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1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

This report for calendar year 1994 is the eleventh in a series of annual summaries
discussing the chemical quality of ground water in Georgia. These summaries are among the
tools used by the Georgia Environmental Protection Division (EPD) to assess trends in the
quality of the State's ground-water resources. EPD is the State organization with regulatory
responsibility for maintaining and, where possible, improving ground-water quality and
availability. EPD has implemented a comprehensive statewide ground-water management
policy of anti-degradation (EPD, 1991). Five components constitute EPD's ground-water
quality assessment program:

1

The Georgia Ground-Water Monitoring Network. The Geologic Survey
Branch of EPD maintains this program, which is designed to evaluate the
ambient ground-water quality of ten aquifer systems throughout the State of
Georgia. The data collected from sampling on the Ground-Water Monitoring
Network form the basis for this report.

Sampling of public drinking water wells as part of the Safe Drinking Water
Program (Water Resources Management Branch). This program provides
data on the quality of ground water that the residents of Georgia are using

Special studies addressing specific water quality issues. A survey of nitrite
/nitrate levels in shallow wells located throughout the State of Georgia
(Shellenberger, et al., 1996, Stuart, et al, 1995) and the operation of a
Pesticide Monitoring Network, currently conducted jointly by the Geologic
Survey Branch and the Georgia Department of Agriculture (GDA), (Webb,
1995) are examples of these types of studies. The special studies undertaken
also included investigations intended to measure the effects that flooding
associated with Tropical Storm Alberto had on ground-water quality

Ground-water sampling at environmental facilities such as municipal solid
waste landfills, RCRA facilities, and sludge disposal facilities. The primary
agencies responsible for monitoring these facilities are EPD’s Land
Protection, Water Protection, and Hazardous Waste Management Branches

The development of a wellhead protection program (WHP), which is designed
to protect the area surrounding a municipal drinking water well from
contaminants. The U.S. Environmental Protection Agency (EPA) approved
Georgia's WHP Plan on September 30, 1992. The WHP Plan became a part
of the Georgia Safe Drinking Water Rules, effective July 1, 1993, The
protection of public water supply wells from contaminants is important not
only for maintaining ground-water quality but also for ensuring that public
water supplies meet health standards
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Analyses of water samples collected for the Georgia Ground-Water Monitoring
Network during calendar year 1994 and from previous years form the data base for this
summary The Georgia Ground-Water Monitoring Network comprises 128 wells and springs
Though sampled at various frequencies in the past, all stations on the network switched to an
annual sampling frequency during 1994, In 1994, EPD personnel collected 97 samples from
85 wells and 4 springs. Preliminary scheduling for 1995 includes stations not visited in 1994;
data from these visits will be presented in the 1995 report. A review of the 1994 data and
comparison of these data with those for samples collected as early as 1984 indicate that
ground-water quality at most of the 128 sampling sites generally has changed little and
remains excellent

1.2 FACTORS AFFECTING CHEMICAL GROUND-WATER QUALITY

The chemical quality of ground water drawn for sampling is the result of complex
physical, chemical, and biological processes. Among the more significant controls are the
chemical quality of the water entering the ground-water flow system, the reactions of infiltrat-
ing water with the soils and rocks that are encountered, and the effects of the well-and-pump
system

Most water enters the ground-water system in upland recharge areas. Water seeps
through interconnected pores and joints in the soils and rocks until discharged to a surface-
water body (e g, stream, river, lake, or ocean). The initial water chemistry, the amount of
recharge, and the attenuation capacity of soils have a strong influence on the quality of
ground water in recharge areas. Chemical interactions between the water and the aquifer host
rocks have an increasing significance with longer underground residence times. As a result,
ground water from discharge areas tends to be more highly mineralized than ground water
in recharge areas

The well-and-pump system can also have a strong influence on the quality of the well
water. Well casings, through compositional breakdown, can contribute metals (e.g., iron
from steel casings) and organic compounds (e.g., tetrahydrofuran from PVC pipe cement) to
the water. Pumps often aerate the water being discharged. An improperly constructed well
can present a conduit that allows local pollutants to enter the ground-water flow system.

1.3 HYDROGEOLOGIC PROVINCES OF GEORGIA

This report defines three hydrogeologic provinces in Georgia by their general geologic
and hydrologic characteristics (Figure 1-1). These provinces consist of*

1 the Coastal Plain Province of south Georgia;
2 the Piedmont/Blue Ridge Province, which includes all but the northwest
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corner of Georgia, and
3 the Valley and Ridge Province of northwest Georgia.

1.3.1 Coastal Plain Province

Georgia's Coastal Plain Province generally comprises a wedge of loosely consolidated
sediments that gently dip and thicken to the south and southeast. Ground water in the Coastal
Plain Province flows through interconnected pore space between grains in the host rocks and
through solution-enlarged voids

The oldest outcropping sedimentary formations (Cretaceous) are exposed along the
Fall Line, which is the northern limit of the Coastal Plain Province. Successively younger
formations occur at the surface to the south and southeast

The Coastal Plain contains Georgia's major confined (artesian) aquifers. Confined
aquifers are those in which a layer of impermeable material (i e., clay or shale) holds the top
of the water column at a level below that to which it would normally rise. Water enters the
aquifers in their up-dip outcrop areas, where the more permeable sediments of the aquifer
tend to be exposed. Many Coastal Plain aquifers are unconfined in their up-dip outcrop areas,
but become confined in down-dip areas to the southeast, where they are overlain by
successively younger rock formations. Ground-water flow through confined Coastal Plain
aquifers is generally to the south and southeast, in the direction of the dip of the rocks

The sediments forming the seven major confined aquifers in the Coastal Plain range
in age from Cretaceous to Miocene Horizontal and vertical changes in the permeability of
the rock units that form these aquifers determine the thickness and extent of the aquifers
Several aquifers may be present in a single geographic area, forming a vertical “stack”

The Cretaceous and Jacksonian aquifer systems (primarily sands) are a common
source of drinking water within a 35-mile wide band that lies adjacent to and south of the Fall
Line. Southwestern Georgia relies on four vertically stacked aquifers (sands and carbonates)
for drinking-water supplies: the Providence, Clayton, Claiborne and Floridan aquifer systems
The Floridan aquifer system (primarily carbonates) serves most of south-central and
southeastern Georgia. The Miocene aquifer system (primarily sands) is the principal
“shallow” unconfined aquifer system occupying much of the same broad area underlain by the
Floridan aquifer system. It becomes confined in the coastal counties and locally in the Grady,
Thomas, Brooks and Lowndes County area of south Georgia.

1.3.2 Piedmont/Blue Ridge Province

Crystalline rocks of metamorphic and igneous origin (primarily Precambrian and
Paleozoic in age) underlie the Piedmont and Blue Ridge Provinces. These two provinces
differ geologically but are discussed together here because they share common hydrologic
properties. The principal water-bearing features are fractures, compositional layers, and other
geologic discontinuities in the rock, as well as intergranular porosity in the overlying soil and
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saprolite horizons. Thick soils and saprolites are often important as the “reservoir” that
supplies water to the water-bearing fracture and joint systems. Ground water typically flows
from local highlands toward discharge areas along streams. However, during prolonged dry
periods or in areas of heavy pumpage, ground water may flow from the streams into the
fracture and joint systems

1.3.3 Valley and Ridge Province

Consolidated Paleozoic sedimentary formations characterize the Valley and Ridge
Province. The principal permeable features of the Valley and Ridge Province are fractures
and solution voids; intergranular porosity also is important in some places. Locally, ground-
water and surface-water systems closely interconnect. Dolostones and limestones of the
Knox Group are the principal aquifers where they occur in the axes of broad valleys The
greater hydraulic conductivities of the thick carbonate sections in this Province, in part due
to solution-enlarged joints, permit development of higher yielding wells than in the Piedmont
and Blue Ridge Province.

1.4 REGIONAL GROUND-WATER PROBLEMS

Data from ground-water investigations in Georgia, including those from the Ground-
Water Monitoring Network, indicate that virtually all of Georgia has shallow ground-water
sufficient for domestic supply. Iron, aluminum, and manganese are the only constituents that
occur routinely in concentrations exceeding drinking-water standards. These metals are
naturally occurring and do not pose a health risk. Iron and manganese can cause reddish-
brown stains on objects

Only a few occurrences of polluted or contaminated ground waters are known from
North Georgia (see Section 4). Aquifers in the outcrop areas of Cretaceous sediments south
of the Fall Line typically yield acidic water that may require treatment. The acidity occurs
naturally and results both from the inability of the sandy aquifer sediments to neutralize acidic
rainwater and from acid-producing reactions between infiltrating water and soils and
sediments. Nitrite/nitrate concentrations in shallow ground water from the farm belt of
southern Georgia are usually within drinking-water standards, but are somewhat higher than
levels found in other areas of the State.

The Floridan aquifer system contains two areas of naturally-occurring reduced
ground-water quality besides the karst plain area (Dougherty Plain) in southwest Georgia
The first is the area of the Gulf Trough, a narrow, linear geological feature extending from
southwestern Decatur County through central Bulloch County. Here, ground water is
typically high in total dissolved solids and contains elevated levels of barium, sulfate, and
radionuclides. The second is the coastal area of Georgia, where influx of water with high
dissolved solids contents presents problems. In the Brunswick area, ground-water withdrawal
from the upper Floridan results in up-coning of water with high dissolved solids contents from
deeper parts of the aquifer. In the Savannah region, a cone of depression caused by pumping
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in and around Savannah induces saline ground water to flow down-gradient from the Port
Royal Sound area of South Carolina toward Savannah

1.5 TROPICAL STORM ALBERTO

[ “Tropical Storm Alberto has made landfall, is currently centered over Dothan,
Alabama, and is rapidly losing strength.” -- weather announcement televised on the evening
of July 3, 1994 ]

The above weather announcement gave no hint of what would shortly befall the State
On July 3, 1994, Tropical Storm Alberto, by then officially downgraded to a tropical
depression, began moving northeastward into Georgia (Stamey, 1995). Over the next four
days, the storm unleashed torrential rainfall over a broad area of western, central, and
southwestern Georgia, advancing as far north as the southern and eastern portions of the
metro Atlanta area, then retreating into central Alabama. Americus and the surrounding area
received the most precipitation, an unprecidented 27.6 inches over the five-day period The
greatest volume of the deluge fell in the Flint and Ocmulgee River basins; over the following
two weeks, both basins had the worst flooding on record. The storm and the resultant
flooding took 31 lives and caused an estimated $1,000,000,000 in damage. Especially severe
harm befell roads, railroads, bridges, dams, public water systems, crop and forest lands, and
housing A number of communities lost water service, and, flooding of major thoroughfares
made access to certain areas, notably Macon and Americus, extremely difficult. The flooding
contaminated two public water-supply wells on the Ground-Water Monitoring Network,
Newton Well #1 (GWN-PA43) with coliform bacteria and Shellman Well #3 (GWN-CL5)
with nitrate/nitrite, and forced their eventual abandonment.

In the late summer of 1994, EPD and local health departments sampled and analyzed
approximately six thousand wells (McLemore, 1995, letter to Representative Robert Hanner)
for coliform bacteria. In the winter of 1995, EPD resampled, or attempted to resample, 153
wells (approximately a 2.5 percent spot check) and test the samples again for such bacteria.
In general, EPD concentrated its resampling efforts to those counties that (a) were most
severely affected by the Flint River flooding and (b) were sinkhole-prone, as some speculation
existed that some flood waters had entered and contaminated the Floridan aquifer via sink
holes.  Of the 153 wells, fifty-seven percent were wells which, while testing positive for
coliform bacteria in the summer of 1994, tested negative in the winter of 1995; twenty percent
were wells that remained positive. Thirteen percent were wells that tested negative during
both the summer 1994 sampling and the winter 1995 sampling. Bacteria measurements were
indeterminate or infeasible for ten percent of the wells. In other words, approximately
seventy-four percent of the summer 1994 bacteria-contaminated wells were negative in the
winter of 1995, and, no uncontaminated wells became contaminated between summer and
winter. Also, wells proximal to the Flint River, that had been contaminated with bacteria
appeared to be “cleaning up” similar to wells distal to the river. Although the information
base was limited, long-term bacterial contamination appeared to correlate with well
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construction (i.e, more commonly associated with ungrouted wells). EPD’s analysis
indicated that the bulk of the Floridan aquifer of the Lower Flint River Basin should be
considered free of bacteria contamination. Although no data suggested that they actually
occur, some isolated pockets of flood water may have continued to exist within the aquifer.

One special Geologic Survey investigation examined nitrate/nitrite contamination in
Shellman Well #3 (GWN-CL5)  This examination concluded that unusually heavy
precipitation had flushed nitrate fertilizers out of row crop fields and pecan groves in the
vicinity of the town, elevating the nitrate content of the well water above the primary MCL
(Lineback, 1994, Georgia Geologic Survey internal memorandum).

A study undertaken by the U.S. Geological Survey (Hicks, 1995) examined the effects
of the flood on ground-water hydrology in the Upper Floridan in an area along the Flint River
in southern Lee, western Worth, Dougherty, northern Baker, and northern Mitchell Counties
The study concluded that (a) in an area north of Albany, the potentiometric surface rose
slowly because of the lower hydraulic conductivity of the aquifer in that area; (b) in the
general Albany area and south of the city, the potentiometric surface rose rapidly because of
higher hydraulic conductivity, but the slope of the potentiometric surface, inclined steeply
upward away from the river, would have limited river water intrusion into the aquifer; and (c)
in an area around Newton, the rise of the potentiometric surface was also rapid, but the slope
of the potentiometric surface, gently upward away from the river, would have allowed river
water intrusion into the aquifer. The contamination of Newton Well #1 (GWN-PA43) would
be consistent with these findings
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2.0 GEORGIA GROUND-WATER MONITORING NETWORK
2.1 MONITORING STATIONS

Stations of the 1994 Ground-Water Monitoring Network are situated in the seven
major aquifers and aquifer systems of the Coastal Plain Province and in the unconfined
ground-water systems of the Piedmont and Blue Ridge Provinces and of the Valley and Ridge
Province (Table 2-1). Monitoring stations are located in three critical settings:

1. areas of surface recharge;,

2 areas of potential pollution related to regional activities (e.g., agricultural and
industrial areas); and

3 areas of significant ground-water use.

Most of the monitoring stations are municipal, industrial, and domestic wells that have
reliable well-construction data. The Monitoring Network also includes monitoring wells in
specific areas where the State's aquifers are recognized to be especially susceptible to
contamination or pollution (e.g., the Dougherty Plain of southwestern Georgia and the State's
coastal area).

2.2 USES AND LIMITATIONS

Regular sampling of wells and springs of the Ground-Water Monitoring Network
permits analysis of ground-water quality with respect to location (spatial trends) and with
respect to the time of sample collection (temporal trends). Spatial trends are useful for
assessing the effects of the geologic framework of the aquifer and regional land-use activities
on ground-water quality, Temporal trends permit an assessment of the effects of rainfall and
drought periods on ground-water quantity and quality. Both trends are useful for the
detection of non-point source pollution. Non-point source pollution arises from broad-scale
phenomena such as acid rain deposition and application of agricultural chemicals on crop
lands

It should be noted that the data of the Ground-Water Monitoring Network represent
water quality in only limited areas of Georgia. Monitoring water quality at 128 sites located
throughout Georgia provides an indication of ground-water quality at the locality sampled and
at the horizon corresponding to the screened interval in the well or to the head of the spring
at each station in the Monitoring Network. Caution should be exercised in drawing strict
conclusions and applying any results reported in this study to ground waters that are not being
monitored.

Stations of the Ground-Water Monitoring Network intentionally are located away

from known point sources of pollution. The wells provide baseline data on ambient water
quality in Georgia. EPD requires other forms of ground-water monitoring for activities that
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Table 2-1

AQUIFER
SYSTEM

Crelaceous

Providence

Clavton

Claiborne

Jacksonian

Iloridan

Miocene

Piedmont/Blue

Ridge

Valley and
Ridge

Georgia Ground-Water Monitoring Network, 1994

NUMBER OF MONITORING
STATIONS VISITED &
SAMPLES TAKEN IN 1994

8 stations
(8 samples)

0 stations
(0 samples)

0O stations
(O samples)

3 stations
(3 samples)

7 stations
(7 samples)

42 stations
(50 samples)

8 stations
(8 samples)

13 stations
(13 samples)

8 stations
(8 samples)

PRIMARY STRATIGRAPHIC
EQUIVALENTS

Ripley Formation, Cusseta Sand,
Blufftown Formation, Eutaw Forma-
tion, Tuscaloosa Formation, and
Gaillard Formation

Providence Sand

Clayton Formation

Tallahatta Formation

Barnwell Group

Predominantly Suwannee Limestone
and Ocala Group

Predominantly Altamaha Formation
and Hawthorne Group

Various igneous and metamorphic
complexes

Shady Dolomite, Knox Group, and
Chickamauga Group

2-2

AGE OF AQUIFER
FORMATIONS

Late Cretaceous

Late Cretaceous

Paleocene

Middle Eocene

Late Eocene

Predominantly
Middle Eocene to
Oligocene

Miocene-Recent

Predominately Pa-
leozoic and Pre-
cambrian

Paleozoic, mostly
Cambrian and
Ordovician



may result in point source pollution (e.g., landfills, hazardous waste facilities and land
application sites) through its environmental facilities permit programs

Ground-water quality changes gradually and predictably in the areally extensive
aquifers of the Coastal Plain Province. The Monitoring Network allows for some definition
of the chemical processes occurring in large confined aquifers. Unconfined aquifers in
northern Georgia and the surface recharge areas of southern Georgia are of comparatively
small areal extent and more open to interactions with land-use activities. The wide spacing
of monitoring stations does not permit equal characterization of water-quality processes in
these settings. The quality of water from monitoring wells completed in unconfined aquifers
represents only the general nature of ground water in the vicinity of the monitoring wells
Ground water in the recharge areas of the Coastal Plain aquifers is the future drinking-water
resource for down-flow areas. Monitoring wells in these recharge areas, in effect, constitute
an early warning system for potential future water quality problems in confined portions of
the Coastal Plain aquifers.

2.3 ANALYSES

Analyses are available for 97 water samples collected during 1994 from 85 wells and
4 springs. In 1984, the first year of the Ground-Water Monitoring Network, hydrogeologists
sampled water from 39 wells in the Piedmont/Blue Ridge and Coastal Plain Provinces Three
of these wells have been sampled each year since 1984 Since 1984, the Ground-Water
Monitoring Network has been expanded through addition of further wells and springs to
cover all three hydrogeologic provinces, with most of the monitoring done in the Coastal
Plain

Ground water from all monitoring stations is tested for the basic water quality
parameters included in the Monitoring Network's standard analysis. The standard parameters
include pH, specific conductivity, chloride, fluoride, sulfate, nitrite/nitrate, and thirty metals
(Appendix, Table A-1). Where regional land-use activities have the potential to affect
ground-water quality in the vicinity of a monitoring station, additional parameters such as
chlorinated pesticides (Organics Screen #2), and phenoxy herbicides (Organics Screen #4) are
tested. These and additional chemical screens are listed in the Appendix (Table A-2). The
pH measurements are performed in the field, whereas, other parameters are measured in the
laboratory. Tables 2-2 (cations) and 2-3 (anions) summarize the significance of the common
major constituents found in ground water.

The Drinking Water Program of the EPD's Water Resources Management Branch has
established Maximum Contaminant Levels (MCL’s) for certain parameters included in the
analyses done on Ground-Water Monitoring Network samples. Primary MCL’s pertain to
parameters that may have adverse effects on human health when their values are exceeded
Secondary MCL’s pertain to parameters that may give drinking water objectionable, though
not health-threatening, properties that may cause persons served by public water systems to
cease its use. Foul odor and unpleasant taste are examples of such properties. MCL’s apply
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Table 2-2. The Significance of Parameters of a Basic Water Quality Analysis, Cations (after
Wait, 1960).

PARAMETER(S) SIGNIFICANCE

pH (Hydrogen ion pH is a measure of the concentration of the hydrogen ion.

concentration) Values of pH less than 7.0 denote acidity and values
greater than 7 0 indicate alkalinity. Corrosiveness of water
generally increases with decreasing pH.  However,
excessively alkaline waters may also corrode metals. A pH
range between 6.0 and 8.5 is considered acceptable

Calcium and Calcium and magnesium cause most of the hardness of

magnesium* water. Hard water consumes soap before a lather will
form and deposits scale in boilers, water heaters, and pipes.
Hardness is reported in terms of equivalent calcium
carbonate The hardness of a water can be estimated by
the sum of multiplying the ppm of calcium by 2.5 and that
of magnesium by 4.1.

Water Class Hardness (parts
- per million)
Soft Less than 60
Moderately Hard 60 to 120

Hard 121 to 180
Very Hard More than 180

Sodium and potassium* Sodium and potassium have little effect on the use of water
for most domestic purposes. Large amounts give a salty
taste when combined with chloride. A high sodium con-
tent may limit the use of water for irrigation.

Iron and manganese More than 300 ppb of iron stains objects red or reddish
brown and more than 50 parts per billion of manganese
stains objects black. Larger quantities cause unpleasant
taste and promote growth of iron bacteria, but do not
endanger health.

*Major metallic ions present in most ground waters
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Table 2-3. The Significance of Parameters of a Basic Water Quality Analysis, Anions

(after Wait, 1960).
PARAMETER(S)

Chloride

Nitrate/Nitrite

Sulfate

SIGNIFICANCE

Chloride salts in excess of 100 ppm give a salty taste to
water. Large quantities make the water corrosive. Water
that contains excessive amounts of chloride is not suitable
for irrigation. It is recommended that the chloride content
should not exceed 250 ppm.

Excessive amounts of nitrate/nitrite in drinking water or
formula water for infants may cause a type of
methemoglobinemia ("blue babies"). Nitrate/nitrite in
concentrations greater than 10 ppm (as nitrogen) is
considered to be a health hazard.

Sulfate in hard water increases the formation of scale in
boilers. In large amounts, sulfate in combination with
other ions imparts a bitter taste to water. Concentrations
above 250 ppm have a laxative effect, but concentrations
up to 500 ppm are not considered unhealthful.
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only to treated water offered for public consumption, nevertheless, they are useful guidelines
for evaluating the quality of untreated (raw) water. Tables A-1 and A-2 in the Appendix list
the Primary and Secondary MCL's for Ground Water Monitoring Network parameters

Most of the wells originally on the Monitoring Network had in-place pumps. Using
such pumps to purge the wells and collect samples reduces the potential for cross-
contamination of wells. For those wells that lacked in-place pumps, EPD personnel used
portable pumps for purging and sampling. In recent years, however, all wells that lacked in-
place pumps were dropped from the Monitoring Network, except for a flowing well tapping
the lower Floridan, GWN-PA9C (see Appendix, Table A-6).

Sampling procedures are adapted from techniques used by the USGS and the EPA.
Hydrogeologists purge the wells (three to five times the volume of the water column in the
well) before the collection of a sample to minimize the influence of the well, pump and
distribution system on water quality. Municipal, industrial, and domestic wells typically
require approximately 30 to 45 minutes of purging before sample collection

EPD personnel monitor certain water quality parameters prior to sample collection.
The personnel observe and record pH, dissolved oxygen content, specific conductivity, and
temperature using field instruments. A manifold captures flow at the pump system discharge
point before the water is exposed to the atmosphere and conducts it past the instrument
probes With increased purging time, typical trends include a lowering of pH, dissolved
oxygen content, and specific conductivity, and a transition toward the mean annual air
temperature. The hydraulic flow characteristics of unconfined aquifers, the depth of
withdrawal, and pump effects may alter these trends

Samples are collected once the parameters being monitored in the field stabilize or
otherwise indicate that the effects of the well have been minimized. Files at the Geologic
Survey Branch contain the records of the field measurements taken during sampling (i.e., pH,
dissolved oxygen content, specific conductivity, and temperature). EPD personnel fill the
sample bottles and then promptly place them on ice to preserve the water quality. The
personnel next transport the samples to the laboratories for analysis on or before the Friday
of the week in which they were collected.

During 1994, various laboratories performed the chemical analyses of water samples
for the Ground-Water Monitoring Network. Before tropical storm Alberto, EPD laboratories
did the following standard water quality tests on all regular samples: specific conductance,
an ICP/AAS metals screen, a nitrate/nitrite test (results reported as ppm nitrogen), and an ion
chromatography screen (chloride, fluoride, and sulfate). EPD laboratories also did the
following optional tests on various samples: mercury, organic screen #7 (EDB), organic
screens #8 and #9 (semivolatile organic compounds), and organic screen #10 (volatile organic
compounds). Organic screen #7 is performed simultaneously with organic screen #10. The
Georgia Department of Agriculture laboratory performed analyses for screens #1, #2, #3, #4,
and #5 (pesticides and PCB’s) during this same period. Following the Alberto flooding, EPD
laboratories became the main agency responsible for testing drinking water supplies in the
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flooded areas and had only limited capacity to analyze Monitoring Network water samples.
Samples, which EPD laboratories could not test, were forwarded to the Cooperative
Extension Service laboratories at the University of Georgia for the standard water quality
tests.
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3.0 GROUND-WATER QUALITY IN GEORGIA
3.1 OVERVIEW

Georgia's ten major aquifers and aquifer systems are grouped into three hydrogeologic
provinces for the purposes of this report.

The Coastal Plain Province comprises seven major aquifers or aquifer systems that are
restricted to specific regions and depths within the province (Figure 3-1). These major
aquifer systems, in many cases, incorporate smaller aquifers that are locally confined.
Ground-Water Monitoring Network wells in the Coastal Plain aquifers are generally located
in three settings:

| Recharge (or outcrop) areas that are located in regions that are geologically
up-dip and generally to the north of confined portions of these aquifers

2 Up-dip, confined areas that are located in regions that are proximal to the
recharge areas, yet are confined by overlying geologic formations. These
areas are generally south to southeast of the recharge areas.

3 Down-dip, confined areas, located to the south and southeast in the deeper,
confined portions of the aquifers distal to the recharge areas.

Small-scale, localized ground-water flow patterns characterize the two hydrogeologic
provinces of north Georgia, the Piedmont/Blue Ridge Province and the Valley and Ridge
Province. Deep regional flow systems are unknown in northern Georgia. Geologic
discontinuities (such as fractures) and compositional changes within the aquifer generally
control ground-water flow in the Piedmont/Blue Ridge Province. Local topographic features,
such as hills and valleys, influence ground-water flow patterns. Many of the factors
controlling ground-water flow in the Piedmont/Blue Ridge Province also apply in the Valley
and Ridge Province The Valley and Ridge Province additionally possesses widespread karst
features, which significantly enhance porosity and permeability in localized areas and exert
a strong influence on local ground-water flow patterns.

3.2 CRETACEOUS AQUIFER SYSTEM

The Cretaceous aquifer system is a complexly interconnected group of aquifer
subsystems developed in the Late Cretaceous sands of the Coastal Plain Province. These
sands crop out in an extensive recharge area immediately south of the Fall Line in west and
central Georgia (Figure 3-2). Overlying Tertiary sediments restrict Cretaceous outcrops to
valley bottoms in parts of the northeastern Coastal Plain. Five distinct subsystems of the
Cretaceous aquifer system, including the Providence aquifer system, are recognized west of
the Ocmulgee River (Pollard and Vorhis, 1980). These merge into three subsystems to the
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east (Clarke, et al,, 1985). Aquifer sands thicken southward from the Fall Line, from where
they pinch out against crystalline Piedmont rocks, to a sequence of sand and clay
approximately 2,000 feet thick at the southern limits of the main aquifer-use area (limit of
utilization, Figure 3-2). Vertical leakage from overlying members of the aquifer system
provides significant recharge in down-dip areas.

EPD sampled 8 wells in 1994 to monitor the water quality of the Cretaceous aquifer
system, exclusive of the Providence aquifer system. All the sampled wells are located in up-
dip areas in or adjacent to outcrop and surface recharge areas for the Cretaceous aquifer
system All wells yielded soft, acidic water.

Iron concentrations exceeded the State secondary MCL of 300 parts per billion (ppb)
in only two wells: GWN-K3 in Washington County (580 ppb) and GWN-K9 in Macon
County (500 ppb). Well GWN-K1 yielded a sample with a manganese concentration of 60
ppb, which exceeds the applicable secondary MCL of 50 ppb. Figure 3-3 shows trends in iron
concentrations for selected wells in the Cretaceous aquifer system.

Aluminum concentrations exceeded the secondary MCL of 200 ppb in samples from
two wells: GWN-K1 (2600 ppb) and GWN-K9 (440 ppb). All samples contained low or
undetectable levels of major alkali and alkaline earth metals (potassium, sodium, calcium,
and magnesium). Water samples from various wells also had detectable levels of the
following trace elements: copper, barium, strontium, molybdenum, vanadium, zinc, lead, and
selenium,

Water samples from six wells contained detectable levels of nitrite/nitrate, with the
highest concentration, 0.71 ppm as nitrogen, occurring in a sample from well GWN-K 1
Figure 3-4 shows trends in levels of nitrite/nitrate (reported as parts per million [ppm]
nitrogen) for selected wells, All of the samples contained detectable chloride; the majority
of the samples also had measurable sulfate. None of the samples contained quantifiable
synthetic organic compounds. Table A-3 in the Appendix lists the analytical results for
samples collected from the Cretaceous aquifer system.

3.3 PROVIDENCE AQUIFER SYSTEM

Sand and coquinoid limestones of the Late Cretaceous Providence Formation
comprise the Providence aquifer system of southwestern Georgia. Outcrops of the aquifer
system extend from northern Clay and Quitman Counties through eastern Houston County
(Figure 3-5) At its up-dip extent, the aquifer system thickens both to the east and to the west
of a broad area adjacent to the Flint River. The aquifer system also generally thickens
downdip, with an area where the thickness exceeds 300 feet existing in Pulaski County and
an area of similar thickness indicated in the Baker/Calhoun/Early county region (Clarke, et
al,, 1983). Figure 3-5 also shows the down-dip limit of the area in which the aquifer system
is utilized
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The permeable Providence Formation-Clayton Formation interval forms a single
aquifer in the up-dip areas (Long, 1989) and to the east of the Flint River (Clarke, et al ,
1983). This same interval is recognized as the Dublin aquifer system to the east of the
Ocmulgee River (Clarke, et al.,, 1985). Outcrop areas and adjacent covered areas to the east
of the Flint River, where the aquifer is overlain by permeable sand units, are surface recharge
areas. The Chattahoochee River forms the western discharge boundary for this flow system
in Georgia. EPD did not collect any samples from Providence aquifer wells in 1994.

3.4 CLAYTON AQUIFER SYSTEM

The Clayton aquifer system of southwestern Georgia is developed mainly in the middle
limestone unit of the Paleocene Clayton Formation. Limestones and calcareous sands of the
Clayton aquifer system crop out in a narrow belt extending from northeastern Clay County
to southwestern Schley County (Figure 3-6). Aquifer thickness varies, ranging from 50 feet
near outcrop areas to 265 feet in southeastern Mitchell County (Clarke, et al., 1984). Both
the Flint River, to the east, and the Chattahoochee River, to the west, are areas of discharge
for the aquifer system in its up-dip extent. Leakage from the underlying Providence aquifer
system and from permeable units in the overlying Wilcox confining zone provides significant
recharge in down-dip areas (Clarke, et al., 1984). The Clayton Formation and Providence
Formation merge to form a single aquifer unit in up-dip areas (Long, 1989) as well as east of
the Flint River (Clarke, et al., 1983). In areas east of the Ocmulgee River, the combination
of these two aquifers is referred to as the Dublin aquifer system (Clarke, et al 1985). Figure
3-6 also shows the down-dip limit of the area in which the aquifer system is utilized. EPD did
not sample any Clayton wells in 1994

3.5 CLAIBORNE AQUIFER SYSTEM

Sands of the Middle Eocene Claiborne Group are the primary units of the Claiborne
aquifer system of southwestern Georgia (Figure 3-7). Claiborne Group sands crop out in a
belt extending from northern Early County through western Dooly County Recharge to the
aquifer system occurs both as direct infiltration of precipitation in the recharge area and as
leakage from the overlying Floridan aquifer system (Hicks, et al., 1981; Gorday, et al., 1997).
Discharge boundaries of the aquifer system are the Ocmulgee River, to the east, and the
Chattahoochee River, to the west.  Figure 3-7 shows the down-dip limit of utilization.

The aquifer generally thickens from the outcrop area towards the southeast, attaining
a maximum of almost 300 feet in eastern Dougherty County. In down-dip areas where the
Claiborne Group can be divided into the Lisbon Formation above and the Tallahatta
Formation below, the Claiborne aquifer system generally lies within the Tallahatta Formation,
and the Lisbon Formation acts as a confining unit that separates the Claiborne aquifer from
the overlying Floridan aquifer (McFadden and Perriello, 1983; Long, 1989). The permeable
Tallahatta unit is included in the Gordon aquifer system east of the Ocmulgee River (Brooks,
et al,, 1985).
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During 1994, EPD personnel used three wells to monitor the water quality of the
Claiborne aquifer system. The pH of the water samples from the up-dip area (wells GWN-
CL4 and GWN-CLS) fell below 7.00, while the pH of the sample from the down-dip area
(well GWN-CL2) slightly exceeded 7.00. The two up-dip wells yielded soft water, while well
GWN-CL2 yielded hard water. Manganese levels in samples from wells GWN-CL4 and
GWN-CLS8 and iron in the sample from well GWN-CL8 equaled or exceeded the secondary
MCL’s for these elements.

The sample from the down-dip well GWN-CL2 had the highest calcium concentration.
The down-dip well GWN-CL6 yielded the sample with the highest sodium concentration
The calcium concentration in the down-dip sample is consistent with ground waters derived
from limestone. Other metals and semimetals detected included barium, strontium, aluminum,
zinc, copper, silver, arsenic, vanadium, molybdenum, and lead. Figure 3-8 shows trends in
iron concentrations in three wells

Samples from all three wells (GWN-CL2, GWN-CL4, and GWN-CLS8) contained
detectable levels of nitrite/nitrate, with the sample from GWN-CL4 having the highest
concentration. In the aftermath of tropical storm Alberto, routine samples of treated water
from well GWN-CLS (Shellman Well #3, Randolph County), collected for EPD’s Drinking
Water Program, began showing nitrite/nitrate levels in excess of the primary MCL (Lineback,
1994) The well collapsed in November of 1994, before the yearly Monitoring Network
sample could be collected. Lineback (1994) reported the increase in nitrite/nitrate
concentration in water from well GWN-CLS to be due to leaching of fertilized row crop fields
and pecan groves north and west of the town by storm precipitation. Figure 3-9 shows
nitrite/nitrate concentrations for selected wells.

Samples from all three wells contained measurable chloride, with a maximum of 6 2
ppm in the sample from well GWN-CL4. Samples from wells GWN-CL2 and GWN-CL8
contained detectable sulfate. Well GWN-CL2 yielded a sample containing fluoride at a
concentration of 5.0 ppm, which exceeded the primary MCL of 4 ppm. Previous testing has
shown the fluoride levels to be low or undetectable in samples from this well, and, the 5 0
ppm value 1s thought to be spurious. The sample from well GWN-CL4 contained benzene
(10 ppb) in excess of the primary MCL of 5 ppb and a non-quantifiable trace of xylenes
Table A-4 in the Appendix gives the analytical results for the samples from Claiborne wells.

3.6 JACKSONIAN AQUIFER SYSTEM

The Jacksonian aquifer system of central and east-central Georgia comprises
predominantly sands of the Eocene Barnwell Group, though, locally, isolated limestone bodies
are important. Barnwell Group outcrops extend from Macon and Peach Counties eastward
to Burke and Richmond Counties (Figure 3-10). Aquifer sands form a northern clastic facies
of the Barnwell Group; the sands grade southward into less permeable silts and clays of a
transition facies (Vincent, 1982). The water-bearing sands are relatively thin, ranging from
ten to fifty feet in thickness. Limestones equivalent to the Barnwell Group form a southern
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carbonate facies and are included in the Floridan aquifer system. The Savannah River and
Ocmulgee River are eastern and western discharge boundaries respectively for the up-dip flow
system of the Jacksonian aquifer system.

EPD monitored water quality in the Jacksonian aquifer system in 1994 by sampling
seven wells. Five wells are in the clastic facies (one, GWN-J2A, drawing from an isolated
limestone body), and, two wells are in the transition facies. Except for two up-dip wells,
GWN-J7 and GWN-J8, which yielded very acidic water, the pH of the water samples ranged
from 6.68 to 7.72. Water hardness ranged from soft (up-dip wells GWN-J7 and GWN-]8)
to hard. Concentrations of iron, aluminum, and manganese in the water samples fell below
the secondary MCL's for drinking water, except for wells GWN-J3 and GWN-J8, which
yielded samples with excessive manganese (130 ppb and 70 ppb, respectively). The samples
tested generally low in sodium, with the highest concentration occurring in a sample from the
transition well GWN-J3. Calcium concentrations ranged from 37 ppm to 65 ppm in in
samples from five of the wells, but fell below 10 ppm in samples from the up-dip wells GWN-
J7 and GWN-J8. Samples from five of the wells contained magnesium, with the highest level
of 6.4 ppm occurring in the sample from transition well GWN-J3. Other detected metals and
semimetals included barium, strontium, copper, lead, zinc, vanadium, beryllium, and arsenic
Higher nitrite/nitrate concentrations occurred in samples from the up-dip wells, with the
concentration in a sample from well GWN-J8 exceeding the primary MCL of 10 ppm as
nitrogen. In no samples did fluoride, chloride, or sulfate exceed their respective MCL's
Likewise, none of the samples contained any quantifiable synthetic organic chemicals. Figures
3-11 and 3-12 depict trends in iron and nitrite/nitrate concentrations for selected wells. Table
A-5 in the Appendix lists the analytical results for all the wells sampled.

3.7 FLORIDAN AQUIFER SYSTEM

The Floridan aquifer system consists predominantly of Eocene and Oligocene
limestones and dolostones that underlie most of the Coastal Plain Province. The aquifer 1s
a major source of ground water for much of its outcrop area and throughout its down-dip
extent to the south and east

The upper water-bearing units of the Floridan are the Eocene Ocala Group and the
Oligocene Suwanee Limestone (Crews and Huddlestun, 1984). These limestones crop out
in the Dougherty Plain (a karstic area in southwestern Georgia) and in adjacent areas along
a strike to the northeast. In Camden and Wayne counties the Oligocene unit is absent, and
the upper part of the Floridan is restricted to units of Eocene age (Clarke, et al., 1990). The
lower portion of the Floridan consists mainly of dolomitic limestone of middle and early
Eocene age and pelletal, vuggy, dolomitic limestone of Paleocene age but extends into the late
Cretaceous in Glynn County. The lower Floridan is deeply buried and not widely used,
except in several municipal and industrial wells in the Savannah area (Clarke, et al., 1990)
From its up-dip limit, defined in the east by clays of the Barnwell Group, the aquifer thickens
to well over 700 feet in coastal Georgia. A dense limestone facies along the trend of the Gulf
Trough locally limits ground-water quality and availability (Kellam and Gorday, 1990). The
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Gulf Trough is a linear depositional feature in the Coastal Plain that extends from
southwestern Decatur County through central Bulloch County.

A ground-water divide separates a smaller southwestwardly flow regime in the
Floridan aquifer system in the Dougherty Plain from the larger southeastwardly flow regime
in the remainder of Georgia. Rainfall infiltration in outcrop areas and downward leakage from
extensive surficial residuum provides recharge to the Dougherty Plain flow system (Hayes,
et al, 1983). The main body of the Floridan aquifer system, to the east, is recharged by
leakage from the Jacksonian aquifer system and by rainfall infiltration in outcrop areas and
in areas where overlying strata are thin. Significant recharge also occurs in the area of
Brooks, Echols and Lowndes counties, where the Withlacoochee River and numerous
sinkholes breach upper confining beds (Krause, 1979).

In 1994, EPD collected 50 samples from 42 wells in the Floridan aquifer system
(Figure 3-13). The pH levels in all samples were basic, and, water hardness ranged from
moderately hard to very hard. Iron and aluminum concentrations fell below the secondary
MCL’s in all samples. Trends in iron levels from selected wells in the Floridan aquifer are
shown on Figure 3-14. Most wells yielding water with detectable manganese levels fall within
the Gulf Trough area (wells GWN-PA18, GWN-PA19, GWN-PA29, GWN-PA30, GWN-
PA32, and GWN-PA33). The manganese concentration in a sample from well GWN-PA18
exceeded the secondary MCL of 50 ppb.

Sodium concentrations ranged from 1.9 to 800 parts per million (ppm), and,
magnesium ranged from undetected to 110 ppm. Both elements are most abundant in samples
from wells in the coastal area, with the highest concentrations of these elements occurring in
a sample from well GWN-PAOC in Brunswick. Calcium ranged from 24 ppm in samples from
wells GWN-PA2A and GWN-PA33 to 160 ppm in well GWN-PASC. The barium
concentration from well GWN-PA33 in the Gulf Trough area was 2200 ppb which exceeds
the primary MCL of 2000 ppb. Other metals detected in measurable concentrations included
potassium, molybdenum, strontium, copper, and zinc. None of these substances exceeded
applicable MCL’s.

All water samples underwent tests for the anions: chloride, sulfate, fluoride, and
nitrate/nitrite. A few samples also recieved tests for phosphorus. Chloride levels ranged from
1.9 ppm to 1770 ppm. The 1770 ppm level occurred in well GWN-PASC in the coastal area
and was the only value to exceed the secondary MCL (250 ppm) for chloride. Sulfate ranged
from undetected to 398 ppm. This high sulfate level occurred in the sample from well GWN-
PA9C and exceeds the secondary MCL (250 ppm). The concentrations of fluoride ranged
from undetected to 0.9 ppm. The sample collected from well GWN-PA39 was the only
sample to have a synthetic organic compound, a non-quantifiable trace of chloroform.

Most of the samples collected from the confined portions of the Floridan aquifer
contained no detectable nitrite/nitrate, whereas, most samples in the unconfined portion
contained detectable concentrations of nitrite/nitrate. The highest level, 4.08 ppm as nitrogen,
was in a sample collected from well GWN-PAS53 in the Dougherty Plain. Trends in nitrate
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levels from selected wells in the Floridan Aquifer are presented in Figure 3-15. The Appendix
(Table A-6) gives the analytical results for samples from the Floridan aquifer system.

3.8 MIOCENE AQUIFER SYSTEM

Much of south-central and southeastern Georgia lies within outcrop areas of the
Miocene Altamaha Formation and Hawthorne Group. Discontinuous lens-shaped bodies of
sand, 50 to 80 feet thick, are the main permeable units. Miocene clays and sandy clays are
thickest, more than 500 feet, in Wayne County (Watson, 1982).

Areas of confinement exist in the coastal counties. Leakage from overlying surface
aquifers into the Miocene aquifer system and, in some areas, from the underlying Floridan
aquifer system is significant in the coastal counties (Watson, 1982). Here, two principal
aquifer units are present (Joiner, et al., 1988). Clarke (et. al, 1990) use the names upper and
lower Brunswick aquifers to refer to these two sandy aquifer units.

EPD collected water samples from eight wells to monitor the water quality in the
Miocene aquifer system (Figure 3-16). The pH of the samples ranged from 4.05 to 7.65 and
hardness from soft to hard. Iron and manganese levels ranged from undetected to 2200 and
210 ppb, respectively. The water sample from well GWN-MI13 contained iron in excess of
the secondary MCL (300 ppb). Water samples from four wells, GWN-MIS5, GWN-MIBA,
GWN-MI10B and GWN-MI13, exceeded the secondary MCL (50 ppb) for manganese.
Figure 3-17 shows trends in iron concentrations in selected wells. Samples from three wells
contained aluminum in excess of the secondary MCL, at levels of 430 ppb, 730 ppb, and 740
ppb. Sodium ranged from 1.7 ppm to 7.7 ppm, and, calcium ranged from 5.8 ppm to 54
ppm. Other metals detected were potassium, magnesium, barium, strontium, and zinc. None
of these exceed applicable MCL's.

Chloride concentrations ranged from 2.1 ppm to 40.1 ppm, and, sulfate levels ranged
from undetected to 3.4 parts per million. The deeper domestic wells (GWN-MI1, GWN-
MI2, GWN-MI10B, and GWN-MI13) yielded samples with the lowest chloride
concentrations. Samples from four wells contained quantifiable concentrations of fluoride.
Detectable levels of nitrite/nitrate, ranging from 0.1ppm to 14.1 ppm, occurred in samples
from four wells (GWN-MI2, GWN-MI5, GWN-MI8A, and GWN-MI15). Nitrate/nitrite
concentrations in wells GWN-MI8A and GWN-MI15 exceeded the primary MCL (10 ppm
as N). Concentrations of nitrate/nitrite for selected wells are illustrated in Figure 3-18. None
of the samples contained synthetic organic chemicals. Table A-7 in the Appendix gives
analytical data for samples drawn from Miocene aquifer system wells.

3.9 PIEDMONT/BLUE RIDGE UNCONFINED AQUIFERS

Georgia's Piedmont and Blue Ridge Physiographic Provinces are developed on
metamorphic and igneous rocks that are predominantly Precambrian and Paleozoic in age.
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Soil and saprolite horizons, compositional layers, and openings along fractures and joints in
the rocks are the major water-bearing features. Fracture density and interconnection provide
the primary controls on the rate of water flow into wells completed in crystalline rocks. The
permeability and thickness of soils and saprolite horizons determine the amount of well yield
that can be sustained.

EPD collected 13 ground-water samples from twelve wells and one spring in the
Piedmont/Blue Ridge Province. Figure 3-19 shows locations of the monitoring stations.
Hardness ranged from soft to moderately hard. The pH of the water fell below 7.00 at eleven
of the sampling stations and was greater than 7.00 at two others. Iron and manganese ranged
from undetected to 1600 ppb (GWN-P9) and 230 ppb (GWN-P16C), respectively. Iron
exceeded the secondary MCL (300 ppb) in water samples taken at three stations, and,
manganese exceeded the secondary MCL (50 ppb) at five stations. None of the samples
contained detectable aluminum. Figures 3-20 and 3-21, respectively, show trends in iron
concentrations for selected stations in the Piedmont and Blue Ridge sectors of the province.

Samples from all stations contained sodium, with concentrations ranging from 1.4
ppm to 15.0 ppm. All well samples (except GWN-P14) contained calcium and magnesium
(except GWN-P14 and GWN-BR1A). Testing also detected potassium, barium, strontium,
and zinc, at concentrations below applicable MCL’s.

Chloride and sulfate concentrations in the water samples ranged from undetected to
11.0 ppm and 55.9 ppm, respectively. Samples from four out of thirteen stations contained
quantifiable fluoride. Concentrations of nitrite/nitrate, present in water samples from ten
stations, were below the primary MCL (10 ppm as N). Figures 3-22 and 3-23 show
nitrite/nitrate concentrations in selected stations from the Piedmont and Blue Ridge sectors,
respectively. A non-quantifiable trace of naphthalene occurred in a sample from well GWN-
P2, which is located in an urban setting. An analytical summary for the Piedmont/Blue Ridge
sampling stations is in Appendix Table A-8.

3.10 VALLEY AND RIDGE UNCONFINED AQUIFERS

Soil and residuum form low-yield unconfined aquifers across most of the Valley and
Ridge Province of northwestern Georgia. Valley bottoms underlain by dolostones and
limestones of the Cambro-Ordovician Knox Group are the locations of most higher-yielding
wells and springs that are suitable for municipal supplies.

EPD collected water samples from five wells and three springs to monitor the water
quality in the Valley and Ridge unconfined aquifers (Figure 3-24). Three of these wells and
all three springs produced water from Knox Group carbonates. The other wells are
representative of water from the Ordovician Chickamauga Group in Walker County and the
Cambrian Shady Dolomite in Bartow County. Water from the Valley and Ridge monitoring
stations ranged in pH from 7.08 to 7.91 and in hardness from moderately hard to very hard.
Only one station (GWN-VR4) yielded a sample containing detectable iron and manganese.

3-26



E

o
o

- —
LAIN P

L

VINC
e

RO\

A

!J"_"e—

40 MILES

e )

30

by
;

ll“r._,l
TALP
e

“_COAS
\_,-,..
Ve

]
1

0
1

10
s

0
I

0
L

(BN S

e/

¢

LP2

. s

. .al'_._.?.._-‘F

O Manganese exceeds MCL
0O Iron exceeds MCL

e Soft water

Ao Moderately hard water

-19. - Water Quality of Selected Wells in the Piedmont/Blue Ridge
Unconfined Aquifers

Figure 3

3-27



e S SO

.

L] ]
L} ]
L} 1

.
L] L}

(INEEEE

NNANNANANRANNANANNS

[

'
~dEEimayea

[}

[

1

I
I
.
1
]
f
1
1
]
1

e e e e

ENSONNNSANNSN

e e

- e .-

il R

3000

000 -+ - -+

o
(1/6n00g =12

500 -+ - -
000 ~ = -~

W) 1/6n ‘(a4) uoy

500 ~ - -

1993

1992

1991

1990

P15A

P1B

Well ID

*Iron levels below the detection limit are assigned a value of 12.1 ppb. A missing bar indicates data are

not available for that year.

g€

Figure 3-20. - Iron Concentrations for Selected Wells in the Piedmont/Blue Rid

Unconfined Aquifer System: Piedmont sector.

3-28



T T T A NN

I A e —
AANANNNNNNNARANANNNNNNNNNNNNNNRN

A R NN

S S N

E: ¢ 8 8 8 8 % & °

180

(1/6n00E =1DIN) 1/Bn “(a]) uoy|

L
BR1A | /| BR2A - BR3A

Well ID

Tron levels below the detection limit are assigned a value of 5.1 ppb. A missing bar indicates data are

not available for that year.

-21. - Iron Concentrations for Selected Wells in the Piedmont/Blue Ridge

Figure 3

Unconfined Aquifer System: Blue Ridge Sector.

3-29



NO2 & NO3, mgN/L (MCL = 10mgN/L)

...........................................

______________________________________

= - ——-

05 =

e e e i T .

1994

Well ID 5

P14

Nitrate/nitrite levels below the detection limit are assigned a value of 0.05 ppm. A missing bar indicates data
are not available for that year.

Figure 3-22. - Nitrate/Nitrite Concentrations for Selected Wells in the Piedmont/Blue
Ridge UnconfinedAquifer System: Piedmont Sector.

3-30



. e S A .
3 i : i
S14f-ammmnnnmnam- T fommmmm e RS DL
o (] ] 1
£ : : :

o ' ] 1
— 12 f-===mmmmm===— H==smmemm s cae- $mmmmmmmr === 1 -

I ! | i
- 1 [} 1
Q ! ' '
S104-—p-mmn=nn foe s 5 0o mnim pmmim o e S e - iz - s
= : : :

2 : : i

g08=peny jemEnes=s e % ----- Wommoomommmeme b v et
; N/ e
O B [P N | [—— R [ L T i
20.6 | % T 1
3 A 77 I |
S 04t Jscsmamna R /// ----- $ e AR AR RS HEE E ------
> : % ' '

PRI [ N— T -

7 5
00 I £ i v =
1990 1991 1992
Well ID BR1A [ /| BR2 .BR3A

Nitrate/nitrite levels below the detection limit are assigned a value of 0.05 ppm. A missing bar indicates data
are not available for that year.

Figure 3-23. - Nitrate/Nitrite Concentrations for Selected Wells in the Piedmont/Blue
Ridge Unconfined Aquifer System: Blue Ridge Sector.

3-31



ll\..h‘rn
.\...\.
..\...1..1,... 'y A
/ 4
SN /
- ~ T
. \,.3, A bl %
\\. N 7 e A.,.r/ . i
u“ _v\ : _ __ ol s, .
~\.‘ ﬂ» ,A_r. Airt § : ”
i \.ur‘ N A TN Q) L 7 WLQ g
b s~ Ny * PR L e . 3 2
RtV wNsEeTE
G f e LR £ . 4 ik
% I, ¢ S L @ S 5§ r r $
/. ‘ 4. =S I%_ o \ o .
P ) s .(f\\\( \.\ = o ~ : .|L|‘|!.||..4 __.ﬂ o
Y. \.x.;._axr\ j m,«; T \ \m\\. NS ,_r..T_ fi\,“ ]
o) SR P A (NP - SV .
< Ve Y A T Y & ~ L
7S \. ¥ m ﬂ\...._\/«) \ P\,\( \w. __T:__,.F i J/\ %.?.ﬁf.\\.— o
x4 PN It 1 T R SR s TR | N
m.v\.\(b.\‘ ./ 3 N .urlA h | j— i _.l I
> 9 N\ O I ¢ _ | _
3 (W\r | ; ...wC .r..qﬁ, S S |-
.\.u.m-..,l.—.. - \,.r. ﬁ '
g B E
.,wgsm; i B
. s
~F VR
o
: e
R e , ¥
< I e @ i _
Scie lenjEwlg N\
N Iy :
SR =t 3
il

® Hard water

¢ Very hard water

4 Moderately hard water

Figure 3-24. - Water Quality of Selected Wells in the Valley and Ridge Unconfined

Aquifers.

3-32



Concentrations fell below applicable MCL’s. Samples from all eight stations contained
calcium and magnesium. The commonly detected trace metals consisted of barium and
strontium. The highest barium concentration, 600 ppb, occurred in a sample from well GWN-
VR6. This particular well draws water from the Shady Dolomite Group which contains an
abundance of barite (BaSO,) deposits. Chloride concentrations ranged from 1.1 ppmto 11.7
ppm, and sulfate ranged from undetectable to 42.3 ppm. Spring GWN-VR3 yielded the only
sample with detectable fluoride. Except for stations GWN-VR1 and GWN-VR3, samples
from all wells and springs contained nitrate/nitrite. The highest nitrate/nitrite concentration
(2.8 ppm as N) occurred in a sample from well GWN-VR4. Figures 3-25 and 3-26 show iron
and nitrite/nitrate levels, respectively, for selected sampling stations in the Valley and Ridge
aquifers.

The sample from well GWN-VR6, which is located in an industrial setting, contained
a non-quantifiable concentration of tetrachloroethylene.  Also, methyl-tert-butyl ether
occurred at a level of 23 ppb in well GWN-VRS, which is located in a rural setting. There
is no MCL for the compound. Appendix Table A-9 presents the analytical summary for the
wells and springs located in the Valley and Ridge unconfined aquifers.
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4.0 SUMMARY AND CONCLUSIONS

EPD personnel collected 97 raw water samples from 85 wells and 4 springs on the Ground-
Water Monitoring Network in 1994 for inorganic and organic analysis. These wells and springs
monitor the water quality of seven aquifer systems in Georgia:

> Cretaceous aquifer system

> Claiborne aquifer system

> Jacksonian aquifer system

> Floridan aquifer system

> Miocene aquifer system

> Piedmont/Blue Ridge unconfined aquifers

> Valley and Ridge unconfined aquifers

Comparisons of analyses of water samples collected in 1994 were made with analyses for
the Ground-Water Monitoring Network dating back to 1984, permitting the recognition of temporal
trends. Table 4-1 lists the major contaminants and pollutants detected at the stations of the Ground-
Water Monitoring Network during 1994. Although isolated water quality problems existed during
1994 at specific localities, the quality of water from the majority of the Ground-Water Monitoring
Network stations remains excellent.

Nitrate/nitrite are the most common substances present in ground water in Georgia that can
have adverse health effects. Three wells, all shallow domestic wells tapping the Miocene and the
up-dip Jacksonian aquifer systems (J8, MI8SA and MI15) yielded water samples in 1994 with
nitrite/nitrate concentrations exceeding the primary MCL of 10 ppm as nitrogen (Table 4-1). Spatial
and temporal limitations of the Ground-Water Monitoring Network preclude the identification of
the exact sources of the increasing levels of nitrogen compounds in some of Georgia's ground water.
Nitrite/nitrate originates in ground water from direct sources and through oxidation of other forms
of dissolved nitrogen, deriving from both natural and man-made sources. The most common
sources of man-made dissolved nitrogen in Georgia usually consist of septic systems, agricultural
wastes, and storage or application of fertilizers (Robertson, et. al, 1993). Dissolved nitrogen also
is present in rainwater and can be derived form terrestrial vegetation and volatilization of fertilizers
(Drever, 1988). The conversion of other nitrogen species to nitrate occurs in aerobic environments
such as recharge areas. Anaerobic conditions in ground water, which commonly develop along the
flow path of ground water, foster the denitrification process. However, this process may be
inhibited by the lack of denitrifying bacteria in ground water (Freeze and Cherry, 1979).

Iron, manganese, and aluminum are the three naturally occurring substances responsible for
the greatest incidence of ground-water quality problems in Georgia (Table 4-1). Although minor
increases or decreases in iron, manganese, and aluminum occurred at some stations, no long-term
trends in concentrations of these metals were documented for the majority of the wells and springs
sampled.

The presence of synthetic organic compounds again became apparent in water from a few
of the wells sampled in the Valley and Ridge. The sporadic nature of the occurrence of such
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Table 4-1. Pollution and Contamination Incidents, 1994.

Station Contaminant/ Pollutant Primary MCL Secondary MCL
GWN-K1 Al=2600ppb Al=200ppb
GWN-K3 Fe=580ppb Fe=300ppb
GWN-K9 Fe=500ppb Fe=300ppb
Al=440ppb Al=200ppb
GWN-CL2 F=5.0ppm* F=4.0ppm
GWN-CL4 CH=10ppb C¢H¢=5.0ppb
O-xylene=tr xylenes=10,000ppb
Mn=62ppb Mn=50ppb
GWN-CLS8 Fe=660ppb Fe=300ppb
Mn=50ppb Mn=50ppb
GWN-J3 Mn=130ppb Mn=50ppb
GWN-J8 NO,=10.7ppm as N NO,=10ppm as N
Mn=70ppb Mn=50ppb
GWN-PA9SC SO,=398ppm SO,=250ppm
CI=1770ppm Cl=250ppm
GWN-PA18 Mn=52ppb Mn=50ppb
GWN-PA33 Ba=2.2ppm Ba=2.0ppm
GWN-PA39 CHCl,=tr trihalomethanes=100ppb
GWN-MI5 Mn=110ppb Mn=50ppb
Al=430ppb Al=200ppb
GWN-MI7 Al=730ppb Al=200ppb
GWN-MIBA NOy=10.3ppm as N NO,=10ppm as N
Al=740ppb Al=200ppb
Mn=74ppb Mn=50ppb
GWN-MI10B | Mn=160ppb Mn=50ppb
GWN-MI13 Fe=2200ppb Fe=300ppb
Mn=210ppb Mn=50ppb
GWN-MI15 NOy=14.1ppm as N NO,=10ppm as N
Al=220ppm Al=200ppb

*belioeved to be questionable




Table 4-1 (continued). Pollution and Contamination Incidents, 1994.

Station Contaminant/ Pollutant Primary MCL Secondary MCL
GWN-BR3A | Mn=72ppb Mn=50ppb
GWN-P2 naphthalene=tr (no MCL) (no MCL)
GWN-P6B Mn=85ppb Mn=50ppb
GWN-P9 Fe=1600ppb Fe=300ppb

Mn=170ppb Mn=50ppb
GWN-P15A Fe=480ppb Fe=300ppb

Mn=81ppb Mn=50ppb
GWN-P16C Fe=900ppb Fe=300ppb

Mn=230ppb Mn=50ppb
GWN-VRS5 methyl-tert-butyl ether=23ppb (no MCL) (no MCL)
GWN-VR6 tetrachloroethylene=trace tetrachloroethylene=5ppb




compounds in most of these wells makes defining spatial and temporal trends in levels of organic
pollutants impossible at this time.

Tropical Storm Alberto apparently was only responsible for localized chemical ground-water
quality degradation but caused widespread bacterial contamination. The storm is believed to have
been instrumental in causing excess nitrate/nitrite to enter well water at Shellman and bacterial
contamination of numerous domestic wells. A reconnaissance sampling of Ground-Water
Monitoring Network wells in the Dougherty Plain found that the overall chemical quality of Floridan
ground water was only minimally affected. Sampling of inundated wells in the Flint River area,
however, showed that many of these wells suffered flood-related bacterial contamination.
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ANALYSES OF SAMPLES COLLECTED DURING 1994
FOR THE GEORGIA GROUND-WATER MONITORING NETWORK

All water quality samples that are collected for the Georgia Ground-Water Monitoring
Network are subjected to a Standard Analysis which includes tests for pH, specific
conductance, certain common inorganic anions, and thirty metals. Analyses for additional
parameters may be included for samples that are collected from areas where the possibility
of ground-water pollution exists due to regional activities. These optional tests or screens
include tests for mercury, agricultural chemicals, coal-tar creosote, phenols and anilines, and
volatile organic compounds (Tables A-1 and A-2). Because parameters other than the two
physical parameters, three of the major anions, and eight of the metals of the Standard
Analysis were detected less commonly or rarely, other parameters are listed in the following
analytical results table only if they were detected.

For this appendix, the following abbreviations are used:

SuU = standard units

mg/L = milligrams per liter (parts per million)

mg/L as N = milligrams per liter (parts per million), as
nitrogen

ug/L = micrograms per liter (parts per billion)

umho/cm = micromhos per centimeter

U = less than (below detection limit). Where this

abbreviation is used for a figure that is a
calculated average, the average is below the
typical detection limit for the parameter

(Note: detection limits may change due to temporarily improved instrument performance or
to use of different analytical methods by different laboratories.)
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Table A-1. Standard Water Quality Analysis: Physical Parameters, Major Anions,

Minerals and ICP/AAS Metals Screen.

Parameter Typical Detection Limit Max.Contaminant Level
METALS
Silver (Ag) 30 ug/L 100 ug/L,
Aluminum (Al) 50 ug/L. 200 ug/L,
Arsenic* (As) 25 ug/L 50 ug/L,
Gold (Au) 10 ug/L. None
Barium (Ba) 10 ug/L 2000 ug/L,
Beryllium* (Be) 2 ug/L 4 ug/L,
Bismuth (Bi) 25 ug/L None
Cobalt (Co) 10 ug/L None
Chromium (Cr) 10 ug/L 100 ug/L,
Cadmium* (Cd) 2.5ug/L 5ug/L,
Copper (Cu) 20 ug/L 1000 ug/L,
Iron (Fe) 20 ug/L. 300 ug/L,
Manganese (Mn) 20 ug/L 50 ug/L,
Molybdenum (Mo) 10 ug/L None
Nickel (Ni) 20 ug/LL 100 ug/L,
Lead (Pb) 50 ug/L None
Antimony* (Sb) 3ug/L 6 ug/L,
Selenium* (Se) 25 ug/L 50 ug/L,
Tin (Sn) 90 ug/L None
Strontium (Sr) 10 ug/L. None
Titanium (Ti) 10 ug/L. None
Thallium* (TI1) 1 ug/L 2 ug/L,
Vanadium (V) 10 ug/L None
Yttrium (Y) 10 ug/L None
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Table A-1 (continued)

Parameter Typical Detection Limit Max. Contaminant Level
Zinc (Zn) 20 ug/L 5000 ug/L,
Zirconium (Zr) 10 ug/L None
ANIONS
Chloride (CT) 0.1 mg/L 250 mg/L,
Sulfate (SO,") 2.0 mg/L 250 mg/L,
Nitrate/Nitrite 0.1 mg/L as N 10 mg/L as N,
(NO,)
Fluoride (F) 0.1 mg/L 4.0 mg/L,, 2.0 mg/L,
MINERALS
Calcium (Ca) 1.0 mg/L None
Potassium (K) 5.0 mg/L None
Magnesium (Mg) 1.0 mg/L None
Sodium (Na) 1.0 mg/L None
PARAMETERS
pH 0.01 SU None
Conductivity 1.0 mho/cm None

* Analyzed by atomic absorbtion spectrophotometry (AAS), using graphite furnace.

,=Primary Maximum Contaminant Level (MCL).

,=Secondary MCL.

MCL’s from Georgia Rules for Safe Drinking Water, March 1994 edition (EPD, 1994).




Table A-2. Additional Water Quality Analyses: Organic Screens #1, #2, #3, #4, #5,
#7, #8, #9, #10 and Mercury Screen.

ORGANIC SCREEN #1
(organophosphates/herbicides)
Parameter Minimum Detection Limit Primary Maximum
Contaminant Level

Alachlor 1.0 ug/L 2.0 ug/L

Atrazine 0.3 ug/L 3.0ug/L
Azodrin 1.0 ug/L None
Chloropyrifos 0.8 ug/L None
Cyanazine 1.0 ug/L None
DCPA 0.01 ug/L None
Dasanit 0.6 ug/L None
Demeton 1.0 ug/L None
Diazinon 1.0 ug/L None
Dimethoate 0.5 ug/L None
Disyston 1.0 ug/L None
Eptam 0.5 ug/LL None
Ethoprop 0.5 ug/L None
Fonophos 0.5ug/L None
Guthion 2.0 ug/L None
Isopropalin 1.0 ug/L None
Malathion 1.4 ug/L. None
Metolachlor 1.0 ug/L None
Metribuzin 1.25 ug/L None
Mevinphos 1.4 ug/L None
Parathion (E) 0.08 ug/L None
Parathion (M) 0.1 ug/L None
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ORGANIC SCREEN #1 (continued)

(organophosphates/herbicides)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Pebulate 0.6 ug/L None
Pendimethalin 0.8 ug/L None
Phorate 1.0 ug/L None
Profluralin 0.9 ug/L None
Simazine 0.9 ug/L 4.0 ug/L
Sutan 0.7 ug/L None
Terbufos 3.0ug/L None
Trifluralin 1.0 ug/L None
Vernam 0.5 ug/L None
ORGANIC SCREEN #2
(organochlorine pesticides/PCB’s)
Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Chlordane 2.0 ug/L 2.0 ug/L
Dicofol 0.1 ug/L None
Endrin 0.03 ug/L 2.0ug/L
Methoxychlor 0.3 ug/L 40.0 ug/L
gamma-HCH 0.008 ug/L 0.2 ug/L
(lindane)
PCB’s 0.6 ug/L 0.5 ug/L
Permethrin 0.3 ug/L None
Toxaphene 1.2 ug/L 3.0ug/L
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ORGANIC SCREENS #3 AND #4

(dinoseb/phenoxy herbicides)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
2,4-D 52 ug/L 70.0 ug/L
Acifluorfen 1.0 ug/LL None
Chloramben 0.2 ug/L None
Dalapon 0.2 ug/LL 200 ug/L
Dinoseb 0.1 ug/L Tug/L
Pichloram 500 ug/L 500 ug/L
Silvex 0.1 ug/L 50.0 ug/L
Trichlorofon 2.0ug/L None
ORGANIC SCREEN #5

(carbamate pesticides)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Carbaryl 2.0 ug/L None
Carbofuran 1.0 ug/L 40.0 ug/L
Diuron [.0ug/L None
Fluometron 1.0 ug/L None
Linuron 1.0 ug/L None
Methomyl 1.0 ug/L None
Monuron 1.0 ug/L None
Oxamyl 2.0 ug/L 200 ug/L




ORGANIC SCREEN #7*
(volatile organic compound)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
EDB 5.0 ug/L 0.05 ug/L

*currently analyzed along with Organic Screen #10.

ORGANIC SCREENS #8 AND #9
(semivolatile organic compounds)
Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
N-Nitrosodimethyl- 10.0 ug/L None
amine
2-Picoline 10.0 ug/L None
Methylmethanesul- 10.0 ug/L None
fonate
Ethylmethanesul- 20.0 ug/L None
fonate
Aniline 10.0 ug/L None
Phenol 10.0 ug/L None
Bis(2-Chloroethyl) 10.0 ug/L None
ether
2-Chlorophenol 10.0 ug/L None
1.3-Dichlorobenzene 10.0 ug/L None
(m)
1,4-Dichlorobenzene 10.0 ug/L 75.0 ug/L
(p)
Benzyl Alcohol 20.0 ug/L None
1,2-Dichlorobenzene 10.0 ug/L 600.0 ug/L
(0)
2-Methylphenol 10.0 ug/L None




ORGANIC SCREENS #8 AND #9 (continued)

(semivolatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Bis(2-Chloroiso- 10.0 ug/L None
propyl) Ether
Acetophenone 10.0 ug/L None
4-Methylphenol 10.0 ug/L None
N-Nitrosodi-N- 10.0 ug/L None
Propylamine
Hexachloroethane 10.0 ug/L None
Nitrobenzene 10.0 ug/L None
N-Nitrosopiperidine 20.0 ug/L None
Isophorone 10.0 ug/L None
2-Nitrophenol 10.0 ug/L None
2,4-Dimethylphenol 10.0 ug/L None
Bis(2-Chloroethoxy) 10.0 ug/L None
Methane
Benzoic Acid 50.0 ug/L None
2,4-Dichlorophenol 10.0 ug/L None
1,2,4- 10.0 ug/L None
Trichlorobenzene
A,a-Dimethyl- 10.0 ug/L None
phenylethylamine
Naphthalene 10.0 ug/L None
4-Chloroaniline 20.0 ug/L None
2,6-Dichlorophenol 10.0 ug/L None
Hexachlorobutadi- 10.0 ug/L None
ene
N-Nitroso-Di-N- 10.0 ug/L None
Butylamine
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ORGANIC SCREENS #8 AND #9 (continued)

(semivolatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
4-Chloro-3- 20.0 ug/L None
methylphenol
2-Methyl 10.0 ug/L None
Naphthalene
1,2.4,5- 10.0 ug/L None
Tetrachlorobenzene
Hexachlorocyclo- 10.0 ug/L 50 ug/L
pentadiene
2,4,6- '10.0 ug/L None
Trichlorophenol
2-Chloronaphthalene 10.0 ug/L None
2,4,5- 10.0 ug/L None
Trichlorophenol
1-Chloronaphthalene 10.0 ug/L None
2-Nitroanaline 50.0 ug/L None
Dimethylphthalate 10.0 ug/L None
Acenaphthylene 10.0 ug/L None
2,6-Dinitrotoluene 10.0 ug/L None
3-Nitroaniline 50.0 ug/L None
Acenaphthene 10.0 ug/L None
2,4-Dinitrophenol 50.0 ug/L None
4-Nitrophenol 50.0 ug/L None
Dibenzofuran 10.0 ug/L None
Pentachlorobenzene 10.0 ug/L None
2,4-Dinitrotoluene 10.0 ug/L None
1-Naphthylamine 10.0 ug/L None
2-Naphthylamine 10.0 ug/L None
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ORGANIC SCREENS #8 AND #9 (continued)

(semivolatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
2,3.,4,6- 10.0 ug/L None
tetrachlorobenzene
Diethylphthalate 10.0 ug/L None
Fluorene 10.0 ug/L None
4-Chlorophenyl 10.0 ug/L None
Phenyl Ether
4-Nitroaniline 20.0 ug/L None
Diphenylamine 10.0 ug/L. None
4,6-Dinitro-2- 50.0 ug/L None
methylphenol
N-Nitroso- 10.0 ug/L None
diphenylamine
1,2-diphenyl- 10.0 ug/L None
hydrazine
4-Bromophenyl- 10.0 ug/L None
Phenyl Ether
Phenacetin 20.0 ug/L None
Hexachlorobenzene 10.0 ug/L 1 ug/L
4-Aminobiphenyl 20.0 ug/L None
Pentachlorophenol 50.0 ug/L 1.0 ug/L
Pronamide 10.0 ug/L None
Pentachloronitro- 20.0 ug/L None
benzene
Phenanthrene 10.0 ug/L None
Anthracene 10.0 ug/LL None
Di-N-Butyl 10.0 ug/L None
Phthalate
Fluoranthene 10.0 ug/L None
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ORGANIC SCREENS #8 AND #9 (continued)

(semivolatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Benzidine 80.0 ug/L None
Pyrene 10.0 ug/L None
P-Dimethyl- 10.0 ug/L None
aminoazobenzene
N- 10.0 ug/L None
butylbenzylphthalate
Benzo (a) 10.0 ug/L None
Anthracene
3,3- 20.0 ug/L None
Dichlorobenzidine
Chrysene 10.0 ug/L None
Bis(2-Ethyl-hexyl) 10.0 ug/L 6 ug/L
Phthalate
Di-N-Octyl 10.0 ug/L None
Phthalate
Benzo 10.0 ug/L None
( B)Fluoranthene
Benzo 10.0 ug/L None
(K)Fluoranthene
7,12-Dimethylbenz 10.0 ug/L None
(A)Anthracene
Benzo (A)Pyrene 10.0 ug/L 0.2ug/L
3-Methyl- 10.0 ug/L None
cholanthrene
Dibenz(A,J)Acridine 10.0 ug/L None
Indeno(1,2,3-C- 10.0 ug/L None
D)Pyrene
Dibenz(A . H)Anthra- 10.0 ug/L None
cene
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ORGANIC SCREENS #8 AND #9 (continued)

(semivolatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Benzo(GHI)- 10.0 ug/L None
Perylene
&-BHC 10.0 ug/L None
"Y-BHC (Lindane) 10.0 ug/L 0.2 ug/L
0-BHC 10.0 ug/L None
B-BHC 10.0 ug/L None
Heptachlor 10.0 ug/L 0.4 ug/L
Aldrin 10.0 ug/L None
Heptachlor Epoxide 25.0 ug/L 0.2 ug/L
Endosulfan 1 50.0 ug/LL None
Dieldrin 10.0 ug/L None
P.P’-DDE 10.0 ug/L None
Endrin 20.0 ug/L 2.0ug/L
Endosulfan 2 50.0 ug/L None
P,P’-DDD 10.0 ug/L None
Endrin Aldehyde 10.0 ug/L None
Endosulfan Sulfate 25.0 ug/L None
P,P’-DDT 10.0 ug/L None
ORGANIC SCREEN #10
(volatile organic compounds)
Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Dichlorodifluoro- 5.0 ug/L None
methane
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ORGANIC SCREEN #10 (continued)
(volatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
Chloromethane 10.0 ug/L None
Bromomethane 10.0 ug/L None
Chloroethane 10.0 ug/L None
Vinyl Chloride 10.0 ug/L 2.0ug/L
Dichloromethane 5.0 ug/L 5.0ug/L
Trichlorofluoro- 5.0 ug/L None
methane
Acetone 100 ug/L None
Dibromomethane 5.0 ug/L None
Trans-1,2- 5.0 ug/L 100 ug/L
Dichloroethylene
Iodomethane 5.0 ug/L None
Carbon Disulfide 5.0ug/L None
1,1-Dichloro- 5.0 ug/L 7.0 ug/L
ethylene
1,1-Dichloroethane 5.0 ug/L None
Cis-1,2-Dichloro- 5.0ug/L 70.0 ug/L
ethylene
2,2-Dichloropropane 5.0ug/L None
Bromochloro- 5.0 ug/L None
methane
Chloroform 5.0 ug/L 100 ug/L*
1,1-Dichloro- 5.0 ug/L None
propylene
1,2-Dichloroethane 5.0 ug/L 5.0 ug/L
Methyl Ethyl Ketone 100 ug/L None
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ORGANIC SCREEN #10 (continued)

(volatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
1,1,1-Trichloro- 5.0 ug/L 200 ug/L
ethane
Carbon 5.0 ug/L 5.0ug/L
Tetrachloride
Vinyl Acetate 50 ug/L None
Bromodichloro- 5.0 ug/L 100 ug/L*
methane
1,2-Dichloropropane 5.0 ug/L 5.0 ug/L
Trichloroethylene 5.0 ug/L 5.0 ug/L
Benzene 5.0 ug/L 5.0 ug/L
2-Chloroethyl Vinyl 5.0 ug/L None
Ether
Cis-1,3- 5.0 ug/L None
Dichloropropylene
Trans-1,3- 5.0 ug/L None
Dichloropropylene
Chlorodibromo- 5.0 ug/L 100 ug/L*
methane
1,1,2- 5.0 ug/L 5.0 ug/L
Trichloroethane
Bromoform 5.0 ug/L 100 ug/L*
1,2,3-Trichloro- 5.0ug/L None
propane
Methyl Isobutyl 50 ug/L None
Ketone
Methyl N-butyl 50 ug/L None
Ketone
Tetrachloroethylene 5.0 ug/L 5.0 ug/L
1,2-Dichloropropane 5.0 ug/L 5.0 ug/L
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ORGANIC SCREEN #10 (continued)

(volatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level
1,1,2,2,-Tetra- 5.0 ug/L None
chloroethane
Toluene 5.0 ug/L 1000 ug/L
1,2-Dibromoethane 5.0 ug/L None
Ethylene dibromide 5.0 ug/L 0.05 ug/L
Chlorobenzene 5.0ug/L 100 ug/L
Ethylbenzene 5.0 ug/L 700 ug/L
1,1,1,2-Tetra- 5.0ug/L None
chloroethane
Styrene 5.0 ug/L 100 ug/L
Xylenes (total) 5.0 ug/L 10,000 ug/L
Isopropylbenzene 5.0ug/L None
Bromobenzene 5.0 ug/L None
N-Propylbenzene 5.0 ug/L None
2-Chlorotoluene 5.0 ug/L None
1,3,5-Trimethyl- 5.0 ug/L None
benzene
4-Chlorotoluene 5.0ug/L None
Tert-Butylbenzene 5.0ug/L None
1,2,4-Trimethyl- 5.0 ug/L None
benzene
Sec-Butylbenzene 5.0ug/L None
1,3-Dichlorobenzene 5.0 ug/L None
(m)
1,4-Isopropyltoluene 5.0 ug/L None
1,4-Dichlorobenzene 5.0 ug/L 75.0 ug/L
(p)
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ORGANIC SCREEN #10 (continued)
(volatile organic compounds)

Parameter Minimum Detection Limit Primary Maximum
Contaminant Level

N-Butylbenzene 5.0 ug/L None
1,2-Dichlorobenzene 5.0 ug/L 600 ug/L
(0)
1,2-Dibromo-3- 5.0 ug/L 0.2ug/L
Chloropropane
1,2,4- 5.0 ug/L 70.0 ug/L
Trichlorobenzene
Hexachlorobutadi- 5.0 ug/L. None
ene
Naphthalene 5.0 ug/L None
1,2,3- 5.0 ug/L None

Trichlorobenzene

* Indicates a trihalomethane compound. The primary MCL for total trihalomethanes is 100
ug/L.

MERCURY SCREEN*

Parameter Method Detection Limit Primary Maximum
Contaminant Level

Mercury (Hg) 0.2 ug/L 2.0ug/L

*Analysis is by manual cold vapor.
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Cartographer: Donald L. Shellenberger

Quantity: 100/Cost: $505.75

The Department of Natural Resources is an equal opportunity employer and offers all persons the
opportunity to compete and participate in each area of DNR employment regardiess of race, color,
religion, national origin, age, handicap, or other non-merit factors.



