GROUND-WATER QUALITY IN GEORGIA FOR 1993

John C. Donahue
and

Neal D. Hunt

GEORGIA DEPARTMENT OF NATURAL RESCURCES
ENVIRONMENTAL PROTECTION DIVISION
GEORGIA GEOLOGIC SURVEY

Atlanta
1996

CIRCULAR 124






GROUND-WATER QUALITY IN GEORGIA FOR 1993

John C. Donahue
and

Neal D. Hunt

The preparation of this report was funded in part through a grant from the U.S. Environmental
Protection Agency under the provisions of Section 106 of the Federal Water Pollution Control Act of
1972, as amended.

GEORGIA DEPARTMENT OF NATURAL RESOURCES
LONICE C. BARRETT, COMMISSIONER

ENVIRONMENTAL PROTECTION DIVISION
HAROLD F. REHEIS, DIRECTOR

GEORGIA GEOLOGIC SURVEY
WILLIAM H. McLEMORE, STATE GEOLOGIST

ATLANTA
1996

CIRCULAR 12J



E
,
:
k
w
s 2 .
. » - -
¥ .
- e I



TABLE OF CONTENTS

Section
1.0 INTRODUCTION
1.1 Purpose and Scope
1.2 Factors Affecting Ground-Water Quality
1.3 Hydrogeologic Provinces of Georgia
1.3.1 Coastal Plain
1.3.2 Piedmont/Blue Ridge
1.3.3 Valley and Ridge
1.4 Regional Ground-Water Problems

2.0 GEORGIA GROUND-WATER MONITORING NETWORK
2.1 Monitoring Stations
2.2 Uses and Limitations
2.3 Analyses

3.0 GROUND-WATER QUALITY IN GEORGIA
3.1 Overview
3.2 Cretaceous Aquifer System
3.3 Providence Aquifer System
3.4 Clayton Aquifer System
3.5 Claiborne Aquifer System
3.6 Jacksonian Aquifer System
3.7 Floridan Aquifer System
3.8 Miocene Aquifer System
3.9 Piedmont/Blue Ridge Unconfined Aquifers
3.10 Valley and Ridge Unconfined Aquifers

4.0 SUMMARY AND CONCLUSIONS
5.0 REFERENCES

APPENDIX
Analysis of samples collected during 1993 for the Georgia Ground-Water
Monitoring Network
1993 Ground-Water Quality Analysis of the Cretaceous Aquifer System
1993 Ground-Water Quality Analysis of the Providence Aquifer System
1993 Ground-Water Quality Analysis of the Clayton Aquifer System
1993 Ground-Water Quality Analysis of the Claiborne Aquifer System
1993 Ground-Water Quality Analysis of the Jacksonian Aquifer System
1993 Ground-Water Quality Analysis of the Floridan Aquifer System
1993 Ground-Water Quality Analysis of the Miocene Aquifer System

3-11
3-15
3-19
3-23
3-28
3-32
3-38

4-1

5-1

A-1

A-12
A-15
A-16
A-17
A-18
A-19
A-25



1993 Ground-Water Quality Analysis of the Piedmont/Blue Ridge

Unconfined Aquifers
1993 Ground-Water Quality Analysis of the Valley and Ridge

Unconfined Aquifers

LIST OF FIGURES

Figure 1-1 The Hydrogeologic Provinces of Georgia

Figure 3-1 The Seven Major Aquifers and Aquifer Systems of the
Coastal Plain Province

Figure 3-2 Water Quality of the Cretaceous Aquifer System

Figure 3-3 Iron Concentrations for Selected Wells in the Cretaceous Aquifer System

Figure 3-4  Nitrate/Nitrite Concentrations for Selected Wells in the Cretaceous
Aquifer System

Figure 3-5 Water Quality of the Providence Aquifer System

Figure 3-6  Iron Concentrations for Selected Wells in the Providence Aquifer System

Figure 3-7  Nitrate/Nitrite Concentrations for Selected Wells in the Providence
Aquifer System

Figure 3-8 Water Quality of the Clayton Aquifer System

Figure 3-9 Iron Concentrations for Selected Wells in the Clayton Aquifer System

Figure 3-10  Nitrate/Nitrite Concentrations for Selected Wells in the Clayton
Aquifer System

Figure 3-11  Water Quality of the Claiborne Aquifer System

Figure 3-12  Iron Concentrations for Selected Wells in the Claiborne Aquifer System

Figure 3-13  Nitrate/Nitrite Concentrations for Selected Wells in the Claiborne
Aquifer System

Figure 3-14  Water Quality of the Jacksonian Aquifer System

Figure 3-15  Iron Concentrations for Selected Wells in the Jacksonian Aquifer System

Figure 3-16  Nitrate/Nitrite Concentrations for Selected Wells in the Jacksonian
Aquifer System

Figure 3-17 Water Quality of the Floridan Aquifer System

Figure 3-18  Iron Concentrations for Selected Wells in the Floridan Aquifer System

Figure 3-19  Nitrate/Nitrite Concentrations for Selected Wells in the Floridan
Aquifer System

Figure 3-20  Water Quality of the Miocene Aquifer System

Figure 3-21  Iron Concentrations for Selected Wells in the Miocene Aquifer System

Figure 3-22  Nitrate/Nitrite Concentrations for Selected Wells in the Miocene
Aquifer System

Figure 3-23  Water Quality of the Piedmont/Blue Ridge Unconfined Aquifers

Figure 3-24  Iron Concentrations for Selected Wells in the Piedmont/Blue Ridge
Unconfined Aquifer System: Piedmont Sector

Figure 3-25 Iron Concentrations for Selected Wells in the Piedmont/Blue Ridge
Unconfined Aquifer System: Blue Ridge Sector

Figure 3-26  Nitrate/Nitrite Concentrations for Selected Wells in the Piedmont/Blue

Ridge Unconfined Aquifer System: Piedmont Sector

A-27

A-30

1-3

3.2
3-4
3.5

3-6
3-8
3-9

3-18
3-20
3-21

3-22
3-25
3-26
3-27
3-29
3-30

3-31
3-33

3-34

3-35

3-36



Figure 3-27  Nitrate/Nitrite Concentrations for Selected Wells in the Piedmont/Blue
Ridge Unconfined Aquifer System: Blue Ridge Sector

Figure 3-28  Water Quality of the Valley and Ridge Unconfined Aquifers

Figure 3-29  Iron Concentrations for Selected Wells in the Valley and Ridge
Unconfined Aquifer System

Figure 3-30  Nitrate/Nitrite Concentrations for Selected Wells in the Valley
and Ridge Unconfined Aquifer System

LIST OF TABLES

Table 2-1 Georgia Ground-Water Monitoring Network, 1993

Table 2-2 The Significance of Parameters of a Basic Water Quality Analysis,
Cations

Table 2-3 The Significance of Parameters of a Basic Water Quality Analysis,
Anions

Table 4-1 Pollution and Contamination Incidents, 1993

Table A-1 Standard Water Quality Analysis: Physical Parameters, Major Anions,
Minerals and ICP/AAS Metals Screen

Table A-2 Additional Water Quality Analyses: Organic Screens #1, #2, #3, #4,

#5, #7, #8, #9, and #10

3-37
3-39

3-40

3-41

2-5

2-6

A-4






1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

This report for calendar year 1993 is the tenth in a series of annual summaries discussing
the chemical quality of ground water in Georgia. These summaries are among the tools used by
the Georgia Environmental Protection Division (EPD) to assess trends in the quality of the
State's ground-water resources. EPD is the State organization with regulatory responsibility for
maintaining and, where possible, improving ground-water quality and availability. EPD has
implemented a comprehensive state-wide ground-water management policy of anti-degradation
(EPD, 1991). Five components constitute EPD's ground-water quality assessment program:

1.

The Georgia Ground-Water Monitoring Network. This program is maintained by
the Geologic Survey Branch of EPD and is designed to evaluate the ambient
ground-water quality of ten aquifer systems throughout the State of Georgia.

The data presented in this report were provided by this program.

Sampling of public drinking water wells as part of the Safe Drinking Water
Program (Water Resources Management Branch). This program provides data on
the quality of ground water that is being used by the residents of Georgia.

Special studies addressing specific water quality issues. A survey of n-
itrite/nitrate levels in shallow wells located throughout the State of Georgia
(Shellenberger, et al., 1996; Stuart, et al., 1995) and the operation of a Pesticide
Monitoring Network (currently conducted jointly by the Geologic Survey Branch
and the Georgia Department of Agriculture) (Webb, 1995) are examples of these
types of studies.

Ground-water sampling at environmental facilities such as municipal solid waste
landfills, RCRA facilities, and sludge disposal facilities. The primary agencies
responsible for monitoring these facilities are EPD’s Land Protection, Water
Protection, and Hazardous Waste Management Branches.

The development of a wellhead protection program (WHP), which is designed to
protect the area surrounding a municipal drinking water well from contaminants.
Georgia's WHP Plan was approved by the Environmental Protection Agency
(EPA) September 30, 1992, and was amended into the Georgia Safe Drinking
Water Rules effective June 30, 1993. The protection of public water supply wells
from contaminants is important not only for maintaining ground-water quality but
also for helping ensure that public water supplies meet health standards.

Analyses of water samples collected for the Georgia Ground-Water Monitoring Network
during calendar year 1993 and from previous years form the data base for this summary. The
Georgia Ground-Water Monitoring Network is comprised of 128 wells and springs which are
monitored on a biennial, annual, or semi-annual basis (some stations were sampled twice).
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Representative water samples were collected from 107 wells and 4 springs in 1993, totaling 128
samples. A review of the 1993 data, and comparison of these data with those for samples
collected as early as 1984, indicate that ground-water quality at most of the 128 sampling sites
generally has changed little and remains excellent.

1.2 FACTORS AFFECTING CHEMICAL GROUND-WATER QUALITY

The chemical quality of ground water drawn for sampling is the result of complex
physical, chemical, and biological processes. Some of the more significant controls are the
chemical quality of the water entering the ground-water flow system, the reactions of infiltrating
water with the soils and rocks that are encountered, and the effects of the well-and-pump system.

Most water enters the ground-water system in upland recharge areas. Water seeps
through interconnected pores and joints in the soils and rocks until it is discharged to a surface-
water body (e.g., stream, river, lake, or ocean). The initial water chemistry, the amount of
recharging, and the attenuation capacity of soils have a strong influence on the quality of ground
water in recharge areas. Chemical interactions between the water and the aquifer host rocks has
an increasing significance with longer underground residence times. As a result, ground water
from discharge areas tends to be more highly mineralized than ground water in recharge areas.

The well-and-pump system can also have a strong influence on the quality of the well
water. Well casings, through compositional breakdown, can contribute metals (e.g., iron from
steel casings) and organic compounds (e.g., tetrahydrofuran from PVC pipe cement) to the
water. Pumps often aerate the water being discharged. An improperly constructed well can
present a conduit that allows local pollutants to enter the ground-water flow system.

1.3 HYDROGEOLOGIC PROVINCES OF GEORGIA

This report defines three hydrogeologic provinces in Georgia by their general geologic
and hydrologic characteristics (Figure 1-1). These provinces consist of:
1) the Coastal Plain Province of south Georgia;
2) the Piedmont/Blue Ridge Province, which includes all but the northwest corner of
Georgia; and
3) the Valley and Ridge Province of northwest Georgia.

1.3.1 Coastal Plain Province

Georgia's Coastal Plain Province is generally composed of a wedge of loosely
consolidated sediments that gently dip and thicken to the south and southeast. Ground water in
the Coastal Plain Province flows through interconnected pore space between grains in the host
rocks and through solution-enlarged voids. The oldest outcropping sedimentary formations
(Cretaceous) are exposed along the Fall Line, which is the northern limit of the Coastal Plain
Province. Successively younger formations occur at the surface to the south and southeast.

The Coastal Plain contains Georgia's major confined (artesian) aquifers. Confined
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aquifers are those in which a layer of impermeable material (e.g. clay or shale) holds the top of
the water column at a level below that to which it would normally rise. Water enters the
aquifers in their up-dip outcrop areas where the permeable rocks of the aquifer are exposed.
Many of the Coastal Plain aquifers are unconfined in their up-dip outcrop areas, but become
confined in down-dip areas to the southeast, where they are overlain by successively younger
rock formations. Ground-water flow through confined Coastal Plain aquifers is generally to the
south and southeast, in the direction of the dip of the rocks.

Rocks forming the seven major confined aquifers in the Coastal Plain range in age from
Cretaceous to Miocene. Horizontal and vertical changes in the permeability of the rock units
that form these aquifers and the quality of ground water they contain determine the thickness
and extent of the aquifers. Several aquifers may be present in a single geographic area, forming
a vertical 'stack'.

The Cretaceous and Jacksonian aquifer systems (primarily sands) are a common source
of drinking water within a 35-mile wide band that lies adjacent to and south of the Fall Line.
Southwestern Georgia relies on four vertically stacked aquifers (sands and carbonates) for
drinking-water supplies: the Providence, Clayton, Claiborne and Floridan aquifer systems. A
large area of south-central and southeastern Georgia is served by the Floridan aquifer system
(primarily carbonates). The Miocene aquifer system (sands and carbonates) is the principal
"shallow" unconfined aquifer system occupying much of the broad area underlain by the
Floridan aquifer system. It becomes confined in the coastal counties and locally in the Grady,
Thomas, Brooks and Lowndes counties area of south Georgia.

1.3.2 Piedmont/Blue Ridge Province

Crystalline rocks of metamorphic and igneous origin (primarily Precambrian and
Paleozoic in age) underlie the Piedmont and Blue Ridge provinces. These two provinces differ
geologically, but are discussed together here because they share common hydrologic properties.
The principal water-bearing features are fractures, compositional layers and other geologic
discontinuities in the rock, as well as intergranular porosity in the overlying soil and saprolite
horizons. Thick soils and saprolites are often important as the "reservoir” that supplies water to
the water-bearing fracture and joint systems. Ground water typically flows from local
highlands towards discharge areas along streams. However, during prolonged dry periods or in
areas of heavy pumpage, ground water may flow from the streams into the fracture and joint
systems.

1.3.3 Valley and Ridge Province

The Valley and Ridge Province is underlain by consolidated Paleozoic sedimentary
formations. The permeable features of the Valley and Ridge Province are principally fractures
and solution voids; intergranular porosity also is important in some places. Ground-water and
surface-water systems are locally closely interconnected. Dolostones and limestones of the
Knox Group are the principal aquifers where they occur in the axes of broad valleys. The
greater hydraulic conductivities of the thick carbonate sections in this Province, in part due to

1-4



solution-enlarged joints, permit development of higher yielding wells than in the Piedmont and
Blue Ridge Province.

1.4 REGIONAL GROUND-WATER PROBLEMS

Data from ground-water investigations in Georgia, including those from the Ground-
Water Monitoring Network, indicate that virtually all of Georgia has shallow ground-water
sufficient for domestic supply. Iron, aluminum, and manganese are the only constituents that
occur routinely in concentrations exceeding drinking-water standards. These metals are
naturally occurring and do not pose a health risk. Iron and manganese can cause reddish-brown
stains on objects.

Only a few occurrences of polluted or contaminated ground waters are known from
North Georgia (Section 4). Aquifers in the outcrop areas of Cretaceous sediments south of the
Fall Line typically yield acidic water that may require treatment. The acidity occurs naturally,
and results from the inability of the sandy aquifer sediments to neutralize acidic rainwater and
from acid-producing reactions between infiltrating water and soils and sediments. Nitrite/nitrate
concentrations in shallow ground water from the farm belt of southeastern Georgia are almost
always within drinking-water standards, but are somewhat higher than levels found in other
areas of the State.

The Floridan aquifer system contains two areas of naturally occurring reduced ground-
water quality in addition to its karstic plain in southwest Georgia. The first is the area of the
Gulf Trough, a narrow, linear geological feature extending from southwestern Decatur County
through central Bulloch County typically yields water with high total dissolved solids
concentrations. Elevated levels of barium, sulfate, and radio nuclides have been reported in
ground water from the Gulf Trough. The second is the coastal area of Georgia, where the lower
section of the Floridan aquifer system contains water with high dissolved-solid contents.
Ground-water withdrawals have allowed up-coning of such water from deeper parts of the
aquifer in the Brunswick area.
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2.0 GEORGIA GROUND-WATER MONITORING NETWORK
2.1 MONITORING STATIONS

Stations of the 1993 Ground-Water Monitoring Network are situated in the seven major
aquifers and aquifer systems of the Coastal Plain Province and in the unconfined ground-water
systems of the Piedmont and Blue Ridge Provinces and of the Valley and Ridge Province (Table
2-1). Monitoring stations are located in three critical settings:

a. areas of surface recharge;

b. areas of potential pollution related to regional activities (e.g. agricultural and
industrial areas); and

c. areas of significant ground-water use.

The majority of monitoring stations are municipal, industrial, and domestic wells that
have reliable well-construction data. Some of the monitoring stations that are located in
recharge areas are sampled more than once a year in order to monitor more closely changes in
ground-water quality. The Monitoring Network also includes monitoring wells in specific areas
where the State's aquifers are recognized to be susceptible to contamination or pollution (e.g. the
Dougherty Plain of southwestern Georgia and the State's coastal area). These monitoring wells
are maintained jointly by the Geologic Survey Branch and the United States Geological Survey.

2.2 USES AND LIMITATIONS

Regular sampling of wells and springs of the Ground-Water Monitoring Network permits
analysis of ground-water quality with respect to location (spatial trends) and with respect to the
time of sample collection (temporal trends). Spatial trends are useful for assessing the effects of
the geologic framework of the aquifer and regional land-use activities on ground-water quality.
Temporal trends permit an assessment of the effects of rainfall and drought periods on ground-
water quantity and quality. Both trends are useful for the detection of non-point source
pollution. Non-point source pollution arises from broad-scale phenomena such as acid rain
deposition and application of agricultural chemicals on crop lands.

It should be noted that the data of the Ground-Water Monitoring Network represent
water quality in only limited areas of Georgia. Monitoring water quality at 128 sites located
throughout Georgia provides an indication of ground-water quality at the localities sampled and
at depths corresponding to the screened interval in the well or to the head of the spring at each
station in the Monitoring Network. Caution should be exercised in drawing strict conclusions
and applying any results reported in this study to ground waters that are not being monitored.

Stations of the Ground-Water Monitoring Network are intentionally located away from
known point sources of pollution. The wells provide baseline data on ambient water quality in
Georgia. EPD requires other forms of ground-water monitoring for activities that may result in
point source pollution (e.g., landfills, hazardous waste facilities and land application sites)
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through its environmental facilities permit programs.

Ground-water quality changes gradually and predictably in the areally extensive aquifers
of the Coastal Plain Province. The Monitoring Network allows for some definition of the
chemical processes occurring in large confined aquifers. Unconfined aquifers in northern
Georgia and the surface recharge areas of southern Georgia are of comparatively small areal
extent and more open to interactions with land-use activities. The wider spacing of monitoring
stations does not permit equal characterization of water-quality processes in all of these settings.
The quality of water from monitoring wells completed in unconfined north Georgia aquifers
represents only the general nature of ground water in the vicinity of the monitoring wells. In
contrast, ground water from monitoring wells located in surface recharge areas of Georgia
Coastal Plain aquifers may more closely reflect the general quality of water that has entered
these aquifers. Ground water in the recharge areas of the Coastal Plain aquifers is the future
drinking-water resource for down-flow areas. Monitoring wells in these recharge areas, in
effect, constitute an early warning system for potential future water quality problems in confined
portions of the Coastal Plain aquifers.

2.3 ANALYSES

Analyses are available for 128 water samples collected during 1993 from 107 wells and 4
springs. In 1984, the first year of the Ground-Water Monitoring Network, hydrogeologists
sampled water from 39 wells located in the Piedmont/Blue Ridge and Coastal Plain Provinces.
Nine of these wells have been sampled each year since 1984. Since 1984, the Ground-Water
Monitoring Network has been expanded through addition of further wells and springs to cover
all three hydrogeologic provinces, with the majority of the monitoring done in the Coastal Plain.

Ground water from all monitoring stations is tested for the basic water quality parameters
included in the Monitoring Network's standard analysis. The standard parameters include pH,
specific conductivity, chloride, fluoride, sulfate, nitrite/nitrate, and thirty metals (Appendix,
Table A-1). Where regional land-use activities have the potential to affect ground-water quality
in the vicinity of a monitoring station, additional parameters such as chlorinated pesticides
(Organics Screen #2), and phenoxy herbicides (Organics Screen #4) are tested. These and
additional chemical screens are listed in the Appendix (Tables A-1, A-2, A-3, and A-4). Tables
2-2 (cations) and 2-3 (anions) summarize the significance of the common major constituents of a
water-quality analysis.

The Drinking Water Program of the EPD's Water Resources Management Branch has
established Maximum Contaminant Levels (MCL’s) for some of the parameters that are
included in the analyses performed on Ground-Water Monitoring Network samples. Primary
MCL’s are established for parameters that may have adverse effects on the public health when
their values are exceeded. Secondary MCL’s are established for parameters that may give
drinking water an objectionable odor or color and consequently cause persons served by public
water systems to discontinue its use. The Primary and Secondary MCL's for Ground Water
Monitoring Network parameters are given in the Appendix.
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In-place pumps are used whenever possible to purge wells and collect water samples.
Using these pumps minimizes the potential for cross-contamination of wells. Some wells that
are included in the Ground-Water Monitoring Network are continuous water-level monitoring
stations and do not have dedicated pumps. A two horse-power, trailer-mounted four-inch
electric submersible pump and a three-inch, truck-mounted submersible pump are the principal
portable purge-and-sampling devices used. A battery-powered, portable Fultz sampling pump
and a PVC hand pump are occasionally used at stations that cannot be sampled using the
principal sampling pumps. As sampling these continuous water level monitoring wells made
heavy demands on staff and time, all but one of these wells were dropped from the Ground-
Water Monitoring Network during 1993.

Sampling procedures are adapted from techniques used by the U.S. Geological Survey
and the U.S. Environmental Protection Agency. Hydrogeologists purge the wells (3 to 5
volumes of the well column) prior to the collection of a sample to minimize the influence of the
well, pump and distribution system on water quality. Municipal, industrial, and domestic wells
typically require approximately 45 minutes of purging prior to sample collection. Wells
without dedicated pumps often require much longer periods of purging.

Hydrogeologists monitor water quality parameters prior to sample collection.
Measurements of pH, dissolved oxygen content, specific conductivity, and temperature are
observed using field instruments. The instruments are mounted in a manifold that captures flow
at the pump system discharge point before the water is exposed to atmospheric conditions.
Typical trends include a lowering of pH, dissolved oxygen content, and specific conductivity,
and a transition toward the mean annual air temperature with increased purging time. Both the
hydraulic flow characteristics of unconfined aquifers and the pump effects may alter these
trends.

Samples are collected once the parameters being monitored in the field stabilize or
otherwise indicate that the effects of the well have been minimized. Files at the Geologic
Survey Branch contain records of the field measurements. The sample bottles are filled and
then promptly placed in an ice water bath to preserve the water quality. After several hours, the
bottles are transferred to a dry cooler refrigerated with an ice tray. The hydrogeologists then
transport the samples to the laboratories for analysis on or before the Friday of the week in
which they were collected.

During 1993, the EPD laboratories performed the following standard water quality tests
on all regular samples: pH, specific conductance, an ICP/AAS metals screen, nitrate/nitrite
(reported as ppm nitrogen), and an ion chromatography screen (chloride, fluoride, sulfate). The
EPD laboratories also performed the following optional tests on various samples: mercury,
organic screen #7 (EDB), organic screens #8 and #9 (semivolatile organic compounds), and
organic screen #10 (volatile organic compounds). (Organic screen #7 is performed
simultaneously with organic screen #10.) Georgia Department of Agriculture (GDA)
laboratories and the Cooperative Extension Service laboratories at the University of Georgia
(UGA) performed analyses for organic screens #1, #2, #3, #4, and #5 (pesticides and PCB’s).
Beginning in December, 1992, pesticide analyses were transferred from UGA to GDA as GDA
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continued to install the apparatus necessary to perform the analyses. The transfer was
completed in December, 1993.
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Table 2-1. Georgia Ground-Water Monitoring Network, 1993

AQUIFER SYSTEM

Cretaceous

Providence

Clayton

Claiborne

Jacksonian

Floridan

Miocene

Piedmont

Blue Ridge

Valley and Ridge

NUMBER OF MONI-
TORING STATIONS
& SAMPLES TAKEN
IN 1993

15 stations
(21 samples
taken in 1993)

3 stations
(3 samples
taken in 1993)

4 stations
(4 samples
taken in 1993)

4 stations
(4 samples
taken in 1993)

7 stations
(7 samples
taken in 1993)

40 stations
(51 samples
taken in 1993)

12 stations
(12 samples
taken in 1993)

14 stations
(14 samples
taken in 1993)

3 stations
(3 samples
taken in 1993)

9 stations
(9 samples
taken in 1993)

PRIMARY STRATIGRAPHIC
EQUIVALENTS

Ripley Formation, Cusseta Sand,
Blufftown Formation, Eutaw Forma-
tion, Tuscaloosa Formation, and
Gaillard Formation

Providence Sand

Clayton Formation

Tallahatta Formation

Barnwell Group

Predominantly Suwannee Limestone
and Ocala Group

Predominantly Altamaha Formation
and Hawthorne Group

Various igneous and metamorphic
complexes

Various metamorphic complexes

Shady Dolomite, Knox Group, and
Chickamauga Group

2-5

AGE OF AQUIFER FOR-
MATIONS

Late Cretaceous

Late Cretaceous

Paleocene

Middle Eocene

Late Eocene

Predominantly Middle Eo-
cene to Oligocene

Miocene-Recent

Predominately Paleozoic and
Precambrian

Predominately Paleozoic and
Precambrian

Paleozoic, mostly Cambrian
and Ordovician



Table 2-2. The Significance of Parameters of a Basic Water Quality Analysis, Cations (after

Wait, 1960).
PARAMETER(S)

pH (Hydrogen ion concentration)

Calcium and

magnesium *

Sodium and potassium *

Iron and manganese

SIGNIFICANCE

pH is a measure of the concentration of the hydrogen ion.
Values of pH less than 7.0 denote acidity and values greater than
7.0 indicate alkalinity. Corrosiveness of water generally
increases with decreasing pH. However, excessively alkaline
waters may also attack metals. A pH range between 6.0 and 8.5
is considered acceptable.

Calcium and magnesium cause most of the hardness of water.
Hard water consumes soap before a lather will form and depos-
its scale in boilers, water heaters, and pipes. Hardness is
reported in terms of equivalent calcium carbonate. The hardness
of a water can be estimated by the sum of multiplying the ppm
of calcium by 2.5 and that of magnesium by 4.1.

Water Class Hardness (parts
per million)

Soft Less than 60

Moderately Hard 60 to 120

Hard 121 to 180

Very Hard More than 180

Sodium and potassium have little effect on the use of water for
most domestic purposes. Large amounts give a salty taste when
combined with chloride. A high sodium content may limit the
use of water for irrigation.

More than 300 ppb of iron stains objects red or reddish brown
and more than 50 parts per billion of manganese stains objects
black. Larger quantities cause unpleasant taste and favor growth
of iron bacteria but do not endanger health.

*Major metallic ions present in most ground waters.
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Table 2-3. The Significance of Parameters of a Basic Water Quality Analysis, Anions
(after Wait, 1960).

PARAMETER(S) SIGNIFICANCE

Chloride Chloride salts in excess of 100 ppm give a salty
taste to water. Large quantities make the water
corrosive. Water that contains excessive amounts
of chloride is not suitable for irrigation. It is
recommended that chloride content should not
exceed 250 ppm.

Nitrate/Nitrite Concentrations much greater than the local
average may suggest pollution. Excessive
amounts of nitrate/nitrite in drinking or formula
water of infants may cause a type of
methemoglobinemia ("blue babies").
Nitrate/nitrite in concentrations greater than 10
ppm (as nitrogen) is considered to be a health
hazard.

Sulfate Sulfate in hard water increases the formation of
scale in boilers. In large amounts, sulfate in
combination with other ions imparts a bitter taste
to water. Concentrations above 250 ppm have a
laxative effect but 500 ppm is considered safe.

2-7






3.0 GROUND-WATER QUALITY IN GEORGIA
3.1 OVERVIEW

Georgia's ten major aquifers and aquifer systems are grouped into three hydrogeologic
provinces for the purposes of this report.

The Coastal Plain Province is comprised of seven major aquifers that are restricted to
specific regions and depths within the province because of their geometry (Figure 3-1). These
major aquifer systems, in many cases, incorporate smaller aquifers that are locally confined.
Monitoring wells in the Coastal Plain aquifers are generally located in three settings:

1. Recharge (or outcrop) areas, which are located in regions that are geologically
up-dip and generally to the north of confined portions of these aquifers.

2 Up-dip, confined areas, which are located in regions that are proximal to the
recharge areas, yet are confined by overlying geologic formations. These areas
are generally south to southeast of the recharge areas.

3. Down-dip, confined areas, located to the south and southeast in the deeper,
confined portions of the aquifers distal to the recharge areas.

The two hydrogeologic provinces of north Georgia, the Piedmont/Blue Ridge Province
and the Valley and Ridge Province, are characterized by small-scale, localized ground-water
flow patterns. Deep regional flow systems are unknown in northern Georgia. Ground-water
flow in the Piedmont/Blue Ridge Province is generally controlled by geologic discontinuities
(such as fractures) and compositional changes within the aquifer. Local topographic features,
such as hills and valleys, influence ground-water flow patterns. Many of the factors controlling
ground-water flow in the Piedmont/Blue Ridge Province are also present in the Valley and
Ridge Province. Furthermore, widespread development of karst features may significantly
enhance porosity and permeability in localized areas and exert a strong influence on local
ground-water flow patterns.
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Figure 3-1. - The Seven Major Aquifers and Aquifer Systems of the Coastal Plain Province.
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3.2 CRETACEOUS AQUIFER SYSTEM

The Cretaceous aquifer system is a complexly interconnected group of aquifer
subsystems developed in the Late Cretaceous sands of the Coastal Plain Province. These sands
crop out in an extensive recharge area immediately south of the Fall Line in west and central
Georgia (Figure 3-2). Overlying sediments restrict Cretaceous outcrops to valley bottoms in
parts of the northeastern Coastal Plain. Five distinct subsystems of the Cretaceous aquifer
system, including the Providence aquifer system, are recognized west of the Ocmulgee River
(Pollard and Vorhis, 1980). These merge into three subsystems to the east (Clarke, et al., 1985).
Aquifer sands thicken southward from the Fall Line, where they pinch out against crystalline
Piedmont rocks, to a sequence of sand and clay approximately 2,000 feet thick at the southern
limits of the main aquifer-use area. Leakage from adjacent members of'the aquifer system
provides significant recharge in down-dip areas.

Water quality of the Cretaceous aquifer system, excluding the Providence aquifer system
(discussed separately in this report), was monitored in 15 wells. Two of these wells (GWN-K8
and GWN-K12) are located away from the recharge area. The remainder are located in up-dip
areas in or adjacent to outcrop and surface recharge areas for the Cretaceous aquifer system.
Water from the wells was soft and, in the up-dip area wells, acidic, while water from GWN-K1 3,
a down-dip well, was basic.

Iron concentrations exceeded the State secondary MCL of 300 parts per billion (ppb) in
only three wells: GWN-K3 in Washington County yielded 720 ppb, GWN-K8A in Laurens
County yielded 4,100 ppb, and GWN-K9 in Macon County yielded 1,200 ppb. Manganese at a
concentration equal to the MCL was found in a sample from GWN-K8A. Figure 3-3 shows
trends in iron concentrations for selected wells in the Cretaceous aquifer.

Aluminum concentrations exceeded the secondary MCL of 200 ppb in three wells:
GWN-K1 (630 ppb), GWN-K9 (470 ppb), and GWN-K12 (420 ppb). Concentrations of major
alkali and alkaline earth metals (potassium, sodium, calcium, and magnesium) were generally
either low or below detection limits. Other trace metals (copper, barium, strontium, and lead)
were present in low concentrations in samples from various wells.

Water samples from ten wells contained detectable levels of nitrite/nitrate. The highest
value, 1.8 ppb, was measured from well GWN-K10. Similar values have been measured for
this well over the past several years. Figure 3-4 shows trends in levels of combined ni-
trite/nitrate (reported as parts per million [ppm] nitrogen) for selected wells that have historically
yielded water with detectable and non-detectable nitrite/nitrate levels. Detectable chloride was
present in all the samples and detectable sulfate and fluoride were present in the majority of the
samples. A case of pollution by synthetic organic compounds found in a sample from well
GWN-KS5 is thought to be spurious, as tests on a follow-up sample found no such substances.
Analytical results for samples collected from the Cretaceous aquifer system are given in the
Appendix.
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Figure 3-2. - Water Quality of the Cretaceous Aquifer System.
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Figure 3-3. - Iron Concentrations for Selected Wells in the Cretaceous Aquifer System.
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Figure 3-4. - Nitrate/Nitrite Concentrations for Selected Wells in the Cretaceous Aquifer System.
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3.3 PROVIDENCE AQUIFER SYSTEM

Sand and coquinoid limestones of the Late Cretaceous Providence Formation comprise
the Providence aquifer system of southwestern Georgia. Outcrops of the aquifer system extend
from northern Clay and Quitman Counties through eastern Houston County. In its up-dip
extent, the aquifer system thickens both to the east and to the west of a broad area adjacent to the
Flint River. Areas where the thickness of the Providence exceeds 300 feet are known in Pulaski
County, and similar thicknesses have been projected in the vicinity of Baker, Calhoun and Early
counties (Clarke, et al., 1983).

The permeable Providence Formation-Clayton Formation interval forms a single aquifer
east of the Flint River (Clarke, et al., 1983). This same interval is recognized as the Dublin
aquifer system to the east of the Ocmulgee River (Clarke, et al., 1985). Outcrop areas and
adjacent covered areas to the east of the Flint River, where the aquifer is overlain by permeable
sand units, are surface recharge areas. The Chattahoochee River forms the western discharge
boundary for this flow system in Georgia.

Water samples were taken from three wells in the Providence aquifer system in 1993
(Figure 3-5). The pH of two samples was slightly basic and one, acidic. Concentrations of
metals were generally low or below detection limits.  Sodium, calcium, chloride, strontium,
and sulfate were present in low concentrations and were most abundant in the down-dip
samples. The only well to yield a sample with detectable nitrate/nitrite, 0.7 ppm nitrogen, was
the up-dip well GWN-PD2A. Other inorganic ions detected consisted of barium, magnesium,
manganese, fluoride, and aluminum. None of these anions or metals exceeded MCL’s. No
synthetic organic compounds were detected in samples derived from the Providence aquifer.
Trends in iron and nitrate/nitrite concentrations for the three Providence wells are shown in
Figures 3-6 and 3-7. Analytic results for the samples collected from the Providence Aquifer
System wells are summarized in the Appendix.
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Figure 3-6. - Iron Concentrations for Selected Wells in the Providence Aquifer System.
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Figure 3-7. - Nitrate/Nitrite Concentrations for Selected Wells in the Providence Aquifer System.
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3.4 CLAYTON AQUIFER SYSTEM

The Clayton aquifer system of southwestern Georgia is developed mainly in the middle
limestone unit of the Paleocene Clayton Formation. Limestones and calcareous sands of the
Clayton aquifer system crop out in a narrow belt extending from northeastern Clay County to
southwestern Schley County (Figure 3-8). Aquifer thickness varies, ranging from 50 feet near
outcrop areas to 265 feet in southeastern Mitchell County (Clarke, et al., 1984). Both the Flint
River, to the east, and the Chattahoochee River, to the west, are areas of discharge for the
aquifer system in its up-dip extent. Leakage from the underlying Providence aquifer system and
the overlying Wilcox confining zone is significant in down-dip areas (Clarke, et al., 1984). The
Clayton Formation and Providence Formation merge to form a single aquifer unit in up-dip
areas (Long, 1989). In areas east of the Ocmulgee River, the combination of these two aquifers
is referred to as the Dublin aquifer system (Clarke, et al., 1985).

Four wells in the Clayton aquifer system were used to monitor water quality in 1993.
Wells GWN-CT5SA and GWN-CT7A are located in or near the recharge area. The pH levels
were alkaline in three wells, as expected for limestone aquifers and was acidic in a sample from
an up-dip sand well. Iron concentrations range from 24 ppb in well GWN-CT3 to 250 ppb in
GWN-CT5A and GWN-CT7A. Barium, sodium, calcium, magnesium, chloride, fluoride, tin,
titanium, strontium, and zinc were also detected.

Chloride contents were low in the down-dip wells, at less than 2 ppm. However, up-dip
well GWN-CT7A had a somewhat elevated chloride content of 14 ppm. Aluminum was
detected at a level of 510 ppb from well GWN-CT7A, in excess of the secondary MCL.

Nitrate/nitrite concentration levels were below detectable limits in down-dip wells, but
higher in GWN-CT7A (9.2 ppm nitrogen). Sulfate was limited to the three down-dip wells
with a range of 12.4- 19.0 ppm. No synthetic organic chemicals were found. Trends of iron
and nitrite/nitrate concentrations in Clayton aquifer wells are shown in Figures 3-9 and 3-10.
Analytical results for samples collected from the Clayton aquifer system wells are provided in
the Appendix.
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Figure 3-9. - Iron Concentrations for Selected Wells in the Clayton Aquifer System.
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Figure 3-10. - Nitrate/Nitrite Concentrations for Selected Wells in the Clayton Aquifer System.
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3.5 CLAIBORNE AQUIFER SYSTEM

Sands of the Middle Eocene Claiborne Group are the primary members of the Claiborne
aquifer system of southwestern Georgia (Figure 3-11). Claiborne Group sands crop out in a belt
extending from northern Early County through western Dooly County. Limited recharge may
be derived down-dip in the vicinity of Albany in Dougherty County by leakage from the
overlying Floridan aquifer system (Hicks, et al., 1981). Discharge boundaries of the aquifer
system are the Ocmulgee River, to the east, and the Chattahoochee River, to the west.

The aquifer generally thickens from the outcrop area towards the southeast, attaining a
maximum of almost 300 feet in eastern Dougherty County. In down-dip areas where the
Claiborne Group can be divided into the Lisbon Formation above and the Tallahatta Formation
below, the Claiborne aquifer system is generally restricted to the Tallahatta Formation, and the
Lisbon Formation acts as a confining unit that separates the Claiborne aquifer from the
overlying Floridan aquifer (McFadden and Perriello, 1983; Long, 1989). The permeable
Tallahatta unit is included in the Gordon aquifer system east of the Ocmulgee River (Brooks, et
al., 1985).

During 1993 four wells were used to monitor the water quality of the Claiborne aquifer.
The pH of the water samples ranged from acidic in the up-dip area (4.27 for well GWN-CL5 at
Shellman in Randolph County) to slightly basic in the down-dip area (7.2 for GWN-CL2 in
Dooly County). Manganese levels in samples from wells GWN-CL4, GWN-CL5 and GWN-
CL8 and the aluminum level from well GWN-CLS5 exceeded the secondary MCL's for these
elements.

Calcium and sodium concentrations were greatest in the sample from the down-dip well.
The calcium concentration in the down-dip well is consistent with ground waters derived from
limestone. Other metals detected included iron, barium, strontium, zinc, copper, yttrium, and
cobalt. Lead was detected at 37 ppb from well GWN-CLS. Figure 3-12 shows trends in iron
concentrations in three wells.

Samples from three of the wells (GWN-CL4, GWN-CL5, and GWN-CLS), all in the
recharge area, contained detectable levels of nitrite/nitrate, with the sample from GWN-CL5
containing 9.84 parts per million (as nitrogen). Water samples from this well have historically
had high nitrate/nitrite (and manganese) levels. Figure 3-13 shows nitrite/nitrate concentrations
for selected wells. Chloride was detected in samples from all wells, with a maximum of 10.4
ppm in well GWN-CLS5. Sulfate was detected only in GWN-CL?2 at a concentration of 7.3 ppm.
The recharge area wells contained no detectable sulfate. Traces of fluoride were also found in
samples from two wells. No synthetic organic compounds were detected in any of the samples
collected. See the Appendix for analytical results of all collected samples.
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Figure 3-13. - Nitrate/Nitrite Concentrations for Selected Wells in the Claiborne Aquifer System.
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3.6 JACKSONIAN AQUIFER SYSTEM

The Jacksonian aquifer system of central and east-central Georgia is developed
predominantly in sands of the Eocene Barnwell Group, though, locally, isolated bodies may be
important. Barnwell Group outcrops extend from Macon and Peach counties eastward to Burke
and Richmond counties (Figure 3-14). Aquifer sands form a northern clastic facies of the
Barnwell Group and grade southward into less permeable silts and clays of a transition facies
(Vincent, 1982). The water-bearing sands are relatively thin, ranging from ten to fifty feet in
thickness. Limestones equivalent to the Barnwell Group form a southern carbonate facies and
are included in the Floridan aquifer system. The Savannah River and Ocmulgee River are
eastern and western discharge boundaries respectively for the up-dip flow system of the
Jacksonian aquifer system.

Seven Jacksonian aquifer wells were monitored during 1993, five wells in the clastic
facies and two wells in the transition facies (one, GWN-J2A, in an isolated limestone body).
The pH measurements were, for the most part, near-neutral to slightly basic, ranging from 6.70-
7.81. An exception was up-dip well GWN-J7, which yielded water of a pH of 4.82. Iron,
aluminum, and manganese concentrations in the samples were below the secondary MCL's for
drinking water with the exception of manganese in well GWN-J3 (100 ppb). Sodium
concentrations were generally low, with the highest occurring in a sample from the transition
well GWN-J3. Calcium concentrations were moderate in samples from six of the wells, but
were low in a sample from the up-dip well GWN-J7. Magnesium was detected in four of the
wells, with the highest level of 6.0 ppm occurring in the sample from transition well GWN-J3,
Other metals detected included barium, strontium, zinc, and copper. Nitrite/nitrate was more
abundant in samples from the up-dip wells. Neither fluoride, chloride, nor sulfate exceeded their
respective MCL's. See Figures 3-15 and 3-16 for trends in iron and nitrite/nitrate concentrations
in selected wells. Well GWN-J2A gave water with traces of hydrocarbons and chloroform, both
below primary MCL’s. The Appendix contains the analytical results for all the wells sampled.
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3.7 FLORIDAN AQUIFER SYSTEM

The Floridan aquifer system (formerly known in Georgia as the Principal Artesian
aquifer system) consists predominantly of Eocene and Oligocene limestones and dolostones that
underlie most of the Coastal Plain Province. Other units are included locally in the aquifer. The
aquifer is a major source of ground water for much of its outcrop area and throughout its down-
dip extent to the south and east.

The upper water-bearing units of the Floridan are the Eocene Ocala Group and the
Oligocene Suwanee Limestone (Crews and Huddlestun, 1984). These limestones crop out in the
Dougherty Plain (a karstic area in southwestern Georgia) and in adjacent areas along a strike to
the northeast. In Camden and Wayne counties the Oligocene unit is absent, and the upper part
of the Floridan is restricted to units of Eocene age (Clarke, et al., 1990). The lower portion of
the Floridan consists mainly of dolomitic limestone of middle and early Eocene age and pelletal,
vuggy, dolomitic limestone of Paleocene age but extends into the late Cretaceous in Glynn
County. The lower Floridan is deeply buried and not widely used, except in several municipal
and industrial wells in the Savannah area (Clarke, et al., 1990). From its up-dip limit, defined in
the east by clays of the Barnwell Group, the aquifer thickens to well over 700 feet in coastal
Georgia. A dense limestone facies along the trend of the Gulf Trough locally limits ground-
water quality and availability (Kellam and Gorday, 1990). The Gulf Trough is a linear
depositional feature in the Ocala Group that extends from southwestern Decatur County through
central Bulloch County.

A ground-water divide separates a southwestward flow system in the Floridan aquifer in
the Dougherty Plain from the Floridan aquifer system's major southeastward flow system in the
remainder of Georgia. Rainfall infiltration in outcrop areas and leakage from extensive surficial
aquifers provides recharge to the Dougherty Plain flow system (Hayes, et al., 1983). The main
body of the Floridan aquifer system, to the east, is recharged by leakage from the Jacksonian
aquifer system and by rainfall infiltration in outcrop areas and in areas where overlying strata are
thin. Significant recharge also occurs in the area of Brooks, Echols and Lowndes counties
where the Withlacoochee River and numerous sinkholes breach upper confining beds (Krause,
1979).

In 1993, ground-water samples were collected from 40 wells in the Floridan aquifer
system (Figure 3-17). The pH levels for all water samples taken were slightly basic. Iron
exceeded the secondary MCL in samples from two wells, GWN-PA9C (370 ppb) in Glynn
County and GWN-PA50 (480 ppb) in Laurens County. Trends in iron levels from selected wells
in the Floridan aquifer are shown on Figure 3-18. Aluminum exceeded the secondary MCL in
samples from two wells, with concentrations of 210 ppb and 330 ppb. Most wells yielding
water with detectable manganese levels are located in the Gulf Trough area (wells GWN-PA18,
GWN-PA29, and GWN-PA32 through GWN-PA36). Manganese concentrations in excess of
the secondary MCL were detected in two wells: GWN-PA18 (62 ppb), and GWN-PA34 (100

ppb).
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Sodium concentrations ranged from 1.6 to 690 parts per million, and magnesium ranged
from undetected to 94 ppm. Both elements are most abundant in samples from wells in the
coastal area, with the highest concentrations of these elements occurring in a sample from well
GWN-PA9C in Brunswick. Calcium ranged from 24 ppm in a sample from well GWN-PA2A
in Savannah to 170 ppm in well GWN-PA9C. The barium concentration from well GWN-PA33
in the Gulf Trough area was 2200 ppb which exceeds the primary MCL. Other metals and
semimetals detected include potassium, zirconium, vanadium, molybdenum, selenium,
strontium, iron, and zinc. None of these substances exceeded applicable MCL’s.

The water samples were also analyzed for the anions chloride, sulfate, fluoride, and
nitrate/nitrite. Chloride levels ranged from below the detection limit to 844.9 ppm. The 844.9
ppm level occurred in well GWN-PAIC in the coastal area and was the only value to exceed the
secondary MCL for chloride. Sulfate ranged from undetected to 231.8 ppm. The concentrations
of fluoride ranged from undetected to 0.6 ppm. Certain samples were analyzed for synthetic
organic chemicals; none were detected.

Most of the samples collected from the confined portions of the Floridan aquifer
contained no detectable nitrite/nitrate, whereas most samples in the unconfined portion
contained detectable concentrations of nitrite/nitrate. The highest level, 4.8 ppm nitrogen, was
collected from well GWN-PA53. Trends in nitrate levels from selected wells in the Floridan
Aquifer are presented in Figure 3-19. The Appendix gives the analytical results for samples
from the Floridan aquifer system.
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Figure 3-18. - Iron Concentrations for Selected Wells in the Floridan Aquifer System.
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*Nitrate/nitrite levels detected below the MDL are represented as 0.1 ppm. An absent column of data indicates that
the well was not sampled during that particular year or that no nitrate/nitrite data are available.

Figure 3-19. - Nitrate/Nitrite Concentrations for Selected Wells in the Floridan Aquifer System.
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3.8 MIOCENE AQUIFER SYSTEM

Much of south-central and southeastern Georgia lies within outcrop areas of the Miocene
Altamaha Formation and Hawthorne Group. Discontinuous lens-shaped bodies of sand, 50 to 80
feet thick, are the main permeable units. Miocene clays and sandy clays are thickest, more than
500 feet, in Wayne County (Watson, 1982).

Areas of confinement exist along the coastal counties. Leakage from overlying surface
aquifers into the Miocene aquifer system and, in some areas, from the underlying Floridan
aquifer system is significant in the coastal counties (Watson, 1982). Two principal aquifer units
are present in the coastal area (Joiner, et al., 1988). Clarke (et. al, 1990) use the names upper
and lower Brunswick aquifers to refer to these two sandy aquifer units.

Water quality of the Miocene aquifer system was monitored in twelve wells (Figure 3-
20). The pH of the samples ranged from 4.25 to 8.04. Iron and manganese levels ranged from
undetected to 2200 and 210 ppb, respectively. Water samples from four wells, GWN-MIS,
GWN-MI10B, GWN-MI13, and GWN-MI15, contained iron in excess of the secondary MCL.
Water samples from two wells, GWN-MI10B and GWN-MI13, exceeded the secondary MCL
for manganese. Figure 3-21 shows trends in iron concentrations in selected wells. Aluminum
exceeded the secondary MCL in three samples ranging from 600 to 3400 ppb. Sodium ranged
from 1.9 to 24 ppm while calcium ranged from below the detection limit to 71 ppm. Other
metals and semimetals detected were potassium, magnesium, barium, strontium, zinc, copper,
titanium, arsenic, and zirconium. None of these are present in excess of applicable MCL's.

Chloride ranged from undetected to 38.3 ppm, sulfate levels ranged from undetected to
49.6 parts per million. Both of these anions were highest in samples from the coastal well
GWN-MI3. Chloride concentrations were lowest in the deeper domestic wells (GWN-MI1,
GWN-MI2, GWN-MI10B, and GWN-MI13). Fluoride was also detected in samples from 8
wells. Detectable levels of nitrite/nitrate, ranging from 1.4 to 18.4 ppm, were found in samples
from five wells (GWN-MI5, GWN-MI7, GWN-MISA, GWN-MI9A, and GWN-MI15). Wells
GWN-MI7, GWN-MI8A, and GWN-MI15 exceeded the primary MCL for nitrate.
Concentrations of nitrate/nitrite for selected wells are illustrated in Figure 3-22. No synthetic
organic chemicals were found. Analytical data for samples drawn from the Miocene aquifer
system are given in the Appendix.
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Figure 3-20. - Water Quality of the Miocene Aquifer System.
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Figure 3-21. - Iron Concentrations for Selected Wells in the Miocene Aquifer System.
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Figure 3-22. - Nitrate/Nitrite Concentrations for Selected Wells in the Miocene Aquifer System.
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the well was not sampled during that particular year or that no nitrate/nitrite data are available.
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3.9 PIEDMONT/BLUE RIDGE UNCONFINED AQUIFERS

Georgia's Piedmont and Blue Ridge Physiographic Provinces are developed on
metamorphic and igneous rocks that are predominantly Precambrian and Paleozoic in age. Soil
and saprolite horizons, compositional layers, and openings along fractures and joints in the rocks
are the major water-bearing features. Fracture density and interconnection provide the primary
controls on the rate of water flow into wells completed in crystalline rocks. The permeability
and thickness of soils and shallow saprolite horizons determine the amount of discharge that can
be sustained.

Ground-water samples were collected from sixteen wells and two springs in the
Piedmont and Blue Ridge Provinces. Figure 3-23 shows locations of the monitoring stations.
Water from wells and springs in the crystalline-rock aquifers was acidic, the exception being
water from well GWN-P6B, with a pH of 7.61. Iron and manganese ranged from undetected to
13,000 (GWN-P10A) and 180 ppb (GWN-P9), respectively. Iron exceeded the secondary MCL
in water samples from five of the sampling stations. Figure 3-24 shows trends in iron
concentrations for selected wells in the Piedmont sector. Figure 3-25 illustrates iron
concentrations for selected wells in the Blue Ridge sector. Manganese exceeded the secondary
MCL in samples from six stations. Aluminum exceeded the secondary MCL in a sample from
well GWN-P10A (1100 ppb). Sodium was detected at relatively low concentrations in samples
from all stations. Calcium and magnesium were detected in samples from all stations except
well GWN-P14. Potassium, barium, strontium, molybdenum, vanadium, zinc, and beryllium
were other metals detected at concentrations below any applicable MCL.

Chloride and sulfate concentrations in the water samples ranged from undetected to 12.6
and 69.0 ppm, respectively. Sulfate levels were below 15 ppm in all but three wells, GWN-P1B,
GWN-P9, and GWN-P10A. Fluoride was detected in samples from 8 wells. Nitrite/nitrate was
present in water from ten stations, all at levels well below the MCL. Figures 3-26 and 3-27
show nitrite/nitrate concentrations in selected wells from the Piedmont and Blue Ridge aquifers,
respectively. No synthetic organic chemicals were detected. An analysis summary for
Piedmont/Blue Ridge wells and springs is found in the Appendix.
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Figure 3-23. - Water Quality of the Piedmont/Blue Ridge Unconfined Aquifers.
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was not sampled during that particular year.

Figure 3-24. - Iron Concentrations for Selected Wells in the Piedmont/Blue Ridge Unconfined
Aquifer System: Piedmont Sector.
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Figure 3-25. - Iron Concentrations for Selected Wells in the Piedmont/Blue Ridge Unconfined
Aquifer System: Blue Ridge Sector.
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*Nitrate/nitrite levels detected below the MDL are represented as 0.1 ppm. An absent column of data indicates that
the well was not sampled during that particular year or that no nitrate/nitrite data are available.

Figure 3-26. - Nitrate/Nitrite Concentrations for Selected Wells in the Piedmont/Blue Ridge
Unconfined Aquifer System: Piedmont Sector.
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*Nitrate/nitrite levels detected below the MDL are represented as 0. 1 ppm. An absent column of data indicates that
the well was not sampled during that particular year or that no nitrate/nitrite data are available.

Figure 3-27. - Nitrate/Nitrite Concentrations for Selected Wells in the Piedmont/Blue Ridge
Unconfined Aquifer System: Blue Ridge Sector.
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3.10 VALLEY AND RIDGE UNCONFINED AQUIFERS

Soil and residuum form low-yield unconfined aquifers across most of the Valley and
Ridge Province of northwestern Georgia. Valley bottoms underlain by dolostones and
limestones of the Cambro-Ordovician Knox Group are the locations of most higher-yielding
wells and springs that are suitable for municipal supplies.

Water quality in the Valley and Ridge unconfined aquifers was monitored in six wells
and three springs (Figure 3-28). Three of these wells and all three springs produced water from
Knox Group carbonates. The other wells were used to sample water in the Ordovician
Chickamauga Group in Walker County and the Cambrian Shady Dolomite in Bartow County.
Water from the Valley and Ridge monitoring stations was typically basic, with pH ranges of 6.8
to 7.9. Iron and manganese concentrations were below detection limits for seven of the stations
sampled and exceeded secondary MCL's in only one of the wells sampled (GWN-VR2).
Calcium ranged from 29 to 83 parts per million and manganese was detected in samples from all
stations. Barium and strontium were commonly detected trace metals. The highest barium
concentration, 590 ppb, was detected in a sample from well GWN-VR6. This particular well
draws water from the Shady Dolomite Group which contains an abundance of barite (BaSO,)
deposits. Chloride ranged in concentration from 1.1 to 21.7 ppm, while sulfate ranged from
undetectable to 47.1 ppm. Detectable fluoride was found in samples from 2 wells. Detectable
nitrite/nitrate was present in samples from all wells and springs except GWN-VR2, and GWN-
VR4. The highest nitrate/nitrite concentration occurred in a sample from well GWN-VRS with a
level of 3.0 ppm as nitrogen. Figures 3-29 and 3-30 show iron and nitrite/nitrate levels,
respectively, for selected wells in the Valley and Ridge aquifers.

Volatile organic compounds were detected in samples from three wells (GWN-VR2,
GWN-VR4, and GWN-VR6), all located in urban or industrial settings. The sample from well
VR2 contained motor fuel constituents. The benzene concentration in the sample exceeded the
primary MCL of 5 ppb (Section 4). The major ground-water bearing strata in the Valley and
Ridge Physiographic Province are commonly associated with Karst development. Therefore,
due to the susceptibility of karst to surface pollution, testing for volatile organic compounds has
been instituted for all sampling stations in this Province.
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Figure 3-28. - Water Quality of the Valley and Ridge Unconfined Aquifers.
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Figure 3-29. - Iron Concentrations for Selected Wells in the Valley and Ridge Aquifer System.
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Figure 3-30. - Nitrate/Nitrite Concentrations for Selected Wells in the Valley and Ridge Aquifer
System.
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4.0 SUMMARY AND CONCLUSIONS

One hundred and twenty-eight raw water samples were collected for analysis from 107
wells and 4 springs for the Ground-Water Monitoring Network in 1993. These wells and
springs are used to sample ten aquifer systems in Georgia:

Cretaceous aquifer system

Providence aquifer system

Clayton aquifer system

Claiborne aquifer system

Jacksonian aquifer system

Floridan aquifer system

Miocene aquifer system

Piedmont/Blue Ridge unconfined aquifers
Valley and Ridge unconfined aquifers

vy vV vV vV VvV VvV Vv v v

Analyses of water samples collected in 1993 were compared with analyses for the
Ground-Water Monitoring Network dating back to 1984, permitting the recognition of temporal
trends. Table 4-1 lists the major contaminants and pollutants that were detected at the stations of
the Ground-Water Monitoring Network during 1993. New MCL's that became effective in 1993
are also noted. Although isolated water quality problems were documented during 1993 at
specific localities, the quality of water from the majority of the Ground-Water Monitoring
Network stations remains excellent.

Nitrate/nitrite are the most common substances present in ground water in Georgia that
can have adverse health effects. Three wells, all shallow domestic wells tapping the Miocene
aquifer system (MI7 and MI8A, and MI15) yielded water samples in 1993 with nitrite/nitrate
concentrations exceeding the primary MCL of 10 ppm as nitrogen (Table 4-1).

Spatial and temporal limitations of the Ground-Water Monitoring Network preclude the
identification of the exact sources of the increasing levels of nitrogen compounds in some of
Georgia's ground water. Nitrite/nitrate originates in ground water from direct sources and
through oxidation of other forms of dissolved nitrogen, deriving from both natural and man-
made sources. The most common sources of man-made dissolved nitrogen in Georgia usually
are derived from septic systems, agricultural wastes, and storage or application of fertilizers
(Robertson, et. al, 1993). Dissolved nitrogen is also present in rainwater, derived form terrestrial
vegetation and volatilization of fertilizers (Drever, 1988). The conversion of other nitrogen
species to nitrate occurs in aerobic environments such as recharge areas. Anaerobic conditions
in ground water, as are commonly developed along the flow path of ground water, foster the
denitrification process. However, this process may be inhibited by the lack of denitrifying
bacteria in ground water (Freeze and Cherry, 1979).

Iron, manganese, and aluminum are the three naturally occurring substances responsible

for the greatest incidence of ground-water quality problems in Georgia (Table 4-1). Although
minor increases or decreases in iron, manganese, and aluminum were noted for some stations,
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no long-term trends in concentrations of these metals were documented for the majority of the
wells and springs sampled.

The presence of synthetic organic compounds was again documented in water from a
few of the wells sampled in the Valley and Ridge. Because of the sporadic nature of the
occurrence of such compounds in most of these wells, spatial and temporal trends in levels of
organic pollution cannot be defined at this time.
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Table 4-1. Pollution and contamination incidents, 1993.

Station Contaminant/ Primary MCL Secondary MCL
Pollutant*+
GWN-K1 Al=630ppb Al=200ppb
GWN-K3 Fe=720ppb Fe=300ppb
GWN-K8A Fe=4100ppb Fe=300ppb
Mn=50ppb Mn=50ppb
GWN-K9 Fe=1200ppb Fe=300ppb
Al=470ppb Al=200ppb
GWN-K12 Al=420ppb Al=200ppb
GWN - Al=510ppb Al=200ppb
CT7A
GWN-CL4 Mn=56ppb Mn=50ppb
GWN-CL5 | Mn=680ppb Mn=50ppb
Al=440ppb Al=200ppb
GWN-CL8 | Mn=120ppb Mn=50ppb
GWN-J2A | CHCl,=tr CHC1,=100ppb
CH.,=tr MCL varies with
compound
GWN-J3 Mn=100ppb Mn=50ppb
GWN- Fe=370ppb Fe=300ppb
PA9C Al=330ppb Al=200ppb
Cl=844ppm Cl=250ppm
GWN -~ Al=210ppb Al=200ppb
PA10B
GWN- Mn=62ppb Mn=50ppb
PAl8
GWN- Ba=2200ppb Ba=2000ppb
PA33
GWN- Mn=100ppb Mn=50ppb
PA34
GWN- Fe=480ppb Fe=300ppb
PAS0
GWN-MIS Fe=690ppb Fe=300ppb
Al=3400ppb Al=200ppb
GWN-MI7 NOx=13.3ppm as N NOx=10ppm as N
A1=840pb A1=200ppb
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Table 4-1. (continued)

Station Contaminant/ Primary MCL Secondary MCL
Pollutant*+
GWN- NOx=13.5ppm as N NOx= 10ppm as N
MISA Al=1300ppb Al=200ppb
GWN - Fe=520ppb Fe=300ppb
MI10B Mn=150ppb Mn=50ppb
GWN - Fe=2200ppb Fe=300ppb
MI13 Mn=210ppb Mn=50ppb
GWN - Fe=310ppb Fe=300ppb
MI15 Nox=18.4ppm as N NOx= 10ppm as N
Al=600ppm Al=200ppb
GWN- Mn=83ppb Mn=50ppb
BR3A
GWN-P1B Fe=2400ppb Fe=300ppb
Mn=63ppb Mn=50ppb
GWN-P6B Mn=33ppb Mn=50ppb
GWN-P9 Fe=1200ppb Fe=300ppb
Mn=180ppb Mn=50ppb
GWN - Fe=13000ppb Fe=300ppb
P10A Mn=120ppb Mn=50ppb
Al=1100ppb Al=200ppb
GWN-P12 Fe=2300ppb Fe=300ppb
GWN- Fe=970ppb Fe=300ppb
P15A Mn=140ppb Mn=50ppb
GWN-VR2 Fe=2600ppb Fe=300ppb
Mn=2000ppb Mn=50ppb
benzene=350ppb benzene=5ppb
toluene=610ppb toluene=1000ppb
xylenes=480ppb xylenes=10000ppb
ethlybenzene=160ppb ethlybenzene=700ppb
GWN-VR4 1,1,1- 1,1,1-
trichloroethane=trace trichloroethane=200ppb
GWN-VR6 tetrachloroethylenes= tetrachloroethylene=
trace 5ppb*

*reffective July 30,

1992

**highest value reported if multiple samples taken
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ANALYSES OF SAMPLES COLLECTED DURING 1993
FOR THE GEORGIA GROUND-WATER MONITORING NETWORK

All water quality samples that are collected for the Georgia Ground-Water Monitoring Network
are subjected to a Standard Analysis which includes tests for pH, specific conductance, certain common
inorganic anions, and thirty metals. Analyses for additional parameters may be included for samples
that are collected from areas where the possibility of ground-water pollution exists due to regional
activities. These optional tests or screens include tests for agricultural chemicals, coal-tar creosote,
phenols and anilines and volatile organic compounds (Tables A-1 and A-2). Because parameters other
than the two physical parameters, three of the major anions, and eight of the metals of the Standard
Analysis were detected less commonly or rarely, other parameters are listed in the following analytical
results table only if they were detected.

For this appendix, the following abbreviations are used:

SU = standard units

mg/L = milligrams per liter (parts per million)

mgN/L = milligrams per liter (parts per million), as
nitrogen

ug/L = micrograms per liter (parts per billion)

umho/cm = micromhos per centimeter

U = less than (below detection limit). Where this

abbreviation is used for a figure that is a
calculated average, the average is below the
typical detection limit for the parameter

(Note: detection limits may change due to temporarily improved instrument performance or to
use of different analytical methods by different laboratories)
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Table A-1.  Standard Water Quality Analysis: Physical Parameters, Major Anions, Minerals

and ICP/AAS Metals Screen.
Parameter Typical Detection Limit Max. Contaminant Level
METALS
Silver (Ag) 30 ug/L 100 ug/L,
Aluminum (Al) 50 ug/L 200 ug/L ,
Arsenic* (As) 25 ug/L 50 ug/L,
Gold (Au) 10 ug/L NA
Barium (Ba) 10 ug/L 2000 ug/L,
Beryllium™ (Be) 2 ug/L*, NA
Bismuth (Bi) 25 ug/LL NA
Cobalt (Co) 10 ug/L NA
Chromium (Cr) 10 ug/L 100 ug/L,
Cadmium”™ (Cd) 2.5 ug/L 5.0 ug/L,
Copper (Cu) 20 ug/L 1000 ug/L,
Iron (Fe) 20 ug/L 300 ug/L,
Manganese (Mn) 10 ug/L 50 ug/L,
Molybdenum (Mo) 10 ug/L NA
Nickel (Ni) 20 ug/L NA
Lead (Pb) 30 ug/L NA
Antimony”” (Sb) 3 ug/L NA
Selenium* (Se) 25 ug/LL 50 ug/L,
Tin (Sn) 110 ug/L NA
Strontium (Sr) 10 ug/L NA
Titanium (Ti) 10 ug/L NA
Thallium™ (T1) 1 mg/L NA
Vanadium (V) 10 ug/L NA
Yttrium (Y) 10 ug/L NA
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Table A-1 (continued):

Parameter Typical Detection Limit Max. Contaminant Level
Zinc (Zn) 20 ug/L 5000 ug/L ,
Zirconium (Zr) 10 ug/L NA
Mercury™ (Hg) 0.2 ug/L 2.0 ug/L,
ANIONS
Chloride (CI) 0.1 mg/L 250 mg/L,
Sulfate (SO,7) 2.0 mg/L 250 mg/L,
Nitrate/Nitrite (NO,’) 0.1 mg/L 10.0 mg/L as N,
Fluoride (F1) 0.1 mg/L 4.0 mg/L,, 2.0 mg/L,
MINERALS
Calcium (Ca) 1.0 mg/L NA
Potassium (K) 5.0 mg/L NA
Magnesium (Mg) 1.0 mg/L NA
Sodium (Na) 1.0 mg/L NA
OTHER PARAMETERS
pH +0.01 SU NA
Conductivity 1.0 mho/cm NA

* Analyzed by atomic absorption spectrophotometry (AAS) using graphite furnace.
**Analyzed by AAS beginning sometime in 1993.

*** Analyzed by manual cold vapor.

=Primary Maximum Contaminant Level (MCL).

,2=Secondary MCL.
NA=No MCL established.

MCL’s from Georgia Rules for Safe Drinking Water, July, 1993, (EPD, 1993).
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Table A-2.  Additional Water Quality Analyses: Organic Screens #1, #2, #3, #4, #5, #7, #8,

#9, and #10.
ORGANIC SCREEN #1
(organophosphates/herbicides)
Parameter Minimum Detection Limit Primary Maximum
Contaminant Level

Alachlor 1.0 ug/L 2.0 ug/L

Atrazine 0.3 ug/L 3.0ug/L
Azodrin 1.0 ug/L NA
Chloropyrifos 0.8 ug/L NA
Cyanazine 1.0 ug/L NA
DCPA 0.01 ug/L NA
Dasanit 0.6 ug/L NA
Demeton 1.0 ug/L NA
Diazinon 1.0 ug/L NA
Dimethoate 0.5 ug/L NA
Disyston 1.0 ug/L NA
Eptam 0.5 ug/L NA
Ethoprop 0.5 ug/L NA
Fonophos 0.5 ug/L NA
Guthion 2.0 ug/L NA
Isopropalin 1.0 ug/L NA
Malathion 1.4 ug/L NA
Metolachlor 1.0 ug/L NA
Metribuzin 1.25 ug/LL NA
Mevinphos 1.4 ug/L NA
Parathion (E) 0.08 ug/L NA
Parathion (M) 0.1 ug/L NA
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ORGANIC SCREEN #1 (continued)
(organophosphates/herbicides)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Pebulate 0.6 ug/L NA
Pendimethalin 0.8 ug/L NA
Phorate 1.0 ug/L NA
Profluralin 0.9 ug/L NA
Simazine 0.9 ug/L NA
Sutan 0.7 ug/L NA
Terbufos 3.0ug/L NA
Trifluralin 1.0 ug/L NA
Vernam 0.5 ug/L NA
ORGANIC SCREEN #2
(organochlorine pesticides/PCB'’s)
Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Dicofol 0.1 ug/L NA
Endrin 0.03 ug/L 0.2 ug/L
Methoxychlor 0.3 ug/L 40.0 ug/L
gamma-HCH (lindane) 0.008 ug/L 0.2 ug/L
PCB’s 0.6 ug/L 0.5 ug/L
Permethrin 0.3 ug/LL NA
Toxaphene 1.2 ug/L 3.0 ug/LL
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ORGANIC SCREENS #3 AND #4
(dinoseb/phenoxy herbicides)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
2,4-D 5.2 ug/L 70.0 ug/L
Acifluorfen 1.0 ug/L NA
Chloramben 0.2 ug/L NA
Dinoseb 0.1 ug/L NA
Silvex O.1 ug/L 50.0 ug/L
Trichlorofon 2.0 ug/L NA
ORGANIC SCREEN #5
(carbamate pesticides)
Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Carbaryl 2.0 ug/L NA
Carbofuran 1.0 ug/L 40.0 ug/L
Diuron 1.0 ug/L NA
Fluometron 1.0 ug/L NA
Linuron 1.0 ug/L NA
Methomyl 1.0 ug/L NA
Monuron 1.0 ug/L NA
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ORGANIC SCREEN #7*
(volatile organic compound)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
EDB 5.0 ug/L 0.05 ug/L

*currently analyzed along with Organic Screen #10.

ORGANIC SCREENS #8 AND #9
(semivolatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
1,2-Dichlorobenzene (o) 10.0 ug/L 600.0 ug/L
1.3-Dichlorobenzene (m) 10.0 ug/L NA
1,4-Dichlorobenzene (p) 10.0 ug/L 75.0 ug/L
Bis(2-Chloroethyl) Ether 10.0 ug/L NA
Hexachloroethane 10.0 ug/L NA
N-Nitrosodi-N-Propylamine 10.0 ug/L NA
Nitrobenzene 10.0 ug/L NA
Hexachlorobutadiene 10.0 ug/L NA
1,2,4-Trichlorobenzene 10.0 ug/L NA
Napthalene 10.0 ug/L NA
Bis(2-Chloroethoxy) 10.0 ug/L NA
Methane
Isophorone 10.0 ug/L NA
Hexachlorocyclopentadiene 10.0 ug/L NA
2-Chloronaphthalene 10.0 ug/L NA
Acenaphthylene 10.0 ug/L NA
Acenaphthene 10.0 ug/L NA
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ORGANIC SCREENS #8 AND #9 (continued)

(semivolatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Dimethyl Phthalate 10.0 ug/L NA
2,4-Dinitrotoluene 10.0 ug/L NA
2,6-Dinitrotoluene 10.0 ug/L. NA
4-Chlorophenyl Phenyl Ether 10.0 ug/L NA
Fluorene 10.0 ug/L NA
Diethyl Phthalate 10.0 ug/L NA
N-Nitrosodimethylamine 10.0 ug/L NA
N-Nitrosodiphenylamine 10.0 ug/LL NA
Hexachlorobenzene 10.0 ug/L NA
4-Bromophenyl Phenyl Ether 10.0 ug/L. NA
Phenanthrene 10.0 ug/L NA
Anthracene 10.0 ug/L NA
Di-N-Butyl Phthalate 10.0 ug/L NA
2-Methyl Naphthalene 10.0 ug/L NA
Dibenzofuran 10.0 ug/L NA
Bis(2-Chloroisopropyl)Ether 10.0 ug/L. NA
2,4,5-Trichlorophenol 10.0 ug/L NA
Fluoranthene 10.0 ug/LL NA
Pyrene 10.0 ug/L NA
N-Butyl Benzyl Phthalate 10.0 ug/L NA
Bis(2-Ethylhexyl)Phthalate 10.0 ug/L NA
Chrysene 10.0 ug/L NA
Benzo (a) Anthracene 10.0 ug/L NA
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ORGANIC SCREENS #8 AND #9 (continued)

(semivolatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level

Di-N-Octyl Phthalate 10.0 ug/L NA
Benzo-(B)Fluoranthene 10.0 ug/L NA
Benzo-(K)Fluoranthene 10.0 ug/L NA
Benzo-A-Pyrene 10.0 ug/L NA
Indeno(1,2,3-CD)Pyrene 10.0 ug/L NA
1,2,5,6-Dibenzanthracene 10.0 ug/L NA
Benzo(GHI)Perylene 10.0 ug/L NA
2-Chlorophenol 10.0 ug/L NA
2-Nitrophenol 10.0 ug/L NA
Phenol (GC/MS) 10.0 ug/L NA
2,4-Dimethylphenol 10.0 ug/L NA
2,4-Dichlorophenol 10.0 ug/L NA
2,4,6-Trichlorophenol 10.0 ug/L NA
4-Chloro-3-methylphenol 200.0 ug/L NA
2,4-Dinitrophenol 50.0 ug/L NA
4,6-Dinitro-2-methylphenol 50.0 ug/L NA

Pentachlorophenol 50.0 ug/L 1.0 ug/L
4-Nitrophenol 50.0 ug/L NA
Benzidine 80.0 ug/L NA
3,3-Dichlorobenzidine 20.0 ug/L NA
2-Methylphenol 10.0 ug/L NA
4-Methylphenol 10.0 ug/L NA
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ORGANIC SCREEN #10
(volatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Methylene Chloride 5.0 ug/L NA
Trichlorofluoromethane 5.0 ug/L NA
1,1-Dichloroethylene 5.0 ug/L 7.0 ug/L
1,1-Dichloroethane 5.0 ug/L NA
Trans 1,2-Dichloroethylene 5.0 ug/L 100.0 ug/L
Chloroform 5.0 ug/L 100.0 ug/L*
1,2-Dichloroethane 5.0 ug/L 5.0 ug/L
1,1,1-Trichloroethane 5.0 ug/L 200.0 ug/L
Carbon Tetrachloride 5.0 ug/L 5.0 ug/L
Dichlorobromomethane 5.0ug/L 100.0 ug/L*
1,2-Dichloropropane 5.0 ug/L 5.0 ug/L
Trans-1,3-Dichloropropene 5.0 ug/L NA
Trichloroethylene 5.0 ug/L 5.0 ug/L
Benzene 5.0 ug/L 5.0 ug/L
Chlorodibromomethane 5.0 ug/L 100.0 ug/L*
1,1,2-Trichloroethane 5.0 ug/L NA
Cis-1,3-Dichloropropene 5.0 ug/L NA
Bromoform 5.0ug/L 100.0 ug/L*
1,1,2,2,-Tetrachloroethane 5.0 ug/L NA
Tetrachloroethylene 5.0 ug/L 5.0 ug/L
Toluene 5.0 ug/L 1000.0 ug/L
Chlorobenzene 5.0 ug/L 100.0 ug/L
Ethylbenzene 5.0ug/L 700.0 ug/L
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ORGANIC SCREEN #10 (continued)

(volatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Acetone 100.0 ug/L NA
Methyl Ethyl Ketone 100.0 ug/L NA
Carbon Disulfide 5.0 ug/L NA
Vinyl Chloride 10.0 ug/L 2.0 ug/L
2-Hexanone 50.0 ug/L NA
Methyl Isobutyl Ketone 50.0 ug/L NA
Styrene 5.0 ug/L 100.0 ug/L
Xylenes (total) 5.0 ug/L 10,000.0 ug/L
Chloroethane 10.0 ug/L NA
1,2-Dibromoethane 5.0 ug/L NA
Vinyl Acetate 50.0 ug/L NA
Chloromethane 10.0 ug/L NA
Bromomethane 10.0 ug/L NA

NA indicates that a Maximum Contaminant Level has not yet been established.
* indicates a trihalomethane compound. The primary MCL for total trihalomethanes is 100 ug/L.
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Editor and Cartographer: Donald L. Shellenberger

The Department of Natural Resources is an equal opportunity employer and offers all persons the
opportunity to compete and participate in each area of DNR employment regardless of race, color,
religion, national origin, age, handicap, or other non-merit factors.



