT	-	PL (%	5)	NN	4 (%)		LL (%)	
	T H (ft)		E N D	V (ft)	D E N T	Y P E	1st 6" 1st 6" 3rd 6' 3rd 6"		10 20) 30	 FIF SF 40 	чез (1 РТ (bp 50 б	%) f) 0 70	80 9(0 100
	- `0´ 	ASPHALT and BASE FILL - Firm red-brown slightly micaceous fine sandy SILT.					///////	-							
- - - -	- 5 - - 5 -	Medium dense brown to tan slightly micaceous silty fine SAND.			SS	X	5-4-4 (N = 8)	- Q -					-		
-	 - 10	RESIDUAL - Dark red fine sandy CLAY with gray micaceous PWR fragments.		- - - -	SS	X	10-11-10 (N = 21)	- - 		•					
				 - - -	SS	X	17-16-11 (N = 27)								
-	 - 20	Auger refusal at 20 feet. Boring advanced into rock using air hammer attachment.		- - - -	SS	X	50/6"								
		Ţ		- - -				-							
-	- 30 - 														
3B.GDT 4/10/02	- 35 - 		-	- - - - -				-						_	
CL.GPJ LAW GI	- 40 -	Boring terminated at 38 feet.						-							
SOIL IMPER	 - 45 -							0	10 2	0 30	40	50 6	0 70	80 9	- - 0 100
	DRILLE EQUIPN METHC	R: Piedmont AENT: CME 75 DD: Hollow Stem Auger/Air Hammer				SO	DIL TESI	'B(DRI	NG.	REC	ØR	D		
	HOLE I REMAR	DIA.: 8"/4" LKS: Type II monitoring well installed. Stabilized groundwater depth 24.58 feet.	B P L D	ORIN ROJE OCAT RILLI	G NC CT: TON ED:): :	MW-6 Imperial March 4	Cle , 20	eane 102	rs			•		
	SEE K AND A	EY SHEET FOR EXPLANATION OF SYMBOLS ABBREVIATIONS USED ABOVE.	P	ROJE				-00 V 3 G	13 Toup	Mei	nbei	- _		GE 1	OF 1

	D E	SOIL CLASSIFICATION	L E		SA)	MPLES	PL(%)	NN	1 (%) O	LL	. (%) •
	P T	AND REMARKS	G E E V		TY	d 6" 46"			▲ FD	- 1ES (%)		
	H (ft)		N D (ft		P E				• SF	PT (bpf)		
\frown	- 0 -	ASPHALT and BASE				% REC	102	20 30	40	50 60	70 80	90 100
/	· -	FILL - Stiff to very stiff red-brown slightly micaceous		1								
-		Time sandy SILT.		-					ĺ			
ŀ				4								· - 🕅
-	- 5 -			- ss	۶Ř	6-9-9 (N = 18)						
	-]								
ŀ	-			-								
F	-			-	∇							
	- 10 -			- 55		(N = 21)	_	1				
-				-								
}				-		-						
	- 15 -			ss	\overline{X}	7-7-7						
ļ				-		(N = 14)						
-	-			-		-						
-	-											
-	- 20 -			- ss	Х	6-7-9	_ ∳					
F				-		(N = 16)						
Ę												
-	-	DESIDITAL Medium dance brown clover sits fine										
	- 25 -	SAND.		- SS	К	4-5-8	- •	\mathbb{H}				
_								$ \uparrow$	$ \downarrow $. .	••••	
+	-	Auger refusal at 28 reet.		-	ł					\square	\downarrow	
F	-	attachment.		-								
	- 30 -			SS	P	50/3"						
-	-	partially weathered rock.		_								
F	-	Boring terminated at 33 feet.	<u></u>	-		-						
10/02	- 35 -	· · · · · ·	· · · · •		}							-
DT 4/	-		-	-	Ì	-						-
BB.GI	-		-	-								
10			Ē	1								
J LA	- 40 -		<u> </u>	4		-						
L GP	-		-	-	1							
IPER(-		Ę			-						
1			-	4								
SC	- 45	· · · · · · · · · · · · · · · · · · ·				0	10 2	20 30	40	50 60	70 80	90 100
F	DRILLE	R: Piedmont	Set 12 March		882 D				568-16-90	<u> </u>	9.660	
	EQUIPM	IENT: CME 75			S.S.	JUL LESI.	бОК	ING	KEC	OKD		
	HOLE D	DIA.: 8"/4"	BOR	ING N	0:	MW-7						
	REMAR	KS: Type II monitoring well installed. Stabilized groundwater depth 25.26 feet.	PRO.	JECT:	_	Imperial (Cleane	rs	۲	3		
		-		ATIOI	N:	Monch 1	າດດາ					
L	SEE VI		PRO	JECT	NO:	12110-1-(2002			-	PAGI	E 1 OF
	AND A	ABBREVIATIONS USED ABOVE.				TATT	r					
			11									

	D E P	SOIL CLASSIFICATION AND REMARKS	L E	E Ľ	S.	A№ 	1PLES N-COUNT	P	. (%) •		NM (%)	LL (%)
ren da la companya da	T H (ft)		G E N D	۲ ۲ (ft)	D E N T	Y P E	1st 6" 1st 6" 1d 2nd 6' 3rd 6"	10	20	▲ ● 20 4(SPT (b	(%) pf) 60 70	80 C	0 100
	- '0' 	ASPHALT and BASE RESIDUAL - Very dense light brown to dark gray micaceous fine to medium SAND and partially weathered rock.		 			% KEC							
	- 5 - - 5 -			 			18-38-27 (N = 65)	- 				•		
	- 10 - 			 			50/4"	-						
	- 15 - - 15 -			·										
	- 20 - 	Boring terminated at 21 feet.						-						
	- 25		-	 				-						
	- 30 - 			 	-			-						
10002 IBB GDT 4/10/02	- 35 - 35 							-						
IPERCL GPJ_LAW_C	- 40			 										
VI TIOS	- 45 -			 _ .				- D 10	20	30 4	0 50	60 70	80 9	0 100
	DRILLE EQUIPN METHO	R: Piedmont MENT: CME 75 DD: Hollow Stem Auger				SO)IL TEST	BO	RING	G RI	COF	۲D: ا		
	HOLE I REMAR	DIA.: 8" KS: Type II monitoring well installed. Stabilized groundwater depth 14.52 feet.	B P L D	ORIN ROJE OCAT RILLI	G NO: CT: MON: ED:	:	MW-8 Imperial March 5,	Clea 200	ners 2					
	SEE K AND A	EY SHEET FOR EXPLANATION OF SYMBOLS ABBREVIATIONS USED ABOVE.		ROJE		0: 	12110-1-	0013 7 Gro	up M	lemb	ber 🖌	PA	GE	1 OF 1

	D E	SOIL CLASSIFICATION		E	S.		1PLES N-COUNT	PL (%)		NM (%) LL (%)				
	р Т Н	AND REMARKS	ิ G E N	Ē V	D E	T Y P	1st 6" 2nd 6" 3rd 6"			•	FINE	S (%)		
	- ^(ft) -	FILL - Red-brown micaceous silty fine to medium	D	(ft)	N T	E	<u>ROD</u> % REC	10) 20	30 4	0 50	<u>60</u>	70 80 9	0 100
		SAND.												
		SAND.												
	- 5 -													
F	_													-
	-		-											
F	- 10		•											
-	-							-						-
-	- - 15 —		ļ					-						
+	-							-						
								-						-
-	- 20 -		-											
-	-		-					-						
F	-							-						
	- 25 -		-					-						
/	-							-						
-	- 30		.					-						
-			ļ		1			-						-
10	-							-						
DT 4/10/	- 35 -							-						
GIBB.GL	-		-	 				-						
LAW (- 40 -							-						-
CL.GPJ	_							-						
IMPE			ľ					-						-
SOIL	- 45 _						(20	30 4	0 50	60 7	0 80 9	0 100
ſ	DRILLE	R: Steve Foley /ENT: Hand Auger				SC	DIL TEST	BO	RIN	G R	ECO	RD		
	MÈTHO HOLE D	DD: DIA.: 4"	B	ORING	G NO:	;	MW-10							
	REMAR	depth 5.15 feet below TOC.	P L	ROJEC OCATI	CT: ION:		Imperial	Clea	ners					
/	יע בבט		D P	RILLE	D: CT NO	C:	March 14 12110-1-	l, 20 001:	02 3			Р	AGE	1 OF 1
	AND A	ABBREVIATIONS USED ABOVE.												
						Ē	AWGIBB	Gro	up N	lemi	ber _	6		

r

.

1
	D E P T H		SOIL CLASS AND RE	UFICATION MARKS		L E G E N D	E L E V	I D E N	AM T Y P E	PLES N-COUNT "9 40 %" 19 10 70 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	P	L (%)]	NM (%) O FINES (SPT (b)	%) of)	LL (%)	
)	- ^(ft) - 	ALL SAN Hand	UVIAL - Brown clayey D. I auger refusal at 3 feet.	medium to coar	se			1 -		% REC		20	30 40	50 (50 70	80 90	
			-	•			 										
	- 10 - - 10 - 																
	 - 15 						 				-						-
	 - 20 						·			·	-						-
.)	- 25						 				-						
	 - 30 						 										
3DT 4/10/02	 - 35		ананананананананананананананананананан								-						-
L.GPJ LAW GIBB.C	 - 40										-						
SOIL IMPERC	 - 45						 					20	30 40	50 0	50 70	80 90	- 100
	DRILLE EQUIPM METHO	R: IENT: D:	Steve Foley Hand Auger						SO	IL TEST	BO	RIN	G RE	COR	D;		
i. Maria	HOLE D REMAR	ola.: KS:	4" Type I monitoring well i depth 5.80 feet below T(d groundwater		ORIN ROJE OCAT RILLE	G NO CT: ION: ED:	: 0,	MW-11 Imperial April 4, 2	Clea	ners			ĐĂ	CF 1	OF 1	
	SEE KI AND A	EY SHI ABBRE	EET FOR EXPLANAT VIATIONS USED AB	ION OF SYMB OVE.	OLS]		Grc	up N	lemb	er 🖌	r A		

	D E	SOIL CLASSIFICATION	L	E	S	AM	1PLES	J	PL (%))	NM	(%)	LL (%)	
	Р Т Н	AND REMARKS	G E N	Ĕ V	I. D E	T Y P	lst 6" 2nd 6" 3rd 6"				FIN	ES (%)		
	- ^(ft) -	ATTINIAL - Brown clayer medium to coarse	D	(ft)	N T	Ē	ROD % REC	1	0 20	30	40 51) 60 74	0 80 90	100
		SAND.		 			 -	-		·				
	 							-						
	- 5 -	· <u> </u>												
		Hand auger refusal at 6 feet.		 			-	-						-
-	- 10 -						-	-						
-	- 10 -						-	-						-
		·			-		-	-						
	- 15						-	-						
				 	-		-	-						
								-						-
	- 20 -						-	-						-
							-	-						-
				 	-						_		-	
	 				4		-	-						-
	 				-		•	-						-
	- 30 -													
				- ·				-						
//1//02	- 35 -				-		-	- '						_
B.GDT	 			- ·	-		-	-						-
W GIB				-	-			-						-
GPJ L/	- 40				-									
MPERCI				-	-			-						-
SOIL I	 - 45 -			<u> </u>	-					20	40 5	0 60 7		-
	DRILLE	ER: Steve Foley				<u></u>	OIL TEST	BO)RI	JU VC1	REC.)RD		
	EQUIPM METHO HOLE I	MENT: Hand Auger DD: DIA.: 4"			C NO		Μ₩.12	inter					4 <u>792 38</u> 8	
	REMAR	RKS: Type I monitoring well installed. Stabilized groundwate depth 4.91 feet below TOC.		PROJE	CT:	•	Imperial	Cle	aner	S				
				DRILL	ED:		June 12, 1	200)2			T		
	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED ABOVE.						12110-1- T ATT	7	د ا			P	AGE .	
								/ Gr	oup	Mer	nber	<u>_</u>		

	D	SOIL CLASSIFICATION	L E	E L	S	AM	PLES N-COUNT	PL	, (%) •	N	M (%)	LI	. (%) - €	
	P T U	AND REMARKS	G E N	E V	D E	T Y P	6" 6"			▲ F.	NES (% PT (bpf)	·)		
	(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	N T	E	1st 2nd 3rd	10	20 3	0 40	<u>50 60</u>	70 8	0 90 10	0 90 190
()		FILL - Firm to stiff red brown micaceous fine to medium sandy SILT with some gravel.												
	- 5 -				SS	Д	3-3-4 (N = 7)					_		
								-						
		 	-	<u></u>	\square		-						
	- 10 -				55	A	(N = 8)	$\left \right $						
				_										
				-	SS		6-6-6							
	- 15 -					M	(N = 12)	- /						
				_										
				_	SS	\square	5-3-2	- •						
	- 20 -					\square	(14 - 5)	-						
	- 25 -				SS	\square	2-2-3 (N = 5)		+					
		RESIDUAL - Very dense yellow brown to dark gray slightly microsone fire to coarse SAND with partially weathered		-	SS		50/2"							
	1/2/06	rock fragments.						$\left \right $						
Ĩ	105 - 30 -	-			SS	Д	27-50/3"							
		Auger refusal at 30.5 feet. Core Run No. 1 30.5 - 37.5 feet	-					-						
		Recovery: 84% RQD: 7% Rock Type: Lightly to heavily weathered gray		· -										
	NERS- - 35 -	muscovite-biotite gneiss.	ļ									_		
	LCLEA			· -										
	IPERIA	Core Run No. 2 37.5 - 47.5 feet Recovery: 95%	-	-										
1	40 - 40 -	RQD: 33% Rock Type: Lightly weathered gray muscovite-biotite gneiss.												
i	ST BOI		-	-				-						
	SOIL TE							-						
	45 -					<u> </u>		0 10	20 3	30 40	50 60	70 8	0 90 10	0
	EQUIP	ER: MACTEC MENT: CME-54 DD: Hollow Stem Auger/Core Drill				SO	OLL TEST	BOJ	RINC	G REO	CORD)	**	
	HOLE	DIA.: 8 inches/4 inches RKS: Type III well installed. Outer casing grouted at 30.5 feet.	B	ORIN	G NO) . :	DW-1	<u></u>						
į į		Stabilized groundwater depth 24.03 on 3/31/06.		OCAT	ION:		Atlanta,	Geor	gia					
·~ ·	L			RILLE ROJE(ED: CT N	O.:	March 1: 6305-05-	5,200 0319)6			PAG	E 1 O	F 2
	THIS R SUBSU LOCAT	ECORD IS A REASONABLE INTERPRETATION OF RFACE CONDITIONS AT THE EXPLORATION ION. SUBSURFACE CONDITIONS AT OTHER					/// TN /T	Λ		ГТ				
	LOCAT	IONS AND AT OTHER TIMES MAY DIFFER.						\mathbf{H}			Ъ. Л.			

	D E P	SOIL CLASSIFICATION AND REMARKS	LEG	E L F	S		APLES N-COUNT		PL (%	6)	h A T	NM (%)	 /)	LL (%)
	T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	بِّ (ft)	D E N T	Y P E	1st 6" 2nd 6" 3rd 6"		10.0			SPT (bpi	o) ()		. 100
	- 45	Core Run No. 3 47.5 - 55.5 feet Recovery: 100% RQD: 63% Rock type: Lightly weathered to fresh gray muscovite-biotite gneiss								0 3		50 60	0 70		
	- 55	Boring terminated at 55.5 feet.													
	 - 65 														
DT 4/5/06	- 70 - 														-
CLEANERS.GPJ LAW_GIBB.0															
OIL TEST BORING IMPERIAL	 - 85 - 				ł										- - - -
S	90 DRILLER EQUIPME METHOD HOLE DIA REMARK	 MACTEC ENT: CME-54 Hollow Stem Auger/Core Drill A.: 8 inches/4 inches S: Type III well installed. Outer casing grouted at 30.5 feet. Stabilized groundwater depth 24.03 on 3/31/06. 	BPI	CORINC CORINC	G NO CT: ION:	SC	D L TEST DW-1 Imperial Atlanta	B Cl Ge	ORI eane	0 3 NG	0 40	50 60) 70	80 94	
	THIS REC SUBSURF LOCATIO LOCATIO INTERFAO TRANSITI	ORD IS A REASONABLE INTERPRETATION OF ACE CONDITIONS AT THE EXPLORATION N. SUBSURFACE CONDITIONS AT OTHER NS AND AT OTHER TIMES MAY DIFFER. CES BEWEEN STRATA ARE APPROXIMATE. ONS BETWEEN STRATA MAY BE GRADUAL.		RILLE ROJE(CD: CT NO	0.:	March 15 6305-05-	5, 2 -03	2006 19 \	אר אר אר	ΓF	EC	PA	GE 2	2 OF 2

1	р	SOIL CLASSIFICATION	L	E	S	SAM	IPLES	PL(%	6)	NM_(%)	LL	(%)
	E P	AND REMARKS	E G	L E	I D	Т	N-COUNT	6 -		FINES (%	-	•
	T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	V (ft)	E N T	Y P E	1st 6" 2nd 6" 3rd 6"			• SPT (bpf)	00 100
$ \frown$	- 0 -	CONCRETE	<u> </u>			++			0 30	40 50 60	70 80	
		FILL - Loose to medium dense red brown to brown fine to medium SAND with rock fragments.			SS	X	9-9-7 (N = 16)					
					SS		9-8-8 (N = 16)	-				
	 				SS		6-4-5		,			
					SS		(N = 9) 6-8-6	- \				
					00		(N = 14)	-				
					55		(N = 12)	-				
	- 15 - 				SS	X	5-8-8 (N = 16)	- /			_	
	 				SS	Д	4-5-5 (N = 10)	-				
					SS	Ø	5-5-5 (N = 10)	-				
				· · ·	SS	Ø	5-4-7 (N = 11)	-				
		ALLUVIUM - Very stiff brown clayey fine SAND.			SS	X	6-9-12	-				
	 	RESIDUAL - Very dense brown and gray micaceous medium to coarse SAND.			SS		(N = 21) 50/2"	-			$\downarrow\downarrow$	
T 10/6/0		Partially weathered ROCK. Gray muscovite biotite gneiss.				П						
GIBB.GI	- 30							-				
BPJ LAW								-				
ANERS.C	- 35 -	Boring terminated at 35 feet.										
UAL CLE			-					-				-
G IMPEI	- 40 -		-					-				
IT BORIN			-					-				
SOIL TES								_				
		······			and set in		() 10 2	0 30	40 · 50 60	70 80	90 100
	DRILLE EQUIPM METHO	R: Piedmont Environmental Drilling MENT: Deitrich DD: Hollow Stem Auger/Air Hammer				SO	IL TEST	BORI	NG R	ECORI)	
	HOLE I REMAR	 BIA.: 8 inches CKS: Type II monitoring well installed. Stabilized grounwater depth 27.60 feet. 	B P T	ORINO ROJEO	G NO CT: ION:	.:	SB-20/M Imperial	W-13 Cleane GA	rs			
				RILLE	D: TN	0.:	August 1: 6305-05-	2, 2009 0319)		PAGE	1 OF 1)
1	THIS RE SUBSUF LOCATI LOCATI	CORD IS A REASONABLE INTERPRETATION OF REACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER.					۳M	AC	T	EC		
	INTERF.	ACES BEWEEN STRATA ARE APPROXIMATE.										

	r				1 .			т					
	D E	SOIL CLASSIFICATION	LEC	EL			1PLES N-COUNT	PL	(%)		M (%)	LL (%	b)
	г Т Н	SEE KEY SHEET FOR EXPLANATION OF	E N	V	DEN	Y P	.6" d.6" 1.6"			S	PT (bpf)		
$\langle \gamma \rangle$	(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	T	E	1st 2n 3rc	10	20 3	0 40	50 60 1	0 80 9	0 100
		FILL - Medium dense red brown to brown micaceous silty						-					
		ine to medium SAND.			SS	X	5-9-10 (N = 19)		•				
				- -		\square		$\left \right $					
	- 5 -				SS	Å	8-9-9 (N = 18)		•				
) 17	SS	\square	5-5-7	+					
							(N = 12)						
-	- 10 -			이 이	SS	М	5-6-5 (N = 11)						
-						\square	(1)	ΕN					
					SS	Щ	6-7-7 (N = 14)						
				°∟ _ ≷∟	SS	\forall	5-6-7						
	- 13 -			: - -		H	(N = 13)	F					
-				<u> </u>	SS	\square	9-5-6	-					
ļ							(1(- 11)	ΓN					
-	- 20 -	RESIDUAL - Dense to very dense orange brown to gray			SS	Д	4-5-11 (N = 16)	├ ── ├ �		<u> </u>			
-		micaceous line to coarse SAND.		 	22	\square	11-11-23						
				 -	55	A	(N = 34)	- I			\vdash		
	 - 25 -				SS	\square	50/0"	-					
()		Auger refusal. Partially weathered ROCK.						-					
60/9		_	2										
DT 10													
BB.G	- 30 -												
10 MA								-					
L I													
ERS.G	- 35 -	Boring terminated at 35 feet		<u> </u>				[
LEAN								-					-
INT C				-									
IMPER			1										-
DNID	- 40 -							-					
T BOF				- ·-				-					
LTES													
SOI	45 -	· · · · · · · · · · · · · · · · · · ·			l		•	0 10	20 3	0 40	50 60 7	0 80 9	0 100
	DRILLE	R: Piedmont Environmental Drilling		esta a	(din hit	60	TUTIO		TNT		OPP		
	EQUIPM	IENT: Deitrich D: Hollow Stem Auger/Air Hammer				. 30	UL IESI	DUR	ШŊС	KEL	UKD		
	HOLE D	VIA: 8 inches KS: Type II monitoring well installed Stabilized groupwate		BORIN	G NO	.:	SB-22/M	[W-14			. —		
N. Z	IN LINIAR	depth 27.28 feet.		PROJE(CT: TON·		Imperial Roswell	Clean GA	ers				
S				DRILLI	ED:		August 1	3,200	9				
	THISRE	CORD IS A REASONABLE INTERPRETATION OF		PROJE	CTN	0.:	6305-05	-0319			<u>P</u>	AGE	1 OF 1
	SUBSUR	FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER				1		Λ /			10		
	LOCATI	ONS AND AT OTHER TIMES MAY DIFFER.							1	IΓ			

	D	SOIL CLASSIFICATION	L	E	S	SAM	IPLES	P	L (%)	N	M (%)	LL (%)
	E P T	AND REMARKS	G E	Ĕ V	I D E	T Y	N-COUNT		·	▲ F	INES (%)	· ·	
	Ĥ (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	P E	lst 6" 2nd 6 3rd 6'	10	20	• S	SPT (bpf)	70 80 9	0 100
$\left(\right)$	- 0 -	CONCRETE FILL - Red brown micaceous silty fine to medium SAND											-8
					SS	\square	7-9-9	-	•				
							(N = 18)						
	- 5 -				SS	Д	7-8-8 (N = 16)		•				-
					SS	$\overline{\mathbf{X}}$	7-9-11		V				
							(N = 20)		T				
	- 10 -				SS	Д	6-9-11 (N = 20)		-				-
		RESIDUAL - Very dense orange brown to gray micaceous silty fine to coarse SAND with partially weathered rock			22		15-50/5"	-			$\uparrow \uparrow$	$\left \right\rangle$	
		fragments at depth.			55	A	15-50/5	-					\sim
					SS	\square	27-40-35 (N = 75)						
				 	~~	\square	00.00						
					SS	Å	29-38-42 (N = 80)						
-				· -	SS		8-50/5"	-		<u> </u>			
								-					
					SS	Д	50/5"	-					
					SS		45-50/1"	-					
)	- 25 -	▼				Ĥ		-					
60/9							-	-					
DT 10/			-					-					
IBB.GI	30 	Auger refusal. Partially weathered ROCK.						~					
AW G			-					-					
GPJ L			44.243 44.243										
NERS	- 35	Boring terminated at 35 feet.											
CLEA													-
ERIAI			-										
IMI D	- 40 -									+			
BORIN								-					
TEST								-					-
SOIL	- 45 -									20 40			1
	ד וו קרו	P. Disdmont Environmental Duilling			n estate s	(PRC)2	e er Buislandian		20	JU 40	<u></u>	70 80 9	
	EQUIPN	AENT: Deitrich DD: Hollow Stem Auger/Air Hammer				SO	IL TEST	BO	RINO	÷ RE(SORD		
	HOLE	VIA: 8 inches VIA: Tune II monitoring well installed Stabilized groupsystem	B	ORINO	G NO	.:	SB-26/M	W-1	5				
-	IN FINIAR	depth 26.10 feet.		ROJE(OCAT	CT: ION:		Imperial Roswell	Clea GA	ners				
·	L		$\ \tilde{\mathbf{D}}$	RILLE	ED:	_	August 1	4, 20	009				.
	THIS RE	CORD IS A REASONABLE INTERPRETATION OF		ROJE	<u></u>	0.:	6305-05-	0319) 		F	AGE 1	OF 1
	LOCATI	CRACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER					ℤ \/	А	\square	TF	TC		
	INTERF	ACES BEWEEN STRATA ARE APPROXIMATE.				1	<u>→</u> ↓ ¥ ⊥	<u> </u>		<u> </u>			

	DE	SOIL CLASSIFICATION	L	E	S	AN	APLES	Р	L (%)		NM	(%)	I	L (%)	
	Р Т	AND REMARKS	E G F		I D	T	N-COUNT		U		FIN	ES (%)	-U	
	H (ft)		й D	(ft)	E N T	P E	st 6" nd 6" rd 6"			•	SPT	[(bpf)			100
\cap	- °° -	CONCRETE FILL - Red-brown to brown micaceous silty fine to medium	P. 6. 8		-		3 2 1			30 4			70.	80 90	100
1 - Z	_	SAND with rock fragments.													
	- ·														
	- 5 -						1					_		$\left\{ - \right\}$	
	- ·			- - -											-
	- - 10 -	Porior terminated at 10 feet						-							
·	<u> </u>	Boring terminated at 10 feet.						-							
-								-							
	- 15 -							-							- 15
1								-							-
	- ·							-							
								-							
	- 20 -							-							
•	• •						-								
	- •							$\left \right $							-
1	- 25 -			 				- 8				-			25
	-														-
	- ·							-							-
	- 30 -			 											30
1	- ·												Ì		4
10/	-				·										
1/9 L(14	- 35 -														
IBB.GL								-							1
AW_G	-	-													-
GPJ L	- 40 -														40
ERIAL	-							-].
L IMPI	-														-
SOI	45 -		<u> </u>					0 1	0 20	30	40 5	0 60	70	80 9	0 100
	DRILL	ER: ESN Southeast				S	OIL-TEST	ВС	RIN	GR	ЪС	OR	D	noriči tik Vrazvelji	
	EQUIP	MEN 1: Geoprobe DD: Direct Push			ortiteling			ale Mari		ant P	UARCES	9.9 9 .9			
	REMA	RKS: No groundwater encountered.		PROJE	G NC CT:):	GP-1 Imperial	Clea	iners	;					
· i		• • •		DRILL	ED:		May 21. 2	2001							
	SEE H	EY SHEET FOR EXPLANATION OF SYMBOLS		PROJE	CT N	0:	12110-1-0	013		<u></u>			PAG	GE	1 OF 1
	AND	ADDRE VIATIONS USED ADOVE.					LAW	\mathcal{V}_{-}							
							LAWGIBB	Gro	oup I	lem	ber				

ſ	D E	SOIL CLASSIFICATION	Ļ	E	S.	AN	APLES		PL (%	6)	NM	[(%)		LL (%)	
	Р Т Н	AND REMARKS	Б G E	E V	I D E	T Y	= -				▲ FIN	VES (S	%)			
	(ft)	·	D	(ft)	N T	E	1st 6" 2nd 6 3rd 6	1	02	0 30	• SP 40 :	50 6	1) 0 70	80	90 100	
)-	-	CONCRETE FILL - Red-brown to brown micaceous silty fine to medium SAND with rock fragments.						-								
-	-							-								
	. <u>5</u> —							-								
-	-							-								
F	_							-								
F	- 10 -	Boring terminated at 10 feet.												_		0
F	-							-								
	-							-								
-	• 15 -							-			_			_		5
ŀ	-							-								
-	-							-								
-	- 20 -							-								0
+	-					r.		-								
-	25 -							-							2	5
	-							-								
F	-						-	_								
	- 30 —									_					3	0
	-							-								
10/	-							-								
DT 6/14	- 35														3	5
GIBB.GI	-															
LAW	-							-								
AL.GPJ	- 40 -							-								Ð
IMPERI	-															
SOIL	- 45 -				<u> </u>					0 30	10	50 6	0.7			
ſ	DRILLE	ER: ESN Southeast				C	ດງຖະຈາກກ່ຽວກ	D'	.ບ 2 ຈາວ1	NC	יד מתק			- 60 		,
	EQUIPI METHO	MENT: Geoprobe DD: Direct Push									12.99		and f	907.84 ⁷ 1		
	REMAI	KS: No groundwater encountered.		PROJE	G NO CT:	7:	GP-2 Imperial (Cle	ane	rs						
				DRILL	ED:		May 21. 2	.0 0 1	1							
	SEE K	EY SHEET FOR EXPLANATION OF SYMBOLS	F	PROJE	CT N	0:	12110-1-0	01:	3				P.	AGE	10	F 1
	. עאנא	ידו סמע מדפס פווסודעוז העמיר.					LAW	V								
				·			LAWGIBB	Gr	oup	Mer	nber	<u>_</u>	<u> </u>	<u> </u>		

	D E P T H	SOIL CLASSIFICATION AND REMARKS	L E G E N	E L E V	S I D E	AN T Y P	MPLES N-COUNT	1	PL (%	6)	N ▲ F	M (%)	(%)	LL (%)	
\frown	- (ft) 	<u>CONCRETE</u> FILL - Red-brown to brown micaceous silty fine to medium SAND with rock fragments.	D	(ft) 	T	E	1st 6 2nd - 3rd (02	0 3	0 40	50	50_70	80 9	0 100	
	 - 5 															
	10	Boring terminated at 10 feet.						-							1 - -	0
	 - 15 	• •														5
	- 20 - - 20 - 							-		· · · · · · · · · · · · · · · · · · ·					- 2	.0
	- 25 - - 30 -	•														30
3B.GDT 6/14/01	 - 35 											-				35
IMPERIAL.GPJ_LAW_GII	 - 40 															40
SOIL	- 45 -	Di TEN Southord			- 	x, 6.92		0	10 2	20 3	0 40	50	60 70	80	90 10	0
	DRILLE EQUIPN METHO HOLE D REMAR	 K: ESN Southeast IENT: Geoprobe D: Direct Push IA.: 1.5" KS: No groundwater encountered. 		BORIN PROJE PRILL PROJE	G NC CT: ED: CT N):	OIL TESI GP-3 Imperial May 21, 2 12110-1-0	B)	OR ane	ers	5. <u>RE</u>	CO	RD PA	AGE	1 0	PF 1)
	AND A	ABBREVIATIONS USED ABOVE.						V Gr	out	o M	emb	er 🖌				

	D E P T H	SOIL CLASSIFICATION AND REMARKS	LEGEND	E L E V (ft)	I D E N T	AM T Y P E	lst 6" 2nd 6" Znd 6" Znd 6"	. F	PL (%)	NM FIN SP' 40 5	(%) IES (% T (bpf	L 5) 70 8	L (%)	100
\bigcirc	- 0 -	CONCRETE FILL - Red-brown to brown micaceous silty fine to medium SAND with rock fragments.						-							-
	- 5							-	-						- 5
-	- 10 - 10 	Boring terminated at 10 feet.						-	;						 - 10
	- 15			· ·				-			,				- 15
·	 - 20 							-							-
	- 25 -							-							- 25
	- 30 -						· · · ·	-							- - - 30 -
3.GDT 6/14/01	- 35 -	•													- - 35
IAL.GPJ LAW GIBI	 - 40		-					-							- -
SOIL IMPER	 - 45							- - 0 1	0 20	30	40 5	50 60) 70 8	30 90	100
	DRILLE EQUIPM METHO HOLE D REMAR	R: ESN Southeast IENT: Geoprobe D: Direct Push IA.: 1.5" KS: No groundwater encountered.	Be	ORING	G NO: CT:	\$0 	GP-4 (mperial (BC)RI	NGT s	REC	OR	D		
	SEE KI AND A	EY SHEET FOR EXPLANATION OF SYMBOLS BBREVIATIONS USED ABOVE.	D P	RILLE ROJEC	D: CT No	: : [May 21, 2 12110-1-0 LAW	001					PAG	E 1	OF 1

	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E	I I	AN T	APLES N-COUNT	PI	(%) ©	N	IM (%)	 	LL (%)	
	H (ft)		E N D	√ (ft)	E N T	Y P E	lst 6" 2nd 6" 3rd 6"	10	20	• 1 30 40	SPT (bp 50 6	f) D 70	80 90	100
$\sum_{i=1}^{n}$	- 0 	CONCRETE FILL - Red-brown to brown micaceous silty fine to medium SAND with rock fragments.	P 6 6 6					-						-
								-						
								-						
	 - 10			 				-						- 10
								-						-
ĺ											_			
				 				-						-
	 - 20	RESIDUAL - Brown micaceous silty fine to medium SAND.		 				-						20
		Geoprobe refusal at 22 feet.						-						
	- 25 -							- -			-			- 25
	 			· 										
	- 30						1							- 30
15/01	- 25	en e						-						- 35
IBB.GDT 6								-						
PI LAW G	 - 40			 										40
MPERIAL.G	 			 										
SOIL I	- 45							0 10	20	30 40	50 6	0 70	80 90	100
	DRILLE EQUIPM METHO	R: ESN Southeast IENT: Geoprobe D: Direct Push			en post Sa jug	SO	DIL TESI	BO	RIN	G RI	COR	D		
	HOLE D REMAR	 IA.: 1.5" KS: Geoprobe refusal at 22 feet. No groundwater encountered 	B P	ORIN(ROJE(G NO CT:):	GP-5 Imperial	Clea	ners					
	SEE KI	EY SHEET FOR EXPLANATION OF SYMBOLS		RILLE	ED:	<u>o:</u>	May 21, 2 12110-1-0	001				PAG	GE 1	OF 1
	AND A	BBREVIATIONS USED ABOVE.				1		Gro	up N	lembe	er 🛦	·		

[D E P T H	SOIL CLASSIFICATION AND REMARKS ASPHALT and BASE	L E G E N D	E L E V (ft)	I D E N T	AN T Y P E	IPLES N-COUNT 5 ug 6" 3 rg 6" 3 rg 6"		PL (PL (10 2	%) 20 30	N ▲ FI ● S 0 40	M (%) O NES (PT (br 50 6	%) of) 50 70	LL (%	5) 90 100
	- 5	FILL - Firm to stiff red-brown slightly micaceous fine to medium sandy SILT.			SS	X	5-6-8	-	•						5
-	- 10				SS	X	5-3-4	- - - -							- 10
	- 15 - -				SS	X	6-4-5	-							15
-	- 20 — - -				SS	X	3-3-4	-				/			20
 	- 25 - -	ALLUVIAL - Grey clayey medium SAND. RESIDUAL - Very dense red and brown clayey silty SAND. Grey micaceous medium to coarse SAND and partially weathered rock. Auger refusal at 27.5 feet.			SS	X	5-7-50/3	- - -							25
100	- 30 -	· · · · · · · · · · · · · · · · · · ·													30
I LAW GIBB.GDT 9/5	- 35 - - - 40							-							35
SOIL IMPERIAL.C	- - - - 45 —						(- - - - - -	10 2	20 30	40	50 6	0 70	80 5	
, 1 1 1 1 1	DRILLE EQUIPM METHO HOLE D REMAR	R: Oglesby IENT: CME 75 D: Hollow Stem Auger DIA.: 8" KS: Auger refusal at 27.5 feet. No groundwater encountered.		BORINO PROJEC	G NO CT:	SC	DE TEST SB-7 Imperial (BC	DRI ane	NG rs	REC	OR	D.		
	SEE K AND A	EY SHEET FOR EXPLANATION OF SYMBOLS ABBREVIATIONS USED ABOVE.		DRILLE	CD: CT N	0: 	August 7, 12110-1-0 LAW AWGIBB	20(013 7 Gr)1 ; our	Me	mbe	-	PA	GE	1 OF 1

	D E	SOIL CLASSIFICATION	L E	E L	S		IPLES N-COUNT	P	L (%)		NM (%)	LL (%	b)	٦
	P T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	G E N D	V (ft)	D E N T	I Y P E	lst 6" 2nd 6" 3rd 6"				FINES	(%) opf)			
	- 0 - 	CONCRETE FILL - Red brown micaceous silty fine to medium SAND.						-	20	30 4	40 50		80 5		_
		During terminated at / feet						-							
	- 5 -	Boring terminated at 4 reet.						-						5	
					-			-							
	- 10 -				-			_				-		10	
					-			-						-	
	- 15 -			 										15	
							-	-						-	
	- 20 -			 	-		-	-						20	
					-		-	-						-	
1.1	- 25 -			 										25	,
2/06								-							
B.GDT 4/					-			-						30	
LAW GIE							·							-	
T T T T T T T T T T T T T T T T T T T	- 35 -				-			-						35	
ALCLEAN				 											
G IMPER	- 40 -			 	-			-			_			- 40	
ST RORIN								-							
SOIL TF	 - 45				-			-) 20	30 4	40 50	60 70	80 9	-	
	DRILLE EQUIPN	ER: MACTEC-Paul Gazzo /ENT: Hand Auger				SC)IL TEST	BO	RIN	GR	ECOI	ZD	6		
	METHO HOLE I REMAR	DD: Hand Auger DIA.: 3 inches UKS:	B	ORIN	G NO CT:).:	SB-10 Imperial	Cler	ners		<u> </u>				
				OCAT RILL	TION: ED:		Atlanta, (January 2	Geo1 27, 2	rgia 2006						
	THIS RE SUBSUE	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION ON SUBSURFACE CONDITIONS AT OTHER		ROJE	CT N	0.:	6305-05-	031 A		رال ا			GE	1 OF	リ ー
	LOCATI INTERF TRANSI	IONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN STRATA MAY BE GRADUAL.						A			E	<u>د</u>	h		

	D E	SOIL CLASSIFICATION	L E	E L	S		IPLES N-COUNT	F	PL (%)		NM (9	%)	LL (%	b)
	P T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	G E N D	E V (ft)	D E N T	I Y P E	1st 6" 2nd 6" 3rd 6"			•	FINES	S (%) (bpf)		
\cap	- 0 -	CONCRETE FILL - Red brown micaceous silty fine to medium SAND.							20	30 4	10 50	60 70	80 9	
				· _										
	- 5				SS	X	-							5
					SS	\boxtimes	-							-
	- 10 -													
				· -	SS	X	-							
	- 15 -													
					55		-							
	- 20 -	RESIDUAL - Brown micaceous silty fine to medium SAND. Geoprobe refusal at 20 feet.			SS	\boxtimes	-							20
			ŀ				.							-
	- 25 -						- 							25
A ISTOC			-											-
TAD dan														
			· .											-
U VNEDS V	5 35							-						35
EDIAL CIT														-
								-						40
Са начн			ļ	 			-	-						-
		· · · · · · · · · · · · · · · · · · ·	آ]			0	1	0 20	30	40 50	60 7	2 80 9	0 100
	DRILLE EQUIPM METHO	R: ATLAS GeoSampling MENT: GeoProbe DD: Direct Push				SO	DIL TEST	BO	RIN	G R	ECO	RD		
	HOLE D REMAR	 DIA.: 2 inches KS: Geoprobe refusal at 20 feet. No groundwater encountered. 	B P T	ORINO ROJEO	G NO CT:	.:	SB-11 Imperial (Cle	aners	6				
\subseteq			D P	RILLE	D: CT N	0.:	January 2 6305-05-0	7, 2 031	2006 9			P	4GE	1 OF 1
	THIS RE SUBSUR LOCATI LOCATI INTERFA	CUCKD IS A REASONABLE INTERPRETATION OF RFACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS DETWEEN STRATA ARE APPROXIMATE. TIONS DETWEEN STRATA ARE APPROXIMATE.					M.	A	C	Τ	E(2		

1	D E P T H	SOIL CLASSIFICATION AND REMARKS SEE KEY SHEET FOR EXPLANATION OF SYMPOLS AND APPREVIATIONS USED BELOW	L E G E N D	E L E V	I D E N	AN T Y P	PLES N-COUNT]	PL (%) O		NM (FINE SPT	%) S (%) (bpf)	LL ((%)	
\cap	- 0 - 	CONCRETE FILL - Red brown micaceous silty fine to medium SAND.				E		-	0 20	30	40 50	60 7	0 80	90 100	<u> </u>
	 - 5 -	,		 	SS	X		-				-			5
	 - 10			 	SS	X	-	-						 	10
	 	RESIDUAL - Red brown silty fine SAND.		 	SS	X) 	-							15
		Geoprobe refusal at 18 feet.			SS	X		-							
	- 20 - 		-	 			·	-							20
98	 - 25 		-					-							25
AW_GIBB.GDT_4/5/0	- 30 -			 			-	-						3	30
EANERS.GPJ L	 - 35 -			 				-							35
NG IMPERIALCLI	 - 40		-	 			-	 -							40
SOIL TEST BORI	 		-	 				-							
	DRILLE	R: ATLAS GeoSampling /ENT: GeoProbe				SC	oil TEST) 1 BC	0 20 RIN	30 IG R	40 50 ECO	60 7 RD	0 80	90 100)
	HOLE D REMAR	 DIA.: 2 inches KS: Geoprobe refusal at 18 feet. No groundwater encountered. 	B P L D P	ORINO ROJEO OCAT RILLI ROJEO	G NO CT: ION: ED: CT N	0.:	SB-12 Imperial (Atlanta, C January 2 6305-05-	Cle Geo 7, 2	aners rgia 2006 9	3		P	AGE	1 01	F 1
	THIS RE SUBSUR LOCATI LOCATI INTERFA TRANSI	CURD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN STRATA MAY BE GRADUAL.					ľΜ	A		T	EC	2			

	D	SOIL CLASSIFICATION	L	E	5	SAM	IPLES	PL (%)	1	VM (%)	LL (%	6)
	P T	AND REMARKS	Ğ E	Ĕ V		T Y			▲ I	TINES (%)		
	H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	P E	1st 6" 2nd 6 3rd 6'	10 20	• 20 40	SPT (bpf)	70 90 1	20 100
\sim	- 0 -	CONCRETE				$\uparrow \uparrow$			30 40			
		FILL - Ked blown inicaceous sity file to medium SAND.		_	•							
				-				-				
					SS	\boxtimes			_			5
				-				-				-
				-				-				
				-	SS	X		-				-
	- 10 -							-				
				-	SS			-				_
				-		M		-				
	- 15											15
-		RESIDUAL - Brown silty fine to medium SAND.		-	SS	\boxtimes		-				. –
•				-				-				-
					SS			-		_		20
	- 20 -	Geoprobe refusal at 20 feet.	ŀ	-				-				- 20
			-	-				-				
			F	-			ĺ	-				
	- 25 -	,	\vdash									25
$ \langle \rangle \rangle$			F	-				-				
1/5/06			-	-				-				
GDT 4	 - 30 -		F					-				30
GIBB.			Ļ					-				
TAW			-	· -	-			-				
GPJ		· · · · · · · · · · · · · · · · · · ·		· · · -			ſ	-				
NERS	- 35		ļ		-			_				35
LCLEA			-	-	-			-				
ERIA			ŀ	· -				-				
0 IMI	- 40 -		·		-							40
BORIN			-	· -	-							
LEST E			ŀ	· -				-				
SOIL	- ·			· ·	-							
			[() 10 20	30 40	50 60	70 80	90 100
	DRILLE	R: ATLAS GeoSampling /ENT: GeoProbe				SC	DIL TEST	BORIN	G RE	CORD		
	METHO HOLE I	DD: Direct Push DIA.: 2 inches	B	ORIN) ·	SR-13					
	REMAF	KS: Geoprobe refusal at 20 feet. No groundwater encountered.		ROJE	CT:	•••	Imperial	Cleaners				
				OCAT	ION:	:	Atlanta, (Georgia				
•	L	· · · · · · · · · · · · · · · · · · ·		ROJE	CT N	0.:	6305-05-	0319		P	AGE	1 OF 1
- - -	THIS RE	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION ON SUBSURFACE CONDUCIONS AT CATUER								70		
4	LOCAT	ON: SOBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE.					" M	AC		-U		
	TRANS	TIONS BETWEEN STRATA MAY BE GRADUAL.					-					

	D E	SOIL CLASSIFICATION	1		E L	<u> </u>	SAN	APLES N-COUNT	PI	. (%) •		NM	(%)	L	.L (%) - O	
	P T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.			E V (ft)	D E N T	T Y P E	lst 6" 2nd 6" 3rd 6"	10	00	-	FIN	ES (%) T (bpf))		100
C	- 0 -	CONCRETE		.			+			20	30	40 5	0 60	1	30 90	100
		FILL - Red brown micaceous silty fine to medium SAND.				SS SS SS SS	XXX									- - - - - - - - - - - - - - - - - - -
	- 15 -	RESIDUAL - Red brown silty fine to medium SAND.							\square							15
		Geoprobe refusal at 16 feet.		:[:]		SS	A		-							4
	 - 20 			-	- · ·											- - - - 20
				ł	-	1	•		-							-
		~						,								25
AW_GIBB.GDT_4/5/06	 - 30 			-	- · · ·											- - - - - 30 -
L LAE	[-			[-]]
ERS.0	- 35			ł		-			\vdash	_	_			_		35
TEST BORING IMPERIALCLEAN	 - 40 - 				- · · · · · · · · · · · · · · · · · · ·											- - - - - 40 - -
SOIL	L 45 -]]						10 5				1
	DRILLE EQUIPN METHO HOLE I REMAR	 ER: ATLAS GeoSampling MENT: GeoProbe DD: Direct Push DIA.: 2 inches RKS: Geoprobe refusal at 16 feet. No groundwater encountered. 		B P L	ORIN ROJE OCAJ	G NC CT: TION	.: .:	SB-16 Imperial Atlanta,	0 10 BO	20 RIN ners gia	30 G R	40 5	0 60 ORD	70 8	30 90	100
~	L			D P	ROJE	ьл: СТ N	0.:	January 2 6305-05	28, 2 0319))06				PAG	E 1	OF 1
	THIS RE SUBSUI LOCATI LOCATI INTERF TRANSI	ECORD IS A REASONABLE INTERPRETATION OF RFACE CONDITIONS AT THE EXPLORATION ION. SUBSURFACE CONDITIONS AT OTHER IONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. ITIONS BETWEEN STRATA ARE APPROXIMATE.						M M	A	С	Τ	E	C			

	D E P T H (ft)	SOIL CLASSIFICATION AND REMARKS SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	L E G E N D	E L V (ft)	I D E N T	T Y P E	PLES 2314 6" 314 6"	P.	L (%)	▲ ● 30 4	NM (%) FINES (SPT (b	%) of) 50 70	LL (%)	100
\bigcap	- 0 	CONCRETE FILL - Red brown micaceous silty fine to medium SAND.						-						-
	 			- 	SS	X	-	-						- - -
	 - 10			- - -	SS	X		- - -						- - 10 -
	 - 15	RESIDUAL - Brown slightly micaceous silty fine to medium SAND.			SS SS	X	-	-						
		Geoprobe refusal at 16 feet.					-	-						-
	_ 20 _ 		-				-	-						- 20 - - -
	- 25 -		-				- - - -	-						25
. GIBB.GDT 4/5/	- 30		-				-	-						- 30
ANERS.GPI LAW							-	-			_			35
I MPERIAL CLEV							-	-						
II. TEST BORING		· · · · ·	-	-			- - -	- - -						-
CS	DRILLE	R: ATLAS GeoSampling IENT: GeoProbe				.so)IL TEST) 10 BO) 20 RIN	30 4	0 50 ECOR	50 70 D	80 90	100
\mathcal{L}	METHO HOLE D REMAR	 D: Direct Push DIA.: 2 inches KS: Geoprobe refusal at 16 feet. No groundwater encountered. 	B P L D P	ORIN ROJE OCAT RILLI ROJE	G NO CT: ION: ED: CT N).: 0 · ·	SB-17 Imperial (Atlanta, C January 2 6305-05-0	Clea Geor 8, 2	iners rgia .006			 P.6.		OF 1
	THIS RE SUBSUR LOCATI LOCATI INTERFA	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN STRATA MAY BE GRADIAL.					M M.	A		T	EC			

	D E P T H (ft)	SOIL CLASSIFICATION AND REMARKS SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	L E G E N D	E L E V (ft)	SA I D T E N T E	MPLES Ist 6" 3rd 6"	PL (%)	NM (%) → FINES (→ SPT (bp	LL (%))
	- 0	CONCRETE FILL - Lose to medium dense red brown to brown micaceous silty fine to medium SAND with rock fragments.			ss	5-5-5 (N = 10)	-			
	- 5 -			 	ss xs	12-14-14 (N = 28) 6-8-10 (N = 18)				5
					ss ss	7-6-6 (N = 12) 6-6-8 (N = 14)	- - •			10
	 - 15 			 	ss X ss X	6-8-9 (N = 17) 5-8-8 (N = 16)	- - - -	·		15
	 - 20 	· ·		 	ss X	5-5-6 (N = 11)				20
$\left(\right)$	- 25 -	RESIDUAL - Very dense orange brown to brown micaceous silty fine to medium SAND. Auger refusal at 26 feet.		 	ss X	(N = 21) 5-14-50/1"				- - - -
GIBB.GDT 10/6/09	 - 30						-			30
ANERS.GPJ LAW	 		-		-		-			35
VG IMPERIAL CLE	 - 40						-			
SOIL TEST BORIN							-		0.70.80.0	
	DRILLE EQUIPN	R: Piedmont Environmental Drilling MENT: Deitrich			S	OIL TEST	BORING	RECOR	D	
	METHO HOLE D REMAR	DIA.: 8 inches MA.: 8 inches KS: No groundwater encountered.		ORINO ROJEC OCATI ORILLE ROJEC	G NO.: CT: ION: CD: CT NO.	SB-21 Imperial (Roswell, August 13 : 6305-05-0	Cleaners GA 3, 2009 0319		PAGE	1 OF 1
	THIS RE SUBSUF LOCATI LOCATI INTERF TRANSI	CORD IS A REASONABLE INTERPRETATION OF RFACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN STRATA MAY BE GRADUAL.				² M	AC	ГЕС	· · · · · · · · · · · · · · · · · · ·	

D E	SOIL CLASSIFICATION	L E	E L	S I	AN	IPLES N-COUNT	PI	. (%) O	N	M (%)	L	L(%)	
P T H	AND REMARKS SEE KEY SHEET FOR EXPLANATION OF	G E N	E V	D E	T Y P	6" 16"			▲ E ● S	INES (% SPT (bof	i))		
(ff)	SYMBOLS AND ABBREVIATIONS USED BELOW.	D	(ft)	T	E	1st 2nc 3rd	10	20 3	<u>30 40</u>	50 60	70 8	0 90	100
7 -	FILL - Red brown to brown micaceous fine to medium sandy SILT.		- 	-			-						-
F			·[SS	Д	8-8-9 (N = 17)	F	٩					
_ 5	- · ·		·	SS		8-10-11	-			·			
-	-				B	(N = 21)	-	Ā					
-	-		 	SS	М	3-5-8 (N = 13)		{					
-	-			99	H	450	-						-
- 10	-			55	А	(N = 14)	-						10
-	-			SS	X	7-9-10	-	¥					-
F	-				A	(1, 1)		/					-
- 15	-			SS	Å	4-5-7 (N = 12)		+		-			- 15
-				SS		4-4-9	-						-
- -	RESIDUAL - Very dense brown to gray micaceous medium to coarse SAND.					(N = 13)	-			++			
- 20	Auger refusal at19.5 feet.			SS	Д	7-50/2"					+	\rightarrow	•20
	-						-						- ·
-	-						-						-
- 25													- 25
	-						-						
10/6/0	-						-						-
30 30	-						-					_	30
	-						_						-
TAV I							-						-
ID- 35	1						-						35
TEAN	-						-						-
	-						-						
IMPEI	_						-						- 10
	-						-						-
EST BC	-						-						-
	-						-						-
<u>ب</u> 45	*****					(10	20 3	0 40	50 60	70 80	0 90 3	100
DRILI EQUI	ER: Piedmont Environmental Drilling MENT: Deitrich				so	IL TEST	BOF	UNG	REC	ORD			
METH	OD: Hollow Stem Auger DIA.: 8 inches		ORINO	G NO		SB-23							
REMA	RKS: No groundwater encountered.	Ē	ROJE	CT:		Imperial	Clear	ers					
/	×		DOCAT: DRILLE	ION: ED:		Koswell, August 1	GA 3,20	09					
THIS	ECORD IS A REASONABLE INTERPRETATION OF	I	ROJE	CT N	o.:	6305-05-	0319				PAG	<u>E 1</u>	OF 1
SUBSU	RFACE CONDITIONS AT THE EXPLORATION								E				

			NI	T	 F	5	SAM	IPLES	PL (%)	NM	(%)	 LL (%)
	E P	AND REMARKS	11	E G	Ĩ E	I D	Т	N-COUNT	e		▲ FINE	ES (%)	@	
	T H (作)	SEE KEY SHEET FOR EXPLANATIONS USE	ON OF	E N D	V (ft)	Ē	Y P F	st 6" ind 6" ird 6"			• SPT	(bpf)		
	- 0 -	CONCRETE		200		Т	$\left \frac{1}{2} \right $		10	20 30	40 50	60 70	0 80 9	0 100
		FILL - Medium dense red brown to brown mica fine to medium SAND.	ceous silty		·	22	\square	7-7-7	-					
							А	(N = 14)	-				.	
	- 5 -					ss	\square	7-9-9	-					5
ļ						ĺ		(14 - 18)	- /					-
					-	SS	Щ	5-7-6 (N = 13)						-
					-	SS		4-4-6	-					- 10
	- 10 -				-			(N = 10)	-					- 10
					-	SS	М	4-5-7 (N = 12)						
					-		\mathbb{H}		- `					
	- 15 	RESIDUAL - Very dense gray brown micaceous coarse SAND.	s silty fine to			55	Å	(N = 30)	_		$\overline{1}$			15
					-	SS		32-50-3	-					
	-, - 	Automotive Let 10 feet			-		Π.	(N = 53)	-					-
	- 20 -	Auger refusar at 19 ieei.		-	_									20
				F	-			-	-					
				-	-				-					
	- 25 -			F	_									25
				-	-				-					
60/9/0				F	-			F	-					-
GDT				-	-			Ļ	-					
GIBB.				F	-				-					
LAW				F	-			-	-					-
S.GPJ					• •				-					-
EANER	- 35			-		-		ŀ	-					- 35
T CLE				-	-				-					
IPERI/				F -	-				-					-
VI DN	- 40 -			F	-						+			40
BORU				Ę					-					
, TEST				F	-				-					
SOII	45 -	<u></u>			. <u>-</u>				10	20 30	40 50	60 70	0 80 9	0 100
	DRILLE	R: Piedmont Environmental Drilling	·····		looka (h. 19 19 Maril I - 19		60	าสาวการควาร	יתחש	<u>.</u>				
	EQUIPM METHO	ENT: Deitrich D: Hollow Stem Auger					.90 =		DUK			ULU		
	HOLE D	1A.: 8 inchesKS: No groundwater encountered.)RIN	G NO	.:	SB-24	7100-	-				
i. Na se		-)CAT	ION:		Roswell,	GA	TS				
and a second second	l			DE	NLLI	ED:	Ô۰	August 1:	3,200	9		י מ		
	THIS RE	CORD IS A REASONABLE INTERPRETATION FACE CONDITIONS AT THE EXPLORATION	IOF				=							
	LOCATIO	ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER.						M	A(7	'E(\Box		
	INTERFA TRANSI	ACES BEWEEN STRATA ARE APPROXIMATE	:. \L.						~		· ••••••	<u> </u>		

	D	SOIL CLASSIFICATION	L	E	5	SAM	IPLES	PL (%	6)	NM (%)	LL (%)
	P T	AND REMARKS	G E	Ĕ V		T Y				FINES (%)	
~	H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	P E	1st 6' 2nd 6 3rd 6	10 2	• 0 30 4	SPT (bpf)	70 80 90 100
	• 0 -	CONCRETE FILL - Red brown to brown micaceous silty fine to medium			-			- 10 -			
-	-	SAND.		-	SS	\square	6-6-8	-			
-				-			(14 = 14)	-			
	5 -				SS	Д	7-6-9 (N = 15)				5
	-			-	SS	$\overline{\mathbf{X}}$	6-7-7	-			
-	-			- ·		B	(N = 14)	: T			
-	10 -				ss	Д	3-5-8 (N = 13)				10
-				 		\mathbb{H}	244				
-	4			· . ·	55	А	(N = 8)	-	+		
~	15 -	RESIDUAL - Very dense gray and brown micaceous fine to coarse SAND.		 	SS		18-50/4"	-			
Ļ	-	· · · · · · · · · · · · · · · · · · ·					-	-			
	-			· ·	SS	Д	50/4"	-			
F	-			. <u>-</u>			-	-			
-	20 -	Auger refusal at 20 feet.					-				
-					-		-	-			
-	-				1		-	-			
	25							-			25
60 E	-						-	-			
T 10/6	-			· ·							
BB.GD	30 -				-						30
	-						-	-			
T Ide	-]						
VERS.C	35 —				-		-				35
CLEAN	-			· ·			-	-			
RIAL	-							-			-
IMPE	40 -			 			4 4	-			40
ORINC	-				-		-	-			
EST B				· ·				-			
SOILT	45				1			-			
	43						0	10 20	0 30 4	0 50 60 7	70 80 90 100
L E	ORILLEI EQUIPM	R: Piedmont Environmental Drilling IENT: Deitrich				SO	IL TEST	BORI	NGRI	ECORD	
N H	AETHO HOLE D	D: Hollow Stem Auger IA.: 8 inches	B	ORIN	G NO	.:	SB-25				
R	REMARI	KS: No groundwater encountered.		ROJE	CT:		Imperial (Cleaner	.s		
\sim [RILL	ION: ED:		Koswell, August 14	GA 4, 2009)		
- , Ti	HIS RF(CORD IS A REASONABLE INTERPRETATION OF	P	ROJE	CTN	0.:	6305-05-(0319		P	AGE 1 OF 1
SI L	UBSUR	FACE CONDITIONS AT THE EXPLORATION ON, SUBSURFACE CONDITIONS AT OTHER						Δ٢			
	UCATIC NTERFA	JNS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. FIONS BETWEEN STRATA MAY BE GRADIJAI					IVI.			чŲ_	

-

	D E P T	SOIL CLASSIFICATION AND REMARKS	L E G E	E L E V	I D E	SAN T Y	PLES N-COUNT	PL ('	%)	NM (%	6) (%)	LL (%)
	H (ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW.		(ft)	N T	E	1st (2nd 3rd	10 2	20 30	<u>40 50</u>	60 70	80 9	0 100
	 - 5 - 	FILL - Red brown micaceous silty fine to medium SAND.			SS SS SS		6-8-8 (N = 16) 7-8-9 (N = 17) 8-8-10 (N = 18)						- - - 5 -
	- 10 - 10 				SS		5-5-8 (N = 13) 7-6-9 (N = 15)						
	— 15 — - 20 —	RESIDUAL - Dense to very dense orange brown to gray micaceous silty fine to coarse SAND.			SS		9-14-19 (N = 33) 50/2" 50/1"		· ·				15
())	- 25 -	Auger refusal at 23 feet.						- - -					25
LAW_GIBB.GDT_10/	30 							-					30
SRIAL CLEANERS.GP	- 35 - - 35 - 							-					- 35 - -
SOIL TEST BORING IMPI	- 40 -			 				-					
03	DRILLE	R: Piedmont Environmental Drilling				SC	0 DI TEST	10 2 BOR	20 30	40 50	60 70	80 9	0 100
\bigcirc	EQUIPN METHO HOLE I REMAR	MEN1: Deitrich DD: Hollow Stem Auger DIA.: 8 inches RKS: No groundwater encountered.	B P L D	ORIN ROJE OCAT RILLI	G NO CT: ION: ED:	• <u>•</u> ••••••••••••••••••••••••••••••••••	SB-27 Imperial (Roswell, August 14	Cleane GA 4, 200	ers 9				
	THIS RE SUBSUI LOCATI LOCATI INTERF TRANSI	ECORD IS A REASONABLE INTERPRETATION OF RFACE CONDITIONS AT THE EXPLORATION ION. SUBSURFACE CONDITIONS AT OTHER IONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. ITIONS BETWEEN STRATA MAY BE GRADUAL.				0.:	6305-05-0	A(CT	'EC		GE	1 OF 1)

	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E		AM T	PLES n-count	PI	(%) •	NN ▲ FII	A (%) ⊖ √ES (%	L	L (%)					
	T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	V (ft)	D E N T	Y P E	1st 6" 2nd 6" 3rd 6"	10	20 3	• SI	PT (bpf 50 60) 708	0 90	100				
		CONCRETE FILL - Red brown micaceous silty fine to medium SAND with rock fragments.			SS	X	7-11-14 (N = 25)	-	٩									
	 - 5 				SS	X	6-8-9 (N = 17)	-			<u> </u>			- 5				
					SS	X	8-8-9 (N = 17)	- - - /						-				
	- 10 			 	SS SS	\overline{X}	3-5-6 (N = 11) 6-6-10							- 10 				
	 - 15			 	SS	X	(N = 16) 7-12-10 (N = 22)	-						- 15				
					SS	X	6-7-10 (N = 17)	-										
	20 -	RESIDUAL - Dense to very dense brown to gray micaceous medium to coarse SAND.			SS		10-15-9 (N = 24)	-	-	+				20				
715	 - 25 -				55		50/5	-						25				
10/6/09							-	-						-				
V GIBB.GDT	- 30 -							-						30				
ERS.GPJ LAW								-						- 35				
NAL CLEAN								-						-				
RING IMPER								-						-40				
OIL TEST BO								- -						-				
ŭ	DRILLE	R: Piedmont Environmental Drilling				SO	IL TEST) 10 BOI	20 3 RINC	60 40	50 60	70 8	0 90	100				
. J	METHO HOLE D REMAR	D: Hollow Stem Auger I/A.: 8 inches KS: No groundwater encountered.		ORINO ROJEO OCAT ORILLE	G NO. CT: ION: ED: CT NO	:	SB-28 Imperial (Roswell, August 14 6305-05-1	Clear GA 4, 20	ners)09			PAG	F , 1	OF 1				
	THIS RE SUBSUR LOCATH LOCATH INTERFA	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. FIONS BETWEEN STRATA MAY BE GRADUAL.					PROJECT NO.: 6305-05-0319 PAGE 1 OF 1											

and the state of t	D E P	SOIL CLASSIFICATION AND REMARKS	L E G	E L E	S 1		IPLES N-COUNT	1	PL (%)		NM (%) S (%)	•	%)	•
	T H (ft)	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	E N D	V (ft)	E N T	Y P E	lst 6" 2nd 6" 3rd 6"	1	0 20	30	SPT	(bpf) 60 7	0 80	<u>90 1</u> (00
		ASPHALT FILL - Red brown micaceous fine to medium sandy SILT.						-						-	
	 							-							5
				 				-						-	
	 - 10	· · · ·		 				-							10
								-							
	- 15							-							15
							-	-						-	
	- 20	RESIDUAL - Brown to gray slightly medium to coarse SAND.		· -			-	-							20
	 - 25							-							25
S/13/10		Probe refusal at 26 feet.		· -			- - -	-						-	
GIBB.GDT	 - 30		-	 				-							30
GPJ LAW				· -			- - -	-							
CLEANERS	- 35 - 		-				-	-		_					35
IMPERIAL							-	-						-	40
ST BORING								-						-	
SOILTE	45 -						0	-	0 20	30 4	40 50	60 70	0 80	90 10	00
	DRILLE EQUIPM METHO	R: Atlas GeoSampling AENT: Power Probe 9100 VTR DD: Direct Push				SO	IL TEST	BO	RIN	GR	ECO	RD			
	HOLE I REMAR	DIA.: 2 inches KS: Groundwater encountered at approximately 24 feet.	B P L	ORINO ROJEO OCAT	G NO. CT: ION:	:	SB-29 Imperial (Roswell,	Clea GA	aners						
	THIS RE	CORD IS A REASONABLE INTERPRETATION OF RFACE CONDITIONS AT THE EXPLORATION		ROJE	CT NO).: 	6305-05-(, 20 031	9			PA	IGE	1 C	DF 1
	LOCATI LOCATI INTERF TRANSI	ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN STRATA MAY BE GRADUAL.					M	A		Γ	E(

- 1 (D E P T H	SOIL CLASSIFICATION AND REMARKS see key sheet for explanation of	L E G E N	E L E V	I D E N	AN T Y P	IPLES N-COUNT		PL (%) e		NM (9 O FINES	6) (%) bpf)	LL (%	5)
$\left \begin{array}{c} \\ \end{array} \right $	(ft) - 0 	SYMBOLS AND ABBREVIATIONS USED BELOW. ASPHALT FILL - Red-brown micaceous fine to medium sandy SILT.	D	(fi) 	Ť	E	1s 2n 3r	1	0 20	30	40 50	60 70	80 9	20 100
				 				-						5
				 				-						-
	- 10 			 				-						
	 - 15			 				-						15
							-	-						-
	- 20 - 	RESIDUAL - Brown to gray slightly medium to coarse SAND.					F	-						20
	 - 25	Probe refusal at 26 feet.					- -	-						25
GDT 5/13/10	 - 30		-	 				- - -						
u LAW GIBB.		• • • • •	-	 										-
CLEANERS.GF	- 35			 				-						35
G IMPERIAL (-						- - 40
L TFST RORIN				 										
, ic,	45 -	R: Atlas GeoSampling					() 1	0 20	30	40 50	60 70	80 9	20 100
	EQUIPM METHO HOLE I REMAR	AENT: Power Probe 9100 VTR DD: Direct Push DIA.: 2 inches UKS: Groundwater encountered at approximately 24 feet.	B P L D P	ORIN ROJE OCAT RILLI ROJE	G NO. CT: ION: ED: CT N(SC .: .:	SB-30 Imperial Roswell, March 29 6305-05-	BC Clea GA 9, 2(031	aners)10 9	GR	ECO	RD PA	AGE	1 OF 1
	SUBSUI LOCATI LOCATI INTERF TRANSI	FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN STRATA MAY BE GRADUAL.					ľΜ	A		T'	EC	2		

_ (%) -€
0 90 100
- 10
- 15
-
20
-
25
0 90 100
E 1 OF 1

	D E P T	SOIL CLASSIFICATION AND REMARKS	L E G E	E L E V	I D E	AM T Y	IPLES N-COUNT	1	PL (%)		NM (%) S (%)	L	L (%) -œ	
	H (ft) — 0 —	SEE REY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	E	1st 6 2nd 6 3rd 6		0 20	30	● SPT <u>40 50</u>	(bpf) 60	70 8	0 90	100
		ASPHALT FILL - Red brown micaceous fine to medium sandy SILT.		 				-							-
	- 5							-							
L. L	 - 10 			 				-							10 10
	 - 15 							-							-
	 - 20 -	RESIDUAL - Brown slightly medium to coarse SAND.		- - -			-	-							20
	 			-			· •	- -							
()	- 25 -	Probe refusal at 25 feet.					-	-							- 25
3B.GDT 5/13/10	 - 30		-					-		-					- - - 30
S.GPJ LAW_GI								-							-
IN CLEANER	- 35 						- - - - - - - -								
T BORING IMPE	- 40 - 						-	-							
SOIL TES	 - 45 -	·						-	0 20	30	40 50	60	70 8	0 90	100
	DRILLE EQUIPN	R: Atlas GeoSampling IENT: Power Probe 9100 VTR				SO	IL TEST	BO	RIN	GR	ECO	RD			
	METHC HOLE I REMAR	D: Direct Push DA.: 2 inches KS: Groundwater encountered at approximately 24 feet.		ORINO ROJEO OCAT RILLI	G NO. CT: TON: ED:	.:	SB-32 Imperial (Roswell, March 29	Clear GA	aners)10	-				T. 1	
1 	THIS RE SUBSUI LOCATI LOCATI INTERF TRANSI	CORD IS A REASONABLE INTERPRETATION OF FACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN STRATA MAY BE GRADUAL.		RUJE			⁶⁵⁰³⁻⁰⁵⁻⁰	A		Τ,	E				

i

	D E P T	SOIL CLASSIFICATION AND REMARKS	L E G E	E L E V	S. D F	AN T Y	APLES N-COUNT	PL (%	6) A	NM (%) L (%)	.L (%)	
\cap	H (ft) - 0 -	SEE KEY SHEET FOR EXPLANATION OF SYMBOLS AND ABBREVIATIONS USED BELOW.	N D	(ft)	N T	P E	1st 6 2nd (3rd 6	10 20	0 <u>30</u>	SPT (b 40 50	pf) 60 70 8	<u>30 90 1</u> /	00
	 - 5 -	FILL - Red brown micaceous fine to medium sandy SILT.					- - - - -					-	5
	 - 10 			· · ·			- - - - -					-	10
	 - 15 											-	15
	- 20	RESIDUAL - Brown to gray slightly medium to coarse SAND.					·					-	20
	- 25 -	Orange-brown to gray micaceous slightly fine to medium SAND. Probe refusal at 26 feet.					-					-	25
J LAW_GIBB.GDT	- 30 			 			-						30
UAL CLEANERS GP	- 35 - - 35 - 												35
TEST BORING IMPER	- 40 - - 40 -			· -			-					-	40
SOIL	45 -	· · · · · · · · · · · · · · · · · · ·					0	10 20	0 30 -	40 50	60 70 8	- 30 90 1	00
	DRILLE EQUIPI METHO HOLE I REMAI	GR: Atlas GeoSampling MENT: Power Probe 9100 VTR DD: Direct Push DIA.: 2 inches RKS: Groundwater encountered at approximately 24 feet.		ORIN(ROJE(OCAT PRILLI	G NO. CT: ION: ED:	SC	SB-33 Imperial C Roswell, (March 29,	BORU Cleaner FA 2010	NG R	ECOF	D		
	THIS RI SUBSU LOCAT LOCAT INTERF TRANS	ECORD IS A REASONABLE INTERPRETATION OF RFACE CONDITIONS AT THE EXPLORATION ION. SUBSURFACE CONDITIONS AT OTHER IONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. ITIONS BETWEEN STRATA MAY BE GRADUAL.	P	ROJE).: 	6305-05-0	319 AC	T	EC		Æ 1 C)F 1

	D E P T	SOIL CLASSIFICATION AND REMARKS	L E G E	E L E V	S. D E	AM T Y	PLES N-COUNT	F	°L (%)		NM (%)) (%)	LL (%)		
\bigcirc	(ft) - 0 -	SYMBOLS AND ABBREVIATIONS USED BELOW.		(ft)	N . T	Ē	1st (2nd 3rd	1(20	30 40) 50	50 <u>70</u>	80 90	100	
	 - 5 	RESIDUAL - Red brown micaceous fine to medium sandy SILT.					-	-						- - - 	
	 - 10 						-	- - -						- - 10 - -	
								-				×			
	- 20 	RESIDUAL - Brown slightly medium to coarse SAND.						- - -						20 	
W_GIBB.GDT_5/13/10	 - 30 	Prode refusal at 25 reet.						-						- - - - - - 30 -	
ORING IMPERIAL CLEANERS.GP1_L	- 35 - 35 - 40	······································						-							
SOIL TEST F	45 -	R: Atlas GeoSampling ÆNT: Power Probe 9100 VTR				SO	o	- - 10 BO) 20 RIN	30 40 G RE) 50 COR	50 70 D	80 90	100	
	METHO HOLE I REMAR	D: Direct Push DA: 2 inches KS: Groundwater encountered at approximately 24 feet.		BORING PROJEG LOCAT DRILLE PROJEG	G NO. CT: ION: CD: CT NO	: .:	SB-34 Imperial (Roswell, March 29 6305-05-(Clea GA , 20 031	nners 010 9			PAC	GE 1	OF 1	
	THIS RE SUBSUI LOCATI LOCATI INTERF TRANSI	ICORD IS A REASONABLE INTERPRETATION OF RFACE CONDITIONS AT THE EXPLORATION ON. SUBSURFACE CONDITIONS AT OTHER ONS AND AT OTHER TIMES MAY DIFFER. ACES BEWEEN STRATA ARE APPROXIMATE. TIONS BETWEEN STRATA MAY BE GRADUAL.		MACTEC											