APPENDIX H

MPE/Injection Pilot Test Memorandum

Geosyntec ${ }^{\triangleright}$
 consultants

Technical Memorandum

Date: January 28, 2021
To: Tim Hassett; Hercules LLC
From: Ali Ciblak, P.E., Ph.D., Rich Murray, P.E., Shanna Thompson, P.E., Geosyntec Consultants, Inc.

Subject: Shallow Groundwater Pilot Test Results
Hercules/Pinova, Glynn County, Brunswick, GA

Geosyntec Consultants, Inc. (Geosyntec) performed field studies on behalf of Hercules, LLC between December 2019 and November 2020 to evaluate the feasibility of remedial technologies and to support selection of an interim corrective measure (ICM) to address volatile organic compounds (VOCs) or/and possible non-aqueous phase liquid (NAPL) in shallow groundwater near the location of temporary shallow groundwater (SGW) sample location, SGW-23, and monitoring wells MW-21, MW-22, MW-23, and MW-24 (i.e. the SGW-23 Area, also known as the Stillhouse Control Room area) at the Hercules/Pinova facility in Brunswick, Georgia (Site) as shown in Figure 1. A desktop study evaluated the feasibility of remedial technologies including excavation, air sparging/soil vapor extraction (AS/SVE), in-situ stabilization (ISS), multi-phase extraction (MPE), in-situ chemical oxidation (ISCO), Ozone/SVE, in-situ thermal treatment, and enhanced in-situ bioremediation (EISB). Based on the desktop study, EISB, ISCO and MPE were selected for further evaluation with field and laboratory studies. The following studies were performed to evaluate the feasibility of selected technologies:

- A pilot test to evaluate the feasibility of MPE; and,
- An injection test to evaluate the injection rate and pressure that could be achieved if implementing an EISB or ISCO remedy.

This technical memorandum summarizes the methodology, results and conclusions of the MPE pilot test and the injection rate test.

SGW-23 Area Pilot Test Summary
28 January 2021
Page 2

BACKGROUND

The SGW-23 Area is located north of the Stillhouse Control Room within the greater Southern Production Area, which is an identified source area at the site according to the Refined Conceptual Site Model Hercules/Pinova Brunswick Facility, Brunswick, Georgia (Integral, 2019). The dominant direction of groundwater flow in this area is vertical with a dominant downward hydraulic gradient, and a less significant horizontal gradient which simultaneously transports groundwater eastward (Integral, 2019). Elevated concentrations of VOCs, specifically benzene, pisopropyltoluene (paracymene), and toluene, have been detected in the monitoring wells which define the area: MW-21, MW-22, MW-23, and MW-24 as shown on Figure 2. The recent benzene, paracymene, and toluene results for each of the four monitoring wells are shown in the table below.

Monitoring Well	Sampling Date	Results ($\boldsymbol{\mu g} / \mathbf{L})$		
		33,000	8,300	5,600
MW-22	$6 / 14 / 2018$	36,000	9,600	9,300
MW-23	$12 / 13 / 2019$	5,600	8,800	910
MW-24	$12 / 15 / 2016$	9,400	770	140

MPE PILOT TEST

This section explains the pilot test well layout, methods and results of the MPE pilot test.

Multi-Phase Extraction (MPE) Technology

MPE is a remedial technology that extracts both subsurface liquids and soil vapors from extraction well(s) by applying varying levels of vacuum to extraction wells. For a typical MPE application, a drop tube, also known as a "stinger", is installed in the extraction well (s) to control the volume of liquid extracted. Vacuum is applied directly to the stinger, making it possible to extract free product (if available) or water directly from or just below the groundwater table. The depth of the drop tube can be adjusted to varying depths, depending on testing conditions, to depress the liquid levels in the extraction well. Vacuum is also applied to the well head assembly, causing VOCs laden coil vapor to be recovered through well head riser pipe. The combined air and liquid stream extracted from the MPE well is conveyed through a flexible vacuum hose to the MPE system where the VOCs in the extracted vapors are treated using a thermal oxidizer or vapor-phase granular activated carbon unit (s) before vapor discharge to the atmosphere, through a stack. The extracted LNAPL/water stream can be collected and disposed of offsite or a can be treated before discharge to a permitted discharge location.

SGW-23 Area Pilot Test Summary
28 January 2021
Page 3

Pilot Test Well Layout

A test well network consisting of one MPE test well, two observation wells, and three soil vapor probes was installed to implement the MPE pilot test and injection rate test. A private utility locator was contracted to mark locations of underground utilities in the pilot test area prior to drilling, and all locations were hand cleared to a minimum of 5 feet below ground consistent with site underground utility clearance protocols. Betts Environmental Recovery from Adel, Georgia was contracted to install the MPE test well (MPE-01), observation well (MPE-OW-01 and MPE-OW02), and vapor probes (VP-01, VP-02, and VP-03). The MPE well and observation well were installed using hollow-stem auger drilling techniques, and the vapor points were installed via hand auger. As shown in Figure 2, the location of MPE-01 and the observation wells were selected so that existing well MW-24 was utilized as a third observation well. MPE-01 was placed 20 -feet from MW-24, and observation wells MPE-OW-01 and MPE-OW-02 were installed approximately 5 -feet and 10 -feet, respectively, from MPE-01. Existing well MW-23 was also utilized as an observation well to a lesser extent. It is approximately 44 -feet from MPE-01. Soil vapor probes, VP-01, VP-02, and VP-03, were installed approximately 10 feet, 12 feet and 15 feet away from MPE-01, respectively. The vapor probes were used to monitor vacuum influence during the MPE test. Boring logs for newly installed wells are provided in Attachment A.

The table below provides survey and well construction information for the wells utilized during the MPE pilot and injection rate tests:

Well ID	Northing $^{\mathbf{1}}$	Easting $^{\mathbf{1}}$	Top of Casing (ft. NAVD88)	Screen Interval (ft. bgs.)
MPE-01	424368.64	870457.13	9.56	$2-10$
MPE-OW-01	424368.92	870461.58	9.51	$2-17$
MPE-OW-02	424359.36	870460.70	9.50	$2-15$
VP-01	424364.22	870465.05	9.42	$2-5$
VP-02	424356.24	870456.94	9.66	$2-5$
VP-03	424380.89	870465.77	9.67	$2-5$
MW-23	424375.02	870503.65	9.91	$4-14$
MW-24	424374.63	870437.85	10.04	$4.8-14.8$

${ }^{1}$ Horizontal Datum is NAD1983 Georgia State Plane East
ft. bgs. - feet below ground surface
ft. NAVD88 - feet North American Vertical Datum 1988

SGW-23 Area Pilot Test Summary
28 January 2021
Page 4

MPE Test Methods and Results

The MPE test equipment includes well head assembly, a scrubber/knockout tank assembly, a blower, and a thermal oxidizer to treat vapor phase VOCs. The details of the test equipment are included in Attachment B. A 20,000 gallon frac tank was used for collection and temporary storage of water extracted during the MPE test.

Geosyntec and Fruits mobilized to the Site on April $27^{\text {th }}, 2020$ and the test was completed in two days. On April 27 ${ }^{\text {th }}, 2020$ (Day 1), a plastic sheeting/tarp was installed on the ground surface in test area to minimize the potential for short circuiting of air during the MPE testing. Baseline data including depth to water (DTW), depth to product (DTP), VOC screening using a photo-ionization detector (PID), and baseline vacuum was collected at the MPE test well (MPE-01) and the observation locations including MPE-OW-01, MPE-OW2, MW-24, VP-01, VP-02 and VP-03. The baseline readings are summarized in Attachment C. Based on the baseline measurements on Day 1, headspace PID readings ranged between 11 parts per million (ppm) and 57.9 ppm , with the highest reading in MPE-01. There was no measurable LNAPL in the test wells. The DTW was generally around 1.5 to 1.8 ft bgs .

Operational parameters: After completion of the baseline measurements, a well head assembly was placed in MPE-01 at a depth of 7 ft bgs. The test was performed for a period of 6.5 hours on April $27^{\text {th }}$. The applied vacuum was increased slowly from 1 inch of mercury (in Hg) up to 10.5 in Hg during the test duration. The monitoring data is included in Attachment B and Attachment C. The following observations were noted during the test on April $26^{\text {th }}$:

- Maximum air flow rate from the subsurface was 38 actual cubic feet per minute (ACFM) observed at a well head vacuum of 11.5 in . Hg.
- Maximum extracted liquid flow rate was around 2.2 gallons per minute (gpm) within the range of applied vacuum.
- A vacuum influence of 0.13 inches of water was noted in VP-03, which was approximately 15 feet from the test well. No significant vacuum influence was observed in VP-01 and VP-02, which were approximately 10 and 12 feet away from the test well. It is possible that the applied vacuum was surfacing through a preferential pathway prior to reaching to VP-01 and VP-02.
- No LNAPL was observed in the extracted water and in the observation wells, and maximum FID from hydrocarbons (not including methane) was 640 ppm .

SGW-23 Area Pilot Test Summary
28 January 2021
Page 5

- Maximum water table drawdown in observation wells MPE-OW-01, MPE-0W-02 and MW-24 were $2.27 \mathrm{ft}, 1.60 \mathrm{ft}$ and 0.76 ft , respectively.

The test was continued on April $28^{\text {th }}$ (Day 2) after collection of another round of baseline water levels. Applied wellhead vacuum ranged from 10 to $17 \mathrm{in} . \mathrm{Hg}$. The stinger depth was slowly lowered in the well to 9.8 ft bgs on Day 2. Pressure transducers were installed in MPE-OW-01, MPE-OW-02 and MW-24. The pressure transducers collected DTW readings once per minute. Four groundwater and four vapor samples were collected on Day 2 to estimate aqueous phase and vapor phase mass removal rates and evaluate treatment options. The following observations were noted from Day 2 activities:

- Maximum air flow rate from the subsurface was approximately 120 ACFM observed at a well head vacuum of $17 \mathrm{in} . \mathrm{Hg}$.
- Extracted flow rate ranged between 2 gpm and 3.5 gpm within the range of applied vacuum (10 to 17 " Hg).
- A vacuum influence of 0.3 inches of water was noted in VP-03, which was approximately 15 feet from the test well with an applied vacuum of $15 \mathrm{in} . \mathrm{Hg}$.
- No LNAPL was observed in the extracted water, and maximum VOCs in the vapor phase from hydrocarbons (not including methane) was 580 ppm .
- Figure 3 shows DTW changes in the observation wells. Maximum drawdown in MPE-OW-01, MPE-OW-02 and MW-24 were $9.54 \mathrm{ft}, 2.1 \mathrm{ft}$ and 1.29 ft , respectively.

Analytical results: On Day 2, four groundwater samples were collected. Two duplicate groundwater samples (i.e., MPE-GW-042820-1, MPE-GW-042820-2) and third sample (i.e., MPE-GW-042820-3) were collected from the extracted liquid at different times of the test. A fourth groundwater sample (i.e., MPE-GW-042820-4) was collected as a grab sample directly from MPE-01 at the end of the testing. In addition, two duplicate vapor samples were collected the extracted.

Groundwater samples were sent to Test America in Savannah, Georgia (GA) for the analysis of site-specific VOCs, total iron and manganese, hardness, alkalinity, and total suspended solid (TSS). Vapor samples were sent to Test America in Knoxville, Tennessee (TN) for VOC analysis using TO-15 method. The laboratory reports are included in Attachment D.

SGW-23 Area Pilot Test Summary
28 January 2021
Page 6

A summary of the laboratory analytical data is presented in Tables $\mathbf{1}$ and 2. The results are summarized and discussed below.

Volatile Organic Compounds (VOCs):

- The detected VOCs in the aqueous phase include 4-Methyl-2-Pentanone (MIBK), benzene, ethylbenzene, paracymene, methyl ethyl ketone (MEK), toluene and xylenes.
- The concentration of total VOCs in the aqueous grab sample collected directly from MPE01 was around 17,805 micrograms per liter ($\mu \mathrm{g} / \mathrm{L}$). Assuming an extraction rate of 3.5 gpm and continuous operation, the mass removal rate in the aqueous phase would be 0.75 lbs . per day per well.
- The concentrations of total VOCs in the aqueous samples collected after MPE equipment ranged between $1,246 \mu \mathrm{~g} / \mathrm{L}$ and $1,561 \mu \mathrm{~g} / \mathrm{L}$.
- The concentration of total VOCs in the vapor phase was approximately $64,100 \mu \mathrm{~g} / \mathrm{m}^{3}$. Assuming a vapor extraction rate of 120 ACFM per well and continuous operation, the mass removal rate in the vapor phase would be 0.69 lbs . per day per well. The following VOCs were detected in vapor samples, as shown in order from highest to lowest average concentration:
- benzene with an average concentration of 42,750 micrograms per cubic meter $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$;
- paracymene with an average concentration of $13,334 \mu \mathrm{~g} / \mathrm{m}^{3}$;
- toluene with an average concentration of $6,800 \mu \mathrm{~g} / \mathrm{m}^{3}$;
- MEK with an average concentration of $1,295 \mathrm{~J} \mu \mathrm{~g} / \mathrm{m}^{3}$;
- xylenes (Total) with an average concentration of $645 \mu \mathrm{~g} / \mathrm{m}^{3}$.
- m,p-xylene with an average concentration of $435 \mu \mathrm{~g} / \mathrm{m}^{3}$;
- o-xylene with an average concentration of $210 \mu \mathrm{~g} / \mathrm{m}^{3}$; and
- ethylbenzene with an average concentration of $153 \mathrm{~J} \mu \mathrm{~g} / \mathrm{m}^{3}$.

SGW-23 Area Pilot Test Summary
28 January 2021
Page 7

Metals:

The groundwater samples exhibited iron concentrations ranging between $1,100 \mu \mathrm{~g} / \mathrm{L}$ and 4,700 $\mu \mathrm{g} / \mathrm{L}$ and manganese concentrations ranging between $67 \mu \mathrm{~g} / \mathrm{L}$ and $230 \mu \mathrm{~g} / \mathrm{L}$.

Hardness, Alkalinity, and Solids

The groundwater samples had an average hardness of 175 milligrams per liter (mg / L) as calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$, mostly attributable to calcium and magnesium hardness. Groundwater samples had an average alkalinity of $112 \mathrm{mg} / \mathrm{L}$ as CaCO_{3} and an average total suspended solids (TSS) concentration of $221 \mathrm{mg} / \mathrm{L}$. Typically, waters with hardness above $150 \mathrm{mg} / \mathrm{L}$ as CaCO_{3} are classified as very "hard" waters.

Conclusions Related to MPE Feasibility and Design Parameters

Based on the pilot test results, MPE technology would be feasible, especially addressing treatment zones with residual or mobile LNAPL. However, if the extracted water is not hauled offsite to a waste water treatment facility, then the MPE system requires a system capable of addressing water with high hardness and relatively high iron/manganese concentrations prior to a permitted discharge location. Even though LNAPL was not detected in the pilot test area, the key design parameters for fluid recovery were obtained during the test. It is observed that an air flow rate of 38 ACFM was possible at an applied vacuum of up to 11.5 in Hg , when the stinger was placed approximately 5 feet below water level (5 feet of exposed screen for vapor recovery). A remedial design basis of 2,000 to 4,000 pore volume exchange per year is recommended for the treatment of soil vapor in a reasonable timeframe. Assuming an effective porosity of 20%, an exposed screen length of 5 feet, and a design air flow rate of 38 ACFM and a radius of influence (ROI) of 20 feet would result in approximately 16,000 pore volume exchange per year and provide an effective treatment. The following design parameters are recommended for the full scale design.

- Radius of influence: 20 feet;
- Design air flow rate: 38 ACFM per well (the treatment area may require capping to prevent short circuiting of vacuum propagation);
- Well spacing: 40 feet on center;
- Design well head vacuum: up to 12 in Hg ; and
- Water extraction rate: up to 3.5 gpm per well.

SGW-23 Area Pilot Test Summary
28 January 2021
Page 8

LIQUID INJECTION FEASABILITY TEST

The injection rate tests were conducted with the purpose of informing a potential EISB or ISCO remedy. However, data gained from the tests can inform the design of any potential liquid injection systems.

Injection Preparation

The injection rate tests for MPE-OW-01 and MPE-OW-02 were conducted on April 29 ${ }^{\text {th }}$ and April $30^{\text {th }}, 2020$, respectively. The injection equipment consisted of an injection trailer with a $1,100-$ gallon polyethene tank, generator, and electrical centrifugal injection pump. Injectate consisted of potable water from a fire hydrant onsite, and, in the case of MPE-OW-01, a tracer solution consisting of concentrated sodium bromide was added to the batch to create an injected concentration of $210 \mathrm{mg} / \mathrm{L}$ sodium bromide. A pilot injection notification was provided to the Underground Injection Control department at the Georgia Environmental Protection Division. Injectate was fed through a totalizing flowmeter and into an injection wellhead affixed with a pressure gauge to monitor injection pressure.

Baseline samples for bromide analysis were collected from MPE-OW-02, MPE-01, MW-23, and MW-24 on March $27^{\text {th }}, 2020$. Background bromide concentrations are generally low, the highest observed concentration was $0.93 \mathrm{mg} / \mathrm{L}$ at MPE-OW-02, followed by $0.80 \mathrm{mg} / \mathrm{L}$ at MPE-01 and MW-23, and a non-detect result from MW-24. Background samples were also collected for fluorescein dye which were non-detect at all locations. Fluorescein was retained as a potential back-up tracer in the event background bromide levels were too high. Bromide was used over fluorescein because it is a conservative tracer, readily available, and inexpensive. A concentrated $250 \mathrm{~g} / \mathrm{L}$ sodium bromide solution was prepared by SiREM lab in Knoxville, TN and shipped to the site.

Approximately 1 -liter of $250 \mathrm{~g} / \mathrm{L}$ sodium bromide solution was added to the 500 -gal batch for MPE-OW-01, and a sample collected from the batch tank showed a concentration of $210 \mathrm{mg} / \mathrm{L}$ in the tank. The injection rate for both wells followed generally the same procedure with three primary goals:

- evaluate sustainable injection rates at pressures which do not result in surfacing of injectate (daylighting);
- evaluate the effect of screen length on observed injection rate; and
- evaluate radius of influence (ROI) for potential full scale design.

SGW-23 Area Pilot Test Summary
28 January 2021
Page 9

Injection Activity

At MPE-OW-01, injection initially commenced under gravity flow conditions. Totalizer readings were recorded on 10 to 20 -minute intervals and water level measurements were collected from surrounding monitoring wells on 30 minute intervals. When the water level in the injection area stabilized from gravity flow (about 6 hours), the injection pump was utilized to increase injection pressure to $0.5 \mathrm{psi}, 1.0 \mathrm{psi}$, and finally 2.0 psi . Water levels continued to be monitored in surrounding wells during this time and injection ceased when daylighting was observed while injecting at 2 psi. The totalizer indicated a total of 497.4 gallons was injected into MPE-OW-01.

At MPE-OW-02, injection briefly commenced under gravity flow conditions, then injection pressure was increased to 0.5 psi for two hours, and then increased again to 1.0 psi for one-and-ahalf hours until daylighting was observed. At that point the injection pump was shut down, and the remainder of the batch was injected via gravity flow. Table 3 provides water level measurements collected throughout the event, and Table 4 provides the wellhead pressure and totalizer measurements.

Injection Monitoring

Field parameters (pH , conductivity, ORP, DO, and temperature) were recorded from the five wells in the pilot test area at the start and end of each injection day. Field parameter readings are tabulated in Table 5. Samples for bromide analysis were collected from MPE-01, MPE-OW-02, MW-23, and MW-24 immediately after wrapping up injection on April 29, 2020 and again in the morning of April 30, 2020, before starting the injection test that day. Bromide results at surrounding wells following the injection rate test into MPE-OW-01 are presented in the table below:

Location	Approximate Distance from Injection Well	Background $(\mathbf{m g} / \mathrm{L})$	4/29 End-of-day Concentration $(\mathbf{m g} / \mathrm{L})$	4/30 Beginning-of-Day Concentration $(\mathbf{m g} / \mathrm{L})$
MPE-01	5	0.8	<0.50	0.97
MPE-OW-02	12	0.93	2.6	<0.50
MW-24	22	<0.50	0.52	1.2
MW-23	40	0.8	1.1	<0.50

Bromide observations at wells placed at varied distances from the injection point were used to estimate the injection radius of influence. Bromide results from the $29^{\text {th }}$ indicate transport from MPE-OW-01 to MPE-OW-02, 12 ft away, and potentially MW-24, 22 ft away. The concentration of bromide at MPE-OW-01 increased from $0.93 \mathrm{mg} / \mathrm{L}$ to $2.6 \mathrm{mg} / \mathrm{L}$, and at MW-24 bromide

SGW-23 Area Pilot Test Summary

28 January 2021
Page 10
increased from non-detect to $0.52 \mathrm{mg} / \mathrm{L}$. A rainstorm was recorded in the Brunswick, GA area in the early morning of April 30, 2020, resulting in 0.26 in of rain on the pilot test area prior to collecting the bromide samples on the $30^{\text {th }}$ (www.weatherunderground.com). Infiltration from precipitation likely influenced the transport and dilution of bromide in the subsurface due to the shallow water table and well-draining sands present. Overnight transport of bromide was not able to be determined from the data due to this precipitation event. A good indicator of rainwater dilution are the results from MPE-OW-02 where bromide was $2.6 \mathrm{mg} / \mathrm{L}$ on the afternoon of the $29^{\text {th }}$, but non-detect the following morning. Similar dilution is exhibited at MW-23, from $1.1 \mathrm{mg} / \mathrm{L}$ on the $29^{\text {th }}$ to non-detect on the $30^{\text {th }}$. Bromide results from the $29^{\text {th }}$ indicate transport from MPE-OW-01 radially outward to MPE-OW-02, 12 ft away, and potentially MW-24, 22 ft away. The concentration of bromide at MPE-OW-01 increased from $0.93 \mathrm{mg} / \mathrm{L}$ to $2.6 \mathrm{mg} / \mathrm{L}$, and at MW-24 bromide increased from non-detect to $0.52 \mathrm{mg} / \mathrm{L}$.

Water level changes in response to the injection were used to evaluate the degree to which the injectate would mound in the area around the injection well versus spreading out into the aquifer. Baseline groundwater elevations within the pilot test area were less than $2-\mathrm{ft}$ bgs. at the start of the injection test into MPE-OW-01. Water level monitoring during gravity flow conditions show an increase of 0.37 to $0.62-\mathrm{ft}$ throughout the plot. The table below shows observed mounding under gravity flow conditions for each observation well and its distance from MPE-OW-01.

Observation Well	MPE-01	MPE-OW-02	MW-24	MW-23
Distance from Injection Well (ft)	5	10	22	40
Maximum Observed Change in Groundwater Elevation (ft)	0.62	0.37	0.5	0.33

The following day, injection commenced at MPE-OW-02 under 0.5 psi which was increased to 1 psi after two hours and held at 1-psi for two hours.

The table below displays the average observed flow rates at each injection pressure for both MPE-OW-01 and MPE-OW-02:

		Injection Pressure		
Injection Well	Date of Injection Test	$\mathbf{0} \mathbf{~ p s i}$	$\mathbf{0 . 5} \mathbf{~ p s i}$	$\mathbf{1 - 2} \mathbf{~ p s i}$
MPE-OW-01	$4 / 29 / 2020$	0.87 gpm	1.47 gpm	$4.75^{*} \mathrm{gpm}$
MPE-OW-02	$4 / 30 / 2020$	0.63 gpm	1.50 gpm	$1.95^{* *} \mathrm{gpm}$

* daylighting observed and injection ceased after approximately 20-minutes at 2-psi.
** daylighting observed and injection ceased after approximately 1.5 hours at 1-psi.

SGW-23 Area Pilot Test Summary
28 January 2021
Page 11

Observed flow rates under gravity flow and pressure and generally similar between the two locations. The $4.75-\mathrm{gpm}$ observed at ME-OW-01 under 1-psi was the result of injection fluid surfacing and is not considered a sustainable injection pressure. The addition of an additional $2-\mathrm{ft}$ of injection well screen at MPE-OW-02 did not impart a noticeable increase in the specific capacity of the injection well. Furthermore, gravity flow conditions at MPE-OW-02 were tested after approximately 400 -gallons of injectate, unlike the injection test in MPE-OW-01, so the decreased gravity flow rate at MPE-OW-02 compared to MPE-OW-01 may be due to the pressurized injection that occurred immediately prior. Gravity flow at MPE-OW-02 had to overcome dissipating mounding pressure in addition to natural pore water entry pressure.

Conclusions Related to Liquid Injection Feasibility and Design Parameters

Based on the pilot test results, liquid injection of amendments would be feasible under gravity feed conditions or very low pressure (e.g. 0.5 psi) conditions. Injection under gravity flow conditions resulted in relatively low groundwater mounding ($0.33-0.67 \mathrm{ft}$) throughout the pilot, and no daylighting was observed. Under pressurized injection conditions, daylighting of injectate was observed when pressures were increased to 1 psi in one of the test wells and 2 psi in the other test well. In addition to monitoring injection pressure and mounding, ROI was evaluated by injecting bromide as a conservative tracer. The following design parameters are recommended for the full scale design.

- Observed ROI was up to 22 ft .; however, closer well spacing to provide overlapping ROIs can be used to mitigate the potential for daylighting if the design volume per well requires long-term injection.
- Design injection pressure: Gravity feed (0 psi) up to 0.5 psi . Up to 1 psi may be possible based on observations at one of the two wells used during this pilot injection.
- Design injection flowrate: gravity feed at 0.75 gpm (average of MPE-OW-01 and MPE-OW-02 flowrates) or low pressure ($0.5-1 \mathrm{psi}$) at 1.5 gpm . These are initial injection flow rates, and injection flow rates can slow down over the course of an injection event.
- Injection well screens: injection well screens from 2-12 feet below ground surface were used successfully in this injection test. Future remedial designs could also provide varied well screen depths and presume deeper placement of the top of the well screen would result in the ability to apply some degree of additional injection pressure.

SGW-23 Area Pilot Test Summary
28 January 2021
Page 12

Groundwater level should be monitored closely during full scale injection because the superposition of multiple wells receiving injectate at once could result in unacceptable mounding or surfacing of groundwater. Injections must cease if surfacing is observed to allow the treatment area to recover to pre-injection groundwater levels. Sequencing the distribution of injectate so that adjacent injection wells are not receiving fluid at the same time will reduce mounding potential. Injection wells MPE-OW-01 and MPE-OW-02 were installed via hollow-stem auger and performed well during the test; however, the drilling team reported some difficulty during installation due to the loose, sandy conditions. The low clay and high sand content of the formation may allow for alternative, less intrusive drilling methods - such as direct push technology (DPT) - to be utilized.

Attachments: Table 1 - Summary of Groundwater Analytical Results
Table 2 - Summary of Vapor Analytical Results
Table 3 - Injection Rate Test - Water Level Measurements
Table 4 - Injection Rate Test - Injection Pressure and Totalizer Readings
Table 5 - Injection Rate Test - Field Parameters
Figure 1 - Site Location - SGW-23 Area
Figure 2 - MPE Pilot and Injection Rate Test Well Layout
Figure 3 - Depth to Water Changes in the Observation Wells During MPE Test
Attachment A: Boring Logs and Well Construction Details
Attachment B: MPE Contractor Field Report
Attachment C: Summary of MPE Pilot Test Measurements
Attachment D: Analytical Laboratory Reports

TABLES

Table 1
Summary of Groundwater Analytical Results
Hercules LLC/Pinova Inc. Facility, Brunswick, GA

Well ID	Units	MPE-01			
Sample Date		04/28/20			
Lab ID		680-183249-1	680-183249-2	680-183249-3	680-183249-4
Sample Name		MPE-GW-042820-1	MPE-GW-042820-2	MPE-GW-042820-3	MPE-GW-042820-4
Volatile Organic Compounds					
1,1-Dichloroethane	$\mu \mathrm{g} / \mathrm{L}$	0.38 U	0.38 U	0.38 U	19 U
1,1-Dichloroethene	$\mu \mathrm{g} / \mathrm{L}$	0.36 U	0.36 U	0.36 U	18 U
1,2,4-Trichlorobenzene	$\mu \mathrm{g} / \mathrm{L}$	2.5 U	2.5 U	2.5 U	130 U
1,2-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{L}$	0.37 U	0.37 U	0.37 U	19 U
1,2-Dichloropropane	$\mu \mathrm{g} / \mathrm{L}$	0.67 U	0.67 U	0.67 U	34 U
1,4-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{L}$	0.46 U	0.46 U	0.46 U	23 U
4-Methyl-2-Pentanone (MIBK)	$\mu \mathrm{g} / \mathrm{L}$	470	310	340	750
Acetone	$\mu \mathrm{g} / \mathrm{L}$	200	220	170	350 U
Benzene	$\mu \mathrm{g} / \mathrm{L}$	320	250	260	9,300
Carbon Disulfide	$\mu \mathrm{g} / \mathrm{L}$	1.0 U	1.0 U	1.0 U	50 U
Chlorobenzene	$\mu \mathrm{g} / \mathrm{L}$	0.26 U	0.26 U	0.26 U	13 U
Chloroform	$\mu \mathrm{g} / \mathrm{L}$	0.50 U	0.50 U	0.50 U	25 U
cis-1,2-Dichloroethene	$\mu \mathrm{g} / \mathrm{L}$	0.41 U	0.41 U	0.41 U	21 U
Ethylbenzene	$\mu \mathrm{g} / \mathrm{L}$	4.6	20	28	28 J
Methyl Ethyl Ketone (MEK)	$\mu \mathrm{g} / \mathrm{L}$	12	12	9.6 J	170 U
Methylene Chloride	$\mu \mathrm{g} / \mathrm{L}$	2.5 U	2.5 U	2.5 U	130 U
p-Cymene	$\mu \mathrm{g} / \mathrm{L}$	440	190	170	6,000
Tetrachloroethene	$\mu \mathrm{g} / \mathrm{L}$	0.74 U	0.74 U	0.74 U	37 U
Toluene	$\mu \mathrm{g} / \mathrm{L}$	87	94	140	1,700
Vinyl Chloride	$\mu \mathrm{g} / \mathrm{L}$	0.50 U	0.50 U	0.50 U	25 U
Xylenes (Total)	$\mu \mathrm{g} / \mathrm{L}$	27	150	210	55
Total VOCs	$\mu \mathrm{g} / \mathrm{L}$	1560.6	1246	1318	17805
Alkalinity					
Alkalinity	mg / L	110	110	130	97
Bicarbonate Alkalinity as CaCO_{3}	mg / L	110	110	130	97
Bicarbonate ion as HCO_{3}	mg / L	140	140	160	120
Carbon Dioxide, Free	mg / L	7.9	7.1	5.0 U	120
Carbonate Alkalinity as CaCO_{3}	mg / L	5.0 U	5.0 U	5.0 U	5.0 U
Hydroxide Alkalinity	mg/L	5.0 U	5.0 U	5.0 U	5.0 U
Phenolphthalein Alkalinity	mg / L	5.0 U	5.0 U	5.0 U	5.0 U
Total Metals					
Iron	$\mu \mathrm{g} / \mathrm{L}$	3,600	4,700	2,100	1,100
Manganese	$\mu \mathrm{g} / \mathrm{L}$	200	230	140	67
Solids, Total Suspended (TSS)					
Total Suspended Solids	mg / L	390	410	57	28
Total Hardness (as CaCO_{3}) by Calculation					
Hardness as CaCO_{3}	mg / L	190	190	160	160
Calcium Hardness as CaCO_{3}	mg / L	95	90	75	65
Magnesium Hardness as CaCO_{3}	mg / L	91	99	86	99

Notes:

$\mu \mathrm{g} / \mathrm{L}$ - micrograms per liter; mg / L - milligrams per liter; CaCO 3 - calcium carbonate; HCO_{3} - bicarbonate
J - Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value U - Indicates the analyte was analyzed for but not detected.

Table 2
Summary of Soil Vapor Analytical Results
Hercules LLC/Pinova Inc. Facility, Brunswick, GA

Well ID	Units	MPE-01			
Sample Date		04/28/20			
Lab ID		140-19001-1	140-19001-2	140-19001-3	140-19001-4
Sample Name		MPE VP01 042820	MPE VP02 042820	MPE VP03 042820	MPE VP04 042820
Volatile Organic Compounds					
1,2,3-Trichloropropane	$\mu \mathrm{g} / \mathrm{m}^{3}$	320 U	240 U	350 U	250 U
Acetone	$\mu \mathrm{g} / \mathrm{m}^{3}$	2,400 U	1,800 U	2,600 U	1,900 U
Benzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	37,000	40,000	43,000	51,000
Chlorobenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	52 U	39 U	58 U	41 U
Chloroform	$\mu \mathrm{g} / \mathrm{m}^{3}$	55 U	41 U	61 U	43 U
Ethylbenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	100 U	150 J	160 J	200 J
Methyl Isobutyl Ketone (MEK)	$\mu \mathrm{g} / \mathrm{m}^{3}$	880 J	1,300	1,500 J	1,500
Naphthalene	$\mu \mathrm{g} / \mathrm{m}^{3}$	700 U	520 U	780 U	550 U
p-Cymene	$\mu \mathrm{g} / \mathrm{m}^{3}$	7,400	12,000	14,000	14,000
Toluene	$\mu \mathrm{g} / \mathrm{m}^{3}$	5,500	6,300	7,200	8,200
Vinyl Chloride	$\mu \mathrm{g} / \mathrm{m}^{3}$	120 U	88 U	130 U	93 U
m,p-Xylene	$\mu \mathrm{g} / \mathrm{m}^{3}$	320 J	370 J	460 J	590 J
o-Xylene	$\mu \mathrm{g} / \mathrm{m}^{3}$	160 J	180 J	240 J	260 J
Xylene (Total)	$\mu \mathrm{g} / \mathrm{m}^{3}$	480 J	550 J	700 J	850 J

Notes:
$\mu \mathrm{g} / \mathrm{m}^{3}$ - micrograms per cubic meter
J - Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value. U - Indicates the analyte was analyzed for but not detected

Table 3
Injection Rate Test - Water Level Measurements
Hercules LLC/Pinova Inc. Facility, Brunswick, GA

Location	TOC Elevation (ft. AMSL)	Date	Time	Depth to Water (ft. bTOC)	GW Elevation
MPE-01	9.5646	4/29/2020	10:14	1.40	8.16
MPE-01	9.5646	4/29/2020	10:24	1.27	8.2946
MPE-01	9.5646	4/29/2020	10:34	1.20	8.3646
MPE-01	9.5646	4/29/2020	11:04	1.12	8.4446
MPE-01	9.5646	4/29/2020	11:34	1.10	8.4646
MPE-01	9.5646	4/29/2020	12:04	0.78	8.7846
MPE-01	9.5646	4/29/2020	12:34	0.78	8.7846
MPE-01	9.5646	4/29/2020	13:04	0.78	8.7846
MPE-01	9.5646	4/29/2020	13:34	0.78	8.7846
MPE-01	9.5646	4/29/2020	14:04	0.79	8.7746
MPE-01	9.5646	4/29/2020	14:34	0.79	8.7746
MPE-01	9.5646	4/29/2020	15:04	0.79	8.7746
MPE-01	9.5646	4/29/2020	15:34	0.80	8.7646
MPE-01	9.5646	4/29/2020	16:04	0.89	8.6746
MPE-01	9.5646	4/30/2020	9:00	1.45	8.1146
MPE-01	9.5646	4/30/2020	10:10	1.08	8.4846
MPE-01	9.5646	4/30/2020	10:20	0.88	8.6846
MPE-01	9.5646	4/30/2020	10:30	0.78	8.7846
MPE-01	9.5646	4/30/2020	11:00	0.68	8.8846
MPE-01	9.5646	4/30/2020	11:30	0.60	8.9646
MPE-01	9.5646	4/30/2020	12:00	0.55	9.0146
MPE-01	9.5646	4/30/2020	12:30	0.55	9.0146
MPE-01	9.5646	4/30/2020	13:00	0.55	9.0146
MPE-OW-01	9.5125	4/30/2020	9:00	1.38	8.1325
MPE-OW-01	9.5125	4/30/2020	10:10	0.70	8.8125
MPE-OW-01	9.5125	4/30/2020	10:20	0.50	9.0125
MPE-OW-01	9.5125	4/30/2020	10:30	0.50	9.0125
MPE-OW-01	9.5125	4/30/2020	11:00	0.50	9.0125
MPE-OW-01	9.5125	4/30/2020	11:30	0.45	9.0625
MPE-OW-01	9.5125	4/30/2020	12:00	0.40	9.1125
MPE-OW-01	9.5125	4/30/2020	12:30	0.40	9.1125
MPE-OW-01	9.5125	4/30/2020	13:00	0.40	9.1125
MPE-OW-02	9.5041	4/29/2020	10:14	1.15	8.3541
MPE-OW-02	9.5041	4/29/2020	10:24	1.09	8.4141

Table 3
Injection Rate Test - Water Level Measurements
Hercules LLC/Pinova Inc. Facility, Brunswick, GA

Location	TOC Elevation (ft. AMSL)	Date	Time	Depth to Water (ft. bTOC)	GW Elevation
MPE-OW-02	9.5041	4/29/2020	10:34	1.06	8.4441
MPE-OW-02	9.5041	4/29/2020	11:04	1.03	8.4741
MPE-OW-02	9.5041	4/29/2020	11:34	0.88	8.6241
MPE-OW-02	9.5041	4/29/2020	12:04	0.78	8.7241
MPE-OW-02	9.5041	4/29/2020	12:34	0.78	8.7241
MPE-OW-02	9.5041	4/29/2020	13:04	0.78	8.7241
MPE-OW-02	9.5041	4/29/2020	13:34	0.79	8.7141
MPE-OW-02	9.5041	4/29/2020	14:04	0.80	8.7041
MPE-OW-02	9.5041	4/29/2020	14:34	0.81	8.6941
MPE-OW-02	9.5041	4/29/2020	15:04	0.81	8.6941
MPE-OW-02	9.5041	4/29/2020	15:34	0.86	8.6441
MPE-OW-02	9.5041	4/29/2020	16:04	0.94	8.5641
MPE-OW-02	9.5041	4/30/2020	9:00	1.35	8.1541
MW-23	9.91	4/29/2020	10:14	1.67	8.24
MW-23	9.91	4/29/2020	10:24	1.55	8.36
MW-23	9.91	4/29/2020	10:34	1.72	8.19
MW-23	9.91	4/29/2020	11:04	1.69	8.22
MW-23	9.91	4/29/2020	11:34	1.66	8.25
MW-23	9.91	4/29/2020	12:04	1.61	8.3
MW-23	9.91	4/29/2020	12:34	1.61	8.3
MW-23	9.91	4/29/2020	13:04	1.59	8.32
MW-23	9.91	4/29/2020	13:34	1.60	8.31
MW-23	9.91	4/29/2020	14:04	1.58	8.33
MW-23	9.91	4/29/2020	14:34	1.56	8.35
MW-23	9.91	4/29/2020	15:04	1.34	8.57
MW-23	9.91	4/29/2020	15:34	1.52	8.39
MW-23	9.91	4/29/2020	16:04	1.54	8.37
MW-23	9.91	4/30/2020	9:00	1.65	8.26
MW-23	9.91	4/30/2020	10:10	1.55	8.36
MW-23	9.91	4/30/2020	10:20	1.52	8.39
MW-23	9.91	4/30/2020	10:30	1.50	8.41
MW-23	9.91	4/30/2020	11:00	1.44	8.47
MW-23	9.91	4/30/2020	11:30	1.42	8.49
MW-23	9.91	4/30/2020	12:00	1.38	8.53
MW-23	9.91	4/30/2020	12:30	1.37	8.54

Table 3
Injection Rate Test - Water Level Measurements
Hercules LLC/Pinova Inc. Facility, Brunswick, GA

Location	TOC Elevation (ft. AMSL)	Date	Time	Depth to Water (ft. bTOC)	GW Elevation
MW-23	9.91	4/30/2020	13:00	1.35	8.56
MW-23	9.91	4/30/2020	13:30	1.28	8.63
MW-23	9.91	4/30/2020	14:00	1.22	8.69
MW-24	10.04	4/29/2020	10:14	1.80	8.24
MW-24	10.04	4/29/2020	10:24	1.73	8.31
MW-24	10.04	4/29/2020	10:34	1.53	8.51
MW-24	10.04	4/29/2020	11:04	1.47	8.57
MW-24	10.04	4/29/2020	11:34	1.47	8.57
MW-24	10.04	4/29/2020	12:04	1.30	8.74
MW-24	10.04	4/29/2020	12:34	1.38	8.66
MW-24	10.04	4/29/2020	13:04	1.37	8.67
MW-24	10.04	4/29/2020	13:34	1.38	8.66
MW-24	10.04	4/29/2020	14:04	1.37	8.67
MW-24	10.04	4/29/2020	14:34	1.37	8.67
MW-24	10.04	4/29/2020	15:04	1.54	8.5
MW-24	10.04	4/29/2020	15:34	1.34	8.7
MW-24	10.04	4/29/2020	16:04	1.63	8.41
MW-24	10.04	4/30/2020	9:00	1.62	8.42
MW-24	10.04	4/30/2020	10:10	1.49	8.55
MW-24	10.04	4/30/2020	10:20	1.41	8.63
MW-24	10.04	4/30/2020	10:30	1.36	8.68
MW-24	10.04	4/30/2020	11:00	1.27	8.77
MW-24	10.04	4/30/2020	11:30	1.23	8.81
MW-24	10.04	4/30/2020	12:00	1.20	8.84
MW-24	10.04	4/30/2020	12:30	1.20	8.84
MW-24	10.04	4/30/2020	13:00	1.16	8.88
MW-24	10.04	4/30/2020	13:30	1.00	9.04
MW-24	10.04	4/30/2020	14:00	0.92	9.12

Notes:
ft . AMSL - feet above mean sea level
ft. bTOC - feet below top of casing

Table 4
Injection Rate Test - Injection Pressure and Totalizer Readings
Hercules LLC/Pinova Inc. Facility, Brunswick, GA

Injection Well	Date	Time	Wellhead Pressure (psi)	Totalizer (gallons)
MPE-OW-01	4/29/2020	10:03	0.0	4.0
	4/29/2020	10:14	0.0	12.1
	4/29/2020	10:24	0.0	20.9
	4/29/2020	10:34	0.0	29.5
	4/29/2020	10:44	0.0	38.3
	4/29/2020	10:54	0.0	46.1
	4/29/2020	11:04	0.0	54.0
	4/29/2020	11:24	0.0	79.2
	4/29/2020	11:44	0.0	88.5
	4/29/2020	12:04	0.0	113.5
	4/29/2020	12:24	0.0	136.8
	4/29/2020	12:44	0.0	159.0
	4/29/2020	13:04	0.0	179.8
	4/29/2020	13:24	0.0	199.2
	4/29/2020	13:44	0.0	217.8
	4/29/2020	14:04	0.0	235.5
	4/29/2020	14:24	0.0	252.2
	4/29/2020	14:44	0.0	268.1
	4/29/2020	15:04	0.0	282.3
	4/29/2020	15:24	0.0	296.2
	4/29/2020	15:44	0.0	309.2
	4/29/2020	16:04	0.0	320.4
	4/29/2020	16:15	0.5	332.3
	4/29/2020	16:25	0.5	347.6
	4/29/2020	16:47	0.5	384.0
	4/29/2020	17:00	0.5	403.3
	4/29/2020	17:10	0.5	420.0
	4/29/2020	17:20	0.5	433.4
	4/29/2020	17:31	0.5	450.0
	4/29/2020	17:36	1.0	460.0
	4/29/2020	17:38	1.0	475.0
	4/29/2020	17:40	2.0	497.4

Table 4
Injection Rate Test - Injection Pressure and Totalizer Readings
Hercules LLC/Pinova Inc. Facility, Brunswick, GA

Injection Well	Date	Time	Wellhead Pressure (psi)	Totalizer (gallons)
MPE-OW-02	4/30/2020	10:00	0.0	497.4
	4/30/2020	10:10	0.0	513.2
	4/30/2020	10:20	0.5	530.2
	4/30/2020	10:30	0.5	547.1
	4/30/2020	10:50	0.5	580.0
	4/30/2020	11:10	0.5	611.0
	4/30/2020	11:30	0.5	641.1
	4/30/2020	11:50	0.5	670.0
	4/30/2020	12:12	0.5	700.0
	4/30/2020	12:30	0.5	723.5
	4/30/2020	12:50	0.5	749.0
	4/30/2020	13:10	--	767.2
	4/30/2020	13:20	1.0	790.2
	4/30/2020	13:30	1.0	811.8
	4/30/2020	13:37	1.0	--
	4/30/2020	13:40	1.0	834.0
	4/30/2020	13:50	1.0	855.0
	4/30/2020	14:00	1.0	876.1
	4/30/2020	14:10	1.0	897.5
	4/30/2020	14:16	1.0	--
	4/30/2020	14:19	0.0	915.0
	4/30/2020	14:30	0.0	921.8
	4/30/2020	14:40	0.0	928.9
	4/30/2020	15:00	0.0	942.0
	4/30/2020	15:33	0.0	963.5
	4/30/2020	15:50	0.0	974.1
	4/30/2020	16:10	0.0	986.5
	4/30/2020	16:30	0.0	998.2
	4/30/2020	16:52	0.0	1010.2

Notes:
psi - pounds per square inch

Table 5
Injection Rate Test - Field Parameters
Hercules LLC/Pinova Inc. Facility, Brunswick, GA

Location	Date	Time	pH	DO	ORP	Conductivity	Temperature	Comments (e.g., color, odor, precipitates, etc.)
			s.u.	(mg/L)	(mV)	($\mu \mathrm{S} / \mathrm{cm}$)	$\left({ }^{\circ} \mathrm{C}\right)$	
MPE-01	4/29/20	9:03	5.65	0.34	-284	1,021	22.3	Pre-injection; salinity $=0.51 \mathrm{ppt} ; 8^{\prime}$ btoc
MPE-OW-01	4/29/20	8:47	5.49	0.42	-343	1,265	22.3	Pre-injection; salinity $=0.63 \mathrm{ppt} ; 10^{\prime} \mathrm{btoc}$
MPE-OW-02	4/29/20	8:55	5.42	0.43	-293	1,127	22.2	Pre-injection; salinity $=0.56 \mathrm{ppt} ; 10^{\prime} \mathrm{btoc}$
MW-23	4/29/20	9:20	5.34	0.41	-271	1,120	22.7	Pre-injection
MW-24	4/29/20	8:40	6.19	0.46	-337	880	23.3	Pre-injection
MW-24	4/29/20	18:13	6.05	0.56	-236.2	1,061	23.4	Post-injection
MPE-01	4/29/20	18:24	5.73	0.42	-235.2	1,106	22.4	Post-injection
MPE-OW-02	4/29/20	18:35	5.54	0.41	-249.9	1,154	22.4	Post-injection; salinity $=0.57 \mathrm{ppt}$
MW-23	4/29/20	18:45	5.32	0.42	-236.9	1,111	22.8	Post-injection
MPE-01	4/30/20	9:45	5.57	0.44	-242.3	1,046	22.3	Pre-injection; salinity $=0.52 \mathrm{ppt}$
MPE-OW-01	4/30/20	9:50	6.90	0.40	-169.2	2,222	25.8	Pre-injection; salinity $=1.13 \mathrm{ppt}$
MPE-OW-02	4/30/20	9:40	5.41	0.46	-248.8	1,138	22.3	Pre-injection; salinity $=0.57 \mathrm{ppt}$
MW-23	4/30/20	9:55	5.36	0.44	-252.7	1,114	22.8	Pre-injection; salinity $=0.55 \mathrm{ppt}$
MW-24	4/30/20	9:35	5.91	0.51	-265.2	1,129	23.3	Pre-injection; salinity $=0.56 \mathrm{ppt}$
MW-24	4/30/20	17:00	6.10	1.19	-248.7	1,095	23.50	Post-injection
MPE-01	4/30/20	17:05	5.71	0.72	-235.8	1,143	22.40	Post-injection; salinity $=0.57 \mathrm{ppt}$
MPE-OW-01	4/30/20	17:10	6.78	0.82	-117.8	2,180	24.70	Post-injection; salinity $=1.11 \mathrm{ppt}$
MW-23	4/30/20	17:15	5.32	0.49	-231.9	1,113	22.90	Post-injection; salinity $=0.55 \mathrm{ppt}$

Notes:
** - sensor reading is out of range
DO - dissolved oxygen
ORP - oxidation-reduction potential
mV -millivolt $\quad \mu \mathrm{S} / \mathrm{cm}-$ microsiemens per centimeter
s.u. - standard unit
${ }^{\circ} \mathrm{C}$ - degrees Celsius

FIGURES

APPENDIX A

Drilling Start Date:	2/18/2020	Boring Depth (ft):	10.3	Well Depth (ft):	10.3
Drilling End Date:	2/18/2020	Boring Diameter (in):	8.00	Well Diameter (in):	4.0
Drilling Company:	Betts Environmental	Sampling Method(s):	Direct Push	Screen Slot (in):	0.020
Drilling Method:	DPT and Hollow Stem Auger	DTW During Drilling (ft):	NM	Riser Material:	Sch 40 PVC
Drilling Equipment:	Geoprobe 7822DT	DTW After Drilling (ft BT	1.58	Screen Material:	Sch 40 PVC Slotted
Driller:	Chris Golden	Top of Casing Elev. (ft):	9.56	Seal Material(s):	Bentonite Pellets
Logged By:	Nardos Tilahun	Location (X,Y):	870457.13, 424368.64	Filter Pack:	20/40 Silica Sand

$\begin{aligned} & \mathbb{E} \\ & \underline{I} \\ & \vdots \\ & \hline \mathrm{U} \end{aligned}$	$\begin{aligned} & \text { 广 } \\ & \text { O } \\ & \text { O} \\ & \text { 우 } \\ & \underline{\Xi} \end{aligned}$			COLLECT					SOIL/ROCK VISUAL DESCRIPTION	REMARKS	
					$\stackrel{\otimes}{\underset{\mid}{®}}$						

NOTES: Hole precleared using hand auger. 4.5 bags of sand used. 0.167 cubic feet of bentonite pellets used.

Drilling Start Date:	2/18/2020	Boring Depth (ft):	17.3	Well Depth (ft):	17.3
Drilling End Date:	2/18/2020	Boring Diameter (in):	6.00	Well Diameter (in):	2.0
Drilling Company:	Betts Environmental	Sampling Method(s):	Direct Push	Screen Slot (in):	0.010
Drilling Method:	DPT and Hollow Stem Auger	DTW During Drilling (ft):	NM	Riser Material:	Sch 40 PVC
Drilling Equipment:	Geoprobe 7822DT	DTW After Drilling (ft BTOC):	1.51	Screen Material:	Sch 40 PVC Slotted
Driller:	Chris Golden	Top of Casing Elev. (ft):	9.51	Seal Material(s):	Bentonite Pellets
Logged By:	Nardos Tilahun	Location (X, Y):	870461.58, 424368.92	Filter Pack:	20/40 Silica Sand

				COLLECT					SOIL/ROCK VISUAL DESCRIPTION	REMARKS	
					$\stackrel{\otimes}{\underline{=}}$	$\begin{aligned} & \stackrel{0}{2} \\ & \frac{1}{3} \\ & 0 \\ & 3 \\ & \frac{0}{0} \end{aligned}$					

NOTES: 4.5 bags of sand used, 0.33 cubic feet of bentonite pellets used

Drilling Start Date:	2/18/2020	Boring Depth (ft):	17.3	Well Depth (ft):	17.3
Drilling End Date:	2/18/2020	Boring Diameter (in):	6.00	Well Diameter (in):	2.0
Drilling Company:	Betts Environmental	Sampling Method(s):	Direct Push	Screen Slot (in):	0.010
Drilling Method:	DPT Hollow Stem Auger	DTW During Drilling (ft):	NM	Riser Material:	Sch 40 PVC
Drilling Equipment:	Geoprobe 7822DT	DTW After Drilling (ft BT	1.49	Screen Material:	Sch 40 PVC Slotted
Driller:	Chris Golden	Top of Casing Elev. (ft):	9.50	Seal Material(s):	Bentonite Pellets
Logged By:	Nardos Tilahun	Location (X,Y):	870460.70, 424359.36	Filter Pack:	20/40 Silica Sand

	$\begin{aligned} & \text { 广 } \\ & \text { O} \\ & \text { 무 } \\ & \text { 돌 } \end{aligned}$			COLLECT					SOIL/ROCK VISUAL DESCRIPTION	REMARKS	
					$\stackrel{\otimes}{\underline{E}}$	$\begin{aligned} & n \\ & \vdots \\ & 0 \\ & 0 \\ & 3 \\ & \frac{0}{0} \end{aligned}$					

NOTES: Four bags of sand used. 0.03 cubic feet of bentonite pellets

Drilling Start Date:	2/19/2020	Boring Depth (ft):	5.3	Well Depth (ft):	5.3
Drilling End Date:	2/19/2020	Boring Diameter (in):	3.00	Well Diameter (in):	1.0
Drilling Company:	Betts Environmental	Sampling Method(s):	N/A	Screen Slot (in):	0.010
Drilling Method:	Auger	DTW During Drilling (ft BTOC)		Riser Material:	Sch 40 PVC
Drilling Equipment:	Hand Auger	DTW After Drilling (ft BTOC):	1.45	Screen Material:	Sch 40 PVC Slotted
Driller:	Chris Golden	Top of Casing Elev. (ft):	9.42	Seal Material(s):	Bentonite Pellets
Logged By:	Nardos Tilahun	Location (X,Y):	870465.05, 424364.22	Filter Pack:	20/40 Silica Sand

	$\begin{aligned} & \text { © } \\ & 0 \\ & \text { 울 } \\ & \text { 폴 } \end{aligned}$			COLLECT					SOIL/ROCK VISUAL DESCRIPTION	REMARKS	
					$\stackrel{\otimes}{\underline{E}}$						

NOTES: $1 / 3$ bag of sand, $1 / 8$ bag of bentonite pellets

Drilling Start Date:	2/19/2020	Boring Depth (ft):	5.3	Well Depth (ft):	5.3
Drilling End Date:	2/19/2020	Boring Diameter (in):	3.00	Well Diameter (in):	1.0
Drilling Company:	Betts Environmental	Sampling Method(s):	N/A	Screen Slot (in):	0.010
Drilling Method:	Auger	DTW During Drilling (ft BTOC):		Riser Material:	Sch 40 PVC
Drilling Equipment:	Hand Auger	DTW After Drilling (ft BTOC):	1.65	Screen Material:	Sch 40 PVC Slotted
Driller:	Chris Golden	Top of Casing Elev. (ft):	9.66	Seal Material(s):	Bentonite Pellets
Logged By:	Nardos Tilahun	Location (X,Y):	870456.94, 424356.24	Filter Pack:	20/40 silica Sand

				COLLECT					SOIL/ROCK VISUAL DESCRIPTION	REMARKS	
					$\stackrel{\otimes}{\underset{\mid}{\Xi}}$	00 0 0 0 0 3 0 0		$\begin{aligned} & \text { Do } \\ & \frac{3}{0} \circ \\ & \text { no } \\ & \text { z } \end{aligned}$			

NOTES: $1 / 3$ bag of sand used. $1 / 8$ bag of bentonite pellets used.

Drilling Start Date:	2/19/2020	Boring Depth (ft):	5.3	Well Depth (ft):	5.3
Drilling End Date:	2/19/2020	Boring Diameter (in):	3.00	Well Diameter (in):	1.0
Drilling Company:	Betts Environmental	Sampling Method(s):	N/A	Screen Slot (in):	0.010
Drilling Method:	Auger	DTW During Drilling (ft BTOC):	2.15	Riser Material:	Sch 40 PVC
Drilling Equipment:	Hand Auger	DTW After Drilling (ft BTOC):	1.71	Screen Material:	Sch 40 PVC Slotted
Driller:	Chris Golden	Top of Casing Elev. (ft):	9.67	Seal Material(s):	Bentonite Pellets
Logged By:	Nardos Tilahun	Location (X, Y):	870465.77, 424380.89	Filter Pack:	20/40 Silica Sand

				COLLECT					SOIL/ROCK VISUAL DESCRIPTION	REMARKS	
					$\stackrel{\otimes}{\underset{\mid}{\Xi}}$	00 0 0 0 0 3 0 0		$\begin{aligned} & \text { Do } \\ & \frac{3}{0} \circ \\ & \text { no } \\ & \text { z } \end{aligned}$			

NOTES: $1 / 3$ bag of sand used. $1 / 8$ bag of bentonite pellets used.

APPENDIX B

500 Northpoint Pkwy SE
Acworth, GA 30102
Ali Ciblak
Geosyntec Consultants, Inc
www.fruits-us.com

1255 Roberts Boulevard, Suite 200
(866) 974-6999

Kennesaw, Georgia 30144
Subject:
Two Day High-Vacuum Remediation Pilot Study
Hercules Pinova Facility
2801 Cook Street
Brunswick, Georgia
Fruits Project: GA20-9074

Dear Mr. Ciblak:
Fruits \& Associates, Inc. is pleased to provide this summary of the High-Vacuum Remediation event that was conducted on April $27^{\text {th }}, 2020$ at the above referenced facility. Below is a summary of both the technology as well as the results of the actual event.

Technology:

High-Vacuum Remediation (HVR) involves the extraction of subsurface vapors and liquids via a monitoring well or recovery well. This is accomplished by applying high levels of vacuum pressure to the extraction point. To eliminate mounding of the water table, a drop tube (commonly known as a stinger) is inserted in the well to the static water level depth. The applied vacuum and airflow extracted from the well is pulled through this drop tube. As the water table attempts to mound due to the application of vacuum, the liquids are "slurped" through this drop tube. This slurping effectively maintains the static conditions of the water table while the elevated vacuum is applied to the well during the event. In order to minimize any change to the current smear zone associated with the site, seasonal water level data is analyzed. Once the extraction process is underway, the inlet of the stinger assembly is slowly lowered to the maximum historical water level observed for each extraction well. This draw down (one to ten feet below the static water level) depresses the water table and creates a cone of influence, which maximizes the efficiency of the high vacuum process.
Occasionally, fresh air (5 to 25 CFM) is introduced at the well surface to increase the airflow and enhance the liquid removal rate. In order to accurately record the actual removal rate from the well, an airflow gauge is mounted on the well head to measure the amount of fresh air that is introduced. This extra fresh air is subtracted from the total flow calculated for each extraction well. Additionally, two vacuum gauges are installed; one on the stinger assembly (well head vacuum), and one on the well casing (influence vacuum). If fresh air is introduced at the well head, the influence vacuum reading will be artificially lower than the actual applied vacuum because the inlet for fresh air is adjacent to this vacuum gauge port. The setup and piping configurations are shown in Figure \#1.

During the extraction process, the combined air and liquids are transferred to the mobile treatment system where the liquids are separated with a liquid scrubber / knockout system and discharged into a storage tank for future disposal. The hydrocarbon vapors are transferred to the off-gas treatment system and are incinerated in a forced air Thermal Oxidation (ThOx) unit at 1500 degrees Fahrenheit. After thorough destruction of the contaminants in the air stream, the clean air is discharged into the atmosphere. A complete flow diagram of this process is shown in Figure \#2.

Calculations:

During the HVR event, two measurements are taken, of both the influent and effluent flow rates, the concentrations of the vapors removed (before off-gas treatment), and the off-gas treatment system concentrations. These measurements are used to calculate the removal rates and the off-gas emission rates. The flow rates were measured using a Dwyer DS-300 Pitot tube attached to a differential pressure gauge. These flow rate measurements are reported in Actual Cubic Feet per Minute (ACFM). Before each event, these flow assemblies are calibrated to insure an accurate flow measurement. A separate flow rate is calculated for each influent well (if more than one well is connected), as well as for any additional fresh air that is introduced into the influent stream. The individual flow rates are combined to achieve the total flow and velocity derived from the extraction points. Because of the extremely high concentrations involved with a High Vacuum event, additional quench air (0 to 2,000 SCFM) is added to the vapor stream, just before entering the ThOx unit. An additional Pitot tube assembly is installed at the inlet of the ThOx unit and is used to measure the total flow. Combined with the off-gas concentration readings, this total flow rate is used to calculate the destruction efficiency of the system.
The concentration measurements are taken using a TVA-1000A FID instrument calibrated to methane. For comparison purposes, the removal rates are calculated in total carbon, as well as total hydrocarbons. This FID instrument has a dynamic range of $0-50,000$ PPM as methane, $0-100,000$ PPM as hydrocarbon. Our concentration samples are collected before any additional bleed or quench air is added to the extracted flow rate. These undiluted concentration measurements exceed the dynamic range of any FID instrument. In order to accurately record the high concentrations observed during a HVR event, a calibrated 10:1 dilution valve is used to cut the sample. This dilution valve, along with the FID instrument, is calibrated before the start of each event.

In order to eliminate the naturally occurring methane that is present during a typical HVR event, each concentration sample is measured twice. The first sample is collected directly from the system, and recorded as the total VOC concentration. The second sample is collected using an in-line activated carbon filter, which adsorbs the hydrocarbon compounds leaving only methane present in the sample to be measured. This methane only result is then subtracted from the total VOC concentration measurement (first sample), resulting in a Non Methane Organic Compound (NMOC) concentration. This NMOC concentration is used in the mass removal calculations. However, as with any FID instrument, the NMOC results are recorded as parts per million by volume $\left(\mathrm{PPM}_{\mathrm{v}}\right)$ as if the concentrations were methane. A conversion from methane to a hydrocarbon and from a volume to a weight is necessary to calculate an accurate mass removal rate. Using the NMOC concentration results and the TVA-1000's factory certified response ratio for hydrocarbons, the NMOC results are converted to equivalent hydrocarbon mg/Ls. A TVA-1000 FID has an average response ratio of $600 \mathrm{PPM}_{v}$ per mg / L of unleaded gasoline and $200 \mathrm{PPM}_{v}$ per mg / L of diesel. Summaries of these calculations are shown in Figure \#3.

Results:

Phase Separated Hydrocarbon (PSH) was not detected in any monitoring wells prior to performing the event (well locations are shown in Figure \#4). Once static water levels were established, during the course of the event the system was connected to MPE-1. At each of the extraction points a stinger was located at the static fluid levels, and once the ThOx unit's normal operating temperature was reached, the inlet flow valve was opened for this well. Once the PSH was removed from the extraction well (if any), the stinger assembly was lowered into the static fluid level approximately 0 to 6 feet, creating a cone of influence.
During the first HVR event, the average ACFM was calculated at 24.49 for MPE-1, with an additional 5.00 ACFM recorded at the fresh air breather port. The fresh air breather port is used during an event to enhance the volatilization and fluid recovery rates from the monitoring wells. A summary of the recovered flow rates are shown in Figure \# 5. The combined total airflow from the extraction well and breather port averaged 28.81 ACFM.
During the second HVR event, the average ACFM was calculated at 88.92 for MPE-1, with an additional 5.00 ACFM recorded at the fresh air breather port. The fresh air breather port is used during an event to enhance the volatilization and fluid recovery rates from the monitoring wells. A summary of the recovered flow rates are shown in Figure \# 5. The combined total airflow from the extraction well and breather port averaged 93.92 ACFM.

Throughout the event, air concentration measurements were recorded periodically from both the influent and effluent sample ports. The concentration results were entered into the HVR field monitoring log (Attachment A) and during the event, 0.65 pounds of carbon was removed (2.19 pounds of hydrocarbon, 0.35 equivalent gallons of gasoline). Additionally, 3.87 pounds of methane was removed and incinerated during the event. A summary of the total equivalent hydrocarbon recovery rate is shown in Figure \#6. The total off-gas discharge (to the atmosphere) was 0.01948 pounds of carbon (0.06501 pounds of hydrocarbon), thus yielding a 92.34% destruction rate for the ThOr unit. Induced vacuum readings (in inches of water column) were recorded in this event (See Attachment A for results).

Once the HVR event was complete, a second round of water level measurements was recorded in which the results are shown in Attachment A. After the event, there were no levels of PSH recorded in any of the associated monitoring wells. During the event, 1,413 gallons of petroleum contacted water (PCW) was removed and collected in a holding tank onsite.

Sincerely,
Fruits \& Associates, Inc.

John M. -ruts

Calculation of Hydrocarbon Loading Rate

Formula:

$$
\dot{\mathrm{m}}=\mathrm{Q} \times \mathrm{C} \times \mathrm{CF}
$$

Where:
$\stackrel{\circ}{\mathrm{m}}=$ Contaminant Loading Rate (lbs/hr)
$Q=$ Air Flow Rate (CFM)
$\mathrm{C}=$ Contaminant Concentration (mg/m ${ }^{3}$)
$\mathrm{CF}=$ Conversion Factor $=0.000003743=\frac{1 \mathrm{~m}^{3}}{35.31 \mathrm{ft}^{3}} \mathbf{X} \frac{1 \mathrm{lb}}{454 \times 10^{3} m g} \mathbf{X} \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
Since all field measurements are in $\mathrm{PPM}_{\mathrm{V}}$, the following formula is used to convert to $\mathrm{mg} / \mathrm{m}^{3}$.

$$
\mathrm{C}=\frac{\mathrm{PPM}_{\mathrm{V}}}{\mathrm{R}} \times \frac{1,000 \mathrm{~L}}{1 m^{3}}
$$

Where:

$$
\begin{array}{ll}
\mathrm{R}=\text { TVA Response Ratio* } \quad & \text { *According to the manufacture's documentation, The Foxboro Monitor, Volume 3, } \\
& \text { Issue 1A, Page 5, Response Ratio of Fuel Samples, the Foxboro TVA-1000 has a } \\
\text { response ratio of approximately } \frac{600 \mathrm{PPM}_{\mathrm{V}}}{1 \mathrm{mg} / \mathrm{L}}
\end{array}
$$

Example:

$Q=$ Air Flow Rate $=200$ CFM
$\mathrm{C}=$ TVA-1000 Reading $=20,400 \mathrm{PPM}_{\mathrm{V}}$
$R=$ Response Ratio for Gasoline $=600$

Results:

Note:
To convert lbs to equivalent gallons, the following formula is used:
Specific Gravity $($ Gasoline $=0.74$, Diesel $=0.84) \times$ Conversion Factor $(8.333)=l b s / g a l$.
$($ Gasoline $=6.16 \mathrm{lbs} / \mathrm{gal} . \quad$ Diesel $=6.99 \mathrm{lbs} / \mathrm{gal}$.

	High-Vac Remediation (HVR) Process Diagram
Scale: Not to scale	Title: Concentration Calculations
Date: October 6th, 2014	Checked By: John M. Fruits
Drawing By: John M. Fruits	Figure \#: 3

Calibration Gas	Methane
Calibration Gas Concentration (PPMV)	10,000
Response Factor (TVA-1000)	600
Number of Cartons	1
Influent Pipe Dia.	2
Effluent Stack Dia.	8
This Event's Totals	
Total Los of Carbon	0.08
Total Lbs of Melthane	0.25
Total Lbs of Hydrocaton	0.27
Equiv. Gal. of Hydrocarbons	0.043
Total Gallons of Liquid (Groundwater)	180.00
Total Operating Time (Hours)	6.5
Cumulative (To Date) Totals	
Total Lbs of Carbon	0.08
Total Lbs of Methane	0.25
Total Lbs of Hydrocaron	0.27
Equiv. Gal. of Hydrocatbons	0.043
Total Gallons of Liquid	180.00

Well		Betore			Vacum Reading						Atter		Drawdown	
Number	DTP	DTW	Prod, (tr)	3.10 PM			DTP	DTW	Proded	DTP	DTw	Prod, (ti)	Resuls (t)	Commens:
MPE-1	1.58	1.58		$\mathrm{THO}^{\text {c }}$						580	580		4.22	noles
														Perali we do noth have tolog these.
														Influent readings and water production is all we have to take. Due to flowmeter malfunctions no hourly readings on Monday. Per Ali remove flowmeter and measure frat tank hourly on Tuesday

HVR FIELD MONITORING LOG

HIGH-VAC REMEDIATION (HVR)
RECOVERY FLOW RATES
Title: RECOVERY FLOW RATES

Time

APPENDIX C

Table 1A - Baseline Data Collection
MPE Pilot Test
Hercules/Pinova Brunswick Plant
Brunswick, GA

Date: $\quad 4 / 27 / 2020$
Baseline for Test

Weather: Sunny, $70^{\circ} \mathrm{F}$
Geosyntec Crew: AC, DG
Other Crew: Billy Graham (Fruits)

Time	Well ID	Depth to water	Depth to product	VOCs	Vacuum	Atmospheric Pressure	Notes
hh:mm	-	ft btoc.	ft btoc.	ppm	IWC	in. of Hg	
$9: 33$	MPE-01	1.58	None	57.9			
$9: 30$	MPE-OW-01	1.51	None	34.8			
$9: 29$	MPE-OW-02	1.49	None	38.1			
$9: 37$	MW-24	1.84	None	49.9			
$9: 25$	VP-01	1.45	None	34.8	-0.001	30.127	
$9: 30$	VP-02	1.65	None	11.0	-0.004	30.127	
$9: 32$	VP-03	1.71	None	25.6	-0.005	30.127	

Notes:

MPE - Multi Phase Extraction
IWC - Inches of water
VP - vapor probe
ft btoc - ft below top of casing in. of Hg - inches of mercury

$\begin{array}{lr}\text { Date: } & 4 / 27 / 2020 \\ \text { Weather: } & \text { Sunny } 70^{\circ} \mathrm{F}\end{array}$

Test Well ID

Time	Wellhead Vacuum	Vapor Flow Rate	VOCs, FID	Temp.	O_{2} content	Cumulative Extracted Water or	VP- 01		VP - 02		VP - 03		MPE-OW-01		MPE-OW-02		MW-24		Notes (Dilutions, barometric pressure)
							Vacuum	vocs	Vacuum	VOCs	Vacuum	vocs	DTW	DTP	DTW	DTP	DTW	DTP	
hh:mm	" Hg	(scfm)	(ppm)	(${ }^{\circ}$)	(\%)	(gal or)	(IWC)	(ppm)	(IWC)	(ppm)	(IWC)	(ppm)	(ft bgs)		(ft bgs)		(ft bgs)		
11:19	$4 "$	See Fruits Report	475	69	20.9	3.4 gpm	-0.007	51.1	-0.005	4.6	-0.021	12.2		--		--	1.81	--	
10:40	$4 "$		179	71	20.9	--	-0.04		-0.12		-0.016		1.78	--	1.75	--	1.81	--	
Drop tobe 2' below static														--		--		--	
12:35	$4 "$	See Fruits Report	313	71	20.9		-0.001	58.1	0	7.6	0.003	8.9	2.38	--	2.09	--	1.96	--	
13:09	$4 "$		350			27.7 gal	-0.001	60.2	0	11.4	-0.051	17.6	2.52	--	2.18	--	2.04	--	
13:16	Drop tube at 5' below static water level													--		--		--	
13:35	4.5-5"	From Fruits Report	430	71	20.9	54.7 gal	0	61.6	0	12.9	0	24	2.85	--	2.41	--	2.13	--	
14:00	$5 "$		485	7	20.9	92.7 gal	0	53.4	0	9.3	0	24.7	2.91	--	2.47	--	2.20	--	
14:07	Increase vacuum to 8" Hg					108.9 gal								--		--		--	
14:25	8"	From Fruits Report	717	71	20.9	141.3 gal	0	41.4	0	8.3	-0.05	22.8	3.36	--	2.76	--	2.36	--	
14:45	7.5"		760	71	20.9	183 gal	0	23.6	0	7.8	-0.13	24.6	3.39	--	2.8	--	2.42	--	
15:05	8"		767	71	20.9	223.4 gal	0	27.5	0	7.9	-0.13	26.5	3.4	--	2.81	--	2.47	--	
15:25	8"		709	71	20.9	262.6 gal	0	24.9	0	9.1	-0.12	25.9	3.41	--	2.83	--	2.46	--	
15:35						278.6 gal								--		--		--	
16:00	9.5 "		1080	71	20.9	2.2 gpm	-0.01	25.1	0	10		25.4	3.78	--	3.09	--	2.57	--	
16:30	8.5"			71	20.9	2.1 gpm	-0.01	11.8	0	8.5	-0.12	25.9	3.6	--	3.00	--	2.56	--	
17:15	8"		910	71	20.9	2.1 gpm	-0.02	9.9	0	2.7	-0.15	21.1	3.58	--	3.00	--	2.60	--	
17:25	stop the test																		

[^0]DTW - Depth to water
DTP - Depth to product
VOCS - volatile organic compounds

Start Time: 11:04

Table 1B - Baseline Data Collection
 Hercules/Pinova Brunswick Plant

Brunswick, GA

Date: 4/28/2020
Baseline for Test

Weather: Sunny, $70^{\circ} \mathrm{F}$
Geosyntec Crew: AC, DG
Other Crew: Billy Graham (Fruits)

Time	Well ID	Depth to water	Depth to product	VOCs	Vacuum	Notes
hh:mm	-	ft btoc.	ft btoc.	ppm	IWC	
$8: 00$	MPE-01	--	None			
$8: 10$	MPE-OW-01	1.59	None			
$8: 09$	MPE-OW-02	4.58	None			
$8: 08$	MW-24	1.74	None			
$8: 10$	VP-01			44.9	0	
$8: 11$	VP-02			9.7	0	
$8: 11$	VP-03			12.1	-0.005	

Notes:

MPE - Multi Phase Extraction
IWC - Inches of water
VP - vapor probe
ft bgs - ft below ground surface
in. of Hg - inches of mercury

APPENDIX D

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Knoxville
5815 Middlebrook Pike
Knoxville, TN 37921
Tel: (865)291-3000
Laboratory Job ID: 140-19001-1
Client Project/Site: MPE Pilot Test/Brunswick, GA
For:
Geosyntec Consultants, Inc.
1255 Roberts Blvd, NW
Suite 200
Kennesaw, Georgia 30144
Attn: Laura Kinsman

Authorized for release by: 5/13/2020 5:32:49 PM
Jerry Lanier, Project Manager I (912)250-0281
jerry.lanier@testamericainc.com

Links

Review your project results through Total Access

Have a Question?

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Visit us at:

www.eurofinsus.com/Env
Results relate only to the items tested and the samples) as received by the laboratory.

Table of Contents

Cover Page 1
Table of Contents 2
Definitions/Glossary 3
Case Narrative 4
Sample Summary 5
Method Summary 6
Detection Summary 7
Client Sample Results 8
Default Detection Limits 10
QC Sample Results 11
QC Association Summary 12
Lab Chronicle 13
Certification Summary 14
Chain of Custody 15
Receipt Checklists 17
Clean Canister Certification 18
Pre-Ship Certification 18
Air Canister Dilution 21

Qualifiers

Air - GC/MS VOA

Qualifier	Qualifier Description
J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. U Indicates the analyte was analyzed for but not detected.	

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 140-19001-1

Laboratory: Eurofins TestAmerica, Knoxville

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: MPE Pilot Test/Brunswick, GA

Report Number: 140-19001-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Receipt

The samples were received on 5/4/2020 2:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice.

VOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR

Samples MPE_VP01_042820 (140-19001-1), MPE_VP02_042820 (140-19001-2), MPE_VP03_042820 (140-19001-3) and MPE_VP04_042820 (140-19001-4) were analyzed for Volatile Organic Compounds in Ambient Air in accordance with EPA Method TO-15. The samples were analyzed on 05/06/2020.

TO-15: EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by TestAmerica Knoxville.

The continuing calibration verification (CCV) associated with batch 140-39410 exhibited \% difference of > 30\% for the following analyte(s) Acetone, Chloromethane and Isopropyl alcohol ; however, the results were within the LCS acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 30% difference from the initial calibration. According to the laboratory standard operating procedure, the continuing calibration is acceptable if it meets the laboratory control sample acceptance criteria.

Samples MPE_VP01_042820 (140-19001-1)[38.79X], MPE_VP02_042820 (140-19001-2)[39.22X], MPE_VP03_042820 (140-19001-3) [39.05X] and MPE_VP04_042820 (140-19001-4)[41.35X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
140-19001-1	MPE_VP01_042820	Air	04/28/20 15:20	05/04/20 14:00	Air Canister (1-Liter) \#8325
140-19001-2	MPE_VP02_042820	Air	04/28/20 15:25	05/04/20 14:00	Air Canister (1-Liter) \#5880
140-19001-3	MPE_VP03_042820	Air	04/28/20 17:10	05/04/20 14:00	Air Canister (1-Liter) \#34001383
140-19001-4	MPE_VP04_042820	Air	04/28/20 17:10	05/04/20 14:00	Air Canister (1-Liter) \#4857

Method Summary

Client: Geosyntec Consultants, Inc.

Method	Method Description
TO-15	Polatile Organic Compounds in Ambient Air
Protocol References:	
\quad EPA $=$ US Environmental Protection Agency	

Laboratory References:
TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000
Client Sample ID: MPE_VP01_042820 Lab Sample ID: 140-19001-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	37000		450	43	ug/m3	38.79		TO-15	Total/NA
Methyl isobutyl ketone	880	J	1400	390	ug/m3	38.79		TO-15	Total/NA
m,p-Xylene	320	J	2500	220	ug/m3	38.79		TO-15	Total/NA
p-Cymene	7400		770	220	ug/m3	38.79		TO-15	Total/NA
Toluene	5500		530	520	ug/m3	38.79		TO-15	Total/NA
Xylene, o-	160	J	610	120	ug/m3	38.79		TO-15	Total/NA
Xylene (total)	480	J	1200	190	ug/m3	38.79		TO-15	Total/NA

Client Sample ID: MPE_VP02_042820 Lab Sample ID: 140-19001-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	40000		330	32	ug/m3	39.22		TO-15	Total/NA
Ethylbenzene	150	J	450	75	ug/m3	39.22		TO-15	Total/NA
Methyl isobutyl ketone	1300		1100	290	ug/m3	39.22		TO-15	Total/NA
m,p-Xylene	370	J	1800	170	ug/m3	39.22		TO-15	Total/NA
p-Cymene	12000		570	160	ug/m3	39.22		TO-15	Total/NA
Toluene	6300		390	390	ug/m3	39.22		TO-15	Total/NA
Xylene, o-	180	J	450	86	ug/m3	39.22		TO-15	Total/NA
Xylene (total)	550	J	910	140	ug/m3	39.22		TO-15	Total/NA

Client Sample ID: MPE_VP03_042820 Lab Sample ID: 140-19001-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	43000		500	47	ug/m3	39.05		TO-15	Total/NA
Ethylbenzene	160	J	680	110	ug/m3	39.05		TO-15	Total/NA
Methyl isobutyl ketone	1500	J	1600	430	ug/m3	39.05		TO-15	Total/NA
m,p-Xylene	460	J	2700	250	ug/m3	39.05		TO-15	Total/NA
p-Cymene	14000		860	240	ug/m3	39.05		TO-15	Total/NA
Toluene	7200		590	580	ug/m3	39.05		TO-15	Total/NA
Xylene, o-	240	J	680	130	ug/m3	39.05		TO-15	Total/NA
Xylene (total)	700	J	1400	210	ug/m3	39.05		TO-15	Total/NA

Client Sample ID: MPE_VP04_042820 Lab Sample ID: 140-19001-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	51000		350	33	ug/m3	41.35		TO-15	Total/NA
Ethylbenzene	200	J	480	79	$\mathrm{ug} / \mathrm{m} 3$	41.35		TO-15	Total/NA
Methyl isobutyl ketone	1500		1100	300	ug/m3	41.35		TO-15	Total/NA
m,p-Xylene	590	J	1900	170	ug/m3	41.35		TO-15	Total/NA
p-Cymene	14000		610	170	ug/m3	41.35		TO-15	Total/NA
Toluene	8200		420	410	ug/m3	41.35		TO-15	Total/NA
Xylene, o-	260	J	480	91	ug/m3	41.35		TO-15	Total/NA
Xylene (total)	850	J	960	150	ug/m3	41.35		TO-15	Total/NA

Client Sample ID: MPE_VP01_042820
Date Collected: 04/28/20 15:20
Date Received: 05/04/20 14:00
Sample Container: Summa Canister 1L
Method: TO-15 - Volatile Organic Compounds in Ambient Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	2400	U	8400	2400	ug/m3			05/06/20 19:54	38.79
Benzene	37000		450	43	ug/m3			05/06/20 19:54	38.79
Chlorobenzene	52	U	650	52	ug/m3			05/06/20 19:54	38.79
Chloroform	55	U	690	55	ug/m3			05/06/20 19:54	38.79
Ethylbenzene	100	U	610	100	ug/m3			05/06/20 19:54	38.79
Methyl isobutyl ketone	880	J	1400	390	ug/m3			05/06/20 19:54	38.79
m,p-Xylene	320	J	2500	220	ug/m3			05/06/20 19:54	38.79
Naphthalene	700	U	1800	700	ug/m3			05/06/20 19:54	38.79
p-Cymene	7400		770	220	ug/m3			05/06/20 19:54	38.79
Toluene	5500		530	520	ug/m3			05/06/20 19:54	38.79
1,2,3-Trichloropropane	320	U	2100	320	ug/m3			05/06/20 19:54	38.79
Vinyl chloride	120	U	360	120	ug/m3			05/06/20 19:54	38.79
Xylene, o-	160	J	610	120	ug/m3			05/06/20 19:54	38.79
Xylene (total)	480	J	1200	190	ug/m3			05/06/20 19:54	38.79

Client Sample ID: MPE_VP02_042820
Lab Sample ID: 140-19001-2
Matrix: Air
Date Collected: 04/28/20 15:25
Date Received: 05/04/20 14:00
Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organic Compounds in Ambient Air									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1800	U	6200	1800	ug/m3			05/06/20 20:42	39.22
Benzene	40000		330	32	ug/m3			05/06/20 20:42	39.22
Chlorobenzene	39	U	480	39	ug/m3			05/06/20 20:42	39.22
Chloroform	41	U	510	41	ug/m3			05/06/20 20:42	39.22
Ethylbenzene	150	J	450	75	ug/m3			05/06/20 20:42	39.22
Methyl isobutyl ketone	1300		1100	290	ug/m3			05/06/20 20:42	39.22
m,p-Xylene	370	J	1800	170	ug/m3			05/06/20 20:42	39.22
Naphthalene	520	U	1400	520	ug/m3			05/06/20 20:42	39.22
p-Cymene	12000		570	160	ug/m3			05/06/20 20:42	39.22
Toluene	6300		390	390	ug/m3			05/06/20 20:42	39.22
1,2,3-Trichloropropane	240	U	1600	240	ug/m3			05/06/20 20:42	39.22
Vinyl chloride	88	U	270	88	ug/m3			05/06/20 20:42	39.22
Xylene, o-	180	J	450	86	ug/m3			05/06/20 20:42	39.22
Xylene (total)	550	J	910	140	ug/m3			05/06/20 20:42	39.22

Client Sample ID: MPE_VP03_042820
Date Collected: 04/28/20 17:10
Lab Sample ID: 140-19001-3
Matrix: Air
Date Received: 05/04/20 14:00

Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	2600	U	9300	2600	ug/m3			05/06/20 21:28	39.05
Benzene	43000		500	47	ug/m3			05/06/20 21:28	39.05
Chlorobenzene	58	U	720	58	ug/m3			05/06/20 21:28	39.05
Chloroform	61	U	760	61	ug/m3			05/06/20 21:28	39.05
Ethylbenzene	160	J	680		ug/m3			05/06/20 21:28	39.05

Client Sample ID: MPE_VP03_042820
Date Collected: 04/28/20 17:10
Date Received: 05/04/20 14:00
Sample Container: Summa Canister 1L
Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl isobutyl ketone	1500	J	1600	430	ug/m3			05/06/20 21:28	39.05
m,p-Xylene	460	J	2700	250	ug/m3			05/06/20 21:28	39.05
Naphthalene	780	U	2000	780	ug/m3			05/06/20 21:28	39.05
p-Cymene	14000		860	240	ug/m3			05/06/20 21:28	39.05
Toluene	7200		590	580	ug/m3			05/06/20 21:28	39.05
1,2,3-Trichloropropane	350	U	2400	350	ug/m3			05/06/20 21:28	39.05
Vinyl chloride	130	U	400	130	ug/m3			05/06/20 21:28	39.05
Xylene, o-	240	J	680	130	ug/m3			05/06/20 21:28	39.05
Xylene (total)	700	J	1400	210	ug/m3			05/06/20 21:28	39.05

Client Sample ID: MPE_VP04_042820
Lab Sample ID: 140-19001-4
Date Collected: 04/28/20 17:10
Matrix: Air
Date Received: 05/04/20 14:00

Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1900	U	6500	1900	ug/m3			05/06/20 22:16	41.35
Benzene	51000		350	33	$\mathrm{ug} / \mathrm{m} 3$			05/06/20 22:16	41.35
Chlorobenzene	41	U	510	41	ug/m3			05/06/20 22:16	41.35
Chloroform	43	U	540	43	ug/m3			05/06/20 22:16	41.35
Ethylbenzene	200	J	480	79	ug/m3			05/06/20 22:16	41.35
Methyl isobutyl ketone	1500		1100	300	ug/m3			05/06/20 22:16	41.35
m,p-Xylene	590	J	1900	170	ug/m3			05/06/20 22:16	41.35
Naphthalene	550	U	1400	550	ug/m3			05/06/20 22:16	41.35
p-Cymene	14000		610	170	ug/m3			05/06/20 22:16	41.35
Toluene	8200		420	410	ug/m3			05/06/20 22:16	41.35
1,2,3-Trichloropropane	250	U	1700	250	ug/m3			05/06/20 22:16	41.35
Vinyl chloride	93	U	280	93	ug/m3			05/06/20 22:16	41.35
Xylene, 0-	260	J	480	91	ug/m3			05/06/20 22:16	41.35
Xylene (total)	850	J	960	150	ug/m3			05/06/20 22:16	41.35

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Analyte	RL	MDL	Units
1,2,3-Trichloropropane	3.0	0.45	ug/m3
Acetone	12	3.4	ug/m3
Benzene	0.64	0.061	ug/m3
Chlorobenzene	0.92	0.074	ug/m3
Chloroform	0.98	0.078	ug/m3
Ethylbenzene	0.87	0.14	ug/m3
m, p-Xylene	3.5	0.32	ug/m3
Methyl isobutyl ketone	2.0	0.55	ug/m3
Naphthalene	2.6	1.0	ug/m3
p-Cymene	1.1	0.31	ug/m3
Toluene	0.75	0.74	ug/m3
Vinyl chloride	0.51	0.17	ug/m3
Xylene (total)	1.7	0.26	ug/m3
Xylene, o-	0.87	0.17	ug/m3

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Lab Sample ID: MB 140-39410/5
Matrix: Air
Analysis Batch: 39410

Analyte	$\begin{array}{r} \text { MB } \\ \text { Result } \end{array}$	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	3.4	U	12	3.4	ug/m3			05/06/20 11:20	1
Benzene	0.061	U	0.64	0.061	ug/m3			05/06/20 11:20	1
Chlorobenzene	0.074	U	0.92	0.074	ug/m3			05/06/20 11:20	1
Chloroform	0.078	U	0.98	0.078	ug/m3			05/06/20 11:20	1
Ethylbenzene	0.14	U	0.87	0.14	ug/m3			05/06/20 11:20	1
Methyl isobutyl ketone	0.55	U	2.0	0.55	ug/m3			05/06/20 11:20	1
m,p-Xylene	0.32	U	3.5	0.32	ug/m3			05/06/20 11:20	1
Naphthalene	1.0	U	2.6	1.0	$\mathrm{ug} / \mathrm{m} 3$			05/06/20 11:20	1
p-Cymene	0.31	U	1.1	0.31	ug/m3			05/06/20 11:20	1
Toluene	0.74	\cup	0.75	0.74	ug/m3			05/06/20 11:20	1
1,2,3-Trichloropropane	0.45	U	3.0	0.45	ug/m3			05/06/20 11:20	1
Vinyl chloride	0.17	U	0.51	0.17	ug/m3			05/06/20 11:20	1
Xylene, o-	0.17	U	0.87	0.17	ug/m3			05/06/20 11:20	1
Xylene (total)	0.26	U	1.7	0.26	ug/m3			05/06/20 11:20	1

Client Sample ID: Method Blank Prep Type: Total/NA

Lab Sample ID: LCS 140-39410/1002
Matrix: Air
Analysis Batch: 39410

Analyte	Spike Added	$\begin{array}{r} \text { LCS } \\ \text { Result } \end{array}$	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Acetone	7.13	4.70	J	ug/m3		66	60-140
Benzene	3.19	3.03		ug/m3		95	70-130
Chlorobenzene	4.60	4.35		ug/m3		95	70-130
Chloroform	4.88	5.13		ug/m3		105	70-130
Ethylbenzene	4.34	4.21		ug/m3		97	70-130
Methyl isobutyl ketone	4.10	3.25		ug/m3		79	60-140
m,p-Xylene	8.68	8.10		ug/m3		93	70-130
Naphthalene	5.24	5.98		ug/m3		114	60-140
p-Cymene	5.49	5.83		ug/m3		106	70-130
Toluene	3.77	3.55		ug/m3		94	70-130
1,2,3-Trichloropropane	6.03	5.82		ug/m3		97	60-140
Vinyl chloride	2.56	1.90		ug/m3		74	70-130
Xylene, o-	4.34	4.16		ug/m3		96	70-130

Air - GC/MS VOA

Analysis Batch: 39410

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19001-1	MPE_VP01_042820	Total/NA	Air	TO-15	
140-19001-2	MPE_VP02_042820	Total/NA	Air	TO-15	
140-19001-3	MPE_VP03_042820	Total/NA	Air	TO-15	
140-19001-4	MPE_VP04_042820	Total/NA	Air	TO-15	
MB 140-39410/5	Method Blank	Total/NA	Air	TO-15	
LCS 140-39410/1002	Lab Control Sample	Total/NA	Air	TO-15	

Client Sample ID: MPE_VP01_042820
Date Collected: 04/28/20 15:20
Date Received: 05/04/20 14:00

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		38.79	11 mL	500 mL	39410	05/06/20 19:54	S1K	TAL KNX
	Instrument ID: MR									

Client Sample ID: MPE_VP02_042820
Date Collected: 04/28/20 15:25
Lab Sample ID: 140-19001-2
Date Received: 05/04/20 14:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		39.22	15 mL	500 mL	39410	05/06/20 20:42	S1K	TAL KNX
	Instrument ID: MR									

Client Sample ID: MPE_VP03_042820
Date Collected: 04/28/20 17:10
Lab Sample ID: 140-19001-3
Date Received: 05/04/20 14:00

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		39.05	10 mL	500 mL	39410	05/06/20 21:28	S1K	TAL KNX
	Instrument ID: MR									

Client Sample ID: MPE_VP04_042820
Date Collected: 04/28/20 17:10
Lab Sample ID: 140-19001-4
Date Received: 05/04/20 14:00
$\left[\begin{array}{llll}\text { Batch } \\ \text { Prep Type } \\ \text { Total/NA } \\ \text { Type }\end{array} \begin{array}{l}\text { Batch } \\ \text { Method } \\ \text { Analysis } \\ \text { Instrument ID: MR }\end{array}\right.$

Client Sample ID: Method Blank Lab Sample ID: MB 140-39410/5
Date Collected: N/A
Date Received: N/A

Client Sample ID: Lab Control Sample

Date Collected: N/A
Lab Sample ID: LCS 140-39410/1002
Date Received: N/A

Laboratory References:

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Accreditation/Certification Summary
Client: Geosyntec Consultants, Inc.
Job ID: 140-19001-1 Project/Site: MPE Pilot Test/Brunswick, GA

Laboratory: Eurofins TestAmerica, Knoxville
All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
	AFCEE	N/A	
ANAB	Dept. of Defense ELAP	L2311	02-13-22
ANAB	Dept. of Energy	L2311.01	02-13-22
ANAB	ISO/IEC 17025	L2311	02-13-22
ANAB	ISO/IEC 17025	L2311	02-14-22
Arkansas DEQ	State	88-0688	06-16-20
California	State	2423	06-30-20
Colorado	State	TN00009	02-28-21
Connecticut	State	PH-0223	09-30-21
Florida	NELAP	E87177	06-30-20
Georgia (DW)	State	906	12-11-22
Hawaii	State	NA	12-11-21
Kansas	NELAP	E-10349	11-01-20
Kentucky (DW)	State	90101	01-01-21
Louisiana	NELAP	83979	07-02-20
Louisiana (DW)	State	LA019	12-31-20
Maryland	State	277	03-31-21
Michigan	State	9933	12-11-22
Nevada	State	TN00009	07-31-20
New Hampshire	NELAP	299919	01-17-21
New Jersey	NELAP	TN001	06-30-20
New York	NELAP	10781	03-31-21
North Carolina (DW)	State	21705	07-31-20
North Carolina (WW/SW)	State	64	12-31-20
Ohio VAP	State	CL0059	08-28-20
Oklahoma	State	9415	09-01-20
Oregon	NELAP	TNI0189	01-02-21
Pennsylvania	NELAP	68-00576	12-31-20
Tennessee	State	02014	12-11-22
Texas	NELAP	T104704380-18-12	08-31-20
US Fish \& Wildlife	US Federal Programs	058448	07-31-20
USDA	US Federal Programs	P330-19-00236	08-20-22
Utah	NELAP	TN00009	07-31-20
Virginia	NELAP	460176	09-15-20
Washington	State	C593	01-19-21
West Virginia (DW)	State	9955C	01-01-21
West Virginia DEP	State	345	05-01-21
Wisconsin	State	998044300	08-31-20

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.
$\left[\begin{array}{llll}\text { Authority } & \text { Program } & \text { Identification Number } & \text { Expiration Date } \\ \text { Florida } & \text { NELAP } & \text { E87052 } & 06-30-20 \\ \text { Georgia } & \text { State } & \text { E87052 } & 06-30-20\end{array}\right.$

$\stackrel{\text { S. }}{\bar{\omega}}$ Sample Specific Notes:

sen loos
qeis-qns

sag :-9 ubO

```
\9\mp@code{L-व WLS\forall}
os z \(\forall \mathrm{dg}\)
```

$0 \varepsilon \forall \mathrm{~d} \exists$

Canister
ID

8325
5880
34001383
4400138
等

$\begin{array}{l}\text { Canister } \\ \text { Vacuum in } \\ \text { field, " } \mathrm{Hg} \\ \text { (Stop) }\end{array}$

-8

-29.8	-8
-29.4	-8

-30.4
C||
-

Sample Time	Sample

| $\begin{array}{c}\text { Sample } \\ \text { Start Date }\end{array}$ | $\begin{array}{c}\text { Time } \\ \text { Start }\end{array}$ | $\begin{array}{c}\text { Sample } \\ \text { End Date }\end{array}$ |
| :---: | :---: | :---: | | Address: 1255 Roberts Blvd, Suite ZoA | Email: GRousho oeosystec. Con |
| :--- | :--- |
| City/State/Zip Kennesean, GA, 30144 | | City/State/Zip Kennescaw, GA, 30íl4

Knoxville, TN 37921-5947
phone 865.291 .3000 fax 865.584 .4315
Client Contact Information

Phone: $857-241-7216$	Site Contact:
FAX:	Tel/Fax

Project Name: Bar MPE Pilot Test
Site/Location: Brunswick, GA
PO\#
Sample Identification
MPE -VPOI-042820
$M P E-V P O Z-042820$
$M P E-V P O 3-042820$
$M P E-V P S 4-042820$
-
.
42380

(

s, Inc. d/b/a Eurofins TestAmerica
COC No:
TALS Project \#:
For Lab Use Only: Walk-in Client: Lab Sampling:$\quad \square$
Job / SDG No.:

(40! !

Log In Number.
Comments/Actions Taken

EUROFINS/TESTAMERICA KNOXVILLE SAMPLE RECELPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

Yes	No	na	If No, what was the problem?
7			\square Containers, Broken
		7	\square Checked in lab
$/$			$\begin{aligned} & \hline \text { Y Yes } \\ & \square \mathrm{NA} \end{aligned}$
		$/$	Cooler Out of Temp, Client Contacted, Proceed/Cancel \square Cooler Out of Temp, Same Day Receipt
7			\square Containers, Broken
1			\square Containers, Improper; Client Contacted; Proceed/Cancel
1			\square COC \& Samples Do Not Match \square COC Incorrect/Xncomplete \square COC Not Received
$/$			\square Sample Received, Not on COC \square Sample on COC, Not Received
1			\square COC; No Date/Time; Client Contacted
7			\square Sampler Not Listed on COC
7			\square COC Incorrect/Incomplete
ζ			\square COC No tests on COC
7			\square COC Incorrect/Incomplete
			\checkmark COC Incorrect/Incomplete
1			\square Holding Time - Receipt
		$/$	$\square \mathbf{p H}$ Adjusted, $\mathbf{p H}$ Included (See box 16A) \square Incorrect Preservative
		1	\square Headspace (VOA only)
		7	\square Residual Chlorine
		1	\square If no, notify lab to adjust
		1	\square Project missing info

TestAmerica Knoxville - Air Canister Initial Pressure Check

Gauge ID:	G5
Date:	$5 / 5 / 2020$

Analyst	Sample ID	Asset \#	Cleaning Job	Cert	Size (L)	Pressure @ Receipt (-in Hg or +psig)	Time	Comments
BRS	140-19001-a-1	8325	3592-40677	B	1	-7.5	9:55	
BRS	140-19001-a-2	5880	3592-40677	B	1	-6.6	9:56	
BRS	140-19001-a-3	34001383	5855-40687	B	1	-6.9	9:57	
BRS	140-19001-a-4	4857	34001028-40427	B	1	-7.8	9:58	
\square Receiving -Air Can -Calve Open (NCM \# \qquad \square Air - Can P - 24 to - 25 " - Flow Contr. Works (NCM\# \qquad \square Air - Can P - 24 to - 25 " - Flow Contr. Faulty (NCM\# \qquad \square Air - Can P Out -26" - Flow Contr. Works (NCM\# \qquad						$\|$$\square$ Air - Can P Out -26" - Flow Contr. Faulty (NCM\# \square Air - Can P Low -24 to - 25 " - Grab Sample (NCM\#___ \square Air - Can P Low -26 "- Grab Sample (NCM\#		

Pre-Shipment Clean Canister Certification Report

Pre-Shipment Clean Canister Certification Report

this value is used as the initial pressure for all canisters in the batch.
\qquad
PM Authorization

		$X X X X X X X$

200-53209-A-3
Pre-Shipment Clean Canister Certification Report

- and
Difference $=$ Final Pressure - Initial Pressure. Acceptance Criteria: (1) The difference must be less than or equal to +0.25 psi. (2) Pressure readings must be at least 24 hours apart. If time frame was not met, the PM must authorize shipment of canister
Clean Canister
Clean Canister Certification Analysis \& Authorization of Release to inventory

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah
5102 LaRoche Avenue
Savannah, GA 31404
Tel: (912)354-7858
Laboratory Job ID: 680-183249-1
Client Project/Site: Hercules/Pinova Brunswick Facility
For:
Geosyntec Consultants, Inc.
1255 Roberts Blvd, NW
Suite 200
Kennesaw, Georgia 30144
Attn: Laura Kinsman

Authorized for release by: 5/7/2020 6:13:52 PM
Jerry Lanier, Project Manager I (912)250-0281
jerry.lanier@testamericainc.com

Review your project results through TotalAccess

Have a Question?

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Visit us at:

www.eurofinsus.com/Env

Table of Contents

Cover Page 1
Table of Contents 2
Case Narrative 3
Sample Summary 5
Method Summary 6
Definitions/Glossary 7
Detection Summary 8
Client Sample Results 10
Surrogate Summary 18
QC Sample Results 19
QC Association Summary 30
Lab Chronicle 32
Chain of Custody 34
Receipt Checklists 35
Certification Summary 36

Job ID: 680-183249-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: Hercules/Pinova Brunswick Facility

Report Number: 680-183249-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 04/30/2020; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.8 C .

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples MPE-GW-042820-1 (680-183249-1), MPE-GW-042820-2 (680-183249-2), MPE-GW-042820-3 (680-183249-3) and MPE-GW-042820-4 (680-183249-4) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 05/03/2020, 05/04/2020 and 05/05/2020.

Surrogate recovery for the following sample was outside control limits: MPE-GW-042820-1 (680-183249-1). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed

Surrogate recovery for the following sample was outside control limits: MPE-GW-042820-2 (680-183249-2). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed

1,2-Dichlorobenzene and 1,4-Dichlorobenzene were detected in method blank MB 680-617331/8 at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

Methylene Chloride was detected in method blank MB 680-617375/10 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

The method blank for analytical batch 680-617527 contained Methylene chloride above the method detection limit (MDL). Associated samples were not re-analyzed because results were less than the reporting limit (RL

Samples MPE-GW-042820-1 (680-183249-1)[5X], MPE-GW-042820-2 (680-183249-2)[2X], MPE-GW-042820-3 (680-183249-3)[5X] and MPE-GW-042820-4 (680-183249-4)[50X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batches 680-617331,680-617337, 680-617375, and 680-617527.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICPMS)

Samples MPE-GW-042820-1 (680-183249-1), MPE-GW-042820-2 (680-183249-2), MPE-GW-042820-3 (680-183249-3) and MPE-GW-042820-4 (680-183249-4) were analyzed for metals (ICPMS) in accordance with EPA SW-846 Method 6020A. The samples were

Case Narrative

Client: Geosyntec Consultants, Inc.

Job ID: 680-183249-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

prepared on 05/04/2020 and analyzed on 05/05/2020.
No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ALKALINITY

Samples MPE-GW-042820-1 (680-183249-1), MPE-GW-042820-2 (680-183249-2), MPE-GW-042820-3 (680-183249-3) and MPE-GW-042820-4 (680-183249-4) were analyzed for alkalinity in accordance with SM 2320B. The samples were analyzed on 05/04/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL SUSPENDED SOLIDS

Samples MPE-GW-042820-1 (680-183249-1), MPE-GW-042820-2 (680-183249-2), MPE-GW-042820-3 (680-183249-3) and MPE-GW-042820-4 (680-183249-4) were analyzed for total suspended solids in accordance with SM 2540D. The samples were analyzed on 05/01/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.
PH
Samples MPE-GW-042820-1 (680-183249-1), MPE-GW-042820-2 (680-183249-2), MPE-GW-042820-3 (680-183249-3) and MPE-GW-042820-4 (680-183249-4) were analyzed for pH in accordance with EPA SW-846 Method 9040C. The samples were analyzed on 05/01/2020.

This analysis is considered a field test and is to be performed within 15 minutes of collection. This sample(s) was performed in the laboratory outside the 15 minute timeframe.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL HARDNESS (AS CACO3) BY CALCULATION

Samples MPE-GW-042820-1 (680-183249-1), MPE-GW-042820-2 (680-183249-2), MPE-GW-042820-3 (680-183249-3) and MPE-GW-042820-4 (680-183249-4) were analyzed for total hardness (as CaCO3) by calculation in accordance with SM 2340B. The samples were analyzed on 05/06/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Geosyntec Consultants, Inc. Job ID: 680-183249-1
Project/Site: Hercules/Pinova Brunswick Facility

Lab Sample ID	Client Sample ID		Matrix		Collected

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
6020A	Metals (ICP/MS)	SW846	TAL SAV
SM 2340B	Total Hardness (as CaCO 3) by calculation	SM	TAL SAV
2320B-2011	Alkalinity, Total	SM	TAL SAV
2540 D-2011	Total Suspended Solids (Dried at $103-105^{\circ} \mathrm{C}$)	SM	TAL SAV
9040C	pH	SW846	TAL SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL SAV
5030B	Purge and Trap	SW846	TAL SAV

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Project/Site: Hercules/Pinova Brunswick Facility

Qualifiers

GC/MS VOA
Qualifier

Qualifier Description
J
U

Indicates the analyte was analyzed for but not detected.
X Surrogate recovery exceeds control limits

Metals

Qualifier Qualifier Description
$\bar{U} \quad$ Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description
HF	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: MPE-GW-042820-1
Lab Sample ID: 680-183249-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	200		10	7.0	ug/L	1		8260B	Total/NA
Ethylbenzene	4.6		1.0	0.33	ug/L	1		8260B	Total/NA
Methyl ethyl ketone (MEK)	12		10	3.4	ug/L	1		8260B	Total/NA
4-Methyl-2-pentanone (MIBK)	470		10	2.1	ug/L	1		8260B	Total/NA
Toluene	87		1.0	0.48	ug/L	1		8260B	Total/NA
Xylenes, Total	27		1.0	0.23	ug/L	1		8260B	Total/NA
Benzene - DL	320		5.0	2.2	ug/L	5		8260B	Total/NA
p-Cymene - DL	440		5.0	2.4	ug/L	5		8260B	Total/NA
Iron	3600		100	25	ug/L	1		6020A	Total
									Recoverable
Manganese	200		5.0	1.8	ug / L	1		6020A	Total
									Recoverable
Hardness as calcium carbonate	190		3.3	3.3	mg / L	1		SM 2340B	Total/NA
Calcium hardness as calcium carbonate	95		1.2	1.2	mg/L	1		SM 2340B	Total/NA
Magnesium hardness as calcium carbonate	91		2.1	2.1	mg / L	1		SM 2340B	Total/NA
Alkalinity	110		5.0	5.0	mg/L	1		2320B-2011	Total/NA
Bicarbonate Alkalinity as CaCO 3	110		5.0	5.0	mg/L	1		2320B-2011	Total/NA
Carbon Dioxide, Free	7.9		5.0	5.0	mg/L	1		2320B-2011	Total/NA
Bicarbonate ion as HCO 3	140		6.1	6.1	mg/L	1		2320B-2011	Total/NA
Total Suspended Solids	390		17	17	mg/L	1		2540 D-2011	Total/NA
pH	7.5	HF			SU	1		9040C	Total/NA
Temperature	23.5	HF			Degrees C	1		9040C	Total/NA

Client Sample ID: MPE-GW-042820-2

Lab Sample ID: 680-183249-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	220		10	7.0	ug/L	1		8260B	Total/NA
Ethylbenzene	20		1.0	0.33	ug/L	1		8260B	Total/NA
Methyl ethyl ketone (MEK)	12		10	3.4	ug/L	1		8260B	Total/NA
4-Methyl-2-pentanone (MIBK)	310		10	2.1	ug/L	1		8260B	Total/NA
p-Cymene	190		1.0	0.48	ug/L	1		8260B	Total/NA
Toluene	94		1.0	0.48	ug/L	1		8260B	Total/NA
Xylenes, Total	150		1.0	0.23	ug/L	1		8260B	Total/NA
Benzene - DL	250		2.0	0.86	ug/L	2		8260B	Total/NA
Iron	4700		100	25	ug/L	1		6020A	Total
									Recoverable
Manganese	230		5.0	1.8	ug/L	1		6020A	Total
									Recoverable
Hardness as calcium carbonate	190		3.3	3.3	mg / L	1		SM 2340B	Total/NA
Calcium hardness as calcium carbonate	90		1.2	1.2	mg / L	1		SM 2340B	Total/NA
Magnesium hardness as calcium carbonate	99		2.1	2.1	mg / L	1		SM 2340 B	Total/NA
Alkalinity	110		5.0	5.0	mg/L	1		2320B-2011	Total/NA
Bicarbonate Alkalinity as CaCO 3	110		5.0	5.0	mg/L	1		2320B-2011	Total/NA
Carbon Dioxide, Free	7.1		5.0	5.0	mg / L	1		2320B-2011	Total/NA
Bicarbonate ion as HCO 3	140		6.1	6.1	mg / L	1		2320B-2011	Total/NA
Total Suspended Solids	410		24	24	mg/L	1		2540 D-2011	Total/NA
pH	7.5	HF			SU	1		9040C	Total/NA
Temperature	23.5	HF			Degrees C	1		9040C	Total/NA

Client Sample ID: MPE-GW-042820-3
Lab Sample ID: 680-183249-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	170		10	7.0	ug/L	1		8260B	Total/NA
Ethylbenzene	28		1.0	0.33	ug/L	1		8260B	Total/NA
Methyl ethyl ketone (MEK)	9.6	J	10	3.4	ug/L	1		8260B	Total/NA
4-Methyl-2-pentanone (MIBK)	340		10	2.1	ug/L	1		8260B	Total/NA
Toluene	140		1.0	0.48	ug/L	1		8260B	Total/NA
Xylenes, Total	210		1.0	0.23	ug/L	1		8260B	Total/NA
Benzene - DL	260		5.0	2.2	ug/L	5		8260B	Total/NA
p-Cymene - DL	170		5.0	2.4	ug/L	5		8260B	Total/NA
Iron	2100		100	25	ug/L	1		6020A	Total
									Recoverable
Manganese	140		5.0	1.8	ug/L	1		6020A	Total
									Recoverable
Hardness as calcium carbonate	160		3.3	3.3	mg / L	1		SM 2340B	Total/NA
Calcium hardness as calcium carbonate	75		1.2	1.2	mg/L	1		SM 2340B	Total/NA
Magnesium hardness as calcium carbonate	86		2.1	2.1	mg / L	1		SM 2340 B	Total/NA
Alkalinity	130		5.0	5.0	mg / L	1		2320B-2011	Total/NA
Bicarbonate Alkalinity as CaCO 3	130		5.0	5.0	mg/L	1		2320B-2011	Total/NA
Bicarbonate ion as HCO 3	160		6.1	6.1	mg / L	1		2320B-2011	Total/NA
Total Suspended Solids	57		7.4	7.4	mg/L	1		2540 D-2011	Total/NA
pH	7.9	HF			SU	1		9040C	Total/NA
Temperature	23.4	HF			Degrees C	1		9040C	Total/NA

Client Sample ID: MPE-GW-042820-4
Lab Sample ID: 680-183249-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	9300		50	22	ug/L	50		8260B	Total/NA
Ethylbenzene	28	J	50	17	ug/L	50		8260B	Total/NA
4-Methyl-2-pentanone (MIBK)	750		500	110	ug/L	50		8260B	Total/NA
p-Cymene	6000		50	24	ug/L	50		8260B	Total/NA
Toluene	1700		50	24	ug/L	50		8260B	Total/NA
Xylenes, Total	55		50	12	ug/L	50		8260B	Total/NA
Iron	1100		100	25	ug / L	1		6020A	Total
									Recoverable
Manganese	67		5.0	1.8	ug/L	1		6020A	Total
									Recoverable
Hardness as calcium carbonate	160		3.3	3.3	mg/L	1		SM 2340B	Total/NA
Calcium hardness as calcium carbonate	65		1.2	1.2	mg/L	1		SM 2340B	Total/NA
Magnesium hardness as calcium carbonate	99		2.1	2.1	mg/L	1		SM 2340B	Total/NA
Alkalinity	97		5.0	5.0	mg/L	1		2320B-2011	Total/NA
Bicarbonate Alkalinity as CaCO 3	97		5.0	5.0	mg / L	1		2320B-2011	Total/NA
Carbon Dioxide, Free	120		5.0	5.0	mg/L	1		2320B-2011	Total/NA
Bicarbonate ion as HCO 3	120		6.1	6.1	mg/L	1		2320B-2011	Total/NA
Total Suspended Solids	28		2.0	2.0	mg/L	1		2540 D-2011	Total/NA
pH	6.4	HF			SU	1		9040C	Total/NA
Temperature	23.4	HF			Degrees C	1		9040C	Total/NA

Client Sample ID: MPE-GW-042820-1
Date Collected: 04/28/20 15:45
Lab Sample ID: 680-183249-1

Date Received: 04/30/20 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	200		10	7.0	ug/L			05/03/20 18:52	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			05/03/20 18:52	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			05/03/20 18:52	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			05/03/20 18:52	1
Chloroform	0.50	U	1.0	0.50	ug/L			05/03/20 18:52	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			05/03/20 18:52	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			05/03/20 18:52	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			05/03/20 18:52	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			05/03/20 18:52	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			05/03/20 18:52	1
1,2-Dichloropropane	0.67	\cup	1.0	0.67	ug/L			05/03/20 18:52	1
Ethylbenzene	4.6		1.0	0.33	ug/L			05/03/20 18:52	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			05/03/20 18:52	1
Methyl ethyl ketone (MEK)	12		10	3.4	ug/L			05/03/20 18:52	1
4-Methyl-2-pentanone (MIBK)	470		10	2.1	ug/L			05/03/20 18:52	1
Tetrachloroethene	0.74	U	1.0	0.74	ug/L			05/03/20 18:52	1
Toluene	87		1.0	0.48	ug/L			05/03/20 18:52	1
1,2,4-Trichlorobenzene	2.5	U	5.0		ug/L			05/03/20 18:52	1
Xylenes, Total	27		1.0	0.23	ug/L			05/03/20 18:52	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	146	X	80-120					05/03/20 18:52	1
Dibromofluoromethane (Surr)	98		80-122					05/03/20 18:52	1
1,2-Dichloroethane-d4 (Surr)	87		73-131					05/03/20 18:52	1
Toluene-d8 (Surr)	108		80-120					05/03/20 18:52	1

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	320		5.0	2.2	ug/L			05/04/20 16:38	5
p-Cymene	440		5.0	2.4	ug/L			05/04/20 16:38	5
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		80-120					05/04/20 16:38	5
Dibromofluoromethane (Surr)	96		80-122					05/04/20 16:38	5
1,2-Dichloroethane-d4 (Surr)	90		73-131					05/04/20 16:38	5
Toluene-d8 (Surr)	106		80-120					05/04/20 16:38	5

Method: 6020A - Metals (ICP/MS) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	3600		100	25	ug/L		05/04/20 17:24	05/05/20 17:46	1
Manganese	200		5.0		ug/L		05/04/20 17:24	05/05/20 17:46	1

Method: SM 2340B - Total Hardness (as CaCO3) by calculation									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	190		3.3	3.3	mg/L			05/06/20 17:47	1
Calcium hardness as calcium carbonate	95		1.2		mg / L			05/06/20 17:47	1
Magnesium hardness as calcium carbonate	91		2.1		mg/L			05/06/20 17:47	1

Client Sample ID: MPE-GW-042820-1
Date Collected: 04/28/20 15:45
Lab Sample ID: 680-183249-1

Date Received: 04/30/20 09:30

General Chemistry Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.5	HF			SU			05/01/20 16:23	1
Temperature	23.5	HF			Degrees C			05/01/20 16:23	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	110		5.0	5.0	mg/L			05/04/20 21:27	1
Bicarbonate Alkalinity as CaCO 3	110		5.0	5.0	mg/L			05/04/20 21:27	1
Carbonate Alkalinity as CaCO 3	5.0	U	5.0	5.0	mg/L			05/04/20 21:27	1
Hydroxide Alkalinity	5.0	U	5.0	5.0	mg / L			05/04/20 21:27	1
Carbon Dioxide, Free	7.9		5.0	5.0	mg/L			05/04/20 21:27	1
Phenolphthalein Alkalinity	5.0	U	5.0	5.0	mg/L			05/04/20 21:27	1
Bicarbonate ion as HCO3	140		6.1	6.1	mg / L			05/04/20 21:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	390		17	17	mg/L			05/01/20 07:53	1

Date Received: 04/30/20 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	220		10	7.0	ug/L			05/04/20 16:15	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			05/04/20 16:15	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			05/04/20 16:15	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			05/04/20 16:15	1
Chloroform	0.50	U	1.0	0.50	ug/L			05/04/20 16:15	1
cis-1,2-Dichloroethene	0.41	\cup	1.0	0.41	ug/L			05/04/20 16:15	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			05/04/20 16:15	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			05/04/20 16:15	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			05/04/20 16:15	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			05/04/20 16:15	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			05/04/20 16:15	1
Ethylbenzene	20		1.0	0.33	ug/L			05/04/20 16:15	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			05/04/20 16:15	1
Methyl ethyl ketone (MEK)	12		10	3.4	ug/L			05/04/20 16:15	1
4-Methyl-2-pentanone (MIBK)	310		10	2.1	ug/L			05/04/20 16:15	1
p-Cymene	190		1.0	0.48	ug/L			05/04/20 16:15	1
Tetrachloroethene	0.74	U	1.0	0.74	ug/L			05/04/20 16:15	1
Toluene	94		1.0	0.48	ug/L			05/04/20 16:15	1
1,2,4-Trichlorobenzene	2.5	U	5.0	2.5	ug/L			05/04/20 16:15	1
Xylenes, Total	150		1.0	0.23	ug/L			05/04/20 16:15	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	126	$\bar{\chi}$	80-120					05/04/20 16:15	1
Dibromofluoromethane (Surr)	96		80-122					05/04/20 16:15	1
1,2-Dichloroethane-d4 (Surr)	89		73-131					05/04/20 16:15	1
Toluene-d8 (Surr)	104		80-120					05/04/20 16:15	1

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	250		2.0	0.86	ug/L			05/05/20 16:46	2
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	122	$\bar{\chi}$	80-120					05/05/20 16:46	2
Dibromofluoromethane (Surr)	97		80-122					05/05/20 16:46	2
1,2-Dichloroethane-d4 (Surr)	86		73-131					05/05/20 16:46	2
Toluene-d8 (Surr)	106		80-120					05/05/20 16:46	2

Method: 6020A - Metals (ICP/MS) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	4700		100	25	ug/L		05/04/20 17:24	05/05/20 17:49	1
Manganese	230		5.0		ug/L		05/04/20 17:24	05/05/20 17:49	1

Method: SM 2340B - Total Hardness (as CaCO3) by calculation									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	190		3.3	3.3	mg/L			05/06/20 17:47	1
Calcium hardness as calcium carbonate	90		1.2		mg / L			05/06/20 17:47	1
Magnesium hardness as calcium carbonate	99		2.1		mg/L			05/06/20 17:47	1

Client Sample ID: MPE-GW-042820-2
Date Collected: 04/28/20 15:45
Lab Sample ID: 680-183249-2

Date Received: 04/30/20 09:30

General Chemistry Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.5	HF			SU			05/01/20 16:27	1
Temperature	23.5	HF			Degrees C			05/01/20 16:27	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	110		5.0	5.0	mg/L			05/04/20 21:34	1
Bicarbonate Alkalinity as CaCO 3	110		5.0	5.0	mg/L			05/04/20 21:34	1
Carbonate Alkalinity as CaCO 3	5.0	U	5.0	5.0	mg/L			05/04/20 21:34	1
Hydroxide Alkalinity	5.0	U	5.0	5.0	mg / L			05/04/20 21:34	1
Carbon Dioxide, Free	7.1		5.0	5.0	mg/L			05/04/20 21:34	1
Phenolphthalein Alkalinity	5.0	U	5.0	5.0	mg/L			05/04/20 21:34	1
Bicarbonate ion as HCO 3	140		6.1	6.1	mg / L			05/04/20 21:34	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	410		24	24	mg/L			05/01/20 07:53	1

Client Sample ID: MPE-GW-042820-3
Date Collected: 04/28/20 17:30
Lab Sample ID: 680-183249-3

Date Received: 04/30/20 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	170		10	7.0	ug/L			05/03/20 17:55	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			05/03/20 17:55	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			05/03/20 17:55	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			05/03/20 17:55	1
Chloroform	0.50	U	1.0	0.50	ug/L			05/03/20 17:55	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			05/03/20 17:55	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			05/03/20 17:55	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			05/03/20 17:55	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			05/03/20 17:55	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			05/03/20 17:55	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			05/03/20 17:55	1
Ethylbenzene	28		1.0	0.33	ug/L			05/03/20 17:55	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			05/03/20 17:55	1
Methyl ethyl ketone (MEK)	9.6	J	10	3.4	ug/L			05/03/20 17:55	1
4-Methyl-2-pentanone (MIBK)	340		10		ug/L			05/03/20 17:55	1
Tetrachloroethene	0.74	U	1.0	0.74	ug/L			05/03/20 17:55	1
Toluene	140		1.0	0.48	ug/L			05/03/20 17:55	1
1,2,4-Trichlorobenzene	2.5	U	5.0	2.5	ug/L			05/03/20 17:55	1
Xylenes, Total	210		1.0	0.23	ug/L			05/03/20 17:55	1
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		80-120					05/03/20 17:55	1
Dibromofluoromethane (Surr)	101		80-122					05/03/20 17:55	1
1,2-Dichloroethane-d4 (Surr)	102		73-131					05/03/20 17:55	1
Toluene-d8 (Surr)	101		80-120					05/03/20 17:55	1

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	260		5.0	2.2	ug/L			05/04/20 17:24	5
p-Cymene	170		5.0	2.4	ug/L			05/04/20 17:24	5
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		80-120					05/04/20 17:24	5
Dibromofluoromethane (Surr)	95		80-122					05/04/20 17:24	5
1,2-Dichloroethane-d4 (Surr)	85		73-131					05/04/20 17:24	5
Toluene-d8 (Surr)	108		80-120					05/04/20 17:24	5

Method: SM 2340B - Total Hardness (as CaCO3) by calculation									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	160		3.3	3.3	mg/L			05/06/20 17:47	1
Calcium hardness as calcium carbonate	75		1.2		mg/L			05/06/20 17:47	1
Magnesium hardness as calcium carbonate	86		2.1		mg/L			05/06/20 17:47	1

Client Sample ID: MPE-GW-042820-3
Date Collected: 04/28/20 17:30
Lab Sample ID: 680-183249-3

Date Received: 04/30/20 09:30

General Chemistry Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.9	HF			SU			05/01/20 16:31	1
Temperature	23.4	HF			Degrees C			05/01/20 16:31	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	130		5.0	5.0	mg/L			05/04/20 21:42	1
Bicarbonate Alkalinity as CaCO 3	130		5.0	5.0	mg/L			05/04/20 21:42	1
Carbonate Alkalinity as CaCO 3	5.0	U	5.0	5.0	mg/L			05/04/20 21:42	1
Hydroxide Alkalinity	5.0	U	5.0	5.0	mg / L			05/04/20 21:42	1
Carbon Dioxide, Free	5.0	U	5.0	5.0	mg/L			05/04/20 21:42	1
Phenolphthalein Alkalinity	5.0	U	5.0	5.0	mg/L			05/04/20 21:42	1
Bicarbonate ion as HCO3	160		6.1	6.1	mg / L			05/04/20 21:42	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	57		7.4	7.4	mg/L			05/01/20 07:53	1

Date Received: 04/30/20 09:30

Method: 8260B - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	350	U	500	350	ug/L			05/05/20 17:33	50
Benzene	9300		50	22	ug/L			05/05/20 17:33	50
Carbon disulfide	50	U	100	50	ug/L			05/05/20 17:33	50
Chlorobenzene	13	U	50	13	ug/L			05/05/20 17:33	50
Vinyl chloride	25	U	50	25	ug/L			05/05/20 17:33	50
Chloroform	25	U	50	25	ug/L			05/05/20 17:33	50
cis-1,2-Dichloroethene	21	U	50	21	ug/L			05/05/20 17:33	50
1,2-Dichlorobenzene	19	U	50	19	ug/L			05/05/20 17:33	50
1,4-Dichlorobenzene	23	U	50	23	ug/L			05/05/20 17:33	50
1,1-Dichloroethane	19	U	50	19	ug/L			05/05/20 17:33	50
1,1-Dichloroethene	18	U	50	18	ug/L			05/05/20 17:33	50
1,2-Dichloropropane	34	U	50	34	ug/L			05/05/20 17:33	50
Ethylbenzene	28	J	50	17	ug/L			05/05/20 17:33	50
Methylene Chloride	130	U	250	130	ug/L			05/05/20 17:33	50
Methyl ethyl ketone (MEK)	170	U	500	170	ug/L			05/05/20 17:33	50
4-Methyl-2-pentanone (MIBK)	750		500	110	ug/L			05/05/20 17:33	50
p-Cymene	6000		50	24	ug/L			05/05/20 17:33	50
Tetrachloroethene	37	\cup	50	37	ug/L			05/05/20 17:33	50
Toluene	1700		50	24	ug/L			05/05/20 17:33	50
1,2,4-Trichlorobenzene	130	U	250	130	ug/L			05/05/20 17:33	50
Xylenes, Total	55		50	12	ug/L			05/05/20 17:33	50
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		80-120					05/05/20 17:33	50
Dibromofluoromethane (Surr)	98		80-122					05/05/20 17:33	50
1,2-Dichloroethane-d4 (Surr)	90		73-131					05/05/20 17:33	50
Toluene-d8 (Surr)	105		80-120					05/05/20 17:33	50

Method: 6020A - Metals (ICP/MS) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	1100		100	25	ug/L		05/04/20 17:24	05/05/20 17:56	1
Manganese	67		5.0		ug/L		05/04/20 17:24	05/05/20 17:56	1

Method: SM 2340B - Total Hardness (as CaCO3) by calculation									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	160		3.3	3.3	mg / L			05/06/20 17:47	1
Calcium hardness as calcium carbonate	65		1.2		mg / L			05/06/20 17:47	1
Magnesium hardness as calcium carbonate	99		2.1		mg / L			05/06/20 17:47	1

General Chemistry Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.4	HF			SU			05/01/20 16:35	1
Temperature	23.4	HF			Degrees C			05/01/20 16:35	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	97		5.0	5.0	mg/L			05/04/20 21:48	1
Bicarbonate Alkalinity as CaCO 3	97		5.0	5.0	mg/L			05/04/20 21:48	1
Carbonate Alkalinity as CaCO 3	5.0	U	5.0	5.0	mg/L			05/04/20 21:48	1
Hydroxide Alkalinity	5.0	U	5.0	5.0	mg / L			05/04/20 21:48	1
Carbon Dioxide, Free	120		5.0	5.0	mg/L			05/04/20 21:48	1

Date Collected: 04/28/20 18:20
Lab Sample ID: 680-183249-4

Date Received: 04/30/20 09:30

General Chemistry (Continued) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenolphthalein Alkalinity	5.0	U	5.0	5.0	mg/L			05/04/20 21:48	1
Bicarbonate ion as HCO 3	120		6.1		mg / L			05/04/20 21:48	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	28		2.0	2.0	mg/L			05/01/20 07:53	1

Method: 8260B - Volatile Organic Compounds (GC/MS)
Matrix: Water
Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-617331/8							Client Sample ID: Method Blank		Blank tal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U	10	7.0	ug/L			05/03/20 11:36	1
Benzene	0.43	U	1.0	0.43	ug/L			05/03/20 11:36	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			05/03/20 11:36	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			05/03/20 11:36	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			05/03/20 11:36	1
Chloroform	0.50	U	1.0	0.50	ug/L			05/03/20 11:36	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			05/03/20 11:36	1
1,2-Dichlorobenzene	0.387	J	1.0	0.37	ug/L			05/03/20 11:36	1
1,4-Dichlorobenzene	0.545	J	1.0	0.46	ug/L			05/03/20 11:36	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			05/03/20 11:36	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			05/03/20 11:36	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			05/03/20 11:36	1
Ethylbenzene	0.33	U	1.0	0.33	ug/L			05/03/20 11:36	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			05/03/20 11:36	1
Methyl ethyl ketone (MEK)	3.4	U	10		ug / L			05/03/20 11:36	1
4-Methyl-2-pentanone (MIBK)	2.1	U	10	2.1	ug/L			05/03/20 11:36	1
p-Cymene	0.48	U	1.0	0.48	ug/L			05/03/20 11:36	1
Tetrachloroethene	0.74	U	1.0	0.74	ug/L			05/03/20 11:36	1
Toluene	0.48	U	1.0	0.48	ug/L			05/03/20 11:36	1
1,2,4-Trichlorobenzene	2.5	U	5.0		ug/L			05/03/20 11:36	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			05/03/20 11:36	1

Surrogate	$\begin{array}{r} \text { MB } \\ \text { \%Recovery } \end{array}$	MB Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80-120
Dibromofluoromethane (Surr)	98		80-122
1,2-Dichloroethane-d4 (Surr)	88		73-131
Toluene-d8 (Surr)	108		80-120

Prepared		Analyzed	
		Dil Fac	
	$05 / 03 / 2011: 36$		1
	$05 / 03 / 2011: 36$		1
	$05 / 03 / 2011: 36$		1
	$05 / 03 / 2011: 36$		1

Lab Sample ID: LCS 680-617331/4
Matrix: Water
Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Analysis Batch: 617331

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Acetone	250	278		ug/L		111	70-135
Benzene	50.0	52.9		ug/L		106	80-120
Carbon disulfide	50.0	49.1		ug/L		98	80-120
Chlorobenzene	50.0	50.5		ug/L		101	80-120
Vinyl chloride	50.0	50.3		ug/L		101	71-128
Chloroform	50.0	51.1		ug/L		102	80-120
cis-1,2-Dichloroethene	50.0	53.1		ug/L		106	80-120
1,2-Dichlorobenzene	50.0	49.4		ug/L		99	80-120
1,4-Dichlorobenzene	50.0	47.9		ug/L		96	80-120
1,1-Dichloroethane	50.0	50.0		ug/L		100	80-120
1,1-Dichloroethene	50.0	48.9		ug/L		98	76-120
1,2-Dichloropropane	50.0	53.7		ug/L		107	80-120
Ethylbenzene	50.0	50.6		ug/L		101	80-120
Methylene Chloride	50.0	51.0		ug/L		102	80-120
Methyl ethyl ketone (MEK)	250	260		ug/L		104	80-131

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-617331/4
Matrix: Water
Analysis Batch: 617331

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
4-Methyl-2-pentanone (MIBK)	250	251		ug/L		100	76-124
p-Cymene	50.0	47.0		ug/L		94	80-120
Tetrachloroethene	50.0	48.2		ug/L		96	80-121
Toluene	50.0	50.9		ug/L		102	80-113
1,2,4-Trichlorobenzene	50.0	52.0		ug/L		104	68-128
Xylenes, Total	100	101		ug/L		101	80-120

LCS LCS

Surrogate	\%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		80-120
Dibromofluoromethane (Surr)	107		80-122
1,2-Dichloroethane-d4 (Surr)	101		73-131
Toluene-d8 (Surr)	106		80-120

Lab Sample ID: LCSD 680-617331/5
Matrix: Water
Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Analysis Batch: 617331

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	RPD Limit
Acetone	250	270		ug/L		108	70-135	3	30
Benzene	50.0	53.9		ug/L		108	80-120	2	20
Carbon disulfide	50.0	50.6		ug/L		101	80-120	3	20
Chlorobenzene	50.0	51.4		ug/L		103	80-120	2	20
Vinyl chloride	50.0	52.5		ug/L		105	71-128	4	20
Chloroform	50.0	52.4		ug/L		105	80-120	2	20
cis-1,2-Dichloroethene	50.0	55.2		ug/L		110	80-120	4	20
1,2-Dichlorobenzene	50.0	51.5		ug/L		103	80-120	4	20
1,4-Dichlorobenzene	50.0	48.6		ug/L		97	80-120	1	20
1,1-Dichloroethane	50.0	51.8		ug/L		104	80-120	4	20
1,1-Dichloroethene	50.0	50.4		ug/L		101	76-120	3	20
1,2-Dichloropropane	50.0	55.1		ug/L		110	80-120	2	20
Ethylbenzene	50.0	50.9		ug/L		102	80-120	1	20
Methylene Chloride	50.0	50.8		ug/L		102	80-120	0	20
Methyl ethyl ketone (MEK)	250	254		ug/L		102	80-131	2	20
4-Methyl-2-pentanone (MIBK)	250	253		ug/L		101	76-124	1	20
p-Cymene	50.0	49.5		ug/L		99	80-120	5	20
Tetrachloroethene	50.0	49.2		ug/L		98	80-121	2	20
Toluene	50.0	52.3		ug/L		105	80-113	3	20
1,2,4-Trichlorobenzene	50.0	53.8		ug/L		108	68-128	4	20
Xylenes, Total	100	103		ug/L		103	80-120	2	20

LCSD LCSD

Surrogate	\%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80-120
Dibromofluoromethane (Surr)	110		80-122
1,2-Dichloroethane-d4 (Surr)	103		73-131
Toluene-d8 (Surr)	107		80-120

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-617337/9	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 617337 MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U	10	7.0	ug/L			05/03/20 12:04	1
Benzene	0.43	U	1.0	0.43	ug/L			05/03/20 12:04	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			05/03/20 12:04	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			05/03/20 12:04	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			05/03/20 12:04	1
Chloroform	0.50	U	1.0	0.50	ug/L			05/03/20 12:04	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			05/03/20 12:04	1
1,2-Dichlorobenzene	0.37	\cup	1.0	0.37	ug/L			05/03/20 12:04	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			05/03/20 12:04	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			05/03/20 12:04	1
1,1-Dichloroethene	0.36	\cup	1.0	0.36	ug/L			05/03/20 12:04	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			05/03/20 12:04	1
Ethylbenzene	0.33	U	1.0	0.33	ug/L			05/03/20 12:04	1
Methylene Chloride	2.5	U	5.0	2.5	ug/L			05/03/20 12:04	1
Methyl ethyl ketone (MEK)	3.4	U	10	3.4	ug/L			05/03/20 12:04	1
4-Methyl-2-pentanone (MIBK)	2.1	U	10	2.1	ug/L			05/03/20 12:04	1
p-Cymene	0.48	U	1.0	0.48	ug / L			05/03/20 12:04	1
Tetrachloroethene	0.74	\cup	1.0	0.74	ug/L			05/03/20 12:04	1
Toluene	0.48	U	1.0	0.48	ug/L			05/03/20 12:04	1
1,2,4-Trichlorobenzene	2.5	U	5.0	2.5	ug/L			05/03/20 12:04	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			05/03/20 12:04	1

Surrogate	$\begin{array}{r} \text { MB } \\ \text { \%Recovery } \end{array}$	MB Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		80-120
Dibromofluoromethane (Surr)	104		80-122
1,2-Dichloroethane-d4 (Surr)	105		73-131
Toluene-d8 (Surr)	99		80-120

Prepared		Analyzed	
		Dil Fac	
$05 / 03 / 20 ~ 12: 04$		1	
	$05 / 03 / 2012: 04$		1
	$05 / 03 / 2012: 04$		1
	$05 / 03 / 2012: 04$		1

Lab Sample ID: LCS 680-617337/4
Matrix: Water
Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Analysis Batch: 617337

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Acetone	250	227		ug/L		91	70-135
Benzene	50.0	54.2		ug/L		108	80-120
Carbon disulfide	50.0	52.1		ug/L		104	80-120
Chlorobenzene	50.0	54.2		ug/L		108	80-120
Vinyl chloride	50.0	48.1		ug/L		96	71-128
Chloroform	50.0	54.2		ug/L		108	80-120
cis-1,2-Dichloroethene	50.0	54.9		ug/L		110	80-120
1,2-Dichlorobenzene	50.0	51.1		ug/L		102	80-120
1,4-Dichlorobenzene	50.0	49.8		ug/L		100	80-120
1,1-Dichloroethane	50.0	54.2		ug/L		108	80-120
1,1-Dichloroethene	50.0	51.2		ug/L		102	76-120
1,2-Dichloropropane	50.0	55.2		ug/L		110	80-120
Ethylbenzene	50.0	53.5		ug/L		107	80-120
Methylene Chloride	50.0	54.0		ug/L		108	80-120
Methyl ethyl ketone (MEK)	250	239		ug/L		96	80-131

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-617337/4
Matrix: Water
Analysis Batch: 617337

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
4-Methyl-2-pentanone (MIBK)	250	239		ug/L		96	76-124
p-Cymene	50.0	51.7		ug/L		103	80-120
Tetrachloroethene	50.0	51.5		ug/L		103	80-121
Toluene	50.0	53.7		ug/L		107	80-113
1,2,4-Trichlorobenzene	50.0	55.1		ug/L		110	68-128
Xylenes, Total	100	108		ug/L		108	80-120

LCS LCS

Surrogate	\%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80-120
Dibromofluoromethane (Surr)	111		80-122
1,2-Dichloroethane-d4 (Surr)	109		73-131
Toluene-d8 (Surr)	108		80-120

Lab Sample ID: LCSD 680-617337/5
Matrix: Water
Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Analysis Batch: 617337

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$
Acetone	250	214		ug/L		86	70-135	6	30
Benzene	50.0	52.4		ug/L		105	80-120	3	20
Carbon disulfide	50.0	50.5		ug/L		101	80-120	3	20
Chlorobenzene	50.0	52.8		ug/L		106	80-120	3	20
Vinyl chloride	50.0	46.8		ug/L		94	71-128	3	20
Chloroform	50.0	52.1		ug/L		104	80-120	4	20
cis-1,2-Dichloroethene	50.0	52.4		ug/L		105	80-120	5	20
1,2-Dichlorobenzene	50.0	50.5		ug/L		101	80-120	1	20
1,4-Dichlorobenzene	50.0	49.0		ug/L		98	80-120	2	20
1,1-Dichloroethane	50.0	52.4		ug/L		105	80-120	3	20
1,1-Dichloroethene	50.0	50.1		ug/L		100	76-120	2	20
1,2-Dichloropropane	50.0	52.7		ug/L		105	80-120	5	20
Ethylbenzene	50.0	52.2		ug/L		104	80-120	2	20
Methylene Chloride	50.0	52.1		ug/L		104	80-120	4	20
Methyl ethyl ketone (MEK)	250	226		ug/L		90	80-131	6	20
4-Methyl-2-pentanone (MIBK)	250	223		ug/L		89	76-124	7	20
p-Cymene	50.0	51.5		ug/L		103	80-120	0	20
Tetrachloroethene	50.0	50.1		ug/L		100	80-121	3	20
Toluene	50.0	51.7		ug/L		103	80-113	4	20
1,2,4-Trichlorobenzene	50.0	55.4		ug/L		111	68-128	0	20
Xylenes, Total	100	106		ug/L		106	80-120	2	20

LCSD LCSD

Surrogate	\%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		80-120
Dibromofluoromethane (Surr)	107		80-122
1,2-Dichloroethane-d4 (Surr)	104		73-131
Toluene-d8 (Surr)	104		80-120

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	MB \%Recovery	MB Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80-120		05/04/20 13:05	1
Dibromofluoromethane (Surr)	97		80-122		05/04/20 13:05	1
1,2-Dichloroethane-d4 (Surr)	87		73-131		05/04/20 13:05	1
Toluene-d8 (Surr)	110		80-120		05/04/20 13:05	1
Lab Sample ID: LCS 680-617375/4 Matrix: Water				Client Sample ID: Lab Control Sample		

Analysis Batch: 617375

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Acetone	250	253		ug/L		101	70-135
Benzene	50.0	48.8		ug/L		98	80-120
Carbon disulfide	50.0	48.5		ug/L		97	80-120
Chlorobenzene	50.0	47.1		ug/L		94	80-120
Vinyl chloride	50.0	52.0		ug/L		104	71-128
Chloroform	50.0	47.6		ug/L		95	80-120
cis-1,2-Dichloroethene	50.0	50.7		ug/L		101	80-120
1,2-Dichlorobenzene	50.0	45.7		ug/L		91	80-120
1,4-Dichlorobenzene	50.0	45.0		ug/L		90	80-120
1,1-Dichloroethane	50.0	46.9		ug/L		94	80-120
1,1-Dichloroethene	50.0	50.6		ug/L		101	76-120
1,2-Dichloropropane	50.0	50.8		ug/L		102	80-120
Ethylbenzene	50.0	47.7		ug/L		95	80-120
Methylene Chloride	50.0	45.9		ug/L		92	80-120
Methyl ethyl ketone (MEK)	250	252		ug/L		101	80-131

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-617375/4
Matrix: Water
Analysis Batch: 617375

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
4-Methyl-2-pentanone (MIBK)	250	234		ug/L		94	76-124
p-Cymene	50.0	47.0		ug/L		94	80-120
Tetrachloroethene	50.0	47.5		ug/L		95	80-121
Toluene	50.0	48.6		ug/L		97	80-113
1,2,4-Trichlorobenzene	50.0	49.5		ug/L		99	68-128
Xylenes, Total	100	95.7		ug/L		96	80-120

LCS LCS

Surrogate		\%Recovery	Qualifier		Limits
	4-Bromofluorobenzene (Surr)		91	$80-120$	
Dibromofluoromethane (Surr)		97		$80-122$	
1,2-Dichloroethane-d4 (Surr)		91	$73-131$		
Toluene-d8 (Surr)	97	$80-120$			

Lab Sample ID: LCSD 680-617375/5 Client Sample ID: Lab Control Sample Dup
Matrix: Water
Analysis Batch: 617375

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	RPD Limit
Acetone	250	252		ug/L		101	70-135	1	30
Benzene	50.0	52.7		ug/L		105	80-120	8	20
Carbon disulfide	50.0	54.6		ug/L		109	80-120	12	20
Chlorobenzene	50.0	50.8		ug/L		102	80-120	7	20
Vinyl chloride	50.0	59.3		ug/L		119	71-128	13	20
Chloroform	50.0	50.0		ug/L		100	80-120	5	20
cis-1,2-Dichloroethene	50.0	54.3		ug/L		109	80-120	7	20
1,2-Dichlorobenzene	50.0	49.7		ug/L		99	80-120	9	20
1,4-Dichlorobenzene	50.0	49.9		ug/L		100	80-120	10	20
1,1-Dichloroethane	50.0	50.1		ug/L		100	80-120	7	20
1,1-Dichloroethene	50.0	57.7		ug/L		115	76-120	13	20
1,2-Dichloropropane	50.0	53.4		ug/L		107	80-120	5	20
Ethylbenzene	50.0	52.5		ug/L		105	80-120	10	20
Methylene Chloride	50.0	48.4		ug/L		97	80-120	5	20
Methyl ethyl ketone (MEK)	250	247		ug/L		99	80-131	2	20
4-Methyl-2-pentanone (MIBK)	250	240		ug/L		96	76-124	2	20
p-Cymene	50.0	53.0		ug/L		106	80-120	12	20
Tetrachloroethene	50.0	52.4		ug/L		105	80-121	10	20
Toluene	50.0	51.7		ug/L		103	80-113	6	20
1,2,4-Trichlorobenzene	50.0	53.2		ug/L		106	68-128	7	20
Xylenes, Total	100	104		ug/L		104	80-120	8	20

LCSD LCSD

Surrogate	\%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80-120
Dibromofluoromethane (Surr)	103		80-122
1,2-Dichloroethane-d4 (Surr)	93		73-131
Toluene-d8 (Surr)	107		80-120

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

$\left[\begin{array}{l}\text { Lab Sample ID: MB 680-617527/10 } \\ \text { Matrix: Water }\end{array} \begin{array}{r}\text { Client Sample ID: Method Blank } \\ \text { Prep Type: Total/NA }\end{array}\right.$

Analysis Batch: 617527

Analyte	$\begin{array}{r} \text { MB } \\ \text { Result } \end{array}$	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.0	U	10	7.0	ug/L			05/05/20 13:17	1
Benzene	0.43	U	1.0	0.43	ug/L			05/05/20 13:17	1
Carbon disulfide	1.0	U	2.0	1.0	ug/L			05/05/20 13:17	1
Chlorobenzene	0.26	U	1.0	0.26	ug/L			05/05/20 13:17	1
Vinyl chloride	0.50	U	1.0	0.50	ug/L			05/05/20 13:17	1
Chloroform	0.50	U	1.0	0.50	ug/L			05/05/20 13:17	1
cis-1,2-Dichloroethene	0.41	U	1.0	0.41	ug/L			05/05/20 13:17	1
1,2-Dichlorobenzene	0.37	U	1.0	0.37	ug/L			05/05/20 13:17	1
1,4-Dichlorobenzene	0.46	U	1.0	0.46	ug/L			05/05/20 13:17	1
1,1-Dichloroethane	0.38	U	1.0	0.38	ug/L			05/05/20 13:17	1
1,1-Dichloroethene	0.36	U	1.0	0.36	ug/L			05/05/20 13:17	1
1,2-Dichloropropane	0.67	U	1.0	0.67	ug/L			05/05/20 13:17	1
Ethylbenzene	0.33	U	1.0	0.33	ug/L			05/05/20 13:17	1
Methylene Chloride	2.92	J	5.0	2.5	ug/L			05/05/20 13:17	1
Methyl ethyl ketone (MEK)	3.4	U	10	3.4	ug/L			05/05/20 13:17	1
4-Methyl-2-pentanone (MIBK)	2.1	U	10	2.1	ug / L			05/05/20 13:17	1
p-Cymene	0.48	U	1.0	0.48	ug/L			05/05/20 13:17	1
Tetrachloroethene	0.74	U	1.0	0.74	ug/L			05/05/20 13:17	1
Toluene	0.48	U	1.0	0.48	ug / L			05/05/20 13:17	1
1,2,4-Trichlorobenzene	2.5	U	5.0	2.5	ug/L			05/05/20 13:17	1
Xylenes, Total	0.23	U	1.0	0.23	ug/L			05/05/20 13:17	1

Prepared		Analyzed	
		Dil Fac	
$05 / 05 / 2013: 17$		1	
	$05 / 05 / 2013: 17$		1
	$05 / 05 / 2013: 17$		1
	$05 / 05 / 2013: 17$		1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Lab Sample ID: LCS 680-617527/4
Matrix: Water
Analysis Batch: 617527

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Acetone	250	250		ug/L		100	70-135
Benzene	50.0	52.3		ug/L		105	80-120
Carbon disulfide	50.0	54.7		ug/L		109	80-120
Chlorobenzene	50.0	50.1		ug/L		100	80-120
Vinyl chloride	50.0	57.6		ug/L		115	71-128
Chloroform	50.0	50.0		ug/L		100	80-120
cis-1,2-Dichloroethene	50.0	52.8		ug/L		106	80-120
1,2-Dichlorobenzene	50.0	48.8		ug/L		98	80-120
1,4-Dichlorobenzene	50.0	47.7		ug/L		95	80-120
1,1-Dichloroethane	50.0	50.3		ug/L		101	80-120
1,1-Dichloroethene	50.0	54.4		ug/L		109	76-120
1,2-Dichloropropane	50.0	53.5		ug/L		107	80-120
Ethylbenzene	50.0	51.7		ug/L		103	80-120
Methylene Chloride	50.0	51.4		ug/L		103	80-120
Methyl ethyl ketone (MEK)	250	249		ug/L		100	80-131

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 617527

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
4-Methyl-2-pentanone (MIBK)	250	241		ug/L		97	76-124
p-Cymene	50.0	50.8		ug/L		102	80-120
Tetrachloroethene	50.0	52.6		ug/L		105	80-121
Toluene	50.0	51.9		ug/L		104	80-113
1,2,4-Trichlorobenzene	50.0	50.3		ug/L		101	68-128
Xylenes, Total	100	102		ug/L		102	80-120

LCS LCS

Surrogate	\%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		80-120
Dibromofluoromethane (Surr)	101		80-122
1,2-Dichloroethane-d4 (Surr)	91		73-131
Toluene-d8 (Surr)	105		80-120

Lab Sample ID: LCSD 680-617527/5
Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Analysis Batch: 617527

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	RPD Limit
Acetone	250	254		ug/L		102	70-135	2	30
Benzene	50.0	51.9		ug/L		104	80-120	1	20
Carbon disulfide	50.0	54.8		ug/L		110	80-120	0	20
Chlorobenzene	50.0	50.3		ug/L		101	80-120	0	20
Vinyl chloride	50.0	58.0		ug/L		116	71-128	1	20
Chloroform	50.0	49.2		ug/L		98	80-120	2	20
cis-1,2-Dichloroethene	50.0	51.2		ug/L		102	80-120	3	20
1,2-Dichlorobenzene	50.0	48.9		ug/L		98	80-120	0	20
1,4-Dichlorobenzene	50.0	46.6		ug/L		93	80-120	2	20
1,1-Dichloroethane	50.0	49.5		ug/L		99	80-120	2	20
1,1-Dichloroethene	50.0	54.4		ug/L		109	76-120	0	20
1,2-Dichloropropane	50.0	52.0		ug/L		104	80-120	3	20
Ethylbenzene	50.0	52.2		ug/L		104	80-120	1	20
Methylene Chloride	50.0	49.9		ug/L		100	80-120	3	20
Methyl ethyl ketone (MEK)	250	247		ug/L		99	80-131	1	20
4-Methyl-2-pentanone (MIBK)	250	242		ug/L		97	76-124	0	20
p-Cymene	50.0	51.3		ug/L		103	80-120	1	20
Tetrachloroethene	50.0	51.8		ug/L		104	80-121	2	20
Toluene	50.0	51.5		ug/L		103	80-113	1	20
1,2,4-Trichlorobenzene	50.0	51.4		ug/L		103	68-128	2	20
Xylenes, Total	100	103		ug/L		103	80-120	0	20

LCSD LCSD

Surrogate	\%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		80-120
Dibromofluoromethane (Surr)	99		80-122
1,2-Dichloroethane-d4 (Surr)	89		73-131
Toluene-d8 (Surr)	105		80-120

Method: 6020A - Metals (ICP/MS)

Method: SM 2340B - Total Hardness (as CaCO3) by calculation

Method: 2320B-2011 - Alkalinity, Total

Method: 2320B-2011 - Alkalinity, Total (Continued)

	Lab Sample ID: LCSD 680-617538/35			Client Sample ID: Lab Control Sample Dup					
Matrix: Water				Prep Type: Total/NA					
Analysis Batch: 617538									
	Spike	LCSD	LCSD				\%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits	RPD	Limit
Alkalinity	250	251		mg/L		100	90-112	1	30

Lab Sample ID: LCSD 680-617538/62
Client Sample ID: Lab Control Sample Dup
Matrix: Water
Prep Type: Total/NA
Analysis Batch: 617538
Analyte
Alkalinity

Lab Sample ID: 680-183249-4 DU
Matrix: Water
Analysis Batch: 617538

Analyte	Sample Result	Sample Qualifier	DU Result	DU Qualifier	Unit	D	RPD	RPD Limit
Alkalinity	97		96.6		mg/L		0.9	30
Bicarbonate Alkalinity as CaCO 3	97		96.6		mg / L		0.9	30
Carbonate Alkalinity as CaCO 3	5.0	U	5.0	U	mg / L		NC	30
Hydroxide Alkalinity	5.0	U	5.0	U	mg / L		NC	30
Carbon Dioxide, Free	120		112		mg / L		6	30
Phenolphthalein Alkalinity	5.0	U	5.0	U	mg / L		NC	30
Bicarbonate ion as HCO3	120		118		mg / L		0.9	30

Method: 2540 D-2011 - Total Suspended Solids (Dried at $103-105^{\circ} \mathrm{C}$)

Lab Sample ID: MB 680-617172/1 Client Sample ID: Method Blank
Matrix: Water Prep Type: Total/NA
Analysis Batch: 617172

Lab Sample ID: LCS 680-617172/2
Client Sample ID: Lab Control Sample
Matrix: Water
Prep Type: Total/NA
Analysis Batch: 617172

Lab Sample ID: LCSD 680-617172/3
Client Sample ID: Lab Control Sample Dup
Matrix: Water Prep Type: Total/NA
Analysis Batch: 617172

	Spike	LCSD	LCSD				\%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits	RPD	Limit
Total Suspended Solids	951	956		mg/L		101	80-120	1	25

Method: 9040C - pH

Lab Sample ID: LCS 680-617402/3 Matrix: Water Analysis Batch: 617402				Client Sample ID: Lab Control Sample Prep Type: Total/NA					
				Prep Type: Total/NA					
	Spike Added		LCS	Unit	D	\%Rec.			
Analyte			Qualifier			\%Rec	Limits		
pH	7.01	7.2		SU	102		63-158		
Lab Sample ID: LCSD 680-617402/21				Client Sample ID: Lab Control Sample Dup					
Matrix: Water				Prep Type: Total/NA					
Analysis Batch: 617402									
	Spike	LCSD	LCSD	Unit	D	\%Rec	\%Rec.		RPD
Analyte	Added	Result	Qualifier				Limits	RPD	Limit
pH	7.01	7.1		SU	102		63-158	0	40

GC/MS VOA

Analysis Batch: 617331

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183249-1	MPE-GW-042820-1	Total/NA	Water	8260B	
MB 680-617331/8	Method Blank	Total/NA	Water	8260B	
LCS 680-617331/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-617331/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 617337
Lab Sample ID
Client Sample ID
MPE-GW-042820-3
Method Blank
Lab Control Sample
Lab Control Sample Dup

Prep Type	Matrix		Method
	Total/NA	Water	8260 B
Total/NA	Water	8260 B	
Total/NA	Water	8260 B	
Total/NA	Water	8260 B	

Analysis Batch: 617375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183249-1 - DL	MPE-GW-042820-1	Total/NA	Water	8260B	
680-183249-2	MPE-GW-042820-2	Total/NA	Water	8260B	
680-183249-3 - DL	MPE-GW-042820-3	Total/NA	Water	8260B	
MB 680-617375/10	Method Blank	Total/NA	Water	8260B	
LCS 680-617375/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-617375/5	Lab Control Sample Dup	Total/NA	Water	8260B	
Analysis Batch: 617527					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183249-2 - DL	MPE-GW-042820-2	Total/NA	Water	8260B	
680-183249-4	MPE-GW-042820-4	Total/NA	Water	8260B	
MB 680-617527/10	Method Blank	Total/NA	Water	8260B	
LCS 680-617527/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-617527/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Metals

Prep Batch: 617517

Metals

Analysis Batch: 617810

Analysis Batch: 617172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183249-1	MPE-GW-042820-1	Total/NA	Water	2540 D-2011	
680-183249-2	MPE-GW-042820-2	Total/NA	Water	2540 D-2011	
680-183249-3	MPE-GW-042820-3	Total/NA	Water	2540 D-2011	
680-183249-4	MPE-GW-042820-4	Total/NA	Water	2540 D-2011	
MB 680-617172/1	Method Blank	Total/NA	Water	2540 D-2011	
LCS 680-617172/2	Lab Control Sample	Total/NA	Water	2540 D-2011	
LCSD 680-617172/3	Lab Control Sample Dup	Total/NA	Water	2540 D-2011	

Analysis Batch: 617402

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183249-1	MPE-GW-042820-1	Total/NA	Water	9040C	
680-183249-2	MPE-GW-042820-2	Total/NA	Water	9040C	
680-183249-3	MPE-GW-042820-3	Total/NA	Water	9040C	
680-183249-4	MPE-GW-042820-4	Total/NA	Water	9040C	
LCS 680-617402/3	Lab Control Sample	Total/NA	Water	9040C	
LCSD 680-617402/21	Lab Control Sample Dup	Total/NA	Water	9040C	
Analysis Batch: 617538					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183249-1	MPE-GW-042820-1	Total/NA	Water	2320B-2011	
680-183249-2	MPE-GW-042820-2	Total/NA	Water	2320B-2011	
680-183249-3	MPE-GW-042820-3	Total/NA	Water	2320B-2011	
680-183249-4	MPE-GW-042820-4	Total/NA	Water	2320B-2011	
MB 680-617538/36	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-617538/37	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-617538/35	Lab Control Sample Dup	Total/NA	Water	2320B-2011	
LCSD 680-617538/62	Lab Control Sample Dup	Total/NA	Water	2320B-2011	
680-183249-4 DU	MPE-GW-042820-4	Total/NA	Water	2320B-2011	

Client: Geosyntec Consultants, Inc.
Project/Site: Hercules/Pinova Brunswick Facility
Client Sample ID: MPE-GW-042820-1
Date Collected: 04/28/20 15:45
Lab Sample ID: 680-183249-1

Date Received: 04/30/20 09:30

Client Sample ID: MPE-GW-042820-2
Lab Sample ID: 680-183249-2
Date Collected: 04/28/20 15:45
Matrix: Water
Date Received: 04/30/20 09:30

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instru	8260B ID: CMSB		1	5 mL	5 mL	617375	05/04/20 16:15	P1C	TAL SAV
Total/NA	Analysis Instru	8260B ID: CMSB	DL	2	5 mL	5 mL	617527	05/05/20 16:46	P1C	TAL SAV
Total Recoverable	Prep	3005A			50 mL	250 mL	617517	05/04/20 17:24	BCB	TAL SAV
Total Recoverable	Analysis Instru	6020A ID: ICPMSD		1			617660	05/05/20 17:49	BJB	TAL SAV
Total/NA	Analysis Instru	SM 2340B ID: NOEQUIP		1			617810	05/06/20 17:47	BCB	TAL SAV
Total/NA	Analysis Instru	2320B-2011 ID: MANTECH		1			617538	05/04/20 21:34	DR	TAL SAV
Total/NA	Analysis Instru	2540 D-2011 ID: NOEQUIP		1	42 mL	1000 mL	617172	05/01/20 07:53	PG	TAL SAV
Total/NA	Analysis Instru	$9040 \mathrm{C}$ ID: MANTECH		1			617402	05/01/20 16:27	ALG	TAL SAV

Client Sample ID: MPE-GW-042820-3
Lab Sample ID: 680-183249-3
Date Collected: 04/28/20 17:30
Matrix: Water
Date Received: 04/30/20 09:30

Client: Geosyntec Consultants, Inc. Project/Site: Hercules/Pinova Brunswick Facility

Client Sample ID: MPE-GW-042820-3
Date Collected: 04/28/20 17:30
Lab Sample ID: 680-183249-3

Date Received: 04/30/20 09:30

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	617337	05/03/20 17:55	Y1S	TAL SAV
Total Recoverable	Prep	3005A			50 mL	250 mL	617517	05/04/20 17:24	BCB	TAL SAV
Total Recoverable	Analysis Instrum	$6020 \mathrm{~A}$ ID: ICPMSD		1			617660	05/05/20 17:53	BJB	TAL SAV
Total/NA	Analysis Instrum	SM 2340B ID: NOEQUIP		1			617810	05/06/20 17:47	BCB	TAL SAV
Total/NA	Analysis Instrum	2320B-2011 ID: MANTECH		1			617538	05/04/20 21:42	DR	TAL SAV
Total/NA	Analysis Instrum	2540 D-2011 ID: NOEQUIP		1	135 mL	1000 mL	617172	05/01/20 07:53	PG	TAL SAV
Total/NA	Analysis Instrum	$9040 \mathrm{C}$ ID: MANTECH		1			617402	05/01/20 16:31	ALG	TAL SAV

Client Sample ID: MPE-GW-042820-4
Lab Sample ID: 680-183249-4 Matrix: Water
Date Collected: 04/28/20 18:20
Date Received: 04/30/20 09:30

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	8260B ID: CMSB		50	5 mL	5 mL	617527	05/05/20 17:33	P1C	TAL SAV
Total Recoverable	Prep	3005A			50 mL	250 mL	617517	05/04/20 17:24	BCB	TAL SAV
Total Recoverable	Analysis Instrum	6020A ID: ICPMSD		1			617660	05/05/20 17:56	BJB	TAL SAV
Total/NA	Analysis Instrum	SM 2340B ID: NOEQUIP		1			617810	05/06/20 17:47	ВСВ	TAL SAV
Total/NA	Analysis Instrum	2320B-2011 ID: MANTECH		1			617538	05/04/20 21:48	DR	TAL SAV
Total/NA	Analysis Instrum	2540 D-2011 ID: NOEQUIP		1	500 mL	1000 mL	617172	05/01/20 07:53	PG	TAL SAV
Total/NA	Analysis Instrum	9040C ID: MANTECH		1			617402	05/01/20 16:35	ALG	TAL SAV

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858
Eurofins TestAmerica, Savannah 5102 LaRoche Avenue
Savannah. GA 31404
Phone 912-354-7858 Fax 912-352-0165
Client Information
Client Contact
Ali Ciblak
Company
Geosyntec Consultants. Inc.
1255 Roberts Blvd, NW Suite 200
Kennesaw
GA, 30144
$857-241-7216$
aciblak@geosyntec com
Project Name
Ashland - BrunswickTotal/TCLP Water

| Ashland - BrunswickTotal/TCLP Water | 68022943 |
| :--- | :--- | :--- |
| Site | SSOWH |

Itercules/Pinova Brunswick Facility

$\frac{\Phi}{0}$	$\frac{\Phi}{0}$
3	$\frac{0}{3}$
3	

3 あ
$\frac{0}{10}$

3 | $\frac{\square}{0}$ |
| :--- |
| $\frac{0}{3}$ |

 Water
Chain of Custody Record
$857-241-7216$
b b b -

\therefore eurofins

Login Sample Receipt Checklist

Login Number: 183249
List Source: Eurofins TestAmerica, Savannah
List Number: 1
Creator: Banda, Christy S

Question	Answer Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.
Project/Site: Hercules/Pinova Brunswick Facility

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87052	$06-30-20$
Georgia	State	E87052	$06-30-20$

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah
5102 LaRoche Avenue
Savannah, GA 31404
Tel: (912)354-7858
Laboratory Job ID: 680-183351-1
Client Project/Site: Ashland - Brunswick Plant Waters
For:
Geosyntec Consultants, Inc.
1255 Roberts Blvd, NW
Suite 200
Kennesaw, Georgia 30144
Attn: Adria Reimer

Authorized for release by: 5/18/2020 2:27:29 PM
Willie Hallmon, Project Manager I (813)885-7427
willie.hallmon@testamericainc.com
Designee for
Jerry Lanier, Project Manager I
(912)250-0281
jerry.lanier@testamericainc.com

Review your project results through Total Access

Have a Question?

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Visit us at:

www.eurofinsus.com/Env

Table of Contents

Cover Page 1
Table of Contents 2
Case Narrative 3
Sample Summary 5
Method Summary 6
Definitions/Glossary 7
Detection Summary 8
Client Sample Results 9
Surrogate Summary 19
QC Sample Results 21
QC Association Summary 27
Lab Chronicle 29
Chain of Custody 31
Receipt Checklists 36
Certification Summary 37

Job ID: 680-183351-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: Ashland - Brunswick Plant Waters

Report Number: 680-183351-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 05/01/2020; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.1 C .

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample MPE_WC_043020 (680-183351-10) was analyzed for TCLP volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 05/06/2020 and analyzed on 05/06/2020.

Sample MPE_WC_043020 (680-183351-10)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.
No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PESTICIDES (TCLP)

Sample MPE_WC_043020 (680-183351-10) was analyzed for Pesticides (TCLP) in accordance with EPA SW-846 Method $1311 / 8081 B _8082 A$. The samples were leached on 05/06/2020, prepared on 05/07/2020 and analyzed on 05/11/2020.

This method incorporates 2nd column confirmation. Corrective action is not taken for surrogate/spike compounds unless results from both columns are unacceptable. Results outside criteria are qualified.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 680-617699 and 680-617920 and analytical batch 680-618275 recovered outside control limits for the following analyte: Methoxychlor. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data has been reported

Refer to the QC report for details.
No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.
Methoxychlor failed the recovery criteria high for LCS 680-617920/11-A. Methoxychlor failed the recovery criteria high for LCSD 680-617920/12-A. Refer to the QC report for details.

IGNITABILITY

Sample MPE_WC_043020 (680-183351-10) was analyzed for ignitability in accordance with EPA SW846 Method 1010A. The samples were analyzed on 05/18/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 680-183351-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

ANIONS BY ION CHROMATOGRAPHY (28 DAY)

Samples INJ_BT_042920 (680-183351-1), INJ_MW24_042920 (680-183351-2), INJ_MPE01_042920 (680-183351-3), INJ_OW02_042920 (680-183351-4), INJ_MW23_042920 (680-183351-5), INJ_MW24_043020 (680-183351-6), INJ_MPE01_043020 (680-183351-7), INJ_OW02_043020 (680-183351-8) and INJ_MW23_043020 (680-183351-9) were analyzed for Anions by lon Chromatography (28 Day) in accordance with EPA Method 300.0. The samples were analyzed on 05/05/2020, 05/06/2020 and 05/08/2020.

Method 300_ORGFM_28D: The following samples was diluted due to color and appearance: INJ_MPE01_042920 (680-183351-3), INJ_OW02_042920 (680-183351-4), INJ_OW02_043020 (680-183351-8), INJ_MW23_043020 (680-183351-9). Elevated reporting limits (RL) are provide

Samples INJ_BT_042920 (680-183351-1)[10X], INJ_MPE01_042920 (680-183351-3)[5X], INJ_OW02_042920 (680-183351-4)[5X], INJ_OW02_043020 (680-183351-8)[10X] and INJ_MW23_043020 (680-183351-9)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
680-183351-1	INJ_BT_042920	Water	04/29/20 09:58	05/01/20 09:40	
680-183351-2	INJ_MW24_042920	Water	04/29/20 18:00	05/01/20 09:40	
680-183351-3	INJ_MPE01_042920	Water	04/29/20 18:10	05/01/20 09:40	
680-183351-4	INJ_OW02_042920	Water	04/29/20 18:20	05/01/20 09:40	
680-183351-5	INJ_MW23_042920	Water	04/29/20 18:30	05/01/20 09:40	
680-183351-6	INJ_MW24_043020	Water	04/30/20 09:05	05/01/20 09:40	
680-183351-7	INJ_MPE01_043020	Water	04/30/20 09:10	05/01/20 09:40	
680-183351-8	INJ_OW02_043020	Water	04/30/20 09:15	05/01/20 09:40	
680-183351-9	INJ_MW23_043020	Water	04/30/20 09:20	05/01/20 09:40	
680-183351-10	MPE_WC_043020	Water	04/30/20 12:40	05/01/20 09:40	

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8081B/8082A	Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography	SW846	TAL SAV
300.0-1993 R2.1	Anions, Ion Chromatography	MCAWW	TAL SAV
1010A	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL CAN
1311	TCLP Extraction	SW846	TAL SAV
3520C	Liquid-Liquid Extraction (Continuous)	SW846	TAL SAV
5030B	Purge and Trap	SW846	TAL SAV

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396
TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Qualifiers

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD recovery exceeds control limits.
p	The \%RPD between the primary and confirmation column/detector is $>40 \%$. The lower value has been reported.
U	Indicates the analyte was analyzed for but not detected.
HPLC/IC Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this re
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Geosyntec Consultants, Inc.
Job ID: 680-183351-1
Project/Site: Ashland - Brunswick Plant Waters

Client Sample ID: INJ_BT_042920						Lab Sample ID: 680-183351-1			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bromide	210		5.0		mg/L	10		300.0-1	Total/NA

Client	4292					Lab Sample ID: 680-183351-2			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bromide	0.52		0.50		mg/L	1		300.0-1	Total/NA

Client Sample ID: INJ_MPE01_042920 Lab Sample ID: 680-183351-3
[No Detections.

Client	4292				Lab Sample ID: 680-183351-4				
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bromide	2.6		2.5		mg/L	5		300.0-1993 R2.1	Total/NA

Client Sample ID: INJ_MW23_042920 Lab Sample ID: 680-183351-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bromide	1.1		0.50		mg/L	1		300.0-1993 R2.1	Total/NA
Client Sample ID: INJ_MW24_043020						Lab Sample ID: 680-183351-6			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bromide	1.2		0.50		mg/L	1		300.0-1993 R2.1	Total/NA

Client Sample ID: INJ_MPE01_043020 Lab Sample ID: 680-183351-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bromide	0.97		0.50		mg/L	1		300.0-1993 R2.1	Total/NA

Client Sample ID: INJ_OW02_043020
Lab Sample ID: 680-183351-8
[No Detections.
Client Sample ID: INJ_MW23_043020 Lab Sample ID: 680-183351-9

[No Detections.

Client Sample ID: MPE_WC_043020
Lab Sample ID: 680-183351-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Benzene	0.12		0.020		mg/L	20	8260B	TCLP
Flashpoint	>200		1.00		Degrees F	1	1010A	Total/NA

Client Sample ID: INJ_MW24_042920 Lab Sample ID: 680-183351-2

Date Collected: 04/29/20 18:00
Date Received: 05/01/20 09:40

Method: 300.0-1993 R2.1-A	Ch	omatog							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.52		0.50		mg/L			05/06/20 03:15	1

Client Sample ID: INJ_MPE01_042920 Lab Sample ID: 680-183351-3

Date Collected: 04/29/20 18:10
Matrix: Water
Date Received: 05/01/20 09:40

Client Sample ID: INJ_OW02_042920 Lab Sample ID: 680-183351-4

Date Collected: 04/29/20 18:20
Date Received: 05/01/20 09:40
Method: 300.0-1993 R2.1 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	2.6		2.5		mg/L			5/05/20 20:31	

Client Sample ID: INJ_MW23_042920 Lab Sample ID: 680-183351-5

Date Collected: 04/29/20 18:30
Matrix: Water
Date Received: 05/01/20 09:40

Client Sample ID: INJ_MW24_043020 Lab Sample ID: 680-183351-6

Date Collected: 04/30/20 09:05
Date Received: 05/01/20 09:40
Method: 300.0-1993 R2.1 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	1.2		50		mg/L			5/06/20 03:41	

Client Sample ID: INJ_MPE01_043020 Lab Sample ID: 680-183351-7

Date Collected: 04/30/20 09:10
Matrix: Water
Date Received: 05/01/20 09:40

Client Sample ID: INJ_OW02_043020 Lab Sample ID: 680-183351-8

Date Collected: 04/30/20 09:15
Matrix: Water
Date Received: 05/01/20 09:40

| Client Sample ID: INJ_MW23_043020 | Lab Sample ID: 680-183351-9 |
| :--- | ---: | :--- |
| Matrix: Water | |

Client Sample ID: MPE_WC_043020

 Lab Sample ID: 680-183351-10Date Collected: 04/30/20 12:40
Date Received: 05/01/20 09:40

Method: 8260B - Volatile Organic Compounds (GC/MS) - TCLP									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.020	U	0.020		mg/L			05/06/20 18:55	20
1,2-Dichloroethane	0.020	U	0.020		mg / L			05/06/20 18:55	20
Chlorobenzene	0.020	U	0.020		mg / L			05/06/20 18:55	20
Tetrachloroethene	0.020	U	0.020		mg / L			05/06/20 18:55	20
Carbon tetrachloride	0.020	U	0.020		mg / L			05/06/20 18:55	20
Chloroform	0.020	U	0.020		mg / L			05/06/20 18:55	20
Benzene	0.12		0.020		mg / L			05/06/20 18:55	20
Vinyl chloride	0.020	U	0.020		mg / L			05/06/20 18:55	20
1,1-Dichloroethene	0.020	U	0.020		mg / L			05/06/20 18:55	20
2-Butanone (MEK)	0.20	U	0.20		mg / L			05/06/20 18:55	20
Trichloroethene	0.020	U	0.020		mg / L			05/06/20 18:55	20
Hexachlorobutadiene	0.10	U	0.10		mg / L			05/06/20 18:55	20
Surrogate	\%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		80-120					05/06/20 18:55	20
1,2-Dichloroethane-d4 (Surr)	83		73-131					05/06/20 18:55	20
Dibromofluoromethane (Surr)	96		80-122					05/06/20 18:55	20
4-Bromofluorobenzene (Surr)	107		80-120					05/06/20 18:55	20

Client: Geosyntec Consultants, Inc.
Job ID: 680-183351-1
Project/Site: Ashland - Brunswick Plant Waters
Method: 8260B - Volatile Organic Compounds (GC/MS)
Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)
Matrix: Water
Prep Type: TCLP

		Percent Surrogate Recovery (Acceptance Limits)				
Lab Sample ID	Client Sample ID	$\begin{gathered} \text { TOL } \\ (80-120) \end{gathered}$	$\begin{gathered} \text { DCA } \\ (73-131) \end{gathered}$	$\begin{gathered} \text { DBFM } \\ (80-122) \end{gathered}$	$\begin{gathered} \text { BFB } \\ (80-120) \end{gathered}$	
680-183351-10	MPE_WC_043020	97	83	96	107	
LB 680-617697/1-A	Method Blank	93	84	103	101	
Surrogate Legend						
TOL = Toluene-d8 (Surr)						
DCA $=1,2$-Dichloroethane-d4 (Surr)						
DBFM = Dibromofluoromethane (Surr)						
BFB $=4$-Bromofluorobenzene (Surr)						

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

 ChromatographyMatrix: Water
Prep Type: Total/NA

Surrogate Legend
TCX = Tetrachloro-m-xylene
DCBP = DCB Decachlorobiphenyl

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

Chromatography

Matrix: Water Prep Type: TCLP

Surrogate Summary

Client: Geosyntec Consultants, Inc.
Project/Site: Ashland - Brunswick Plant Waters
DCBP = DCB Decachlorobiphenyl
Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography
Matrix: Water
Prep Type: TCLP

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography
Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-617669/10
Matrix: Water
Analysis Batch: 617669

Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0010	U	0.0010		mg/L			05/06/20 13:31	1
1,2-Dichloroethane	0.0010	U	0.0010		mg / L			05/06/20 13:31	1
Chlorobenzene	0.0010	U	0.0010		mg / L			05/06/20 13:31	1
Tetrachloroethene	0.0010	U	0.0010		mg / L			05/06/20 13:31	1
Carbon tetrachloride	0.0010	U	0.0010		mg / L			05/06/20 13:31	1
Chloroform	0.0010	U	0.0010		mg / L			05/06/20 13:31	1
Benzene	0.0010	U	0.0010		mg / L			05/06/20 13:31	1
Vinyl chloride	0.0010	U	0.0010		mg / L			05/06/20 13:31	1
1,1-Dichloroethene	0.0010	U	0.0010		mg / L			05/06/20 13:31	1
2-Butanone (MEK)	0.010	U	0.010		mg / L			05/06/20 13:31	1
Trichloroethene	0.0010	U	0.0010		mg / L			05/06/20 13:31	1
Hexachlorobutadiene	0.0050	U	0.0050		mg/L			05/06/20 13:31	1

MB MB

Surrogate	\%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	106		80-120
1,2-Dichloroethane-d4 (Surr)	84		73-131
Dibromofluoromethane (Surr)	97		80-122
4-Bromofluorobenzene (Surr)	94		80-120

Lab Sample ID: LCS 680-617669/4
Matrix: Water
Analysis Batch: 617669

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
1,4-Dichlorobenzene	0.0500	0.0469		mg/L		94	80-120
1,2-Dichloroethane	0.0500	0.0471		mg / L		94	72-128
Chlorobenzene	0.0500	0.0502		mg / L		100	80-120
Tetrachloroethene	0.0500	0.0469		mg / L		94	71-123
Carbon tetrachloride	0.0500	0.0476		mg / L		95	67-125
Chloroform	0.0500	0.0487		mg / L		97	80-120
Benzene	0.0500	0.0517		mg / L		103	80-120
Vinyl chloride	0.0500	0.0484		mg / L		97	80-129
1,1-Dichloroethene	0.0500	0.0466		mg / L		93	80-120
2-Butanone (MEK)	0.250	0.264		mg / L		106	79-125
Trichloroethene	0.0500	0.0517		mg / L		103	80-120
Hexachlorobutadiene	0.0500	0.0508		mg/L		102	71-131

LCS LCS

Surrogate		\%Recovery	Qualifier		Limits
	Toluene-d8 (Surr)	109		$80-120$	
1,2-Dichloroethane-d4 (Surr)		91		$73-131$	
Dibromofluoromethane (Surr)		101	84	$80-122$	
4-Bromofluorobenzene (Surr)		84	$80-120$		

Client Sample ID: Method Blank Prep Type: Total/NA

Prepared		Analyzed	
		Dil Fac	
	$05 / 06 / 2013: 31$		1
	$05 / 06 / 2013: 31$		1
	$05 / 06 / 2013: 31$		1
	$05 / 06 / 2013: 31$	1	

Client Sample ID: Lab Control Sample Prep Type: Total/NA
\%Rec.
imits

72-128

71-123
67-125

- 120

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 680-617697/1-A
Matrix: Water
Client Sample ID: Method Blank
Prep Type: TCLP
Analysis Batch: 617669

Analyte	$\begin{array}{r} \text { LB } \\ \text { Result } \end{array}$	LB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.020	U	0.020		mg/L			05/06/20 17:45	20
1,2-Dichloroethane	0.020	U	0.020		mg / L			05/06/20 17:45	20
Chlorobenzene	0.020	U	0.020		mg / L			05/06/20 17:45	20
Tetrachloroethene	0.020	U	0.020		mg / L			05/06/20 17:45	20
Carbon tetrachloride	0.020	U	0.020		mg / L			05/06/20 17:45	20
Chloroform	0.020	U	0.020		mg / L			05/06/20 17:45	20
Benzene	0.020	U	0.020		mg / L			05/06/20 17:45	20
Vinyl chloride	0.020	U	0.020		mg / L			05/06/20 17:45	20
1,1-Dichloroethene	0.020	U	0.020		mg / L			05/06/20 17:45	20
2-Butanone (MEK)	0.20	U	0.20		mg / L			05/06/20 17:45	20
Trichloroethene	0.020	U	0.020		mg / L			05/06/20 17:45	20
Hexachlorobutadiene	0.10	U	0.10		mg / L			05/06/20 17:45	20
Surrogate	\%Recovery	LB Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		80-120					05/06/20 17:45	20
1,2-Dichloroethane-d4 (Surr)	84		73-131					05/06/20 17:45	20
Dibromofluoromethane (Surr)	103		80-122					05/06/20 17:45	20
4-Bromofluorobenzene (Surr)	101		80-120					05/06/20 17:45	20

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

 Chromatography| Lab Sample ID: MB 680Matrix: Water Analysis Batch: 618275 | | | | | | Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 617920 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analyte | $\begin{array}{r} \text { MB } \\ \text { Result } \end{array}$ | MB
 Qualifier | RL | MDL | Unit | D | Prepared | Analyzed | Dil Fac |
| Heptachlor epoxide | 0.000025 | U | 0.000025 | | mg/L | | 05/07/20 16:29 | 05/11/20 19:27 | 1 |
| Chlordane (technical) | 0.00025 | U | 0.00025 | | mg / L | | 05/07/20 16:29 | 05/11/20 19:27 | 1 |
| gamma-BHC (Lindane) | 0.000025 | U | 0.000025 | | mg / L | | 05/07/20 16:29 | 05/11/20 19:27 | 1 |
| Endrin | 0.000025 | U | 0.000025 | | mg / L | | 05/07/20 16:29 | 05/11/20 19:27 | 1 |
| Methoxychlor | 0.000025 | U | 0.000025 | | mg / L | | 05/07/20 16:29 | 05/11/20 19:27 | 1 |
| Heptachlor | 0.000025 | U | 0.000025 | | mg / L | | 05/07/20 16:29 | 05/11/20 19:27 | 1 |
| Toxaphene | 0.0025 | U | 0.0025 | | mg / L | | 05/07/20 16:29 | 05/11/20 19:27 | 1 |

Surrogate	\%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	74		40-130	05/07/20 16:29	05/11/20 19:27	
DCB Decachlorobiphenyl	63		14-130	05/07/20 16:29	05/11/20 19:27	

Lab Sample ID: LCS 680-617920/11-A
Matrix: Water
Analysis Batch: 618275

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Heptachlor epoxide	0.0000500	0.0000643		mg/L		129	52-130
gamma-BHC (Lindane)	0.0000500	0.0000509		mg / L		102	52-130
Endrin	0.0000500	0.0000648		mg / L		130	59-143
Methoxychlor	0.0000500	0.0000741	*	mg / L		148	52-136
Heptachlor	0.0000500	0.0000530		mg / L		106	35-130

LCS LCS

Surrogate		\%Recovery	Qualifier	
		74	Limits	
Tetrachloro-m-xylene		$40-130$		
DCB Decachlorobiphenyl	84	$14-130$		

Lab Sample ID: LCSD 680-617920/12-A
Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 617920 \%Rec. RPD
Analysis Batch: 618275

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	$\begin{aligned} & \text { RPD } \\ & \text { Limit } \end{aligned}$
Heptachlor epoxide	0.0000500	0.0000560		mg/L		112	52-130	14	50
gamma-BHC (Lindane)	0.0000500	0.0000410		mg / L		82	52-130	22	50
Endrin	0.0000500	0.0000647		mg / L		129	59-143	0	50
Methoxychlor	0.0000500	0.0000811	*	mg / L		162	52-136	9	50
Heptachlor	0.0000500	0.0000432		mg / L		86	35-130	20	50

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography (Continued)

Lab Sample ID: LB 680-617699/1-C Matrix: Water Analysis Batch: 618275	LB LB					Client Sample ID: Method Blank Prep Type: TCLP Prep Batch: 617920			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	0.0012	U	0.0012		mg/L		05/07/20 16:29	05/11/20 19:12	1
Chlordane (technical)	0.012	U	0.012		mg / L		05/07/20 16:29	05/11/20 19:12	1
gamma-BHC (Lindane)	0.0012	U	0.0012		mg / L		05/07/20 16:29	05/11/20 19:12	1
Endrin	0.0012	U	0.0012		mg / L		05/07/20 16:29	05/11/20 19:12	1
Methoxychlor	0.0012	U	0.0012		mg / L		05/07/20 16:29	05/11/20 19:12	1
Heptachlor	0.0012	U	0.0012		mg / L		05/07/20 16:29	05/11/20 19:12	1
Toxaphene	0.12	U	0.12		mg / L		05/07/20 16:29	05/11/20 19:12	1

Lab Sample ID: 680-183351-10 MS
Matrix: Water
Analysis Batch: 618275

Analysis Batch: 618275 Analyte	Sample Result	Sample Qualifier	Spike Added	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	MS Qualifier	Unit	D	\%Rec	\%Rec. Limits
Heptachlor epoxide	0.0012	UF1	0.00235	0.00332	F1	mg/L		141	52-130
gamma-BHC (Lindane)	0.0012	U	0.00235	0.00267		mg / L		114	52-130
Endrin	0.0012	UF1	0.00235	0.00231	p	mg/L		99	59-143
Methoxychlor	0.0012	UF1*	0.00235	0.00355	F1	mg / L		151	52-136
Heptachlor	0.0012	U	0.00235	0.00293		mg/L		125	35-130

	MS MS		
Surrogate			

Lab Sample ID: 680-183351-10 MSD
Matrix: Water
Analysis Batch: 618275

Analyte	Sample Result	Sample Qualifier	Spike Added
Heptachlor epoxide	0.0012	UF1	0.00246
gamma-BHC (Lindane)	0.0012	U	0.00246
Endrin	0.0012	UF1	0.00246
Methoxychlor	0.0012	UF1 *	0.00246
Heptachlor	0.0012	U	0.00246
	MSD	MSD	
Surrogate	\%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	69		40-130
DCB Decachlorobiphenyl	41		14-130

Client Sample ID: MPE_WC_043020
Prep Type: TCLP Prep Batch: 617920 \%Rec. RPD \%Rec. RPD

Unit	D \%Rec	Limits	RPD	Limit
mg/L	92	52 -130	38	50
mg/L	104	52-130	5	50
mg/L	97	59-143	3	50
mg / L	154	52-136	7	50
mg/L	111	35-130	7	50

Method: 300.0-1993 R2.1 - Anions, Ion Chromatography

Lab Sample ID: MB 680-617609/2
Matrix: Water
Analysis Batch: 617609

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.50	U	0.50		mg/L			05/05/20 14:22	1

Lab Sample ID: LCS 680-617609/3
Matrix: Water
Analysis Batch: 617609

Lab Sample ID: LCSD 680-617609/4
Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA
Matrix: Water
Analysis Batch: 617609

	Spike	LCSD	LCSD				\%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits	RPD	Limit
Bromide	10.0	10.4		mg/L		104	90-110	0	15

Lab Sample ID: MB 680-617654/33
Matrix: Water
Analysis Batch: 617654

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.50	U	0.50		mg/L			05/05/20 21:59	1

Lab Sample ID: LCS 680-617654/34
Matrix: Water
Analysis Batch: 617654

Lab Sample ID: LCSD 680-617654/35 Client Sample ID: Lab Control Sample Dup
Matrix: Water Prep Type: Total/NA
Analysis Batch: 617654

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	\%Rec	\%Rec. Limits	RPD	RPD Limit
Bromide	10.0	10.5		mg/L		105	90-110	0	15

Lab Sample ID: MB 680-618000/2
Matrix: Water
Client Sample ID: Method Blank
Analysis Batch: 618000
MB MB

Lab Sample ID: LCS 680-618000/3
Matrix: Water
Analysis Batch: 618000

Method: 300.0-1993 R2.1 - Anions, Ion Chromatography

Method: 1010A - Ignitability, Pensky-Martens Closed-Cup Method

Lab Sample ID: LCS 240-434651/1				Client Sample ID: Lab Control Sample			
Matrix: Water				Prep Type: Total/NA			
Analysis Batch: 434651							
	Spike	LCS	LCS				\%Rec.
Analyte	Added	Result	Qualifier	Unit	D	\%Rec	Limits
Flashpoint	81.0	81.00		Degrees F		100	97-103

Lab Sample ID: 680-183351-10 DU
Matrix: Water
Analysis Batch: 434651

GC/MS VOA

Analysis Batch: 617669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183351-10	MPE_WC_043020	TCLP	Water	8260B	617697
LB 680-617697/1-A	Method Blank	TCLP	Water	8260B	617697
MB 680-617669/10	Method Blank	Total/NA	Water	8260B	
LCS 680-617669/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-617669/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Leach Batch: 617697

Lab Sample ID

Client Sample ID	Prep Type
MPE_WC_043020	TCLP
Method Blank	TCLP

Matrix
Water
Water

Method
1311
1311

GC Semi VOA

Leach Batch: 617699

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183351-10	MPE_WC_043020	TCLP	Water	1311	
LB 680-617699/1-C	Method Blank	TCLP	Water	1311	
680-183351-10 MS	MPE_WC_043020	TCLP	Water	1311	
680-183351-10 MSD	MPE_WC_043020	TCLP	Water	1311	

Prep Batch: 617920

$\left[\begin{array}{l}\text { Lab Sample ID } \\ \hline 680-183351-10 \\ \text { LB 680-617699/1-C } \\ \text { MB 680-617920/10-A } \\ \text { LCS 680-617920/11-A } \\ \text { LCSD 680-617920/12-A } \\ 680-183351-10 \text { MS } \\ 680-183351-10 \text { MSD } \\ \text { Analysis Batch: } \mathbf{6 1 8 2 7 5}\end{array}\right.$

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183351-10	MPE_WC_043020	TCLP	Water	8081B/8082A	617920
LB 680-617699/1-C	Method Blank	TCLP	Water	8081B/8082A	617920
MB 680-617920/10-A	Method Blank	Total/NA	Water	8081B/8082A	617920
LCS 680-617920/11-A	Lab Control Sample	Total/NA	Water	8081B/8082A	617920
LCSD 680-617920/12-A	Lab Control Sample Dup	Total/NA	Water	8081B/8082A	617920
680-183351-10 MS	MPE_WC_043020	TCLP	Water	8081B/8082A	617920
680-183351-10 MSD	MPE_WC_043020	TCLP	Water	8081B/8082A	617920

HPLC/IC

Analysis Batch: 617609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183351-3	INJ_MPE01_042920	Total/NA	Water	300.0-1993 R2.1	
680-183351-4	INJ_OW02_042920	Total/NA	Water	300.0-1993 R2.1	
680-183351-8	INJ_OW02_043020	Total/NA	Water	300.0-1993 R2.1	
680-183351-9	INJ_MW23_043020	Total/NA	Water	300.0-1993 R2.1	
MB 680-617609/2	Method Blank	Total/NA	Water	300.0-1993 R2. 1	
LCS 680-617609/3	Lab Control Sample	Total/NA	Water	300.0-1993 R2.1	
LCSD 680-617609/4	Lab Control Sample Dup	Total/NA	Water	300.0-1993 R2. 1	

HPLC/IC

Analysis Batch: 617654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183351-2	INJ_MW24_042920	Total/NA	Water	300.0-1993 R2.1	
680-183351-5	INJ_MW23_042920	Total/NA	Water	300.0-1993 R2.1	
680-183351-6	INJ_MW24_043020	Total/NA	Water	300.0-1993 R2.1	
680-183351-7	INJ_MPE01_043020	Total/NA	Water	300.0-1993 R2.1	
MB 680-617654/33	Method Blank	Total/NA	Water	300.0-1993 R2.1	
LCS 680-617654/34	Lab Control Sample	Total/NA	Water	300.0-1993 R2.1	
LCSD 680-617654/35	Lab Control Sample Dup	Total/NA	Water	300.0-1993 R2. 1	

Analysis Batch: 618000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183351-1	INJ_BT_042920	Total/NA	Water	300.0-1993 R2.1	
MB 680-618000/2	Method Blank	Total/NA	Water	300.0-1993 R2.1	
LCS 680-618000/3	Lab Control Sample	Total/NA	Water	300.0-1993 R2.1	
LCSD 680-618000/4	Lab Control Sample Dup	Total/NA	Water	300.0-1993 R2.1	

General Chemistry

Analysis Batch: 434651

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-183351-10	MPE_WC_043020	Total/NA	Water	1010A	
LCS 240-434651/1	Lab Control Sample	Total/NA	Water	1010A	
680-183351-10 DU	MPE_WC_043020	Total/NA	Water	1010A	

Client: Geosyntec Consultants, Inc.
Job ID: 680-183351-1
Project/Site: Ashland - Brunswick Plant Waters
Client Sample ID: INJ_BT_042920
Date Collected: 04/29/20 09:58
Lab Sample ID: 680-183351-1
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	300.0-1993 R2.1 D: CICH		10	5 mL	5 mL	618000	05/08/20 13:10	CS	TAL SAV

Client Sample ID: INJ_MW24_042920
Lab Sample ID: 680-183351-2
Date Collected: 04/29/20 18:00
Matrix: Water
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	300.0-1993 R2.1 ID: CICK		1	5 mL	5 mL	617654	05/06/20 03:15	UI	TAL SAV

Client Sample ID: INJ_MPE01_042920 Lab Sample ID: 680-183351-3
Date Collected: 04/29/20 18:10
Matrix: Water
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	300.0-1993 R2.1 D: CICK		5	5 mL	5 mL	617609	05/05/20 20:18	UI	TAL SAV

Client Sample ID: INJ_OW02_042920
Date Collected: 04/29/20 18:20
Lab Sample ID: 680-183351-4
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	$\begin{aligned} & \text { 300.0-1993 R2.1 } \\ & \text { ID: CICK } \end{aligned}$		5	5 mL	5 mL	617609	05/05/20 20:31	UI	TAL SAV

Client Sample ID: INJ_MW23_042920 Lab Sample ID: 680-183351-5
Date Collected: 04/29/20 18:30
Matrix: Water
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	$\begin{aligned} & \text { 300.0-1993 R2.1 } \\ & \text { ID: CICK } \end{aligned}$		1	5 mL	5 mL	617654	05/06/20 03:28	UI	TAL SAV

Client Sample ID: INJ_MW24_043020
Lab Sample ID: 680-183351-6
Date Collected: 04/30/20 09:05
Matrix: Water
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	300.0-1993 R2.1 ID: CICK		1	5 mL	5 mL	617654	05/06/20 03:41	UI	TAL SAV

Client: Geosyntec Consultants, Inc.
Project/Site: Ashland - Brunswick Plant Waters
Client Sample ID: INJ_MPE01_043020
Lab Sample ID: 680-183351-7
Date Collected: 04/30/20 09:10
Matrix: Water
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	300.0-1993 R2.1 D: CICK		1	5 mL	5 mL	617654	05/06/20 03:53	UI	TAL SAV

Client Sample ID: INJ_OW02_043020
Lab Sample ID: 680-183351-8
Date Collected: 04/30/20 09:15
Matrix: Water
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	$\begin{aligned} & \text { 300.0-1993 R2.1 } \\ & \text { ID: CICK } \end{aligned}$		10	5 mL	5 mL	617609	05/05/20 20:56	UI	TAL SAV

Client Sample ID: INJ_MW23_043020 Lab Sample ID: 680-183351-9
Date Collected: 04/30/20 09:20
Matrix: Water
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrum	$\begin{aligned} & \text { 300.0-1993 R2.1 } \\ & \text { ID: CICK } \end{aligned}$		5	5 mL	5 mL	617609	05/05/20 20:43	UI	TAL SAV

Client Sample ID: MPE_WC_043020 Lab Sample ID: 680-183351-10
Date Collected: 04/30/20 12:40
Matrix: Water
Date Received: 05/01/20 09:40

Prep Type	Batch Type	Batch Method	Run	$\begin{array}{r} \text { Dil } \\ \text { Factor } \end{array}$	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
TCLP	Leach	1311			1.0 g	100 mL	617697	05/06/20 09:40	JEB	TAL SAV
TCLP	Analysis Instrume	8260B ID: CMSB		20	5 mL	5 mL	617669	05/06/20 18:55	Y1S	TAL SAV
TCLP	Leach	1311			1.0 g	1.0 mL	617699	05/06/20 09:44	JEB	TAL SAV
TCLP	Prep	3520C			20.4 mL	5 mL	617920	05/07/20 16:29	EHS	TAL SAV
TCLP	Analysis Instrume	8081B/8082A ID: CSGZ		1			618275	05/11/20 20:56	JCK	TAL SAV
Total/NA	Analysis Instrum	1010A ID: WHITEY		1			434651	05/18/20 03:36	TPH	TAL CAN

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396
TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858
Eurofins TestAmerica, Savannah 5102 LaRoche Avenue
Chain of Custody Record

\square
Analysis Requested
upon
und
to
Eurorafins TestAmerica.

$+$

PENSACOLA FL 32514

(850) 474-1001

REF: S0680-114997

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.
Job Number: 680-183351-1

Login Number: 183351
List Source: Eurofins TestAmerica, Savannah
List Number: 1
Creator: Laughlin, Paul D

Question	Answer Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	True

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.
Job ID: 680-183351-1 Project/Site: Ashland - Brunswick Plant Waters

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number Florida$\frac{\text { Expiration Date }}{\text { NELAP }} 067052$

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-21
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-20
Georgia	State	4062	02-23-21
Illinois	NELAP	004498	07-31-20
Iowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21
Kentucky (WW)	State	KY98016	12-31-20
Minnesota	NELAP	OH00048	12-31-20
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-20
New York	NELAP	10975	03-31-21
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-24-21
Pennsylvania	NELAP	68-00340	08-31-20
Texas	NELAP	T104704517-18-10	08-31-20
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-20
Washington	State	C971	01-12-21
West Virginia DEP	State	210	12-31-20

[^0]: IWC - inches of water column
 scfm - standard cubic feet per minute
 ${ }^{\circ} \mathrm{F}$ - degree fahrenheit
 $\%$-percent
 gal - gallon
 " Hg - inches of mercury

