APPENDIX B

Well Installation and Aquifer Testing Report

Appendix B Supplement Rationale for Input Parameters - Aquifer Test Data Evaluation Hercules LLC/Pinova Inc Facility Brunswick, GA

In response to Comment No. 46 received on October 20, 2021, from the EPD, the rationale for each of the input parameters used in the aquifer test data evaluation are provided below to supplement Appendix B.

AQTESOLV Input Parameter	Input Parameter Value (APT-1)	Rationale for Selection of Input Parameter Value
Aquifer Saturated Thickness (ft) [AQTESOLV "b"]	65	Based on APT-01 boring log, the saturated thickness is 65 ft, starting from bottom of Sandy lean CLAY (approximately 30 ft bgs) to top of Sandy SILT (approximately 90 ft bgs).
Pumping Rates (gpm)	8 / 12 / 15 / 25 / 35	Based on field observation and technical judgement, the five pumping rates were selected to evaluate the performance of APT-01 under the various discharge rates.
Hydraulic Conductivity Anisotropy Ratio [AQTESOLV "Kv/Kh"]	0.1	Based on observed 65 ft thick continuous poorly graded sand, 0.1 anisotropy ratio was estimated. Values of Kv/Kh for alluvium could range between 0.1 and 0.5 (Todd, 1980). In addition, aquifer anisotropy sensitivity was evaluated by increasing the anisotropy ratio from 0.1 to 1.0.
Well Configuration	Partial Penetration	Partial Penetration was selected because APT-01 only screens a portion (20 ft) of the saturated aquifer thickness (65 ft).
Depth to Top of Screen [AQTESOLV "d"]	45	Based on APT-1 boring log, d is the length from bottom of Sandy lean CLAY (semiconfining to confining unit) to top of APT-01 well screen.
Screen Length (ft) [AQTESOLV "L"]	20	Length of APT-01 well screen
Casing Radius (ft) [AQTESOLV "r(c)"]	0.25	Inner radius of 6-inch well casing (APT-01)
Well Radius (ft) [AQTESOLV "r(w)"]	0.25	Radius of the 6-inch perforated interval (APT-01 well screen)
Equipment Radius (ft) [AQTESOLV "r(eq)"]	0.083	Radius of downhole equipment (submersible pump attached to 2-inch steel rod)

Notes:

ft - feet ft bgs - feet below ground surface

Todd, D.K., 1980. Groundwater Hydrology, 2nd ed., John Wiley & Sons, New York, 535p.

Appendix B Supplement

Prepared for

Hercules, LLC 500 Hercules Road Wilmington, DE 19808

WELL INSTALLATION AND AQUIFER TESTING REPORT

HERCULES/PINOVA FACILITY BRUNSWICK, GA

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia, 30144

Project Number GR6881B

December 2020

TABLE OF CONTENTS

1.	INT	RODUC	TION	1
	1.1	Introdu	ction and Background	1
	1.2	Objecti	ives	1
2.	SITI	E SETTI	NG	
	2.1	Site Ge	eology and Hydrogeology	
3.	WE	LL INST	CALLTION AND DEVELOPMENT ACTIVITIES	5
	3.1	Well Ir	nstallation	
	3.2	Well D	Development	6
4.	STE	P-DRAV	WDOWN AQUIFER TEST ACTIVITIES	
	4.1	Step-D	rawdown Test Procedures	
	4.2	Ground	lwater Characterization	9
	4.3	Step-D	rawdown Test Analysis	
		4.3.1	Overview	
		4.3.2	Aquifer Loss, Well Loss Coefficient, and Well Efficiency	11
		4.3.3	Aquifer Properties	
		4.3.4	Radius of Influence	
	3.4	Aquife	r Material Properties	
5.	MA	NAGEM	IENT OF INVESTIGATION DERIVED WASTE (IDW)	15
	5.1	Soil ID)W	
	5.2	Liquid	IDW	
6.	CON	NCLUSI	ONS	
7.	REF	ERENC	ES	

Geosyntec^b

TABLE OF CONTENTS (Continued)

LIST OF TABLES

- Table 1Well Construction Summary Aquifer Test Area Wells
- Table 2Observed Drawdown at APT-01 and Observation Wells
- Table 3APT-01 Well Efficiency Calculations
- Table 4
 Summary of AQTESOLV Input Parameters and Test Analysis Results
- Table 5AP-01 Aquifer Test Groundwater Sample Results
- Table 6Grain Size Analysis Results

LIST OF FIGURES

- Figure 1 Site Map and Groundwater Monitoring Wells
- Figure 2 APT-01 Step-Drawdown Test Study Area
- Figure 3 APT-01 Step-Drawdown Test Summary of Transducer and Manual Groundwater Measurements
- Figure 4 APT-01 Step-Drawdown Test Data
- Figure 5 APT-01 Step-Drawdown Test Discharge vs. Specific Drawdown
- Figure 6 APT-01 Step-Drawdown Test Radius of Influence

LIST OF APPENDICES

- Appendix AGeosyntec General Pumping Test ProceduresAppendix BBoring and Well Construction Logs
- Appendix C APT-01 Groundwater Quality Data During Step-Drawdown Test
- Appendix D Groundwater Laboratory Analytical Report
- Appendix E Step-Drawdown Test and Recovery Test Data Plots
- Appendix F Distance-Drawdown Data Plots
- Appendix G Soil Laboratory Analytical Report

1. INTRODUCTION

1.1 Introduction and Background

This Well Installation and Aquifer Testing Report was prepared on behalf of Hercules, LLC ("Hercules") by Geosyntec Consultants, Inc. ("Geosyntec"). Well installation and aquifer testing activities were performed at an industrial facility located at 2801 Cook Street in Brunswick, Glynn County, Georgia (the "Brunswick facility" or "Site"). The Brunswick facility consists of approximately 322 acres of real property, portions of which are owned by Hercules and portions of which are owned by Pinova, Inc. ("Pinova"). Site features and the locations of the groundwater monitoring well network are shown on **Figure 1**.

The aquifer testing program consisted of installation of one pumping well (APT-01) and two observation wells (PWOW-01 and PWOW-02) in the study area (**Figure 2**), completion of a step-drawdown and aquifer recovery test, and aquifer test data evaluation. Well installation activities were completed between February 26, 2020 and March 6, 2020. The step-drawdown test was completed on March 12, 2020. This report provides details of the well installation and step-drawdown test procedures, and data evaluation results.

1.2 **Objectives**

The Brunswick facility is subject to Hazardous Waste Permit No. HW-052 (D&S), which requires implementation of groundwater monitoring and corrective action at the Site pursuant to the Resource Conservation and Recovery Act ("RCRA"). The aquifer testing was performed to evaluate aquifer properties to inform the evaluation of potential interim corrective measures (ICMs), as well as potential long-term remedial options, to address groundwater in the deep zone of the upper surficial aquifer beneath portions of the facility. Key information developed from the aquifer testing are summarized below:

- *Well Performance and Efficiency* Results from the step-drawdown portion of the program can be used to evaluate the performance and efficiency of the extraction well APT-01.
- Aquifer Parameters Results from the testing can be used to estimate the *in-situ* horizontal hydraulic conductivity (K_h), effective porosity (n_e), groundwater

Geosyntec[▷]

velocity (V), and storativity (S) of the deep zone of the upper surficial aquifer in the study area.

- *Radius of Influence* Results from the testing program provide information regarding the anticipated radius of influence (ROI) during pumping of well APT-01, and the anticipated shape of the drawdown cone induced by groundwater extraction.
- *Groundwater Quality* Laboratory analytical testing of groundwater samples collected from the APT-01 discharge during the step-drawdown test will be used to evaluate water quality.

Geosyntec conducted the step-drawdown test in general accordance with the Standard Operating Guideline 160 (General Pumping Test Procedures) provided in **Appendix A**.

2. SITE SETTING

A detailed description of the hydrologic, hydrogeologic and geologic setting at the Brunswick facility is provided in the *Groundwater Technical Summary Report* prepared by Antea Group ("Antea"), dated September 6, 2016; the *Refined Groundwater Conceptual Site Model* (CSM), prepared by Integral Consulting, Inc. ("Integral"), dated March 15, 2019; and the *Baseline Human Health Risk Assessment and Screening Level Ecological Risk Assessment*, prepared by NewFields LLC ("NewFields), dated March 22, 2019. A summary of key information as it pertains to the pumping well and observation well installation and aquifer testing activities completed between February and March 2020 is provided below.

2.1 Site Geology and Hydrogeology

Five aquifer units underlie the Brunswick area. These aquifer units, from shallowest to deepest, are as follows:

- Surficial aquifer (0 200 feet below ground surface; [ft bgs])
- Upper Brunswick aquifer (280 355 ft bgs)
- Lower Brunswick aquifer (400 475 ft bgs)
- Upper Floridan aquifer (500 970 ft bgs)
- Lower Floridan aquifer (1,000+ ft bgs)

The unit of interest for this study is the surficial aquifer, which generally begins a few feet below the ground surface and is approximately 200 feet thick in the vicinity of the Site. The surficial aquifer consists of interlayered sand, clay, and thin limestone beds (Clarke et al. 1990). The surficial aquifer has been divided into the upper and lower surficial aquifer, with the generally unconfined upper surficial aquifer extending to a depth of 100 - 120 ft bgs. Clay layers/lenses within the surficial aquifer range from 5 - 40 feet in thickness, and, where laterally extensive, create semiconfined or confined conditions in the deeper portions of the upper surficial aquifer (Clarke et al. 1990). Aquifer tests in the Brunswick area have confirmed the presence of these deeper semiconfined or confined conditions (Clarke et al. 1990). The lower surficial aquifer extends to a depth of approximately 200 ft bgs and is semiconfined to confined in the eastern portion of the Site, meaning that it is at higher pressure than the overlying unconfined water table portion of the aquifer (Integral, 2019).

Geosyntec consultants

The upper surficial aquifer beneath the Site has been subdivided into shallow (0 - 40 ft bgs), intermediate (40 - 70 ft bgs), and deep zones (70 - 100 ft bgs). The upper surficial aquifer consists of interbedded clays, silts, sands, and channel deposits. In the western portion of the Site, where the majority of groundwater recharge occurs, the shallow, intermediate, and deep zones of the upper surficial aquifer consist primarily of sands. In the eastern portion of the Site, including the area of interest for this study, discontinuous clay lenses separate the shallow, intermediate, and deep zones of the upper surficial aquifer, and aquifer materials generally become coarser with depth.

Based on potentiometric surface contour maps utilizing multiple rounds of groundwater elevation measurements (as presented in semi-annual groundwater monitoring reports prepared by Antea and submitted to Georgia Department of Environmental Protection Division ["EPD"]), the prevailing direction of groundwater flow in the upper surficial aquifer beneath the Brunswick facility is generally to the east-southeast, with local variations due to heterogeneities in the aquifer (i.e., zones of highly permeable subsurface materials compared to zones of relatively impermeable subsurface materials). A local groundwater high exists in the western portion of the Brunswick facility due to freshwater recharge from precipitation. A downward hydraulic gradient exists beneath the central and western portions of the Brunswick facility such that releases to groundwater from historic operations at the Brunswick facility in these areas have migrated vertically to the deep zone of the upper surficial aquifer and then laterally in a generally east-southeast direction. The upper surficial aquifer consists of freshwater to the west of the Brunswick facility and grades to brackish to saline groundwater beneath the salt marsh to the east of the Brunswick facility.

The water table depth and the corresponding vadose zone thickness at the Brunswick facility varies, on average, between 1 - 10 ft bgs, with decreasing vadose zone thickness from west to east. As described in the *Revised Groundwater CSM* (Integral, 2019), a tidal study documented tidal influence on groundwater elevations across all three zones of the upper surficial aquifer beneath the Brunswick facility. Tidal influence was most pronounced in groundwater monitoring wells in the intermediate and deep zones of the upper surficial aquifer (approximately 0.05 to 0.15 ft of influence), with less influence on water table elevations in the shallow zone of the upper surficial aquifer (less than 0.05 ft of influence) beneath the Brunswick facility.

3. WELL INSTALLTION AND DEVELOPMENT ACTIVITIES

3.1 <u>Well Installation</u>

From February 26 to March 5, 2020 drilling activities were conducted in support of aquifer testing in the study area. One pumping well (APT-01) and two observation wells (PWOW-01 and PWOW-2) were installed. Drilling, well installation and well development activities were performed by SAEDACCO of Fort Mill, South Carolina, under the oversight of a Geosyntec geologist. Prior to subsurface disturbance, utility locating was performed around the proposed boring locations by The Underground Detective of Atlanta, Georgia, on February 26, 2020, to identify subsurface anomalies that could potentially represent underground utilities. No utilities were detected near the drilling locations. As part of subsurface clearance procedures, each borehole was hand excavated to 5 ft bgs using a post hole digger to further avoid the potential for encountering any buried utilities.

Drilling was performed using a rotasonic drill rig and a combination of 4, 6, 8, and 10inch diameter drill casing. Soils were logged by a Geosyntec geologist according to the Unified Soil Classification System (USCS). In addition to logging, the soil was screened for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID). The majority of PID readings were below 20 parts per million (ppm). An attempt was made to collect two undisturbed samples of the aquifer material at the pumping well location using Shelby tube sampling methods; however, the sandy aquifer material was not sufficiently cohesive to be retained in the Shelby tube. To provide aquifer property data, aquifer material was collected from APT-01 at three intervals (79 - 80 ft bgs, 84 - 85 ft bgs, and 94 - 95 ft bgs) and from PWOW-02 at two intervals (81-82 ft bgs and 86 - 87 ft bgs), and submitted to TestAmerica Laboratories in Savannah, Georgia ("TestAmerica") under chain-of-custody protocols for grain size analysis in accordance with ASTM D422.

The pumping well, APT-01, borehole was 10-inches in diameter and had a total depth of 97 ft bgs. Based on review of adjacent boring logs, APT-01 was screen in the deep zone of the upper surficial aquifer. APT-01 was screened from 75-95 ft bgs with 6-inch diameter, 0.020-inch wire-wrap stainless steel screen and schedule 40 PVC riser with 2.5 ft of stick up above the ground surface. The sand filter pack consisted of 5/16 mesh sand and extended from 71 to 95 ft bgs, with 4 ft of 0.25-inch time-release bentonite pellets placed on top. The depth to the top of the bentonite seal was checked by the Geosyntec geologist to confirm that bridging did not occur and to monitor expansion of the seal

during hydration. The bentonite seal was allowed to hydrate for 24 hours prior to grouting. The annular space above the seal was grouted from 67 feet to just below ground surface with a high-solids bentonite grout via a tremie pipe.

Following completion of the drawdown test, the well riser was cut down to just below ground surface, and a 3-ft by 3-ft by 4-inch concrete pad with a 12-inch manhole cover was constructed around the well on March 13, 2020. The pad was sloped outward to direct surface drainage away from the manhole cover. A well tag containing the well identification information, date installed, and construction information was installed in the well pad.

Two aquifer pumping test observation wells, PWOW-01 and PWOW-02, were installed at distances from APT-01 of approximately 50 ft and 100 ft, respectively. The observation wells were installed as 2-inch diameter wells in a 6-inch borehole diameter. Both observation wells were drilled to terminal depths of 90 ft bgs, and the wells were constructed with 0.010-inch machine slotted PVC screen set at 80-90 ft bgs, with schedule 40 PVC riser. Each well had 5/16 mesh filter pack sand added to 2 ft above the screen from 78 to 90 ft bgs. Approximately 2.5 ft of 0.25-inch time-release bentonite pellets was added on top of the filter pack sand. Depth to the top of the seal was checked by the Geosyntec geologist to confirm that bridging did not occur and to monitor expansion of the seal during hydration. The bentonite seal was allowed to hydrate for 24 hours prior to grouting. The annular space above the seal was grouted from 75.5 feet to just below ground surface with a high-solids bentonite grout via a tremie pipe. A 3-ft by 3-ft by 4inch concrete pad with a 12-inch manhole cover was constructed around each well. The pads were sloped outward to direct surface drainage away from the manhole cover. A well containing the well identification information, date installed, and construction information was installed in each well pad.

Well construction information for APT-01, PWOW-01, PWOW-02, and additional observation wells previously installed in the study area in 2016 and 2019 used during the aquifer pumping test are summarized in **Table 1**. Boring and well construction logs for newly installed wells APT-01, PWOW-01, and PWOW-02 are provided in **Appendix B**. The PID soil screening results are included on the logs.

3.2 Well Development

APT-01 was developed using a combination of surge block and air-lift methods using compressed air. An initial development was performed on February 28, 2020, before

Geosyntec^b

installation of the grout seal, to remove drilling mud and to promote hydraulic connection between the well and aquifer. Depth to water at time of initial development was measured at approximately 2 ft bgs. Approximately 35 gallons of water were pumped from the well until the discharge water was free of visible fines. Following installation of the grout seal, additional development was performed on March 2, 2020, and approximately 150 gallons of water were pumped from the well. At the termination of development, the water purged from the well was free of visible fines, and final turbidity was measured at 8.96 Nephelometric Turbidity Units (NTUs).

PWOW-01 and PWOW-02 were developed on March 5, 2020. The wells were surged and purged using a submersible pump until the pumped water was free of visible fines. Depth to water at PWOW-01 and PWOW-02 at the time of development were approximately 2 ft bgs and 2.3 ft bgs, respectively. Approximately 30 gallons were purged from each well. Final turbidity measurements for PWOW-01 and PWOW-02 were 2.92 and 7.32 NTU, respectively.

Geosyntec b

4. STEP-DRAWDOWN AQUIFER TEST ACTIVITIES

4.1 <u>Step-Drawdown Test Procedures</u>

The step-drawdown test was performed at well APT-01 to (i) estimate the well efficiency of APT-01, (ii) estimate hydraulic properties of the aquifer at APT-1, and (iii) assess the ROI and approximate shape of the drawdown cone during pumping. The step-drawdown test well network consisted of pumping well APT-01, new observation wells PWOW-01, and PWOW-02, a background well (MW-49D), and two existing wells (PSOW-8 and PSOW-10) installed in 2016 as part of a remedial technology pilot test using in situ sorption using nanoscale carbon. The observation wells were chosen to provide groundwater level data at various distances from APT-01: PSOW-10 located at a distance of 6 ft, PSOW-8 located at a distance of 9 ft, PWOW-01 at 50 ft, and PWOW-02 at a distance of 100 ft. Background well MW-49D is located approximately 1,600 ft southwest of APT-01 (**Figure 2**) and was selected to provide background groundwater level data beyond the influence of the step-drawdown test.

Monitoring of water levels in the aforementioned pumping well and observation wells commenced one day prior to the start of step-drawdown test. Pressure transducers (In-Situ Rugged Troll 200 Data Loggers[®]), set to collect water level information on a linear interval of 5 seconds, were installed in APT-01, observation wells PWOW-01, PWOW-02, PSOW-10, and PSWO-8, and background well MW-49D on March 11, 2020. Manual water levels were collected from each location at the time of transducer installation. A barometric pressure transducer was deployed to measure changes in atmospheric pressure during the test. After completion of the step-drawdown test, water level recovery was monitored with the transducers for 14 hours.

A 3-inch diameter stainless steel Grundfos single-phase submersible groundwater pump was used to extract groundwater in APT-01 during the step-drawdown test. A 2-inch diameter galvanized steel drop pipe was used to connect the pump to the surface wellhead manifold. The wellhead manifold included a pressure gauge, gate valve, and analog flow meter. The gate valve was used to control the flow rate during each step of the aquifer test. The flow meter was placed on flat ground approximately 10 ft downstream of the gate valve. The pump was powered with a 230V power source provided by a 6,000-watt portable gas-powered generator. The pump was capable of providing flow rate ranges expected to be used during the step-drawdown test.

GR6881B/GA200417

Geosyntec^b

The step-drawdown test began at 1300 on March 12, 2020. During the test, APT-01 was pumped at five flow rates (8, 12, 15, 25, and 35 gallons per minute [gpm]) at durations ranging from 40 minutes and 145 minutes. Discharge rates during each step of the drawdown test were measured using an inline analog flow meter. Water levels were continuously monitored by the pressure transducers installed in APT-01, the four observation wells, and the background well using pressure transducers as noted above. With the exception of the background well, water levels at each instrumented well location, and four additional observation wells located in the vicinity of APT-01 (PSOW-12, PSOW-4, PSOW-2, and PSOW-6) were gauged manually at one-hour intervals during the test and just prior to the end of the test to provide supplemental information on ROI achieved during the aquifer test.

Extracted groundwater was pumped through a 2-inch hose that discharged into a 275-gallon tote located next to the pumping well. Water from the 275-gallon tote was transferred from the totes into a 21,000-gallon frac tank using a 2-inch centrifugal gas-powered trash pump and 2-inch fire hose.

The pumping portion of the test was shutdown at 2100 on March 12, 2020 and the recovery portion of aquifer testing began. After 14 hours of recovery the pump and transducers were recovered on March 13, 2020, and SAEDDACO and Geosyntec demobilized from the Site.

4.2 Groundwater Characterization

Temperature, pH, conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and salinity were measured at the APT-01 discharge at one-hour intervals during the aquifer test and measurements were recorded on a groundwater sampling measurement log (**Appendix C**). Three groundwater samples were collected from the 2-inch hose discharge from APT-01 at approximately 2 hours (PT-01), 4 hours (PT-02), and 7 hours (PT-03) from the start of the pumping test for laboratory analysis for groundwater quality characterization. The samples were shipped under chain-of-cusotdy protocol to TestAmerica Laboratories (TestAmerica) in Savannah, Georgia, for laboratory analysis. Samples were analyzed for Site-specific VOCs, pesticides, total metals, anions, hardness, alkalinity, total organic carbon (TOC), dissolved organic carbon (DOC), total dissolved solid (TDS), and total suspended solid (TSS). Analytical results

are presented in **Table 5** and the laboratory analytical report for the groundwater characterization samples is included as **Appendix D**.

4.3 <u>Step-Drawdown Test Analysis</u>

4.3.1 Overview

Transducer data from pumping well APT-01 and the four instrumented observation wells were downloaded and plotted along with manual water level measurements to evaluate transducer accuracy. A graphical summary of the correlation of manual water levels and transducer data for APT-01 and PSOW-10 are shown in Figure 3 as a demonstration of transducer accuracy. At APT-01, the transducer was moved after the initial water level measurement was collected and prior to the start of the pumping test, resulting in the approximate one-foot discrepancy as shown in the graph. The discrepancy does not affect the results or the interpretation of the step-drawdown test data as data evaluation is based on the change in water levels relative to static during the drawdown portion of the test, and recovery to static at termination of pumping; as shown in Figure 3, the change in groundwater level from static to the first step and between each subsequent step measured by the transducer is consistent with that measured manually. Manual readings from the other observation wells were also in good agreement with the transducer readings. Transducer data from APT-01 and the four observation wells were corrected for tidal (rhythmic) fluctuation using a tidal cycle recorded during background monitoring at APT-01 and the four observation wells prior to initiation of the step-drawdown test. A reference level was selected at the beginning of the tidal cycle, then the transducer data was corrected with respect to the reference level by subtracting and adding during high tide and low tide, respectively (Kruseman and de Ridder, 1994).

APT-01 was pumped at five distinct steps (8, 12, 15, 25, and 35 gpm), as shown in **Figure 4**, at durations ranging from 40 minutes and 145 minutes. Drawdown over the period of each step is shown below:

- Step 1 at 8 gpm: 0.41 ft over 40 minutes;
- Step 2 at 12 gpm: 0.28 ft (cumulative drawdown of 0.69 ft) over 100 minutes;
- Step 3 at 15 gpm: 0.50 ft (cumulative drawdown of 1.19 ft) over 120 minutes;
- Step 4 at 25 gpm: 1.08 ft (cumulative drawdown of 2.27 ft) over 145 minutes; and
- Step 5 at 35 gpm: 0.71 ft (cumulative drawdown of 2.98 ft) over 70 minutes.

Total drawdown from static conditions observed at APT-01 over the duration of the 475minute step-drawdown test was 2.98 feet. Total drawdown observed at PSOW-8, PSOW-10, PWOW-1, and PWOW-2 over the duration of the 475-minute step-drawdown test was 0.82 feet, 0.78 feet, 0.59 feet, and 0.57 feet, respectively. Drawdown measured at each step and total drawdown observed at APT-01 and the four observation wells are summarized in **Table 2**.

4.3.2 Aquifer Loss, Well Loss Coefficient, and Well Efficiency

The step-drawdown test results can be used to evaluate the performance of APT-01 under the various discharge rates. Specifically, the formation or aquifer losses, well losses, and well efficiency can be assessed using the step-drawdown data. Jacob (1947) proposed the following drawdown equation to determine aquifer loss and well loss as a function of discharge rate (Jacob, 1946):

$$S_w = BQ + CQ^2$$

Where:

 S_w = Total drawdown measured in the well (ft)

B = Formation or aquifer loss coefficient (ft/gpm)

Q = Discharge rate of the well (gpm)

C = Well loss coefficient (ft/gpm²)

The total drawdown in a pumping well consists of two components, aquifer loss coefficient (B) and well loss coefficient (C), which can be determined from the stepdrawdown test data. Aquifer loss is the component of drawdown that occurs in the aquifer where the flow is laminar, is time-dependent, and varies linearly with the well discharge (i.e., BQ). Well loss is the component of total drawdown resulting from turbulent flow in the vicinity of the well caused by the effects of drilling and well construction (nonlinear well loss), and can be described as proportional to the square of the discharge rate (i.e., CQ^2). By plotting the specific drawdown (Sw/Q) against the discharge rate (Q) for each step, the aquifer loss coefficient (B) is obtained as the y-intercept, and the well loss coefficient (C) is obtained as the slope of the best fit straight line (**Figure 5**; Bierschenk, 1964).

Well efficiency is the ratio of the theoretical drawdown assuming no turbulence (i.e., CQ^2 is not considered, retaining only aquifer loss component BQ) to the actual drawdown measured in the well (S_w). Well efficiency is often expressed as a percent (%). Well efficiency (E_w) is defined by the following equation (Roscoe Moss, 1990):

Geosyntec[▷]

 $E_w = 100 (BQ/S_W) = 100/(1 + CQ/B)$

Where:

 $E_w = Well Efficiency (\%)$

 S_w = Total drawdown measured in the well (ft)

B = Formation or aquifer loss coefficient (ft/gpm)

Q = Discharge rate of the well (gpm)

C = Well loss coefficient (ft/gpm²)

An efficiency of 70 to 80% is usually obtainable if good design, construction, and development practices are followed (Driscoll, 1986). Well efficiency calculations for APT-01 are shown in **Table 3.** As pumping rates increase, turbulent flow around and within the pumping well will increase, resulting in a decrease in well efficiency (Driscoll, 1986). This decrease in efficiency as pumping rates increase was observed during the APT-01 step-drawdown test, as well efficiency decreased from 93.5% during Step 1 (8 gpm) to 56.1% during Step 5 (35 pgm). Overall, the high well efficiencies calculated indicate good design, construction, and development of APT-01.

4.3.3 Aquifer Properties

Hydraulic properties, including horizontal hydraulic conductivity (K_h), transmissivity (T), and storativity (S), were estimated from the APT-01 step drawdown test using both the drawdown and recovery data. Based on the APT-01 boring log showing semiconfining sandy lean clay and lean clay units (**Appendix B**) and the near-instantaneous drawdown response from the four observation wells, the aquifer in the interval screened at APT-01 (75 – 95 ft bgs) is considered to behave as a confined to semi-confined aquifer. Analytical solutions used for the confined to semi-confined aquifer scenario include the following:

- Theis (1935) Confined Aquifer;
- Dougherty-Babu (1984) Confined Aquifer; and
- Hantush-Jacob (1955) Leaky Aquifer.

Transducer datalogger output files were downloaded, exported directly into a spreadsheet and converted to an appropriate input file format for analysis using AQTESOLV (HydroSOLVE, Inc.; Duffield, 2007) to estimate aquifer properties through curve matching, using the analytical methods listed above. Both drawdown and recovery data were used for curve matching. The geometric mean was then used to summarize the hydraulic property values calculated with each analytical method. **Table 4** summarizes the inputs and results of the step-drawdown test analysis using curve matching techniques and distance-drawdown results from the last step (35 gpm) of the step-drawdown test. Individual AQTESOLV output plots are included in **Appendix E and F**.

 K_h values were calculated by dividing the transmissivity (T) output from AQTESOLV by an aquifer thickness (b) of 65 ft, which corresponds to the saturated poorly graded sand thickness observed at APT-01. Based on curve match techniques for the step-drawdown test and assuming aquifer anisotropy of 0.1, the estimated K_h of the aquifer at APT-01 ranged from 3.41×10^{-2} cm/sec to 3.89×10^{-2} cm/sec, with a geometric mean of 3.70×10^{-2} cm/sec (105 ft/day). Estimated storativity (S) of the aquifer at APT-01 ranged from 1.01×10^{-2} to 1.82×10^{-2} , with a geometric mean of 1.48×10^{-2} , which is within the range of representative values for loose sand. Aquifer anisotropy sensitivity was evaluated by increasing the anisotropy ratio (K_v/K_h) from 0.1 to 1.0. Estimated K_h ranges only decreased to 3.02×10^{-2} cm/sec to 3.35×10^{-2} cm/sec, with a geometric mean of 3.19×10^{-2} cm/sec (90 ft/day).

Based on the distance-drawdown results and assuming aquifer anisotropy of 0.1, the estimated K_h of the aquifer at APT-01 ranged from 5.63×10^{-2} cm/sec to 5.93×10^{-2} cm/sec, with a geometric mean of 5.82×10^{-2} cm/sec (165 ft/day). Estimated storativity (S) of the aquifer at APT-01 ranged from 1.01×10^{-2} to 1.24×10^{-2} , with a geometric mean of 1.14×10^{-2} , which is within the range of representative values for loose sand. Aquifer anisotropy sensitivity was evaluated by increasing the anisotropy ratio (K_v/K_h) from 0.1 to 1.0. Estimated K_h ranges only decreased to 3.91×10^{-2} cm/sec to 3.92×10^{-2} cm/sec, with a geometric mean of 3.92×10^{-2} cm/sec (111 ft/day).

4.3.4 Radius of Influence

At a pumping rate of 35 gpm, the ROI from APT-01 extended as far as 100 feet, as indicated by 0.57 ft drawdown measured at PWOW-2 (**Figure 6**). As shown on **Figure 6**, the ROI is generally oblong, slightly elongated in a northwest-southeast orientation. Distance-drawdown data from the last step (35 gpm) of the step-drawdown test were used to calculate the theoretical radius of influence from APT-01. Based on a pumping rate of 35 gpm, the lateral distance form APT-01 where no drawdown is expected ranges from approximately 500 - 600 ft. Individual AQTESOLV output plots are included in **Appendix F**.

Geosyntec Consultants

3.4 Aquifer Material Properties

Soil samples were collected from three depth intervals at APT-01 (79-80 ft bgs, 84-85 ft bgs, and 94-95 ft bgs) and two depth intervals at PWOW-02 (81-8 ft bgs and 86-87 ft bgs) during drilling of the well boreholes. The samples were submitted to Test America for analyses for grain size to provide an understanding of the grain size distribution of the sandy aquifer material in the study area. The material was almost exclusively sand (85-90%) with trace fines, and the dominant grain size (65%) was held on 20 to 40 mesh sieves, indicating a medium sand. The USCS classification of the material is medium sand with trace silt. The aquifer parameters used in the analysis of the pumping test data are within the range presented in published literature (Bouwer, 1978) for medium sand. Furthermore, the estimated K_h , S, and T derived from the analysis presented in Section 4.3.3 is also within the range expected for medium sand. The laboratory results for the grain size analysis are included in **Appendix G**.

5. MANAGEMENT OF INVESTIGATION DERIVED WASTE (IDW)

IDW generated during the monitoring well installation activities consisted of solids (i.e., soil cuttings), liquids (i.e., drilling fluids, decontamination liquids, and well development water), and general solid waste including disposable sampling equipment and personal protective equipment ("PPE") such as nitrile gloves. General solid waste and PPE was placed in garbage bags and disposed of as general trash.

5.1 <u>Soil IDW</u>

Soil cuttings were containerized in a dewatering roll off box staged adjacent to the drilling locations. Liquid accumulated in the dewatering box that separated from the drill cuttings was pumped from the dewatering box into a 21,000-gallon frac tank staged adjacent to the drilling locations. The roll off box was labeled as "IDW – soil" with the dates of IDW generation and drilling locations. Two soil samples, one representing soil having PID readings above 20 ppm and one representing soil with PID readings below 20 ppm, were collected for waste characterization analysis. The samples were shipped under chain-of-custody protocol to TestAmerica in Savannah, Georgia. The samples were analyzed using the Toxicity Characteristic Leaching Procedure ("TCLP") for VOCs and pesticides. VOCs and pesticides were not detected above the applicable laboratory reporting limits ("RLs"). The solid IDW from the field activities was therefore determined to qualify as non-hazardous waste. The dewatering roll off box containing soil IDW generated during the well installation activities was removed from the Site by Clean Harbors under the oversight of Geosyntec Antea on June 9, 2020. The soil IDW waste characterization laboratory report is provided in **Appendix G**.

5.2 Liquid IDW

Liquid IDW were containerized in a 21,000-gallon frac tank staged adjacent to the drilling locations. The liquid IDW included equipment decontamination fluid, liquid accumulated in the dewatering soil roll off which had separated from the drill cuttings and was pumped into the frac tank, well development purged groundwater, and groundwater extracted during the step-drawdown test. The frac tank was appropriately labeled as "IDW – liquid" and the dates of IDW generation and generation activities were noted on the label.

For waste characterization of the liquid IDW, one composite grab sample was collected from the frac tank on March 12, 2020, at the end of the aquifer step-drawdown test and

Geosyntec Consultants

shipped under chain-of-custody protocol to TestAmerica in Savannah, Georgia. The sample was analyzed using TCLP for waste characterization for VOCs and pesticides. No VOCs or pesticides were detected above the applicable laboratory RLs in sample 01-PT-03122020 with the exception of benzene and chlorobenzene. The detection of benzene (0.29 mg/L) did not exceed the applicable toxicity characteristic limit of 0.5 mg/L. The detection of chlorobenzene (0.23 mg/L) did not exceed the applicable toxicity characteristic limit of 100 mg/L. As such, the liquid IDW was determined to be non-hazardous waste liquid. All liquid IDW generated during monitoring well installation activities and aquifer step-drawdown test activities was removed from the Site by Clean Harbors during the week of June 8, 2020. The liquid IDW waste characterization laboratory report is provided in **Appendix D**.

Geosyntec Consultants

6. CONCLUSIONS

A pumping well and two observation wells were installed in the eastern portion of the Site for use in aquifer testing activities. The step-drawdown test was completed to obtain hydrogeological and groundwater quality information from the deep zone of the upper surficial aquifer. The test included baseline (background) water level monitoring, a step-drawdown test, and a recovery test. The deep zone of the surficial aquifer is semi-confined to confined in the portion of the Site where the test was conducted, and primarily consists of medium grained sand.

Well efficiency at pumping well APT-01 under the various discharge rates used during the step-drawdown test ranged from greater than 80% at rates less than 15 gpm to 56% at 35 gpm. Three analytical solutions were used to estimate the hydraulic properties of the deep zone of the upper surficial aquifer material and the geometric mean of the step-drawdown test results indicate a horizontal hydraulic conductivity of approximately 3.70 $\times 10^{-2}$ cm/sec (105 ft/day). Geometric mean of distance-drawdown results from the last step (35 gpm) of the step-drawdown test indicate a horizontal hydraulic conductivity of approximately 5.82 $\times 10^{-2}$ cm/sec (165 ft/day). Results of the distance-drawdown analyses, based on a maximum pumping rate of 35 gpm, estimates the ROI to be approximately 600 feet from pumping well APT-01.

7. **REFERENCES**

- Bierschenk, W.H., 1964. *Determining Well Efficiency by Multiple Step-Drawdown Tests*. Publication 64, International Association of Scientific Hydrology.
- Bouwer, H., 1978. Groundwater Hydrology. McGraw-Hill Book Company, New York, NY.
- Driscoll, F.G., 1986. Groundwater and Wells. Johnson Division, St. Paul, MN.
- Duffield, G.M., 2007. AQTESOLV for Windows Version 4.5 User's Guide, HydroSOLVE, Inc., Reston, VA.
- Jacob, C.E., 1946. Drawdown test to determine effective radius of artesian well. *Transactions of the American Society of Civil Engineers*, Vol. 112.
- Kruseman, G.P. and de Ridder, N.A., 1994. Analysis and Evaluation of Pumping Test Data-2nd Edition. International Institute for Land Reclamation and Improvement.
- Roscoe Moss Company, 1990. Handbook of ground water development. Wiley-Interscience. New York, NY
- Theis, C.V., 1935. The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration and Discharge of a Well Using Groundwater Storage. Transaction, American Geophysical Union, Washington, D.C.

TABLES

Table 1 Well Construction Summary - Aquifer Test Area Wells Hercules/Pinova Facility Brunswick, Georgia

Well ID	Installation Date	Northing	Easting	Total Depth Below Ground Surface (ft bgs)	Screened Interval Depth Below Ground Surface (ft bgs)	Top of Casing Elevation (ft msl)	Well Purpose for Aquifer Test
APT-01	3/2/2020	425185.29	872100.41	97.0	75-95	6.50	Pumping Well
PWOW-01	3/5/2020	425139.32	872120.32	90.0	80-90	5.96	Observation Well
PWOW-02	3/5/2020	425107.94	872158.61	90.0	80-90	6.22	Observation Well
PSOW-8	6/13/2016	425176.69	872101.34	89.5	84.5-89.5	6.68	Observation Well
PSOW-10	6/13/2016	425189.91	872104.55	90.0	85-90	6.58	Observation Well
PSOW-2	6/13/2016	425107.94	872158.61	90.0	85-90	6.22	Observation Well
PSOW-4	6/13/2016	425181.50	872091.09	89.0	84-89	6.61	Observation Well
PSOW-6	6/13/2016	425168.44	872097.87	89.8	84.8-89.8	6.76	Observation Well
PSOW-12	6/13/2016	425177.84	872110.41	89.0	84-89	6.62	Observation Well
MW-49D	6/10/2019	424232.10	870735.10	103.0	86-96	9.79	Background Observation Well

GR6881B

Notes: Wells installed in June 2016 and 2019, well coordinates and elevations were surveyed on October 1, 2015 and are referenced to NAD 1983 and NAVD 1988 datum. Wells installed in June; 2020, well coordinates and elevations were surveyed on March 27, 2020 and are referenced to NAD 1983 and NAVD 1988 datum. All wells are screened in the deep zone of the upper surficial aquifer ft = fest ft bgs = fect below ground surface ft mal = ft above mean sea level

Page 1 of 1

December 2020

Table 2 Observed Drawdown at APT-01 and Observation Wells Hercules/Pinova Facility Brunswick, Georgia

	APT-01	PSOW-10	PSOW-8	PWOW-1	PWOW-2	PSOW-4 ⁽¹⁾	PSOW-12 (1)	PSOW-6 ⁽¹⁾	PSOW-2 ⁽¹⁾
Distance from APT-01 (ft)		6	9	50	100	12	15	17	32
Maximum Drawdown Observed at End of Each Step (ft)									
Step 1	0.41	0.14	0.15	0.06	0.11	NM	NM	NM	NM
Step 2	0.28	0.12	0.13	0.10	0.07	NM	NM	NM	NM
Step 3	0.50	0.13	0.14	0.13	0.10	NM	NM	NM	NM
Step 4	1.08	0.27	0.25	0.20	0.17	NM	NM	NM	NM
Step 5	0.71	0.12	0.16	0.11	0.12	NM	NM	NM	NM
Total Drawdown at End of Step-Drawdown Test (ft)	2.98	0.78	0.82	0.59	0.57	0.85	0.80	0.84	0.78

(1) Depth to groundwater measurements were collected at PSOW-2, PSOW-4, PSOW-6, and PSW-12 prior to initiation of the step drawdown test and prior to termination of the test. These locations were not monitored during the test activities. ft = feet

Page 1 of 1

Table 3APT-01 Well Efficiency CalculationsHercules/Pinova FacilityBrunswick, Georgia

Step	Q (gpm)	Max s (ft)	s per step (ft)	Q/s (gpm/ft)	s/Q (ft/gpm)
1	8	0.408	0.408	19.608	0.051
2	12	0.686	0.278	17.493	0.057
3	15	1.185	0.499	12.658	0.079
4	25	2.265	1.080	11.038	0.091
5	35	2.975	0.710	11.765	0.085

B* (ft/gpm)	C** (ft/gpm²)	BQ	CQ ²	Well Efficiency ((B*Q/s)*100) (%)
0.0477	0.0013	0.382	0.083	93.5
		0.572	0.187	83.4
		0.716	0.293	60.4
		1.193	0.813	52.6
		1.670	1.593	56.1
		M	ean	69.2

Notes:

Max s = Maximum drawdown measured in the well (ft)

Q = Discharge rate of the well (gpm)

B = Formation or aquifer loss coefficient (ft/gpm)

C = Well loss coefficient (ft/gpm²)

s = Drawdown measured in the well (ft)

* = y-intercept of the best fit straight line

** = Slope of the best fit straight line

ft = feet

gpm = gallons per minute

Table 4 Summary of AQTESOLV Input Parameters and Test Analysis Results Hercules/Pinova Facility Brunswick, Georgia

			APT-1			
ion	W	ell Diameter (in.)	6	6		
mat	Initial	Boring Diameter (in.)	10	10		
lor	Scree	en interval (ft BGS)	75 to 95	75 to 95		
	We	ll Depth (ft BGS)	95	95		
Ň	Confined	or Unconfined Aquifer	Confined/Semiconfined	Confined/Semiconfined		
	Aqu	ifer Thickness (ft)	65	65		
	Pun	nping Rates (gpm)	8/12/15/25/35	8/12/15/25/35		
=	Aquifer Saturated	Thickness (ft) [AQTESOLV "b"]	65	65		
Пр	Hydraulic Conductivity A	nisotropy Ratio [AQTESOLV "Kv/Kh"]	0.1	1.0		
LV LV	W	ell Configuration	Partial Penetration	Partial Penetration		
ESO	Length from Confining Unit H	Bottom to Top of Screen [AQTESOLV "d"]	45	45		
Цð	Screen Leng	th (ft) [AQTESOLV "L"]	20	20		
A	Inside Radius of We	I Casing (ft) [AQTESOLV "r(c)"]	0.25	0.25		
	Radius of We	ll (ft) [AQTESOLV "r(w)"]	0.25	0.25		
	Radius of Downhole E	quipment (ft) [AQTESOLV "r(eq)"]	0.083	0.083		
		K (ft/day)	108.61	91.38		
	Theis	T (ft²/day)	7059	5940		
	(1935)	K (cm/sec)	0.0383	0.0322		
	Confined Aquifer	T (cm ² /sec)	75.91	63.87		
		S	0.0177	0.0177		
		K (ft/day)	110.19	95.01		
<u>2</u>	Dougherty-Babu	T (ft²/day)	7162	6176		
st Resu	(1984) Confined Aquifer	K (cm/sec)	0.0389	0.0335		
		T (cm ² /sec)	77.02	66.41		
"Te		S	0.0101	0.0101		
Not	Hantush-Jacob (1955) Leaky Aquifer	K (ft/day)	96.75	85.57		
awe		T (ft²/day)	6289	5562		
코		K (cm/sec)	0.0341	0.0302		
Ste		T (cm ² /sec)	67.62	59.80		
		S	0.0182	0.0182		
		K (ft/day)	105.01	90.57		
	Geometric Mean	T (ft ² /day)	6825.42	5886.99		
		K (cm/sec)	0.0370	0.0319		
		T (cm ² /sec)	73.39	63.30		
		s	0.0148	0.0148		
		K (ft/day)	167.08	110.88		
	Theis	T (ft ² /day)	10860	7207		
	(1935)	K (cm/sec)	0.0589	0.0391		
	Confined Aquifer	T (cm ² /sec)	116.77	77.50		
		S	0.0124	0.0013		
		K (ft/day)	159.69	110.89		
sult	Dougherty-Babu	T (ft²/day)	10380	7208		
t Re	(1984) Confined Aquifer	K (cm/sec)	0.0563	0.0391		
Tes	Commed Aquiter	T (cm ² /sec)	111.61	77.51		
I.		S	0.0101	0.0040		
pw		K (ft/day)	168.15	111.23		
dra	Hantush-Jacob	T (ft ² /day)	10930	7230		
Ince	(1955) Leaky Aquifer	K (cm/sec)	0.0593	0.0392		
Dista	,	T (cm ² /sec)	117.53	77.74		
		S	0.0119	0.0013		
		K (ft/day)	164.93	111.00		
		T (ft ² /day)	10720.52	7215.06		
	Geometric Mean	K (cm/sec)	0.0582	0.0392		
		T (cm ² /sec)	115.27	77.58		
		S	0.0114	0.0019		

Notes: in = inches ff = fect cm = centimeter sec = second ft BGS = fect below ground suface ft/day = fect pelow ground suface ft/day = fect per day cm/sec = centimeters per second cm²/sec = square centimeters per second gpm = gallons per minute S = storativity T = transmissivity K = hydraulic conductivity K/Kh = vertical to horizontal hydraulic conductivity anisotropy ratio AQTESOLV = AQuifer TEst SOLVer

GR6881B

Table 5 APT-01 Aquifer Test Groundwater Sample Results Hercules/Pinova Facility Brunswick, Georgia

	PT-01	PT-02	PT-03					
Sample Date	3/12/2020	3/12/2020	3/12/2020					
Sample Time	15:00	17:00	20:20					
Time Since Start of Aquifer Test	2 hours	4 hours	7 hours					
Volatile Urganics (µ g/L)								
Acetone	10 U	10 U	10 U					
Benzene	220 H	320 H	290 H					
Carbon disulfide	2 U	2 U	2 U					
Chlorobenzene	210 H	250 H	200 H					
Chloroform	1 U	1 U	1 U					
cis-1,2-Dichloroethene	2.2	2.8	3.0					
1,2-Dichlorobenzene	2.9	2.7	2.0					
1,4-Dichlorobenzene	4.0	4.0	2.9					
1,1-Dichloroethane	1 U	1 U	1 U					
1,1-Dichloroethene (1,1-Dichloroethylene)	1 U	1 U	1 U					
1,2-Dichloropropane	1 U	1 U	1 U					
Ethyl Benzene	5.6	6.6	5.7					
Methylene Chloride	5 U	5 U	5 U					
Methyl Ethyl Ketone (MEK)	10 U	10 U	10 U					
Methyl Isobutyl Ketone (MIBK)	10 U	10 U	10 U					
p-Isopropyltoluene (p-Cymene)	1 U	1 U	1 U					
Tetrachloroethene (Tetrachloroethylene)	1 U *	1 U *	1 U *					
Toluene	1.8	2.1	2.2					
1,2,4-Trichlorobenzene	5 U	5 U	5 U					
Total Xylenes	25	97	150					
Vinyl chloride	3.0	3.7	3.2					
Organochlorinde Pesticides and Polychlorinated Biphenyls (PBC	S) (μg/L)							
alpha-BHC	0.049 U	0.048 U	0.05 U					
delta-BHC	0.049 U	0.048 U	0.05 U					
gamma-BHC (Lindane)	0.049 U	0.048 U	0.05 U					
Toxaphene	4.9 U	4.8 U	5 U					
Toxaphene, TAUC	4.9 U	4.8 U	5 U					
Metals (µg/L)								
Aluminum	100 U	100 U	100 U					
Arsenic	3 U	3 U	3 U					
Chromium	5 U	5 U	5 U					
Copper	5 U	5 U	5 U					
Iron	6,200	11,000	12,000					
Manganese	940	960	990					
Zinc	1,200	540	450					
Anions (mg/L)								
Bromide	1.2	1.1	0.50 U					
Nitrate as N	0.05 U	0.05 U	0.05 U					
Nitrite as N	0.05 U	0.05 U	0.05 U					
Fluoride	0.14	0.13	0.14					
Sulfate	5.8	4.7	3.8					
Chloride	4,100	4,000	4,100					
Total Hardness (as $CaCO_3$) by Calculation (mg/L)								
Hardness as calcium carbonate	5,400	43,000	5,400					
Calcium hardness as calcium carbonate	5,000	42,000	5,000					
Magnesium hardness as calcium carbonate	380	370	360					
General Chemistry (mg/L)								
Alkalinity	300	310	330					
Bicarbonate Alkalinity as CaCO3	300	310	330					
Carbonate Alkalinity as CaCO ₃	5 U	5 U	5 U					
Hydroxide Alkalinity	5 U	5 U	5 U					
Carbon Dixoide, Free	53	58	66					
Phenolphthalein Alkalinity	5 U	5 U	5 U					
Bicarbonate ion as HCO ₃	360	380	400					
Total Organic Carbon	19	20	19					
Dissolved Organic Carbon	17	18	18					
Total Dissolved Solids	8,400	8,400	8,400					
Total Suspended Solids	72	96	54					

Notes:

From the examples were collected from the APT-01 discharge point at approximately 2 hours (PT-01), 4 hours (PT-02), and 7 hours (PT-03) after start of the aquifer test.

and γ hours (P1-03) after start of the aquifer test.
µg/L = micrograms per liter
mg/L = milligrams per liter
U - Analyte not detected at laboratory reporting limit.
H - Reanalysis performed outside of the specified analytical holding time due to dilution. Undiluted and diluted (H flagged) results are available in the laboratory report.
* - LCS or LCSD is outside acceptance limits.
Bold - Analyte Detected

Table 6 Grain Size Analysis Results Hercules/Pinova Facility Brunswick, Georgia

Sample Location	APT-01	APT-01	APT-01	PWOW-02	PWOW-02		
Sample Interval (ft BGS)	79-80	84-85	94-95	81	86		
Sample Date	2/27/2020	2/27/2020	2/27/2020	3/3/2020	3/3/2020		
Sample Time	11:30	11:30	11:30	13:00	13:00		
Grain Size Analysis (%)							
Fines	8.3	12.9	10.6	9.7	8.7		
Sand ⁽¹⁾	90.5	85.6	88.5	89.2	89.4		
Fine Sand	17.4	13.4	13.2	9.2	15.8		
Medium Sand	62.3	64.3	67.6	71.8	66.0		
Coarse Sand	10.6	7.9	7.7	8.2	7.6		
Gravel	1.2	1.5	0.9	1.1	2.0		

Notes:

(1) Total sand component is further subdivided into fine, medium, and coarse grain size components.

Grain size analysis performed by ASTM Method D422 sieve analysis

FIGURES

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, GIS User Community

APPENDIX A

General Pumping Test Procedures (Geosyntec SOG 160)

STANDARD OPERATING GUIDELINE NO. 160

GENERAL PUMPING TEST PROCEDURES

Prepared by:_____/s/____Date: 2/9/2007___

Reviewed by:______/s/____Date: 2/12/2007_

Approved by:_____/s/____Date: 2/13/2007_

SOG No. 160

TABLE OF CONTENTS

1. INTRODUCTION

- 1.1 Overview
- 1.2 Objective
- 1.3 Equipment
- 2. PROCEDURES

STANDARD OPERATING GUIDELINE NO. 160

GENERAL PUMPING TEST PROCEDURES

1. INTRODUCTION

1.1 Overview

This Standard Operating Guideline (SOG) was prepared to direct field personnel in the methods and general procedures for conducting pumping tests in monitoring wells. Additional guidance can be found in Standard Operating Procedures for Aquifer Pumping Tests (Paul Osborne, 1993, EPA/540/S-93-503). A <u>step drawdown test field form</u> is provided with this SOG.

This SOG will be implemented in accordance with the following governing documents:

- Work Plan (where applicable), which provides an overview of the site background and conceptual model and describes the overall investigative goals and scope of work;
- Health and Safety Plan (HASP), which identifies all physical, chemical, and biological hazards relevant to each field task and provides hazard mitigators to address these hazards;
- Field Sampling Plan (FSP) (where applicable), which provides details for field sampling locations and procedures and which will be most frequently used by field staff on-site; and
- Quality Assurance Project Plan (QAPP) (where applicable), which is written to establish protocols necessary to ensure that the data generated are of a quality sufficient to ensure that valid conclusions are drawn from the site characterization.

1.2 **Objective**

The objectives of pumping tests include identifying aquifer properties of recharge, drawdown, storativity, transmissivity, specific and sustained yield, and aquifer boundaries. Knowledge of these aspects is essential to aid in the understanding of aquifer characteristics for the configuration of remediation or ground water supply systems.

1.3 Equipment

The following equipment may be used during the conduct of an aquifer pumping test:

- field log book or pump test field form;
- water level indicators;
- pressure transducers;
- data logging equipment;
- hourly data from local source if no on-site data is available
- field printer;
- · laptop computer;
- duct tape;
- deionized water;
- submersible pump with flow regulator and foot valve;
- flow meter/totalizer;
- generator or other power source;
- heavy-duty extension cords;
- polyethylene sheeting;
- frac tank, baker tank, or other storage vessel, if water requires containment;
- Personal Protective Equipment (PPE) and air monitoring equipment per HASP;
- portable two-way radios;
- well completion logs;
- well keys;
- flow meter/graduated bucket; and
- stopwatch.

Aquifer Pumping Test Work Plan Former Hercules Brunswick Plant

2. **PROCEDURES**

The following general procedures should be used for conducting a pumping test. Alterations of these general procedures may be necessary in order to accommodate site specific conditions and data requirements.

Aquifer pumping tests should follow the set-up procedures listed below in order to consistently record the desired data as accurately as possible.

- 1. Determine the appropriate lengths of transducer cables based on the distances from pumping to observation wells. Based on the well geometries, determine the appropriate pressure-rated transducer, number of logging channels needed, required pump hosing length, pump capacity and type, and minimum and maximum anticipated pumping rates. Identify the test control location and create a pre-test schematic of where the wells are, depth of transducer and pump settings, where the water will be discharged or containerized, and how the test can be implemented efficiently before going into the field. If sealed (unvented) transducers are used, an additional transducer will be required to monitor and correct for atmospheric pressure. If vented transducers are used, variations in atmospheric pressure will automatically be accounted for; however, if the tested aquifer is susceptible to atmospheric pumping, monitoring of atmospheric pressure may be required to help interpret water level data.
- 2. Conduct decontamination of all downhole test equipment and wrap all equipment in polyethylene sheeting or bags. These should be dedicated and labeled for the intended wells.
- 3. After donning PPE and performing any required air monitoring per the HASP, measure water levels in all of the wells to be monitored during the test. Record the water levels in the logbook or on the pump test log. It is recommended that the water levels be monitored for a period of time prior to the test to identify any trends of rising or falling water levels due to nearby supply wells, tidal influence, or surface water bodies. If possible, the test should not be initiated within several days of large rainfall event (past or predicted).
- 4. Set and secure the pump in the pumping well at the planned depth and allow for stabilization of the displaced water level caused by insertion. The generator should be filled with gasoline at a remote down-wind location and extension cord run to this location. Record the pump depth in the log book or on the pump test log. Monitor the water level in the pumping well to ensure that static levels are attained.

- 5. Secure the transducers with duct tape in the desired wells at the planned depths as identified in the pre-test schematic. Set all transducers in the wells for a minimum of two hours to allow for reaching equilibrium with ground water temperature and for cables to stretch fully. The transducer in the pumping well should be set above the pump. Run all of the transducer cables to the test control location and connect them to the data logger in the desired channel(s). Record the transducer depths in the logbook or on the pump test log.
- 6. While the transducers are stabilizing, programming of the data logger for each channel should be completed with the specific parameters for each transducer. Scale factors, linearity, offset, well identification, reference level, and type of reading (surface or top of casing) should be selected. These parameters are specific to each transducer and data logger and are usually clearly identified on the wheel and cable for each transducer. After programming, each transducer should be tested for accuracy by raising it a known distance and verifying that the change in measured water level corresponds with this distance. If a long-term pumping test is conducted (i.e. several weeks) checking transducers in this manner once per week is warranted.
- 7. The data logger should be programmed to collect readings at the desired interval(s) for the entire duration of the test including recovery. The test should be programmed to allow for logging of water levels during the drawdown and recovery stages using the logarithmic option recommended with most data loggers. The actual log scale can also be modified to suit the needs of the test, if desired. The data logger should be programmed to start prior to initiation of pumping the well (but not so early that the recording interval is too long when pumping begins).
- 8. Once the test equipment is ready, the entries, well identifications, and parameters for each channel should then be double checked for accuracy. The connections to all channels should be checked by communication with each individual transducer.
- 9. The startup of the pump should be synchronized with the logging of water level data. The rate of pumping should be set at the desired rate as determined by an earlier step test. The rate should be stabilized as quickly as possible to promote accurate data analysis. Direct the discharge to the appropriate containers, if required, or to a location outside of the anticipated cone of influence. The pumping rate should be measured and recorded routinely (using a flow meter and/or a bucket test) during initial pumping to confirm that the rate is stable. All

adjustments to the rate should be recorded. Record the actual start time and pumping rate of the test in the logbook or on the test log.

- 10. Monitor the channels of the data logger to read the transducers. Look for drawdown in the pumping well to confirm operation. Monitor the transducers in the observation wells to confirm their operation. Manual measurement of the water levels should be performed periodically to confirm the accuracy of the transducer data, typically several times during the first day, daily for several days, and weekly thereafter.
- 11. If a recovery test is also planned, re-program the data-loggers to begin a new logarithmic data collection cycle, shut down the pump, record the time and allow the water level in the pumping well and nearby monitoring wells to recover to 75 to 90 percent of static levels.
- 12. Once the test is completed, remove and decontaminate all downhole equipment.

APPENDIX B

Boring and Well Construction Logs

G	ec		S yn	nt	e	c s		Client:HerculesWELLProject:Brunswick/Pinova FacilityWell No.APT-01Address:2801 Cook Street, Brunswick, GAPage:1 of 5	LOG		
Drilling Drilling Drilling Drilling Driller: Loggec	Start Da End Da Compa Method Equipm	ate: te: ny: : ent:	2/26/2 2/27/2 Saeda Sonic Geop Will K Ben V	20 20 acco robe Ceyes Veinr	8150 nann	LS		Boring Depth (ft):97.0Well Depth (ft):95.0Boring Diameter (in):10.00Well Diameter (in):6.0Sampling Method(s):Core recoveryScreen Slot (in):0.020DTW During Drilling (ft):Riser Material:Sch 40 PVGDTW After Drilling (ft):6.81Seal Material(s):Bent. SlurrLocation (X,Y):425185.29, 872100.41,Filter Type:5/16	C stainle y/Bent	ess ste . Pelle	el ts
DEPTH (ft)	ΓΙΤΗΟLOGY	WATER LEVEL	WELL COMPLETION	Sample Type	Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEAS (mdd) OIA	Lab Sample	DEPTH (ft)
								 (0-5') Hand auger (5') Poorly graded SAND (SP); mostly medium grained sand, few day, loose, moist, very dark brown (7,5YR 2,5/2), minor organic content (roots) (7') Poorly graded SAND (SP); mostly fine-medium grained sand, few day, loose, moist, pale yellow (2.5Y 8/2), minor micas (11') Sandy lean CLAY (CL); little fine sand, mostly clay, medium plasticity, soft, moist, dark gray (10YR 4/1) (11.5) Poorly graded SAND (SP); mostly fine-medium grained sand, few clay, loose, moist, dark gray (10YR 4/1) (13) Poorly graded SAND (SP); mostly fine-medium grained sand, loose, moist, dark gray (10YR 4/1) (14) Poorly graded SAND (SP); mostly medium grained sand, loose, moist, dark gray (10YR 4/1), with coarse to very coarse shells (14') Poorly graded SAND (SP); mostly medium grained sand, loose, moist, greenish-gray (18') Sandy lean CLAY (CL); little fine-medium sand, mostly clay, medium plasticity, soft, moist, dark greenish-gray, with sand lenses 	0.2 1.4 1.1 1.3 0.8		
Ν	NOTES	Ho	e prec	leare	ed usi	ng ha	and a	uger. The casing was 20 slot, stainless steel			

Geosyntec	Cli Pro	ent: Hercules WELL oject: Brunswick/Pinova Facility Well No. APT-01 dress: 2801 Cook Street. Brunswick. GA Page: 2 of 5	LOG
Drilling Start Date:2/26/20Drilling End Date:2/27/20Drilling Company:SaedaccoDrilling Method:SonicDrilling Equipment:Geoprobe 8150 LSDriller:Will KeyesLogged By:Ben Weinmann		Boring Depth (ft):97.0Well Depth (ft):95.0Boring Diameter (in):10.00Well Diameter (in):6.0Sampling Method(s):Core recoveryScreen Slot (in):0.020DTW During Drilling (ft):Riser Material:Sch 40 PVGDTW After Drilling (ft):6.81Seal Material(s):Bent. SlurrGround Elev. (ft):6.81Seal Material(s):Bent. SlurrLocation (X,Y):425185.29, 872100.41,Filter Type:5/16	C stainless steel y/Bent. Pellets
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	 (8') Sandy lean CLAY (CL); little fine-medium sand, mostly clay, medium plasticity, oft, moist, dark greenish-gray, with sand lenses 20.5') Poorly graded SAND (SP); mostly fine-medium grained sand, loose, moist, ark greenish-gray (23.5') Sandy lean CLAY (CL); little fine sand, mostly clay, medium plasticity, soft, noist, dark greenish-gray (29.5') Poorly graded SAND (SP); mostly medium-coarse grained sand, loose, moist, reenish-gray, with minor shells 	20 0.4 - 0.8 - 0.8 - -25 1.0 - 1.0 - 1.5 - 1.5 - 1.8 - 1.8 -
40	(3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	 33') Poorly graded SAND (SP); mostly medium grained sand, loose, moist, reenish-gray 35') Lean CLAY (CL); mostly clay, medium plasticity, soft, moist, greenish-gray 35.5') Poorly graded SAND (SP); mostly coarse grained sand, loose, moist, reenish-gray 37.5') Poorly graded SAND (SP); mostly fine-medium grained sand, some clay, nose, moist, greenish-gray 38') Poorly graded SAND (SP); mostly coarse grained sand, loose, moist, reenish-gray 38') Poorly graded SAND (SP); mostly coarse grained sand, loose, moist, reenish-gray 38') Poorly graded SAND (SP); mostly coarse grained sand, loose, moist, reenish-gray 38') Poorly graded SAND (SP); mostly coarse grained sand, loose, moist, reenish-gray, with shells to 45.5' 	1.2 - 9.4 - 7.3 40

G	eo	S	r	It	e	C	>	Clie Proj	nt: ject:	Hercules Brunswick/	:/Pine	ova Faci	lity		Well No.	WELL APT-0	LOG 1		
	(cor	isu	lta	ant	S		Add	ress:	2801 Cook	Stre	eet, Brun	iswick, GA	4	Page:	3 of 5			
Drilling S Drilling C Drilling N Drilling N Drilling E Driller: Logged R	itart Date ind Date company lethod: iquipmen 3y:	e: 2/ :: 2/ /: Si nt: G W B	26/20 27/20 aedad onic eopro fill Ke en We	cco obe yes einn	8150 1ann	LS			Boring Dep Boring Dia Sampling N DTW Durin DTW After Ground Ele Location (X	oth (ft): meter (in): Vethod(s): ig Drilling (ft): · Drilling (ft): ev. (ft): X,Y):	97. 10. Co 6.8 42	.0 .00 ore recover 31 5185.29, 87	y 72100.41,	Well Well Scre Rise Scre Seal Filte	Depth (ft): Diameter (in) een Slot (in): er Material: Material(s): r Type:	95.0 : 6.0 0.020 Sch 40 P\ Wire-wrag Bent. Slut 5/16	/C o stainle rry/Bent	ess ste Pelle	eel its
DEPTH (ft)	ПТНОLOGY	VAI EK LEVEL WFLI	COMPLETION	mple Type	Time	ow Counts	covery (ft)			SOI	IL/RO	OCK VISUAI	L DESCRIPT	ION			MEA: (mdd) (I	b Sample	DEPTH (ft)
		>	0	Sai		Blo	Re										₫.	La	
								(38 gre (46 gre (49 gre	') Poorly gr. eenish-gray, eenish-gray ') Poorly gr. eenish-gray,	aded SAND (S with shells to graded SAND	SP); rr 45.5' (SP); rr SP); rr	nostly coars	se grained sa dium grained	Ind, k	oose, moist, d, loose, mois	t,	4.1 16.8 16.2 14.3 21.6		40 45 45 50
55	DTES: H	Hole	precle	eare	d usi	ng ha	Ind a	(58 me	') Poorly gr dium dense	aded SAND (S ə, moist, green	SP); m hish-gi	nostly fine-r ıray nless steel	medium grair	ned s	and, some cla	у,	4.1		55 60

G	ec	SJ	/n sult	cec ant	c s		Clier Proje Add	nt: ect: ress:	Hercule Brunsv 2801 C	es vick/l ook \$	Pinova Street,	Facility Brunswi	ck, GA		Well N Page:	о.	WE AP 4 o	LL L T-01 f 5	OG		
Drilling Drilling Drilling Drilling Driller: Loggeo	Start Da End Dat Compar Method: Equipme	te: 2/2 e: 2/2 ny: Sa So ent: Ge Wi Be	26/20 27/20 edacco nic eoprobe Il Keye n Wein	9 9 8150 s mann	LS			Boring De Boring Di Sampling DTW Dur DTW Afte Ground E Location	epth (ft): iameter (in) Method(s ring Drilling er Drilling (Elev. (ft): (X,Y):): .): g (ft): ft):	97.0 10.00 Core re 6.81 425185.	covery 29, 872100	0.41, F	Vell Cree Cree Cree Cree eal	Depth (ft) Diameter en Slot (ir Material: en Material Material(s	: (in): 1): al: s):	95.0 6.0 0.020 Sch 40 Wire-w Bent. \$ 5/16) PVC vrap st Slurry/	ainle: Bent.	ss ste Pelle	el ts
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL WELL	COMPLETION Sample Type	COLL	Blow Counts	Recovery (ft)				SOIL	/ROCK \	ISUAL DE	SCRIPTIC	N					MEAS (mdd) OId	Lab Sample	DEPTH (ft)
			SH	09:10		0.00	(58' mea (62' grav 68' (77' (77'	') Poorly (dium den: ') Poorly (vel, loose ') Poorly (k greenisl	graded SAI se, moist, g graded SAI , moist, da	ND (SF	²); mostly sh-gray ²); mostly enish-gra d Shelby ²); mostly	/ fine-mediu / medium-c y, chemical	um grained coarse gra l odor pres	inec	and, some	e clay	e s below		26.4 26.0 8.3 19.5 26.0 36.5 18.7 1.7 2.8		60 65 70 70 75 75 80
Ν	OTES:	Ho l e p	reclear	ed usi	ng ha	ind a	uger. T	The casir	າg was 20	slot, s	stainless	steel									

G	ec		y	nt	e ant	s	~	Clier Proje Add	nt: ect: ress:	Hercu Bruns 2801 (ıles swick/∣ Cook≑	Pinova Street	a Facilit Brunsv	y wick, G/	4	Well No Page:	D.	WE AP1 5 of	LL LC Г-01 [:] 5	G		
Drilling Drilling Drilling Drilling Drilling Driller: Logged	Start Da End Da Compa Method Equipm By:	te: hy: ent:	2/26/2 2/27/2 Saeda Sonic Geop Will K Ben V	20 20 acco robe Keyes Veinr	8150 5 nann	LS			Boring D Boring D Sampling DTW Du DTW Aft Ground E Location	epth (ft): viameter (i g Method(ring Drillir er Drilling Elev. (ft): (X,Y):	in): (s): ng (ft): ı (ft):	97.0 10.00 Core r 6.81 42518	ecovery 5.29, 8721	100.41,	Well Well Scre Rise Scre Seal Filte	Depth (ft): Diameter een Slot (in er Material: een Materia Material(s r Type:	: (in):): al: ;):	95.0 6.0 0.020 Sch 40 Wire-w Bent. S 5/16	PVC rap sta Slurry/B	inles ent.	s ste Pellet	el s
DEPTH (ft)	ГІТНОГОGY	WATER LEVEL	WELL	Sample Type	Time	Blow Counts 1	Recovery (ft)				SOIL	_/ROCK	VISUAL E	DESCRIPT	ION						Lab Sample B	DEPTH (ft)
				SH	09:11		0.00	(79' darl (85' gree (95' ligh (97'	') Poorly ; k greenis ') No Rec ') Poorly ; enish-gra ') Sandy ; t olive gra ') Boring ;	graded S/ h-gray covery - a graded S/ ay, slight c slLT (ML) ay (5Y 6/2 terminate	AND (SI attempte AND (SI chemica); little fii 2), slight	P); mos ed Shelk P); mos I odor	ly medium y Tube sa ly medium um sand, al odor; tr	n-coarse g n-coarse g n-coarse g mostly silt ace round	raine , low ed cc	d sand, loc d sand, loc	ose, r	moist,	1 1 1 1 1 1 2 2 2 3 (1 1 1 5. 1	0.5 2.2 .9 0.5 2.6 0.2 6.4 4 .1		80 85 85 90 90 90 95 95
N	OTES:	Ho	e prec	leare	ed usi	ng ha	and a	uger. T	The casii	ng was 2	:0 slot, s	stainles	s steel									

G	ec)S cc	y ons	nt ult	e ant	C ^C is	>	Client:HerculesWELLProject:Brunswick/Pinova FacilityWell No.PWOWAddress:2801 Cook Street, Brunswick, GAPage:1 of 5	LOG /-01		
Drilling Drilling Drilling Drilling Driller: Logged	Start Da End Da Compa Method Equipm	ate: te: ny: .: nent:	3/2/20 3/2/20 Saed Sonic Geop Will I Ben ¹) acco c brobe Keyes Weinr	8150l 3 mann	LS		Boring Depth (ft):90.0Well Depth (ft):90.0Boring Diameter (in):6.00Well Diameter (in):6.0Sampling Method(s):Core recoveryScreen Slot (in):0.010DTW During Drilling (ft):Riser Material:Sch 40 PVDTW After Drilling (ft):6.65Seal Material(s):Bent. SlurrLocation (X,Y):425139.32, 872120.32Filter Type:#3	C C slotte ry/Bent	ed t. Pelle	ts
DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL		Sample Type	COLL	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEAS (mdd) OIA	Lab Sample	3 (ft) (ft)
								 (0-5') Hand auger (5') Poorly graded SAND (SP); mostly fine-medium grained sand, some clay, loose, moist, greenish-gray, minor organic fragments (6') Poorly graded SAND (SP); mostly fine-medium grained sand, medium dense, moist, medium tan-brown, slightly micaceous (11') Poorly graded SAND (SP); mostly fine-medium grained sand, few clay, loose, moist, dark brown, slightly micaceous (14') Poorly graded SAND (SP); mostly fine-medium grained sand, few clay, loose, moist, dark brown, slightly micaceous 	2.2 2.1 0.3 2.9 2.8 3.3		
20 N	IOTES	: Hol	e pre	cleare	ed to {	5.0' u	using	hand auger.	1.6		20

G	ec		y	nt	ec	c s	V	Client:HerculesWELLProject:Brunswick/Pinova FacilityWell No.PWOWAddress:2801 Cook Street, Brunswick, GAPage:2 of 5	LOG /-01		
Drilling Drilling Drilling Drilling Drilling Driller: Loggeo	Start D. End Da Compa Method Equipm	ate: te: ny: : ient:	3/2/20 3/2/20 Saed: Sonic Geop Will M Ben V) acco ; robe (eyes Weinr	8150L ; ; ;	_S		Boring Depth (ft):90.0Well Depth (ft):90.0Boring Diameter (in):6.00Well Diameter (in):2.0Sampling Method(s):Core recoveryScreen Slot (in):0.010DTW During Drilling (ft):Riser Material:Sch 40 PVDTW After Drilling (ft):6.65Seal Material(s):Bent. SlurtLocation (X,Y):425139.32, 872120.32Filter Type:#3	C C slotte ry/Bent	ed Pelle	ts
ΓΗ (ft)	ЛОСУ	K LEVEL	ELL LETION	ype	COLL	ECT	/ (ft)		MEAS	SURE	TH (ft)
DEP1	ПТНС	WATER	WE COMPI	Sample T	Time	Blow Cot	Recovery	SOLLINGER VISUAL DESCRIPTION	PID (pp	Lab Sam	DEP1
20											20
-								(19.5') Poorly graded SAND (SP); mostly fine-medium grained sand, few clay, medium dense, moist, dark greenish-gray, minor shells			_
-									3.3		_
- 25—								(24') Sandy lean CLAY (CL); some fine-medium sand, mostly clay, medium plasticity, soft, moist, dark greenish-gray	2.3		- 25
-								(26') Poorly graded SAND (SP); mostly fine-medium grained sand, medium dense, moist, greenish-gray (27') Sandy lean CLAY (CL); some fine-medium sand, mostly clay, medium plasticity, soft, moist, dark greenish-gray			_
_									0.7		_
30—								(30.5') Poorly graded SAND (SP); mostly medium grained sand, loose, moist, light greenish-gray	1.7		— 30 —
-									1.7		_
- 35—									4.1		-
-								(36.5') Lean CLAY (CL); mostly clay, medium plasticity, soft, moist, light	3.3		_
_								greenish-gray (37') Poorly graded SAND (SP); mostly medium-coarse grained sand, loose, moist, greenish-gray, wet at 38.5	0.2		_
-	88								1.9		-
40 N	OTES	Ho	e prec	leare	ed to f	5.0' u	isina	and auger.			40

Geosyntec ^D consultants	Client:HerculesWELL IProject:Brunswick/Pinova FacilityWell No.PWOWAddress:2801 Cook Street, Brunswick, GAPage:3 of 5	LOG -01
Drilling Start Date:3/2/20Drilling End Date:3/2/20Drilling Company:SaedaccoDrilling Method:SonicDrilling Equipment:Geoprobe 8150LSDriller:Will KeyesLogged By:Ben Weinmann	Boring Depth (ft):90.0Well Depth (ft):90.0Boring Diameter (in):6.00Well Diameter (in):2.0Sampling Method(s):Core recoveryScreen Slot (in):0.010DTW During Drilling (ft):Riser Material:Sch 40 PVCDTW After Drilling (ft):Screen Material:Sch 40 PVCGround Elev. (ft):6.65Seal Material(s):Bent. SlurryLocation (X,Y):425139.32, 872120.32Filter Type:#3	; ; slotted y/Bent. Pellets
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Sample Type Inme Blow Counts Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Lab Sample DEPTH (ft)
	(37') Poorly graded SAND (SP); mostly medium-coarse grained sand, loose, moist, greenish-gray, wet at 38.5 (51') Poorly graded SAND (SP); mostly medium grained sand, loose, moist, greenish-gray	$\begin{array}{c c c c c c } & - & - & - & - & - & - & - & - & - & $
60 NOTES: Hole precleared to 5.0' using	hand auger.	60

G	eo	SJ	/nt sult	e ant	c s	~	Clie Pro Ada	ent: oject: dress:	Hercul Bruns 2801 C	les wick/ Cook :	Pinova Street,	Facility Brunsw	ick, GA		Well N Page:	No.	WE PW 4 of	LL LC OW-0 f 5	DG 1		
Drilling Drilling Drilling Drilling Drilling Driller: Logged	Start Date End Date Company Method: Equipme	te: 3/2 e: 3/2 y: Sa Sc ent: Ge Wi Be	2/20 edacco nic oprobe II Keyes n Wein	8150l 3 mann	_S			Boring D Boring D Sampling DTW Du DTW Aft Ground I Location	Depth (ft): Diameter (ir g Method(s ring Drillin er Drilling Elev. (ft): (X,Y):	n): s): g (ft): (ft):	90.0 6.00 Core re 6.65 425139	covery 32, 87212	۷ ۶ ۶ ۶ ۵ 0.32 F	Vell Vell Scre Rise Scre Seal	Depth (f Diamete en Slot (r Materia en Mate Material r Type:	t): er (in): in): il: rial: l(s):	90.0 2.0 0.010 Sch 40 Sch 40 Bent. \$ #3	PVC PVC s Slurry/E	lotte Bent.	d Pelle	ts
DEPTH (ft)	ГІТНОГОСҮ	WATER LEVEL WELL	COMPLETION Sample Type	Time	Blow Counts	Recovery (ft)				SOIL	/ROCK \	/ISUAL DE	ESCRIPTI	ЛС				M	(wdd) Mrd	Lab Sample	DEPTH (ft)
							(6f	0') Poorly avel, loose	graded SA ə, moist, g	AND (SI	P); mostlj -gray	/ medium-	coarse gra	àine	d sand, 1	ēw fin	e	1 22 18 2 1 1 4 2 1 1 1 1 1 1 1	1.0 2.3 2.3 3.3 6.8 3.7 .5 3.8 2.5 3.8		
N	IOTES: I	Ho l e p	reclear	ed to {	5.0' u	sing l	hand	auger.													

Drilling Start Date: 3/220 Boring Depth (ft): 90.0 Well Depth (ft): 90.0 Drilling Gammer (m): 3/220 Sampling Dammer (m): 6.00 Woll Diamoter (m): 0.10 Drilling Gammer (m): Sonic Sonic DTW During Drilling (ft): Sonic Sonic Drilling Method (s): Core recovery Storeen Marinet: Sch 40 PVC Drilling Method (s): Core recovery Storeen Marinet: Sch 40 PVC Drilling Method (s): Gond Method (s): Core recovery Storeen Marinet: Sch 40 PVC Drilling Method (s): Method (s): Sch 40 PVC Storeen Marinet: Sch 40 PVC Drilling Method (s): Ben Weinmann Coll Storeen Marinet: Sch 40 PVC Brite Topic #1 MEASURE Gond Method (s): Bent Storey Brite Topic #1 Solutroock VISUAL DESCRIPTION MEASURE Gond Method (s): Brite Topic #1 Solutroock VISUAL DESCRIPTION MEASURE Gond Method (s): Bent Storey Brite Topic #1 Image: Solutroock VISUAL DESCRIPTION MEASURE Gond Method (s): Bent Storey Brite Topic #1 Image: Solutroock VISUAL DESCRIPTION Image: Solutroock VISUAL DESCRIPTION Image: Solutroock VISUAL DESCR	G	ec		yr	nt alta	ec ant	s		Clie Pro Ado	ent: oject: dress:	Hercules Brunswic 2801 Coo	ck/F ok S	Pinova Facility Street, Brunswick, G	iΑ	Well No. Page:	WELL PWOW 5 of 5	LOG /-01		
Image: Normal state Image: Normal state	Drilling Drilling Drilling Drilling Driller: Logged	Start Da End Da Compar Method Equipm	ate: te: ny: ent:	3/2/20 3/2/20 Saeda Sonic Geopi Will K Ben V	robe eyes Veinn	8150L nann	.S			Boring De Boring Di Sampling DTW Dur DTW Afte Ground E Location	epth (ft): iameter (in): g Method(s): ring Drilling (ft er Drilling (ft): Elev. (ft): (X,Y):	t):	90.0 6.00 Core recovery 6.65 425139.32, 872120.32	Wel Wel Scre Scre Sea Filte	l Depth (ft): l Diameter (in): een Slot (in): er Material: een Material l Material(s): er Type:	90.0 2.0 0.010 Sch 40 PV0 Bent. Slurr #3	C C slotte y/Bent	ed . Pelle	ts
90 (807) Poorly graded SAND (SP); mostly medium-coarse grained sand, few fine gravel, loose, moist, greenish-gray 7.1 1 85 - - - - - 90 - - - - - 90 - - - - - - 90 - <td>DEPTH (ft)</td> <td>ГІТНОГОСУ</td> <td>WATER LEVEL</td> <td>WELL COMPLETION</td> <td>Sample Type</td> <td>Lime</td> <td>Blow Counts T</td> <td>Recovery (ft)</td> <td></td> <td></td> <td>S</td> <td>ioil/</td> <td>/ROCK VISUAL DESCRIF</td> <td>PTION</td> <td></td> <td></td> <td>MEAS (mdd) OIA</td> <td>Lab Sample</td> <td>DEPTH (ft)</td>	DEPTH (ft)	ГІТНОГОСУ	WATER LEVEL	WELL COMPLETION	Sample Type	Lime	Blow Counts T	Recovery (ft)			S	io i l/	/ROCK VISUAL DESCRIF	PTION			MEAS (mdd) OIA	Lab Sample	DEPTH (ft)
Image: NOTES: Hole precleared to 5.0' using hand auger.	80		Hol	e prec	leare	ed to 5	5.0' u	sing	(8) fev	0') Poorly (w fine grav	graded SAND /el, loose, moi) (SF ist, ç	P); mostly medium-coarse greenish-gray	grain	ed sand,		7.1		80 85 90 90 90 95 95

G	ec		y nsi	nt alta	ec ant	s S	~	Client: Project: Address:	Hercules Brunswick 2801 Cook	/Pinova Facility Street, Brunswick, (6A	WELL Well No. PWOV Page: 1 of 5	LOG V-02		
Drilling Drilling Drilling Drilling Drilling Driller: Loggeo	Start Da End Da Compa Method Equipm	ate: te: ny: : ent:	3/3/20 3/3/20 Saedo Sonic Geop Will K Ben V	lacco robe eyes Veinn	o 8150L nann	-S		Boring I Boring I Samplir DTW D DTW At Ground Location	Depth (ft): Diameter (in): ng Method(s): uring Drilling (ft): fter Drilling (ft): Elev. (ft): n (X,Y):	90.0 6.00 Core recovery 6.53 425107.94, 872158.61	Wel Wel Scr Rise Scr Sca Filte	Il Depth (ft): 90.0 Il Diameter (in): 2.0 een Slot (in): 0.010 er Material: Sch 40 PV een Material: Sch 40 PV al Material(s): Bent. Slur er Type: #3	C C slott ry/Bent	ed t. Pelle	ets
DEPTH (ft)	ГІТНОГОGY	WATER LEVEL	WELL COMPLETION	Sample Type	COLL	Blow Counts	Recovery (ft)		SO	IL/ROCK VISUAL DESCRI	PTION	I	MEA: (mdd) OId	Lab Sample	DEPTH (ft)
								(0-5') Hand (5') Poorly (moist, med (7') Poorly (dense, moi (8') Poorly (medium de (9.5') Poorly greenish-bu (16') Poorly moist, gree	I auger graded SAND (S ium brow, contain graded SAND (S ist, light tan-brow graded SAND (S ense, moist, brow y graded SAND (rown, shells fragr y graded SAND (enish-gray, minor	P); mostly fine-medium gra is roots and has the scent of p); mostly fine-medium gra n, slightly micaceous P); mostly fine-medium gra n SP); mostly fine-coarse gra nents	ined sined	and, little clay, dense, mp and, few clay, medium and, some clay, sand, loose, moist, sand, loose, moist,	2.4 10.1 9.5 11.1 6.9 3.2 4.1 3.9		
1	NOTES	Ho	e prec	leare	ed to §	5.0' u	sing	nand auger.							

G	ec		y I I I I I I I I I I I I I I I I I I I	nt ult	ec ant	C ^C	>	Clie Pro Ada	ent: Hercules WELL oject: Brunswick/Pinova Facility Well No. PWOW dress: 2801 Cook Street, Brunswick, GA Page: 2 of 5	LOG /-02		
Drilling Drilling Drilling Drilling Driller: Loggec	Start Da End Da Compa Method Equipm d By:	ate: .te: ny: l: nent:	3/3/20 3/3/20 Saed Sonia Geop Will I Ben 1) dacco c robe Keyes Weinr	2 8150L 3 nann	_S			Boring Depth (ft):90.0Well Depth (ft):90.0Boring Diameter (in):6.00Well Diameter (in):2.0Sampling Method(s):Core recoveryScreen Slot (in):0.010DTW During Drilling (ft):Riser Material:Sch 40 PVCDTW After Drilling (ft):6.53Seal Material(s):Bent. SlurrLocation (X,Y):425107.94, 872158.61Filter Type:#3	C C slotte y/Bent	ed . Pelle	ts
DEPTH (ft)	ЛЛОГОСЛ	WATER LEVEL	WELL	Sample Type	COLL	Dow Counts	Recovery (ft)		SOIL/ROCK VISUAL DESCRIPTION	MEAS (mdd) OId	Lab Sample	DEPTH (ft)
								(1f mc (2 pla (22 pla (22 gr (22 gr (22 gr (22 gr (22 gr (22 gr (22 gr (22) pla (22) (22) (22) (22) (22) (22) (22) (22	 6') Poorly graded SAND (SP); mostly fine-medium grained sand, medium dense, oist, greenish-gray, minor shell fragments 1.5') Lean CLAY with sand (CL); little fine-medium sand, mostly clay, medium asticity, soft, moist, greenish-gray 2.5') Poorly graded SAND (SP); mostly fine-medium grained sand, loose, moist, eenish-gray 7') Lean CLAY with sand (CL); little fine-medium sand, mostly clay, medium asticity, soft, moist, greenish-gray 8') Poorly graded SAND (SP); mostly fine-medium grained sand, loose, moist, light eenish-gray, shell fragments present 8') Poorly graded SAND (SP); mostly medium-coarse grained sand, loose, moist, eenish-gray, chemical odor 	3.8 1.3 1.7 1.6 0.9 3.1 2.2 2.5 2.9 6.8		20 25
40 •	NOTES	: Ho'	le pre	cleare	ed to {	5.0' u	ising	hand	auger.	0.0		40

I

Geosyntec consultants								Clie Pro Ada	ent: ject: dress:	Hercules Brunswick 2801 Cook	k/Pi/ k St	nova Facility treet, Brunswic	k, GA	Well No. Page:	WELL PWOW 3 of 5	LOG /-02		
Drilling Start Date:3/3/20Drilling End Date:3/3/20Drilling Company:SaeddaccoDrilling Method:SonicDrilling Equipment:Geoprobe 8150LSDriller:Will KeyesLogged By:Ben Weinmann								Boring De Boring Dia Sampling DTW Duri DTW Afte Ground E Location (<pre>>pth (ft): ameter (in): Method(s): ing Drilling (ft): >r Drilling (ft): ilev. (ft): (X,Y):</pre>	90 6. C : 4	10.0 6.00 Core recovery 6.53 125107.94, 872158.6	We We Scr Rise Scr Scr Sea S1	II Depth (ft): II Diameter (in): een Slot (in): er Material: een Material: al Material(s): er Type:	90.0 2.0 0.010 Sch 40 PV Bent. Slurr #3	C C slottr ry/Bent	ed Pelle	its	
DEPTH (ft)	LITHOLOGY	WATER LEVEL	WELL COMPLETION	Sample Type	Time	Blow Counts	Recovery (ft)		SOIL/ROCK VISUAL DESCRIPTION							MEAS (mdd) CIId	Lab Sample	DEPTH (ft)
								(38 gre (40 gre (4 lig) (57 (57	3') Poorly g eenish-gray 0.5') Lean (eenish-gray 1') Poorly g ht greenish 3') Poorly g le clay, loos	Iraded SAND (y, chemical odd CLAY (CL); mo y Iraded SAND (I-gray graded SAND (se, moist, gree overy	(SP); or SP); SP); anish	; mostly medium-coa clay, medium plastic ; mostly medium-coa ; mostly fine-coarse h-gray	arse graine city, soft, n arse graine grained sa	ed sand, loose, noist, light ed sand, loose,	moist, moist,	 6.0 6.1 3.9 10.6 17.6 22.3 16.1 17.6 19.0 		40 45 50 55 55 60
N	NOTES	Ho	e preo	leare	ed to 5	5.0' u	sing	hand	auger.									

Geosyntec C Procession of the consultants A							Clier Proje Addi	nt: ect: ress:	Hercu Bruns 2801 (les wick/ Cook	Pinova Street	a Facilit , Bruns [,]	y wick, G/	4	Well No Page:) <u>.</u>	WEL PWO 4 of 5	L LOG W-02			
Drilling Start Date:3/3/20Drilling End Date:3/3/20Drilling Company:SaeddaccoDrilling Method:SonicDrilling Equipment:Geoprobe 8150LSDriller:Will KeyesLogged By:Ben Weinmann								Boring D Boring D Sampling DTW Du DTW Aft Ground I Location	epth (ft): g Method(: ring Drillin er Drilling Elev. (ft): (X,Y):	n): s): ng (ft): (ft):	90.0 6.00 Core r 6.53 42510	ecovery 7.94, 8721	158.61	Well Scre Rise Scre Seal Filte	Depth (ft): Diameter (een Slot (in) er Material: een Material Material(s r Type:	(in):): II:):	90.0 2.0 0.010 Sch 40 P Sch 40 P Bent. Slu #3	VC VC slott ırry/Ben	ed t. Pelle	ets	
DEPTH (ft)	ПТНОГОСУ	WATER LEVEL	WELL COMPLETION	Sample Type	Time	Blow Counts	Recovery (ft)		SOIL/ROCK VISUAL DESCRIPTION						MEA (mdd) OIA	E Lab Sample	DEPTH (ft)				
								(60' oos (62' (63. grav brov (66' oos (67' (69' gree	') Well-gr se, moist ') No Rec .5') Poorl vel, little wn ') Well-gr ') No Rec ') Poorly enish-gra	aded SAN , greenish covery ly graded S clay, dens caded SAN , greenish covery graded SA ay	ID (SW -gray SAND (ie, mois ID (SW -brown	(SP); mostly (SP); mostly (); mostly P); mostly	y medium- ostly mediu lamination y medium- tly mediun	-coarse gra	grain at 66 ained	sand, few hed sand, fe ' variably ta sand, few d sand, loo	fine (gravel, ne rey, and gravel, noist,	17.5 20.8 20.9 20.4 24.7 6.3 3.8 10.1 18.9		
٨	OTES	Ho	e prec	cleare	ed to §	5.0' u	sing	hand a	auger.												

Drilling Stort Date: 3/3/20 Boring Depth (ft): 90.0 Well Depth (ft): 90.0 Drilling Company: Saeddacco Sampling Method(s): Core recovery Screen Material: Sch 40 PVC slotted Drilling Children Geoprobe 9150LS DTW During Drilling (ft): G.03 Screen Material: Sch 40 PVC slotted Drilling Method(s): Boring Depth (ft): 6.53 Screen Material: Sch 40 PVC slotted Sourd Elev. (ft): 6.53 Ecositie Screen Material: Sch 40 PVC slotted Sourd Elev. (ft): 6.53 Ecositie Filter Type: #3 Image Support Image Support SOUL/ROCK VISUAL DESCRIPTION MEASURE Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support Image Support	Geos	syn onsult	tec tants	s	Clier Proje Add	nt: H ect: E ress: 2	Hercules Brunswick/ 2801 Cook	Pinova Facility Street, Brunswick, G	A	Well No. Page:	WELL PWOW 5 of 5	LOG /-02		
Image: Normal state in the state i	Drilling Start Date:3/3/20Drilling End Date:3/3/20Drilling Company:SaeddaccoDrilling Method:SonicDrilling Equipment:Geoprobe 8150LSDriller:Will KeyesLogged By:Ben Weinmann					Boring Dep Boring Diar Sampling M DTW During DTW After Ground Ele Location (X	th (ft): meter (in): Method(s): g Drilling (ft): Drilling (ft): ev. (ft): ;,Y):	90.0 6.00 Core recovery 6.53 425107.94, 872158.61	Wel Wel Scre Scre Sca Filte	l Depth (ft): l Diameter (in): een Slot (in): er Material: een Material: l Material(s): er Type:	90.0 2.0 0.010 Sch 40 PV0 Bent. Slurr #3	C C slotte y/Bent	ed . Pelle	ts
80 (80') Poorly graded SAND (SP); mostly medium-coarse grained sand, loose, moist, greenish-gray 14.7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	DEPTH (ft) LITHOLOGY WATER LEVEL	WELL COMPLETION Sample Type	Lime	Blow Counts 12 Recovery (ft)			SOI	/ROCK VISUAL DESCRIP	TION			MEAS (mdd) OId	Lab Sample	DEPTH (ft)
NOTES: Hole precleared to 5.0' using hand auger.	80 85 90 90 90 90 90 95 95 100		red to 5.	.0' using	(80' gred (90'	⁽⁾ Poorly gra enish-gray ⁽⁾ Boring ter	aded SAND (S	P); mostly medium-coarse	graine	ed sand, loose,	moist,	14.7 16.7 6.4		80 85 85 90 90 90 95 95 95 91

APPENDIX C

APT-01 Groundwater Quality Data During Step-Drawdown Test

Geosyntec Consultants

Ground Water Sampling Measurements for Low-Flow Purging

Site: Hercules - Pinova Brunswick Plant Monitoring Well: APT - 1 Sample ID: - Geosyntec Project No.: GR 6881 Sampling Date: 3/12/2020 Sampler: Nardos Tilahun

Time	Start Purge	Readings	Start Samp.	End Samp.	Temper- ature (°C)	pH (ATC)	Redox Potential (± mv)	Conduc- tivity (mS/cm) (ATC)	Turbidity (NTU)	DO (mg/L)	Appearance of Water	
1300	×										/	
1305		×	2		22.12	6.29	-14	12-6	6.77	6.37	0.731. Salt, 3.4 0T	
1405		×			22.79	6.20	-45	12.6	3.19	5.08	0.72% Salt, 3.20T	
1500		X	×	×	22.42	6.27	- 27	13.0	6.24	6.78	0.75.1.Salt, 3.5 0T	
1605		×		-	22.66	6.20	-53	13.0	1.39	3.94	0.75% Salt, 3.4-07	
17:05		×	×	×	22.59	6.20	-53	12.9	1.91	2.33	0.741. Salt, 3.40T	
1805		×			22.13	6.19	-53	13.1	0.45	1.98	0.75%. Salt, 3.607	
1905	-	x			22.08	6.18	-54	13.2	0.73	2.00	0.76%. Salt, 3.60T	
2008	_	×	×	×	21.34	6.15	-51	13.3	2.44	2.44	0.77%. Salt, 3.90T	
					& Time Calib	N	Meter Ca	libratio	n	Meter	Number:	
pH	1	1	-	Jule	& Time Callo	nulea	pН	4:	_; pH 7:	; pH	10: (ATC)	
Conductivi	ty	12					mS/cm fluid reads (ATC)					
Redox Pot.		-					1	+231 n	nv Zoebell	solution rea	ids	
S	pli	it,	Bl	anl	k, Dupli	cate, &	Filtered	Sample	S	N	Aiscellaneous	
Sample ID				I	Description					Depth	to Water: ft	
PT-03-	03	siza	202	0	17 b	sttles /	Contain	urs		Turbi	idity:NTUs	
PT-02-	03	123	202	0		>>				Dis. O	xygen:ppm	
PT-01-	03	122	62	0		2)				Pump	o Rate: in	
OI-PT	-0	312	20	20	84	mtain	ers				min, sec.	
Weather:		S	7-	. 8	1ºF,	Mostl	y Sunn	4				
Notes: (we	ll cc	ondit	ion	, ne	ırby activitie	s or changes	s in land use.	dors, prob	lems, deviati	ions from pla	an, etc.)	

APPENDIX D

Groundwater Laboratory Analytical Report

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-181592-1

Client Project/Site: Ashland - Brunswick

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Laura Kinsman

Jerry Jamies

Authorized for release by: 4/23/2020 11:23:03 AM

Jerry Lanier, Project Manager I (912)250-0281 jerry.lanier@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	6
Method Summary	7
Definitions/Glossary	8
Detection Summary	9
Client Sample Results	12
Surrogate Summary	20
QC Sample Results	23
QC Association Summary	37
Lab Chronicle	41
Chain of Custody	44
Receipt Checklists	45
Certification Summary	46

Job ID: 680-181592-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: Ashland - Brunswick

Report Number: 680-181592-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 3/14/2020 10:25 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.2° C and 4.7° C.

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample 01-PT-03122020 (680-181592-4) was analyzed for TCLP volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 03/26/2020 and analyzed on 03/27/2020.

Sample 01-PT-03122020 (680-181592-4)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-612631 and analytical batch 680-612806.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2), PT-01-03122020 (680-181592-3) and Trip Blank (680-181592-5) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 03/25/2020 and 04/10/2020.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 680-612405 recovered outside control limits for the following analytes: Tetrachloroethene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Reanalysis of the following samples were performed outside of the analytical holding time due to dilution: PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3).

Samples PT-03-03122020 (680-181592-1)[5X], PT-02-03122020 (680-181592-2)[5X] and PT-01-03122020 (680-181592-3)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 680-614683.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PESTICIDES (TCLP)

Sample 01-PT-03122020 (680-181592-4) was analyzed for Pesticides (TCLP) in accordance with EPA SW-846 Method

Job ID: 680-181592-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

1311/8081B_8082A. The samples were leached on 03/25/2020, prepared on 03/30/2020 and analyzed on 04/07/2020.

This method incorporates 2nd column confirmation. Corrective action is not taken for surrogate/spike compounds unless results from both columns are unacceptable. Results outside criteria are qualified.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PESTICIDES AND PCBS

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for Pesticides and PCBs in accordance with EPA SW-846 Method 8081B_8082A. The samples were prepared on 03/19/2020 and analyzed on 03/25/2020.

This method incorporates 2nd column confirmation. Corrective action is not taken for surrogate/spike compounds unless results from both columns are unacceptable. Results outside criteria are qualified.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICPMS) - DISSOLVED

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for Metals (ICPMS) - Dissolved in accordance with EPA SW-846 Method 6020A. The samples were prepared on 03/19/2020 and analyzed on 03/20/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

<u>ALKALINITY</u>

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for alkalinity in accordance with SM 2320B. The samples were analyzed on 03/25/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL DISSOLVED SOLIDS

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for total dissolved solids in accordance with SM 2540C. The samples were analyzed on 03/18/2020.

The oven temperature for the following samples was outside of Method/SOP criteria of 180 ± 2 degrees Celcius: PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2), PT-01-03122020 (680-181592-3), (LCS 680-611460/2), (LCSD 680-611460/3), and (MB 680-611460/1). The QC samples passed criteria. Results have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL SUSPENDED SOLIDS

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for total suspended solids in accordance with SM 2540D. The samples were analyzed on 03/18/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS BY ION CHROMATOGRAPHY (28 DAY)

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for Anions by Ion Chromatography (28 Day) in accordance with EPA Method 300.0. The samples were analyzed on 03/21/2020 and 03/24/2020.

Samples PT-03-03122020 (680-181592-1)[100X], PT-02-03122020 (680-181592-2)[100X] and PT-01-03122020 (680-181592-3)[100X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 680-181592-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

ANIONS BY ION CHROMATOGRAPHY (48 HOUR)

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for Anions by Ion Chromatography (48 Hour) in accordance with EPA Method 300.0. The samples were analyzed on 03/18/2020.

The following samples were received by the lab outside of the 48 hour holding time: PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3).

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DISSOLVED ORGANIC CARBON

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for dissolved organic carbon in accordance with EPA SW-846 Method 9060. The samples were analyzed on 03/25/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for total organic carbon in accordance with EPA SW-846 Method 9060A. The samples were analyzed on 03/20/2020.

Samples were laboratory-filtered and preserved, and not field-filtered and preserved within two hours of collection, per the SOP. PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2), PT-01-03122020 (680-181592-3), (680-181592-M-1-B MS) and (680-181592-M-1-C MSD)

Particulates larger than the syringe were present in the sample. An aliquot of the sample was transfered to a single-use non-preserve 40mL vial to prevent clogging, per the SOP. PT-02-03122020 (680-181592-2)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL HARDNESS (AS CACO3) BY CALCULATION

Samples PT-03-03122020 (680-181592-1), PT-02-03122020 (680-181592-2) and PT-01-03122020 (680-181592-3) were analyzed for total hardness (as CaCO3) by calculation in accordance with SM 2340B. The samples were analyzed on 03/25/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
680-181592-1	PT-03-03122020	Water	03/12/20 20:20	03/14/20 10:25	
680-181592-2	PT-02-03122020	Water	03/12/20 17:00	03/14/20 10:25	
680-181592-3	PT-01-03122020	Water	03/12/20 15:00	03/14/20 10:25	
680-181592-4	01-PT-03122020	Water	03/12/20 17:00	03/14/20 10:25	
680-181592-5	Trip Blank	Water	03/12/20 00:00	03/14/20 10:25	

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8081B/8082A	Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography	SW846	TAL SAV
300.0-1993 R2.1	Anions, Ion Chromatography	MCAWW	TAL SAV
6020A	Metals (ICP/MS)	SW846	TAL SAV
SM 2340B	Total Hardness (as CaCO3) by calculation	SM	TAL SAV
2320B-2011	Alkalinity, Total	SM	TAL SAV
2540 D-2011	Total Suspended Solids (Dried at 103-105°C)	SM	TAL SAV
2540C-2011	Total Dissolved Solids (Dried at 180 °C)	SM	TAL SAV
9060	Organic Carbon, Dissolved (DOC)	SW846	TAL SAV
9060A	Organic Carbon, Total (TOC)	SW846	TAL SAV
1311	TCLP Extraction	SW846	TAL SAV
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL SAV
3520C	Liquid-Liquid Extraction (Continuous)	SW846	TAL SAV
5030B	Purge and Trap	SW846	TAL SAV
FILTRATION	Sample Filtration	None	TAL SAV

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Definitions/Glossary

Qualifiers

Quaimers		
GC/MS VOA		
Qualifier	Qualifier Description	4
*	LCS or LCSD is outside acceptance limits.	
E	Result exceeded calibration range.	5
Н	Sample was prepped or analyzed beyond the specified holding time	
U	Indicates the analyte was analyzed for but not detected.	6
GC Semi VO	Α	
Qualifier	Qualifier Description	
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
Н	Sample was prepped or analyzed beyond the specified holding time	
U	Indicates the analyte was analyzed for but not detected.	
Metals		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
General Cher	nistry	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	13
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
Client Sample ID: PT-03-03122020

5

6 7 8

12 13 14

Lab Sample ID: 680-181592-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	410	E	1.0		ug/L	1	_	8260B	Total/NA
Chlorobenzene	310	E	1.0		ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	3.0		1.0		ug/L	1		8260B	Total/NA
1,2-Dichlorobenzene	2.0		1.0		ug/L	1		8260B	Total/NA
1,4-Dichlorobenzene	2.9		1.0		ug/L	1		8260B	Total/NA
Ethylbenzene	5.7		1.0		ug/L	1		8260B	Total/NA
Toluene	2.2		1.0		ug/L	1		8260B	Total/NA
Xylenes, Total	150		1.0		ug/L	1		8260B	Total/NA
Vinyl chloride	3.2		1.0		ug/L	1		8260B	Total/NA
Benzene - DL	290	Н	5.0		ug/L	5		8260B	Total/NA
Chlorobenzene - DL	200	Н	5.0		ug/L	5		8260B	Total/NA
Fluoride	0.14		0.10		mg/L	1		300.0-1993 R2.1	Total/NA
Sulfate	3.8		1.0		mg/L	1		300.0-1993 R2.1	Total/NA
Chloride - DL	4100		50		mg/L	100		300.0-1993 R2.1	Total/NA
Iron	12000		100		ug/L	1		6020A	Dissolved
Manganese	990		5.0		ug/L	1		6020A	Dissolved
Zinc	450		20		ug/L	1		6020A	Dissolved
Hardness as calcium carbonate	5400		3.3		mg/L	1		SM 2340B	Total/NA
Calcium hardness as calcium carbonate	5000		1.2		mg/L	1		SM 2340B	Total/NA
Magnesium hardness as calcium carbonate	360		2.1		mg/L	1		SM 2340B	Total/NA
Alkalinity	330		5.0		mg/L	1		2320B-2011	Total/NA
Bicarbonate Alkalinity as CaCO3	330		5.0		mg/L	1		2320B-2011	Total/NA
Carbon Dioxide, Free	66		5.0		mg/L	1		2320B-2011	Total/NA
Bicarbonate ion as HCO3	400		6.1		mg/L	1		2320B-2011	Total/NA
Total Suspended Solids	54		1.0		mg/L	1		2540 D-2011	Total/NA
Total Dissolved Solids	8400		1000		mg/L	1		2540C-2011	Total/NA
Total Organic Carbon	19		1.0		mg/L	1		9060A	Total/NA
Total Organic Carbon - Quad	19		1.0		mg/L	1		9060A	Total/NA
Dissolved Organic Carbon	18		1.0		mg/L	1		9060	Dissolved

Client Sample ID: PT-02-03122020

Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type 410 E 1.0 8260B Total/NA Benzene ug/L 1 360 E 8260B Total/NA Chlorobenzene 1.0 ug/L 1 cis-1,2-Dichloroethene 8260B Total/NA 2.8 1.0 ug/L 1 8260B Total/NA 1,2-Dichlorobenzene 27 1.0 ug/L 1 1,4-Dichlorobenzene 8260B Total/NA 4.0 1.0 ug/L 1 Ethylbenzene 8260B Total/NA 6.6 1.0 ug/L 1 Toluene 2.1 1.0 8260B Total/NA ug/L 1 8260B Total/NA Xylenes, Total 97 1.0 ug/L 1 Vinyl chloride 3.7 1.0 8260B Total/NA ug/L 1 5 Benzene - DL 5.0 8260B Total/NA 320 н ug/L Chlorobenzene - DL 250 Н 5.0 ug/L 5 8260B Total/NA Bromide 0.50 1 300.0-1993 R2.1 Total/NA 1.1 mg/L 300.0-1993 R2.1 Fluoride 0.13 0.10 mg/L 1 Total/NA Sulfate 300.0-1993 R2.1 Total/NA 4.7 1.0 mg/L 1 Chloride - DL 4000 50 mg/L 100 300.0-1993 R2.1 Total/NA Iron 11000 100 ug/L 1 6020A Dissolved 960 6020A Dissolved Manganese 5.0 ug/L 1

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Savannah

Lab Sample ID: 680-181592-2

Client Sample ID: PT-02-03122020 (Continued)

Lab Sample ID: 680-181592-2

5 6 7 8 10 11 12 13 14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Zinc	540		20		ug/L	1	_	6020A	Dissolved
Hardness as calcium carbonate	43000		3.3		mg/L	1		SM 2340B	Total/NA
Calcium hardness as calcium	42000		1.2		mg/L	1		SM 2340B	Total/NA
carbonate									
Magnesium hardness as calcium	370		2.1		mg/L	1		SM 2340B	Total/NA
carbonate									
Alkalinity	310		5.0		mg/L	1		2320B-2011	Total/NA
Bicarbonate Alkalinity as CaCO3	310		5.0		mg/L	1		2320B-2011	Total/NA
Carbon Dioxide, Free	58		5.0		mg/L	1		2320B-2011	Total/NA
Bicarbonate ion as HCO3	380		6.1		mg/L	1		2320B-2011	Total/NA
Total Suspended Solids	96		2.0		mg/L	1		2540 D-2011	Total/NA
Total Dissolved Solids	8400		1000		mg/L	1		2540C-2011	Total/NA
Total Organic Carbon	20		1.0		mg/L	1		9060A	Total/NA
Total Organic Carbon - Quad	20		1.0		mg/L	1		9060A	Total/NA
Dissolved Organic Carbon	18		1.0		mg/L	1		9060	Dissolved

Client Sample ID: PT-01-03122020

Lab Sample ID: 680-181592-3

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	310	E	1.0	ug/L	1	8260B	Total/NA
Chlorobenzene	330	E	1.0	ug/L	1	8260B	Total/NA
cis-1,2-Dichloroethene	2.2		1.0	ug/L	1	8260B	Total/NA
1,2-Dichlorobenzene	2.9		1.0	ug/L	1	8260B	Total/NA
1,4-Dichlorobenzene	4.0		1.0	ug/L	1	8260B	Total/NA
Ethylbenzene	5.6		1.0	ug/L	1	8260B	Total/NA
Toluene	1.8		1.0	ug/L	1	8260B	Total/NA
Xylenes, Total	25		1.0	ug/L	1	8260B	Total/NA
Vinyl chloride	3.0		1.0	ug/L	1	8260B	Total/NA
Benzene - DL	220	Н	5.0	ug/L	5	8260B	Total/NA
Chlorobenzene - DL	210	н	5.0	ug/L	5	8260B	Total/NA
Bromide	1.2		0.50	mg/L	1	300.0-1993 R2.1	Total/NA
Fluoride	0.14		0.10	mg/L	1	300.0-1993 R2.1	Total/NA
Sulfate	5.8		1.0	mg/L	1	300.0-1993 R2.1	Total/NA
Chloride - DL	4100		50	mg/L	100	300.0-1993 R2.1	Total/NA
Iron	6200		100	ug/L	1	6020A	Dissolved
Manganese	940		5.0	ug/L	1	6020A	Dissolved
Zinc	1200		20	ug/L	1	6020A	Dissolved
Hardness as calcium carbonate	5400		3.3	mg/L	1	SM 2340B	Total/NA
Calcium hardness as calcium	5000		1.2	mg/L	1	SM 2340B	Total/NA
carbonate Magnesium bardness as calcium	380		2.1	ma/L	1	SM 2340B	Total/NA
carbonate				0			
Alkalinity	300		5.0	mg/L	1	2320B-2011	Total/NA
Bicarbonate Alkalinity as CaCO3	300		5.0	mg/L	1	2320B-2011	Total/NA
Carbon Dioxide, Free	53		5.0	mg/L	1	2320B-2011	Total/NA
Bicarbonate ion as HCO3	360		6.1	mg/L	1	2320B-2011	Total/NA
Total Suspended Solids	72		2.0	mg/L	1	2540 D-2011	Total/NA
Total Dissolved Solids	8400		1000	mg/L	1	2540C-2011	Total/NA
Total Organic Carbon	19		1.0	mg/L	1	9060A	Total/NA
Total Organic Carbon - Quad	19		1.0	mg/L	1	9060A	Total/NA
Dissolved Organic Carbon	17		1.0	mg/L	1	9060	Dissolved

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick Job ID: 680-181592-1

Client Sample ID: 01-PT-031220	ent Sample ID: 01-PT-03122020						Lab Sample ID: 680-1				
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type		
Chlorobenzene	0.23		0.020		mg/L	20	_	8260B	TCLP		
Benzene	0.29		0.020		mg/L	20		8260B	TCLP		
Client Sample ID: Trip Blank						Lal	o S	ample ID:	680-181592-5		

No Detections.

Client Sample ID: PT-03-03122020 Date Collected: 03/12/20 20:20

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Received: 03/14/20 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	10	U	10		ug/L			03/25/20 16:37	1
Benzene	410	E	1.0		ug/L			03/25/20 16:37	1
Carbon disulfide	2.0	U	2.0		ug/L			03/25/20 16:37	1
Chlorobenzene	310	E	1.0		ug/L			03/25/20 16:37	1
Chloroform	1.0	U	1.0		ug/L			03/25/20 16:37	1
cis-1,2-Dichloroethene	3.0		1.0		ug/L			03/25/20 16:37	1
1,2-Dichlorobenzene	2.0		1.0		ug/L			03/25/20 16:37	1
1,4-Dichlorobenzene	2.9		1.0		ug/L			03/25/20 16:37	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			03/25/20 16:37	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			03/25/20 16:37	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			03/25/20 16:37	1
Ethylbenzene	5.7		1.0		ug/L			03/25/20 16:37	1
Methylene Chloride	5.0	U	5.0		ug/L			03/25/20 16:37	1
Methyl ethyl ketone (MEK)	10	U	10		ug/L			03/25/20 16:37	1
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			03/25/20 16:37	1
p-Cymene	1.0	U	1.0		ug/L			03/25/20 16:37	1
Tetrachloroethene	1.0	U *	1.0		ug/L			03/25/20 16:37	1
Toluene	2.2		1.0		ug/L			03/25/20 16:37	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			03/25/20 16:37	1
Xylenes, Total	150		1.0		ug/L			03/25/20 16:37	1
Vinyl chloride	3.2		1.0		ug/L			03/25/20 16:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120			-		03/25/20 16:37	1
1,2-Dichloroethane-d4 (Surr)	95		73 - 131					03/25/20 16:37	1
Dibromofluoromethane (Surr)	104		80 - 122					03/25/20 16:37	1
4-Bromofluorobenzene (Surr)	83		80 - 120					03/25/20 16:37	1

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	290	Н	5.0		ug/L			04/10/20 18:50	5
Chlorobenzene	200	н	5.0		ug/L			04/10/20 18:50	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120			-		04/10/20 18:50	5
1,2-Dichloroethane-d4 (Surr)	93		73 - 131					04/10/20 18:50	5
Dibromofluoromethane (Surr)	99		80 - 122					04/10/20 18:50	5
4-Bromofluorobenzene (Surr)	104		80 - 120					04/10/20 18:50	5

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

			· ·		-				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
alpha-BHC	0.050	U	0.050		ug/L		03/19/20 18:02	03/25/20 21:17	1
delta-BHC	0.050	U	0.050		ug/L		03/19/20 18:02	03/25/20 21:17	1
gamma-BHC (Lindane)	0.050	U	0.050		ug/L		03/19/20 18:02	03/25/20 21:17	1
Total Toxaphene	5.0	U	5.0		ug/L		03/19/20 18:02	03/25/20 21:17	1
Toxaphene, Technical	5.0	U	5.0		ug/L		03/19/20 18:02	03/25/20 21:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	34		10 - 130				03/19/20 18:02	03/25/20 21:17	1
Tetrachloro-m-xylene	82	p	39 - 130				03/19/20 18:02	03/25/20 21:17	1

Lab Sample ID: 680-181592-1

Matrix: Water

5

8

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick

Client Sample ID: PT-03-03122020

Date Collected: 03/12/20 20:20 Date Received: 03/14/20 10:25

	- Anions, Ion Chroma	tography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	0.50	U	0.50		mg/L			03/21/20 17:50	1
Nitrate as N	0.050	UH	0.050		mg/L			03/18/20 03:43	1
Nitrite as N	0.050	UH	0.050		mg/L			03/18/20 03:43	1
Fluoride	0.14		0.10		mg/L			03/21/20 17:50	1
Sulfate	3.8		1.0		mg/L			03/21/20 17:50	1
_ Method: 300.0-1993 R2.1	- Anions, Ion Chroma	tography - DI							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4100		50		mg/L			03/24/20 19:16	100
- Method: 6020A - Metals (ICP/MS) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/19/20 09:59	03/20/20 01:54	1
Arconic	3.0		3.0		ug/l		03/10/20 00.50	03/20/20 01.54	1

Arsenic	3.0 U	3.0	ug/L	03/19/20 09:59	03/20/20 01:54	1
Chromium	5.0 U	5.0	ug/L	03/19/20 09:59	03/20/20 01:54	1
Copper	5.0 U	5.0	ug/L	03/19/20 09:59	03/20/20 01:54	1
Iron	12000	100	ug/L	03/19/20 09:59	03/20/20 01:54	1
Manganese	990	5.0	ug/L	03/19/20 09:59	03/20/20 01:54	1
Zinc	450	20	ug/L	03/19/20 09:59	03/20/20 01:54	1

Method: SM 2340B - Total Hardness	(as CaCO3) by calculation
Analyto	Pocult Qualifier

Analyte	Result	Qualifier RL	RL Unit	U	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	5400	3.3	mg/L			03/25/20 15:35	1
Calcium hardness as calcium	5000	1.2	mg/L			03/25/20 15:35	1
carbonate							
Magnesium hardness as calcium	360	2.1	mg/L			03/25/20 15:35	1
carbonate							

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	330		5.0		mg/L			03/25/20 20:07	1
Bicarbonate Alkalinity as CaCO3	330		5.0		mg/L			03/25/20 20:07	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0		mg/L			03/25/20 20:07	1
Hydroxide Alkalinity	5.0	U	5.0		mg/L			03/25/20 20:07	1
Carbon Dioxide, Free	66		5.0		mg/L			03/25/20 20:07	1
Phenolphthalein Alkalinity	5.0	U	5.0		mg/L			03/25/20 20:07	1
Bicarbonate ion as HCO3	400		6.1		mg/L			03/25/20 20:07	1
Total Organic Carbon	19		1.0		mg/L			03/20/20 03:13	1
Total Organic Carbon - Quad	19		1.0		mg/L			03/20/20 03:13	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	54		1.0		mg/L			03/18/20 12:01	1
Total Dissolved Solids	8400		1000		mg/L			03/18/20 09:32	1
- General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	18		1.0		mg/L			03/25/20 01:53	1

Job ID: 680-181592-1

Lab Sample ID: 680-181592-1 Matrix: Water

4/23/2020

Client Sample ID: PT-02-03122020 Date Collected: 03/12/20 17:00

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Received: 03/14/20 10:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	10	U	10		ug/L			03/25/20 17:00	1
Benzene	410	E	1.0		ug/L			03/25/20 17:00	1
Carbon disulfide	2.0	U	2.0		ug/L			03/25/20 17:00	1
Chlorobenzene	360	E	1.0		ug/L			03/25/20 17:00	1
Chloroform	1.0	U	1.0		ug/L			03/25/20 17:00	1
cis-1,2-Dichloroethene	2.8		1.0		ug/L			03/25/20 17:00	1
1,2-Dichlorobenzene	2.7		1.0		ug/L			03/25/20 17:00	1
1,4-Dichlorobenzene	4.0		1.0		ug/L			03/25/20 17:00	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			03/25/20 17:00	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			03/25/20 17:00	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			03/25/20 17:00	1
Ethylbenzene	6.6		1.0		ug/L			03/25/20 17:00	1
Methylene Chloride	5.0	U	5.0		ug/L			03/25/20 17:00	1
Methyl ethyl ketone (MEK)	10	U	10		ug/L			03/25/20 17:00	1
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			03/25/20 17:00	1
p-Cymene	1.0	U	1.0		ug/L			03/25/20 17:00	1
Tetrachloroethene	1.0	U *	1.0		ug/L			03/25/20 17:00	1
Toluene	2.1		1.0		ug/L			03/25/20 17:00	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			03/25/20 17:00	1
Xylenes, Total	97		1.0		ug/L			03/25/20 17:00	1
Vinyl chloride	3.7		1.0		ug/L			03/25/20 17:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120			-		03/25/20 17:00	1
1,2-Dichloroethane-d4 (Surr)	94		73 - 131					03/25/20 17:00	1
Dibromofluoromethane (Surr)	103		80 - 122					03/25/20 17:00	1

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	320	Н	5.0		ug/L			04/10/20 19:13	5
Chlorobenzene	250	н	5.0		ug/L			04/10/20 19:13	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		80 - 120			-		04/10/20 19:13	5
1,2-Dichloroethane-d4 (Surr)	97		73 - 131					04/10/20 19:13	5
Dibromofluoromethane (Surr)	98		80 - 122					04/10/20 19:13	5
4-Bromofluorobenzene (Surr)	102		80 - 120					04/10/20 19:13	5

80 - 120

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

82

			· ·		-				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
alpha-BHC	0.048	U	0.048		ug/L		03/19/20 18:02	03/25/20 21:32	1
delta-BHC	0.048	U	0.048		ug/L		03/19/20 18:02	03/25/20 21:32	1
gamma-BHC (Lindane)	0.048	U	0.048		ug/L		03/19/20 18:02	03/25/20 21:32	1
Total Toxaphene	4.8	U	4.8		ug/L		03/19/20 18:02	03/25/20 21:32	1
Toxaphene, Technical	4.8	U	4.8		ug/L		03/19/20 18:02	03/25/20 21:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	28	p	10 - 130				03/19/20 18:02	03/25/20 21:32	1
Tetrachloro-m-xylene	99	p	39 - 130				03/19/20 18:02	03/25/20 21:32	1

03/25/20 17:00

5

8

1

Job ID: 680-181592-1

Matrix: Water

Lab Sample ID: 680-181592-2

4/23/2020

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick

Client Sample ID: PT-02-03122020

Date Collected: 03/12/20 17:00 Date Received: 03/14/20 10:25

	ons, Ion Chroma	tography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	1.1		0.50		mg/L			03/21/20 18:03	1
Nitrate as N	0.050	UH	0.050		mg/L			03/18/20 03:58	1
Nitrite as N	0.050	UH	0.050		mg/L			03/18/20 03:58	1
Fluoride	0.13		0.10		mg/L			03/21/20 18:03	1
Sulfate	4.7		1.0		mg/L			03/21/20 18:03	1
	ons, Ion Chroma	tography - DI	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4000		50		mg/L			03/24/20 19:29	100

Method: 6020A - Metals (ICP/MS) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/19/20 09:59	03/20/20 01:32	1
Arsenic	3.0	U	3.0		ug/L		03/19/20 09:59	03/20/20 01:32	1
Chromium	5.0	U	5.0		ug/L		03/19/20 09:59	03/20/20 01:32	1
Copper	5.0	U	5.0		ug/L		03/19/20 09:59	03/20/20 01:32	1
Iron	11000		100		ug/L		03/19/20 09:59	03/20/20 01:32	1
Manganese	960		5.0		ug/L		03/19/20 09:59	03/20/20 01:32	1
Zinc	540		20		ug/L		03/19/20 09:59	03/20/20 01:32	1

Method: SM 2340B - Total Hardness (as CaCO3) by calculation

Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	43000	3.3	mg/L			03/25/20 15:35	1
Calcium hardness as calcium	42000	1.2	mg/L			03/25/20 15:35	1
carbonate							
Magnesium hardness as calcium	370	2.1	mg/L			03/25/20 15:35	1
carbonate							

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	310		5.0		mg/L			03/25/20 20:15	1
Bicarbonate Alkalinity as CaCO3	310		5.0		mg/L			03/25/20 20:15	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0		mg/L			03/25/20 20:15	1
Hydroxide Alkalinity	5.0	U	5.0		mg/L			03/25/20 20:15	1
Carbon Dioxide, Free	58		5.0		mg/L			03/25/20 20:15	1
Phenolphthalein Alkalinity	5.0	U	5.0		mg/L			03/25/20 20:15	1
Bicarbonate ion as HCO3	380		6.1		mg/L			03/25/20 20:15	1
Total Organic Carbon	20		1.0		mg/L			03/20/20 03:31	1
Total Organic Carbon - Quad	20		1.0		mg/L			03/20/20 03:31	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	96		2.0		mg/L			03/18/20 12:01	1
Total Dissolved Solids	8400		1000		mg/L			03/18/20 09:32	1
- General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	18		1.0		mg/L			03/25/20 02:44	1

Eurofins TestAmerica, Savannah

Matrix: Water

5

8 9

Lab Sample ID: 680-181592-2

Client Sample ID: PT-01-03122020 Date Collected: 03/12/20 15:00

Date Received: 03/14/20 10:25

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS)										
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	5			
Acetone	10	U	10	ug/L			03/25/20 17:23	1				
Benzene	310	E	1.0	ug/L			03/25/20 17:23	1	6			
Carbon disulfide	2.0	U	2.0	ug/L			03/25/20 17:23	1				
Chlorobenzene	330	E	1.0	ug/L			03/25/20 17:23	1				
Chloroform	1.0	U	1.0	ug/L			03/25/20 17:23	1				
cis-1,2-Dichloroethene	2.2		1.0	ug/L			03/25/20 17:23	1	Q			

Toluene-d8 (Surr)	00		80 120			02/25/20 17:22
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed
Vinyl chloride	3.0		1.0	ug/L		03/25/20 17:23
Xylenes, Total	25		1.0	ug/L		03/25/20 17:23
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L		03/25/20 17:23
Toluene	1.8		1.0	ug/L		03/25/20 17:23
Tetrachloroethene	1.0	U *	1.0	ug/L		03/25/20 17:23
p-Cymene	1.0	U	1.0	ug/L		03/25/20 17:23
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L		03/25/20 17:23
Methyl ethyl ketone (MEK)	10	U	10	ug/L		03/25/20 17:23
Methylene Chloride	5.0	U	5.0	ug/L		03/25/20 17:23
Ethylbenzene	5.6		1.0	ug/L		03/25/20 17:23
1,2-Dichloropropane	1.0	U	1.0	ug/L		03/25/20 17:23
1,1-Dichloroethene	1.0	U	1.0	ug/L		03/25/20 17:23
1,1-Dichloroethane	1.0	U	1.0	ug/L		03/25/20 17:23
1,4-Dichlorobenzene	4.0		1.0	ug/L		03/25/20 17:23
1,2-Dichlorobenzene	2.9		1.0	ug/L		03/25/20 17:23

Toluene-d8 (Surr)	99	80 - 120	03/25/20 17:23	1
1,2-Dichloroethane-d4 (Surr)	93	73 - 131	03/25/20 17:23	1
Dibromofluoromethane (Surr)	104	80 - 122	03/25/20 17:23	1
4-Bromofluorobenzene (Surr)	83	80 - 120	03/25/20 17:23	1

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	220	Н	5.0		ug/L			04/10/20 19:37	5
Chlorobenzene	210	н	5.0		ug/L			04/10/20 19:37	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		80 - 120			-		04/10/20 19:37	5
1,2-Dichloroethane-d4 (Surr)	95		73 - 131					04/10/20 19:37	5
Dibromofluoromethane (Surr)	99		80 - 122					04/10/20 19:37	5
4-Bromofluorobenzene (Surr)	103		80 - 120					04/10/20 19:37	5

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

			· ·		-				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
alpha-BHC	0.049	U	0.049		ug/L		03/19/20 18:02	03/25/20 21:47	1
delta-BHC	0.049	U	0.049		ug/L		03/19/20 18:02	03/25/20 21:47	1
gamma-BHC (Lindane)	0.049	U	0.049		ug/L		03/19/20 18:02	03/25/20 21:47	1
Total Toxaphene	4.9	U	4.9		ug/L		03/19/20 18:02	03/25/20 21:47	1
Toxaphene, Technical	4.9	U	4.9		ug/L		03/19/20 18:02	03/25/20 21:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	26		10 - 130				03/19/20 18:02	03/25/20 21:47	1
Tetrachloro-m-xylene	71	p	39 - 130				03/19/20 18:02	03/25/20 21:47	1

Lab Sample ID: 680-181592-3 Matrix: Water

Dil Fac

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick

Client Sample ID: PT-01-03122020

Date Collected: 03/12/20 15:00 Date Received: 03/14/20 10:25

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	1.2		0.50		mg/L			03/21/20 18:16	1
Nitrate as N	0.050	UH	0.050		mg/L			03/18/20 04:12	1
Nitrite as N	0.050	UH	0.050		mg/L			03/18/20 04:12	1
Fluoride	0.14		0.10		mg/L			03/21/20 18:16	1
Sulfate	5.8		1.0		mg/L			03/21/20 18:16	1
- Method: 300.0-1993 R2.1	- Anions, Ion Chroma	tography - DI							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

50

mg/L

Method: 6020A - Metals (ICP/MS) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/19/20 09:59	03/20/20 01:43	1
Arsenic	3.0	U	3.0		ug/L		03/19/20 09:59	03/20/20 01:43	1
Chromium	5.0	U	5.0		ug/L		03/19/20 09:59	03/20/20 01:43	1
Copper	5.0	U	5.0		ug/L		03/19/20 09:59	03/20/20 01:43	1
Iron	6200		100		ug/L		03/19/20 09:59	03/20/20 01:43	1
Manganese	940		5.0		ug/L		03/19/20 09:59	03/20/20 01:43	1
Zinc	1200		20		ug/L		03/19/20 09:59	03/20/20 01:43	1

Method: SM 2340B - Total Hardness (as CaCO3) by calculation

4100

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	5400		3.3		mg/L			03/25/20 15:35	1
Calcium hardness as calcium	5000		1.2		mg/L			03/25/20 15:35	1
carbonate			0.4					00/05/00 45:05	4
Magnesium hardness as calcium	380		2.1		mg/L			03/25/20 15:35	1
carbonate									

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	300		5.0		mg/L			03/25/20 20:23	1
Bicarbonate Alkalinity as CaCO3	300		5.0		mg/L			03/25/20 20:23	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0		mg/L			03/25/20 20:23	1
Hydroxide Alkalinity	5.0	U	5.0		mg/L			03/25/20 20:23	1
Carbon Dioxide, Free	53		5.0		mg/L			03/25/20 20:23	1
Phenolphthalein Alkalinity	5.0	U	5.0		mg/L			03/25/20 20:23	1
Bicarbonate ion as HCO3	360		6.1		mg/L			03/25/20 20:23	1
Total Organic Carbon	19		1.0		mg/L			03/20/20 03:48	1
Total Organic Carbon - Quad	19		1.0		mg/L			03/20/20 03:48	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Suspended Solids	72		2.0		mg/L			03/18/20 12:01	1
Total Dissolved Solids	8400		1000		mg/L			03/18/20 09:32	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	17		1.0		mg/L			03/25/20 03:01	1

Eurofins TestAmerica, Savannah

Matrix: Water

5

8

11 12 13

100

Lab Sample ID: 680-181592-3

03/24/20 19:41

Client Sample ID: 01-PT-03122020 Date Collected: 03/12/20 17:00

Date Received: 03/14/20 10:25

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS) - T	CLP						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.020	U	0.020		mg/L			03/27/20 16:35	20
Chlorobenzene	0.23		0.020		mg/L			03/27/20 16:35	20
Tetrachloroethene	0.020	U	0.020		mg/L			03/27/20 16:35	20
Carbon tetrachloride	0.020	U	0.020		mg/L			03/27/20 16:35	20
Chloroform	0.020	U	0.020		mg/L			03/27/20 16:35	20
Benzene	0.29		0.020		mg/L			03/27/20 16:35	20
Vinyl chloride	0.020	U	0.020		mg/L			03/27/20 16:35	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			03/27/20 16:35	20
2-Butanone (MEK)	0.20	U	0.20		mg/L			03/27/20 16:35	20
Trichloroethene	0.020	U	0.020		mg/L			03/27/20 16:35	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	108		80 - 120			-		03/27/20 16:35	20
1,2-Dichloroethane-d4 (Surr)	99		73 - 131					03/27/20 16:35	20
Dibromofluoromethane (Surr)	101		80 - 122					03/27/20 16:35	20
4-Bromofluorobenzene (Surr)	110		80 - 120					03/27/20 16:35	20

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	0.0012	U	0.0012		mg/L		03/30/20 14:48	04/07/20 21:33	1
Chlordane (technical)	0.012	U	0.012		mg/L		03/30/20 14:48	04/07/20 21:33	1
gamma-BHC (Lindane)	0.0012	U	0.0012		mg/L		03/30/20 14:48	04/07/20 21:33	1
Endrin	0.0012	U	0.0012		mg/L		03/30/20 14:48	04/07/20 21:33	1
Methoxychlor	0.0012	U	0.0012		mg/L		03/30/20 14:48	04/07/20 21:33	1
Heptachlor	0.0012	U	0.0012		mg/L		03/30/20 14:48	04/07/20 21:33	1
Toxaphene	0.12	U	0.12		mg/L		03/30/20 14:48	04/07/20 21:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		40 - 130				03/30/20 14:48	04/07/20 21:33	1
DCB Decachlorobiphenyl	44		14 _ 130				03/30/20 14:48	04/07/20 21:33	1

Lab Sample ID: 680-181592-4

Matrix: Water

5 6

8 9

Client Sample ID: Trip Blank Date Collected: 03/12/20 00:00 Date Received: 03/14/20 10:25

Lab Sample ID: 680-181592-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acetone	10	U	10		ug/L			03/25/20 11:09	1	
Benzene	1.0	U	1.0		ug/L			03/25/20 11:09	1	
Carbon disulfide	2.0	U	2.0		ug/L			03/25/20 11:09	1	
Chlorobenzene	1.0	U	1.0		ug/L			03/25/20 11:09	1	
Chloroform	1.0	U	1.0		ug/L			03/25/20 11:09	1	-
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			03/25/20 11:09	1	
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			03/25/20 11:09	1	
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			03/25/20 11:09	1	
1,1-Dichloroethane	1.0	U	1.0		ug/L			03/25/20 11:09	1	
1,1-Dichloroethene	1.0	U	1.0		ug/L			03/25/20 11:09	1	
1,2-Dichloropropane	1.0	U	1.0		ug/L			03/25/20 11:09	1	
Ethylbenzene	1.0	U	1.0		ug/L			03/25/20 11:09	1	
Methylene Chloride	5.0	U	5.0		ug/L			03/25/20 11:09	1	
Methyl ethyl ketone (MEK)	10	U	10		ug/L			03/25/20 11:09	1	
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			03/25/20 11:09	1	
p-Cymene	1.0	U	1.0		ug/L			03/25/20 11:09	1	÷
Tetrachloroethene	1.0	U *	1.0		ug/L			03/25/20 11:09	1	
Toluene	1.0	U	1.0		ug/L			03/25/20 11:09	1	
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			03/25/20 11:09	1	
Xylenes, Total	1.0	U	1.0		ug/L			03/25/20 11:09	1	
Vinyl chloride	1.0	U	1.0		ug/L			03/25/20 11:09	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	100		80 - 120			-		03/25/20 11:09	1	
1,2-Dichloroethane-d4 (Surr)	95		73 - 131					03/25/20 11:09	1	
Dibromofluoromethane (Surr)	105		80 - 122					03/25/20 11:09	1	
4-Bromofluorobenzene (Surr)	83		80 - 120					03/25/20 11:09	1	

Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water

				Percent Sur	rogate Reco
		TOL	DCA	DBFM	BFB
Lab Sample ID	Client Sample ID	(80-120)	(73-131)	(80-122)	(80-120)
680-181592-1	PT-03-03122020	100	95	104	83
680-181592-1 - DL	PT-03-03122020	106	93	99	104
680-181592-2	PT-02-03122020	99	94	103	82
680-181592-2 - DL	PT-02-03122020	103	97	98	102
680-181592-3	PT-01-03122020	99	93	104	83
680-181592-3 - DL	PT-01-03122020	104	95	99	103
680-181592-5	Trip Blank	100	95	105	83
LCS 680-612405/4	Lab Control Sample	104	95	108	93
LCS 680-612806/3	Lab Control Sample	103	106	106	98
LCS 680-614683/4	Lab Control Sample	102	94	100	94
LCSD 680-612405/5	Lab Control Sample Dup	104	93	108	92
LCSD 680-612806/4	Lab Control Sample Dup	101	105	105	99
LCSD 680-614683/5	Lab Control Sample Dup	102	91	96	95
MB 680-612405/10	Method Blank	99	95	104	82
MB 680-612806/9	Method Blank	107	104	101	100
MB 680-614683/10	Method Blank	105	88	96	98
Surrogate Legend					
TOL = Toluene-d8 (Surr)					
DCA = 1,2-Dichloroethar	ne-d4 (Surr)				
DBFM = Dibromofluorom	ethane (Surr)				
BFB = 4-Bromofluorober	izene (Surr)				

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

				Percent Su	rogate Rec
		TOL	DCA	DBFM	BFB
Lab Sample ID	Client Sample ID	(80-120)	(73-131)	(80-122)	(80-120)
680-181592-4	01-PT-03122020	108	99	101	110
LB 680-612631/1-A	Method Blank	105	106	102	102

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

Chromatography Matrix: Water

_				Percent Surrogate Recovery (Acceptance Limits)
		DCBP1	TCX1	
Lab Sample ID	Client Sample ID	(10-130)	(39-130)	
680-181592-1	PT-03-03122020	34	82 p	
680-181592-2	PT-02-03122020	28 p	99 p	

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Prep Type: Total/NA

Prep Type: TCLP

Job ID: 680-181592-1

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

Matrix: Water

Lab Sample ID Client Sample ID (10-130) (39-130) 680-181592-3 PT-01-03122020 26 71 p Surrogate Legend DCBP = DCB Decachlorobiphenyl United State St				Prep Type: Total/NA
Lab Sample ID Client Sample ID DCBP2 TCX1 680-181592-3 PT-01-03122020 (10-130) (39-130) Surrogate Legend CBP = DCB Decachlorobiphenyl CBP = DCB Decachlorobiphenyl CBP = DCB Decachlorobiphenyl				Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID Client Sample ID (10-130) (39-130) 680-181592-3 PT-01-03122020 26 71 p		DCBP2	TCX1	
680-181592-3 PT-01-03122020 26 71 p Surrogate Legend	Client Sample ID	(10-130)	(39-130)	
Surrogate Legend DCBP = DCB Decachlorobiphenyl	PT-01-03122020	26	71 p	
DCBP = DCB Decachlorobiphenyl				
	nlorobiphenyl			
TCX = Tetrachloro-m-xylene	-xylene			
TCX = Tetrachloro-m		Client Sample ID PT-01-03122020	Client Sample ID (10-130) PT-01-03122020 26	Client Sample ID DCBP2 TCX1 (10-130) (39-130) PT-01-03122020 26 nlorobiphenyl -xylene

Chromatography

Matrix: Water				Prep Type: Total/NA
				Percent Surrogate Recovery (Acceptance Limits)
		DCBP2	TCX2	
Lab Sample ID	Client Sample ID	(10-130)	(39-130)	
LCS 680-611711/24-A	Lab Control Sample	47	74	
LCSD 680-611711/25-A	Lab Control Sample Dup	35	77	
Surrogate Legend				
DCBP = DCB Decachlore	obiphenyl			
TCX = Tetrachloro-m-xyl	ene			

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

Chromatography

Matrix: Water

			Percent Surrogate Recovery (Acceptance Limits)
	TCX1	DCBP1	
Client Sample ID	(40-130)	(14-130)	
Lab Control Sample	76	29	
Vethod Blank	81	57	
	ilient Sample ID ab Control Sample Method Blank	client Sample ID TCX1 ab Control Sample 76 Method Blank 81	Client Sample IDTCX1DCBP1ab Control Sample(40-130)(14-130)7629Method Blank8157

Surrogate Legen

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

Chromatography

Matrix: Water				Prep Type: Total/NA
				Percent Surrogate Recovery (Acceptance Limits)
		DCBP1	TCX2	
Lab Sample ID	Client Sample ID	(10-130)	(39-130)	
MB 680-611711/18-A	Method Blank	79	82	
Surrogate Legend				

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Eurofins TestAmerica, Savannah

5 6 7

Prep Type: Total/NA

Prep Type: TCLP

5

9

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography Matrix: Water Percent Surrogate Recovery (Acceptance Limits) тсх2 DCBP1 Lab Sample ID **Client Sample ID** (40-130) (14-130) 680-181592-4 01-PT-03122020 73 44 Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

Matrix: Water				Prep Type: TCLP	
_				Percent Surrogate Recovery (Acceptance Limits)	
		TCX1	DCBP1		
Lab Sample ID	Client Sample ID	(40-130)	(14-130)		
LB 680-612479/1-E	Method Blank	91	78		
LB 680-612482/1-D	Method Blank	81	66		12
Surrogate Legend					13
TCX = Tetrachloro-m-x	kylene				
DCBP = DCB Decachle	orobiphenyl				

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-612405/10

Matrix: Water Analysis Batch: 612405

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	10	U	10		ug/L			03/25/20 10:45	1
Benzene	1.0	U	1.0		ug/L			03/25/20 10:45	1
Carbon disulfide	2.0	U	2.0		ug/L			03/25/20 10:45	1
Chlorobenzene	1.0	U	1.0		ug/L			03/25/20 10:45	1
Chloroform	1.0	U	1.0		ug/L			03/25/20 10:45	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			03/25/20 10:45	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			03/25/20 10:45	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			03/25/20 10:45	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			03/25/20 10:45	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			03/25/20 10:45	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			03/25/20 10:45	1
Ethylbenzene	1.0	U	1.0		ug/L			03/25/20 10:45	1
Methylene Chloride	5.0	U	5.0		ug/L			03/25/20 10:45	1
Methyl ethyl ketone (MEK)	10	U	10		ug/L			03/25/20 10:45	1
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			03/25/20 10:45	1
p-Cymene	1.0	U	1.0		ug/L			03/25/20 10:45	1
Tetrachloroethene	1.0	U	1.0		ug/L			03/25/20 10:45	1
Toluene	1.0	U	1.0		ug/L			03/25/20 10:45	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			03/25/20 10:45	1
Xylenes, Total	1.0	U	1.0		ug/L			03/25/20 10:45	1
Vinyl chloride	1.0	U	1.0		ug/L			03/25/20 10:45	1
	MB	МВ							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120		03/ 25/20 10:45	1
1,2-Dichloroethane-d4 (Surr)	95		73 - 131		03/25/20 10:45	1
Dibromofluoromethane (Surr)	104		80 _ 122		03/25/20 10:45	1
4-Bromofluorobenzene (Surr)	82		80 - 120		03/25/20 10:45	1

Lab Sample ID: LCS 680-612405/4 Matrix: Water Analysis Batch: 612405

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	250	224		ug/L		89	70 - 135	
Benzene	50.0	52.4		ug/L		105	80 - 120	
Carbon disulfide	50.0	52.4		ug/L		105	80 - 120	
Chlorobenzene	50.0	58.6		ug/L		117	80 - 120	
Chloroform	50.0	49.6		ug/L		99	80 - 120	
cis-1,2-Dichloroethene	50.0	49.6		ug/L		99	80 - 120	
1,2-Dichlorobenzene	50.0	54.1		ug/L		108	80 - 120	
1,4-Dichlorobenzene	50.0	53.6		ug/L		107	80 - 120	
1,1-Dichloroethane	50.0	49.2		ug/L		98	80 - 120	
1,1-Dichloroethene	50.0	53.2		ug/L		106	76 - 120	
1,2-Dichloropropane	50.0	48.6		ug/L		97	80 - 120	
Ethylbenzene	50.0	57.9		ug/L		116	80 - 120	
Methylene Chloride	50.0	49.7		ug/L		99	80 - 120	
Methyl ethyl ketone (MEK)	250	239		ug/L		96	80 - 131	
4-Methyl-2-pentanone (MIBK)	250	221		ug/L		89	76 - 124	

Eurofins TestAmerica, Savannah

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

5 6 7

10

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-612405/4

Matrix: Water

Analysis Batch: 612405								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
p-Cymene	50.0	55.6		ug/L		111	80 - 120	
Tetrachloroethene	50.0	64.4	*	ug/L		129	80 - 121	
Toluene	50.0	54.5		ug/L		109	80 - 113	
1,2,4-Trichlorobenzene	50.0	60.2		ug/L		120	68 - 128	
Xylenes, Total	100	116		ug/L		116	80 - 120	
Vinyl chloride	50.0	46.6		ug/L		93	71 - 128	

	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
Toluene-d8 (Surr)	104		80 - 120	
1,2-Dichloroethane-d4 (Surr)	95		73 - 131	
Dibromofluoromethane (Surr)	108		80 - 122	
4-Bromofluorobenzene (Surr)	93		80 - 120	

Lab Sample ID: LCSD 680-612405/5 Matrix: Water Analysis Batch: 612405

			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone			250	222		ug/L		89	70 - 135	1	30
Benzene			50.0	52.4		ug/L		105	80 - 120	0	20
Carbon disulfide			50.0	53.5		ug/L		107	80 - 120	2	20
Chlorobenzene			50.0	58.7		ug/L		117	80 - 120	0	20
Chloroform			50.0	49.6		ug/L		99	80 - 120	0	20
cis-1,2-Dichloroethene			50.0	48.9		ug/L		98	80 - 120	1	20
1,2-Dichlorobenzene			50.0	53.4		ug/L		107	80 - 120	1	20
1,4-Dichlorobenzene			50.0	53.4		ug/L		107	80 - 120	0	20
1,1-Dichloroethane			50.0	48.9		ug/L		98	80 - 120	0	20
1,1-Dichloroethene			50.0	54.5		ug/L		109	76 - 120	2	20
1,2-Dichloropropane			50.0	48.1		ug/L		96	80 - 120	1	20
Ethylbenzene			50.0	58.3		ug/L		117	80 - 120	1	20
Methylene Chloride			50.0	49.4		ug/L		99	80 - 120	1	20
Methyl ethyl ketone (MEK)			250	236		ug/L		94	80 - 131	1	20
4-Methyl-2-pentanone (MIBK)			250	218		ug/L		87	76 - 124	2	20
p-Cymene			50.0	56.8		ug/L		114	80 - 120	2	20
Tetrachloroethene			50.0	65.7	*	ug/L		131	80 - 121	2	20
Toluene			50.0	54.9		ug/L		110	80 - 113	1	20
1,2,4-Trichlorobenzene			50.0	61.0		ug/L		122	68 - 128	1	20
Xylenes, Total			100	116		ug/L		116	80 - 120	0	20
Vinyl chloride			50.0	47.6		ug/L		95	71 - 128	2	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Toluene-d8 (Surr)	104		80 - 120								
1,2-Dichloroethane-d4 (Surr)	93		73 - 131								

1,2-Dicilioioeillane-u+ (Sull)	30	75 - 151	
Dibromofluoromethane (Surr)	108	80 - 122	
4-Bromofluorobenzene (Surr)	92	80 - 120	

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

10

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

... ...

Lab Sample ID: MB 680-612806/9

Matrix: Water Analysis Batch: 612806

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.0010	U	0.0010		mg/L			03/27/20 10:23	1
Carbon tetrachloride	0.0010	U	0.0010		mg/L			03/27/20 10:23	1
Benzene	0.0010	U	0.0010		mg/L			03/27/20 10:23	1
Chlorobenzene	0.0010	U	0.0010		mg/L			03/27/20 10:23	1
Chloroform	0.0010	U	0.0010		mg/L			03/27/20 10:23	1
Trichloroethene	0.0010	U	0.0010		mg/L			03/27/20 10:23	1
1,1-Dichloroethene	0.0010	U	0.0010		mg/L			03/27/20 10:23	1
2-Butanone (MEK)	0.010	U	0.010		mg/L			03/27/20 10:23	1
Tetrachloroethene	0.0010	U	0.0010		mg/L			03/27/20 10:23	1
Vinyl chloride	0.0010	U	0.0010		mg/L			03/27/20 10:23	1

	MB					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		80 - 120		03/ 27/20 10:23	1
1,2-Dichloroethane-d4 (Surr)	104		73 - 131		03/27/20 10:23	1
Dibromofluoromethane (Surr)	101		80 _ 122		03/27/20 10:23	1
4-Bromofluorobenzene (Surr)	100		80 _ 120		03/27/20 10:23	1

Lab Sample ID: LCS 680-612806/3 Matrix: Water

Analysis Batch: 612806 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1,2-Dichloroethane 0.0500 0.0541 mg/L 108 72 - 128 Carbon tetrachloride 0.0500 0.0535 107 67 - 125 mg/L Benzene 0.0500 0.0525 mg/L 105 80 - 120 Chlorobenzene 0.0500 0.0480 mg/L 96 80 - 120 0.0500 Chloroform 0.0524 mg/L 105 80 - 120 Trichloroethene 0.0500 0.0525 mg/L 105 80 - 120 0.0500 1,1-Dichloroethene 0.0536 mg/L 107 80 - 120 2-Butanone (MEK) 0.250 0.267 mg/L 107 79 - 125 Tetrachloroethene 0.0500 103 0.0514 mg/L 71 - 123 Vinyl chloride 0.0501 0.0540 mg/L 108 80 - 129

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		80 - 120
1,2-Dichloroethane-d4 (Surr)	106		73 - 131
Dibromofluoromethane (Surr)	106		80 - 122
4-Bromofluorobenzene (Surr)	98		80 - 120

Lab Sample ID: LCSD 680-612806/4 Matrix: Water Analysis Batch: 612806

LCSD LCSD Spike RPD %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits RPD Limit 1,2-Dichloroethane 0.0500 0.0529 106 72 - 128 50 mg/L 2 Carbon tetrachloride 0.0500 67 - 125 0.0528 mg/L 106 1 20 Benzene 0.0500 0.0521 mg/L 104 80 - 120 1 20 Chlorobenzene 0.0500 0.0479 mg/L 96 80 - 120 20 0

Eurofins TestAmerica, Savannah

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample Prep Type: Total/NA

10

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-612806/4 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA Analysis Batch: 612806 LCSD LCSD %Rec. RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloroform 0.0500 0.0516 mg/L 103 80 - 120 2 20 Trichloroethene 0.0500 0.0512 mg/L 102 80 - 120 2 20 1,1-Dichloroethene 0.0500 0.0532 mg/L 106 80 - 120 20 1 2-Butanone (MEK) 0.250 0.264 79 - 125 20 mg/L 106 1 0.0500 Tetrachloroethene 0.0512 mg/L 102 71 - 123 0 20 Vinyl chloride 0.0501 0.0537 107 80 - 129 20 mg/L 1

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		80 - 120
1,2-Dichloroethane-d4 (Surr)	105		73 _ 131
Dibromofluoromethane (Surr)	105		80 - 122
4-Bromofluorobenzene (Surr)	99		80 - 120

Lab Sample ID: MB 680-614683/10 Matrix: Water Analysis Batch: 614683

MB MB Result Qualifier MDL Unit Dil Fac Analyte RL D Prepared Analyzed Acetone 10 U 10 ug/L 04/10/20 14:33 1 Benzene 1.0 U 1.0 ug/L 04/10/20 14:33 1 Carbon disulfide 2.0 U 2.0 ug/L 04/10/20 14:33 1 Chlorobenzene 1.0 U 1.0 ug/L 04/10/20 14:33 1 Chloroform 1.0 U 1.0 ug/L 04/10/20 14:33 1 cis-1,2-Dichloroethene 1.0 U 1.0 ug/L 04/10/20 14:33 1 1,2-Dichlorobenzene 1.0 U 1.0 ug/L 04/10/20 14:33 1 04/10/20 14:33 1,4-Dichlorobenzene 1.0 U 1.0 ug/L 1 1.1-Dichloroethane 1.0 U ug/L 04/10/20 14:33 1.0 1 1,1-Dichloroethene 1.0 U 1.0 ug/L 04/10/20 14:33 1 10 U 10 ug/L 04/10/20 14:33 1,2-Dichloropropane 1 Ethylbenzene 1.0 U 1.0 ug/L 04/10/20 14:33 1 Methylene Chloride 5.0 U 5.0 ug/L 04/10/20 14:33 1 Methyl ethyl ketone (MEK) 10 U 10 ug/L 04/10/20 14:33 1 4-Methyl-2-pentanone (MIBK) 10 U 10 ug/L 04/10/20 14:33 1 p-Cymene 1.0 U 1.0 ug/L 04/10/20 14:33 Tetrachloroethene 1.0 U 1.0 ug/L 04/10/20 14:33 1 04/10/20 14:33 Toluene 1.0 U 1.0 ug/L 1 1,2,4-Trichlorobenzene 5.0 U 5.0 04/10/20 14:33 ug/L 1 Xylenes, Total 1.0 U 1.0 ug/L 04/10/20 14:33 1 Vinyl chloride 1.0 U 1.0 ug/L 04/10/20 14:33 1 MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 12	20		04/ 10/20 14:33	1
1,2-Dichloroethane-d4 (Surr)	88		73 - 13	31		04/10/20 14:33	1
Dibromofluoromethane (Surr)	96		80 - 12	22		04/10/20 14:33	1
4-Bromofluorobenzene (Surr)	98		80 - 12	20		04/10/20 14:33	1

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA

0

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-614683/4

Matrix: Water Analysis Batch: 614683

Analysis Baton. 014000								
	Spike	LCS	LCS				%Rec.	5
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	250	299		ug/L		120	70 - 135	6
Benzene	50.0	50.8		ug/L		102	80 - 120	
Carbon disulfide	50.0	50.7		ug/L		101	80 - 120	
Chlorobenzene	50.0	48.6		ug/L		97	80 _ 120	
Chloroform	50.0	48.6		ug/L		97	80 - 120	8
cis-1,2-Dichloroethene	50.0	51.5		ug/L		103	80 - 120	0
1,2-Dichlorobenzene	50.0	48.0		ug/L		96	80 _ 120	0
1,4-Dichlorobenzene	50.0	46.3		ug/L		93	80 - 120	3
1,1-Dichloroethane	50.0	48.6		ug/L		97	80 - 120	4 (
1,1-Dichloroethene	50.0	51.7		ug/L		103	76 - 120	10
1,2-Dichloropropane	50.0	51.9		ug/L		104	80 - 120	
Ethylbenzene	50.0	50.8		ug/L		102	80 - 120	
Methylene Chloride	50.0	46.3		ug/L		93	80 - 120	
Methyl ethyl ketone (MEK)	250	274		ug/L		110	80 _ 131	
4-Methyl-2-pentanone (MIBK)	250	266		ug/L		106	76 ₋ 124	_
p-Cymene	50.0	49.1		ug/L		98	80 _ 120	13
Tetrachloroethene	50.0	50.6		ug/L		101	80 - 121	
Toluene	50.0	50.6		ug/L		101	80 ₋ 113	
1,2,4-Trichlorobenzene	50.0	50.6		ug/L		101	68 - 128	
Xylenes, Total	100	101		ug/L		101	80 - 120	
Vinyl chloride	50.1	52.8		ug/L		105	71 - 128	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		80 - 120
1,2-Dichloroethane-d4 (Surr)	94		73 - 131
Dibromofluoromethane (Surr)	100		80 _ 122
4-Bromofluorobenzene (Surr)	94		80 - 120

Lab Sample ID: LCSD 680-614683/5 Matrix: Water Analysis Batch: 614683

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	250	280		ug/L		112	70 - 135	7	30
Benzene	50.0	50.5		ug/L		101	80 - 120	1	20
Carbon disulfide	50.0	51.0		ug/L		102	80 - 120	1	20
Chlorobenzene	50.0	48.9		ug/L		98	80 - 120	1	20
Chloroform	50.0	48.1		ug/L		96	80 - 120	1	20
cis-1,2-Dichloroethene	50.0	50.3		ug/L		101	80 - 120	2	20
1,2-Dichlorobenzene	50.0	47.8		ug/L		96	80 - 120	0	20
1,4-Dichlorobenzene	50.0	47.2		ug/L		94	80 - 120	2	20
1,1-Dichloroethane	50.0	48.8		ug/L		98	80 - 120	1	20
1,1-Dichloroethene	50.0	52.5		ug/L		105	76 _ 120	2	20
1,2-Dichloropropane	50.0	50.0		ug/L		100	80 - 120	4	20
Ethylbenzene	50.0	50.5		ug/L		101	80 - 120	1	20
Methylene Chloride	50.0	45.2		ug/L		90	80 - 120	2	20
Methyl ethyl ketone (MEK)	250	258		ug/L		103	80 - 131	6	20
4-Methyl-2-pentanone (MIBK)	250	254		ug/L		101	76 - 124	5	20

Eurofins TestAmerica, Savannah

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water Analysis Batch: 614683

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
50.0	50.5		ug/L		101	80 - 120	3	20
50.0	50.4		ug/L		101	80 - 121	0	20
50.0	49.8		ug/L		100	80 - 113	2	20
50.0	50.5		ug/L		101	68 - 128	0	20
100	100		ug/L		100	80 - 120	1	20
50.1	52.6		ug/L		105	71 ₋ 128	0	20
	Spike Added 50.0 50.0 50.0 100 50.1	Spike LCSD Added Result 50.0 50.5 50.0 50.4 50.0 49.8 50.0 50.5 100 100 50.1 52.6	Spike LCSD LCSD Added Result Qualifier 50.0 50.4 - 50.0 49.8 - 50.0 50.5 - 100 100 - 50.1 52.6 -	Spike LCSD LCSD Added Result Qualifier Unit 50.0 50.5 ug/L 50.0 50.4 ug/L 50.0 50.5 ug/L 50.1 52.6 ug/L	Spike LCSD LCSD Added Result Qualifier Unit D 50.0 50.5 ug/L ug/L 50.0 50.4 ug/L ug/L 50.0 50.5 ug/L ug/L 50.1 52.6 ug/L ug/L	Spike LCSD LCSD Added Result Qualifier Unit D %Rec 50.0 50.5 ug/L 101 50.0 50.4 ug/L 101 50.0 50.5 ug/L 101 50.0 50.4 ug/L 101 50.0 50.5 ug/L 100 50.0 50.5 ug/L 101 100 50.5 ug/L 101 100 100 ug/L 100 50.1 52.6 ug/L 105	Spike LCSD LCSD %Rec. Added Result Qualifier Unit D %Rec. Limits 50.0 50.5 ug/L 101 80 - 120 50.0 50.4 ug/L 101 80 - 121 50.0 50.5 ug/L 100 80 - 113 50.0 50.5 ug/L 101 68 - 128 100 100 ug/L 101 80 - 120 50.1 52.6 ug/L 100 80 - 121	Spike LCSD LCSD %Rec. Added Result Qualifier Unit D %Rec. Limits RPD 50.0 50.5 ug/L 101 80 - 120 3 50.0 50.4 ug/L 101 80 - 121 0 50.0 50.5 ug/L 100 80 - 113 2 50.0 50.5 ug/L 101 68 - 128 0 50.0 50.5 ug/L 101 68 - 128 0 100 100 ug/L 100 80 - 120 1 50.1 52.6 ug/L 100 80 - 120 1

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		80 - 120
1,2-Dichloroethane-d4 (Surr)	91		73 _ 131
Dibromofluoromethane (Surr)	96		80 - 122
4-Bromofluorobenzene (Surr)	95		80 - 120

Lab Sample ID: LB 680-612631/1-A Matrix: Water Analysis Batch: 612806

LB LB Result Qualifier MDL Unit Dil Fac Analyte RL D Prepared Analyzed 1,2-Dichloroethane 0.020 U 0.020 mg/L 03/27/20 16:11 20 Carbon tetrachloride 0.020 U 0.020 mg/L 03/27/20 16:11 20 Benzene 0.020 U 0.020 mg/L 03/27/20 16:11 20 0.020 U Chlorobenzene 0.020 03/27/20 16:11 20 mg/L Chloroform 0.020 U 0.020 mg/L 03/27/20 16:11 20 Trichloroethene 0.020 U 0.020 mg/L 03/27/20 16:11 20 1,1-Dichloroethene 0.020 U 0.020 03/27/20 16:11 20 mg/L 2-Butanone (MEK) 0.20 U 03/27/20 16:11 20 0.20 mg/L Tetrachloroethene 0.020 U 0.020 mg/L 03/27/20 16:11 20 Vinyl chloride 0.020 U 0.020 mg/L 03/27/20 16:11 20 LB LB

Surrogate	%Recovery	Qualifier	Limits	l l	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120			03/ 27/20 16:11	20
1,2-Dichloroethane-d4 (Surr)	106		73 - 131			03/27/20 16:11	20
Dibromofluoromethane (Surr)	102		80 _ 122			03/27/20 16:11	20
4-Bromofluorobenzene (Surr)	102		80 - 120			03/27/20 16:11	20

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

Lab Sample ID: MB 680-611711/18-A Matrix: Water Analysis Batch: 612510	мв	МВ					Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	d Blank Total/NA 611711
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
alpha-BHC	0.013	U	0.013		ug/L		03/19/20 18:02	03/25/20 18:33	1
delta-BHC	0.013	U	0.013		ug/L		03/19/20 18:02	03/25/20 18:33	1
gamma-BHC (Lindane)	0.013	U	0.013		ug/L		03/19/20 18:02	03/25/20 18:33	1
Total Toxaphene	1.3	U	1.3		ug/L		03/19/20 18:02	03/25/20 18:33	1
Toxaphene, Technical	1.3	U	1.3		ug/L		03/19/20 18:02	03/25/20 18:33	1

Eurofins TestAmerica, Savannah

5

Methoxychlor

10

Method: 8081B/8082A - C)rganochlorin	e P	estici	des and Po	lychlor	inat	ed Bi	pheny	vis by	/ G	ias		
Lab Sample ID: MB 680-6117 Matrix: Water	uea) '11/18-A										Client Sa	ample ID: Meth Prep Type: Prep Batc	od Blank Total/NA
Analysis Datch. 012010												Thep Bate	
	Λ	мв л	lΒ										
Surrogate	%Recove	ery C	Qualifier	Limits	_				_	P	repared	Analyzed	Dil Fac
Tetrachloro-m-xylene		82		39 - 130					0)3/1	9/20 18:02	03/25/2018:33	1
DCBDecachlorobiphenyl		79		10 _ 130					0)3/ 1	19/20 18:02	03/25/20 18:38	1
Lab Sample ID: LCS 680-611	711/19-A								Clie	ent	Sample	ID: Lab Contro	ol Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 612510												Prep Batc	h: 611711
-				Spike	LCS	LCS	;					%Rec.	
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
alpha-BHC				0.0250	0.0274			ug/L		_	110	45 - 130	
delta-BHC				0.0250	0.0260			ug/L			104	47 - 140	
gamma-BHC (Lindane)				0.0250	0.0267			ug/L			107	47 - 130	
Lab Sample ID: LCS 680-611 Matrix: Water	711/24-A								Clie	ent	Sample	ID: Lab Contro Prep Type:	ol Sample Total/NA
Analysis Batch: 612510												Prep Batc	h: 611711
	LCS L	cs											
Surrogate	%Recovery G	Qualifi	ier	Limits									
Tetrachloro-m-xylene	74			39 - 130									
DCBDecachlorobiphenyl	47			10 _130									
Lab Sample ID: LCSD 680.61	1711/20-0							CI	iont S	200		ah Control Sa	
Matrix: Water	11/11/20-A							0		am		Bron Type	Total/NA
Analysis Batch: 612510												Pren Bate	h. 611711
Analysis Baten: 012010				Spike	LCSD	LCS	D					%Rec.	RPD
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits R	PD Limit
alpha-BHC				0.0250	0.0244			ug/L		_	97	45 - 130	12 30
delta-BHC				0.0250	0.0261			uq/L			105	47 _ 140	1 30
gamma-BHC (Lindane)				0.0250	0.0251			ug/L			100	47 - 130	6 30
Lab Sample ID: LCSD 680-61	1711/25-A							Cl	ient S	am	ple ID: L	ab Control Sa	mple Dup
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 612510												Prep Batc	h: 611711
	LCSD L	.csd											
Surrogate	%Recovery G	Qualifi	ier	Limits									
 Tetrachloro-m-xylene	77			39 _ 130									
DCBDecachlorobiphenyl	æ			10 _ 130									
	24/20 4										Oligent C	man la 10. March	ad Direct
Lap Sample ID: MB 680-6132	31/2 U-A										Client Sa	mple ID: Meth	Tetel/N
watrix: water													i otal/NA
Analysis Batch: 613591			/B									Prep Batc	n: 613231
Analyte	n Doc	ult (no Jualifiar	в		мгл	Unit		п	D	renared	Analyzed	Dil Eso
Heptachlor epoxide	0 0000	$\frac{1}{125}$		<u>•</u> <u>0 00002</u>	-		ma/l		- -	3/3	0/20 14.48	04/01/20 19:33	- <u> 1</u>
Chlordane (technical)	0.000	25 I	J	0 0002	- 5		ma/l		0)3/3	0/20 14:48	04/01/20 19:33	1
Endrin	0.000	125 I	- J	0 00002	- 5		ma/l		0 0	3/2	0/20 14.48	04/01/20 10:33	1
gamma_BHC (Lindane)	0.0000	25 1		0.00002	~ 5		ma/l		0 0	3/2	0/20 14.48	04/01/20 10:33	י 1 1

Eurofins TestAmerica, Savannah

04/01/20 19:33

03/30/20 14:48

0.000025

mg/L

0.000025 U

10

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas **Chromatography (Continued)** Lab Sample ID: MB 680-613231/20-A **Client Sample ID: Method Blank** Prep Type: Total/NA Matrix: Water Analysis Batch: 613591 Prep Batch: 613231 MB MB Result Qualifier Analyzed Analyte RL MDL Unit D Prepared Dil Fac Heptachlor 0.000025 U 0.000025 mg/L 03/30/20 14:48 04/01/20 19:33 1 Toxaphene 0.0025 U 0.0025 mg/L 03/30/20 14:48 04/01/20 19:33 1 MB MB Surrogate %Recoverv Qualifier l imite Prepared Analyzed Dil Fac Tetrachloro-m-xylene 81 40 - 130 03/30/20 14:48 04/01/20 19:33 1 DCBDecachlorobiphenyl 57 14 _ 130 03/30/2014:48 04/01/20 19:38 1 Lab Sample ID: LCS 680-613231/21-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Prep Batch: 613231 Analysis Batch: 613591 LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Analyte D 0.0000500 0.0000516 Heptachlor epoxide mg/L 103 52 - 130 0.0000500 0.0000528 106 Endrin mg/L 59 - 143 gamma-BHC (Lindane) 0.0000500 0.0000523 mg/L 105 52 130 Methoxychlor 0.0000500 0.0000514 103 52 - 136 mg/L 0.0000500 Heptachlor 0 0000450 mg/L 90 35 - 130LCS LCS Qualifier Surrogate %Recovery Limits Tetrachloro-m-xylene 76 40 - 130 DCBDecachlorobiphenyl 29 14 _ 130 Lab Sample ID: LB 680-612479/1-E **Client Sample ID: Method Blank** Matrix: Water Prep Type: TCLP Analysis Batch: 613591 Prep Batch: 613231 LB LB Result Qualifier MDL Dil Fac Analyte RL Unit D Prepared Analyzed Heptachlor epoxide 0.0012 ū 0.0012 03/30/20 14:48 04/01/20 19:18 mg/L 1 Chlordane (technical) 0.012 U 0.012 mg/L 03/30/20 14:48 04/01/20 19:18 1 0.0012 U 0.0012 mg/L 04/01/20 19:18 Endrin 03/30/20 14:48 1 gamma-BHC (Lindane) 0.0012 U 0.0012 03/30/20 14:48 04/01/20 19:18 mg/L Methoxychlor 0.0012 U 0.0012 mg/L 03/30/20 14:48 04/01/20 19:18 1 Heptachlor 0.0012 U 0.0012 mg/L 03/30/20 14:48 04/01/20 19:18 1 Toxaphene 0.12 U 0 12 03/30/20 14:48 04/01/20 19:18 mg/L 1 LB LB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 91 40 - 130 03/30/20 14:48 04/01/20 19:18 DCBDecachlorobiphenyl 78 14 _ 130 03/30/2014:48 04/01/20 19:18 1 Lab Sample ID: LB 680-612482/1-D **Client Sample ID: Method Blank** Matrix: Water Prep Type: TCLP Analysis Batch: 613591 Prep Batch: 613231 LB LB ----Anal Hept 1

Result	Qualifier	RL	MDL Unit	U	Prepared	Analyzed	DilFac
0.0012	U	0.0012	mg/L		03/30/20 14:48	04/01/20 19:03	1
0.012	U	0.012	mg/L		03/30/20 14:48	04/01/20 19:03	1
0.0012	U	0.0012	mg/L		03/30/20 14:48	04/01/20 19:03	1
	0.0012 0.012 0.0012	0.0012 U 0.0012 U 0.0012 U 0.0012 U	Result Quamer RL 0.0012 U 0.0012 0.012 U 0.012 0.012 U 0.012 0.0012 U 0.012 0.0012 U 0.012	Result Quaimer RL MDL Onit 0.0012 U 0.0012 mg/L 0.012 U 0.012 mg/L 0.0012 U 0.0012 mg/L	Result Quaimer RL MDL Onit D 0.0012 U 0.0012 mg/L mg	Result Quamer RL MDL Onit D Prepared 0.0012 U 0.0012 mg/L 03/30/20 14:48 03/30/20 14:48 0.0012 U 0.0012 mg/L 03/30/20 14:48 0.0012 U 0.0012 mg/L 03/30/20 14:48	Result Quaimer RL MDL Onit D Prepared Analyzed 0.0012 U 0.0012 mg/L 03/30/20 14:48 04/01/20 19:03 0.012 U 0.012 mg/L 03/30/20 14:48 04/01/20 19:03 0.0012 U 0.0012 mg/L 03/30/20 14:48 04/01/20 19:03

10

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas **Chromatography (Continued)** Lab Sample ID: LB 680-612482/1-D **Client Sample ID: Method Blank** Matrix: Water Prep Type: TCLP Analysis Batch: 613591 Prep Batch: 613231 LB LB Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac gamma-BHC (Lindane) 0.0012 U 0.0012 mg/L 03/30/20 14:48 04/01/20 19:03 1 Methoxychlor 0.0012 U 0.0012 mg/L 03/30/20 14:48 04/01/20 19:03 1 Heptachlor 0.0012 U 0.0012 mg/L 03/30/20 14:48 04/01/20 19:03 1 mg/L Toxaphene 0.12 U 0.12 03/30/20 14:48 04/01/20 19:03 1 LB LB Qualifier Limits Prepared Dil Fac Surrogate %Recoverv Analvzed Tetrachloro-m-xylene 81 40 - 130 03/30/20 14:48 04/01/20 19:03 1 DCBDecachlorobiphenyl 66 03/30/2014:48 04/01/20 19:03 14 - 130 1 Method: 300.0-1993 R2.1 - Anions, Ion Chromatography Lab Sample ID: MB 680-611419/10 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 611419 МВ МВ Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N 0.050 Ū 0.050 03/18/20 01:58 ma/L 1 0.050 03/18/20 01:58 Nitrite as N 0.050 U mg/L 1 Lab Sample ID: LCS 680-611419/11 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 611419 Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Nitrate as N 0.999 0.950 mg/L 95 90 - 110 Nitrite as N 0.997 1 02 mg/L 103 90 - 110Lab Sample ID: LCSD 680-611419/12 **Client Sample ID: Lab Control Sample Dup** Matrix: Water Prep Type: Total/NA Analysis Batch: 611419 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Nitrate as N 0.999 0.959 mg/L 96 90 - 11015 1 Nitrite as N 0.997 1.03 mg/L 103 90 - 110 0 15 Lab Sample ID: MB 680-611983/2 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 611983 МВ МВ Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.50 Bromide 0.50 Ū 03/21/20 13:11 mg/L 1 03/21/20 13:11 Chloride 0.50 U 0.50 mg/L 1 Fluoride 0.10 U 0.10 mg/L 03/21/20 13:11 1 Sulfate 1.0 U 10 03/21/20 13:11 mg/L 1

5 6 7

10

Method: 300.0-1993 R2.1 - Anions, Ion Chromatography (Continued)

Matrix: Water Analysis Batch: 611983													
Analysis Batch: 611983											Prep Ty	pe: To	al/NA
			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits		
Bromide			10.0		10.2			mg/L		102	90 _ 110		
Chloride			10.0		10.1			mg/L		101	90 _ 110		
Fluoride			2.00		2.15			mg/L		107	90 ₋ 110		
Sulfate			10.0		10.4			mg/L		104	90 - 110		
Lab Sample ID: LCSD 680-611983/4								С	ient Sar	nple ID:	Lab Control	Sample	e Dup
Matrix: Water											Prep Ty	pe: To	al/NA
Analysis Batch: 611983													
			Spike		LCSD	LCS	D				%Rec.		RPD
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limit
Bromide			10.0		10.2			mg/L		102	90 - 110	0	15
Chloride			10.0		10.1			mg/L		101	90 _ 110	0	15
Fluoride			2.00		2.18			mg/L		109	90 _ 110	2	15
Sulfate			10.0		10.6			mg/L		106	90 - 110	1	15
Lab Sample ID: MB 680-612283/2										Client S	Sample ID: N	lethod	Blank
Matrix: Water											Prep Ty	pe: To	al/NA
Analysis Batch: 612283													
-	MB	MB											
Analyte I	Result	Qualifier		RL		MDL	Unit		DI	Prepared	Analyze	d	Dil Fac
Bromide	0.50	U		0.50			mg/L				03/24/20 1	1:35	1
Chloride	0.50	U		0.50			mg/L				03/24/20 1	1:35	1
Fluoride	0.10	U		0.10			mg/L				03/24/20 1	1:35	1
Sulfate	1.0	U		1.0			mg/L				03/24/20 1	1:35	1

Lab Sample ID: LCS 680-612283/3 Matrix: Water Analysis Batch: 612283

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromide	10.0	10.2		mg/L		102	90 - 110	
Chloride	10.0	10.1		mg/L		101	90 - 110	
Fluoride	2.00	2.16		mg/L		108	90 - 110	
Sulfate	10.0	10.4		mg/L		104	90 - 110	

Lab Sample ID: LCSD 680-612283/4 Matrix: Water

Analysis Batch: 612283

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromide	10.0	10.2		mg/L		102	90 - 110	0	15
Chloride	10.0	10.1		mg/L		101	90 _ 110	1	15
Fluoride	2.00	2.18		mg/L		109	90 - 110	1	15
Sulfate	10.0	10.6		mg/L		106	90 _ 110	1	15

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 680-611631/1-B

Matrix: Water Analysis Batch: 611794

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	100	U	100		ug/L		03/19/20 09:59	03/20/20 00:58	1
Arsenic	3.0	U	3.0		ug/L		03/19/20 09:59	03/20/20 00:58	1
Chromium	5.0	U	5.0		ug/L		03/19/20 09:59	03/20/20 00:58	1
Copper	5.0	U	5.0		ug/L		03/19/20 09:59	03/20/20 00:58	1
Iron	100	U	100		ug/L		03/19/20 09:59	03/20/20 00:58	1
Manganese	5.0	U	5.0		ug/L		03/19/20 09:59	03/20/20 00:58	1
Zinc	20	U	20		ug/L		03/19/20 09:59	03/20/20 00:58	1

Lab Sample ID: LCS 680-611631/2-B Matrix: Water

Analysis Batch: 611794

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	5000	4980		ug/L		100	80 - 120	
Arsenic	100	107		ug/L		107	80 - 120	
Chromium	100	103		ug/L		103	80 - 120	
Copper	100	102		ug/L		102	80 - 120	
Iron	5010	4730		ug/L		94	80 - 120	
Manganese	400	404		ug/L		101	80 - 120	
Zinc	101	103		ug/L		103	80 - 120	

Method: 2320B-2011 - Alkalinity, Total

Lab Sample ID: MB 680-612643/1											Client S	Sample ID:	Method	Blank
Matrix: Water												Prep	Type: To	otal/NA
Analysis Batch: 612643														
	MB	MB												
Analyte	Result	Qualifier		RL	N	IDL I	Unit		D	P	repared	Analy	/zed	Dil Fac
Alkalinity	5.0	U		5.0			mg/L					03/25/20	0 17:40	1
Bicarbonate Alkalinity as CaCO3	5.0	U		5.0		I	mg/L					03/25/20	0 17:40	1
Carbonate Alkalinity as CaCO3	5.0	U		5.0		I	mg/L					03/25/20	0 17:40	1
Hydroxide Alkalinity	5.0	U		5.0		1	mg/L					03/25/20	0 17:40	1
Carbon Dioxide, Free	5.0	U		5.0		I	mg/L					03/25/20	0 17:40	1
Phenolphthalein Alkalinity	5.0	U		5.0		ı	mg/L					03/25/20	0 17:40	1
Bicarbonate ion as HCO3	6.1	U		6.1		I	mg/L					03/25/20) 17:40	1
Lab Sample ID: LCS 680-612643/2									Cli	ent	Sample	BID: Lab C	Control S	Sample
Matrix: Water												Prep	Type: To	otal/NA
Analysis Batch: 612643														
			Spike	1	LCS	LCS						%Rec.		
Analyte			Added	Re	sult	Qualif	fier	Unit		D	%Rec	Limits		
Alkalinity			250		257			mg/L		_	103	90 - 112		
Lab Sample ID: LCSD 680-612643/28								С	lient S	am	ple ID:	Lab Contr	ol Samp	le Dup
Matrix: Water												Prep	Type: To	otal/NA
Analysis Batch: 612643														
			Spike	LO	CSD	LCSD						%Rec.		RPD
Analyte			Added	Re	sult	Qualif	fier	Unit		D	%Rec	Limits	RPD	Limit
Alkalinity			250		278			mg/L		_	111	90 - 112	8	30

Client Sample ID: Method Blank Prep Type: Dissolved Prep Batch: 611633

Prep Type: Dissolved Prep Batch: 611633

Client Sample ID: Lab Control Sample

10

12 13

Eurofins TestAmerica, Savannah

_

Job ID: 680-181592-1

Method: 2540 D-2011 - Total Suspended Solids (Dried at 103-105°C)

Lab Sample ID: MB 680-611491/1											Client S	ample ID: M	ethod	Blank
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 611491														
-	MB	MB												
Analyte	Result	Qualifier		RL		RL	Unit		D	Pi	repared	Analyzed	t	Dil Fac
Total Suspended Solids	1.0	U		1.0			mg/L					03/18/20 12	2:01	1
Lab Sample ID: LCS 680-611491/2									Cli	ient	Sample	ID: Lab Cor	ntrol Sa	ample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 611491														
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Quali	ifier	Unit		D	%Rec	Limits		
Total Suspended Solids			951		902			mg/L		_	95	80 - 120		
Lab Sample ID: LCSD 680-611491/3								CI	ient S	Sam	ple ID:	Lab Control	Sampl	e Dup
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 611491														
			Spike		LCSD	LCSD	0					%Rec.		RPD
Analyte			Added		Result	Quali	ifier	Unit		D	%Rec	Limits	RPD	Limit
Total Suspended Solids			951		922			mg/L		_	97	80 - 120	2	25
Method: 2540C-2011 - Total Disso	olved So	olids (Dr	ied at 1	80 °C	C)									
					<i>'</i>									
Lab Sample ID: MB 680-611460/1											Client S	ample ID: M	ethod	Blank
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 611460														
	МВ	МВ												
Analyte	Result	Qualifier		RL		RL	Unit		D	Р	repared	Analyzed	ł	Dil Fac
Total Dissolved Solids	5.0	U		5.0			mg/L					03/18/20 09	:32	1
Lab Sample ID: LCS 680-611460/2									Cli	ient	Sample	ID: Lab Cor	ntrol Sa	ample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 611460														
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Quali	ifier	Unit		D	%Rec	Limits		
Total Dissolved Solids			2460		2420			mg/L			98	80 - 120		
Lab Sample ID: LCSD 680-611460/3								CI	ient S	Sam	ple ID:	Lab Control	Sampl	e Dup
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 611460														
			Spike		LCSD	LCSD)					%Rec.		RPD
Analyte			Added		Result	Quali	ifier	Unit		D	%Rec	Limits	RPD	Limit
Total Dissolved Solids			2460		2380			mg/L		_	97	80 - 120	2	25
Method: 9060 - Organic Carbon,	Dissolv	ed (DOC)											
Lab Sample ID: MP 690 642200/4 A											Client	ample ID: M	othad	Plank
Lab Sample ID: MB 000-012390/1-A Matrix: Water											Chefft S	Pren Type	etnod e: Diee	
Analysis Batch: 612569												i ich i Ab	0. 0133	Junea
Analysis Datoll. 012003														
	МВ	мв												
Analyte	MB Result	MB Qualifier		RL		RL	Unit		D	Pi	repared	Analyze	ł	Dil Fac
Analyte	MB Result	MB Qualifier U		RL		RL	Unit mg/L		D	Pı	repared	Analyzed	d :04	Dil Fac

181592-1

Prep Type: Dissolved

Method: 9060 - Organic Carbon, Dissolved (DOC) (Continued)

Lab Sample ID: LCS 680-612390/2-A

Matrix: Water alveie Batch: 612569

Analysis Batch: 612569								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dissolved Organic Carbon		19.6		mg/L		98	80 - 120	
DOC Result 1	20.0	19.5		mg/L		98	80 - 120	
DOC Result 2	20.0	19.4		mg/L		97	80 - 120	
DOC Result 3	20.0	19.7		mg/L		98	80 - 120	
DOC Result 4	20.0	19.7		mg/L		98	80 - 120	

Lab Sample ID: LCSD 680-612390/3-A Matrix: Water

Analysis Batch: 612569

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dissolved Organic Carbon	20.0	19.7		mg/L		99	80 - 120	1	20
DOC Result 1	20.0	19.8		mg/L		99	80 - 120	1	20
DOC Result 2	20.0	19.4		mg/L		97	80 - 120	0	20
DOC Result 3	20.0	19.8		mg/L		99	80 - 120	1	20
DOC Result 4	20.0	19.9		mg/L		99	80 - 120	1	20

Lab Sample ID: 680-181592-1 MS

Matrix: Water Analysis Batch: 612569

·····,····	Sample	Sample	Snike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dissolved Organic Carbon	18		20.0	38.0		mg/L		100	80 - 120	
DOC Result 1	18		20.0	38.0		mg/L		100	80 - 120	
DOC Result 2	18		20.0	37.8		mg/L		100	80 - 120	
DOC Result 3	18		20.0	37.9		mg/L		99	80 - 120	
DOC Result 4	18		20.0	38.3		mg/L		101	80 - 120	

Lab Sample ID: 680-181592-1 MSD Matrix: Water Analysis Batch: 612569

Analysis Datch. 012000											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dissolved Organic Carbon	18		20.0	37.8		mg/L		99	80 - 120	1	20
DOC Result 1	18		20.0	37.2		mg/L		96	80 - 120	2	20
DOC Result 2	18		20.0	38.2		mg/L		102	80 - 120	1	20
DOC Result 3	18		20.0	37.7		mg/L		98	80 - 120	1	20
DOC Result 4	18		20.0	38.0		mg/L		100	80 - 120	1	20

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 680-611782/2						Client Sample ID: Method Blank			
Matrix: Water						Prep Type: Total/NA			
Analysis Batch: 611782									
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1.0	U	1.0		mg/L			03/20/20 00:40	1
Total Organic Carbon - Quad	1.0	U	1.0		mg/L			03/20/20 00:40	1

Eurofins TestAmerica, Savannah

5

10

12 13

Prep Type: Dissolved

Client Sample ID: PT-03-03122020

Client Sample ID: PT-03-03122020

Prep Type: Dissolved

Prep Type: Total/NA

Method: 9060A - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: LCS 680-611782/3

Matrix: Water Analysis Batch: 611782

Analysis Datch. 011702								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	20.0	19.8		mg/L		99	80 - 120	
Total Organic Carbon - Quad	20.0	19.8		mg/L		99	80 - 120	
TOC Result 1	20.0	19.8		mg/L		99	80 - 120	
TOC Result 2	20.0	19.7		mg/L		98	80 - 120	
TOC Result 3	20.0	20.0		mg/L		100	80 - 120	
TOC Result 4	20.0	19.8		mg/L		99	80 - 120	

Lab Sample ID: LCSD 680-611782/4

Matrix: Water Analysis Batch: 611782

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon	20.0	19.8		mg/L		99	80 - 120	0	25
Total Organic Carbon - Quad	20.0	19.8		mg/L		99	80 - 120	0	25
TOC Result 1	20.0	19.7		mg/L		99	80 - 120	1	25
TOC Result 2	20.0	19.8		mg/L		99	80 - 120	0	25
TOC Result 3	20.0	20.0		mg/L		100	80 - 120	0	25
TOC Result 4	20.0	19.9		mg/L		99	80 - 120	0	25

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Lab Control Sample

10

5

15

4/23/2020

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Prep Type

TCLP

TCLP

Total/NA

Total/NA

Total/NA

TCLP

TCLP

Matrix

Water

Water

Water

Water

Water

Water

Water

Matrix

Water

Water

Matrix

Water

Water

Water

Water

Water

Method

8260B

8260B

8260B

8260B

8260B

8260B

8260B

Method

Method

8260B

8260B

8260B

8260B

8260B

1311

1311

Client Sample ID

PT-03-03122020

PT-02-03122020

PT-01-03122020

Lab Control Sample

Client Sample ID

01-PT-03122020

Client Sample ID

01-PT-03122020

Lab Control Sample

Lab Control Sample Dup

Method Blank

Method Blank

Method Blank

Lab Control Sample Dup

Trip Blank

Method Blank

GC/MS VOA

Lab Sample ID

680-181592-1

680-181592-2

680-181592-3

680-181592-5

MB 680-612405/10

LCS 680-612405/4

LCSD 680-612405/5

Lab Sample ID

680-181592-4

Lab Sample ID

680-181592-4

LB 680-612631/1-A

MB 680-612806/9

LCS 680-612806/3

LCSD 680-612806/4

LB 680-612631/1-A

Analysis Batch: 612806

Leach Batch: 612631

Analysis Batch: 612405

Prep Batch

Prep Batch

Prep Batch

612631

612631

10 11 12 13

Analysis Batch: 614683

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1 - DL	PT-03-03122020	Total/NA	Water	8260B	
680-181592-2 - DL	PT-02-03122020	Total/NA	Water	8260B	
680-181592-3 - DL	PT-01-03122020	Total/NA	Water	8260B	
MB 680-614683/10	Method Blank	Total/NA	Water	8260B	
LCS 680-614683/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-614683/5	Lab Control Sample Dup	Total/NA	Water	8260B	
_					

GC Semi VOA

Prep Batch: 611711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Total/NA	Water	3520C	
680-181592-2	PT-02-03122020	Total/NA	Water	3520C	
680-181592-3	PT-01-03122020	Total/NA	Water	3520C	
MB 680-611711/18-A	Method Blank	Total/NA	Water	3520C	
LCS 680-611711/19-A	Lab Control Sample	Total/NA	Water	3520C	
LCS 680-611711/24-A	Lab Control Sample	Total/NA	Water	3520C	
LCSD 680-611711/20-A	Lab Control Sample Dup	Total/NA	Water	3520C	
LCSD 680-611711/25-A	Lab Control Sample Dup	Total/NA	Water	3520C	

Leach Batch: 612479

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LB 680-612479/1-E	Method Blank	TCLP	Water	1311	
Leach Batch: 612482					
		Dece Trees	N - 4-i	Madha al	Dura Datak
		Ргер Туре		Method	Ргер Бассп
680-181592-4	01-PT-03122020	TCLP	Water	1311	
I R 690 612492/1 D	Matter I Direct	TOLD	14/ 1	10.1.1	

GC Semi VOA

Analysis Batch: 612510

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Total/NA	Water	8081B/8082A	611711
680-181592-2	PT-02-03122020	Total/NA	Water	8081B/8082A	611711
680-181592-3	PT-01-03122020	Total/NA	Water	8081B/8082A	611711
MB 680-611711/18-A	Method Blank	Total/NA	Water	8081B/8082A	611711
LCS 680-611711/19-A	Lab Control Sample	Total/NA	Water	8081B/8082A	611711
LCS 680-611711/24-A	Lab Control Sample	Total/NA	Water	8081B/8082A	611711
LCSD 680-611711/20-A	Lab Control Sample Dup	Total/NA	Water	8081B/8082A	611711
LCSD 680-611711/25-A	Lab Control Sample Dup	Total/NA	Water	8081B/8082A	611711
Prep Batch: 613231					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-4	01-PT-03122020	TCLP	Water	3520C	612482
LB 680-612479/1-E	Method Blank	TCLP	Water	3520C	612479
LB 680-612482/1-D	Method Blank	TCLP	Water	3520C	612482
MB 680-613231/20-A	Method Blank	Total/NA	Water	3520C	
LCS 680-613231/21-A	Lab Control Sample	Total/NA	Water	3520C	

Analysis Batch: 613591

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LB 680-612479/1-E	Method Blank	TCLP	Water	8081B/8082A	613231
LB 680-612482/1-D	Method Blank	TCLP	Water	8081B/8082A	613231
MB 680-613231/20-A	Method Blank	Total/NA	Water	8081B/8082A	613231
LCS 680-613231/21-A	Lab Control Sample	Total/NA	Water	8081B/8082A	613231

Analysis Batch: 614275

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
680-181592-4	01-PT-03122020	TCLP	Water	8081B/8082A	613231

HPLC/IC

Analysis Batch: 611419

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Total/NA	Water	300.0-1993 R2.1	
680-181592-2	PT-02-03122020	Total/NA	Water	300.0-1993 R2.1	
680-181592-3	PT-01-03122020	Total/NA	Water	300.0-1993 R2.1	
MB 680-611419/10	Method Blank	Total/NA	Water	300.0-1993 R2.1	
LCS 680-611419/11	Lab Control Sample	Total/NA	Water	300.0-1993 R2.1	
LCSD 680-611419/12	Lab Control Sample Dup	Total/NA	Water	300.0-1993 R2.1	
Analysis Batch: 61198	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Total/NA	Water	300.0-1993 R2.1	
680-181592-2	PT-02-03122020	Total/NA	Water	300.0-1993 R2.1	
680-181592-3	PT-01-03122020	Total/NA	Water	300.0-1993 R2.1	
MB 680-611983/2	Method Blank	Total/NA	Water	300.0-1993 R2.1	
LCS 680-611983/3	Lab Control Sample	Total/NA	Water	300.0-1993 R2.1	
LCSD 680-611983/4	Lab Control Sample Dup	Total/NA	Water	300.0-1993 R2.1	
Analysis Batch: 61228	3				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1 - DL	PT-03-03122020	Total/NA	Water	300.0-1993 R2.1	

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick

HPLC/IC (Continued)

Analysis Batch: 612283 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-2 - DL	PT-02-03122020	Total/NA	Water	300.0-1993 R2.1	
680-181592-3 - DL	PT-01-03122020	Total/NA	Water	300.0-1993 R2.1	
MB 680-612283/2	Method Blank	Total/NA	Water	300.0-1993 R2.1	
LCS 680-612283/3	Lab Control Sample	Total/NA	Water	300.0-1993 R2.1	
LCSD 680-612283/4	Lab Control Sample Dup	Total/NA	Water	300.0-1993 R2.1	

Metals

Filtration Batch: 611631

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method Prep Batch
680-181592-1	PT-03-03122020	Dissolved	Water	FILTRATION
680-181592-2	PT-02-03122020	Dissolved	Water	FILTRATION
680-181592-3	PT-01-03122020	Dissolved	Water	FILTRATION
MB 680-611631/1-B	Method Blank	Dissolved	Water	FILTRATION
LCS 680-611631/2-B	Lab Control Sample	Dissolved	Water	FILTRATION

Prep Batch: 611633

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Dissolved	Water	3005A	611631
680-181592-2	PT-02-03122020	Dissolved	Water	3005A	611631
680-181592-3	PT-01-03122020	Dissolved	Water	3005A	611631
MB 680-611631/1-B	Method Blank	Dissolved	Water	3005A	611631
LCS 680-611631/2-B	Lab Control Sample	Dissolved	Water	3005A	611631

Analysis Batch: 611794

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Dissolved	Water	6020A	611633
680-181592-2	PT-02-03122020	Dissolved	Water	6020A	611633
680-181592-3	PT-01-03122020	Dissolved	Water	6020A	611633
MB 680-611631/1-B	Method Blank	Dissolved	Water	6020A	611633
LCS 680-611631/2-B	Lab Control Sample	Dissolved	Water	6020A	611633

Analysis Batch: 612188

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Total/NA	Water	SM 2340B	
680-181592-2	PT-02-03122020	Total/NA	Water	SM 2340B	
680-181592-3	PT-01-03122020	Total/NA	Water	SM 2340B	

General Chemistry

Analysis Batch: 611460

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Total/NA	Water	2540C-2011	
680-181592-2	PT-02-03122020	Total/NA	Water	2540C-2011	
680-181592-3	PT-01-03122020	Total/NA	Water	2540C-2011	
MB 680-611460/1	Method Blank	Total/NA	Water	2540C-2011	
LCS 680-611460/2	Lab Control Sample	Total/NA	Water	2540C-2011	
LCSD 680-611460/3	Lab Control Sample Dup	Total/NA	Water	2540C-2011	
Analysis Batch: 61149	11				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Total/NA	Water	2540 D-2011	

General Chemistry (Continued)

Analysis Batch: 611491 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
680-181592-2	PT-02-03122020	Total/NA	Water	2540 D-2011
680-181592-3	PT-01-03122020	Total/NA	Water	2540 D-2011
MB 680-611491/1	Method Blank	Total/NA	Water	2540 D-2011
LCS 680-611491/2	Lab Control Sample	Total/NA	Water	2540 D-2011
LCSD 680-611491/3	Lab Control Sample Dup	Total/NA	Water	2540 D-2011

Analysis Batch: 611782

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Total/NA	Water	9060A	
680-181592-2	PT-02-03122020	Total/NA	Water	9060A	
680-181592-3	PT-01-03122020	Total/NA	Water	9060A	
MB 680-611782/2	Method Blank	Total/NA	Water	9060A	
LCS 680-611782/3	Lab Control Sample	Total/NA	Water	9060A	
LCSD 680-611782/4	Lab Control Sample Dup	Total/NA	Water	9060A	

Filtration Batch: 612390

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Dissolved	Water	FILTRATION	
680-181592-2	PT-02-03122020	Dissolved	Water	FILTRATION	
680-181592-3	PT-01-03122020	Dissolved	Water	FILTRATION	
MB 680-612390/1-A	Method Blank	Dissolved	Water	FILTRATION	
LCS 680-612390/2-A	Lab Control Sample	Dissolved	Water	FILTRATION	
LCSD 680-612390/3-A	Lab Control Sample Dup	Dissolved	Water	FILTRATION	
680-181592-1 MS	PT-03-03122020	Dissolved	Water	FILTRATION	
680-181592-1 MSD	PT-03-03122020	Dissolved	Water	FILTRATION	

Analysis Batch: 612569

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Dissolved	Water	9060	612390
680-181592-2	PT-02-03122020	Dissolved	Water	9060	612390
680-181592-3	PT-01-03122020	Dissolved	Water	9060	612390
MB 680-612390/1-A	Method Blank	Dissolved	Water	9060	612390
LCS 680-612390/2-A	Lab Control Sample	Dissolved	Water	9060	612390
LCSD 680-612390/3-A	Lab Control Sample Dup	Dissolved	Water	9060	612390
680-181592-1 MS	PT-03-03122020	Dissolved	Water	9060	612390
680-181592-1 MSD	PT-03-03122020	Dissolved	Water	9060	612390

Analysis Batch: 612643

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181592-1	PT-03-03122020	Total/NA	Water	2320B-2011	
680-181592-2	PT-02-03122020	Total/NA	Water	2320B-2011	
680-181592-3	PT-01-03122020	Total/NA	Water	2320B-2011	
MB 680-612643/1	Method Blank	Total/NA	Water	2320B-2011	
LCS 680-612643/2	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 680-612643/28	Lab Control Sample Dup	Total/NA	Water	2320B-2011	

Job ID: 680-181592-1

Client Sample ID: PT-03-03122020 Date Collected: 03/12/20 20:20 Date Received: 03/14/20 10:25

Lab Sample ID:	680-181592-1
	Matrix: Water

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrume	8260B nt ID: CMSB	DL	5	5 mL	5 mL	614683	04/10/20 18:50	SMP	TAL SAV
Total/NA	Analysis Instrume	8260B nt ID: CMSC		1	5 mL	5 mL	612405	03/25/20 16:37	P1C	TAL SAV
Total/NA	Prep	3520C			251.4 mL	2.5 mL	611711	03/19/20 18:02	EHS	TAL SAV
Total/NA	Analysis Instrume	8081B/8082A nt ID: CSGZ		1	1 mL	1.0 mL	612510	03/25/20 21:17	JCK	TAL SAV
Total/NA	Analysis Instrume	300.0-1993 R2.1 nt ID: CICK		1	5 mL	5 mL	611983	03/21/20 17:50	UI	TAL SAV
Total/NA	Analysis Instrume	300.0-1993 R2.1 nt ID: CICK	DL	100	5 mL	5 mL	612283	03/24/20 19:16	UI	TAL SAV
Total/NA	Analysis Instrume	300.0-1993 R2.1 nt ID: CICL		1	5 mL	5 mL	611419	03/18/20 03:43	CS	TAL SAV
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	611631	03/19/20 09:57	AJR	TAL SAV
Dissolved	Prep	3005A			50 mL	250 mL	611633	03/19/20 09:59	AJR	TAL SAV
Dissolved	Analysis Instrume	6020A nt ID: ICPMSC		1			611794	03/20/20 01:54	BWR	TAL SAV
Total/NA	Analysis Instrume	SM 2340B nt ID: NOEQUIP		1			612188	03/25/20 15:35	BCB	TAL SAV
Total/NA	Analysis Instrume	2320B-2011 nt ID: MANTECH		1			612643	03/25/20 20:07	JER	TAL SAV
Total/NA	Analysis Instrume	2540 D-2011 nt ID: NOEQUIP		1	1000 mL	1000 mL	611491	03/18/20 12:01	PG	TAL SAV
Total/NA	Analysis Instrume	2540C-2011 nt ID: NOEQUIP		1	1 mL	200 mL	611460	03/18/20 09:32	PG	TAL SAV
Dissolved	Filtration	FILTRATION			40 mL	40 mL	612390	03/24/20 20:07	RKJ	TAL SAV
Dissolved	Analysis Instrume	9060 nt ID: TOC7		1	40 mL	40 mL	612569	03/25/20 01:53	RKJ	TAL SAV
Total/NA	Analysis Instrume	9060A nt ID: TOC7		1	40 mL	40 mL	611782	03/20/20 03:13	RKJ	TAL SAV

Client Sample ID: PT-02-03122020 Date Collected: 03/12/20 17:00 Date Received: 03/14/20 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	5	5 mL	5 mL	614683	04/10/20 19:13	SMP	TAL SAV
	Instrume	nt ID: CMSB								
Total/NA	Analysis	8260B		1	5 mL	5 mL	612405	03/25/20 17:00	P1C	TAL SAV
	Instrume	nt ID: CMSC								
Total/NA	Prep	3520C			259.2 mL	2.5 mL	611711	03/19/20 18:02	EHS	TAL SAV
Total/NA	Analysis	8081B/8082A		1	1 mL	1.0 mL	612510	03/25/20 21:32	JCK	TAL SAV
	Instrume	nt ID: CSGZ								
Total/NA	Analysis	300.0-1993 R2.1		1	5 mL	5 mL	611983	03/21/20 18:03	UI	TAL SAV
	Instrume	nt ID: CICK								

Eurofins TestAmerica, Savannah

Lab Sample ID: 680-181592-2

Matrix: Water

Lab Sample ID: 680-181592-2 Matrix: Water

Lab Sample ID: 680-181592-3

Matrix: Water

Client Sample ID: PT-02-03122020 Date Collected: 03/12/20 17:00 Date Received: 03/14/20 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0-1993 R2.1	DL	100	5 mL	5 mL	612283	03/24/20 19:29	UI	TAL SAV
Total/NA	Analysis	300.0-1993 R2.1		1	5 mL	5 mL	611419	03/18/20 03:58	CS	TAL SAV
	Instrume	nt ID: CICL								
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	611631	03/19/20 09:57	AJR	TAL SAV
Dissolved	Prep	3005A			50 mL	250 mL	611633	03/19/20 09:59	AJR	TAL SAV
Dissolved	Analysis	6020A		1			611794	03/20/20 01:32	BWR	TAL SAV
	Instrume	nt ID: ICPMSC								
Total/NA	Analysis	SM 2340B		1			612188	03/25/20 15:35	BCB	TAL SAV
	Instrume	nt ID: NOEQUIP								
Total/NA	Analysis	2320B-2011		1			612643	03/25/20 20:15	JER	TAL SAV
	Instrume	nt ID: MANTECH								
Total/NA	Analysis	2540 D-2011		1	500 mL	1000 mL	611491	03/18/20 12:01	PG	TAL SAV
	Instrume	nt ID: NOEQUIP								
Total/NA	Analysis	2540C-2011		1	1 mL	200 mL	611460	03/18/20 09:32	PG	TAL SAV
	Instrume	nt ID: NOEQUIP								
Dissolved	Filtration	FILTRATION			40 mL	40 mL	612390	03/24/20 20:07	RKJ	TAL SAV
Dissolved	Analysis	9060		1	40 mL	40 mL	612569	03/25/20 02:44	RKJ	TAL SAV
	Instrume	nt ID: TOC7								
Total/NA	Analysis	9060A		1	40 mL	40 mL	611782	03/20/20 03:31	RKJ	TAL SAV
	Instrume	nt ID: TOC7								

Client Sample ID: PT-01-03122020

Date Collected: 03/12/20 15:00 Date Received: 03/14/20 10:25

Dil Initial Batch Batch Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab DL 04/10/20 19:37 SMP Total/NA Analysis 8260B 5 5 mL 5 mL 614683 TAL SAV Instrument ID: CMSB Total/NA Analysis 8260B 5 mL 5 mL 612405 03/25/20 17:23 P1C TAL SAV 1 Instrument ID: CMSC Total/NA 3520C 253.1 mL 2.5 ml 611711 03/19/20 18:02 FHS TAL SAV Prep Total/NA Analysis 8081B/8082A 1 mL 1.0 mL 612510 03/25/20 21:47 JCK TAL SAV 1 Instrument ID: CSGZ Total/NA 300.0-1993 R2.1 5 mL 611983 03/21/20 18:16 TAL SAV Analysis 5 mL UI 1 Instrument ID: CICK Total/NA 300.0-1993 R2.1 100 612283 TAL SAV Analysis DL 5 mL 5 mL 03/24/20 19:41 UI Instrument ID: CICK Total/NA Analysis 300.0-1993 R2.1 1 5 mL 5 mL 611419 03/18/20 04:12 CS TAL SAV Instrument ID: CICL TAL SAV Dissolved Filtration FILTRATION 1.0 mL 1.0 mL 611631 03/19/20 09:57 AJR Dissolved Prep 3005A 50 mL 250 mL 611633 03/19/20 09:59 AJR TAL SAV Dissolved 6020A 611794 03/20/20 01:43 BWR TAL SAV Analysis 1 Instrument ID: ICPMSC Total/NA Analysis SM 2340B 612188 03/25/20 15:35 BCB TAL SAV Instrument ID: NOEQUIP

Page 42 of 46

Eurofins TestAmerica, Savannah

Lab Sample ID: 680-181592-3 Matrix: Water

Client Sample ID: PT-01-03122020 Date Collected: 03/12/20 15:00 Date Received: 03/14/20 10:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	2320B-2011		1			612643	03/25/20 20:23	JER	TAL SAV
Total/NA	Analysis	2540 D-2011		1	500 mL	1000 mL	611491	03/18/20 12:01	PG	TAL SAV
	Instrumer	nt ID: NOEQUIP								
Total/NA	Analysis	2540C-2011		1	1 mL	200 mL	611460	03/18/20 09:32	PG	TAL SAV
	Instrumer	nt ID: NOEQUIP								
Dissolved	Filtration	FILTRATION			40 mL	40 mL	612390	03/24/20 20:07	RKJ	TAL SAV
Dissolved	Analysis	9060		1	40 mL	40 mL	612569	03/25/20 03:01	RKJ	TAL SAV
	Instrumer	nt ID: TOC7								
Total/NA	Analysis	9060A		1	40 mL	40 mL	611782	03/20/20 03:48	RKJ	TAL SAV
	Instrumer	nt ID: TOC7								

Client Sample ID: 01-PT-03122020

Date Collected: 03/12/20 17:00 Date Received: 03/14/20 10:25

Lab Sample ID: 680-181592-4 Matrix: Water

Lab Sample ID: 680-181592-5

Matrix: Water

12 13 14

5 6 7

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			1.0 g	100 mL	612631	03/26/20 08:13	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	612806	03/27/20 16:35	UI	TAL SAV
	Instrume	nt ID: CMSB								
TCLP	Leach	1311			1.0 g	1.0 mL	612482	03/25/20 17:45	EHS	TAL SAV
TCLP	Prep	3520C			20.3 mL	5 mL	613231	03/30/20 14:48	EHS	TAL SAV
TCLP	Analysis	8081B/8082A		1			614275	04/07/20 21:33	JCK	TAL SAV
	Instrume	nt ID: CSGZ								

Client Sample ID: Trip Blank Date Collected: 03/12/20 00:00

Date Received: 03/14/20 10:25

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	612405	03/25/20 11:09	P1C	TAL SAV
	Instrume	nt ID: CMSC								

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Analysis Carrier Tracking Wolfs X X

4/23/2020

17

-
Client: Geosyntec Consultants, Inc.

Login Number: 181592 List Number: 1

Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick Job ID: 680-181592-1

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87052	06-30-20
Georgia	State	E87052	06-30-20

15

Eurofins TestAmerica, Savannah

APPENDIX E

Step-Drawdown and Recovery Test Data Plots

APPENDIX F

Distance-Drawdown Test Data Plots

APPENDIX G

Soil Laboratory Analytical Report

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-181268-1

Client Project/Site: Ashland - Brunswick Plant Soil

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Adria Reimer

Jerry Jamies

Authorized for release by: 3/27/2020 5:40:44 PM

Jerry Lanier, Project Manager I (912)250-0281 jerry.lanier@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	5
Method Summary	6
Definitions/Glossary	7
Detection Summary	8
Client Sample Results	11
Surrogate Summary	29
QC Sample Results	31
QC Association Summary	36
Lab Chronicle	38
Chain of Custody	40
Receipt Checklists	44
Certification Summary	47

Job ID: 680-181268-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: Ashland - Brunswick Plant Soil

Report Number: 680-181268-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 03/06/2020; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.6 C.

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples IDW-1-03042020 (680-181268-5) and IDW-2-03042020 (680-181268-7) were analyzed for TCLP volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 03/11/2020 and analyzed on 03/13/2020.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 680-610865 recovered outside control limits for the following analytes: Tetrachloroethene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Refer to the QC report for details.

Samples IDW-1-03042020 (680-181268-5)[20X] and IDW-2-03042020 (680-181268-7)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 680-611064.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample TB-0103052020 (680-181268-8) was analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 03/16/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PESTICIDES (TCLP)

Samples IDW-1-03042020 (680-181268-5) and IDW-2-03042020 (680-181268-7) were analyzed for Pesticides (TCLP) in accordance with EPA SW-846 Method 1311/8081B_8082A. The samples were leached on 03/12/2020, prepared on 03/18/2020 and analyzed on 03/21/2020.

This method incorporates 2nd column confirmation. Corrective action is not taken for surrogate/spike compounds unless results from both columns are unacceptable. Results outside criteria are qualified.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 680-181268-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

PERCENT SOLIDS

Samples APT-01-84-85-02272020 (680-181268-1), APT-01-94-95-02272020 (680-181268-2), APT-01-79-80-02272020 (680-181268-3), PWOW-02-86-03032020 (680-181268-4) and PWOW-02-81-03032020 (680-181268-6) were analyzed for percent solids in accordance with SM 2540G. The samples were analyzed on 03/13/2020.

Constant weight was not achieved after 3 drying cycles for the following samples: APT-01-94-95-02272020 (680-181268-2) and (680-181268-C-1 DU). The sample results have been reported.

The following sample(s) were received outside of holding time: APT-01-84-85-02272020 (680-181268-1), APT-01-94-95-02272020 (680-181268-2) and APT-01-79-80-02272020 (680-181268-3).

The following sample(s) were received with approximately half of their hold time expired snd the lab was unable to analyze the samples within hold: PWOW-02-86-03032020 (680-181268-4) and PWOW-02-81-03032020 (680-181268-6).

It was noted the Ash Content, Fixed Solids and Total Solids were detected in method blank MB 680-611175/1 at levels exceeding the reporting limit of 0.1%. Since the lab uses sand as the blank matrix it will always be reported above this limit.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GRAIN SIZE

Samples APT-01-84-85-02272020 (680-181268-1), APT-01-94-95-02272020 (680-181268-2), APT-01-79-80-02272020 (680-181268-3), PWOW-02-86-03032020 (680-181268-4) and PWOW-02-81-03032020 (680-181268-6) were analyzed for grain size in accordance with ASTM D422. The samples were analyzed on 03/12/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL ORGANIC CARBON

Samples APT-01-84-85-02272020 (680-181268-1), APT-01-94-95-02272020 (680-181268-2), APT-01-79-80-02272020 (680-181268-3), PWOW-02-86-03032020 (680-181268-4) and PWOW-02-81-03032020 (680-181268-6) were analyzed for Total Organic Carbon in accordance with Walkley Black (TOC). The samples were analyzed on 03/24/2020.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick Plant Soil

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-181268-1	APT-01-84-85-02272020	Solid	02/27/20 11:30	03/06/20 09:15
680-181268-2	APT-01-94-95-02272020	Solid	02/27/20 11:30	03/06/20 09:15
680-181268-3	APT-01-79-80-02272020	Solid	02/27/20 11:30	03/06/20 09:15
680-181268-4	PWOW-02-86-03032020	Solid	03/03/20 13:00	03/06/20 09:15
680-181268-5	IDW-1-03042020	Solid	03/04/20 16:00	03/06/20 09:15
680-181268-6	PWOW-02-81-03032020	Solid	03/03/20 13:00	03/06/20 09:15
680-181268-7	IDW-2-03042020	Solid	03/04/20 16:00	03/06/20 09:15
680-181268-8	TB-0103052020	Water	03/05/20 11:00	03/06/20 09:15

Eurofins TestAmerica, Savannah

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick Plant Soil

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
8081B/8082A	Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography	SW846	TAL SAV
SM 2540G	Total, Fixed, and Volatile Solids	SM	TAL SAV
WALKLEY BLACK	Organic Carbon, Total (TOC)	MSA	TAL PEN
D422	Grain Size	ASTM	TAL BUR
1311	TCLP Extraction	SW846	TAL SAV
3520C	Liquid-Liquid Extraction (Continuous)	SW846	TAL SAV
5030B	Purge and Trap	SW846	TAL SAV

Protocol References:

ASTM = ASTM International

MSA = "Methods Of Soil Analysis, Chemical And Microbiological Properties", Part 2, 2nd Ed., 1982 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Qualifiers

quantoro		
GC/MS VOA		
Qualifier	Qualifier Description	4
*	LCS or LCSD is outside acceptance limits.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VO	A	
Qualifier	Qualifier Description	6
U	Indicates the analyte was analyzed for but not detected.	
General Che	emistry	
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	8
H3	Sample was received and analyzed past holding time.	
U	Indicates the analyte was analyzed for but not detected.	9
Glossary		4
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4.
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	1
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	

- LOQLimit of Quantitation (DoD/DOE)MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)
- MDLMethod Detection LimitMLMinimum Level (Dioxin)
- NC Not Calculated
- ND Not Detected at the reporting limit (or MDL or EDL if shown)
- PQL Practical Quantitation Limit
- QC Quality Control
- RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick Plant Soil

Client Sample ID: APT-01-84-85-02272020

4
5
6
7
8
9
13

Lab Sample ID: 680-181268-1

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Fixed Solids	100	Н НЗ	0.10		%	1	_	SM 2540G	Total/NA
Total Solids	92	Н НЗ	0.10		%	1		SM 2540G	Total/NA
Total Volatile Solids	0.42	H H3	0.10		%	1		SM 2540G	Total/NA
Ash Content	100	Н Н3	0.10		%	1		SM 2540G	Total/NA
Total Organic Carbon	0.50		0.10		Percent	1		WALKLEY BLACK	Total/NA
Fine Sand	13.4				%	1		D422	Total/NA
Sieve Size 3 inch	0.0				%	1		D422	Total/NA
Gravel	1.5				%	1		D422	Total/NA
Sieve Size 2 inch	0.0				%	1		D422	Total/NA
Coarse Sand	7.9				%	1		D422	Total/NA
Sieve Size 1 inch	0.0				%	1		D422	Total/NA
Medium Sand	64.3				%	1		D422	Total/NA
Sieve Size 1.5 inch	0.0				%	1		D422	Total/NA
Sand	85.6				%	1		D422	Total/NA
Sieve Size 0.75 inch	0.0				%	1		D422	Total/NA
Fines	12.9				%	1		D422	Total/NA
Sieve Size 0.375 inch	0.0				%	1		D422	Total/NA
Sieve Size #4	1.5				%	1		D422	Total/NA
Sieve Size #10	7.9				%	1		D422	Total/NA
Sieve Size #20	36.3				%	1		D422	Total/NA
Sieve Size #40	28.0				%	1		D422	Total/NA
Sieve Size #60	6.0				%	1		D422	Total/NA
Sieve Size #80	2.9				%	1		D422	Total/NA
Sieve Size #100	1.9				%	1		D422	Total/NA
Sieve Size #200	2.6				%	1		D422	Total/NA

Client Sample ID: APT-01-94-95-02272020

Lab Sample ID: 680-181268-2

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Fixed Solids	99	H H3	0.10		%	1	_	SM 2540G	Total/NA
Total Solids	87	H H3	0.10		%	1		SM 2540G	Total/NA
Total Volatile Solids	0.53	H H3	0.10		%	1		SM 2540G	Total/NA
Ash Content	99	H H3	0.10		%	1		SM 2540G	Total/NA
Total Organic Carbon	0.18		0.10		Percent	1		WALKLEY BLACK	Total/NA
Fine Sand	13.2				%	1		D422	Total/NA
Sieve Size 3 inch	0.0				%	1		D422	Total/NA
Gravel	0.9				%	1		D422	Total/NA
Sieve Size 2 inch	0.0				%	1		D422	Total/NA
Coarse Sand	7.7				%	1		D422	Total/NA
Sieve Size 1 inch	0.0				%	1		D422	Total/NA
Medium Sand	67.6				%	1		D422	Total/NA
Sieve Size 1.5 inch	0.0				%	1		D422	Total/NA
Sand	88.5				%	1		D422	Total/NA
Sieve Size 0.75 inch	0.0				%	1		D422	Total/NA
Fines	10.6				%	1		D422	Total/NA
Sieve Size 0.375 inch	0.0				%	1		D422	Total/NA
Sieve Size #4	0.9				%	1		D422	Total/NA
Sieve Size #10	7.7				%	1		D422	Total/NA
Sieve Size #20	40.7				%	1		D422	Total/NA
Sieve Size #40	26.9				%	1		D422	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Savannah

Detection Summary

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick Plant Soil

Client Sample ID: APT-01-94-95-02272020 (Continued)

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Sieve Size #60	5.9				%	1	_	D422	Total/NA
Sieve Size #80	2.9				%	1		D422	Total/NA
Sieve Size #100	1.7				%	1		D422	Total/NA
Sieve Size #200	2.7				%	1		D422	Total/NA

Client Sample ID: APT-01-79-80-02272020

Analyte Dil Fac D Method **Result Qualifier** RL RL Unit Prep Type Fixed Solids 99 H H3 0.10 % SM 2540G Total/NA 1 Total Solids 86 H H3 0.10 % 1 SM 2540G Total/NA **Total Volatile Solids** 1.2 HH3 0.10 % 1 SM 2540G Total/NA Ash Content 100 HH3 0 10 % SM 2540G Total/NA 1 Total Organic Carbon 0.34 0.10 Percent Total/NA 1 WALKLEY BLACK Fine Sand 17.4 % 1 D422 Total/NA Sieve Size 3 inch % D422 Total/NA 0.0 1 % D422 Total/NA Gravel 1.2 1 D422 Total/NA Sieve Size 2 inch 0.0 % 1 Coarse Sand % D422 Total/NA 10.8 1 Sieve Size 1 inch % D422 Total/NA 0.0 1 Medium Sand 62.3 % D422 Total/NA 1 Sieve Size 1.5 inch 0.0 % D422 Total/NA 1 % D422 Total/NA Sand 90.5 1 Sieve Size 0.75 inch 0.0 % D422 Total/NA 1 % Fines 8.3 D422 Total/NA 1 Sieve Size 0.375 inch 0.0 % 1 D422 Total/NA Sieve Size #4 1.2 % D422 Total/NA 1 Sieve Size #10 10.8 % 1 D422 Total/NA Sieve Size #20 33.4 % 1 D422 Total/NA Sieve Size #40 28.9 % 1 D422 Total/NA Sieve Size #60 6.1 % 1 D422 Total/NA Sieve Size #80 % D422 Total/NA 5.1 1 Sieve Size #100 % D422 Total/NA 2.8 1 Sieve Size #200 % D422 Total/NA 3.4 1

Client Sample ID: PWOW-02-86-03032020

Lab Sample ID: 680-181268-4

Analyte	Result	Qualifier	RL	RL Unit	Dil Fac	D Method	Prep Type
Fixed Solids	99	Н	0.10	%	1	SM 2540G	Total/NA
Total Solids	92	Н	0.10	%	1	SM 2540G	Total/NA
Total Volatile Solids	0.76	н	0.10	%	1	SM 2540G	Total/NA
Ash Content	99	Н	0.10	%	1	SM 2540G	Total/NA
Total Organic Carbon	0.22		0.10	Percent	1	WALKLEY BLACK	Total/NA
Fine Sand	15.8			%	1	D422	Total/NA
Sieve Size 3 inch	0.0			%	1	D422	Total/NA
Gravel	2.0			%	1	D422	Total/NA
Sieve Size 2 inch	0.0			%	1	D422	Total/NA
Coarse Sand	7.6			%	1	D422	Total/NA
Sieve Size 1 inch	0.0			%	1	D422	Total/NA
Medium Sand	66.0			%	1	D422	Total/NA
Sieve Size 1.5 inch	0.0			%	1	D422	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Savannah

Job ID: 680-181268-1

Lab Sample ID: 680-181268-2

Lab Sample ID: 680-181268-3

Client Sample ID: PWOW-02-86-03032020 (Continued)

Lab Sample ID: 680-181268-4

Lab Sample ID: 680-181268-5

Job ID: 680-181268-1

Analyte	Result Qualit	ier NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Sand	89.4			%	1	_	D422	Total/NA
Sieve Size 0.75 inch	0.0			%	1		D422	Total/NA
Fines	8.7			%	1		D422	Total/NA
Sieve Size 0.375 inch	0.0			%	1		D422	Total/NA
Sieve Size #4	2.0			%	1		D422	Total/NA
Sieve Size #10	7.6			%	1		D422	Total/NA
Sieve Size #20	41.0			%	1		D422	Total/NA
Sieve Size #40	25.0			%	1		D422	Total/NA
Sieve Size #60	7.3			%	1		D422	Total/NA
Sieve Size #80	3.1			%	1		D422	Total/NA
Sieve Size #100	2.4			%	1		D422	Total/NA
Sieve Size #200	2.9			%	1		D422	Total/NA

Client Sample ID: IDW-1-03042020

No Detections.

Client Sample ID: PWOW-02-81-03032020

Analvte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Fixed Solids	99	H	0.10		%	1	_	SM 2540G	Total/NA
Total Solids	95	н	0.10		%	1		SM 2540G	Total/NA
Total Volatile Solids	0.72	н	0.10		%	1		SM 2540G	Total/NA
Ash Content	99	Η	0.10		%	1		SM 2540G	Total/NA
Total Organic Carbon	0.28		0.10		Percent	1		WALKLEY	Total/NA
								BLACK	
Fine Sand	9.2				%	1		D422	Total/NA
Sieve Size 3 inch	0.0				%	1		D422	Total/NA
Gravel	1.1				%	1		D422	Total/NA
Sieve Size 2 inch	0.0				%	1		D422	Total/NA
Coarse Sand	8.2				%	1		D422	Total/NA
Sieve Size 1 inch	0.0				%	1		D422	Total/NA
Medium Sand	71.8				%	1		D422	Total/NA
Sieve Size 1.5 inch	0.0				%	1		D422	Total/NA
Sand	89.2				%	1		D422	Total/NA
Sieve Size 0.75 inch	0.0				%	1		D422	Total/NA
Fines	9.7				%	1		D422	Total/NA
Sieve Size 0.375 inch	0.0				%	1		D422	Total/NA
Sieve Size #4	1.1				%	1		D422	Total/NA
Sieve Size #10	8.2				%	1		D422	Total/NA
Sieve Size #20	49.2				%	1		D422	Total/NA
Sieve Size #40	22.6				%	1		D422	Total/NA
Sieve Size #60	4.0				%	1		D422	Total/NA
Sieve Size #80	2.1				%	1		D422	Total/NA
Sieve Size #100	1.2				%	1		D422	Total/NA
Sieve Size #200	1.9				%	1		D422	Total/NA

Client Sample ID: IDW-2-03042020

No Detections.

Client Sample ID: TB-0103052020

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Savannah

3/27/2020

Lab Sample ID: 680-181268-8

Lab Sample ID: 680-181268-7

Client Sample ID: APT-01-84-85-02272020 Date Collected: 02/27/20 11:30

Date Received: 03/06/20 09:15

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	0.50		0.10		Percent			03/24/20 08:15	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fixed Solids	100	H H3	0.10		%			03/13/20 15:55	1
Total Solids	92	Н НЗ	0.10		%			03/13/20 15:55	1
Total Volatile Solids	0.42	Н НЗ	0.10		%			03/13/20 15:55	1
Ash Content	100	H H3	0.10		%			03/13/20 15:55	1

Method: D422 - Grain Size

Analyte Re	sult Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac	3
Fine Sand	3.4			%			03/12/20 10:37	1	
Sieve Size 3 inch	0.0			%			03/12/20 10:37	1	
Gravel	1.5			%			03/12/20 10:37	1	
Sieve Size 2 inch	0.0			%			03/12/20 10:37	1	
Coarse Sand	7.9			%			03/12/20 10:37	1	
Sieve Size 1 inch	0.0			%			03/12/20 10:37	1	
Medium Sand	4.3			%			03/12/20 10:37	1	
Sieve Size 1.5 inch	0.0			%			03/12/20 10:37	1	13
Sand	5.6			%			03/12/20 10:37	1	
Sieve Size 0.75 inch	0.0			%			03/12/20 10:37	1	
Fines	2.9			%			03/12/20 10:37	1	
Sieve Size 0.375 inch	0.0			%			03/12/20 10:37	1	
Sieve Size #4	1.5			%			03/12/20 10:37	1	
Sieve Size #10	7.9			%			03/12/20 10:37	1	
Sieve Size #20	6.3			%			03/12/20 10:37	1	
Sieve Size #40	8.0			%			03/12/20 10:37	1	
Sieve Size #60	6.0			%			03/12/20 10:37	1	
Sieve Size #80	2.9			%			03/12/20 10:37	1	
Sieve Size #100	1.9			%			03/12/20 10:37	1	
Sieve Size #200	2.6			%			03/12/20 10:37	1	

Matrix: Solid

5

8

Lab Sample ID: 680-181268-1

Client Sample ID: APT-01-94-95-02272020 Date Collected: 02/27/20 11:30

Date Received: 03/06/20 09:15

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	0.18		0.10		Percent			03/24/20 08:15	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fixed Solids	99	H H3	0.10		%			03/13/20 15:55	1
Total Solids	87	Н НЗ	0.10		%			03/13/20 15:55	1
Total Volatile Solids	0.53	Н НЗ	0.10		%			03/13/20 15:55	1
Ash Content	99	H H3	0.10		%			03/13/20 15:55	1

Method: D422 - Grain Size

Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac	3
Fine Sand	13.2				%			03/12/20 10:40	1	
Sieve Size 3 inch	0.0				%			03/12/20 10:40	1	
Gravel	0.9				%			03/12/20 10:40	1	
Sieve Size 2 inch	0.0				%			03/12/20 10:40	1	
Coarse Sand	7.7				%			03/12/20 10:40	1	
Sieve Size 1 inch	0.0				%			03/12/20 10:40	1	
Medium Sand	67.6				%			03/12/20 10:40	1	
Sieve Size 1.5 inch	0.0				%			03/12/20 10:40	1	13
Sand	88.5				%			03/12/20 10:40	1	
Sieve Size 0.75 inch	0.0				%			03/12/20 10:40	1	
Fines	10.6				%			03/12/20 10:40	1	
Sieve Size 0.375 inch	0.0				%			03/12/20 10:40	1	
Sieve Size #4	0.9				%			03/12/20 10:40	1	
Sieve Size #10	7.7				%			03/12/20 10:40	1	
Sieve Size #20	40.7				%			03/12/20 10:40	1	
Sieve Size #40	26.9				%			03/12/20 10:40	1	
Sieve Size #60	5.9				%			03/12/20 10:40	1	
Sieve Size #80	2.9				%			03/12/20 10:40	1	
Sieve Size #100	1.7				%			03/12/20 10:40	1	
Sieve Size #200	2.7				%			03/12/20 10:40	1	

5

8

Matrix: Solid

Client Sample ID: APT-01-79-80-02272020 Date Collected: 02/27/20 11:30

Date Received: 03/06/20 09:15

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fixed Solids	99	H H3	0.10		%			03/13/20 15:55	1
Total Solids	86	Н НЗ	0.10		%			03/13/20 15:55	1
Total Volatile Solids	1.2	Н НЗ	0.10		%			03/13/20 15:55	1
Ash Content	100	H H3	0.10		%			03/13/20 15:55	1

Method: D422 - Grain Size

Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac	3
Fine Sand	17.4				%			03/12/20 10:42	1	
Sieve Size 3 inch	0.0				%			03/12/20 10:42	1	
Gravel	1.2				%			03/12/20 10:42	1	
Sieve Size 2 inch	0.0				%			03/12/20 10:42	1	
Coarse Sand	10.8				%			03/12/20 10:42	1	
Sieve Size 1 inch	0.0				%			03/12/20 10:42	1	
Medium Sand	62.3				%			03/12/20 10:42	1	
Sieve Size 1.5 inch	0.0				%			03/12/20 10:42	1	13
Sand	90.5				%			03/12/20 10:42	1	
Sieve Size 0.75 inch	0.0				%			03/12/20 10:42	1	
Fines	8.3				%			03/12/20 10:42	1	
Sieve Size 0.375 inch	0.0				%			03/12/20 10:42	1	
Sieve Size #4	1.2				%			03/12/20 10:42	1	
Sieve Size #10	10.8				%			03/12/20 10:42	1	
Sieve Size #20	33.4				%			03/12/20 10:42	1	
Sieve Size #40	28.9				%			03/12/20 10:42	1	
Sieve Size #60	6.1				%			03/12/20 10:42	1	
Sieve Size #80	5.1				%			03/12/20 10:42	1	
Sieve Size #100	2.8				%			03/12/20 10:42	1	
Sieve Size #200	3.4				%			03/12/20 10:42	1	

Matrix: Solid

5

8

Lab Sample ID: 680-181268-3

Client Sample ID: PWOW-02-86-03032020 Date Collected: 03/03/20 13:00

Date Received: 03/06/20 09:15

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	0.22		0.10		Percent			03/24/20 08:15	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fixed Solids	99	H	0.10		%			03/13/20 15:55	1
Total Solids	92	н	0.10		%			03/13/20 15:55	1
Total Volatile Solids	0.76	н	0.10		%			03/13/20 15:55	1
Ash Content	99	Н	0.10		%			03/13/20 15:55	1

Method: D422 - Grain Size

Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac	3
Fine Sand	15.8				%			03/12/20 10:44	1	
Sieve Size 3 inch	0.0				%			03/12/20 10:44	1	
Gravel	2.0				%			03/12/20 10:44	1	
Sieve Size 2 inch	0.0				%			03/12/20 10:44	1	
Coarse Sand	7.6				%			03/12/20 10:44	1	
Sieve Size 1 inch	0.0				%			03/12/20 10:44	1	
Medium Sand	66.0				%			03/12/20 10:44	1	
Sieve Size 1.5 inch	0.0				%			03/12/20 10:44	1	13
Sand	89.4				%			03/12/20 10:44	1	
Sieve Size 0.75 inch	0.0				%			03/12/20 10:44	1	
Fines	8.7				%			03/12/20 10:44	1	
Sieve Size 0.375 inch	0.0				%			03/12/20 10:44	1	
Sieve Size #4	2.0				%			03/12/20 10:44	1	
Sieve Size #10	7.6				%			03/12/20 10:44	1	
Sieve Size #20	41.0				%			03/12/20 10:44	1	
Sieve Size #40	25.0				%			03/12/20 10:44	1	
Sieve Size #60	7.3				%			03/12/20 10:44	1	
Sieve Size #80	3.1				%			03/12/20 10:44	1	
Sieve Size #100	2.4				%			03/12/20 10:44	1	
Sieve Size #200	2.9				%			03/12/20 10:44	1	

Job ID: 680-181268-1

Lab Sample ID: 680-181268-4

Matrix: Solid

5

8

Client Sample ID: IDW-1-03042020 Date Collected: 03/04/20 16:00 Date Received: 03/06/20 09:15

Analyte

Benzene

2-Butanone (MEK)

Chlorobenzene

Chloroform

Carbon tetrachloride

1,4-Dichlorobenzene

1,2-Dichloroethane

1,1-Dichloroethene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Job ID: 680-181268-7

Lab Sample ID: 680-181268-5

Matrix: Solid

13 14

Method: 8260B - Volatile Organic Compounds (GC/MS) - TCLP 5 Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.020 U 0.020 mg/L 03/13/20 17:12 20 0.20 U 03/13/20 17:12 0.20 20 mg/L 0.020 U 0.020 mg/L 03/13/20 17:12 20 0.020 U 0.020 03/13/20 17:12 20 mg/L 0.020 U 0.020 mg/L 03/13/20 17:12 20 0.020 U 0.020 03/13/20 17:12 20 mg/L 0.020 U 0.020 mg/L 03/13/20 17:12 20 0.020 U 0.020 03/13/20 17:12 20 mg/L 0.020 U* 0.020 03/13/20 17:12 20 mg/L 0.020 U 03/13/20 17:12 20 0.020 mg/L 0.020 U 0.020 03/13/20 17:12 20 mg/L

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		80 - 120		03/13/20 17:12	20
Dibromofluoromethane (Surr)	105		80 - 122		03/13/20 17:12	20
1,2-Dichloroethane-d4 (Surr)	102		73 - 131		03/13/20 17:12	20
Toluene-d8 (Surr)	98		80 - 120		03/13/20 17:12	20

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.012	U	0.012		mg/L		03/18/20 18:08	03/21/20 23:36	1
Endrin	0.0012	U	0.0012		mg/L		03/18/20 18:08	03/21/20 23:36	1
gamma-BHC (Lindane)	0.0012	U	0.0012		mg/L		03/18/20 18:08	03/21/20 23:36	1
Heptachlor	0.0012	U	0.0012		mg/L		03/18/20 18:08	03/21/20 23:36	1
Heptachlor epoxide	0.0012	U	0.0012		mg/L		03/18/20 18:08	03/21/20 23:36	1
Methoxychlor	0.0012	U	0.0012		mg/L		03/18/20 18:08	03/21/20 23:36	1
Toxaphene	0.12	U	0.12		mg/L		03/18/20 18:08	03/21/20 23:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	97		14 - 130				03/18/20 18:08	03/21/20 23:36	1
Tetrachloro-m-xylene	91		40 - 130				03/18/20 18:08	03/21/20 23:36	1

Client Sample ID: PWOW-02-81-03032020 Date Collected: 03/03/20 13:00

Date Received: 03/06/20 09:15

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	0.28		0.10		Percent			03/24/20 12:21	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fixed Solids	99	H	0.10		%			03/13/20 15:55	1
Total Solids	95	н	0.10		%			03/13/20 15:55	1
Total Volatile Solids	0.72	н	0.10		%			03/13/20 15:55	1
Ash Content	99	Н	0.10		%			03/13/20 15:55	1

Method: D422 - Grain Size

Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac	3
Fine Sand	9.2				%			03/12/20 10:47	1	
Sieve Size 3 inch	0.0				%			03/12/20 10:47	1	
Gravel	1.1				%			03/12/20 10:47	1	
Sieve Size 2 inch	0.0				%			03/12/20 10:47	1	
Coarse Sand	8.2				%			03/12/20 10:47	1	
Sieve Size 1 inch	0.0				%			03/12/20 10:47	1	
Medium Sand	71.8				%			03/12/20 10:47	1	
Sieve Size 1.5 inch	0.0				%			03/12/20 10:47	1	13
Sand	89.2				%			03/12/20 10:47	1	
Sieve Size 0.75 inch	0.0				%			03/12/20 10:47	1	
Fines	9.7				%			03/12/20 10:47	1	
Sieve Size 0.375 inch	0.0				%			03/12/20 10:47	1	
Sieve Size #4	1.1				%			03/12/20 10:47	1	
Sieve Size #10	8.2				%			03/12/20 10:47	1	
Sieve Size #20	49.2				%			03/12/20 10:47	1	
Sieve Size #40	22.6				%			03/12/20 10:47	1	
Sieve Size #60	4.0				%			03/12/20 10:47	1	
Sieve Size #80	2.1				%			03/12/20 10:47	1	
Sieve Size #100	1.2				%			03/12/20 10:47	1	
Sieve Size #200	1.9				%			03/12/20 10:47	1	

Matrix: Solid

5

8

Lab Sample ID: 680-181268-6

Client Sample ID: IDW-2-03042020 Date Collected: 03/04/20 16:00 Date Received: 03/06/20 09:15

....

Toluene-d8 (Surr)

Lab Sample ID: 680-181268-7

03/13/20 17:36

2 3 4

Matrix: Solid

	3

20

14

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS) - T	CLP						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.020	U	0.020		mg/L			03/13/20 17:36	20
2-Butanone (MEK)	0.20	U	0.20		mg/L			03/13/20 17:36	20
Carbon tetrachloride	0.020	U	0.020		mg/L			03/13/20 17:36	20
Chlorobenzene	0.020	U	0.020		mg/L			03/13/20 17:36	20
Chloroform	0.020	U	0.020		mg/L			03/13/20 17:36	20
1,4-Dichlorobenzene	0.020	U	0.020		mg/L			03/13/20 17:36	20
1,2-Dichloroethane	0.020	U	0.020		mg/L			03/13/20 17:36	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			03/13/20 17:36	20
Tetrachloroethene	0.020	U *	0.020		mg/L			03/13/20 17:36	20
Trichloroethene	0.020	U	0.020		mg/L			03/13/20 17:36	20
Vinyl chloride	0.020	U	0.020		mg/L			03/13/20 17:36	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		80 - 120			-		03/13/20 17:36	20
Dibromofluoromethane (Surr)	105		80 - 122					03/13/20 17:36	20
1 2-Dichloroethane-d4 (Surr)	102		73 - 131					03/13/20 17:36	20

80 - 120

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

98

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.012	U	0.012	mg/L		03/18/20 18:08	03/21/20 23:50	1
Endrin	0.0012	U	0.0012	mg/L		03/18/20 18:08	03/21/20 23:50	1
gamma-BHC (Lindane)	0.0012	U	0.0012	mg/L		03/18/20 18:08	03/21/20 23:50	1
Heptachlor	0.0012	U	0.0012	mg/L		03/18/20 18:08	03/21/20 23:50	1
Heptachlor epoxide	0.0012	U	0.0012	mg/L		03/18/20 18:08	03/21/20 23:50	1
Methoxychlor	0.0012	U	0.0012	mg/L		03/18/20 18:08	03/21/20 23:50	1
Toxaphene	0.12	U	0.12	mg/L		03/18/20 18:08	03/21/20 23:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	104		14 - 130			03/18/20 18:08	03/21/20 23:50	1
Tetrachloro-m-xylene	87		40 - 130			03/18/20 18:08	03/21/20 23:50	1

Matrix: Water

Lab Sample ID: 680-181268-8

Client Sample ID: TB-0103052020 Date Collected: 03/05/20 11:00

Date Received: 03/06/20 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	1.0	U	1.0		ug/L			03/16/20 18:53	1
p-Cymene	1.0	U	1.0		ug/L			03/16/20 18:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		73 - 131			-		03/16/20 18:53	1
4-Bromofluorobenzene (Surr)	100		80 - 120					03/16/20 18:53	1
()									
Dibromofluoromethane (Surr)	99		80 - 122					03/16/20 18:53	1

Eurofins TestAmerica, Savannah

TestAmerica Inc. Burlington Page 19 of 48

Particle Size of Soils by ASTM D422

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	98.5	1.5
#10	2000	90.6	7.9
#20	850	54.3	36.3
#40	425	26.3	28.0
#60	250	20.3	6.0
#80	180	17.4	2.9
#100	150	15.5	1.9
#200	75	12.9	2.6

Soil	Percent of
Classification	sample
Gravel	1.5
Sand	85.6
Coarse Sand	7.9
Medium Sand	64.3
Fine Sand	13.4
Fines	12.9

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.1	0.9
#10	2000	91.4	7.7
#20	850	50.7	40.7
#40	425	23.8	26.9
#60	250	17.9	5.9
#80	180	15.0	2.9
#100	150	13.3	1.7
#200	75	10.6	2.7

Soil	Percent of
Classification	sample
Gravel	0.9
Sand	88.5
Coarse Sand	7.7
Medium Sand	67.6
Fine Sand	13.2
Fines	10.6

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	98.8	1.2
#10	2000	88.0	10.8
#20	850	54.6	33.4
#40	425	25.7	28.9
#60	250	19.6	6.1
#80	180	14.5	5.1
#100	150	11.7	2.8
#200	75	8.3	3.4

·	
Soil	Percent of
Classification	sample
Gravel	1.2
Sand	90.5
Coarse Sand	10.8
Medium Sand	62.3
Fine Sand	17.4
Fines	8.3

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	98.0	2.0
#10	2000	90.4	7.6
#20	850	49.4	41.0
#40	425	24.4	25.0
#60	250	17.1	7.3
#80	180	14.0	3.1
#100	150	11.6	2.4
#200	75	8.7	2.9

Soil	Percent of
Classification	sample
Gravel	2.0
Sand	89.4
Coarse Sand	7.6
Medium Sand	66.0
Fine Sand	15.8
Fines	8.7

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	98.9	1.1
#10	2000	90.7	8.2
#20	850	41.5	49.2
#40	425	18.9	22.6
#60	250	14.9	4.0
#80	180	12.8	2.1
#100	150	11.6	1.2
#200	75	9.7	1.9

Soll	Percent of
Classification	sample
Gravel	1.1
Sand	89.2
Coarse Sand	8.2
Medium Sand	71.8
Fine Sand	9.2
Fines	9.7

Sediment Grain Size - D422							
Client Client Sample ID Lab Sample ID	APT-01-84-8 680-181268-/	5-0227202 A-1		ЦΟШ	ate Received tart Date nd Date	3/6/2020 03/12/2020 10:37 03/16/2020 10:04	
Drv Weight Determination				Z	on-soil material:	EL.	
Tin Weight Wet Sample + Tin	1.00 26.92	00		ST	hape (> #10): ardness (> #10):	angular hard	
Dry Sample + Tin	24.15	. 0					
% Moisture	10.69	%			ate/Time in oven	03/12/2020 10:37	
					ate/ I ime out of oven	03/13/2020 6:46	
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)	I	ydrometer Data		
Sample Weight (Wet)	44.07	211.33	167.26	S S S S S S S S S S S S S S S S S S S	erial Number		
sample weight (Oven Dried)			149	ت د	allo. Uate (mm/dd/yyy) ow Temp (C)		
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	£	eading at Low Temp		
Sample >=#10			14	I	igh Temp (C)		
Sample <#10			135	£	eading at High Temp		
% Passing #10			80.7	T	ydrometer Cal Slope	#DIV/0i	
				ΙO	ydrometer Cal Intercept efault Soil Gravity	#DIV/0! 2.6500	
Gravel/Sand Fraction (Sieves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0) Gravel	
2 inch	50000			0.00 g	100.0) Gravel	
1.5 inch	37500			0.00 g	100.0) Gravel	
1 inch	25000			0.00 g	100.0) Gravel	
3/4 inch	19000			0.00 g	100.0) Gravel	
3/8 inch	9500			0.00 g	100.0) Gravel	
#4	4750	487.90	490.10	2.20 g	98.5	i Gravel	
#10	2000	462.54	474.38	11.84 g	90.6	Sand	Coarse
#20	850	378.32	432.36	54.04 g	24.3	Sand	Medium
#40	425	366.48	408.14	41.66 g	26.3	Sand	Medium
#60	250	348.07	357.04	8.97 g	20.3	s Sand	Fine
#80	180	337.81	342.20	4.39 g	17.4	Sand	Fine
#100	150	328.12	330.89	2.77 g	15.5	i Sand	Fine
#200	75	312.57	316.37	3.80 g	12.9	Sand	Fine
				0.00 g	12.9		

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

149

1
4
5
6
8
9
13

Sediment Grain Size - D422							
Client Client Sample ID Lab Sample ID	APT-01-94-95 680-181268-7	5-0227202 4-2		Date Red Start Date End Date	seived	3/6/2020 03/12/2020 10:40 03/16/2020 10:16	
		1				0	
Dry Weight Determination				Non-soil	material:	glass	
Tin Weight Wet Sample + Tin	1.00 32.12	0 0		Shape (> Hardnes:	· #10): s (> #10):	angular hard	
Dry Sample + Tin	29.53	0		į			
% Moisture	8.32	%		Date/Tim Date/Tim	e in oven e out of oven	03/12/2020 10:40 03/13/2020 6:45	
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)	Hydrome	eter Data		
Sample Weight (Wet)	44.03	195.36	151.33	Serial Nu	mber		
Sample Weight (Oven Dried)			139	Calib. Da	te (mm/dd/yyyy)		
Change Could State And and	H ()		1-10		p (C)		
Sample Split (oven aried) Semale >=#10	1 are (g)	ran+samp (g)	54mp (g)	неаинд підь тор	at Low Terrip		
			5.11	Dodina Dodina	ip (u) at High Tomo		
Sample <# ru % Passing #10			83.9	Hydrome	at right remp ter Cal Slope	i0//ID#	
5				Hydrome	ter Cal Intercept	i0//\lO#	
Gravel/Sand Eraction (Sieves)				Default S	oil Gravity	2.6500	
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (a)	ample	% Finer	Classification	Sub Class
3 inch	75000	(6)	16) - 12	0.00.0	100.0	Grave	
2 inch	50000			0,00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Grave	
3/8 inch	9500			0.00 g	100.0	Grave	
#4	4750	487.90	489.11	1.21 g	99.1	Grave	
#10	2000	462.54	473.22	10.68 g	91.4	Sand	Coarse
#20	850	373.80	430.35	56.55 g	20.7	Sand	Medium
#40	425	362.12	399.47	37.35 g	23.8	Sand	Medium
#60	250	352.17	360.37	8.20 g	17.9	Sand	Fine
#80	180	319.27	323.36	4.09 g	15.0	Sand	Fine
#100	150	328.47	330.86	2.39 g	13.3	Sand	Fine
#200	75	314.21	317.90	3.69 g	10.6	Sand	Fine
				0.00 g	10.6		

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

139

Sub Class							
Classification	Silt	Silt	Silt	Silt	Silt	Clay	Clay
.e % Finer							
Particle Siz (Micron)							
Temp C							
Spec. Gravity							
Actual	2	5	15	30	60	250	440
~							÷
Test Time (min							
ydrometer							

1
4
5
6
8
9
9 10
9 10 11
9 10 11 12
9 10 11 12 13
9 10 11 12 13 14

Sediment Grain Size - D422							
Client Client Sample ID Lab Sample ID	APT-01-79-80 680-181268-/	0-0227202 A-3			Date Received Start Date End Date	3/6/2020 03/12/2020 10:42 03/16/2020 10:27	
Drv Weicht Defermination					Non-soil material:	an M	
Tin Weight Wet Sample + Tin	1.01 25.85	0 0			Shape (> #10): Hardness (> #10):	angular hard	
Dry Sample + Tin % Moisture	23,12 10.99	6%			Date/Time in oven	03/12/2020 10:42	
					Date/Time out of oven	03/13/2020 6:45	
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)		Hydrometer Data		
Sample Weight (Wet)	44.62	177.39	132.77		Serial Number		
			0		callu. uate (IIIII/uu/yyyy) Low Temp (C)		
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)		Reading at Low Temp		
Sample >=#10			14.2		High Temp (C)		
Sample <#10 % Passing #10			104 78.3		Reading at High Temp Hvdrometer Cal Slone	i0//IC#	
					Hydrometer Cal Intercept	#DIV/0!	
Gravel/Sand Fraction (Sieves)						0000.7	
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00	100.0) Gravel	
2 inch	50000			00'0	100.0) Gravel	
1.5 inch	37500			0.00	g 100.0) Gravel	
1 inch 3/4 inch	25000 19000			00.0	100.0) Gravel	
3/8 inch	9500			00.0	100.0) Gravel	
#4	4750	487.90	489.36	1.46	98.6	3 Gravel	
#10	2000	462.54	475.29	12.75	98.0	Sand	Coarse
#20	850	378.32	417.74	39.42	g 54.6	Sand	Medium
#40	425	366.48	400.64	34.16	3 25.7	' Sand	Medium
#60	250	348.07	355.29	7.22	19.6	i Sand	Fine
#80	180	337.81	343.78	5.97	g 14.5	i Sand	Fine
#100	150	328.12	331.47	3.35	11.7	Sand	Fine
#200	75	312.57	316.61	4.04	8	s Sand	Fine
				00.00	0.8 0.9		

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

118

Sub Class							
Classification	Silt	Silt	Silt	Silt	Silt	Clay	Clay
.e % Finer							
Particle Siz (Micron)							
Temp C							
Spec. Gravity							
Actual	2	5	15	30	60	250	440
drometer Test Time (min)							-

Sediment Grain Size - D422							
Client Client Sample ID	PWOW-02-8	6-03032020		Date Rec Start Dat	ceived te	3/6/2020 03/12/2020 10:44	
Lab Sample IU	-9971.81-798-	A-4		End Date	0	03/16/2020 10:30	
Dry Weight Determination				Non-soil	material:	na	
Tin Weight	1.00	D		Shape (>	• #10):	angular	
Wet Sample + Tin Drv Samnle + Tin	28.98 26.58	0.0		Hardnes	s (> #10):	hard	
% Moisture	8.58	»%		Date/Tim	ne in oven	03/12/2020 10:44	
				Date/Tim	ne out of oven	03/13/2020 6:44	
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)	Hydrom	eter Data		
Sample Weight (Wet)	47.86	184.72	136.86	Serial Nu	umber		
Sample Weight (Oven Dried)			125	Calib. De	ate (mm/dd/yyyy)		
				Low Terr	р (C)		
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	Reading	at Low Temp		
Sample >=#10			11.9	High Ten	np (C)		
Sample <#10			113	Reading	at High Temp		
% Passing #10			82.6	Hydrome	eter Cal Slope	#DIV/0i	
				Hydrome	eter Cal Intercept	#DIV/IO	
				Default S	soil Gravity	2.6500	
					i :	:	
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g) S	Sample	% Finer	Classification	Sub Class
3 inch 2 inch	75000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 a	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0'00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750	487.90	490.37	2.47 g	98.0	Grave	
#10	2000	462.54	471.98	9.44 g	90.4	Sand	Coarse
#20	850	373.80	425.08	51.28 g	49.4	Sand	Medium
#40	425	362.12	393.39	31.27 g	24.4	Sand	Medium
#60	250	352.17	361.33	9.16 g	17.1	Sand	Fine
#80	180	319.27	323.19	3.92 g	14.0	Sand	Fine
#100	150	328.47	331.42	2.95 g	11.6	Sand	Fine
#200	75	314.21	317.90	3.69 g	8.7	Sand	Fine
				0.00 0	2 0		

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

125

	Sub Class							
	Classification	Silt	Silt	Silt	Silt	Silt	Clay	Clay
	» % Finer							
	Particle Size (Micron)							
	Temp C							
	Spec. Gravity							
•	Actua	2	5	15	30	60	250	440
•	(u							÷
•	Test Time (m							
•	Hydrometer							

1
4
5
6
8
U
9
9 10
9 10 11
9 10 11 12
9 10 11 12 13
9 10 11 12 13 14

Sediment Grain Size - D422							
Client Client Sample ID Lab Sample ID	PWOW-02-8 680-181268-/	1-03032020 A-6		Date Star Fnd) Received t Date Date	3/6/2020 03/12/2020 10:47 03/16/2020 10:38	
	000	2			- - -		
Ury Weight Determination Tin Weicht	00 1	0		Non	-soil material:	na	
Till weight Wet Sample + Tin Dry Sample + Tin	25.19	ס ס נ		Harc	ue (anguar hard	
W Moisture	10.67	Б 8		Date	%/Time in oven	03/12/2020 10:47	
				Date	%Time out of oven	03/13/2020 6:43	
Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)	Hyd	rometer Data		
Sample Weight (Wet)	47.83	191.07	143.24	Seria	al Number		
Sample Weight (Oven Dried)			128	Calit	Date (mm/dd/yyyy)		
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	Rea	enup (ح) ding at Low Temp		
Sample >=#10			11.9	High	Temp (C)		
Sample <#10			116	Rea	ding at High Temp		
% Passing #10			81	Hydi	rometer Cal Slope	i0//IC#	
				Hydi Defa	rometer Cal Intercept tult Soil Gravity	#DIV/0! 2.6500	
Gravel/Sand Fraction (Sieves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g) S	ample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Grave	
1.5 inch	37500			0.00 g	100.0	Grave	
1 inch	25000			0.00 g	100.0	Grave	
3/4 inch	19000			0.00 g	100.0	Grave	
3/8 inch	9500			0.00 g	100.0	Grave	
#4	4750	487.90	489.25	1.35 g	- B6 - B6	Grave	
#10	2000	462.54	473.06	10.52 g	90.7	Sand	Coarse
#20	850	378.32	441.26	62.94 g	41.5	Sand	Medium
#40	425	366.48	395.37	28.89 g	18.9	Sand	Medium
#60	250	348.07	353.22	5.15 g	14.9	Sand	Fine
#80	180	337.81	340.54	2.73 g	12.8	Sand	Fine
#100	150	328.12	329.68	1.56 g	11.6	Sand	Fine
#200	75	312.57	314.99	2.42 g	9.7	Sand	Fine
				0.00 g	9.7		

Adjusted Hydrometer Sample Mass Hydrometer Sample Mass (g)

	Spec. Gravity
ter Test)	Actual
Silt/Clay Fraction (Hydrome	Hydrometer Test Time (min)

Sub Class							
Classification	Silt	Silt	Silt	Silt	Silt	Clay	Clay
ce % Finer							
Particle Siz (Micron)							
0							
Temp (
Spec. Gravity							
ctual							
4	2	2	15	30	60	250	1440
ometer Test Time (min)							

4
5
6
8
8 9
8 9 10
8 9 10 11
8 9 10 11 12
8 9 10 11 12 13
8 9 10 11 12 13 14

5 6

9

|2 |3

Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Solid

ep Type: Total/NA
•

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid

-				Percent Su	rogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(80-120)	(80-122)	(73-131)	(80-120)
680-181268-5	IDW-1-03042020	87	105	102	98
680-181268-7	IDW-2-03042020	85	105	102	98
LB 680-610834/1-A	Method Blank	86	105	100	94
Surrogate Legend					
BFB = 4-Bromofluorob	enzene (Surr)				
DBFM = Dibromofluoro	omethane (Surr)				
DCA = 1,2-Dichloroeth	ane-d4 (Surr)				
TOL = Toluene-d8 (Su	rr)				

Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water

Prep Type: Total/NA

Prep Type: TCLP

				Percent Surrogate Recovery (A			
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(73-131)	(80-120)	(80-122)	(80-120)		
680-181268-8	TB-0103052020	102	100	99	102		
LCS 680-611064/4	Lab Control Sample	99	96	98	101		
LCSD 680-611064/5	Lab Control Sample Dup	98	95	98	100		
MB 680-611064/10	Method Blank	95	101	98	104		
Surrogate Legend							

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography Matrix: Solid

Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)								
		DCBP1	TCX1							
Lab Sample ID	Client Sample ID	(14-130)	(40-130)							
LCS 680-611512/23-A	Lab Control Sample	42	71							
LCSD 680-611512/24-A	Lab Control Sample Dup	41	91							

Prep Type: Total/NA

5

9

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

Chromatography

Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)
		DCBP2	TCX1	
Lab Sample ID	Client Sample ID	(14-130)	(40-130)	
MB 680-611512/22-A	Method Blank	31	81	
Surrogate Legend				

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

Chromatography

Matrix: Solid

Prep Type: TCLP

				Percent Surrogate Recovery (Acceptance Limits)
		DCBP1	TCX1	
Lab Sample ID	Client Sample ID	(14-130)	(40-130)	
680-181268-5	IDW-1-03042020	97	91	
680-181268-7	IDW-2-03042020	104	87	
LB 680-610654/1-D	Method Blank	77	101	

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-610865/9

Matrix: Solid Analysis Batch: 610865

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
2-Butanone (MEK)	0.010	U	0.010		mg/L			03/13/20 13:42	1
Carbon tetrachloride	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
Chlorobenzene	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
Chloroform	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
1,4-Dichlorobenzene	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
1,2-Dichloroethane	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
1,1-Dichloroethene	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
Tetrachloroethene	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
Trichloroethene	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
Vinyl chloride	0.0010	U	0.0010		mg/L			03/13/20 13:42	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		80 - 120			-		03/13/20 13:42	1
Dibromofluoromethane (Surr)	102		80 - 122					03/13/20 13:42	1

73_131

80 - 120

Lab Sample ID: LCS 680-610865/1004

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.0520		mg/L		104	80 - 120	
2-Butanone (MEK)	0.250	0.223		mg/L		89	79 - 125	
Carbon tetrachloride	0.0500	0.0550		mg/L		110	67 _ 125	
Chlorobenzene	0.0500	0.0571		mg/L		114	80 - 120	
Chloroform	0.0500	0.0482		mg/L		96	80 - 120	
1,4-Dichlorobenzene	0.0500	0.0533		mg/L		107	80 - 120	
1,2-Dichloroethane	0.0500	0.0478		mg/L		96	72 - 128	
1,1-Dichloroethene	0.0500	0.0416		mg/L		83	80 - 120	
Tetrachloroethene	0.0500	0.0623	*	mg/L		125	71 - 123	
Trichloroethene	0.0500	0.0577		mg/L		115	80 - 120	
Vinyl chloride	0.0501	0.0546		mg/L		109	80 - 129	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	102		80 - 122
1,2-Dichloroethane-d4 (Surr)	91		73 - 131
Toluene-d8 (Surr)	99		80 - 120

94

100

Lab Sample ID: LCSD 680-610865/5 Matrix: Solid

Analysis Batch: 610865 LCSD LCSD RPD Spike %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits RPD Limit Benzene 0.0500 0.0517 mg/L 103 80 - 120 1 20 2-Butanone (MEK) 0.250 0.235 mg/L 94 79 - 125 20 5

Eurofins TestAmerica, Savannah

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Method Blank

03/13/20 13:42

03/13/20 13:42

Prep Type: Total/NA

Prep Type: Total/NA

10

3/27/2020

Prep Type: Total/NA

5 6 7

10

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid Analysis Batch: 610865

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon tetrachloride	0.0500	0.0545		mg/L		109	67 _ 125	1	20
Chlorobenzene	0.0500	0.0596		mg/L		119	80 - 120	4	20
Chloroform	0.0500	0.0489		mg/L		98	80 - 120	2	20
1,4-Dichlorobenzene	0.0500	0.0539		mg/L		108	80 - 120	1	20
1,2-Dichloroethane	0.0500	0.0466		mg/L		93	72 _ 128	3	50
1,1-Dichloroethene	0.0500	0.0492		mg/L		98	80 - 120	17	20
Tetrachloroethene	0.0500	0.0624	*	mg/L		125	71 - 123	0	20
Trichloroethene	0.0500	0.0581		mg/L		116	80 - 120	1	20
Vinyl chloride	0.0501	0.0551		mg/L		110	80 - 129	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		80 - 120
Dibromofluoromethane (Surr)	102		80 - 122
1,2-Dichloroethane-d4 (Surr)	90		73_131
Toluene-d8 (Surr)	96		80 - 120

Lab Sample ID: MB 680-611064/10						Client Sample ID: Method Blank					
Matrix: Water								Prep Type: 1	otal/NA		
Analysis Batch: 611064											
	MB	MB									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Xylenes, Total	1.0	U	1.0		ug/L			03/16/20 15:00	1		
p-Cymene	1.0	U	1.0		ug/L			03/16/20 15:00	1		
	МВ	МВ									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene (Surr)	101		80 - 120			-		03/16/20 15:00	1		
Dibromofluoromethane (Surr)	98		80 - 122					03/16/20 15:00	1		
1,2-Dichloroethane-d4 (Surr)	95		73 - 131					03/16/20 15:00	1		
Toluene-d8 (Surr)	104		80 - 120					03/16/20 15:00	1		

Lab Sample ID: LCS 680-611064/4 Matrix: Water Analysis Batch: 611064

Allalysis Dalch. 011004										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Xylenes, Total			100	100		ug/L		100	80 - 120	
p-Cymene			50.0	51.2		ug/L		102	80 - 120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	96		80 - 120							
Dibromofluoromethane (Surr)	98		80 - 122							
1,2-Dichloroethane-d4 (Surr)	99		73_131							
Toluene-d8 (Surr)	101		80 - 120							

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

_

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-6	11064/5					С	lient S	Samp	ole ID:	Lab Control	Samp	le Dup
Matrix: Water										Prep Ty	pe: To	otal/NA
Analysis Batch: 611064												
			Spike	LCSD	LCSD					%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Xylenes, Total			100	99.1		ug/L			99	80 - 120	1	20
p-Cymene			50.0	50.0		ug/L			100	80 - 120	2	20
	LCSD LC	SD										
Surrogate	%Recovery Qu	alifier	Limits									
4-Bromofluorobenzene (Surr)	95		80 - 120									
Dibromofluoromethane (Surr)	98		80 - 122									
1,2-Dichloroethane-d4 (Surr)	98		73_131									
Toluene-d8 (Surr)	100		80 - 120									
 Lab Sample ID: LB 680-6108	34/1-0								Client S	Sample ID: M	lethod	Blank
Matrix: Solid										Dror		
Analysis Batch: 610865										Lieb	, i yhe	TOLF
Analysis Batch. 010005	IF	IB										
Analyte	Resul	Qualifier	RL		MDL Unit		D	Pre	epared	Analyze	d	Dil Fac
Benzene	0.020	U	0.020		mg/L				-	03/13/20 14	4:29	20
2-Butanone (MEK)	0.20	U	0.20		mg/L					03/13/20 14	4:29	20
Carbon tetrachloride	0.020	U	0.020		mg/L					03/13/20 14	4:29	20
Chlorobenzene	0.020) U	0.020		mg/L					03/13/20 14	4:29	20
Chloroform	0.020	U	0.020		mg/L					03/13/20 14	4:29	20
1,4-Dichlorobenzene	0.020	U	0.020		mg/L					03/13/20 14	4:29	20
1,2-Dichloroethane	0.020) U	0.020		mg/L					03/13/20 14	4:29	20
1,1-Dichloroethene	0.020	U	0.020		mg/L					03/13/20 14	4:29	20
Tetrachloroethene	0.020	U	0.020		mg/L					03/13/20 14	4:29	20
Trichloroethene	0.020) U	0.020		mg/L					03/13/20 14	4:29	20
Vinyl chloride	0.020	U	0.020		mg/L					03/13/20 14	4:29	20
	LE	B LB										
Surrogate	%Recovery	Qualifier	Limits					Pre	epared	Analyze	d	Dil Fac
4-Bromofluorobenzene (Surr)		5	80 - 120				-			03/13/20 1	4:29	20
Dibromofluoromethane (Surr)	105	5	80 - 122							03/13/20 1	4:29	20
1,2-Dichloroethane-d4 (Surr)	100)	73_131							03/13/20 1	4:29	20
Toluene-d8 (Surr)	94	4	80 - 120							03/13/20 1	4:29	20

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

Lab Sample ID: MB 680-611512/22-A Matrix: Solid Analysis Batch: 611822							Client Sample ID: Method Bla Prep Type: Total/ Prep Batch: 611				
	МВ	MB						Trop Baton.	011012		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chlordane (technical)	0.00025	U	0.00025		mg/L		03/18/20 18:08	03/20/20 20:04	1		
Endrin	0.000025	U	0.000025		mg/L		03/18/20 18:08	03/20/20 20:04	1		
gamma-BHC (Lindane)	0.000025	U	0.000025		mg/L		03/18/20 18:08	03/20/20 20:04	1		
Heptachlor	0.000025	U	0.000025		mg/L		03/18/20 18:08	03/20/20 20:04	1		
Heptachlor epoxide	0.000025	U	0.000025		mg/L		03/18/20 18:08	03/20/20 20:04	1		
Methoxychlor	0.000025	U	0.000025		mg/L		03/18/20 18:08	03/20/20 20:04	1		
Toxaphene	0.0025	U	0.0025		mg/L		03/18/20 18:08	03/20/20 20:04	1		

12 13 14

Eurofins TestAmerica, Savannah

10

Lab Sample ID: MB 680-611	512/22-A							Client Sa	mple ID: Meth	nod Blank
Matrix: Solid									Prep Type	Total/NA
Analysis Batch: 611822									Prep Batc	h: 611512
-										
Surrogate	%Recove	no mo rv Qual	ifier Lim	ite			-	Pronarod	Analyzed	Dil Fac
DCB Decachlorobiphenvl		31		130			0.3/	18/20 18·08	03/20/20 20:04	1
Tetrachloro-m-xylene		81	40 -	130			03/*	18/20 18:08	03/20/20 20:04	1
Lab Sample ID: LCS 680-61	1512/23-A						Clien	t Sample	ID: Lab Contro	ol Sample
Matrix: Solid Analysis Batch: 611822									Prep Type: Prop Bate	10(al/NA
Analysis Batch. 011022			Spike	LCS	LCS				%Rec.	11. 011512
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin			0.0000500	0.0000475		mg/L		95	59 - 143	
gamma-BHC (Lindane)			0.0000500	0.0000502		mg/L		100	52 - 130	
Heptachlor			0.0000500	0.0000315		mg/L		63	35 - 130	
Heptachlor epoxide			0.0000500	0.0000492		mg/L		98	52 - 130	
Methoxychlor			0.0000500	0.0000528		mg/L		106	52 - 136	
						5				
	LCS L	CS								
Surrogate	%Recovery G	ualifier	Limits							
DCB Decachlorobiphenyl	42		14 - 130							
Lab Sample ID: LCSD 680-6	11512/24-A		40 - 100			Cli	ent San	nple ID: L	ab Control Sa	mple Dup
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822	11512/24-A		40 - 130			Cli	ent San	nple ID: L	ab Control Sa Prep Type Prep Batc	mple Dup : Total/NA h: 611512
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822	11512/24-A		Spike	LCSD	LCSD	Cli	ent San	nple ID: La	ab Control Sa Prep Type Prep Batc %Rec.	mple Dup Total/NA h: 611512 RPD
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte	11512/24-A		Spike Added	LCSD Result	LCSD Qualifier	Clie	ent San	%Rec	ab Control Sa Prep Type: Prep Batc %Rec. Limits R	mple Dup Total/NA h: 611512 RPD Limit
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin	11512/24-A		Spike 	LCSD Result 0.0000536	LCSD Qualifier	Clic Unit mg/L	ent San	nple ID: L a	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143	mple Dup Total/NA h: 611512 RPD PD Limit 12 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane)	11512/24-A		Spike Added 0.0000500 0.0000500	LCSD Result 0.0000536 0.0000507	LCSD Qualifier	Cliv - Unit mg/L mg/L	ent San	%Rec 107 101	Limits R 59 - 143 52 - 130	mple Dup Total/NA h: 611512 RPD PD 1 50 1 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor	11512/24-A 		Spike Added 0.0000500 0.0000500 0.0000500	LCSD Result 0.0000536 0.0000507 0.0000351	LCSD Qualifier	Cliv Unit mg/L mg/L mg/L	ent San	%Rec 107 101 70	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 53 - 130	mple Dup Total/NA h: 611512 RPD PD Limit 1 50 11 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methomethlor	11512/24-A		Spike Added 0.0000500 0.0000500 0.0000500 0.0000500	LCSD Result 0.0000536 0.0000507 0.0000351 0.0000508	LCSD Qualifier	Clie Unit mg/L mg/L mg/L mg/L	ent San	%Rec 107 101 70 102	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 130	mple Dup Total/NA h: 611512 RPD PD 1 50 1 50 3 50 4 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	11512/24-A		Spike Added 0.0000500 0.0000500 0.0000500 0.0000500	LCSD Result 0.0000536 0.0000507 0.0000351 0.0000508 0.0000549	LCSD Qualifier	Clie mg/L mg/L mg/L mg/L	ent San	%Rec 107 101 70 102 110	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 130 52 - 130	PD Limit 12 50 11 50 11 50 3 50 4 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	11512/24-A	CSD	Spike Added 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500	LCSD Result 0.0000536 0.0000507 0.0000351 0.0000508 0.0000549	LCSD Qualifier	Unit mg/L mg/L mg/L mg/L mg/L	ent San	%Rec 107 101 70 102 110	ab Control Sa Prep Type Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 130 52 - 130	PD Limit 12 50 11 50 3 50 4 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate	11512/24-A 	CSD Walifier	Spike Added 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 Limits	LCSD Result 0.0000536 0.0000507 0.0000351 0.0000549	LCSD Qualifier	Unit mg/L mg/L mg/L mg/L mg/L	ent San	%Rec 107 101 70 102 110	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 130	PD Limit 12 50 1 50 11 50 3 50 4 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl	11512/24-A	CSD Qualifier	Spike Added 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 1.0000500	LCSD Result 0.0000536 0.0000507 0.0000351 0.0000508 0.0000549	LCSD Qualifier	Unit mg/L mg/L mg/L mg/L mg/L	ent San	%Rec 107 101 70 102 110	ab Control Sa Prep Type Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 130 52 - 130 52 - 130	PD Limit 12 50 11 50 3 50 4 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene	11512/24-A 	CSD Vualifier	Spike Added 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 <u>Limits</u> 14 - 130 40 - 130	LCSD Result 0.0000536 0.0000507 0.0000351 0.0000508 0.0000549	LCSD Qualifier	Unit mg/L mg/L mg/L mg/L mg/L	ent San	%Rec 107 101 70 102 110	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 55 - 130 52 - 130 52 - 136	PD Limit 1 50 1 50 11 50 3 50 4 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Lab Sample ID: LB 680-6106	11512/24-A 	CSD Qualifier	Spike Added 0.0000500	LCSD Result 0.0000536 0.0000507 0.0000351 0.0000508 0.0000549	LCSD Qualifier	Unit mg/L mg/L mg/L mg/L	ent San	%Rec	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 52 - 130 52 - 130 52 - 136	mple Dup Total/NA h: 611512 RPD 1 50 1 50 1 50 3 50 4 50 hod Blank
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Lab Sample ID: LB 680-6106 Matrix: Solid	11512/24-A 	CSD bualifier	Spike Added 0.0000500 0.00005	LCSD Result 0.0000536 0.0000507 0.0000351 0.0000549	LCSD Qualifier	Unit mg/L mg/L mg/L mg/L	ent San	%Rec	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 52 - 130 52 - 130 52 - 136 mple ID: Mett Prep Ty	PD Limit 1 50 1 50 1 50 3 50 4 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Lab Sample ID: LB 680-6106 Matrix: Solid Analysis Batch: 611822	11512/24-A 	CSD ualifier	Spike Added 0.0000500 0.00005	LCSD Result 0.0000536 0.0000507 0.0000351 0.0000508 0.0000549	LCSD Qualifier	Unit mg/L mg/L mg/L mg/L	ent San	%Rec	ab Control Sa Prep Type Prep Batc %Rec. Limits R 59 - 143 52 - 130 52 - 130 52 - 130 52 - 136	Imple Dup Total/NA h: 611512 RPD 12 50 1 3 4 50 4 50 4 50 4 50 4 50 4 50 4 50
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Lab Sample ID: LB 680-6106 Matrix: Solid Analysis Batch: 611822 Analyte	11512/24-A 	CSD Jualifier	Spike Added 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 <u>Limits</u> 14 - 130 40 - 130	LCSD Result 0.0000536 0.0000351 0.0000549	LCSD Qualifier	Unit mg/L mg/L mg/L mg/L	ent San D 	%Rec	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 52 - 130 52 - 130 52 - 136 mple ID: Meth Prep Ty Prep Batc Analyzed	mple Dup Total/NA h: 611512 RPD 1 50 1 50 1 50 3 50 4 50 hod Blank rpe: TCLP h: 611512 Dil Fac
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Lab Sample ID: LB 680-6106 Matrix: Solid Analysis Batch: 611822 Analyte Chlordane (technical)	11512/24-A 	CSD Jualifier B LB ult Quali	Spike Added 0.0000500 0.00005	LCSD Result 0.0000536 0.0000351 0.0000549 0.0000549	LCSD Qualifier MDL Unit mg/L	Unit mg/L mg/L mg/L mg/L	<u>D</u>	%Rec	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 136 mple ID: Mettr Prep Ty Prep Batc <u>Analyzed</u> 03/20/20 19:50	mple Dup Total/NA h: 611512 RPD 1 50 1 50 1 50 3 50 4 50 hod Blank rpe: TCLP h: 611512 _ Dil Fac 1
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Lab Sample ID: LB 680-6106 Matrix: Solid Analysis Batch: 611822 Analyte Chlordane (technical) Endrin	11512/24-A 	CSD Jualifier	Spike Added 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 <u>Limits</u> 14 - 130 40 - 130	LCSD Result 0.0000536 0.0000351 0.0000549 0.0000549	LCSD Qualifier MDL Unit mg/L mg/L	Unit mg/L mg/L mg/L mg/L	D F 03/' 03/'	%Rec 107 101 70 102 110 Client Sa Prepared 18/20 18:08 18/20 18:08	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 130 52 - 136 Sample ID: Meth Prep Ty Prep Batc <u>Analyzed</u> 03/20/20 19:50 03/20/20 19:50	mple Dup Total/NA h: 611512 RPD 1 50 1 50 1 50 3 50 4 50 hod Blank rpe: TCLP h: 611512 - Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Lab Sample ID: LB 680-6100 Matrix: Solid Analysis Batch: 611822 Analyte Chlordane (technical) Endrin gamma-BHC (Lindane)	11512/24-A 	-B LB uulifier Uulifier Uuli U U U U U U U U U U U U U U	Spike Added 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 ifier 0 0	LCSD Result 0.0000536 0.0000351 0.0000508 0.0000549 0.0000549	LCSD Qualifier MDL Unit mg/L mg/L	Unit mg/L mg/L mg/L mg/L	D F 03/' 03/'	%Rec 107 101 70 102 110 Client Sa Prepared 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 130 52 - 130 52 - 136 Sample ID: Meth Prep Ty Prep Batc 03/20/20 19:50 03/20/20 19:50	mple Dup Total/NA h: 611512 RPD 1 50 1 50 1 50 3 50 4 50 h: 611512 - Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Lab Sample ID: LB 680-6106 Matrix: Solid Analysis Batch: 611822 Analyte Chlordane (technical) Endrin gamma-BHC (Lindane) Heptachlor	11512/24-A LCSD L %Recovery G 41 91 554/1-D Res 0.0 0.00 0.00 0.00 0.00	CSD Jualifier LB LB LB LLT Qualitien L2 U L2 U L2 U L2 U	Spike Added 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 14 - 130 40 - 130 ifier 0 0 0	LCSD Result 0.0000536 0.0000351 0.0000508 0.0000549 0.0000549 0.0000549 0.0000549 0.0000549 0.0000549	LCSD Qualifier MDL Unit mg/L mg/L mg/L mg/L	Unit mg/L mg/L mg/L mg/L	ent San D	%Rec 107 101 70 102 110 Client Sa Prepared 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 130 52 - 136 Sample ID: Meth Prep Ty Prep Batc 03/20/20 19:50 03/20/20 19:50 03/20/20 19:50	mple Dup Total/NA h: 611512 RPD 1 50 1 50 1 50 3 50 4 50 hod Blank pe: TCLP h: 611512 Dil Fac 1 1 1 1 1 1
Lab Sample ID: LCSD 680-6 Matrix: Solid Analysis Batch: 611822 Analyte Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Lab Sample ID: LB 680-6106 Matrix: Solid Analysis Batch: 611822 Analyte Chlordane (technical) Endrin gamma-BHC (Lindane) Heptachlor Heptachlor epoxide	11512/24-A LCSD L %Recovery G 41 91 554/1-D Res 0.0 0.00 0.00 0.00 0.00 0.00 0.00	CSD Jualifier LB LB Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier Jualifier	Spike Added 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 0.0000500 14 - 130 40 - 130 filer 0 0 0 0	LCSD Result 0.0000536 0.0000351 0.0000508 0.0000549 0.0000549 0.0000549 0.0000549 0.0000549 0.0000549	LCSD Qualifier MDL Unit mg/L mg/L mg/L mg/L	Unit mg/L mg/L mg/L mg/L	D F 03/* 03/* 03/* 03/* 03/*	%Rec 107 101 70 102 110 Client Sa Prepared 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08 18/20 18:08	ab Control Sa Prep Type: Prep Batc %Rec. Limits R 59 - 143 52 - 130 35 - 130 52 - 130 52 - 130 52 - 136 Sc - 130 52 - 130 52 - 136 Sc - 130 52 - 136 Sc - 136 S	mple Dup Total/NA h: 611512 RPD 1 50 1 50 1 50 3 50 4 50 hod Blank rpe: TCLP h: 611512 Dil Fac 1 1 1 1 1 1 1

Eurofins TestAmerica, Savannah

03/20/20 19:50

03/18/20 18:08

0.12

mg/L

0.12 U

Toxaphene

			QC	Sample F	Resul	ts							
Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick Pla	nt Soil										Job ID: 680-1	81268-1	2
Method: 8081B/8082A - Organ	ochlorin	e F	Pesticides	s and Poly	chlori	nate	ed Bi	ipher	nyls	by Gas			
Chromatography (Continued)													
Lab Sample ID: LB 680-610654/1-E Matrix: Solid)									Client Sa	mple ID: Metho Prep Typ	od Blank e: TCLP	4
Analysis Batch: 611822											Prep Batch	: 611512	5
-	,		IB										
Surrogate	%Recove	erv	Qualifier	Limits						Prepared	Analvzed	Dil Fac	6
DCB Decachlorobiphenyl		77		14 - 130						03/18/20 18:08	03/20/20 19:50	1	
Tetrachloro-m-xylene	1	01		40 - 130						03/18/20 18:08	03/20/20 19:50	1	7
Method: SM 2540G - Total, Fix	ked, and V	Vo	latile Soli	ids									8
– Lab Sample ID: MB 680-611175/1 Matrix: Solid										Client Sa	mple ID: Metho Prep Type: 1	od Blank Total/NA	9
Analysis Batch: 611175	_												10
A web de	N	ЛВ	MB				11		-	Durante d	Amelianad	D!!	
Analyte	Kesi		Qualifier	RL		RL				Prepared	Analyzed		
Total Solids	1(00		0.10			70 0/				03/13/20 15:55	1	
Total Volatile Solids	0.1	10		0.10			%				03/13/20 15:55	1	
Ash Content	10	00		0.10			%				03/13/20 15:55	····· 1	
_ Lab Sample ID: 680-181268-1 DU									Clier	nt Sample ID: /	APT-01-84-85-0	2272020	13
Matrix: Solid											Prep Type: 7	Fotal/NA	
Analysis Batch: 611175													
	Sample S	am	ole		DU	DU						RPD	
Analyte	Result Q	luali	ifier		Result	Qua	lifier	Unit		_ <u>D</u>	RPI	D Limit	
Fixed Solids	100 H	I H3			99.6			%			(0	
Total Solids	92 H	I H3			91.8			%			0.0	5 5	
Total Volatile Solids	0.42 H	I H3			0.412			%			:	2	
Ash Content	100 H	IH3			99.6			%			(0	
Method: WALKLEY BLACK - (Organic C	Cai	rbon, Tot	al (TOC)									
Lab Sample ID: MB 400-483369/1										Client Sa	mple ID: Metho	od Blank	
Matrix: Solid											Prep Type: 1	Fotal/NA	
Analysis Batch: 483369	N	ИΒ	MB										
Analyte	Res	ult	Qualifier	RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac	
Total Organic Carbon	0.	10	U	0.10			Perce	ent			03/24/20 08:15	1	
Lab Sample ID: LCS 400-483369/2 Matrix: Solid									C	lient Sample	D: Lab Control Prep Type: ⁻	Sample Total/NA	
Analysis Batch: 483369													
•													

QC Sample Results

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	0.200	0.232		Percent		116	65 - 126	

Eurofins TestAmerica, Savannah

GC/MS VOA

Leach Batch: 610505	Leach	Batch:	610505
---------------------	-------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181268-5	IDW-1-03042020	TCLP	Solid	1311	
680-181268-7	IDW-2-03042020	TCLP	Solid	1311	
Leach Batch: 610834					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 680-610834/1-A	Method Blank	TCLP	Solid	1311	
Analysis Batch: 61086	5				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181268-5	IDW-1-03042020	TCLP	Solid	8260B	610505
680-181268-7	IDW-2-03042020	TCLP	Solid	8260B	610505
LB 680-610834/1-A	Method Blank	TCLP	Solid	8260B	610834
MB 680-610865/9	Method Blank	Total/NA	Solid	8260B	
LCS 680-610865/1004	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-610865/5	Lab Control Sample Dup	Total/NA	Solid	8260B	
Analysis Batch: 611064	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181268-8	TB-0103052020	Total/NA	Water	8260B	
MB 680-611064/10	Method Blank	Total/NA	Water	8260B	
LCS 680-611064/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-611064/5	Lab Control Sample Dup	Total/NA	Water	8260B	

GC Semi VOA

Leach Batch: 610654

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
680-181268-5	IDW-1-03042020	TCLP	Solid	1311	
680-181268-7	IDW-2-03042020	TCLP	Solid	1311	
LB 680-610654/1-D	Method Blank	TCLP	Solid	1311	

Prep Batch: 611512

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-181268-5	IDW-1-03042020	TCLP	Solid	3520C	610654
680-181268-7	IDW-2-03042020	TCLP	Solid	3520C	610654
LB 680-610654/1-D	Method Blank	TCLP	Solid	3520C	610654
MB 680-611512/22-A	Method Blank	Total/NA	Solid	3520C	
LCS 680-611512/23-A	Lab Control Sample	Total/NA	Solid	3520C	
LCSD 680-611512/24-A	Lab Control Sample Dup	Total/NA	Solid	3520C	

Analysis Batch: 611822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 680-610654/1-D	Method Blank	TCLP	Solid	8081B/8082A	611512
MB 680-611512/22-A	Method Blank	Total/NA	Solid	8081B/8082A	611512
LCS 680-611512/23-A	Lab Control Sample	Total/NA	Solid	8081B/8082A	611512
LCSD 680-611512/24-A	Lab Control Sample Dup	Total/NA	Solid	8081B/8082A	611512

Analysis Batch: 611964

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
680-181268-5	IDW-1-03042020	TCLP	Solid	8081B/8082A	611512
680-181268-7	IDW-2-03042020	TCLP	Solid	8081B/8082A	611512

Eurofins TestAmerica, Savannah

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Method

BLACK

WALKLEY

WALKLEY BLACK

WALKLEY BLACK

WALKLEY BLACK

WALKLEY BLACK

WALKLEY BLACK

WALKLEY BLACK

Client: Geosyntec Consultants, Inc. Project/Site: Ashland - Brunswick Plant Soil

Client Sample ID

APT-01-84-85-02272020

APT-01-94-95-02272020

APT-01-79-80-02272020

PWOW-02-86-03032020

PWOW-02-81-03032020

Method Blank

Prep Batch

LCS 400-483369/2 Lab Control Sample

Analysis Batch: 611175

General Chemistry Analysis Batch: 483369

Lab Sample ID

680-181268-1

680-181268-2

680-181268-3

680-181268-4

680-181268-6

MB 400-483369/1

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
680-181268-1	APT-01-84-85-02272020	Total/NA	Solid	SM 2540G		
680-181268-2	APT-01-94-95-02272020	Total/NA	Solid	SM 2540G		
680-181268-3	APT-01-79-80-02272020	Total/NA	Solid	SM 2540G		12
680-181268-4	PWOW-02-86-03032020	Total/NA	Solid	SM 2540G		I J
680-181268-6	PWOW-02-81-03032020	Total/NA	Solid	SM 2540G		
MB 680-611175/1	Method Blank	Total/NA	Solid	SM 2540G		
680-181268-1 DU	APT-01-84-85-02272020	Total/NA	Solid	SM 2540G		

Geotechnical

Analysis Batch: 153248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
680-181268-1	APT-01-84-85-02272020	Total/NA	Solid	D422
680-181268-2	APT-01-94-95-02272020	Total/NA	Solid	D422
680-181268-3	APT-01-79-80-02272020	Total/NA	Solid	D422
680-181268-4	PWOW-02-86-03032020	Total/NA	Solid	D422
680-181268-6	PWOW-02-81-03032020	Total/NA	Solid	D422

Client Sample ID: APT-01-84-85-02272020

5 6

12

Lab Sample ID: 680-181268-1 Matrix: Solid

Lab Sample ID: 680-181268-2

Date Collected: 02/27/20 11:30 Date Received: 03/06/20 09:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540G		1			611175	03/13/20 15:55	PG	TAL SAV
	Instrume	nt ID: NOEQUIP								
Total/NA	Analysis	WALKLEY BLACK		1			483369	03/24/20 08:15	RRC	TAL PEN
	Instrume	nt ID: NOEQUIP								
Total/NA	Analysis Instrume	D422 nt ID: D422_import		1			153248	03/12/20 10:37	CPF	TAL BUR

Client Sample ID: APT-01-94-95-02272020

Date Collected: 02/27/20 11:30 Date Received: 03/06/20 09:15

Dil Initial Final Batch Batch Batch Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis SM 2540G 611175 03/13/20 15:55 PG TAL SAV 1 Instrument ID: NOEQUIP Total/NA Analysis TAL PEN WALKLEY 1 483369 03/24/20 08:15 RRC BLACK Instrument ID: NOEQUIP Total/NA Analysis D422 153248 03/12/20 10:40 CPF TAL BUR Instrument ID: D422_import

Client Sample ID: APT-01-79-80-02272020 Date Collected: 02/27/20 11:30

Lab Sample ID: 680-181268-3

Lab Sample ID: 680-181268-4

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Received: 03/06/20 09:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540G		1			611175	03/13/20 15:55	PG	TAL SAV
	Instrume	nt ID: NOEQUIP								
Total/NA	Analysis	WALKLEY BLACK nt ID: NOEQUIP		1			483369	03/24/20 08:15	RRC	TAL PEN
Total/NA	Analysis Instrume	D422 nt ID: D422_import		1			153248	03/12/20 10:42	CPF	TAL BUR

Client Sample ID: PWOW-02-86-03032020

Date Collected: 03/03/20 13:00

Date Received: 03/06/20 09:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540G		1			611175	03/13/20 15:55	PG	TAL SAV
	Instrume	nt ID: NOEQUIP								
Total/NA	Analysis	WALKLEY BLACK		1			483369	03/24/20 08:15	RRC	TAL PEN
	Instrume	nt ID: NOEQUIP								
Total/NA	Analysis	D422		1			153248	03/12/20 10:44	CPF	TAL BUR
	Instrume	nt ID: D422_import								

Eurofins TestAmerica, Savannah

Client Sample ID: IDW-1-03042020

Lab Sample ID: 680-181268-5 Matrix: Solid

Lab Sample ID: 680-181268-6

Date Collected: 03/04/20 16:00 Date Received: 03/06/20 09:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			25.01 g	500 mL	610505	03/11/20 12:46	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	610865	03/13/20 17:12	SMP	TAL SAV
	Instrume	nt ID: CMSC								
TCLP	Leach	1311			100.03 g	2000 mL	610654	03/12/20 13:55	JEB	TAL SAV
TCLP	Prep	3520C			20.4 mL	5 mL	611512	03/18/20 18:08	CMJ	TAL SAV
TCLP	Analysis	8081B/8082A		1			611964	03/21/20 23:36	JCK	TAL SAV
	Instrume	nt ID: CSGJ								

Client Sample ID: PWOW-02-81-03032020

Date Collected: 03/03/20 13:00 Date Received: 03/06/20 09:15

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis			1			611175	03/13/20 15:55	PG	
	Instrume	nt ID: NOEQUIP					011110	00/10/20 10:00	10	
Total/NA	Analysis	WALKLEY BLACK		1			483369	03/24/20 12:21	RRC	TAL PEN
	Instrume	nt ID: NOEQUIP								
Total/NA	Analysis	D422		1			153248	03/12/20 10:47	CPF	TAL BUR
	Instrume	nt ID: D422_import								

Client Sample ID: IDW-2-03042020

Date Collected: 03/04/20 16:00 Date Re

TCLP

ate Received	: 03/06/20 09:1	5								
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			25.00 g	500 mL	610505	03/11/20 12:46	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	610865	03/13/20 17:36	SMP	TAL SAV
	Instrume	ent ID: CMSC								
TCLP	Leach	1311			100.01 g	2000 mL	610654	03/12/20 13:55	JEB	TAL SAV
TCLP	Prep	3520C			20.1 mL	5 mL	611512	03/18/20 18:08	CMJ	TAL SAV

611964

Client Sample ID: TB-0103052020

Analysis

8081B/8082A

Instrument ID: CSGJ

Date Collected: 03/05/20 11:00

Date	Received:	03/06/20	09:15
Butt	10001100.	00,00,70	00.10

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 611064	Prepared or Analyzed 03/16/20 18:53	Analyst Y1S	- Lab TAL SAV
	Instrumen	t ID: CMSB								

1

Laboratory References:

TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Lab Sample ID: 680-181268-7

Lab Sample ID: 680-181268-8

03/21/20 23:50 JCK

Matrix: Solid

TAL SAV

Matrix: Water

Matrix: Solid

Eurofins TestAmerica, Savannah											- enrofine	
5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax, 912-352-0165	0	chain o	of Cust	tody Re	ecord							
Client Information	Sampler 3 am W	E, RIMERAN		Lanie Lanie	Jerry A				Carrier Trac	king No(s)	COC No 680-113093-43	505.1
Client Contact Adria Reimer	Phone 404	8-4-3	513	E-Mail Jerry L	unier@test	americ	ainc co	m	-		Page 1 of 2	
Company Geosyntec Consultants, Inc							A	nalysis Re	quested		Job #	
Address 1255 Roberts Blvd. NW Suite 200	Due Date Requeste	d:			614) 324	-	-				Preservation Co.	les:
City Kennesaw	TAT Requested (da	ys):			-						A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip GA, 30144						-					D - Nthic Acid E - NaHSO4	P - Na2045 0 - Na2503
Phone 678-202-9564(Tel)	PO# PO814385	. *									F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S203 S - H2SO4 T - TSP Dodecahodrate
Email AReimer@Geosyntec.com	WO# Task 100				No)		-	2-1			1 - Ice J - DI Water	U - Acetorie V - MCAA
Project Name Ashland - Brunswick Plant Soil	Project # 68022348				sikley_ ss of h		129	15. m	_		tainer L-EDA	W - pti 4-5 Z - other (specify)
Site	\$SOW#				ok - Mo	K	d d10.	i •/.•			ot con	
Samulo Identification	Samule Date	Sample Time	Sample Type (C=comp, G=orab)	Matrix (www.ake. 5= solid; 0=wastebit.	ALKLEY_BLA	nO avai2 - 5540	T · AS808_B1801	- house			o nadmuN listo	etrictione Moto.
		\mathbb{X}	Preservat	ion Code:		Z	⁸ Z	2			Il leinade	sunctions/wore;
-2-2620-12-70, popol	etere	1300	5	Solid		f	X	- Bau				-
AFT+01_ 84_85 02272020	2/22/2	1130	6	Solid	×	×	-	×				
477-01-94-95 02272020	2/22/2	113 e	Ŧ	Solid	×	×	-	×				
APT-01_29-50_02 22220	マノナモノマ	1130	4	Solid	×	×	_	×				
02020202 03 - 20- MOMJ	3/3/20	13 00	J	Solid	×	×	-	×				Vpote
20W-1_03042020	3/4/20	1600	J	Solid		-	×					snO 1
7460-02. 81-0303 2020	313/20	1300	5	Solid	×	×	-	×				o nis
IDW-2-03012020	314/20	1000	C	Solid		~	×					40 8
78-01-03052020	016/5/8	1100		States			_					31 SE
•				Solid								31-08
				Water					•			39
Possible Hazard Identification	Poison B	Own	Radiological		Sample	Dispo eturn 7	o Clie	fee may be	assessed Disposal B	if samples are	a retained longer the	Months
Deliverable Requested: 1, II, IV, Other (specify)					Special	Instruc	lions/(DC Requirem	ents			
Empty Kit Relinquished by		Date.			Time:			0	Meth	od of Shipment		
Reinquisted by Ben Warner w Reinquisted by	Date/Time 1210	1314	97	Company 4 e. synter Company	Rece	yd bavi	3	-1		Date/Time Date/Time	2020/06/5	Company SA
Released by	Date/Time			Company	Reco	ved by				Date/Time		Company
Custody Seals Intact: Custody Seal No A Yes A No					Cod	ar Tempi	nature(and Other D ⁴ (Remarks.	14:5	56	
										+x	1	Vier 01 (n. 2010

•

3/27/2020

Irofins Environment Testing TestAmerica	o: 	Page: Page 1 of 1	Job #: 680-181268-1	Preservation Codes:	A - HCL M - Hexane B - NaOH N - None C - Zh Acetate O - ASNAO2	E U - NITIC ACID P - Na204S E - NaHSO4 Q - Na2SO3 E - MaOH P - Na2SO3	G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate	I - Ice U - Acetone J - DI Water V - MCAA	L - EDA V - pH 4-5 L - EDA Z - other (specify)	Other:		Special Instructions/Note:	and the second						chain-of-custody. If the laboratory does not currently	creditation status should be brought to Eurofins	ained longer than 1 month)	critive ror montris		Company, A. 1	company company	Company		Ver: 01/16/2019	2 3 4 5 6
2017 2017 2017 2017 2017 2017 2017 2017		State of Origin: Georgia	e note): Program - Georgía	Analysis Requested															laboratories. This sample shipment is forwarded under	r other instructions will be provided. Any changes to acc ca.	A fee may be assessed if samples are reft	V/QC Requirements:	Method of Shipment	Date/Trate:	Date/Time: /	Date/Time:	e(s) °C and Other Remarks:		7 8 9 10 11
stody Record	Lab PM: Lanier. Jerry A	E-Mail: jerry.lanier@testamericainc.	Accreditations Required (See NELAP - Florida; State					(在)) 1 22 ⁻²	() () () ()	JA T	Matrix (wwater s=sold, D-water(s), difference), difference), difference, dif	atter - Control - Diff	Solid X	Solid X	Solid X	Solid X	Solid X		creditation compliance upon out subcontract	pack to the Eurofins TestAmerica laboratory or ng to said complicance to Eurofins TestAmen	Sample Disposal (Special Instructions	Time:	Company Received by:	Company Received by:	Company Received by:	Cooler Temperatur		13 14 15
Chain of Cus	Sampler:	Phone:		Due Date Requested: 3/18/2020	TAT Requested (days):		PO#	WO#:	Project #: 68022348	SSOW#:	Sample Type Sample (C=comp.	Sample Date I Ime G=grab)	2/27/20 11:30 Eastern	2/27/20 11:30 Eastern	2/27/20 11:30 Eastern	3/3/20 13:00 Eastern	3/3/20 13:00 Eastern		ca places the ownership of method, analyte & ac	being analyzed, the samples must be shipped b date, return the signed Chain of Custody attestin		Primary Deliverable Rank: 2	Date:	Date/Time: 3/9/7020 12 cm	Date/Time:	Date/Time:	64 3923		
Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165	Client Information (Sub Contract Lab)	Client Contact: Shipping/Receiving	Company: TestAmerica Laboratories, Inc.	Address: 30 Community Drive, Suite 11,	City: South Burlington	state, .dp: VT, 05403	Phone: 802-660-1990(Tel) 802-660-1919(Fax)	Email:	Project Name: Ashland - Brunswick Plant Soil	Site:		Sample Identification - Client ID (Lab ID)	APT-01-84-85-02272020 (680-181268-1)	APT-01-94-95-02272020 (680-181268-2)	APT-01-79-80-02272020 (680-181268-3)	PWOW-02-86-03032020 (680-181268-4)	PWOW-02-81-03032020 (680-181268-6)		Note: Since laboratory accreditations are subject to change, Eurofins TestAmeric	maintain accreditation in the State of Origin listed above for analysis/tests/matrix TestAmerica attention immediately. If all requested accreditations are current to	Possible Hazard Identification	Deliverable Requested: I, II, IV, Other (specify)	Empty Kit Relinquished by:	Reingened by	Relinquistied by:	Relinquished by:	Custory sals intact: Custody Seal No.:		

Ļ

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404

Chain of Custody Record

Client Information (Sub Contract Lab)	Sampler,			Lanie	t, Jerry A		Carrier Tracking	No(s);	COC No: 680-603346.1	
Client Contact Shipping/Receiving	Phone:			E-Mail. Jerry.I	anier@test	americainc.com	State of Origin: Georgia		Page: Page 1 of 1	
Company. TestAmerica Laboratories, Inc.					Accreditations NELAP - FI	s Required (See note): lorida; State Program	- Georgia		Job #: 680-181268-1	
Address: 3355 McLemore Drive,	Due Date Requester 3/18/2020	ÿ				Analysi	s Requested		Preservation Cod	les:
City. Pensacola State, Zp. E1 32514	TAT Requested (da	(sk							A - HCL B - NaOH C - Zh Acetate D - Nitric Acid E - NaHSO4	M - Hexane N - None O - AsNaO2 P - Na22045 O - Na22045
Phone: 850-474-1001(Tel) 850-478-2671(Fax)	#O#				(ON				F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S203 S - H2S04 T - TSP Dodecahydrate
Elhad.	WO #:				(on				L- DI Water	V - MCAA
Project Name: Ashland - Brunswick Plant Soil Site:	Project #: 68022348 SSOW#:				K D (Yes or Xes or				containe L-EDA Other:	W - PH 4-5 Z - other (specify)
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (www.ater. 5-solid. Oww.aterioil. Eff-Tasse. AnAle)	Field Filtered Sa Perform MS/MSI MALKLEY_BLAC				Total Number of	istructions/Note:
	X	X	Preserva	tion Code;	X					V
APT-01-84-85-02272020 (680-181268-1)	2/27/20	11:30 Fastern		Solid	×				+	
APT-01-94-95-02272020 (680-181268-2)	2/27/20	11:30 Fastern		Solid	×				+	
APT-01-79-80-02272020 (680-181268-3)	2/27/20	11:30 Eastern		Solid	×				+	
PWOW-02-86-03032020 (680-181268-4)	3/3/20	13:00 Eastern		Solid	×				L.	
PWOW-02-81-03032020 (680-181268-6)	3/3/20	13:00 Eastern		Solid	×				+	
Note: Since laboratory accreditations are subject to change, Eurofins Tr maintain accreditation in the State of Origin listed above for analysistiles TestAmerica attention immediately. If all requested accreditations are c	estAmerica places the owners sts/matrix being analyzed, the current to date, return the sign	ship of methol samples mus	d, analyte & ac it be shipped t justody attesti	conditation com pack to the Euro ng to said comp	pliance upon fins TestAmer licance to Eur	out subcontract laboratorie rica laboratory or other insi rofins TestAmerica.	es. This sample shipmen tructions will be provided.	tt is forwarded . Any change:	d under chain-of-custody. If this to accreditation status shoul	e laboratory does not currently Id be brought to Eurofins
Possible Hazard Identification					Samp	le Disposal (A fee m	ray be assessed if a	samples ar	re retained longer than	1 month)
Unconfirmed					<u>ן</u>	Return To Client	Disposal By L	ab de	Archive For	Months
Deliverable Requested: I, II, III, IV. Other (specify)	Primary Deliver	rable Rank:	CN		Specia	al Instructions/QC Ret	quirements;			
Empty Kit Relinquished by:		Date:			Time:		Method	of Shipment		
Reinquissed by	3/4/202	0 33	57	Company	Re	ceived by:		Date/Time	05	Company
Reihquished by:	Date/Time:			Company	Re	sceived by:		Date/Time		Company
Reinquished by:	Date/Time:			Company	Re	Sceived M	3	Date/Time	C1:5 02-	Company
Custody Seals Intact: Custody Seal No.:					8	ooler Temperature(s) "C an	nd Other Remarks		5 5	40'
									5	Ver: 01/16/2019

3/27/2020

9

0

Client: Geosyntec Consultants, Inc.

Login Number: 181268 List Number: 1

Creator: Mooken, Darmal

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc.

Login Number: 181268 List Number: 2

Creator: Khudaier, Zahraa

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	1164383
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.7°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 680-181268-1

List Creation: 03/10/20 12:25 PM

List Source: Eurofins TestAmerica, Burlington

Client: Geosyntec Consultants, Inc.

Login Number: 181268 List Number: 3 Creator: Gore, Beija K

Job Number: 680-181268-1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.5 °C IR 8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Identification Number

Identification Number

E87052

E87052

L2336

N/A

PH-0751

E87467

2006

VT972

10391

68-00489

058448

VT4000

460209

LAO00298

P330-17-00272

050-999-436

Expiration Date

Expiration Date

06-30-20

06-30-20

02-25-23

09-30-21

05-15-20

06-30-20

12-31-20

12-18-20

06-30-20

03-31-20

04-30-20

12-30-20

07-31-20

08-09-20

12-31-20

12-14-20

Authority

Florida

Georgia

Authority

Connecticut

DE Haz. Subst. Cleanup Act (HSCA)

ANAB

Florida

Minnesota

New Jersey

Pennsylvania

Rhode Island

US Fish & Wildlife

New York

USDA

Vermont

Virginia

New Hampshire

Laboratory: Eurofins TestAmerica, Savannah The accreditations/certifications listed below are applicable to this report.

Laboratory: Eurofins TestAmerica, Burlington

2 3 4 5 6

15

Laboratory: Eurofins TestAmerica, Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

US Federal Programs

US Federal Programs

Program

Program

State

State

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

State

State

NELAP

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Dept. of Defense ELAP

NELAP

State

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	07-01-20
ANAB	ISO/IEC 17025	L2471	02-23-23
Arizona	State	AZ0710	01-13-21
Arkansas DEQ	State	88-0689	09-01-20
California	State	2510	07-01-20
Florida	NELAP	E81010	06-30-20
Georgia	State	E81010(FL)	06-30-20
Illinois	NELAP	004586	10-09-20
lowa	State	367	08-01-20
Kansas	NELAP	E-10253	08-16-20
Kentucky (UST)	State	53	06-30-20
Kentucky (WW)	State	KY98030	12-31-20
Louisiana	NELAP	30976	06-30-20
Louisiana (DW)	State	LA017	12-31-20
Maryland	State	233	09-30-20
Massachusetts	State	M-FL094	06-30-20
Michigan	State	9912	05-06-20
Minnesota	NELAP	012-999-481	12-31-20
New Jersey	NELAP	FL006	06-30-20
New York	NELAP	12115	04-01-20
New York	NELAP Secondary AB	12115	04-01-20
North Carolina (WW/SW)	State	314	12-31-20
Oklahoma	State	9810-186	08-31-20
Pennsylvania	NELAP	68-00467	01-31-21
Rhode Island	State	LAO00307	12-30-20

Eurofins TestAmerica, Savannah