CERAMIC AND STRUCTURAL CLAYS AND SHALES OF FLOYD COUNTY, GEORGIA

BRUCE J. O'CONNOR

COVER PHOTO: Floyd Shale (Mississippian) and clay at the former Griffin Pipe Products Co. clay pits (Smith Creek mine) approximately 5 miles west of Rome, near the Central of Georgia Railroad south of Huffaker Rd. (1 $1 / 4$ miles north of Ga. Hw. 20). This material is extensively used in the manufacture of brick and tile. (See location numbers F1.31S-10, F1.46-2, and F1.57-11 for tests on samples from this general area.)

Ceramic and structural clays and shales of FLOYD COUNTY, GEORGIA

By

Bruce J. O'Connor Senior Economic Geologist

Information Circular 68

GEORGIA DEPARTMENT OF NATURAL RESOURCES
J. Leonard Ledbetter, Commissioner

ENVIRONMENTAL PROTECTION DIVISION
Harold F. Reheis, Assistant Director

GEORGIA GEOLOGIC SURVEY
William H. McLemore, State Geologist

ATLANTA, GEORGIA
1986

TABLE OF CONTENTS

SUBJECT PAGE
Introduction 1
Acknowledgements 3
Location of Study Area 4
Explanation of Key Terms on the Ceramic Test and Analyses Forms 12

1. Absorption (\%) 13
2. App. Por. (\%) - Apparent Porosity, Percent 13
3. App. Sp. Gr. - Apparent Specific Gravity 15
4. Bloating 16
5. Bloating Test (or Quick Firing Test) 16
6. Bulk Density (or Bulk Dens.) 17
7. Color 17
8. Color (Munse11) 17
9. Compilation Map Location No. 18
10. Cone 19
ll. Drying Shrinkage 19
11. Dry Strength 20
12. Extrusion Test 20
13. Firing Range 21
14. Hardness 21
15. Hardness (Mohs') 21
16. HCl Effervescence 22
17. Linear Shrinkage, (\%) 22
18. Modulus of Rupture (MOR) 23
19. Mohs' 23
20. Molding Behavior 23
21. Munsell 23
22. "MW" face brick 23
23. PCE - Pyrometric Cone Equivalent 24
24. pH 24
25. Plasticity 25
26. Porosity, Apparent 25
27. Quick Firing 25
28. Saturation Coefficient 25
29. Shrinkage 25
30. Slaking 26
31. Slow Firing Test 26
32. Solu-Br. (Solu-Bridge) 27
33. Soluble Salts 28
34. Strength 29
35. "SW" face brick 29
36. Temp. ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$ 29
37. Water of Plasticity (\%) 29
38. Working Properties (or Workability) 30
Ceramic Tests and Analyses of Clays and Shales in
Floyd County, Georgia 31
Data Sources and References Cited 235
Page
Figure 1 Location of Floyd County Report Area 5Plate $1 \quad$ Clay and Shale Test Locations in FloydCounty .Pocket
LIST OF TABLES
Table 1 Active Clay and Shale Mines and Pits in Floyd County, Georgia. 6
Table 2 Summary of 20th Century Clay and Shale Mines and Companies in Floyd County, Georgia 7
Table 3 Generalized Summary of Stratigraphic Units in Floyd County, Northwest Georgia 9
Table 4 Abbreviations for Terms on the Ceramic Firing Test Forms.. 14

INTRODUCTION

This report presents a compilation of all available published and unpublished ceramic firing tests and related analytical data on samples from Floyd County, Georgia. It provides information on mined and/or undeveloped clays, shales and related materials; and is intended for use by geologists, engineers and members of the general public. The report should aid in the exploration for deposits of ceramic raw material with economic potential for future development. This information may also be of use to those who wish to obtain information on the potential use of particular deposits at specific locations.

Tests by the U.S. Bureau of Mines, subsequently referred to as USBM, were performed by the Norris Metallurgy Research Laboratory, Norris, Tennessee and the Tuscaloosa Research Center, Tuscaloosa, Alabama under cooperative agreements with the Georgia Geologic Survey and its predecessors (i.e., the Earth and Water Division of the Ga. Department of Natural Resources; the Department of Mines, Mining and Geology; and the Geological Survey of Georgia). Many of the firing tests were performed on samples collected by former staff members of the Georgia Geologic Survey (and its predecessors) during several uncompleted and unpublished studies. These include work by Bentley (1964), Smith (1968?) and Tadkod (1980). Additional unpublished data presented in this compilation include work by TVA (see Butts and Gildersleeve, 1948, p. 124 and 125). Published data include studies by the following authors: Spencer (1893, p. 217 to 287 ; chemical analyses only), Veatch (1909, p. 272 to 388), Smith (1931, p. 241 to 276), and Butts and Gildersleeve (1948, p. 124 and 125).

```
    Regardless of the source, all of the ceramic firing testing data
presented in this report are based on laboratory tests that are pre-
liminary in nature and will not suffice for plant or process design.
They do not preclude the use of the materials in mixes (Liles and
Heystek, 1977, p. 5).
```

The author gratefully acknowledges the help of many individuals during the preparation of this report and the work of many who contributed to the earlier, unpublished studies included here. The cooperative work of the U.S. Bureau of Mines forms the main data base of this study. During the last several years Robert D. Thomson, Chief of the Eastern Field Operations Center, Pittsburgh, Pennsylvania, was responsible for administering the funding of costs incurred by the USBM. Others in that office who helped coordinate the program were Charles T. Chislaghi and Bradford B. Williams. Since 1966 M.E. Tyrrell, H. Heystek, and A.V. Petty, Ceramic Engineers, and Kenneth J. Liles, Research Chemist, planned and supervised the test work done at the USBM Tuscaloosa Research Center in Tuscaloosa, Alabama. Prior to 1966 this test work was supervised by ceramists H. Wilson, G.S. Skinner, T.A. Klinefelter, H.P. Hamlin and M.V. Denny at the former Norris Metallurgy Research Laboratory in Norris, Tennessee. Tests by the Tennessee Valley Antharity were conducted under the supervision of H.S. Rankin and M.K. Banks at the Mineral Research Laboratory on the campus of North Carolina State College, Asheville, North Carolina, using samples collected by S.D. Broadhurst. Additional tests were conducted by professors W.C. Hansard, L. Mitchell, and J.F. Benzel at the Department of Ceramic Engineering, Georgia Institute of Technology, Atlanta, Georgia. The majority of the unpublished tests were performed on samples collected by former staff geologists of the Georgia Geologic Survey, predominantly by J.W. Smith, A.S. Furcron, R.D. Bentley, N.K. Olsen, D. Ray, M.A. Tadkod, and G. Peyton, assisted by C.W. Cressler of the U.S. Geological Survey. N.K. Olsen and C.W. Cressler also have
provided the author with valuable advice and suggestions regarding sample locations and past studies. The advice and encouragement of my colleagues on the staff of the Georgia Geologic Survey are greatly appreciated. However, the contents of this report and any errors of omission or commission therein are the sole responsibility of the author.

LOCATION OF STUDY AREA

Floyd County is located at the southwestern corner of the Valley and Ridge province of northwest Georgia (Fig. 1). Four companies are currently mining clay and shale in the county, and numerous operations have been active here in the past (Tables 1 and 2). The most abundant ceramic raw materials in the county are the shales and residual clays derived from the Floyd Shale and the Conasauga Group; however, other units such as the Rome, Red Mountain, Pennington and Gizzard Formations, as well as residual clays of the Knox Group, are locally well developed. The general nature of these and other geologic units which occur in the county are summarized on Table 3.

LOCATION OF FLOYD COUNTY REPORT AREA
(after Cressler, and others, 1976)

Active Clay and Shale Mines and Pits in Floyd County, Georgia*

[^0]TABLE 2

Summary of 20th Century Clay and Shale Mines and Companies in Floyd County, Georgia

Atlanta Brick and Tile Co. (1892?), Rome: Common brick (Furcron, 1958, p. 5).

Berry School Brick Plant (c. 1930), Rome pits: Common brick from Floyd Shale. Purchased from Romega Clay Products Co., c. 1930 (Smith, 1931, No. 5, p. 75; Butts \& Gildersleeve, 1958, No. 82). Ceramic test: Fl. 31S-5 a and b.
*Bickerstaff Clay Products Co., Inc. (Columbus, 1970), Rome pits: Brick made from Floyd Shale blended with other clay. Ceramic test: Fl. 77-1 and 80-2. 59 acres permitted.
*Chattahoochee Brick Co. (Atlanta, 1885), Rome pits: Brick made from Floyd Shale blended with other clays. Ceramic test: Fl. 31S-11 and Fl. 57-1 (Smith, 1931, No. 11, p. 94; Furcron, 1958, p. 5). (Purchased from B. M. Hood Co. ?) 14 acres permitted.

Crucial Fire Brick Company (1907), Rome plant and pits: Fire brick from bauxite and alluvial clays. Sold to Romega Clay Products Co. before 1929 (Veatch, 1909, p. 422; Smith, 1931, No. 5, p. 75).
W. S. Dickey Clay Mfg. Co. (1915), Rome plant and pits: Sewer pipe from various blends of Floyd Shale and clay. Purchased from Morrison and Trammel Brick Co., 1915, closed c. 1928? (Smith, 1931, No. 6, p. 83). Ceramic test: Fl. 31S-6.

Dixie Brick Co. (Columbus, 1957?), Rome pits: Common brick (Furcron, 1958, p. 5).

Florida Tile Co., Sikes Corp. (Florida, 1980), Shannon plant and Possum Trot Mine pit (also own former pits of Griffin Pipe Products Co.): Ceramic tile from Floyd Shale. 85 acres permitted.

Griffin Pipe Products Co. (Milledgeville, 1908), Rome pits: Sewer pipe, flue lining, fire brick and drain tile from Floyd Shale blended with other clays at Milledgeville plant, Baldwin County, Ga. Purchased from Oconee Clay Products Co. (?) closed 1980. 76 acres permitted. Ceramic test: Fl. 80-4a to d.
B. Mifflin Hood Co. (1925), Rome plant and pits: Roofing tile from Conasauga Group shales blended with alluvial clay. Purchased from Rome Brick Co., 1925. Ceramic test: F1. 31S-18a and b (Smith, 1931, No. 18, p. 112).
*Jenkins Brick Co., Atlanta Brick and Tile Division, (Alabama, 1892, Rome pits: Brick from Floyd Shale. 43 acres permitted.

TABLE 2. Sumary of 20th Century Clay and Shale Mines and Companies in Floyd County, Georgia (continued)

Morrison \& Trammel Brick Co (1906), Rome plant and pits: Building brick. Sold to W. S. Dickey in 1915. Ceramic test: Fl. 09V-8 alluvial clay (Veatch, 1909, p. 324; Smith, 1931, No. 6, p. 83).

Oconee Clay and Shale Products Co. (Milledgeville, 1929), Rome, Coosa and Bone pits: Structural and drain tile from Floyd Shale and clay blended with other clays at Milledgeville plant, Baldwin County, Ga. (Smith, 1931, No. 10, p. 93; Butts and Gildersleeve, 1948, No. 81; Furcron, 1958, p. 5). Sold to Griffin Pipe ? Ceramic test: Fl. $31 \mathrm{~S}-8$; 31S-10; 57-1 and 57-12.

Rome Brick Company (1895), Rome plant and pits: Common brick. Sold to B. M. Hood Co., 1925. Ceramic test: Fl. 31S-18 (Veatch, 1909, P. 325; Butts and Gildersleeve, 1948, No. 83?; Smith, 1931, No. 18, p. 112; Furcron, 1958, p. 5).

Romega Clay Products Co. (prior to 1929), Berry School plant and pits (Rome): Common brick and structural tile from Floyd Shale and residual clay. Acquired from Crucial (Fire) Brick Co., before 1919; sold to Berry School c. 1930 (Smith, 1931, No. 5, p. 75).

Stevens, Inc. (Stevens Pottery), Rome pits (Dean property): Sewer pipe from Floyd Shale shipped to Stevens Pottery (Baldwin County, Ga.) and blended with other clays several years before 1926 (Smith, 1931, p. 84).

NOTE:

The majority of the information for the companies listed above was taken from the Mining Directories (Circular 2, lst to 18th editions) published by the Georgia Geologic Survey and its predecessors at irregular intervals since 1937. Some additional information came from the "Georgia Surface Mining and Land Reclamation Activities" published annually since 1969 by the Georgia Surface Mined Land Reclamation Program (Environmental Protection Division, Ga, Dept. of Natural Resources). Additional sources of information were found in the references cited at the end of each entry. Uncertainty in the dates is due to incomplete records in the Survey's files.

* Active pit.

TABLE 3
Generalized Summary of Stratigraphic Units in Floyd County, Northwest Georgia

CHRONOSTRATIGRAP
UNIT
Quaternary
(and Tertiary?)

$$
\text { STRATIGRAPHIC UNITS - THICKNESS AND ROCK TYPES } 1 /
$$

* Various unnamed bodies of alluvial, colluvial and residual material. Largely clay and sand, but also, locally gravel and breccia.

Pennsylvanian	Gizzard Formation (or Group or Member) or Lookout Sandstone (or Formation) or Pottsville Formation - gray to tan shale, with interbedded siltstone, sandstone, coal and fire clay. Includes: ```Signal Point Member (or Shale) - Approx. 360 ft., shale with some coal; Warren Point Member (or Sandstone) - Approx. }140\mathrm{ ft., con- glomeratic sandstone with minor coal; and Raccoon Mtn. Member (or Formation) - Approx. }175\mathrm{ ft., shale with coal.```

Mississippian

Pennington Formation (or Shale) - Approx. 100-300 ft., gray, green and red shale. Sandstone present in middle.

Bangor Limestone - Approx. 300-480 ft., fine- to coarse-grained gray limestone with interbedded shale at top.
** Floyd Shale - Approx. $100-2000 \mathrm{ft}$. , silt and clay with some sandstone; limestone present at base. Approximate age-equivalent to Tuscambia Limestone and Monteagle Limestone.

Hartselle Formation (or Member or Sandstone) - Approx. 50-300 ft., thin- to thick-bedded sandstone.

Monteagle Limestone - Approx. 250 ft. Includes:
Golconda Formation (or Limestone) - Approx. 15-20 ft., green fissile shale containing some thin limestone; Gasper Limestone - Approx. 150 ft., gray, non-cherty limestone; and
Ste. Genevieve Limestone -Approx. 245 ft., gray, limestone.

Tuscumbia Limestone - Approx. 125 ft . Includes:
St. Louis Limestone - Approx. 125 ft., gray, very cherty limestone.

Fort Payne Formation (or Chert) - Approx. 10-125 ft., thin- to thick-bedded chert and cherty limestone. Locally includes:
*Lavender Shale Member - Approx. 0-100 ft., shale, massive mudstone and impure limestone.

TABLE 3

Generalized Summary of Stratigraphic Units in Floyd County, Northwest Georgia (continued)

CHRONOSTRATIGRAPHIC UNIT	STRATIGRAPHIC UNITS - THICKNESS AND ROCK TYPES 1/
Devonian	```Chattanooga Shale - Approx. 5-10 ft., carbonaceous, fissile Armuchee Chert - Approx. 50-150 ft., thin- to thick-bedded chert.```
Silurian	Red Mountain Formation (formerly Rockwood Formation). - Approx. 600-1200 ft., sandstone, red and green shale, with conglomerate, limestone and local hematitic iron ore.
Ordovician	```Chickamauga Group (or Limestone) - Approx. 400 ft., dominantly limestones with some dolostone and lesser shale, claystone, siltstone, sandstone, anmd bentonite clay horizons. Equivalent, in part, to the Moccasin Limestone and Bays Formation and to the Rockmart Slate and Lenoir Limestone. Includes: Maysville Formation and Trenton Limestone; Lowville-Moccasin Limestone; Lebanon Limestone; and Murfreesboro Limestone.```
Cambrian-Ordovician	```(*)Knox Group - Approx. 2000-4000 ft., dominantly cherty dolo- stone, minor limestone. Includes: Newala Limestone - Approx. }300\textrm{ft.,}\mathrm{ limestone and dolostone; Longview Limestone - Approx. }350\mathrm{ ft.; Chepultepec Dolomite - Approx. }800\textrm{ft.; and Copper Ridge Dolomite - Approx. 2500 ft.```

TABLE 3
Generalized Summary of Stratigraphic Units in Floyd County, Northwest Georgia (continued)

CHRONOSTRATIGRAPHIC UNIT	STRATIGRAPHIC UNITS - THIGKNESS AND ROCK TYPES 1/
Cambrian	** Conasauga Group (or Formation) - Approx. 1500-2000 ft., predominantly shale and limestone with minor sandstone. Includes: "Upper Unit" = Nolichucky Shale - and Maryville Limestone? -Approx. 400-1600 ft.; "Middle Unit" = Rutledge Limestone and Rogersville Shale? -Approx. 200-400 f+.; and "Lower Unit" = Pumpkin Valley Shale and Honaker Dolomite? - Approx. 300-500 ft. * Rome Formation - Approx. 500-1000 ft., shale, and interbedded sandstone, siltstone and quartzite. Shady Dolomite (or Dolostone) - Approx. 30-100 ft., cherty gray dolomite limestone with minor shale. = "Beaver Limestone" of former usage.

NOTES:

* = Some ceramic firing tests have been made on shales and clays of this unit.
(*) = Same as the above, but for residual clays only.
** $=$ Numerous firing tests have been made on this unit.
1/ Descriptions based on data in Bergenback and others, 1980; Butts and Gildersleeve, 1948; Chowns, 1972, 1977; Chowns and McKinney, 1980; Crawford, 1983; Cressler 1963, 1964 a and b , 1970, 1974; Cressler and others, 1979; Croft, 1964; Georgia Geologic Survey, 1976; Gillespie and Crawford, in press; Thomas and Cramer, 1979.

The test data and analyses which are presented here were compiled on a set of standardized forms (Ceramic Tests and Analyses) in the most concise manner consistent with the various laboratories represented. These forms are modified in large part after those used by the Pennsylvania Geological Survey (e.g., O'Neill and Barnes, 1979, 1981).

It should be noted that, although the great majority of these tests were performed by the USBM, it was decided not to reproduce their data forms directly for several reasons. First, the USBM forms contain several entries which are not essential to this project (e.g., Date received) or do not make the most efficient use of space. Second, the USBM forms have been changed several times over the span of decades covered by the present compilation. Finally, investigators from other laboratories have reported parameters which were not measured by the USBM.

The paragraphs which follow briefly describe, in alphabetical order, the more critical entries on the forms, the nature of the information included and, where possible, the various factors and implications to be considered in their interpretation. Many of the particular comments here are based on descriptive information published in the following sources. Tests by Georgia Geologic Survey authors are described in Veatch (1909, p. 50 to 64) and in Smith (1931, p. 19 to 25), while the particulars of the USBM studies are given in Klinefelter and Hamlin (1957, especially p. 5 to 41) and in Liles and Heystek (1977, especially p. 2 to 16). The discussions which follow are not intended to be exhaustive but are merely meant to remind the reader,
and potential user, of the key aspects of the information presented. Various technical texts and reports should be consulted for more detailed information (e.g., Clews, 1969; Grimshaw, 1972; Jones and Beard, 1972; Norton, 1942; Patterson and Murray, 1983). The abbreviations used on these test forms are defined in Table 4 .

1. Absorption (\%)

The absorption is a measure of the amount of water absorbed by open pores in the fired specimen and is given as a percentage of the specimen's dry weight. For slow firing tests, it is measured on fired specimens which have been boiled in water for 2 to 5 hours and then kept immersed in the water for up to 24 hours while cooling (Smith, 1931, p. 22; Klinefelter and Hamlin, 1957, p. 27-28; Liles and Heystek, 1977, p. 3). For the quick firing tests, however, the specimens are not boiled but only cooled and then immersed in water for 24 hours (Liles and Heystek, 1977, p. 4).

The absorption gives an indication of the amount of moisture which may be absorbed and subject to destructive freezing in outdoor structures. Less than 22% absorption is considered promising for slow-fired materials.
2. Appr. Por. (\%) - Apparent Porosity, Percent

The apparent porosity is a measure of the amount of open pore space in the fired sample, relative to its bulk volume, and is expressed as a percent. As in the case of absorption values, it is based on the weight and volume of the specimen which has been boiled in water for 2 to 5 hours and then kept immersed in water for several hours as it cools (Klinefelter and Hamlin, 1957, p. 27 to 28; Liles and Heystek,

TABLE 4

Abbreviations for Terms on the Ceramic Firing Test Forms

ABBREVIATIONS

```
Appr. Por. = Apparent Porosity
App. Sp. Gr. = Apparent Specific Gravity
Btw. = Bartow County
*}\textrm{C}=\mathrm{ Degrees Celsius
Ct. = Catoosa County
Cht. = Chattooga County
Dd. = Dade County
Dist. = District
DTA = Differential Thermal Analysis
E. = East
*}F= Degrees Fahrenheit
F1. = Floyd County
g/cm}\mp@subsup{}{}{3}=\mathrm{ Grams per cubic centimeter
Gdn. = Gordon County
Jab. & No. = Laboratory (name) and number (assigned in laboratory)
Lat. = Latitude
LOI = Loss on Ignition
Long. = Longitude
lb/in}2= Pounds per square inch
1b/ft }\mp@subsup{}{}{3}=\mathrm{ Pounds per cubic foot
Mry. = Murray County
N. = North
NE. = Northeast
NW. = Northwest
org. = Organic
Plk. = Polk County
S. = South
SE. = Southeast
SW. = Southwest
Sec. = Section
```

```
Table 4. Abbreviations for Terms on the Ceramic Firing Test
    Forms (continued)
\(71 / 2^{\prime}\) topo. quad. \(=7\) and \(1 / 2\) minute topographic quadrangle
Temp. = Temperature
TVA \(=\) Tennessee Valley Authority
USBM = U.S. Bureau of Mines
USGS \(=\) U.S. Geological Survey
W. = West
Wkr. = Walker County
Wf. = Whitfield County
XRD = X-ray diffraction
```

1977, p. 3). The apparent porosity is an indication of the relative resistance to damage during freezing and thawing. Less than 20% apparent porosity is considered promising for slow-fired materials (0'Neill and Barnes, 1979, p. 14, Fig. 4).
3. App. Sp. Gr. - Apparent Specific Gravity

As reported in earlier USBM studies, the apparent specific gravity is a measure of the specific gravity of that portion of the test specimen that is impervious to water. This is determined by boiling the sample in water for 2 hours and soaking it in water overnight or 24 hours (Klinefelter and Hamlin, 1957, p. 27 to 28). These data were replaced by bulk density and apparent porosity measurements after the USBM moved its laboratories from Norris, Tennessee to Tuscaloosa, Alabama in 1965.
4. Bloating

Bloating is the term given to the process in which clay or shale fragments expand (commonly two or more times their original volume) during rapid firing. It results from the entrapment of gases which are released from the minerals during firing but which do not escape from the body of the host fragment due to the viscosity of the host at that temperature. Bloating is a desirable and essential property for the production of expanded lightweight aggregate where an artificial pumice or scoria is produced. Expanded lightweight aggregate has the advantages of light weight and high strength compared to conventional crushed stone aggregate. Bloating is not desirable, however, in making other structural clay products such as brick, tile and sewer pipe where the dimensional characteristics must be carefully controlled. In these cases bloating is extremely deleterious since it leads to variable and uncontrollable warping, expansion and general disruption of the fired clay body (Klinefelter and Hamlin, 1957, p. 39-4l).
5. Bloating Test (or Qui.ck Firing Test)

The Bloating Test refers to the process of rapidly firing (or "burning") the raw sample in a pre-heated furnace or kiln to determine its bloating characteristics for possible use as a lightweight aggregate. Although specific details of the different laboratory methods vary, all use several fragments of the dried clay or shale placed in a refractory plaque (or "boat") which in turn is placed in the pre-heated furnace for 15 minutes (Klinefelter and Hamlin, 1957, p. 4l; Liles and Heystek, 1977, p. 4).

6. Bulk Density (or Bulk Dens.)

The bulk density is a measure of the overall density of the fired specimen based on its dry weight divided by its volume (including pores). Determinations are the same for slow firing and quick firing test samples, although for the latter the results are given in pounds per cubic inch as well as grams per cubic centimeter units (Klinefelter and Hamlin, 1957, p. 27 to 28 and 41; Liles and Heystek, 1977, p. 3 and 4). If quick-fired material yields a bulk density of less than $62.4 \mathrm{lb} / \mathrm{ft} 3$ (or if the material floats in water), it is considered promising for lightweight aggregate (K. Liles, oral communication, 1984).
7. Color

The color of the unfired material, unless otherwise stated, represents the crushed and ground clay or shale. In most cases this is given for descriptive purposes only since it is generally of no practical importance for ceramic applications (only the fired color is significant). Here only broad descriptive terms such as light-brown, cream, gray, tan, etc. are used. Fired colors are more critical and therefore more specific descriptive terms and phrases are used (Klinefelter and Hamlin, 1957, p. 18 and 19). In many cases the Munsell color is given for a precise description (see discussion below).

8. Color (Munsell)

This is a system of color classification based on hue, value (or brightness) and chroma (or purity) as applied to the fired samples in this compilation. It was used by Smith (1931, p. 23-25) and by the

USBM since the early 1970's (Liles and Heystek, 1977, p. 3; Liles, oral communication, 1982). In all other cases the fired color was estimated visually.

9. Compilation Map Location No.

This number or code was assigned by the author to provide a systematic designation to be used in plotting sample locations on the base maps as shown by the typical example below.

The map location number F1. 31S-7a is derived from the county name (e.g., Fl. for Floyd County), the year the tests were performed (e.g., 31 for 1931) plus the last initial of the author for major published sources (e.g., S for Smith), followed by a sequence number assigned in chronological order or sequential order for published data. (The only exceptions to this are the tests reported in smith, 1931, wherein the sequence number of the present report is the same as the "Map location No." of Smith.) Each map location number represents a

Abstract

specific location, or area, sampled at a particular time. In cases where several separate samples were collected from a relatively restricted area, such as an individual property, such samples are designated $a, b, c, e t c$ Different map location numbers have been assigned to samples which were collected from the same general locality, such as a pit or quarry, but which were collected by different investigators at different times.

10. Cone

Standard pyrometric cones, or cones, are a pyrometric measure of firing temperature and time in the kiln. They are small, three-sided pyramids made of ceramic materials compounded in a series, so as to soften or deform in progression with increasing temperature and/or time of heating. Thus, they do not measure a specific temperature, but rather the combined effect of temperature, time, and other conditions of the firing treatment. The entire series of cones ranges from about $1112^{\circ} \mathrm{F}\left(600^{\circ} \mathrm{C}\right)$ to about $3632^{\circ} \mathrm{F}\left(2000^{\circ} \mathrm{C}\right)$ with an average interval of about $20^{\circ} \mathrm{C}$ between, cones for a constant, slow rate of heating (Klinefelter and Hamlin, 1957, p. 29). For the past several decades the use of these cones has been limited to the Pyrometric Cone Equivalent (PCE) test (Liles and Heystek, 1977, p. 16). However, all of the ceramic firing tests reported by Veatch (1909) and Smith (1931) as well as some of the earliest USBM tests report firing conditions in terms of the standard cone numbers.
11. Drying Shrinkage

The drying shrinkage is a measure of the relative amount of shrinkage (in percent) which the tempered and molded material undergoes
upon drying. Although there are a variety of ways by which this can be measured, in this report the shrinkage values represent the percent linear shrinkage based on the linear distance measured between two reference marks or lines imprinted on the plastic specimen before drying. Even though the methods have varied in detail, the drying is usually accomplished in two stages: first, by air drying at room temperature (usually for 24 hours) and second, by drying in an oven followed by cooling to room temperature in a desiccator (Klinefelter and Hamlin, 1957, p. 30-31; Liles and Heystek, 1977, p. 3). In most cases the heating was at $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$ for 24 hours; however, studies by Smith (1931, p. 20 and 21) employed $167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$ for 5 hours followed by $230^{\circ} \mathrm{F}\left(110^{\circ} \mathrm{C}\right)$ for 3 hours.

12. Dry Strength

The dry strength (or green strength) is a measure of the apparent strength of the clay or shale after it has been molded and dried. Unless otherwise indicated, it represents the tranverse, or crossbreaking, strength as opposed to either tensile strength or compressive strength. For the great majority of cases only the approximate dry strength is indicated as determined by visual inspection, using such terms as low, fair, good, or high (Klinefelter and Hamlin, 1957, p. 32-33; Liles and Heystek, 1977, p. 2). Smith (1931, p. 12-13) reports a quantitative measurement of this strength using the modulus oE rupture (MOR) expressed in units of pounds per square inch (psi).

13. Extrusion Test

More extensive tests are sometimes made on clays and shales which
show good plasticity and long firing range in the preliminary test. In the Extrusion Test several bars are formed using a de-airing extrusion machine (i.e., one which operates with a vacuum to remove all possible air pockets). These bars are fired and tested for shrinkage, strength (modulus of rupture) and water saturation coefficient (Liles and Heystek, 1977, p. 8).

14. Firing Range

The term firing range indicates the temperature interval over which the material shows favorable firing characteristics. For slowfired materials such desirable qualities include: a) good strength or hardness; b) good color; c) low shrinkage; d) low absorption; and e) low porosity. For quick-fired materials these include: a) good pore structure; b) low absorption; and c) low bulk density. For slow-firing and quick-firing tests the firing range should be at least $100^{\circ} \mathrm{F}\left(55^{\circ} \mathrm{C}\right)$ to be considered promising (0^{\prime} Neill and Barnes, 1979, p. 15-18).

15. Hardness

The hardness, as measured on fired materials, indicates the resistance to abrasion or scratching. It is designated either in verbal, descriptive terms or in numerical terms using Mohs' hardness (Liles and Heystek, 1977, p. 3). It is used as an indication of the strength of the fired materials. Smith (1931), however, measured the fired strength with the modulus of rupture.
16. Hardness (Mohs')

The hardness of fired specimens using the Mohs' scale of hardness
is currently used by the USBM as a numerical measure of the fired bodies' strength (Liles and Heystek, 1977, p. 3). The values correspond to the hardness of the following reference minerals:

Mohs' Hardness No.
1
2
3
4
5
6
7
8
9
10

Reference Minerals
Talc
Gypsum
Calcite
Fluorite
Apatite
Orthoclase
Quartz
Topaz
Corundum
Diamond

A Mohs' hardness greater than 3 is considered promising for slowfired materials.

17. HC1 Effervescence

The effervescence in HCl is visually determined as none, slight or high based on the reaction of 10 ml of concentrated hydrochloric acid added to a slurry of 10 grams powdered clay or shale (minus 20 mesh) in 100 ml of water (Klinefelter and Hamlin, 1957, p. 17; Liles and Heystek, 1977, p. 4). This test gives a general indication of the amount of calcium carbonate present in the sample. An appreciable effervescence could be an indication of potential problems with lime pops and/or frothing of slow-fired ceramic products.
18. Linear Shrinkage, (\%)

The term linear shrinkage represents the relative shrinkage of the clay body after firing. In most cases it represents the percent total linear shrinkage from the plastic state and is based on measurements
between a pair of standard reference marks imprinted just after molding (K1inefelter and Hamlin, 1957, p. 30-32; Liles and Heystek, 1977, p. 3). (Also see the discussion under Drying Shrinkage.) Smith (1931, p. 22) gives the shrinkage relative to both the dry, or green, state (under the column headed Dry) as well as the plastic state (under the column headed Plastic). A total shrinkage of 10% or less is considered promising for slow-fired materials.
19. Modulus of Rupture (MOR)

The modulus of rupture is a measure of the strength of materials (for crossbreaking or transverse strength in this compilation) based on the breakage force, the distance over which the force was applied and the width and thickness of the sample. The MOR is expressed in psi units (pounds per square inch) for the limited MOR data reported here (determined by Smith, 1931, p. 21 and 23).
20. Mohs ${ }^{\prime}$

See Hardness (Mohs').
21. Molding Behavior

See Working Properties.
22. Munsel1

See Color (Munsell).
23. "MW" face brick
"MW" stands for moderate weather conditions. This is a grade of brick suitable for use under conditions where a moderate, non-uniform
degree of frost action is probable (Klinefelter and Hamlin, 1957, p. 36 and 37; ASTM Annual Book of Standards, 1974). (Also see "SW" face brick.)
24. PCE - Pyrometric Cone Equivalent

The PCE test measures the relative refractoriness, or temperature resistance, of the clay or shale; it is indicated in terms of standard pyrometric cones. The value given is the number of the standard pyrometric cone which softens and sags (or falls) at the same temperature as a cone made from the clay or shale being studied. These tests are usually only made on refractory materials which show favorable potential in the preliminary slow firing tests (i.e., high absorption, low shrinkage, and light fired color). The results are usually given for the upper temperature range Cone $12\left(1337^{\circ} \mathrm{C} ; 2439^{\circ} \mathrm{F}\right.$) to Cone 42 ($2015^{\circ} \mathrm{C}$; $3659^{\circ} \mathrm{F}$) where the temperature equivalents are based on a heating rate of $150^{\circ} \mathrm{C}\left(270^{\circ} \mathrm{F}\right)$ per hour. With increasing temperature resistance the sample is designated as either a low-duty, medium-duty, high-duty, or super-duty fire clay (Klinefelter and Hamlin, 1957, p. 29-30 and 57-58; Liles and Heystek, 1977, p. 16).
25. pH

The pH is a measure of the relative acidity or alkalinity with values ranging from 0 to 14. (A pH of 7 is neutral. Values greater than this are alkaline whereas those which are less than 7 are acid.) Most of the ceramic tests by the USBM presented here show pH values as determined on the crushed and powdered raw material (in a water slurry) prior to firing (Klinefelter and Hamlin, 1957, p. 28; Liles and Heystek, 1977, p. 4).

Strongly acid or alkaline pH values may give some indication of potential problems with efflorescence and scum due to water-soluble salts in the clay. Unfortunately, no simple and direct interpretation is possible from the pH data alone. The best method for determining these salts is through direct chemical analysis as described under Soluble Salts. (Also see Solu-Br.)
26. Plasticity

See Working Properties.
27. Porosity, Apparent

See App. Por.
28. Quick Firing

See Bloating Test.
29. Saturation Coefficient

The saturation coefficient is determined only for specimens which have undergone the more extensive Extrusion Test. It is determined by submerging the fired specimen in cool water for 24 hours, followed by submerging the specimen in boiling water for 5 hours. The saturation coefficient is found by dividing the percent of water absorbed after boiling into the percent of water absorbed after the 24 -hour submergence (Liles and Heystek, 1977, p. 8).
30. Shrinkage

See Drying Shrinkage and Linear Shrinkage.
31. Slaking

See Working Properties.
32. Slow Firing Test

Slow Firing Test refers to the process of firing ("burning") the dried specimen in a laboratory furnace or kiln. Although specific details of the different laboratory methods vary, all specimens are started at room temperature and are slowly heated to the desired temperature over a specific interval of time.

The majority of the slow firing tests by the USBM reported here were made using 15 -minute draw trials. In this method a set of molded and dried test specimens are slowly fired in the kiln or furnace. The temperature is gradually raised to $1800^{\circ} \mathrm{F}\left(982^{\circ} \mathrm{C}\right)$ over a period of 3 to 4 hours (to avoid disintegration of the specimen as the chemically combined water is released) and the temperature is held constant for about 15 minutes. One specimen is removed from the kiln (a draw trial) and the temperature is raised to the next level (usually in intervals of $100^{\circ} \mathrm{F}$). At each interval the temperature is again held constant for a 15 -minute soak and then one specimen is withdrawn. This process is repeated until the final temperature is achieved (usually 2300 or $2400^{\circ} \mathrm{F} ; 1260$ or $1316^{\circ} \mathrm{C}$) - see Klinefelter and Hamlin (1957, p. 19 and 30). The disadvantage of this draw trial method is that it tends to underfire the specimens, compared to the industrial process, since they are soaked for a relatively short time and quickly cooled by removal from the kiln.

Since the early 1970^{\prime} s the USBM has abandoned the draw trials and has adopted a method which more closely resembles the conditions of
commercial manufacture. As described by Liles and Heystek (1977, p. 2 and 3), one of the test specimens is slowly fired, over 24 hours, to $1832^{\circ} \mathrm{F}\left(1000^{\circ} \mathrm{C}\right)$, where it is held for a one-hour soak. The kiln is then turned off, but the specimen remains in the kiln as it slowly cools. (This gives a much closer approximation of most commercial firing processes.) This is subsequently repeated, one specimen at a time, for successive $50^{\circ} \mathrm{C}$ intervals usually up to $2282^{\circ} \mathrm{F}\left(1250^{\circ} \mathrm{C}\right)$. Unfortunately, only a relatively small part of the current data set is represented by USBM tests using this newer method.

The firing test methods used by Smith (1931, p. 21 and 22) are somewhat intermediate to the two methods described above. First, the specimens were slowly fired from 200 to $1200^{\circ} \mathrm{F}\left(93\right.$ to $\left.649^{\circ} \mathrm{C}\right)$ over a period of 11 hours. The temperature was subsequently increased at a rate of $200^{\circ} \mathrm{F}$ per hour for approximately 4 hours followed by $100^{\circ} \mathrm{F}$ per hour until final temperature conditions were reached. At these later stages firing conditions were monitored using standard pyrometric cones in the kiln. The maximum firing temperature was determined from observed pyronetric cone behavior. This temperature was based on the temperature equivalent to 2 cones below the desired final cone. The kiln temperature was then held constant until the desired cone soaked down. Test specimens were then removed from the kiln and allowed to cool. Smith's firings averaged about 17 hours in the kiln and all specimens were fired to cones $06,04,02,1,3$ and 5 wherever possible. No specific information is available on the methods employed by Veatch (1909) or the unpublished data from TVA or Georgia Tech.
33. Solu-Br. (Solu-Bridge)

Solu-Bridge measurements were used in the $1950^{\prime} \mathrm{s}$ and $60^{\prime} \mathrm{s}$ by the

USBM as a measure of the soluble salts (e.g., calcium sulfate) in the unfired raw material which might cause scum and efflorescence on fired products. "The solubridge and pH readings show the higher alkali samples. Solubridge determinations give the water soluble part of the alkalis and readings above 1.5 indicate fairly high soluble salt content. Clays containing high alkalies have rather short maturing temperatures and require closer firing control. The alkalis also influence the color and lower the vitrification temperature." (H.P. Hamlin, written communication, 1957). In this method the pulverized clay or shale is boiled in water, left to stand overnight, and filtered. The content of soluble salts in the solution is then measured using the Solu-Bridge instrument readings applied to suitable calibration tables (Klinefelter and Hamlin, 1957, p. 28-29). These data are no longer collected because consistent and meaningful results are difficult to achieve.

34. Soluble Salts

Excessive water-soluble salts can cause problems with efflorescence or scum on fired clay products. (More than 3 to 4% calcium sulfate, and $1 / 2 \%$ magnesium or alkali sulfates are considered excessive.)

The most accurate determinative method is to boil the finely powdered sample in distilled water for $1 / 2$ to 1 hour and let it soak overnight. The decanted solution is then analyzed for the soluble salts using standard chemical methods. The Solu-Bridge readings may also be used as a general measure of the soluble salts (Klinefelter and Ham1in, 1957, p. 28).

See Dry Strength and Modulus of Rupture.
36. "SW" face brick
"SW" stands for severe weather conditions. This is a grade of brick suitable for use under conditions where a high degree of frost action is probable (Klinefelter and Hamlin, 1957, p. 36 and 37, and theASTM Annual Book of Standards, 1974). (Also see "MW" face brick.)
37. Temp. ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$

The temperature at which the material was fired (both slow and quick firing tests) is given in Fahrenheit (${ }^{\circ}$ F) followed by the Celsius $\left({ }^{\circ} \mathrm{C}\right)$ conversion in parentheses. In cases where only pyrometric cone values are available, the approximate temperature is given on the form and is based on the table of temperature equivalents in Norton (1942, p. 756, Table 128) or in Veatch (1909, p. 57).

38. Water of Plasticity (\%)

This is a measure of the amount of water (as weight percent relative to the dry material) required to temper the pulverized raw clay or shale into a plastic, workable consistency. This is not a precise neasurement, being dependent upon the experience of the technician, the type of equipment used and the plasticity criteria. In most cases it represents the amount of water necessary for the material to be extruded into briquettes from a laboratory hydraulic ram press. In general, high water of plasticity values tends to correlate with a greater degree of workability, higher plasticity and finer grain size. Unfortunately, high values also correlate with a greater degree of shrinkage,
warping and cracking of the material upon drying. (See Klinefelter and Hamlin, 1957, p. 20-22; Liles and Heystek, 1977, p. 2.)

39. Working Properties (or Workability)

This area of working properties includes comments on the slaking, plasticity, and molding, or extruding behavior of the tempered material (Klinefelter and Hamlin, 1957, p. 5, 19-22 and 33-34). The term slaking refers to the disintegration of the dry material when immersed in water. It may range in time from less than a minute to weeks, but generally in the present report it is given only a relative designation such as rapid, slow, or with difficulty. Plasticity likewise is designated in a comparative manner in order of decreasing plasticity: plastic, fat (or sticky), semiplastic, short (or lean), semiflint and flint. Molding behavior is referred to as good, fair, or poor and is a general designation for the ease with which the material can be molded into test bars or briquettes.

These working properties are very imprecise and strongly dependent upon the judgement and experience of the operator. They do, however, give a general indication of how the material might respond to handling in the industrial process.

Ceramic Tests and Analyses of Cl ays and Shales
in Floyd County, Georgia *

[^1]
CERAMIC TESTS AND ANALYSES

Remarks / Other Tests It "should be suitable for high grade fire brick. The only common fluxing impurity is a small percentage of iron." (Veatch, 1909, p. 266).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Date \qquad
\qquad
Method \qquad
\qquad
Sample Location Data:
County Floyd. Land Lot 103 , Sec. 3 , , Dist. \qquad -

7 1/2' topo quad. Shannon (cntr.) - Lat. \qquad , Long. \qquad .

Field No. \qquad , Collected by 0. Veatch Date c.1909.

Sample Method \qquad Grab(?).

Weathering/alteration Residual(?) clay.
Structural Attitude \qquad
Stratigraphic Assignment Eocene(?) residual clay.
Sample Description \& Comments Sample of soft, "lean" white or mottled bauxitic clay from an open pit 35 ft . or mare deep at the " $103^{\prime \prime}$ mine of the Republic Mining \& Manufacturing Company, Hermitage District, 5 mi. NE. of Rome (Veatch, 1909, p. 265266). (Also in Watson, 1904, p.66 and White and others, 1966, Plate 1.)

Compiled by B.J. O'Connor
Date \qquad

Remarks / Other Tests This material "would probably have to be calcined before it could be successfully burned." (Veatch, 1909, p. 266).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired materia1) \qquad
Particle Size \qquad Retention Time \qquad
Chemical \& Mineralogical Data: ("kaolin" sample from same Land Lot, but exact location unknown)
Mineralogy: Not determined.

Chemical Analysis		
Oxide		Weight \%
SiO_{2}		41.20
TiO_{2}		1.95
$\mathrm{Al}_{2} \mathrm{O}_{3}$		38.60
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	(total)	1.45
Fe 0		
MnO		-
MgO		0.30
CaO		-
$\mathrm{Na}_{2} \mathrm{O}$		0.02
$\mathrm{K}_{2} 0$		0.09
$\mathrm{P}_{2} \mathrm{O}_{5}$		-
S	(total)	-
C (org.)		-
CO_{2}		-
$\mathrm{H}_{2} \mathrm{O}^{-}$		0.35
$\mathrm{H}_{2} \mathrm{O}^{+}$		16.35
Ignition		
loss		-
Total		100.31

Mineral
 volume \%

Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite Others

Total \qquad
0.35
16.35

Total $\quad 100.31$
Analyst (in Spencer, 1893, p. 281; and in Veatch, 1909, p. 266 and Appendix B, No. 44, p. 412-413.)

Date \qquad 1893.

Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot 21 (N. 1/2). Sec. 3 ,

Dist. \qquad 23 .

7 1/2' topo quad. \qquad . Lat. \qquad , Long. \qquad .

Field No. \qquad , Collected by Spencer

Date c. 1893
and Veatch

$$
\text { and c. } 1909 .
$$

Sample Method \qquad Grab(?)

Weathering/alteration Residual(?).
Structural Attitude \qquad
Stratigraphic Assignment
Eocene(?) residual clay.
Sample Description \& Comments Sample of hard, iron-stained low grade bauxite collected by Veatch (1909, p. 266) from near the old Stockage Bank mine. The chemical analysis is from a white clay taken from this same Land Lot (Spencer, 1893, p. 281). (Also described in Watson, 1904, P. 68-69 and White and others, 1966, Plate 1.)

Compiled by B.J. O'Connor \square

Material Clay, bauxitic.			Compilation Map Location No. Fl.09V-3		
County Floyd.			Sample Number		
Raw Properties: Lab \& No. Ga. Geol. Survey.					
Date Reported 1909 Ceramist O. Veatch, Ga. Geol. Survey.					
Slow Firing Tests:					
Approx. Temp. ${ }^{\circ} \mathrm{F}$ Color Hardness Linear Absorption Appr. Por. Other $\left({ }^{\circ} \mathrm{C}\right)$					
$\begin{aligned} & (1850) \\ & \text { (Cone 36) } \end{aligned}$					

Remarks / Other Tests This "should be suitable for basic fire-brick," although it would have to be calcined first (Veatch, 1909, P. 266-267).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) \qquad
Particle Size \qquad Retention Time \qquad
Chemical \& Mineralogical Data: (On similar clay from the Church Bank.)

Chemical Analysis		Mineralogy: Mineral	Not determined.
Oxide	Weight \%		volume \%
SiO_{2}	20.46		
TiO_{2}	9.82	Quartz	
$\mathrm{Al}_{2} \mathrm{O}_{3}$	46.92	Feldspar	
$\mathrm{Fe}_{2} \mathrm{O}_{3}$		Carbonate	
FeO (total)	0.28	Mica	
MnO	-	Chlorite-	
MgO	-	vermiculite	
CaO	-	Montmorillonite	
$\mathrm{Na}_{2} \mathrm{O}$	-	Others	
$\mathrm{K}_{2} 0$	-		
$\mathrm{P}_{2} \mathrm{O}_{5}$	-		
S (total)	-	Total	
C (org.)	-		
CO_{2}	-		
$\mathrm{H}_{2} \mathrm{O}^{-}$	0.34		
$\mathrm{H}_{2} \mathrm{O}^{+}$	21.68		
Ignition loss	-		
Total	99.50		

Analyst T. L. Watson, Ga. Geol. Survey (1904, Bull. 11, p.65) on soft, structureless bauxitic clay matrix to the bauxite ore.

Date c. 1904.

Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot 61_ Sec. \quad 3, Dist. 23 .
(Watson, 1904, p. 61-63)
$71 / 2^{\prime}$ topo quad. Shannon (NE. 1/4) , Lat. _ Long. \qquad -

Field No. \qquad , Collected by Watson and Veatch Date c. 1904

Sample Method Grab(?.)
Weathering/alteration Residual(?) clay.
Structural Attitude \qquad
Stratigraphic Assignment Eocene(?) residual clay.
Sample Description \& Comments Sample from the Holland Hill mine, Hermitage District, collected by Veatch (1909, p. 266-267) who refers to white, lean and granular bauxitic clays from this and nearby mines: "The clays are soft, or pinkish, and mottled, poorly plastic, and have low air dried strength." The chemical analysis is on similar material from the nearby Church Bank mine (Watson, 1904, P. 65). (Also White and others, 1966, P1 1.)

Compiled by B.J. O'Connor
Date 11-29-82

Crushing Characteristics (unfired material) \qquad
Particle Size \qquad Retention Time \qquad
Chemical \& Mineralogical Data:

Analyst E. Everhart, Ga. Geol. Survey (in Veatch, 1909, p. 268; and Appendix B, p.412413, No. 42 - erroneously listed as "Walters Mine").
Date \qquad

Method Standard "wet". \qquad
Sample Location Data:

County \qquad Land Lot 147 , Sec. \qquad Dist. 23 . (Watson, 1904, p. 72-74)

7 1/2' topo quad. Shannon (SW. 1/4) . Lat. \qquad , Long. \qquad .

Field No. \qquad , Collected by 0. Veatch

Date c.1909.
Sample Method Grab(?)
Weathering/alteration Residual(?) clay.
Structural Attitude \qquad
Stratigraphic Assignment \qquad Eocene(?) residual clay.

Sample Description \& Comments Sample from the south pit of the National Bauxite Company ("Watters Bank", Hermitage District) 5 mi . NE. of Rome, about $11 / 2 \mathrm{mi}$. E. of Berwin station, Southern RR. The clay ranges from cream and pink to highly colored with more or less disseminated bauxite. The sample is fine-grained, free of sand and bauxite pisolites, but tends to crumble into small angular lumps (Veatch, 1909, p. 267-269). This deposit also described by Watson (1904, p. 7274) and White and others (1966, Pl. 1).

Compiled by B.J. O'Connor Date 11-29-82

Material				Compilation Map Location No. Fl.09V-5				
County	Floyd.			Sample Number				
Raw Properties:			Lab \& No. Ga. Geol. Survey, 非3.					
Date Reported		1909	Ceramist	O. Veatch, Ga. Geol. Survey.				
Water of	Plastici	-	Working Properties Plasticity - fair.					
Color Wh \qquad	ite.	Drying S	nkage	\% Dry Stren	th (tensile)	Very low.		
Slow Firing Tests:								
Approx. 'Temp. ${ }^{\circ} \mathrm{F}$ $\left({ }^{\circ} \mathrm{C}\right)$	Color			Hardness	Linear Shrinkage, \%	Absorption \%	$\underset{\%}{\text { Appr. Por. }}$	Other data: Remarks
$\begin{aligned} & 2210 \\ & (1210) \\ & \text { (Cone } 4 \text {) } \end{aligned}$	White	Soft	6.6	-	-	Cracked.		
$\begin{aligned} & 2606 \\ & (1430) \\ & \text { (Cone } 15 \end{aligned}$	White	-	14.8	\cdots	-	Cracked.		

Remarks / Other Tests Possibly suitable for making refractory products, but it would have to be calcined first to prevent cracking.

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) \qquad
Particle Size \qquad Retention Time \qquad
Chemical \& Mineralogical Data:
Chemical Analysis
Mineralogy: Not determined.
Oxide Weight \%
$\mathrm{SiO}_{2} \quad 37.06$
$\mathrm{TiO}_{2} \quad 3.68$
$\mathrm{Al}_{2} \mathrm{O}_{3} \quad 40.27$
$\mathrm{Fe}_{2} \mathrm{O}_{3} \quad 1.57$
Fe 0
$\begin{array}{ll}\text { MnO } & - \\ \text { MgO } & 0.18\end{array}$
CaO trace
$\begin{array}{ll}\mathrm{Na}_{2} \mathrm{O} & 0.11 \\ \mathrm{~K}_{2} \mathrm{O} & 0.15\end{array}$
$\mathrm{K}_{2} \mathrm{O} \quad 0.15$
$\mathrm{S}_{2} \mathrm{~S}_{5}$ (total) -
C (org.) -
$\begin{array}{ll}\mathrm{CO}_{2} & - \\ \mathrm{H}_{2} \mathrm{O}^{-} & 0.29\end{array}$
$\mathrm{H}_{2} \mathrm{O}^{+}$
Ignition
loss
$\frac{16.60}{99.91}$
Total $\quad 99.91$

Mineral volume \%
Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite
Others

Total

Analyst E. Everhart, Ga. Geol. Survey. (in Veatch, 1909, P. 269; and Appendix B, p. 412-413, No. 43).

Date c. 1909
Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot 13 (?), Sec. 3 , Dist. _22.
7 1/2' topo quad. Cedartown East (N. edge) Lat. \qquad , Long. \qquad $:$ and Rome South (S. edge).
Field No. \qquad , Collected by \qquad Date c. 1909.
Sample Method \qquad Grab(?)

Weathering/alteration Residual(?) clay.
Structural Attitude \qquad
Stratigraphic Assignment \qquad
Sample Description \& Comments Sample is a white clay from the old Wear mine about $11 / 2 \mathrm{mi}$. SW. of Reesburg (Veatch, 1909, p. 269). The nearby Minter mines are described by Watson (1904, p. 105-106, Minter Bank) and White and others (1966, Plate 2).

Compiled by B.J. O'Connor
Date \qquad

Material				Compilation Map Location No. F1.09V-6		
County Floyd.				Sample Number -		
Raw Properties: Lab \& No. Ga. Geol.Surv						
Date Reported 1909 ' Ceramist 0. Veatch, Ga. Geol. Survey.						
Water of Plasticity _ \% Working Properties Plastic, fine-grained.						
Color Bluish. Drying Shrinkage_ 8.2\% Dry Strength (tensile) 221 psi.						
Slow Firing Tests:						
Approx. Color Hardness Linear Absorption Appr. Por. Other Temp. Shrinkage, $\%$ $\%$ $\%$ data: ${ }^{\circ} \mathrm{F}$ Remarks						
$\begin{aligned} & \hline 2210 \\ & (1210) \\ & \text { (Cone 4) } \end{aligned}$	```Light yellow- buff```	Steel hard	5.5	-	-	Not vitrif
$\begin{aligned} & 2246 \\ & (1230) \\ & \text { (Cone 5) } \end{aligned}$	Very pale red	-	2.5	-	-	-

Remarks / Other Tests Could probably be used for dry press brick; possibly could be mixed with nearby Cambrian shales to make vitrified brick, but it is not sufficiently refractory by itself, to make vitrified, fire-clay products. It was blended with sandy clay by the Morrison-Trammel Brick Co. for making common building bricks (Veatch, 1909, p. 324-325).

Preliminary Bloating (Quick Firing) Tests: Not determined. , cont.

Crushing Characteristics (unfired material) \qquad
Particle Size \qquad Retention Time \qquad
Chemical \& Mineralogical Data: Not determined.

Chemical Analysis		Mineralogy	
Oxide	Weight \%	Mineral	volume \%
SiO_{2}			
TiO_{2}		Quartz	
$\mathrm{Al}_{2} \mathrm{O}_{3}$		Feldspar	
$\mathrm{Fe}_{2} \mathrm{O}_{3}$		Carbonate	
Fe0		Mica	
MnO		Chlorite-	
MgO		vermiculite	
CaO		Montmorillonite	
$\mathrm{Na}_{2} \mathrm{O}$		Others	
$\mathrm{K}_{2} 0$			
$\mathrm{P}_{2} \mathrm{O}_{5}$			
S (total)		Total	
C (org.)			
CO_{2}			
$\mathrm{H}_{2} \mathrm{O}^{-}$			
$\mathrm{H}_{2} \mathrm{O}^{+}$			
Ignition			
loss			
Total			

Analyst \qquad
\qquad
Date \qquad
\qquad
Method \qquad
\qquad
Sample Location Data:
County Floyd. Land Lot \qquad , Sec. \qquad , Dist. \qquad -

7 1/2' topo quad. Rome North (S. edge). Lat. \qquad , Long. \qquad -

Field No. \qquad , Collected by 0. Veatch.

Date c. 1909.
Sample Method Grab(?). Weathering/a1teration \qquad
Structural Attitude \qquad

Stratigraphic Assignment Recent(?) alluvium of Etowah River.
Sample Description \& Comments Sample from a 9 ft . thick bed of fine-grained, plastic, bluish clay (color due to a small amount of organic matter) from an exposure at the Morrison-Trammel Brick Co. plant in Rome. The section shows 5 ft . of overlying soil and yellow, sandy micaceous clay and an underlying 4 ft . of yellow sand and 3 ft . of black sand (Veatch, 1909, p. 324-325). Brick was made from a blend of $2 / 3$ plastic clay and $1 / 3$ yellow, sandy clay (not tested)

Compiled by B.J. 0^{\prime} Connor
Date 11-29-82

Remarks / Other Tests "The air shrinkage is low and the clay does not crack or warp in burning." - possibly useful in making brick (Veatch, 1909, p. 326).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) \qquad
Particle Size \qquad Retention Time \qquad
Chemical \& Mineralogical Data:

Chemical Analysis	Mineralogy:	Not determined.	
Oxide	Weight $\%$	Mineral	volume $\%$
SiO_{2}	72.65	Quartz	
TiO_{2}	1.15	Feldspar	
$\mathrm{Al}_{2} 0_{3}$	11.92	Carbonate	
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	4.25	Mica	
Fe 0	-	Chlorite-	
MnO	-	vermiculite	
MgO	0.43	Montmorillonite	
CaO	0.34	Others	
$\mathrm{Na}_{2} \mathrm{O}$	0.32		
$\mathrm{~K}_{2} 0$	0.80	Total	
$\mathrm{P}_{2} \mathrm{O}_{5}$	(total)	-	

C (org.) *
$\begin{array}{ll}\mathrm{CO}_{2} & - \\ \mathrm{H}_{2} 0^{-} & - \\ & \end{array}$
$\mathrm{H}_{2} \mathrm{O}^{+}$
Ignition
loss
Total $\quad \frac{6.60 \%}{100.18}$
(*organic matter present as suggested by black color of the clay.)
Analyst E. Everhart, Ga. Geol. Survey. (in Veatch, 1909, p. 326, column II; also Appendix B, No. 41, p. 412-413)
Date c. 1909.
Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot \qquad , Sec. \qquad , Dist. \qquad .

7 1/2' topo quad. Rome North (SE. 1/4) (or Wax - NW.1/4?). Lat. \qquad , Long. \qquad
Field No. \qquad , Collected by 0. Veatch. \qquad Date c.1909.

Sample Method Grab(?)
Weathering/alteration \qquad
Structural Attitude \qquad -

Stratigraphic Assignment Recent(?) alluvium of the Etowah River.
Sample Description \& Comments Sample from the W.T. Cheney property east of Rome and consisting of fine-grained alluvial clay, almost black in color due to organic matter. Although it has a high percentage of sand, it still has good plasticity (Veatch, 1909, p. 325-326).

Compiled by B.J. O'Connor Date 11-29-82

Material Clay, sandy (alluvial).				Compilation Map Location No. Fl.09V-7b		
County Floyd.				Sample Number \qquad Ga. Geo1. Survey, 非40		
Raw Properties:						
Date Reported 1909				O. Veatch, Ga. Geol. Survey.		
Water of	Plasticity	y	\% Working Pro	$\frac{\text { Plasticity less than sample }}{\text { No. } 1 .}$		
Color	11ow.	Drying Shri	age 3.9%	Dry Strength	ensile) 54	
Slow Firing Tests:						
Approx. Temp. ${ }^{\circ} \mathrm{F}$ Color Hardness Linear Absorption Appr. Por. Other $\left({ }^{\circ} \mathrm{C}\right)$						
$\begin{aligned} & \hline 1850 \\ & (1010) \\ & \text { (Cone } 07 \end{aligned}$	Salmon	Very soft	0	-	-	-
$\begin{aligned} & 1922 \\ & (1050) \\ & \text { (Cone } 05 \end{aligned}$	Salmon	Soft	0.3	-	-	-
$\begin{aligned} & 2174 \\ & (1190) \\ & \text { (Cone 3) } \end{aligned}$	Dark red	Steel hard	2.0	-	-	-

Remarks / Other Tests Probably useful in making common brick.
Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) \qquad
Particle Size \qquad Retention Time \qquad
Chemical \& Mineralogical Data:

Chemical Analysis	
Oxide	Weight \%
SiO_{2}	79.42
TiO_{2}	1.29
$\mathrm{Al}_{2} \mathrm{O}_{3}$	9.18
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	4.25
Fe 0	-
MnO	-
MgO	0.35
CaO	trace
$\mathrm{Na}_{2} \mathrm{O}$	0.20
$\mathrm{K}_{2} 0$	0.72
$\mathrm{P}_{2} \mathrm{O}_{5}$	-
S (total)	-
C (org.)	-
CO_{2}	-
$\mathrm{H}_{2} \mathrm{O}^{-}$	0.80
$\mathrm{H}_{2} \mathrm{O}^{+}$	-
Ignition	
loss	3.89
Total	100.10

Mineralogy: Not Mineral	$\frac{\text { Not determined. }}{\text { volume }}$
Quartz	
Feldspar	
Carbonate	
Mica	
Chloritevermiculite	
Montmorillonit	

Analyst E. Everhart, Ga. Geol. Survey (in Veatch, 1909, p. 326, column I: also Appendix B, P. 412-413, No. 40).
Date c. 1909
Method Standard "wet".
Sample Location Data:

County \qquad Land Lot \qquad , Sec. \qquad , Dist. \qquad .

7 1/2' topo quad. Rome North (SE. 1/4) (or Wax - NW. 1/4?). Lat. \qquad - Long. \qquad
Field No. \qquad , Collected by 0. Veatch.

Date c.1909.
Sample Method Grab(?).
Weathering/alteration \qquad
Structural Attitude \qquad
Stratigraphic Assignment Recent(?) alluvium of the Etowah River.
Sample Description \& Comments Sample of a yellow, very sandy clay (surface alluvium) from the W. T. Cheney property east of Rome (Veatch, 1909, p. 325326).

Compiled by B.J. Co'Connor Date 11-29-82

Material \qquad Shale (Conasauga Group). Compilation Map Location No. Fl.09V-8

County \qquad Sample Number \qquad
\qquad
Raw Properties:
Lab \& No. Ga. Geol. Survey, 非38.
Date Reported 1909. Ceramist 0. Veatch, Ga. Geol. Survey.

Water of Plasticity _ \% Working Properties Plasticity - poor.
Color Brown
Drying Shrinkage \qquad 2.5 \% Dry Strength (tensile) 20 psi. (or yellow?) Slow Firing Tests:

Approx.

$\begin{gathered} \text { Temp } \\ \left({ }^{\circ} \mathrm{F}\right. \\ \left.{ }^{\circ} \mathrm{C}\right) \end{gathered}$	Color	Shrinkage, \%		Absorption \%	Appr. Por. \%	Other data: Remarks
$\begin{aligned} & \hline 1922 \\ & \text { (1050) } \\ & \text { (Cone 05) } \end{aligned}$	Red	Steel hard	2.3	-	-	-
$\begin{aligned} & 1994 \\ & (1090) \\ & (\text { Cone 03) } \end{aligned}$	$\begin{aligned} & \text { Dark } \\ & \text { red } \end{aligned}$	(Steel hard?)	5.5	-	-	Vitrified
$\begin{aligned} & 2066 \\ & (1130) \\ & (\text { Cone 01) } \end{aligned}$	$\begin{array}{r} \text { Dark } \\ \text { red } \end{array}$	(Steel hard?)	6.6	-	-	Vitrified
$\begin{aligned} & 2138 \\ & (1170) \\ & (\text { Cone 2) } \end{aligned}$	Almost black	(Steel hard?)	5.0	-	-	Warped
$\begin{aligned} & 2210 \\ & (1210) \\ & \text { (Cone 4) } \end{aligned}$	-	(Steel hard?)	-	-	-	"Burned to a cinder"

Remarks / Other Tests Possibly suitable for brick manufacture if blended with plastic clay to increase plasticity, green strength and firing range (Veatch, 1909, P. 394.)

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) \qquad
Particle Size \qquad Retention Time \qquad
Chemical \& Mineralogical Data:

Chemical Analysis		Mineralogy: Not Mineral	Not determined.
Oxide	Weight \%		volume \%
SiO_{2}	55.33		
TiO_{2}	1.10	Quartz	
$\mathrm{Al}_{2} \mathrm{O}_{3}$	22.01	Feldspar	
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	5.95	Carbonate	
FeO	-	Mica	
MnO	trace	Chlorite-	
MgO	1.57	vermiculite	
CaO	0.49	Montmorillonite	
$\mathrm{Na}_{2} \mathrm{O}$	0.82	Others	
$\mathrm{K}_{2} 0$	7.13		
$\mathrm{P}_{2} \mathrm{O}_{5}$	-		
S (total)	0.07	Total	
C (org.)	-		
CO_{2}	-		
$\mathrm{H}_{2} \mathrm{O}^{-}$	0.42		
$\mathrm{H}_{2} \mathrm{O}^{+}$	-		
Ignition			
loss	4.71		
Total	99.60		

Analyst E. Everhart, Ga. Geol. Survey (in Veatch, 1909, p. 117, column III, also p. 394, and Appendix B, No. 38, p. 412-413).

Date c. 1909.

Method Standard "wet". \qquad
Sample Location Data:
County Floyd.
Land Lot \qquad , Sec. \qquad , Dist. \qquad -
$71 / 2^{\prime}$ topo quad. Shannon (SW. 1/4) (or Rome North-SE. 1/4?). Lat. \qquad , Long. \qquad
Field No. \qquad , Collected by 0. Veatch. Date c. 1909

Sample Method Grab(?)
Weathering/alteration \qquad Weathered.

Structural Attitude \qquad
Stratigraphic Assignment Conasauga Group (Cambrian) shale.
Sample Description \& Comments The sample was collected adjacent to the Southern RR., 3 miles N. of Rome, and is a yellow (and ?) brown, very sandy, micaceous shale (Veatch, p. 393-394).

Compiled by \qquad Date 11-29-82

| MaterialShale, soft and micaceous
 County
 (Conasauga).
 Floyd. | Compilation Map Location No. Fl.09V-9 |
| :--- | :--- | :--- |

Raw Properties: Lab \& No. Ga. Geol. Survey.

Date Reported 1909. Ceramist 0. Veatch, Ga. Geol. Survey.

Water of Plasticity \qquad \% Working Properties Poor plasticity.
Color $\frac{\text { Brown or }}{\frac{\text { yellow. }}{\text { Slow Firing Tests: }}}$ Drying Shrinkage
S \quad Dry Strength (tensile) 25 psi.

"Low" Red "Good" - - -

Remarks / Other Tests "This shale is of little value for brick purposes, unless mixed with a plastic clay." (Veatch, 1909, p. 395).

Preliminary Bloating (Quick Firing) Tests: Not determined.
Crushing Characteristics (unfired material) _ -

Particle Size \qquad Retention Time \qquad
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
SiO_{2}
TiO_{2}
$\mathrm{Al}_{2} \mathrm{O}_{3}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$
FeO
MnO
MgO
CaO
$\mathrm{Na}_{2} \mathrm{O}$
$\mathrm{K}_{2} \mathrm{O}$
$\mathrm{P}_{2} \mathrm{O}_{5}$
S (total)
C (org.)
CO_{2}
$\mathrm{H}_{2} \mathrm{O}^{-}$
$\mathrm{H}_{2} \mathrm{O}^{+}$
Ignition
loss
Total

Analyst \qquad

Date \qquad
Method \qquad
Sample Location Data:
County \qquad Land Lot \qquad , Sec. \qquad , Dist. \qquad -
$71 / 2^{\prime}$ topo quad. Shannon (NE. 1/4) . Lat. \qquad , Long. \qquad .

Field No. \qquad , Collected by 0. Veatch. Date c.1909.

Sample Method Grab(?)
Weathering/alteration Weathered.

Structural Attitude \qquad
Stratigraphic Assignment Conasauga Group (Cambrian) shale.

Sample Description \& Comments A small sample from east of Shannon composed of a brown or yellow, soft, micaceous shale which is closely jointed and weathers into small angular chips (Veatch, 1909, p. 394-395).

Compiled by \qquad B.J. 0^{\prime} Connor

Date \qquad 11-29-82

Remarks / Other Tests Reported in Smith (1931, p. 84).

Preliminary Bloating (Quick Firing) Tests: Not determined.

```
Crushing Characteristics (unfired material)
``` \(\qquad\)

Particle Size \(\qquad\) Retention Time \(\qquad\)
Chemical \& Mineralogical Data:

Chemical Analysis: Not determined
Oxide
Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
FeO
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\(\begin{array}{ll}\mathrm{S} & \text { (total) } \\ \mathrm{C} & \text { (org.) }\end{array}\)
Mineralogy-partial
Mineral volume \%

Quartz
Feldspar
Calcium Carbonate none
Mica
Chlorite-
vermiculite
Montmorillonite Others

Total

\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2}{ }^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Analyst \(\qquad\) A. V. Henry, Ga. Tech.
c. 1929?

HCl effervescence?
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot about 126, Sec. 4 , Dist. 4 .
7 1/2' topo quad. Rome North (SW. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by A. V. Henry

Date c.1926?
Sample Method Grab? Weathering/alteration Unweathered.
Structural Attitude Beds strike about N. \(65-70^{\circ}\) E., dip about \(65^{\circ} \mathrm{S}\). (Smith, 1931, p. 83).

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample of stratified shale from RR. cut on the Camp and Knowles properties about \(1 / 2 \mathrm{mi}\). W. of the Dickey shale pit (31S-6) and \(23 / 4 \mathrm{mi}\). NW. of Rome at mile post \(\mathrm{S}-374.5\) on the Central of Ga. RR. The cut is about 125 ft . long, averages 6 ft . high, and exposes gray to brown, semi-hard, fissile shale with common interbedded sandstone and chert layers less than 1 in. thick. The cut crosses a low ridge between two branches of Little Dry Creek (Smith, 1931, p. 83-84).

Compiled by \(\qquad\)
B.J. \(0^{\prime}\) Connor

Date 11-29-82
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Material Shale (Floyd).} & \multicolumn{3}{|l|}{Compilation Map Location No. Fl.31S-B} \\
\hline \multicolumn{3}{|l|}{County Floyd.} & \multicolumn{3}{|l|}{Sample Number -} \\
\hline \multicolumn{6}{|l|}{Raw Properties: Lab \& No. Ga. Tech.} \\
\hline \multicolumn{6}{|l|}{Date Reported 1931. Ceramist A. V. Henry, Ga. Tech.} \\
\hline \multicolumn{6}{|l|}{Water of Plasticity _ \% Working Properties Good plasticity.} \\
\hline \multicolumn{6}{|l|}{Color Dark gray. Drying Shrinkage _ 4.6\% Dry Strength -} \\
\hline \multicolumn{6}{|l|}{Slow Firing Tests:} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{lllll}
1950 Mottled red & - & 8.7 & - & Fair \\
\((1066)\) and white & & &
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{lllll}
2110 & Fair red, & - & - & Good \\
(1154) mottled \\
with white
\end{tabular}} \\
\hline
\end{tabular}

Remarks / Other Tests Excellent working properties, but the fired colors are not well suited to the manufacture of face brick. However, this shale could be used in making common building brick and hollow tile (A. V. Henry in Smith, 1931, p. 85). Formerly mined by Stevens, Inc. for use in manufacture of sewer pipe at their plant at Stevens Pottery, Baldwin County.

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size \(\qquad\) Retention Time \(\qquad\)
Chemical \& Mineralogical Data:

County \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Rome North (SW. 1/4) . Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by A. V. Henry

Weathering/alteration \(\qquad\) Weathered ?

Structural Attitude Beds strike N. \(50^{\circ} \mathrm{E}\). and dip approx. \(50^{\circ} \mathrm{NW}\). (Smith, 1931, p. 84).

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Shale from the Dean property adjacent to and N. of the Central of Ga. RR at mile post \(\mathrm{S}-375,3-1 / 2 \mathrm{mi}\). NW. of Rome, \(1-3 / 4\) mi. S. of Morrisan. Sample from a small pit (less than 1 acre and less than 15 ft . deep) formerly mined by Stevens, Inc. It ranges from hard, dark gray shale with brown streaks to soft, light brown, gray and white shale with a few thin cherty layers and local hard, sandy shale to argillaceous sandstone (Smith, 1931, p. 84).

Compiled by B.J. \(0^{\prime}\) Connor Date \(11-29-82\)
Material Shale, weathered (Floyd).

County Floyd.
Sample Number \(\qquad\)
Raw Properties:
Lab \& No. Ga. Tech.
Date Reported 1926. Ceramist A. V. Henry, Ga. Tech.

Water of Plasticity \(\qquad\) \% Working Properties Plasticity-excellent. Color Tan. Drying Shrinkage \(6.2 \%\) Dry Strength (MOR) 200 psi. Slow Firing Tests:
\begin{tabular}{lcccccc}
\begin{tabular}{c}
Temp. \\
\({ }_{\circ}^{\circ} \mathrm{F}\) \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & Color & Hardness & \begin{tabular}{c}
Linear \\
Shrinkage, \(\%\)
\end{tabular} & \begin{tabular}{c}
Absorption \\
\(\%\)
\end{tabular} & \begin{tabular}{c}
Appr. Por. \\
\(\%\)
\end{tabular} & \begin{tabular}{l}
Other \\
data: \\
"Density"
\end{tabular} \\
\hline \begin{tabular}{l}
1900 \\
\((1038)\)
\end{tabular} & Salmon & - & 10.4 & - & - & Fair \\
\begin{tabular}{l}
2174 \\
\((1190)\)
\end{tabular} & Deep red & - & 13.5 & - & - & Good
\end{tabular}

Remarks / Other Tests Reported in Smith (1931, p.99).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size \(\qquad\) Retention Time \(\qquad\)
Chemical \& Mineralogical Data:

\section*{Sample Location Data:}

County \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Rock Mountain (cntr.). Lat. \(\qquad\) , Long. \(\qquad\) .
l'ield No. \(\qquad\) , Collected by A. V. Henry Date c. 1926 ?
:ample Method Grab ? Weathering/alteration Weathered.

Structural Attitude \(\qquad\)

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Mottled light and medium tan, soft, weathered shale from a cut on the Central of Ga. RR. at mile post \(\mathrm{S}-381.5,3 / 4 \mathrm{mi}\). E. of the Lavender Station --probably corresponds to the eastern edge of the Schlapback property just west of the Long property (see F1.31S-11a and b, Smith, 1931, p. 99).

Compiled by B.J. O'Connor
Date \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Material} & \multicolumn{3}{|l|}{Shale (Floyd)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Compilation Map Location No. F1.31S-5a}} \\
\hline & and & some c & & & \\
\hline County & \multicolumn{3}{|l|}{Floyd.} & Sample Number & R-1-A \\
\hline \multicolumn{4}{|l|}{Raw Properties:} & \multicolumn{2}{|l|}{Ga. Tech., 非5.} \\
\hline \multicolumn{2}{|l|}{Date Reported} & 1931. & Ceramist & \multicolumn{2}{|l|}{R. W. Smith, Ga. Geol. Survey.} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Water of Plasticity first (good after}} & \multicolumn{2}{|l|}{26.1 \% Working Properties} & Poor and grainy plasticity at \\
\hline & & & ght) ; a 1 & tle slow slak & ng; goo \\
\hline
\end{tabular}

Color Light brown. Drying Shrinkage 4.2 \% Dry Strength \(\qquad\)
Remarks Drying behavior: test bars slightly warped.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
Approx.
Temp.
 0}\textrm{F
 (}\mp@subsup{}{}{\circ}\textrm{C}
``` & \[
\begin{gathered}
\text { Color* } \\
\text { (Munsel1) }
\end{gathered}
\] & \begin{tabular}{l}
Hardness \\
(MOR)psi.
\end{tabular} & \begin{tabular}{l}
Linear \\
Shrinkage, \% dry (plastic)
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{aligned}
& 1840 \\
& (1005)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Salmon } \\
& (5 \mathrm{YR}-7 / 8)
\end{aligned}
\] & 844 & 3.6 (7.9) & 16.9 & - & Slight. \\
\hline \[
\begin{aligned}
& 1920 \\
& (1050)
\end{aligned}
\] & Salmon
\[
(5 Y R-7 / 6)
\] & 1005 & 4.9 (9.0) & 13.9 & - & Slight. \\
\hline \[
\begin{aligned}
& 2000 \\
& (1095)
\end{aligned}
\] & Light red
\[
(10 R-6 / 6)
\] & 1435 & 5.6 (9.7) & 11.6 & - & Slight. \\
\hline \[
\begin{aligned}
& 2060 \\
& (1125)
\end{aligned}
\] & Medium red (10R-5/5) & 1663 & 8.1 (11.7) & 9.2 & - & Some. \\
\hline \[
\begin{aligned}
& 2090 \\
& (1145)
\end{aligned}
\] & Deep red (10R-5/4) & 2261 & 7.6 (11.7) & 6.2 & - - & Considerable. \\
\hline \[
\begin{aligned}
& 2160 \\
& (1180)
\end{aligned}
\] & Dark red (10R-5/4) & 2263 & 8.5 (12.2) & 6.2 & - & Some . \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range \(=\) Cone 1 to 5 (commercial kiln \(=\) Cone 01 to 4). This shale was used by the Berry Schools to make building brick. Prior to 1929 it it was blended with clay (Fl.31S-5b) to make building brick and structural tile by the Romega Clay Products Co. (Smith, 1931, p. 75).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notations "5YR" and "lOR" correspond to the original notations "YR" and "R-YR" respectively reported in Smith (1931).

Crushing Characteristics (unfired material) Easy grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis} & \multirow[t]{2}{*}{Mineralogy: Mineral} & Not determined. \\
\hline Oxide & Weight \% & & volume \% \\
\hline \(\mathrm{SiO}_{2}\) & 57.99 & & \\
\hline \(\mathrm{TiO}_{2}\) & 0.93 & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & 25.17 & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & 6.30 & Carbonate & \\
\hline Fe 0 & 0.60 & Mica & \\
\hline MnO & - & Chlorite- & \\
\hline MgO & 0.13 & vermiculite & \\
\hline CaO & 0.00 & Montmorillonit & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & 0.84 & Others & \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & 0.66 & & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & 0.11 & & \\
\hline \(\mathrm{SO}_{3}\) & 0.35 & Total & \\
\hline C (org.) & - & & \\
\hline \(\mathrm{CO}_{2}\) & - & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & * & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & - & & \\
\hline Ignition loss & 7.06 & is recalculate & \(\mathrm{H}_{2} \mathrm{O}^{-}-\mathrm{f}\) \\
\hline Total & 100.14* & th, 1931, p. 7 & \\
\hline
\end{tabular}

Analyst E. Everhart, Ga. Geol. Survey.
Date c. 1930 .
Method Standard "wet".
\(\qquad\)

\section*{Sample Location Data:}

County Floyd. Land Lots 203\&238. Sec. 3 , Dist. \(\underline{L}^{23}\). 7 1/2' topo quad. Rome North (S. side). Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by R. W.Smith. Date 7-25-29

Sample Method 6 ft . groove.
Weathering/alteration Weathered.
Structural Attitude Beds strike "nearly east-west" and dip about \(80^{\circ} \mathrm{S}\).
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Semi-hard, greenish-brown shale with "considerable black stain" (Mn oxide ?) with interbedded layers of brown clay which is sometimes sandy (weathered argillaceous limestone-residual clay) from the "North Pit" (about 50 by 100 ft . and averaging 10 ft . deep.) It is located about \(1 / 8 \mathrm{mi}\). N. of the brick plant (NE. of the intersection of the Southern RR. and the Central of Ga. RR.) near the Central of Ga. spur track to the Berry Schools (Smith, 1931, p. 75-78; also Furcron, 1958, p. 5, No. 20 - no further ceramic tests).
\[
\text { Compiled by B. J. } 0^{\prime} \text { Connor Date } 2-10-86
\]

CERAMIC TESTS AND ANALYSES


Remarks / Other Tests Firing range not reached (clay is rather refractory). Prior to 1929 the Romega Clay Products Co. used the clay in blends ( 2 parts clay and 1
part shale from the "North Pit") to make structural tile and building brick (Smith, 1931, P. 75 and 80).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notations "5YR" and "lOR" correspond to the original notations "YR" and "R-YR" respectively reported in Smith (1931).


Sample Location Data:
County Floyd. Land Lots 203 and 238. Sec. 3, Dist. 23 .
7 1/2' topo quad. Rome North (S. side) . Lat. __ Long. ___.
Field No. R-1-B , Collected by R. W. Smith. Date 7-25-29
Sample Method Groove samples-2 of Weathering/alteration Weathered. 6 ft . each from different parts of the pit.

Structural Attitude The few recognizable bedding surfaces appear nearly horizontal.
Stratigraphic Assignment Recent (?) colluvial clay (+ some residual?) from Mississippian Ft. Payne Chert and Floyd Shale.

Sample Description \& Comments As described by Smith (1931, p. 78; and Furcron, 1958 , p. 5, No. 20) the "South Pit" (about 300 by 75 ft . and averaging 20 ft . deep) is located 200 yards SE. of the brick plant adjacent to the Southern RR. (The plant is NE. of the junction of the Southern and the Central of Ga. RR. lines in west Rome.) The clay shows extreme variation in color, ranging from reddish-brown to mottled yellow, locally contains numerous angular to rounded chert pebbles up to several inches in diameter, and has a gummy plasticity.

Compiled by B. J. \(0^{\prime}\) Connor Date 2-10-86
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Material Shale (Floyd).} & \multicolumn{3}{|l|}{Compilation Map Location No. F1.31S-6} \\
\hline County & Floyd. & & & mple Number & R-2 & \\
\hline \multicolumn{7}{|l|}{Raw Properties: Lab \& No. Ga. Tech., 非6} \\
\hline \multicolumn{7}{|l|}{Date Reported 1931. Ceramist R. W. Smith, Ga. Geol. Survey.} \\
\hline \multicolumn{7}{|l|}{Water of Plasticity 25.7\% Working Properties Fairly good plasticity;} \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{Remarks Drying behavior: all test bars slightly warped.} \\
\hline \multicolumn{7}{|l|}{Slow Firing Tests:} \\
\hline \multicolumn{7}{|l|}{Approx.} \\
\hline \[
\begin{aligned}
& 1840 \\
& (1005)
\end{aligned}
\] & \[
\begin{gathered}
\text { Pinkish-tan } \\
(5 Y R-8 / 4)
\end{gathered}
\] & 778 & 2.5 (6.1) & 19.9 & - & Very slight. \\
\hline \[
\begin{aligned}
& 1920 \\
& (1050)
\end{aligned}
\] & ```
Buff-pink
    tan (5YR-7/5)
``` & 1209 & 3.9 (7.5) & 16.5 & - & Very slight. \\
\hline \[
\begin{aligned}
& 2000 \\
& (1095)
\end{aligned}
\] & Tan-brown (5YR-7/5) & 1522 & 4.8(8.2) & 13.4 & - & Very slight. \\
\hline \[
\begin{gathered}
2060 \\
(1125)
\end{gathered}
\] & Light brown (5YR-6/6) & 1569 & 6.0 (9.4) & 13.2 & - & Slight. \\
\hline \[
\begin{gathered}
2090 \\
(1145)
\end{gathered}
\] & Dead 1ight-brown(5YR-6/5) & 1705 & \(6.2(9.6)\) & 11.9 & - & Some. \\
\hline \multicolumn{7}{|l|}{2160 Dead light- 1987
\((1180)\) brown (5YR-5/5)} \\
\hline
\end{tabular}

Remarks / Other Tests Firing range \(=\) Cone 1 to 5 and higher. This shale was used by the W. S. Dickey Clay Mfg. Company, in mixtures with Tenn. shale and Ala. fire clay, to manufacture sewer pipe at their plants in east Rome and Macon, Ga. (Smith, 1931, R. 81-83 and P. 307). Shale was mined from 1920 to about 1928.

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notation "5YR" corresponds to the original notation "YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Fairly easy, brittle grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis} & \multirow[t]{2}{*}{Mineralogy: Mineral} & Not determined. \\
\hline Oxide & Weight \% & & volume \% \\
\hline \(\mathrm{SiO}_{2}\) & 66.94 & & \\
\hline \(\mathrm{TiO}_{2}\) & 0.55 & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & 16.34 & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & 4.33 & Carbonate & \\
\hline Fe 0 & 0.32 & Mica & \\
\hline Mno & 0.00 & Chlorite- & \\
\hline MgO & 0.48 & vermiculite & \\
\hline CaO & 0.00 & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & 2.74 & Others & \\
\hline \(\mathrm{K}_{2} 0\) & 1.88 & & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & 0.27 & & \\
\hline S (total) & - & Total & \\
\hline C (org.) & - & & \\
\hline \(\mathrm{CO}_{2}\) & - & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & * & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & - & & \\
\hline Ignition loss & 6.16 & & \\
\hline Total & 100.01* & \[
\begin{aligned}
& \text { recalculated or } \\
& 1931, \mathrm{P} .82 . \text {) }
\end{aligned}
\] & \[
2^{0^{-}} \text {-free }
\] \\
\hline
\end{tabular}

Analyst E. Everhart, Ga. Geol. Survey.
Date c. 1930 .
\(\qquad\)
\(\qquad\)
Method Standard "wet". \(\qquad\)
Sample Location Data:
County Floyd. Land Lot 201_, Sec. 3 , Dist. \(\underbrace{23}\).
\(71 / 2^{\prime}\) topo quad. Rome North (S. cntr.). Lat. \(\qquad\) , Long. \(\qquad\) -
\(\qquad\) , Collected by R. W. Smith.

Date 7-25-29.
Sample Method Grab samples. Weathering/alteration Weathered.
Structural Attitude Variable attitudes.
Stratigraphic Assignment Floyd Shale (Mississippian) - possibly with some
Sample Description \& Coments Variable shale from the Rome Shale Pit of the
Dickey Clay Mfg. Co. Much is dark brown or dark grey, but it ranges from a soft (almost clay-like) reddish-brown, to gray to almost black shale to a hard, drab or greenish-drab shale. Some fresh shale is slightly calcareous and contains area of interbedded sandstone. Representative samples taken from a large irregular pit (about 10 acres) averaging 20 ft . deep between the Central of Ga. and the Southern RR. tracks in west Rome, about 1 mi . W. of the Romega Clay Products plant (see Fl. 31S-5) (Smith, 1931, p.80-83 and Furcron, 1958, p.5, No. 21 - no further ceramic tests).

Compiled by B. J. O'Connor
Date \(\qquad\)

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notation "5YR" corresponds to the original notation "YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Easy grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis} & \multicolumn{2}{|l|}{Mineralogy: Not determined.} \\
\hline Oxide & Weight \% & Mineral & volume \\
\hline \(\mathrm{SiO}_{2}\) & 69.75 & & \\
\hline \(\mathrm{TiO}_{2}\) & 0.37 & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & 15.91 & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & 5.12 & Carbonate & \\
\hline Fe 0 & - & Mica & \\
\hline MnO & - & Chlorite- & \\
\hline Mgo & 1.51 & vermiculite & \\
\hline CaO & 0.00 & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & 0.45 & Others & \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & 1.21 & & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & trace & & \\
\hline \(\mathrm{SO}_{3}\) & 0.00 & Total & \\
\hline C (org.) & - & & \\
\hline \(\mathrm{CO}_{2}\) & - & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & * & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & - & & \\
\hline Ignition & 5.81 & & \\
\hline
\end{tabular}
(* = analysis recalculated on an \(\mathrm{H}_{2} \mathrm{O}^{-}\)-free basis by Smith, 1931, p. 86.)

Analyst E. Everhart, Ga. Geol. Survey.
Date \(\qquad\) c. 1930

Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. Rock Mountain (E. Cntr.). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No \(\qquad\) R-71A Collected by R. W. Smith. Date 7-5-30

Sample Method Grab samples. Weathering/alteration Weathers into fine, soft to waxy flakes.
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Shale from the T. Berry property (both sides of the Central of Ga. RR. at Berryhill Stn.) about 6.5 miles NW. of Rome. Samples from cuts along Huffaker Rd. S. of the station and from fields, N. and S. of the road, S. of the RR. It ranges from soft, dark gray to black or brown and locally show beds of dark blue, argillaceous and siliceous limestone (Smith, 1931, p. 85-87; also Furcron, 1958, p.5, No. 22 - no further ceramic tests).
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Material & Red clay (& residual) & & \multicolumn{3}{|l|}{Compilation Map Location No. Fl.31S-7b} \\
\hline County & Floyd. & & & Sample Number & R-71B & \\
\hline \multicolumn{4}{|l|}{Raw Properties: Lab \& No} & \multicolumn{3}{|l|}{Ga. Tech., \#7.} \\
\hline \multicolumn{3}{|l|}{Date Reported 1931.} & Ceramist & \multicolumn{3}{|l|}{R. W. Smith, Ga. Geol. Survey.} \\
\hline \multicolumn{2}{|l|}{Water of Plasticity} & \multicolumn{2}{|l|}{39.8 \% Working Properties Good plasticity, somewhat sticky; rapid slaking; laminated considerably on extrus} & \multicolumn{3}{|l|}{operties Good plasticity, somewhat} \\
\hline \multicolumn{4}{|l|}{Color Reddish-brown. Drying Shrinkage} & \multicolumn{3}{|l|}{3 \% Dry Strength (MOR) 174.5 psi (but} \\
\hline \multicolumn{7}{|l|}{Remarks Drying Behavior: test bars slightly warped.} \\
\hline \multicolumn{7}{|l|}{Slow Firing Tests:} \\
\hline \begin{tabular}{l}
Approx. \\
Temp. \\
\({ }^{\circ} \mathrm{F}\) \\
(\({ }^{\circ} \mathrm{C}\))
\end{tabular} & \begin{tabular}{l}
Color* \\
(Munsel1)
\end{tabular} & Hardness (MOR) psi & \begin{tabular}{l}
Linear \\
Shrinkage, \% dry (plastic)
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{gathered}
1840 \\
(1005)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Salmon } \\
& (5 \mathrm{YR}-6 / 6)
\end{aligned}
\] & 940 & 3.9 (14.8) & 17.5 & - & Slight. \\
\hline \[
\begin{aligned}
& 1920 \\
& (1050)
\end{aligned}
\] & \[
\begin{gathered}
\text { Dark salmon } \\
(7 \mathrm{YR}-7 / 5)
\end{gathered}
\] & 973 & 4.0 (14.9) & 15.8 & - & Slight. \\
\hline \[
\begin{aligned}
& 2000 \\
& (1095)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Fair red } \\
& (10 \mathrm{R}-5 / 5)
\end{aligned}
\] & 541 & 5.2 (15.9) & 14.1 & - & Slight. \\
\hline \[
\begin{aligned}
& 2060 \\
& (1125)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Fair red } \\
& (10 \mathrm{R}-5 / 5)
\end{aligned}
\] & 1058 & 6.6 (17.1) & 12.5 & - & Slight. \\
\hline \[
\begin{gathered}
2090 \\
(1145)
\end{gathered}
\] & Good red
\[
(10 \mathrm{R}-5 / 5)
\] & 1178 & 4.9 (15.7) & 13.2 & - & Considerable. \\
\hline \[
\begin{aligned}
& 2160 \\
& (1180)
\end{aligned}
\] & Good red
\[
(10 R-5 / 5)
\] & 993 & 5.4 (16.1) & 11.9 & - & Some. \\
\hline
\end{tabular}

Remarks / Other Tests Firing range \(=\) Cone 04 to 5 and higher. The lack of uniform results is largely due to the lamination of the test bars upon extrusion. If used by itself the clay is suitable only for making common building brick. It could also be used in blends with other materials (eg, 31S-7a above) to improve the fired colors (Smith, 1931, p. 88).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notations "5YR" and "10R" correspond to the original notations "YR" and "R-YR" respectively reported in Smith (1931).

Crushing Characteristics (unfired material) Easy grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:

Analyst E. Everhart, Ga. Geol. Survey.
Date c. 1930 .
Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. Rock Mountain (E. cntr.). Lat. \(\qquad\) , Long. \(\qquad\) -
\(\qquad\) , Collected by T. Berry.
\[
\text { Date } 7-5-30
\]

Sample Method Grab samples.
Weathering/alteration Residual clay.
Structural Attitude \(\qquad\)
Stratigraphic Assignment Recent (?) residual clay from impure limestone in the Floyd Shale (Mississippian).
Sample Description \& Comments Samples of stiffly plastic, deep brick-red clay from several outcrops on low ridges north of the Central of Ga. RR. near Berry-
hill Station, \(61 / 2\) miles NW. of Rome. Collected by the owner of the T. Berry property (Smith, 1931, p. 85-88; also Furcron, 1958, P. 5, No. 22 - no further ceramic tests.

Compiled by B. J. O'Connor
Date 2-10-86

Remarks / Other Tests Firing Range \(=\) Cone 1 to 5 and higher (commercial kiln \(=\) Cone 01 to 5 and possibly higher). According to Smith (1931, p. 91) the sampled shale is suitable for making brick and tile although the color is poor (which could be improved by blending with red-firing materials such as the surface clay 31S-7b). This shale was mined by the Rome Brick Co. and the Oconee Clay Products Co. (Milledgeville) (Furcron, 1958, p. 5, No. 23-25 - no further ceramic tests).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notation "5YR" corresponds to the original notation "YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Easy ginding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:

Analyst E. Everhart, Ga. Geol. Survey. \(\qquad\)
Date c. 1930.
Method \(\qquad\) Standard "wet".
\(\qquad\)

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. Rock Mountain (E. cntr.). Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. R-72 \(\qquad\) , Collected by R. W. Smith. Date 7-5-30

Sample Method Grab samples. Weathering/alteration Weathered.

Structural Attitude (On Central of Ga. RR.) strike NE. - SW., dip approx. \(45^{\circ}\) SE.

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Samples of soft, gray to drab and grayish-lavender, flaky and waxy shale from outcrops in a valley between 2 low ridges \(1 / 4 \mathrm{mi}\). S of the Central of Ga. RR. along a private road (leading south to the "Alabama Road" -Ga. Hwy. 20) on the Berryhill Estate 7 miles NW. of Rome and \(1 / 2\) mile W. of
Berryhill Station (Smith, 1931, p. 88-91). The shale in this area was mined by the Rome Brick Co. and the Oconee Clay Products Co. (Milledgeville) in 1957 (Furcron, 1958, p. 5, No. 23 to 25 - no further ceramic tests).

Compiled by \(\qquad\) B. J. O'Connor

Date \(\qquad\) 2-10-86

Remarks / Other Tests Firing range \(=\) Cone 1 to 5 and higher (commercial kiln = Cone 1 to 5). This shale is suitable for making brick and tile although the fired color is poor. However, this could be improved by blending with red-firing materials such as the clay tested under F1.31S-7b (Smith, 1931, p. 92).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) Easy grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis} & & \multirow[t]{2}{*}{} & Not determined. \\
\hline Oxide & Weight \% & & & volume \% \\
\hline \(\mathrm{SiO}_{2}\) & 66.94 & & & \\
\hline \(\mathrm{TiO}_{2}\) & 0.74 & & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & 19.12 & & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & 2.84 & & Carbonate & \\
\hline Fe 0 & - & & Mica & \\
\hline MnO & - & & Chlorite- & \\
\hline MgO & 0.23 & & vermiculite & \\
\hline CaO & trace & & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & 1.48 & , & Others & \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & 1.36 & & & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & 0.34 & & & \\
\hline \(\mathrm{SO}_{3}\) & trace & & Total & \\
\hline C (org.) & - & & & \\
\hline \(\mathrm{CO}_{2}\) & * & & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & * & & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & - & & & \\
\hline Ignition & 7.10 & & & \\
\hline
\end{tabular}
loss
Total \(\quad \overline{100.15^{*}} \quad *=\) analysis recalculated on an \(\mathrm{H}_{2} \mathrm{O}^{-}\)-free basis by Smith, 1931, p. 91.)
Analyst E. Everhart, Ga. Geol. Survey.

Date \(\qquad\) c. 1930 . \(\qquad\)
Method Standard "wet". \(\qquad\)
Sample Location Data:
County Floyd. Land Lot 81 , Sec. _ 4 , Dist. _ 4
7 1/2' topo quad. Rock Mountain (cntr.). Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by R. W. Smith

Date 3-1-29
Sample Method Grab samples.
Weathering/alteration Weathered.
\(\qquad\)

Structural Attitude Strike NE. - SW. and dip \(75^{\circ}\) SE.

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Samples from several shallow gullies near the \(S\). side of the Central of Ga . RR. On the Levinson Property (South of Huffaker Rd.) \(1 / 2\) miles \(W\). of Berryhill Station and 8 miles NW. of Rome. It is a soft, gray flaky shale and is overlain by 5 ft . of clay and gravel (not sampled). Samples collected by Smith (1931, p. 91-92) from 3 outcrops 15 ft. apart.

Compiled by \(\qquad\) Date \(\qquad\)

Remarks Drying Behavior: all test bars somewhat warped.

\section*{Slow Firing Tests:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Approx. \\
Temp. \\
\({ }^{\circ} \mathrm{F}\) \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \[
\begin{gathered}
\text { Color* } \\
\text { (Munsel1) }
\end{gathered}
\] & Hardness (MOR) psi. & \begin{tabular}{l}
Linear \\
Shrinkage, \% dry (plastic)
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{aligned}
& 1840 \\
& (1005)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Salmon } \\
& (5 R Y-7 / 5)
\end{aligned}
\] & 895 & 2.3 (8.7) & 18.2 & - & Some. \\
\hline \[
\begin{aligned}
& 1920 \\
& (1050)
\end{aligned}
\] & Sa1mon
(3YR-6/5) & 1235 & 3.6 (8.9) & 16.7 & - & Some. \\
\hline \[
\begin{aligned}
& 2000 \\
& (1095)
\end{aligned}
\] & Salmon
\[
(1 Y R-6 / 4)
\] & 1543 & \(5.0(10.2)\) & 13.9 & - & Some. \\
\hline \[
\begin{aligned}
& 2060 \\
& (1125)
\end{aligned}
\] & Salmon-red (2YR-6/4) & 1837 & 6.3 (12.0) & 10.3 & - & Some . \\
\hline \[
\begin{aligned}
& 2090 \\
& (1145)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Light red } \\
& (10 \mathrm{R}-5 / 5)
\end{aligned}
\] & 1859 & 6.2 (11.8) & 9.5 & - & Some . \\
\hline \[
\begin{aligned}
& 2160 \\
& (1180)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Fair red } \\
& (10 \mathrm{R}-5 / 4)
\end{aligned}
\] & 2187 & 8.1 (13.3) & 7.4 & - & Considera \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range \(=\) Cone 3 to 5 and higher. This clay was mined by the Oconee Clay \& Shale Products Co. and blended with a residual clay from the Milledgeville area for structural and drain tile (Smith, 1931, p. 93 and p. 313; also Furcron, 1958, p. 5, No. \(29=\) F1.57-12).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notations "5YR" and " \(10 \mathrm{R}^{\prime \prime}\) correspond to the original notations "YR" and "R-YR" respectively reported in Smith (1931).

Crushing Characteristics (unfired material) Easy grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:
\begin{tabular}{lcl}
Chemical Analysis & Mineralogy: & Not determined. \\
Oxide & Weight \% & Mineral \\
\(\mathrm{SiO}_{2}\) & 60.39 & \\
\(\mathrm{TiO}_{2}\) & 1.09 & Quartz \\
\(\mathrm{Al}_{2} \mathrm{O}_{3}\) & 24.38 & Feldspar \\
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & 4.05 & Carbonate \\
\(\mathrm{FeO}_{\mathrm{MnO}}^{\mathrm{MgO}}\) & 0.31 & Mica \\
CaO & - & Chlorite- \\
\(\mathrm{Na}_{2} \mathrm{O}\) & 0.11 & vermiculite \\
\(\mathrm{K}_{2} \mathrm{O}\) & 0.00 & Montmorillonite \\
\(\mathrm{P}_{2} \mathrm{O}_{5}\) & 1.72 & Others \\
\(\mathrm{SO}_{3}\) & 1.32 & \\
\(\mathrm{H}_{2}\) & trace & \\
& 0.11 & Total
\end{tabular}

C (org.) -
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-} \quad\) *
\(\mathrm{H}_{2} \mathrm{O}^{+} \quad-\)
Ignition 6.42
Total \(\quad\) 99.90* \(\quad\left(*=\right.\) analysis recalculated on an \(\mathrm{H}_{2} \mathrm{O}^{-}-\)free basis by Smith, 1931, p. 93).
Analyst E. Everhart, Ga. Geol. Survey. \(\qquad\)
Date \(\qquad\) c. 1930 . \(\qquad\)
Method Standard "wet". \(\qquad\)
Sample Location Data:
County Floyd.
Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. Rack Mountain (cntr.). Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by \(\qquad\) R. W. Smith. Date 7-27-29

Sample Method 2 groove samples
Weathering/alteration Residual clay (weathered shale)
Structural Att (from 2 places) \(\quad\) (weathered shale)

Stratigraphic Assignment Recent (?) residual clay from Floyd Shale (Mississippian).
Sample Description \& Comments Samples from a clay pit (opened about early 1929) on the \(S\). side of the Central of Ga. RR., \(7 / 8\) mile \(W\). of Hillery Station, \(13 / 8 \mathrm{mi}\). E. of Lavender Station and 9 mi . NW. of Rome. The pit (about 75 x 30 ft . and up to 15 ft . deep) shows a nearly structureless, mottled gray, brown and red soft clay grading into a soft, weathered, light gray clay or shale at the pit's bottom (Smith, 1931, p. 92-94; also see F1.57-12 by Furcron, 1958, p. 5, No. 29).

Compiled by B.J. O'Connor Date \(\quad 2-10-86\)
\begin{tabular}{lll}
Material Shale, brown and black (Floyd). Compilation Map Location No. Fl.31S-1la \\
County & Floyd. & Sample Number R-7-A \\
\hline
\end{tabular}
Raw Properties: Lab \& No. Ga. Tech., 非l.
Date Reported 1931. Ceramist R. W. Smith, Ga. Geol. Survey.
Water of Plasticity \(29.3 \%\) Working Properties Good plasticity; rapid slaking;
excellent molding behavior, but slightly laminated.
Color Light brown. Drying Shrinkage 6.5\% Dry Strength (MOR) 235.7 psi.

Remarks Drying Behavior: test bars all slightiy warped.
Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
Approx.
Temp.
 0}\textrm{F
 (}\mp@subsup{}{}{\circ}\textrm{C}
``` & \[
\begin{gathered}
\text { Color* } \\
\text { (Munsell) }
\end{gathered}
\] & Hardness (MOR) psi. & \begin{tabular}{l}
Linear \\
Shrinkage, \% dry (plastic)
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{aligned}
& 1840 \\
& (1005)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Light red } \\
& (5 \mathrm{YR}-6 / 7)
\end{aligned}
\] & 1803 & 4.9 (11.7) & 14.8 & - & Slight. \\
\hline \[
\begin{aligned}
& 1920 \\
& (1050)
\end{aligned}
\] & Fair red (10R-5/6) & 1798 & 5.6(12.2) & 12.0 & - & Siight. \\
\hline \[
\begin{aligned}
& 2000 \\
& (1095)
\end{aligned}
\] & Good red
\[
(10 R-5 / 4)
\] & 1681 & 6.8 (13.0) & 10.0 & - & Slight. \\
\hline \[
\begin{aligned}
& 2060 \\
& (1125)
\end{aligned}
\] & Medium red
\[
(10 R-5 / 6)
\] & 2278 & 7.4 (13.3) & 9.2 & - & Slight. \\
\hline \[
\begin{aligned}
& 2090 \\
& (1145)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark red } \\
& (10 \mathrm{R}-4 / 5)
\end{aligned}
\] & 2300 & 7.4 (13.1) & 7.3 & - & Slight. \\
\hline \[
\begin{aligned}
& 2160 \\
& (1180)
\end{aligned}
\] & ```
Excellent
    dark red
    (10R-4/4)
``` & 2584 & 7.5 (13.6) & 5.8 & - & Slight. \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range= Cone 04 to 5 (commercial kiln \(=\) Cone 04 to 3). Sample is suitable for making brick and tile, plus possibly sewer pipe and conduits. Slight lamination may have affected the green and fired strengths (MOR). All fired bars showed slight traces of scumming, but probably not enough to be of significance in commerical heavy clay products. (Smith, 1931, p. 96; also see Furcron, 1958 , P. 5, No. \(28=\) F1.57-1 mined by Chattahoochee Brick Co.).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsel color notations "5YR" and "loR" correspond to the original notations "YR" and "R-YR" respectively reported in Smith (1931).

Crushing Characteristics (unfired material) Easy grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline Chemical Analy & & Mineralogy: Not & mined. \\
\hline Oxide & Weight \% & Mineral & volume \\
\hline \(\mathrm{SiO}_{2}\) & 59.91 & & \\
\hline \(\mathrm{TiO}_{2}\) & 0.56 & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & 22.03 & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & 7.50 & Carbonate & \\
\hline Fe 0 & 0.32 & Mica & \\
\hline MnO & 0.00 & Chlorite- & \\
\hline MgO & trace & vermiculite & \\
\hline CaO & 0.00 & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & 2.05 & Others & \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & 0.76 & & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & 0.14 & & \\
\hline \(\mathrm{SO}_{3}\) & 0.00 & Total & \\
\hline C (org.) & - & & \\
\hline \(\mathrm{CO}_{2}\) & - & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & * & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & - & & \\
\hline Ignition & 7.50 & & \\
\hline
\end{tabular}
\begin{tabular}{l}
loss \\
Total
\end{tabular}\(\quad \overline{100.77 *}\)
(* = analysis recalculated on an \(\mathrm{H}_{2} \mathrm{O}^{-}\)-free basis by Smith, 1931, p. 95.)
Analyst E. Everhart, Ga. Geol. Survey.
Date \(\qquad\) c. 1930 .

Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot __ Sec. __ Dist. _ _ .

7 1/2' topo quad. Rock Mountain (cntr.). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) R-7-A , Collected by R. W. Smith Date 7-27-29

Sample Method Grab samples. Weathering/alteration Weathered.
Structural Attitude Approximate strike N. \(60^{\circ}\) E., dip \(15^{\circ}-20^{\circ}\) SE. (somewhat uncertain due to slumping). Stratigraphic Assignment Floyd Shale (Mississippian).

Sample Description \& Comments Samples from the Long property (W. of Fl.31S-10) from cuts along Huffaker Rd. \(1 / 4\) to \(3 / 8 \mathrm{mile}\). of Lavender Station and about \(1 / 8\) mile N . of the Central of Ga. RR. The shale ranges from fissile and black (similar to Chattanooga shale) to fairly soft, waxy and brown (Smith, 1931, p. 94-96). It has subsequently been mined by the Chattahoochee Brick Co. (Furcron, 1958, p. 5, No. 28 -see F1.57-1).

Compiled by B. J. O'Connor Date 2-10-86
```

Material Shale, soft and dark (Floyd). Compilation Map Location No. Fl.31S-11b Compilation Map Location No. Fl.31S-11b

```
County Floyd.
\(\qquad\)
County Floyd. Sample Number \(\mathrm{R}-7-\mathrm{B}\)
Raw Properties: Lab \& No. Ga. Tech., 非11.

Date Reported \(\qquad\) 1931. Ceramist R. W. Smith, Ga. Geol. Survey.

Water of Plasticity \(\qquad\) 31.4 \% Working Properties Good plasticity, sticky at first; rapid slaking; good molding behavior. Color Grayish-brown. Drying Shrinkage \(65 \%\) Dry Strength (MOR) 228.9 psi.

Remarks Drying Behavior: good, only slight warpage.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
Approx.
Temp.
 *
 (}\mp@subsup{}{}{\circ}\textrm{C}
``` & \[
\begin{gathered}
\text { Color* } \\
\text { (Munsel1) }
\end{gathered}
\] & Hardness (MOR) psi. & Linear Shrinkage, \% dry (plastic) & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{aligned}
& 1840 \\
& (1005)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Salmon } \\
& (6 \mathrm{YR}-7 / 5)
\end{aligned}
\] & 1483 & 4.3 (10.7) & 19.1 & - & Slight. \\
\hline \[
\begin{aligned}
& 1920 \\
& (1050)
\end{aligned}
\] & Salmon
\[
(3 Y R-6 / 6)
\] & 1739 & 5.1 (11.5) & 16.1 & -- & Some. \\
\hline \[
\begin{aligned}
& 2000 \\
& (1095)
\end{aligned}
\] & Salmon
\[
(3 Y R-6 / 6)
\] & 2134 & 7.0 (12.9) & 11.1 & - & Slight. \\
\hline \[
\begin{aligned}
& 2060 \\
& (1125)
\end{aligned}
\] & Fair red
\[
(10 R-5 / 6)
\] & 2639 & 8.8 (13.5) & 7.5 & - & Some. \\
\hline \[
\begin{aligned}
& 2090 \\
& (1145)
\end{aligned}
\] & Medium red (10R-5/5) & 2375 & 8.6 (14.0) & 7.4 & - & Slight. \\
\hline \[
\begin{aligned}
& 2160 \\
& (1180)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark } \\
& \text { brownish } \\
& (10 \mathrm{R}-4 / 4)
\end{aligned}
\] & \[
\text { ed } \quad 2784
\] & 9.9 (15.2) & 4.4 & - & Some to nsiderable. \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range \(=\) Cone 1 to 5 (commercial kiln \(=\) Cone 02 to 4). The shale is suitable for making brick, tile and possibly sewer pipe (Smith, 1931, p. 98). Shale from this property was later mined by the Chattahoochee Brick Co. (Furcron, 1958, p. 5, No. 28 - see F1.57-1).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Easy grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:


Analyst E. Everhart, Ga. Geol. Survey.
Date c. 1930 .

Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Rock Mountain (cntr.). Lat. \(\qquad\) , Long. \(\qquad\)
Field No. \(\qquad\) , Collected by R. W. Smith.

Date 7-27-29
Sample Method Grab sample. Weathering/alteration Weathered.

Structural Attitude \(\qquad\)

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample from cut on Huffaker Rd. beneath the Georgia Power Co. transmission lines about \(11 / 4\) miles E . of Lavender Stn. (Central of Ga . RR.) on the Long property, about \(1 / 2\) mile due \(N\). of the Oconee Clay Products Co. clay pit (F1.31S-10) and W. of 31S-9. Soft, dark gray to chocolate brown shale weathering into layers \(1 / 4\) to 1 in. thick and with a waxy luster on knife-cut surfaces (Smith, 1931, p. 94-98). (Shale was later mined in this area by the Chattahoochee Brick Co., Furcron, 1958, No. 28, p. 5-see Fl.57-1.)

Compiled by B. J. O'Connor
Date 2-10-86

Material Shale, soft (Floyd). \(\qquad\) Compilation Map Location No. Fl.31S-12

County Floyd. Sample Number R-10

Raw Properties: Lab \& No. Ga. Tech., 非12.

Date Reported 1931. Ceramist R. W. Smith, Ga. Geol. Survey.

Water of Plasticity \(32.4 \%\) Working Properties Good plasticity; rapid slaking; Color Yellowish-brown. Drying Shrinkage \(\quad 5.4 \%\) Dry \(\frac{\text { and good molding behavior. }}{\text { Strength (MOR) } 148.5 \text { psi. }}\)

Remarks Drying Behavior: good, very little warpage.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
Approx.
Temp.
    0}\textrm{F
    (' C)
``` & \[
\begin{gathered}
\text { Color* } \\
\text { (Munsell) }
\end{gathered}
\] & Hardness (MOR) psi. & \begin{tabular}{l}
Linear \\
Shrinkage, \% dry (plastic)
\end{tabular} & Absorption \% & Appr. Por. & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{aligned}
& 1840 \\
& (1005)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Salmon } \\
& (5 \mathrm{YR}-6 / 6)
\end{aligned}
\] & 742 & 3.2 (8.5) & 21.6 & - & Slight. \\
\hline \[
\begin{aligned}
& 1920 \\
& (1050)
\end{aligned}
\] & Light red
\[
(2 Y R-6 / 5)
\] & 799 & 4.0 (9.4) & 20.2 & - & Slight. \\
\hline \[
\begin{aligned}
& 2000 \\
& (1095)
\end{aligned}
\] & Light red
(3YR-6/5) & 1065 & 5.8 (11.1) & 16.8 & -- & Slight. \\
\hline \[
\begin{aligned}
& 2060 \\
& (1125)
\end{aligned}
\] & Medium red
\[
(10 R-5 / 5)
\] & 1478 & 7.6 (12.7) & 12.8 & - & Slight. \\
\hline \[
\begin{aligned}
& 2090 \\
& (1145)
\end{aligned}
\] & Good red
\[
(10 R-5 / 4)
\] & 1707 & 7.2 (11.9) & 12.5 & - & Slight. \\
\hline \[
\begin{aligned}
& 2160 \\
& (1180)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Good red } \\
& (10 \mathrm{R}-4 / 4)
\end{aligned}
\] & 1698 & 8.0 (12.8) & 11.6 & - & Slight. \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range = Cone 1 to 5 and higher (commercial kiln = Cone 02 to 5). This shale is suitable for brick and medium-fired structural tile (Smith, 1931, p. 101; also Furcron, 1958, p. 5, No. 31-no further ceramic tests).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notations "5YR" and " 10 " correspond to the original notations "YR" and "R-YR" respectively reported in Smith (1931).

Crushing Characteristics (unfired material) Easy grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:
\begin{tabular}{lrl}
Chemical Analysis & Mineralogy: Not determined. \\
Oxide & Weight \(\%\) & Mineral \\
\(\mathrm{SiO}_{2}\) & 57.43 & \\
\(\mathrm{TiO}_{2}\) & 0.56 & Quartz \\
\(\mathrm{Al}_{2} \mathrm{O}_{3}\) & 21.17 & Feldspar \\
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & 9.36 & Carbonate \\
FeO & 0.00 & Mica \\
MnO & 0.58 & Chlorite- \\
MgO & 1.94 & vermiculite \\
CaO & 0.00 & Montmorillonite \\
\(\mathrm{Na}_{2} \mathrm{O}\) & 0.75 & Others \\
\(\mathrm{K}_{2} \mathrm{O}\) & 0.48 & \\
\(\mathrm{P}_{2} \mathrm{O}_{5}\) & 0.53 & Total \\
\(\mathrm{SO}_{3}\) & 0.28 &
\end{tabular}
C (org.) -
\(\begin{array}{ll}\mathrm{CO}_{2} & - \\ \mathrm{H}_{2} \mathrm{O}^{-}\end{array}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)-
Ignition 6.99
loss
Total \(\quad \overline{100.07 \%} \quad\left(\%\right.\) analysis recalculated on an \(\mathrm{H}_{2} \mathrm{O}^{-}\)-free basis by Smith, 1931, p. 100.)
Analyst E. Everhart, Ga. Geol. Survey. \(\qquad\)

Date c. 1930 .

Method Standard "wet".
Sample Location Data:

County Floyd. Land Lot _ Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Rock Mountain (SE. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. R-10 , Collected by R.W. Smith.

Date 7-29-29
Sample Method Grab samples from new Weathering/alteration Weathered. 28 ft . water well. \(\qquad\)
Structural Attitude Near the trace of the Rome fault.
Stratigraphic Assignment Floyd Shale (Mississippian) near fault contact with Conasauga shales (Cambrian).
Sample Description \& Comments Samples of soft, plastic, yellowish-brown shale which breaks into small waxy flakes - in lower 20 ft . of well beneath 8 ft . of soil and sub-soil containing rounded gravel. (Semi-hard, drab-colored shale also crops out along the nearby low ridge.) Located on the J. L. Johnson property (former Barry Wright place) S. of the Southern RR., about \(71 / 2 \mathrm{mi}\). W. of Rome approximately half way between Robinson (on the E.) and Oreburg (on the W.) (Smith, 1931, p. 99-101; also Furcron, 1958, p. 5., No. 31, Dr. T.Harbin property - no further ceramic tests).

Compiled by \(\qquad\) Date 2-10-86
\begin{tabular}{|c|c|c|}
\hline Material Shale, sof & & Compilation Map Location No. F1.31S-13 \\
\hline County Floyd. & & Sample Number \(\quad \mathrm{R}-8\) \\
\hline Raw Properties: & Lab \& No. & Ga. Tech., 非13 \\
\hline Date Reported 1931. & Ceramist & R. W. Smith, Ga. Geol. Survey. \\
\hline Water of Plasticity & Working P & perties \(\frac{\text { Good plasticity; rapid slaking; }}{\text { good molding behavior. }}\) \\
\hline
\end{tabular}

Remarks Drying Behavior: All test bars slightly warped.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Approx. \\
Temp. \({ }^{\circ} \mathrm{F}\) \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \[
\begin{gathered}
\text { Color* } \\
\text { (Munsell) }
\end{gathered}
\] & Hardness (MOR) psi. & Linear Shrinkage, \% dry (plastic) & Absorption \% & \[
\underset{\%}{\text { Appr. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{aligned}
& 1840 \\
& (1005)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Salmon } \\
& (4 \mathrm{YR}-6 / 7)
\end{aligned}
\] & 997 & 4.1 (10.4) & 20.3 & - & Slight. \\
\hline \[
\begin{aligned}
& 1920 \\
& (1.050)
\end{aligned}
\] & Salmon red (2YR-6/8) & 1249 & 5.7 (11.5) & 16.9 & - & Some . \\
\hline \[
\begin{aligned}
& 2000 \\
& (1095)
\end{aligned}
\] & Light red (\(10 \mathrm{R}-5 / 7\)) & 1542 & 6.3 (14.0) & 13.6 & - & Very slight. \\
\hline \[
\begin{aligned}
& 2060 \\
& (1125)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Good red } \\
& (10 \mathrm{R}-5 / 6)
\end{aligned}
\] & 2197 & 10.4 (16.0) & 8.1 & - & Some. \\
\hline \[
\begin{gathered}
2090 \\
(1145)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Dark red } \\
& (10 \mathrm{R}-4 / 5)
\end{aligned}
\] & 1849 & 9.2 (14.9) & 8.5 & - & Considerable. \\
\hline \[
\begin{aligned}
& 2160 \\
& (1180)
\end{aligned}
\] & ```
Dark
 brownish
(10R-4/4)
``` & 2053 & 10.3 (16.5) & 6.7 & - & Some to considerable. \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range \(=\) Cone (commercial kiln \(=\) Cone 01 to 4). This shale should be satisfactory for making bricks and possibly structural tile and sewer pipe although the shrinkage is high. Shrinkage might be reduced by blending with a harder or more siliceous shale (Smith, 1931, p. 103; also Furcron, 1958, p. 5, No. 30 - no further ceramic tests).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notation "loR" corresponds to the original notation "R-YR" reported in Smith (1931).


Date c.1930. \(\qquad\)
\(\qquad\)
Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot 186 , Sec. 4 , Dist. 4.
7 1/2' topo quad. Rock Mountain (S. edge) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. R-8 \(\qquad\) , Collected by R. W. Smith. Date 7-29-29

Sample Method Grab samples.
Weathering/alteration Weathered.
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group shale (Cambrian).
Sample Description \& Comments Sample soft, plastic, brownish-red shale (3 ft. exposed) under 5 ft . of silt and gravel overburden. Shale exposed in a gulley on the north ridge-slope. Located on the J. Martin property on the \(S\). side of the Southern RR. just W. of Oreburg station (Smith, 1931, p. 101-103; also Furcron, 1958, P. 5, No. 30 - no further ceramic tests).

Compiled by \(\qquad\) Date 2-10-86


Remarks Drying Behavior: good.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
Approx.
Temp.
    *
    ( ' C )
``` & \[
\begin{gathered}
\text { Color } \\
\text { (Munsell) }
\end{gathered}
\] & \begin{tabular}{l}
Hardness \\
(MOR) psi.
\end{tabular} & Linear Shrinkage, \% dry (plastic) & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{gathered}
1840 \\
(1005)
\end{gathered}
\] & \[
\begin{gathered}
\text { Dark salmon } \\
(1 Y R-6 / 8)
\end{gathered}
\] & 1259 & 5.4 (10.3) & 12.0 & - & Slight. \\
\hline \[
\begin{gathered}
1920 \\
(1050)
\end{gathered}
\] & Light red (1YR-5/7) & 1463 & 5.8 (10.5) & 10.3 & - & Slight. \\
\hline \[
\begin{gathered}
2000 \\
(1095)
\end{gathered}
\] & Medium red
\[
(1 Y R-5 / 5)
\] & 2060 & 6.6 (11.3) & 7.2 & - & Slight. \\
\hline \[
\begin{gathered}
2060 \\
(1125)
\end{gathered}
\] & Good red (1YR-4/4) & 2589 & 9.1 (13.6) & 3.8 & - & Some . \\
\hline \[
\begin{gathered}
2090 \\
(1145)
\end{gathered}
\] & ```
Deep
 chocolate
 (2YR-3/5)
``` & \[
\text { red } 1839
\] & 7.0 (11.5) & 3.1 & - & Bad. \\
\hline \[
\begin{gathered}
2160 \\
(1180)
\end{gathered}
\] & Deep chocolate ( \(2 \mathrm{YR}-3 / 3\) ) & 2570 & 6.7 (11.4) & 2.1 & - & siderable. \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range \(=\) Cone 1 to 5 (Commercial kiln \(=\) Cone 02 to 4). The shale is suitable for making brick - possibly for tile and sewer pipe (Smith, 1931, P. 106; also Furcron, 1958, No. 34, p.6-see Fl.57-15).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) Fairly easy grinding, brittle.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:


Date c.1930.
Method Standard "wet".
\(\qquad\)

Sample Location Data:
County Floyd Land Lot 101 , Sec. _ 4 , Dist. 15 .
\(71 / 2^{\prime}\) topo quad. Chattoogaville (SE. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -.
\(\qquad\) , Collected by R. W. Smith. Date 8-14-29

Sample Method Grab samples.
Weathering/alteration Weathered.
Structural Attitude Strike N. \(70^{\circ} \mathrm{W}\)., dip \(45^{\circ} \mathrm{N}\).
Stratigraphic Assignment \(\qquad\) Conasauga Group shale (Cambrian).

Sample Description \& Comments Samples of soft, olive-green to drab shale (flakyweathering in places and splintery in others) from cuts on the "road from Lavender Station to Early Station" (= present Ga. Hwy. 20 ?) on the slope E. of King Creek. The road forms the boundary between the C. Evans property on the N. and the G. Russell property on the S. (Smith, 1931, p. 103-106)-corresponding to the W. E. Bridges and D. Davis properties respectively of Furcron (1958, p. 6, No. 34 - see F1.57-15).

Compiled by B. J. \(0^{\prime}\) Connor Date 2-10-86
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Shale, soft (Conasauga).} & \multicolumn{3}{|l|}{Compilation Map Location No. Fl.31S-15} \\
\hline \multicolumn{5}{|l|}{County Floyd. S} & \multicolumn{3}{|l|}{Sample Number R-37} \\
\hline \multicolumn{8}{|l|}{Raw Properties: Lab \& No. Ga. Tech., 非15.} \\
\hline \multicolumn{4}{|l|}{Date Reported 1931.} & ramist R & \multicolumn{3}{|l|}{R. W. Smith, Ga. Geol. Survey.} \\
\hline \multicolumn{4}{|l|}{Water of Plasticity} & rking Prop & \multicolumn{3}{|l|}{operties Good plasticity; fairly rapid
\(\qquad\)} \\
\hline \multicolumn{5}{|l|}{Color Brownish-drab. Drying Shrinkage 4} & \multicolumn{3}{|l|}{. 5 \% Dry Strength (MOR) 171.2 psi.} \\
\hline \multicolumn{8}{|l|}{Remarks Drying Behavior: All test bars slightly warped.} \\
\hline \multicolumn{8}{|l|}{Slow Firing Tests:} \\
\hline Approx. Temp. ( \({ }^{\circ} \mathrm{C}\) ) \(\left({ }^{\circ} \mathrm{C}\right)\) & \[
\begin{gathered}
\text { Color* } \\
\text { (Munse11) }
\end{gathered}
\] & Hardness (MOR) psi. & \[
\begin{aligned}
& \text { Lir } \\
& \text { Shrir }
\end{aligned}
\] & \begin{tabular}{l}
near \\
nkage, \% \\
(plastic)
\end{tabular} & \[
\underset{\%}{\text { Absorption }}
\] & \[
\underset{\%}{\text { Appr. }}
\] & Other data: Warpage \\
\hline \[
\begin{gathered}
1840 \\
(1005)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Salmon } \\
& (3 \text { YR }-6 / 7)
\end{aligned}
\] & 701 & 3.5 & (7.9) & 16.8 & - & Slight. \\
\hline \[
\begin{gathered}
1920 \\
(1050)
\end{gathered}
\] & Light red ( \(10 \mathrm{R}-5 / 5\) ) & 1107 & & (8.5) & 14.1 & - & S1ight. \\
\hline \[
\begin{gathered}
2000 \\
(1095)
\end{gathered}
\] & Medium red (10R-5/3) & 1318 & & (9.7) & 12.9 & - & Slight. \\
\hline \[
\begin{gathered}
2060 \\
(1125)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Fair red } \\
& (10 \mathrm{R}-5 / 4)
\end{aligned}
\] & 1636 & & (10.8) & 10.5 & - & Slight. \\
\hline \[
\begin{gathered}
2090 \\
(1145)
\end{gathered}
\] & Deep red (10R-4/5) & 2032 & & (11.7) & 7.3 & - & Considerable. \\
\hline \[
\begin{gathered}
2160 \\
(1180)
\end{gathered}
\] & Very deep red ( \(8 \mathrm{R}-4 / 3\) ) & 2203 & & (12.5) & 6.4 & - & Some. \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range \(=\) Cone 1 to 5 and higher (commercial kiln \(=\) Cone 02 to 05). This shale is suitable for the manufacture of brick and possibly tile and sewer pipe (Smith, 1931, p. 108; also Furcron, 1958, p. 6, No. 32. - no further ceramic tests).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notation " \(10 \mathrm{R}^{\prime \prime}\) corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Fairly easy grinding, brittle.
Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical \& Mineralogical Data:


Analyst E. Everhart, Ga. Geol. Survey.
Date c. 1930.
\(\qquad\)
\(\qquad\)
Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot 286 , Sec. \(\qquad\) 4 , \(\qquad\) 4 -
\(71 / 2\) topo quad. Livingston (NW. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by R. W. Smith

Date \(\qquad\) 8-6-29

Sample Method Grab sample. Weathering/alteration Weathered.

Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group shale (Cambrian).
Sample Description \& Comments Soft, olive-green shale which breaks into thin, flat pieces and flakes with a waxy luster - about 50 ft . thick exposure on the S. bank of the Coosa River at Turner Bend, 10 miles (airline) W. of Rome. No limestone is visible in the shale, but a lense of massive limestone underlies it near the shore line. This outcrop is near the line between the J. B. Williams and L. N. Cooper properties (Smith, 1931, p. 106 to 108; also Furcron, 1958, p. 6, No. 32 - no further ceramic tests).

Compiled by \(\qquad\) Date \(\qquad\)

Material Shale, hard to semi-hard (Conasauga). Compilation Map Location No. F1.31S-16
County
Floyd.
Sample Number R-30
Raw Properties: Lab \& No. Ga. Tech., 非16.
Date Reported 1931. Ceramist R. W. Smith, Ga. Geol. Survey.
Water of Plasticity 20.7 \% Working Properties Poor and grainy plasticity, even on aging a week; slow slaking; poor molding behavior (bars swelled and cracked). Color Light brown. Drying Shrinkage 2.0 \% Dry Strength (MOR) 75.1 psi. Remarks Drying Behavior: Test bars show slight warpage.

Slow Firing Tests:


Remarks / Other Tests Firing range \(=\) Cone 06 to 3 (commercial kiln \(=\) Cone \(06-1\) ). Shale is usable for making brick and possible structural tile. The poor working properties might be overcome by using hot water, finer grinding and/or longer pugging (Smith, 1931, P. 109 and 110). A glassy and vesicular structure began to develop at relatively low temperatures (approx. \(2090-2160^{\circ} \mathrm{F}\) ) indicating it might be used for expanded aggregate production.

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notation " 10 R " corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Fairly easy grinding, brittle.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:


Date c. 1930 .
Method Standard "wet".
Sample Location Data:
County Floyd.
Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Rome South (cntr.) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by R. W. Smith.

Date 8-2-29
Sample Method Grooves ( 6 and 3 ft. ) Weathering/alteration Little weathered. + grab sample composite.
Structural Attitude Apparent strike N. \(25^{\circ}\) E., dip approx. \(65^{\circ}\) E. -- variable.
Stratigraphic Assignment Conasauga Group (Cambrian) shale.
Sample Description \& Comments Semi-hard to hard, greenish-drab to brown shale from about a 500 ft . long cut along US 411-Ga. Hwy. 53, \(1 / 2\) mile N. of Six Mile Station, about \(1 / 4 \mathrm{mi}\). W. of the Southern RR., about \(51 / 2 \mathrm{miles}\) SW. of Rome, on the P. M. Foster property. The samples are of somewhat fissile shale from the \(N\). end ( 3 ft . groove) and S . end ( 6 ft . groove) and a grab sample, from the middle, of harder, less fissile shale which appears more siliceous (less weathered ?) (Smith, 1931, p. 108 to 110.)

Compiled by B. J. O'Connor Date 2-10-86

Material Shale, hard to semi-hard (Conasauga). Compilation Map of Location No.F1. 31S-17
County Floyd. Sample Number R-48

Raw Properties: Lab \& No. Ga. Tech., 非17.
Date Reported 1931. Ceramist R. W. Smith, Ga. Geol. Survey.
Water of Plasticity \(24.1 \%\) Working Properties Very poor plasticity, even on aging a week; very slow slaking; poor molding behavior (bars swell, tear, and crack on edges).

Color \(\frac{\text { Light }}{\text { brownish-gray }}\) Drying Shrinkage \(\quad 3.6\) \% Dry Strength (MOR) 44.3 psi.
Remarks Drying Behavior: All test bars somewhat warped.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Approx. } \\
& \text { Temp. } \\
& { }^{\circ} \mathrm{F} \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \begin{tabular}{l}
Color* \\
(Munsell)
\end{tabular} & Hardness (MOR) psi. & \begin{tabular}{l}
Linear \\
Shrinkage, \% dry (plastic)
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{gathered}
1840 \\
(1005)
\end{gathered}
\] & \[
\begin{gathered}
\text { Dark salmon } \\
(3 Y R-6 / 8)
\end{gathered}
\] & 726 & 3.3 (6.7) & 14.2 & - & Some. \\
\hline \[
\begin{gathered}
1920 \\
(1050)
\end{gathered}
\] & Light red
\[
(1 Y R-5 / 5)
\] & 1588 & 5.0 (8.5) & 9.8 & - & Considerable. \\
\hline \[
\begin{gathered}
2000 \\
(1095)
\end{gathered}
\] & Medium red ( \(2 \mathrm{YR}-5 / 6\) ) & 1260 & 5.0 (8.2) & 10.3 & - & Considerable. \\
\hline \[
\begin{gathered}
2060 \\
(1125)
\end{gathered}
\] & Medium red (1YR-5/5) & 1773 & 5.5 (8.8) & 9.0 & - & Considerable. \\
\hline \[
\begin{gathered}
2090 \\
(1145)
\end{gathered}
\] & Good red
\[
(10 R-4 / 4)
\] & 1809 & 5.9 (9.3) & 5.2 & - & Bad. \\
\hline \[
\begin{gathered}
2160 \\
(1180)
\end{gathered}
\] & ```
Deep
    brownish red
    (10R-3/4)
``` & d 2547 & 7.3 (11.2) & 2.3 & - & Bad (slight vitrification on broken ends) \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range = Cone 02 to 3 (commercial kiln = Cone 04 to 2). The shale is satisfactory for brick if working properties could be improvedperhaps by finer grinding, longer pugging and/or use of hot water and electrolites (Smith, 1931, p. 112). Glassy structure at the comparatively low temperature (approx. \(2160^{\circ} \mathrm{F}, 1180^{\circ} \mathrm{C}\)) indicates that this shale might have advantages for making lightweight, expanded aggregate.

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" in Smith (1931).

Crushing Characteristics (unfired material): Fairly easy grinding, brittle. Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:

Analyst E. Everhart, Ga. Geol. Survey.

Date 1931.

Method Standard "wet".

Sample Location Data:
County Floyd. Land Lot 324, Sec. 3 , Dist. 23 \(^{23}\).
\(71 / 2^{\prime}\) topo quad. Rome South (NE. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) R-48 Collected by R. W. Smith. Date 8-8-29

Sample Method Grab.
Weathering/alteration \(\qquad\)

Structural Attitude Beds strike \(\mathrm{N} .20^{\circ} \mathrm{E}\). and dip about \(90^{\circ} \mathrm{E}\).

Stratigraphic Assignment Conasauga Group shale (Cambrian).
Sample Description \& Comments Shale is from outcrops of semi-hard to hard, greenish-drab Conasauga shale weathering into small flat pieces and long splinters. Located on a low ridge between the Southern RR. and Silver Creek (on the west) on the J. M. Graham property \(1-1 / 2\) miles \(S\). of Rome and just \(N\). of New Rome (Smith, 1931, p. 111-112.

Compiled by B. J. 0'Connor Date \(2-10-86\)
Material Shale, soft (Conasauga). Compilation Map Location No. Fl. 31S-18a
County Floyd. Sample Number \(\quad\) R-32-A

Raw Properties: Lab \& No. Ga. Tech., 非18.
Date Reported 1931. Ceramist R. W. Smith, Ga. Geol. Survey.

Water of Plasticity 27.2 \% Working Properties Fair plasticity, a little "short"; rapid slaking; fair molding behavior (clay column tore some at edges and broke easily).

Color Brownish-tan Drying Shrinkage 3.1 \% Dry Strength (MOR) 62.0 psi.
Remarks Drying Behavior: Test bars all slightly warped.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ```
Approx.
Temp.
 *}\textrm{F
 (' C)
``` & \[
\begin{gathered}
\text { Color* } \\
\text { (Munsel1) }
\end{gathered}
\] & Hardness (MOR) psi. & Linear Shrinkage, \% dry (plastic) & Absorption \% & \[
\underset{\%}{\text { Appr. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Warpage
\end{tabular} \\
\hline \[
\begin{gathered}
1840 \\
(1005)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Salmon } \\
& (4 \mathrm{YR}-6 / 6)
\end{aligned}
\] & 992 & 5.0 (7.8) & 15.7 & - & Slight. \\
\hline \[
\begin{gathered}
1920 \\
(1050)
\end{gathered}
\] & Salmon
\[
(2 Y R-5 / 5)
\] & 1122 & 4.8(7.7) & 15.7 & - & Slight. \\
\hline \[
\begin{gathered}
2000 \\
(1095)
\end{gathered}
\] & \[
\begin{gathered}
\text { Dark salmon } \\
(2 Y R-6 / 5)
\end{gathered}
\] & 1423 & 5.9(8.7) & 12.9 & - & Some. \\
\hline \[
\begin{gathered}
2060 \\
(1125)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Fair red } \\
& (10 \mathrm{R}-4 / 4)
\end{aligned}
\] & 1958 & 8.8 (11.5) & 8.8 & - & Some. \\
\hline \[
\begin{gathered}
2090 \\
(1145)
\end{gathered}
\] & Good red
\[
(10 R-4 / 3)
\] & 2342 & 9.9 (12.9) & 5.8 & - & Considerable. \\
\hline \[
\begin{gathered}
2160 \\
(1180)
\end{gathered}
\] & Deep chocolate (10R-3/3) & \[
2775
\] & 10.9 (13.8) & 2.8 & - & Considerable. \\
\hline
\end{tabular}

Remarks / Other Tests Firing Range \(=\) Cone 01 to 5 (commercial kiln \(=\) Cone 02 to 4). Used by the B. M. Hood Co. (blended with alluvial clay - 18b) to manufacture roofing tile beginning in 1925. Previously used by the Rome Brick Co. (also blended with alluvial clay) to manufacture common and pressed brick (Smith, 1931, p. 112-113).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color notation " \(10 \mathrm{R}^{\prime \prime}\) corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Easy grinding.
Particle Size - 16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:


Analyst E. Everhart, Ga. Geol. Survey.
Date c. 1930 .
\(\qquad\)
c. \(\qquad\)
Method Standard "wet".
Sample Location Data:
County Floyd. Land Lot__ Sec._ Dist. ___
\(71 / 2^{\prime}\) topo quad. Rome North (SE. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. R-32-A \(\qquad\) , Collected by \(\qquad\) R. W. Smith Date 8-3-29

Sample Method Grab from stockpile. Weathering/alteration Weathered.
Structural Attitude Strike N. \(30^{\circ}\) E., dip about \(90^{\circ} \mathrm{E}\).
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments Stockpile sample of soft, brownish-drab shale mined from the shale pit (about 100 x 75 ft . and 25 ft . deep) just east of the B. M. Hood Co. roofing tile plant in North Rome--exact location unspecified (Smith, 1931, p. 112 to 113). (Shale in the pit is overlain by 5 to 15 ft . of alluvial and colluvial overburden of weathered shale and clay as well as terrace silt and gravel--none of which was used in the tile plant.)

Compiled by B. J. O'Connor Date \(2-10-86\)


Crushing Characteristics (unfired material) Easy grinding.
Particle Size -16 mesh. Retention Time Approx. 17 hours.
Chemical \& Mineralogical Data:


Date c. 1930 . \(\qquad\)
Method Standard "wet". \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. Rome North (SE. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. R-32-B , Collected by R. W. Smith.

Date 8-3-29

Sample Method Grab-from stockpile. Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Recent (?) alluvial terrace deposits above the Etowah River.

Sample Description \& Comments Sample of plastic, blue to brown alluvial clay with "more or less" fine sand and some fine mica from pit beneath about 8 in. of soil overburden. Pit located S. of the \(B\). M. Hood Co. roofing tile plant in North Rome--exact location unspecified (Smith, 1931, p. 112, 114-116).

Compiled by \(\qquad\)
B. J. \(0^{\prime}\) Connor

Date \(\qquad\)


Color Reddish-brown. Drying Shrinkage \(\qquad\) \% Dry Strength \(\qquad\)

Slow Firing Tests: Not determined due to very poor working properties.
\begin{tabular}{cccccc} 
Temp. & Color & Hardness & Linear & Absorption & Appr. Por. \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular}

Remarks / Other Tests This shale "Had so little plasticity that the sample was discarded without further tests." This indicates that the shale, by itself, is not suitable for making heavy clay products. However, it might be usable for light-weight aggregate manufacture (Smith, 1931, p. 117 and 118).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Grushing Characteristics (unfired material) Fairly easy grinding, brittle.
Particle Size -16 mesh. Retention Time \(\qquad\)

Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis} & \multicolumn{2}{|l|}{Mineralogy: Not determined.} \\
\hline Oxide & Weight \% & Mineral & volume \% \\
\hline \(\mathrm{SiO}_{2}\) & 54.04 & & \\
\hline \(\mathrm{TiO}_{2}\) & 0.90 & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & 26.10 & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & 9.50 & Carbonate & \\
\hline FeO & 0.76 & Mica & \\
\hline MnO & - & Chlorite- & \\
\hline MgO & trace & vermiculite & \\
\hline CaO & 0.00 & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & 0.10 & Others & \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & 2.31 & & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & 0.20 & & \\
\hline \(\mathrm{SO}_{3}\) & 0.17 & Total & \\
\hline C (org.) & - & & \\
\hline \(\mathrm{CO}_{2}\) & - & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & * & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & - & & \\
\hline Ignition & 5.85 & & \\
\hline
\end{tabular}

Total \(\quad\) 99.93* \(\quad\left(\%=\right.\) analysis recalculated on an \(\mathrm{H}_{2} \mathrm{O}^{-}\)-free basis by Smith, 1931, -. 117.)
Analyst E. Everhart, Ga. Geol. Survey
Date c.1930. \(\qquad\)
Method Standard "wet".
Sample Location Data:
County Floyd Land Lot 256 and 257, Sec. 3 , Dist. 24.
\(71 / 2^{\prime}\) topo quad. Shannon (N. side) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by R. W. Smith

Date 8-7-29

Sample Method Grab samples. Weathering/alleration Some weathering.

Structural Attitude Beds strike \(\mathrm{N} .45^{\circ} \mathrm{E}\). and dip approx. \(65^{\circ} \mathrm{SE}\).

Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments Samples of hard, brownish-red shale, locally weathered into slabs 1 to 2 in. thick, from cuts along the Southern RR., N. of Pinson Station, over a total distance of about \(1 / 4 \mathrm{mile}\). Samples at both ends of the \(W\). T. Watters property, on the west side of the RR., 10 miles NE. of Rome (Smith, 1931, p. 117 and 118). This was described as the Bill McKeller property by Furcron (1958, P. 4, No. 19).

Compiled by B. J. \(0^{\prime}\) Connor Date \(\quad 2-10-86\)


Color Reddish-brown. Drying Shrinkage __ \% Dry Strength _ _ _

Slow Firing Tests: Not determined due to very poor working properties.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) & Color & Hardness & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & Appr. Por. \% & Other data: \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & & & & & & \\
\hline
\end{tabular}

Remarks / Other Tests This shale "had so little plasticity that the sample was discarded without further tests." --indicating that, by itself, the shale is not suitable for making heavy clay products. In 1928-1929 this property was optioned and prospected for light-weight aggregate manufacture, and the shale was reported to have been found satisfactory (Smith, 1931, p. 118).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characleristics (unfired material) Fairly easy grinding, brittle.
Particle Size -16 mesh. Retention Time \(\qquad\)

Chemical \& Mineralogical Data:


Sample Location Data:

County Floyd. Land Lot 257 , Sec. \(\quad 3 \quad\), Dist. \(\quad 24\).
\(71 / 2^{\prime}\) topo quad. Shannon (N. side) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by R. W. Smith

Date 7-31-29
Sample Method Groove (12 ft.) + grab Weathering/alteration Variably weathered. samples.
Structural Attitude -

Straligraphic Assignment Conasauga Group (Cambrian).

Sampie Description \& Comments Samples of hard, reddish-brown to gray shale, weathered into slabs which break into splintery fragments. 12 ft . groove sample taken from a cut on the Southern RR. (E. side), \(1 / 2\) to \(1 / 4 \mathrm{mi}\). N. of Pinson Station (adjacent to the Watters property \(=\) Fl.31S-19) and grab samples from a "shallow prospect hole near the road" (railroad ?). This locality belonged to the National City Bank (Rome) when it was sampled and lies approximately 10.25 miles NE. of Rome (Smith, 1931, p. 118).
C.)mpiled by \(\qquad\)
B. J. \(0^{\prime}\) Connor

Date \(\qquad\)

*: can still be cut with a knife.
** : almost steel hard.

Remarks / Other Tests The clay would probably have to be mixed with a more plastic and lower-maturing clay for making pottery or structural clay products due to its stickiness and somewhat high maturing temperature. However, its color and lack of warpage indicate it might be worthwhile if blended properly.

Preliminary Bloating (Quick Firing) Tests: Not determined.
\(\qquad\) , cont:
Crushing Characteristics (unfired material) -
Particle Size \(\qquad\) Retention Time \(\qquad\)
Chemical \& Mineralogical Data: Not determined.


Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. Shannon (or Wax?) - Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by M. N. Griffin. Date May 1943.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Tertiary (?) - probably residual from Knox Group

> (Cambrian-Ordovician) carbonates.

Sample Description \& Comments Light gray clay ("possibly of the fuller's earth or meta-bentonite types") which is somewhat sticky when wet, but does not seem to contain an appreciable quantity of grit. Collected by Mr. Griffin, Griffin Foundry \& Machine Co., Rome, from his farm on the Kingston Road (Ga. Hwy. 293 - formerly Hwy. 20). (Unpubl. notes from Ga. Geol. Survey files.)

Compiled by B. J. \(0^{\prime}\) Connor Date 8-12-86


Slow Firing Tests:
\begin{tabular}{lllllll}
\begin{tabular}{c} 
Temp. \\
\({ }^{\circ} \mathrm{F}\) \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & Color & Hardness & \begin{tabular}{c} 
Linear \\
Shrinkage,
\end{tabular} & \begin{tabular}{c} 
Absorption \\
\(\%\)
\end{tabular} & \begin{tabular}{c} 
Appr. Por. \\
\(\%\)
\end{tabular} & \begin{tabular}{c} 
Other \\
data:
\end{tabular} \\
\hline \begin{tabular}{llll}
2192 & Almost \\
\((1200)\) \\
white with \\
red spots
\end{tabular} & \begin{tabular}{c} 
Very \\
hard
\end{tabular} & \(<25\) & - & - & - \\
& & & &
\end{tabular}

Remarks / Other Tests This clay may be of possible use for structural clay products manufacture.

Preliminary Bloating (Quick Firing) Tests: Not determined. (No evidence of bloating from overfiring.)

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size ("fine-grained"). Retention Time 10 hours.
Chemical \& Mineralogical Data: Not determined.


Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:
County \(\qquad\) Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .
\(71 / 2^{\prime}\) topo quad. Shannon (NE. 1/4) . Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by K. H. Teague (TVA). Date June 1946.

Sample Method \(\qquad\) Grab (?).

Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Tertiary (?) residual clay from Knox Group (CambrianOrdovician) carbonates.
Sample Description \& Comments Sample of white clay collected from near an old bauxite mine (about) 3 miles east of Hermitage in eastern Floyd Co. (unpubl. notes from Ga. Geol. Survey files).

Compiled by \(\qquad\) B. J. \(0^{\prime}\) Connor

Date \(\qquad\)

\begin{tabular}{|c|c|c|c|c|}
\hline Temp. & Absorption & \multicolumn{2}{|l|}{Bulk Density} & \multirow[t]{2}{*}{Pore Structure} \\
\hline \({ }^{\circ} \mathrm{C}\) & & \(\mathrm{g} / \mathrm{cm}^{3}\) & \(1 \mathrm{~b} / \mathrm{ft}{ }^{3}\) & \\
\hline \[
\begin{gathered}
2350 \\
(1288)
\end{gathered}
\] & - & - & - & - \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & - & - & - & Gray-white col (too refracto \\
\hline \[
\begin{aligned}
& 2450 \\
& (1343)
\end{aligned}
\] & - & - & - & - \\
\hline Remarks & \multicolumn{4}{|l|}{Not usable, by itself, for light-weight aggregate manufacture.} \\
\hline
\end{tabular}

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -8 mesh. Retention Time 30 min. (in muffle furnace).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
FeO
MnO
Mgo
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\(\mathrm{S}^{2}\) (tota1)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
los:
Total
Analyst \(\qquad\)
Date \(\qquad\)

Mineralogy Mineral volume \%

Quartz
Feldspar
Carbonate
Mica
Chloritevermiculite
Montmorillonite
Others

Total

\%


Slow Firing Tests: Not determined.




Mineralogy
Mineral volume \%

Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite
Others

Total
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
Sample Location Data:

County Floyd.
Land Lot \(\qquad\) , Sec. \(\qquad\) ,

Dist. \(\qquad\) .
\(71 / 2^{\prime}\) topo quad. Rome South (cntr.) . Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by S. D.Broadhurst (TVA). Date 1946 ?

Sample Method Grab (?)
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\) \(-\)

Stratigraphic Assignment Conasauga Group (Cambrian).

Sample Description \& Comments Material is hard, grayish-green, quite sandy shale with abundant, thin sandstone layers. It is quite torgh and blocky when fresh and weathers to light gray flakes. Location is 6 miles S. of Rome on U.S. 411-27 and \(1 / 4\) mi. N. of Six Mile Station. (From an interim report on tests from N.C. Research Lab via H. S. Rankin, TVA, \(10-22-46\); reported in Butts and Gildersleeve, 1948, p. 125, Table 8, no. 3.) Also see tests on \(315-16\) and \(60-1\) a to \(60-1 f\).

Compiled by \(\qquad\) B. J. \(0^{\prime}\) Connor

Date 2-10-86



Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -8 mesh. Retention Time 30 min. (in muffle furnace).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} 0\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\(\begin{array}{ll}\mathrm{S} & \text { (total) } \\ \mathrm{C} & \text { (org.) }\end{array}\)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Analyst \(\qquad\)
Mineralogy
Mineral

Quartz
Feldspar
Carbonate
Mica
Chlorite-
\(\quad\) vermiculite
Montmorillonite
\(\quad\) Others

Total

Date \(\qquad\)
\(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:
County Floyd. \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Rome North (SW. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 15 , Collected by S. D. Broadhurst (TVA) Date 1946 ?

Sample Method Grab (?)
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample is from west Rome just S. of the Central of Ga. RR., near Battey State Hospital. The shale is black, and ranges from hard and tough to soft and flaky. This deposit has been extensively worked for brick shale but large tonnages still remain. (From an interim report on tests from N . C. Research Lab via H. S. Rankin, TVA, 10-22-46). (A1so see Fl. 31S-6.)

Compiled by B. J. O'Connor Date 11-29-82


Remarks / Other Tests Washing the unfired clay removed \(31.3 \%\) white silica sand which, if the iron content is low enough and the \(10 \%\) fines of -200 mesh are not objectionable, might be used in glass, chemical or ceramic industry. Washing and/or screening the clay to remove the sand would probably reduce the fired absorption. The clay might then be used in making whiteware, refractories, or paper filler.

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size \(\qquad\) Retention Time \(\qquad\)
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline Chemica & 1 Analysis: Not determined. & Mineralogy (partial) : & \\
\hline Oxide & Weight \% & Mineral & volume \% \\
\hline \(\mathrm{SiO}_{2}\) & & & \\
\hline \(\mathrm{TiO}_{2}\) & & Quartz (sand) & 31.3 \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & \\
\hline Fe 0 & & Mica & \\
\hline Mno & & Chlorite- & \\
\hline MgO & & vermiculite & \\
\hline CaO & & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & & Others & \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & & (largely kaolinite) & ) 68.7 \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & Total & 100.00 \\
\hline S & (total) & & \\
\hline C & (org.) & & \\
\hline \(\mathrm{CO}_{2}\) & & & \\
\hline \(\mathrm{H}_{2}{ }^{-}\) & & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & & & \\
\hline Ignitio & & & \\
\hline loss & & & \\
\hline Total & & & \\
\hline Analyst & & K. G. Skinner, USBM. & \\
\hline Date & & 7-21-48 & \\
\hline Method & & Washing to remove sand & \\
\hline
\end{tabular}

Sample Location Data:

County Floyd.
Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. Unknown. . Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by W. M. Brown. Date c.July 1948.

Sample Method Grab (?). Weathering/alteration -

Structural Attitude \(\qquad\)

Stratigraphic Assignment Tertiary (?)
Sample Description \& Comments Sample of sandy kaolin submitted by Mr. W. M. Brown, Rt. 1, Rome, Ga. (Exact location and nature of sample not known-unpubl. data from Geal. Survey files).

Compiled by B. J. \(0^{\prime}\) Connor
Date 8-12-86

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & Hardness & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & Other data: \\
\hline
\end{tabular}


Crushing Characteristics（unfired material）－
Particle Size \(\qquad\) Retention Time \(\qquad\)

Chemical \＆Mineralogical Data：
\begin{tabular}{|c|c|c|}
\hline Chemical Analys & is（Ignition loss only）． & Mineralogy：Not determined． \\
\hline Oxide & Weight \％ & Mineral volume \％ \\
\hline \(\mathrm{SiO}_{2}\) & － & \\
\hline \(\mathrm{TiO}_{2}\) & － & Quartz \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & － & Feldspar \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & － & Carbonate \\
\hline FeO & － & Mica \\
\hline MnO & － & Chlorite－ \\
\hline MgO & － & vermiculite \\
\hline CaO & － & Montmorillonite \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & － & Others \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & － & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & － & \\
\hline S（total） & － & Total \\
\hline C （org．） & － & \\
\hline \(\mathrm{CO}_{2}\) & － & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & － & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & － & \\
\hline Ignition & 12．0（非） & \\
\hline loss & 10．0（非2） & \\
\hline & 7.0 （非3 and 非4） & \\
\hline & 8．0（非5） & \\
\hline Total & － & \\
\hline
\end{tabular}

Analyst M．K．Banks，TVA． \(\qquad\)

Date \(10-25-48\) ． \(\qquad\)

Method \(\qquad\)
\(\qquad\)

Sample Location Data：
County Floyd． Land Lot \(\qquad\) ，Sec． \(\qquad\) ，Dist． \(\qquad\) －

7 1／2＇topo quad．Livingston（？） －Lat． \(\qquad\) ，Long． \(\qquad\) ．

Field No． \(\qquad\) ，Collected by W．P．Davis（？）．Date 1948.

Sample Method Grab（？）．
Weathering／alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment \(\qquad\)
Sample Description \＆Comments Clay sample from Mr．W．P．Davis of RFD非2，Cave Spring．（Exact location and nature of sample not known，but it may correspond to the Davis bauxite mine 3 miles NW．of Cave Spring－see White，and others， 1966，Plate 3）．

Compiled by \(\qquad\) Date \(\qquad\)


Remarks / Other Tests Modulus of Rupture \(=3500+\) psi. This sample would probably be suitable for common brick or tile; mottled pattern rather attractive at \(2100^{\circ} \mathrm{F}\) ( \(1149^{\circ} \mathrm{C}\) ). \% shrinkage is on the high side. Petrographic analysis shows \(5 \%+\) calcium carbonate. (Also see F1.31S-11a and b).

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data:
Chemical Analysis: Not determined.
Oxide
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
FeO
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\begin{tabular}{lc}
\begin{tabular}{l} 
Mineralogy \\
Mineral
\end{tabular} & volume \% \\
Quartz & X \\
Feldspar & - \\
Carbonate & \(5^{+}\) \\
Mica ("Hydrous") & X \\
\begin{tabular}{c} 
Chlorite- \\
vermiculite \\
Montmorillonite \\
Others \\
"Kaolin" \\
"Iron"
\end{tabular} & - \\
Total & - \\
\end{tabular}
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
Total
\(\frac{3 \text { to } 7}{-}\)
\(X=\) present in unspecified amounts.
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2}{ }^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Analyst \(\qquad\) H. P. Hamlin, USBM

10-21-57.
X-ray and petrographic analysis.
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Rock Mountain (cntr.). Lat. \(\qquad\) , Long. \(\qquad\) -.

Field No. 1 \(\qquad\) , Collected by Ray \& Furcron. Date August 1957.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample of Floyd Shale from Chattahoochee Brick Company, about \(3 / 4\) mile \(E\). of Lavender Station (Central of Ga. RR.), about \(1 / 4\) mile S. of Huffaker Road and N. of Oconee Clay Prods. Co. pit (F1.57-12) as shown by Furcron (1958, P. 2 and 5, No. 28). This area was also sampled by Smith (1931, 非11, P. 94) as part of the "T. A. Long property" (see F1.31S-11a and b).

Compiled by B. J. \(0^{\prime}\) Connor
Date \(\qquad\) 8-12-86

Material Shale, soft (Conasauga) Compilation Map Location No. F1.57-2
County Floyd. Sample Number 2.
Raw Properties: Lab \& No. USBM; Norris, TN.; No. 858-B.

Date Reported 10-21-57. Ceramist H. P. Hamlin, USBM.

Water of Plasticity \(30 \%\) Working Properties Short working, not plastic. Extrusion Characteristics: Fair. \(\mathrm{pH}=6.60\). Solu- \(\mathrm{Br} .=4.90\).

Color Red-brown. Drying Shrinkage \(\qquad\) 5 \% Dry Strength Average.

Remarks No drying defects.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{gathered}
1800 \\
(982)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Medium } \\
& \text { buff }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Soft, } \\
& \text { crumbly (2) }
\end{aligned}
\] & 6.5 & 23.1 & - & 2.74 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Medium buff & Soft, crumbly (2) & 6.5 & 19.4 & - & 2.70 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Light red & \[
\begin{aligned}
& \text { Fair } \\
& \text { hard (3) }
\end{aligned}
\] & 10.0 & 14.2 & - & 2.66 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Red-brown & Hard (4) & 10.0 & 12.7 & - & 2.65 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Brown & Hard (4) & 11.0 & 8.5 & - & 2.56 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark } \\
& \text { brown }
\end{aligned}
\] & Very hard (5) & 11.0 & 3.3 & - & 2.58 \\
\hline
\end{tabular}

Remarks / Other Tests Modulus of Rupture: 2500 psi. The commercial possibilities for brick and tile are fair; the soluble salt content is high (as shown by the scumming). Maturing temperature for brick is around \(2300^{\circ} \mathrm{F}\left(1260^{\circ} \mathrm{C}\right)\) and the color at that temperature is poor.

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retent ion Time 1
15 min. draw Lrials (following 3-4 hr. to \(\left.1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\right)\).
Chemical \& Mineralogical Data:

loss
Total

Analyst \(\qquad\) H. P. Hamlin, USBM.

10-21-57.
X-ray and petrographic analysis.
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Livingston (NW. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 2 2 , Collected by Ray and Furcron.

Date August 1957.
Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments Sample of Conasauga shale from a large roadcut on Ga. Hwy. 100 (Foster's Mill Rd.). The cut is about 800 ft . long and ranges from 10 to 25 ft . high ( N . to S.) on the Jack Rogers property about 1 mile S. of the Coosa River (Furcron, 1958, p. 6, No. 33 and D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files).

Compiled by \(\qquad\)
B. J. \(0^{\prime}\) Connor Date \(\qquad\)

Material Shale, soft (Conasauga). Compilation Map Location No. Fl.57-3

County Floyd. Sample Number 3.

Raw Properties:
Date Reported 10-21-57. Lab \& No. USBM; Norris, TN.; No. 858-C.

Ceramist H. P. Hamlin, USBM.
Water of Plasticity \(19 \%\) Working Properties Short - working, not too plastic. Extrusion Characteristics: Poor. \(\mathrm{pH}=5.7\). Solu-Br. \(=0.54\).

Color Light red. Drying Shrinkage_ 5 \% Dry Strength Good.
Remarks No drying defects.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & Hardness (Mohs')* & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & \[
\begin{gathered}
\text { Medium } \\
\text { buff }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Soft, } \\
& \text { crumbly (2) }
\end{aligned}
\] & 5.0 & 14.6 & - & 2.72 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Orangered & ```
Fair
    hard (3)
``` & 5.5 & 11.6 & - & 2.67 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Red & Hard (4) & 8.5 & 6.6 & - & 2.63 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Red-brown & Hard (4) & 9.0 & 5.5 & - & 2.59 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark } \\
& \text { brown }
\end{aligned}
\] & Very hard (5) & 7.5 & 3.6 & - & 2.42 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark } \\
& \text { brown }
\end{aligned}
\] & \[
\begin{aligned}
& \text { (slight } \\
& \text { bloating) }
\end{aligned}
\] & (5.5) & 8.4 & - & 2.25 \\
\hline
\end{tabular}

Remarks / Other Tests Modulus of Rupture \(=2800\) psi. Comercial possibilities for brick and tile are rather poor; might make a very common brick at \(2100-2150^{\circ} \mathrm{F}\) (1149-1177 \({ }^{\circ} \mathrm{C}\)).

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E.Tyrrell's 1967 revisions of 1964 test data sheets. , cont.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\)).
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis: Not determined.} & \multicolumn{3}{|l|}{Mineralogy} \\
\hline Oxide & Weight \% & Mineral & volume & \% \\
\hline \multicolumn{5}{|l|}{\(\mathrm{SiO}_{2}\)} \\
\hline \(\mathrm{TiO}_{2}\) & & Quartz & X & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & - & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & - & \\
\hline FeO & & Mica ("Hydrous") & X & \\
\hline MnO & & Chlorite- & - & \\
\hline MgO & & vermiculite & & \\
\hline CaO & & Montmorillonite & - & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & & Others & & \\
\hline \(\mathrm{K}_{2} 0\) & & "Kaolin" & X & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & "Iron" & 3 to & \\
\hline S & (total) & Total & - & \\
\hline C & (org.) & & & \\
\hline \multicolumn{2}{|l|}{\(\mathrm{CO}_{2}\)} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\(X=\) present in unspecified amounts.}} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}^{-} \\
& \mathrm{H}_{2} \mathrm{O}^{+}
\end{aligned}
\]} & & & \\
\hline \multicolumn{2}{|l|}{\(\mathrm{H}_{2} \mathrm{O}^{+}\)} & & & \\
\hline \multicolumn{2}{|l|}{Ignition} & & & \\
\hline \multicolumn{2}{|l|}{Total} & & & \\
\hline \multicolumn{2}{|l|}{Analyst} & \multicolumn{3}{|l|}{H. P. Hamlin, USBM.} \\
\hline \multicolumn{2}{|l|}{Date} & \multicolumn{3}{|l|}{10-21-57.} \\
\hline \multicolumn{2}{|l|}{Method} & \multicolumn{3}{|l|}{X-ray and petrographic analysis.} \\
\hline
\end{tabular}

Sample Location Data:
County Floyd. Land Lot___ Sec._ Dist._
\(71 / 2^{\prime}\) topo quad. Livingston (E. center) Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 3 \(\qquad\) , Collected by Ray and Furcron Date August 1957.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments Sample of Conasauga shale from roadcut on Ga. Hwy. 100 (Foster's Mill Rd.) between Coosa and Cave Spring, about 1.2 miles S. of Livingston (D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files).
\(\qquad\)
Compiled by B. J. \(0^{\prime}\) Connor
Date 3-10-86

Remarks / Other Tests No commercial possibilities for brick or tile. Petrographic analysis shows \(10 \%\) calcium carbonate.

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrel1's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time
15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\)).
Chemical \& Mineralogical Data:

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Livingston (SW. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by Ray and Furcron. Date August 1957.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments Sample of Conasauga shale from roadcut on Ga. Hwy. 100 (Foster's Mill Rd.) about \(1 / 2\) mile N. of Cedar Creek Church and \(1 / 4\) mile N. of McGee Bend Rd. (D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files).

Compiled by B. J. \(0^{\prime}\) Connor Date 3-10-86

CERAMIC TESTS AND ANALYSES

\begin{tabular}{|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color Hardness & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline 1800 \\
& (982)
\end{aligned}
\] & (Disintegrated in water) &) & - & - & - \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & (Disintegrated in water) &) & - & - & - \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & (Disintegrated in water) &) & - & - & - \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & (Disintegrated in water) &) & - & - & - \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Glazed, melted and expanded & - & - & - & - \\
\hline
\end{tabular}

Remarks / Other Tests No commercial possibilities for brick or tile. Petrographic analysis shows high calcium carbonate content.

Preliminary Bloating (Quick Firing) Tests: Negative.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\)).
Chemical \& Mineralogical Data:

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. Livingston (SE. base). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 5 , Collected by Ray and Furcron Date August 1957.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\) -

Stratigraphic Assignment Rome Formation (?) (Cambrian).
Sample Description \& Comments Shale sample from roadcut on Ga. Hwy. 100, about 1-1/2 miles \(N\). of U. S. Hwy. 411 and composed of dark red, apparently iron-rich, shale (D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files).

Compiled by B. J. \(0^{\prime}\) Connor
Date 8-12-86

Material \(\qquad\) Shale, soft. Compilation Map Location No. F1.57-6
County Floyd.

Sample Number 6.

Raw Properties: Lab \& No. USBM; Norris, TN.; No. 858-F

Date Reported \(\qquad\) 10-21-57. Ceramist H. P. Hamlin, USBM.

Water of P1asticity 22 \% Working Properties Short-working, not plastic. Extrusion Characteristics: Not determined. \(\mathrm{pH}=5.70\). Solu- \(\mathrm{Br} .=0.82\).

Color Red-brown. Drying Shrinkage 2.5 \% Dry Strength Very low.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{gathered}
1800 \\
(982)
\end{gathered}
\] & Buff & \[
\begin{aligned}
& \text { Soft, } \\
& \text { crumbly }
\end{aligned}
\] & &) 4.0 & 21.1 & - & 2.67 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Buff & Soft, crumbly & & 4.5 & 26.1 & - & 2.69 \\
\hline \[
\begin{gathered}
2100 \\
(1149)
\end{gathered}
\] & Buff & Soft, crumbly & &) 4.5 & 17.8 & - & 2.67 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Red & \[
\begin{aligned}
& \text { Fair } \\
& \text { hard (3) }
\end{aligned}
\] & & 7.5 & 15.5 & - & 2.64 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Red-brown & Hard (4) & & 9.0 & 11.2 & - & 2.59 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & Gray-brown & Very hard (5) & & 10.0 & 7.3 & - & 2.54 \\
\hline
\end{tabular}

Remarks / Other Tests No commercial possibilities for brick or tile.
Preliminary Bloating (Quick Firing) Tests:
Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time \(\frac{15 \text { min. draw trials (following } 3-4 \mathrm{hr} \text {. to }}{1800^{\circ} \mathrm{F}}\)
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|}
\hline Chemical Analysis : Not determined. & Mineralogy \\
\hline Oxide Weight \% & Mineral volume \% \\
\hline \multicolumn{2}{|l|}{\(\mathrm{SiO}_{2}\)} \\
\hline \(\mathrm{TiO}_{2}\) & Quartz X \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & Feldspar \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & Carbonate \\
\hline Fe 0 & Mica ("Hydrous") X \\
\hline MnO & Chlorite- \\
\hline Mg 0 & vermiculite \\
\hline CaO & Montmorillonite \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & Others \\
\hline \(\mathrm{K}_{2} 0\) & "Kaolin" X \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & "Iron" 3 to 7 \\
\hline S (total) & Total \\
\hline C (org.) & \\
\hline \(\mathrm{CO}_{2}\) & \(\mathrm{X}=\) present in unspecified amounts. \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & \\
\hline \multirow[b]{2}{*}{Ignition} & \\
\hline & \\
\hline \multicolumn{2}{|l|}{Total} \\
\hline Analyst & H. P. Haml in, USBM. \\
\hline Date & 10-21-57. \\
\hline Method & X -ray and petrographic analysis. \\
\hline
\end{tabular}

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .
\(71 / 2\) topo quad. Rome North (NW. 1/4) . Lat. \(\qquad\) , Long. \(\qquad\) .
\(\qquad\) , Collected by Ray and Furcron. Date August 1957.

Sample Method Grab (?). Weathering/alteration -

Structural Attitude \(\qquad\)
Stratigraphic Assignment (Mississippian Floyd Shale, or Hartselle Sandstone Member or Bangor Limestone?)

Sample Description \& Comments Sample from along Texas Valley Rd., about 4.5 miles W. of U. S. Hwy. 27 in NW. part of Floyd County (D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files).

Compiled by B. J. \(0^{\prime}\) Connor Date 8-12-86

Remarks / Other Tests Commercial possibilities for brick and tile are fair. Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min . draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\)).

\section*{Chemical \& Mineralogical Data:}

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2\) topo quad. Rock Mountain (NE. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by Ray and Furcron. Date August 1957.

Sample Method Grab (?). Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment (Mississippian Floyd Shale, or Hartsell Sandstone Member or Bangor Limestone?)

Sample Description \& Comments Sample from the Mrs. C. W. Boggs property along Sand Springs Rd., about 2.1 miles \(W\). of \(F 1.57-6\) and about 1.8 miles \(E\). of Sand Springs Church (Furcron, 1958, p. 6-7, No. 36).

Compiled by B. J. O'Connor
Date 8-12-86

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & & \begin{tabular}{l}
Linear \\
rinkage, \%
\end{tabular} & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Light buff & Soft, crumbly & & 3.0 & 19.5 & - & 2.67 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light buff & Fair hard & & 4.5 & 14.7 & - & 2.37 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Buff & Hard (4) & & 4.5 & 13.1 & - & 2.57 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Red-brown & \begin{tabular}{l}
Very \\
hard (5)
\end{tabular} & & 8.0 & 7.8 & - & 2.41 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Gray-brown & Very hard (5) & & 1.0 & 13.0 & - & 1.78 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & Gray-brown & \begin{tabular}{l}
Very \\
hard (5)
\end{tabular} & & (Expanded) & 11.0 & - & 1.72 \\
\hline
\end{tabular}

Remarks / Other Tests Modulus of Rupture: 2100 psi. Commercial possibilities for brick and tile are fair. Maturing temperature is high and firing range short; working properties are very poor. Petrographic analysis shows \(4 \%+\) calcium carbonate.

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\)).

\section*{Chemical \& Mineralogical Data:}

Analyst \(\qquad\)

Date \(\qquad\)
Method \(\qquad\)
H. P. Hamlin, USBM. 10-21-57.

X-ray and petrographic analysis

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2\) ' topo quad. Rock Mountain (NE. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) .
\(\qquad\) , Collected by Ray and Furcron Date August 1957.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample from along Sand Springs Rd., about 0.7 mile W. of F1.57-7 and about 1.1 miles \(E\). of Sand Springs Church. The shale is very dark, almost black, unlike typical Floyd Shale in the area and resembles the Chattanooga Shale (Furcron, 1958, P. 6, No. 35 and D. Ray, unpubl. notes, Aug. 1957 Ga. Geol. Survey files).

Compiled by \(\qquad\) Date \(\qquad\) 8-12-86

\section*{CERAMIC TESTS AND ANALYSES}

Material Shale, soft (Floyd). Compilation Map Location No. F1.57-9
\(\qquad\) Sample Number 9. 9.

Raw Properties:
Lab \& No. USBM; Norris, TN.; 858-I.

Date Reported 10-21-57.
Ceramist H. P. Hamlin, USBM.

Water of Plasticity \(\qquad\) 22 \% Working Properties Short-working, not plastic. Extrusion Characteristics: Not determined. \(\mathrm{pH}=6.05\). Solu-Br. \(=0.42\).

Color Brown. \(\qquad\) Drying Shrinkage \(\qquad\) 3.5 \% Dry Strength \(\qquad\) Very low.

Remarks No drying defects.
Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & Linear Shrinkage, \% & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Light buff & \[
\begin{aligned}
& \text { Soft, } \\
& \text { crumbly }
\end{aligned}
\] & \[
\text { (2) } 5.0
\] & 18.6 & - & 2.62 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light buff & Soft, crumbly & (2) 5.0 & 17.4 & - & 2.60 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Light buff & \[
\begin{aligned}
& \text { Fair } \\
& \text { hard (3) }
\end{aligned}
\] & 5.0 & 13.3 & - & 2.60 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Brown-gray & Hard (4) & 5.5 & 2.1 & - & 2.23 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Gray & Very hard (5) & (Expanded) & 10.8 & - & 2.04 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & Gray & \begin{tabular}{l}
Very \\
hard (5)
\end{tabular} & (Expanded) & 8.3 & - & 1.88 \\
\hline
\end{tabular}

Remarks / Other Tests No commercial possibilities. (Sample very similar to "J" = F1.57-10.)

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time \(\frac{15 \text { min. draw trials (following 3-4 hr. to }}{1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C} \text {). }}\)
Chemical \& Mineralogical Data:

\section*{Sample Location Data:}

County Floyd.
Land Lot \(\qquad\) , Sec. \(\qquad\) Dist. \(\qquad\) .
\(71 / 2^{\prime}\) topo quad. Rock Mountain (NW. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 9 , Collected by Ray and Furcron Date August 1957.

Sample Method Grab (?).
Weathering/alteration - \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian):
Sample Description \& Comments Sample of Floyd Shale from along Big Texas Valley Rd., about 2.5 miles \(W\). of Antioch Church and about \(1 / 2\) mile \(E\). of Fouche Gap Rd. (D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files).

Compiled by B. J. \(0^{\prime}\) Connor Date 8-12-86

\section*{Slow Firing Tests:}

Remarks / Other Tests No commercial possibilities for brick or tile. (Sample very similar to "I" \(=\overline{F 1.57-9)}\).

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\) -

15 min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\)).
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis: Not determined.} & \multicolumn{2}{|l|}{Mineralogy} \\
\hline Oxide & Weight \% & Mineral & volume \\
\hline \multicolumn{4}{|l|}{\(\mathrm{SiO}_{2}\)} \\
\hline \(\mathrm{TiO}_{2}\) & & Quartz & X \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & - \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & - \\
\hline FeO & & Mica ("Hydrous") & X \\
\hline MnO & & Chlorite- & - \\
\hline MgO & & vermiculite & \\
\hline CaO & & Montmorillonite & - \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & & Others & \\
\hline \(\mathrm{K}_{2} 0\) & & "Kaolin" & X \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & "Iron" & 3 to 7 \\
\hline S & (total) & Total & - \\
\hline C & (org.) & & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{CO}_{2} \quad \mathrm{X}=\) present in unspecifi} \\
\hline \multicolumn{4}{|l|}{\[
\mathrm{H}_{2} \mathrm{O}^{-}
\]} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}_{2} \mathrm{O}^{+}\)} \\
\hline \multicolumn{4}{|l|}{Ignition} \\
\hline \multicolumn{4}{|l|}{Total} \\
\hline \multicolumn{2}{|l|}{Analyst} & \multicolumn{2}{|l|}{H. P. Hamlin, USBM.} \\
\hline \multicolumn{2}{|l|}{Date} & \multicolumn{2}{|l|}{10-21-57.} \\
\hline \multicolumn{2}{|l|}{Method} & \multicolumn{2}{|l|}{X-ray and petrographic analysis.} \\
\hline
\end{tabular}

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 l/2' topo quad. Rock Mountain (N. side). Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by Ray and Furcron Date August 1957.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample of Floyd Shale from along Big Texas Valley Rd., about 1.1 miles \(W\). of Antioch Church and about 1.4 miles \(E\). of F1.57-9 (D. Ray, unpub1. notes, Aug. 1957, Ga. Geol. Survey files).
\(\qquad\)
Compiled by B. J. \(0^{\prime}\) Connor
Date 3-10-86

Material Shale, soft (Floyd). Compilation Map Location No. Fl. 57-11

County Floyd. Sample Number 11.

Raw Properties:
Lab \& No. USBM; Norris, TN.; No. 858-K.
Date Reported 10-21-57. Ceramist H. P. Hamlin, USBM.

Water of Plasticity 27 \% Working Properties Fairly plastic and smoothworking. Extrusion Characteristics: Not determined. \(\mathrm{PH}=5.3\). Solu- \(\mathrm{Br},=0.74\).

Color Light red. Drying Shrinkage _ 4.0 \% Dry Strength Low.
Remarks No drying defects.
Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Buff & Soft, crumb ly & 5.0 & 19.0 & & 2.66 \\
\hline \[
\begin{aligned}
& 2000 \\
& \cdot(1093)
\end{aligned}
\] & Buff & Soft, crumbly & 5.0 & 18.8 & - & 2.68 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Orangebuff & Hard (4) & 9.5 & 21.9 & - & 2.69 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Dark brown & Very hard (5) & 12.5 & 6.1 & - & 2.51 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Dark brown & \begin{tabular}{l}
Very \\
hard (5)
\end{tabular} & 12.5 & 4.6 & - & 2.36 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & Dark brown & \begin{tabular}{l}
Steel \\
hard (6)
\end{tabular} & (Expanded) & 5.7 & - & 2.23 \\
\hline
\end{tabular}

Remarks / Other Tests Commercial possibilities for brick and tile are poor.
Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.
```

locn. no. Fl.57-11, cont.

```

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\)).
Chemical \& Mineralogical Data:

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. Rock Mountain (cntr.). Lat. \(\qquad\) , Long . \(\qquad\) .

Field No. \(\qquad\) , Collected by Ray and Furcron. Date August 1957.

Sample Method Grab (?). Weathering/alteration \(\qquad\)
Structural Attitude -

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample of Floyd Shale from pit (about 800 x 100 ft . and 10-12 ft. deep) operated by Oconee Clay Products Company, about \(1 / 2 \mathrm{mile}\) S. of intersection of Huffaker Rd. and Fouche Gap Rd. (Furcron, 1958, p. 5, No,. 27). Shale is blended with others from the 2 nearby pits (F1.57-12 and 13) which are said to have better ceramic qualities (D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files).

Compiled by \(\qquad\) Date \(\qquad\) 8-12-86
Material Shale, soft (Floyd). Compilation Map Location No. F1.57-12

County Floyd. Sample Number 12.

Raw Properties: Lab \& No. USBM; Norris, TN.; No. 858-L.
Date Reported 10-21-57. Ceramist. H. P. Hamlin, USBM.

Water of Plasticity 28 \% Working Properties Fairly plastic and smoothworking. Extrusion Char. : Not determined. \(\mathrm{pH}=5.9\). Solu- \(\mathrm{Br} .=0.35\).

Color Light red. Drying Shrinkage \(\qquad\) 5 \% Dry Strength \(\qquad\)
Remarks No drying defects.
Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{gathered}
\hline 1800 \\
(982)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Light } \\
& \text { buff }
\end{aligned}
\] & Soft, crumbly & & 5.5 & 12.8 & - & 2.60 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light buff & Soft, crumbly & & 6.5 & 17.7 & - & 2.60 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Orangebuff & Hard (4) & & 10.5 & 21.0 & - & 2.54 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Graybrown & Steel hard (6) & & 15.0 & 2.6 & - & 2.44 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Graybrown & \[
\begin{aligned}
& \text { Steel } \\
& \text { hard (6) }
\end{aligned}
\] & & 15.0 & 1.8 & - & 2.40 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & Graybrown & \begin{tabular}{l}
Steel \\
hard (6)
\end{tabular} & & 15.0 & 1.2 & - & 2.34 \\
\hline
\end{tabular}

Remarks / Other Tests Commercial possibilities for brick and tile are poor. Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time \(\frac{15 \mathrm{~min} \text {. draw trials (following 3-4 hr. to }}{\underline{1800^{\circ} \mathrm{F}, ~} 982^{\circ} \mathrm{C} \text {). }}\)

\section*{Chemical \& Mineralogical Data:}
Chemical Analysis: \(\quad\) Weight \% determined.
Oxide
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
\(\mathrm{FeO}^{2}\)
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}^{2}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\(\mathrm{~S}^{2} \quad\) (total)
C
\(\mathrm{CO}_{2} \quad\) (org.)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Mineralogy} \\
\hline Mineral & volume \\
\hline Quartz & X \\
\hline Feldspar & - \\
\hline Carbonate & - \\
\hline Mica ("Hydrous") & X \\
\hline ```
Chlorite-
 vermiculite
``` & - \\
\hline Montmorillonite & - \\
\hline Others & \\
\hline "Kaolin" & X \\
\hline "Iron" & 3 to 7 \\
\hline
\end{tabular}
\(X=\) present in unspecified amounts.

Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) \(-\)

7 1/2' topo quad. Rock Mountain (cntr.). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by Ray and Furcron. Date August 1957.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample of Floyd Shale from a pit operated by Oconee Clay Products Co. (about \(1500 \times 200-300 \mathrm{ft}\). and \(10-20 \mathrm{ft}\). deep) on the N. side of the Central of Ga. RR., about 0.3 mile \(S\). of Huffaker Rd. and about \(3 / 4 \mathrm{mile}\) SW. of Fouche Gap Rd. intersection (just S. of Chattahoochee Brick Co. pit \(=\) F1. 57-1), about 9 miles NW. of Rome (Furcron, 1958, P. 5, No. 29 and D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files). (Also see F1. 31S-10).

Compiled by \(\qquad\) B. J. \(0^{\prime}\) Connor
\[
\text { Date } 3-10-86
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Material Shale, soft (Floyd).} & \multicolumn{3}{|l|}{Compilation Map Location No.} \\
\hline County & \multicolumn{3}{|l|}{Floyd.} & \multicolumn{3}{|l|}{Sample Number 13.} \\
\hline \multicolumn{4}{|l|}{Raw Properties: Lab \& No.} & \multicolumn{3}{|l|}{USBM; Norris, TN.; No. 858-M.} \\
\hline \multicolumn{4}{|l|}{Date Reported 10-21-57.} & \multicolumn{3}{|l|}{H. P. Hamlin, USBM.} \\
\hline \multicolumn{7}{|l|}{Water of Plasticity \(\qquad\) \% Working Properties Fairly plastic and smoothworking. Extrusion Characteristics: Good. \(\mathrm{pH}=5.7\). Solu-Br. \(=0.35\).} \\
\hline Color & ight red. & Drying Sh & nkage & 5 \% Dry Stre & th Averag & \\
\hline \multicolumn{7}{|l|}{Remarks No drying defects.} \\
\hline \multicolumn{7}{|l|}{Slow Firing Tests:} \\
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & Linear Shrinkage, \% & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & Other data: App. Sp. \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Buff & Soft, crumbly & 4.5 & 18.4 & - & 2.58 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Buff & Soft, crumbly & 6.5 & 13.4 & - & 2.57 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Orangebuff & Hard (4) & 9.5 & 8.4 & - & 2.53 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Red & Steel hard (6) & 13.0 & 3.6 & - & 2.47 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Graybrown & Steel hard (6) & 13.0 & 1.3 & - & 2.34 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & Gray & \begin{tabular}{l}
Steel \\
hard (6)
\end{tabular} & (Expanded) & 2.4 & - & 2.05 \\
\hline
\end{tabular}

Remarks / Other Tests Modulus of Rupture: 3800 psi. Comercial possibilities for brick and tile are fair. Color is good at \(2200^{\circ} \mathrm{F}\left(1204^{\circ} \mathrm{C}\right)\); firing range is rather short.

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time \(\frac{15 \mathrm{~min} \text {. draw trials (following 3-4 hr. to }}{1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C} \text { ). }}\)
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis: Not determined.} & \multicolumn{2}{|l|}{Mineralogy} \\
\hline Oxide & Weight \% & Mineral & volume \% \\
\hline \multicolumn{4}{|l|}{\(\mathrm{SiO}_{2}\)} \\
\hline \(\mathrm{TiO}_{2}\) & & Quartz & X \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & - \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & - \\
\hline FeO & & Mica ("Hydrous") & X \\
\hline MnO & & Chlorite- & - \\
\hline MgO & & vermiculite & \\
\hline CaO & & Montmorillonite & - \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & & Others & \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & & "Kaolin" & X \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & "Iron" & 3 to 7 \\
\hline S & (total) & Total & - \\
\hline C & (org.) & & \\
\hline \(\mathrm{CO}_{2}\) & & \(X=\) present & unspecif \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}_{2} \mathrm{O}^{-}\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}_{2} \mathrm{O}^{+}\)} \\
\hline \multicolumn{4}{|l|}{Ignition
loss} \\
\hline \multicolumn{4}{|l|}{Total} \\
\hline \multicolumn{2}{|l|}{Analyst} & \multicolumn{2}{|l|}{H. P. Hamlin, USBM.} \\
\hline \multicolumn{2}{|l|}{Date} & \multicolumn{2}{|l|}{10-21-57.} \\
\hline \multicolumn{2}{|l|}{Method} & \multicolumn{2}{|l|}{X-ray and petrographic analysis.} \\
\hline
\end{tabular}

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. Rock Mountain (SE. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 13 \(\qquad\) , Collected by Ray and Furcron. Date August 1957.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample of Floyd Shale from pit operated by Oconee Clay Products Co. (about \(600 \times 50 \mathrm{ft}\). and \(10-15 \mathrm{ft}\). deep) from the old Berryhill Estate (Fl.31S-8) about \(1 / 2\) mile W. of Berryhill Station, about \(1 / 4\) mile \(S\). of the Central of Ga. RR. and Huffaker Rd. (Furcron, 1958, P., 5, No. 24). Also located just N. of pit operated by the Rome Brick Co. and E. of Atlanta Brick \& Tile Co. pit (Furcron, 1958, p. 5, No. 23 and 25 respectively).

Compiled by \(\qquad\)
B. J. \(0^{\prime}\) Connor

Date \(3-10-86\)

Material Shale, soft, sandy (Lavender Mbr.). Compilation Map Location No. Fl. 57-14
County Floyd.

Raw Properties:

Date Reported \(10-21-57\).
\(\qquad\) Ceramist H. P. Hamlin, USBM.

Water of Plasticity 18 \% Working Properties Short, sandy-working, not plastic. Extrusion Char.: Not determined. \(\mathrm{pH}=8.50\). Solu- Br . \(=2.80\).

Color Gray. \(\qquad\) Drying Shrinkage \(\qquad\) \% Dry Strength Very low.

Slow Firing Tests:


Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).

\section*{Chemical \& Mineralogical Data:}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Chemical Analysis: Not determined.}} & \multicolumn{2}{|l|}{Mineralogy} \\
\hline & & Mineral & volume \\
\hline \multicolumn{4}{|l|}{\(\mathrm{SiO}_{2}\)} \\
\hline \(\mathrm{TiO}_{2}\) & & Quartz & X \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & - \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & 25 to 30 \\
\hline Fe 0 & & Mica ("Hydrous") & X \\
\hline MnO & & Chlorite- & - \\
\hline MgO & & vermiculite & \\
\hline CaO & & Montmorillonite & - \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & & Others & \\
\hline \(\mathrm{K}_{2} 0\) & & "Kaolin" & X' \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & "Iron" & 3 to 7 \\
\hline S & (total) & Total & - \\
\hline C & (org.) & & \\
\hline \multicolumn{2}{|l|}{\(\mathrm{CO}_{2}\)} & \multicolumn{2}{|l|}{\(X=\) present in unspecified amounts.} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}_{2}{ }^{-}\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}_{2} \mathrm{O}^{+}\)} \\
\hline \multicolumn{4}{|l|}{Ignition} \\
\hline \multicolumn{4}{|l|}{loss} \\
\hline \multicolumn{4}{|l|}{Total} \\
\hline \multicolumn{2}{|l|}{Analyst} & \multicolumn{2}{|l|}{H. P. Haml in, USBM.} \\
\hline \multicolumn{2}{|l|}{Date} & \multicolumn{2}{|l|}{10-21-57.} \\
\hline Method & & X-ray and petrograph & c analy \\
\hline
\end{tabular}

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .
\(71 / 2^{\prime}\) topo quad. Chattoogaville (SE. 1/4). Lat. \(\qquad\) _, Long. \(\qquad\) -

Field No. 14 , Collected by Ray and Furcron Date August 1957.
Sample Method Grab (?).
Weathering/alteration \(\qquad\)

Structural Attitude \(\qquad\)

Stratigraphic Assignment Probably Lavender Shale Member, Ft. Payne Chert (Mississippian).
Sample Description \& Comments Sample of green shale (Lavender Shale Member?) which "covers" the limestone ridge on the \(G\). Henry property on King Creek, about 2 miles N. of Ga. Hwy. 20 in the extreme NW. corner of Floyd Co. (D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files) near the Halls Mtn. locality of Furcron (1958, p. 3, No. 10) and Maynard (1912, p. 172, No.14).

Compiled by B. J. O'Connor
Date 11-29-82

Material Shale, soft (Conasauga). \(\qquad\) Compilation Map Location No. F1.57-15

County Floyd. Sample Number 15. Lab \& No. USBM; Norris, TN.; No. 858-0.
Raw Properties:
Date Reported 10-21-57. Ceramist H. P. Hamlin, USBM.

Water of Plasticity \(35 \%\) Working Properties Plastic and smooth-working. Extrusion Characteristics: Good. \(\mathrm{pH}=7.5\). Solu-Br. \(=5.15\).

Color Light red. Drying Shrinkage _6.0 \% Dry Strength Average.
Remarks No drying defects.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. }}
\] & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Buff & Soft, crumbly (2) & 8.5 & 18.5 & - & 2.51 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Orangebuff & Fair hard (3) & 11.5 & 11.7 & - & 2.47 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Red & Very hard (5) & ) 15.5 & 5.8 & - & 2.43 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & \[
\begin{gathered}
\text { Brown- } \\
\text { red }
\end{gathered}
\] & Steel hard (6) & (Expanded) & 1.3 & - & 2.07 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Brown & Steel hard (6) & (Expanded) & 3.1 & - & 1.39 \\
\hline
\end{tabular}

Remarks / Other Tests Modulus of Rupture: 3200 psi. Commercial possibilities for brick and tile are good, although \% shrinkage is rather high; color range is fair and maturing temperature is short, slightly above \(2000^{\circ} \mathrm{F}\left(1093^{\circ} \mathrm{C}\right)\).

Preliminary Bloating (Quick Firing) Tests: Slight expansion.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data:


Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
H. P. Hamlin, USBM.

10-21-57.
X-ray and petrographic analysis.

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. Chattoogaville (SE. 1/4). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 15 \(\qquad\) , Collected by Ray and Furcron. Date August 1957.

Sample Method Grab (?). \(\qquad\)
Weathering/alteration
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasuaga Group (Cambrian).
Sample Description \& Comments Sample of Conasauga shale from roadcut on Ga. Hwy. 20, about 800 ft . E. of King Creek on the Davis and Bridges properties (Furcron, 1958, p. 6, No. 34 and D. Ray unpubl. notes, Aug. 1957, Ga. Geol. Survey files). This approximately corresponds to the "Evans and Russell properties" locality of Smith (1931, p. 103, No. 14) - see F1.31S-14.

Compiled by B. J. O'Connor Date 3-10-86
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Material Shale, soft (Floyd).} & \multicolumn{3}{|l|}{Compilation Map Location No. Fl. 57-16} \\
\hline County & Floyd. & & & mple Number & 16. & \\
\hline \multicolumn{4}{|l|}{Raw Properties: Lab \& No} & \multicolumn{3}{|l|}{USBM; Norris, TN.; No. 858-P.} \\
\hline \multicolumn{3}{|l|}{Date Reported 10-21-57.} & Ceramist & \multicolumn{3}{|l|}{H. P. Hamlin, USBM.} \\
\hline \multicolumn{7}{|l|}{Water of Plasticity \(\qquad\) \% Working Properties Fairly plastic and smoothworking. Extrusion Characteristics: Fair. \(\mathrm{pH}=5.7\). Solu- \(\mathrm{Br} .=0.98\).} \\
\hline \multicolumn{7}{|l|}{Color Light red. Drying Shrinkage_ 5 \% Dry Strength Low.} \\
\hline \multicolumn{7}{|l|}{Remarks No drying defects.} \\
\hline \multicolumn{7}{|l|}{Slow Firing Tests:} \\
\hline \[
\begin{gathered}
\text { Temp. } \\
\left.{ }_{\circ}^{\circ}{ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & Other data: App. Sp. Gr \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Buff & \[
\begin{aligned}
& \text { Soft, } \\
& \text { crumbly (2) }
\end{aligned}
\] & 5.5 & 18.2 & - & 2.59 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Buff & Fair hard (3) & ) 6.0 & 14.3 & - & 2.56 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Light red & Hard (4) & 9.0 & 11.0 & - & 2.52 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Redbrown & Very hard (5) & ) 9.5 & 8.0 & - & 2.47 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Brown & Steel hard (6) & 11.0 & 3.9 & - & 2.38 \\
\hline \[
\begin{aligned}
& 2400 \\
& 1316)
\end{aligned}
\] & Browngray & \begin{tabular}{l}
Steel \\
hard (6)
\end{tabular} & (Expanded) & 1.5 & - & 2.14 \\
\hline
\end{tabular}

Remarks / Other Tests Modulus of Rupture: 2000 psi. Commercial possibilities for brick and tile are good; maturing temperature for brick between 2100 and \(2200^{\circ} \mathrm{F}\) ( 1149 and \(1204^{\circ} \mathrm{C}\) ) ; color range is fair.

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.
Crushing Characteristics (unfir
Particle Size -20 mesh. Reten
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Chemical Analysis: Not determined.}} & \multicolumn{2}{|l|}{Mineralogy} \\
\hline & & Mineral & volume \% \\
\hline \multicolumn{4}{|l|}{\(\mathrm{SiO}_{2}\)} \\
\hline \(\mathrm{TiO}_{2}\) & & Quartz & X \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & - \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & - \\
\hline FeO & & Mica ("Hydrous" & X \\
\hline MnO & & Chlorite- & - \\
\hline Mgo & & vermiculite & \\
\hline CaO & & Montmorillonite & - \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & & Others & \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & & "Kaolin" & X \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & "Iron" & 3 to 7 \\
\hline \(\mathrm{S}^{2}\) & (total) & Total & - \\
\hline C & (org.) & & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{CO}_{2} \quad \mathrm{X}=\) present in unspecified} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}_{2}{ }^{-}\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}_{2} \mathrm{O}^{+}\)} \\
\hline \multicolumn{4}{|l|}{Ignition} \\
\hline \multicolumn{4}{|l|}{loss} \\
\hline \multicolumn{4}{|l|}{Total} \\
\hline \multicolumn{2}{|l|}{Analyst} & \multicolumn{2}{|l|}{H. P. Hamlin, USBM.} \\
\hline \multicolumn{2}{|l|}{Date} & \multicolumn{2}{|l|}{10-21-57.} \\
\hline \multicolumn{2}{|l|}{Method} & \multicolumn{2}{|l|}{X-ray and petrographic analysis.} \\
\hline
\end{tabular}

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. Rome North (NE. 1/4) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by Ray and Furcron

Date August 1957.
Sample Method Grab (?).
Weathering/alteration __
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample of Floyd Shale from a small roadcut on Old Summerville Rd. (parallel to and W. of U. S. Hwy. 27) about 1.3 miles \(N\). of Pleasant Valley Church (Furcron, 1958, p. 7, No. 37).

Compiled by \(\qquad\) Date \(\qquad\)
Material Shale, soft, sandy (Floyd).
County Floyd. Sample Number 17.

Raw Properties: Lab \& No. USBM; Norris, TN.; No. 858-Q.
Date Reported Ceramist H. P. Hamlin, USBM.
Water of Plasticity 26 \% Working Properties Very short and sandy-working. Extrusion Characteristics: not determined. \(\mathrm{pH}=5.40\). Solu- \(\mathrm{Br} .=0.54\).

Color Brown. \(\qquad\) Drying Shrinkage \(\qquad\) 5 \% Dry Strength \(\qquad\)
Remarks No drying defects.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')*
\end{tabular} & Linear Shrinkage, \% & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Light } \\
& \text { buff }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Soft, } \\
& \text { crumbly (2) }
\end{aligned}
\] & ) 5.0 & 26.9 & - & 2.60 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light buff & \[
\begin{aligned}
& \text { Fair } \\
& \text { hard (3) }
\end{aligned}
\] & 6.5 & 24.4 & - & 2.62 \\
\hline \[
\begin{gathered}
2100 \\
(1149)
\end{gathered}
\] & Light brownred & Hard (4) & 9.5 & 16.0 & - & 2.57 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Brownred & Very hard (5) & 11.0 & 11.0 & - & 2.45 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Graybrown & \[
\begin{aligned}
& \text { Steel } \\
& \text { hard (6) }
\end{aligned}
\] & 14.0 & 5.5 & - & 2.26 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & Gray & (Expanded) & (Expanded) & - & - & 2.05 \\
\hline
\end{tabular}

Remarks / Other Tests Commercial possibilities for brick and tile are poor. Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrfell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline Chemical & 1 Analysis: Not determined. & Mineralogy & \\
\hline Oxide & Weight \% & Mineral & volume \\
\hline \(\mathrm{SiO}_{2}\) & & & \\
\hline \(\mathrm{TiO}_{2}\) & & Quartz & X \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & - \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & - \\
\hline Fe 0 & & Mica ("Hydrous") & X \\
\hline Mno & & Chlorite- & - \\
\hline Mgo & & vermiculite & \\
\hline CaO & & Montmorillonite & - \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & & Others & \\
\hline \(\mathrm{K}_{2}{ }^{0}\) & & "Kaolin" & x \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & "Iron" & 3 to 7 \\
\hline S & (total) & Total & - \\
\hline C & (org.) & & \\
\hline \(\mathrm{CO}_{2}\) & & \(\mathrm{X}=\) present & specifie \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & & & \\
\hline Ignition & & & \\
\hline loss & & & \\
\hline Total & & & \\
\hline Analyst & & H. P. Hamlin, US & \\
\hline Date & - & 10-21-57. & \\
\hline Method & & X -ray and petrog & ic anal \\
\hline
\end{tabular}

Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. Armuchee (E. cntr.) - Lat. \(\qquad\) , Long. \(\qquad\) .

Field No.
17 , Collected by Ray and Furcron. Date August 1957.

Sample Method Grab (?). Weathering/alteration -

Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample of Floyd Shale from along Floyd Springs Rd., 0.2 mile S. of Floyd Springs Baptist Church, S. of Floyd Springs, about 0.4 mile N . of Turner Rd. (D. Ray, unpubl. notes, Aug. 1957, Ga. Geol. Survey files).

Compiled by \(\qquad\) B. J. O'Connor

Date \(\qquad\)


Water of Plasticity 24 \% Working Properties Plastic and smooth-working. Extrusion Characteristics: Fair. \(\mathrm{pH}=5.50\). Solu-Br. \(=0.46\). Color Light red. Drying Shrinkage_3.5 Dry Strength Low. Remarks No drying defects.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & Hardness (Mohs')* & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
App. \\
Sp. Gr.
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & \[
\begin{gathered}
\text { Light } \\
\text { buff }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Soft, } \\
& \text { crumbly }
\end{aligned}
\] & (2) & 18.6 & - & 2.67 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Dark buff & Hard (4) & 9.0 & 11.3 & - & 2.66 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Redbrown & \begin{tabular}{l}
Steel \\
hard (6)
\end{tabular} & 10.0 & 7.1 & - & 2.59 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Dark redbrown & Steel hard (6) & 12.5 & 4.2 & - & 2.52 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Brown & \[
\begin{aligned}
& \text { Steel } \\
& \text { hard (6) }
\end{aligned}
\] & 14.0 & 2.1 & - & 2.32 \\
\hline \[
\begin{aligned}
& 2400 \\
& (1316)
\end{aligned}
\] & Brown & Steel hard (6) & (Expanded) & 13.0 & - & 2.22 \\
\hline
\end{tabular}

Remarks / Other Tests Modulus of Rupture: 3500 psi. Comercial possibilities for brick and tile are good. Color range is good - would probably make quarry tile. (Same as "S"- F1.57-19.)

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time
\begin{tabular}{l}
15 min. draw trials (following 3-4 hr. to \\
\hline \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ). \\
\hline
\end{tabular}

Chemical \& Mineralogical Data:


Sample Location Data:
County \(\qquad\) Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Plainville (W. side) - Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by Ray and Furcron. Date August 1957.

Sample Method \(\qquad\) Grab (?).

Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Sample of Floyd Shale from along Rosedale Rd., about 0.3 mile \(W\). of Rosedale and Old Dalton Rd., E. of Muck Creek (Furcron, 1958, p. 7, No. 38).

Compiled by B. J. 0'Connor Date 3-10-86

Material Shale, soft (Lavender Mbr.?) Compilation Map Location No. F1.57-19
County Floyd. Sample Number 19.
Raw Properties: Lab \& No. USNM; Norris TN.; No. 858-S.
Date Reported 10-21-57. Ceramist H. P. Hamlin, USBM.
Water of Plasticity 25 \% Working Properties Plastic and smooth-working. Extrusion Characteristics: Good. \(\mathrm{pH}=5.1\). Solu-Br. \(=0.63\).

Color Light red. Drying Shrinkage 5 \% Dry Strength Very low.
Remarks No drying defects.

Slow Firing Tests:


Remarks / Other Tests Modulus of Rupture: 2400 psi. Commercial possibilities for brick and tile are very good. Has good color range and would probably make quarry tile. (Same as "R" R " F1.57-18.)

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Mohs hardness values are based on M.E. Tyrrell's 1967 revisions of 1964 test data sheets.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time \(\frac{15 \text { min. draw trials (following } 3-4 \mathrm{hr} \text {. to }}{1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C} \text { ). }}\)
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|}
\hline Chemical Analysis: Not determined. & Mineralogy & \\
\hline Oxide Weight \% & Mineral & volume \% \\
\hline \(\mathrm{SiO}_{2}\) & & \\
\hline \(\mathrm{TiO}_{2}\) & Quartz & X \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & Feldspar & - \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & Carbonate & - \\
\hline FeO & Mica ("Hydrous") & X \\
\hline MnO & Chlorite- & - \\
\hline Mgo & vermiculite & \\
\hline CaO & Montmorillonite & - \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & Others & \\
\hline \(\mathrm{K}_{2} 0\) & "Kaolin" & X \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & "Iron" & 3 to 7 \\
\hline S (total) & Total & - \\
\hline C (org.) & & \\
\hline CO & \(\mathrm{X}=\) present & unspecifi \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & & \\
\hline Ignition & & \\
\hline loss & & \\
\hline Total & & \\
\hline Analyst & H. P.Hamlin, USB & \\
\hline Date & 10-21-57. & \\
\hline Method & X -ray and petrog & hic analy \\
\hline
\end{tabular}

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. Armuchee (SE. corner). Lat. \(\qquad\) Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by Ray and Furcron Date August 1957.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Probably Lavender Shale Mbr., Ft. Payne Chert (Mississippian).

Sample Description \& Comments Shale sample, probably from the Lavender Shale
Member (Ft. Payne Chert), from along Old Dalton Rd. (parallel to and E. of Turkey Mtn.) near the intersection with Ga. Hwy. 140, about 1.5 miles N . of Armuchee Creek (Furcron, 1958, p. 7, No. 39) about \(1 / 3\) mile W. of the Oostanaula River.

Compiled by \(\qquad\) Date \(\qquad\)




USBM No. 1202D (No. 4)
Type: Soft shale
Crushing characteristics: Good
\begin{tabular}{lrll}
\(1800(982)\) & 112.1 & 5.8 & No bloating \\
\(1900(1038)\) & 99.1 & 6.9 & No bloating \\
\(2000(1093)\) & 91.6 & 6.0 & Slight bloating \\
\(2100(1149)\) & 76.0 & 5.4 & Fair bloating \\
\(2200(1204)\) & 79.1 & 1.6 & Overfired and very sticky
\end{tabular}

USBM No. 1202E (No. 5)
Type: Shale
Crushing characteristics: Good
\begin{tabular}{lrll}
\(1800(982)\) & 115.2 & 3.8 & No bloating \\
\(1900(1038)\) & 99.7 & 5.9 & No bloating \\
\(2000(1093)\) & 90.3 & 4.4 & Slight bloating \\
\(2100(1149)\) & 74.8 & 5.0 & Fair bloating \\
\(2200(1204)\) & 74.0 & 3.8 & Overfired, very sticky
\end{tabular}

USBM No. 1202F (No. 6)
Type: Shale, hard
Crushing characteristics: Very good
\begin{tabular}{lrll}
\(1800(982)\) & 107.2 & 4.1 & No bloating \\
\(1900(1038)\) & 91.6 & 4.7 & No bloating \\
\(2000(1093)\) & 81.0 & 4.5 & Slight bloating \\
\(2100(1149)\) & 72.3 & 3.3 & Fair bloating \\
\(2200(1204)\) & 69.2 & 2.9 & Overfired and very sticky
\end{tabular}

Crushing Characteristics (unfired material) Fair to very good.
Particle Size \(1 / 4 \times 1 / 2\) in. Retention Time 15 minutes.
Chemical \& Mineralogical Data: Not determined.

\section*{Sample Location Data:}

County Floyd. Land Lot 5 , Sec. \(\quad\) Dist. 22 . -
\(71 / 2^{\prime}\) topo quad. Rome South (cntr.) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) Collected by J. P. Roberts. Date 2-25-60.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian) shale.
Sample Description \& Comments Samples of shale collected from different points on the J. P. Roberts property \(51 / 2 \mathrm{miles}\) south of Rome and \(1 / 8 \mathrm{mile}\) north of the intersection of U. S. Highways 27 and 411.
"Samples 1 and 2 do not expand and they would not be suitable for aggregate.
"Samples 3, 4, 5 and 6 appear to be quite similar in composition and the bloating characteristics are about the same. A microscopic examination of the expanded particles showed that sample 3 gave the most uniform expansion and would probably make better aggregate than any of the other samples.
"Although the expanded weights of these shales are a little on the heavy side, the percent absorption is very low and the strength of the aggregate is much better than that of most comercial materials.
"The results of these tests are positive enough to warrant further work and pilot plant size rotary kiln tests should be made on larger samples." (H. P. Hamlin, written communication, 3-25-60).

Compiled by B. J. \(0^{\prime}\) Connor
Date 11-29-82


Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & Hardness (Mohs') & Linear Shrinkage, \% & \(\underset{\%}{\text { Absorption }}\) & \[
\underset{\%}{\text { Appr. Por. }}
\] & Other data: Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\) \\
\hline \[
\begin{gathered}
\hline 1800 \\
(982)
\end{gathered}
\] & Red-tan & \begin{tabular}{l}
Fair hard \\
(3)
\end{tabular} & 5.0 & 23.6 & 39.4 & 1.67 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Red-tan & Fair hard (3) & 5.0 & 21.2 & 36.7 & 1.73 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Reddishbrown & Hard (4) & 9.5(9.0) & 15.2 & 29.0 & 1.91 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Reddishbrown & Very hard (5) & 10.0 & 12.9 & 25.5 & 1.98 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Brown & Steel hard (6) & 12.5 & 9.6 & 20.0 & 2.08 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Dark brown & Steel hard (6) & 12.5 & 9.9 & 20.9 & 2.11 \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "MW" face brick specifications at about \(2100^{\circ} \mathrm{F}, 1149^{\circ} \mathrm{C}\).) Fair color, slightly rough surface, some cracks in firing. Temperature a little high for brick. Potential Use: Brick? (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) - \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.


Date \(\qquad\)
\(\qquad\)

Method \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by J.W.Smith ? Date c. 1963.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\) -

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments No further data available.
Compiled by B. J. \(0^{\prime}\) Connor
Date 5-1-84


Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & Hardness (Mohs') & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \\
\(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{gathered}
1800 \\
(982)
\end{gathered}
\] & Light brown & \begin{tabular}{l}
Soft \\
(2)
\end{tabular} & 1.0 & 20.4 & 35.5 & 1.74 \\
\hline \[
\begin{gathered}
1900 \\
(1038)
\end{gathered}
\] & Light brown & Fair hard (3) & 5.5(5.0) & 15.2 & 29.0 & 1.91 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Brown & Hard
(4) & 9.0 & 7.7 & 17.0 & 2.21 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Chocolate & Very hard (5) & 15.0 & 4.4 & 10.3 & 2.34 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Dark brown & Steel hard (6) & d 15.0 & 1.2 & 3.0 & 2.43 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Dark brown & \begin{tabular}{l}
Steel hard \\
(6) \\
(E
\end{tabular} & \[
\begin{aligned}
& \text { d } \quad 15.0 \\
& \text { Expanded) }
\end{aligned}
\] & 0.5 & - & - \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "SW" face brick specifications at about \(2000^{\circ} \mathrm{F}, 1093^{\circ} \mathrm{C}\). Abrupt vitrification.) Fair color, absorption high. Potential Use: (Face brick, sewer pipe, and quarry tile.) Brick.

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time \(\frac{15 \text { min. draw trials (following } 3-4 \mathrm{hr} \text {. to }}{1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C} \text { ). }}\)
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}{ }^{0}\)
MnO
Mgo
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} 0\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\(\mathrm{S}^{\text {(total) }}\)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition loss
Total
Analyst \(\qquad\)
Mineralogy
Mineral
volume \%
Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite
Others

Total
\(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 30. \(\qquad\) , Collected by J.W. Smith ?
\[
\text { Date c. } 1963 .
\]

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments No further data available.

Compiled by B. J. O'Connor Date 5-1-84


\section*{Slow Firing Tests:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. gm/cc
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Tan & \[
\begin{aligned}
& \text { Soft } \\
& (2)
\end{aligned}
\] & 4.5(5.0) & 33.7 & 47.5 & 1.41 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Soft \\
(2)
\end{tabular} & 4.5(5.0) & 31.1 & 45.4 & 1.46 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Fair hard \\
(3)
\end{tabular} & 4.5(5.0) & 30.7 & 44.8 & 1.46 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Light brown & \begin{tabular}{l}
Fair hard \\
(3)
\end{tabular} & \(5.5(5.0)\) & 30.1 & 44.5 & 1.48 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Red-brown & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & \(4.5(5.0)\) & 29.9 & 43.7 & 1.46 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Red-brown & Hard
(4) & 5.5(5.0) & 23.1 & 37.0 & 1.60 \\
\hline
\end{tabular}

Remarks / Other Tests Very high absorption, (at all firing temperatures), poor color, too soft; some carbonate and sulfate. Potential Use: None. (Not suitable for use as the principal component in vitreous clay products.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.
```

locn. no. Fl.64-3 , cont.

```

Crushing Characteristics (unfired material) \(\qquad\)

Chemical \& Mineralogical Data: Not determined.
\begin{tabular}{llll} 
Chemical Analysis & Mineralogy & \\
Oxide & Weight \(\%\) & Mineral & volume \(\%\) \\
\(\mathrm{SiO}_{2}\) & & \\
\(\mathrm{TiO}_{2}\) & Quartz & \\
\(\mathrm{Al}_{2} \mathrm{O}_{3}\) & Feldspar & \\
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & Carbonate & \\
FeO & Mica & \\
MnO & Chlorite- & \\
MgO & vermiculite & \\
CaO & Montmorillonite & \\
\(\mathrm{Na}_{2} \mathrm{O}\) & Others & \\
\(\mathrm{K}_{2} \mathrm{O}\) & & \\
\(\mathrm{P}_{2} \mathrm{O}_{5}\) & & & \\
S & (total) & Total & \\
C & (org.) & &
\end{tabular}
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
    loss

Total
Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 33. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment \(\qquad\) Conasauga Group (Cambrian).

Sample Description \& Comments No further data available.
Compiled by \(\qquad\) Date \(\qquad\)


Remarks Drying Characteristics: (No defects.) Good; slight surface crazing.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & Hardness (Mohs') & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline 1800 \\
& (982)
\end{aligned}
\] & Flesh & \[
\begin{gathered}
\text { Fair hard } \\
(3)
\end{gathered}
\] & 2.5 & 21.5 & 36.6 & 1.70 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 5.0 & 17.7 & 32.2 & 1.82 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 7.5 & 15.0 & 28.7 & 1.91 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Brown & Very hard (5) & 10.0 & 14.1 & 27.2 & 1.93 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & \[
\begin{gathered}
\text { Dark } \\
\text { red-brown }
\end{gathered}
\] & Very hard (5) & 11.0 & 5.4 & 11.9 & 2.21 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Dark brown & Steel hard (6) & 11.0 & 2.8 & 6.4 & 2.29 \\
\hline
\end{tabular}

Remarks / Other Tests (Abrupt vitrification. Should fire to "SW" face brick specifications at about \(2150^{\circ} \mathrm{F}, 1177^{\circ} \mathrm{C}\) ). Potential Use: (Face brick; sewer pipe.) Decorative brick, tile and pottery.

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
Mineralogy
Mineral

Quartz
Feldspar
Carbonate
Mica
Chlorite-
\(\quad\) vermiculite
Montmorillonite
Others
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\(\begin{array}{ll}\mathrm{S} & \text { (total) } \\ \mathrm{C} & \text { (org.) }\end{array}\)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{0}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total
Analyst \(\qquad\)

\section*{Total}

Date \(\qquad\)
Method \(\qquad\)
\(\qquad\)

\section*{Sample Location Data:}
\[
\text { County ___ Lloyd. } \text { Land Lot ___ Sec. ___ Dist. ___ }
\]
\(71 / 2^{\prime}\) topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 41. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments No further data available.
Compiled by B. J. O'Connor Date 5-1-84


Remarks Drying Characteristics: Good (No defects.)

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. gm/cc
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & \[
\begin{gathered}
\text { Light } \\
\text { tan }
\end{gathered}
\] & \[
\begin{gathered}
\text { Fair hard } \\
\text { (3) }
\end{gathered}
\] & 1.0 & 20.3 & 33.5 & 1.65 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Light tan & Fair hard (3) & 1.0 & 19.0 & 32.1 & 1.69 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light tan & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 1.0 & 16.8 & 29.4 & 1.75 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Light brown & \[
\begin{aligned}
& \text { Very hard } \\
& (5)
\end{aligned}
\] & 5.0 & 13.2 & 24.6 & 1.36 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Light brown & \[
\begin{aligned}
& \text { Very hard } \\
& \text { (5) }
\end{aligned}
\] & 5.0 & 13.1 & 24.5 & 1.37 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & \[
\begin{gathered}
\text { Choco- } \\
\text { late }
\end{gathered}
\] & Steel hard (6) & 5.0 & 10.9 & 21.1 & 1.94 \\
\hline
\end{tabular}

Remarks / Other Tests Good color, absorption high, spotty surface. (Should fire to "MW" face brick specifications at about \(2050^{\circ} \mathrm{F}, 1121^{\circ} \mathrm{C}\) ). Potential Use: (Face brick.) Decorative brick or tile.

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrell.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Material \\
County
\end{tabular}} & Shale & yd). & & \multicolumn{3}{|l|}{Compilation Map Location No. F1.64-6} \\
\hline & Floyd. & & & Sample Numbe & 51. & \\
\hline \multicolumn{3}{|l|}{Raw Properties:} & \multicolumn{4}{|l|}{Lab \& No. USBM, Norris, Tenn.; No. 1554-W.} \\
\hline \multicolumn{3}{|l|}{Date Reported 4-8-64} & Ceramist & \multicolumn{3}{|l|}{M. V. Denny, USBM (revised by M. E Tyrrell, Tuscaloosa, Ala.)} \\
\hline \multicolumn{3}{|l|}{Water of Plasticity 22.8} & \multicolumn{4}{|l|}{Working Properties (Low plasticity.) Short} \\
\hline \multicolumn{2}{|l|}{Color Red-buff.} & Drying Shr & \multicolumn{4}{|l|}{akage 4.0 \% Dry Strength Good. (Low.)} \\
\hline Remarks & \multicolumn{4}{|l|}{Drying Characteristics: Good. (No defects.)} & & \\
\hline \multicolumn{7}{|l|}{Slow Firing Tests:} \\
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }_{\circ}^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & Linear Shrinkage, \% & Absorption \% & Appr. Por.
\% & \begin{tabular}{l}
Other \\
data: \\
Bulk De \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline 1800 \\
& (982)
\end{aligned}
\] & Tan & \[
\begin{gathered}
\text { Fair hard } \\
(3)
\end{gathered}
\] & 1.0(5.0) & 22.7 & 36.5 & 1.61 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & Hard
(4) & 5.0 & 19.3 & 33.0 & 1.71 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 9.0 & 14.6 & 27.0 & 1.85 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Chocolate & Very hard (5) & 9.0 & 8.5(9.1) & 18.4 & 2.01 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Brown & \[
\begin{aligned}
& \text { Very hard } \\
& \text { (5) }
\end{aligned}
\] & 10.0 & 9.1(3.5) & 17.1 & 2.02 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Dark purple- & \[
\begin{aligned}
& \text { Steel hard } \\
& \text { wn (6) }
\end{aligned}
\] & 11.0 & 3.1 & 6.8 & 2.19 \\
\hline \multicolumn{7}{|l|}{Remarks / Other Tests Fine color, spotted, shrinkage slightly high. Needs} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{plastic additive to make a fine pottery and stoneware clay. (Should fire to}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{brick; sewer pipe.) Decorative brick and tile.} \\
\hline
\end{tabular}

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (ụnfired material) _ _

Chemical \& Mineralogical Data: Not determined.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis} & \multicolumn{2}{|l|}{Mineralogy} \\
\hline Oxide & Weight \% & Mineral & volume \% \\
\hline \multicolumn{4}{|l|}{\(\mathrm{SiO}_{2}\)} \\
\hline \(\mathrm{TiO}_{2}\) & & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & \\
\hline Fe 0 & & Mica & \\
\hline MnO & & Chlorite- & \\
\hline MgO & & vermiculite & \\
\hline CaO & & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & & Others & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{K}_{2} 0\)} \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & & \\
\hline S & (total) & Total & \\
\hline C & (org.) & & \\
\hline
\end{tabular}
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2}{ }^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:
County \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 51. \(\qquad\) , Collected by J.W.Smith ?

Date c. 1963.
Sample Method Grab (?), \(\qquad\) Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments No further data available.
Compiled by B. J. O'Connor Date 5-1-84


\section*{Slow Firing Tests:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \\
\(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline 1800 \\
& (982)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Flesh, } \\
& \text { mottled }
\end{aligned}
\] & \begin{tabular}{l}
Fair hard \\
(3)
\end{tabular} & \[
2.5(5.0)
\] & 25.5 & 39.0 & 1.53 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Flesh, mottled & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 5.0 & 18.7 & 31.6 & 1.69 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Flesh, brown & Very hard (5) & 11.0 & 9.9 & 19.5 & 1.97 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Light gray & Very hard (5) & 11.0 & 6.7 & 13.9 & 2.07 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Light gray & Steel hard (6) & 12.5 & 2.9 & 6.3 & 2.17 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Light gray & Steel hard (6) & \[
\begin{gathered}
14.5 \\
\text { (Expanded) }
\end{gathered}
\] & 2.9 & - & - \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "SW" face brick specifications at about \(2050^{\circ} \mathrm{F}, 1121^{\circ} \mathrm{C}\) ). Too high shrinkage at higher temp. Could be added to another clay having lower shrinkage and higher absorption. Potential Use: (Face brick.)None - without additives.

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis} & \multicolumn{2}{|l|}{Mineralogy} \\
\hline Oxide & Weight \% & Mineral & volume \% \\
\hline \(\mathrm{SiO}_{2}\) & & & \\
\hline \(\mathrm{TiO}_{2}\) & & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & \\
\hline Fe 0 & & Mica & \\
\hline MnO & & Chlorite- & \\
\hline MgO & & vermiculite & \\
\hline CaO & & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & & Others & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{K}_{2} 0\)} \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & & \\
\hline S (total) & & Total & \\
\hline (org.) & & & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{CO}_{2}\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}_{2} \mathrm{O}^{-}\)} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{H}_{2} \mathrm{O}^{+}\)} \\
\hline \multicolumn{4}{|l|}{Ignition} \\
\hline Total & & & \\
\hline
\end{tabular}

Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:
County Floyd. Land Lot ___ Sec.__ Dist.___
\(71 / 2^{\prime}\) topo quad. \(\qquad\) - Lat. \(\qquad\) Long. \(\qquad\) -
Field No. 52. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assigment Floyd Shale ( Mississippian).
Sample Description \& Comments No further data available.
Compiled by B. J. 0'Connor Date 5-1-84


Remarks Drying Characteristics: Good. (No defects.)

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & Hardness (Mohs') & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens.
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Tan & \[
\begin{aligned}
& \text { Hard } \\
& \text { (4) }
\end{aligned}
\] & \(5.5(5.0)\) & 23.2 & 36.9 & 1.59 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & Hard
(4) & 8.5(8.0) & 19.8 & 33.5 & 1.69 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & \[
\begin{aligned}
& \text { Very hard } \\
& \text { (5) }
\end{aligned}
\] & 10.0 & 15.3 & 27.8 & 1.82 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & \[
\begin{gathered}
\text { Choco- } \\
\text { late }
\end{gathered}
\] & Steel hard (6) & 14.0 & 7.5 & 15.5 & 2.06 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark } \\
& \text { brown }
\end{aligned}
\] & Steel hard (6) & 15.0 & 6.3 & 13.0 & 2.07 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark } \\
& \text { purple-br }
\end{aligned}
\] & Steel hard n (6) & 15.0 & 3.5 & 7.6 & 2.16 \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "MW" face brick specifications at about \(2050^{\circ} \mathrm{F}\), \(1121^{\circ} \mathrm{C}\). Abrupt vitrification.) Shrinkage high, color good; needs
plastic additive for stoneware and pottery use. Potential Use: (Face brick; sewer pipe.) Decorative brick and tile, flue tile. Preliminary Bloating (Quick Firing) Tests: Positive.(Negative.)
\begin{tabular}{ccccl}
\begin{tabular}{c} 
Temp, \\
\({ }^{\circ} \mathrm{F}\) \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c} 
Absorption \\
\(\%\)
\end{tabular} & \begin{tabular}{c} 
Bulk Density \\
\(\mathrm{g} / \mathrm{cm}^{3}\) \\
\(\mathrm{lb} / \mathrm{ft}^{3}\)
\end{tabular} & \begin{tabular}{c} 
Remarks: \\
Shaly crushing
\end{tabular} \\
\hline \begin{tabular}{c}
2000 \\
\((1093)\)
\end{tabular} & 6.6 & 1.96 & 122 & Shaly bloating. \\
\begin{tabular}{c}
2100
\end{tabular} & 8.2 & 1.49 & 93 & Irregular bloating. \\
\begin{tabular}{c}
\((1149)\) \\
200 \\
\((1204)\)
\end{tabular} & 7.1 & 1.49 & 93 & Irregular bloating. \\
\begin{tabular}{c}
2300 \\
\((1260)\)
\end{tabular} & 7.5 & 1.25 & 78 & Irregular bloating.
\end{tabular}

Remarks Probably fair lightweight aggregate - a little heavy.
Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.
Crushing Characteristics (unfired material)

\(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.

Chemical Analysis
Oxide Weight \% \(\mathrm{SiO}_{2}\) \(\mathrm{TiO}_{2}\) \(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
MgO
CaO
\(\mathrm{Na}_{2}{ }^{0}\)

\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Mineralogy
Mineral volume \%

Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite
Others

Total
Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\quad\) Sec. _ Dist. _ .
\(71 / 2^{\prime}\) topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) -
Field No. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.
Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment \(\qquad\) Floyd Shale (Mississippian).
Sample Description \& Comments No further data available.
Compiled by B. J. O'Connor
Date 5-1-84
\begin{tabular}{|c|c|c|}
\hline Material Shale (Lavender Mbr.). & & Compilation Map Location No. F1.64-9 \\
\hline County Floyd. & & Sample Number 55. \\
\hline Raw Properties: & \multicolumn{2}{|l|}{Lab \& No. USBM, Norris, Tenn.; No. 1554-Z.} \\
\hline Date Reported \(\frac{5-8-64}{\text { (revised 1967) }}\) & Ceramist & M. V. Denny, USBM (revised by M. E. \\
\hline \[
\begin{array}{r}
\text { Water of Plasticity } \frac{25.0}{\%} \\
\text { working, smooth, plast }
\end{array}
\] & Working ic. & perties (Moderate plasticity.) Short \(\mathrm{pH}=5.39\) (Not effervescent with HC1 \\
\hline Color Light gray. Drying Shrink & age 4. & .0)\% Dry Strength Good. (Fair.) \\
\hline Remarks Drying Characteristics: & Good. Sli & t color variation. (No defects.) \\
\hline
\end{tabular}

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & Color & Hardness (Mohs') & Linear Shrinkage, \% & \[
\underset{\%}{\text { Absorption }}
\] & \[
\underset{\%}{\text { Appr. }} \text { Por. }
\] & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{gathered}
\hline 1800 \\
(982)
\end{gathered}
\] & Flesh & \begin{tabular}{l}
Fair hard \\
(3)
\end{tabular} & 2.5(5.0) & 24.3 & 37.4 & 1.54 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Flesh & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 5.5(5.0) & 19.2 & 31.7 & 1.65 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & \begin{tabular}{l}
Very hard \\
(5)
\end{tabular} & 10.0 & 10.2 & 19.4 & 1.90 \\
\hline \[
\begin{gathered}
2100 \\
(1149)
\end{gathered}
\] & Red-gray & \begin{tabular}{l}
Very hard \\
(5)
\end{tabular} & 11.0 & 9.0 & 17.2 & 1.91 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Gray & \begin{tabular}{l}
Steel hard \\
(6)
\end{tabular} & 11.0 & 4.8 & 9.5 & 1.98 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Light gray & \begin{tabular}{l}
Steel hard \\
(6)
\end{tabular} & \[
\begin{gathered}
5.5 \\
\text { (Expanded) }
\end{gathered}
\] & 4.9 & - & - \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "MW" face brick specifications at about \(1950^{\circ} \mathrm{F}, 1066^{\circ} \mathrm{C}\).) Shrinkage high, fine color. With a plastic additive it would make a fine pottery and stoneware clay. Potential Use: (Face brick.) Decorative brick and tile.

Preliminary Bloating (Quick Firing) Tests: Positive.*(Negative.)
\begin{tabular}{cccc}
\(\underset{\circ}{\text { Temp. }}\) & Absorption & Bulk Density & Remarks \\
\(\left({ }^{\circ} \mathrm{C}\right)\) & & \(\mathrm{g} / \mathrm{cm}^{3} \mathrm{lb} / \mathrm{ft}^{3}\) &
\end{tabular}

\footnotetext{
* Remarks Temperature of bloating too high for lightweight aggregate.
}

Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min . draw trials (following 3-4 hr, to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
\begin{tabular}{|c|c|c|}
\hline Chemical Analysis & Mineralogy & \\
\hline Oxide Weight \% & Mineral & volume \% \\
\hline \(\mathrm{SiO}_{2}\) & & \\
\hline \(\mathrm{TiO}_{2}\) & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & Carbonate & \\
\hline Fe 0 & Mica & \\
\hline MnO & Chlorite- & \\
\hline MgO & vermiculite & \\
\hline CaO & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & Others & \\
\hline \(\mathrm{K}_{2} 0\) & & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & \\
\hline S (total) & Total & \\
\hline (org.) & & \\
\hline \(\mathrm{CO}_{2}\) & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & & \\
\hline Ignition & & \\
\hline
\end{tabular}

Ignition
loss
Total
Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 55. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Lavender Shale Member, Ft. Payne Chert (Mississippian). Sample Description \& Comments No further data available.

Compiled by \(\qquad\) Date 5-1-84


Remarks / Other Tests (Should fire to "SW" face brick specifications at about \(2100^{\circ} \mathrm{F}, 1149^{\circ} \mathrm{C}\) ). High firing shrinkage. Good color. Potential Use: (Face brick; sewer pipe.) Good tile or brick if quartz added to reduce shrinkage.

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min . draw trials (following 3-4 hr. to \(\left.1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\right)\).
Chemical \& Mineralogical Data: Not determined.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis} & \multicolumn{2}{|l|}{Mineralogy} \\
\hline Oxide & Weight \% & Mineral & volume \% \\
\hline \multicolumn{4}{|l|}{\(\mathrm{SiO}_{2}\)} \\
\hline TiO 2 & & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) & & Carbonate & \\
\hline Fe0 & & Mica & \\
\hline MnO & & Chlorite- & \\
\hline \(\mathrm{Mg}(\) & & vermiculite & \\
\hline Ca ) & & Montmorillonite & \\
\hline \(\mathrm{Na}_{2}{ }^{3}\) & & Others & \\
\hline \multicolumn{4}{|l|}{\(\mathrm{K}_{2}{ }^{\text {O}}\)} \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & & & \\
\hline S & (total) & Total & \\
\hline
\end{tabular}

C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Analyst \(\qquad\)
\(\qquad\)

Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\) . Jat. \(\qquad\) Long. \(\qquad\) -

Field No. 56. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)

Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments No further data available.
Compiled by B. J. O'Connor
Date 5-1-84

CERAMIC TESTS AND ANALYSES


\section*{Slow Firing Tests:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{gathered}
1800 \\
(982)
\end{gathered}
\] & Tan & \begin{tabular}{l}
Fair hard \\
(3)
\end{tabular} & 5.5(5.0) & 16.5 & 29.9 & 1.81 \\
\hline \[
\begin{gathered}
1900 \\
(1038)
\end{gathered}
\] & Tan & Fair hard (3) & \(5.5(5.0)\) & 16.2 & 30.0 & 1.85 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & Hard (4) & \(9.5(9.0)\) & 11.8 & 23.6 & 2.00 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Brown & Hard (4) & 9.5(9.0) & 10.5 & 21.5 & 2.05 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Chocolate & Very hard (5) & 9.5(9.0) & 7.4 & 15.6 & 2.11 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Blackbrown & Steel hard (6) & 12.5 & 3.2 & 7.0 & 2.20 \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "SW" face brick specifications about \(2150^{\circ} \mathrm{F}\), \(1177^{\circ} \mathrm{C}\) ). Good color, shrinkage slightly high. Potential Use: (Face brick; sewer pipe.) Tile and brick.

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
MgO
CaO
\(\mathrm{Na}_{2}{ }^{0}\)
\(\mathrm{K}_{2}{ }^{0}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\(\begin{array}{ll}\mathrm{S} & (\text { total })\end{array}\)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition loss
Total

Analyst \(\qquad\)
Mineralogy
Mineral volume \%

Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite Others

Total
(org.)
\(\square\)
元
\(-\)
\(\qquad\)
\(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) -, Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) -
\(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Weathering/alteration \(\qquad\)
Sample Method Grab (?).
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments No further data available.
Compiled by B. J. O'Connor
Date 5-1-84


Remarks / Other Tests (Should fire to "SW" face brick specifications at about \(\left.2150^{\circ} \mathrm{F}, 1177^{\circ} \mathrm{C}.\right)\) High firing shrinkage. Good color. Potential Use: (Face brick; sewer pipe.) Brick and tile if quartz added to lower shrinkage. Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.

loss
Tot al

Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Jist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\)
\(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 58. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Sample Method Grab (?). Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments No further data available.
Compiled by B. J. \(0^{\prime}\) Connor
Date 5-1-84


Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & Hardness (Mohs') & Linear Shrinkage, \% & Absoription \% & Appr. Por.
\% & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline 1800 \\
& (982)
\end{aligned}
\] & Tan & \[
\begin{gathered}
\text { Fair hard } \\
(3)
\end{gathered}
\] & 9.0 & 12.9 & 24.4 & 1.89 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Light brown & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 9.5(9.0) & 9.1 & 18.4 & 2.02 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Brown & \begin{tabular}{l}
Very \\
hard (5)
\end{tabular} & 10.5(10.0) & 4.5 & 9.8 & 2.17 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Brown & \begin{tabular}{l}
Very \\
hard (5)
\end{tabular} & 10.5(10.0) & 3.3 & 7.2 & 2.18 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Dark brown & \begin{tabular}{l}
Steel \\
hard (6)
\end{tabular} & 10.5(10.0) & 1.5 & 3.3 & 2.22 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Brownishblack & Steel hard & \[
\begin{gathered}
10.0 \\
\text { (Expanded) }
\end{gathered}
\] & 1.2 & - & - \\
\hline
\end{tabular}

Remarks / Other Tests (Probably limy.) Fair color high shrinkage, some surface cracks. Potential Use: None. (Not suitable for use in vitreous clay products.)

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min . draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.

Chemical Analysis
Oxide
Oxide Weight \%
\(\mathrm{SiO}_{2}\)

Mineralogy
Mineral volume \%
Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite Others

Total
\(\mathrm{P}_{2} \mathrm{P}_{5}\)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total
Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd.
Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 59. Collected by J.W. Smith ? Date c. 1963.
Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignnent Conasauga Group (Cambrian).

Sample Description \& Comments No further data available.
Compiled by B. J. O'Connor
Date 5-1-84

CERAMIC TESTS AND ANALYSES


\section*{Slow Firing Tests:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & Linear Shrinkage, \% & \[
\underset{\%}{\text { Absorption }}
\] & \[
\underset{\%}{\text { Appr. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{gathered}
\hline 1800 \\
(982)
\end{gathered}
\] & Tan & \begin{tabular}{l}
Fair hard \\
(3)
\end{tabular} & 5.5(5.0) & 17.6 & 31.7 & 1.80 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 10.0 & 14.6 & 27.4 & 1.88 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & Very hard (5) & 12.5 & 8.2 & 17.5 & 2.13 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Brown & Very hard (5) & 15.0 & 5.7 & 12.7 & 2.22 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Chocolate & Steel hard (6) & 14.5(15.0) & 2.8 & 6.4 & 2.30 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Blackbrown & Steel hard (6) & 14.5(15.0) & 1.9 & 4.4 & 2.30 \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "SW" face brick specifications at about \(2000^{\circ} \mathrm{F}\), \(1093^{\circ} \mathrm{C}\) ). High firing shrinkage. Good color. Potential Use: (Face brick; sewer pipe.) Brick and tile if shrinkage lowered.

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

\author{
locn. no. F1.64-14, cont.
}

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min . draw trials (following \(3-4 \mathrm{hr}\), to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
FeO
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\begin{tabular}{ll}
\(\mathrm{S}^{2}\) & (total) \\
C & (org.) \\
\(\mathrm{CO}_{2}\) & \\
\(\mathrm{H}_{2} \mathrm{O}^{-}\) \\
\(\mathrm{H}_{2} \mathrm{O}^{+}\) \\
Ignition \\
\(\quad\) Ioss \\
Total
\end{tabular}

Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by J.W. Smith ?

Datec. 1963.
Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments No further data available.
Compiled by B. J. \(0^{\prime}\) Connor
Date \(\qquad\) 5-1-84
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Material \\
County
\end{tabular}} & Shale (C) & nasauga). & & \multicolumn{3}{|l|}{Compilation Map Location No. F1.64-15} \\
\hline & \multicolumn{3}{|l|}{Floyd.} & mple Numbe & 61. & \\
\hline \multicolumn{4}{|l|}{Raw Properties:} & M, Norri & nn. ; No. & 55-F. \\
\hline \multicolumn{3}{|l|}{Date Reported \(\frac{5-28-64}{\text { (revised 1967) }}\)} & Ceramist & \multicolumn{3}{|l|}{M. V. Denny, USBM (revised by M. E.} \\
\hline \multicolumn{7}{|l|}{Water of Plasticity \(23.4 \%\) Working Properties (Moderate plasticity.) Long working, plastic, smooth, fatty. \(\mathrm{pH}=8.72\) (Slight effervescence with HCl.)} \\
\hline Color & \multicolumn{6}{|l|}{Gray-brown. Drying Shrinkage 7.5 \% Dry Strength Good. (Fair.)} \\
\hline Remarks & \multicolumn{6}{|l|}{Drying Characteristics: Good, slightly uneven. (No defects.)} \\
\hline \multicolumn{7}{|l|}{Slow Firing Tests:} \\
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Bulk De
\end{tabular} \\
\hline \[
\begin{gathered}
\hline 1800 \\
(982)
\end{gathered}
\] & Tan & Fair hard (3) & 10.0 & 8.1 & 16.4 & 2.03 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 10.0 & 4.4 & 4.4 & 2.17 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Brown & \[
\begin{gathered}
\text { Very hard } \\
\text { (5) }
\end{gathered}
\] & 15.0 & 1.0 & 1.0 & 2.33 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Chocolate & Very hard & \[
\begin{gathered}
15.0 \\
\text { (Expanded) }
\end{gathered}
\] & 0.4 & - & - \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Dark brown & Steel hard & 11.0 & 0.2 & - & - \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Gray-black & Steel hard & 10.0 & 0.7 & - & - \\
\hline
\end{tabular}

Remarks / Other Tests (Limy.) Contains approx. \(2 \% \mathrm{CaCO}_{3}\). Fair color, slight cracking, high shrinkage.) Potential Use: (Not suitable for use in vitreous clay products.) Possible additive to low shrinkage, high absorption clay.

Preliminary Bloating (Quick Firing) Tests: Positive.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Absorption \% & \multicolumn{2}{|l|}{\begin{tabular}{l}
Bulk Density \\
\(\mathrm{g} / \mathrm{cm}^{3} \mathrm{lb} / \mathrm{ft}^{3}\)
\end{tabular}} & \multicolumn{2}{|l|}{Remarks} \\
\hline \[
\begin{gathered}
1900 \\
(1038)
\end{gathered}
\] & 7.9 & 2.45 & 153 & (No expansion.) Sha & \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & 2.1 & 1.55 & 97 & (S1ight expansion.) & Shaly-blisters. \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & 0.84 & 1.41 & 88 & (Slight expansion.) & Shaly-blisters. \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & 0.90 & 1.21 & 76(75.5) & (Slight expansion.) & Layering bloating, dark. \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & 1.21 & 1.01 & 63 & (Fair expansion.) & Layering bloating, (dark. \\
\hline
\end{tabular}

Remarks (Marginal material for lightweight aggregate [refractory.]) Test in rotary kiln.

Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.
Crushing Characteristics (unfired material)
\(\qquad\)
Particle Size -20 mesh. Retention Time \(\frac{15 \text { min. draw tr }}{1800^{\circ} \mathrm{F}, ~} 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)\(\mathrm{TiO}_{2}\)\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2}{ }^{0}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
    loss
Total
Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .
\(71 / 2^{\prime}\) topo quad. \(\qquad\) \(-\) . Lat. \(\qquad\) , Long. \(\qquad\) -
Field No. 61.
Sample Method Grab (?). , Collected by J.W. Smith ? Date c. 1963.
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments No further data available.
Compiled by B. J. \(0^{\prime}\) Connor Date 5-1-84

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \\
\(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline 1800 \\
& (982)
\end{aligned}
\] & Tan & \[
\begin{aligned}
& \text { Soft } \\
& \text { (2) }
\end{aligned}
\] & 5.0 & 22.1 & 36.9 & 1.67 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & Fair hard (3) & 7.5 & 19.3 & 33.6 & 1.74 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 10.0 & 14.3 & 27.3 & 1.91 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Brown & Hard
(4) & 12.5 & 12.0 & 23.5 & 1.96 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & \[
\begin{gathered}
\text { Choco- } \\
\text { late }
\end{gathered}
\] & Very hard (5) & 12.5 & 8.2 & 17.1 & 2.09 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Brown-black (Dark brown) & \begin{tabular}{l}
Steel \\
hard (6)
\end{tabular} & \[
12.5
\] & 4.2 & 9.2 & 2.20 \\
\hline \multicolumn{7}{|l|}{Remarks / Other Tests (Should fire to "MW" face brick specifications at about} \\
\hline \multicolumn{7}{|l|}{\(\left.2100^{\circ} \mathrm{F}, 1149^{\circ} \mathrm{C}\right)\). Fair color, high shrinkage, fairly high absorption. Potential} \\
\hline \multicolumn{7}{|l|}{Use: None. (Face brick; sewer pipe.)} \\
\hline \multicolumn{4}{|l|}{Preliminary Bloating (Quick Firing) Tests:} & \multicolumn{3}{|l|}{Negative.} \\
\hline
\end{tabular}

Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) _-
Particle Size -20 mesh. Retention Time \(\frac{15 \mathrm{~min} \text {. draw trials (following } 3-4 \mathrm{hr} \text {. to }}{1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C} \text { ). }}\)

Chemical \& Mineralogical Data: Not determined.


Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .

7 1/2' topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by J.W. Smith ? Datec. 1963.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments No further data available.

Compiled by B. J. O'Connor
Date 5-1-84


\section*{Slow Firing Tests:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Fair hard \\
(3)
\end{tabular} & \(5.5(5.0)\) & 23.8 & 39.3 & 1.65 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 10.0 & 18.6 & 33.3 & 1.79 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 10.0 & 15.8 & 29.7 & 1.88 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Brown & Very hard (5) & 11.3(11.0) & 12.5 & 24.6 & 1.97 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark } \\
& \text { brown }
\end{aligned}
\] & Steel hard (5) & 12.5 & 7.9 & 16.7 & 2.11 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Dark brown & Steel hard & \[
\begin{gathered}
12.5 \\
\text { (Expanded) }
\end{gathered}
\] & 8.3 & - & - \\
\hline \multicolumn{7}{|l|}{Remarks / Other Tests (Should fire to "MW" face brick specifications at about} \\
\hline \(2100^{\circ} \mathrm{F}\), & \(1149^{\circ} \mathrm{C}\) ). & \multicolumn{5}{|l|}{Fair color; shrinkage and absorption high. Some sulfate,} \\
\hline \multicolumn{7}{|l|}{crazed surface. Potential Use: (Face brick.) None.} \\
\hline
\end{tabular}

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: App.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 . min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.

Chemical Analysis
Oxide
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Mineralogy
Mineral volume \%
Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite
Others

Total
\(\qquad\)
Analyst \(\qquad\)
\(\qquad\)
\(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) ,

Dist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment \(\qquad\) Floyd Shale (Mississippian).

Sample Description \& Comments No further data available.
Compiled by B. J. 0'Connor Date 5-1-84


\section*{Slow Firing Tests:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & Linear Shrinkage, \% & Absorption \% & \[
\underset{\%}{\text { Appr. }}
\] & ```
Other
data:
Bulk Dens.
    gm/cc
``` \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Soft \\
(2)
\end{tabular} & 5.0 & 25.4 & 41.1 & 1.62 \\
\hline \[
\begin{gathered}
1900 \\
(1038)
\end{gathered}
\] & Tan & Fair hard (3) & 7.5 & 22.7 & 38.6 & 1.70 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & Hard
(4) & 10.0 & 19.9 & 35.2 & 1.77 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Brown & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 10.0 & 16.6 & 31.0 & 1.87 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Brown & Very hard (5) & 12.5 & 12.6 & 25.1 & 1.99 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Brown & Very hard (5) & 12.0(12.5) & 12.4 & 24.7 & 1.99 \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "MW" face brick specifications at about \(2200^{\circ} \mathrm{F}\), \(1204^{\circ} \mathrm{C}\)). Color good; shrinkage and absorption high. Potential Use: (Face brick.) Addition of fine quartz would give a good brick or tile for inside use.

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por, and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min . draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\)).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
Mno
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2}{ }^{0}\) \(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)

C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total
Analyst \(\qquad\)
Mineralogy Mineral volume \%

Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite Others

Total
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd.
Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 71. \(\qquad\) , Collected by J.W. Smith ?

Date c. 1963.
Sample Method Grab (?). \(\qquad\) Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments No further data available.
Compiled by B. J. O'Connor
Date 5-1-84

\section*{Slow Firing Tests:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & Appr. Por. & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Tan & \[
\begin{gathered}
\text { Fair hard } \\
\text { (3) }
\end{gathered}
\] & 5.0 & 14.4 & 27.1 & 1.88 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Brown & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & \(5.5(5.0)\) & 9.8 & 20.2 & 2.06 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & \[
\begin{aligned}
& \text { Hard } \\
& \text { (4) }
\end{aligned}
\] & 6.0 & 9.9 & 20.4 & 2.06 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Brown & Very hard (5) & 6.0 & 7.5 & 16.0 & 2.13 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark } \\
& \text { brown }
\end{aligned}
\] & Steel hard (6) & 10.0 & 4.8 & 10.8 & 2.24 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Dark } \\
& \text { brown }
\end{aligned}
\] & Stee1 hard (6) & 10.7(10.0) & 4.3 & 9.6 & 2.24 \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "SW" face brick specifications at about \(2050^{\circ} \mathrm{F}, 1121^{\circ} \mathrm{C}\). Might be limy.) Fair color, spotted surface. Potential Use: (Face brick.) Brick and tile if color not objectionable.

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time \(\frac{15 \text { min. draw trials (following } 3-4 \mathrm{hr} \text {. to }}{1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C} \text {). }}\) Chemical \& Mineralogical Data: Not determined.

Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
FeO
MnO
Mg 0
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} 0\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\(\begin{array}{ll}\mathrm{S} & (\text { total }) \\ \mathrm{C} & (\text { org })\end{array}\)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total
(org.)

Mineralogy
Mineral volume \%
Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite
Others

Total

Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 72. \(\qquad\) , Collected by J.W. Smith ?

Date c. 1963.
Sample Method Grab (?). Weathering/alteration _- \(\qquad\)
Structural Attitude -
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments No further data available.
Compiled by \(\qquad\) B. J. \(0^{\prime}\) Connor

Date 5-1-84
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Material} & \multicolumn{3}{|l|}{Compilation Map Location No. Fl.64-20} \\
\hline \multicolumn{4}{|l|}{County Floy} & \multicolumn{3}{|l|}{Sample Number 73.} \\
\hline \multicolumn{4}{|l|}{Raw Properties: Lab \& No} & \multicolumn{3}{|l|}{USBM, Norris, Tenn.; No. 1555-R.} \\
\hline \multicolumn{3}{|l|}{Date Reported 5-28-64} & Ceramist & \multicolumn{3}{|l|}{M. V. Denny, USBM (revised by M. E. yrre11, Tuscaloosa, Ala.)} \\
\hline \multicolumn{7}{|l|}{Water of Plasticity \(\frac{24.6 \%}{}\) Working Properties (Moderate plasticity) Long
working, plastic, smooth, fatty, gritty. \(\mathrm{pH}=5.50\) (Not effervescent with HCl.)} \\
\hline \multicolumn{7}{|l|}{Color Buff. Drying Shrinkage 5.5(5.0)\% Dry Strength (Fair.)} \\
\hline \multicolumn{7}{|l|}{Remarks Drying Characteristics: Good - slight warping. (No defects.)} \\
\hline \multicolumn{7}{|l|}{Slow Firing Tests:} \\
\hline \[
\begin{gathered}
\text { Temp } \\
{ }_{\circ}^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & \[
\text { Appr. }_{\%} \text { Por. }
\] & ```
Other
data:
Bulk Dens.
 gm/cc
``` \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Light brown & Fair hard (3) & 6.0 & 13.5 & 27.4 & 2.03 \\
\hline \[
\begin{array}{r}
1900 \\
(1038)
\end{array}
\] & Light brown & Hard (4) & 10.0 & 11.5 & 24.0 & 2.09 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 10.0 & 11.0 & 23.3 & 2.12 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Brown & Very hard (5) & 15.0 & 6.9 & 15.7 & 2.27 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & \[
\begin{gathered}
\text { Choco- } \\
\text { late }
\end{gathered}
\] & Steel hard (6) & 15.0 & 3.7 & 8.9 & 2.41 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Dark brown & Steel hard (6) & 15.0 & 2.9 & 7.0 & 2.41 \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "SW" face brick specifications at about \(2050^{\circ} \mathrm{F}\), \(1121^{\circ} \mathrm{C}\) ). High firing shrinkage. Slight cracking, fair color, mottled surface. Potential Use: None. (Face brick; sewer pipe.)

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) _
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
Mgo
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2}{ }^{0}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. and Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) .
\(71 / 2^{\prime}\) topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 73. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Sample Method Grab (?). Weathering/alteration \(\qquad\) -

Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments No further data available.
Compiled by \(\qquad\) B. J. \(0^{\prime}\) Connor

Date 5-1-84


\section*{Slow Firing Tests:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Temp. \({ }^{\circ} \mathrm{F}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & Color & \begin{tabular}{l}
Hardness \\
(Mohs')
\end{tabular} & Linear Shrinkage, \% & Absorption \% & Appr. Por. & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline 1800 \\
& (982)
\end{aligned}
\] & Tan & \[
\begin{gathered}
\text { Fair hard } \\
\text { (3) }
\end{gathered}
\] & 5.0 & 21.0 & 36.8 & 1.75 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & \(5.5(5.0)\) & 19.1 & 33.4 & 1.75 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Tan & \begin{tabular}{l}
Hard \\
(4)
\end{tabular} & 5.5(5.0) & 18.5 & 32.6 & 1.76 \\
\hline \[
\begin{gathered}
2100 \\
(1149)
\end{gathered}
\] & Light brown & Very Hard (5) & 9.0 & 15.3 & 28.5 & 1.86 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Brown & Steel hard (6) & \(10.5(10.0)\) & 9.3 & 18.9 & 2.03 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Brown & Steel hard (6) & \(10.5(10.0)\) & 6.5 & 13.8 & 2.12 \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\(2150{ }^{\circ} \mathrm{F}, 1177^{\circ} \mathrm{C}\) ). Good color, peppery surface, absorption a little high.}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Potential Use: (Face brick.) Decorative brick and tile.} \\
\hline
\end{tabular}

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
FeO
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2}{ }^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Analyst \(\qquad\)

Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. \(\qquad\)
\(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 74. \(\qquad\) , Collected by J.W. Smith ? Date c. 1963.

Sample Method Grab (?). Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments No further data available.
Compiled by B. J. \(0^{\prime}\) Connor Date 5-1-84

Material Shale (Conasauga). Compilation Map Location No. Fl.64-22

County Floyd. Sample Number 75.

Raw Properties:
Lab \& No. USBM, Norris, Tenn.; No. 1555-T.
Date Reported \(\qquad\) Ceramist M. V. Denny, USBM (revised by M. E.

Tyrrell, Tuscaloosa, Ala.)
Water of Plasticity \(29.0 \%\) Working Properties (Moderate plasticity.) Long
working, plastic, smooth, fatty. \(\mathrm{pH}=5.1 \overline{8}\) (Not effervescent with HCl.) Color Yelow. Drying Shrinkage 6.0\% Dry Strength (Fair.) Good.

Remarks Drying Characteristics: Good, slight cracking (No defects.)

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & Hardness (Mohs') & Linear Shrinkage, \% & Absorption \% & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{gathered}
1800 \\
(982)
\end{gathered}
\] & Tan & \[
\begin{aligned}
& \text { Hard } \\
& \text { (4) }
\end{aligned}
\] & 9.5(9.0) & 18.9 & 32.5 & 1.72 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Tan & Very hard (5) & 10.5(10.0) & 13.3 & 25.5 & 1.92 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Tan & \[
\begin{aligned}
& \text { Very hard } \\
& (5)
\end{aligned}
\] & 11.0 & 12.6 & 24.6 & 1.95 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Light brown & Steel hard (6) & 15.0 & 8.0 & 17.0 & 2.12 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Brown & Steel hard (6) & 17.5 & 3.6 & 8.2 & 2.27 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Chocolate & Steel hard & \[
\begin{gathered}
17.5 \\
\text { (Expanded) }
\end{gathered}
\] & 3.0 & - & - \\
\hline
\end{tabular}

Remarks / Other Tests (Should fire to "MW" face brick specifications at about \(2000^{\circ} \mathrm{F}, 1093^{\circ} \mathrm{C}\) ). Good color; too high shrinkage. Potential Use: (Face brick.) Decorative or art pottery.

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por, and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min . draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.

Chemical Analysis
0xide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
\(\mathrm{S}^{\text {(total) }}\)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Mineralogy
Mineral volume \%
Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite
Others

Total

Analyst \(\qquad\)
\(\qquad\)

Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)

\section*{Sample Location Data:}

County Floyd. \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 75. , Collected by J.W. Smith ? Date c. 1963.

Sample Method \(\qquad\) Grab (?).

Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments No further data available.
Compiled by B. J. O'Connor Date 5-1-84


Remarks / Other Tests (Should fire to "SW" face brick specifications at about \(2000^{\circ} \mathrm{F}\), \(1093^{\circ} \mathrm{C}\). High firing shrinkage.) Potential Use: (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.
Note: Appr.Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

Crushing Characteristics (unfired material) __
Particle Size -20 mesh. Retention Time 15 min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2}{ }^{0} 3\)
Fe 0
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
Mineralogy
Mineral volume \%

Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite Others

Total
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total
Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:

County Floyd. Land Lot \(\qquad\) Sec. \(\qquad\) , Dist. \(\qquad\) .
\(71 / 2^{\prime}\) topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 95. , Collected by J.W.Smith ?

Date c. 1963.
Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian).

Sample Description \& Comments No further data available.
Compiled by B. J. \(0^{\prime}\) Connor
Date 5-1-84


Remarks / Other Tests Should fire to "MW" face brick specifications at about \(2100^{\circ} \mathrm{F}\left(1149^{\circ} \mathrm{C}\right)\). Good color. Potential Use: Building brick.

Preliminary Bloating (Quick Firing) Tests: Negative.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time \(\quad 15\) min. draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.

Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
FeO
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2}{ }^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Mineralogy
Mineral volume \%

Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite Others

\section*{Total}

Analyst \(\qquad\)
\(\qquad\)
Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. 136. \(\qquad\) , Collected by J.W. Smith ? Date c. 1966.

Sample Method Grab (?).
\(\qquad\) Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment \(\qquad\)
Sample Description \& Comments No further data available.
Compiled by \(\qquad\)
B. J. \(0^{\prime}\) Connor Date 5-1-84
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Material} & \multicolumn{3}{|l|}{Compilation Map Location No. F1.67-2} \\
\hline County & \multicolumn{3}{|l|}{Floyd.} & \multicolumn{3}{|l|}{Sample Number} \\
\hline \multicolumn{4}{|l|}{Raw Properties:} & \multicolumn{3}{|l|}{USBM, Iuscaloosa, Ala. No. G-9-2.} \\
\hline \multicolumn{4}{|l|}{Date Reported 1-11-67.} & \multicolumn{3}{|l|}{M. E. Tyrrell, USBM.} \\
\hline \multicolumn{4}{|l|}{Water of Plasticity 34.7 \% Working P} & \multicolumn{3}{|l|}{perties Moderate plasticity.} \\
\hline \multicolumn{2}{|l|}{Color Yellow.} & Drying Sh & kage 5 & \multicolumn{3}{|l|}{\(\frac{\mathrm{pH}=5.0 \text {. Not effervescent with HCl }}{.0 \text { Dry Strength Fair. }}\)} \\
\hline \multicolumn{7}{|l|}{Remarks No drying defects.} \\
\hline \multicolumn{7}{|l|}{Slow Firing Tests:} \\
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left.{ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & Hardness (Mohs \({ }^{\text {' }}\) ) & \begin{tabular}{l}
Linear \\
Shrinkage, \%
\end{tabular} & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& 1800 \\
& (982)
\end{aligned}
\] & Tan & 2 & 5.0 & 32.4 & 46.0 & 1.42 \\
\hline \[
\begin{aligned}
& 1900 \\
& (1038)
\end{aligned}
\] & Light brown & 3 & 10.0 & 22.7 & 37.0 & 1.63 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & 4 & 12.5 & 19.7 & 33.5 & 1.70 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Red-brown & 5 & 12.5 & 15.5 & 27.9 & 1.80 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Dark brown & 6 & 12.5 & 12.5 & 23.5 & 1.88 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Black & 7 & 17.5 & 4.3 & 9.1 & 2.12 \\
\hline
\end{tabular}

Remarks / Other Tests Should fire to "MW" face brick specifications at about \(2200^{\circ} \mathrm{F}\left(1204^{\circ} \mathrm{C}\right)\). Fair color. Potential Use: Building brick.

Preliminary Bloating (Quick Firing) Tests: Negative.
```

locn. no. Fl.67-2, cont.

```

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min . draw trials (following \(3-4 \mathrm{hr}\), to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.

Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
Mno
Mgo
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition loss
Total
Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. \(\qquad\)
\(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) -
volume \%
Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite Others

Total \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) , Collected by J.W. Smith ? Date c. 1966.

Sample Method Grab (?). Weathering/alteration -
\(\qquad\)
Structural Attitude -
Stratigraphic Assignment \(\qquad\)
Sample Description \& Comments No further data available.
Compiled by B. J. \(0^{\prime}\) Connor Date 5-1-84


\section*{tuscaloosa metallurgy research laboratory}

Clay Evaluation: Extrusion Tests
Sender's identification: 139 (Floyd Co.)
Tuscaloosa number: G-9-3

Date 9/18/67
(+Firing Tests
1-12-67)

Body composition: Raw clay through 6 mesh: \(100 \%\).

Tempering water: \(21.0 \%\) of dry batch weight.
Vacuum on machine: 27 inches of mercury.
Drying: \(\quad 24\) hours in air; 24 hours at \(140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)\).
Drying shrinkage: \(3.1 \%\).
Modulus of rupture, dry unfired: 175 psi.
Firing:


Total shrinkage: \(\quad 10.4 \%\).
Absorption, 5-hour boiled: \(0.6 \%\).
Absorption, 24-hour soaked: 0.6\%.
Saturation coefficient: \(\underline{\underline{1.00}}\)
Apparent porosity: \(1.4 \%\).
Bulk density: \(2.41 \mathrm{~g} / \mathrm{cc}\).
Fired modulus of rupture: 4750 psi.
Mohs' hardness: 8
Color: Dark red-brown.
Comments Should be satisfactory for face brick or quarry tile. Low dry strength.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
FeO
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. \(\qquad\) . Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 139. \(\qquad\) , Collected by J.W. Smith?

Date c. 1966.
Sample Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment \(\qquad\)
Sample Description \& Comments No further data available.
Compiled by B. J. \(0^{\prime}\) Connor
Date 5-1-84
Material Clay/shale? Compilation Map Location No. F1.67-4
County Floyd. Sample Number 141.

Raw Properties Lab \& No. USBM, Tuscaloosa, Ala.; No. G-9-4.

Date Reported 1-11-67. Ceramist M. E. Tyrell, USBM.

Water of Plasticity \(\qquad\) 21.0 \% Working Properties Low plasticity. \(\mathrm{pH}=4.4\) Not effervescent with HCl . Color Yellow. \(\qquad\) Drying Shrinkage \(\qquad\)
Remarks No drying defects.

Slow Firing Tests:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & Hardness (Mohs') & Linear Shrinkage, \% & Absorption \% & Appr. Por. \% & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline 1800 \\
& (982)
\end{aligned}
\] & Tan & 2 & 2.5 & 23.1 & 37.4 & 1.62 \\
\hline \[
\begin{gathered}
1900 \\
(1038)
\end{gathered}
\] & Tan & 3 & 5.0 & 17.4 & 31.0 & 1.78 \\
\hline \[
\begin{aligned}
& 2000 \\
& (1093)
\end{aligned}
\] & Light brown & 4 & 5.0 & 16.6 & 29.9 & 1.80 \\
\hline \[
\begin{aligned}
& 2100 \\
& (1149)
\end{aligned}
\] & Light brown & - 5 & 7.5 & 15.9 & 29.4 & 1.85 \\
\hline \[
\begin{aligned}
& 2200 \\
& (1204)
\end{aligned}
\] & Red-brown & 6 & 7.5 & 13.7 & 25.6 & 1.87 \\
\hline \[
\begin{aligned}
& 2300 \\
& (1260)
\end{aligned}
\] & Dark brown & 7 & 10.0 & 7.9 & 15.8 & 2.00 \\
\hline
\end{tabular}

Remarks / Other Tests Should fire to "MW" face brick specifications at about \(2250^{\circ} \mathrm{F}\) ( \(1232^{\circ} \mathrm{C}\) ). Poor color. Potential Use: Building brick. ("SW" face brick see Extrusion Test data.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Map Location No. Fl.67-4, cont.


Sender's identification: 141 (Floyd Co.)
Tuscaloosa number: G-9-4 1-12-67)

Body composition:
Raw clay through 6 mesh: \(100 \%\).

Tempering water: \(19.0 \%\) of dry batch weight.
Vacuum on machine: \(\quad 27\) inches of mercury.
Drying: \(\quad 24\) hours in air; 24 hours at \(140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)\).
Drying shrinkage: 2.1\%.
Modulus of rupture, dry unfired: 320 psi.
Firing:
\begin{tabular}{ll}
\begin{tabular}{ll} 
Time- \\
Temperature \\
Cone-
\end{tabular} & \(\frac{24 \text { hours. }}{2225^{\circ} \mathrm{F}\left(1218^{\circ} \mathrm{C}\right) .}\) \\
& 8
\end{tabular}

Total shrinkage: \(7.3 \%\).
Absorption, 5-hour boiled: \(7.8 \%\).
Absorption, 24-hour soaked: 6.4\%.
Saturation coefficient: 0.82
Apparent porosity: \(\quad 16.4 \%\).
Bulk density: \(2.10 \mathrm{~g} / \mathrm{cc}\).
Fired modulus of rupture: 1830 psi.
Mohs' hardness: 6
Color: Red-brown.
Comments Should be satisfactory for "SW" class face brick.

Crushing Characteristics (unfired material) - \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data: Not determined.

Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
MgO
Ca 0
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
S (total)
C (org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total

Mineralogy
Mineral volume \%
Quartz
Feldspar
Carbonate
Mica
Chlorite-
vermiculite
Montmorillonite
Others

Total

Analyst \(\qquad\)
\(\qquad\)
\(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. \(\qquad\) - Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. 141. \(\qquad\) , Collected by J.W. Smith ? Date c. 1966.

Sarmple Method Grab (?).
Weathering/alteration \(\qquad\)
Structural Attitude -
Stratigraphic Assignment -
Sample Description \& Comments No further data available.
Compiled by B. J. O'Connor Date 5-1-84

\section*{CERAMIC TESTS AND ANALYSES}


Remarks / Other Tests Should fire to "SW" face brick specifications at about \(2100^{\circ} \mathrm{F}\) ( \(1149^{\circ} \mathrm{C}\) ). Fair color. Potential Use: Building brick. ("SW" face brick see Extrusion Test Data.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Map Location No. F1.67-5, cont.

\section*{TUSCALOOSA METALLURGY RESEARCH LABORATORY}

Clay Evaluation: Extrusion Tests
Sender's identification: \begin{tabular}{ll}
144 (Floyd Co.) & Date \(\frac{9 / 28 / 67}{(+ \text { Firing Tests }}\) \\
Tuscaloosa number: G-9-7 & \(1-12-67)\)
\end{tabular}

Body composition: Raw clay through 6 mesh: \(100 \%\).

Tempering water: \(22.0 \%\) of dry batch weight.
Vacuum on machine: 28 inches of mercury.
Drying: \(\quad 24\) hours in air; 24 hours at \(140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)\).
Drying shrinkage: \(1.0 \%\).
Modulus of rupture, dry unfired: 285 psi.
Firing:


Total shrinkage: 8.3\%.
Absorption, 5-hour boiled; \(3.9 \%\).
Absorption, 24 -hour soaked: \(3.7 \%\).
Saturation coefficient: 0.95
Apparent porosity: \(\quad 9.0 \%\).
Bulk density: \(2.30 \mathrm{~g} / \mathrm{cc}\).
Fired modulus of rupture: 3290 psi.
Mohs' hardness: 6
Color: Light brown.
Comments Should be satisfactory for "SW" class face brick. Poor color.



No test data.

Remarks / Other Tests Does not appear to have potential value as a structural clay product.

Preliminary Bloating (Quick Firing) Tests: Negative.

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 15 min . draw trials (following \(3-4 \mathrm{hr}\). to \(1800^{\circ} \mathrm{F}, 982^{\circ} \mathrm{C}\) ).
Chemical \& Mineralogical Data:
Chemical Analysis Mineralogy Not determined.
Oxide Weight \% Mineral volume \% \%
\(\mathrm{SiO}_{2} \quad 27.82\)
\(\mathrm{TiO}_{2}\) -

Quartz
\(\mathrm{Al}_{2} \mathrm{O}_{3} \quad 1.37\)
Feldspar
Carbonate
Mica
Fe 0
2.37

Chlorite-
vermiculite
Montmorillonite
Others
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\begin{array}{lr}\mathrm{MgCO}_{3} & 8.30 \\ \mathrm{CaCO}_{3} & 48.37\end{array}\)
\(\mathrm{P}_{2} \mathrm{O}_{5} \quad-\)

S (total) -
C (org.) -
\(\mathrm{CO}_{2}\) -
\(\mathrm{H}_{2} \mathrm{O}^{-} \quad-\)
\(\mathrm{H}_{2} \mathrm{O}^{+}-\)
Isoluble 38.65
Total

Total


Analyst Pembroke Lab., Fla. (via C.T. Williams, Florida Rock Industries, 1986).
Date Jan. 21, 1976
Method \(\qquad\)

\section*{Sample Location Data:}

County Floyd. Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Rome North (SW. cntr.) Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by B. J. Timmons

Weathering/ Rock).
Sample Method Grab (?)
\(\qquad\) . Date Feb. 1976.

Weathering/alteration \(\qquad\)
Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Shale sample from west side of limestone quarry operated by Florida Rock Industries (formerly owned by LBI Quarries, Inc.) and located \(11 / 4 \mathrm{mi}\). W. of U.S. Hwy. 27 on the Berry School property, N. of Redman Rd., \(3 / 4 \mathrm{mi}\). N. of Rome city limits. Shale is 30 ft . thick (ave.) and overlies the limestone on the west side of the quarry.

Compiled by \(\qquad\)
B. J. \(0^{\prime}\) Connor Date 3-10-86


Remarks / Other Tests Potential Use: Structural clay products (e.g., building brick) at \(1922-2182^{\circ} \mathrm{F}\left(1050^{\circ}-1200^{\circ} \mathrm{C}\right)\).

Preliminary Bloating (Quick Firing) Tests: Not determined.
*Note: Munsell color names were taken from conversion charts in Kelly and Judd (1976, p. 18-20)

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 1 hour (following 24 hours to temperature).
Chemical \& Mineralogical Data: Not determined.
Chemical Analysis
Oxide Weight \%
\(\mathrm{SiO}_{2}\)
\(\mathrm{TiO}_{2}\)
\(\mathrm{Al}_{2} \mathrm{O}_{3}\)
\(\mathrm{Fe}_{2} \mathrm{O}_{3}\)
Fe 0
MnO
MgO
CaO
\(\mathrm{Na}_{2} \mathrm{O}\)
\(\mathrm{K}_{2} \mathrm{O}\)
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
s
C
(total)
(org.)
\(\mathrm{CO}_{2}\)
\(\mathrm{H}_{2} \mathrm{O}^{-}\)
\(\mathrm{H}_{2} \mathrm{O}^{+}\)
Ignition
loss
Total
Analyst \(\qquad\)
Date \(\qquad\)
Method \(\qquad\)
Sample Location Data:
County Floyd. \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. Rock Mountain (E. cntr.). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by R. Dickerson (DOT). Date c. April 1977.

Sample Method \(\qquad\) Grab (?)

Weathering/alteration -
Structural Attitude \(\qquad\)

Stratigraphic Assignment Floyd Shale (Mississippian).
Sample Description \& Comments Typical Floyd Shale from stockpile of Bickerstaff Clay Products Co., Inc. from their Neill pit about \(31 / 2 \mathrm{mi}\). W. -NW . of Rome on the S . side of the Central of Ga. RR. and Huffaker Rd., W. of Woods Rd. (Also see Fl.80-2.)

Compiled by B. J. \(0^{\prime}\) Connor
Date 5-22-84


Remarks / Othér Tests Argillaceous, illitic clay (low percentage of kaolinite) with satisfactory firing characteristics. ("A": clay with interesting technological features for making tile; further sampling is necessary.) (DTA and Dilatometric Analyses on file. - unpubl. report.)

Preliminary Bloating. (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) \(\qquad\)


Analyst A) R. Landrum, Ga. Geol. Survey. B) Marazzi Ceramiche.

Date Aug. and Sept. 1979.
Method A) Atomic Absorption.
B) XRF and Spectrophotometry (on fired material).
Sample Location Data:
County Floyd. \(\qquad\) Land Lot \(\qquad\) ,

Sec. \(\qquad\) , Dist. \(\qquad\) .
M. A. Tadkod, Ga. Geol. Survey. M. Ceramiche.

Aug. and Sept. 1979.
X-ray diffraction.

7 1/2' topo quad. Rock Mountain (E. cntr.). Lat. \(\qquad\) , Long. \(\qquad\) .
\(\qquad\) , Collected by M. A. Tadkod. Date July 1979.

Sample Method \(\qquad\) Grab.

Weathering/alteration Weathered.

Structural Attitude \(\qquad\)
Stratigraphic Assignment Floyd Shale ? (Mississippian).
Sample Description \& Comments Sample from pit about \(21 / 2 \mathrm{mi}\). W. - NW. of Rome (Tadkod, 1979 and 1980, unpubl. data, Ga. Geol. Survey files).

Compiled by \(\qquad\) B. J. O'Connor Date \(\qquad\)


Remarks / Other Tests Illitic, micaceous material with low percentage clay mineral content. ("Bl": too refractory for making tiles.) Used in blends by Bickerstaff Clay Products. Co. for making brick. (DTA and Dilatometric Analyses on file unpublished report.)

Preliminary Bloating (Quick Firing) Tests: Not determined.

\(\qquad\)
B. J. \(0^{\prime}\) Connor Date \(\qquad\) 8-13-86


Remarks / Other Tests Illitic, micaceous clay with low percentage of kaolinite. ("B1": too refractory for making tile.) (DTA \& Dilatometric Analyses on file unpublished report.)

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) _
Particle Size \(\leq 40\) microns Retention Time Cycle \(1: \quad 40-45\) min.


Analyst A) R. Landrum, Ga. Geol. Survey. B) Marazzi Ceramiche.

Date Aug. and Sept. 1979.
Method A) Atomic Absorption.
B) XRF and Spectrophotometry
(on fired material).
M. A. Tadkod, Ga. Geol. Survey.
M. Ceramiche.

Aug. and Sept. 1979.
X-ray diffraction.

Sample Location Data:
County Floyd. \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -
\(71 / 2^{\prime}\) topo quad. Livingston (NW. cntr.). Lat. \(\qquad\) , Long. \(\qquad\) -

Field No. \(\qquad\) , Collected by M. A.Tadkod.

Date July 1979.
Sample Method Grab. Weathering/alteration Weathered.

Structural Attitude \(\qquad\)
Stratigraphic Assignment Conasauga Group (Cambrian) shale.
Sample Description \& Comments Sample from roadcut about \(1 / 2 \mathrm{mi}\). from Livingston (Tadkod, 1979 and 1980, unpubl. data, Ga. Geol. Survey files. Notes state \(1 / 2\) mi. E. but map shows W. of Livingston).

Compiled by \(\qquad\) B. J. \(0^{\prime}\) Connor

Date \(3-10-86\)


Remarks / Other Tests This shale was used in blends (with approximately equal amounts of Alabama shale and Cordova, Ala., fire clay) to make \(8^{\prime \prime}\) sewer pipe by Griffin Pipe Products Co. (at their Milledgeville plant). (For tests with other blends see Fl. 80-4c to d; P1.k. \(80-2 \mathrm{c}\); and Wkr. \(80-2 \mathrm{~b}\) and 3 b .)

Preliminary Bloating (Quick Firing) Tests: Not determined.


Remarks / Other Tests Underlies the "Floyd Top Shale" (see Fl. 80-4a) which was used to make sewer pipe (in blends with other clays) by Griffin Pipe Products Co. (Also see F1.80-4d blend.)

Preliminary Bloating (Quick Firing) Tests: Not determined.

\section*{CERAMIC TESTS AND ANALYSES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Material} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Compilation Map Location No. Fl. 80-4c
\(\qquad\) Sample Number \(8^{\prime \prime}\) pipe mix.}} \\
\hline County & \multicolumn{3}{|l|}{Floyd, Ga. (and Ala.).} & & & & & \\
\hline \multicolumn{9}{|l|}{Raw Properties: Lab \& No} \\
\hline \multicolumn{4}{|l|}{Date Reported 12-10-80.} & \multicolumn{5}{|l|}{J. F. Benzel, Georgia Tech.} \\
\hline \multicolumn{9}{|l|}{Water of Plasticity _ _ \% Working Properties _} \\
\hline \multicolumn{9}{|l|}{Color _ Drying Shrinkage _ 3.58 \% Dry Strength (MOR) 260 psi.} \\
\hline \multicolumn{9}{|l|}{Remarks Drying Wt. loss \(=18.78 \%\).} \\
\hline \multicolumn{9}{|l|}{Slow Firing Tests: (1 x 1 x approximately 9 in. extruded bars.)} \\
\hline \[
\begin{gathered}
\text { Temp. } \\
{ }^{\circ} \mathrm{F} \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & Color & Hardness (MOR, psi.) & Linear Shrinkage, \% & Absorption \% & Appr. Por. & \multicolumn{3}{|r|}{\begin{tabular}{l}
Other \\
data: \\
Loss on Ignition
\end{tabular}} \\
\hline Cone 03: & - & \multirow[t]{2}{*}{2209} & \multirow[t]{2}{*}{\[
\begin{gathered}
4.01 \\
(7.59)
\end{gathered}
\]} & \multirow[t]{2}{*}{8.25} & \multirow[t]{2}{*}{-} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{6.39}} \\
\hline \multicolumn{2}{|l|}{(1115) (7.59)} & & & & & & & \\
\hline Cone 02: & \multirow[t]{3}{*}{-} & \multirow[t]{3}{*}{2785} & \multirow[t]{3}{*}{\[
\begin{gathered}
5.35 \\
(8.93)
\end{gathered}
\]} & \multirow[t]{3}{*}{5.32} & \multirow[t]{3}{*}{-} & \multicolumn{3}{|r|}{\multirow[t]{3}{*}{6.26}} \\
\hline \multirow[t]{2}{*}{(1125)} & & & & & & & & \\
\hline & & & & & & & & \\
\hline Cone 1: & \multirow[t]{3}{*}{-} & \multirow[t]{3}{*}{2537-2984} & \multirow[t]{3}{*}{\[
\begin{gathered}
5.29-5.61 \\
(8.85-9.19)
\end{gathered}
\]} & \multirow[t]{3}{*}{5.08-5.39} & \multirow[t]{3}{*}{-} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{4.94-6.71}} \\
\hline 2120 & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Remarks / Other Tests Production blend of 35\% "Floyd Top Shale" (F1.80-4a) plus \(35 \%\) Alabama shale and \(30 \%\) fire clay ( \(+8 \%\) grog) used by Griffin Pipe Products Co. in making \(8^{\prime \prime}\) sewer pipe.

Preliminary Bloating (Quick Firing) Tests: Not determined.

\section*{CERAMIC TESTS AND ANALYSES}


Remarks / Other Tests Blend of 35\% "Floyd Top Shale" (F1. 80-4a) plus 35\% Alabama shale and \(30 \%\) fire clay ( \(+8 \%\) grog) used by Griffin Pipe Products Co. in making \(8^{\prime \prime}\) sewer pipe. (Note: This is the same blend as used in Fl.80-4d and differs only in being formed into larger test bars.

Preliminary Bloating (Quick Firing) Tests: Not determined.


Remarks / Other Tests Test blend of 35\% "Floyd Top Shale" (Fl, 80-4a), 30\% "Floyd Bottom Shale" (Fl.80-4b) and \(35 \%\) Linton shale (Hancock Co., Ga.). Probably suitable for making sewer pipe.

Preliminary Bloating (Quick Firing) Tests: Not determined.
Analyst \(\qquad\)
\begin{tabular}{ll} 
Mineralogy & \\
Mineral & volume \% \\
& \\
Quartz & \\
Feldspar & \\
Carbonate & \\
Mica & \\
Chlorite- & \\
vermiculite & \\
Montmorillonite & \\
Others &
\end{tabular}
Total \(\qquad\)
\(\qquad\)

Date \(\qquad\)
\(\qquad\)
Method \(\qquad\)
\(\qquad\)
Sample Location Data:
County Floyd. \(\qquad\) Land Lot \(\qquad\) , Sec. \(\qquad\) , Dist. \(\qquad\) -

7 1/2' topo quad. Rock Mountain (cntr.). Lat. \(\qquad\) , Long. \(\qquad\) .

Field No. \(\qquad\) , Collected by J. F. Benzel. Date Aug. 1980.

Sample Method Random grab samples. Weathering/alteration Moderately to very weathered.
Structural Attitude Bedding strikes \(\mathrm{N} .80^{\circ}\) E., dips \(32^{\circ} \mathrm{S}\).
Stratigraphic Assignment Floyd Shale (Mississippian).

Sample Description \& Comments Samples of typical shales from Griffin Pipe Products Co. pit on S. side of Huffaker Rd., about 4 mi . W. of Rome. The "Floyd Bottom Shale" (b) appears to largely be a less weathered variety of the "Floyd Top Shale" (a).

Compiled by B. J. O'Connor Date 11-29-82

*Note: Munsell color names were taken from conversion charts in Kelly and Judd (1976, p. 19-20).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Material Shale (Co} & \multicolumn{3}{|l|}{Compilation Map Location No. Fl.82-1b} \\
\hline \multicolumn{4}{|l|}{County Floyd.} & \multicolumn{3}{|l|}{Sample Number Floyd Co. - B} \\
\hline \multicolumn{4}{|l|}{Raw Properties: Lab \& No.} & \multicolumn{3}{|l|}{USBM, Tuscaloosa, Ala.; GA-30-2.} \\
\hline \multicolumn{3}{|l|}{Date Reported 4-14-82.} & Ceramist & \multicolumn{3}{|l|}{K. J. Liles, USBM.} \\
\hline \multicolumn{2}{|l|}{Water of Plasticity} & \multicolumn{2}{|r|}{21.0 \%Working Pro} & \multicolumn{3}{|l|}{erties Plastic. \(\mathrm{pH}=5.0\). Not} \\
\hline Color Ta & n. & \multicolumn{2}{|l|}{Drying Shrinkage 5.} & \multicolumn{3}{|l|}{\% Dry Strength Good.} \\
\hline \multicolumn{7}{|l|}{Slow Firing Tests:} \\
\hline Temp. \({ }^{\circ} \mathrm{C}\) \(\left({ }^{\circ} \mathrm{C}\right)\) & \[
\begin{gathered}
\text { Color } \\
\text { (Munsell)* }
\end{gathered} \stackrel{\text { Ha }}{(\mathrm{M}}
\] & Hardness (Mohs') & Linear Shrinkage, & \(\underset{\%}{\text { Absorption }}\) & \[
\underset{\%}{\text { Appr. Por. }}
\] & \begin{tabular}{l}
Other \\
data: \\
Bulk Dens. \\
\(\mathrm{gm} / \mathrm{cc}\)
\end{tabular} \\
\hline \[
\begin{gathered}
1832 \\
(1000)
\end{gathered}
\] & \begin{tabular}{l}
Moderate orange \\
( 5 YR 6/8)
\end{tabular} & 2 & 5.0 & 22.7 & 38.5 & 1.69 \\
\hline \[
\begin{aligned}
& 1922 \\
& (1050)
\end{aligned}
\] & Moderate orange ( 5 YR 6/8) & 3 & 5.0 & 19.8 & 35.1 & 1.77 \\
\hline \[
\begin{aligned}
& 2012 \\
& (1100)
\end{aligned}
\] & Brownish orange
(2.5 YR 5/8) & 3 & 5.0 & 16.2 & 30.4 & 1.87 \\
\hline \[
\begin{aligned}
& 2102 \\
& (1150)
\end{aligned}
\] & Strong brown (2.5 YR 4/8) & - 4 & 5.0 & 13.5 & 26.5 & 1.97 \\
\hline \[
\begin{aligned}
& 2192 \\
& (1200)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Moderate } \\
& \text { reddish-brown } \\
& (2.5 \text { YR 4/4) }
\end{aligned}
\] & \({ }^{5}\) & 7.5 & 10.0 & 21.0 & 2.09 \\
\hline \[
\begin{aligned}
& 2282 \\
& (1250)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Moderate } \\
& \text { reddish-brown } \\
& (2.5 \text { YR } 3 / 4)
\end{aligned}
\] & wn & 10.0 & 7.4 & 16.2 & 2.18 \\
\hline
\end{tabular}

Remarks / Other Tests Potential Use: Structural clay products (e.g. building brick at \(2102-2282^{\circ} \mathrm{F}, 1150-1250^{\circ} \mathrm{C}\).)

Preliminary Bloating (Quick Firing) Tests: Negative.
*Note: Munsell color names were taken from conversion charts in Kelly and Judd (1976, p. 19-20).

Crushing Characteristics (unfired material) \(\qquad\)
Particle Size -20 mesh. Retention Time 1 hour (following 24 hours to temperature).
Chemical \& Mineralogical Data:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Chemical Analysis (SRB-Floyd-1A)} & \multirow[t]{2}{*}{Mineralogy: N Mineral} & Not determined. \\
\hline Oxide & Weight \% & & volume \% \\
\hline \(\mathrm{SiO}_{2}\) & 58.80 & & \\
\hline \(\mathrm{TiO}_{2}\) & 0.70 & Quartz & \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}\) & 22.80 & Feldspar & \\
\hline \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) (total) & 6.80 & Carbonate & \\
\hline FeO & - & Mica & \\
\hline MnO & 0.10 & Chlorite- & \\
\hline MgO & 1.80 & vermiculite & \\
\hline CaO & 0.10 & Montmorillonite & \\
\hline \(\mathrm{Na}_{2} \mathrm{O}\) & 0.70 & Others & \\
\hline \(\mathrm{K}_{2} \mathrm{O}\) & 2.90 & & \\
\hline \(\mathrm{P}_{2} \mathrm{O}_{5}\) & 0.05 & & \\
\hline S (total) & - & Total & \\
\hline C (org.) & - & & \\
\hline \(\mathrm{CO}_{2}\) & - & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{-}\) & - & & \\
\hline \(\mathrm{H}_{2} \mathrm{O}^{+}\) & - & & \\
\hline Ignition & & & \\
\hline loss & 5.18 & & \\
\hline Total & 99.93 & & \\
\hline
\end{tabular}

Analyst J. R. Landrum, Ga. Geol. Survey. \(\qquad\)
Date Nov. 1980. (Lab. No. 81-24) \(\qquad\)
Method Atomic Absorption. \(\qquad\)
Sample Location Data:
County Floyd. Land Lot. 90, 91, and 126 Sec _ Dist. 3 .
\(71 / 2^{\prime}\) topo quad. Livingston (E. cntr.) Lat. \(\qquad\) , Long. \(\qquad\) -.

Field No. Lvstn. 81-2 A \& B , Collected by B. J. O'Connor Date 9-22-81.
Sample Method Numerous grab samples. Weathering/alteration Somewhat weathered.
Structural Attitude Crumpled - beds strike NE.
Stratigraphic Assignment Conasauga Group (Cambrian).
Sample Description \& Comments Sample of a uniform tan-brown, hard shale strongly deformed by small scale, tight folds (also contains local hard, silty, concretionary? layers up to 1 inch thick). Taken from exposure in bed of NW.-trending farm road ( \(A\) =upper, \(B=\) lower half of outcrop). Located on the J. D. Lanier property about 8 miles SW. of Rome, \(11 / 2\) miles \(S\). of Coosa River, \(1 / 2\) mile \(S\). of Blacks Bluff Rd., about \(1 / 4\) mile W. of Flat Rock Rd. and just E. of Webb Creek. Chemical analysis determined on similar material collected by S. R. Brockinton (9-16-80).

Compiled by B. J. O'Connor
Date 5-22-84

American Society for Testing and Materials, 1974 Annual Book of
ASTM Standards:
C4-62 (Reapproved 1970) Standard specification for clay drain tile, Part 16, p. 1-7.
C13-69 (Replaced by C700-74) Specifications for standard strength clay sewer pipe, Part 16, p. 409-413.
C24-72 Pyrometric cone equivalent (PCE) of refractory materials, Part 17, p. 9-14.
C27-70 Classification of fireclay and high-alumina refractory brick, Part 17, p. 15-17.
C43-70 Standard definitions of terms relating to structural clay products, Part 16, p. 33-35.
C62-69 Standard specification for building brick (solid masonry units made from clay or shale), Part 16, p. 121-125.
C216-71 Standard specification for facing brick (solid masonry units made from clay or shale), Part 16, p. 121-125.
C410-60 (Reapproved 1972) Standard specification for industrial floor brick, Part 115, p. 217-218.
C479-72 Standard specification for vitrified clay liner plates, Part 16, p. 283-284.
C330-69 Specification for lightweight aggregates for structural concrete, Part 14, p. 229-232.
C315-56 (Reapproved 1972) Standard specification for clay flue linings, Part 16, p. 169-171.
American Society for Testing and Materials, 1974 Annual Book of ASTM Standards: Part 16, Chemical-resistant nonmetallic materials; clay and concrete pipe and tile; masonry mortars and units; asbestos-cement products.

Bergenback, R.E., Wilson, R.L., and Rich, M., 1980, Carboniferous Paleodepositional Environments of the Chattanooga Area: in Frey, R.W., ed., Excursions in Southeastern Geology, vol. I, Field Trip No. 13, p. 259-278, American Geological Institute, Falls Church, Va.

Butts, C., and Gildersleeve, B., 1948, Geology and Mineral Resources of the Paleozoic Area in Northwest Georgia: Georgia Department of Mines, Mining and Geology Bulletin 54, 176 p.

Chowns, T. M., editor, 1972, Sedimentary Environments in the Paleozoic Rocks of Northwest Georgia: Georgia Geological Survey Guidebook 11, 102 p. , editor, 1977, Stratigraphy and Economic Geology of Cambrian and Ordovician Rocks in Bartow and Polk Counties, Georgia: Georgia Geological Survey Guidebook 17, 21 p.

Chowns, T.M., and McKinney, F.M., 1980, Depositional Facies in MiddleUpper Ordovician and Silurian Rocks of Alabama and Georgia: in Frey, R.W., ed., Excursions in Southeastern Geology, vol. 2, Field Trip No. 16, p. 323-348, American Geological Institute, Falls Church, VA.

Clews, F. H., 1969, Heavy Clay Technology: 2nd ed., Academic Press, New York, N.Y., 481 p.

Crawford, T.J., 1983, Pennsylvanian Outliers in Georgia: in Chowns, T.M., ed., "Geology of Paleozoic Rocks in the Vicinity of Rome, Georgia" 18th Annual Field Trip, Georgia Geological Society, p. 30-41.

Cressler, C. W., 1963, Geology and Ground-water Resources of Catoosa County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 28, 19 p.
\(\qquad\) , 1964a, Geology and Ground-water Resources of the Paleozoic Rock Area, Chattooga County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 27, 14 p.
\(\qquad\) , 1964b, Geology and Ground-water Resources of Walker County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 29, 15 p.
\(\qquad\) , 1970, Geology and Ground-water Resources of Floyd and Polk Counties, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 39, 95 p.
\(\qquad\) , 1974, Geology and Ground-water Resources of Gordon, Whitfield and Murray Counties, Georgia: Georgia Geological Survey Information Circular 47, 56 p .

Cressler, C. W., Franklin, M. A., and Hester, W. G., 1976, Availability of Water Supplies in Northwest Georgia: Georgia Geological Survey Bulletin 91, 140 p.

Cressler, C. W., Blanchard, H. E., Jr., and Hester, W. G., 1979, Geohydrology of Bartow, Cherokee, and Forsyth Counties, Georgia: Georgia Geologic Survey Information Circular 50, 45 p.

Croft, M. G., 1964, Geology and Ground-water Resources of Dade County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 26, 17 p.

Georgia Geological Survey, 1976, Geologic Map of Georgia: Georgia Geological Survey, scale 1:500,000.

Gillespie, W.H. and Crawford, T.J., in press, Plant Megafossils from the Carboniferous of Georgia, U.S.A.: in 10th International Congress of Carboniferous Stratigraphy and Geology (Madrid), Proceedings.

Grimshaw, R. W., 1972, The Chemistry and Physics of Clays and Other Ceramic Raw Materials: 4th ed., rev., Wiley-Interscience, New York, N.Y., 1024 p.

Hollenbeck, R.P., and Tyrrell, M.E., 1969, Raw materials for lightweight aggregate in Appalachian Region, Alabama and Georgia: U.S. Bureau of Mines RI-7244, 21 p.

Jones, T. J., and Beard, M. T., 1972, Ceramics: Industrial Processing and Testing: Iowa State University Press, Ames, Iowa, 213 p.

Kelly, K. L. and Judd, D. B., Color. Universal Language and Dictionary of Names: U.S. Dept. of Commerce, NBS Special Publication 440, 158 p.

Kline, S. W. and \(0^{\prime}\) Connor, B. J., editors, 1981, Mining Directory of Georgia, 18th. ed.: Georgia Geologic Survey Circular 2, 49 p.

Klinefelter, T. A., and Hamlin, H. P., 1957, Syllabus of Clay Testing: U.S. Bureau of Mines Bulletin 565, 67 p.

Liles, K. J., and Heystek, H., 1977, The Bureau of Mines Test Program for Clay and Ceramic Raw Materials: U.S. Bureau of Mines IC-8729, 28 p.

Norton, F. H., 1942, Refractories: 2nd ed., McGraw-Hill Book Co., N.Y., 798 p.

O'Neill, B. J., Jr., and Barnes, J. H., 1979, Properties and Uses of Shales and Clays, Southwestern Pennsylvania: Pennsylvania Geological Survey Mineral Resources Report 77, 689 p.
\(\qquad\) , 1981, Properties and Uses of Shales and Clays, South-central Pennsylvania: Pennsylvania Geological Survey Mineral Resource Report 79, 201 p.

Patterson, S. H., and Murray, H. H., 1983, Clays: in Lefond, S. J., and others, eds., Industrial Minerals and Rocks; 5th ed., American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., New York, p. 585-651.

Smith, J. W., 1968?, Tests for Clay Products in Northwest Georgia; unpublished manuscript, 47 P . (brief summary in: 1967 Annual Report of the Department of Mines, Mining, and Geology, 1968, p. 17-19).

Smith, R. W., 1931, Shales and Brick Clays of Georgia: Georgia Geological Survey Bulletin 45, 348 p.

Spencer, J.W.W., 1893, The Paleozoic Group; The Geology of Ten Counties of Northwestern Georgia: Georgia Geological Survey, 406 p.

Thomas, W.A., and Cramer, H.R., 1979, The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States Georgia: U.S. Geological Survey Professional Paper 1110-H, 37 p.

Veatch, 0., 1909, Second Report on the Clay Deposits of Georgia: Georgia Geological Survey Bulletin 18, 453 p.

Watson, T. L., 1904, A Preliminary Report on the Bauxite Deposits of Georgia: Georgia Survey Bulletin 11, 169 p.

White, W. S., Denson, N.M., Dunlap, J.C. and Overstreet, E.F., 1966, Bauxite Deposits of Northwest Georgia: U.S. Geological Survey Bulletin 1199-M, 42 p.

\section*{CLAY AND SHALE TEST LOCATIONS IN FLOYD COUNTY} EXPLANATION

Numbers correspond to the "Map Location No." in text

\section*{Exact sample locatio}

\section*{Approximate sample location}

Several samples collected over the enclosed area Boundary dashed where approximate


Fl.57-1 to Fl.57-19
\begin{tabular}{|c|}
\hline Fl. \(60-1\) - -f \\
\hline F.7.7-1 \\
\hline F.7.7-1 \\
\hline Fl. \(80-1\) to Fl.80-4e \\
\hline
\end{tabular}```


[^0]:    * After Kline and $0^{\prime}$ Connor, 1981, p. 11.

[^1]:    * The data presented in this report are based on laboratory tests that are preliminary in nature and will not suffice for plant or process design.

