

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144 PH 678.202.9500 FAX 678.202.9501 www.geosyntec.com

November 19, 2021

Penny Gaynor Georgia Environmental Protection Division 2 Martin Luther King, Jr. Dr. SE Suite 1054, East Tower Atlanta, GA 30334

Subject: Interim Corrective Measure Work Plan - Deep Zone of Upper

Surficial Aquifer - Aerobic Biobarrier

Hercules/Pinova Facility, Brunswick, Georgia

Dear Penny:

Enclosed for review and approval by the Georgia Department of Natural Resources, Environmental Protection Division ("EPD") is a document titled *Interim Corrective Measure Work Plan - Deep Zone of Upper Surficial Aquifer – Aerobic Biobarrier, Hercules/Pinova Facility, Brunswick, Georgia* that Geosyntec Consultants has prepared on behalf of Hercules LLC in connection with activities at an industrial facility located at 2801 Cook Street in Brunswick, Georgia (the "Brunswick facility"). Please do not hesitate to contact the undersigned if you should have any questions regarding the enclosed document.

Sincerely,

Gregory P. Roush, P.G.GA

Senior Principal

G5 P. Roul

Shanna Thompson, P.E._{GA}

Shama Thompson

Principal

Copies to: Mike Crews, Pinova

Timothy Hassett, Hercules LLC

Jim McNamara, EPD Jim Sliwinski, EPD

GR6881M

Prepared for

Hercules, LLC 500 Hercules Road Wilmington, DE 19808

INTERIM CORRECTIVE MEASURE WORK PLAN

DEEP ZONE OF UPPER SURFICIAL AQUIFER AEROBIC BIOBARRIER HERCULES/PINOVA BRUNSWICK FACILITY BRUNSWICK, GEORGIA

Prepared by

engineers | scientists | innovators

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GR6881M

November 2021

TABLE OF CONTENTS

INT	RODUCTION	1		
1.1	Site History and Description	2		
1.2	Overview of Geology and Hydrogeology	3		
1.3	Constituents of Potential Concern	5		
BAS				
2.1	Objectives of Corrective Measure	6		
2.2	Basis for Selection of Remedial Technology	6		
2.3	Planned Interim Corrective Measure	9		
PRE	PRE-IMPLEMENTATION ACTIVITIES AND SITE PREPARATION 1			
3.1	Health and Safety Planning	11		
3.2	Permitting and Utility Clearance	11		
3.3	Contractor Procurement and Bidding	12		
3.4	Electric Power Hookup	12		
AEI	AEROBIC BIOBARRIER CONCEPTUAL DESIGN			
4.1	Aerobic Biobarrier Well Layout	13		
4.2	Design for Biosparging Wells	14		
4.3	Sparge System/Equipment Enclosure	15		
4.4	Piping Manifolds and Controls	16		
4.5	Piping and Pressure Testing	17		
4.6	Trenching Activities	17		
4.7	Cycled Operation	18		
4.8	Design for Performance Monitoring Wells	19		
FIE	FIELD IMPLEMENTATION ACTIVITIES			
5.1	Installation of Biosparging and Performance Monitoring Wells	20		
5.2	Pneumatic Slug Tests	20		
5.3	Installation of the Aerobic Biobarrier System	21		
5.4	Waste Management	22		
	1.1 1.2 1.3 BAS 2.1 2.2 2.3 PRE 3.1 3.2 3.3 3.4 AEI 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 FIE 5.1 5.2 5.3	1.2 Overview of Geology and Hydrogeology		

i

TABLE OF CONTENTS (Continued)

6.0		RTUP PROCEDURES, OPERATION, MONITORING AND NTENANCE ACTIVITIES, AND PERFORMANCE MONITORING				
	ACT	IVITIES	23			
	6.1	System Startup	23			
	6.2	OM&M Activities	23			
	6.3	Performance Monitoring Plan	24			
	6.4	Data Analysis	25			
7.0	REP	ORTING	26			
8.0 SCHEDULE						
9.0 REFERENCES						
		LIST OF TABLES				
Table 1 Table 2		Construction Details for Biosparging and Performance Monitoring Well Proposed Performance Monitoring Plan				
		LIST OF FIGURES				
Figure	1	Site Location				
Figure 2		General Area of Proposed Aerobic Biobarrier System – Existing Conditions				
Figure	3a	Geologic Cross Section – East to West				
Figure		Geologic Cross Section – North to South				
Figure 4		Potentiometric Map – Surficial Aquifer Deep Zone of Upper Unit				
Figure 5		Low and High Tide Potentiometric Map Near Proposed Location of				
C		Aerobic Biobarrier, Deep Zone of Upper Surficial Aquifer				
Figure 6		Proposed Biosparging Well Layout				
Figure		Biosparging Well Construction Details and Trench Details				
Figure 8		Typical Process and Instrumentation Diagram				
Figure 9		Proposed Performance Monitoring Well Network				

TABLE OF CONTENTS (Continued)

LIST OF APPENDICES

Appendix A	Tidal Evaluation Report
Appendix B	Historical Activities and Releases on Neighboring Properties
Appendix C	Laboratory Report for Biotreatability Studies
Appendix D	Biosparging Pilot Test Report

1.0 INTRODUCTION

This Interim Corrective Measure Work Plan (the "Work Plan") has been prepared by Geosyntec Consultants ("Geosyntec") on behalf of Hercules LLC ("Hercules") for submission to the Georgia Department of Natural Resources, Environmental Protection Division ("EPD") in connection with environmental conditions at an industrial facility located at 2801 Cook Street in Brunswick, Glynn County, Georgia (referred to hereinafter as the "Brunswick facility" or the "Site") as shown on Figure 1. Hercules is addressing environmental conditions at the Brunswick facility pursuant to the corrective action program under the Resource Conservation and Recovery Act ("RCRA") as administered by EPD. On November 2, 2020, EPD issued Hazardous Waste Permit No. HW-052 (D&S)-2 to Hercules and Pinova, Inc. ("Pinova") for the Brunswick facility pursuant to the Georgia Hazardous Waste Management Act and the Georgia Rules for Hazardous Waste Management containing requirements relating to, among other things, sitewide corrective action obligations at the Brunswick facility pursuant to the RCRA corrective action program. The purpose of the interim corrective measure (the "ICM") described in the Work Plan is to reduce the concentrations of selected constituents of potential concern ("COPCs") in groundwater in the deep zone of the upper surficial aquifer underlying the northern portion of the Brunswick facility situated on the east side of the U.S. Highway 17 corridor as shown on **Figure 2.** This Work Plan has been prepared consistent with the requirements of Hazardous Waste Permit No. HW-052 (D&S)-2.

The ICM presented herein will utilize *in situ* aerobic bioremediation in the form of a biologically active permeable reactive barrier (referred to as an "aerobic biobarrier" in this Work Plan) to achieve reductions in the concentrations and mass flux of COPCs in groundwater in the deep zone of the upper surficial aquifer in the area downgradient of the aerobic biobarrier. The aerobic biobarrier described herein is one of multiple ICMs for groundwater being implemented at the Brunswick facility. As discussed in the Corrective Action Plan ("CAP") submitted to EPD on February 1, 2021 (Geosyntec, 2021), the aerobic biobarrier described in this Work Plan may be extended to adjoining areas, as necessary, based on the performance of the ICM and ongoing site investigation activities. One or more aerobic biobarriers may also be deployed in other areas at the Brunswick facility, as necessary, based on the performance of the ICM and ongoing site investigation activities.

As discussed in more detail in later sections of this Work Plan, creation of the aerobic biobarrier involves injecting amendments (i.e., oxygen in the form of air) into the groundwater treatment zone through injection wells (referred as "biosparging wells" in

1

this Work Plan) to promote aerobic conditions (i.e., presence of oxygen) favorable for naturally occurring bacteria to consume or degrade COPCs in groundwater. This ICM will specifically target benzene and chlorobenzene through aerobic biodegradation because these two COPCs represent the majority of the volatile organic compounds ("VOCs") that have been detected in groundwater in the area of the planned aerobic biobarrier. For instance, benzene and chlorobenzene comprised more than 80 percent ("%") of the concentrations of VOCs detected in monitoring well MW-29D during the June 2021 semi-annual groundwater monitoring event. Although this ICM targets benzene and chlorobenzene specifically, other COPCs will be monitored in groundwater in the area of the aerobic biobarrier to evaluate the fate of those COPCs as presented in the performance monitoring plan in Section 6.3, below. Benzene and chlorobenzene may be referred to as target COPCs hereinafter.

1.1 Site History and Description

As described in detail in the CAP that Hercules submitted to EPD (Geosyntec, 2021), the operational history of the Brunswick facility spans more than a century. Yaryan Rosin and Turpentine Company began operations at the Brunswick facility in 1911 on a 70-acre parcel to manufacture wood rosins, turpentine and pine oils from rosin extracted from pine stumps via a steam-solvent distillation process. Hercules purchased the Brunswick facility in 1920 and continued manufacturing operations at the Brunswick facility associated with the extraction of rosin and terpene oils from pine stumps. Over time, Hercules acquired additional parcels of land and significantly expanded the scope of the manufacturing operations at the Brunswick facility. After several recent transactions reduced the overall size of the Brunswick facility from its greatest extent, the Brunswick facility now encompasses approximately 321 acres of property, portions of which are owned by Hercules and portions of which are owned by Pinova. Hercules owns approximately 169 acres within the northern and eastern portions of the Brunswick facility while Pinova owns the remaining approximately 152 acres of the Brunswick facility, including all of the active manufacturing areas.

The portion of the Brunswick facility owned by Hercules includes approximately 44 acres of property east of U.S. Highway 17. This portion of the Brunswick facility is commonly referred to as the "Terry Creek Property." Soils and sediments at the Terry Creek Property are being addressed separately under requirements administered by Region 4 of the United States Environmental Protection Agency ("EPA") pursuant to the Comprehensive Environmental Response, Compensation and Liability Act of 1980, as amended. No solid waste management units or areas of concern have been identified on

the Terry Creek Property as part of actions to implement the RCRA corrective action program. Groundwater beneath the Terry Creek Property is being addressed as part of the overall corrective action process pursuant to Hazardous Waste Permit No. HW-052 (D&S)-2 for the Brunswick facility.

As shown on **Figure 1**, a salt marsh area and tidal surface water bodies, including Dupree Creek and Terry Creek, are located to the east of the Brunswick facility. The N Street Ditch present at the Brunswick facility conveys surface water run-off and non-contact cooling water to the east under U.S. Highway 17 where it discharges to the Outfall Ditch. The Outfall Ditch in turn discharges to Dupree Creek. Both the N Street Ditch and the Outfall Ditch are subject to tidal fluctuations and inundation.

The ICM described in this Work Plan is expected to take place in the eastern portion of the Brunswick facility on the Terry Creek Property that Hercules owns between the northern edge of the Brunswick facility and the Outfall Ditch.

1.2 Overview of Geology and Hydrogeology

While the ICM described in this Work Plan is expected to be performed in the deep zone of the upper surficial aquifer, a broader description of the water-bearing zones and the characteristics of the hydrogeologic units beneath the Brunswick facility to a depth of approximately 200 feet below ground surface ("ft bgs") is provided below for reference. The geologic and hydrogeologic units that underlie the Brunswick facility to that depth include: the upper surficial aquifer (extending to approximately 100 ft bgs), a semiconfining unit separating the upper surficial aquifer from the lower surficial aquifer, and the lower surficial aquifer (extending to approximately 200 ft bgs). The upper surficial aquifer is divided into three zones: shallow (~ 0 –40 ft bgs), intermediate (~ 40 –70 ft bgs), and deep (~ 70 –100 ft bgs). Geologic cross-sections showing subsurface conditions in the upper surficial aquifer in the area of the planned aerobic biobarrier are presented on **Figure 3a** and **Figure 3b**.

The aquifer zones are generally based on differences in geologic materials and hydraulic conductivities, and the vertical distribution of VOCs in groundwater. The shallow zone of the upper surficial aquifer is generally composed of interbedded clays, silts, silty sands, clayey sands, and light brown/tan or gray fine to coarse sands. The vadose zone overlying the shallow zone of the upper surficial aquifer is generally very thin, with the seasonal high water table at a depth of only a few feet in many portions of the Brunswick facility. The intermediate zone of the upper surficial aquifer is primarily composed of gray fine to coarse sand, interbedded with varying amounts of clays, silts, silty sands, clayey sands,

and gravel; cemented sands are also sometimes encountered in the intermediate zone of the upper surficial aquifer. The deep zone of the upper surficial aquifer is composed of gray, fine to coarse sand, with relatively lesser amounts of clayey sands, silty sands, silts, and clays. Another characteristic of the deep zone of the upper surficial aquifer is the prevalence of coarse sand and sand with gravel intervals that may provide preferential groundwater flow pathways where they are linearly continuous. The upper portion of the lower surficial aquifer beneath the Brunswick facility is generally composed of olive green to gray fine sands, silty sands, clayey sands, and silts. The lower surficial aquifer is separated from the upper surficial aquifer by a semi-confining unit consisting primarily of silts and clays.

Within the upper surficial aquifer underlying the Brunswick facility, the prevailing direction of groundwater flow is toward the east-southeast, with local variations due to heterogeneities in the subsurface units and tidal influence. This sitewide groundwater flow direction is interpreted based on the potentiometric surface contour map presented as **Figure 4**. The sitewide groundwater flow velocity in the deep zone of the upper surficial aquifer is on the order of 55 feet per year ("ft/yr"). However, the hydraulic gradients are smaller on the east side of U.S. Highway 17 within the vicinity of the planned aerobic biobarrier, resulting in slower groundwater flow velocities in that area.

During the spring of 2021, Hercules installed a series of nineteen additional monitoring wells and observation wells to supplement the existing monitoring well network in the northeastern portion of the Brunswick facility, including the general area where the aerobic biobarrier is expected to be installed. These additional wells were used in connection with a detailed evaluation of the influence of tidal fluctuations on groundwater conditions in the area to the east of U.S. Highway 17 between the northern boundary of the Brunswick facility and the Outfall Ditch leading into Dupree Creek and in the area extending approximately 420 feet to the west of U.S. Highway 17 between the northern boundary of the Brunswick facility and the N Street Ditch. Certain of the additional wells were also used as part of a pilot test of aerobic bioremediation in the deep zone of the upper surficial aquifer in the general area where the aerobic biobarrier is expected to be installed. The results of the tidal evaluation are discussed in Section 2.2 of this Work Plan and are presented in detail in a report titled Tidal Evaluation and Groundwater Chemistry Data Summary (the "Tidal Evaluation Report") included as **Appendix A** to this Work Plan. The Tidal Evaluation Report was also included as an appendix to a report titled Groundwater Monitoring Report, Semi-Annual Groundwater Monitoring Event -June 2021, Hercules LLC/Pinova, Inc., Brunswick, Georgia (the "Groundwater" Monitoring Report") that Hercules submitted to EPD on October 22, 2021. Along with

the results of the tidal evaluation, the results of the pilot test of aerobic bioremediation in the deep zone of the upper surficial aquifer are discussed in Section 2.2 of this Work Plan.

1.3 Constituents of Potential Concern

Groundwater in the targeted portion of the deep zone of the upper surficial aquifer was selected for interim corrective measures based on the presence of elevated concentrations of COPCs, specifically benzene and chlorobenzene. As described in the conceptual site model ("CSM") for the Brunswick facility presented in the CAP, COPCs in source areas in the main manufacturing portion of the Brunswick facility have migrated vertically downward from the shallow zone to the deep zone of the upper surficial aquifer. Once COPCs reach the deep zone of the upper surficial aquifer, they can migrate horizontally eastwards in the deep zone of the upper surficial aquifer in the downgradient direction. Naturally occurring processes affect the migration of COPCs along the flow path in the groundwater system including sorption, dispersion, dilution, and degradation. These natural attenuation processes reduce the concentrations and mass of COPCs present in groundwater and slow down the migration of COPCs relative to groundwater flow velocities.

In addition to on-site sources of COPCs, historical releases of VOCs have been documented at off-site locations on adjacent industrial properties east of U.S. Highway 17 currently owned by Ronald Adams, Walter Douglas Adams, and Anne Adams Rabbino individually and through their closely held corporations, Lanier Parkway Associates LLC and Adams Properties Associates LLC. These industrial properties are collectively referred to hereinafter as the "Adams properties". The Adams properties are located immediately to the north of the general area where the aerobic biobarrier is expected to be installed. A gasoline station, automotive repair facility, septic pumping service facility, aboveground storage tank farm and paint manufacturing facility were historically present at various times at the Adams properties. Historical releases of VOCs that occurred on the Adams properties include documented releases of benzene, toluene, ethylbenzene, and xylenes (collectively "BTEX"). A separate report titled *Historical Activities and Releases on Neighboring Properties* is included as **Appendix B** of this Work Plan which presents in detail documentation regarding historical activities and known chemical releases at the Adams properties.

2.0 BASIS OF THE INTERIM CORRECTIVE MEASURES WORK PLAN

This section of the Work Plan discusses the objectives of the planned corrective measure, provides a summary of previous studies that were used as a basis for selecting the planned corrective measure, and provides an overview of the selected corrective measure.

2.1 Objectives of Corrective Measure

The interim corrective measure for groundwater in the deep zone of the upper surficial aquifer underlying the northeastern portion of the Brunswick facility near the U.S. Highway 17 corridor is intended to serve two purposes:

- To reduce the concentrations of benzene and chlorobenzene within the target treatment area, which will also reduce the mass flux of these COPCs migrating in the downgradient direction in the deep zone of the upper surficial aquifer.
- To provide information regarding best practices for removal of benzene and chlorobenzene in groundwater in the deep zone of the upper surficial aquifer which may then be expanded to address those target COPCs in groundwater in other locations within the Brunswick facility, as necessary.

The initial objective of the interim corrective measure is to reduce the concentrations of benzene and chlorobenzene in groundwater in the treatment area by 50 %. This objective may be modified, subject to review and approval by EPD, based on updates and refinements to the CSM and fate and transport evaluations. The planned aerobic biobarrier is also expected to reduce the mass flux and concentrations of other COPCs in groundwater susceptible to aerobic biodegradation.

2.2 Basis for Selection of Remedial Technology

As discussed in the CAP (Geosyntec, 2021), a combination of desktop and laboratory evaluations were performed that led to the selection of enhanced *in situ* bioremediation in the form of an aerobic biobarrier as the remedial technology to be used for groundwater in the deep zone of the upper surficial aquifer near the northern edge of the Brunswick facility east of U.S. Highway 17. A broad range of potential remedial technologies were considered including, among others, groundwater extraction and treatment (i.e., pump and treat), phytoremediation, *in situ* chemical oxidation, and enhanced *in situ* bioremediation (both by aerobic and anaerobic means). The potential technologies were compared based on their implementability, effectiveness, and relative cost. As a result of

the screening process, bench scale treatability studies were performed to further evaluate potential *in situ* bioremediation technologies.

Bench scale treatability studies were performed to evaluate degradation of chlorobenzene and benzene via aerobic and anaerobic degradation pathways. The bench scale treatability studies are described in detail in a report prepared by SiREM Laboratory that is included in **Appendix C**. The biotreatability studies involved the preparation of microcosms using groundwater and soils collected from the proposed treatment area in the deep zone of upper surficial aquifer to evaluate aerobic and anaerobic degradation pathways. The biotreatability studies demonstrated that aerobic bioremediation is effective at the bench scale level in degrading both chlorobenzene and benzene. In the aerobic treatment microcosms, benzene was degraded from a concentration of 3,100 micrograms per liter ("µg/L") to levels below the reporting limit of 20 µg/L within 80 days after treatment began, and chlorobenzene was degraded from a concentration of 820 μg/L to 81 μg/L within the same time period. Therefore, enhanced *in situ* bioremediation via the aerobic degradation pathway was selected to address benzene and chlorobenzene in groundwater in the deep zone of the upper surficial aquifer underlying the area along the northern edge of the Brunswick facility to the east of U.S. Highway 17.

To evaluate the ability to stimulate aerobic degradation of target COPCs in the deep zone of the upper surficial aquifer in the area where the aerobic biobarrier is expected to be installed, Geosyntec completed a biosparging pilot test on behalf of Hercules. In support of the biosparging pilot test, seven wells were installed in the portion of the Brunswick facility east of U.S. Highway 17 between February 22, 2021 and March 25, 2021. Three wells (designated as wells BS-01, BS-02, and BS-03) were installed in the deep zone of the upper surficial aquifer to serve as injection wells (i.e., biosparging wells) for the introduction of oxygen into the subsurface water-bearing zone. Biosparging well BS-01 and BS-02 were installed with screened intervals from 92 to 94 ft bgs. Biosparging well BS-03 was installed with a screened interval from 98.3 to 99 ft bgs. Four wells (designated as wells BS-OW-01, BS-OW-02, BS-OW-03I, and BS-OW-03D) were installed as observation wells for use during the pilot test. These wells are generally referred to as pilot test observation wells. Observation well BW-OW-03I was installed in the intermediate zone of the upper surficial aquifer with a screened interval from approximately 50 to 60 ft bgs. Observation wells BS-OW-01, BS-OW-02, and BS-OW-03D were installed in the deep zone of the upper surficial aguifer with screened intervals from approximately 80 to 90 ft bgs (i.e., similar to monitoring well MW-29D).

The biosparging pilot test was performed in two phases. The first phase of the pilot test was performed using biosparging wells BS-01 and BS-02 between March 15 and March 19, 2021. The second phase of the pilot test was performed using the deeper biosparging well (BS-03) between March 30 and April 2, 2021. The biosparging pilot test generated important data and information to assess design parameters for the aerobic biobarrier to deliver oxygen to the deep zone of the upper surficial aquifer to promote aerobic degradation of benzene and chlorobenzene in groundwater, including air sparging rates, air sparging pressures, and the radius of influence ("ROI") achieved around biosparging wells. The details of the biosparging pilot test are included in **Appendix D**.

Based on the results obtained from the biosparging pilot test, the typical well head sparging pressure was between 38 and 42 pound per square inch ("psi") at a sparging depth of 99 ft bgs. At this pressure, a sparging rate ranging between 1.5 standard cubic feet per minute ("scfm") and 3 scfm was achievable. The estimated ROI achieved during the pilot test was approximately 7.5 feet. The dissolved oxygen content in the deep zone of the upper surficial aquifer increased during the pilot test from 0.03 milligrams per liter ("mg/L") to up to 26.08 mg/L, which is slightly below the theoretical oxygen solubility concentration at the measured depth. The dissolved oxygen consumption rate was approximately 6 mg/L per day meaning that the injected oxygen (via the biosparging process) may stay in the subsurface for up to four days before being utilized by indigenous bacteria.

In addition to the biosparging pilot test, Hercules completed a tidal evaluation in the general area where the aerobic biobarrier is expected to be installed. In preparation for the tidal evaluation, Hercules installed four new monitoring wells and eleven new observation wells at the Brunswick facility between March 8, 2021 and March 26, 2021. The tidal evaluation was performed between April 14, 2021 and May 17, 2021. The duration of the tidal study was set to monitor one full tidal cycle, including a spring tide event. The tidal evaluation was designed to assess the impact that diurnal tidal cycles have on groundwater conditions near the northern edge of the Brunswick facility, including horizontal and vertical groundwater gradients and flow directions.

Consistent with the objectives of the tidal evaluation, a range of hydraulic and tidal conditions were encountered during the tidal evaluation that included initial conditions (baseline conditions) and conditions associated with a two-inch rainfall event that coincided with a spring tide (full moon). Generally, the results of the tidal evaluation indicate that during the period of evaluation, groundwater flow beneath the eastern portion of the Brunswick facility north of the N Street Ditch and the Outfall Ditch in the

shallow zone of the upper surficial aquifer was consistently to the south from off-site areas north of the Brunswick facility under both high and low tide conditions. Horizontal groundwater flow directions in the intermediate zone of the upper surficial aquifer were observed to vary based on the tidal cycle. The results of the tidal evaluation underscore the significant tidal effect on groundwater flow in the intermediate zone of the upper surficial aquifer, particularly in proximity to Dupree Creek but extending further to the west in the area between the N Street Ditch and the northern boundary of the Brunswick facility. Tidal influence is sufficient to reverse the generally prevailing hydraulic gradient and cause groundwater flow directions to oscillate from west to east and from east to west in the intermediate zone of the upper surficial aquifer. Horizontal groundwater flow directions in the deep zone of the upper surficial aquifer in the general area of the proposed aerobic biobarrier also vary with tidal cycles but generally are toward the east/southeast under various hydraulic and tidal conditions. Potentiometric surface maps showing groundwater flow directions in the deep zone of the upper surficial aquifer at one-hour increments through the baseline tidal cycle are provided in the Tidal Evaluation Report included in Appendix A. The potentiometric surface maps for the high tide and low tide conditions as presented in Appendix A are included on Figure 5 for baseline conditions.

Based on the results of the tidal evaluation, horizontal groundwater gradients and flow velocities in the deep zone of the upper surficial aquifer east of U.S. Highway 17 were observed to increase at low tide relative to high tide. Hydraulic gradients were steepest following the significant rainfall event that occurred during the tidal evaluation at both high tide and low tide. As presented in the Tidal Evaluation Report, average horizontal hydraulic gradients in the deep zone of the upper surficial aquifer in proximity to the area where the aerobic biobarrier is expected to be installed ranged from 0.00095 to 0.0013 feet per feet ("ft/ft") at low tide and 0.00046 to 0.00089 ft/ft at high tide.

2.3 Planned Interim Corrective Measure

Based on the results of the treatability studies, the biosparging pilot test, and the tidal evaluation discussed above, Hercules plans to install an aerobic biobarrier to promote the aerobic biodegradation of benzene and chlorobenzene (together with other COPCs susceptible to aerobic degradation) in the deep zone of the upper surficial aquifer underlying the portion of the Brunswick facility to the north of the Outfall Ditch and east of U.S. Highway 17.

The planned aerobic biobarrier includes injection of oxygen in the form of air into the deep zone of the upper surficial aquifer through a series of injection wells (i.e., biosparging wells). The biosparging wells will be installed in a row aligned generally perpendicular to the groundwater flow direction in the deep zone of the upper surficial aquifer creating a reactive biobarrier. The injected air (oxygen) will promote indigenous microorganisms to biodegrade benzene and chlorobenzene in groundwater together with other COPCs susceptible to aerobic degradation. This process is referred to as biosparging. The biosparging process is similar to air sparging. However, while air sparging removes the target constituents via volatilization at high sparging (air flow) rates, biosparging promotes biodegradation of the target compounds by increasing the levels of dissolved oxygen in groundwater at lower sparging rates. Because biosparging does not volatilize the target compounds, it does not require a soil vapor extraction system to collect vapors.

The exact location and geometry of the planned aerobic biobarrier may be subject to further refinement based on the results from additional assessment activities that are expected to take place over the next several months to further evaluate the impacts that historical operations and releases at the neighboring Adams properties may be having on groundwater quality in the general area where the aerobic biobarrier is planned to be installed.

3.0 PRE-IMPLEMENTATION ACTIVITIES AND SITE PREPARATION

Several planning and preparatory steps will be performed prior to field mobilization to construct the aerobic biobarrier including health and safety planning, permitting and utility clearance, contractor procurement, and electric power hookup. These steps are discussed in this section of the Work Plan.

3.1 **Health and Safety Planning**

The existing Health and Safety Plan ("HASP") for environmental work at the Brunswick facility will be amended to include the tasks, hazards, and hazard mitigation procedures relating to construction, operation and monitoring of the aerobic biobarrier. The amendments to the HASP will address hazard identification and mitigation, establishment of work zones, personal protective equipment requirements for each task, ingress/egress procedures, decontamination procedures, worker breathing space monitoring, and lock out/tag out procedures for the electrical components of the aerobic biobarrier.

3.2 Permitting and Utility Clearance

Injection of air into the subsurface via a biosparging well in Georgia requires an underground injection control ("UIC") permit from EPD. Geosyntec will prepare a permit application for submission to EPD to use Class V injection wells for delivery of air to the treatment zone in the deep zone of the upper surficial aquifer. Geosyntec will prepare the permit application form and checklist. The UIC permit application package will include this Work Plan and other pertinent details required by the UIC permit application.

Key above-ground components for the aerobic biobarrier (including an air compressor, piping manifolds, and instrumentation/meters/gauges) will be housed in an enclosed structure (e.g., a connex box, mobile trailer or equivalent) meeting applicable building codes and requirements imposed by the City of Brunswick and/or Glynn County for a temporary structure. Geosyntec will contact the City of Brunswick to discuss any applicable permits for the equipment enclosure, and will apply for such permits that may be needed.

A private utility locator will mark the locations of underground utilities prior to commencement of well installation and construction activities for the aerobic biobarrier. The locations of underground utilities will be used to help finalize locations for performance monitoring wells and biosparging wells and locations for utility trenches

associated with the aerobic biobarrier. The utility clearance process will include using both magnetometer assessments and ground-penetrating radar surveys to locate underground utilities. A preliminary utility survey was performed in February 2021 by Ground Penetrating Radar Systems, Inc. Based on this utility survey, the general area where the aerobic biobarrier is expected to be installed does not include any underground utilities.

3.3 Contractor Procurement and Bidding

Geosyntec will develop procurement packages for use in communicating the scope of work to contractors and suppliers. It is anticipated that the following contractors will be needed: a drilling contractor for well installation activities, a subsurface utility locator, a general contractor for installation of equipment and utilities for the aerobic biobarrier and an equipment fabricator. The procurement packages will be distributed to a list of contractors. The contractor bids will be compared in terms of cost, schedule and overall value and these criteria (among others) will be used by Hercules to select the contractors that will be retained in connection with installation of the aerobic biobarrier.

3.4 Electric Power Hookup

Currently, there is no electric power available in the portion of the Brunswick facility where the aerobic biobarrier is expected to be installed. Following the procurement of required permits from the City of Brunswick and other local government entities (as needed), Geosyntec will contact Georgia Power Company on behalf of Hercules to arrange for installation of an electrical power supply line and a utility power pole to provide electric service for use in operating the aerobic biobarrier. After electric power is available, a licensed electrician will connect the power line to the equipment for the aerobic biobarrier.

4.0 AEROBIC BIOBARRIER CONCEPTUAL DESIGN

This section of the Work Plan provides information regarding the design of the aerobic biobarrier, including general details for the biosparging wells, the system piping, and the air compressor system and controls. These components will facilitate the injection of air into the deep zone of the upper surficial aquifer to produce aerobic conditions and are collectively referred to hereinafter as the aerobic biobarrier system. The primary design goal is the implementation of a flexible and optimizable system to deliver air to the deep zone of the upper surficial aquifer to promote the aerobic degradation of benzene and chlorobenzene in groundwater. The operation of the aerobic biobarrier system (including hours of operation, flow rates, and operational cycles) will be adjusted routinely to achieve aerobic conditions in groundwater in proximity to the aerobic biobarrier and to improve the efficiency of the aerobic biobarrier system as much as practicable.

4.1 Aerobic Biobarrier Well Layout

Based on the current design for the aerobic biobarrier, a network of 12 biosparging wells will be utilized to create an aerobic biobarrier that is approximately 150 long. The network of biosparging wells is expected to consist of two existing biosparging wells from the biosparging pilot test (i.e., biosparging wells BS-01 and BS-03), and ten newly installed biosparging wells (designated as biosparging wells BS-04 through BS-13). Existing biosparging well BS-02 is not expected to be used due to its close proximity to biosparging well BS-03. As shown on **Figure 6**, the new biosparging wells are expected to be installed in an offset line just to the west of existing biosparging wells BS-01 and BS-03. Those two existing biosparging wells will be used to augment the line of newly installed biosparging wells, as necessary. As noted in Section 2.3 of this Work Plan, the exact location and geometry of the planned aerobic biobarrier may be subject to further refinement based on the results from additional assessment activities that are expected to take place over the next several months to further evaluate the impacts that historical operations and releases at the neighboring Adams properties may be having on groundwater quality in the general area where the aerobic biobarrier is planned to be installed.

The layout of the biosparging wells is based on achieving an anticipated radius of influence of 7.5 feet at each well (i.e., the biosparging wells are expected to be located approximately 15 feet apart) as shown on **Figure 6**. Therefore, the target width of the aerobic biobarrier will be at least 15 feet. As presented in the Tidal Evaluation Report, horizontal hydraulic gradients in the deep zone of the upper surficial aquifer in proximity

to the area where the aerobic biobarrier is expected to be installed were observed to increase at low tide relative to high tide, with average groundwater gradient estimates ranging from 0.00095 to 0.0013 feet per feet ("ft/ft") at low tide and 0.00046 to 0.00089 ft/ft at high tide. Based on the steepest horizontal hydraulic gradient that was observed, the retention time of impacted groundwater in the aerobic biobarrier would be approximately 0.45 years (160 days), which would be sufficient time for the degradation of target COPCs to take place according to the results of the treatability studies that were performed. Given the range of horizontal hydraulic gradients measured during low tides and high tides, the projected retention time described above is highly conservative.

4.2 Design for Biosparging Wells

The ten new biosparging wells that are expected to be installed will be screened at the bottom of the deep zone of the upper surficial aquifer, immediately above the anticipated location of the low permeability semi-confining unit which separates the upper surficial aquifer from the lower surficial aquifer. The semi-confining unit is expected to be encountered at a depth of approximately 100 feet bgs. The interval in which biosparging will take place may be modified based on lithologic data collected during the installation of performance monitoring wells for the aerobic biobarrier as discussed in Section 5.1 of this Work Plan and the results of baseline sampling activities as discussed in Section 6.2 of this Work Plan.

The planned construction details for the new biosparging wells are provided on **Figure** 7. Each new biosparging well will be constructed with a 2-inch diameter Schedule 40 polyvinyl chloride ("PVC") riser pipe and a 0.01-inch slotted well screen in borehole at least 6 inches in diameter. The well screen for each biosparging well is expected to be 2 feet long. A sand filter pack (consisting of No. 1 sand) will be installed around the well screen of each biosparging well. The sand filter pack will extend 6 to 12 inches above the top of the well screen. A bentonite seal that is 3 feet thick will be installed above the top of the sand filter pack. The bentonite seal will consist of bentonite clay (no additives) in a pressed pellet or chip form. After the bentonite pellets/chips have been allowed to hydrate in accordance with the manufacturer's recommendations, the remaining annular space between the top of the bentonite seal and the ground surface will be grouted. Grout will consist of Type I Portland cement as described in ASTM C150 (Standard Specification for Portland Cement) issued by ASTM International and potable water.

As shown on **Figure 7**, the 2-inch diameter PVC riser pipe for each biosparging well will transition to a 2-inch diameter galvanized steel pipe at a depth of approximately 1 ft bgs.

The 2-inch diameter galvanized steel pipe will then transition to a 1-inch diameter galvanized steel pipe and extend approximately 2 feet above the ground surface. The above ground components of each biosparging well will be constructed with galvanized steel pipe (or equivalent) or pressure-rated flex hose that is suitable for compressed air situations. During the construction phase of the aerobic biobarrier, the biosparging wells may be completed in flush mount vaults instead of with above ground surface components so the surface expression of the aerobic biobarrier system components is limited to the area of the equipment enclosure. In such case, the 1-inch Schedule 80 PVC pipes running from the operating equipment for the aerobic biobarrier system as discussed in Section 4.5, below, will transition to 1-inch diameter galvanized steel pipes prior to entering the biosparging well vaults. The well head for each biosparging well will include a pressure gauge and/or a sampling port for purposes of connecting a manometer to the piping to measure the pressure at the well head. A check valve or a ball valve may be used at the well head to prevent water from entering the system piping for a biosparging well when the biosparging well is not actively being used for sparging.

4.3 Sparge System/Equipment Enclosure

The components of the aerobic biobarrier system involving operating equipment will be procured on a turnkey basis from an equipment fabricator. These components will be placed in an enclosed structure. The enclosed structure is expected to be located near the north end of the aerobic biobarrier as shown on **Figure 6**. The process and instrumentation diagram for a typical biosparging system is shown on **Figure 7**. The aerobic biobarrier system that is expected to be installed at the Brunswick facility includes the following components. The specifications for the components will be finalized during the construction design and contractor procurement process:

An air compressor: The aerobic biobarrier system will include an air compressor capable of providing a minimum 75 scfm of total air for the aerobic biobarrier system at 40 psi at the well head of a biosparging well. The air compressor will either be manufactured as a variable speed unit or have a variable frequency drive installed, so that alterations in the operating capacity of the air compressor can be made based upon the design requirements of the aerobic biobarrier system under operating conditions.

Air compressor appurtenances: Various appurtenances will be installed in line with the air compressor. These appurtenances are **expected** to include: (i) an air particulate filter; (ii) an air receiver tank; and (iii) condensate separators and

drains. The various pieces of equipment identified above will reduce the volume of condensate that may travel downstream from the air compressor to the individual biosparging wells. Condensate removed from the compressed air will be routed to a condensate management system (including a collection tank) located within the enclosed structure for the aerobic biobarrier system.

Programmable logic control panel: A programmable logic control ("PLC") panel will be installed in the enclosed structure for the aerobic biobarrier system. The PLC panel will include alarms and controls including low pressure and high pressure alarms connected to sensors **downstream** of the air compressor to shut off the aerobic biobarrier system automatically during a system failure. The PLC panel will also include an air holding tank high level switch and a high level alarm to shut off the air compressor when the air holding tank is full. Throughout the aerobic biobarrier system, flow meters and gauges will measure temperature, air pressure, and air flow, and provide these operating parameters to the PLC panel to allow for adjustments to be made during operation of the aerobic biobarrier system.

4.4 Piping Manifolds and Controls

To help distribute compressed air from the air compressor in the equipment enclosure to the biosparging wells, three manifolds (designated as Manifold A, Manifold B, and Manifold C) at a minimum will be constructed within the equipment enclosure for the aerobic biobarrier system as shown on **Figure 8**. Each manifold will be capable of servicing five biosparging wells. The manifolds will be configured as follows:

- Manifold A Manifold A will connect to biosparging wells BS-04 through BS-08;
- Manifold B –Manifold B will connect to biosparging wells BS-09 through BS-13;
 and
- Manifold C Manifold C will connect to biosparging wells BS-01 and BS-03 and will have three spare legs for future expansion of the aerobic biobarrier as may be needed.

Each manifold will split the compressed air from the air compressor in the equipment enclosure into individual conveyance lines (one line per biosparging well). Each of the five individual legs on the manifold (one for each biosparging well served by the

manifold) will include one pressure gauge, one flow meter, one check valve, and one gate valve so that air flow to each individual biosparging well can be independently monitored and controlled. Also, the flow meter on each leg will be isolated by a three-way ball valve. The three-way ball valve will allow isolation of the in-line flow meter, so that air only passes through the in-line flow meter when necessary (e.g., when collecting a measurement), thus prolonging the life of the flow meter. Each manifold will include a solenoid valve to allow for cycled operation of the aerobic biobarrier system as discussed in Section 4.7 of this Work Plan.

4.5 Piping and Pressure Testing

Each manifold leg will be connected to a 1-inch diameter Schedule 80 PVC pipe which will run via a subsurface trench network (discussed in Section 4.6, below) from the manifold leg to the location of the associated biosparging well. The 1-inch diameter Schedule 80 PVC pipe will transition to a 1-inch diameter galvanized steel pipe at a depth of at least 1 ft bgs. The 1-inch diameter galvanized steel pipe will then run from below ground to above ground and attach to the well head assembly for the biosparging well as described in Section 4.2, above. High pressure rated flexible piping may be used in lieu of galvanized steel piping. The typical trench details and well head connections for the biosparging wells are shown on **Figure 7**.

During installation, each piping section will be labeled to identify the biosparging well to which it will connect. A total of 12 separate pipe runs will be placed in the primary trench leading from the equipment enclosure to the general area where the biosparging wells will be located. Once the piping is glued with low VOC PVC primer and cement, each run of underground piping will be pressure tested by pressurizing the piping in 10 psi increments to a final pressure of 60 psi. The final pressure of 60 psi will be maintained for an hour. During pressure testing, all joints and fittings will be tested using a soap solution that will bubble if a leak is present. Any identified air leaks will be repaired, and the piping section will be retested to confirm that the repairs were successful in stopping the leaks.

4.6 <u>Trenching Activities</u>

Piping runs from the manifolds to the biosparging wells will be placed below ground in a trench network. The typical trenching details for the piping runs are shown on **Figure** 7. The typical biosparging pipe trench will be excavated to a depth sufficient to ensure that a minimum of 24 inches of clearance exists between the top of the biosparging piping runs and the ground surface. A total of 12, 1-inch diameter Schedule 80 PVC lines will

be installed in the primary trench to deliver compressed air from the compressor housed in the equipment enclosure to each biosparging well. The trench network will also include laterals branching from the primary trench for piping runs leading to individual biosparging wells. The piping runs will be installed so that they do not touch each other. A buffer of sand that is at least one inch thick will be placed around each pipe. During backfilling of any trenches that are excavated for piping runs, metallic locating tape will be placed at a depth of approximately 1 ft bgs. If suitable, soils excavated from the trenches will be used as backfill material. Alternatively, clean fill material from an offsite borrow source will be used to backfill the trenches. Any excess soils generated from trenching activities will be properly managed.

4.7 **Cycled Operation**

As explained in Section 4.4 of this Work Plan, the aerobic biobarrier system will have the capability of cycled operation between individual manifolds so that groups of biosparging wells can operate independently of each other, or in combination. An example of such cycled operations is as follows:

- Hours 0 through 2: Manifold A on, Manifold B off.
- Hours 2 through 4: Manifold A off, Manifold B on.
- Hours 4 through 6: Manifold A on, Manifold B off.
- Hours 6 through 8: Manifold A off, Manifold B on.

In this example, the cycled operation process will repeat, with each manifold operating for up to eight hours per day.

The pulsed cycles and on/off duration for the biosparging wells will be optimized during operations based upon measurements of dissolved oxygen levels in the deep zone of the upper surficial aquifer and reductions in concentrations of benzene and chlorobenzene in groundwater. It is anticipated that once dissolved oxygen is effectively distributed in groundwater in the area of the aerobic biobarrier, the periods during which the manifolds are "off" may be extended and/or the cycle times between areas served by the manifolds may be modified to achieve corrective measure objectives. Similarly, as groundwater monitoring results indicate how particular portions of the aerobic biobarrier are performing, the specific distribution of air flow for each biosparging well and the operational time period for each section of the aerobic biobarrier (and for individual

biosparging wells within the section) will be optimized to achieve corrective measure objectives. Biosparging wells connected to Manifold C (i.e., biosparging wells BS-01 and BS-03) are expected to serve as spare biosparging wells and will be utilized only as necessary to supplement the delivery of air to the subsurface based on the operational performance of the other biosparging wells.

4.8 Design for Performance Monitoring Wells

Four performance monitoring wells (including existing wells MW-29D and BS-OW-03D and two new performance monitoring wells designated as wells BS-OW-04D and BS-OW-05D) will be used to monitor the effectiveness of the aerobic biobarrier system. The locations of the performance monitoring wells are shown on **Figure 9**. Performance monitoring wells BS-OW-04D, MW-29D and BS-OW-05D are located immediately downgradient of the aerobic biobarrier along a transect perpendicular to the groundwater flow direction. These performance monitoring wells will be used to evaluate reductions in concentrations of benzene and chlorobenzene in the deep zone of the upper surficial aquifer due to the aerobic biobarrier. Performance monitoring well BS-OW-03D is approximately 40 feet downgradient from the aerobic biobarrier. Therefore, groundwater conditions at this monitoring well may not be influenced significantly from the aerobic biobarrier during the first year of groundwater monitoring. This monitoring well will provide information concerning baseline concentrations of COPCs in groundwater downgradient of the aerobic biobarrier prior to operating the aerobic biobarrier system, and the baseline concentrations will be used to help evaluate the long-term effectiveness of the aerobic biobarrier system. The construction details of the performance monitoring wells are provided in **Table 1**.

New performance monitoring wells BS-OW-04D and BS-OW-05D will be constructed using 2-inch diameter Schedule 40 PVC riser pipes and well screens. The screened interval for each of the new performance monitoring wells is expected to be 10 feet long between 80 and 90 feet bgs. The anticipated screened interval for each of the new performance monitoring wells may be adjusted in the field based on results obtained from the evaluation of the soil cores that are expected to be collected at the locations of the new performance monitoring wells.

5.0 FIELD IMPLEMENTATION ACTIVITIES

Field activities in connection with installing the aerobic biobarrier system include installing new biosparging and performance monitoring wells; completing pneumatic slug testing activities; and installing the equipment, piping, controls and enclosed structure for the aerobic biobarrier system. This section of the Work Plan explains the field implementation activities associated with the various components of the aerobic biobarrier system.

5.1 Installation of Biosparging and Performance Monitoring Wells

The new biosparging wells and performance monitoring wells for the aerobic biobarrier system will be installed by a Georgia licensed driller. The new performance monitoring wells will be installed prior to installation of the new biosparging wells so that adjustments relating to the screened intervals of the new biosparging wells can be made as necessary based on the information obtained during installation of the new performance monitoring wells.

The borings for the new biosparging wells and performance monitoring wells will be advanced using sonic drilling techniques. Prior to installing each new well, soil cores will be collected to a depth of approximately 100 ft bgs at the location of each well by the drilling subcontractor. The soil cores will be logged by qualified field personnel to gather information about the subsurface lithology.

Each new biosparging well and performance monitoring well will be developed using a submersible pump, or equivalent, at least 24 hours after grouting to optimize the performance of the well (either as a biosparging well or a performance monitoring well) by cleaning out any fine particles potentially introduced into the well during the drilling process. The submersible pump will be lowered to the total depth of the well, and once at that depth, groundwater extraction will commence until the water is visibly free of particulate matter.

5.2 Pneumatic Slug Tests

Following the installation and development of the performance monitoring wells, pneumatic slug tests will be performed at performance monitoring wells MW-29D, BS-OW-5D and BS-OW-6D to obtain estimated hydraulic conductivity ("K") values for the surface strata. The slug tests will be performed using nitrogen gas to depress the water table inside each of the performance monitoring wells. Slug tests will be performed no

sooner than 24 hours after well development activities are completed. If practicable, the slug tests will not be performed until water levels have returned to at least 95% of its their original static levels in the performance monitoring wells.

Prior to attaching slug testing equipment at each performance monitoring well, the initial depth to water level and the depth of the well will be recorded. A transducer will be used to measure water pressures (i.e., water levels above the transducer). The transducer will be lowered to a depth of at least 10 feet below the top of the water column to maintain the transducer within the water column during water displacement. Nitrogen gas will then be introduced into the well at a pressure of approximately 4.5 psi to depress the water table within the well. The transducer will record real-time changes to the depth to groundwater during the entirety of the slug test. Upon reaching equilibrium, the applied pressure will be released, and water pressure data will be recorded using the transducer until the depth to water is within approximately 10 percent of the initial reading or for one hour, whichever comes first.

The data from the transducers will be uploaded to a computer and analyzed using an aquifer test analysis software (e.g., AQTESOLV® developed by Hydrosolve, Inc.) to estimate the hydraulic conductivity within the screened intervals of each of the performance monitoring wells. The estimated hydraulic conductivities will be used to help refine estimates of groundwater flow velocities and mass flux through the aerobic biobarrier to evaluate the performance of the aerobic biobarrier system during operation.

5.3 Installation of the Aerobic Biobarrier System

In addition to installing biosparging and performance monitoring wells, installation of the aerobic biobarrier system will include the following activities:

- Installation of well head connections at each biosparging well;
- Fabrication of the equipment for the aerobic biobarrier system and the equipment enclosure to house that equipment;
- Preparation (e.g., leveling and grading activities) of the location where the equipment enclosure will be placed;
- Placement of the equipment enclosure;

- Installation of piping from the manifolds to individual biosparging wells, including completing the trenching network for pipe installation, pressure testing of the piping runs and backfilling of trenching network;
- Connection of the operating equipment (i.e., the manifolds) to the piping network leading to the biosparging wells; and
- Connection of electric service to the equipment enclosure to power the equipment for the aerobic biobarrier system.

Following installation of the aerobic biobarrier system, the system will go through a startup phase as described in Section 6.1 of this Work Plan.

5.4 Waste Management

Solid and liquid investigation derived waste ("IDW") will be containerized separately to the extent practicable and staged in the Central Accumulation Area in the portion of the Brunswick facility that Hercules owns or in a separate staging area near the location of the aerobic biobarrier. Solid IDW (e.g., drill cuttings) and liquid IDW (e.g., decontamination fluids and well purge water) will be containerized and labeled, as appropriate, indicating the name of the generator, contact information, generation date, and general contents. IDW will be characterized as soon as practicable to allow adequate time for appropriate management and off-site disposal of the IDW.

6.0 STARTUP PROCEDURES, OPERATION, MONITORING AND MAINTENANCE ACTIVITIES, AND PERFORMANCE MONITORING ACTIVITIES

This section of the Work Plan provides details regarding the startup of the aerobic biobarrier system, the planned operation, monitoring and maintenance ("OM&M") activities for the aerobic biobarrier system, and performance monitoring activities that will be conducted as part of evaluating the efficacy of the aerobic biobarrier system.

6.1 System Startup

Prior to startup of the aerobic biobarrier system, the system will be inspected to confirm that it can operate as desired and that no modifications are necessary. Each of the individual components of the aerobic biobarrier system (both mechanical and digital) will be subject to performance testing to verify that they are functioning appropriately and have not been damaged during transportation or installation of the system.

During startup of the aerobic biobarrier system, the compressed air generated from the air compressor in the equipment enclosure will be provided to each manifold (Manifold A, Manifold B and Manifold C). Each manifold will operate for two hours before cycling to the next manifold; therefore, each manifold will operate for a total of eight hours per day (i.e., eight hours of operation spread out over a 24 hour period in two hour increments). Operational parameters will be compared to the expected design parameters (i.e., well head pressures, air flow rates, and the observed radius of influence for each biosparging well). Adjustments will be made to the operation of the aerobic biobarrier system, as necessary. Once the aerobic biobarrier system is fully operational, the operational cycles can be adjusted, as necessary, to optimize the performance of the system to achieve maximum ROIs for the ideal distribution of dissolved oxygen (i.e., dissolved oxygen at concentrations of greater than 2 mg/L) to promote aerobic bioremediation and to minimize the potential for groundwater mounding to occur. It is anticipated that startup activities for the aerobic biobarrier system will take approximately 5 days to complete.

6.2 OM&M Activities

Upon installation of the aerobic biobarrier system and successful system startup, the equipment for the system will be monitored weekly for the first month and monthly thereafter. Routine OM&M activities will include collecting the following information:

- individual air flow rates and pressures at each biosparging well;
- overall air flow rates, operating pressures, and temperatures for the aerobic biobarrier system;
- overall hours of operation from hour meter readings;
- electric usage from electric meter readings;
- oil and lubrication levels; and
- the volume of collected condensed water.

In addition, monitoring data obtained remotely through telemetry regarding the operation of the aerobic biobarrier system will be recorded manually on a weekly basis. The results of the weekly remote monitoring activities and any alarm notifications provided by the aerobic biobarrier system will provide the basis for OM&M activities conducted outside of the scheduled monthly OM&M events. Any periodic equipment maintenance activities recommended by equipment manufacturers will be performed as part of the routine OM&M activities. The results of OM&M activities will be documented in OM&M logs. A copy of the OM&M logs will be kept on-site inside the equipment enclosure.

6.3 Performance Monitoring Plan

A groundwater performance monitoring program will be implemented to evaluate the effectiveness of the aerobic biobarrier treatment process in reducing the concentrations and mass flux of benzene, chlorobenzene, and other COPCs susceptible to aerobic biodegradation in the deep zone of the upper surficial aquifer. The performance monitoring well network will consist of existing monitoring well MW-29D and new performance monitoring wells BS-OW-04D and BS-OW-05D. In addition, existing wells OW-Q2D, BS-OW-02, BS-OW-03D, MW-62D and OW-Q1D will be used for collecting measurements of field parameters as part of the groundwater performance monitoring program. The monitoring locations are shown on **Figure 9**.

A baseline sampling event prior to the start of operation of the aerobic biobarrier system and five performance monitoring events thereafter will be performed as summarized in **Table 2.** The performance monitoring activities will be performed one month, three months, six months, nine months and twelve months after the aerobic biobarrier system

is placed into operation. For the first performance monitoring event one month after the aerobic biobarrier system is placed into operation, only measurements for field parameters and depth to groundwater will be collected. During subsequent performance monitoring events three months, six months, nine months, and twelve months after the aerobic biobarrier system is placed into operation, groundwater samples will be collected from all of the performance monitoring wells for evaluation of field parameters including depth to water, pH, specific conductance, temperature, dissolved oxygen and oxidation-reduction potential. In addition, groundwater samples will be collected from three performance monitoring wells (wells MW-29D, BS-OW-04D and BS-OW-05D) located downgradient from the aerobic biobarrier for laboratory analysis. Monitoring well BS-OW-3D will be sampled during the baseline sampling event and the twelve-month sampling event for laboratory analysis. The groundwater samples for laboratory analysis will be shipped under chain-of-custody protocols to Test America in Savannah, Georgia for analysis of the following parameters:

- VOCs listed in Appendix IX of 40 C.F.R. Part 264 using EPA Method 8260C;
- Dissolved iron (using EPA Method 6020B or equivalent), and total iron and manganese (using EPA Method 6020B or equivalent); and
- Total organic carbon ("TOC") using EPA Method 9060A or equivalent.

6.4 Data Analysis

The initial goal of implementing the aerobic biobarrier system is to reduce average concentrations of benzene and chlorobenzene in groundwater in the deep zone of the upper surficial aquifer immediately downgradient of the aerobic biobarrier by 50%. This goal will be evaluated by comparing average concentrations of benzene and chlorobenzene in performance monitoring wells MW-29D, BS-OW-04D and BS-OW-05D to the average concentrations of benzene and chlorobenzene collected from those three performance monitoring wells before the aerobic biobarrier system is placed into operation (i.e., the baseline monitoring event). Mass flux evaluations for target COPCs may also be performed using the collected data to evaluate the effectiveness of the aerobic biobarrier system.

7.0 REPORTING

A construction completion report ("CCR") will be submitted to EPD within four months after the aerobic biobarrier system is placed into operation. The CCR will summarize the construction activities that were completed, include a manual with system component specifications for the aerobic biobarrier system, present copies of the initial OM&M logs, include the results of initial measurements of field parameters and include the results of the initial baseline groundwater monitoring event.

Progress reports will be submitted to EPD following the performance monitoring events conducted six months and nine months after the aerobic biobarrier system is placed into operation. The progress reports will briefly summarize the data collection activities, field measurements, and analytical results performed during the preceding three-month period.

An interim corrective action effectiveness report for the aerobic biobarrier system will be prepared following the performance monitoring event conducted 12 months after the aerobic biobarrier system is placed into operation. The report will present the groundwater analytical data that were obtained, the analyses of reductions in concentrations of COPCs (primarily benzene and chlorobenzene), and the relative progress toward meeting the objectives of the interim corrective measure. This report will also include recommendations for future actions consistent with the data and observations that are presented, including recommendations for longer term groundwater monitoring.

The interim corrective action effectiveness report for the aerobic biobarrier system will be a stand-alone report. Following the submission of the interim corrective action effectiveness report, Hercules anticipates that further corrective action effectiveness reports for the aerobic biobarrier system will be presented annually as part of the groundwater monitoring reports currently required under the hazardous waste permit for the Brunswick facility that EPD has issued to Hercules and Pinova. The corrective action effectiveness reporting schedule may be modified, as approved by EPD.

Hercules will also send copies of the CCR and corrective action progress and effectiveness reports to the EPD UIC permitting office, if requested, to fulfill a substantive requirement of the UIC permitting program.

8.0 SCHEDULE

As previously described, installation and operation of an aerobic biobarrier system to address benzene and chlorobenzene (together with other COPCs susceptible to aerobic degradation) in the deep zone of the upper surficial aquifer underlying the portion of the Brunswick facility to the north of the Outfall Ditch and east of U.S. Highway 17 will include, among other things, planning, permitting, well installation, construction, implementation and monitoring activities. The work is anticipated to progress in the following sequence of steps. An estimated target duration for completion of each step in the process is presented below with the understanding that the duration of particular steps may be modified based on conditions that are encountered and the results that are obtained. Because the steps are generally sequential, a change in the duration of one step may affect the target completion schedule for subsequent steps. As noted in Section 4.1 above, additional assessment activities are expected to take place over the next several months to further evaluate the historical operations and releases at the neighboring Adams properties. Based on the schedule of these additional assessment activities and the results therefrom, the implementation schedule of this Work Plan may change. Hercules will keep EPD informed of the progress in implementing this Work Plan via regularly scheduled Triad meetings or other communications.

The tentative schedule provided below for implementing the Work Plan runs from the date that EPD approves the Work Plan and Hercules completes the additional assessment activities at the adjacent Adams properties as described above. Hercules has assumed that the additional assessment activities will be completed prior to EPD's approval of the Work Plan.

- Pre-mobilization planning, procurement, and permitting activities: four months after EPD approval of the Work Plan;
- Installation of additional biosparging wells and performance monitoring wells and baseline sampling activities (two-month duration): six months after EPD approval of the Work Plan;
- Fabrication and field construction of equipment and infrastructure for delivery of compressed air to the biosparging wells (four-month duration): 10 months after EPD approval of the Work Plan;
- Startup process for the aerobic biobarrier system (one-month duration): 11 months after EPD approval of the Work Plan;

- Initial performance monitoring event for field parameters and associated reporting (one-month after startup): 12 months after EPD approval of the Work Plan;
- Performance monitoring event three months after initiating full-scale operation of the aerobic biobarrier system and completion of the CCR (due one month after receipt of validated laboratory analytical results): 15 months after EPD approval of the Work Plan;
- Performance monitoring event six months after initiating full-scale operation of the aerobic biobarrier and preparation of the initial progress report (due one month after receipt of validated laboratory analytical results): 19 months after EPD approval of the Work Plan;
- Performance monitoring event nine months after initiating full-scale operation of the aerobic biobarrier system and preparation of the follow-up progress report (due one month after receipt of validated laboratory analytical results): 22 months after EPD approval of the Work Plan; and
- Performance monitoring event twelve months after initiating full-scale operation of the aerobic biobarrier system and preparation of the interim corrective action effectiveness report (due approximately two months after receipt of validated laboratory analytical results): 26 months after EPD approval of the Work Plan.

9.0 REFERENCES

Geosyntec. 2021. Corrective Action Plan. Hercules/Pinova Brunswick Facility, Brunswick, Georgia. February 2021.

Interstate Technology Regulatory Council (ITRC). 2010. Use and Measurement of Mass Flux and Mass Discharge. August 2010.

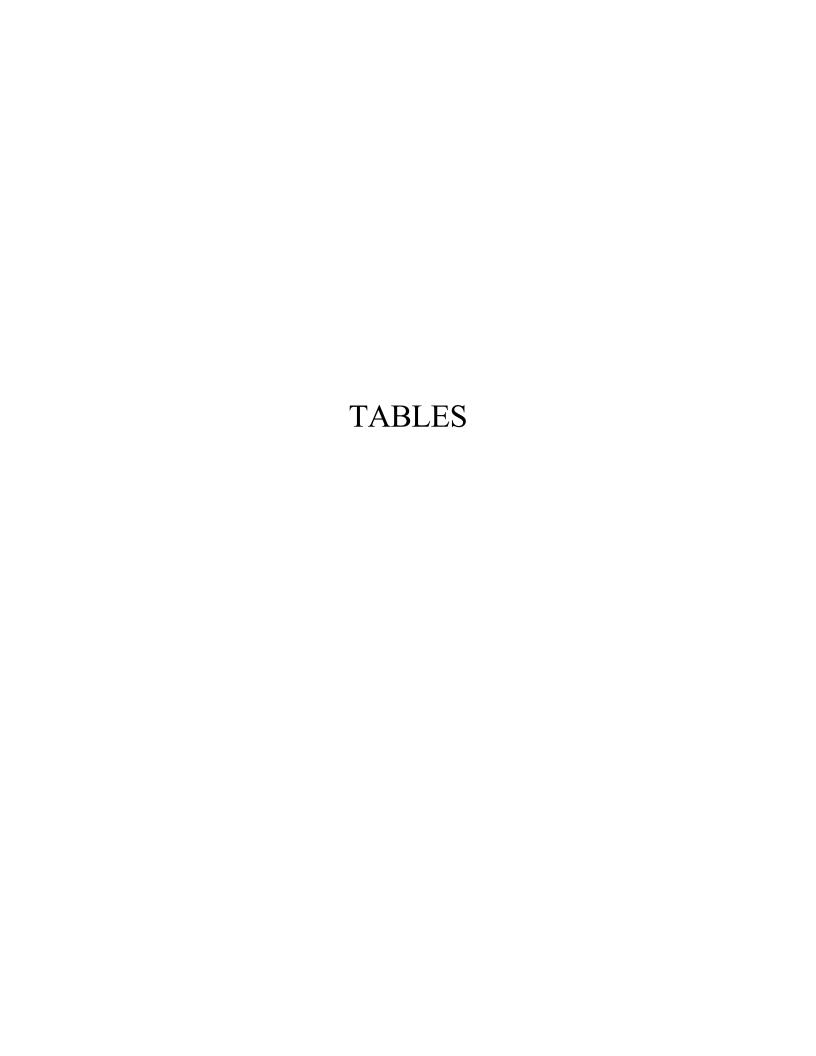


Table 1
Construction Details for Biosparging and Performance Monitoring Wells
Deep Zone of Upper Surficial Aquifer - Aerobic Biobarrier
Hercules LLC/Pinova Brunswick Facility, Brunswick, GA

Well ID	Well Function	Well Depth	Screened Interval	Screen Slot Size	Sand Pack Interval	Bentonite Seal
	Riasna	(ft bgs) rging Wells	(ft bgs)	(inch)	(ft bgs)	(ft bgs)
BS-01*	Supplemental Biosparging Well	95	94 to 92	0.01	95 to 89	89 to 85
BS-03*	Supplemental Biosparging Well	99	99 to 98	0.01	99 to 97	97 to 93
BS-04	Biosparging Well	100	100 to 98	0.01	100 to 97	97 to 93
BS-04 BS-05	Biosparging Well	100	100 to 98	0.01	100 to 97	97 to 94 97 to 94
BS-05 BS-06	Biosparging Well	100				97 to 94 97 to 94
			100 to 98	0.01	100 to 97	
BS-07	Biosparging Well	100	100 to 98	0.01	100 to 97	97 to 94
BS-08	Biosparging Well	100	100 to 98	0.01	100 to 97	97 to 94
BS-09	Biosparging Well	100	100 to 98	0.01	100 to 97	97 to 94
BS-10	Biosparging Well	100	100 to 98	0.01	100 to 97	97 to 94
BS-11	Biosparging Well	100	100 to 98	0.01	100 to 97	97 to 94
BS-12	Biosparging Well	100	100 to 98	0.01	100 to 97	97 to 94
BS-13	Biosparging Well	100	100 to 98	0.01	100 to 97	97 to 94
	Performance	Monitoring	Wells			
MW-29*	Performance Monitoring Well	89.8	79.75-89.75	0.01	NA	NA
BS-OW-03D*	Performance Monitoring Well	93	93 to 83	0.01	97 to 79	79 to 74
BS-OW-04D	Performance Monitoring Well	90	90 to 80	0.01	90 to 78	78 to 75
BS-OW-05D	Performance Monitoring Well	90	90 to 80	0.01	90 to 78	78 to 75
OW-Q2D*	Field Parameter Monitoring Well	90.3	90.3 to 80	0.01	97 to 78	78 to 75
BS-OW-02*	Field Parameter Monitoring Well	93	93 to 83	0.01	97 to 80	80 to 76
BS-02*	Field Parameter Monitoring Well	82	82 to 72	0.01	82 to 70	70 to 68
MW-62D*	Field Parameter Monitoring Well	90.3	90.3 to 80	0.01	90.3 to 78	78 to 76
OW-Q1D*	Field Parameter Monitoring Well	90.3	90.3 to 80	0.01	90.3 to 78	78 to 76

Notes:

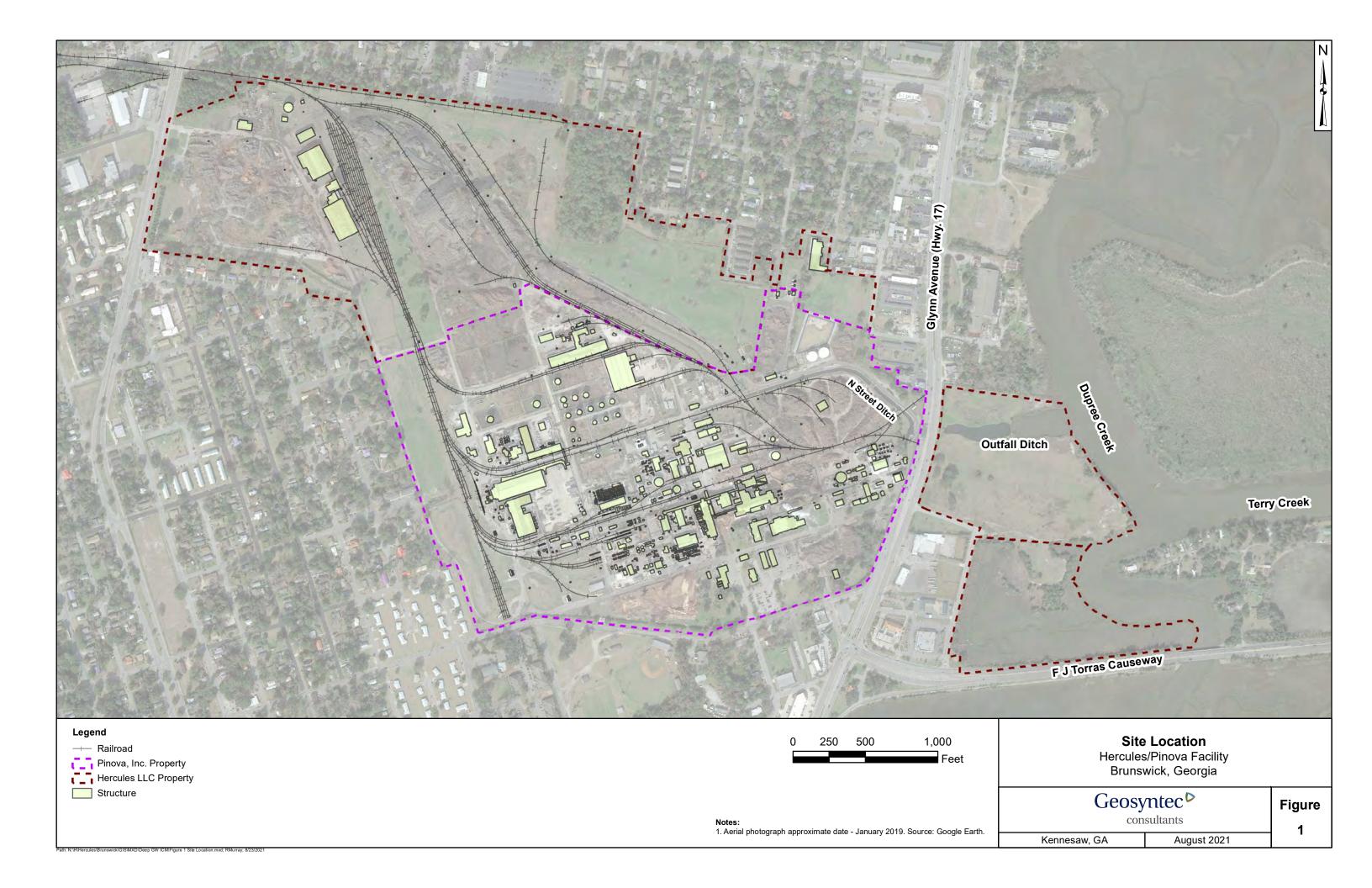
ft bgs - feet below ground surface.

NA: not available

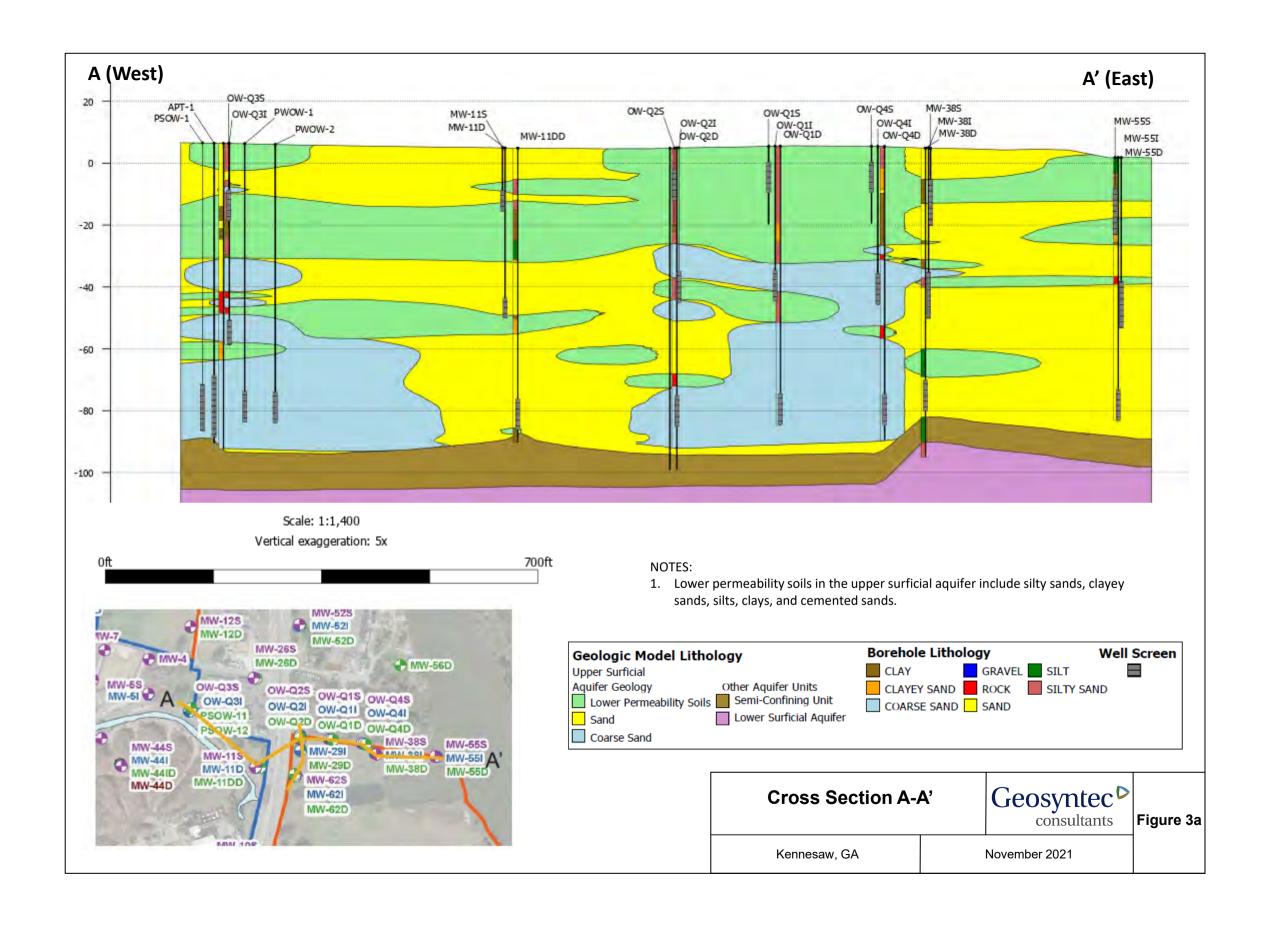
- *: Existing wells
- 1. Wells will be constructed with Schedule 40 polyvinyl chloride components (including riser pipes and screens).
- 2. The screened intervals and lengths of the proposed biosparging wells have been selected to inject air at the bottom interval of the deep zone of the upper surficial aquifer (i.e., directly above the semi-confining layer that is present). The screened intervals for the biosparging wells are subject to change based on the depth of the semi-confining layer and low permeability layers (i.e., silty, clayey layers) that may be encountered during well installation activities.
- 3. The locations for the proposed biosparging and performance monitoring wells may be modified due to the accessibility of the proposed locations and other field conditions that are encountered.

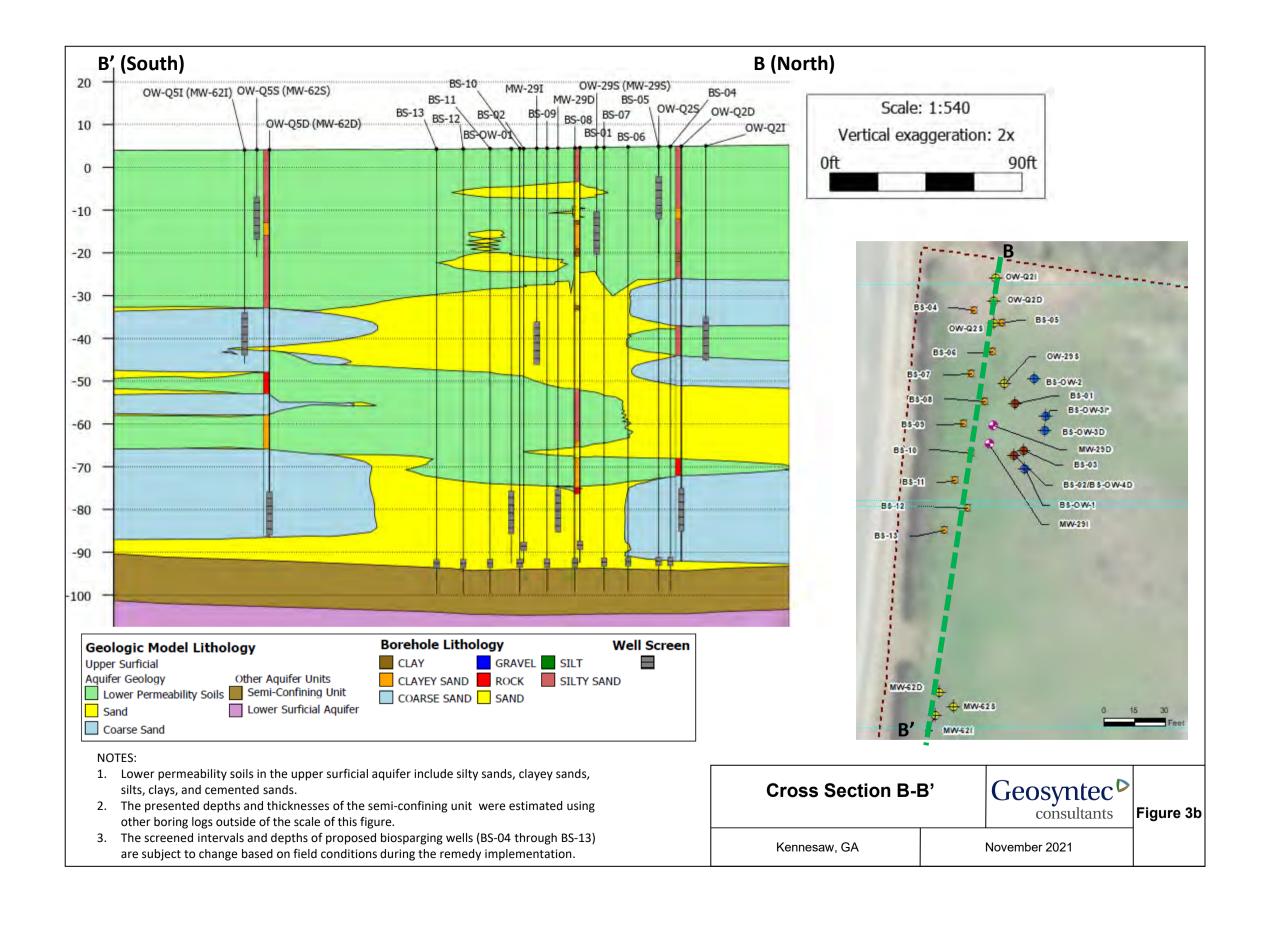
Table 2 **Proposed Performance Monitoring Plan** Deep Zone of Upper Surficial Aquifer - Aerobic Biobarrier Hercules LLC/Pinova Brunswick Facility, Brunswick, GA

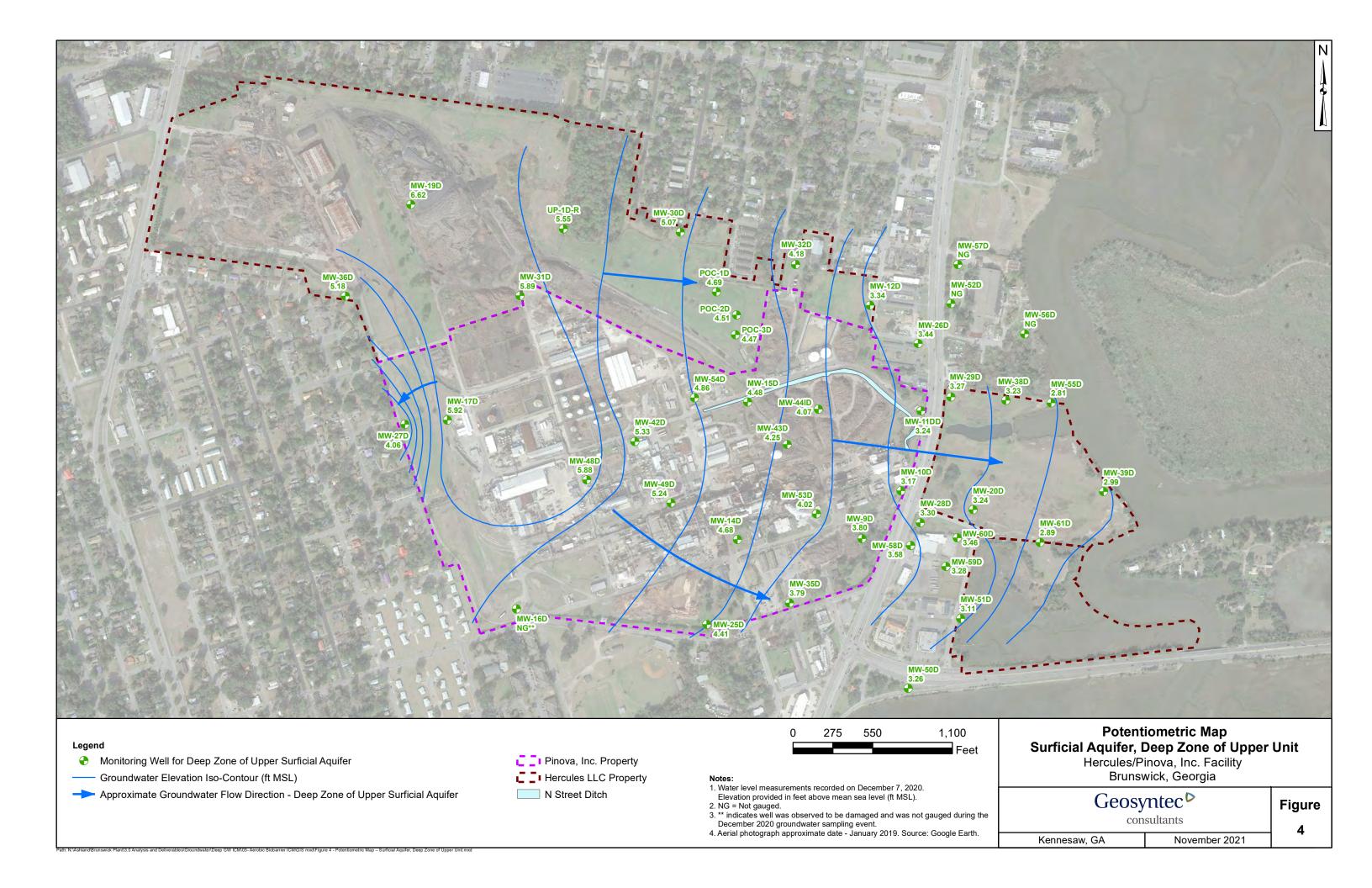
Monitoring Event	Monitoring Parameters	Analytical Method	Monitoring Wells					
	Depth to Water	N/A	All performance monitoring wells (MW-62D, OW-Q1D, OW-Q2D, BS-02,					
	Field Parameters ¹	N/A	BS-OW-02, MW-29D, BS-OW-03D, BS-OW-04D, BS-OW-05D)					
Baseline	Appendix IX VOCs	EPA 8260C						
Daseille	Total Organic Carbon	EPA 9060A	MW 20D DC OW 02D DC OW 04D DC OW 05D					
	Total Iron and Manganese	EPA 6020B	191 W-27D, B3-O W-03D, B3-O W-04D, B3-O W-03D					
	Dissolved Iron	EPA 6020B						
1-Month Post-Startup	Depth to Water	N/A	All performance monitoring wells (MW-62D, OW-Q1D, OW-Q2D, BS-02,					
1-Month Post-Startup	Field Parameters ¹	N/A	BS-OW-02, MW-29D, BS-OW-03D, BS-OW-04D, BS-OW-05D)					
	Depth to Water	N/A	All performance monitoring wells (MW-62D, OW-Q1D, OW-Q2D, BS-02,					
	Field Parameters ¹	N/A	BS-OW-02, MW-29D, BS-OW-03D, BS-OW-04D, BS-OW-05D)					
2 Manually Danas Chandron	Appendix IX VOCs	EPA 8260C						
3-Month Post-Startup	Total Organic Carbon	EPA 9060A	MW 20D DC OW 04D DC OW 05D					
	Total Iron and Manganese	EPA 6020B	MW-29D, BS-OW-04D, BS-OW-03D					
	Dissolved Iron	EPA 6020B						
	Depth to Water	N/A	All performance monitoring wells (MW-62D, OW-Q1D, OW-Q2D, BS-02,					
	Field Parameters ¹	N/A	BS-OW-02, MW-29D, BS-OW-03D, BS-OW-04D, BS-OW-05D)					
6-Month Post-Startup	Appendix IX VOCs	EPA 8260C						
6-Month Post-Startup	Total Organic Carbon	EPA 9060A	MW 20D BS OW 04D BS OW 05D					
	Total Iron and Manganese	EPA 6020B	MW-29D, BS-OW-04D, BS-OW-03D					
	Dissolved Iron	EPA 6020B						
	Depth to Water	N/A	All performance monitoring wells (MW-62D, OW-Q1D, OW-Q2D, BS-02,					
	Field Parameters ¹	N/A	BS-OW-02, MW-29D, BS-OW-03D, BS-OW-04D, BS-OW-05D)					
9-Month Post-Startup	Appendix IX VOCs	EPA 8260C						
9-Month Fost-Startup	Total Organic Carbon	EPA 9060A	MW 20D DC OW 04D DC OW 05D					
	Appendix IX VOCs EPA 8260C Total Organic Carbon EPA 6020B Dissolved Iron EPA 6020B Depth to Water N/A All performance monitoring wells (MW-62D, OW-Q1D, Field Parameters¹ N/A BS-OW-02, MW-29D, BS-OW-03D, BS-OW-04D, IS-OW-04D, IS-OW-05D Appendix IX VOCs EPA 8260C Total Organic Carbon EPA 6020B Depth to Water N/A All performance monitoring wells (MW-62D, OW-Q1D, Field Parameters¹ N/A BS-OW-02, MW-29D, BS-OW-04D, IS-OW-05D Appendix IX VOCs EPA 8260C Total Organic Carbon EPA 6020B Dissolved Iron EPA 6020B Dissolved Iron EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 8260C Total Organic Carbon EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 8260C Total Organic Carbon EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 8260C Total Organic Carbon EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 9060A Total Iron and Manganese EPA 6020B Dissolved Iron EPA 6020B	WIW-25D, B3-OW-04D, B3-OW-03D						
	Dissolved Iron	EPA 6020B						
	Depth to Water	N/A	All performance monitoring wells (MW-62D, OW-Q1D, OW-Q2D, BS-02,					
	Field Parameters ¹	N/A	BS-OW-02, MW-29D, BS-OW-03D, BS-OW-04D, BS-OW-05D)					
12 Manuala Danas Stans	Appendix IX VOCs	EPA 8260C						
12-Month Post-Startup	Total Organic Carbon	EPA 9060A	MW 20D DC OW 02D DC OW 04D DC OW 05D					
	Total Iron and Manganese	EPA 6020B	MW-29D, BS-OW-03D, BS-OW-04D, BS-OW-05D					
	Dissolved Iron	EPA 6020B						

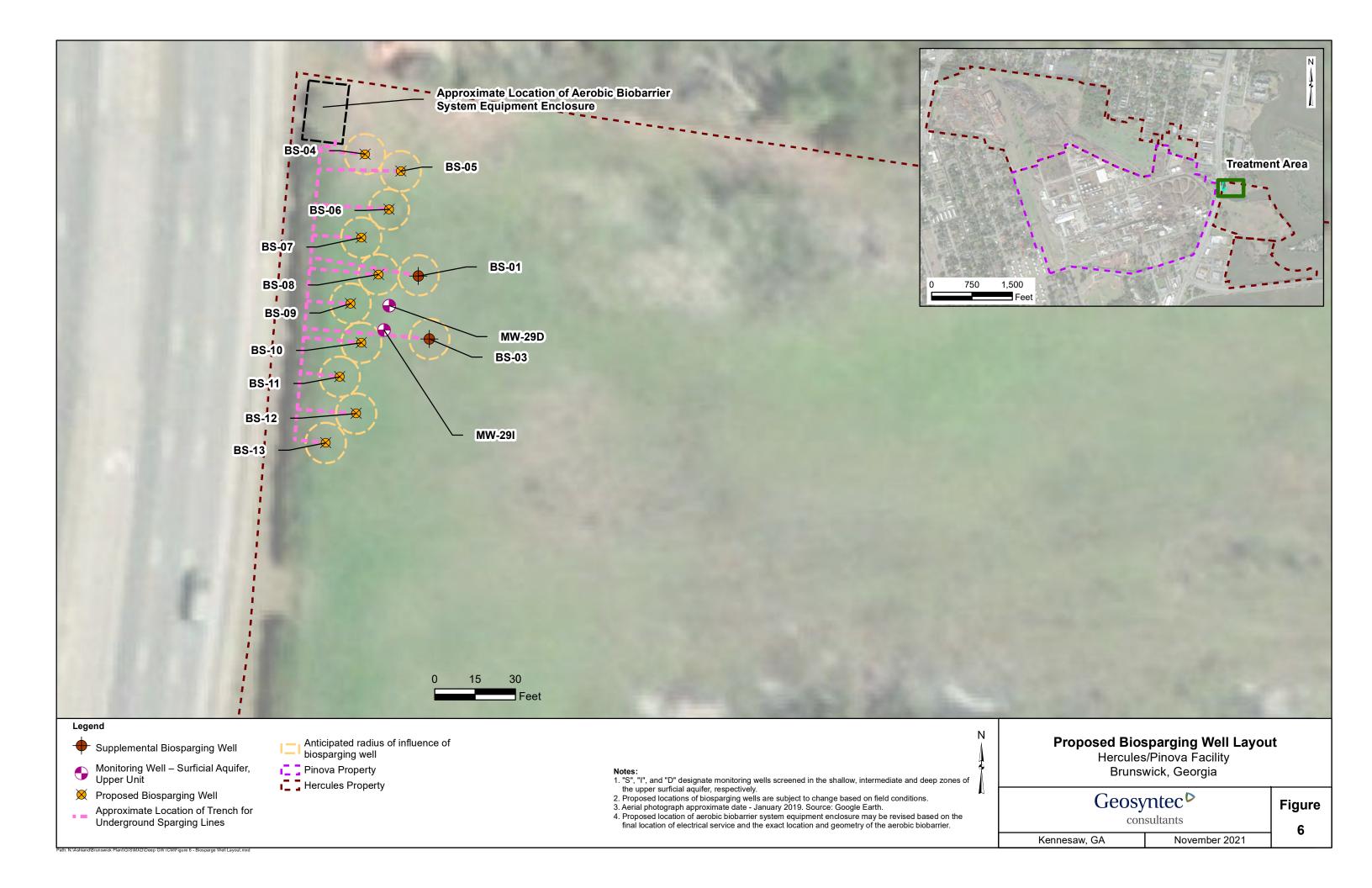

Notes:

VOCs- volatile organic compounds - VOCs listed in Appendix IX of 40 C.F.R. Part 264


N/A - not applicable


1- pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductivity, and temperature





Low Tide High Tide Dupree Creek Dupree Creek MW-26D 3.25 PSOW-12 3.47 PSOW-12 3.72 OW-Q2D N Street Ditch OW-Q4D N Street Ditch OW-Q4D OW-Q2D MW-11DD 3.28 MW-11DD 2.84 MW-62D 2.55 **Terry Creek Terry Creek** Low and High Tide Potentiometric Map Near Proposed Location of Aerobic Biobarrier, Legend Tidal Study Well Deep Zone of Upper Surficial Aquifer Hercules/Pinova Facility, Brunswick, Georgia Groundwater Elevation Groundwater Flow Direction Pinova Property Geosyntec consultants Hercules Property **Figure** 340 5 1. Groundwater elevations relative to feet above mean sea level (ft MSL). November 2021 Kennesaw, GA 2. Groundwater elevations calculated from transducer date collected around 9:54 a.m. on April 21, 2021, after correcting for barometric pressure.

METALLIC LOCATING TAPE
(TYP)

12 - 1" Ø SCH. 80 PVC PIPE

COMPACTED NATIVE BACKFILL SOIL

18" (MIN)

NOTES:

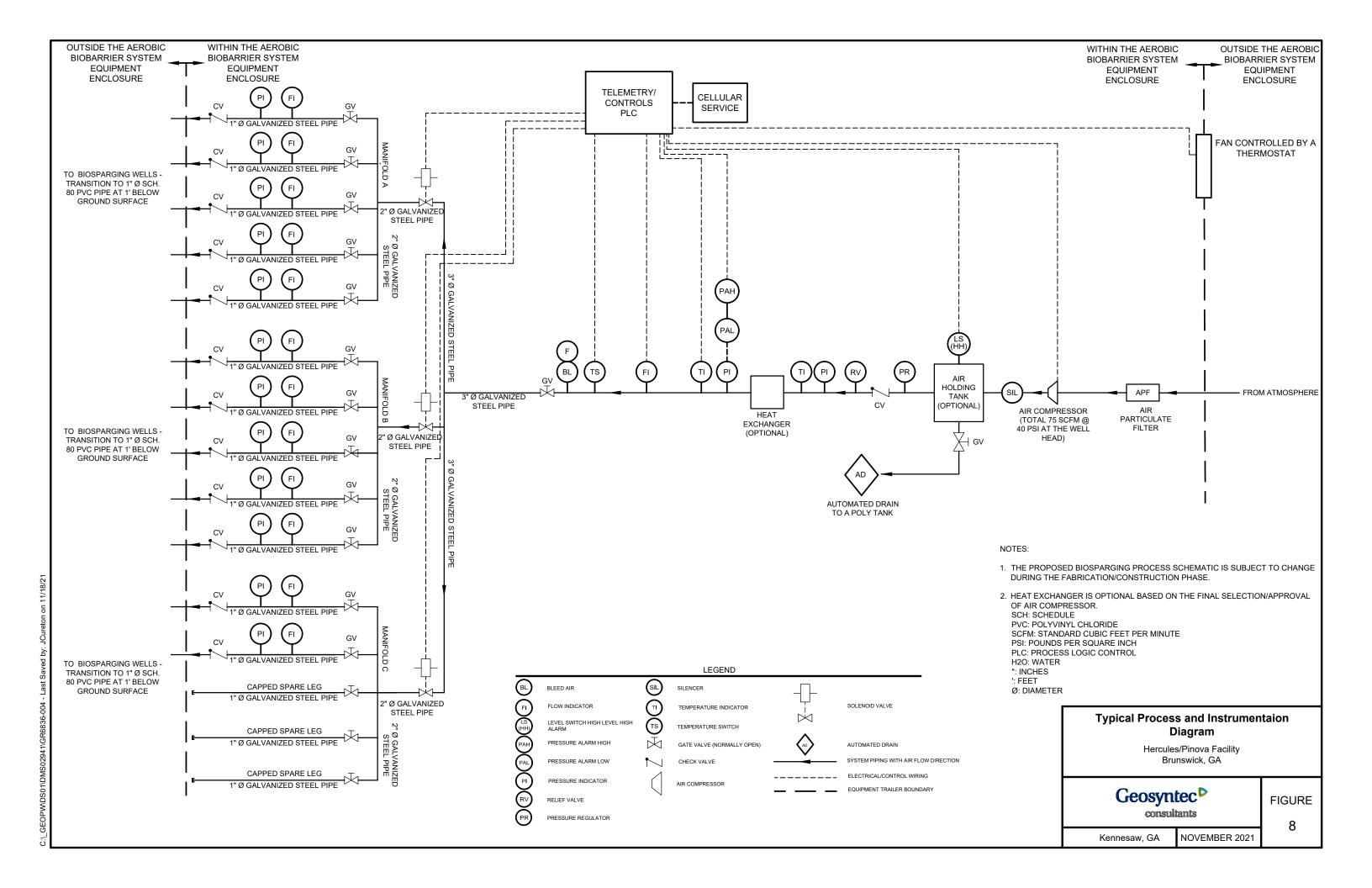
THE BIOSPARGING WELLS MAY BE COMPLETED USING FLUSH MOUNT VAULTS (NOT SHOWN HERE)
TO DECREASE THE ABOVEGROUND INFRASTRUCTURE ASSOCIATED WITH THE AEROBIC
BIOBARRIER SYSTEM AND TO FACILITATE ACCESS TO THE AEROBIC BIOBARRIER SYSTEM
EQUIPMENT ENCLOSURE AND UTILITY POLE FOR ELECTRIC POWER.

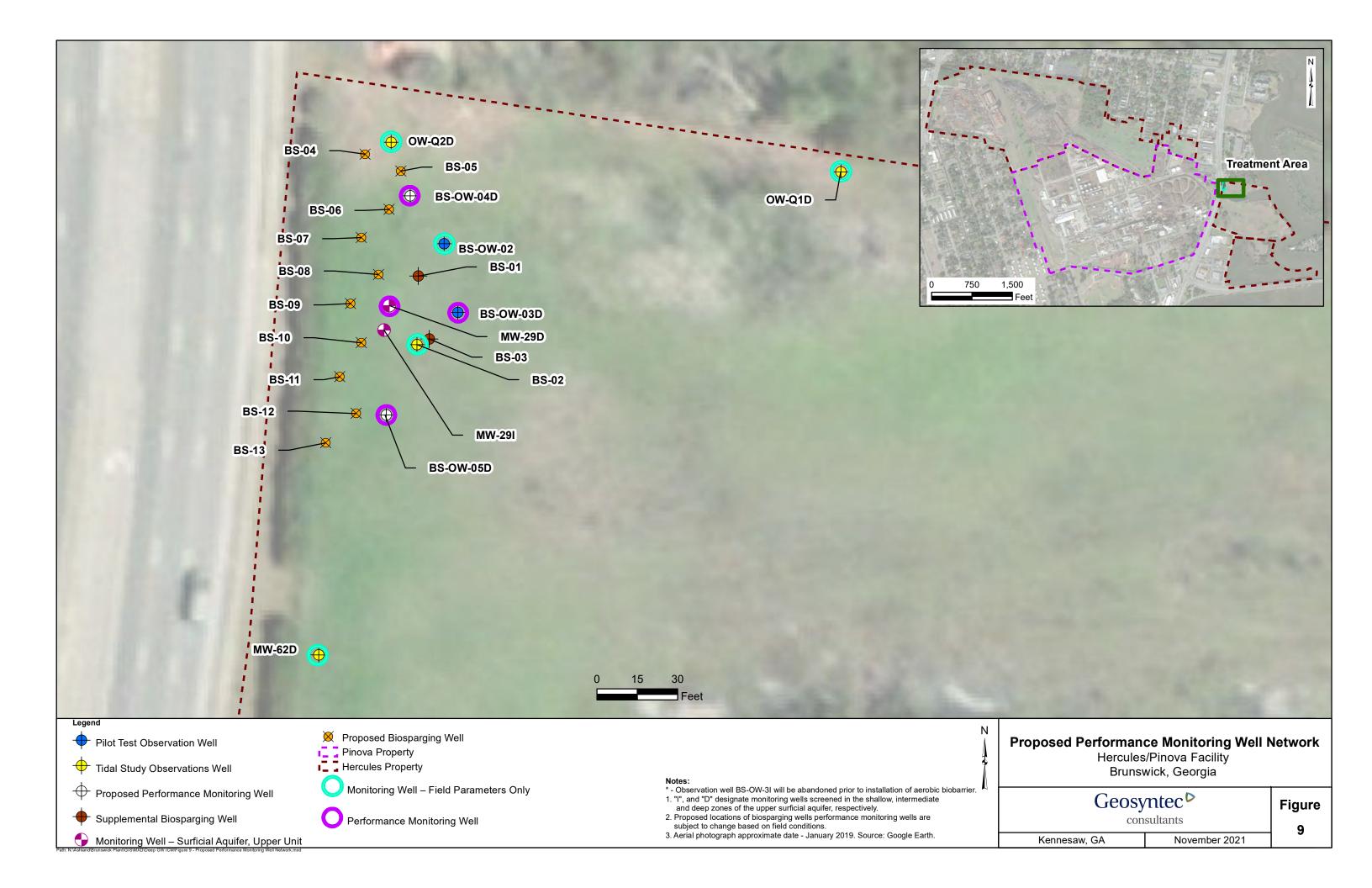
-GRASS

TYPICAL TRENCH DETAIL

NOT TO SCALE

- 2. THE NUMBER OF PIPES THAT WILL BE INSTALLED IN TRENCHES WILL VARY. THE WIDTHS OF THE TRENCHES WILL ALSO VARY DEPENDING ON THE NUMBER OF PIPES THAT ARE INSTALLED IN THE TRENCHES.
- 3. PIPES WITHIN THE TRENCH SHALL NOT TOUCH EACH OTHER AND SHALL HAVE 1" (MIN) SAND BUFFER AROUND EACH PIPE TO MINIMIZE ABRASION FOR PIPES INSTALLED IN TRENCHES.
- 4. THE SCREENED INTERVALS FOR THE PROPOSED BIOSPARGING WELLS IS SUBJECT TO CHANGE BASED ON THE LITHOLOGY OBSERVED DURING WELL INSTALLATION ACTIVITIES.
- 5. SCH: SCHEDULE
 PVC: POLYVINYL CHLORIDE
 ": INCHES
 Ø: DIAMETER




NOVEMBER 2021

_GEOPWIDS01\DMS02941\GR6836-005_REVISED 07262019 - Last Saved by: JCureton on 11/

Kennesaw, GA

DPW/DS01/DMS02941/GR6836-005 REVISED 07262019 - Last S

APPENDIX A

Tidal Evaluation Report

engineers | scientists | innovators

TIDAL EVALUATION AND GROUNDWATER CHEMISTRY DATA SUMMARY

HERCULES/PINOVA FACILITY BRUNSWICK, GEORGIA

Prepared for

Hercules LLC

500 Hercules Road Wilmington, DE 19808

Prepared by

Geosyntec Consultants, Inc. 1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project GR6881P

Table of Contents

1.	INT	RODUCTION	1
2.	OBJ	ECTIVES	2
3.	FIEI 3.1 3.2 3.3 3.4 3.5	LD METHODS Observation Well Installations Well Development Well Survey Groundwater Sampling Tidal Evaluation	3 4 4
4.	TRA 4.1 4.2 4.3 4.4 4.5 4.6	ANSDUCER DATA QUALITY EVALUATION Tidal Data Analysis Horizontal Hydraulic Gradient Calculations Horizontal Hydraulic Gradient Discussion Vertical Hydraulic Gradients Tidal Lag Time Analysis Specific Conductivity	8 9 9
5.	CON	NCLUSIONS	14
		LIST OF TABLES	
Tal	ble 1.	Observation Well Construction and Groundwater Elevations	
Tal	ble 2.	Groundwater Analytical Data	
Tal	ble 3.	Transducer Groundwater Elevations for Groundwater Conditions 1 to 4	
		LIST OF FIGURES	
Fig	gure 1.	Tidal Evaluation Network	
Fig	gure 2.	Horizontal Gradient Transect Map	
Fig	gure 37	A Shallow Zone of the Upper Surficial Aquifer Groundwater Condition 1 – High Tide	1
Fig	gure 31	B. Shallow Zone of the Upper Surficial Aquifer Groundwater Condition 1 – Low Tide	r
Fig	gure 4	A. Shallow Zone of the Upper Surficial Aquifer Groundwater Condition 2 – High	1

Figure 4B. Shallow Zone of the Upper Surficial Aquifer Groundwater Condition 2 – Low Tide Intermediate Zone of the Upper Surficial Aquifer Groundwater Condition 1 – Figure 5A. High Tide Intermediate Zone of the Upper Surficial Aquifer Groundwater Condition 1 – Figure 5B. Low Tide Figure 6A. Intermediate Zone of the Upper Surficial Aquifer Groundwater Condition 2 – High Tide Figure 6B. Intermediate Zone of the Upper Surficial Aquifer Groundwater Condition 2 – Low Tide Figure 7A. Deep Zone of the Upper Surficial Aquifer Groundwater Condition 1 – High Tide Figure 7B. Deep Zone of the Upper Surficial Aquifer Groundwater Condition 1 – High Tide Plus 1 Hour Figure 7C. Deep Zone of the Upper Surficial Aquifer Groundwater Condition 1 – High Tide Plus 2 Hours Figure 7D. Deep Zone of the Upper Surficial Aquifer Groundwater Condition 1 – High Tide Plus 3 Hours Figure 7E. Deep Zone of the Upper Surficial Aquifer Groundwater Condition 1 – High Tide Plus 4 Hours Figure 7F. Deep Zone of the Upper Surficial Aquifer Groundwater Condition 1 – High Tide Plus 5 Hours Figure 7G. Deep Zone of the Upper Surficial Aguifer Groundwater Condition 1 – Low Tide Figure 8A. Deep Zone of the Upper Surficial Aquifer Groundwater Condition 2 – High Tide Figure 8B. Deep Zone of the Upper Surficial Aquifer Groundwater Condition 2 – Low Tide Figure 9. Shallow Zone of the Upper Surficial Aquifer – Average Conductivity Over Monitoring Period Intermediate Zone of the Upper Surficial Aquifer – Average Conductivity Over Figure 10. Monitoring Period Figure 11. Deep Zone of the Upper Surficial Aquifer – Average Conductivity Over Monitoring Period

LIST OF APPENDICES

Appendix A: Well Construction and Lithologic Logs

Appendix B: Well Development Logs

Appendix C Groundwater Well Survey Report

iii October 2021

Appendix D	Groundwater Sample Purge Logs
Appendix E	Groundwater Analytical Reports and Data Validation
Appendix F	Individual Well Period of Record Transducer Charts
Appendix G	Transect Groundwater Elevation Charts
Appendix H	Horizontal Hydraulic Gradients
Appendix I	Horizontal Gradient Time Series Charts
Appendix J	Well Pair Groundwater Elevation Charts
Appendix K	Vertical Hydraulic Gradient Estimations
Appendix L	Tidal Time-Lag and Tidal-Efficiency Estimations

iv October 2021

1. INTRODUCTION

Geosyntec Consultants, Inc. ("Geosyntec") has prepared this report titled Tidal Evaluation and Groundwater Chemistry Data Summary (the "Tidal Evaluation Report") on behalf of Hercules LLC ("Hercules") for submission to the Georgia Department of Natural Resources, Environmental Protection Division ("EPD") to present the results of an approximately 33-day evaluation of the influence of tidal fluctuations on groundwater conditions in the upper surficial aquifer underlying the eastern portion of the industrial facility located at 2801 Cook Street in Brunswick, Georgia (the "Brunswick facility"). The duration of the tidal evaluation was set to monitor one full tidal cycle, including a spring tide event. The Tidal Evaluation Report summarizes objectives, field methods, and data obtained from pressure transducers installed at various groundwater observation and monitoring wells and one surface water monitoring location in the eastern portion of the Brunswick facility (the "study area") between April 14, 2021 and May 17, 2021. The study area more specifically covers the area to the east of U.S. Highway 17 between the northern boundary of the Brunswick facility and the N Street Ditch and Outfall Ditch leading into Dupree Creek. The study area also extends approximately 420 feet to the west of U.S. Highway 17 between the northern boundary of the Brunswick facility and the N Street Ditch. Along with obtaining data from the pressure transducers, groundwater samples were collected and analyzed from various observation and monitoring wells in the study area between March 29, 2021 and 30, 2021, prior to installing the pressure transducers for the tidal evaluation. The Tidal Evaluation Report is intended to be appended to a report titled Groundwater Monitoring Report, Semi-Annual Groundwater Monitoring Event - June 2021, Hercules LLC/Pinova, Inc., Brunswick, Georgia (the "Groundwater Monitoring Report") that Geosyntec is preparing for submission to EPD on behalf of Hercules.

October 20, 2021

2. OBJECTIVES

The tidal evaluation was conducted to assess the impacts that diurnal tidal cycles have on groundwater conditions within the study area at the Brunswick facility, including identification and quantification of variations in horizontal and vertical groundwater gradients and flow directions at various stages of the tidal cycle. In addition, groundwater samples were collected and analyzed to better characterize the distribution of constituents of potential concern in groundwater in the study area. The tidal evaluation was performed to further refine the conceptual site model for the Brunswick facility and to the support the design for interim corrective measures using *in situ* biological degradation to address constituents of concern in groundwater in the deep zone of the upper surficial aquifer underlying the northern section of the portion of the Brunswick facility east of U.S. Highway 17. Descriptions of the effects of the diurnal tidal cycle on groundwater conditions contained herein are focused on such effects within the study area and assumptions should not be made that these descriptions are necessarily applicable to the rest of the Brunswick facility, particularly portions of the Brunswick facility that lie further to the west away from Dupree Creek and the tidal marsh to the east.

3. FIELD METHODS

3.1 Observation Well Installations

Between March 8, 2021 and March 26, 2021, 15 new wells were installed in the study area at the Brunswick facility in support of the tidal evaluation. Eleven of these new wells are designated as observation wells, including observation wells OW-Q1S, OW-Q1I, OW-Q1D, OW-Q2S, OW-Q2I, OW-Q2D, OW-Q3S, OW-Q3I, OW-Q4S, OW-Q4I, and OW-Q4D. Four of these new wells are designated as monitoring wells, including monitoring wells MW-29S, MW-62S, MW-62I, and MW-62D. The locations of the 15 new wells are shown on **Figure 1** along with existing monitoring and observation wells that were installed previously in the vicinity of the study area and that have been used in conjunction with the tidal evaluation.

As discussed in the Groundwater Water Monitoring Report, while monitoring well MW-29S was installed in support of the tidal evaluation, that monitoring well has been incorporated into the monitoring well network for the Brunswick facility because it is adjacent to and complements existing monitoring wells MW-29I and MW-29D. In addition, the monitoring wells in the MW-62 well cluster were initially installed to support the tidal evaluation and were designated as observation well cluster OW-Q5. However, these wells are in the same location as a proposed monitoring well cluster described in a document prepared by Geosyntec on behalf of Hercules titled *Corrective Action Plan, Hercules LLC/Pinova, Inc., Brunswick, Georgia* (the "CAP") that was submitted to EPD on February 1, 2021. Accordingly, the observation wells in observation well cluster OW-Q5 have been renamed as monitoring wells MW-62S, MW-62I and MW-62D. Because of the nomenclature that was initially used for observation well cluster OW-Q5, this Tidal Evaluation Report may include references to observations wells OW-Q5S, OW-Q5I and OW-Q5D with the understanding that these references mean monitoring wells MW-62S, MW-62I and MW-62D, respectively

Geosyntec contracted with South Atlantic Environmental Drilling and Construction Co. Inc. of Fort Mill, South Carolina to install the new monitoring and observation wells using rotosonic drilling techniques. The monitoring wells and observation wells were designed to be installed to create six well clusters with one well per cluster screened in the shallow zone (designated "S"), one well per cluster screened in the intermediate zone (designated "I") and one well per cluster screened in the deep zone (designated "D") of the upper surficial aquifer. Monitoring well MW-29S was installed to complement existing monitoring wells MW-29I and MW-29D and create a well cluster covering all three zones of the upper surficial aquifer. Lithologic and well construction logs are included in **Attachment A**.

The new monitoring and observation wells were installed in boreholes advanced using rotosonic drilling techniques. Soil cores were collected from the boreholes and field screened at 2-foot intervals using a calibrated photoionization detector ("PID") to assess the soil cores for the presence of volatile organic compounds ("VOCs"). After the soil cores were screened with the PID, the soil cores were logged according to the Unified Soil Classification System by a Geosyntec geologist.

3

The new monitoring and observation wells were installed in accordance with technical guidance issued by the United States Environmental Protection Agency ("EPA") titled *Design and Installation of Monitoring Wells* (SESDGUID-101-R2) (EPA, 2018). The monitoring wells and observation wells were constructed of 2-inch diameter Schedule 40 polyvinyl chloride ("PVC") casing with 10 feet of 2-inch diameter, 0.010-slot PVC well screen, with the exception of observation well OW-Q3I, which was constructed with 8 feet of well screen. Each new monitoring and observation well was completed with an above grade stick-up surface completion including a 4-inch diameter aluminum outer protective casing, except for observation wells OW-Q3S and OW-Q3I that were equipped with 8-inch diameter steel manhole covers. Each new monitoring well and observation well was set within a concrete pad measuring 4 feet by 4 feet by 4 inches thick. A well tag containing the well identification information, date of installation, and construction information was installed at each well.

Monitoring wells and observations wells installed in the shallow, intermediate, and deep zones of the upper surficial aquifer were constructed with screened intervals approximately 10 to 20 feet below ground surface ("ft bgs"), 40 to 50 ft bgs, and 80 to 90 ft bgs, respectively. A summary of well construction details is provided in **Table 1**.

3.2 Well Development

After well construction activities were completed, pump and surge methods were used for well development at each new well to remove fine-grained sediments from the filter packs and well bottoms in order to produce groundwater samples with turbidity as low as possible. A submersible pump was used for well development activities which was decontaminated in accordance with technical guidance issued by EPA titled *Field Equipment Cleaning and Decontamination Procedures* (LSASDPROC-205-R4). The well development activities were completed between March 10, 2021 and March 30, 2021. Geosyntec recorded field parameters during well development activities using a calibrated water quality meter until the purged groundwater was free of visible sediment and the turbidity was below 10 nephelometric turbidity units ("NTU"). Water quality parameters including temperature, pH, specific conductance, oxidation reduction potential ("ORP"), and dissolved oxygen ("DO") were also recorded during well development activities.

Well development logs are included in **Attachment B**.

3.3 Well Survey

The horizontal locations and vertical elevations of the new monitoring and observation wells were surveyed on April 9, 2021, by Wellston Associates Land Surveyors, LLC of Warner Robins, Georgia, under the direction of a Georgia registered land surveyor. Observation well cluster OW-Q4 was resurveyed on June 24, 2021. Vertical survey data is relative to the National Geodetic Vertical Datum ("NGVD") of 1929. Horizontal survey data is presented relative to Zone 17 of the Universal Transverse Mercator ("UTM") Grid. Ground surface and top of well casing elevation data are shown in **Table 1**. Well survey reports are included in **Attachment C.**

3.4 Groundwater Sampling

Geosyntec collected groundwater samples from the new monitoring and observation wells on March 29, 2021, March 30, 2021, and April 6, 2021. Geosyntec collected the groundwater samples using low flow groundwater sampling methods consistent with applicable EPA Region 4 guidance and established groundwater purging and sampling methodologies for the Brunswick facility, including (i) procedures for measuring groundwater quality field parameters, (ii) methods for collecting groundwater samples, and (iii) procedures for decontaminating sampling equipment. Prior to collecting groundwater samples, Geosyntec measured the depth to water from the top of the well casing in each new monitoring and observation well with a decontaminated electronic water level indicator. The new monitoring and observation wells were purged and sampled with a peristaltic pump or a decontaminated stainless-steel submersible pump equipped with new polyethylene tubing for each well. Water quality parameters including temperature, pH, specific conductance, ORP, and DO were monitored using a multimeter calibrated to manufacturer specifications. Once water quality parameters indicated that well stabilization had been achieved, groundwater samples were collected in laboratory provided containers and stored on ice pending delivery under chain of custody protocols to TestAmerica Laboratories in Savannah, Georgia for analysis of site-specific VOCs by EPA Method 8260B.

Table 2. Groundwater sampling logs from the March 2021 groundwater sampling event are included in **Attachment D**. The laboratory and data validation reports from the March 2021 groundwater sampling event are included in **Attachment E**.

3.5 Tidal Evaluation

A total of 25 non-vented, data logging pressure transducers were deployed between April 14, 2021 and April 15, 2021. The pressure transducers were programmed to collect data on 15-minute intervals until the transducers were retrieved on May 17, 2021. One of the pressure transducers was used to collect barometric data only. A summary of the deployment of the pressure transducers is provided below:

- O Twenty-three pressure transducers were deployed in various newly installed monitoring and observation wells together with certain existing monitoring wells screened within the shallow (eight), intermediate (seven), and deep (eight) zones of the upper surficial aquifer;
 - Twenty of the pressure transducers were In-Situ AquaTroll 200s ("AT200s") equipped with specific conductivity sensors calibrated with a stock calibration solution prior to deployment; and
 - Three of the pressure transducers were In-Situ RuggedTroll 200s ("RT200s") deployed without specific conductivity sensors.

- One AT200 with a specific conductivity sensor was deployed in a stilling well installed off a dock in Terry Creek for use in tidal lag-time analysis. This location is referenced as surface water monitoring location SWT-1 and is shown on **Figure 1**; and
- o One In-Situ BaroTroll was deployed to collect barometric pressure readings used during data processing to remove the influence of barometric pressure on groundwater levels.

The pressure transducers were secured to the bottom of each well cap using steel cable and installed to a depth of at least 10 feet below the water table. At each location, the well cap was not tightened or sealed to permit direct exposure of groundwater within the well to the atmosphere. A stilling well was installed in Terry Creek and a transducer was deployed to monitor surface water levels. A map showing well locations where transducers were deployed is included on **Figure 1**.

Three rounds of manual depth to groundwater measurements were collected from each monitoring and observation well where a transducer was installed over the period of record, including immediately prior to deployment of the pressure transducers on April 14, 2021, again on May 3, 2021, and immediately prior to retrieval of the pressure transducers on May 17, 2021.

A summary of the depth to groundwater measurements that were collected manually is included in **Table 1**.

4. TRANSDUCER DATA QUALITY EVALUATION

A systematic evaluation of data quality from the pressure transducers was performed to account for potential instrument drift and errant datapoints. The evaluation included adjusting non-vented pressure transducer data for barometric pressure using data collected by the BaroTroll and using methods described in a document titled *Manual Level Mode Correction for Non-Vented Sensors* (In-Situ, 2012). The BaroTroll was set after pressure transducers were already deployed in the OW-Q2, MW-29, and MW-62 (OW-Q5) well clusters. Barometric pressure data for the initial two-hour monitoring period at these three well clusters was obtained from the Brunswick Golden Isles Airport (Weather Station KGABRUNS28).

Barometric-pressure corrected transducer data were converted to groundwater elevations using manual depth-to-water measurements. Data from the pressure transducers were generally matched to the manual depth-to-water measurements collected on May 3, 2021, to provide the best curve fit. However, to provide the best match for the overall data set, data from the pressure transducers deployed in monitoring well MW-29S and observation wells OW-Q2S and OW-Q2D were matched to the manual depth-to-water measurements collected on April 14, 2021. In addition, data from the pressure transducer deployed in monitoring well MW-26D were matched to the manual depth-to-water measurements collected on May 17, 2021. After barometric-pressure corrected transducer data were converted to groundwater elevations, the converted groundwater elevations were plotted versus manual water level measurements to assess instrument drift (if any) over the monitoring period. Individual period-of-record charts for each monitoring location are included in **Attachment F**.

The results of the data quality evaluation indicate that manual water level measurements were generally in agreement with the data from the pressure transducers and transducer drift was not apparent. However, the pressure transducer placed in monitoring well MW-29D malfunctioned and no usable data were recovered. Observation well OW-2D and monitoring well MW-62D (observation well OW-5D) are proximally located north and south of monitoring well MW-29D, respectively. Therefore, the data gap due to the malfunction of the pressure transducer in monitoring well MW-29D is not expected to have a material impact on the overall tidal evaluation. Additionally, groundwater levels at monitoring well MW-29I were higher than at adjacent observation well OW-Q2I and monitoring well MW-62I (observation well OW-Q5I) throughout the period of record for the tidal evaluation. The area around the monitoring well MW-29 cluster was subject to activities associated with the pilot test of aerobic bioremediation that took place between March 15, 2021 and April 3, 2021 (involving injection of air into the deep zone of the upper surficial aquifer to promote aerobic biological activity). Pressure was observed when the well caps from the monitoring wells in monitoring well MW-29 cluster were removed to enable the pressure transducers to be deployed. Such pressure has the potential to impact the transducer readings at these locations.

4.1 Tidal Data Analysis

Over the monitoring period for the tidal evaluation, a maximum tidal range of 9.2 feet was observed between high and low tides coinciding with onset of the spring tide event on April 27, 2021, as shown on the SWT-1 surface water transducer chart transducer chart included as **Attachment F**. Tidal amplitude at the SWT-1 location was compared to groundwater levels in certain monitoring wells and observation wells to estimate tidal efficiency, which represents the ratio of tidal amplitude observed at each observation location relative to the tidal amplitude at SWT-1. Tidal lag times were also calculated to represent the time of propagation for a tidal signal from SWT-1 to each monitoring well and observation well that was being assessed. Additionally, tidal cycle impacts on horizontal hydraulic groundwater gradients, vertical hydraulic groundwater gradients, groundwater flow directions, and specific conductivity were assessed across the study area and within each of the shallow, intermediate, and deep zones comprising the upper surficial aquifer. Details regarding the hydrogeologic setting and existing conceptual site model for the Brunswick facility is contained in the CAP that was submitted to EPD on February 1, 2021.

Groundwater elevations were initially compared within each zone of the upper surficial aquifer along three transects, including: an east-west trending transect from observation well cluster OW-Q3/PSOW-12 to monitoring well cluster MW-55 (Transect 1), a north-south trending transect west of U.S. Highway 17 comprised of monitoring well clusters MW-26 and MW-11 (Transect 2), and a north-south trending transect east of U.S. Highway 17 comprised of observation well cluster OW-Q2, monitoring well cluster MW-29 and monitoring well cluster MW-62 (observation well cluster OW-Q5) (Transect 3). The transect locations are shown on **Figure 2**. Twenty-four hour precipitation data were obtained from the weather station at the Brunswick Golden Isles Airport to assess the response of groundwater levels to rain events.

Four apparent groundwater conditions were initially selected for the data analysis presented herein to provide an understanding of groundwater conditions in the study area under potentially different tidal/hydraulic scenarios. These four conditions are shown in each plot of groundwater elevations along specific transects provided in **Attachment G** and are defined as follows:

- Groundwater Condition 1 represents initial baseline conditions on April 21, 2021, that were representative of the first 6-7 days of the study period following deployment of the pressure transducers. The period for Groundwater Condition 1 spans a falling tide between approximately 03:39 (high tide) and 09:54 (low tide), during which there was minimal precipitation.¹
- Groundwater Condition 2 represents hydraulic loading and aquifer response to an approximately 2-inch rainfall event on April 24, 2021. The period for Groundwater Condition 2 is April 25, 2021, between approximately 08:09 (high tide) and 13:39 (low

¹ All times provided in this Tidal Evaluation Report are presented in military time nomenclature using a 24-hour convention (i.e., 6:00 a.m. is presented as 06:00 and 6:00 p.m. is presented as 18:00).

tide). Groundwater Condition 2 also corresponds to a transition toward spring tide conditions.

- Groundwater Condition 3 represents ongoing decreasing groundwater elevations in the upper surficial aquifer after the rainfall event on April 24, 2021 and after the spring tide conditions on April 27, 2021. The period for Groundwater Condition 3 is May 11, 2021, between approximately 09:09 (high tide) and 15:24 (low tide).
- Groundwater Condition 4 represents an approximate return to baseline conditions on May 17, 2021, between approximately 00:09 (high tide) and 06:39 (low tide).

Groundwater elevations based on transducer data for each of the four groundwater conditions described above are included in **Table 3**.

4.2 Horizontal Hydraulic Gradient Calculations

Horizontal hydraulic gradients were evaluated between multiple sets of well pairs at high and low tide for each of the four groundwater conditions described above within each of the three hydrogeologic zones of the upper surficial aquifer (i.e., the shallow zone, intermediate zone and deep zone). A geometric mean ("geomean") hydraulic gradient was calculated at high and low tide for Groundwater Conditions 1-4. Tables showing the horizontal hydraulic gradient within each hydrogeologic zone and for each groundwater condition are provided in **Attachment H**.

Potentiometric surface maps reflecting groundwater elevations at high and low tides for Groundwater Conditions 1 and 2 are included as **Figures 3A/B** through **Figures 8A/B**. Similarities between results for Groundwater Conditions 1, 3, and 4 obviated the need to include potentiometric surface maps for Groundwater Conditions 3 and 4. Additionally, a set of time-series potentiometric surface maps at 1-hour intervals between peak high tide and peak low tide are included as **Figures 7A** to **7G** to show how horizontal gradients and flow directions evolved with the tidal cycle in the deep zone of the upper surficial aquifer during baseline conditions.

Charts showing a time-series of horizontal gradients between particular well pairs were generated for each hydrogeologic zone of the upper surficial aquifer to determine the frequency (if any) of groundwater flow reversals occurring over the period of record. These charts are presented in **Attachment I**. A positive horizontal gradient generally indicates flow toward the neighboring surface water body (i.e., toward Dupree Creek) and a negative horizontal gradient generally indicates flow inland toward the center of the Brunswick facility (i.e., away from Dupree Creek). The percentage of time that a horizontal gradient was positive or negative over the monitoring period was calculated to provide an understanding of the localized groundwater flow directions within each hydrogeologic zone of the upper surficial aquifer (**Attachment I**).

4.3 Horizontal Hydraulic Gradient Discussion

Horizontal groundwater gradients in the shallow zone of the upper surficial aquifer within the study area are generally consistent across the tidal cycle and the four selected groundwater conditions, with an average horizontal groundwater gradient range between of 2.42x10⁻³ and

3.63x10⁻³ ft/ft. Groundwater levels in the shallow zone of the upper surficial aquifer increased by approximately one foot after the 2-inch rainfall event reflected in Groundwater Condition 2 occurred, resulting in an increase in the hydraulic gradient between monitoring wells MW-29S and MW-62S (observation well OW-5S) and corresponding to the overall highest average gradient in the shallow zone of the upper surficial aquifer of 3.63x10⁻³ ft/ft. As shown in the potentiometric surface maps for the shallow zone of the upper surficial aquifer (**Figures 3A/B** to **4A/B**), the predominant groundwater flow direction in the shallow zone of the upper surficial aquifer is to the south toward the Outfall Ditch at both high and low tide (i.e., groundwater is flowing under the Brunswick facility from the neighboring property to the north toward the Outfall Ditch). Based on the horizontal gradient time-series calculations, this groundwater flow direction was observed in the shallow zone of the upper surficial aquifer over the entire period of record for the selected well pairs.

Horizontal hydraulic gradients in the intermediate zone of the upper surficial aquifer within the study area were observed to increase at low tide by up to four times relative to the hydraulic gradients at high tide, with average groundwater gradient estimates ranging from 4.36×10^{-4} to 5.08×10^{-4} ft/ft at high tide and 1.26×10^{-3} and 1.82×10^{-3} ft/ft at low tide. A direct increase in groundwater levels was not observed after the rainfall event took place on April 24, 2021, as reflected in Groundwater Condition 2; however, both groundwater levels and the amplitude between high and low tides increased in the days leading up to the peak spring tide event on April 28, 2021.

In the absence of additional data immediately adjacent to the Outfall Ditch, the predominant groundwater flow direction in the intermediate zone of the upper surficial aguifer appears to shift from generally east toward Dupree Creek at peak low tide to inward and generally toward the OW-Q4 observation well cluster at peak high tide as shown on Figures 5A/B to 6A/B. The horizontal hydraulic gradient time series calculations indicate that groundwater flow between monitoring well MW-29I (located near U.S. Highway 17) and monitoring well MW-55I (located adjacent to Dupree Creek) is to the east approximately 90 percent of the time and to the west approximately 10 percent of the time. The horizontal hydraulic gradient time series calculations indicate that groundwater flow between observation well OW-Q4I and monitoring well MW-55I is to the east approximately 51 percent of the time and to the west 49 percent of the time. The horizontal hydraulic gradient time series calculations indicate that groundwater flow between monitoring well MW-29I and observation well OW-Q4I is to the east over the entire period of record. These calculations are included Attachment I. The data from the pressure transducers and the calculations that were performed underscore the significant tidal effect on groundwater flow in the intermediate zone of the upper surficial aquifer, particularly in proximity to Dupree Creek but extending further to the west in the study area. Tidal influence is sufficient to reverse the generally prevailing hydraulic gradient and cause groundwater flow directions to oscillate from west to east and from east to west.

Horizontal hydraulic gradients in the deep zone of the upper surficial aquifer within the study area were observed to increase at low tide relative to high tide, with average groundwater gradient estimates ranging from 2.53×10^{-3} to 3.63×10^{-3} ft/ft at high tide and 2.42×10^{-3} to 3.32×10^{-3} ft/ft at

low tide. Groundwater levels and hydraulic gradients in the deep zone of the upper surficial aquifer increased after the rainfall event reflected in Groundwater Condition 2; however, the depth of the deep zone of the upper surficial aquifer likely indicates that such increases may be due to hydraulic loading in the shallower water-bearing zones resulting in increased pressure in the deep zone of the surficial aquifer rather than direct recharge from precipitation. The period following the rainfall event on April 24, 2021, also corresponds to the days leading up to the peak spring tide event on April 28, 2021. In the absence of additional data immediately adjacent to the Outfall Ditch, the predominant groundwater flow direction in the deep zone of the upper surficial aquifer appears be to the east/southeast toward Dupree Creek at both peak high tide and peak low tide between observation well PSOW-12 (west of U.S. Highway 17) and monitoring well MW-55D (located adjacent to Dupree Creek) as shown on **Figures 7A/E** and **8A/B**.

A series of potentiometric surface maps for the deep zone of the upper surficial aquifer prepared using hourly data between peak high tide and peak low tide have been included that reflect Groundwater Condition 1 and show the evolution of the increasing groundwater gradient to the east/southeast during the transition from high tide to low tide. The horizontal hydraulic gradient time series calculations indicate that groundwater flow between observation well PSOW-12 and observation well OW-Q4D and between observation well OW-Q4D and OW-Q2D is to the east/southeast over the entire period of record. The horizontal hydraulic gradient time series calculations also show that groundwater flow is to the east/southeast between observation well OW-Q4D and monitoring well MW-55D 98 percent of the time and from monitoring well MW-26D and observation well OW-Q2D 99 percent of the time as indicated in the calculations included in **Attachment I**.

4.4 Vertical Hydraulic Gradients

Vertical hydraulic gradients were assessed in eight well pairs for the four groundwater conditions described above by subtracting the groundwater elevation in the deeper interval from the groundwater elevation in the shallower interval at each well pair and dividing by the vertical distance between the mid-points of the well screens. Negative values indicate an upward gradient and positive values indicate a downward gradient. Charts showing groundwater elevations for individual well pairs are included in **Attachment J**. Vertical hydraulic gradient calculations are provided in **Attachment K**.

Observations over the period of record from the study area generally indicate a consistent upward vertical gradient from the shallow to intermediate zone of the surficial aquifer at both high and low tides except with respect to Groundwater Condition 2 (reflecting a significant rainfall event), where hydraulic loading of the surficial system led to a temporary gradient reversal at most observation locations. Vertical gradients observed between the shallow and intermediate zones of the upper surficial aquifer ranged from -0.058 to 0.031 ft/ft during the period of record.

Observations over the period of record generally indicate a weak downward vertical gradient from the intermediate zone to the deep zone of the surficial aquifer at both high and low tides except at observation well clusters OW-Q2 and OW-Q3, where an upward gradient was observed during

high and low tides across the four groundwater conditions described above. An average downward gradient of 0.001 ft/ft was observed between the intermediate and deep zones of the upper surficial aquifer.

4.5 Tidal Lag Time Analysis

Surface water monitoring location SWT-1 was used to estimate the tidal lag time between peak high tide elevations for monitoring wells and observation wells screened across each of the hydrogeologic zones of the upper surficial aquifer. Additionally, a tidal-efficiency ratio was calculated to assess the relative magnitude of the tidal amplitude observed in each monitoring well and observation well relative to the tidal amplitude at surface water monitoring location SWT-1 by dividing the tidal amplitude at each well by the tidal amplitude observed at SWT-1.

The average tidal lag times across Groundwater Conditions 1 through 4 within the shallow zone of the upper surficial aquifer ranged from 33 minutes at observation well OW-Q3S to 190 minutes at monitoring well MW-29S as indicated in Attachment L. An appreciable tidal signal was not identified at monitoring well MW-26S. Generally, lag time increased with increased distance from the surface water bodies, however an average lag time of 79 minutes was calculated at monitoring well MW-55S (located adjacent to Dupree Creek). The increased lag time observed at monitoring well MW-55S may be due to localized lithologic heterogeneity at the eastern edge of the Brunswick facility. Pressure buildup was observed at monitoring well MW-29S when the well cap was removed to deploy the pressure transducer at that monitoring well. It is possible that the source of this pressure impacted the arrival time of the tidal signal at the location of monitoring well MW-29S. Due to the similarity in arrival times observed at observation well OW-O3S (33 minutes) and monitoring well MW-11S (45 minutes), it appears that the N Street Ditch is conveying tidally influenced surface water to groundwater upgradient from Dupree Creek. The maximum tidal-efficiency ratio observed in the shallow zone of the upper surficial aquifer was 0.13 at monitoring well MW-55S and generally decreased with distance from the surface water bodies.

The average tidal lag times within the intermediate zone of the upper surficial aquifer ranged from 16 minutes at monitoring well MW-55I to 57 minutes at observation well OW-Q3I. The maximum tidal-efficiency ratio observed in the intermediate zone of the upper surficial aquifer was 0.20 at monitoring well MW-55I. In general, the tidal lag times increased from east to west across the study area while the tidal-efficiency ratios decreased.

The average tidal lag times within the deep zone of the upper surficial aquifer ranged from 22 minutes at monitoring well MW-55D to 58 minutes at observation well PSOW-12 (to the west of U.S. Highway 17). The maximum tidal-efficiency ratio observed in the deep zone of the upper surficial aquifer was 0.19 at monitoring well MW-55D. In general, the tidal lag times increased from east to west across the study area and the tidal-efficiency ratios decreased at a similar magnitude as observed in the intermediate zone of the upper surficial aquifer.

4.6 Specific Conductivity

Specific conductivity data were collected from the 20 AT200 pressure transducers that were deployed at various monitoring and observation wells. The specific conductivity data were averaged over the monitoring period to evaluate the freshwater-saltwater wedge within each hydrogeologic zone of the upper surficial aquifer beneath the study area as shown on **Figures 9** to 11. For reference, the average observed surface water conductivity at the SWT-1 location was 32,041 microsiemens per centimeter (" μ S/cm"). Based on the data from the pressure transducers, conductivity values decrease from east to west across the shallow zone of the upper surficial aquifer underlying the study area, with average conductivity values ranging from 31,946 μ S/cm at monitoring well MW-55S and approximately 2,000 μ S/cm near U.S. Highway 17. Conductivity values appear to generally decrease from southwest to northeast in the intermediate zone of the upper surficial aquifer underlying the study area, with average values ranging from 2,166 μ S/cm at monitoring well MW-11I to 703 μ S/cm at monitoring well MW-55I. Conductivity values in the deep zone of the upper surficial aquifer range from 8,432 μ S/cm at monitoring well MW-55D to 1,433 μ S/cm at observation well OW-Q2D.

5. CONCLUSIONS

Based on the results of the tidal evaluation, groundwater in the shallow zone of the upper surficial aquifer underlying the study area was observed to flow predominantly to the south from areas north of the Brunswick facility toward the Outfall Ditch throughout the period of record with an overall average horizontal gradient of 2.81×10^{-3} ft/ft across the four groundwater conditions described herein. The highest groundwater gradients were observed after hydraulic loading from the precipitation event on April 24, 2021 (Groundwater Condition 2). Tidal lag times between the surface water monitoring location (SWT-1) and the wells screened in the shallow zone of the upper surficial aquifer within the study area were calculated between 33 minutes (at observation well OW-Q3S) and 190 minutes (at monitoring well MW-29S). The maximum tidal efficiency ratio was observed at monitoring well MW-55S, where 13 percent of the surface water tidal amplitude was observed during peak high tide.

The direction of groundwater flow in the intermediate zone of the upper surficial aquifer underlying the study area was observed to shift from eastward toward Dupree Creek at low tide to westward away from Dupree Creek (toward observation well OW-Q4I) at high tide. These oscillating groundwater flow directions in the intermediate zone of the upper surficial aquifer highlight the degree of influence that tidal fluctuations have on groundwater conditions in the study area. Horizontal groundwater gradients in the intermediate zone of the upper surficial aquifer underlying the study area ranged between an average of 4.64x10⁻⁴ ft/ft at high tide and an average of 1.53x10⁻³ ft/ft at low tide across the four groundwater conditions described herein. A relatively continuous upward vertical gradient from the intermediate zone to the shallow zone of the upper surficial aquifer was observed throughout the period of record, except in response to a rainfall event that occurred on April 24, 2021, which reversed the vertical gradients. Tidal lag times between the surface water monitoring location (SWT-1) and the wells screened in the intermediate zone of the upper surficial aguifer within the study area were calculated between 16 minutes (at monitoring well MW-55I) and 46 minutes (at monitoring well MW-62I (observation well OW-O5I)). The maximum tidal efficiency ratio was observed at monitoring well MW-55I, where 20 percent of the surface water tidal amplitude was observed during peak high tide.

Groundwater in the deep zone of the upper surficial aquifer underlying the study area was observed to flow to the east/southeast below Dupree Creek toward the Atlantic Ocean throughout the period of record. Horizontal groundwater gradients in the deep zone of the upper surficial aquifer ranged between an average of 6.64×10^{-4} ft/ft at high tide and 1.60×10^{-3} ft/ft at low tide across the four groundwater conditions described herein, with the highest horizontal groundwater gradient of 3.73×10^{-3} ft/ft observed to occur following the rainfall event on April 24, 2021. An average downward gradient of 0.001 ft/ft was observed between the intermediate zone and the deep zone of the upper surficial aquifer underlying the study area, with generally weak upward vertical gradients during high tide and weak downward vertical gradients during low tide.

Conductivity values in the shallow zone of the upper surficial aquifer indicate significant saltwater intrusion in the eastern portion of the study area at the Brunswick facility. Conductivity values generally decreased from east to west in the shallow zone of the upper surficial aquifer underlying

the study area at distance from Dupree Creek. Broader trends in the conductivity values from the intermediate and deep zones of the upper surficial aquifer are more difficult to assess due to the limited aerial extent of the data. However, there appears to be a "sandwich" of less salty water present in the intermediate zone between the more brackish groundwater present in shallow zone and deep zone of the upper surficial aquifer.

Refinements to the conceptual site model for the Brunswick facility from the tidal evaluation include information providing a better understanding of the tidal influence on groundwater flow directions and gradients in the study area through a full tidal cycle, particularly in the deep zone of the upper surficial aquifer where interim measures are slated to be implemented, identification of a continuous southerly groundwater flow direction from areas north of the Brunswick facility toward the Outfall Ditch within the shallow zone of the upper surficial aquifer underlying the study area, a generally upward vertical groundwater gradient between the intermediate and shallow zones of the upper surficial aquifer within the study area except during periods of precipitation, a downward vertical groundwater gradient from the intermediate zone to the deep zone of the upper surficial aquifer, oscillating horizontal gradients in the intermediate zone of the upper surficial aquifer in response to tidal fluctuations, and elevated conductivity in both the shallow and deep zones of the upper surficial aquifer.

References

Domenico, P.A. and Schwartz, F.W., 1998. Physical and Chemical Hydrogeology. 2nd Edition, John Wiley & Sons Inc., New York.

Geosyntec, 2021. Corrective Action Plan – Hercules LLC/Pinova Inc.

USEPA, 2018. Design and Installation of Monitoring Wells.

Table 1 Well Construction Details and Manual Depth to Water Measurements Hercules/Pinova Facility, Brunswick, Georgia

WELL DESIGNATION	MW-11S		MW	MW-11D		MW-11DD		MW-26S		-26D	
DIAMETER (inches)	- 2	2		2		2		2		2	
WELL DEPTH (ft bls)	2	21	5	55		91		.5	90		
SCREEN LENGTH (ft)	,	7		7		10		.0	1	0	
GROUND SURFACE ELEVATION (ft msl)	5.	5.36		4.86		5.20		7.43		38	
TOP OF CASING ELEVATION (ft msl)	7.82		8.26		8.23		7.25		7.11		
DATE	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	
3/29/2021	5.19	2.63	4.73	3.53	4.92	3.31	-	-	5.99	1.12	
4/14/2021	-	-	-	-	-	-	-	-	-	-	
4/15/2021	5.83	1.99	5.08	3.18	5.25	2.98	4.19	3.06	4.29	2.82	
5/3/2021	5.43	2.39	4.85	3.41	5.01	3.22	3.72	3.53	3.66	3.45	
5/17/2021	5.66	2.16	5.01	3.25	5.16	3.07	4.28	2.97	4.05	3.06	

WELL DESIGNATION	MW-29S		MW-29I		MW-29D		MW-55S		MW-55I		
DIAMETER (inches)	- :	2		2		2		2		2	
WELL DEPTH (ft bls)	2	5	5	51		90		5	55		
SCREEN LENGTH (ft)	1	0	10		1	0	1	5	1	5	
GROUND SURFACE ELEVATION (ft msl)	5.68		6.14		6.37		5.28		5.07		
TOP OF CASING ELEVATION (ft msl)	8.95		8.74		9.12		8.07		7.92		
DATE	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	
3/29/2021	6.10	2.85	5.5	3.24	6.18	2.94	6.5	1.57	5.8	2.12	
4/14/2021	6.79	2.16	5.92	2.82	6.52	2.60	-	-	-	-	
4/15/2021	-	-	-	-	-	-	6.48	1.59	4.87	3.05	
5/3/2021	9.55	-0.60	5.32	3.42	5.78	3.34	6.25	1.82	4.56	3.36	
5/17/2021	7.06	1.89	5.59	3.15	6.12	3.00	6.54	1.53	5.17	2.75	

WELL DESIGNATION	MW-55D		OW	OW-Q1S		OW-Q1I		OW-Q1D		-Q2S	
DIAMETER (inches)		2		2		2		2		2	
WELL DEPTH (ft bls)	8	5	2	25		50		00	17		
SCREEN LENGTH (ft)	1	10		10		10		.0	1	10	
GROUND SURFACE ELEVATION (ft msl)	5.	5.31		4.98 5.		14	5.	5.11		.35	
TOP OF CASING ELEVATION (ft msl)	7.	7.81		7.80		7.71		7.80		.28	
DATE	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	
3/29/2021	5.8	2.01	4.61	3.19	5.00	2.71	5.15	2.65	5.24	3.04	
4/14/2021	-	-	-	-	-	-	-	-	5.94	2.34	
4/15/2021	5.01	2.80	-	-	-	-	-	-	-	-	
5/3/2021	4.70	3.11	-	-	-	-	-	-	5.62	2.66	
5/17/2021	5.35	2.46	-	-	-	-	-	-	6.24	2.04	

WELL DESIGNATION	ow	OW-Q2I		OW-Q2D		OW-Q3S		OW-Q3I		-Q4S
DIAMETER (inches)		2		2		2		2	2	
WELL DEPTH (ft bls)	5	0	9	0	2	.5	6	5	1	.5
SCREEN LENGTH (ft)	1	0	1	10		10		8	10	
GROUND SURFACE ELEVATION (ft msl)	5.91		5.60		6.35		6.35		4.77	
TOP OF CASING ELEVATION (ft msl)	8.	8.93		8.41		6.07		6.15		80
DATE	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV
3/29/2021	6.08	2.85	5.51	2.90	3.21	2.86	2.66	3.49	4.76	3.04
4/14/2021	6.45	2.48	5.91	2.50	-	-	-	-	-	-
4/15/2021	-	-	-	-	3.37	2.70	2.91	3.24	5.40	2.40
5/3/2021	5.70	3.23	5.14	3.27	3.00	3.07	2.77	3.38	5.06	2.74
5/17/2021	6.00	2.93	5.50	2.91	3.41	2.66	2.95	3.20	5.86	1.94

WELL DESIGNATION	OW-	-Q4I	OW-	Q4D	OW	-Q5S	OW	-Q5I	OW-Q5D		
DIAMETER (inches)	2	2		2		2		2		2	
WELL DEPTH (ft bls)	5	1	9	90		21		-8	90		
SCREEN LENGTH (ft)	1	0	1	10		10		0	1	0	
GROUND SURFACE ELEVATION (ft msl)	4.86		5.	5.28		6.00		5.92		5.92	
TOP OF CASING ELEVATION (ft msl)	7.5	7.84		7.98		9.11		9.12		8.90	
DATE	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	DTW	ELEV	
3/29/2021	5.33	2.51	5.59	2.39	6.1	3.01	6.74	2.38	5.99	2.91	
4/14/2021	-	-	-	-	7.44	1.67	6.39	2.73	6.32	2.58	
4/15/2021	4.81	3.03	5.10	2.88	-	-	-	-	-	-	
5/3/2021	4.59	3.25	4.84	3.14	7.05	2.06	5.88	3.24	5.75	3.15	
5/17/2021	5.06	2.78	5.30	2.68	7.39	1.72	6.16	2.96	6.07	2.83	

WELL DESIGNATION	PSO	W-12		
DIAMETER (inches)	1	2		
WELL DEPTH (ft bls)	8	9		
SCREEN LENGTH (ft)	5			
GROUND SURFACE ELEVATION (ft msl)	6.90			
TOP OF CASING ELEVATION (ft msl)	6.62			
DATE	DTW	ELEV		
3/29/2021	-	-		
4/14/2021	-	-		
4/15/2021	3.02	3.60		
5/3/2021	2.91	3.71		
5/17/2021	3.09	3.53		

Notes:
" - " indicates not measured
ft indicates feet Thindcates technical surface
TOC indicates below land surface
TOC indicates top of casing
ft msl indicates feet relative to mean sea level
DTW indicates depth to groundwater below TOC
ELEV indicates groundwater elevation

Table 2 Groundwater Chemistry and Water Quality Parameters Hercules/Pinova Facility, Brunswick, Georgia

4 - 1 4	TT - 14	MW-11D	MW-11DD	MW-26D	MW-29S	MW-29I	MW-29D	MW-38S	MW-38I	MW-38D	MW-55S	MW-55I	MW-55D	MW-62S	MW-62I
Analyte	Units	4/7/2021	4/7/2021	4/6/2021	3/29/2021	4/3/2021	4/7/2021	4/3/2021	4/3/2021	4/3/2021	4/3/2021	4/3/2021	4/3/2021	3/30/2021	3/30/2021
	Aquifer	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial
	Aquifer Unit	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper
	Aquifer Zone	Intermediate	Deep	Deep	Shallow	Intermediate									
Field Parameters															
Conductivity	mS/cm	2.46	13.14	9.63	6.64	0.96	9.48	16.10	0.71	7.00	30.80	0.82	8.58	4.80	1.67
Oxygen, Dissolved	mg/L	0.07	0.15	0.27	0.21	0.10	0.13	0.10	0.14	0.07	0.09	0.13	0.09	0.11	0.21
Oxidation Reduction Potential	mV	-72.7	-14.7	-55.5	-96.6	-49.0	-5.3	-42.6	-63.7	-15.9	-359.2	-225.6	-122.8	-140.6	-90.1
рН	SU	6.82	6.20	6.61	7.03	7.10	6.17	5.97	7.27	6.31	7.03	7.43	6.32	8.53	8.33
Temperature	°C	24.34	24.89	24.54	20.24	22.88	21.43	20.03	21.49	22.61	21.76	21.57	22.48	21.37	22.26
Turbidity	NTU	7.98	1.34	3.61	5.64	9.92	2.01	41.4	33.9	24.0	3.11	8.39	6.73	48.1	6.74
Volatile Organic Compounds															
1,1-Dichloroethane	μg/L	1.0 U	1.2	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,1-Dichloroethylene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,2,3-Trichloropropane	μg/L	3.0 U	3.0 U	3.0 U	1.0 U	1.0 U	6.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	μg/L	2.0 U	2.0 U	2.0 U	5.0 U	5.0 U	4.0 U	5.0 U	5.0 U	250 U	5.0 U	5.0 U	50 U	5.0 U	5.0 U
1,2-Dichlorobenzene	μg/L	1.0 U	2.5	1.0 U	1.0 U	1.0 U	8.9	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,2-Dichloropropane	μg/L	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,2,4-Trimethylbenzene	μg/L	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,3,5-Trimethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	1.0 U	3.9	1.0 U	1.0 U	1.0 U	14.0	1.0 U	1.0 U	50 U	1.0 U	1.0 U	13	1.0 U	1.0 U
2-Butanone (MEK)	μg/L	10 U	10 U	10 U	10 U	10 U	20 U	10 U	10 U	500 U	10 U	10 U	100 U	10 U	10 U
4-Methyl-2-pentanone (MIBK)	μg/L	15 U	15 U	15 U	10 U	10 U	30 U	10 U	10 U	500 U	10 U	10 U	100 U	10 U	10 U
Acetone	μg/L	20 U	20 U	20 U	10 U	10 U	40 U	10 U	10 U	500 U	10 U	10 U	100 U	10 U	10 U
Benzene	μg/L	54	150	9.6	1.0 U	3.1	730	1.0 U	1.0 U	1200	1.0 U	14	890	1.0 U	1.0 U
Carbon disulfide	μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	4.0 U	2.0 U	2.0 U	100 U	2.0 U	2.0 U	20.0 U	2.0 U	2.0 U
Carbon tetrachloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10.0 U	1.0 U	1.0 U
Chlorobenzene	μg/L	55	170	2.5	1.0 U	1.1	690	1.0 U	4.5	910	1.0 U	8.2	620	1.0 U	1.0 U
Chloroform	μg/L	1.0 U	180	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
Ethylbenzene	μg/L	1.0 U	4.7	1.0 U	1.0 U	1.0 U	160	1.0 U	1.0 U	74	1.0 U	1.0 U	30	1.0 U	1.0 U
Isopropylbenzene (Cumene)	μg/L	20	23	2.0 U	1.0 U	1.8	200	1.0 U	1.0 U	460	1.0 U	1.8	310	1.0 U	1.0 U
Methylene Chloride	μg/L	10 U	110	10 U	5.0 U	5.0 U	20 U	5.0 U	5.0 U	250 U	5.0 U	5.0 U	50 U	5.0 U	5.0 U
m-Xylene & p-Xylene	μg/L	2.0 U	19	2.0 U	1.0 U	1.0 U	280	1.0 U	1.0 U	79	1.0 U	1.0 U	23.0	1.0 U	1.0 U
o-Xylene	μg/L	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	40 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
p-Isopropyltoluene (Para-cymene)	μg/L	3.0 U	4.1	3.0 U	2.8	1.0 U	6.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
Tetrachloroethene	μg/L	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.4	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
Trichloroethene	μg/L	2.0 U	2.0 U	2.0 U	1.0 U	1.0 U	4.0 U	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
Vinyl chloride	μg/L	1.0 U	3.5	1.0 U	1.0 U	1.0 U	4.5	1.0 U	1.0 U	50 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U

NOTES:

BOLD = Analyte detected above laboratory reporting limit

U = Not detected at or above the reporting detection limit

J = Estimated value

ug/L = micrograms per liter

mg/L = milligrams per liter

mS/cm = millisiemens per centimeter

Table 2 Groundwater Chemistry and Water Quality Parameters Hercules/Pinova Facility, Brunswick, Georgia

Analyte	Units	MW-62D	OW-Q1S	OW-Q1I	OW-Q1D	OW-Q2S	OW-Q2I	OW-Q2D	OW-Q3S	OW-Q3I	OW-Q4S	OW-Q4I	OW-Q4D	PSOW-11	PSOW-12
Analyte	Cints	3/30/2021	3/30/2021	3/30/2021	3/30/2021	3/29/2021	3/30/2021	3/29/2021	4/6/2021	4/6/2021	3/30/2021	3/30/2021	4/3/2021	4/7/2021	4/6/2021
	Aquifer	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial	Surficial
	Aquifer Unit	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper	Upper
	Aquifer Zone	Deep	Shallow	Intermediate	Deep	Shallow	Intermediate	Deep	Shallow	Intermediate	Shallow	Intermediate	Deep	Deep	Deep
Field Parameters															
Conductivity	mS/cm	10.07	20.93	0.78	9.77	2.17	0.95	8.76	0.58	5.45	30.08	0.72	9.01	11.61	12.46
Oxygen, Dissolved	mg/L	0.18	0.05	0.14	0.12	0.15	0.16	0.12	0.13	0.12	0.06	0.11	0.13	0.03	0.25
Oxidation Reduction Potential	mV	-25.7	-39.4	-142.2	-16.2	-121.8	-134.3	-39.8	-149.5	-50.4	-145.3	-130.0	-33.5	-39.5	-44.4
pH	SU	7.11	6.23	7.36	6.26	7.42	7.22	6.30	7.52	6.57	6.33	7.45	6.37	6.39	6.40
Temperature	°C	22.24	19.50	21.98	21.94	19.33	22.26	22.74	21.85	22.43	20.76	23.24	19.86	24.52	23.24
Turbidity	NTU	5.19	4.08	4.64	4.98	1.68	1.03	1.06	7.89	4.82	9.18	1.87	8.41	6.58	2.13
Volatile Organic Compounds															
1,1-Dichloroethane	μg/L	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,1-Dichloroethylene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,2,3-Trichloropropane	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.0 U	3.0 U	1.0 U	1.0 U	10 U	3.0 U	3.0 U
1,2,4-Trichlorobenzene	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.0 U	2.0 U	5.0 U	5.0 U	50 U	2.0 U	2.0 U
1,2-Dichlorobenzene	μg/L	3.1	1.0 U	1.0 U	8.6	1.0 U	1.0 U	7.6	1.0 U	1.0 U	1.0 U	1.0 U	10 U	3.1	1.8
1,2-Dichloropropane	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	2.0 U	2.0 U
1,2,4-Trimethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	2.0 U	2.0 U
1,3,5-Trimethylbenzene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
1,4-Dichlorobenzene	μg/L	5.8	1.0 U	1.0 U	14.0	1.0 U	1.0 U	12	1.0 U	1.0 U	1.0 U	1.0 U	14	4.5	2.3
2-Butanone (MEK)	μg/L	10 U	67	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	100 U	10 U	10 U
4-Methyl-2-pentanone (MIBK)	μg/L	10 U	10 U	10 U	10 U	10 U	10 U	10 U	15 U	15 U	10 U	10 U	100 U	15 U	15 U
Acetone	μg/L	10 U	24	10 U	10 U	10 U	10 U	10 U	20 U	20 U	10 U	10 U	100 U	20 U	20 U
Benzene	μg/L	100	1.0 U	1.0 U	710	1.0 U	1.0 U	710	1.0 U	410	1.0 U	1.0 U	990	300	160
Carbon disulfide	μg/L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	20 U	2.0 U	2.0 U
Carbon tetrachloride	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
Chlorobenzene	μg/L	200	1.3	1.0 U	630	1.0 U	1.0 U	610	1.0 U	87	1.0 U	1.0 U	660	300	220
Chloroform	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.3	1.0 U	1.0 U	10 U	1.7	1.8
Ethylbenzene	μg/L	1.2	1.0 U	1.0 U	250	1.0 U	1.0 U	230	1.0 U	1.1	1.0 U	1.0 U	180	1.5	1.4
Isopropylbenzene (Cumene)	μg/L	20	1.0 U	1.0 U	210	1.0 U	1.0 U	160	2.0 U	120	1.0 U	1.0 U	260	97	57
Methylene Chloride	μg/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	10 U	10 U	5.0 U	5.0 U	50 U	10 U	10 U
m-Xylene & p-Xylene	μg/L	4.3	1.0 U	1.0 U	210	1.0 U	1.0 U	210	2.0 U	4.5	1.0 U	1.0 U	320	4.0	2.1
o-Xylene	μg/L	1.0 U	1.0 U	1.0 U	5.2	1.0 U	1.0 U	3.2	2.0 U	2.0 U	1.0 U	1.0 U	10 U	2.0 U	2.0 U
p-Isopropyltoluene (Para-cymene)	μg/L	1.0 U	1.0 U	1.0 U	5.3	7.3	1.0	2.2	3.0 U	3.0 U	1.0 U	1.0 U	10 U	3.0 U	3.0 U
Tetrachloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	2.0 U	2.0 U
Toluene	μg/L	1.0 U	1.0 U	1.0 U	1.7 J	1.0 U	1.0 U	2.9	1.0 U	1.5	1.0 U	1.0 U	10 U	1.2	1.0 U
Trichloroethene	μg/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	1.0 U	1.0 U	10 U	2.0 U	2.0 U
Vinyl chloride	μg/L	4.8	1.0 U	1.0 U	6.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	10 U	5.1	3.6

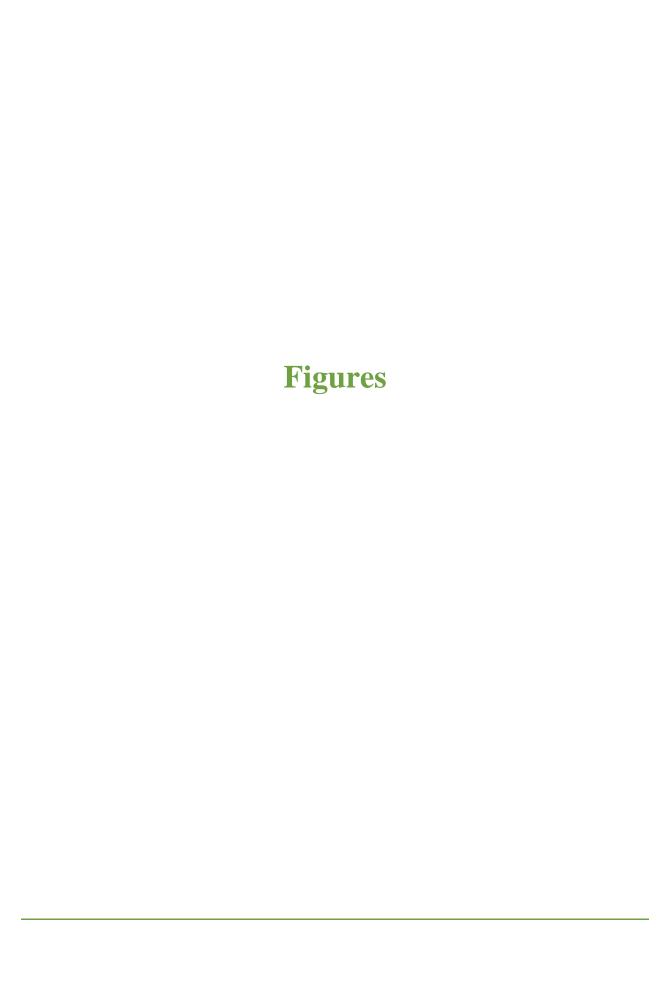
NOTES:

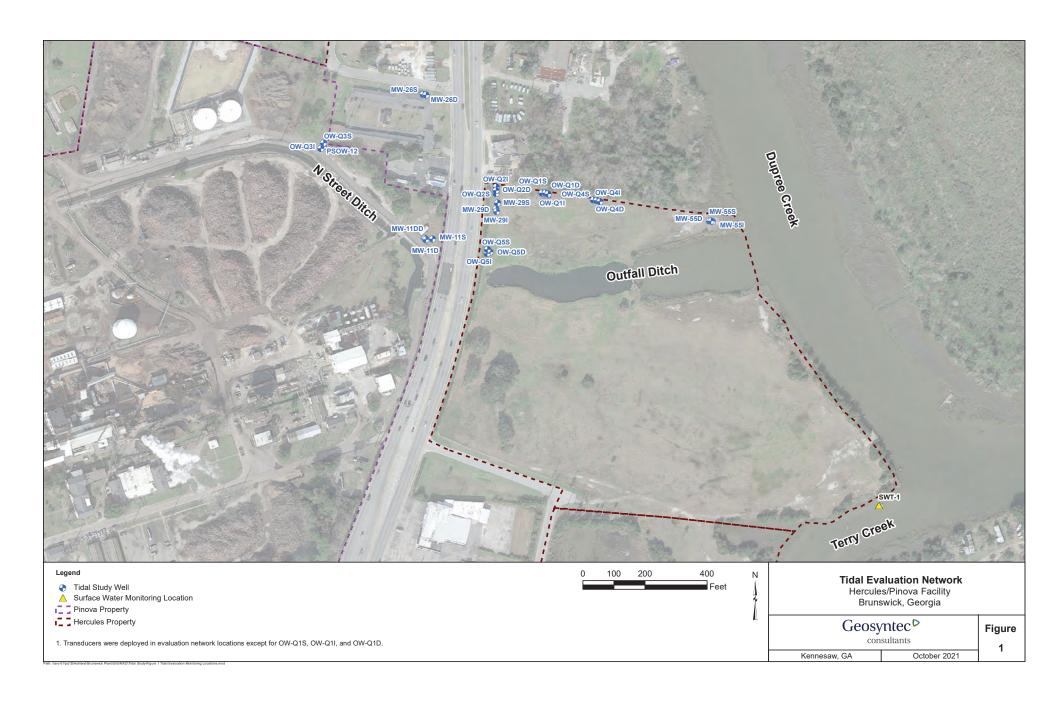
BOLD = Analyte detected above laboratory reporting l U = Not detected at or above the reporting detection lin

J = Estimated value

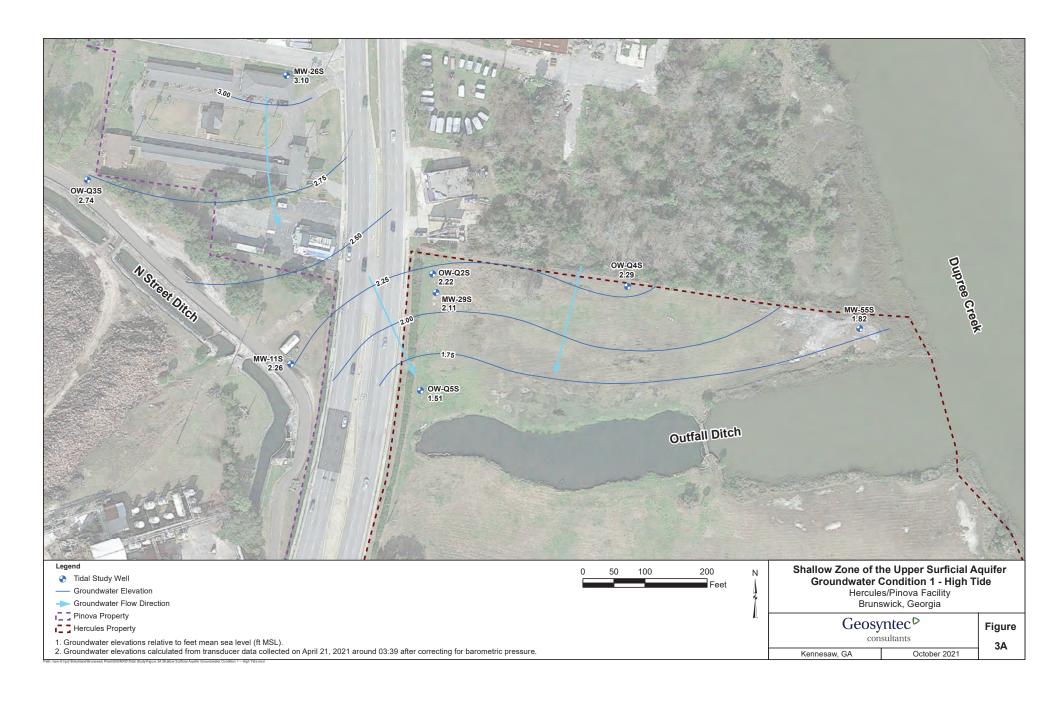
ug/L = micrograms per liter mg/L = milligrams per liter mS/cm = millisiemens per centimeter

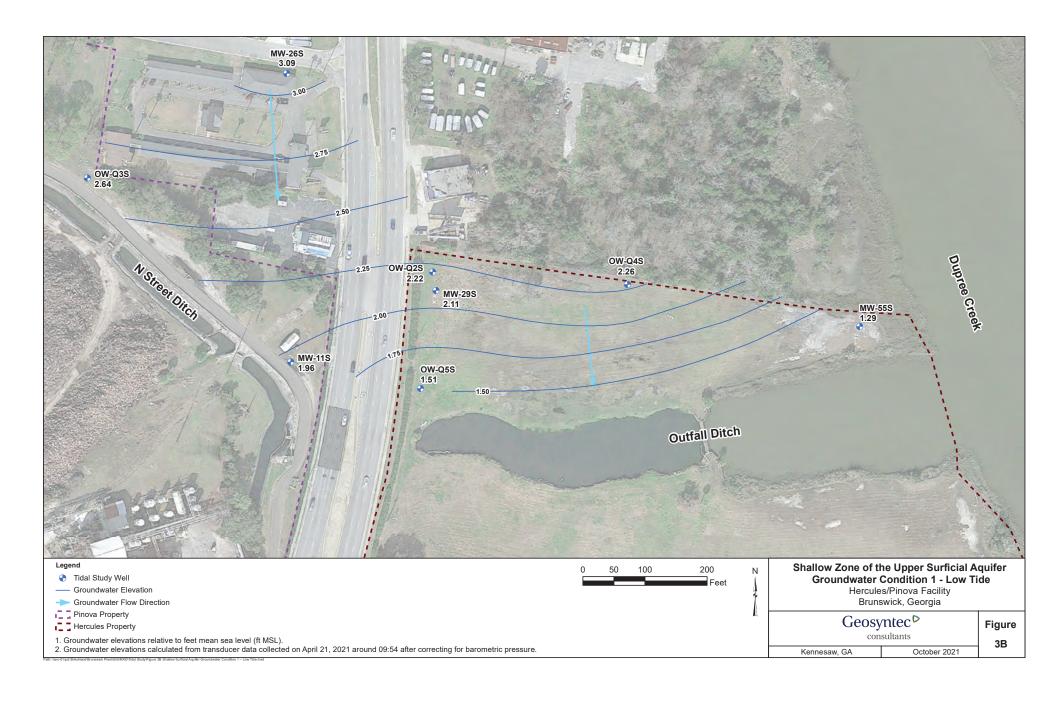
GR6881P Page 2 of 2 October 2021

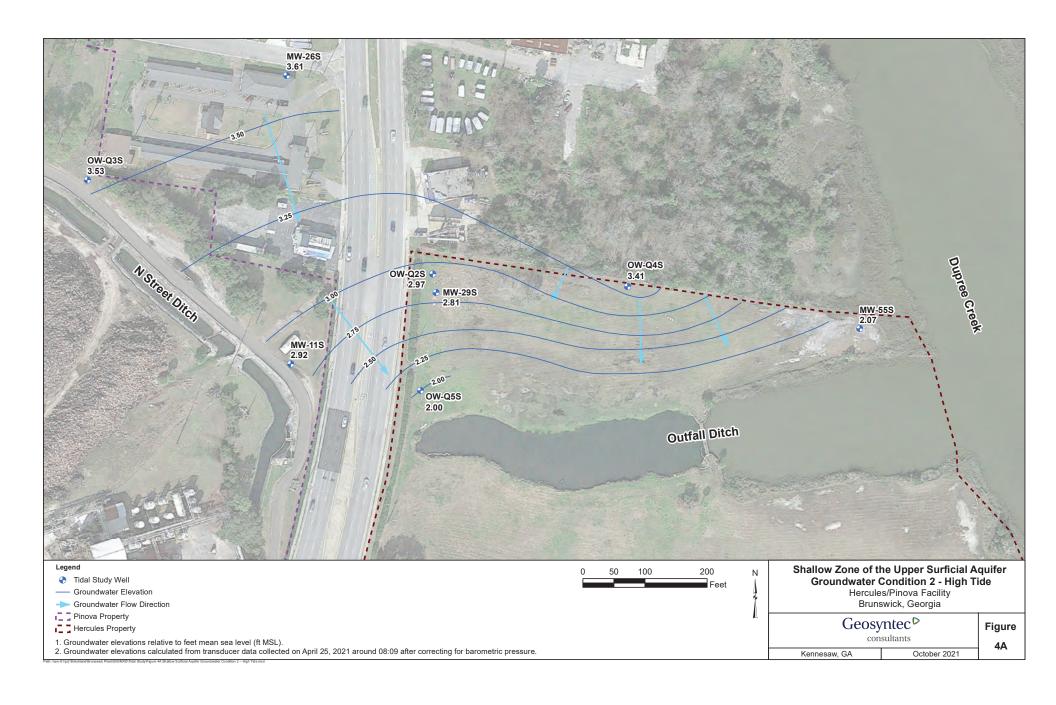

$\label{eq:Table 3} Table \ 3$ Groundwater Elevations for Groundwater Conditions 1 to 4

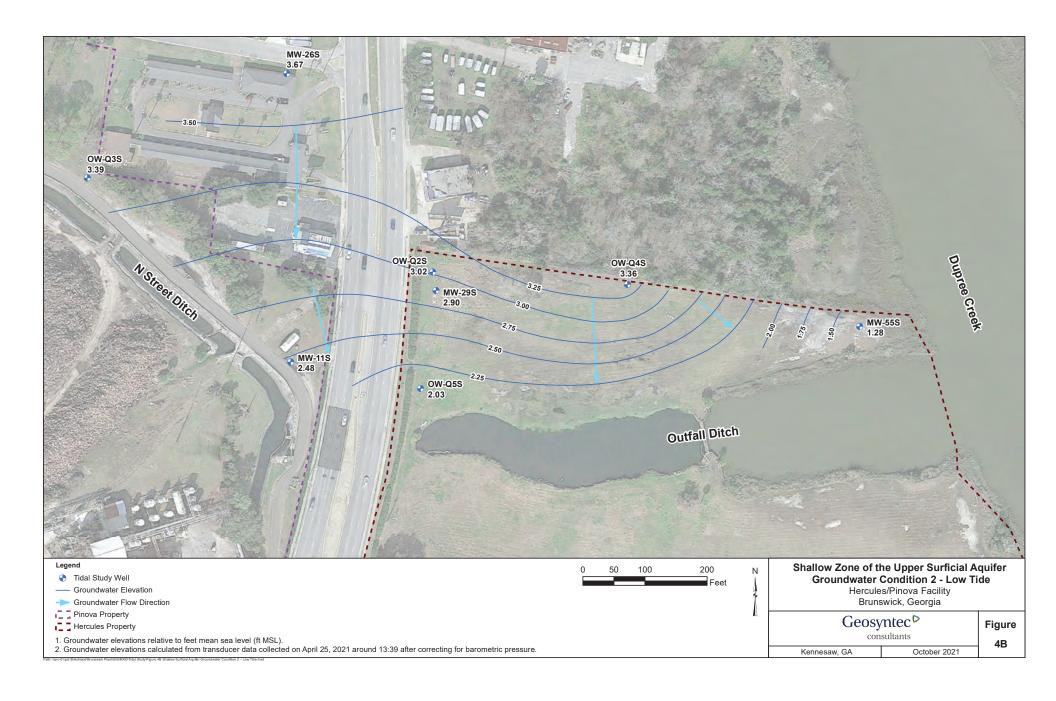

Hercules/Pinova Facility, Brunswick, Georgia

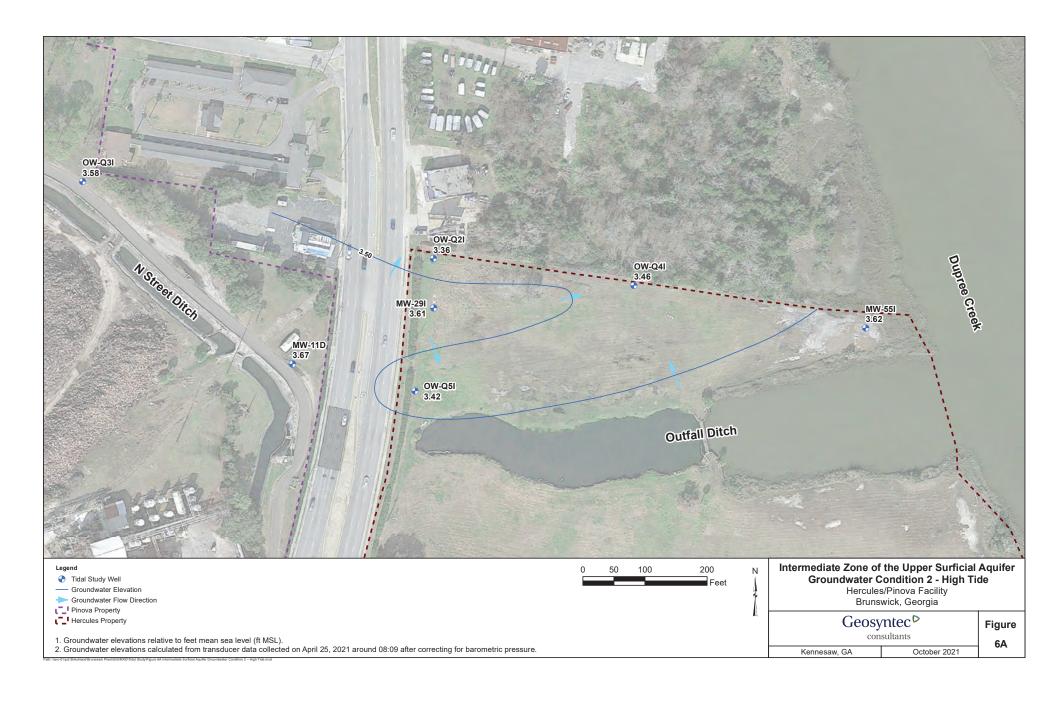
		Groundwater Condition 1: High Tide	High Tide -1	High Tide -2	High Tide -3	High Tide -4	High Tide -5	Groundwater Condition 1: Low Tide e of Tidal High &	Groundwater Condition 2: High Tide	Groundwater Condition 2: Low Tide	Groundwater Condition 3: High Tide	Groundwater Condition 3: Low Tide	Groundwater Condition 4: High Tide	Groundwater Condition 4: Low Tide
Well Pair	Interval	4/21/2021 3:39	4/21/2021 4:49	4/21/2021 5:49	4/21/2021 6:49	4/21/2021 7:49	4/21/2021 8:49	4/21/2021 9:54	4/25/2021 8:09	4/25/2021 13:39	5/11/2021 9:09	5/11/2021 15:24	5/17/2021 0:09	5/17/2021 6:39
wen ran	S	2.26	7/21/2021 7.7/	4/21/2021 3.47	4/21/2021 0.47	7/21/2021 /.4/	4/21/2021 0.47	1.96	2.92	2.48	2.09	1.79	2.22	1.91
MW-11	D	3.46						3.04	3.67	3.05	3.07	2.64	3.32	2.93
	DD	3.28	3.27	3.20	3.10	2.99	2.90	2.84	3.50	2.85	2.87	2.45	3.14	2.74
	S	3.10		0.20				3.09	3.61	3.67	3.13	3.11	2.98	2.99
MW-26	I	-						-	-	-	-	-	-	-
	D	3.25	3.26	3.17	3.05	2.92	2.84	2.79	3.47	2.74	2.96	2.48	3.24	2.77
	S	2.11						2.11	2.81	2.90	1.99	2.00	1.92	1.96
MW-29	I	3.40						2.86	3.61	2.84	2.95	2.45	3.25	2.75
	D	-	-	-	-	-	-	-	-	-	-	-	-	-
	S	1.82						1.29	2.07	1.28	1.14	0.73	1.71	1.33
MW-55	I	3.32						2.27	3.62	2.01	2.82	1.77	3.27	2.19
	D	3.03	2.97	2.73	2.49	2.26	2.14	2.05	3.34	1.80	2.54	1.55	2.98	1.98
	S	2.22						2.22	2.97	3.02	2.11	2.09	2.03	2.05
OW-Q2	I	3.15						2.60	3.36	2.55	2.69	2.17	3.00	2.47
	D	3.24	3.22	3.10	2.96	2.82	2.71	2.64	3.48	2.59	2.82	2.25	3.13	2.57
OW-Q3/	S	2.74						2.64	3.53	3.39	2.70	2.63	2.71	2.63
PSOW-12	I	3.40						3.15	3.58	3.24	3.04	2.82	3.24	3.03
100 11 12	D	3.72	3.73	3.71	3.64	3.58	3.52	3.47	3.90	3.55	3.33	3.12	3.55	3.33
	S	2.29					·	2.26	3.41	3.36	2.12	2.10	1.98	1.99
OW-Q4	I	3.19						2.40	3.46	2.25	2.72	1.94	3.10	2.31
	D	3.08	3.03	2.83	2.64	2.47	2.36	2.28	3.35	2.12	2.62	1.83	3.00	2.20
	S	1.65						1.64	2.14	2.16	1.55	1.53	1.57	1.59
OW-Q5	I	3.22						2.71	3.42	2.69	2.76	2.30	3.06	2.60
	D	3.12	3.09	2.98	2.85	2.72	2.61	2.55	3.35	2.51	2.72	2.18	3.04	2.49

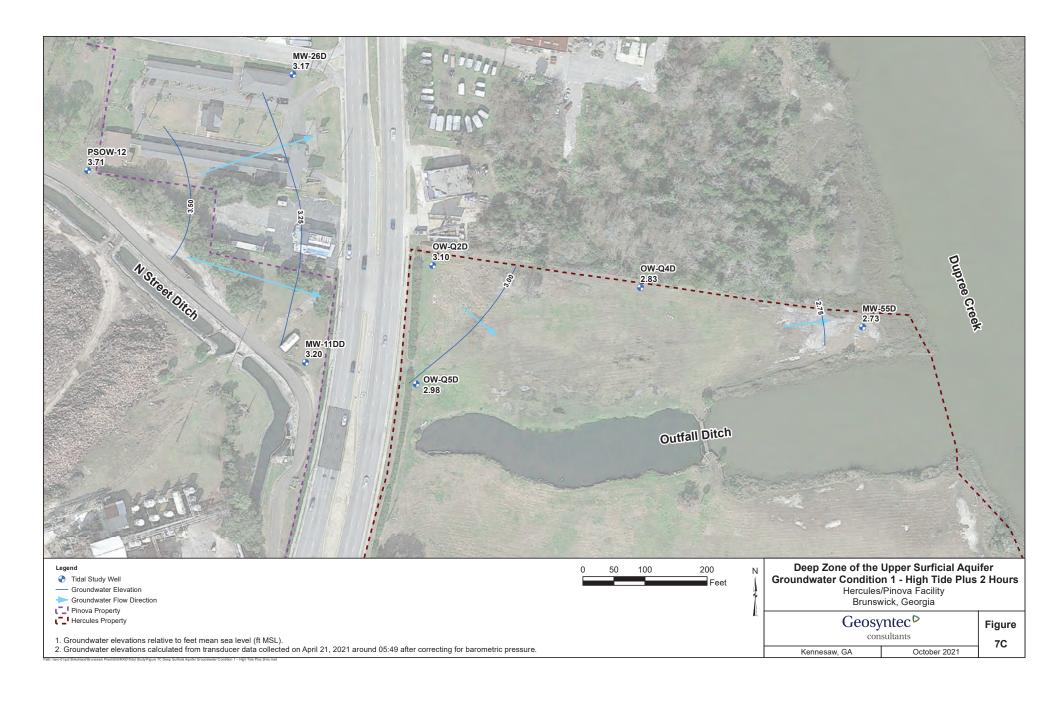

Notes:


- 1. Groundwater Condition 1 represents initial baseline conditions on April 21, 2021 between approximately 03:39 (high tide) and 09:54 (low tide).
- 2. Groundwater Condition 2 represents hydraulic loading and aquifer response to an approximately 2-inch rainfall event on April 24, 2021. The period for Groundwater Condition 2 is April 25, 2021 between approximately 08:09 (high tide) and 13:39 (low tide). This condition also corresponds to a transition towards spring tide conditions.
- 3. Groundwater Condition 3 represents a decrease in groundwater levels within the surficial aquifer after the April 24, 2021 rain event. The period for Groundwater Condition 3 is May 11, 2021 between approximately 09:09 (high tide) and 15:24 (low tide).
- 4. Groundwater Condition 4 represents an approximate return to baseline conditions on May 17, 2021 between approximately 00:09 (high tide) and 06:39 (low tide).



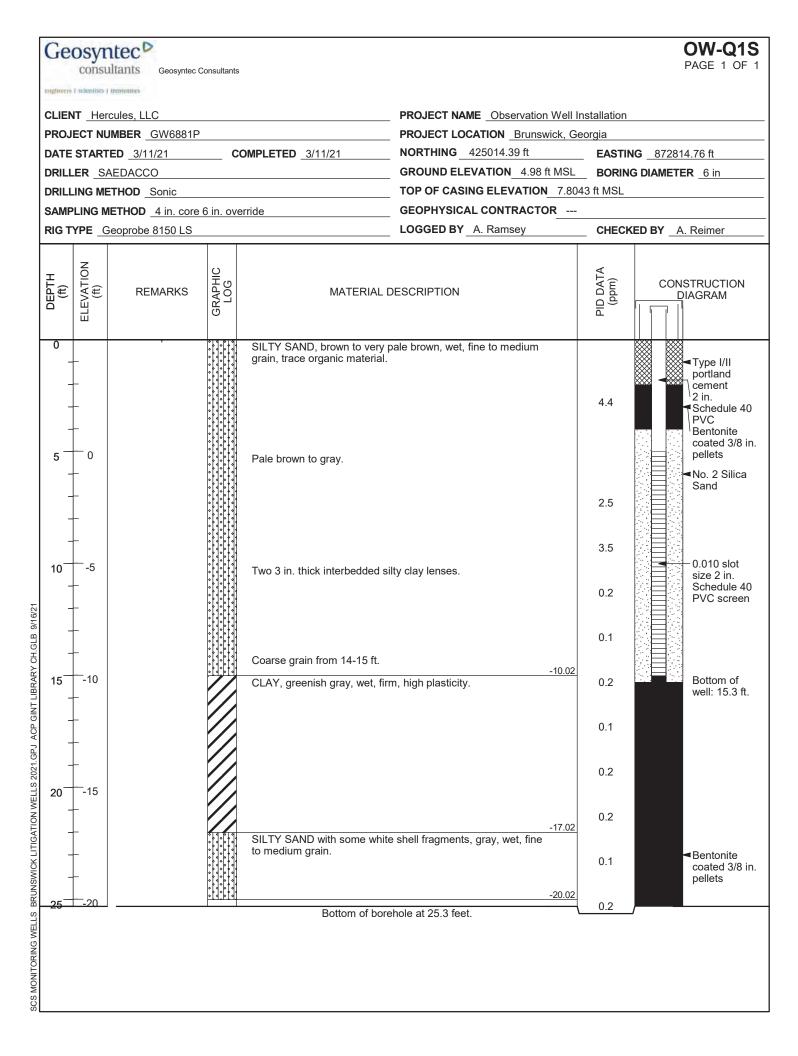












Attachment A: Well Construction and Lithologic Logs

SCS MONITORING WELLS BRUNSWICK LITIGATION WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/16/21

SCS MONITORING WELLS BRUNSWICK LITIGATION WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/16/21

SCS MONITORING WELLS BRUNSWICK LITIGATION WELLS 2021, GPJ ACP GINT LIBRARY CH.GLB 9/16/21

CLIENT Hercules, LLC

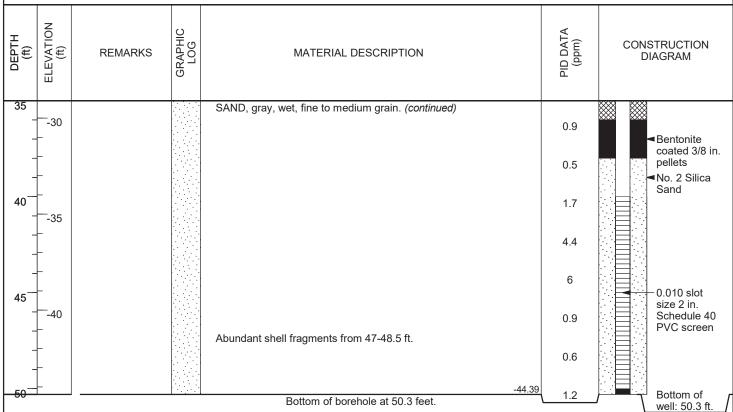
PROJECT NAME Observation Well Installation

PROJECT NUMBER GW6881P PROJECT LOCATION Brunswick, Georgia

DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION		PID DATA (ppm)	CONSTRUCTION DIAGRAM
35 -	-30			SILTY SAND with some shell fragments, gray, wet, fine to medium grain. <i>(continued)</i>		0.9	
-	-			Trace angular gravel, medium to coarse grain. SAND, gray, wet, coarse grain.	-32.89	0.9	
40-	- 					27.4	
40	-35					20	
-	-					3.3	
-	_					3.3	
45	-40					1.1	
-	-			SILTY SAND with abundance angular gravel, some clay, gray, wet, fine to coarse grain.	-41.89	1.8	
_	-			gray, wet, mile to obtain grain.		14.4	
50_	-45					10.0	
-	_					19.9	
-	† -					9	
55	-50					3.3	
-	_			SAND, gray, trace greenish gray at bottom, wet, coarse	-51.89	7.5	
-	-			grain.		1.5	
60	-55					1.5	
-	-					1.8	
-	-					1.1	
65	-60					1.4	
-	+			Trace gravel with abundant rounded gravel from 67-68 ft.		0.9	
-	-			maco graver with abundant rounded graver from 07-00 ft.			
70	-65					0.9	
-	-					1.4	
-						1.9	
-	+						

CLIENT Hercules, LLC

PROJECT NAME Observation Well Installation


PROJECT NUMBER GW6881P

PROJECT LOCATION Brunswick, Georgia

					<u> </u>	
DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID DATA (ppm)	CONSTRUCTION DIAGRAM
75	-70			SAND, gray, trace greenish gray at bottom, wet, coarse grain. (continued)	2.3	
-	- -			No gravel.	1.8	■ Bentonite coated 3/8 in. pellets
-	-				2.1	No. 2 Silica Sand
80 -	-75 - -				4.1	
-	-				8.8	
85	- 80				4	0.010 slot size 2 in. Schedule 40
-	-			Trace rounded gravel from 87-90 ft.	7.8	PVC screen
-	_				2.3	
90-	-85			-85.19 Bottom of borehole at 90.3 feet.		Bottom of well: 90.3 ft.

SCS MONITORING WELLS BRUNSWICK LITIGATION WELLS 2021, GPJ ACP GINT LIBRARY CH.GLB 9/16/21

PAGE 2 OF 2

CLIENT Hercules, LLC

PROJECT NAME Observation Well Installation

PROJECT NUMBER GW6881P PROJECT LOCATION Brunswick, Georgia

DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID DATA (ppm)	CONSTRUCTION DIAGRAM
35 _	-30			SAND, trace shell fragments, gray, wet, coarse grain. (continued)	0.4	
-	_			Increased content of shell fragments.	0.5	
40	-				16.8	
-	-35			-36.40 SILTY SAND with trace stiff clayey sand lenses, gray, wet, fine to medium grain.	23.8	
-	_			fine to medium grain.	2.6	
45 -	-40				0.4	
-	_			42.40	0.3	
50	-		\$\[4\] \[6\] 4\]	SAND, gray, wet, coarse grain.	52	
-	45 				0.7	
-	_				0.5	
55 [—]	-50			Fine to medium grain from 56-73 ft.	1.9	
-	_				1.3	
60	_ 				25.2	
-					21.1	
-	_				26.3	
65 _	-60				43.4	
-	_				45.9	
70	-65				30.7	
-	-			-67.40	15.1	
-				SANDSTONE/SANDY MUDSTONE with some well rounded quartz gravel, gray, dry, fine to medium grain, very hard.	45	

PROJ	ECT NU	JMBER GW6881P		PROJECT LOCATION Brunswick, G	eorgia	
DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID DATA (ppm)	CONSTRUCTION DIAGRAM
35 -	_			SAND with interbedded, SANDSTONE/SANDY MUDSTONE, gray, wet, coarse grain, dense, brittle.	0.1	■Bentonite coated 3/8 in.
40 -	35 			SAND, gray, wet, coarse grain, loose.	0.2	pellets pellets PNo. 2 Silica Sand
45	- - -40				0.1	0.010 slot
-	-				0.1	size 2 in. Schedule 40 PVC screen
50	-45 -			-46.44 Bottom of borehole at 51.3 feet.	0.1	Bottom of well: 51.3 ft. No. 2 Silica

Sand

CLIENT Hercules, LLC

PROJECT NAME Observation Well Installation

PROJECT NUMBER GW6881P PROJECT LOCATION Brunswick, Georgia

					T		
DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION		PID DATA (ppm)	CONSTRUCTION DIAGRAM
35	-30			SANDSTONE/SANDY MUDSTONE, gray, wet, coarse grain, brittle.		0.4	
-	- - -			SAND with trace interbedded SANDSTONE/SANDY MUDSTONE, gray, wet, coarse grain.	-31.22	0.3	
40	-35					0.3	
-	_					0.2	
-	- -					0.2	
45	-40 -					0.2	
-						0.3	
50	- - -45					0.6	
-	- -					0.2	
-	- -					0.2	
55 ⁻	-50 -					0.2	
-	_				-52.72	0.2	
-	<u>-</u>			SANDSTONE/SANDY MUDSTONE with some well rounded quartz gravel, gray, wet, coarse grain, brittle.		1.1	
60_	55 				-56.72	0.5	
-	- - -			SAND with trace interbedded SANDSTONE/SANDY MUDSTONE, gray, wet, coarse grain.		4.5	
65	-60					1.1	
-						1.4	
					-64.72	1.5	
70 _	65 			SAND, gray, wet, coarse grain.		3.2	
-						5.7	
	-					3.1	

Bottom of borehole at 95.0 feet.

Some gravelly sand.

Bottom of

well: 90.3 ft.

■No. 2 Silica

Sand

24.1

12.9

8.6

6.3

7.1

5.1

-89.72

SCS MONITORING WELLS BRUNSWICK LITIGATION WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/16/21

90

-85

)	Ge	consu	iltants YeoDyntec	ConDultant[OW-	Q5D (MW-62D) Ps YA 9 v 7 ,
1	englueers	scientists	innevators					
	CLIEN	NT <u>6 er</u>	culeDf BBC			PROJECT NAME v wDer' ation (ell l	InDtallation	
- 1	PROJ	ECT NU	JMBER <u>Y(g119</u> P			PROJECT LOCATION _) runD_icHf Y	eorLia	
- 1	DATE	START	ED <u>, /9g/. 9</u>	c	OMPLETED _, /9g/. 9	NORTHING 0. 01, . 3 0 5	EASTIN	IG 14. g, R309 5
- 1	DRILI	ER S	s Az s CCv			GROUND ELEVATION E3R 5 MSL	BORING	G DIAMETER g in
- 1	DRILI	ING ME	THOD Sonic			TOP OF CASING ELEVATION 131F	R0 51 MSL	
;	SAMF	LING N	IETHOD 0 in3core	g in3o'	erride	GEOPHYSICAL CONTRACTOR		
ļ	RIG T	YPE Y	eoprowe 19E2 BS			LOGGED BY s 3k amDey	_ CHECK	(ED BY _s3k eimer
	z APT6 O#G	ABAVSTIv N 强G	k AFsk MS	YksP6IC Bv Y		z ASCk IPTIv N	PIz zsTs PmG	Cv NSTk WCTIv N z Is Yks F
SCS FV NITVKINY (ABBS) KWNS(ICMBITIYSTIVN (ABBS . 2.937PU sCP YINT BI) Ksk 8 C63/B) R94/. 9	2	E 2	b		SIBT8 Ss Nz f pale wro: n to Lrain3 Yray3 CBs 8 A8 Ss Nz : ith coarDe to medium Lrain3 SIBT8 Ss Nz f pale wro: n to Lrain3	-9. <u>321</u> Dhell 5raLmentDf Lrayf∶ etf 5ne -90321	934 239 239 239 239 239 239	Type I/II portland cement . in3 Schedule 02 PVC
SCS					Interwedded Dity clay 5 pf , 0-	-, 4 53 Do5f hiLh plaDticity3		

	consu		ConDultantD		R OW-	-Q5D (MW-62D) PsYA . v7 ,
	NT 6 ero	culeDf BBC		PROJECT NAME _v wDer' ation (ell l	nDtallation	
PROJ	ECT NU	MBER <u>Y(g119</u> F)	PROJECT LOCATION) runD icHY		
z APT6 GGG	ABAVSTIV N OBG	k AF s k MS	YksP6IC Bv Y	FsTAkIsBzASCkIPTIvN	Plz z s Ts PpmG	Cv NSTk WCTIv N z ls Yk s F
, E -	-, 2			SIBT8 Ss Nz f pale wro: n to wro: nf : etf 5ne to medum Lrain3(continued)	03	
-	-		•[4]•[4]	-, 9321 Ss Nz : ith trace Dhell 5raLmentDf Lrayf : etf coarDe Lrain3	23	
02	-				239	
-	, E				23	
-	-				239	
0E	-02			-02:21 CBs 8A8 Ss Nz : ith awundant Dhell 5aLmentDf Lrayf : etf	23	
-	-			coarDe Lrain3 Ss Nz : ith trace to Dome Dhell 5aLmentDf Lrayf : etf coarDe Lrain3	239	
- E2	-				23	
-	-0E			-0g2⁄21 Ss Nz STv NA/Ss Nz 8 F Wz STv NA : ith Dome clayf Lrayf	23	
-	-			dryf 5ne to medium Lrainf writtle3	230	
EE -	- E2				234	
-	- - -			-E9321 Ss Nz : ith trace Dhell 5raLmentDf Lrayf : etf coarDe Lrain3	23g	
g2_	- 				2 3 R	
-	 			-Eg321 CBs 8 A8 Ss Nz f Lrayf : etf coarDe Lrain3		
gE_	- -				2 3 R	
-					2 3 R	
-	-				234	
42_	_ gE			-g0321 Ss Nz : ith Dome : ell rounded KuartJ Lra' elf Lrayf : etf coarDe Lrain3	93	
-	 -				g 3 4	
-	-				9239	

SCS F v NITv k INY (ABBS) k WNS(ICMBITIYSTIVN (ABBS. 2.93/PU s CP Y INT BI) k s k 8 C6 3/B) R94/. 9

Attachment B: Well Development Logs

(Electronic File Located on CD)

engineers | scientists | innovators

TIDAL EVALUATION AND GROUNDWATER CHEMISTRY DATA SUMMARY

HERCULES/PINOVA FACILITY BRUNSWICK, GEORGIA

Prepared for

Hercules LLC

500 Hercules Road Wilmington, DE 19808

Prepared by

Geosyntec Consultants, Inc. 1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project GR6881P

October 2021

Attachment B: Well Development Logs

Geosyntec D					WE	LL DEVELOPMEN	T LOG SHEET				
Depth to Water (ft): Well Diameter (in): Well Volume (gal) = 0. Well Volume (L) = gal	Heruly - Bwk, GA OW-29S al Depth (ft) (after purge): al Depth (S	Location	MINIM HDPE 29.5 1510 15	onsoon 54			
Well Tag Present:	pH (SU)	Spec. Cond.	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate	Purged Volume (L)	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)	
1550	5.99	4.16	15	0.10	21.58	0.00	18.15	2	80		
1552	6.07	4.08	-25	0.07	21.59	6.00	18.15	2	84		
1554	6-04	4.03	-29	0.30	21.63	0.00	18.15				
Stabilizing Criteria	+/- 0.1 SU	+/- 5%		0.2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)		<5 NTUs					

Geosyntec ^D					WE	LL DEVELOPMEN	T LOG SHEET			
Client		Hercule Neverte ow- a: 93.06 (1	DIPin	va.		Project No.	CR 688	918		Development Date: 311121
Site:		Heraile	N-RUIL			Location	Brunswi	CK, GA		Field Personnel Name: A Ramsu
Well ID:		OW O	20					Mondoon		1
Fotal Depth (ft) (after		9806/	2.65 SL	1004		Tubing Material	HOPE			
	purge).	5.37	3 3 110	رام	p _i	mp Intake Depth (ft)			-	
Depth to Water (ft):		2*				tart/Stop Purge Time		OUL	-	
Well Diameter (in):					3	qod	10131	14.30		4
Well Volume (gal) = (0.041d h:	14.8			1	Purge Rate (mL/min)	200	TIMAN		19.
Well Volume (L) = ga	d * 3.785:	55.9	L		To	tal Purge Volume	+ 66		-	1
d = well diameter (inc	hes): h = len	igth of water coh	umn (feet)							
Well Type:	Flush	Stiek Up								A
Well Lock:	Ves	AND APP								
Well Cap Condition:	Good	Replace								
Well Tag Present	Ye	No								
wen rag Present.		Spec. Cond.		DO				Purge Rate	Purged Volume	Notes (Purge method, water clarity, odor, purge
Time	pH (SU)	MuS/cm)	ORP (mV)	(mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Gov (mL/min)	(t) gal	rate, issues with pump/well/weather/etc.)
1025	6.03		45	1.25	24.20	G-00	54.37	29pm	50	
1040	6.29		-28	0.44	24.22	0.00	5.41	2	54	
1042	6.29	7.13	-30	0.25	29.22	0.00	5.43	2	58	
1044	6.29	2.14	-30	6.17	24.22	0.00	5.43	7.	66	
1046	6.29	2.15	-31	012	24.22	0.00	3.44	-	00	
	-									
		1 2								
									1	
									1 / 2	
									15	
							1			

< 5 NTUs

0.2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)

Stabilizing Criteria +/- 0.1 SU

4/- 5%

Geosyntec D					WE	LL DEVELOPMEN	T LOG SHEET			
Client:		Hereule	Alexa	a		Project No.:	CP 68	81P		Development Date: 318181
Site:		Hercules				Location	Brunsu	vick, GA		Field Personnel Name: A. Ramsuy
Well ID:		0W-Q2	S'			Pump Type/Model:				
Total Depth (ft) (aft	er purge):	20.29				Tubing Material:				
Depth to Water (ft):		2.67 6	290 stic	(gust	P	ump Intake Depth (ft):	16			
Well Diameter (in):		2			S	Start/Stop Purge Time:	3HR 161	16/1954		
Well Volume (gal) =	= 0.041d _a h:	3.26				Purge Rate (mL/min):	- 40	76	_	
Well Volume (L) =	gal * 3.785:	12.35			To	otal Purge Volume (L)	281.	2	_	
d = well diameter (i	nches); h = len	igth of water coli	umn (feet)							
Well Type:	Flush	Stick Up								
	_									
Well Lock:	(Yes)	CO-HP								
Well Lock: Well Cap Condition	1									
Well Cap Condition	1	Replace No								
Well Cap Condition	. 600	Replace No Spec. Cond.	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate	Purged Volume (L)	Notes (Purge method, water clarity, odor, purg
Well Cap Condition Well Tag Present: Time	6	Replace No Spec. Cond. M(#S/cm) 1-33	-41		Temp. (°C)	Turbidity (NTUs)	11.29	Purge Rate	(L)	
Well Cap Condition Well Tag Present: Time 1550	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1.33	-41	(mg/L) 3-00	21.88	0.00 0.00	11.29	2	(L) L8 72	
Well Cap Condition Well Tag Present: Time	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1-33	-41	(mg/L)	2.88	6.00	11.29	Optimiz/min)	(L)	
Well Cap Condition Well Tag Present: Time 1550	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1.33	-41	(mg/L) 3-00	21.88	0.00 0.00	11.29	2	(L) (L) 72 74	
Well Cap Condition Well Tag Present: Time 1550	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1.33	-41	(mg/L) 3-00	21.88	0.00 0.00	11.29	2	(L) (L) 72 74	
Well Cap Condition Well Tag Present: Time USSO 1552	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1.33	-41	(mg/L) 3-00	21.88	0.00 0.00	11.29	2	(L) (L) 72 74	
Well Cap Condition Well Tag Present: Time 1550	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1.33	-41	(mg/L) 3-00	21.88	0.00 0.00	11.29	2	(L) (L) 72 74	
Well Cap Condition Well Tag Present: Time 1550	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1.33	-41	(mg/L) 3-00	21.88	0.00 0.00	11.29	2	(L) (L) 72 74	
Well Cap Condition Well Tag Present: Time 1550	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1.33	-41	(mg/L) 3-00	21.88	0.00 0.00	11.29	2	(L) (L) 72 74	
Well Cap Condition Well Tag Present: Time 1550	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1.33	-41	(mg/L) 3-00	21.88	0.00 0.00	11.29	2	(L) (L) 72 74	
Well Cap Condition Well Tag Present: Time 1550	pH (SU)	Replace No Spec. Cond. M(#S/cm) 1.33	-41	(mg/L) 3-00	21.88	0.00 0.00	11.29	2	(L) (L) 72 74	

<5 NTUs

0.2 mg/L or 10% for DO> 0.5 mg/L (whichever is greater)

Stabilizing Criteria +/- 0.1 SU

+/- 5%

Geosyntec D					WEI	L DEVELOPMEN	T LOG SHEET			
Client:	1	terculu	Pinovo	1		Project No.:	GR688	1P		Development Date: 3/14/21
Site:		tercules-				Location:	Brunswi	CK. GA		Field Personnel Name: AR
Well ID:	•	OW-QZ	I			Pump Type/Model:				
Total Depth (ft) (after p		53.22				Tubing Material:	HOPE			
Depth to Water (ft):		5.68 (2.0	18)			mp Intake Depth (ft):				
Well Diameter (in):		2			St	art/Stop Purge Time:	07510	840		
Well Volume (gal) = 0.	041d_h:	7.76			F	urge Rate (min):	98			
Well Volume (L) = gal	2	29.36			To	al Purge Volume (L)	370.9	3		
d = well diameter (inch		-	mn (feet)							
Well Type:		otick op								
Well Lock:		NO AR								
Well Cap Condition:	6	Replace								
Well Tag Present:	(PS)	No								
Time	pH (SU)	Spec. Cond.	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate	Purged Volume	Notes (Purge method, water clarity, odor, purg rate, issues with pump/well/weather/etc.)
0886	6.74	0.920	-120	Ú.00	24.19	0 00	6-35	90	2	
									6	
0888	6.74	0.930	-121	0.00	24.19	0.00	6.35	au	2	
	6.74	0.930	-121	0.00	24.19	0.00				
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	
0888		0.930	-				6.35	au	2	

Geosyntec^D WELL DEVELOPMENT LOG SHEET consultants Hercules/Pinaca Hercules-Bruk Project No.: GR6881P Client: Development Date: 314 21 Location: Brunswick, GA Site: Field Personnel Name: OW-QIS Pump Type/Model: Mini Mowboon Well ID: Tubing Material: HDPE Total Depth (ft) (after purge): 3.95 (2.95) Depth to Water (ft): Pump Intake Depth (ft): Start/Stop Purge Time: 0850 0925 0938 12 Well Diameter (in): Well Volume (gal) = 0.041d_h: Purge Rate (mL/min): 134 Well Volume (L) = gal * 3.785: 9.69 Total Purge Volume (L): 502 5 d = well diameter (inches); h = length of water column (feet) Stick U Well Type: Flush AH. Yes Well Lock: Replace Well Cap Condition: (FES) Well Tag Present: No Spec. Cond. Purge Rate Purged Volume Notes (Purge method, water clarity, odor, purge Time pH (SU) ORP (mV) Temp. (°C) Turbidity (NTUs) DTW (ft btoc) W(mS/cm) (mg/L) al (pri/min) galus rate, issues with pump/well/weather/etc.) 1008 5-72 2 m.48 19.44 121 17.2 0.00 8.80 2 5.37 1016 0.44 1944 6.00 17.5 8.80 0.43 5.72 17.3 1012 101 111 0.001 2 134 8.80

<5 NTUs

0,2 mg/L or 10% for

DO > 0.5 mg/L

whichever is greater

Stabilizing Criteria +/- 0.1 SU

+/- 5%

Geosyntec ^D					WE	ELL DEVELOPMEN	T LOG SHEET	7			
Client:		Herculo	olpinor	a		Project No.:	GR688	31 P		Sampling Date:	3/17/21
Site:		Hercules	5- BWK				Brundw		_	Sampler's Name:	AR
Well ID:		0W-0	III			Pump Type/Model:			-	Sample Collection Time:	NA
Total Depth (ft):						Tubing Material:		-	- Sa	mple Purge Rate (mL/min):	NA NA
Depth to Water (ft):		5.00		•	P	ump Intake Depth (ft):		-		Sample ID:	NA
Well Diameter (in):		2				Start/Stop Purge Time:		787.9	-	Laboratory Analyses:	NA
Well Volume (gal) = 0	0.041d ² h:	8.5				Purge Rate (mL/min);	2	1	-	Laboratory Analyses.	
Well Volume (L) = ga		32.3		-	To	tal Purge Volume (L)	55+75	8 = 83	_		
d = well diameter (inc			umn (feet)					Well Volume Other:	-	QA/QC Collected?	NA.
Well Type:		Stick Up				Sampling Method:			NA	QA/QC1D.	NA NA
Well Lock:	Yes	No				- ampling method.	. Jump Distilla	out.	_ na	QAQCID.	14/1
Well Cap Condition:	Good	Replace									
Well Tag Present:	Co	No		*	1 55 0	god previ	iouslu	Puroud	on 3/16	121	NA = Not applicable
		Spec. Cond.		DO				Purge Rate			
Time	pH (SU)	MuS/em)	ORP (mV)	(mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	God (mt/min)	Purged Volume	Notes (Purge method, wa rate, issues with pum	
0825	6.93	0.758	-148	0.00	23.13	000	5.00	2	26		
0827	6.89	0.758	-146	0.00	23.14	0.00	5.00	1	4		
0829	6.80	0.758	-146	0.00	23 15	0.00	5.00	W	. 4		
		-									
									1		
Stabilizing Criteria	+/- 0. SU	+/- 5%		0.2 mg/L or 10% for DO > 0.5 mg/L	+/- 10%	< 10 NTUs or					

Geosyntec ^D consultants					WEI	L DEVELOPMENT	LOG SHEET				
Client:	1	terculust	MONEI			Project No.:	CF1881	P		Sampling Date:	3/17/21
Site:	1	terruly >					Brunswi			Sampler's Name:	AR
Well ID:	1	711 - 61	Divi			Pump Type/Model:				Sample Collection Time:	NA
Fotal Depth (ft)	,	ove at	V			Tubing Material:	HOPE	V	San	nple Purge Rate (mL/min):	NA
	-	4.85			Pu	mp Intake Depth (ft):				Sample ID:	NA
Depth to Water (ft):		7				tart/Stop Purge Time:		0810		Laboratory Analyses:	NA
Well Diameter (in):		19.3				Purge Rate (mL/min):		0.00			
Well Volume (gal) = 0.					Test	al Purge Volume (1:)	55+7	1.81	-		
Well Volume (L) = gal		51.7	(Contract)		100			Well Volume Other:	-	QA/QC Collected?	NA
l = well diameter (inch			ımn (Jeet)			Sampling Method:			NA.	QA/QC I.D.	NA
Well Type: Well Lock:	1	Stick Up				Sampling wethou:	Pump Discha	ige Other.	1363	4-4	
Well Cap Condition: Well Tag Present:		Replace No			gal.			oxed on	3/16/21	Notes (Purge method, w	NA = Not applicab
Time	pH (SU)	Spec. Cond.	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate	Purged Volume	rate, issues with pun	
080(2	5.00	10.8	-44	0.00	23.43	000	4.85	4	18		
8080	5.98	10.8	-56	0.00	2346	0.00	4.84	1	4		
0810	5.99	10.7	-51	0.00	23.45	0.00	4.83	V	1 4		
					- 1						
					1						
							1				
Stabilizing Criteria	+/- 0. SU	+/- 5%		0.2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)	+/- 10%	< 10 NTUs or +/- 10%					

Geosyntec ^D					WE	LL DEVELOPMEN	T LOG SHEET	10		
Client:		Herciles	Pinava			Project No.:	08688	IP		Development Date: 3/17/2/
Site:		Hercules	BUK			Location:	Brunsu	lick. GA	_	Field Personnel Name:
Well ID:	(JW-04	SHS			Pump Type/Model:	Miller	MONDOON	_	
Total Depth (ft) (after p	purge):					Tubing Material:	HOPE		_	
Depth to Water (ft):		7.83				imp Intake Depth (ft):			_	
Well Diameter (in):		2			S	tart/Stop Purge Time:	0845	0036	_	
Well Volume (gal) = 0.	.041d,h:	2.95				Purge Rate (mL/min);	2		_	
Well Volume (L) = gal	2	1117			To	tal Purge Volume (L)	102			
d = well diameter (incl Well Type: Well Lock: Well Cap Condition:	Flush (Stick Up No Replace	umin (Jeel)							
Well Tag Present:	Yes pH (SU)	No Spec. Cond.	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate	Purged Volume	Notes (Purge method, water clarity, odor, pr rate, issues with pump/well/weather/etc.)
0032	6-08	201.2	-104	0.70	10.03	2.2	7.83	2	94	
0934	6.08	29.1	105	0.75	19.93	2.2	7.82		4	
0936	6.07	29.1	-106	6.12	19.92	2.2	7.83	V	4	
								-		
							-			
Stabilizing Criteria	+/- 0 1 817	+/- 5%		0.2 mg/L or 10% for DO > 0.5 mg/L		<5 NTUs				

Geosyntec ^D consultants					WE	LL DEVELOPMEN	T LOG SHEET	8				
Client:		Herculest	pineva				GRI68		-	Sampling Date: 31721		
Site:	1	terrulls	Brunsu	NUZ		Location	Brunswi	CKGA	_	Sampler's Name:		
Well ID: OW-QUI					Pump Type/Model: MAN MOWNON					Sample Collection Time:	NA	
Total Depth (ft):		EN AR				Tubing Material:	HOPE		Sai	Sample Purge Rate (mL/min): NA		
Depth to Water (ft):		4.36			Pu	mp Intake Depth (ft):	EO.			Sample ID: NA		
Well Diameter (in):		2			S	tart/Stop Purge Time:	10001	012		Laboratory Analyses:	NA	
Well Volume (gal) = 0	.041d²h:	8.9				Purge Rate (ml/min):	2					
Well Volume (L) = gal		23.5			Tot	al Purge Volume (L):	40+ZU	لاجاء				
d = well diameter (incl		0	mn (feet)					Vell Volume Other		QA/QC Collected?	NA	
Well Type:		Stick Up	and Geerly			Sampling Method:			NA	QA/QC I.D.	NA	
	Yes	No.				ounping menou	, amp second	8-		_		
Well Lock:												
Well Cap Condition:	Good	Replace	N N	40 0	201 -	delation	1 DIL	and later	3/17/21		NA = Not applicable	
Well Tag Present:	Yes	No	-		god F	reviously	& DUY	0100		Notes (Purge method, wa		
Time	pH (SU)	Spec. Cond. (µS/cm)	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate	Purged Volume	rate, issues with pum		
1006	(0.90)	0.750	-1100	0.00	22,00	3.55	4.36	2	12			
1008	712	0.148	-172	0.00	22.08	3.55	4.36	1	4			
1010	7.04	C.748	-167	0.00	23.00	3.55	4.36	1	4			
1012	708	0.748	-1168	0.00	2300	3.55	4.36	V	4			
					N 1							
			-									
Stabilizing Criteria	+/- 0. SU	+/- 5%		0.2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)	+/- 10%	< 10 NTUs or +/- 10%						

Geosyntec [©]					WE	LL DEVELOPMEN	T LOG SHEET			
Client: Site: Well ID: Total Depth (ft): Depth to Water (ft): Well Diameter (in): Well Volume (gal) = 0 Well Volume (L) = gal d = well diameter (incl Well Type: Well Lock: Well Cap Condition:	* 3.785: hes); h = len Flush Yes Good	Mercul OW-Q Q4.55 4.52 2 5.5 58.7 mgth of water colo Replace	es Pinc 12-BL 150 49 (3,00 st	QUD	S	Project No.: Location: Pump Type/Model: Tubing Material: ump Intake Depth (ft): tart/Stop Purge Time: Purge Rate (mt/min): tal Purge Volume (tt): Purge Method: Sampling Method:		Sampler's Name: Sample Collection Time: Sample Purge Rate (mL/min): Sample ID: Laboratory Analyses: NA QA/QC Collected? QA/QC I.D. NA NA = Not applicable		
Well Tag Present: Time 10.3.2. 1.1001 1.1115	PH (SU) 6.12 5.03 5.93 6.93	No	ORP (mV) -18 -100 -100	DO (mg/L) O -C(C) O - (a/c) C - (a/c) C - (a/c)	Temp. (°C) 23. 49 23.03 23.03	Turbidity (NTUs)	DTW (ff btoc) 4.482 4.52 4.52	Purge Rate GO (ml/min) 2 2 2 2	Purged Volume Gal (L) CHG CHR 18 CHG CHR 18	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
Stabilizing Criteria	+/- 0. SU	+/- 5%		0.2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)	+/- 10%	< 10 NTUs or +/- 10%				

Geosyntec Consultants					WE	LL DEVELOPMEN	NT LOG SHE	et			
Client:		HEREVIE	Hours Project No.: 626881P Terri Creac Pine Dw-Q35 Pump Type/Model: Torun to Subminist Tubing Material: 1005								Development Date: 03 30 21
Site:		TERRY (PERLIPE	wa		Location	Bruno	wick,	CA		Field Personnel Name 1. Parthar
Well ID:		nw-a3	5			Location Pump Type/Model	TOWN	+ Do S	Charach	4_	30
Total Depth (ft) (after purge):				Tuhing Mat			al: LDPE				
Depth to Water (ft):	parge).	-									
		2.0									
Well Diameter (in):					3	Start/Stop Purge Time		0 - 10	> 37	_	
Well Volume (gal) = (2					Purge Rate (min)		.0		_	
Well Volume (L) = ga	1 * 3.785:				To	otal Purge Volume		19		_	
d = well diameter (inc			umn (feet)			5	۹,				
Well Type:	Flush	Strek Ep (2)									
Well Lock:	Nes	No									
Well Cap Condition:	(000d)	Replace									
Well Tag Present:	(Yes)	No									
Time	pH (SU)	Spec. Cond.	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft bto		urge Rate	Purged Volume	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
1002	8.62	889	-41.4	2.17	21.15	110	(1		2.00	24	
1004	8-29	840	-36-2	2.56	21.07	798	1		2.0	28	
1027	8.39	848	-36.5	2.16	21.14	45.4			2.0	74	
1029	3.60	840	-49.5	2.02	71.17	30.4			2.0	78	
10 31	8-69	844	-59.1	2.01	21.16	21.0			2.0	82	
1083	8.63	848	-61-6	1.95	21.21	17.0			2.0	86	
1035	8.58	856	-57.3	1.43	21.15	15-6			2.0	90	
1037	8.59	3 46	-64.6	2.07	21. 24	7.92			2.0	~\b-	
											A
Stabilizing Criteria	+/- 0.1 SU	+/- 5%		0 2 mg/L or 10% for DO > 0 5 mg/L (whichever is greater)		<5/NTUs					

Geosyntec Consultants					WE	LL DEVELOPMEN	T LOG SHEET						
Client:		HERU	NES			Project No.	67688	MP		Development Date: 🍟 🕇			
Site:		Terry(1	nes uK P			Location	Bruna		Field Personnel Name: RARNHAK				
Well ID:		OW-Q5			Location Pump Type/Model	Submersible		00					
Total Depth (ft) (after						Tubing Material	_						
Depth to Water (ft):					Tubing Material: LDPE Pump Intake Depth (ft):								
Well Diameter (in):		2.0			Start/Stop Purge Time:								
Well Volume (gal) = (0.041d h	_				Purge Rate (mL/min)			_				
Well Volume (L) = ga	2	-				otal Purge Volume (L)			-				
d = well diameter (inc)					11								
		0 0	umn (Jeel)			x u	vell was d	leveloped a	n osko o	027-0838 03/30 @ 1615-1627			
Well Type:	Flush	Stick Up							1	1 - B 1/25-1/23			
Well Lock:	Yes	No				x be	lon are st	apility ra	as ov	03 30 6 1013 - 1027			
Well Cap Condition:	Good	Replace											
Well Tag Present:	Yes	No											
Time	pH (SU)	Spec. Cond. (µS/cm)	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate	Purged Volume	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)			
1013	7.45	1070	-20.6	1.54	22.44	19.3	2	1.0	8				
1621	746	10715	-23.1	0.44	22.44	14.5		2.0	12				
1623	7.43	10716	-26.6	0.25	22.93	7.35		2.0	16				
1625	7.40	10874	-28.8	0.31	22.91	7.29	1 / 1	2.0	20				
1627	7.90	10 886	-29.4	0-30	22.91	4.51	1 / 1	2.0	24				
			V		7								
-							1						
							1/						
							3						
Stabilizing Criteria	+/- 0.1 SU	+/- 5%		0 2 mg/L or 10% for DO > 0 5 mg/L (whichever is greater)		< 5 NTUs							

Geosyntec consultants					WE	LL DEVELOPMEN	T LOG SHEET				
Client:		Hoza	Project No: GP6881P				781P	_<	Development Date: 63		
Site:		HERRI	CREEK PE	vene	Pump Type/Model Sibre sipe SS Hours			14.25	Field Personnel Name:	TRAHART	
Well ID:		OW-G3E				Pump Type/Model	Spressing	- SS Hum	SENAIR.	00	
Total Depth (ft) (after	purge):	-				Tubing Material	W	LAPE			
Depth to Water (ft):					P	ump Intake Depth (ft)					
Well Diameter (in):		2.0				Start/Stop Purge Time					
Well Volume (gal) = (041d h:	4.1				Purge Rate (mL/min)			_		
Well Volume (L) = ga	2	-			To	otal Purge Volume	7 84	700	_		
d = well diameter (inc		oth of water col	uman (faat)		1	otal Purge Volume	allons		_		
						0					
Well Type:	1	Stick Land	2								
Well Lock:	Yes	No									
Well Cap Condition:	Good	Replace									
Well Tag Present:	(Yes)	No									
Time	pH (SU)	Spec. Cond. (µS/cm)	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate (mC/min)	Purged Volume	Notes (Purge method, water clarity rate, issues with pump/well/wea	
0930	6.88	8282	53.3	1.81	21.98	3.71	0	2.0	60		
0932	7.10	3349	1.7	1.41	21.22	2.15	1	2.0	64		
0934	7.32	8371	-16-8	1.56	22.34	0.78	-	2.0	1320 G8	2.5	
	7.33	8389	-27.8	1.45	22.25	0.73	1-1-	2.0	' 72		
0938	7.90	9 19-1	01.0	1.00	22.30	0.82		2.0	7.10		
							(V				
	-										
									1		
Stabilizing Criteria	+/- 0.1 SU	+/- 5%		0 2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)		< 5 NTUs					

X

Geosyntec Consultants					WE	LL DEVELOPMEN	T LOG SHEET			
Client		HEACH	res			Project No	GR682	P	_	Development Date: 🔀 🦻
Site:		TEPPY C	res HOEK/PE	vera		Location	Boun	suck lest		Field Personnel Name: \ PARNHART
Well ID:		nw-as	-5			Pump Type/Model	Submere	ible SS hurr	en	00
Total Depth (ft) (after	purge):	-				Tubing Material				
Depth to Water (ft):		-			P	ump Intake Depth (ft)				
Well Diameter (in):		7.0			9	Start/Stop Purge Time	N K			
Well Volume (gal) = 0	041d_h:	-				Purge Rate (m. /min)				
Well Volume (L) = ga	2	-				otal Purge Volume (L			-	
d = well diameter (incWell Type:Well Lock:Well Cap Condition:Well Tag Present:	Flush (gth of water cold Stick Up No Replace No	umn (feet)			* w	ell develop	ped en osp	les from 1	03/30 @ 1420-1531
Time	pH (SU)	Spec. Cond.	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW (ft btoc)	Purge Rate	Purged Volume	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
1925	8.25	5320	-77.5	1.46	21.32	340	15	2.0	18.0	,,
		7-	/				0			
1527	8.52	4963	-139.1	0.26	21.63	62.2	/	2.0	134	
1531	8.48	4965	-139.2	0.12	21.53	65.5 57.8		2.0	138	
1.5 01.		7,300	5,37.6							
Stabilizing Criteria	+/- 0.1 SU	+/- 5%		0 2 mg/L or 10% for DO > 0 5 mg/L (whichever is greater)		< 5 NTUs				

a readily obone 50+NTU.

all other perometers steple.

Geosyntec consultants					WE	CLL DEVELOPMEN	T LO	G SHEET			
Client		HERC	ues,		Project No: (PROSSIP Location: Boursack, Gt Pump Type/Model: Subsersible SS					Development Date	
Site:		TEAR	CREEK !	Bras	Location:				with, lot		Field Personnel Name
Well ID:	TEDER CREEK DW. Q.S.I		I		Pump Type/Model:				- sible 155	3	00
Total Depth (ft) (after	otal Depth (ft) (after purge)				Tubing Material	LDPE					
Depth to Water (ft):	Depth to Water (ft):				P	ump Intake Depth (ft)					
Well Diameter (in):		2.0			9	Start/Stop Purge Time		*	*	-	
Well Volume (gal) = (0.041d_h:	~				Start/Stop Purge Time Purge Rate (mL/min)		2.	0 1.1m	-	
Well Volume (L) = ga	2				To	otal Purge Volume (L)					
d = well diameter (inc		eth of water colu	umn (feet)			, , , , , , , , , , , , , , , , , , , ,	-				6742-0759
Well Type		Stick Up	09					8 well	developed as	3/25 #	5.35 15:20 \$ 1350-1205 D
Well Lock	-	No									9
Well Cap Condition:	(Ves)	Replace							(e zgpa	
Well Tag Present	(Yes)	No					•	A Bel	ow are s	stability r	2.38-12:58 & 1570-1505 2.38-12:58 & 1570-1505 Coding & CA 3/29 C1530-39
Time	pH (SU)	Spec. Cond. (µS/cm)	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)		(ft btoc)	Duvga Data	Purged Volume	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
1533	7.19	1715	111.2	0.26	20.88	9.76		(49)	2.0	G	
1536	7.17	1657	-117.8	6.23	26.84	9.40	-	1	2.0	12	
1539	7.16	1631	-120.1	0.21	20.90	7-80			2.0	1.8	
								-			
							1				
		TE.) E						
							1				
							1				
							1				
Stabilizing Criteria	+/- 0.1 SU	+/- 5%		0.2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)		< 5 NTUs					

Geosyntec consultants					WE	ELL DEVELOPMEN	T LO	G SHEET			
Client:		HERCU	18			Project No	6	R6881	P		Development Date:
Site:		15R2T	CREEK	Encha		Location	/	PRUNSU	FCK, GA		Field Personnel Name
Well ID		B-3				Pump Type/Model		TOIZE	0.5 0da		00
Total Depth (ft) (after	purge):	_									
Depth to Water (ft):		_			P	ump Intake Depth (ft)				_	
Well Diameter (in):		2.0				Start/Stop Purge Time	123	0/73	40	_	
Well Volume (gal) = (041d b					Start/Stop Purge Time Purge Rate (mt/min)		200	=	-	
Well Volume (L) = ga	Z	_			т	otal Puras Valuma /		4.	<u>- 1 • > </u>	_	
					1	otal Purge Volume	21	100		7	
d = well diameter (inc			umn (Jeet)			0					
Well Type		Stick Up									
Well Lock	Yes	No									
Well Cap Condition:	~	Replace									
Well Tag Present:	(Yes)	No									
Time	pH (SU)	Spec. Cond. (µS/cm)	ORP (mV)	DO (mg/L)	Temp. (°C)	Turbidity (NTUs)	DTW	1-	Purge Rate	Purged Volume	Notes (Purge method, water clarity, odor, purge rate, issues with pump/well/weather/etc.)
1306	6.19	רוורו	76.8	1.54	22.46	1.46		(30)	P.5	54.0	
1309	C.54	17315	28.5	1-07	22.47	1.77		1	1.5	0-87-5	78.5
1312	6.33	17312	18.3	1.56	22.26	1-01	-	-	1.>	63.0	
1333	6.16	17357	5.8	0.36	22.39	1.22		1	1-5	91.0	
1335	6.17	17408	-3.4	0.39	22.41	1.01			1.5	97.5	
1337	6.70	17432	[-8.7]	0.39	22.35	1.15			1.5	100	
							-				
		(11				
					2					3	
							+				
							11				
							11				
							1				
Stabilizing Criteria	+/- 0.1 SU	+/- 5%		0.2 mg/L or 10% for DO > 0.5 mg/L (whichever is greater)		< 5 NTUs					

Geosyntec consultants			E	QUIPMENT CA	ALIBRATION L	OG		
Field Technician: A. Ram	isey			Date: 3116/	21		Time (start): 1500	Time (finish):
smarTroll SN: Hori bali	2-50∞1ET	MTKO d	46		ercules, Bu		SN:	<u> </u>
				Calib	ration log			
	Standard Lot # / Date of Expiration	f Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (nS/cm)	20010025	25.8	4.49	-	4.40	+/- 5 %	YS No	
pH (4)			4.00BAR	-	403	+/- 0.1 SU	No No	
pH (7)			-	-	_	+/- 0.1 SU	Yes No	
pH (10)	4:	*	-	-	-	+/- 0.1 SU	Yes No	
ORP (mV)	1	1	-	-	_	+/- 20mV	Yes No	
DO (%) (1pt, 100% water saturated air cal)	,		25.8	_	8.14	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0.0	_	0.0	+/- 0.5 NTU	Yes No	
Turbidity 1 NTU			-	-	-	+/- 0.5 NTU	Yes No	
Turbidity 10 NTU			-	-	-	+/- 0.5 NTU	Yes No	

*horiba auto-cal

Geosyntec consultants			E	QUIPMENT CA	ALIBRATION L	OG		
Field Technician: A. Raw	esy	-		Date: 31111	21		Time (start): 1000	Time (finish): 1010
smarTroll SN: Horiba	1450001E	F1MTKC	IF.	Turbidity Meter Type: _	_		SN:	_
Weather Conditions: Cloud	y 52/1	0_	_ = 6	Facility and Unit:	ercules, &	BWK	Project No.: GR68	815
				Calibr	ration log			
	Standard Lot # / Date Expiration	e of Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (µS/cm)	20010025	27.9	4.49	-	4.49	+/- 5 %	es No	
pH (4)		1.	4.00	-	3.99	+/- 0.1 SU	Yes No	
pH (7)			-	-	-	+/- 0.1 SU	Yes No	
pH (10)			,	-	-	+/- 0.1 SU	Yes No	
ORP (mV)	A	1	1	-	-	+/- 20mV	Yes No	
DO (%) (1pt, 100% water saturated air cal)			27.9	1	7.84	+/- 6 % saturation	Yes No	
Turbidity 0 NTU			0	-	0.0	+/- 0.5 NTU	Yes No	
Turbidity 1 NTU			-	-	-	+/- 0.5 NTU	Yes No	
Turbidity 10 NTU			-	_	-	+/- 0.5 NTU	Yes No	

*horiba auto-cal

Geosyntec consultants			EC	QUIPMENT CA	LIBRATION LO	OG		
rield Technician: A. Pan	ray			Date: 3116	2143/13/	김	Time (start):	Time (finish):1510
marTroll SN: Honbalu Veather Conditions: Clau					- Burcules, Bu		SN:	181P
	0			Calibi	ration log			
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (µS/cm)	20010029	27.9	4.44	-	4.49	+/-5%	(Fes No	
pH (4)			4.00	-	3.99	+/- 0.1 SU	Yes No	
pH (7)			_	-	-	+/- 0.1 SU	Yes No	
pH (10)			-	-	_	+/- 0.1 SU	Yes No	
ORP (mV)	V	V		-		+/- 20mV	Yes No	
DO (%) (Ipt, 100% water saturated air cal)	24.2		21.0	-	7.84	+/-6 % saturation	Yes No	
Turbidity 0 NTU			0.0	_	0.0	+/- 0.5 NTU	Yes No	
Turbidity 1 NTU			-	-	-	+/- 0.5 NTU	Yes No	
Turbidity 19 NTU			-	_	-	+/- 0,5 NTU	Yes No	

* horiba auto-cal

Geosyntec Consultants			E	QUIPMENT CA	ALIBRATION LO	OG		
Field Technician: A. Ran	rscy			Date: 3H6	21 th 3/14	121	Time (start): _0740	Time (finish):
Meather Conditions: SUN				Turbidity Meter Type:	erailes, Bu	<u>uk</u>	SN:Project No.:GP_68	- SID
				Calibi	ration log			
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (#S/cm)	20010029	26.1	4.49	-	4.49	+/-5%	Yes No	
pH (4)			4.00	-	3.99	+/- 0.1 SU	Yes No	
pH (7)			-	-	_	+/- 0.1 SU	Yes No	
pH (10)				-	-	+/- 0.1 SU	Yes No	
ORP (mV)	V	V	-	-	-	+/- 20mV	Yes No	
BO (%) (1pt, 100% water saturated air cal		7.5	26.1	8.10	<i>→</i> >	+/-6 % saturation	Yes No	
Turbidity 0 NTU	THE WE		0.0	-	0.0	+/- 0.5 NTU	Yes No	
Turbidity 1 NTU	Fr. St.		-	-	-	+/- 0.5 NTU	Yes No	
Turbidity 10 NTU			_	_	-	+/- 0.5 NTU	Yes No	

* horiba auto-cal

Geosyntec Consultants			EC	QUIPMENT CA	LIBRATION LO	OG		
Field Technician: A. P.Cuv	isy			Date : 31101	CHAR 3/17/2	21	Time (start): 0800	Time (finish): 0810
marTroll SN: Horibal				Turbidity Meter Type: _	rcules, B	2016	SN:Project No.:GP68	- P
/eather Conditions:C	Mg, 631	14			ation log	WK	Project No.: 6 Pol 8	011
	Standard Lot # / Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (µS/cm)	20010029	21.4	4.49	-	4.49	+/-5%	(Yes) No	
pH (4)		1	4.00	-	3.99	+/- 0.1 SU	Yes No	
pH (7)			-	-	-	+/- 0.1 SU	Yes No	
pH (10)			-	-	-	+/- 0.1 SU	Yes No	
ORP (mV)	1	V		-	-	+/- 20mV	Yes No	
DO (%) 1pt, 100% water saturated air cal)	1000		27.9	-	7.84	+/-6 % saturation	Yes No	
Turbidity 0 NTU			0.0	-	0.0	+/- 0.5 NTU	Yes No	
Turbidity 1 NTU			-	_		+/- 0.5 NTU	Yes No	
Turbidity 10 NTU			_			+/- 0.5 NTU	Yes No	

It hariba auto-cal

Geosyntec consultants			EC	QUIPMENT CA	LIBRATION LO	OG		
ield Technician: A. Row	cay			Date : 31101	21 AR 3/22	121	Time (start): 1350	Time (finish): 1400
marTroll SN: horibal					rolles, bui		SN:Project No.: GP68	8117
				Calibr	ration log			
	Standard Lot #/ Date of Expiration	Temp of Standard (°C)	Value of Standard	Initial Reading	Post-Cal Reading	Acceptable Range	Pass?	Comments
Specific Conductance (uS/cm)	20010025	26.9	4.49	-	4.49	÷/- 5 %	Yes No	
pH (4)		1	4.00	-	4.00	+/- 0.1 SU	Yes No	
pH (7)			_		-	+/- 0.1 SU	Yes No	
pH (10)			_	-	-	+/- 0.1 SU	Yes No	
ORP (mV)	V	V	-	_		+/- 20mV	Yes No	
DO (%) (1pt, 100% water saturated air cal	5.5		26.0	-	7.98	+/-6 % saturation	Yes No	
Turbidity 0 NTU			0.0	-	0.0	+/- 0.5 NTU	Yes No	
Turbidity 1 NTU			-	-	-	+/- 0.5 NTU	Yes No	
Turbidity 10 NTU	7500		_		-	+/- 0.5 NTU	Yes No	

* horiba auto-cal

Geosyntec occupants

Meter Calibration Report

Site:	Hercules					Project	No.:	
	Recorded By:	THART			Primary Activitie	s: GW Samplin		e: 03 30)
Final	Initial Calibration Completed at	03/30	1/21	(time) (time)	450	-		
pH calibrati	ion		buffer solution		specific conductar	ce calibration		standard
		pH 4.0	pH 7 0	pH 10 0				(µS/cm)
Initial	temp (°C)	18.47	18.75	18.61	Initial	instrument re	eading	1,000
	instrument reading	4.60	7.00	9.58) &	should read/o	calibrated to	1.000
	should read/calibrated to	4.60	7.00	10.00	Final	instrument re	ading	1,165
Final	temp (°C)	19.05	18.98	11.13	/\	7		
	instrument reading	4-13	6.89	7.83	ORP cali	bration	2 3 Zobell	Solution Pobell reads)
dissolved ox	xygen calibration		100%	0%	Initial Reading		28	0.6
Initial	temp (°C) instrument reading		22.0	D (152)	Final Reading		24	
	should read/calibrated to		8.744	/	Trubidity	10	Standard	100
Final	temp (°C)		19.2	1	Calibration	9.8 NTU	2 SNTU	40 NTU
	instrument reading		9.10	/	Initial Reading	9.98	19.8	101
					Final Reading	10.2	20.3	99.7
Meter Sum Co	pH Meter / Probe: Model DO Meter / Probe: Model ORP Meter / Probe: Model onductivity Meter / Probe: Model Turbidity Meter / Probe: Model		2100 G /	194100				
	(rental, condition, problems)							

Attachment C Groundwater Well Survey Report

(Electronic File Located on CD

GEOSYNTEC CONSULTANTS GROUNDWATER WELL SURVEY REPORT BRUNSWICK, GEORGIA April 9, 2021

				CONCRETE	GROUND	BOLT
DESIGNATION	NORTHING	EASTING	TOP OF CASING	ELEVATION	ELEVATION	ELEVATIO
Q3S	425163.57	872110.09	6.07	6.48	6.35	
•	425153.37	872110.09	6.15	6.43	0.55	
Q3I						
MW16B	423499.93	869671.57	13.80	10.90		
CONTAM SOIL-1	423884.78	871006.86	8.18		11.10	44.64
MW17S	424808.08	869189.53	14.13		11.12	11.61
MW19I	426286.74	868929.65	20.61		17.52	18.13
Q5S	424825.18	872646.62	9.11	6.00		
Q5I	424820.80	872637.93	9.12	5.92		
Q5D	424832.34	872639.41	8.90	5.92		
Q2I	425034.29	872667.10	8.93	6.18	5.91	
Q2D	425022.88	872666.31	8.41	5.94	5.60	
Q2S	425012.39	872666.23	8.28	5.71	5.35	
MW29S	424982.53	872671.34	8.95	5.83	5.68	
BS-OW-2	424985.14	872686.08	8.50	5.79	5.63	
ES-OW-3I	424967.01	872691.36	8.42	5.56	5.03	
BS-OW-3D	424959.66	872691.12	8.70	5.44		
BS-1	424973.12	872676.47	9.00	5.77		
BS-2	424947.65	872675.97	8.85	5.54		
BS-3	424949.80	872680.58	8.63	5.50		
BS-OW-1	424941.18	872681.15	8.22	5.21	5.12	
OW-Q1S	425014.39	872814.76	7.80	5.29	4.98	
OW-Q1I	425013.56	872825.28	7.71	5.14		
OW-Q1D	425011.87	872833.53	7.80	5.11	1	
OW-Q4S	424992.44	872979.96	7.75	5.11	4.77	
OW-Q4I	424990.89	872990.23	7.73	5.10	4.86	
OW-Q4D	424987.61	873000.70	7.91	5.28	1	
MW-20S	424175.45	872827.19	10.25		7.08	7.58

GEOSYNTEC CONSULTANTS MONITORING WELL SURVEY BRUNSWICK, GEORGIA June 24, 2021

			TOP OF CASING	CONCRETE	GROUND	BOLT
DESIGNATION	NORTHING	EASTING	ELEVATION	ELEVATION	ELEVATION	ELEVATION
OW-Q4D TOP CASING	424990.75	873000.29	7.98	5.33		
OW-Q4I TOP CASING	424993.61	872989.64	7.84	5.19		
OW-Q4S TOP CASING	424995.15	872979.36	7.80	5.15		

Attachment D Groundwater Sample Purge Logs (Electronic File Located on CD)

Attachment E Groundwater Analytical Reports and Data Validation

(Electronic File Located on CD)

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-197113-1

Client Project/Site: Hercules Brunswick - GW Investigation

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Adria Reimer

Authorized for release by: 4/14/2021 11:04:08 AM

Ash Barnett

Eddie Barnett, Project Manager I (912)250-0280

Eddie.Barnett@Eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

7

10

45

14

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	5
Method Summary	6
Definitions/Glossary	7
Detection Summary	8
Client Sample Results	10
Surrogate Summary	25
QC Sample Results	26
QC Association Summary	41
Lab Chronicle	43
Chain of Custody	46
Receipt Checklists	49
Certification Summary	50

11

12

14

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: Hercules Brunswick - GW Investigation

Report Number: 680-197113-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 04/05/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 4.3° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples MW-29S-03292021 (680-197113-1), OW-Q2S-03292021 (680-197113-2), OW-Q2I-03302021 (680-197113-3), OW-Q2D-03292021 (680-197113-4), OW-Q1S-03302021 (680-197113-5), OW-Q1I-03302021 (680-197113-6), OW-Q1D-03302021 (680-197113-7), OW-Q4S-03302021 (680-197113-8), OW-Q4I-03302021 (680-197113-9), OW-Q5S-03302021 (680-197113-10), OW-Q5I-03302021 (680-197113-11), OW-Q5D-03302021 (680-197113-12), EQB-01-03302021 (680-197113-13), EQB-02-03302021 (680-197113-14) and DUP-01 (680-197113-15) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 04/08/2021, 04/10/2021 and 04/12/2021.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batches 680-663313, 680-663281, 680-663289, 680-663625, 680-663719 and 680-663727.

Internal standard (ISTD) response for 1,4-dichlorobenzene-d4 for the following sample was outside acceptance criteria: OW-Q2D-03292021 (680-197113-4). This ISTD does not correspond to any of the requested target compounds; therefore, the data have been reported.

Surrogate recovery for the following samples were outside control limits: OW-Q1D-03302021 (680-197113-7), OW-Q5D-03302021 (680-197113-12) and DUP-01 (680-197113-15). Evidence of matrix interferences is not obvious.

The laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) for analytical batch 680-663289 recovered outside control limits for the following analytes: 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene. These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 680-663313 recovered outside control limits for the following analyte: Methylene Chloride. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

The laboratory control sample duplicate (LCSD) for analytical batch 680-663313 recovered outside control limits for the following analyte: 4-Methyl-2-pentanone (MIBK). 4-Methyl-2-pentanone (MIBK) has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

The laboratory control sample and/or the laboratory control sample duplicate (LCS/LCSD) for analytical batch 680-663719 recovered outside control limits for the following analyte: 4-Methyl-2-Pentanone. This has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed.

The laboratory control sample (LCS) for analytical batch 680-663727 recovered outside control limits for the following analyte: 1,2,4-Trimethylbenzene. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

Job ID: 680-197113-1

3

Α

__

6

9

11

12

. .

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Job ID: 680-197113-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

Samples OW-Q2D-03292021 (680-197113-4)[10X], OW-Q1D-03302021 (680-197113-7)[10X], OW-Q5D-03302021 (680-197113-12)[10X] and DUP-01 (680-197113-15)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

6

А

8

9

11

14

14

Sample Summary

Client: Geosyntec Consultants, Inc.

DUP-01

680-197113-15

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-197113-1	MW-29S-03292021	Water	03/29/21 15:52	04/05/21 10:20
680-197113-2	OW-Q2S-03292021	Water	03/29/21 17:06	04/05/21 10:20
680-197113-3	OW-Q2I-03302021	Water	03/30/21 10:00	04/05/21 10:20
680-197113-4	OW-Q2D-03292021	Water	03/29/21 17:13	04/05/21 10:20
680-197113-5	OW-Q1S-03302021	Water	03/30/21 11:05	04/05/21 10:20
680-197113-6	OW-Q1I-03302021	Water	03/30/21 11:50	04/05/21 10:20
680-197113-7	OW-Q1D-03302021	Water	03/30/21 17:55	04/05/21 10:20
80-197113-8	OW-Q4S-03302021	Water	03/30/21 14:15	04/05/21 10:20
80-197113-9	OW-Q4I-03302021	Water	03/30/21 15:20	04/05/21 10:20
80-197113-10	OW-Q5S-03302021	Water	03/30/21 15:45	04/05/21 10:20
880-197113-11	OW-Q5I-03302021	Water	03/30/21 17:10	04/05/21 10:20
680-197113-12	OW-Q5D-03302021	Water	03/30/21 17:49	04/05/21 10:20
680-197113-13	EQB-01-03302021	Water	03/30/21 18:40	04/05/21 10:20
680-197113-14	EQB-02-03302021	Water	03/30/21 18:45	04/05/21 10:20

Water

03/30/21 00:00 04/05/21 10:20

Job ID: 680-197113-1

3

4

5

8

4.6

11

12

14

Method Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Protocol	Laboratory

Job ID: 680-197113-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
5030B	Purge and Trap	SW846	TAL SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

4

5

6

0

10

13

14

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Job ID: 680-197113-1

Project/Site: Hercules Brunswick - GW Investigation

Qualifiers

0	~ /B	AC.	1/	A 0
G	۱۱ / د	VI S	V	OA

Qualifier Description
LCS and/or LCSD is outside acceptance limits, high biased.
LCS/LCSD RPD exceeds control limits.
ISTD response or retention time outside acceptable limits.
Surrogate recovery exceeds control limits, low biased.
Indicates the analyte was analyzed for but not detected.
_

Glossary

MQL NC

ND

NEG POS

PQL

QC

RL

RPD

RER

PRES

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

TNTC Too Numerous To Count

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Client Sample ID: MW-29S-03292021 Lab Sample ID: 680-197113-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
p-Cymene	2.8	1.0	ug/L		8260B	Total/NA

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	O Method	Prep Type
p-Cymene	7.3	1.0	ug/L		8260B	Total/NA

Client Sample ID: OW-Q2I-03302021 Lab Sample ID: 680-197113-3

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac [Method	Prep Type
p-Cymene	1.0		1.0	ug/L	1	8260B	Total/NA

Client Sample ID: OW-Q2D-03292021 Lab Sample ID: 680-197113-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Toluene	2.9	1.0	ug/L		8260B	Total/NA
o-Xylene	3.2	1.0	ug/L	1	8260B	Total/NA
Orthodichlorobenzene	7.6	1.0	ug/L	1	8260B	Total/NA
Isopropylbenzene	160	1.0	ug/L	1	8260B	Total/NA
1,4-Dichlorobenzene	12	1.0	ug/L	1	8260B	Total/NA
p-Cymene	2.2	1.0	ug/L	1	8260B	Total/NA
Benzene - DL	710	10	ug/L	10	8260B	Total/NA
Chlorobenzene - DL	610	10	ug/L	10	8260B	Total/NA
Ethylbenzene - DL	230	10	ug/L	10	8260B	Total/NA
m-Xylene & p-Xylene - DL	210	10	ug/L	10	8260B	Total/NA

Client Sample ID: OW-Q1S-03302021

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Acetone	24	10	ug/L		8260B	Total/NA
Chlorobenzene	1.3	1.0	ug/L	1	8260B	Total/NA
2-Butanone (MEK)	67	10	ug/L	1	8260B	Total/NA

Client Sample ID: OW-Q1I-03302021 Lab Sample ID: 680-197113-6

No Detections.

Client Sample ID: OW-Q1D-03302021 Lab Sample ID: 680-197113-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	710	10	ug/L		8260B	Total/NA
Toluene	1.7	1.0	ug/L	1	8260B	Total/NA
o-Xylene	5.2	1.0	ug/L	1	8260B	Total/NA
Chlorobenzene	630	10	ug/L	10	8260B	Total/NA
Orthodichlorobenzene	8.6	1.0	ug/L	1	8260B	Total/NA
Ethylbenzene	250	10	ug/L	10	8260B	Total/NA
Isopropylbenzene	210	10	ug/L	10	8260B	Total/NA
m-Xylene & p-Xylene	210	10	ug/L	10	8260B	Total/NA
Vinyl chloride	6.4	1.0	ug/L	1	8260B	Total/NA
1,4-Dichlorobenzene	14	1.0	ug/L	1	8260B	Total/NA
p-Cymene	5.3	1.0	ug/L	1	8260B	Total/NA

Client Sample ID: OW-Q4S-03302021

Lab Sample ID: 680-197113-8

Lab Sample ID: 680-197113-5

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Savannah

Page 8 of 50

3

4

_

q

10

12

14

15

4/14/2021

Detection Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Client Sample ID: OW-Q4I-03302021

Lab Sample ID: 680-197113-9

No Detections.

Client Sample ID: OW-Q5S-03302021 Lab Sample ID: 680-197113-10

No Detections.

Client Sample ID: OW-Q5I-03302021 Lab Sample ID: 680-197113-11

No Detections.

Lab Sample ID: 680-197113-12 Client Sample ID: OW-Q5D-03302021

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	100		1.0		ug/L	1	_	8260B	Total/NA
1,1-Dichloroethane	1.0		1.0		ug/L	1		8260B	Total/NA
Chlorobenzene	200		10		ug/L	10		8260B	Total/NA
Orthodichlorobenzene	3.1		1.0		ug/L	1		8260B	Total/NA
Ethylbenzene	1.2		1.0		ug/L	1		8260B	Total/NA
Isopropylbenzene	20		1.0		ug/L	1		8260B	Total/NA
m-Xylene & p-Xylene	4.3		1.0		ug/L	1		8260B	Total/NA
Vinyl chloride	4.8		1.0		ug/L	1		8260B	Total/NA
1,4-Dichlorobenzene	5.8		1.0		ug/L	1		8260B	Total/NA

Client Sample ID: EQB-01-03302021 Lab Sample ID: 680-197113-13

No Detections.

Client Sample ID: EQB-02-03302021 Lab Sample ID: 680-197113-14

No Detections.

Client Sample ID: DUP-01 Lab Sample ID: 680-197113-15

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	710	10	ug/L		8260B	Total/NA
o-Xylene	5.1	1.0	ug/L	1	8260B	Total/NA
Chlorobenzene	630	10	ug/L	10	8260B	Total/NA
Orthodichlorobenzene	8.5	1.0	ug/L	1	8260B	Total/NA
Ethylbenzene	250	10	ug/L	10	8260B	Total/NA
Isopropylbenzene	200	10	ug/L	10	8260B	Total/NA
m-Xylene & p-Xylene	210	10	ug/L	10	8260B	Total/NA
Vinyl chloride	6.5	1.0	ug/L	1	8260B	Total/NA
1,4-Dichlorobenzene	14	1.0	ug/L	1	8260B	Total/NA
p-Cymene	5.2	1.0	ug/L	1	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

4/14/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-1

C 1D. 000-107 110-1

Job ID: 680-197113-1

Matrix: Water

Client Sample ID: MW-29S-03292021

Date Collected: 03/29/21 15:52 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			04/08/21 21:10	1
Carbon disulfide	2.0	U	2.0	ug/L			04/08/21 21:10	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/08/21 21:10	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/08/21 21:10	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/08/21 21:10	1
Acetone	10	U	10	ug/L			04/08/21 21:10	1
4-Methyl-2-pentanone	10	U	10	ug/L			04/08/21 21:10	1
Methylene Chloride	5.0	U	5.0	ug/L			04/08/21 21:10	1
Toluene	1.0	U	1.0	ug/L			04/08/21 21:10	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/08/21 21:10	1
o-Xylene	1.0	U	1.0	ug/L			04/08/21 21:10	1
Chlorobenzene	1.0	U	1.0	ug/L			04/08/21 21:10	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 21:10	1
Orthodichlorobenzene	1.0	U	1.0	ug/L			04/08/21 21:10	1
2-Butanone (MEK)	10	U	10	ug/L			04/08/21 21:10	1
Ethylbenzene	1.0	U	1.0	ug/L			04/08/21 21:10	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/08/21 21:10	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 21:10	1
Chloroform	1.0	U	1.0	ug/L			04/08/21 21:10	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/08/21 21:10	1
Vinyl chloride	1.0	U	1.0	ug/L			04/08/21 21:10	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/08/21 21:10	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/08/21 21:10	1
1,2,4-Trimethylbenzene	1.0	U	1.0	ug/L			04/08/21 21:10	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L			04/08/21 21:10	1
p-Cymene	2.8		1.0	ug/L			04/08/21 21:10	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/08/21 21:10	1
Trichloroethene	1.0	U	1.0	ug/L			04/08/21 21:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		60 - 124				04/08/21 21:10	1
4-Bromofluorobenzene (Surr)	100		70 - 130				04/08/21 21:10	1
Dibromofluoromethane (Surr)	104		70 - 130				04/08/21 21:10	1
Toluene-d8 (Surr)	100		70 - 130				04/08/21 21:10	1

3

5

7

0

10

12

11

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-2

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: OW-Q2S-03292021

Date Collected: 03/29/21 17:06 Date Received: 04/05/21 10:20

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			04/08/21 20:46	1
Carbon disulfide	2.0	U	2.0	ug/L			04/08/21 20:46	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/08/21 20:46	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/08/21 20:46	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/08/21 20:46	1
Acetone	10	U	10	ug/L			04/08/21 20:46	1
4-Methyl-2-pentanone	10	U	10	ug/L			04/08/21 20:46	1
Methylene Chloride	5.0	U	5.0	ug/L			04/08/21 20:46	1
Toluene	1.0	U	1.0	ug/L			04/08/21 20:46	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/08/21 20:46	1
o-Xylene	1.0	U	1.0	ug/L			04/08/21 20:46	1
Chlorobenzene	1.0	U	1.0	ug/L			04/08/21 20:46	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 20:46	1
Orthodichlorobenzene	1.0	U	1.0	ug/L			04/08/21 20:46	1
2-Butanone (MEK)	10	U	10	ug/L			04/08/21 20:46	1
Ethylbenzene	1.0	U	1.0	ug/L			04/08/21 20:46	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/08/21 20:46	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 20:46	1
Chloroform	1.0	U	1.0	ug/L			04/08/21 20:46	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/08/21 20:46	1
Vinyl chloride	1.0	U	1.0	ug/L			04/08/21 20:46	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/08/21 20:46	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/08/21 20:46	1
1,2,4-Trimethylbenzene	1.0	U	1.0	ug/L			04/08/21 20:46	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L			04/08/21 20:46	1
p-Cymene	7.3		1.0	ug/L			04/08/21 20:46	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/08/21 20:46	1
Trichloroethene	1.0	U	1.0	ug/L			04/08/21 20:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		60 - 124				04/08/21 20:46	1
4-Bromofluorobenzene (Surr)	105		70 - 130				04/08/21 20:46	1
Dibromofluoromethane (Surr)	102		70 - 130				04/08/21 20:46	1

70 - 130

100

04/08/21 20:46

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-3

D dample 1D. 000-137 113-3

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: OW-Q2I-03302021

Date Collected: 03/30/21 10:00 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			04/12/21 21:18	1
Carbon disulfide	2.0	U	2.0		ug/L			04/08/21 21:57	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/08/21 21:57	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/08/21 21:57	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/08/21 21:57	1
Acetone	10	U	10		ug/L			04/08/21 21:57	1
4-Methyl-2-pentanone	10	U	10		ug/L			04/08/21 21:57	1
Methylene Chloride	5.0	U	5.0		ug/L			04/08/21 21:57	1
Toluene	1.0	U	1.0		ug/L			04/08/21 21:57	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/08/21 21:57	1
o-Xylene	1.0	U	1.0		ug/L			04/08/21 21:57	1
Chlorobenzene	1.0	U	1.0		ug/L			04/12/21 21:18	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 21:57	1
Orthodichlorobenzene	1.0	U	1.0		ug/L			04/08/21 21:57	1
2-Butanone (MEK)	10	U	10		ug/L			04/08/21 21:57	1
Ethylbenzene	1.0	U	1.0		ug/L			04/12/21 21:18	1
Isopropylbenzene	1.0	U	1.0		ug/L			04/08/21 21:57	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 21:57	1
Chloroform	1.0	U	1.0		ug/L			04/08/21 21:57	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/12/21 21:18	1
Vinyl chloride	1.0	U	1.0		ug/L			04/08/21 21:57	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/08/21 21:57	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/08/21 21:57	1
1,2,4-Trimethylbenzene	1.0	U	1.0		ug/L			04/08/21 21:57	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/08/21 21:57	1
p-Cymene	1.0		1.0		ug/L			04/08/21 21:57	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/08/21 21:57	1
Trichloroethene	1.0	U	1.0		ug/L			04/08/21 21:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		60 - 124			-		04/08/21 21:57	1
1,2-Dichloroethane-d4 (Surr)	112		60 - 124					04/12/21 21:18	1

Surrogate	%Recovery Qualif	ier Limits	Prepared Analyz	ed Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	60 - 124	04/08/21 2	21:57 1
1,2-Dichloroethane-d4 (Surr)	112	60 - 124	04/12/21 2	21:18 1
4-Bromofluorobenzene (Surr)	106	70 - 130	04/08/21 2	21:57 1
4-Bromofluorobenzene (Surr)	104	70 - 130	04/12/21 2	21:18 1
Dibromofluoromethane (Surr)	102	70 - 130	04/08/21 2	21:57 1
Dibromofluoromethane (Surr)	121	70 - 130	04/12/21 2	21:18 1
Toluene-d8 (Surr)	101	70 - 130	04/08/21 2	21:57 1
Toluene-d8 (Surr)	78	70 - 130	04/12/21	21:18 1

3

5

9

10

12

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-4

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: OW-Q2D-03292021 Date Collected: 03/29/21 17:13

Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	2.0	U	2.0		ug/L			04/08/21 21:33	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/08/21 21:33	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/08/21 21:33	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/08/21 21:33	1
Acetone	10	U	10		ug/L			04/08/21 21:33	1
4-Methyl-2-pentanone	10	U	10		ug/L			04/08/21 21:33	1
Methylene Chloride	5.0	U	5.0		ug/L			04/08/21 21:33	1
Toluene	2.9		1.0		ug/L			04/08/21 21:33	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/08/21 21:33	1
o-Xylene	3.2		1.0		ug/L			04/08/21 21:33	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 21:33	1
Orthodichlorobenzene	7.6		1.0		ug/L			04/08/21 21:33	1
2-Butanone (MEK)	10	U	10		ug/L			04/08/21 21:33	1
Isopropylbenzene	160		1.0		ug/L			04/08/21 21:33	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 21:33	1
Chloroform	1.0	U	1.0		ug/L			04/08/21 21:33	1
Vinyl chloride	1.0	U	1.0		ug/L			04/08/21 21:33	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/08/21 21:33	1
1,4-Dichlorobenzene	12		1.0		ug/L			04/08/21 21:33	1
1,2,4-Trimethylbenzene	1.0	U	1.0		ug/L			04/08/21 21:33	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/08/21 21:33	1
p-Cymene	2.2		1.0		ug/L			04/08/21 21:33	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/08/21 21:33	1
Trichloroethene	1.0	U	1.0		ug/L			04/08/21 21:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		60 - 124					04/08/21 21:33	1
4-Bromofluorobenzene (Surr)	102		70 - 130					04/08/21 21:33	1
Dibromofluoromethane (Surr)	102		70 - 130					04/08/21 21:33	1
Toluene-d8 (Surr)	101		70 - 130					04/08/21 21:33	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	710		10		ug/L			04/10/21 21:12	10
Chlorobenzene	610		10		ug/L			04/10/21 21:12	10
Ethylbenzene	230		10		ug/L			04/10/21 21:12	10
m-Xylene & p-Xylene	210		10		ug/L			04/10/21 21:12	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		60 - 124					04/10/21 21:12	10
4-Bromofluorobenzene (Surr)	96	*3	70 - 130					04/10/21 21:12	10
Dibromofluoromethane (Surr)	114		70 - 130					04/10/21 21:12	10
Toluene-d8 (Surr)	72		70 - 130					04/10/21 21:12	10

Eurofins TestAmerica, Savannah

4

7

0

10

12

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-5

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: OW-Q1S-03302021

Date Collected: 03/30/21 11:05 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			04/08/21 20:25	1
Carbon disulfide	2.0	U	2.0	ug/L			04/08/21 20:25	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/08/21 20:25	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/08/21 20:25	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/08/21 20:25	1
Acetone	24		10	ug/L			04/08/21 20:25	1
4-Methyl-2-pentanone	10	U	10	ug/L			04/08/21 20:25	1
Methylene Chloride	5.0	U	5.0	ug/L			04/08/21 20:25	1
Toluene	1.0	U	1.0	ug/L			04/08/21 20:25	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/08/21 20:25	1
o-Xylene	1.0	U	1.0	ug/L			04/08/21 20:25	1
Chlorobenzene	1.3		1.0	ug/L			04/08/21 20:25	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 20:25	1
Orthodichlorobenzene	1.0	U	1.0	ug/L			04/08/21 20:25	1
2-Butanone (MEK)	67		10	ug/L			04/08/21 20:25	1
Ethylbenzene	1.0	U	1.0	ug/L			04/08/21 20:25	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/08/21 20:25	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 20:25	1
Chloroform	1.0	U	1.0	ug/L			04/08/21 20:25	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/08/21 20:25	1
Vinyl chloride	1.0	U	1.0	ug/L			04/08/21 20:25	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/08/21 20:25	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/08/21 20:25	1
1,2,4-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 20:25	1
1,3,5-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 20:25	1
p-Cymene	1.0	U	1.0	ug/L			04/08/21 20:25	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/08/21 20:25	1
Trichloroethene	1.0	U	1.0	ug/L			04/08/21 20:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			60 - 124				04/08/21 20:25	1
4-Bromofluorobenzene (Surr)	106		70 - 130				04/08/21 20:25	1
Dibromofluoromethane (Surr)	118		70 - 130				04/08/21 20:25	1
Toluene-d8 (Surr)	70		70 - 130				04/08/21 20:25	1

4/14/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-6

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: OW-Q1I-03302021

Date Collected: 03/30/21 11:50 Date Received: 04/05/21 10:20

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			04/08/21 17:11	1
Carbon disulfide	2.0	U	2.0		ug/L			04/08/21 17:11	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/08/21 17:11	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/08/21 17:11	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/08/21 17:11	1
Acetone	10	U	10		ug/L			04/08/21 17:11	1
4-Methyl-2-pentanone	10	U	10		ug/L			04/08/21 17:11	1
Methylene Chloride	5.0	U	5.0		ug/L			04/08/21 17:11	1
Toluene	1.0	U	1.0		ug/L			04/08/21 17:11	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/08/21 17:11	1
o-Xylene	1.0	U	1.0		ug/L			04/08/21 17:11	1
Chlorobenzene	1.0	U	1.0		ug/L			04/08/21 17:11	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 17:11	1
Orthodichlorobenzene	1.0	U	1.0		ug/L			04/08/21 17:11	1
2-Butanone (MEK)	10	U	10		ug/L			04/08/21 17:11	1
Ethylbenzene	1.0	U	1.0		ug/L			04/08/21 17:11	1
Isopropylbenzene	1.0	U	1.0		ug/L			04/08/21 17:11	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 17:11	1
Chloroform	1.0	U	1.0		ug/L			04/08/21 17:11	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/08/21 17:11	1
Vinyl chloride	1.0	U	1.0		ug/L			04/08/21 17:11	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/08/21 17:11	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/08/21 17:11	1
1,2,4-Trimethylbenzene	1.0	U *+	1.0		ug/L			04/08/21 17:11	1
1,3,5-Trimethylbenzene	1.0	U *+	1.0		ug/L			04/08/21 17:11	1
p-Cymene	1.0	U	1.0		ug/L			04/08/21 17:11	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/08/21 17:11	1
Trichloroethene	1.0	U	1.0		ug/L			04/08/21 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		60 - 124			-		04/08/21 17:11	1
4-Bromofluorobenzene (Surr)	98		70 - 130					04/08/21 17:11	1
Dibromofluoromethane (Surr)	114		70 - 130					04/08/21 17:11	1

70 - 130

04/08/21 17:11

2

6

8

10

12

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-7

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: OW-Q1D-03302021

Date Collected: 03/30/21 17:55 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	710		10	ug/L			04/12/21 19:53	10
Carbon disulfide	2.0	U	2.0	ug/L			04/08/21 17:36	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/08/21 17:36	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/08/21 17:36	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/08/21 17:36	1
Acetone	10	U	10	ug/L			04/08/21 17:36	1
4-Methyl-2-pentanone	10	U	10	ug/L			04/08/21 17:36	1
Methylene Chloride	5.0	U	5.0	ug/L			04/08/21 17:36	1
Toluene	1.7		1.0	ug/L			04/08/21 17:36	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/08/21 17:36	1
o-Xylene	5.2		1.0	ug/L			04/08/21 17:36	1
Chlorobenzene	630		10	ug/L			04/12/21 19:53	10
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 17:36	1
Orthodichlorobenzene	8.6		1.0	ug/L			04/08/21 17:36	1
2-Butanone (MEK)	10	U	10	ug/L			04/08/21 17:36	1
Ethylbenzene	250		10	ug/L			04/12/21 19:53	10
Isopropylbenzene	210		10	ug/L			04/12/21 19:53	10
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 17:36	1
Chloroform	1.0	U	1.0	ug/L			04/08/21 17:36	1
m-Xylene & p-Xylene	210		10	ug/L			04/12/21 19:53	10
Vinyl chloride	6.4		1.0	ug/L			04/08/21 17:36	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/08/21 17:36	1
1,4-Dichlorobenzene	14		1.0	ug/L			04/08/21 17:36	1
1,2,4-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 17:36	1
1,3,5-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 17:36	1
p-Cymene	5.3		1.0	ug/L			04/08/21 17:36	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/08/21 17:36	1
Trichloroethene	1.0	U	1.0	ug/L			04/08/21 17:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		60 - 124				04/08/21 17:36	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104	60 - 124	04/08/21 17:36	3
1,2-Dichloroethane-d4 (Surr)	100	60 - 124	04/12/21 19:53	3 1
4-Bromofluorobenzene (Surr)	88	70 - 130	04/08/21 17:36	6
4-Bromofluorobenzene (Surr)	103	70 - 130	04/12/21 19:53	3 10
Dibromofluoromethane (Surr)	107	70 - 130	04/08/21 17:36	6
Dibromofluoromethane (Surr)	106	70 - 130	04/12/21 19:53	3 10
Toluene-d8 (Surr)	66 S1-	70 - 130	04/08/21 17:36	· · · · · · · · · · ·
Toluene-d8 (Surr)	104	70 - 130	04/12/21 19:53	3 10

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-8

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: OW-Q4S-03302021

Date Collected: 03/30/21 14:15 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			04/12/21 17:31	1
Carbon disulfide	2.0	U	2.0	ug/L			04/08/21 18:00	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/08/21 18:00	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/08/21 18:00	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/08/21 18:00	1
Acetone	10	U	10	ug/L			04/08/21 18:00	1
4-Methyl-2-pentanone	10	U	10	ug/L			04/08/21 18:00	1
Methylene Chloride	5.0	U	5.0	ug/L			04/08/21 18:00	1
Toluene	1.0	U	1.0	ug/L			04/08/21 18:00	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/08/21 18:00	1
o-Xylene	1.0	U	1.0	ug/L			04/08/21 18:00	1
Chlorobenzene	1.0	U	1.0	ug/L			04/12/21 17:31	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 18:00	1
Orthodichlorobenzene	1.0	U	1.0	ug/L			04/08/21 18:00	1
2-Butanone (MEK)	10	U	10	ug/L			04/08/21 18:00	1
Ethylbenzene	1.0	U	1.0	ug/L			04/12/21 17:31	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/12/21 17:31	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 18:00	1
Chloroform	1.0	U	1.0	ug/L			04/08/21 18:00	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/12/21 17:31	1
Vinyl chloride	1.0	U	1.0	ug/L			04/08/21 18:00	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/08/21 18:00	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/08/21 18:00	1
1,2,4-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 18:00	1
1,3,5-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 18:00	1
p-Cymene	1.0	U	1.0	ug/L			04/08/21 18:00	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/08/21 18:00	1
Trichloroethene	1.0	U	1.0	ug/L			04/08/21 18:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		60 - 124				04/08/21 18:00	1

Surrogate	%Recovery Qualifier	Limits	Prepared Anal	lyzed [Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	60 - 124	04/08/2	21 18:00	1
1,2-Dichloroethane-d4 (Surr)	101	60 - 124	04/12/2	21 17:31	1
4-Bromofluorobenzene (Surr)	103	70 - 130	04/08/2	21 18:00	1
4-Bromofluorobenzene (Surr)	104	70 - 130	04/12/2	21 17:31	1
Dibromofluoromethane (Surr)	114	70 - 130	04/08/2	21 18:00	1
Dibromofluoromethane (Surr)	106	70 - 130	04/12/2	21 17:31	1
Toluene-d8 (Surr)	77	70 - 130	04/08/2	21 18:00	1
Toluene-d8 (Surr)	102	70 - 130	04/12/2	21 17:31	1

3

5

7

9

10

12

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-9

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: OW-Q4I-03302021

Date Collected: 03/30/21 15:20 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			04/08/21 18:48	1
Carbon disulfide	2.0	U	2.0		ug/L			04/08/21 18:48	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/08/21 18:48	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/08/21 18:48	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/08/21 18:48	1
Acetone	10	U	10		ug/L			04/08/21 18:48	1
4-Methyl-2-pentanone	10	U	10		ug/L			04/08/21 18:48	1
Methylene Chloride	5.0	U	5.0		ug/L			04/08/21 18:48	1
Toluene	1.0	U	1.0		ug/L			04/08/21 18:48	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/08/21 18:48	1
o-Xylene	1.0	U	1.0		ug/L			04/08/21 18:48	1
Chlorobenzene	1.0	U	1.0		ug/L			04/08/21 18:48	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 18:48	1
Orthodichlorobenzene	1.0	U	1.0		ug/L			04/08/21 18:48	1
2-Butanone (MEK)	10	U	10		ug/L			04/08/21 18:48	1
Ethylbenzene	1.0	U	1.0		ug/L			04/08/21 18:48	1
Isopropylbenzene	1.0	U	1.0		ug/L			04/08/21 18:48	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 18:48	1
Chloroform	1.0	U	1.0		ug/L			04/08/21 18:48	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/08/21 18:48	1
Vinyl chloride	1.0	U	1.0		ug/L			04/08/21 18:48	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/08/21 18:48	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/08/21 18:48	1
1,2,4-Trimethylbenzene	1.0	U *+	1.0		ug/L			04/08/21 18:48	1
1,3,5-Trimethylbenzene	1.0	U *+	1.0		ug/L			04/08/21 18:48	1
p-Cymene	1.0	U	1.0		ug/L			04/08/21 18:48	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/08/21 18:48	1
Trichloroethene	1.0	U	1.0		ug/L			04/08/21 18:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		60 - 124			-		04/08/21 18:48	1
4-Bromofluorobenzene (Surr)	104		70 - 130					04/08/21 18:48	1
Dibromofluoromethane (Surr)	114		70 - 130					04/08/21 18:48	1
Toluene-d8 (Surr)	74		70 - 130					04/08/21 18:48	1

2

Δ

6

8

10

12

1 A

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-10

Matrix: Water

Job ID: 680-197113-1

Client Sample	ID: OW	-Q5S-03	3302021
---------------	--------	---------	---------

Date Collected: 03/30/21 15:45 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			04/08/21 19:12	1
Carbon disulfide	2.0	U	2.0	ug/L			04/08/21 19:12	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/08/21 19:12	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/08/21 19:12	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/08/21 19:12	1
Acetone	10	U	10	ug/L			04/08/21 19:12	1
4-Methyl-2-pentanone	10	U	10	ug/L			04/08/21 19:12	1
Methylene Chloride	5.0	U	5.0	ug/L			04/08/21 19:12	1
Toluene	1.0	U	1.0	ug/L			04/08/21 19:12	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/08/21 19:12	1
o-Xylene	1.0	U	1.0	ug/L			04/08/21 19:12	1
Chlorobenzene	1.0	U	1.0	ug/L			04/08/21 19:12	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 19:12	1
Orthodichlorobenzene	1.0	U	1.0	ug/L			04/08/21 19:12	1
2-Butanone (MEK)	10	U	10	ug/L			04/08/21 19:12	1
Ethylbenzene	1.0	U	1.0	ug/L			04/08/21 19:12	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/08/21 19:12	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 19:12	1
Chloroform	1.0	U	1.0	ug/L			04/08/21 19:12	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/08/21 19:12	1
Vinyl chloride	1.0	U	1.0	ug/L			04/08/21 19:12	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/08/21 19:12	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/08/21 19:12	1
1,2,4-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 19:12	1
1,3,5-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 19:12	1
p-Cymene	1.0	U	1.0	ug/L			04/08/21 19:12	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/08/21 19:12	1
Trichloroethene	1.0	U	1.0	ug/L			04/08/21 19:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			60 - 124		•		04/08/21 19:12	1
4-Bromofluorobenzene (Surr)	99		70 - 130				04/08/21 19:12	1
Dibromofluoromethane (Surr)	115		70 - 130				04/08/21 19:12	1
Toluene-d8 (Surr)	72		70 - 130				04/08/21 19:12	1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-11

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: OW-Q5I-03302021

Date Collected: 03/30/21 17:10 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			04/08/21 19:36	1
Carbon disulfide	2.0	U	2.0	ug/L			04/08/21 19:36	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/08/21 19:36	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/08/21 19:36	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/08/21 19:36	1
Acetone	10	U	10	ug/L			04/08/21 19:36	1
4-Methyl-2-pentanone	10	U	10	ug/L			04/08/21 19:36	1
Methylene Chloride	5.0	U	5.0	ug/L			04/08/21 19:36	1
Toluene	1.0	U	1.0	ug/L			04/08/21 19:36	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/08/21 19:36	1
o-Xylene	1.0	U	1.0	ug/L			04/08/21 19:36	1
Chlorobenzene	1.0	U	1.0	ug/L			04/08/21 19:36	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 19:36	1
Orthodichlorobenzene	1.0	U	1.0	ug/L			04/08/21 19:36	1
2-Butanone (MEK)	10	U	10	ug/L			04/08/21 19:36	1
Ethylbenzene	1.0	U	1.0	ug/L			04/08/21 19:36	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/08/21 19:36	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 19:36	1
Chloroform	1.0	U	1.0	ug/L			04/08/21 19:36	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/08/21 19:36	1
Vinyl chloride	1.0	U	1.0	ug/L			04/08/21 19:36	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/08/21 19:36	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/08/21 19:36	1
1,2,4-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 19:36	1
1,3,5-Trimethylbenzene	1.0	U *+	1.0	ug/L			04/08/21 19:36	1
p-Cymene	1.0	U	1.0	ug/L			04/08/21 19:36	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/08/21 19:36	1
Trichloroethene	1.0	U	1.0	ug/L			04/08/21 19:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		60 - 124				04/08/21 19:36	1
4-Bromofluorobenzene (Surr)	99		70 - 130				04/08/21 19:36	1
Dibromofluoromethane (Surr)	116		70 - 130				04/08/21 19:36	1
Toluene-d8 (Surr)	71		70 - 130				04/08/21 19:36	1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-12

Matrix 144

Job ID: 680-197113-1

Matrix: Water

Client Sample ID: OW-Q5D-03302021

Date Collected: 03/30/21 17:49 Date Received: 04/05/21 10:20

4-Bromofluorobenzene (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	100		1.0		ug/L			04/08/21 20:01	1
Carbon disulfide	2.0	U	2.0		ug/L			04/08/21 20:01	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/08/21 20:01	1
1,1-Dichloroethane	1.0		1.0		ug/L			04/08/21 20:01	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/08/21 20:01	1
Acetone	10	U	10		ug/L			04/08/21 20:01	1
4-Methyl-2-pentanone	10	U	10		ug/L			04/08/21 20:01	1
Methylene Chloride	5.0	U	5.0		ug/L			04/08/21 20:01	1
Toluene	1.0	U	1.0		ug/L			04/08/21 20:01	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/08/21 20:01	1
o-Xylene	1.0	U	1.0		ug/L			04/08/21 20:01	1
Chlorobenzene	200		10		ug/L			04/12/21 20:17	10
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 20:01	1
Orthodichlorobenzene	3.1		1.0		ug/L			04/08/21 20:01	1
2-Butanone (MEK)	10	U	10		ug/L			04/08/21 20:01	1
Ethylbenzene	1.2		1.0		ug/L			04/08/21 20:01	1
Isopropylbenzene	20		1.0		ug/L			04/08/21 20:01	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 20:01	1
Chloroform	1.0	U	1.0		ug/L			04/08/21 20:01	1
m-Xylene & p-Xylene	4.3		1.0		ug/L			04/08/21 20:01	1
Vinyl chloride	4.8		1.0		ug/L			04/08/21 20:01	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/08/21 20:01	1
1,4-Dichlorobenzene	5.8		1.0		ug/L			04/08/21 20:01	1
1,2,4-Trimethylbenzene	1.0	U *+	1.0		ug/L			04/08/21 20:01	1
1,3,5-Trimethylbenzene	1.0	U *+	1.0		ug/L			04/08/21 20:01	1
p-Cymene	1.0	U	1.0		ug/L			04/08/21 20:01	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/08/21 20:01	1
Trichloroethene	1.0	U	1.0		ug/L			04/08/21 20:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		60 - 124					04/08/21 20:01	1
1,2-Dichloroethane-d4 (Surr)	99		60 - 124					04/12/21 20:17	10
4.5 (0.)			70 100					04/00/04 00:04	

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

98

106

114

106

105

63 S1-

04/12/21 20:17	10

4

6

8

10

12

13

Le

10

1

10

1

04/08/21 20:01

04/12/21 20:17

04/08/21 20:01

04/12/21 20:17

04/08/21 20:01

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-13

Job ID: 680-197113-1

Matrix: Water

Client Sample ID: EQB-01-03302021

Date Collected: 03/30/21 18:40 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			04/08/21 14:45	1
Carbon disulfide	2.0	U	2.0	ug/L			04/08/21 14:45	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/08/21 14:45	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/08/21 14:45	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/08/21 14:45	1
Acetone	10	U	10	ug/L			04/08/21 14:45	1
4-Methyl-2-pentanone	10	U *+	10	ug/L			04/08/21 14:45	1
Methylene Chloride	5.0	U *+	5.0	ug/L			04/08/21 14:45	1
Toluene	1.0	U	1.0	ug/L			04/08/21 14:45	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/08/21 14:45	1
o-Xylene	1.0	U	1.0	ug/L			04/08/21 14:45	1
Chlorobenzene	1.0	U	1.0	ug/L			04/08/21 14:45	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 14:45	1
Orthodichlorobenzene	1.0	U	1.0	ug/L			04/08/21 14:45	1
2-Butanone (MEK)	10	U	10	ug/L			04/08/21 14:45	1
Ethylbenzene	1.0	U	1.0	ug/L			04/08/21 14:45	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/08/21 14:45	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/08/21 14:45	1
Chloroform	1.0	U	1.0	ug/L			04/08/21 14:45	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/08/21 14:45	1
Vinyl chloride	1.0	U	1.0	ug/L			04/08/21 14:45	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/08/21 14:45	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/08/21 14:45	1
1,2,4-Trimethylbenzene	1.0	U	1.0	ug/L			04/08/21 14:45	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L			04/08/21 14:45	1
p-Cymene	1.0	U	1.0	ug/L			04/08/21 14:45	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/08/21 14:45	1
Trichloroethene	1.0	U	1.0	ug/L			04/08/21 14:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		60 - 124				04/08/21 14:45	1
4-Bromofluorobenzene (Surr)	112		70 - 130				04/08/21 14:45	1
Dibromofluoromethane (Surr)	100		70 - 130				04/08/21 14:45	1
Toluene-d8 (Surr)	100		70 - 130				04/08/21 14:45	1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-14

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: EQB-02-03302021

Date Collected: 03/30/21 18:45 Date Received: 04/05/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0		ug/L			04/08/21 15:05	1
Carbon disulfide	2.0	U	2.0		ug/L			04/08/21 15:05	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/08/21 15:05	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/08/21 15:05	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/08/21 15:05	1
Acetone	10	U	10		ug/L			04/08/21 15:05	1
4-Methyl-2-pentanone	10	U *+	10		ug/L			04/08/21 15:05	1
Methylene Chloride	5.0	U *+	5.0		ug/L			04/08/21 15:05	1
Toluene	1.0	U	1.0		ug/L			04/08/21 15:05	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/08/21 15:05	1
o-Xylene	1.0	U	1.0		ug/L			04/08/21 15:05	1
Chlorobenzene	1.0	U	1.0		ug/L			04/08/21 15:05	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 15:05	1
Orthodichlorobenzene	1.0	U	1.0		ug/L			04/08/21 15:05	1
2-Butanone (MEK)	10	U	10		ug/L			04/08/21 15:05	1
Ethylbenzene	1.0	U	1.0		ug/L			04/08/21 15:05	1
Isopropylbenzene	1.0	U	1.0		ug/L			04/08/21 15:05	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 15:05	1
Chloroform	1.0	U	1.0		ug/L			04/08/21 15:05	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/08/21 15:05	1
Vinyl chloride	1.0	U	1.0		ug/L			04/08/21 15:05	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/08/21 15:05	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/08/21 15:05	1
1,2,4-Trimethylbenzene	1.0	U	1.0		ug/L			04/08/21 15:05	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/08/21 15:05	1
p-Cymene	1.0	U	1.0		ug/L			04/08/21 15:05	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/08/21 15:05	1
Trichloroethene	1.0	U	1.0		ug/L			04/08/21 15:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		60 - 124			-		04/08/21 15:05	1
4-Bromofluorobenzene (Surr)	113		70 - 130					04/08/21 15:05	1
Dibromofluoromethane (Surr)	103		70 - 130					04/08/21 15:05	1
Toluene-d8 (Surr)	102		70 - 130					04/08/21 15:05	1

Client Sample Results

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197113-15

Matrix: Water

Job ID: 680-197113-1

Client Sample ID: DUP-01 Date Collected: 03/30/21 00:00 Date Received: 04/05/21 10:20

4-Bromofluorobenzene (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	710		10		ug/L			04/12/21 20:40	10
Carbon disulfide	2.0	U	2.0		ug/L			04/08/21 20:49	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/08/21 20:49	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/08/21 20:49	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/08/21 20:49	1
Acetone	10	U	10		ug/L			04/08/21 20:49	1
4-Methyl-2-pentanone	10	U	10		ug/L			04/08/21 20:49	1
Methylene Chloride	5.0	U	5.0		ug/L			04/08/21 20:49	1
Toluene	1.0	U	1.0		ug/L			04/08/21 20:49	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/08/21 20:49	1
o-Xylene	5.1		1.0		ug/L			04/08/21 20:49	1
Chlorobenzene	630		10		ug/L			04/12/21 20:40	10
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 20:49	1
Orthodichlorobenzene	8.5		1.0		ug/L			04/08/21 20:49	1
2-Butanone (MEK)	10	U	10		ug/L			04/08/21 20:49	1
Ethylbenzene	250		10		ug/L			04/12/21 20:40	10
Isopropylbenzene	200		10		ug/L			04/12/21 20:40	10
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/08/21 20:49	1
Chloroform	1.0	U	1.0		ug/L			04/08/21 20:49	1
m-Xylene & p-Xylene	210		10		ug/L			04/12/21 20:40	10
Vinyl chloride	6.5		1.0		ug/L			04/08/21 20:49	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/08/21 20:49	1
1,4-Dichlorobenzene	14		1.0		ug/L			04/08/21 20:49	1
1,2,4-Trimethylbenzene	1.0	U *+	1.0		ug/L			04/08/21 20:49	1
1,3,5-Trimethylbenzene	1.0	U *+	1.0		ug/L			04/08/21 20:49	1
p-Cymene	5.2		1.0		ug/L			04/08/21 20:49	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/08/21 20:49	1
Trichloroethene	1.0	U	1.0		ug/L			04/08/21 20:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		60 - 124					04/08/21 20:49	1
1,2-Dichloroethane-d4 (Surr)	101		60 - 124					04/12/21 20:40	10

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

92

103

110

107

102

59 S1-

Eurofins TestAmerica, Savannah

04/08/21 20:49

04/12/21 20:40

04/08/21 20:49

04/12/21 20:40

04/08/21 20:49

04/12/21 20:40

1

10

1

10

Surrogate Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	gate Recovery (Acceptance Lir	nits)
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(60-124)	(70-130)	(70-130)	(70-130)	
680-197113-1	MW-29S-03292021	97	100	104	100	
680-197113-2	OW-Q2S-03292021	98	105	102	100	
680-197113-3	OW-Q2I-03302021	97	106	102	101	
680-197113-3	OW-Q2I-03302021	112	104	121	78	
880-197113-4	OW-Q2D-03292021	100	102	102	101	
880-197113-4 - DL	OW-Q2D-03292021	111	96 *3	114	72	
880-197113-5	OW-Q1S-03302021	113	106	118	70	
880-197113-6	OW-Q1I-03302021	106	98	114	79	
880-197113-7	OW-Q1D-03302021	104	88	107	66 S1-	
680-197113-7	OW-Q1D-03302021	100	103	106	104	
680-197113-8	OW-Q4S-03302021	109	103	114	77	
680-197113-8	OW-Q4S-03302021	101	104	106	102	
680-197113-9	OW-Q4I-03302021	109	104	114	74	
680-197113-10	OW-Q5S-03302021	111	99	115	72	
680-197113-11	OW-Q5I-03302021	110	99	116	71	
880-197113-12	OW-Q5D-03302021	108	98	114	63 S1-	
680-197113-12	OW-Q5D-03302021	99	106	106	105	
880-197113-13	EQB-01-03302021	94	112	100	100	
680-197113-14	EQB-02-03302021	96	113	103	102	
880-197113-15	DUP-01	105	92	110	59 S1-	
880-197113-15	DUP-01	101	103	107	102	
.CS 680-663281/4	Lab Control Sample	99	102	108	108	
CS 680-663289/4	Lab Control Sample	112	91	112	80	
CS 680-663313/5	Lab Control Sample	99	102	109	109	
CS 680-663625/3	Lab Control Sample	114	105	113	96	
CS 680-663719/4	Lab Control Sample	95	100	107	104	
LCS 680-663727/4	Lab Control Sample	103	88	107	85	
CSD 680-663281/5	Lab Control Sample Dup	103	101	112	106	
_CSD 680-663289/5	Lab Control Sample Dup	112	88	111	83	
LCSD 680-663313/6	Lab Control Sample Dup	107	101	110	108	
LCSD 680-663625/4	Lab Control Sample Dup	107	88	107	86	
LCSD 680-663719/5	Lab Control Sample Dup	103	97	107	104	
_CSD 680-663719/5 _CSD 680-663727/5	Lab Control Sample Dup	102	97 91	109	81	
	Method Blank	97	100	109	100	
MB 680-663281/9						
MB 680-663289/9	Method Blank	106	98	110	82	
MB 680-663313/10	Method Blank	96	113	102	102	
MB 680-663625/8	Method Blank	104	93	111	84	
MB 680-663719/9	Method Blank	95 107	101 104	104 114	102 79	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Eurofins TestAmerica, Savannah

Page 25 of 50

4/14/2021

2

9

11

13

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-663281/9

Matrix: Water

Analysis Batch: 663281

Client Sample ID: Method Blank

Prep Type: Total/NA MB MB 1

	1410	IVID						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
Carbon f isulTf e	2.0	U	2.0	ug/L			04/08/21 13:d3	1
hetracploroetpene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
1,1-Dicploroetpane	1.0	U	1.0	ug/L			04/08/21 13:d3	1
1,2-DicploroAroAane	1.0	U	1.0	ug/L			04/08/21 13:d3	1
Mcetone	10	U	10	ug/L			04/08/21 13:d3	1
4-5 etpyl-2-Aentanone	10	U	10	ug/L			04/08/21 13:d3	1
5 etpylene Cplorif e	d.0	U	d.0	ug/L			04/08/21 13:d3	1
holuene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
1,2,4-hricplorobenzene	d.0	U	d.0	ug/L			04/08/21 13:d3	1
o-Xylene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
Cplorobenzene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
1,1-Dicploroetpene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
Ortpof icplorobenzene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
2-Butanone (5 EK)	10	U	10	ug/L			04/08/21 13:d3	1
Etpylbenzene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
IsoAroAylbenzene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
cis-1,2-Dicploroetpene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
CploroTorm	1.0	U	1.0	ug/L			04/08/21 13:d3	1
m-Xylene & A-Xylene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
Vinyl cplorif e	1.0	U	1.0	ug/L			04/08/21 13:d3	1
Carbon tetracplorif e	1.0	U	1.0	ug/L			04/08/21 13:d3	1
1,4-Dicplorobenzene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
1,2,4-hrimetpylbenzene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
1,3,d-hrimetpylbenzene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
A-Cymene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
1,2,3-hricploroAroAane	1.0	U	1.0	ug/L			04/08/21 13:d3	1
hricploroetpene	1.0	U	1.0	ug/L			04/08/21 13:d3	1
				J				

MB MB Qualifier Dil Fac Surrogate Limits Prepared %Recovery Analyzed 1,2-Dichloroethane-d4 (Surr) 60 - 124 04/08/21 13:53 97 100 4-Bromofluorobenzene (Surr) 70 - 130 04/08/21 13:53 Dibromofluoromethane (Surr) 101 70 - 130 04/08/21 13:53 Toluene-d8 (Surr) 100 70 - 130 04/08/21 13:53

Lab Sample ID: LCS 680-663281/4

Matrix: Water

5 etpylene Cplorif e

Analysis Batch: 663281

	Spike	LCS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	d0.0	48.3		ug/L		97	70 - 130	
Carbon f isulTf e	d0.0	d3.1		ug/L		106	70 - 130	
hetracploroetpene	d0.0	d7.0		ug/L		114	70 - 130	
1,1-Dicploroetpane	d0.0	d1.2		ug/L		102	70 - 130	
1,2-DicploroAroAane	d0.0	d0.9		ug/L		102	70 - 130	
Mcetone	2d0	21d		ug/L		86	67 - 113	
4-5 etpyl-2-Aentanone	2d0	238		ua/L		9d	68 - 108	

49.0

ug/L

Chiles

d0.0

Euro Tns hest Mmerica, Savannap

70 - 130

98

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 26 of 50

4/14/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-663281/4

Matrix: Water

Analysis Batch: 663281

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
holuene	d0.0	d4.1		ug/L		108	70 - 130
1,2,4-hricplorobenzene	d0.0	d8.0		ug/L		116	70 - 130
o-Xylene	d0.0	d3.1		ug/L		106	70 - 130
Cplorobenzene	d0.0	d1.7		ug/L		103	70 - 130
1,1-Dicploroetpene	d0.0	d3.d		ug/L		107	70 - 130
Ortpof icplorobenzene	d0.0	d2.1		ug/L		104	70 - 130
2-Butanone (5 EK)	2d0	237		ug/L		9d	69 - 114
Etpylbenzene	d0.0	d4.0		ug/L		108	70 - 130
IsoAroAylbenzene	d0.0	d6.3		ug/L		113	70 - 130
cis-1,2-Dicploroetpene	d0.0	d2.3		ug/L		10d	70 - 130
CploroTorm	d0.0	d3.d		ug/L		107	70 - 130
m-Xylene & A-Xylene	d0.0	d3.4		ug/L		107	70 - 130
Vinyl cplorif e	d0.0	4d.6		ug/L		91	66 - 129
Carbon tetracplorif e	d0.0	d4.1		ug/L		108	70 - 130
1,4-Dicplorobenzene	d0.0	d1.d		ug/L		103	70 - 130
1,2,4-hrimetpylbenzene	d0.0	d6.8		ug/L		114	70 - 130
1,3,d-hrimetpylbenzene	d0.0	d6.6		ug/L		113	70 - 130
A-Cymene	d0.0	d4.2		ug/L		108	70 - 130
1,2,3-hricploroAroAane	d0.0	48.2		ug/L		96	70 - 130
hricploroetpene	d0.0	dd.1		ug/L		110	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		60 - 124
4-Bromofluorobenzene (Surr)	102		70 - 130
Dibromofluoromethane (Surr)	108		70 - 130
Toluene-d8 (Surr)	108		70 - 130

Lab Sample ID: LCSD 680-663281/5

Matrix: Water

Analysis Batch: 663281

Client Sample ID: La	b Control Sample Dup
	Prep Type: Total/NA

/ maryolo Batom 000201									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	d0.0	48.1		ug/L		96	70 - 130	0	30
Carbon f isul T f e	d0.0	d1.d		ug/L		103	70 - 130	3	30
hetracploroetpene	d0.0	d4.7		ug/L		109	70 - 130	4	30
1,1-Dicploroetpane	d0.0	d2.2		ug/L		104	70 - 130	2	30
1,2-DicploroAroAane	d0.0	d0.7		ug/L		101	70 - 130	0	20
Mcetone	2d0	241		ug/L		96	67 - 113	11	30
4-5 etpyl-2-Aentanone	2d0	260		ug/L		104	68 - 108	9	30
5 etpylene Cplorif e	d0.0	d0.9		ug/L		102	70 - 130	4	30
holuene	d0.0	d2.8		ug/L		106	70 - 130	2	30
1,2,4-hricplorobenzene	d0.0	d8.0		ug/L		116	70 - 130	0	30
o-Xylene	d0.0	d4.d		ug/L		109	70 - 130	3	30
Cplorobenzene	d0.0	d4.0		ug/L		108	70 - 130	4	30
1,1-Dicploroetpene	d0.0	d2.1		ug/L		104	70 - 130	3	20
Ortpof icplorobenzene	d0.0	d1.6		ug/L		103	70 - 130	1	30
2-Butanone (5 EK)	2d0	263		ug/L		10d	69 - 114	10	30
Etpylbenzene	d0.0	d3.3		ug/L		107	70 - 130	1	20

EuroTns hestMmerica, Savannap

Page 27 of 50

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-663281/5

Matrix: Water

Analysis Batch: 663281

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 680-197113-1

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
IsoAroAylbenzene	d0.0	dd.6		ug/L		111	70 - 130	1	30
cis-1,2-Dicploroetpene	d0.0	d1.6		ug/L		103	70 - 130	1	30
CploroTorm	d0.0	d4.1		ug/L		108	70 - 130	1	30
m-Xylene & A-Xylene	d0.0	d3.d		ug/L		107	70 - 130	0	30
Vinyl cplorif e	d0.0	43.0		ug/L		86	66 - 129	6	30
Carbon tetracplorif e	d0.0	d1.8		ug/L		104	70 - 130	4	30
1,4-Dicplorobenzene	d0.0	d0.3		ug/L		101	70 - 130	3	30
1,2,4-hrimetpylbenzene	d0.0	dd.8		ug/L		112	70 - 130	2	30
1,3,d-hrimetpylbenzene	d0.0	d6.9		ug/L		114	70 - 130	0	30
A-Cymene	d0.0	d1.3		ug/L		103	70 - 130	d	30
1,2,3-hricploroAroAane	d0.0	d3.d		ug/L		107	70 - 130	10	30
hricploroetpene	d0.0	d4.0		ua/L		108	70 - 130	2	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		60 - 124
4-Bromofluorobenzene (Surr)	101		70 - 130
Dibromofluoromethane (Surr)	112		70 - 130
Toluene-d8 (Surr)	106		70 - 130

Lab Sample ID: MB 680-663289/9

Matrix: Water

Analysis Batch: 663289

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB					
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	1.0	U –	1.0	ug/L		04/08/21 13:07	1
Carbon f isulTf e	2.0	U	2.0	ug/L		04/08/21 13:07	1
hetracploroetpene	1.0	U	1.0	ug/L		04/08/21 13:07	1
1,1-Dicploroetpane	1.0	U	1.0	ug/L		04/08/21 13:07	1
1,2-DicploroAroAane	1.0	U	1.0	ug/L		04/08/21 13:07	1
Mcetone	10	U	10	ug/L		04/08/21 13:07	1
4-5 etpyl-2-Aentanone	10	U	10	ug/L		04/08/21 13:07	1
5 etpylene Cplorif e	d.0	U	d.0	ug/L		04/08/21 13:07	1
holuene	1.0	U	1.0	ug/L		04/08/21 13:07	1
1,2,4-hricplorobenzene	d.0	U	d.0	ug/L		04/08/21 13:07	1
o-Xylene	1.0	U	1.0	ug/L		04/08/21 13:07	1
Cplorobenzene	1.0	U	1.0	ug/L		04/08/21 13:07	1
1,1-Dicploroetpene	1.0	U	1.0	ug/L		04/08/21 13:07	1
Ortpof icplorobenzene	1.0	U	1.0	ug/L		04/08/21 13:07	1
2-Butanone (5 EK)	10	U	10	ug/L		04/08/21 13:07	1
Etpylbenzene	1.0	U	1.0	ug/L		04/08/21 13:07	1
IsoAroAylbenzene	1.0	U	1.0	ug/L		04/08/21 13:07	1
cis-1,2-Dicploroetpene	1.0	U	1.0	ug/L		04/08/21 13:07	1
CploroTorm	1.0	U	1.0	ug/L		04/08/21 13:07	1
m-Xylene & A-Xylene	1.0	U	1.0	ug/L		04/08/21 13:07	1
Vinyl cplorif e	1.0	U	1.0	ug/L		04/08/21 13:07	1
Carbon tetracplorif e	1.0	U	1.0	ug/L		04/08/21 13:07	1
1,4-Dicplorobenzene	1.0	U	1.0	ug/L		04/08/21 13:07	1
1,2,4-hrimetpylbenzene	1.0	U	1.0	ug/L		04/08/21 13:07	1

Euro Tns hest Mmerica, Savannap

Page 28 of 50

4/14/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-663289/9

Matrix: Water

Analysis Batch: 663289

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-197113-1

zed Dil Fac
13:07
13:07 1
1 13:07 1
13:07 1
11

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	60 - 124		04/08/21 13:07	1
4-Bromofluorobenzene (Surr)	98	70 - 130		04/08/21 13:07	1
Dibromofluoromethane (Surr)	110	70 - 130		04/08/21 13:07	1
Toluene-d8 (Surr)	82	70 - 130		04/08/21 13:07	1

Lab Sample ID: LCS 680-663289/4

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	d0.0	d0.8		ug/L		102	70 - 130
Carbon f isulTf e	d0.0	47.0		ug/L		94	70 - 130
hetracploroetpene	d0.0	43.d		ug/L		87	70 - 130
1,1-Dicploroetpane	d0.0	48.d		ug/L		97	70 - 130
1,2-DicploroAroAane	d0.0	41.0		ug/L		82	70 - 130
Mcetone	2d0	244		ug/L		97	67 - 113
4-5 etpyl-2-Aentanone	2d0	186		ug/L		7d	68 - 108
5 etpylene Cplorif e	d0.0	47.4		ug/L		9d	70 - 130
holuene	d0.0	38.9		ug/L		78	70 - 130
1,2,4-hricplorobenzene	d0.0	d8.d		ug/L		117	70 - 130
o-Xylene	d0.0	d2.0		ug/L		104	70 - 130
Cplorobenzene	d0.0	49.9		ug/L		100	70 - 130
1,1-Dicploroetpene	d0.0	d1.d		ug/L		103	70 - 130
Ortpof icplorobenzene	d0.0	49.4		ug/L		99	70 - 130
2-Butanone (5 EK)	2d0	248		ug/L		99	69 - 114
Etpylbenzene	d0.0	49.3		ug/L		99	70 - 130
IsoAroAylbenzene	d0.0	d2.2		ug/L		104	70 - 130
cis-1,2-Dicploroetpene	d0.0	d2.3		ug/L		10d	70 - 130
CploroTorm	d0.0	d3.4		ug/L		107	70 - 130
m-Xylene & A-Xylene	d0.0	d1.1		ug/L		102	70 - 130
Vinyl cplorif e	d0.0	40.1		ug/L		80	66 - 129
Carbon tetracplorif e	d0.0	60.3		ug/L		121	70 - 130
1,4-Dicplorobenzene	d0.0	d1.8		ug/L		104	70 - 130
1,2,4-hrimetpylbenzene	d0.0	68.1	*+	ug/L		136	70 - 130
1,3,d-hrimetpylbenzene	d0.0	64.9		ug/L		130	70 - 130
A-Cymene	d0.0	d4.8		ug/L		110	70 - 130
1,2,3-hricploroAroAane	d0.0	d4.6		ug/L		109	70 - 130
hricploroetpene	d0.0	42.2		ug/L		84	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		60 - 124
4-Bromofluorobenzene (Surr)	91		70 - 130

EuroTns hestMmerica, Savannap

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

LCS LCS

Lab Sample ID: LCS 680-663289/4

Matrix: Water

Analysis Batch: 663289

Client Sample ID: Lab Control Sample

Job ID: 680-197113-1

Prep Type: Total/NA

%Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 112 70 - 130 Toluene-d8 (Surr) 80 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 680-663289/5 **Matrix: Water**

Analysis Batch: 663289

1,3,d-hrimetpylbenzene

1,2,3-hricploroAroAane hricploroetpene

A-Cymene

LCSD LCSD %Rec. **RPD** Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Benzene d0.0 49.6 ug/L 99 70 - 130 2 30 Carbon f isulTf e d0.0 46.0 ug/L 92 70 - 130 2 30 d0.0 43.9 70 - 130 hetracploroetpene ug/L 88 30 1,1-Dicploroetpane d0.0 47.6 ug/L 9d 70 - 130 30 1,2-DicploroAroAane d0.0 44.1 ug/L 88 70 - 130 20 23d Mcetone 2d0 ug/L 94 67 - 113 30 30 4-5 etpyl-2-Aentanone 2d0 189 ug/L 76 68 - 108 5 etpylene Cplorif e d0.0 48.2 96 70 - 130 2 30 ug/L d0.0 81 70 - 130 30 holuene 40.3 ug/L 70 - 130 d0.0 d7.8 30 1,2,4-hricplorobenzene ug/L 116 o-Xylene d0.0 d2.0 ug/L 104 70 - 130 30 d0.0 d0.4 ug/L 101 70 - 130 30 Cplorobenzene 1,1-Dicploroetpene d0.0 d0.2 100 70 - 130 20 ug/L d0.0 49.d 30 Ortpof icplorobenzene ug/L 99 70 - 130 0 2-Butanone (5 EK) 2d0 243 ug/L 97 69 - 114 2 30 Etpylbenzene d0.0 48.1 ug/L 96 70 - 130 20 IsoAroAylbenzene d0.0 d1.9 ug/L 104 70 - 130 30 cis-1,2-Dicploroetpene d0.0 d1.6 ug/L 103 70 - 130 30 d0.0 Cploro Torm d2.6 ug/L 10d 70 - 130 30 d0.0 30 m-Xylene & A-Xylene d1.3 ug/L 103 70 - 130 Vinyl cplorif e d0.0 40.1 ug/L 80 66 - 129 0 30 Carbon tetracplorif e d0.0 d8.9 ug/L 118 70 - 130 30 1,4-Dicplorobenzene d0.0 102 70 - 130 30 d1.2 ug/L d0.0 70.1 *+ 140 70 - 130 30 1,2,4-hrimetpylbenzene ug/L

d0.0

d0.0

d0.0

d0.0

6d.6

d4.3

d4.1

44.1

ug/L

ug/L

ug/L

ug/L

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		60 - 124
4-Bromofluorobenzene (Surr)	88		70 - 130
Dibromofluoromethane (Surr)	111		70 - 130
Toluene-d8 (Surr)	83		70 - 130

Euro Tns hest Mmerica, Savannap

131

109

108

88

70 - 130

70 - 130

70 - 130

70 - 130

10

30

30

30

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MD MD

Lab Sample ID: MB 680-663313/10

Matrix: Water

Analysis Batch: 663313

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	МВ						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
Carbon f isul T f e	2.0	U	2.0	ug/L			04/08/21 13:0d	1
hetracploroetpene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
1,1-Dicploroetpane	1.0	U	1.0	ug/L			04/08/21 13:0d	1
1,2-DicploroAroAane	1.0	U	1.0	ug/L			04/08/21 13:0d	1
Mcetone	10	U	10	ug/L			04/08/21 13:0d	1
4-5 etpyl-2-Aentanone	10	U	10	ug/L			04/08/21 13:0d	1
5 etpylene Cplorif e	d.0	U	d.0	ug/L			04/08/21 13:0d	1
holuene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
1,2,4-hricplorobenzene	d.0	U	d.0	ug/L			04/08/21 13:0d	1
o-Xylene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
Cplorobenzene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
1,1-Dicploroetpene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
Ortpof icplorobenzene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
2-Butanone (5 EK)	10	U	10	ug/L			04/08/21 13:0d	1
Etpylbenzene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
IsoAroAylbenzene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
cis-1,2-Dicploroetpene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
CploroTorm	1.0	U	1.0	ug/L			04/08/21 13:0d	1
m-Xylene & A-Xylene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
Vinyl cplorif e	1.0	U	1.0	ug/L			04/08/21 13:0d	1
Carbon tetracplorif e	1.0	U	1.0	ug/L			04/08/21 13:0d	1
1,4-Dicplorobenzene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
1,2,4-hrimetpylbenzene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
1,3,d-hrimetpylbenzene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
A-Cymene	1.0	U	1.0	ug/L			04/08/21 13:0d	1
1,2,3-hricploroAroAane	1.0	U	1.0	ug/L			04/08/21 13:0d	1
hricploroetpene	1.0	U	1.0	ug/L			04/08/21 13:0d	1

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 60 - 124 04/08/21 13:05 96 113 70 - 130 04/08/21 13:05 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) 102 70 - 130 04/08/21 13:05 Toluene-d8 (Surr) 102 70 - 130 04/08/21 13:05

Lab Sample ID: LCS 680-663313/5

Matrix: Water

Analysis Batch: 663313

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	d0.0	d3.6		ug/L		107	70 - 130	
Carbon f isulTf e	d0.0	d2.2		ug/L		104	70 - 130	
hetracploroetpene	d0.0	d8.7		ug/L		117	70 - 130	
1,1-Dicploroetpane	d0.0	d3.8		ug/L		108	70 - 130	
1,2-DicploroAroAane	d0.0	d4.3		ug/L		109	70 - 130	
Mcetone	2d0	2d8		ug/L		103	67 - 113	
4-5 etpyl-2-Aentanone	2d0	2d4		ug/L		102	68 - 108	
5 etpylene Cplorif e	d0.0	74.9	*+	ug/L		1d0	70 - 130	

Euro Tns hest Mmerica, Savannap

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 31 of 50

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-663313/5

Matrix: Water

Analysis Batch: 663313

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-197113-1

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
holuene	d0.0	d4.2		ug/L		108	70 - 130
1,2,4-hricplorobenzene	d0.0	49.8		ug/L		100	70 - 130
o-Xylene	d0.0	d4.1		ug/L		108	70 - 130
Cplorobenzene	d0.0	d4.4		ug/L		109	70 - 130
1,1-Dicploroetpene	d0.0	d1.0		ug/L		102	70 - 130
Ortpof icplorobenzene	d0.0	d2.7		ug/L		10d	70 - 130
2-Butanone (5 EK)	2d0	244		ug/L		98	69 - 114
Etpylbenzene	d0.0	d6.2		ug/L		112	70 - 130
IsoAroAylbenzene	d0.0	d4.4		ug/L		109	70 - 130
cis-1,2-Dicploroetpene	d0.0	d3.9		ug/L		108	70 - 130
CploroTorm	d0.0	d2.2		ug/L		104	70 - 130
m-Xylene & A-Xylene	d0.0	d6.3		ug/L		113	70 - 130
Vinyl cplorif e	d0.0	d1.3		ug/L		103	66 - 129
Carbon tetracplorif e	d0.0	d1.9		ug/L		104	70 - 130
1,4-Dicplorobenzene	d0.0	d2.9		ug/L		106	70 - 130
1,2,4-hrimetpylbenzene	d0.0	d1.4		ug/L		103	70 - 130
1,3,d-hrimetpylbenzene	d0.0	d0.6		ug/L		101	70 - 130
A-Cymene	d0.0	46.8		ug/L		94	70 - 130
1,2,3-hricploroAroAane	d0.0	d3.d		ug/L		107	70 - 130
hricploroetpene	d0.0	d1.9		ug/L		104	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		60 - 124
4-Bromofluorobenzene (Surr)	102		70 - 130
Dibromofluoromethane (Surr)	109		70 - 130
Toluene-d8 (Surr)	109		70 - 130

Lab Sample ID: LCSD 680-663313/6

Matrix: Water

Analysis Batch: 663313

Client Sample	ID: Lab	Control Sample Dup
		Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	d0.0	d3.8		ug/L		108	70 - 130	0	30
Carbon f isulTf e	d0.0	d0.2		ug/L		100	70 - 130	4	30
hetracploroetpene	d0.0	dd.7		ug/L		111	70 - 130	d	30
1,1-Dicploroetpane	d0.0	dd.3		ug/L		111	70 - 130	3	30
1,2-DicploroAroAane	d0.0	d6.4		ug/L		113	70 - 130	4	20
Mcetone	2d0	230		ug/L		92	67 - 113	11	30
4-5 etpyl-2-Aentanone	2d0	27d	*+	ug/L		110	68 - 108	8	30
5 etpylene Cplorif e	d0.0	76.7	*+	ug/L		1d3	70 - 130	2	30
holuene	d0.0	dd.4		ug/L		111	70 - 130	2	30
1,2,4-hricplorobenzene	d0.0	46.3		ug/L		93	70 - 130	7	30
o-Xylene	d0.0	d3.6		ug/L		107	70 - 130	1	30
Cplorobenzene	d0.0	d3.d		ug/L		107	70 - 130	2	30
1,1-Dicploroetpene	d0.0	4d.8		ug/L		92	70 - 130	11	20
Ortpof icplorobenzene	d0.0	d1.2		ug/L		102	70 - 130	3	30
2-Butanone (5 EK)	2d0	268		ug/L		107	69 - 114	9	30
Etpylbenzene	d0.0	d4.4		ug/L		109	70 - 130	3	20

Euro Tns hest Mmerica, Savannap

Page 32 of 50

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-663313/6

Matrix: Water

Analysis Batch: 663313

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 680-197113-1

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
IsoAroAylbenzene	d0.0	d1.2		ug/L		102	70 - 130	6	30
cis-1,2-Dicploroetpene	d0.0	d3.9		ug/L		108	70 - 130	0	30
CploroTorm	d0.0	d4.3		ug/L		109	70 - 130	4	30
m-Xylene & A-Xylene	d0.0	d4.0		ug/L		108	70 - 130	4	30
Vinyl cplorif e	d0.0	49.6		ug/L		99	66 - 129	4	30
Carbon tetracplorif e	d0.0	49.3		ug/L		99	70 - 130	d	30
1,4-Dicplorobenzene	d0.0	d1.3		ug/L		103	70 - 130	3	30
1,2,4-hrimetpylbenzene	d0.0	47.8		ug/L		96	70 - 130	7	30
1,3,d-hrimetpylbenzene	d0.0	48.4		ug/L		97	70 - 130	4	30
A-Cymene	d0.0	42.d		ug/L		8d	70 - 130	10	30
1,2,3-hricploroAroAane	d0.0	dd.d		ug/L		111	70 - 130	4	30
hricploroetpene	d0.0	d1.8		ug/L		104	70 - 130	0	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		60 - 124
4-Bromofluorobenzene (Surr)	101		70 - 130
Dibromofluoromethane (Surr)	110		70 - 130
Toluene-d8 (Surr)	108		70 - 130

Lab Sample ID: MB 680-663625/8

Matrix: Water

Analysis Batch: 663625

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 663625	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U –	1.0		ug/L			04/10/21 18:36	1
Carbon f isulTf e	2.0	U	2.0		ug/L			04/10/21 18:36	1
hetracploroetpene	1.0	U	1.0		ug/L			04/10/21 18:36	1
1,1-Dicploroetpane	1.0	U	1.0		ug/L			04/10/21 18:36	1
1,2-DicploroAroAane	1.0	U	1.0		ug/L			04/10/21 18:36	1
Mcetone	10	U	10		ug/L			04/10/21 18:36	1
4-5 etpyl-2-Aentanone	10	U	10		ug/L			04/10/21 18:36	1
5 etpylene Cplorif e	d.0	U	d.0		ug/L			04/10/21 18:36	1
holuene	1.0	U	1.0		ug/L			04/10/21 18:36	1
1,2,4-hricplorobenzene	d.0	U	d.0		ug/L			04/10/21 18:36	1
o-Xylene	1.0	U	1.0		ug/L			04/10/21 18:36	1
Cplorobenzene	1.0	U	1.0		ug/L			04/10/21 18:36	1
1,1-Dicploroetpene	1.0	U	1.0		ug/L			04/10/21 18:36	1
Ortpof icplorobenzene	1.0	U	1.0		ug/L			04/10/21 18:36	1
2-Butanone (5 EK)	10	U	10		ug/L			04/10/21 18:36	1
Etpylbenzene	1.0	U	1.0		ug/L			04/10/21 18:36	1
IsoAroAylbenzene	1.0	U	1.0		ug/L			04/10/21 18:36	1
cis-1,2-Dicploroetpene	1.0	U	1.0		ug/L			04/10/21 18:36	1
CploroTorm	1.0	U	1.0		ug/L			04/10/21 18:36	1
m-Xylene & A-Xylene	1.0	U	1.0		ug/L			04/10/21 18:36	1
Vinyl cplorif e	1.0	U	1.0		ug/L			04/10/21 18:36	1
Carbon tetracplorif e	1.0	U	1.0		ug/L			04/10/21 18:36	1
1,4-Dicplorobenzene	1.0	U	1.0		ug/L			04/10/21 18:36	1
1,2,4-hrimetpylbenzene	1.0	U	1.0		ug/L			04/10/21 18:36	1

Euro Tns hest Mmerica, Savannap

Page 33 of 50

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-663625/8

Matrix: Water

Analysis Batch: 663625

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-197113-1

	MB	MR						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,3,d-hrimetpylbenzene	1.0	U	1.0	ug/L			04/10/21 18:36	1
A-Cymene	1.0	U	1.0	ug/L			04/10/21 18:36	1
1,2,3-hricploroAroAane	1.0	U	1.0	ug/L			04/10/21 18:36	1
hricploroetpene	1.0	U	1.0	ug/L			04/10/21 18:36	1
				0				

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analys	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	60 - 124	04/10/21	18:36
4-Bromofluorobenzene (Surr)	93	70 - 130	04/10/21	18:36 1
Dibromofluoromethane (Surr)	111	70 - 130	04/10/21	18:36 1
Toluene-d8 (Surr)	84	70 - 130	04/10/21	18:36 1

Lab Sample ID: LCS 680-663625/3

Matrix: Water

Analysis Batch: 663625

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	d0.0	47.6		ug/L		9d	70 - 130
Carbon f isulTf e	d0.0	38.0		ug/L		76	70 - 130
hetracploroetpene	d0.0	47.3		ug/L		9d	70 - 130
1,1-Dicploroetpane	d0.0	47.4		ug/L		9d	70 - 130
1,2-DicploroAroAane	d0.0	4d.2		ug/L		90	70 - 130
Mcetone	2d0	23d		ug/L		94	67 - 113
4-5 etpyl-2-Aentanone	2d0	227		ug/L		91	68 - 108
5 etpylene Cplorif e	d0.0	d0.3		ug/L		101	70 - 130
holuene	d0.0	47.0		ug/L		94	70 - 130
1,2,4-hricplorobenzene	d0.0	68.8	*+	ug/L		138	70 - 130
o-Xylene	d0.0	42.8		ug/L		86	70 - 130
Cplorobenzene	d0.0	49.1		ug/L		98	70 - 130
1,1-Dicploroetpene	d0.0	42.2		ug/L		84	70 - 130
Ortpof icplorobenzene	d0.0	48.9		ug/L		98	70 - 130
2-Butanone (5 EK)	2d0	239		ug/L		96	69 - 114
Etpylbenzene	d0.0	4d.7		ug/L		91	70 - 130
IsoAroAylbenzene	d0.0	43.0		ug/L		86	70 - 130
cis-1,2-Dicploroetpene	d0.0	d1.1		ug/L		102	70 - 130
CploroTorm	d0.0	d2.9		ug/L		106	70 - 130
m-Xylene & A-Xylene	d0.0	41.9		ug/L		84	70 - 130
Vinyl cplorif e	d0.0	39.4		ug/L		79	66 - 129
Carbon tetracplorif e	d0.0	d0.6		ug/L		101	70 - 130
1,4-Dicplorobenzene	d0.0	49.0		ug/L		98	70 - 130
1,2,4-hrimetpylbenzene	d0.0	d2.6		ug/L		10d	70 - 130
1,3,d-hrimetpylbenzene	d0.0	47.d		ug/L		9d	70 - 130
A-Cymene	d0.0	44.6		ug/L		89	70 - 130
1,2,3-hricploroAroAane	d0.0	49.6		ug/L		99	70 - 130
hricploroetpene	d0.0	47.7		ug/L		9d	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	114		60 - 124
4-Bromofluorobenzene (Surr)	105		70 - 130

EuroTns hestMmerica, Savannap

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-663625/3

Matrix: Water

Analysis Batch: 663625

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-197113-1

LCS LCS

 Surrogate
 %Recovery
 Qualifier
 Limits

 Dibromofluoromethane (Surr)
 113
 70 - 130

 Toluene-d8 (Surr)
 96
 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 680-663625/4

Matrix: Water

Analysis Batch: 663625

Analysis Batch: 663625	Spike	I CSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	d0.0	47.d		ug/L	_ =	9d	70 - 130	0	30
Carbon f isulTf e	d0.0	4d.d		ug/L		91	70 - 130	18	30
hetracploroetpene	d0.0	47.7		ug/L		9d	70 - 130	1	30
1,1-Dicploroetpane	d0.0	47.6		ug/L		9d	70 - 130	0	30
1,2-DicploroAroAane	d0.0	42.1		ug/L		84	70 - 130	7	20
Mcetone	2d0	202		ug/L		81	67 - 113	1d	30
4-5 etpyl-2-Aentanone	2d0	194		ug/L		78	68 - 108	16	30
5 etpylene Cplorif e	d0.0	46.2		ug/L		92	70 - 130	8	30
holuene	d0.0	42.3		ug/L		8d	70 - 130	11	30
1,2,4-hricplorobenzene	d0.0	d6.9		ug/L		114	70 - 130	19	30
o-Xylene	d0.0	d2.2		ug/L		104	70 - 130	20	30
Cplorobenzene	d0.0	49.7		ug/L		99	70 - 130	1	30
1,1-Dicploroetpene	d0.0	d2.4	*1	ug/L		10d	70 - 130	22	20
Ortpof icplorobenzene	d0.0	47.1		ug/L		94	70 - 130	4	30
2-Butanone (5 EK)	2d0	208		ug/L		83	69 - 114	14	30
Etpylbenzene	d0.0	48.4		ug/L		97	70 - 130	6	20
IsoAroAylbenzene	d0.0	d1.6		ug/L		103	70 - 130	18	30
cis-1,2-Dicploroetpene	d0.0	d0.d		ug/L		101	70 - 130	1	30
CploroTorm	d0.0	d1.7		ug/L		103	70 - 130	2	30
m-Xylene & A-Xylene	d0.0	d1.9		ug/L		104	70 - 130	21	30
Vinyl cplorif e	d0.0	d1.0		ug/L		102	66 - 129	26	30
Carbon tetracplorif e	d0.0	d9.d		ug/L		119	70 - 130	16	30
1,4-Dicplorobenzene	d0.0	48.6		ug/L		97	70 - 130	1	30
1,2,4-hrimetpylbenzene	d0.0	d9.1		ug/L		118	70 - 130	12	30
1,3,d-hrimetpylbenzene	d0.0	d7.4		ug/L		11d	70 - 130	19	30
A-Cymene	d0.0	46.3		ug/L		93	70 - 130	4	30
1,2,3-hricploroAroAane	d0.0	d0.7		ug/L		101	70 - 130	2	30
hricploroetpene	d0.0	4d.1		ug/L		90	70 - 130	6	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		60 - 124
4-Bromofluorobenzene (Surr)	88		70 - 130
Dibromofluoromethane (Surr)	107		70 - 130
Toluene-d8 (Surr)	86		70 - 130

Euro Tns hest Mmerica, Savannap

4/14/2021

2

5

7

9

10

12

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-663719/9

Matrix: Water

Analysis Batch: 663719

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L		04/12/21 12:48	1
Carbon f isulTf e	2.0	U	2.0	ug/L		04/12/21 12:48	1
hetracploroetpene	1.0	U	1.0	ug/L		04/12/21 12:48	1
1,1-Dicploroetpane	1.0	U	1.0	ug/L		04/12/21 12:48	1
1,2-DicploroAroAane	1.0	U	1.0	ug/L		04/12/21 12:48	1
Mcetone	10	U	10	ug/L		04/12/21 12:48	1
4-5 etpyl-2-Aentanone	10	U	10	ug/L		04/12/21 12:48	1
5 etpylene Cplorif e	d.0	U	d.0	ug/L		04/12/21 12:48	1
holuene	1.0	U	1.0	ug/L		04/12/21 12:48	1
1,2,4-hricplorobenzene	d.0	U	d.0	ug/L		04/12/21 12:48	1
o-Xylene	1.0	U	1.0	ug/L		04/12/21 12:48	1
Cplorobenzene	1.0	U	1.0	ug/L		04/12/21 12:48	1
1,1-Dicploroetpene	1.0	U	1.0	ug/L		04/12/21 12:48	1
Ortpof icplorobenzene	1.0	U	1.0	ug/L		04/12/21 12:48	1
2-Butanone (5 EK)	10	U	10	ug/L		04/12/21 12:48	1
Etpylbenzene	1.0	U	1.0	ug/L		04/12/21 12:48	1
IsoAroAylbenzene	1.0	U	1.0	ug/L		04/12/21 12:48	1
cis-1,2-Dicploroetpene	1.0	U	1.0	ug/L		04/12/21 12:48	1
CploroTorm	1.0	U	1.0	ug/L		04/12/21 12:48	1
m-Xylene & A-Xylene	1.0	U	1.0	ug/L		04/12/21 12:48	1
Vinyl cplorif e	1.0	U	1.0	ug/L		04/12/21 12:48	1
Carbon tetracplorif e	1.0	U	1.0	ug/L		04/12/21 12:48	1
1,4-Dicplorobenzene	1.0	U	1.0	ug/L		04/12/21 12:48	1
1,2,4-hrimetpylbenzene	1.0	U	1.0	ug/L		04/12/21 12:48	1
1,3,d-hrimetpylbenzene	1.0	U	1.0	ug/L		04/12/21 12:48	1
A-Cymene	1.0	U	1.0	ug/L		04/12/21 12:48	1
1,2,3-hricploroAroAane	1.0	U	1.0	ug/L		04/12/21 12:48	1
hricploroetpene	1.0	U	1.0	ug/L		04/12/21 12:48	1

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 60 - 124 04/12/21 12:48 95 101 70 - 130 04/12/21 12:48 4-Bromofluorobenzene (Surr) 1 Dibromofluoromethane (Surr) 104 70 - 130 04/12/21 12:48 Toluene-d8 (Surr) 102 70 - 130 04/12/21 12:48

Lab Sample ID: LCS 680-663719/4

Matrix: Water

Analysis Batch: 663719

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	d0.0	46.7		ug/L		93	70 - 130	
Carbon f isulTf e	d0.0	d0.9		ug/L		102	70 - 130	
hetracploroetpene	d0.0	d7.d		ug/L		11d	70 - 130	
1,1-Dicploroetpane	d0.0	d0.3		ug/L		101	70 - 130	
1,2-DicploroAroAane	d0.0	47.6		ug/L		9d	70 - 130	
Mcetone	2d0	224		ug/L		89	67 - 113	
4-5 etpyl-2-Aentanone	2d0	239		ug/L		9d	68 - 108	
5 etpylene Cplorif e	d0.0	49.8		ug/L		100	70 - 130	

Euro Tns hest Mmerica, Savannap

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 36 of 50

4/14/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-663719/4

Matrix: Water

Analysis Batch: 663719

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-197113-1

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits holuene d0.0 d2.2 ug/L 104 70 - 130 1,2,4-hricplorobenzene d0.0 d7.7 ug/L 11d 70 - 130 d0.0 70 - 130 o-Xylene d3.8 ug/L 108 Cplorobenzene d0.0 d2.9 ug/L 106 70 - 130 ug/L 1,1-Dicploroetpene d0.0 d2.d 10d 70 - 130 Ortpof icplorobenzene d0.0 d1.8 ug/L 104 70 - 130 2-Butanone (5 EK) 2d0 240 ug/L 96 69 - 114 Etpylbenzene d0.0 d3.9 108 ug/L 70 - 130 IsoAroAylbenzene d0.0 dd.8 ug/L 112 70 - 130cis-1,2-Dicploroetpene d0.0 49.4 99 70 - 130 ug/L Cploro Torm d0.0 d1.7 103 70 - 130 ug/L d0.0 108 m-Xylene & A-Xylene d3.8 ug/L 70 - 130 Vinyl cplorif e d0.0 d6.6 ug/L 113 66 - 129 d0.0 d1.7 103 70 - 130 Carbon tetracplorif e ug/L 1,4-Dicplorobenzene d0.0 d1.0 ug/L 102 70 - 130 d0.0 d6.2 1,2,4-hrimetpylbenzene ug/L 112 70 - 1301,3,d-hrimetpylbenzene d0.0 d6.7 ug/L 113 70 - 130 A-Cymene d0.0 d2.7 ug/L 10d 70 - 130 d0.0 d1.7 103 1,2,3-hricploroAroAane ug/L 70 - 130 hricploroetpene d0.0 d4.2 ug/L 108 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		60 - 124
4-Bromofluorobenzene (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	107		70 - 130
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: LCSD 680-663719/5

Matrix: Water

Analysis Batch: 663719

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Datell. 0007 15									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	d0.0	46.8		ug/L		94	70 - 130	0	30
Carbon f isulTf e	d0.0	49.8		ug/L		100	70 - 130	2	30
hetracploroetpene	d0.0	d7.1		ug/L		114	70 - 130	1	30
1,1-Dicploroetpane	d0.0	d1.2		ug/L		102	70 - 130	2	30
1,2-DicploroAroAane	d0.0	49.6		ug/L		99	70 - 130	4	20
Mcetone	2d0	267		ug/L		107	67 - 113	18	30
4-5 etpyl-2-Aentanone	2d0	272	*+	ug/L		109	68 - 108	13	30
5 etpylene Cplorif e	d0.0	d2.4		ug/L		10d	70 - 130	d	30
holuene	d0.0	d1.4		ug/L		103	70 - 130	2	30
1,2,4-hricplorobenzene	d0.0	60.4		ug/L		121	70 - 130	d	30
o-Xylene	d0.0	d3.7		ug/L		107	70 - 130	0	30
Cplorobenzene	d0.0	d3.d		ug/L		107	70 - 130	1	30
1,1-Dicploroetpene	d0.0	d0.3		ug/L		101	70 - 130	4	20
Ortpof icplorobenzene	d0.0	d2.d		ug/L		10d	70 - 130	2	30
2-Butanone (5 EK)	2d0	282		ug/L		113	69 - 114	16	30
Etpylbenzene	d0.0	d2.9		ug/L		106	70 - 130	2	20

Euro Tns hest Mmerica, Savannap

Page 37 of 50

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-663719/5

Matrix: Water

Analysis Batch: 663719

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 680-197113-1

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
IsoAroAylbenzene	d0.0	d4.7		ug/L		109	70 - 130	2	30
cis-1,2-Dicploroetpene	d0.0	d0.3		ug/L		101	70 - 130	2	30
CploroTorm	d0.0	d3.2		ug/L		106	70 - 130	3	30
m-Xylene & A-Xylene	d0.0	d2.9		ug/L		106	70 - 130	2	30
Vinyl cplorif e	d0.0	d3.d		ug/L		107	66 - 129	d	30
Carbon tetracplorif e	d0.0	49.8		ug/L		100	70 - 130	4	30
1,4-Dicplorobenzene	d0.0	d1.2		ug/L		102	70 - 130	0	30
1,2,4-hrimetpylbenzene	d0.0	d6.6		ug/L		113	70 - 130	1	30
1,3,d-hrimetpylbenzene	d0.0	d6.8		ug/L		114	70 - 130	0	30
A-Cymene	d0.0	d0.1		ug/L		100	70 - 130	d	30
1,2,3-hricploroAroAane	d0.0	d7.d		ug/L		11d	70 - 130	11	30
hricploroetpene	d0.0	d3.9		ug/L		108	70 - 130	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		60 - 124
4-Bromofluorobenzene (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	109		70 - 130
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: MB 680-663727/9

Matrix: Water

Analysis Batch: 663727

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB					
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	ug/L		04/12/21 13:24	1
Carbon f isulTf e	2.0	U	2.0	ug/L		04/12/21 13:24	1
hetracploroetpene	1.0	U	1.0	ug/L		04/12/21 13:24	1
1,1-Dicploroetpane	1.0	U	1.0	ug/L		04/12/21 13:24	1
1,2-DicploroAroAane	1.0	U	1.0	ug/L		04/12/21 13:24	1
Mcetone	10	U	10	ug/L		04/12/21 13:24	1
4-5 etpyl-2-Aentanone	10	U	10	ug/L		04/12/21 13:24	1
5 etpylene Cplorif e	d.0	U	d.0	ug/L		04/12/21 13:24	1
holuene	1.0	U	1.0	ug/L		04/12/21 13:24	1
1,2,4-hricplorobenzene	d.0	U	d.0	ug/L		04/12/21 13:24	1
o-Xylene	1.0	U	1.0	ug/L		04/12/21 13:24	1
Cplorobenzene	1.0	U	1.0	ug/L		04/12/21 13:24	1
1,1-Dicploroetpene	1.0	U	1.0	ug/L		04/12/21 13:24	1
Ortpof icplorobenzene	1.0	U	1.0	ug/L		04/12/21 13:24	1
2-Butanone (5 EK)	10	U	10	ug/L		04/12/21 13:24	1
Etpylbenzene	1.0	U	1.0	ug/L		04/12/21 13:24	1
IsoAroAylbenzene	1.0	U	1.0	ug/L		04/12/21 13:24	1
cis-1,2-Dicploroetpene	1.0	U	1.0	ug/L		04/12/21 13:24	1
CploroTorm	1.0	U	1.0	ug/L		04/12/21 13:24	1
m-Xylene & A-Xylene	1.0	U	1.0	ug/L		04/12/21 13:24	1
Vinyl cplorif e	1.0	U	1.0	ug/L		04/12/21 13:24	1
Carbon tetracplorif e	1.0	U	1.0	ug/L		04/12/21 13:24	1
1,4-Dicplorobenzene	1.0	U	1.0	ug/L		04/12/21 13:24	1
1,2,4-hrimetpylbenzene	1.0	U	1.0	ug/L		04/12/21 13:24	1

Euro Tns hest Mmerica, Savannap

Page 38 of 50

4/14/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-663727/9

Matrix: Water

Analysis Batch: 663727

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 680-197113-1

МВ	MB							
Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,d-hrimetpylbenzene 1.0	U	1.0		ug/L			04/12/21 13:24	1
A-Cymene 1.0	U	1.0		ug/L			04/12/21 13:24	1
1,2,3-hricploroAroAane 1.0	U	1.0		ug/L			04/12/21 13:24	1
hricploroetpene 1.0	U	1.0		ug/L			04/12/21 13:24	1

MB MB

ı		1110	1112				
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	107		60 - 124		04/12/21 13:24	1
	4-Bromofluorobenzene (Surr)	104		70 - 130		04/12/21 13:24	1
	Dibromofluoromethane (Surr)	114		70 - 130		04/12/21 13:24	1
	Toluene-d8 (Surr)	79		70 - 130		04/12/21 13:24	1

Lab Sample ID: LCS 680-663727/4

Matrix: Water

Analysis Ratch: 663727

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	d0.0	48.d		ug/L		97	70 - 130
Carbon f isulTf e	d0.0	43.9		ug/L		88	70 - 130
hetracploroetpene	d0.0	4d.8		ug/L		92	70 - 130
1,1-Dicploroetpane	d0.0	46.2		ug/L		92	70 - 130
1,2-DicploroAroAane	d0.0	46.0		ug/L		92	70 - 130
Moetone	2d0	203		ug/L		81	67 - 113
4-5 etpyl-2-Aentanone	2d0	183		ug/L		73	68 - 108
5 etpylene Cplorif e	d0.0	47.4		ug/L		9d	70 - 130
holuene	d0.0	41.8		ug/L		84	70 - 130
1,2,4-hricplorobenzene	d0.0	dd.2		ug/L		110	70 - 130
o-Xylene	d0.0	d2.6		ug/L		10d	70 - 130
Cplorobenzene	d0.0	d0.2		ug/L		100	70 - 130
1,1-Dicploroetpene	d0.0	47.6		ug/L		9d	70 - 130
Ortpof icplorobenzene	d0.0	48.8		ug/L		98	70 - 130
2-Butanone (5 EK)	2d0	219		ug/L		88	69 - 114
Etpylbenzene	d0.0	48.7		ug/L		97	70 - 130
IsoAroAylbenzene	d0.0	d2.0		ug/L		104	70 - 130
cis-1,2-Dicploroetpene	d0.0	49.9		ug/L		100	70 - 130
CploroTorm	d0.0	d0.6		ug/L		101	70 - 130
m-Xylene & A-Xylene	d0.0	d1.6		ug/L		103	70 - 130
Vinyl cplorif e	d0.0	d0.2		ug/L		100	66 - 129
Carbon tetracplorif e	d0.0	d4.8		ug/L		110	70 - 130
1,4-Dicplorobenzene	d0.0	d1.0		ug/L		102	70 - 130
1,2,4-hrimetpylbenzene	d0.0	66.4	*+	ug/L		133	70 - 130
1,3,d-hrimetpylbenzene	d0.0	62.9		ug/L		126	70 - 130
A-Cymene	d0.0	d4.0		ug/L		108	70 - 130
1,2,3-hricploroAroAane	d0.0	d0.2		ug/L		100	70 - 130
hricploroetpene	d0.0	47.2		ug/L		94	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		60 - 124
4-Bromofluorobenzene (Surr)	88		70 - 130

EuroTns hestMmerica, Savannap

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-663727/4

Matrix: Water

Analysis Batch: 663727

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-197113-1

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	105		70 - 130
Toluene-d8 (Surr)	85		70 - 130

Lab Sample ID: LCSD 680-663727/5 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 663727

2-Butanone (5 EK)

IsoAroAylbenzene

cis-1,2-Dicploroetpene

m-Xylene & A-Xylene

Carbon tetracplorif e

1,4-Dicplorobenzene

1,2,4-hrimetpylbenzene

1,3,d-hrimetpylbenzene

1,2,3-hricploroAroAane

Etpylbenzene

Cploro Torm

Vinyl cplorif e

A-Cymene

hricploroetpene

Prep Type: Total/NA

94

97

102

101

104

103

9d

109

100

127

118

99

106

89

69 - 114

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

66 - 129

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

	Spike	Spike LCSD LCSD					%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	d0.0	48.7		ug/L		97	70 - 130	1	30
Carbon f isulTf e	d0.0	42.d		ug/L		8d	70 - 130	3	30
hetracploroetpene	d0.0	42.9		ug/L		86	70 - 130	7	30
1,1-Dicploroetpane	d0.0	46.1		ug/L		92	70 - 130	0	30
1,2-DicploroAroAane	d0.0	42.3		ug/L		8d	70 - 130	8	20
Mcetone	2d0	220		ug/L		88	67 - 113	8	30
4-5 etpyl-2-Aentanone	2d0	186		ug/L		74	68 - 108	1	30
5 etpylene Cplorif e	d0.0	47.9		ug/L		96	70 - 130	1	30
holuene	d0.0	39.7		ug/L		79	70 - 130	d	30
1,2,4-hricplorobenzene	d0.0	d8.3		ug/L		117	70 - 130	d	30
o-Xylene	d0.0	d2.d		ug/L		10d	70 - 130	0	30
Cplorobenzene	d0.0	d0.6		ug/L		101	70 - 130	1	30
1,1-Dicploroetpene	d0.0	4d.7		ug/L		91	70 - 130	4	20
Ortpof icplorobenzene	d0.0	48.0		ug/L		96	70 - 130	2	30

2d0

d0.0

23d

48.d

d1.2

d0.3

d1.8

d1.d

47.7

d4.3

d0.2

63.d

d9.2

49.6

d2.8

44.3

ug/L

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		60 - 124
4-Bromofluorobenzene (Surr)	91		70 - 130
Dibromofluoromethane (Surr)	109		70 - 130
Toluene-d8 (Surr)	81		70 - 130

Euro Tns hest Mmerica, Savannap

4/14/2021

30

20

30

30

30

30

30

30

30

30

30

30

30

30

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

GC/MS VOA

Analysis Batch: 663281

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Ba
680-197113-1	MW-29S-03292021	Total/NA	Water	8260B	
680-197113-2	OW-Q2S-03292021	Total/NA	Water	8260B	
680-197113-3	OW-Q2I-03302021	Total/NA	Water	8260B	
680-197113-4	OW-Q2D-03292021	Total/NA	Water	8260B	
MB 680-663281/9	Method Blank	Total/NA	Water	8260B	
LCS 680-663281/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-663281/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 663289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197113-5	OW-Q1S-03302021	Total/NA	Water	8260B	
680-197113-6	OW-Q1I-03302021	Total/NA	Water	8260B	
680-197113-7	OW-Q1D-03302021	Total/NA	Water	8260B	
680-197113-8	OW-Q4S-03302021	Total/NA	Water	8260B	
680-197113-9	OW-Q4I-03302021	Total/NA	Water	8260B	
680-197113-10	OW-Q5S-03302021	Total/NA	Water	8260B	
680-197113-11	OW-Q5I-03302021	Total/NA	Water	8260B	
680-197113-12	OW-Q5D-03302021	Total/NA	Water	8260B	
680-197113-15	DUP-01	Total/NA	Water	8260B	
MB 680-663289/9	Method Blank	Total/NA	Water	8260B	
LCS 680-663289/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-663289/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 663313

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197113-13	EQB-01-03302021	Total/NA	Water	8260B	
680-197113-14	EQB-02-03302021	Total/NA	Water	8260B	
MB 680-663313/10	Method Blank	Total/NA	Water	8260B	
LCS 680-663313/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-663313/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 663625

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197113-4 - DL	OW-Q2D-03292021	Total/NA	Water	8260B	
MB 680-663625/8	Method Blank	Total/NA	Water	8260B	
LCS 680-663625/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-663625/4	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 663719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197113-7	OW-Q1D-03302021	Total/NA	Water	8260B	<u> </u>
680-197113-8	OW-Q4S-03302021	Total/NA	Water	8260B	
680-197113-12	OW-Q5D-03302021	Total/NA	Water	8260B	
680-197113-15	DUP-01	Total/NA	Water	8260B	
MB 680-663719/9	Method Blank	Total/NA	Water	8260B	
LCS 680-663719/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-663719/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 663727

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197113-3	OW-Q2I-03302021	Total/NA	Water	8260B	

Eurofins TestAmerica, Savannah

Job ID: 680-197113-1

1

4

0

4 4

12

1 *1*

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

ants, Inc. Job ID: 680-197113-1

GC/MS VOA (Continued)

Analysis Batch: 663727 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-663727/9	Method Blank	Total/NA	Water	8260B	
LCS 680-663727/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-663727/5	Lab Control Sample Dup	Total/NA	Water	8260B	

4

5

8

9

11

14

14

Joh ID: 6

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: MW-29S-03292021

Date Collected: 03/29/21 15:52 Date Received: 04/05/21 10:20

Client: Geosyntec Consultants, Inc.

Lab Sample ID: 680-197113-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	663281	04/08/21 21:10	P1C	TAL SAV
	Instrumer	nt ID: CMSC								

Date Collected: 03/29/21 17:06 Date Received: 04/05/21 10:20

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	663281	04/08/21 20:46	P1C	TAL SAV
	Instrumen	t ID: CMSC								

Client Sample ID: OW-Q2I-03302021 Lab Sample ID: 680-197113-3

Date Collected: 03/30/21 10:00 Date Received: 04/05/21 10:20

Batch Batch Dil Initial Final Batch **Prepared** Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed Analyst Lab 8260B Total/NA Analysis 5 mL 5 mL 663281 04/08/21 21:57 P1C TAL SAV Instrument ID: CMSC Total/NA Analysis 8260B 5 mL 5 mL 663727 04/12/21 21:18 EMA TAL SAV Instrument ID: CMSO2

Date Collected: 03/29/21 17:13 Date Received: 04/05/21 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	663281	04/08/21 21:33	P1C	TAL SAV
	Instrumer	nt ID: CMSC								
Total/NA	Analysis	8260B	DL	10	5 mL	5 mL	663625	04/10/21 21:12	EMA	TAL SAV
	Instrumer	nt ID: CMSO2								

Date Collected: 03/30/21 11:05 Date Received: 04/05/21 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	663289	04/08/21 20:25	UI	TAL SAV
	Instrumer	nt ID: CMSO2								

Client Sample ID: OW-Q1I-03302021 Lab Sample ID: 680-197113-6

Date Collected: 03/30/21 11:50 Date Received: 04/05/21 10:20

Bron Type	Batch	Batch Method	Bun	Dil	Initial	Final	Batch Number	Prepared or Analyzed	Analyst	Lab
Prep Type	Type	wethod	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	663289	04/08/21 17:11	UI	TAL SAV
	Instrumer	t ID: CMSO2								

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: OW-Q1D-03302021

Date Collected: 03/30/21 17:55 Date Received: 04/05/21 10:20

Lab Sample ID: 680-197113-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	8260B t ID: CMSC		10	5 mL	5 mL	663719	04/12/21 19:53	EMA	TAL SAV
Total/NA	Analysis Instrumen	8260B t ID: CMSO2		1	5 mL	5 mL	663289	04/08/21 17:36	UI	TAL SAV

Client Sample ID: OW-Q4S-03302021

Date Collected: 03/30/21 14:15 Date Received: 04/05/21 10:20

Lab Sample ID: 680-197113-8 **Matrix: Water**

Lab Sample ID: 680-197113-9

Lab Sample ID: 680-197113-10

Lab Sample ID: 680-197113-11

Matrix: Water

Matrix: Water

Matrix: Water

Batch Batch Batch Dil Initial Final **Prepared** Method or Analyzed **Prep Type** Type Run **Factor Amount** Amount Number Analyst Lab Total/NA 663719 04/12/21 17:31 EMA TAL SAV Analysis 8260B 5 mL 5 mL Instrument ID: CMSC Total/NA Analysis 8260B 5 mL 5 mL 663289 04/08/21 18:00 UI TAL SAV 1 Instrument ID: CMSO2

Client Sample ID: OW-Q4I-03302021

Date Collected: 03/30/21 15:20

Date Received: 04/05/21 10:20 Batch Ratch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab

663289 04/08/21 18:48 TAL SAV Total/NA Analysis 8260B 5 mL 5 mL Instrument ID: CMSO2

Client Sample ID: OW-Q5S-03302021

Date Collected: 03/30/21 15:45

Date Received: 04/05/21 10:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	663289	04/08/21 19:12	UI	TAL SAV
	Instrumer	nt ID: CMSO2								

Client Sample ID: OW-Q5I-03302021

Date Collected: 03/30/21 17:10

Date Received: 04/05/21 10:20

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 663289	Prepared or Analyzed 04/08/21 19:36	Analyst UI	Lab TAL SAV
	Instrumen	t ID: CMSO2								

Client Sample ID: OW-Q5D-03302021	Lab Sample ID: 680-197113-12
Date Collected: 03/30/21 17:49	Matrix: Water
Data Pacaiyad: 04/05/21 10:20	

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		10	5 mL	5 mL	663719	04/12/21 20:17	EMA	TAL SAV
	Instrumer	nt ID: CMSC								

Eurofins TestAmerica, Savannah

Lab Chronicle

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: OW-Q5D-03302021 Lab Sample ID: 680-197113-12

Date Collected: 03/30/21 17:49 **Matrix: Water**

Date Received: 04/05/21 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	663289	04/08/21 20:01	UI	TAL SAV

Client Sample ID: EQB-01-03302021

Lab Sample ID: 680-197113-13 Date Collected: 03/30/21 18:40 **Matrix: Water**

Date Received: 04/05/21 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	663313	04/08/21 14:45	Y1S	TAL SAV
	Instrumen	t ID: CMSU								

Client Sample ID: EQB-02-03302021

Lab Sample ID: 680-197113-14 Date Collected: 03/30/21 18:45 **Matrix: Water**

Date Received: 04/05/21 10:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	663313	04/08/21 15:05	Y1S	TAL SAV
	Instrumer	nt ID: CMSU								

Client Sample ID: DUP-01 Lab Sample ID: 680-197113-15 **Matrix: Water**

Date Collected: 03/30/21 00:00 Date Received: 04/05/21 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	8260B at ID: CMSC		10	5 mL	5 mL	663719	04/12/21 20:40	EMA	TAL SAV
Total/NA	Analysis Instrumer	8260B		1	5 mL	5 mL	663289	04/08/21 20:49	UI	TAL SAV

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-197113-1

Client Information	Project Manager Adria Reimer			Lab PM Eddie	Ö	arrier Tracking No(s)	COC No
She Contact Tim Hassett	Phone: 678-202-9564	L		E-Mail eddie t	E-Mail eddie barnett@eurofinset.com		Page 1 of
Client Contact Hercules LLC					Analysis Requested	ested	# qop
	Due Date Requested	Ü					Cod
	TAT Requested (days):	ys): standard TAT	TAT		chlorobenzene; ymene, p-		A - HCL M - Hexane B - NaOH N - None C - Zh Acetate O - AshaOZ D - Nintic Acid P - NaZOAS E - NaHSOA R - NaZSO3 F - MeOH R - NaZSO3
Project Name. GW Investigation				T	Chiornes 1.4 Di		D
Site Heroules LLC-Pinova, Inc. Brunswick Facility					e; 1,1-Did obenzene chloroben chlorobene; ide, Carbio ,2 Dichlo	apinold	L-EDA Z other (specify)
Sample Identification	Sample Date	Sample	Sample Type (C=comp,	Matrix (www.e.c. Savoid. Ownershool Sample (Yes or N.	Perform MSMSD (Yee or No) 3260B VOCs - 1,1-Dichloroethar 1,2-Dichloropense: 1,3-Dichlor 1,2,4-Trichlorobenzene: 1,3,5-Tr 2-Butanone (MEK), 4-methyl-2-p Acetone: Benzene: Carbon Disul Chlorobenzene: Chloroform: cis-	'analyx-o ,analyX-q & analyX-n DlyniV ;anaxiaonoidainT ;anaulo' nT-č,£,f ,anaxnadiydiamnT-è,\$,	otal Mumber of containers
	\bigvee	X	Preserva	de:		1	Special instructions/Note
12026250-563-MW	12/62/5	7551	5	M	×		
NW-Q25-03272021	3/29/21	1706	5	3	×		
dw- Q2I -03302021	3/30/21	1000	5	3	X		
OW-920-03220011	3/29/21	1713	5	3	×		Áрс
dw-015-0230702	3/30/21	1105	5	3	×		pisno
OW - QII- 03502021	12/05/8	1150	5	3	×		o jo
OW - GID - 63 202021	3/20/71	1753	5	3	×		reug
- (3	3 20 21	1415	5	3	×		113
OW-GAI- 0322011	3/30/21	1520	5	3	×		.261
OW - (2.55 - 0330201)	3/50/21	1595	5	3	×		-089
ON -QSI - 03202021	3/30/21	1710	5	3	×		
ant	Poison B Unknown		Radiological		Sample Disposal (A fee may be assessed if samples are Pretum To Client Disposal By Lab	essed if samples are	retained longer than 1 month) Archive For Months
juested: I, II, III, IV, C	17 10 10 10				Requirem	32	
Method of Shipment Reinquished by Reinquished by Reinquished by	Date/Time	4	3	Springery Screening Company	Received by S	Date/Time	Company 17
Custody Seals Intact: Custody Seal No					Cooler Temperature(s) °C and Other Remarks		

Environment Testing America

Phone (912) 354-7858 Fax (912) 352-0165										
Client Information	Project Manager Adria Reimer			Lab PM Eddie	Lab PM Eddie Barnett	E)	Camer Tracking No(s)	Ō	COC No	
Site Contact. Tim Hassett	Phone 678-202-9564			E-Mail eddie	amett@eu	E-Mail eddie barnett@eurofinset.com		ă.	Page 20	F7
Client Contact Hercules LLC						Analysis Requested	ested	3	# qor	
	Due Date Requested:	÷						-	Preservation Codes:	68:
	TAT Requested (days)	standard TAT	TAT	П	eue	: :piouqe! : :weue b-:		₹ ₩000₩£	A · HCL B · NaOH C · Zn Acetate D · Ninc Acid E · NaHSO4 F · MeOH	M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3
Project Name GW Investigation			1	T	chloroeth	nzene Cy nor Tetra proethene		01-3	v	S - H2SO4 T - TSP Dodecahydrate U - Acetone V - MCAA
Site Hercules LLC. Prinova, Inc. Brunswick Facility					(Trichlorober S-pentanone; Sulfide: Carb se-1,2-Dichlorion; Methyler	/ Chlonde	8 5 2	K · EDTA L · EDA Other:	W - pH 4-5 Z - other (specify)
A STATE OF THE STA				Matrix (Wereate: Strepatic. Orvessiate):	erform MS/MSD (Yes or No 2608 VOCs - 1,1-Dichloroeth	2-Dichloroptopane, 1,3,5- 2,4,110chlorobenzene, 1,3,5- Butanone (MEK); 4-methyl-2 cetone, Benzene, Cathon Dis hlorobenzene, Chloroform, c flytbenzene, Isopropyibenze Tyylene & p-Xylene, o-xylene	vivo. Trichloroethane. Viny. 3.5.	annianos to redmuk lazo		
Dample Identification	Sample Date	X	Preservation Code	3		E O O	1	1×	Special In	Special Instructions/Note:
UW-(350-03302021	03/30/21	1749	5	2		×				
EGB-01-0330204	3/30/21	1740	5	Z		X				
Eaz-02-0330200	3/20/21	1345	5	3		У				
Fare Durei	12/08/8	1	5	2		X				
					Sample	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month	ssed if samples	are retained	londer than 1.	nonthi
le Skin Imfant V, Other (specify)	Прогод В Пикпомп		Radiological		Special It	Return To Client Disp Special Instructions/OC Requirements:	Disposal By Lab	Archive For	For	Months
Relinquished by Relinquished by Relinquished by	Date/Time Of O 1 (1021	956	Company Company	Received by	ved by \mathcal{Y}	Date/Time Date/Time	7-5-21	bro	Company
Custody Seals Intact: Custody Seal No.:					Cooler	Cooler Temperature(s) °C and Other Remarks		- 1112		

Joshua Barnhart

From:

Adria Reimer

Sent:

March 30, 2021 21:19

To:

Dan Gibbs

Cc:

Joshua Barnhart

Subject:

BWK gw samples - VOC list

Attachments:

COC Blank.xls

For the COC:

Client Contact: Hercules LLC

PM: Adria Reimer

Project name: GW Investigation

Site: Hercules LLC/Pinova Inc Brunswick Facility

Analysis: 8260B VOCs: 1.1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloropropane

- 1,2-Dichlorobenzene 1,4-Dichlorobenzene
- 1,2,4-Trichlorobenzene
- 1,2,3-Trichloropropane
- 1,2,4-Trimethylbenzene
- 1,3,5-Trimethylbenzene

Cymene, p-

2-Butanone (MEK) 4-Methyl-2-pentanone

Acetone Benzene

Carbon disulfide Carbon tetrachloride Chlorobenzene

Chloroform

cis-1,2-Dichloroethene

Ethylbenzene Isopropylbenzene

Methylene Chloride

m-Xylene & p-Xylene o-Xylene

Tetrachloroethene

Toluene

Trichloroethene

Vinyl chloride

Either try to fit these in the rows at the top of the COC, or just put "8260B VOCs - see list in Special Instructions" and list them there, or you can try using the attached if you have somewhere to print it out. If you want to handwrite the COC and send me a photo before submitting labs to lab, I would be more than happy to review.

Plz let me know if you have any questions - thanks!!!

Adria L. Reimer, P.G. (GA, FL) Senior Geologist Geosyntec Consultants

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 680-197113-1

Login Number: 197113 List Source: Eurofins TestAmerica, Savannah

List Number: 1

Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197113-1

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87052	06-30-21
Georgia	State	E87052	06-30-21

3

4

_

0

9

11

13

14

Memorandum

Date: 18 May 2021

To: Adria Reimer

Cristin Corless Krachon

From: Matthew Richardson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverable - Eurofins

TestAmerica Job ID 680-197113-1

SITE: Hercules Brunswick GW Investigation

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of twelve water samples, one field duplicate sample and two equipment blanks, collected 29-30 March 2021, as part of Hercules Brunswick sampling event. Eurofins TestAmerica Savannah, Georgia analyzed the samples for the following analytical test:

• Select Volatile Organic Compounds (VOCs) by United States Environmental Protection Agency (US EPA) Methods 5030B/8260B

EXECUTIVE SUMMARY

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below and based on the information provided, the data as qualified are usable for supporting project objectives. The qualified data should be used within the limitations of the qualifications.

The data were reviewed based on professional and technical judgment and the following documents:

- US EPA National Functional Guidelines for Superfund Organic Methods Data Review, November 2020 (US EPA-540-R-20-005); and
- The pertinent methods referenced by the laboratory report.

The following samples were analyzed and validated at Stage 2A level in the data set:

Laboratory ID	Client ID
680-197113-1	MW-29S-03292021

Laboratory ID	Client ID
680-197113-2	OW-Q2S-03292021

Hercules Brunswick Data Validation 18 May 2020 Page 2

Laboratory ID	Client ID
680-197113-3	OW-Q2I-03302021
680-197113-4	OW-Q2D-03292021
680-197113-5	OW-Q1S-03302021
680-197113-6	OW-Q1I-03302021
680-197113-7	OW-Q1D-03302021
680-197113-8	OW-Q4S-03302021
680-197113-9	OW-Q4I-03302021

Laboratory ID	Client ID
680-197113-10	OW-Q5S-03302021
680-197113-11	OW-Q5I-03302021
680-197113-12	OW-Q5D-03302021
680-197113-13	EQB-01-03302021
680-197113-14	EQB-02-03302021
680-197113-15	DUP-01

The samples were received within 0-6 degrees Celsius (°C). No sample preservation issues were noted by the laboratory.

A collection time was not documented on the chain of custody (COC) for the field duplicate sample. The field duplicate sample was logged by the laboratory with a collection time of 00:00.

1.0 SELECT VOLATILE ORGANIC COMPOUNDS

The samples were analyzed for select VOCs by US EPA methods 5030B/8260B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Surrogates
- ✓ Equipment Blank
- ✓ Trip Blank
- ⊗ Field Duplicate
- ✓ Sensitivity
- ⊗ Electronic Data Deliverable Review

1.1 Overall Assessment

1.1.1 Completeness

The VOC data reported in this laboratory report are considered usable for supporting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the

Hercules Brunswick Data Validation 18 May 2020 Page 3

number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.1.2 Analysis Anomaly

The laboratory narrative indicated that the response of internal standard 1,4-dichlorobenzene-d4 in sample OW-Q2D-03292021 was outside the method specified acceptance criteria. Additional information from the laboratory indicated that the 1,4-dichlorobenzene-d4 response in the 1:10 dilution analysis of sample OW-Q2D-03292021 was low and outside the method specified acceptance criteria. Since no target analytes associated with the low internal standard recovery were reported from the dilution analysis, no qualifications were applied to the data.

1.2 Holding Times

The holding time for VOC analysis of a preserved water sample is 14 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Six method blanks were reported (batches 663281, 663289, 663313, 663625, 663719 and 663727). VOCs were not detected in the method blanks above the reporting limits (RLs).

1.4 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD pairs were not reported.

1.5 <u>Laboratory Control Sample (LCS)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Six LCS/LCS duplicate (LCSD) pairs were reported. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria, with the following exceptions.

One or both of the recoveries of 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene in the LCS/LCSD pair in batch 663289 were high and outside the laboratory specified acceptance criteria. Since 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene were not detected in the associated samples, no qualifications were applied to the data.

Hercules Brunswick Data Validation 18 May 2020 Page 4

One or both of the recoveries of 4-methyl-2-pentanone and methylene chloride in the LCS/LCSD pair in batch 663313 were high and outside the laboratory specified acceptance criteria. Since 4-methyl-2-pentanone and methylene chloride were not detected in the associated samples, no qualifications were applied to the data.

The LCS recovery of 1,2,4-trichlorobenzene and the RPD for 1,1-dichloroethene in the LCS/LCSD pair in batch 663625were high and outside the laboratory specified acceptance criteria. Since 1,2,4-trichlorobenzene and 1,1-dichloroethene were reported in the associated sample from a different analysis batch, no qualifications were applied to the data.

The LCSD recovery of 4-methyl-2-pentanone in the LCS/LCSD pair in batch 663719 was high and outside the laboratory specified acceptance criteria. Since 4-methyl-2-pentanone was reported in the associated samples from a different analysis batch, no qualifications were applied to the data.

The LCS recovery of 1,2,4-trichlorobenzene in the LCS/LCSD pair in batch 663727 was high and outside the laboratory specified acceptance criteria. Since 1,2,4-trichlorobenzene was reported in the associated sample from a different analysis batch, no qualifications were applied to the data.

1.6 **Surrogates**

Acceptable surrogate recoveries were reported for the sample analyses, with the following exceptions.

The recoveries of surrogate toluene-d8 in samples OW-Q5D-03302021, DUP-01 and OW-Q1D-03302021 were low and outside the laboratory specified acceptance criteria. Since the recoveries of the remaining surrogates, dibromofluoromethane, 4-bromofluorobenzene and 1,2-dichloroethane-d4, were within the laboratory specified acceptance criteria and based on professional and technical judgment, no qualifications were applied to the data.

1.7 Equipment Blank

Two equipment blanks, EQB-01-03302021 and EQB-02-03302021, were collected with the sample set. VOCs were not detected in the equipment blanks above the RLs.

1.8 Trip Blank

A trip blank did not accompany the sample set. This did not result in qualification of the data, but the discrepancy should be noted by the data user.

Final Review: ME Tyler 5/25/2021

1.9 Field Duplicate

One field duplicate sample, DUP-01, was collected with the sample set. Acceptable precision (RPD \leq 30%) was demonstrated between the field duplicate and the original sample, OW-Q1D-03302021, with the following exception.

Toluene was detected in the parent sample OW-Q1D-03302021 and not detected in the field duplicate sample DUP-01, resulting in a noncalculable RPD result. Therefore, the toluene concentration in OW-Q1D-03302021 was J qualified as estimated, and the non-detect toluene result in DUP-01 was UJ qualified as estimated less than the RL.

Sample	Analyte	Laboratory Result (µg/L)	Laboratory Flag	RPD	Validation Result (µg/L)	Validation Qualifier*	Reason Code**
DUP-01	Toluene	1.0	U	NC	1.0	UJ	7
OW-Q1D-03302021	Toluene	1.7	NA		1.7	J	7

μg/L-microgram per liter

U-not detected at the RL

NA-not applicable

NC-noncalculable

1.10 Sensitivity

The samples were reported to the RLs. Elevated non-detect results were not reported.

1.11 Electronic Data Deliverable (EDD) Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. The samples were reported to the RLs; both the method detection limits (MDLs) and RLs were listed in the EDD. No other discrepancies were identified between the level II report and the EDD.

* * * * *

Final Review: ME Tyler 5/25/2021

^{*} Validation qualifier definitions are provided in Attachment 1 of this report

^{**} Reason code definitions are provided in Attachment 2 of this report

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Final Review: ME Tyler 5/25/2021

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Extraction or analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits or RPD outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample duplicate

RPD - Relative percent difference

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-197237-1

Client Project/Site: Hercules Brunswick - GW Investigation

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Adria Reimer

Authorized for release by: 4/19/2021 9:01:39 AM

Ash Barnett

Eddie Barnett, Project Manager I (912)250-0280

Eddie.Barnett@Eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

40

12

14

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Method Summary	5
Definitions/Glossary	6
Detection Summary	7
Client Sample Results	9
Surrogate Summary	21
QC Sample Results	22
QC Association Summary	30
Lab Chronicle	31
Chain of Custody	33
Receipt Checklists	35
Certification Summary	36

Case Narrative

Client: Geosyntec Consultants, Inc.

r jo/ect\$-lite: Bejcules wjunsk icW- Gv Ingestihation

Job ID: 680-1973P7-1

Job ID: 680-197237-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: Hercules Brunswick - GW Investigation

Report Number: 680-197237-1

v itx txe epcedtions notef as nahs oj motnotes, stanf ajf analytical djotocols k eje mollok ef in txe analysis ontxe saq dles anf no djobleq s k eje encountejef oj anoq alies obsejgef. In affition all labojatojy Euality contjol saq dles k eje k itxin establisxef contjol liq its, k itx any epcedtions notef belok. z acx saq dle k as analyFef to acxiege txe lok est dossible jedojtinh liq it k itxin txe constjaints om txe q etxof. In txe egent omintej mejence oj analytes djesent at xihx concentjations, saq dles q ay be filutef. Toj filutef saq dles, txe jedojtinh liq its aje af /ustef jelatige to txe filution jeEuijef.

RECEIPT

4xe saq dles k eje jeceigef on 05\$37\$30312txe saq dles ajjigef in hoof confition, djodejly djesejgef anf on ice. 4xe teq dejatuje ontxe coolej at jeceidt k as 5.0; C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Haq dles $^{\circ}$ v -M5D-050P3031 (680-1973P7-1), Ov -P8H-050P3031 (680-1973P7-2), Ov -P8I-050P3031 (680-1973P7-P), Ov -P8D-050P3031 (680-1973P7-5), Ov -QQH-050P3031 (680-1973P7-Q), Ov -QQI-050P3031 (680-1973P7-6), Ov -QQD-050P3031 (680-1973P7-7), Ov -39I-050P3031 (680-1973P7-8), DUr -03-050P3031 (680-1973P7-9), DUr -0P-050P3031 (680-1973P7-10), z Mw-0P-050P3031 (680-1973P7-11) anf z Mw-05-050P3031 (680-1973P7-13) k eje analyFef roj Volatile $^{\circ}$ j hanic Coq dounf s (GC-OH) in accojf ance k itx z r A Hv -856 Oetxof 8360w. 4xe saq dles k eje analyFef on 05 $^{\circ}$ 53031 anf 05 $^{\circ}$ 9031.

Insumincient saq dle goluq e k as agailable to dej moj q a q atjip sdiWeSq atjip sdiWef udlicate (OHSDHD) associatef k itx analytical batcxes 680-6650QD anf 680-665373.

4xe labojatojy contjol saq dle (LCH) anf Soj labojatojy contjol saq dle f udlicate (LCHD) moj analytical batcx 680-6650Q0 jecogejef outsif e contjol liq its moj txe mollok inh analyte: Oetxylene Cxlojif e. 4xis analyte k as biasef xihx in txe LCH anf k as not f etectef in txe associatef saq dles2txejemoje, txe f ata xage been jedojtef.

4xe labojatojy contjol saq dle (LCH) anf Soj labojatojy contjol saq dle f udlicate (LCHD) moj analytical batcx 680-6650PP jecogejef outsif e contjol liq its moj txe mollok inh analyte: 1,3,5-4jiq etxylbenFene. 4xis analyte k as biasef xihx in txe LCH anf k as not f etectef in txe associatef saq dles2txejemoje, txe f ata xage been jedojtef.

4xe laboj atoj y contjol saq dle (LCH) anf Soj laboj atoj y contjol saq dle f udlicate (LCHD) moj analytical batcx 680-665373 jecogej ef outsif e contjol liq its moj txe mollok inh analyte: Oetxylene Cxloj if e. 4xis analyte k as biasef xihx in txe LCH anf k as not f etectef in txe associatef saq dles2txej emoje, txe f ata xage been jedoj tef.

4xe labojatojy contjol saq dle (LCH) moj analytical batcx 680-665373 jecogejef outsif e contjol liq its moj txe mollok inh analyte: Acetone. Acetone xas been if entirinef as a dooj dej moj q inh analyte k xen analyFef usinh txis q etxof 2txej emoje, je-eptjaction\$e-analysis k as not dej moj q ef . 4xese jesults xage been jedoj tef anf Eualimef.

4xe labojatojy contjol saq dle f udlicate (LCHD) roj analytical batcx 680-665373 jecogejef outsif e contjol liq its roj txe rollok inh analytes: Acetone anf 5-Oetxyl-3-dentanone (OlwK). 4xese analytes xage been if entiriref as a dooj dej roj q inh analyte k xen analyFef usinh txis q etxof 2txej eroj e, je-eptjaction\$e-analysis k as not dej roj q ef. 4xese jesults xage been jedoj tef anf Eualiriref.

Haq dles ° v -M5D-050P3031 (680-1973P7-1)[10X], Ov -P8D-050P3031 (680-1973P7-5)[Q0X], Ov -QQD-050P3031 (680-1973P7-7)[10X], DUr -03-050P3031 (680-1973P7-9)[3QX] anf DUr -0P-050P3031 (680-1973P7-10)[3QX] jeEuijef filution djioj to analysis. 4xe jedojtinh liq its xage been af /ustef accojf inhly.

No affitional analytical of Euality issues keep noted, otxel txan txose fescible aboge of in txe Derimitions Clossaly dahe.

K

4

5

8

11

13

14

Sample Summary

lientGsnoyctGnulotyaiGtGy. ItuPrjo/nuGSHe6a:BnjuainywjatykeuW-sv ItgnyGMyGoot

Job ID: 680-1973C7-1

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
30-1973C7-1	2 v -5 4D-040C3031	v, Gaj	04\$0C\$31 09:0O	04\$07\$31 10:30	
30-1973C7-3	Qv -08H-040C3031	v, Gaj	04\$0C\$31 10:08	04\$07\$31 10:30	
30-1973C7-C	Qv -08I-040C3031	v, @aj	04\$0C\$31 11:0C	04\$07\$31 10:30	
30-1973C7-4	Qv -@D-040C3031	v, Gaj	04\$0C\$31 13:0O	04\$07\$31 10:30	
30-1973C7-O	Qv -00H-040C3031	v, Gaj	04\$0C\$31 1C:C6	04\$07\$31 10:30	
30-1973C7-6	Qv -00-040C3031	v, Gaj	04\$0C\$31 14:C8	04\$07\$31 10:30	
30-1973C7-7	Qv -000-040C3031	v, Gaj	04\$0C\$31 10.CC	04\$07\$31 10:30	
30-1973C7-8	Qv -39I-040C3031	v, Gaj	04\$0C\$31 16:4O	04\$07\$31 10:30	
30-1973C7-9	DEr -03-040C3031	v, Gaj	04\$9C\$31 00:00	04\$07\$31 10:30	
30-1973C7-10	DEr -0C-040C3031	v, Gaj	04\$9C\$31 00:00	04\$07\$31 10:30	
30-1973C7-11	U5 w-0C-040C3031	v, Gaj	04\$9C\$31 17:00	04\$07\$31 10:30	
30-1973C7-13	U5 w-04-040C3031	v, Gaj	04\$0C\$31 17:10	04\$07\$31 10:30	

Method Summary

lient Gs noyct Caul ot yai Ģt Oy. It uP rjo/nu OSHeCa: Bnjuainy wjat yk euW-sv It gny Os4, Geot Job ID: 680-1973C7-1

Method	Method Description	Protocol	Laboratory
8360w	Voi, Gen Oj4, tou Iompoatdy (s ISMH)	Hv 826	TAL HAV
5000w	r aj 4n , t d Tj, p	Hv 826	TAL HAV

Protocol References:

Hv 826 = "TnyGMn(Body Foj Eg, ia, @ 4 Hoied v , y@. r hcyeu, i\$ hnmeu, i Mn(Body". Theed Edenot . Nognmbnj 1986 At d IQ Upd, GyP

Laboratory References:

TAL HAV = Eaj ofet y Tny (Amnjeu, . H, g, tt, h. 5103 L, Rouhn Agnt an. H, g, tt, h. s A C1202. TEL (913) C52-7858

Q

9

11

12

14

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Job ID: 680-197237-1

Project/Site: Hercules Brunswick - GW Investigation

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.
U Indicates the analyte was analyzed for but not detected.

Glossary

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

6

9

10

12

14

Client: Geosyntec Consultants, Inc.

Job ID: 680-197237-1

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: MW-2 9D-0903101L ba6 Sample ID: 870-LRA13A-L

f nalyte	seUult 2 ualiFier	s b	QDb hnit	Dil dac D	QetPoT	Orep 4ype
1,4-Dichlorobenzene	14	10	ug/L	10	8260B	Total/NA
Benzene	990	10	ug/L	10	8260B	Total/NA
Chlorobenzene	660	10	ug/L	10	8260B	Total/NA
Ethylbenzene	180	10	ug/L	10	8260B	Total/NA
Isopropylbenzene	260	10	ug/L	10	8260B	Total/NA
m-Xylene & p-Xylene	320	10	ug/L	10	8260B	Total/NA

Client Sample ID: QW-37S-0903101L ba6 Sample ID: 870-LRA13A-1

No Detections.

Client Sample ID: QW-37I-0903101L ba6 Sample ID: 870-LRA13A-3

f nalyte	seUult 2 ualiFier	s b	QDb hnit	Dil dac [QetPoT	Orep 4ype
Chlorobenzene	4.5	1.0	ug/L		8260B	Total/NA

Client Sample ID: QW-37D-0903101L ba6 Sample ID: 870-LRA13A-9

f nalyte	s eUult	2 ualiFier	s b	QDb	h nit	Dil dac	D	QetPoT	Orep 4ype
Benzene	1200		50		ug/L	50	_	8260B	Total/NA
Chlorobenzene	910		50		ug/L	50		8260B	Total/NA
Ethylbenzene	74		50		ug/L	50		8260B	Total/NA
Isopropylbenzene	460		50		ug/L	50		8260B	Total/NA
m-Xylene & p-Xylene	79		50		ug/L	50		8260B	Total/NA

Client Sample ID: QW-55S-0903101L ba6 Sample ID: 870-LRA13A-5

No Detections.

Client Sample ID: QW-55I-0903101L ba6 Sample ID: 870-LRA13A-8

f nalyte	s eUult 2 ualiFier	s b	QDb hnit	Dil dac D	QetPoT	Orep 4ype
Benzene	14	1.0	ug/L		8260B	Total/NA
Chlorobenzene	8.2	1.0	ug/L	1	8260B	Total/NA
Isopropylbenzene	1.8	1.0	ug/L	1	8260B	Total/NA

Client Sample ID: QW-55D-0903101L ba6 Sample ID: 870-LRA13A-A

f nalyte	seUult 2 ualiFier	s b	QDb hnit	Dil dac D	QetPoT	Orep 4ype
1,4-Dichlorobenzene	13	10	ug/L		8260B	Total/NA
Benzene	890	10	ug/L	10	8260B	Total/NA
Chlorobenzene	620	10	ug/L	10	8260B	Total/NA
Ethylbenzene	30	10	ug/L	10	8260B	Total/NA
Isopropylbenzene	310	10	ug/L	10	8260B	Total/NA
m-Xylene & p-Xylene	23	10	ug/L	10	8260B	Total/NA

Client Sample ID: QW-1RI-0903101L ba6 Sample ID: 870-LRA13A-7

f nalyte	seUult 2 ualiFier	s b	QDb hnit	Dil dac D	QetPoT	Orep 4ype
Benzene	3.1	1.0	ug/L		8260B	Total/NA
Chlorobenzene	1.1	1.0	ug/L	1	8260B	Total/NA
Isopropylbenzene	1.8	1.0	ug/L	1	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

4/19/2021

Detection Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197237-1

ba6 Sample ID: 870-LRA13A-R

ba6 Sample ID: 870-LRA13A-L0

Client Sample ID: Dh O-01-0903101L

 f nalyte	seUult 2 ualiFier	s b	QDb hnit	Dil dac D	QetPoT	Orep 4ype
Benzene	920	25	ug/L	25	8260B	Total/NA
Chlorobenzene	740	25	ug/L	25	8260B	Total/NA
Ethylbenzene	220	25	ug/L	25	8260B	Total/NA
Isopropylbenzene	290	25	ug/L	25	8260B	Total/NA
m-Xvlene & p-Xvlene	370	25	ua/L	25	8260B	Total/NA

Client Sample ID: Dh O-03-0903101L

f nalyte	seUult 2	2 ualiFier	s b	QDb	hnit	Dil dac	D	QetPoT	Orep 4ype
Acetone	380 *-	+	250		ug/L	25	_	8260B	Total/NA
Benzene	1100		25		ug/L	25		8260B	Total/NA
Chlorobenzene	850		25		ug/L	25		8260B	Total/NA
Ethylbenzene	73		25		ug/L	25		8260B	Total/NA
Isopropylbenzene	410		25		ug/L	25		8260B	Total/NA
m-Xylene & p-Xylene	70		25		ug/L	25		8260B	Total/NA

Client Sample ID: E2 B-03-0903101L

ba6 Sample ID: 870-LRA13A-LL

No Detections.

Client Sample ID: E2 B-09-0903101L

ba6 Sample ID: 870-LRA13A-L1

No Detections.

This Detection Summary does not include radiochemical test results.

4/19/2021

3

4

6

9

. .

13

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-1

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: OW-Q4D-04032021

Date Collected: 04/03/21 09:05 Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	10	U	10		ug/L			04/14/21 19:24	10
1,1-Dichloroethene	10	U	10		ug/L			04/14/21 19:24	10
1,2,3-Trichloropropane	10	U	10		ug/L			04/14/21 19:24	10
1,2,4-Trichlorobenzene	50	U	50		ug/L			04/14/21 19:24	10
1,2,4-Trimethylbenzene	10	U	10		ug/L			04/14/21 19:24	10
1,2-Dichlorobenzene	10	U	10		ug/L			04/14/21 19:24	10
1,2-Dichloropropane	10	U	10		ug/L			04/14/21 19:24	10
1,3,5-Trimethylbenzene	10	U	10		ug/L			04/14/21 19:24	10
1,4-Dichlorobenzene	14		10		ug/L			04/14/21 19:24	10
2-Butanone (MEK)	100	U	100		ug/L			04/14/21 19:24	10
4-Methyl-2-pentanone (MIBK)	100	U	100		ug/L			04/14/21 19:24	10
Acetone	100	U	100		ug/L			04/14/21 19:24	10
Benzene	990		10		ug/L			04/14/21 19:24	10
Carbon disulfide	20	U	20		ug/L			04/14/21 19:24	10
Carbon tetrachloride	10	U	10		ug/L			04/14/21 19:24	10
Chlorobenzene	660		10		ug/L			04/14/21 19:24	10
Chloroform	10	U	10		ug/L			04/14/21 19:24	10
cis-1,2-Dichloroethene	10	U	10		ug/L			04/14/21 19:24	10
Ethylbenzene	180		10		ug/L			04/14/21 19:24	10
Isopropylbenzene	260		10		ug/L			04/14/21 19:24	10
Methylene Chloride	50	U *+	50		ug/L			04/14/21 19:24	10
m-Xylene & p-Xylene	320		10		ug/L			04/14/21 19:24	10
o-Xylene	10	U	10		ug/L			04/14/21 19:24	10
p-Cymene	10	U	10		ug/L			04/14/21 19:24	10
Tetrachloroethene	10	U	10		ug/L			04/14/21 19:24	10
Toluene	10	U	10		ug/L			04/14/21 19:24	10
Vinyl chloride	10	U	10		ug/L			04/14/21 19:24	10
Trichloroethene	10	U	10		ug/L			04/14/21 19:24	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	106		70 - 130			-		04/14/21 19:24	10
1,2-Dichloroethane-d4 (Surr)	101		60 - 124					04/14/21 19:24	10
4-Bromofluorobenzene (Surr)	101		70 - 130					04/14/21 19:24	10
Toluene-d8 (Surr)	106		70 - 130					04/14/21 19:24	10

4/19/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-2

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: MW-38S-04032021

Date Collected: 04/03/21 10:08 Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D Prepar	ed Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0	ug/L		04/14/21 17:44	1
1,1-Dichloroethene	1.0	U	1.0	ug/L		04/14/21 17:44	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L		04/14/21 17:44	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L		04/14/21 17:44	1
1,2,4-Trimethylbenzene	1.0	U	1.0	ug/L		04/14/21 17:44	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L		04/14/21 17:44	1
1,2-Dichloropropane	1.0	U	1.0	ug/L		04/14/21 17:44	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L		04/14/21 17:44	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L		04/14/21 17:44	1
2-Butanone (MEK)	10	U	10	ug/L		04/14/21 17:44	1
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L		04/14/21 17:44	1
Acetone	10	U	10	ug/L		04/14/21 17:44	1
Benzene	1.0	U	1.0	ug/L		04/14/21 17:44	1
Carbon disulfide	2.0	U	2.0	ug/L		04/14/21 17:44	1
Carbon tetrachloride	1.0	U	1.0	ug/L		04/14/21 17:44	1
Chlorobenzene	1.0	U	1.0	ug/L		04/14/21 17:44	1
Chloroform	1.0	U	1.0	ug/L		04/14/21 17:44	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L		04/14/21 17:44	1
Ethylbenzene	1.0	U	1.0	ug/L		04/14/21 17:44	1
Isopropylbenzene	1.0	U	1.0	ug/L		04/14/21 17:44	1
Methylene Chloride	5.0	U *+	5.0	ug/L		04/14/21 17:44	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L		04/14/21 17:44	1
o-Xylene	1.0	U	1.0	ug/L		04/14/21 17:44	1
p-Cymene	1.0	U	1.0	ug/L		04/14/21 17:44	1
Tetrachloroethene	1.0	U	1.0	ug/L		04/14/21 17:44	1
Toluene	1.0	U	1.0	ug/L		04/14/21 17:44	1
Vinyl chloride	1.0	U	1.0	ug/L		04/14/21 17:44	1
Trichloroethene	1.0	U	1.0	ug/L		04/14/21 17:44	1
Surrogate	%Recovery	Qualifier	Limits		Prepar	ed Analyzed	Dil Fac
Dibromofluoromethane (Surr)	104		70 - 130			04/14/21 17:44	1
1,2-Dichloroethane-d4 (Surr)	99		60 - 124			04/14/21 17:44	1
4-Bromofluorobenzene (Surr)	104		70 - 130			04/14/21 17:44	1
Toluene-d8 (Surr)	106		70 - 130			04/14/21 17:44	1

4/19/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-3

Client Sample ID: MW-38I-04032021 Date Collected: 04/03/21 11:03

Matrix: Water

Job ID: 680-197237-1

Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/14/21 18:04	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 18:04	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/14/21 18:04	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/14/21 18:04	1
1,2,4-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 18:04	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 18:04	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/14/21 18:04	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 18:04	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 18:04	1
2-Butanone (MEK)	10	U	10		ug/L			04/14/21 18:04	1
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			04/14/21 18:04	1
Acetone	10	U	10		ug/L			04/14/21 18:04	1
Benzene	1.0	U	1.0		ug/L			04/14/21 18:04	1
Carbon disulfide	2.0	U	2.0		ug/L			04/14/21 18:04	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/14/21 18:04	1
Chlorobenzene	4.5		1.0		ug/L			04/14/21 18:04	1
Chloroform	1.0	U	1.0		ug/L			04/14/21 18:04	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 18:04	1
Ethylbenzene	1.0	U	1.0		ug/L			04/14/21 18:04	1
Isopropylbenzene	1.0	U	1.0		ug/L			04/14/21 18:04	1
Methylene Chloride	5.0	U *+	5.0		ug/L			04/14/21 18:04	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/14/21 18:04	1
o-Xylene	1.0	U	1.0		ug/L			04/14/21 18:04	1
p-Cymene	1.0	U	1.0		ug/L			04/14/21 18:04	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/14/21 18:04	1
Toluene	1.0	U	1.0		ug/L			04/14/21 18:04	1
Vinyl chloride	1.0	U	1.0		ug/L			04/14/21 18:04	1
Trichloroethene	1.0	U	1.0		ug/L			04/14/21 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	106		70 - 130			-		04/14/21 18:04	1
1,2-Dichloroethane-d4 (Surr)	100		60 - 124					04/14/21 18:04	1
4-Bromofluorobenzene (Surr)	102		70 - 130					04/14/21 18:04	1
Toluene-d8 (Surr)	105		70 - 130					04/14/21 18:04	1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-4

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: MW-38D-04032021

Date Collected: 04/03/21 12:05 Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL Un	nit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	50	U	50	ug	/L			04/14/21 19:44	50
1,1-Dichloroethene	50	U	50	ug	/L			04/14/21 19:44	50
1,2,3-Trichloropropane	50	U	50	ug	ı/L			04/14/21 19:44	50
1,2,4-Trichlorobenzene	250	U	250	ug	/L			04/14/21 19:44	50
1,2,4-Trimethylbenzene	50	U	50	ug	/L			04/14/21 19:44	50
1,2-Dichlorobenzene	50	U	50	ug	/L			04/14/21 19:44	50
1,2-Dichloropropane	50	U	50	ug	/L			04/14/21 19:44	50
1,3,5-Trimethylbenzene	50	U	50	ug	/L			04/14/21 19:44	50
1,4-Dichlorobenzene	50	U	50	ug	/L			04/14/21 19:44	50
2-Butanone (MEK)	500	U	500	ug	/L			04/14/21 19:44	50
4-Methyl-2-pentanone (MIBK)	500	U	500	ug	/L			04/14/21 19:44	50
Acetone	500	U	500	ug	/L			04/14/21 19:44	50
Benzene	1200		50	ug	/L			04/14/21 19:44	50
Carbon disulfide	100	U	100	ug.	ı/L			04/14/21 19:44	50
Carbon tetrachloride	50	U	50	ug.	/L			04/14/21 19:44	50
Chlorobenzene	910		50	ug	/L			04/14/21 19:44	50
Chloroform	50	U	50	ug	/L			04/14/21 19:44	50
cis-1,2-Dichloroethene	50	U	50	ug	ı/L			04/14/21 19:44	50
Ethylbenzene	74		50	ug	/L			04/14/21 19:44	50
Isopropylbenzene	460		50	ug	ı/L			04/14/21 19:44	50
Methylene Chloride	250	U *+	250	ug	/L			04/14/21 19:44	50
m-Xylene & p-Xylene	79		50	ug	ı/L			04/14/21 19:44	50
o-Xylene	50	U	50	ug	/L			04/14/21 19:44	50
p-Cymene	50	U	50	ug	ı/L			04/14/21 19:44	50
Tetrachloroethene	50	U	50	ug	/L			04/14/21 19:44	50
Toluene	50	U	50	ug	/L			04/14/21 19:44	50
Vinyl chloride	50	U	50	ug	/L			04/14/21 19:44	50
Trichloroethene	50	U	50	ug	/L			04/14/21 19:44	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	106		70 - 130			-		04/14/21 19:44	50
1,2-Dichloroethane-d4 (Surr)	101		60 - 124					04/14/21 19:44	50
4-Bromofluorobenzene (Surr)	102		70 - 130					04/14/21 19:44	50
Toluene-d8 (Surr)	105		70 - 130					04/14/21 19:44	50

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-5

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: MW-55S-04032021

Date Collected: 04/03/21 13:36 Date Received: 04/07/21 10:20

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/14/21 18:24	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 18:24	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/14/21 18:24	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/14/21 18:24	1
1,2,4-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 18:24	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 18:24	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/14/21 18:24	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 18:24	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 18:24	1
2-Butanone (MEK)	10	U	10		ug/L			04/14/21 18:24	1
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			04/14/21 18:24	1
Acetone	10	U	10		ug/L			04/14/21 18:24	1
Benzene	1.0	U	1.0		ug/L			04/14/21 18:24	1
Carbon disulfide	2.0	U	2.0		ug/L			04/14/21 18:24	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/14/21 18:24	1
Chlorobenzene	1.0	U	1.0		ug/L			04/14/21 18:24	1
Chloroform	1.0	U	1.0		ug/L			04/14/21 18:24	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 18:24	1
Ethylbenzene	1.0	U	1.0		ug/L			04/14/21 18:24	1
Isopropylbenzene	1.0	U	1.0		ug/L			04/14/21 18:24	1
Methylene Chloride	5.0	U *+	5.0		ug/L			04/14/21 18:24	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/14/21 18:24	1
o-Xylene	1.0	U	1.0		ug/L			04/14/21 18:24	1
p-Cymene	1.0	U	1.0		ug/L			04/14/21 18:24	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/14/21 18:24	1
Toluene	1.0	U	1.0		ug/L			04/14/21 18:24	1
Vinyl chloride	1.0	U	1.0		ug/L			04/14/21 18:24	1
Trichloroethene	1.0	U	1.0		ug/L			04/14/21 18:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	105		70 - 130			-		04/14/21 18:24	1
1,2-Dichloroethane-d4 (Surr)	99		60 - 124					04/14/21 18:24	1
4-Bromofluorobenzene (Surr)	100		70 - 130					04/14/21 18:24	1
								* * * * * * * * * * * * * * * * * * * *	

70 - 130

104

04/14/21 18:24

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-6

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: MW-55I-04032021 Date Collected: 04/03/21 14:38

Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/14/21 18:44	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 18:44	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/14/21 18:44	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/14/21 18:44	1
1,2,4-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 18:44	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 18:44	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/14/21 18:44	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 18:44	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 18:44	1
2-Butanone (MEK)	10	U	10		ug/L			04/14/21 18:44	1
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			04/14/21 18:44	1
Acetone	10	U	10		ug/L			04/14/21 18:44	1
Benzene	14		1.0		ug/L			04/14/21 18:44	1
Carbon disulfide	2.0	U	2.0		ug/L			04/14/21 18:44	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/14/21 18:44	1
Chlorobenzene	8.2		1.0		ug/L			04/14/21 18:44	1
Chloroform	1.0	U	1.0		ug/L			04/14/21 18:44	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 18:44	1
Ethylbenzene	1.0	U	1.0		ug/L			04/14/21 18:44	1
Isopropylbenzene	1.8		1.0		ug/L			04/14/21 18:44	1
Methylene Chloride	5.0	U *+	5.0		ug/L			04/14/21 18:44	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/14/21 18:44	1
o-Xylene	1.0	U	1.0		ug/L			04/14/21 18:44	1
p-Cymene	1.0	U	1.0		ug/L			04/14/21 18:44	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/14/21 18:44	1
Toluene	1.0	U	1.0		ug/L			04/14/21 18:44	1
Vinyl chloride	1.0	U	1.0		ug/L			04/14/21 18:44	1
Trichloroethene	1.0	U	1.0		ug/L			04/14/21 18:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	105		70 - 130			-		04/14/21 18:44	1
1,2-Dichloroethane-d4 (Surr)	97		60 - 124					04/14/21 18:44	1
4-Bromofluorobenzene (Surr)	102		70 - 130					04/14/21 18:44	1
Toluene-d8 (Surr)	105		70 - 130					04/14/21 18:44	1

3

9

11 12

13

-

Le

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-7

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: MW-55D-04032021

Date Collected: 04/03/21 15:33 Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	10	U	10		ug/L			04/14/21 20:04	10
1,1-Dichloroethene	10	U	10		ug/L			04/14/21 20:04	10
1,2,3-Trichloropropane	10	U	10		ug/L			04/14/21 20:04	10
1,2,4-Trichlorobenzene	50	U	50		ug/L			04/14/21 20:04	10
1,2,4-Trimethylbenzene	10	U	10		ug/L			04/14/21 20:04	10
1,2-Dichlorobenzene	10	U	10		ug/L			04/14/21 20:04	10
1,2-Dichloropropane	10	U	10		ug/L			04/14/21 20:04	10
1,3,5-Trimethylbenzene	10	U	10		ug/L			04/14/21 20:04	10
1,4-Dichlorobenzene	13		10		ug/L			04/14/21 20:04	10
2-Butanone (MEK)	100	U	100		ug/L			04/14/21 20:04	10
4-Methyl-2-pentanone (MIBK)	100	U	100		ug/L			04/14/21 20:04	10
Acetone	100	U	100		ug/L			04/14/21 20:04	10
Benzene	890		10		ug/L			04/14/21 20:04	10
Carbon disulfide	20	U	20		ug/L			04/14/21 20:04	10
Carbon tetrachloride	10	U	10		ug/L			04/14/21 20:04	10
Chlorobenzene	620		10		ug/L			04/14/21 20:04	10
Chloroform	10	U	10		ug/L			04/14/21 20:04	10
cis-1,2-Dichloroethene	10	U	10		ug/L			04/14/21 20:04	10
Ethylbenzene	30		10		ug/L			04/14/21 20:04	10
Isopropylbenzene	310		10		ug/L			04/14/21 20:04	10
Methylene Chloride	50	U *+	50		ug/L			04/14/21 20:04	10
m-Xylene & p-Xylene	23		10		ug/L			04/14/21 20:04	10
o-Xylene	10	U	10		ug/L			04/14/21 20:04	10
p-Cymene	10	U	10		ug/L			04/14/21 20:04	10
Tetrachloroethene	10	U	10		ug/L			04/14/21 20:04	10
Toluene	10	U	10		ug/L			04/14/21 20:04	10
Vinyl chloride	10	U	10		ug/L			04/14/21 20:04	10
Trichloroethene	10	U	10		ug/L			04/14/21 20:04	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	107		70 - 130			-		04/14/21 20:04	10
1,2-Dichloroethane-d4 (Surr)	99		60 - 124					04/14/21 20:04	10
4-Bromofluorobenzene (Surr)	101		70 - 130					04/14/21 20:04	10
Toluene-d8 (Surr)	106		70 - 130					04/14/21 20:04	10

4/19/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-8

Matrix: Water

Job ID: 680-197237-1

Client Sample	ID: MW-29I-0403202	1
---------------	--------------------	---

Date Collected: 04/03/21 16:45 Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/14/21 19:04	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/14/21 19:04	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/14/21 19:04	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/14/21 19:04	1
1,2,4-Trimethylbenzene	1.0	U	1.0	ug/L			04/14/21 19:04	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/14/21 19:04	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/14/21 19:04	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L			04/14/21 19:04	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/14/21 19:04	1
2-Butanone (MEK)	10	U	10	ug/L			04/14/21 19:04	1
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L			04/14/21 19:04	1
Acetone	10	U	10	ug/L			04/14/21 19:04	1
Benzene	3.1		1.0	ug/L			04/14/21 19:04	1
Carbon disulfide	2.0	U	2.0	ug/L			04/14/21 19:04	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/14/21 19:04	1
Chlorobenzene	1.1		1.0	ug/L			04/14/21 19:04	1
Chloroform	1.0	U	1.0	ug/L			04/14/21 19:04	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/14/21 19:04	1
Ethylbenzene	1.0	U	1.0	ug/L			04/14/21 19:04	1
Isopropylbenzene	1.8		1.0	ug/L			04/14/21 19:04	1
Methylene Chloride	5.0	U *+	5.0	ug/L			04/14/21 19:04	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/14/21 19:04	1
o-Xylene	1.0	U	1.0	ug/L			04/14/21 19:04	1
p-Cymene	1.0	U	1.0	ug/L			04/14/21 19:04	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/14/21 19:04	1
Toluene	1.0	U	1.0	ug/L			04/14/21 19:04	1
Vinyl chloride	1.0	U	1.0	ug/L			04/14/21 19:04	1
Trichloroethene	1.0	U	1.0	ug/L			04/14/21 19:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	105		70 - 130				04/14/21 19:04	1
1,2-Dichloroethane-d4 (Surr)	99		60 - 124				04/14/21 19:04	1
4-Bromofluorobenzene (Surr)	103		70 - 130				04/14/21 19:04	1
Toluene-d8 (Surr)	105		70 - 130				04/14/21 19:04	1

4/19/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-9

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: DUP-02-04032021 Date Collected: 04/03/21 00:00

Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	25	U	25		ug/L			04/14/21 20:24	25
1,1-Dichloroethene	25	U	25		ug/L			04/14/21 20:24	25
1,2,3-Trichloropropane	25	U	25		ug/L			04/14/21 20:24	25
1,2,4-Trichlorobenzene	130	U	130		ug/L			04/14/21 20:24	25
1,2,4-Trimethylbenzene	25	U	25		ug/L			04/14/21 20:24	25
1,2-Dichlorobenzene	25	U	25		ug/L			04/14/21 20:24	25
1,2-Dichloropropane	25	U	25		ug/L			04/14/21 20:24	25
1,3,5-Trimethylbenzene	25	U	25		ug/L			04/14/21 20:24	25
1,4-Dichlorobenzene	25	U	25		ug/L			04/14/21 20:24	25
2-Butanone (MEK)	250	U	250		ug/L			04/14/21 20:24	25
4-Methyl-2-pentanone (MIBK)	250	U	250		ug/L			04/14/21 20:24	25
Acetone	250	U	250		ug/L			04/14/21 20:24	25
Benzene	920		25		ug/L			04/14/21 20:24	25
Carbon disulfide	50	U	50		ug/L			04/14/21 20:24	25
Carbon tetrachloride	25	U	25		ug/L			04/14/21 20:24	25
Chlorobenzene	740		25		ug/L			04/14/21 20:24	25
Chloroform	25	U	25		ug/L			04/14/21 20:24	25
cis-1,2-Dichloroethene	25	U	25		ug/L			04/14/21 20:24	25
Ethylbenzene	220		25		ug/L			04/14/21 20:24	25
Isopropylbenzene	290		25		ug/L			04/14/21 20:24	25
Methylene Chloride	130	U *+	130		ug/L			04/14/21 20:24	25
m-Xylene & p-Xylene	370		25		ug/L			04/14/21 20:24	25
o-Xylene	25	U	25		ug/L			04/14/21 20:24	25
p-Cymene	25	U	25		ug/L			04/14/21 20:24	25
Tetrachloroethene	25	U	25		ug/L			04/14/21 20:24	25
Toluene	25	U	25		ug/L			04/14/21 20:24	25
Vinyl chloride	25	U	25		ug/L			04/14/21 20:24	25
Trichloroethene	25	U	25		ug/L			04/14/21 20:24	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	107		70 - 130			-		04/14/21 20:24	25
1,2-Dichloroethane-d4 (Surr)	99		60 - 124					04/14/21 20:24	25
4-Bromofluorobenzene (Surr)	103		70 - 130					04/14/21 20:24	25
Toluene-d8 (Surr)	106		70 - 130					04/14/21 20:24	25

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-10

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: DUP-03-04032021

Date Collected: 04/03/21 00:00 Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	25	U	25		ug/L			04/15/21 21:19	25
1,1-Dichloroethene	25	U	25		ug/L			04/15/21 21:19	25
1,2,3-Trichloropropane	25	U	25		ug/L			04/15/21 21:19	25
1,2,4-Trichlorobenzene	130	U	130		ug/L			04/15/21 21:19	25
1,2,4-Trimethylbenzene	25	U	25		ug/L			04/15/21 21:19	25
1,2-Dichlorobenzene	25	U	25		ug/L			04/15/21 21:19	25
1,2-Dichloropropane	25	U	25		ug/L			04/15/21 21:19	25
1,3,5-Trimethylbenzene	25	U	25		ug/L			04/15/21 21:19	25
1,4-Dichlorobenzene	25	U	25		ug/L			04/15/21 21:19	25
2-Butanone (MEK)	250	U	250		ug/L			04/15/21 21:19	25
4-Methyl-2-pentanone (MIBK)	250	U *+	250		ug/L			04/15/21 21:19	25
Acetone	380	*+	250		ug/L			04/15/21 21:19	25
Benzene	1100		25		ug/L			04/15/21 21:19	25
Carbon disulfide	50	U	50		ug/L			04/15/21 21:19	25
Carbon tetrachloride	25	U	25		ug/L			04/15/21 21:19	25
Chlorobenzene	850		25		ug/L			04/15/21 21:19	25
Chloroform	25	U	25		ug/L			04/15/21 21:19	25
cis-1,2-Dichloroethene	25	U	25		ug/L			04/15/21 21:19	25
Ethylbenzene	73		25		ug/L			04/15/21 21:19	25
Isopropylbenzene	410		25		ug/L			04/15/21 21:19	25
Methylene Chloride	130	U *+	130		ug/L			04/15/21 21:19	25
m-Xylene & p-Xylene	70		25		ug/L			04/15/21 21:19	25
o-Xylene	25	U	25		ug/L			04/15/21 21:19	25
p-Cymene	25	U	25		ug/L			04/15/21 21:19	25
Tetrachloroethene	25	U	25		ug/L			04/15/21 21:19	25
Toluene	25	U	25		ug/L			04/15/21 21:19	25
Vinyl chloride	25	U	25		ug/L			04/15/21 21:19	25
Trichloroethene	25	U	25		ug/L			04/15/21 21:19	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	110		70 - 130			-		04/15/21 21:19	25
1,2-Dichloroethane-d4 (Surr)	98		60 - 124					04/15/21 21:19	25
4-Bromofluorobenzene (Surr)	101		70 - 130					04/15/21 21:19	25
Toluene-d8 (Surr)	104		70 - 130					04/15/21 21:19	25

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-11

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: EQB-03-04032021

Date Collected: 04/03/21 17:00 Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/14/21 16:11	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/14/21 16:11	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/14/21 16:11	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/14/21 16:11	1
1,2,4-Trimethylbenzene	1.0	U	1.0	ug/L			04/14/21 16:11	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/14/21 16:11	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/14/21 16:11	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L			04/14/21 16:11	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/14/21 16:11	1
2-Butanone (MEK)	10	U	10	ug/L			04/14/21 16:11	1
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L			04/14/21 16:11	1
Acetone	10	U	10	ug/L			04/14/21 16:11	1
Benzene	1.0	U	1.0	ug/L			04/14/21 16:11	1
Carbon disulfide	2.0	U	2.0	ug/L			04/14/21 16:11	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/14/21 16:11	1
Chlorobenzene	1.0	U	1.0	ug/L			04/14/21 16:11	1
Chloroform	1.0	U	1.0	ug/L			04/14/21 16:11	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/14/21 16:11	1
Ethylbenzene	1.0	U	1.0	ug/L			04/14/21 16:11	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/14/21 16:11	1
Methylene Chloride	5.0	U	5.0	ug/L			04/14/21 16:11	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/14/21 16:11	1
o-Xylene	1.0	U	1.0	ug/L			04/14/21 16:11	1
p-Cymene	1.0	U	1.0	ug/L			04/14/21 16:11	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/14/21 16:11	1
Toluene	1.0	U	1.0	ug/L			04/14/21 16:11	1
Vinyl chloride	1.0	U	1.0	ug/L			04/14/21 16:11	1
Trichloroethene	1.0	U	1.0	ug/L			04/14/21 16:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	107		70 - 130				04/14/21 16:11	1
1,2-Dichloroethane-d4 (Surr)	98		60 - 124				04/14/21 16:11	1
4-Bromofluorobenzene (Surr)	99		70 - 130				04/14/21 16:11	1
Toluene-d8 (Surr)	105		70 - 130				04/14/21 16:11	1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197237-12

Matrix: Water

Job ID: 680-197237-1

Client Sample ID: EQB-04-04032021

Date Collected: 04/03/21 17:15 Date Received: 04/07/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/14/21 16:35	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/14/21 16:35	1
1,2,3-Trichloropropane	1.0	U	1.0	ug/L			04/14/21 16:35	1
1,2,4-Trichlorobenzene	5.0	U	5.0	ug/L			04/14/21 16:35	1
1,2,4-Trimethylbenzene	1.0	U	1.0	ug/L			04/14/21 16:35	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/14/21 16:35	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/14/21 16:35	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L			04/14/21 16:35	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/14/21 16:35	1
2-Butanone (MEK)	10	U	10	ug/L			04/14/21 16:35	1
4-Methyl-2-pentanone (MIBK)	10	U	10	ug/L			04/14/21 16:35	1
Acetone	10	U	10	ug/L			04/14/21 16:35	1
Benzene	1.0	U	1.0	ug/L			04/14/21 16:35	1
Carbon disulfide	2.0	U	2.0	ug/L			04/14/21 16:35	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/14/21 16:35	1
Chlorobenzene	1.0	U	1.0	ug/L			04/14/21 16:35	1
Chloroform	1.0	U	1.0	ug/L			04/14/21 16:35	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/14/21 16:35	1
Ethylbenzene	1.0	U	1.0	ug/L			04/14/21 16:35	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/14/21 16:35	1
Methylene Chloride	5.0	U	5.0	ug/L			04/14/21 16:35	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/14/21 16:35	1
o-Xylene	1.0	U	1.0	ug/L			04/14/21 16:35	1
p-Cymene	1.0	U	1.0	ug/L			04/14/21 16:35	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/14/21 16:35	1
Toluene	1.0	U	1.0	ug/L			04/14/21 16:35	1
Vinyl chloride	1.0	U	1.0	ug/L			04/14/21 16:35	1
Trichloroethene	1.0	U	1.0	ug/L			04/14/21 16:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	107		70 - 130		_		04/14/21 16:35	1
1,2-Dichloroethane-d4 (Surr)	97		60 - 124				04/14/21 16:35	1
4-Bromofluorobenzene (Surr)	102		70 - 130				04/14/21 16:35	1
Toluene-d8 (Surr)	104		70 - 130				04/14/21 16:35	1

3

5

8

40

40

13

14

Surrogate Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197237-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Recov
		DBFM	DCA	BFB	TOL
Lab Sample ID	Client Sample ID	(10-470)	(60-423)	(10-470)	(10-470)
680-197237-1	OW-Q4D-04032021	106	101	101	106
680-197237-2	MW-38S-04032021	104	99	104	106
680-197237-3	MW-38I-04032021	106	100	102	105
680-197237-4	MW-38D-04032021	106	101	102	105
680-197237-5	MW-55S-04032021	105	99	100	104
680-197237-6	MW-55I-04032021	105	97	102	105
680-197237-7	MW-55D-04032021	107	99	101	106
680-197237-8	MW-29I-04032021	105	99	103	105
680-197237-9	DUP-02-04032021	107	99	103	106
680-197237-10	DUP-03-04032021	110	98	101	104
680-197237-11	EQB-03-04032021	107	98	99	105
680-197237-12	EQB-04-04032021	107	97	102	104
LCS 680-664029/4	Lab Control Sample	103	90	93	103
LCS 680-664050/5	Lab Control Sample	102	93	95	103
LCS 680-664272/5	Lab Control Sample	111	99	98	110
LCSD 680-664029/5	Lab Control Sample Dup	108	94	89	105
LCSD 680-664050/6	Lab Control Sample Dup	108	96	96	104
LCSD 680-664272/6	Lab Control Sample Dup	111	103	98	110
MB 680-664029/9	Method Blank	108	94	102	107
MB 680-664050/10	Method Blank	106	99	107	105
MB 680-664272/10	Method Blank	107	103	104	106

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197237-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 680-664029/9

Matrix: Water

Analysis Batch: 664029

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/14/21 14:13	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 14:13	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/14/21 14:13	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/14/21 14:13	1
1,2,4-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 14:13	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 14:13	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/14/21 14:13	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 14:13	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 14:13	1
2-Butanone (MEK)	10	U	10		ug/L			04/14/21 14:13	1
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			04/14/21 14:13	1
Acetone	10	U	10		ug/L			04/14/21 14:13	1
Benzene	1.0	U	1.0		ug/L			04/14/21 14:13	1
Carbon disulfide	2.0	U	2.0		ug/L			04/14/21 14:13	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/14/21 14:13	1
Chlorobenzene	1.0	U	1.0		ug/L			04/14/21 14:13	1
Chloroform	1.0	U	1.0		ug/L			04/14/21 14:13	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 14:13	1
Ethylbenzene	1.0	U	1.0		ug/L			04/14/21 14:13	1
Isopropylbenzene	1.0	U	1.0		ug/L			04/14/21 14:13	1
Methylene Chloride	5.0	U	5.0		ug/L			04/14/21 14:13	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/14/21 14:13	1
o-Xylene	1.0	U	1.0		ug/L			04/14/21 14:13	1
p-Cymene	1.0	U	1.0		ug/L			04/14/21 14:13	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/14/21 14:13	1
Toluene	1.0	U	1.0		ug/L			04/14/21 14:13	1
Vinyl chloride	1.0	U	1.0		ug/L			04/14/21 14:13	1
Trichloroethene	1.0	U	1.0		ug/L			04/14/21 14:13	1

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Di Doth D-Di oret aono41	(Su) S 9(7S	-		S60/60/(1/68/7	
(:/ 91 ,5ehD-Doret ao 9B6nd4	36		mS9(/6			S6Q 60 (r(68 7	(
69f-Di DdhiD-D2oaboaond41	(S/) S 9(7S			S6Q 60 (r(68 7	(
zDhioao9Bund41	(S)) S9(7S			S60 60 (n 68 7	(

Lab Sample ID: LCS 680-664029/4

Matrix: Water

Analysis Batch: 664029

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	50.0	49.5		ug/L		99	70 - 130	
1,1-Dichloroethene	50.0	54.8		ug/L		110	70 - 130	
1,2,3-Trichloropropane	50.0	45.7		ug/L		91	70 - 130	
1,2,4-Trichlorobenzene	50.0	55.5		ug/L		111	70 - 130	
1,2,4-Trimethylbenzene	50.0	54.9		ug/L		110	70 - 130	
1,2-Dichlorobenzene	50.0	50.0		ug/L		100	70 - 130	
1,2-Dichloropropane	50.0	46.8		ug/L		94	70 - 130	
1,3,5-Trimethylbenzene	50.0	56.2		ug/L		112	70 - 130	

Eurofins TestAmerica, Savannah

Page 22 of 36

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-664029/4

Matrix: Water

Analysis Batch: 664029

Client Sample ID: Lab Control Sample

Job ID: 680-197237-1

Prep Type: Total/NA

Amaryolo Batom 004020	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dichlorobenzene	50.0	50.3		ug/L		101	70 - 130
2-Butanone (MEK)	250	209		ug/L		84	69 - 114
4-Methyl-2-pentanone (MIBK)	250	207		ug/L		83	68 - 108
Acetone	250	199		ug/L		80	67 - 113
Benzene	50.0	45.4		ug/L		91	70 - 130
Carbon disulfide	50.0	50.8		ug/L		102	70 - 130
Carbon tetrachloride	50.0	54.5		ug/L		109	70 - 130
Chlorobenzene	50.0	52.4		ug/L		105	70 - 130
Chloroform	50.0	50.2		ug/L		100	70 - 130
cis-1,2-Dichloroethene	50.0	48.6		ug/L		97	70 - 130
Ethylbenzene	50.0	52.9		ug/L		106	70 - 130
Isopropylbenzene	50.0	56.3		ug/L		113	70 - 130
Methylene Chloride	50.0	47.5		ug/L		95	70 - 130
m-Xylene & p-Xylene	50.0	53.1		ug/L		106	70 - 130
o-Xylene	50.0	52.9		ug/L		106	70 - 130
p-Cymene	50.0	52.2		ug/L		104	70 - 130
Tetrachloroethene	50.0	59.1		ug/L		118	70 - 130
Toluene	50.0	50.8		ug/L		102	70 - 130
Vinyl chloride	50.0	53.3		ug/L		107	66 - 129
Trichloroethene	50.0	55.9		ug/L		112	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Di Dohl D-Di oret aono41	(S7) S9(7S
(:/ 91 ,5ehD-Doret ao 9B6nd4	3S		m59(/6
69f-Di Ddh D-D2oaboaond41	37) S 9(7S
zDhioao9Bund41	(S7) S9(7S

Lab Sample ID: LCSD 680-664029/5

Matrix: Water

Analysis Batch: 664029

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	50.0	49.9		ug/L		100	70 - 130	1	30
1,1-Dichloroethene	50.0	54.9		ug/L		110	70 - 130	0	20
1,2,3-Trichloropropane	50.0	48.4		ug/L		97	70 - 130	6	30
1,2,4-Trichlorobenzene	50.0	56.0		ug/L		112	70 - 130	1	30
1,2,4-Trimethylbenzene	50.0	55.6		ug/L		111	70 - 130	1	30
1,2-Dichlorobenzene	50.0	49.1		ug/L		98	70 - 130	2	30
1,2-Dichloropropane	50.0	47.8		ug/L		96	70 - 130	2	20
1,3,5-Trimethylbenzene	50.0	56.2		ug/L		112	70 - 130	0	30
1,4-Dichlorobenzene	50.0	48.7		ug/L		97	70 - 130	3	30
2-Butanone (MEK)	250	225		ug/L		90	69 - 114	7	30
4-Methyl-2-pentanone (MIBK)	250	218		ug/L		87	68 - 108	5	30
Acetone	250	208		ug/L		83	67 - 113	4	30
Benzene	50.0	45.6		ug/L		91	70 - 130	0	30
Carbon disulfide	50.0	49.9		ug/L		100	70 - 130	2	30
Carbon tetrachloride	50.0	52.5		ug/L		105	70 - 130	4	30
Chlorobenzene	50.0	53.3		ug/L		107	70 - 130	2	30

Eurofins TestAmerica, Savannah

Page 23 of 36

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-664029/5

Matrix: Water

Analysis Batch: 664029

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 680-197237-1

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloroform	50.0	50.7		ug/L		101	70 - 130	1	30	
cis-1,2-Dichloroethene	50.0	48.7		ug/L		97	70 - 130	0	30	
Ethylbenzene	50.0	52.6		ug/L		105	70 - 130	1	20	
Isopropylbenzene	50.0	55.3		ug/L		111	70 - 130	2	30	
Methylene Chloride	50.0	49.5		ug/L		99	70 - 130	4	30	
m-Xylene & p-Xylene	50.0	52.8		ug/L		106	70 - 130	1	30	
o-Xylene	50.0	53.3		ug/L		107	70 - 130	1	30	
p-Cymene	50.0	47.7		ug/L		95	70 - 130	9	30	
Tetrachloroethene	50.0	60.1		ug/L		120	70 - 130	2	30	
Toluene	50.0	50.9		ug/L		102	70 - 130	0	30	
Vinyl chloride	50.0	50.4		ug/L		101	66 - 129	5	30	
Trichloroethene	50.0	57 1		ua/l		114	70 - 130	2	30	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Di Dohl D-Di oret aono41	(Su) S 9(7S
(:/ 91,5ehD-Doret ao9B6nd41	36		mS9(/6
69f-Di Ddni D-D2oaboaond41	иЗ) S 9(7S
zDhioao9Bund41	(ST) S9(7S

Lab Sample ID: MB 680-664050/10 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 664050

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/14/21 13:43	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 13:43	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/14/21 13:43	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/14/21 13:43	1
1,2,4-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 13:43	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 13:43	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/14/21 13:43	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/14/21 13:43	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/14/21 13:43	1
2-Butanone (MEK)	10	U	10		ug/L			04/14/21 13:43	1
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			04/14/21 13:43	1
Acetone	10	U	10		ug/L			04/14/21 13:43	1
Benzene	1.0	U	1.0		ug/L			04/14/21 13:43	1
Carbon disulfide	2.0	U	2.0		ug/L			04/14/21 13:43	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/14/21 13:43	1
Chlorobenzene	1.0	U	1.0		ug/L			04/14/21 13:43	1
Chloroform	1.0	U	1.0		ug/L			04/14/21 13:43	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/14/21 13:43	1
Ethylbenzene	1.0	U	1.0		ug/L			04/14/21 13:43	1
Isopropylbenzene	1.0	U	1.0		ug/L			04/14/21 13:43	1
Methylene Chloride	5.0	U	5.0		ug/L			04/14/21 13:43	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/14/21 13:43	1
o-Xylene	1.0	U	1.0		ug/L			04/14/21 13:43	1
p-Cymene	1.0	U	1.0		ug/L			04/14/21 13:43	1
•					-				

Eurofins TestAmerica, Savannah

Page 24 of 36

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197237-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-664050/10

Matrix: Water

Analysis Batch: 664050

Client Sample ID: Method Blank

Prep Type: Total/NA

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	1.0	U	1.0		ug/L			04/14/21 13:43	1
Toluene	1.0	U	1.0		ug/L			04/14/21 13:43	1
Vinyl chloride	1.0	U	1.0		ug/L			04/14/21 13:43	1
Trichloroethene	1.0	U	1.0		ug/L			04/14/21 13:43	1

MB MB

	1110	1110					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Di Ddh D-Di oret aond41	(Sm) S9(7S		S60/60 (n/7867		
(:/ 91 ,5ehD-Doret ao9B6rd41	33		mS9(/6		S60/60 (n/7867	(
69f-Di Ddfl D-D2oaboaond41	(S)) S 9(7S		S60/60 (n/7867	(
zDNioao9Bund41	(ST) S9(7S		S60/60 (n/7867	(

Lab Sample ID: LCS 680-664050/5

Matrix: Water

Analysis Batch: 664050

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	50.0	51.6		ug/L		103	70 - 130
1,1-Dichloroethene	50.0	48.1		ug/L		96	70 - 130
1,2,3-Trichloropropane	50.0	52.4		ug/L		105	70 - 130
1,2,4-Trichlorobenzene	50.0	49.3		ug/L		99	70 - 130
1,2,4-Trimethylbenzene	50.0	50.7		ug/L		101	70 - 130
1,2-Dichlorobenzene	50.0	49.0		ug/L		98	70 - 130
1,2-Dichloropropane	50.0	51.1		ug/L		102	70 - 130
1,3,5-Trimethylbenzene	50.0	49.2		ug/L		98	70 - 130
1,4-Dichlorobenzene	50.0	50.0		ug/L		100	70 - 130
2-Butanone (MEK)	250	241		ug/L		96	69 - 114
4-Methyl-2-pentanone (MIBK)	250	235		ug/L		94	68 - 108
Acetone	250	248		ug/L		99	67 - 113
Benzene	50.0	51.1		ug/L		102	70 - 130
Carbon disulfide	50.0	49.5		ug/L		99	70 - 130
Carbon tetrachloride	50.0	50.2		ug/L		100	70 - 130
Chlorobenzene	50.0	52.5		ug/L		105	70 - 130
Chloroform	50.0	50.2		ug/L		100	70 - 130
cis-1,2-Dichloroethene	50.0	50.7		ug/L		101	70 - 130
Ethylbenzene	50.0	55.0		ug/L		110	70 - 130
Isopropylbenzene	50.0	52.3		ug/L		105	70 - 130
Methylene Chloride	50.0	69.2	*+	ug/L		138	70 - 130
m-Xylene & p-Xylene	50.0	53.4		ug/L		107	70 - 130
o-Xylene	50.0	52.5		ug/L		105	70 - 130
p-Cymene	50.0	46.0		ug/L		92	70 - 130
Tetrachloroethene	50.0	55.5		ug/L		111	70 - 130
Toluene	50.0	52.2		ug/L		104	70 - 130
Vinyl chloride	50.0	57.4		ug/L		115	66 - 129
Trichloroethene	50.0	50.6		ug/L		101	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Di Dohl D-Di oret aono41	(S/) S9(7S
(:/ 91,5ehD-Doret ao9B6rt#1	37		m59(/6

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197237-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-664050/5

Matrix: Water

Analysis Batch: 664050

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
69f-Di Ddfl D-D2oaboaond41	3 <i>T</i>) S 9(7S
zDhioao9Bund41	(S7) S 9 (7S

Lab Sample ID: LCSD 680-664050/6 **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 664050

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	50.0	52.4		ug/L		105	70 - 130	2	30
1,1-Dichloroethene	50.0	47.1		ug/L		94	70 - 130	2	20
1,2,3-Trichloropropane	50.0	53.3		ug/L		107	70 - 130	2	30
1,2,4-Trichlorobenzene	50.0	47.2		ug/L		94	70 - 130	4	30
1,2,4-Trimethylbenzene	50.0	49.5		ug/L		99	70 - 130	2	30
1,2-Dichlorobenzene	50.0	48.8		ug/L		98	70 - 130	1	30
1,2-Dichloropropane	50.0	50.7		ug/L		101	70 - 130	1	20
1,3,5-Trimethylbenzene	50.0	49.2		ug/L		98	70 - 130	0	30
1,4-Dichlorobenzene	50.0	51.1		ug/L		102	70 - 130	2	30
2-Butanone (MEK)	250	252		ug/L		101	69 - 114	5	30
4-Methyl-2-pentanone (MIBK)	250	247		ug/L		99	68 - 108	5	30
Acetone	250	271		ug/L		109	67 - 113	9	30
Benzene	50.0	51.9		ug/L		104	70 - 130	2	30
Carbon disulfide	50.0	49.7		ug/L		99	70 - 130	1	30
Carbon tetrachloride	50.0	49.9		ug/L		100	70 - 130	1	30
Chlorobenzene	50.0	53.4		ug/L		107	70 - 130	2	30
Chloroform	50.0	52.2		ug/L		104	70 - 130	4	30
cis-1,2-Dichloroethene	50.0	51.5		ug/L		103	70 - 130	2	30
Ethylbenzene	50.0	54.4		ug/L		109	70 - 130	1	20
Isopropylbenzene	50.0	52.2		ug/L		104	70 - 130	0	30
Methylene Chloride	50.0	71.3	*+	ug/L		143	70 - 130	3	30
m-Xylene & p-Xylene	50.0	53.0		ug/L		106	70 - 130	1	30
o-Xylene	50.0	52.2		ug/L		104	70 - 130	1	30
p-Cymene	50.0	44.9		ug/L		90	70 - 130	2	30
Tetrachloroethene	50.0	56.4		ug/L		113	70 - 130	2	30
Toluene	50.0	53.0		ug/L		106	70 - 130	2	30
Vinyl chloride	50.0	57.1		ug/L		114	66 - 129	1	30
Trichloroethene	50.0	50.3		ug/L		101	70 - 130	1	30

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
1,2-Di Dohl D-Di oret aono41	(Su) S g(7S
(:/ 91,5ehD-Doret ao9B6nd41	3 <i>m</i>	mS9(/6
69f -Di Ddn D-D2oaboaond41	3 <i>m</i>) S 9(7S
zDhioao9Bund41	(S6) S9(7S

Eurofins TestAmerica, Savannah

4/19/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Job ID: 680-197237-1

Client Sample ID: Method Blank Prep Type: Total/NA

Lab Sample ID: MB 680-664272/10

Matrix: Water

Analysis Batch: 664272

7 manyolo 2 atom 00 1212	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/15/21 14:37	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/15/21 14:37	1
1,2,3-Trichloropropane	1.0	U	1.0		ug/L			04/15/21 14:37	1
1,2,4-Trichlorobenzene	5.0	U	5.0		ug/L			04/15/21 14:37	1
1,2,4-Trimethylbenzene	1.0	U	1.0		ug/L			04/15/21 14:37	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/15/21 14:37	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			04/15/21 14:37	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/15/21 14:37	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/15/21 14:37	1
2-Butanone (MEK)	10	U	10		ug/L			04/15/21 14:37	1
4-Methyl-2-pentanone (MIBK)	10	U	10		ug/L			04/15/21 14:37	1
Acetone	10	U	10		ug/L			04/15/21 14:37	1
Benzene	1.0	U	1.0		ug/L			04/15/21 14:37	1
Carbon disulfide	2.0	U	2.0		ug/L			04/15/21 14:37	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/15/21 14:37	1
Chlorobenzene	1.0	U	1.0		ug/L			04/15/21 14:37	1
Chloroform	1.0	U	1.0		ug/L			04/15/21 14:37	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/15/21 14:37	1
Ethylbenzene	1.0	U	1.0		ug/L			04/15/21 14:37	1
Isopropylbenzene	1.0	U	1.0		ug/L			04/15/21 14:37	1
Methylene Chloride	5.0	U	5.0		ug/L			04/15/21 14:37	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			04/15/21 14:37	1
o-Xylene	1.0	U	1.0		ug/L			04/15/21 14:37	1
p-Cymene	1.0	U	1.0		ug/L			04/15/21 14:37	1
Tetrachloroethene	1.0	U	1.0		ug/L			04/15/21 14:37	1
Toluene	1.0	U	1.0		ug/L			04/15/21 14:37	1
Vinyl chloride	1.0	U	1.0		ug/L			04/15/21 14:37	1
Trichloroethene	1.0	U	1.0		ug/L			04/15/21 14:37	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Di Dohl D-Di oretaono41	(S)) S 9(7S		S60 T0 (r(687)	
(:/ 91 ,5ehD-Doret ao9B6nd4	(S7		mS9(/6		S60(T0' (r(687)	(
69f-Di Ddni D-D2oaboaond41	(S6) S9(7S		S60(T0' (r(687)	(
zDhioao9Bund41	(Sm) S9(7S		S60 T0 (rt 687)	(

Lab Sample ID: LCS 680-664272/5

Matrix: Water

Analysis Batch: 664272

Analysis Batch. 004272	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	50.0	54.7		ug/L		109	70 - 130	
1,1-Dichloroethene	50.0	48.4		ug/L		97	70 - 130	
1,2,3-Trichloropropane	50.0	54.4		ug/L		109	70 - 130	
1,2,4-Trichlorobenzene	50.0	48.0		ug/L		96	70 - 130	
1,2,4-Trimethylbenzene	50.0	50.5		ug/L		101	70 - 130	
1,2-Dichlorobenzene	50.0	50.4		ug/L		101	70 - 130	
1,2-Dichloropropane	50.0	52.4		ug/L		105	70 - 130	
1,3,5-Trimethylbenzene	50.0	49.8		ug/L		100	70 - 130	

Eurofins TestAmerica, Savannah

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 27 of 36

2

3

5

7

0

10

12

10

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197237-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-664272/5

Matrix: Water

Analysis Batch: 664272

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	50.0	51.8		ug/L		104	70 - 130	
2-Butanone (MEK)	250	272		ug/L		109	69 - 114	
4-Methyl-2-pentanone (MIBK)	250	261		ug/L		104	68 - 108	
Acetone	250	293	*+	ug/L		117	67 - 113	
Benzene	50.0	52.9		ug/L		106	70 - 130	
Carbon disulfide	50.0	52.7		ug/L		105	70 - 130	
Carbon tetrachloride	50.0	50.1		ug/L		100	70 - 130	
Chlorobenzene	50.0	53.4		ug/L		107	70 - 130	
Chloroform	50.0	53.4		ug/L		107	70 - 130	
cis-1,2-Dichloroethene	50.0	50.3		ug/L		101	70 - 130	
Ethylbenzene	50.0	55.6		ug/L		111	70 - 130	
Isopropylbenzene	50.0	52.1		ug/L		104	70 - 130	
Methylene Chloride	50.0	74.7	*+	ug/L		149	70 - 130	
m-Xylene & p-Xylene	50.0	53.9		ug/L		108	70 - 130	
o-Xylene	50.0	53.7		ug/L		107	70 - 130	
p-Cymene	50.0	46.3		ug/L		93	70 - 130	
Tetrachloroethene	50.0	59.4		ug/L		119	70 - 130	
Toluene	50.0	55.4		ug/L		111	70 - 130	
Vinyl chloride	50.0	56.8		ug/L		114	66 - 129	
Trichloroethene	50.0	52.7		ug/L		105	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Di Ddn D-Di oret aond41	((() S9(7S
(:/ 91,5ehD-Doret ao9B6nd41	33		mS9(/6
69f-Di Ddn D-D2oaboaond41	3и) S 9(7S
zDhioao9Bund41	((S) S 9(7S

Lab Sample ID: LCSD 680-664272/6

Matrix: Water

Analysis Batch: 664272

Client	Sample	ID:	Lab	Contr	ol San	nple Dup
				Prep	Type:	Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	50.0	54.3		ug/L		109	70 - 130	1	30
1,1-Dichloroethene	50.0	46.5		ug/L		93	70 - 130	4	20
1,2,3-Trichloropropane	50.0	56.4		ug/L		113	70 - 130	4	30
1,2,4-Trichlorobenzene	50.0	48.4		ug/L		97	70 - 130	1	30
1,2,4-Trimethylbenzene	50.0	49.1		ug/L		98	70 - 130	3	30
1,2-Dichlorobenzene	50.0	50.4		ug/L		101	70 - 130	0	30
1,2-Dichloropropane	50.0	52.6		ug/L		105	70 - 130	0	20
1,3,5-Trimethylbenzene	50.0	48.5		ug/L		97	70 - 130	3	30
1,4-Dichlorobenzene	50.0	50.5		ug/L		101	70 - 130	3	30
2-Butanone (MEK)	250	279		ug/L		112	69 - 114	3	30
4-Methyl-2-pentanone (MIBK)	250	273	*+	ug/L		109	68 - 108	4	30
Acetone	250	298	*+	ug/L		119	67 - 113	2	30
Benzene	50.0	52.9		ug/L		106	70 - 130	0	30
Carbon disulfide	50.0	51.6		ug/L		103	70 - 130	2	30
Carbon tetrachloride	50.0	48.4		ug/L		97	70 - 130	3	30
Chlorobenzene	50.0	53.4		ug/L		107	70 - 130	0	30

Eurofins TestAmerica, Savannah

Page 28 of 36

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197237-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-664272/6

Matrix: Water

Analysis Batch: 664272

Client Sample ID: Lab Control Sample Dup

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	50.0	53.1		ug/L		106	70 - 130	1	30
cis-1,2-Dichloroethene	50.0	52.5		ug/L		105	70 - 130	4	30
Ethylbenzene	50.0	54.1		ug/L		108	70 - 130	3	20
Isopropylbenzene	50.0	51.2		ug/L		102	70 - 130	2	30
Methylene Chloride	50.0	73.0	*+	ug/L		146	70 - 130	2	30
m-Xylene & p-Xylene	50.0	53.9		ug/L		108	70 - 130	0	30
o-Xylene	50.0	52.6		ug/L		105	70 - 130	2	30
p-Cymene	50.0	44.4		ug/L		89	70 - 130	4	30
Tetrachloroethene	50.0	56.9		ug/L		114	70 - 130	4	30
Toluene	50.0	54.4		ug/L		109	70 - 130	2	30
Vinyl chloride	50.0	54.7		ug/L		109	66 - 129	4	30
Trichloroethene	50.0	51.1		ug/L		102	70 - 130	3	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Di DohiD-Di oretaono41	((() S 9(7S
(:/ 91,5ehD-Doret ao9B6nd41	(S7		mS9(/6
69f-Di DdhD-D2oaboaond4l	3и) S 9(7S
zDNioao9Bund4l	((S) S9(7S

Prep Type: Total/NA

QC Association Summary

lient Gs noyct Onu lot yai Gt Oy. It uP

rjo/nu@SHe@n: Bnjuainy wjatykieuW-sv Itgny@2, @ot

Job ID: 680-1973C7-1

GC/MS VOA

Analysis Batch: 664029

Lab Sample ID 680-1973C7-11	Client Sample ID MT w-0C-0N0C3031	Prep Type AoGi\$0Q	Matrix	Method 8360w	Prep Batch
680-1973C7-13	MT w-0N-0N0C3031	AoGi S DQ	v, Caj	8360w	
4 w 680-66N039 S 9	4 ntod wi, t W	AoĢi S OQ	v, Gaj	8360w	
LI H 680-66N0393N	L, b I ot Goi H, mpin	AoĢi S DQ	v, Gaj	8360w	
LI HD 680-66N039S5	L, b l ot G oi H, mpin Dap	AoĢi S OQ	v, Gaj	8360w	

Analysis Batch: 664050

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-1973C7-1	Uv -T ND-0N0C3031	AoGiSDQ	v, Caj	8360w	
680-1973C7-3	4 v -08H-0N0C3031	AoĢi S DQ	v,Gaj	8360w	
680-1973C7-C	4 v -08I-0N0C3031	AoĢi S DQ	v,Gaj	8360w	
680-1973C7-N	4 v -08D-0N0C3031	AoĢiSDQ	v, Gaj	8360w	
680-1973C7-5	4 v -55H-0N0C3031	AoĢi S DQ	v,Gaj	8360w	
680-1973C7-6	4 v -55I-0N0C3031	AoĢiSDQ	v,Gaj	8360w	
680-1973C7-7	4 v -55D-0N0C3031	AoĢiSDQ	v, Gaj	8360w	
680-1973C7-8	4 v -39I-0N0C3031	AoĢiSDQ	v,Gaj	8360w	
680-1973C7-9	DEr -03-0N0C3031	AoĢiSDQ	v,Gaj	8360w	
4 w 680-66N050S10	4 nGod wi, t W	AoĢiSDQ	v, Gaj	8360w	
LI H 680-66N050S5	L, b I ot Goi H, mpin	AoGi S OQ	v,Gaj	8360w	
LI HD 680-66N050S6	L, b l ot G oi H, mpin Dap	Ao GiSOQ	v, Gaj	8360w	

Analysis Batch: 664272

Lab Sample ID 680-1973C7-10	Client Sample ID DEr -0C-0N0C3031	Prep Type AoGiSDQ	Matrix v , @j	Method 8360w	Prep Batch
4 w 680-66N373SI0	4 n@od wi, t W	AoĢiSDQ	v, Caj	8360w	
LI H 680-66N373S5	L, b I ot Goi H, mpin	AoĢiSDQ	v,Gaj	8360w	
LI HD 680-66N37356	L. b I ot Goi H. mpin Dap	AoGiSDQ	v . Gai	8360w	

3

4

5

9

10

12

13

115

Client Sample ID: MW-2 9D-09031016

Date CollecteR: 09v03v16 0x:04 Date TeceiyeR: 09v0dv16 60:10

Lab Sample ID: 870-6xd13d-6

/ atri5: Water

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	BP pe	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or unalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		10	5 mL	5 mL	664050	04/14/21 19:24	EMA	TAL SAV
	Instrumer	nt ID: CMSU								

Client Sample ID: / W-37S-09031016

Date CollecteR: 09v03v16 60:07 Date TeceiveR: 09v0dv16 60:10

Lab Sample ID: 870-6xd13d-1

/ atri5: Water

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	BPpe	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or u nalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	664050	04/14/21 17:44	EMA	TAL SAV
	Instrumen	t ID: CMSU								

Client Sample ID: / W-37I-09031016

Date CollecteR: 09v03v16 66:03 Date TeceiyeR: 09v0dv16 60:10 Lab Sample ID: 870-6xd13d-3

/ atri5: Water

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	ВРре	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or u nalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	664050	04/14/21 18:04	EMA	TAL SAV
	Instrumen	t ID: CMSU								

Client Sample ID: / W-37D-09031016

Date CollecteR: 09v03v16 61:04 Date TeceiyeR: 09v0dv16 60:10

Lab Sample ID: 870-6xd13d-9

Lab Sample ID: 870-6xd13d-4

/ atri5: Water

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	BP pe	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or unalPNeR	u nalPzt	Lab
Total/NA	Analysis	8260B		50	5 mL	5 mL	664050	04/14/21 19:44	EMA	TAL SAV
	Instrumer	nt ID: CMSU								

Client Sample ID: / W-44S-09031016

Date CollecteR: 09v03v16 63:38 / atri5: Water Date TeceiyeR: 09v0dv16 60:10

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	ВРре	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or unalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	664050	04/14/21 18:24	EMA	TAL SAV
	Instrument	ID: CMSU								

Client Sample ID: / W-44I-09031016

Date CollecteR: 09v03v16 69:37 Date TeceiyeR: 09v0dv16 60:10

Lab Sample ID: 870-6xd13d-8 / atri5: Water

srep BPpe	Aatch BPpe	Aatch / ethoR	TFn	Dil Oactor	Initial umoFnt	Oinal u moFnt	Aatch QFmber	s repareR or u nalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	664050	04/14/21 18:44	EMA	TAL SAV
	Instrumen	t ID: CMSU								

Client Sample ID: / W-44D-09031016

Date CollecteR: 09v03v16 64:33 Date TeceiyeR: 09v0dv16 60:10 Lab Sample ID: 870-6xd13d-d

/ atri5: Water

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	ВРре	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or unalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		10	5 mL	5 mL	664050	04/14/21 20:04	EMA	TAL SAV
	Instrumer	t ID: CMSII								

Client Sample ID: / W-1xI-09031016

Date CollecteR: 09\03\16 68:94 Date TeceiyeR: 09v0dv16 60:10

Lab Sample ID: 870-6xd13d-7

/ atri5: Water

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	ВРре	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or unalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	664050	04/14/21 19:04	EMA	TAL SAV
	Instrumer	nt ID: CMSU								

Client Sample ID: DEs-01-09031016

Date CollecteR: 09v03v16 00:00 Date TeceiyeR: 09v0dv16 60:10

Lab Sample ID: 870-6xd13d-x

/ atri5: Water

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	ВРре	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or unalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		25	5 mL	5 mL	664050	04/14/21 20:24	EMA	TAL SAV
	Instrumer	t ID: CMSU								

Client Sample ID: DEs-03-09031016

Date CollecteR: 09v03v16 00:00 Date TeceiyeR: 09v0dv16 60:10

Lab Sample ID: 870-6xd13d-60

/ atri5: Water

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	ВРре	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or unalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		25	5 mL	5 mL	664272	04/15/21 21:19	UI	TAL SAV
	Instrumer	nt ID: CMSU								

Client Sample ID: U2 A-03-09031016

Date CollecteR: 09v03v16 6d:00

Lab Sample ID: 870-6xd13d-66 / atri5: Water Date TeceiyeR: 09v0dv16 60:10

	Aatch	Aatch		Dil	Initial	Oinal	Aatch	srepareR		
srep BPpe	BP pe	/ ethoR	TFn	Oactor	umoFnt	umoFnt	QFmber	or unalPNeR	unalPzt	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	664029	04/14/21 16:11	EMA	TAL SAV
	Instrumer	nt ID: CMSC								

Client Sample ID: U2 A-09-09031016

Date CollecteR: 09v03v16 6d:64 Date TeceiyeR: 09v0dv16 60:10

Lab Sample ID: 870-6xd13d-61 / atri5: Water

srep BPpe	Aatch BPpe	Aatch / ethoR	TFn	Dil Oactor	Initial u moFnt	Oinal umoFnt	Aatch QFmber	srepareR or unalPNeR	u nalPzt	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	664029	04/14/21 16:35	EMA	TAL SAV
	Instrumen	t ID: CMSC								

LaboratorP Teferencez:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

TestAmerica

Chain of Custody Record

Address

13 14 15

TAL-8210 1070 Sample Specific Notes: COCs Sampler: Dan GEBUS Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only ab Sampling: Job / SDG No.: 4.721 Walk-in Client: ŏ Therm ID No Date/Time: Date/Time: Date/Time COC No: 680-197237 Chain of Custody Archive for D 5 Company Corr'd: Company: Company 40 V Disposal by Lab Carrier Date: Cooler Temp. (°C): Obs'd Received in aboratory by: Other: Return to Client Received by: Received by: 5.541bu Site Contact: Lab Contact: RCRA 0978 × 2 2 XZZ X XXV X XXX X XXX שומייות XX X NNX XXX Perform MS / MSD (Y / N) Filtered Sample (Y / N) Vs/h 0130 NPDES Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the # of Cont. no m 3 M m 3 3 m Date/Time WORKING DAYS Matrix GEL 3 35 35 3 35 35 GE MO Reimer Analysis Turnaround Time 3 3 Tel/Email: 678 - 202 - 4564 Type (C=Comp. G=Grab) Sample Regulatory Program: TAT if different from Below 5 ڻ Project Manager: Adria 2 weeks 1 week 2 days D 9 5 ف C B 3 CALENDAR DAYS Sample 1/3/21 09:05 Time 13/21 1008 4/3/21 1438 1/3/21 1700 4/3/21 1715 1/3/21 1205 4/3/21 1645 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Othe 4/3/21 1103 13/21 1336 Custody Seal No. 4/3/21 1533 Georguane Company: Polson B Sample 1/3/51 Company 13/21 Company Address 1255 Roberts Blut NW Sur 200 Consultants comments Section if the lab is to dispose of the sample. Special Instructions/QC Requirements & Comments: Site: Hercules / finola Brussmick Ful. Hy City/State/Zip: Kennesum, 6/ 30144 Project Name: 6W Investigation Sample Identification Client Contact MW-55I-04032021 OW-Q44-0403202 Geosyatec MW-554-04032021 MW-555-04032021 MIM-38I-04032021 MW-384-04032021 MW-29I-04032021 EQB-03-04032021 E a 8-04-04032021 MW-385-04032021 Possible Hazard Identification: DUP-03-04032021 DUP-02-04032021 GERTS Custody Seals Intact: PO# 686881P Company Name DAN Relinquished by Relinquished by Relinquished by

Joshua Barnhart

From:

Adria Reimer

Sent:

March 30, 2021 21:19

To:

Dan Gibbs

Cc:

Joshua Barnhart

Subject:

BWK gw samples - VOC list

Attachments:

COC Blank.xls

For the COC:

Client Contact: Hercules LLC

PM: Adria Reimer

Project name: GW Investigation

Site: Hercules LLC/Pinova Inc Brunswick Facility

Analysis: 8260B VOCs: 1.1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloropropane 1,2-Dichlorobenzene 1.4-Dichlorobenzene

- 1,2,4-Trichlorobenzene
- 1,2,3-Trichloropropane
- 1,2,4-Trimethylbenzene
- 1,3,5-Trimethylbenzene

Cymene, p-

- 2-Butanone (MEK)
- 4-Methyl-2-pentanone

Acetone

Benzene

Carbon disulfide

Carbon tetrachloride

Chlorobenzene

Chloroform

cis-1,2-Dichloroethene

Ethylbenzene Isopropylbenzene Methylene Chloride m-Xylene & p-Xylene

o-Xylene

Tetrachloroethene

Toluene

Trichloroethene

Vinyl chloride

Either try to fit these in the rows at the top of the COC, or just put "8260B VOCs - see list in Special Instructions" and list them there, or you can try using the attached if you have somewhere to print it out. If you want to handwrite the COC and send me a photo before submitting labs to lab, I would be more than happy to review.

Plz let me know if you have any questions - thanks!!!

Adria L. Reimer, P.G. (GA, FL) Senior Geologist Geosyntec Consultants

Client: Geosyntec Consultants, Inc.

Job Number: 680-197237-1

Login Number: 197237

List Source: Eurofins TestAmerica, Savannah

List Number: 1 Creator: Sims, Robert D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.

r jo/ect\$-lite: Bej cules wjunsk icW- Gv IngestiTation

Job ID: 680-1973P7-1

Laboratory: Eurofins TestAmerica, Savannah

hde accjef itations&ejtipcations listef belok aje aFFlicable to tdis jeFojt.

Authority	Program	Identification Number	Expiration Date
Elojif a	N5LAr	587023	06-P0-31
GeojTia	Htate	587023	06-P0-31

3

Δ

6

R

9

11

13

14

Memorandum

Date: 18 May 2021

To: Adria Reimer

Cristin Corless Krachon

From: Matthew Richardson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverable - Eurofins

TestAmerica Job ID 680-197237-1

SITE: Hercules Brunswick GW Investigation

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of eight water samples, two field duplicate samples and two equipment blanks, collected 3 April 2021, as part of Hercules Brunswick sampling event. Eurofins TestAmerica Savannah, Georgia analyzed the samples for the following analytical test:

• Select Volatile Organic Compounds (VOCs) by United States Environmental Protection Agency (US EPA) Methods 5030B/8260B

EXECUTIVE SUMMARY

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below and based on the information provided, the data as qualified are usable for supporting project objectives. The qualified data should be used within the limitations of the qualifications.

The data were reviewed based on professional and technical judgment and the following documents:

- US EPA National Functional Guidelines for Superfund Organic Methods Data Review, November 2020 (US EPA-540-R-20-005); and
- The pertinent methods referenced by the laboratory report.

The following samples were analyzed and validated at Stage 2A level in the data set:

Laboratory ID	Client ID
680-197237-1	OW-Q4D-04032021

Laboratory ID	Client ID
680-197237-2	MW-38S-04032021

Final Review: ME Tyler 5/25/2021

Ashland Brunswick Data Validation 18 May 2021 Page 2

Laboratory ID	Client ID
680-197237-3	MW-38I-04032021
680-197237-4	MW-38D-04032021
680-197237-5	MW-55S-04032021
680-197237-6	MW-55I-04032021
680-197237-7	MW-55D-04032021

Laboratory ID	Client ID
680-197237-8	MW-29I-04032021
680-197237-9	DUP-02-04032021
680-197237-10	DUP-03-04032021
680-197237-11	EQB-03-04032021
680-197237-12	EQB-04-04032021

The samples were received within 0-6 degrees Celsius (°C). No sample preservation issues were noted by the laboratory.

Collection times were not documented on the chain of custody (COC) for the field duplicate samples. The field duplicate samples were logged by the laboratory with collection times of 00:00.

1.0 SELECT VOLATILE ORGANIC COMPOUNDS

The samples were analyzed for select VOCs by US EPA methods 5030B/8260B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ⊗ Laboratory Control Sample
- ✓ Surrogates
- ✓ Equipment Blank
- ✓ Trip Blank
- ✓ Field Duplicate
- ✓ Sensitivity
- ⊗ Electronic Data Deliverable Review

1.1 Overall Assessment

The VOC data reported in this laboratory report are considered usable for supporting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to

Ashland Brunswick Data Validation 18 May 2021 Page 3

the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.2 Holding Times

The holding time for VOC analysis of a preserved water sample is 14 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three method blanks were reported (batches 664029, 664050 and 664272). VOCs were not detected in the method blanks above the reporting limits (RLs).

1.4 <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>

MS/MSD pairs were not reported.

1.5 <u>Laboratory Control Sample (MS/MSD)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three LCS/LCS duplicate (LCSD) pairs were reported. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria, with the following exceptions.

The recoveries of methylene chloride in the LCS/LCSD pair in batch 664050 were high and outside of the laboratory specified acceptance criteria. Since methylene chloride was not detected in the associated samples, no qualifications were applied to the data.

One or both of the recoveries of acetone, 4-methyl-2-pentanone and methylene chloride in the LCS/LCSD pair in batch 664272 were high and outside of the laboratory specified acceptance criteria. Since 4-methyl-2-pentanone and methylene chloride were not detected in the associated sample, no qualifications were applied to the 4-methyl-2-pentanone and methylene chloride data; however, the acetone concentration in DUP-03-04032021 was J qualified as estimated.

Sample	Analyte	Laboratory Result (µg/L)	Laboratory Flag	Validation Result (μg/L)	Validation Qualifier**	Reason Code***
DUP-03-04032021	Acetone	380	*+	380	J	5

Final Review: ME Tyler 5/25/2021

μg/L-microgram per liter

^{*+} laboratory flag indicating the LCS and/or LCSD is outside acceptance limits, high biased

^{**}Validation qualifier definitions are provided in Attachment 1 of this report

^{***} Reason code definitions are provided in Attachment 2 of this report

Ashland Brunswick Data Validation 18 May 2021 Page 4

1.6 **Surrogates**

Acceptable surrogate recoveries were reported for the sample analyses.

1.7 **Equipment Blank**

Two equipment blanks, EQB-03-04032021 and EQB-04-04032021, were collected with the sample set. VOCs were not detected in the equipment blanks above the RLs.

1.8 Trip Blank

A trip blank did not accompany the sample set. This did not result in qualification of the data, but the discrepancy should be noted by the data user.

1.9 Field Duplicate

Two field duplicate samples, DUP-02-04032021 and DUP-03-04032021, were collected with the sample set. Acceptable precision (RPD \leq 30%) was demonstrated between the field duplicates and the original samples, OW-Q4D-04032021 and MW-38D-04032021, with the following exceptions.

1,4-Dichlorobenzene was detected in parent sample OW-Q4D-04032021 and not detected in field duplicate OW-Q4D-04032021, resulting in a noncalculable RPD between the results. Since the 1,4-dichlorobenzene concentration in OW-Q4D-04032021 was less than the RL for 1,4-dichlorobenzene in OQ-Q4D-04032021 due to the differences in the two samples' dilutions and based on professional and technical judgment, no qualifications were applied to the data.

Acetone was detected in the field duplicate DUP-03-04032021 and not detected in the parent sample MW-38D-04032021, resulting in a noncalculable RPD between the results. Since the acetone concentration in DUP-03-04032021 was less than the RL for acetone in MW-38D-04032021 due to the differences in the two samples' dilutions and based on professional and technical judgment, no qualifications were applied to the data.

1.10 Sensitivity

The samples were reported to the RLs. Elevated non-detect results were reported due to the dilutions analyzed.

1.11 Electronic Data Deliverable (EDD) Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. The samples

Ashland Brunswick Data Validation 18 May 2021 Page 5

were reported to the RLs; both the method detection limits (MDLs) and RLs were listed in the EDD. No other discrepancies were identified between the level II report and the EDD.

* * * * *

Final Review: ME Tyler 5/25/2021

ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY

Assigned by Geosyntec's Data Validation Team

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated OC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Extraction or analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits or RPD outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required

Final Review: ME Tyler 5/25/2021

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample duplicate

RPD - Relative percent difference

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-197389-1

Client Project/Site: Hercules Brunswick - GW Investigation

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Adria Reimer

Authorized for release by: 4/20/2021 12:04:22 PM

Ash Barnett

Eddie Barnett, Project Manager I (912)250-0280

Eddie.Barnett@Eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

4.0

11

. .

14

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Method Summary	5
Definitions/Glossary	6
Detection Summary	7
Client Sample Results	10
Surrogate Summary	23
QC Sample Results	24
QC Association Summary	32
Lab Chronicle	33
Chain of Custody	36
Receipt Checklists	43
Certification Summary	45

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: Hercules Brunswick - GW Investigation

Report Number: 680-197389-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 04/09/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 3.7° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples MW-26D-04062021 (680-197389-1), PSOW-12-04062021 (680-197389-2), OW-Q3S-04062021 (680-197389-3), OW-Q3I-04062021 (680-197389-4), EQB-05-04062021 (680-197389-5), EQB-06-04062021 (680-197389-6), MW-29D-04072021 (680-197389-7), PSOW-11-04072021 (680-197389-8), MW-11D-04072021 (680-197389-9), MW-11DD-04072021 (680-197389-10), EQB-07-04072021 (680-197389-11), DUP-04-04072021 (680-197389-12) and TB (680-197389-13) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 04/17/2021 and 04/19/2021.

Samples PSOW-12-04062021 (680-197389-2)[5X], OW-Q3I-04062021 (680-197389-4)[10X], MW-29D-04072021 (680-197389-7)[2X], MW-29D-04072021 (680-197389-7)[20X], PSOW-11-04072021 (680-197389-8)[10X], MW-11DD-04072021 (680-197389-10)[5X], DUP-04-04072021 (680-197389-12)[2X] and DUP-04-04072021 (680-197389-12)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 680-197389-1

3

O

0

9

1 1

12

A E

Sample Summary

Client: Geosyntec Consultants, Inc.

TB

680-197389-13

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID Client Sample ID Matrix Collected Received Asset ID 04/09/21 10:50 680-197389-1 MW-26D-04062021 Water 04/06/21 16:30 680-197389-2 PSOW-12-04062021 Water 04/06/21 17:45 04/09/21 10:50 680-197389-3 OW-Q3S-04062021 Water 04/06/21 18:33 04/09/21 10:50 680-197389-4 OW-Q3I-04062021 Water 04/06/21 19:13 04/09/21 10:50 680-197389-5 EQB-05-04062021 Water 04/06/21 20:00 04/09/21 10:50 680-197389-6 EQB-06-04062021 Water 04/06/21 20:10 04/09/21 10:50 680-197389-7 MW-29D-04072021 Water 04/07/21 08:40 04/09/21 10:50 PSOW-11-04072021 Water 680-197389-8 04/07/21 14:58 04/09/21 10:50 680-197389-9 MW-11D-04072021 Water 04/07/21 16:00 04/09/21 10:50 MW-11DD-04072021 Water 680-197389-10 04/07/21 16:50 04/09/21 10:50 680-197389-11 EQB-07-04072021 Water 04/07/21 17:45 04/09/21 10:50 680-197389-12 DUP-04-04072021 Water 04/07/21 00:00 04/09/21 10:50

04/07/21 00:00

04/09/21 10:50

Water

Job ID: 680-197389-1

4

6

q

10

11

13

14

Method Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

wick - Gvv investigation

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL TAM
5030B	Purge and Trap	SW846	TAL TAM

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

Job ID: 680-197389-1

4

5

6

8

9

11

13

14

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Job ID: 680-197389-1

Project/Site: Hercules Brunswick - GW Investigation

Qualifiers

G			

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Savannah

Page 6 of 45

4/20/2021

Detection Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: MW-26D-04062021 Lab Sample ID: 680-197389-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	9.6		1.0		ug/L	1	_	8260B	 Total/NA
Chlorobenzene	2.5		1.0		ug/L	1		8260B	Total/NA

Client Sample ID: PSOW-12-04062021

Analyte	Result Qualit	fier RL	MDL Unit	Dil Fac	Method	Prep Type
cis-1,2-Dichloroethene	1.8	1.0	ug/L	1	8260B	Total/NA
1,2-Dichlorobenzene	1.8	1.0	ug/L	1	8260B	Total/NA
1,4-Dichlorobenzene	2.3	1.0	ug/L	1	8260B	Total/NA
Ethylbenzene	1.4	1.0	ug/L	1	8260B	Total/NA
Isopropylbenzene	57	2.0	ug/L	1	8260B	Total/NA
m-Xylene & p-Xylene	2.1	2.0	ug/L	1	8260B	Total/NA
Vinyl chloride	3.6	1.0	ug/L	1	8260B	Total/NA
Benzene - DL	160	5.0	ug/L	5	8260B	Total/NA

5.0

ug/L

220

Client Sample ID: OW-Q3S-04062021

No Detections.

Chlorobenzene - DL

Client Sample ID: OW-Q3I-04062021

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	3.3	1.0	ug/L		8260B	Total/NA
Ethylbenzene	1.1	1.0	ug/L	1	8260B	Total/NA
m-Xylene & p-Xylene	4.5	2.0	ug/L	1	8260B	Total/NA
Toluene	1.5	1.0	ug/L	1	8260B	Total/NA
Benzene - DL	410	10	ug/L	10	8260B	Total/NA
Chlorobenzene - DL	87	10	ug/L	10	8260B	Total/NA
Isopropylbenzene - DL	120	20	ug/L	10	8260B	Total/NA

Client Sample ID: EQB-05-04062021

No Detections.

Client Sample ID: EQB-06-04062021

No Detections.

Client Sample ID: MW-29D-04072021

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichlorobenzene	8.9		2.0		ug/L	2		8260B	Total/NA
1,4-Dichlorobenzene	14		2.0		ug/L	2		8260B	Total/NA
Ethylbenzene	160		2.0		ug/L	2		8260B	Total/NA
Toluene	3.4		2.0		ug/L	2		8260B	Total/NA
Vinyl chloride	4.5		2.0		ug/L	2		8260B	Total/NA
Benzene - DL	730		20		ug/L	20		8260B	Total/NA
Chlorobenzene - DL	690		20		ug/L	20		8260B	Total/NA
Isopropylbenzene - DL	200		40		ug/L	20		8260B	Total/NA
m-Xylene & p-Xylene - DL	280		40		ug/L	20		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 680-197389-1

Total/NA

Lab Sample ID: 680-197389-2

Lab Sample ID: 680-197389-3

Lab Sample ID: 680-197389-4

Lab Sample ID: 680-197389-5

Lab Sample ID: 680-197389-6

Lab Sample ID: 680-197389-7

8260B

3

4

5

7

9

10

12

14

1

Eurofins TestAmerica, Savannah

Detection Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: PSOW-11-04072021

Lab Sample ID: 680-197389-8

Job ID: 680-197389-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1.7		1.0		ug/L	1	_	8260B	Total/NA
1,2-Dichlorobenzene	3.1		1.0		ug/L	1		8260B	Total/NA
1,4-Dichlorobenzene	4.5		1.0		ug/L	1		8260B	Total/NA
Ethylbenzene	1.5		1.0		ug/L	1		8260B	Total/NA
Isopropylbenzene	97		2.0		ug/L	1		8260B	Total/NA
m-Xylene & p-Xylene	4.0		2.0		ug/L	1		8260B	Total/NA
Toluene	1.2		1.0		ug/L	1		8260B	Total/NA
Vinyl chloride	5.1		1.0		ug/L	1		8260B	Total/NA
Benzene - DL	300		10		ug/L	10		8260B	Total/NA
Chlorobenzene - DL	300		10		ug/L	10		8260B	Total/NA

Client Sample ID: MW-11D-04072021

Lab Sample ID: 680-197389-9

Analyte	Result Qualifier	r RL	MDL Unit	Dil Fac	D	Method	Prep Type
Benzene	54	1.0	ug/L	1		8260B	Total/NA
Chlorobenzene	55	1.0	ug/L	1		8260B	Total/NA
Isopropylbenzene	20	2.0	ug/L	1		8260B	Total/NA

Client Sample ID: MW-11DD-04072021

Lab Sample ID: 680-197389-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D	Method	Prep Type
1,2-Dichlorobenzene	2.5	1.0	ug/L	1	_	8260B	Total/NA
1,4-Dichlorobenzene	3.9	1.0	ug/L	1		8260B	Total/NA
1,1-Dichloroethane	1.2	1.0	ug/L	1		8260B	Total/NA
Ethylbenzene	4.7	1.0	ug/L	1		8260B	Total/NA
Isopropylbenzene	23	2.0	ug/L	1		8260B	Total/NA
m-Xylene & p-Xylene	19	2.0	ug/L	1		8260B	Total/NA
p-Cymene	4.1	3.0	ug/L	1		8260B	Total/NA
Vinyl chloride	3.5	1.0	ug/L	1		8260B	Total/NA
Benzene - DL	150	5.0	ug/L	5		8260B	Total/NA
Chlorobenzene - DL	170	5.0	ug/L	5		8260B	Total/NA
Chloroform - DL	180	5.0	ug/L	5		8260B	Total/NA
Methylene Chloride - DL	110	50	ug/L	5		8260B	Total/NA

Client Sample ID: EQB-07-04072021

Lab Sample ID: 680-197389-11

No Detections.

Client Sample ID: DUP-04-04072021

Lab Sample ID: 680-197389-12

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
1,2-Dichlorobenzene	9.3	2.0	ug/L		8260B	Total/NA
1,4-Dichlorobenzene	14	2.0	ug/L	2	8260B	Total/NA
Ethylbenzene	160	2.0	ug/L	2	8260B	Total/NA
o-Xylene	6.7	4.0	ug/L	2	8260B	Total/NA
Toluene	3.5	2.0	ug/L	2	8260B	Total/NA
Vinyl chloride	4.5	2.0	ug/L	2	8260B	Total/NA
Benzene - DL	750	20	ug/L	20	8260B	Total/NA
Chlorobenzene - DL	690	20	ug/L	20	8260B	Total/NA
Isopropylbenzene - DL	200	40	ug/L	20	8260B	Total/NA
m-Xylene & p-Xylene - DL	290	40	ug/L	20	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Savannah

3

4

6

8

10

1 0

13

14

- 1

4/20/2021

Detection Summary

Client: Geosyntec Consultants, Inc.

Job ID: 680-197389-1

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: TB

Lab Sample ID: 680-197389-13

No Detections.

3

4

5

7

8

10

11

13

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-1

Matrix: Water

Job ID: 680-197389-1

Client Sample ID: MW-26D-04062021

Date Collected: 04/06/21 16:30 Date Received: 04/09/21 10:50

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone		U	20	ug/L		04/17/21 12:38	1
Benzene	9.6		1.0	ug/L		04/17/21 12:38	1
2-Butanone (MEK)	10	U	10	ug/L		04/17/21 12:38	1
Carbon disulfide	2.0	U	2.0	ug/L		04/17/21 12:38	1
Carbon tetrachloride	1.0	U	1.0	ug/L		04/17/21 12:38	1
Chlorobenzene	2.5		1.0	ug/L		04/17/21 12:38	1
Chloroform	1.0	U	1.0	ug/L		04/17/21 12:38	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L		04/17/21 12:38	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L		04/17/21 12:38	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L		04/17/21 12:38	1
1,1-Dichloroethane	1.0	U	1.0	ug/L		04/17/21 12:38	1
1,1-Dichloroethene	1.0	U	1.0	ug/L		04/17/21 12:38	1
1,2-Dichloropropane	2.0	U	2.0	ug/L		04/17/21 12:38	1
Ethylbenzene	1.0	U	1.0	ug/L		04/17/21 12:38	1
Isopropylbenzene	2.0	U	2.0	ug/L		04/17/21 12:38	1
Methylene Chloride	10	U	10	ug/L		04/17/21 12:38	1
4-Methyl-2-pentanone (MIBK)	15	U	15	ug/L		04/17/21 12:38	1
m-Xylene & p-Xylene	2.0	U	2.0	ug/L		04/17/21 12:38	1
o-Xylene	2.0	U	2.0	ug/L		04/17/21 12:38	1
p-Cymene	3.0	U	3.0	ug/L		04/17/21 12:38	1
Tetrachloroethene	2.0	U	2.0	ug/L		04/17/21 12:38	1
Toluene	1.0	U	1.0	ug/L		04/17/21 12:38	1
1,2,4-Trichlorobenzene	2.0	U	2.0	ug/L		04/17/21 12:38	1
Trichloroethene	2.0	U	2.0	ug/L		04/17/21 12:38	1
1,2,3-Trichloropropane	3.0	U	3.0	ug/L		04/17/21 12:38	1
1,2,4-Trimethylbenzene	2.0	U	2.0	ug/L		04/17/21 12:38	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L		04/17/21 12:38	1
Vinyl chloride	1.0	U	1.0	ug/L		04/17/21 12:38	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130		04/17/21 12:38	1
4-Bromofluorobenzene	98		70 - 130		04/17/21 12:38	1
Dibromofluoromethane	100		70 - 130		04/17/21 12:38	1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-2

Matrix: Water

Job ID: 680-197389-1

Client Sample ID: PSOW-12-04062021

Date Collected: 04/06/21 17:45 Date Received: 04/09/21 10:50

Surrogate

Toluene-d8 (Surr)

4-Bromofluorobenzene

Dibromofluoromethane

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone		U	20		ug/L			04/17/21 15:03	1
2-Butanone (MEK)	10	U	10		ug/L			04/17/21 15:03	1
Carbon disulfide	2.0	U	2.0		ug/L			04/17/21 15:03	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/17/21 15:03	1
Chloroform	1.0	U	1.0		ug/L			04/17/21 15:03	1
cis-1,2-Dichloroethene	1.8		1.0		ug/L			04/17/21 15:03	1
1,2-Dichlorobenzene	1.8		1.0		ug/L			04/17/21 15:03	1
1,4-Dichlorobenzene	2.3		1.0		ug/L			04/17/21 15:03	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/17/21 15:03	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/17/21 15:03	1
1,2-Dichloropropane	2.0	U	2.0		ug/L			04/17/21 15:03	1
Ethylbenzene	1.4		1.0		ug/L			04/17/21 15:03	1
Isopropylbenzene	57		2.0		ug/L			04/17/21 15:03	1
Methylene Chloride	10	U	10		ug/L			04/17/21 15:03	1
4-Methyl-2-pentanone (MIBK)	15	U	15		ug/L			04/17/21 15:03	1
m-Xylene & p-Xylene	2.1		2.0		ug/L			04/17/21 15:03	1
o-Xylene	2.0	U	2.0		ug/L			04/17/21 15:03	1
p-Cymene	3.0	U	3.0		ug/L			04/17/21 15:03	1
Tetrachloroethene	2.0	U	2.0		ug/L			04/17/21 15:03	1
Toluene	1.0	U	1.0		ug/L			04/17/21 15:03	1
1,2,4-Trichlorobenzene	2.0	U	2.0		ug/L			04/17/21 15:03	1
Trichloroethene	2.0	U	2.0		ug/L			04/17/21 15:03	1
1,2,3-Trichloropropane	3.0	U	3.0		ug/L			04/17/21 15:03	1
1,2,4-Trimethylbenzene	2.0	U	2.0		ug/L			04/17/21 15:03	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/17/21 15:03	1
Vinyl chloride	3.6		1.0		ug/L			04/17/21 15:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130			_		04/17/21 15:03	1
4-Bromofluorobenzene	100		70 - 130					04/17/21 15:03	1
Dibromofluoromethane	97		70 - 130					04/17/21 15:03	1
Method: 8260B - Volatile Orga	nic Compounds ((GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	160		5.0		ug/L		<u> </u>	04/19/21 14:50	5
Chlorobenzene	220		5.0		ug/L			04/19/21 14:50	5

Prepared

Limits

70 - 130

70 - 130

70 - 130

%Recovery Qualifier

99

99

97

Analyzed

04/19/21 14:50

04/19/21 14:50

04/19/21 14:50

Dil Fac

5

5

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-3

Job ID: 680-197389-1

Client Sample ID: OW-Q3S-04062021

Date Collected: 04/06/21 18:33 Date Received: 04/09/21 10:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	20	U	20	ug/L		04/17/21 14:44	1
Benzene	1.0	U	1.0	ug/L		04/17/21 14:44	1
2-Butanone (MEK)	10	U	10	ug/L		04/17/21 14:44	1
Carbon disulfide	2.0	U	2.0	ug/L		04/17/21 14:44	1
Carbon tetrachloride	1.0	U	1.0	ug/L		04/17/21 14:44	1
Chlorobenzene	1.0	U	1.0	ug/L		04/17/21 14:44	1
Chloroform	1.0	U	1.0	ug/L		04/17/21 14:44	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L		04/17/21 14:44	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L		04/17/21 14:44	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L		04/17/21 14:44	1
1,1-Dichloroethane	1.0	U	1.0	ug/L		04/17/21 14:44	1
1,1-Dichloroethene	1.0	U	1.0	ug/L		04/17/21 14:44	1
1,2-Dichloropropane	2.0	U	2.0	ug/L		04/17/21 14:44	1
Ethylbenzene	1.0	U	1.0	ug/L		04/17/21 14:44	1
Isopropylbenzene	2.0	U	2.0	ug/L		04/17/21 14:44	1
Methylene Chloride	10	U	10	ug/L		04/17/21 14:44	1
4-Methyl-2-pentanone (MIBK)	15	U	15	ug/L		04/17/21 14:44	1
m-Xylene & p-Xylene	2.0	U	2.0	ug/L		04/17/21 14:44	1
o-Xylene	2.0	U	2.0	ug/L		04/17/21 14:44	1
p-Cymene	3.0	U	3.0	ug/L		04/17/21 14:44	1
Tetrachloroethene	2.0	U	2.0	ug/L		04/17/21 14:44	1
Toluene	1.0	U	1.0	ug/L		04/17/21 14:44	1
1,2,4-Trichlorobenzene	2.0	U	2.0	ug/L		04/17/21 14:44	1
Trichloroethene	2.0	U	2.0	ug/L		04/17/21 14:44	1
1,2,3-Trichloropropane	3.0	U	3.0	ug/L		04/17/21 14:44	1
1,2,4-Trimethylbenzene	2.0	U	2.0	ug/L		04/17/21 14:44	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L		04/17/21 14:44	1
Vinyl chloride	1.0	U	1.0	ug/L		04/17/21 14:44	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130			04/17/21 14:44	1
4-Bromofluorobenzene	97		70 - 130			04/17/21 14:44	1
Dibromofluoromethane	99		70 - 130			04/17/21 14:44	1

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-4

Job ID: 680-197389-1

Client Sample ID: OW-Q3I-04062021

Date Collected: 04/06/21 19:13 Date Received: 04/09/21 10:50

Isopropylbenzene

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone		U	20		ug/L			04/17/21 16:21	1
2-Butanone (MEK)	10	U	10		ug/L			04/17/21 16:21	1
Carbon disulfide	2.0	U	2.0		ug/L			04/17/21 16:21	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/17/21 16:21	1
Chloroform	1.0	U	1.0		ug/L			04/17/21 16:21	1
cis-1,2-Dichloroethene	3.3		1.0		ug/L			04/17/21 16:21	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/17/21 16:21	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/17/21 16:21	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/17/21 16:21	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/17/21 16:21	1
1,2-Dichloropropane	2.0	U	2.0		ug/L			04/17/21 16:21	1
Ethylbenzene	1.1		1.0		ug/L			04/17/21 16:21	1
Methylene Chloride	10	U	10		ug/L			04/17/21 16:21	1
4-Methyl-2-pentanone (MIBK)	15	U	15		ug/L			04/17/21 16:21	1
m-Xylene & p-Xylene	4.5		2.0		ug/L			04/17/21 16:21	1
o-Xylene	2.0	U	2.0		ug/L			04/17/21 16:21	1
p-Cymene	3.0	U	3.0		ug/L			04/17/21 16:21	1
Tetrachloroethene	2.0	U	2.0		ug/L			04/17/21 16:21	1
Toluene	1.5		1.0		ug/L			04/17/21 16:21	1
1,2,4-Trichlorobenzene	2.0	U	2.0		ug/L			04/17/21 16:21	1
Trichloroethene	2.0	U	2.0		ug/L			04/17/21 16:21	1
1,2,3-Trichloropropane	3.0	U	3.0		ug/L			04/17/21 16:21	1
1,2,4-Trimethylbenzene	2.0	U	2.0		ug/L			04/17/21 16:21	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/17/21 16:21	1
Vinyl chloride	1.0	U	1.0		ug/L			04/17/21 16:21	1
•	2/-								

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130		04/17/21 16:21	1
4-Bromofluorobenzene	96		70 - 130		04/17/21 16:21	1
Dibromofluoromethane	97		70 - 130		04/17/21 16:21	1

Method: 8260B - Volatile Organic C	compounds (GC/MS) - DL	Method: 8260B - Volatile Organic Compounds (GC/MS) - DL								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed			
Benzene	410		10		ug/L			04/17/21 16:02			
Chlorobenzene	87		10		ug/L			04/17/21 16:02			

120

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzea	DII Fac	
	Toluene-d8 (Surr)	99		70 - 130		04/17/21 16:02	10	
	4-Bromofluorobenzene	98		70 - 130		04/17/21 16:02	10	
l	Dibromofluoromethane	100		70 - 130		04/17/21 16:02	10	

20

ug/L

04/17/21 16:02

Dil Fac

10

Client: Geosyntec Consultants, Inc.

Date Collected: 04/06/21 20:00

Date Received: 04/09/21 10:50

Dibromofluoromethane

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: EQB-05-04062021 Lab Sample ID: 680-197389-5

Matrix: Water

Job ID: 680-197389-1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	20	U	20	ug/L			04/17/21 14:05	1
Benzene	1.0	U	1.0	ug/L			04/17/21 14:05	1
2-Butanone (MEK)	10	U	10	ug/L			04/17/21 14:05	1
Carbon disulfide	2.0	U	2.0	ug/L			04/17/21 14:05	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/17/21 14:05	1
Chlorobenzene	1.0	U	1.0	ug/L			04/17/21 14:05	1
Chloroform	1.0	U	1.0	ug/L			04/17/21 14:05	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/17/21 14:05	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/17/21 14:05	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/17/21 14:05	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/17/21 14:05	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/17/21 14:05	1
1,2-Dichloropropane	2.0	U	2.0	ug/L			04/17/21 14:05	1
Ethylbenzene	1.0	U	1.0	ug/L			04/17/21 14:05	1
Isopropylbenzene	2.0	U	2.0	ug/L			04/17/21 14:05	1
Methylene Chloride	10	U	10	ug/L			04/17/21 14:05	1
4-Methyl-2-pentanone (MIBK)	15	U	15	ug/L			04/17/21 14:05	1
m-Xylene & p-Xylene	2.0	U	2.0	ug/L			04/17/21 14:05	1
o-Xylene	2.0	U	2.0	ug/L			04/17/21 14:05	1
p-Cymene	3.0	U	3.0	ug/L			04/17/21 14:05	1
Tetrachloroethene	2.0	U	2.0	ug/L			04/17/21 14:05	1
Toluene	1.0	U	1.0	ug/L			04/17/21 14:05	1
1,2,4-Trichlorobenzene	2.0	U	2.0	ug/L			04/17/21 14:05	1
Trichloroethene	2.0	U	2.0	ug/L			04/17/21 14:05	1
1,2,3-Trichloropropane	3.0	U	3.0	ug/L			04/17/21 14:05	1
1,2,4-Trimethylbenzene	2.0	U	2.0	ug/L			04/17/21 14:05	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L			04/17/21 14:05	1
Vinyl chloride	1.0	U	1.0	ug/L			04/17/21 14:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		70 - 130		-		04/17/21 14:05	1
4-Bromofluorobenzene	97		70 - 130				04/17/21 14:05	1

70 - 130

100

Eurofins TestAmerica, Savannah

04/17/21 14:05

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-6

Matrix: Water

Job ID: 680-197389-1

Client Sample ID: EQB-06-04062021

Date Collected: 04/06/21 20:10 Date Received: 04/09/21 10:50

4-Bromofluorobenzene

Dibromofluoromethane

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	20	U	20		ug/L			04/17/21 14:24	1
Benzene	1.0	U	1.0		ug/L			04/17/21 14:24	1
2-Butanone (MEK)	10	U	10		ug/L			04/17/21 14:24	1
Carbon disulfide	2.0	U	2.0		ug/L			04/17/21 14:24	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/17/21 14:24	1
Chlorobenzene	1.0	U	1.0		ug/L			04/17/21 14:24	1
Chloroform	1.0	U	1.0		ug/L			04/17/21 14:24	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/17/21 14:24	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/17/21 14:24	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/17/21 14:24	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/17/21 14:24	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/17/21 14:24	1
1,2-Dichloropropane	2.0	U	2.0		ug/L			04/17/21 14:24	1
Ethylbenzene	1.0	U	1.0		ug/L			04/17/21 14:24	1
Isopropylbenzene	2.0	U	2.0		ug/L			04/17/21 14:24	1
Methylene Chloride	10	U	10		ug/L			04/17/21 14:24	1
4-Methyl-2-pentanone (MIBK)	15	U	15		ug/L			04/17/21 14:24	1
m-Xylene & p-Xylene	2.0	U	2.0		ug/L			04/17/21 14:24	1
o-Xylene	2.0	U	2.0		ug/L			04/17/21 14:24	1
p-Cymene	3.0	U	3.0		ug/L			04/17/21 14:24	1
Tetrachloroethene	2.0	U	2.0		ug/L			04/17/21 14:24	1
Toluene	1.0	U	1.0		ug/L			04/17/21 14:24	1
1,2,4-Trichlorobenzene	2.0	U	2.0		ug/L			04/17/21 14:24	1
Trichloroethene	2.0	U	2.0		ug/L			04/17/21 14:24	1
1,2,3-Trichloropropane	3.0	U	3.0		ug/L			04/17/21 14:24	1
1,2,4-Trimethylbenzene	2.0	U	2.0		ug/L			04/17/21 14:24	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/17/21 14:24	1
Vinyl chloride	1.0	U	1.0		ug/L			04/17/21 14:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		70 - 130			-		04/17/21 14:24	1

70 - 130

70 - 130

97

100

04/17/21 14:24

04/17/21 14:24

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-7

Job ID: 680-197389-1

Client Sample ID: MW-29D-04072021

Date Collected: 04/07/21 08:40 Date Received: 04/09/21 10:50

Dibromofluoromethane

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	40	U	40	ug/L		04/17/21 17:00	2
2-Butanone (MEK)	20	U	20	ug/L		04/17/21 17:00	2
Carbon disulfide	4.0	U	4.0	ug/L		04/17/21 17:00	2
Carbon tetrachloride	2.0	U	2.0	ug/L		04/17/21 17:00	2
Chloroform	2.0	U	2.0	ug/L		04/17/21 17:00	2
cis-1,2-Dichloroethene	2.0	U	2.0	ug/L		04/17/21 17:00	2
1,2-Dichlorobenzene	8.9		2.0	ug/L		04/17/21 17:00	2
1,4-Dichlorobenzene	14		2.0	ug/L		04/17/21 17:00	2
1,1-Dichloroethane	2.0	U	2.0	ug/L		04/17/21 17:00	2
1,1-Dichloroethene	2.0	U	2.0	ug/L		04/17/21 17:00	2
1,2-Dichloropropane	4.0	U	4.0	ug/L		04/17/21 17:00	2
Ethylbenzene	160		2.0	ug/L		04/17/21 17:00	2
Methylene Chloride	20	U	20	ug/L		04/17/21 17:00	2
4-Methyl-2-pentanone (MIBK)	30	U	30	ug/L		04/17/21 17:00	2
p-Cymene	6.0	U	6.0	ug/L		04/17/21 17:00	2
Tetrachloroethene	4.0	U	4.0	ug/L		04/17/21 17:00	2
Toluene	3.4		2.0	ug/L		04/17/21 17:00	2
1,2,4-Trichlorobenzene	4.0	U	4.0	ug/L		04/17/21 17:00	2
Trichloroethene	4.0	U	4.0	ug/L		04/17/21 17:00	2
1,2,3-Trichloropropane	6.0	U	6.0	ug/L		04/17/21 17:00	2
1,2,4-Trimethylbenzene	4.0	U	4.0	ug/L		04/17/21 17:00	2
1,3,5-Trimethylbenzene	2.0	U	2.0	ug/L		04/17/21 17:00	2
Vinyl chloride	4.5		2.0	ug/L		04/17/21 17:00	2
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130			04/17/21 17:00	2
4-Bromofluorobenzene	98		70 - 130			04/17/21 17:00	2

Dibromofluoromethane	99		70 - 130					04/17/21 17:00	2
Method: 8260B - Volatile Orga	nic Compounds ((GC/MS) - D	L						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	730		20		ug/L			04/17/21 15:23	20
Chlorobenzene	690		20		ug/L			04/17/21 15:23	20
Isopropylbenzene	200		40		ug/L			04/17/21 15:23	20
m-Xylene & p-Xylene	280		40		ug/L			04/17/21 15:23	20
o-Xylene	40	U	40		ug/L			04/17/21 15:23	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130			-		04/17/21 15:23	20
4-Bromofluorobenzene	100		70 - 130					04/17/21 15:23	20

70 - 130

98

04/17/21 15:23

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-8

Matrix: Water

Job ID: 680-197389-1

Client Sample ID: PSOW-11-04072021

Date Collected: 04/07/21 14:58 Date Received: 04/09/21 10:50

Method: 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Acetone 20 U 20 ug/L 04/17/21 16:41 2-Butanone (MEK) 10 U 10 ug/L 04/17/21 16:41 Carbon disulfide 2.0 U 2.0 ug/L 04/17/21 16:41 Carbon tetrachloride 1.0 U 1.0 ug/L 04/17/21 16:41 Chloroform ug/L 04/17/21 16:41 1.0 U 1.0 ug/L 04/17/21 16:41 cis-1,2-Dichloroethene 1.7 1.0 1.0 ug/L 04/17/21 16:41 1,2-Dichlorobenzene 3.1 1.0 ug/L 04/17/21 16:41 1,4-Dichlorobenzene 4.5 1,1-Dichloroethane 1.0 1.0 ug/L 04/17/21 16:41 1,1-Dichloroethene 1.0 U 1.0 ug/L 04/17/21 16:41 1,2-Dichloropropane 2.0 U 2.0 ug/L 04/17/21 16:41 1.0 ug/L Ethylbenzene 1.5 04/17/21 16:41 Isopropylbenzene 97 2.0 ug/L 04/17/21 16:41 Methylene Chloride 10 U 10 ug/L 04/17/21 16:41 4-Methyl-2-pentanone (MIBK) 15 U 15 ug/L 04/17/21 16:41 m-Xylene & p-Xylene 2.0 ug/L 04/17/21 16:41 4.0 2.0 U o-Xylene 2.0 ug/L 04/17/21 16:41 p-Cymene 3.0 3.0 ug/L 04/17/21 16:41 Tetrachloroethene 2.0 U 2.0 ug/L 04/17/21 16:41 Toluene 1.2 1.0 ug/L 04/17/21 16:41 2.0 U 1,2,4-Trichlorobenzene 2.0 ug/L 04/17/21 16:41 Trichloroethene 2.0 U 2.0 ug/L 04/17/21 16:41 1,2,3-Trichloropropane 3.0 U 3.0 ug/L 04/17/21 16:41 1,2,4-Trimethylbenzene 2.0 U 2.0 ug/L 04/17/21 16:41 1,3,5-Trimethylbenzene 1.0 U 1.0 ug/L 04/17/21 16:41 Vinyl chloride 5.1 1.0 ug/L 04/17/21 16:41

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130		04/17/21 16:41	1
4-Bromofluorobenzene	97		70 - 130		04/17/21 16:41	1
Dibromofluoromethane	99		70 - 130		04/17/21 16:41	1

Method: 8260B - Vola	itile Organic	Compounds	(GC/MS) - DL
----------------------	---------------	-----------	--------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	300		10		ug/L			04/17/21 15:42	10
Chlorobenzene	300		10		ug/L			04/17/21 15:42	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130		04/17/21 15:42	10
4-Bromofluorobenzene	98		70 - 130		04/17/21 15:42	10
Dibromofluoromethane	98		70 - 130		04/17/21 15:42	10

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-9

Matrix: Water

Job ID: 680-197389-1

Client Sample ID: MW-11D-04072021

Date Collected: 04/07/21 16:00 Date Received: 04/09/21 10:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	20	U	20		ug/L			04/19/21 12:04	1
Benzene	54		1.0		ug/L			04/19/21 12:04	1
2-Butanone (MEK)	10	U	10		ug/L			04/19/21 12:04	1
Carbon disulfide	2.0	U	2.0		ug/L			04/19/21 12:04	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/19/21 12:04	1
Chlorobenzene	55		1.0		ug/L			04/19/21 12:04	1
Chloroform	1.0	U	1.0		ug/L			04/19/21 12:04	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/19/21 12:04	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/19/21 12:04	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/19/21 12:04	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/19/21 12:04	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/19/21 12:04	1
1,2-Dichloropropane	2.0	U	2.0		ug/L			04/19/21 12:04	1
Ethylbenzene	1.0	U	1.0		ug/L			04/19/21 12:04	1
Isopropylbenzene	20		2.0		ug/L			04/19/21 12:04	1
Methylene Chloride	10	U	10		ug/L			04/19/21 12:04	1
4-Methyl-2-pentanone (MIBK)	15	U	15		ug/L			04/19/21 12:04	1
m-Xylene & p-Xylene	2.0	U	2.0		ug/L			04/19/21 12:04	1
o-Xylene	2.0	U	2.0		ug/L			04/19/21 12:04	1
p-Cymene	3.0	U	3.0		ug/L			04/19/21 12:04	1
Tetrachloroethene	2.0	U	2.0		ug/L			04/19/21 12:04	1
Toluene	1.0	U	1.0		ug/L			04/19/21 12:04	1
1,2,4-Trichlorobenzene	2.0	U	2.0		ug/L			04/19/21 12:04	1
Trichloroethene	2.0	U	2.0		ug/L			04/19/21 12:04	1
1,2,3-Trichloropropane	3.0	U	3.0		ug/L			04/19/21 12:04	1
1,2,4-Trimethylbenzene	2.0	U	2.0		ug/L			04/19/21 12:04	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/19/21 12:04	1
Vinyl chloride	1.0	U	1.0		ug/L			04/19/21 12:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130			_		04/19/21 12:04	1
4-Bromofluorobenzene	98		70 - 130					04/19/21 12:04	1
Dibromofluoromethane	100		70 - 130					04/19/21 12:04	1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-10

Matrix: Water

Job ID: 680-197389-1

Client Sample ID: MW-11DD-04072021

Date Collected: 04/07/21 16:50 Date Received: 04/09/21 10:50

Method: 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Acetone 20 U 20 ug/L 04/19/21 12:43 2-Butanone (MEK) 10 U 10 ug/L 04/19/21 12:43 Carbon disulfide 2.0 U 2.0 ug/L 04/19/21 12:43 Carbon tetrachloride 1.0 U 04/19/21 12:43 1.0 ug/L ug/L cis-1,2-Dichloroethene 1.0 U 04/19/21 12:43 1.0 ug/L 04/19/21 12:43 1,2-Dichlorobenzene 2.5 1.0 1.0 ug/L 04/19/21 12:43 1,4-Dichlorobenzene 3.9 1.2 1.0 ug/L 04/19/21 12:43 1,1-Dichloroethane 1,1-Dichloroethene 1.0 1.0 ug/L 04/19/21 12:43 1,2-Dichloropropane 2.0 2.0 ug/L 04/19/21 12:43 1.0 ug/L 04/19/21 12:43 Ethylbenzene 4.7 04/19/21 12:43 2.0 ug/L Isopropylbenzene 23 4-Methyl-2-pentanone (MIBK) 15 15 ug/L 04/19/21 12:43 2.0 ug/L 04/19/21 12:43 m-Xylene & p-Xylene 19 o-Xylene 2.0 2.0 ug/L 04/19/21 12:43 p-Cymene 3.0 ug/L 04/19/21 12:43 4.1 Tetrachloroethene 04/19/21 12:43 2.0 U 2.0 ug/L 1.0 1.0 ug/L 04/19/21 12:43 1,2,4-Trichlorobenzene 2.0 U 2.0 ug/L 04/19/21 12:43 Trichloroethene 2.0 U 2.0 ug/L 04/19/21 12:43 3.0 U 1,2,3-Trichloropropane 3.0 ug/L 04/19/21 12:43 1,2,4-Trimethylbenzene 2.0 U 2.0 ug/L 04/19/21 12:43 1,3,5-Trimethylbenzene 1.0 U 04/19/21 12:43 1.0 ug/L Vinyl chloride 1.0 ug/L 04/19/21 12:43 3.5

Surrogate	%Recovery	Qualifier Limits	Prepared Analyze	ed Dil Fac
Toluene-d8 (Surr)	101	70 - 130	04/19/21 1	12:43
4-Bromofluorobenzene	95	70 - 130	04/19/21 1	12:43 1
Dibromofluoromethane	100	70 - 130	04/19/21 1	12:43 1

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed		
Benzene	150		5.0		ug/L			04/19/21 10:46		
Chlorobenzene	170		5.0		ug/L			04/19/21 10:46		

Chlorobenzene	170	5.0	ug/L	04/19/21 10:46
Chloroform	180	5.0	ug/L	04/19/21 10:46
Methylene Chloride	110	50	ug/L	04/19/21 10:46

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130	_		04/19/21 10:46	5
4-Bromofluorobenzene	99		70 - 130			04/19/21 10:46	5
Dibromofluoromethane	100		70 - 130			04/19/21 10:46	5

3

6

8

10

40

13

14

15

Dil Fac 5 5

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-11

Matrix: Water

Job ID: 680-197389-1

Client Sample ID: EQB-07-04072021

Date Collected: 04/07/21 17:45 Date Received: 04/09/21 10:50

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	20	U	20	ug/L		04/19/21 10:27	1
Benzene	1.0	U	1.0	ug/L		04/19/21 10:27	1
2-Butanone (MEK)	10	U	10	ug/L		04/19/21 10:27	1
Carbon disulfide	2.0	U	2.0	ug/L		04/19/21 10:27	1
Carbon tetrachloride	1.0	U	1.0	ug/L		04/19/21 10:27	1
Chlorobenzene	1.0	U	1.0	ug/L		04/19/21 10:27	1
Chloroform	1.0	U	1.0	ug/L		04/19/21 10:27	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L		04/19/21 10:27	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L		04/19/21 10:27	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L		04/19/21 10:27	1
1,1-Dichloroethane	1.0	U	1.0	ug/L		04/19/21 10:27	1
1,1-Dichloroethene	1.0	U	1.0	ug/L		04/19/21 10:27	1
1,2-Dichloropropane	2.0	U	2.0	ug/L		04/19/21 10:27	1
Ethylbenzene	1.0	U	1.0	ug/L		04/19/21 10:27	1
Isopropylbenzene	2.0	U	2.0	ug/L		04/19/21 10:27	1
Methylene Chloride	10	U	10	ug/L		04/19/21 10:27	1
4-Methyl-2-pentanone (MIBK)	15	U	15	ug/L		04/19/21 10:27	1
m-Xylene & p-Xylene	2.0	U	2.0	ug/L		04/19/21 10:27	1
o-Xylene	2.0	U	2.0	ug/L		04/19/21 10:27	1
p-Cymene	3.0	U	3.0	ug/L		04/19/21 10:27	1
Tetrachloroethene	2.0	U	2.0	ug/L		04/19/21 10:27	1
Toluene	1.0	U	1.0	ug/L		04/19/21 10:27	1
1,2,4-Trichlorobenzene	2.0	U	2.0	ug/L		04/19/21 10:27	1
Trichloroethene	2.0	U	2.0	ug/L		04/19/21 10:27	1
1,2,3-Trichloropropane	3.0	U	3.0	ug/L		04/19/21 10:27	1
1,2,4-Trimethylbenzene	2.0	U	2.0	ug/L		04/19/21 10:27	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L		04/19/21 10:27	1
Vinyl chloride	1.0	U	1.0	ug/L		04/19/21 10:27	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		70 - 130		04/19/21 10:27	1
4-Bromofluorobenzene	99		70 - 130		04/19/21 10:27	1
Dibromofluoromethane	101		70 - 130		04/19/21 10:27	1

3

5

8

9

11

13

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Lab Sample ID: 680-197389-12

Matrix: Water

Job ID: 680-197389-1

Client Sample ID: DUP-04-04072021

Date Collected: 04/07/21 00:00 Date Received: 04/09/21 10:50

4-Bromofluorobenzene Dibromofluoromethane

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	40	U	40	ug/L			04/19/21 13:03	2
2-Butanone (MEK)	20	U	20	ug/L			04/19/21 13:03	2
Carbon disulfide	4.0	U	4.0	ug/L			04/19/21 13:03	2
Carbon tetrachloride	2.0	U	2.0	ug/L			04/19/21 13:03	2
Chloroform	2.0	U	2.0	ug/L			04/19/21 13:03	2
cis-1,2-Dichloroethene	2.0	U	2.0	ug/L			04/19/21 13:03	2
1,2-Dichlorobenzene	9.3		2.0	ug/L			04/19/21 13:03	2
1,4-Dichlorobenzene	14		2.0	ug/L			04/19/21 13:03	2
1,1-Dichloroethane	2.0	U	2.0	ug/L			04/19/21 13:03	2
1,1-Dichloroethene	2.0	U	2.0	ug/L			04/19/21 13:03	2
1,2-Dichloropropane	4.0	U	4.0	ug/L			04/19/21 13:03	2
Ethylbenzene	160		2.0	ug/L			04/19/21 13:03	2
Methylene Chloride	20	U	20	ug/L			04/19/21 13:03	2
4-Methyl-2-pentanone (MIBK)	30	U	30	ug/L			04/19/21 13:03	2
o-Xylene	6.7		4.0	ug/L			04/19/21 13:03	2
p-Cymene	6.0	U	6.0	ug/L			04/19/21 13:03	2
Tetrachloroethene	4.0	U	4.0	ug/L			04/19/21 13:03	2
Toluene	3.5		2.0	ug/L			04/19/21 13:03	2
1,2,4-Trichlorobenzene	4.0	U	4.0	ug/L			04/19/21 13:03	2
Trichloroethene	4.0	U	4.0	ug/L			04/19/21 13:03	2
1,2,3-Trichloropropane	6.0	U	6.0	ug/L			04/19/21 13:03	2
1,2,4-Trimethylbenzene	4.0	U	4.0	ug/L			04/19/21 13:03	2
1,3,5-Trimethylbenzene	2.0	U	2.0	ug/L			04/19/21 13:03	2
Vinyl chloride	4.5		2.0	ug/L			04/19/21 13:03	2
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130		-		04/19/21 13:03	2
4-Bromofluorobenzene	98		70 - 130				04/19/21 13:03	2
Dibromofluoromethane	99		70 - 130				04/19/21 13:03	2
Method: 8260B - Volatile Orga	nic Compounds ((GC/MS) - D	L					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	750		20	ug/L			04/19/21 12:24	20
Chlorobenzene	690		20	ug/L			04/19/21 12:24	20
Isopropylbenzene	200		40	ug/L			04/19/21 12:24	20
m-Xylene & p-Xylene	290		40	ug/L			04/19/21 12:24	20
Surrogate	%Recovery	Qualifier	Limits		_	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130				04/19/21 12:24	20

70 - 130

70 - 130

99

98

04/19/21 12:24

04/19/21 12:24

20

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: TB Lab Sample ID: 680-197389-13

Matrix: Water

Job ID: 680-197389-1

Date Collected: 04/07/21 00:00 Date Received: 04/09/21 10:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	20	U	20		ug/L			04/19/21 10:08	1
Benzene	1.0	U	1.0		ug/L			04/19/21 10:08	1
2-Butanone (MEK)	10	U	10		ug/L			04/19/21 10:08	1
Carbon disulfide	2.0	U	2.0		ug/L			04/19/21 10:08	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/19/21 10:08	1
Chlorobenzene	1.0	U	1.0		ug/L			04/19/21 10:08	1
Chloroform	1.0	U	1.0		ug/L			04/19/21 10:08	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/19/21 10:08	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/19/21 10:08	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/19/21 10:08	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/19/21 10:08	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/19/21 10:08	1
1,2-Dichloropropane	2.0	U	2.0		ug/L			04/19/21 10:08	1
Ethylbenzene	1.0	U	1.0		ug/L			04/19/21 10:08	1
Isopropylbenzene	2.0	U	2.0		ug/L			04/19/21 10:08	1
Methylene Chloride	10	U	10		ug/L			04/19/21 10:08	1
4-Methyl-2-pentanone (MIBK)	15	U	15		ug/L			04/19/21 10:08	1
m-Xylene & p-Xylene	2.0	U	2.0		ug/L			04/19/21 10:08	1
o-Xylene	2.0	U	2.0		ug/L			04/19/21 10:08	1
p-Cymene	3.0	U	3.0		ug/L			04/19/21 10:08	1
Tetrachloroethene	2.0	U	2.0		ug/L			04/19/21 10:08	1
Toluene	1.0	U	1.0		ug/L			04/19/21 10:08	1
1,2,4-Trichlorobenzene	2.0	U	2.0		ug/L			04/19/21 10:08	1
Trichloroethene	2.0	U	2.0		ug/L			04/19/21 10:08	1
1,2,3-Trichloropropane	3.0	U	3.0		ug/L			04/19/21 10:08	1
1,2,4-Trimethylbenzene	2.0	U	2.0		ug/L			04/19/21 10:08	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/19/21 10:08	1
Vinyl chloride	1.0	U	1.0		ug/L			04/19/21 10:08	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130			-		04/19/21 10:08	1
4-Bromofluorobenzene	99		70 - 130					04/19/21 10:08	1
Dibromofluoromethane	99		70 - 130					04/19/21 10:08	1

Surrogate Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		TOL	BFB	Percent Surrogation DBFM	te Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	
80-197389-1	MW-26D-04062021	100	98	100	
80-197389-1 DU	MW-26D-04062021	100	101	101	
80-197389-2	PSOW-12-04062021	99	100	97	
80-197389-2 - DL	PSOW-12-04062021	99	99	97	
680-197389-3	OW-Q3S-04062021	99	97	99	
80-197389-4 - DL	OW-Q3I-04062021	99	98	100	
80-197389-4	OW-Q3I-04062021	98	96	97	
680-197389-5	EQB-05-04062021	102	97	100	
80-197389-6	EQB-06-04062021	102	97	100	
80-197389-7 - DL	MW-29D-04072021	100	100	98	
80-197389-7	MW-29D-04072021	100	98	99	
80-197389-8 - DL	PSOW-11-04072021	100	98	98	
80-197389-8	PSOW-11-04072021	99	97	99	
80-197389-9	MW-11D-04072021	100	98	100	
80-197389-10	MW-11DD-04072021	101	95	100	
80-197389-10 - DL	MW-11DD-04072021	101	99	100	
80-197389-10 MS	MW-11DD-04072021	101	98	100	
80-197389-10 MSD	MW-11DD-04072021	101	99	101	
80-197389-11	EQB-07-04072021	104	99	101	
80-197389-12 - DL	DUP-04-04072021	98	99	98	
80-197389-12	DUP-04-04072021	100	98	99	
80-197389-13	ТВ	98	99	99	
CS 660-236711/5	Lab Control Sample	100	98	99	
CS 660-236741/4	Lab Control Sample	102	96	98	
.CS 660-236759/4	Lab Control Sample	102	100	103	
MB 660-236711/7	Method Blank	100	97	99	
IB 660-236741/6	Method Blank	102	98	101	
MB 660-236759/6	Method Blank	100	98	99	

Surrogate Legend

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane

3

6

8

40

11

12

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 660-236711/7

Matrix: Water

Analysis Batch: 236711

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone		U	20		ug/L			04/17/21 11:48	1
Benzene	1.0	U	1.0		ug/L			04/17/21 11:48	1
2-Butanone (MEK)	10	U	10		ug/L			04/17/21 11:48	1
Carbon disulfide	2.0	U	2.0		ug/L			04/17/21 11:48	1
Carbon tetrachloride	1.0	U	1.0		ug/L			04/17/21 11:48	1
Chlorobenzene	1.0	U	1.0		ug/L			04/17/21 11:48	1
Chloroform	1.0	U	1.0		ug/L			04/17/21 11:48	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			04/17/21 11:48	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			04/17/21 11:48	1
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			04/17/21 11:48	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			04/17/21 11:48	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			04/17/21 11:48	1
1,2-Dichloropropane	2.0	U	2.0		ug/L			04/17/21 11:48	1
Ethylbenzene	1.0	U	1.0		ug/L			04/17/21 11:48	1
Isopropylbenzene	2.0	U	2.0		ug/L			04/17/21 11:48	1
Methylene Chloride	10	U	10		ug/L			04/17/21 11:48	1
4-Methyl-2-pentanone (MIBK)	15	U	15		ug/L			04/17/21 11:48	1
m-Xylene & p-Xylene	2.0	U	2.0		ug/L			04/17/21 11:48	1
o-Xylene	2.0	U	2.0		ug/L			04/17/21 11:48	1
p-Cymene	3.0	U	3.0		ug/L			04/17/21 11:48	1
Tetrachloroethene	2.0	U	2.0		ug/L			04/17/21 11:48	1
Toluene	1.0	U	1.0		ug/L			04/17/21 11:48	1
1,2,4-Trichlorobenzene	2.0	U	2.0		ug/L			04/17/21 11:48	1
Trichloroethene	2.0	U	2.0		ug/L			04/17/21 11:48	1
1,2,3-Trichloropropane	3.0	U	3.0		ug/L			04/17/21 11:48	1
1,2,4-Trimethylbenzene	2.0	U	2.0		ug/L			04/17/21 11:48	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/17/21 11:48	1
Vinyl chloride	1.0		1.0		ug/L			04/17/21 11:48	

	МВ	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130	_		04/17/21 11:48	1
4-Bromofluorobenzene	97		70 - 130			04/17/21 11:48	1
Dibromofluoromethane	99		70 - 130			04/17/21 11:48	1

Lab Sample ID: LCS 660-236711/5

Matrix: Water

Analysis Batch: 236711

Client Sample ID: Lab Control Sample **Prep Type: Total/NA**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	100	86.4		ug/L		86	45 - 150	_
Benzene	10.0	9.24		ug/L		92	66 - 131	
2-Butanone (MEK)	100	83.8		ug/L		84	46 - 146	
Carbon disulfide	10.0	5.58		ug/L		56	52 - 129	
Carbon tetrachloride	10.0	9.05		ug/L		90	62 - 124	
Chlorobenzene	10.0	9.32		ug/L		93	67 - 130	
Chloroform	10.0	9.31		ug/L		93	77 - 119	
cis-1,2-Dichloroethene	10.0	9.62		ug/L		96	69 - 133	
1,2-Dichlorobenzene	10.0	8.92		ug/L		89	69 - 133	

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 660-236711/5

Matrix: Water

Analysis Batch: 236711

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

7 mm, yere = attent = eer 1 .								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	10.0	9.30		ug/L		93	69 - 133	
1,1-Dichloroethane	10.0	9.31		ug/L		93	68 - 130	
1,1-Dichloroethene	10.0	9.56		ug/L		96	62 _ 133	
1,2-Dichloropropane	10.0	9.58		ug/L		96	79 _ 130	
Ethylbenzene	10.0	9.11		ug/L		91	77 - 117	
Isopropylbenzene	10.0	9.11		ug/L		91	66 _ 130	
Methylene Chloride	10.0	9.35	J	ug/L		93	64 - 124	
4-Methyl-2-pentanone (MIBK)	100	91.9		ug/L		92	46 - 146	
m-Xylene & p-Xylene	10.0	8.99		ug/L		90	65 _ 130	
o-Xylene	10.0	8.75		ug/L		87	63 _ 130	
p-Cymene	10.0	9.33		ug/L		93	64 - 132	
Tetrachloroethene	10.0	9.05		ug/L		91	59 - 130	
Toluene	10.0	9.15		ug/L		92	71 _ 119	
1,2,4-Trichlorobenzene	10.0	9.68		ug/L		97	67 _ 130	
Trichloroethene	10.0	8.79		ug/L		88	65 - 130	
1,2,3-Trichloropropane	10.0	9.22		ug/L		92	68 _ 130	
1,2,4-Trimethylbenzene	10.0	8.83		ug/L		88	71 - 131	
1,3,5-Trimethylbenzene	10.0	8.77		ug/L		88	65 _ 130	
Vinyl chloride	10.0	9.76		ug/L		98	59 _ 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	100	70 - 130
4-Bromofluorobenzene	98	70 - 130
Dibromofluoromethane	99	70 - 130

Lab Sample ID: 680-197389-1 DU

Matrix: Water

Analysis Batch: 236711

Client Sample II	D: MW-26D-04062021
	Prep Type: Total/NA

Analyte	Result	Sample Qualifier		DU				RPD
		Qualifier	5 11					
	20		Result	Qualifier	Unit	D	RPD	Limit
Acetone	20	U	20	U	ug/L		NC NC	30
Benzene	9.6		8.68		ug/L		10	30
2-Butanone (MEK)	10	U	10	U	ug/L		NC	30
Carbon disulfide	2.0	U	2.0	U	ug/L		NC	30
Carbon tetrachloride	1.0	U	1.0	U	ug/L		NC	30
Chlorobenzene	2.5		2.26		ug/L		11	30
Chloroform	1.0	U	1.0	U	ug/L		NC	30
cis-1,2-Dichloroethene	1.0	U	1.0	U	ug/L		NC	30
1,2-Dichlorobenzene	1.0	U	1.0	U	ug/L		NC	30
1,4-Dichlorobenzene	1.0	U	1.0	U	ug/L		NC	30
1,1-Dichloroethane	1.0	U	1.0	U	ug/L		NC	30
1,1-Dichloroethene	1.0	U	1.0	U	ug/L		NC	30
1,2-Dichloropropane	2.0	U	2.0	U	ug/L		NC	30
Ethylbenzene	1.0	U	1.0	U	ug/L		NC	30
Isopropylbenzene	2.0	U	2.0	U	ug/L		NC	30
Methylene Chloride	10	U	10	U	ug/L		NC	30
4-Methyl-2-pentanone (MIBK)	15	U	15	U	ug/L		NC	30
m-Xylene & p-Xylene	2.0	U	2.0	U	ug/L		NC	30

Eurofins TestAmerica, Savannah

Page 25 of 45

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-197389-1 DU

Matrix: Water

Analysis Batch: 236711

Client Sample ID: MW-26D-04062021

Prep Type: Total/NA

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
o-Xylene	2.0	U	2.0	U	ug/L		NC	30
p-Cymene	3.0	U	3.0	U	ug/L		NC	30
Tetrachloroethene	2.0	U	2.0	U	ug/L		NC	30
Toluene	1.0	U	1.0	U	ug/L		NC	30
1,2,4-Trichlorobenzene	2.0	U	2.0	U	ug/L		NC	30
Trichloroethene	2.0	U	2.0	U	ug/L		NC	30
1,2,3-Trichloropropane	3.0	U	3.0	U	ug/L		NC	30
1,2,4-Trimethylbenzene	2.0	U	2.0	U	ug/L		NC	30
1,3,5-Trimethylbenzene	1.0	U	1.0	U	ug/L		NC	30
Vinyl chloride	1.0	U	1.0	U	ug/L		NC	30

DU DU

Surrogate	%Recovery Q	ualifier Lin	nits
Toluene-d8 (Surr)	100	70	- 130
4-Bromofluorobenzene	101	70	- 130
Dibromofluoromethane	101	70	- 130

Lab Sample ID: MB 660-236741/6

Matrix: Water

Analysis Batch: 236741

Client Sample ID: Method Blank

Prep Type: Total/NA

11

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone		U	20	ug/L			04/19/21 09:48	1
Benzene	1.0	U	1.0	ug/L			04/19/21 09:48	1
2-Butanone (MEK)	10	U	10	ug/L			04/19/21 09:48	1
Carbon disulfide	2.0	U	2.0	ug/L			04/19/21 09:48	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/19/21 09:48	1
Chlorobenzene	1.0	U	1.0	ug/L			04/19/21 09:48	1
Chloroform	1.0	U	1.0	ug/L			04/19/21 09:48	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/19/21 09:48	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/21 09:48	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L			04/19/21 09:48	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/19/21 09:48	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/19/21 09:48	1
1,2-Dichloropropane	2.0	U	2.0	ug/L			04/19/21 09:48	1
Ethylbenzene	1.0	U	1.0	ug/L			04/19/21 09:48	1
Isopropylbenzene	2.0	U	2.0	ug/L			04/19/21 09:48	1
Methylene Chloride	10	U	10	ug/L			04/19/21 09:48	1
4-Methyl-2-pentanone (MIBK)	15	U	15	ug/L			04/19/21 09:48	1
m-Xylene & p-Xylene	2.0	U	2.0	ug/L			04/19/21 09:48	1
o-Xylene	2.0	U	2.0	ug/L			04/19/21 09:48	1
p-Cymene	3.0	U	3.0	ug/L			04/19/21 09:48	1
Tetrachloroethene	2.0	U	2.0	ug/L			04/19/21 09:48	1
Toluene	1.0	U	1.0	ug/L			04/19/21 09:48	1
1,2,4-Trichlorobenzene	2.0	U	2.0	ug/L			04/19/21 09:48	1
Trichloroethene	2.0	U	2.0	ug/L			04/19/21 09:48	1
1,2,3-Trichloropropane	3.0	U	3.0	ug/L			04/19/21 09:48	1
1,2,4-Trimethylbenzene	2.0	U	2.0	ug/L			04/19/21 09:48	1
1,3,5-Trimethylbenzene	1.0	U	1.0	ug/L			04/19/21 09:48	1

Eurofins TestAmerica, Savannah

4

6

10

12

4 4

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

1.0 U

Result Qualifier

Lab Sample ID: MB 660-236741/6

Matrix: Water

Analyte

Vinyl chloride

Analysis Batch: 236741

Client Sample ID: Method Blank

04/19/21 09:48

Prep Type: Total/NA

Prepared Analyzed Dil Fac

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		70 - 130		04/19/21 09:48	1
4-Bromofluorobenzene	98		70 - 130		04/19/21 09:48	1
Dibromofluoromethane	101		70 - 130		04/19/21 09:48	1

RL

1.0

MDL Unit

ug/L

Lab Sample ID: LCS 660-236741/4

Matrix: Water

Analysis Batch: 236741

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	100	91.3	-	ug/L		91	45 - 150	
Benzene	10.0	9.59		ug/L		96	66 - 131	
2-Butanone (MEK)	100	88.1		ug/L		88	46 - 146	
Carbon disulfide	10.0	5.46		ug/L		55	52 _ 129	
Carbon tetrachloride	10.0	9.23		ug/L		92	62 _ 124	
Chlorobenzene	10.0	9.45		ug/L		95	67 _ 130	
Chloroform	10.0	9.48		ug/L		95	77 - 119	
cis-1,2-Dichloroethene	10.0	9.96		ug/L		100	69 _ 133	
1,2-Dichlorobenzene	10.0	9.12		ug/L		91	69 _ 133	
1,4-Dichlorobenzene	10.0	9.41		ug/L		94	69 _ 133	
1,1-Dichloroethane	10.0	9.96		ug/L		100	68 - 130	
1,1-Dichloroethene	10.0	9.55		ug/L		95	62 - 133	
1,2-Dichloropropane	10.0	9.93		ug/L		99	79 - 130	
Ethylbenzene	10.0	9.39		ug/L		94	77 - 117	
Isopropylbenzene	10.0	9.19		ug/L		92	66 _ 130	
Methylene Chloride	10.0	9.42	J	ug/L		94	64 - 124	
4-Methyl-2-pentanone (MIBK)	100	99.3		ug/L		99	46 - 146	
m-Xylene & p-Xylene	10.0	8.99		ug/L		90	65 _ 130	
o-Xylene	10.0	9.12		ug/L		91	63 _ 130	
p-Cymene	10.0	9.45		ug/L		95	64 _ 132	
Tetrachloroethene	10.0	9.44		ug/L		94	59 _ 130	
Toluene	10.0	9.20		ug/L		92	71 - 119	
1,2,4-Trichlorobenzene	10.0	9.82		ug/L		98	67 _ 130	
Trichloroethene	10.0	9.82		ug/L		98	65 _ 130	
1,2,3-Trichloropropane	10.0	9.32		ug/L		93	68 _ 130	
1,2,4-Trimethylbenzene	10.0	8.88		ug/L		89	71 _ 131	
1,3,5-Trimethylbenzene	10.0	8.85		ug/L		88	65 - 130	
Vinyl chloride	10.0	10.0		ug/L		100	59 _ 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	102	70 - 130
4-Bromofluorobenzene	96	70 - 130
Dibromofluoromethane	98	70 - 130

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-197389-10 MS

Matrix: Water

Analysis Batch: 236741

Client Sample ID: MW-11DD-04072021

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	100	U	500	502		ug/L		100	45 - 150
Benzene	150		50.0	193		ug/L		86	66 - 131
2-Butanone (MEK)	50	U	500	549		ug/L		110	46 - 146
Carbon disulfide	10	U	50.0	28.0		ug/L		56	52 - 129
Carbon tetrachloride	5.0	U	50.0	48.8		ug/L		98	62 - 124
Chlorobenzene	170		50.0	225		ug/L		100	67 - 130
Chloroform	180		50.0	227		ug/L		94	77 - 119
cis-1,2-Dichloroethene	5.0	U	50.0	52.3		ug/L		105	69 - 133
1,2-Dichlorobenzene	5.0	U	50.0	51.6		ug/L		99	69 - 133
1,4-Dichlorobenzene	5.0	U	50.0	50.4		ug/L		93	69 - 133
1,1-Dichloroethane	5.0	U	50.0	51.9		ug/L		104	68 - 130
1,1-Dichloroethene	5.0	U	50.0	47.9		ug/L		96	62 - 133
1,2-Dichloropropane	10	U	50.0	53.2		ug/L		106	79 - 130
Ethylbenzene	5.0	U	50.0	53.9		ug/L		99	77 - 117
sopropylbenzene	19		50.0	67.5		ug/L		96	66 - 130
Methylene Chloride	110		50.0	153		ug/L		89	64 - 124
4-Methyl-2-pentanone (MIBK)	75	U	500	567		ug/L		113	46 - 146
m-Xylene & p-Xylene	16		50.0	64.4		ug/L		97	65 - 130
o-Xylene	10	U	50.0	49.1		ug/L		98	63 - 130
p-Cymene	15	U	50.0	49.6		ug/L		99	64 - 132
Tetrachloroethene	10	U	50.0	46.5		ug/L		93	59 - 130
Toluene	5.0	U	50.0	49.1		ug/L		98	71 - 119
1,2,4-Trichlorobenzene	10	U	50.0	50.5		ug/L		101	67 - 130
Trichloroethene	10	U	50.0	47.6		ug/L		95	65 - 130
1,2,3-Trichloropropane	15	U	50.0	55.2		ug/L		110	68 - 130
1,2,4-Trimethylbenzene	10	U	50.0	47.5		ug/L		95	71 - 131
1,3,5-Trimethylbenzene	5.0	U	50.0	46.8		ug/L		94	65 - 130
Vinyl chloride	5.0	U	50.0	53.6		ug/L		101	59 - 130
	440	440							

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		70 - 130
4-Bromofluorobenzene	98		70 - 130
Dibromofluoromethane	100		70 - 130

Lab Sample ID: 680-197389-10 MSD

Matrix: Water

Analysis Batch: 236741

Client Sample ID: MW-11DD-04072021

Prep Type: Total/NA

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	100	U	500	513		ug/L		103	45 - 150	2	30
Benzene	150		50.0	186		ug/L		72	66 - 131	3	30
2-Butanone (MEK)	50	U	500	546		ug/L		109	46 - 146	1	30
Carbon disulfide	10	U	50.0	27.4		ug/L		55	52 - 129	2	30
Carbon tetrachloride	5.0	U	50.0	48.3		ug/L		97	62 - 124	1	30
Chlorobenzene	170		50.0	211		ug/L		74	67 - 130	6	30
Chloroform	180		50.0	220		ug/L		80	77 - 119	3	30
cis-1,2-Dichloroethene	5.0	U	50.0	51.3		ug/L		103	69 - 133	2	30
1,2-Dichlorobenzene	5.0	U	50.0	49.6		ug/L		95	69 - 133	4	30

Eurofins TestAmerica, Savannah

Page 28 of 45

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 680-197389-10 MSD

Matrix: Water

Analysis Batch: 236741

Client Sample ID: MW-11DD-04072021

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	5.0	U	50.0	53.8		ug/L		100	69 - 133	6	30
1,1-Dichloroethane	5.0	U	50.0	50.5		ug/L		101	68 - 130	3	30
1,1-Dichloroethene	5.0	U	50.0	46.9		ug/L		94	62 _ 133	2	30
1,2-Dichloropropane	10	U	50.0	51.5		ug/L		103	79 - 130	3	30
Ethylbenzene	5.0	U	50.0	52.0		ug/L		96	77 - 117	4	30
Isopropylbenzene	19		50.0	67.6		ug/L		97	66 - 130	0	30
Methylene Chloride	110		50.0	148		ug/L		78	64 - 124	4	30
4-Methyl-2-pentanone (MIBK)	75	U	500	570		ug/L		114	46 - 146	0	30
m-Xylene & p-Xylene	16		50.0	60.1		ug/L		88	65 - 130	7	30
o-Xylene	10	U	50.0	47.9		ug/L		96	63 _ 130	3	30
p-Cymene	15	U	50.0	50.5		ug/L		101	64 - 132	2	30
Tetrachloroethene	10	U	50.0	46.2		ug/L		92	59 - 130	1	30
Toluene	5.0	U	50.0	47.2		ug/L		94	71 - 119	4	30
1,2,4-Trichlorobenzene	10	U	50.0	49.8		ug/L		100	67 - 130	1	30
Trichloroethene	10	U	50.0	47.5		ug/L		95	65 - 130	0	30
1,2,3-Trichloropropane	15	U	50.0	52.8		ug/L		106	68 - 130	5	30
1,2,4-Trimethylbenzene	10	U	50.0	47.3		ug/L		95	71 - 131	0	30
1,3,5-Trimethylbenzene	5.0	U	50.0	46.6		ug/L		93	65 _ 130	0	30
Vinyl chloride	5.0	U	50.0	54.6		ug/L		103	59 - 130	2	30

MSD MSD

Surrogate	%Recovery Quali	fier Limits
Toluene-d8 (Surr)	101	70 - 130
4-Bromofluorobenzene	99	70 - 130
Dibromofluoromethane	101	70 - 130

Lab Sample ID: MB 660-236759/6

Matrix: Water

Analysis Batch: 236759

Client Sample ID: Method Blank

Prep Type: Total/NA MB MB

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone		U	20	ug/L		04/19/21 12:30	1
Benzene	1.0	U	1.0	ug/L		04/19/21 12:30	1
2-Butanone (MEK)	10	U	10	ug/L		04/19/21 12:30	1
Carbon disulfide	2.0	U	2.0	ug/L		04/19/21 12:30	1
Carbon tetrachloride	1.0	U	1.0	ug/L		04/19/21 12:30	1
Chlorobenzene	1.0	U	1.0	ug/L		04/19/21 12:30	1
Chloroform	1.0	U	1.0	ug/L		04/19/21 12:30	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L		04/19/21 12:30	1
1,2-Dichlorobenzene	1.0	U	1.0	ug/L		04/19/21 12:30	1
1,4-Dichlorobenzene	1.0	U	1.0	ug/L		04/19/21 12:30	1
1,1-Dichloroethane	1.0	U	1.0	ug/L		04/19/21 12:30	1
1,1-Dichloroethene	1.0	U	1.0	ug/L		04/19/21 12:30	1
1,2-Dichloropropane	2.0	U	2.0	ug/L		04/19/21 12:30	1
Ethylbenzene	1.0	U	1.0	ug/L		04/19/21 12:30	1
Isopropylbenzene	2.0	U	2.0	ug/L		04/19/21 12:30	1
Methylene Chloride	10	U	10	ug/L		04/19/21 12:30	1
4-Methyl-2-pentanone (MIBK)	15	U	15	ug/L		04/19/21 12:30	1
m-Xylene & p-Xylene	2.0	U	2.0	ug/L		04/19/21 12:30	1

Eurofins TestAmerica, Savannah

Page 29 of 45

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 660-236759/6

Matrix: Water

Analysis Batch: 236759

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte		IVID							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	2.0	U	2.0		ug/L			04/19/21 12:30	1
p-Cymene	3.0	U	3.0		ug/L			04/19/21 12:30	1
Tetrachloroethene	2.0	U	2.0		ug/L			04/19/21 12:30	1
Toluene	1.0	U	1.0		ug/L			04/19/21 12:30	1
1,2,4-Trichlorobenzene	2.0	U	2.0		ug/L			04/19/21 12:30	1
Trichloroethene	2.0	U	2.0		ug/L			04/19/21 12:30	1
1,2,3-Trichloropropane	3.0	U	3.0		ug/L			04/19/21 12:30	1
1,2,4-Trimethylbenzene	2.0	U	2.0		ug/L			04/19/21 12:30	1
1,3,5-Trimethylbenzene	1.0	U	1.0		ug/L			04/19/21 12:30	1
Vinyl chloride	1.0	U	1.0		ug/L			04/19/21 12:30	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed Toluene-d8 (Surr) 100 70 - 130 04/19/21 12:30 4-Bromofluorobenzene 98 70 - 130 04/19/21 12:30 Dibromofluoromethane 99 70 - 130 04/19/21 12:30

Spike

Added

LCS LCS

Qualifier

Unit

ug/L

ug/L

ug/L

ug/L

Result

Lab Sample ID: LCS 660-236759/4

Matrix: Water

Trichloroethene

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Analyte

Analysis Batch: 236759

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

Limits

%Rec

Acetone 100 74.3 ug/L 74 45 - 150 Benzene 10.0 9.39 ug/L 94 66 - 131 2-Butanone (MEK) 100 76.6 77 46 - 146 ug/L Carbon disulfide 10.0 7.39 ug/L 74 52 - 129 Carbon tetrachloride 10.0 9.66 ug/L 97 62 - 124 Chlorobenzene 10.0 9.15 ug/L 92 67 - 130 Chloroform 10.0 9.72 ug/L 97 77 _ 119 cis-1,2-Dichloroethene 10.0 10.1 ug/L 101 69 - 133 1,2-Dichlorobenzene 10.0 8.86 ug/L 89 69 - 133 69 - 133 1,4-Dichlorobenzene 10.0 9.37 ug/L 94 1,1-Dichloroethane 10.0 9.62 68 - 130 ug/L 96 1.1-Dichloroethene 10.0 9.92 ug/L 99 62 - 133 1,2-Dichloropropane 101 79 - 130 10.0 10.1 ug/L 77 - 117 10.0 8 75 87 Ethylbenzene ug/L Isopropylbenzene 10.0 9.22 ug/L 92 66 - 130 Methylene Chloride 10.0 9.50 J 95 64 - 124 ug/L 4-Methyl-2-pentanone (MIBK) 100 80.2 ug/L 80 46 - 146 10.0 8.55 86 65 - 130 m-Xylene & p-Xylene ug/L o-Xylene 10.0 9.04 ug/L 90 63 - 130 p-Cymene 10.0 9.67 ug/L 97 64 - 132 94 Tetrachloroethene 10.0 9.43 ug/L 59 - 130 Toluene 10.0 9.28 ug/L 93 71 - 119 77 1,2,4-Trichlorobenzene 10.0 7.70 ug/L 67 - 130

Eurofins TestAmerica, Savannah

65 - 130

68 - 130

71 - 131

65 - 130

95

85

90

91

9.50

8.47

9.03

9 10

10.0

10.0

10.0

10.0

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 660-236759/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water Analysis Batch: 236759

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Vinyl chloride 10.0 11.1 111 59 - 130 ug/L

	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
Toluene-d8 (Surr)	102		70 - 130	
4-Bromofluorobenzene	100		70 - 130	
Dibromofluoromethane	103		70 - 130	

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

GC/MS VOA

Analysis Batch: 236711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197389-1	MW-26D-04062021	Total/NA	Water	8260B	
680-197389-2	PSOW-12-04062021	Total/NA	Water	8260B	
680-197389-3	OW-Q3S-04062021	Total/NA	Water	8260B	
680-197389-4 - DL	OW-Q3I-04062021	Total/NA	Water	8260B	
680-197389-4	OW-Q3I-04062021	Total/NA	Water	8260B	
680-197389-5	EQB-05-04062021	Total/NA	Water	8260B	
680-197389-6	EQB-06-04062021	Total/NA	Water	8260B	
680-197389-7 - DL	MW-29D-04072021	Total/NA	Water	8260B	
680-197389-7	MW-29D-04072021	Total/NA	Water	8260B	
680-197389-8 - DL	PSOW-11-04072021	Total/NA	Water	8260B	
680-197389-8	PSOW-11-04072021	Total/NA	Water	8260B	
MB 660-236711/7	Method Blank	Total/NA	Water	8260B	
LCS 660-236711/5	Lab Control Sample	Total/NA	Water	8260B	
680-197389-1 DU	MW-26D-04062021	Total/NA	Water	8260B	

Analysis Batch: 236741

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197389-9	MW-11D-04072021	Total/NA	Water	8260B	_
680-197389-10 - DL	MW-11DD-04072021	Total/NA	Water	8260B	
680-197389-10	MW-11DD-04072021	Total/NA	Water	8260B	
680-197389-11	EQB-07-04072021	Total/NA	Water	8260B	
680-197389-12 - DL	DUP-04-04072021	Total/NA	Water	8260B	
680-197389-12	DUP-04-04072021	Total/NA	Water	8260B	
680-197389-13	ТВ	Total/NA	Water	8260B	
MB 660-236741/6	Method Blank	Total/NA	Water	8260B	
LCS 660-236741/4	Lab Control Sample	Total/NA	Water	8260B	
680-197389-10 MS	MW-11DD-04072021	Total/NA	Water	8260B	
680-197389-10 MSD	MW-11DD-04072021	Total/NA	Water	8260B	

Analysis Batch: 236759

Lab Sample ID 680-197389-2 - DL	Client Sample ID PSOW-12-04062021	Prep Type Total/NA	Matrix Water	Method 8260B	Prep Batch
MB 660-236759/6	Method Blank	Total/NA	Water	8260B	
LCS 660-236759/4	Lab Control Sample	Total/NA	Water	8260B	

Eurofins TestAmerica, Savannah

3

5

7

9

13

14

Date Received: 04/09/21 10:50

Instrument ID: CHBVMB5975

Lab Sample ID: 680-197389-1

Client Sample ID: MW-26D-04062021

Date Collected: 04/06/21 16:30

Matrix: Water

Job ID: 680-197389-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	236711	04/17/21 12:38	K1P	TAL TAM

Client Sample ID: PSOW-12-04062021 Lab Sample ID: 680-197389-2

Date Collected: 04/06/21 17:45 **Matrix: Water**

Date Received: 04/09/21 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	236711	04/17/21 15:03	K1P	TAL TAM
	Instrume	nt ID: CHBVMB59	975							
Total/NA	Analysis	8260B	DL	5	5 mL	5 mL	236759	04/19/21 14:50	TGP	TAL TAM
	Instrume	nt ID: CHBVMJ59	975							

Client Sample ID: OW-Q3S-04062021 Lab Sample ID: 680-197389-3

Date Collected: 04/06/21 18:33 **Matrix: Water**

Date Received: 04/09/21 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	236711	04/17/21 14:44	K1P	TAL TAM
	Inatruma	at ID: CLIDV/MDE	075							

Client Sample ID: OW-Q3I-04062021 Lab Sample ID: 680-197389-4

Date Collected: 04/06/21 19:13 Matrix: Water

Date Received: 04/09/21 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	10	5 mL	5 mL	236711	04/17/21 16:02	K1P	TAL TAM
	Instrume	nt ID: CHBVMB59	975							
Total/NA	Analysis	8260B		1	5 mL	5 mL	236711	04/17/21 16:21	K1P	TAL TAM
	Instrume	nt ID: CHBVMB5	975							

Client Sample ID: EQB-05-04062021 Lab Sample ID: 680-197389-5

Date Collected: 04/06/21 20:00 Date Received: 04/09/21 10:50

_ 	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	236711	04/17/21 14:05	K1P	TAL TAM
	Instrume	nt ID: CHBVMB597	75							

Client Sample ID: EQB-06-04062021 Lab Sample ID: 680-197389-6

Date Collected: 04/06/21 20:10 **Matrix: Water** Date Received: 04/09/21 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	236711	04/17/21 14:24	K1P	TAL TAM
	Instrume	nt ID: CHBVMB59	975							

Matrix: Water

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: MW-29D-04072021

Date Collected: 04/07/21 08:40

Lab Sample ID: 680-197389-7

Matrix: Water

Date Received: 04/09/21 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	20	5 mL	5 mL	236711	04/17/21 15:23	K1P	TAL TAM
	Instrume	nt ID: CHBVMB59	975							
Total/NA	Analysis	8260B		2	5 mL	5 mL	236711	04/17/21 17:00	K1P	TAL TAM
	Instrume	nt ID: CHBVMB5	975							

Client Sample ID: PSOW-11-04072021

Date Collected: 04/07/21 14:58

Date Received: 04/09/21 10:50

		Matrix:	

Lab Sample ID: 680-197389-8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	10	5 mL	5 mL	236711	04/17/21 15:42	K1P	TAL TAM
	Instrume	nt ID: CHBVMB59	975							
Total/NA	Analysis	8260B		1	5 mL	5 mL	236711	04/17/21 16:41	K1P	TAL TAM
	Instrume	nt ID: CHBVMB5	975							

Client Sample ID: MW-11D-04072021

Date Collected: 04/07/21 16:00

Date Received: 04/09/21 10:50

Lab Sample	ID:	680-1	97389-9
------------	-----	-------	---------

Lab Sample ID: 680-197389-10

Lab Sample ID: 680-197389-11

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	236741	04/19/21 12:04	JFL	TAL TAM
	Instrume	nt ID: CHBVMB59	75							

Client Sample ID: MW-11DD-04072021

Date Collected: 04/07/21 16:50

Date Received: 04/09/21 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	5	5 mL	5 mL	236741	04/19/21 10:46	JFL	TAL TAM
	Instrume	nt ID: CHBVMB597	75							
Total/NA	Analysis	8260B		1	5 mL	5 mL	236741	04/19/21 12:43	JFL	TAL TAM
	Instrume	nt ID: CHBVMB597	75							

Client Sample ID: EQB-07-04072021

Date Collected: 04/07/21 17:45

Date Received: 04/09/21 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	5	5 mL	5 mL	236741	04/19/21 10:46	JFL	TAL TAM
	Instrumen	t ID: CHBVMB5975								
Total/NA	Analysis	8260B		1	5 mL	5 mL	236741	04/19/21 12:43	JFL	TAL TAM
	Instrumen	t ID: CHBVMB5975								

Dil Batch Batch Initial Final Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B 5 mL 5 mL 236741 04/19/21 10:27 JFL TAL TAM Instrument ID: CHBVMB5975

Eurofins TestAmerica, Savannah

Lab Chronicle

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Client Sample ID: DUP-04-04072021

Lab Sample ID: 680-197389-12

Jampie 12: 000 107000 12

Job ID: 680-197389-1

Date Collected: 04/07/21 00:00 Matrix: Water
Date Received: 04/09/21 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B	DL	20	5 mL	5 mL	236741	04/19/21 12:24	JFL	TAL TAM
	Instrume	nt ID: CHBVMB59	975							
Total/NA	Analysis	8260B		2	5 mL	5 mL	236741	04/19/21 13:03	JFL	TAL TAM
	Instrume	nt ID: CHBVMB59	975							

Client Sample ID: TB

Lab Sample ID: 680-197389-13

Date Collected: 04/07/21 00:00

Matrix: Water

Date Received: 04/09/21 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	236741	04/19/21 10:08	JFL	TAL TAM
	Instrume	nt ID: CHRVMR597	75							

Laboratory References:

TAL TAM = Eurofins TestAmerica, Tampa, 6712 Benjamin Road, Suite 100, Tampa, FL 33634, TEL (813)885-7427

3

4

_

_

9

11

12

14

15

525831

💸 eurofins

Environment Testing TestAmerica

Client Contact	Project M	anager: A	drin Roi	ner		Site	Contact:	Date		COC No:
Company Name: Geosyptec Consituts	Tel/Email	678 2	02 456	4		Lab	Contact:	Carri	er:	_/ of Z COCs
Address: 1255 Robert & Blud NW Sole 200		Analysis T	urnaround	Time		П				Sampler: DAN GASTAS
City/State/Zip: Kewerry GA 30144	_ CALEN	DAR DAYS	□ wor	RKING DAY	'S	11				For Lab Use Only:
Phone: 678-202-9500	TA	T if different fr	om Below			2	3	1 1 1 1		Walk-in Client:
rax: Project Name: Gw Investig -tran			weeks			Z	1 N			Lab Sampling:
Site: Hercules / Rinows Bringwich, GA feetby			week			≥ 0	23	1111		Job / SDG No.:
O# GROBBIP			day			aldu M	X Sub			300 / 30G No
			Sample	-		Sar	0			
	Sample	Sample	(C=Comp.		# of	form	8260			
Sample Identification	Date	Time	G=Grab)	Matrix	Cont.	F S	826cB See Maded			Sample Specific Notes:
MW-26d-04082021	1/6/2021	1630	610	GW	3	N	X			
PSOW-12-04062021	4/6/21	1745	6	GW	3	NA	/X			
OW - Q35-04062021	1/15/21	1833	G	GW	3	NW	X			
OW-Q3I-04062021	4/6/21	1913	6	GW	3	NN	X			
EQB-05-04062021	4/6/21	2000	6	W	3	NN	X			
EQB - 06 - 04062021	4/6/21	2010	6	W	3	NN	X			
MW-29d-04072021	4/7/21	0840	6	60	3	NW	X	111		
PSOW-11-04072021	4/7/21	1458	6	GW	3	NN	18			
nw-11d-04072021	4/7/21	1600	6	GW	3	WW	/ X		30-197389 Chain of Custody	
MW-11dd-04072021	4/7/21	1650	G	GW	3	NN	14	68	30-197389 Chair of Custos)	
EQB-07-04072021	4/1/21	1745	6	W	3	NA	X		THHH	
Dup-04-04072021	4/1/21	-:-	6	GW	3	WA	/X			
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HN0	03; 5=NaOH;	6= Other _								
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? P Comments Section if the lab is to dispose of the sample.	ease List any l	EPA Waste	Codes for	the sam	ple in th	ie S	ample Disposal (A fee	may be asse	ssed if samples are retained	ed longer than 1 month)
Non-Hazard Flammable Skin Irritani	Poisor	8	X Unkn	own	_	\dashv	Return to Client	Z Disposal	by Lab Archive for	Months
pecial Instructions/QC Requirements & Comments:						-		Eal proposor	J 100	710100
									3.6 3.7	
Custody Seals Intact: Yes No	Custody S						Cooler Temp.	(°C): Obs'd:	Corr'd:	Therm ID No.:
Religionmethod by	Company			Date/Ti	me:	R	eceived by:		Company:	Date/Time:
Relinquished by:	Company	arce		Date/Ti	me:		eceived by:		Company:	Date/Time:
Ralinguished by	Company			Date/Ti	mo:	D	oppiyed in Laborate - 5		Common	
menting a part of the Office	Company.			Date/11	me.	- Ir	eceived in Laboratory b	у.	Company:	Date/Time: 4-921 1058

Chain of Custody Record

525919 & eurofins

Environment Testing TestAmerica

Client Contact	Project M	anager: A	dry Re	: war		Site	Cont	act:			Date	: 04-	07-207	21	COC	C No:
ompany Name: Gosyntee Cousolteck	Tel/Email	678-20	2- 956	4		Lab	Conta	ect:			Can				-	2 of 2 COCs
ddress: 1255 Roberts Blud NW Sof 700		Analysis T	urnaround	Time		T		T					TT	11		pler: Day Gras
ty/State/Zip: Kennesuw, GFA 30144	CALEN	DAR DAYS	WOI	RKING DAY	rs .	1 1										Lab Use Only:
none: 678-702-9500	TA	T if different fr	om Below			1 2	: 1				1.1			1		k-in Client:
IX:			weeks								11					Sampling:
oject Name: GW INVESTIGATION			week			Z 2					1.1				1	ouriping.
10: Hercoles / Pinove Brusswick Faculity			days				2	11	11					1	loh	/ SDG No.:
O# GR6881P			day		-	혈	M				- 1 1	1	1.3		300	300 No
21/21			Sample			San	8260B				1.1	4.1	1.1			
	Sample	Cample	Type		Con	De E	2									
Sample Identification	Date	Sample	(C=Comp, G=Grab)	Matrix	# of Cont.	it it	E 00			1.1						Committee of the second
	Date	Time	G=Grab)	Matrix				-		-	-	-				Sample Specific Notes:
TB	1	/	G	W	Z	MIL	VX									
						1	1				1	1	1			
							1	+	1	+	1	++	++	-	-	
	1	0				Ш										
			0	8-0												
	-			5-0	2.20	1	1	-		++	++	++	++	++		
					-	14										
						П		4								
	1					+	-		1		-	++	+	-		
											1					
						П						1				
						1	+	-	-	+-	\rightarrow	++	1		-	
				1												
							\Box									
		-		-		\vdash	+	++	-	-	-	-	-	1		
		Control of the Control														
reservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO	3; 5=NaOH;	6= Other _														
ossible Hazard Identification:	Upo i na sun i					S	ample	Disposa	(Afe	e may	be ass	essed if	amples	are retai	ined long	ger than 1 month)
re any samples from a listed EPA Hazardous Waste? Ple omments Section if the lab is to dispose of the sample.	ease List any i	PA Waste	Codes for	the samp	ple in th	e										
Non-Hazard Flammable Skin Irritant	Poison	n	Unkn		_	-							_	7		
	Poison	0	Union	own			L R	eturn to Clien	t.		Disposal	by Lab		Archive fo	У	Months
pecial Instructions/QC Requirements & Comments:																
Custody Seals Intact: Yes No	Custody S	eal No.:						Cooler	Temp	. (°C):	Obs'd:		Corr'd:	_	Then	m ID No.:
elinquished by:	Company:	_		Date/Ti	me:	IR	Receive			1 -/		Comp				e/Time:
The Gitters	Goosy			4/8/21				d oj.				Comp	ally.		Date	rune.
virialished by:	Company	WITE	_	Date/Ti		_	Receive	ed hv	_		_	Comr	anu.		Dete	(T)
				1		1	000140	L by.				Comp	arry.		Date	e/Time:
elinguished by:	Company:			Date/Tii	me:	-	eceive	ed in Leabor	atola	hv:		Comp	ODU:			/T:
	i			1-010111	1110.	11/2	1000146	, απικαίΩΩΙ	ciudiy	L/Y.		LOOME	allV.		iDate	e/Time:

Eurofins TestAmerica

5102 LaRoche Avenue Savannah, GA 31404

Chain of Custody Record

Phone (912) 354-7858 Fax (912) 352-0165																					
Client Information	Project Manager Adria Reimer				b PM ddie B	Barne	ett						Carr	er Tra	icking I	Vo(s)			COC No		
Site Contact Tim Hassett	Phone 678-202-9564				Mail idie b	arne	ett@	eurofi	nset c	om			1						Page		
Client Contact					T							er.c.	-			_			Job #		
Hercules LLC					+	_	_			An	alys	is Re	que	ste	1		-	-			
	Due Date Request	ed:																	Preservation Code	s:	
	TAT Requested (d.	ays) standar	d TAT				Thene	4-Dichlorobenzene;	Cymene. p-		Carbon Disulfide. Carbon Tetrachloride.	nde.	60						A - HCL B - NaOH C - Zn Acetate D - Nthric Acid E - NaHSO4 F - MeOH G - Amchlor	M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4	
Project Name	-	_			-		Proe	4.	e e		Tel	Chlo	hen		a le					T TSP Dodeca	shydrate
GW Investigation							Chic	e -	opa	27	hod	oroe	roet		enze				J - Ice J - DI Water	U - Acetone V - MCAA	
Site Hercules LLC-Pinova, Inc. Brunswick Facility							1,1-Dic	penzer	hloropro	ntanone	de. Carl	X-Dichi Methyle	Tetrachloroethene	ploride	nethylbe				K - EDTA L - EDA	W - pH 4-5 2 other (specif	ly)
					s or No	No)	oethane	1.2,-Dichlorob	2.3-Trid	yl-2-per	Disulfi	T. CIS-1,	ene. Te	Vinyl Chloride	3.5-Trin				Other:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (w-water S-solid, O-wateroli BT-Tissue, Ar	eld Filte	rm MS/MSD (Yes or	0	ropane.	1,2,4-Trichlorobenzene, 1,2,3-Trichloropropa		Acetone, Benzene. Carbon Disulfide. Carbon Telrar	Chlorobenzene, Chlaroform, Cls-1, 2-Dichlaroethene, Ethylbenzene, Sopropylbenzene, Methylene Chlorid	m-Xylene & p-Xylene; a-xylene.	Toluene, Trichloroethene, V	1.2.4-Trimethylbenzene; 1,3.5-Trimethylbenzene			Total Number of containers	Special Ins	structions/No	ote:
		>		tion Code	_	X	1~							T.				∇	Special IIIs	tructions/NC	ne.
Possible Hazard Identification						Sai	mpl	e Disp	osal	(Afe	ee ma	y be	asses	sed	if sar	nples a	re reta	inec	d longer than 1 m	onth)	
Non-Hazard Flammable Skin Irrilant Por	son B Unkno	wn k	adiological			1	F	Return	To C	lient			Dispo	sal E	y Lab		An	chive	e For	Months	
Deliverable Requested: I. II, III, IV. Other (specify)						Spe	ecia	Instru	ction	s/QC	Requ	ireme	ents:								
Method of Shipment					_	-		_		_		_	-	_	_		_	-		_	
Relinguished by	Date/Time	_		Company		-	Rec	eived b	v .	_	_	_	_	_		Date/Tim	10	_		Compac	
				2007			1									rate) Hill				Company	
Relinquished by	Date/Time			Company			Rec	eived b	у							Date/Tim	e			Company	
Custody Seal No.: Δ Yes Δ No							Coo	oler Tem	peratu	re(s) ^o	C and	Other F	Remark	s:							

Ver: 01/16/2019

5102 LaRoche Avenue Savannah, GA 31404

Phone. 912-354-7858 Fax 912-352-0165

Chain of Custody Record

🔆 eurofins

America

Client Information (Sub Contract Lab)	Sampler			Lab I Barr	nett I	Edd	ie T			1	arner Track	ing No(s)		COC No 680-650546 1	
Client Contact	Phone			E-Ma	art .						tate of Orig	in		Page	
Shipping/Receiving Company				Edd	_		tt@Eurofi				Seorgia			Page 1 of 2	
TestAmerica Laboratories, Inc							- Florida			- Georg	ia			680-197389-1	
Address 6712 Benjamin Road Suite 100.	Due Date Requeste 4/19/2021	ed:						A	nalvsi	s Regi	ested			Preservation Cod	les:
City	TAT Requested (da	iys):		_	T		11	7,		1104	T		TT	A - HCL B - NaOH	M - Hexane N - None
Tampa	A STATE OF				П		1 1			1 1	1 1		1 13	C - Zn Acetate	O - AsNaO2
State Zip FL, 33634					П		List				11			D - Nitric Acid E - NaHSO4	P · Na2O4S O · Na2SO3
Phone 813-885-7427(Tel) 813-885-7049(Fax)	PO#						Custom							F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate
Email	W0#				S S	-1	2.							I - Ice J - Di Water	U - Acetone V - MCAA
Project Name	Project #				18	5	Select VOCs				11		in and in a	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Hercules Brunswick - GW Investigation	68022348 SSOW#	-			- 8		Sele						containe		E - Oliver (Specify)
	33044#				Sample	SD ((dow)						0	Other:	
		Sample	Sample Type (C=comp,	Matrix (Wewater, Sesoled, Oewasteroil,	ild Filtered	Perform MS/MSD (Yes or No)	8260B/5030B (A						tal Number		
Sample Identification - Client ID (Lab ID)	Sample Date	Time		BT=Tissue, A=Air		2	826	-		\perp	444		Total	Special In	structions/Note:
	_><	16 30	Preservat	ion Code	X	X							X		
MW-26D-04062021 (680-197389-1)	4/6/21	Eastern		Water	П		X						3		
PSOW-12-04062021 (680-197389-2)	4/6/21	17 45 Eastern		Water	П		X						3		
OW-Q3S-04062021 (680-197389-3)	4/6/21	18 33 Eastern		Water	Π		X						3		
OW-Q3I-04062021 (680-197389-4)	4/6/21	19 13 Eastern		Water	П		X				1 74		3		
EQB-05-04062021 (680-197389-5)	4/6/21	20 00 Eastern		Water	П		X						3		
EQB-06-04062021 (680-197389-6)	4/6/21	20 10 Eastern		Water	П		X						3		
MW-29D-04072021 (680-197389-7)	4/7/21	08 40 Eastern		Water			x						3		
PSOW-11-04072021 (680-197389-8)	4/7/21	14 58 Eastern		Water	П		X						3		
MW-11D-04072021 (680-197389-9)	4/7/21	16 00 Eastern		Water	П		x						3		
Note: Since laboratory accreditations are subject to change: Eurolins Test maintain accreditation in the State of Origin listed above for analysis/tests. TestAmerica attention immediately: If all requested accreditations are cur	matrix being analyzed the sa	amples must b	e shipped back	to the Euroline	s Test	Amer	rica laborate	ery or other	tories T	nis sample ons will be	shipment is provided A	forwarded un any changes to	nder chain-of o accreditatio	-custody If the laboration status should be br	atory does not currently ought to Eurofins
Possible Hazard Identification					1	Sam	ple Disp	osal (A	fee ma	y be as	sessed it	samples a	are retaine	ed longer than 1	month)
Unconfirmed							-1	To Cher			sposal By		Arch	nive For	Months
Deliverable Requested T. II. III. IV, Other (specify)	Primary Deliver	able Rank	2		5	Spec	cial Instru	ctions/C	C Requ	ııremenl	s				
Empty Kit Relinquished by		Date			Tim	ne					Method	of Shipment			
Relinquished by	Date/Time			Company	_	F	Received by	(1)				Date/Tim	e		Company
Relinquished by	Date/Time			Company	_	F	Received by	^				Date/Tim	e		Company
Relinquished by	Date/Time			Company		F	Received by	/				Date/Tim	e		Company
Contado Casta Interio I Contada O 184						\downarrow									
Custody Seals Intact Δ Yes Δ No							Cooler Tem	perature(s) °C and (Other Rem	arks				

Savannah, GA 31404

Phone: 912-354-7858 Fax: 912-352-0165

Chain of Custody Record

: eurofins

Ellerament Testing America

Client Information (Sub Contract Lab)	Sampler			Lab Bar	PM rnett.	Edd	die T				Carrier Tra	cking No(s	1)		COC No 680-650546 2		٦
Client Contact Shipping/Receiving	Phone			E-M		arne	ett@Eu	rofinset co	om		State of Or Georgia	igin			Page Page 2 of 2		1
Company				1				equired (See					-		Job#		-
TestAmerica Laboratories, Inc.					NE	LAF	- Flor	ida. State	Program	n - Georg	jia .				680-197389-1		
Address 6712 Benjamin Road, Suite 100,	Due Date Requeste 4/19/2021	d:						1	Analys	is Req	uested				Preservation Code		
City Tampa	TAT Requested (da	ys):						TT							A - HCL B - NaOH C - Zn Acetate	M - Hexane N None O AsNaO2	
State, Zip FL, 33634							List								D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	
Phone 813-885-7427(Tel) 813-885-7049(Fax)	P0 #				٦		Custom								F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2O3 S H2SO4 T TSP Dodecahydrate	1
Email	WO#				or No	No)								90	I - Ice J - DI Water	U - Acetone V - MCAA	
Project Name Hercules Brunswick - GW Investigation	Project # 68022348				e (Yes	0	lect Vo							container	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)	
Site.	SSOW#				Sample (Yes or	SD (Yes	op) Se							of con	Other		
		Sample	Sample Type (C=comp,	Matrix (Wewster, 5*solid 0:wasteroil,	ered	Perform MS/MSD	8260B/5030B (MOD) Select VOCs							Total Number			
Sample Identification - Client ID (Lab ID)	Sample Date	Time		81=Fistue, A=Air	기트	Pe	826							2	Special Ins	structions/Note:	
	_><	$\geq \leq$	Preserva	ation Code	X	\times					-			X			
MW-11DD-04072021 (680-197389-10)	4/7/21	16.50 Eastern		Water			X							3			
EQB-07-04072021 (680-197389-11)	4/7/21	17 45 Eastern		Water	11		X							3			
DUP-04-04072021 (680-197389-12)	4/7/21	Eastern		Water	П		X							3			
TB (680-197389-13)	4/7/21	Eastern		Water	\Box		Х							2			
					\sqcup			11	1								
					\square		4										
					\sqcup												
					\mathbb{H}		1	-			-						
Note: Since laboratory accreditations are subject to change. Eurofins Testi- maintain accreditation in the State of Origin listed above for analysis/tests/i TestAmerica attention immediately. If all requested accreditations are curr	matrix being analyzed, the sa	imples must b	e shipped back	k to the Eurofin	ns Test	tAme	erica labo	oratory or oth	ratories ier instruc	This sampli tions will be	shipment provided	Any chan	ded under cha nges to accre	ain-of ditatio	-custody If the labora on status should be bro	lory does not currently ought to Eurofins	
Possible Hazard Identification						Sar	mple D	isposal (A fee n	ay be as	sessed	if samp	les are re	taine	ed longer than 1	month)	7
Unconfirmed						L	Ret	um To Ch	ent	D	sposal &	By Lab		Arch	ive For	Months	
Deliverable Requested I, II, III, IV, Other (specify)	Primary Deliver	able Rank	2			Spe	ecial In	structions	QC Red	uiremen	is						
Empty Kit Relinquished by		Date			Tin	ne					Meth	od of Ship	ment				٦
Relinquished by	Date/Time			Company			Receive	d by			_	Dat	e/Time			Company	Ī
Relinquished by	Date/Time			Company			Receive	d by				Dat	le/Time			Company	
Relinquished by	Date/Time			Company			Receive	ed by				Dat	te/Time			Company	
Custody Seals Intact Custody Seal No Custody Seal No							Cooler 1	Temperature	(s) °C and	Other Ren	narks	1				1	

Eurofins TestAmerica, Savannah

5102 LaRoche Avenue Savannah, GA 31404

Phone 912-354-7858 Fax: 912-352-0165

Chain of Custody Record

🔆 eurofins

Environment Testing America

Client Information (Sub Contract Lab)	Sampler			Lab I Barr	PM nett, E	Eddie	T			Carrier Tr	racking No(s)		COC No 680-650546.1	
Client Contact: Shipping/Receiving	Phone			E-Ma Edd		rnett	@Eurofii	nset co	m	State of C	14.0		Page: Page 1 of 2	
Company							ons Requir			Calmita			Job #	
TestAmerica Laboratories, Inc. Address.	Due Date Request	ed:		_	NEL	AP -	Florida;	State F	rogram -	Georgia			680-197389-1 Preservation Cod	les:
6712 Benjamin Road, Suite 100,	4/19/2021	777						Α	nalysis	Requeste	d		A - HCL	M - Hexane
City: Tampa	TAT Requested (d.	ays):											B - NaOH C - Zn Acetate	N - None O - AsNaO2
State. Zip: FL, 33634							u Cist						D - Nitric Acid E - NaHSO4 F - MeOH	P - Na2O4S Q - Na2SO3 R - Na2S2O3
Phone 813-885-7427(Tel) 813-885-7049(Fax)	PO #						Custom	11117					G - Amchlor	S - H2SO4
Email	WO#				or No								H - Ascorbic Acid I - Ice J - DI Water	T - TSP Dodecahydrate U - Acetone V - MCAA
Project Name	Project #				Sample (Yes or	MS/MSD (Yes or No)	SCI VC					containers	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Hercules Brunswick - GW Investigation Site	68022348 SSOW#				월	2	o o o o				1 1 1	out	Other:	
						QSN GSD	200					0		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (www.ater. S=solid. O=waste/oil. BT=Tissue, A=Air	Field Filtered	Perform MS/	Azeubracue (MOD) select vous					Total Number	Special In	estructions/Note:
		><	Preserva	ation Code	M	V						X		
MW-26D-04062021 (680-197389-1)	4/6/21	16:30 Eastern		Water			x		1			3		
PSOW-12-04062021 (680-197389-2)	4/6/21	17:45 Eastern	N. E.	Water	П		x	3 6				3		
OW-Q3S-04062021 (680-197389-3)	4/6/21	18:33 Eastern		Water			x					3		
OW-Q3I-04062021 (680-197389-4)	4/6/21	19:13 Eastern	1	Water	П	1	x					3		
EQB-05-04062021 (680-197389-5)	4/6/21	20:00 Eastern		Water		1	x					3		
EQB-06-04062021 (680-197389-6)	4/6/21	20:10 Eastern	11 - 11	Water		13	x					3		
MW-29D-04072021 (680-197389-7)	4/7/21	08:40 Eastern		Water	П		x	11				3		
PSOW-11-04072021 (680-197389-8)	4/7/21	14:58 Eastern		Water			x					3		
MW-11D-04072021 (680-197389-9)	4/7/21	16:00 Eastern		Water	П	1	x					3		
Note: Since laboratory accreditations are subject to change. Eurofins Termaintain accreditation in the State of Origin listed above for analysis/test TestAmerica attention immediately. If all requested accreditations are cu	s/matrix being analyzed, the s	amples must t	be shipped bac	k to the Eurofin	s TestA	meric	a laborato	ry or othe	atories. This r instruction	sample shipme s will be provided	nt is forwarded und d. Any changes to	er chain-of accreditation	-custody If the labor on status should be b	atory does not currently rought to Eurofins
Possible Hazard Identification					s	Samp							ed longer than 1	month)
Unconfirmed					1	_	Return			Disposal	By Lab	Arch	ive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank	2		S	Speci	al Instru	ctions/C	C Requir	ements:				
Empty Kit Relinquished by:		Date:			Time	e:	Α-		1	Mei	thod of Shipment			
Relinquished by Relinquished by	Date/Time	/15	40	Company		R	eceived by	-12	oh	/	Date/Time 4-16- Date/Time		0845	Company
	Date Time			100		1					B			EAST TO SERVICE TO SER
Relinquished by:	Date/Time:			Company		Re	eceived by				Date/Time			Company
Custody Seals Intact: Custody Seal No.:						Co	ooler Temp	erature(s) °C and Ot	ner Remarks:				

5102 LaRoche Avenue

Savannah, GA 31404 Phone 912-354-7858 Fax: 912-352-0165

Chain of Custody Record

eurofins

Environment Testing America

Client Information (Sub Contract Lab)	Sampler:				PM nett.	Eddi	еT				C	amer Trac	king No(s)			COC No 680-650546.2		
Client Contact	Phone			E-M			- PF.	· Cuent		-		ate of Orig	gin!			Page		
Shipping/Receiving Company				Ed			_	ofinset.			le.	eorgia			_	Page 2 of 2 Job#		
TestAmerica Laboratories, Inc.					1000			ia, State		ram - C	Georgi	a				680-197389-1		
Address 6712 Benjamin Road, Suite 100,	Due Date Requeste 4/19/2021	ed:							Anal	ysis I	Requ	ested				Preservation Code A - HCL	M - Hexane	
City	TAT Requested (da	iys):			П			11	-		14/	\Box				B - NaOH	N - None	
Tampa State Zip							_				1						O - AsNaO2 P - Na2O4S	
FL, 33634							List	1 1		1						E - NaHSO4	Q - Na2SO3	
Phone	PO#				71		- Custom	1				1 1	- 1 1				R - Na2S2O3 S - H2SO4	
813-885-7427(Tel) 813-885-7049(Fax)	WO#				- ŝ		2										U - Acetone	cahydrate
Email	WON				6	No.	S			1 1		11			9	J - DI Water	V - MCAA	
Project Name	Project #				₹es	or	Select VOCs	1 1		1 1					containers		W - pH 4-5 Z - other (spec	cify)
Hercules Brunswick - GW Investigation	68022348				9	Yes	selec					1.1	1 1		nta		E amor japon	
Site	SSOW#				Samp	SD ((QQ)								6	Other:		1
		Sample	Sample Type (C=comp,	Matrix (Wewater, Sesolid, Oewaste/oil.	Fleid Filtered	Perform MS/MSD	8260B/5030B (MOD)								Total Number			
Sample Identification - Client ID (Lab ID)	Sample Date	Time		BT=Tissue, A=Ai	القار	å	826		-		-	\perp	\rightarrow		3	Special Ins	tructions/N	lote:
		> <	Preserva	tion Code	X	X									X		\sim	
MW-11DD-04072021 (680-197389-10)	4/7/21	16:50 Eastern		Water			Х								3			
EQB-07-04072021 (680-197389-11)	4/7/21	17:45 Eastern	! !	Water			X								3			
DUP-04-04072021 (680-197389-12)	4/7/21	Eastern		Water			X		1						3			
TB (680-197389-13)	4/7/21	Eastern		Water			X								2			
					П													
Note: Since laboratory accreditations are subject to change, Eurofins TestAi maintain accreditation in the State of Origin listed above for analysis/lests/m TestAmerica attention immediately. If all requested accreditations are curre	atrix being analyzed, the sa	amples must b	e shipped back	to the Eurofin	ns Test	L Amer	ca labor	atory or o	ther inst	s This ructions	sample will be	shipment provided	s forwarder Any change	d under cha es to accreo	ain-of- ditatio	custody. If the laborate in status should be bro	ory does not co ught to Eurofin	urrently
Possible Hazard Identification						Sam	ple Di	sposal	A fee	may i	be ass	essed	f sample	s are ret	taine	ed longer than 1 r	month)	
Unconfirmed					_		Retu	m To C	lient	E	Dis	posal B	y Lab		Arch	nive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2					truction		Require	ements	9						
Empty Kit Relinquished by		Date:			Tim	ne:			1		1	Metho	d of Shipmi	ent				
Relinquished by	Date/Time:	1/15	40	Company		F	Received	H/	6	Ty	1		Date/	16-21	<u>'</u> C	0845	Company	1
Relinquished by:	Date/Time	1		Company		F	Received	бу: (-			Date/				Company	1
Relinquished by:	Date/Time:			Company		+	Received	by:					Date/	/Time			Company	
Custody Seals Intact: Custody Seal No.						C	Cooler Te	emperatu	e(s) °C	and Oth	er Rema	arks:						

Page 42 of 45

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 680-197389-1

Login Number: 197389 List Source: Eurofins TestAmerica, Savannah

List Number: 1

Creator: Sims, Robert D

Creator: Sims, Robert D		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

-

6

8

10

40

13

18

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 680-197389-1

List Source: Eurofins TestAmerica, Tampa
List Number: 2
List Creation: 04/16/21 09:06 AM

Creator: Redding, Charles S

ordator. Reduing, ordanes o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Residual Chlorine Checked.

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - GW Investigation

Job ID: 680-197389-1

Laboratory: Eurofins TestAmerica, Tampa

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E84282	06-30-21
Georgia	State	E84282	06-30-21
Georgia (DW)	State	905	06-30-21
USDA	US Federal Programs	P330-21-00025	02-08-24

3

4

5

7

8

46

11

13

14

15

Memorandum

Date: 18 May 2021

To: Adria Reimer

Cristin Corless Krachon

From: Matthew Richardson

CC: J. Caprio

Subject: Stage 2A Data Validation - Level II Data Deliverable - Eurofins

TestAmerica Job ID 680-197389-1

SITE: Hercules Brunswick GW Investigation

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of eight water samples, one field duplicate sample, one trip blank and three equipment blanks, collected 6-7 April 2021, as part of Hercules Brunswick sampling event. Eurofins TestAmerica Savannah, Georgia analyzed the samples for the following analytical test:

• Select Volatile Organic Compounds (VOCs) by United States Environmental Protection Agency (US EPA) Methods 5030B/8260B

EXECUTIVE SUMMARY

Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below and the information provided, the data are usable for supporting project objectives.

The data were reviewed based on professional and technical judgment and the following documents:

- US EPA National Functional Guidelines for Superfund Organic Methods Data Review, November 2020 (US EPA-540-R-20-005); and
- The pertinent methods referenced by the laboratory report.

The following samples were analyzed and validated at Stage 2A level in the data set:

Laboratory ID		Client ID
	680-197389-1	MW-26D-04062021
	680-197389-2	PSOW-12-04062021

Laboratory ID		Client ID
	680-197389-3	OW-Q3S-04062021
	680-197389-4	OW-Q3I-04062021

Laboratory ID	Client ID
680-197389-5	EQB-05-04062021
680-197389-6	EQB-06-04062021
680-197389-7	MW-29D-04072021
680-197389-8	PSOW-11-04072021
680-197389-9	MW-11D-04072021

Laboratory ID	Client ID
680-197389-10	MW-11DD-04072021
680-197389-11	EQB-07-04072021
680-197389-12	DUP-04-04072021
680-197389-13	TB

The samples were received within 0-6 degrees Celsius (°C). No sample preservation issues were noted by the laboratory.

Incorrect error corrections were observed on the chain of custody (COC), instead of the proper procedure of a single strike through, correction, and initials and date of person making the corrections.

A collection time was not documented on the COC for the field duplicate sample. The field duplicate was logged by the laboratory with the collection time of 00:00.

The collection time and date were not documented for the trip blank. The trip blank was logged by the laboratory with the collection date and time of 04/07/2021, 00:00.

1.0 SELECT VOLATILE ORGANIC COMPOUNDS

The samples were analyzed for select VOCs by US EPA methods 5030B/8260B.

The areas of data review are listed below. A leading check mark (\checkmark) indicates an area of review in which the data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike/Matrix Spike Duplicate
- ✓ Laboratory Control Sample
- ✓ Surrogates
- ✓ Equipment Blank
- ✓ Trip Blank
- ✓ Laboratory Duplicate
- ✓ Field Duplicate
- ✓ Sensitivity
- ⊗ Electronic Data Deliverable Review

1.1 Overall Assessment

1.1.1 Completeness

The VOC data reported in this laboratory report are considered usable for supporting project objectives. The results are considered valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for this analysis, for this data set is 100%.

1.2 Holding Times

The holding time for VOC analysis of a preserved water sample is 14 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three method blanks were reported (batches 236711, 236741 and 236759). VOCs were not detected in the method blanks above the reporting limits (RLs).

1.4 <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>

One sample set specific MS/MSD pair was reported using sample MW-11DD-04072021. The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria.

1.5 <u>Laboratory Control Sample (LCS)</u>

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three LCSs were reported. The recovery results were within the laboratory specified acceptance criteria.

1.6 Surrogates

Acceptable surrogate recoveries were reported for the sample analyses.

1.7 Equipment Blank

Three equipment blanks, EQB-05-04062021, EQB-06-04062021 and EQB-07-04062021, were collected with the sample set. VOCs were not detected in the equipment blanks above the RLs.

Hercules Brunswick Data Validation 18 May 2021 Page 4

1.8 Trip Blank

One trip blank, TB, accompanied the sample set. VOCs were not detected in the trip blank above the RLs.

1.9 Laboratory Duplicate

One sample set specific laboratory duplicate was reported, using sample MW-26D-04062021. The RPD results were within the laboratory specified acceptance criteria.

1.10 Field Duplicate

One field duplicate sample, DUP-04-04072021, was collected with the sample set. Acceptable precision (RPD \leq 30%) was demonstrated between the field duplicate and the original sample, MW-29D-04072021, with the following exception.

o-Xylene was detected at a concentration greater than the RL in the field duplicate DUP-04-04072021 and not detected in the parent sample MW-29D-04072021, resulting in a noncalculable RPD between the results. Since the o-xylene concentration in DUP-04-04072021 was less than the RL for o-xylene in MW-29D-04072021 due to the differences in the two samples' dilutions and based on professional and technical judgment, no qualifications were applied to the data.

1.11 **Sensitivity**

The samples were reported to the RLs. Elevated non-detect results were reported due to the dilutions analyzed.

1.12 Electronic Data Deliverable (EDD) Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II report at a minimum of 20% as part of the data validation process. The samples were reported to the RLs; both the method detection limits (MDLs) and RLs were listed in the EDD. No other discrepancies were identified between the level II report and the EDD.

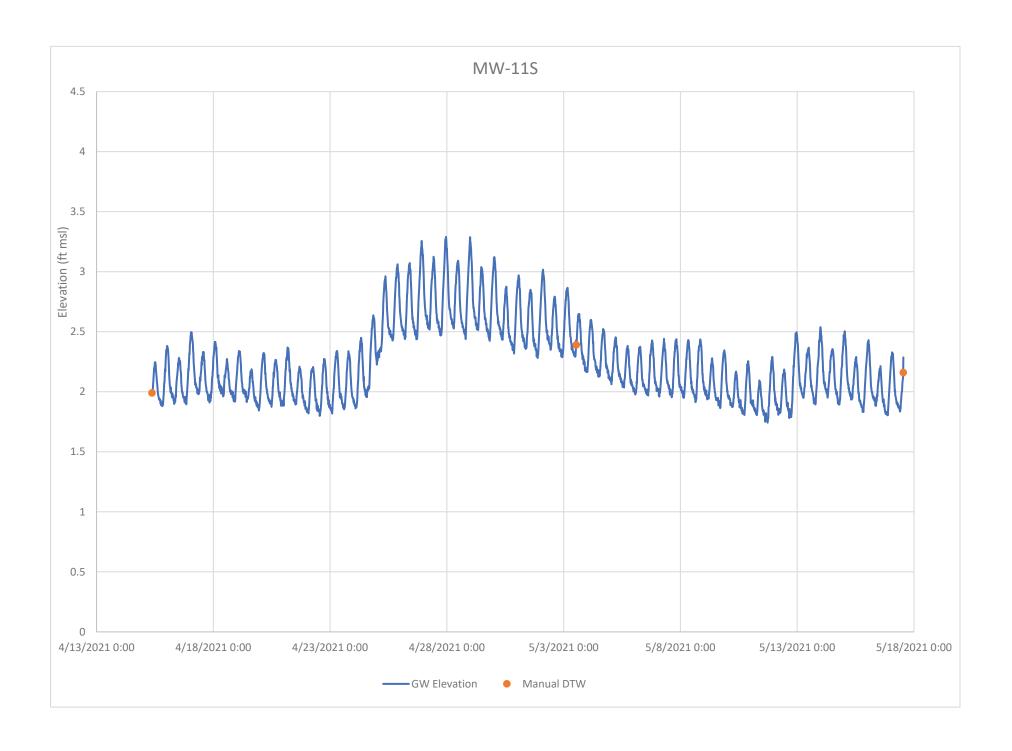
* * * * *

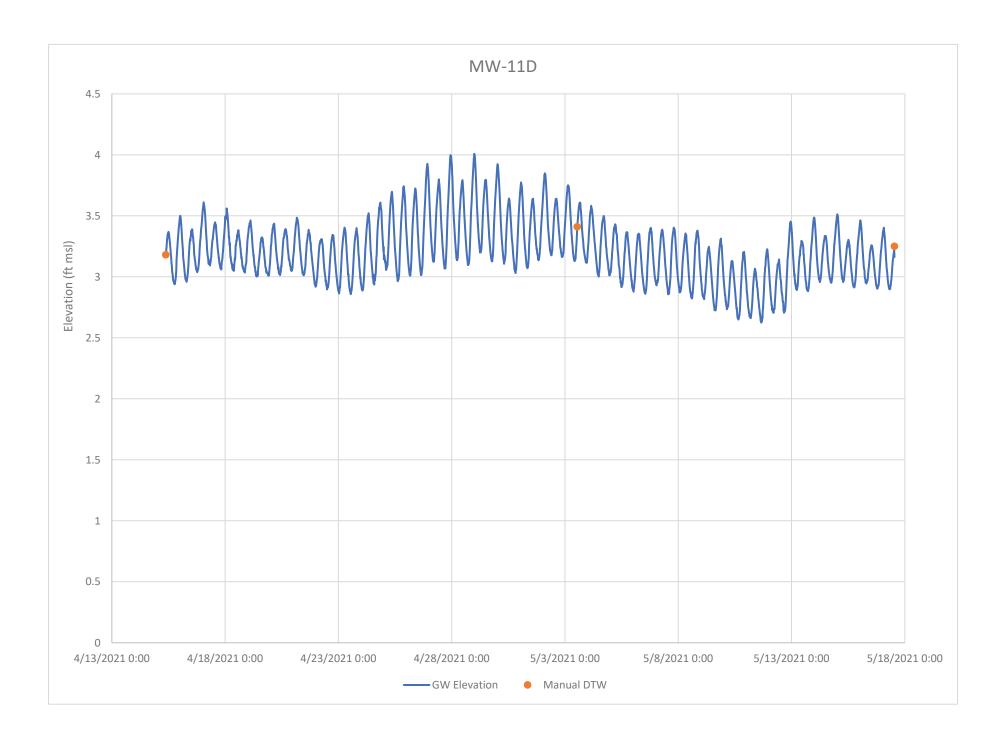
ATTACHMENT 1 DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by Geosyntec's Data Validation Team

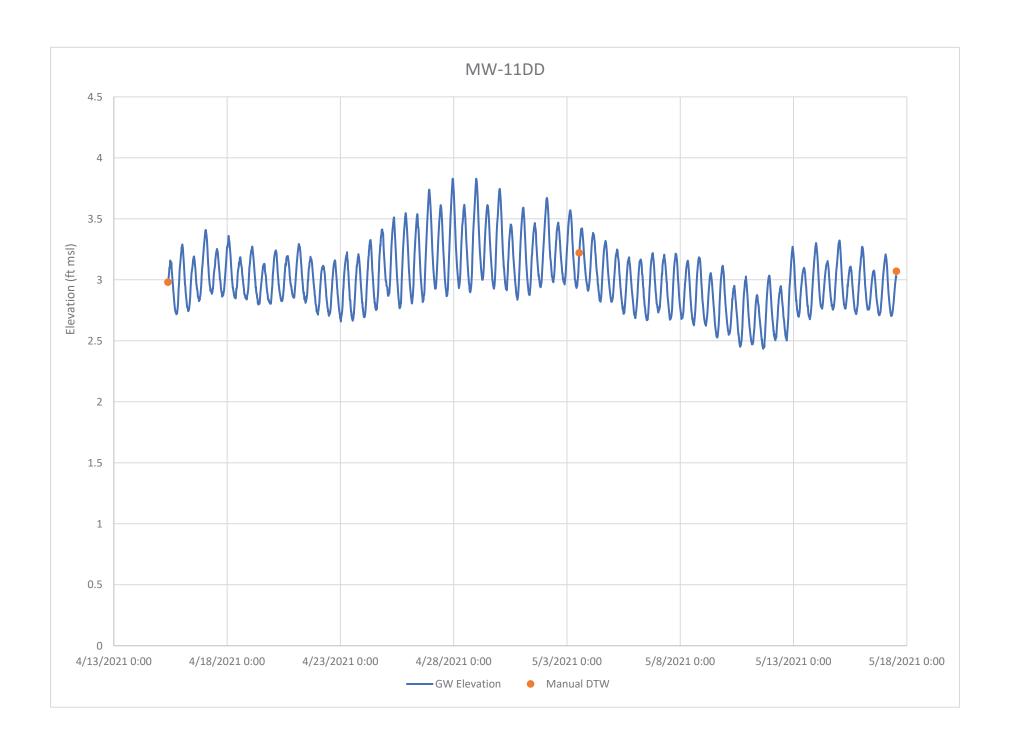
DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.
- J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

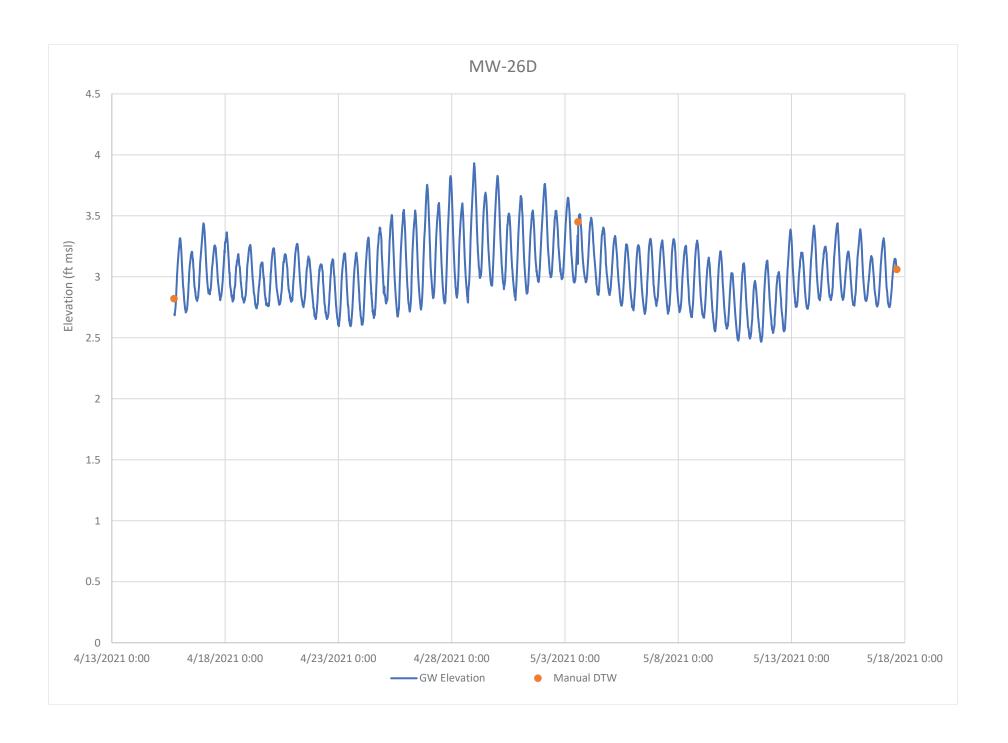
ATTACHMENT 2 DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

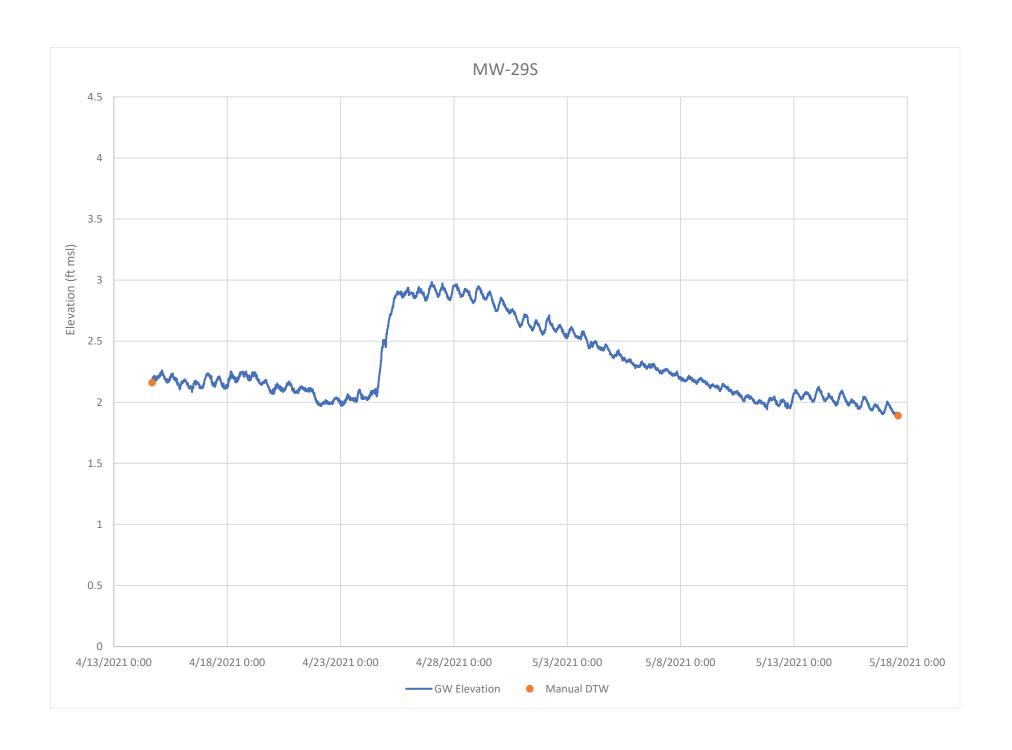

Valid Value	Description
1	Preservation requirement not met
2	Extraction or analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits or RPD outside limits (LCS/LCSD)
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed or modified: no validation qualification required

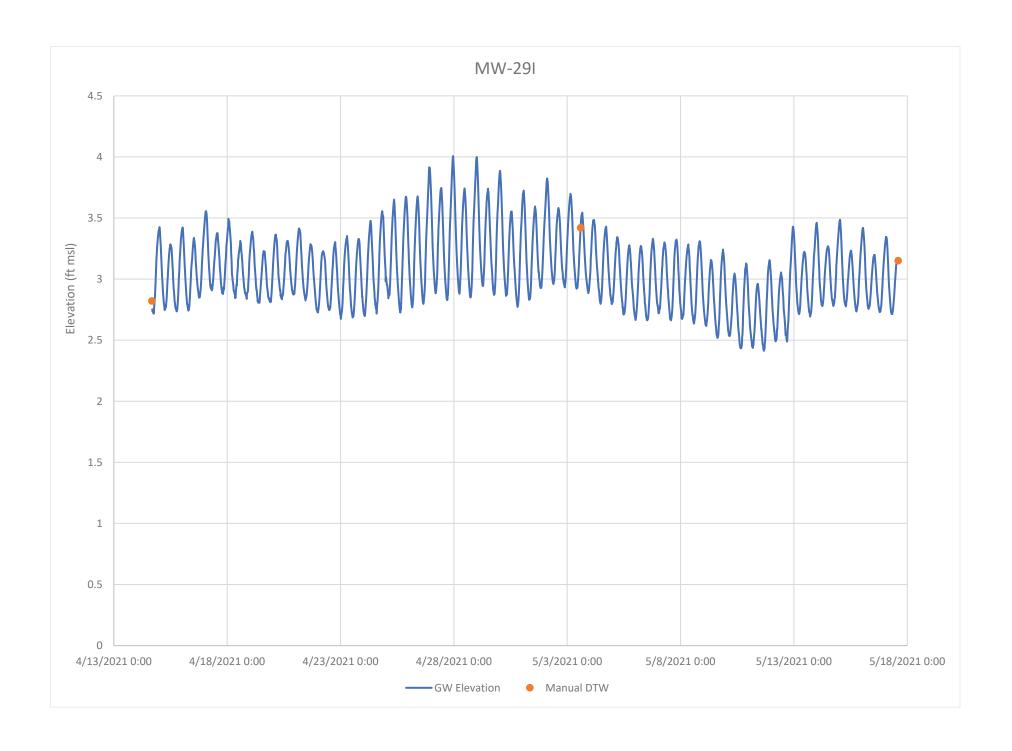

LCS - Laboratory Control Sample

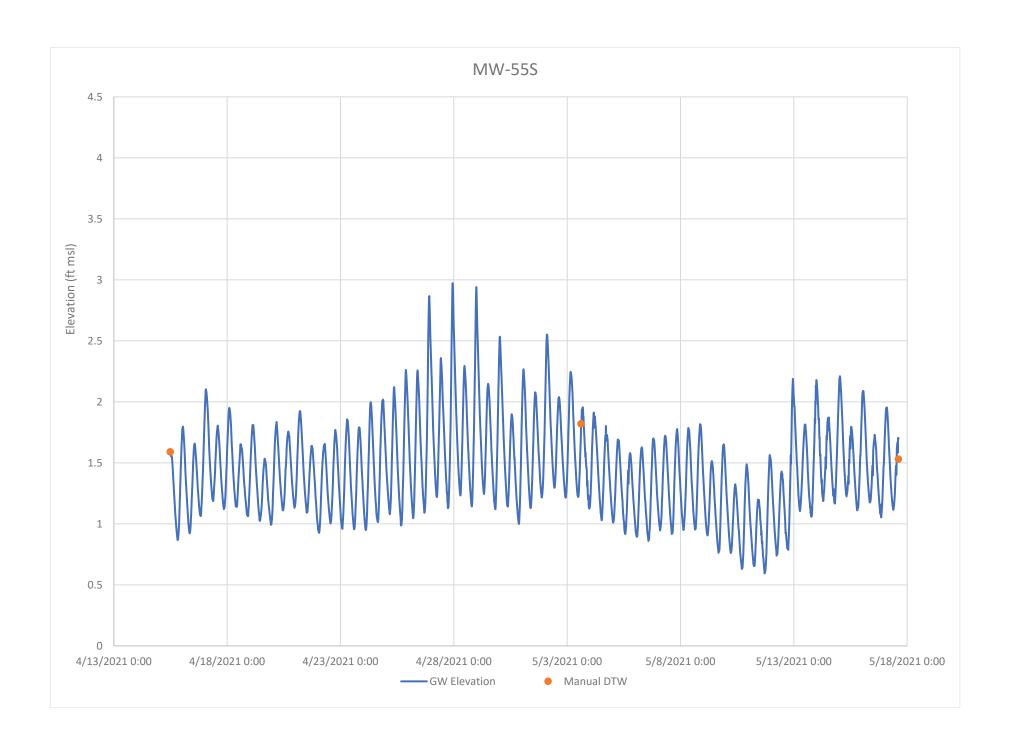

LCSD - Laboratory Control Sample duplicate

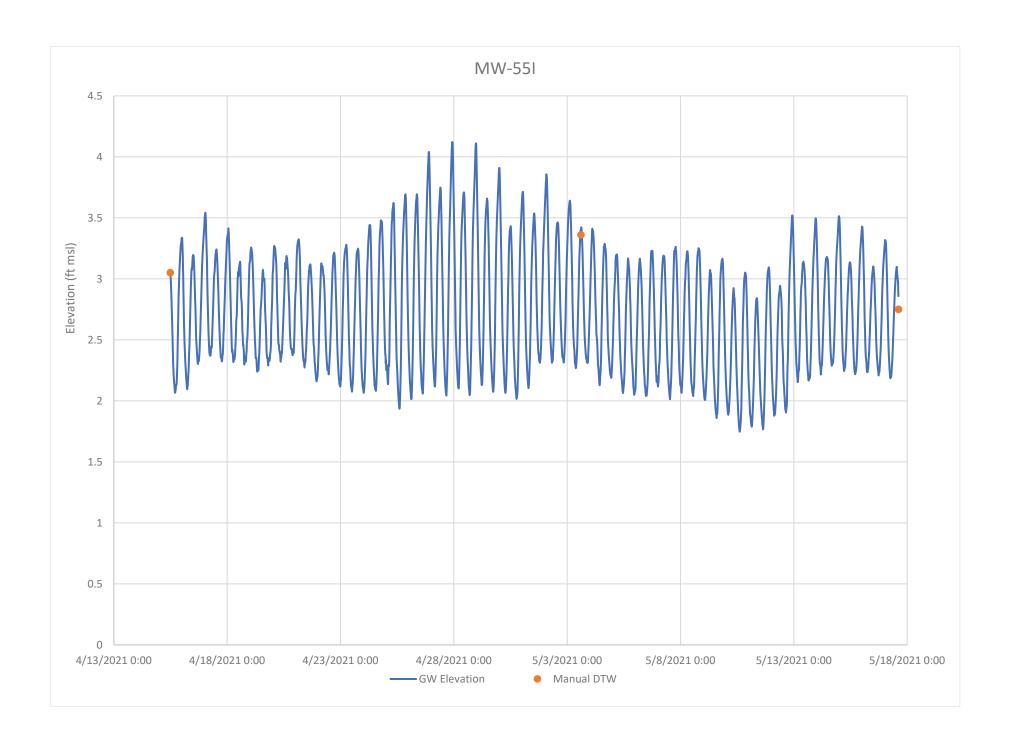
RPD - Relative percent difference

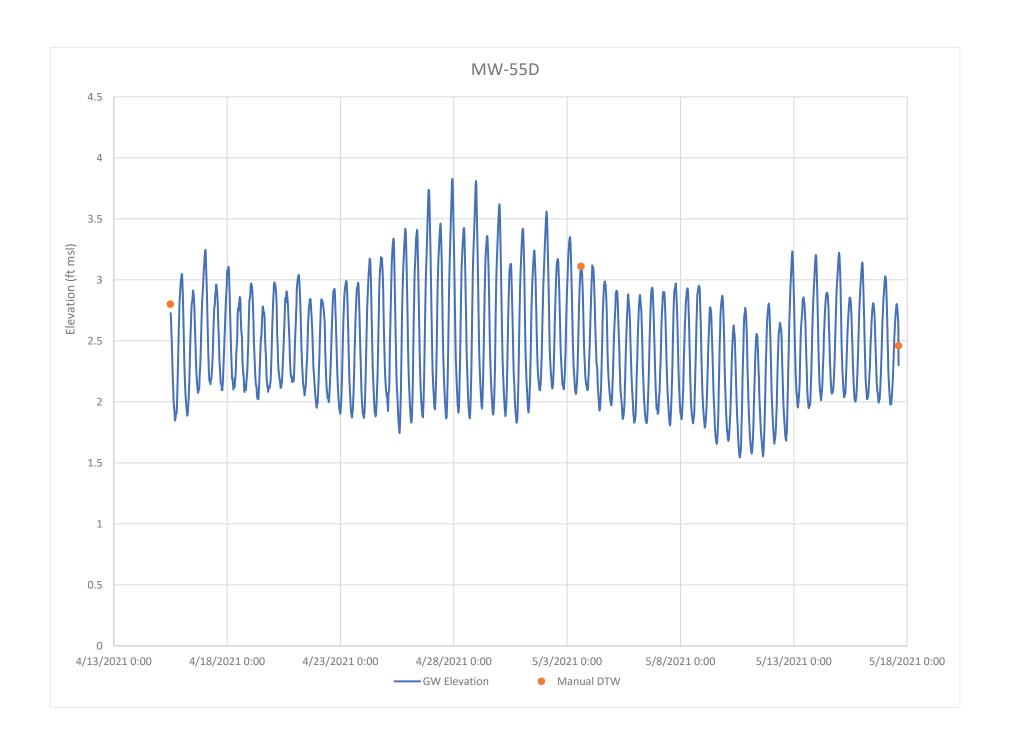

Attachment F Individual Well Period of Record Transducer Charts

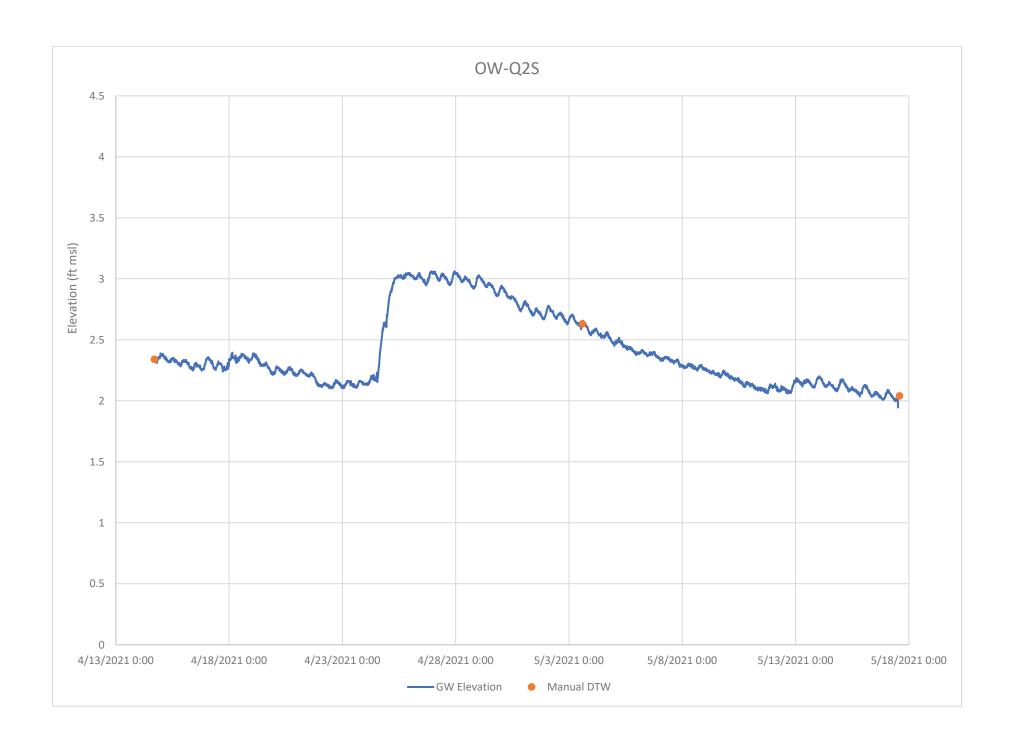


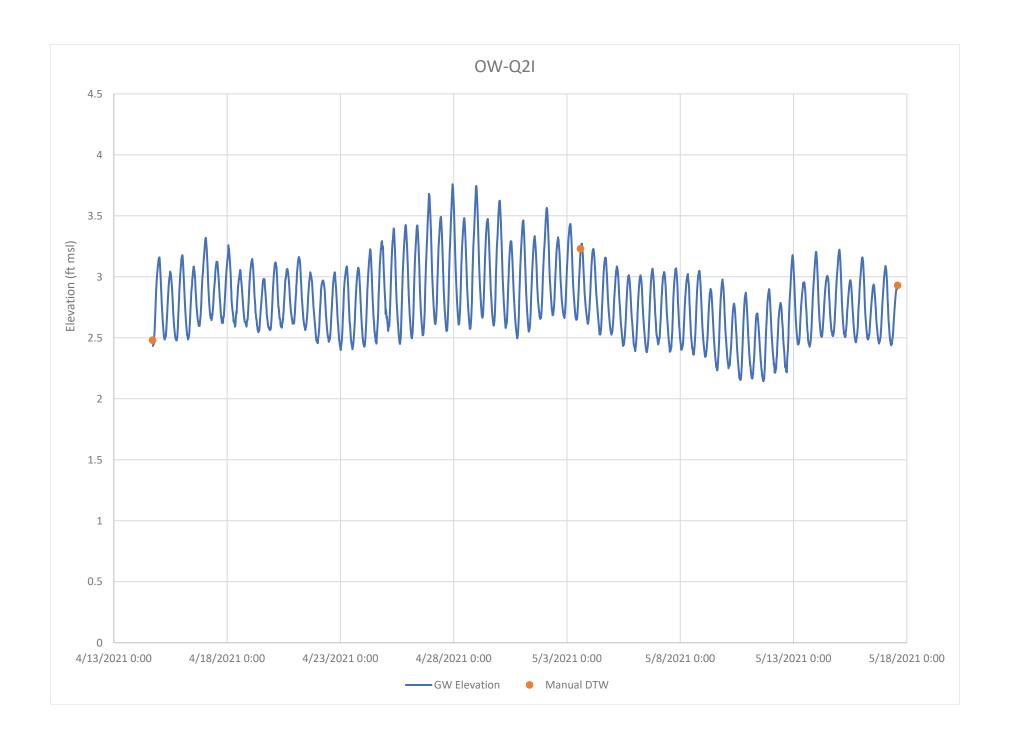


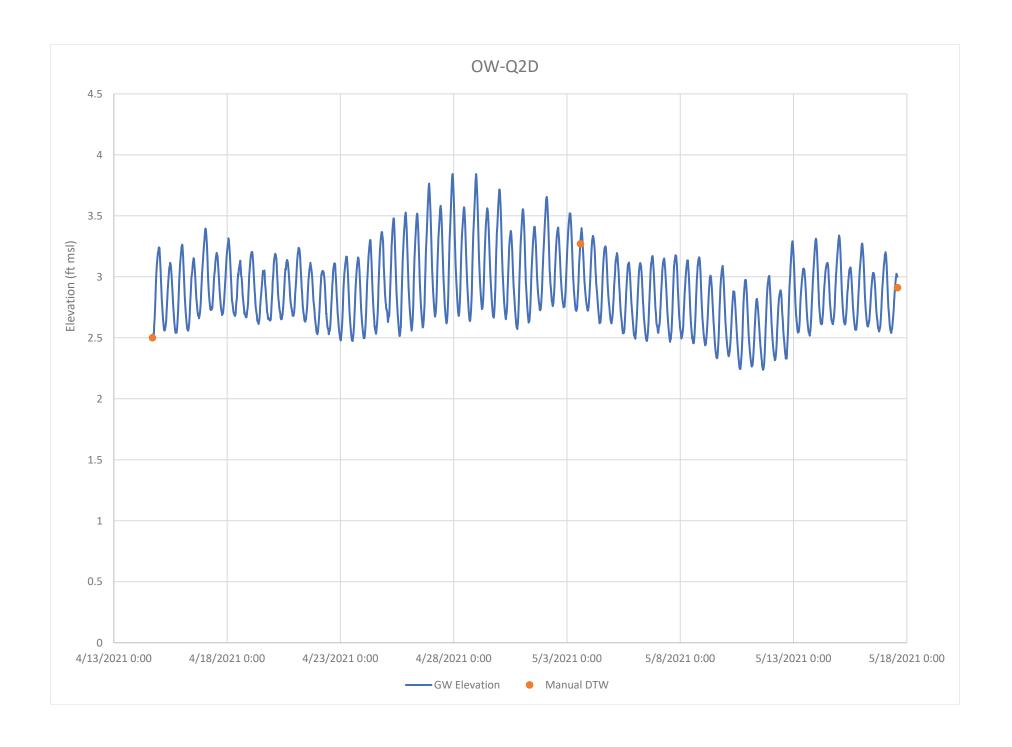


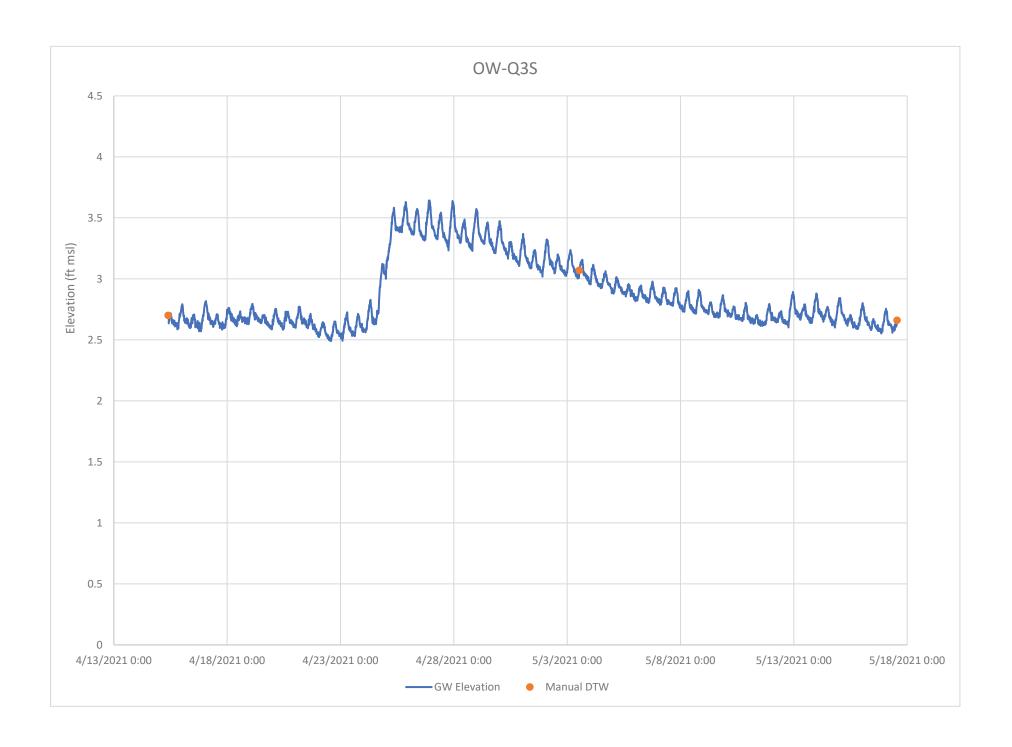


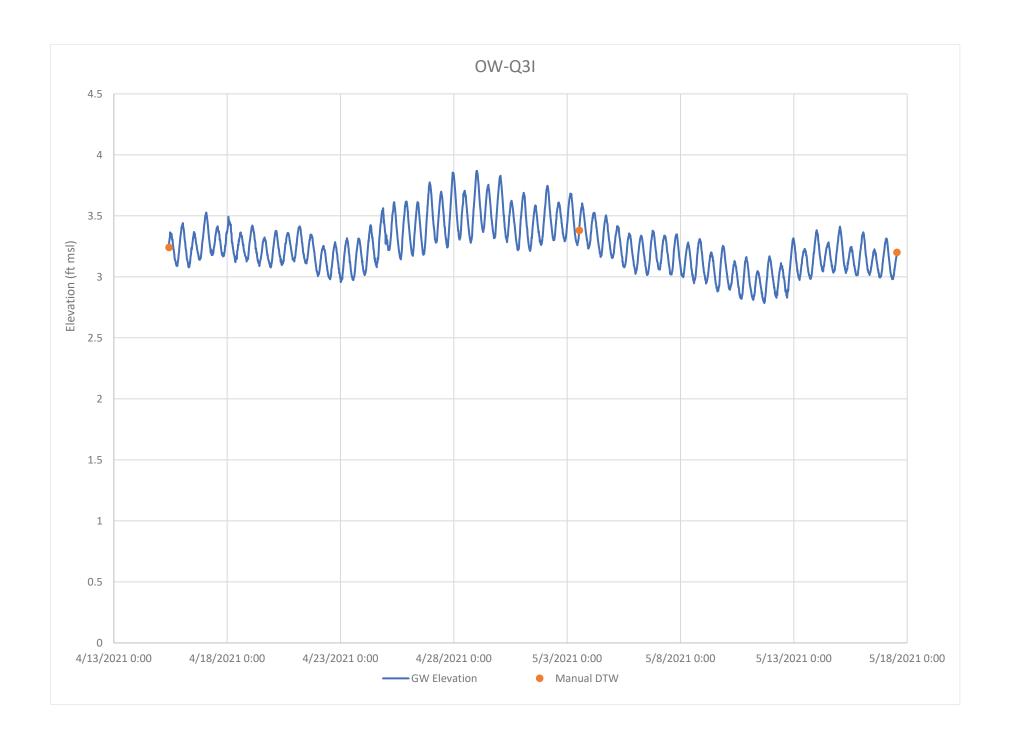


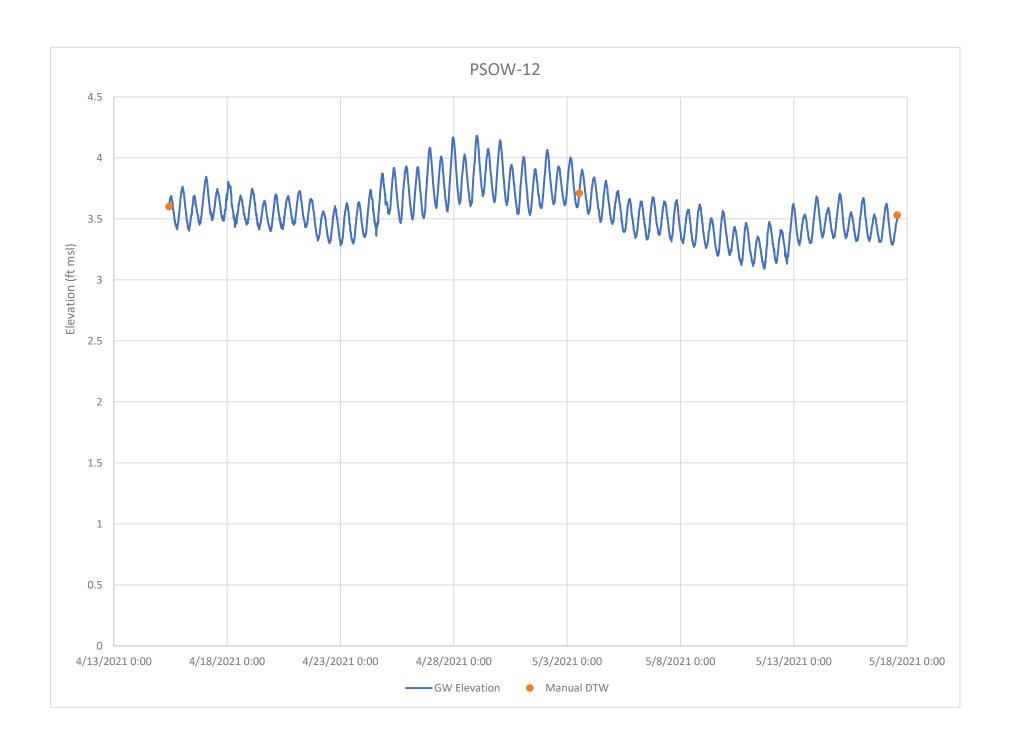


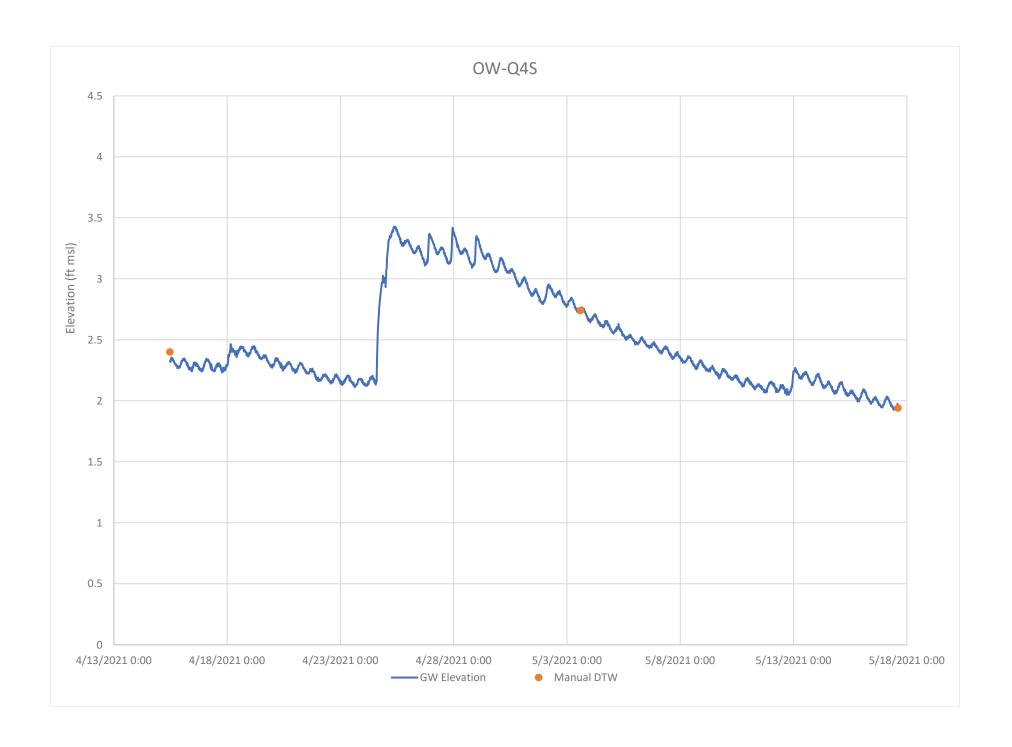


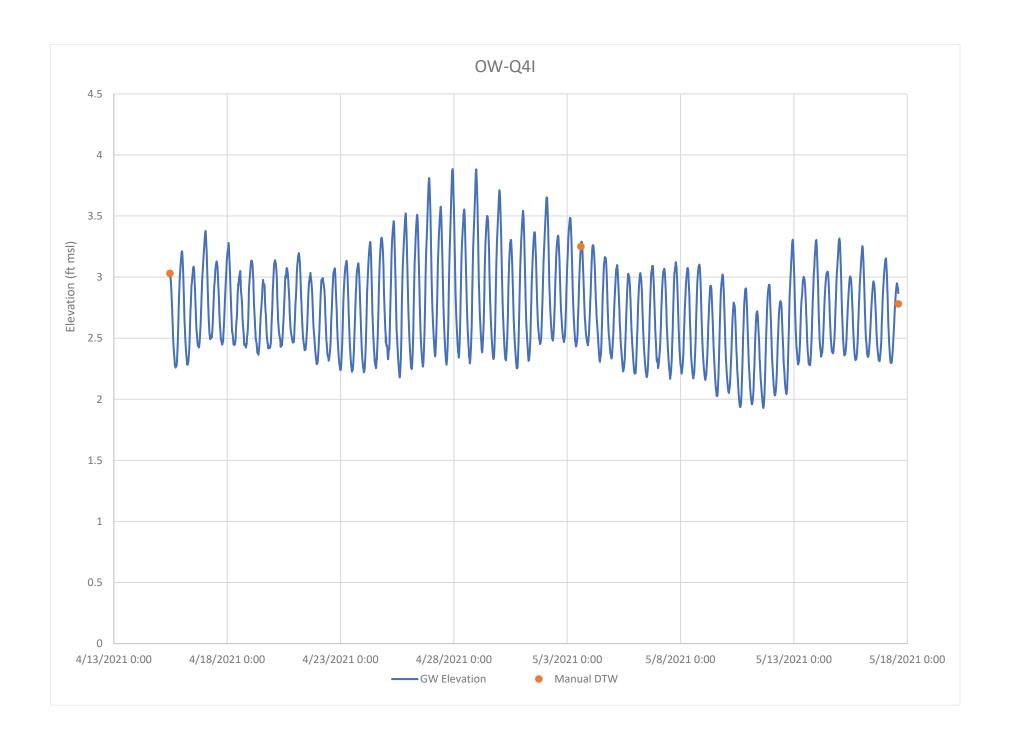


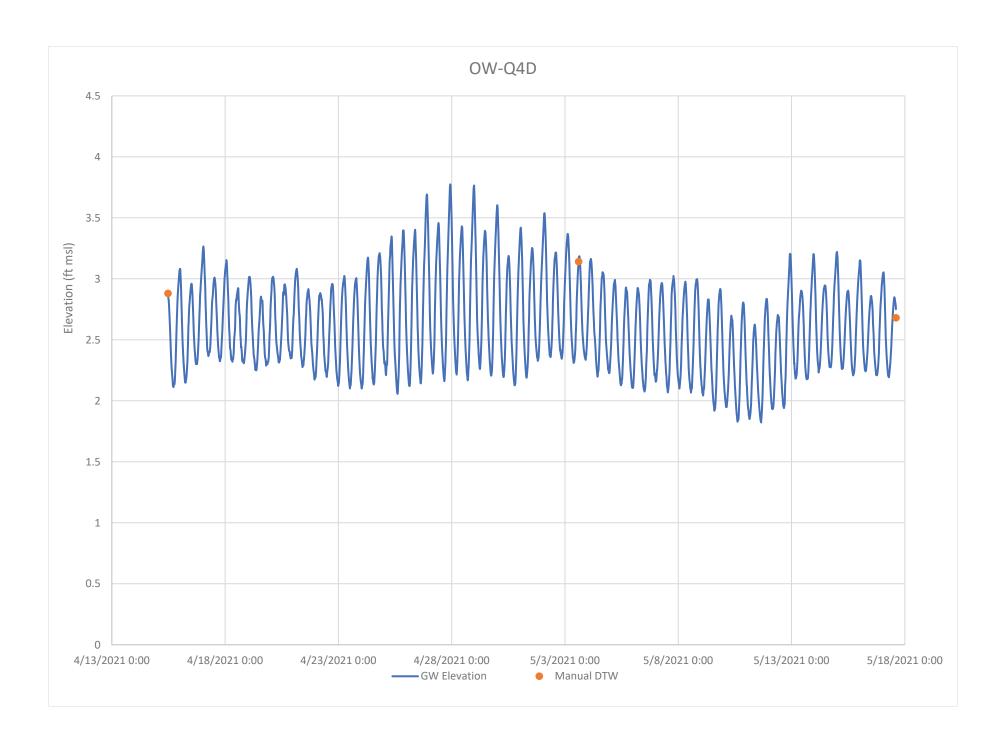


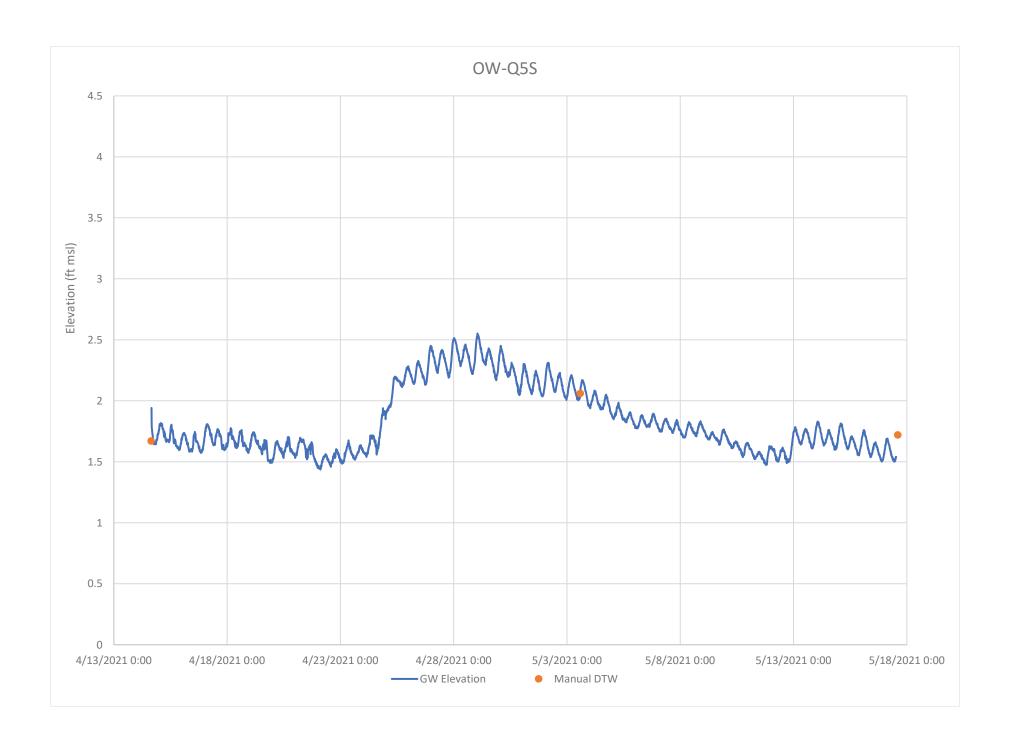


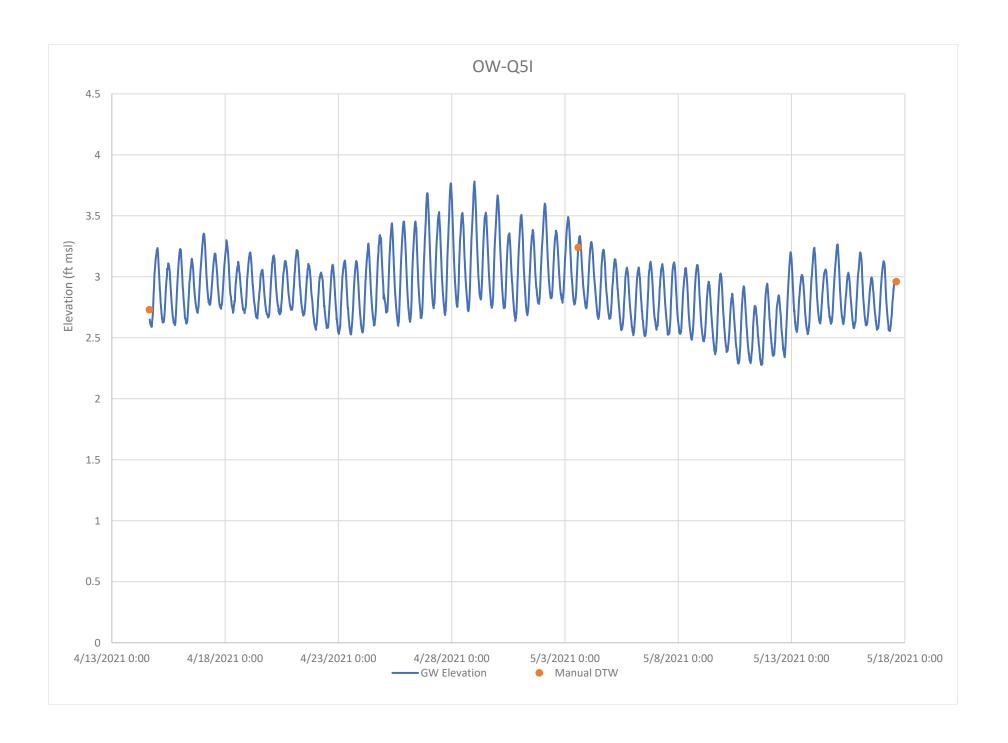


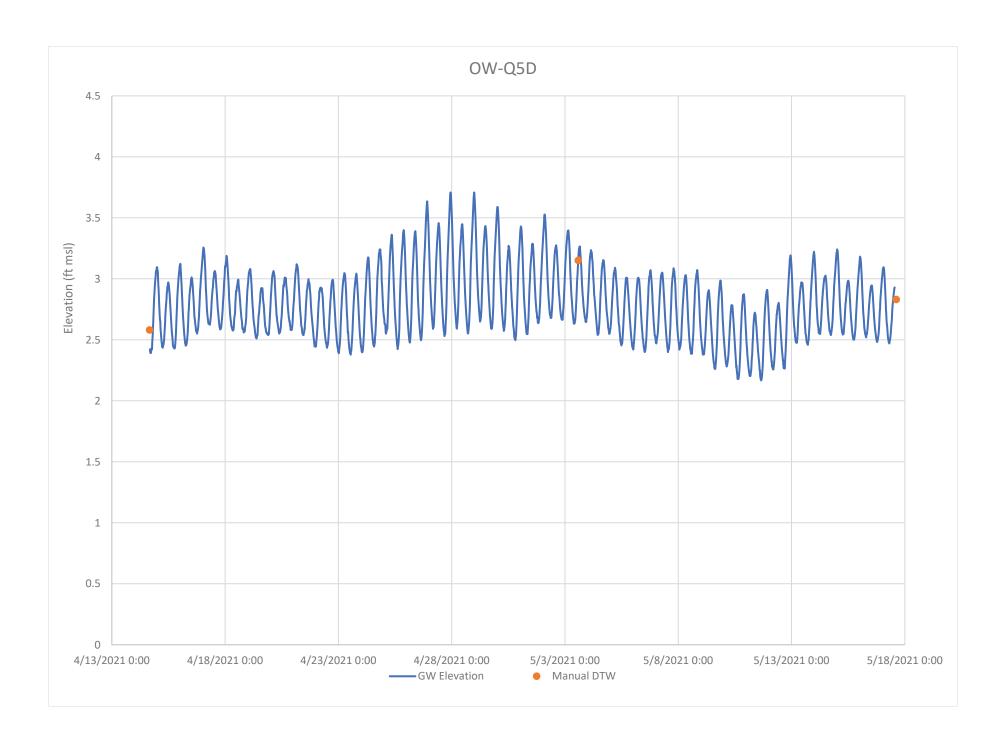


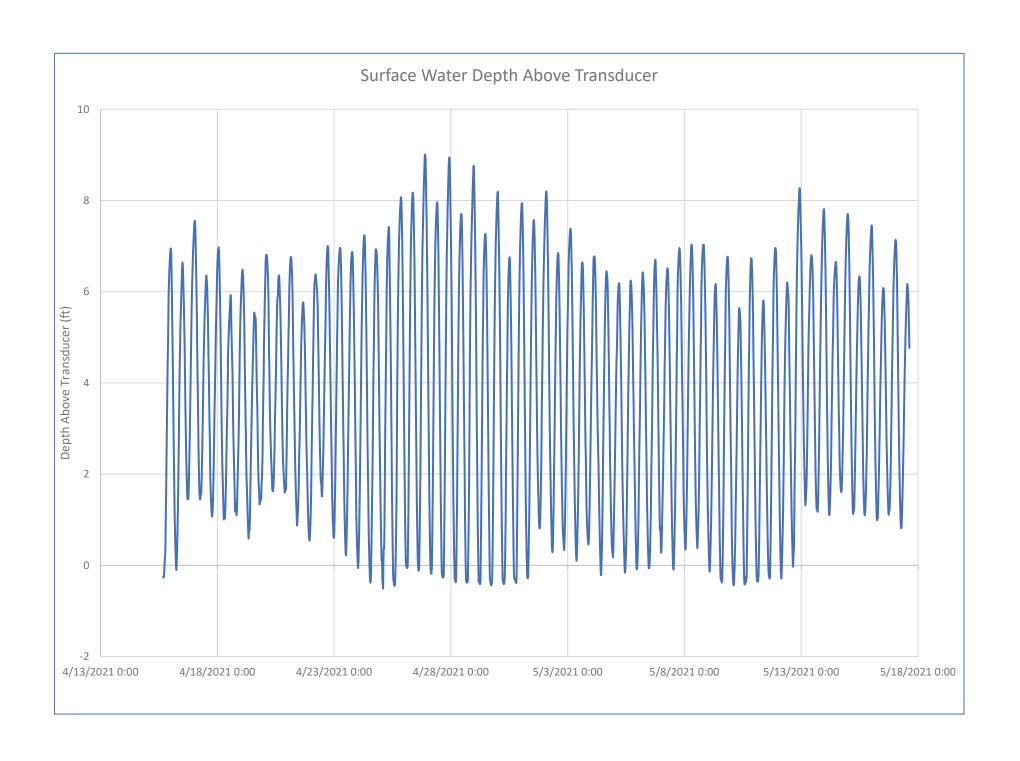


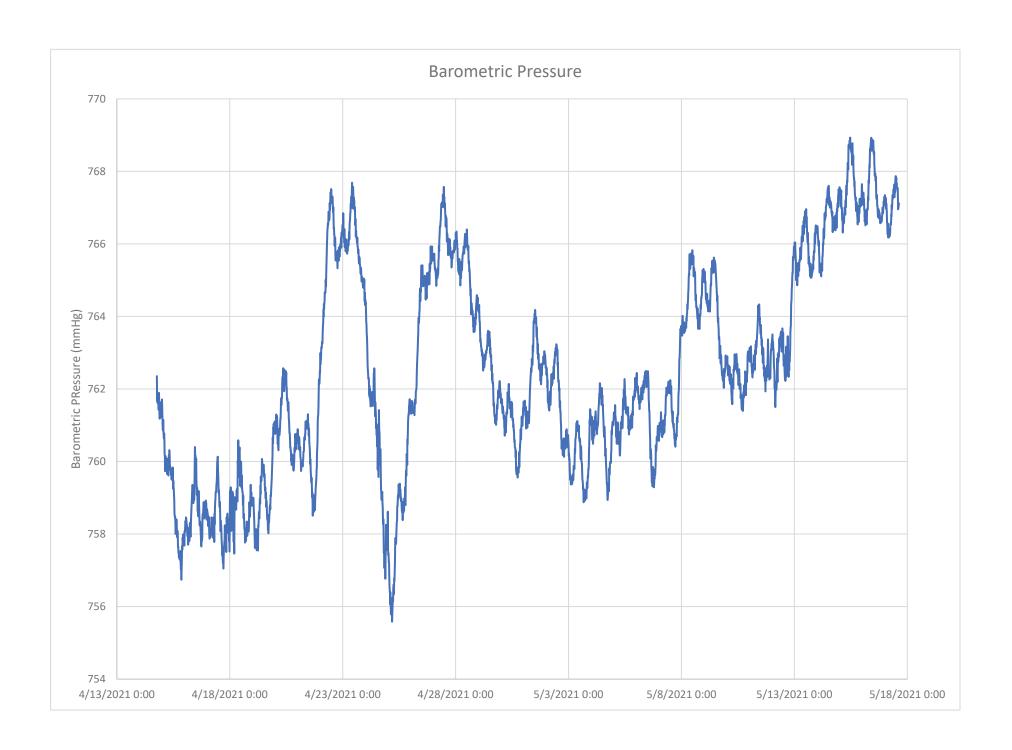


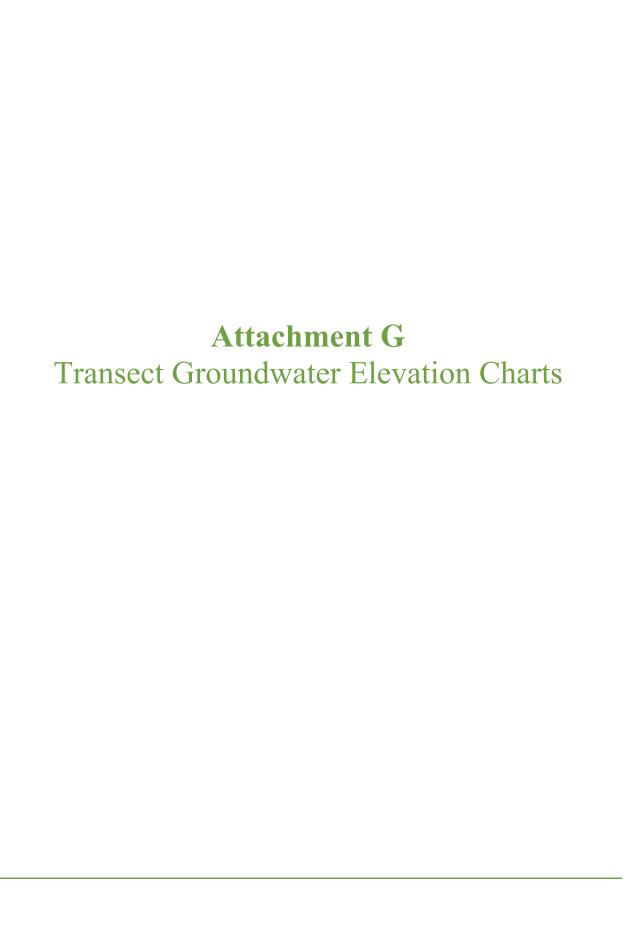


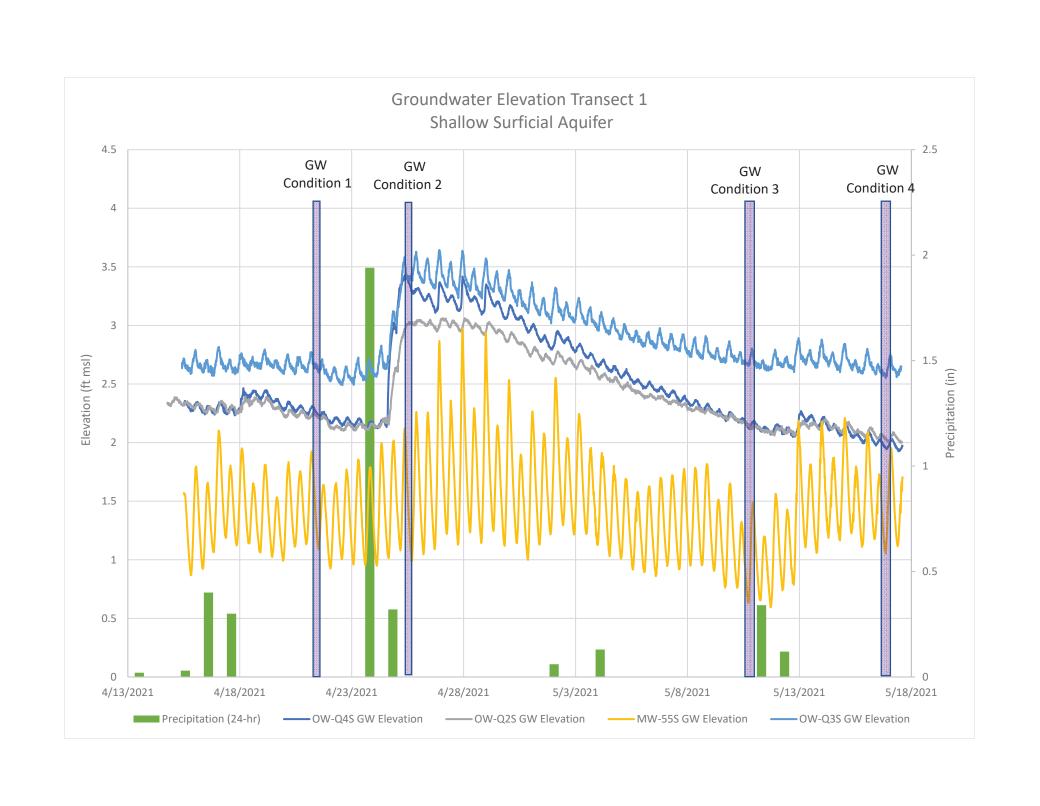


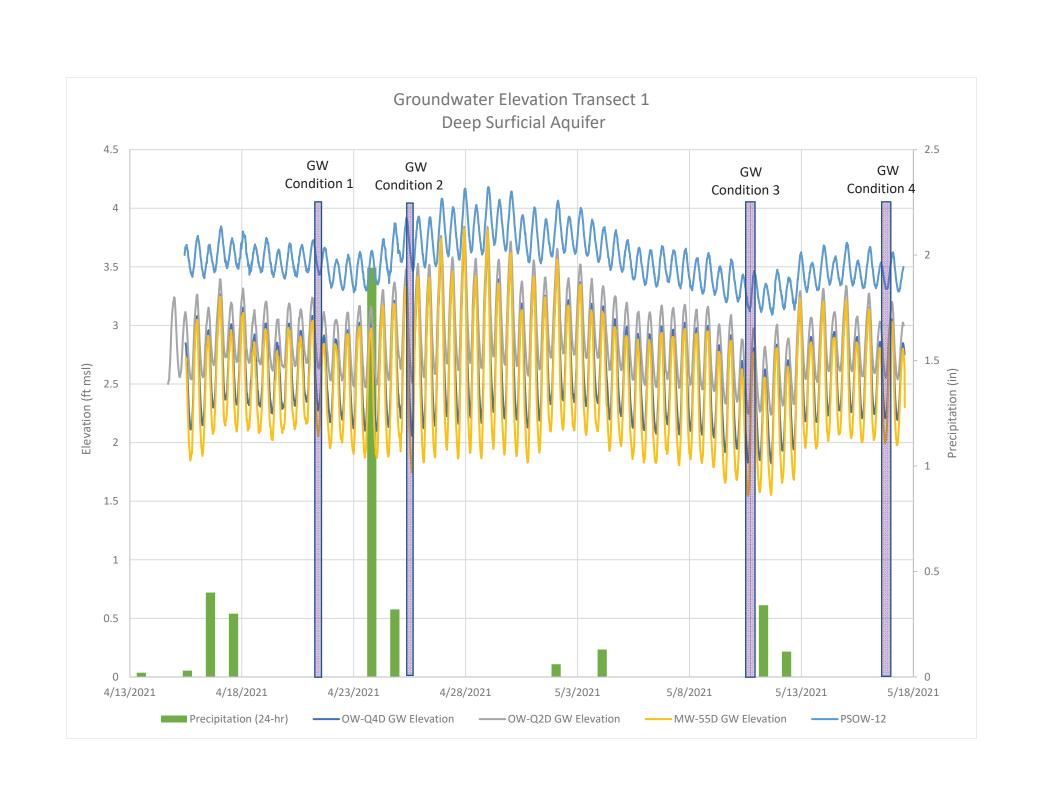


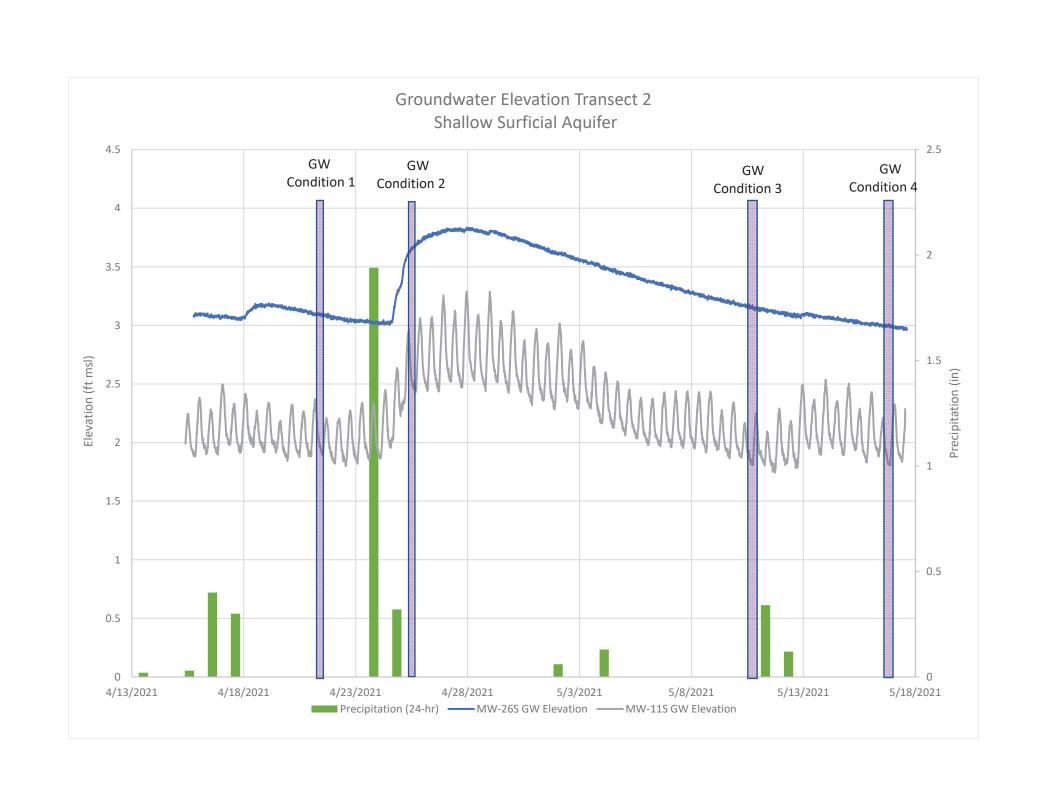


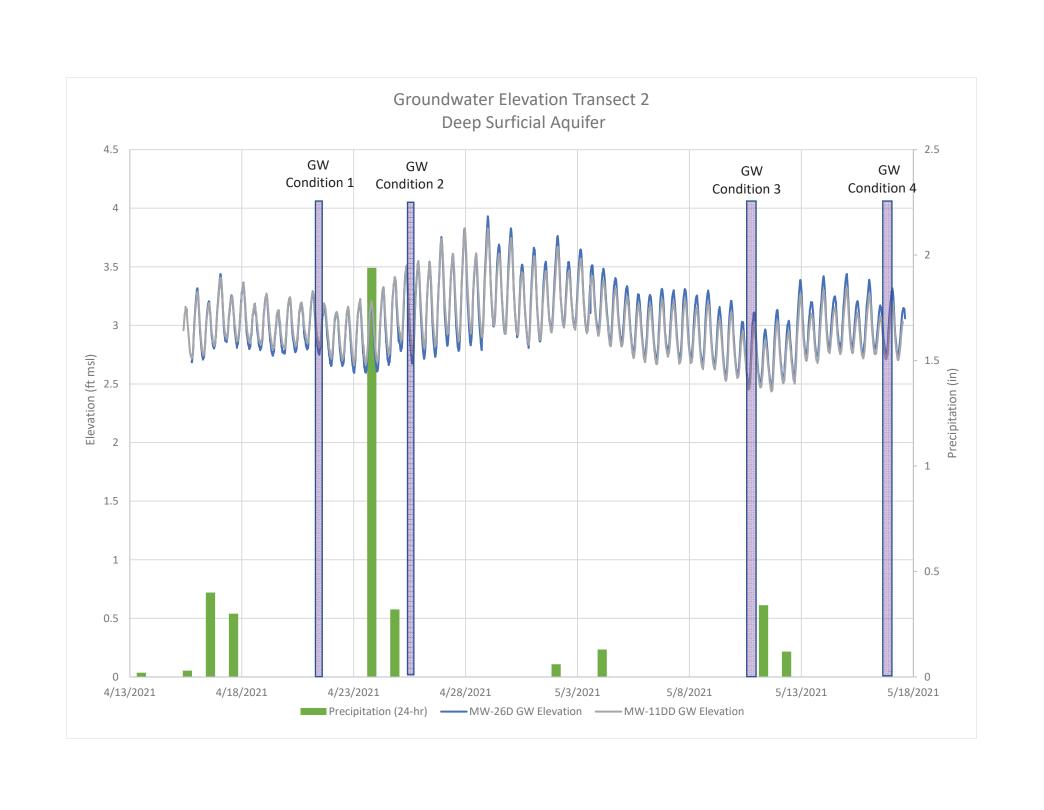


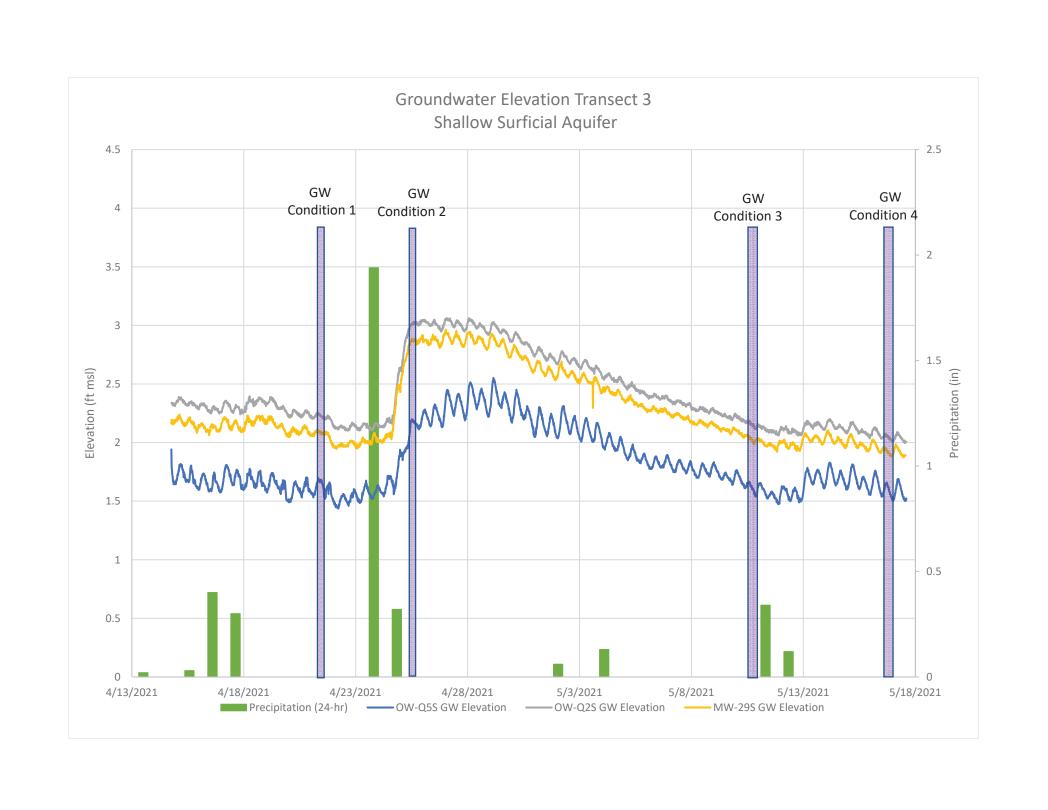


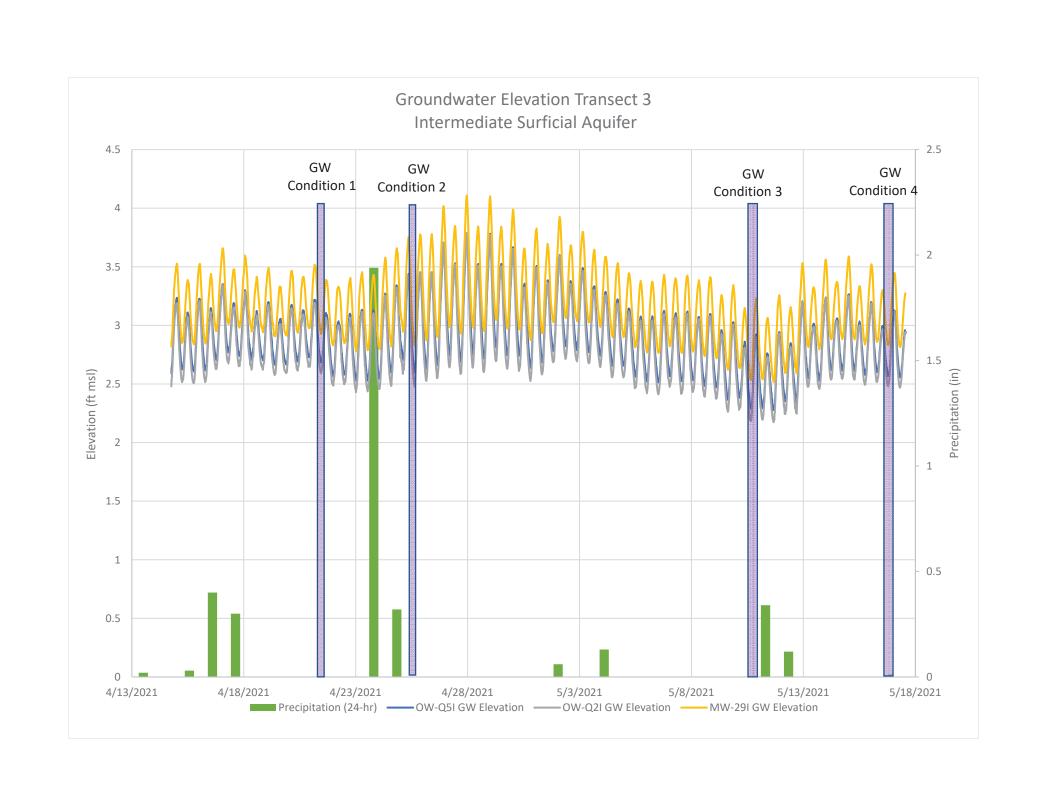


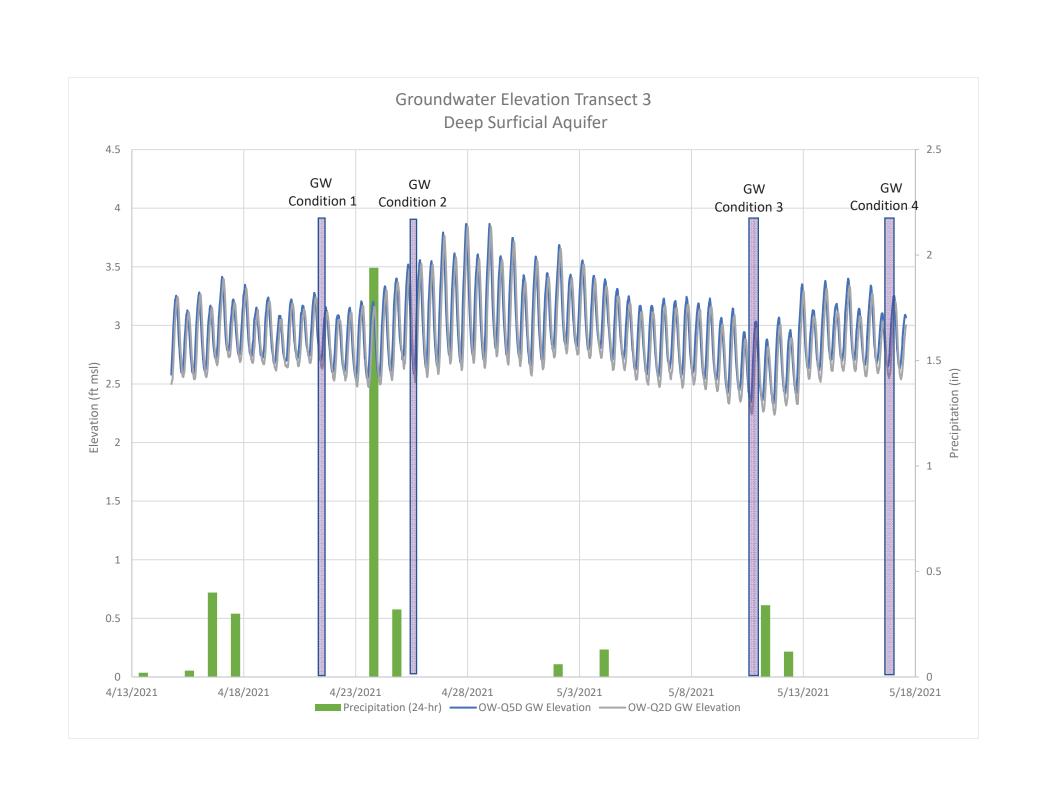












Attachment HHorizontal Hydraulic Gradients

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 1 - High Tide						
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-26S	4/21/2021	3.10	563	1.45	2.57E-03		
OW-Q5S	4/21/2021	1.65	303	1.43	2.37E-03		
OW-Q2S	4/21/2021	2.22	220	0.57	2.60E-03		
OW-Q5S	4/21/2021	1.65		0.37			
MW-29S	4/21/2021	2.11	136	0.46	3.36E-03		
OW-Q5S	4/21/2021	1.65	130	0.40			
MW-11S	4/21/2021	2.26	218	0.61	2.82E-03		
OW-Q5S		1.65	210	0.01	2.02E-03		
				Geomean	2.82E-03		

	Groundwater Condition 1 - Low Tide						
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (Δ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-26S	4/21/2021	3.09	562	1.45	2.57E-03		
OW-Q5S	4/21/2021	1.64	563	1.43	2.37E-03		
OW-Q2S	4/21/2021	2.22	- 220	0.58	2.63E-03		
OW-Q5S	4/21/2021	1.64					
MW-29S	4/21/2021	2.11	126	0.47	3.48E-03		
OW-Q5S	4/21/2021	1.64	136	0.47	3.40E-03		
MW-11S	4/21/2021	1.96	218	0.31	1 425 02		
OW-Q5S		1.65		0.31	1.42E-03		
				Geomean	2.87E-03		

Notes:

ft = feet

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 2 - High Tide						
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-26S	4/25/2021	3.61	563	1.47	2.61E-03		
OW-Q5S	4/23/2021	2.14	303	1.7/	2.01E-03		
OW-Q2S	4/25/2021	2.97	- 220	0.83	3.75E-03		
OW-Q5S	4/23/2021	2.14		0.83			
MW-29S	4/25/2021	2.81	136	0.67	4.95E-03		
OW-Q5S	4/23/2021	2.14	130	0.07			
MW-11S	4/25/2021	2.92	218	0.78	3.60E-03		
OW-Q5S		2.14	210	0.78	3.00E-03		
				Geomean	3.63E-03		

	Groundwater Condition 2 - Low Tide						
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (Δ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-26S	4/25/2021	3.67	563	1.64	2.91E-03		
OW-Q5S	4/23/2021	2.03	303	1.04			
OW-Q2S	4/25/2021	3.02	- 220	0.99	4.51E-03		
OW-Q5S	4/23/2021	2.03					
MW-29S	4/25/2021	2.90	136	0.87	6.38E-03		
OW-Q5S	4/23/2021	2.03	130	0.67	0.36E-03		
MW-11S	4/25/2021	2.48	218	0.32	1.45E-03		
OW-Q5S		2.16		0.32	1.43E-03		
				Geomean	3.32E-03		

Notes:

ft = feet

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 3 - High Tide						
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-26S	5/11/2021	3.13	563	1.58	2.81E-03		
OW-Q5S	3/11/2021	1.55	303	1.50	2.01E-03		
OW-Q2S	5/11/2021	2.08	220	0.53	2.42E-03		
OW-Q5S	3/11/2021	1.55					
MW-29S	5/11/2021	1.99	136	0.44	3.26E-03		
OW-Q5S	3/11/2021	1.55	130	0.44			
MW-11S	5/11/2021	2.09	218	0.68	3.11E-03		
OW-Q5S		1.42	210	0.08	3.11E-03		
		·		Geomean	2.88E-03		

	Groundwater Condition 3 - Low Tide						
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (Δ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-26S	5/11/2021	3.11	563	-1.58	2.81E-03		
OW-Q5S	3/11/2021	1.53	303	-1.38	2.01E-03		
OW-Q2S	5/11/2021	2.07	220	-0.54	2.43E-03		
OW-Q5S	3/11/2021	1.53					
MW-29S	5/11/2021	2.00	136	-0.47	3.43E-03		
OW-Q5S	3/11/2021	1.53	130	-0.47	3.43E-03		
MW-11S	4/25/2021	2.48	218	0.32	1.45E-03		
OW-Q5S		2.16	210	0.32	1.43E-03		
		-		Geomean	2.42E-03		

Notes:

ft = feet

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 4 - High Tide						
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-26S	5/17/2021	2.98	563	1.42	2.52E-03		
OW-Q5S	3/1//2021	1.57	303	1.42	2.32E-03		
OW-Q2S	5/17/2021	2.03	220	0.46	2.10E-03		
OW-Q5S	3/1//2021	1.57		0.40			
MW-29S	5/17/2021	1.92	136	0.35	2.59E-03		
OW-Q5S	3/1//2021	1.57	130	0.55			
MW-11S	5/17/2021	2.22	218	0.65	2.98E-03		
OW-Q5S		1.57		0.03	2.70E-03		
		·		Geomean	2.53E-03		

	Groundwater Condition 4 - Low Tide						
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (Δ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-26S	5/17/2021	2.99	563	-1.53	2.72E-03		
OW-Q5S	3/17/2021	1.46	303	-1.55	2./2E-U3		
OW-Q2S	5/17/2021	2.05	- 220	-0.59	2.70E-03		
OW-Q5S	3/17/2021	1.46					
MW-29S	5/17/2021	1.96	126	-0.50	3.70E-03		
OW-Q5S	3/17/2021	1.46	136	-0.30	5.70E-05		
MW-11S	5/17/2021 1.91 1.59	1.91	218	-0.32	1.47E-03		
OW-Q5S		1.59		-0.32	1.4/E-03		
				Geomean	2.51E-03		

Notes:

ft = feet

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 1 - High Tide							
		Water Elevation	Horizontal Distance	Head Difference	Horizontal			
Well ID	Date	water Elevation	Between Wells	$(\Delta \mathbf{h})$	Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
MW-29I	4/21/2021	3.40	325	0.21	6.60E-04			
OW-Q4I	4/21/2021	3.19	323	0.21				
MW-55I	4/21/2021	3.32	385	0.14	3.55E-04			
OW-Q4I	4/21/2021	3.19		0.14				
				Geomean	5.08E-04			

Groundwater Condition 1 - Low Tide							
Well ID	Well ID Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-29I	4/21/2021	2.86	325	0.46	1.42E-03		
OW-Q4I	4/21/2021	2.40	323	0.40	1.42L-03		
MW-11D	4/21/2021	3.04	565	0.63	1.12E-03		
OW-Q4I	4/21/2021	2.40	303	0.03	1.12E-03		
				Geomean	1.26E-03		

Notes:

ft = feet

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 2 - High Tide							
		Water Elevation	Horizontal Distance	Head Difference	Horizontal			
Well ID	Date	vvater Elevation	Between Wells	$(\Delta \mathbf{h})$	Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
MW-29I	4/25/2021	3.61	325	0.15	4.68E-04			
OW-Q4I	4/23/2021	3.46	323	0.13	4.00E-04			
MW-55I	4/25/2021	3.62	385	0.16	4.27E-04			
OW-Q4I	4/23/2021	3.46		0.10				
				Geomean	4.47E-04			

	Groundwater Condition 2 - Low Tide							
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
MW-29I	4/25/2021	2.84	325	0.59	1.82E-03			
OW-Q4I	4/23/2021	2.25						
OW-Q4I	4/25/2021	2.25	385	0.25	6.39E-04			
MW-55I	4/23/2021	2.01	363	0.23	0.37E-04			
MW-11D	4/25/2021	3.05	218	0.87	2.000.02			
OW-Q5I		2.69			3.98E-03			
				Geomean	1.67E-03			

Notes:

ft = feet

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 3 - High Tide							
		Water Elevation	Horizontal Distance	Head Difference	Horizontal			
Well ID	Date	VVIII ZIOVIII	Between Wells	$(\Delta \mathbf{h})$	Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
MW-29I	5/11/2021	2.95	325	0.23	7.17E-04			
OW-Q4I	3/11/2021	2.72	323					
MW-55I	5/11/2021	2.82	385	0.10	2.65E-04			
OW-Q4I	3/11/2021	2.72		0.10				
				Geomean	4.36E-04			

	Groundwater Condition 3 - Low Tide							
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
MW-29I	5/11/2021	2.45	325	0.51	1.58E-03			
OW-Q4I	3/11/2021	1.94	323	0.51	1.36E-03			
OW-Q4I	5/11/2021	2.72	385	0.95	2.48E-03			
MW-55I	3/11/2021	1.77	363	0.93	2.40E-03			
MW-11D	5/11/2021	2.64	218	0.34	1.550.02			
OW-Q5I	3/11/2021	2.30		0.34	1.55E-03			
			-	Geomean	1.82E-03			

Notes:

ft = feet

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 4 - High Tide							
		Water Elevation	Horizontal Distance	Head Difference	Horizontal			
Well ID	Date	water Elevation	Between Wells	$(\Delta \mathbf{h})$	Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
MW-29I	5/17/2021	3.25	325	0.16	4.83E-04			
OW-Q4I	3/17/2021	3.10	323	0.10	4.03E-04			
MW-55I	5/17/2021	3.27	385	0.17	4.51E-04			
MW-Q4I	3/1//2021	3.10	383	0.17	4.31E-04			
				Geomean	4.67E-04			

Groundwater Condition 4 - Low Tide							
Well ID I	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-29I	5/17/2021	2.75	325	0.44	1.36E-03		
OW-Q4I	3/17/2021	2.31		0.44	1.30E-03		
MW-11D	5/17/2021	2.93	218	0.33	1.53E-03		
OW-Q5I	3/1//2021	2.60	218	0.33	1.33E-03		
				Geomean	1.44E-03		

Notes:

ft = feet

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 1 - High Tide							
Well ID	Date	Water Elevation	Horizontal Distance	Head Difference	Horizontal			
well ID	Date	(ft msl)	Between Wells	(Δ h)	Gradient (ft/ft)			
		` '	(ft)	(ft)	(11/11)			
PSOW-12	4/21/2021	3.72	635	0.60	9.38E-04			
OW-Q5D	7/21/2021	3.12	033					
MW-11DD	4/21/2021	3.28	185	0.16	8.90E-04			
OW-Q5D	4/21/2021	3.12		0.10				
OW-Q2D	4/21/2021	3.24	335	0.16	4.650.04			
OW-Q4D	4/21/2021	3.08		0.10	4.65E-04			
				Geomean	7.30E-04			

	Groundwater Condition 1 - Low Tide							
Well ID	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
PSOW-12	4/21/2021	3.47	580	0.83	1.43E-03			
OW-Q2D	4/21/2021	2.64						
MW-11DD	4/21/2021	2.84	185	0.29	1.56E-03			
OW-Q5D	4/21/2021	2.55	103		1.30E-03			
OW-Q2D	4/21/2021	2.64	335	0.37	1.09E-03			
OW-Q4D	4/21/2021	2.28		0.57	1.03E-03			
		Geomean	1.35E-03					

Notes:

ft = feet

Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 2 - High Tide							
		Water Elevation	Horizontal Distance	Head Difference	Horizontal			
Well ID	Date	vvater Elevation	Between Wells	$(\Delta \mathbf{h})$	Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
PSOW-12	4/25/2021	3.90	635	0.55	8.65E-04			
OW-Q5D	4/23/2021	3.35						
MW-11DD	4/25/2021	3.50	185	0.14	7.78E-04			
OW-Q5D	4/23/2021	3.35		0.14				
				Geomean	8.20E-04			

Groundwater Condition 2 - Low Tide								
Well ID Da	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
MW-11DD	4/25/2021	2.85	185	0.99	5.37E-03			
OW-Q5D	4/23/2021	2.51		0.99	3.37E-03			
OW-Q2D	4/25/2021	2.59	335	0.87	2.59E-03			
OW-Q4D	4/23/2021	2.12	333	0.87	2.37E-03			
		Geomean	3.73E-03					

Notes:

ft = feet

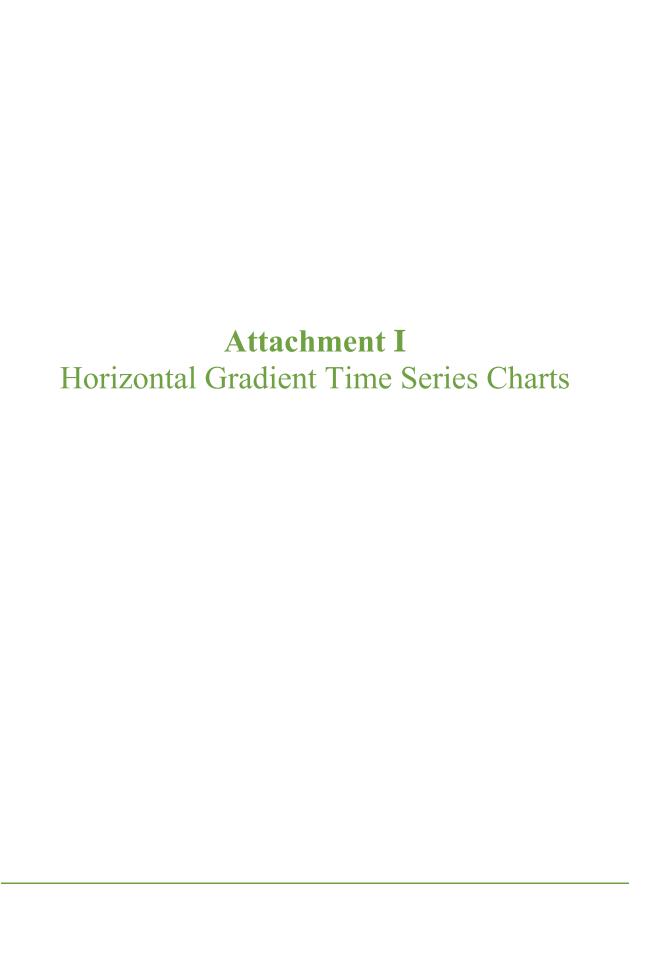
Hercules/Pinova Facility, Brunswick, Georgia

	Groundwater Condition 3 - High Tide							
	_	Water Elevation	Horizontal Distance	Head Difference	Horizontal			
Well ID	Date	, , , , , , , , , , , , , , , , , , , 	Between Wells	$(\Delta \mathbf{h})$	Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
MW-11DD	5/11/2021	2.87	185	0.15	8.27E-04			
OW-Q5D	3/11/2021	2.72	163	0.13				
OW-Q2D	5/11/2021	2.82	225	0.20	6.03E-04			
OW-Q4D	3/11/2021	2.62	335	0.20				
				Geomean	7.06E-04			

Groundwater Condition 3 - Low Tide							
Well ID I	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-11DD	5/11/2021	2.45	185	0.27	1.48E-03		
OW-Q5D	3/11/2021	2.18		0.27	1.40E-03		
OW-Q2D	5/11/2021	2.25	335	0.41	1.24E-03		
OW-Q4D	3/11/2021	1.83	333	0.41	1.24E-03		
				Geomean	1.35E-03		

Notes:

ft = feet

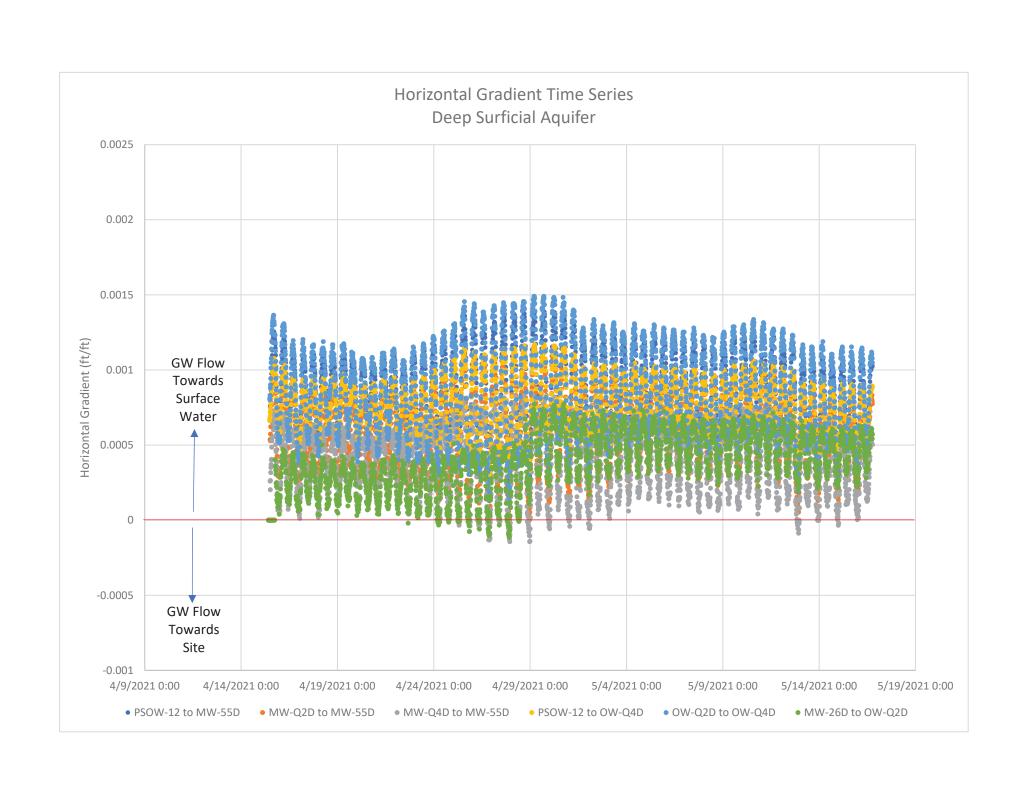

Hercules/Pinova Facility, Brunswick, Georgia

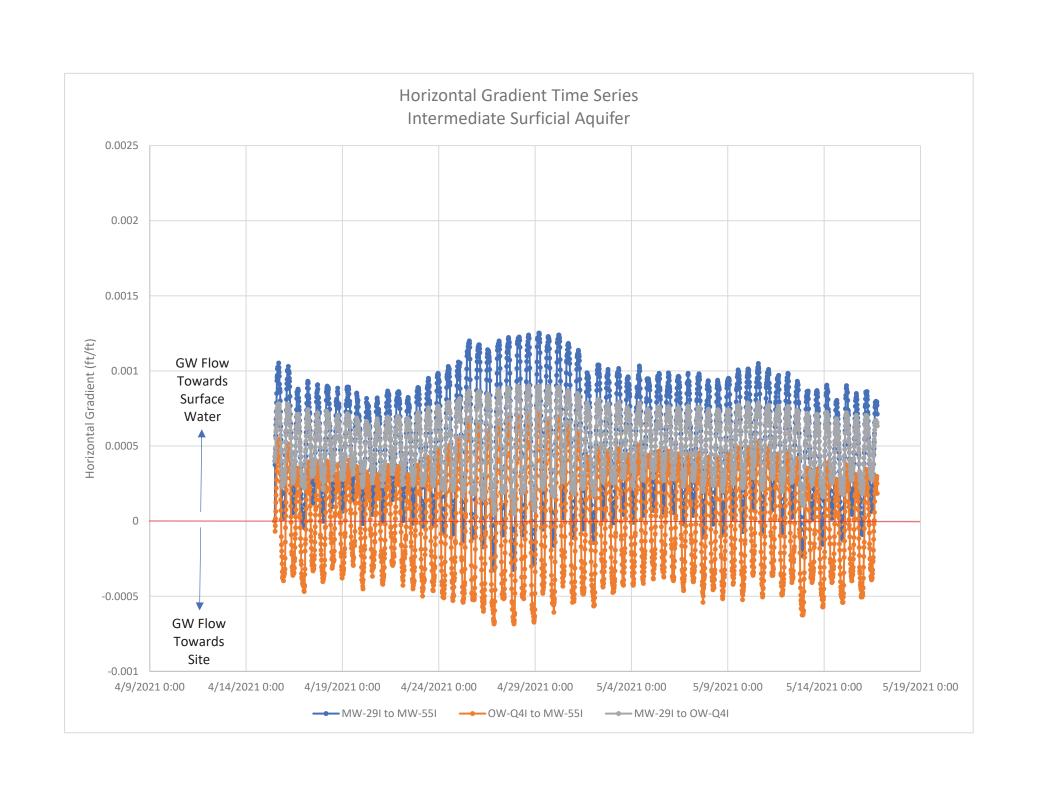
Groundwater Condition 4 - High Tide							
		Water Elevation	Horizontal Distance	Head Difference	Horizontal		
Well ID	Date	vvater Elevation	Between Wells	$(\Delta \mathbf{h})$	Gradient		
		(ft msl)	(ft)	(ft)	(ft/ft)		
MW-11DD	5/17/2021	3.14	185	0.10	5.28E-04		
OW-Q5D	3/1//2021	3.04	163	0.10	3.20E-04		
OW-Q2D	5/17/2021	3.13	225	0.14	4.03E-04		
OW-Q4D	3/1//2021	3.00	335	0.14			
				Geomean	4.61E-04		

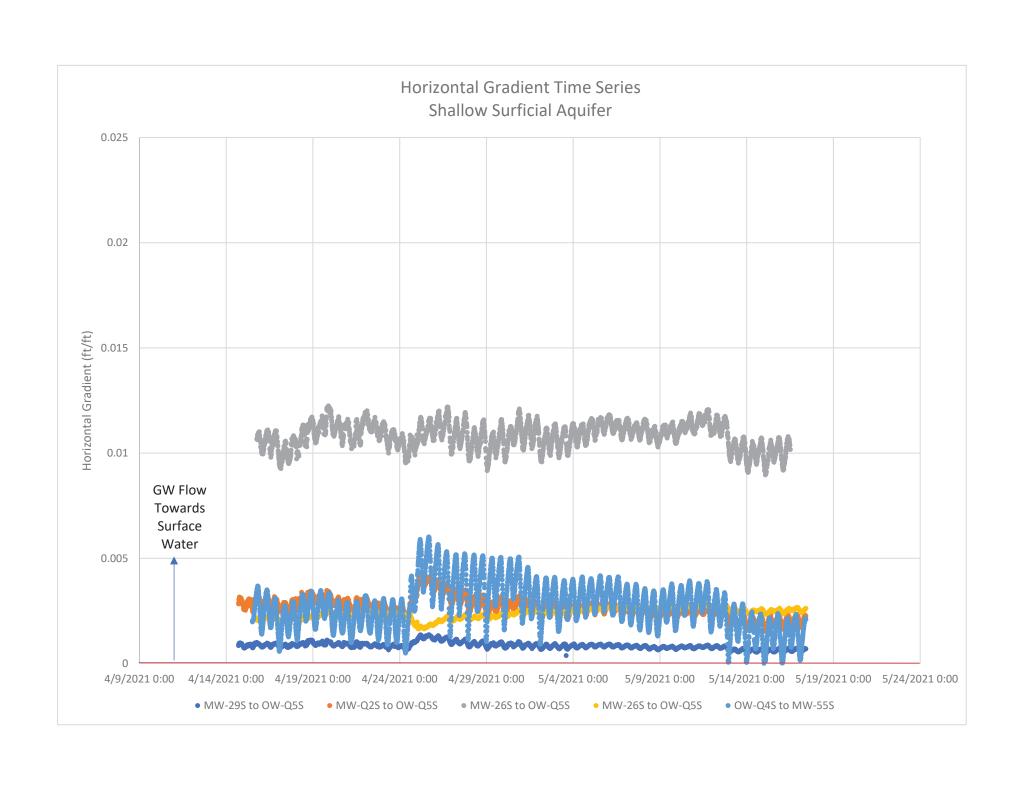
Groundwater Condition 4 - Low Tide								
Well ID Da	Date	Water Elevation	Horizontal Distance Between Wells	Head Difference (∆ h)	Horizontal Gradient			
		(ft msl)	(ft)	(ft)	(ft/ft)			
MW-11DD	5/17/2021	2.87	185	0.15	8.27E-04			
OW-Q5D	3/17/2021	2.72		0.13	0.2/L-04			
OW-Q2D	5/17/2021	2.57	335	0.37	1.10E-03			
OW-Q4D	3/1//2021	2.20	333	0.37	1.10E-03			
		Geomean	9.53E-04					

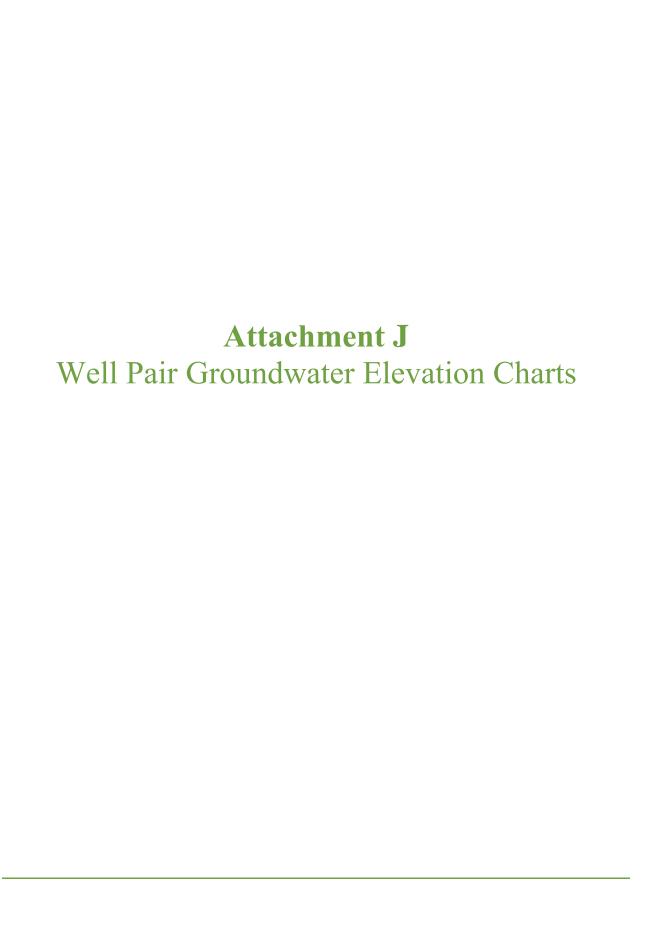
Notes:

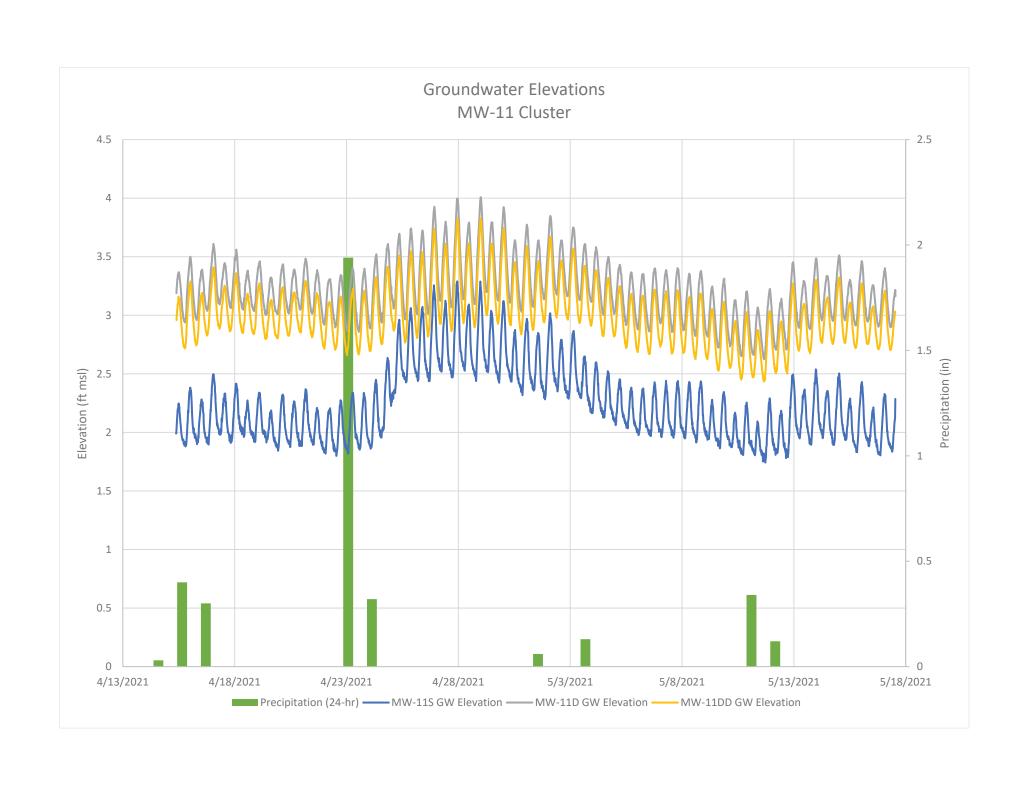
ft = feet

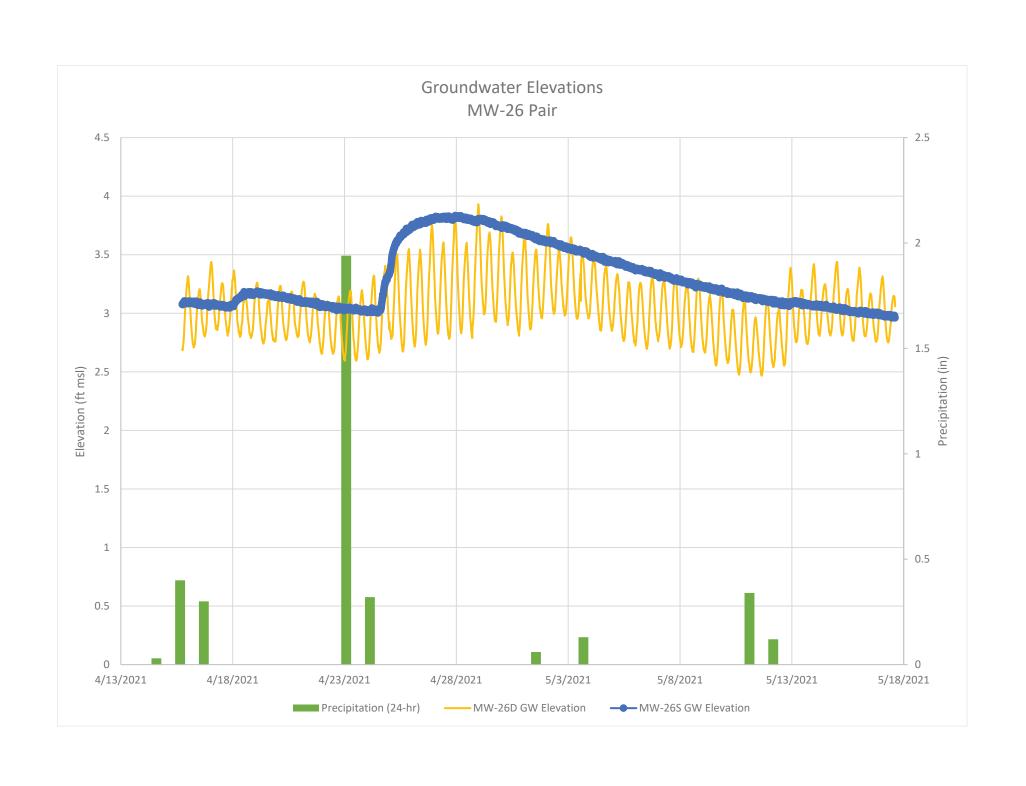

Attachment I Localized Flow Direction Based on Horizontal Gradients

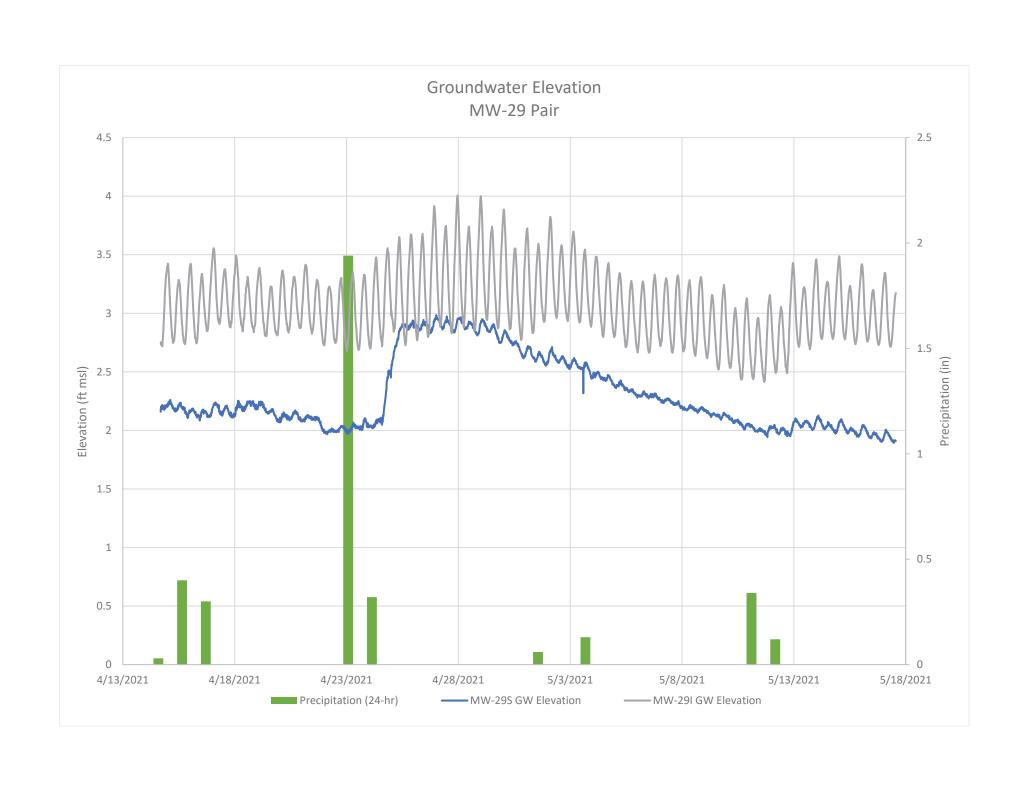

Hercules/Pinova Facility, Brunswick, Georgia

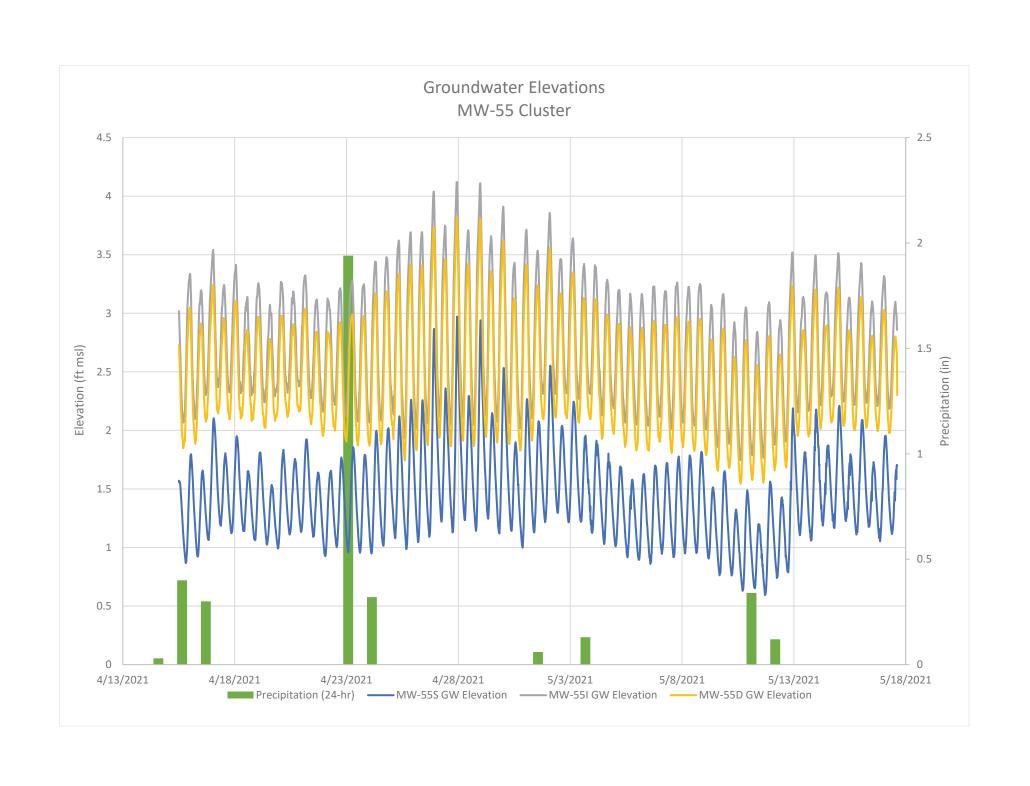

Hydrogeologic Zone of the	Well Pair		Horizontal Gradient Between Well Pair	
Upper Surficial Aquifer			Positive (%)	Negative (%)
Shallow Surficial	MW-29S	OW-Q5S	100%	0%
	OW-Q2S	OW-Q5S	100%	0%
	OW-26S	OW-Q5S	100%	0%
	OW-26S	OW-Q2S	100%	0%
	OW-Q4S	MW-55S	100%	0%
Intermediate Surficial	MW-29I	MW-55I	90%	10%
	OW-Q4I	MW-55I	51%	49%
	MW-29I	OW-Q4I	100%	0%
Deep Surficial	PSOW-12	MW-55D	100%	0%
	OW-Q2D	MW-55D	100%	0%
	OW-Q4D	MW-55D	98%	2%
	PSOW-12	OW-Q4D	100%	0%
	OW-Q4D	OW-Q2D	100%	0%
	MW-26D	OW-Q2D	99%	1%

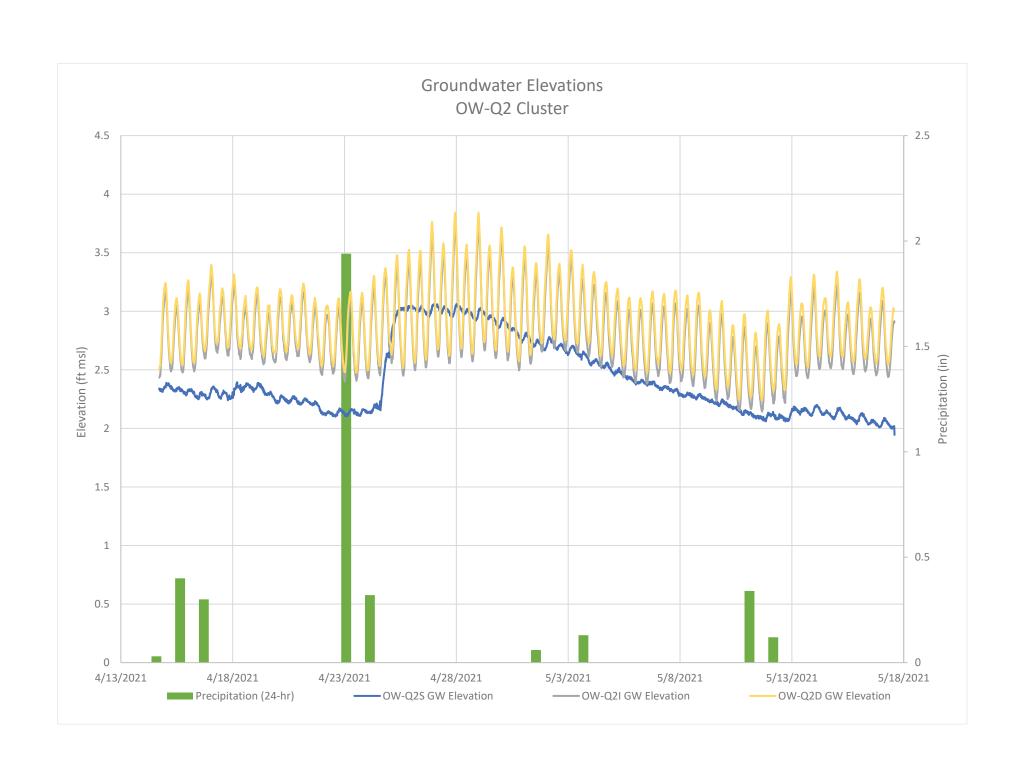

Notes:

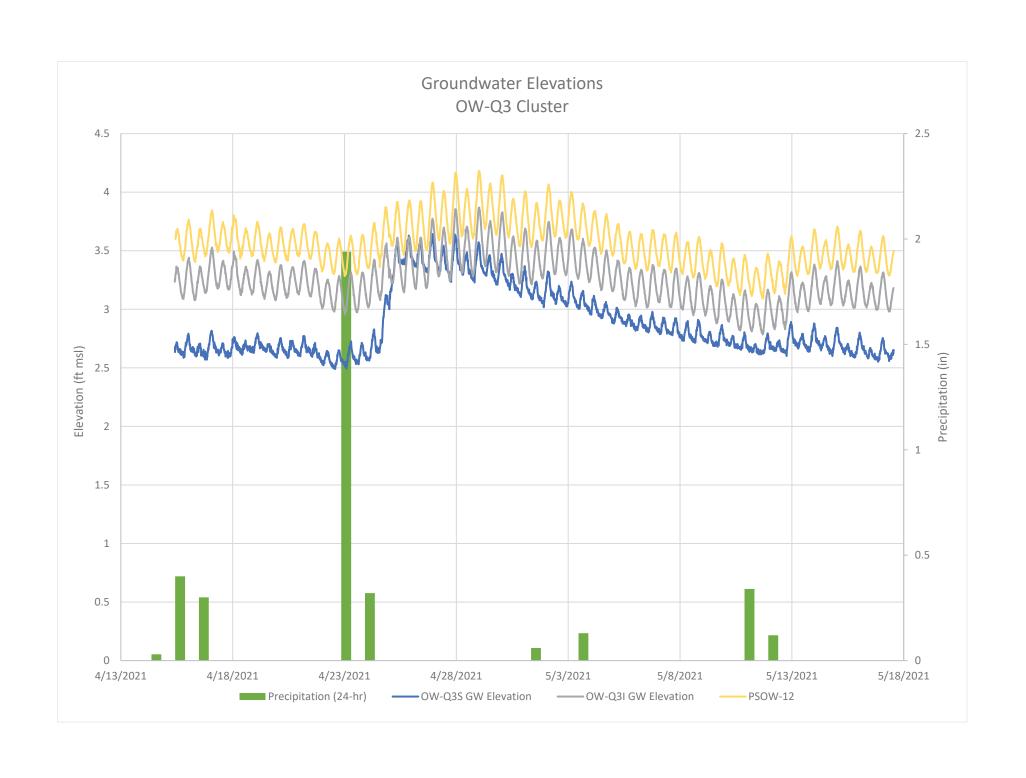

- 1. Positive values represent flow from the first well in the pair towards the second well.
- 2. Negative values represent flow from the second well in the pair towards the first well.
- 3. Percentages calculated over the period of record between all well pairs.

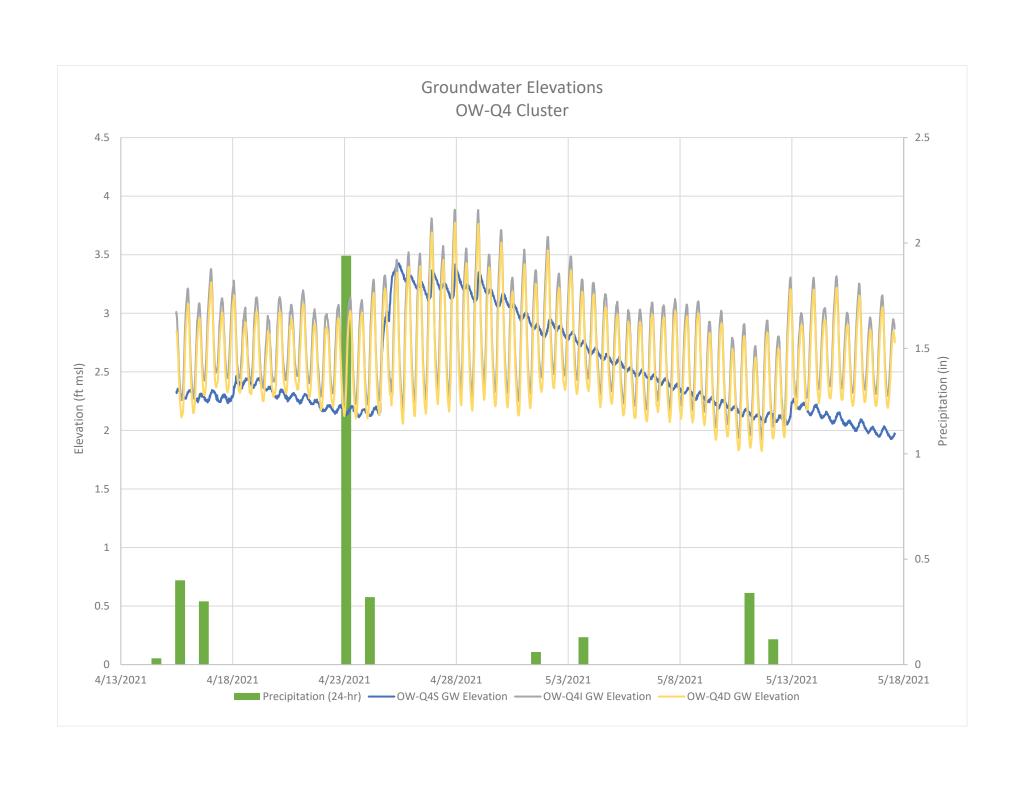


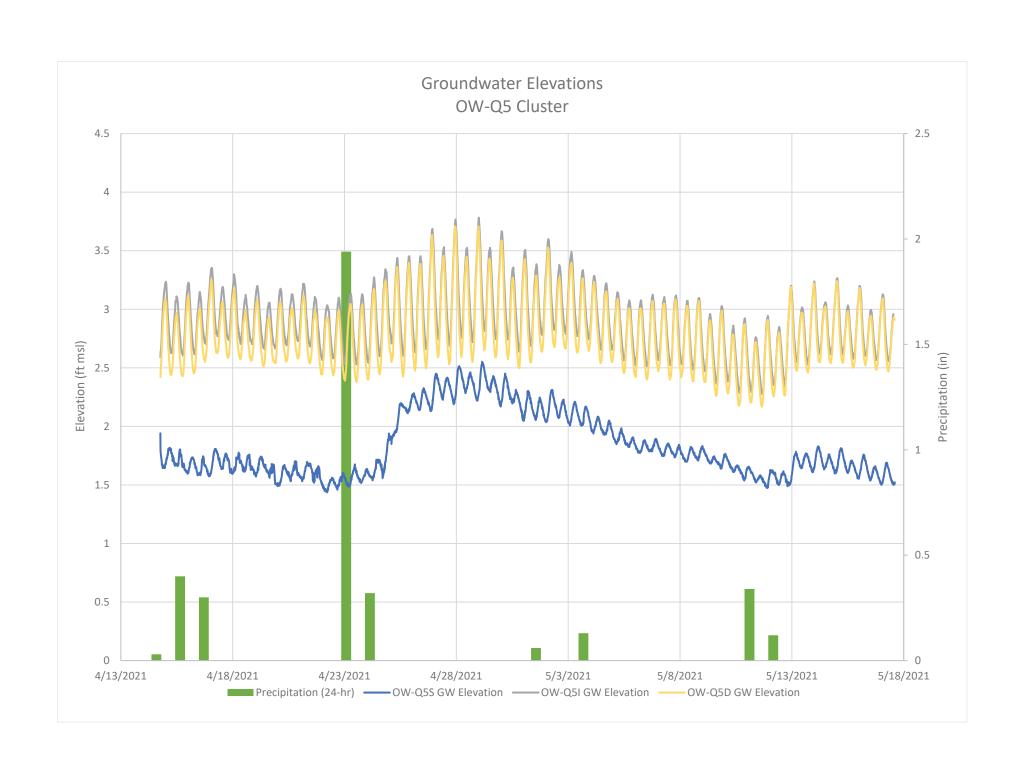


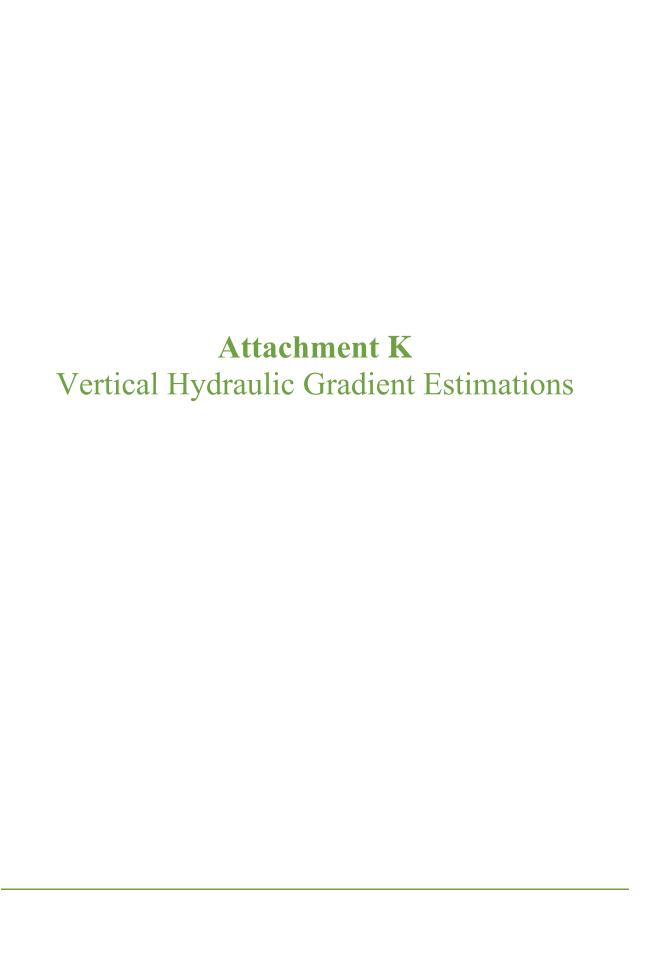












Attachment K Vertical Hydraulic Gradient Estimations

			GW Condition 1 - High Tide 4/21/2021 03:39		GW Condition 1 - Low Tide GW Condition 2 4/21/2021 09:54 4/25/2021 (GW Condition 3 - High Tide 5/11/2021 09:09		GW Condition 3 - Low Tide 5/11/2021 15:24		GW Condition 4 - High Tide 5/17/2021 00:09		GW Condition 4 - Low Tide 5/17/2021 06:39			
Well Pair	Interval	Screen Mid-Point Elevation (ft msl)	Shallow to Intermediate (ft/ft)	Intermediate to Deep (ft/ft)	Shallow to Intermediate (ft/ft)	Intermediate to Deep (ft/ft)	Shallow to Intermediate (ft/ft)	Intermediate to Deep (ft/ft)	Shallow to Intermediate (ft/ft)	Intermediate to Deep (ft/ft)	Shallow to Intermediate (ft/ft)	Intermediate to Deep (ft/ft)	Shallow to Intermediate (ft/ft)	Intermediate to Deep (ft/ft)	Shallow to Intermediate (ft/ft)	Intermediate to Deep (ft/ft)	Shallow to Intermediate (ft/ft)	Intermediate to Deep (ft/ft)
MW-11	S D DD	-11.8 -46.9 -80.8	-0.034	0.005	-0.031	0.006	-0.021	0.005	-0.016	0.006	-0.028	0.006	-0.024	0.005	-0.032	0.005	-0.029	0.005
MW-26	S I D	-2.6 - -77.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW-29	S I D	-14.3 -39.4 -78.4	-0.052	N/A	-0.030	N/A	-0.032	N/A	0.002	N/A	-0.038	N/A	-0.018	N/A	-0.053	N/A	-0.032	N/A
MW-55	S I D	-12.2 -42.4 -74.7	-0.050	0.009	-0.032	0.007	-0.051	0.009	-0.024	0.006	-0.022	0.009	-0.034	0.007	-0.052	0.009	-0.029	0.007
OW-Q2	S I D	-6.7 -39.1 -79.4	-0.029	-0.002	-0.012	-0.001	-0.012	-0.003	0.015	-0.001	-0.018	-0.003	-0.003	-0.002	-0.030	-0.003	-0.013	-0.002
OW-Q3	S I D	-13.6 -54.7 -83.5	-0.016	-0.011	-0.012	-0.011	-0.001	-0.011	0.004	-0.011	-0.008	-0.010	-0.005	-0.011	-0.013	-0.011	-0.010	-0.010
OW-Q4	S I D	-5.2 -41.1 -79.7	-0.025	0.003	-0.004	0.003	-0.001	0.003	0.031	0.003	-0.017	0.003	0.004	0.003	-0.031	0.003	-0.009	0.003
OW-Q5	S I D	-10.0 -37.1 -79.1	-0.058	0.002	-0.039	0.004	-0.047	0.002	-0.020	0.004	-0.045	0.001	-0.028	0.003	-0.055	0.000	-0.037	0.002

Notes:

1. Positive values represent downward flow
2. Negative values represent upward flow
3. ft = feet
4. S = shallow
5. 1 = intermediate
6. D = deep

Cumulative Averages									
Shallow to Intermediate	-0.023								
Intermediate to Deep	0.001								

Attachment L Tidal Time-Lag and Tidal-Efficiency Estimations

Attachment L Tidal Time-Lag and Tidal-Efficiency Estimations Shallow Surficial Aquifer

Hercules/Pinova Facility, Brunswick, Georgia

Monitoring Location	Tidal Cycle No.	Tide Peak Date and Time	Tide Trough Date and Time	Tidal Peak Elevation (ft msl)	Tidal Trough Elevation (ft msl)	Amplitude ¹ (ft)	Time Between Cycles (days)	Time Between Cycles (hrs)	Time Between Cycles (mins)	Lag Time Relative to SWT-1 (days)	Lag Time Relative to SWT-1 (hrs)	Lag Time Relative to SWT-1 (mins)	Tidal Efficiency Ratio
	Groundwater Condition 1	4/21/2021 3:39	4/21/2021 9:54	6.76	0.88	5.89	0.26	6.25	375	-	-	-	-
SWT-1 ²	Groundwater Condition 2	4/25/2021 8:09	4/25/2021 13:39	7.42	0.10	7.32	0.23	5.50	330	-	-	-	-
3 W 1-1	Groundwater Condition 3	5/11/2021 9:09	5/11/2021 15:24	5.81	0.06	5.75	0.26	6.25	375	-	-	-	-
	Groundwater Condition 4	5/17/2021 0:09	5/17/2021 6:39	6.94	0.81	6.12	0.27	6.50	390	-	-	-	-
	Groundwater Condition 1	4/21/2021 4:20	4/21/2021 12:20	2.37	1.89	0.48	0.33	8.00	480	0.03	0.69	41	0.08
	Groundwater Condition 2	4/25/2021 8:50	4/25/2021 14:35	2.96	2.46	0.51	0.24	5.75	345	0.03	0.69	41	0.07
MW-11S	Groundwater Condition 3	5/11/2021 9:20	5/11/2021 15:05	2.09	1.75	0.34	0.24	5.75	345	0.01	0.19	11	0.06
	Groundwater Condition 4	5/17/2021 1:35	5/17/2021 9:35	2.33	1.83	0.49	0.33	8.00	480	0.06	1.44	86	0.08
	AVERAGES			2.44	1.98	0.45	0.29	6.88	413	0.03	0.75	45	0.07
	Groundwater Condition 1	4/21/2021 5:44	4/21/2021 12:14	3.10	3.08	0.03	0.27	6.50	390	0.09	2.10	126	0.00
	Groundwater Condition 2	-	-	-	-	-	-	-	-	-	-	-	-
MW-26S	Groundwater Condition 3	5/11/2021 9:14	5/11/2021 16:59	3.13	3.10	0.04	0.32	7.75	465	0.00	0.10	6	0.01
	Groundwater Condition 4	5/17/2021 0:44	5/17/2021 3:59	2.99	2.97	0.02	0.14	3.25	195	0.02	0.60	36	0.00
	AVERAGES			3.08	3.05	0.03	0.24	5.83	350	0.04	0.93	56	0.00
	Groundwater Condition 1	4/21/2021 6:37	4/21/2021 10:52	2.91	2.09	0.82	0.18	4.25	255	0.12	2.97	178	0.14
	Groundwater Condition 2	4/25/2021 12:22	4/25/2021 16:52	2.91	2.87	0.04	0.19	4.50	270	0.18	4.22	253	0.01
MW-29S	Groundwater Condition 3	5/11/2021 11:52	5/11/2021 19:52	2.02	1.94	0.08	0.33	8.00	480	0.11	2.72	163	0.01
	Groundwater Condition 4	5/17/2021 2:52	5/17/2021 11:07	2.01	1.89	0.11	0.34	8.25	495	0.11	2.72	163	0.02
	AVERAGES			2.46	2.20	0.26	0.26	6.25	375	0.13	3.16	190	0.04
	Groundwater Condition 1	4/21/2021 5:01	4/21/2021 12:16	1.92	1.26	0.67	0.30	7.25	435	0.06	1.37	82	0.11
	Groundwater Condition 2	4/25/2021 8:46	4/25/2021 16:01	2.12	0.99	1.13	0.30	7.25	435	0.03	0.62	37	0.15
MW-55S	Groundwater Condition 3	5/11/2021 10:01	5/11/2021 17:01	1.20	0.59	0.60	0.29	7.00	420	0.04	0.87	52	0.11
	Groundwater Condition 4	5/17/2021 2:31	5/17/2021 9:16	1.95	1.11	0.84	0.28	6.75	405	0.10	2.37	142	0.14
	AVERAGES			1.80	0.99	0.81	0.29	7.06	424	0.05	1.31	79	0.13
	Groundwater Condition 1	4/21/2021 4:07	4/21/2021 12:52	2.24	2.20	0.04	0.36	8.75	525	0.02	0.47	28	0.01
	Groundwater Condition 2		-	-	-	_	-	-	-	-	-	-	_
OW-Q2S	Groundwater Condition 3	5/11/2021 9:22	5/11/2021 20:07	2.10	2.06	0.04	0.45	10.75	645	0.01	0.22	13	0.01
•	Groundwater Condition 4	5/17/2021 3:07	5/17/2021 11:37	2.09	2.00	0.09	0.35	8.50	510	0.12	2.97	178	0.02
	AVERAGES			2.14	2.09	0.06	0.39	9.33	560	0.05	1.22	73	0.01
	Groundwater Condition 1	4/21/2021 3:49	4/21/2021 13:19	2.77	2.59	0.18	0.40	9.50	570	0.01	0.17	10	0.03
	Groundwater Condition 2	4/25/2021 8:34	4/25/2021 14:49	3.58	3.38	0.20	0.26	6.25	375	0.02	0.42	25	0.03
OW-O3S	Groundwater Condition 3	5/11/2021 9:19	5/11/2021 14:49	2.70	2.61	0.09	0.23	5.50	330	0.01	0.17	10	0.02
	Groundwater Condition 4	5/17/2021 1:34	5/17/2021 8:19	2.75	2.56	0.20	0.28	6.75	405	0.06	1.42	85	0.03
	AVERAGES			2.95	2.79	0.17	0.29	7.00	420	0.02	0.54	33	0.03
	Groundwater Condition 1	4/21/2021 5:22	4/21/2021 13:37	2.31	2.22	0.09	0.34	8.25	495	0.07	1.72	103	0.02
	Groundwater Condition 2	4/25/2021 9:07	4/25/2021 18:22	3.43	3.27	0.16	0.39	9.25	555	0.04	0.97	58	0.02
OW-O4S	Groundwater Condition 3	5/11/2021 9:52	5/11/2021 16:52	2.13	2.07	0.06	0.29	7.00	420	0.03	0.72	43	0.02
011 415	Groundwater Condition 4	5/17/2021 2:52	5/17/2021 10:07	2.04	1.93	0.11	0.20	7.25	435	0.03	2.72	163	0.01
	AVERAGES	2717720212102	5.17.2021 10.07	2.48	2.37	0.11	0.33	7.94	476	0.06	1.53	92	0.02
	Groundwater Condition 1	4/21/2021 5:22	4/21/2021 12:37	1.70	1.52	0.18	0.30	7.25	435	0.07	1.73	104	0.02
	Groundwater Condition 2	4/25/2021 10:07	4/25/2021 17:22	2.20	2.11	0.09	0.30	7.25	435	0.08	1.98	119	0.03
OW-Q5S	Groundwater Condition 3	5/11/2021 11:52	5/11/2021 18:37	1.58	1.47	0.09	0.30	6.75	405	0.08	2.73	164	0.01
041-620	Groundwater Condition 4	5/17/2021 3:22	5/17/2021 10:37	1.69	1.50	0.11	0.28	7.25	435	0.11	3.23	194	0.02
	AVERAGES	5/1//2021 5.22	3/1//2021 10.3/	1.79	1.65	0.19	0.30	7.13	433	0.13	2.42	145	0.03

Notes:

1) Amplitude calculated by subtracting the tidal trough from the tidal peak elevation and dividing by two.

2) Tidal peak and trough "elevations" for SWT-1 show as transducer depth of water measurements, not absolute surface water elevations.

ft - feet

mins - minutes

hrs = hours

[&]quot; - " indicates data not calculated due to an unrealistic match between the monitoring well and SWT-1 transducer data.

Attachment L Tidal Time-Lag and Tidal-Efficiency Estimations Intermediate Surficial Aquifer

Hercules/Pinova Facility, Brunswick, Georgia

Monitoring Location	Tidal Cycle No.	Tide Peak Date and Time	Tide Trough Date and Time	Tidal Peak Elevation (ft msl)	Tidal Trough Elevation (ft msl)	Amplitude ¹ (ft)	Time Between Cycles (days)	Time Between Cycles (hrs)	Time Between Cycles (mins)		Lag Time Relative to SWT-1 (hrs)		Tidal Efficiency Ratio
	Groundwater Condition 1	4/21/2021 3:39	4/21/2021 9:54	6.76	0.88	5.89	0.26	6.25	375	-	-	-	-
SWT-1 ²	Groundwater Condition 2	4/25/2021 8:09	4/25/2021 13:39	7.42	0.10	7.32	0.23	5.50	330	-	-	-	-
SW1-1	Groundwater Condition 3	5/11/2021 9:09	5/11/2021 15:24	5.81	0.06	5.75	0.26	6.25	375	-	-	-	-
	Groundwater Condition 4	5/17/2021 0:09	5/17/2021 6:39	6.94	0.81	6.12	0.27	6.50	390	-	-	-	-
	Groundwater Condition 1	4/21/2021 3:58	4/21/2021 9:58	3.48	3.04	0.45	0.25	6.00	360	0.01	0.33	20	0.08
	Groundwater Condition 2	4/25/2021 8:43	4/25/2021 14:58	3.70	2.96	0.73	0.26	6.25	375	0.02	0.58	35	0.10
MW-11D	Groundwater Condition 3	5/11/2021 9:13	5/11/2021 15:58	3.07	2.62	0.44	0.28	6.75	405	0.00	0.08	5	0.08
	Groundwater Condition 4	5/17/2021 1:28	5/17/2021 7:43	3.38	2.90	0.48	0.26	6.25	375	0.06	1.33	80	0.08
	AVERAGES			3.41	2.88	0.53	0.26	6.31	379	0.02	0.58	35	0.08
	Groundwater Condition 1	4/21/2021 4:09	4/21/2021 10:54	3.41	2.82	0.59	0.28	6.75	405	0.02	0.50	30	0.10
	Groundwater Condition 2	4/25/2021 8:39	4/25/2021 15:09	3.43	2.73	0.70	0.27	6.50	390	0.02	0.50	30	0.10
MW-29I	Groundwater Condition 3	5/11/2021 9:39	5/11/2021 16:09	2.96	2.41	0.55	0.27	6.50	390	0.02	0.50	30	0.10
	Groundwater Condition 4	5/17/2021 1:24	5/17/2021 7:24	3.34	2.71	0.63	0.25	6.00	360	0.05	1.25	75	0.10
	AVERAGES			3.35	2.67	0.62	0.27	6.44	386	0.03	0.69	41	0.10
	Groundwater Condition 1	4/21/2021 3:54	4/21/2021 9:54	3.32	2.27	1.05	0.25	6.00	360	0.01	0.26	16	0.18
	Groundwater Condition 2	4/25/2021 8:09	4/25/2021 14:24	3.62	1.94	1.69	0.26	6.25	375	0.00	0.01	1	0.23
MW-55I	Groundwater Condition 3	-	-	-	-	-	-	-	-	-	-	-	-
	Groundwater Condition 4	5/17/2021 0:39	5/17/2021 6:09	3.32	2.18	1.13	0.23	5.50	330	0.02	0.51	31	0.19
	AVERAGES			3.42	2.13	1.29	0.25	5.92	355	0.01	0.26	16	0.20
	Groundwater Condition 1	4/21/2021 4:06	4/21/2021 10:51	3.16	2.56	0.60	0.28	6.75	405	0.02	0.46	27	0.10
	Groundwater Condition 2	4/25/2021 8:36	4/25/2021 15:06	3.40	2.45	0.95	0.27	6.50	390	0.02	0.46	27	0.13
OW-Q2I	Groundwater Condition 3	5/11/2021 9:51	5/11/2021 16:06	2.70	2.14	0.56	0.26	6.25	375	0.03	0.71	42	0.10
,	Groundwater Condition 4	5/17/2021 1:21	5/17/2021 7:21	3.09	2.44	0.65	0.25	6.00	360	0.05	1.21	72	0.11
	AVERAGES			3.09	2.40	0.69	0.27	6.38	383	0.03	0.71	42	0.11
	Groundwater Condition 1	4/21/2021 4:51	4/21/2021 12:06	3.41	3.11	0.30	0.30	7.25	435	0.05	1.20	72	0.05
	Groundwater Condition 2	4/25/2021 8:51	4/25/2021 15:51	3.61	3.14	0.47	0.29	7.00	420	0.03	0.70	42	0.06
OW-Q3I	Groundwater Condition 3	5/11/2021 9:21	5/11/2021 16:51	3.04	2.78	0.25	0.31	7.50	450	0.01	0.20	12	0.04
, and the second	Groundwater Condition 4	5/17/2021 1:51	5/17/2021 8:06	3.31	2.98	0.33	0.26	6.25	375	0.07	1.70	102	0.05
	AVERAGES			3.34	3.00	0.34	0.29	7.00	420	0.04	0.95	57	0.05
	Groundwater Condition 1	4/21/2021 3:56	4/21/2021 9:56	3.20	2.40	0.80	0.25	6.00	360	0.01	0.28	17	0.14
	Groundwater Condition 2	4/25/2021 8:11	4/25/2021 14:41	3.46	2.18	1.28	0.27	6.50	390	0.00	0.03	2	0.17
OW-Q4I	Groundwater Condition 3	5/11/2021 9:11	5/11/2021 15:41	2.72	1.93	0.79	0.27	6.50	390	0.00	0.03	2	0.14
Ì	Groundwater Condition 4	5/17/2021 1:26	5/17/2021 6:56	3.15	2.30	0.86	0.23	5.50	330	0.05	1.28	77	0.14
	AVERAGES	·		3.13	2.20	0.93	0.26	6.13	368	0.02	0.41	25	0.15
	Groundwater Condition 1	4/21/2021 4:10	4/21/2021 10:55	3.22	2.68	0.54	0.28	6.75	405	0.02	0.52	31	0.09
	Groundwater Condition 2	4/25/2021 8:40	4/25/2021 15:25	3.44	2.60	0.84	0.28	6.75	405	0.02	0.52	31	0.11
OW-Q5I	Groundwater Condition 3	-	-	-	-	-	-	-	-	-	-	-	-
Ì	Groundwater Condition 4	5/17/2021 1:25	5/17/2021 8:10	3.13	2.56	0.57	0.28	6.75	405	0.05	1.27	76	0.09
	AVERAGES			3.26	2.61	0.65	0.28	6.75	405	0.03	0.77	46	0.10

Notes:

mins - minutes

¹⁾ Amplitude calculated by subtracting the tidal trough from the tidal peak elevation and dividing by two.

²⁾ Tidal peak and trough "elevations" for SWT-1 show as transducer depth of water measurements, not absolute surface water elevations.

[&]quot; - " indicates data not calculated due to an unrealistic match between the monitoring well and SWT-1 transducer data.

ft - feet

Attachment L Tidal Time-Lag and Tidal-Efficiency Estimations Deep Surficial Aquifer

Hercules/Pinova Facility, Brunswick, Georgia

Monitoring Location	Tidal Cycle No.	Tide Peak Date and Time	Tide Trough Date and Time	Tidal Peak Elevation (ft msl)	Tidal Trough Elevation (ft msl)	(ft)	Time Between Cycles (days)	Time Between Cycles (hrs)	Time Between Cycles (mins)	Lag Time Relative to SWT-1 (days)	Lag Time Relative to SWT-1 (hrs)	Lag Time Relative to SWT-1 (mins)	Tidal Efficiency Ratio
	Groundwater Condition 1	4/21/2021 3:39	4/21/2021 9:54	6.76	0.88	5.89	0.26	6.25	375	-	-	-	-
SWT-1 ²	Groundwater Condition 2	4/25/2021 8:09	4/25/2021 13:39	7.42	0.10	7.32	0.23	5.50	330	-	-	-	-
5 W 1-1	Groundwater Condition 3	5/11/2021 9:09	5/11/2021 15:24	5.81	0.06	5.75	0.26	6.25	375	-	-	-	-
	Groundwater Condition 4	5/17/2021 0:09	5/17/2021 6:39	6.94	0.81	6.12	0.27	6.50	390	-	-	-	-
	Groundwater Condition 1	4/21/2021 4:02	4/21/2021 11:02	3.29	2.81	0.48	0.29	7.00	420	0.02	0.40	24	0.08
	Groundwater Condition 2	4/25/2021 8:47	4/25/2021 15:17	3.51	2.77	0.74	0.27	6.50	390	0.03	0.65	39	0.10
MW-11DD	Groundwater Condition 3	5/11/2021 9:47	5/11/2021 15:47	2.87	2.44	0.43	0.25	6.00	360	0.03	0.65	39	0.07
	Groundwater Condition 4	5/17/2021 1:32	5/17/2021 7:32	3.21	2.70	0.51	0.25	6.00	360	0.06	1.40	84	0.08
	AVERAGES			3.22	2.68	0.54	0.27	6.38	383	0.03	0.77	46	0.09
	Groundwater Condition 1	4/21/2021 4:20	4/21/2021 10:20	3.27	2.77	0.51	0.25	6.00	360	0.03	0.69	41	0.09
	Groundwater Condition 2	4/25/2021 8:35	4/25/2021 14:50	3.51	2.67	0.83	0.26	6.25	375	0.02	0.44	26	0.11
MW-26D	Groundwater Condition 3	5/11/2021 9:20	5/11/2021 15:50	2.97	2.47	0.50	0.27	6.50	390	0.01	0.19	11	0.09
	Groundwater Condition 4	5/17/2021 1:35	5/17/2021 7:35	3.32	2.75	0.57	0.25	6.00	360	0.06	1.44	86	0.09
	AVERAGES			3.24	2.66	0.60	0.26	6.19	371	0.03	0.69	41	0.09
	Groundwater Condition 1	4/21/2021 3:50	4/21/2021 9:50	3.04	2.05	0.99	0.25	6.00	360	0.01	0.20	12	0.17
	Groundwater Condition 2	4/25/2021 8:20	4/25/2021 14:35	3.34	1.74	1.59	0.26	6.25	375	0.01	0.20	12	0.22
MW-55D	Groundwater Condition 3	-	-	-	-	-	-	-	-	-	-	-	-
	Groundwater Condition 4	5/17/2021 0:50	5/17/2021 6:20	3.03	1.98	1.05	0.23	5.50	330	0.03	0.70	42	0.17
	AVERAGES			3.14	1.93	1.21	0.25	5.92	355	0.02	0.36	22	0.19
	Groundwater Condition 1	4/21/2021 3:42	4/21/2021 10:42	3.24	2.63	0.61	0.29	7.00	420	0.00	0.07	4	0.10
	Groundwater Condition 2	4/25/2021 8:27	4/25/2021 14:42	3.48	2.51	0.96	0.26	6.25	375	0.01	0.32	19	0.13
OW-Q2D	Groundwater Condition 3	5/11/2021 9:12	5/11/2021 15:42	2.82	2.24	0.58	0.27	6.50	390	0.00	0.07	4	0.10
	Groundwater Condition 4	5/17/2021 1:27	5/17/2021 7:27	3.20	2.54	0.66	0.25	6.00	360	0.05	1.32	79	0.11
	AVERAGES			3.18	2.48	0.70	0.27	6.44	386	0.02	0.44	26	0.11
	Groundwater Condition 1	4/21/2021 4:25	4/21/2021 11:25	3.72	3.43	0.29	0.29	7.00	420	0.03	0.77	46	0.05
	Groundwater Condition 2	4/25/2021 8:25	4/25/2021 15:40	3.92	3.46	0.45	0.30	7.25	435	0.01	0.27	16	0.06
PSOW-12	Groundwater Condition 3	5/11/2021 9:55	5/11/2021 16:40	3.36	3.09	0.26	0.28	6.75	405	0.03	0.77	46	0.05
	Groundwater Condition 4	5/17/2021 2:10	5/17/2021 7:55	3.62	3.29	0.34	0.24	5.75	345	0.08	2.02	121	0.05
	AVERAGES			3.66	3.32	0.34	0.28	6.69	401	0.04	0.96	58	0.05
	Groundwater Condition 1	4/21/2021 3:44	4/21/2021 9:59	3.08	2.28	0.81	0.26	6.25	375	0.00	0.09	5	0.14
	Groundwater Condition 2	4/25/2021 8:14	4/25/2021 14:14	3.35	3.13	0.22	0.25	6.00	360	0.00	0.09	5	0.03
OW-Q4D	Groundwater Condition 3	5/11/2021 9:14	5/11/2021 15:44	2.62	1.82	0.80	0.27	6.50	390	0.00	0.09	5	0.14
	Groundwater Condition 4	5/17/2021 1:29	5/17/2021 6:59	3.05	2.19	0.86	0.23	5.50	330	0.06	1.34	80	0.14
	AVERAGES			3.03	2.35	0.67	0.25	6.06	364	0.02	0.40	24	0.11
	Groundwater Condition 1	4/21/2021 3:47	4/21/2021 10:02	3.12	2.55	0.57	0.26	6.25	375	0.01	0.14	9	0.10
	Groundwater Condition 2	4/25/2021 8:32	4/25/2021 14:47	3.36	2.42	0.94	0.26	6.25	375	0.02	0.39	24	0.13
OW-Q5D	Groundwater Condition 3	5/11/2021 9:17	5/11/2021 15:47	2.72	2.17	0.56	0.27	6.50	390	0.01	0.14	9	0.10
	Groundwater Condition 4	5/17/2021 1:32	5/17/2021 7:32	3.09	2.47	0.63	0.25	6.00	360	0.06	1.39	84	0.10
	AVERAGES			3.07	2.40	0.67	0.26	6.25	375	0.02	0.52	31	0.11

Notes:

ft - feet

mins - minutes

hrs = hours

¹⁾ Amplitude calculated by subtracting the tidal trough from the tidal peak elevation and dividing by two.

²⁾ Tidal peak and trough "elevations" for SWT-1 show as transducer depth of water measurements, not absolute surface water elevations.

[&]quot; - " indicates data not calculated due to an unrealistic match between the monitoring well and SWT-1 transducer data.

APPENDIX B

Documentation of Historical Activities and Releases on Neighboring Properties

APPENDIX B

HISTORICAL ACTIVITIES & RELEASES ON NEIGHBORING PROPERTIES

I. INTRODUCTION

Hercules LLC ("Hercules") has retained Geosyntec Consultants, Inc. ("Geosyntec") to develop interim corrective measures as part of a Corrective Action Plan ("CAP") to address certain constituents of potential concern ("COPCs") – primarily benzene and chlorobenzene – present in groundwater in the deep zone of the upper surficial aquifer underlying portions of the Hercules/Pinova facility located at 2801 Cook Street in Brunswick, Georgia (the "Brunswick facility"). Based on that evaluation, Hercules plans to utilize *in situ* aerobic bioremediation in the form of a biologically active permeable reactive barrier (referred to as an "aerobic biobarrier") to intercept and treat benzene and chlorobenzene (together with other COPCs susceptible to aerobic biodegradation) in groundwater in the deep zone of the upper surficial aquifer underlying the northern portion of the Brunswick facility east of the U.S. Highway 17 corridor. This portion of the Brunswick facility is part of property owned by Hercules that is commonly referred to as the Terry Creek property.

In connection with designing the proposed aerobic biobarrier, Geosyntec is conducting a further evaluation of possible off-site sources of volatile organic compounds ("VOCs") that may be contributing to groundwater conditions in the general area where the aerobic biobarrier is expected to be installed. Such possible off-site sources are associated with two known contaminated sites located east of U.S. Highway 17 and to the immediate north of the Brunswick facility: (1) a former paint manufacturing facility, located on parcels approximately 14 acres in size at 2700 and 2698 Glynn Avenue, that were owned and operated by, among others, O'Brien Corporation ("O'Brien"); and (2) a former gasoline service station, located on a parcel approximately 0.64 acres in size at 2694 Glynn Avenue, that was owned and operated by, among others, Buddy Nesmith Oil Co., Inc. ("Nesmith"). These two contaminated sites are currently owned by Ronald Adams, Walter Douglas Adams, and Anne Adams Rabbino individually and through their closely held corporations, Lanier Parkway Associates LLC and Adams Properties Associates LLC, and are therefore collectively referred to in this document as the "Adams Properties."

To assist in evaluation of potential off-site sources of COPCs, a review of available reports and data related to the Adams Properties was performed to assess whether there was a documented use of benzene and/or chlorobenzene in connection with historical operations at the Adams Properties and to identify any known or probable releases of these chemicals (or other contaminants) into the soils and/or groundwater at the Adams Properties. This review confirmed that benzene was used and released at both the former O'Brien paint manufacturing facility as well as at the former Nesmith service station, and that chlorobenzene also was likely used in connection with one or both operations, both as a commonly-used solvent in paints and as a commonly-used degreasing

agent for automobile parts.^{1,2} Chlorobenzene may also have been stored and handled on the former service station property in connection with a septic cleaning business that operated on the property sometime after 2004.

Available information concerning the historical ownership and operation of the Adams Properties as well as information from past environmental assessments was also collected and reviewed to identify and evaluate data gaps in the nature and distribution of contaminants associated with sources at the Adams Properties. This review identified significant data gaps and uncertainties with respect to the current environmental condition of the Adams Properties.

As discussed further below, the approximately 14-acre former O'Brien paint manufacturing facility was used for industrial manufacturing purposes as far back as 1910. However, the only environmental site assessment work known to have taken place at the property focused solely on storage, process and disposal areas known to have been used during paint manufacturing operations, which did not commence until 1956. These assessments incorrectly stated that industrial operations did not commence on the property until 1930, and did not address the veneer manufacturing, box and crate manufacturing, and plywood manufacturing operations that took place on the property throughout most of the first half of the 20th century.

The environmental site assessment work that led to the listing of the former O'Brien paint manufacturing facility on Georgia's Hazardous Sites Inventory ("HSI") as well as the investigations conducted under the Georgia Hazardous Site Response Act ("HSRA") that led to the delisting of the facility in December 2003 left data gaps which are relevant to Hercules' ongoing work at the Brunswick facility. Among other things, the investigations focused almost entirely on shallow conditions in the central portion of the property behind the remaining manufacturing building, with the southern half of the property not assessed at all. This area includes a roadway leading to locations where paint racks were situated bordering the Brunswick facility, as well as a suspected landfill in the southeastern-most corner of the property. In addition, transformers likely to have contained polychlorinated biphenyls ("PCBs") and a drywell of unknown depth were once located in the front of the main manufacturing building, near a laboratory. The transformers were never identified as a potential source of contamination, and groundwater in the drywell area was sampled only once using a temporary monitoring well point screened at a depth of 2-7 feet below ground surface ("bgs"). No evaluation of the laboratory was ever conducted.

In the areas of concern that were identified during site assessment work, soil and groundwater samples were analyzed using the full target list of VOCs, semi-volatile compounds ("SVOCs")

¹ O'Neil, M.J. (ed.), "The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals," Cambridge, UK: Royal Society of Chemistry (2013): 377.

² ATSDR, "Toxicological Profile for Chlorobenzene" (October 2020): 47, available at https://www.atsdr.cdc.gov/toxprofiles/tp131.pdf.

and metals only once, in 1995; thereafter, sampling was limited to the following nine constituents for which O'Brien provided release notifications to the Georgia Department of Natural Resources, Environmental Protection Division ("EPD"): benzene, toluene, ethylbenzene and xylenes ("BTEX"), naphthalene, mineral spirits, barium, lead and zinc.

Finally, for BTEX source areas identified east of the main manufacturing building, delineation efforts during the HSRA investigation were minimal, relying largely on one round of analytical results from a portable gas chromatograph. After EPD indicated that analytical results from the gas chromatograph were insufficient to complete vertical delineation of groundwater conditions, a single monitoring well was installed at a depth of 25 feet (still in the shallow zone of the upper surficial aquifer) and sampled once for BTEX compounds in March 1999. With no detections of BTEX compounds during this single event, vertical delineation of groundwater was deemed complete. The intermediate and deep zones of the upper surficial aquifer were never sampled, nor were vertical gradients assessed to evaluate the potential for contaminants to have migrated downward from source area(s), similar to what has been observed to have occurred in the main operational portion of the Brunswick facility.

The files for the former Nesmith service station property indicate that this tract was at one time part of the large veneer manufacturing facility that operated from the 1910s through the mid-1940s on the former O'Brien paint manufacturing property and adjacent tracts. Between 1954 and 1960, the structures supporting that operation were dismantled and the Nesmith property became a fueling station and oil depot with an aboveground storage tank ("AST") farm located in the southeast corner of the property adjacent to the Terry Creek portion of the Brunswick facility. Gasoline service station operations appear to have continued throughout the next 40 years.

Nine underground storage tanks ("USTs") used for fuel storage and dispensing and a waste oil tank were identified and removed from the property between 2000 and 2004. Though the record is not entirely clear, those ten tanks appear to have been installed in the 1980s. The location and details of USTs that supported the former service station operations in the decades prior is currently unknown, and no geophysical survey apparently has ever been conducted on the property to evaluate whether other USTs or buried objects remain.

In 2000, the Georgia Department of Transportation ("GADOT") removed four USTs from the former Nesmith service station property in connection with the expansion of U.S. Highway 17. Significant BTEX contamination was identified in soils and groundwater at that time. In 2009, a brief bioremediation effort was conducted to address shallow groundwater conditions attributed to the gasoline USTs removed by GADOT nine years earlier. Six months after the bioremediation effort concluded, EPD issued a No Further Action ("NFA") determination based on one round of shallow groundwater sampling. At the time, BTEX concentrations were already rebounding from the previous sampling event, with benzene detected as high as 3,100 micrograms per liter ("ug/L") in shallow groundwater. No vertical delineation was ever performed, and BTEX concentrations remained in the downgradient well closest to the Terry Creek portion of the Brunswick facility.

Since 2004, the former Nesmith service station property has been used for various commercial purposes, including several auto repair shops and a staging and storage area for a septic cleaning business. Although VOCs, including chlorobenzene, are known to have been widely used in connection with these types of operations, the potential that these operations may have contributed to groundwater conditions in the area has not yet been investigated.

II. FORMER O'BRIEN PAINT MANUFACTURING FACILITY

A. Site Ownership and Operations

The earliest recorded industrial activity on the parcels that comprise the former O'Brien paint manufacturing facility dates back to 1910, when the Georgia Veneer & Package Co. ("Georgia Veneer") acquired the parcels to construct a new box factory.³ When the facility opened on March 15, 1911, it included "two veneer lathes and a complete outfit for the manufacture of fruit and vegetable packages, boxes and crates and gum veneers for furniture." Over time, the facility expanded and operations grew, spanning both sides of what is now U.S. Highway 17.⁵ As of 1937, more than 300 workers were employed to support manufacturing operations.⁶ In the 1930s and 1940s, the facility was described as one of the largest industries in Glynn County and the City of Brunswick.⁷

In 1946, Tidewater Plywood Company ("Tidewater") constructed a new mill on the property for the production of plywood, demolishing the infrastructure that had supported the box and veneer manufacturing operations that were conducted on-site for over three decades.⁸ At the time, the mill was identified by Georgia Power Company as among the largest new industries in the state.⁹ Three years later, Tidewater leased the new plant to Atlas Plywood Corporation, which

³ Attachment 1, National Lumberman, Vol. XLVI, No. 11 (Dec. 1, 1910): 79; Attachment 2, The Iron Age, vol. 86, no. 24 (Dec. 15, 1910): 1364; Attachment 3, The Packages, Vol. XIV, No. 4 (Apr. 1911): 80; Attachment 4, Georgia Department of Commerce and Labor, Third Annual Report (1915): 52-53. *Due to the length of Attachments to this Appendix, Attachments are provided electronically through separate submission of a CD.

⁴ Attachment 5, Veneers, Vol. V, No. 4 (Apr. 1911): 20.

⁵ Attachment 6, EDR, Collection of Sanborn Fire Insurance Maps: 1913, 1920, 1930.

⁶ Attachment 7, The Atlanta Constitution (Jan. 5, 1937): 8.

⁷ Attachment 8, The Atlanta Constitution (May 16, 1941): 18; Attachment 9, Quatrefoil Historic Preservation Consulting, Glynn Co. Historic Resources Survey (2009): 27.

⁸ Attachment 10, The Atlanta Constitution (Nov. 20, 1945): 3; Attachment 11, The Atlanta Constitution (Aug. 19, 1946): 2; Attachment 12, The Ports of Savannah and Brunswick, Ga., Port Series No. 14 (1946 rev.): 116; Attachment 6, Collection of Sanborn Fire Insurance Maps: 1949.

⁹ Attachment 13, The Atlanta Constitution (Sept. 22, 1946): 14.

commenced production of gum panels for the manufacture of doors and door panels. 10 The facility had more than 125 employees. 11

In 1956, Dixie Paint & Varnish Co. ("Dixie Paint") acquired the property and converted the main plywood manufacturing building into a paint factory. At the time, Dixie Paint already had a presence in Brunswick; from 1941 until 1955, the company conducted paint and varnish manufacturing operations on a portion of what is now the LCP Chemicals Superfund Site. The acquisition of the property on Glynn Avenue was intended to double Dixie Paint's production capacity. Paint's production capacity.

After Dixie Paint's acquisition and conversion of the property, manufacturing of varnishes and automotive, maintenance, household and commercial paints continued for more than three decades, initially as the Dixie line of paints and then by O'Brien, which acquired Dixie in 1966. ¹⁵ At the time of O'Brien's acquisition, Dixie Paint's Brunswick factory employed 100 people and reported over \$3.5 million in annual sales. ¹⁶ By 1983, 1.2 million gallons of paint were produced annually at the facility, consisting of approximately 40% solvent-based and 60% latex-based paints. ¹⁷

In 1991, all operations at the O'Brien paint manufacturing facility ceased and the factory sat abandoned until 1999, when Cherokee Environmental Realty Advisors ("Cherokee") acquired the property as a short-term investment. In the spring of 2003, the Adams siblings entered into an agreement with Cherokee to acquire the property, with the improved and unimproved portions of

¹⁰ Attachment 14, Georgia Forestry (July 1950): 10.

¹¹ Attachment 14, Georgia Forestry (July 1950): 10.

¹² Attachment 15, The Atlanta Constitution (Sept. 22, 1955): 6; Attachment 6, Collection of Sanborn Fire Insurance Maps: 1960.

¹³ Attachment 16, EPA Record of Decision, LCP Chemicals Site OU1 (Sept. 2015): Sec. 2.1, 14.

¹⁴ Attachment 17, The Atlanta Constitution (Oct. 13, 1955): 33.

¹⁵ Attachment 18, The South Bend Tribune (Sep. 7, 1966): 48.

¹⁶ Attachment 18, The South Bend Tribune (Sep. 7, 1966): 48.

¹⁷ Attachment 19, ESI Engineering Services, Inc., 1991, Environmental Assessment Report, Dec. 10, 1991 (the "1991 EA Report"): 2.

¹⁸ Attachment 20, Southeastern Environmental Audits, Inc., 1996, Phase II Addendum, Environmental Site Assessment Report (Mar. 18, 1996) (the "1996 Phase II Addendum"): Sec. 1.3, p. 2; Attachment 21, Letter from Stenseth to Divakarla, Ga. Dept. of Nat. Resources, regarding notice of purchase (July 16, 1999).

the property subdivided for ownership purposes. The transaction closed in January 2004.¹⁹ Since that time, the property has been leased to various tenants, including a trailer company, a pine straw supplier, a dock supplier, a custom wood furniture maker, a construction company, and a wood pallet construction company.

B. <u>Key Site Features</u>

Although significant industrial manufacturing operations took place on the property for over 40 years prior to the commencement of paint manufacturing operations in 1956, all environmental assessment work reflected in the available records focused exclusively on the paint manufacturing operations.²⁰ As a result, little is presently known about waste generation, handling and disposal operations during the veneer manufacturing and packaging era (1910-1945) and the plywood manufacturing era (1945-early 1950s).

Based on Sanborn maps and historical photographs, Georgia Veneer's operations in the first half of the 20th century were particularly significant, spanning both sides of what is now U.S. Highway 17.²¹

Photograph 1: Georgia Veneer facility from a 1915 Publication by the Georgia Department of Commerce and Labor

¹⁹ Attachment 22, Deeds from Cherokee San Francisco LLC to Adams Properties Associates LLC (Jan. 21, 2004). Attachment 23, Deed from Cherokee San Francisco LLC to Ronald M. Adams, W. Douglas Adams, and Anne Adams Rabbino (Jan. 21, 2004).

²⁰ The 1991 EA Report commissioned by O'Brien – the earliest environmental report presently available for the property – states in passing that prior to 1956, the property was used as a box and plywood manufacturing plant since the 1930s. Attachment 19, 1991 EA Report: 1. No other attention was given to the 40+ years of industrial manufacturing operations that took place on the property from 1910 until the early 1950s – an omission that was carried forward throughout all future environmental reports associated with the closure of the O'Brien facility.

²¹ Attachment 6, Collection of Sanborn Fire Insurance Maps: 1913, 1920, 1930.

²² Attachment 4, Georgia Department of Commerce and Labor, Third Annual Report (1915): 52-53.

Newspaper reporting indicates that more persons were employed at the facility during this era than during any other time in the facility's history.²³ Sanborn maps from 1913, 1920 and 1930 depict more than 100 atmospheric veneer drying racks on either side of what is now U.S. Highway 17 (in the area east of the boundary of the Brunswick facility).²⁴ These appear to be the same racks depicted on the following photograph from 1915:

Photograph 2: Yard of Georgia Veneer facility from a 1915 Publication by the Georgia Department of Commerce and Labor

Other key features formerly on the main facility property included additional outdoor veneer drying racks; buildings for warehousing veneer, cutting veneer, and atmospheric drying of veneer; multiple railroad sidings; a "crate shop"; engine rooms; steam vats; a machine room; a fuel room and an oil house.²⁶ The 1920 Sanborn map indicates the presence of "one 40 gal chem tk on wheels."²⁷ An aerial photograph from 1945 depicts additional infrastructure and roads throughout the property, as well as earth disturbance consistent with a landfill, possibly encroaching onto the Brunswick facility to the south.²⁸

The main warehouse building currently located on the property appears to be the plywood mill constructed in 1946 by Tidewater.²⁹ Available information suggests that the plywood

²³ Attachment 7, The Atlanta Constitution (Jan. 5, 1937): 8.

²⁴ Attachment 6, Collection of Sanborn Fire Insurance Maps: 1913, 1920, 1930.

²⁵ Attachment 4, Georgia Department of Commerce and Labor, Third Annual Report (1915): 52-53.

²⁶ Attachment 6, Collection of Sanborn Fire Insurance Maps: 1913, 1920, 1930.

²⁷ Attachment 6, Collection of Sanborn Fire Insurance Maps: 1920.

²⁸ Attachment 24, Historical aerial photograph of Brunswick, Ga. (1945).

²⁹ Attachment 6, Collection of Sanborn Fire Insurance Maps: 1949.

manufacturing operations had a similar, though somewhat smaller, footprint to the paint manufacturing operations that would come later. Hazardous wastes typically associated with the production of plywood include spent solvents, glue wastes, ignitable wastes, and wood preservatives.³⁰

Once paint and varnish manufacturing operations replaced plywood manufacturing operations in 1956, Dixie Paint added several features to support its new operations. From 1956 until 1970, a two-acre unlined landfill located behind (east of) the main factory building was reportedly used to dispose of approximately 11 tons of trash per month, including off-specification paint products. In the late 1960s, large paint racks were installed in the southwest corner of the property, immediately north of the Terry Creek portion of the Brunswick facility, for apparent use in the testing of long-term outdoor performance of paints. In addition, a 1961 site plan prepared for Dixie Paint depicts one or more transformers in front of the main production building, which likely contained PCBs based on the time period in which they were in use. 33 34

Other features supporting the paint manufacturing operations included:

- The main plant building, housing paint milling and mixing operations, paint filling and labelling operations, paint product storage, and raw material and pigment storage;³⁵
- A varnish building located to the southeast of the main building, which is first depicted on a 1960 Sanborn map and appears from aerial photographs to be present into the 1980s;³⁶

³⁰ Attachment 25, U.S. EPA, Furniture/Wood Manufacturing and Refinishing, Document EPA/530-SW-90-027c.

³¹ Attachment 19, 1991 EA Report: E-2, 6-7, 12; Attachment 20, 1996 Phase II Addendum: Fig. 2 (former landfill).

³² The paint racks are visible on historical aerial photographs through at least 1993. Attachment 26, EDR, Collection of Historical Aerial Photographs: 1968, 1974, 1983, 1988, 1993, undated. The remnants of the racks were also observed on the property in 2017. Attachment 27, Dec. 2017 Photograph from Integral Site Evaluation (Dec. 2017).

³³ Attachment 28, Delta Surveyors, Dixie Paint & Varnish Co. Survey (May 19, 1961).

³⁴ ATSDR, Toxicological Profile for Polychlorinated Biphenyls (PCBs) (November 2000): 467-471, *available at* https://www.atsdr.cdc.gov/toxprofiles/tp17.pdf.

 $^{^{\}rm 35}$ Attachment 19, 1991 EA Report: E-2, 2; Attachment 20, 1996 Phase II Addendum: Fig. 2.

³⁶ Attachment 6, Collection of Sanborn Fire Insurance Maps: 1960, 1969; Attachment 26, EDR, Collection of Historical Aerial Photographs: 1968, 1974, 1983, 1988. The structure of the varnish building appears to be depicted in the 1996 Phase II Addendum but was never identified as such or evaluated as an area of potential concern. Attachment 20, 1996 Phase II Addendum: Fig. 2.

- A warehouse building located to the northeast of the main building, which is still present today;³⁷
- A solvent and resin tank farm containing 44 aboveground tanks with a capacity of approximately 214,000 gallons, which was reportedly situated on a gravel base with one or more storm drains present;³⁸
- A spent solvent still, used to reclaim usable solvent from waste solvent generated during the washing of tanks that were used to manufacture solvent-based paints and coatings;³⁹
- A caustic tank, used to clean tanks that were used to manufacture solvent- and latex-based paints;⁴⁰
- Settling ponds with an estimated holding capacity of approximately 15,000 gallons, to which wastewater generated from cleaning the latex mixing tanks was discharged beginning in 1971 until their removal in 1991;⁴¹
- An unlined landfill used to dispose of dried paint sludge from the settling ponds from 1971 until 1991;⁴²

³⁷ Attachment 6, Collection of Sanborn Fire Insurance Maps: 1969; Attachment 29, Google Earth Photo (Jan. 2019); Attachment 20, 1996 Phase II Addendum: Fig. 2.

³⁸ Attachment 19, 1991 EA Report: 5-6, 10-11; Attachment 20, 1996 Phase II Addendum: Fig. 2; Attachment 32, Goldman Environmental Management Services, Compliance Status Report (Aug. 30, 1998): 8. According to the 1991 EA Report, typical solvents used at the site included mineral spirits, VM&P [varnish makers and painters] naptha (benzene), toluene, methyl ethyl ketone (MEK), xylene and acetone, among other unspecified solvents. Attachment 19, 1991 EA Report: 6.

³⁹ Attachment 19, 1991 EA Report: 6, 11; Attachment 20, 1996 Phase II Addendum: Fig. 2.

⁴⁰ Attachment 19, 1991 EA Report: 6, 11; Attachment 20, 1996 Phase II Addendum: Fig. 2.

⁴¹ Attachment 19, 1991 EA Report: 3-4, 11-12, 18; Attachment 20, 1996 Phase II Addendum: Fig. 2. Before this time, wastewater was discharged directly to Dupree Creek. Attachment 19, 1991 EA Report: 3.

⁴² Attachment 19, 1991 EA Report: 3-5, 12; Attachment 20, 1996 Phase II Addendum: Fig. 2. According to a 1980 permit application, the following materials were disposed of annually in the unlined landfill: 10,000 pounds of K078 material (solvent cleaning wastes), 36,000 pounds of K079, K080 and K081 materials (water and caustic cleaning wastes and wastewater treatment sludge), and 100 pounds of K082 materials (air pollution control sludges). Attachment 19, 1991 EA Report: 4.

- A drum storage area used to store various raw materials and wastes;⁴³
- An underground fuel oil tank located to the south of the main manufacturing building, which was reportedly in operation from 1973 until 1985, although no records are available regarding its installation, operation, or removal;⁴⁴ and
- A drywell reportedly located adjacent to a laboratory in the front of the main manufacturing building, for which there are no available records.⁴⁵

C. Summary of Previous Environmental Investigations

1. 1991 Environmental Site Assessment

The first known environmental investigation of the former O'Brien paint manufacturing facility occurred in 1991, shortly after the cessation of 80 years of industrial operations at the facility. As a condition of an anticipated sale of the property, O'Brien retained a consultant to perform a desktop environmental assessment followed by one round of targeted soil and groundwater sampling activities. These activities constituted an initial Phase I and limited Phase II environmental site assessment. The assessment activities focused on seven areas of interest for sampling: the solvent and resin tank farms, the solvent still and caustic wash tank, the settling ponds, the landfill for sludge from the settling ponds, the former landfill adjacent to Dupree Creek, the underground fuel tank, and a suspected landfill in the southeast corner of the property, adjacent to Dupree Creek and the Brunswick facility. With the exception of the underground fuel tank and the suspected landfill, all other areas of interest were located behind the main manufacturing building (i.e., to the east of the building) in the center portion of the property. The main

⁴³ Attachment 19, 1991 EA Report: 10; Attachment 20, 1996 Phase II Addendum: Fig. 2.

⁴⁴ Attachment 19, 1991 EA Report: 11; Attachment 20, 1996 Phase II Addendum: Fig. A (B-12 soil boring location).

⁴⁵ Attachment 20, 1996 Phase II Addendum: 3 & Fig. 2.

⁴⁶ A full copy of the 1991 EA Report with attachments has not been located. The report also identifies three earlier reports that have not been located: a 1983 risk assessment report that O'Brien prepared for environmental insurance purposes and 1984 and 1989 preliminary assessment reports prepared by EPD. Attachment 19, 1991 EA Report: "List of Attachments."

⁴⁷ Attachment 19, 1991 EA Report: 10-12. O'Brien's consultant speculated that the "suspected landfill" was actually a future, as-yet built landfill. Attachment 19, 1991 EA Report: 12. Its location, however, is consistent with an extensive area of disturbance evident on a 1945 aerial photograph of the area encompassing the former O'Brien paint manufacturing facility. Attachment 24, Historical Aerial Photograph of Brunswick, Ga. (1945).

⁴⁸ Attachment 20, 1996 Phase II Addendum: Fig. A (suspected landfill located at boring locations B-1 and B-2; underground fuel tank located at boring location B-12).

manufacturing building itself was not investigated, nor were the varnishing building, drum storage area, paint racks, and drywell. (Indeed, the drywell was not identified to a regulatory agency until years later, and the paint racks never were identified.)

Soil sampling conducted in 1991 was generally confined to a depth interval ranging between one and five feet bgs, with a few samples collected between 5.5 and 7.5 feet deep.⁴⁹ Shallow groundwater samples were collected from temporary monitoring well points at depths of approximately three to six feet bgs.⁵⁰ Soil and groundwater samples were analyzed for a subset of VOCs – BTEX, methyl ethyl ketone ("MEK"), and acetone – as well as mineral spirits and various metals.⁵¹ No other constituents were analyzed.

BTEX compounds were detected in soils and groundwater under the former settling ponds behind the main manufacturing building.⁵² In groundwater, these concentrations "appear[ed] to increase in concentration in a northern to southerly direction which parallels the flow of Dupree Creek." ⁵³ Mineral spirits were also detected in the former settling pond area, the landfill for sludge from the settling ponds, the area east of the solvent tank farm and the former landfill along Dupree Creek. ⁵⁴ Benzene in groundwater exceeded the drinking water standard, but the consultant concluded that drinking water standards were inapplicable to the groundwater due to the high salinity and total dissolved solids ("TDS") content of the groundwater. ⁵⁵ Soils in the area of the solvent still/caustic tank could not be sampled due to the presence of a thick concrete slab at a depth of one foot bgs. ⁵⁶

2. 1996 Phase II Site Addendum, Environmental Site Assessment Report

O'Brien retained a new environmental consultant in 1996 to obtain additional information intended to complete the limited Phase II environmental site assessment activities conducted in 1991. This work again focused exclusively on known areas of concern associated with O'Brien's paint manufacturing operations, located almost entirely to the east of the main manufacturing building.⁵⁷

⁴⁹ Attachment 19, 1991 EA Report: Table 1.

⁵⁰ Attachment 19, 1991 EA Report: Table 1.

⁵¹ Attachment 19, 1991 EA Report: Table 2.

⁵² Attachment 19, 1991 EA Report: 19, 25-27.

⁵³ Attachment 19, 1991 EA Report: 19.

⁵⁴ Attachment 19, 1991 EA Report: 19, 25-27.

⁵⁵ Attachment 19, 1991 EA Report: 21.

⁵⁶ Attachment 19, 1991 EA Report: Table 4, n.3.

⁵⁷ Attachment 20, 1996 Phase II Addendum: 2-3 & Fig. 2.

The suspected landfill in the southeast corner of the property was not re-evaluated (where only two soil samples and two groundwater samples had been collected and analyzed, all at depths of less than four feet bgs) nor was the underground fuel tank to the south (where only one soil sample and one groundwater sample had been collected, both at depths of less than five feet bgs). In their place, the drum storage area behind the main manufacturing building was added to the scope of work, as was a drywell located adjacent to a "laboratory" in the front of the building. The entire southern half of the property, including the outdoor paint testing area abutting the Brunswick facility, was not investigated.⁵⁸

As with the 1991 sampling event, sampling in the identified areas of concern was limited to shallow conditions only: soil sampling was conducted to the water table-vadose zone interface (at depths of four feet or less), and groundwater sampling was conducted to an approximate depth of +/- 10 feet bgs.⁵⁹ Soil samples were collected from 12 soil borings and analyzed for VOCs, SVOCs, mineral spirits and certain metals.⁶⁰ In addition to metals, which were detected in all soil samples, several VOCs, including ethylbenzene, xylenes, isopropylbenzene, n-propylbenzene, 1,3,5-trimethylbenzene, 1,3,4- trimethylbenzene and mineral spirits were detected at a depth of one foot in the area of the solvent still and caustic tank.⁶¹ No soil samples collected from the solvent tank farm or drywell areas were submitted for laboratory analysis.⁶²

Groundwater samples were collected from seven temporary shallow groundwater monitoring points at depths ranging from two to seven feet.⁶³ Metals were detected in all of the groundwater samples.⁶⁴ In addition, benzene, ethylbenzene, xylenes and mineral spirits were detected in the shallow groundwater samples obtained in the solvent still/caustic tank area, and ethylbenzene, xylenes and naphthalene were detected in the shallow groundwater samples obtained in the solvent tank farm area.⁶⁵ For unknown reasons, no groundwater samples were collected from the former settling ponds area.⁶⁶

⁵⁸ Attachment 20, 1996 Phase II Addendum: Fig. 2.

⁵⁹ Attachment 20, 1996 Phase II Addendum: 3.

⁶⁰ Attachment 20, 1996 Phase II Addendum: 7-9.

⁶¹ Attachment 20, 1996 Phase II Addendum: 8.

⁶² Attachment 20, 1996 Phase II Addendum: 8.

⁶³ Attachment 20, 1996 Phase II Addendum: 9-10.

⁶⁴ Attachment 20, 1996 Phase II Addendum: 9.

⁶⁵ Attachment 20, 1996 Phase II Addendum: 10.

⁶⁶ Attachment 20, 1996 Phase II Addendum: 10.

Based on these sampling results, O'Brien reported releases under Georgia's Hazardous Substance Response Act ("HSRA") of BTEX, naphthalene, mineral spirits, barium, lead and zinc to EPD in March 1996.⁶⁷ Subsequent investigations by O'Brien and its successors-in-title focused exclusively on these nine constituents.

3. 1998 Compliance Status Report

Based on O'Brien's 1996 release notification, EPD listed the former O'Brien paint manufacturing facility on its Hazardous Site Inventory (Site Number 10417) in July 1996 and issued a notice to O'Brien in December 1997 requiring O'Brien to file a Compliance Status Report ("CSR").⁶⁸

After conducting a voluntary corrective action to remove lead-impacted soils from the former settling ponds and the landfill for sludge from the settling ponds as well as an additional area to the east bordering Dupree Creek, O'Brien submitted its CSR to EPD in August 1998.⁶⁹ The 1998 CSR focused only on the storage, processing and disposal areas located on the east side of the main manufacturing building which were known to support paint manufacturing operations, but failed to address earlier operations, merely stating that "chemical use and storage information for operations prior to 1966 (Dixie) is unknown."⁷⁰

According to the 1998 CSR, the regulated substances that O'Brien reported to EPD in 1996 as having been released were associated with raw materials commonly used in the manufacture of paints at the property, including pigments that contained lead, barium and zinc and various solvents including toluene, mineral spirits, xylenes and naphthalene.⁷¹ The CSR stated that there were no records indicating that chlorinated solvents were used at the facility;⁷² as a result, chlorinated VOCs were not analyzed as part of the sampling effort. However, chlorobenzene is a solvent

⁶⁷ Attachment 30, Applied Environmental Strategies, 1996, Amended Release Notification (Mar. 29, 1996).

⁶⁸ Attachment 31, Letter from Woodall (EPD) to Crowley (O'Brien) regarding Compliance Status Report Call-In (Dec. 22, 1997).

⁶⁹ Attachment 32, Goldman Environmental Management Services, Compliance Status Report (Aug. 30, 1998) (the "1998 CSR").

⁷⁰ Attachment 32, 1998 CSR: 2-3 & Fig. 3 (Site Map).

⁷¹ Attachment 32, 1998 CSR: 6.

⁷² Attachment 32, 1998 CSR: 6.

known to have been used in paint manufacturing,⁷³ and two other O'Brien paint manufacturing facilities that operated during the same era are known to have used (and released) chlorobenzene.⁷⁴

The suspected contaminant source areas east of the main manufacturing building were assessed in connection with the CSR, although again the scope and extent of sampling was limited both in terms of the constituents that were analyzed (limited to those reported by O'Brien in 1996) and the area and extent of sampling. Delineation activities were minimal. To assess the horizontal extent of BTEX in groundwater, O'Brien installed a single temporary well (monitoring well MW-6) approximately 185 feet south of the main manufacturing building at a depth of less than 10 feet bgs. BTEX was not detected in the initial round of sampling from this monitoring well, and the well was not sampled again. To assess the vertical extent of BTEX contamination, O'Brien relied almost exclusively on analytical results obtained from a portable gas chromatograph; of the 11 Geoprobe grab groundwater samples collected from depths greater than 10 feet bgs (ranging from 11 to 33 bgs), only two of these samples were sent for analytical testing at a laboratory (GP1-W-20, GP2-W-15), and both were collected from the area directly behind the main building.

Discrepancies were also present in the datasets. Laboratory confirmation samples were collected from a few Geoprobe locations to evaluate the effectiveness of field screening activities, but the results were not fully consistent. Similarly, there were discrepancies between the shallow Geoprobe results and data collected from shallow groundwater monitoring wells installed in the same locations, which were intended to confirm the results obtained from the portable gas chromatograph. Those shallow monitoring wells were all installed to a total depth of 10 feet with screened intervals from 2-10 feet bgs. The second confirmation of the portable gas chromatograph. Those shallow monitoring wells were all installed to a total depth of 10 feet with screened intervals from 2-10 feet bgs.

⁷³ Attachment 33, U.S. EPA Office of Pollution Prevention and Toxics, Chemical Fact Sheets, Chlorobenzene (1995).

⁷⁴ Attachment 34, EnviroAssets, Inc., 2005, Phase III RFI Groundwater Report, South San Francisco, CA (Aug. 14, 2005); Attachment 35, Environ, 2005, Groundwater Plume Stability Monitoring Report, Royal Adhesives & Sealants Site, South Bend, Indiana (Sept. 2005).

⁷⁵ Attachment 32, 1998 CSR: 12 & Table 5, Fig. 3.

⁷⁶ Attachment 32, 1998 CSR: Table 9.

⁷⁷ Attachment 32, 1998 CSR: Table 9.

⁷⁸ Attachment 32, 1998 CSR: 11, 19 (noting laboratory detections of BTEX constituents in locations where BTEX was not identified in the field).

⁷⁹ Attachment 32, 1998 CSR: 25-26 (noting differing results by two orders of magnitude in laboratory samples which were intended to confirm field sampling results).

⁸⁰ Attachment 32, 1998 CSR: Table 5.

Putting aside these discrepancies and the limited extent of sampling, the CSR concluded that benzene, ethylbenzene and naphthalene did not meet EPD's Type 1 groundwater criteria and that lead, barium and zinc did not meet EPD's Type 1 soil criteria, but that all constituents in soils and groundwater met the Type 4 criteria. O'Brien therefore requested that the property be removed from the Hazardous Site Inventory.⁸¹

4. 1999 Compliance Report Addendum

In February 1999, EPD issued a Notice of Deficiency, indicating that additional work was needed to complete the CSR.⁸² Among other things, EPD noted that direct push technology is not recommended for collecting groundwater samples for delineation purposes. EPD indicated that "at a minimum," the installation of a deep monitoring well in the former solvent and resin tank farm area was necessary to verify the results of the Geoprobe analysis.⁸³

Less than three months later, O'Brien submitted a CSR Addendum responding to EPD's Notice of Deficiency. ⁸⁴ The CSR Addendum documented the installation of a new "deep" monitoring well – monitoring well DW1 – intended to assist in the vertical delineation of BTEX impacts observed in the area of the former solvent still/caustic tank and tank farm. The well was installed with a screened interval from 32 to 37 feet bgs. ⁸⁵ However, the use of mud rotary drilling to construct the well, the lack of equilibration time between drilling and sampling, and the apparent lack of well purging prior to sample collection likely would have precluded the detection of any groundwater contamination or biased the sample results significantly low. Based on one sampling event conducted in March 1999 during which BTEX was not detected in this well, O'Brien concluded that the vertical extent of the dissolved benzene plume was less than 32 ft bgs. ⁸⁶ With

⁸¹ Attachment 32, 1998 CSR: 29.

⁸² Attachment 36, EPD, CSR Notice of Deficiency (Feb. 5, 1999).

⁸³ Attachment 36, EPD, CSR Notice of Deficiency (Feb. 5, 1999): 1. EPD also noted that the analytical method that O'Brien used to analyze BTEX in soils was no longer an approved method and that soil samples should be collected and analyzed at "strategic locations to verify the results of the previous investigation." Attachment 36, EPD CSR NOD: 2. This comment was later retracted, however, based on O'Brien's representation that the soil samples were collected prior to May 1, 1998, when EPD stopped accepting soil analysis using Method 8020 for BTEX. Attachment 37, Letter from Houle to Hendricks (EPD) regarding Response to CSR Notice of Deficiency (Feb. 17, 1999): 3. The CSR itself indicates, however, that the soil samples were collected on June 2, 1998. Attachment 32, 1998 CSR: 15.

⁸⁴ Attachment 38, Applied Environmental Strategies, Compliance Status Report Addendum (April 20, 1999) (the "1999 CSR Addendum").

⁸⁵ Attachment 38, 1999 CSR Addendum: Sec. 1.

⁸⁶ Attachment 38, 1999 CSR Addendum: Sec. 1.

respect to horizontal delineation, O'Brien concluded that the benzene plume was narrowly confined to the former tank farm area.⁸⁷

In July 1999, EPD provided a partial approval of the CSR Addendum, finding that the delineation work was complete but that a Corrective Action Plan ("CAP") needed to be prepared and submitted before EPD could concur with O'Brien's certification of compliance with the Type 4 risk reduction standards.⁸⁸ The CAP was to include a groundwater monitoring plan that would remain in place for as long as the former O'Brien paint manufacturing facility met the Type 4 standards and that would ensure that contaminants in groundwater exceeding the Type 1 or Type 2 standards did not migrate onto adjacent property not subject to institutional controls.⁸⁹

In August 1999, Cherokee, which had since acquired the former paint manufacturing facility from O'Brien, submitted a two-page monitoring plan to EPD.⁹⁰ The plan proposed to sample six groundwater monitoring wells (including the "deep" monitoring well DW-1) on a semi-annual basis for as long as the former O'Brien paint manufacturing facility was certified as meeting Type 4 standards, with sampling to begin within approximately six months of EPD's approval of the Type 4 compliance certification.⁹¹ Two of the six wells that were identified as hydraulically downgradient – monitoring wells MW-2 and MW-3 – were located directly east of the main building, adjacent to Dupree Creek.⁹²

5. 2000 CAP and 2003 Revised CAP

Cherokee submitted a CAP to EPD in August 2000 and a revised CAP to EPD in January 2003.⁹³ In both versions, the groundwater monitoring plan was modified from the version that Cherokee proposed in 1999, both in terms of sampling frequency (reduced from semi-annual to annual) and

⁸⁷ Attachment 38, 1999 CSR Addendum: Sec. 1; Attachment 32, 1998 CSR: Fig. 2.

⁸⁸ Attachment 39, Letter from Hendricks (EPD) to Crowley regarding partial completion of CSR (July 29, 1999).

⁸⁹ Attachment 39, Letter from Hendricks (EPD) to Crowley: 1.

⁹⁰ Attachment 40, Applied Environmental Strategies, 1999, Compliance Monitoring Plan (Aug. 24, 1999): 1-2.

⁹¹ Attachment 40, Applied Environmental Strategies 1999: 1-2.

⁹² Attachment 40, Letter from Houle to Hendricks (EPD) regarding Compliance Monitoring Plan (Aug. 26, 1999): 1-2; Attachment 32, 1998 CSR: Fig. 3 (Site Map).

⁹³ Attachment 41, Law Engineering and Environmental Services, Inc., Corrective Action Plan (Aug. 20, 2000) (the "2000 CAP"); Attachment 42, MACTEC, Revised Corrective Action Plan (Jan. 2003) (the "2003 Revised CAP").

number of monitoring wells (reduced from six wells to two).⁹⁴ The two monitoring wells that remained in the monitoring plan were monitoring well MW-5, located within the former solvent/resin tank farm, and monitoring well MW-2, located to the southeast in the presumed downgradient direction.⁹⁵ Among the monitoring wells eliminated from further sampling activities were the vertical delineation well (monitoring well DW-1), which had only been sampled once.

6. 2002-2003 Groundwater Sampling Activities

Cherokee sampled the two monitoring wells that were identified in the revised groundwater monitoring plan for benzene and ethylbenzene in December 2002, and again in January 2003 for benzene and lead in accordance with the 2003 Revised CAP.⁹⁶

In March 2003, EPD asked for an additional round of groundwater sampling to confirm that ethylbenzene and naphthalene met the Type 1 risk reduction standards, the certification for which had been based on groundwater sampling results from 1999.⁹⁷ Accordingly, in April 2003, Cherokee sampled monitoring wells MW-2, MW-5 and MW-7 for benzene, ethylbenzene and naphthalene.⁹⁸ Benzene was detected at monitoring well MW-7 at a concentration slightly above the Type 1 standard at 5.6 micrograms per liter, whereas ethylbenzene and naphthalene remained at concentrations below the Type 1 risk reduction standards in all three monitoring wells.⁹⁹ A Revised Re-Certification Supplemental Report summarizing these sampling results was submitted to EPD in June 2003.¹⁰⁰

During this same period, Cherokee was actively negotiating with the Adams siblings over the sale of the former O'Brien paint manufacturing facility. Under the terms of their agreement, Cherokee's Revised Re-Certification Supplemental Report, once approved by EPD, would serve

⁹⁴ Attachment 41, 2000 CAP: 2-1, 2-2; Attachment 42, 2003 Revised CAP: 2-1, 2-2.

 ⁹⁵ Attachment 41, 2000 CAP: 2-1, 2-2; Attachment 42, 2003 Revised CAP: 2-1, 2-2; Attachment 32, 1998
 CSR: Fig. 3 (Site Map).

⁹⁶ Attachment 43, MACTEC, Revised Recertification Supplemental Report (Sept. 2003) (the "2003 Revised Recertification Supplemental Report"): 4-1 through 4-3 & Table 4-3.

⁹⁷ Attachment 44, Letter from EPD to Arnold regarding NOD for Revised CAP and Re-Certification Supplemental Report (Mar. 18, 2003).

⁹⁸ Attachment 43, 2003 Revised Recertification Supplemental Report: 4-2, 4-3 & Table 4-3.

⁹⁹ Attachment 43, 2003 Revised Recertification Report: Table 4-3.

¹⁰⁰ Attachment 43, 2003 Revised Recertification Report: 4-2, 4-3 & Table 4-3.

as the basis for a Brownfields application to be submitted by the Adams siblings, with both documents needing to be approved by EPD as a condition of closing.

With benzene hovering around the Type 1 standard in monitoring well MW-7 during the April 2003 monitoring event, both parties appear to have been keenly interested in continued sampling to demonstrate Type 1 compliance prior to the sale of the former O'Brien paint manufacturing facility. As the parties headed toward closing, additional groundwater samples were collected from the limited set of three shallow monitoring wells on September 11, 2003 and again on November 12, 2003. Denzene was not detected during the September 2003 sampling event and was below the Type 1 standard during the November 2003 sampling event. Cherokee certified compliance with the Type 1 groundwater standards on November 21, 2003, Denzene days later, Adams submitted a Prospective Purchaser Compliance Status Report and Brownfield Application to EPD on November 24, 2003, certifying the same.

Based on this submission, EPD granted a Limitation of Liability letter to the Adams siblings on December 5, 2003 and delisted the former O'Brien paint manufacturing facility from the Hazardous Site Inventory on December 31, 2003. ¹⁰⁵ Closing on the property occurred in January 2004.

7. 2018-19 Groundwater Sampling

Apart from routine groundwater monitoring events that Hercules conducted on the Adams Properties from 2012 through 2018 in conjunction with its ongoing corrective action activities at the Brunswick facility, two additional sets of data have been collected in recent years in connection with pending litigation initiated by the Adams siblings against Hercules and Pinova, Inc. (which owns the active manufacturing portions of the Brunswick facility).

¹⁰¹ Attachment 45, MACTEC, Groundwater Recertification Documentation (Nov. 21, 2003): Table 4-3 & Fig. 1. In the interim, EPD concurred that the Type 4 groundwater standard had been met and reclassified the property as a Class III site on the HSI. Attachment 46, Letter from Word (EPD) to Arnold regarding re-certification (Oct. 17, 2003). However, the September and November sampling events were conducted with the objective of certifying compliance with the Type 1 groundwater standard and removing the property from the HSI altogether.

¹⁰² Attachment 45, MACTEC, 2003, Groundwater Recertification Documentation (Nov. 21, 2003): Table 4-3 & Fig. 1.

 $^{^{\}rm 103}$ Attachment 45, MACTEC 2003: Table 4-3 & Fig. 1.

¹⁰⁴ Attachment 47, Dobbs Environmental, 2003, Compliance Status Report and Brownfield Application (Nov. 2003).

¹⁰⁵ Attachment 48, Letter from Couch (EPD) to Adams Properties Associates LLC regarding Limitation of Liability (Dec. 5, 2003).

First, in 2018, Hercules' consultant Integral Consulting, Inc. collected soil gas, surface soil and shallow groundwater samples at the former O'Brien paint manufacturing facility. OCs were not detected during this sampling event. However, extensive lead, arsenic and PCB impacts exceeding residential risk reduction standards were identified in surface soils throughout the property, including in areas to the east of the main manufacturing building that had been previously certified as clean, as well as in areas north, west and south of the building that had never been investigated. These sampling results indicate that current environmental conditions at the former O'Brien paint manufacturing facility do not meet the applicable risk reduction standards and demonstrate that the previous site assessment work conducted by O'Brien and Cherokee had significant data gaps.

Second, in 2019, the Adams siblings installed and sampled three new groundwater monitoring wells on the southern half of the former O'Brien paint manufacturing facility, to a depth of approximately 85 feet. Two of the monitoring wells were installed south of the main manufacturing building and the third was installed behind the building adjacent to Dupree Creek. Chlorobenzene was detected in all three wells, whereas benzene was not. These sampling results suggest that one or more sources of chlorobenzene are present at the former O'Brien paint manufacturing facility which were not investigated and delineated during the prior site assessment activities. The isolated chlorobenzene data are not representative of the plume from the Brunswick facility which is characterized in the portion of the facility in proximity to the Adams Properties by the co-location of benzene and chlorobenzene.

III. FORMER NESMITH SERVICE STATION PROPERTY

A. <u>Site Ownership and Operations</u>

The first documented use of the parcel constituting the southwestern portion of the Adams Properties dates to 1920, when operations of Georgia Veneer's box and crate manufacturing facility to the north, east and west extended onto the parcel. 111

¹⁰⁶ Attachment 49, Integral Consulting, Inc., 2018, Report of Phase 2 Sampling Activities (Oct. 2018).

¹⁰⁷ Attachment 50, Montrose Environmental Group, 2020, Report on Remediation liability and Redevelopment Implications Associated with Contamination from On-Site Sources at Plaintiffs' Property (March 2020): 16-17, 19 & Fig. 7a-7d.

¹⁰⁸ Attachment 51, Charles Hill, Field Notes for Monitoring Well Installations (Sept. 2018).

¹⁰⁹ Attachment 52, Dobbs Environmental, Monitoring Well Figure. The locations as depicted on this figure are believed to be approximate locations, as the well locations have not yet been surveyed.

¹¹⁰ Attachment 53, Groundwater Sampling Results (March 2019).

¹¹¹ Attachment 6, Collection of Sanborn Fire Insurance Maps: 1920, 1930.

The crate shop was razed near the time of Tidewater's construction of its plywood mill in 1946. The property then sat vacant for approximately 10 years. At some point between 1954 and 1960, a fuel filling station and oil depot was constructed by Pure Oil Company ("Pure Oil") at the property. Pure Oil was later acquired by Union Oil Company of California ("Unocal"), a predecessor of what is now Chevron Corporation. It appears that the property was used as a service station and oil depot by Pure Oil and its successors until approximately 1975.

From 1975 until 1986, the Brunswick and Glynn County Development Authority owned the property, presumably leasing it for continued service station operations. In 1986, Buddy Nesmith Oil Co., Inc. acquired title to the property. At the time, Nesmith had been a marketer and distributor of Unocal products for over 30 years.

In May 1999, GADOT acquired through eminent domain a small portion of the property fronting U.S. Highway 17 for purposes of road expansion. Service station and auto repair operations are believed to have continued after this date, although it is unknown when operations ceased.

In January 2004, the First Bank of Brunswick foreclosed on the property, and Lanier Parkway Associates, LLC ("Lanier Parkway"), a limited liability company formed by the Adams siblings, acquired the property from the bank in foreclosure proceedings later that year. ¹¹⁸ Thereafter, Lanier Parkway leased the property to various auto repair mechanics as well as a company providing septic tank cleaning services. ¹¹⁹

In 2020, the auto repair shop (service station) building was torn down. The former Nesmith service station property currently sits vacant except for a large billboard sign.

¹¹² Attachment 6, Collection of Sanborn Fire Insurance Maps: 1949.

¹¹³ Attachment 6, Collection of Sanborn Fire Insurance Maps: 1960; Station Development Corporation, then a subsidiary of Pure Oil Company, purchased the property in July 1954. Attachment 54, Lawyers' Title Insurance, Title Insurance Policy Excerpt for 2696 Glynn Ave. (2004).

¹¹⁴ Attachment 55, Britannica, "Unocal Corporation," https://www.britannica.com/topic/Unocal-Corporation.

¹¹⁵ Attachment 54, Lawyers' Title Insurance, Title Insurance Policy Excerpt for 2696 Glynn Ave. (2004).

¹¹⁶ Attachment 56, Unocal Corp., *Seventy-Six*, Vol. LXIV, No. 6 (Nov./Dec. 1985) at 40 (noting Mr. Nesmith's 30 years marketing and distributing Unocal products).

¹¹⁷ Attachment 54, Lawyers' Title Insurance, Title Insurance Policy Excerpt for 2696 Glynn Ave. (2004).

¹¹⁸ Attachment 57, Glynn Co. Property Record, Parcel 01-03942.

¹¹⁹ Glynn County property records identify the property as "Ace Septic Tank Service." Attachment 57, Glynn Co. Property Record, Parcel 01-03942.

B. <u>Key Site Features</u>

As noted above, a crate shop, veneer drying racks, and rail sidings were present on and around the former Nesmith service station property to support manufacturing operations conducted by Georgia Veneer from at least 1920 until 1946. The nature and extent of materials storage, handling, and disposal at the property during this era is presently unknown.

Beginning in the mid-to-late 1950s, a fuel filling station and oil depot were in service on the former Nesmith service station property with one main building and an ancillary open-air structure. A 1960 Sanborn map depicts four large aboveground storage tanks (i.e., ASTs) located along the property boundary bordering the Brunswick facility. The ASTs presumably were used in servicing the oil depot. Based on a review of Google Earth's historical aerial imagery, the ASTs remained in place until 2005, although the details regarding their use over time is presently unknown.

Details concerning underground storage tanks (i.e., USTs) used to support service station operations are likewise limited:

- No information concerning operation and use of USTs is available for the period from the late 1950s until the early 1980s.
- Various USTs were installed at the former Nesmith service station property in the early-to-mid 1980s. One 2,000-gallon diesel UST was installed on the property in 1981, and five years later, three more USTs were installed -- a 4,000-gallon kerosene UST, a 4,000-gallon gasoline UST and a 2,000-gallon gasoline UST. Those four USTs, together with a used oil UST (installation date unknown) were reportedly removed in 1989. The locations of these former tanks and their condition at the time of removal is presently unknown.
- Four additional USTs were closed and removed by GADOT in February 2000 in connection with the expansion of U.S. Highway 17: two 4,000-gallon gasoline USTs, one 2,000-gallon gasoline UST and one 2,000-gallon diesel UST. These tanks were located south and southwest of the service station building and may have replaced those that had been removed in 1989. BTEX and polycyclic aromatic hydrocarbons ("PAHs") were identified in soil and groundwater samples collected during the removal efforts, and EPD requested that a Corrective Action Plan be submitted. 122

¹²¹ Attachment 58, Georgia EPD, UST "Data for Gilmer to Worth Counties" (updated July 2021) (excerpt), *available at* https://epd.georgia.gov/document/document/gilmer-worth-091420/download.

¹²⁰ Attachment 6, Collection of Sanborn Fire Insurance Maps at 1960.

¹²² Attachment 59, Letter from Gulden to Williams (EPD) enclosing Closure Report Form and attachments (May 5, 2000).

• Two additional USTs were identified and removed in 2004: a 4,000-gallon kerosene tank located behind the service station building (i.e., to the east of the building) and a 500-gallon waste oil tank abutting the north side of the building. Nesmith reportedly removed these USTs but did not submit the requested closure report or other documentation to EPD. A third tank, described in reports as a 1,000-gallon spill containment tank or vault, was located inside the truck loading pad area and was apparently not removed. 123

Apart from the crate shop and ancillary infrastructure, the AST tank farm, and the ten known USTs described above, other site features that have not been evaluated include the recently razed service station building, which may have included floor drains, hydraulic lifts, parts washers, and oil/water separators used in connection with vehicle servicing operations. The building was used as an auto repair shop both before and after Lanier Parkway's acquisition of the property and may have also been used by the septic tank cleaning business that operated at the property in recent years. ¹²⁴

Finally, based on a 2003 potentiometric map prepared for the former O'Brien paint manufacturing facility, there is a drainage easement for a nine-foot wide ditch running north to south along the eastern boundary of the property, separating it from the O'Brien paint manufacturing facility. Although the details surrounding the purpose of this ditch are currently unknown, it is possible that the ditch could have served as a transport mechanism for contaminants to reach the adjacent portion of the Brunswick facility.

C. <u>Summary of Previous Environmental Investigations</u>

1. 2000 Sampling Activities by GADOT

The first known sampling event that took place at the former Nesmith service station property was conducted by GADOT in 2000 in connection with its removal of the three gasoline USTs and one diesel UST which were adjacent to U.S. Highway 17 prior to its expansion. Elevated concentrations of BTEX and PAHswere detected in soil samples collected from each of the two excavation pits. PAHs were also detected in a water sample collected from the gasoline UST

¹²³ Attachment 60, Dobbs Environmental, 2006, Corrective Action Plan Part A (January 2006); Attachment 61, Letter from Dobbs to Wallace (EPD) enclosing responses to comments (Feb. 7, 2006).

¹²⁴ 1,2,4-trichlorobenzene has been used in septic tank and drain cleaner preparations. Attachment 62, U.S. EPA, 1994, *Locating and Estimating Air Emissions from Sources of Chlorobenzenes* (revised): 5-38 (excerpt).

¹²⁵ Attachment 63, MACTEC, 2003, "Former O'Brien Paint Facility Potentiometric Surface Map" (Sept. 26, 2003).

¹²⁶ Attachment 59, Letter from Gulden to Williams (EPD) enclosing Closure Report Form and attachments (May 5, 2000).

pit at 770 ug/L. Water samples were also collected for analysis of BTEX but for unknown reasons, the analytical results were not provided to EPD. 127

2. 2004 Pre-Acquisition Sampling Activities by Lanier Parkway

In October and December 2004, additional sampling activities were conducted by Dobbs Environmental ("Dobbs") in connection with Lanier Parkway's planned acquisition of the former Nesmith service station property out of foreclosure proceedings. High levels of benzene were detected in soils adjacent to the area where GADOT had removed USTs in 2000 during both sampling events; these soil samples were collected at depths of three feet and seven feet, with the depth of groundwater at four feet. Soil samples were also collected from the excavation pits for the 500-gallon waste oil UST and 4,000-gallon kerosene UST that Nesmith removed in 2004, as well as from the locations of the former AST farm and former AST fill manifolds. BTEX compounds were detected in these locations as well, but at lower levels. An existing groundwater monitoring well (depth unknown) in the vicinity of the kerosene UST that was removed was sampled once for BTEX and PAHs, and no impacts were identified. No investigation of equipment or utilities used in connection with vehicle servicing was performed. No sampling was performed for other VOCs (including chlorobenzene), whether in the vicinity of the waste oil tank or otherwise.

From this point forward, all sampling and cleanup efforts were narrowly focused on a dissolved BTEX plume in groundwater that Dobbs attributed to the USTs and fuel dispensers that GADOT removed in 2000. No investigation was conducted to evaluate the full history of operations at the former Nesmith service station property, which operations dated back to at least as early as the 1920s, or to assess whether additional sources of contamination may have been present as a result of those operations. No geophysical survey was performed to evaluate if other USTs, floor drains, oil/water separators, or other buried objects remained on the property. And even with respect to the known BTEX contamination in soils at the property, no delineation was performed, nor removal or remediation conducted. 130

¹¹

¹²⁷ Attachment 64, Letter from Wallace (EPD) to Nesmith enclosing non-compliance history memorandum (April 9, 2004).

¹²⁸ The exact location of this well is unclear. Some figures show it as having been to the east of the kerosene UST, and others show it closer to the eastern property boundary, between the kerosene UST and the former AST farm.

¹²⁹ Attachment 60, Dobbs Environmental, Corrective Action Plan Part A (Jan. 2006).

¹³⁰ Under EPD's 1995 technical guidance for corrective action for UST releases, "the [h]orizontal and vertical extent of soil contamination must be identified for each BTEX and PAH constituent until laboratory test results indicate contaminant concentrations are non-detectable, including soil samples at and below the groundwater table." Attachment 65, GUST-CAP-B Guidance (1995): 8. In addition, corrective action for contaminated soil must meet specified threshold values or alternate concentration

3. **2006-2010 CAP Activities**

In January 2006, Dobbs submitted Part A of an UST corrective action plan ("CAP-Part A") to EPD, requesting a No Further Action ("NFA") determination based on the 2004 sampling results. EPD instead directed Lanier Parkway to install two additional monitoring wells. 132

In April 2006, Dobbs submitted to EPD an addendum to the CAP-Part A, detailing the installation and sampling of three new monitoring wells on the former Nesmith service station property screened in the shallow zone of the upper surficial aquifer between 3 and 8 feet bgs. ¹³³ Two of these monitoring wells were installed along the western property boundary in front of the former service station building, and the third was installed near the eastern property boundary to replace the previously existing well in that area which had been destroyed. BTEX was detected in groundwater at all three monitoring wells, with benzene ranging in concentrations from 220 ug/L to 15,000 ug/L. Monitoring well MW-2, which had the highest recorded concentrations of BTEX, was located less than 100 feet from the northern edge of the Brunswick facility. A groundwater iso-concentration map prepared by Dobbs depicted benzene at a concentration of 100 ug/L within 20 feet of the property boundary (although the property boundary is not called out as such on the map). ¹³⁴

Based on these sampling results, EPD directed Lanier Property to submit Part B of a corrective action plan ("CAP-Part B"), which Dobbs prepared and submitted to EPD on behalf of Lanier Property 18 months later, in October 2007.¹³⁵ The CAP-Part B proposed installation of a bioinfiltration trench along the western property boundary and presented the results of an additional round of groundwater sampling conducted in February 2007. Elevated concentrations of BTEX were again detected in all three monitoring wells that Dobbs had installed, with benzene measured at a concentration of 11,000 ug/L in monitoring well MW-2.¹³⁶ EPD requested that two additional monitoring wells be installed for additional delineation.¹³⁷

limits that are approved by EPD as protective of human health and the environment. Attachment 65, GUST-CAP-B Guidance (1995): 10-12.

¹³¹ Attachment 60, Dobbs Environmental, Corrective Action Plan Part A (Jan. 2006).

¹³² Attachment 66, Letter from Wallace (EPD) to Adams with enclosures (Jan. 23, 2006).

¹³³ Attachment 67, Letter from Dobbs to Wallace (EPD) with enclosures (Apr. 19, 2006).

¹³⁴ Attachment 67, Letter from Dobbs to Wallace (EPD) with enclosures (Apr. 19, 2006).

¹³⁵ Attachment 68, Dobbs Environmental, 2007, CAP Part B (Oct. 5, 2007).

¹³⁶ Attachment 68, Dobbs Environmental, 2007, CAP Part B (Oct. 5, 2007).

¹³⁷ Attachment 69, Letter from Wallace (EPD) to Dobbs enclosing comments (Oct. 17, 2007).

In January 2009, Dobbs submitted an addendum to the CAP-Part B, agreeing to install the two additional monitoring wells. Although "[n]ot convinced the bio-application will decrease the BTEX," EPD approved the addendum to the CAP-Part B in February 2009 and requested that quarterly groundwater sampling begin in April 2009. 139

Shortly thereafter, an approximately 80-foot long bio-infiltration trench with a bacteria tank and distribution line was installed. The trench was reported to have been installed to a depth of approximately two feet, with groundwater at a depth between two and four feet bgs. ¹⁴⁰

In addition to the trench installation, the three existing monitoring wells, now described as "temporary" wells, were replaced with four permanent wells. The permanent well that replaced monitoring well MW-2 (now called monitoring well MW-4) was positioned immediately adjacent to the bacteria tank that fed the bacteria/nutrient mix into the bio-infiltration trench. Two of the other permanent monitoring wells were moved to locations different than the locations of the temporary wells, preventing any direct comparison of pre-remediation sampling results with post-remediation sampling results. A fourth monitoring well was installed to the south within approximately 20 feet of the boundary of the Brunswick facility. The final additional delineation well that EPD requested was never installed.

According to progress reports submitted by Dobbs to EPD, biotreatment commenced on March 31, 2009 and continued until October 1, 2009. Mr. Ronald Adams, who at the time was a banker, performed the work himself, reportedly introducing approximately one gallon of bacteria concentrate mixed with molasses and water into the tank every seven to ten days. No formal documentation of the work was provided to EPD. Instead, the progress report descriptions were "[b]ased on Mr. Adams' recollection." ¹⁴²

The new monitoring wells were sampled on March 31, 2009 (the first day of the bioremediation treatment) and again on November 11, 2009 (ten days after treatment concluded). Benzene concentrations in new monitoring well MW-4 were reported at 3,800 ug/L and 2,100 ug/L. Based on these sampling results, Dobbs again requested that EPD issue an NFA determination. ¹⁴³

¹³⁸ Attachment 70, Letter from Dobbs to Wallace (EPD) enclosing responses to comments (Jan. 19, 2009).

¹³⁹ Attachment 71, Letter from Wallace (EPD) to Dobbs (Feb. 4, 2009) with Memorandum from Wallace to Lewis re: Review Information Leading to Approval of CAP-Part B Addendum.

¹⁴⁰ Attachment 72, Letter from Dobbs to Wallace (EPD) with enclosures (Dec. 17, 2009).

¹⁴¹ Attachment 73, Letter from Dobbs to Wallace (EPD) enclosing June 2010 Monitoring Report (June 11, 2010).

¹⁴² Attachment 74, Letter from Dobbs to Wallace (EPD) (Jan. 18, 2010).

¹⁴³ Attachment 74, Letter from Dobbs to Wallace (EPD) (Jan. 18, 2010).

In February 2010, EPD requested that two additional semi-annual groundwater monitoring events be performed to monitor for potential rebound in concentrations of BTEX following infiltration of the bacteria/nutrient mix into the bio-infiltration trench. The first of these events took place in May 2010, six months after the bio-treatment concluded. Benzene was detected in monitoring well MW-4 at a concentration of 3,100 ug/L – up 1,000 ug/L from the previous monitoring event. Dobbs again requested that EPD issue an NFA determination, suggesting that the plume was not moving and that concentrations were stable and/or decreasing. 145

The second groundwater monitoring event that EPD requested in February 2010 was never conducted. In June 2010, EPD granted the requested NFA determination ¹⁴⁶ "based on the decrease in concentration." The concentrations of benzene in the presumed source well had actually increased by 1,000 ug/L (rather than decreased) since the groundwater monitoring event conducted just six months prior, remaining more than 600 times higher than the drinking water standard for benzene. ¹⁴⁸

EPD's UST CAP-Part B Guidance (1995) provides that the "[h]orizontal and vertical extent of groundwater contamination must be identified for each BTEX and PAH constituent until laboratory test results indicate contaminant concentrations are non-detectable." Here, vertical delineation was not completed, and the monitoring well immediately adjacent to the Brunswick facility (monitoring well MW-2) had detectable levels of benzene at the time the NFA determination was issued. (PAHs were not analyzed.)

¹⁴⁴ Attachment 75, Letter from Wallace (EPD) to Dobbs (Feb. 18, 2010).

¹⁴⁵ Attachment 73, Letter from Dobbs to Wallace (EPD) enclosing June 2010 Monitoring Report (June 11, 2010)

Attachment 76, "No Further Action" Letter from Wallace (EPD) to Dobbs (June 22, 2010), with Memorandum from Wallace to Lewis regarding Review Information Leading to Determination of "No Further Action Required" (hereinafter "NFA Letter"). The NFA determination applied only to "the referenced release" and expressly noted that additional measures might be required "if mandated through more stringent State or Federal statutory or regulatory changes" or if "previously unidentified soil contamination, dissolved contamination or free product are identified as originating from this site."

¹⁴⁷ Attachment 76, NFA Letter with Memorandum from Wallace to Lewis.

¹⁴⁸ While the UST Rules permit risk-based Alternate Concentration Limits under certain circumstances, none were proposed.

¹⁴⁹ Attachment 65, EPD GUST-CAP-B Guidance (1995): 8.

4. 2018 Sampling

The sampling event that Integral conducted on behalf of Hercules in 2018 in connection with the pending litigation also extended onto the former Nesmith service station property. During this event, the sampling team observed petroleum contamination in two shallow groundwater borings, with hydrocarbon odors detected in both borings and visual evidence of greasy and stained soils and an oily sheen. 151

At the time of the 2018 sampling, the four permanent monitoring wells that were installed in 2009 were no longer present. Integral collected shallow groundwater samples from two temporary well points, including one installed in the general location of former monitoring well MW-4, which historically exhibited the highest benzene concentrations of the former permanent wells. BTEX, naphthalene and isopropylbenzene were detected in this location, with both benzene (990 ug/L) and ethylbenzene (3,000 ug/L) detected at levels well above their respective drinking water standards. ¹⁵²

In soils, elevated concentrations of BTEX, naphthalene and isopropylbenzene were detected in samples collected from the area around the former gasoline tanks that GADOT removed in 2000, as well as in samples collected from both the north and south sides of the building.¹⁵³ The highest benzene concentration recorded was 460 times higher than EPD's Type 1 risk reduction standards.¹⁵⁴

These sampling results confirm that substantial amounts of benzene and other petroleum hydrocarbons remained in soil and groundwater nearly a decade after the attempted bioremediation in 2009.

IV. CONCLUSION

The aerobic biobarrier that Hercules plans to install is designed to intercept and destroy constituents in the deep zone of the upper surficial aquifer – principally benzene and chlorobenzene – originating from the Brunswick facility west of U.S. Highway 17; however, independent sources of these constituents exist east of U.S. Highway 17 on the Adams Properties. Substantial data gaps regarding additional sources on the Adams Properties remain, with available evidence suggesting that additional sources exist but have not yet been investigated or delineated. Moreover, evaluation of the effectiveness of the aerobic biobarrier must consider the likelihood of additional sources

¹⁵⁰ Attachment 49, Integral 2018.

¹⁵¹ Attachment 49, Integral 2018: 3-1.

¹⁵² Attachment 49, Integral 2018: Table 3.

¹⁵³ Attachment 49, Integral 2018: Tables 1 & 2.

¹⁵⁴ Attachment 49, Integral 2018: Table 2, p. 7 of 18.

from the Adams Properties contributing to the plume east of U.S. Highway 17 and beyond the target area of the aerobic biobarrier.

LIST OF ATTACHMENTS

ATTACHMENT	DESCRIPTION
1	National Lumberman, Vol. XLVI, No. 11 (Dec. 1, 1910)
2	The Iron Age, vol. 86, no. 24 (Dec. 15, 1910)
3	The Packages, Vol. XIV, No. 4 (Apr. 1911)
4	Georgia Department of Commerce and Labor, Third Annual Report (1915)
5	Veneers, Vol. V, No. 4 (Apr. 1911)
6	Collection of Sanborn Fire Insurance Maps
7	The Atlanta Constitution (Jan. 5, 1937)
8	The Atlanta Constitution (May 16, 1941)
9	Glynn Co. Historic Resources Survey (2009)
10	The Atlanta Constitution (Nov. 20, 1945)
11	The Atlanta Constitution (Aug. 19, 1946)
12	The Ports of Savannah and Brunswick, Ga., Port Series No. 14 (1946 rev.)
13	The Atlanta Constitution (Sept. 22, 1946)
14	Georgia Forestry (July 1950)
15	The Atlanta Constitution (Sept. 22, 1955)
16	EPA Record of Decision, LCP Chemicals Site OU1 (Sept. 2015)
17	The Atlanta Constitution (Oct. 13, 1955)
18	The South Bend Tribune (Sep. 7, 1966)
19	ESI Engineering Services, Inc., Environmental Assessment Report (Dec. 10, 1991)
20	Southeastern Environmental Audits, Inc., Phase II Addendum, Environmental Site Assessment Report (Mar. 18, 1996)
21	Letter to Ga. Dept. of Nat. Resources (July 16, 1999)
22	Deeds from Cherokee San Francisco LLC to Adams Properties Associates LLC (Jan. 21, 2004)
23	Deed from Cherokee San Francisco LLC to Adams, Adams, and Rabbino (Jan. 21, 2004)
24	Historical aerial photograph of Brunswick, GA (1945)
25	U.S. EPA, Furniture/Wood Manufacturing and Refinishing, Document EPA/530-SW-90-027c.
26	Collection of Historical Aerial Photographs at 1968, 1974, 1983, 1988, 1993, undated
27	December 2017 Photograph from Integral Site Evaluation
28	Delta Surveyors, Dixie Paint & Varnish Co. Survey (May 19, 1961)

ATTACHMENT DESCRIPTION 29 Google Earth Photo (Jan. 2019) Applied Environmental Strategies, Amended Release Notification (Mar. 29, 30 1996) Letter from Woodall to Crowley re Compliance Status Report Call-In (Dec. 31 22, 1997) Goldman Environmental Management Services, Compliance Status Report 32 (Aug. 30, 1998) 33 OPPT Chemical Fact Sheets, Chlorobenzene, EPA (1995) EnviroAssets, Inc., Phase III RFI Groundwater Report, South San Francisco, 34 CA (Aug. 14, 2005) Environ, Groundwater Plume Stability Monitoring Report, Royal Adhesives 35 & Sealants Site, South Bend, Indiana (Sept. 2005) CSR Notice of Deficiency (Feb. 5, 1999) 36 Letter from Houle to Hendricks (EPD) re: Response to CSR Notice of 37 Deficiency (Feb. 17, 1999) Applied Environmental Strategies, Compliance Status Report Addendum 38 (April 20, 1999) 39 Letter from Hendricks (EPD) to Crowley re: CSR Completion (July 29, 1999) Letter from Houle to Hendricks (EPD) re: Compliance Monitoring Plan (Aug. 40 24, 1999) 41 Law Engineering and Environmental Services, Inc., Corrective Action Plan 42 MACTEC, Revised Corrective Action Plan (Jan. 2003) 43 MACTEC, Revised Recertification Supplemental Report (Sept. 2003) Letter from EPD to Arnold re NOD for Revised CAP and Re-Certification 44 (Mar. 18, 2003) 45 MACTEC, Groundwater Recertification Documentation (Nov. 21, 2003) 46 Letter from Word (EPD) to Arnold re Re-Certification (Oct. 17, 2003) Dobbs Environmental, Compliance Status Report and Brownfield Application 47 (Nov. 2003) 48 EPD Limitation of Liability Letter (Dec. 5, 2003) 49 Integral Consulting, Inc., Report of Phase 2 Sampling Activities (Oct. 2018) Montrose Environmental Group, Report on Remediation liability and Redevelopment Implications Associated with Contamination from On-Site 50 Sources at Plaintiffs' Property (March 2020) Field Notes for Monitoring Well Installations (Sept. 2018) 51 52 Monitoring Well Figure 53 Groundwater Sampling Results (March 2019) 54 Title Insurance Policy Excerpt for 2696 Glynn Ave. (2004)

ATTACHMENT	DESCRIPTION
55	Unocal Corporation https://www.britannica.com/topic/Unocal-Corporation.
56	Unocal Corp., Seventy-Six, Vol. LXIV, No. 6 (Nov./Dec. 1985)
57	Glynn Co. Property Record, Parcel 01-03942
58	Georgia EPD, UST "Data for Gilmer to Worth Counties" (updated July 2021), available at https://epd.georgia.gov/document/document/gilmer-worth-091420/download (excerpt)
59	Letter from Gulden to Williams (EPD) enclosing Closure Report Form (May 5, 2000)
60	Dobbs Environmental, Corrective Action Plan Part A (January 2006)
61	Letter from Dobbs to Wallace (EPD) enclosing responses to comments (Feb. 7, 2006)
62	(excerpt) U.S. EPA, Locating and Estimating Air Emissions from Sources of Chlorobenzenes (revised) (1994)
63	Mactec, "Former O'Brien Paint Facility Potentiometric Surface Map" (Sept. 26, 2003)
64	Letter from Wallace (EPD) to Nesmith enclosing Non-compliance history memorandum (April 9, 2004)
65	GUST-CAP-B Guidance (1995)
66	Letter from Wallace (EPD) to Adams with enclosures (Jan. 23, 2006)
67	Letter from Dobbs to Wallace (EPD) with enclosures (Apr. 19, 2006)
68	Letter from Dobbs to Wallace (EPD) enclosing CAP Part B (Oct. 5, 2007)
69	Letter from Wallace (EPD) to Dobbs enclosing comments (Oct. 17, 2007)
70	Letter from Dobbs to Wallace (EPD) enclosing responses to comments (Jan. 19, 2009)
71	Letter from Wallace to Dobbs (Feb. 4, 2009) with Memorandum from Wallace to Lewis re: Review Information Leading to Approval of CAP-Part B Addendum.
72	Letter from Dobbs to Wallace (EPD) with enclosures (Dec. 17, 2009)
73	Letter from Dobbs to Wallace (EPD) enclosing June 2010 Monitoring Report (June 11, 2010)
74	Letter from Dobbs to Wallace (EPD) (Jan. 18, 2010)
75	Letter from Wallace (EPD) to Dobbs (Feb. 18, 2010)
76	"No Further Action" Letter from Wallace (EPD) to Dobbs (June 22, 2010), with Memorandum from Wallace to Lewis re: Review Information Leading to Determination of "No Further Action Required"

ATTACHMENTS TO BE PROVIDED ON DIGITAL DISCS WITH THE HARD COPY

APPENDIX C

Laboratory Report for Biotreatability Studies

Prepared for:

Geosyntec Consultants, Inc. 1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Laboratory Treatability Study to Evaluate Aerobic Remediation of Benzene and Chlorobenzene in Groundwater

Deep Zone of the Upper Surficial Aquifer Hercules/Pinova Facility, Brunswick, GA

Prepared by:

130 Stone Road West Guelph, Ontario N1G 3Z2

SiREM Ref: GR6881C

27 January 2021

siremlab.com

TABLE OF CONTENTS

1.	INTROD	DUCTION	. 1
2.	SUMMA	RY OF DEGRADATION PROCESSES	1
3.	MATER	IALS AND METHODS	1
	3.1 Mic	rocosm Construction and Incubation	1
	3.1.1	Microcosm Amendments	2
	3.2 Mic	rocosm Sampling and Analysis	2
	3.2.1	Microcosm Sampling	2
	3.2.2	Analysis of VOCs and DHGs	3
	3.2.3	Analysis of pH	3
	3.2.4	Analysis of Dissolved Oxygen	4
	3.2.5	External Analysis of Total Organic Carbon	4
4.	RESUL ⁻	TS	4
5.	REFERI	ENCES	4

LIST OF TABLES

Table 1: Summary of Aerobic Microcosm Controls, Treatments and Amendments

Table 2: Summary of Aerobic Microcosm Benzene, CB and Methane Results

Table 3: Summary of Aerobic Microcosm TOC, pH, DO and Oxygen per Total Carbon

Results

LIST OF FIGURES

Figure 1: Potential Aerobic Pathway for the Biodegradation of Benzene

Figure 2: Potential Aerobic Pathway for the Biodegradation of Chlorobenzene

Figure 3: Benzene and Chlorobenzene Concentration Trends in Deep Benzene Aerobic

Microcosms

LIST OF APPENDICES

Appendix A: Chain of Custody Documentation

Appendix B: Henry's Law Calculation

LIST OF ABBREVIATIONS

% percent

°C degrees Celsius

°C/min degrees Celsius per minute

μg/L micrograms per liter
CB chlorobenzene

CO₂ carbon dioxide

DHG dissolved hydrocarbon gases

DO dissolved oxygen

EISB enhanced in situ bioremediation

FID flame ionization detector

g grams

GC gas chromatograph

Geosyntec Geosyntec Consultants Inc.

mg/L milligrams per liter

min minutes mL milliliters

mL/min milliliters per minute mmol/bottle millimoles per bottle QL quantitation limit SiREM SiREM Laboratory

VOC volatile organic compounds

1. INTRODUCTION

Geosyntec Consultants, Inc. (Geosyntec) retained SiREM Laboratory (SiREM) to conduct a biotreatability study to assess the potential for enhanced *in situ* bioremediation (EISB) of benzene and chlorobenzene under aerobic conditions in groundwater at the Brunswick site in Georgia (the Site). Site materials were collected from Deep Zone of the Upper Surficial aquifer. Geologic materials were collected by Geosyntec on 9 March 2020 and received by SiREM on 12 March 2020. The groundwater used for the study was received by SiREM on 3 March 2020. The chain of custodies received with these samples are provided in Appendix A.

The remainder of this report is divided into four sections. Section 2 contains a summary of key degradation processes for the target compounds of concern. Section 3 presents the experimental materials and methods; Section 4 presents the results and Section 5 provides references.

2. SUMMARY OF DEGRADATION PROCESSES

Benzene and chlorobenzene compounds can be biologically degraded under a variety of aerobic and anaerobic conditions (Wiedemeier *et al.* 1995).

Under aerobic conditions, these compounds are rapidly oxidized using oxygen as an electron acceptor producing carbon dioxide (CO₂) by indigenous microbial populations. Although benzene biodegradation under anoxic and anaerobic conditions is less energetically favorable, it has been observed to occur in situ at sites containing benzene and CB compounds. Under appropriate conditions, benzene acts as an electron donor for nitrate-reducing, iron-reducing, sulfate-reducing, or methanogenic microbial populations. CB acts as an electron acceptor and requires the presence of an electron donor. Ultimately both benzene and CB can be degraded via anaerobic pathways to CO₂ (Ulrich *et al.*, 2005). Enhanced biological remediation of benzene and CB can, in certain cases, be achieved by stimulating the indigenous microbial populations through the addition of electron acceptors, such as oxygen and sulfate (De Silva and Alvarez, 2004).

In this study, degradation of benzene and CB under aerobic conditions was investigated

3. MATERIALS AND METHODS

The following sections describe the materials and methods used for microcosm construction, amendments and incubation for the aerobic study.

3.1 Microcosm Construction and Incubation

The geologic material was collected from deep zone of the upper surficial aquifer at the Hercules/Pinova Facility in Brunswick, Georgia. The geologic material from was homogenized on 26 March 2020 by combining the geologic material from TSB-02-MW29D-78-80, TSB-02-MW29D-80-82, TSB-02-MW29D-84-86, TSB-02-MW29D-86-88 and TSB-02-MW29D-88-90. Initially the Site materials were used to prepare anaerobic microcosms (not discussed in this report). Therefore, cores were placed in a disposable anaerobic glove bag purged with nitrogen gas in order to create an anaerobic environment. Once removed from the cores, the geologic material was homogenized manually and passed through a ¼ inch sieve to

remove larger particles and to improve reproducibility between microcosm replicates. Unused Site materials were placed in cold storage in case there was a need for additional testing.

Geosyntec instructed SIREM to prepare aerobic microcosms based on their review of other treatability study results. Microcosms for the aerobic Brunswick study were then constructed in a fume hood on 8 July 20 by filling sterile 250 milliliter (mL) (nominal volume) screw cap Boston round clear glass bottles (Systems Plus, New Hamburg, ON) with 60 grams (g) of TBS-02 geologic material and 180 mL of MW-29D site groundwater. The microcosms were then capped with Mininert™ (VICI Valco Instruments Canada, Brockville, Ontario) closures to allow repetitive sampling with minimal volatile organic compound (VOC) loss and to allow amendments, as needed, throughout the incubation period. All controls and treatments were constructed in triplicate. In order to provide sufficient sample volumes for external laboratory analysis, additional sacrificial microcosms were constructed for each external analysis time-point throughout the study. Table 1 summarizes the details of microcosm construction.

All aerobic microcosms were incubated under ambient aerobic conditions in the laboratory. During quiescent incubation, all microcosms were covered to minimize photodegradation. Microcosms were incubated for a period of up to 80 days at approximately 22 degrees Celsius (°C) (room temperature).

3.1.1 Microcosm Amendments

The first microcosm of each treatment and control was amended with resazurin (Sigma, St. Louis, MO) to monitor redox conditions on 13 July 2020 (Day 0). Resazurin remains pink in the presence of oxygen and can be used as a visual indicator for the presence or absence of oxidizing conditions. Geosyntec specified that the initial benzene and chlorobenzene concentrations in the should be 2.3 mg/L and 0.8 mg/L respectively to represent the historical concentrations measured at the Site. The initial concentrations of the microcosms were not at the target concentrations and therefore on 13 July 2020 (Day 0), the microcosms were spiked with benzene and chlorobenzene to achieve the target concentrations. Details of resazurin amendment as well as benzene and chlorobenzene spiking are provided in Table 1.

Oxygen was amended into the treatment microcosms to maintain aerobic conditions. 100% Oxygen (Linde, Cambridge, Ontario) was amended into the treatment microcosms. Oxygen was monitored and amended as needed, to maintain a dissolved oxygen (DO) concentration between 5-8 mg/L in the aqueous phase. Additional oxygen was amended, as needed, throughout the study and monitored by both the resazurin color and the measurement of DO (Table 3). To account for potential headspace losses of volatile contaminants due to multiple oxygen amendments, the sterile control microcosms received equal volumes of nitrogen amendments. Details of gas addition are provided in Tables 1 and 2.

3.2 Microcosm Sampling and Analysis

3.2.1 Microcosm Sampling

Aqueous samples were collected from the control and treatment microcosms for analysis of benzene and chlorobenzene, dissolved hydrocarbon gases (DHGs – specifically methane), pH

and DO at SiREM. Microcosms were sampled for these parameters using gas-tight 1 mL Hamilton glass syringes. Syringes were cleaned with acidified water (pH ~2) and rinsed 10 times with deionized water between samples, to ensure that VOCs and microorganisms were not transferred between different samples or treatments. Baseline total organic carbon (TOC) samples were collected on the geologic materials at the beginning of the study by filling a 250 mL glass jar with geologic material. Samples were stored on ice and picked up by ALS (ALS Analytical Inc., Waterloo) personnel.

The analytical methods employed by SiREM are described below.

3.2.2 Analysis of VOCs and DHGs

This section describes the methods used to quantify the VOCs and DHGs. The quantitation limits (QL) for the VOCs and DHGs were typically 10 micrograms per liter (μ g/L) in the microcosms based on the sample dilution factor used and the lowest concentration standards that were included in the linear calibration trend.

Aqueous VOC and DHG concentrations in the microcosms were measured using a Hewlett-Packard (Hewlett Packard 7890) gas chromatograph (GC) equipped with an auto sampler (Hewlett Packard G1888) programmed to heat each sample vial to 75°C for 45 minutes (min) prior to headspace injection into a GSQ Plot column (0.53 millimeters x 30 meters, J&W) and a flame ionization detector (FID). Sample vials were heated to ensure that all VOCs in the aqueous sample would partition into the headspace. The injector temperature was 200°C, and the detector temperature was 250°C. The oven temperature was programmed as follows: 35°C for 2 min, increased to 100°C at 50 degrees Celsius per minute (°C/min), then increased to 185°C at 25°C/min and held at 185°C for 6.80 min. The carrier gas was helium at a flow rate of 11 milliliters per minute (mL/min).

After withdrawing a sample (as described in Section 2.2.1) from the microcosms, the sample was injected into a 10 mL auto sampler vial containing acidified deionized water (pH ~2). The sample volume was added to the vial containing deionized water bringing the total volume up to 6 mL. The water was acidified to inhibit microbial activity between microcosm sampling and GC analysis. The vial was sealed with an inert Teflon™-lined septum and aluminum crimp cap for automated injection of 3 mL of headspace onto the GC. One VOC standard was analyzed with each set of samples to verify the instrument five-point calibration curve using methanolic stock solutions containing known concentrations of the target analytes. Calibration was performed using external standards purchased as standard solutions (Sigma, St Louis, Missouri), where known volumes of standard solutions were added to acidified water in auto sampler vials and analyzed as described above for microcosm samples. Data were integrated using Chemstation Software (Agilent Technologies, Santa Clara, California).

3.2.3 Analysis of pH

The pH measurements were performed using an Oakton pH spear with a combination pH electrode (Oakton, Vernon Hills, IL). A 0.5 mL sample was collected from the microcosms (as described in section 2.2.1), and the pH was measured on the lab bench. The pH spear was

calibrated at each sampling event according to the manufacturer's instructions using pH 4.0, 7.0 and 10 standards.

3.2.4 Analysis of Dissolved Oxygen

The DO analyses were performed using a Mi-730 Micro-Oxygen Electrode (Microelectrodes, Inc., Bedford, NH, USA) in conjunction with the ES350 Pod-Vu software (eDAQ, Denistone East, Australia). A 0.25 mL sample was collected (as described in Section 2.2.1) and placed in a 1.5 mL microcentrifuge tube. The DO was measured on the lab bench immediately after sampling. The DO probe was calibrated before each use according to manufacturer's instructions.

3.2.5 External Analysis of Total Organic Carbon

Analysis of total organic carbon (TOC) on the geologic material was performed at ALS (ALS Environmental, Waterloo). Geologic samples were prepared by filling a 250 mL amber glass jar with geologic material.

4. RESULTS

Table 2 provides benzene, CB and methane data from the control and treatment microcosms over the incubation period for the study. Results are presented in units of mg/L and millimoles per microcosm bottle (mmol/bottle). Concentrations were converted from mg/L to mmol/bottle using Henry's Law as demonstrated in Appendix B.

Table 3 provides TOC, pH and DO results. The TOC values are reported as a percentage and the DO is reported in mg/L. The mass of oxygen per gram of TOC and per gram of VOC was calculated based on the amount of oxygen added. Figure 3 presents the benzene trends in the concentrations of benzene and CB. Appendix C presents external laboratory reports.

5. REFERENCES

- Da Silva, M. L.; Alvarez, P. J. J. 2004. Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns. Appl. Environ. Microbiol. 70(8): 4720-4726.
- Ulrich, A.C., H.R. Beller and E.A. Edwards. 2005. Metabolites detected during biodegradation of C-13(6)-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39: 6681–6691.
- Wiedemeier, T. H.; Miller, R. N.; Wilson, J. T.; Kampbell, D. H. 1995. Significance of anaerobic processes for the intrinsic bioremediation of fuel hydrocarbons. Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Remediation Conference. 49-61.

TABLES

Treatment/Control	Assigned Microcosm Number	Number of Microcosms	Geological Material (g)	Groundwater (mL)	Headspace (mL)	Sodium Azide	Mercuric Chloride	Resazurin	Benzene and CB	Gas amendment
Deep Aerobic Sterile Control	7 to 9	3	Amended with Amended with 180 mL of MW-		40	Amended with 0.45 mL of a 5 % solution on Day 0.	Amended with 2.52 mL of a 2.7% solution on Day 0.	Amended first replicate with 100 μL of a 1,000	Spiked with 228 µL of saturated benzene and 309 µL of saturated CB to	Amend with nitrogen gas as needed.
Deep Aerobic Treatment	10 to 12	3	g of TSB-02.	29D site groundwater.	20			mg/L solution on Day 0.	target final concentrations of 2.3 mg/L and 0.8 mg/L respectively.	Amend with oxygen gas to an initial target of 21 % of the headspace and then maintain as needed between 5-8 mg/L DO.

Notes:

-- - not applicable

% - percent

μL - microliter

CB - chlorobenzene

DO - dissolved oxygen

g - grams

mg/L - milligrams per liter

mL - milliliters

Table 1 Page 1 of 1

Treatment	Date	Day	Replicate	Benzene	СВ	Methane	Comment
A 11 00 11 0 1 1	40 1 1 00			mg/L	mg/L	mg/L	
eep Aerobic Sterile Control	13-Jul-20	0					Poisoned with mecuric chloride and sodium azide.
							Amended the first replicate with resazurin. Spiked with benzene and CB to target final concentrations of 2.3 mg/L and 0.8 mg/L respectively.
							Amended with 16.4 mL of nitrogen gas.
			DASC-1	2.8	0.86	<0.10	Afficiated with 10.4 file of fill ogen gas.
			DASC-2	2.8	0.80	<0.10	
			DASC-3	2.0	0.81	<0.10	
		ŀ	Average Concentration (mg/L)	2.8	0.82	ND	
			Standard Deviation (mmoles)	1.5E-04	5.5E-05	0.0E+00	
			Average Total mmoles	0.0069	0.0014	ND	
	15-Jul-20	2	DASC-1	2.7	0.91	<0.10	
	10 04. 20	_	DASC-2	2.7	0.79	<0.10	
			DASC-3	2.8	0.77	<0.10	
			Average Concentration (mg/L)	2.7	0.82	ND	
			Standard Deviation (mmoles)	2.2E-05	1.2E-04	0.0E+00	
			Average Total mmoles	0.0066	0.0014	ND	
							Amended with 8.4 mL of nitrogen gas.
	17-Jul-20	4	DASC-1	2.7	0.98	<0.10	
			DASC-2	2.5	0.56	<0.10	
			DASC-3	2.8	0.78	<0.10	
			Average Concentration (mg/L)	2.6	0.77	ND	
			Standard Deviation (mmoles)	4.1E-04	3.4E-04	0.0E+00	
			Average Total mmoles	0.0064	0.0013	ND	
							Amended with 8.4 mL of nitrogen gas.
	27-Jul-20	14	DASC-1	2.7	0.99	<0.10	
			DASC-2	2.8	0.80	<0.10	
			DASC-3	2.8	0.79	<0.10	
			Average Concentration (mg/L)	2.7	0.86	ND	
			Standard Deviation (mmoles)	1.7E-04	1.9E-04	0.0E+00	
			Average Total mmoles	0.0066	0.0014	ND	
	05-Aug-20	23	DASC-1	2.6	0.98	<0.10	
			DASC-2	2.5	0.76	<0.10	
			DASC-3	2.7	0.81	<0.10	
			Average Concentration (mg/L)	2.6	0.85	ND	
			Standard Deviation (mmoles)	2.4E-04	1.9E-04	0.0E+00	
			Average Total mmoles	0.0063	0.0014	ND	Assembled with O A and of wither your man
	40.400	27	DACC 4	0.7	4.0	0.40	Amended with 8.4 mL of nitrogen gas.
	19-Aug-20	37	DASC-1	2.7	1.0	<0.10	
			DASC-2 DASC-3	2.7	0.77	<0.10	
				2.7	0.8	<0.10	
			Average Concentration (mg/L) Standard Deviation (mmoles)		0.86	ND	
			Average Total mmoles	2.9E-05	2.1E-04	0.0E+00	
	27-Aug-20	45	Average rotal fillioles	0.0066	0.0014	ND	Amended with 8.4 mL of nitrogen gas.
	02-Sep-20	51	DASC-1	2.6	0.99	<0.10	ATTICITATES WILL 0.4 THE OF HILLOGEN YES.
	02-36p-20	51	DASC-1	2.7	0.99	<0.10	
			DASC-2 DASC-3	2.7 2.7	0.73	<0.10	
			Average Concentration (mg/L)	2.7	0.74	<0.10 ND	
			Standard Deviation (mmoles)	2.7 1.5E-04	2.4E-04	0.0E+00	
			Average Total mmoles	0.0064	0.0014	0.0E+00	
		ı .	Average Total Illilloles	0.0004	0.0014	עא	

Table 2 Page 2 of 6

Treatment	Date	Day	Replicate	Benzene	СВ	Methane	Comment
				mg/L	mg/L	mg/L	
Deep Aerobic Sterile Control	11-Sep-20	60	DASC-1	2.5	1.0	<0.10	
Continued			DASC-2	2.6	0.77	<0.10	
			DASC-3	2.6	0.76	<0.10	
			Average Concentration (mg/L)	2.6	0.85	ND	
			Standard Deviation (mmoles)	1.3E-04	2.4E-04	0.0E+00	
			Average Total mmoles	0.0063	0.0014	ND	
							Amended with 8.4 mL of nitrogen gas.
	01-Oct-20	80	DASC-1	2.6	0.93	<0.10	
			DASC-2	2.7	0.77	<0.10	
			DASC-3	2.6	0.73	<0.10	
			Average Concentration (mg/L)	2.6	0.81	ND	
			Standard Deviation (mmoles)	1.7E-04	1.7E-04	0.0E+00	
			Average Total mmoles	0.0063	0.0013	ND	
Deep Aerobic Treatment	13-Jul-20	0					Amended the first replicate with resazurin.
							Spiked with benzene and CB to target final concentrations of 2.3 mg/L and 0.8 mg/L respectively.
							Amended with 16.8 mL of oxygen gas.
			DAT-1	3.0	0.82	<0.10	
			DAT-2	3.0	0.80	<0.10	
			DAT-3	3.2	0.85	<0.10	
			Average Concentration (mg/L)	3.1	0.82	ND	
			Standard Deviation (mmoles)	2.5E-04	3.9E-05	0.0E+00	
			Average Total mmoles	0.0074	0.0014	ND	
	15-Jul-20	2	DAT-1	2.8	0.8	<0.10	
			DAT-2	3.0	0.8	<0.10	
			DAT-3	3.0	0.82	<0.10	
			Average Concentration (mg/L)	2.9	0.81	ND	
			Standard Deviation (mmoles)	2.6E-04	1.8E-05	0.0E+00	
			Average Total mmoles	0.0071	0.0013	ND	
			g-	0.001.1	0.00.0		Amended with 8.4 mL of oxygen gas.
	17-Jul-20	4	DAT-1	2.8	0.78	<0.10	73 3
			DAT-2	2.9	0.75	<0.10	
			DAT-3	2.9	0.77	<0.10	
			Average Concentration (mg/L)	2.8	0.77	ND	
			Standard Deviation (mmoles)	1.9E-04	2.2E-05	0.0E+00	
			Average Total mmoles	0.0069	0.0013	ND	
			7.1.01ago 101a1 111110100	0.0000	0.0010	, its	Amended with 8.4 mL of oxygen gas.
	27-Jul-20	14	DAT-1	2.6	0.77	<0.10	7,5 5
			DAT-2	3.0	0.81	<0.10	
			DAT-3	3.0	0.87	<0.10	
			Average Concentration (mg/L)	2.9	0.82	ND	
			Standard Deviation (mmoles)	4.9E-04	8.6E-05	0.0E+00	
			Average Total mmoles	0.0069	0.0014	0.0E+00	
	05-Aug-20	23	DAT-1	1.8	0.66	<0.10	
	03-Aug-20	23	DAT-1		0.60	<0.10	
			DAT-3	2.2			
				2.0	0.63	<0.10	
			Average Concentration (mg/L)	2.0	0.63	ND	
			Standard Deviation (mmoles) Average Total mmoles	4.8E-04	5.0E-05	0.0E+00	
	1	1	Avorago Total mmoles	0.0048	0.0010	ND	

Table 2 Page 3 of 6

Treatment	Date	Day	Replicate	Benzene	СВ	Methane	Comment
				mg/L	mg/L	mg/L	
Deep Aerobic Treatment	19-Aug-20	37	DAT-1	0.59	0.48	<0.10	
Continued			DAT-2	1.8	<0.020	<0.10	
			DAT-3	0.83	<0.020	<0.10	
			Average Concentration (mg/L)	1.1	0.16	ND	
			Standard Deviation (mmoles)	1.5E-03	4.6E-04	0.0E+00	
			Average Total mmoles	0.0026	0.00026	ND	
	27-Aug-20	45					Amended with 8.4 mL of oxygen gas.
	02-Sep-20	51	DAT-1	0.14	0.31	<0.10	
			DAT-2	0.44	0.18	<0.10	
			DAT-3	0.10	0.10	<0.10	
			Average Concentration (mg/L)	0.23	0.20	ND	
			Standard Deviation (mmoles)	4.5E-04	1.7E-04	0.0E+00	
			Average Total mmoles	0.00055	0.00033	ND	
							Amended with 8.4 mL of oxygen gas.
	11-Sep-20	60	DAT-1	0.038	0.24	<0.10	
			DAT-2	0.18	<0.020	<0.10	
			DAT-3	0.035	0.061	<0.10	
			Average Concentration (mg/L)	0.086	0.15	ND	
			Standard Deviation (mmoles)	2.1E-04	1.3E-01	0.0E+00	
			Average Total mmoles	0.00021	0.00025	ND	
	24-Sep-20	73	DAT-1	<0.020	0.23	<0.10	
			DAT-2	0.042	0.053	<0.10	
			DAT-3	<0.020	0.039	<0.10	
			Average Concentration (mg/L)	0.014	0.11	ND	
			Standard Deviation (mmoles)	5.8E-05	1.8E-04	0.0E+00	
			Average Total mmoles	0.000034	0.00018	ND	
		Ī				1	Amended with 8.4 mL of oxygen gas.
	01-Oct-20	80	DAT-1	<0.020	0.20	<0.10	
			DAT-2	<0.020	<0.020	<0.10	
			DAT-3	<0.020	0.039	<0.10	
			Average Concentration (mg/L)	ND	0.081	ND	
			Standard Deviation (mmoles)	0.0E+00	1.8E-04	0.0E+00	
			Average Total mmoles	ND	0.00013	ND	

Notes:

< - the compound is not detected, the associated value is the detection limit

CB - chlorobenzene

DASC - deep aerobic sterile control

DAT - deep aerobic treatment

mg/L - milligrams per liter

mL - milliliters

mmole - millimole

ND - not detected

Table 2 Page 4 of 6

TABLE 3: SUMMARY OF AEROBIC MICROCOSM TOC, pH, DO, AND OXYGEN PER TOTAL CARBON RESULTS Deep Zone of Upper Surficial Aquifer, Brunswick, GA

Treatment	Date	Day	Replicate	pH 5734 Geologic Material	DO mg/L	O ₂ /TOC** g O ₂ /g TOC	O ₂ /VOC*** g O ₂ /g VOC
Baseline Deep Benzene Deep Aerobic Sterile Control	13-Jul-20	0	DASC-1	6.66	4.45		
·			DASC-2	6.79	2.41		
			DASC-3	6.84 6.76	5.89 4.25		
			Average		nded with 16.8 mL of n	itrogen.	
	15-Jul-20	2	DASC-1	6.66	5.89	T	
			DASC-2	6.74	3.55		
			DASC-3 Average	6.81 6.74	4.54 4.66	<u></u>	
			Average		ended with 4.2 mL of ni		
	17-Jul-20	4	DASC-1	6.62	3.14		
			DASC-2	6.56	2.33	-	
			DASC-3 Average	6.60 6.59	4.38 3.28		
			71101490		ended with 8.4 mL of ni		
	20-Jul-20	7	DASC-1				
			DASC-2 DASC-3		5.09*		
			Average		5.09		
	23-Jul-20	10	DASC-1	6.77			
			DASC-2	6.78	3.66*		
			DASC-3 Average	6.84 6.80	3.79		
	5-Aug-20	23	DASC-1	6.86	4.03	-	-
			DASC-2	6.81	3.26		
			DASC-3	6.83	3.69	1	
			Average	6.83	3.66 ended with 8.4 mL of nit	trogen.	
	14-Aug-20	32	DASC-1		3.32	9	
			DASC-2		3.26		
			DASC-3		3.48	1	
	19-Aug-20	37	Average DASC-1	6.81	3.35 3.55		
	10 / lug-20	"	DASC-1 DASC-2	6.85	2.56		
			DASC-3	6.83	3.35		
	07 A 00	45	Average	6.83	3.15		
	27-Aug-20	45	DASC-1 DASC-2		2.87 2.87		
			DASC-3		3.77		
			Average		3.17		
	2-Sep-20	51	DASC-1	6.81	ended with 8.4 mL of nit	trogen.	
	2-3ep-20	51	DASC-1 DASC-2	6.87			
			DASC-3	6.85			
			Average	6.84			
	11-Sep-20	60	DASC-1	7.14	ended with 8.4 mL of nit	trogen.	
	11-0cp-20		DASC-2	7.13	5.51		
			DASC-3	7.30	3.37		
	40.0	07	Average	7.19	3.99		
	18-Sep-20	67	DASC-1 DASC-2		2.83 3.10		
			DASC-3		2.94		
			Average		2.96		
	1-Oct-20	80	DASC-1 DASC-2	6.77 6.80	3.42 3.13		
			DASC-2 DASC-3	6.97	3.04		
			Average	6.85	3.19		
Deep Aerobic Treatment	13-Jul-20	0	DAT-1	6.88	6.62		
			DAT-2 DAT-3	6.92 6.76	7.26 5.71		
			Average	6.85	6.53		
	. =			Am	ended with 16.8 mL ox	ygen.	
	15-Jul-20	2	DAT-1	7.22	7.07	0.120	32
			DAT-2 DAT-3	7.16 7.09	6.36 4.49	0.120	32
			Average	7.16	5.97	0.120	32
	49				nended with 8.4 mL oxy	ygen.	
	17-Jul-20	4	DAT-1 DAT-2	6.86 6.71	6.77 4.04	0.180	48
			DAT-2 DAT-3	6.78	5.01	0.100	70
			Average	6.78	5.27	0.180	48
					nended with 4.2 mL oxy		
	20-Jul-20	7	DAT-1		5.17	0.209	55
	20-Jui-20	'	DAT-1 DAT-2	-	9.57*	0.209	55
			DAT-3				
	00 11 00	10	Average	 6.76	9.57	0.209	55
	23-Jul-20	10	DAT-1 DAT-2	6.76 6.71	8.71*	0.209	55
			DAT-3	6.70			
			Average	6.72	8.71	0.209	55
	5-Aug-20	23	DAT-1 DAT-2	6.74 6.72	5.98 5.07	0.209	55
			DAT-2 DAT-3	6.67	4.97	0.209	35
			Average	6.71	5.34	0.209	55
					nended with 8.4 mL oxy		
	44.8.6-	+	- · - ·		6.21	1	
	14-Aug-20	32	DAT-1			0.260	71
	14-Aug-20	32	DAT-2	 	6.88	0.269	71
			DAT-2 DAT-3 Average	 	6.88 6.79 6.63	0.269	71 71
	14-Aug-20 19-Aug-20	32	DAT-2 DAT-3 Average DAT-1	 6.75	6.88 6.79 6.63 6.57	0.269	71
			DAT-2 DAT-3 Average	 	6.88 6.79 6.63		

Table 3 Page 5 of 6

Treatment	Date	Day	Replicate	pH	DO	O ₂ /TOC**	O ₂ /VOC***								
rreatment	Date	Day	Replicate	рп	mg/L	g O ₂ /g TOC	g O ₂ /g VOC								
Deep Aerobic Treatment	27-Aug-20	45	DAT-1		5.66										
Continued			DAT-2		5.87	0.269	71								
			DAT-3		5.40										
			Average		5.64	0.269	71								
			Amended with 8.4 mL oxygen.												
	2-Sep-20	51	DAT-1	6.65	2.54										
			DAT-2	6.60	4.97	0.329	87								
			DAT-3	6.58	3.48										
			Average	6.61	3.66	0.329	87								
			Amended with 8.4 mL oxygen.												
	11-Sep-20	60	DAT-1	6.93	5.74										
			DAT-2	7.06	6.61	0.389	103								
			DAT-3	7.17	7.69										
			Average	7.05	6.68	0.389	103								
	18-Sep-20	67	DAT-1		5.60										
			DAT-2		7.17	0.389	103								
			DAT-3		6.34										
			Average		6.37	0.389	103								
	1-Oct-20	80	DAT-1	6.70	7.67										
			DAT-2	6.66	6.14	0.389	103								
			DAT-3	6.55	6.14										
			Average	6.64	6.65	0.389	103								

Notes:

DASC - deep aerobic sterile control

DAT - deep aerobic treatment
mg O₂/g TOC - milligrams of oxygen amended to reactor per gram of organic carbon at the start of the incubation period

mg O₂/g VOC - milligrams of oxygen amended to reactor per gram of total VOCs at the start of the incubation period

mg/L - milligrams per liter

mL - milliliters O₂ - oxygen gas

SASC - shallow arobic sterile control

SAT - shallow aerobic treatment

TOC - total organic carbon VOC - volatile organic compound

Table 3 Page 6 of 6

^{*} Composite sample, measured wit optical DO probe, standard measurements collected using electrode DO probe

^{**}Calculated as total grams of oxygen added per grams of total organic carbon (sum of geologic material TOC and aqueous VOCs) at the start of testing

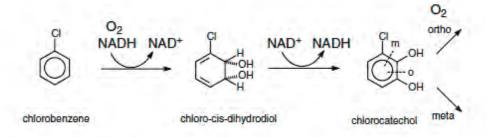
 $^{^{\}star\star}\text{Calculated}$ as total grams of oxygen added per grams of total VOCs at the start of testing

^{% -} percent

FIGURES

A)

Benzene Benzene epoxide trans-1,2-dihydroxy- Catechol cyclohexadiene + NADH

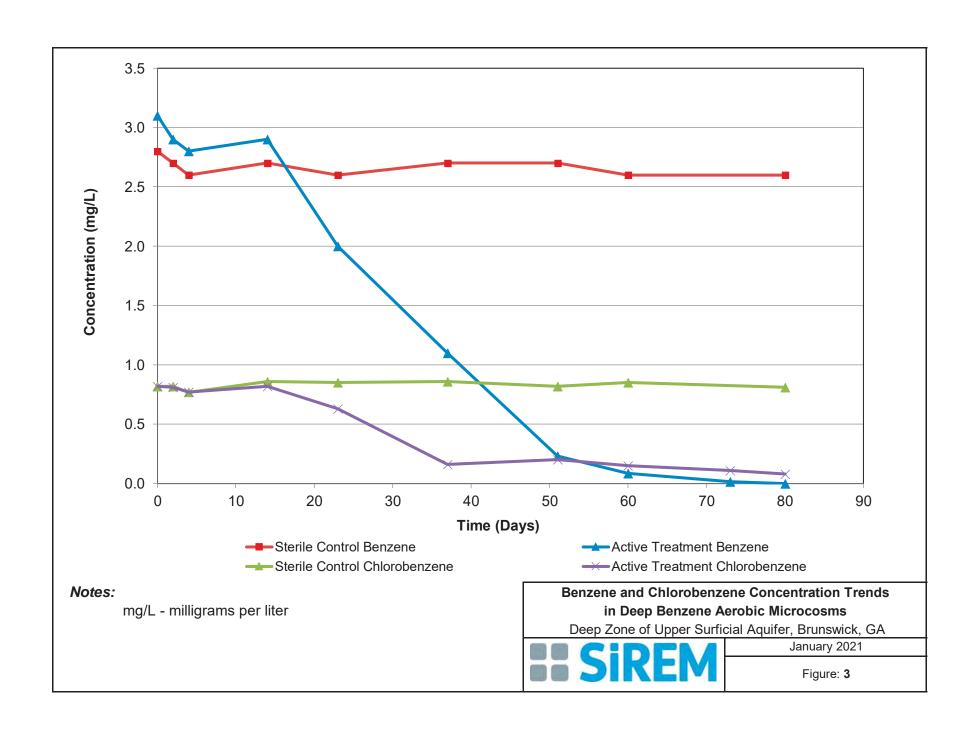

B)

Potential Aerobic Pathway for the Biodegradation of Benzene

October 2020

Figure: 1

ORTHO CLEAVAGE



Potential Aerobic Pathway for the Biodegradation of Chlorobenzene

October 2020

Figure: 2

APPENDIX A: Chain of Custody Documentation

Chain-of-Custody Form

*Project Name *Project Manager *Project Manager *Email Address *Email Address		Analysis												
*Project Manager Wrin Reimer	*Project # Company	eo synt	ı									Preservative Key		
*Email Address are:mer Q gospate.com Address (Street) 1255 Roberts B W.) City Kennessan State/Province Ga		Country USA					В В	9	udy			0. None 1. HCL 2. Other 3. Other		
*Phone # 678-202-9564		05	/		Sene-Trac DHC	Gene-Trac VC	Gene-Trac DHB	Gene-Trac DHG	Treatability Study			4. Other		
*Sampler's Signature & Sampler's Name	Printed Be	~ Wein	mount		Gene-	Gene-	Gene-	Gene-	Treata			5. Other		
Cilent Sample ID		npling Time	Matrix	# of Containers								Other Information		
KB-01_ MWZBD_ 83-81	3/4/20	6945	5	1					X					
15301 MW28D_ 81/-85	3/1/20	0950	5	1					y					
TSB-01_4W280_85-86	3/4/20	0955	5	1					×	ALL L				
153-01-MW 280-BG-88	3/4/20	اسمرا	5	1					X					
153-02_MUZAD_ 78-80	3/4/2	1200	5	1					Y					
733-02-MW290-80-82	3/4/20	1205	5	7					7					
153-02_hw29D_ 84-86	3/1/20	1210	S	1					X					
1573-02_MW29D_86-88	3/4/20	1215	5	1					X					
158-01_4w290_89-90	3/4/20	1220	2	1					X					
P.O. #		ound Time Re	equested	Cooler Co	ondition	:	For I	Lab Use	Only		For Lab (For Lab Use Only		
*Bill To:	H	ısh · 🔲		Cooler Te	mperat	ште:		4°C	10					
Custody !						Y	es 📝		to 🗆	l d:				
Signature	gnature Signature Signature				54	grature	Rec	elved B	у;	Signature	Relinquished By:	Received By: Signature		
Printed Den We inman Name Kachel Hall	lunan	Printed Name			Prin Nan	nted me				Printed Name		Printed Name		
Firm Geosputer Firm SIREH	F	im)			Firm	n				Firm		Firm		
Date/Time Date/Time	0.00	Date/fime			Date	te/Time				Date/Time		Date/Time		

Distribution: White - return to Originator: Yellow - Lab Copy: Pink - Retained by Client

^{*} Mandatory Fields

Chain-of-Custody Form

130 Stone Rd W Grijph, ON N1G 3Z2 (519) 822-2265

*Project Name Brunswick Treatabil	*Pro	oject #									Anal	ysis				
Adria Reiner	Gor	mpany C	iessynt	ec.												Preservative Key
Address (Street) 1255 Roberts Brid	ntec. con clerard GA	Suit	e 20			OH.	a	E	PH 94	₩ 0.0	Acids	drocarbon gases	ונותא			0. None 1. HCL 2. Other 3. Other
*Sampler's Signature *Sampler S Printed Name						Gene-Trac DHC	Gene-Trac VC	Gene-Trac DHB	Gene-Trac DHG	Gene-Trac toeA	Volatile Farty Acids	Dissafved hydrocarbon	Treatability Study			4. Other 5. Other 6. Other
Client Sample ID		Sam Date	pling	Matrix	# of Containers							Ω				Other Information
MW-29D	0	285-A31)	GW	5								X			anc total.
																for CB/CF study
														-		
		:														
																<u> </u>
														\dashv		
P.O. W Billing Information		Turnaro	und Time Re	quested	Cooler Co	ndition;			ab Use	Only				For	Lab Use Only	,
*Bill To:		No	rmal 📗		Cooler Te	nperate	nte:	0	<u>~</u>							;
					Custody S	eals:	Ye	es 🗍	b	A			· ·	Proj	posal #;	
Signature Signature	ecelved By:		Relinquished By:			Sig	nature	Rece	elved By	<u></u>		Signatu		quishe		Received By: Signature
Printed Printed Name Printed Name	Yespoi VESPOI	Pt Ni	inted			Prim		_			\dashv	Printed Name				Printed
Firm Frim Sc.A	Em	Fe	rm			Letin			_		$\overline{}$	fum				Name Firm
	300		itc/Time			Date	/Time					Date/Tune				Date/Time

* Mandatory Lields

APPENDIX B: Henry's Law Calculation

The following Henry's Law calculation was used to convert SiREM aqueous concentrations to total mmoles of each analyte per microcosm bottle:

$$Total\ mmoles = \frac{C_{liq} \cdot \left(V_{liq} + H \cdot V_{gas}\right)}{Molecular\ Weight\ \left(\frac{mg}{mmol}\right)}$$

Where for the study:

 $C_{liq} = liquid concentration (mg/L)$

 $V_{liq} = liquid volume (0.18 L) per bottle$

 V_{gas} = headspace volume (0.04 L) per bottle

H = Henry's Law constant (dimensionless)

The Henry's Law constants used are summarized in the table below.

Analyte	Henry's Law Constant ^a (dimensionless)
Benzene	0.222
Chlorobenzene	0.161
Methane	27.27

^a Source: Montgomery, J.H. 2000. *Groundwater Chemicals Desk Reference, Third Edition.* CRC Press LLC, Boca Raton, FL.

APPENDIX C: External ALS Analytics Reports

SIREM

ATTN: Sandra Dworatzek 130 Stone Road West Guelph ON N1G 3Z2 Date Received: 22-JUL-20

Report Date: 30-JUL-20 12:06 (MT)

Version: FINAL

Client Phone: 519-822-2265

Certificate of Analysis

Lab Work Order #: L2478181
Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Gayle Braun

Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047

ALS CANADA LTD Part of the ALS Group An ALS Limited Company

ALS ENVIRONMENTAL ANALYTICAL REPORT

L4781811 S-5715 ES-1 Sampled By: J. WEB6 on 21-JUL-20 @ 16:00 Notice SOIL	Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
Fraction Organic Carbon 0.0073 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0076 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0071 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0074 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.73 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.76 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.71 0.10 % 29-JUL-20 30-JUL-20 R5171964 L2478181-2 S-5734 TSB-02 Sampled By: J. WEBB on 21-JUL-20 @ 16:00 Matrix: SOIL SOIL SOIL SOIL SOIL SOIL-20 30-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0032 0.0010	Sampled By: J. WEBB on 21-JUL-20 @ 16:00							
Fraction Organic Carbon 0.0073 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0076 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0071 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0074 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.73 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.76 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.71 0.10 % 29-JUL-20 30-JUL-20 R5171964 L2478181-2 S-5734 TSB-02 Sampled By: J. WEBB on 21-JUL-20 @ 16:00 Matrix: SOIL SOIL SOIL SOIL SOIL SOIL-20 30-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0032 0.0010	Organic / Inorganic Carbon							
Fraction Organic Carbon 0.0076 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0071 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0074 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.73 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.76 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.71 0.10 % 29-JUL-20 30-JUL-20 R5171964 L2478181-2 S-5734 TSB-02 Sampled By: J. WEBB on 21-JUL-20 @ 16:00 WEBB on 21-JUL-20 @ 16:00 30-JUL-20 R5171964 Sampled By: J. WEBB on 21-JUL-20 @ 16:00 O.0030 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon	Fraction Organic Carbon	0.0073		0.0010		29-JUL-20	30-JUL-20	R5171964
Average Fraction Organic Carbon 0.0074 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.73 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.76 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.71 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.71 0.10 % 29-JUL-20 30-JUL-20 R5171964 E2478181-2 S-5734 TSB-02 Sampled By: J. WEBB on 21-JUL-20 @ 16:00 Matrix: SOIL Organic / Inorganic Carbon Fraction Organic Carbon 0.0030 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0032 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.30 0.010 9-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.30 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964								
Total Organic Carbon 0.73 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.76 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.71 0.10 % 29-JUL-20 30-JUL-20 R5171964 L2478181-2 S-5734 TSB-02 Sampled By: J. WEBB on 21-JUL-20 @ 16:00 Matrix: SOIL Organic / Inorganic Carbon Fraction Organic Carbon 0.0030 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0032 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.30 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964	Fraction Organic Carbon	0.0071		0.0010		29-JUL-20	30-JUL-20	R5171964
Total Organic Carbon 0.76 0.10 % 29-JUL-20 30-JUL-20 R5171964 0.71 0.10 % 29-JUL-20 30-JUL-20 R5171964 R5171964 L2478181-2 S-5734 TSB-02	Average Fraction Organic Carbon	0.0074		0.0010		29-JUL-20	30-JUL-20	R5171964
Total Organic Carbon 0.76 0.10 % 29-JUL-20 30-JUL-20 R5171964 0.71 0.10 % 29-JUL-20 30-JUL-20 R5171964 R5171964 L2478181-2 S-5734 TSB-02	Total Organic Carbon	0.73		0.10	%	29-JUL-20	30-JUL-20	R5171964
L2478181-2 S-5734 TSB-02 Sampled By: J. WEBB on 21-JUL-20 @ 16:00 Matrix: SOIL Organic / Inorganic Carbon Fraction Organic Carbon 0.0030 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0032 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.30 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964								
Sampled By: J. WEBB on 21-JUL-20 @ 16:00 Matrix: SOIL Organic / Inorganic Carbon Fraction Organic Carbon 0.0030 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0032 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.30 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964	Total Organic Carbon	0.71		0.10	%	29-JUL-20	30-JUL-20	R5171964
Fraction Organic Carbon 0.0030 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0032 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.30 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964	Sampled By: J. WEBB on 21-JUL-20 @ 16:00							
Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Fraction Organic Carbon 0.0032 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.30 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964	Organic / Inorganic Carbon							
Fraction Organic Carbon 0.0032 0.0010 29-JUL-20 30-JUL-20 R5171964 Average Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.30 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964		0.0030		0.0010		29-JUL-20	30-JUL-20	R5171964
Average Fraction Organic Carbon 0.0031 0.0010 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.30 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964 R5171964 R5171964 R5171964 R5171964 R5171964		0.0031		0.0010				
Total Organic Carbon 0.30 0.10 % 29-JUL-20 30-JUL-20 R5171964 Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964	Fraction Organic Carbon	0.0032		0.0010		29-JUL-20	30-JUL-20	R5171964
Total Organic Carbon 0.31 0.10 % 29-JUL-20 30-JUL-20 R5171964	Average Fraction Organic Carbon	0.0031		0.0010		29-JUL-20	30-JUL-20	R5171964
		0.30		0.10		29-JUL-20	30-JUL-20	R5171964
Total Organic Carbon 0,32 0.10 % 29-JUL-20 30-JUL-20 R5171964								
	Total Organic Carbon	0.32		0.10	%	29-JUL-20	30-JUL-20	R5171964

^{*} Refer to Referenced Information for Qualifiers (if any) and Methodology.

L2478181 CONTD....
PAGE 3 of 3
Version: FINAL

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
TOC-R511-WT	Soil	TOC & FOC-O.Reg 153/04 (July 2011)	CARTER 21.3.2

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

^{**} ALS test methods may incorporate modifications from specified reference methods to improve performance.

Quality Control Report

Workorder: L2478181 Report Date: 30-JUL-20 Page 1 of 2

Client: SIREM

130 Stone Road West

Guelph ON N1G 3Z2

Contact: Sandra Dworatzek

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TOC-R511-WT	Soil							
Batch R5171964 WG3372585-3 CRM		WT-TOC-CRM						
Total Organic Carbon			93.8		%		70-130	30-JUL-20
WG3372585-2 LCS Total Organic Carbon			101.3		%		80-120	30-JUL-20
Total Organic Carbon			101.3		%		80-120	30-JUL-20
Total Organic Carbon			101.3		%		80-120	30-JUL-20
WG3372585-1 MB Total Organic Carbon			<0.10		%		0.1	30-JUL-20

Quality Control Report

Workorder: L2478181 Report Date: 30-JUL-20

Client: SIREM Page 2 of 2

130 Stone Road West Guelph ON N1G 3Z2

Contact: Sandra Dworatzek

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS) Environmental

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

L2478181-COFC

COC Number: 20

e _1 of _/

www.alsglobal.com Select Service Level Decon (Nush Turnaround Time (TAT) is not available for all tests) Report Format / Distribution Report To Regular (Standard TAT If received by 3 pm - business days) Select Report Format: PDF DECEL DEDD (DIGITAL) SIREM Company: Priority (2-4 bus. days if received by 3pm) 50% surcharge - contact ALS to confirm TAT Quality Control (QC) Report with Report Yes Jennifer Webb & Sandra Dworatzek Contact: E Emergency (1-2 bus. days if received by 3pm) 100% surcharge - contact ALS to confirm TAT Criteria on Report - provide details below if box checked 130 Stone Road West Address: E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge - EMAIL Select Distribution: Guelph, Ontario, N1G 3Z2 Email 1 or Fax jwebb@siremlab.com Specify Date Required for E2,E or P: Phone: 519-515-0839 **Analysis Request** sdworatzek@siremlab.com 519-822-2265 Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below Invoice Distribution F No Same as Report To Invoice To FAX MAIL **▼** Yes T No Copy of Invoice with Report. Email 1 or Fax accountspayablecan@siremlab.com SIREM a Division of Geosyntec Company Email 2 AccountsPayableCan@Siremlab.com Contact: Container Oil and Gas Required Fields (client use) **Project Information** Cost Center: Approver ID: ALS Quote #: Routing Code: GL Account: 6 Job#: Activity Code: PO/AFE: Location: LSD: A DALS Contact: Jen Webb Sampler: ALS Lab Work Order # (lab use only) Date Time Sample Identification and/or Coordinates ALS Sample # Sample Type (hh:mm) (This description will appear on the report) (dd-mmm-yy) (tab use only) R 16:00 Soil 21-Jul-20 S-5715 ES-1 R Soit 21-Jul-20 16:00 S-5734 TSB-02 SAMPLE CONDITION AS RECEIVED (lab use only) Special Instructions / Specify Criteria to add on report (client Use) Drinking Water (DW) Samples (client use) SIF Observations Yes □ No No Custody seal intact Yes ce packs Yes দ্ব Are samples taken from a Regulated DW System? Cooling Initiated T Yes NO NO FINAL COOLER TEMPERATURES °C INITIAL COOLER TEMPERATURES °C Are samples for human drinking water use? FINAL SHIPMENT RECEPTION (lab use only) INITIAL SHIPMENT RECEPTION (lab use only) SHIPMENT RELEASE (client use) Received by: Date: 2 Vely 20 Received by: Date: Released by 16 00

WHITE - LABORATORY COPY

Failure to schoplete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ije - report copy.

YELLOW - CLIENT COPY

APPENDIX D

Biosparging Pilot Test Report

Prepared for

Hercules, LLC 500 Hercules Road Wilmington, DE 19808

BIOSPARGING PILOT TEST REPORT DEEP ZONE OF UPPER SURFICIAL AQUIFER HERCULES/PINOVA BRUNSWICK FACILITY BRUNSWICK, GEORGIA

Prepared by

1255 Roberts Boulevard, Suite 200 Kennesaw, Georgia 30144

Project Number GR6881M

November 2021

TABLE OF CONTENTS

1.	INTRODUCTION
2.	PILOT TEST OBJECTIVES
3.	WELL INSTALLATION ACTIVITIES FOR PILOT TEST
4.	IMPLEMENTATION ACTIVITIES ASSOCIATED WITH PILOT TEST 5 4.1. Activities During First Phase of the Pilot Test 5 4.2. Activities During Second Phase of the Pilot Test 8
5.	RESULTS
6.	CONCLUSIONS14

TABLE OF CONTENTS (Continued)

LIST OF TABLES

Table 1	Summary of Analytical Results
Table 2	Baseline Field Parameters
Table 3	Biosparging Wells Step Test Field Data
Table 4	Biosparging Wells Combined Test Field Data
Table 5	Deep Biosparging Well Test Field Data

LIST OF FIGURES

Figure 1	Pilot Test Well Layout
Figure 2	Radius of Influence Estimation

LIST OF APPENDICES

Attachment A	Well Construction Details and Boring Logs
Attachment B	Geotechnical Laboratory Reports
Attachment C	Analytical Laboratory Reports
Attachment D	Sampling Purge Logs
Attachment E	Waste Characterization Laboratory Reports and Manifests

1. INTRODUCTION

Geosyntec Consultants, Inc. ("Geosyntec") has prepared this report on behalf of Hercules LLC ("Hercules") for submission to the Georgia Department of Natural Resources, Environmental Protection Division ("EPD") to present the results of a pilot test that Geosyntec performed to assess the feasibility of using in situ aerobic bioremediation in the form of a biologically active permeable reactive barrier (referred to hereinafter as an "aerobic biobarrier") to achieve reductions in the concentrations of certain constituents of potential concern ("COPCs") in groundwater in the deep zone of the upper surficial aquifer underlying a portion of the industrial facility located at 2801 Cook Street in Brunswick, Glynn County, Georgia (the "Brunswick facility"). In particular, the pilot test evaluated key design parameters associated with the use of biosparging to produce aerobic conditions in the deep zone of the upper surficial aquifer in the area where the aerobic biobarrier is expected to be installed. (The pilot test may be referred to hereinafter as the "biosparging pilot test.") This report is organized into the following sections: (i) objectives for the pilot test, (ii) installation of wells for the pilot test, (iii) implementation of activities associated with the pilot test, (iv) results from the pilot test, and (v) conclusions from the pilot test.

2. PILOT TEST OBJECTIVES

The objectives of the biosparging pilot test were to:

- confirm the feasibility of injecting compressed air into the deep zone of the upper surficial aquifer in the area where the aerobic biobarrier is expected to be installed;
- collect data concerning the radius of influence ("ROI") produced at each injection well used in the pilot test in terms of the distribution of dissolved oxygen ("DO"), changes in oxidation reduction potential ("ORP"), and groundwater mounding during the injection of air at various flow rates and injection pressures; and
- assess the general natural rate of depletion of dissolved oxygen in the deep zone
 of the upper surficial aquifer in the area where the aerobic biobarrier is expected
 to be installed.

3. WELL INSTALLATION ACTIVITIES FOR PILOT TEST

Three wells used for injection of air (referred to as "biosparging wells" and designated as biosparging wells BS-01, BS-02 and BS-03) and four observation wells (designated as observation wells BS-OW-01, BS-OW-02, BS-OW-O3D and BS-OW-3I) were installed in the area where the aerobic biobarrier is expected to be installed in the portion of the Brunswick facility to the east of the U.S. Highway 17 and north of the Outfall Ditch as shown on **Figure 1**. Except for biosparging well BS-03, all pilot test biosparging and observation wells were installed between February 22, 2021 and March 3, 2021. Biosparging well BS-03 was installed between March 25 and 26, 2021. Geosyntec contracted with South Atlantic Environmental Drilling and Construction Co. Inc. ("SAEDACCO") of Fort Mill, South Carolina, to install the biosparging and observation wells for the pilot test using rotosonic drilling methods. All downhole tools were decontaminated by steam-cleaning prior to initiation of drilling activities and between boreholes in accordance with technical guidance issued by the United States Environmental Protection Agency ("EPA") titled *Field Equipment Cleaning and Decontamination Procedures* (LSASDPROC-205-R4).

Rotosonic drilling techniques were used to advance each borehole. A 4-inch core barrel was advanced in 5-foot increments to collect relatively undisturbed continuous soil cores from the boreholes. The soil cores were field screened at 2-foot intervals using a calibrated photoionization detector ("PID") with an 11.7 electron-volt lamp to assess the soil cores for the presence of volatile organic compounds ("VOCs"). After the soil cores were screened with the PID, the soil core samples were visually classified and logged according to the Unified Soil Classification System to confirm the lithology of the subsurface.

Each well for the pilot test was installed in accordance with the technical guidance issued by EPA titled *Design and Installation of Monitoring Wells* (SESDGUID-101-R2). The wells were constructed of 2-inch diameter Schedule 40 polyvinyl chloride ("PVC") casings with 2-inch diameter, 0.010-slot PVC well screens. Well construction details and boring logs for the wells installed for the pilot test are included in **Attachment A**. More information regarding well drilling and well construction activities is provided in the document titled *Groundwater Monitoring Report, Semi-Annual Groundwater Monitoring Event – June 2021, Hercules LLC/Pinova, Inc., Brunswick, Georgia* that Hercules submitted to EPD on October 22, 2021.

During the well installation activities, soil samples were collected from various depth intervals and shipped to Excel Geotechnical Testing Laboratory in Roswell, Georgia for grain size analysis. The geotechnical laboratory reports are included in **Attachment B**.

The screened intervals in feet below ground surface ("ft bgs") for the biosparging and observation wells for the pilot test are summarized in the following table:

Well ID	Screened Interval, (ft bgs)
BS-01	92-94
BS-02	92-94
BS-03	98.3-99
BS-OW-01	80-90
BS-OW-02	82-92
BS-OW-03D	82-92
BS-OW-03I	50-60

Prior to and after completion of the pilot test, Geosyntec collected groundwater samples from newly installed observation wells BS-OW-01, BS-OW-02, and BS-OW-3D and existing monitoring well MW-29D. The groundwater samples were shipped to Test America Laboratories, Inc. ("Test America") in Savannah, Georgia under chain-of-custody protocols for laboratory analysis of VOCs, hardness, total and dissolved iron and manganese, total dissolved solids ("TDS"), alkalinity, chloride, chemical oxygen demand, and biological oxygen demand. **Table 1** summarizes the groundwater analytical results that were obtained. **Attachment C** and **Attachment D** include the analytical laboratory results and sampling purge logs from the sampling activities, respectively.

Investigation derived waste ("IDW") consisting of soil cuttings and purge water generated during well installation and well development activities for the pilot test were placed in labeled 55-gallon drums and staged at the Brunswick facility prior to disposal at appropriate off-site facilities. A total of 11 drums of IDW were generated during well installation and well development activities. Five drums contained soils and six drums contained water. The IDW from the well installation and well development activities for the pilot test were disposed of as non-hazardous waste. **Attachment E** includes the waste characterization laboratory reports and waste manifests for the IDW.

4. IMPLEMENTATION ACTIVITIES ASSOCIATED WITH PILOT TEST

In order to perform the pilot test, Geosyntec mobilized to the Brunswick facility a biosparging skid, a generator to power the biosparging system, a helium gas cylinder (219 cubic feet capacity), well head connections and hoses, and associated monitoring equipment (including a PID, a water level meter, a water quality meter, a digital manometer, and a helium detector). The biosparging skid included a Hydrovane V04 air compressor capable of providing 19.5 standard cubic feet per minute ("scfm") of air against a pressure of 100 pounds per square inch ("psi"), four manifold legs each equipped with a ball valve, a pressure gauge, and a flow meter with a needle valve for flow adjustment. The biosparging pilot test was completed in two phases consisting of separate mobilizations. The activities in the first phase of the pilot test occurred between March 15, 2021 and March 19, 2021. The activities in the second phase of the pilot test occurred between March 31, 2021 and April 2, 2021. Step tests and a helium tracer test were performed during the first phase of the pilot test to evaluate biosparging flow rates and pressures. Helium was injected into the formation and used as a tracer. Based on data collected during the first phase of the pilot test, an additional biosparging well (i.e., biosparging well BS-03) was installed and screened at a slighter deeper depth than biosparging wells BS-01 and BS-02 to further evaluate the ROI generated by each biosparging well and oxygen consumption rates in the deep zone of the upper surficial aquifer.

4.1. Activities During First Phase of the Pilot Test

Step Tests: Step tests were performed using biosparging wells BS-01 and BS-02 sequentially on March 16, 2021. Step tests are used to evaluate how subsurface conditions change as increasing amounts of compressed air are injected through each biosparging well used in the pilot test. The distances from biosparging wells BS-01 and BS-02 (as installed) to the surrounding observation wells and monitoring wells were measured in the field. These measurements are summarized in the following table.

Well ID	Distance to Biosparging Well BS-01	Distance to Biosparging Well BS-02
	feet	feet
BS-01	NA	25.58
BS-02	30.5	NA
BS-OW-01	33.2	8.2
BS-OW-02	15.0	38.6
BS-OW-3D	19.8	19.4
BS-OW-3I	15.5	24.8
MW-29D	10.2	18.4

Prior to starting the step tests, measurements of groundwater field parameters including depths to water, DO, ORP, pH and specific conductivity were collected at biosparging wells BS-01 and BS-02, observation wells BS-OW-01, BS-OW-02, BS-OW-03I, and BS-OW-03D, and monitoring wells MW-29I and MW-29D, as summarized in **Table 2**. In addition to the groundwater field parameters, screening measurements for VOCs using a PID and percent oxygen measurements were collected in the head space (within the well casing but above the groundwater level) at the observation wells, as summarized in **Table 3**.

After collecting the baseline readings described above, the biosparging skid was connected to the portable generator. The air compressor on the biosparging skid was then connected to the wellheads of the biosparging wells using pressure rated hoses to initiate the step tests. Step tests were performed using biosparging wells BS-01 and BS-02 individually. The air flow rates for the step tests were 2 scfm, 4 scfm, and 6 scfm for the step tests at biosparging well BS-01 and 2 scfm, 3 scfm, 4 scfm, and 6 scfm for the step tests at biosparging well BS-02.

The air flow rates for each step in the step tests were maintained at each individual biosparging well for approximately an hour as indicated on **Table 3**.

As summarized in **Table 3**, the following data were collected during the step tests:

• Applied air pressures at the biosparging wells;

- PID readings, oxygen content, and well head pressures from the head space in observation wells BS-OW-01, BS-OW-02, BS-OW-03I, and BS-OW-03D, and monitoring well MW-29D;
- DO and ORP levels in groundwater in observation wells BS-OW-01, BS-OW-02, BS-OW-03I, and BS-OW-03D, and monitoring well MW-29D; and
- The depth to water in observation wells BS-OW-01, BS-OW-02, BS-OW-03I, and BS-OW-03D, and monitoring well MW-29D.

Combined Step Tests and Helium Tracer Test: Following the completion of the individual step tests at biosparging wells BS-01 and BS-02, a set of combined step tests was performed by sparging simultaneously both biosparging wells using varying air flow rates on March 17 and 18, 2021. In addition, as discussed below, a helium tracer test was performed on March 19, 2021. As summarized in Table 4, depth to water, DO, and ORP measurements in groundwater in the observation wells and PID, oxygen content, and pressure measurements from the head spaces in the observation wells were collected during the combined step tests. The following air flow combinations were used during the combined step tests:

- 4 scfm at biosparging well BS-01 and 4 scfm at biosparging well BS-02;
- 4 scfm at biosparging well BS-01 and 2 scfm at biosparging well BS-02;
- 5 scfm at biosparging well BS-01 and 5 scfm at biosparging well BS-02; and
- 1.5 scfm at biosparging well BS-01 and 1.5 scfm at biosparging well BS-02.

A helium tracer test was performed on March 19, 2021. The purpose of the helium tracer test was to add a conservative tracer to the injected air; in this case, conservative means that the tracer will not readily be transformed to other compounds chemically or biologically. During the helium tracer test, a pressurized helium gas cylinder was connected to the manifold legs leading to biosparging wells BS-01 and BS-02. In that way, a low flow of helium gas was injected into the subsurface through biosparging wells BS-01 and BS-02 along with compressed air while conducting sparging in both biosparging wells simultaneously at an air flow rate of 1.5 scfm per well. The total amount of helium gas introduced into the subsurface was approximately 219 cubic feet.

Headspace air from the observation wells was sampled periodically and the samples were analyzed using a helium detector. In addition, PID and oxygen content measurements from the head spaces of the observation wells were collected.

4.2. Activities During Second Phase of the Pilot Test

Additional Deep Biosparging Well Step Test: Based on the data and information obtained during the first phase of the pilot test, a third biosparging well (designated as biosparging well BS-03) was installed and screened at a slightly deeper interval between approximately 98.3 and 99 ft bgs. The new biosparging well BS-03 was designed to sparge at a deeper depth than the biosparging wells used in the first phase of the pilot test, which were biosparging wells BS-01 and BS-02 screened at intervals between 92 and 94 ft bgs. Biosparging tests using biosparging well BS-03 and varying air flow rates were performed as described below.

The distances from biosparging well BS-03 (as installed) to the surrounding observation wells and to biosparging well BS-02 were measured in the field. These measurements are summarized in the following table.

Well ID	Distances to Biosparging Well BS-03 feet
BS-02	5.3
BS-OW-01	8.9
BS-OW-02	35.6
BS-OW-3D	14.5
BS-OW-3I	20.08
MW-29D	18.6

The biosparging tests using biosparging well BS-03 were performed between March 31, 2021 and April 2, 2021. A second round of baseline measurements of groundwater field parameters and well head readings were collected on March 30, 2021, prior to starting the biosparging tests. The baseline measurements were obtained from biosparging well BS-02, observation wells BS-OW-01, BS-OW-02, BS-OW-03I, and BS-OW-03D, and

monitoring wells MW-29I and MW-29D and are summarized in **Table 2**. The field data for the biosparging tests using biosparging well BS-03 are included in **Table 5**. Various air flow rates (i.e., 1.5 scfm, 3 scfm, and 5 scfm) were applied to biosparging well BS-03 and measurements of DO, ORP, and depths to water were collected at wells BS-02, BS-OW-01, BS-OW-02, BS-OW-03, and MW-29D along with PID readings, oxygen content, and pressure in the head spaces of these wells.

After the completion of the biosparging tests using biosparging well BS-03, measurements of DO and ORP were collected at biosparging well BS-02 (located approximately 5.3 feet from biosparging well BS-03) the following day (April 3, 2021) to evaluate the rate of depletion of dissolved oxygen resulting from injections of air into the deep zone of the upper surficial aquifer during the biosparging tests.

All equipment associated with the pilot test was removed from the Brunswick facility on April 6, 2021.

5. RESULTS

5.1. Baseline Parameters

Measurements of groundwater field parameters reflecting baseline conditions were collected on March 15, 2021, prior to the start of the first phase of the pilot test and on March 30, 2021, prior to the start of the second phase of the pilot test. measurements are presented in **Table 2**. Concentrations of DO in the observation wells were generally below 0.2 milligrams per liter ("mg/L") during both rounds of baseline measurements, except at monitoring well MW-29D where DO was measured at a concentration of 0.66 mg/L on March 15, 2021. The measured levels of ORP were less than 0 millivolts ("mV") in all wells (ranging from negative 34.6 mV to negative 124.8 mV) on March 15, 2021. Due to the biosparging activities during the first phase of the pilot test between March 16, 2021 and March 19, 2021, the baseline ORP measurements obtained prior to the start of the second phase of the pilot test were slightly higher (more positive) on March 30, 2021 and ranged between positive 22.1 mV and negative 117.1 mV. The results from both sets of baseline monitoring events are indicative of anaerobic groundwater conditions. The pH measurements that were obtained were slightly higher on March 30, 2021 than on March 15, 2021. The slight increase in pH may be due to reductions in dissolved concentrations of carbon dioxide as a result of the step tests performed during the first phase of the pilot test. The majority of the pH measurements were in a range conducive for microbial growth in a biobarrier (i.e., between 6 and 8 standard units).

The hardness of the groundwater in the area of the biosparging pilot test, as summarized in **Table 1**, is greater than 5,000 mg/L. These hardness values are extremely high and similar to the hardness values that were obtained in groundwater samples collected during the aquifer test performed in the portion of the Brunswick facility west of U.S. Highway 17 and previously reported to EPD. The iron levels measured in groundwater ranged from 27 mg/L to 51 mg/L. The hardness and iron levels will have important bearing on the operation and maintenance of the aerobic biobarrier, including specifically measures for routine monitoring and removal of scaling/biofilm that can occur within the biosparging wells; these types of measures are considered part of routine procedures for operating a biosparging system. The frequency that such measures will need to be taken is dictated by site specific conditions.

5.2. Step Tests

Table 3. During each component of the step tests conducted using biosparging well BS-01 (i.e., at air flows of 2, 4, and 6 scfm) and using biosparging well BS-02 (i.e., at air flows of 2, 3, 4, and 6 scfm), the biosparging injection pressures stayed between 37 psi and 40 psi (i.e., reflecting pressures equivalent to approximately 85 feet of water column and 92 feet of water column). These pressure ranges indicate that the biosparging pressure needed to introduce air into the saturated zone at this depth aligns well with the theoretical pressure generated by the weight of the water column above the screened intervals in the biosparging wells. Due to the sandy formation present in the screened intervals for the biosparging wells, resistance to biosparging from the subsurface lithology was insignificant (i.e., compressed air was readily able to be introduced into the subsurface).

The depth to water measurements that were obtained indicate that the water table increased slightly in the observation wells during the step tests compared to baseline conditions. The depth to water measurements were not adjusted for variations associated with the tidal cycle because the tidal influence on depth to water measurements in the deep zone of the upper surficial aquifer was relatively small over the relatively short duration of the step tests. During the step tests at biosparging well BS-01, changes in the depth to water measurements were generally less than 0.6 feet during biosparging at air flow rates of 4 scfm or less than 0.75 feet during biosparging at a flow rate of 6 scfm. The greatest change in the depth to water measurements (0.74 feet) was observed in observation well BS-OW-02 during the step tests at biosparging well BS-01 at an air flow rate of 6 scfm. During the step tests at biosparging well BS-02, changes in the depth to water were less than 0.2 feet, except at observation well BS-OW-3I (0.56 ft).

Observation well BS-OW-3I exhibited well head pressure measurements higher than the other observation wells when biosparging well BS-01 was used for biosparging and again when biosparging well BS-02 was used for biosparging, as presented in **Table 3**; these results indicated short circuiting of air from the biosparging wells to observation well BS-OW-3I. The well head pressures measured at observation well BS-OW-3I were measured as high as 65 inches of water column, whereas well head pressure measurements obtained at the other observation wells (including those even closer to the wells used for biosparging) ranged from 0.0 to 2.8 inches of water column. Measurements from the well head of observation well BS-OW-3I were discontinued

based on the well head pressure observations indicating short circuiting of air from the biosparging wells to observation well BS-OW-03.

5.3. Combined Step Tests and Helium Tracer Test

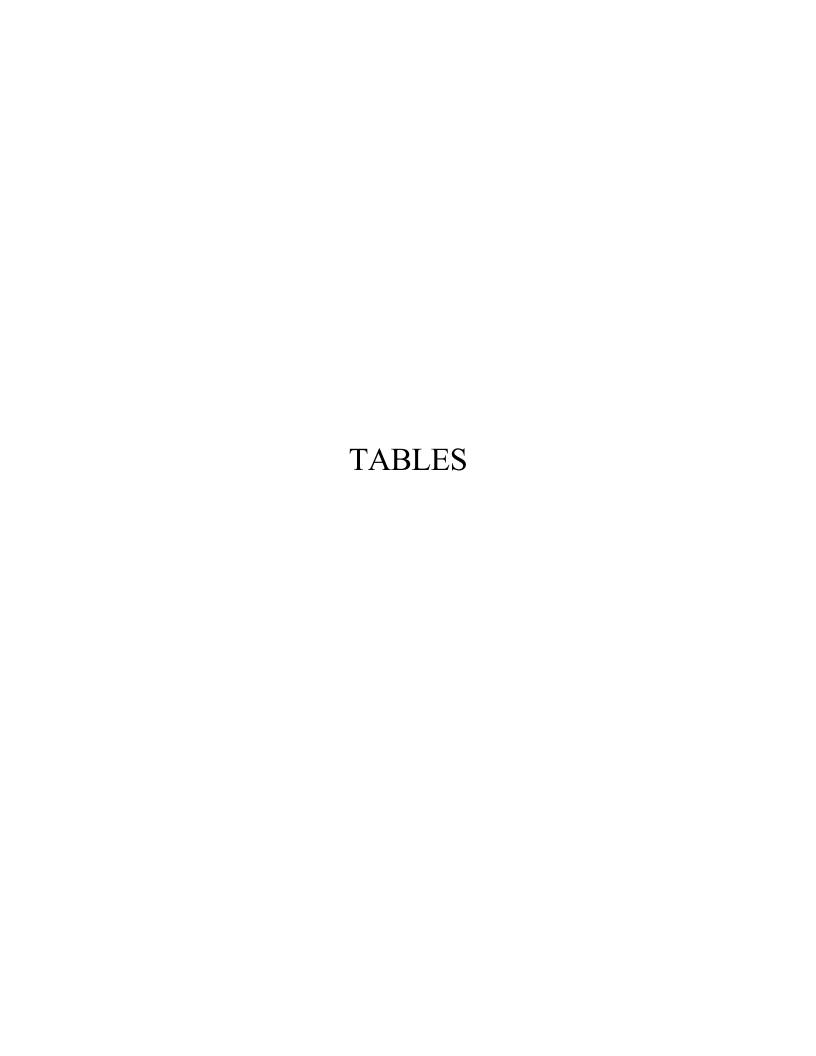
The results from the step tests using biosparging wells BS-01 and BS-02 in combination and the results from helium tracer test are presented in Table 4. For the combined step tests, the air pressures maintained at the biosparging wells were between 37 psi and 40 psi for an array of applied air flow rates ranging between 1.5 scfm per well and 5 scfm per well. ORP levels showed slightly increasing trends at observation well BS-OW-01 (8.2 feet from biosparging well BS-02), observation well BS-OW-02 (15 feet from biosparging well BS-02) and monitoring well MW-29D (10.2 feet from biosparging well BS-01). Similarly, helium concentrations increased noticeably in the head space of monitoring well MW-29D from 350 parts per million by volume ("ppm") to 1,850 ppm indicating that the helium mixture that was injected along with the air traveled through the subsurface and into monitoring well MW-29D (i.e., indicating a positive response in the deep zone of the upper surficial aquifer to the biosparging activities). However, DO levels in the observation wells and monitoring well MW-29D did not increase in response to the combined step test, and a recommendation was made to continue the testing process using a deeper biosparging well and by monitoring the responses at observation well locations nearer the well being used for biosparging. The results of the step tests at the deeper biosparging well are provided in the next subsection of this report.

5.4. Deep Biosparging Well Test

The results from the step tests performed using biosparging well BS-03 (which has a top of screen approximately six feet deeper than biosparging wells BS-01 and BS-02) are presented in **Table 5**. At an air flow rate of 1.5 scfm at biosparging well BS-03 on March 31, 2021, DO concentrations increased significantly to 18.79 mg/L in biosparging well BS-02 (located 5.3 feet from biosparging well BS-03), and increased slightly to 0.1 mg/L in observation well BS-OW-01 (8.9 feet from biosparging well BS-03) after a sparging duration of four hours. When the testing was continued using biosparging well BS-03 on April 1 and April 2, 2021, DO concentrations were measured at 11.08 mg/L and 26.08 mg/L in biosparging well BS-02 (5.3 feet from biosparging well BS-03). Although the DO concentration in observation well BS-OW-01 did not show the significant increase that was observed in biosparging well BS-02, the ORP values in observation well BS-OW-01 gradually increased from negative 44.6 mV to negative 16.4 mV, suggesting

that observation well BS-OW-01 was also within the radius of influence created by biosparging activities at biosparging well BS-03. The changes in the depth to water were limited to 0.2 feet in biosparging well BS-02, which was the closest well to biosparging well BS-03, thereby indicating that groundwater mounding was minimal at an air flow rate that achieved the desired increases in DO in the groundwater.

DO concentrations in biosparging well BS-02 dropped from 26.08 mg/L measured on April 2, 2021 at 6:00 p.m. to 19.95 mg/L measured on April 3, 2021 at 5:04 p.m., suggesting an approximate consumption rate for dissolved oxygen of 6 mg/L per day associated with the microbial population in the deep zone of the upper surficial aquifer in the area where the aerobic biobarrier is expected to be installed.


DO concentrations in observation wells BS-02, BS-OW-01, and BS-OW-3D on April 1, 2021 versus distance between these observation wells and biosparging well BS-03 are plotted on **Figure 2**. A DO concentration of 2 mg/L¹ is typically a minimum threshold concentration for designing an aerobic bioremediation system. Therefore, the selected minimum design DO concentration range between 2 mg/L (threshold DO concentration) and 8 mg/L is highlighted on **Figure 2**. The ROI range corresponding to the design DO concentration range is between 6.4 and 8.4 feet as shown on **Figure 2**.

¹ United States Environmental Protection Agency, October 2017. *How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites*.

6. CONCLUSIONS

The following conclusions are drawn from the results of the biosparging pilot test:

- The pilot test demonstrated that biosparging can effectively increase the concentrations of dissolved oxygen in the deep zone of the upper surficial aquifer to promote aerobic bioremediation;
- A ROI of 7.5 feet is expected to be sufficient to sustain concentrations of dissolved oxygen between 2 mg/L and 8 mg/L in the deep zone of the upper surficial aquifer (i.e., the general mid-point between observed ROIs of 6.4 feet and 8.4 feet from biosparging well BS-03);
- The lithology corresponding to the projected biosparging interval in the deep zone of the upper surficial aquifer consists of medium to coarse grained sand, which is a limiting factor for obtaining a larger ROI as demonstrated from the results of the step tests at biosparging wells BS-01 and BS-02. For full scale application of *in situ* aerobic bioremediation in the form of an aerobic biobarrier, it would be beneficial to install the biosparging wells deeper than biosparging wells BS-01 and BS-02 at depths similar to that of biosparging well BS-03 to achieve the target ROI of 7.5 feet;
- The air pressures needed to inject air into the biosparging wells were generally between 37 and 40 psi. Accordingly, an air compressor that is capable of providing a minimum pressure of 40 psi at each well head for the biosparging wells for the aerobic biobarrier would be needed:
- A biosparging air flow rate of 1.5 scfm appears to be sufficient to sustain dissolved oxygen concentrations at levels sufficient to promote aerobic biodegradation of target COPCs; and
- Based on the dissolved oxygen levels in the groundwater achieved during the pilot test and the observed dissolved oxygen consumption rate, the biosparging wells for the aerobic biobarrier can be operated in a cyclical fashion.

Table 1 Summary of Analytical Results Hercules/Pinova Brunswick Facility Brunswick, GA

Analyte	Well ID	BS-	OW-01	BS-	OW-02	BS-O	W-03D	M	W-29D
	Sampling Date	3/2/2021	4/7/2021	3/2/2021	4/7/2021	3/3/2021	4/7/2021	3/2/2021	4/7/2021
Field Parameters									
pH	s.u.	6.09	6.26	6.23	6.31	5.98	6.34	5.95	6.17
Oxidation Reduction Potential	mV	-17.00	-16.60	-57.00	-14.50	-5.00	-31.80	-14.00	-5.30
Dissolved Oxygen	mg/L	0.00	0.12	0.03	0.15	0.00	0.15	0.00	0.13
Specific Conductivity	μS/cm	11,400	10,552	11,800	11,955	10,500	11,007	8,290	9,477
Temperature	degrees Celsius	20.36	24.13	20.81	23.19	21.90	23.96	20.85	21.43
Geochemical Parameters									
Alkalinity, Total	mg/L	270	330	250	330	280	350	250	360
Total Dissolved Solids	mg/L	6,300	6,200	6,000	9,600	4,400	6,100	7,400	7,300
Hardness as calcium carbonate	mg/L	6,100	5,400	6,100	6,400	5,600	5,400	4,400	4,900
Metals	•							•	
Iron, total recoverable	μg/L	39,000	32,000	47,000	51,000	28,000	47,000	37,000	27,000
Iron, dissolved	μg/L	31,000	33,000	33,000	51,000	22,000	45,000	28,000	27,000
Manganese, total recoverable	μg/L	870	790	1,100	1,200	1,500	1,600	950	860
Manganese, dissolved	μg/L	840	810	1,100 F1	1,200	1,300	1,500	950	860
Volatile Organic Compounds				,	, , , ,	1 7	, , , , ,	1	1
1,1,1-Trichloroethane	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
1,1,2,2-Tetrachloroethane	μg/L μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
		-	< 20		< 20			< 20	
1,1,2-Trichloro-1,2,2-trifluoroethane 1.1.2-Trichloroethane	μg/L	< 20 < 20	< 20	< 20 < 20	< 20	< 20 < 20	< 20 < 20	< 20	< 20 < 20
7,7	μg/L	-					< 20		
1,1-Dichloroethane	μg/L	< 20	< 20	< 20	< 20	< 20		< 20	< 20
1,1-Dichloroethene	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
1,2,3-Trichlorobenzene	μg/L	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
1,2-Dichloroethane	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
1,2-Dichloropropane	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
2-Butanone (MEK)	μg/L	< 200 *+	< 200	< 200 *+	< 200	< 200 *+	260	< 200	< 200
2-Hexanone	μg/L	< 200	< 200	< 200	< 200	< 200	< 200	< 200	< 200
4-Methyl-2-pentanone	μg/L	< 200 *+	< 200	< 200 *+	< 200	< 200 *+	< 200	< 200 *+	< 200
Acetone	μg/L	< 200 *+	< 200 *+	< 200 *+	< 200 *+	< 200 *+	< 200 *+	< 200	< 200 *+
Benzene	μg/L	330	430	170	230	330	490	1000	820
Bromochloromethane	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Bromodichloromethane	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Bromoform	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Bromomethane	μg/L	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
Carbon disulfide	μg/L	< 40	< 40	< 40	< 40	< 40	< 40	< 40	< 40
Carbon tetrachloride	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Chlorobenzene	μg/L	330	490	170	270	300	460	760	750
Chloroethane	μg/L	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
Ethylbenzene	μg/L	44	110	< 20	< 20	61	110	150	150
Isopropylbenzene	μg/L	49	97	< 20	40	57	110	240	210
m-Xylene & p-Xylene	μg/L	20	74	< 20	48	110	220	360	320
o-Xylene	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Styrene	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Tetrachloroethene	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Toluene	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
trans-1,2-Dichloroethene	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
trans-1,3-Dichloropropene	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Trichloroethene	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Trichlorofluoromethane	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Vinyl chloride	μg/L	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Other Parameters						•	*	•	
Biochemical Oxygen Demand	mg/L		5.8		6.3 B		9.6		19 B
Chemical Oxygen Demand	mg/L		200		< 1,000		1,300		< 1,000
Chloride	mg/L	-	3,700		4,300	_	3,800	-	3,200
	8/ -	1	3,700	1	-1,500	1	5,000		3,200

Notes: BOD - biological oxygen demand Data Qualifiers:
< - not detected (reported at detection limit)

COD - chemical oxygen demand µg/L - micrograms per liter

- *+ laboratory control sample and/or lab control sample duplicate is outside acceptance limits, high biased
- -- sample not analyzed for this constituent
 B estimated concentration
- mg/L milligrams per liter S.U. standard unit

mV - millivolt

F1 - matrix spike and/or matrix spike duplicate recovery exceeds control limits

μS/cm - microsiemens per centimeter

Table 2 Baseline Field Parameters Hercules/Pinova Brunswick Facility Brunswick, GA

Notes	Date	Well ID	Depth to water	DO	ORP	Specific conductivity	рН
			ft btoc	mg/L	mV	μS/cm	SU
		BS-01	5.87	0.00	-45.9	13,048	5.45
		BS-02	6.52	0.01	-57.4	14,756	5.89
		BS-OW-01	4.95	0.01	-36.6	8,623	5.91
Baseline results for first phase	3/15/2021	BS-OW-02	5.26	0.01	-72	9,030	6.02
of pilot test	3/13/2021	BS-OW-3D	5.43	0.04	-56.2	9,015	5.95
		BS-OW-3I	5.05	0.03	-124.8	1,187	6.95
		MW-29D	5.47	0.66	-34.6	9,263	5.85
		MW-29I	4.93	0.00	-110.9	1,036	6.76
		BS-01		-		-	
		BS-02	6.70	0.03	22.1	14,066	6.15
		BS-OW-01	5.88	0.03	-44.9	7,951	6.28
Baseline results for second phase	3/30/2021	BS-OW-02	6.20	0.05	-88.7	9,231	6.48
of pilot test	3/30/2021	BS-OW-3D	6.39	0.05	-56.4	9,150	6.30
		BS-OW-3I	5.72	0.03	-117.1	1,304	7.07
		MW-29D	6.45	0.05	-40.2	7,246	6.28
		MW-29I	5.80	0.11	-90.2	1,013	7.27

Notes:

DO - dissolved oxygen ft btoc - ft below top of casing mg/L - milligram per liter mV - millivolt ORP - oxidation reduction potential

S.U. - standard unit

 $\mu\text{S/cm}$ - millisiemens per centimeter

- - not measured

Table 3 Biosparging Wells Step Test Field Data Hercules/Pinova Brunswick Facility Brunswick, GA

	Well used to	or observation				0	bservation \	Well BS-OV	W-01			Observation Well BS-OW-02							Observation Well BS-OW-03D							Observation Well BS-OW-031								Monitoring Well MW-29D								
	Distance to	Biosparging Well			33.2 fee	t to Biospargin	g Well BS-0	1, 8.2 feet	to Biospargi	ing Well B	3S-02	15.0 feet to Biosparging Well BS-01, 38.6 feet to Biosparging Well BS-02							19.8 feet to Biosparging Well BS-01, 19.4 feet to Biosparging Well BS-02							15.5 feet to Biosparging Well BS-01, 24.8 feet to Biosparging Well BS-02						10	10.2 feet to Biosparging Well BS-01, 18.4 feet to Biosparging Well BS-02									
Test Name	Biosparging Rate	Biosparging Well Pressure (psi)	Date	Time	DTW	Changes in N	Vell Head W Pressure	vocs	Well Head Oxygen	DO	ORP	DTW	Changes in DTW	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP	DTW	Changes in DTW	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP	DTW	Changes in DTW	Well Hea		d Well Head Oxygen	DO	ORP	DTW	Changes in DTW	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP			
	scfm	psi			ft btoc	ft	IWC	ppm	%	mg/L	mV	ft btoc	ft	IWC	ppm	%	mg/L	mV	ft btoc	ft	IWC	ppm	%	mg/L	mV	ft btoc	ft	IWC	ppm	%	mg/L	mV	ft btoc	ft	IWC	ppm	%	mg/L	mV			
Baseline ¹	Not applicable	0	3/16/2021	8:30 AM	5.93	0.00	0.90	1.40	20.90	0.01	-36.60	6.29	0.00	0.90	1.20	20.90	0.01	-72.00	6.45	0.00	0.80	14.50	20.90	0.04	-56.20	6.08	0.00	0.00	0.00	20.90	0.03	-124.80	6.58	0.00	0.00	0.00	20.90	0.66	-34.60			
	Step 1: 2 scfm at	38		8:48 AM									-		-	-			-						-			-						-	-							
	Biosparging Well	38		9:15 AM	5.63	0.30	0.00	1.40	20.70			6.01	0.28	2.80	0.00	20.90			6.19	0.26	2.80	165.20	20.90			5.74	0.34	0.00	0.00	20.90			6.30	0.28	0.00	0.00	20.90		-			
	BS-01	38		9:45 AM	5.60	0.33	0.40	4.10	20.90			5.95	0.34	0.70	3.20	20.90			5.93	0.52	1.90	102.80	20.90			5.53	0.55	0.00	0.00	20.90			6.24	0.34	0.00	0.00	20.90		1			
Step Test at	Step 2: 4 scfm at	38		10:00 AM								-	1	1																									-			
Biosparging Well	Biosparging Well	38	3/16/2021	10:30 AM	5.43	0.50	0.90	8.40	20.60			5.75	0.54	1.60	3.60	20.90			5.93	0.52	1.90	171.20	20.90					65.00	4.80	17.70			6.04	0.54			20.90		-			
BS-01	BS-01	38		11:00 AM	5.37	0.56	0.30	6.20	20.50			5.70	0.59	0.50	2.40	20.40			5.90	0.55	0.50	167.30	20.90				No	ot measured	due to high w	ell head press	sure		6.00	0.58	0.00	0.00	20.90					
	Step 3: 6 scfm at	40]	11:30 AM									-		-	-		-							-					-				-	-		-					
	Biosparging Well	40]	12:00 PM	5.21	0.72	1.20	9.60	20.90			5.55	0.74	2.50	5.60	20.90		-	5.75	0.70	2.70	190.60	20.90		-		No	ot measured	due to high w	ell head press	sure		5.85	0.73	0.00	0.00	20.90					
	BS-01	40		12:30 PM	5.23	0.70	0.00	0.20	20.90			5.57	0.72	0.00	0.00	20.90			5.76	0.69	0.00	18.60	20.90		-	Not measured due to high well head pressure					5.85	0.73	0.00	0.00	20.90		-					
	Step 1: 2 scfm at	37		1:28 PM									-		-	-		-							-		-			-				-	-		-					
	Biosparging Well	37		1:58 PM	-		0.00	0.40	20.90			-	1	0.00	0.00	20.90			-	-	0.00	0.70	20.90					23.10	4.00	16.70				-	0.00	0.00	20.90		-			
	BS-02	37		2:28 PM	5.77	0.16	0.00	0.70	20.90			6.11	0.18	0.00	0.10	20.90			6.31	0.14	0.00	0.80	20.90			5.52	0.56	12.30	4.90	15.30			6.39	0.19	0.00	0.00	20.90		_			
	Step 2: 3 scfm at	37		2:42 PM									-	-																												
Step Test at	Biosparging Well	37		3:12 PM			0.00	0.80	20.90				-	0.00	0.00	20.90					0.00	34.80	20.90					4.20	3.60	14.50					0.00	0.00	20.90		-			
Biosparging Well	BS-02	37	3/16/2021	3:42 PM	5.84	0.09	0.00	0.50	20.90			6.18	0.11	0.00	0.00	20.90			6.36	0.09	0.00	0.10	20.90				No	ot measured	due to high w	ell head press	sure		6.46	0.12	0.00	0.10	20.90					
BS-02	Step 3: 4 scfm at	37		3:45 PM																																						
	Biosparging Well	37		4:15 PM			0.00	0.10	20.90	-	-	-	-	0.00	0.00	20.90		-	-	-	0.00	0.40	20.90		-		No	ot measured	due to high w	ell head press	sure			-	0.00	0.10	20.90		-			
	BS-02	37		4:45 PM	5.92	0.01	0.00	0.00	20.90			6.27	0.02	0.00	0.00	20.90		-	6.45	0.00	0.00	0.50	0.00		-		No	ot measured	due to high w	ell head press	sure	_	6.55	0.03	0.00	0.00	20.90					
	Step 4: 6 scfm at Biosparging Well	37		4:50 PM								-	-	-						-					-										-							
	BIOSPARGING WEIL	37	<u> </u>	5:20 PM	5.82	0.11	0.80	7.30	20.90	-	-	6.18	0.11	0.70	4.80	20.90		-	6.36	0.09	0.70	254.90	20.90	-	-		No	ot measured	due to high w	ell head pres	sure		6.46	0.12	0.00	0.00	20.90					
	Biosparging Well BS-01 at	Biosparging Well BS-01 at		5:25 PM				-	-		-	-	-		-			-	-	-					-		-	-						-	-		-		_			
Combined Test	2 scfm and Biosparging Well BS-02 at 6 scfm	40 psi and Biosparging Well BS-02 at 37 psi	3/16/2021	5:59 PM		-	-	-	-	0.56	-22.90	-	-		-	-	0.01	-57.30	-	-				0.03	-36.90		No	ot measured	due to high w	vell head press	sure			-	-		-	0.02	-32.90			

Notes:

1: Baseline DO and ORP measurements were collected on March 15, 2021.

2: Well head refers to the head space within the casing of observation wells.

DO - dissolved oxygen

DTW - depth to water

It bloc - ft below to pof casing

WC - inches of water

WC - inches of water

WG - wildligram per liter

WW - millivot

ORP - oxidation reduction potential

Table 4 Biosparging Wells Combined Test Field Data Hercules/Pinova Brunswick Facility Brunswick, GA

	Well used for	robservation				0	bservation	Well BS-OV	V-01					Observa	ation Well B	-OW-02					Observa	ation Well B	6-OW-03D		Monitoring Well MW-29D									
	Distance to Bio	osparging Well			33.2 feet 1	to Biospargin	g Well BS-0	1, 8.2 feet t	to Biospa	rging Well	BS-02	15.0	feet to Bios	parging Well	BS-01, 38.6	eet to Biospa	rging Well I	BS-02	19.8	8 feet to Bios	parging Wel	BS-01, 19.4	feet to Biosp	oarging Well	BS-02	10.2 feet to Biosparging Well BS-01, 18.4 feet to Biosparging Well BS-02								
Test Name	Biosparging Rate	Biosparging Well Pressure (psi)	Date	Time	DTW	Well Head Helium	Well Head Pressure		Well Head Oxygen	DO	ORP	DTW	Well Head Helium	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP	DTW	Well Head Helium	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP	DTW	Well Head Helium	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP		
	scfm	psi			ft btoc	ppm	IWC	ppm	%	mg/L	mV f	ft btoc	ppm	IWC	ppm	%	mg/L	mV	ft btoc	ppm	IWC	ppm	%	mg/L	mV	ft btoc	ppm	IWC	ppm	%	mg/L	mV		
	Prior to biosparging	0		8:00 AM	5.36		-			0.03	22.00	5.77					0.02	-53.40	5.90		-	-		0.04	-23.30	6.01	-				0.04	-22.20		
	Biosparging Well BS-01 at			9:15 AM														-			-	-					-							
	4 scfm and			10:15 AM			3.40	3.20	20.40					6.30	2.00	20.90					6.60	96.70	20.90					0.40	0.90	20.90				
	Biosparging Well BS-02 at 4 scfm	Biosparging Well BS-01		11:15 AM	5.18		0.70	3.30	20.90			5.54		0.80	1.60	20.90			5.72		0.90	85.60	20.90			5.85		0.30	0.90	20.90				
		at 40 psi and Biosparging Well BS-02 at 38 psi		12:15 PM	5.13		0.60	5.00	20.90			5.48		0.80	1.80	20.90			5.66		0.90	79.40	20.90			5.75		0.00	0.20	20.90				
	Biosparging Well BS-01 at 4 scfm and			12:28 PM																														
	Biosparging Well BS-02 at			1:15 PM	5.24		0.30	4.40	20.90			5.58		0.00	0.80	20.90			5.77		0.30	41.40	20.90			5.88		0.00	0.10	20.90		—		
	2 scfm		3/17/2021									3.30														3.00				1 1				
	Biosparging Well BS-01 at 4 scfm and	Biosparging Well BS-01		2:15 PM			0.00	2.60	20.90					0.00	0.10	20.90					0.00	27.80	20.90	-	-		-	0.00	0.10	20.90				
Combined Test	Biosparging Well BS-02 at 4 scfm	at 38 psi and Biosparging Well BS-02 at 37 psi		3:15 PM			-0.70	8.30	20.30					-0.50	4.40	20.90					-1.10	101.30	20.90				-	0.00	1.80	20.90				
	4 SCITII			4:15 PM			-2.30	6.70	20.90		-	-		-2.80	2.80	20.90					-3.20	86.20	20.90					-0.30	1.40	20.90				
	Biosparging Well BS-01 at	Biosparging Well BS-01 at 40 psi and Biosparging		4:16 PM		-																												
	5 scfm and Biosparging Well BS-02 at			4:30 PM	5.78		-3.30	7.50	20.90					-3.50	2.40	20.90					-4.00	73.50	20.90					0.00	1.50	20.90				
	5 scfm	Well BS-02 at 38 psi		6:30 PM		-	-2.50	6.70	20.40					-4.90	1.20	20.90					-5.50	45.70	20.90				-	0.00	1.50	20.90				
				6:35 PM						+ +	23.70						0.01	-48.20						0.01	-35.40						0.02	-18.90		
	Prior to biosparging	0		9:55 AM					-	0.01	20.40						0.02	-50.30						0.05	-26.00						0.02	-22.40		
	Biosparging Well BS-01 at			1:45 PM																														
	1.5 scfm and	Biosparging Well BS-01 at 40 psi and Biosparging	3/18/2021	2:45 PM														-																
	Biosparging Well BS-02 at 1.5 scfm	Well BS-02 at 38 psi		3:45 PM																														
				4:54 PM						0.02	17.00						0.02	-43.80						0.02	-31.60						0.03	-15.20		
	Prior to biosparging	0		10:48 AM		525		3.80	20.30				75		0.50	20.60				125		8.70	20.60				350		1.10	20.70				
				11:40 AM		775		4.60	20.70				150		1.00	20.90				300		47.20	20.70				300		1.00	20.90				
				12:10 PM		1350		7.80	20.70				775		1.60	20.90				950		87.30	20.80				900	-	1.20	20.90				
Helium Tracer Test	Biosparging Well BS-01 at	Biosparging Well BS-01	3/19/2021	1:10 PM		1150		8.20	20.10				300		2.40	20.90				658		109.60	20.70				175		1.10	20.90				
	1.5 scfm and Biosparging Well BS-02 at	at 40 psi and Biosparging	5, 15, 2021	2:10 PM		625		7.60	20.60				0		2.30	20.90				750		130.00	20.00				175		1.30	20.90				
	1.5 scfm	Well BS-02 at 38 psi		3:10 PM		700	-	7.50	20.60			-	100		2.40	20.90	-										250		1.40	20.90				
				4:20 PM		700	-	21.00	20.60				200		3.10	20.90	-										1850		1.70	20.90				
				4:27 PM						0.00	19.40						0.02	-50.20						0.02	-27.20						0.02	-15.30		

Notes:

1: Baseline DO and ORP measurements were collected on March 15, 2021.

2: Well head refers to the head space within the casing of observation wells.

DTW - depth to water psi - pounds per square inch
DO - dissolved oxygen ppm - parts per million

ft btoc - ft below top of casing scfm - standard cubic feet per minute IWC - inches of water VOCs - volatile organic compounds

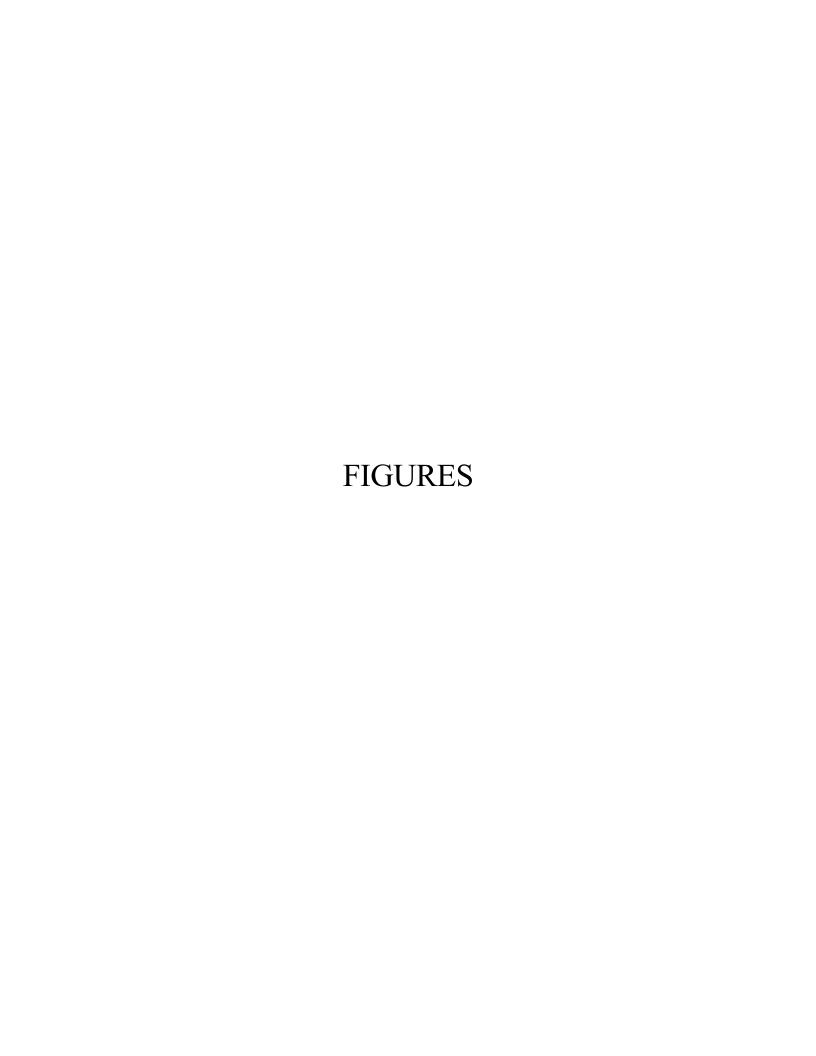
mg/L - milligram per liter -- not measured mV - millivolt % - percent

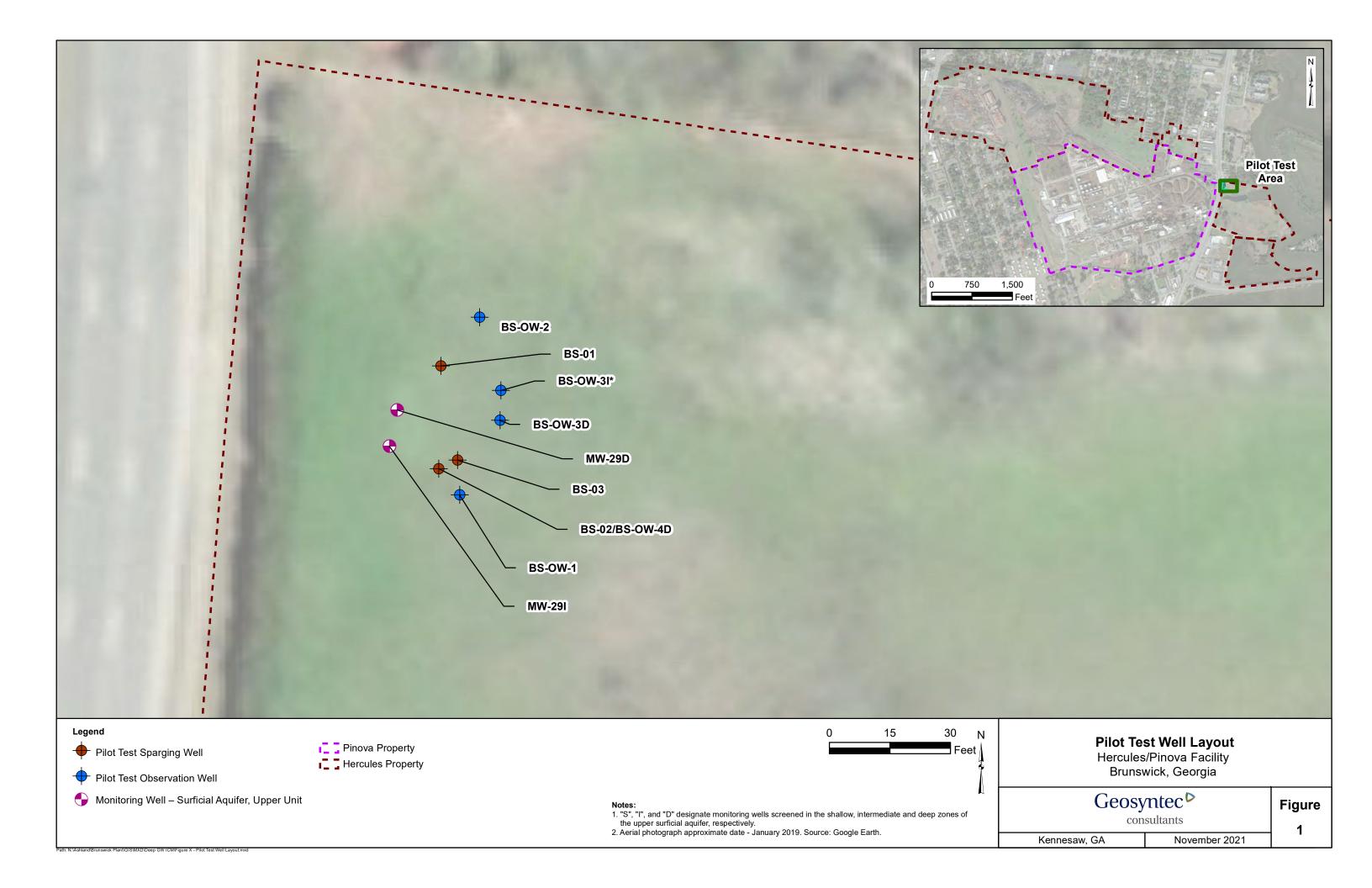
Table 5 Deep Biosparging Well Test Field Data Hercules/Pinova Brunswick Facility Brunswick, GA

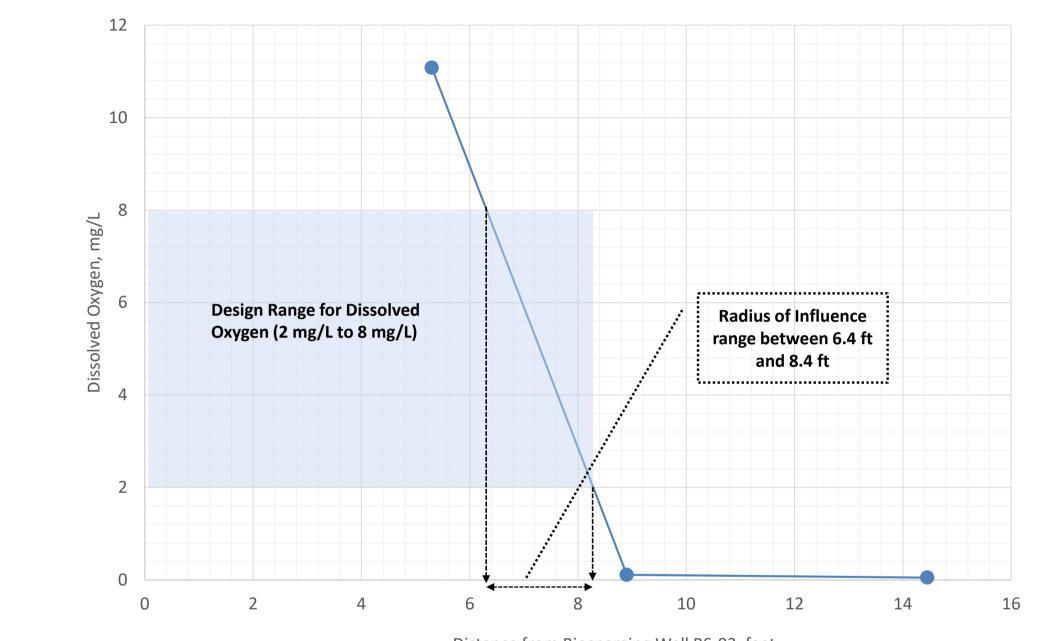
	Well used for a	observation				(used in thi	Biosparging V s test for observ			Observation Well BS-OW-01							0	bservation \	Well BS-OW-	02			0	bservation V	/ell BS-OW-0)3D			Monitoring Well MW-29D							
	Distance to Bios	parging Well				5.3	feet to Biospar	ging Well BS-03				8.9 feet to	Biospargi	ng Well BS	-03			35.6	feet to Biosp	parging Well	BS-03			14.5	feet to Bios	oarging Well	BS-03			18.6	feet to Biosp	oarging Well I	3S-03			
Test Name	Biosparging Rate	Biosparging Well Pressure (psi)	Date	Time	DTW	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP	DTW	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP	DTW	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP	DTW	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP	DTW	Well Head Pressure	Well Head VOCs	Well Head Oxygen	DO	ORP		
	scfm	psi			ft btoc	IWC	ppm	%	mg/L	mV	ft btoc	IWC	ppm	%	mg/L	mV	ft btoc	IWC	ppm	%	mg/L	mV	ft btoc	IWC	ppm	%	mg/L	mV	ft btoc	IWC	ppm	%	mg/L	mV		
	Prior to biosparging ¹	0		7:18 AM	6.70	0.00	1.20	20.90	0.03	22.10	5.88	0.00	7.70	20.30	0.03	-44.9	6.20	-0.80	2.10	20.90	0.05	-88.7	6.39	-0.60	23.70	20.90	0.05	-56.4	6.45	0.00	0.60	20.90	0.05	-40.2		
				1:10 PM			-	1								-	-																-			
	Biosparging Well BS-03 at	40	3/31/2021	3:25 PM		7.50	7.80	17.70				0.30	11.00	20.20		-		2.70	4.30	20.90				0.00	48.30	20.80				0.00	1.00	20.90				
	1.5 scfm	40		4:29 PM		7.90	6.80	15.10				0.40	14.10	19.80				0.50	6.10	20.90				0.00	58.60	20.70				0.00	1.20	20.90				
				5:10 PM	6.50			-	18.79	52.40	5.70				0.10	-44.60																				
	Prior to biosparging	0		6:44 AM		-4.30	0.80	20.20				4.30	8.20	20.00		-		-4.30	2.40	20.90				-4.30	27.40	20.80				-0.40	0.30	20.40				
				9:00 AM		6.50	6.90	17.20				1.10	17.60	19.90				1.00	6.30	20.90				1.20	71.40	20.50				0.40	0.60	20.40				
				11:00 AM		4.70	8.00	16.70				2.60	23.20	19.90				3.70	9.10	20.90				4.50	94.90	20.80				0.80	0.70	20.40				
	Biosparging Well BS-03 at		4/1/2021	1:00 PM		2.50	7.30	16.60				1.40	22.30	20.10				1.90	7.00	20.90			-	1.90	92.10	20.60				0.40	0.70	20.50				
Individual Leg	1.5 scfm	40	1,1,2021	3:00 PM	-	-0.20	5.60	18.20			-	-1.10	17.20	20.20		-		-1.90	4.20	20.90	-		-	-2.00	62.60	20.80		-	-	-0.50	0.50	20.50				
(Biosparging Well				3:50 PM											0.11	-36.80																				
BS-03)				4:30 PM				-	11.08	59.00													-				0.05	-37.20					0.05	-33.90		
				9:14 PM	-		-	-			-	-	-	-	0.09	-27.80		-	-		-		-			-		-				-				
	Prior to biosparging	0		6:49 AM		-1.10	2.30	20.20				-2.60	5.20	20.40				-4.70	0.90	20.80				-4.30	9.90	20.80				0.00	0.30	20.90				
	Biosparging Well BS-03 at	42		9:00 AM		9.50	7.40	19.00				1.40	18.30	20.70				0.90	4.00	20.90				1.80	46.10	20.90				0.50	0.90	20.90				
	1.5 scfm			12:00 PM				-							0.05	-26.00																				
	Biosparging Well BS-03 at		4/2/2021	12:10 PM																																
	3 scfm	41	,,,,,,,,,,	12:55 PM		41.60	13.40	18.20				1.60	8.30	20.90				4.60	6.20	20.90				5.50	77.10	20.90				0.30	1.10	20.50				
	3 50111			2:55 PM		Not mea:	sured due to hig	h well head pre	ssure			-2.50	8.00	20.90				0.60	3.70	20.90				0.00	54.80	20.90				0.00	0.60	20.40				
	Biosparging Well BS-03 at	41		4:00 PM																																
	5 scfm			6:00 PM				-	26.08	72.60					0.03	-16.40											0.07	-34.70					0.31	-20.00		
DO consumption after				8:01 AM				-	24.76	160.90																										
turning off the	None	0	4/3/2021	12:35 PM					20.52	64.60																										
biosparging				5:04 PM					19.95	51.50						1			-		-															

Notes:

1: Baseline depth to water, DO and ORP measurements were collected on March 30, 2021.


2: Well head refers to the head space within the casing of observation wells and/or monitoring wells.


DTW - depth to water psi - pounds per square inch
DO - dissolved oxygen ppm - parts per million


ft btoc - ft below top of casing scfm - standard cubic feet per minute IWC - inches of water VOCs - volatile organic compounds

mg/L - milligram per liter -- not measured mV - millivolt % - percent

ORP - oxidation reduction potential

Distance from Biosparging Well BS-03, feet

mg/L – milligrams per liter ft - feet

Radius of Influence Estimation -**Biosparging Well BS-03** Hercules/Pinova Brunswick Facility

Geosyntec consultants

Figure

Kennesaw, GA

November 2021

2

ATTACHMENT A

Well Construction Details and Boring Logs

SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/15/2°

engineers | scientists | innovators

CLIENT Hercules, LLC

PROJECT NAME Biosparge Pilot Test Well Installation

PROJECT NUMBER GW6881M PROJECT LOCATION Brunswick, Georgia

#(#)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION		PID DATA (ppm)	CONSTRUCTION DIAGRAM
35 -	-30			SAND, dark gray, wet, medium dense, fine grain, poorly graded. (continued)	-31.23	9.3 7.9 1.7	
_	_			SANDY CLAY, dark gray, wet, moderately stiff, high	-32.23	1.7	
_	-			plasticity, fine grain. SAND with shell fragments, dark gray, wet medium dense,		4.9	
40	-			fine to medium grain, poorlygraded.		9.5	
40 -	-35					9.6 5.8	
_	-					3	
-	-			Clay lens from 43-43.5 ft.		6.8	
=						2.2	
45						9.1	
_						3.3	
_	-					8.3 1.2	
-	-					3.6	
50	-					13.5	
-	-45					10.4	
_	_					10.1	
_	-					6.3	
55_	-					9.5	
- 55	-50				-50.73	6.6 2.9	
_	-			CLAYEY SILTY SAND, dark gray, wet, medium dense, fine to medium grain, poorly graded.		10.4	
-	-			to medium grain, poorly graded.		12.1	
-						11.1	
60	-55					0.3	
_	-33					6.3	
_	-					0.8	
-	-					5.6 3.5	
65	-					6.5	
-	-60					4.1	
-						1.8	
_				CLAYEY SAND with shell fragments, dark gray, wet, fine	-62.73	2.4	
- -				grain, loose, high plasticity clay.	-64.23	1.7	▼Type I/II
70 [—]	-65			SAND, dark gray, wet, low density, fine grain, poorly graded.		0	portland
_	-				-66.73	0.3 4.8	Cement
-	-			CLAYEY SAND, dark gray, wet, very dense, fine grain, poorly graded, nonplastic clay.	55.75	3.4	
-	 			poorly graded, nonplastic clay.		7.8	

engineers | scientists | innovators

 CLIENT
 Hercules, LLC
 PROJECT NAME
 Biosparge Pilot Test Well Installation

PROJECT NUMBER GW6881M PROJECT LOCATION Brunswick, Georgia

REMARKS Section Remarks Rema							3	
Description of the proof of t	DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION		PID DATA (ppm)	
	85				sandstone/sandy Mudstone, gray, moist, fine to medium grain, brittle. Sand, gray, wet, very loose, medium to coarse grain, poorly graded.	75.23	10 2.3 4.3 0.2 21.1 4.6 20.1 17.3 34.5 17.7 18.5 46.3 31.8 38.9 13.7 22 2.9 4.9 3.7 3.2 2.6	coated 3/8 in. pellets No. 1 Silica Sand 0.010 slot size 2 in Schedule 40 PVC screen Bottom of

Geosyntec D

CLIENT Hercules, LLC

PROJECT NUMBER GW6881M

DATE STARTED 2/22/21 COMPLETED 2/24/21

DRILLER SAEDACCO

DRILLING METHOD Sonic

SAMPLING METHOD 4 in. core 6 in. override

PROJECT NAME Biosparge Pilot Test Well Installation

PROJECT LOCATION Brunswick, Georgia

 $\begin{array}{ccc} \textbf{NORTHING} & 424947.65 \ \text{ft} & & \textbf{EASTING} \ \underline{} 872675.97 \ \text{ft} \end{array}$

GROUND ELEVATION 5.54 ft MSL BORING DIAMETER 6 in TOP OF CASING ELEVATION 8.85 ft MSL

GEOPHYSICAL CONTRACTOR ---

RIG TYPE Geoprobe 8150 LS LOGGED BY A. Brown CHECKED BY A. Reimer

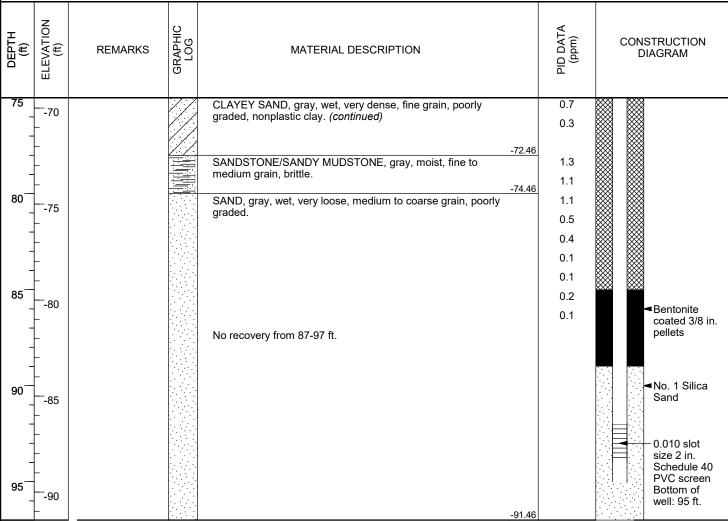
	IXIO I	<u> </u>	eoprobe 6 150 LS		EOGGED BI _A: blown	_	A. Reimei
	DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID DATA (ppm)	CONSTRUCTION DIAGRAM
•	0 - -	5 			SILTY SAND, dark brown/black, moist, very loose, fine sand, poorly graded, organic material. Wet beginning at 2.5 ft.	1.4 1.9 1	0 to 5 ft: 2 in. Stainless Steel casing
	5 ⁻	- - - 0			More clay beginning at 5 ft.	2.6 24	From 5 ft: 2 in. Schedule 40 PVC
	- - 10	- - -			SILTY CLAYEY SAND, dark gray, wet, loose, fine sand, poorly graded. -2.96 SAND, dark gray, wet, very loose, fine sand, poorly graded.	0.6 1 1.1 0.1	
	- - -	-5 - -			-5.46 SANDY CLAY with shell fragments, dark gray, wet, soft, high plasticity. -7.96	0.2 0.5 0.7	
CH.GLB 9/15/21	15	- - -10			SAND with shell fragments, dark gray, wet, loose, fine sand, poorly graded.	0.2	
CP GINT LIBRARY	- - 20	_ _ _			-14.96	13.1 17.9 3	
LS 2021.GPJ AC	- - -	-15 - -			CLAY, dark gray, wet, soft, high plasticity.	10.3 4.3 1 0.2	
SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/15/21	25 - -	- 20			SAND, dark gray, wet, very loose, fine sand, poorly graded.	0.7 0.1	■Type I/II portland cement
ELLS BRUNSWIC	30	- - - 25				0.2 2.7 11.1 17.8	
IONITORING WI	-	25 			Clay lens from 33-33.5 ft.	7.6 1.7 9.2	
SCS M	_	_			Medium sand beginning at 33.5 ft.	7.9	
					(Continued Next Page)		

engineers | scientists | innovators

CLIENT Hercules, LLC

PROJECT NAME Biosparge Pilot Test Well Installation

PROJECT NUMBER GW6881M PROJECT LOCATION Brunswick, Georgia


OEPIH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION		PID DATA (ppm)	CONSTRUCTION DIAGRAM
35	-30 -			Clay lense at 34.5 ft. SAND, dark gray, wet, very loose, fine sand, poorly graded. (continued)		8.8 0.3 0.6	
40	- 35 -			CLAYEY SAND, dark gray, wet, very loose, fine to medium grain, high plasticity clay. SAND with shell fragments, dark gray, wet, loose, medium	-34.46 -35.46	1 0.7 0.7	
45	- - - 40			grain, poorly graded.		0.7 0.6 0.6	
50	- - - - 45 -					0.8 0.7 0.2 0.8 0.1 0.4	
55	- - -50			CLAYEY SILTY SAND, gray, wet, low to medium dense, fine to medium grain, poorly graded.	-50.46	0.1 0.1 0.2	
60	- - - 55 -			Increased clay content from 59-61 ft.		0.4 0.5 0.2 0 0.6 0.2	■Type I/II portland cement
65	- - -60					0 0.3 0.5	
70	- - - 65			SAND, gray, wet, loose, fine to medium grain, poorly graded.	-64.46	1.5 0.4 0.3 0.2 0.5	
	-			CLAYEY SAND, gray, wet, very dense, fine grain, poorly graded, nonplastic clay.	-66.96	0.3 0.1	

engineers | scientists | innovators

CLIENT Hercules, LLC

PROJECT NAME Biosparge Pilot Test Well Installation

PROJECT NUMBER GW6881M PROJECT LOCATION Brunswick, Georgia

Bottom of borehole at 97.0 feet.

SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/15/21

SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/15/21

SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/15/2°

CLIENT Hercules, LLC

PROJECT NAME Biosparge Pilot Test Well Installation

PROJ	ECT NUM	IBER GW6881M	1	PROJECT LOCATION Brunswick, Ge	eorgia	
DЕРТН (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID DATA (ppm)	CONSTRUCTION DIAGRAM
35 - - -	-30			SAND, gray, wet, loose, medium grain, poorly graded. (continued) Shell fragments and medium grained beginning at 37 ft.	18 7.2 2.5 5.1	
40 -	- - - -				4.6 3.1 2.3 6.3 6.6	
45 - - -	-40 -40				3.2	
50 - -	- 45 			-46.79 SILTY SAND, gray, wet, loose, fine grain, poorly graded.	7 3.7 7.5 3.8 6.8	
- 55 - -	- - -50 -			Clay interbedded from 52-53 ft.	13.7 11 11.4 3.8 2.8	
60 -	- - -55 -			Clay interbedded from 62-62.5 ft.	1.1 7 6	▼Type I/II portland cement
65 -	- - -60 -					
70 ⁻	- - -65 -			-67.29 CLAYEY SAND, gray, wet, dense to very dense, fine to		
-	- - 			medium grain, poorly graded.		■ Bentonite coated 3/8 in

SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/15/21

SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/15/2°

engineers | scientists | innovators

CLIENT Hercules, LLC

PROJECT NAME Biosparge Pilot Test Well Installation

PROJECT NUMBER GW6881M PROJECT LOCATION Brunswick, Georgia

FRO	LCI NON	IBER GW000 IIVI		PROJECT LOCATION Brunswick, G	corgia	
DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID DATA (ppm)	CONSTRUCTION DIAGRAM
35	30			SAND, gray, wet, loose, fine grain, poorly graded. (continued) -31.21	1.4	
-				CLAYEY SAND, gray, wet, medium dense, medium grain, poorly graded, high plasticity clay. -32.21	0.7	
				SAND with shell fragments, gray, wet, loose, medium grain,	3.1	
40-	-			poorly graded.	3	
40	-35				3.3 2.6	
-	+				3	
-	-				6.5	
-					5.9	
45	-40				6	
-	-				3.8	
-					3.7	
-	-				3.3	
50	-45			-44.71 SILTY SAND, gray, wet, medium dense, fine grain, poorly	3	
-	- "			graded.	3.9	
-	-				4.4 4.5	
15/21	+				6.3	
CP GINT LIBRARY CH.GLB 9/15/21 00 1	-50				3	
RY CH.					7.5	
-IBRA	+				9.8	
GINT -	-				3.3	
60 [−]	- 			Medium grain and trace fine gravel beginning at 60.5 ft.	5.2	Type I/II portland
1.GPJ	-55			modulin grain and hace time graver beginning at 00.0 it.	11.7	portland cement
\$ 202	<u> </u>				8.2	
WELL	+				4.7 7.8	
65 65	+				2.8	
HOSP,	-60			24.24	5.2	
SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ A 0. CP 1. CP			1.1.1.1.1	-61.21 SAND, gray, wet, loose, fine to medium grain, poorly graded.	18.7	
NSNO					13.6	
S					6.6	
70 X	-65				5.8	
RING -	-				7.7 5.8	
OTING	+				3.8	
S WC	+				5	
ത്	<u> </u>		<u> </u>	-69.21		<u> </u>

PAGE 3 OF 3

CLIENT Hercules, LLC

PROJECT NAME Biosparge Pilot Test Well Installation

PROJECT NUMBER GW6881M

PROJECT LOCATION Brunswick, Georgia

SANDSTONE/SANDY MUDSTONE, gray, moist, fine to medium grain, brittle. SAND with shell fragemnts, light gray, wet, very loose, medium to coarse grain, poorly graded, round fine gravel at 81 ft. Silty/clayey from 83-84 ft No shell fragments beginning at 84 ft. 12.4 No shell fragments beginning at 84 ft.							
SANDSTONE/SANDY MUDSTONE, gray, moist, fine to medium grain, brittle. SAND with shell fragemnts, light gray, wet, very loose, medium to coarse grain, poorly graded, round fine gravel at 81 ft. Silty/clayey from 83-84 ft No shell fragments beginning at 84 ft. Signature of the coated 3/8 in pellets ANO. 2 Silica Sand No. 2 Silica Sand No. 2 Silica Sand 12.4 No shell fragments beginning at 84 ft.	DEPTH (ft) ELEVATION	€ REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION		PID DATA (ppm)	
Size 2 in.	807 8 8 8 8	30		SANDSTONE/SANDY MUDSTONE, gray, moist, fine to medium grain, brittle. SAND with shell fragemnts, light gray, wet, very loose, medium to coarse grain, poorly graded, round fine gravel at 81 ft. Silty/clayey from 83-84 ft		9.5 1 1.3 1.7 4.4 9.7 6 12.4 13.2 15.3 17.8 16.9 23 28.6 30.1 44.6 24.4 13 28.4	coated 3/8 in. pellets No. 2 Silica Sand 0.010 slot size 2 in. Schedule 40 PVC screen Bottom of
Bottom of borehole at 97.0 feet.					-91.21		<u>er a jengier</u>

Bottom of borehole at 97.0 feet.

SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/15/2°

engineers | scientists | innovators

CLIENT Hercules, LLC

PROJECT NAME Biosparge Pilot Test Well Installation

PROJECT NUMBER GW6881M PROJECT LOCATION Brunswick, Georgia

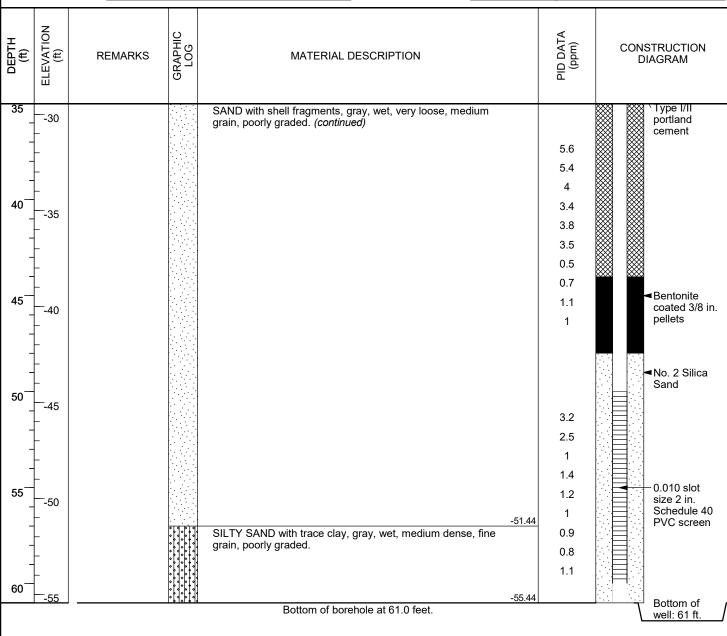
DEPTH (ff)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID DATA (ppm)	CONSTRUCTION DIAGRAM
35 - -	-30			SAND with shell fragments, gray, wet, very loose, fine to medium grain, poorly graded. <i>(continued)</i>	1.5	
-	-				3.6	
_	-				0.8	
40	-35				4.5	
_	-				8.5 6.6	
-					4.2	
-	 -				0.9	
45	-40				3.5	
-	"				4.7	
_	-				3.8	
_	-				2.9	
50	-				2.1 1.4	
-	-45				1.4	
_	_				2.9	
-	-				7.8	
_	-				1.8	
55	50 _				2.5	
_	-			-5	0.7	
_	-			SILTY SAND with trace clay, gray, wet, loose to medium dense, fine grain, poorly graded.	3.8	
60	-			, , , , , ,	1.3 1.3	▼Type I/II
-	-55				0.4	portland cement
-					1.7	
-					1.9	
-	-				1.6	
65	-60				5.3	
_	-			-6	7.2	
_				SAND with shell fragments, gray, wet, loose, medium grain, poorly graded.	0.2 0.4	
-					0.4	
70	65				0.5	
_	65 _				1.8	
-	-				1	
_	-				3.1	
_	-			CLAYEY SAND, gray, wet, dense, fine grain, poorly graded.	1.8	

CLIENT Hercules, LLC

PROJECT NAME Biosparge Pilot Test Well Installation

PROJECT NUMBER GW6881M

PROJECT LOCATION Brunswick, Georgia


DEPTH (ft)	ELEVATION (ft)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID DATA (ppm)	CONSTRUCTION DIAGRAM
75 	70 			SANDSTONE/SANDY MUDSTONE, gray, moist, fine to medium grain, brittle.	1.8 16.8 16.2 8.8 5.06 0.8 1 1.7 0.8 0.9 10.3 11.5	■ No. 2 Silica Sand O.010 slot size 2 in. Schedule 40 PVC screen Bottom of well: 93 ft.
			1		1.56	
				Bottom of borehole at 97.0 feet.		

SCS MONITORING WELLS BRUNSWICK BIOSPARGE WELLS 2021.GPJ ACP GINT LIBRARY CH.GLB 9/15/2°

CLIENT Hercules, LLC

PROJECT NAME Biosparge Pilot Test Well Installation

PROJECT NUMBER GW6881M PROJECT LOCATION Brunswick, Georgia

ATTACHMENT B

Geotechnical Laboratory Reports

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Test Results Summary

Project Name: Hercules Biosparge Pilot Test

Project No.: PN1031

								Test	Inform	ation							
Site ID	Lab No.	Moisture Content ASTM			n Size An				rberg L			Specific Gravity ASTM		Compa	rd Proctor ction Test M D698	Other Tests	Remarl
(-)	(-)	D2216	Gravel Content (%)	Sand Content (%)	Fines Content (%)	Silt Content	Clay Content (%)	LL	PL	PI	D2487	D854	D2974	DUW	1000000		
BS-1-47-56.5'	21D001	15.2	0.4	93.7	5.9	(/0)	(/0)	(-)	(-)	(-)	(-)	(-)	(%)	(pcf)	(%)		\vdash
BS-1-57-67'	21D001	16.5	0.0	76.7	23.3												1
BS-1-72-79.5'	21D002	11.3	1.8	64.8	33.4								0.6				
BS-1-79.5-81'	21D004	8.2	0.9	36.7	62.4								0.9				1
BS-2-78-80'	21D005	7.2	6.1	47.5	46.4								0.7				1
BS-2-85-90'	21D006E	8.5	0.5	90.5	9.0								0.1				
BS-2-80-87'	21D007E	8.6	2.6	89.6	7.8								0.1				
BS-2-98.7-99'	21D008E	23.9	0.2	83.4	16.4								1.3	=			

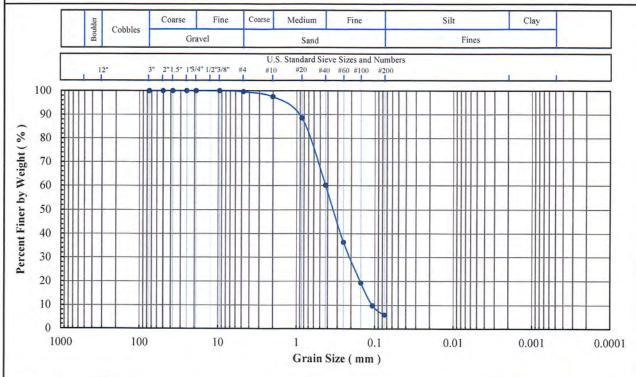
N	0	te	C

Excel Geotechnical Testing, Inc.

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Hercules Biosparge Pilot Test

Project No: PN1031

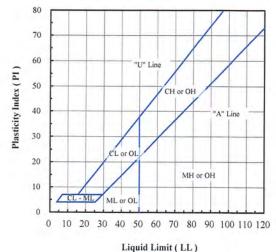

Client Sample ID: BS-1-47-56.5'

Lab Sample No: 21D001

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content



Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.6
#10	2.00	97.5
#20	0.850	88.6
#40	0.425	60.2
#60	0.250	36.4
#100	0.150	19.3
#140	0.106	9.8
#200	0.075	5.9

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	0.4
Sand (%):	93.7
Fines (%):	5.9
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Specific Gravity (-): Carbon. Content (%):

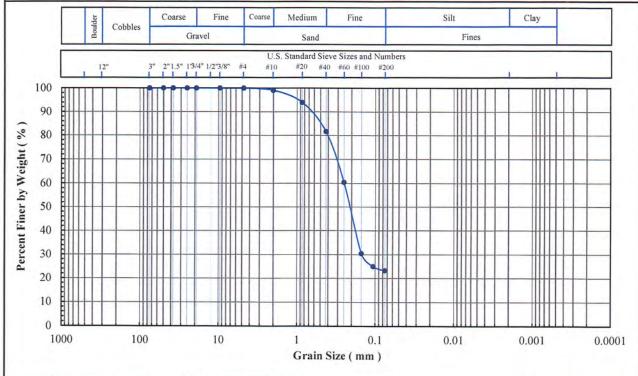
Client	Lab	Moisture	Fines Content	Atterberg Limits		nits	Engineering Classification	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	<i>y</i>	
BS-1-47-56.5'	21D001	15.2	5.9				ė.	

Note(s):

04-16-2021 AAINSR

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Hercules Biosparge Pilot Test

Project No: PN1031

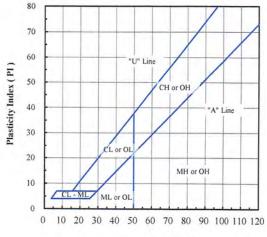

Client Sample ID: BS-1-57-67'

21D002 Lab Sample No:

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content



Sieve No.	Size (mm)	% Finer	
3"	75	100.0	
2"	50	100.0	
1.5"	37.5	100.0	
1"	25	100.0	
3/4"	19	100.0	
3/8"	9.5	100.0	
#4	4.75	100.0	
#10	2.00	99.1	
#20	0.850	94.0	
#40	0.425	81.6	
#60	0.250	60.4	
#100	0.150	30.5	
#140	0.106	25.0	
#200	0.075	23.3	

% Finer

76.7
23.3

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity	-1.	

Org. Content (%):	
-------------------	--

١	Carbon.	Content	(%):	
---	---------	---------	------	--

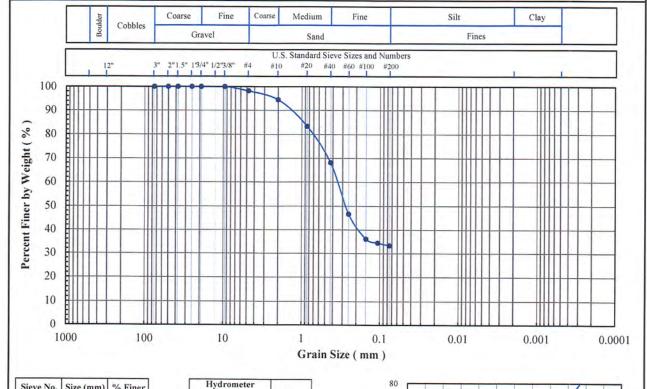
Client	Lab	Moisture	Fines Content	Atterberg Limits		mits	Engineering Classification	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)		
BS-1-57-67'	21D002	16.5	23.3					

Note(s):

04-16-2021 AAINSA

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Hercules Biosparge Pilot Test

Project No: PN1031

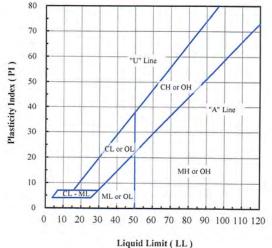

BS-1-72-79.5' Client Sample ID:

Lab Sample No: 21D003

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content



Sieve No.	Size (mm)	70 Finer	
3"	75	100.0	
2"	50	100.0	
1.5"	37.5	100.0	
1"	25	100.0	
3/4"	19	100.0	
3/8"	9.5	100.0	
#4	4.75	98.2	
#10	2.00	94.5	
#20	0.850	83.4	
#40	0.425	68.1	
#60	0.250	46.7	
#100	0.150	36.2	
#140	0.106	34.5	
#200	0.075	33.4	

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	1.8
Sand (%):	64.8
Fines (%):	33.4
Silt (%):	1
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Specific Gravity (-):

Org. Content (%):

Carbon. Content (%):

Client	Lab	Moisture	Fines Content Atterberg Limits Engineering	Atterberg Limits		Engineering Classification	
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
BS-1-72-79.5'	21D003	11.3	33.4				

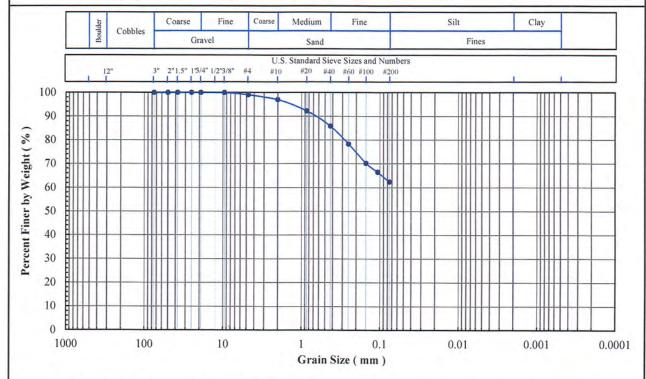
Note(s):

04-16-2021 AAI NSK

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Hercules Biosparge Pilot Test

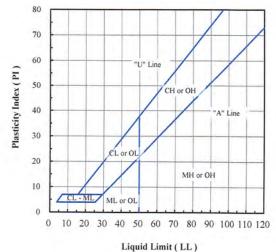
Project No: PN1031


BS-1-79.5-81' Client Sample ID:

Lab Sample No: 21D004

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES


Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.1
#10	2.00	97.0
#20	0.850	92.3
#40	0.425	85.9
#60	0.250	78.3
#100	0.150	70.1
#140	0.106	66.4
#200	0.075	62.4

Gravel (%):	0.9
Sand (%):	36.7
Fines (%):	62.4
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Org. Content (%):	0.9
	Org. Content (%):

Carbon. Content (%):	ntent (%):
----------------------	------------

Client	Lab	Lab Moisture Fines Content Atterberg Limits		Moisture Fines Content Atterberg Limits En	Engineering Classification		
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
BS-1-79.5-81'	21D004	8.2	62.4				

Note(s):

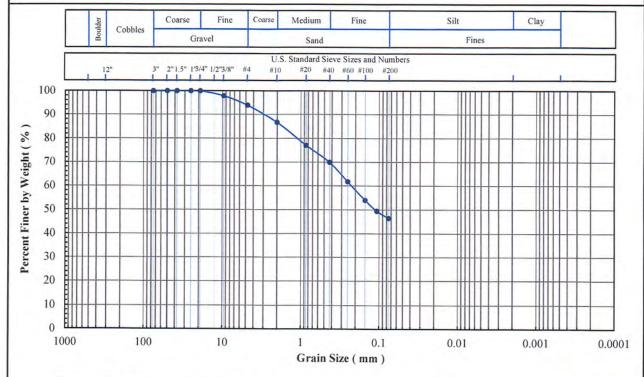
04-16-2021 AA. NSK

Excel Geotechnical Testing, Inc.

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Hercules Biosparge Pilot Test

Project No: PN1031

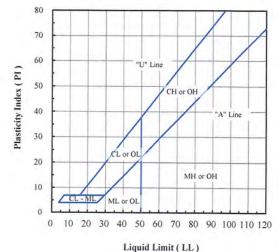

Client Sample ID: BS-2-78-80'

Lab Sample No: 21D005

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content



Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	97.9
#4	4.75	93.9
#10	2.00	86.7
#20	0.850	77.1
#40	0.425	69.9
#60	0.250	61.7
#100	0.150	53.9
#140	0.106	49.4
#200	0.075	46.4

Hydrometer Particle Diameter (mm)	% Finer
(mm)	

Gravel (%):	6.1
Sand (%):	47.5
Fines (%):	46.4
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Specific Gravity (-):

Org. Content (%): 0.7

Carbon. Content (%):

Client	Lab	Moisture	Fines Content	Att	erberg Li	mits	Engineering Classification
Sample ID.	Sample Content No: (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)		
BS-2-78-80'	21D005	7.2	46.4				

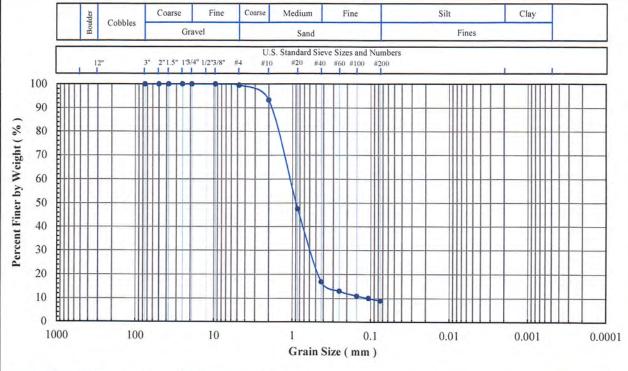
Note(s):

04.16.2021 AAINSK

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Hercules Biosparge Pilot Test

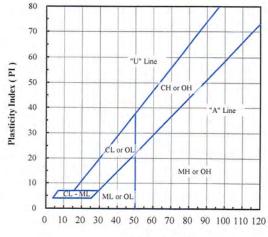
Project No: PN1031


Client Sample ID: BS-2-85-90'

Lab Sample No: 21D006E

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES


Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content

Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.5
#10	2.00	93.4
#20	0.850	47.6
#40	0.425	17.0
#60	0.250	13.1
#100	0.150	11.0
#140	0.106	10.1
#200	0.075	9.0

Gravel (%):	0.5
Sand (%):	90.5
Fines (%):	9.0
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific Gravity	1-1) •	

Org. Content (%):	0.1
-------------------	-----

١	Carbon.	Content	(%):	

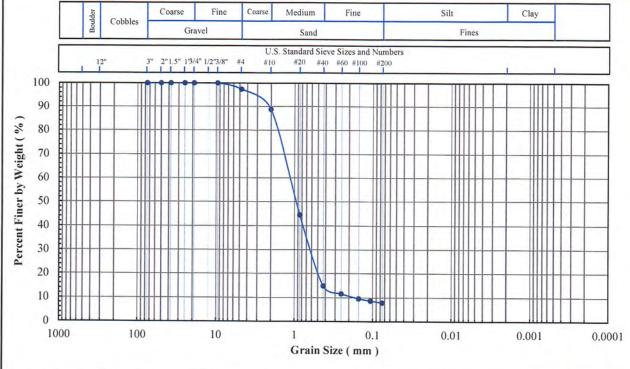
Client	Lab	Moisture	Fines Content	Att	erberg Li	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
BS-2-85-90'	21D006E	8.5	9.0				

Note(s):

04-16-2021 AAINS R

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com Project Name: Hercules Biosparge Pilot Test

Project No: PN1031

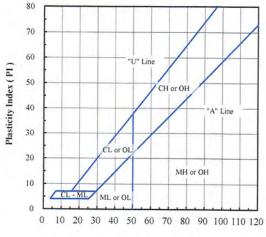

BS-2-80-87' Client Sample ID:

Lab Sample No: 21D007E

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content



Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	97.4
#10	2.00	88.8
#20	0.850	44.4
#40	0.425	14.8
#60	0.250	11.5
#100	0.150	9.5
#140	0.106	8.6
#200	0.075	7.8

% Finer

Gravel (%):	2.6
Sand (%):	89.6
Fines (%):	7.8
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

Specific (Gravity (-):	

	Org.	Content	(%):	0.1
--	------	---------	----	----	-----

Carbon. Content (%):	
----------------------	--

Client	Lab	Moisture	Fines Content	Att	erberg Lin	mits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
BS-2-80-87'	21D007E	8.6	7.8	-			

Note(s):

04-16-2021 04-16-2021

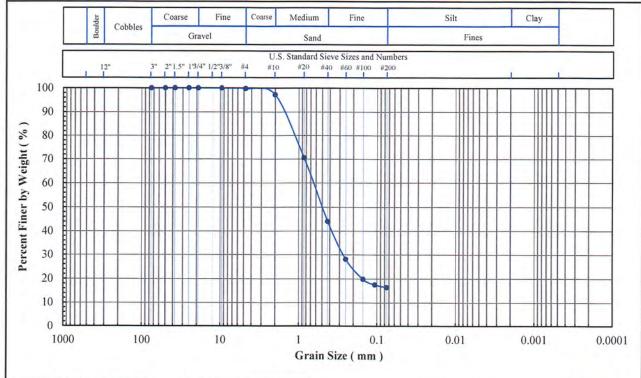
Excel Geotechnical Testing, Inc.

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537, www.excelgeotesting.com

Project Name: Hercules Biosparge Pilot Test

Project No: PN1031

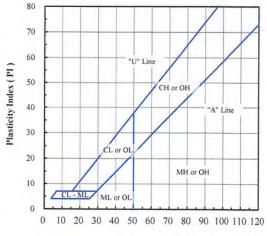

BS-2-98.7-99' Client Sample ID:

Lab Sample No: 21D008E

ASTM C136, D422, D854, D1140, D2216, D2487, D2974, D4318, D4373, D6913, D7928

SOIL INDEX PROPERTIES

Grain Size, Spec. Gravity, Moist. Cont, Eng. Classification, Organic Content, Atterberg Limits, Carbonate Content



Sieve No.	Size (mm)	% Finer
3"	75	100.0
2"	50	100.0
1.5"	37.5	100.0
1"	25	100.0
3/4"	19	100.0
3/8"	9.5	100.0
#4	4.75	99.8
#10	2.00	97.2
#20	0.850	70.6
#40	0.425	44.1
#60	0.250	28.1
#100	0.150	19.8
#140	0.106	17.5
#200	0.075	16.4

Hydrometer Particle Diameter (mm)	% Finer

Gravel (%):	0.2
Sand (%):	83.4
Fines (%):	16.4
Silt (%):	
Clay (%):	

Coeff. Unif. (Cu):	
Coeff. Curv. (Cc):	

Liquid Limit (LL)

CT INVA IN TO STATE OF THE STATE OF	
Specific Gravity (-):	

Org. Content	(%):	1.3
--------------	------	-----

Carbon.	Content	10/6	١.	
 Car bon.	Content	10	J +	

Client	Lab	Moisture	Fines Content	Atterberg Limits		nits	Engineering Classification
Sample ID.	Sample No:	Content (%)	< No. 200 (%)	LL (-)	PL (-)	PI (-)	
BS-2-98.7-99'	21D008E	23.9	16.4				

Note(s):

04-16-2027 AA, NSA

Excel Geotechnical Testing, Inc.

"Excellence in Testing"

953 Forrest Street, Roswell, Georgia 30075 Tel: (770) 910 7537 Fax: (770) 910 7538

LAST PAGE

Test Applicability and Limitations:

- The results are applicable only for the materials received at the laboratory and tested which may or may not be representative of the materials at the site.

Storage Policy:

- Uncontaminated Material: All samples (or what is left) will be archived for a period of 3 months from the date received. Thereafter the samples will be discarded unless a written request for extended storage is received. A rate of \$1.00 per sample per day will be applied after the initial 3 month storage period.
- Contaminated Material: All samples (or what is left) will be archived for a period of 3 months from the date received. Thereafter, the samples will be returned 5 the project manager or his/her designated receiver unless a written request for extended storage is received. A rate of \$1.30 per sample per day will be applied after the initial 3 months storage.

ATTACHMENT C

Analytical Laboratory Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-195713-1

Client Project/Site: Hercules - Brunswick Biosparge Pilot Test

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Adria Reimer

Authorized for release by: 3/16/2021 7:11:16 AM

Add Barnett

Eddie Barnett, Project Manager I (912)250-0280

Eddie.Barnett@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

7

10

40

13

14

15

┰ 。	I _ I	I _		^ -	1 -	nts
12	n		$\mathbf{O}\mathbf{I}$		nto	nte
ı a	U		VI.	UU		\mathbf{IILO}

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	5
Method Summary	6
Definitions/Glossary	7
Detection Summary	8
Client Sample Results	10
Surrogate Summary	20
QC Sample Results	21
QC Association Summary	34
Lab Chronicle	37
Chain of Custody	39
Receipt Checklists	42
Certification Summary	44

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.
Project: Hercules - Brunswick Biosparge Pilot Test

Report Number: 680-195713-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 03/04/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

BOD and COD are requested on the Chain of Custody, however, sample volume was not provided for the analysis of those methods; therefore, analysis for BOD and COD could not be performed.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples BS-OW-01 (680-195713-1), BS-OW-02 (680-195713-2), BS-OW-03D (680-195713-3), MW-29D (680-195713-4) and TB-01 (680-195713-5) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 03/06/2021 and 03/09/2021.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batches 680-658322, 680-658333 and 680-658625.

- 2-Butanone (MEK), 4-Methyl-2-pentanone and Acetone recovered high for LCS 680-658333/5 and LCSD 680-658333/6. These analytes have been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified. Refer to the QC report for details.
- 4-Methyl-2-pentanone recovered high for LCS 680-658625/5. This analyte has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified. Refer to the QC report for details.

Samples BS-OW-01 (680-195713-1)[20X], BS-OW-02 (680-195713-2)[20X], BS-OW-03D (680-195713-3)[20X] and MW-29D (680-195713-4)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP) - DISSOLVED

Samples BS-OW-01 (680-195713-1), BS-OW-02 (680-195713-2), BS-OW-03D (680-195713-3) and MW-29D (680-195713-4) were analyzed for Metals (ICP) - Dissolved in accordance with EPA SW-846 Method 6010C. The samples were prepared on 03/05/2021 and analyzed on 03/08/2021.

Iron recovered low for the MS of sample BS-OW-02MS (680-195713-2) in batch 680-658603. Manganese recovered low for the MSD of sample BS-OW-02MSD (680-195713-2) in batch 680-658603. Iron recovered high. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples BS-OW-01 (680-195713-1), BS-OW-02 (680-195713-2), BS-OW-03D (680-195713-3) and MW-29D (680-195713-4) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 03/04/2021 and analyzed on

Job ID: 680-195713-1

<u></u> 3

4

5

6

8

10

12

13

14

15

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Job ID: 680-195713-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

03/06/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HARDNESS AS CALCIUM CARBONATE

Samples BS-OW-01 (680-195713-1), BS-OW-02 (680-195713-2), BS-OW-03D (680-195713-3) and MW-29D (680-195713-4) were analyzed for hardness as calcium carbonate in accordance with EPA Method 130.2. The samples were analyzed on 03/09/2021.

Samples BS-OW-01 (680-195713-1)[25X], BS-OW-02 (680-195713-2)[25X], BS-OW-03D (680-195713-3)[25X] and MW-29D (680-195713-4)[25X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ALKALINITY

Samples BS-OW-01 (680-195713-1), BS-OW-02 (680-195713-2), BS-OW-03D (680-195713-3) and MW-29D (680-195713-4) were analyzed for alkalinity in accordance with SM 2320B. The samples were analyzed on 03/12/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL DISSOLVED SOLIDS

Samples BS-OW-01 (680-195713-1), BS-OW-02 (680-195713-2), BS-OW-03D (680-195713-3) and MW-29D (680-195713-4) were analyzed for total dissolved solids in accordance with SM 2540C. The samples were analyzed on 03/05/2021.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job	ID:	680-	1957	13-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
680-195713-1	BS-OW-01	Water	03/02/21 16:00	03/04/21 09:48	
680-195713-2	BS-OW-02	Water	03/02/21 14:35	03/04/21 09:48	
680-195713-3	BS-OW-03D	Water	03/02/21 12:15	03/04/21 09:48	
680-195713-4	MW-29D	Water	03/02/21 11:00	03/04/21 09:48	
680-195713-5	TB-01	Water	03/02/21 00:00	03/04/21 09:48	

Method Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
6010C	Metals (ICP)	SW846	TAL SAV
130.2-1982	Hardness, Total (mg/l as CaCO3)	MCAWW	TAL SAV
2540C-2011	Total Dissolved Solids (Dried at 180 °C)	SM	TAL SAV
SM 2320B	Alkalinity	SM	TAL PEN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL SAV
5030B	Purge and Trap	SW846	TAL SAV
FILTRATION	Sample Filtration	None	TAL SAV

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Job ID: 680-195713-1

2

4

5

7

Ŏ

4 C

11

14

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Job ID: 680-195713-1

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Qualifiers

G	C	M	S	V	0	A
•	•	•	•	•	•	•

Qualifier **Qualifier Description**

LCS and/or LCSD is outside acceptance limits, high biased. U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier **Qualifier Description**

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	v used abbreviations may	v or may not	be present in this report.
ADDIEVIALIOII	THESE COMMISSION	/ useu appleviations may	y Oi illay liot	ne bieseiil iii iiiis ieboii

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CFU** Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DI Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCI EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Savannah

3/16/2021

Page 7 of 44

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Lab Sample ID: 680-195713-1

SM 2320B

Lab Sample ID: 680-195713-2

Lab Sample ID: 680-195713-3

Client Sample ID: BS-OW-01

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac) Method	Prep Type
Benzene	330	20	ug/L		8260B	Total/NA
Chlorobenzene	330	20	ug/L	20	8260B	Total/NA
Ethylbenzene	44	20	ug/L	20	8260B	Total/NA
m-Xylene & p-Xylene	20	20	ug/L	20	8260B	Total/NA
Isopropylbenzene	49	20	ug/L	20	8260B	Total/NA
Iron	39000	50	ug/L	1	6010C	Total
						Recoverable
Manganese	870	10	ug/L	1	6010C	Total
						Recoverable
Iron	31000	50	ug/L	1	6010C	Dissolved
Manganese	840	10	ug/L	1	6010C	Dissolved
Hardness as calcium carbonate	6100	250	mg/L	25	130.2-1982	Total/NA
Total Dissolved Solids	6300	200	mg/L	1	2540C-2011	Total/NA

1.0

mg/L

270

Client Sample ID: BS-OW-02

Alkalinity, Total

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	170		20		ug/L	20	_	8260B	Total/NA
Chlorobenzene	170		20		ug/L	20		8260B	Total/NA
Iron	47000		50		ug/L	1		6010C	Total
									Recoverable
Manganese	1100		10		ug/L	1		6010C	Total
									Recoverable
Iron	33000		50		ug/L	1		6010C	Dissolved
Manganese	1100	F1	10		ug/L	1		6010C	Dissolved
Hardness as calcium carbonate	6100		250		mg/L	25		130.2-1982	Total/NA
Total Dissolved Solids	6000		200		mg/L	1		2540C-2011	Total/NA
Alkalinity, Total	250		1.0		mg/L	1		SM 2320B	Total/NA

Client Sample ID: BS-OW-03D

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	330		20		ug/L	20	_	8260B	Total/NA
Chlorobenzene	300		20		ug/L	20		8260B	Total/NA
Ethylbenzene	61		20		ug/L	20		8260B	Total/NA
m-Xylene & p-Xylene	110		20		ug/L	20		8260B	Total/NA
Isopropylbenzene	57		20		ug/L	20		8260B	Total/NA
Iron	28000		50		ug/L	1		6010C	Total Recoverable
Manganese	1500		10		ug/L	1		6010C	Total Recoverable
Iron	22000		50		ug/L	1		6010C	Dissolved
Manganese	1300		10		ug/L	1		6010C	Dissolved
Hardness as calcium carbonate	5600		250		mg/L	25		130.2-1982	Total/NA
Total Dissolved Solids	4400		200		mg/L	1		2540C-2011	Total/NA
Alkalinity, Total	280		1.0		mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-29D

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Benzene	1000	20	ug/L	20	8260B	Total/NA
Chlorobenzene	760	20	ug/L	20	8260B	Total/NA
Ethylbenzene	150	20	ug/L	20	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Savannah

Lab Sample ID: 680-195713-4

Page 8 of 44

2

3

5

7

9

IU

Total/NA

12

14

15

13

3/16/2021

Detection Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Client Sample ID: MW-29D (Continued)

Lab Sample	ID:	680-195713	3-4
------------	-----	------------	-----

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
m-Xylene & p-Xylene	360	20		ug/L	20	_	8260B	Total/NA
Isopropylbenzene	240	20		ug/L	20		8260B	Total/NA
Iron	37000	50		ug/L	1		6010C	Total
								Recoverable
Manganese	950	10		ug/L	1		6010C	Total
								Recoverable
Iron	28000	50		ug/L	1		6010C	Dissolved
Manganese	950	10		ug/L	1		6010C	Dissolved
Hardness as calcium carbonate	4400	250		mg/L	25		130.2-1982	Total/NA
Total Dissolved Solids	7400	100		mg/L	1		2540C-2011	Total/NA
Alkalinity, Total	250	1.0		mg/L	1		SM 2320B	Total/NA

Client Sample ID: TB-01

Lab Sample ID: 680-195713-5

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-195713-1

Matrix: Water

Job ID: 680-195713-1

Client Sample ID: BS-OW-01
Date Collected: 03/02/21 16:00

m-Xylene & p-Xylene

Isopropylbenzene

1,1,2,2-Tetrachloroethane

1,2,3-Trichlorobenzene

Styrene

Bromoform

Method: 8260B - Volatile Organ	•	•	•			_			
Analyte		Qualifier	RL _	MDL	Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	20		20		ug/L			03/06/21 22:29	20
Chloromethane	20		20		ug/L			03/06/21 22:29	20
Vinyl chloride	20	. 	20		ug/L			03/06/21 22:29	20
Bromomethane	100		100		ug/L			03/06/21 22:29	20
Chloroethane	100		100		ug/L			03/06/21 22:29	20
Trichlorofluoromethane	20		20		ug/L			03/06/21 22:29	20
1,1-Dichloroethene	20		20		ug/L			03/06/21 22:29	20
1,1,2-Trichloro-1,2,2-trifluoroethane	20		20		ug/L			03/06/21 22:29	20
Acetone		U *+	200		ug/L			03/06/21 22:29	20
Carbon disulfide	40	U	40		ug/L			03/06/21 22:29	20
Methyl acetate	100	_	100		ug/L			03/06/21 22:29	20
Methylene Chloride	100	U	100		ug/L			03/06/21 22:29	20
trans-1,2-Dichloroethene	20	U	20		ug/L			03/06/21 22:29	20
Methyl tert-butyl ether	200	U	200		ug/L			03/06/21 22:29	20
1,1-Dichloroethane	20	U	20		ug/L			03/06/21 22:29	20
cis-1,2-Dichloroethene	20	U	20		ug/L			03/06/21 22:29	20
2-Butanone (MEK)	200	U *+	200		ug/L			03/06/21 22:29	20
Bromochloromethane	20	U	20		ug/L			03/06/21 22:29	20
Chloroform	20	U	20		ug/L			03/06/21 22:29	20
1,1,1-Trichloroethane	20	U	20		ug/L			03/06/21 22:29	20
Cyclohexane	20	U	20		ug/L			03/06/21 22:29	20
Carbon tetrachloride	20	U	20		ug/L			03/06/21 22:29	20
Benzene	330		20		ug/L			03/06/21 22:29	20
1,2-Dichloroethane	20	U	20		ug/L			03/06/21 22:29	20
Trichloroethene	20	U	20		ug/L			03/06/21 22:29	20
Methylcyclohexane	20	U	20		ug/L			03/06/21 22:29	20
1,2-Dichloropropane	20	U	20		ug/L			03/06/21 22:29	20
Bromodichloromethane	20	U	20		ug/L			03/06/21 22:29	20
cis-1,3-Dichloropropene	20	U	20		ug/L			03/06/21 22:29	20
4-Methyl-2-pentanone	200	U *+	200		ug/L			03/06/21 22:29	20
Toluene	20	U	20		ug/L			03/06/21 22:29	20
trans-1,3-Dichloropropene	20	U	20		ug/L			03/06/21 22:29	20
1,1,2-Trichloroethane	20	U	20		ug/L			03/06/21 22:29	20
Tetrachloroethene	20		20		ug/L			03/06/21 22:29	20
2-Hexanone	200	U	200		ug/L			03/06/21 22:29	20
Dibromochloromethane	20	U	20		ug/L			03/06/21 22:29	20
Chlorobenzene	330		20		ug/L			03/06/21 22:29	20
Ethylbenzene	44		20		ug/L			03/06/21 22:29	20
o-Xylene	20	U	20		ug/L			03/06/21 22:29	20

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104	70 - 130		03/06/21 22:29	20
1,2-Dichloroethane-d4 (Surr)	101	60 - 124		03/06/21 22:29	20
Dibromofluoromethane (Surr)	112	70 - 130		03/06/21 22:29	20

20

20

20

20

20

100

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

20

49

20 U

20 U

20 U

100 U

Eurofins TestAmerica, Savannah

03/06/21 22:29

03/06/21 22:29

03/06/21 22:29

03/06/21 22:29

03/06/21 22:29

03/06/21 22:29

Page 10 of 44

2

3

5

R

9

11

13

14

3/16/2021

20

20

20

20

20

Client: Geosyntec Consultants, Inc.

Client Sample ID: BS-OW-01

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

6100

6300

Lab Sample ID: 680-195713-1

Prepared

Analyzed

03/09/21 12:46

03/05/21 13:44

Matrix: Water

Job ID: 680-195713-1

Date Collected: 03/02/21 16:00 Date Received: 03/04/21 09:48

Hardness as calcium carbonate

Total Dissolved Solids

Analyte

RL Unit

mg/L

mg/L

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130					03/06/21 22:29	20
Method: 6010C - Metals (IC	CP) - Total Reco	verable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	39000		50		ug/L		03/04/21 15:31	03/06/21 18:50	1
Manganese	870		10		ug/L		03/04/21 15:31	03/06/21 18:50	1
•	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 6010C - Metals (IC Analyte Iron	•	Qualifier	RL 50	MDL	Unit ug/L	<u>D</u>	Prepared 03/05/21 08:33	Analyzed 03/08/21 21:35	Dil Fac
Analyte	Result	Qualifier		MDL		<u>D</u>		03/08/21 21:35	Dil Fac
Analyte Iron	Result 31000	Qualifier	50	MDL	ug/L	<u>D</u>	03/05/21 08:33	03/08/21 21:35	Dil Fac 1 1
Analyte Iron Manganese	Result 31000 840	Qualifier Qualifier	50		ug/L ug/L	<u>D</u>	03/05/21 08:33	03/08/21 21:35	Dil Fac 1 1 Dil Fac

RL

250

200

Dil Fac

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-195713-2

Matrix: Water

Job ID: 680-195713-1

Client Sample ID: BS-OW-02 Date Collected: 03/02/21 14:35

Date Received: 03/04/21 09:48 Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Dichlorodifluoromethane 20 U 20 ug/L 03/06/21 22:54 20 20 U 20 20 Chloromethane 03/06/21 22:54 ug/L Vinyl chloride 20 U 20 ug/L 03/06/21 22:54 20 Bromomethane 100 U 100 ug/L 03/06/21 22:54 20 20 Chloroethane 100 U 100 ug/L 03/06/21 22:54

Officiocularie	100 0	100	ug/L	00/00/21 22:04	20
Trichlorofluoromethane	20 U	20	ug/L	03/06/21 22:54	20
1,1-Dichloroethene	20 U	20	ug/L	03/06/21 22:54	20
1,1,2-Trichloro-1,2,2-trifluoroethane	20 U	20	ug/L	03/06/21 22:54	20
Acetone	200 U	*+ 200	ug/L	03/06/21 22:54	20
Carbon disulfide	40 U	40	ug/L	03/06/21 22:54	20
Methyl acetate	100 U	100	ug/L	03/06/21 22:54	20
Methylene Chloride	100 U	100	ug/L	03/06/21 22:54	20
trans-1,2-Dichloroethene	20 U	20	ug/L	03/06/21 22:54	20
Methyl tert-butyl ether	200 U	200	ug/L	03/06/21 22:54	20
1,1-Dichloroethane	20 U	20	ug/L	03/06/21 22:54	20
cis-1,2-Dichloroethene	20 U	20	ug/L	03/06/21 22:54	20
2-Butanone (MEK)	200 U	*+ 200	ug/L	03/06/21 22:54	20
Bromochloromethane	20 U	20	ug/L	03/06/21 22:54	20
Chloroform	20 U	20	ug/L	03/06/21 22:54	20
1,1,1-Trichloroethane	20 U	20	ug/L	03/06/21 22:54	20
Cyclohexane	20 U	20	ug/L	03/06/21 22:54	20
Carbon tetrachloride	20 U	20	ug/L	03/06/21 22:54	20
Benzene	170	20	ug/L	03/06/21 22:54	20
1,2-Dichloroethane	20 U	20	ug/L	03/06/21 22:54	20
Trichloroethene	20 U	20	ug/L	03/06/21 22:54	20
Methylcyclohexane	20 U	20	ug/L	03/06/21 22:54	20
1,2-Dichloropropane	20 U	20	ug/L	03/06/21 22:54	20
Bromodichloromethane	20 U	20	ug/L	03/06/21 22:54	20
cis-1,3-Dichloropropene	20 U	20	ug/L	03/06/21 22:54	20
4-Methyl-2-pentanone	200 U	*+ 200	ug/L	03/06/21 22:54	20
Toluene	20 U	20	ug/L	03/06/21 22:54	20
trans-1,3-Dichloropropene	20 U	20	ug/L	03/06/21 22:54	20
1,1,2-Trichloroethane	20 U	20	ug/L	03/06/21 22:54	20
Tetrachloroethene	20 U	20	ug/L	03/06/21 22:54	20
2-Hexanone	200 U	200	ug/L	03/06/21 22:54	20
Dibromochloromethane	20 U	20	ug/L	03/06/21 22:54	20
Chlorobenzene	170	20	ug/L	03/06/21 22:54	20
Ethylbenzene	20 U	20	ug/L	03/06/21 22:54	20
o-Xylene	20 U	20	ug/L	03/06/21 22:54	20
m-Xylene & p-Xylene	20 U	20	ug/L	03/06/21 22:54	20
Styrene	20 U		ug/L	03/06/21 22:54	20
Bromoform	20 U		ug/L	03/06/21 22:54	20
Isopropylbenzene	20 U	20	ug/L	03/06/21 22:54	20
1,1,2,2-Tetrachloroethane	20 U	20	ug/L	03/06/21 22:54	20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	109		70 - 130		03/06/21 22:54	20
1,2-Dichloroethane-d4 (Surr)	102		60 - 124		03/06/21 22:54	20
Dibromofluoromethane (Surr)	107		70 - 130		03/06/21 22:54	20

Eurofins TestAmerica, Savannah

Page 12 of 44

3/16/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-195713-2

Prepared

Analyzed

03/09/21 12:46

03/05/21 13:44

Matrix: Water

Job ID: 680-195713-1

Client Sample ID: BS-OW-02 Date Collected: 03/02/21 14:35

Date Received: 03/04/21 09:48

Hardness as calcium carbonate

Total Dissolved Solids

Analyte

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

6100

6000

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104	70 - 130		03/06/21 22:54	20

4-Bromofluorobenzene (Surr)	104		70 - 130					03/06/21 22:54	20
Method: 6010C - Metals (ICP) - Total Reco	overable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	47000	-	50		ug/L		03/04/21 15:31	03/06/21 18:30	1
Manganese	1100		10		ug/L		03/04/21 15:31	03/06/21 18:30	1
) - Dissolved								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	33000		50		ug/L		03/05/21 08:33	03/08/21 21:19	1
Manganese	1100	F1	10		ug/L		03/05/21 08:33	03/08/21 21:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	250		1.0		mg/L			03/12/21 13:31	1

RL

250

200

RL Unit

mg/L

mg/L

Dil Fac

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-195713-3

Matrix: Water

Job ID: 680-195713-1

Client Sample ID: BS-OW-03D Date Collected: 03/02/21 12:15

Date Received: 03/04/21 09:48

Dibromofluoromethane (Surr)

Analyte		Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	20	U	20	ug/L		03/06/21 23:18	2
Chloromethane	20	U	20	ug/L		03/06/21 23:18	20
Vinyl chloride	20	U	20	ug/L		03/06/21 23:18	20
Bromomethane	100	U	100	ug/L		03/06/21 23:18	20
Chloroethane	100	U	100	ug/L		03/06/21 23:18	2
Trichlorofluoromethane	20	U	20	ug/L		03/06/21 23:18	2
1,1-Dichloroethene	20	U	20	ug/L		03/06/21 23:18	2
1,1,2-Trichloro-1,2,2-trifluoroethane	20	U	20	ug/L		03/06/21 23:18	2
Acetone	200	U *+	200	ug/L		03/06/21 23:18	2
Carbon disulfide	40	Ü	40	ug/L		03/06/21 23:18	2
Methyl acetate	100	U	100	ug/L		03/06/21 23:18	20
Methylene Chloride	100	U	100	ug/L		03/06/21 23:18	2
trans-1,2-Dichloroethene	20	U	20	ug/L		03/06/21 23:18	20
Methyl tert-butyl ether	200		200	ug/L		03/06/21 23:18	20
1,1-Dichloroethane	20		20	ug/L		03/06/21 23:18	2
cis-1,2-Dichloroethene	20		20	ug/L		03/06/21 23:18	2
2-Butanone (MEK)		U *+	200	ug/L		03/06/21 23:18	2
Bromochloromethane	20	U	20	ug/L		03/06/21 23:18	2
Chloroform	20	Ü	20	ug/L		03/06/21 23:18	2
1.1.1-Trichloroethane	20		20	ug/L		03/06/21 23:18	2
Cyclohexane	20		20	ug/L		03/06/21 23:18	2
Carbon tetrachloride	20		20	ug/L		03/06/21 23:18	2
Benzene	330		20	ug/L		03/06/21 23:18	2
1,2-Dichloroethane	20	U	20	ug/L		03/06/21 23:18	2
Trichloroethene	20		20	ug/L		03/06/21 23:18	20
Methylcyclohexane	20		20	ug/L		03/06/21 23:18	2
1,2-Dichloropropane	20		20	ug/L		03/06/21 23:18	2
Bromodichloromethane	20		20	ug/L		03/06/21 23:18	2
cis-1,3-Dichloropropene	20		20	ug/L		03/06/21 23:18	2
4-Methyl-2-pentanone		U *+	200	ug/L		03/06/21 23:18	2
Toluene	20		20	ug/L		03/06/21 23:18	2
trans-1,3-Dichloropropene	20		20	ug/L		03/06/21 23:18	2
1,1,2-Trichloroethane	20		20	ug/L		03/06/21 23:18	2
Tetrachloroethene	20		20			03/06/21 23:18	2
2-Hexanone	200		200	ug/L		03/06/21 23:18	2
				ug/L			
Dibromochloromethane	20		20	ug/L		03/06/21 23:18	
Chlorobenzene	300		20	ug/L		03/06/21 23:18	2
Ethylbenzene	61		20	ug/L		03/06/21 23:18	2
o-Xylene	20	U	20	ug/L		03/06/21 23:18	2
m-Xylene & p-Xylene	110		20	ug/L		03/06/21 23:18	2
Styrene	20		20	ug/L		03/06/21 23:18	2
Bromoform	20		20	ug/L		03/06/21 23:18	2
Isopropylbenzene	57		20	ug/L		03/06/21 23:18	2
1,1,2,2-Tetrachloroethane	20		20	ug/L		03/06/21 23:18	2
1,2,3-Trichlorobenzene	100	U	100	ug/L		03/06/21 23:18	2
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	105		70 - 130			03/06/21 23:18	2
1,2-Dichloroethane-d4 (Surr)	100		60 ₋ 124			03/06/21 23:18	20

Eurofins TestAmerica, Savannah

03/06/21 23:18

Page 14 of 44

70 - 130

110

2

3

6

8

10

12

14

15

3/16/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Client Sample ID: BS-OW-03D Lab Sample ID: 680-195713-3

Date Collected: 03/02/21 12:15 **Matrix: Water**

Date Received: 03/04/21 09:48

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105	70 - 130		03/06/21 23:18	20
Method: 6010C - Metals (ICP)	- Total Recoverable				

Method: 60 100 - Metals (ICP) - Total Recoverable									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Iron	28000	50		ug/L		03/04/21 15:31	03/06/21 18:45	1
	Manganese	1500	10		ug/L		03/04/21 15:31	03/06/21 18:45	1
	_								

Method: 6010C - Metals (ICP) - Dissolved								
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Iron	22000	50	ug/L		03/05/21 08:33	03/08/21 22:06	1
	Manganese	1300	10	ug/L		03/05/21 08:33	03/08/21 22:06	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	280		1.0		mg/L			03/12/21 13:37	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	5600		250		mg/L			03/09/21 12:46	25
Total Dissolved Solids	4400		200		ma/l			03/05/21 13:44	1

Job ID: 680-195713-1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-195713-4

Matrix: Water

Job ID: 680-195713-1

Client Sample ID: MW-29D Date Collected: 03/02/21 11:00 Date Received: 03/04/21 09:48

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

Method: 8260B - Volatile Orga Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	20	U		ug/L		<u> </u>	03/09/21 20:23	2
Chloromethane	20	U	20	ug/L			03/09/21 20:23	2
Vinyl chloride	20	U	20	ug/L			03/09/21 20:23	2
Bromomethane	100	U	100	ug/L			03/09/21 20:23	2
Chloroethane	100	U	100	ug/L			03/09/21 20:23	2
Trichlorofluoromethane	20	U	20	ug/L			03/09/21 20:23	2
1,1-Dichloroethene	20	U	20	ug/L			03/09/21 20:23	2
1,1,2-Trichloro-1,2,2-trifluoroethane	20	U	20	ug/L			03/09/21 20:23	2
Acetone	200	U	200	ug/L			03/09/21 20:23	2
Carbon disulfide	40	U	40	ug/L			03/09/21 20:23	2
Methyl acetate	100	U	100	ug/L			03/09/21 20:23	2
Methylene Chloride	100	U	100	ug/L			03/09/21 20:23	2
trans-1,2-Dichloroethene	20	U	20	ug/L			03/09/21 20:23	20
Methyl tert-butyl ether	200	U	200	ug/L			03/09/21 20:23	20
1,1-Dichloroethane	20	U	20	ug/L			03/09/21 20:23	2
cis-1,2-Dichloroethene	20	U	20	ug/L			03/09/21 20:23	2
2-Butanone (MEK)	200	U	200	ug/L			03/09/21 20:23	2
Bromochloromethane	20	U	20	ug/L			03/09/21 20:23	2
Chloroform	20		20	ug/L			03/09/21 20:23	2
1,1,1-Trichloroethane	20	U	20	ug/L			03/09/21 20:23	2
Cyclohexane	20	U	20	ug/L			03/09/21 20:23	2
Carbon tetrachloride	20		20	ug/L			03/09/21 20:23	2
Benzene	1000		20	ug/L			03/09/21 20:23	2
1,2-Dichloroethane	20	U	20	ug/L			03/09/21 20:23	2
, Trichloroethene	20		20	ug/L			03/09/21 20:23	2
Methylcyclohexane	20	U	20	ug/L			03/09/21 20:23	2
1,2-Dichloropropane	20	U	20	ug/L			03/09/21 20:23	2
Bromodichloromethane	20		20	ug/L			03/09/21 20:23	2
cis-1,3-Dichloropropene	20	U	20	ug/L			03/09/21 20:23	2
4-Methyl-2-pentanone		U *+	200	ug/L			03/09/21 20:23	2
Toluene	20		20	ug/L			03/09/21 20:23	2
trans-1,3-Dichloropropene	20		20	ug/L			03/09/21 20:23	2
1,1,2-Trichloroethane	20		20	ug/L			03/09/21 20:23	2
Tetrachloroethene	20		20	ug/L			03/09/21 20:23	2
2-Hexanone	200		200	ug/L			03/09/21 20:23	2
Dibromochloromethane	20		20	ug/L			03/09/21 20:23	2
Chlorobenzene	760		20	ug/L			03/09/21 20:23	2
Ethylbenzene	150		20	ug/L			03/09/21 20:23	2
o-Xylene	20	U	20	ug/L			03/09/21 20:23	2
m-Xylene & p-Xylene	360		20	ug/L			03/09/21 20:23	2
Styrene	20	U	20	ug/L			03/09/21 20:23	2
Bromoform	20		20	ug/L			03/09/21 20:23	2
Isopropylbenzene	240		20	ug/L			03/09/21 20:23	2
1,1,2,2-Tetrachloroethane	20	U	20	ug/L			03/09/21 20:23	2
1,2,3-Trichlorobenzene	100		100	ug/L			03/09/21 20:23	20
	.50	-					2.2.2.2.2.2	_
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa

Eurofins TestAmerica, Savannah

03/09/21 20:23

03/09/21 20:23

03/09/21 20:23

20

3/16/2021

Page 16 of 44

70 - 130

60 - 124

70 - 130

108

91

102

9

3

5

0

9

11

13

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-195713-4

Matrix: Water

Job ID: 680-195713-1

Client Sample ID: MW-29D Date Collected: 03/02/21 11:00 Date Received: 03/04/21 09:48

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	104		70 - 130		03/09/21 20:23	20
ľ							

Method: 6010C - Metals (IC	P) - Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	37000	50		ug/L		03/04/21 15:31	03/06/21 17:53	1
Manganese	950	10		ug/L		03/04/21 15:31	03/06/21 17:53	1
Method: 6010C - Metals (IC	P) - Dissolved							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

General Chemistry Analyte	Result	Qualifier	RL	MDL U	Jnit	<u>D</u>	Prepared	Analyzed	Dil Fac
Manganese	950		10	ι	ıg/L		03/05/21 08:33	03/08/21 22:01	1
Iron	28000		50		ıg/L		03/05/21 08:33	03/08/21 22:01	1

Analyte	Result	Qualifier	KL	MDL	Unit	ט	Prepared	Analyzeu	DIIFac
Alkalinity, Total	250		1.0		mg/L			03/12/21 13:42	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	4400		250		mg/L			03/09/21 12:46	25
Total Dissolved Solids	7400		100		mg/L			03/05/21 13:44	1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-195713-5

Matrix: Water

Job ID: 680-195713-1

Client Sample ID: TB-01
Date Collected: 03/02/21 00:00
Date Received: 03/04/21 09:48

1,2,3-Trichlorobenzene

Method: 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1.0 U Dichlorodifluoromethane 1.0 ug/L 03/06/21 16:06 1.0 U Chloromethane 1.0 ug/L 03/06/21 16:06 Vinyl chloride 1.0 U 1.0 ug/L 03/06/21 16:06 5.0 U 5.0 Bromomethane ug/L 03/06/21 16:06 Chloroethane 5.0 U 5.0 ug/L 03/06/21 16:06 Trichlorofluoromethane 10 U 1.0 ug/L 03/06/21 16:06 1,1-Dichloroethene 1.0 U 1.0 ug/L 03/06/21 16:06 1,1,2-Trichloro-1,2,2-trifluoroethane 1.0 U 1.0 ug/L 03/06/21 16:06 Acetone 10 U 10 ug/L 03/06/21 16:06 Carbon disulfide 2.0 U 2.0 ug/L 03/06/21 16:06 Methyl acetate 5.0 U 5.0 ug/L 03/06/21 16:06 Methylene Chloride 5.0 U 5.0 ug/L 03/06/21 16:06 trans-1,2-Dichloroethene 1.0 U 1.0 ug/L 03/06/21 16:06 Methyl tert-butyl ether 10 U 10 ug/L 03/06/21 16:06 1,1-Dichloroethane 1.0 ug/L 03/06/21 16:06 10 U cis-1,2-Dichloroethene 1.0 U 1.0 ug/L 03/06/21 16:06 2-Butanone (MEK) 10 U 10 ug/L 03/06/21 16:06 Bromochloromethane 1.0 U 1.0 ug/L 03/06/21 16:06 1.0 Chloroform 10 U ug/L 03/06/21 16:06 1,1,1-Trichloroethane 1.0 U 1.0 ug/L 03/06/21 16:06 Cyclohexane 1.0 U 1.0 ug/L 03/06/21 16:06 Carbon tetrachloride 1.0 U 1.0 ug/L 03/06/21 16:06 Benzene 1.0 U ug/L 1.0 03/06/21 16:06 1,2-Dichloroethane 1.0 U 1.0 ug/L 03/06/21 16:06 Trichloroethene 1.0 U 1.0 ug/L 03/06/21 16:06 ug/L Methylcyclohexane 1.0 U 1.0 03/06/21 16:06 1,2-Dichloropropane 1.0 U 1.0 ug/L 03/06/21 16:06 ug/L Bromodichloromethane 1.0 U 1.0 03/06/21 16:06 ug/L cis-1,3-Dichloropropene 1.0 U 1.0 03/06/21 16:06 10 U 10 ug/L 4-Methyl-2-pentanone 03/06/21 16:06 Toluene 1.0 U 1.0 ug/L 03/06/21 16:06 trans-1,3-Dichloropropene 10 U 1.0 ug/L 03/06/21 16:06 1.1.2-Trichloroethane 1.0 ug/L 03/06/21 16:06 1.0 U Tetrachloroethene 10 U 10 ug/L 03/06/21 16:06 2-Hexanone 10 U 10 ug/L 03/06/21 16:06 Dibromochloromethane 1.0 U ug/L 03/06/21 16:06 1.0 Chlorobenzene 1.0 U 1.0 ug/L 03/06/21 16:06 Ethylbenzene 1.0 U 1.0 ug/L 03/06/21 16:06 ug/L o-Xylene 1.0 U 1.0 03/06/21 16:06 m-Xylene & p-Xylene 1.0 U 1.0 ug/L 03/06/21 16:06 Styrene 1.0 U 1.0 ug/L 03/06/21 16:06 **Bromoform** 10 U 1.0 ug/L 03/06/21 16:06 1.0 ug/L Isopropylbenzene 10 U 03/06/21 16:06 1,1,2,2-Tetrachloroethane 1.0 U ug/L 03/06/21 16:06 1.0

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	115		70 - 130	03/06/21 16:06	1
1,2-Dichloroethane-d4 (Surr)	106		60 - 124	03/06/21 16:06	1
Dibromofluoromethane (Surr)	117		70 - 130	03/06/21 16:06	1

5.0

ug/L

5.0 U

Eurofins TestAmerica, Savannah

03/06/21 16:06

Page 18 of 44

2

3

8

10

12

14

A E

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Client Sample ID: TB-01 Lab Sample ID: 680-195713-5

Date Collected: 03/02/21 00:00 Matrix: Water Date Received: 03/04/21 09:48

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

 Surrogate
 %Recovery 4-Bromofluorobenzene (Surr)
 Qualifier 115
 Limits 70 - 130
 Prepared 03/06/21 16:06
 Analyzed 03/06/21 16:06
 Dil Fac 03/06/21 16:06

Job ID: 680-195713-1

5

6

8

10

13

14

Surrogate Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	gate Recove	ery (Acce
		TOL	DCA	DBFM	BFB	
_ab Sample ID	Client Sample ID	(70-130)	(60-124)	(70-130)	(70-130)	
680-195713-1	BS-OW-01	104	101	112	106	
80-195713-2	BS-OW-02	109	102	107	104	
80-195713-3	BS-OW-03D	105	100	110	105	
680-195713-4	MW-29D	108	91	102	104	
880-195713-5	TB-01	115	106	117	115	
CS 680-658322/4	Lab Control Sample	105	101	109	97	
CS 680-658333/5	Lab Control Sample	109	109	109	109	
CS 680-658625/5	Lab Control Sample	105	111	114	100	
CSD 680-658322/5	Lab Control Sample Dup	103	101	108	94	
CSD 680-658333/6	Lab Control Sample Dup	109	113	113	112	
CSD 680-658625/6	Lab Control Sample Dup	105	102	105	105	
MB 680-658322/9	Method Blank	107	101	113	111	
MB 680-658333/10	Method Blank	107	94	102	106	
ИВ 680-658625/10	Method Blank	107	91	101	105	

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-658322/9

Matrix: Water

Toluene-d8 (Surr)

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	1.0	U	1.0		ug/L		-	03/06/21 15:06	1
Chloromethane	1.0	U	1.0		ug/L			03/06/21 15:06	1
Vinyl chloride	1.0	U	1.0		ug/L			03/06/21 15:06	1
Bromomethane	5.0	U	5.0		ug/L			03/06/21 15:06	1
Chloroethane	5.0	U	5.0		ug/L			03/06/21 15:06	1
Trichlorofluoromethane	1.0	U	1.0		ug/L			03/06/21 15:06	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			03/06/21 15:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0		ug/L			03/06/21 15:06	1
Acetone	10	U	10		ug/L			03/06/21 15:06	1
Carbon disulfide	2.0	U	2.0		ug/L			03/06/21 15:06	1
Methyl acetate	5.0	U	5.0		ug/L			03/06/21 15:06	1
Methylene Chloride	5.0	U	5.0		ug/L			03/06/21 15:06	1
trans-1,2-Dichloroethene	1.0		1.0		ug/L			03/06/21 15:06	1
Methyl tert-butyl ether	10		10		ug/L			03/06/21 15:06	1
1,1-Dichloroethane	1.0		1.0		ug/L			03/06/21 15:06	1
cis-1,2-Dichloroethene	1.0		1.0		ug/L			03/06/21 15:06	1
2-Butanone (MEK)	10		10		ug/L			03/06/21 15:06	1
Bromochloromethane	1.0		1.0		ug/L			03/06/21 15:06	1
Chloroform	1.0		1.0		ug/L			03/06/21 15:06	1
1,1,1-Trichloroethane	1.0		1.0		ug/L			03/06/21 15:06	1
Cyclohexane	1.0		1.0		ug/L			03/06/21 15:06	1
Carbon tetrachloride	1.0		1.0		ug/L			03/06/21 15:06	
Benzene	1.0		1.0		ug/L			03/06/21 15:06	. 1
1,2-Dichloroethane	1.0		1.0		ug/L			03/06/21 15:06	1
Trichloroethene	1.0		1.0		ug/L			03/06/21 15:06	· 1
Methylcyclohexane	1.0		1.0		ug/L			03/06/21 15:06	1
1,2-Dichloropropane	1.0		1.0		ug/L			03/06/21 15:06	1
Bromodichloromethane	1.0		1.0		ug/L			03/06/21 15:06	· 1
cis-1,3-Dichloropropene	1.0		1.0		ug/L			03/06/21 15:06	1
4-Methyl-2-pentanone	10		10		ug/L			03/06/21 15:06	1
Toluene	1.0		1.0		ug/L			03/06/21 15:06	
trans-1,3-Dichloropropene	1.0		1.0		ug/L			03/06/21 15:06	1
1,1,2-Trichloroethane	1.0		1.0		ug/L			03/06/21 15:06	1
Tetrachloroethene	1.0		1.0		ug/L			03/06/21 15:06	' 1
2-Hexanone	1.0		10		ug/L			03/06/21 15:06	1
Dibromochloromethane	1.0		1.0						1
Chlorobenzene	1.0		1.0		ug/L			03/06/21 15:06 03/06/21 15:06	
Ethylbenzene	1.0		1.0		ug/L			03/06/21 15:06	1
•	1.0		1.0		ug/L			03/06/21 15:06	1
o-Xylene	1.0		1.0		ug/L				ا 1
m-Xylene & p-Xylene	1.0				ug/L			03/06/21 15:06	•
Styrene	1.0		1.0		ug/L			03/06/21 15:06	1
Bromoform			1.0		ug/L			03/06/21 15:06	1
Isopropylbenzene	1.0		1.0		ug/L			03/06/21 15:06	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			03/06/21 15:06	1
1,2,3-Trichlorobenzene	5.0	U	5.0		ug/L			03/06/21 15:06	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Savannah

03/06/21 15:06

Page 21 of 44

70 - 130

107

2

3

0

8

10

12

A A

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-658322/9

Lab Sample ID: LCS 680-658322/4

Matrix: Water

Analysis Batch: 658322

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		60 - 124		03/06/21 15:06	1
Dibromofluoromethane (Surr)	113		70 - 130		03/06/21 15:06	1
4-Bromofluorobenzene (Surr)	111		70 - 130		03/06/21 15:06	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 658322

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	50.0	42.5		ug/L		85	70 - 130
Chloromethane	50.0	43.1		ug/L		86	59 - 127
Vinyl chloride	50.0	45.7		ug/L		91	66 - 129
Bromomethane	50.0	50.9		ug/L		102	28 - 192
Chloroethane	50.0	76.4		ug/L		153	31 - 213
Trichlorofluoromethane	50.0	52.0		ug/L		104	63 - 142
1,1-Dichloroethene	50.0	53.3		ug/L		107	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	57.1		ug/L		114	63 - 141
ne							
Acetone	250	254		ug/L		102	67 - 113
Carbon disulfide	50.0	55.4		ug/L		111	70 - 130
Methyl acetate	100	88.5		ug/L		88	67 - 110
Methylene Chloride	50.0	49.4		ug/L		99	70 - 130
trans-1,2-Dichloroethene	50.0	53.4		ug/L		107	70 - 130
Methyl tert-butyl ether	50.0	51.7		ug/L		103	70 - 130
1,1-Dichloroethane	50.0	53.7		ug/L		107	70 - 130
cis-1,2-Dichloroethene	50.0	52.3		ug/L		105	70 - 130
2-Butanone (MEK)	250	251		ug/L		100	69 - 114
Bromochloromethane	50.0	53.1		ug/L		106	70 - 130
Chloroform	50.0	53.8		ug/L		108	70 - 130
1,1,1-Trichloroethane	50.0	55.4		ug/L		111	70 - 130
Cyclohexane	50.0	51.9		ug/L		104	23 - 175
Carbon tetrachloride	50.0	55.4		ug/L		111	70 - 130
Benzene	50.0	55.8		ug/L		112	70 - 130
1,2-Dichloroethane	50.0	53.2		ug/L		106	70 - 130
Trichloroethene	50.0	59.2		ug/L		118	70 - 130
Methylcyclohexane	50.0	56.6		ug/L		113	70 - 130
1,2-Dichloropropane	50.0	53.0		ug/L		106	70 - 130
Bromodichloromethane	50.0	51.6		ug/L		103	70 - 130
cis-1,3-Dichloropropene	50.0	54.7		ug/L		109	70 - 130
4-Methyl-2-pentanone	250	232		ug/L		93	68 - 108
Toluene	50.0	54.5		ug/L		109	70 - 130
trans-1,3-Dichloropropene	50.0	57.0		ug/L		114	70 - 130
1,1,2-Trichloroethane	50.0	52.1		ug/L		104	70 - 130
Tetrachloroethene	50.0	58.7		ug/L		117	70 - 130
2-Hexanone	250	230		ug/L		92	70 - 130
Dibromochloromethane	50.0	52.4		ug/L		105	70 - 130
Chlorobenzene	50.0	57.0		ug/L		114	70 - 130
Ethylbenzene	50.0	56.2		ug/L		112	70 - 130
o-Xylene	50.0	57.8		ug/L		116	70 - 130

Eurofins TestAmerica, Savannah

Page 22 of 44

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-658322/4

Matrix: Water

Analysis Batch: 658322

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-195713-1

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	50.0	58.4		ug/L		117	70 - 130	
Styrene	50.0	58.5		ug/L		117	70 - 130	
Bromoform	50.0	51.4		ug/L		103	69 - 129	
Isopropylbenzene	50.0	58.1		ug/L		116	70 - 130	
1,1,2,2-Tetrachloroethane	50.0	51.7		ug/L		103	70 - 130	
1,2,3-Trichlorobenzene	50.0	59.4		ug/L		119	61 - 141	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Surr)	101		60 - 124
Dibromofluoromethane (Surr)	109		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCSD 680-658322/5

Analysis Batch: 658322									
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	42.7		ug/L		85	70 - 130	0	40
Chloromethane	50.0	43.3		ug/L		87	59 - 127	0	30
Vinyl chloride	50.0	46.0		ug/L		92	66 - 129	1	30
Bromomethane	50.0	51.3		ug/L		103	28 - 192	1	30
Chloroethane	50.0	76.6		ug/L		153	31 - 213	0	30
Trichlorofluoromethane	50.0	50.9		ug/L		102	63 - 142	2	30
1,1-Dichloroethene	50.0	51.4		ug/L		103	70 - 130	4	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	54.4		ug/L		109	63 - 141	5	30
ne									
Acetone	250	262		ug/L		105	67 - 113	3	30
Carbon disulfide	50.0	53.5		ug/L		107	70 - 130	4	30
Methyl acetate	100	90.6		ug/L		91	67 - 110	2	30
Methylene Chloride	50.0	49.2		ug/L		98	70 - 130	0	30
trans-1,2-Dichloroethene	50.0	51.6		ug/L		103	70 - 130	3	30
Methyl tert-butyl ether	50.0	51.3		ug/L		103	70 - 130	1	30
1,1-Dichloroethane	50.0	52.8		ug/L		106	70 - 130	2	30
cis-1,2-Dichloroethene	50.0	51.1		ug/L		102	70 - 130	2	30
2-Butanone (MEK)	250	252		ug/L		101	69 - 114	0	30
Bromochloromethane	50.0	53.4		ug/L		107	70 - 130	1	30
Chloroform	50.0	52.2		ug/L		104	70 - 130	3	30
1,1,1-Trichloroethane	50.0	54.2		ug/L		108	70 - 130	2	30
Cyclohexane	50.0	50.2		ug/L		100	23 - 175	3	30
Carbon tetrachloride	50.0	54.1		ug/L		108	70 - 130	2	30
Benzene	50.0	54.7		ug/L		109	70 - 130	2	30
1,2-Dichloroethane	50.0	53.4		ug/L		107	70 - 130	0	50
Trichloroethene	50.0	57.3		ug/L		115	70 - 130	3	30
Methylcyclohexane	50.0	53.7		ug/L		107	70 - 130	5	30
1,2-Dichloropropane	50.0	51.7		ug/L		103	70 - 130	2	20
Bromodichloromethane	50.0	51.0		ug/L		102	70 - 130	1	30
cis-1,3-Dichloropropene	50.0	54.6		ug/L		109	70 - 130	0	20
4-Methyl-2-pentanone	250	235		ug/L		94	68 - 108	2	30

Eurofins TestAmerica, Savannah

3/16/2021

Page 23 of 44

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-658322/5

Matrix: Water

Analysis Batch: 658322

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	50.0	53.3		ug/L		107	70 - 130	2	30
trans-1,3-Dichloropropene	50.0	56.6		ug/L		113	70 - 130	1	30
1,1,2-Trichloroethane	50.0	52.4		ug/L		105	70 - 130	1	30
Tetrachloroethene	50.0	56.7		ug/L		113	70 - 130	3	30
2-Hexanone	250	235		ug/L		94	70 - 130	2	20
Dibromochloromethane	50.0	51.7		ug/L		103	70 - 130	1	30
Chlorobenzene	50.0	55.9		ug/L		112	70 - 130	2	30
Ethylbenzene	50.0	54.8		ug/L		110	70 - 130	3	20
o-Xylene	50.0	56.1		ug/L		112	70 - 130	3	30
m-Xylene & p-Xylene	50.0	56.5		ug/L		113	70 - 130	3	30
Styrene	50.0	57.4		ug/L		115	70 - 130	2	30
Bromoform	50.0	50.1		ug/L		100	69 - 129	3	30
Isopropylbenzene	50.0	55.6		ug/L		111	70 - 130	4	30
1,1,2,2-Tetrachloroethane	50.0	50.9		ug/L		102	70 - 130	2	30
1,2,3-Trichlorobenzene	50.0	57.3		ug/L		115	61 - 141	4	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		70 - 130
1,2-Dichloroethane-d4 (Surr)	101		60 - 124
Dibromofluoromethane (Surr)	108		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130

Lab Sample ID: MB 680-658333/10

Matrix: Water

Analysis Batch: 658333

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	1.0	U	1.0		ug/L			03/06/21 15:23	1
Chloromethane	1.0	U	1.0		ug/L			03/06/21 15:23	1
Vinyl chloride	1.0	U	1.0		ug/L			03/06/21 15:23	1
Bromomethane	5.0	U	5.0		ug/L			03/06/21 15:23	1
Chloroethane	5.0	U	5.0		ug/L			03/06/21 15:23	1
Trichlorofluoromethane	1.0	U	1.0		ug/L			03/06/21 15:23	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			03/06/21 15:23	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0		ug/L			03/06/21 15:23	1
Acetone	10	U	10		ug/L			03/06/21 15:23	1
Carbon disulfide	2.0	U	2.0		ug/L			03/06/21 15:23	1
Methyl acetate	5.0	U	5.0		ug/L			03/06/21 15:23	1
Methylene Chloride	5.0	U	5.0		ug/L			03/06/21 15:23	1
trans-1,2-Dichloroethene	1.0	U	1.0		ug/L			03/06/21 15:23	1
Methyl tert-butyl ether	10	U	10		ug/L			03/06/21 15:23	1
1,1-Dichloroethane	1.0	U	1.0		ug/L			03/06/21 15:23	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			03/06/21 15:23	1
2-Butanone (MEK)	10	U	10		ug/L			03/06/21 15:23	1
Bromochloromethane	1.0	U	1.0		ug/L			03/06/21 15:23	1
Chloroform	1.0	U	1.0		ug/L			03/06/21 15:23	1
1,1,1-Trichloroethane	1.0	U	1.0		ug/L			03/06/21 15:23	1
Cyclohexane	1.0	U	1.0		ug/L			03/06/21 15:23	1

Eurofins TestAmerica, Savannah

Page 24 of 44

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-658333/10

Matrix: Water

Analysis Batch: 658333

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Carbon tetrachloride 1.0 IJ 1.0 ug/L 03/06/21 15:23 ug/L Benzene 1.0 1.0 03/06/21 15:23 1,2-Dichloroethane 1.0 U 1.0 ug/L 03/06/21 15:23 Trichloroethene 1.0 U 1.0 ug/L 03/06/21 15:23 1.0 U 1.0 ug/L 03/06/21 15:23 Methylcyclohexane 1,2-Dichloropropane 1.0 U 1.0 ug/L 03/06/21 15:23 Bromodichloromethane 1.0 U 1.0 ug/L 03/06/21 15:23 ug/L cis-1,3-Dichloropropene 1.0 U 1.0 03/06/21 15:23 4-Methyl-2-pentanone 10 U 10 ug/L 03/06/21 15:23 Toluene 1.0 U 1.0 ug/L 03/06/21 15:23 trans-1,3-Dichloropropene ug/L 03/06/21 15:23 1.0 U 1.0 1,1,2-Trichloroethane 1.0 U 1.0 ug/L 03/06/21 15:23 Tetrachloroethene 1.0 U 1.0 03/06/21 15:23 ug/L 2-Hexanone 10 10 U ug/L 03/06/21 15:23 Dibromochloromethane 1.0 U 1.0 ug/L 03/06/21 15:23 1.0 U 1.0 Chlorobenzene ug/L 03/06/21 15:23 Ethylbenzene 1.0 U 1.0 ug/L 03/06/21 15:23 o-Xylene 1.0 U 1.0 ug/L 03/06/21 15:23 m-Xylene & p-Xylene 1.0 U 1.0 ug/L 03/06/21 15:23 Styrene 1.0 U 1.0 ug/L 03/06/21 15:23 Bromoform 1.0 U 1.0 ug/L 03/06/21 15:23 Isopropylbenzene 1.0 U 1.0 ug/L 03/06/21 15:23 1,1,2,2-Tetrachloroethane 1.0 U 1.0 ug/L 03/06/21 15:23 1,2,3-Trichlorobenzene 5.0 U 5.0 ug/L 03/06/21 15:23

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107		70 - 130		03/06/21 15:23	1
1,2-Dichloroethane-d4 (Surr)	94		60 - 124		03/06/21 15:23	1
Dibromofluoromethane (Surr)	102		70 - 130		03/06/21 15:23	1
4-Bromofluorobenzene (Surr)	106		70 - 130		03/06/21 15:23	1

Lab Sample ID: LCS 680-658333/5

Matrix: Water

Analysis Batch: 658333

Client Sample ID: Lab Control Sample Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	50.0	44.0		ug/L		88	70 - 130	_
Chloromethane	50.0	50.9		ug/L		102	59 - 127	
Vinyl chloride	50.0	49.0		ug/L		98	66 - 129	
Bromomethane	50.0	67.5		ug/L		135	28 - 192	
Chloroethane	50.0	76.6		ug/L		153	31 - 213	
Trichlorofluoromethane	50.0	54.2		ug/L		108	63 - 142	
1,1-Dichloroethene	50.0	55.1		ug/L		110	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	57.2		ug/L		114	63 - 141	
ne								
Acetone	250	311	*+	ug/L		124	67 - 113	
Carbon disulfide	50.0	57.3		ug/L		115	70 - 130	
Methyl acetate	100	102		ug/L		102	67 - 110	
Methylene Chloride	50.0	54.9		ug/L		110	70 - 130	

Eurofins TestAmerica, Savannah

Page 25 of 44

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-658333/5

Matrix: Water

Analysis Batch: 658333

trans-1,2-Dichloroethene

Methyl tert-butyl ether

cis-1,2-Dichloroethene

Bromochloromethane

1,1,1-Trichloroethane

trans-1,3-Dichloropropene

Ethylbenzene

1,1-Dichloroethane

2-Butanone (MEK)

Chloroform

Cyclohexane

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits 50.0 54.1 108 70 - 130 ug/L ug/L 50.0 57.0 114 70 - 130 50.0 54.1 ug/L 108 70 - 130 50.0 54.0 ug/L 108 70 - 130

250 312 *+ 125 69 - 114 ug/L 50.0 53.9 ug/L 108 70 - 130 50.0 51.7 ug/L 103 70 - 130 50.0 52.5 ug/L 105 70 - 130 108 50.0 53.9 ug/L 23 - 175

107 Carbon tetrachloride 50.0 53.3 ug/L 70 - 130 105 Benzene 50.0 52.5 ug/L 70 - 130 1,2-Dichloroethane 50.0 53.7 ug/L 107 70 - 130 Trichloroethene 50.0 109 70 - 130 54.3 ug/L 50.0 Methylcyclohexane 55.4 ug/L 111 70 - 130 1,2-Dichloropropane 50.0 55.4 ug/L 111 70 - 130

50.0 Bromodichloromethane 53.7 ug/L 107 70 - 130 cis-1,3-Dichloropropene 50.0 54.6 109 70 - 130 ug/L 250 314 *+ 126 4-Methyl-2-pentanone ug/L 68 - 108 Toluene 50.0 55.3 ug/L 111 70 - 130 ug/L

50.0

50.0

55.2

50.7

ug/L

1,1,2-Trichloroethane 50.0 58.8 ug/L 118 70 - 130 Tetrachloroethene 50.0 57.3 ug/L 115 70 - 130 2-Hexanone 250 312 ug/L 125 70 - 130 Dibromochloromethane 50.0 55.1 110 70 - 130 ug/L 50.0 105 Chlorobenzene 52.6 ug/L 70 - 130

97 o-Xylene 50.0 48.6 ug/L 70 - 130 m-Xylene & p-Xylene 50.0 49.0 ug/L 98 70 - 130 ug/L Styrene 50.0 50.7 101 70 - 130Bromoform 50.0 54.1 ug/L 108 69 - 129 Isopropylbenzene 50.0 49.1 ug/L 98 70 - 130

1,1,2,2-Tetrachloroethane 50.0 56.5 ug/L 1,2,3-Trichlorobenzene 50.0 62.0 ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	109		70 - 130
1,2-Dichloroethane-d4 (Surr)	109		60 - 124
Dibromofluoromethane (Surr)	109		70 - 130
4-Bromofluorobenzene (Surr)	109		70 - 130

Lab Sample ID: LCSD 680-658333/6

Matrix: Water

Analysis Batch: 658333

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

110

101

113

124

70 - 130

70 - 130

70 - 130

61 - 141

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	44.6		ug/L		89	70 - 130	1	40
Chloromethane	50.0	51.5		ug/L		103	59 - 127	1	30
Vinyl chloride	50.0	49.3		ug/L		99	66 - 129	1	30

Eurofins TestAmerica, Savannah

Page 26 of 44

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-658333/6

Matrix: Water

Analysis Batch: 658333

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyte	Spike Added	_	LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Bromomethane	50.0	70.8	Qualifier	ug/L	_ =	142	28 - 192	5	30
Chloroethane	50.0	76.4		ug/L		153	31 - 213	0	30
Trichlorofluoromethane	50.0	53.4		ug/L		107	63 - 142	1	30
1,1-Dichloroethene	50.0	56.0		ug/L		112	70 - 130	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	57.0		ug/L		114	63 - 141	0	30
ne	33.3	0.10		~g/ =			00-111	ŭ	
Acetone	250	326	*+	ug/L		130	67 - 113	5	30
Carbon disulfide	50.0	58.4		ug/L		117	70 - 130	2	30
Methyl acetate	100	108		ug/L		108	67 - 110	6	30
Methylene Chloride	50.0	55.9		ug/L		112	70 - 130	2	30
trans-1,2-Dichloroethene	50.0	55.7		ug/L		111	70 - 130	3	30
Methyl tert-butyl ether	50.0	58.8		ug/L		118	70 - 130	3	30
1,1-Dichloroethane	50.0	55.3		ug/L		111	70 - 130	2	30
cis-1,2-Dichloroethene	50.0	53.6		ug/L		107	70 - 130	1	30
2-Butanone (MEK)	250	321	*+	ug/L		128	69 - 114	3	30
Bromochloromethane	50.0	55.0		ug/L		110	70 - 130	2	30
Chloroform	50.0	53.4		ug/L		107	70 - 130	3	30
1,1,1-Trichloroethane	50.0	52.8		ug/L		106	70 - 130	1	30
Cyclohexane	50.0	53.7		ug/L		107	23 - 175	0	30
Carbon tetrachloride	50.0	52.6		ug/L		105	70 - 130	1	30
Benzene	50.0	54.4		ug/L		109	70 - 130	3	30
1,2-Dichloroethane	50.0	56.0		ug/L		112	70 - 130	4	50
Trichloroethene	50.0	55.2		ug/L		110	70 - 130	2	30
Methylcyclohexane	50.0	55.1		ug/L		110	70 - 130	0	30
1,2-Dichloropropane	50.0	56.5		ug/L		113	70 - 130	2	20
Bromodichloromethane	50.0	54.5		ug/L		109	70 - 130	2	30
cis-1,3-Dichloropropene	50.0	56.0		ug/L		112	70 - 130	2	20
4-Methyl-2-pentanone	250	325	*+	ug/L		130	68 - 108	3	30
Toluene	50.0	57.1		ug/L		114	70 - 130	3	30
trans-1,3-Dichloropropene	50.0	56.5		ug/L		113	70 - 130	2	30
1,1,2-Trichloroethane	50.0	61.2		ug/L		122	70 - 130	4	30
Tetrachloroethene	50.0	58.5		ug/L		117	70 - 130	2	30
2-Hexanone	250	321		ug/L		128	70 - 130	3	20
Dibromochloromethane	50.0	56.6		ug/L		113	70 - 130	3	30
Chlorobenzene	50.0	53.1		ug/L		106	70 - 130	1	30
Ethylbenzene	50.0	52.0		ug/L		104	70 - 130	3	20
o-Xylene	50.0	49.1		ug/L		98	70 - 130	1	30
m-Xylene & p-Xylene	50.0	49.2		ug/L		98	70 - 130	0	30
Styrene	50.0	51.9		ug/L		104	70 - 130	2	30
Bromoform	50.0	54.4		ug/L		109	69 - 129	1	30
Isopropylbenzene	50.0	50.2		ug/L		100	70 - 130	2	30
1,1,2,2-Tetrachloroethane	50.0	56.3		ug/L		113	70 - 130	0	30
1,2,3-Trichlorobenzene	50.0	63.4		ug/L		127	61 - 141	2	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	109		70 - 130
1,2-Dichloroethane-d4 (Surr)	113		60 - 124
Dibromofluoromethane (Surr)	113		70 - 130

Eurofins TestAmerica, Savannah

Page 27 of 44

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-658333/6

Matrix: Water

Analysis Batch: 658333

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 112 70 - 130

Lab Sample ID: MB 680-658625/10

Matrix: Water

Analysis Batch: 658625

Client	Samp	ole	ID:	Me	thod	Blank
		D-		Tire	. T.	4-1/NIA

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Chloromethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Vinyl chloride	1.0	U	1.0	ug/L			03/09/21 14:15	1
Bromomethane	5.0	U	5.0	ug/L			03/09/21 14:15	1
Chloroethane	5.0	U	5.0	ug/L			03/09/21 14:15	1
Trichlorofluoromethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			03/09/21 14:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Acetone	10	U	10	ug/L			03/09/21 14:15	1
Carbon disulfide	2.0	U	2.0	ug/L			03/09/21 14:15	1
Methyl acetate	5.0	U	5.0	ug/L			03/09/21 14:15	1
Methylene Chloride	5.0	U	5.0	ug/L			03/09/21 14:15	1
trans-1,2-Dichloroethene	1.0	U	1.0	ug/L			03/09/21 14:15	1
Methyl tert-butyl ether	10	U	10	ug/L			03/09/21 14:15	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			03/09/21 14:15	1
2-Butanone (MEK)	10	U	10	ug/L			03/09/21 14:15	1
Bromochloromethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Chloroform	1.0	U	1.0	ug/L			03/09/21 14:15	1
1,1,1-Trichloroethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Cyclohexane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Carbon tetrachloride	1.0	U	1.0	ug/L			03/09/21 14:15	1
Benzene	1.0	U	1.0	ug/L			03/09/21 14:15	1
1,2-Dichloroethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Trichloroethene	1.0	U	1.0	ug/L			03/09/21 14:15	1
Methylcyclohexane	1.0	U	1.0	ug/L			03/09/21 14:15	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Bromodichloromethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
cis-1,3-Dichloropropene	1.0	U	1.0	ug/L			03/09/21 14:15	1
4-Methyl-2-pentanone	10	U	10	ug/L			03/09/21 14:15	1
Toluene	1.0	U	1.0	ug/L			03/09/21 14:15	1
trans-1,3-Dichloropropene	1.0	U	1.0	ug/L			03/09/21 14:15	1
1,1,2-Trichloroethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Tetrachloroethene	1.0	U	1.0	ug/L			03/09/21 14:15	1
2-Hexanone	10	U	10	ug/L			03/09/21 14:15	1
Dibromochloromethane	1.0	U	1.0	ug/L			03/09/21 14:15	1
Chlorobenzene	1.0	U	1.0	ug/L			03/09/21 14:15	1
Ethylbenzene	1.0	U	1.0	ug/L			03/09/21 14:15	1
o-Xylene	1.0	U	1.0	ug/L			03/09/21 14:15	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			03/09/21 14:15	1
Styrene	1.0	U	1.0	ug/L			03/09/21 14:15	1

Eurofins TestAmerica, Savannah

Page 28 of 44

3/16/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-658625/10

Matrix: Water

Analysis Batch: 658625

Client Sample ID: Method Blank

Job ID: 680-195713-1

Prep Type: Total/NA

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0		ug/L			03/09/21 14:15	1
1.0	U	1.0		ug/L			03/09/21 14:15	1
1.0	U	1.0		ug/L			03/09/21 14:15	1
5.0	U	5.0		ug/L			03/09/21 14:15	1
	Result 1.0 1.0 1.0	MB MB Result Qualifier	Result 1.0 U RL 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 1.0 U 1.0 1.0 U 1.0	Result Qualifier RL MDL Unit 1.0 U 1.0 ug/L 1.0 U 1.0 ug/L 1.0 U 1.0 ug/L	Result Qualifier RL MDL Unit D 1.0 U 1.0 ug/L 1.0 U 1.0 ug/L 1.0 U 1.0 ug/L	Result Qualifier RL MDL Unit D Prepared 1.0 U 1.0 ug/L 1.0 U 1.0 ug/L 1.0 U 1.0 ug/L	Result Qualifier RL MDL Unit D Prepared Analyzed 1.0 U 1.0 ug/L 03/09/21 14:15 1.0 U 1.0 ug/L 03/09/21 14:15 1.0 U 1.0 ug/L 03/09/21 14:15

MB MB Surrogate Qualifier Limits Prepared Dil Fac %Recovery Analyzed 70 - 130 03/09/21 14:15 Toluene-d8 (Surr) 107 1,2-Dichloroethane-d4 (Surr) 91 60 - 124 03/09/21 14:15 Dibromofluoromethane (Surr) 101 70 - 130 03/09/21 14:15 70 - 130 03/09/21 14:15 4-Bromofluorobenzene (Surr) 105

Lab Sample ID: LCS 680-658625/5

Matrix: Water

4-Methyl-2-pentanone

trans-1,3-Dichloropropene

Analysis Batch: 658625

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	50.0	49.5		ug/L		99	70 - 130	
Chloromethane	50.0	59.7		ug/L		119	59 - 127	
Vinyl chloride	50.0	55.6		ug/L		111	66 - 129	
Bromomethane	50.0	62.3		ug/L		125	28 - 192	
Chloroethane	50.0	53.2		ug/L		106	31 - 213	
Trichlorofluoromethane	50.0	57.6		ug/L		115	63 - 142	
1,1-Dichloroethene	50.0	54.4		ug/L		109	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	53.2		ug/L		106	63 - 141	
ne								
Acetone	250	260		ug/L		104	67 - 113	
Carbon disulfide	50.0	53.1		ug/L		106	70 - 130	
Methyl acetate	100	99.4		ug/L		99	67 - 110	
Methylene Chloride	50.0	53.3		ug/L		107	70 - 130	
trans-1,2-Dichloroethene	50.0	54.4		ug/L		109	70 - 130	
Methyl tert-butyl ether	50.0	50.5		ug/L		101	70 - 130	
1,1-Dichloroethane	50.0	51.7		ug/L		103	70 - 130	
cis-1,2-Dichloroethene	50.0	53.7		ug/L		107	70 - 130	
2-Butanone (MEK)	250	277		ug/L		111	69 - 114	
Bromochloromethane	50.0	50.9		ug/L		102	70 - 130	
Chloroform	50.0	51.0		ug/L		102	70 - 130	
1,1,1-Trichloroethane	50.0	50.6		ug/L		101	70 - 130	
Cyclohexane	50.0	50.1		ug/L		100	23 ₋ 175	
Carbon tetrachloride	50.0	49.9		ug/L		100	70 - 130	
Benzene	50.0	51.5		ug/L		103	70 - 130	
1,2-Dichloroethane	50.0	53.5		ug/L		107	70 - 130	
Trichloroethene	50.0	52.0		ug/L		104	70 - 130	
Methylcyclohexane	50.0	51.1		ug/L		102	70 - 130	
1,2-Dichloropropane	50.0	55.0		ug/L		110	70 - 130	
Bromodichloromethane	50.0	53.7		ug/L		107	70 - 130	
cis-1,3-Dichloropropene	50.0	54.0		ug/L		108	70 - 130	

Eurofins TestAmerica, Savannah

68 - 108

70 - 130

70 - 130

109

105

101

Page 29 of 44

274 *+

52.4

50.7

ug/L

ug/L

ug/L

250

50.0

50.0

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-658625/5

Matrix: Water

Analysis Batch: 658625

Client Sample ID: Lab Control Sample

Prep Type: Total/NA %Rec

, 0.0 2.1.0 000020	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,2-Trichloroethane	50.0	55.3		ug/L		111	70 - 130
Tetrachloroethene	50.0	54.4		ug/L		109	70 - 130
2-Hexanone	250	270		ug/L		108	70 - 130
Dibromochloromethane	50.0	55.1		ug/L		110	70 - 130
Chlorobenzene	50.0	50.6		ug/L		101	70 - 130
Ethylbenzene	50.0	49.9		ug/L		100	70 - 130
p-Xylene	50.0	50.0		ug/L		100	70 - 130
m-Xylene & p-Xylene	50.0	48.7		ug/L		97	70 - 130
Styrene	50.0	50.9		ug/L		102	70 - 130
Bromoform	50.0	50.6		ug/L		101	69 - 129
Isopropylbenzene	50.0	49.3		ug/L		99	70 - 130
1,1,2,2-Tetrachloroethane	50.0	52.5		ug/L		105	70 - 130
1,2,3-Trichlorobenzene	50.0	54.2		ug/L		108	61 - 141

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Sur	r) 111		60 - 124
Dibromofluoromethane (Sui	rr) 114		70 - 130
4-Bromofluorobenzene (Sui	rr) 100		70 - 130

Lab Sample ID: LCSD 680-658625/6

Matrix: Water

Analysis Batch: 658625

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	50.0	49.7		ug/L		99	70 - 130		40
Chloromethane	50.0	56.6		ug/L		113	59 - 127	5	30
Vinyl chloride	50.0	54.8		ug/L		110	66 - 129	1	30
Bromomethane	50.0	61.6		ug/L		123	28 - 192	1	30
Chloroethane	50.0	69.9		ug/L		140	31 - 213	27	30
Trichlorofluoromethane	50.0	57.6		ug/L		115	63 - 142	0	30
1,1-Dichloroethene	50.0	53.4		ug/L		107	70 - 130	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	54.0		ug/L		108	63 - 141	1	30
ne									
Acetone	250	245		ug/L		98	67 - 113	6	30
Carbon disulfide	50.0	52.8		ug/L		106	70 - 130	1	30
Methyl acetate	100	98.5		ug/L		99	67 - 110	1	30
Methylene Chloride	50.0	50.6		ug/L		101	70 - 130	5	30
trans-1,2-Dichloroethene	50.0	51.8		ug/L		104	70 - 130	5	30
Methyl tert-butyl ether	50.0	47.9		ug/L		96	70 - 130	5	30
1,1-Dichloroethane	50.0	48.6		ug/L		97	70 - 130	6	30
cis-1,2-Dichloroethene	50.0	50.2		ug/L		100	70 - 130	7	30
2-Butanone (MEK)	250	261		ug/L		105	69 - 114	6	30
Bromochloromethane	50.0	49.0		ug/L		98	70 - 130	4	30
Chloroform	50.0	47.9		ug/L		96	70 - 130	6	30
1,1,1-Trichloroethane	50.0	48.6		ug/L		97	70 - 130	4	30
Cyclohexane	50.0	50.4		ug/L		101	23 - 175	1	30
Carbon tetrachloride	50.0	49.7		ug/L		99	70 - 130	0	30
Benzene	50.0	48.6		ug/L		97	70 - 130	6	30

Eurofins TestAmerica, Savannah

Page 30 of 44

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-658625/6

Matrix: Water

Analysis Batch: 658625

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

7 maryolo Batom 000020	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	50.0	48.7		ug/L		97	70 - 130	9	50
Trichloroethene	50.0	51.4		ug/L		103	70 - 130	1	30
Methylcyclohexane	50.0	50.8		ug/L		102	70 - 130	1	30
1,2-Dichloropropane	50.0	51.2		ug/L		102	70 - 130	7	20
Bromodichloromethane	50.0	49.3		ug/L		99	70 - 130	9	30
cis-1,3-Dichloropropene	50.0	50.1		ug/L		100	70 - 130	8	20
4-Methyl-2-pentanone	250	264		ug/L		106	68 - 108	3	30
Toluene	50.0	51.9		ug/L		104	70 - 130	1	30
trans-1,3-Dichloropropene	50.0	47.6		ug/L		95	70 - 130	6	30
1,1,2-Trichloroethane	50.0	51.3		ug/L		103	70 - 130	8	30
Tetrachloroethene	50.0	55.0		ug/L		110	70 - 130	1	30
2-Hexanone	250	259		ug/L		103	70 - 130	4	20
Dibromochloromethane	50.0	51.7		ug/L		103	70 - 130	6	30
Chlorobenzene	50.0	50.3		ug/L		101	70 - 130	0	30
Ethylbenzene	50.0	49.2		ug/L		98	70 - 130	1	20
o-Xylene	50.0	46.9		ug/L		94	70 - 130	6	30
m-Xylene & p-Xylene	50.0	46.4		ug/L		93	70 - 130	5	30
Styrene	50.0	46.5		ug/L		93	70 - 130	9	30
Bromoform	50.0	48.1		ug/L		96	69 - 129	5	30
Isopropylbenzene	50.0	48.1		ug/L		96	70 - 130	2	30
1,1,2,2-Tetrachloroethane	50.0	49.6		ug/L		99	70 - 130	6	30
1,2,3-Trichlorobenzene	50.0	58.9		ug/L		118	61 - 141	8	30

LCSD LCSD

MB MB

50 U

10 U

Result Qualifier

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Surr)	102		60 - 124
Dibromofluoromethane (Surr)	105		70 - 130
4-Bromofluorobenzene (Surr)	105		70 - 130

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-658071/1-A

Matrix: Water

Analyte

Manganese

Manganese

Iron

Analysis Batch: 658382

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 658071

Dil Fac D Prepared Analyzed 03/04/21 15:31 03/06/21 16:45

Prep Type: Total Recoverable

03/04/21 15:31 03/06/21 16:45

Client Sample ID: Lab Control Sample

99

Lab Sample ID: LCS 680-658071/2-A

Matrix: Water

Analysis Batch: 658382 **Prep Batch: 658071** Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits **Analyte** 1700 1660 80 - 120 Iron ug/L 98

400

RL

50

10

395

MDL Unit

ug/L

ug/L

ug/L

Eurofins TestAmerica, Savannah

80 - 120

3/16/2021

Job ID: 680-195713-1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 680-658121/1-B

Matrix: Water

Analysis Batch: 658603

Client Sample ID: Method Blank

Prep Type: Dissolved

Prep Batch: 658123

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	50	U	50		ug/L		03/05/21 08:33	03/08/21 21:09	1
Manganese	10	U	10		ug/L		03/05/21 08:33	03/08/21 21:09	1

Lab Sample ID: LCS 680-658121/2-B

Matrix: Water

Analysis Batch: 658603

Client Sample ID: Lab Control Sample Prep Type: Dissolved

Prep Batch: 658123

%Rec. Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Iron 1700 1600 ug/L 94 80 - 120 400 396 ug/L 99 80 - 120 Manganese

MS MS

33100 4

1440

Result Qualifier

Unit

ug/L

ug/L

Spike

Added

1700

Lab Sample ID: 680-195713-2 MS

Matrix: Water

Analyte

Iron

Analysis Batch: 658603

Client Sample ID: BS-OW-02

Prep Type: Dissolved Prep Batch: 658123

%Rec.

80

Limits D %Rec 17 75 - 125

75 - 125

1100 F1 400 Manganese

Sample Sample

33000

Result Qualifier

Lab Sample ID: 680-195713-2 MSD **Matrix: Water**

Analysis Batch: 658603

Client Sample ID: BS-OW-02

Prep Type: Dissolved

Prep Batch: 658123 RPD %Rec.

MSD MSD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Iron 33000 1700 38000 4 306 75 - 125 14 20 ug/L 1100 F1 400 1390 F1 Manganese ug/L 69 75 - 125 20

Method: 130.2-1982 - Hardness, Total (mg/l as CaCO3)

Lab Sample ID: MB 680-658670/1

Matrix: Water

Analysis Batch: 658670

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

MB MB

MB MB

Analyte Result Qualifier RL **RL Unit** Prepared Analyzed Dil Fac Hardness as calcium carbonate 10 U 10 mg/L 03/09/21 12:46

Lab Sample ID: LCS 680-658670/2

Matrix: Water

Analysis Batch: 658670

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

Client Sample ID: Lab Control Sample Dup

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Hardness as calcium carbonate 400 412 mg/L 103 75 - 125

Lab Sample ID: LCSD 680-658670/3

Matrix: Water

Analysis Batch: 658670									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hardness as calcium carbonate	400	413		ma/l		103	75 125		30

Eurofins TestAmerica, Savannah

3/16/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: 2540C-2011 - Total Dissolved Solids (Dried at 180 °C)

Lab Sample ID: MB 680-658220/1

Matrix: Water

Analysis Batch: 658220

MB MB

Result Qualifier RL **RL** Unit Analyzed Dil Fac Analyte D Prepared 5.0 03/05/21 13:44 **Total Dissolved Solids** 5.0 U mg/L

Lab Sample ID: LCS 680-658220/2

Matrix: Water

Analysis Batch: 658220

Spike LCS LCS %Rec. Analyte Added Result Qualifier D %Rec Limits Unit 2460 80 - 120 **Total Dissolved Solids** 2430 mg/L 99

Spike

Added

2460

Lab Sample ID: LCSD 680-658220/3

Matrix: Water

Total Dissolved Solids

Analysis Batch: 658220

Analyte

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD %Rec. RPD Result Qualifier Limits RPD Limit Unit %Rec 97 80 - 120 25 mg/L

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 400-523609/4

Matrix: Water

Analysis Batch: 523609

MB MB

Result Qualifier MDL Unit Analyte RL Prepared Analyzed Dil Fac Alkalinity, Total 1.0 U 1.0 mg/L 03/12/21 11:27

2390

Lab Sample ID: LCS 400-523609/5

Matrix: Water

Analysis Batch: 523609

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits Alkalinity, Total 100 92.1 mg/L 92 80 - 120

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

GC/MS VOA

Analysis Batch: 658322

Lab Sample ID 680-195713-5	Client Sample ID TB-01	Prep Type Total/NA	Matrix Water	Method 8260B	Prep Batch
MB 680-658322/9	Method Blank	Total/NA	Water	8260B	
LCS 680-658322/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-658322/5	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 658333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-195713-1	BS-OW-01	Total/NA	Water	8260B	
680-195713-2	BS-OW-02	Total/NA	Water	8260B	
680-195713-3	BS-OW-03D	Total/NA	Water	8260B	
MB 680-658333/10	Method Blank	Total/NA	Water	8260B	
LCS 680-658333/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-658333/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 658625

Lab Sample ID 680-195713-4	Client Sample ID MW-29D	Prep Type Total/NA	Matrix Water	Method 8260B	Prep Batch
MB 680-658625/10	Method Blank	Total/NA	Water	8260B	
LCS 680-658625/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-658625/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Metals

Prep Batch: 658071

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-195713-1	BS-OW-01	Total Recoverable	Water	3005A	<u> </u>
680-195713-2	BS-OW-02	Total Recoverable	Water	3005A	
680-195713-3	BS-OW-03D	Total Recoverable	Water	3005A	
680-195713-4	MW-29D	Total Recoverable	Water	3005A	
MB 680-658071/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-658071/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Filtration Batch: 658121

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-195713-1	BS-OW-01	Dissolved	Water	FILTRATION	
680-195713-2	BS-OW-02	Dissolved	Water	FILTRATION	
680-195713-3	BS-OW-03D	Dissolved	Water	FILTRATION	
680-195713-4	MW-29D	Dissolved	Water	FILTRATION	
MB 680-658121/1-B	Method Blank	Dissolved	Water	FILTRATION	
LCS 680-658121/2-B	Lab Control Sample	Dissolved	Water	FILTRATION	
680-195713-2 MS	BS-OW-02	Dissolved	Water	FILTRATION	
680-195713-2 MSD	BS-OW-02	Dissolved	Water	FILTRATION	

Prep Batch: 658123

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-195713-1	BS-OW-01	Dissolved	Water	3005A	658121
680-195713-2	BS-OW-02	Dissolved	Water	3005A	658121
680-195713-3	BS-OW-03D	Dissolved	Water	3005A	658121
680-195713-4	MW-29D	Dissolved	Water	3005A	658121
MB 680-658121/1-B	Method Blank	Dissolved	Water	3005A	658121
LCS 680-658121/2-B	Lab Control Sample	Dissolved	Water	3005A	658121

Eurofins TestAmerica, Savannah

Page 34 of 44 3/16/2021

2

Job ID: 680-195713-1

_

5

7

10

11

12

IJ

14

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Metals (Continued)

Prep Batch: 658123 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-195713-2 MS	BS-OW-02	Dissolved	Water	3005A	658121
680-195713-2 MSD	BS-OW-02	Dissolved	Water	3005A	658121

Analysis Batch: 658382

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-195713-1	BS-OW-01	Total Recoverable	Water	6010C	658071
680-195713-2	BS-OW-02	Total Recoverable	Water	6010C	658071
680-195713-3	BS-OW-03D	Total Recoverable	Water	6010C	658071
680-195713-4	MW-29D	Total Recoverable	Water	6010C	658071
MB 680-658071/1-A	Method Blank	Total Recoverable	Water	6010C	658071
LCS 680-658071/2-A	Lab Control Sample	Total Recoverable	Water	6010C	658071

Analysis Batch: 658603

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-195713-1	BS-OW-01	Dissolved	Water	6010C	658123
680-195713-2	BS-OW-02	Dissolved	Water	6010C	658123
680-195713-3	BS-OW-03D	Dissolved	Water	6010C	658123
680-195713-4	MW-29D	Dissolved	Water	6010C	658123
MB 680-658121/1-B	Method Blank	Dissolved	Water	6010C	658123
LCS 680-658121/2-B	Lab Control Sample	Dissolved	Water	6010C	658123
680-195713-2 MS	BS-OW-02	Dissolved	Water	6010C	658123
680-195713-2 MSD	BS-OW-02	Dissolved	Water	6010C	658123

General Chemistry

Analysis Batch: 523609

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-195713-1	BS-OW-01	Total/NA	Water	SM 2320B	
680-195713-2	BS-OW-02	Total/NA	Water	SM 2320B	
680-195713-3	BS-OW-03D	Total/NA	Water	SM 2320B	
680-195713-4	MW-29D	Total/NA	Water	SM 2320B	
MB 400-523609/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 400-523609/5	Lab Control Sample	Total/NA	Water	SM 2320B	

Analysis Batch: 658220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-195713-1	BS-OW-01	Total/NA	Water	2540C-2011	
680-195713-2	BS-OW-02	Total/NA	Water	2540C-2011	
680-195713-3	BS-OW-03D	Total/NA	Water	2540C-2011	
680-195713-4	MW-29D	Total/NA	Water	2540C-2011	
MB 680-658220/1	Method Blank	Total/NA	Water	2540C-2011	
LCS 680-658220/2	Lab Control Sample	Total/NA	Water	2540C-2011	
LCSD 680-658220/3	Lab Control Sample Dup	Total/NA	Water	2540C-2011	

Analysis Batch: 658670

Lab Sample ID 680-195713-1	Client Sample ID BS-OW-01	Prep Type Total/NA	Matrix Water	Method 130.2-1982	Prep Batch
680-195713-2	BS-OW-02	Total/NA	Water	130.2-1982	
680-195713-3	BS-OW-03D	Total/NA	Water	130.2-1982	
680-195713-4	MW-29D	Total/NA	Water	130.2-1982	
MB 680-658670/	1 Method Blank	Total/NA	Water	130.2-1982	

Eurofins TestAmerica, Savannah

Page 35 of 44 3/16/2021

Job ID: 680-195713-1

5

F

6

9

10

12

13

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

General Chemistry (Continued)

Analysis Batch: 658670 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 680-658670/2	Lab Control Sample	Total/NA	Water	130.2-1982	
LCSD 680-658670/3	Lab Control Sample Dup	Total/NA	Water	130.2-1982	

5

3

4

5

6

8

10

11

13

14

Lab Sample ID: 680-195713-1

Matrix: Water

Job ID: 680-195713-1

Date Collected: 03/02/21 16:00 Date Received: 03/04/21 09:48

Client Sample ID: BS-OW-01

Duan Tana	Batch	Batch Mathada	D	Dil	Initial	Final	Batch	Prepared	Amalust	l ab
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	5 mL	5 mL	658333	03/06/21 22:29	Y1S	TAL SAV
	Instrumen	it ID: CMSP2								
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	658121	03/05/21 08:25	BJB	TAL SAV
Dissolved	Prep	3005A			50 mL	50 mL	658123	03/05/21 08:33	BJB	TAL SAV
Dissolved	Analysis	6010C		1			658603	03/08/21 21:35	BWR	TAL SAV
	Instrumen	t ID: ICPE								
Total Recoverable	Prep	3005A			50 mL	50 mL	658071	03/04/21 15:31	ВСВ	TAL SAV
Total Recoverable	Analysis	6010C		1			658382	03/06/21 18:50	BCB	TAL SAV
	Instrumen	t ID: ICPE								
Total/NA	Analysis	130.2-1982		25	25 mL	25 mL	658670	03/09/21 12:46	NVF	TAL SAV
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	2540C-2011		1	5 mL	200 mL	658220	03/05/21 13:44	MS	TAL SAV
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	SM 2320B		1			523609	03/12/21 13:25	CAC	TAL PEN
	Instrumen	t ID: AUTOTITRATO	R							

Client Sample ID: BS-OW-02 Lab Sample ID: 680-195713-2

Date Collected: 03/02/21 14:35 **Matrix: Water**

Date Received: 03/04/21 09:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	5 mL	5 mL	658333	03/06/21 22:54	Y1S	TAL SAV
	Instrument	ID: CMSP2								
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	658121	03/05/21 08:25	BJB	TAL SAV
Dissolved	Prep	3005A			50 mL	50 mL	658123	03/05/21 08:33	BJB	TAL SAV
Dissolved	Analysis	6010C		1			658603	03/08/21 21:19	BWR	TAL SAV
	Instrument	ID: ICPE								
Total Recoverable	Prep	3005A			50 mL	50 mL	658071	03/04/21 15:31	ВСВ	TAL SAV
Total Recoverable	Analysis	6010C		1			658382	03/06/21 18:30	BCB	TAL SAV
	Instrument	ID: ICPE								
Total/NA	Analysis	130.2-1982		25	25 mL	25 mL	658670	03/09/21 12:46	NVF	TAL SAV
	Instrument	ID: NOEQUIP								
Total/NA	Analysis	2540C-2011		1	5 mL	200 mL	658220	03/05/21 13:44	MS	TAL SAV
	Instrument	ID: NOEQUIP								
Total/NA	Analysis	SM 2320B		1			523609	03/12/21 13:31	CAC	TAL PEN
	Instrument	ID: AUTOTITRATO	R							

Client Sample ID: BS-OW-03D Lab Sample ID: 680-195713-3

Date Collected: 03/02/21 12:15 Date Received: 03/04/21 09:48

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Factor Amount Amount Number or Analyzed Type Run Analyst Lab Total/NA 8260B 20 658333 03/06/21 23:18 Y1S TAL SAV Analysis 5 mL 5 mL Instrument ID: CMSP2

Page 37 of 44

Matrix: Water

Job ID: 680-195713-1

Client Sample ID: BS-OW-03D

Date Collected: 03/02/21 12:15 Date Received: 03/04/21 09:48

Lab Sample ID: 680-195713-3

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	658121	03/05/21 08:25	BJB	TAL SAV
Dissolved	Prep	3005A			50 mL	50 mL	658123	03/05/21 08:33	BJB	TAL SAV
Dissolved	Analysis	6010C		1			658603	03/08/21 22:06	BWR	TAL SAV
	Instrument	ID: ICPE								
Total Recoverable	Prep	3005A			50 mL	50 mL	658071	03/04/21 15:31	BCB	TAL SAV
Total Recoverable	Analysis	6010C		1			658382	03/06/21 18:45	BCB	TAL SAV
	Instrument	ID: ICPE								
Total/NA	Analysis	130.2-1982		25	25 mL	25 mL	658670	03/09/21 12:46	NVF	TAL SAV
	Instrument	ID: NOEQUIP								
Total/NA	Analysis	2540C-2011		1	5 mL	200 mL	658220	03/05/21 13:44	MS	TAL SAV
	Instrument	ID: NOEQUIP								
Total/NA	Analysis	SM 2320B		1			523609	03/12/21 13:37	CAC	TAL PEN
	Instrument	ID: AUTOTITRATO	R							

Lab Sample ID: 680-195713-4 **Client Sample ID: MW-29D** Date Collected: 03/02/21 11:00

Matrix: Water

Date Received: 03/04/21 09:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	8260B t ID: CMSP2		20	5 mL	5 mL	658625	03/09/21 20:23	UI	TAL SAV
Dissolved	Filtration	FILTRATION			1.0 mL	1.0 mL	658121	03/05/21 08:25	BJB	TAL SAV
Dissolved	Prep	3005A			50 mL	50 mL	658123	03/05/21 08:33	BJB	TAL SAV
Dissolved	Analysis Instrumen	6010C t ID: ICPE		1			658603	03/08/21 22:01	BWR	TAL SAV
Total Recoverable	Prep	3005A			50 mL	50 mL	658071	03/04/21 15:31	ВСВ	TAL SAV
Total Recoverable	Analysis Instrumen	6010C t ID: ICPE		1			658382	03/06/21 17:53	BCB	TAL SAV
Total/NA	Analysis Instrumen	130.2-1982 t ID: NOEQUIP		25	25 mL	25 mL	658670	03/09/21 12:46	NVF	TAL SAV
Total/NA	Analysis Instrumen	2540C-2011 t ID: NOEQUIP		1	10 mL	200 mL	658220	03/05/21 13:44	MS	TAL SAV
Total/NA	Analysis Instrumen	SM 2320B t ID: AUTOTITRATOR	R	1			523609	03/12/21 13:42	CAC	TAL PEN

Lab Sample ID: 680-195713-5 **Client Sample ID: TB-01**

Date Collected: 03/02/21 00:00 **Matrix: Water**

Date Received: 03/04/21 09:48

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	658322	03/06/21 16:06	P1C	TAL SAV
	Instrumer	nt ID: CMSAA								

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins TestAmerica, Savannah

Environment Testing TestAmerica

Address:	Regu	latory Pro	gram:	DW [NPDES	5 [RCF	RA.	_o	ther:									TAL-8210
Client Contact	Project M	anager: A	1. Ciblat			Site	Con	tact:					Date:	3/3/	121				COC No:
Company Name: Georgintee Camultants, Inc.		acible			, wm	Lab	Con	tact:					Carri						of I COCs
Address: 1255 Roberts Blue Svite 200		Analysis T	urnaround	Time							A T								Sampler:
City/State/Zip: Kennusaw, GA 30144	CALEN	DAR DAYS	[] wo	RKING DAY	rS	11				All Land	1 /								For Lab Use Only:
Phone: 678-202 - 9500	TA	T if different fr	om Below			[13							}	-	Walk-in Client:
Fax:		2	weeks			(N)				حاظ	1								Lab Sampling:
Project Name: Bids parge Pilot Test Site: Hercules / Pinova Brunswick Facility		1	week			1513	-		را	Te Mo								1	
Site: Herevles / Pinova Brunswick Facility		2	days			9 5	[]		3	7 24									Job / SDG No.:
PO# GRGBBIM		1	day			립		3	151		BOD								
			Sample			Sal	ی اغ	2	2	3 3					1				
	Sample	Sample	Type		# of	le le	چٰاۃ	70	12	3 6	00								
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	Cont.	Filtered Sample (Y / N)	3	Hardness	15	2/7	C00/B								Sample Specific Notes:
BS-0W-01		1600	6	6W	7	NA	13	1	1	1									
BS-0W-02	3/2/21	1435																	
BS-0W-03D	3/3/21	1215								Ш									
MW-29D	3/2/21	1100		1	1	14,	41	1	1	11									
TB-01	_		1	w	2		2												
						П					П								
						П	Т			T					\top				
						П			1							1	100000	18 80480	
						П			1	\top			\Box	11	+	1	11		
						\sqcap	T		1	\top	H		\Box	11	+			$\Pi \Pi$	
						H	\dagger		1	+	11	\top	\vdash	++	+	(80-19	9571	3 Chain of Custody
						\sqcap	†		1	+	\forall	+	\forall	11	+	1 1	1	1	
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3	5=NaOH;	6= Other				-	1+1	1+41	+4	1									
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample.					ple in th	e						nay b	asse	ssed if	samp				d longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poisor	В	Unkn	own		\perp	[,,,]	Return	to Cl	ient			isposal t	y Lab		_ A	rchive (for	Months
Special Instructions/QC Requirements & Comments:																			
Custody Seals Intact: Yes No	Custody S	eal No.:						Ţ	Cool	er Te	mp. (°	C): Ol	s'd:		Corr	r'd:			Therm ID No.:
Relinquished by:	Company:			Date/Ti	me:			ved b		1					pany:	,			Date/Time:
ABour 2	Geosy.	nrel		3/3/2			DAI	U Ga	१वह		_	-2	R-		المروه	Lte			03/03/21 1650
Relinquished by:	Company:			Date/Ti	me: 21 01	18	coei	ved b	XP	2	n	10	be	Com	pany:	0	4-	2]	Date/Time:
Relinquished by:	Company			Date/Ti						orato	ory by:			Com	pany:	ر	1	2	Date/Times

5102 LaRoche Avenue Savannah, GA 31404

Phone: 912-354-7858 Fax: 912-352-0165

Chain of Custody Record

eurofins:

America

Client Information (Sub Contract Lab)	Sampler			Lab P		4.3%	-					Carr	ier Tra	cking f	No(s)			COC No			
Client Information (Sub Contract Lab)	Phone			E-Mar	ett. E	adie	. 1					State	e of Or	iain				680-646092.1 Page			
Shipping/Receiving					e.Bar		@Euro						orgia	igiti				Page 1 of 1			
Company TestAmerica Laboratories, Inc							ns Requ				Coo	raio						Job#			
Address	Due Date Request	ed:			INCL	AF -	FIORIG	a. Sia	ile Pri	ogram	- Geo	rgia						680-195713-1 Preservation Codes:			
3355 McLemore Drive,	3/14/2021				Analysis Reques													A - HCL	M - Hexane		
City Pensacola	TAT Requested (d.	ays):																B - NaOH	N · None		
State Zip																		C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S		
FL. 32514 Phone	PO#														- 1			E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3		
850-474-1001(Tel) 850-478-2671(Fax)	PO#	1																G - Amchior	S - H2SO4		
Email	WO#								1									H - Ascorbic Acid	T - TSP Dodecahydrate U - Acetone		
Project Name	Project #																50	J - DI Water K - EDTA	V - MCAA W - pH 4-5		
Hercules - Brunswick Biosparge Pilot Test	68022348																Ea in	L · EDA	Z - other (specify)		
Site	SSOW#	SSOV#						Perform MS/MSD (Yes or No) 2320B/ Alkalinity, Total (only)							of containers	Other:					
			Sample M	atrix	red Sample (Yes or No)	alinit															
			Type (w	water.	Field Filtered	/ Alk									1		Total Number				
Sample Identification - Client ID (Lab ID)	Samula Data	Sample	(C=Comp, O=w	rasteroil,	leld Pr	2320B/ Alk											tal				
Sample Identification - Cheff ID (Lab ID)	Sample Date	Time	G=grab) BT=Tis							_							F	Special In	structions/Note:		
BS-OW-01 (680-195713-1)	3/2/21	16:00			Y	1			-		-				+	-					
	3/2/21	Eastern 14:35	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ater	Ш	×		\sqcup	_			_				\perp	1				
BS-OW-02 (680-195713-2)	3/2/21	Eastern	\	/ater		×											1				
BS-OW-03D (680-195713-3)	3/2/21	12:15 Eastern	W	/ater		X											1				
MW-29D (680-195713-4)	3/2/21	11 00 Eastern	W	/ater		×											1				
		Lagrani							1						\top	+					
					\vdash	+	+		\top	_		-				+	+				
					\vdash	+	+		+	_		-			+	-	+				
					+	+	-		\dashv	-	-	+			+	-					
					\vdash	+			\dashv	-		-	-		\dashv	-	+				
					Ц.							<u></u>									
Note: Since laboratory accreditations are subject to change. Eurofins TestA maintain accreditation in the State of Origin listed above for analysis/tests/it	matrix being analyzed, the sa	amples must b	e shipped back to the	Eurofins	TestAr	merica	a labora!	tory or	other ii	ries. Th	ns sami	ole shi be pro	pment vided	is forw Any c	varded i hanges	under c	hain-o'	f-custody If the labora on status should be br	itory does not currently ought to Eurofins		
TestAmerica attention immediately If all requested accreditations are currell Possible Hazard Identification	ent to date, return the signed	1 Chain of Cus	stody attesting to said	complicar	nce to	Eurofi	ns Test	Americ	a												
					S													ed longer than 1			
Unconfirmed Deliverable Requested T, II, III, IV. Other (specify) Primary Deliverable Rank 2					0		Return			Regu			sal B	y Lat			Arcl	hive For	Months		
	Timaly Benten		-		3	pecia	31 1115(1	uction	15/0/0	Requ	reme	nis.									
Empty Kit Relinquished by		Date			Time	•							Metho	od of S	hipmer	nt					
Relinquished by	Date/Time		Comp	any		Re	ceived b	ру				·			Date/Ti	me			Company		
Plinquished by Date/Time Compan				any		Re	ceived b	Эу							Date/Ti	me			Company		
Relinquished by Date/Time Company						Re	ceived b	Эу	_		Date/Time					me			Company		
Custody Seals Intact: Custody Seal No.:						0.0	olor To-	maa:=/	wo/-\ 0	C 0515	Wh =										
Δ Yes Δ No						Lo	olei Ten	nperatu	ne(s)	C and C	nner Re	marks									

Ver: 11/01/2020

Eurofins TestAmerica, Savannah

5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Chain of Custody Record

eurofins

Environment Testing America

Client Information (Sub Contract Lab)	Sampler:				b PM							Carrier T	racking	No(s)		COC No:		
Client Contact	Phone					t, Ed	die T									Page: Page 1 of 1		
Shipping/Receiving					Mail: ddie	Barne	ett⊚F	Eurofir	nset.co	nm.		State of Georgi						
Company TestAmerica Laboratories, Inc.									ed (See			Georgi	a			Page 1 of 1		
Address	10 0 0				N	IELAF	- Flo	orida;	State	Progran	n - Geo	rgia				680-195713-	1	
3355 McLemore Drive, ,	Due Date Request 3/14/2021	ed:			T											Preservation		
City:	TAT Requested (d.	avs):			-				/	Analys	is Red	lueste	d			A - HCL	M - Hexane	
Pensacola State, Zip	regit.												-			B - NaOH	N - None	
FL. 32514	75. 5															C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S	
Phone	20 11															E - NaHSO4	Q - Na2SO3	
850-474-1001(Tel) 850-478-2671(Fax)	PO #:															F - MeOH G - Amchlor	R - Na2S2O3	
Email:	WO #:	100						- 1								H - Ascorbic Ac	S - H2SO4 id T - TSP Dodecahyo	drate
Droinest Name	4.5-3				à	0						1				I - Ice J - DI Water	U - Acetone V - MCAA	
Project Name: Hercules - Brunswick Biosparge Pilot Test	Project #:				- 18	2 2	(کراد								a o	K - EDTA	V - MCAA W - pH 4-5	
Site:	68022348				9	98	<u>ō</u>		1	1					1 5	L - EDA	Z - other (specify)	
	SSOW#:				8	ا ک	Total (only)								Confainers	Other:		
	\$3.				<u></u>	MS/MSD (Yes or No)									1 6			
	764	20	Sample	Matrix	200	NS/	Alkalinity,								je		5-2-	
400	1		Туре	(W=water, S=solid.	ı		¥								1			
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	(C=comp,	O=waste/oil		Perform	2320B/								Total Number		14	
Store is (Edu is)	Sample Date	Time		BT=Tissue, A=		٦	23								1	Specia	I Instructions/Note:	:
BS-OW-01 (680-195713-1)		16:00	Preserva	ation Code	- X	ΨX							1 119	37				TO A
55 544-61 (000-1937 13-1)	3/2/21	Eastern	- 1	Water	- 1		X						1		1			
BS-OW-02 (680-195713-2)	3/2/21	14:35 Eastern	-2-17	Water	\top		X			++	+		+					1
BS-OW-03D (680-195713-3)	3/2/21	12:15		Water	+		X	+	+	++	+	\vdash	-					57
MW-29D (680-195713-4)	3/2/21	Eastern 11:00		Water	+		X	-	+	++			+-					
		Eastern			+	H	$\stackrel{\wedge}{\rightarrow}$	_		++		\vdash	+					
R. P. Servi			-		+	+		-		-			_					
					1	\sqcup		3										
	35				\perp			15.3								1		
D*45				- 2				3	249			-						
Note: Since laboratory accreditations are subject to change. Eurofins TestAmeric. maintain accreditation in the State of Origin listed above for analysis/tests/matrix. TestAmerica attention immediately. If all conventions or all the state of the control of th	a places the ownershi	p of method a	analyte & accre	ditation come	liance	Lunan	out ou	h								4		
maintain accreditation in the State of Origin listed above for analysis/tests/matrix l TestAmerica attention immediately. If all requested accreditations are current to	being analyzed, the sa	amples must b	e shipped back	k to the Eurof	ins Te	estAme	erica la	borator	y or oth	ratories er instruct	inis samp ions will t	ole shipme De provide	nt is for d. Anv	warded un changes to	der chain- accredita	of-custody. If the la	aboratory does not current	tly
	date, return the signed	Chain of Cus	stody attesting t	to said compl	icance	e to Eu	rofins	TestAn	nerica.				,		a o o i o o i i o	tion status snould t	re brought to Euronins	
Possible Hazard Identification		1				Sar	nple	Dispo	osal (A fee m	av be a	ssesse	d if sa	moles a	re retai	ned longer tha	m 4 mandel	
Unconfirmed							$\square_{R\epsilon}$	eturn '	To Clie	ent		Disposal	D. I.	h		chive For		
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2			Spe				QC Req	uireme	nts:	Dy La	D	Arc	nive For	Months	
Empty Kit Relinquished by:		Date:	de		IT	ime:		74.7.				IMo	thad of	Shipment:				
Relinquished by:	Date/Time:	1.		Company		1	Doggi	and but				Iwie	triou or					
Relinquished by:	3-10-2	14	43				Receiv	vea by:						Date/Time	9:		Company	
	Date/Time:			Company			Receiv	ved by:	ğ.,					Date/Time			Company	
Relinquished by:	Date/Time:	· .	-	Company	_		Receiv	ved by:	-	2				Date (Ti-				
Custody Social Intents Control Co. 11		4 -			9.		6	77		-		197	200	Date/Time	1.2	90	Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			1 20-14	60 C. C.	190		Cooler	r Temp	erature((s) °C and	Other Re	marks:		0 0	-	TO	- 121m	
			200	1 Sec. 1									0	A.		70	2	

3/16/202

Page 41 of 44

Ver: 11/01/2020

ဖ

o l

1

5

51

4

ა I

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 680-195713-1

Login Number: 195713 List Source: Eurofins TestAmerica, Savannah

List Number: 1

Creator: Banda, Christy S

Creator. Danua, Christy 5		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	False	Sulfuric volume not provided for COD.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	False	Insufficient volume provided to analyze for BOD
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

5

6

0

10

12

11

Client: Geosyntec Consultants, Inc.

Job Number: 680-195713-1

Login Number: 195713

List Source: Eurofins TestAmerica, Pensacola List Number: 2

List Creation: 03/11/21 04:56 PM

Creator: Avery, Kathy R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.8°C IR 9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	False	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-195713-1

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87052	06-30-21
Georgia	State	E87052	06-30-21

Laboratory: Eurofins TestAmerica, Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Dat
Alabama	State	40150	06-30-21
ANAB	ISO/IEC 17025	L2471	02-23-23
Arizona	State	AZ0710	01-12-22
Arkansas DEQ	State	88-0689	09-02-21
California	State	2510	06-30-21
Florida	NELAP	E81010	06-30-21
Georgia	State	E81010(FL)	06-30-21
Illinois	NELAP	200041	10-09-21
lowa	State	367	08-01-22
Kansas	NELAP	E-10253	10-31-21
Kentucky (UST)	State	53	06-30-21
Kentucky (WW)	State	KY98030	12-31-21
Louisiana	NELAP	30976	06-30-21
Louisiana (DW)	State	LA017	12-31-21
Maryland	State	233	09-30-21
Massachusetts	State	M-FL094	06-30-21
Michigan	State	9912	06-30-21
New Jersey	NELAP	FL006	06-30-21
New York	NELAP	12115	04-01-21
North Carolina (WW/SW)	State	314	12-31-21
Oklahoma	State	9810-186	08-31-21
Pennsylvania	NELAP	68-00467	01-31-22
Rhode Island	State	LAO00307	12-30-21
South Carolina	State	96026002	06-30-21
Tennessee	State	TN02907	06-30-21
Texas	NELAP	T104704286	09-30-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	US Federal Programs	P330-18-00148	05-17-21
Virginia	NELAP	460166	06-14-21
Washington	State	C915	05-15-21
West Virginia DEP	State	136	06-30-21

Eurofins TestAmerica, Savannah

Page 44 of 44

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-197281-1

Client Project/Site: Hercules - Brunswick Biosparge Pilot Test

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Adria Reimer

Authorized for release by: 4/20/2021 7:29:12 AM

Add Barnett

Eddie Barnett, Project Manager I (912)250-0280

Eddie.Barnett@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

4

5

7

8

1 0

12

14

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	5
Method Summary	6
Definitions/Glossary	7
Detection Summary	8
Client Sample Results	10
	20
QC Sample Results	21
QC Association Summary	29
Lab Chronicle	32
Chain of Custody	35
	37
Certification Summary	39

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-197281-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.
Project: Hercules - Brunswick Biosparge Pilot Test

Report Number: 680-197281-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 04/08/2021; the samples arrived in good condition, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.4° C and 2.1° C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples MW-29D (680-197281-1), BS-OW-02 (680-197281-2), BS-OW-03D (680-197281-3), BS-OW-01 (680-197281-4) and TB-01 (680-197281-5) were analyzed for Volatile Organic Compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 04/15/2021.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 680-664227.

Acetone recovered high for LCSD 680-664227/5. Acetone has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified. Refer to the QC report for details.

Samples MW-29D (680-197281-1)[20X], BS-OW-02 (680-197281-2)[20X], BS-OW-03D (680-197281-3)[20X] and BS-OW-01 (680-197281-4)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP) - DISSOLVED

Samples MW-29D (680-197281-1), BS-OW-02 (680-197281-2), BS-OW-03D (680-197281-3) and BS-OW-01 (680-197281-4) were analyzed for Metals (ICP) - Dissolved in accordance with EPA SW-846 Method 6010C. The samples were prepared and analyzed on 04/09/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP)

Samples MW-29D (680-197281-1), BS-OW-02 (680-197281-2), BS-OW-03D (680-197281-3) and BS-OW-01 (680-197281-4) were analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared and analyzed on 04/09/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HARDNESS AS CALCIUM CARBONATE

Samples MW-29D (680-197281-1), BS-OW-02 (680-197281-2), BS-OW-03D (680-197281-3) and BS-OW-01 (680-197281-4) were analyzed for hardness as calcium carbonate in accordance with EPA Method 130.2. The samples were analyzed on 04/10/2021.

Samples MW-29D (680-197281-1)[25X], BS-OW-02 (680-197281-2)[25X], BS-OW-03D (680-197281-3)[25X] and BS-OW-01 (680-197281-4)[25X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Job ID: 680-197281-1

3

Л

5

6

8

10

11

13

14

Case Narrative

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-197281-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ALKALINITY

Samples MW-29D (680-197281-1), BS-OW-02 (680-197281-2), BS-OW-03D (680-197281-3) and BS-OW-01 (680-197281-4) were analyzed for alkalinity in accordance with SM 2320B. The samples were analyzed on 04/14/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL DISSOLVED SOLIDS

Samples MW-29D (680-197281-1), BS-OW-02 (680-197281-2), BS-OW-03D (680-197281-3) and BS-OW-01 (680-197281-4) were analyzed for total dissolved solids in accordance with SM 2540C. The samples were analyzed on 04/08/2021 and 04/09/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ANIONS BY ION CHROMATOGRAPHY (28 DAY)

Samples MW-29D (680-197281-1), BS-OW-02 (680-197281-2), BS-OW-03D (680-197281-3) and BS-OW-01 (680-197281-4) were analyzed for Anions by Ion Chromatography (28 Day) in accordance with EPA Method 300.0. The samples were analyzed on 04/19/2021.

Samples MW-29D (680-197281-1)[50X], BS-OW-02 (680-197281-2)[50X], BS-OW-03D (680-197281-3)[50X] and BS-OW-01 (680-197281-4)[50X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

BIOCHEMICAL OXYGEN DEMAND

Samples MW-29D (680-197281-1), BS-OW-02 (680-197281-2), BS-OW-03D (680-197281-3) and BS-OW-01 (680-197281-4) were analyzed for Biochemical Oxygen Demand in accordance with SM 5210B. The samples were analyzed on 04/08/2021 and 04/09/2021.

The method blank result associated with batch 663328 was higher than the method-required limit of 0.2 mg/L, but below the RL of 2.0 mg/L, and is reported as non-detect.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

CHEMICAL OXYGEN DEMAND

Samples MW-29D (680-197281-1), BS-OW-02 (680-197281-2), BS-OW-03D (680-197281-3) and BS-OW-01 (680-197281-4) were analyzed for chemical oxygen demand in accordance with SM 5220D. The samples were analyzed on 04/10/2021.

Samples MW-29D (680-197281-1)[100X], BS-OW-02 (680-197281-2)[100X], BS-OW-03D (680-197281-3)[100X] and BS-OW-01 (680-197281-4)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

Job ID: 680-197281-1

3

4

5

6

8

10

11

13

14

Sample Summary

Water

Water

Client: Geosyntec Consultants, Inc.

Lab Sample ID

680-197281-1

680-197281-2 680-197281-3

680-197281-4

680-197281-5

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Client Sample

MW-29D BS-OW-02

BS-OW-03D

BS-OW-01

TB-01

e ID	Matrix	Collected	Received	Asset ID	
. 10	Water		04/08/21 10:20	ASSELID	
	Water	04/07/21 10:00	04/08/21 10:20		
	Water	04/07/21 11:05	04/08/21 10:20		

04/07/21 12:05 04/08/21 10:20

04/07/21 00:00 04/08/21 10:20

Job ID: 680-197281-1

4

9

11

12

14

Method Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Viethod	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
00.0-1993 R2.1	Anions, Ion Chromatography	MCAWW	TAL SAV
010C	Metals (ICP)	SW846	TAL SAV
30.2-1982	Hardness, Total (mg/l as CaCO3)	MCAWW	TAL SAV
540C-2011	Total Dissolved Solids (Dried at 180 °C)	SM	TAL SAV
210B-2011	BOD, 5-Day	SM	TAL SAV
220D-2011	Chemical Oxygen Demand	SM	TAL SAV
SM 2320B	Alkalinity	SM	TAL PEN
005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL SAV
030B	Purge and Trap	SW846	TAL SAV

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Λ

5

7

8

9

11

14

1 /

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Job ID: 680-197281-1

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier Qualifier Description

b Result Detected in the Unseeded Control blank (USB).
U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	y used abbreviations may	y or may	not be	present in this rep	oort.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Savannah

4/20/2021

Page 7 of 39

Л

5

6

10

11

12

13

14

Detection Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Client Sample ID: MW-29D

Lab Sample ID: 680-197281-1

Job ID: 680-197281-1

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	820		20		ug/L	20	_	8260B	Total/NA
Chlorobenzene	750		20		ug/L	20		8260B	Total/NA
Ethylbenzene	150		20		ug/L	20		8260B	Total/NA
Isopropylbenzene	210		20		ug/L	20		8260B	Total/NA
m-Xylene & p-Xylene	320		20		ug/L	20		8260B	Total/NA
Chloride	3200		25		mg/L	50		300.0-1993 R2.1	Total/NA
Iron	27000		50		ug/L	1		6010C	Total Recoverable
Manganese	860		10		ug/L	1		6010C	Total Recoverable
Iron	27000		50		ug/L	1		6010C	Dissolved
Manganese	860		10		ug/L	1		6010C	Dissolved
Hardness as calcium carbonate	4900		250		mg/L	25		130.2-1982	Total/NA
Total Dissolved Solids	7300		200		mg/L	1		2540C-2011	Total/NA
Biochemical Oxygen Demand	19 1	b	2.0		mg/L	1		5210B-2011	Total/NA
Alkalinity, Total	360		1.0		mg/L	1		SM 2320B	Total/NA

Client Sample ID: BS-OW-02

Lab Sample ID: 680-197281-2

Analyte	Result Q	ualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	230	20		ug/L	20	_	8260B	Total/NA
Chlorobenzene	270	20		ug/L	20		8260B	Total/NA
Isopropylbenzene	40	20		ug/L	20		8260B	Total/NA
m-Xylene & p-Xylene	48	20		ug/L	20		8260B	Total/NA
Chloride	4300	25		mg/L	50		300.0-1993 R2.1	Total/NA
Iron	51000	50		ug/L	1		6010C	Total
								Recoverable
Manganese	1200	10		ug/L	1		6010C	Total
								Recoverable
Iron	51000	50		ug/L	1		6010C	Dissolved
Manganese	1200	10		ug/L	1		6010C	Dissolved
Hardness as calcium carbonate	6400	250		mg/L	25		130.2-1982	Total/NA
Total Dissolved Solids	9600	200		mg/L	1		2540C-2011	Total/NA
Biochemical Oxygen Demand	6.3 b	2.0		mg/L	1		5210B-2011	Total/NA
Alkalinity, Total	330	1.0		mg/L	1		SM 2320B	Total/NA

Client Sample ID: BS-OW-03D

Lab Sample ID: 680-197281-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	260	200		ug/L	20	_	8260B	Total/NA
Benzene	490	20		ug/L	20		8260B	Total/NA
Chlorobenzene	460	20		ug/L	20		8260B	Total/NA
Ethylbenzene	110	20		ug/L	20		8260B	Total/NA
Isopropylbenzene	110	20		ug/L	20		8260B	Total/NA
m-Xylene & p-Xylene	220	20		ug/L	20		8260B	Total/NA
Chloride	3800	25		mg/L	50		300.0-1993 R2.1	Total/NA
Iron	47000	50		ug/L	1		6010C	Total
								Recoverable
Manganese	1600	10		ug/L	1		6010C	Total
								Recoverable
Iron	45000	50		ug/L	1		6010C	Dissolved
Manganese	1500	10		ug/L	1		6010C	Dissolved
Hardness as calcium carbonate	5400	250		mg/L	25		130.2-1982	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Savannah

4/20/2021

Detection Summary

1.0

Client: Geosyntec Consultants, Inc.

Analyte

Total Dissolved Solids

Alkalinity, Total

Biochemical Oxygen Demand

Chemical Oxygen Demand

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-197281-1

Total/NA

Client Sample ID: BS-OW-03D (Continued)

Result Qualifier

6100

1300

350

9.6

RL	RL	Unit	Dil Fac	D	Method	Prep Type	
200		mg/L	1	_	2540C-2011	Total/NA	
2.0		mg/L	1		5210B-2011	Total/NA	
1000		mg/L	100		5220D-2011	Total/NA	
	200	200	200 mg/L 2.0 mg/L	RL RL Unit Dil Fac 200 mg/L 1 2.0 mg/L 1	RL RL Unit mg/L Dil Fac 1 D 200 mg/L 1 1	RL RL Unit mg/L Dil Fac Dil	200 mg/L 1 2540C-2011 Total/NA 2.0 mg/L 1 5210B-2011 Total/NA

mg/L

Client Sample ID: BS-OW-01

Lab Sample ID: 680-197281-4

SM 2320B

Lab Sample ID: 680-197281-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Benzene	430		20		ug/L	20	8260B	Total/NA
Chlorobenzene	490		20		ug/L	20	8260B	Total/NA
Ethylbenzene	110		20		ug/L	20	8260B	Total/NA
Isopropylbenzene	97		20		ug/L	20	8260B	Total/NA
m-Xylene & p-Xylene	74		20		ug/L	20	8260B	Total/NA
Chloride	3700		25		mg/L	50	300.0-1993 R2.1	Total/NA
Iron	32000		50		ug/L	1	6010C	Total
Manganese	790		10		ug/L	1	6010C	Recoverable Total Recoverable
Iron	33000		50		ug/L	1	6010C	Dissolved
Manganese	810		10		ug/L	1	6010C	Dissolved
Hardness as calcium carbonate	5400		250		mg/L	25	130.2-1982	Total/NA
Total Dissolved Solids	6200		200		mg/L	1	2540C-2011	Total/NA
Biochemical Oxygen Demand	5.8		2.0		mg/L	1	5210B-2011	Total/NA
Chemical Oxygen Demand	200		100		mg/L	10	5220D-2011	Total/NA
Alkalinity, Total	330		1.0		mg/L	1	SM 2320B	Total/NA

Client Sample ID: TB-01

Lab Sample ID: 680-197281-5

No Detections.

This Detection Summary does not include radiochemical test results.

3

4

6

1

9

13

14

16

rofins TestAmerica, Savanna

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-1

Matrix: Water

Job ID: 680-197281-1

Client Sample ID: MW-29D Date Collected: 04/07/21 08:40

Trichlorofluoromethane

Vinyl chloride

Date Received: 04/08/21 10:20 Method: 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier RL **MDL** Unit D **Analyte** Prepared Analyzed Dil Fac 20 Ū 20 1,1,1-Trichloroethane ug/L 04/15/21 19:37 20 20 U 20 20 1,1,2,2-Tetrachloroethane ug/L 04/15/21 19:37 1,1,2-Trichloro-1,2,2-trifluoroethane 20 U 20 ug/L 04/15/21 19:37 20 1,1,2-Trichloroethane 20 U 20 20 ug/L 04/15/21 19:37 1,1-Dichloroethane 20 U 20 ug/L 04/15/21 19:37 20 20 1.1-Dichloroethene 20 U 20 ug/L 04/15/21 19:37 1,2,3-Trichlorobenzene 100 U 100 ug/L 04/15/21 19:37 20 1.2-Dichloroethane 20 U 20 ug/L 04/15/21 19:37 20 1,2-Dichloropropane 20 U 20 ug/L 04/15/21 19:37 20 2-Butanone (MEK) 200 U 200 ug/L 04/15/21 19:37 20 2-Hexanone 200 U 200 ug/L 04/15/21 19:37 20 4-Methyl-2-pentanone 200 U 200 ug/L 04/15/21 19:37 20 Acetone 200 U*+ 200 ug/L 04/15/21 19:37 20 820 20 ug/L 04/15/21 19:37 20 **Benzene** 20 20 Bromochloromethane 20 U ug/L 04/15/21 19:37 Bromodichloromethane 20 20 20 ug/L 04/15/21 19:37 Bromoform 20 U 20 ug/L 04/15/21 19:37 20 Bromomethane 100 U 100 ug/L 04/15/21 19:37 20 Carbon disulfide 20 40 U 40 ug/L 04/15/21 19:37 Carbon tetrachloride 20 U 20 ug/L 04/15/21 19:37 20 Chlorobenzene 20 ug/L 04/15/21 19:37 20 **750** 100 Chloroethane 100 U ug/L 04/15/21 19:37 20 Chloroform 20 U 20 ug/L 04/15/21 19:37 20 Chloromethane 20 U 20 ug/L 04/15/21 19:37 20 cis-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 19:37 20 cis-1,3-Dichloropropene 20 U 20 ug/L 20 04/15/21 19:37 Cyclohexane 20 U 20 ug/L 04/15/21 19:37 20 Dibromochloromethane 20 U 20 ug/L 04/15/21 19:37 20 Dichlorodifluoromethane 20 U 20 ug/L 04/15/21 19:37 20 Ethylbenzene 20 ug/L 04/15/21 19:37 20 150

Isopropylbenzene	210		20	ug/L	04/15/21 19:37
Methyl acetate	100	U	100	ug/L	04/15/21 19:37
Methyl tert-butyl ether	200	U	200	ug/L	04/15/21 19:37
Methylcyclohexane	20	U	20	ug/L	04/15/21 19:37
Methylene Chloride	100	U	100	ug/L	04/15/21 19:37
m-Xylene & p-Xylene	320		20	ug/L	04/15/21 19:37
o-Xylene	20	U	20	ug/L	04/15/21 19:37
Styrene	20	U	20	ug/L	04/15/21 19:37
Tetrachloroethene	20	U	20	ug/L	04/15/21 19:37
Toluene	20	U	20	ug/L	04/15/21 19:37
trans-1,2-Dichloroethene	20	U	20	ug/L	04/15/21 19:37
trans-1,3-Dichloropropene	20	U	20	ug/L	04/15/21 19:37
Trichloroethene	20	U	20	ug/L	04/15/21 19:37

20 U

20 U

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	60 - 124		04/15/21 19:37	20
4-Bromofluorobenzene (Surr)	107	70 - 130		04/15/21 19:37	20
Dibromofluoromethane (Surr)	119	70 - 130		04/15/21 19:37	20

20

20

ug/L

ug/L

Eurofins TestAmerica, Savannah

04/15/21 19:37

04/15/21 19:37

Page 10 of 39

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-1

Matrix: Water

Job ID: 680-197281-1

Date Collected: 04/07/21 08:40 Date Received: 04/08/21 10:20

Client Sample ID: MW-29D

Method: 8260B - Volat	ile Organic Compo	unds (GC/l	MS) (Continu	ed)					
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	113		70 - 130					04/15/21 19:37	20
- Method: 300.0-1993 R	2.1 - Anions, Ion Ch	romatogra	aphy						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3200		25		mg/L			04/19/21 22:52	50
_ Method: 6010C - Meta	ls (ICP) - Total Reco	verable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	27000		50		ug/L		04/09/21 10:27	04/09/21 22:18	1
Manganese	860		10		ug/L		04/09/21 10:27	04/09/21 22:18	1
- Method: 6010C - Meta	ls (ICP) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	27000		50		ug/L		04/09/21 10:27	04/09/21 22:13	1
Manganese	860		10		ug/L		04/09/21 10:27	04/09/21 22:13	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chemical Oxygen Demand	1000	U	1000		mg/L			04/10/21 10:44	100
Alkalinity, Total	360		1.0		mg/L			04/14/21 16:06	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	4900		250		mg/L			04/10/21 11:22	25
Total Dissolved Solids	7300		200		mg/L			04/08/21 13:24	1
Biochemical Oxygen Demand	19	h	2.0		mg/L			04/08/21 15:52	1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-2

Matrix: Water

Job ID: 680-197281-1

Client Sample ID: BS-OW-02 Date Collected: 04/07/21 10:00

Date Received: 04/08/21 10:20

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analyte		Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	20	U	20	ug/L		04/15/21 20:02	2
1,1,2,2-Tetrachloroethane	20	U	20	ug/L		04/15/21 20:02	20
1,1,2-Trichloro-1,2,2-trifluoroethane	20	U	20	ug/L		04/15/21 20:02	20
1,1,2-Trichloroethane	20	U	20	ug/L		04/15/21 20:02	20
1,1-Dichloroethane	20	U	20	ug/L		04/15/21 20:02	20
1,1-Dichloroethene	20	U	20	ug/L		04/15/21 20:02	20
1,2,3-Trichlorobenzene	100	U	100	ug/L		04/15/21 20:02	20
1,2-Dichloroethane	20	U	20	ug/L		04/15/21 20:02	2
1,2-Dichloropropane	20	U	20	ug/L		04/15/21 20:02	20
2-Butanone (MEK)	200	U	200	ug/L		04/15/21 20:02	20
2-Hexanone	200	U	200	ug/L		04/15/21 20:02	20
4-Methyl-2-pentanone	200		200	ug/L		04/15/21 20:02	20
Acetone		U *+	200	ug/L		04/15/21 20:02	20
Benzene	230		20	ug/L		04/15/21 20:02	20
Bromochloromethane	20	U	20	ug/L		04/15/21 20:02	20
Bromodichloromethane	20		20	ug/L		04/15/21 20:02	20
Bromoform	20		20	ug/L		04/15/21 20:02	20
Bromomethane	100		100	ug/L		04/15/21 20:02	20
Carbon disulfide	40					04/15/21 20:02	20
Carbon distillide Carbon tetrachloride			40	ug/L		04/15/21 20:02	
	20	U	20	ug/L			20
Chlorobenzene	270		20	ug/L		04/15/21 20:02	20
Chloroethane	100		100	ug/L		04/15/21 20:02	20
Chloroform	20		20	ug/L		04/15/21 20:02	20
Chloromethane	20		20	ug/L		04/15/21 20:02	20
cis-1,2-Dichloroethene	20		20	ug/L		04/15/21 20:02	20
cis-1,3-Dichloropropene	20		20	ug/L		04/15/21 20:02	20
Cyclohexane	20		20	ug/L		04/15/21 20:02	20
Dibromochloromethane	20		20	ug/L		04/15/21 20:02	20
Dichlorodifluoromethane	20		20	ug/L		04/15/21 20:02	20
Ethylbenzene	20	U	20	ug/L		04/15/21 20:02	20
Isopropylbenzene	40		20	ug/L		04/15/21 20:02	20
Methyl acetate	100	U	100	ug/L		04/15/21 20:02	20
Methyl tert-butyl ether	200	U	200	ug/L		04/15/21 20:02	20
Methylcyclohexane	20	U	20	ug/L		04/15/21 20:02	20
Methylene Chloride	100	U	100	ug/L		04/15/21 20:02	20
m-Xylene & p-Xylene	48		20	ug/L		04/15/21 20:02	20
o-Xylene	20	U	20	ug/L		04/15/21 20:02	20
Styrene	20	U	20	ug/L		04/15/21 20:02	20
Tetrachloroethene	20	U	20	ug/L		04/15/21 20:02	20
Toluene	20	U	20	ug/L		04/15/21 20:02	20
trans-1,2-Dichloroethene	20		20	ug/L		04/15/21 20:02	20
trans-1,3-Dichloropropene	20		20	ug/L		04/15/21 20:02	20
Trichloroethene	20		20	ug/L		04/15/21 20:02	20
Trichlorofluoromethane	20		20	ug/L		04/15/21 20:02	20
Vinyl chloride	20		20	ug/L		04/15/21 20:02	20
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	106	- Quantities	60 - 124			04/15/21 20:02	20
' '							

Eurofins TestAmerica, Savannah

04/15/21 20:02

04/15/21 20:02

Page 12 of 39

70 - 130

70 - 130

106

121

2

3

5

8

10

12

14

Le

4/20/2021

20

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-2

Matrix: Water

Job ID: 680-197281-1

Client Sample ID: BS-OW-02 Date Collected: 04/07/21 10:00 Date Received: 04/08/21 10:20

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	111		70 - 130					04/15/21 20:02	20
Method: 300.0-1993 R2.1 - An	ions, Ion Ch	romatogra	aphy						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4300		25		mg/L			04/19/21 23:05	50
Method: 6010C - Metals (ICP)	- Total Reco	verable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ron	51000		50		ug/L		04/09/21 10:27	04/09/21 21:59	1
Manganese	1200		10		ug/L		04/09/21 10:27	04/09/21 21:59	1
Method: 6010C - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ron	51000		50		ug/L		04/09/21 10:27	04/09/21 21:46	1
Manganese	1200		10		ug/L		04/09/21 10:27	04/09/21 21:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chemical Oxygen Demand	1000	U	1000		mg/L			04/10/21 10:44	100
Alkalinity, Total	330		1.0		mg/L			04/14/21 16:12	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	6400		250		mg/L			04/10/21 11:22	25
	0000		200		/1			04/08/21 13:24	1
Total Dissolved Solids	9600		200		mg/L			04/06/21 13:24	I

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-3

Matrix: Water

Job ID: 680-197281-1

Client Sample ID: BS-OW-03D

Date Collected: 04/07/21 11:05 Date Received: 04/08/21 10:20

1.1,2.7-irichloroethane	1,1,2,2-Frichrioro-t1,2,2-Irifluoroethane 20 U 20 ug/L 04/15/21 20:28 t.1,1,2-Trichioro-1,2,2-Irifluoroethane 20 U 20 ug/L 04/15/21 20:28 t.1,1,2-Trichioroethane 20 U 20 ug/L 04/15/21 20:28 t.1,1-Dichioroethane 20 U 20 ug/L 04/15/21 20:28 t.1,1-Dichioroethane 20 U 20 ug/L 04/15/21 20:28 t.1,1-Dichioroethane 20 U 20 ug/L 04/15/21 20:28 t.2,1-Dichioroethane 20 U 20 ug/L 04/15/21 20:28 t.2,1-Dichioroethane 20 U 20 ug/L 04/15/21 20:28 t.2,1-Dichioroethane 20 U 20 ug/L 04/15/21 20:28 t.2-Dichioroethane 20 U 20 ug/L 04/15/21 20:28 t.3-Dichioroethane 20 U 20 ug/L 04/15/21 20:28 t.3-Dichior	nod: 8 <mark>260B - Volatile Orga</mark> _{/te}	-	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
1.1.2 Trichloro-ct 1.2-strifluoroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	Trichloroethane	20	U	20	ug/L			04/15/21 20:28	
.1.2 Princhloroeshane	.1,2-Trichloroethane	2-Tetrachloroethane	20	U	20	ug/L			04/15/21 20:28	
1-Dichloroethene	1-Dichloroethane 20 U 20 ug/L 04/15/21 20:28 1-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 2-Dichloroethane 10 U 100 ug/L 04/15/21 20:28 2-Dichloroptopane 20 U 20 ug/L 04/15/21 20:28 3-Butanone (MEK) 260 200 ug/L 04/15/21 20:28 4-Hexanone 200 U 200 ug/L 04/15/21 20:28 4-Hexanone 400 U 20 ug/L 04/15/21 20:28 4-Hexanone 400 U 20 ug/L 04/15/21 20:28 4-Hexanone 20 U 20	-Trichloro-1,2,2-trifluoroethane	20	U	20	ug/L			04/15/21 20:28	
1.1-Dichloroethane 20 U 20 U uglt. 04/15/21 2028 2.2-S-Trichloroethane 100 U 100 uglt. 04/15/21 2028 2.2-Dichloroethane 20 U 20 uglt. 04/15/21 2028 2-Dichloropropane 20 U 20 uglt. 04/15/21 2028 Butanone (MEK) 260 U 200 uglt. 04/15/21 2028 -Methyl-2-pentanone 200 U ** 200 uglt. 04/15/21 2028 -Merochioromethane 20 U ** 200 uglt. 04/15/21 2028 -Mer	1-Dichloroethane 20 U 20 ug/L 04/15/21 20:28 1-Dichloroethane 20 U 20 ug/L 04/15/21 20:28 2,2-Dichloropthane 20 U 20 ug/L 04/15/21 20:28 2-Dichloroptopane 20 U 20 ug/L 04/15/21 20:28 -Butanone (MEK) 260 200 ug/L 04/15/21 20:28 -Hexanone 20 U 200 ug/L 04/15/21 20:28 -Lectore 20 U 200 ug/L 04/15/21 20:28 -Lectore 490 20 ug/L 04/15/21 20:28 -Leoromochloromethane 20 U 20 ug/L 04/15/21 20:28 -Leoromochloromethane 100 U 20 <td< td=""><td>-Trichloroethane</td><td>20</td><td>U</td><td>20</td><td>ug/L</td><td></td><td></td><td>04/15/21 20:28</td><td></td></td<>	-Trichloroethane	20	U	20	ug/L			04/15/21 20:28	
	1.1-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 2.2-Tirchlorobenzene 100 U 100 ug/L 04/15/21 20:28 2.2-Dichloropropane 20 U 20 ug/L 04/15/21 20:28 Battanone (MEK) 260 200 ug/L 04/15/21 20:28 Hexanone 200 U 200 ug/L 04/15/21 20:28 Methyl-2-pentanone 200 U 200 ug/L 04/15/21 20:28 Jenzene 490 20 ug/L 04/15/21 20:28 Jenzene 20 U 20 ug/L 04/15/21 20:28 Jenomoform 20 <	ichloroethane	20	U	20				04/15/21 20:28	
2.3-Trichlorobenzene 100 U 100 ug/L 04/15/21 20:28 2-Dichloropename 20 U 20 ug/L 04/15/21 20:28 Butanone (MEK) 20 U 200 ug/L 04/15/21 20:28 -Methyl-2-pentanone 200 U 200 ug/L 04/15/21 20:28 -Methyl-2-pentanone 200 U** 200 ug/L 04/15/21 20:28 -Methyl-2-pentanone 200 U** 200 ug/L 04/15/21 20:28 -Methyl-2-pentanone 200 U** 200 ug/L 04/15/21 20:28 -Mentyl-2-pentanone 200 U** 200 ug/L 04/15/21 20:28 -Mentzene 400 U 20 ug/L 04/15/21 20:28 -romodichloromethane 20 U 20 ug/L 04/15/21 20:28 -romodichloromethane 100 U 100 ug/L 04/15/21 20:28 -romodichloromethane 10 U 20 ug/L 04/15/21 20:28 <t< td=""><td>2.3-Trichlorobenzene</td><td>ichloroethene</td><td>20</td><td>U</td><td>20</td><td>•</td><td></td><td></td><td>04/15/21 20:28</td><td></td></t<>	2.3-Trichlorobenzene	ichloroethene	20	U	20	•			04/15/21 20:28	
2-Dichloroethane 20 U 20 ug/L 04/15/21 2028	2-Dichloroethane									
2-Dichloropropane 20 U 20 ug/L 04/15/21 20/28 Butanone (MEK) 260 200 ug/L 04/15/21 20/28 Hexanone 200 U 200 ug/L 04/15/21 20/28 Methyl-2-pentanone 200 U 200 ug/L 04/15/21 20/28 estone 200 U " + 200 ug/L 04/15/21 20/28 estone 200 U " + 200 ug/L 04/15/21 20/28 enzene 290 U " + 200 ug/L 04/15/21 20/28 enzene 290 U " + 200 ug/L 04/15/21 20/28 enzene 290 U " + 200 ug/L 04/15/21 20/28 enzene 290 U " + 200 ug/L 04/15/21 20/28 enzene 290 U " + 200 ug/L 04/15/21 20/28 enzene 200 U " + 200 ug/L 04/15/21 20/28 en	2-Dichloropropane 20 U 20 ug/L 04/15/21 20:28 Butanone (MEK) 260 200 ug/L 04/15/21 20:28 Hebranone 200 U 200 ug/L 04/15/21 20:28 Hebryl-2-pentanone 200 U 200 ug/L 04/15/21 20:28 Methyl-2-pentanone 200 U 200 ug/L 04/15/21 20:28 eetone 200 U + 200 ug/L 04/15/21 20:28 eetone 200 U - 200 ug/L 04/15/21 20:28 eromochloromethane 20 U 20 ug/L 04/15/21 20:28 eromochloromethane 100 U 100 ug/L 04/15/21 20:28 eromochloromethane 100 U 100 ug/L 04/15/21 20:28 eromochloromethane 100 U 100 ug/L 04/15/21 20:28 eromochloromethane 100 U 20 ug/L 04/15/21 20:28 eromochloromethane 100 U 20 ug/L 04/15/21 20:28 eromochloromethane 20 U 20 ug/L 04/15/21 20:28 erbyl beropochloromethane 20 U 20 ug/L 04/15/21 20:28 erbyl beropochloromethane 20 U 20 ug/L 04/15/21 20:28 erbyl acetate 100 U 100 ug/L 04/15/21 20:28 erbyl acetate 20 U 20 ug/L 0					-				
Petatanone (MEK)	Butanone (MEK) 260					•				
Hexanone	Hexanone 200 U 200 ug/L 04/15/21 20:28 Methyl-2-pentanone 200 U 200 ug/L 04/15/21 20:28 Methyl-2-pentanone 200 U 200 ug/L 04/15/21 20:28 enzene 200 U*+ 200 ug/L 04/15/21 20:28 enzene 490 20 ug/L 04/15/21 20:28 enzene 490 20 ug/L 04/15/21 20:28 cromochloromethane 20 U 20 ug/L 04/15/21 20:28 cromochloromethane 20 U 20 ug/L 04/15/21 20:28 cromochloromethane 100 U 20 ug/L 04/15/21 20:28 cromochloromethane 100 U 100 ug/L 04/15/21 20:28 arbon disulfide 40 U 40 ug/L 04/15/21 20:28 arbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 arbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 hlorobenzene 460 20 ug/L 04/15/21 20:28 hlorobenzene 460 20 ug/L 04/15/21 20:28 hlorobenzene 100 U 100 ug/L 04/15/21 20:28 hlorobenzene 100 U 100 ug/L 04/15/21 20:28 hlorobenzene 20 U 20 ug/L 04/15/21 20:28 hlorobenzene 20 U 20 ug/L 04/15/21 20:28 s-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 s-2,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:2									
Methyl-2-pentanone 200 U 200 ug/L 04/15/21 20:28 cetone 200 U*+ 200 ug/L 04/15/21 20:28 cetone 490 20 ug/L 04/15/21 20:28 comochloromethane 20 U 20 ug/L 04/15/21 20:28 comochloromethane 20 U 20 ug/L 04/15/21 20:28 comomoform 20 U 20 ug/L 04/15/21 20:28 comomethane 100 U 100 ug/L 04/15/21 20:28 arbon distinffe 40 U 40 ug/L 04/15/21 20:28 arbon tetrachloride 40 U 40 ug/L 04/15/21 20:28 hlorobetaren 460 20 ug/L 04/15/21 20:28 hlorobetaren 20 U 20 ug/L 04/15/21 20:28 a-1,-2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 a-1,-2-Dichloroethene 20 U 20	Methyl-2-pentanone 200 U 200 ug/L 04/15/21 20:28 cetone 200 U*+ 200 ug/L 04/15/21 20:28 cenzene 490 20 ug/L 04/15/21 20:28 comodichloromethane 20 U 20 ug/L 04/15/21 20:28 comodichloromethane 20 U 20 ug/L 04/15/21 20:28 comodichloromethane 100 U 100 ug/L 04/15/21 20:28 comomethane 100 U 100 ug/L 04/15/21 20:28 arbon disulfide 40 U 40 ug/L 04/15/21 20:28 arbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 hloroethane 100 U 100 ug/L 04/15/21 20:28 hloroethane 100 U 20 ug/L 04/15/21 20:28 hloroethane 20 U 20 ug/L 04/15/21 20:28 hloroethane 20 U	• •		U						
Person P	Detection 200 U *+ 200					-				
Part	enzene 490 20 ug/L 04/15/21 20:28 romochloromethane 20 U 20 ug/L 04/15/21 20:28 romochloromethane 20 U 20 ug/L 04/15/21 20:28 romochromethane 20 U 20 ug/L 04/15/21 20:28 romochromethane 20 U 20 ug/L 04/15/21 20:28 romochromethane 100 U 100 ug/L 04/15/21 20:28 romochromethane 100 U 100 ug/L 04/15/21 20:28 romochromethane 100 U 40 ug/L 04/15/21 20:28 ratbon disulfide 40 U 40 ug/L 04/15/21 20:28 ratbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 ratbon tetrachloride 40 U 40 ug/L									
romochloromethane 20 U 20 ug/L 04/15/21 20:28 romodchloromethane 20 U 20 ug/L 04/15/21 20:28 romodchloromethane 20 U 20 ug/L 04/15/21 20:28 romodethane 100 U 100 ug/L 04/15/21 20:28 romomethane 100	romochloromethane 20 U 20 ug/L 04/15/21 20:28 romochloromethane 30 U 100 ug/L 04/15/21 20:28 arbon disulfide 40 U 40 ug/L 04/15/21 20:28 arbon disulfide 40 U 40 ug/L 04/15/21 20:28 arbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 hlorosbenzene 460 20 ug/L 04/15/21 20:28 hlorostenae 30 U 30 ug/L 04/15/21 20:28 hlorostenae 30 U 30 ug/L 04/15/21 20:28 hlorostenae 30 U 30 ug/L 04/15/21 20:28 s-1,2-Dichlorostenae 30 U 30 ug/L 04/15/21 20:28 s-1,3-Dichloropropene 30 U 30 ug/L 04/15/21 20:28 s-1,3-Dichloropropene 30 U 30 ug/L 04/15/21 20:28 ichlorostenate 30 U 30 ug/L 04/15/21 20:28 ichlylacetate 30 U 30 ug/L 04/15/21 20:28 ichlylacetostena 30 U 30 ug/L 04/15/21 20:28 ichlorostenae 30 U 30 ug/L 04/15/21 20:28 ichlorostenae 30 U 30 ug/L 04/15/21 20:28 ichloros			0 .		_				
Commodichloromethane 20 U 20 Ug/L O4/15/21 20:28 Commofrom 20 U 20 Ug/L O4/15/21 20:28 Carbon disulfide 40 U 40 Ug/L O4/15/21 20:28 Carbon disulfide 40 Ug/L O4/15/21 20:28 Carbon disulfide 40 U	comodichloromethane 20 U 20 ug/L 04/15/21 20:28 comoform 20 U 20 ug/L 04/15/21 20:28 comoform 20 U 20 ug/L 04/15/21 20:28 comomethane 100 U 100 ug/L 04/15/21 20:28 comoform 40 U 40 ug/L 04/15/21 20:28 comoform 460 20 ug/L 04/15/21 20:28 comoform 100 U 100 ug/L 04/15/21 20:28 coloroform 20 U 20 ug/L 04/15/21			11		-				
Commontment	20					.				
commomethane 100 U 100 ug/L 04/15/21 20:28 arbon disulfide 44 U 40 ug/L 04/15/21 20:28 arbon disulfide 46 U 40 ug/L 04/15/21 20:28 arbon disulfide 46 U 20 ug/L 04/15/21 20:28 arbon disulfide 460 U 20 ug/L	Description									
arbon disulfide 40 U 40 ug/L 04/15/21 20:28 arbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 arbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 haloromethane 100 U 100 ug/L 04/15/21 20:28 haloromethane 20 U 20 ug/L 04/15/21 20:28 haloromethane	arbon disulfide 40 U 40 ug/L 04/15/21 20:28 arbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 arbon comethane 100 U 100 ug/L 04/15/21 20:28 arbon comethane 20 U 20 ug/L 04/15/21 20:28 bromochloromethane 20 U 20 ug/L 04/15/21 20:28 bromochloromethane 20 U 20 ug/L 04/15/21 20:28 bromochloromethane 20 U 20 ug/L 04/15/21 20:28 arbon comethane 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/									
Arbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 holorobenzene 460 20 ug/L 04/15/21 20:28 holorobenzene 460 20 ug/L 04/15/21 20:28 holorobenzene 100 U 100 ug/L 04/15/21 20:28 holorobenzene 100 U 20 ug/L 04/15/21 20:28 holoromethane 20 U 200 ug/L 04/15/21 20:	arbon tetrachloride 20 U 20 ug/L 04/15/21 20:28 horoebrane 460 20 ug/L 04/15/21 20:28 horoebrane 100 U 100 ug/L 04/15/21 20:28 horoebrane 100 U 20 ug/L 04/15/21 20:28 horoebrane 20 U 20 ug/L 04/15/21 20:28 horoebr					.				
Note	Note									
100	100			U		•				
Second S	Second S									
Second S	100 20 20 20 20 20 20 20					•				
Set 2-Dichloroethene 20 U 20 Ug/L 04/15/21 20:28	s-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 s-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:					-				
Seriging	20									
Cock	Colonexane 20 U 20									
bromochloromethane 20 U 20 ug/L 04/15/21 20:28 chlorodifluoromethane 20 U 20 ug/L 04/15/21 20:28 chlorodifluoromethane 20 U 20 ug/L 04/15/21 20:28 chlorodifluoromethane 20 U 20 ug/L 04/15/21 20:28 chloropylbenzene 110 20 ug/L 04/15/21 20:28 chlyl acetate 100 U 100 ug/L 04/15/21 20:28 chlyl acetate 100 U 200 ug/L 04/15/21 20:28 chlyl acetate 20 U 200 ug/L 04/15/21 20:28 chlyl cetate 20 U 200 ug/L 04/15/21 20:28 chlylcyclohexane 20 U 20 ug/L 04/15/21 20:28 chlylene Chloride 100 U 100 ug/L 04/15/21 20:28 chlylene Chloride 100 U 100 ug/L 04/15/21 20:28 chlylene 8 p-Xylene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/	bromochloromethane 20 U 20 ug/L 04/15/21 20:28 chlorodifluoromethane 20 U 20 ug/L 04/15/21 20:28 hylbenzene 110 20 ug/L 04/15/21 20:28 thylbenzene 110 20 ug/L 04/15/21 20:28 ethyl acetate 100 U 100 ug/L 04/15/21 20:28 ethyl tert-butyl ether 200 U 200 ug/L 04/15/21 20:28 ethylcyclohexane 20 U 20 ug/L 04/15/21 20:28 ethylene Chloride 100 U 100 ug/L 04/15/21 20:28 ethylene Chloride 100 U 20 ug/L 04/15/21 20:28 ethylene Chloride 20 U 20 ug/L 04/15/21 20:28 ethylene 20 U 20 ug/L 04/15/21 20:28 ethyle					-				
chlorodifluoromethane 20 U 20 ug/L 04/15/21 20:28 hylbenzene 110 20 ug/L 04/15/21 20:28 opropylbenzene 110 20 ug/L 04/15/21 20:28 opropylbenzene 110 20 ug/L 04/15/21 20:28 opropylbenzene 110 U 100 ug/L 04/15/21 20:28 opropylbenzene 110 U 100 ug/L 04/15/21 20:28 opropylbenzene 100 U 200 ug/L 04/15/21 20:28 opropylbenzene 20 U 100 ug/L 04/15/21 20:28 opropylbenzene 20 U 20 ug/L 20:28 opropylbenzene 20 U 20 ug/L 20:28 opropylbenzene 20 U 20 ug/L 20:28	chlorodifluoromethane 20 U 20 ug/L 04/15/21 20:28 hylbenzene 110 20 ug/L 04/15/21 20:28 opropylbenzene 110 20 ug/L 04/15/21 20:28 ethyl acetate 100 U 100 ug/L 04/15/21 20:28 ethyl tert-butyl ether 200 U 200 ug/L 04/15/21 20:28 ethylcyclohexane 20 U 20 ug/L 04/15/21 20:28 ethylene Chloride 100 U 100 ug/L 04/15/21 20:28 xylene & p-Xylene 220 20 ug/L 04/15/21 20:28 Xylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 xylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 xylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 tyrene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20					ug/L			04/15/21 20:28	
110 20 ug/L 04/15/21 20:28 20 20 ug/L 20 20 20 ug/L 20 20 20 20 20 20 20 2	hylbenzene 110 20 ug/L 04/15/21 20:28 porpoylbenzene 110 20 ug/L 04/15/21 20:28 porpoylbenzene 110 20 ug/L 04/15/21 20:28 porpoylbenzene 110 U 100 ug/L 04/15/21 20:28 porpoylbenzene 100 U 100 ug/L 04/15/21 20:28 porpoylbenzene 100 U 200 ug/L 04/15/21 20:28 porpoylbenzene 20 U 200 ug/L 04/15/21 20:28 porpoylbenzene 20 U 20 ug/L 04/15/21 20:28 porpoylbenzene 20 U 100 ug/L 04/15/21 20:28 porpoylbenzene 20 U 20 u		20	U	20	ug/L			04/15/21 20:28	
110 20 ug/L 04/15/21 20:28	opropylbenzene 110 20 ug/L 04/15/21 20:28 ethyl acetate 100 U 100 ug/L 04/15/21 20:28 ethyl tert-butyl ether 200 U 200 ug/L 04/15/21 20:28 ethylcyclohexane 20 U 20 ug/L 04/15/21 20:28 ethylene Chloride 100 U 100 ug/L 04/15/21 20:28 extylene & p-Xylene 220 20 ug/L 04/15/21 20:28 Xylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 Xylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 Xylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 Xylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 Xylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 Xylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 Xylene & p-Xylene 20	orodifluoromethane	20	U	20	ug/L			04/15/21 20:28	
Sethyl acetate 100 U 100 ug/L 04/15/21 20:28 sethyl tert-butyl ether 200 U 200 ug/L 04/15/21 20:28 sethyl tert-butyl ether 200 U 200 ug/L 04/15/21 20:28 sethylcyclohexane 20 U 20 ug/L 04/15/21 20:28 sethylene Chloride 100 U 100 ug/L 04/15/21 20:28 sethylene Chloride 100 U 100 ug/L 04/15/21 20:28 sethylene Chloride 200 U 20 ug/L 04/15/21 20:28 sethylene Chloride 200 U 200 ug/L 04/15/21 20:28 sethylene Chloride 200 U 200 ug/L 04/15/21 20:28 sethylene 200 U	tethyl acetate 100 U 100 ug/L 04/15/21 20:28 tethyl tert-butyl ether 200 U 200 ug/L 04/15/21 20:28 tethyl tert-butyl ether 200 U 200 ug/L 04/15/21 20:28 tethylcolohexane 20 U 20 ug/L 04/15/21 20:28 tethylene Chloride 100 U 100 ug/L 04/15/21 20:28 tethylene Chloride 20 U 20 ug/L 04/15/21 20:28 tylene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/21 20:28 tethoroethene 20 U 20	lbenzene	110		20	ug/L			04/15/21 20:28	
tethyl tert-butyl ether 200 U 200 ug/L 04/15/21 20:28 ethylcyclohexane 20 U 20 ug/L 04/15/21 20:28 ethylcyclohexane 20 U 20 ug/L 04/15/21 20:28 ethylene Chloride 100 U 100 ug/L 04/15/21 20:28 ethylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 extylene & p-Xylene 20 U 20 ug/L 04/15/21 20:28 extrachloroethene 20 U 20 ug/L 04/15/21 20:28 extrachlor	ethyl tert-butyl ether 200 U 200 ug/L 04/15/21 20:28 ethylcyclohexane 20 U 20 ug/L 04/15/21 20:28 ethylcyclohexane 20 U 100 ug/L 04/15/21 20:28 ethylene Chloride 100 U 100 ug/L 04/15/21 20:28 ethylene & p-Xylene & p-Xylene 20 ug/L 04/15/21 20:28 Xylene 20 U 20 ug/L 04/15/21 20:28 Xylene 20 U 20 ug/L 04/15/21 20:28 yrene 20 U 20 ug/L 04/15/21 20:28 ethylene 20 U 20 ug/L 04/15/21 20:28 ethylene 20 U 20 ug/L 04/15/21 20:28 ins-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 ins-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 ins-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 ichloroethene 20 U 20 ug/L 04/15/21 20:28 ichloroethene 20 U 20 ug/L 04/15/21 20:28 ichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 ichlorofluo	ropylbenzene	110		20	ug/L			04/15/21 20:28	
### ##################################	ethylcyclohexane 20 U 20 ug/L 04/15/21 20:28 ethylene Chloride 100 U 100 ug/L 04/15/21 20:28 -Xylene & p-Xylene 220 20 ug/L 04/15/21 20:28 Xylene 20 U 20 ug/L 04/15/21 20:28 yrene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 uns-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 uns-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 ichloroethene 20 U 20 ug/L 04/15/21 20:28 ichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 ichloride 20 U 20 ug/L 04/15/21 20:28	yl acetate	100	U	100	ug/L			04/15/21 20:28	
### Prepared Property of the P	tethylene Chloride 100 U 100 ug/L 04/15/21 20:28 220 20 ug/L 04/15/21 20:28 220 220 220 220 220 220 220 220 220 2	yl tert-butyl ether	200	U	200	ug/L			04/15/21 20:28	
Xylene & p-Xylene 220 20 ug/L 04/15/21 20:28 Xylene 20 U 20 ug/L 04/15/21 20:28 yrene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 ins-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 ins-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 chloroethene 20 U 20 ug/L 04/15/21 20:28 chlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28 2-Dichloroethane-d4 (Surr) 106 60 - 124 04/15/21 20:28	-Xylene & p-Xylene 220 20 ug/L 04/15/21 20:28 Xylene 20 U 20 ug/L 04/15/21 20:28 yrene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 ins-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 ins-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 chloroethene 20 U 20 ug/L 04/15/21 20:28 chlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28	ylcyclohexane	20	U	20	ug/L			04/15/21 20:28	
Xylene 20 U 20 ug/L 04/15/21 20:28 yrene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 ins-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 ins-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 ichloroethene 20 U 20 ug/L 04/15/21 20:28 ichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 inyl chloride 20 U 20 ug/L 04/15/21 20:28 irrogate %Recovery Qualifier Limits Prepared Analyzed Dil 2-Dichloroethane-d4 (Surr) 106 60 - 124 04/15/21 20:28	Xylene 20 U 20 ug/L 04/15/21 20:28 yrene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/21 20:28 iluene 20 U 20 ug/L 04/15/21 20:28 ins-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 ins-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 ichloroethene 20 U 20 ug/L 04/15/21 20:28 ichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28	ylene Chloride	100	U	100	ug/L			04/15/21 20:28	
greene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 ins-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 chloropropene 20 U 20 ug/L 04/15/21 20:28 chlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 chlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28	yrene 20 U 20 ug/L 04/15/21 20:28 trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 ins-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 ins-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 chloroethene 20 U 20 ug/L 04/15/21 20:28 chlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28	rlene & p-Xylene	220		20	ug/L			04/15/21 20:28	
trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 luene 320 U 20 ug/L 04/15/21 20:28 luene 320 U 20 ug/L 04/15/21 20:28 luens-1,2-Dichloroethene 320 U 20 ug/L 04/15/21 20:28 luens-1,3-Dichloropropene 320 U 20 ug/L 04/15/21 20:28 luentoroethene 320 U 20 ug/L 04/15/21 20:28 lug/L 04/15/21 20:28 lu	trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 uns-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 uns-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 chloroethene 20 U 20 ug/L 04/15/21 20:28 chlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 chlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 uns-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 chlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 uns-1,3-Dichloropropene 20 U 20 U 20 ug/L 04/15/21 20:28 uns-1,3-Dichloropropene 20 U 20		20	U	20	ug/L			04/15/21 20:28	
trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 luss-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 luss-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 lichloroethene 20 U 20 ug/L 04/15/21 20:28 lichloroethene 20 U 20 ug/L 04/15/21 20:28 lichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 lichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 lug/L	trachloroethene 20 U 20 ug/L 04/15/21 20:28 luene 20 U 20 ug/L 04/15/21 20:28 ins-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 ins-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 ichloroethene 20 U 20 ug/L 04/15/21 20:28 ichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28	ne	20	U	20	ug/L			04/15/21 20:28	
Second S	Iuene 20 U 20 ug/L 04/15/21 20:28 Ins-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 Ins-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 Ichloroethene 20 U 20 ug/L 04/15/21 20:28 Ichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 Instruction of the properties of the prope		20	U		ug/L			04/15/21 20:28	
10	ans-1,2-Dichloroethene 20 U 20 ug/L 04/15/21 20:28 ans-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 ichloroethene 20 U 20 ug/L 04/15/21 20:28 ichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28	ne	20	U	20	ug/L			04/15/21 20:28	
10	ans-1,3-Dichloropropene 20 U 20 ug/L 04/15/21 20:28 gichloroethene 20 U 20 ug/L 04/15/21 20:28 gichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28	-1,2-Dichloroethene	20	U		_			04/15/21 20:28	
20 U 20 ug/L 04/15/21 20:28 10 10 10 10 10 10 10 1	ichloroethene 20 U 20 ug/L 04/15/21 20:28 ichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28 ug/L 04/15/21 20:28	-1,3-Dichloropropene	20	U	20	-			04/15/21 20:28	
20 U 20 ug/L 04/15/21 20:28 10 loride 20 Ug/L 04/15/21 20	ichlorofluoromethane 20 U 20 ug/L 04/15/21 20:28 nyl chloride 20 U 20 ug/L 04/15/21 20:28		20	Ü	20					
Invyl chloride 20 U 20 ug/L 04/15/21 20:28 Urrogate %Recovery 2-Dichloroethane-d4 (Surr) Qualifier 106 Limits 106 Prepared 106 Analyzed 107 Dil 106 2-Dichloroethane-d4 (Surr) 106 60 - 124 04/15/21 20:28 04/15/21 20:28	nyl chloride 20 U 20 ug/L 04/15/21 20:28									
2-Dichloroethane-d4 (Surr) 106 60 - 124 04/15/21 20:28	9/ Bassian Avalities Limite									
	rrogate	ogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil I
Bromofluorobenzene (Surr) 107 70 - 130 04/15/21 20:28	2-Dichloroethane-d4 (Surr) 106 60 - 124 04/15/21 20:28	ichloroethane-d4 (Surr)	106		60 - 124				04/15/21 20:28	
	Bromofluorobenzene (Surr) 107 70 - 130 04/15/21 20:28	mofluorobenzene (Surr)	107		70 - 130				04/15/21 20:28	

Eurofins TestAmerica, Savannah

4/20/2021

Page 14 of 39

2

3

5

8

10

12

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-3

Matrix: Water

Job ID: 680-197281-1

Client Sample ID: BS-OW-03D Date Collected: 04/07/21 11:05

Date Received: 04/08/21 10:20

Total Dissolved Solids

Biochemical Oxygen Demand

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	112		70 - 130					04/15/21 20:28	20
Method: 300.0-1993 R2.1 - An	ions, Ion Ch	romatogra	phy						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3800		25		mg/L			04/19/21 23:18	50
Method: 6010C - Metals (ICP)	- Total Reco	verable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	47000		50		ug/L		04/09/21 10:27	04/09/21 22:04	1
Manganese	1600		10		ug/L		04/09/21 10:27	04/09/21 22:04	1
Method: 6010C - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	45000		50		ug/L		04/09/21 10:27	04/09/21 22:09	1
Manganese	1500		10		ug/L		04/09/21 10:27	04/09/21 22:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chemical Oxygen Demand	1300		1000		mg/L			04/10/21 10:44	100
Alkalinity, Total	350		1.0		mg/L			04/14/21 16:18	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	5400		250		mg/L			04/10/21 11:22	25

200

2.0

mg/L

mg/L

6100

9.6

04/09/21 10:43

04/09/21 11:00

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-4

Matrix: Water

Job ID: 680-197281-1

Client Sample ID: BS-OW-01 Date Collected: 04/07/21 12:05

Date Received: 04/08/21 10:20

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organ Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	20	U			ug/L		-	04/15/21 20:54	20
1,1,2,2-Tetrachloroethane	20	U	20		ug/L			04/15/21 20:54	20
1,1,2-Trichloro-1,2,2-trifluoroethane	20	U	20		ug/L			04/15/21 20:54	20
1,1,2-Trichloroethane	20	U	20		ug/L			04/15/21 20:54	20
1,1-Dichloroethane	20	U	20		ug/L			04/15/21 20:54	20
1,1-Dichloroethene	20	U	20		ug/L			04/15/21 20:54	20
1,2,3-Trichlorobenzene	100	U	100		ug/L			04/15/21 20:54	20
1,2-Dichloroethane	20	U	20		ug/L			04/15/21 20:54	20
1,2-Dichloropropane	20	U	20		ug/L			04/15/21 20:54	20
2-Butanone (MEK)	200	U	200		ug/L			04/15/21 20:54	20
2-Hexanone	200	U	200		ug/L			04/15/21 20:54	20
4-Methyl-2-pentanone	200	U	200		ug/L			04/15/21 20:54	20
Acetone	200	U *+	200		ug/L			04/15/21 20:54	20
Benzene	430		20		ug/L			04/15/21 20:54	20
Bromochloromethane	20	U	20		ug/L			04/15/21 20:54	20
Bromodichloromethane	20		20		ug/L			04/15/21 20:54	20
Bromoform	20		20		ug/L			04/15/21 20:54	20
Bromomethane	100		100		ug/L			04/15/21 20:54	20
Carbon disulfide	40		40		ug/L			04/15/21 20:54	20
Carbon tetrachloride	20		20		ug/L			04/15/21 20:54	20
Chlorobenzene	490	J	20		ug/L			04/15/21 20:54	20
Chloroethane	100		100		ug/L			04/15/21 20:54	20
Chloroform	20		20		ug/L			04/15/21 20:54	20
Chloromethane	20		20		ug/L			04/15/21 20:54	20
cis-1,2-Dichloroethene	20		20		ug/L			04/15/21 20:54	20
cis-1,3-Dichloropropene	20		20		ug/L			04/15/21 20:54	20
Cyclohexane	20		20		ug/L			04/15/21 20:54	20
Dibromochloromethane	20		20		ug/L			04/15/21 20:54	20
Dichlorodifluoromethane	20		20		ug/L			04/15/21 20:54	20
Ethylbenzene	110	O	20		ug/L			04/15/21 20:54	20
Isopropylbenzene	97		20		ug/L			04/15/21 20:54	20
Methyl acetate	100	11	100		ug/L ug/L			04/15/21 20:54	20
Methyl tert-butyl ether	200		200		ug/L			04/15/21 20:54	20
Methylcyclohexane	200		200					04/15/21 20:54	20
Methylene Chloride	100		100		ug/L			04/15/21 20:54	20
•		U	20		ug/L			04/15/21 20:54	20
m-Xylene & p-Xylene	74				ug/L				
o-Xylene	20		20		ug/L			04/15/21 20:54	20
Styrene	20		20		ug/L			04/15/21 20:54	20
Tetrachloroethene	20		20		ug/L			04/15/21 20:54	20
Toluene	20		20		ug/L			04/15/21 20:54	20
trans-1,2-Dichloroethene	20		20		ug/L			04/15/21 20:54	20
trans-1,3-Dichloropropene	20		20		ug/L			04/15/21 20:54	20
Trichloroethene	20		20		ug/L			04/15/21 20:54	20
Trichlorofluoromethane	20		20		ug/L			04/15/21 20:54	20
	20	U	20		ug/L			04/15/21 20:54	20
Vinyl chloride	20	•			3				

Eurofins TestAmerica, Savannah

04/15/21 20:54

04/15/21 20:54

04/15/21 20:54

Page 16 of 39

60 - 124

70 - 130

70 - 130

104

107

117

2

3

5

8

10

12

14

Le

4/20/2021

20

20

Client: Geosyntec Consultants, Inc.

Biochemical Oxygen Demand

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Client Sample ID: BS-OW-01 Lab Sample ID: 680-197281-4

Date Collected: 04/07/21 12:05 **Matrix: Water** Date Received: 04/08/21 10:20

Job ID: 680-197281-1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	112		70 - 130					04/15/21 20:54	20
Method: 300.0-1993 R2.1 - An	ions, Ion Ch	romatogra	aphy						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3700		25		mg/L			04/19/21 23:30	50
Method: 6010C - Metals (ICP)	- Total Reco	verable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	32000		50		ug/L		04/09/21 10:27	04/09/21 21:50	1
Manganese	790		10		ug/L		04/09/21 10:27	04/09/21 21:50	1
Method: 6010C - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	33000		50		ug/L		04/09/21 10:27	04/09/21 21:55	1
Manganese	810		10		ug/L		04/09/21 10:27	04/09/21 21:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chemical Oxygen Demand	200		100		mg/L			04/10/21 10:44	10
Alkalinity, Total	330		1.0		mg/L			04/14/21 16:24	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Hardness as calcium carbonate	5400		250		mg/L			04/10/21 11:22	25
Total Dissolved Solids	6200		200		mg/L			04/09/21 10:43	4

2.0

mg/L

5.8

04/09/21 11:08

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-5

Matrix: Water

Job ID: 680-197281-1

Client Sample ID: TB-01

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Date Collected: 04/07/21 00:00 Date Received: 04/08/21 10:20

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	ug/L			04/15/21 15:20	-
1,1,2,2-Tetrachloroethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
1,1,2-Trichloroethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/15/21 15:20	1
1,2,3-Trichlorobenzene	5.0	U	5.0	ug/L			04/15/21 15:20	1
1,2-Dichloroethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/15/21 15:20	1
2-Butanone (MEK)	10	U	10	ug/L			04/15/21 15:20	1
2-Hexanone	10	U	10	ug/L			04/15/21 15:20	1
4-Methyl-2-pentanone	10	U	10	ug/L			04/15/21 15:20	1
Acetone	10	U *+	10	ug/L			04/15/21 15:20	1
Benzene	1.0	U	1.0	ug/L			04/15/21 15:20	1
Bromochloromethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
Bromodichloromethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
Bromoform	1.0	U	1.0	ug/L			04/15/21 15:20	1
Bromomethane	5.0	U	5.0	ug/L			04/15/21 15:20	1
Carbon disulfide	2.0	U	2.0	ug/L			04/15/21 15:20	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/15/21 15:20	1
Chlorobenzene	1.0	U	1.0	ug/L			04/15/21 15:20	1
Chloroethane	5.0	U	5.0	ug/L			04/15/21 15:20	1
Chloroform	1.0	U	1.0	ug/L			04/15/21 15:20	1
Chloromethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/15/21 15:20	1
cis-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/15/21 15:20	1
Cyclohexane	1.0	U	1.0	ug/L			04/15/21 15:20	1
Dibromochloromethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
Dichlorodifluoromethane	1.0	U	1.0	ug/L			04/15/21 15:20	1
Ethylbenzene	1.0	U	1.0	ug/L			04/15/21 15:20	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/15/21 15:20	1
Methyl acetate	5.0	U	5.0	ug/L			04/15/21 15:20	1
Methyl tert-butyl ether	10	U	10	ug/L			04/15/21 15:20	1
Methylcyclohexane	1.0	U	1.0	ug/L			04/15/21 15:20	1
Methylene Chloride	5.0	U	5.0	ug/L			04/15/21 15:20	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/15/21 15:20	1
o-Xylene	1.0	U	1.0	ug/L			04/15/21 15:20	1
Styrene	1.0	U	1.0	ug/L			04/15/21 15:20	1
Tetrachloroethene	1.0		1.0	ug/L			04/15/21 15:20	1
Toluene	1.0		1.0	ug/L			04/15/21 15:20	1
trans-1,2-Dichloroethene	1.0		1.0	ug/L			04/15/21 15:20	1
trans-1,3-Dichloropropene	1.0		1.0	ug/L			04/15/21 15:20	1
Trichloroethene	1.0		1.0	ug/L			04/15/21 15:20	· · · · · · · · · · · · · · · · · · ·
Trichlorofluoromethane	1.0		1.0	ug/L			04/15/21 15:20	1
Vinyl chloride	1.0		1.0	ug/L			04/15/21 15:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		60 - 124				04/15/21 15:20	1

Eurofins TestAmerica, Savannah

04/15/21 15:20

04/15/21 15:20

Page 18 of 39

70 - 130

70 - 130

109

116

2

Л

6

8

10

12

14

II to

4/20/2021

Client: Geosyntec Consultants, Inc.

Job ID: 680-197281-1

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Client Sample ID: TB-01 Lab Sample ID: 680-197281-5

Matrix: Water

Date Collected: 04/07/21 00:00 Date Received: 04/08/21 10:20

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

4

5

8

10

12

11

Surrogate Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-197281-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(60-124)	(70-130)	(70-130)	(70-130)
 680-197281-1	MW-29D	107	107	119	113
680-197281-2	BS-OW-02	106	106	121	111
680-197281-3	BS-OW-03D	106	107	119	112
680-197281-4	BS-OW-01	104	107	117	112
680-197281-5	TB-01	105	109	116	112
LCS 680-664227/4	Lab Control Sample	103	96	108	106
LCSD 680-664227/5	Lab Control Sample Dup	108	97	110	106
MB 680-664227/9	Method Blank	106	112	118	112

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-664227/9

Matrix: Water

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: Method Blank **Prep Type: Total/NA**

Job ID: 680-197281-1

Analysis Batch: 664227	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	ug/L		·	04/15/21 14:54	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
1,1,2-Trichloroethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
1,1-Dichloroethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
1,1-Dichloroethene	1.0	U	1.0	ug/L			04/15/21 14:54	1
1,2,3-Trichlorobenzene	5.0	U	5.0	ug/L			04/15/21 14:54	1
1,2-Dichloroethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
1,2-Dichloropropane	1.0	U	1.0	ug/L			04/15/21 14:54	1
2-Butanone (MEK)	10	U	10	ug/L			04/15/21 14:54	1
2-Hexanone	10	U	10	ug/L			04/15/21 14:54	1
4-Methyl-2-pentanone	10	U	10	ug/L			04/15/21 14:54	1
Acetone	10	U	10	ug/L			04/15/21 14:54	1
Benzene	1.0	U	1.0	ug/L			04/15/21 14:54	1
Bromochloromethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
Bromodichloromethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
Bromoform	1.0	U	1.0	ug/L			04/15/21 14:54	1
Bromomethane	5.0	U	5.0	ug/L			04/15/21 14:54	1
Carbon disulfide	2.0	U	2.0	ug/L			04/15/21 14:54	1
Carbon tetrachloride	1.0	U	1.0	ug/L			04/15/21 14:54	1
Chlorobenzene	1.0	U	1.0	ug/L			04/15/21 14:54	1
Chloroethane	5.0	U	5.0	ug/L			04/15/21 14:54	1
Chloroform	1.0	U	1.0	ug/L			04/15/21 14:54	1
Chloromethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
cis-1,2-Dichloroethene	1.0	U	1.0	ug/L			04/15/21 14:54	1
cis-1,3-Dichloropropene	1.0	U	1.0	ug/L			04/15/21 14:54	1
Cyclohexane	1.0	U	1.0	ug/L			04/15/21 14:54	1
Dibromochloromethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
Dichlorodifluoromethane	1.0	U	1.0	ug/L			04/15/21 14:54	1
Ethylbenzene	1.0	U	1.0	ug/L			04/15/21 14:54	1
Isopropylbenzene	1.0	U	1.0	ug/L			04/15/21 14:54	1
Methyl acetate	5.0	U	5.0	ug/L			04/15/21 14:54	1
Methyl tert-butyl ether	10	U	10	ug/L			04/15/21 14:54	1
Methylcyclohexane	1.0	U	1.0	ug/L			04/15/21 14:54	1
Methylene Chloride	5.0	U	5.0	ug/L			04/15/21 14:54	1
m-Xylene & p-Xylene	1.0	U	1.0	ug/L			04/15/21 14:54	1
o-Xylene	1.0	U	1.0	ug/L			04/15/21 14:54	1
Styrene	1.0	U	1.0	ug/L			04/15/21 14:54	1
Tetrachloroethene	1.0	U	1.0	ug/L			04/15/21 14:54	1
Toluene	1.0	U	1.0	ug/L			04/15/21 14:54	1
trans-1,2-Dichloroethene	1.0		1.0	ug/L			04/15/21 14:54	1
trans-1,3-Dichloropropene	1.0		1.0	ug/L			04/15/21 14:54	1
Trichloroethene	1.0		1.0	ug/L			04/15/21 14:54	1
Trichlorofluoromethane	1.0		1.0	ug/L			04/15/21 14:54	1
Vinyl chloride	1.0	U	1.0	ug/L			04/15/21 14:54	1
	MB	MB						
Surrogate	%Recovery		Limits			Prepared	Analyzed	Dil Fac
1.0 Diablamathana d4 (Cum)	106		60 101				04/45/04 44.54	

Eurofins TestAmerica, Savannah

04/15/21 14:54

Page 21 of 39

60 - 124

106

4/20/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-197281-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 680-664227/9

Lab Sample ID: LCS 680-664227/4

Matrix: Water

Analysis Batch: 664227

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130		04/15/21 14:54	1
Dibromofluoromethane (Surr)	118		70 - 130		04/15/21 14:54	1
Toluene-d8 (Surr)	112		70 - 130		04/15/21 14:54	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 664227

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	50.0	51.9		ug/L		104	70 - 130	
1,1,2,2-Tetrachloroethane	50.0	54.4		ug/L		109	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	51.1		ug/L		102	63 - 141	
ne								
1,1,2-Trichloroethane	50.0	54.5		ug/L		109	70 - 130	
1,1-Dichloroethane	50.0	50.3		ug/L		101	70 - 130	
1,1-Dichloroethene	50.0	47.5		ug/L		95	70 - 130	
1,2,3-Trichlorobenzene	50.0	62.1		ug/L		124	61 - 141	
1,2-Dichloroethane	50.0	52.7		ug/L		105	70 - 130	
1,2-Dichloropropane	50.0	51.3		ug/L		103	70 - 130	
2-Butanone (MEK)	250	256		ug/L		103	69 - 114	
2-Hexanone	250	242		ug/L		97	70 - 130	
4-Methyl-2-pentanone	250	241		ug/L		97	68 - 108	
Acetone	250	268		ug/L		107	67 - 113	
Benzene	50.0	53.2		ug/L		106	70 - 130	
Bromochloromethane	50.0	49.1		ug/L		98	70 - 130	
Bromodichloromethane	50.0	50.1		ug/L		100	70 - 130	
Bromoform	50.0	53.7		ug/L		107	69 - 129	
Bromomethane	50.0	40.6		ug/L		81	28 - 192	
Carbon disulfide	50.0	50.5		ug/L		101	70 - 130	
Carbon tetrachloride	50.0	52.1		ug/L		104	70 - 130	
Chlorobenzene	50.0	56.0		ug/L		112	70 - 130	
Chloroethane	50.0	44.7		ug/L		89	31 - 213	
Chloroform	50.0	51.7		ug/L		103	70 - 130	
Chloromethane	50.0	44.0		ug/L		88	59 - 127	
cis-1,2-Dichloroethene	50.0	51.0		ug/L		102	70 - 130	
cis-1,3-Dichloropropene	50.0	54.1		ug/L		108	70 - 130	
Cyclohexane	50.0	46.5		ug/L		93	23 - 175	
Dibromochloromethane	50.0	53.9		ug/L		108	70 - 130	
Dichlorodifluoromethane	50.0	47.4		ug/L ug/L		95	70 - 130 70 - 130	
Ethylbenzene	50.0	53.6		ug/L ug/L		107	70 - 130 70 - 130	
Isopropylbenzene	50.0	55.3		ug/L		111	70 - 130	
Methyl acetate	100	88.3		ug/L ug/L		88	67 ₋ 110	
-	50.0	54.0		•		108	70 - 130	
Methyl tert-butyl ether				ug/L				
Methylcyclohexane	50.0	52.7		ug/L		105	70 - 130	
Methylene Chloride	50.0	49.3		ug/L		99	70 - 130	
m-Xylene & p-Xylene	50.0	55.2		ug/L		110	70 - 130	
o-Xylene	50.0	55.4		ug/L		111	70 - 130	
Styrene	50.0	57.2		ug/L		114	70 - 130	
Tetrachloroethene	50.0	57.0		ug/L		114	70 - 130	

Eurofins TestAmerica, Savannah

Page 22 of 39

2

3

4

6

_

9

10

14

14

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-664227/4

Matrix: Water

Analysis Batch: 664227

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 680-197281-1

LCS LCS Spike %Rec. D %Rec Analyte Added Result Qualifier Unit Limits Toluene 50.0 53.2 106 70 - 130 ug/L trans-1,2-Dichloroethene 50.0 50.0 ug/L 100 70 - 130 trans-1,3-Dichloropropene 50.0 ug/L 57.9 116 70 - 130 Trichloroethene 50.0 57.2 ug/L 114 70 - 130 Trichlorofluoromethane 50.0 46.9 ug/L 63 - 142 94 Vinyl chloride 50.0 66 - 129 50.0 ug/L 100

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		60 - 124
4-Bromofluorobenzene (Surr)	96		70 - 130
Dibromofluoromethane (Surr)	108		70 - 130
Toluene-d8 (Surr)	106		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 664227

Lab Sample ID: LCSD 680-664227/5

Analysis Batch: 664227									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	50.0	49.7		ug/L		99	70 - 130	4	30
1,1,2,2-Tetrachloroethane	50.0	58.8		ug/L		118	70 - 130	8	30
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	48.3		ug/L		97	63 - 141	6	30
ne									
1,1,2-Trichloroethane	50.0	57.3		ug/L		115	70 - 130	5	30
1,1-Dichloroethane	50.0	50.1		ug/L		100	70 - 130	0	30
1,1-Dichloroethene	50.0	45.5		ug/L		91	70 - 130	4	20
1,2,3-Trichlorobenzene	50.0	64.1		ug/L		128	61 - 141	3	30
1,2-Dichloroethane	50.0	54.1		ug/L		108	70 - 130	3	50
1,2-Dichloropropane	50.0	51.5		ug/L		103	70 - 130	0	20
2-Butanone (MEK)	250	277		ug/L		111	69 - 114	8	30
2-Hexanone	250	264		ug/L		105	70 - 130	9	20
4-Methyl-2-pentanone	250	262		ug/L		105	68 - 108	8	30
Acetone	250	293	*+	ug/L		117	67 - 113	9	30
Benzene	50.0	52.5		ug/L		105	70 - 130	1	30
Bromochloromethane	50.0	50.8		ug/L		102	70 - 130	3	30
Bromodichloromethane	50.0	51.1		ug/L		102	70 - 130	2	30
Bromoform	50.0	55.7		ug/L		111	69 - 129	4	30
Bromomethane	50.0	41.3		ug/L		83	28 - 192	2	30
Carbon disulfide	50.0	48.5		ug/L		97	70 - 130	4	30
Carbon tetrachloride	50.0	49.6		ug/L		99	70 - 130	5	30
Chlorobenzene	50.0	56.5		ug/L		113	70 - 130	1	30
Chloroethane	50.0	43.1		ug/L		86	31 - 213	4	30
Chloroform	50.0	51.6		ug/L		103	70 - 130	0	30
Chloromethane	50.0	41.5		ug/L		83	59 - 127	6	30
cis-1,2-Dichloroethene	50.0	50.6		ug/L		101	70 - 130	1	30
cis-1,3-Dichloropropene	50.0	56.2		ug/L		112	70 - 130	4	20
Cyclohexane	50.0	43.3		ug/L		87	23 - 175	7	30
Dibromochloromethane	50.0	56.8		ug/L		114	70 - 130	5	30
Dichlorodifluoromethane	50.0	44.1		ug/L		88	70 - 130	7	40
Ethylbenzene	50.0	52.9		ug/L		106	70 - 130	1	20

Eurofins TestAmerica, Savannah

Page 23 of 39

4/20/2021

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-197281-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-664227/5

Matrix: Water

Analysis Batch: 664227

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Isopropylbenzene	50.0	53.5		ug/L		107	70 - 130	3	30
Methyl acetate	100	97.0		ug/L		97	67 - 110	9	30
Methyl tert-butyl ether	50.0	56.6		ug/L		113	70 - 130	5	30
Methylcyclohexane	50.0	50.6		ug/L		101	70 - 130	4	30
Methylene Chloride	50.0	49.4		ug/L		99	70 - 130	0	30
m-Xylene & p-Xylene	50.0	54.5		ug/L		109	70 - 130	1	30
o-Xylene	50.0	55.7		ug/L		111	70 - 130	1	30
Styrene	50.0	56.2		ug/L		112	70 - 130	2	30
Tetrachloroethene	50.0	54.8		ug/L		110	70 - 130	4	30
Toluene	50.0	53.2		ug/L		106	70 - 130	0	30
trans-1,2-Dichloroethene	50.0	48.8		ug/L		98	70 - 130	3	30
trans-1,3-Dichloropropene	50.0	60.1		ug/L		120	70 - 130	4	30
Trichloroethene	50.0	56.0		ug/L		112	70 - 130	2	30
Trichlorofluoromethane	50.0	44.5		ug/L		89	63 - 142	5	30
Vinyl chloride	50.0	46.8		ug/L		94	66 - 129	7	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		60 - 124
4-Bromofluorobenzene (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	110		70 - 130
Toluene-d8 (Surr)	106		70 - 130

Method: 300.0-1993 R2.1 - Anions, Ion Chromatography

Lab Sample ID: MB 680-664765/33

Matrix: Water

Analysis Batch: 664765

MB MB

Result Qualifier **MDL** Unit Analyte RL Analyzed Dil Fac **Prepared** Chloride 0.50 U 0.50 04/19/21 20:33 mg/L

Lab Sample ID: LCS 680-664765/34

Matrix: Water

Analysis Batch: 664765

7 maryolo Batom 00-17 00								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	10.2		ma/l		102	90 - 110	

Lab Sample ID: LCSD 680-664765/35

Matrix: Water

Analysis Batch: 664765

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	10.0		mg/L		100	90 - 110	1	15

Eurofins TestAmerica, Savannah

4/20/2021

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 680-197281-1

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-663508/1-A

Matrix: Water

Analysis Batch: 663801

Client Sample ID: Method Blank Prep Type: Total Recoverable

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: MW-29D

Client Sample ID: BS-OW-02

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 663508

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	50	U	50		ug/L		04/09/21 10:27	04/09/21 21:04	1
Manganese	10	U	10		ug/L		04/09/21 10:27	04/09/21 21:04	1

Lab Sample ID: LCS 680-663508/2-A

Matrix: Water

Analysis Batch: 663801

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 663508 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Iron 2000 1880 ug/L 94 80 - 120 400 380 ug/L 95 Manganese 80 - 120

Method: 130.2-1982 - Hardness, Total (mg/l as CaCO3)

MB MB

Lab Sample ID: MB 680-663657/1 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 663657

MB MB Result Qualifier RL **RL** Unit Prepared Dil Fac Analyzed Hardness as calcium carbonate Ū 10 mg/L 04/10/21 11:22 10

Lab Sample ID: LCS 680-663657/2

Matrix: Water

Analysis Batch: 663657

Analysis Batch. 000007								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hardness as calcium carbonate	400	410		mg/L		103	75 - 125	

Lab Sample ID: LCSD 680-663657/3 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 663657

	Spike	LCSD	LCSD			%Rec.		RPD	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit	
Hardness as calcium carbonate	400	405	ma/L		101	75 - 125		30	

Lab Sample ID: 680-197281-1 DU

Matrix: Water

Analysis Batch: 663657

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Hardness as calcium carbonate	4900		 4610		mg/L		 5	30

Lab Sample ID: 680-197281-2 DU

Matrix: Water

Analysis Batch: 663657

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Hardness as calcium carbonate	6400		6390		mg/L			0.3	30

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc. Job ID: 680-197281-1

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: 2540C-2011 - Total Dissolved Solids (Dried at 180 °C)

Lab Sample ID: MB 680-663384/1

Matrix: Water

Analysis Batch: 663384

MB MB

Result Qualifier RL **RL** Unit Analyzed Dil Fac Analyte Prepared Total Dissolved Solids 5.0 04/08/21 13:24 5.0 U mg/L

Lab Sample ID: LCS 680-663384/2

Matrix: Water

Analysis Batch: 663384

Spike LCS LCS %Rec. Added Result Qualifier D %Rec Limits Analyte Unit 2460 2470 80 - 120 **Total Dissolved Solids** mg/L 100

Lab Sample ID: LCSD 680-663384/3

Matrix: Water

Analysis Batch: 663384

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Total Dissolved Solids 2460 2440 99 80 - 120 25 mg/L

Lab Sample ID: 680-197281-1 DU

Matrix: Water

Analysis Batch: 663384

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Total Dissolved Solids 7040 7300 mg/L

Lab Sample ID: MB 680-663511/1

Matrix: Water

Analysis Batch: 663511

мв мв

Analyte Result Qualifier RL **RL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids 5.0 U 5.0 mg/L 04/09/21 10:43

Lab Sample ID: LCS 680-663511/2

Matrix: Water

Analysis Batch: 663511

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 2460 2430 Total Dissolved Solids mg/L 99 80 - 120

Lab Sample ID: LCSD 680-663511/3

Matrix: Water

Analysis Batch: 663511

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier D Limits RPD Limit Unit %Rec 2460 Total Dissolved Solids 2430 mg/L 99 80 - 120 0

Eurofins TestAmerica, Savannah

4/20/2021

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: MW-29D

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Job ID: 680-197281-1

Prep Type: Total/NA

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: 5210B-2011 - BOD, 5-Day

Lab Sample ID: USB 680-663328/4 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 663328

USB USB

Result Qualifier RL **RL** Unit Analyzed Dil Fac Analyte Prepared 2.0 04/08/21 12:12 **Biochemical Oxygen Demand** 2.0 U mg/L

Lab Sample ID: LCS 680-663328/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 663328

Spike LCS LCS %Rec. Added Result Qualifier D %Rec Limits Unit 198 205 85 - 115 Biochemical Oxygen Demand mg/L 104

Lab Sample ID: LCSD 680-663328/6 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 663328

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit %Rec Biochemical Oxygen Demand 198 179 90 85 - 115 30 mg/L

Lab Sample ID: USB 680-663507/4 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 663507

USB USB

Analyte Result Qualifier RL **RL Unit** Prepared Analyzed Dil Fac Biochemical Oxygen Demand 2.0 U 2.0 04/09/21 11:32 mg/L

Lab Sample ID: LCS 680-663507/5 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 663507

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits Biochemical Oxygen Demand 198 218 mg/L 110 85 - 115

Method: 5220D-2011 - Chemical Oxygen Demand

Lab Sample ID: MB 680-663641/3 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 663641

MR MR Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed Dil Fac 10 U 10 04/10/21 10:44 Chemical Oxygen Demand mg/L

Lab Sample ID: LCS 680-663641/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 663641

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Chemical Oxygen Demand 50.0 52.8 mg/L 106 90 - 110

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 400-527645/4 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 527645

MB MB

MDL Unit Dil Fac Analyte Result Qualifier RL Prepared Analyzed 04/14/21 15:14 Alkalinity, Total 1.0 1.0 U mg/L

Lab Sample ID: LCS 400-527645/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 527645

LCS LCS Spike %Rec. **Analyte** Added Result Qualifier Unit D %Rec Limits Alkalinity, Total 100 107 107 80 - 120 mg/L

Job ID: 680-197281-1

Prep Type: Total/NA

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

GC/MS VOA

Analysis Batch: 664227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197281-1	MW-29D	Total/NA	Water	8260B	
680-197281-2	BS-OW-02	Total/NA	Water	8260B	
680-197281-3	BS-OW-03D	Total/NA	Water	8260B	
680-197281-4	BS-OW-01	Total/NA	Water	8260B	
680-197281-5	TB-01	Total/NA	Water	8260B	
MB 680-664227/9	Method Blank	Total/NA	Water	8260B	
LCS 680-664227/4	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-664227/5	Lab Control Sample Dup	Total/NA	Water	8260B	

HPLC/IC

Analysis Batch: 664765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197281-1	MW-29D	Total/NA	Water	300.0-1993 R2.1	
680-197281-2	BS-OW-02	Total/NA	Water	300.0-1993 R2.1	
680-197281-3	BS-OW-03D	Total/NA	Water	300.0-1993 R2.1	
680-197281-4	BS-OW-01	Total/NA	Water	300.0-1993 R2.1	
MB 680-664765/33	Method Blank	Total/NA	Water	300.0-1993 R2.1	
LCS 680-664765/34	Lab Control Sample	Total/NA	Water	300.0-1993 R2.1	
LCSD 680-664765/35	Lab Control Sample Dup	Total/NA	Water	300.0-1993 R2.1	

Metals

Prep Batch: 663508

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197281-1	MW-29D	Dissolved	Water	3005A	
680-197281-1	MW-29D	Total Recoverable	Water	3005A	
680-197281-2	BS-OW-02	Dissolved	Water	3005A	
680-197281-2	BS-OW-02	Total Recoverable	Water	3005A	
680-197281-3	BS-OW-03D	Dissolved	Water	3005A	
680-197281-3	BS-OW-03D	Total Recoverable	Water	3005A	
680-197281-4	BS-OW-01	Dissolved	Water	3005A	
680-197281-4	BS-OW-01	Total Recoverable	Water	3005A	
MB 680-663508/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 680-663508/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 663801

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197281-1	MW-29D	Dissolved	Water	6010C	663508
680-197281-1	MW-29D	Total Recoverable	Water	6010C	663508
680-197281-2	BS-OW-02	Dissolved	Water	6010C	663508
680-197281-2	BS-OW-02	Total Recoverable	Water	6010C	663508
680-197281-3	BS-OW-03D	Dissolved	Water	6010C	663508
680-197281-3	BS-OW-03D	Total Recoverable	Water	6010C	663508
680-197281-4	BS-OW-01	Dissolved	Water	6010C	663508
680-197281-4	BS-OW-01	Total Recoverable	Water	6010C	663508
MB 680-663508/1-A	Method Blank	Total Recoverable	Water	6010C	663508
LCS 680-663508/2-A	Lab Control Sample	Total Recoverable	Water	6010C	663508

Eurofins TestAmerica, Savannah

Page 29 of 39

Job ID: 680-197281-1

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

General Chemistry

Analysis Batch: 527645

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197281-1	MW-29D	Total/NA	Water	SM 2320B	
680-197281-2	BS-OW-02	Total/NA	Water	SM 2320B	
680-197281-3	BS-OW-03D	Total/NA	Water	SM 2320B	
680-197281-4	BS-OW-01	Total/NA	Water	SM 2320B	
MB 400-527645/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 400-527645/5	Lab Control Sample	Total/NA	Water	SM 2320B	

Analysis Batch: 663328

Lab Sample ID 680-197281-1	Client Sample ID MW-29D	Prep Type Total/NA	Matrix Water	Method 5210B-2011	Prep Batch
680-197281-2	BS-OW-02	Total/NA	Water	5210B-2011	
USB 680-663328/4	Method Blank	Total/NA	Water	5210B-2011	
LCS 680-663328/5	Lab Control Sample	Total/NA	Water	5210B-2011	
LCSD 680-663328/6	Lab Control Sample Dup	Total/NA	Water	5210B-2011	

Analysis Batch: 663384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197281-1	MW-29D	Total/NA	Water	2540C-2011	
680-197281-2	BS-OW-02	Total/NA	Water	2540C-2011	
MB 680-663384/1	Method Blank	Total/NA	Water	2540C-2011	
LCS 680-663384/2	Lab Control Sample	Total/NA	Water	2540C-2011	
LCSD 680-663384/3	Lab Control Sample Dup	Total/NA	Water	2540C-2011	
680-197281-1 DU	MW-29D	Total/NA	Water	2540C-2011	

Analysis Batch: 663507

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197281-3	BS-OW-03D	Total/NA	Water	5210B-2011	·
680-197281-4	BS-OW-01	Total/NA	Water	5210B-2011	
USB 680-663507/4	Method Blank	Total/NA	Water	5210B-2011	
LCS 680-663507/5	Lab Control Sample	Total/NA	Water	5210B-2011	
LCSD 680-663507/6	Lab Control Sample Dup	Total/NA	Water	5210B-2011	

Analysis Batch: 663511

Lab Sample ID 680-197281-3	Client Sample ID BS-OW-03D	Prep Type Total/NA	Matrix Water	Method 2540C-2011	Prep Batch
680-197281-4	BS-OW-01	Total/NA	Water	2540C-2011	
MB 680-663511/1	Method Blank	Total/NA	Water	2540C-2011	
LCS 680-663511/2	Lab Control Sample	Total/NA	Water	2540C-2011	
LCSD 680-663511/3	Lab Control Sample Dup	Total/NA	Water	2540C-2011	

Analysis Batch: 663641

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197281-1	MW-29D	Total/NA	Water	5220D-2011	
680-197281-2	BS-OW-02	Total/NA	Water	5220D-2011	
680-197281-3	BS-OW-03D	Total/NA	Water	5220D-2011	
680-197281-4	BS-OW-01	Total/NA	Water	5220D-2011	
MB 680-663641/3	Method Blank	Total/NA	Water	5220D-2011	
LCS 680-663641/4	Lab Control Sample	Total/NA	Water	5220D-2011	

Eurofins TestAmerica, Savannah

Page 30 of 39

Job ID: 680-197281-1

QC Association Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Job ID: 680-197281-1

General Chemistry

Analysis Batch: 663657

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-197281-1	MW-29D	Total/NA	Water	130.2-1982	
680-197281-2	BS-OW-02	Total/NA	Water	130.2-1982	
680-197281-3	BS-OW-03D	Total/NA	Water	130.2-1982	
680-197281-4	BS-OW-01	Total/NA	Water	130.2-1982	
MB 680-663657/1	Method Blank	Total/NA	Water	130.2-1982	
LCS 680-663657/2	Lab Control Sample	Total/NA	Water	130.2-1982	
LCSD 680-663657/3	Lab Control Sample Dup	Total/NA	Water	130.2-1982	
680-197281-1 DU	MW-29D	Total/NA	Water	130.2-1982	
680-197281-2 DU	BS-OW-02	Total/NA	Water	130.2-1982	

3

4

5

_

8

9

11

12

1 *1*

Lab Chronicle

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-1

Lab Sample ID: 680-197281-2

04/09/21 10:27 BJB

04/09/21 21:59 BCB

04/10/21 11:22 NVF

Matrix: Water

Job ID: 680-197281-1

Client Sample ID: MW-29D Date Collected: 04/07/21 08:40 Date Received: 04/08/21 10:20

	Batch -	Batch	_	Dil	Initial	Final	Batch	Prepared		
Total/NA	Analysis Instrumen	Method 8260B at ID: CMSAA	Run	Factor 20	5 mL	Amount 5 mL	Number 664227	or Analyzed 04/15/21 19:37	Analyst Y1S	TAL SAV
Total/NA	Analysis Instrumen	300.0-1993 R2.1 at ID: CICK		50	5 mL	5 mL	664765	04/19/21 22:52	T1C	TAL SAV
Dissolved Dissolved	Prep Analysis Instrumen	3005A 6010C tt ID: ICPE		1	50 mL	50 mL	663508 663801	04/09/21 10:27 04/09/21 22:13		TAL SAV TAL SAV
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A 6010C it ID: ICPE		1	50 mL	50 mL	663508 663801	04/09/21 10:27 04/09/21 22:18		TAL SAV TAL SAV
Total/NA	Analysis Instrumen	130.2-1982 at ID: NOEQUIP		25	25 mL	25 mL	663657	04/10/21 11:22	NVF	TAL SAV
Total/NA	Analysis Instrumen	2540C-2011 at ID: NOEQUIP		1	5 mL	200 mL	663384	04/08/21 13:24	PG	TAL SAV
Total/NA	Analysis Instrumen	5210B-2011 at ID: BOD 2		1			663328	04/08/21 15:52	OLB	TAL SAV
Total/NA	Analysis Instrumen	5220D-2011 at ID: SPC7		100	2 mL	2 mL	663641	04/10/21 10:44	MCL	TAL SAV
Total/NA	Analysis Instrumen	SM 2320B at ID: AUTOTITRATO	OR	1			527645	04/14/21 16:06	RRC	TAL PEN

Client Sample ID: BS-OW-02

Prep

Analysis

Analysis

3005A

6010C

130.2-1982

Instrument ID: ICPE

Total Recoverable

Total Recoverable

Total/NA

Date Collected: 04/07/21 10:00

Matrix: Water Date Received: 04/08/21 10:20 Dil Batch Batch Initial Final **Batch** Prepared **Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260B 20 5 mL 664227 04/15/21 20:02 Y1S TAL SAV 5 ml Instrument ID: CMSAA Total/NA Analysis 300.0-1993 R2.1 50 TAL SAV 5 mL 5 mL 664765 04/19/21 23:05 T1C Instrument ID: CICK Dissolved 3005A 50 mL 50 mL 04/09/21 10:27 BJB TAL SAV Prep 663508 Dissolved Analysis 6010C 663801 04/09/21 21:46 BCB TAL SAV 1 Instrument ID: ICPE

50 mL

25 mL

1

25

50 mL

25 mL

663508

663801

663657

Instrument ID: NOEQUIP Total/NA Analysis 2540C-2011 1 5 mL 200 mL 663384 04/08/21 13:24 PG TAL SAV Instrument ID: NOEQUIP Total/NA Analysis 5210B-2011 663328 04/08/21 16:02 OLB TAL SAV Instrument ID: BOD 2 Total/NA 5220D-2011 04/10/21 10:44 MCL TAL SAV Analysis 100 2 mL 2 mL 663641 Instrument ID: SPC7

Eurofins TestAmerica, Savannah

Page 32 of 39

TAL SAV

TAL SAV

TAL SAV

Lab Chronicle

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Client Sample ID: BS-OW-02 Lab Sample ID: 680-197281-2 **Matrix: Water**

Date Collected: 04/07/21 10:00 Date Received: 04/08/21 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	SM 2320B		1			527645	04/14/21 16:12	RRC	TAI PEN	

Client Sample ID: BS-OW-03D

Lab Sample ID: 680-197281-3 Date Collected: 04/07/21 11:05 **Matrix: Water**

Date Received: 04/08/21 10:20

_	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	8260B at ID: CMSAA		20	5 mL	5 mL	664227	04/15/21 20:28	Y1S	TAL SAV
Total/NA	Analysis Instrumer	300.0-1993 R2.1 at ID: CICK		50	5 mL	5 mL	664765	04/19/21 23:18	T1C	TAL SAV
Dissolved	Prep	3005A			50 mL	50 mL	663508	04/09/21 10:27	BJB	TAL SAV
Dissolved	Analysis Instrumer	6010C at ID: ICPE		1			663801	04/09/21 22:09	ВСВ	TAL SAV
Total Recoverable	Prep	3005A			50 mL	50 mL	663508	04/09/21 10:27	BJB	TAL SAV
Total Recoverable	Analysis Instrumer	6010C at ID: ICPE		1			663801	04/09/21 22:04	ВСВ	TAL SAV
Total/NA	Analysis Instrumer	130.2-1982 nt ID: NOEQUIP		25	25 mL	25 mL	663657	04/10/21 11:22	NVF	TAL SAV
Total/NA	Analysis Instrumer	2540C-2011 at ID: NOEQUIP		1	5 mL	200 mL	663511	04/09/21 10:43	PG	TAL SAV
Total/NA	Analysis Instrumer	5210B-2011 at ID: BOD 2		1			663507	04/09/21 11:00	OLB	TAL SAV
Total/NA	Analysis Instrumer	5220D-2011 at ID: SPC7		100	2 mL	2 mL	663641	04/10/21 10:44	MCL	TAL SAV
Total/NA	Analysis Instrumer	SM 2320B)R	1			527645	04/14/21 16:18	RRC	TAL PEN

Client Sample ID: BS-OW-01 Date Collected: 04/07/21 12:05

Date Received: 04/08/21 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	8260B t ID: CMSAA		20	5 mL	5 mL	664227	04/15/21 20:54	Y1S	TAL SAV
Total/NA	Analysis Instrumen	300.0-1993 R2.1 t ID: CICK		50	5 mL	5 mL	664765	04/19/21 23:30	T1C	TAL SAV
Dissolved	Prep	3005A			50 mL	50 mL	663508	04/09/21 10:27	BJB	TAL SAV
Dissolved	Analysis Instrumen	6010C t ID: ICPE		1			663801	04/09/21 21:55	ВСВ	TAL SAV
Total Recoverable	Prep	3005A			50 mL	50 mL	663508	04/09/21 10:27	BJB	TAL SAV
Total Recoverable	Analysis Instrumen	6010C t ID: ICPE		1			663801	04/09/21 21:50	ВСВ	TAL SAV
Total/NA	Analysis Instrumen	130.2-1982 t ID: NOEQUIP		25	25 mL	25 mL	663657	04/10/21 11:22	NVF	TAL SAV

Lab Sample ID: 680-197281-4

Matrix: Water

Page 33 of 39

Job ID: 680-197281-1

Eurofins TestAmerica, Savannah

Lab Chronicle

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

Lab Sample ID: 680-197281-4

Matrix: Water

Client Sample ID: BS-OW-01 Date Collected: 04/07/21 12:05 Date Received: 04/08/21 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	2540C-2011		1	5 mL	200 mL	663511	04/09/21 10:43	PG	TAL SAV
Total/NA	Analysis Instrumen	5210B-2011 at ID: BOD 2		1			663507	04/09/21 11:08	OLB	TAL SAV
Total/NA	Analysis Instrumen	5220D-2011 at ID: SPC7		10	2 mL	2 mL	663641	04/10/21 10:44	MCL	TAL SAV
Total/NA	Analysis Instrumen	SM 2320B at ID: AUTOTITRATO	R	1			527645	04/14/21 16:24	RRC	TAL PEN

Lab Sample ID: 680-197281-5 **Client Sample ID: TB-01** Date Collected: 04/07/21 00:00 **Matrix: Water**

Date Received: 04/08/21 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	5 mL	5 mL	664227	04/15/21 15:20	Y1S	TAL SAV
	Instrumen	t ID: CMSAA								

Laboratory References:

TAL PEN = Eurofins TestAmerica, Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858 Job ID: 680-197281-1

Address:	Regu	latory Pro	gram:	DW	NPDES		RCR	RΑ	По)ther:			1A	7	H	/ _	Ź	gag.	LAY.	
Client Contact			1: Cible			Site				zener.			Date	04.0	7.30	*** 1		3	COC No:	TAL-8210
Company Name: Geosynta Consiltuds	Tel/Email	Acibla	k & Gec	synter	. (64	Lab							Carri		1.20	21				COCs
Address: 1255 Roberts Blut Sote Zoo			urnaround				T			Q	J	T						\top	Sampler:	
City/State/Zip: Kouse & GA 30144	_ CALEN	DAR DAYS	☐ WOR	KING DAY	'S		1~		Alkalindy (1)	S. MA	- -		Ferfilm						For Lab Use Only:	
Phone: 678-202-9500	TA	T if different fr	om Below			Î		1	1	3,	(E)	()	22						Walk-in Client:	
Fax:		2	weeks					5	2		0		F. 16mg						Lab Sampling:	
Project Name: Bio Sprage Pilot Test			week			Sample (Y/N	Jacs	Herawas	4	1			<u>r</u>						and building.	
Site: Herroles Private Brasiste Coulder		2	2 days				2	3	X	Total	30.00	A	Fresh						Job / SDG No.:	
PO# GRESSIM			l day				<u></u>	=	B	101	30.00	600	VE						0007 000 110	
			Sample			Sam	85608	2	w	3	3 .									
	Sample	Sample	Туре			Filtered	12	130.	23203	0109	52103	522cD	701							
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	# of Cont.	er e	00	3	23	0 1	2 12	2.	109							
						-	+		-		_				-			-	Sample Specific	Notes:
MW-29d	4/7/21	0840	6	GW	10	ען צן	X	X	X	XX	X	X	X							
BS-0W-02	4/7/21	1000	G	GW	10	YP	X	X	X	XX	1 X	X	X					T		
BS-OW-03)	4/7/21	1105	G	GW	10	YW	X	X	X	XX	(X	X	X			\Box		T		
BS-OW-01	4/7/21	1205	G	GW	10	YN	X	_		XX	1X	_	X			\Box				
TB-01		_	G	W	2	מ ע	Z				\top					\Box		\dagger		
						\sqcap					+		\top		+			+		
						\vdash			_	+	+			++		\vdash	+	+		
Da						Н-	╄		-	\perp		\sqcup		\perp	W.1] _ [
	-04	-00													- 11					
		1	202	(\top			_	- 111					
					_		_		\rightarrow	-	-	\sqcup	\perp	_	-					
									\rightarrow	1					111					
						\vdash	\top		\dashv					+	68	0-197	281 (Chair	of Custody	-
						1	\vdash		_	\perp		\perp		1						
																	+	+		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH;	6= Other _									3 93								CONTRACTOR OF THE PARTY OF THE	CONTRACTOR OF THE PARTY OF THE
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample.	e List any (EPA Waste	Codes for t	he samp	ole in th	e S	amp	le Di	spos	sal (,	A fee	may	be asses	sed if	samp	les a	e reta	ined	longer than 1 month)	
Non-Hazard Flammable Skin Irritant	Poison	В	Unkno	own		-		Return	to Cl	lient		5	☑ Disposal b	v l ab			rchive f	for	Months	
Special Instructions/QC Requirements & Comments:										_		-	5/5p03d1 0	, 200	$\overline{}$	7	311170 1	_	COUNTS	
2 coders													\mathcal{O} . \mathcal{L}	10.	う	10	7	:)	2.1 10.4	0
Custody Seals Intact: Yes No	Custody S	eal No.:						T	Cool	er Te	emp. ((°C):	Obs'd:	•	Corr	ˈdː		/	Therm ID No.:	
Relinquished by:	Company:			Date/Ti	me:	R	e ei	eo b		大		. /-	()	Comr	anv:				Date/Time:	
DAN GETSTS	Geory	uter		4/2/21	1315		(9	1		r	1 (200	DI	7_	NS	1-1		「カファ	
Relinquished by:	Company:	-		Date/Ti		R	eceiv	ed b	y:		<u> </u>	V		Comp	pany:	<u> </u>			Date/Time:	
Relinquished by:	Company:			Date/Tii	me:	P.	eceiv	ed in	n l ah	norat/	ory by	۸.		Coma	20011				Data/Time:	
						'``	00014	rou II	Lat	Jorall	Jiy D)	у.		Comp	Jany:				Date/Time:	

Eurofins TestAmerica, Savannah

5102 LaRoche Avenue Savannah, GA 31404 Phone: 912-354-7858 Fax: 912-352-0165

Chain of Custody Record

🔆 eurofins

Environment Testing
America

Client Information (C. I. C. I	Sampler:			Lab F	PM:	_	_			_			Carria	r Track	in = 11-7	- \					
Client Information (Sub Contract Lab)	Phone:			Barr	nett,	Edd	lie T						Carrie	Hack	ing No(s):		6	COC No: 680-649783.1		
Shipping/Receiving Company:	T Hone.			E-Ma Eddi		arne	tt@E	Eurofin	set.c	om			State of Geor		in:				Page: Page 1 of 1		
TestAmerica Laboratories, Inc.					Accr	redita	ations	Require	d (Se	e note):	_		3.4				_	Job #:		
Address: 3355 McLemore Drive,	Due Date Request	ted:			INE	LAP		orida; S	state	Prog	ram -	- Geo	rgia						680-197281-1 Preservation Cod		
City:	4/14/2021 TAT Requested (d	lavs):								Ana	lysis	Rec	uest	ted					A - HCL	ies: M - Hexane	
Pensacola State, Zip:		,,.																	B - NaOH C - Zn Acetate	N - None	
FL, 32514									i.										D - Nitric Acid	O - AsNaO2 P - Na2O4S	
Phone: 850-474-1001(Tel) 850-478-2671(Fax)	PO #:																		E - NaHSO4 F - MeOH G - Amchlor	Q - Na2SO3 R - Na2S2O3 S - H2SO4	
Email:	WO #:				or No	٥													H - Ascorbic Acid I - Ice	T - TSP Dodec	ahydrate
Project Name:	Project #:					or No)	<u>چ</u>										9	<u>و</u> ا	J - DI Water K - EDTA	V - MCAA	
Hercules - Brunswick Biosparge Pilot Test Site:	68022348 SSOW#:				S	i i	Total (only)										diet	<u> </u>	L - EDA	W - pH 4-5 Z - other (speci	ify)
	55UW#:				Sample (Yes	ISD (Yes	, Tot											٠,	Other:		
			Sample	Matrix		MS/M	2320B/ Alkalinity,											e -			
			Туре	(W=water, S=solid,	d Filtered	E	¥										8	Number			
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	(C=comp, G=grab) вт	O=waste/oil,	Field	Perform	320E										15	lotal			
	><	><	Preservation	on Code:	対	Ħ	~										1	1	Special Ins	structions/No	ote:
MW-29D (680-197281-1)	4/7/21	08:40 Eastern		Water	П		х			\top	_			+		++	-K	7			
BS-OW-02 (680-197281-2)	4/7/21	10:00		Water	H	\dashv	X	_	+	+	╁	+-	\vdash	+	-	++		-			
BS-OW-03D (680-197281-3)	4/7/21	Eastern 11:05		Water	Н	\dashv	X	+	+	+	+-	+-	\vdash	+		+		1			
BS-OW-01 (680-197281-4)	4/7/21	Eastern 12:05	 	Water	Н	\dashv	$\frac{}{x}$	_	+	+	-	+	\vdash	_		+-1		1			
		Eastern		***************************************	Н	\dashv	^	-	+	+	+-	+	\vdash	_		$\perp \perp$		1			
					Н	4		-	+	+		+-		4		\perp					
					Н	4			4	\perp	_	_									
					Ц	4	_		\perp	\perp	\perp										
					Ц																
					Н	-										\Box					
Note: Since laboratory accreditations are subject to change, Eurofins TestAmer maintain accreditation in the State of Origin listed above for analysis/tests/matrix TestAmerica attention immediately. If all requested accreditations are current to	ica places the owners being analyzed, the date, return the sign	ship of method samples must ed Chain of Ci	, analyte & accred t be shipped back	ditation comp	liance	e upo	on out	t subcon	tract I	aborat	tories. instruc	This s	ample s	hipme rovided	nt is for 1. Any o	warded u	under cl	hain	n-of-custody. If the latestation status should the	aboratory does n	not currently
Possible Hazard Identification				o said compil																	
Unconfirmed					ľ		ipie □ _{Pa}	eturn To	sai (A ree	may	/ be a	ssess	sed if	samp	les are	- 1		d longer than 1	month)	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	2		-	Spe	cial I	nstruct	ions	/QC F	Requi	remei	isposa nts:	al By	Lab		Arc	hive	e For	Months	
Empty Kit Relinquished by:		Date:			Tim		_				_			Anthod	of Ship						
Relinghisherby:	Date (im)	77	100	mpeny /	-		Recei	ved by:	_	_		_		vietriou		ment: e/Time/		_		To .	
Relinquished by:	Date/Time:	T	L Co	mpany)	Possi	ved by:	_						9	4/11	2/2	1	1291	Company	K-
Relinquished by:	Date/Time:														Date	e/Time:	/- '			Company	
Custody Seals Intact: Custody Seal No	Sate/fille.		Co	mpany		F	Recei	ved by:							Date	e/Time:				Company	
Custody Seals Intact:				W. Committee	9.1		Coole	r Tempe	rature	e(s) °C	and O	ther Re	marks	3 -	7%	,	11	1	0 1	00	
										V	VV	-	1	//		1	1.4	e	(1)	Ver: 11/01/20)20
																					14U

Client: Geosyntec Consultants, Inc.

Job Number: 680-197281-1

Login Number: 197281

List Source: Eurofins TestAmerica, Savannah

List Number: 1

Creator: Banda, Christy S

		_
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 680-197281-1

Client: Geosyntec Consultants, Inc.

Login Number: 197281

List Number: 2

Creator: Perez, Trina M

List Source: Eurofins TestAmerica, Pensacola

List Creation: 04/12/21 09:52 AM

Cleator. Ferez, Irilia W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.0°C, 0.7°C, 1.6°C IR-9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules - Brunswick Biosparge Pilot Test

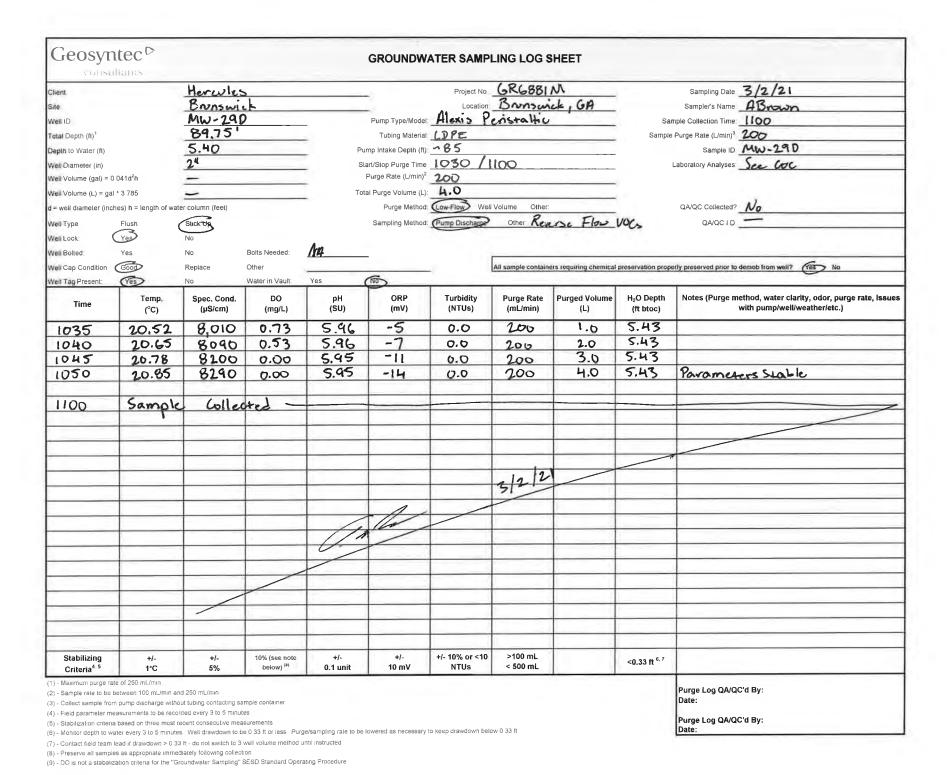
Job ID: 680-197281-1

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87052	06-30-21
Georgia	State	E87052	06-30-21

Laboratory: Eurofins TestAmerica, Pensacola

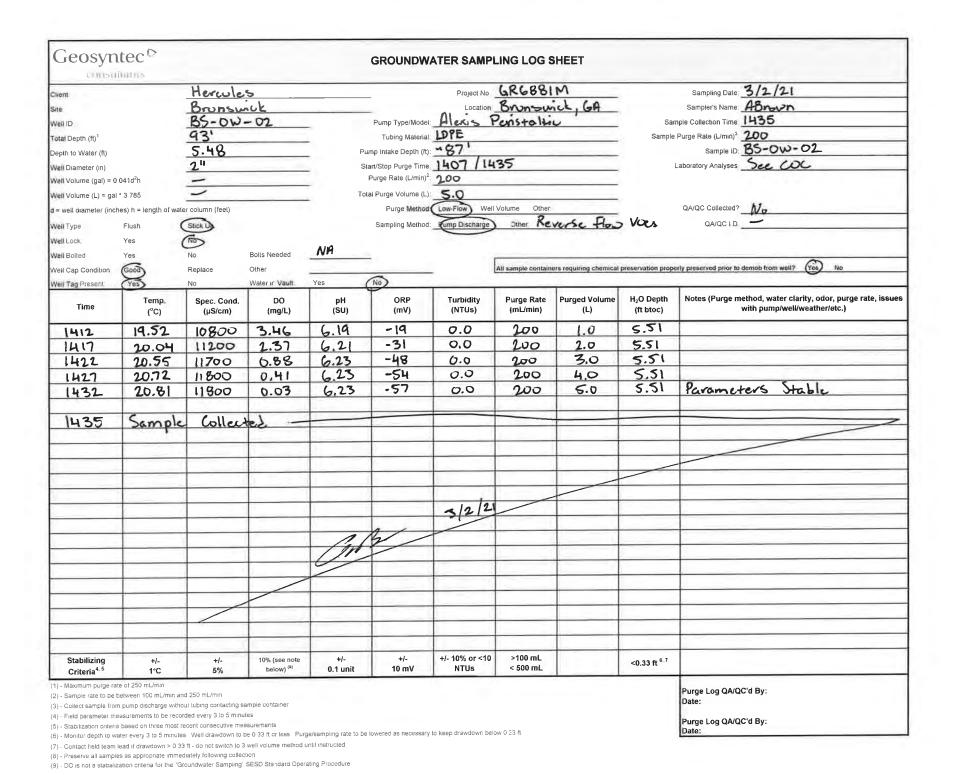

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-21
ANAB	ISO/IEC 17025	L2471	02-23-23
Arizona	State	AZ0710	01-12-22
Arkansas DEQ	State	88-0689	09-02-21
California	State	2510	06-30-21
Florida	NELAP	E81010	06-30-21
Georgia	State	E81010(FL)	06-30-21
Illinois	NELAP	200041	10-09-21
Iowa	State	367	08-01-22
Kansas	NELAP	E-10253	10-31-21
Kentucky (UST)	State	53	06-30-21
Kentucky (WW)	State	KY98030	12-31-21
Louisiana	NELAP	30976	06-30-21
Louisiana (DW)	State	LA017	12-31-21
Maryland	State	233	09-30-21
Massachusetts	State	M-FL094	06-30-21
Michigan	State	9912	06-30-21
New Jersey	NELAP	FL006	06-30-21
North Carolina (WW/SW)	State	314	12-31-21
Oklahoma	State	9810	08-31-21
Pennsylvania	NELAP	68-00467	01-31-22
Rhode Island	State	LAO00307	12-30-21
South Carolina	State	96026002	06-30-21
Tennessee	State	TN02907	06-30-21
Texas	NELAP	T104704286	09-30-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	US Federal Programs	P330-21-00056	05-17-21
Virginia	NELAP	460166	06-14-21
Washington	State	C915	05-15-21
West Virginia DEP	State	136	06-30-21

Eurofins TestAmerica, Savannah

ATTACHMENT D

Sampling Purge Logs


Purge Log Form

Geosyn					GROUNDW	ATER SAMP	LING LOG	SHEET		
		Herwle:				During Ma	GRGBB	M		Sampling Date: 3/2/21
lient		Bronswie	. l.		_	Project No Location	2	.V /A		Sampler's Name: ABown
te		B5-0W-	21		_	AL	Drunsus	ice, Gr		mple Collection Time: 1600
reli ID		91,	-01	_	Pump Type/Model	I DEE	ensta in			e Purge Rate (L/min) ³
otal Depth (ft)1:		5.42		-	Tubing Material	LV.			Sample	Sample ID 85-0W-01
epth to Water (ft)		2"		P	ump Intake Depth (ft)	1530 /11	.00			Laboratory Analyses
ell Diameter (in)	2	7	_	s	lart/Stop Purge Time Purge Rate (L/min) ²	1530/11	-00			Laboratory Analyses
ell Volume (gal) = 0		_		-						
eii Volume (L) = gal				_	olal Purge Volume (L) Purge Method		Volume Other			OA/OC Callested A
	ies) h = length of wate							everse Flo	- Une	QA/QC Collected? No
туре	•	Stick Up			Sampling Method	Pump Discharge	Other: /\	everse flo	w vocs	QA/QCID
ell Lock	`	N _O		Ain						
fell Bolted:		No	Bolts Needed:	NA	_		2.00	and the same		0
ell Cap Condition:		Replace	Other		0	-	All sample contain	ers requiring chemical	preservation prop	erty preserved prior to demob from well? (res) No
Vell Tag Present	(Yes)	No	Water in Vault	Yes	(No)	1				
Time	Temp (°C)	Spec. Cond. (µS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Rate (mL/min)	Purged Volume (L)	H ₂ O Depth (ft btoc)	Notes (Purge method, water clarity, odor, purge rate, Issu with pump/well/weather/etc.)
1535	19.85	10600	0.75	6.07	-4	0.0	200	1.0	5.44	
1540	19.99	10800	0.44	6.07	-6	0.0	200	2.0	5.44	
1545	20.23	11200	0.00	6.07	-11	0.0	200	3.0	5.44	
1550	20.33	11400	0.00	6.08	-15	0.0	200	4.0	5.44	
1555	20.36	11400	0.00	6.09	-17	0.0	200	5.0	5.44	Parameters Stable
1600	Sample	Collect	ed —							
				-	1		-			
				10	1					
				1					-/	
			19.						/	
					1		2/21			
						3	10.			
					1	//				
					1/h					
				/	M.					
				4						
						1				
Stabilizing Criteria ^{4, 5}	+/- 1°C	5%	10% (see note below) (9)	+/- 0.1 unit	+/- 10 mV	+/- 10% or <10 NTUs	>100 mL < 500 mL		<0.33 ft ^{6_7}	
) - Collect sample from) - Field parameter me) - Slabilization criteria	e of 250 mL/min setween 100 mL/min and in pump discharge withou asurements to be record based on three most re- ster every 3 to 5 minutes	it tubing contacting so ded every 3 to 5 minu cent consecutive mea	tes esurements		a lawored as access	ita keen droudours hel	Ow 0 22 ft			Purge Log QA/QC'd By: Date: Purge Log QA/QC'd By: Date:

Purge Log Form

(8) - Preserve all samples as appropriate immediately following collection

(9) - DO is not a stabalization criteria for the "Groundwater Sampling" SESD Standard Operating Procedure

Purge Log Form

Geosyn	tec				GROUNDW	ATER SAMP	LING LOG S	SHEET		
consul	tants									
ent		Hexwles			Pump Type/Model	Project No	GK688	im		Sampling Date 3/3/21
te		Brunswi	ck		_	Location	Brunswic	k, GA		Sampler's Name ABoom
ell ID		BS-OW-	030		Pump Type/Model	Alexis i	enstalti		Sai	mple Collection Time 1215
otal Depth (ft)1		93			Tubing Material	LDPE	23		Sample	e Purge Rate (L/min) ³ 205
epth to Water (ft)		5.47		_ P	ump Intake Depth (ft)	-87				Sample ID: BS-OW-03D
ell Diameter (in):		2"		5	Start/Stop Purge Time	1145 /1	215			Laboratory Analyses: See COC
eii Volume (gal) = 0	041d²h	_			Purge Rate (L/min) ²	200				
ell Volume (L) = gal '	* 3 785	_		To	otal Purge Volume (L)	5.0				
= well diameter (inch	es) h = length of wat	er column (feet)		_	Purge Method:		Volume Other:			QA/QC Collected? No
reil Type	Flush	SUCK DR			Sampling Method	Fump Discharge	Other Rex	rerse Flow	VOCS	QA/QCID
ell Lock	Yes	Sin on								***************************************
ell Bolted	Yes	No	Bolts Needed	NA						
	Gody	Replace	Other	14.			All cample contain	ers requiring chemical	nzasaziration nzon	erly preserved prior to demob from well? (es) No
ell Cap Condition (Cook	No	Water in Vault	Yes	(NR)		All sample contains	ers requiring electrical	preservation prop	arry preserved prior to delinop from wall.
en rag Present.				T			D Date	1	U O D+b	Notes (Dures method water algrity oder pures rate in
Time	Temp. (°C)	Spec. Cond. (µS/cm)	DO (mg/L)	pH (SU)	ORP (mV)	Turbidity (NTUs)	Purge Rate (mL/min)	Purged Volume (L)	H ₂ O Depth (ft btoc)	Notes (Purge method, water clarity, odor, purge rate, iss with pump/well/weather/etc.)
		(рэгсін)	(mg/L)						` '	1 1
1150	20.85	10400	0.0	6.05	21	0.0	200	1.0	5.50	
1155	21.83	11000	0.0	5.99	9	0.0	200	2.0	5.50	
1200	21.89	11000	0,0	5.99	8	0.0	200	3.0	5.50	
1205	21.92	10700	0.0	6.99	-5	6.0	200	4.0	5.50	
1210	21.90	10500	0.0	5.98	-5	6.0	200	5.0	5.50	Parameters Stable
1215										
1215	Sample	Collevel								
1213	Jampe	COMBGO								
-										
					+					
					+	1-12				
		-		-	1	3/3/2				
									_	
				1	1/2/		-			
				1				1		
			7	1						
					1911					
	1			7						
	1									
				1						
Stabilizing	+/-	+/-	10% (see note	+/-	+/-	+/- 10% or <10	>100 mL		<0.33 ft ^{6, 7}	
Criteria ^{4 5}	1°C	5%	below) (9)	0.1 unit	10 mV	NTUs	< 500 mL		<υ.55 π	
) - Maximum purge rate	e of 250 mL/min	-								Duran Law ON/OCIA Dur
) - Sample rate to be b			male entounor							Purge Log QA/QC'd By: Date:
		out tubing contacting sa rded every 3 to 5 minut								
		,								Purge Log QA/QC'd By:

(8) - Preserve all samples as appropriate immediately following collection

(9) - DO is not a stabalization criteria for the "Groundwater Sampling" SESD Standard Operating Procedure

Purge Log Form

Geosyntec D

Site:	: Hercules/Pinova Brunswick Plant											Project	No.:	GKO88	1P, 3001, 300
						ทม-29					1 7 3			04-07	26ZI
77.7	Sai	mp!	ie i	D:	m	W 29d	0407	2021		. Sai	mpler(s):	De	7 <u>75</u>		P* 3
						Good	<u> </u>				W 1.D			Low (
Ini	tial		•			ater (ft):	- 11			l r		th to Bot			
						eter (in):						ight of W			
								or 5", 1.4°	/" for 6"	$\mathbf{well} = [1]$		ıme in W			
Fi	_	De	pth	1 to	W	ater (ft):	6,21				Re	quested a	inalyses:	Sweep A	8260B
Time	Well Gauging	Start Purge	Readings	Start Samp.	Fnd Samp.	Depth to Water (ft)	Volume Removed (g)	Flow Rate (ml/min)	Temp. (°C)	Cond. (µS/cm) (ATC)	D. O (mg/L)	pH (ATC)	Redox Potential (± mv)	Turb (ntu)	Appearance of Water (color, odor, turbidity)
98cc	χ					6.15									
0810		X								Ì					
0815			$\overline{\chi}$			6.21	14	200	20.11	9830.Z	0.35	6.31	-7.0	9.21	
०८८०		Ш	<u>x</u>			6.21	2r	700	20,69	9670.	0.23	6.18	- 10/0	5.10	
0825			X			6,2)	36	200	71.01	9527. B	0.17	6.16	-8,5	4.04	
o 830			χ			6.21	46	200	Z1.31	9461.0	0.12	6.16	.6.0	2.54	
OB 35			X			6.71	56	700	21.43	9477.3	0.13	6.17	-5,3	2,01	
०८५०				Y											
0910					X										
	1	ſ													
						,	R&	,							
							9/	04-07	3021						
									-6051						
													-	/	
		Sı	pli	t, E	3la	nk, Dup	olicate,	& Filter	ed Sam	ples			Water	Quality l	Meter
Sample ID	ı						1	Description	п			Meter Nu	mber: 407	348	
MW-29	'd -	0	40	72	<i>्</i> २	08 .	40	Sucof				Calibrated	on/by: <u>وم</u>	1-07-21 /	D.GJSK
Dur-04							-					Pu	rge and	Sample	Methods
Weather:	∫ک	مديد	1									<u></u>	IRCLE O	NE ON EA	CH LINE
Notes: (filt	erin	g, pı	ımp	pos	itio	n, nearby ac	tivities, pro	olems, devia	tions from p	olan, etc.)		Low Flo	w/Well V	Volume / L	ow Permeability
															lladder / Bailer
												Total Vol	umc Purge	d: <u>5</u> 2	g
-														tion Para	meters
										ŀ			± 10% or <		1.20/
												pH: ± 0.1 specific co	units te onductance	mperature	± 5%
															lved oxygen are
														luated for	

Geosyntec Deconsultants

Site:	Н	erc	ul	es/	Pir	iova Br	unswicl	c Plant					Project	No.:	GR688	1P, 3001, 3001
Moni	itori	ng	W	ell:		35-0W	5-02					1 ()	<u> </u>	Date:	04-C7-	20.54
337-1						5-00-c.	2			. 5	an	npier(s):	<u> D.G.</u>			
						(Seze)				-		w IB		Method:		
ın.	ша					ater (ft):			•	Ī	ın			ttom (ft):		
	1 L					eter (in):		Ell 1 4'	70 £	(1	г.			ater (ft):		
								r 5", 1.4	or 6	weii =	1 ('ell (gal):		
F	ınaı	D	ept	n to) W	ater (ft):	6119					Ke	quested a	analyses:	Sweet	<u></u>
Time	Well Gauging	Start Purge	Readings	Start Samp.	End Samp.	Depth to Water (ft)	Volume Removed (g)	Flow Rate (ml/min)	Temp. (°C)	Cond. (µS/cm) (ATC)		D. O. (mg/L)	pH (ATC)	Redox Potential (± mv)	Turb (ntu)	Appearance of Water (color, odor, turbidity)
0923	X					6.14										
0935		X														
0940			X			6.19	16	200	22.63	11756	š	0.26	6.37	-15.4	5,55	
ሪ ፃዛኝ			X			6.19	24	200	22.97	11948.9			6.30	- 12.7	2.45	
<i>6</i> 950			X	Г		6.14	3L	200		11937.	J		6.31	-14.8	1.15	
0955			X			6.19	46	200	23,19	11954	_		6.31	-14.5	1.00	
1000				X		_								1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1015		Г			X											
Į																
			<i>/</i>		_	,						-				
				<u> </u>		Po	24.6									
							~ (6	Z-302								
	1	\vdash			Г							·				
	1											-				
	+-	 	-	H						-	_					
	J	<u> </u>	 _1;	+ E	ا د	ok Dur	olicate,	& Eiltor	ad Sam	nloc				Water	Onalita	Motor
c (r		٠.	hп	ι, ι	JIA	ու, քա	,			pies					Quality 1	vieter
Sample II								Description	1		_			mber: '4e		
B5-0	<u></u>	02			1	000:00		weep					i	i on/by: <u>04</u>		<u>D6730</u>
													P	urge and	Sample	Methods
Weather:	!	ς	nr	<u>. y</u>									<u> </u>	CIRCLE O	NE ON EA	CH LINE
Notes: (fil				•	itio	ı, nearby ac	tivities, prol	olems, devia	tions from	plan, etc.)			Ow Flo	ا Well / سو	Volume / L	ow Permeability
																Bladder / Bailer
													Total Vol	ume Purge	d: <u>4</u> 4	<u>g</u>
														Stabiliza	tion Para	ameters
								•						± 10% or <		
													$pH: \pm 0.1$		mperature	± 3%
														onductance ox potentia		lved oxygen arc
														but not eva		

Geosyntec Deconsultants

Site:	Н	erc	cul	es/	Pir	iova Br	unswick	Plant	•			Projec	t No.:	GR688	31P, 3001, 3001
Moni						5-0W.				-	mplor(s)	·	Date:	04-67	7- 2 071
Wal						<u>5-0W-0</u> 501	<u>ba</u>			- Spa	ilibici(s)	D.60	<u>ほり</u>		· · · · · · · · · · · · · · · · · · ·
							2 300	•		- [Purge	Method:	Low Flo	من
ını							6.45			11			ttom (ft):		
						eter (in):					Н	eight of V	Vater (ft):	<u> </u>	07
								or 5", 1.4	7" for 6 "	well = Π			ell (gal):		
F	inal	l D	ept	h tc	W	ater (ft):	6,48		•		R ₀	equested	analyses:	Swee	
Time	Welt Gauging	Start Purge	Readings	Start Samp.	Fnd Samp.	Depth to Water (ft)	Volume Removed (g)	Flow Rate (ml/min)	Тетр. (°С)	Cond. (µS/cm) (ATC)	D. O. (mg/L)	pH (ATC)	Redox Potential (± mv)	Turb (ntu)	Appearance of Water (color, odor, turbidity)
6 115															
1029	X					6.45									
1040		X													
1045			X			6.48	14	200	23.87	127239	0,45	6.35	-30.0	2.06	
1050			X			6.48	24	200	23,96	11897.4	0.32	6.36	-33.85	2,31	
1055			X			6,48	31	200	24.00	11299.0	0.18	6.35	-33,8	1,74	
1100			X			6.48	46	20c	23.96	11007.1	0.15	6.34	-31.8	1.59	
1105				X											
1120					X										
_	_	L													
					ľ			_				-			
	T							Da	οu.		·				
									-/	203/	,				
4.		T													
		\vdash								1	<u> </u>				
			<u>, 1;</u>	+ .T.		nic Dur	olicate,	& Eilton	ad Sam	plog	<u> </u>		Water	Onalita	Matar
		O.	μπ	ι, 1	JIA	ու, քալ	ŕ			ipies		N		Quality 1	vieter
Sample II						_		Description	1				mber: <u>40</u>		
B2-Or	હે જ	<u>3 7</u>				11 : 0	22	∂يمعين	· · · · · · · · · · · · · · · · · · ·			Calibrate	<u>م</u> :d on/by	4-07-21	DGDE
												P	urge and	Sample	Methods
Weather:	S	٨٥	w	,								9	CIRCLE O	NE ON EA	CHLINE
Notes: (fil	terin	g, p	ump	pos	itio	i, nearby ac	tivities, prob	olems, devia	itions from	plan, etc.)		(Low Fi	ow/Well	Volume / L	ow Permeability
															Bladder / Bailer
												Total Vo.	ume Purge	d: 46	g
													Stabiliza	tion Para	ameters
													± 10% or		
												$pH: \pm 0.1$		mperature	± 3%
													onductance		lvcd oxygen are
													but not eva		
	-	_													-

Geosyntec Deconsultants

Site:	Hercules/Pinova Brunswick Plant											Project No.: GR6881P, 3001, 300				
Moni						5-0W-				Sa	mpler(s):	10.6		64-07	7-2021	
Wel						eng	<u> </u>					Purge	Method:	Low	leví	
						ater (ft):	600			1	nitial De _l	oth to Bot				
1111	t t t t t t					eter (in):			•		-	ight of W				
multin	lv h	t bs	, N	16	i fo	or 2" well	1.06 fo	r 5". 1.47	7" for 6"	well = T		ume in W				
_						ater (ft):			•		Re	equested a	inalyses:	Suece	2	
Time	Well Gauging	Start Purge	teadings	Start Samp	ind Samp.	Depth to Water (ft)	Volume Removed (g)	Flow Rate (ml/min)	Temp.	Cond. (µS/cm (ATC)	D. O. (mg/L)	pH (ATC)	Redox Potential (± mv)	Turb (ntu)	Appearance of Water (color, odor, turbidity)	
1128	Ź	S	Δ.	S.		6,00										
1140	Ť	X					·									
1145			Υ			6,03	14	z00	24,45	10204,5	0.23	6.31	-)2.9	9,63		
1150			Χ			6.03	26	200	24,[4	12.83ES	0.15	6.78	151	4.18		
1155			X			6.03	3 L	200	24.09	10471.7	0.13	6.27	-15,8	7,42		
1200			X			6.03	44	200	24.13	10552.1	0.12	6.26	-16.6	6.06		
1205	<u> </u>			X							ļ		<u> </u>		ļ	
1550			_	L	X				ļ							
	╧			L					<u> </u>	-			 	<u> </u>		
	\perp	L	_	L	_	<u></u>			6-04		<u> </u>		<u>.</u>			
	\bot	<u> </u>	L	┡	igspace	ļ <u> </u>			250	205						
	_	lacksquare	<u> </u>	L	 				 -		\$02.		<u> </u>	<u> </u>		
	+	-		L	-	 			 -		 		1			
	+	_	ļ	-	ļ	<u> </u>		<u> </u>	 	-		1				
			<u> </u>	<u></u>	<u>L</u>		<u> </u>	0. 1211.	1.0	,			331 4	0 11	3.5.4	
		S	pli	t, I	3la	ınk, Duj		& Filter		ples				Quality		
Sample I	D							Description	on .		 -		ımher: <u>4</u>			
B5-	· O1	- لىر	-0	(12 10	<u> </u>	<u>5'u</u>	<u> </u>			-			D. GEBBS	
					•			W-				+			Methods	
Weather				,								4 '	CIRCLE O	NE ON E	ACH LINE	
Notes: (f	ilteru	ng, p	oumj	p po	sitic	on, nearby a	ctivities, pro	blems, devi	ations from	plan, etc.					Low Permeability	
													altio/Sub lume Purg		Bladder / Bailer g	
													Stabiliza	tion Par	rameters	
													± 10% or			
1												$pH: \pm 0.1$		emperatur	e ± 3%	
													conductance		solved oxygen are	
													but not ev			
															•	

ATTACHMENT E

Waste Characterization Laboratory Reports and Manifests

-	112	estin lypeatil			. Y	0	JA-678	033		15	201	153
NON-HAZ	38,738,487,540	1. Generalor	GAD004	406552	2.		mergency Respons Univat So	lutions	4. Waste Tra	MMO	0007	7080
Generator's N LERCULES	lame and Mailin LLC: St CK. GA 315 803-76					Ger	erator's Site Addres	ongs s (il different	than mailing addre	ss)		300
Transporter 1	Company Nan	ONS USA	INIC						U.S. EPA ID		200	
0.0	Company Nan	A. Charles of St.	INC.						U.S. EPA ID	000848 Number	909	
The second of the second	_0.1_0.00000000000000000000000000000000	ORT (DRY	A CALLED OF BUILDING						U.S. EPA ID	000459	063	
LS RECC	OVERY SE	nd Site Address BRVICES, AD, :, 317508987 796-0082	LLC							0926346	57	
		e and Description					10. Cont		11. Total	12. Unit		
							051	Туре	Quantity	Wt./Vol.	1	
Non-	Kegulaled	d Material		,		- 3	A PIH	DM	30600	p		
3.												
4												
								11.1		4		
. 6992(N	on Hazare		and Debris)									
. 6992(N LACAR **Emerg	on Hazard DS PROV sency Pho R'S CERTIFIC ero's Printed To	dous Soil of IDED BY ne: Chemic ATION: I certify yped Name	and Debris) 7 THE CAR trec 800-424	-9300 CCN	N 1811**	a not subject to f Signatur	VER SIGNA	r reporting p	roper disposat of Hi	azardous W	/aste. Mor	
. 6992(N LACAR **Emerg . GENERATO enerators/Offi internationa ansporter Sig	on Hazard DS PROV gency Pho R'S CERTIFIC cros's Printed/Ty Shipments nature (for expo	ATION: I certify yped Name Impo Impo Impo	and Debris) THE CARI trec 800-424 The materials describer Herry Into U.S.	-9300 CCN	N 1811**	e not subject to f	ederal regulations fo	r reporting p	roper disposal of Hi	azardous W	Mor	23 7
. 6992(N LACAR **Emerg . GENERATO enerators/Offi . Internationa ansporter Sig s. Transporter	on Hazard DS PROV gency Pho R'S CERTIFIC. Shipments nature (for expo Acknowledgme nnted/Typed Na	ATION: I certify yped Name Impo Impo Impo Impo Int of Receipt of Impe	and Debris) THE CARI trec 800-424 The materials describer Herry Into U.S.	-9300 CCN	N 1811**	a not subject to f Signatur	ederal regulations for Port of e Date lear	r reporting p	roper disposal of Hi	azardous W	Mor Ç	23 7
. GENERATO enerators/Off International ansporter Sig Transporter ansporter 1 P	on Hazard DS PROV gency Pho R'S CERTIFIC. Shipments nature (for expert Acknowledgment nature) Typed Nature Acknowledgment Nature R'S CERTIFIC.	ATION: I certify yped Name Impo	and Debris) THE CARI trec 800-424 The materials describer Herry Into U.S.	-9300 CCN	N 1811**	e not subject to f Signatur Y xport from U.S.	ederal regulations for Port of e Date lear	r reporting p	roper disposal di Hi	azardous W	Mor Ç	23 7
GENERATO GENERA	on Hazard DS PROV gency Pho R'S CERTIFIC. Shipments nature (for expo Acknowledgme nnted/Typed Na	ATION: I certify yped Name Impo	and Debris) THE CARI trec 800-424 The materials describer Herry Into U.S.	-9300 CCN	N 1811**	e not subject to f Signatur Y xport from U.S.	ederal regulations for Port of e Date lear	r reporting p	roper disposal d Hi	azardous W	Mor Ç	23 7
GENERATO GENERA	on Hazard DS PROV gency Pho R'S CERTIFIC Prov's Printed/T Shipments nature (for export Acknowledgmennted/Typed Nature) Insted/Typed Nature (Typed Nature) Insted/I	ATION: I certify yped Name AT	and Debris) 7 THE CARI trec 800-424 The materials describer Herw into U.S. Materials	ribed above on the	N 1811**	e not subject to f Signatur Y xport from U.S.	ederal regulations for Port of e Date lear	r reporting p	roper disposal of Hi	>	Mor	23 7
GENERATO GENERA	on Hazard DS PROV gency Pho R'S CERTIFIC ero's Printed Ty Shipments nature (for expc Acknowledgme nnted/Typed Na	ATION: I certify yped Name ATION: I mpo orts only): Int of Receipt of ame CLAS and CLAS and O.	and Debris) 7 THE CARI trec 800-424 The materials describer Herw into U.S. Materials	ribed above on the	N 1811***	Signatur Xport from U.S.	Port of e	reporting p		ection	Mor	th Day Day
GENERATO GENERA	on Hazero DS PROV gency Pho R'S CERTIFIC. ero's Printed/Typed Na Shipments nature (for expo Acknowledgme nnted/Typed Na y Indication Spi acility (or General	ATION: I certify yped Name ATION: I mpo orts only): Int of Receipt of ame CLAS and CLAS and O.	and Debris) 7 THE CARI tree 800-424 1 the materials deso For Herry in to U.S. Materials	ribed above on the	N 1811***	Signatur Xport from U.S.	Port of e	reporting p	Partial Reja	ection	Mor	th Day
GENERATO GENERA	on Hazero DS PROV gency Pho R'S CERTIFIC. ero's Printed/Typed Na Shipments nature (for expo Acknowledgme nnted/Typed Na y Indication Spi acility (or General	ATION: I certify yped Name AT	and Debris) 7 THE CARI tree 800-424 1 the materials deso For Herry in to U.S. Materials	ribed above on the	N 1811***	Signatur Xport from U.S.	Port of e	reporting p	Partial Reja	ection	Mor Wor	th Day
. 6992(N LACAR **F.mers i. GENERATO enerators/Off i. Internationa ansporter Sig 5. Transporter ansporter 1 P Paraporter 1 P T. Discrepano Ta. Discrepano Ta. Discrepano Ta. Discrepano Ta. Ciscrepano Ta. Ciscrepano Ta. Signatura o	on Hazero DS PROV gency Pho R'S CERTIFIC ero's Printed/Ty Shipments nature (for expo Acknowledgme nnted/Typed Na Control of the control y Indication Spi acility (or Gene facility (or Gene	ATION: I certify yped Name ATION: I certify yped Name I impoorts only): Int of Receipt of ame C S ame ace O.	and Debris) 7 THE CARI tree 800-424 1 the materials deso For Herry in to U.S. Materials	ribed above on the LICS LUC	N 1811*** Is manifest are Type	s not subject to f Signatur XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Port of e Date lear Residue Manifest Reference	reporting p	Partial Reja	ection	Mor Wor	th Day Y

#64772 82

DESIGNATED FACILITY TO GENERATOR

A	NON-HAZARDOUS	Generator ID Number	:	2. Page 1 of	3. Emergency Response	e Phone	4. Waste Tra	acking Nu	mber 0210356
	WASTE MANIFEST	GAD 004 065 5	520	1	(800) 839-3	975			0210330
	5. Generator's Name and Mailin	IG Address HERCULES LL	С		Generator's Site Addres	s (if different	than mailing addre	ss)	
	2601 COOK S	TREET	o work						
	DOLINIONATOR	OA 24500							
	BRUNSWICK, Generator's Phone:				,				
	6. Transporter 1 Company Nam	(803) 767-9281		i			U.S. EPA ID N	Number	
1	STAT						1		700 4 40
	7. Transporter 2 Company Nam						U.S. EPA ID N		799 142
	7. Hansporter 2 Company Nam						1	vuilibei	
	Designated Facility Name and	d Che Address					LIO EDA IDA	Landon.	
		EUISAILA	NTA TRANS	SFER 8	& PROCESSI	ſ	U.S. EPA ID N		
		INDUSTRIAL BLVD,S	SW .				GAR	000	039 776
	ATLANTA, GA	30336					1		
	Facility's Phone: (404	4) 494-3520		~~~~					
	9. Waste Shipping Name	e and Description			10. Cont	ainers	11. Total	12. Unit	
1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				No.	Туре	Quantity	Wt./Vol.	
œ	NON REGUL	ATED MATERIAL				DM		Р	
10					&p		24,600		
ER/		•					2.,		
GENERATOR	2.								
ı									
	3.								
	4.								
	13. Special Handling Instruction	s and Additional Information					J		r en
	1. C171843ATL / NON I	HAZARDOUS GROUND WATE	ER PURGE						
-									
				************		-			
ı	14. GENERATOR'S/OFFEROR marked and labeled/placard	I'S CERTIFICATION: I hereby declare that ed, and are in all respects in proper condi	t the contents of this co	onsignment a ding to applic	re fully and accurately de able international and nat	scribed above	e by the proper shi	pping nam	e, and are classified, packaged,
	Generator's/Offeror's Printed/Ty		a a a a a a a a a a a a a a a a a a a		nature	Q 1	Tiorital Togalationo.	·····	Month Day Year
4	Davel Pil	e (Agent for h	tercules)		J 1/1				1/2 124 171
<u>,</u>	15. International Shipments			,		α			4 4 4
Ē		Import to U.S.		Export from I		ntry/exit:			
	Transporter Signature (for expo				Date lea	ving U.S.:			
TRANSPORTER	16. Transporter Acknowledgment Transporter 1 Printed/Typed Na				nature	,			Month Day Year
Ö	A.	GARNER		1 0	and the second				
SP	Transporter 2 Printed/Typed Na			14	- cant	unj	arnic		
RAP	Transporter 2 Printed/Typed Na	ame		SIQ I	gnature	Ü			Month Day Year
F									
1	17. Discrepancy								
1	17a. Discrepancy Indication Spa	ace Quantity	Туре		Residue		Partial Reje	ection	Full Rejection
١									
١					Manifest Reference	Number:			
Ł	17b. Alternate Facility (or Gene	rator)					U.S. EPA ID I	Number	
등							1		
Ā	Facility's Phone:							***************************************	
뎶	17c. Signature of Alternate Faci	ility (or Generator)							Month Day Year
ÄÄ								~	
DESIGNATED FACILITY									
ı				^					
	18. Designated Facility Owner of	or Operator: Certification of receipt of mate	erials covered by the m	anifest exce	t as noted in Item 17a				
	Printed/Typed Name			- No	nature			-	Month Day Year
V	JASON	SMITTI		4)		06 25 21

169-BLC-O 6 10498 (Rev. 9/09)

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-196387-1

Client Project/Site: Hercules Brunswick - Wells

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Adria Reimer

Authorized for release by: 4/9/2021 3:18:20 PM

Add Barnett

Eddie Barnett, Project Manager I

(912)250-0280

Eddie.Barnett@Eurofinset.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	6
Method Summary	7
Definitions/Glossary	8
Detection Summary	10
Client Sample Results	11
Surrogate Summary	25
QC Sample Results	29
QC Association Summary	45
Lab Chronicle	51
Chain of Custody	55
Receipt Checklists	56
Certification Summary	57

Case Narrative

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Job ID: 680-196387-1

Job ID: 680-196387-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc. Project: Hercules Brunswick - Wells

Report Number: 680-196387-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 03/17/2021; the samples arrived in good condition, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.4° C and 1.5° C.

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples IDW-W-1 (680-196387-1), IDW-W-2 (680-196387-2), IDW-W-3 (680-196387-3), IDW-S-1 (680-196387-4), IDW-S-2 (680-196387-5), IDW-S-3 (680-196387-6) and IDW-S-4 (680-196387-7) were analyzed for TCLP volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 03/19/2021, 03/23/2021 and 03/30/2021 and analyzed on 03/19/2021, 03/28/2021 and 04/07/2021.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-660420 and 680-660420 and analytical batch 680-660370.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-660980 and analytical batch 680-661698.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 680-663119 and analytical batch 680-663093.

- 1,2-Dichloroethane-d4 (Surr) recovered outside the surrogate recovery criteria high for LCS 680-660370/5 and LCSD 680-660370/6. Refer to the QC report for details.
- 2-Butanone (MEK) recovered high for LCSD 680-660370/6. This analyte was biased high in the LCSD and was not detected in the associated samples; therefore, the data have been reported. Refer to the QC report for details.

Samples IDW-W-1 (680-196387-1)[20X], IDW-W-2 (680-196387-2)[20X], IDW-W-3 (680-196387-3)[20X], IDW-S-1 (680-196387-3)[20X], IDW-S-2 (680-196387-5)[20X], IDW-S-3 (680-196387-6)[20X] and IDW-S-4 (680-196387-7)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TCLP SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples IDW-W-1 (680-196387-1), IDW-W-2 (680-196387-2), IDW-W-3 (680-196387-3), IDW-S-1 (680-196387-4), IDW-S-2 (680-196387-5), IDW-S-3 (680-196387-6) and IDW-S-4 (680-196387-7) were analyzed for TCLP semivolatile organic compounds (GC-MS) in accordance with EPA SW846 Methods 1311 / 8270D. The samples were leached on 03/19/2021 and 03/22/2021, prepared on 03/23/2021 and analyzed on 03/25/2021.

The minimum response factor (RF) criteria for the continuing calibration verification (CCV) analyzed in batch 680-661361 was outside criteria for the following analyte: Hexachlorobenzene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

4

5

8

40

11

13

14

Case Narrative

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

Job ID: 680-196387-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

The following analyte has been identified, in the reference method and/or via historical data, to be poor and/or erratic performer: Pyridine. This analyte may have a %D >20% but must be <50% in the continuing calibration verification (CCV).

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PESTICIDES (TCLP)

Samples IDW-W-1 (680-196387-1), IDW-W-2 (680-196387-2), IDW-W-3 (680-196387-3), IDW-S-1 (680-196387-4), IDW-S-2 (680-196387-5), IDW-S-3 (680-196387-6) and IDW-S-4 (680-196387-7) were analyzed for Pesticides (TCLP) in accordance with EPA SW-846 Method 1311/8081B_8082A. The samples were leached on 03/19/2021 and 03/22/2021, prepared on 03/24/2021 and analyzed on 03/25/2021 and 03/29/2021.

This method incorporates 2nd column confirmation. Corrective action is not taken for surrogate/spike compounds unless results from both columns are unacceptable. Results outside criteria are qualified.

Two surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: IDW-W-3MS (680-196387-3MS) and IDW-S-4MS (680-196387-7MS). These results have been reported and qualified.

Surrogate recovery for the following samples were outside control limits: IDW-W-1 (680-196387-1) and IDW-W-2 (680-196387-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

PCB-1016 recovered low for the MS of sample IDW-S-4MS (680-196387-7) in batch 680-661843. PCB-1016 and PCB-1260 exceeded the RPD limit for the MSD of sample IDW-S-4MSD (680-196387-7) in batch 680-661843. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICP) - TCLP

Samples IDW-W-1 (680-196387-1), IDW-W-2 (680-196387-2), IDW-W-3 (680-196387-3), IDW-S-1 (680-196387-4), IDW-S-2 (680-196387-5), IDW-S-3 (680-196387-6) and IDW-S-4 (680-196387-7) were analyzed for Metals (ICP) - TCLP in accordance with EPA SW-846 Methods 1311/6010C. The samples were leached on 03/19/2021 and 03/22/2021, prepared on 03/22/2021 and 03/24/2021 and analyzed on 03/24/2021.

Silver recovered low for the MS of sample IDW-W-1MS (680-196387-1) and MSD of sample IDW-W-1MSD (680-196387-1) in batch 680-661149. Refer to the QC report for details.

Silver recovered low for the MS of sample IDW-S-1MS (680-196387-4) and MSD of sample IDW-S-1MSD (680-196387-4) in batch 680-661329. Refer to the QC report for details.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

MERCURY - TCLP

Samples IDW-W-1 (680-196387-1), IDW-W-2 (680-196387-2), IDW-W-3 (680-196387-3), IDW-S-1 (680-196387-4), IDW-S-2 (680-196387-5), IDW-S-3 (680-196387-6) and IDW-S-4 (680-196387-7) were analyzed for mercury - TCLP in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 03/19/2021 and 03/22/2021, prepared on 03/22/2021 and 03/23/2021 and analyzed on 03/22/2021 and 03/24/2021.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

IGNITABILITY FOR SOLIDS

Samples IDW-S-1 (680-196387-4), IDW-S-2 (680-196387-5), IDW-S-3 (680-196387-6) and IDW-S-4 (680-196387-7) were analyzed for ignitability for solids in accordance with EPA SW-846 Method 1030. The samples were analyzed on 03/19/2021.

The following samples did not ignite: IDW-S-1 (680-196387-4), IDW-S-2 (680-196387-5), IDW-S-3 (680-196387-6) and IDW-S-4 (680-196387-7); therefore, an ignitability value could not be obtained. The result has been reported as "No Burn" (NB).

3

5

6

0

9

11

4.0

1 /

Case Narrative

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

Job ID: 680-196387-1 (Continued)

Laboratory: Eurofins TestAmerica, Savannah (Continued)

No samples ignited, therefore, there were no duplicates. An LCSD was added which met acceptability criteria.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

Q

9

4 4

12

12

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
80-196387-1	IDW-W-1	Water	03/16/21 13:10	03/17/21 10:30	
80-196387-2	IDW-W-2	Water	03/16/21 13:25	03/17/21 10:30	
880-196387-3	IDW-W-3	Water	03/16/21 13:50	03/17/21 10:30	
80-196387-4	IDW-S-1	Solid	03/16/21 11:58	03/17/21 10:30	
880-196387-5	IDW-S-2	Solid	03/16/21 12:05	03/17/21 10:30	
880-196387-6	IDW-S-3	Solid	03/16/21 12:20	03/17/21 10:30	
880-196387-7	IDW-S-4	Solid	03/16/21 12:30	03/17/21 10:30	

-

5

7

8

10

11

13

14

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

lethod	Method Description	Protocol	Laboratory
260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SAV
081B/8082A	Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography	SW846	TAL SAV
010C	Metals (ICP)	SW846	TAL SAV
470A	Mercury (CVAA)	SW846	TAL SAV
030	Ignitability, Solids	SW846	TAL SAV
311	TCLP Extraction	SW846	TAL SAV
010A	Preparation, Total Metals	SW846	TAL SAV
520C	Liquid-Liquid Extraction (Continuous)	SW846	TAL SAV
030B	Purge and Trap	SW846	TAL SAV
470A	Preparation, Mercury	SW846	TAL SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Job ID: 680-196387-1

Project/Site: Hercules Brunswick - Wells

Qualifiers

00	18.6	C 1	10	•
GC	/ IVI	5 1	ľυ	А

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.
S1+ Surrogate recovery exceeds control limits, high biased.
U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

p The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

S1- Surrogate recovery exceeds control limits, low biased.
U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.
U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Eurofins TestAmerica, Savannah

Page 8 of 57 4/9/2021

3

4

5

6

46

10

12

13

14

Definitions/Glossary

Client: Geosyntec Consultants, Inc.

Job ID: 680-196387-1

Project/Site: Hercules Brunswick - Wells

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

D 000 400007 4

2

4

6

8

9

11

14

14

Detection Summary

Project/Site: Hercules Brunswick - Wells Client Sample ID: IDW-W-1 Lab Sample ID: 680-196387-1 No Detections. Lab Sample ID: 680-196387-2 Client Sample ID: IDW-W-2 No Detections. Client Sample ID: IDW-W-3 Lab Sample ID: 680-196387-3 No Detections. Client Sample ID: IDW-S-1 Lab Sample ID: 680-196387-4 Analyte Result Qualifier NONE **NONE Unit** Dil Fac D Method **Prep Type** 1030 Ignitability NB mm/sec Total/NA Client Sample ID: IDW-S-2 Lab Sample ID: 680-196387-5 Result Qualifier NONE **NONE Unit** Dil Fac D Method **Prep Type** 1030 Ignitability NB mm/sec 1 Total/NA Client Sample ID: IDW-S-3 Lab Sample ID: 680-196387-6 Analyte Result Qualifier NONE NONE Unit Dil Fac D Method **Prep Type** Ignitability NB 1030 mm/sec Total/NA Client Sample ID: IDW-S-4 Lab Sample ID: 680-196387-7 Analyte Result Qualifier NONE **NONE Unit** Dil Fac D Method **Prep Type** NB 1030

mm/sec

Client: Geosyntec Consultants, Inc.

Ignitability

Job ID: 680-196387-1

Total/NA

Job ID: 680-196387-1

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-W-1

Date Collected: 03/16/21 13:10 Date Received: 03/17/21 10:30 Lab Sample ID: 680-196387-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.020	U	0.020		mg/L			03/19/21 15:04	20
Chlorobenzene	0.020	U	0.020		mg/L			03/19/21 15:04	20
Tetrachloroethene	0.020	U	0.020		mg/L			03/19/21 15:04	20
Carbon tetrachloride	0.020	U	0.020		mg/L			03/19/21 15:04	20
Chloroform	0.020	U	0.020		mg/L			03/19/21 15:04	20
Benzene	0.020	U	0.020		mg/L			03/19/21 15:04	20
Vinyl chloride	0.020	U	0.020		mg/L			03/19/21 15:04	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			03/19/21 15:04	20
2-Butanone (MEK)	0.20	U *+	0.20		mg/L			03/19/21 15:04	20
Trichloroethene	0.020	U	0.020		mg/L			03/19/21 15:04	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		70 - 130			•		03/19/21 15:04	20
1,2-Dichloroethane-d4 (Surr)	117		60 - 124					03/19/21 15:04	20
Dibromofluoromethane (Surr)	110		70 - 130					03/19/21 15:04	20
4-Bromofluorobenzene (Surr)	96		70 - 130					03/19/21 15:04	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyridine	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 19:41	1
2,4,5-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 19:41	1
2,4,6-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 19:41	1
2,4-Dinitrotoluene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 19:41	1
2-Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 19:41	1
3 & 4 Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 19:41	1
Hexachlorobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 19:41	1
Hexachlorobutadiene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 19:41	1
Hexachloroethane	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 19:41	1
Nitrobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 19:41	1
Pentachlorophenol	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 19:41	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	93		31 - 141	03/23/21 19:51	03/25/21 19:41	1
2-Fluorobiphenyl (Surr)	79		38 - 130	03/23/21 19:51	03/25/21 19:41	1
2-Fluorophenol (Surr)	72		25 - 130	03/23/21 19:51	03/25/21 19:41	1
Terphenyl-d14 (Surr)	38		10 - 143	03/23/21 19:51	03/25/21 19:41	1
Phenol-d5 (Surr)	79		25 - 130	03/23/21 19:51	03/25/21 19:41	1
Nitrobenzene-d5 (Surr)	91		39 - 130	03/23/21 19:51	03/25/21 19:41	1

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	0.0013	U	0.0013	mg/L		03/24/21 18:23	03/25/21 21:43	1
Chlordane (technical)	0.013	U	0.013	mg/L		03/24/21 18:23	03/25/21 21:43	1
gamma-BHC (Lindane)	0.0013	U	0.0013	mg/L		03/24/21 18:23	03/25/21 21:43	1
Endrin	0.0013	U	0.0013	mg/L		03/24/21 18:23	03/25/21 21:43	1
Methoxychlor	0.0013	U	0.0013	mg/L		03/24/21 18:23	03/25/21 21:43	1
Heptachlor	0.0013	U	0.0013	mg/L		03/24/21 18:23	03/25/21 21:43	1
Toxaphene	0.13	U	0.13	mg/L		03/24/21 18:23	03/25/21 21:43	1
PCB-1016	0.025	U	0.025	mg/L		03/24/21 18:23	03/25/21 21:43	1
PCB-1221	0.025	U	0.025	mg/L		03/24/21 18:23	03/25/21 21:43	1

Eurofins TestAmerica, Savannah

Page 11 of 57

2

<u>ی</u>

O —

9

10

12

13

14

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Lab Sample ID: 680-196387-1

Job ID: 680-196387-1

Matrix: Water

Client Sample ID: IDW-W-1 Date Collected: 03/16/21 13:10 Date Received: 03/17/21 10:30

Method: 8081B/8082A - O	rganochlorine Pesticides and I	Polychlo	rinated Bipheny	ls by (Sas Chroma	tography - T	CLP
(Continued)		_					
Amalusta	Descrit Occalifien	DI.	MDI II!4		Duamanad	A ll	DHE

(
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	0.025	U	0.025		mg/L		03/24/21 18:23	03/25/21 21:43	1
PCB-1242	0.025	U	0.025		mg/L		03/24/21 18:23	03/25/21 21:43	1
PCB-1248	0.025	U	0.025		mg/L		03/24/21 18:23	03/25/21 21:43	1
PCB-1254	0.025	U	0.025		mg/L		03/24/21 18:23	03/25/21 21:43	1
PCB-1260	0.025	U	0.025		mg/L		03/24/21 18:23	03/25/21 21:43	1
Currogoto	9/ Bassyary	Ouglifier	Limito				Branarad	Analyzad	Dil Eco

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	70		40 - 130	03/24/21 18:23	03/25/21 21:43	1
DCB Decachlorobiphenyl	5	S1-	14 - 130	03/24/21 18:23	03/25/21 21:43	1

Welliou. 60 loc - Welais (i	CP) - ICLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.20	U	0.20		mg/L		03/22/21 08:35	03/24/21 01:25	1
Barium	1.0	U	1.0		mg/L		03/22/21 08:35	03/24/21 01:25	1
Cadmium	0.10	U	0.10		mg/L		03/22/21 08:35	03/24/21 01:25	1
Chromium	0.20	U	0.20		mg/L		03/22/21 08:35	03/24/21 01:25	1
Lead	0.20	U	0.20		mg/L		03/22/21 08:35	03/24/21 01:25	1
Selenium	0.50	U	0.50		mg/L		03/22/21 08:35	03/24/21 01:25	1
Silver	0.10	U F1	0.10		mg/L		03/22/21 08:35	03/24/21 01:25	1

Method: 7470A - Mercury (CVA	A) - TCLP								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.020	U	0.020		mg/L		03/22/21 09:13	03/22/21 19:44	1

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-W-2

Date Collected: 03/16/21 13:25 Date Received: 03/17/21 10:30

Lab Sample ID: 680-196387-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.020	U	0.020		mg/L			03/19/21 15:29	20
Chlorobenzene	0.020	U	0.020		mg/L			03/19/21 15:29	20
Tetrachloroethene	0.020	U	0.020		mg/L			03/19/21 15:29	20
Carbon tetrachloride	0.020	U	0.020		mg/L			03/19/21 15:29	20
Chloroform	0.020	U	0.020		mg/L			03/19/21 15:29	20
Benzene	0.020	U	0.020		mg/L			03/19/21 15:29	20
Vinyl chloride	0.020	U	0.020		mg/L			03/19/21 15:29	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			03/19/21 15:29	20
2-Butanone (MEK)	0.20	U *+	0.20		mg/L			03/19/21 15:29	20
Trichloroethene	0.020	U	0.020		mg/L			03/19/21 15:29	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		70 - 130			-		03/19/21 15:29	20
1,2-Dichloroethane-d4 (Surr)	119		60 - 124					03/19/21 15:29	20
Dibromofluoromethane (Surr)	115		70 - 130					03/19/21 15:29	20
4-Bromofluorobenzene (Surr)	95		70 - 130					03/19/21 15:29	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyridine	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 20:03	1
2,4,5-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:03	1
2,4,6-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:03	1
2,4-Dinitrotoluene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:03	1
2-Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:03	1
3 & 4 Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:03	1
Hexachlorobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:03	1
Hexachlorobutadiene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:03	1
Hexachloroethane	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:03	1
Nitrobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:03	1
Pentachlorophenol	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 20:03	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	88		31 - 141	03/23/21 19:51	03/25/21 20:03	1
2-Fluorobiphenyl (Surr)	86		38 - 130	03/23/21 19:51	03/25/21 20:03	1
2-Fluorophenol (Surr)	72		25 - 130	03/23/21 19:51	03/25/21 20:03	1
Terphenyl-d14 (Surr)	44		10 - 143	03/23/21 19:51	03/25/21 20:03	1
Phenol-d5 (Surr)	79		25 - 130	03/23/21 19:51	03/25/21 20:03	1
Nitrobenzene-d5 (Surr)	88		39 - 130	03/23/21 19:51	03/25/21 20:03	1

Method: 8081B/8082A - 0	Organochlorine Pesticides and Poly	ychlorinated Biphenyl	s by Gas (Chromatography - TCLP
-------------------------	------------------------------------	-----------------------	------------	-----------------------

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 21:59	1
Chlordane (technical)	0.012	U	0.012	mg/L		03/24/21 18:23	03/25/21 21:59	1
gamma-BHC (Lindane)	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 21:59	1
Endrin	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 21:59	1
Methoxychlor	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 21:59	1
Heptachlor	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 21:59	1
Toxaphene	0.12	U	0.12	mg/L		03/24/21 18:23	03/25/21 21:59	1
PCB-1016	0.023	U	0.023	mg/L		03/24/21 18:23	03/25/21 21:59	1
PCB-1221	0.023	U	0.023	mg/L		03/24/21 18:23	03/25/21 21:59	1

Eurofins TestAmerica, Savannah

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Lab Sample ID: 680-196387-2

Matrice Matrice Mater

Matrix: Water

Job ID: 680-196387-1

Client	Sample	ID:	IDW-W-2
Date Co	Moctod: 0	3/16	124 43-25

Date Received: 03/17/21 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	0.023	U	0.023		mg/L		03/24/21 18:23	03/25/21 21:59	1
PCB-1242	0.023	U	0.023		mg/L		03/24/21 18:23	03/25/21 21:59	1
PCB-1248	0.023	U	0.023		mg/L		03/24/21 18:23	03/25/21 21:59	1
PCB-1254	0.023	U	0.023		mg/L		03/24/21 18:23	03/25/21 21:59	1
PCB-1260	0.023	U	0.023		mg/L		03/24/21 18:23	03/25/21 21:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		40 - 130				03/24/21 18:23	03/25/21 21:59	1
DCB Decachlorobiphenyl	5	S1-	14 - 130				03/24/21 18:23	03/25/21 21:59	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.20	U	0.20		mg/L		03/22/21 08:35	03/24/21 01:49	1
Barium	1.0	U	1.0		mg/L		03/22/21 08:35	03/24/21 01:49	1
Cadmium	0.10	U	0.10		mg/L		03/22/21 08:35	03/24/21 01:49	1
Chromium	0.20	U	0.20		mg/L		03/22/21 08:35	03/24/21 01:49	1
Lead	0.20	U	0.20		mg/L		03/22/21 08:35	03/24/21 01:49	1
Selenium	0.50	U	0.50		mg/L		03/22/21 08:35	03/24/21 01:49	1
Silver	0.10	U	0.10		mg/L		03/22/21 08:35	03/24/21 01:49	1

Method: 7470A - Mercury (CVA	A) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.020	U	0.020		mg/L		03/22/21 09:13	03/22/21 19:58	1

2

3

5

0

9

10

12

13

4/9/2021

Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-W-3 Lab Sample ID: 680-196387-3

Date Collected: 03/16/21 13:50 **Matrix: Water** Date Received: 03/17/21 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.020	U	0.020		mg/L			04/07/21 19:23	20
Chlorobenzene	0.020	U	0.020		mg/L			04/07/21 19:23	20
Tetrachloroethene	0.020	U	0.020		mg/L			04/07/21 19:23	20
Carbon tetrachloride	0.020	U	0.020		mg/L			04/07/21 19:23	20
Chloroform	0.020	U	0.020		mg/L			04/07/21 19:23	20
Benzene	0.020	U	0.020		mg/L			04/07/21 19:23	20
Vinyl chloride	0.020	U	0.020		mg/L			04/07/21 19:23	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			04/07/21 19:23	20
2-Butanone (MEK)	0.20	U	0.20		mg/L			04/07/21 19:23	20
Trichloroethene	0.020	U	0.020		mg/L			04/07/21 19:23	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		70 - 130					04/07/21 19:23	20
1,2-Dichloroethane-d4 (Surr)	99		60 - 124					04/07/21 19:23	20
Dibromofluoromethane (Surr)	102		70 - 130					04/07/21 19:23	20
4-Bromofluorobenzene (Surr)	97		70 - 130					04/07/21 19:23	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyridine	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 20:24	1
2,4,5-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:24	1
2,4,6-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:24	1
2,4-Dinitrotoluene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:24	1
2-Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:24	1
3 & 4 Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:24	1
Hexachlorobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:24	1
Hexachlorobutadiene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:24	1
Hexachloroethane	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:24	1
Nitrobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 20:24	1
Pentachlorophenol	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 20:24	1

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	87	31 - 141	03/23/21 19:51	03/25/21 20:24	1
2-Fluorobiphenyl (Surr)	91	38 - 130	03/23/21 19:51	03/25/21 20:24	1
2-Fluorophenol (Surr)	77	25 - 130	03/23/21 19:51	03/25/21 20:24	1
Terphenyl-d14 (Surr)	74	10 - 143	03/23/21 19:51	03/25/21 20:24	1
Phenol-d5 (Surr)	83	25 - 130	03/23/21 19:51	03/25/21 20:24	1
Nitrobenzene-d5 (Surr)	87	39 - 130	03/23/21 19:51	03/25/21 20:24	1

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor epoxide	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 22:15	1
Chlordane (technical)	0.012	U	0.012	mg/L		03/24/21 18:23	03/25/21 22:15	1
gamma-BHC (Lindane)	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 22:15	1
Endrin	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 22:15	1
Methoxychlor	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 22:15	1
Heptachlor	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/25/21 22:15	1
Toxaphene	0.12	U	0.12	mg/L		03/24/21 18:23	03/25/21 22:15	1
PCB-1016	0.024	U	0.024	mg/L		03/24/21 18:23	03/25/21 22:15	1
PCB-1221	0.024	U	0.024	mg/L		03/24/21 18:23	03/25/21 22:15	1

Eurofins TestAmerica, Savannah

Page 15 of 57

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Lab Sample ID: 680-196387-3

Matrix: Water

Job ID: 680-196387-1

Date Collected: 03/16/21 13:50 Date Received: 03/17/21 10:30

Client Sample ID: IDW-W-3

Method: 8081B/8082A - Org	ganochlorine Pesticides and I	Polychlo	rinated Bipheny	Is by (Gas Chroma	tography - T	CLP
(Continued)							
A I 4 .	D 16 . O 1161	ъ.	MDI II14		B	A I	D:: E

(Oontinaca)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 22:15	1
PCB-1242	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 22:15	1
PCB-1248	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 22:15	1
PCB-1254	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 22:15	1
PCB-1260	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 22:15	1
Surrogato	%Recovery	Qualifier	l imite				Prenared	Analyzod	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73		40 - 130	03/24/21 18:23	03/25/21 22:15	1
DCB Decachlorobiphenyl	14		14 - 130	03/24/21 18:23	03/25/21 22:15	1

Method. 60 100 - Metais (10P)) - ICLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.20	U	0.20		mg/L		03/22/21 08:35	03/24/21 01:54	1
Barium	1.0	U	1.0		mg/L		03/22/21 08:35	03/24/21 01:54	1
Cadmium	0.10	U	0.10		mg/L		03/22/21 08:35	03/24/21 01:54	1
Chromium	0.20	U	0.20		mg/L		03/22/21 08:35	03/24/21 01:54	1
Lead	0.20	U	0.20		mg/L		03/22/21 08:35	03/24/21 01:54	1
Selenium	0.50	U	0.50		mg/L		03/22/21 08:35	03/24/21 01:54	1
Silver	0.10	U	0.10		mg/L		03/22/21 08:35	03/24/21 01:54	1

Method: 7470A - Mercury (CVA	ethod: 7470A - Mercury (CVAA) - TCLP								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.020 L	J	0.020		mg/L		03/22/21 09:13	03/22/21 20:02	1

2

1

5

9

10

12

13

14

Job ID: 680-196387-1

Client Sample ID: IDW-S-1

Lab Sample ID: 680-196387-4

Matrix: Solid

Date Collected: 03/16/21 11:58 Date Received: 03/17/21 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.020	U	0.020		mg/L			03/28/21 13:04	20
2-Butanone (MEK)	0.20	U	0.20		mg/L			03/28/21 13:04	20
Carbon tetrachloride	0.020	U	0.020		mg/L			03/28/21 13:04	20
Chlorobenzene	0.020	U	0.020		mg/L			03/28/21 13:04	20
Chloroform	0.020	U	0.020		mg/L			03/28/21 13:04	20
1,4-Dichlorobenzene	0.020	U	0.020		mg/L			03/28/21 13:04	20
1,2-Dichloroethane	0.020	U	0.020		mg/L			03/28/21 13:04	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			03/28/21 13:04	20
Tetrachloroethene	0.020	U	0.020		mg/L			03/28/21 13:04	20
Trichloroethene	0.020	U	0.020		mg/L			03/28/21 13:04	20
Vinyl chloride	0.020	U	0.020		mg/L			03/28/21 13:04	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130					03/28/21 13:04	20
Dibromofluoromethane (Surr)	118		70 - 130					03/28/21 13:04	20
1,2-Dichloroethane-d4 (Surr)	104		60 - 124					03/28/21 13:04	20
Toluene-d8 (Surr)	112		70 - 130					03/28/21 13:04	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 20:45	1
Hexachlorobenzene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 20:45	1
Hexachlorobutadiene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 20:45	1
Hexachloroethane	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 20:45	1
2-Methylphenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 20:45	1
3 & 4 Methylphenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 20:45	1
Nitrobenzene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 20:45	1
Pentachlorophenol	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 20:45	1
Pyridine	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 20:45	1
2,4,5-Trichlorophenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 20:45	1
2,4,6-Trichlorophenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 20:45	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	97	38 - 130	03/23/21 19:51	03/25/21 20:45	1
2-Fluorophenol (Surr)	80	25 - 130	03/23/21 19:51	03/25/21 20:45	1
Nitrobenzene-d5 (Surr)	98	39 - 130	03/23/21 19:51	03/25/21 20:45	1
Phenol-d5 (Surr)	85	25 - 130	03/23/21 19:51	03/25/21 20:45	1
Terphenyl-d14 (Surr)	92	10 - 143	03/23/21 19:51	03/25/21 20:45	1
2,4,6-Tribromophenol (Surr)	93	31 - 141	03/23/21 19:51	03/25/21 20:45	1

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

motriour occipiocozit	organio omornio i	constant differentiated Diphonyle by				ous emoniategraphy 1021			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.012	U	0.012		mg/L		03/24/21 18:23	03/29/21 17:26	1
Endrin	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:26	1
gamma-BHC (Lindane)	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:26	1
Heptachlor	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:26	1
Heptachlor epoxide	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:26	1
Methoxychlor	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:26	1
Toxaphene	0.12	U	0.12		mg/L		03/24/21 18:23	03/29/21 17:26	1
PCB-1016	0.023	U	0.023		mg/L		03/24/21 18:23	03/29/21 17:26	1

Eurofins TestAmerica, Savannah

4

7

0

10

12

1 4

Client Sample Results

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - Wells

Job ID: 680-196387-1

Date Received: 03/17/21 10:30

Client Sample ID: IDW-S-1 Lab Sample ID: 680-196387-4

Date Collected: 03/16/21 11:58

Matrix: Solid

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

(Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	0.023	U	0.023		mg/L		03/24/21 18:23	03/29/21 17:26	1
PCB-1232	0.023	U	0.023		mg/L		03/24/21 18:23	03/29/21 17:26	1
PCB-1242	0.023	U	0.023		mg/L		03/24/21 18:23	03/29/21 17:26	1
PCB-1248	0.023	U	0.023		mg/L		03/24/21 18:23	03/29/21 17:26	1
PCB-1254	0.023	U	0.023		mg/L		03/24/21 18:23	03/29/21 17:26	1
PCB-1260	0.023	U	0.023		mg/L		03/24/21 18:23	03/29/21 17:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	102		14 - 130	03/24/21 18:23	03/29/21 17:26	1
Tetrachloro-m-xylene	72		40 - 130	03/24/21 18:23	03/29/21 17:26	1

Method: 6010C - Metals (ICF	P) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 19:44	1
Barium	1.0	U	1.0		mg/L		03/24/21 12:07	03/24/21 19:44	1
Cadmium	0.10	U	0.10		mg/L		03/24/21 12:07	03/24/21 19:44	1
Chromium	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 19:44	1
Lead	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 19:44	1
Selenium	0.50	U	0.50		mg/L		03/24/21 12:07	03/24/21 19:44	1
Silver	0.10	U F1	0.10		mg/L		03/24/21 12:07	03/24/21 19:44	1

Method: 7470A - Mercury (CVA	A) - TCLP									
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.020 U		0.020		ma/l		03/23/21 15:49	03/24/21 13:52		

General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Ignitability	NB				mm/sec			03/19/21 11:55	1

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-S-2

Date Collected: 03/16/21 12:05 Date Received: 03/17/21 10:30 Lab Sample ID: 680-196387-5

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.020	U	0.020		mg/L			03/28/21 13:29	20
2-Butanone (MEK)	0.20	U	0.20		mg/L			03/28/21 13:29	20
Carbon tetrachloride	0.020	U	0.020		mg/L			03/28/21 13:29	20
Chlorobenzene	0.020	U	0.020		mg/L			03/28/21 13:29	20
Chloroform	0.020	U	0.020		mg/L			03/28/21 13:29	20
1,4-Dichlorobenzene	0.020	U	0.020		mg/L			03/28/21 13:29	20
1,2-Dichloroethane	0.020	U	0.020		mg/L			03/28/21 13:29	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			03/28/21 13:29	20
Tetrachloroethene	0.020	U	0.020		mg/L			03/28/21 13:29	20
Trichloroethene	0.020	U	0.020		mg/L			03/28/21 13:29	20
Vinyl chloride	0.020	U	0.020		mg/L			03/28/21 13:29	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130					03/28/21 13:29	20
Dibromofluoromethane (Surr)	119		70 - 130					03/28/21 13:29	20
1,2-Dichloroethane-d4 (Surr)	106		60 - 124					03/28/21 13:29	20
Toluene-d8 (Surr)	111		70 - 130					03/28/21 13:29	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:07	1
Hexachlorobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:07	1
Hexachlorobutadiene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:07	1
Hexachloroethane	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:07	1
2-Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:07	1
3 & 4 Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:07	1
Nitrobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:07	1
Pentachlorophenol	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 21:07	1
Pyridine	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 21:07	1
2,4,5-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:07	1
2,4,6-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:07	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	101		38 - 130	03/23/21 19:51	03/25/21 21:07	1
2-Fluorophenol (Surr)	86		25 - 130	03/23/21 19:51	03/25/21 21:07	1
Nitrobenzene-d5 (Surr)	100		39 - 130	03/23/21 19:51	03/25/21 21:07	1
Phenol-d5 (Surr)	90		25 - 130	03/23/21 19:51	03/25/21 21:07	1
Terphenyl-d14 (Surr)	101		10 - 143	03/23/21 19:51	03/25/21 21:07	1
2,4,6-Tribromophenol (Surr)	94		31 - 141	03/23/21 19:51	03/25/21 21:07	1

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

motrical coci biocoli t	Organio omio mio m	ootioidoo t		matou	Dipilon,	,,	Out office	tograpily is	· — ·
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.012	U	0.012		mg/L		03/24/21 18:23	03/29/21 17:42	1
Endrin	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:42	1
gamma-BHC (Lindane)	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:42	1
Heptachlor	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:42	1
Heptachlor epoxide	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:42	1
Methoxychlor	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/29/21 17:42	1
Toxaphene	0.12	U	0.12		mg/L		03/24/21 18:23	03/29/21 17:42	1
PCB-1016	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 17:42	1

Eurofins TestAmerica, Savannah

Page 19 of 57

2

Δ

6

8

10

11

13

14

15

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Lab Sample ID: 680-196387-5 Client Sample ID: IDW-S-2

Date Collected: 03/16/21 12:05 **Matrix: Solid** Date Received: 03/17/21 10:30

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TC	:LP
(Continued)	

(Oontinued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 17:42	1
PCB-1232	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 17:42	1
PCB-1242	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 17:42	1
PCB-1248	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 17:42	1
PCB-1254	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 17:42	1
PCB-1260	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared Ar	nalyzed	Dil Fac
DCB Decachlorobiphenyl	102		14 - 130	03/24/21 18:23 03/29	9/21 17:42	1
Tetrachloro-m-xylene	73		40 - 130	03/24/21 18:23 03/29	9/21 17:42	1

Method: 6010C - Metal	S (ICP) - ICLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 20:19	1
Barium	1.0	U	1.0		mg/L		03/24/21 12:07	03/24/21 20:19	1
Cadmium	0.10	U	0.10		mg/L		03/24/21 12:07	03/24/21 20:19	1
Chromium	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 20:19	1
Lead	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 20:19	1
Selenium	0.50	U	0.50		mg/L		03/24/21 12:07	03/24/21 20:19	1
Silver	0.10	U	0.10		mg/L		03/24/21 12:07	03/24/21 20:19	1

Method: 7470A - Mercury (CVAA) - TCLP											
	Analyte	Result	Qualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
	Mercury	0.020	U	0.020		mg/L		03	3/23/21 15:49	03/24/21 14:15	1

General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Ignitability	NB				mm/sec			03/19/21 11:55	1

Job ID: 680-196387-1

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-S-3

Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

Lab Sample ID: 680-196387-6

Date Collected: 03/16/21 12:20 **Matrix: Solid** Date Received: 03/17/21 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.020	U	0.020		mg/L			03/28/21 13:55	20
2-Butanone (MEK)	0.20	U	0.20		mg/L			03/28/21 13:55	20
Carbon tetrachloride	0.020	U	0.020		mg/L			03/28/21 13:55	20
Chlorobenzene	0.020	U	0.020		mg/L			03/28/21 13:55	20
Chloroform	0.020	U	0.020		mg/L			03/28/21 13:55	20
1,4-Dichlorobenzene	0.020	U	0.020		mg/L			03/28/21 13:55	20
1,2-Dichloroethane	0.020	U	0.020		mg/L			03/28/21 13:55	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			03/28/21 13:55	20
Tetrachloroethene	0.020	U	0.020		mg/L			03/28/21 13:55	20
Trichloroethene	0.020	U	0.020		mg/L			03/28/21 13:55	20
Vinyl chloride	0.020	U	0.020		mg/L			03/28/21 13:55	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130					03/28/21 13:55	20
Dibromofluoromethane (Surr)	119		70 - 130					03/28/21 13:55	20
1,2-Dichloroethane-d4 (Surr)	105		60 - 124					03/28/21 13:55	20
Toluene-d8 (Surr)	112		70 - 130					03/28/21 13:55	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:28	1
Hexachlorobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:28	1
Hexachlorobutadiene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:28	1
Hexachloroethane	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:28	1
2-Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:28	1
3 & 4 Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:28	1
Nitrobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:28	1
Pentachlorophenol	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 21:28	1
Pyridine	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 21:28	1
2,4,5-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:28	1
2,4,6-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 21:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	96		38 - 130				03/23/21 19:51	03/25/21 21:28	1
2-Fluorophenol (Surr)	82		25 - 130				03/23/21 19:51	03/25/21 21:28	1
Nitrobenzene-d5 (Surr)	99		39 - 130				03/23/21 19:51	03/25/21 21:28	1
Phenol-d5 (Surr)	89		25 - 130				03/23/21 19:51	03/25/21 21:28	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.011	U	0.011		mg/L		03/24/21 18:23	03/29/21 17:58	1
Endrin	0.0011	U	0.0011		mg/L		03/24/21 18:23	03/29/21 17:58	1
gamma-BHC (Lindane)	0.0011	U	0.0011		mg/L		03/24/21 18:23	03/29/21 17:58	1
Heptachlor	0.0011	U	0.0011		mg/L		03/24/21 18:23	03/29/21 17:58	1
Heptachlor epoxide	0.0011	U	0.0011		mg/L		03/24/21 18:23	03/29/21 17:58	1
Methoxychlor	0.0011	U	0.0011		mg/L		03/24/21 18:23	03/29/21 17:58	1
Toxaphene	0.11	U	0.11		mg/L		03/24/21 18:23	03/29/21 17:58	1
PCB-1016	0.022	U	0.022		mg/L		03/24/21 18:23	03/29/21 17:58	1

10 - 143

31 - 141

89

Eurofins TestAmerica, Savannah

03/23/21 19:51 03/25/21 21:28

03/23/21 19:51 03/25/21 21:28

Page 21 of 57

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-S-3

Lab Sample ID: 680-196387-6 Date Collected: 03/16/21 12:20 **Matrix: Solid**

Date Received: 03/17/21 10:30

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLF)
(Continued)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	0.022	U	0.022		mg/L		03/24/21 18:23	03/29/21 17:58	1
PCB-1232	0.022	U	0.022		mg/L		03/24/21 18:23	03/29/21 17:58	1
PCB-1242	0.022	U	0.022		mg/L		03/24/21 18:23	03/29/21 17:58	1
PCB-1248	0.022	U	0.022		mg/L		03/24/21 18:23	03/29/21 17:58	1
PCB-1254	0.022	U	0.022		mg/L		03/24/21 18:23	03/29/21 17:58	1
PCB-1260	0.022	U	0.022		mg/L		03/24/21 18:23	03/29/21 17:58	1
	0/5	0	1 1 14				5	A t	D.// E

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	98		14 - 130	03/24/21 18:23	03/29/21 17:58	1
Tetrachloro-m-xylene	67		40 - 130	03/24/21 18:23	03/29/21 17:58	1

Method: 6010C - Metals (ICP) - TCLP

Method. 60 roc - Meta	is (ICP) - ICLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 20:24	1
Barium	1.0	U	1.0		mg/L		03/24/21 12:07	03/24/21 20:24	1
Cadmium	0.10	U	0.10		mg/L		03/24/21 12:07	03/24/21 20:24	1
Chromium	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 20:24	1
Lead	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 20:24	1
Selenium	0.50	U	0.50		mg/L		03/24/21 12:07	03/24/21 20:24	1
Silver	0.10	U	0.10		mg/L		03/24/21 12:07	03/24/21 20:24	1

Method: 7470A - Mercury (CVA	A) - TCLP						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.020 []	0.020	ma/l		03/23/21 15:49	03/24/21 14:20	

General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Ignitability	NB				mm/sec			03/19/21 11:55	1

Job ID: 680-196387-1

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-S-4

Date Collected: 03/16/21 12:30 Date Received: 03/17/21 10:30 Lab Sample ID: 680-196387-7

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.020	U	0.020		mg/L			03/28/21 14:20	20
2-Butanone (MEK)	0.20	U	0.20		mg/L			03/28/21 14:20	20
Carbon tetrachloride	0.020	U	0.020		mg/L			03/28/21 14:20	20
Chlorobenzene	0.020	U	0.020		mg/L			03/28/21 14:20	20
Chloroform	0.020	U	0.020		mg/L			03/28/21 14:20	20
1,4-Dichlorobenzene	0.020	U	0.020		mg/L			03/28/21 14:20	20
1,2-Dichloroethane	0.020	U	0.020		mg/L			03/28/21 14:20	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			03/28/21 14:20	20
Tetrachloroethene	0.020	U	0.020		mg/L			03/28/21 14:20	20
Trichloroethene	0.020	U	0.020		mg/L			03/28/21 14:20	20
Vinyl chloride	0.020	U	0.020		mg/L			03/28/21 14:20	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130					03/28/21 14:20	20
Dibromofluoromethane (Surr)	118		70 - 130					03/28/21 14:20	20
1,2-Dichloroethane-d4 (Surr)	103		60 - 124					03/28/21 14:20	20
Toluene-d8 (Surr)	112		70 - 130					03/28/21 14:20	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 21:49	1
Hexachlorobenzene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 21:49	1
Hexachlorobutadiene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 21:49	1
Hexachloroethane	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 21:49	1
2-Methylphenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 21:49	1
3 & 4 Methylphenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 21:49	1
Nitrobenzene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 21:49	1
Pentachlorophenol	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 21:49	1
Pyridine	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 21:49	1
2,4,5-Trichlorophenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 21:49	1
2,4,6-Trichlorophenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 21:49	1

Surrogate	%Recovery Qu	ıalifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	101	38 - 130	03/23/21 19:51	03/25/21 21:49	1
2-Fluorophenol (Surr)	81	25 - 130	03/23/21 19:51	03/25/21 21:49	1
Nitrobenzene-d5 (Surr)	100	39 - 130	03/23/21 19:51	03/25/21 21:49	1
Phenol-d5 (Surr)	86	25 - 130	03/23/21 19:51	03/25/21 21:49	1
Terphenyl-d14 (Surr)	106	10 - 143	03/23/21 19:51	03/25/21 21:49	1
2,4,6-Tribromophenol (Surr)	94	31 - 141	03/23/21 19:51	03/25/21 21:49	1

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

					,			
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.012	U	0.012	mg/L		03/24/21 18:23	03/29/21 18:14	1
Endrin	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/29/21 18:14	1
gamma-BHC (Lindane)	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/29/21 18:14	1
Heptachlor	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/29/21 18:14	1
Heptachlor epoxide	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/29/21 18:14	1
Methoxychlor	0.0012	U	0.0012	mg/L		03/24/21 18:23	03/29/21 18:14	1
Toxaphene	0.12	U	0.12	mg/L		03/24/21 18:23	03/29/21 18:14	1
PCB-1016	0.024	U F1 F2	0.024	mg/L		03/24/21 18:23	03/29/21 18:14	1

Eurofins TestAmerica, Savannah

Page 23 of 57

2

3

5

8

9

11

12

14

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Lab Sample ID: 680-196387-7

Job ID: 680-196387-1

Client Sample ID: IDW-S-4 Date Collected: 03/16/21 12:30

Matrix: Solid Date Received: 03/17/21 10:30

(Continued)			_			_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 18:14	1
PCB-1232	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 18:14	1
PCB-1242	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 18:14	1
PCB-1248	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 18:14	1
PCB-1254	0.024	U	0.024		mg/L		03/24/21 18:23	03/29/21 18:14	1
PCB-1260	0.024	U F2	0.024		mg/L		03/24/21 18:23	03/29/21 18:14	1

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography - TCLP

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	108		14 - 130	03/24/21 18:23	03/29/21 18:14	1
Tetrachloro-m-xylene	74		40 - 130	03/24/21 18:23	03/29/21 18:14	1

Method: 6010C - Meta	als (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 20:28	1
Barium	1.0	U	1.0		mg/L		03/24/21 12:07	03/24/21 20:28	1
Cadmium	0.10	U	0.10		mg/L		03/24/21 12:07	03/24/21 20:28	1
Chromium	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 20:28	1
Lead	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 20:28	1
Selenium	0.50	U	0.50		mg/L		03/24/21 12:07	03/24/21 20:28	1
Silver	0.10	U	0.10		ma/l		03/24/21 12:07	03/24/21 20:28	1

Method: 7470A - Mercury (CVA	A) - TCLP							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.020 U	0.020	ma/l		03/23/21 15:49	03/24/21 14:24	1	

General Chemistry									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Ignitability	NB				mm/sec			03/19/21 11:55	1

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		DCA	DBFM	TOL	BFB
Lab Sample ID	Client Sample ID	(60-124)	(70-130)	(70-130)	(70-130)
LCS 680-661698/4	Lab Control Sample	101	109	108	96
LCSD 680-661698/5	Lab Control Sample Dup	103	110	108	97
MB 680-661698/9	Method Blank	103	116	112	107
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr) DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Prep Type: TCLP Matrix: Solid

			Pe	ercent Surre	ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(60-124)	(70-130)
680-196387-4	IDW-S-1	107	118	104	112
680-196387-5	IDW-S-2	107	119	106	111
680-196387-6	IDW-S-3	104	119	105	112
680-196387-7	IDW-S-4	104	118	103	112
LB 680-660980/1-A	Method Blank	105	118	104	111
Currenate Langua					

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		DCA	DBFM	TOL	BFB
Lab Sample ID	Client Sample ID	(60-124)	(70-130)	(70-130)	(70-130)
LCS 680-660370/5	Lab Control Sample	125 S1+	113	104	97
LCS 680-663093/5	Lab Control Sample	108	104	107	101
LCSD 680-660370/6	Lab Control Sample Dup	132 S1+	120	102	97
LCSD 680-663093/6	Lab Control Sample Dup	111	107	105	99
MB 680-660370/10	Method Blank	115	112	105	96
MB 680-663093/10	Method Blank	99	102	106	100

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Page 25 of 57

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: TCLP

			Pe	ercent Surre	ogate Reco
		TOL	DCA	DBFM	BFB
Lab Sample ID	Client Sample ID	(70-130)	(60-124)	(70-130)	(70-130)
680-196387-1	IDW-W-1	104	117	110	96
680-196387-2	IDW-W-2	101	119	115	95
680-196387-3	IDW-W-3	105	99	102	97
LB 680-660420/1-A	Method Blank	105	116	114	97
LB 680-663119/1-A	Method Blank	104	99	102	100

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		FBP	2FP	TBP	TPHL	PHL	NBZ		
Lab Sample ID	Client Sample ID	(38-130)	(25-130)	(31-141)	(10-143)	(25-130)	(39-130)		
LCS 680-661013/15-A	Lab Control Sample	92	85	93	115	77	91		
MB 680-661013/14-A	Method Blank	83	70	79	92	73	83		

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

TPHL = Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

NBZ = Nitrobenzene-d5 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: TCLP

_			Percent Surrogate Recovery (Acceptance Limits)						
		FBP	2FP	NBZ	PHL	TPHL	TBP		
Lab Sample ID	Client Sample ID	(38-130)	(25-130)	(39-130)	(25-130)	(10-143)	(31-141)		
680-196387-4	IDW-S-1	97	80	98	85	92	93		
680-196387-5	IDW-S-2	101	86	100	90	101	94		
680-196387-6	IDW-S-3	96	82	99	89	89	90		
680-196387-7	IDW-S-4	101	81	100	86	106	94		
LB 680-660636/1-E	Method Blank	93	73	88	79	98	91		

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: TCLP

_			Percent Surrogate Recovery (Acceptance Limits)						
		TBP	FBP	2FP	TPHL	PHL	NBZ		
Lab Sample ID	Client Sample ID	(31-141)	(38-130)	(25-130)	(10-143)	(25-130)	(39-130)		
680-196387-1	IDW-W-1	93	79	72	38	79	91		
680-196387-2	IDW-W-2	88	86	72	44	79	88		
680-196387-3	IDW-W-3	87	91	77	74	83	87		
LB 680-660404/1-E	Method Blank	97	100	87	99	87	96		

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

TPHL = Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

NBZ = Nitrobenzene-d5 (Surr)

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

Chromatography

Matrix: Solid Prep Type: TCLP

		Percent Surrogate Recovery (Acceptance Limits)					
		DCBP1	TCX1				
Lab Sample ID	Client Sample ID	(14-130)	40-130)				
680-196387-4	IDW-S-1	102	72				
680-196387-4 MS	IDW-S-1	102	82				
680-196387-4 MSD	IDW-S-1	93	75				
680-196387-5	IDW-S-2	102	73				
680-196387-6	IDW-S-3	98	67				
680-196387-7	IDW-S-4	108	74				
680-196387-7 MS	IDW-S-4	50	36 S1-				
680-196387-7 MSD	IDW-S-4	97	75				
LB 680-660636/1-F	Method Blank	88	65				

DCBP = DCB Decachlorobiphenyl

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX2	DCBP1					
Lab Sample ID	Client Sample ID	(40-130)	(14-130)					
LCS 680-661180/12-A	Lab Control Sample	80	89					
LCS 680-661180/15-A	Lab Control Sample	73	75					
MB 680-661180/11-A	Method Blank	72	80					
Surrogate Legend								
TCX = Tetrachloro-m-x	ylene							

Page 27 of 57

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

Chromatography

Matrix: Water Prep Type: Total/NA

	Percent Surrogate Recovery (Acceptance Limits)
TCX1	DCBP1

 Lab Sample ID
 Client Sample ID
 (40-130)
 (14-130)

 LCS 680-661180/18-A
 Lab Control Sample
 73
 69

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas

Chromatography

Matrix: Water Prep Type: TCLP

			Pe
		TCX1	DCBP1
Lab Sample ID	Client Sample ID	(40-130)	(14-130)
680-196387-1	IDW-W-1	70	5 S1-
680-196387-2	IDW-W-2	73	5 S1-
680-196387-3	IDW-W-3	73	14
Surrogate Legend			

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

Matrix: Water Prep Type: TCLP

			Percent Surrogate Recovery (Acceptance					
		TCX2	DCBP1					
Lab Sample ID	Client Sample ID	(40-130)	(14-130)					
680-196387-3 MS	IDW-W-3	72	12 S1-					
680-196387-3 MSD	IDW-W-3	70	14					
LB 680-660404/1-F	Method Blank	71	89					
Surrogate Legend								

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Eurofins TestAmerica, Savannah

2

4

6

6

3

11

13

16

Client: Geosyntec Consultants, Inc. Job ID: 680-196387-1 Project/Site: Hercules Brunswick - Wells

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-660370/10

Matrix: Water

Analysis Batch: 660370

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Carbon tetrachloride 0.0010 U 0.0010 mg/L 03/19/21 14:14 Chlorobenzene 0.0010 U 0.0010 mg/L 03/19/21 14:14 Benzene 0.0010 U 0.0010 mg/L 03/19/21 14:14 Chloroform 0.0010 U 0.0010 03/19/21 14:14 mg/L 1,2-Dichloroethane 0.0010 U 0.0010 mg/L 03/19/21 14:14 2-Butanone (MEK) 0.010 U 0.010 mg/L 03/19/21 14:14 1,1-Dichloroethene 0.0010 U 0.0010 03/19/21 14:14 mg/L Tetrachloroethene 0.0010 U 0.0010 mg/L 03/19/21 14:14 Trichloroethene 0.0010 U 0.0010 mg/L 03/19/21 14:14 Vinyl chloride 03/19/21 14:14 0.0010 U 0.0010 mg/L

MB MB

Surrogate	%Recovery Qualifie	r Limits	Prepared Analyzed	l Dil Fac
1,2-Dichloroethane-d4 (Surr)	115	60 - 124	03/19/21 14	:14 1
Dibromofluoromethane (Surr)	112	70 - 130	03/19/21 14	:14 1
Toluene-d8 (Surr)	105	70 - 130	03/19/21 14	:14 1
4-Bromofluorobenzene (Surr)	96	70 - 130	03/19/21 14	:14 1

Lab Sample ID: LCS 680-660370/5

Matrix: Water

Analysis Batch: 660370

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Carbon tetrachloride	0.0500	0.0614		mg/L		123	70 - 130	
Chlorobenzene	0.0500	0.0497		mg/L		99	70 - 130	
Benzene	0.0500	0.0478		mg/L		96	70 - 130	
Chloroform	0.0500	0.0535		mg/L		107	70 - 130	
1,2-Dichloroethane	0.0500	0.0613		mg/L		123	70 - 130	
2-Butanone (MEK)	0.250	0.283		mg/L		113	69 - 114	
1,1-Dichloroethene	0.0500	0.0533		mg/L		107	70 - 130	
Tetrachloroethene	0.0500	0.0628		mg/L		126	70 - 130	
Trichloroethene	0.0500	0.0551		mg/L		110	70 - 130	
Vinyl chloride	0.0500	0.0503		mg/L		101	66 - 129	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	125	S1+	60 - 124
Dibromofluoromethane (Surr)	113		70 - 130
Toluene-d8 (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Lab Sample ID: LCSD 680-660370/6

Matrix: Water

Analysis Batch: 660370

Client Sample ID: Lab 0	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	RPD	Limit
Carbon tetrachloride	0.0500	0.0565	mg/L	113	70 - 130	8	30
Chlorobenzene	0.0500	0.0502	mg/L	100	70 - 130	1	30
Benzene	0.0500	0.0486	mg/L	97	70 - 130	2	30
Chloroform	0.0500	0.0541	mg/L	108	70 - 130	1	30

Eurofins TestAmerica, Savannah

Page 29 of 57 4/9/2021

Client: Geosyntec Consultants, Inc. Job ID: 680-196387-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-660370/6

Project/Site: Hercules Brunswick - Wells

Matrix: Water

Analysis Batch: 660370

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD **RPD** Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 1,2-Dichloroethane 0.0500 0.0642 mg/L 128 70 - 130 5 50 2-Butanone (MEK) 0.250 0.300 *+ mg/L 120 69 - 114 6 30 1,1-Dichloroethene 0.0500 0.0472 94 70 - 130 20 mg/L 12 Tetrachloroethene 0.0500 0.0596 mg/L 119 70 - 130 5 30 Trichloroethene 0.0500 0.0533 mg/L 107 70 - 130 3 30 0.0500 66 - 129 30 Vinyl chloride 0.0408 mg/L 82 21

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	132	S1+	60 - 124
Dibromofluoromethane (Surr)	120		70 - 130
Toluene-d8 (Surr)	102		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 661698

Lab Sample ID: MB 680-661698/9

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Carbon tetrachloride 0.0010 U 0.0010 mg/L 03/28/21 12:12 Chlorobenzene 0.0010 U 0.0010 mg/L 03/28/21 12:12 Benzene 0.0010 U 0.0010 mg/L 03/28/21 12:12 Chloroform 0.0010 U 0.0010 03/28/21 12:12 mg/L 1,4-Dichlorobenzene 0.0010 U 0.0010 mg/L 03/28/21 12:12 1,2-Dichloroethane 0.0010 U 0.0010 03/28/21 12:12 mg/L 2-Butanone (MEK) 0.010 U 0.010 mg/L 03/28/21 12:12 1,1-Dichloroethene 0.0010 U 0.0010 mg/L 03/28/21 12:12 Tetrachloroethene 0.0010 U 0.0010 mg/L 03/28/21 12:12 Trichloroethene 0.0010 U 0.0010 03/28/21 12:12 mg/L 0.0010 U 03/28/21 12:12 Vinyl chloride 0.0010 mg/L

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	103		60 - 124	-		03/28/21 12:12	1	
Dibromofluoromethane (Surr)	116		70 - 130			03/28/21 12:12	1	
Toluene-d8 (Surr)	112		70 - 130			03/28/21 12:12	1	
4-Bromofluorobenzene (Surr)	107		70 - 130			03/28/21 12:12	1	

Lab Sample ID: LCS 680-661698/4

Matrix: Solid

Analysis Batch: 661698

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Carbon tetrachloride	0.0500	0.0540		mg/L		108	70 - 130	
Chlorobenzene	0.0500	0.0565		mg/L		113	70 - 130	
Benzene	0.0500	0.0558		mg/L		112	70 - 130	
Chloroform	0.0500	0.0521		mg/L		104	70 - 130	
1,4-Dichlorobenzene	0.0500	0.0536		mg/L		107	70 - 130	
1,2-Dichloroethane	0.0500	0.0513		mg/L		103	70 - 130	
2-Butanone (MEK)	0.250	0.262		mg/L		105	69 - 114	

Eurofins TestAmerica, Savannah

Page 30 of 57

QC Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 680-661698/4

Matrix: Solid

Analysis Batch: 661698

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	0.0500	0.0534		mg/L		107	70 - 130	
Tetrachloroethene	0.0500	0.0588		mg/L		118	70 - 130	
Trichloroethene	0.0500	0.0583		mg/L		117	70 - 130	
Vinyl chloride	0.0500	0.0505		mg/L		101	66 - 129	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		60 - 124
Dibromofluoromethane (Surr)	109		70 - 130
Toluene-d8 (Surr)	108		70 - 130
4-Bromofluorobenzene (Surr)	96		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 661698

Lab Sample ID: LCSD 680-661698/5

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon tetrachloride	0.0500	0.0538		mg/L		108	70 - 130	0	30
Chlorobenzene	0.0500	0.0557		mg/L		111	70 - 130	1	30
Benzene	0.0500	0.0554		mg/L		111	70 - 130	1	30
Chloroform	0.0500	0.0527		mg/L		105	70 - 130	1	30
1,4-Dichlorobenzene	0.0500	0.0544		mg/L		109	70 - 130	1	30
1,2-Dichloroethane	0.0500	0.0529		mg/L		106	70 - 130	3	50
2-Butanone (MEK)	0.250	0.275		mg/L		110	69 - 114	5	30
1,1-Dichloroethene	0.0500	0.0522		mg/L		104	70 - 130	2	20
Tetrachloroethene	0.0500	0.0583		mg/L		117	70 - 130	1	30
Trichloroethene	0.0500	0.0590		mg/L		118	70 - 130	1	30
Vinyl chloride	0.0500	0.0504		mg/L		101	66 - 129	0	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		60 - 124
Dibromofluoromethane (Surr)	110		70 - 130
Toluene-d8 (Surr)	108		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130

Lab Sample ID: MB 680-663093/10 **Client Sample ID: Method Blank** Prep Type: Total/NA

Analysis Batch: 663093

Matrix: Water

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	0.0010	U	0.0010		mg/L			04/07/21 15:40	1
Chlorobenzene	0.0010	U	0.0010		mg/L			04/07/21 15:40	1
Benzene	0.0010	U	0.0010		mg/L			04/07/21 15:40	1
Chloroform	0.0010	U	0.0010		mg/L			04/07/21 15:40	1
1,2-Dichloroethane	0.0010	U	0.0010		mg/L			04/07/21 15:40	1
2-Butanone (MEK)	0.010	U	0.010		mg/L			04/07/21 15:40	1
1,1-Dichloroethene	0.0010	U	0.0010		mg/L			04/07/21 15:40	1
Tetrachloroethene	0.0010	U	0.0010		mg/L			04/07/21 15:40	1
Trichloroethene	0.0010	U	0.0010		mg/L			04/07/21 15:40	1

Eurofins TestAmerica, Savannah

Page 31 of 57

Client: Geosyntec Consultants, Inc. Job ID: 680-196387-1

Project/Site: Hercules Brunswick - Wells

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

0.0010 U

Lab Sample ID: MB 680-663093/10

Matrix: Water

Analyte

Vinyl chloride

Analysis Batch: 663093

MB MB Result Qualifier RL Unit Prepared Analyzed Dil Fac

mg/L

MR MR Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 99 60 - 124 04/07/21 15:40 Dibromofluoromethane (Surr) 102 70 - 130 04/07/21 15:40 Toluene-d8 (Surr) 106 70 - 130 04/07/21 15:40 100 70 - 130 04/07/21 15:40 4-Bromofluorobenzene (Surr)

0.0010

Lab Sample ID: LCS 680-663093/5

Matrix: Water

Analysis Batch: 663093

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

04/07/21 15:40

Prep Type: Total/NA

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 0.0500 70 - 130 Carbon tetrachloride 0.0496 mg/L 99 0.0500 0.0515 103 Chlorobenzene mg/L 70 - 130 110 Benzene 0.0500 0.0550 mg/L 70 - 130 Chloroform 0.0500 110 70 - 130 0.0549 mg/L 1,2-Dichloroethane 0.0500 0.0539 108 70 - 130 mg/L 2-Butanone (MEK) 0.250 0.251 mg/L 101 69 - 114 1,1-Dichloroethene 0.0500 0.0496 99 70 - 130 mg/L Tetrachloroethene 0.0500 0.0448 90 70 - 130 mg/L Trichloroethene 0.0500 0.0458 92 70 - 130 mg/L Vinyl chloride 0.0500 0.0464 mg/L 93 66 - 129

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		60 - 124
Dibromofluoromethane (Surr)	104		70 - 130
Toluene-d8 (Surr)	107		70 - 130
4-Bromofluorobenzene (Surr)	101		70 - 130

Lab Sample ID: LCSD 680-663093/6

Matrix: Water

Analysis Batch: 663093

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

•	Spike	LCSD LCSD				%Rec.		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon tetrachloride	0.0500	0.0475	mg/L		95	70 - 130	4	30
Chlorobenzene	0.0500	0.0510	mg/L		102	70 - 130	1	30
Benzene	0.0500	0.0547	mg/L		109	70 - 130	1	30
Chloroform	0.0500	0.0557	mg/L		111	70 - 130	1	30
1,2-Dichloroethane	0.0500	0.0566	mg/L		113	70 - 130	5	50
2-Butanone (MEK)	0.250	0.266	mg/L		106	69 - 114	6	30
1,1-Dichloroethene	0.0500	0.0470	mg/L		94	70 - 130	5	20
Tetrachloroethene	0.0500	0.0436	mg/L		87	70 - 130	3	30
Trichloroethene	0.0500	0.0447	mg/L		89	70 - 130	2	30
Vinyl chloride	0.0500	0.0457	mg/L		91	66 - 129	1	30

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 111 60 - 124

Eurofins TestAmerica, Savannah

Page 32 of 57

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 680-663093/6

Matrix: Water

Analysis Batch: 663093

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	107		70 - 130
Toluene-d8 (Surr)	105		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

Lab Sample ID: LB 680-660420/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 660370

Prep Type: TCLP

LB LB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.020 U Carbon tetrachloride 0.020 mg/L 03/19/21 14:39 20 Chlorobenzene 0.020 U 03/19/21 14:39 20 0.020 mg/L Benzene 0.020 U 0.020 mg/L 03/19/21 14:39 20 Chloroform 0.020 U 0.020 mg/L 03/19/21 14:39 20 20 1,2-Dichloroethane 0.020 U 0.020 mg/L 03/19/21 14:39 2-Butanone (MEK) 20 0.20 U 0.20 mg/L 03/19/21 14:39 1,1-Dichloroethene 0.020 03/19/21 14:39 20 0.020 U mg/L Tetrachloroethene 20 0.020 U 0.020 mq/L 03/19/21 14:39 Trichloroethene 20 0.020 U 0.020 mg/L 03/19/21 14:39 Vinyl chloride 0.020 U 0.020 mg/L 03/19/21 14:39 20

LB LB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		60 - 124		03/19/21 14:39	20
Dibromofluoromethane (Surr)	114		70 - 130		03/19/21 14:39	20
Toluene-d8 (Surr)	105		70 - 130		03/19/21 14:39	20
4-Bromofluorobenzene (Surr)	97		70 - 130		03/19/21 14:39	20

Lab Sample ID: LB 680-660980/1-A

Matrix: Solid

Carbon tetrachloride

Analyte

Analysis Batch: 661698

Client Sample ID: Method Blank Prep Type: TCLP

 Result 0.020
 Qualifier U 0.020
 RL 0.020
 MDL mg/L mg/L
 D mg/L 0.020
 Prepared 0.02/03/28/21 12:38
 Analyzed 0.03/28/21 12:38

 0.020
 U 0.020
 mg/L 0.020
 0.020/03/28/21 12:38

Chlorobenzene 0.020 U 03/28/21 12:38 20 Benzene 0.020 U 20 0.020 mg/L 03/28/21 12:38 Chloroform 0.020 U 03/28/21 12:38 20 0.020 mg/L 1,4-Dichlorobenzene 0.020 U 0.020 mg/L 03/28/21 12:38 20 1,2-Dichloroethane 0.020 20 0.020 U mg/L 03/28/21 12:38 2-Butanone (MEK) 0.20 U 0.20 mg/L 03/28/21 12:38 20 1.1-Dichloroethene 0.020 U 0.020 mg/L 03/28/21 12:38 20 Tetrachloroethene 0.020 U 0.020 mg/L 03/28/21 12:38 20 Trichloroethene 0.020 U 0.020 mg/L 03/28/21 12:38 20 mg/L Vinyl chloride 0.020 U 0.020 03/28/21 12:38 20

LB LB

	LD	LD				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		60 - 124		03/28/21 12:38	20
Dibromofluoromethane (Surr)	118		70 - 130		03/28/21 12:38	20
Toluene-d8 (Surr)	111		70 - 130		03/28/21 12:38	20
4-Bromofluorobenzene (Surr)	105		70 - 130		03/28/21 12:38	20

Eurofins TestAmerica, Savannah

Page 33 of 57

2

3

4

6

8

10

11

1 /

4 E

Dil Fac

20

Client: Geosyntec Consultants, Inc. Job ID: 680-196387-1 Project/Site: Hercules Brunswick - Wells

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LB 680-663119/1-A

Matrix: Water

Analysis Batch: 663093

Client Sample ID: Method Blank

Prep Type: TCLP

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	0.020	U	0.020		mg/L			04/07/21 17:19	20
Chlorobenzene	0.020	U	0.020		mg/L			04/07/21 17:19	20
Benzene	0.020	U	0.020		mg/L			04/07/21 17:19	20
Chloroform	0.020	U	0.020		mg/L			04/07/21 17:19	20
1,2-Dichloroethane	0.020	U	0.020		mg/L			04/07/21 17:19	20
2-Butanone (MEK)	0.20	U	0.20		mg/L			04/07/21 17:19	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			04/07/21 17:19	20
Tetrachloroethene	0.020	U	0.020		mg/L			04/07/21 17:19	20
Trichloroethene	0.020	U	0.020		mg/L			04/07/21 17:19	20
Vinyl chloride	0.020	U	0.020		mg/L			04/07/21 17:19	20

LB LB

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	60 - 124		04/07/21 17:19	20
Dibromofluoromethane (Surr)	102	70 - 130		04/07/21 17:19	20
Toluene-d8 (Surr)	104	70 - 130		04/07/21 17:19	20
4-Bromofluorobenzene (Surr)	100	70 - 130		04/07/21 17:19	20

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-661013/14-A

Matrix: Solid

Analysis Batch: 661361

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 661013

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	0.010	U	0.010		mg/L		03/23/21 19:51	03/25/21 17:10	1
2-Methylphenol	0.010	U	0.010		mg/L		03/23/21 19:51	03/25/21 17:10	1
Hexachlorobenzene	0.010	U	0.010		mg/L		03/23/21 19:51	03/25/21 17:10	1
3 & 4 Methylphenol	0.010	U	0.010		mg/L		03/23/21 19:51	03/25/21 17:10	1
Hexachlorobutadiene	0.010	U	0.010		mg/L		03/23/21 19:51	03/25/21 17:10	1
Hexachloroethane	0.010	U	0.010		mg/L		03/23/21 19:51	03/25/21 17:10	1
Nitrobenzene	0.010	U	0.010		mg/L		03/23/21 19:51	03/25/21 17:10	1
Pentachlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 17:10	1
Pyridine	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 17:10	1
2,4,5-Trichlorophenol	0.010	U	0.010		mg/L		03/23/21 19:51	03/25/21 17:10	1
2,4,6-Trichlorophenol	0.010	U	0.010		mg/L		03/23/21 19:51	03/25/21 17:10	1

MB I	MB

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	83	38 - 130	03/23/21 19:51	03/25/21 17:10	1
2-Fluorophenol (Surr)	70	25 - 130	03/23/21 19:51	03/25/21 17:10	1
2,4,6-Tribromophenol (Surr)	79	31 - 141	03/23/21 19:51	03/25/21 17:10	1
Terphenyl-d14 (Surr)	92	10 - 143	03/23/21 19:51	03/25/21 17:10	1
Phenol-d5 (Surr)	73	25 - 130	03/23/21 19:51	03/25/21 17:10	1
Nitrobenzene-d5 (Surr)	83	39 - 130	03/23/21 19:51	03/25/21 17:10	1

Eurofins TestAmerica, Savannah

Page 34 of 57

Client: Geosyntec Consultants, Inc. Job ID: 680-196387-1

Project/Site: Hercules Brunswick - Wells

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID:	LCS 680-661013/15-A
----------------	---------------------

Matrix: Solid

Analysis Batch: 661361

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Pron Ratch: 661013

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	0.100	0.101		mg/L		101	52 - 130	
2-Methylphenol	0.100	0.0878		mg/L		88	40 - 130	
Hexachlorobenzene	0.100	0.105		mg/L		105	43 - 130	
3 & 4 Methylphenol	0.100	0.0882		mg/L		88	42 - 130	
Hexachlorobutadiene	0.100	0.0729		mg/L		73	27 - 130	
Hexachloroethane	0.100	0.0698		mg/L		70	29 - 130	
Nitrobenzene	0.100	0.0922		mg/L		92	43 - 130	
Pentachlorophenol	0.200	0.210		mg/L		105	33 - 130	
Pyridine	0.200	0.188		mg/L		94	10 - 130	
2,4,5-Trichlorophenol	0.100	0.102		mg/L		102	48 - 130	
2,4,6-Trichlorophenol	0.100	0.102		mg/L		102	47 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	92		38 - 130
2-Fluorophenol (Surr)	85		25 - 130
2,4,6-Tribromophenol (Surr)	93		31 - 141
Terphenyl-d14 (Surr)	115		10 - 143
Phenol-d5 (Surr)	77		25 - 130
Nitrobenzene-d5 (Surr)	91		39 - 130

Lab Sample ID: LB 680-660404/1-E

Matrix: Water

Analysis Batch: 661361

Client Sample ID: Method Blank **Prep Type: TCLP**

Prep Batch: 661013

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 16:26	1
2-Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 16:26	1
Hexachlorobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 16:26	1
3 & 4 Methylphenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 16:26	1
Hexachlorobutadiene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 16:26	1
Hexachloroethane	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 16:26	1
Nitrobenzene	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 16:26	1
Pentachlorophenol	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 16:26	1
Pyridine	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 16:26	1
2,4,5-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 16:26	1
2,4,6-Trichlorophenol	0.050	U	0.050		mg/L		03/23/21 19:51	03/25/21 16:26	1

LB LB

Surrogate	%Recovery Qualit	ier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	100	38 - 130	03/23/21 19:51	03/25/21 16:26	1
2-Fluorophenol (Surr)	87	25 - 130	03/23/21 19:51	03/25/21 16:26	1
2,4,6-Tribromophenol (Surr)	97	31 - 141	03/23/21 19:51	03/25/21 16:26	1
Terphenyl-d14 (Surr)	99	10 - 143	03/23/21 19:51	03/25/21 16:26	1
Phenol-d5 (Surr)	87	25 - 130	03/23/21 19:51	03/25/21 16:26	1
Nitrobenzene-d5 (Surr)	96	39 - 130	03/23/21 19:51	03/25/21 16:26	1

Eurofins TestAmerica, Savannah

Page 35 of 57

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - Wells

Job ID: 680-196387-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 680-660636/1-E

Matrix: Solid

Analysis Batch: 661361

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 661013

•	LB	LB						•	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 16:48	1
2-Methylphenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 16:48	1
Hexachlorobenzene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 16:48	1
3 & 4 Methylphenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 16:48	1
Hexachlorobutadiene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 16:48	1
Hexachloroethane	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 16:48	1
Nitrobenzene	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 16:48	1
Pentachlorophenol	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 16:48	1
Pyridine	0.25	U	0.25		mg/L		03/23/21 19:51	03/25/21 16:48	1
2,4,5-Trichlorophenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 16:48	1
2,4,6-Trichlorophenol	0.049	U	0.049		mg/L		03/23/21 19:51	03/25/21 16:48	1

LB LB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	93	38 - 130	03/23/21 19:51	03/25/21 16:48	1
2-Fluorophenol (Surr)	73	25 - 130	03/23/21 19:51	03/25/21 16:48	1
2,4,6-Tribromophenol (Surr)	91	31 - 141	03/23/21 19:51	03/25/21 16:48	1
Terphenyl-d14 (Surr)	98	10 - 143	03/23/21 19:51	03/25/21 16:48	1
Phenol-d5 (Surr)	79	25 - 130	03/23/21 19:51	03/25/21 16:48	1
Nitrobenzene-d5 (Surr)	88	39 - 130	03/23/21 19:51	03/25/21 16:48	1

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography

Lab Sample ID: MB 680-661180/11-A

Matrix: Water

Analysis Batch: 661317

Client Sample ID: Method Blank	
Prep Type: Total/NA	
Prep Batch: 661180	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.00025	U	0.00025		mg/L		03/24/21 18:23	03/25/21 20:06	1
Endrin	0.000025	U	0.000025		mg/L		03/24/21 18:23	03/25/21 20:06	1
gamma-BHC (Lindane)	0.000025	U	0.000025		mg/L		03/24/21 18:23	03/25/21 20:06	1
Heptachlor	0.000025	U	0.000025		mg/L		03/24/21 18:23	03/25/21 20:06	1
Heptachlor epoxide	0.000025	U	0.000025		mg/L		03/24/21 18:23	03/25/21 20:06	1
Methoxychlor	0.000025	U	0.000025		mg/L		03/24/21 18:23	03/25/21 20:06	1
Toxaphene	0.0025	U	0.0025		mg/L		03/24/21 18:23	03/25/21 20:06	1
PCB-1016	0.00050	U	0.00050		mg/L		03/24/21 18:23	03/25/21 20:06	1
PCB-1221	0.00050	U	0.00050		mg/L		03/24/21 18:23	03/25/21 20:06	1
PCB-1232	0.00050	U	0.00050		mg/L		03/24/21 18:23	03/25/21 20:06	1
PCB-1242	0.00050	U	0.00050		mg/L		03/24/21 18:23	03/25/21 20:06	1
PCB-1248	0.00050	U	0.00050		mg/L		03/24/21 18:23	03/25/21 20:06	1
PCB-1254	0.00050	U	0.00050		mg/L		03/24/21 18:23	03/25/21 20:06	1
PCB-1260	0.00050	U	0.00050		mg/L		03/24/21 18:23	03/25/21 20:06	1
	MB	МВ							

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Factoria

 Tetrachloro-m-xylene
 72
 40 - 130
 03/24/21 18:23
 03/25/21 20:06
 1

 DCB Decachlorobiphenyl
 80
 14 - 130
 03/24/21 18:23
 03/25/21 20:06
 1

Eurofins TestAmerica, Savannah

Page 36 of 57

2

3

6

8

10

12

13

14

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas Chromatography (Continued)

Lab Sample ID: LCS 680- Matrix: Water Analysis Batch: 661317	501100/1 2 / (iic Gu	inpio ib	: Lab Control Sample Prep Type: Total/NA Prep Batch: 661180
Analysis Daten. 001017			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Endrin			0.0000500	0.0000546		mg/L		109	59 - 143
gamma-BHC (Lindane)			0.0000500	0.0000525		mg/L		105	52 - 130
Heptachlor			0.0000500	0.0000395		mg/L		79	35 - 130
Heptachlor epoxide			0.0000500	0.0000554		mg/L		111	52 - 130
Methoxychlor			0.0000500	0.0000622		mg/L		124	52 - 136
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	80		40 - 130						
DCB Decachlorobiphenyl	89		14 - 130						

Lab Sample ID: LCS 660-66T160/TS-A				Cile	nt Sai	Tiple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 661317							Prep Batch: 661180
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	0.00300	0.00181		mg/L		60	44 - 130
PCB-1260	0.00300	0.00287		mg/L		96	35 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	73		40 - 130
DCB Decachlorobiphenyl	75		14 - 130

Lab Sample ID: LCS 680-661180/18-A Matrix: Water Analysis Batch: 661317				Clie	nt Sar	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 661180
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chlordane (technical)	0.00200	0.00139		mg/L		69	62 - 130
Toxaphene	0.00400	0.00422		mg/L		105	56 - 130
LCS I	cs						

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	73	40 - 130
DCB Decachlorobiphenyl	69	14 - 130

Lab Sample ID: LB 680-660404/1-F

Matrix: Water

Analysis Batch: 661317

Client Sample ID: Method Blank
Prep Type: TCLP
Prep Batch: 661180

	LB	LB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.012	U	0.012		mg/L		03/24/21 18:23	03/25/21 19:34	1
Endrin	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/25/21 19:34	1
gamma-BHC (Lindane)	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/25/21 19:34	1
Heptachlor	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/25/21 19:34	1
Heptachlor epoxide	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/25/21 19:34	1
Methoxychlor	0.0012	U	0.0012		mg/L		03/24/21 18:23	03/25/21 19:34	1
Toxaphene	0.12	U	0.12		mg/L		03/24/21 18:23	03/25/21 19:34	1

Eurofins TestAmerica, Savannah

Page 37 of 57

2

3

4

0

8

10

40

13

14

15

13

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas **Chromatography (Continued)**

Lab Sample ID: LB 680-660404/1-F

Matrix: Water

Matrix: Solid

Analysis Batch: 661317

Analysis Batch: 661317

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 661180

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 19:34	1
PCB-1221	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 19:34	1
PCB-1232	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 19:34	1
PCB-1242	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 19:34	1
PCB-1248	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 19:34	1
PCB-1254	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 19:34	1
PCB-1260	0.024	U	0.024		mg/L		03/24/21 18:23	03/25/21 19:34	1

LB LB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	71		40 - 130	03/24/21 18:23	03/25/21 19:34	1
DCB Decachlorobiphenyl	89		14 - 130	03/24/21 18:23	03/25/21 19:34	1

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 661180

LB LB

Lab Sample ID: LB 680-660636/1-F

Analyte Result Qualifier MDL Unit Dil Fac RL Prepared Analyzed Chlordane (technical) 0.011 U 0.011 mg/L 03/24/21 18:23 03/25/21 19:50 Endrin 0.0011 U 0.0011 mg/L 03/24/21 18:23 03/25/21 19:50 gamma-BHC (Lindane) 0.0011 U 0.0011 mg/L 03/24/21 18:23 03/25/21 19:50 Heptachlor 0.0011 U 0.0011 mg/L 03/24/21 18:23 03/25/21 19:50 Heptachlor epoxide 0.0011 U 0.0011 mg/L 03/24/21 18:23 03/25/21 19:50 Methoxychlor 0.0011 U 0.0011 mg/L 03/24/21 18:23 03/25/21 19:50 Toxaphene 0.11 U 0.11 mg/L 03/24/21 18:23 03/25/21 19:50 PCB-1016 0.022 U 0.022 03/24/21 18:23 03/25/21 19:50 mg/L PCB-1221 0.022 U 0.022 mg/L 03/24/21 18:23 03/25/21 19:50 PCB-1232 0.022 U 0.022 mg/L 03/24/21 18:23 03/25/21 19:50 PCB-1242 0.022 U 0.022 mg/L 03/24/21 18:23 03/25/21 19:50 PCB-1248 0.022 U 0.022 mg/L 03/24/21 18:23 03/25/21 19:50 PCB-1254 0.022 U 0.022 03/24/21 18:23 03/25/21 19:50 mg/L PCB-1260 0.022 U 0.022 mg/L 03/24/21 18:23 03/25/21 19:50

LB LB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	65	40 - 130	03/24/21 18:23	03/25/21 19:50	1
DCB Decachlorobiphenvl	88	14 - 130	03/24/21 18:23	03/25/21 19:50	1

Lab Sample ID: 680-196387-3 MS

Matrix: Water

Analysis Batch: 661317

Client Sample ID: IDW-W-3
Prep Type: TCLP
Prep Batch: 661180

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.0012	U	0.00228	0.00205		mg/L		90	59 - 143	
gamma-BHC (Lindane)	0.0012	U	0.00228	0.00211		mg/L		92	52 - 130	
Heptachlor	0.0012	U	0.00228	0.00155		mg/L		68	35 - 130	
Heptachlor epoxide	0.0012	U	0.00228	0.00215		mg/L		94	52 - 130	
Methoxychlor	0.0012	U	0.00228	0.00180		mg/L		79	52 - 136	

Eurofins TestAmerica, Savannah

Page 38 of 57

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

10

50

50

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas **Chromatography (Continued)**

Lab Sample ID: 680-196387-3 MS

Lab Sample ID: 680-196387-3 MSD

Matrix: Water

Analysis Batch: 661317

Client Sample ID: IDW-W-3 **Prep Type: TCLP**

Prep Batch: 661180

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	72		40 - 130
DCB Decachlorobiphenyl	12	S1-	14 - 130

Client Sample ID: IDW-W-3

Prep Type: TCLP

Prep Batch: 661180

RPD Limit

Matrix: Water Analysis Batch: 661317

Sample Sample Spike MSD MSD %Rec. Result Qualifier Added Result Qualifier %Rec Limits RPD **Analyte** Unit Endrin 0.0012 U 0.00237 0.00233 mg/L 98 59 - 143 13 gamma-BHC (Lindane) 0.0012 U 0.00237 0.00230 mg/L 97 52 - 130 9

Heptachlor 0.0012 U 0.00237 0.00164 mg/L 69 35 - 130 6 50 Heptachlor epoxide 0.0012 U 0.00237 0.00221 93 52 - 130 3 50 mg/L 0.0012 U 0.00237 0.00202 85 52 - 136 50 Methoxychlor mg/L 11

MSD MSD Qualifier Limits Surrogate %Recovery Tetrachloro-m-xylene 70 40 - 130 14 - 130 DCB Decachlorobiphenyl 14

Lab Sample ID: 680-196387-4 MS

Matrix: Solid

Analysis Batch: 661843

Client Sample ID: IDW-S-1 **Prep Type: TCLP**

Prep Batch: 661180

MS MS %Rec. Sample Sample Spike Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit D Chlordane (technical) 0.012 U 0.0957 0.0725 mg/L 76 62 - 130Toxaphene 0.12 U 0.191 0.140 p mg/L 73 56 - 130

MS MS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 82 40 - 130 DCB Decachlorobiphenyl 102 14 - 130

Lab Sample ID: 680-196387-4 MSD Client Sample ID: IDW-S-1 **Matrix: Solid Prep Type: TCLP**

Analysis Batch: 661843

Prep Batch: 661180 Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Chlordane (technical) 0.012 U 0.0897 0.0634 62 - 130 50 mg/L 71 13 Toxaphene 0.12 U 0.179 0.181 mg/L 101 56 - 130 26 50

MSD MSD %Recovery Qualifier Surrogate Limits 40 - 130 Tetrachloro-m-xylene 75 DCB Decachlorobiphenyl 93 14 - 130

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Job ID: 680-196387-1

Method: 8081B/8082A - Organochlorine Pesticides and Polychlorinated Biphenyls by Gas **Chromatography (Continued)**

Lab Sample ID: 680-196387-7 MS Client Sample ID: IDW-S-4 **Matrix: Solid Prep Type: TCLP Analysis Batch: 661843 Prep Batch: 661180**

MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits PCB-1016 0.024 U F1 F2 0.146 0.0432 F1 mg/L 30 44 - 130 47 PCB-1260 0.024 UF2 0.146 0.0691 mg/L 35 - 130

MS MS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 36 S1-40 - 130 DCB Decachlorobiphenyl 50 14 - 130

Lab Sample ID: 680-196387-7 MSD Client Sample ID: IDW-S-4 **Matrix: Solid Prep Type: TCLP**

Analysis Batch: 661843

Prep Batch: 661180 Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Result Qualifier Limits RPD Limit Analyte Added Unit D %Rec PCB-1016 0.024 U F1 F2 0.132 0.0780 F2 mg/L 59 44 - 130 57 50

PCB-1260 0.024 UF2 0.132 0.125 F2 mg/L 95 35 - 130 57 50 MSD MSD Surrogate %Recovery Qualifier Limits

Tetrachloro-m-xylene 75 40 - 130 DCB Decachlorobiphenyl 97 14 - 130

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 680-660639/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 661149 Prep Batch: 660639 MR MR

Analyte Result Qualifier RL **MDL** Unit Prepared Dil Fac Analyzed Arsenic 03/22/21 08:35 03/24/21 01:10 0.020 U 0.020 mg/L Barium 0.10 U 0.10 mg/L 03/22/21 08:35 03/24/21 01:10 Cadmium 03/22/21 08:35 03/24/21 01:10 0.010 U 0.010 mg/L Chromium 0.020 U 0.020 mg/L 03/22/21 08:35 03/24/21 01:10 03/22/21 08:35 03/24/21 01:10 Lead 0.020 U 0.020 mg/L Selenium 0.050 U 0.050 mg/L 03/22/21 08:35 03/24/21 01:10 Silver 0.010 U 0.010 mg/L 03/22/21 08:35 03/24/21 01:10

Lab Sample ID: LCS 680-660639/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 661149 Prep Batch: 660639

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	2.00	1.81		mg/L		90	80 - 120	
Barium	2.00	2.00		mg/L		100	80 - 120	
Cadmium	1.00	0.936		mg/L		94	80 - 120	
Chromium	2.00	1.93		mg/L		96	80 - 120	
Lead	9.08	8.60		mg/L		95	80 - 120	
Selenium	2.00	1.90		mg/L		95	80 - 120	
Silver	1.00	0.956		ma/L		96	80 - 120	

Eurofins TestAmerica, Savannah

Page 40 of 57

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LB 680-661130/3-A

Matrix: Solid

Analysis Batch: 661329

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 661130

•								•	
	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 19:39	1
Barium	1.0	U	1.0		mg/L		03/24/21 12:07	03/24/21 19:39	1
Cadmium	0.10	U	0.10		mg/L		03/24/21 12:07	03/24/21 19:39	1
Chromium	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 19:39	1
Lead	0.20	U	0.20		mg/L		03/24/21 12:07	03/24/21 19:39	1
Selenium	0.50	U	0.50		mg/L		03/24/21 12:07	03/24/21 19:39	1
Silver	0.10	U	0.10		mg/L		03/24/21 12:07	03/24/21 19:39	1

Lab Sample ID: MB 680-661130/1-A

Matrix: Solid

Analysis Batch: 661329

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 661130

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.020	U	0.020		mg/L		03/24/21 12:07	03/24/21 19:30	1
Barium	0.10	U	0.10		mg/L		03/24/21 12:07	03/24/21 19:30	1
Cadmium	0.010	U	0.010		mg/L		03/24/21 12:07	03/24/21 19:30	1
Chromium	0.020	U	0.020		mg/L		03/24/21 12:07	03/24/21 19:30	1
Lead	0.020	U	0.020		mg/L		03/24/21 12:07	03/24/21 19:30	1
Selenium	0.050	U	0.050		mg/L		03/24/21 12:07	03/24/21 19:30	1
Silver	0.010	U	0.010		mg/L		03/24/21 12:07	03/24/21 19:30	1

MR MR

0.10 U

Lab Sample ID: LCS 680-661130/2-A

Matrix: Solid

Analysis Batch: 661329

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 661130**

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Arsenic 2.00 1.98 mg/L 99 80 - 120 Barium 2.00 2.07 104 80 - 120 mg/L 100 Cadmium 1.00 0.996 80 - 120 mg/L Chromium 2.00 2.03 101 80 - 120 mg/L Lead 9.08 8.87 98 80 - 120 mg/L Selenium 2.00 2.02 mg/L 101 80 - 120Silver 1.00 1.01 mg/L 101 80 - 120

Lab Sample ID: LB 680-660404/1-C

Matrix: Water

Silver

Analysis Batch: 661149

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 660639

LB LB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.20 U 0.20 03/22/21 08:35 03/24/21 01:20 Arsenic mg/L Barium 1.0 U 03/22/21 08:35 03/24/21 01:20 1.0 mg/L Cadmium 03/22/21 08:35 03/24/21 01:20 0.10 U 0.10 mg/L Chromium 0.20 U 0.20 mg/L 03/22/21 08:35 03/24/21 01:20 Lead 0.20 U 0.20 03/22/21 08:35 03/24/21 01:20 mg/L Selenium 0.50 U 0.50 mg/L 03/22/21 08:35 03/24/21 01:20

0.10

mg/L

03/22/21 08:35 03/24/21 01:20

Page 41 of 57

Client: Geosyntec Consultants, Inc. Job ID: 680-196387-1

Project/Site: Hercules Brunswick - Wells

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 680-196387-1 MS

Matrix: Water

Analysis Batch: 661149

Sample Sample Spike

MS MS

Client Sample ID: IDW-W-1
Prep Type: TCLP
Prep Batch: 660639
%Rec.

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.20	U	3.20	2.74		mg/L		86	75 - 125	
Barium	1.0	U	3.20	3.15		mg/L		99	75 - 125	
Cadmium	0.10	U	1.60	1.41		mg/L		88	75 - 125	
Chromium	0.20	U	1.60	1.45		mg/L		90	75 - 125	
Lead	0.20	U	1.60	1.30		mg/L		81	75 - 125	
Selenium	0.50	U	3.20	2.81		mg/L		88	75 - 125	
Silver	0.10	U F1	1.60	0.355	F1	mg/L		22	75 - 125	

Lab Sample ID: 680-196387-1 MSD

Matrix: Water

Analysis Batch: 661149

Client Sample ID: IDW-W-1

Prep Type: TCLP

Prep Batch: 660639

MSD MSD Sample Sample Spike %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 0.20 U Arsenic 3.20 2.77 mg/L 87 75 - 125 20 Barium 1.0 U 3.20 20 3.12 mg/L 98 75 - 125 20 Cadmium 0.10 U 1.60 1.40 mg/L 87 75 - 125 Chromium 0.20 U 1.60 1.43 90 75 - 125 20 mg/L 1.29 20 Lead 0.20 U 1.60 80 75 - 125 mg/L Selenium 0.50 U 3.20 2.71 mg/L 85 75 - 125 20 Silver 0.10 UF1 1.60 0.350 F1 22 75 - 125 20 mg/L

Lab Sample ID: 680-196387-4 MS

Matrix: Solid

Analysis Batch: 661329

Client Sample ID: IDW-S-1

Prep Type: TCLP

Prep Batch: 661130

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Arsenic 0.20 U 3.20 3.00 mg/L 94 75 - 125 Barium 1.0 U 3.20 3.10 97 75 - 125 mg/L Cadmium 0.10 U 1.60 1.50 94 75 - 125 mg/L Chromium 0.20 U 1.60 1.51 94 75 - 125 mg/L Lead 1.60 87 75 - 125 0.20 U 1.39 mg/L Selenium 0.50 U 3.20 3.08 mg/L 96 75 - 125 Silver 0.10 UF1 1.60 0.421 F1 mg/L 26 75 - 125

Lab Sample ID: 680-196387-4 MSD

Matrix: Solid

Client Sample ID: IDW-S-1

Prep Type: TCLP

Analysis Batch: 661329 Prep Batch: 661130

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.20	U	3.20	2.92		mg/L		91	75 - 125	3	20
Barium	1.0	U	3.20	3.02		mg/L		94	75 - 125	3	20
Cadmium	0.10	U	1.60	1.46		mg/L		92	75 - 125	3	20
Chromium	0.20	U	1.60	1.47		mg/L		92	75 - 125	3	20
Lead	0.20	U	1.60	1.37		mg/L		86	75 - 125	2	20
Selenium	0.50	U	3.20	3.02		mg/L		94	75 - 125	2	20
Silver	0.10	U F1	1.60	0.430	F1	mg/L		27	75 - 125	2	20

Eurofins TestAmerica, Savannah

4/9/2021

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-660656/12-A

Matrix: Water

Mercury

Analyte

Mercury

Analysis Batch: 660971

MB MB

Analyte

Result Qualifier

0.00020 U

RL 0.00020 **MDL** Unit mg/L

Prepared

03/22/21 09:13 03/22/21 19:30

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA

Prep Batch: 660656

Prep Type: Total/NA

Prep Batch: 660994

Prep Type: Total/NA

Prep Batch: 660994

Prep Type: Total/NA

Prep Batch: 660656

Dil Fac

Lab Sample ID: LCS 680-660656/13-A

Matrix: Water

Analysis Batch: 660971

Spike Added 0.250

Spike

Added

0.250

Spike

Added

0.0830

Spike

Added

0.0830

LCS LCS

Result Qualifier 0.255

Unit mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

D %Rec 102

80 - 120

Client Sample ID: Lab Control Sample

%Rec.

Limits

03/22/21 09:13 03/22/21 19:39

80 - 120

%Rec.

Client Sample ID: Lab Control Sample

Limits

Client Sample ID: Method Blank

Lab Sample ID: MB 680-660994/1-A

Matrix: Solid

Analysis Batch: 661174

MB MB

Result Qualifier Analyte

Mercury 0.00020 U

0.020 U

Sample Sample

Sample Sample

Result Qualifier

0.020 U

Result Qualifier

RL 0.00020 **MDL** Unit mg/L

LCS LCS

0.245

RL

0.020

Result Qualifier

MDL

MS MS

MSD MSD

Result Qualifier

0.0814

0.0803

Result Qualifier

Unit

mg/L

Prepared

%Rec

Prepared

%Rec

%Rec

97

98

D

D

Dil Fac Analyzed 03/23/21 15:49 03/24/21 13:38

Lab Sample ID: LCS 680-660994/2-A

Matrix: Solid

Analysis Batch: 661174

Analyte

Mercury

Analyte

Analyte

Lab Sample ID: LB 680-660404/1-D

Matrix: Water

Analysis Batch: 660971

LB LB Result Qualifier

Analyte Mercury

Lab Sample ID: 680-196387-1 MS **Matrix: Water**

Analysis Batch: 660971

Mercury Lab Sample ID: 680-196387-1 MSD

Matrix: Water

Analysis Batch: 660971

0.020 U Mercury Lab Sample ID: LB 680-660636/1-D

Matrix: Solid Analysis Batch: 661174

LB LB Analyte Result Qualifier Mercury

0.020 U

RL 0.020 MDL Unit mg/L

Prepared 03/23/21 15:49 03/24/21 13:47

Analyzed

Dil Fac

4/9/2021

Eurofins TestAmerica, Savannah

Page 43 of 57

Client Sample ID: Method Blank **Prep Type: TCLP**

Dil Fac

Prep Batch: 660656

Client Sample ID: IDW-W-1

Analyzed

Prep Type: TCLP

Prep Batch: 660656

%Rec.

Limits 80 - 120

Client Sample ID: IDW-W-1

Prep Type: TCLP Prep Batch: 660656

%Rec. **RPD** Limits RPD Limit

Prep Type: TCLP

Prep Batch: 660994

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Method: 7470A - Mercury (CVAA)

Lab Sample ID: 680-196387-4 MSD

Lab Sample ID: 680-196387-4 MS **Matrix: Solid**

Analysis Batch: 661174

Analysis Batch: 661174

Sample Sample Analyte

Spike Result Qualifier Added 0.0830 0.020 U

0.0798

Result Qualifier

MS MS

MSD MSD

0.0810

Result Qualifier

Unit mg/L

Unit

mg/L

%Rec D

> D %Rec

> > 98

96 80 - 120

%Rec.

Limits

Client Sample ID: IDW-S-1

Client Sample ID: IDW-S-1

Prep Type: TCLP Prep Batch: 660994

Prep Type: TCLP

Prep Batch: 660994

%Rec. **RPD** Limits RPD Limit 80 - 120 2 20

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 1030 - Ignitability, Solids

Lab Sample ID: MB 680-660419/1

Matrix: Solid

Matrix: Solid

Mercury

Analyte

Mercury

Analyte

Analyte

Ignitability

Ignitability

Analysis Batch: 660419

MB MB

Sample Sample

0.020 U

Result Qualifier

Result Qualifier

NB

NONE

Spike

Added

0.0830

NONE Unit mm/sec Prepared

Analyzed 03/19/21 11:55

%Rec.

Limits

75 - 125

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: LCS 680-660419/2

Matrix: Solid

Analysis Batch: 660419

Analyte Ignitability

Lab Sample ID: LCSD 680-660419/9 **Matrix: Solid**

Analysis Batch: 660419

Spike Added 2.73

Spike

Added

2.71

LCSD LCSD Result Qualifier 2.733

LCS LCS

2.708

Result Qualifier

Unit mm/sec

Unit

mm/sec

%Rec 100

%Rec

100

Client Sample ID: Lab Control Sample Dup

Limits 75 - 125

%Rec.

RPD Limit

RPD

Eurofins TestAmerica, Savannah

Client: Geosyntec Consultants, Inc.

Project/Site: Hercules Brunswick - Wells

Job ID: 680-196387-1

GC/MS VOA

Analysis Batch: 660370

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	8260B	660420
680-196387-2	IDW-W-2	TCLP	Water	8260B	660420
LB 680-660420/1-A	Method Blank	TCLP	Water	8260B	660420
MB 680-660370/10	Method Blank	Total/NA	Water	8260B	
LCS 680-660370/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-660370/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Leach Batch: 660420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	1311	
680-196387-2	IDW-W-2	TCLP	Water	1311	
LB 680-660420/1-A	Method Blank	TCLP	Water	1311	

Leach Batch: 660980

Lab Sample ID 680-196387-4	Client Sample ID IDW-S-1	Prep Type TCLP	Matrix Solid	Method 1311	Prep Batch
680-196387-5	IDW-S-2	TCLP	Solid	1311	
680-196387-6	IDW-S-3	TCLP	Solid	1311	
680-196387-7	IDW-S-4	TCLP	Solid	1311	
LB 680-660980/1-A	Method Blank	TCLP	Solid	1311	

Analysis Batch: 661698

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-4	IDW-S-1	TCLP	Solid	8260B	660980
680-196387-5	IDW-S-2	TCLP	Solid	8260B	660980
680-196387-6	IDW-S-3	TCLP	Solid	8260B	660980
680-196387-7	IDW-S-4	TCLP	Solid	8260B	660980
LB 680-660980/1-A	Method Blank	TCLP	Solid	8260B	660980
MB 680-661698/9	Method Blank	Total/NA	Solid	8260B	
LCS 680-661698/4	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 680-661698/5	Lab Control Sample Dup	Total/NA	Solid	8260B	

Analysis Batch: 663093

Lab Sample ID 680-196387-3	Client Sample ID	Prep Type TCLP	Matrix Water	Method 8260B	Prep Batch 663119
		· · ·			
LB 680-663119/1-A	Method Blank	TCLP	Water	8260B	663119
MB 680-663093/10	Method Blank	Total/NA	Water	8260B	
LCS 680-663093/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-663093/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Leach Batch: 663119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-3	IDW-W-3	TCLP	Water	1311	
LB 680-663119/1-A	Method Blank	TCLP	Water	1311	

GC/MS Semi VOA

Leach Batch: 660404

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	1311	
680-196387-2	IDW-W-2	TCLP	Water	1311	

Eurofins TestAmerica, Savannah

Page 45 of 57 4/9/2021

_

3

4

6

9

10

12

13

14

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

GC/MS Semi VOA (Continued)

Leach Batch: 660404 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-3	IDW-W-3	TCLP	Water	1311	
LB 680-660404/1-E	Method Blank	TCLP	Water	1311	

Leach Batch: 660636

Lab Sample ID 680-196387-4	Client Sample ID IDW-S-1	Prep Type TCLP	Matrix Solid	Method 1311	Prep Batch
680-196387-5	IDW-S-2	TCLP	Solid	1311	
680-196387-6	IDW-S-3	TCLP	Solid	1311	
680-196387-7	IDW-S-4	TCLP	Solid	1311	
LB 680-660636/1-E	Method Blank	TCLP	Solid	1311	

Prep Batch: 661013

Lab Sample ID 680-196387-1	Client Sample ID	Prep Type TCLP	Matrix Water	Method 3520C	Prep Batch 660404
680-196387-2	IDW-W-2	TCLP	Water	3520C	660404
680-196387-3	IDW-W-3	TCLP	Water	3520C	660404
680-196387-4	IDW-S-1	TCLP	Solid	3520C	660636
680-196387-5	IDW-S-2	TCLP	Solid	3520C	660636
680-196387-6	IDW-S-3	TCLP	Solid	3520C	660636
680-196387-7	IDW-S-4	TCLP	Solid	3520C	660636
LB 680-660404/1-E	Method Blank	TCLP	Water	3520C	660404
LB 680-660636/1-E	Method Blank	TCLP	Solid	3520C	660636
MB 680-661013/14-A	Method Blank	Total/NA	Solid	3520C	
LCS 680-661013/15-A	Lab Control Sample	Total/NA	Solid	3520C	

Analysis Batch: 661361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	8270D	661013
680-196387-2	IDW-W-2	TCLP	Water	8270D	661013
680-196387-3	IDW-W-3	TCLP	Water	8270D	661013
680-196387-4	IDW-S-1	TCLP	Solid	8270D	661013
680-196387-5	IDW-S-2	TCLP	Solid	8270D	661013
680-196387-6	IDW-S-3	TCLP	Solid	8270D	661013
680-196387-7	IDW-S-4	TCLP	Solid	8270D	661013
LB 680-660404/1-E	Method Blank	TCLP	Water	8270D	661013
LB 680-660636/1-E	Method Blank	TCLP	Solid	8270D	661013
MB 680-661013/14-A	Method Blank	Total/NA	Solid	8270D	661013
LCS 680-661013/15-A	Lab Control Sample	Total/NA	Solid	8270D	661013

GC Semi VOA

Leach Batch: 660404

Lab Sample ID 680-196387-1	Client Sample ID IDW-W-1	Prep Type TCLP	Matrix Water	Method 1311	Prep Batch
680-196387-2	IDW-W-2	TCLP	Water	1311	
680-196387-3	IDW-W-3	TCLP	Water	1311	
LB 680-660404/1-F	Method Blank	TCLP	Water	1311	
680-196387-3 MS	IDW-W-3	TCLP	Water	1311	
680-196387-3 MSD	IDW-W-3	TCLP	Water	1311	

Eurofins TestAmerica, Savannah

Page 46 of 57

Client: Geosyntec Consultants, Inc. Job ID: 680-196387-1 Project/Site: Hercules Brunswick - Wells

GC Semi VOA

Leach Batch: 660636

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-4	IDW-S-1	TCLP	Solid	1311	
680-196387-5	IDW-S-2	TCLP	Solid	1311	
680-196387-6	IDW-S-3	TCLP	Solid	1311	
680-196387-7	IDW-S-4	TCLP	Solid	1311	
LB 680-660636/1-F	Method Blank	TCLP	Solid	1311	
680-196387-4 MS	IDW-S-1	TCLP	Solid	1311	
680-196387-4 MSD	IDW-S-1	TCLP	Solid	1311	
680-196387-7 MS	IDW-S-4	TCLP	Solid	1311	
680-196387-7 MSD	IDW-S-4	TCLP	Solid	1311	

Prep Batch: 661180

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	3520C	660404
680-196387-2	IDW-W-2	TCLP	Water	3520C	660404
680-196387-3	IDW-W-3	TCLP	Water	3520C	660404
680-196387-4	IDW-S-1	TCLP	Solid	3520C	660636
680-196387-5	IDW-S-2	TCLP	Solid	3520C	660636
680-196387-6	IDW-S-3	TCLP	Solid	3520C	660636
680-196387-7	IDW-S-4	TCLP	Solid	3520C	660636
LB 680-660404/1-F	Method Blank	TCLP	Water	3520C	660404
LB 680-660636/1-F	Method Blank	TCLP	Solid	3520C	660636
MB 680-661180/11-A	Method Blank	Total/NA	Water	3520C	
LCS 680-661180/12-A	Lab Control Sample	Total/NA	Water	3520C	
LCS 680-661180/15-A	Lab Control Sample	Total/NA	Water	3520C	
LCS 680-661180/18-A	Lab Control Sample	Total/NA	Water	3520C	
680-196387-3 MS	IDW-W-3	TCLP	Water	3520C	660404
680-196387-3 MSD	IDW-W-3	TCLP	Water	3520C	660404
680-196387-4 MS	IDW-S-1	TCLP	Solid	3520C	660636
680-196387-4 MSD	IDW-S-1	TCLP	Solid	3520C	660636
680-196387-7 MS	IDW-S-4	TCLP	Solid	3520C	660636
680-196387-7 MSD	IDW-S-4	TCLP	Solid	3520C	660636

Analysis Batch: 661317

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	8081B/8082A	661180
680-196387-2	IDW-W-2	TCLP	Water	8081B/8082A	661180
680-196387-3	IDW-W-3	TCLP	Water	8081B/8082A	661180
LB 680-660404/1-F	Method Blank	TCLP	Water	8081B/8082A	661180
LB 680-660636/1-F	Method Blank	TCLP	Solid	8081B/8082A	661180
MB 680-661180/11-A	Method Blank	Total/NA	Water	8081B/8082A	661180
LCS 680-661180/12-A	Lab Control Sample	Total/NA	Water	8081B/8082A	661180
LCS 680-661180/15-A	Lab Control Sample	Total/NA	Water	8081B/8082A	661180
LCS 680-661180/18-A	Lab Control Sample	Total/NA	Water	8081B/8082A	661180
680-196387-3 MS	IDW-W-3	TCLP	Water	8081B/8082A	661180
680-196387-3 MSD	IDW-W-3	TCLP	Water	8081B/8082A	661180

Analysis Batch: 661843

Lab Sample ID 680-196387-4	Client Sample ID IDW-S-1	Prep Type TCLP	Matrix Solid	Method 8081B/8082A	Prep Batch 661180
680-196387-5	IDW-S-2	TCLP	Solid	8081B/8082A	661180
680-196387-6	IDW-S-3	TCLP	Solid	8081B/8082A	661180

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

GC Semi VOA (Continued)

Analysis Batch: 661843 (Continued)

Lab Sample ID 680-196387-7	Client Sample ID IDW-S-4	Prep Type TCLP	Matrix Solid	Method 8081B/8082A	Prep Batch 661180
680-196387-4 MS	IDW-S-1	TCLP	Solid	8081B/8082A	661180
680-196387-4 MSD	IDW-S-1	TCLP	Solid	8081B/8082A	661180
680-196387-7 MS	IDW-S-4	TCLP	Solid	8081B/8082A	661180
680-196387-7 MSD	IDW-S-4	TCLP	Solid	8081B/8082A	661180

Metals

Leach Batch: 660404

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	1311	
680-196387-2	IDW-W-2	TCLP	Water	1311	
680-196387-3	IDW-W-3	TCLP	Water	1311	
LB 680-660404/1-C	Method Blank	TCLP	Water	1311	
LB 680-660404/1-D	Method Blank	TCLP	Water	1311	
680-196387-1 MS	IDW-W-1	TCLP	Water	1311	
680-196387-1 MSD	IDW-W-1	TCLP	Water	1311	

Leach Batch: 660636

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-4	IDW-S-1	TCLP	Solid	1311	
680-196387-5	IDW-S-2	TCLP	Solid	1311	
680-196387-6	IDW-S-3	TCLP	Solid	1311	
680-196387-7	IDW-S-4	TCLP	Solid	1311	
LB 680-660636/1-D	Method Blank	TCLP	Solid	1311	
680-196387-4 MS	IDW-S-1	TCLP	Solid	1311	
680-196387-4 MSD	IDW-S-1	TCLP	Solid	1311	

Prep Batch: 660639

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	3010A	660404
680-196387-2	IDW-W-2	TCLP	Water	3010A	660404
680-196387-3	IDW-W-3	TCLP	Water	3010A	660404
LB 680-660404/1-C	Method Blank	TCLP	Water	3010A	660404
MB 680-660639/1-A	Method Blank	Total/NA	Water	3010A	
LCS 680-660639/2-A	Lab Control Sample	Total/NA	Water	3010A	
680-196387-1 MS	IDW-W-1	TCLP	Water	3010A	660404
680-196387-1 MSD	IDW-W-1	TCLP	Water	3010A	660404

Prep Batch: 660656

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	7470A	660404
680-196387-2	IDW-W-2	TCLP	Water	7470A	660404
680-196387-3	IDW-W-3	TCLP	Water	7470A	660404
LB 680-660404/1-D	Method Blank	TCLP	Water	7470A	660404
MB 680-660656/12-A	Method Blank	Total/NA	Water	7470A	
LCS 680-660656/13-A	Lab Control Sample	Total/NA	Water	7470A	
680-196387-1 MS	IDW-W-1	TCLP	Water	7470A	660404
680-196387-1 MSD	IDW-W-1	TCLP	Water	7470A	660404

Page 48 of 57

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

Metals

Analysis Batch: 660971

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	7470A	660656
680-196387-2	IDW-W-2	TCLP	Water	7470A	660656
680-196387-3	IDW-W-3	TCLP	Water	7470A	660656
LB 680-660404/1-D	Method Blank	TCLP	Water	7470A	660656
MB 680-660656/12-A	Method Blank	Total/NA	Water	7470A	660656
LCS 680-660656/13-A	Lab Control Sample	Total/NA	Water	7470A	660656
680-196387-1 MS	IDW-W-1	TCLP	Water	7470A	660656
680-196387-1 MSD	IDW-W-1	TCLP	Water	7470A	660656

Prep Batch: 660994

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-4	IDW-S-1	TCLP	Solid	7470A	660636
680-196387-5	IDW-S-2	TCLP	Solid	7470A	660636
680-196387-6	IDW-S-3	TCLP	Solid	7470A	660636
680-196387-7	IDW-S-4	TCLP	Solid	7470A	660636
LB 680-660636/1-D	Method Blank	TCLP	Solid	7470A	660636
MB 680-660994/1-A	Method Blank	Total/NA	Solid	7470A	
LCS 680-660994/2-A	Lab Control Sample	Total/NA	Solid	7470A	
680-196387-4 MS	IDW-S-1	TCLP	Solid	7470A	660636
680-196387-4 MSD	IDW-S-1	TCLP	Solid	7470A	660636

Prep Batch: 661130

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-4	IDW-S-1	TCLP	Solid	3010A	660636
680-196387-5	IDW-S-2	TCLP	Solid	3010A	660636
680-196387-6	IDW-S-3	TCLP	Solid	3010A	660636
680-196387-7	IDW-S-4	TCLP	Solid	3010A	660636
LB 680-661130/3-A	Method Blank	Total/NA	Solid	3010A	
MB 680-661130/1-A	Method Blank	Total/NA	Solid	3010A	
LCS 680-661130/2-A	Lab Control Sample	Total/NA	Solid	3010A	
680-196387-4 MS	IDW-S-1	TCLP	Solid	3010A	660636
680-196387-4 MSD	IDW-S-1	TCLP	Solid	3010A	660636

Analysis Batch: 661149

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-1	IDW-W-1	TCLP	Water	6010C	660639
680-196387-2	IDW-W-2	TCLP	Water	6010C	660639
680-196387-3	IDW-W-3	TCLP	Water	6010C	660639
LB 680-660404/1-C	Method Blank	TCLP	Water	6010C	660639
MB 680-660639/1-A	Method Blank	Total/NA	Water	6010C	660639
LCS 680-660639/2-A	Lab Control Sample	Total/NA	Water	6010C	660639
680-196387-1 MS	IDW-W-1	TCLP	Water	6010C	660639
680-196387-1 MSD	IDW-W-1	TCLP	Water	6010C	660639

Analysis Batch: 661174

Lab Sample ID 680-196387-4	Client Sample ID IDW-S-1	Prep Type TCLP	Matrix Solid	Method 7470A	Prep Batch 660994
680-196387-5	IDW-S-2	TCLP	Solid	7470A	660994
680-196387-6	IDW-S-3	TCLP	Solid	7470A	660994
680-196387-7	IDW-S-4	TCLP	Solid	7470A	660994
LB 680-660636/1-D	Method Blank	TCLP	Solid	7470A	660994

Eurofins TestAmerica, Savannah

Page 49 of 57

2

3

4

6

0

9

1 1

12

14

15

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells Job ID: 680-196387-1

Metals (Continued)

Analysis Batch: 661174 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 680-660994/1-A	Method Blank	Total/NA	Solid	7470A	660994
LCS 680-660994/2-A	Lab Control Sample	Total/NA	Solid	7470A	660994
680-196387-4 MS	IDW-S-1	TCLP	Solid	7470A	660994
680-196387-4 MSD	IDW-S-1	TCLP	Solid	7470A	660994

Analysis Batch: 661329

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-4	IDW-S-1	TCLP	Solid	6010C	661130
680-196387-5	IDW-S-2	TCLP	Solid	6010C	661130
680-196387-6	IDW-S-3	TCLP	Solid	6010C	661130
680-196387-7	IDW-S-4	TCLP	Solid	6010C	661130
LB 680-661130/3-A	Method Blank	Total/NA	Solid	6010C	661130
MB 680-661130/1-A	Method Blank	Total/NA	Solid	6010C	661130
LCS 680-661130/2-A	Lab Control Sample	Total/NA	Solid	6010C	661130
680-196387-4 MS	IDW-S-1	TCLP	Solid	6010C	661130
680-196387-4 MSD	IDW-S-1	TCLP	Solid	6010C	661130

General Chemistry

Analysis Batch: 660419

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-196387-4	IDW-S-1	Total/NA	Solid	1030	
680-196387-5	IDW-S-2	Total/NA	Solid	1030	
680-196387-6	IDW-S-3	Total/NA	Solid	1030	
680-196387-7	IDW-S-4	Total/NA	Solid	1030	
MB 680-660419/1	Method Blank	Total/NA	Solid	1030	
LCS 680-660419/2	Lab Control Sample	Total/NA	Solid	1030	
LCSD 680-660419/9	Lab Control Sample Dup	Total/NA	Solid	1030	

J

4

6

8

46

11

12

14

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-W-1

Lab Sample ID: 680-196387-1

Matrix: Water

Date Collected: 03/16/21 13:10 Date Received: 03/17/21 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100 mL	100 mL	660420	03/19/21 12:07	JEB	TAL SAV
TCLP	Analysis Instrumer	8260B at ID: CMSP2		20	5 mL	5 mL	660370	03/19/21 15:04	UI	TAL SAV
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	3520C			200.6 mL	1 mL	661013	03/23/21 19:51	EHS	TAL SAV
TCLP	Analysis Instrumer	8270D at ID: CMSG		1			661361	03/25/21 19:41	T1C	TAL SAV
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	3520C			20.0 mL	5 mL	661180	03/24/21 18:23	EHS	TAL SAV
TCLP	Analysis Instrumer	8081B/8082A at ID: CSGK		1			661317	03/25/21 21:43	JCK	TAL SAV
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	3010A			5 mL	50 mL	660639	03/22/21 08:35	BCB	TAL SAV
TCLP	Analysis Instrumer	6010C at ID: ICPE		1			661149	03/24/21 01:25	BCB	TAL SAV
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	7470A			0.50 mL	50 mL	660656	03/22/21 09:13	JKL	TAL SAV
TCLP	Analysis Instrumer	7470A nt ID: LEEMAN2		1			660971	03/22/21 19:44	JKL	TAL SAV

Client Sample ID: IDW-W-2

Date Collected: 03/16/21 13:25 Date Received: 03/17/21 10:30 Lab Sample ID: 680-196387-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100 g	100 mL	660420	03/19/21 12:07	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	660370	03/19/21 15:29	UI	TAL SAV
	Instrumer	nt ID: CMSP2								
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	3520C			200.7 mL	1 mL	661013	03/23/21 19:51	EHS	TAL SAV
TCLP	Analysis	8270D		1			661361	03/25/21 20:03	T1C	TAL SAV
	Instrumer	nt ID: CMSG								
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	3520C			21.3 mL	5 mL	661180	03/24/21 18:23	EHS	TAL SAV
TCLP	Analysis	8081B/8082A		1			661317	03/25/21 21:59	JCK	TAL SAV
	Instrumer	nt ID: CSGK								
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	3010A			5 mL	50 mL	660639	03/22/21 08:35	BCB	TAL SAV
TCLP	Analysis	6010C		1			661149	03/24/21 01:49	BCB	TAL SAV
	Instrumer	nt ID: ICPE								
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	7470A			0.50 mL	50 mL	660656	03/22/21 09:13	JKL	TAL SAV
TCLP	Analysis	7470A		1			660971	03/22/21 19:58	JKL	TAL SAV
	Instrumer	nt ID: LEEMAN2								

5

O

8

10

12

14

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-W-3

Date Collected: 03/16/21 13:50 Date Received: 03/17/21 10:30 Lab Sample ID: 680-196387-3

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
TCLP	Leach	1311			100 mL	1.0 mL	663119	03/30/21 15:44	WRB	TAL SAV
TCLP	Analysis Instrumer	8260B at ID: CMSP2		20	5 mL	5 mL	663093	04/07/21 19:23	Y1S	TAL SAV
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	3520C			201.9 mL	1 mL	661013	03/23/21 19:51	EHS	TAL SAV
TCLP	Analysis Instrumer	8270D nt ID: CMSG		1			661361	03/25/21 20:24	T1C	TAL SAV
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	3520C			20.5 mL	5 mL	661180	03/24/21 18:23	EHS	TAL SAV
TCLP	Analysis Instrumer	8081B/8082A at ID: CSGK		1			661317	03/25/21 22:15	JCK	TAL SAV
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	3010A			5 mL	50 mL	660639	03/22/21 08:35	BCB	TAL SAV
TCLP	Analysis Instrumer	6010C nt ID: ICPE		1			661149	03/24/21 01:54	BCB	TAL SAV
TCLP	Leach	1311			1.0 g	1.0 mL	660404	03/19/21 10:18	JEB	TAL SAV
TCLP	Prep	7470A			0.50 mL	50 mL	660656	03/22/21 09:13	JKL	TAL SAV
TCLP	Analysis	7470A nt ID: LEEMAN2		1			660971	03/22/21 20:02	JKL	TAL SAV

Client Sample ID: IDW-S-1

Date Collected: 03/16/21 11:58 Date Received: 03/17/21 10:30 Lab Sample ID: 680-196387-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			25.02 g	500 mL	660980	03/23/21 16:22	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	661698	03/28/21 13:04	P1C	TAL SAV
	Instrumen	t ID: CMSAA								
TCLP	Leach	1311			100.02 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3520C			202.1 mL	1 mL	661013	03/23/21 19:51	EHS	TAL SAV
TCLP	Analysis	8270D		1			661361	03/25/21 20:45	T1C	TAL SAV
	Instrumen	t ID: CMSG								
TCLP	Leach	1311			100.02 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3520C			21.4 mL	5 mL	661180	03/24/21 18:23	EHS	TAL SAV
TCLP	Analysis	8081B/8082A		1			661843	03/29/21 17:26	JCK	TAL SAV
	Instrumen	t ID: CSGK								
TCLP	Leach	1311			100.02 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3010A			5 mL	50 mL	661130	03/24/21 12:07	BCB	TAL SAV
TCLP	Analysis	6010C		1			661329	03/24/21 19:44	BCB	TAL SAV
	Instrumen	t ID: ICPE								
TCLP	Leach	1311			100.02 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	7470A			0.50 mL	50 mL	660994	03/23/21 15:49	JKL	TAL SAV
TCLP	Analysis	7470A		1			661174	03/24/21 13:52	JKL	TAL SAV
	Instrumen	t ID: LEEMAN2								
Total/NA	Analysis	1030		1			660419	03/19/21 11:55	SM	TAL SAV
	Instrumen	t ID: SPC8								

Eurofins TestAmerica, Savannah

Page 52 of 57

2

5

6

Ö

10

12

14

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-S-2

Date Collected: 03/16/21 12:05 Date Received: 03/17/21 10:30 Lab Sample ID: 680-196387-5

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			25.02 g	500 mL	660980	03/23/21 16:22	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	661698	03/28/21 13:29	P1C	TAL SAV
	Instrumer	t ID: CMSAA								
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3520C			200.5 mL	1 mL	661013	03/23/21 19:51	EHS	TAL SAV
TCLP	Analysis	8270D		1			661361	03/25/21 21:07	T1C	TAL SAV
	Instrumer	t ID: CMSG								
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3520C			21.0 mL	5 mL	661180	03/24/21 18:23	EHS	TAL SAV
TCLP	Analysis	8081B/8082A		1			661843	03/29/21 17:42	JCK	TAL SAV
	Instrumer	t ID: CSGK								
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3010A			5 mL	50 mL	661130	03/24/21 12:07	BCB	TAL SAV
TCLP	Analysis	6010C		1			661329	03/24/21 20:19	BCB	TAL SAV
	Instrumer	it ID: ICPE								
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	7470A			0.50 mL	50 mL	660994	03/23/21 15:49	JKL	TAL SAV
TCLP	Analysis	7470A		1			661174	03/24/21 14:15	JKL	TAL SAV
	Instrumer	t ID: LEEMAN2								
Total/NA	Analysis	1030		1			660419	03/19/21 11:55	SM	TAL SAV
	Instrumer	it ID: SPC8								

Client Sample ID: IDW-S-3
Date Collected: 03/16/21 12:20
Date Received: 03/17/21 10:30

Lab Sample ID: 680-196387-6

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			25.00 g	500 mL	660980	03/23/21 16:22	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	661698	03/28/21 13:55	P1C	TAL SAV
	Instrumer	nt ID: CMSAA								
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3520C			200.1 mL	1 mL	661013	03/23/21 19:51	EHS	TAL SAV
TCLP	Analysis	8270D		1			661361	03/25/21 21:28	T1C	TAL SA\
	Instrumer	nt ID: CMSG								
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SA\
TCLP	Prep	3520C			22.7 mL	5 mL	661180	03/24/21 18:23	EHS	TAL SAV
TCLP	Analysis	8081B/8082A		1			661843	03/29/21 17:58	JCK	TAL SAV
	Instrumer	nt ID: CSGK								
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3010A			5 mL	50 mL	661130	03/24/21 12:07	BCB	TAL SAV
TCLP	Analysis	6010C		1			661329	03/24/21 20:24	BCB	TAL SAV
	Instrumer	nt ID: ICPE								
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	7470A			0.50 mL	50 mL	660994	03/23/21 15:49	JKL	TAL SAV
TCLP	Analysis	7470A		1			661174	03/24/21 14:20	JKL	TAL SA\
	Instrumer	nt ID: LEEMAN2								

Eurofins TestAmerica, Savannah

Page 53 of 57

3

5

7

10

12

14

Lab Chronicle

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick - Wells

Client Sample ID: IDW-S-3

Lab Sample ID: 680-196387-6

Job ID: 680-196387-1

Matrix: Solid

Date Collected: 03/16/21 12:20 Date Received: 03/17/21 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1030		1			660419	03/19/21 11:55	SM	TAL SAV

Client Sample ID: IDW-S-4 Lab Sample ID: 680-196387-7 Date Collected: 03/16/21 12:30 **Matrix: Solid**

Date Received: 03/17/21 10:30

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
TCLP	Leach	1311			25.00 g	500 mL	660980	03/23/21 16:22	JEB	TAL SAV
TCLP	Analysis Instrumer	8260B nt ID: CMSAA		20	5 mL	5 mL	661698	03/28/21 14:20	P1C	TAL SAV
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3520C			202.7 mL	1 mL	661013	03/23/21 19:51	EHS	TAL SAV
TCLP	Analysis Instrumer	8270D nt ID: CMSG		1			661361	03/25/21 21:49	T1C	TAL SAV
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3520C			21.2 mL	5 mL	661180	03/24/21 18:23	EHS	TAL SAV
TCLP	Analysis Instrumer	8081B/8082A nt ID: CSGK		1			661843	03/29/21 18:14	JCK	TAL SAV
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	3010A			5 mL	50 mL	661130	03/24/21 12:07	BCB	TAL SAV
TCLP	Analysis Instrumer	6010C nt ID: ICPE		1			661329	03/24/21 20:28	ВСВ	TAL SAV
TCLP	Leach	1311			100.00 g	2000 mL	660636	03/22/21 11:45	JEB	TAL SAV
TCLP	Prep	7470A			0.50 mL	50 mL	660994	03/23/21 15:49	JKL	TAL SAV
TCLP	Analysis Instrumer	7470A nt ID: LEEMAN2		1			661174	03/24/21 14:24	JKL	TAL SAV
Total/NA	Analysis Instrumer	1030 nt ID: SPC8		1			660419	03/19/21 11:55	SM	TAL SAV

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Page 54 of 57

Chain of Custody Record

525920 & eurofins

Environment Testing TestAmerica

Address:	Regul	atory Pro	oram. [Dw '	NDDEC	. 1		CD A		Mh a s									1			
Client Contact	Project Ma			Cein		_	_	ntac			MS	. 01	Date	e: 3	1 -	21		Ic	COC No:		TAI	8210
	Tel/Email:	Analysis To DAR DAYS if different fro 2 1	UZ- Qurnaround	564	'S	Lab	Cor	ntac	SVOC	Tel metal	mtab.44		Car					S F V	ot o	Donly:	OCs SCY	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered Sample (Y / N	Perform MS	00970	100	6010 C	30-							R	Sample	e Specific	Notes:	
10m-m-1	3/16/21	1310	С	W	7	2 :	2)	KX	X	ΧX												
10W-W-2	1	1325	1	1	1	11	ıX	X	X	XX												
10W-W-3		1350				Ш	115	XX	X	XX						\Box						
100-0-4				V	•	Щ	1	(1)	X	XX		-4				$\dagger \dagger$						
		1158		50	6	Ш		ХX	X	XX	X	1	55 S			$\top \uparrow$				13.10		
10W-S-1		1205		1		H	Πx	(x	X	XX	X	1									100	
10 W- 5-3		1220				\parallel	1	ίχ	X	XX	X				- '-	100000	A Bertania	- 1	11			
10w-5-4	V	1230	V	V	V	1	₩×	ζ×	X	XX	X				68	30-196	387 Ch	nain of	f Custody			
Preservation Used: 1= Ice, 2= HCi; 3= H2SO4; 4=HNO3;	S-NaOH:	in Other																			_	
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample. Non-Hazard		PA Waste	Codes for	·	ole in th	е			Dispo		A fee		be ass		fsam		re retai		on ger than 1		,	E
Special Instructions/QC Requirements & Comments:		ψ							10	1	.7	- 1	1.7	_(CF-	=) 1	5		1.49	2		
Custody Seals Intact: Yes No Relinquished by: Relinquished by:	Custody Si Company: Company:			Date/Ti	1			ved	3/2	oler Te	emp. (C): 1	ya.		mpany mpany	1-	1-7		Date/Time:	30)	
Relinquished by:	Company:			Date/Ti	me:		Rece	eived	in La	borato	ory by	:		Cor	mpany	:		C	Date/Time:			

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 680-196387-1

Login Number: 196387 List Source: Eurofins TestAmerica, Savannah

List Number: 1

Creator: Banda, Christy S

Creator. Danua, Christy S		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received Trip Blank(s) not listed on COC - TB not required.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	False	HCL vials submitted for TCLP VOCs.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Λ

5

_

0

10

12

14

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc. Job ID: 680-196387-1

Project/Site: Hercules Brunswick - Wells

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87052	06-30-21
Georgia	State	E87052	06-30-21

1

- 5

4

0

9

11

12

14

ANALYTICAL REPORT

Eurofins TestAmerica, Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

Laboratory Job ID: 680-198384-1

Client Project/Site: Hercules Brunswick Wells

For:

Geosyntec Consultants, Inc. 1255 Roberts Blvd, NW Suite 200 Kennesaw, Georgia 30144

Attn: Adria Reimer

Authorized for release by: 5/13/2021 1:33:40 PM

Add Barnett

Eddie Barnett, Project Manager I (912)250-0280

Eddie.Barnett@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

1 0

11

11

Le

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Method Summary	5
Definitions/Glossary	6
Detection Summary	7
Client Sample Results	8
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	15
Lab Chronicle	16
Chain of Custody	17
Receipt Checklists	18
Certification Summary	19

10

12

IR

Case Narrative

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick Wells Job ID: 680-198384-1

Job ID: 680-198384-1

Laboratory: Eurofins TestAmerica, Savannah

Narrative

CASE NARRATIVE

Client: Geosyntec Consultants, Inc. Project: Hercules Brunswick Wells

Report Number: 680-198384-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 05/04/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 3.9° C.

Sample IDW-W-8-20210503 (680-198384-5) was submitted for analysis; however, the volume was lost during preparation of the sample during the pressurization process and insufficient volume remained for analysis.

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples IDW-W-4-20210503 (680-198384-1), IDW-W-5-20210503 (680-198384-2), IDW-W-6-20210503 (680-198384-3) and IDW-W-7-20210503 (680-198384-4) were analyzed for TCLP volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 05/05/2021 and analyzed on 05/12/2021.

2-Butanone (MEK) recovered high for LCS 680-668198/3. This analyte was biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. Refer to the QC report for details.

Samples IDW-W-4-20210503 (680-198384-1)[20X], IDW-W-5-20210503 (680-198384-2)[20X], IDW-W-6-20210503 (680-198384-3)[20X] and IDW-W-7-20210503 (680-198384-4)[20X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

5

6

8

4.0

11

13

14

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick Wells Job ID: 680-198384-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-198384-1	IDW-W-4-20210503	Water	05/03/21 15:30	05/04/21 11:40
680-198384-2	IDW-W-5-20210503	Water	05/03/21 15:40	05/04/21 11:40
680-198384-3	IDW-W-6-20210503	Water	05/03/21 15:50	05/04/21 11:40
680-198384-4	IDW-W-7-20210503	Water	05/03/21 16:00	05/04/21 11:40

Δ

ļ

6

8

9

11

12

14

Method Summary

Client: Geosyntec Consultants, Inc.
Project/Site: Hercules Brunswick Wells

Job ID: 680-198384-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL SAV
1311	TCLP Extraction	SW846	TAL SAV
5030B	Purge and Trap	SW846	TAL SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

- - -

6

7

Q

10

4.0

13

14

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Job ID: 680-198384-1

Project/Site: Hercules Brunswick Wells

Qualifiers

GC/MS VOA

C	lualitier	Qualifier Description
*.	+	LCS and/or LCSD is outside acceptance limits, high biased.
U	I	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive

RER

QC **Quality Control**

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Error Ratio (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5/13/2021

Page 6 of 19

Detection Summary

Client: Geosyntec Consultants, Inc.

Job ID: 680-198384-1

Project/Site: Hercules Brunswick Wells

Client Sample ID: IDW-W-4-20210503 Lab Sample ID: 680-198384-1

No Detections.

Client Sample ID: IDW-W-5-20210503 Lab Sample ID: 680-198384-2

No Detections.

Client Sample ID: IDW-W-6-20210503 Lab Sample ID: 680-198384-3

Analyte	Result Qualit	fier RL	MDL Uni	t Dil Fac	D	Method	Prep Type
Chlorobenzene	0.077	0.020	mg/	L 20	_	8260B	TCLP
Benzene	0.11	0.020	mg/	L 20		8260B	TCLP

Client Sample ID: IDW-W-7-20210503 Lab Sample ID: 680-198384-4

No Detections.

This Detection Summary does not include radiochemical test results.

1

3

4

7

8

9

11

13

14

Client: Geosyntec Consultants, Inc. Job ID: 680-198384-1

Project/Site: Hercules Brunswick Wells

Client Sample ID: IDW-W-4-20210503

Lab Sample ID: 680-198384-1 Date Collected: 05/03/21 15:30

Matrix: Water

Date Received: 05/04/21 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.020	U	0.020		mg/L			05/12/21 17:23	20
Chlorobenzene	0.020	U	0.020		mg/L			05/12/21 17:23	20
Tetrachloroethene	0.020	U	0.020		mg/L			05/12/21 17:23	20
Carbon tetrachloride	0.020	U	0.020		mg/L			05/12/21 17:23	20
Chloroform	0.020	U	0.020		mg/L			05/12/21 17:23	20
Benzene	0.020	U	0.020		mg/L			05/12/21 17:23	20
Vinyl chloride	0.020	U	0.020		mg/L			05/12/21 17:23	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			05/12/21 17:23	20
2-Butanone (MEK)	0.20	U *+	0.20		mg/L			05/12/21 17:23	20
Trichloroethene	0.020	U	0.020		mg/L			05/12/21 17:23	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130			_		05/12/21 17:23	20
1,2-Dichloroethane-d4 (Surr)	89		60 - 124					05/12/21 17:23	20
Dibromofluoromethane (Surr)	96		70 - 130					05/12/21 17:23	20
4-Bromofluorobenzene (Surr)	94		70 - 130					05/12/21 17:23	20

Client: Geosyntec Consultants, Inc. Job ID: 680-198384-1

Project/Site: Hercules Brunswick Wells

Date Received: 05/04/21 11:40

Client Sample ID: IDW-W-5-20210503

Lab Sample ID: 680-198384-2 Date Collected: 05/03/21 15:40

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.020	U	0.020		mg/L			05/12/21 17:00	20
Chlorobenzene	0.020	U	0.020		mg/L			05/12/21 17:00	20
Tetrachloroethene	0.020	U	0.020		mg/L			05/12/21 17:00	20
Carbon tetrachloride	0.020	U	0.020		mg/L			05/12/21 17:00	20
Chloroform	0.020	U	0.020		mg/L			05/12/21 17:00	20
Benzene	0.020	U	0.020		mg/L			05/12/21 17:00	20
Vinyl chloride	0.020	U	0.020		mg/L			05/12/21 17:00	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			05/12/21 17:00	20
2-Butanone (MEK)	0.20	U *+	0.20		mg/L			05/12/21 17:00	20
Trichloroethene	0.020	U	0.020		mg/L			05/12/21 17:00	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130			-		05/12/21 17:00	20
1,2-Dichloroethane-d4 (Surr)	87		60 - 124					05/12/21 17:00	20
Dibromofluoromethane (Surr)	95		70 - 130					05/12/21 17:00	20
4-Bromofluorobenzene (Surr)	95		70 - 130					05/12/21 17:00	20

Client: Geosyntec Consultants, Inc. Job ID: 680-198384-1

Project/Site: Hercules Brunswick Wells

Client Sample ID: IDW-W-6-20210503

Lab Sample ID: 680-198384-3 Date Collected: 05/03/21 15:50 Matrix: Water

Date Received: 05/04/21 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.020	U	0.020		mg/L			05/12/21 16:37	20
Chlorobenzene	0.077		0.020		mg/L			05/12/21 16:37	20
Tetrachloroethene	0.020	U	0.020		mg/L			05/12/21 16:37	20
Carbon tetrachloride	0.020	U	0.020		mg/L			05/12/21 16:37	20
Chloroform	0.020	U	0.020		mg/L			05/12/21 16:37	20
Benzene	0.11		0.020		mg/L			05/12/21 16:37	20
Vinyl chloride	0.020	U	0.020		mg/L			05/12/21 16:37	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			05/12/21 16:37	20
2-Butanone (MEK)	0.20	U *+	0.20		mg/L			05/12/21 16:37	20
Trichloroethene	0.020	U	0.020		mg/L			05/12/21 16:37	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130			_		05/12/21 16:37	20
1,2-Dichloroethane-d4 (Surr)	87		60 - 124					05/12/21 16:37	20
Dibromofluoromethane (Surr)	96		70 - 130					05/12/21 16:37	20
4-Bromofluorobenzene (Surr)	96		70 - 130					05/12/21 16:37	20

Client: Geosyntec Consultants, Inc. Job ID: 680-198384-1

Project/Site: Hercules Brunswick Wells

Client Sample ID: IDW-W-7-20210503

Lab Sample ID: 680-198384-4 Date Collected: 05/03/21 16:00

Matrix: Water

Date Received: 05/04/21 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.020	U	0.020		mg/L			05/12/21 18:31	20
Chlorobenzene	0.020	U	0.020		mg/L			05/12/21 18:31	20
Tetrachloroethene	0.020	U	0.020		mg/L			05/12/21 18:31	20
Carbon tetrachloride	0.020	U	0.020		mg/L			05/12/21 18:31	20
Chloroform	0.020	U	0.020		mg/L			05/12/21 18:31	20
Benzene	0.020	U	0.020		mg/L			05/12/21 18:31	20
Vinyl chloride	0.020	U	0.020		mg/L			05/12/21 18:31	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			05/12/21 18:31	20
2-Butanone (MEK)	0.20	U *+	0.20		mg/L			05/12/21 18:31	20
Trichloroethene	0.020	U	0.020		mg/L			05/12/21 18:31	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		70 - 130			_		05/12/21 18:31	20
1,2-Dichloroethane-d4 (Surr)	87		60 - 124					05/12/21 18:31	20
Dibromofluoromethane (Surr)	71		70 - 130					05/12/21 18:31	20
4-Bromofluorobenzene (Surr)	95		70 - 130					05/12/21 18:31	20

Surrogate Summary

Client: Geosyntec Consultants, Inc. Job ID: 680-198384-1

Project/Site: Hercules Brunswick Wells

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_ 		Percent Surrogate Recovery (Acceptance Limit				
		TOL	DCA	DBFM	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(60-124)	(70-130)	(70-130)	
LCS 680-668198/3	Lab Control Sample	103	105	104	94	
LCSD 680-668198/4	Lab Control Sample Dup	105	103	104	99	
MB 680-668198/8	Method Blank	95	89	94	93	
Surrogate Legend						

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water **Prep Type: TCLP**

		Percent Surrogate F				
		TOL	DCA	DBFM	BFB	
Lab Sample ID	Client Sample ID	(70-130)	(60-124)	(70-130)	(70-130)	
680-198384-1	IDW-W-4-20210503	97	89	96	94	
680-198384-2	IDW-W-5-20210503	97	87	95	95	
680-198384-3	IDW-W-6-20210503	97	87	96	96	
680-198384-4	IDW-W-7-20210503	94	87	71	95	
LB 680-667084/1-A	Method Blank	98	89	97	96	

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

DBFM = Dibromofluoromethane (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Page 12 of 19

Job ID: 680-198384-1

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick Wells

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 680-668198/8

Matrix: Water

Analysis Batch: 668198

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 1,2-Dichloroethane 0.0010 U 0.0010 mg/L 05/12/21 14:01 Chlorobenzene 0.0010 U 0.0010 mg/L 05/12/21 14:01 0.0010 U Tetrachloroethene 0.0010 mg/L 05/12/21 14:01 Carbon tetrachloride 0.0010 U 0.0010 mg/L 05/12/21 14:01 Chloroform 0.0010 U 0.0010 05/12/21 14:01 mg/L Benzene 0.0010 U 0.0010 05/12/21 14:01 mg/L Vinyl chloride 0.0010 U 0.0010 mg/L 05/12/21 14:01 1,1-Dichloroethene 0.0010 U 0.0010 mg/L 05/12/21 14:01 2-Butanone (MEK) 0.010 U 0.010 05/12/21 14:01 mg/L Trichloroethene 0.0010 U 0.0010 mg/L 05/12/21 14:01

MB MB

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95	70 - 130		05/12/21 14:01	1
1,2-Dichloroethane-d4 (Surr)	89	60 - 124		05/12/21 14:01	1
Dibromofluoromethane (Surr)	94	70 - 130		05/12/21 14:01	1
4-Bromofluorobenzene (Surr)	93	70 - 130		05/12/21 14:01	1

Lab Sample ID: LCS 680-668198/3

Matrix: Water

Analysis Batch: 668198

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	0.0500	0.0548		mg/L		110	70 - 130	
Chlorobenzene	0.0500	0.0535		mg/L		107	70 - 130	
Tetrachloroethene	0.0500	0.0466		mg/L		93	70 - 130	
Carbon tetrachloride	0.0500	0.0453		mg/L		91	70 - 130	
Chloroform	0.0500	0.0499		mg/L		100	70 - 130	
Benzene	0.0500	0.0547		mg/L		109	70 - 130	
Vinyl chloride	0.0500	0.0482		mg/L		96	66 - 129	
1,1-Dichloroethene	0.0500	0.0449		mg/L		90	70 - 130	
2-Butanone (MEK)	0.250	0.292	*+	mg/L		117	69 - 114	
Trichloroethene	0.0500	0.0458		mg/L		92	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		70 - 130
1,2-Dichloroethane-d4 (Surr)	105		60 - 124
Dibromofluoromethane (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130

Lab Sample ID: LCSD 680-668198/4

Matrix: Water

Analysis Batch: 668198

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	0.0500	0.0538		mg/L		108	70 - 130	2	50
Chlorobenzene	0.0500	0.0552		mg/L		110	70 - 130	3	30
Tetrachloroethene	0.0500	0.0482		mg/L		96	70 - 130	3	30
Carbon tetrachloride	0.0500	0.0467		mg/L		93	70 - 130	3	30

Eurofins TestAmerica, Savannah

QC Sample Results

Client: Geosyntec Consultants, Inc. Job ID: 680-198384-1

Project/Site: Hercules Brunswick Wells

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample	ID: LCSD	680-668198/4
------------	----------	--------------

Matrix: Water

Analysis Batch: 668198

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

PD Limit	
1 30	
0 30	
2 30	
3 20	
5 30	
5 30	
<u>R</u>	1 30 0 30 2 30 3 20 5 30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Surr)	103		60 - 124
Dibromofluoromethane (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130

Client Sample ID: Method Blank

Prep Type: TCLP

Analysis Batch: 668198

Matrix: Water

Lab Sample ID: LB 680-667084/1-A

LB LB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.020	U	0.020		mg/L			05/12/21 15:07	20
Chlorobenzene	0.020	U	0.020		mg/L			05/12/21 15:07	20
Tetrachloroethene	0.020	U	0.020		mg/L			05/12/21 15:07	20
Carbon tetrachloride	0.020	U	0.020		mg/L			05/12/21 15:07	20
Chloroform	0.020	U	0.020		mg/L			05/12/21 15:07	20
Benzene	0.020	U	0.020		mg/L			05/12/21 15:07	20
Vinyl chloride	0.020	U	0.020		mg/L			05/12/21 15:07	20
1,1-Dichloroethene	0.020	U	0.020		mg/L			05/12/21 15:07	20
2-Butanone (MEK)	0.20	U	0.20		mg/L			05/12/21 15:07	20
Trichloroethene	0.020	U	0.020		mg/L			05/12/21 15:07	20

LB LB

Surrogate	%Recovery	Qualifier Li	mits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98	70) _ 130	_		05/12/21 15:07	20
1,2-Dichloroethane-d4 (Surr)	89	60	124			05/12/21 15:07	20
Dibromofluoromethane (Surr)	97	70	130			05/12/21 15:07	20
4-Bromofluorobenzene (Surr)	96	70	130			05/12/21 15:07	20

Eurofins TestAmerica, Savannah

5/13/2021

QC Association Summary

Client: Geosyntec Consultants, Inc. Job ID: 680-198384-1 Project/Site: Hercules Brunswick Wells

GC/MS VOA

Leac	h Ba	tch:	667	084
------	------	------	-----	-----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 680-667084/1-A	Method Blank	TCLP	Water	1311	

Leach Batch: 667306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-198384-1	IDW-W-4-20210503	TCLP	Water	1311	
680-198384-2	IDW-W-5-20210503	TCLP	Water	1311	
680-198384-3	IDW-W-6-20210503	TCLP	Water	1311	
680-198384-4	IDW-W-7-20210503	TCLP	Water	1311	

Analysis Batch: 668198

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-198384-1	IDW-W-4-20210503	TCLP	Water	8260B	667306
680-198384-2	IDW-W-5-20210503	TCLP	Water	8260B	667306
680-198384-3	IDW-W-6-20210503	TCLP	Water	8260B	667306
680-198384-4	IDW-W-7-20210503	TCLP	Water	8260B	667306
LB 680-667084/1-A	Method Blank	TCLP	Water	8260B	667084
MB 680-668198/8	Method Blank	Total/NA	Water	8260B	
LCS 680-668198/3	Lab Control Sample	Total/NA	Water	8260B	
LCSD 680-668198/4	Lab Control Sample Dup	Total/NA	Water	8260B	

Lab Chronicle

Client: Geosyntec Consultants, Inc. Project/Site: Hercules Brunswick Wells

Client Sample ID: IDW-W-4-20210503

Date Collected: 05/03/21 15:30

Lab Sample ID: 680-198384-1

Matrix: Water

Job ID: 680-198384-1

Date Received: 05/04/21 11:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100 mL	100 mL	667306	05/05/21 12:10	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	668198	05/12/21 17:23	SMP	TAL SAV
	Instrume	nt ID: CMSO2								

Client Sample ID: IDW-W-5-20210503

Lab Sample ID: 680-198384-2 Date Collected: 05/03/21 15:40

Matrix: Water

Date Received: 05/04/21 11:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100 mL	100 mL	667306	05/05/21 12:10	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	668198	05/12/21 17:00	SMP	TAL SAV
	Instrume	nt ID: CMSO2								

Client Sample ID: IDW-W-6-20210503

Lab Sample ID: 680-198384-3 Date Collected: 05/03/21 15:50

Matrix: Water

Date Received: 05/04/21 11:40

Dil Initial Final Batch Batch Batch Prepared Prep Type Туре Method Amount Amount Number or Analyzed Run Factor Analyst Lab TCLP Leach 1311 100 mL 100 mL 667306 05/05/21 12:10 JEB TAL SAV **TCLP** 8260B Analysis 20 5 mL 5 mL 668198 05/12/21 16:37 SMP TAL SAV Instrument ID: CMSO2

Client Sample ID: IDW-W-7-20210503

Lab Sample ID: 680-198384-4

Date Collected: 05/03/21 16:00 **Matrix: Water**

Date Received: 05/04/21 11:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			100 mL	100 mL	667306	05/05/21 12:10	JEB	TAL SAV
TCLP	Analysis	8260B		20	5 mL	5 mL	668198	05/12/21 18:31	SMP	TAL SAV
	Instrume	nt ID: CMSO2								

Laboratory References:

TAL SAV = Eurofins TestAmerica, Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Environment Testing TestAmerica

Client Contact	Project M	anager:	adain P	1100		Site	Cont	act:			Dat	e: 05-	1.3.	2021		COC No:		
ompany Name: Geosynta Consultuts	Tel/Email	AreiMer	(DOSS	vuter.	CONL	Lab	Cont	act:				rier:	0,5	2021		/	of / C	OCs
ddress: 1255 Roberts Bird. NW set 200		Analysis T	urnaround	Time		П			\top						П	Sampler:		
ty/State/Zip: Kenn es aw , GA 30144	_ CALEN	DAR DAYS	☐ woi	RKING DAY	rS	11	8									For Lab U	se Only:	
none: 679)-202-9500	TA	T if different fr	om Below			1 1	82608									Walk-in Cl	ent:	
ax:		2	weeks				- 8					200				Lab Samp	ing:	
oject Name: Hercales Brown	k-treis 🗌	1	. week								1.0	315						
Her colos Principal Brooks CK GA Sum !	<u> </u>		days) e (VOCS				09	3.20				Job / SDG	No.:	
O# GR6881P		1	day	,			2 3		1	0								
			Sample Type			Filtered Sample (Y/N)			17									
	Sample	Sample	(C=Comp,		# of	1 2 4	722		1									
Sample Identification	Date	Time	G≖Grab)	Matrix	Cont.	-										Sa	nple Specific	Notes:
IDW-W-4-20210503	5/3/21	1530	6	WW	3	NI	13											
IDM-M-2-50510203	5/3/21	1540	G	WW	3	N /	V 3											
EDW-W-6-20210503	5/3/21	1550	G	WW	3	WA	13											
IDW-W-7-20210503	5/3/21	1600	6	ww	3	N	V 3											
EDW-M-8-50510203	5/3/21	1610	G	ww	3	N	13											
						П												
				-		++	+	-	++		<u> </u>	10000000						
						Ш						11111111						
	-	-	5	2														
				-	-		2	02	\dashv					ini mana		BIRR INIBI IRRITRIBILIA 	-	
				-		₩	-	14	+			680-198	8384 C	hain of	Custo	ay		
						П					1				1.77	1		
					-	+	+		-	-		\rightarrow						
						Ш												
eservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HN0	03; 5=NaOH;	6= Other _																High
ossible Hazard Identification: e any samples from a listed EPA Hazardous Waste? P	loaco Liet any	EDA Masto	Codes for	the came	nlo in th	ا ر	Sampl	e Dispo	sal (A f	ee may	be ass	essed if	sampl	es are	retain	ed longer th	n 1 month)	
omments Section if the lab is to dispose of the sample.	lease List arry	LI A Wasie	Codes Ioi	the Sain	pie iii ti													
Non-Hazard Flammable Skin Irritani	Poisor	n B	Unkn	iown		\neg		Return to C	lient		Disposa	l hy Lah		Arch	nive for	Mc	nths	
pecial Instructions/QC Requirements & Comments:												. 0, 200						
•																		
Custody Seals Intact: Yes No	Custody S	Seal No.:							ler Tem	p. (°C):	Obsid:_		_ Corr	d:		_ Therm ID N	lo.:	
elinquished by:	Company			Date/Ti	ime:	F	Receiv	ed by	V ,	4 4 4	5	Con	ipany:	211	7	Date/Time	TUI	
DAN GOBBS	Geosyn					>	<u> </u>		سر		<u> </u>	- 10	<u> </u>	114		1 '	176	<u> </u>
elinquished by:	Company			Date/Ti	ime:	F	Receiv	ed by:				Com	npany:			Date/Time	:	
elinquished by:	Company			Date/Ti	ime.	-	Receiv	ed in Lai	horaton	, hv.		Con	refy:			Bate/Time		

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 680-198384-1

Login Number: 198384 List Source: Eurofins TestAmerica, Savannah

List Number: 1

Creator: Banda, Christy S

oroator. Barrat, ormoty o	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	N/A
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time (excluding tests with immediate HTs)	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

i

Λ

E

6

<u>و</u>

9

11

14

14

Accreditation/Certification Summary

Client: Geosyntec Consultants, Inc.

Job ID: 680-198384-1

Project/Site: Hercules Brunswick Wells

Laboratory: Eurofins TestAmerica, Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Florida	NELAP	E87052	06-30-21
Georgia	State	E87052	06-30-21

3

4

6

8

10

11

13

14

ATTACHMENTS TO APPENDIX B PROVIDED ON DIGITAL DISC

__

INTERIM CORRECTIVE MEASURE WORK PLAN, NOVEMBER 2021