CERAMIC AND STRUCTURAL CLAYS, SHALES AND SLATES OF GORDON COUNTY, GEORGIA

BRUCE J. O'CONNOR

DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY

INFORMATION CIRCULAR 69

COVER PHOTO: View of the seven rectangular, down-draft, gas-fired kilns at the brick plant of the Plainville Brick Company, built in 1923 - last production reported in 1971 (U.S. Bureau of Mines, 1971, Minerals Yearbook, Area Reports: Domestic). See Map Location No. Gdn. 31S-58 and descriptions in Smith (1931, p. 232-234).

CERAMIC AND STRUCTURAL CLAYS, SHALES AND SLATES OF

GORDON COUNTY, GEORGIA

By

Bruce J. O'Connor Principal Geologist

Information Circular 69

GEORGIA DEPARTMENT OF NATURAL RESOURCES J. Leonard Ledbetter, Commissioner

ENVIRONMENTAL PROTECTION DIVISION Harold F. Reheis, Assistant Director

GEORGIA GEOLOGIC SURVEY William H. McLemore, State Geologist

> ATLANTA, GEORGIA 1987

.

1.

TABLE OF CONTENTS

SUBJECT

Introduction	1
Acknowledgements	3
Location of Study Area	4
Explanation of Key Terms on the Ceramic Test and	
Analyses Forms	9
1. Absorption (%)	10
2. App. Por. (%) - Apparent Porosity, Percent	10
3. App. Sp. Gr Apparent Specific Gravity	12
4. Bloating	13
5. Bloating Test (or Quick Firing Test)	13
6 Bulk Density (or Bulk Dens)	14
7 Color	14
8 Color (Mungell)	14
Q Compilation Man Logation No	14
	16
10. Colle	16
11. Drying Shrinkage	10
12. Dry Strength	1/
13. Extrusion Test \ldots	1/
l4. Firing Range	18
15. Hardness	18
16. Hardness (Mohs')	18
17. HCl Effervescence	19
18. Linear Shrinkage, (%)	19
19. Modulus of Rupture (MOR)	20
20. Mohs'	20
21 Molding Behavior	20
21. Horaring behavior \cdot	20
23 "Mull face brick	20
26, MW face bills, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1	20
24. PCE - Pyrometric Cone Equivalent	21
$25. \text{ pn} \cdot \cdot$	21
26. Plasticity	22
27. Porosity, Apparent	22
28. Quick Firing	22
29. Saturation Coefficient	22
30. Shrinkage	22
31. Slaking	23
32. Slow Firing Test	23
33. Solu-Br. (Solu-Bridge)	24
34. Soluble Salts	25
35. Strength	26
36. "SW" face brick	26
37. Temp. °F (°C)	26
38. Water of Plasticity (%)	26
39. Working Properties (or Workability)	27
· · · · · · · · · · · · · · · · · · ·	
Ceramic Tests and Analyses of Clays, Shales and Slates in	
Gordon County, Georgia	29
server soundy, seerbly i i i i i i i i i i i i i i i i i i i	-/
Data Sources and References Cited	0/
para pources and vererences area a state s	04

LIST OF ILLUSTRATIONS

Figure l	Location of Gordon County Report Area	5
Plate l	Clay, Shale and Slate Test Locations in Gordon	D 1
	County	Pocket

LIST OF TABLES

Table l	Summary of 20th Century Clay and Shale Mines and Companies in Gordon County, Georgia	6
Table 2	Generalized Summary of Stratigraphic Units in Gordon County, Northwest Georgia	7
Table 3	Abbreviations for Terms on the Ceramic Firing Test Forms	11

Page

INTRODUCTION

This report presents a compilation of all available published and unpublished ceramic firing tests and related analytical data on samples from Gordon County, Georgia. It provides information on mined and/or undeveloped clays, shales and related materials; and is intended for use by geologists, engineers and members of the general public. The report should aid in the exploration for deposits of ceramic raw material with economic potential for future development. This information may also be of use to those who wish to obtain information on the potential use of particular deposits at specific locations.

Tests by the U.S. Bureau of Mines, subsequently referred to as USBM, were performed by the Norris Metallurgy Research Laboratory, Norris, Tennessee and the Tuscaloosa Research Center, Tuscaloosa, Alabama under cooperative agreements with the Georgia Geologic Survey and its predecessors (i.e., the Earth and Water Division of the Ga. Department of Natural Resources; the Department of Mines, Mining and Geology; and the Geological Survey of Georgia). Many of the firing tests were performed on samples collected by former staff members of the Georgia Geologic Survey (and its predecessors) during several uncompleted and unpublished studies. These include work by Bentley (1964), Smith (1968?) and Tadkod (1980). Additional unpublished data presented in this compilation include work by TVA (see Butts and Gildersleeve, 1948, p. 124 and 125). Published data include studies by the following authors: Veatch (1909, p. 395 to 397), Smith (1931, p. 211 to 241), Butts and Gildersleeve (1948, p. 124 and 125), and Hollenbeck and Tyrrell (1969, p. 18 to 20).

-1-

Regardless of the source, all of the ceramic firing testing data presented in this report are based on laboratory tests that are preliminary in nature and will not suffice for plant or process design. They do not preclude the use of the materials in mixes (Liles and Heystek, 1977, p. 5).

ACKNOWLEDGEMENTS

The author gratefully acknowledges the help of many individuals during the preparation of this report and the work of many who contributed to the earlier, unpublished studies included here. The cooperative work of the U.S. Bureau of Mines forms the main data base of this study. During the last several years Robert D. Thomson, Chief of the Eastern Field Operations Center, Pittsburgh, Pennsylvania, was responsible for administering the funding of costs incurred by the USBM. Others in that office who helped coordinate the program were Charles T. Chislaghi and Bradford B. Williams. Since 1966 M.E. Tyrrell, H. Heystek, and A.V. Petty, Ceramic Engineers, and Kenneth J. Liles, Research Chemist, planned and supervised the test work done at the USBM Tuscaloosa Research Center in Tuscaloosa, Alabama. Prior to 1966 this test work was supervised by ceramists H. Wilson, G.S. Skinner, T.A. Klinefelter, H.P. Hamlin and M.V. Denny at the former Norris Metallurgy Research Laboratory in Norris, Tennessee. Tests by the Tennessee Valley Authority were conducted under the supervision of H.S. Rankin and M.K. Banks at the Mineral Research Laboratory on the campus of North Carolina State College, Asheville, North Carolina, using samples collected by S.D. Broadhurst. Additional tests were conducted by professor J.F. Benzel, Department of Ceramic Engineering, Georgia Institute of Technology, Atlanta, Georgia, and by Merazzi Ceramiche, Sassuolo, Italy. The majority of the unpublished tests were performed on samples collected by former staff geologists of the Georgia Geologic Survey, predominantly by J.W. Smith, A.S. Furcron, R.D. Bentley, N.K. Olsen, D. Ray, M.A. Tadkod, and G. Peyton, assisted by C.W. Cressler of the U.S. Geological Survey. N.K. Olsen and C.W. Cressler also have

-3-

provided the author with valuable advice and suggestions regarding sample locations and past studies. K.J. Liles and J. Smith reviewed a preliminary draft of this report. The advice and encouragement of my colleagues on the staff of the Georgia Geologic Survey are greatly appreciated. However, the contents of this report and any errors of omission or commission therein are the sole responsibility of the author.

LOCATION OF STUDY AREA

Gordon County is located on the eastern side of the Valley and Ridge province of northwest Georgia (Fig. 1). No companies are currently mining clay or shale in the county, and only a few operations have been active here in the past (Table 1). The most abundant ceramic raw materials in the county are the shales and residual clays derived from the Conasauga Group; however, other units such as the Floyd Shale, Rome Formation and Red Mountain Formation, as well as residual clays of the Knox Group, are locally well developed. The general nature of these and other geologic units which occur in the county are summarized on Table 2.

LOCATION OF GORDON COUNTY REPORT AREA (after Cressler, and others, 1976)

Summary of 20th Century Clay and Shale Mines and Companies in Gordon County, Georgia

- Calhoun Brick Co. (1908?) Calhoun plant and pits: Brick from Conasauga shale and residual clay. Ceramic test: Gdn. 09V-2 (Veatch, 1909, p. 396 and 397; Butts and Gildersleeve, 1948, No. 87?)
- <u>B. Mifflin Hood Co.</u> (Tn.), Legg Plant and pits, Calhoun: Brick from
 Conasauga shale and residual clay. Purchased from Legg Bros. Brick
 Co., 1919. Ceramic test: Gdn. 31S-51 (Smith, 1931, No. 51, p. 212).
- Legg Brothers Brick Co. (1906), Calhoun plant and pits: Pressed face brick from Conasauga shale. Sold to B. M. Hood Co., 1919. Ceramic test: Gdn. 09V-1 (Veatch, 1909, p. 395 and 396; Smith 1931, No. 51, p. 212).
- Plainville Brick Co. (1923), Plainville plant and pits: Face brick from Conasauga shale. Ceramic test: Gdn. 31S-58 and Gdn. 46-3 (Smith 1931, No. 58, p. 232; Butts and Gildersleeve, 1948, No. 85 and 86; Reighard 1963, p. 20 and 28).

NOTE:

The majority of the information for the companies listed above was taken from the Mining Directories (Circular 2, 1st to 18th editions) published by the Georgia Geologic Survey and its predecessors at irregular intervals since 1937. Some additional information came from the "Georgia Surface Mining and Land Reclamation Activities" published annually since 1960 by the Georgia Surface Mined Land Reclamation Program (Environmental Protection Division, Ga. Dept. of Natural Resources). Additional sources of information were found in the references cited at the end of each entry. Uncertainty in the dates is due to incomplete records in the Survey's files.

Generalized Summary of Stratigraphic Units in Gordon County, Northwest Georgia

CHRONOSTRATIGRAPHIC UNIT	STRATIGRAPHIC UNITS - THICKNESS AND ROCK TYPES $\frac{1}{2}$	
Quaternary (and Tertiary?)	* Various unnamed bodies of alluvial, colluvial and residual material. Largely clay and sand, but also, locally gravel and breccia.	
Mississippian	* Floyd Shale - Approx. 300-500 ft., silt and clay with some sandstone; limestone present at base.	
	Fort Payne Formation (or Chert) - Approx. 100-200 ft., thin- to thick-bedded chert and cherty limestone. Locally includes: * Lavender Shale Member - Approx. 0-100 ft., shale, massive mudstone and impure limestone.	
Devonian	<u>Chattanooga Shale</u> - Approx. 15-30 ft., carbonaceous, fissile black shale. <u>Armuchee Chert</u> - Approx. 60 ft., thin- to thick-bedded chert.	
Silurian	Red Mountain Formation (formerly Rockwood Formation) - Approx. 600-1200 ft., sandstone, red and green shale, with conglomerate, limestone and local hematitic iron ore.	
Ordovician	Moccasin Formation (or Limestone) - Approx 200-500 ft., red and yellow calcareous mudstone, blue limestone, and impure limestone.	
Cambrian-Ordovician	<pre>(*)Knox Group - Approx. 3000-4000 ft., dominantly cherty dolostone, minor limestone. Includes: Longview Limestone - Approx. 500 ft.; Chepultepec Dolomite - Approx. 500 ft.; and Copper Ridge Dolomite - Approx. 2000-3000 ft.</pre>	

Generalized Summary of Stratigraphic Units in Gordon County, Northwest Georgia (continued)

CHRONOSTRATIGRAPHIC	STRATIGRAPHIC UNITS T THICKNESS AND ROCK TYPES $\underline{1}/$	
Cambrian	<pre>** Conasauga Group (or Formation) - Approx. 3000-5000 ft., predominantly shale and limestone with minor sandstone. Includes: Maynardville Limestone Member - Approx. 1000 ft.; "Middle Unit" = Rutledge Limestone and Rogersville Shale?- Approx. 1000 ft.; and "Lower Unit" = Pumpkin Valley Shale? - Approx. 1000 ft., silty shale. * Rome Formation - Approx. 300-500 ft., red shale, and interbedded sandstone, siltstone and quartzite.</pre>	
Precambrian	Ocoee Supergroup (or Series) - Approx. 20,000 ft., slate, phyllite, quartzite, metagraywacke, mica schist, and biotite gneiss.	

NOTES:

- * = Some ceramic firing tests have been made on shales or slates and clays of this unit.
- (*) = Same as the above, but for residual clays only.
- ** = Numerous firing tests have been made on this unit.
- 1/ Descriptions based on data in Butts and Gildersleeve, 1948; Chowns, 1972, 1977; Cressler 1963, 1964a and b, 1970, 1974; Cressler and others, 1979; Croft, 1964; Georgia Geologic Survey, 1976.

EXPLANATION OF KEY TERMS ON THE CERAMIC TEST AND ANALYSES FORMS

The test data and analyses which are presented here were compiled on a set of standardized forms (Ceramic Tests and Analyses) in the most concise manner consistent with the various laboratories represented. These forms are modified in large part after those used by the Pennsylvania Geological Survey (e.g., O'Neill and Barnes, 1979, 1981).

It should be noted that, although the great majority of these tests were performed by the USBM, it was decided not to reproduce their data forms directly for several reasons. First, the USBM forms contain several entries which are not essential to this project (e.g., Date received) or do not make the most efficient use of space. Second, the USBM forms have been changed several times over the span of decades covered by the present compilation. Finally, investigators from other laboratories have reported parameters which were not measured by the USBM.

The paragraphs which follow briefly describe, in alphabetical order, the more critical entries on the forms, the nature of the information included and, where possible, the various factors and implications to be considered in their interpretation. Many of the particular comments here are based on descriptive information published in the following sources. Tests by Georgia Geologic Survey authors are described in Veatch (1909, p. 50 to 64) and in Smith (1931, p. 19 to 25), while the particulars of the USBM studies are given in Klinefelter and Hamlin (1957, especially p. 5 to 41) and in Liles and Heystek (1977, especially p. 2 to 16). The discussions which follow are not intended to be exhaustive but are merely meant to remind the reader,

-9-

and potential user, of the key aspects of the information presented. Various technical texts and reports should be consulted for more detailed information (e.g., Clews, 1969; Grimshaw, 1972; Jones and Beard, 1972; Norton, 1942; Patterson and Murray, 1983). The abbreviations used on these test forms are defined in Table 4.

1. Absorption (%)

The absorption is a measure of the amount of water absorbed by open pores in the fired specimen and is given as a percentage of the specimen's dry weight. For slow firing tests, it is measured on fired specimens which have been boiled in water for 2 to 5 hours and then kept immersed in the water for up to 24 hours while cooling (Smith, 1931, p. 22; Klinefelter and Hamlin, 1957, p. 27-28; Liles and Heystek, 1977, p. 3). For the quick firing tests, however, the specimens are not boiled but only cooled and then immersed in water for 24 hours (Liles and Heystek, 1977, p. 4).

The absorption gives an indication of the amount of moisture which may be absorbed and subject to destructive freezing in outdoor structures. Less than 22% absorption is considered promising for slow-fired materials.

2. Appr. Por. (%) - Apparent Porosity, Percent

The apparent porosity is a measure of the amount of open pore space in the fired sample, relative to its bulk volume, and is expressed as a percent. As in the case of absorption values, it is based on the weight and volume of the specimen which has been boiled in water for 2 to 5 hours and then kept immersed in water for several hours as it cools (Klinefelter and Hamlin, 1957, p. 27 to 28; Liles and Heystek,

-10-

Abbreviations for Terms on the Ceramic Firing Test Forms

ABBREVIATIONS

Sec. = Section

Appr. Por. = Apparent Porosity App. Sp. Gr. = Apparent Specific Gravity Btw. = Bartow County °C = Degrees Celsius Ct. = Catoosa County Cht. = Chattooga County Dd. = Dade County Dist. = District DTA = Differential Thermal Analysis $E_{\cdot} = East$ °F = Degrees Fahrenheit F1. = Floyd County $g/cm^3 = Grams$ per cubic centimeter Gdn. = Gordon CountyLab. & No. = Laboratory (name) and number (assigned in laboratory) Lat. = Latitude LOI = Loss on Ignition Long. = Longitude $1b/in^2$ = Pounds per square inch $1b/ft^3$ = Pounds per cubic foot Mry. = Murray County $N_{\star} = North$ NE. = Northeast NW. = Northwest org. = Organic Plk. = Polk County $S_{\star} = South$ SE. = Southeast SW. = Southwest

Table 4. Abbreviations for Terms on the Ceramic Firing Test Forms (continued)
7 1/2' topo. quad. = 7 and 1/2 minute topographic quadrangle
Temp. = Temperature
TVA = Tennessee Valley Authority
USBM = U.S. Bureau of Mines
USGS = U.S. Geological Survey
W. = West
Wkr. = Walker County
Wf. = Whitfield County
XRD = X-ray diffraction

1977, p. 3). The apparent porosity is an indication of the relative resistance to damage during freezing and thawing. Less than 20% apparent porosity is considered promising for slow-fired materials (O'Neill and Barnes, 1979, p. 14, Fig. 4).

3. App. Sp. Gr. - Apparent Specific Gravity

As reported in earlier USBM studies, the apparent specific gravity is a measure of the specific gravity of that portion of the test specimen that is impervious to water. This is determined by boiling the sample in water for 2 hours and soaking it in water overnight or 24 hours (Klinefelter and Hamlin, 1957, p. 27 to 28). These data were replaced by bulk density and apparent porosity measurements after the USBM moved its laboratories from Norris, Tennessee to Tuscaloosa, Alabama in 1965.

-12-

4. Bloating

Bloating is the term given to the process in which clay or shale fragments expand (commonly two or more times their original volume) during rapid firing. It results from the entrapment of gases which are released from the minerals during firing but which do not escape from the body of the host fragment due to the viscosity of the host at that temperature. Bloating is a desirable and essential property for the production of expanded lightweight aggregate where an artificial pumice or scoria is produced. Expanded lightweight aggregate has the advantages of light weight and high strength compared to conventional crushed stone aggregate. Bloating is not desirable, however, in making other structural clay products such as brick, tile and sewer pipe where the dimensional characteristics must be carefully controlled. In these cases bloating is extremely deleterious since it leads to variable and uncontrollable warping, expansion and general disruption of the fired clay body (Klinefelter and Hamlin, 1957, p. 39-41).

5. Bloating Test (or Quick Firing Test)

The Bloating Test refers to the process of rapidly firing (or "burning") the raw sample in a pre-heated furnace or kiln to determine its bloating characteristics for possible use as a lightweight aggregate. Although specific details of the different laboratory methods vary, all use several fragments of the dried clay or shale placed in a refractory plaque (or "boat") which in turn is placed in the pre-heated furnace for 15 minutes (Klinefelter and Hamlin, 1957, p. 41; Liles and Heystek, 1977, p. 4).

6. Bulk Density (or Bulk Dens.)

The bulk density is a measure of the overall density of the fired specimen based on its dry weight divided by its volume (including pores). Determinations are the same for slow firing and quick firing test samples, although for the latter the results are given in pounds per cubic inch as well as grams per cubic centimeter units (Klinefelter and Hamlin, 1957, p. 27 to 28 and 41; Liles and Heystek, 1977, p. 3 and 4). If quick-fired material yields a bulk density of less than 62.4 lb/ft³ (or if the material floats in water), it is considered promising for lightweight aggregate (K. Liles, oral communication, 1984).

7. Color

The color of the unfired material, unless otherwise stated, represents the crushed and ground clay or shale. In most cases this is given for descriptive purposes only since it is generally of no practical importance for ceramic applications (only the fired color is significant). Here only broad descriptive terms such as light-brown, cream, gray, tan, etc. are used. Fired colors are more critical and therefore more specific descriptive terms and phrases are used (Klinefelter and Hamlin, 1957, p. 18 and 19). In many cases the Munsell color is given for a precise description (see discussion below).

8. Color (Munsell)

This is a system of color classification based on hue, value (or brightness) and chroma (or purity) as applied to the fired samples in this compilation. It was used by Smith (1931, p. 23-25) and by the

-14-

USBM since the early 1970's (Liles and Heystek, 1977, p. 3; Liles, oral communication, 1982). In all other cases the fired color was estimated visually.

9. Compilation Map Location No.

This number or code was assigned by the author to provide a systematic designation to be used in plotting sample locations on the base maps as shown by the typical example below.

Example:	: Map Locn. No	. <u>G</u>	dn. 31	S	- 5	6 a
County	y Name - Abbreviation (Gordon)		_			
Date	e (1931).					
Au -f	uthor's last initial (Smith) for published data only					
:	Sample sequence number (one # per location)					
	Designation used only for ca of more than one test per lo	ases ocatio	n.			

The map location number Gdn. 31S-56a is derived from the county name (e.g., Gdn. for Gordon County), the year the tests were performed (e.g., 31 for 1931) plus the last initial of the author for major published sources (e.g., S for Smith), followed by a sequence number assigned in chronological order or sequential order for published data. (The only exceptions to this are the tests reported in Smith, 1931, wherein the sequence number of the present report is the same as the "Map location No." of Smith.) Each map location number represents a

-15-

specific location, or area, sampled at a particular time. In cases where several separate samples were collected from a relatively restricted area, such as an individual property, such samples are designated a, b, c, etc. Different map location numbers have been assigned to samples which were collected from the same general locality, such as a pit or quarry, but which were collected by different investigators at different times.

10. Cone

Standard pyrometric cones, or cones, are a pyrometric measure of firing temperature and time in the kiln. They are small, three-sided pyramids made of ceramic materials compounded in a series, so as to soften or deform in progression with increasing temperature and/or time of heating. Thus, they do not measure a specific temperature, but rather the combined effect of temperature, time, and other conditions of the firing treatment. The entire series of cones ranges from about 1112°F (600°C) to about 3632°F (2000°C) with an average interval of about 20°C between cones for a constant, slow rate of heating (Klinefelter and Hamlin, 1957, p. 29). For the past several decades the use of these cones has been limited to the Pyrometric Cone Equivalent (PCE) test (Liles and Heystek, 1977, p. 16). However, all of the ceramic firing tests reported by Veatch (1909) and Smith (1931) as well as some of the earliest USBM tests report firing conditions in terms of the standard cone numbers.

11. Drying Shrinkage

The drying shrinkage is a measure of the relative amount of shrinkage (in percent) which the tempered and molded material undergoes

-16-

upon drying. Although there are a variety of ways by which this can be measured, in this report the shrinkage values represent the percent linear shrinkage based on the linear distance measured between two reference marks or lines imprinted on the plastic specimen before drying. Even though the methods have varied in detail, the drying is usually accomplished in two stages: first, by air drying at room temperature (usually for 24 hours) and second, by drying in an oven followed by cooling to room temperature in a desiccator (Klinefelter and Hamlin, 1957, p. 30-31; Liles and Heystek, 1977, p. 3). In most cases the heating was at 212°F (100°C) for 24 hours; however, studies by Smith (1931, p. 20 and 21) employed 167°F (75°C) for 5 hours followed by 230°F (110°C) for 3 hours.

12. Dry Strength

The dry strength (or green strength) is a measure of the apparent strength of the clay or shale after it has been molded and dried. Unless otherwise indicated, it represents the tranverse, or crossbreaking, strength as opposed to either tensile strength or compressive strength. For the great majority of cases only the approximate dry strength is indicated as determined by visual inspection, using such terms as low, fair, good, or high (Klinefelter and Hamlin, 1957, p. 32-33; Liles and Heystek, 1977, p. 2). Smith (1931, p. 12-13) reports a quantitative measurement of this strength using the modulus of rupture (MOR) expressed in units of pounds per square inch (psi).

13. Extrusion Test

More extensive tests are sometimes made on clays and shales which

-17-

show good plasticity and long firing range in the preliminary test. In the Extrusion Test several bars are formed using a de-airing extrusion machine (i.e., one which operates with a vacuum to remove all possible air pockets). These bars are fired and tested for shrinkage, strength (modulus of rupture) and water saturation coefficient (Liles and Heystek, 1977, p. 8).

14. Firing Range

The term firing range indicates the temperature interval over which the material shows favorable firing characteristics. For slowfired materials such desirable qualities include: a) good strength or hardness; b) good color; c) low shrinkage; d) low absorption; and e) low porosity. For quick-fired materials these include: a) good pore structure; b) low absorption; and c) low bulk density. For slow-firing and quick-firing tests the firing range should be at least 100°F (55°C) to be considered promising (O'Neill and Barnes, 1979, p. 15-18).

15. Hardness

The hardness, as measured on fired materials, indicates the resistance to abrasion or scratching. It is designated either in verbal, descriptive terms or in numerical terms using Mohs' hardness (Liles and Heystek, 1977, p. 3). It is used as an indication of the strength of the fired materials. Smith (1931), however, measured the fired strength with the modulus of rupture.

16. Hardness (Mohs')

The hardness of fired specimens using the Mohs' scale of hardness

is currently used by the USBM as a numerical measure of the fired bodies' strength (Liles and Heystek, 1977, p. 3). The values correspond to the hardness of the following reference minerals:

Mohs' Hardness No.	Reference Minerals
1	Talc
2	Gypsum
3	Calcite
4	Fluorite
5	Apatite
6	Orthoclase
7	Quartz
8	Topaz
9	Corundum
10	Diamond

A Mohs' hardness greater than 3 is considered promising for slowfired materials.

17. HCl Effervescence

The effervescence in HCl is visually determined as none, slight or high based on the reaction of 10 ml of concentrated hydrochloric acid added to a slurry of 10 grams powdered clay or shale (minus 20 mesh) in 100 ml of water (Klinefelter and Hamlin, 1957, p. 17; Liles and Heystek, 1977, p. 4). This test gives a general indication of the amount of calcium carbonate present in the sample. An appreciable effervescence could be an indication of potential problems with lime pops and/or frothing of slow-fired ceramic products.

18. Linear Shrinkage, (%)

The term linear shrinkage represents the relative shrinkage of the clay body after firing. In most cases it represents the percent total linear shrinkage from the plastic state and is based on measurements

-19-

between a pair of standard reference marks imprinted just after molding (Klinefelter and Hamlin, 1957, p. 30-32; Liles and Heystek, 1977, p. 3). (Also see the discussion under Drying Shrinkage.) Smith (1931, p. 22) gives the shrinkage relative to both the dry, or green, state (under the column headed Dry) as well as the plastic state (under the column headed Plastic). A total shrinkage of 10% or less is considered promising for slow-fired materials.

19. Modulus of Rupture (MOR)

The modulus of rupture is a measure of the strength of materials (for crossbreaking or transverse strength in this compilation) based on the breakage force, the distance over which the force was applied and the width and thickness of the sample. The MOR is expressed in psi units (pounds per square inch) for the limited MOR data reported here (determined by Smith, 1931, p. 21 and 23).

20. Mohs'

See Hardness (Mohs').

21. Molding Behavior

See Working Properties.

22. Munsell

See Color (Munsell).

23. "MW" face brick

"MW" stands for moderate weather conditions. This is a grade of brick suitable for use under conditions where a moderate, non-uniform degree of frost action is probable (Klinefelter and Hamlin, 1957, p. 36 and 37; ASTM Annual Book of Standards, 1974). (Also see "SW" face brick.)

24. PCE - Pyrometric Cone Equivalent

The PCE test measures the relative refractoriness, or temperature resistance, of the clay or shale; it is indicated in terms of standard pyrometric cones. The value given is the number of the standard pyrometric cone which softens and sags (or falls) at the same temperature as a cone made from the clay or shale being studied. These tests are usually only made on refractory materials which show favorable potential in the preliminary slow firing tests (i.e., high absorption, low shrinkage, and light fired color). The results are usually given for the upper temperature range Cone 12 (1337°C; 2439°F) to Cone 42 (2015°C; 3659°F) where the temperature equivalents are based on a heating rate of 150°C (270°F) per hour. With increasing temperature resistance the sample is designated as either a low-duty, medium-duty, high-duty, or super-duty fire clay (Klinefelter and Hamlin, 1957, p. 29-30 and 57-58; Liles and Heystek, 1977, p. 16).

25. рН

The pH is a measure of the relative acidity or alkalinity with values ranging from 0 to 14. (A pH of 7 is neutral. Values greater than this are alkaline whereas those which are less than 7 are acid.) Most of the ceramic tests by the USBM presented here show pH values as determined on the crushed and powdered raw material (in a water slurry) prior to firing (Klinefelter and Hamlin, 1957, p. 28; Liles and Heystek, 1977, p. 4). Strongly acid or alkaline pH values may give some indication of potential problems with efflorescence and scum due to water-soluble salts in the clay. Unfortunately, no simple and direct interpretation is possible from the pH data alone. The best method for determining these salts is through direct chemical analysis as described under Soluble Salts. (Also see Solu-Br.)

26. Plasticity

See Working Properties.

- 27. Porosity, Apparent See App. Por.
- 28. Quick Firing

See Bloating Test.

29. Saturation Coefficient

The saturation coefficient is determined only for specimens which have undergone the more extensive Extrusion Test. It is determined by submerging the fired specimen in cool water for 24 hours, followed by submerging the specimen in boiling water for 5 hours. The saturation coefficient is found by dividing the percent of water absorbed after boiling into the percent of water absorbed after the 24-hour submergence (Liles and Héystek, 1977, p. 8).

30. Shrinkage

See Drying Shrinkage and Linear Shrinkage.

31. Slaking

See Working Properties.

32. Slow Firing Test

Slow Firing Test refers to the process of firing ("burning") the dried specimen in a laboratory furnace or kiln. Although specific details of the different laboratory methods vary, all specimens are started at room temperature and are slowly heated to the desired temperature over a specific interval of time.

The majority of the slow firing tests by the USBM reported here were made using 15-minute draw trials. In this method a set of molded and dried test specimens are slowly fired in the kiln or furnace. The temperature is gradually raised to 1800°F (982°C) over a period of 3 to 4 hours (to avoid disintegration of the specimen as the chemically combined water is released) and the temperature is held constant for about 15 minutes. One specimen is removed from the kiln (a draw trial) and the temperature is raised to the next level (usually in intervals of 100°F). At each interval the temperature is again held constant for a 15-minute soak and then one specimen is withdrawn. This process is repeated until the final temperature is achieved (usually 2300 or 2400°F; 1260 or 1316°C) - see Klinefelter and Hamlin (1957, p. 19 and 30). The disadvantage of this draw trial method is that it tends to underfire the specimens, compared to the industrial process, since they are soaked for a relatively short time and quickly cooled by removal from the kiln.

Since the early 1970's the USBM has abandoned the draw trials and has adopted a method which more closely resembles the conditions of

-23-

commercial manufacture. As described by Liles and Heystek (1977, p. 2 and 3), one of the test specimens is slowly fired, over 24 hours, to 1832°F (1000°C), where it is held for a one-hour soak. The kiln is then turned off, but the specimen remains in the kiln as it slowly cools. (This gives a much closer approximation of most commercial firing processes.) This is subsequently repeated, one specimen at a time, for successive 50°C intervals usually up to 2282°F (1250°C). Unfortunately, only a relatively small part of the current data set is represented by USBM tests using this newer method.

The firing test methods used by Smith (1931, p. 21 and 22) are somewhat intermediate to the two methods described above. First, the specimens were slowly fired from 200 to 1200°F (93 to 649°C) over a period of 11 hours. The temperature was subsequently increased at a rate of 200°F per hour for approximately 4 hours followed by 100°F per hour until final temperature conditions were reached. At these later stages firing conditions were monitored using standard pyrometric cones The maximum firing temperature was determined from in the kiln. observed pyrometric cone behavior. This temperature was based on the temperature equivalent to 2 cones below the desired final cone. The kiln temperature was then held constant until the desired cone soaked Test specimens were then removed from the kiln and allowed to down. Smith's firings averaged about 17 hours in the kiln and all cool. specimens were fired to cones 06, 04, 02, 1, 3 and 5 wherever possible. No specific information is available on the methods employed by Veatch (1909) or the unpublished data from TVA or Georgia Tech.

33. Solu-Br. (Solu-Bridge)

Solu-Bridge measurements were used in the 1950's and 60's by the

-24-

USBM as a measure of the soluble salts (e.g., calcium sulfate) in the unfired raw material which might cause scum and efflorescence on fired "The solubridge and pH readings show the higher alkali products. samples. Solubridge determinations give the water soluble part of the alkalis and readings above 1.5 indicate fairly high soluble salt content. Clays containing high alkalies have rather short maturing temperatures and require closer firing control. The alkalies also influence the color and lower the vitrification temperature." (H.P. Hamlin, written communication, 1957). In this method the pulverized clay or shale is boiled in water, left to stand overnight, and filtered. The content of soluble salts in the solution is then measured using the Solu-Bridge instrument readings applied to suitable calibration tables (Klinefelter and Hamlin, 1957, p. 28-29). These data are no longer collected because consistent and meaningful results are difficult to achieve.

34. Soluble Salts

Excessive water-soluble salts can cause problems with efflorescence or scum on fired clay products. (More than 3 to 4% calcium sulfate, and 1/2% magnesium or alkali sulfates are considered excessive.)

The most accurate determinative method is to boil the finely powdered sample in distilled water for 1/2 to 1 hour and let it soak overnight. The decanted solution is then analyzed for the soluble salts using standard chemical methods. The Solu-Bridge readings may also be used as a general measure of the soluble salts (Klinefelter and Hamlin, 1957, p. 28).

35. Strength

See Dry Strength and Modulus of Rupture.

36. "SW" face brick

"SW" stands for severe weather conditions. This is a grade of brick suitable for use under conditions where a high degree of frost action is probable (Klinefelter and Hamlin, 1957, p. 36 and 37, and the ASTM Annual Book of Standards, 1974). (Also see "MW" face brick.)

37. Temp. °F (°C)

The temperature at which the material was fired (both slow and quick firing tests) is given in Fahrenheit (°F) followed by the Celsius (°C) conversion in parentheses. In cases where only pyrometric cone values are available, the approximate temperature is given on the form and is based on the table of temperature equivalents in Norton (1942, p. 756, Table 128) or in Veatch (1909, p. 57).

38. Water of Plasticity (%)

This is a measure of the amount of water (as weight percent relative to the dry material) required to temper the pulverized raw clay or shale into a plastic, workable consistency. This is not a precise measurement, being dependent upon the experience of the technician, the type of equipment used and the plasticity criteria. In most cases it represents the amount of water necessary for the material to be extruded into briquettes from a laboratory hydraulic ram press. In general, high water of plasticity values tends to correlate with a greater degree of workability, higher plasticity and finer grain size.

-26-

Unfortunately, high values also correlate with a greater degree of shrinkage, warping and cracking of the material upon drying. (See Klinefelter and Hamlin, 1957, p. 20-22; Liles and Heystek, 1977, p. 2.)

39. Working Properties (or Workability)

This area of working properties includes comments on the slaking, plasticity, and molding, or extruding behavior of the tempered material (Klinefelter and Hamlin, 1957, p. 5, 19-22 and 33-34). The term slaking refers to the disintegration of the dry material when immersed in water. It may range in time from less than a minute to weeks, but generally in the present report it is given only a relative designation such as rapid, slow, or with difficulty. Plasticity likewise is designated in a comparative manner in order of decreasing plasticity: plastic, fat (or sticky), semiplastic, short (or lean), semiflint and flint. Molding behavior is referred to as good, fair, or poor and is a general designation for the ease with which the material can be molded into test bars or briquettes.

These working properties are very imprecise and strongly dependent upon the judgement and experience of the operator. They do, however, give a general indication of how the material might respond to handling in the industrial process.

Ceramic Tests and Analyses of Clays, Shales and Slates

in Gordon County, Georgia*

^{*} The data presented in this report are based on laboratory tests that are preliminary in nature and will not suffice for plant or process design.

MaterialShale (Conasauga Group)				Compilation Ma	p Location No	. <u>Gdn.09V-1</u>
County	Gordon.			Sample Number	- -	
Raw Proper	rties:		Lab & No	Ga. Survey.		and the second second
Date Repor	rted190	9.	Ceramist -	O. Veatch, Ga.	Survey.	
Water of H	Plasticit	y <u>25</u> %	Working Pro	operties <u>Poor</u>	plasticity; s	low slaking.
Color Yell	low.	Drying Shrin	kage <u>4</u> %	Dry Strength	(tensile) 42 56	psi. (ave.) psi. (max.)
Remarks <u>I</u>	Drying pro	operties: Goo	<u>d.</u>			<u></u>
Slow Firin	ng Tests:			2		
Approx. Temp. °F (°C)	Color	Hardness	Linear hrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. g/cm ³
1850 F	Red	"Good"	2.1	-	-	-
(=Cone 07))				1	
1922 H (1050) (=Cone 05)	Red)	"Steel hard" (not vitrified	3.1	5.4*	-	-
2102 I (1150) (=Cone 1)	Dark red	-	-	-	(viscous)	-

*(absorption test made on half a common building brick made from this deposit.)

Remarks / Other Tests "This shale will make an excellent building brick, but is of doubtful value for vitrified brick. Its main defect is poor plasticity." (Veatch, 1909, p. 396).

Preliminary Bloating (Quick Firing) Tests: Not determined.

10

10011.10.001.097 - 1.0011	ocn.	no.	Gdn	.09V-1		cont	
---------------------------	------	-----	-----	--------	--	------	--

Crushing Characteristics (unfired material) _____

Particle Size ____ Retention Time ____

Chemical & Mineralogical Data: Not determined.

Chemical Analysis Oxide Weig	ght %	Mineralogy Mineral	volume %
$ \begin{array}{c} \text{S10}_2\\ \text{TiO}_2\\ \text{A1}_2\text{O}_3\\ \text{Fe}_2\text{O}_3 \end{array} $		Quartz Feldspar Carbonate	
FeO MnO MgO		Mica Chlorite- vermiculite	
CaO Na ₂ O K ₂ O		Montmorillonite Others	
$\begin{array}{c} r_{2}05\\ S & (total)\\ C & (org.)\\ CO_{2}\\ H_{2}O^{-} \end{array}$		Total	
H ₂ 0+ Ignition loss			
Total			
Analyst			
Date			
Method			
Sample Location Data	<u>a</u> :		
County Gordon.	Land Lot	, Sec, Dis	st
7 1/2' topo quad. <u>C</u>	alhoun North (S. cntr.))_Lat, I	Long
Field No	, Collected b	by O. Veatch	Date <u>c. 1909</u>
Sample Method Grab	(?). Weat	thering/alteration	ariably weathered.
Structural Attitude	-	and the second	
Stratigraphic Assig	nment <u>Conasauga</u> Group	p (Cambrian) shale.	
Sample Description Calhoun (also see Go It is yellow or brow to be uniform in com p. 395-396).	& Comments Sample from dn.31S-51) is used to m wn to olive green in co mposition and texture,	n pit of the Legg Brot nake common and dry pr olor, closely jointed but variably consolid	thers Brick Co. at tess building brick. and hard tending lated (Veatch, 1909,
Compiled by B. J.	O'Connor J	Date 08-20-86	

Material <u>Clay (residual from shale).</u>	Compilation Map Location No. <u>Gdn.09V-2</u>
County Gordon.	Sample Number
Raw Properties: Lab & No.	Ga. Survey, #53.
Date Reported Ceramist	O. Veatch, Ga. Survey.
Water of Plasticity% Working Pr	operties
Color Yellow. Drying Shrinkage	* % Dry Strength
Slow Firing Tests: Not determined.	
Temp. Color Hardness Linear °F (Munsell) (Mohs') Shrinkage, % (°C)	Absorption Appr. Por. Other % % data: Bulk Dens. g/cm ³

Remarks / Other Tests *This clay was being used by the Calhoun Brick Co., but it had "excessive shrinkage" and the pebbles in the overlying gravels caused some difficulty (Veatch, 1909, p. 396).

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. Gd	n.09V-2,	cont.
--------------	----------	-------

Crushing	Charac	teristics	(unfired ma	aterial)		
Particle	Size _	-	Retention	Time		
Chemical	& Mine:	ralogical	Data:			
Chemical	Analys	is			Mineralogy:	Not determined.
Oxide		Weight %			Mineral	volume %
SiOa		60.67				
TiO		0.73			Quartz	
ALOO		17.55			Feldspar	
Fa 0. (1	otal)	7 21			Carbonate	
$re_{2}03$ (Juar)	7.21			Mica	
reu					Chloritor	
MnO		trace			Uniorite-	
MgO		0.68			vermiculit	e
CaO		trace			Montmorillon	nite
Na ₂ 0		3.61			Others	
K ₂ Õ		1.98				
P_0_		-				
s ² (t	otal)	-			Total	
C (c	org.)	-				
CO.						
u 0-		1 08				
ⁿ 20		1.00				
^H 2 ^U						
Ignition		((0				
loss	-	6.68				
Total		100.22				
Analyst _	E. Eve	rhart, Ga.	Survey (in Veatel	n, 1909, p. 3	396-397 and Appendix B,
Data a 1	000			5. 55, p	, 412 41J).	
Dale <u>c</u> , j	909.					
Method _	Standar	d "wet".				
Sample Lo	cation	Data:				
bampie ne		Data.				
County _(Gordon.		Land Lot _	,	Sec	_, Dist
7 1/2' to	opo qua	d. <u>Calhou</u>	in South	La	at	, Long
Field No.			, Coll	ected by	O. Veatch.	Date <u>c. 1909</u> .
Sample Me	ethod _	Grab (?).		Weath	ering/alterat	ion <u>Residual clay.</u>
Structura	al Atti	tude <u>-</u>				
Stratigra	aphic A	ssignment	Recent (? Group sha) residua le.	al clay deriv	ved from Cambrian Conasauga
Sample De	escript	ion & Comm	nents Yell	ow residu	ual clay capp	oed by a thin deposit of
red, sand	ly loam	and coars	se quartz g	ravel (us	sed by the Ca	alhoun Brick Company to
make brid	k at tl	heir plant	about 1 m	ile South	n of Calhoun	(Veatch, 1909, p. 395-
397.						
				Contract Land Contract on the		
Compiled	by B	. J. O'Cor	nor	Dat	te 11-24-81	

Material	Clay and shale (Conas	auga).	Compilation Map	Location 1	No. <u>Gdn.315-51</u>
County	Gordon.		Sample Number	G-1	
Raw Proper	ties:	Lab & No.	Ga. Tech., #51		
Date Repor	ted 1931.	Ceramist	R. W. Smith, G	a. Survey.	

Water of Plasticity <u>22.7</u> % Working Properties <u>Plasticity poor and grainy</u> (fair on aging overnight); rather slow slaking; molding behavior fair-column edges tend to tear.

Color Light Drying Shrinkage 2.1 % Dry Strength (MOR) 75.5 psi. brownish-gray.

Remarks Drying behavior: little or no warpage.

Slow Firing Tests:

Approx. Temp. °F (°C)	Color (Munsell)*	Hardness (MOR, psi.)	Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por. %	Other data: Warpage
1840 (1005)	Salmon (4YR-6/7)	912	3.6 (5.5)	16.8	-	Little or none
1920 (1050)	Dark salmon (2YR-6/6)	1019	4.1 (6.0)	14.3		Slight
2000 (1095)	Light red (10R-5/5)	1386	6.2 (7.5)	11.4	5. 75	Slight
2060 (1125)	Good red (10R-4/5)	1674	7.5 (9.3)	8.5	-	Considerable
2090 (1145)	Deep red (10R-3/5)	1638	7.5 (9.5)	5.6	-	Considerable
2160 (1180)	Deep red (10R-3/4)	2231	8.5 (10.3)	4.9	-	Considerable (vitrified- appearing surface)

Remarks / Other Tests Firing range = Cone 1 to 3 (in commercial kiln = Cone 1 to 2). This mixture used by the B. M. Hood Co. to make common and face brick at the Legg Plant on the north side of Calhoun (Smith, 1931, p. 215 and 216).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) Easy grinding.

Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analy	sis	Mineralogy: Not o	letermined.
Oxide	Weight %	Mineral	volume %
SiO2	63.44		
TiO	0.92	Quartz	
A1202	20.79	Feldspar	
Feala	5.50	Carbonate	
FeO	0.89	Mica	
MnO	-	Chlorite-	
MgO	0.55	vermiculite	
CaO	0.00	Montmorillonite	
Na ₂ 0	0.37	Others	
KaO	2.31		
PaOr	trace		
S (total)	0.00	Total	
C (org.)		Total	·
CO.			
u 0-	* =	lucia recoloulated or	an H-O- from hadis
n20 n ot		Smith 1031 p 21/)
n20 ⁿ	- Dy	Smith, 1951, p. 214.)
ignition	E DE		
loss	100 12*		
lotal	100.12*		
Analyst <u>E. Ev</u>	verhart, Ga. Survey.		
Date <u>c. 1931</u> .			
Method Standa	ard "wet".		
Sample Locatio	on Data:		
County Gordon	Land Lot	, Sec, D	ist
7 1/2' topo qu	ad. Calhoun North (S. cntr.). Lat,	Long.
Field No. <u>G-1</u>	, Collected	by <u>R. W. Smith.</u>	Date $4-28-30$
Sample Method	Grab samples. Wea	thering/alteration _	Weathered clay (residual ?).
Structural Att	itude	-	
Stratigraphic	Assignment Conasauga Group	(Cambrian) shale an	d Recent (?) residual
Sample Descrip	otion & Comments Samples fr	om shale pit of the	Hood Brick Co. on the
N. side of Cal	houn, E, of the Nashville R	R and W. of the "Div	ie Hwy. (Ga. 3), 1/2
mile N. of the	Hood Co.'s brick plant T	he Conasauga shale i	n 8 ft, deen nit is
soft and light	brown at the top through	semi-hard and grachi	sh-drah to hard dark
aray chalo at	the bottom of the pit Th	places the shale and	des horizontally into
a mottled red	and light-brown clay (rosid	ual ?) with traces	f a chalv structure
(Smith 1031	p 212 to 216) Aleo coo Cd	n 09V-1	La suary structure
(billen, 1201)	P. 212 CO 2107. AISO SEE 60		
Compiled by E	3. J. O'Connor	Date 08-20-86	

Material	Soft to s (Conasaug	emi-hard s a).	hale	Compilation Map	Location No.	<u>Gdn.31S-52</u>
County	Gordon.			Sample Number	G-7g	
Raw Prop	Raw Properties: Lab & NoGa. Tech., #52					
Date Reported 1931. Ceramist _R. W. Smith, Ga. Survey.						
Water of Plasticity 21.1 % Working Properties Plasticity is grainy at first, fair after aging overnight; a little slow slaking; molding behavior is fair.						
Color Li	ght brown.	Drying Shr	inkage 2.0	6% Dry Stren	ngth (MOR) 77.	8 psi.
Remarks	Drying beha	vior: all	test bars sl:	ightly warped.		
Slow Fir	ing Tests:					
Approx.	Color	Hardness	Linear	Absorption	Appr. Por.	Other
Temp. °F (°C)	(Munsell)*	(MOR, psi.)	Shrinkage, % dry (plastic)	%	%	data: Warpage
1840 (1005)	Dark salmon (2YR-6/7)	1326	4.2 (7.1)	11.6	=	Slight
1920 (1050)	Light salmon (10R-5/6)	1560	4.1 (7.0)	10.4	-	Some
2000 (1095)	Fair red (10R-5/5)	1713	4.8 (7.1)	10.2	-	Some
2060 (1125)	Good red (10R-4/5)	1733	6.3 (9.0)	7.8	-	Some
2090 (1145)	Deep red (10R-5/5)	2189	7.5 (9.5)	3.8	-	Bad
2160 (1180)	Deep red (10R-3/3)	3004	8.0 (10.2)	3.0	-	Bad

Remarks / Other Tests Firing range: Cone 01 to 5 (in commercial kiln: Cone 02 to 4). This material probably suitable for manufacture of brick, but dry strength probably too low for tile or sewer pipe - could be improved by blending with other clays (Smith, 1931, p. 218).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) Easy grinding.

Particle Size __16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analysis	Mineralogy: Not determined.
Oxide Weight %	Mineral volume %
SiO 58.62	
TiO2 0.92	Quartz
Al 203 24.62	Feldspar
Fe ₂ 0 ₃ 7.05	Carbonate
Fe0 0.82	Mica
MnO –	Chlorite-
MgO 0.21	vermiculite
CaO 0.00	Montmorillonite
Nap0 0,50	Others
K ₂ 0 2.05	
Po0s trace	
S (total) 0.00	Total
C (org.) =	
$u_0 = \star$ (* = ana	lysis recalculated on an HoOT -free
$u_{-}0^+$ – has	is by Smith 1931 p 217)
Ingo Dao	10 0y baren, 1991, p. 2177
100 06t	
100.00	
Analyst E. Everhart, Ga. Survey.	
1000	
Date <u>c. 1930</u> .	
Method Standard "wet"	
Sample Location Data:	
County Gordon, Land Lot 154 & 15	6. Sec. 3 . Dist. 14 .
	, <i>beer</i> , <i>breer</i> ,
7 1/2' topo quad. <u>Calhoun North (SW.1/4)</u> .	Lat, Long
Field No. <u>G-7g</u> , Collected b	Dy <u>R. W. Smith</u> Date <u>4-29-30</u>
Sample Method Grab samples from Weat	hering/alteration Weathered.
outcrops on 2 ridges.	
Structural Attitude	
Stratigraphic Assignment Conasauga Group	(shale) - Cambrian.
Sample Description & Comments Material is	s soft to semi-hard, somewhat fissile,
drab shale (similar to Gdn. 31S-51 above) f	rom the Chapman, Lewis and Henderson
properties on low ridges just east of the	Oostanaula River. This is about 1 1/4
miles north of Calhoun, and 1/2 to 3/4 mil	e west of the Nashville RR. and the B.
M. Hood Company brick plant (Smith, 1931.	p. 216-218).
in here company server pronte (omren, 1991)	
Compiled by B. J. O'Connor I	Date 08-20-86

Material	Plastic yellow clay (residual/colluvial).	Compilation Map Location No. Gdn.31S-5		
County	Gordon.	Sample NumberG-3		
Raw Proper	rties: Lab & No.	Ga. Tech., #53.		
Date Repor	rted 1931. Ceramist	R. W. Smith, Ga. Survey.		
Water of 1	Plasticity <u>32.8</u> Working Pro	perties Good plasticity, sticky; rapid		
Color Lig	ght tan. Drying Shrinkage	6.7 % Dry Strength (MOR) 241.2 psi.		
Remarks	Drying behavior: all test bars v	very slightly warped.		
Slow Firin	ng Tests:			

D'a la

OLL'S

Approx. Temp. °F (°C)	(Munsell)*	(MOR, psi.)	Shrinkage, % dry (plastic)	ADSOFPTION %	Appr. Por. %	data: Warpage
1840 (1005)	Pinkish- ivory (5YR-7/6)	672	0.4 (7.3)	24.8	-	Very slight
1920 (1050)	Pinkish- tan, pale (5YR-7/6)	906	0.3 (7.1)	25.3	-	Very slight
2000 (1095)	Pinkish- tan, light (5RY-7/5)	1341	0.8 (7.4)	23.6	-	Very slight
2060 (1125)	Pinkish- tan, medium (5YR-6/7)	1022	1.3 (8.3)	24.1	-	Slight
2090 (1145)	Pinkish- salmon (4YR-6/6)	1251	1.0 (7.4)	23.6		Very slight
2160 (1180)	Pinkish- salmon (3YR-6/6)	1204	1.8 (8.5)	22.5	-	Slight

Remarks / Other Tests Firing Range: above Cone 5. Due to the high absorption this clay is suitable only for flower pots and crude pottery - also possibly porous roofing tile. It could be used in blends to increase the plasticity of slow-slaking shales (Smith, 1931, p. 220).

Preliminary Bloating (Quick Firing) Tests: Not determined.

1

Crushing Characteristics (unfired material) Easy grinding.

Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:					
Chemical Analysis Oxide Weight % SiOa 74.50	Mineralogy: <u>Not determined.</u> Mineral volume %				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Quartz Feldspar Carbonate				
FeO 0.72 MnO – MgO 0.28	Mica Chlorite- vermiculite				
CaO 0.00 Na ₂ 0 0.59 K ₂ 0 0.44	Montmorillonite Others				
P ₂ 0 ₅ trace S (total) 0.00 C (org.) -	Total				
CO ₂ - H ₂ O ⁻ * (* = H ₂ O ⁺ -	analysis recalculated on an H_2O^- -free basis by Smith, 1931, p. 219.)				
loss <u>6.32</u> Total 100.03*					
Analyst E. Everhart, Ga. Survey.	La de antición de la compañía de la				
Date1931.					
Method Standard "wet".					
Sample Location Data:					
County Gordon. Land Lot,	Sec, Dist				
7 1/2' topo quad. <u>Calhoun North (SE.1/4).</u>	Lat, Long				
Field No. <u>G-3</u> , Collected by	R. W. Smith. Date <u>4-28-30</u>				
Sample Method Grab samples. Weath	ering/alteration residual or colluvial.				
Structural Attitude					
Stratigraphic Assignment <u>Recent (?) clay d</u>	erived from Knox Group (Cambro-				
Ordovician) carbonate rocks. Sample Description & Comments Yellow plastic clay from shallow outcrops at the					
edge of a meadow on the Prater property 2 m	iles northeast of Calhoun, east of the				
Newton road and 1 1/4 miles due east of the rived from relatively chert-free area of th	Nashville KK. It apparently was de-				
to be either colluvial or residual in origi	n (Smith, 1931, p. 218-220).				
Compiled by B. J. O'Connor Da	te 8-20-86				

Material Drab shale, soft to semi-hard			Compilation Map Location No. Gdn.31S-54		
	(Conasauga).				
County	Gordon.		Sample Number <u>G-8g</u>		
Raw Prope	rties:	Lab & No.	Ga. Tech., #54.		
Date Repo	rted 1931.	Ceramist	R. W. Smith, Ga. Survey.		
Water of	Plasticity21.8_%	Working Pr	operties Fair plasticity; fairly rapid		
Color <u>Ye</u>	llow. Drying Shrin	kage 3	.0 % Dry Strength (MOR) 89.4 psi.		
Remarks	Drying behavior: all t	est bars sl	ightly warped.		

Slow Firing Tests:

Approx. Temp. °F (°C)	Color (Munsell)*	Hardness (MOR, psi.)	Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por. %	Other data: Warpage	
1840 (1005)	Salmon (2YR-6/6)	766	2.9 (6.5)	16.9		Slight	
1920 (1050)	Light red (10R-5/4)	1162	4.0 (7.0)	13.2	-	Slight	
2000 (1095)	Good red (10R-4/4)	1229	4.5 (7.4)	11.5	52°	Slight	
2060 (1125)	Good red (10R-4/5)	1517	5.7 (8.0)	12.0	-	Some	
2090 (1145)	Deep red (10R-4/3)	1690	6.5 (9.1)	7.0	~	Some	
2160 (1180)	Deep red (10R-3/3)	1855	7.2 (9.5)	7.7	-	Some	

Remarks / Other Tests Firing Range: Cone 1 to Cone 5 (in commercial kiln: Cone 01 to 4). Material is suitable for manufacture of brick and possibly medium-fired structural tile (Smith, 1931, p. 222).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) Fairly easy grinding, brittle.

Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical	Analysi	is		Mineralogy:	Not dete	ermined.
Oxide		Weight %		Mineral		volume %
SiO ₂		55.23				
TiO		0.92		Quartz		
A1202		26.25		Feldspar		
Feada		7.25		Carbonate		
FeO		0.50		Mica		
MnO		_		Chlorite-		
MgO		0.05		vermiculi	te	
CaO		0.00		Montmorillo	nite	
NaoO		0.99		Others		
KaO		1.52				
Palle		0.14				
s (total)	0.00		Total		
c (org)	-		10001		at any second second second
CO-	018./	_				
H-0-		*	(* =	analysis rec	alculated	on an HaOT -free
n20 n-0+		-		bacie by Smith	th 1931	D 220)
n ₂ 0				Dasis by Duit	cii, 1991,	p. 2207
long		7 20				
Total	2	100.05*				
IOLAI		100.05				
Analyst	E. Even	rhart, Ga.	Survey.	Manager and State of State of		
Dete	1020	0				
Date	c. 1930	0.				
Mathad	Charden	J. Hussell				
Method _	Scanda	ra wet.	· · · · · · · · · · · · · · · · · · ·	2000 - Contraction - Contracti		1
Sample I.	ocation	Data:				
oumpre L	ocución	Dutu				
County _	Gordon.	I	and Lot <u>8</u> ,	Sec. 3	, Dist	· <u>14</u> .
7 1/2' t	opo qua	d. <u>Calhour</u>	North (central)	, Lat	, Lor	ng
		0			-	
Field No	•G·	-8g	, Collected by	R. W. Smith	. Da	te <u>4-30-80</u>
Sample M	lethod _	Grab sample	Weat	hering/altera	tion <u>Var</u>	iable weathering.
Structur	al Atti	tude Beddi	.ng strikes NE an	d dips c. 45°	SE in Ga	. Hwy. 3 cut.
G			0		•)	
Stratigr	apnic A	ssignment -	Conasauga Group	snales (Cambr	lan).	
Sample D	accrimt	ion & Commo	onto Compleo of	ant to comi-	hand dual	h solored shale
3 s 1/2	miles	arth of Col	hour and just no	solt to semi-	nard, ura	from road out
$\frac{3 \alpha 1/2}{2 \alpha C \alpha H}$	miles m		Freeman and just no	run of Damasc	us church	, from road cut
ridges t	wy 5 (U	. 3. 41) -	rieeman property	- and from S	lau sasa	tu (Smith 1021
ridges t	o the e	ast, Dut We	st of the NashVi	iie KK - Pend	rey prope	rty (Smith, 1931,
p. 220-2				· · · · · · · · · · · · · · · · · · ·		
Compiled	by B.	J. O'Conno	Dr D	ate 8-20-86		

Material	al <u>Shale, drab reddish-brown</u> (Conasauga).			Compilation Map Location No. <u>Gdn.31S-</u>		
County	Gordon.			Sample NumberG-42g		
Raw Proper	ties:		Lab & No.	Ga. Tech., #55.		
Date Repor	rted	1931.	Ceramist	R. W. Smith, Ga. Survey.		
Water of H	Plasticity	19.9 %	Working Pr	operties Fair plasticity; a little slow		
Color Lig	ght brown.	Drying Shrink	age	2.0 % Dry Strength (MOR) 79.2 psi.		
Remarks I	Drying beha	vior: all te	est bars sl	ightly warped.		

Slow Firing Tests:

Approx. Temp. °F (°C)	Color (Munsell)*	Hardness (MOR, psi.)	Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por. %	Other data: Warpage
1840 (1005)	Light salmon (3YR-6/6)	656	2.7 (4.5)	17.9	-	Slight
1920 (1050)	Salmon (2YR-6/5)	909	3.9 (5.7)	15.5	-	Slight
2000 (1095)	Deep salmon (1YR-6/4)	1199	4.8 (6.8)	12.5	-	Slight
2060 (1125)	Medium red (10R-5/5)	1625	5.3 (7.5)	10.9	-	Slight
2090 (1145)	Good red (10R-4/5)	1636	6.5 (8.3)	10.4	-	Considerable
2160 (1180)	Deep red (10R-4/3)	2035	7.1 (8.6)	8.0	-	Considerable

Remarks / Other Tests Firing Range: Cone 01 to Cone 6 (Commercial kiln: Cone 02 to 5). Shale is suitable for manufacture of brick - possibly also for structural and roofing tile - although the somewhat poor working properties and low green strength need special attention in plant production (Smith, 1931, p. 224).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) _ Easy grinding.

Particle Size __16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analys	is	Mineralogy: Not determined.
Oxide	Weight %	Mineral volume %
SiO ₂	64.22	
Tio	0.73	Quartz
Aloõa	19.89	Feldspar
FeoOs	5.26	Carbonate
FeŐ	1.29	Mica
MnO	-	Chlorite-
MgO	trace	vermiculite
CaO	0.00	Montmorillonite
Na ₂ 0	0.48	Others
K2Ô	2.48	
P205	trace	
S (total)	0.00	Total
C (org.)	-	
CO2	-	
H 20-	* (* =	analysis recalculated on an H ₂ O ⁻ -free
$H_{2}^{2}0^{+}$	-	basis by Smith, 1931, p. 223.)
Ignition		
loss	5.63	
Total	99.98*	
Analyst <u>E. Eve</u>	rhart, Ga. Survey.	
Date <u>c. 1930</u> .		
Method <u>Standar</u>	d "wet".	
Sample Location	Data:	The Article B
County Gordon.	Land Lot <u>303 and</u> 311-313	Sec. <u>3</u> , Dist. <u>13</u> .
7 1/2' topo qua	d. Calhoun North (N.cntr.).	Lat, Long
Field NoG	-42g , Collected by	R. W. Smith. Date <u>5-8-30</u>
Sample Method	Grab samples. Weath	ering/alteration Variable weathering.
Structural Atti	tude	
Stratigraphic A	ssignment <u>Conasauga Group s</u>	hale (Cambrian).
Sample Descript shale (fissile Chatsworth road of the Conasaug	ion & Comments <u>Semi-hard to</u> to massive) from outcrops on (Ga. Hwy. 136) about 1/2 t a River (Smith, 1931, p. 223	hard, drab to reddish-brown colored the Edwards property along the Resaca- o 1 mile northeast of Resaca, just east - 224). Also see Gdn.80-1.
Compiled by B	.I. O'Connor Da	te 8-20-86

Material	Clay and (Floyd).	soft shale	e. Comp	ilation Map L	ocation No.	Gdn.318-56a
County	Gordon.		S	ample Number	G-29	
Raw Prop	erties:		Lab & NoG	a. Tech., #56	•	
Date Rep	orted 193	31.	Ceramist	. W. Smith, G	a. Survey.	
Water of	Plasticity	36.5		rties Good pl	asticity; ra	upid slaking;
Color Br	own.	Drying Shi	cinkage 8.3	% Dry Stren	gth (MOR) 23	32.1 psi.
Remarks	Drying beha	vior: all	test bars cons	iderably warp	ed.	
Slow Fir	ing Tests:					
Approx. Temp. °F (°C)	Color (Munsell)*	Hardness (MOR, psi.)	Linear Shrinkage, % day (plastic)	Absorption %	Appr. Por. %	Other data: Warpage
1840 (1005)	Light salmon (3YR-6/7)	1411	5.2 (14.0)	17.7	-	Considerable
1920 (1050)	Medium salmon (2YR-6/7)	1590	5.7 (14.2)	15.9	-	Considerable
2000 (1095)	Salmon (4YR-6/7)	1482	6.1 (14.2)	14.4		Considerable
2060 (1125)	Light red (1YR-5/5)	2088	9.0 (16.3)	10.5	-	Considerable
2090 (1145)	Medium red (10R-4/4)	2249	9.5 (17.1)	7.3	12) 1	Considerable
2160 (1180)	Good red (10R-4/3)	2398	10.0 (17.6)	6.0	-	Considerable

Remarks / Other Tests Firing Range: Cone Ol to 6 (in commercial kiln: Cone O2 to O5). According to Smith (1931, p. 226) the above firing and working properties (especially the high shrinkage and laminating tendencies) are unfavorable, but if blended with slower slaking material (eg. shale) it should be usable for brick, tile & pipe manufacture.

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) Easy grinding.

Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data: Mineralogy: Not determined. Chemical Analysis Mineral volume % Oxide Weight % SiO₂ 67.64 TiO2 0.92 Quartz A1203 14.88 Feldspar Fe_20_3 (total) Carbonate 8.28 Mica FeŌ ----Chlorite-MnO trace MgO vermiculite trace Montmorillonite 0.00 CaO 0.45 Others Na₂0 $K_2\bar{0}$ 0.98 P205 0.06 S 0.00 Total (total) С (org.) _ CO_2 1 H20-(* = analysis recalculated on an H_2O^- -free $H_{2}^{-}0^{+}$ basis by Smith, 1931, p. 225.) Ignition 6.95 loss Total 100.16* Analyst E. Everhart, Ga. Survey. Date c. 1930. Method Standard "wet". Sample Location Data: Land Lot 305, 316, Sec. 3 , Dist. 13 . County Gordon. 318 and 320. 7 1/2' topo quad. Sugar Valley . Lat. Long. , (NE. side). Field No. G-29 , Collected by R. W. Smith. Date 5-5-30 Sample Method Groove samples of 3 Weathering/alteration Weathered. to 6 ft. in length from 3 different places on RR cut. Structural Attitude -Stratigraphic Assignment Recent (?) clay and shale derived from deep weathering of Floyd "Shale" argillaceous carbonates (Mississippian). Sample Description & Comments Soft, weathered, brown and drab shale and red to mottled red and gray clay from a 500 ft. long cut on the Southern RR. 1/2 mile south of Hill City and located on the G. Bandy property (Smith, 1931, p. 224-26). Compiled by B. J. O'Connor Date 8-20-86

Material	Plastic o	clay, gray,	blue and	Compilation Ma	p Locatión I	No. Gdn.318-56b	
	brown.			Contract of the last			
County	Gordon.			Sample Number	G-30	areas 1	
Raw Prope	erties:		Lab & No.	Ga. Tech., #56	•	сет и то ст	
Date Repo	orted	1931.	Ceramist .	R. W. Smith, G	a. Survey.		
Water of	Plasticity	26.3	% Working Pro	operties Good	plasticity,	but very	
	sticky; rapid slaking; good molding-slight tendency to laminate.						
Color Li	ight	Drying Shr:	inkage 6	.9 % Dry Stren	gth (MOR) 30	07.1 psi.	
b1	cownish-gray	<u> </u>					
Remarks	Drying beha	avior: all	test bars sh	ow considerable	warpage.		
Slow Firi	ing Tests:						
Annia	Calen	Ildudicas	T É la seu	Absention	Anna Don	Other	
Approx.	(Muncoll)*	(MOP	Linear	ADSOTPLION	Appr. Por.	Uther	
°F	(Mulisell)"	(MOK,	dry (plastic)	/0	Warnage	
(°C)		Par.)	dry (prastre	/		warpage	
(0)							
1840	Cream	990	0.7 (7.3)	19.1	-	Considerable	
(1005)	yellow						
	(7YR-7/7)						
1920	Pale	973	0.8 (7.1)	19.2	-	Considerable	
(1050)	salmon						
	(01K-///)						
2000	Light	1203	1.1 (7.8)	17.6	-	Some	
(1095)	salmon	1200	101 (100)	2700		DOMO	
,	(5YR-7/6)						
2060	Medium	1382	1.8 (8.7)	16.4	-	Considerable	
(1125)	salmon						
	(4YR - 6/6)						
2000	Calman	1501	$2 \in (0, 2)$	15 5		Canaidanabla	
(11/5)	(2VP-5/6)	1921	2.0 (9.3)	12.5		considerable	
(114))	$(210^{-})(0)$						
2160	Salmon	1683	3.4(10.4)	13.9	-	Bad	
(1180)	(3YR-5/5)						
Remarks	/ Other Tes	ts Firing	Range: Cone	3 to 8 and high	er (commerc	ial kiln: Cone	
2 to 7 a	nd higher).	This clay	is suitable	for manufacture	of flower	pots, crude	
pottery	and possibly	y porous ro	oting tile-ot	her uses are pr	ecluded by	its poor fired	
colors,	rather high	absorption	and Laminati	on tendency (Sm	ith, 1931,	p. 228).	

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) Easy grinding.

Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analysis	Mineralogy: Not determined.
Oxide Weight %	Mineral volume %
SiQ. 84.35	
TiO ₂ 1.10	Quartz
Alo0o 7.20	Feldspar
$F_{P=0}$ 2.17	Carbonate
	Mica
	Chlorite-
MaO 0.14	vermiculite
$C_{2}O$ 0.51	Montmorillonite
Na.0 0.48	Others
v 0 0.40	ocher ș
\mathbb{R}_{20} 0.47	
r_{205} (tatal) 0.00	Total
	10131
C (org.) -	
co ₂ -	
H ₂ 0 ⁻ * (* =	analysis recalculated on an H_20^- -free basis
H ₂ 0 ⁺ -	by Smith, 1931, p. 227.)
Ignition	
loss 3.26	
Total 99.95*	
Analyst E. Everhart, Ga. Survey.	
Date <u>c. 1930.</u>	· · · · · · · · · · · · · · · · · · ·
Method Standard "wet".	
Sample Location Data:	
County Gordon. Land Lot	, Sec3_, Dist13
7 1/2' topo quad. Sugar Valley (NE. si	de). Lat, Long
Field No. <u>G-30</u> , Collecte	d by <u>R. W. Smith.</u> Date <u>5-5-30</u>
Sample Method <u>4 ft. grooved sample</u> W	Weathering/alteration <u>Residual (alluvial?)</u>
Structural Attitude	_clay.
Stratigraphic Assignment Recent (?) re ably derived by deep weathering of	esidual (or possibly alluvial ?) clay prob- an impure Conasauga (Cambrian) limestone.
Sample Description & Comments <u>Material</u> grit. It ranges from light gray and br the bottom of a 5 ft. deep prospect pi of Hill City (Smith, 1931, p. 226-228). the paved NW-SE paved road recently des	is a very plastic clay containing some own-stained at the top to "bright blue" at t from the G. Bandy property 3/4 mile south (This is approximately 0.1 mile north of signated as Ga. Hwy. 136 conn.).
	D
Compiled by B. L. O'Connor	Date 8-70-86

Material _	Brown soft	shale/clay	(Floyd).	Compilation Map Location No. Gdn.318-57	
County -	Gordon.			Sample NumberG-13	
Raw Propert	ties:		Lab & No.	Ga. Tech., #57.	
Date Report	ted	1931.	Ceramist	R. W. Smith, Ga. Survey.	
Water of P.	Water of Plasticity 32.7 % Working Properties Fair plasticity, somewhat				
Color Brown Drying Shrinkage 2.5 % Dry Strength (MOR) 132.2 psi.					
Remarks D	rying Behav	vior: test l	pars all sl	ightly warped.	

Slow Firing Tests:

Approx. Temp. °F (°C)	Color (Munsell)*	Hardness (MOR, psi.)	Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por. %	Other data: Warpage
1840 (1005)	Pale salmon (5YR-7/6)	1266	2.2 (4.9)	24.3	-	Slight
1920 (1050)	Light salmon (6YR-7/6)	1461	2.8 (5.1)	22.7	-	Some
2000 (1095)	Medium salmon (3YR-6/6)	1770	3.8 (6.3)	19.5	-	Slight
2060 (1125)	Salmon (1YR-5/5)	2202	6.5 (8.6)	16.2	-	Considerable
2090 (1145)	Light chocolate- red (10R-5/5)	2491	8.3 (10.3)	12.5	-	Some
2160 (1180)	Medium chocolate- red (1YR-4/4)	2700	8.3 (10.8)	12.0	-	Some

Remarks / Other Tests Firing Range: Cone 3 to 5 and higher (commercial kiln: Cone 2 to 5). Material is suitable for manufacture of brick and possibly medium-fired structural tile (Smith, 1931, p. 230).

Preliminary Bloating (Quick Firing) Tests: Not determined.

*Note: Munsell color notations "5YR" and "10R" correspond to the original notations "YR" and "R-YR" respectively reported in Smith (1931).

locn. no. Gdn.31S-57, cont.

Crushing Characteristics (unfired material) _____

Particle Size __16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analysis	Mineralogy: Not	determined.
Oxide Weight %	Mineral	volume %
sio ₂ 73.85		
Ti02 0.74	Ouartz	
Alo0a 14.66	Feldspar	
Fea0a 3.83	Carbonate	
FeO trace	Mica	
Mp0 -	Chlorite-	
MaQ 0.66	vermiculite	
Ca0 0.00	Montmorillonite	
	Others	
$r_0 $ $r_0 $	others	
R ₂ 0 1.55		
$r_2 v_5$ (total) 0.00	Total	
5 (total) 0.00	IULAI	
(org.) -		
CO ₂ - (+ -	1	Lange U OF Free basis
H ₂ 0 ⁻ * (* =	analysis recalculated	$1 \text{ on an } H_2 \cup -\text{Iree basis}$
H ₂ 0 ⁺ -	by Smith, 1931, p. 22	29.)
Ignition		
loss <u>4.35</u>		
Total 100.04*		
Analyst E. Everhart, Ga. Survey.		
Date c. 1930.		
Method Standard "wet".		
Sample Location Data:		
County Gordon. Land Lot 11	<u>3</u> , Sec. <u>3</u> ,	Dist. <u>14</u> .
7 1/2' topo quad. Sugar Valley (SE.1/	4). Lat	Long.
Field No, Collect	ed by R. W. Smith.	Date 5-1-30
Sample Method Grab samples.	Weathering/alteration	Deeply weathered
Structural Attitude		(residuar) cray.
Stratigraphic Assignment Recent (?) of	lay/shale weathered f	rom Mississippian
Floyd Shale	argillaceous limestone	е.
	2	
Sample Description & Comments Ranges	from a soft, brown, sa	andy "shale" (slight
fissility) to nearly a sandy clay cont	aining numerous fossi	l casts and probably
derived from an argillaceous limestone	in the Floyd Shale.	Taken from the J.
Russell property at the SE. foot of Ba	ugh Mtn. on the South	ern RR. 1 1/2 miles
south of Sugar Valley and about 3/4 m	le NW. of the Oostana	ula River (Smith, 1931,
p. 229- 230).		
Compiled by B I O'Coppor	Date 8-20-86	
b, b, b, b oundi	Date 0 20 00	

-49-

Material	Brick, unfired (from	Conasauga	Compilation Map Location No. Gdn.31S-58
	shale, soft to hard).		
Count y	Gordon.	_	Sample Number
Raw Prope	rties:	Lab & No.	Ga. Tech., #58.
Date Repo	rted 1931.	Ceramist	R. W. Smith, Ga. Survey.
Water of 1	Plasticity21.3 %	Working Pro	operties Good plasticity; rapid slaking;
Color Li	ght brown. Drying Shrin	kage <u>3</u>	and good molding behavior. .0 % Dry Strength (MOR) 177.8 psi.
Remarks	Drying Behavior: good,	with little	e or no warpage.

Slow Firing Tests:

Approx. Temp. °F (°C)	Color (Munsell)*	Hardness (MOR, psi.)	Linear Shrinkage, % dry plastic	Absorption %	Appr. Por. %	Other data: Warpage
1840 (1005)	Dark salmon (1YR-5/6)	1241	2.2 (5.9)	15.7	-	Slight
1920 (1050)	Light red (10R-5/5)	1631	3.0 (6.1)	15.1	-	Slight
2000 (1095)	Medium red (10R-5/4)	2217	5.3 (8.2)	9.5	-	Slight
2060 (1125)	Good red (10R-4/5)	2237	5.7 (8.5)	8.4		Some
2090 (1145)	Good deep red (10R-4/4)	2679	7.2 (9.9)	5.2	-	Some
2160 (1180)	Good deep red (10R-3/4)	2797	7.5 (10.1)	4.8	-	Some

Remarks / Other Tests Firing Range: Cone 02 to 5 and higher (commercial kiln: 01 to 5). These tests are on samples of green (unfired) brick made from the Conasauga shale by the Plainville Brick Co. at Plainville (Smith, 1931, p. 232-234).

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. Gdn.31S-58, cont.

Crushing Characteristics (unfired material) Easy grinding.

Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data: Mineralogy: Not determined. Chemical Analysis Mineral volume % Oxide Weight % SiO2 56.96 TiO2 0.73 Quartz 23.98 Feldspar A1203 Fe₂0₃ (total) Carbonate 8.32 FeO Mica ----0.38 Chlorite-MnO vermiculite 0.71 MgO Montmorillonite Ca0 0.81 0.99 Others Na₂0 K₂Ō 1.18 P205 0.11 Total S (total) 0.17 С (org.) CO2 H20-(* = analysis recalculated on an H₂0⁻ -free basis * by Smith, 1931, p. 232.) $H_{2}0^{+}$ Ignition loss 6.64 100.98* Total Analyst E. Everhart, Ga. Survey. Date c. 1930 Method Standard "wet". Sample Location Data: County Gordon. Land Lot _____, Sec. _____, Dist. _____. 7 1/2' topo quad. Plainville (SE.1/4) . Lat. _____, Long. ____. Field No. ____, Collected by <u>R. W. Smith.</u> Date <u>7-30-29</u> Weathering/alteration (Shale weathered at Sample Method Random sample of several green bricks. top of pit only). Structural Attitude Shale in pit: strike N.45°E., dipping c. 45°SE. Stratigraphic Assignment Shale from Conasauga Group (Cambrian). Sample Description & Comments Shale at Plainville Brick Co. pit on the east slope of a low ridge just north of Plainville, just west of the brick plant and west of the Southern RR. The shale ranges from soft and brownish-drab colored, at the weathered surface, to hard and grayish-drab, at 15 - 20 feet deep in the pit where light gray to greenish-gray, calcite-bearing streaks are occasionally observed. These last are discarded during mining to avoid any possibility of scumming of the brick surface on firing (Smith, 1931, p. 232-234).

Compiled by B. J. O'Connor Date 8-20-86

Material Hard shale, drab (Cona	_ Compilation Map Location No. <u>Gdn.31S-59</u>		
County Gordon.	-	Sample Number	
Raw Properties:	Lab & No	Ga. Tech., #59 .	
Date Reported1931.	Ceramist _	R. W. Smith, Ga. Survey.	
Water of Plasticity 18.9 % plasticity very poor and grainy-e	Working Pro ven after a	operties <u>Slaking is very slow;</u> aging a week; molding behavior very poor.	
Color Brownish-gray, Drying Shri	nkage <u>1</u>	.2 % Dry Strength (MOR) 60.9 psi.	
Remarks Drying Behavior: fairly	rapid, wit	th slight warpage.	
Slow Firing Tests:			

Approx. Temp. °F (°C)	Color (Munsell)*	Hardness (MOR, psi.)	Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por. %	Other data: Warpage
1840 (1005)	Salmon (3YR-6/6)	456	1.0 (2.0)	18.2	8	Slight
1920 (1050)	Dark salmon (2YR-5/5)	618	1.6 (2.9)	16.5	-	Considerable
2000 (1095)	Light red (3YR-5/5)	765	2.8 (4.2)	13.5	-	Slight
2060 (1125)	Fair red (10R-4/5)	1274	3.2 (4.5)	13.4		Some
2090 (1145)	Good red (9R-4/4)	1594	4.1 (5.3)	11.3	-	Bad
2160	Good red	2142	4.3 (5.3)	11.5	-	Bad

Remarks / Other Tests Firing range: Cone 3 to 5 and higher (commercial kiln: Cone 2 to 5. The shale is suited only for making common brick due to the high absorption and low strengths which are probably due to the hardness of the shale. These problems may be overcome by fine grinding and longer pugging (Smith, 1931, p. 236-238).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) Fairly easy grinding.

Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analys	sis	Mineralogy:	Not determined.
Oxide	Weight %	Mineral	volume %
SiO	63.97		
TiO	0.82	Quartz	
A1-0-	10.76	Feldenar	
F_{2} O_{3} $(total)$	7 77	Carbonate	
Fegug (Local)	/ • / /	Mica	
reo		Chloritor	
MnO	_	wormigulit	
MgU	0.03	Vermiturit	
CaO	0.00	Montmorilion	lite
Na ₂ 0	0.98	Others	
K ₂ 0	1.51		
P205	-	The tree l	
S (total)	0.00	lotal	
C (org.)	-		
^{CO} 2	-		
H ₂ 0	* (* =	analysis recalcul	ated on an H_2O^- -free basis
H ₂ 0+	-	by Smith, 1931, p	b. 237.)
Ignition			
loss	5.24		
Total	100.08*		
Analyst E. Eve	erhart, Ga. Survey.		
Date c. 1930.	1000 C		-
	÷ .		
Method Standar	rd "wet".		
Sample Location	n Data:		
County Gordon	. Land Lot	, Sec	_, Dist
7 1/2' topo qua	ad. Plainville (E. side	e). Lat	, Long
Field No	, Collect	ed by R. W. Smith	n. Date <u>c. 1930</u>
Sample Method	Grab samples.	Weathering/alterat	tion Somewhat weathered.
Structural Att	itude Beds strike N.30°	'E. and dip 60° to	75°NW.
Stratigraphic .	Assignment Conasauga Gr	oup shale (Cambria	an).
Sample Descrip	tion & Comments Outcrop	samples from a lo	ow ridge on the old Reeves
Farm (Maddox &	Matthews property) 1/2	mile east of the S	Southern RR., west of Ga.
Hwy. 54, and s	outh of the road to Curr	yville, 3 miles NI	E of Plainville. Shale is
hard, greenish	- to reddish-drab colore	ed and sampled from	n outcrops on the east and
south sides of	the 80-100 ft. high rid	lge (Smith, 1931, 1	p. 236-238).
Compiled by	B. J. O'Connor	Date 8-20-86	6

Material	Shale (Conasa	uga).	_ Compilation Map Location No. <u>Gdn.31S-60</u>
Count y	Gordon.		Sample Number <u>G-21-2</u>
Raw Proper	cties:	Lab & No.	Ga. Tech., #60.
Date Repor	rted19	31. Ceramist	R. W. Smith, Ga. Survey.
Water of H	Plasticity	25.1 % Working P	roperties Fair plasticity; a little slow
Color Lig	ght brown. Dryi	ng Shrinkage	2.7 % Dry Strength (MOR) 100.8 psi.
Remarks 1	Drying Behavior	: test bars all s	lightly warped.

Slow Firing Tests:

Approx. Temp. °F	Color (Munsell)*	Hardness (MOR,) psi.)	Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por. %	Other data: Warpage
(°C)						
1840 (1005)	Light red (2YR-5/6)	1310	6.8 (9.4)	11.1	.=:	Slight
1920 (1050)	Fair red (10R-5/7)	1471	6.0 (9.0)	10.1	· _	Some
2000 (1095)	Medium red (10R-5/4)	1848	6.8 (9.1)	8.0	-	Slight
2060 (1125)	Good red (10R-4/5)	2363	9.5 (11.9)	5.3	-	Some
2090 (1145)	Chocolate red (10R-4/4)	2068	7.3 (9.9)	4.6	_	Considerable
2160 (1180)	Deep choc- olate red (10R-3/4)	2485	7.6 (10.0)	3.2	-	Bad (vitreous surface)

Remarks / Other Tests Firing range: Cone 03 to 5 (commercial kiln: Cone 04 to 4). This shale is suitable for making brick and possibly tile (Smith, 1931, p. 241).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired material) Easy grinding.

Particle Size __16 mesh. Retention Time _____ c. 17 hours.

Chemical	δ	Mineral	logical	Data:
----------	---	---------	---------	-------

Chemic	al Analys	is		Mineralogy:	Not det	termined.	
Oxide		Weight %		Mineral		volume %	
Si02		59.15					
Tio		0.92		Quartz			
Alada		23.56		Feldspar			
Fealla		5.65		Carbonate			
FeO		1.43		Mica			
MnO		-		Chlorite-			
MgO		0.28		vermiculit	e		
CaO		0.00		Montmorillon	ite		
NacO		0.49		Others	LLC.		
K-O		2 01		others			
R20		trace					
205	(toto1)	0.00		Total			
0	(LOLAI)	0.00		IULAL			e
C	(org.)	-					
^{CO} 2			(4 - 1				
H ₂ 0		*	(* = anal	ysis recalcul	ated on	an H_2O -f	ree basis
H20T		-	by S	mith, 1931, p). 240.)		
Igniti	on						
loss		6.45					
Total		99.94*					
Analys Date _	c. 1930.	erhart, Ga.	Survey.	\	_		
Method	Standar	d wet.					
Sample	Location	Data:					
County	Gordon.		Land Lot 143 and	Sec. 3	_, Dis	t. <u>15</u> .	
7 1/2'	topo qua	d. <u>Calhou</u>	n South (S.cntr.).	Lat	, L	ong	.*
Field	No. <u>G-2</u>]	-2	, Collected by	R. W. Smith	<u>.</u>	Date <u>5-2-3</u>	0
Sample	Method _	Grab sampl	es. Weath	ering/alterat	ion We	athered.	
Scruct	ural Atti	tude					
Strati	graphic A	Assignment	Conasauga Group s	hales (Cambri	lan).		
Sample shale of exp of the (Smith	e Descript (with nam posure alco Bartow (1, 1931, p	tion & Comm row bands ong a dirt County line 5. 239-241)	ents <u>Samples of s</u> of red clay) taken road just west of west of Oothkaloo	oft to semi-h at intervals the Nashville ga Creek, on	nard, br from a RR., a the H.	ownish-drab 1/4 mile s bout 1/4 mi R. Bennett	colored tretch le north property
Compil	led by B.	J. O'Conn	or Da	te 8-20-86			

Material Shale (Rome).				_ Compilation Map Location No. <u>Gdn.46-1</u>		
County	Gordon.			Sample Number		
Raw Prope	erties:		Lab & No.	N.C. State Col Asheville, Nor	lege Research Lab,	
Date Repo	orted	10-8-46.	Ceramist	M. K. Banks, T	VA.	
Water of Color <u>Rec</u>	Plasticity d-green-gra	%	Working Pr inkage	operties% Dry Stren	gth	
Slow Fir:	ing Tests:	Not determin	ed.		13	
Temp. °F (°C)	Color (Munsell)	Hardness (Mohs') S	Linear hrinkage, %	Absorption %	Appr. Por. Other % data:	

Preliminary Bloating (Quick Firing) Tests: Positive.						
Temp. °F °C	Absorption %	Bulk D	ensity	Remarks: Pore Structure		
2350 (1288)	-	-	-			
2400 (1316)	-	-	67	Excellent.		
2450 (1343)		-	40	Excellent.		
Remarks	Bloating rang	e = 2350	-2500°F (1288	-1371°C); best at	2450°F (1343°C).	

locn. no. Gdn.46-1 , cont.

Crushing Characteristics (unfired material) _____

Particle Size _-8 mesh. Retention Time 30 min. (in muffle furnace).

Chemical & Mineralogical Data: Not determined.

Chemica	l Analysis	Mineralogy	
Oxide	Weight %	Mineral	volume %
5102		Que esta e	
^{r10} 2		Quartz	
A12 ⁰ 3		Feldspar	
Fe ₂ 03		Carbonate	
FeO		Mica	
MnO		Chlorite-	
MgO	5	vermiculite	
CaO		Montmorillonite	
Na ₂ 0		Others	
K20			
$P_{2}^{-}0_{5}$			
s	(total)	Total	
С	(org.)		
C02			
н_б-			
н50+			
Ignitio	n		
loss			
Total			
Analyst			
-			
Date			
Method		,	
Sample	Location Data:		
	N N		
County	Gordon. Land Lot ,	Sec. , Dist	
7 1/2'	topo quad. Calhoun N. (N. side) . I	Lat. Lo	ng.
, _			·
Field N	lo. 7 . Collected by	K. H. Teague (TVA).	Date 1946?
	·····, ··········,		
Sample	Method Grab (?). Weath	vering/alteration	
bamp 10			
Structu	ural Attitude –		
Stratig	praphic Assignment Rome Formation ((Cambrian).	
orracie			
Sample	Description & Comments Interim rend	ort on tests from N (Research Lab
via H	S Bankin (TVA 10-22-46) Materia	al is a red-green-gray	shale (some-
what es	and hut not excessively so) and is f	fairly tunical of the	Pomo Formation
in this	andy but not excessively sof and is i	allipton but is set	Rome Formation
ubon f	sach large tappage are available	Comple is "from yord	out 1/2 mile
couth .	of the Whitfield-Conden County line	along U.S. Irom road	rdon Co "
Rutte	and Gildersleave 10/8 - 125 Tabl	along U.S. Hwy.41, GC	
Thurts	anu oridersieeve, 1940, p. 123, 140.	10, 10, 1).	
Compile	d by B I O'Connor	ato 8-20-86	
Compile	Eu by B. J. Counter Da	ale 0-20-00	<u> </u>

Material Shale (Rome).				Compilation Map Location No. <u>Gdn.46-2</u>			
County	Gordon.		_	Sample Number	8		
Raw Properties:Lab & No.Date Reported 10-8-46.Ceramist				N.C. State College Research Lab, Asheville, North Carolina; TVA #104 M. K. Banks, TVA.			
Water of	Plasticity	- %	Working Pr	operties	-		
Color Red	Color <u>Red to green.</u> Drying Shrinkage% Dry Strength						
Slow Firi	ng Tests:	Not determin	ed.				
Temp. °F (°C)	Color (Munsell)	Hardness (Mohs') S	Linear hrinkage, %	Absorption %	Appr. Por. %	Other data:	

Prelimin	ary Bloating (Quick Fi	ring) Tests:	Positive.	
Temp. °F °C	Absorption %	Bulk D	ensity lb/ft ³	Remarks: Pore Structure	
2350 (1288)	-	-	-	1997 - 19	
2400 (1316)	- "	~	45	Excellent.	
2450 (1343)	-	-	36	Good.	
Remarks	Bloating rang	e = 2350	-2450°F (1288	3-1343°C); best at	2400°F (1316°C).

Crushing Characteristics (unfired material) -

Particle Size _-8 mesh. Retention Time 30 min. (in muffle furnace).

Chemical & Mineralogical Data: Not determined.

Chemical	Analysis	Mineralogy	volume %
Oxide	weight %	Millerat	vorume a
5102		Quanta	
T102		Quartz	
A1203		Feldspar	
Fe ₂ 03		Carbonate	
FeŌ		Mica	
MnO		Chlorite-	
MgO		vermiculite	
CaO		Montmorillonite	
NaoO		Others	ŕ.
K 20			
Palle			
205	(total)	Total	
5			
0	(org.)		
CO2			
H ₂ 0			
H ₂ 0+			
Ignitio	n		
loss			
Total			
Analyst			
Date			
Method			
	and the second		
Sample	Location Data:		
County	Gordon. Land Lot,	Sec, Dist	··
7 1/2'	topo quad. Plainville (SE. 1/4). L	at, Lo	ng
Field N	o. 8 Collected by	K. H. Teague (TVA).	Date 1946?
		X	
Sample	Method <u>Grab (?).</u> Weath	ering/alteration	
structu	ral Attitude		
Stratig	raphic Assignment <u>Rome Formation (C</u>	ambrian).	
Sample	Description & Comments Interim repo	ort on tests from N. C	. Research Lab
via H.	S. Rankin (TVA, 10-22-46). Sample "	from roadcut 1 mi. N.	W. of Plainville
R.R. St	ation" (Butts and Gildersleeve, 1948	3. p. 125. Table 8 po	2). Bright
red to	green shale-relative hard and touch	when fresh but weathe	re to a bright
red co	I It is agaily minod and procent	in workable aventitie	c c a bright
reu sol		in workaute quantitie	5.
Compile	ed by B. J. O'Connor Da	te 8-20-86	_

Compilation Map Location No. Gdn.46-3
Sample Number 8-A.
o & No. N.C. State College Research Lab, Asheville, North Carolina; TVA# 105 ramist M. K. Banks, TVA.
rking Properties
2% Dry Strength
near Absorption Appr. Por. Other nkage,% % & data:

Preliminary Bloating (Quick Firing) Tests: Negative. Temp. Absorption Bulk Density Remarks: °F % Pore Structure °C g/cm³ lb/ft³ 2350 (1288)2400 Vitrified only (too refractory). (1316)2450 (1343)

Remarks Not usable, by itself, for expanded light weight aggregate manufacture.

locn. no. Gdn.46-3 , cont.

Crushing Characteristics (unfired material) ____

Particle Size _-8 mesh. Retention Time _30 min. (in muffle furnace).

Chemical & Mineralogical Data: Not determined.

Chemical Analysis	Mineralogy	
Oxide Weight %	Mineral v	olume %
Si0 ₂		
TiO2	Quartz	
AL203	Feldspar	
Fe ₂ O ₃	Carbonate	
FeO	Mica	
MnO	Chlorite-	
MgO	vermiculite	
CaO	Montmorillonite	
Naoû	Others	
KaQ		
Pole		
s (total)	Total	
C (org.)		
co (org.)		
U02		
H20		
H ₂ 0'		
Ignition		
1055		
Total		
Analyst		
Date		
Method		
Sample Location Data:		
Contract Lot	Coo Dist	
County Gordon. Land Lot	, sec, Dist.	•
7 1/21 to $1 = 1/2$	Tet Tere	
/ 1/2° topo quad. Plainville (SE. 1/4).	Lat,, Long	••
Callested		Data 10/62
Fleid No. 8-A , Collected	by K. H. league (IVA).	Date 1940:
Sample Mathed Crah (2)	theming/alternation	
Sample Method Grab (:). wea	thering/alteration	
(-mustumo) Attitudo		
Structural Attitude		
Chuckienschie Assistant Conserve Curry	(Co-bries)	
Stratigraphic Assignment Conasauga Group	(Cambrian).	
Cample Description & Comparts Interim as	next on tracts From N. C.	Decemph Ish
sample Description & comments interim re	port on tests from N. C.	Research Lab
via n. S. Kankin (IVA, 10-22-40). Sample	t of the Plainwille P.P.	nasauga snate
Trom Plainville Brick Co. pit 1/2 ml. eas	L OI LNE FIAINVILLE K.R.	station (Butts
and Gildersleeve, 1948, map locn. #86).	Inis is the same belt of	conasauga trom
which Samples 5 and 6, in Whittield Co.,	were taken. Available to	nnages are
large.		
Compiled by B. J. O'Connor	Date 8-20-86	

-61-

Material	Shale (Conasauga G	roup).	Compilation Ma	ap Location No	Gdn. 64-1	
County	Gordon.			Sample Number	34		
Raw Prop	erties:		Lab & No.	USBM, Norris,	Tenn., No. 1	554-F	
Date Reported 5-8-64 Ceran (revised 1967) Water of Plasticity 16.2% Work				ramist M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.) rking Properties Short working, mealy, gritty.			
Color Li	ght gray.	Drying Sh:	rinkage <u>1.0</u> %	Dry Strength	Poor. (Low.)	
Remarks	Drying Cha	aracteristi	cs: Poor, roug	h, edge crackin	ng. (No defect	ts).	
Slow Fir	ing Tests:						
Approx. Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc	
1800 (982)	Tan	Soft (2)	2.0	17.5	31.9	1.82	
1900 (1038)	Tan	Fair hard (3)	2.0	14.3	27.6	1.93	
2000 (1093)	Light brown	Hard (4)	4.0	12.1	24.1	1.99	
2100 (1149)	Brown	Hard (4)	4.5(4.0)	9.9	20.4	2.06	
2200 (1204)	Chocolate	Very hard (5)	7.0	7.4	16.1	2.18	
2300 (1260	Dark brown	Broke to pieces	-	=	2	1 0	

Remarks / Other Tests Could be added to a clay that has high shrinkage and high absorption to make a good brick and tile product. (Should fire to "MW" face brick specifications at about 2000°F (1093°C). Low plastic strength.) Potential use: None. (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Gdn. 64-1, cont.

Crushing Characteristics (unfired material) ____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr, to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemical Analys Oxide	is Weight %	Mineralogy Mineral	volume %
sin			
510 ₂		Chiart a	
1102		Quartz	
A1203		Feldspar	
Fe203		Carbonate	
FeÖ		Mica	
MnO		Chlorite-	
MgO		vermiculite	
CaO		Montmorillonite	
NaoO		Others	
Kal			
P.O.			
$\frac{1205}{5}$ (total)		Total	
		IOCAL	
(org.)			
^{CO} 2			
H ₂ 0 ⁻			
H ₂ 0 ⁺			
Ignition			
loss			
Total			
Analyst			
Date			
Method			
Sample Location	n Data:		
CountyGordor	n Land Lot,	Sec, Dist	t
7 1/2' topo qua	ad	Lat, Lo	ong
Field No.	, Collected b	y J.W. Smith?	Date <u>c. 1963</u>
Sample Method	Grab (?). Weat	hering/alteration	
Structural Atti	itude		
Stratigraphic A	Assignment <u>Conasauga Group</u>	(Cambrian).	
Sample Descript	tion & Comments <u>No further</u>	data available.	

Compiled by B. J. O'Connor

Date 08-20-86

Material	Shale ((Conasauga).		Compilation M	ap Location No	Gdn. 64-2
Count y	Gordon.			Sample Number	35	
Raw Prop	erties:		Lab & No.	USBM, Norris,	Tenn.; No. 15	54-G
Date Rep	orted 5-8-	-64	_ Ceramist _	M.V. Denny, U	SBM (revised b	y M.E.
Water of	Plasticity	16.2 (Low pla	Working Pro	perties Shor	t working, smc	ooth, mealy.
Color	uff.	Drying Shri	nkage <u>1.0</u> %	Dry Strength	Poor. (Low.)	
Remarks	Drying Cha	aracteristics	: Fair, rough	surface. (No	defects.)	
Slow Fir	ing Tests:					
Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800	Light	Soft	0.0(1.0)	14.8	27.8	1.88
(982) 1900 (1038)	brown Medium brown	(2) Fair hard (3)	2.5	10.7	21.7	2.03
2000 (1093)	Brown	Hard (4)	5.0	8.8	18.3	2.08
2100 (1149)	Brown	Hard (4)	5.0	7.6	16.2	2.13
2200 (1204)	Chocolate	Very hard (5)	6+(6.0)	4.9	10.9	2.22
2300 (1260)	Dark brown	Glassy	In pieces (Expanded)	-	-	-
Remarks plastic. Low plas (Face br	/ Other Tes (Should f tic strengt ick.)	sts Slight b fire to "SW" h.) Potentia	loating, soft face brick sp l Use: Possib	, fair color, ecifications le bloating f	too short wor at about 2050° or lightweight	king, not F (1121°C). aggregate.
Prelimin	ary Bloatir	ng (Quick Fir	ing) Tests:	Positive.	(Negative.)	
Temp. °F	Absorpt %	ion Bu g/cm ³	lk Density b lb/ft ³	Remarks		
1900	23 () 2 56	160	_		
(1038)		. 2.90	, 100			
2000 (1093)	21.0	2.54	158	-		
2100	15.5	5 2.55	159	Slight coati	ng.	

 2200
 24.0
 1.65
 103
 Temperature a little high commercially.

 (1204)
 2300
 19.0
 1.30
 81
 Probably bloat about 2150°F (1177°C).

Remarks: Not recommended - too heavy in rotary kiln, too high temperature.

(1149)

(1260)

۹.,

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.
locn. no. Gdn. 64-2, cont.

Crushing Characteristics (unfired material) -

.

....

Particle Size _ 20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). staal Datas

...

.

Chemical & Mineralogical Data: Not dete	rmined.	
Chemical Analysis	Mineralogy	
Oxide Weight %	Mineral	volume %
SiO		
TiO	Ouartz	
	Feldspar	
Fe O a	Carbonate	
FeO	Mica	
MnO	Chlorite-	
Mao	vermiculite	
C 20	Montmorillonite	
Nac	Others	
K_0	office o	
R ₂ 0 R ₂ 0r		
s (total)	Total	
C (org)		
CO ₂		
H_00		
H_00 ⁺		
Ignition		
loss		
Total		
Analyst		
Date		
Method	n S aran 200 - 200 - 200 - 200 - 200 - 200	
2 la Landian Datas		
Sample Location Data.		
County Gordon, Land Lot	Sec. D	ist.
	_,, ,	
7 1/2' topo quad	Lat.	Long.
		- <u></u>
Field No. 35 , Collected	by J.W. Smith?	Date c. 1963
Sample Method Grab (?). We	eathering/alteration _	-
Structural Attitude		
Strationaphia Assignment Consequer Cre	(Combrian)	
Stratigraphic Assignment Conasauga Gr	Jup (Campilan).	فحوا الروابية فالواسية بالمعاومية
Sample Description & Comments No furthe	er data available.	
sample beservperst a commence no furence	5 STATES	··· · ·

Compiled by B. J. O'Connor Date 08-20-86

Material	Shale (C	Conasauga).		Compilation Ma	p Location N	o. <u>Gdn. 64-3</u>
County	Gordon.			Sample Number	38	
Raw Prope	erties:		Lab & No.	USBM, Norris,	Tenn.; No. 1	554-J
Date Repo	orted $\frac{5-8}{(revi}$	-64	Ceramist	M.V. Denny, US	BBM (revised	by M.E.
Water of	Plasticity	25.4	% Working Pro	operties Long	working, smo	oth, plastic,
	fatty. (Moderate pla	sticity.) pH	=7.90. (Slight	effervescen	ce with HCl.)
Color	an.	Drying Shri	nkage 4.5(4.)	0)% Dry Strengt	hFine. (Fai	r.)
Remarks	Drying Cha	racteristics	: Good, sli	ght warping. (No defects.)	and an international state of the state of the state of the
Slow Firm	ing Tests:					
Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens.
1800	Tan	Fair hard	6.0	13.3	25.0	1,88
(982)		(3)				
1900	Red-	Hard	10.5(10.0)	10.6	20.8	1.96
(1038)	Drown Pod-	(4) Vary hard	13.0	2 3	5 /	2 35
(1093)	brown	(5)	13.0	200	2.4	2.3.3
2100	Chocolate	Very hard	13.0	1.9	4.5	2.38
(1149)		(5)				
2200	Dark	Glassy	Expanded	27.6	-	
(1204)	brown	Classy	Expanded	41 0		_
(1260)	brown	Glassy	Expanded	41.0		
Remarks	/ Other Tes	sts Too high	shrinkage f	or brick & tile	e, too short	firing range.
good bloa	ater. (Sho	ould fire to	"SW" face br	ick specificati	ons at about	1950°F
(1066°C)	. Abrupt v	vitrification	.) Potentia	l Use: Lightwei	ght aggregat	e. (Face
brick; se	ewer pipe.))				
Prelimina	ary Bloatin	ng (Quick Fir	ing) Tests:	Positive. ((Negative.)	
Tomp	Abaamat	ion Du	11 Depaits	Domorto		
°F	ADSOFPL %		b lb/ft3	Kemarks		
(°C)	70	g/ ciii	10/10			
1900	16.5	2.60	162	Shaley.		a da como de la como de
(1038)						
2000	15.7	2.34	145	Irregular	bloating.	
(1093)	16	1.67	104	Trregular	bloating	
(1149)	10.1	. 1.07	104	TITERATAL	. oroacriig,	
2200	15.2	2.25	140	Irregular	bloating.	
(1204)						
2300 (1260)	11.6	5 1.67	104	Shaley bl	loating.	

Remarks: Very irregular bloats - too heavy, high absorption.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Gdn. 64-3, cont.

Crushing Characteristics (unfired material) -

Particle Size - 20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined. Chemical Analysis Mineralogy Weight % Mineral volume % Oxide Si02 Tio2 Quartz Feldspar A1203 Carbonate Fe203 Mica FeŌ Chlorite-MnO vermiculite MgO Montmorillonite CaO Others Na₂0 K20 P205 (total) Total S С (org.) CO_2 H₂Õ- $H_{2}^{-}0^{+}$ Ignition loss Total Analyst Date Method Sample Location Data: County Gordon. Land Lot _____, Sec. ____, Dist. ____. . 7 1/2' topo quad. - _____ Lat. ____, Long. ____. Field No. 38 , Collected by J.W. Smith? Date c. 1963 Sample Method Grab (?). Weathering/alteration -Structural Attitude _____ Stratigraphic Assignment Conasauga Group (Cambrian). Sample Description & Comments No further data available.

Compiled by B. J. O'Connor Date 08-20-86

Material	Shale (Conasauga).	Co	ompilation Ma	up Location No	Gdn. 64-4
County	Gordon.		Sa	ample Number	39	
Raw Prop	erties:		Lab & No. US	BM, Norris,	Tenn.; No. 15	554-K
Date Rep	orted $5-8$	-64	CeramistM.	V. Denny, US	SBM (revised b	by M.E.
Water of	Plasticity	y 25.2	_% Working Prope	erties *Long	working, smoo	oth, plastic,
Color	an.	Drying Shr	inkage Dr	y Strength I	Fine. (Low).	
Remarks	Drying Cha	aracteristic	s: Good, some v	varping. (No	defects.)	
Slow Fir	ing Tests:					
Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800	Tan	Fair hard (3)	4.5(4.0)	15.4	28.6	1.86
1900 (1038)	Red	Hard (4)	5.5(5.0))	11.0	22.3	2.03
2000 (1093)	Red brown	Hard (4)	10.0	10.5	21.2	2.02
2100 (1149)	Medium red-brown	Very hard	10.0	7.1	15.5	2.19
2200 (1204)	Chocolate	Glassy	5.0 Expanded	2.6	-	- 1
2300 (1260)	Dark brown	Shattered	Expanded		-	-

Remarks / Other Tests Fair color. (Should fire to "MW" face brick specifications at about 1900°F, (1038°C). Potential Use: Brick if not heated too high; lightweight aggregate. (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

* With revisions by K.J. Liles (written communication, 1987).

locn. no. Gdn. 64-4, cont.

Crushing Characteristics (unfired material) ____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemica	1 Analysis	Mineralogy	
Oxide	Weight %	Mineral	volume %
Silo			
TiO		Ouartz	
A1 - 0 -		Feldspar	
Fa-0-		Carbonate	
re203		Mica	
reu		Chloriton	
MnO		chiorite-	
MgO		vermiculite	
CaO		Montmorillonite	
Na20		Others	
к ₂ 0			
$P_{2}0_{5}$			
S	(total)	Total	
С	(org.)		
CO2			
H-0-			
ื่ม_่0+			
Tonitio	n		
1000			
Total			
IULAI			
Analyst			
Anaryst	and the second second second second second second second second	a disease data and a second	
Data			
Date			
N (1) 1			
Method	and the second		
Cample	Location Datas		
Sampre	Location Data:		
County	Gordon. Land Lot	, Sec,	Dist
7 1/01			
/ 1/2	topo quad	_ Lat'	Long.
Field N	No, Collected N	by J.W. Smith?	Date <u>c. 1963</u>
Sample	Method Grab (?). Weat	thering/alteration	
Structu	ural Attitude		
Ct mat in	araphia Assignment Conserves Crew	D (Combriga)	
stratig	graphic Assignment <u>Conasauga Grou</u>	p (camprian).	
Sample	Description & Comments No further	data available.	

Compiled by B. J. O'Connor

Date 08-20-86

Material Shale (Conasauga).		Compilation Map Location No. <u>Gdn. 64-5</u>
County Gordon.	-	Sample Number76
Raw Properties:	Lab & No	USBM, Norris, Tenn.; No. 1555-U
Date Reported 5-28-64 (revised 1967)	Ceramist	M.V. Denny, USBM (revised by M.E. Tvrrell, Tuscaloosa, Ala.)
Water of Plasticity 28.8 %	Working Pro	operties Short working, smooth, plastic.
Color Orange. Drying Shrink	age _6.0(5	.0)% Dry Strength Good. (Fair.)
Remarks Drying Characteristics:	Good. (No	o defects.)

Slow Firing Tests:

Temp. °F	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens.
	70	D 2 1 1		20.1	2/ 2	gm/ cc
(982)	Tan	(3)	5.5(5.0)	20.1	34.2	1.70
1900 (1038)	Tan	Hard (4)	10.0	16.1	29.3	1.82
2000 (1093)	Tan	Hard (4)	10.0	15.6	28.7	1.84
2100 (1149)	Tan	Hard (4)	10.0	15.5	28.8	1.86
2200 (1204)	Light brown	Very hard (5)	13.5(13.0)	11.2	22.3	1.99
2300 (1260)	Brown	Steel hard (6)	14.0	6.8	14.5	2.13

Remarks / Other Tests High shrinkage, high absorption, good color. (Should fire to "MW" face brick specifictions at about 2150°F (1177°C). High firing shrinkage.) Potential Use: None. (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Gdn. 64-5 , cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemical Analysi Oxide	is Weight %	Mineralogy Mineral	volume %
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MDO		Quartz Feldspar Carbonate Mica Chlorite-	
MgO CaO Na ₂ O K ₂ O P ₂ O ₅		vermiculite Montmorillonite Others	
S (total) C (org.) CO ₂		Total	
H ₂ 0 ⁻ H ₂ 0 ⁺ Ignition loss Total			
Analyst			
Date		Martin 1997	
Method			
Sample Location	Data:		
County <u>Gordon</u>	Land Lot,	Sec, Dist	••
7 1/2' topo qua	d	Lat, Lo	ng
Field No.	76, Collected by	J.W. Smith?	ate <u>c. 1963</u>
Sample Method _	Grab (?). Weath	ering/alteration	
Structural Atti	tude		
Stratigraphic A	ssignment <u>Conasauga Group</u>	(Cambrian).	
Sample Descript	ion & Comments <u>No further</u> d	ata available.	• · · · · · · · · · · · · · · · · · · ·

Compiled by B. J. O'Connor,

Date 08-20-86

Material	Shale (Conasauga).		Compilation Ma	up Location N	o. <u>Gdn. 64-6</u>
County	Gordon.			Sample Number	77	
Raw Prop	erties:		Lab & No.	USBM, Norris,	Tenn.; No. l	555-V
Date Rep Water of	orted <u>5-2</u> (rev Plasticit	28-84 vised 1967) zy 23.6	Ceramist _% Working Pro	M.V. Denny, US Tyrrell, Tuscal operties <u>*Short</u>	BBM (revised loosa, Ala.) working, sm	by M.E.
Color B	uff	Drying Shr	plastic. inkage <u>5.0</u> %	pH = 5.50. (No Dry Strength Re	ot effervesce Good. (Low. emarks Dryin	nt with HCl.)) g_
Characte	ristics: (Good, surface	cracks. (No	defects.)		
Slow Fir	ing Tests:					
Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800	Tan	Fair hard	5.0	23.2	39.2	1.69
1900 (1038)	Tan	Hard (4)	7.5	23.1	39.3	1.70
2000 (1093)	Light brown	Hard (4)	7.5	17.4	32.5	1.87
2100 (1149)	Brown	Very hard (5)	10.0	17.0	31.6	1.86
2200 (1204)	Brown	Steel hard (6)	10.0	14.9	28.9	1.94
2300 (1260)	Brown	Steel hard	10.0 (Expanded)	15.8	-	

Remarks / Other Tests Crazed and mottled surface; fair color. (Abrupt vitrification.) Potential Use: Inside brick or tile. (No suitable for use in vitreous clay products.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

* With revisions by K.J. Liles (written communication, 1987).

locn. no. Gdn. 64-6, cont.

Crushing Characteristics (unfired material) ____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined.

Chemical Analysis Oxide Weight %	Mineralogy Mineral	volume %
3102	Quanta	
T102	Quartz	
A1203	Feldspar	
FeoOa	Carbonate	
FeO	Mica	
N=O	Chlorite-	
FILO	warmigulita	
MgU	Vermiculice	
CaO	Montmorillonite	
Na ₂ 0	Others	
หวอิ		
Pala		
s (total)	Total	
	TOTAL	
C (org.)		
co ₂		
H ₂ 0 ⁻		
$H_{2}^{-}0^{+}$		
Ignition		
1055		
Total		
10041		
Analyst		
Analyst		
Date		
Method		
Sample Location Data:	141	
County Gordon. Land Lot,	Sec, Dist	··
7 1/2' topo quad	Lat, Lo	ng
		10(2
Field No. // Collected by	J.W. Smith:	ate <u>c. 1963</u>
Sample Method Grab (?). Weath	ering/alteration	
Structural Attitude -		
Stratigraphic Assignment Conasauga Group	(Cambrian).	
Sample Description & Comments No further	lata available	
Sampre Severiperon a commence no fulfiller (

Compiled by B. J. O'Connor Date 08-20-86

Material	Shale (C	onasauga).		Compilation Map Location No. Gdn. 64-7
County	Gordon.		_	Sample Number78
Raw Proper	ties:		Lab & No.	USBM, Norris, Tenn.; No. 1555-W
Date Repor	ted 5-28 (revi lasticity	-64 sed 1967) 26.8 % plaasti	Ceramist Working Pr c. pH=5.60	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.) operties *Short working, smooth, . (Not effervescent with HCl.) OT Dry Strength Cood (Lew.)
Remarks D	rying Cha	racteristics:	Good, sli	ght warping. (No defects.)
Slow Firin	g Tests:			
Temp.	Color	Hardness	Linear	Absorption Appr. Por. Other

°F (°C)		(Mohs')	Shrinkage, %	%	%	data: Bulk Dens. gm/cc
1800 (982)	Tan	Fair hard (3)	4.5(4.0)	23.0	36.6	1.59
1900 (1038)	Tan	Hard (4)	5.5(5.0)	19.5	33.0	1.69
2000 (1093)	Tan	Hard (4)	5.5(5.0)	16.9	29.6	1.75
2100 (1149)	Brown	Very hard (5)	9.0	12.4	23.4	1.89
2200 (1204)	Brown	Very hard (5)	10.5(10.0)	11.9	22.7	1.91
2300 (1260)	Dark brown	Steel hard (6)	10.5(10.0)	8.8	17.3	1.97

Remarks / Other Tests Fair color, slight cracking, high absorption. (Should fire to "MW" face brick specifications at about 2100°F, 1149°C.) Potential Use: Inside brick and tile. (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

* With revisions by K.J. Liles (written communication, 1987).

locn. no. Gdn. 64-7 , cont.

Crushing Characteristics (unfired material) ____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

onemical mia	Tysis		Mineralogy	
Oxide	Weight %		Mineral	volume %
S102			Quanta	
T102				
AI203			Feldspar	
Fe ₂ 03			Carbonate	
FeO			Mica	
MnO			Chlorite-	
Mg O			vermiculite	
Ca0			Montmorillonite	
Na ₂ 0			Others	
K ₂ Õ				
P205				
S (tota	1)		Total	
C (org.)			
CO ₂				
н 20-				
H20+				
Ignition				
loss				
Total		0 €7		
local				
Analyst				
Date				
Method				
Sample Locat	ion Data:			
0)	Tand Tak	C = =	Dist
County Goi	don.		_, sec,	Dist
7 1/2' topo	quad		Lat.	, Long
Field No	78	, Collected	by J.W. Smith?	Date <u>c. 1963</u>
Sample Methy	d Grab $(?)$	We	athering/alteration	-
Sample neene			attering/ arteration	
Structural /	Attitude			
Stratigraph	ic Assignment	Conasauga Gro	up (Cambrian).	
Sample Deres	ription & Com	ments No furthe	r data available	
THURLE DEAL	a peron a con	ments no fuithe	L Gata available.	
oumpre bene				

Compiled by B. J. O'Connor

Date 08-20-86

Material _S	Shale (Conasauga).		Compilation Map Location No. <u>Gdn. 64-8</u>
Count yG	Gordon.		Sample Number79
Raw Properti	es:	Lab & No	USBM, Norris, Tenn.; No. 1555-X
Date Reporte	$\frac{5-28-64}{(revised 1967)}$	Ceramist	M.V. Denny, USBM (revised by M.E.
Water of Pla	sticity 25.6 % (Moderate plastic	Working Pro	operties Short working, smooth, plastic. 5.45. (Not effervescent with HCL.)
Color <u>Red-br</u>	own. Drying Shrin	kage <u>5.0</u> %	Dry Strength <u>Good. (Fair.)</u>

Remarks Drying Characteristics: Good. (No defects.)

Slow Firing Tests:

Temp. °F	Color	Harduess (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens.
(°C)			0,			gm/cc
1800	Tan	Fair hard	5.0	19.0	32.1	1.69
(982)		(3)				
1900	Tan	Hard	9.5(9.0)	11.5	22.3	1.94
(1038)		(4)				
2000	Tan	Hard	10.0	9.9	19.8	2.00
(1093)		(4)				
2100	Brown	Very hard	14.5(14.0)	2.5	5.8	2.33
(1149)		(5)				
2200	Brown	Steel hard	15.0	1.9	4.4	2.33
(1204)		(6)				
2300	Dark	Steel hard	15.0	1.0	2.4	2.36
(1260)	brown	(6)				

Remarks / Other Tes	sts Good color, high	shrinkage. Combine with clay of low
shrinkage and high	absorption for brick	and tile possibilities. (Should fire to
"MW" face brick spe	ecifications at about	1900°F, 1038°C.) Potential Use: None
without additive.	(Face brick.)	

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Gdn. 64-8, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemica	l Analysi	is		Mineralogy	-
Oxide		Weight %		Mineral	volume %
Si02					
TiO2			3	Quartz	
A1203				Feldspar	
Fe203				Carbonate	
FeÕ				Mica	
MnO				Chlorite-	
MgO				vermiculite	
CaO				Montmorillonite	
Na ₂ 0				Others	A
K 20					
P205					
S	(total)			Total	
C	(org.)				
CO2					
н.0-					
H_0+					
Tonitic	n				
loss					
Total		and the second second			
10141					
Analyst				100000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Date					
Method					
ricenou				9 	
Sample	Location	Data:			
County	Gordon	÷	Land Lot	_, Sec,	Dist
7 1/2'	topo qua	d		Lat,	Long
Field N	No	79	, Collected	by J.W. Smith?	Date <u>c. 1963</u>
Sample	Method _	Grab (?).	Wea	thering/alteration	-
Struct	ural Atti	tude			
Stratig	graphic A	ssignment -	Conasauga Grou	up (Cambrian).	
Sample	Descript	ion & Comm	ents <u>No further</u>	data available.	

Compiled by B. J. O'Connor Date 08-20-86

Material	Shale (Conasauga).		Compilation Ma	ap Location No	5. <u>Gdn. 64-9</u>
County	Gordon.			Sample Number	80	
Raw Prop	erties:		Lab & No	USBM, Norris,	Tenn.; No. 1	555-Y
Date Rep Water of	orted 5-2 (rev Plasticit	28-84 vised 1967) y 20.4	Ceramist % Working Pro	M.V. Denny, US Fyrrell, Tuscal Operties Short	GBM (revised) loosa, Ala.) working, smoo	by M.E.
Color _L	ight gray.	(Low play Drying Shr	sticity.) pH inkage <u>2.5</u> %	I = 6.79. (Not Dry Strength	Good. (Low.	t with HCl.)
Remarks	Drying Ch	aracteristics	s: Good. (No	defects.)	9	
Slow Fir	ing Tests:	_				
Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens, gm/cc
1800	Tan	Fair hard	0.5(2.5)	17.1	30.4	1.78
(982) 1900 (1038)	Tan	Hard (4)	4.5(4.0)	12.8	24.6	1.92
2000 (1093)	Tan	Hard (4)	5.5(5.0)	11.3	22.1	1.96
2100	Brown	Very hard	7.5	4.5	9.9	2.21
2200 (1204)	Brown	Steel hard	7.5	3.8	8.5	2.24
2300	Dark	Melted hard	(Expanded)	÷.	-	

Remarks	/ (Other	Tests	Good	color	rough	surface	, some	cracking.	(Should	l fire	to
"MW" fa	cel	brick	specifi	cati	ons at	about	1900°F,	1038°C.) Potenti	al Use:	Brick	and
tile,	dec	orativ	e brick	cif	color i	no obje	ction.	(Face b	orick.)			

Preliminary Bloating (Quick Firing) Tests: Negative.

(1260)

brown

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Gdn. 64-9, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemical Ana Oxide	lysis Weight %	Minera Miner	logy al	volume %
SiO_2 TiO_2 Al_2O_3 FeO MnO MgO CaO Na_2O K 20		Quartz Feldsp Carbon Mica Chlori verm Montmo Othe	ar ate te- iculite rillonite rs	
P_2O_5 S (tota C (org. CO_2 H_2O^- H_2O^+ Ignition loss Total	a1))	Tota	1	
Analyst				
Date				
Sample Locat	tion Data:			
CountyGor	rdon. Land Lot	, Sec.	, Dist	t
7 1/2' topo	quad	Lat	, Lo	ong
Field No	, Co	llected by J.W.	Smith?	Date <u>c. 1963</u>
Sample Metho	od Grab (?).	Weathering/a	alteration	-
Structural A	Attitude			
Stratigraph	ic Assignment <u>Conasa</u>	auga Group (Cambri	ian).	
Sample Desc	ription & Comments No	o further data ava	ailable.	

Compiled by B. J. O'Connor

Date 08-20-86

Material	Shale (Conasauga).		Compilation Map Location No. Gdn. 64-10
County	Gordon.		Sample Number81
Raw Proper	ties:	Lab & No.	USBM, Norris, Tenn.; No. 1555-Z
Date Repor	ted $\frac{5-28-64}{(22)}$	Ceramist	M.V. Denny, USBM (revised by M.E.
Water of P	lasticity 21.1	% Working Pr	Tyrrell, Tuscaloosa, Ala.) operties Short working, smooth, mealy.
Color Buf	f. <u>(Low plast</u> Drying Shr		6.45. (Not effervescent with HCl.) Dry Strength Fair. (Low.)
Remarks D	rying Characteristics	s: Fair-crac	king. (No defects.)

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800 (982)	Tan	Fair hard (3)	1.0(2.5)	16.0	28.6	1.79
1900 (1038)	Tan	Hard (4)	4.5(4.0)	11.9	22.8	1.92
2000 (1093)	Tan	Hard (4)	5.5(5.0)	10.4	20.4	1.96
2100 (1149)	Brown	Very hard (5)	9.5(9.0)	4.5	9.9	2.20
2200 (1204)	Brown	Very hard (5)	9.5(9.0)	4.0	8.8	2.20
2300 (1260)	Dark brown	Steel hard (6)	9.5(9.0)	1.9	4.4	2.29

Remarks / Other Tests Fair color, warped surface, local cracking. (Should fire to "MW" face brick specifications at about 1900°F, 1038°C.) Potential Use: Brick, if color not objectionable. (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Gdn. 64-10, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> to 1800°F, 982°C).

Chemical	à	Mineral	ogical	Data:	NOT	determined.	
	_			and the second second		and the second se	

Chemical Analy Oxide	vsis Weight %	Mineralogy Mineral	volume %
$ \begin{array}{r} S102 \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ Na_2O \\ V = 0 \end{array} $		Quartz Feldspar Carbonate Mica Chlorite- vermiculite Montmorillonite Others	21
P ₂ 0 ₅ S (total) C (org.))	Total	
H ₂ O ⁻ H ₂ O ⁺ Ignition loss Total			
Analyst			
Date			
Method			
Sample Locatio	on Data:		
County Gord	on. Land Lot,	Sec, Dist	·
7 1/2' topo qu	uad	Lat, Lo	ng
Field No.	81 , Collected by	J.W. Smith? D	ate <u>c. 1963</u>
Somple Method	Grab (?). Weath	ering/alteration	
Structural At	titude -		
Stratigraphic	AssignmentConasauga Group	(Cambrian).	
Sample Descri	ption & Comments No further d	lata available.	

Compiled by B. J. O'Connor Date 08-20-86

Material	Shale (Conasauga).		Compilation Map Location No. <u>Gdn. 64-11</u>
County	Gordon.		Sample Number88
Raw Proper	rties:	Lab & No.	USBM, Norris, Tenn.; No. 1555-G
Date Repo	rted $\frac{6-26-64}{(revised 1967)}$	_ Ceramist	M.V. Denny, USBM (revised by M.E.
Water of 1	Plasticity 22.8	% Working Pr	operties Low plasticity. pH = 7.1
Color Gra	ay. Drying Shrin	nkage <u>0.0</u> %	Dry Strength Low.
Remarks	Drying Characteristics:	No defect	S.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800 (982)	Tan	2	1.0	18.2	30.8	1.69
1900 (1038)	Tan	3	5.0	13.9	25.0	1.80
2000 (1093)	Brown	4	6.0	10.3	19.7	1.91
2100 (1149)	Dark brown	5	10.0	2.1	4.8	2.30
2200 (1204)		-	Expanded	-	-	2

Remarks / Other Tests Should fire to "MW" face brick specifications at about 1950°F (1066°C). Potential Use: Face brick.

Preliminary Bloating (Quick Firing) Tests: Negative.

locn. no. Gdn. 64-11, cont.

Crushing Characteristics (unfired material) ____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemical Analysis Oxide	s Weight %	Mineralogy Mineral	volume %
		Quartz Feldspar Carbonate Mica Chlorite- vermiculite Montmorillonite Others	
$\begin{array}{c} R_{20} \\ P_{20}_{5} \\ S \\ (total) \\ C \\ (org.) \\ CO_{2} \\ H_{2}O^{-} \\ H_{2}O^{+} \\ Ignition \\ loss \\ Total \end{array}$	¢.	Total	
Analyst			
Date			
Method			
Sample Location	Data:		
County Gordon.	Land Lot,	Sec, Dist	••
7 1/2' topo quad	l	Lat, Lo	ong
Field No.	88 , Collected by	J.W. Smith?	Date <u>c. 1963</u>
Sample Method _G	Grab (?). Weath	nering/alteration	
Structural Attit	ude		
Stratigraphic As	signment <u>Conasauga Group</u>	(Cambrian).	
Sample Descripti	on & Comments No further c	lata available.	

Compiled by B. J. O'Connor

Date 08-20-86

Material	Shale (r	esidual).		Compilation M	ap Location No	. <u>Gdn. 66-1</u>	
County	Gordon.			Sample Number	127		
Raw Prop	erties:		Lab & No.	USBM, Tuscalo	osa, AL; G-8-7		
Date Rep	orted <u>10-6</u>	-65	Ceramist	M.E. Tyrrell,	USBM.		
Water of Plasticity <u>24.5</u> % Working Properties <u>Low plasticity</u> . pH = 5.5 <u>Not effervescent with HCl</u> . Color <u>Tan</u> . Drying Shrinkage <u>0.0</u> % Dry Strength <u>Low</u> .							
Remarks	No drying	defects.					
Slow Fir	ing Tests:						
Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por.* %	Other data: Bulk Dens. gm/cc	
1800 (982)	Tan	2	0.0	25.5	40.3	1.58	
1900 (1038)	Orange- tan	3	5.0	16.1	30.3	1.88	
2000 (1093)	Light	۷.	10.0	8.4	17.7	2.11	
2100 (1149)	Red-	5	12.5	3.9	8.9	2.28	
2200 (1204)	-	-	Expanded	-	-	-	

Remarks / Other Tests Should fire to "SW" face brick specifications at about 2000°F (1093°C). Low green strength. Color marginal. Potential Use: Face brick mixtures.

Preliminary Bloating (Quick Firing) Tests: Negative.

*Data from USBM files (K.J. Liles, written communication, 1987).

locn, no. Gdn. 66-1, cont.

Crushing Characteristics (unfired material) -

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined.

Chemical Oxide	Analysis Weight %	Mineralogy Mineral	volume %
$S10_{2}$ $Ti0_{2}$ $A1_{2}0_{3}$ $Fe_{2}0_{3}$ $Fe0$ $Mn0$ $Mg0$ $Ca0$ $Na_{2}0$ $K_{2}0$		Quartz Feldspar Carbonate Mica Chlorite- vermiculite Montmorillonite Others	
$\begin{array}{c} P_2 0 \\ P_2 0 \\ S \\ C \\ C \\ P_2 0 \\ C \\ P_2 0 \\ H_2 0^- \\ H_2 0^+ \\ Ignitio \\ loss \\ Total \end{array}$	(total) (org.) n	Total	
Analyst			
Date			
Method			
Sample	Location Data:		
County	Gordon. Land Lot,	Sec, Dis	st
7 1/2'	topo q uad	Lat,	Long
Field N	o, Collected by	J.W. Smith?	Date <u>c. 1966</u>
Sample	Method Grab (?). Weath	ering/alteration	esidual clay.
Structu	ral Attitude		
Stratig	raphic Assignment <u>Conasauga Group</u>	(Cambrian).	
Sample further	Description & Comments <u>Residual cla</u> data available.	ay from weathering o	f limestone. No

Compiled by B. J. O'Connor

Date 8-20-86

Material	Shale, we	eathered.		Compilation Ma	ap Location No	. <u>Gdn. 66-2</u>
County	Gordon.			Sample Number	128	_
Raw Prope	erties:		Lab & No	USBM, Tuscaloo	osa, AL; G-8-8	
Date Repo	orted 10-6	-66	Ceramist	M.E. Tyrrell,	USBM.	
Water of Plasticity 18.4% Working Properties Low plasticity. pH = 6.4. Not effervescent with HCl.						
Color	an.	Drying Shr	inkage_0.0 %	Dry Strength	Low.	
Remarks	No drying	defects.				
Slow Firi	ing Tests:					
Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800 (982)	Tan	2	0.0	19.8	33.7	1.70
1900 (1038)	Tan	2	0.0	19.4	33.4	1.72
2000 (1093)	Light brown	3	0.0	13.8	26.1	1.89
2100	Brown	4	0.0	8.8	18.4	2.09
2200	Dark	5	5.0	5.8	12.6	2.18
2300 (1260)	Dark brown	6	5.0	3.7	8.1	2.19

Remarks / Other Tests Low green strength. Poor color. Not suitable for use in vitreous clay products.

Preliminary Bloating (Quick Firing) Tests:

Negative.

*Data from USBM files (K.J. Liles, written communication, 1987).

locn. no. Gdn. 66-2. cont.

Crushing Characteristics (unfired material) -

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemica:	l Analysi	8 Waisht 9	4	Mineralog	зу	volume %
Oxide		weight %		ninerai		VOI UNE &
5102				0		
^{T10} 2				Quartz		
A1203				Feldspar	1 1	
Fe203				Carbonate	e	
FeÕ				Mica		
MnO				Chlorite	-	
MgO				vermic	ulite	
CaO				Montmori	llonite	
Na-O				Others		
Na20				othero		
K20						
P205				m - 1 - 1		
S	(total)			lotal		
С	(org.)					
CO2						
H20-						
н-0+						
Ignitio	n					
loss						
Total						
locui						
Analyst						
Allaryst						
D						
Date			×1			
Method						
Sample	Location	Data:				
County	Gordon	•	Land Lot	, Sec	, Dist	t
7 1/2'	topo aug	4 -		Ist	Ţ	200
/ 1/2	copo qua	J		Dat .	, LIC	
Field N	0.	128	, Collec	ted by J.W. Sm	ith?	Date <u>c. 1966</u>
Sample	Method	Grab (?).		Weathering/alt	eration	Weathered.
Structu	iral Atti	tude				
Stratig	raphic A	ssignment	Conasauga	Group (Cambrian).	
Sample	Descript	ion & Com	ments_Weathe	red shale. No	further data	a available.

Compiled by B. J. O'Connor Date 08-20-86

Material	County Gordon.		Compilation Map Location No. <u>Gdn. 67-1</u> Sample Number <u>150</u>		
County					
Raw Proper	ties:	Lab & No.	USBM, Tus	scaloosa, Al; G-9-13	
Date Repor	ted <u>1-11-67</u>	Ceramist -	M.E. Tyrrell, USBM.		
Water of H	Plasticity25.3 %	Working Pro	operties _	Low plasticity. $pH = 7.1$	
Color	Drying Shrin	kage <u>2.5</u> %	Dry Stre	Not effervescent with HCL.	

Remarks Drying Characteristics: No drying defects.

Slow Firing Tests:

Temp. °F	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens,
(°C)		×.				gm/cc
1800 (982)	Tan	2	2.5	25.0	39.0	1.56
1900 (1038)	Tan	3	2.5	23.1	37.4	1.62
2000 (1093)	Tan	4	5.0	18.3	31.8	1.74
2100 (1149)	Light brown	5	10.0	12.9	24.4	1.89
2200 (1204)	Dark brown	6	10.0	9.3	18.4	1,98
2300 (1260)	Dark brown	7	10.0	6.8	13.7	2.02

Remarks / Other Tests	Should fire to	"MW" face bri	ck specification	ns at about
2150°F (1177°C). Low	green strength.	Poor color.	Potential Use:	Building brick.
Preliminary Bloating	(Quick Firing) T	ests. Negat	ive	E.

locn. no. Gdn. 67-1, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> to 1800°F, 982°C).

Chemical & Mineralogical Data: Not determined.

Chemical Oxide SiOo	Analysi	i s Weight %			Mineralogy Mineral		volume	%
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO					Quartz Feldspar Carbonate Mica Chlorite-			
MgO CaO Na ₂ O K ₂ O PaOc					vermiculi Montmorillo Others	te nite		
с с н ₂ 0-	(total) (org.)				Total			
H ₂ 0 ⁺ Ignition loss Total	n		-					
Analyst	-							
Date								
Method								
Sample	Location	Data:						
County	Gordon	•	Land Lot	,	Sec	, Dist	:	
7 1/2'	topo qua	d			Lat	, Lo	ong	
Field N	0	150	, Col	lected b	y J.W. Smith	<u>1?</u>]	Date <u>c.</u>	1966
Sample	Method _	Grab (?)	•	Weat	hering/altera	ation	-	
Structu	ral Atti	tude <u>-</u>						
Stratig	raphic A	ssignmen	t		ţ	v		
Sample	Descript	ion & Cor	mments No	further	data availabi	le.		
			A CONTRACTOR OF THE OWNER					

Compiled by B. J. O'Connor Date 8-20-86

Material Clay/shale?		Compilation Map Location No. Gdn. 67-2			
County Gordon.	-	Sample Number151			
Raw Properties:	Lab & No.	USBM, Tuscaloosa, AL; G-9-14			
Date Reported1-11-67	Ceramist	M.E. Tyrrell, USBM.			
Water of Plasticity31.8 % Wo	rking Prope	rties Low plasticity. $pH = 5.9$.			
Color Yellow. Drying Shrin	kage <u>2.5</u> %	Dry Strength Low.			

Remarks No drying defects.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	Tan	2	2.5	35.5	48.3	1.36
1900 (1038)	Tan	3	2.5	33.3	46.6	1.40
2000 (1093)	Tan	4	7.5	27.3	42.0	1.54
2100 (1149)	Light brown	5	10.0	20.3	34.7	1.71
2200 (1204)	Red- brown	6	12.5	17.9	31.3	1.75
2300 (1260)	Dark brown	7	12.5	13.9	25.6	1.84

Remarks / Other Tests Low green strength; high maturing temperature. Not suitable for use as the principal component in vitreous clay products.

Preliminary Bloating (Quick Firing) Tests: Negative.

locn. no. Gdn. 67-2, cont.

Crushing Characteristics (unfired material) -

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: <u>Not determined.</u>

Chemical Analysis Oxide Weight %	Mineralogy Mineral	volume Z
sio.	in not at	vor dance w
TiO_2	Quartz	
1102	Feldenar	
A1203	Carbonata	
re ₂ 03	Carbonale	
FeO	Mica	
MnO	Chlorite-	
MgO	vermiculite	
CaO	Montmorillonite	
Na ₂ 0	Others	
κ ₂ 0		
P205		
S (total)	Total	
C (org.)		
CO ₂		
H ₂ Õ ⁻		
H ₂ 0+		
Ignition		
loss		
Total		
Analyst		
Date		
Method		
Sample Location Data:		
County Gordon. Land Lot	, Sec, Di	st
7 l/2' topo quad	Lat,	Long
Field No. 151 , Collec	ted by _J.W. Smith?	Date <u>c. 1966</u>
Sample Method Grab (?).	Weathering/alteration	-
Structural Attitude		
Stratigraphic Assignment		
Sample Description & Comments No fur	ther data available.	

Compiled by B. J. O'Connor Date 8-20-86

Material	aterial <u>Clay/shale?</u>		_ Compilation Map Location No. <u>Gdn. 67-3</u>		
Count y	Gordon.		Sample Number160		
Raw Proper	rties:	Lab & No.	USBM, Tuscaloosa, AL; G-9+22		
Date Reported <u>1-11-67</u>		_ Ceramist M.E. Tyrrell, USBM.			
Water of i	Plasticity <u>30.4</u> %	Working Pr 	operties <u>Moderate plasticity</u> . = 4.7. Not effervescent with HCl.		
Color Bro	own Drying Shrin	nkage 5.0 %	Dry Strength High.		

Remarks No drying defects.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens.
1800 (982)	Tan	2	5.0	28.7	43.6	1.52
1900 (1038)	Tan	2	7.5	26.5	41.6	1.57
2000 (1093)	Tan	3	10.0	19.4	34.1	1.76
2100 (1149)	Light brown	4	12.5	13.9	26.4	1.90
2200 (1204)	Red- brown	5	12.5	10.3	20.4	1.98
2300 (1260)	Dark brown	6	15.0	4.6	9.8	2.14

Remarks / Other Tests Should fire to "MW" face brick specifications at about 2150°F (1177°C). Good color. Potential Use: Face brick.

Preliminary Bloating (Quick Firing) Tests: Negative.

locn. no. <u>Gdn. 67-3</u>, cont.

Crushing Characteristics (unfired material) ____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> to 1800°F, 982°C).

						1	-
Chemical	&	Mineralogical	Data:	Not	determined.		
	_	the second s					

Chemical Ana	alysis	Mineralogy	
Oxide	Weight %	Mineral	volume %
SiO ₂			
TiO ₂		Quartz	
AloŌa		Feldspar	
Feo03		Carbonate	
FeÕ		Mica	
MnO		Chlorite-	
MgO		vermiculite	
CaO		Montmorillonite	
Na ₂ 0		Others	
K20			
P205			
S (tota	al)	Total	
C (org	.)		
COn			
H_0 ⁻			
H ₂ 0+			
Ignition			
1055			
Total			
locar			
Analyst			
Date		3	
Method			
Sample Loca	tion Data:		
County <u>Go</u>	rdon. Land Lot	, Sec, D	ist
7 1/2' topo	quad	Lat,	Long
Field No.	160 , Collected	by J.W. Smith?	Date <u>c. 1966</u>
Sample Meth	od <u>Grab (?).</u> We	eathering/alteration _	
Structural	Attitude		
Stratigraph	ic Assignment		
Sample Desc	ription & Comments <u>No furthe</u>	er data available.	

Compiled by B. J. O'Connor

 \mathbf{r}

Date 8-20-86

14

Material	Shale (C	ohásauga Fo	rmation).	Compilation Ma	p Location No	Gdn. 69	-1
County	Gordon.	al -	<u></u>	Sample Number	GDR-1		
Raw Prop	erties:		Lab & No	USBM, Tuscaloc	sa, Al; GOR-	l	
Date Reported March 1969. Ceramist				M.E. Tyrrell,	USBM.		
Water of	Plasticity	19.4 %	Working Pro	operties			
Color _G	reen-gray.	Drying Shr	inkage <u>1.0.</u> %	Dry Strength	-		
Slow Fir	ing Tests:						
Temp. °F (°C)	Color (Munsell)	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data:	
1900	Medium	4.0	1.2	21.3	-	1.55	
(1038) 2000 (1093)	tan Medium tan	4.5	1.2	19.4	-	1.72	
2100 (1149)	Dark	4.5	5.0	11.9	-	1.78	
2200 (1204)	Dark tan	6.5	8.5	8.2	-	1.99	

Remarks / Other Tests Hollenbeck & Tyrrell (1969, p. 20).

Preliminary Bloating (Quick Firing) Tests: Negative.

locn. no. Gdn. 69-1, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemical Analy Oxide	sis Weight %	Mineralogy Mineral	volume %
SiO			
Tio		Quartz	
1102		Foldenar	
A1203		Feldspar	
Fe ₂ 03		Carbonate	
FeO		Mica	
MnO		Chlorite-	
MgO		vermiculite	
CaO		Montmorillonite	
Na ₂ 0		Others	
KaÕ			
Palls			
s (total)		Total	
C (org.)		TOTAL	
CO (018.)			
u 2-			
H ₂ 0			
H ₂ 0'			
Ignition			
loss			
Total			
Analyst			
Date			
Method			
Sample Locatio	on Data:		
CountyGordo	on. Land Lot,	Sec, 1	Dist
7 1/2' topo qu	uad. Fairmount (center),	Lat,	Long
Field No.	GOR-1, Collected by	y R.P. Hollenbeck	Date1967
Sample Method	Channel (?), Weath	nering/alteration _	Slightly weathered.
Structural Att	titude		
Stratigraphic	Assignment <u>Conasauga</u> Format	tion (Cambrian) sha	ale.
Sample Descrip (about 20 feet cut on north s	ption & Comments Sample of li t exposed) overlain by soil. side of Ga. Hwy. 53, 0.6 mile	ight gray slate, s Sampaled from lowe west of intersect	lightly weathered er 8 feet of road ion with U.S. Hwy.
TA MOLIENDER	en and tyricit, 1907, p. 107.		

Compiled by B. J. O'Connor Date 8-20-86

Material	Shale (C	onasauga).		Compilation Ma	p Location N	o. <u>Gdn. 80-1</u>
County	Gordon.			Sample Number	Clay No.	8
Raw Prope	erties:		Lab & No.	Marazzi Cerami	che, #M.P. 1	797.
Date Repo	orted <u>Marc</u>	h 1980.	Ceramist	L. Lorici.		
Water of	Plasticity	%	Working Prope	rties <u>Compact</u> .		
Color Bu	uff-tan.	Drying Pressing	Good. % Good.	Dry Strength Fluidizing	- Good.	
Slow Fir	ing Tests:	(50 x 100 x	8 mm. presse	d tiles.)		
Temp. °F (°C)	Color (Munsell)	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data:
1976 (1080) (= cycle	1)				13	=
2030 (1110 (= cycle	- 2)	-	4.1	-	3.8	-
1994 (1090)	-	-	5.8		0.6	5 .
, cycle	37	(DTA & Dil	atometric Ana	lyses on file.	- unpubl. re	port.)

Remarks / Other Tests Illitic clay with low % chlorite - shows typical dilatometric curve. ("A": interesting technological features; further sampling is necessary.) It could be useful in making tiles.

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. Gdn. 80-1, cont.

Crushing Characteristics (unfired material) _____

Particle Size <40 microns Retention Time	Cycle 1: 40-45 min. Cycle 2: 70-75 min.	in roller kiln.
Chemical & Mineralogical Data:	Cycle 3: 200-230 min.	
Chemical Analysis Oxide (A) Weight % (B) SiO ₂ 54.34 59.4	Mineralogy Mineral	volume % (B)
Tio_2 0.701.0 $A1_20_3$ 25.3823.7	Quartz Feldspar	x
Fe_2O_3 7.26 8.7 FeO	Carbonate Mica (Muscovite) Chlorite (+ kaolinit	A) X low
MgO 1.60 1.2 CaO 0.45 -	vermiculite Montmorillonite	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Illite	Х
P205 S (total)	Total	
C(org.)	x = present. (A) = clays an	nd micas only.
Ignition loss <u>5.55</u> <u>(5.5)</u> Total <u>99.79</u> <u>98.7</u> w/o LOI		
A) R. Landrum, GA Survey. Analyst <u>B) Marazzi Ceramiche</u>	A) M. A. Tadkod, GA Su B) M. Ceramiche	ırvey
Date Aug. & Sept. 1979	Aug. & Sept. 1979	
A) Atomic Absorption. Method B) XRF & Spectrophotometry.	X-ray diffraction.	
Sample Location Data:		
County Gordon. Land Lot	, Sec, Dist	···
7 1/2' topo quad. Calhoun North (N.cnt	c.) Lat, Lo	ong
F.eld No. 12 Collected	d by <u>M.A. Tadkod.</u>	Date July 1979.
Sample Method Grab. We	eathering/alteration	-
Structural Attitude		
Stratigraphic Assignment Conasauga Grou	ıp (Cambrian).	
Sample Description & Comments Sample fr NE. of Resaca (Tadkod, 1979 and 1980, un	rom roadcut on Ga. Hwy. npubl. data). Also see (136 about 1 mi. Gdn. 318-55.
Compiled by B. J. O'Connor	Date 8-20-86	

Material Shale (Conasauga).			Compilation Map Location No. <u>Gdn. 80-2</u>			
County	Gordon.			Sample Number	Clay No.	9.
Raw Prope	erties:		Lab & No.	Marazzi Cerami	che, #M.P. 1	798.
Date Repo	orted March	n 1980.	Ceramist	L. Lorici.	and to say that a long t	
Water of Plasticity% Working Properties Compact.						
Color L	ight brown	Drying <u>G</u> Pressing <u>G</u>	ood.	Dry Strength Fluidizing	- Good.	
Slow Fir	ing Tests:	(50 x 100	x 8 mm. press	ed tiles.)		
Temp. °F (°C)	Color (Munsell)	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data:
1976 (1080) (= cycle	-	-	(au			-
2030 (1110) (= cycle	2)		8.3	.=	2.3	-
1994 (1090) (= cycle	- 3)	1	9.7	-	0.0	-

(DTA and Dilatometric Analyses on file. - unpubl. report.)

Remarks / Other Tests Low-firing, illitic shale with low % kaolinite and montmorillonite. ("A": interesting techological features for making tile; further sampling is necessary). The high shrinkage might cause some trouble.

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. <u>Gdn. 80-2</u>, cont.

Crushing Characteristics (unfired material) _____

Dentials Disa (10 micross Potention Time	Cuplo 1: 40-45 min	1
Particle Size 40 microns Recention lime	Cycle 1: 40-45 min.	in maller bile
	Cycle 2: 70-75 min.	in roller klin.
Chemical & Mineralogical Data:	Cycle 3: 200-230 mln.	
Chamical Analysis	Mineralogy	
Chemical Analysis	Minoral	wolumo %
Oxide (A) weight 6 (B)	Mineral	
S10 ₂ 54.86 60.0	2	(A) (B)
Ti0 ₂ 0.50 0.9	Quartz	x
A1 ₂ 0 ₃ 25.65 24.9	Feldspar	
Fe ₂ 0 ₃ 6.65 7.7	Carbonate	
Fe0	Mica (Muscovite)	X
MnO 0.01 -	Chlorite (+ kaolinit	e) X
MgO 1.53 1.3	vermiculite	
CaO 0.34 0.0	Montmorillonite	low
Nap0 0.14 0.2	Illite	X X
K ₂ 0 3.32 3.8	Kaolinite (disorde	ered) low
S(total)	Total	
C(org) = -		
	y = present.	
·····	$(\Lambda) = clave an$	d micas only
H ₂ 0 = -	(A) - Clays al	lu micas onry.
H ₂ 0'		
Ignition		
1 loss 6.85 (7.2)		
Total 99.85 98.8 w/o LOI		
A) R. Landrum, GA Survey. Analyst B) Marazzi Ceramiche	A) M. A. Tadkod, GA Su B)_M. Ceramiche.	irvey.
Date Aug. & Sept. 1979.	Aug. & Sept. 1979.	
A) Atomic Absorption.		
Method B) XRF & Spectrophotometry.	X-ray diffraction.	
Sample Location Data:		
County Gordon Land Lot	_, Sec, Dist	·
7 1/2' topo quad. Sugar Valley (E. edge). Lat, Lo	ong
Field No, Collected	by M.A. Tadkod.	Date July 1979.
Sample Method Grab. We	athering/alteration	-
Structural Attitude		
Stratigraphic Assignment Conasauga Grou	p (Cambrian)?*	
Sample Description & Comments Sample fr 143) about 1/8 mi. S. of Sugar Valley (T *This location shown as Floyd Shale (Mis	om roadcut on Ga. Hwy. adkod, 1979 and 1980, un sissippian) by Cressler	136c (formerly npubl. data). (1974, Pl. 1).
	D	
Compiled by B. J. O'Connor	Date 8-20-86	

Material	Shale (Co	onasauga).		Compilation Ma	p Location No	Gdn. 80-3
County	Gordon.			Sample Number	Clay No.	10.
Raw Prope	erties:		Lab & No.	Marazzi Cerami	che, #M.P. 17	799.
Date Repo	orted March	n 1980.	Ceramist	L. Lorici.		
Water of	Plasticity	- %	Working Prope	rties Compact.		
Color <u>Rec</u>	ldish brown	Drying G Pressing G	ood.	Dry Strength Fluidizing	- Good.	
Slow Firm	ing Tests:	(50 x 100	x 8 mm. press	ed tiles.)		
Temp. °F (°C)	Color (Munsell)	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data:
1976 (1080) (= cycle	- 1)	-	-	-	-	-
2030 (1110) (= cycle	- 2)	-	3.2	-	6.7	-
1994 (1090)	-	-	5.5	-	4.0	-
(= cycle	3)					

(DTA and Dilatometric Analyses on file. - unpubl. report.)

Remarks / Other Tests Illitic shale with some micaceous minerals and kaolinite. ("B1": too refractory for making tile.)

Preliminary Bloating (Quick Firing) Tests: Not determined.
locn. no. Gdn. 80-3, cont.

Crushing Characteristics (unfired material) _____

Particle Size <40 microns Retention Time Cycle 1: 40-45 min. Cycle 2: 70-75 min. in roller kiln. Chemical & Mineralogical Data: Cycle 3: 200-230 min. Chemical Analysis Mineralogy Oxide (A) Weight % (B) Mineral volume % (A) (B) Si02 57.54 61.9 TiO2 0.9 Quartz 0.50 х Feldspar 22.6 A1203 23.60 Carbonate Fe203 8.10 8.2 Mica (Muscovite) X FeŌ -----0.01 -Chlorite (+ kaolinite) (29) MnO vermiculite 0.9 MgO 0.56 0.45 Montmorillonite low 0.0 CaO (71)Illite Х Na₂0 0.38 0.6 3.10 3.9 Kaolinite (disordered) Х K_20 P205 Total S^(total) C (org.) -C02 x = present.-Н20-(A) = clays and micas only. H20+ Ignition (5.6)5.60 loss 99.0 w/o LOI Total 99.84 A) M. A. Tadkod, GA Survey. A) R. Landrum, GA Survey. Analyst B) Marazzi Ceramiche. B) M. Ceramiche. Date Aug. & Sept. 1979. Aug. & Sept. 1979. A) Atomic Absorption. X-ray diffraction. Method B) XRF & Spectrophotometry. Sample Location Data: County Gordon. Land Lot ____, Sec. ____, Dist. ____. 7 1/2' topo quad. Calhoun North (W. side). Lat._____, Long.____. Field No. 14. , Collected by M.A. Tadkod. Date July 1979. Sample Method Grab. Weathering/alteration -Structural Attitude -Stratigraphic Assignment Conasauga Group (Cambrian). Sample Description & Comments Sample from roadcut on Ga. Hwy. 136c (formerly 143) about 1 1/2 mi. SE. of Sugar Valley (Tadkod, 1979 and 1980, unpubl. data; notes, however, state "1 mi. N. of Calhoun"). Compiled by B. J. O'Connor Date 8-20-86

CERAMIC TESTS AND ANALYSES

Material Shale (Conasauga).		Compilation Map Location No. <u>Gdn. 80-4</u>	
County Gordon.		Sample NumberB shale.	
Raw Properties:	Lab & No	Georgia Tech., #BS.	
Date Reported 12-10	-80. Ceramist	J. F. Benzel, Georgia Tech.	
Water of Plasticity	% Working Proper	cties	
Color	Drying Shrinkage	Dry Strength	
Slow Firing Tests:	(1x1= 9 in. bars.)*		
Temp. Color °F (°C)	Strength Linear (MOR, Shrinkage, % psi.)	Absorption Appr. Por. Other % % data:	

Remarks / Other Tests *No further testing because test bars of this material could not be extruded.

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. Gdn. 80-4, cont.

Crushing Characteristics (unfired material) _____

Particle Size _____ Retention Time _____

Chemical & Mineralogical Data: Not determined.

Chemical Oxide SiOo	l Analysis Weight %	Mineralogy Mineral	volume %	
TiO_2 Al_2O_3 Fe_2O_3 FeO		Quartz Feldspar Carbonate Mica		
MnO MgO CaO NacO		Chlorite- vermiculite Montmorillonite Others		
K ₂ 0 P ₂ 0 ₅	(+ + + + 1)	Total		
C (CO ₂	(org.)	IOLAI		
H ₂ 0 ⁻ H ₂ 0 ⁺ Ignition	n			
loss Total				
Analyst				
Date		·*		
Method _				
Sample 1	Location Data:			
County _	Gordon. Land Lot,	Sec, Dist	··	
7 1/2' 1	topo quad. Plainville (SE. 1/4).	Lat, Lon	ng	
Field No	o. <u>B shale.</u> , Collected by	O'Connor and D. Benzel	ate Aug. 1980.	
Cample 1	Method Random grab samples. Weathe	ering/alteration Some	e weathered.	
Structu	ral Attitude			
Stratigraphic Assignment <u>Conasauga Group (Cambrian)</u> .				
Sample 1 Brick Co	Description & Comments <u>Sample from</u> o.) just N. of Plainville Rd., 3/4 m	abandoned pit (former i. W. of Ga. Hwy. 53 a	ly Plainville and 0.6 mi. W. of	
the Soul	thern RR. in Plainville.	· · · · · · · · · · · · · · · · · · ·	9*****	

Compiled by B. J. O'Connor Date 8-20-86

DATA SOURCES AND REFERENCES CITED

- American Society for Testing and Materials, 1974 Annual Book of ASTM Standards:
 - C4-62 (Reapproved 1970) Standard specification for clay drain tile, Part 16, p. 1-7.
 - C13-69 (Replaced by C700-74) Specifications for standard strength clay sewer pipe, Part 16, p. 409-413.
 - C24-72 Pyrometric cone equivalent (PCE) of refractory materials, Part 17, p. 9-14.
 - C27-70 Classification of fireclay and high-alumina refractory brick, Part 17, p. 15-17.
 - C43-70 Standard definitions of terms relating to structural clay products, Part 16, p. 33-35.
 - C62-69 Standard specification for building brick (solid masonry units made from clay or shale), Part 16, p. 121-125.
 - C216-71 Standard specification for facing brick (solid masonry units made from clay or shale), Part 16, p. 121-125.
 - C410-60 (Reapproved 1972) Standard specification for industrial floor brick, Part 115, p. 217-218.
 - C479-72 Standard specification for vitrified clay liner plates, Part 16, p. 283-284.
 - C330-69 Specification for lightweight aggregates for structural concrete, Part 14, p. 229-232.
 - C315-56 (Reapproved 1972) Standard specification for clay flue linings, Part 16, p. 169-171.
- American Society for Testing and Materials, 1974 Annual Book of ASTM Standards: Part 16, Chemical-resistant nonmetallic materials; clay and concrete pipe and tile; masonry mortars and units; asbestos-cement products.
- Bergenback, R.E., Wilson, R.L., and Rich, M., 1980, Carboniferous Paleodepositional Environments of the Chattanooga Area: in Frey, R.W., ed., <u>Excursions in Southeastern Geology</u>, vol. I, Field Trip No. 13, p. 259-278, American Geological Institute, Falls Church, Va.
- Butts, C., and Gildersleeve, B., 1948, Geology and Mineral Resources of the Paleozoic Area in Northwest Georgia: Georgia Department of Mines, Mining and Geology Bulletin 54, 176 p.
- Chowns, T. M., editor, 1972, Sedimentary Environments in the Paleozoic Rocks of Northwest Georgia: Georgia Geological Survey Guidebook 11, 102 p.

, editor, 1977, Stratigraphy and Economic Geology of Cambrian and Ordovician Rocks in Bartow and Polk Counties, Georgia: Georgia Geological Survey Guidebook 17, 21 p.

- Chowns, T.M., and McKinney, F.M., 1980, Depositional Facies in Middle-Upper Ordovician and Silurian Rocks of Alabama and Georgia: in Frey, R.W., ed., Excursions in Southeastern Geology, vol. 2, Field Trip No. 16, p. 323-348, American Geological Institute, Falls Church, VA.
- Clews, F. H., 1969, <u>Heavy Clay Technology</u>: 2nd ed., Academic Press, New York, N.Y., 481 p.
- Crawford, T.J., 1983, Pennsylvanian Outliers in Georgia: in Chowns, T.M., ed., "Geology of Paleozoic Rocks in the Vicinity of Rome, Georgia" 18th Annual Field Trip, Georgia Geological Society, p. 30-41.
- Cressler, C. W., 1963, Geology and Ground-water Resources of Catoosa County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 28, 19 p.
 - , 1964a, Geology and Ground-water Resources of the Paleozoic Rock Area, Chattooga County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 27, 14 p.
- , 1964b, Geology and Ground-water Resources of Walker County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 29, 15 p.
- , 1970, Geology and Ground-water Resources of Floyd and Polk Counties, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 39, 95 p.
- , 1974, Geology and Ground-water Resources of Gordon, Whitfield and Murray Counties, Georgia: Georgia Geological Survey Information Circular 47, 56 p.
- Cressler, C. W., Franklin, M. A., and Hester, W. G., 1976, Availability of Water Supplies in Northwest Georgia: Georgia Geological Survey Bulletin 91, 140 p.
- Cressler, C. W., Blanchard, H. E., Jr., and Hester, W. G., 1979, Geohydrology of Bartow, Cherokee, and Forsyth Counties, Georgia: Georgia Geologic Survey Information Circular 50, 45 p.
- Croft, M. G., 1964, Geology and Ground-water Resources of Dade County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 26, 17 p.
- Georgia Geological Survey, 1976, Geologic Map of Georgia: Georgia Geological Survey, scale 1:500,000.
- Gillespie, W.H. and Crawford, T.J., in press, Plant Megafossils from the Carboniferous of Georgia, U.S.A.: in 10th International Congress of Carboniferous Stratigraphy and Geology (Madrid), Proceedings.

- Grimshaw, R. W., 1972, <u>The Chemistry and Physics of Clays and Other</u> <u>Ceramic Raw Materials</u>: 4th ed., rev., Wiley-Interscience, New York, N.Y., 1024 p.
- Hollenbeck, R.P., and Tyrrell, M.E., 1969, Raw materials for lightweight aggregate in Appalachian Region, Alabama and Georgia: U.S. Bureau of Mines RI-7244, 21 p.
- Jones, T. J., and Beard, M. T., 1972, Ceramics: Industrial Processing and Testing: Iowa State University Press, Ames, Iowa, 213 p.
- Kelly, K. L. and Judd, D. B., Color. Universal Language and Dictionary of Names: U.S. Dept. of Commerce, NBS Special Publication 440, 158 p.
- Kline, S. W. and O'Connor, B. J., editors, 1981, Mining Directory of Georgia, 18th. ed.: Georgia Geologic Survey Circular 2, 49 p.
- Klinefelter, T. A., and Hamlin, H. P., 1957, Syllabus of Clay Testing: U.S. Bureau of Mines Bulletin 565, 67 p.
- Liles, K. J., and Heystek, H., 1977, The Bureau of Mines Test Program for Clay and Ceramic Raw Materials: U.S. Bureau of Mines IC-8729, 28 p.
- Norton, F. H., 1942, <u>Refractories</u>: 2nd ed., McGraw-Hill Book Co., N.Y., 798 p.
- O'Neill, B. J., Jr., and Barnes, J. H., 1979, Properties and Uses of Shales and Clays, Southwestern Pennsylvania: Pennsylvania Geological Survey Mineral Resources Report 77, 689 p.

_____, 1981, Properties and Uses of Shales and Clays, South-central Pennsylvania: Pennsylvania Geological Survey Mineral Resource Report 79, 201 p.

- Patterson, S. H., and Murray, H. H., 1983, Clays: in Lefond, S. J., and others, eds., Industrial Minerals and Rocks; 5th ed., American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., New York, p. 585-651.
- Smith, J. W., 1968?, Tests for Clay Products in Northwest Georgia; unpublished manuscript, 47 p. (brief summary in: 1967 Annual Report of the Department of Mines, Mining, and Geology, 1968, p. 17-19).
- Smith, R. W., 1931, Shales and Brick Clays of Georgia: Georgia Geological Survey Bulletin 45, 348 p.
- Spencer, J.W.W., 1893, The Paleozoic Group; The Geology of Ten Counties of Northwestern Georgia: Georgia Geological Survey, 406 p.
- Thomas, W.A., and Cramer, H.R., 1979, The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States -Georgia: U.S. Geological Survey Professional Paper 1110-H, 37 p.

CLAY AND SHALE TEST LOCATIONS IN GORDON COUNTY

Boundary dashed where approximate

Georgia Geologic Survey **Information Circular 69** Plate 1