TOTAL MAXIMUM DAILY LOAD (TMDL)

For Sediment

In the Oconee River Basin

February 2002

amended by the Water Quality Act of 19 hereby establishing Total Maximum Daily	s of the Federal Clean Water Act, 33 U.S.C §1251 et.seq., as 987, P.L. 400-4, the U.S Environmental Protection Agency is Loads (TMDLs) for sediment for §303(d) listed stream segments stershed. Subsequent actions must be consistent with this TMDL.
Beverly H. Banister, Director	Date
Water Management Division	

TOTAL MAXIMUM DAILY LOAD (TMDL)

Sediment

In the Oconee River Watershed

Under the authority of Section 303(d) of the Clean Water Act, 33 U.S.C. 1251 <u>et seq.</u>, as amended by the Water Quality Act of 1987, P.L. 100-4, the U.S. Environmental Protection Agency is hereby proposing a TMDL for sediment for the protection of aquatic life in the following segments of the Oconee River Watershed in Georgia:

Upper North Oconee River (habitat due to sediment)

Lower Middle Oconee River (unknown due to sediment)

Upper and Middle Mulberry Creek (habitat due to sediment)

Walnut Creek (habitat due to sediment)

Little River (habitat due to sediment)

The calculated allowable load of sediment that may come into the identified segments of the Oconee River Watershed without exceeding the water quality target is an annual loading of 0.62 tons/acre/year. EPA interpreted the State of Georgia's narrative water quality standard for fish and wildlife for the protection of aquatic life to determine the applicable water quality target. Based on the current estimated annual loading for the listed segments, ranging from 0.2 to 0.6 tons/acre/year, no reduction in sediment loading is needed for 5 of the identified segments of the Oconee River Watershed to meet the applicable water quality target. Middle Mulberry Creek has a estimated annual loading 0.7 tons/acre/year and a 12 percent annual loading reduction is needed. The majority of the sediment problems are due to historic landuse practices and migration of sediment from the headwater areas via tributaries to the main stream segments that caused high instream bedload sediment volume. (Trimble 1969)

Although watershed sediment load reductions are not needed for five of the watersheds, it is recommended that Best Management Practices and continued compliance with the State of Georgia's stormwater construction permit be maintained and enforced to allow the stream to purge itself of the historic sediment loads.

Table of Contents

1.	Executive Summary	8
2.	Phased Approach to the TMDL	10
3.	Problem Definition.	11
4.	Applicable Water Quality Standard	12
5.	Background	13
5	5.1. Source Assessment	15
	5.1.1. Point Sources:	15
	5.1.2. Existing Nonpoint Watershed Sediment Loads:	16
	5.1.3. Upper Oconee River Basin – HUC 03070101	16
	5.1.4. Lower Oconee River Basin Watershed – HUC 0306002002	17
6.	EPA Region 4 Biological/Habitat Data and Information	18
7.	Model Development	19
7	'.1. Instream Sediment Impacts	19
8.	Numeric Sediment Target Determination.	20
8	3.1. Numeric Target	20
9.	Total Maximum Daily Load (TMDL) Factors	21

9.1. Critical Condition Determination
9.2. Seasonal Variation
9.3. Margin of Safety
9.4. TMDL Development
9.5. TMDL Determination
10. Allocation of Loads
10.1. TMDL Formula: 24
10.2. TMDL Assumptions: 25
10.2.1. Storm Water Point Sources
10.3. Allocation to Nonpoint Sources
11. Public Participation. 29
12. TMDL Implementation
13. References
14. Appendix A
14.1. Watershed Sediment Loading Model
14.1.1. Universal Soil Loss Equation
14.1.2. Sediment Analysis

		• "				- ·			
Total Maximum Dail	y Load for	Sediment in	the Mic	ddle/Lower	Oconee I	≺ıver	Watershed,	GA,	, Final

Echruary.	2002
February	2002

14.1.3. Sediment Modeling Methodology	43
14.1.4. Sediment Analysis Inputs	45
14.1.5. Sediment Load Development Methodology	47

Table of Figures

Figure 1: Oconee Watershed Location Map	13
Figure 2: Oconee River Basin Landuse	14
Figure 3: 1992 Middle Oconee Estimated Sediment Concentrations	19

Table of Tables

Table 1: Point Source Loads	15
Table 2: Upper Oconee Watershed Sediment Loads	17
Table 3: Little River Sediment Loads	17
Table 4: Habitat Ratings	18
Table 5: Existing Watershed Loads	23

1. Executive Summary

The U.S. Environmental Protection Agency (EPA) Region 4 is proposing this Total Maximum Daily Load (TMDL) for sediment in the Oconee River Watershed. The 303(d) listed segments in Georgia are:

Upper North Oconee River (habitat due to sediment)

Lower Middle Oconee River (unknown due to sediment)

Upper and Middle Mulberry Creek (habitat due to sediment)

Walnut Creek (habitat due to sediment)

Little River (habitat due to sediment)

This TMDL satisfies a consent decree obligation established in Sierra Club, et. al. v. EPA, Civil Action, 1: 94-CV-2501-MHS (N.D. Ga.). The State of Georgia requested EPA to develop this TMDL for the impaired segments of the Oconee River Watershed, and as such, EPA is proposing this TMDL for Georgia for the 6 listed segments of the Oconee River Watershed. This TMDL is being proposed in phases with this TMDL document representing the first phase of the process. If necessary, EPA expects to develop a revised TMDL for sediment for the Oconee River Watershed in 2006. EPA believes that a phased approach is appropriate for this TMDL because information on the actual contributions of sediment to the Oconee River Watershed from both point and nonpoint sources will be much better characterized in the future. In addition, information related to whether source reductions are being achieved could be reviewed to determine if any allocations of the load should be revisited.

In order for this TMDL to be developed, the applicable water quality target must be determined. The State of Georgia does not have a numeric water quality standard for the protection of aquatic life from excessive sedimentation. Based on site-specific field data from the Oconee River Watershed, EPA has derived a numeric interpretation of the State of Georgia's narrative water quality standard for sediment to protect aquatic life due to excessive sedimentation. This interpretation of Georgia's water quality standard was based on site-specific data gathered for the Oconee River Watershed in 1998 to 2001 specifically for the purpose of this TMDL. These field analyses were also used to determine that the listed impairments of "unknown" or "habitat" were due to sediment. In addition, in any future TMDLs for the Oconee River

Watershed, it is possible that EPA may revise this interpretation of the State's water quality standard based on new site-specific data collected at that time.

The calculated allowable load of sediment that may come into the identified segments of the Oconee River Watershed without exceeding the water quality target is an annual loading of 0.62 tons/acre/year. EPA interpreted the State of Georgia's narrative water quality standard for fish and wildlife for the protection of aquatic life to determine the applicable water quality target Based on the current estimated annual loading for the listed segments, ranging from 0.2 to 0.6 tons/acre/year, no reduction in sediment loading is needed for 5 of the identified segments of the Oconee River Watershed to meet the applicable water quality target. Middle Mulberry Creek has a estimated annual loading 0.7 tons/acre/year and a 12 percent annual loading reduction is needed. The sediment problem is due to historic landuse practices and migration of sediment from the headwater areas via tributaries to the main stream segments that caused high instream bedload sediment volume. (Trimble 1969)

"Erosion and sedimentation are naturally occurring cyclical processes that have taken place on a continuous basis in many regions of the U.S. ... In the Georgia Piedmont, steep slopes, erodible soils, and intense rainfall combined with the land clearing and agricultural practices of the late nineteenth and early twentieth centuries led to accelerated erosion and sedimentation. Streams that once ran clear over small rocky channels (Bartram, 1928) ... now run turbid through large entrenched channels over mostly sediment covered bottoms ... Sediment delivery rates to streams have decreased significantly since the late nineteenth and early twentieth centuries ... Previously cultivated areas have been largely reforested and soil conservation practices have greatly improved ... Consequently, channel erosion and expansion through (historical) unstable deposits of modern sediments is quite common in many areas of the Piedmont. Headwater channels that had previously undergone intense sedimentation were being to degrade by 1969 while the distribution in the streams have changed during the last century" (Ruhlman and Nutter 1999). Sediment that had aggraded, due to past practices, in the headwater streams is now moving down the stream system in to the lower order streams, until this sediment is moved completely out of the stream system a habitat and biological impact will be seen.

2. Phased Approach to the TMDL

EPA recognizes that it may be appropriate to revise this TMDL based on information gathered and analyses performed after the TMDL is established. With such possible revisions in mind, this TMDL is characterized as a phased TMDL. In a phased TMDL, EPA or the state uses the best information available at the time to establish the TMDL at levels necessary to implement applicable water quality standards and to make the allocations to the pollution sources. However, the phased TMDL approach recognizes that additional data and information may be necessary to validate the assumptions of the TMDL and to provide greater certainty that the TMDL will achieve the applicable water quality standard. Thus, the Phase 1 TMDL identifies data and information to be collected after the first phase TMDL is established that would then be assessed and would form the basis for a Phase 2 TMDL. The Phase 2 TMDL may revise the needed load reductions or the allocation of the allowable load or both. EPA intends to gather new information and perform new analyses so as to produce a revised or Phase 2 TMDL for sediment for the identified segments of the Oconee River Watershed, if necessary, in 2006. The phased approach is appropriate for this TMDL because information on the actual contributions of sediment to the Oconee River Watershed from both point and nonpoint sources will be much better characterized in the future and additional reductions determined, if needed.

3. Problem Definition

The water segments in the Oconee River Watershed for which this TMDL is being proposed are included on the State of Georgia's 2000 Section 303(d) list. The purpose of this TMDL is to establish the acceptable loading of sediment from all watershed-based sources, such that sediment levels in the Oconee River Watershed will not exceed the applicable water quality standard as interpreted by EPA for protection of aquatic life.

4. Applicable Water Quality Standard

TMDLs are established at levels necessary to attain and maintain the applicable narrative and numerical water quality standards. (See 40 CFR Section 130.7(c)(1).) The State of Georgia's Rules and Regulations for Water Quality Control do not include a numerical water quality standard for aquatic life protection due to sediment. The narrative standard is to maintain the biological integrity of the waters of the State – Georgia's Water Quality Standard is established in Georgia's Rules and Regulations for Water Quality Control, Chapter 391-3-6, Revised July, 2000 Georgia Regulation 391-3-6-.03(2)(a).

The calculated allowable load of sediment that may come into the identified segments of the Oconee River Watershed without exceeding the water quality target is an annual loading of 0.62 tons/acre/year. This loading value is based on the average sediment load in unimpaired watersheds that ranged from 0.03 to over 1.56 tons/acre/year. (GaDNR 2002) **EPA interpreted the State of Georgia's narrative water quality standard for fish and wildlife for the protection of aquatic life to determine the applicable water quality target.** Based on the current estimated annual loading for the listed segments, ranging from 0.2 to 0.6 tons/acre/year, no reduction in sediment loading is needed for 5 of the identified segments of the Oconee River Watershed to meet the applicable water quality target. Middle Mulberry Creek has a estimated annual loading 0.7 tons/acre/year and a 12 percent annual loading reduction is needed.

5. Background

The Oconee River Watershed is located in northeastern Georgia. The location of the watershed is shown in Figure 1.

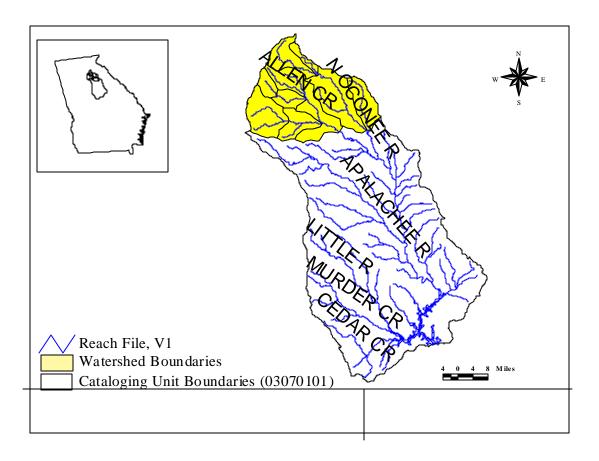


Figure 1: Oconee Watershed Location Map

EPA developed TMDLs for each of the six listed segments in the watershed. Each watershed contains several different types of land uses. Different land uses collect and distribute sediment at different rates as a function of runoff and erosion. Figure 2 illustrates the landuses in the Oconee Watershed.

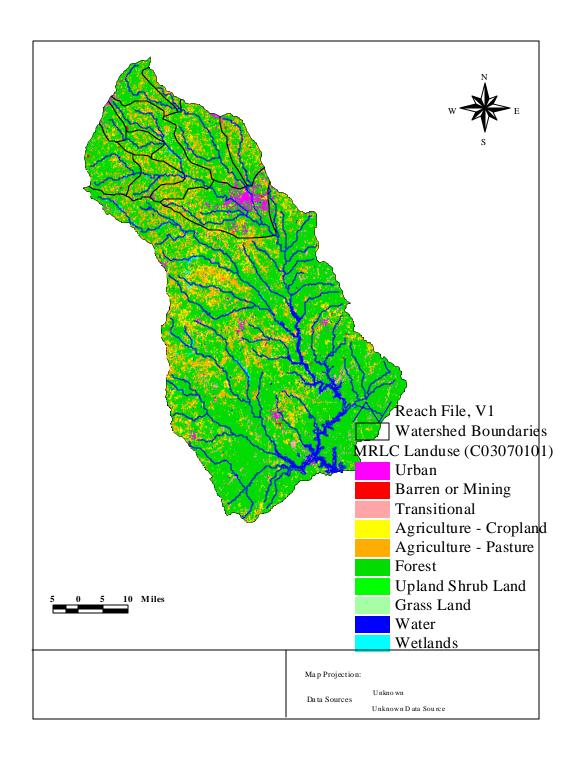


Figure 2: Oconee River Basin Landuse

5.1. Source Assessment

A TMDL evaluation examines the known potential sources of the pollutant in the watershed, including point sources, nonpoint sources, and background levels. For the purpose of this TMDL, facilities permitted under the National Pollutant Discharge Elimination System (NPDES) Program are considered point sources.

5.1.1. Point Sources:

One continuous NPDES permitted discharge from a municipal wastewater treatment facility is located in the Georgia portion of the 303(d) listed streams.

Table 1: Point Source Loads

Facility	Permit Number	Receiving Waters	County	Flow (mgd)	TSS (mg/l)	TSS (tons/yr)
Social Circle Little River	GA0026107	Little River	WALTON	0.45	30	20.5

Other potential point sources discharges in the Georgia portion of the listed streams are storm water discharges associated with construction activity. The State of Georgia Department of Natural Resources, Environmental Protection Division has developed a general storm water permit. All existing and new storm water point sources within the State of Georgia, that are required to have a permit, are authorized to discharge storm water associated with construction activity to the waters of the State of Georgia in accordance with the limitations, monitoring requirements and other conditions set forth in Parts I through VII of the Georgia Storm Water General Permit. The permit limitations are established to assure that the storm water runoff from these point source sites do not cause or contribute to the existing sediment impairment. A Comprehensive Monitoring Plan with turbidity monitoring requirements is required to assure any storm water discharge from the site does not cause or contribute to the existing sediment problem.

The Georgia General Storm Water Permit for Construction Activities (Storm Water Permit) was developed to reduce the input of sediment from construction activities. As an example, in the Middle Oconee Watershed, based on the available mid 1990s landuse information, it was estimated that, absent the limitations established by the Storm Water Permit, construction would contribute 450 tons/square-mile/year

to the stream sediment load. Implementation of the Storm Water Permit in the Middle Oconee Watershed, which has the highest contribution from construction activities, should reduce the sediment contributed by these construction activities to 0.1 tons/acre/year. This level is below the target of 0.62 tons/acre/year. This reduced load would be less than 20% of the total allowable sediment area weighted load for the Oconee River Watershed.

The Georgia General Storm Water Permit can be considered to be a water quality-based permit, in that the numeric limits in the permit, if met and enforced, will not cause a water quality problem in a unimpaired stream or contribute to an existing problem in an impaired stream. It is recommended that for impaired watersheds, the cold water (trout stream) turbidity table be used.

5.1.2. Existing Nonpoint Watershed Sediment Loads:

The long-term sediment watershed load was calculated using the Universal Soil Loss Equation (USLE) (see Appendix A) and broken down by land use sediment sources and road erosion sediment sources.

5.1.3. Upper Oconee River Basin – HUC 03070101

The listed segments in the Upper Oconee River Basin are:

Upper Middle Oconee River

North Oconee River

Walnut Creek

Upper and Middle Mulberry Creek

The current estimated long—term area weighted watershed sediment loads for the listed streams in the Upper Oconee River Watershed are shown in Table 2.

Table 2: Upper Oconee Watershed Sediment Loads

Listed Streams – Georgia	Watershed	Watershed (Tons/Year)	Area (Sq.Mi.)	Area Weighted (Tons/Acre/Year)
Middle Oconee River	Upper Oconee River Basin	98,000	306	0.5
North Oconee River	Upper Oconee River Basin	33,800	132	0.4
Walnut Creek	Upper Oconee River Basin	4,400	31	0.33
Middle Mulberry River	Upper Oconee River Basin	44,800	100	0.7
Upper Mulberry River	Upper Oconee River Basin	10,500	55	0.3

5.1.4. Lower Oconee River Basin Watershed – HUC 0306002002

The listed segment in the Lower Oconee River Basin is the Little River. The current estimated long-term area weighted watershed sediment load for the Little River is shown in Table 3.

Table 3: Little River Sediment Loads

Listed Streams – Georgia	Watershed	Watershed (Tons/Year)	Area (Sq.Mi.)	Area Weighted (Tons/Acre/Year)	
Little River	Upper Oconee	72,500	283	0.4	
	River Basin				

6. EPA Region 4 Biological/Habitat Data and Information

Biological and habitat data were collected in 2001. (EPA 2001) A habitat rating of 130 to 175 indicates a good or health habitat, 90 to 129 indicates a fair but impacted habitat and less than 90 indicates a poor habitat. Table 4 shows the habitat ratings for the listed segments of the Oconee River watershed.

Table 4: Habitat Ratings

Stream Name	Listing	Station	Pollutant Of	Habitat Rating
	Reason	Locator	Concern	
North Oconee River	Habitat	NOR01	Sediment	117
T (OTAL SCOTTED TAYOF	Tuotut	TTORUT	Sedifferi	
North Oconee River	Habitat	NOR02	Sediment	114
Lower Middle Oconee				
River	Habitat	LMO01	Sediment	117
	Habitat /			
Upper Mulberry River	Sediment	MR02	Sediment	105
Middle Mulberry River	Habitat	MR01	Sediment	85
Walnut Creek	Habitat	WC02	Sediment	111
Walnut Creek	Habitat	WC01	Sediment	92
Upper Little River	Habitat	LR02	Sediment	118
	Not			
Lower Little River	Impacted	LR01	NA	131

7. Model Development

The link between the habitat alteration due to sediment loads and the identified sources of sediment is the basis for the development of the TMDL. The linkage is defined as the cause and effect relationship between the selected indicators and identified sources. This provides the basis for estimating the total assimilative capacity of the river and any needed load reductions. Details of the sediment-loading model are in Appendix A.

7.1. Instream Sediment Impacts

The instream flows and sediment concentrations were estimated based on daily flows proportioned from the Oconee River USGS gage #02177500. The USLE predicted annual loadings and the following sediment flow relationship:

TSS
$$(mg/l) = coefficient * (Flow / Mean Flow) ^ 0.8$$

This relationship was developed for the Oconee Watershed based on sediment and flow data collected historically by USGS. Figure 3 illustrates the estimated 1992 flow and sediment concentrations for Middle Oconee River watershed.

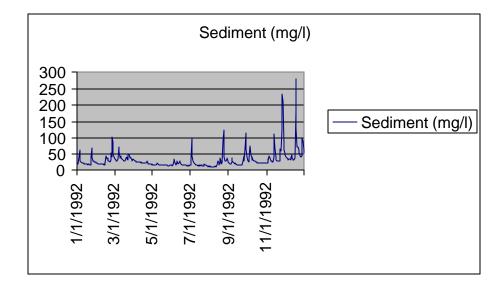


Figure 3: 1992 Middle Oconee Estimated Sediment Concentrations

8. Numeric Sediment Target Determination

8.1. Numeric Target

The working hypothesis for the sediment watershed load is that if the Oconee River Watershed has a long-term annual sediment load similar to a relatively biologically unimpacted healthy stream, then the Oconee River Watershed will remain stable and not be biologically impaired due to sediment. Biologically unimpacted streams in the Oconee River Basin were used to develop a target sediment watershed load.

Georgia Environmental Protection Division established fifteen reference sites within the Piedmont ecoregion. These sites represented the biological least impacted stream sites. Two indices of fish community health were used to assess the biotic integrity of these aquatic systems. A biologically unimpacted stream's watershed sediment loading rate per area average of around 0.62 tons/acre/year was developed as an acceptable sediment loading rate. (GDNR 2002)

9. Total Maximum Daily Load (TMDL) Factors

The TMDL is the total amount of a pollutant that can be assimilated by the receiving waterbody without exceeding the applicable water quality standard, in this case, a numeric interpretation of the State of Georgia's narrative water quality standard for aquatic life. This TMDL determines the maximum load of sediment that can enter the Oconee River Watershed. Based on a current estimated annual loading, from the listed segments that range from 0.2 to 0.7 tons/acre/year, no reduction in sediment loading is needed for the identified segments of the Oconee River Watershed to meet the applicable water quality target, except for Middle Mulberry Creek where a 12 percent reduction is needed. The sediment problem is due to historic landuse practices and migration of sediment from the headwater areas via tributaries to the main stream segments that caused high instream bedload sediment volume.

9.1. Critical Condition Determination

The annual average watershed load represents the long-term processes of accumulation of sediments in the stream habitat areas that are associated with the potential for habitat alteration and aquatic life effects.

9.2. Seasonal Variation

The average annual load addresses seasonal variation.

9.3. Margin of Safety

A Margin of Safety (MOS) is a required component of a TMDL that accounts for the uncertainty about the relationship between the pollutant loads and the quality of the receiving waterbody. The MOS is typically incorporated into the conservative assumptions used to develop the TMDL. A MOS is incorporated into this TMDL in a variety of ways. These include a MOS implicitly assigned by selection of average USLE factors and by the average sediment loading numeric target.

9.4. TMDL Development

The maximum daily loads for each listed segment in the Oconee Watershed were estimated using daily flows proportioned from the Middle Oconee River USGS gage #02176000, the USLE predicted annual loadings and the following sediment flow relationship where:

TSS (mg/l) = coefficient * (Flow / Mean Flow)
$$^1.2$$

9.5. TMDL Determination

The Oconee River Watershed existing and TMDL loads are presented in Table 6.

Table 5: Existing Watershed Loads

Watershed	Existing Sedi	Existing Annual Sediment Loads		
Stream Name	Daily Maximum	Average Flow	Steady State Low Flow	(tons/acre/year)
Middle Oconee River	1440 tons/day	50 tons/day or	2.4 tons/day or	0.5
306 square miles	or 290 mg/l	47 mg/l	9 mg/l	
North Oconee River	525 tons/day	18 tons/day or	0.7 tons/day or	0.4
132 square miles	or 240 mg/l	40 mg/l	6.5 mg/l	
Walnut Creek	185 tons/day	3.3 tons/day or	0.12 tons/day or	0.33
31 square miles	or 94 mg/l	30 mg/l	5 mg/l	
Upper Mulberry River	180 tons/day	5.6 tons/day or	0.2 tons/day or	0.3
55 square miles	or 160 mg/l	29 mg/l	5 mg/l	
Middle Mulberry River	690 tons/day	24 tons/day or	0.9 tons/day or	0.7
100 square miles	or 420 mg/l	68 mg/l	11 mg/l	
Middle Mulberry River TMDL 100 square miles	580 tons/day or 360 mg/l	20 tons/day or 58 mg/l	0.75 tons/day or 10 mg/l	0.6 or a 12% reduction
Little River 298 square miles	1100 tons/day or 240 mg/l	38 tons/day or 38 mg/l	1.4 tons/day or 6.4 mg/l	0.4

10. Allocation of Loads

In a TMDL assessment, the total allowable load is divided and allocated to the various pollutant sources – both point sources and nonpoint sources. Allocations provided to point sources are wasteload allocations (WLAs). Based on the numeric limits of the storm water permit the area loading will be 0.09 tons/acre/year, which is below the target of 0.62 tons/acre/year.

Allocations to nonpoint sources are load allocations (LAs). Roads, agriculture and bare ground (construction sites, etc.) are the major sediment producing areas in the watershed. If best management practices (BMPs), as outlined in "Georgia's Best Management Practices for Forestry" (GaEPD 1999), for these practices and other sediment producing activities are implemented at the sites that are near the stream's drainage network and the stream's riparian zone or buffer zones are maintained or restored, then the TMDL targets can be met. Detailed BMP measures are discussed in Georgia Environmental Protection Division's Oconee River Basin TMDL report (GaEPD 2002).

The calculated allowable load of sediment that can come into the Oconee River Watershed without exceeding the applicable narrative water quality standard, as interpreted by EPA, is 0.62 tons/acre/year. For example, in the Oconee River Watershed, this assessment indicates that over 99% of the loading of sediment is from nonpoint sources and construction activity prior to issuance of Georgia's Storm Water Permit. Implementation of the Storm Water Permit will reduce construction sediment runoff. Additional sediment reduction activities should target nonpoint sources, including the unpaved roads, to gain the greatest water quality benefit.

10.1. TMDL Formula:

TMDL = WLA + LA + MOS, where:

- TMDL = 0.62 tons/acre/year
- Wasteload Allocation (WLA) = WLA from wet weather discharges subject to the General

Storm Water Permit = 0.09 tons/acre/year;

- WLA for Little River NPDES Permit # GA0026107 = 20.5 ton/year or 30 mg/l at flow of 0.45 mgd; and
- Load Allocation (LA) from nonpoint source runoff and roads = 0.6 tons/acre/year

10.2. TMDL Assumptions:

The allocations in this TMDL reflect the following assumptions regarding ongoing watershed restoration and/or pollution control activities in the Oconee watershed:

EPA assumes that construction activities in the watershed will be conducted in compliance with Georgia's Storm Water General Permit for construction activities, including discharge limitations and monitoring requirements contained in the General Storm Water Permit. Compliance with these permits will lead to sediment loadings from construction sites at or below applicable targets.

With respect to all land disturbance activities, including road building and maintenance, if these BMPs are implemented, then EPA believes that water quality targets for sediment will be achieved throughout the Oconee Watershed.

The wasteload allocation component of this TMDL reflects the following additional assumptions:

- No NPDES point source will be authorized to increase its concentration of sediment above levels
 reflected in current water quality-based effluent limitations or allowed in the State's General Storm
 Water Permit.
- The permitting authority will establish the shortest reasonable period of time for compliance with permit limitations and conditions based on this TMDL.

These assumptions provide reasonable assurance that the allocation of loads in this TMDL, described in more detail below, are appropriate. During Phase 1 of this TMDL, EPA and Georgia will gather data and information to determine whether continued reliance on these assumptions is reasonable. The Phase 2

TMDL may revise the allocation of the allowable load, as necessary, should EPA or Georgia be required to change the assumptions underlying that allocation.

10.2.1. Storm Water Point Sources

Other potential point sources discharges in the Georgia portion of the listed streams are storm water discharges associated with construction activity. The State of Georgia Department of Natural Resources, Environmental Protection Division has developed a general storm water permit. All existing and new storm water point sources within the State of Georgia, that are required to have a permit, are authorized to discharge storm water associated with construction activity to the waters of the State of Georgia in accordance with the limitations, monitoring requirements and other conditions set forth in Parts I through VII of the Georgia Storm Water General Permit. The permit limitations are established to assure that the storm water runoff from these point source sites does not cause or contribute to the existing sediment impairment. A Comprehensive Monitoring Plan with turbidity monitoring requirements is required to assure any storm water discharge from the site does not cause or contribute to the existing sediment problem.

The Georgia General Storm Water Permit for Construction Activities (Storm Water Permit) was developed to reduce the input of sediment from construction activities. As an example, in the Middle Oconee Watershed, based on the available mid 1990s landuse information, it was estimated that, absent the limitations established by the Storm Water Permit, construction would contribute 450 tons/square-mile/year to the stream sediment load. Implementation of the Storm Water Permit in the Middle Oconee Watershed, which has the highest contribution from construction activities, should reduce the sediment contributed by these construction activities to 0.086 tons/acre/year (0.45 lbs/day/acre), which is below the target of 0.6 tons/acre/year. This reduced load would be less than 15% of the total sediment allowable area weighted load for the Middle Oconee Watershed.

The Georgia General Storm Water Permit will allow construction sites to meet the TMDL area weighted loading. The Georgia General Storm Water Permit can be considered to be a water quality-based permit, in that the numeric limits in the permit, if met and enforced, will not cause a water quality problem in a

unimpaired stream or contribute to an existing problem in an impaired stream. A Comprehensive Monitoring Plan with turbidity monitoring requirements is required to assure any storm water discharge from the site does not cause or contribute to the existing sediment problem. Since the point source storm water component is addressed and controlled through the implementation and enforcement Georgia Storm Water Permits. It is recommended that for streams in the impaired watersheds the cold water (trout stream) turbidity table be used. Based on the numeric limits of the storm water permit the area loading will be 0.086 tons/acre/year or 0.15 lbs/day/sq.mi, which is below the target of 0.6 tons/acre/year. This will ensure that permitted point source sediment loads in the watersheds will contribute less than 15% of the total allowable area weighted sediment loads.

The Georgia General Storm Water Permit can be considered to be a water quality-based permit, in that the numeric limits in the permit, if met and enforced, will not cause a water quality problem in a unimpaired stream or contribute to an existing problem in an impaired stream.

This TMDL accords the permitting authority a certain amount of discretion in incorporating these wasteload allocations into NPDES permits. The permitting authority can determine the appropriate frequency, duration and location of monitoring associated with the sediment characterization component of the wasteload allocation. The permitting authority also has the discretion to determine the level of oversight in connection with the development of sediment minimization plans and the discharger's choice of appropriate, cost-effective measures to implement such plans. EPA believes that each of these decisions is heavily fact-dependent and that the permitting authority is the appropriate decision maker in this regard.

10.3. Allocation to Nonpoint Sources

It is recommended that the Oconee watershed be considered a high priority for riparian buffer zone restoration and any sediment reduction BMPs, especially for the road crossings, agricultural activities, and construction activities. Further ongoing monitoring needs to be completed to monitor progress and to assure further degradation does not occur.

For those land disturbing activities related to silviculture that may occur on public lands, it is recommended that practices as outlined for landowners, foresters, timber buyers, loggers, site preparation and

reforestation contractors, and others involved with silvicultural operations follow the practices to minimize nonpoint source pollution as outlined in "Georgia's Best Management Practices for Forestry (GaEPD 1999).

11. Public Participation

A sixty-day public comment period was provided for this TMDL document. During the comment period, the availability of the TMDLs was public noticed, the TMDLs were posted on EPA's website, and copy of the TMDLs were provided, as requested, to the public for their comments. The response to comments received on the TMDLs can be found in the document entitled "Responsiveness Summary Concerning EPA's August 30, 2001 Public Notice Proposing Sediment TMDLs For Waters in the State of Georgia" (EPA, 2002).

12. TMDL Implementation

EPA recognizes that a TMDL improves water quality when there is a plan for implementing the TMDL. However, CWA section 303(d) does not establish any new implementation authorities beyond those that exist elsewhere in State, local, Tribal or Federal law. Thus, the wasteload allocations within TMDLs are implemented through enforceable water quality-based effluent limitations in NPDES permits authorized under section 402 of the CWA. Load allocations within TMDLs are implemented through a wide variety of State, local, Tribal and Federal nonpoint source programs (which may be regulatory, non-regulatory, or incentive-based, depending on the program), as well as voluntary action by committed citizens. See New Policies for Establishing and Implementing Total Maximum Daily Loads (TMDLs), dated August 8, 1997.

EPA believes it is useful during TMDL development, if time is available, to gather information that would facilitate TMDL implementation. For example, the TMDL may identify management strategies that categories of sources can employ to obtain necessary load reductions. EPA believes, however, that TMDL implementation – and implementation planning – is the responsibility of the State of Georgia, through its administration of the National Pollutant Discharge Elimination System (NPDES) point source permit program and through its administration of any regulatory or non-regulatory nonpoint source control programs.

A consent decree in the case of Sierra Club v. EPA, 1:94-cv-2501-MHS (N.D. Ga.), requires

EPA to develop TMDLs for all waterbodies on the State of Georgia's current 303(d) list that are not developed by the State that year, according to a schedule contained in the decree. That is, EPA and the State work cooperatively to develop all TMDLs for a given set of river basins each year, with all river basins in the State covered over a 5-year period. On July 24, 2001, the U.S. District Court entered an order finding that the decree also requires EPA to develop TMDL implementation plans. EPA disagrees with the court's conclusion that implementation plans are required by the decree and has appealed the July 24, 2001, order.

In the absence of that order, EPA would not propose an implementation plan for this TMDL. The Agency is moving forward, however, to comply with the obligations contained in the order. EPA has coordinated with the Georgia Environmental Protection Division (EPD) to prepare an initial implementation plan for this TMDL and has also entered into a Memorandum of Understanding (MOU) with EPD, which sets out a schedule for EPD to develop more comprehensive implementation plans after this TMDL is established. The initial plan provides for an implementation demonstration project to address one of the major sources of pollution identified in this TMDL while State and/or local agencies work with local stakeholders to develop a revised implementation plan.

EPA understands, pursuant to the July 24, 2001, order, that it continues to have responsibilities for implementation planning if for any reason EPA cannot complete an implementation plan for this TMDL as set out in the MOU. If the July 24, 2001, order is vacated, EPA would expect to support efforts by the State of Georgia to develop an implementation plan for this TMDL.

This Initial TMDL Implementation Plan, written by EPD and for which EPD and/or the EPD Contractor are responsible, contains the following elements.

1. EPA has identified a number of management strategies for the control of nonpoint sources of pollutants, representing some best management practices. The "Management Measure Selector Table shown below identifies these management strategies by source category and pollutant. Nonpoint sources are the primary cause of excessive pollutant loading in most cases. Any wasteload allocations in this TMDL will be implemented in the form of water-quality based effluent limitations in NPDES permits issued under CWA Section 402. See 40 C.F.R. §

- 122.44(d)(1)(vii)(B). NPDES permit discharges are a secondary source of excessive pollutant loading, where they are a factor, in most cases.
- 2. EPD and the EPD Contractor will select and implement one or more best management practice (BMP) demonstration projects for each River Basin. The purpose of the demonstration projects will be to evaluate by River Basin and pollutant parameter the site-specific effectiveness of one or more of the BMPs chosen. EPD intends that the BMP demonstration project be completed before the Revised TMDL Implementation Plan is issued. The BMP demonstration project will address the major category of contribution of the pollutant(s) of concern for the respective River Basin as identified in the TMDLs of the watersheds in the River Basin. The demonstration project need not be of a large scale, and may consist of one or more measures from the Table or equivalent BMP measures proposed by the EPD Contractor and approved by EPD. Other such measures may include those found in EPA's "Best Management Practices Handbook", the "NRCS National Handbook of Conservation Practices, or any similar reference, or measures that the volunteers, etc., devise that EPD approves. If for any reason the EPD Contractor does not complete the BMP demonstration project, EPD will take responsibility for doing so.
- 3. As part of the Initial TMDL Implementation Plan the EPD brochure entitled "Watershed Wisdom -- Georgia's TMDL Program" will be distributed by EPD to the EPD Contractor for use with appropriate stakeholders for this TMDL, and a copy of the video of that same title will be provided to the EPD Contractor for its use in making presentations to appropriate stakeholders, on TMDL Implementation plan development.
- 4. If for any reason an EPD Contractor does not complete one or more elements of a Revised TMDL Implementation Plan, EPD will be responsible for getting that (those) element(s) completed, either directly or through another contractor.

- 5. The deadline for development of a Revised TMDL Implementation Plan, is the end of August, 2003.
- 6. The EPD Contractor helping to develop the Revised TMDL Implementation Plan, in coordination with EPD, will work on the following tasks involved in converting the Initial TMDL Implementation Plan to a Revised TMDL Implementation Plan:
 - A. Generally characterize the watershed;
 - B. Identify stakeholders;
 - C. Verify the present problem to the extent feasible and appropriate, (<u>e.g.</u>, local monitoring);
 - D. Identify probable sources of pollutant(s);
 - For the purpose of assisting in the implementation of the load allocations of this
 TMDL, identify potential regulatory or voluntary actions to control pollutant(s) from
 the relevant nonpoint sources;
 - 2. Determine measurable milestones of progress;
 - Develop monitoring plan, taking into account available resources, to measure effectiveness; and
 - 4. Complete and submit to EPD the Revised TMDL Implementation Plan.
- 7. The public will be provided an opportunity to participate in the development of the revised TMDL Implementation Plan and to comment on it before it is finalized.
- 8. The revised TMDL Implementation Plan will supersede this Initial TMDL implementation Plan when the Revised TMDL Implementation Plan is approved by EPD.

Management Measure Selector Table

Land Use	Management Measures	Fecal Coliform	Dissolved Oxygen	рН	Sediment	Temperature	Toxicity	Mercury	Metals (copper, lead, zinc, cadmium)	PCBs, toxaphene
Agriculture	1. Sediment & Erosion Control	_	_		_	-				
	2. Confined Animal Facilities	_	_							
	3. Nutrient Management	-	-							
	4. Pesticide Management		_							
	5. Livestock Grazing	-	_		_	-				
	6. Irrigation		_		_	_				
Forestry	1. Preharvest Planning				_	-				
	2. Streamside Management Areas	_	_		_	-				
	3. Road Construction &Reconstructi on		-		_	-				
	4. Road Management		-		_	-				
	5. Timber Harvesting		_		_	-				
	6. Site Preparation & Forest Regeneration		-		-	-				

2002

r						I			1
	7. Fire Management	-	_	_	_	_			
	8. Revegetation of Disturbed Areas	_	-	_	_	-			
	9. Forest Chemical Management		-			_			
	10. Wetlands Forest Management	_	-	_		-	-		
Urban	1. New Development	_	ı		_	_		_	
	2. Watershed Protection & Site Development	_	-		_	-	-	_	
	3. Construction Site Erosion and Sediment Control		1		-	_			
	4. Construction Site Chemical Control		-						
	5. Existing Developments	_	_		_	_		_	
	6. Residential and Commercial Pollution Prevention	_	_						
Onsite Wastewater	New Onsite Wastewater Disposal Systems	_	-						
	2. Operating	-	-						

2002

	Existing Onsite Wastewater Disposal Systems							
Roads, Highways and Bridges	1. Siting New Roads, Highways & Bridges	-	_	-	-		_	
	2. Construction Projects for Roads, Highways and Bridges		-	-	-			
	3. Construction Site Chemical Control for Roads, Highways and Bridges		-					
	4. Operation and Maintenance- Roads, Highways and Bridges	_	-		-		-	

13. References

- GaEPD, 1999. Georgia's Best Management Practices for Forestry. Georgia Environmental Protection Division, Georgia Forestry Commission, Georgia Forestry Association. January 1999
- GaDNR, 2002. Total Maximum Daily Load Evaluation for Fifteen Stream Segments in the Oconee River Basin for Sediment. January 2002.
- Georgia Rules and Regulations for Water Quality Control, Chapter 391-3-6-.03, Water Use Classifications and Water Quality Standards, July 2000
- Ruhlman and Nutter, 1999. Channel Morphology Evolution and Overbank Flow in the Georgia Piedmont. April 1999.
- Sierra Club v. EPA & Hankinson USDC-ND-GA Atlanta Div. #1: 94-CV-2501-MHS, 1998
- Trimble, 1969. Culturally Accelerated Sedimentation on the Middle Georgia Piedmont. 1969.
- USEPA. 1998. Better Assessment Science Integrating Point and Nonpoint Sources, BASINS, *Version 2.0 User's Manual.* U.S. Environmental Protection Agency, Office of Water, Washington, D.C.
- USEPA. Region 4. 2001. Oconee River Watershed Data Report. U.S. Environmental Protection Agency, Region 4, Atlanta, Georgia.
- USEPA. Region 4. 2001. Watershed Characterization System User's Manual. U.S. Environmental Protection Agency, Region 4, Atlanta, Georgia.
- USEPA, 2002. Responsiveness Summary Concerning EPA's August 30, 2001 Pubic Notice Proposing Sediment TMDLs For Waters in the State of Georgia. USEPA, Region 4, Atlanta, Georgia.
- USEPA. 1991. Guidance for Water Quality-based Decisions: The TMDL Process. U.S. Environmental Protection Agency, Office of Water, Washington, D.C. EPA/440/4-91-001, April 1991.
- USEPA. 1999b. "Protocol for Developing Sediment TMDLs, First Edition"

14. Appendix A

14.1. Watershed Sediment Loading Model

An analysis of watershed loading could be conducted at various levels of complexity, ranging from a simplistic gross estimate to a dynamic model that captures the detailed runoff from the watershed to the receiving waterbody. The limited amount of data available for the Oconee River Watershed prevented EPA from using a detailed dynamic watershed runoff model, which needs a great deal of data for calibration. Instead, EPA determined the sediment contributions to the Oconee River Watershed from the surrounding watershed based on an annual mass balance of sediment in water and sediment loading from the watershed.

Watershed-scale loading of sediment in water and sediment was simulated using the Watershed Characterization System (WCS) (USEPA, 2001). The complexity of this loading function model falls between that of a detailed simulation model, which attempts a mechanistic, time-dependent representation of pollutant load generation and transport, and simple export coefficient models, which do not represent temporal variability. The WCS provides a mechanistic, simplified simulation of precipitation-driven runoff and sediment delivery, yet is intended to be applicable without calibration. Solids load from runoff can then be used to estimate pollutant delivery to the receiving waterbody from the watershed. This estimate is based on sediment concentrations in wet and dry deposition, which is processed by soils in the watershed and ultimately delivered to the receiving waterbody by runoff, erosion and direct deposition.

14.1.1. Universal Soil Loss Equation

The Universal Soil Loss Equation (USLE), developed by Agriculture Research Station (ARS) scientists W. Wischmeier and D. Smith, has been the most widely accepted and utilized soil loss equation for over 30 years. Designed as a method to predict average annual soil loss caused by sheet and rill erosion, the USLE is often criticized for its lack of applications. While it can estimate

long-term annual soil loss and guide conservationists on proper cropping, management, and conservation practices, it cannot be applied to a specific year or a specific storm. The USLE is mature technology and enhancements to it are limited by the simple equation structure. However based on its long history of use and wide acceptance by the forestry and agriculture communities, it was selected as an adequate tool for estimating long-term annual soil erosion, for evaluating the impacts of land use changes and evaluating the benefits of various Best Management Practices (BMPs).

The Sediment Tool, which incorporates the USLE equation, is an extension of the Watershed Characterization System (WCS). For more detailed information on WCS, refer to the WCS User's Manual. The Sediment Tool can be used to perform the following tasks:

- Estimate extent and distribution of potential soil erosion in the watershed.
- Estimate potential sediment delivery to receiving waterbodies.
- Evaluate effects of land use, BMPs, and road network on erosion and sediment delivery.

Soil loss from sheet and rill erosion is mainly due to detachment of soil particles during rainfall. It is the major soil loss from crop production and grazing areas, construction sites, mine sites, logging areas, and unpaved roads. The magnitude of soil erosion is normally estimated through the use of the Universal Soil Loss Equation (USLE). The USLE equation is a multiplicative function of crop and site specific factors that represent rainfall erosivity (R), soil erodibility (K), soil slope (S), slope length (L), cropping or conservation management practices (C), and erosion control practices (P). The R factor describes the kinetic energy generated by the frequency and intensity of rainfall. The K factor represents the susceptibility of soil to erosion (i.e. soil detachment). The L and S factors represent the effect of slope length and slope steepness on erosion, respectively. The C factor represents the effect of plants, soil cover, soil biomass and soil disturbing activities on erosion including crop rotations, tillage and residue practices. Finally, the P factor represents the effects of conservation practices such as contour farming, strip cropping and terraces.

The USLE equation for estimating average annual soil erosion is:

A = RKLSCP

- A = average annual soil loss in t/a (tons per acre)
- \mathbf{R} = rainfall erosivity index
- $\mathbf{K} = \text{soil erodibility factor}$
- LS = topographic factor L is for slope length & S is for slope
- **C** = cropping factor
- **P** = conservation practice factor

Evaluating the factors in USLE:

R - the rainfall erosivity index

Most appropriately called the erosivity index, it is a statistic calculated from the annual summation of rainfall energy in every storm (correlates with raindrop size) times its maximum 30 - minute intensity. As expected, it varies geographically.

K - the soil erodibility factor

This factor quantifies the cohesive or bonding character of a soil type and its resistance to dislodging and transport due to raindrop impact and overland flow.

LS - the topographic factor

Steeper slopes produce higher overland flow velocities. Longer slopes accumulate runoff from larger areas and also result in higher flow velocities. Thus, both result in increased erosion potential, but in a non - linear manner. For convenience L and S are frequently lumped into a single term.

C - the crop management factor

This factor is the ratio of soil loss from land cropped under specified conditions to corresponding loss under tilled, continuous fallow conditions. The most computationally complicated of USLE factors, it incorporates effects of: tillage management (dates and types), crops, seasonal erosivity index distribution, cropping history (rotation), and crop yield level (organic matter production potential).

P - the conservation practice factor

Practices included in this term are contouring, strip cropping (alternate crops on a given slope established on the contour), and terracing.

Appropriate values for the USLE parameters should be provided for each of the management activities. Literature values are available, but site-specific values should be used when available. Estimates of the USLE parameters and thus the soil erosion as computed from the USLE equation are provided by the Natural Resources Conservation Service's National Resources Inventory (NRI) 1994. The NRI database contains information of the status, condition and trend of soil, water and related resources collected from approximately 800,000 sampling points across the country.

Soil loss from gully erosion occurs in sloping areas mainly as a result of natural processes. Farming

practices such as livestock grazing exacerbates it. The deepening of rill erosion causes gullies. The amount of sediment yield from gully erosion is generally less than that caused by sheet and rill erosion. There are no exact methods or equations to quantify gully erosion, but Dunne and Leopold (1978) provide percent sediment yield estimates for various regions of the country. In a small grazed catchment near Santa Fe, New Mexico, gully erosion was found to contribute only 1.4 percent of the total sediment load as compared to sheet erosion and rain splash, which contributed 97.8 percent of the sediment load. Dunne and Leopold report that in most cases (nationally and internationally) gully erosion contributes less than 30 percent of the total sediment load, although the percentages have ranged from 0 percent to 89 percent contribution (Dunne and Leopold, 1978).

The soil losses from the erosion processes described above are localized losses and not the total amount of sediment that reaches the stream. The fraction of the soil losses in the field that is eventually delivered to the stream depends on several factors, which include the distance of the source area from the stream, the size of the drainage area, and the intensity and frequency of rainfall. Soil losses along the riparian areas are expected to be delivered into the stream with runoff-producing rainfall.

14.1.2. Sediment Analysis

The watershed sediment loads for selected watersheds are determined using the USLE and available GIS coverage. The sediment analysis produces the following outputs:

- Source Erosion and Sediment
- Stream Grid
- Sediment Delivery on Stream

The sediment analysis is also able to evaluate default scenarios by, for example, changing land uses and BMPs. The following are some of the parameters that may be altered:

- C and P Lookup values
- Land Use Change Layer
- BMP Layers
- Add/Delete Roads
- Create Road Control Structure Layer

The sediment analysis can be run for a single watershed or multiple watersheds. For TMDL development purposes the basic sediment analysis was used for developing relative impacts. Other applications used in developing the TMDL include the evaluation of the effectiveness of BMPs and development of implementation plans.

14.1.3. Sediment Modeling Methodology

The watersheds of interest are first delineated. The stream grid for each delineated watershed, based on the Digital Elevation Maps (DEM) data, is created so that the stream matches the elevation (i.e., the stream corresponds to the lower elevations in the watershed). The system uses this threshold to determine whether a particular grid cell corresponds to a stream. Grid cells having flow accumulation values higher than the threshold will be considered as part of the stream network. The RF3 stream network is used as a reference or basis of comparison to obtain the desired stream density. A stream grid corresponding to the stream network that has fifty 30 by 30 meter headwater cells is the default.

For each 30 by 30 meter grid cell the potential erosion based on USLE and potential sediment delivery to the stream network is estimated. The potential erosion from each cell is calculated using the USLE and the sediment delivery to the stream network can be calculated using one of four available sediment delivery equations.

(1) Distance-based equation 1 (Sun and McNulty 1988)

$$Md = M * (1 - 0.97 * D / L),$$

$$L = 5.1 + 1.79 * M,$$

Where Md is the mass moved from each cell to the closest stream network (US tons/acre/yr);

D (feet) is the least cost distance from a cell to the nearest stream network; and

L (feet) is the maximum distance that sediment with mass M (US ton) may travel.

(2) Distance-based equation 2 (Yagow et al. 1998)

$$DR = \exp(-0.4233 * L * Sf),$$

$$Sf = exp(-16.1 * (r/L + 0.057)) - 0.6,$$

Where DR is the sediment delivery ration;

L is the distance to stream in meters and

r is the relief to stream in meters.

(3) Area-based equation (converted from a curve from National Engineering Handbook by Soil

Conservation Service 1983

$$DR = 0.417762 * A (-0.134958) - 0.127097,$$

$$DR <= 1.0,$$

Where DR is the sediment delivery ratio and

A is area in square miles;

(4) WEPP-based regression equation (L.W.Swift, Jr.,2000)

Z=0.9004-0.1341*X-0.0465*X^2+0.00749*X^3-0.0399*Y+0.0144*Y^2+0.00308*Y^3,

X>0,Y>0,

Where Z is percent of source sediment passing to next grid cell,

X is cumulative distance downslope,

Y is percent slope in grid cell.

The sediment analysis provides the calculations for six new parameters.

- Source Erosion estimated erosion from each grid cell due to the land cover
- Road Erosion estimated erosion from each grid cell representing a road
- Composite Erosion composite of the source and road erosion layers
- Source Sediment estimated fraction of the soil erosion from each grid cell that reaches the stream (sediment delivery)
- Road Sediment estimated fraction of the road erosion from each grid cell that reaches the stream
- Composite Sediment composite of the source and erosion sediment layers

The sediment delivery can be calculated based on the composite sediment, road sediment, or source sediment layer. The sources of sediment by each land use type is determined showing the types of land use, the acres of each type of land use, and the tons of sediment estimated to be generated from each land use. The information and estimates developed using this methodology were summarized in Tables 1 through 5 in Section 5.

14.1.4. Sediment Analysis Inputs

Before conducting a sediment analysis, a number of data layers must be available. These include the following:

- DEM (grid) The DEM layers that come with the WCS distribution system are shape files
 and are of coarse resolution (300 m x 300 m). The user needs to import a DEM grid layer.

 A higher resolution DEM grid layer (30m x 30 m) was downloaded from USGS web site
 or from a state's GIS data clearinghouse
- Road The road layer is needed as a shape file and requires additional attributes such as
 C (road type), P (road practice) and ditch (value of either 3 or 4, indicating presence or
 absence of side ditch, respectively). If these attributes are not provided, the Sediment Tool
 automatically assigns default values of road type 2 (secondary paved roads) ditch 3 (with
 ditch) and road practice 1 (no practices).
- Soil The SSURGO (1:24k) soil data may be imported into the WCS project if higher-resolution soil data is required for the estimation of potential erosion. If the SSURGO soil database not available, the system uses the STATSGO Soil data (1:250k) by default.
- The Multi-Resolution Land use Classification (MRLC) data are also used.
- Rainfall erosivity index is either provides based on a rainfall index of the USA or can be calculated based on precipitation data.

The Universal Soil Loss Equation (USLE) R, K, LS, C, and P factors are calculated from the above data as follows:

A = RKLSCP

- A = average annual soil loss in t/a (tons per acre) is calculated.
- \bullet **R** = rainfall erosivity index is provide based on a rainfall index of the USA.
- **K** = soil erodibility factor calculated based on soil types.

- LS = topographic factor L is for slope length set at 30 meters and S is for slope
 calculated based on the 30 meter DEM data. Presently a watershed average LS
 term is used.
- C = cropping factor or land use factor.
- P =conservation practice factor or BMP implementation.

14.1.5. Sediment Load Development Methodology

For each watershed of interest, the "existing" long-term sediment loading is estimated via the USLE sediment analysis, using default parameters and estimated C and P values. The USLE is designed as a method to predict average annual soil loss caused by sheet and rill erosion. While it can estimate long - term annual soil loss and guide on proper cropping, management, and conservation practices, it cannot be applied to a specific year or a specific storm.

The resultant sediment load calculation for each watershed is therefore expressed as a long-term annual soil loss expressed in tons per year calculated for the R - the rainfall erosivity index, a statistic calculated from the annual summation of rainfall energy in every storm (correlates with raindrop size) times its maximum 30 - minute intensity.

The watershed sediment load target is based on the long - term annual soil loss expressed in tons per year calculated for relatively unimpacted watershed with demonstrated healthy biology and habitat. For the initial sediment load development consistent default parameters and inputs are used for each watershed. These include the MRLC land use data, the USGS DEM data, STASTGO soil information and watershed average C and P values for each land use type.