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1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

This report for calendar year 1995 is the twelfth in a series of annual summaries
discussing the chemical quality of ground water in Georgia. These summaries are among the
tools used by the Georgia Environmental Protection Division (EPD) to assess trends in the
quality of the State's ground-water resources. EPD is the State organization with regulatory
responsibility for maintaining and, where possible, improving ground-water quality and
availability. EPD has implemented a comprehensive statewide ground-water management
policy of anti-degradation (EPD, 1991). Five components constitute EPD's ground-water
quality assessment program:

3 &

The Georgia Ground-Water Monitoring Network. The Geologic Survey
Branch of EPD maintains this program, which is designed to evaluate the
ambient ground-water quality of nine aquifer systems throughout the State of
Georgia. The data collected from sampling on the Ground-Water Monitoring
Network form the basis for this report.

Sampling of public drinking water wells as part of the Safe Drinking Water
Program (Water Resources Management Branch). This program provides
data on the quality of ground water that the residents of Georgia are using.

Special studies addressing specific water quality issues. A survey of nitrite
/nitrate levels in shallow wells located throughout the State of Georgia
(Shellenberger, et al., 1996; Stuart, et al,, 1995) and the operation of a
Pesticide Monitoring Network, currently conducted jointly by the Geologic
Survey Branch and the Georgia Department of Agriculture (GDA), (Webb,
1995) are examples of these types of studies. Another special study
addressing bacterial contamination of the Floridan aquifer in the aftermath of
Tropical Storm Alberto continued into 1995 and concluded that coliform-
contaminated water in the aquifer had largely flushed out by early 1995
(McLemore, 1995, letter to Representative Robert Hanner).

Ground-water sampling at environmental facilities such as municipal solid
waste landfills, RCRA facilities, and sludge disposal facilities. The primary
agencies responsible for monitoring these facilities are EPD’s Land
Protection, Water Protection, and Hazardous Waste Management Branches.

The development of a wellhead protection program (WHP), which is designed
to protect the area surrounding a municipal drinking water well from
contaminants. The U.S. Environmental Protection Agency (EPA) approved
Georgia's WHP Plan on September 30, 1992. The WHP Plan became a part
of the Georgia Safe Drinking Water Rules, effective July 1, 1993. The
protection of public water supply wells from contaminants is important not
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only for maintaining ground-water quality but also for ensuring that public
water supplies meet health standards.

Analyses of water samples collected for the Georgia Ground-Water Monitoring
Network during calendar year 1995 and from previous years form the data base for this
summary. The Georgia Ground-Water Monitoring Network comprises 128 wells and springs.
Though sampled at various frequencies in the past, all stations on the network switched to an
annual sampling frequency during 1994. In 1995, EPD personnel collected 141 samples from
111 wells and 6 springs. Certain stations not visited in 1994 were visited twice during 1995.
A review of the 1995 data and comparison of these data with those for samples collected as
early as 1984 indicate that ground-water quality at most of the 128 sampling sites generally
has changed little and remains excellent.

1.2 FACTORS AFFECTING CHEMICAL GROUND-WATER QUALITY

The chemical quality of ground water drawn for sampling is the result of complex
physical, chemical, and biological processes. Among the more significant controls are the
chemical quality of the water entering the ground-water flow system, the reactions of infiltrat-
ing water with the soils and rocks that are encountered, and the effects of the well-and-pump
system.

Most water enters the ground-water system in upland recharge areas. Water seeps
through interconnected pores and joints in the soils and rocks until discharged to a surface-
water body (e.g., stream, river, lake, or ocean). The initial water chemistry, the amount of
recharge, and the attenuation capacity of soils have a strong influence on the quality of
ground water in recharge areas. Chemical interactions between the water and the aquifer host
rocks have an increasing significance with longer underground residence times. As a result,
ground water from discharge areas tends to be more highly mineralized than ground water
in recharge areas.

The well-and-pump system can also have a strong influence on the quality of the well
water. Well casings, through compositional breakdown, can contribute metals (e.g., iron
from steel casings) and organic compounds (e.g., tetrahydrofuran from PVC pipe cement) to
the water. Pumps often aerate the water being discharged. An improperly constructed well
can present a conduit that allows local pollutants to enter the ground-water flow system.

1.3 HYDROGEOLOGIC PROVINCES OF GEORGIA

This report defines three hydrogeologic provinces in Georgia by their general geologic
and hydrologic characteristics (Figure 1-1). These provinces consist of:

1. the Coastal Plain Province of south Georgia;
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2. the Piedmont/Blue Ridge Province, which includes all but the northwest
corner of Georgia; and
3. the Valley and Ridge Province of northwest Georgia.

1.3.1 Coastal Plain Province

Georgia's Coastal Plain Province generally comprises a wedge of loosely consolidated
sediments that gently dip and thicken to the south and southeast. Ground water in the Coastal
Plain Province flows through interconnected pore space between grains in the host rocks and
through solution-enlarged voids. ’

The oldest outcropping sedimentary formations (Cretaceous) are exposed along the
Fall Line, which is the northern limit of the Coastal Plain Province. Successively younger
formations occur at the surface to the south and southeast.

The Coastal Plain contains Georgia's major confined (artesian) aquifers. Confined
aquifers are those in which a layer of impermeable material (i.e., clay or shale) holds the top
of the water column at a level below that to which it would normally rise. Water enters the
aquifers in their up-dip outcrop areas, where the more permeable sediments of the aquifer
tend to be exposed. Many Coastal Plain aquifers are unconfined in their up-dip outcrop areas,
but become confined in down-dip areas to the southeast, where they are overlain by
successively younger rock formations. Ground-water flow through confined Coastal Plain
aquifers is generally to the south and southeast, in the direction of the dip of the rocks.

The sediments forming the seven major aquifers in the Coastal Plain range in age from
Cretaceous to Miocene. Horizontal and vertical changes in the permeability of the rock units
that form these aquifers determine the thickness and extent of the aquifers. Several aquifers
may be present in a single geographic area, forming a vertical “stack”.

The Cretaceous and Jacksonian aquifer systems (primarily sands) are a common
source of drinking water within a 35-mile wide band that lies adjacent to and south of the Fall
Line. Southwestern Georgia relies on four vertically stacked aquifers (sands and carbonates)
for drinking-water supplies: the Providence, Clayton, Claiborne and Floridan aquifer systems.
The Floridan aquifer system (primarily carbonates) serves most of south-central and
southeastern Georgia. The Miocene aquifer system (primarily sands) is the principal
“shallow” unconfined aquifer system occupying much of the same broad area underlain by the
Floridan aquifer system. It becomes confined in the coastal counties and locally in the Grady,
Thomas, Brooks and Lowndes County area of south Georgia.

1.3.2 Piedmont/Blue Ridge Province
Crystalline rocks of metamorphic and igneous origin (primarily Precambrian and
Paleozoic in age) underlie the Piedmont and Blue Ridge Provinces. These two provinces

differ geologically but are discussed together here because they share common hydrologic
properties. The principal water-bearing features are fractures, compositional layers, and other
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geologic discontinuities in the rock, as well as intergranular porosity in the overlying soil and
saprolite horizons. Thick soils and saprolites are often important as the “reservoir” that
supplies water to the water-bearing fracture and joint systems. Ground water typically flows
from local highlands toward discharge areas along streams. However, during prolonged dry
periods or in areas of heavy pumpage, ground water may flow from the streams into the
fracture and joint systems.

1.3.3 Valley and Ridge Province

Consolidated Paleozoic sedimentary formations characterize the Valley and Ridge
Province. The principal permeable features of the Valley and Ridge Province are fractures
and solution voids; intergranular porosity also is important in some places. Locally, ground-
water and surface-water systems closely interconnect. Dolostones and limestones of the
Knox Group are the principal aquifers where they occur in the axes of broad valleys. The
greater hydraulic conductivities of the thick carbonate sections in this Province, in part due
to solution-enlarged joints, permit development of higher yielding wells than in the Piedmont
and Blue Ridge Province.

1.4 REGIONAL GROUND-WATER PROBLEMS

Data from ground-water investigations in Georgia, including those from the Ground-
Water Monitoring Network, indicate that virtually all of Georgia has shallow ground-water
sufficient for domestic supply. Iron, aluminum, and manganese are the only constituents that
occur routinely in concentrations exceeding drinking-water standards. These metals are
naturally occurring and do not pose a health risk. Iron and manganese can cause reddish to
brownish stains on objects.

Only a few occurrences of polluted or contaminated ground waters are known from
North Georgia (see Section 4). Aquifers in the outcrop areas of Cretaceous sediments south
of the Fall Line typically yield acidic water that may require treatment. The acidity occurs
naturally and results both from the inability of the sandy aquifer sediments to neutralize acidic
rainwater and from acid-producing reactions between infiltrating water and soils and
sediments. Nitrite/nitrate concentrations in shallow ground water from the farm belt of
southern Georgia are usually within drinking-water standards, but are somewhat higher than
levels found in other areas of the State.

The Floridan aquifer system contains two areas of naturally-occurring reduced
ground-water quality besides the karst plain area (Dougherty Plain) in southwest Georgia.
The first is the area of the Gulf Trough, a narrow, linear geological feature extending from
southwestern Decatur County through central Bulloch County. Here, ground water is
typically high in total dissolved solids and contains elevated levels of barium, sulfate, and
radionuclides. The second is the coastal area of Georgia, where influx of water with high
dissolved solids contents presents problems. In the Brunswick area, ground-water withdrawal
from the upper Floridan results in up-coning of water with high dissolved solids contents from
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deeper parts of the aquifer. In the Savannah region, a cone of depression caused by pumping

in and around Savannah induces saline ground water to flow down-gradient from the Port
Royal Sound area of South Carolina toward Savannah.
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2.0 GEORGIA GROUND-WATER MONITORING NETWORK
2.1 MONITORING STATIONS

Stations of the 1995 Ground-Water Monitoring Network are situated in the seven
major aquifers and aquifer systems of the Coastal Plain Province and in the unconfined
ground-water systems of the Piedmont and Blue Ridge Provinces and of the Valley and Ridge
Province (Table 2-1). Monitoring stations are located in three critical settings:

1. areas of surface recharge;
areas of potential pollution related to regional activities (e.g., agricultural and
industrial areas); and

3. areas of significant ground-water use.

Most of the monitoring stations are municipal, industrial, and domestic wells that have
reliable well-construction data. The Monitoring Network also includes monitoring wells in
specific areas where the State's aquifers are recognized to be especially susceptible to
contamination or pollution (e.g., the Dougherty Plain of southwestern Georgia and the State's
coastal area).

2.2 USES AND LIMITATIONS

Regular sampling of wells and springs of the Ground-Water Monitoring Network
permits analysis of ground-water quality with respect to location (spatial trends) and with
respect to the time of sample collection (temporal trends). Spatial trends are useful for
assessing the effects of the geologic framework of the aquifer and regional land-use activities
on ground-water quality. Temporal trends permit an assessment of the effects of rainfall and
drought periods on ground-water quantity and quality. Both trends are useful for the
detection of non-point source pollution. Non-point source pollution arises from broad-scale
phenomena such as acid rain deposition and application of agricultural chemicals on crop
lands.

It should be noted that the data of the Ground-Water Monitoring Network represent
water quality in only limited areas of Georgia. Monitoring water quality at 128 sites located
throughout Georgia provides an indication of ground-water quality at the locality sampled and
at the horizon corresponding to the screened interval in the well or to the head of the spring
at each station in the Monitoring Network. Caution should be exercised in drawing strict
conclusions and applying any results reported in this study to ground waters that are not being
monitored.

Stations of the Ground-Water Monitoring Network intentionally are located away
from known point sources of pollution. The wells provide baseline data on ambient water
quality in Georgia. EPD requires other forms of ground-water monitoring for activities that



Table 2-1. Georgia Ground-Water Monitoring Network, 1995

AQUIFER SYSTEM

Cretaceous

Providence

Clayton

Clatborne

Jacksonian

Floridan

Miocene

Piedmont/Blue

Ridge

Valley and Ridge

NUMBER OF MONITORING
STATIONS VISITED &
SAMPLES TAKEN IN 1995

15 stations
(21 samples)

1 station
(2 samples)

5 stations
(8 samples)

5 stations
(8 samples)

8 stations
(8 samples)

47 stations
(50 samples)

8 stations
(8 samples)

20 stations
(26 samples)

8 stations
(10 samples)

PRIMARY STRATIGRAPHIC
EQUIVALENTS

Ripley Formation, Cusseta Sand,
Blufftown Formation, Eutaw Formation,
Tuscaloosa Formation, and Gaillard
Formation

Providence Sand

Clayton Formation

Tallahatta Formation

Barnwell Group

Predominantly Suwannee Limestone and
Ocala Group

Predominantly Altamaha Formation and
Hawthorne Group

Various igneous and metamorphic
complexes

Shady Dolomite, Knox Group, and
Chickamauga Group

AGE OF AQUIFER
FORMATIONS

Late Cretaceous

Late Cretaceous

Paleocene

Middle Eocene

Late Eocene

Predominantly
Middle Eocene to
Oligocene

Miocene-Recent

Predominately Pa-
leozoic and Pre-
cambrian

Paleozoic, mostly
Cambrian and
Ordovician



may result in point source pollution (e.g., landfills, hazardous waste facilities and land
application sites) through its environmental facilities permit programs.

Ground-water quality changes gradually and predictably in the areally extensive
aquifers of the Coastal Plain Province. The Monitoring Network allows for some definition
of the chemical processes occurring in large confined aquifers. Unconfined aquifers in
northern Georgia and the surface recharge areas of southern Georgia are of comparatively
small areal extent and more open to interactions with land-use activities. The wide spacing
of monitoring stations does not permit equal characterization of water-quality processes in
these settings. The quality of water from monitoring wells completed in unconfined aquifers
represents only the general nature of ground water in the vicinity of the monitoring wells.
Ground water in the recharge areas of the Coastal Plain aquifers is the future drinking-water
resource for down-flow areas. Monitoring wells in these recharge areas, in effect, constitute
an early warning system for potential future water quality problems in confined portions of
the Coastal Plain aquifers.

2.3 ANALYSES

Analyses are available for 141 water samples collected during 1995 from 111 wells
and 6 springs. In 1984, the first year of the Ground-Water Monitoring Network,
hydrogeologists sampled water from 39 wells in the Piedmont/Blue Ridge and Coastal Plain
Provinces. Two of these wells have been sampled each year since 1984. Since 1984, the
Ground-Water Monitoring Network has been expanded through addition of further wells and
springs to cover all three hydrogeologic provinces, with most of the monitoring done in the
Coastal Plain.

Ground water from all monitoring stations is tested for the basic water quality
parameters included in the Monitoring Network's standard analysis. The standard parameters
include pH, specific conductivity, chloride, fluoride, sulfate, nitrite/nitrate, and thirty metals
(Appendix, Table A-1). Where regional land-use activities have the potential to affect
ground-water quality in the vicinity of a monitoring station, additional parameters, for
instance, volatile organic compounds, are tested. The additional parameters are listed in the
Appendix (Table A-2). The pH measurements are performed in the field, whereas, other
parameters are measured in the laboratory. Tables 2-2 (cations) and 2-3 (anions) summarize
the significance of the common major constituents found in ground water.

The Drinking Water Program of the EPD's Water Resources Management Branch has
established Maximum Contaminant Levels (MCL’s) for certain parameters included in the
analyses done on Ground-Water Monitoring Network samples (EPD, 1994). Primary MCL’s
pertain to parameters that may have adverse effects on human health when their values are
exceeded. Secondary MCL’s pertain to parameters that may give drinking water
objectionable, though not health-threatening, properties that may cause persons served by
public water systems to cease its use. Foul odor and unpleasant taste are examples of such
properties. MCL’s apply only to treated water offered for public consumption, nevertheless,
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Table 2-2. The Significance of Parameters of a Basic Water Quality Analysis, Cations (after
Wait, 1960).

PARAMETER(S) SIGNIFICANCE

pH (Hydrogen ion pH is a measure of the concentration of the hydrogen ion.

concentration) Values of pH less than 7.0 denote acidity and values
greater than 7.0 indicate alkalinity. Corrosiveness of water
generally increases with decreasing pH. However,
excessively alkaline waters may also corrode metals. A pH
range between 6.0 and 8.5 is considered acceptable.

Calcium and Calcium and magnesium cause most of the hardness of

magnesium* water. Hard water consumes soap before a lather will
form and deposits scale in boilers, water heaters, and pipes.
Hardness is reported in terms of equivalent calcium
carbonate. The hardness of a water can be estimated by
the sum of multiplying the ppm of calcium by 2.5 and that
of magnesium by 4.1.

Water Class Hardness (parts
per million)

Soft Less than 60

Moderately Hard 60 to 120

Hard 121 to 180

Very Hard More than 180

Sodium and potassium* Sodium and potassium have little effect on the use of water
for most domestic purposes. Large amounts give a salty
taste when combined with chloride. A high sodium con-
tent may limit the use of water for irrigation.

Iron and manganese More than 300 ppb of iron stains objects red or reddish
brown and more than 50 parts per billion of manganese
stains objects black. Larger quantities cause unpleasant
taste and promote growth of iron bacteria, but do not
endanger health.

*Major metallic ions present in most ground waters.
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Table 2-3. The Significance of Parameters of a Basic Water Quality Analysis, Anions

(after Wait, 1960).
PARAMETER(S)

Chloride

Nitrate/Nitrite

Sulfate

SIGNIFICANCE

Chloride salts in excess of 100 ppm give a salty taste to
water. Large quantities make the water corrosive. Water
that contains excessive amounts of chloride is not suitable
for irrigation. It is recommended that the chloride content
should not exceed 250 ppm.

Excessive amounts of nitrate/nitrite in drinking water or
formula water for infants may cause a type of
methemoglobinemia ("blue babies"). Nitrate/nitrite in
concentrations greater than 10 ppm (as nitrogen) is
considered to be a health hazard.

Sulfate in hard water increases the formation of scale in
boilers. In large amounts, sulfate in combination with
other ions imparts a bitter taste to water. Concentrations
above 250 ppm have a laxative effect, but concentrations
up to 500 ppm are not considered unhealthful.
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they are useful guidelines for evaluating the quality of untreated (raw) water. Tables A-1 and
A-2 in the Appendix list the Primary and Secondary MCL's for Ground Water Monitoring
Network parameters.

Most of the wells originally on the Monitoring Network had in-place pumps. Using
such pumps to purge the wells and collect samples reduces the potential for cross-
contamination of wells. For those wells that lacked in-place pumps, EPD personnel used
portable pumps for purging and sampling. In recent years, however, all wells that lacked in-
place pumps were dropped from the Monitoring Network, except for a flowing well tapping
the lower Floridan, GWN-PA9C (see Appendix, Table A-8).

Sampling procedures are adapted from techniques used by the USGS and the EPA.
Hydrogeologists purge the wells (three to five times the volume of the water column in the
well) before the collection of a sample to minimize the influence of the well, pump and
distribution system on water quality. Municipal, industrial, and domestic wells typically
require approximately 30 to 45 minutes of purging before sample collection.

EPD personnel monitor certain water quality parameters prior to sample collection.
The personnel observe and record pH, dissolved oxygen content, specific conductivity, and
temperature using field instruments. A manifold captures flow at the pump system discharge
point before the water is exposed to the atmosphere and conducts it past the instrument
probes. With increased purging time, typical trends include a lowering of pH, dissolved
oxygen content, and specific conductivity, and a transition toward the mean annual air
temperature. The hydraulic flow characteristics of unconfined aquifers, the depth of
withdrawal, and pump effects may alter these trends.

Samples are collected once the parameters being monitored in the field stabilize or
otherwise indicate that the effects of the well have been minimized. Files at the Geologic
Survey Branch contain the records of the field measurements taken during sampling (i.e., pH,
dissolved oxygen content, specific conductivity, and temperature). EPD personnel fill the
sample bottles and then promptly place them on ice to preserve the water quality. The
personnel next transport the samples to the laboratories for analysis on or before the Friday
of the week in which they were collected.

During 1995, various laboratories performed the chemical analyses of water samples
for the Ground-Water Monitoring Network. EPD laboratories did the following standard
water quality tests on all regular samples: a specific conductance test, tests for metals using
ICP and AAS, a nitrate/nitrite test (results reported as ppm nitrogen), and an ion
chromatography test for chloride, fluoride, and sulfate. EPD laboratories also did optional
tests on various samples for semivolatile organic compounds. The conductance test is a
standard one listed in Standard Methods for the Evaluation of Water and Waste Water
(1995), and the remaining tests used various EPA methods listed in Tables A-1 and A-2 in
the Appendix.
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The Cooperative Extension Service Laboratories at the University of Georgia tested
for pesticides and PCB’s on several samples collected early in January of 1995, using a series
of tests called organic screens #1, #2, #3, #4, and #5. During the remainder of the year, the
Georgia Department of Agriculture laboratory performed analyses for pesticides and PCB’s
using EPA methods 507.0, 508.1, 515.1, and 531.1. The first three of these EPA methods
correspond to screens #1, #2, and combined #3 and #4, respectively. EPA method 531.1 and
screen #5 are both used to test for carbamate pesticides. However, while screen #5 can
additionally be used for urea-derivative pesticides, it does not give acceptable results for the
carbamate, aldicarb (and its oxidation derivatives). EPA has not designated an approved
testing method for the urea derivatives. Appendix Table A-2 contains a list of pesticides and
test methods.






3.0 GROUND-WATER QUALITY IN GEORGIA
3.1 OVERVIEW

Georgia's nine major aquifers and aquifer systems are grouped into three
hydrogeologic provinces for the purposes of this report.

The Coastal Plain Province comprises seven major aquifers or aquifer systems that are
restricted to specific regions and depths within the province (Figure 3-1). These major
aquifer systems, in many cases, incorporate smaller aquifers that are locally confined.
Ground-Water Monitoring Network wells in the Coastal Plain aquifers are generally located
in three settings:

1. Recharge (or outcrop) areas that are located in regions that are geologically
up-dip and generally to the north of confined portions of these aquifers.

2. Up-dip, confined areas that are located in regions that are proximal to the
recharge areas, yet are confined by overlying geologic formations. These
areas are generally south to southeast of the recharge areas.

3. Down-dip, confined areas, located to the south and southeast in the deeper,
confined portions of the aquifers distal to the recharge areas.

Small-scale, localized ground-water flow patterns characterize the two hydrogeologic
provinces of north Georgia, the Piedmont/Blue Ridge Province and the Valley and Ridge
Province. Deep regional flow systems are unknown in northern Georgia. Geologic
discontinuities (such as fractures) and compositional changes within the aquifer generally
control ground-water flow in the Piedmont/Blue Ridge Province. Local topographic features,
such as hills and valleys, influence ground-water flow patterns. Many of the factors
controlling ground-water flow in the Piedmont/Blue Ridge Province also apply in the Valley
and Ridge Province. The Valley and Ridge Province additionally possesses widespread karst
features, which significantly enhance porosity and permeability in localized areas and exert
a strong influence on local ground-water flow patterns.

3.2 CRETACEOUS AQUIFER SYSTEM

The Cretaceous aquifer system is a complexly interconnected group of aquifer
subsystems developed in the Late Cretaceous sands of the Coastal Plain Province. These
sands crop out in an extensive recharge area immediately south of the Fall Line in west and
central Georgia (Figure 3-2). Overlying Tertiary sediments restrict Cretaceous outcrops to
valley bottoms in parts of the northeastern Coastal Plain. Five distinct subsystems of the
Cretaceous aquifer system, including the Providence aquifer system, are recognized west of
the Ocmulgee River (Pollard and Vorhis, 1980). These merge into three subsystems to the
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east (Clarke, et al.,, 1985). Aquifer sands thicken southward from the Fall Line, from where
they pinch out against crystalline Piedmont rocks, to a sequence of sand and clay
approximately 2,000 feet thick at the southern limits of the main aquifer-use area (limit of
utilization, Figure 3-2). Vertical leakage from overlying members of the aquifer system
provides significant recharge in down-dip areas.

EPD sampled 15 wells in 1995 to monitor the water quality of the Cretaceous aquifer
system, exclusive of the Providence aquifer system (Figure 3-2). Two of the sampled wells,
GWN-K8 and GWN-K12, are located away from the Cretaceous outcrop and recharge area,
while the remainder lie within the general recharge area. Thirteen of the wells yielded soft,
acidic water. Well GWN-K13 in Stewart County contained basic water and well GWN-K8
in Laurens County) had moderately hard water. Well GWN-K13, though lying in the general
outcrop area, draws water from the deeper parts of the aquifer system (apparently the A,
subsystem of Pollard and Vorhis, 1980) and well GWN-K8 taps a downdip portion of the
aquifer.

Iron concentrations exceeded the State secondary MCL of 300 parts per billion (ppb)
in three wells: GWN-K3 in Washington County (420 ppb), GWN-K8 (2600 ppb and 3900
ppb), and GWN-K9 in Macon County (460 ppb). Well GWN-K1 yielded a sample with a
manganese concentration of 50 ppb, which equals the applicable secondary MCL of 50 ppb.
Figure 3-3 shows trends in iron concentrations for selected wells in the Cretaceous aquifer
system.

Aluminum concentrations exceeded the secondary MCL of 200 ppb in samples from
three wells: GWN-K1 in Wilkinson County (1800 ppb), GWN-K9 in Macon County (470
ppb), and GWN-K12 in Houston County (350 ppb and 400 ppb). Most samples contained
low or undetectable levels of major alkali and alkaline earth metals (potassium, sodium,
calcium, and magnesium). The exceptions consisted of samples from wells GWN-K3 and
GWN-K8 (elevated calcium) and from well GWN-K 13 (elevated sodium). Water samples
from various wells also had detectable levels of the following trace elements: copper, barium,
strontium, zinc, beryllium, yttrium, and fluorine (fluoride).

Water samples from six wells contained detectable levels of nitrite/nitrate, with the
highest concentration, 1.4 ppm as nitrogen, occurring in a sample from well GWN-K10.
Figure 3-4 shows trends in levels of nitrite/nitrate (reported as parts per million [ppm]
nitrogen) for selected wells. All of the samples contained detectable chloride; the majority
of the samples also had measurable sulfate. A sample from well GWN-KS contained 22.7 ppb
of dimethyl phthalate. This compound has not occurred in any previous sample going back
1o 1984. Table A-3 in the Appendix lists the analytical results for samples collected from the
Cretaceous aquifer system.
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3.3 PROVIDENCE AQUIFER SYSTEM

Sand and coquinoid limestones of the Late Cretaceous Providence Formation
comprise the Providence aquifer system of southwestern Georgia. Outcrops of the aquifer
system extend from northern Clay and Quitman Counties through eastern Houston County
(Figure 3-5). At its up-dip extent, the aquifer system thickens both to the east and to the west
of a broad area adjacent to the Flint River. The aquifer system also generally thickens
downdip, with an area where the thickness exceeds 300 feet existing in Pulaski County and
an area of similar thickness indicated in the Baker/Calhoun/Early county region (Clarke, et
al, 1983). Figure 3-5 also shows the down-dip limit of the area in which the aquifer system
is utilized.

The permeable Providence Formation-Clayton Formation interval forms a single
aquifer in the up-dip areas (Long, 1989) and to the east of the Flint River (Clarke, et al,,
1983). This same interval is recognized as the Dublin aquifer system to the east of the
Ocmulgee River (Clarke, et al., 1985). Outcrop areas and adjacent covered areas to the east
of the Flint River, where the aquifer is overlain by permeable sand units, are surface recharge
areas. The Chattahoochee River forms the western discharge boundary for this flow system
in Georgia.

EPD sampled one well in the Providence aquifer sytem during 1995 (Figure 3-5). The
sample water was soft and basic, with an elevated sodium content. Table A-4 in the
Appendix gives the analytical results.

3.4 CLAYTON AQUIFER SYSTEM

The Clayton aquifer system of southwestern Georgia is developed mainly in the middle
limestone unit of the Paleocene Clayton Formation. Limestones and calcareous sands of the
Clayton aquifer system crop out in a narrow belt extending from northeastern Clay County
to southwestern Schley County (Figure 3-6). Aquifer thickness varies, ranging from 50 feet
near outcrop areas to 265 feet in southeastern Mitchell County (Clarke, et al., 1984). Both
the Flint River, to the east, and the Chattahoochee River, to the west, are areas of discharge
for the aquifer system in its up-dip extent. Leakage from the underlying Providence aquifer
system and from permeable units in the overlying Wilcox confining zone provides significant
recharge in down-dip areas (Clarke, et al., 1984). The Clayton Formation and Providence
Formation merge to form a single aquifer unit in up-dip areas (Long, 1989) as well as east of
the Flint River (Clarke, et al., 1983). In areas east of the Ocmulgee River, the combination
of these two aquifers is referred to as the Dublin aquifer system (Clarke, et al., 1985). Figure
3-6 also shows the down-dip limit of the area in which the aquifer system is utilized.

During 1995, EPD used five wells to monitor the water quality in the Clayton aquifer

system (Figure 3-6). Three wells (GWN-CTSA, GWN-CT7A, GWN-CT8) are located in or
near the recharge area, with the latter two wells being less than 100 feet deep. The other two

3-7



——
30 40 MILES

Py : &

s

General recharge area (from Davis, et al.,

Soft water

1988)

Figure 3-5. - Water Quality of a Well in the Providence Aquifer System.

3-8



= General recharge area (after Davis, et al., 1988)
Soft water

Ao Moderately hard water O Iron exceeds MCL

s Hard water

Figure 3-6. - Water Quality for Selected Wells in the Clayton Aquifer System.

3-9



wells (GWN-CT2A and GWN-CT3) were used to sample downdip portions of the aquifer
system.

The hardness class of the samples ranged from soft to hard, and, the pH ranged from
acidic to slightly basic. Samples from all wells contained sodium and chloride. Calcium and
sulfate concentrations were lowest in the samples from the two shallow updip wells (GWN-
CT7A and GWN-CT8). These same two wells contained detectable nitrate/nitrite, at 7.4 and
0.8 mgN/L. Iron concentrations exceeded the secondary MCL of 300 ppb in samples from
two wells, GWN-CT2A and GWN-CT7A. The sample from the latter well also contained
excessive aluminum (secondary MCL is 200 ppb). The other elements detected in samples

from various wells consisted of barium, magnesium, manganese, strontium, and zinc. No
samples contained synthetic organic compounds. Figures 3-7 and 3-8, respectively, show
trends in iron and nitrate/nitrite concentrations for selected wells in the Clayton aquifer
system. Table A-5 in the Appendix lists analyses for water samples from these Clayton wells.

3.5 CLAIBORNE AQUIFER SYSTEM

Sands of the Middle Eocene Claiborne Group are the primary units of the Claiborne
aquifer system of southwestern Georgia (Figure 3-9). Claiborne Group sands crop out in a
belt extending from northern Early County through western Dooly County. Recharge to the
aquifer system occurs both as direct infiltration of precipitation in the recharge area and as
leakage from the overlying Floridan aquifer system (Hicks, et al., 1981; Gorday, et al., 1997).
Discharge boundaries of the aquifer system are the Ocmulgee River, to the east, and the
Chattahoochee River, to the west. Figure 3-9 shows the down-dip limit of utilization.

The aquifer generally thickens from the outcrop area towards the southeast, attaining
a maximum of almost 300 feet in eastern Dougherty County. In down-dip areas where the
Claiborne Group can be divided into the Lisbon Formation above and the Tallahatta
Formation below, the Claiborne aquifer system generally lies within the Tallahatta Formation,
and the Lisbon Formation acts as a confining unit that separates the Claiborne aquifer from
the overlying Floridan aquifer (McFadden and Perriello, 1983; Long, 1989). The permeable
Tallahatta unit is included in the Gordon aquifer system east of the Ocmulgee River (Brooks,
et al., 1985). :

During 1995, EPD personnel used five wells to monitor the water quality of the
Claiborne aquifer system. Wells GWN-CL4 and GWN-CLS are relatively shallow (about 90
feet deep) and are located in the recharge area. Well GWN-CL2 is located near the recharge
area and is deeper (315 feet). Wells GWN-CL6 and GWN-CL9 are deep and draw from
down-dip portions of the aquifer, near the limit of utilization. The two recharge area wells
yielded soft, acidic water, while the other wells yielded moderately hard, basic water.

Manganese levels in samples from wells GWN-CL4 and GWN-CL8 and iron in the
sample from well GWN-CL8 exceeded the secondary MCL’s for these elements (50 ppb for
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Mn, 300 ppb for Fe). The sample from the near down-dip well GWN-CL2 had the highest
calcium concentration. The far down-dip well GWN-CL9 yielded the sample with the highest
sodium concentration. The calcium concentrations in the down-dip samples are consistent
with ground waters derived from limestone. Other metals detected included barium,
strontium, zinc, and copper. Figure 3-10 shows trends in iron concentrations for selected
wells.

Samples from two wells (GWN-CL2 and GWN-CL4) contained detectable levels of
nitrite/nitrate, with the sample from GWN-CL4 having the highest concentration (3.0 ppm
as N). Figure 3-11 shows nitrite/nitrate concentrations for selected wells. Samples from all
wells contained measurable chloride, with a maximum of 5.83 ppm in the sample from well
GWN-CL4. Samples from all wells except GWN-CL4 contained detectable sulfate. Fluoride
was present in samples from three wells. Well GWN-CL4 yielded samples containing two
synthetic organic chemicals, benzene and methyl tert-butyl ether. A trace of chloroform was
present in a sample from well GWN-CL9. Table A-6 in the Appendix gives the analytical
results for the samples from Claiborne wells.

3.6 JACKSONIAN AQUIFER SYSTEM

The Jacksonian aquifer system of central and east-central Georgia comprises
predominantly sands of the Eocene Barnwell Group, though, locally, isolated limestone bodies
are important. Barnwell Group outcrops extend from Macon and Peach Counties eastward
to Burke and Richmond Counties (Figure 3-12). Aquifer sands form a northern clastic facies
of the Barnwell Group; the sands grade southward into less permeable silts and clays of a
transition facies (Vincent, 1982). The water-bearing sands are relatively thin, ranging from
ten to fifty feet in thickness. Limestones equivalent to the Barnwell Group form a southern
carbonate facies and are included in the Floridan aquifer system. The Savannah River and
Ocmulgee River are eastern and western discharge boundaries respectively for the up-dip flow
system of the Jacksonian aquifer system.

EPD monitored the water quality of eight wells tapping the Jacksonian aquifer system
in 1995. Six wells are in the clastic facies (one, GWN-J2A, drawing from an isolated
limestone body), and, two wells are in the transition facies. The pH of the water samples
ranged from 4.80 to 7.82. Water hardness ranged from soft (up-dip wells GWN-J7 and
GWN-J8) to hard.

Concentrations of iron and aluminum fell below the secondary MCL's for drinking
water in samples from all wells. Manganese exceeded the secondary MCL in wells GWN-J3
and GWN-J8 (130 ppb and 78 ppb, respectively). Beryllium exceeded the primary MCL in
a sample from a domestic well, GWN-J8.

The samples tested generally low in sodium, with the highest concentration occurring
in a sample from the transition well GWN-J3. Calcium concentrations ranged from 27 ppm
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to 68 ppm in samples from five of the wells but fell below 10 ppm in samples from the up-dip
wells GWN-J7 and GWN-J8. Samples from five of the wells contained magnesium, with the
highest level of 5.7 ppm occurring in the sample from transition well GWN-J3. Other
detected metals included barium, strontium, zinc, and cadmium. Higher nitrite/nitrate
concentrations occurred in samples from the up-dip wells. Although no data exist for
chloride, fluoride, and sulfate concentrations in two samples, these substances were below
their respective MCL'’s in the remaining samples. None of the samples contained any
quantifiable synthetic organic chemicals. Figures 3-13 and 3-14 depict trends in iron and
nitrite/nitrate concentrations for selected wells. Table A-7 in the Appendix lists the analytical
results for all the wells sampled.

3.7 FLORIDAN AQUIFER SYSTEM

The Floridan aquifer system consists predominantly of Eocene and Oligocene
limestones and dolostones that underlie most of the Coastal Plain Province. The aquifer is
a major source of ground water for much of its outcrop area and throughout its down-dip
extent to the south and east.

The upper water-bearing units of the Floridan are the Eocene Ocala Group and the
Oligocene Suwanee Limestone (Crews and Huddlestun, 1984). These limestones crop out
in the Dougherty Plain (a karstic area in southwestern Georgia) and in adjacent areas along
a strike to the northeast. In Camden and Wayne counties the Oligocene unit is absent, and
the upper part of the Floridan is restricted to units of Eocene age (Clarke, et al., 1990). The
lower portion of the Floridan consists mainly of dolomitic limestone of middle and early
Eocene age and pelletal, vuggy, dolomitic limestone of Paleocene age but extends into the late
Cretaceous in Glynn County. The lower Floridan is deeply buried and not widely used,
except in several municipal and industrial wells in the Savannah area (Clarke, et al., 1990).
From its up-dip limit, defined in the east by clays of the Barnwell Group, the aquifer thickens
to well over 700 feet in coastal Georgia. A dense limestone facies along the trend of the Gulf
Trough locally limits ground-water quality and availability (Kellam and Gorday, 1990). The
Gulf Trough is a linear depositional feature in the Coastal Plain that extends from
southwestern Decatur County through central Bulloch County.

A ground-water divide separates a smaller southwestwardly flow regime in the
Floridan aquifer system in the Dougherty Plain from the larger southeastwardly flow regime
in the remainder of Georgia. Rainfall infiltration in outcrop areas and downward leakage from
extensive surficial residuum provides recharge to the Dougherty Plain flow system (Hayes,
et al, 1983). The main body of the Floridan aquifer system, to the east, is recharged by
leakage from the Jacksonian aquifer system and by rainfall infiltration in outcrop areas and
in areas where overlying strata are thin. Significant recharge also occurs in the area of
Brooks, Echols and Lowndes counties, where the Withlacoochee River and numerous
sinkholes breach upper confining beds (Krause, 1979).
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In 1995, EPD collected 50 samples from 47 wells in the Floridan aquifer system
(Figure 3-15). The pH levels in all samples were basic, and, water hardness ranged from
moderately hard to very hard. Iron concentrations exceeded the secondary MCL only in
samples from GWN-PA9C and GWN-PA15. Trends in iron levels from selected wells in the
Floridan aquifer are shown on Figure 3-16. Aluminum concentrations fell below the
secondary MCL in all samples. Most wells yielding water with detectable manganese fall
within the Gulf Trough area (wells GWN-PA14, GWN-PAIS, GWN-PA19, GWN-PA29,
GWN-PA32, GWN-PA33, GWN-PA34, GWN-PA3S5, and GWN-PA36). The manganese
concentration in samples from wells GWN-PA9C, GWN-PA1S, and GWN-PA34 exceeded
the secondary MCL of 50 ppb.

Sodium concentrations ranged from 1.9 to 725 parts per million (ppm), and,
magnesium ranged from undetected to 84 ppm. Both elements are most abundant in samples
from wells in the coastal area, with the highest concentrations of these elements occurring in
a sample from well GWN-PA9C in Brunswick. Calcium ranged from 24 ppm in samples from
wells GWN-PA2A and GWN-PAG to 94 ppm in well GWN-PA9C. Other metals detected
in measurable concentrations included potassium, barium, molybdenum, strontium, copper,
and zinc. None of these substances exceeded applicable MCL’s.

All water samples underwent tests for the anions: chloride, sulfate, fluoride, and
nitrate/nitrite. Chloride levels ranged from 1.98 ppm to 1385 ppm. The 1385 ppm level
occurred in well GWN-PAOC in the coastal area and was the only value to exceed the
secondary MCL (250 ppm) for chloride. Sulfate ranged from undetected to 284 ppm. This
high sulfate level occurred in the sample from well GWN-PAOSC and exceeds the secondary
MCL (250 ppm). The concentrations of fluoride ranged from undetected to 0.88 ppm.
Detected synthetic organic compounds consisted of tetrahydrofuran, dimethyl phthalate,
chloroform, and bromodichloromethane. None of the compounds exceeded any MCL’s.

Most of the samples collected from the confined portions of the Floridan aquifer
contained no detectable nitrite/nitrate, whereas, most samples in the unconfined portion
contained detectable concentrations of nitrite/nitrate. The highest level, 4.6 ppm as nitrogen,
was in a sample collected from well GWN-PA53 in the Dougherty Plain. Trends in nitrate
levels from selected wells in the Floridan Aquifer are presented in Figure 3-16. The Appendix
(Table A-8) gives the analytical results for samples from the Floridan aquifer system.

3.8 MIOCENE AQUIFER SYSTEM

Much of south-central and southeastern Georgia lies within outcrop areas of the
Miocene Altamaha Formation and Hawthorne Group. Discontinuous lens-shaped bodies of
sand, 50 to 80 feet thick, are the main permeable units. Miocene clays and sandy clays are
thickest, more than 500 feet, in Wayne County (Watson, 1982).
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Areas of confinement exist in the coastal counties. Leakage from overlying surface
aquifers into the Miocene aquifer system and, in some areas, from the underlying Floridan
aquifer system is significant in the coastal counties (Watson, 1982). Here, two principal
aquifer units are present (Joiner, et al., 1988). Clarke (et. al, 1990) use the names upper and
lower Brunswick aquifers to refer to these two sandy aquifer units.

EPD collected water samples from eight wells to monitor the water quality in the
Miocene aquifer system (Figure 3-18). The pH of the samples ranged from 4.26 to 8.03 and
hardness from soft to moderately hard. Iron and manganese levels ranged from undetected
to 320 and 150 ppb, respectively. The water sample from one well, GWN-MI10B contained
iron in excess of the secondary MCL. (300 ppb). Water samples from three wells, GWN-MIS,
GWN-MISA, and GWN-MI10B, exceeded the secondary MCL (50 ppb) for manganese.
Figure 3-19 shows trends in iron concentrations in selected wells. Samples from three wells
contained aluminum in excess of the secondary MCL, at levels of 220 ppb, 760 ppb, and 1400
ppb. Sodium ranged from 1.7 ppm to 8.4 ppm, and, calcium ranged from 3.1 ppm to 24
ppm. Other metals detected were magnesium, barium, strontium, zinc, bismuth, and titanium.
None of these exceeded applicable MCL's.

Chloride concentrations ranged from 2.66 ppm to 17.2 ppm, and, sulfate levels ranged
from undetected to 3.68 parts per million. The deeper domestic wells (GWN-MII, GWN-
MI2, and GWN-MI10B) yielded samples with the lowest chloride concentrations. Samples
from three wells contained quantifiable concentrations of fluoride. Detectable levels of
nitrite/nitrate, ranging from 0.1ppm to 14.1 ppm, occurred in samples from five wells (GWN-
MI5, GWN-MI7, GWN-MI8A, GWN-MI%A, and GWN-MI15). Nitrate/nitrite
concentrations in wells GWN-MI7, GWN-MI8A, and GWN-MI15 exceeded the primary
MCL (10 ppm as N). Concentrations of nitrate/nitrite for selected wells are illustrated in
Figure 3-20. Two wells yielded samples containing traces of the synthetic organic chemicals:
chloroform in well GWN-MI8A and dimethyl phthalate in well GWN-MI2. Table A-9 in the
Appendix gives analytical data for samples drawn from Miocene aquifer system wells.

3.9 PIEDMONT/BLUE RIDGE UNCONFINED AQUIFERS

Georgia's Piedmont and Blue Ridge Physiographic Provinces are developed on
metamorphic and igneous rocks that are predominantly Precambrian and Paleozoic in age.
Soil and saprolite horizons, compositional layers, and openings along fractures and joints in
the rocks are the major water-bearing features. Fracture density and interconnection provide
the primary controls on the rate of water flow into wells completed in crystalline rocks. The
permeability and thickness of soils and saprolite horizons determine the amount of well yield
that can be sustained.

EPD used seventeen wells and three springs to monitor water quality in the
Piedmont/Blue Ridge Province. Figure 3-21 shows the locations of the monitoring stations.
Hardness ranged from soft to moderately hard. The pH of the water samples ranged from
4.95 to 7.55, with the majority of the stations yielding acidic water. Iron and manganese
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Figure 3-18. - Water Quality of Selected Wells in the Miocene Aquifer System.
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Figure 3-19. - Iron Concentrations for Selected Wells in the Miocene Aquifer System.
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ranged from undetected to 81000 ppb and 160 ppb, respectively. Iron exceeded the
secondary MCL (300 ppb) in water samples taken at six stations, and, manganese exceeded
the secondary MCL (50 ppb) at eight stations. Detectable aluminum occurred in samples
from two stations and exceeded the secondary MCL (200 ppb) at one station. Figures 3-22
and 3-33 respectively show trends in iron concentrations for selected stations in the Piedmont
and Blue Ridge sectors of the province.

Samples from all stations contained sodium, with concentrations ranging from 1.7
ppm to 36.0 ppm. All samples except the one from GWN-P14 contained calcium and
magnesium. The other metals detected consisted of barium, strontium, bismuth, beryllium,
cadmium, and zinc. Beryllium exceeded the primary MCL of 4 ppb in a sample from well
GWN-P10A. No other metal concentrations exceeded any MCL’s.

Chloride and sulfate concentrations in the water samples ranged from undetected to
17.1 ppm and 65.2 ppm, respectively. Samples from nine stations contained detectable
fluoride with the concentration exceeding the primary MCL (4 ppm) in the sample from
spring GWN-P12A. Concentrations of nitrite/nitrate, present in water samples from eleven
stations, were below the primary MCL (10 ppm as N). Figures 3-24 and 3-25 show
nitrite/nitrate concentrations in selected stations from the Piedmont and Blue Ridge sectors,
respectively. A sample drawn from well GWN-P16C contained vinyl chloride and 1,1,2-
trichloroethane in excess of the Primary MCL’s (2 ppb and 5 ppb, respectively). The well is
located in a mixed rural/residential/light industrial setting. An analytical summary for the
Piedmont/Blue Ridge sampling stations is in Appendix Table A-10.

3.10 VALLEY AND RIDGE UNCONFINED AQUIFERS

Soil and residuum form low-yield unconfined aquifers across most of the Valley and
Ridge Province of northwestern Georgia. Valley bottoms underlain by dolostones and
limestones of the Cambro-Ordovician Knox Group are the locations of most higher-yielding
wells and springs that are suitable for municipal supplies.

EPD collected water samples from five wells and three springs to monitor the water
quality in the Valley and Ridge unconfined aquifers (Figure 3-26). Three of these wells and
all three springs produced water from Knox Group carbonates. The other wells are
representative of water from the Ordovician Chickamauga Group in Walker County and the
Cambrian Shady Dolomite in Bartow County.

Water from the Valley and Ridge monitoring stations ranged in pH from 7.21 to 7.86
and in hardness from moderately hard to very hard. Two stations (GWN-VR3 and GWN-
VR4) yielded samples containing detectable iron, and, one station yielded a sample with
detectable manganese. Concentrations of these two metals fell below applicable MCL’s.
Sodium, ranging in concentration from 1.4 ppm to 6.3 ppm, calcium, ranging from 28 to 110
ppm, and magnesium, ranging from 3.5 to 23 ppm, occurred in samples from all stations.
Spring GWN-VR3 yielded the only sample with detectable aluminum. The trace metals
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Figure 3-22. - Iron Concentrations for Selected Wells in the Piedmont/Blue Ridge
Unconfined Aquifer System: Piedmont Sector.
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Figure 3-23. - Iron Concentrations for Selected Wells in the Piedmont/Blue Ridge
Unconfined Aquifer System: Blue Ridge Sector.
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Figure 3-24. - Nitrate/Nitrite Concentrations for Selected Wells in the Piedmont/Blue
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present consisted of barium and strontium. The highest barium concentration, 580 ppb,
occurred in a sample from well GWN-VR6. This particular well draws water from the Shady
Dolomite Group, which contains numerous barite (BaSO,) deposits.

Chloride concentrations ranged from 1.23 ppm to 7.77 ppm, and, sulfate ranged from
undetectable to 34.3 ppm. Except for station GWN-VR4, samples from all wells and springs
contained nitrate/nitrite. The highest nitrate/nitrite concentration (3.2 ppm as N) occurred
in a sample from well GWN-VRS. Figures 3-27 and 3-28 show iron and nitrite/nitrate levels,
respectively, for selected sampling stations in the Valley and Ridge aquifers.

The sample from well GWN-VRG6, which is located in an industrial setting, contained
a non-quantifiable concentration of tetrachloroethylene. Methyl-tert-butyl ether and methyl-
tert-amyl ether occurred in samples from well GWN-VRS, which is located in a rural setting.
There are no MCL’s for the ether compounds. Appendix Table A-11 presents the analytical
summary for the wells and springs located in the Valley and Ridge unconfined aquifers.
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Figure 3-27. - Iron Concentrations for Selected Wells in the Valley and Ridge
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4.0 SUMMARY AND CONCLUSIONS

EPD personnel collected 141 raw water samples from 111 wells and 6 springs on the
Ground-Water Monitoring Network in 1995 for inorganic and organic analysis. These wells and
springs monitor the water quality of nine aquifer systems in Georgia:

Cretaceous aquifer system

Providence aquifer system

Clayton aquifer system

Claiborne aquifer system

Jacksonian aquifer system

Floridan aquifer system

Miocene aquifer system

Piedmont/Blue Ridge unconfined aquifers
Valley and Ridge unconfined aquifers

vy v v v v v v Vv VY

Comparisons of analyses of water samples collected in 1995 were made with analyses for
the Ground-Water Monitoring Network dating back to 1984, permitting the recognition of temporal
trends. Table 4-1 lists the major contaminants and pollutants detected at the stations of the Ground-
Water Monitoring Network during 1995. Although isolated water quality problems existed during
1995 at specific localities, the quality of water from the majority of the Ground-Water Monitoring
Network stations remains excellent.

Nitrate/nitrite are the most common substances present in ground water in Georgia that can
have adverse health effects. Three wells (MI7, MISA and MI15), all shallow domestic wells tapping
the Miocene aquifer system and located adjacent to or within row crop areas, yielded water samples
in 1995 with nitrite/nitrate concentrations exceeding the primary MCL of 10 ppm as nitrogen (Table
4-1). (The owners of these wells received notification about the excess nitrate/nitrite.) Spatial and
temporal limitations of the Ground-Water Monitoring Network preclude the identification of the
exact sources of the increasing levels of nitrogen compounds in some of Georgia's ground water.
Nitrite/nitrate originates in ground water from direct sources and through oxidation of other forms
of dissolved nitrogen, deriving from both natural and man-made sources. The most common
sources of man-made dissolved nitrogen in Georgia usually consist of septic systems, agricultural
wastes, and storage or application of fertilizers (Robertson, et. al, 1993). Dissolved nitrogen also
is present in rainwater and can be derived form terrestrial vegetation and volatilization of fertilizers
(Drever, 1988). The conversion of other nitrogen species to nitrate occurs in aerobic environments
such as recharge areas. Anaerobic conditions in ground water, which commonly develop along the
flow path of ground water, foster the denitrification process. However, the lack of denitrifying
bacteria in ground water may inhibit this process (Freeze and Cherry, 1979).

Iron, manganese, and aluminum are the three naturally occurring substances responsible for
the greatest incidence of ground-water quality problems in Georgia (Table 4-1). Although minor
increases or decreases in iron, manganese, and aluminum occurred at some stations, no long-term
trends in concentrations of these metals were documented for the majority of the wells and springs
sampled.



Table 4-1. Pollution and Contamination Incidents, 1995,

Station Contaminant/ Pollutant Primary MCL Secondary MCL
GWN-K1 Mn=50ppb Mn=50ppb
Al=1800ppb Al=200ppb
GWN-K3 Fe=420ppb Fe=300ppb
GWN-K5 dimethylphthalate=22.7ppb (no MCL) (no MCL)
GWN-K8 Fe=3900ppb Fe=300ppb
=2600ppb
GWN-K9 Fe=460ppb Fe=300ppb
Al=470ppb Al=200ppb
GWN-K12 Al=350ppb Al=200ppb
=400ppb
GWN-CT2A Fe=320ppb Fe=300ppb
Fe=320ppb
GWN-CT7A Fe=330ppb Fe=300ppb
Al=290ppb Al=200ppb
GWN-CL4 benzene=7.2ppb benzene=5.0ppb
benzene=tr benzene=5.0ppb
methyl-tert-butyl ether=16ppb (no MCL) (no MCL)
methyl-tert-butyl ether=17.6ppb | (no MCL) (no MCL)
Mn=59ppb Mn=50ppb
GWN-CL8 Fe=670ppb Fe=300ppb
Mn=51ppb Mn=50ppb
GWN-CL9 CHCl,=tr trihalomethanes=100ppb
GWN-J3 Mn=130ppb Mn=50ppb
GWN-J8 Be=4.1ppb Be=4.0ppb
Mn=78ppb Mn=50ppb
GWN-PASC Fe=1400ppb Fe=300ppb
Mn=61ppb Mn=50ppb
SO,=398ppm SO,=250ppm
CI=1770ppm Cl=250ppm
tetrahydrofuran=30ppb (No MCL) (No MCL)
GWN-PA1S Fe=420ppb Fe=300ppb




Table 4-1 (continued). Pollution and Contamination Incidents, 1995.

Station Contaminant/Pollutant Primary MCL Secondary MCL
GWN-PA18 Mn=59ppb Mn=50ppb
GWN-PA27 dimethyl phthalate=tr (no MCL) (no MCL)
GWN-PA33A | CHCL,=8.04ppb trihalomethanes=100ppb

CHBrCl,=tr
GWN-PA34 Mn=100ppb Mn=50ppb
GWN-PA39 CHCL=tr trihalomethanes=100ppb
GWN-MI2 dimethyl phthalate-tr (no MCL) (no MCL)
GWN-MI5 Mn=71ppb Mn=50ppb
GWN-MI7 NO,=10.8ppm as N NO,=10ppm as N

Al=760ppb Al=200ppb
GWN-MISA NOy=12.3ppm as N NO,=10ppm as N

CHCl,=tr trihalomethanes=100ppb

Mn=62ppb Mn=50ppb

Al=1400ppb Al=200ppb
GWN-MI10B | Fe=320ppb Fe=300ppb

Mn=160ppb Mn=50ppb
GWN-MI15 NO4=13.8ppm as N NO,=10ppm as N

Al=220ppm Al=200ppb
GWN-BR3A | Mn=64ppb Mn=50ppb
GWN-P1B Fe=2200ppb Fe=300ppb

Fe=2100ppb Fe=300ppb

Mn=62ppb Mn=50ppb

Mn=60ppb Mn=50ppb
GWN-P2 Fe=300ppb Fe=300ppb
GWN-P6B Mn=99ppb Mn=50ppb
GWN-P9 Fe=990ppb Fe=300ppb

Mn=150ppb Mn=50ppb
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Table 4-1 (continued). Pollution and Contamination Incidents, 1995.

Station Contaminant/Pollutant Primary MCL Secondary MCL
GWN-P10A Be=3.4ppb Be=4.0ppb
Be =4.3ppb Be=4.0ppb
Al=1000ppb Al=300ppb
Al=2900ppb Al=300pp
Fe=19000ppb Fe=300ppb
Fe=81000ppb Fe=300ppb
Mn=120ppb Mn=50ppb
Mn =160ppb Mn=50ppb
GWN-P15A Fe=420ppb Fe=300ppb
Mn=81ppb Mn=50ppb
GWN-P16C vinyl chloride=20..2ppb vinyl chloride=2.0ppb
vinyl chloride =n.d. vinyl chloride=2.0ppb
1,1,2-trichloroethane=8.58ppb 1,1,2-trichloroethane=5.0ppb
1,1,2-trichloroethane =n.d. 1,1,2-trichloroethane=5.0ppb
Fe=830ppb Fe=300ppb
Fe=1600ppb Fe=300ppb
Mn=67ppb Mn=50ppb
Mn=68ppb Mn=50ppb
GWN-P17 Fe=420ppb Fe=300ppb
Mn=120ppb Mn=50ppb
GWN-VRS methyl-tert-butyl ether=40ppb (No MCL) (No MCL)
methyl-tert-butyl ether=40ppb (No MCL) (No MCL)
GWN-VR6 tetrachloroethylene=tr. tetrachloroethylene=5ppb

Note: Listing of a substance twice for one station means that the station was sampled twice.

Ir.= trace.
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Samples from twelve stations contained some amount of synthetic organic compounds. In
five instances, the concentration of the substance was too small to quantify. Only two wells yielded
samples with organic chemical pollutants in excess of primary MCL’s, GWN-CL4 with excessive
benzene and GWN-P16C with excessive vinyl chloride and trichloroethane. The sporadic nature
of the occurrence of such compounds in most of these wells makes defining spatial and temporal
trends in levels of organic pollutants indeterminate for the purposes of this study.
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ANALYSES OF SAMPLES COLLECTED DURING 1995
FOR THE GEORGIA GROUND-WATER MONITORING NETWORK

All water quality samples that are collected for the Georgia Ground-Water Monitoring
Network are subjected to a Standard Analysis that includes tests for pH, specific conductance,
certain common inorganic anions, and thirty metals (Table A-1). Analyses for additional
parameters may be included for samples that are collected from areas where the possibility
of ground-water pollution exists due to regional activities. These optional tests consist of
those for mercury, agricultural chemicals, semivolatile organic compounds, and volatile
organic compounds (Table A-2). In previous editions of Circular 12, the metals analyses and
the various organic chemical analyses were referred to as screens.

EPA has set forth a series of (serially numbered) analytical methods officially
recognized as suitable for environmental purposes. As the EPD laboratory and the Georgia
Department of Agriculture laboratory use these methods and now cite EPA method numbers
along with analysis results, Tables A-1 and A-2 list the EPA method number appropriate for
the substance being tested. For the majority of the organic analyses, the screens coincide with
the EPA methods. Screen #5, done by the Cooperative Extension Service laboratory at the
University of Georgia, is effective for most carbamates and urea-derivative pesticides. EPA
method 531.1 is effective for carbamates but not urea-derivatives. EPA has not designated
an official method for analyzing the urea derivative pesticides. Table A-2 makes note of this
situation.

Other than the two physical parameters, four of the major anions, and nine of the
metals, other parameters are listed in the following analytical results tables A-3 through A-

11only if they were detected.

For this appendix, the following abbreviations are used:

AAS = atomic absorbtion spectrophotometry

SU = standard units

mg/L = milligrams per liter (parts per million)

mg/L asN = milligrams per liter (parts per million), as nitrogen
ug/L = micrograms per liter (parts per billion)

ICPOES = jon coupled plasma optical emission spectroscopy
umho/cm = micromhos per centimeter

U = less than (below detection limit)

a = EPA method 507.0 (organophosphate pesticides)

b = EPA method 508.1 (organochlorine pesticides and PCB’s)
v = EPA method 515.2 (chlorinated phenoxy herbicides)

d = EPA method 531.1 (carbamate pesticides)

s = EPA method 8270B (semivolatile organic compounds)
\% = EPA method 8260A (volatile organic compounds)

(Note: detection limits may change due to temporary differences in the performance of
instruments and apparatus.)

A-1



Table A-1.

Anions, and Other Parameters.

Standard Water Quality Analyses: ICPOES Metals, AAS Metals, Major

ICPOES METALS TEST
Parameter Test Typical Detection | Max.Contaminant
Method Limit Level
Silver (Ag) EPA 200.7 30 ug/L 100 ug/L,
Aluminum (Al) EPA 200.7 50 ug/L 200 ug/L,
Gold (Au) EPA 200.7 10 ug/L None
Barium (Ba) EPA 200.7 10 ug/L 2000 ug/L,
Bismuth (Bi) EPA 200.7 30 ug/L None
Calcium (Ca) EPA 200.7 1.0 mg/L None
Cobalt (Co) EPA 200.7 10 ug/LL None
Chromium (Cr) EPA 200.7 20 ug/L 100 ug/L,
Copper (Cu) EPA 200.7 20 ug/L 1000 ug/L,
Iron (Fe) EPA 200.7 20 ug/L 300 ug/L,
Potassium (K) EPA 200.7 5.0 mg/L None
Magnesium (Mg) EPA 200.7 1.0 mg/L None
Manganese (Mn) EPA 200.7 10 ug/L 50 ug/L,
Molybdenum (Mo) EPA 200.7 10 ug/L None
Sodium (Na) EPA 200.7 1.0 mg/L None
Nickel (Ni) EPA 200.7 20 ug/L 100 ug/L,
Lead (Pb) EPA 200.7 50 ug/L None
Tin (Sn) EPA 200.7 90 ug/L None
Strontium (Sr) EPA 200.7 10 ug/L None
Titanium (Ti) EPA 200.7 10 ug/L None
Vanadium (V) EPA 200.7 10 ug/L None
Yttrium (Y) EPA 200.7 10 ug/L. None
Zinc (Zn) EPA 200.7 20 ug/LL 5000 ug/L,




ICPOES METALS TEST (continued)

Parameter Test Typical Detection | Max.Contaminant
Method Limit Level
Zirconium (Zr) EPA 200.7 10 ug/L None
AAS METALS TESTS
Parameter Test Typical Detection | Max.Contaminant
Method Limit Level
Arsenic (As) EPA 206.2 25 ug/L 50 ug/L,
Beryllium (Be) EPA 210.2 2 ug/L 4 ug/L,
Cadmium (Cd) EPA 213.2 2.5ug/L 5ug/L,
Antimony (Sb) EPA 204.2 3ug/L 6 ug/L,
Selenium (Se) EPA 270.2 25 ug/L 50 ug/L,
Thallium (T1) EPA 279.2 1 ug/L 2 ug/L,
MAJOR ANIONS TESTS
Parameter Test Typical Detection | Max.Contaminant
Method Limit Level
Chloride (CI') EPA 300.0 0.1 mg/L 250 mg/L,
Sulfate (SO,") EPA 300.0 2.0 mg/L 250 mg/L,
Nitrate/Nitrite EPA 353.1 0.1 mg/L asN 10 mg/L as N,
(NO,)
Fluoride (F) EPA 300.0 0.1 mg/L 40mg/L,, 2.0
mg/L,
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OTHER PARAMETERS

Parameter Units Maximum Contaminant
Level
pH 0.01 SU None
Conductivity 1.0 mho/cm None

*pH is measured in the field (see Chapter 2); conductivity is measured according
to Standard Methods of Water Quality Analysis method 2510B. (Franson, ed., 1995).

y=Primary Maximum Contaminant Level (MCL).

;=Secondary MCL.

MCL's from Georgia Rules for Safe Drinking Water, March 1994 edition (EPD, 1994).
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Table A-2.  Additional Water Quality Analyses: Organophosphate Pesticides, Organo-
chlorine Pesticides/PCB’s, Phenoxy Herbicides, Carbamate/Urea-Derived
Pesticides, Semivolatile Organic Compounds, Volatile Organic Compounds,

and Mercury.
ORGANOPHOSPHATE PESTICIDES
(Screen #1)
Parameter Test Typical Detection | Primary Maximum
Method Limit Contaminant Level

Alachlor EPA 507.0 1.0 ug/L 2.0ug/L

Atrazine EPA 507.0 0.3 ug/L 3.0ug/L
Azodrin EPA 507.0 1.0 ug/L None
Chloropyrifos EPA 507.0 0.8 ug/L None
Cyanazine EPA 507.0 1.0 ug/L None
DCPA EPA 507.0 0.01 ug/L None
Dasanit EPA 507.0 0.6 ug/L None
Demeton EPA 507.0 1.0 ug/L None
Diazinon EPA 507.0 1.0 ug/L None
Dimethoate EPA 507.0 0.5 ug/L None
Disyston EPA 507.0 1.0 ug/L None
Eptam EPA 507.0 0.5 ug/L None
Ethoprop EPA 507.0 0.5 ug/L None
Fonophos EPA 507.0 0.5 ug/L None
Guthion | EPA507.0 2.0ug/L None
Isopropalin EPA 507.0 1.0ug/L None
Malathion EPA 507.0 1.4 ug/L None
Metolachlor EPA 507.0 1.0 ug/L None
Metribuzin EPA 507.0 1.25 ug/L None
Mevinphos EPA 507.0 1.4 ug/L None
Parathion (E) EPA 507.0 0.08 ug/L None




ORGANOPHOSPHATE PESTICIDES (continued)

(Screen #1)
Parameter Test Typical Detection | Primary Maximum
Method Limit Contaminant Level
Parathion (M) EPA 507.0 0.1 ug/L None
Pebulate EPA 507.0 0.6 ug/L None
Pendimethalin EPA 507.0 0.8 ug/L None
Phorate EPA 507.0 1.0 ug/L None
Profluralin EPA 507.0 0.9 ug/L None
Simazine EPA 507.0 0.9 ug/L 4.0ug/L
Sutan EPA 507.0 0.7 ug/L None
Terbufos EPA 507.0 3.0ug/L None
Trifluralin EPA 507.0 1.0 ug/L None
Vernam EPA 507.0 0.5 ug/L None

ORGANOCHLORINE PESTICIDES/PCB’S

(Screen #2)
Parameter Test Typical Detection | Primary Maximum
Method Limit Contaminant Level
Chlordane EPA 508.1 2.0 ug/L 2.0ug/L
Dicofol EPA 508.1 0.1 ug/L None
Endrin EPA 508.1 0.03 ug/L 2.0 ug/L
Methoxychlor EPA 508.1 0.3 ug/L 40.0 ug/L
gamma-HCH EPA 508.1 0.008 ug/L 0.2 ug/L
(lindane)
PCB’s EPA 508.1 0.6 ug/L 0.5 ug/L
Permethrin EPA 508.1 0.3 ug/L None
Toxaphene EPA 508.1 1.2 ug/L 3.0ug/L
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PHENOXY HERBICIDES

(Screens #3 and #4)
Parameter Test Typical Detection | Primary Maximum
Method Limit Contaminant Level
2,4-D EPA 515.1 52ug/L 70.0 ug/L
Acifluorfen EPA 515.1 1.0 ug/L None
Chloramben EPA 515.1 0.2 ug/L None
Dalapon EPA 515.1 0.2 ug/L 200 ug/L
Dinoseb EPA 515.1 0.1ug/L Tug/L
Pichloram EPA 515.1 500 ug/L 500 ug/L
Silvex EPA 515.1 0.1 ug/L 50.0 ug/L
Trichlorofon EPA 515.1 2.0ug/L None

CARBAMATE/UREA-DERIVATIVE PESTICIDES

Parameter Test Typical Detection | Primary Maximum
Method Limit Contaminant Level
Aldicarb EPA 531.1 1.0 ug/L None
Aldicarb Sulfone EPA 531.1 2.0ug/L None
Aldicarb Sulfoxide EPA 531.1 2.0ug/L None
Baygon EPA 531.1 1.0 ug/L None
Screen #5
Carbaryl EPA 531.1 2.0ug/L None
Screen #5
Carbofuran EPA 531.1 1.0 ug/L 40.0 ug/L
Screen #5
Diuron Screen #5 1.0ug/L None
Fluometron Screen #5 1.0 ug/L None
Linuron Screen #5 1.0 ug/L None




CARBAMATE/UREA-DERIVATIVE PESTICIDES (continued)

Parameter Test Typical Detection | Primary Maximum
Method Limit Contaminant Level
Methomyl EPA 531.1 1.0 ug/L None
Screen #5
Methiocarb EPA 531.1 4.0 ug/L None
Screen #5
Monuron Screen #5 1.0 ug/L None
Oxamyl EPA 531.1 2.0 ug/L 200 ug/L
Screen #5

SEMIVOLATILE ORGANIC COMPOUNDS
(Screens #8 and #9)

Parameter

Test

Method Detection

Primary Maximum

Method Limit Contaminant Level
N-Nitrosodimethyl- | EPA 8270B 10.0 ug/L None
amine
2-Picoline EPA 8270B 10.0 ug/L None
Methylmethanesul- | EPA 8270B 10.0 ug/L None
fonate
Ethylmethanesul- EPA 8270B 20.0 ug/L None
fonate
Aniline EPA 8270B 10.0 ug/L None
Phenol EPA 8270B 10.0 ug/L None
Bis(2-Chloroethyl) | EPA 8270B 10.0 ug/L None
ether
2-Chlorophenol EPA 8270B 10.0 ug/L None
1.3-Dichlorobenzene | EPA 8270B 10.0 ug/L None
(m)
1,4-Dichlorobenzene | EPA 8270B 10.0 ug/L 75.0 ug/L
(p)
Benzyl Alcohol EPA 8270B 20.0 ug/L None




SEMIVOLATILE ORGANIC COMPOUNDS (continued)

(Screens #8 and #9)
Parameter Test Method Detection | Primary Maximum
Method Limit Contaminant Level
1,2-Dichlorobenzene | EPA 8270B 10.0 ug/L 600.0 ug/L
(o)
2-Methylphenol EPA 8270B 10.0 ug/L None
Bis(2-Chloroiso- EPA 8270B 10.0 ug/L None
propyl) Ether
Acetophenone EPA 8270B 10.0 ug/L None
4-Methylphenol EPA 8270B 10.0 ug/L None
N-Nitrosodi-N- EPA 8270B 10.0 ug/L None
Propylamine
Hexachloroethane | EPA 8270B 10.0 ug/L None
Nitrobenzene EPA 8270B 10.0 ug/L None
N-Nitrosopiperidine | EPA 8270B 20.0 ug/L None
Isophorone EPA 8270B 10.0 ug/L None
2-Nitrophenol EPA 8270B 10.0 ug/L None
2,4-Dimethylphenol | EPA 8270B 10.0 ug/L None
Bis(2-Chloroethoxy) | EPA 8270B 10.0 ug/L None
Methane
Benzoic Acid EPA 8270B 50.0 ug/L None
2,4-Dichlorophenol | EPA 8270B 10.0 ug/L None
1,2,4- EPA 8270B 10.0 ug/L None
Trichlorobenzene
A a-Dimethyl- EPA 8270B 10.0 ug/L None
phenylethylamine
Naphthalene EPA 8270B 10.0 ug/L None
4-Chloroaniline EPA 8270B 20.0 ug/L None
2,6-Dichlorophenol | EPA 8270B 10.0 ug/L None




SEMIVOLATILE ORGANIC COMPOUNDS (continued)
(Screens #8 and #9)
Parameter Test Minimum Primary Maximum
Method Detection Limit Contaminant Level
Hexachlorobutadi- | EPA 8270B 10.0 ug/L None
ene
N-Nitroso-Di-N- EPA 8270B 10.0 ug/L None
Butylamine
4-Chloro-3- EPA 8270B 20.0 ug/L None
methylphenol
2-Methyl EPA 8270B 10.0 ug/L None
Naphthalene
1,2,4,5- EPA 8270B 10.0 ug/L None
Tetrachlorobenzene
Hexachlorocyclo- EPA 8270B 10.0 ug/L 50 ug/L
pentadiene
2,4,6- EPA 8270B 10.0 ug/L None
Trichlorophenol
2-Chloronaphthalene | EPA 8270B 10.0 ug/L None
2,4,5- EPA 8270B 10.0 ug/L None
Trichlorophenol
1-Chloronaphthalene | EPA 8270B 10.0 ug/L None
2-Nitroanaline EPA 8270B 50.0 ug/L None
Dimethylphthalate | EPA 8270B 10.0 ug/L None
Acenaphthylene EPA 8270B 10.0 ug/L None
2,6-Dinitrotoluene | EPA 8270B 10.0 ug/L None
3-Nitroaniline EPA 8270B 50.0 ug/L None
Acenaphthene EPA 8270B 10.0 ug/L None
2,4-Dinitrophenol EPA 8270B 50.0 ug/L None
4-Nitrophenol EPA 8270B 50.0 ug/L None
Dibenzofuran EPA 8270B 10.0 ug/L None
Pentachlorobenzene | EPA 8270B 10.0 ug/L None
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SEMIVOLATILE ORGANIC COMPOUNDS (continued)

(Screens #8 and #9)
Parameter Test Minimum Primary Maximum
Method Detection Limit Contaminant Level
2,4-Dinitrotoluene | EPA 8270B 10.0 ug/L None
1-Naphthylamine EPA 8270B 10.0 ug/L None
2-Naphthylamine EPA 8270B 10.0 ug/L None
2,3,4,6- EPA 8270B 10.0 ug/L None
tetrachlorobenzene
Diethylphthalate EPA 8270B 10.0 ug/L None
Fluorene EPA 8270B 10.0 ug/L None
4-Chlorophenyl EPA 8270B 10.0 ug/L None
Phenyl Ether
4-Nitroaniline EPA 8270B 20.0 ug/L None
Diphenylamine EPA 8270B 10.0 ug/L None
4,6-Dinitro-2- EPA 8270B 50.0 ug/L None
methylphenol
N-Nitroso- EPA 8270B 10.0 ug/L None
diphenylamine
1,2-diphenyl- EPA 8270B 10.0 ug/L None
hydrazine
4-Bromophenyl-Phe- | EPA 8270B 10.0 ug/L None
nyl Ether
Phenacetin EPA 8270B 20.0 ug/L None
Hexachlorobenzene | EPA 8270B 10.0 ug/L 1 ug/L
4-Aminobiphenyl EPA 8270B 20.0 ug/L None
Pentachlorophenol | EPA 8270B 50.0 ug/L 1.0 ug/L
Pronamide EPA 8270B 10.0 ug/L None
Pentachloronitro- EPA 8270B 20.0 ug/L None
benzene
Phenanthrene EPA 8270B 10.0 ug/L None
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SEMIVOLATILE ORGANIC COMPOUNDS (continued)

(Screens #8 and #9)
Parameter Test Minimum Primary Maximum
Method Detection Limit Contaminant Level
Anthracene EPA 8270B 10.0 ug/L None
Di-N-Butyl EPA 8270B 10.0 ug/L None
Phthalate
Fluoranthene EPA 8270B 10.0 ug/L None
Benzidine EPA 8270B 80.0 ug/L None
Pyrene EPA 8270B 10.0 ug/L None
P-Dimethyl- EPA 8270B 10.0 ug/L None
aminoazobenzene
N- EPA 8270B 10.0 ug/L None
butylbenzylphthalate
Benzo (a) EPA 8270B 10.0 ug/L None
Anthracene
3,3- EPA 8270B 20.0 ug/L None
Dichlorobenzidine
Chrysene EPA 8270B 10.0 ug/L None
Bis(2-Ethyl-hexyl) | EPA 8270B 10.0 ug/L 6 ug/L
Phthalate
Di-N-Octyl EPA 8270B 10.0 ug/L None
Phthalate
Benzo EPA 8270B 10.0 ug/L None
( B)Fluoranthene
Benzo EPA 8270B 10.0 ug/L None
(K)Fluoranthene
7,12-Dimethylbenz | EPA 8270B 10.0 ug/L None
(A)Anthracene
Benzo (A)Pyrene EPA 8270B 10.0 ug/L 0.2ug/L
3-Methyl- EPA 8270B 10.0 ug/L None
cholanthrene
Dibenz(A,J)Acridine | EPA 8270B 10.0 ug/L None
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SEMIVOLATILE ORGANIC COMPOUNDS (continued)

(Screens #8 and #9)
Parameter Test Minimum Primary Maximum
Method Detection Limit Contaminant Level
Indeno(1,2,3-C- EPA 8270B 10.0 ug/L None
D)Pyrene
Dibenz(A H)Anthra- | EPA 8270B 10.0 ug/L None
cene
Benzo(GHI)- EPA 8270B 10.0 ug/L None
Perylene
&-BHC EPA 8270B 10.0 ug/L None
'Y-BHC (Lindane) | EPA 8270B 10.0 ug/L 0.2 ug/L
O5-BHC EPA 8270B 10.0 ug/L None
B-BHC EPA 8270B 10.0 ug/L None
Heptachlor EPA 8270B 10.0 ug/L 0.4 ug/L
Aldrin EPA 8270B 10.0 ug/L None
Heptachlor Epoxide | EPA 8270B 25.0 ug/L 0.2 ug/L
Endosulfan 1 EPA 8270B 50.0 ug/L None
Dieldrin EPA 8270B 10.0 ug/L None
P,P’-DDE EPA 8270B 10.0 ug/L None
Endrin EPA 8270B 20.0 ug/L 2.0ug/L
Endosulfan 2 EPA 8270B 50.0 ug/L None
P,P’-DDD EPA 8270B 10.0 ug/L None
Endrin Aldehyde EPA 8270B 10.0 ug/L None
Endosulfan Sulfate | EPA 8270B 25.0 ug/L None
P,P’-DDT EPA 8270B 10.0 ug/L None
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VOLATILE ORGANIC COMPOUNDS

(Screens #7 and #10)
Parameter Test Method Detection | Primary Maximum
Method Limit Contaminant Level
Dichlorodifluoro- EPA 8260A 5.0 ug/L None
methane
Chloromethane EPA 8260A 10.0 ug/L None
Bromomethane EPA 8260A 10.0 ug/L None
Chloroethane EPA 8260A 10.0 ug/LL None
Vinyl Chloride EPA 8260A 10.0 ug/L 2.0 ug/L
Dichloromethane EPA 8260A 5.0 ug/L 5.0ug/L
Trichlorofluoro- EPA 8260A 5.0ug/L None
methane
Acetone EPA 8260A 100 ug/L None
Dibromomethane EPA 8260A 5.0 ug/L None
Trans-1,2- EPA 8260A 5.0 ug/L 100 ug/L
Dichloroethylene
Iodomethane EPA 8260A 5.0ug/L None
Carbon Disulfide EPA 8260A 5.0 ug/L None
1,1-Dichloro- EPA 8260A 5.0 ug/L 7.0 ug/L
ethylene
1,1-Dichloroethane | EPA 8260A 5.0 ug/L None
Cis-1,2-Dichloro- | EPA 8260A 5.0 ug/L 70.0 ug/L
ethylene
2,2-Dichloropropane | EPA 8260A 5.0ug/L None
Bromochloro- EPA 8260A 5.0 ug/L None
methane
Chloroform EPA 8260A 5.0 ug/L 100 ug/L*
1,1-Dichloro- EPA 8260A 5.0 ug/L None
propylene
1,2-Dichloroethane | EPA 8260A 5.0ug/L 5.0 ug/L
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VOLATILE ORGANIC COMPOUNDS (continued)

(Screens #7 and #10)
Parameter Test Method Detection | Primary Maximum
Method Limit Contaminant Level
Methyl Ethyl Ketone | EPA 8260A 100 ug/L None
1,1,1-Trichloro- EPA 8260A 5.0ug/L 200 ug/L
ethane
Carbon Tetrachloride | EPA 8260A 5.0ug/L 5.0ug/L
Vinyl Acetate EPA 8260A 50 ug/L None
Bromodichloro- EPA 8260A 5.0 ug/L 100 ug/L*
methane
1,2-Dichloropropane | EPA 8260A 5.0ug/L 5.0 ug/L
Trichloroethylene | EPA 8260A 5.0 ug/L 5.0 ug/L
Benzene EPA 8260A 5.0ug/L 5.0 ug/L
2-Chloroethyl Vinyl | EPA 8260A 5.0 ug/L None
Ether
Cis-1,3- EPA 8260A 5.0ug/L None
Dichloropropylene
Trans-1,3- EPA 8260A 5.0 ug/L None
Dichloropropylene
Chlorodibromo- EPA 8260A 5.0ug/L 100 ug/L*
methane
1,1,2- EPA 8260A 5.0 ug/L 5.0ug/L
Trichloroethane
Bromoform EPA 8260A 5.0ug/L 100 ug/L*
1,2,3-Trichloro- EPA 8260A 5.0ug/L None
propane
Methyl Isobutyl EPA 8260A 50 ug/L None
Ketone
Methyl N-butyl EPA 8260A 50 ug/L None
Ketone
Tetrachloroethylene | EPA 8260A 5.0ug/L 5.0ug/L
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VOLATILE ORGANIC COMPOUNDS (continued)

(Screens #7 and #10)
Parameter Test Method Detection | Primary Maximum
Method Limit Contaminant Level
1,2-Dichloropropane | EPA 8260A 5.0 ug/L 5.0ug/L
1,1,2,2 -Tetra- EPA 8260A 5.0 ug/L None
chloroethane
Toluene EPA 8260A 5.0 ug/L 1000 ug/L
1,2-Dibromoethane | EPA 8260A 5.0 ug/L None
Ethylene dibromide | EPA 8260A 5.0 ug/L 0.05 ug/L
Chlorobenzene EPA 8260A 5.0 ug/L 100 ug/L
Ethylbenzene EPA 8260A 5.0ug/L 700 ug/L
1,1,1,2-Tetra- EPA 8260A 5.0 ug/L None
chloroethane
Styrene EPA 8260A 5.0 ug/L 100 ug/L.
Xylenes (total) EPA 8260A 5.0 ug/L 10,000 ug/L
Isopropylbenzene EPA 8260A 5.0 ug/L None
Bromobenzene EPA 8260A 5.0 ug/L None
N-Propylbenzene EPA 8260A 5.0 ug/L None
2-Chlorotoluene EPA 8260A 5.0ug/L None
1,3,5-Trimethyl- EPA 8260A 5.0 ug/LL None
benzene
4-Chlorotoluene EPA 8260A 5.0 ug/L None
Tert-Butylbenzene | EPA 8260A 5.0 ug/L None
1,2,4-Trimethyl- EPA 8260A 5.0 ug/L None
benzene
Sec-Butylbenzene | EPA 8260A 5.0 ug/L None
1,3-Dichlorobenzene | EPA 8260A 5.0 ug/L None
(m)
1,4-Isopropyltoluene | EPA 8260A 5.0 ug/L None
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VOLATILE ORGANIC COMPOUNDS (continued)

(Screens #7 and #10)
Parameter Test Method Detection | Primary Maximum
Method Limit Contaminant Level
1,4-Dichlorobenzene | EPA 8260A 5.0 ug/L 75.0 ug/L
()
N-Butylbenzene EPA 8260A 5.0 ug/L None
1,2-Dichlorobenzene | EPA 8260A 5.0 ug/L 600 ug/L
(0)
1,2-Dibromo-3- EPA 8260A 5.0 ug/L 0.2ug/L
Chloropropane
1,2,4- EPA 8260A 5.0ug/L 70.0 ug/L
Trichlorobenzene
Hexachlorobutadi- | EPA 8260A 5.0ug/L None
ene
Naphthalene EPA 8260A 5.0ug/L None
1,2,3- EPA 8260A 5.0 ug/L None
Trichlorobenzene

* Indicates a trihalomethane compound. The primary MCL for total trihalomethanes 1s 100

ug/L.
MERCURY
Parameter Test Method Detection | Primary Maximum
Method Limit Contaminant Level
Mercury (Hg) EPA 245.2 0.2 ug/L 2.0ug/L
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Copies: 100
Cost: $579.00

The Department of Natural Resources is an equal opportunity employer and offers all persons the
opportunity to compete and participate in each area of DNR employment regardless of race, color,
religion, national origin, age, handicap, or other non-merit factors.



