GEOLOGIC AND MINERAL RESOURCE MAP INDEX OF GEORGIA

by

David E. Lawton and Martha G. Pierce

Department of Natural Resources
Joe D. Tanner, Commissioner
Environmental Protection Division
J. Leonard Ledbetter, Director
Georgia Geologic Survey
William H. McLemore, State Geologist

1981
(Second Printing)

(First Printing: Department of Mines, Mining and Geology, 1972)
Introduction

The Geologic and Mineral Resource Map Index of Georgia has been prepared to assist those persons requiring geologic information about the State of Georgia. This index, when used in conjunction with the Annotated Bibliography of Georgia Geology through 1959, Georgia Geological Survey Bulletin 79 and its supplement (Bulletin 79-A, in press) will supply much of the data necessary for planning geologic and geology-related projects.

Acknowledgements

The authors wish to acknowledge previous workers in the preparation of geologic map indices of the State. Leona Boardman, et al, of the U. S. Geological Survey, published a partial index in 1949. For several years, S. M. Pickering, Jr., and J. W. Smith maintained a wall map at the Georgia Geological Survey, showing geologic mapping in the State. It was this map which prompted the preparation of the present index. A modified version of the wall map maintained by Pickering and Smith was published by V. J. Hurst in 1970, in Studies of Appalachian Geology, Central and Southern, by G. W. Fisher, et al.

Explanation

The individual sheets of this index are arranged by the decade in which the geologic maps were published, or in the case of unpublished works, the year in which the mapping was done. This arrangement was considered necessary to enable all of the maps to be shown in a relatively uncluttered manner. The sheet showing geologic mapping for each decade is followed by a sheet showing mineral resource mapping for that decade. (The decades 1951-1960 and 1961-1970 are divided into five year periods due to the large number of maps plotted. There is, however, only one mineral resource map for each decade.) The distinction between geologic mapping and mineral resource mapping was made rather arbitrarily at times, depending on the amount and type of previous work in the same area. Geologic and related maps are outlined in red; mineral resource maps are shown by blue outline. Geochemical, geophysical, and tectonic maps are shown on the geologic index sheet and are marked by an asterisk in the references.

To determine all the geologic or mineral resource mapping available for a particular area, it is necessary to locate the area on each of the indices in this publication. That is, an area must be checked for all decades. Map references are listed on the page facing each index sheet.

It is the desire of the authors to make this index as complete and up-to-date as possible. A blank map is included at the end of this circular in the hope that omissions, noted by users of this work, will be marked on this sheet, referenced, and sent to the Director, Georgia Department of Mines, Mining and Geology, 19 Hunter Street, SW, Atlanta, Georgia 30334. In addition, the blank map should be used to indicate new maps, published or unpublished, which are completed during the year. At the time of this printing, it is planned that up-date sheets will be prepared yearly, and will be available on request.

5. _____, 1895, The geological relations of the southern Appalachian bauxite deposits: AIME Trans., v. 24, pp. 243-254, 1:250,000.

 _____, 1884, also in Contributions to the Tertiary geology and paleontology of the United States, pp. 1-40, Philadelphia.

1. **Blake, W. P. and Jackson, C. T., 1859, The gold placers of the vicinity of Dahlonega, Georgia:** np, Boston, 11 p.
 a. Map of the gold belt in Lumpkin Co., Georgia, Approx. 1:100,000.
 b. Map of the gold placers in the vicinity of Dahlonega, Georgia, Approx. 1:16,000.

2. ____ , 1860, Report upon the property of the mining company called the “Auraria Mines of Georgia” situated in Lumpkin Co., Georgia: np, Boston, 63 p., Approx. 1:8,000.

 a. Geological map of North Georgia.
 b. Sketch map of Laurel Mine.
 Also see Hunter and Rankin, 1941, no. 8-Min. Res.; Pratt, 1901, no. 6-Min. Res.

 a. 1:63,360
 b. Approx. 1:1,200,000

 b. Watson, T. L., 1904, The yellow-ocher deposits of the Cartersville district, Bartow County, Georgia: AIME Trans., v. 34, pp. 643-666.

 Preliminary map of Dahlonega District, Georgia by Arthur Keith, 1:72,000.

 Modified after Hayes, 1890-1895, no. 6-Geol.

 ———, 1906, Phytogeographical sketch of the Altamaha grit region of the Coastal Plain of Georgia: Ph. D. Dissertation, Columbia Univ. (unpub.).

 a. Map showing location of peridotite rocks and corundum localities of North Carolina and Georgia.
 b. Laurel Ck. Mine
 Also see Hunter and Rankin, 1941, no. 8-Min. Res.; King, 1894, no. 4-Min. Res.

 a. Northwest Georgia
 b. Coastal Plain

 a. Map showing the distribution of the granites and gneisses of Georgia, Approx. 1:1,800,000.
 b. Map of the Dekalb-Rockdale-Gwinnett granite and granite-gneiss area, 1:300,000.

 a. Manganese ore distribution in Cartersville district, Approx. 1:1,000,000.
 b. Map of Cave Spring District by Watson, based on Rome Folio, Approx. 1:1,000,000.
 c. Geol. Map of Tunnel Hill District by Watson, based on Ringgold Folio, Approx. 1:1,000,000.

 Revised from Watson, 1902, no. 9-Min. Res.

STATEWIDE MINERAL RESOURCE MAPS

Georgia Department of Agriculture, 1901.

2. Cooke, C. W. and Shearer, H. K., 1919, Deposits of Claiborne and Jackson Age in Georgia: U. S. G. S. PP 120-C, pp. 41-81, 1:1,000,000.

 Map compiled from U. S. G. S. Folios (Ft. Payne, Ringgold, and Rome) and author's field notes.

 Also see Veatch and Stephenson, 1911, no. 8-Geol.

 Also see Stephenson and Veatch, 1915, no. 7-Geol.

 Map by Veatch, Stephenson, and Vaughan, 1915, 1:1,000,000.

 a. Map II, Rockmart District

 b. Map III, Cartersville and Fairmont Slate District

1921 - 1930
GEOLOGIC AND RELATED MAPS
References

 Also see Fairley, 1965, no. 10-Geol.

 Map by Vaughan, et al.
1. Central of Georgia Railway, 1923, Map of kaolin, refractory clay, and bauxite deposits of the western portion of Washington County, Georgia: Approx. 1:185,000.

 a. Gordon County, Approx. 1:24,000.
 b. Fannin and Gilmer Counties, Approx. 1:1,800,000.
 c. Cherokee County, 1:31,680.

STATEWIDE MINERAL RESOURCE MAPS

1931 - 1940
GEOLOGIC AND RELATED MAPS
References

1. Cooke, C. W. and Munyan, A. C., 1938, Stratigraphy
 of the Coastal Plain of Georgia: AAPG Bull., v. 22,
 Pt. 2, no. 7, pp. 789-793, Approx. 1:4,500,000.

 Warm Springs of Georgia, their geologic relations
 and origins, a summary report: U. S. G. S.

3. Moneymaker, B. C., 1938, Great Smoky Forma-
 tion in Tennessee and North Carolina: Tenn. Acad.
 Science Jour., v. 13, no. 4, pp. 283-295, 1:750,000.

4. Smith, R. W., 1931, Shales and brick clays of
 1:250,000.

STATEWIDE GEOLOGIC AND RELATED MAPS

Stose, G. W., et al, 1939, Geologic map of
Georgia: Ga. Geol. Surv. and U. S. G. S.,
1:500,000.

—— and Ljungstedt, D. A., 1932,
(reprinted 1960), U. S. G. S. Geologic map
of the United States, 1:2,500,000.

Revised and reprinted in Pardee, J. T.
and Park, C. F., 1948, Gold deposits
of the Southeastern Piedmont,
1931 - 1940

MINERAL RESOURCE MAPS

References

1. Crickmay, G. W., 1932, Mining districts of the eastern states; ore deposits of the Cartersville district, Georgia: 16th International Geologic Congress, Guidebook no. 2, pp. 126-139.

 Not seen.

 a. North and west of Emerson, 1:31,680.

 b. New Riverside and Bertha Mines, 1:24,000.

 c. Dobbins Manganese Mine and vicinity, 1:21,000.

 d. Manganese Mines of Aubrey area, 1:30,000.

 ———, 1941, Structure and ore deposition at Cartersville, Georgia: AIME Trans., v. 144, pp. 276-293.

 ———, 1946, U. S. G. S. Open Files.

 ———, 1938, The geology of the region around Stone Mountain, Georgia: Ph. D. Dissertation, Univ. of Colorado (unpub.), 1:24,000.

 a. Habersham and Rabun Cos., kyanite, 1:160,000.

Also see Carter, R. W. and Herrick, S. M., 1951, no. 6-Geol.

Also see Hooker, V. E. and Duwall, W. L., 1966, Stresses in rock outcrops near Atlanta, Georgia: U. S. B. M. R 6800, 18 p.

15. ______ and Sohn, I. G., 1946, Geology and topographic map of Parrott Springs barite mine, Cartersville district, Bartow County, Georgia: U. S. G. S. Open Files, 1:600.

A portion reprinted in Pierson, R. E., 1951, Possible stratigraphic relationships of the Sanderson Limestone to the Ocala Limestone of west Georgia: M. S. Thesis, Emory Univ. (unpub.).

A portion reprinted in Logan, T. F., Jr., 1968, Pleistocene stratigraphy in Glynn and McIntosh Counties, Georgia: M. S. Thesis, University of Georgia (unpub.).

b. Lode 301 mine, Cherokee County, 1:1,200.

c. Ken Mori mine, Dawson County, 1:1,200.

d. Barlow mine, Lumpkin County, 1:1,200.

e. Elowah mine, Dawson and Lumpkin, 1:1,200.

f. Findley Ridge, Lumpkin County, 1:6,000.

g. Findley mine, Lumpkin County, 1:1,200.

h. White County mine, 1:1,200.

a. Tate quadrangle, 1:125,000.

b. Blue Ridge, 1:100,000.

c. Mineral Bluff, 1:100,000.

d. Coles Crossing, 1:100,000.

a. Wilkinson County, 1:63,360.

b. Big Sandy Creek, 1:40,000.

c. Commissioner Creek, 1:40,000.

STATEWIDE GEOLOGIC AND RELATED MAPS

American Association of Petroleum Geologists, 1944, Tectonic map of the United States: 1:2,500,000.

 e. Amphlett mine, Heinrich & Lemke, 1:500.
See also Heinrich, E. W. and Lemke, R. W., 1944, Georgia mica spots: U. S. G. S. Open File.

 a. Mica deposits of Upson County, 1:200,000.
 b. Mica deposits of Monroe and Lamar Cos., 1:450,000.
 c. Mica mines and prospects southwest of Holly Springs, Cherokee Co., 1:20,000.
 d. Mica mines and prospects in Pickens and north Cherokee Cos., 1:40,000.
 e. General sheet mica producing areas in Lumpkin, Union, and Towns Cos., 1:3,600,000.
 f. General sheet mica producing area in Rabun Co., 1:3,600,000.
 g. General sheet mica producing area in Hart and Elbert Cos., 1:3,600,000.

 b. General location of sillimanite and massive kyanite in Towns Co., 1:1,800,000.
 c. General location of sillimanite and massive kyanite in Cherokee, Pickens, Gilmer, and Dawson Cos., 1:1,800,000.

5. Gildersleeve, Benjamin (compiler), 1946, Minerals and structural materials of Tennessee basin: TVA, TVA Reports 3, 4, and C.
 Report 3—Minerals and structural materials of the Guntersville Reservoir area.
 a. Mineral and structural material, 1:250,000.
 Report 4—Minerals and structural materials of the Tennessee River and Chickamauga Reservoir areas.
 b. Coal fields, 1:250,000.
 c. Mineral and structural materials, 1:600,000.
 d. Mineral resources, 1:500,000.

 a. 1:275,000
 b. 1:130,000
 c. 1:130,000
 d. 1:80,000
 e. 1:190,080
 f. 1:190,080

 3 maps showing kyanite, olivine, talc, mica, vermiculite, asbestos, marble, and manganite in Georgia, 1:633,800.

Reproduced in Renschaw, R. W., 1951, Pennsylvanian sediments in northwest Georgia: M. S. Thesis, Emory Univ. (unpub.).

11. McKeeley, V. E. and Baisley, J. R., 1948, Distribution of coastal black-sands in North Carolina, South Carolina, and Georgia, as mapped from an airplane: Econ. Geology, v. 43, pp. 518-524, 1:1,600,000.

 a. Metalliferous and barite deposits, 1:3,000,000.
 b. Known gold deposits, 1:1,000,000.

 a. Lookout Mountain, 1:55,000.
 b. Sand Mountain, 1:80,000.

STATEWIDE MINERAL RESOURCE MAPS
Manufacturers Record, 1948, Georgia, its principal raw materials and transportation facilities: Manufacturers Record, May, 1948, Approx. scale 1:180,000.

15. Holt, W. B., 1952, Geology and mineral resources of the Stone Mountain quadrangle, DeKalb County, Georgia: M. S. Thesis, Emory Univ. (unpubl.).

1951-1960

(1956-1960)

GEOLOGIC AND RELATED MAPS

References

1. Callahan, J. E., 1956, Structure of Houston Valley: M. S. Thesis, Emory University (unpub.), 1:12,000.

2. Callahan, J. E., 1959, Mineral resources of Bibb County, Georgia: Georgia Tech Project Report Engineer Experiment Station no. A496, 28 p., 1:185,000.

23. Owen, Vaux, Jr., 1956, The stratigraphy and lithology of Webster County, Georgia: M. S. Thesis, Emory Univ. (unpub.), 1:1,000,000.

27. Stuart, A. W., 1956, Dolomitic limestone and shale in the Fairmount area: Georgia Mineral Newsletter, v. 9, no. 3, pp. 85-89, 1:24,000.

28. 1956, A detailed petrographic study of the Paleozoic sediments in the area of Fairmount, Georgia: M. S. Thesis, Emory Univ. (unpub.).

29. U. S. Dept. of the Army, 1959, Terrain study of Polk and Harnett County, Georgia: Engineering Intelligence Study, EIS 211, 80 p., 1:25,000.

31. 1957, Reconnaissance survey of the Talladega series in parts of Polk and Harnett Counties, Georgia: M. S. Thesis, Cornell Univ. (unpub.), Approx. 1:30,000.

STATEWIDE GEOLOGIC AND RELATED MAPS

Thom, W. T., Jr. (compiler), 1959, Tectonic sketch map of North America: Yellowstone-Bighorn Research Assoc., 1:10,000,000.

 Mineral resource map modified from
 U. S. G. S. PP 248, pl. 1.

 Includes map by Teague and Furcron, 1948, no. 24-Geol. and Prindle, 1935, no. 7-Min. Res.

 Also see Griffiths, W. R., 1944, Wood mica mine, Hart County: U. S. G. S. Open Files, 1:240.

 a. Pl. 39, Location of mica deposits in North Georgia, 1:1,000,000.

 b. Pl. 27, Thomaston-Barnesville district mica mines and prospects, Approx. 1:250,000.

 a. Fig. 2, Samples and mines in Coastal Plain of southeastern Georgia and northeastern Florida, 1:880,000.

 b. Pl. 1, Monazite belts of the southeastern Atlantic States, Approx. 1:800,000.

STATEWIDE MINERAL RESOURCE MAPS

1. Almand, C. W., 1961, The geology of the Lamphun quadrangle, Stewart County, Georgia: M. S. Thesis, Emory Univ. (unpub.), Approx. 1:3,000,000.

6. __________, 1964, Geology and ground water resources of the Paleozoic rock area, Chattooga County, Georgia: Ga. Geol. Surv. IC 27, 14 p., 1:63,360.

17. ________ and Schleie, J. S., 1962, Octoe meta-

18. ________ and Schleie, J. S., 1962, Ocoee meta-

Includes the following three maps of the same area:

* General aeroradioactivity map of Savannah River Plant, 1:1,000,000.

Provisional geologic map of Savannah River Plant, 1:1,000,000.

* Detailed aeroradioactivity map of Savannah River Plant, 1:250,000.

41. __________, 1949, Geology of the Andersonville bauxite district, Georgia: U. S. G. S. Reports, Open File 28, 60 p., Approx. 1:20,000.

42. __________ and Clark, L. D., 1965, Bauxite in areas adjacent to and between the Springfield and Andsonville districts, Georgia: U. S. G. S. Bull. 1199-F, pp. 1-10, 1:120,000.

3. Map compiled from Fairley, W. M., Kreiner, T. L., LaForge, Lawrence, and Smith, J. W.

13. Modified from LeGrand, Furhau, and others.

20. Also see: Garrett and Hebert, 1951, no. 6-Geol. Herrick and LeGrand, 1949, no. 11-Geol.

1961-1970
MINERAL RESOURCE MAPS

References

 a. Provisional location and classification of phosphate districts, Approx. 1:3,800,000.
 b. Major areas of large granite exposures, Approx. 1:3,300,000.
 c. Major areas of clay materials in northwest Georgia, Approx. 1:1,300,000.

 Location of flat-rock granite outcrops larger than ½ acre in north Georgia, Approx. 1:2,000,000.

 a. Fall Line area
 b. Southwest Georgia

 a. Fall Line area
 b. Southwest Georgia

See Olson, 1963, no. 5 Min. Res.

 a. Map showing bauxite areas of part of the northwest Georgia district, Approx. 1:500,000.
 b. Geologic map of the Holland bauxite pits, Approx. 1:15,000.
 c. Map showing location of bauxite deposits at Summerville, Ga., Approx. 1:31,600.

STATEWIDE MINERAL RESOURCE MAPS

1961 - 1970
MINERAL RESOURCE MAPS

5. Hurst, V. J. and Long, Sumner, 1971, Geochemical Study of alluvium in the Chattahoochee-Flint area, Georgia: The Univ. of Georgia, Institute of Community and Area Development, 52 p.
 a. Geologic map of Carroll and northern Heard Counties, Georgia, Approx. 1:125,000.
 * b. Geochemical anomaly maps for copper, zinc, and lead.

Long, Sumner, 1971, Mines and Prospects of the Chattahoochee-Flint Area, Georgia: The Univ. of Georgia, Institute of Community and Area Development, 143 p.
1971 - MINERAL RESOURCE MAPS