
CERAMIC AND STRUCTURAL CLAYS, AND SHALES OF WALKER COUNTY, GEORGIA

BRUCE J. O'CONNOR

DEPARTMENT OF NATURAL RESOURCES ENVIRONMENTAL PROTECTION DIVISION GEORGIA GEOLOGIC SURVEY

INFORMATION CIRCULAR 72

Cover Photo:

Shale pit (Mississippian Pennington Shale?) of the Chattanooga Sewer Pipe and Fire Brick Company near Filntstone (northern Walker County near Ga. Hwy. 193 west of Fort Oglethorpe). Photo by S.W. McCallie, 1913, courtesy of the Georgia Department of Archives and History.

CERAMIC AND STRUCTURAL CLAYS AND SHALES OF

WALKER COUNTY, GEORGIA

By

Bruce J. O'Connor Principal Geologist

Information Circular 72

GEORGIA DEPARTMENT OF NATURAL RESOURCES J. Leonard Ledbetter, Commissioner

ENVIRONMENTAL PROTECTION DIVISION Harold F. Reheis, Assistant Director

GEORGIA GEOLOGIC SURVEY William H. McLemore, State Geologist

> ATLANTA, GEORGIA 1988

TABLE OF CONTENTS

CI	IR	JE	07	P .
51	ענ	نا ل	υ.	L.,

Introduction
Acknowledgements
Location of Study Area
Explanation of Key Terms on the Ceramic Test and
Analyses Forms
1. Absorption (%)
2. App. Por. (%) - Apparent Porosity, Percent
3. App. Sp. Gr Apparent Specific Gravity
4. Bloating
5. Bloating Test (or Quick Firing Test)
6. Bulk Density (or Bulk Dens.)
7. Color
8. Color (Munsell)
9. Compilation Map Location No
10. Cone
11. Drying Shrinkage
12. Dry Strength
13. Extrusion Test
15. Hardness
16. Hardness (Mohs')
17. HCl Effervescence
18. Linear Shrinkage, (%)
19. Modulus of Rupture (MOR)
20. Mohs'
21. Molding Behavior
22. Munsell
23. "MW" face brick
24. PCE - Pyrometric Cone Equivalent
25. pH
26. Plasticity
27. Porosity, Apparent
28. Quick Firing
29. Saturation Coefficient
30. Shrinkage
31. Slaking
32. Slow Firing Test
33. Solu-Br. (Solu-Bridge)
34. Soluble Salts
35. Strength
36. "SW" face brick
37. Temp. °F (°C)
38. Water of Plasticity (%)
39. Working Properties (or Workability)
57. HOLKING HOPELLIES (OF WOLKADILLEY)
Ceramic Tests and Analyses of Clays and Shales in
Walker County, Georgia
marker obuilty, Georgia
Data Sources and References Cited

LIST OF ILLUSTRATIONS

riguie	1	Location of warker county Report Area	5
Plate	1	Clay, and Shale Test Locations in Walker	
		County	Pocket

LIST OF TABLES

Table 1	Active Clay and Shale Mines and Pits in Walker County, Georgia	6
Table 2	Summary of 20th Century Clay, and Shale Mines and Companies in Walker County, Georgia.	7
Table 3	Generalized Summary of Stratigraphic Units in Walker County, Northwest Georgia	8
Table 4	Abbreviations for Terms on the Ceramic Firing Test Forms	13

INTRODUCTION

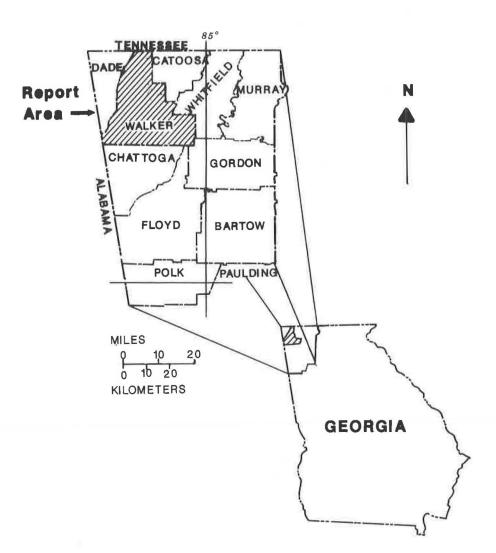
This report presents a compilation of all available published and unpublished ceramic firing tests and related analytical data on samples from Walker County, Georgia. It provides information on mined and/or undeveloped clays, shales and related materials; and is intended for use by geologists, engineers and members of the general public. The report should aid in the exploration for deposits of ceramic raw material with economic potential for future development. This information may also be of use to those who wish to obtain information on the potential use of particular deposits at specific locations.

Tests by the U.S. Bureau of Mines, subsequently referred to as USBM, were performed by the Norris Metallurgy Research Laboratory, Norris, Tennessee and the Tuscaloosa Research Center, Tuscaloosa, Alabama under cooperative agreements with the Georgia Geologic Survey and its predecessors (i.e., the Earth and Water Division of the Ga. Department of Natural Resources; the Department of Mines, Mining and Geology; and the Geological Survey of Georgia). Many of the firing tests were performed on samples collected by former staff members of the Georgia Geologic Survey (and its predecessors) during several uncompleted and unpublished studies. These include work by Bentley (1964), Smith (1968?) and Tadkod (1980). Additional unpublished data presented in this compilation include work by TVA (see Butts and Gildersleeve, 1948, p. 124 and 125). Published data include studies by the following authors: Spencer (1893, p. 217 to 287; chemical analyses only), Veatch (1909, p. 279 to 402), Smith (1931, p. 136 to 172), and Hollenbeck and Tyrrell (1969, p. 6 to 13).

-1-

Regardless of the source, all of the ceramic firing testing data presented in this report are based on laboratory tests that are preliminary in nature and will not suffice for plant or process design. They do not preclude the use of the materials in mixes (Liles and Heystek, 1977, p. 5).

The author gratefully acknowledges the help of many individuals during the preparation of this report and the work of many who contributed to the earlier, unpublished studies included here. The cooperative work of the U.S. Bureau of Mines forms the main data base of this study. During the last several years Robert D. Thomson, Chief of the Eastern Field Operations Center, Pittsburgh, Pennsylvania, was responsible for administering the funding of costs incurred by the USBM. Others in that office who helped coordinate the program were Charles T. Chislaghi and Bradford B. Williams. Since 1966 M.E. Tyrrell, H. Heystek, and A.V. Petty, Ceramic Engineers, and Kenneth J. Liles, Research Chemist, planned and supervised the test work done at the USBM Tuscaloosa Research Center in Tuscaloosa, Alabama. Prior to 1966 this test work was supervised by ceramists H. Wilson, G.S. Skinner, T.A. Klinefelter, H.P. Hamlin and M.V. Denny at the former Norris Metallurgy Research Laboratory in Norris, Tennessee. Tests by the Tennessee Valley Authority were conducted under the supervision of H.S. Rankin and M.K. Banks at the Mineral Research Laboratory on the campus of North Carolina State College, Asheville, North Carolina, using samples collected by S.D. Broadhurst. Additional tests were conducted by professors W.C. Hansard, L. Mitchell, and J.F. Benzel at the Department of Ceramic Engineering, Georgia Institute of Technology, Atlanta, Georgia. The majority of the unpublished tests were performed on samples collected by former staff geologists of the Georgia Geologic Survey, predominantly by J.W. Smith, A.S. Furcron, R.D. Bentley, N.K. Olsen, D. Ray, M.A. Tadkod, and G. Peyton, assisted by C.W. Cressler of the U.S. Geological Survey. N.K. Olsen and C.W. Cressler also have


-3-

provided the author with valuable advice and suggestions regarding sample locations and past studies. The advice and encouragement of my colleagues on the staff of the Georgia Geologic Survey are greatly appreciated. However, the contents of this report and any errors of omission or commission therein are the sole responsibility of the author.

LOCATION OF STUDY AREA

Walker County is located near the northwestern corner of the Valley and Ridge province of northwest Georgia (Fig. 1). One company is currently mining slate in the county, and several operations have been active here in the past (Tables 1 and 2). The most abundant ceramic raw materials in the county are the shales and residual clays derived from the Red Mountain Formation and the Conasauga Group; however, other units such as the Floyd Shale and the Rome, Red Mountain, Pennington and Gizzard Formations, as well as residual clays of the Knox Group, are locally well developed. The general nature of these and other geologic units which occur in the county are summarized on Table 3.

-4-

LOCATION OF WALKER COUNTY REPORT AREA (after Cressler, and others, 1976)

Active Clay and Shale Mines and Pits in Walker County, Georgia*

COMPANY CONTACT

LOCATION OF MINE, PIT OR QUARRY

USE(S) GEOLOGIC AGE-FORMATION

General Shale Products Corp. P. O. Box 3547 Johnson City, TN 37602

Walter Banyas Vice President, Real Estate (615) 282-4661

Bill Cantrell Mining Superintendent (404) 799-0491 Turner mine: 1/2 mile west of Rossville between Burnt & Salem Rds., near Ga.-Tenn. Stateline, 3/4 mile east of Ga. Hwy. 193. (Permit #138) Brick. (Silurian-Red Mountain Formation-shale)

* After Kline and O'Connor, 1981, p. 11.

Summary of 20th Century Clay and Shale Mines and Companies in Walker County, Georgia

- <u>American Sewerpipe Co.</u> (c. 1905), Blowing Springs plant and pits: Sewer pipe, drain tile, and wall coping from alluvial clay and from Red Mountain Formation shale. Acquired by the W.S. Dickey Clay Mfg. Co., c. 1915 (Veatch, 1909, p. 374; Smith 1931, p. 164; Butts and Gildersleeve, 1948, p.97).
- W.S Dickey Clay Manufacturing Co. (c. 1915): Sewer pipe from hauled-in clays and shales. Acquired from American Sewerpipe Co., c. 1915 (Smith, 1931, p. 164; Butts and Gildersleeve, 1948, p. 97).
- *General Shale Products Corp. (Key-James Divn., Tn.), Rossville plant and pits: Brick from Red Mountain Formation shale. Acquired from Key-James Brick Co., c. 1970 (?) 35 acres permitted.
- Key-James Brick Co. (Tn.), LaFayette & Rossville plant and pits: Brick. Acquired by General Shale Products Co., c. 1970 (?)
- Miller-Burns Fire Brick Co. (1902), Rossville (?): Fire brick from Knox Group colluvial chert and clay (Smith, 1931, No. 34, p. 167). See Mission Ridge Brick Co. below.
- J. Milligan (1908?): Colluvial clay (for ceramic products?) pits near Cedar Grove, in McLemore Cove. Ceramic test: Wkr. 09V-4 (Veatch, 1909, p. 375; Butts and Gildersleeve, 1948, p. 97).
- Mission Ridge Brick Co., (1908?), Mission Ridge plant and pits: Face brick from Red Mountain shale. Acquired (from Miller-Burns Fire Brick Co.?) prior to 1909. Abandoned c. 1946(?). Ceramic test: Wkr. 09V-1; (&09V-5?) and Wkr. 31S-34 (Veatch, 1909. p. 280; Smith, 1931, No. 34, p. 167; Butts and Gildersleeve, 1948, p. 96).
- S.N. Worthen (1908?), LaFayette; Pottery and stoneware from Conasauga Group residual clay. Ceramic test: Wkr.09V-3. (Veatch, 1909, p. 374; Butts and Gildersleeve, 1948, p. 96).

NOTE:

The majority of the information for the companies listed above was taken from the Mining Directories (Circular 2, 1st to 18th editions) published by the Georgia Geologic Survey and its predecessors at irregular intervals since 1937. Some additional information came from the "Georgia Surface Mining and Land Reclamation Activities" published annually since 1969 by the Georgia Surface Mined Land Reclamation Program (Environmental Protection Division, Ga. Dept. of Natural Resources). Additional sources of information were found in the references cited at the end of each entry. Uncertainty in the dates is due to incomplete records in the Survey's files.

* Active pit.

Generalized Summary of Stratigraphic Units in Walker County, Northwest Georgia

CHRONOSTRATIGRAPHIC UNIT	STRATIGRAPHIC UNITS - THICKNESS AND ROCK TYPES $1/$
Quaternary (and Tertiary?)	* Various unnamed bodies of alluvial, colluvial and residual material. Largely clay and sand, but also, locally gravel and breccia.
Pennsylvanian	Pottsville Formation * Crab Orchard Mts. Formation (or Group) or Walden Sandstone - Sandstone, shale, coal, conglomerate and limestone. Includes: Rockcastle Member (or Sandstone or Conglomerate) - Approx. 50 ft., predominantly sandstone with dark shale; Vandever Member (or Formation or Shale) - Approx. 400 ft., light to dark shale with interbedded siltstone, fine- grained sandstone, and coal; Newton Member (or Sandstone or Bonair Sandstone) - Approx. 100 ft., cross-bedded sandstone; Whitwell Member (or Shale) - Approx. 200 ft., light-gray to black shale with some siltstone, sandstone and coal; and Sewanee Member (or Conglomerate) - Approx. 250 ft., con- glomeratic sandstone with minor coal. * Gizzard Formation (or Group or Member) or Lookout Sandstone (or Formation) or Pottsville Formation - gray to tan shale, with interbedded siltstone, sandstone, coal and fire clay. Includes: Signal Point Member (or Sandstone) - Approx. 360 ft., shale with some coal; Warren Point Member (or Sandstone) - Approx. 140 ft., con- glomeratic sandstone with minor coal; and Raccoon Mtn. Member (or Formation) - Approx. 175 ft., shale with coal.
Mississippian	 * Pennington Formation (or Shale) - Approx. 100-300 ft., gray, green and red shale. Sandstone present in middle. <u>Bangor Limestone</u> - Approx. 300-480 ft., fine- to coarse-grained gray limestone with interbedded shale at top. <u>Floyd Shale</u> - Approx. 100-2000 ft., silt and clay with some sandstone and limestone. Approximate age-equivalent to <u>Tuscambia Limestone</u> and <u>Monteagle Limestone</u>. <u>Hartselle Formation</u> (or <u>Member or Sandstone</u>) - Approx. 50-300 ft., thin- to thick-bedded sandstone.

.

Generalized Summary of Stratigraphic Units in Walker County, Northwest Georgia (continued)

CHRONOSTRATIGRAPHIC UNIT	STRATIGRAPHIC UNITS - THICKNESS AND ROCK TYPES $\frac{1}{2}$		
Mississippian, cont'd.	Monteagle Limestone - Approx. 250 ft. Includes: <u>Golconda Formation</u> (or <u>Limestone</u>) - Approx. 15-20 ft., green fissile shale containing some thin limestone; <u>Gasper Limestone</u> - Approx. 150 ft., gray, non-cherty limestone; and <u>Ste. Genevieve Limestone</u> - Approx. 245 ft., gray, limestone.		
	<u>Tuscumbia Limestone</u> - Approx. 125 ft. Includes: <u>St. Louis Limestone</u> - Approx. 125 ft., gray, very cherty limestone.		
	Fort Payne Formation (or Chert) - Approx. 10-125 ft., thin- to thick-bedded chert and cherty limestone. Locally includes: *Lavender Shale Member - Approx. 0-100 ft., shale, massive mudstone and impure limestone.		
Devonian	<u>Chattanooga Shale</u> - Approx. 5-10 ft., carbonaceous, fissile black shale. <u>Armuchee Chert</u> - Approx. 50-150 ft., thin- to thick-bedded chert.		
Silurian	**Red Mountain Formation (formerly Rockwood Formation) - Approx. 600-1200 ft., sandstone, red and green shale, with conglomer- ate, limestone and local hematitic iron ore.		
Ordovician	Sequatchie Formation - Approx. 75-250 ft., sandstone, silt- stone, shale, calcareous shale and limestone. (*)Chickamauga Group (or Limestone) - Approx. 400 ft., dominantly limestones with some dolostone and lesser shale, claystone, siltstone, sandstone, anmd bentonite clay horizons. Equivalent, in part, to the Moccasin Limestone and Bays Formation and to the Rockmart Slate and Lenoir Limestone. Includes: Maysville Formation and Trenton Limestone; Lowville-Moccasin Limestone; Lebanon Limestone; and Murfreesboro Limestone. Lenoir Limestone - Approx. 0-100+ ft. Includes: Mosheim Limestone Member - 35 ft.; and Deaton Member - 0-100+ ft.		

Generalized Summary of Stratigraphic Units in Walker County, Northwest Georgia (continued)

CHRONOSTRATIGRAPHIC UNIT	STRATIGRAPHIC UNITS - THICKNESS AND ROCK TYPES $\frac{1}{2}$
Cambrian-Ordovician	<pre>(*)Knox Group - Approx. 2000-4000 ft., dominantly cherty dolo- stone, minor limestone. Includes: <u>Newala Limestone - Approx. 300 ft., limestone and dolostone; Longview Limestone - Approx. 350 ft.; Chepultepec Dolomite - Approx. 800 ft.; and Copper Ridge Dolomite - Approx. 2500 ft.</u></pre>
Cambrian	* <u>Conasauga Group</u> (or <u>Formation</u>) - Approx. 1500-2000 ft., pre- dominantly shale and limestone with minor sandstone. Includes: " <u>Upper Unit</u> " = <u>Nolichucky Shale</u> - and <u>Maryville Limestone</u> ? - Approx. 400-1600 ft.; " <u>Middle Unit</u> " = <u>Rutledge Limestone</u> and <u>Rogersville Shale</u> ? - Approx. 200-400 ft.; and " <u>Lower Unit</u> " = <u>Pumpkin Valley Shale</u> and <u>Honaker Dolomite</u> ? - Approx. 300-500 ft. <u>Rome Formation</u> - Approx. 500-1000 ft., shale, and interbedded sandstone, siltstone and quartzite.

NOTES:

* = Some ceramic firing tests have been made on slate, shales and clays of this unit.
 (*) = Same as the above, but for residual clays only.

** = Numerous firing tests have been made on this unit.

1/ Descriptions based on data in Bergenback and others, 1980; Butts and Gildersleeve, 1948; Chowns, 1972, 1977; Chowns and McKinney, 1980; Crawford, 1983; Cressler 1963, 1964a and b, 1970, 1974; Cressler and others, 1979; Croft, 1964; Georgia Geologic Survey, 1976; Gillespie and Crawford, in press; Thomas and Cramer, 1979.

EXPLANATION OF KEY TERMS ON THE CERAMIC TEST AND ANALYSES FORMS

The test data and analyses which are presented here were compiled on a set of standardized forms (Ceramic Tests and Analyses) in the most concise manner consistent with the various laboratories represented. These forms are modified in large part after those used by the Pennsylvania Geological Survey (e.g., O'Neill and Barnes, 1979, 1981).

It should be noted that, although the great majority of these tests were performed by the USBM, it was decided not to reproduce their data forms directly for several reasons. First, the USBM forms contain several entries which are not essential to this project (e.g., Date received) or do not make the most efficient use of space. Second, the USBM forms have been changed several times over the span of decades covered by the present compilation. Finally, investigators from other laboratories have reported parameters which were not measured by the USBM.

The paragraphs which follow briefly describe, in alphabetical order, the more critical entries on the forms, the nature of the information included and, where possible, the various factors and implications to be considered in their interpretation. Many of the particular comments here are based on descriptive information published in the following sources. Tests by Georgia Geologic Survey authors are described in Veatch (1909, p. 50 to 64) and in Smith (1931, p. 19 to 25), while the particulars of the USBM studies are given in Klinefelter and Hamlin (1957, especially p. 5 to 41) and in Liles and Heystek (1977, especially p. 2 to 16). The discussions which follow are not intended to be exhaustive but are merely meant to remind the reader,

-11-

and potential user, of the key aspects of the information presented. Various technical texts and reports should be consulted for more detailed information (e.g., Clews, 1969; Grimshaw, 1972; Jones and Beard, 1972; Norton, 1942; Patterson and Murray, 1983). The abbreviations used on these test forms are defined in Table 4.

1. Absorption (%)

The absorption is a measure of the amount of water absorbed by open pores in the fired specimen and is given as a percentage of the specimen's dry weight. For slow firing tests, it is measured on fired specimens which have been boiled in water for 2 to 5 hours and then kept immersed in the water for up to 24 hours while cooling (Smith, 1931, p. 22; Klinefelter and Hamlin, 1957, p. 27-28; Liles and Heystek, 1977, p. 3). For the quick firing tests, however, the specimens are not boiled but only cooled and then immersed in water for 24 hours (Liles and Heystek, 1977, p. 4).

The absorption gives an indication of the amount of moisture which may be absorbed and subject to destructive freezing in outdoor structures. Less than 22% absorption is considered promising for slow-fired materials.

2. Appr. Por. (%) - Apparent Porosity, Percent

The apparent porosity is a measure of the amount of open pore space in the fired sample, relative to its bulk volume, and is expressed as a percent. As in the case of absorption values, it is based on the weight and volume of the specimen which has been boiled in water for 2 to 5 hours and then kept immersed in water for several hours as it cools (Klinefelter and Hamlin, 1957, p. 27 to 28; Liles and Heystek,

-12-

Abbreviations for Terms on the Ceramic Firing Test Forms

ABBREVIATIONS

Appr. Por. = Apparent Porosity App. Sp. Gr. = Apparent Specific Gravity Btw. = Bartow County °C = Degrees Celsius Ct. = Catoosa County Cht. = Chattooga County Dd. = Dade County Dist. = District DTA = Differential Thermal Analysis E. = East[°]F = Degrees Fahrenheit F1. = Floyd County g/cm^3 = Grams per cubic centimeter Gdn. = Gordon CountyLab. & No. = Laboratory (name) and number (assigned in laboratory) Lat. = Latitude LOI = Loss on Ignition Long. = Longitude lb/in^2 = Pounds per square inch $1b/ft^3 =$ Pounds per cubic foot Mry. = Murray County N. = North NE. = Northeast NW. = Northwest org. = Organic Plk. = Polk County $S_{\cdot} = South$ SE. = Southeast SW. = Southwest Sec. = Section

Table 4. Abbreviations for Terms on the Ceramic Firing Test Forms (continued)
7 1/2' topo. quad. = 7 and 1/2 minute topographic quadrangle
Temp. = Temperature
TVA = Tennessee Valley Authority
USBM = U.S. Bureau of Mines
USGS = U.S. Geological Survey
W. = West
Wkr. = Walker County
Wf. = Whitfield County
XRD = X-ray diffraction

1977, p. 3). The apparent porosity is an indication of the relative resistance to damage during freezing and thawing. Less than 20% apparent porosity is considered promising for slow-fired materials (0'Neill and Barnes, 1979, p. 14, Fig. 4).

3. App. Sp. Gr. - Apparent Specific Gravity

As reported in earlier USBM studies, the apparent specific gravity is a measure of the specific gravity of that portion of the test specimen that is impervious to water. This is determined by boiling the sample in water for 2 hours and soaking it in water overnight or 24 hours (Klinefelter and Hamlin, 1957, p. 27 to 28). These data were replaced by bulk density and apparent porosity measurements after the USBM moved its laboratories from Norris, Tennessee to Tuscaloosa, Alabama in 1965.

4. Bloating

Bloating is the term given to the process in which clay or shale fragments expand (commonly two or more times their original volume) during rapid firing. It results from the entrapment of gases which are released from the minerals during firing but which do not escape from the body of the host fragment due to the viscosity of the host at that temperature. Bloating is a desirable and essential property for the production of expanded lightweight aggregate where an artificial pumice or scoria is produced. Expanded lightweight aggregate has the advantages of light weight and high strength compared to conventional crushed stone aggregate. Bloating is not desirable, however, in making other structural clay products such as brick, tile and sewer pipe where the dimensional characteristics must be carefully controlled. In these cases bloating is extremely deleterious since it leads to variable and uncontrollable warping, expansion and general disruption of the fired clay body (Klinefelter and Hamlin, 1957, p. 39-41).

5. Bloating Test (or Quick Firing Test)

The Bloating Test refers to the process of rapidly firing (or "burning") the raw sample in a pre-heated furnace or kiln to determine its bloating characteristics for possible use as a lightweight aggregate. Although specific details of the different laboratory methods vary, all use several fragments of the dried clay or shale placed in a refractory plaque (or "boat") which in turn is placed in the pre-heated furnace for 15 minutes (Klinefelter and Hamlin, 1957, p. 41; Liles and Heystek, 1977, p. 4).

6. Bulk Density (or Bulk Dens.)

The bulk density is a measure of the overall density of the fired specimen based on its dry weight divided by its volume (including pores). Determinations are the same for slow firing and quick firing test samples, although for the latter the results are given in pounds per cubic inch as well as grams per cubic centimeter units (Klinefelter and Hamlin, 1957, p. 27 to 28 and 41; Liles and Heystek, 1977, p. 3 and 4). If quick-fired material yields a bulk density of less than 62.4 lb/ft³ (or if the material floats in water), it is considered promising for lightweight aggregate (K. Liles, oral communication, 1984).

7. Color

The color of the unfired material, unless otherwise stated, represents the crushed and ground clay or shale. In most cases this is given for descriptive purposes only since it is generally of no practical importance for ceramic applications (only the fired color is significant). Here only broad descriptive terms such as light-brown, cream, gray, tan, etc. are used. Fired colors are more critical and therefore more specific descriptive terms and phrases are used (Klinefelter and Hamlin, 1957, p. 18 and 19). In many cases the Munsell color is given for a precise description (see discussion below).

8. Color (Munsell)

This is a system of color classification based on hue, value (or brightness) and chroma (or purity) as applied to the fired samples in this compilation. It was used by Smith (1931, p. 23-25) and by the

-16-

USBM since the early 1970's (Liles and Heystek, 1977, p. 3; Liles, oral communication, 1982). In all other cases the fired color was estimated visually.

9. Compilation Map Location No.

This number or code was assigned by the author to provide a systematic designation to be used in plotting sample locations on the base maps as shown by the typical example below.

Example:		Map Locn.	No.	Wkr.	31	S-	26	a
County	Name – Abbreviat: (Walker)	ion						
Date	(1931).							
	thor's last initia or published data					ļ		
	Sample sequence n # per location)							
	Designation used of more than one	•		on.				

The map location number Wkr. 31S-26a is derived from the county name (e.g., Wkr. for Walker County), the year the tests were performed (e.g., 31 for 1931) plus the last initial of the author for major published sources (e.g., S for Smith), followed by a sequence number assigned in chronological order or sequential order for published data. (The only exceptions to this are the tests reported in Smith, 1931, wherein the sequence number of the present report is the same as the "Map location No." of Smith.) Each map location number represents a specific location, or area, sampled at a particular time. In cases where several separate samples were collected from a relatively restricted area, such as an individual property, such samples are designated a, b, c, etc. Different map location numbers have been assigned to samples which were collected from the same general locality, such as a pit or quarry, but which were collected by different investigators at different times.

10. Cone

Standard pyrometric cones, or cones, are a pyrometric measure of firing temperature and time in the kiln. They are small, three-sided pyramids made of ceramic materials compounded in a series, so as to soften or deform in progression with increasing temperature and/or time of heating. Thus, they do not measure a specific temperature, but rather the combined effect of temperature, time, and other conditions of the firing treatment. The entire series of cones ranges from about 1112°F (600°C) to about 3632°F (2000°C) with an average interval of about 20°C between cones for a constant, slow rate of heating (Klinefelter and Hamlin, 1957, p. 29). For the past several decades the use of these cones has been limited to the Pyrometric Cone Equivalent (PCE) test (Liles and Heystek, 1977, p. 16). However, all of the ceramic firing tests reported by Veatch (1909) and Smith (1931) as well as some of the earliest USBM tests report firing conditions in terms of the standard cone numbers.

11. Drying Shrinkage

The drying shrinkage is a measure of the relative amount of shrinkage (in percent) which the tempered and molded material undergoes

-18-

upon drying. Although there are a variety of ways by which this can be measured, in this report the shrinkage values represent the percent linear shrinkage based on the linear distance measured between two reference marks or lines imprinted on the plastic specimen before drying. Even though the methods have varied in detail, the drying is usually accomplished in two stages: first, by air drying at room temperature (usually for 24 hours) and second, by drying in an oven followed by cooling to room temperature in a desiccator (Klinefelter and Hamlin, 1957, p. 30-31; Liles and Heystek, 1977, p. 3). In most cases the heating was at 212°F (100°C) for 24 hours; however, studies by Smith (1931, p. 20 and 21) employed 167°F (75°C) for 5 hours followed by 230°F (110°C) for 3 hours.

12. Dry Strength

The dry strength (or green strength) is a measure of the apparent strength of the clay or shale after it has been molded and dried. Unless otherwise indicated, it represents the tranverse, or crossbreaking, strength as opposed to either tensile strength or compressive strength. For the great majority of cases only the approximate dry strength is indicated as determined by visual inspection, using such terms as low, fair, good, or high (Klinefelter and Hamlin, 1957, p. 32-33; Liles and Heystek, 1977, p. 2). Smith (1931, p. 12-13) reports a quantitative measurement of this strength using the modulus of rupture (MOR) expressed in units of pounds per square inch (psi).

13. Extrusion Test

More extensive tests are sometimes made on clays and shales which

-19-

show good plasticity and long firing range in the preliminary test. In the Extrusion Test several bars are formed using a de-airing extrusion machine (i.e., one which operates with a vacuum to remove all possible air pockets). These bars are fired and tested for shrinkage, strength (modulus of rupture) and water saturation coefficient (Liles and Heystek, 1977, p. 8).

14. Firing Range

The term firing range indicates the temperature interval over which the material shows favorable firing characteristics. For slowfired materials such desirable qualities include: a) good strength or hardness; b) good color; c) low shrinkage; d) low absorption; and e) low porosity. For quick-fired materials these include: a) good pore structure; b) low absorption; and c) low bulk density. For slow-firing and quick-firing tests the firing range should be at least 100°F (55°C) to be considered promising (0'Neill and Barnes, 1979, p. 15-18).

15. Hardness

The hardness, as measured on fired materials, indicates the resistance to abrasion or scratching. It is designated either in verbal, descriptive terms or in numerical terms using Mohs' hardness (Liles and Heystek, 1977, p. 3). It is used as an indication of the strength of the fired materials. Smith (1931), however, measured the fired strength with the modulus of rupture.

16. Hardness (Mohs')

The hardness of fired specimens using the Mohs' scale of hardness

is currently used by the USBM as a numerical measure of the fired bodies' strength (Liles and Heystek, 1977, p. 3). The values correspond to the hardness of the following reference minerals:

Mohs' Hardness No.	Reference Minerals
1	Talc
2	Gypsum
3	Calcite
4	Fluorite
5	Apatite
6	Orthoclase
7	Quartz
8	Topaz
9	Corundum
10	Diamond

A Mohs' hardness greater than 3 is considered promising for slowfired materials.

17. HCl Effervescence

The effervescence in HCl is visually determined as none, slight or high based on the reaction of 10 ml of concentrated hydrochloric acid added to a slurry of 10 grams powdered clay or shale (minus 20 mesh) in 100 ml of water (Klinefelter and Hamlin, 1957, p. 17; Liles and Heystek, 1977, p. 4). This test gives a general indication of the amount of calcium carbonate present in the sample. An appreciable effervescence could be an indication of potential problems with lime pops and/or frothing of slow-fired ceramic products.

18. Linear Shrinkage, (%)

The term linear shrinkage represents the relative shrinkage of the clay body after firing. In most cases it represents the percent total linear shrinkage from the plastic state and is based on measurements between a pair of standard reference marks imprinted just after molding (Klinefelter and Hamlin, 1957, p. 30-32; Liles and Heystek, 1977, p. 3). (Also see the discussion under Drying Shrinkage.) Smith (1931, p. 22) gives the shrinkage relative to both the dry, or green, state (under the column headed Dry) as well as the plastic state (under the column headed Plastic). A total shrinkage of 10% or less is considered promising for slow-fired materials.

19. Modulus of Rupture (MOR)

The modulus of rupture is a measure of the strength of materials (for crossbreaking or transverse strength in this compilation) based on the breakage force, the distance over which the force was applied and the width and thickness of the sample. The MOR is expressed in psi units (pounds per square inch) for the limited MOR data reported here (determined by Smith, 1931, p. 21 and 23).

20. Mohs'

See Hardness (Mohs').

21. Molding Behavior

See Working Properties.

22. Munsell

See Color (Munsell).

23. "MW" face brick

"MW" stands for moderate weather conditions. This is a grade of brick suitable for use under conditions where a moderate, non-uniform degree of frost action is probable (Klinefelter and Hamlin, 1957, p. 36 and 37; ASTM Annual Book of Standards, 1974). (Also see "SW" face brick.)

24. PCE - Pyrometric Cone Equivalent

The PCE test measures the relative refractoriness, or temperature resistance, of the clay or shale; it is indicated in terms of standard pyrometric cones. The value given is the number of the standard pyrometric cone which softens and sags (or falls) at the same temperature as a cone made from the clay or shale being studied. These tests are usually only made on refractory materials which show favorable potential in the preliminary slow firing tests (i.e., high absorption, low shrinkage, and light fired color). The results are usually given for the upper temperature range Cone 12 (1337°C; 2439°F) to Cone 42 (2015°C; 3659°F) where the temperature equivalents are based on a heating rate of 150°C (270°F) per hour. With increasing temperature resistance the sample is designated as either a low-duty, medium-duty, high-duty, or super-duty fire clay (Klinefelter and Hamlin, 1957, p. 29-30 and 57-58; Liles and Heystek, 1977, p. 16).

25. pH

The pH is a measure of the relative acidity or alkalinity with values ranging from 0 to 14. (A pH of 7 is neutral. Values greater than this are alkaline whereas those which are less than 7 are acid.) Most of the ceramic tests by the USBM presented here show pH values as determined on the crushed and powdered raw material (in a water slurry) prior to firing (Klinefelter and Hamlin, 1957, p. 28; Liles and Heystek, 1977, p. 4).

-23-

Strongly acid or alkaline pH values may give some indication of potential problems with efflorescence and scum due to water-soluble salts in the clay. Unfortunately, no simple and direct interpretation is possible from the pH data alone. The best method for determining these salts is through direct chemical analysis as described under Soluble Salts. (Also see Solu-Br.)

26. Plasticity

See Working Properties.

27. Porosity, Apparent

See App. Por.

28. <u>Quick Firing</u> See Bloating Test.

29. Saturation Coefficient

The saturation coefficient is determined only for specimens which have undergone the more extensive Extrusion Test. It is determined by submerging the fired specimen in cool water for 24 hours, followed by submerging the specimen in boiling water for 5 hours. The saturation coefficient is found by dividing the percent of water absorbed after boiling into the percent of water absorbed after the 24-hour submergence (Liles and Heystek, 1977, p. 8).

30. Shrinkage

See Drying Shrinkage and Linear Shrinkage.

31. Slaking

See Working Properties.

32. Slow Firing Test

Slow Firing Test refers to the process of firing ("burning") the dried specimen in a laboratory furnace or kiln. Although specific details of the different laboratory methods vary, all specimens are started at room temperature and are slowly heated to the desired temperature over a specific interval of time.

The majority of the slow firing tests by the USBM reported here were made using 15-minute draw trials. In this method a set of molded and dried test specimens are slowly fired in the kiln or furnace. The temperature is gradually raised to 1800°F (982°C) over a period of 3 to 4 hours (to avoid disintegration of the specimen as the chemically combined water is released) and the temperature is held constant for about 15 minutes. One specimen is removed from the kiln (a draw trial) and the temperature is raised to the next level (usually in intervals of 100°F). At each interval the temperature is again held constant for a 15-minute soak and then one specimen is withdrawn. This process is repeated until the final temperature is achieved (usually 2300 or 2400°F; 1260 or 1316°C) - see Klinefelter and Hamlin (1957, p. 19 and 30). The disadvantage of this draw trial method is that it tends to underfire the specimens, compared to the industrial process, since they are soaked for a relatively short time and quickly cooled by removal from the kiln.

Since the early 1970's the USBM has abandoned the draw trials and has adopted a method which more closely resembles the conditions of

-25-

commercial manufacture. As described by Liles and Heystek (1977, p. 2 and 3), one of the test specimens is slowly fired, over 24 hours, to 1832°F (1000°C), where it is held for a one-hour soak. The kiln is then turned off, but the specimen remains in the kiln as it slowly cools. (This gives a much closer approximation of most commercial firing processes.) This is subsequently repeated, one specimen at a time, for successive 50°C intervals usually up to 2282°F (1250°C). Unfortunately, only a relatively small part of the current data set is represented by USBM tests using this newer method.

The firing test methods used by Smith (1931, p. 21 and 22) are somewhat intermediate to the two methods described above. First, the specimens were slowly fired from 200 to 1200°F (93 to 649°C) over a period of 11 hours. The temperature was subsequently increased at a rate of 200°F per hour for approximately 4 hours followed by 100°F per hour until final temperature conditions were reached. At these later stages firing conditions were monitored using standard pyrometric cones The maximum firing temperature was determined from in the kiln. observed pyrometric cone behavior. This temperature was based on the temperature equivalent to 2 cones below the desired final cone. The kiln temperature was then held constant until the desired cone soaked Test specimens were then removed from the kiln and allowed to down. Smith's firings averaged about 17 hours in the kiln and all cool. specimens were fired to cones 06, 04, 02, 1, 3 and 5 wherever possible. No specific information is available on the methods employed by Veatch (1909) or the unpublished data from TVA or Georgia Tech.

33. Solu-Br. (Solu-Bridge)

Solu-Bridge measurements were used in the 1950's and 60's by the

-26-

USBM as a measure of the soluble salts (e.g., calcium sulfate) in the unfired raw material which might cause scum and efflorescence on fired "The solubridge and pH readings show the higher alkali products. samples. Solubridge determinations give the water soluble part of the alkalis and readings above 1.5 indicate fairly high soluble salt content. Clays containing high alkalies have rather short maturing temperatures and require closer firing control. The alkalis also influence the color and lower the vitrification temperature." (H.P. Hamlin, written communication, 1957). In this method the pulverized clay or shale is boiled in water, left to stand overnight, and The content of soluble salts in the solution is then filtered. measured using the Solu-Bridge instrument readings applied to suitable calibration tables (Klinefelter and Hamlin, 1957, p. 28-29). These data are no longer collected because consistent and meaningful results are difficult to achieve.

34. Soluble Salts

Excessive water-soluble salts can cause problems with efflorescence or scum on fired clay products. (More than 3 to 4% calcium sulfate, and 1/2% magnesium or alkali sulfates are considered excessive.)

The most accurate determinative method is to boil the finely powdered sample in distilled water for 1/2 to 1 hour and let it soak overnight. The decanted solution is then analyzed for the soluble salts using standard chemical methods. The Solu-Bridge readings may also be used as a general measure of the soluble salts (Klinefelter and Hamlin, 1957, p. 28).

-27-

35. Strength

See Dry Strength and Modulus of Rupture.

36. "SW" face brick

"SW" stands for severe weather conditions. This is a grade of brick suitable for use under conditions where a high degree of frost action is probable (Klinefelter and Hamlin, 1957, p. 36 and 37, and theASTM Annual Book of Standards, 1974). (Also "see "MW" face brick.)

37. <u>Temp. °F (°C)</u>

The temperature at which the material was fired (both slow and quick firing tests) is given in Fahrenheit (°F) followed by the Celsius (°C) conversion in parentheses. In cases where only pyrometric cone values are available, the approximate temperature is given on the form and is based on the table of temperature equivalents in Norton (1942, p. 756, Table 128) or in Veatch (1909, p. 57).

38. Water of Plasticity (%)

This is a measure of the amount of water (as weight percent relative to the dry material) required to temper the pulverized raw clay or shale into a plastic, workable consistency. This is not a precise measurement, being dependent upon the experience of the technician, the type of equipment used and the plasticity criteria. In most cases it represents the amount of water necessary for the material to be extruded into briquettes from a laboratory hydraulic ram press. In general, high water of plasticity values tends to correlate with a greater degree of workability, higher plasticity and finer grain size. Unfortunately, high values also correlate with a greater degree of shrinkage,

-28-

warping and cracking of the material upon drying. (See Klinefelter and Hamlin, 1957, p. 20-22; Liles and Heystek, 1977, p. 2.)

39. Working Properties (or Workability)

This area of working properties includes comments on the slaking, plasticity, and molding, or extruding behavior of the tempered material (Klinefelter and Hamlin, 1957, p. 5, 19-22 and 33-34). The term slaking refers to the disintegration of the dry material when immersed in water. It may range in time from less than a minute to weeks, but generally in the present report it is given only a relative designation such as rapid, slow, or with difficulty. Plasticity likewise is designated in a comparative manner in order of decreasing plasticity: plastic, fat (or sticky), semiplastic, short (or lean), semiflint and flint. Molding behavior is referred to as good, fair, or poor and is a general designation for the ease with which the material can be molded into test bars or briquettes.

These working properties are very imprecise and strongly dependent upon the judgement and experience of the operator. They do, however, give a general indication of how the material might respond to handling in the industrial process.

-29-

-30-

w

Ceramic Tests and Analyses of Clays and Shales in Walker County, Georgia *

^{*} The data presented in this report are based on laboratory tests that are preliminary in nature and will not suffice for plant or process design.

Material _	Clay (r	esidual).		Compilation Ma	ap Location N	0. <u>Wkr.09V-1</u>	
County _	Walker.			Sample Number			
Raw Propert	ies:		Lab & No.	Ga. Survey, #:	105.		
Date Reported 1909. Ceramist O. Veatch. Ga. Survey.							
Water of Pl	Water of Plasticity % Working Properties Very poor plasticity.						
Color _Whit	Color _White (?). Drying Shrinkage 2.6 % Dry Strength (tensile) not exceed						
Slow Firing	Tests:				<u>15 psi.</u>		
Approx. Temp. °F (°C)	Color	Hardness	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data:	
						Remarks	
2210 (1210) (Cone 4)	-	-	1	-	Quite porous	-	
2498 (1370) (Cone 12)	-	Good	5.5	-	-	-	
3146 (1730) (Cone 30)	-	-	-	-	-	Melted to a glass	
	The clay	does not cr	ack or warp o	on firing at an	y of the abov	e cones.)	

Remarks / Other Tests The clay was blended with about 1/3 residual plastic clay and fired at Cone 2 to manufacture a soft and friable fire brick at the Mission Ridge Fire Brick Company; however, they used the above fire clay in its original state with coarse chert particles and not finely ground as in the above (Veatch, 1909, p. 281).

locn. no. Wkr.09V-1, cont.

Crushing Characteristics (unfired material)	-		
Particle Size40 mesh. Retention Time			
Chemical & Mineralogical Data:			
Chemical Analysis Oxide Weight %	Mineralogy: Mineral	volume %	
sio ₂ 85.00			
Ti0 ₂ 0.28	Quartz (chert)	80-90	
Al ₂ 0 ₃ 9.72	Feldspar		
$Fe_20_3(total)$ 1.35	Carbonate		
Fe0 -	Mica		
MnO trace	Chlorite-		
MgO 0.00	vermiculite		
CaO trace	Montmorillonite	10.00	
Na ₂ 0 trace	Others (clays ?)	10-20	
K ₂ 0 0.44 P ₂ 0 ₅ 0.00			
$P_2 0_5 0.00$ S (total) 0.00			
C (org.) -	Total	100	
CO ₂ -	10041	100	
H ₂ 0 ⁻ 0.34			
H ₂ ² 0 ⁺ –			
Ignition			
loss 3.16			
Total 100.30			
Analyst E. Everhart, Ga. Survey (in Veatch, 1909, p. 281 and App. B, #105, p.416-417).	0. Veatch, Ga. Surve	<u>ey.</u>	
Date <u>c. 1909.</u>	c.1909.		
Method Standard "wet".	Visually estimated.		
Sample Location Data:			
County Walker. Land Lot,	Sec, Dist.	··	
7 1/2' topo quad. <u>Ft. Oglethorpe (Cntr.)</u> .	Lat, Lor	ng	
Field No, Collected by	O. Veatch. Da	ate <u>c. 1909.</u>	
Sample Method <u>Grab (?)</u> . Weathe	ering/alteration <u>Resi</u> cher		
Structural Attitude No visible stratification			
Stratigraphic Assignment Recent (to Eocene	?) residual clay from ician) chert and dolos		
Sample Description & Comments Sample from			
of the brick plant of the Mission Ridge Fire	e Brick Company which	is located on the	
Central of Ga. Railroad, 8 miles south of Ch			
heterogeneous mass of white, drab, yellow an			
The clay is locally concentrated in pockets			
to angular boulders up to 2 feet long (Veato	ch, 1909, p. 280 and 2		
Compiled by B. J. O'Connor Dat	te 06-09-88	-	

Material	Clay (und	lerclay).		Compilation Mag	p Location No	. <u>Wkr.09V-2</u>
County	Walker.			Sample Number	-	
Raw Proper	ties:		Lab & No.	Ga.Survey, #10	8	
Date Repor	ted		_ Ceramist _	O. Veatch, Ga.	Survey.	
Water of P	lasticity		Working Pro	operties		
Color -		Drying Shrin	nkage	% Dry Stren	gth	
Slow Firin	g Tests:					
Approx. Temp. °F (°C)	Color	Hardness	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data:
2822 (1550) (Cone 21)	-	***	-	-	-	Remarks Completely fused

Remarks / Other Tests The sample is not sufficiently refractory to be used as a fire clay although it is in the appropriate stratigraphic position where fire clays have been mined in adjacent states (Veatch, 1909, p. 107 and 282). It may be used for making other less refractory heavy clay products like brick.

locn. no. Wkr.09V-2, cont.

Crushing Characteristics (unfired material) _____

Particle Size _____ Retention Time _____

Chemical & Mineralogical Data:

Chemical Analysis	Mineralogy Not deter	mined.
Oxide Weight %	Mineral	volume %
SiO ₂ 69.61		
TiO ₂ 1.38	Quartz	
A1 ₂ 0 ₃ 16.72	Feldspar	
$Fe_{2}O_{3}(total)$ 3.38	Carbonate	
FeÖ –	Mica	
MnO 0.08	Chlorite-	
MgO trace	vermiculite	
CaO trace	Montmorillonite	
Na ₂ 0 0.28	Others	
к ₂ б 1.81		
$P_{2}^{2}0_{5}$ -		
$P_2^{0_5}$ - S (total) 0.02	Total	
C (org.) -		
CO ₂ -		
$H_2 0^-$ 1.74		
H ₂ 0 ⁺ -		
Ignition		
loss 5.35		
Total 100.37		
10000		
Analyst E. Everhart, Ga. Survey (<u>in</u> Veatch,	1909, Арр. В, #108, j	p. 416-417).
Date <u>c.1909</u>		
Method Standard "wet".		
Sample Location Data:		
County <u>Walker</u> . Land Lots 10, 298, 314, and 315,	Sec Dist	••
7 1/2' topo quad. Durham (N. edge) . La	at, Lor	ng
Field No, Collected by	O. Veatch. Da	ate <u>c. 1909.</u>
Sample Method <u>Grab (?).</u> Weathe	ering/alteration	-
Structural Attitude <u>(Probably very nearly b</u>	lat-lying.)	
Stratigraphic Assignment <u>Underclay (Walden</u>	Sandstone?) late Penn	nsylvanian.
Sample Description & Comments Sample is fro	m clay underlying the	a coal at the mines
of the Durham Coal & Coke Company on Lookout		
to semi-indurated and about 2 feet thick (Ve	atch 1909 n 107 n	nd 282). The coal
mines at this locality are described by McCa		
mines at this locality are described by Meda	inte (1904) p. 34-40,	/ •

Compiled by B. J. O'Connor Date 06-09-88

Material <u>Clay</u> , residua	al (Conasauga).	Compilation Mag	p Location No.	Wkr.09V-3
County Walker.		Sample Number	-	_
Raw Properties:	Lab & No	Ga. Survey.		
Date Reported1909.	Ceramist	O. Veatch, Ga.	Survey.	
Water of Plasticity	%Working Prop	perties <u>Very p</u> qualit		nolding
Color Almost white Dry (Cream colored when wet). Slow Firing Tests:	ying Shrinkage			81 psi.
	ness Linear Shrinkage, %		Appr. Por. %	Other data:
°F (°C)				Remarks
2174 Gray - (1190) (Cone 3)	2.7	=	-	Very dense
2318 Darker Vitr (1270) gray (Cone 7)	ified 4.1	-	-	-

(Clay does not warp or crack when fired to the above conditions.)

Remarks / Other Tests If properly fired this clay is suitable for a good grade of stoneware. It was used at a nearby stoneware pottery at the time these tests were run (Veatch, 1909, p. 374 and 375).

locn. no. <u>Wkr.09V-3</u>, cont.

Crushing	g Charac	teristics	(unfired ma	aterial)				
Particle	e Size _	_	Retention	Time				
Chemical	& Mine	ralogical	Data: Not	determin	ned.			
Chemical Oxide SiO ₂ TiO ₂	Analys	is Weight %			Mineralogy Mineral Quartz		volume %	
A1203 Fe203 Fe0					Feldspar Carbonate Mica			
MnO MgO CaO Na ₂ O K ₂ O					Chlorite- vermiculit Montmorillon Others			
	(total) (org.)				Total			
CO ₂ H ₂ O ⁻ H ₂ O ⁺ Ignition loss	1							
Total								
Analyst					n			
Date					Long to the second s			
Method _						and the second second		
Sample I	ocation	Data:						
County _	Walker.		Land Lot	,	Sec.	_, Dist.	·•	
7 1/2' t	opo qua	d. LaFaye	tte (former	ly Estel	lle). Lat.		Long.	,
Field No		-	, Colle	ected by	O. Veatch.	Da	te <u>c. 1909.</u>	
Sample M	lethod _	Grab (?).		Weathe	ering/alterat	ion <u>Resid</u> shale	ual clay (fro	<u>m</u>
Structur	al Atti	tude						
Stratigr	aphic A	ssignment			ne?) residual shale (Cambr		ived from partly colluv	ial?
clay tha	t occur	s along a	ents Sampl small brand	e is fro h or cre	om a yellowis eek. It is a	h to blui n alterat	sh white plas ion product o s been used b	tic f the
Mr. S. N is expos for the	Worth and and needs	en for his the overal of a potte	stoneware 1 extent of ry." (Veato	pottery the dep	operation. posit "is not	About 5 t great, b	o 6 feet of c out is suffici e locality is	lay
		J. O'Conn		Dat	e 12-1081	Andreas - Second		

Material <u>Clay</u> ,	colluvial.		_ Compilation Ma	p Location No	$\frac{Wkr.09V-4}{}$
County Walke	r.		Sample Number	-	
Raw Properties:		Lab & No.	Ga. Survey #10)6.	
Date Reported	1909.	Ceramist	O. Veatch, Ga.	Survey.,	
Water of Plastic	ity	_% Working Pr	coperties <u>Very</u>	plastic.	
Color <u>Gray.</u> Slow Firing Test		inkage	5.8 % Dry Stren	ngth (tensile) (maximum)) 225 psi.).
Approx. Color Temp. °F (°C)	Hardness		Absorption % %		data:
2318 Light gr (1270 (Cone 7)	ay Vitrified	1	đ	-	Remarks Slight swelling

Remarks / Other Tests The clay is not refractory and is definitely not a fire clay however, it could be used in stoneware and terra cotta mixtures particularly if it were located near a cheap source of transportation such as a railroad line (Veatch, 1909, p. 375).

Crushing Characteristics (unfired material)	
Particle Size Retention Time	
Chemical & Mineralogical Data:	
Chemical Analysis Oxide Weight %	Mineralogy: <u>Not determined.</u> Mineral volume %
SiO ₂ 69.33 TiO ₂ -	
A1 ₂ 0 ₃ 19.01	Quartz Feldspar
Fe ₂ 0 ₃ (total) 2.02	Carbonate Mica
FeO - MnO -	Chlorite-
MgO 0.87	vermiculite
CaO trace	Montmorillonite
Na ₂ 0 0.18	Others
K ₂ 0 2.10	
P ₂ 0 ₅ -	
S (total) -	Total
C (org.) -	
$\begin{array}{c} CO_2 & - \\ H_2 O^- & 0.26 \end{array}$	
H ₂ 0 ⁻ 0.26 H ₂ 0 ⁺ -	
Ignition	
loss 6.88	
Total 100.65	
Analyst (in Veatch, 1909, p. 375 and Append	ix B,
No. 106, p. 426 and 417; from Spenc	er,1893, p. 286).
Date <u>c. 1893.</u>	
Method Standard "wet"	Mar and a second se
Sample Location Data:	
County Walker. Land Lot 138(?),	Sec, Dist
7 1/2' topo quad. Cedar Grove (NE.1/4) . L	at, Long
Field No, Collected by	O. Veatch and J. W. Spencer.Date c. 1909 and c. 1893.
Sample Method _Grab (?). Weath	ering/alteration Weathered colluvial clay.
Structural Attitude	
Stratigraphic Assignment Recent (?) colluv but a short dista	
Sample Description & Comments A bluish-whi	
perty near Cedar Grove in "McLamore" (now M	
mined and shipped in small quantities, but	
it of little value." The analysis given by	
this or similar clays in the vicinity (Veat	ch. 1909, p. 375).

Compiled by B. J. O'Connor

Date 12-11-81

MaterialShale (R	ed Mountain).		_ Compilation Ma	up Location No	Wkr.09V-5	
County Walker.		-	Sample Number		<i>i</i> .	
Raw Properties:		Lab & No.	Ga. Survey, #1		· · · · · · · · · · · · · · · · · · ·	
Date Reported	09.	Ceramist	O. Veatch, Ga.	Survey.		
Water of Plasticity26 % Working PropertiesFair plasticity; poor slaking; fine-grained texture.ColorYellow or yellow-brown.Drying Shrinkage5 % Dry Strength (tensile) 25 prs.Slow Firing Tests:						
Approx. Color Temp. °F (°C)		Linear brinkage, %	Absorption % %	Appr. Por. %	Other data: Remarks	
1850 Red (1010) (Cone 07)	Good brick hardness	0.4		-	-	
1922 Red (1050) (Cone 05)	-	0.7	-	-	-	
2102 Dark red (1150) (Cone 1)	Vitrified	-	-	-	Showed warping	
2174 - (1190) (Cone 3)	-	-	-	-	Burned to a cinder	

Remarks / Other Tests This shale should be good for making common building brick and it was used to a small extent by the Mission Ridge Fire Brick Company according to Veatch (1909, p. 399).

locn. no. Wkr.09V-5, cont.

Crushing	Charact	eristics	(unfired ma	aterial)				
Particle	Size	-	Retention	Time	-			
Chemical	& Miner	alogical	Data:					
Chemical Oxide SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ (to FeO MnO MgO CaO	Analysi	Weight % 61.64 1.24 15.66 8.50 - trace 1.18 trace			Mineralogy: Mineral Quartz Feldspar Carbonate Mica Chlorite- vermiculi Montmorillo	te	determined. volume	
	otal) rg.)	1.80 3.93 - 0.00			Others Total			
CO ₂ H ₂ O ⁻ H ₂ O ⁺ Ignition loss Total	_	- 1.33 - 4.80 .00.09						
Analyst Date	Veatch, B, No.	1909, p.	Survey. (<u>i</u> 400 and Ap 16 and 417.	pendix				
Method _	Standard	"wet".						
Sample Lo	ocation	Data:						
County	Walker.		Land Lot	,	Sec.	, D:	ist	
7 1/2' to	opo quad	Ft. Og	lethorpe (N	NE. 1/4)	_ Lat	,	Long.	·
Field No.		-	, Colle	ected by	O. Veatch.		Date <u>c. 1</u>	909.
Sample Me	thod	Grab (?).		Weath	ering/altera	tion _	Weathered	(?).
Structura	al Attit	ude						
Sample De from expo	escripti osures o	on & Comm on the Cen	of Siluria ments Sampl meral of Geo	n age. e of ye orgia Ra	llow or yello	ow-brow ssion 1	wn, fine-gr Ridge (Veat	n Formation) ained shale ch, 1909, p.
Compiled	by B.	J. O'Con	nor	Dat	te 06-09-8	88		

Material _Shale (R	ed Mountain).	Compilation Map Location No. Wkr.09V-6					
CountyWalker.		Sample Number					
Raw Properties:	Lab &	NoGa. Survey, #103.					
Date Reported19	09. Cerami	st O. Veatch, Ga. Survey.					
Water of Plasticity	% Workin	g Properties Rather lean; slakes only very					
Color Yellow or brown. Slow Firing Tests:							
Approx. Color Temp. °F (°C)		Absorption Appr. Por. Other se,% % % data:					
1922 Red (1050) (Cone 05)	Steel hard 3.0						
1994 Red (1090) (Cone 03)	Semi- 4.6 vitrified						
2102 Dark red (1150) (Cone l)	Vitrified 6.6						
2210 Very dark (1210) (Cone 4)	Completely 8.4 vitrified						
2282 - (1250) (Cone 6)	Fused -						
		ng at each of the above temperatures)					
		be suitable for making vitrified brick th (dry) would present difficulties. Veatch					

although its low plasticity and strength (dry) would present difficulties. Veatch suggests that the partly decomposed (weathered) shale would probably be superior to the unweathered shale (1909, p. 400).

locn.	no.	Wkr.	09V-6	cont	

Crushing	Charac	cteristics	(unfired material)	_	
Particle	Size _		_ Retention Time		
Chemical	& Mine	eralogical	Data:		
Chemical	Analys	sis		Mineralogy:	Not determined.
Oxide		Weight %		Mineral	volume %
SiO2		54.48			
TiO ₂		0.92		Quartz	
Al203		22.89		Feldspar	
Fe203 (to	otal)	7.48		Carbonate	
FeŌ		-		Mica	
MnO		0.41		Chlorite-	
MgO		1.40		vermiculit	e
CaO		0.22		Montmorillon	ite
Na ₂ 0		0.43		Others	
K20		4.76			
P205		0.04			
S (to	otal)	0.03		Total	
	.g.)	*			
co ₂					
H20-		1.62			
H ₂ 0+					
Ignition					
loss		5.36		e of carbonac	eous matter (Veatch, 1909,
Total		100.04	p. 400).		
Analyst _ - - -	Veatch	n, 1909, p. lix B, No.	Survey (in 400-401 and 103, p. 416		
Date <u>c.</u>	1909.			Television (1992) and a second second	— 9
Method	Standar	d "wet".			
Sample Lo	catior	n Data:			
County	Walker		Land Lot,	Sec	_, Dist
7 1/2' to	opo qua	ad. LaFaye	tte (Estelle) (SW.	1/4) Lat	, Long
Field No.		-	, Collected by	O. Veatch.	Date <u>c. 1909</u> .
Sample Me	thod _	Grab (?).	Weath	ering/alterat	ion <u>Unweathered (?).</u>
Structura	l Atti	itude	-		
Stratigra	phic A	Assignment	Shale from the "Ro (Silurian).	ockwood" (now	Red Mountain) Formation
Sample De	script	ion & Comm		ne-grained, v	ellow or brown shale from a
cut on th	e "Cha	attanooga S	Southern" (now the	Tenn., Ala.	Ga.) Railroad near Bronco
Veatch, 1	909. r	b. 400-401)		,	
					to the second
Compiled	by B.	J. O'Conn	lor Da	te 12-12-81	

Material	Shale (Co	onasauga).	(Compilation Ma	p Location No	Wkr.09V-7
County	Walker.			Sample Number	-	-
Raw Proper	rties:		Lab & No(Ga. Survey, #1	02.	
Date Repo	rted1909	9.	Ceramist). Veatch, Ga.	Survey.	
Water of 3	Plasticity	-	% Working Prop	oerties Fair	plasticity.	
Color		Drying Shrin	nkage <u>5.8</u>	% Dry Stren	gth (tensile)	65 psi.
Slow Firi	ng Tests:					
Approx. Temp. °F (°C)	Color		Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data:
						Remarks
1922 R (1050) (Cone 05)	ed	Good hardness	3.8	-		Good density
2102 D. (1150) (Cone 1)	ark red	Vitrified	10.1	-	. – .	-
2210 D (1210) (Cone 4)	ark red	Complete	9.5	-	-	-
2282 (1250) (Cone 6)	-	Partly fuse	d –	<u></u>	-	-

Remarks / Other Tests This shale could be used for making bricks (Veatch, 1909, p. 401).

Preliminary Bloating (Quick Firing) Tests: Not determined.

.

locn. no. Wkr.09V-7 , cont. Crushing Characteristics (unfired material) -Particle Size ____ Retention Time ____ Chemical & Mineralogical Data: Chemical Analysis Mineralogy: Not determined. Weight % volume % Oxide Mineral Si02 54.31 TiO₂ 0.90 Quartz 23.04 A1203 Feldspar Fe₂0₃ (total) 6.63 Carbonate FeO Mica $\sim - 1$ 0.12 MnO Chlorite-1.40 MgO vermiculite CaO 0.28 Montmorillonite Na₂0 0.08 Others K₂0 4.32 P205 0.04 S (total) 0.06 Total (totai) (org.) С -CO2 -H20-2.00 $H_{2}0^{+}$ ----Ignition loss 6.59 Total 99.77 Analyst E. Everhart, Ga. Survey (in Veatch, 1909, p. 401-402, and Appendix B, No. 102, p. 416 and 417). Date c. 1909. Method Standard "wet". Sample Location Data: County Walker. Land Lot ____, Sec. ___, Dist. ___. 7 1/2' topo quad. LaFayette (Estelle) NE. 1/4. Lat.____, Long.____. Field No. _____, Collected by O. Veatch. Date c. 1909. Sample Method Grab (?). Weathering/alteration Partly decomposed. Structural Attitude Folded and metamorphosed throughout this region. Stratigraphic Assignment Conasauga Group (Cambrian) shale. Sample Description & Comments Sample of partly decomposed (ie., weathered) shale from 1/2 mile N. of LaFayette. The shale underlies the Chattooga Valley but is extensively weathered and is rarely exposed at the surface. "It contains thin beds of limestone and sandstone; and is folded and metamorphosed" (Veatch, 1909, p. 401-402).

Compiled by B. J. O'Connor Date 06-09-88

Materia	1 Shale, soft to semi-hard (Red Mountain).			Compilation Map Location No. Wkr.318-25		
County	Walker.	incarn).		Sample Number		
Raw Pro	perties:		Lab & No	Ga. Tech., #25		
Date Re	ported 19	31.	Ceramist	R. W. Smith, G	Ga. Survey.	
aging o	f Plasticity vernight); s ear slightly	laking a	% Working Prop little slow; mo	perties Plast olding fairl	icity grain y good (clay	iy (better on column
Color L	ight brown.	Drying Shi	cinkage2.	8 % Dry Stren	igth (MOR) 95	6 psi. (green)
Remarks	Drying be	havior: Te	est bars all sli	ightly warped.	_	
Slow Fi	ring Tests:					
Approx. Temp. °F (°C)	Color** (Munsell)		Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por. %	Other data: Warpage
1840 (1005)	Salmon (2YR-6/7)	954	3.4 (5.9)	14.8	-	Slight
1920 (1050)	Dark salmon (10R-5/7)	1175	4.0 (6.9)	12.9	-	Slight
2000 (1095)	Fair red (10R-5/5)	1548	5.6 (8.5)	10.1	-	Some
2060 (1125)	Good red (10R-5/4)	2200	6.7 (10.2)	77	-	Slight
2090 (1145)	Good red (10R-4/5)	2327	7.7 (10.1)	4.6	-	Some
2160	Deep red	2664	8.1 (10.2)	4.8	-	Some*

(1180) (10R-4/3)

*: Beginnings of a glassy structure on broken ends.

Remarks / Other Tests Firing Range = Cone 02 to 5 (commercial kiln = Cone 03 to 3). This shale is suitable for making building brick and possibly structural tile, but it is not possible to tell without prospecting whether or not this sample is representative of any sizable deposit (Smith, 1931, p. 139).

Preliminary Bloating (Quick Firing) Tests: Not determined.

**Note: Munsell Color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) <u>Easy grinding.</u>

Particle Size _____ Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analys	sis	Mineralogy: M	lot determined.
Oxide	Weight %	Mineral	volume %
SiO ₂	63.72		
TiO ₂	0.55	Quartz	
A1203	22.45	Feldspar	
Fe ₂ 0 ₃ (total)	7.01	Carbonate	
FeŐ	-	Mica	
MnO	-	Chlorite-	
MgO	0.00	vermiculite	
Ca0	0.00	Montmorillonit	e
Na ₂ 0	0.67	Others	
K ₂ Ó	0.97		
P205	0.00		
s (total)	0.00	Total	
C (org.)	_		
CO ₂	-		
H ₂ 0-	* (* = ar	nalvsis recalculat	ed on an H_2O^- -free basis
H ₂ 0 ⁺		y Smith, 1931, p.	-
Ignition		, omion, 1901, p.	1001)
loss	5.61		
Total	100.98*		
locat	100000		
Analyst E. Eve	erhart, Ga. Survey.		
Date a 1030			
Date <u>c. 1930</u> .			
Method <u>Standa</u>	rd"wet".		
Sample Location	n Data:		
County _Walker	. Land Lot	_, Sec,	Dist
7 1/2' topo qua	ad. LaFayette (Estelle) (S	SW. 1/4). Lat	, Long
Field No	, Collected	by R. W.Smith.	Date <u>c. 1930.</u>
Sample Method _	Grab samples. Wea	athering/alteratio	Meathered.
Structural Atti	itude Beds strike N.20°E.	, and dip about 70	°W.
Stratigraphic A	Assignment <u>Red Mountain Fo</u>	ormation (Silurian	
	tion & Comments Samples of		
	y above the iron ore seam)		
	lf road" on Shinbone Ridge,		
	Ga. railroad. At this plac		
	beds; therefore, no more th		
	mpling. Property owned by	Misses C. and J.	McWhorter (Smith, 1931,
p. 138 to 139).			

Compiled by B. J. O'Connor

Date 06-09-88

	emi-hard (F				No. <u>Wkr.315-26a</u>
County Walker.			Sample Number		
Raw Properties:		Lab & No.	Ga. Tech., #26	•	
Date Reported 1931		Ceramist	R. W. Smith, G	a. Survey.	
Water of Plasticity better on aging 5 d to tear slightly).					
Color Brown.	Drying Shr	inkage 2.6	% Dry Stren	gth (MOR) (green	
Remarks Drying Beha	vior: Test	bars all some	what warped.	<u>(green</u>	/
Slow Firing Tests:					
Approx. Color* Temp. (Munsell) °F (°C)	Hardness (MOR, psi.)	Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por %	. Other data: Warpage
1840 Dark salmon (1005) (1YR-5/7)	1150	3.6 (6.2)	11.4	-	Some
1920 Dark salmon (1050) (10R-5/6)	1235	3.3 (5.8)	9.9	-	Some to considerable
2000 Fair red (1095) (10R-5/5)	1764	4.9 (7.5)	8.2	÷	Some
2060 Good red (1125) (10R-4/5)	2134	6.4 (8.7)	6.4	-	Slight
2090 Brownish- (1145) red(10R-4/5	2006	4.6 (7.2)	5.7	-	Considerable <u>*</u>
2160 Deep brown- (1180) ish red (10R-4/3)	2365	5.8 (8.3)	3.9	-	Considerable**

*: Slightly pimply surface.
**: Pimply surface and somewhat glassy fracture.

Remarks / Other Tests Firing Range = Cone 03 to 2 (best at Cone 01 to 2). All test bars show slight traces of a bluish-white scum, but probably not enough to effect their use in making heavy clay products (Smith, 1931, p. 144). This shale should be satisfactory for making building brick and structural tile (if properly handled). The worst aspects are the slow slaking, poor green strength and structure of the test bars. This can probably be largely eliminated by grinding, long pugging, and using hot water with electrolytes (Smith, 1931, p. 145).

Preliminary Bloating (Quick Firing) Tests: Not determined.

*Note: Munsell Color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Brittle, fairly easy grinding.

Particle Size __16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analysis	Mineralogy: Not determined.				
Oxide Weight %	Mineral volume %				
SiO ₂ 61.29					
TiO ₂ 0.73	Quartz				
A1 ₂ 0 ₃ 23.36	Feldspar				
Fe_2^{03} (total) 7.16	Carbonate				
FeÖ –	Mica				
MnO –	Chlorite-				
MgO 0.42	vermiculite				
CaO 0.00	Montmorillonite				
Na ₂ 0 1.06	Others				
K ₂ 0 0.81					
P ₂ 0 ₅ trace					
S (total) trace	Total				
C (org) -					
co ₂					
H_20 * (* = analy	ysis recalculated on an H ₂ 0 ⁻ free basis				
	nith, 1931, p. 143.)				
Ignition					
loss <u>5.26</u>					
Total 100.09*					
Analyst E. Everhart, Ga. Survey.					
Dete - 1020					
Date <u>c. 1930.</u>					
Method Standard "wet".					
Sample Location Data:					
County Walker. Land Lot 252, 254-2 and 285	256 Sec. <u>4</u> , Dist. <u>8</u> .				
7 1/2' topo quad. LaFayette (Estelle) (NW.	, Long				
Field No, Collected by	R. W. Smith. Date <u>c. 1930.</u>				
Sample Method <u>2 groove samples of</u> 5 and 8 ft. Weathering/alteration <u>Some weathering</u> .					
Structural Attitude Beds strike about N.40°	"F and din "cently" (5 to 15°) SF				
Structural Attrude Beus Strike about N.40	E. and dip genery (5, co is) SE.				
Stratigraphic Assignment <u>Red Mountain Formation (Silurian).</u>					
Sample Description & Comments Soft to semi-	-hard greenish-drah colored shale				
(harder and more compact near the top) with					
stone sampled as 5 and 8 ft. grooves from th					
respectively, of the Tenn., Ala., & Ga. rail					
Southern States Coal and Iron Co. (This cor					
Smith's measured section. The sampled inter					
this unit respectively, since the middle is					
Estelle station, N. of Dug Gap and Ga. Hwy.					
set of the set of the set have					

Compiled by B. J. O'Connor

Date 06-09-88

Materia	1 Shale, har	d (Red Mtn	. Formation).	Compilation Ma	p Location	No. <u>Wkr.315-26b</u>
County	Walker.			Sample Number	-	
Raw Pro	perties:		Lab & No	Ga. Tech., #26	ь.	
Date Re	ported1931	• •	Ceramist]	R. W. Smith, G	a. Survey.	
	r on aging 2		% Working Prop ing - rather s			
Color E	rownish-drab.	Drying S	hrinkage2	.8 % Dry Stren	gth (MOR) (green	
Remarks	Drying Beha	vior: Tes	t bars all slig	ghtly warped.	<u>(green</u>	<u> </u>
Slow Fi	ring Tests:					
Approx. Temp. °F (°C)	Color* (Munsell)		Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por %	• Other data: Warpage
1840 (1005)	Dark salmon (1YR-6/6)	1505	3.1 (5.9)	10.6	-	Slight
1920 (1050)	Dark salmon (10R-5/5)	1754	3.5 (6.4)	8.8	-	Little or none
2000 (1095)	Good red (10R-5/5)	2169	4.0 (6.7)	6.5	H	Slight black core
206 0 (1125)	Deep red (10R-4/5)	2622	6.6 (9.3)	4.6	-	Some
209 0 (1145)	Brownish- red (10R-3/6)	2012	2.3 (5.1)	3.2	-	Bad**
2160 (1180)	Deep brown- ish red (10R-3/4)	2202	2.3 (4.8)	2.2	-	Bad ^{**}

**: Vitreous and pimply surface, glassy fracture.

Remarks / Other Tests Firing Range = Cone 04 to 2 (commercial kiln = Cone 04 to 1). If properly handled, this shale should be suitable for making building brick and structural tile. The poor working properties and low green strength could probably be improved by fine grinding, long pugging and the use of hot tempering water with certain electrolytes (Smith, 1931, p. 145).

Preliminary Bloating (Quick Firing) Tests: Not determined.

*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931)

Crushing Characteristics (unfired material) Brittle, fairly easy grinding.

Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

		The second s			
	cal Analys		Mineralogy: Not determined.		
Oxide		Weight %	Mineral volume %		
Si02		63.69			
TiO ₂		0.73	Quartz		
A1203		18.40	Feldspar		
Fe203	(total)	8.08	Carbonate		
FeO		-	Mica		
MnO		-	Chlorite-		
MgO		0.60	vermiculite		
CaO		0.00	Montmorillonite		
Na ₂ 0		1.31	Others		
K ₂ Õ		1.64			
P205		0.12			
s	(total)	trace	Total		
C	(org)	-			
CO ₂	(0-0)	-			
H ₂ 0-		*	(* = analysis recalculated on an H_2O^- -free basis		
H ₂ 0+		_	by Smith, 1931, p. 144.)		
Ignit	ion		by Smith, 1991, p. 144.9		
loss	1011	5.42			
Total		99.99*			
IULAI		JJ.JJ.			
Analy	st E. Eve	erhart, Ga. Survey.			
mary		inarc, oa. burvey.	· · · · · · · · · · · · · · · · · · ·		
Date	c. 1930.				
-	c. 1990.				
Metho	d Standar	'd "wet".			
1100110					
Samp1	e Location	Data:			
		-			
Count	y Walker.	Land Lot	252, 254-256 Sec. 4, Dist. 8.		
			and 285,		
7 1/2	' topo qua	d. LaFavette (Est	elle) (NW. edge). Lat. , Long		
, , , , , , , , , , , , , , , , , , ,					
Field No. , Collected by R. W. Smith. Date c. 1930.					
Samp1	e Method	Partial groove of	Weathering/alteration None.		
-	-	14 ft. bed.			
Structural Attitude Beds strike about N.40°E. and dip "gently" (5 to 15°)SE.					
Stratigraphic Assignment Red Mountain Formation (Silurian).					
	0				
Sample Description & Comments Sample from a 14 ft. bed of hard, greenish-drab					
			the Tenn., Ala., & Ga. RR. from railroad cuts on		
			es Coal & Iron Co. (This corresponds to unit 19,		
			section.) Shale has small hackly fracture, almost		
			f brown sandstone, and lies E. and stratigraph-		
ically	y above th	e other sample tes	ted (Wkr.31S-26a). The section is E. of Estelle		
			3 (Smith, 1931, p. 141-145).		
Compi	led by <u>B</u> .	J. O'Connor	Date 10-25-81		

Material	Compilation Map Location No. <u>Wkr.31S-27</u>				
County Walker.	Sample Number				
Raw Properties: Lab & No.	Ga. Tech., #27.				
Date Reported Ceramist	R. W. Smith, Ga. Survey.				
Water of Plasticity% Working Properties <u>Plasticity - very poor (even on aging 1 week)</u> : <u>Slaking - very slow. Molding Behavior - very poor (unable to form roll-press test bars).</u> Color <u>Brownish-drab.</u> Drying Shrinkage% Dry Strength Remarks Slow Firing Tests: Not determined due to very poor working properties.					
Temp. Color Hardness Linear °F (Munsell) (Mohs') Shrinkage, % (°C)					

Remarks / Other Tests Sample was discarded without further firing tests (Smith, 1931, p. 149).

Crushing Characteristics (unfired material) A little difficult to grind. (Shale is tough rather than brittle.) Particle Size -16 mesh. Retention Time -Chemical & Mineralogical Data: Chemical Analysis Mineralogy: Not determined. Oxide Weight % Mineral volume % SiO₂ 71.50 TiO₂ 0.90 Ouartz A1203 17.07 Feldspar Fe₂0₃ (total) 5.68 Carbonate FeŌ -Mica _ MnO Chlorite-MgO vermiculite trace CaO Montmorillonite 0.00 Na₂0 0.47 Others K_20 1.00 P205 0.08 sō3 (total) 0.96 Total С (org) - CO_2 _ * H20-(* = analysis recalculated on an H_20^- -free basis H_20^+ by Smith, 1931, p. 149.) -Ignition loss 2.35 100.01* Total Analyst E. Everhart, Ga. Survey. Date c. 1930. Method Standard "wet". Sample Location Data: County Walker. Land Lot 211, Sec. 4, Dist. 8. 7 1/2' topo quad. Kensington (SE. 1/4) . Lat. _____, Long. ____. Field No. _____, Collected by R. W.Smith. Date c. 1930. Sample Method 5 ft. groove. Weathering/alteration None apparent. Structural Attitude -Stratigraphic Assignment Red Mountain Formation (Silurian). Sample Description & Comments Groove sample of hard, gray to drab colored shale with a hackley fracture. (A few layers contain traces of calcite?) Samples from a 10 ft. outcrop at a bluff above the stream in a small hollow on the N. side of the road (Ga. Hwy. 136 [formerly Hwy. 143]) in Cattlett Gap. 3 miles W. of Warren Station on the Central of Georgia railroad, on the Glenn and Warthen properties (Smith, 1931, p. 148 and 149).

locn. no. Wkr.31S-27, cont.

Compiled by B. J. O'Connor Date 06-09-88

Materia County	(Red Mtn. Formation).				Compilation Map Location No. <u>Wkr.315-28</u> Sample Number		
Raw Pro	Raw Properties: Lab & No. Ga. Tech., #28.						
Date Re	ported 1931	•	Ceramist	R. W. Smith, (Ga. Survey.		
grainy,		aging 2 da	ys, slaking -	operties <u>Plasti</u> very slow; mol			
Color <u>Brownish-gray.</u> Drying Shrinkage <u>3.1</u> % Dry Strength (MOR) 179.5 psi. (green).							
Approx. Temp. °F (°C)	Color* (Munsell)	Hardness (MOR, psi.)	Linear Shrinkage, % dry (plastic		Appr. Por %	. Other data: Warpage	
1840 (1005)	Salmon (2YR-6/8)	985	2.5 (6.1)	12.3	-	Slight	
1920 (1050)	Dark salmon (1YR-6/7)	1495	3.9 (7.1)	9.8	-	Slight	
2000 (1095)	Light red (2YR-6/7)	1990	4.6 (7.3)	7.6	-	Little or none	
2060 (1125)	Good red (10R-5/4)	2317	5.8 (8.5)	5.7	-	Slight	
2090 (1145)	Good red (10R-4/4)	2522	5.5 (8.0)	4.9	-	Some	
2160 (1180)	Brownish- red (10R-3/4)	3348	6.1 (8.6)	2.3	-	Some to con- siderable (vitrified, pimply surface).	

Remarks / Other Tests Firing Range = Cone 02 to 4 (commercial kiln = Cone 02 to 3). Should be suitable, if handled properly, for making building brick and structural tile. The slow slaking, poor plasticity, and low green strength could probably be overcome by fine grinding, long pugging, hot tempering water and certain electrolytes in the tempering water (Smith, 1931, p. 152).

Preliminary Bloating (Quick Firing) Tests: Not determined.

*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931)

Crushing Characteristics (unfired material) Brittle, fairly easy grinding.

Particle Size __16 mesh. Retention Time Approx. 17 hours.

Che	mical	8	Mineralogical	Data:
Q Q .			TILLIOL GLOGIOGI	D 00 0 00 1

Chemical Analysis Oxide Weight % SiO ₂ 65.89	Mineralogy: <u>Not determined.</u> Mineral volume %				
Ti0 ² 1.09 Al ₂ 0 ₃ 21.63	Quartz Feldspar Carbonate				
Fe ₂ 0 ₃ (total) 5.76 Fe0 -	Mica				
MnO –	Chlorite-				
MgO 0.06	vermiculite				
Ca0 0.00	Montmorillonite				
Na ₂ 0 0.80	Others				
к ₂ б 1.11					
P205 trace					
S (total) trace	Total				
C (org) -					
CO ₂ -					
$H_2\bar{0}^-$ * (* = anal	lysis recalculated on an H ₂ O ⁻ -free basis				
	Smith, 1931, p. 151.)				
Ignition					
loss 3.84					
Total 100.18*					
Analyst <u>E. Everhart, Ga. Survey.</u>					
Date <u>c. 1930.</u>					
Method Standard "wet".					
Sample Location Data:					
County Walker. Land Lots 157 and 158,					
	Lat, Long				
Field No, Collected by	7 <u>R. W. Smith.</u> Date <u>c. 1930.</u>				
Sample Method <u>Grab samples at 2</u> Weathering/alteration foot intervals.					
Structural Attitude Beds strike N.20°E., and dip 35°W.					
Stratigraphic Assignment <u>Red Mountain Form</u> the Chattanooga S					
Sample Description & Comments 153 feet (st					
olive-green to greenish-drab shale, variabl					
stone 1 to 2 inches thick. Taken from road	l cuts ("Terrapin Trail") through the				
ridge 1 mile NW. of Cassandra (on the Shaw	property) 5/8 mile W. of the Tenn Ala				
Ga. RR. The iron ore horizon is probably r					
nating layers of sandstone and shale at lea					
shale tested here (Smith, 1931, p. 150).					

Compiled by B. J. O'Connor

Date 10-26-81

Material	hard (Red M	ountain)	Compilation Ma	ap Location No	Wkr.31S-29					
County Walker. Sample Number										
Raw Properties: Lab & No. <u>Ga. Tech.</u> , #29.										
Date Reported 1931. Ceramist R. W. Smith, Ga. Survey.										
Water of Plasticity <u>16.5</u> % Working Properties <u>Plasticity - very poor and</u> grainy, but fair after aging 4 days; slaking - very slow; molding - fair (column tends to crack and tear edges slightly).										
Color <u>Gray.</u> Drying Shrinkage <u>2.5</u> % Dry Strength (MOR) 116.8 psi. (green). Remarks Drying Behavior: Test bars somewhat warped.										
Slow Firing Tests:										
Approx. Color+- Temp. (Munsell) °F (°C)		Linear Shrinkage, % dry (plastic		Appr. Por. %	Other data: Warpage					
1840 Light (1005) salmon (3YR-6/7)	799	1.9 (4.3)	11.9		Some**					
1920 Dark (1050) salmon (1YR-6/6)	1283	2.4 (4.8)	10.6	-	Some**					
2000 Light red (1095) (10R-5/5)	*	2.8 (5.3)	10.1		Some**					
2060 Good red (1125) (10R-4/5)	1708	4.6 (6.8)	7.3	170	Some**					
2090 Deep red (1134) (10R-4/4)	2100	2.6 (5.0)	4.0	-	Some+					
2160 Brownish- (1180) Red(1YR-4)	2515 4)	4.1 (6.5)	5.2	-	Considerable ⁺					

*: Modulus of Rupture not determined due to breakage of all test bars in handling.
**: Test bars show slight traces of scum, but not enough to give serious trouble in making heavy clay products.

+: Test bars have pimply surface and broken ends show traces of glassy structure.

Remarks / Other Tests Firing Range = Cone 02 to 2 (commercial kiln = Cone 03 to 1). This shale is suitable for making building brick and possibly structural tile although the firing range is only 3 cones. The poor working properties could probably be overcome by fine grinding, long pugging and/or the use of hot tempering water with or without certain electrolytes (Smith, 1931, p. 154-155).

Preliminary Bloating (Quick Firing) Tests: Not determined.

++Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931)

Crushing Characteristics (unfired material) Brittle, fairly easy grinding.

Particle Size __16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analys	a i s	Mineralogy: Not determined.
Oxide	Weight %	Mineral volume %
	60.84	Milleral Voldme %
TiO ₂	1.09	Quartz
A1203	25.62	Feldspar
	4.27	Carbonate
Fe ₂ O ₃ (total) FeO		Mica
	-	
MnO	-	Chlorite-
MgO	0.55	vermiculite
CaO	0.00	Montmorillonite
Na ₂ 0	0.97	Others
K ₂ 0	1.83	
P205	trace	
S (total)	0.00	Total
C (org)	-	
CO ₂	-	
н20-	* (* = anal	ysis recalculated on an H ₂ O ⁻ -free basis
$H_2^{-}0^{+}$		ith, 1931, p. 154.)
Ignition	,	
loss	4.84	
	100.01	
Analyst E. Eve	erhart, Ga. Survey.	
Datec. 1930.		
Method Standar	d "wet".	
Sample Leastion	Detai	
Sample Location		
County Walker.	Land Lot,	Sec4, Dist. <u>10</u> .
7 1/2' topo qua	d. Fort Oglethorpe (SW. Cor.). Lat, Long
Field No.	, Collected by	R. W. Smith. Date c. 1930.
Sample Method	Grab sample. Weath	ering/alteration Weathered.
	or ab oumpren weather	
Structural Atti	tude Shale layers "dipping	15° to 20° to the east" (on the west
limb of a shall		
And the second s		
Stratigraphic A	ssignment <u>Red Mountain Form</u>	ation (Silurian).
Sample Descript	ion & Comments Taken from 3	0 ft. of hard, olive-green shale, with 1
Malliaget states	tone layers, exposed in a Div	uff in a hollow near the W. edge of the
		ern States Coal & Iron Company property.
		ttanooga Valley Road, 3/4 mi. north of
	Station of the Tenn., Ala.,	& Ga. Railroad (Smith, 1931, p. 153 to
155).		
Compiled by _B.	J. O'Connor Dat	te 06-09-88

-57-

Material Shale and clay				Compilation Ma	p Location	No. Wkr.318-30
County	(Red Mtn. Walker.	Formation).	_	Sample Number		
Raw Proper	ties:		Lab & No	Ga. Tech., #30		
Date Repor	ted193	31.	Ceramist -	R. W. Smith, G	a. Survey.	
Water of P	lasticity	33.9 %		operties Plast	and the second se	r, a little ehavior - good.
Color Ligh	t brown.	Drying Shrin		9 % Dry Stren		68.7 psi.
Remarks D	rying Beha	vior: Good,	little or m	no warpage.	(green)	•
Slow Firin	g Tests:					
	Color** Munsell)	(MOR, SI	Linear nrinkage, % ry (plastic)	%	Appr. Por. %	Other data: Warpage

(°C)		psr.)	ary	(plastic)			warpage
1840 (1005)	Light red (1YR-6/7)	2072	7.0	(14.3)	13.9	-	Little or none
1920 (1050)	Fair red (10R-5/5)	2731	9.5	(16.6)	8.7	-	Slight
2000 (1095)	Good red (10R-4/5)	2259	9.1	(16.5)	7.0	-	Some
2060 (1125)	Good red (10R-4/4)	3713	13.7	(20.6)	2.6	-	Slight
2090 (1145)	Dark red (10R-3/6)	2615	12.8	(19.6)	2.1	-	Some*
2160 (1180)	Dark red (10R-3/5)	3975	13.7	(20.2)	0.9	-	Some*

*: Vitreous appearance, fractures show glassy structure.

Remarks / Other Tests Firing Range = Cone 04 to 5 (commercial kiln = Cone 04 to
3). This material shows too much shrinkage to be used by itself in making heavy
clay products; however, if mixed with a slow-slaking shale (like those of the Red
Mtn. Formation described earlier) this mixture would probably process better than
either the clay or the shale by itself (Smith, 1931, p. 157).

Preliminary Bloating (Quick Firing) Tests: Not determined.

**Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) <u>Easy grinding.</u>

Particle Size _-16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analysis D Oxide Weight %	Mineralogy: <u>Not determined.</u> Mineral volume %
	Milleral Volume %
SiO ₂ 56.75	0. set
	Quartz
2 3	Feldspar
2-3	Carbonate
	Mica
Mn0 -	Chlorite-
MgO trace	vermiculite
	Montmorillonite
Na ₂ 0 1.24	Others
K ₂ 0 1.69	
P_2O_5 0.10	
S (total) 0.00	Total
	10041
CO ₂ -	
	sis recalculated on an H_20^- -free basis
	ith, 1931, p. 156.)
Ignition	
loss <u>6.25</u>	
Total 99.95*	
Analyst E. Everhart, Ga. Survey.,	
Date c. 1930.	
Date <u>C. 1950.</u>	
Method Standard "wet".	
Sample Location Data:	
County Walker. Land Lot 217 and	Sec. 4 , Dist. 9 .
County Walker. Land Lot 217 and 252,	bec, bist
7 1/2' topo quad. Fort Oglethorpe (SW. 1/4).	Lat, Long
Field No. , Collected by M	Mrs. W. W. Scott. Date c. 1930.
,,,	
	ring/alteration Weathered shale and
deep.	residual clay.
Structural Attitude Nearby Shale strikes N.2	20°E., dips about 30°W.
Stratigraphic Assignment Red Mountain Format	
Fe ore and Recent (?) clay residuum derived :	from Red Mountain shale.
Sample Description & Comments Soft brown sam	
prospect pits (3 ft. deep) on the Scott prope	erty west of the Tenn., Ala., & Ga.
Railroad crossing with the Chattanooga Valle	y Rd., 1 1/2 mi. N. of the High Point
station and 1 1/2 mi. S. of Cenchat (Smith,.	1931, p. 155 to 157). (Several rail
cars of residual clay were mined from a pit of	
to the W. S. Dickey Clay Mfg. Co. plant near	
several years prior to 1930.)	
Compiled by B. J. O'Connor Date	e 06-09-88

MaterialShale, hard (Red Mountain) Compilation Map Location No. <u>Wkr.31S-31</u>										
County Walker Sample Number										
Raw Pro	perties:		Lab & No.	Ga. Tech., #31	L.					
Date Re	Date Reported 1931. Ceramist R. W. Smith, Ga. Survey.									
but fai	Water of Plasticity 18.4 % Working Properties Plasticity - poor and grainy, but fair after aging for 2 days; slaking - slow; molding behavior - fair (column tends to tear at edges slightly).									
Color _	Grayish-drab	. Drying S	Shrinkage <u>3.</u>	3 % Dry Stren	ngth <u>(MOR)</u> (green					
Remarks	Drying Beh	avior: Goo	d with little	or no warpage.						
Slow Fi	ring Tests:									
Approx. Temp. °F (°C)		Hardness (MOR, psi.)	Shrinkage, %	Absorption %	Appr. Por %	•. Other data: Warpage				
1840 (1005)	Fair red (1YR-5/7)	1165	4.2 (7.1)	10.5		Very slight				
1920 (1050)	Fair red (10R-5/7)	1482	4.6 (7.6)	9.2	-	Slight				
2000 (1095)	Good red (10R-5/5)	1573	3.5 (6.8)	8.3	-	Some				
2060 (1125)	Good red (10R-4/5)	2086	7.1 (10.1)	5.4	-	Slight				
2090 (1145)	Good red (10R-4/5)	2165	4.9 (8.4)	5.0	-	Some				
2160 (1180)	Dark red (10R-3/5)	2717	6.2 (9.2)	2.6	-	Considerable (fractures look				
Dementer		e nisiss	D			- 0				

Remarks / Other Tests Firing Range = Cone 04 to 5 (commercial kiln = Cone 04 to 3). This shale is suitable for making building brick, structural and roofing tile, and possibly sewer pipe. The slow slaking and low green (dry) strength probably could be overcome by fine grinding, long pugging, using hot tempering water, and/or with certain electrolytes in the water (Smith, 1931, p. 160). Adding a small amount of plastic clay such as the residual clay described under Wkr.31S-30) would also make the shale easier to process.

Preliminary Bloating (Quick Firing) Tests: Not determined.

*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Brittle, fairly easy grinding.

Particle Size -16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Oxide	al Analys	Weight %		Mineralogy: Mineral	the second se	rmined. volume %
SiO ₂ TiO ₂ Al ₂ O ₃	(toto1)	59.96 0.85 23.80		Quartz Feldspar Carbonate		
FeŌ	(total)	7.90		Mica		
MnO		-		Chlorite-		
MgO		trace		vermiculit		
Ca0		0.00		Montmorillon	ıte	
Na ₂ 0		0.69		Others		
K20		1.81				
P205		0.15				
S	(total)	trace		Total	22-	
С	(org)	-				
C02		-				
н₂б-		*	(* = analy	sis recalcul	ated on an	H ₂ 0 ⁻ -free basis
$H_{2}^{2}0^{+}$		-		ith, 1931, p		2
Igniti	on		2			
loss		5.12				
Total	_	100.28*				
10041		100.20				
Analys	t E. Eve	rhart, Ga. Survey.				
Date _	c. 1930.		5		-	
Method	Standar	d "wet"				
Sample	Location	Data:				
County	Walker.		$\frac{199 \text{ and}}{216}$	Sec. <u>3</u>	_, Dist.	<u>10</u> , and 9
7 1/2'	topo qua	d. Fort Oglethorpo		. Lat	, Long	·
Field	No	, Co	llected by	R. W. Smith	Dat	c. 1930.
Sample	Method _	5 ft. grooves (2).	Weathe	ring/alterat	ion Some	weathering?
Struct	ural Atti	tude <u>Strike</u> about	N.5°E. and	dip 15° to 3	20°W.	
Strati	graphic A	ssignment <u>Red Mou</u> horizon	the second s	tion (Siluri	an) just a	bove the iron ore
Sample	Descript	ion & Comments Ha		olive-gree	n shale (s	about 20-50 ft
		d as 5 ft. groove				
		y slumped in since				
		ty 1/2 to 1 mi. SW				
		am branch, dismant	and a strength of the strength	the second se	the second se	and the second se
and the second se	The second se	e Chattanooga Valle	the second se	aujacent to	Lue Durnan	i branch, east of
Ticuari	TE Take (Smith, 1931, p. 15	/-101/.			

Compiled by B. J. O'Connor

Date 10-29-81

-61-

Material Shale, hard (Red Mtn. Formation). Compilation Map Location No. <u>Wkr.315-32</u>						
County Walker.	Sample Number						
Raw Properties: Lab & No	. <u>Ga. Tech., #32.</u>						
Date Reported Ceramist	R. W. Smith, Ga. Survey.						
Water of Plasticity <u>19.6</u> % Working Properties <u>Plasticity - poor and grainy</u> at first, fair after aging 2 days; slaking - slow; molding behavior - good.							
Color <u>Grayish-drab.</u> Drying Shrinkage	2.6 % Dry Strength (MOR) 111.9 psi. (green).						
Remarks Drying Behavior: Test bars all							

Slow Firing Tests:

Approx. Temp. °F (°C)	Color* (Munsell)	Hardness (MOR, psi.)	Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Por. %	Other data: Warpage
1840 (1005)	Dark salmon (2YR-6/8)	1157	2.9 (5.3)	11.8	-	Slight
1920 (1050)	Fair red (10R-8/7)	1205	2.9 (5.7)	11.7	-	Slight
2000 (1095)	Good red (10R-5/6)	1522	3.6 (6.0)	10.6	-	Some
2060 (1125)	Good red (10R-5/5)	1912	5.2 (7.5)	7.7	-	Some
2090 (1145)	Good red (10R-4/4)	2413	4.6 (7.2)	5.1	~	Considerable
2160 (1180)	Dark red (10R-3/4)	3147	7.1 (9.4)	3.1	-	Considerable

Remarks / Other Tests Firing Range = Cone 04 to 5 (commercial kiln = Cone 04 to 3). This shale is suitable for making building brick, structural and roofing tile, and possibly sewer pipe. The tendency for slow slaking and low green strength could probably be overcome by fine grinding, long pugging, using hot tempering water (with or without electrolytes; Smith, 1931, p. 163).

Preliminary Bloating (Quick Firing) Tests: Not determined.

*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

locn. no. Wkr.31S-32, cont.

-	Charac	teristics	(unfired ma	teria	1) Fairly easy rather than	grinding (slightly tough brittle).
Particle	Size _	-16 mesh.	Retention	Time	Approx. 17 hour	
Chemical	& Mine	ralogical	Data:			
Chemical	Analys	is			Mineralogy:	Not determined.
Oxide		Weight %			Mineral	volume %
SiO2		62.80				
TiO ₂		1.01			Quartz	
A1203		22.22			Feldspar	
Fe203 (to	otal)	7.00			Carbonate	
FeO					Mica	
MnO		-			Chlorite-	
MgO		trace			vermiculit	e
CaO		0.00			Montmorillon	
Na ₂ 0		0.51			Others	
K ₂ 0		1.72			oener o	
P205		trace				
	otal)	0.00			Total	
	rg)	-			IOLAI	
CO ₂	Lg/	-				
-		*	(+			atad on an U-O- strag havin
H ₂ 0 ⁻			("			ated on an H ₂ O ⁻ -free basis
H ₂ 0 ⁺		-		by	Smith, 1931, p	. 102.)
Ignition		/ 05				
loss Total		4.85				
IULAI		100,11.				
Analyst _	E. Ev	erhart, Ga	. Survey.			
Date 19	930.					
Date 19 Method		 d "wet".				_
	Standar					
Method Sample Lo County	Standar ocation Walker.	Data:	Land Lots <u>1</u>			_, Dist. <u>10</u> .
Method Sample Lo County	Standar ocation Walker.	Data:				_, Dist. <u>10</u> .
Method Sample Lo County 1 234 (+ pa	Standar ocation Walker. arts of	Data: 200, 233,	Land Lots <u>1</u> 235, and 2	36.)	_	_, Dist. <u>10</u> . _, Long
Method <u>Sample La</u> County <u>N</u> 234 (+ pa 7 1/2' ta Field No	Standar ocation Walker, arts of opo qua	<u>Data</u> : 200, 233, d. <u>Ft. Og</u> l	Land Lots <u>1</u> 235, and 2 ethorpe (SW , Colle	36.) . side	e). Lat. py _R. W. Smith	, Long Date <u>c. 1930.</u>
Method <u>Sample La</u> County <u>M</u> 234 (+ pa 7 1/2' ta Field No Sample Ma	Standar ocation Walker. arts of opo qua ethod	Data: 200, 233, d. <u>Ft. Ogl</u> Several gr	Land Lots <u>1</u> 235, and <u>2</u> ethorpe (SW , Colle ab samples.	36.) 7. side cted 1 Wear	e). Lat. py <u>R. W. Smith</u> thering/alterat	, Long Date <u>c. 1930.</u> ion <u>More or less weathered.</u>
Method <u>Sample La</u> County <u>M</u> 234 (+ pa 7 1/2' ta Field No Sample Ma	Standar ocation Walker. arts of opo qua ethod	Data: 200, 233, d. <u>Ft. Ogl</u> Several gr tude <u>Beds</u>	Land Lots <u>1</u> 235, and <u>2</u> ethorpe (SW , Colle ab samples. strike N.2	36.) 7. side cted 1 Wear	e). Lat. oy <u>R. W. Smith</u> thering/alterat	, Long Date <u>c. 1930.</u>
Method Sample La County 234 (+ pa 7 1/2' ta Field No Sample Ma Structura	Standar ocation Walker. arts of opo qua ethod al Atti	Data: 200, 233, d. <u>Ft. Ogl</u> Several gr tude <u>Beds</u> vari	Land Lots <u>1</u> 235, and <u>2</u> ethorpe (SW , Colle ab samples. strike N.2 ations). Red Mounta	36.) . side cted 1 Wea .0°E., in Fo	e). Lat. by <u>R. W. Smith</u> thering/alterat dip c. 30°W. () rmation (Siluri)	, Long Date <u>c. 1930.</u> ion <u>More or less weathered.</u> with a few minor an) about 200 ft. thick
Method <u>Sample La</u> County <u>1</u> 234 (+ p) 7 1/2' ta Field No Sample Ma Structura Structura	Standar ocation Walker. arts of opo qua ethod al Atti aphic A	Data: 200, 233, d. <u>Ft. Ogl</u> Several gr tude <u>Beds</u> vari ssignment	Land Lots <u>1</u> 235, and <u>2</u> ethorpe (SW , Colle ab samples. strike N.2 ations). Red Mounta above and	36.) . side cted 1 Wea .0°E., in Fo below	e). Lat. by <u>R. W. Smith</u> thering/alterat dip c. 30°W. (mation (Siluri, the iron ore ho	, Long Date <u>c. 1930.</u> ion <u>More or less weathered.</u> with a few minor an) about 200 ft. thick orizon.
Method <u>Sample La</u> County <u>M</u> 234 (+ p. 7 1/2' ta Field No Sample Ma Structura Stratigra	Standar ocation Walker. arts of opo qua ethod al Atti aphic A escript	Data: 200, 233, d. <u>Ft. Ogl</u> Several gr tude <u>Beds</u> vari ssignment ion & Comm	Land Lots <u>1</u> 235, and 2 ethorpe (SW , Colle ab samples. strike N.2 ations). Red Mounta above and ents Hard,	36.) . side cted l Weat .0°E., in For below fiss	e). Lat. by <u>R. W. Smith</u> thering/alterat dip c. 30°W. (no rmation (Siluri) the iron ore have ile, olive-gree	, Long Date <u>c. 1930.</u> ion <u>More or less weathered.</u> with a few minor an) about 200 ft. thick orizon. n shale with a few thin
Method <u>Sample La</u> Sample La County <u>M</u> 234 (+ pa 7 1/2' ta Field No Sample Ma Structura Stratigra Sample Da sandstone	Standar ocation Walker. arts of opo qua ethod al Atti aphic A escript e parti	Data: 200, 233, d. <u>Ft. Ogl</u> Several gr tude <u>Beds</u> vari ssignment ion & Comm ngs (and s	Land Lots <u>1</u> 235, and <u>2</u> ethorpe (SW , Colle ab samples. strike N.2 ations). Red Mounta above and ents Hard, ome local,	36.) . side cted l Weat .0°E., in For below fiss heavy	e). Lat. by <u>R. W. Smith</u> thering/alterat dip c. 30°W. (no rmation (Siluria the iron ore have ile, olive-green sandstone beds	, Long Date <u>c. 1930.</u> ion <u>More or less weathered.</u> with a few minor an) about 200 ft. thick orizon. n shale with a few thin in the middle of the
Method <u>Sample La</u> Sample La County <u>M</u> 234 (+ pa 7 1/2' ta Field No Sample Ma Structura Structura Stratigra Sample Da sandstona exposure	Standar ocation Walker. arts of opo qua ethod al Atti aphic A escript e parti). Sam	Data: 200, 233, d. <u>Ft. Ogl</u> Several gr tude <u>Beds</u> vari ssignment ion & Comm ngs (and s ples taken	Land Lots <u>1</u> 235, and <u>2</u> ethorpe (SW , Colle ab samples. strike N.2 ations). Red Mounta above and ents <u>Hard</u> , ome local, from the M	36.) . side cted l Wea .0°E., in Fo below fiss heavy cCall	e). Lat. by <u>R. W. Smith</u> thering/alterat dip c. 30°W. (no rmation (Silurian the iron ore have ile, olive-green sandstone beds ie property alo	, Long Date <u>c. 1930.</u> ion <u>More or less weathered.</u> with a few minor an) about 200 ft. thick orizon. n shale with a few thin in the middle of the ng the old Durham branch now
Method <u>Sample La</u> <u>Sample La</u> <u>County 1</u> <u>234 (+ pa</u> 7 1/2' ta Field No Sample Ma Structura Stratigra Sample Da sandstona exposure dismantla	Standar ocation Walker. arts of opo qua ethod al Atti aphic A escript e parti). Sam ed) of	Data: 200, 233, d. Ft. Ogl Several gr tude Beds vari ssignment ion & Comm ngs (and s ples taken the Centra	Land Lots <u>1</u> 235, and <u>2</u> ethorpe (SW , Colle ab samples. strike N.2 ations). Red Mounta above and ents Hard, ome local, from the M 1 of Georgi	36.) . side cted l Wea .0°E., in Fo below fiss heavy cCall a RR.	e). Lat. by R. W. Smith thering/alterat dip c. 30°W. (y rmation (Siluri) the iron ore ho ile, olive-green sandstone beds ie property aloo where it makes	, Long
Method Sample La Sample La County 1 234 (+ p) 7 1/2' ta Field No Sample Ma Structura Stratigra Sample Da sandstona exposure dismantla S. side	Standar ocation Walker. arts of opo qua ethod al Atti aphic A escript e parti). Sam ed) of of McCa	Data: 200, 233, d. Ft. Ogl Several gr tude Beds vari ssignment ion & Comm ngs (and s ples taken the Centra llie Lake	Land Lots <u>1</u> 235, and <u>2</u> ethorpe (SW , Colle ab samples. strike N.2 ations). Red Mounta above and ents Hard, ome local, from the M 1 of Georgi (formerly C	36.) . side cted l Wea 0°E., in Fo below fiss heavy icCall a RR. encha	e). Lat. by R. W. Smith thering/alterat dip c. 30°W. (rmation (Siluri) the iron ore ho ile, olive-green sandstone beds ie property aloo where it makes t Lake) 1 mi. W	, Long Date <u>c. 1930.</u> ion <u>More or less weathered.</u> with a few minor an) about 200 ft. thick orizon. n shale with a few thin in the middle of the ng the old Durham branch now a horseshoe bend around the . of Cenchat and the TAG
Method Sample La Sample La County 1 234 (+ pa 7 1/2' ta Field No Sample Ma Structura Stratigra Sample Da sandstona exposure dismantla S. side a RR., adja	Standar ocation Walker. arts of opo qua ethod al Atti aphic A escript e parti). Sam ed) of of McCa oining	Data: 200, 233, d. <u>Ft. Ogl</u> Several gr tude <u>Beds</u> vari ssignment ion & Comm ngs (and s ples taken the Centra llie Lake the W. sid	Land Lots 1 235, and 2 ethorpe (SW , Colle ab samples. strike N.2 ations). Red Mounta above and ents Hard, ome local, from the M l of Georgi (formerly C e of the Lo	36.) . side cted l Wea 0°E., in Fo below fiss heavy cCall a RR. cencha	e). Lat. by <u>R. W. Smith</u> thering/alterat dip c. 30°W. (no rmation (Siluri, the iron ore have ile, olive-green sandstone beds ie property alon where it makes t Lake) 1 mi. W operty (Wkr.31S	, Long
Method Sample La Sample La County I 234 (+ pa 7 1/2' ta Field No Sample Ma Structura Stratigra Sample Da sandstona exposure dismantla S. side a RR., adja	Standar ocation Walker. arts of opo qua ethod al Atti aphic A escript e parti). Sam ed) of of McCa oining 000 ft.	Data: 200, 233, d. <u>Ft. Ogl</u> Several gr tude <u>Beds</u> vari ssignment ion & Comm ngs (and s ples taken the Centra llie Lake the W. sid cuts alon	Land Lots <u>1</u> 235, and <u>2</u> ethorpe (SW , Colle ab samples. strike N.2 ations). Red Mounta above and ents <u>Hard</u> , ome local, from the M 1 of Georgi (formerly C e of the Lo g the RR E.	36.) . side cted l Wea .0°E., in For below fiss heavy cCall a RR. Sencha ng pro of th	e). Lat. by <u>R. W. Smith</u> thering/alterat dip c. 30°W. (no rmation (Siluri, the iron ore have ile, olive-green sandstone beds ie property alon where it makes t Lake) 1 mi. W operty (Wkr.31S	, Long

Compiled by _____B. J. O'Connor

Material County	Shale (Re clay. Walker.	ed Mtn.) ar	nd resi		ompilation Ma ample Number	-	n No. <u>Wkr.31S-33</u>		
Raw Properties: Lab & No. Ga. Tech., #33.									
Date Reported 1931. Ceramist R. W. Smith, Ga. Survey.									
Water of Plasticity 28.0 % Working Properties Plasticity - good; slaking -									
Color _	Color Light brown. Drying Shrinkage 3.7 % Dry Strength (MOR) 106.0 psi. (green).								
Remarks	Drying Beha	vior: slig	ght wan	rpage.					
Slow Fin	ring Tests:								
Approx. Temp. °F (°C)	Color** (Munsell)	Hardness (MOR, psi.)	Shri	near nkage, % (plastic)	Absorption %	Appr. Po %	r. Other data: Warpage		
1840 (1005)	Deep salmon (2YR-5/5)	1375	5.3	(8.7)	14.2	1 <u>84</u> 1 55	Slight		
1920 (1050)	Medium red (10R-5/4)	1528	5.7	(9.0)	14.1	-	Slight		
2000 (1095)	Medium red (1YR-5/5)	1886	6.3	(9.5)	11.8	-	Some		
2060 (1125)	Good red (10R-4/4)	2682	10.7	(14.0)	5.5	-	Some		
2090 (1145)	Deep red (10R-3/5)	2896	12.0	(15.5)	3.5		Considerable		
2160 (1180)	Deep brown- ish red (10R-3/4)	3539	12.3	(15.8)	1.5	-	Considerable [*]		

*: Bars kiln-marked with vitreous looking surface and glassy fractures.

Remarks / Other Tests Firing Range = Cone 02 to 4 (commercial kiln = Cone 02 to 3). This material satisfactory for making building brick, tile (structural, roofing, and quarry) and possibly sewer pipe. The slightly high shrinkage could probably be reduced if a more sandy clay or slower-slaking shale were added to the material tested (Smith, 1931, p. 167).

Preliminary Bloating (Quick Firing) Tests: Not determined.

**Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) <a>Easy grinding.

Particle Size __16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

	al Analys		Mineralogy: Not determined.							
Oxide		Weight	% Mineral volume %							
Si02		57.71								
TiO ₂		0.73	Quartz							
A1203		23.64	Feldspar							
	(total)	8.00	Carbonate							
Fe0		-	Mica							
MnO			Chlorite-							
MgO		trace	vermiculite							
CaO		0.00	Montmorillonite							
Na_20		1.32	Others							
к ₂ 0		1.80								
$P_{2}^{-}0_{5}$		0.44								
	(total)	0.00	Total							
С	(org)	-								
C02		-								
н ₂ б-		*	($*$ = analysis recalculated on an H ₂ 0 ⁻ -free basis							
H20+		-	by Smith, 1931, p. 166.)							
Igniti	on									
loss		6.46								
Total	-	100.10	-							
Analyst E. Everhart, Ga. Survey.										
Date c. 1931.										
Method_Standard "wet".										
Sample Location Data:										
County Walker. Land Lot 80 , Sec. 4 , Dist. 9.										
7 1/2' topo quad. Fort Oglethorpe (NE. 1/4). Lat, Long										
Field No, Collected by <u>R. W. Smith.</u> Date <u>c, 1930.</u>										
Sample Method <u>Grab</u> samples. Weathering/alteration <u>More or less weathered</u> .										
0		. J. D.	shale and clay.							
Struct	ural Atti	tude Be	ds strike NNE., dip 23° to 75°E.; cut by 2 thrust faults							
striki	ng N.20 E	and di	pping 20-25° and 75°E.							
Stratigraphic Assignment <u>Red Mountain Formation (Silurian) overthrust by the Knox</u>										
Comple	Decemient		Group (Cambrian-Ordovician) chert and cherty clay.							
Sample Description & Comments Grab samples of sandy, brown, weathered shale with										
thin interbedded layers of sandy, brown clay and some brown, sandy clay with thin										
shale partings from 2 cuts on the Central of Ga. RR up to several hundred feet										
N. of the RR bridge over the road (McFarland Gap Road) in McFarland Gap through Missionary Ridge. Located on the McFarland property 2 miles S. of Rossville just E.										
			/4 mile N. of Mission Ridge RR station. Sampled interval							
represents about 150 feet (stratigraphic) of Red Mountain Formation (Smith, 1931, p.										
102-10	165-167). Also see Wkr. 09V-5.									

Compiled by B. J. O'Connor Da

Date 06-09-88

	(Red Mtn. Walker. perties:	emi-hard to Formation)	Compilation Map Location No. <u>Wkr.318-34</u> Sample Number Ga. Tech., #34.						
Date Reported 1931. Ceramist R. W. Smith, Ga. Survey. Water of Plasticity 21.0 % Working Properties Plasticity - poor and grainy (fair on aging 3 days); slaking - a little slow; molding behavior - fair (clay tends to tear at column edges).										
Color Brownish-gray. Drying Shrinkage 3.3 Dry Strength (MOR) 105.0 psi. green). Remarks Drying Behavior: Test bars somewhat warped.										
Slow Firing Tests:										
Approx. Temp. °F (°C)	Color** (Munsell)	Hardness (MOR, psï.)	Linear Shrinkage, % dry (plastic)	Absorption %	Appr. Po %	r. Other data: Warpage				
1840 (1005)	Dark salmon (2YR-5/5)	1052	3.2 (6.2)	13.1	-	Some				
1920 (1050)	Fair red (10R-4/5)	1542	3.9 (6.9)	10.7	-	Some				
2000 (1095)	Good red (1YR-4/3)	2250	4.8 (7.8)	7.0	-	Some				
2060 (1125)	Deep red (10R-4/3)	2606	7.7 (10.7)	6.0	-	Some				
2090 (1145)	Brownish- red (10R-4/4)	2477	4.3 (7.6)	5.3	2-0	Considerable [*]				
2160 (1180)	Deep brown- ish red (10R-3/3)	2694	5.8 (8.7)	2.7	-	Considerable [*]				

*: Vitreous appearing surface and somewhat glassy fractures. Remarks / Other Tests Firing Range = Cone 04 to 2 (commercial kiln = Cone 04 to 1). Suitable for making building brick and structural tile and possibly for roofing tile, quarry tile and sewer pipe. The poor working properties and low green strength probably could be improved by fine grinding, long pugging, or hot tempering water (or with electrolytes; Smith, 1931, p. 169). Shale used by the Mission Ridge Brick Company for making face (building) brick, although plant was not operated since c. 1925 (Smith, 1931, p. 167 and 169).

Preliminary Bloating (Quick Firing) Tests: Not determined.

**Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Brittle, fairly easy grinding. Particle Size -16 mesh. Retention Time -Chemical & Mineralogical Data: Chemical Analysis Mineralogy: Not determined. Weight % Oxide Mineral volume % SiO₂ 61.83 TiO₂ 0.92 Quartz Al203 16.81 Feldspar 5.67 Carbonate Fe_20_3 FeO 1.43 Mica MnO -Chlorite-MgO 0.92 vermiculite CaO 0.00 Montmorillonite Na₂0 2.73 Others K_2O 2.78 P205 trace 0.85 S 03 Tota1 С (org) -_ CO_2 н₂б-* (* = analysis recalculated on an H_2O^- -free basis $H_{2}0^{+}$ by Smith, 1931, p. 168.) Ignition loss 5.14 99.08* Total Analyst E. Everhart, Ga. Survey. Date c. 1930. Method Standard "wet". Sample Location Data: County Walker. Land Lots 101, 102, Sec. 4 , Dist. 9. and 115. 7 1/2' topo quad. Fort Oglethorpe (cntr.), Lat. , Long. . Field No. , Collected by R. W. Smith. Date c. 1930. Sample Method Grab samples. Weathering/alteration Somewhat weathered. Structural Attitude Shale strikes N.22°E. and dips c. 25°E. Stratigraphic Assignment Red Mountain Formation (Silurian) above and below the iron ore horizon. Sample Description & Comments Semi-hard to hard, greenish-drab shale which breaks into smooth, flat or hackly-fractured pieces (some weathers flaky) and interbedded with fairly abundant, thin, blocky-weathering, hard sandstone layers. The latter are especially abundant near the ridge-top where the interbedded clay is sandy, soft and "short". Samples from several levels in the shale pit which exposes 75 to 80 ft. (vertical) of shale about 150 ft. below the top of Missionary Ridge (W. slope). Taken from the Mission Ridge Brick Co. property (old Miller-Burns Fire Brick Co.), about 1/4 mi. W. of face brick plant and the Central of Ga. RR., Mission Ridge station, about 3 mi. S. of Rossville (Smith, 1931, p. 167-169).

Compiled by B. J. O'Connor Date 06-09-88

Materia County	l Shale, so (Red Mour Walker.		-hard (Compilation Ma Sample Number					
Raw Pro	perties:		Lab & No(Ga. Tech., #35	j.				
Date Re	Date Reported 1931. Ceramist R. W. Smith, Ga. Survey.								
fair on	Water of Plasticity 23.9 % Working Properties Plasticity - poor and "short" fair on aging overnight); slaking - a little slow; molding behavior - fair (clay tends to tear on column edges slightly).								
Color -	Brown.	Drying Shr	inkage2.7	% Dry Stren	igth (MOR) 102 (green).				
Remarks	Drying Beh	avior: Tes	t bars all slig	ghtly warped.					
Slow Fi	ring Tests:								
Approx. Temp. °F (°C)	Color* (Munsell)		Linear Shrinkage, % dry (plastic)		Appr. Por. %	Other data: Warpage			
1840 (1005)	Dark salmon (2YR-6/8)	889	3.3 (6.2)	15.9	-	Slight			
1920 (1050)	Fair red (1YR-5/7)	1382	4.8 (7.5)	12.5	-	Slight			
2000 (1095)	Good red (10R-5/5)	1985	6.1 (8.6)	10.8	-	Some			
2060 (1125)	Good red (10R-4/5)	2533	8.4 (10.7)	6.7	4	Some			
2090 (1145)	Good red (10R-4/4)	2611	8.4 (10.8)	5.3	-	Considerable			
2160 (1180)	Dark red (10R-4/3)	2785	9.1 (11.5)	4.7	-	Considerable			
			Range = Cone 0						

Shale is suitable for making building brick, structural tile and possibly roofing tile and sewer pipe. The slow slaking could probably be overcome by fine grinding, long pugging, hot water or electrolytes in the water (Smith, 1931, p. 172).

Preliminary Bloating (Quick Firing) Tests: Not determined.

*Note: Munsell color notation "10R" corresponds to the original notation "R-YR" reported in Smith (1931).

Crushing Characteristics (unfired material) Easy grinding.

Particle Size __16 mesh. Retention Time Approx. 17 hours.

Chemical & Mineralogical Data:

Chemical Analys	is	Mineralogy: Not determined.
Oxide	Weight %	Mineral volume %
SiO ₂	59.98	
TiO ₂	0.91	Quartz
$A1_2\bar{0}_3$	23.25	Feldspar
Fe_20_3 (total)	6.56	Carbonate
FeŌ	-	Mica
MnO		Chlorite-
MgO	0.12	vermiculite
CaO	0.00	Montmorillonite
Na ₂ 0	1.63	Others
K20	1.98	
P205	0.07	
S (total)	0.00	Total
C (org)		
co ₂	-	
H ₂ 0-	*	(* = analysis recalculated on an H_20^- -free basis
H ₂ 0 ⁺	-	by Smith, 1931, p. 170.)
Ignition		
loss	5.34	
Total	99.84*	
Analyst <u>E. Eve</u>	rhart, Ga. Survey.	
Date <u>c. 1930</u> .		
Method <u>Standar</u>	d "wet".	
Sample Location	Data:	
County Walker.	Land Lots	$\frac{114, 115}{128, and 120}$ Sec. <u>4</u> , Dist. <u>9</u> .
7 1/2' topo qua	d. Fort Oglethorpe	138 and 139. (cntr.). Lat, Long
Field No.	, Co1	lected by <u>R. W. Smith.</u> Date <u>c. 1930.</u>
Sample Method _	Several Grab sample	es. Weathering/alteration More or less weathered.
Structural Atti	tude <u>Strike</u> about	N.25°E., dip about 25°E.
Stratigraphic A	ssignment <u>Red Moun</u>	ntain Formation (Silurian) shale.
Sample Descript	ion & Comments Tak	ten from the Brown property, 1/4 to 1 1/4 miles
		entral of Ga. RR.) on the W. side of Missionary
		Ridge Brick Co. property on the north. Samples
		ivate road (west from the house at the ridge top)
		st. They range from soft, brownish-drab to semi-
		containing a few thin partings of sandstone. A
		ceous, red iron ore up to a few feet thick occur
near the top of	the section (Smith	n, 1931, p. 169-172).
Compiled by <u>B.</u>	J. O'Connor	Date 06-13-88

Material	Clay, bentonite (Chickamauga).			Compilation Map	Location No.	Wkr.31S-A
County	Walker.		-	Sample Number _	_	
Raw Prope	rties:		Lab & No	_		
Date Repo	rted 1931.		Ceramist _			
Water of	Plasticity	%	Working Pro	operties Soft,	plastic.	
	ve-green to enish-crear		inkage	% Dry Streng	th	
Slow Firi	ng Tests:	Not determine	ed.			
		Hardness (Mohs') Sh		Absorption %	Appr. Por. %	Other data:

Remarks / Other Tests Measured section and chemical analysis only reported by Smith (1931, p. 337-338).

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn.	no.	Wkr.31S-A	, cont.

Crushing Characte	ristics (u	nfired ma	aterial)		
Particle Size	R	etention	Time	-	
Chemical & Minera	logical Da	ta:			
Chemical Analysis	6			Mineralogy:	Not determined.
	leight %			Mineral	volume %
	51.52				
	0.74			Quartz	
	21.80			Feldspar	
	7.04			Carbonate	
FeÕ	-			Mica	
MnO	÷			Chlorite-	
MgO	0.27			vermiculit	e
CaO	0.14			Montmorillon	ite
Na ₂ 0	0.82			Others	
K ₂ 0	1.94				
	race				
	0.00			Total	
C (org)	-				
co ₂	-				
H ₂ 0 ⁻	*	()			ated on an H_2O^- -free basis
H ₂ 0 ⁺			by Smit	th, 1931, p.	338).
Ignition	5 00				
loss	5.80				
Total 10	0.07*				
Analyst E. Everh	art, Ga. Su	urvey.			
Date <u>c. 1930</u> .	-				_
Method <u>Standard</u>	"wet".				
Sample Location D	ata:				
County Walker.	La	nd Lots	251 and 2	252. Sec. <u>4</u>	_, Dist. <u>9</u> .
7 1/2' topo quad.	Fort Ogle	thorpe (S	SW. 1/4)	_ Lat	, Long
Field No		_, Colle	ected by	R. W. Smith	Date 1930.
Sample Method <u>Gr</u>	ab samples	<u>-</u>	Weath	ering/alterat:	ion <u>Some weathering</u> .
Structural Attitu	de <u>Beds s</u>	rike abo	out N.10	°E., dip about	t 35°W.
Stratigraphic Ass		3 ft. of Ordovicia		d limestone fr	rom Chickamauga limestone
Sample Descriptio				ned from unit:	s 1 and 3 (base and middle)
					just W. of the Chattanooga
					igh Point station. Adjacent
to the S. side of	the Scott	property	y (see W	kr.315-30).	1) = 10 ft. greenish-cream,
					f soft, waxy olive-green
					ne, sandy clay, golden mica
flakes or are red	aisn-brown	colored	(Smith,	1931, p. 33/-	-330).

Compiled by B. J. O'Connor

Date 06-09-88

Material	Clay, ber	ntonite (Chick	amauga).	Compilation Ma	p Location No	. <u>Wkr.31S-B</u>	
County	Walker.		-	Sample Number	-	-	
Raw Proper	rties:		Lab & No	-			
Date Repor	rted	931.	Ceramist _	-			
Water of H	Water of Plasticity% Working PropertiesNot determined.						
Color Gre	Color <u>Greenish-drab.</u> Drying Shrinkage <u>-</u> % Dry Strength <u>-</u>						
Slow Firin	ng Tests:	Not determine	ed.				
				Absorption %		Other data:	

Remarks / Other Tests Description and chemical analysis only reported by Smith (1931, p. 338).

Preliminary Bloating (Quick Firing) Tests: Not determined.

Crushing Characteristics (unfired materia	1)
Particle Size Retention Time	
Chemical & Mineralogical Data:	
Chemical Analysis	Mineralogy: Not determined.
Oxide Weight %	Mineral volume %
SiO ₂ 70.57	
TiO ₂ 0.73	Quartz
A1 ₂ 0 ₃ 14.84	Feldspar
$Fe_{2}O_{3}$ (total) 4.98	Carbonate
FeO –	Mica
MnO –	Chlorite-
MgO 0.26	vermiculite
CaO 0.16	Montmorillonite
Na ₂ 0 0.91	Others
K ₂ 0 1.68	
P ₂ 0 ₅ 1.04	
S (total) 0.00	Total
C (org) -	
co ₂ –	
$H_2\bar{0}^-$ * (* = and	alysis recalculated on an H ₂ 0 ⁻ -free basis
	Smith, 1931, p. 338.)
Ignition	
loss <u>4.70</u>	
Total 99.87*	
Analyst E. Everhart, Ga. Survey.	
Date <u>c. 1930.</u>	
Method Standard "wet".	
Sample Location Data:	
County Walker. Land Lot 94	, Sec. <u>4</u> , Dist. <u>11</u> .
7 1/2' topo quad. Durham (SE. 1/4).	. Lat, Long
Field No, Collected N	Dy <u>R. W. Smith.</u> Date <u>c. 1930.</u>
Sample Method <u>Grab sample</u> . Weat	thering/alteration Somewhat weathered?
Structural Attitude	
Stratigraphic Assignment In Chickamauga	limestone (Ordovician).
Sample Description & Comments Taken from	an outcrop on the Coopers Gan road (now
Ga. Hwy. 136 [formerly Hwy. 143]) on the S	
Cooper Heights station (Tenn., Ala., and (Ga. RR.). Analyzed clay is from a 2-3 ft.
bed of soft, greenish-drab, "cheesy" clay	and is overlain by 18 in. to 2 ft. of
speckled white or light green, mealy clay	full of golden mica flakes. This latter
clay (not sampled) is similar to that near	
on the Parrish property (see Wkr.31S-A) ac	cording to Smith (1931, p. 338).

locn. no. Wkr.31S-B , cont.

Compiled by B. J. O'Connor Date 06-09-88

Material	Clay, ber	tonite (Chic	kamauga)	Compilation Map	Location No	Wkr.31S-C
County	Walker.			Sample Number	-	_
Raw Prope	rties:		Lab & No			
Date Repo	rted1931	l	Ceramist _	-		
Water of	Water of Plasticity% Working PropertiesSoft, mealy					
Color Gre	Color <u>Greenish-drab.</u> Drying Shrinkage <u>-</u> % Dry Strength					
Slow Firi	ng Tests:	Not determin	ed.			
				Absorption %		Other data:

Remarks / Other Tests Description and chemical analysis only reported by Smith (1931, p. 338 and 339).

Preliminary Bloating (Quick Firing) Tests: Not determined.

	locn. no. <u>Wkr.31S-C</u> , cont.
Crushing Characteristics (unfired material)	
Particle Size Retention Time	-
Chemical & Mineralogical Data:	
Chemical Analysis	Mineralogy: Not determined.
Oxide Weight %	Mineral volume %
SiO ₂ 54.69	
	Quartz
	Feldspar
	Carbonate
	Mica
Mn0 –	Chlorite-
MgO 0.04	vermiculite
CaO 0.37	Montmorillonite
Na ₂ 0 3.09	Others
κ ₂ ō 1.96	
$P_2^{-}0_5$ 0.14	
S (total) trace	Total
C (org) -	
co ₂ –	
	sis recalculated on an H_2O^- -free basis
-	ith, 1931, p. 339.)
Ignition	
loss <u>6.06</u>	
Total 99.99*	
Analyst E. Everhart, Ga. Survey.	
Date <u>c. 1930.</u>	1
Method Standard "wet".	
Sample Location Data:	
County Walker. Land Lots 131 and 158,	
7 1/2' topo quad. <u>Durham (SE. 1/4)</u> . La	t, Long
Field No, Collected by	R. W. Smith. Date <u>c. 1930.</u>
Sample Method <u>Grab samples</u> . Weather	ring/alteration <u>Somewhat weathered</u> .
Structural Attitude Beds strike N.25°E., d	ip 35°W.
Stratigraphic Assignment <u>In Chickamauga lim</u>	estone (Ordovician).
Sample Description & Comments <u>Composite of</u> One is from road cut just W. of the Chattano N. of Cassandra, from 5 ft. of soft, mealy, overlies chert and dark gray to drab limestor more weathered bentonite outcrops 1/4 mi. to p. 338-339).	oga Valley Rd. (Ga. Hwy. 193), 1/2 mi. greenish-drab clay full of mica which ne. The second sample is from somewhat

Compiled by B. J. O'Connor Date 06-09-88

Material	Clay.			Compilation 1	Map Location No	Wkr.41-1
County	Walker.		-	Sample Number	·	
Raw Proper	ties:		Lab & No	Ga. Survey.		
Date Repor	ted <u>5-31-</u>	-41	Ceramist _	G. Massengal	2.	
Water of H	Water of Plasticity 32.8 % Working Properties Good plasticity; very little grit; and easily workable.					
Color		Drying Shrinl	kage <u>6</u> .		ength (MOR) 501	
Slow Firin	ng Tests:	Not determine	ed/unavailab	le.		
		Hardness (Mohs') Si			Appr. Por. %	Other data:

Remarks / Other Tests This clay is expected to be red-firing and should be suitable for making brick, hollow tile, tile and possibly sewer pipe (if it fires satisfactorily).

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. <u>Wkr.41-1</u>, cont.

14

Crushing Characteristics (unfired material)	and the second s	
Particle Size Retention Time	_	
Chemical & Mineralogical Data: Not determi	ned.	
Chemical Analysis Oxide Weight %	Mineralogy Mineral	volume %
SiO ₂ TiO ₂	Quartz	
A1 ₂ 0 ₃ Fe ₂ 0 ₃ FeO	Feldspar Carbonate Mica	
MnO MgO	Chlorite- vermiculite	
CaO Na ₂ 0 K ₂ 0	Montmorillonite Others	
$P_2^{0_5}$ S (total) C (org)	Total	
со ₂ н ₂ 0 ⁻		
H ₂ 0 ⁺ Ignition loss		
Total		
Analyst		
Date		
Method		
Sample Location Data: County Walker. Land Lot ,	Sec. , Dist	-
7 1/2' topo quad. LaFayette (Estelle). La		
Field No, Collected by	Charlie Cook.	Date <u>c. May 1941.</u>
Sample Method <u>Grab (?).</u> Weath	ering/alteration	
Structural Attitude		
Stratigraphic Assignment		
Sample Description & Comments <u>Clay sample</u> LaFayette, Ga. (Exact location unspecified, in Walker Co.)		
Compiled by B. J. O'Connor Da	te <u>1-25-82</u>	

Material	Clay.			Compilation Map	p Location No	. <u>Wkr.45-1</u>
County	Walker.		-,	Sample Number	[-
Raw Proper	ties:		Lab & No.	Not available.		
Date Repor	ted June	1945.	Ceramist _	Unknown.		
Water of P	lasticity	%	Working Pro	operties		
Color Lig	ht (?).	Drying Shrin	kage	- % Dry Streng	gth	
Slow Firin	g Tests:					
Temp. °F (°C)	Color			Absorption %		Other data:
unknown* (various)	Buff* (various shades)	3	*	*	*	*

*: More specific data not available.

Remarks / Other Tests This clay said to possess the properties of both ball clay and fire clay.

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. <u>Wkr.45-1</u>, cont.

Crushing Characteristics (unfired material)	
Particle Size Retention Time	
Chemical & Mineralogical Data: Not determi	ned.
Chemical Analysis Oxide Weight % SiO ₂	Mineralogy Mineral volume %
	Quartz Feldspar Carbonate
FeO MnO MgO	Mica Chlorite- vermiculite
CaO Na ₂ O K ₂ O	Montmorillonite Others
P_20_5 S (total) C (org)	Total
CO ₂ H ₂ O ⁻ H ₂ O ⁺	
Ignition loss Total	
Analyst	
Date	(
Method	And and a second se
Sample Location Data:	
County Walker. Land Lot 220,	Sec4, Dist9
7 1/2' topo quad. Fort Oglethorpe (SW. 1/4). Lat, Long
Field No, Collected by	T. A. Murray(?). Date 1945.
Sample Method <u>Grab (?).</u> Weath	ering/alteration
Structural Attitude	
Stratigraphic Assignment <u>Recent (?) clay p</u> (Cambrian-Ordovic	robably derived from the Knox Group ian) dolomite residuum.
Sample Description & Comments Test results A. G. Skates, Chattanooga, Tn. (on 6-8-45) Rossville, Ga. (from unpublished files of t dismantled RR grade through Missionary Ridg	regarding clay from Mr. T. A. Murray, he Ga. Survey). Location probably near
determined from the Land Lot designation.	
Compiled by B. J. O'Connor Da	te 06-13-88

Material	Clay.			Compilation Map	Location No	. Wkr. 46-1
County	Walker.		-	Sample Number _	-	
Raw Prop	erties:		Lab & No	USBM, Norris, 7	In.; No. Ga.	19
Date Rep	orted 6-6-4		Ceramist _	H. Wilson, USBN	1.	
Water of	Plasticity	- %	Working Pro	operties		
Color		Drying Shrink	cage	% Dry Streng	gth	
Slow Fir:	ing Tests:					
Temp. °F (°C)	Color	Hardness Sh	Linear 1rinkage, %	Absorption %	Appr. Por. %	Other data:
	Reddish buff	Fairly hard	-		Porous	1.00

Remarks / Other Tests Possible use in making common red brick. (Insufficient material submitted for complete testing.)

locn. no. Wkr.46-1 , cont.

Crushing Characteristics (unfired material) _____

Particle Size - Retention Time -

Chemical & Mineralogical Data: Not determined.

Chemical Analysis Oxide Weight % SiO ₂	Mineralogy Mineral volume %
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Quartz Feldspar Carbonate Mica Chlorite- vermiculite Montmorillonite Others
$ \begin{array}{c} K_2 \tilde{0} \\ P_2 0_5 \\ S (total) \\ C (org) \\ C \\ H_2 0 \\ \end{array} $	Total
H ₂ 0 ⁺ Ignition loss Total	
Analyst	
Date	
Method	
Sample Location Data:	
County Walker. Land Lot 299	, Sec, Dist. <u>10</u> .
7 1/2' topo quad. Durham (N. Center).	Lat, Long
Field No, Collected	by <u>L. T. Gillen.</u> Date <u>5-9-46.</u>
Sample Method <u>Grab (?).</u> Wea	thering/alterationWeathered (?)
Structural Attitude	
Stratigraphic Assignment _ Pennsylvanian (+ Recent weathering ?).
Sample Description & Comments A "residua Gillen, Progressive Industries). Locatio (probably north of) Ga. Hwy. 170.	
Compiled by B. J. O'Connor	Date 06-09-88

Material	Clay (res	sidual).		Compilation Map	D Location No	. <u>Wkr.46-2</u>
County	Walker.			Sample Number	_	-
Raw Prop	perties:		Lab & No	USBM, Norris,	ſn.; #Ga. 20.	
Date Rep	ported 6-6-4	6.	Ceramist _	H. Wilson, USB	1.	
Water of	Plasticity	%	Working Pro	operties Plast:	icity - good.	
Color I	light buff.	Drying Shrin	kage	% Dry Streng	gth	
Slow Fir	ing Tests:					
Temp. °F (°C)	Color			Absorption %		Other data:
2075 (1135) (Cone 2)		Hard	-	-	Somewhat porous	-

Remarks / Other Tests Promising for brick, hollow tile, etc. and merits further testing. (Insufficient material submitted for complete testing.)

۰.,

locn.	no.	Wkr.46-2	, cont.

Crushing Characteristics (unfired material) _____

Particle Size ____ Retention Time ____

Chemical & Mineralogical Data: Not determined.

Chemical Analysis		Mineralogy	
Oxide Weight %		Mineral	volume %
SiO ₂			
TiO2		Quartz	
A1203		Feldspar	
Fe203		Carbonate	
FeO		Mica	
MnO		Chlorite-	
MgO		vermiculite	
Ca0		Montmorillonite Others	
Na ₂ 0		others	
K ₂ 0 P ₂ 0 ₅			
S (total)		Total	
C (org)		Iotal	the second s
CO ₂			
H ₂ 0-			
H ₂ 0+			
Ignition			
loss			
Total			
Analyst			
Date		the second s	
Mathad			
Method			
Sample Location Data:			
County Walker.	Land Lot _299,	Sec, Dist	. <u>10</u> .
7 1/2' topo quad. Durham	(N. center). L	at, Lo	ng
Field No3.	, Collected by	L.T. Gillen. D.	ate <u>5-9-46.</u>
Sample Method Grab (?).	Weath	ering/alteration <u>Res</u>	idual clay.
Structural Attitude		· · · · · · · · · · · · · · · · · · ·	
Stratigraphic Assignment	Recent (?) residu	al clay.	
Sample Description & Comm	ents Clay describ	ed as a residual clav	("fire clay-blue")
from coal mine strip pit			
cated about 1/4 mile NE.			
			And the second s
Compiled by B. J. O'Conn	or Da	te 10-20-87	_

Material <u>Clay.</u>			Compilation Mag	p Location No	. <u>Wkr.46-3</u>
County Walker.			Sample Number	-	
Raw Properties:		Lab & No.	USBM, Norris,	ľn.; #Ga. 21.	
Date Reported 6-6	j-46.	_ Ceramist	H. Wilson, USB	М.	
Water of Plasticity		% Working Pro	operties Plast	ticity - good	•
Color <u>Grayish-buff</u>	Drying Sh	rinkage	% Dry Streng	gth	
Slow Firing Tests:					
Temp. Color °F (°C)	Hardness		Absorption %		Other data:
2075 Light buff (1135) with spots (Cone 2) of red.		-	₩.	Somewhat porous	

Remarks / Other Tests This clay merits further testing for brick, hollow tile and low grade fire brick. (Insufficient material submitted for complete testing.)

Preliminary Bloating (Quick Firing) Tests: Not determined.

locn. no. Wkr.46-3_, cont.

Crushing Characteristics (unfired material)		
Particle Size Retention Time	-	
Chemical & Mineralogical Data: Not determin	ned.	
Chemical Analysis Oxide Weight %	Mineralogy Mineral	volume %
$Si0_{2}$ Ti0_2 Al_20_3 Fe_20_3 FeO MnO MgO CaO Na_20 K_20	Quartz Feldspar Carbonate Mica Chlorite- vermiculite Montmorillonite Others	
P ₂ 0 ₅ S (total) C (org) CO ₂	Total	
H ₂ O ⁻ H ₂ O ⁺ Ignition loss Total		
Analyst		
Date		
Method		
Sample Location Data:		
County Walker. Land Lot 63,	Sec, Dist	
7 1/2' topo quad. Durham (N. center) . La	at, Lor	ng
Field No, Collected by	L.T. Gillen Da	ate <u>5-9-46.</u>
Sample Method Grab (?). Weath	ering/alteration	
Structural Attitude		
Stratigraphic Assignment Clay from coal st	rip pit (Pennsylvanian	1).
Sample Description & Comments <u>Clay sample</u> coal mine strip pits submitted for L. T. Gi near Price Branch, about 1/4 mile E. of Ga. Ascalon.	llen, Progressive Indu	stries. Located
Compiled by B. J. O'Connor Da	te <u>10-20-87</u>	

Material	Shale (Pe	ennsylvanian).	Compilation Map	D Location No	. <u>Wkr.46-4</u>
County	Walker.		_	Sample Number	1.	-
Raw Proper Date Repor			-	N.C. State Coll Asheville, Nort M. K. Banks, T	th Carolina; '	TVA #97.
Water of P	lasticity	-	% Working Pr	operties		
Color		Drying Shri	nkage <u> </u>	% Dry Streng	gth	
Slow Firin	ng Tests:	Not determi	ned.			
				Absorption %		Other data:

Preliminary Bloating (Quick Firing) Tests:			Negative.
Temp. °F	Absorption	Bulk Density	Pore Structure
(°C)	%	g/cm ³ lb/ft ³	
2350 (1288)		-	
2400 (1316)	-	100 100	Dirty gray color; not vitrified (too refractory).
2450 (1343)	-	-	-

Remarks Not usable, by itself, for expanded light weight aggregate manufacture.

+

locn. no. Wkr.46-4 , cont.

Crushing Characteristics (unfired material) _____

Particle Size _8 mesh. Retention Time 30 min. (in muffle furnace).

Chemical & Mineralogical Data: Not determined.

Chemical Analysis		Mineralogy	
-	ight %	Mineral	volume %
SiO ₂			
TiO ₂		Quartz	
A1203		Feldspar	
Fe203		Carbonate	
FeŐ		Mica	
MnO		Chlorite-	
MgO		vermiculite	
CaO		Montmorillonite	
Na ₂ 0		Others	
κ ₂ ΰ			
P205			
S (total)		Total	
C (org)			
CO ₂			
H ₂ 0 ⁻			
H ₂ 0 ⁺			
Ignition			
loss			
Total —			
IOLAI			
Apalmat			
Analyst			
Data			
Date			
Method			
Hechou			
Sample Location Dat	F		
Sample Location Dat	<i></i>		
County Walker	Land Lot,	Sec. Dist	
warker.	, Halld Lot,	, Disc	••
7 1/21 topo guad	Durham (N. edge) La	at Io	0.0
/ 1/2 topo quad	Durnam (N. euge).		·
Field No. 1	, Collected by	S D Broadburst (T	V(A) Data 1946?
rield No. 1.	, corrected by	5. D. Dioadnuist (1	VA7. Date 1940;
Sample Method Grat	b (2) Woath	ering/alteration	
Sampre nection	J (;). Weathe		
Ctrustural Attitud	e Nearly horizontal.		
Structural Attruct	e Mearry notizontar.		
Stratigraphia Apair	gnment Pennsylvanian.		
Scratigraphic ASSI	giment tennsylvantan.		
Sample Description	& Comments Interim repor	rt on toute from N C	Possarch Lab via
	10-22-46). Sample taken		
	mine. The shale is hard		
	s from 20 to 40 feet thick		
the second s	area is near the terminus		the second se
the second se	lroad (east of map location	on No. 100, Butts and	Gildersleeve,
<u>1948, p. 105).</u>			
Compiled by D T	0100000	2 26 82	
Compiled by B. J.	o connor Da	te 2-26-82	

Material	Shale (Co	onasauga).		Compilation Map Location No. Wkr.46-5
County	Walker.			Sample Number
<u>Raw Proper</u> Date Repor		-8-46.		N.C. State College Research Lab Asheville, North Carolina; TVA #98. M. K. Banks, TVA.
Water of H	lasticity	?	Working Pro	operties
Color Gra	y-green.	Drying Shrin	ikage <u>–</u>	% Dry Strength
Slow Firir	g Tests:	Not determin	ned.	
Temp. °F (°C)	Color	Hardness	Linear Shrinkage, %	Absorption Appr. Por. Other % % data:

Prelimina	ary Bloating ((Quick Firing) Tests:	Negative.
Temp. °F	°F %		Pore Structure
(°C)		g/cm ³ lb/ft ³	
2350 (1288)	-	-	
2400 (1316)	-	-	Vitrified only (too refractory).
2450 (1343)	-	-	

Remarks Not usable, by itself, for expanded light weight aggregate manufacture.

Crushing Characteristics (unfired material) -

Particle Size -8 mesh. Retention Time 30 min. (in muffle furnace).

Chemical & Mineralogical Data: Not determined.

Oxide Weight % Mineral volume % SiO2 Quartz Al203 Feldspar Fep03 Garbonate Fe0 Mica Mn0 Chlorite- Mg0 Vermiculite Cao Montmorillonite Na20 Others K00 Vermiculite Cao Montmorillonite Na20 Others K0 Total C (org) Total C (org) Total C (org) Total C (org) Total Date	Chemical Analysis	Mineralogy
TiO_ Quartz Al_2O_3 Feldspar Fe2O_3 Carbonate Fe0 Mica MnO Chlorite- MgO Vermiculite CaO Montmorillonite NagO Others K2O Yermiculite CaO Montmorillonite NagO Others K2O Total Corg Corg Co_ (org) Co_ (org) Co_2 H2O+ H2O+ H2O+ Bate	Oxide Weight %	
Al2ô3 Feldspar FeO Mica Mn0 Chlorite- Mg0 Wermiculite CaO Montmorillonite Napo Others K2ô P205 S (total) C (org) C02 H20 ⁴ H20 ⁴ H20 ⁴ H20 ⁴ Janiton loss	SiO ₂	
Fe 0 Garbonate Mn0 Chlorite- Mg0 Vermiculite Mapon Others Nayon Others Sectors Total Corg Corg Method		Quartz
Fe 0 Garbonate Fe 0 Mica Mn0 Chlorite- Mg0 Vermiculite Mapon Others Napon Others Secons Total Corg Corg Method		Feldspar
Fe6 Mica Mn0 Chlorite- Mg0 vermiculite Ca0 Montmorillonite Na20 Others K20 P205 S (total) Corg) Total C02 H207 H204 H204 Ignition Ioss Total		
Mn0 Chlorite- verniculite Mg0 Wontmorillonite May 0 Others S (total) Total C (org) Cog May 0 Total		
Mg0 vermiculite Ga0 Montmorillonite Ma20 Others K20 P205 S (total) Total C (org) GO2 H20 ⁺ H20 ⁺ Ignition Ioss Ioss		
G0 Montmorillonite Na20 Others K20 P205 S (total) Total C(org) Total G2 H207 H207 H207 Ignition Loss Joss		
Na20 Others K20 P205 S (total) Total C (org) C02 H20 ⁻ H20 ⁻ H20 ⁻ H20 ⁺ Ignition loss		
K20 P205 S (total) C (org) C02 H207 H207 H207 Ignition loss Total Analyst Date		
P205 S (total) Total S (org)	Na ₂ 0	Others
S (total) Total C (org) C02 H20 ⁺ H20 ⁺ Ignition loss Total Analyst Date Method Sample Location Data: County Walker. Land Lot, Sec, Dist 7 1/2' topo quad. <u>Nickajack Gap (W. side.)</u> Lat, Long Field No2, Collected by <u>S. D. Broadhurst (TVA)</u> . Date <u>1946?</u> Sample Method <u>Grab (?)</u> . Weathering/alteration Structural Attitude Structural Attitude Stratigraphic Assignment <u>Conasauga Group (Cambrian)</u> . Sample Description & Comments <u>Interim report on tests from N.C. Research Lab via</u> H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin	K ₂ 0	
S (total) Total C (org) C02 H20 ⁺ H20 ⁺ Ignition loss Total Analyst Date Method Sample Location Data: County Walker. Land Lot, Sec, Dist 7 1/2' topo quad. <u>Nickajack Gap (W. side.)</u> Lat, Long Field No2, Collected by <u>S. D. Broadhurst (TVA)</u> . Date <u>1946?</u> Sample Method <u>Grab (?)</u> . Weathering/alteration Structural Attitude Structural Attitude Stratigraphic Assignment <u>Conasauga Group (Cambrian)</u> . Sample Description & Comments <u>Interim report on tests from N.C. Research Lab via</u> H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin	P_2O_5	
C (org) CO2 H2O ⁷ H2O ⁷ Ignition loss Total Analyst Date Method Sample Location Data: County Walker. Land Lot, Sec, Dist Method Sample Location Data: County Walker. Land Lot, Sec, Dist Field No2, Collected by S. D. Broadhurst (TVA). Date 1946? Sample Method Grab (?). Weathering/alteration Structural Attitude Structural Attitude Stratigraphic Assignment Conasauga Group (Cambrian). Sample Description & Comments Interim report on tests from N.C. Research Lab via H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin		Total
CO2 H2O H2O H2O Ignition loss Total Analyst Date Method Sample Location Data: County Walker. Land Lot, Sec, Dist County Walker. Land Lot, Sec, Dist 7 1/2' topo quad. Nickajack Gap (W. side.) Lat, Long 7 1/2' topo quad. Signer I topo		
H20 ⁻ H20 ⁺ Ignition loss Total Analyst Date		
H ₂ 0 ⁺ Ignition loss Total Analyst Date Method Sample Location Data: County Walker. Land Lot, Sec, Dist 7 1/2' topo quad. <u>Nickajack Gap (W. side.)</u> Lat, Long 7 1/2' topo quad. <u>Nickajack Gap (W. side.)</u> Lat, Long Field No, Collected by <u>S. D. Broadhurst (TVA)</u> . Date <u>1946?</u> Sample Method <u>Grab (?)</u> . Weathering/alteration Structural Attitude Stratigraphic Assignment <u>Conasauga Group (Cambrian)</u> . Sample Description & Comments <u>Interim report on tests from N.C. Research Lab via</u> H. S. Rankin (TVA, 10-2-46). <u>Sample of gray-green</u> , fairly soft shale with thin		
Ignition loss Total Analyst Date		
loss Total Analyst		
Total Analyst	-	
Analyst	loss	
Date	Total	
Date		
Date	Analyst	
Method		
Method	Date	
Sample Location Data: County Walker. Land Lot, Sec, Dist 7 1/2' topo quad. Nickajack Gap (W. side.) Lat, Long Field No. 2. , Collected by S. D. Broadhurst (TVA). Date 1946? Sample Method Grab (?). Weathering/alteration Structural Attitude Structural Attitude Sample Description & Comments Interim report on tests from N.C. Research Lab via H. S. Rankin (TVA, 10-2-46).		and the second
Sample Location Data: County Walker. Land Lot, Sec, Dist 7 1/2' topo quad. Nickajack Gap (W. side.) Lat, Long Field No. 2. , Collected by S. D. Broadhurst (TVA). Date 1946? Sample Method Grab (?). Weathering/alteration Structural Attitude Structural Attitude Sample Description & Comments Interim report on tests from N.C. Research Lab via H. S. Rankin (TVA, 10-2-46).	Mathad	
County Walker. Land Lot, Sec, Dist 7 1/2' topo quad. Nickajack Gap (W. side.) Lat, Long 7 1/2' topo quad. Nickajack Gap (W. side.) Lat, Long Field No. 2. , Collected by S. D. Broadhurst (TVA). Date 1946? Sample Method Grab (?). Weathering/alteration Structural Attitude	Method	terreter and the second s
County Walker. Land Lot, Sec, Dist 7 1/2' topo quad. Nickajack Gap (W. side.) Lat, Long 7 1/2' topo quad. Nickajack Gap (W. side.) Lat, Long Field No. 2. , Collected by S. D. Broadhurst (TVA). Date 1946? Sample Method Grab (?). Weathering/alteration Structural Attitude		
7 1/2' topo quad. <u>Nickajack Gap (W. side.)</u> Lat, Long Field No, Collected by <u>S. D. Broadhurst (TVA).</u> Date <u>1946?</u> Sample Method <u>Grab (?).</u> Weathering/alteration Structural Attitude Stratigraphic Assignment <u>Conasauga Group (Cambrian).</u> Sample Description & Comments <u>Interim report on tests from N.C. Research Lab via</u> H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin	Sample Location Data:	
7 1/2' topo quad. <u>Nickajack Gap (W. side.)</u> Lat, Long Field No, Collected by <u>S. D. Broadhurst (TVA).</u> Date <u>1946?</u> Sample Method <u>Grab (?).</u> Weathering/alteration Structural Attitude Stratigraphic Assignment <u>Conasauga Group (Cambrian).</u> Sample Description & Comments <u>Interim report on tests from N.C. Research Lab via</u> H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin		
Field No. 2. , Collected by S. D. Broadhurst (TVA). Date 1946? Sample Method Grab (?). Weathering/alteration Structural Attitude - Stratigraphic Assignment Conasauga Group (Cambrian). Sample Description & Comments Interim report on tests from N.C. Research Lab via H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin	County Walker. Land Lot,	Sec, Dist
Field No. 2. , Collected by S. D. Broadhurst (TVA). Date 1946? Sample Method Grab (?). Weathering/alteration Structural Attitude - Stratigraphic Assignment Conasauga Group (Cambrian). Sample Description & Comments Interim report on tests from N.C. Research Lab via H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin		
Field No. 2. , Collected by S. D. Broadhurst (TVA). Date 1946? Sample Method Grab (?). Weathering/alteration Structural Attitude - Stratigraphic Assignment Conasauga Group (Cambrian). Sample Description & Comments Interim report on tests from N.C. Research Lab via H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin	7 1/2' topo quad. Nickajack Gap (W. side.)	Lat , Long
Sample Method Grab (?). Weathering/alteration Structural Attitude		
Structural Attitude	Field No, Collected by	S. D. Broadhurst (TVA). Date 1946?
Structural Attitude	Comple Method (reh (?) Weath	ring/altoration
Stratigraphic Assignment <u>Conasauga Group (Cambrian)</u> . Sample Description & Comments <u>Interim report on tests from N.C. Research Lab via</u> H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin	Sample Method Grab (:). weathe	
Stratigraphic Assignment <u>Conasauga Group (Cambrian)</u> . Sample Description & Comments <u>Interim report on tests from N.C. Research Lab via</u> H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin		
Sample Description & Comments Interim report on tests from N.C. Research Lab via H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin	Structural Attitude	
Sample Description & Comments Interim report on tests from N.C. Research Lab via H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin		
H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin	Stratigraphic Assignment Conasauga Group (C	Cambrian).
H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin		
H. S. Rankin (TVA, 10-2-46). Sample of gray-green, fairly soft shale with thin	Sample Description & Comments Interim report	rt on tests from N.C. Research Lab via
beds of sandstone which occur locally. Sample was taken from a fairly fresh road		
cut and is typical of the Conasauga in the LaFayette area. Location is 7 miles N.		
of LaFayette and 1/4 mile east of U.S. Hwy. 27.	of Larayette and 1/4 mile east of U.S. Hwy.	21.
	Compiled by B. J. O'Connor Dat	- 06-09-88
	Compiled by B. J. O'Connor Dat	ce 06-09-88

Material Clay (high silica).			Compilation Map Location No. Wkr.63-1	
County	Walker.		Sample Number	
Raw Proper	ties:	Lab & No.	USBM, Norris, Tenn.; No. 1516	
Date Repor	ted 4-17-63	Ceramist	H.P. Hamlin, USBM.	
Water of F	Plasticity21.0	Working Pr	operties Short working, fairly plastic,	
	and a support of the second symptotic sec	fine	grit. pH =6.4	
Color Lig	cht gray. Drying Shrin	kage <u>5.0</u>	% Dry StrengthLow.	
Remarks T)rving Characteristics:	Good, no d	rving defects.	

Slow Firing Tests:

Temp. °F (°C)	Color		inear inkage, %	Absorption %	Appr. Por. %	Other data: Appr. Sp. Gr.
1800	Buff-	(2)	5 0	15.0		0.50
(982)	orange	Soft, crumbly	5.0	15.9	-	2.59
1900 (1038)	Buff- orange	(2) Soft, crumbly	5.0	16.2	-	2.63
2000	Buff-	(3)				
(1093)	orange	Fair hard	6.0	15.1	-	2.59
2100 (1149)	Tan	(5) Very hard	7.5	14.0	(—)	2.56
2200	Red-	(6)				
(1204)	gray	Steel hard	7.5	9.1	-	2.47
2300	Gray-	(6)	7.0	10.0		0.40
(1260)	red	Steel hard	7.3	10.2	-	2.42

Remarks/Other Tests The working properties and fired shrinkage suggest high silica. Potential use: chimney flue tile (?), decorative brick.

Preliminary Bloating (Quick Firing) Tests: Negative.

*Based on comparison of Tyrrell's 1967 revisions of Denny's 1967 data sheets.

locn. no. Wkr.63-1, cont. Crushing Characteristics (unfired material) -Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C) Chemical & Mineralogical Data: Not determined. Chemical Analysis Mineralogy: Oxide Weight % volume % Mineral Si02 TiO2 Quartz Al203 Feldspar Carbonate Fe203 FeO Mica Chlorite-MnO Mg0 vermiculite Montmorillonite Ca0 Others Na₂0 K_20 P205 SO Total С (org) C02 н₂о- $H_{2}0^{+}$ Ignition loss Total Analyst Date Method -Sample Location Data: County Walker. Land Lot _____, Sec. ____, Dist. ____. 7 1/2' topo quad. _____. Lat. ____, Long. ____. Field No. _____, Collected by L. E. Whaley. Date c. March, 1963. Sample Method Grab (?). Weathering/alteration -Structural Attitude _____ Stratigraphic Assignment -Sample Description & Comments From the Lynne E. Whaley farm Rock Springs area. No further data available. Compiled by B. J. O'Connor Date 7-25-87

Material	Compilation Map Location No. Wkr.64-1
CountyWalker.	Sample Number 1.
Raw Properties: Lab	& No. USBM, Norris Tenn.; No. 1553-A.
Date Reported <u>4-8-64</u> Cer (revised 1967)	amist <u>M.V.Denny, USBM (revised by M.E.</u> Tyrrell, Tuscaloosa, Ala.).
	king Properties Low plasticity.
Color Light gray. Drying Shrinkage	0.0 % Dry Strength Low.
Remarks Drving Characteristics: No	defects.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %		on Appr. Por. %	Other data: Bulk Dens. gm/cc
1800 (982)	Tan	2	4.0	17.7	32.2	1.82
1900 (1038)	Tan	3	5.0	14.5	27.7	1.91
2000 (1093)	Tan	4	10.0	6.2	13.8	2.23
2100 (1149)	Red- brown	4	10.0	5.1	11.6	2.27
2200 (1204)	Red- brown	6	12.0	2.1	5.0	2.37
2300 (1260	Dark brown	6	12.0	1.2	2.8	2.34
Remarks	/ Other Tes	sts Should	fire to "SW"	face brick	specifications	at about 1950°F

Remarks / Other Tests Should fire to "SW" face brick specifications at about 1950°F (1066°C). Abrupt vitrification. Potential Use: Face brick; quarry tile.

Preliminary Bloating (Quick Firing) Tests: Negative.

locn. no. <u>Wkr.64-1</u>, cont.

Crushing	Characteristics	(unfired mate	erial)
Particle	Size -20 mesh.	Retention T	ime 15 min. draw trials (following
			3-4 hr. to 1800°F, 982°C).
Chemical	& Mineralogical	Data:	
Chemical	Analysis		Mineralogy: Not determined.
Oxide	Weight %		Mineral volume %
SiO ₂	61.70		
TiO ₂	0.90		Quartz
and the second se	21.12		Feldspar
A1203	6.12		Carbonate
Fe ₂ 0 ₃ FeO	1.49		Mica
Mn0	0.05		Chlorite-
MgO	1.08		vermiculite
Ca0	0.08		Montmorillonite
Na20	0.26		Others
K20	2.21		
P205	0.06		
sõ2	0.16		Total
C (or	rg) –		
co2	-		
H ₂ 0 ⁻	3.81		
H ₂ 0 ⁺	1.10		
Ignition	-		
loss			
Total	100.14		
Analyst _	L. H. Turner, Ga	. Survey.	······
Date Jan	uary 1964.		
Method	-		
Sample Lo	ocation Data:		
County _	lalker.	Land Lot	, Sec, Dist
7 1/2' to	opo quad		Lat, Long
Field No.	1.	, Collect	ted by <u>R. D. Bentley.</u> Date <u>c. 1964.</u>
Sample Me	ethod Grab (?).		Weathering/alteration
Structura	al Attitude		
Stratigra	aphic Assignment	Red Mounta:	in Formation (Silurian).
C D	and the com	onto OL-1-	from the second mention of the D-1 Marchain
			from the upper portion of the Red Mountain
			a few minor 1-8 in. siltstone beds ("Zone A",
in Bentle	ey, 1964, p. 8 ar	id 13).	
Compiled	by B. J. O'Cor	nor	Date 10-20-87

÷.

Material	Shale (Re	ed Mountain).	Compilation Ma	p Location No	Wkr.64-2
County	Walker.			Sample Number	2.	
Raw Prop	perties:		Lab & No.	Ga. Tech., #2.		
Date Rep	ported 1964	4.	Ceramist .	L. Mitchell, G	a. Tech.	
Water of Plasticity % Working PropertiesFair plasticity						
Color _	Color <u>Light salmon</u> . Drying Shrinkage <u>-</u> % Dry Strength <u>-</u>					
Slow Fin	ring Tests:					
Temp. °F (°C)	Color	Hardness		Absorption %		Other data:
2120 (1160) (Cone 1+)	Dark brick red	-	Slight	-	-	Vitrified

Remarks / Other Tests Fired texture is very gritty (Bentley, 1964, p. 19). Preliminary Bloating (Quick Firing) Tests: Not determined.

Č,

locn. no. Wkr.64-2, cont.

Crushing Characteristics (unfired material)
Particle Size Retention Time
Chemical & Mineralogical Data: Not determined.
Chemical AnalysisMineralogyOxideWeight %Mineralvolume %
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
r 205 S (total) Total C (org) CO2 H20 ⁻ H20 ⁺ Ignition loss Total
Analyst
Date Method
Sample Location Data:
County Walker. Land Lot, Sec, Dist
7 1/2' topo quad Lat, Long
Field No. 2. , Collected by <u>R. D. Bentley</u> . Date <u>c. 1964</u> .
Sample Method <u>Grab (?).</u> Weathering/alteration
Structural Attitude
Stratigraphic Assignment <u>Red Mountain Formation (Silurian).</u>
Sample Description & Comments Shale from the upper portion of the Red Mountain Formation which is largely shale with a few minor 1-8 in. siltstone beds ("Zone A" in Bentley, 1964, p. 13).
Compiled byB. J. O'Connor Date2-82

Materia	1 Shale (Re	ed Mountain).		Compilation Ma	p Location No	. Wkr.64-3
County	Walker.			Sample Number	3.	_
Raw Pro	perties:		Lab & No	Ga. Tech., #3.		
Date Re	ported1964	4.	_ Ceramist _	L. Mitchell, G	a. Tech.	
Water o	f Plasticity		% Working Pro	operties <u>Poor</u>	plasticity.	
Color _Beige Drying Shrinkage % Dry Strength						
Slow Fi	ring Tests:					
Temp. °F (°C)	Color			Absorption %	Appr. Por. %	Other data:
2120 (1160) (Cone 1+)	Very dark brick red	- 1	Slight	in.	-	Vitrified

Remarks / Other Tests Fired texture is slightly gritty (Bentley, 1964, p.19). Preliminary Bloating (Quick Firing) Tests: Not determined.

	locn. no	. <u>Wkr.64-3</u> , cont.
Crushing Characteristics (unfired material)		
Particle Size Retention Time		
Chemical & Mineralogical Data: Not determi	ned.	
Chemical Analysis Oxide Weight % SiO ₂	Mineralogy Mineral	volume %
TiO_2 Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Quartz Feldspar Carbonate Mica Chlorite- vermiculite Montmorillonite Others	
K ₂ 0 P ₂ 0 ₅ S (total) C (org) CO ₂ H ₂ 0 ⁻ H ₂ 0 ⁺ Ignition loss Total	Total	
Analyst		
Date		
Method		
Sample Location Data:		
CountyWalker. Land Lot,	Sec, Dist	·
7 1/2' topo quad I		ong*
Field No, Collected by	R. D. Bentley.	Date <u>c. 1964.</u>
Sample Method <u>Grab (?).</u> Weath	ering/alteration	
Structural Attitude		
Stratigraphic Assignment <u>Red Mountain Form</u>	nation (Silurian).	
Sample Description & Comments Shale from t Formation which is largely shale with a few in Bentley, 1964, p. 13).		
Compiled by B. J. O'Connor Da	te 1-22-82	

Materia	l _ Shale (R	ed Mountain		Compilation Ma	ap Location No	. Wkr.64-4
County	Walker.		<u></u> n	Sample Number	4.	
Raw Pro	perties:		Lab & No.	USBM, Norris 1	Cenn.; No. 155	3-в.
Water o	f Plasticity	sed 1967) 16.0	% Working Pr	M.V.Denny, USH Tyrrell, Tusca operties Low p pH=6.5. % Dry Stren	aloosa, Ala.). plasticity. Not effervesc	-
Remarks	Drying Char	acteristics	: No defects	•		
Slow Fi	ring Tests:					
Temp. °F (°C)	Color	Hardness (Mohs')		Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800 (982)	Light brown	2	5.0	11.9	23.3	1.96
1900 (1038)	Light brown	3	5.0	9.5	19.5	2.05
2000 (1093)	Brown	4	5.0	8.2	17.1	2.08
2100 (1149)	Red- brown	5	9.0	2.9	6.7	2.30
2200 (1204)	(a)	-	Expanded	-	-1	2
2300 (1260		-	Melted	-	-	

Remarks / Other Tests Should fire to "SW" face brick specifications at about 2000°F (1093°C). Low plastic strength. Potential Use: Face brick.

Preliminary Bloating (Quick Firing) Tests: Negative.

÷.

-98-

locn. no. Wkr.64-4, cont.

Crushing Characteristics (unfired material) _____

.

Particle Size <u>-20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> <u>to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

	•		
Chemical Analys		Mineralogy	
Oxide	Weight %	Mineral	volume %
Si0 ₂		Ou ant -	
TiO2		Quartz	
A1203		Feldspar	
Fe ₂ 0 ₃		Carbonate Mica	
FeO			
MnO MaO		Chlorite- vermiculite	
MgO CaO		Montmorillonite	
Na ₂ 0		Others	
K ₂ 0		ochera	
P ₂ 0 ₅			
S (total)		Total	
C (org)		IOUUI	
C0 ₂			
H ₂ 0-			
$H_2^20^+$			
Ignition			
loss			
Total			
Analyst			
Date			
Method			
Sample Location	n Data:		
County <u>Walker</u>	Land Lot	_, Sec, Dis	t
7 1/2' topo qua	ad	. Lat, L	ong
Field No. <u>4.</u>	, Collected	by R. D. Bentley.	Date <u>c. 1964.</u>
Sample Method _	Grab (?). We	athering/alteration	
Structural Atti	tude		
Stratigraphic A	ssignment <u>Red Mountain</u>	Formation (Silurian).	
Sample Descript	ion & Comments Shale fr	om the upper portion of	the Red Mountain
	h is largely shale with a		
in Bentley, 196			
Compiled by E	B I O'Coppor	Date 10-20-87	
comprised by E	7. 5. 0 00mitor	Date 10 20-07	

MaterialShale (Conasauga).	Compilation Map Location No. Wkr.64-5			
CountyWalker.	Sample Number			
Raw Properties: Lab & No	. USBM, Norris, Tenn.; No. 1553-H.			
(revised 1967) Water of Plasticity 22.1 % Working	M.V. Denny, USBM. (revised by M.E. Tyrrell, Tuscaloosa, Ala.) Properties Long working, smooth, plastic, pH=5.10 (Not effervescent with HCl.)			
Color Yellow. Drying Shrinkage 5.0 % Dry Strength Fair.				
Remarks Drying Chracteristics: Fair, slightly rough. (No defects.)				
Slow Firing Tests:				

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage,	Absorption % %	Appr. Por. %	Other Data: Bulk Dens. gm/cc
1800		(3)				
(982)	Tan	Fair hard	7.0	19.9	35.6	1.79
1900 (1038)	Tan	(3) Fair hard	7.0	18.3	33.7	1.84
2000 (1093)	Light brown	(4) Hard	10.0	15.2	29.5	1.94
2100 (1149)	Brown	(4) Hard	10.5(10.0)	17.0	15.3	2.19
2200 (1204)	Chocolate	(5) Very hard	10.5(10.0)	7.0	15.1	2.15
2300 (1260)	Blackish brown	(5) Very hard	13.5(12.5)	5.0	11.0	2.20

Remarks/Other Tests Fair color; rough surface; some cracking; shrinkage and absorption slightly high. (Should fire to "MW" face brick specifications at about 2050°F (1121°C). Abrupt vitrification). Potential use: None. (Face brick, sewer pipe.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Wkr.64-5, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following</u> <u>3-4 hr. to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

12

Chemical Analysi		Mineralogy		
	Weight %	Mineral	volume %	
Si02				
TiO ₂		Quartz		
A1203		Feldspar		
Fe_2^{0}		Carbonate		
FeŐ		Mica		
MnO		Chlorite-		
MgO		vermiculite		
CaO		Montmorillonite		
		Others		
Na ₂ 0		others		
K ₂ 0				
P205				
S (total)		Total		
C (org)				
CO2				
H ₂ 0-				
H ₂ 0+				
Ignition				
loss				
Total				
Analyst				
Date				
Method				
Method				
Sample Location	Data:			
County Walker.	Land Lot,	Sec, Dist		
7 1/2' topo quad	· I	Lat, Lo	ng	
Field No. 10.	, Collected by	J.W. Smith (?). D	ate <u>c. 1963.</u>	
Sample Method <u>G</u>	rab (?). Weath	nering/alteration		
Structural Attit	ude			
Stratigraphic AssignmentCanasauga Group (Cambrian).				
Sample Descripti	on & Comments <u>No further</u>	data available.	- 1	
Compiled byB.	J. O'Connor Da	ate 10-20-87		

Material	Clay (Chickamauga	cesiduum).	Compilation Map Location No. Wkr.64-6		
County	Walker.		Sample Number		
Raw Proper	rties:	Lab & No	USBM, Norris, Tenn.; No. 1553-I		
Date Reported <u>4-8-64.</u> (revised 1967)		Ceramist	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.)		
Water of Plasticity 23.8 % Working Properties Moderate plasticity					
Color <u>Red-brown</u> . Drying Shrinkage 5.0 $\frac{pH = 5.2}{\%}$ Dry Strength <u>Fair</u> .					
Remarks Drying Characteristics: No defects.					

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs!)	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800	Light	0	5.0	10.0	20 /	1.00
(982)	brown	2	5.0	18.0	32.4	1.80
1900	Light					
(1038)	brown	3	5.0	17.0	30.9	1.82
2000						
(1093)	Brown	4	9.0	13.1	25.5	1.95
2100						
(1149)	Brown	5	10.0	11.0	22.3	2.03
2200	Dark					
(1204)	brown	6	10.0	7.9	19.8	2.51
2300						
(1260)	-	-	Expanded	-		-

Remarks / Other Tests Should fire to "MW" face brick specifications at about 2050°F (1121°C). Potential use: Face brick.

Preliminary Bloating (Quick Firing) Tests: Negative.

locn. no. Wkr.64-6 , cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. drawtrials (following 3-4 hr.</u> to 1800°F, 982°C).

Chemical & Mineralogical Data:	
Chemical Analysis	Mineralogy: Not determined.
Oxide Weight %	Mineral volume %
SiO ₂ 64.30	
Ti0 ₂ 1.00	Quartz
Al ₂ 0 ₃ 17.14	Feldspar
Fe ₂ 0 ₃ 7.32	Carbonate
FeO 0.72	Mica
MnO 0.18	Chlorite-
MgO 0.92	vermiculite
CaO 0.24	Montmorillonite
Na ₂ 0 0.50	Others
K ₂ 0 1.47	
P ₂ 0 ₅ 0.14	
so ₂ 0.15	Total
C (org) -	
co ₂ –	
H ₂ 0 4.53	
H_20^+ 1.28	
Ignition	
loss -	
Total 99.89	
AnalystL. H. Turner, Ga. Survey.	
Date January 1964.	
Method	
Sample Location Data:	
County Walker. Land Lot,	Sec, Dist
7 1/2' topo quad. <u>Kensington (SW. base)</u> . L	at, Long
Field No, Collected by	R. D. Bentley. Date c. 1964.
Sample Method Weath	ering/alteration Residual clay.
Structural Attitude	
Stratigraphic Assignment Chickamauga Group	(Ordovician) clay residuum (Tertiary?).
Sample Description & Comments Sample taken	from between Ga. Hwy. 193 and the TAG
Railroad, about 0.15 mi. W. of Wkr.64-7 and	
(Bentley, 1964, p. 5 and 8).	
Compiled by B. J. O'Connor Da	te 06-09-88
Da Da Da Da Da	

MaterialShale (Red Mountain).		Compilation Map Location No. Wkr.64-7		
County Walker.		Sample Number12.		
Raw Properties:	Lab & No	USBM, Norris, Tenn.; No. 1553-J		
Date Reported <u>4-8-64</u> (revised 1967)	_	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.)		
	Working Pro	operties Low plasticity.		
Color <u>Gray.</u> Drying Shrink		5.2. Not effervescent with HCl.) % Dry Strength Fair.		

Remarks Drying characteristics: No defects.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800 (982)	Light brown	3	5.0	13.9	27.2	1.96
1900 (1038)	Light brown	3	5.0	12.9	25.8	2.00
2000 (1093)	Brown	4	10.0	8.7	18.8	2.16
2100 (1149)	Brown	5	10.0	6.6	14.9	2.25
2200 (1204)	Dark brown	6	10.0	2.6	6.3	2.41
2300 (1260)	-	-	Melted		-	-

Remarks / Other Tests Should fire to "SW" face brick specifications at 2050°F (1121°C). Potential Use: Face brick; sewer pipe.

locn. no. Wkr.64-7, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>-20 mesh.</u> Retention Time <u>15 min. draw trials (</u> <u>3-4 hr. to 1800°F, 98</u>	
Chemical & Mineralogical Data:	2 0).
Chemical Analysis Mineralogy: Not de	termined
Oxide Weight % Mineral	volume %
SiO ₂ 68.58	VOI une %
2 5	
Fe ₂ O ₃ 6.94 Carbonate	
FeO – Mica	
MnO - Chlorite-	
MgO 1.00 vermiculite	
CaO 0.24 Montmorillonite	
Na ₂ 0 0.05 Others	
K ₂ 0 1.52	
P ₂ 0 ₅ 0.05	
SO ₂ 0.14 Total	
C (org) -	
co ₂ –	
H ₂ 0 ⁻ 4.29	
H ₂ 0 ⁺ 1.06	
Ignition	
loss -	
Total 100.37	
Analyst L. H. Turner, Ga. Survey.	
Date January 1964.	
Method	
Sample Location Data:	
County Walker. Land Lot, Sec, Dist	t
7 1/2' topo quad. <u>Kensington (SW. base)</u> . Lat, Lo	ong
Field No. <u>12.</u> , Collected by <u>R. D. Bentley.</u>	Date <u>c. 1964.</u>
Sample Method Grab (?). Weathering/alteration	_
Structural Attitude	
Stratigraphic Assignment <u>Red Mountain Formation (Silurian).</u>	
Sample Description & CommentsSample of soft, drab and reddis	h brown shale from
the lower portion of the Red Mountain Formation which is dominan	
minor siltstone ("Zone C" of Bentley after Smith, 1931, p. 141)	
the N. side of the TAG Railroad near Estelle cemetery, 2 mi. SE (Bentley, 1964, p. 6, 8, and 9).	
Compiled by B. J. O'Connor Date 10-20-87	

Material	_ Compilation Map Location No. <u>Wkr.64-8</u>		
CountyWalker.		Sample Number13	
Raw Properties:	Lab & No.	USBM, Norris, Tenn.; No. 1553-K	
Date Reported <u>4-8-64</u> (revised 1967)	20	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.)	
	Working Pro	operties Low plasticity. 6.1. Not effervescent with HCl.	
Color <u>Red-brown</u> . Drying Shrink) % Dry Strength Low.	

Remarks Drying characteristics: No defects.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens. gm/cc
1800 (982)	Light brown	3	5.0	18.8	32.7	1.74
1900 (1038)	Light brown	3	5.0	16.7	30.1	1.80
2000 (1093)	Brown	4	7.5	12.2	23.8	1.95
2100 (1149)	Brown	5	8.0	9.5	19.5	2.05
2200 (1204)	Brown	6	8.0	7.4	15.7	2.12
2300 (1260)	Dark brown	6	10.0	3.5	7.9	2.27

Remarks / Other Tests <u>Should fire to "SW" face brick specifications at 2150°F</u> (1177°C). Potential Use: Face brick.

locn. no. Wkr.64-8, cont.

Crushing Characteristics (unfired material) -

Particle Size <u>-20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr. to</u> <u>1800°F, 982°C).</u>

Chemical & Mineralogical Data: Not determined.

Chemical Analysis Oxide Weight %	Mineralogy: Mineral	volume %
SiO ₂ TiO ₂	Quartz	
$A1_2 \tilde{0}_3$ Fe ₂ 0 ₃	Feldspar Carbonate	
FeO	Mica	
MnO MgO	Chlorite- vermiculite	
CaO Na ₂ O	Montmorillonite Others	
к ₂ ō	other 5	
P ₂ 0 ₅ SO ₂	Total	
C (org) CO ₂		1
H ₂ 0-		
H ₂ 0 ⁺ Ignition		
loss Total		
Analyst		
Date		
Method		
Sample Location Data:		
County Walker. Land Lot,	Sec, Di	st
7 1/2' topo quad. <u>Kensington (S. base)</u> . L	at, L	ong
Field No. 13. , Collected b	y R. D. Bentley.	Date <u>c. 1964.</u>
Sample Method Grab (?). Weat	hering/alteration	-
Structural Attitude		
Stratigraphic Assignment Red Mountain For	mation (Silurian).	
Sample Description & Comments Sample fro		
Mountain Formation on the S. side of Ga. H SE. of Catlett Gap and about 2 miles NW. o		
5 and 10).		(
Compiled by B. J. O'Connor D	ate 06-09-88	

Material Shale (Pennington).	Compilation Map Location No. Wkr.64-9
County Walker.	Sample Number14
Raw Properties: Lab	& No. USBM, Norris, Tenn.; No. 1553-L
Date Reported <u>4-8-64</u> Cer (revised 1967)	amist <u>M.V. Denny, USBM (revised by M.E.</u> Tyrrell, Tuscaloosa, Ala.)
Water of Plasticity 21.85 % Wor	king Properties Long working, smooth, plastic,
	ow plasticity.) pH=6.50 1.0(0.0) % Dry Strength Good (Low).
Remarks Drying Characteristics: Good	od. (No defects.)

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800		(3)		and a second		
(982)	Tan	Fair hard	3.5(3.0)	18.4	32.8	1.78
1900 (1038)	Tan	(4) Hard	5.0	15.4	28.6	1.86
2000 (1093)	Light brown	(5) Very hard	9.5(9.0)	9.9	20.3	2.05
2100 (1149)	Brown	(5) Very hard	10.0	7.3	15.6	2.14
2200 (1204)	Chocolate	(5) Very hard	10.0	5.35	12.1	2.24
2300 (1260)	Dark brown	(6) Steel hard	10.0	2.30	5.3	2.31

Remarks / Other Tests Fair color. (Should fire to "SW" face brick specifications at about 2050°F, 1121°C.) Poetntial use: Brick and tile, if color ok; 2100-2100°F common pottery. (Face brick sewer pipe.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Wkr. 64-9, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>-20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined.

Chemical Analysis Oxide Weight % SiO ₂	Mineralogy Mineral	volume %
TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO	Quartz Feldspar Carbonate Mica Chlorite- vermiculite	
C_{a0} $Na_{2}0$ $K_{2}0$ $P_{2}0_{5}$	Montmorillonite Others	
S (total) C (org) CO ₂ H ₂ O ⁻	Total	
H ₂ 0 ⁺ Ignition loss Total		
Analyst		
Date		
Method		
Sample Location Data:		
County Walker. Land Lot,	Sec, Dist	·
7 1/2' topo quad L	at, Lon	ng
Field No. 14 Collected by	J.W. Smith (?). Da	ate <u>c. 1963.</u>
Sample Method _Grab(?). Weath	ering/alteration	
Structural Attitude		
Stratigraphic Assignment Pennnington Shale	(Mississippian).	
Sample Description & Comments <u>No further d</u>	ata available.	
Compiled by B.J. O'Connor Da	te <u>10-20-87</u>	_
-109	-	

Material	Shale (Gi	zzard).		Compilation Ma	p Location	No. Wkr.	64-10
County	Walker.			Sample Number	15		
Raw Proper	cties:		Lab & No.	USBM, Norris,	Tenn.; No.	1553-M	
Date Repor	rted $\frac{4-8-6}{(revise}$	54 sed 1967)	Ceramist	M.V. Denny, US Tyrrell, Tusca	the second se		
Water of H		26.5	% Working Pr	operties Long y.) pH=5.69 (No	working, si	mooth, pla	
Color Yel	low-brown.			<u>. %</u> Dry Stren			-
Remarks Di	rying Chara	cteristic	s: Good. (No	defects).			

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	Tan	(3) Fair hard	4.5(4.0)	21.3	35.6	1.67
1900 (1038)	Tan	(4) Hard	5.5(5.0)	19.6	33.7	1.72
2000 (1093)	Light brown	(5) Very hard	7.5	13.8	26.2	1.90
2100 (1149)	Brown	(5) Very hard	7.5	10.9	21.7	1.99
2200 (1204)	Brown	(6) Steel hard	9.0	9.2	19.0	2.07
2300 (1260)	Dark brown	(6) Steel hard	10.0	5.7	12.5	2.20
Remarks	/ Other Te	sts Fair co.	lor. (Should	fire to "MW" f	ace brick spe	ecifications

at about 2050°F, 1121°C.) Potential use: Brick and tile, common pottery. (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Wkr. 64-10, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>-20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr.</u> to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined.

Chemical Analysis Oxide Weight % SiO ₂	Mineralogy Mineral	volume %
Ti0 ² Al ₂ 0 ₃	Quartz Feldspar Carbonate	
Fe ₂ 0 ₃ FeO MnO	Mica Chlorite-	
MgO CaO Na ₂ O	vermiculite Montmorillonite Others	
	Total	
C (org) CO ₂ H ₂ 0		
H ₂ 0 ⁺ Ignition		
loss Total		
Analyst		
Date		
Method		
Sample Location Data:		
County Walker. Land Lot,	Sec, Dist.	··
7 1/2' topo quad La	at, Lor	ng
Field No. 15, Collected by	J.W. Smith (?). Da	ate <u>c. 1963.</u>
Sample Method _Grab(?). Weath	ering/alteration	
Structural Attitude		,
Stratigraphic Assignment _ Gizzard Formation	(Pennsylvanian).	
Sample Description & Comments No further d	ata available.	
Compiled by B.J. O'Connor Da	te <u>10-20-87</u>	-

Material	Shale (Vandever).		Compilation Map Location No. Wkr. 64-11
County	Walker.		Sample Number <u>17</u>
Raw Proper	ties:	Lab & No.	USBM, Norris, Tenn.; No. 1553-0
Date Report	ted <u>4-8-64</u> (revised 1967)	Ceramist	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.)
Water of P	lasticity 22.4.		operties Long working, smooth, plastic,
Color Gra			pH=6.80. (Not effervescent with HC1.) 0) % Dry Strength Good. (Low.)

Remarks Drying Characteristics: Good. (No defects).

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800		(3)				
(982) 1900	Tan Light	Fair hard (4)	4.5(4.0)	17.5	31.3	1.79
(1038) 2000	brown	Hard (5)	4.5(4.0)	14.7	27.6	1.88
(1093) 2100	Brown	Very hard (5)	9.0	8.0	17.0	2.13
(1149) 2200	Chocolate Dark	Very hard (6)	10.0	4.0	9.2	2.30
(1204) 2300	brown	Steel hard	10.5(10.0) Glassy	1.7	4.0	2.38
(1260)	Black	Melted	(Expanded)	-	-	-

Remarks / Other Tests Fair color. Apparently mixed material - may be weathered and unweathered. (Should fire to "SW" face brick specifications at about 2000°F, 1093°C Abrupt vitrification.) Potential Use: Brick and tile if color not objectionable; stoneware and pottery. (Face brick, sewer pipe, lightweight aggregate.)

Preliminary Bloating (Quick Firing) Tests: Negative and positive. (Positive.)

Temp.	Absorption	Bulk de	nsity 3	
°F(°C)	%	gm/cc	Lb/ft	Remarks
1800 (982)		=	277	Apparently mixed material.
2000 (1093)	3.5	1.57	97.8	Very little expansion. (Slight expansion.)
2100 (1149)	2.6	1.18	73.5	Split open cracks. (Slight expansion.)
2200 (1204)	5.3	0.72	44.9	Good lightweight aggregate. (Good pore structure.)
Remarks				ggregate in rotary kiln at about 2100°F 1 for lightweight aggregate.)

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

*Revised by K. J. Liles (written communication, 1987)

locn. no. Wkr. 64-11, cont.

Crushing Characteristics (unfired material) Good.

Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. (also 1/2" + 1/4") to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined.

Chemical Analysis	Mineralogy
Oxide Weight %	Mineral volume %
SiO ₂ TiO ₂	Quartz
A12 ⁰ 3	Feldspar
Fe203	Carbonate
FeÖ	Mica
MnO	Chlorite-
MgO	vermiculite Montmorillonite
CaO Na ₂ O	Others
K ₂ 0	001010
P205	
S (total)	Total
C (org)	
CO ₂	
н ₂ 0 [−] н ₂ 0 ⁺	
Ignition	
loss	
Total	
Analyst	
Date	
Method	
Sample Location Data:	
County Walker. Land Lot,	Sec, Dist
7 1/2' topo quad La	at, Long
Field No. <u>17</u> , Collected by	J.W. Smith (?). Date <u>c. 1963.</u>
Sample Method <u>Grab(?)</u> . Weather	ering/alteration
Structural Attitude	
Stratigraphic Assignment Vandever Shale (Pe	ennsylvanian).
Sample Description & Comments No further da	ata available.
5	
Compiled by B.J. O'Connor Dat	te <u>7-28-87</u>

Material Shale (Red Mountain).		Compilati	on Map L	ocation No.	Wkr.64-12
County Walker.	-	Sample Nu	mber	18	
Raw Properties:	Lab & No.	USBM, Nor	ris, Ten	n.; No. 155	3-P
Date Reported 4-8-64 (revised 1967)	Ceramist		and the second se	(revised by sa, Ala.)	M.E
	Working Pr	operties	Low plas	ticity. pH=. rvescent wi	
Color Yellow. Drying Shrin	kage <u>1.0</u>		Strength	the second s	
Remarks Drying Characteristics:	No defects	•			

Slow Firing Tests:

*

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	Light brown	2	3.0	16.8	30.2	1.80
1900 (1038)	Light brown	4	5.0	13.6	26.0	1.91
2000 (1093)	Brown	4	5.0	10.6	21.3	2.01
2100 (1149)	Dark brown	5	10.0	7.3	15.6	2.14
2200 (1204)	Dark brown	6	10.0	2.1	4.9	2.35
2300 (1260)	Dark brown	6	10.0	1.3	3.1	2.35
	/ Other Tes). Potentia			face brick spe	cifications	at about 2050°F

Preliminary Bloating (Quick Firing) Tests: Negative.

-114-

locn. no. Wkr.64-12, cont.

Crushing Characteristics (unfired material) -Particle Size _- 20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined. Chemical Analysis Mineralogy Oxide Weight % Mineral volume % Si02 TiO₂ Quartz A1203 Feldspar Carbonate Fe203 FeŌ Mica MnO Chlorite-MgO vermiculite CaO Montmorillonite Others Na₂0 $K_2\bar{0}$ P205 S (total) Total С (org) C02 Н20-H₂0+ Ignition loss Total Analyst _____ Date Method Sample Location Data: County Walker. Land Lot _____, Sec. ____, Dist. ____. 7 1/2' topo quad. _____. Lat. ____, Long. ____. Field No. 18. , Collected by R. D. Bentley. Date c. 1964. Sample Method Grab (?). Weathering/alteration _____ Structural Attitude -Stratigraphic Assignment Red Mountain Formation (Silurian). Sample Description & Comments Reported in Bentley (1964, p. 19). No further data available. Compiled by B. J. O'Connor Date 10-20-87

MaterialShale (Residuum).	Compilation Map Location No. <u>Wkr.64-13</u>
CountyWalker.	Sample Number19
Raw Properties: Lab & N	o. USBM, Norris, Tenn.; No. 1553-Q
Date Reported <u>4-8-64</u> Ceramis (revised 1967)	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.)
Water of Plasticity 24.1 % Working	Properties Long working, smooth, plastic,
	ty.) pH=6.40 (Not effervescent with HCl.) (0.0) % Dry Strength Good (Low).
Remarks Drving Characteristics: Good. (No defects.)

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800		(3)				
(982)	Tan	Fair hard	5.0	16.2	30.0	1.83
1900 (1038)	Light brown	(4) Hard	9.0	11.0	22.2	2.02
2000 (1093)	Brown	(4) Hard	10.0	6.6	14.6	2.21
2100 (1149)	Chocolate	(5) Very hard	11.5	3.0	7.1	2.35
2200 (1204)	Dark brown	(6) Steel hard	12.5	1.5	3.6	2.40
2300 (1260)	Dark brown	(6) Steel hard	14.0	0.9	2.1	2.38

Remarks / Other Tests Good color; shrinkage and absorption good. (Should fire to "SW" face brick specifications at about 1950°F, 1066°C.) Potential use: Brick, tile, decorative potery. (Face brick, sewer pipe, quarry tile.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

*Revised by K.J. Liles (written communication, 1987).

locn. no. Wkr. 64-13, cont.

Crushing Characteristics (unfired material) _____

Particle Size _____ Retention Time _____ 15 min. draw trials (following 3-4 hr. ______ to 1800°F, 982°C).____

Chemical	δ	Mineral	logical	Data:	Not	determined.	
----------	---	---------	---------	-------	-----	-------------	--

Chemical Analysis Oxide Weight % SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	Mineralogy Mineral Quartz Feldspar Carbonate Mica Chlorite- vermiculite Montmorillonite Others	volume %
P ₂ 0 ₅ S (total) C (org) CO ₂ H ₂ O ⁻ H ₂ O ⁺ Ignition loss Total	Total	
Analyst		
Date		
Method		
Sample Location Data:		
County Walker. Land Lot,	Sec, Dist	·
7 1/2' topo quad La	at, Lon	ng
Field No. 19 , Collected by	J.W. Smith (?). Da	ate <u>c. 1963.</u>
Sample Method _Grab(?). Weathe	ering/alteration Res	siduum.
Structural Attitude		
Stratigraphic Assignment Upper Ordovician.		
Sample Description & Comments No further da	ata available.	

Compiled by B.J. O'Connor Date 10-20-87

-117-

Material _	Shale (Red Mountain).		Compilation Map Location No. Wkr.64-14
County	Walker.	_	Sample Number42
Raw Proper	ties:	Lab & No.	USBM, Norris, Tenn.; No. 1554-N.
Date Repor	ted <u>5-8-64</u> (revised 1967)		M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.)
Water of P			operties Low plasticity.
Color Buf	f Drying Shrin	kage 2.5	pH=5.8. Not effervescent with HC1. % Dry Strength Low.
Remarks Dr	ying characteristics:	No defects.	

Slow Firing Tests:

÷. 1

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	-	2	4.0	17.5	32.0	1.83
1900 (1038)	-	3	5.0	13.3	25.4	1.91
2000 (1093)	-	5	7.5	9.1	18.8	2.07
2100 (1149)	-	6	10.0	3.3	8.5	2.57
2200 (1204)	-	-	Expanded	-	-	

Remarks / Other Tests Should fire to "MW" face brick specifictions at about 1950°F (1066°C). Potential use: Face brick.

locn. no. Wkr.64-14, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>-20 mesh.</u> Retention Time	15 min. draw trials (following 3-4 hr. to 1800°F, 982°C).
Chemical & Mineralogical Data:	<u> </u>
Chemical Analysis	Mineralogy Not determined.
Oxide Weight %	Mineral volume %
SiO ₂ 57.82	
TiO ₂ 0.90	Quartz
A1 ₂ 0 ₃ 22.38	Feldspar
Fe ₂ 0 ₃ 9.12	Carbonate
FeO -	Mica
Mn0 –	Chlorite-
MgO 1.09	vermiculite
CaO 0.26	Montmorillonite
Na ₂ 0 0.35	Others
K ₂ 0 2.01	2 40 Z Z Z Z
$P_2 O_5 0.02$	
so ₂ 0.15	Total
C (org) -	10 F.G.T.
$CO_2 \sim CO_2$	
<u> </u>	
Ignition	
loss - Total 100.31	
100001	
Analyst L. H. Turner, Ga. Survey.	
Date January 1964.	
Method -	
	<
Sample Location Data:	
County <u>Walker</u> . Land Lot	, Sec, Dist
7 1/2' topo quad	Lat, Long
Field No. <u>42.</u> , Collected	by <u>R. D. Bentley.</u> Date <u>c. 1964.</u>
Sample Method <u>Grab (?).</u> Wea	thering/alteration
Structural Attitude	
Stratigraphic Assignment <u>Red Mountain Fo</u>	rmation (Silurian).
Sample Description & Comments <u>Sample fro</u> ("Zone B" of Bentley, 1964, p. 5 and 10).	
Compiled by B. J. O'Connor	Date 10-20-87

Material Shale (Red Mountain).	Compilation Map Location No. Wkr.64-15
County Walker.	Sample Number _43
Raw Properties: Lab	& No. USBM, Norris, Tenn.; No. 1554-0.
Date Reported 5-8-64 Cer (revised 1967)	amist <u>M.V. Denny, USBM (revised by M.E.</u> Tyrrell, Tuscaloosa, Ala.)
	king Properties <u>Moderate plasticity</u> . pH=5.9. Not effervescent with HCl.
Color Yellow. Drying Shrinkage	4.0 % Dry Strength Fair.
Remarks Drying characteristics: No d	efects

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	-	2	5.0	18.8	34.0	1.81
1900 (1038)	-	3	7.5	13.8	26.4	1.91
2000 (1093)	-	4	10.0	11.3	22.6	2.00
2100 (1149)	.=	6	11.0	6.6	14.2	2.15
2200 (1204)	-	6	14.0	3.4	7.7	2.27
2300 (1260)	-	-	Expanded	-	-	-

Remarks / Other Tests Should fire to "SW" face brick specifictions at about 2050°F (1121°C). Potential use: Face brick: sewer pipe.

locn. no. Wkr.64-15, cont.

Crushing Characteristics (unfired material) -

Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Chemical Analysis Mineralogy Not determined. Oxide Mineral volume % Weight % Si02 59.86 1.00 TiO₂ Quartz $A1_{2}\bar{0}_{3}$ 18.54 Feldspar Fe_20_3 8.42 Carbonate FeŌ 1.06 Mica 0.30 MnO Chlorite-0.80 vermiculite MgO 0.38 Montmorillonite Ca0 Na₂0 0.36 Others K₂0 2.77 P205 0.07 so2 0.25 Tota1 С (org) ---------C02 H20-4.74 $H_{2}^{-}0^{+}$ 1.70 Ignition loss Total 100.30 Analyst L. H. Turner, Ga. Survey. Date January 1964. Method -Sample Location Data: County Walker. Land Lot _____, Sec. ____, Dist. ____. 7 1/2' topo quad. ______. Lat. _____, Long. ____. Field No. 43. _____, Collected by R. D. Bentley. Date c. 1964. Sample Method Grab (?). Weathering/alteration -Structural Attitude -Stratigraphic Assignment Red Mountain Formation (Silurian). Sample Description & Comments Reported in Bentley (1964, p. 19); no further data available.

Compiled by B. J. O'Connor Date 10-20-87

Material Shale (Pennington).	Compilation Map Location No. <u>Wkr.64-16</u>
CountyWalker.	Sample Number44
Raw Properties: Lab &	X No. USBM, Norris, Tenn.; No. 1554-P.
(revised 1967) Water of Plasticity 25.3 % Worki	nist M.V. Denny, USBM (revised by M.E. Tyrrelll, Tuscaloosa, Ala.) ing Properties Sh rt working, smooth, mealy.*
	ticity.) pH=5.7 (Not effervescent with HCl.) 2.1(2.0) % Dry Strength Good. (Low).
Remarks Drying characteristics: Good,	slight warping. (No defects.)
Slow Firing Tests:	

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	Tan	(2) Soft	1.0(2.0)	23.4	37.7	1.61
1900 (1038)	Tan	(3) Fair hard	1.0(2.0)	21.9	36.4	1.66
2000 (1093)	Light brown	(3) Fair hard	1.0(2.0)	21.4	36.2	1.69
2100 (1149)	Brown	(4) Hard	4.0	19.8	34.3	1.73
2200 (1204)	Chocolate	(4) Hard	4.0	18.4	32.4	1.76
2300 (1260)	Chocolate	(4) Very hard	5.0	16.9	30.9	1.83

Remarks / Other Tests Slight scum-probably sulfate - too high absorption, rather soft, fair color. Could be combined with clay of high shrinkage and low absorption. (High absorptions at all firing temperatures.) Potential use: None without mixing. (Not suitable for use as the principal component in vitreous clay products.)

Preliminary Bloating (Quick Firing) Tests: Negative.

*Revised by K.J. Liles (written communication, 1987).

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Wkr.64-16, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>-20 mesh.</u> Retention Time <u>15 min. draw trials (following 3-4 hr. to</u> <u>1800°F, 982°C).</u>

Chemical & Mineralogical Data: Not determined.

Chemical Analysis Oxide Weight %	Mineralogy <u>Not determined.</u> Mineral volume %
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	Quartz Feldspar Carbonate Mica Chlorite- vermiculite Montmorillonite Others
$\begin{array}{c} P_2 0_5 \\ S 0_2 \\ C & (org) \\ C 0_2 \\ H_2 0^- \\ H_2 0^+ \\ Ignition \\ loss \\ Total \end{array}$	Total
Analyst	
Date	
Method	Annual and a state of the second s
Sample Location Data:	
County Walker. Land Lot,	Sec, Dist
7 1/2' topo quad La	at, Long
Field No44, Collected by	R. D. Bentley. Date c. 1964.
Sample Method _Grab (?). Weathe	ering/alteration
Structural Attitude	
Stratigraphic Assignment Pennington Format	ion (Mississippian).
Sample Description & Comments <u>Reported as P</u> p. 19). No further data available.	Red Mountain Shale in Bentley (1964,
Compiled by B. J. O'Connor Da	te 10-20-87

MaterialShale (Gizzard).	Compilation Map Location No. Wkr.64-17
County Walker.	Sample Number45
Raw Properties: Lab	& No. USBM, Norris, Tenn.; No. 1554-Q.
Date Reported <u>5-8-64</u> Cera (revised 1967)	mist <u>M.V. Denny, USBM (revised by M.E.</u> Tyrrell, Tuscaloosa, Ala.)
	ing Properties Low plasticity.
Color Tan. Drying Shrinkage	pH=6.7. Not effervescent with HC1.1.0% Dry Strength Low.
Remarks Drying characteristics: No de	fects.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	-	2	5.0	17.2	30.8	1.79
1900 (1038)	<u> </u>	3	5.0	14.2	26.7	1.88
2000 (1093)	-	5	10.0	8.6	17.7	2.06
2100 (1149)	-	6	12.5	1.9	4.3	2.27
2200 (1204)	-	-	Expanded	-	-	

Remarks / Other Tests Should fire to "SW" face brick specifictions at about 2000°F (1093°C). Potential use: Face brick.

<u>Prelimir</u>	nary Bloating	(Quick Fi	ring) Te	ests: Positive.
Temp. °F(°C)	% Absorption	Bulk de gm/cc	ensity Lb/ft3	Remarks
2000 (1093)	34.7	1.78	111.1	-
2100 (1149)	37.5	1.48	92.4	-
2200 (1204)	6.1	1.32	82.4	-
Comments	Not suitable	for ligh	ntweight	aggregate (heavy).

locn. no. Wkr.64-17, cont.

Crushing Characteristics (unfired material) ____

Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to (and -3/4"+1/2") 1800°F, 982°C). Chemical & Mineralogical Data: Not determined.

Oxide	1 Analysis Weight	%	Mineralogy Mineral	Not determined. volume %
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃			Quartz Feldspar Carbonate	
FeO MnO			Mica Chlorite-	
MgO			vermiculi	ce de la companya de
Ca0			Montmorillon	nite
Na20			Others	
K ₂ 0				
P205			Mah = 1	
so ₂ c (org)		Tota1	
CO ₂	org)			
H ₂ 0				
H ₂ 0 ⁺				
Ignitio	n			
loss				
Total				
Analyst				
Date				_
Method .	-			
Sample	Location Data:			
County	Walker.	Land Lot,	Sec	, Dist
7 1/2'	topo quad	La	at	, Long
Field N	o. <u>45</u> .	, Collected by	R. D. Bent	ley. Date <u>c. 1964.</u>
Sample	Method Grab (?) Weathe	ering/altera	
Structu	ral Attitude	-		
Stratig	raphic Assignme	nt Gizzard Formation	(Pennsylvan:	ian).
	Description & C No further da		Red Mountain	Shale in Bentley (1964,
Compile	d by B. J. O'C	onnor Dat	te 10-20-87	6

Material Shale (Red Mountain).	_ Compilation Map Location No. <u>Wkr.64-18</u>
CountyWalker	Sample Number46
Raw Properties: Lab & No.	USBM, Norris, Tenn.; No. 1554-R.
(revised 1967)	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.)
Water of Plasticity% Working Pi	roperties Low plasticity.
Color <u>Gray.</u> Drying Shrinkage <u>4.0</u>	pH=5.9. Not effervescent with HCl. % Dry Strength Fair.

Remarks Drying characteristics: No defects.

Slow Firing Tests:

,

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)		2	5.0	18.5	31.1	1,68
1900 (1038)	-	2	5.0	18.0	31.7	1.76
2000 (1093)	-	3	7.5	11.0	21.1	1.92
2100 (1149)	-	5	10.0	6.4	13.4	2.09
2200 (1204)	-	5	10.0	4.6	10.0	2.17
2300 (1260)	-	6	10.0	1.3	2.9	2.22

Remarks / Other Tests Should fire to "SW" face brick specifictions at about 2050°F (1121°C). Potential use: Face brick; sewer pipe.

locn. no. <u>Wkr. 64-18</u>, cont.

Crushing Characteristics (unfired material) _____

Particle Size -20 mesh. Retention Time 15 m	
Chemical & Mineralogical Data:)°F, 982°C).
OxideWeight %M SiO_2 64.86 TiO_2 1.20 Qu Al_2O_3 19.54 Fe_2O_3 5.40	neralogy <u>Not determined.</u> Mineral volume % aartz eldspar arbonate ca
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lorite- vermiculite ntmorillonite Others Total
C - CO_2 - H_2O^- 4.23 H_2O^+ 1.25 Other - volatiles - Total 100.13	
Analyst L.H. Turner, Ga. Survey.	
Date January, 1964.	
Method	
Sample Location Data:	
County Walker. Land Lot, Se	c, Dist
7 1/2' topo quad Lat.	, Long
Field No, Collected by _R	.D. Bentley. Date c. 1964.
Sample Method Grab(?). Weatheri	ng/alteration
Structural Attitude	
Stratigraphic Assignment Red Mountain Formati	on (Silurian).
Sample Description & Comments <u>Sample of shale</u> Formation ("Zone B" of Bentley, 1964, p. 5, 8	
Compiled byB.J. O'Connor Date	11-4-87

Material	Compilation Map Location No. <u>Wkr.64-19</u>
CountyWalker	Sample Number <u>69.</u>
Raw Properties: Lab & No.	USBM, Norris, Tenn.; No. 1555-N
Date Reported 5-28-64 Ceramist (revised 1967)	M.V. Denny, USBM. (revised by M.E. Tyrrell, Tuscaloosa, Ala.)
Water of Plasticity 19.6 % Working Pr	
	pH=6.20. (Not effervescent with HCl.) % Dry Strength Good. (Low.)
Remarks Drying Characteristics: Linear crac	king, uneven surface. (No defects.)
Slow Firing Tests:	

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data: Bulk Dens.
1800		(2)				
(982)	Flesh	Soft	2.0	20.5	34.0	1.66
1900	Light	(3)				
(1038)	brown	Fair hard	2.0	16.7	29.4	1.76
2000	T.S L. H.	(1)				
2000 (1093)	Light brown	(4) Hard	5.0	13.7	25.2	1.34
2100		(5)				
(1149)	Brown	Very hard	10.0	9.9	19.6	1.93
2200	Dark	(6)				
(1204)	brown	Steel hard	10.0	3.3	7.3	2.22
2300	Dark	(6)				
(1260)	brown	Steel hard	10.0	3.1	6.9	2.22
(1200)	OL OWIL	becce mala	10.0	J. I	0.9	4 1 4 L
Remarks	/ Other	Tests Surface	cracks, fair	color. (Should	fire to "SW"	face brick

specifications at about 2100°F(1149°C). Low plastic strength.) Potential use: Brick if color not objectionable. (Face brick.)

Preliminary Bloating (Quick Firing) Tests: Negative.

Note: Appr. Por. and Bulk Dens. plus data and remarks in parentheses are from 1967 revised data sheets by Tyrrell.

locn. no. Wkr. 64-19, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>-20 mesh.</u> Retention Time <u>15 min. draw trials (following</u> <u>3-4 hr. to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemical Analysis Oxide Weight % SiO ₂ TiO ₂	Mineralogy Mineral Quartz	volume %				
$A1_{2}\overline{0}_{3}$ $Fe_{2}0_{3}$ Fe_{0} Mn_{0} Mg_{0} Ca_{0} $Na_{2}0$ $K_{2}0$	Feldspar Carbonate Mica Chlorite- vermiculite Montmorillonite Others					
P ₂ 0 ₅ S (total) C (org) CO ₂ H ₂ O ⁻ H ₂ O ⁺ Other volatiles Total	Total					
Analyst						
Date						
Method						
Sample Location Data:						
County Walker. Land Lot,	Sec, Dist	••				
7 1/2' topo quad La	at, Lor	ng				
Field No, Collected by	J.W. Smith(?). Da	ate <u>c. 1963.</u>				
Sample Method Grab(?). Weathering/alteration						
Structural Attitude						
Stratigraphic Assignment Gizzard Formation (Pennsylvanian).						
Sample Description & Comments No further de	ata available.	-				
Compiled by B.J. O'Connor Da	te 7-28-87	_				

Material -	1 Clay (Knox Group residuum).		Compilation Map Location No. Wkr.64-20		
County _	Walker.	_	Sample Number 90.		
Raw Propert	ties:	Lab & No.	USBM, Norris, Tenn.; No. 1556-I.		
	(revised 1967)	-	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, ala.)		
Water of P.	lasticity <u>16.8</u> %	Working Pr	operties Low plasticity.		
Color Whit	te. Drying Shrink	tage <u>1.0</u>	% Dry Strength Low.		
Remarks Dry	ying characteristics: 1	No defects.			

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	Ivory	4	1.0	14.8	26.8	1.81
2000 (1038)	Ivory	4	2.5	14.8	27.1	1.83
2100 (1093)	Pink	4	2.5	14.8	27.1	1.83
2200 (1149)	Pink	4	2.5	14.8	27.1	1.83
2300 (1204)	Pink	5	2.5	14.9	27.1	1.82

Remarks / Other Tests Not suitable for use as a single component body. High absorption at all temperatures. Potential use: Face brick, glazed tile, stoneware mixtures.

locn. no. Wkr.64-20, cont.

Crushing Characteristics (unfired material) -

Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Chemical Analysis Mineralogy: Not determined. volume % Oxide Weight % Mineral Si02 90.30 TiO₂ 1.00 Ouartz 5.63 Feldspar A1203 Fe_20_3 0.43 Carbonate 1.06 Mica Fe0 Chlorite-MnO 0.00 vermiculite MgO 0.16 CaO 0.41 Montmorillonite Na₂0 Others trace K20 0.10 P205 trace sō2 Total trace c ¯ (org) _ -CO2 H20-2.07 $H_2^{-}0^{+}$ 1.03 Ignition loss 100.13 Total Analyst L. H. Turner, Ga. Survey. Date January 1964. Method Sample Location Data: County Walker. Land Lot _____, Sec. ____, Dist. ____. 7 1/2' topo quad. Durham (E. edge) . Lat. _____, Long. ____. Field No. 90. ____, Collected by R. D. Bentley. Date c. 1964. Sample Method Grab (?). Weathering/alteration _____ Structural Attitude -Stratigraphic Assignment Knox Group (Cambrian-Ordovician) clay residuum (Tertiary?). Sample Description & Comments Tripoli sample from several small pits in the Knox about 4 mi. NW. of Kensington. This material is not recommended for blending with Red Mountain shales (to lighten the color) because it increases the absorption of the tiles (L. Mitchell in Bentley, 1964, p. 8 and 17). Compiled by B. J.O'Connor Date 7-28-87

-131-

Material Shale (Gizzard).		_ Compilation Map Location No. Wkr. 64-21
CountyWalker.		Sample Number91
Raw Properties:	Lab & No.	USBM, Norris, Tenn.; No. 1556-J
Date Reported 6-26-64 (revised 12967)	Ceramist	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.).
Water of Plasticity 20.6.	_% Working Pi	operties Low plasticity. pH=7.5.
Color Gray. Drying Shr	inkage 4.(Not effervescent with HCl. % Dry Strength Low.

Remarks Drying Characteristics: No defects.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage,	Absorpt % %	ion Appr. Por %	• Other data Bulk Dens. gm/cc
1800 (982)	Tan	3	5.0	14.9	27.6	1.85
1900 (1038)	Light brown	4	5.0	9.9	20.0	2.02
2000 (1093)	Light brown	5	10.0	7.1	15.2	2.14
2100 (1149)	Brown	5	10.0	5.8	12.7	2.19
2200 (1204)	Chocolate	6	10.0	1.4	3.3	2.37
2300 (1260)	Dark brown	6	14.0	0.1	0.2	2.37
	Other Test			' face brick	specifications	at about 1950°F

(1066°C). Potential Use: Face brick, sewer pipe.

Prelimin	nary Bloating	g (Quick Firi	ng) Tests:Po	ositive.
Temp.	Absorption	Bulk dens:	ity	
°F(°C)	%	gm/cc	Lb/ft ³	Remarks
2000 (1093)	4.3	1.62	101.1	Slight expansion.
2100 (1149)	6.3	1.10	68.6	Fair expansion.
2200 (1204)	5.9	1.05	65.5	Fair expansion.
2300 (1260)	7.1	0.71	44.3	Good expansion.
Remarks:	Promising	raw material	for lightweight	agregate.

locn. no. Wkr.64-21, cont.

Crushing Characteristics (unfired material) Good.

Particle Size - 20 mesh. Retention Time 15 min. draw trials (following (also -3/4" + 1/2")3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined. Mineralogy: Chemical Analysis Mineral Weight % volume % Oxide Si0, TiO₂ Ouartz A1203 Feldspar Fe203 Carbonate FeO Mica MnO Chloritevermiculite MgO Ca0 Montmorillonite Others Na₂0 К₂Õ P205 S (total) Total С (org) CO_2 H20-H₂0+ Ignition loss Total Analyst Date_____ Method Sample Location Data: County Walker. Land Lot _____, Sec. ____, Dist. ____. 7 1/2' topo quad. _____. Lat. ____, Long. ____. Field No. 91. , Collected by J.W. Smith (?). Date c. 1963. Sample Method Grab (?). Weathering/alteration -Structural Attitude -

Stratigraphic Assignment Gizzard Formation (Pennsylvanian).

Sample Description & Comments No further data available.

Compiled by B. J. O'Connor Date 10-20-87

Material Sh	Shale (Pennington).		Compilation Map Location No. Wkr. 64-22			64-22	
County W	alker.	_	Sample Num	ıber	92		
Raw Propertie	<u>s</u> :	Lab & No	USBM, Norr	is, Ter	n.; No. 1	556-K	
Date Reported	6-26-64 (revised 1967)	Ceramist _	M.V. Denny Tyrrell, T	, USBM Suscalor	(revised osa, Ala.)	by M.E.	
		Working Pro		loderate	e plastici	ty.	
Color <u>Gray</u> .	Drying Shrin	kage5.0	% Dry S	Strength	Fair.	WICH HOI	L •

Remarks Drying Characteristics: No defects.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	Light brown	3	5.0	15.4	28.5	1.85
1900 (1038)	Light brown	4	10.0	10.8	21,5	1.99
2000 (1093)	Light brown	4	10.0	5.6	12.6	2.25
2100 (1149)	Red- brown	5	10.0	0.8	2.0	2.50
2200 (1204)	-	-	Expanded	-	.	

Remarks / Other Tests Should fire to "SW" face brick specifications at about 1950°F (1066°C). Potential Use: Face brick, quarry tile.

locn. no. Wkr.64-22, cont.

Crushing Characteristics (unfired material) _____

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following</u> <u>3-4 hr. to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemical Analysis	Mineralogy:	1 0/
Oxide Weight % SiO ₂	Mineral	volume %
TiO ₂	Quartz	
A12 ⁰ 3	Feldspar	
Fe ₂ 0 ₃	Carbonate	
FeO	Mica	
MnO	Chlorite-	
MgO	vermiculite	
CaO	Montmorillonite	
Na ₂ 0	Others	
к ₂ 0		
P ₂ 0 ₅		
S (total)	Total	
C (org)		Same of
C02		
H ₂ 0 ⁻		
H ₂ 0 ⁺		
Ignition		
Total		
Analyst		
Date		
Date		
Method		
,		
Sample Location Data:		
County Walker. Land Lot	, Sec, D	ist
7 1/2' topo quad	Lat,	Long
		D
Field No. <u>92.</u> , Coll	lected by J.W. Smith (?).	Date <u>c. 1963.</u>
Sample Method Grab (?).	Weathering/alteration	_
Sampre Method Grab (1).	weathering/aiteration	
Structural Attitude -		
Stratigraphic Assignment Penningt	on Shale (Mississippian).	
· · · · · · · · · · · · · · · · · · ·		
Sample Description & Comments No f	further data available.	
Compiled by B. J. O'Connor	Date 10-20-87	

Material Shale (Red Mountain).	Compilation Map Location No. <u>Wkr. 64-23</u>
County Walker.	Sample Number93
Raw Properties: Lab & No.	USBM, Norris, Tenn.; No. 1556-L
Date Reported 6-26-64 Ceramist (revised 1967)	M.V. Denny, USBM (revised by M.E. Tyrrell, Tuscaloosa, Ala.).
	operties Low plasticity.
Color <u>Gray.</u> Drying Shrinkage <u>1.0</u>	pH=6.2. Not effervescent with HC1. % Dry Strength Low.

Remarks Drying Characteristics: No defects.

Slow Firing Tests:

Temp. °F (°C)	Color	Hardness (Mohs')	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	-	2	4.0	15.9	28.3	1.78
1900 (1038)	(=)	3	5.0	10.5	20.8	1.98
2000 (1093)	-	4	9.0	8.0	16.6	2.07
2100 (1149)	_	5	10.0	6.9	14.7	2.13
2200 (1204)	-	6	10.0	1.4	3.3	2.37
2300 (1260)	-	-	Expanded	-	-	

Remarks / Other Tests Should fire to "SW" face brick specifications at about 2000°F (1093°C). Potential Use: Face brick.

locn. no. Wkr.64-23, cont.

Crushing Characteristics (unfired material) -

Particle Size <u>- 20 mesh.</u> Retention Time <u>15 min. draw trials (following</u> <u>3-4 hr. to 1800°F, 982°C).</u> Chemical & Mineralogical Data: Not determined.

Chemical Analys	is		Mineralogy:	
Oxide	Weight %		Mineral	volume %
SiO ₂	0			
TiO ₂			Quartz	
A1203			Feldspar	
Fe_20_3			Carbonate	
FeO			Mica	
MnO			Chlorite-	
			vermiculite	
MgO				
CaO			Montmorillonite	
Na ₂ 0			Others	
K20				
P205				
S (total)			Total	
C (org)				
C02				
H20-				
$H_{2}^{-}0^{+}$				
Ignition				
loss				
Total				
Analyst				
Date				
Method				
Sample Location	Data:			
County <u>Walker</u>	•	Land Lot	_, Sec, D	ist
7 1/2' topo qua	d		. Lat,	Long
Field No. 93	•	, Collected	by R.D. Bentley.	Date <u>c. 1964.</u>
Sample Method _	Grab (?).	We	athering/alteration _	
Structural Atti	tude	a love the second because i		
Stratigraphic A	ssignment	Red Mountain	Formation (Silurian).	
Sample Descript _available	ion & Comm	ents <u>Reported</u>	in Bentley (1964, p.	19). No further data
Compiled by B	. J. O'Con	nor	Date 10-20-87	

Material Clay.	Compi	Compilation Map Location No. Wkr. 67-1			
County Walker.	Sampl	.e Number143			
Raw Properties: I	ab & No. USBM,	Tuscaloosa, AL; G-9-6.			
Date Reported <u>1-11-67</u> Ceramist		M.E. Tyrrell, USBM.			
Water of Plasticity <u>21.8</u> % W		es Low plasticity.			
Color Brown. Drying Shrinka		8. Not effervescent with HCl. Dry Strength Low.			

Remarks Drying Characteristics: No drying defects.

Slow Firing Tests:

Temp. °F (°C)		Hardness (Mohs')	Linear Shrinkage,	Absorpti % %	on Appr. Por. %	Other data Bulk Dens. gm/cc
1800 (982)	Tan	3	2.5	25.4	39.6	1.56
1900 (1038)	Tan	3	2.5	23.8	38.1	1.60
2000 (1093)	Tan	4	5.0	20.1	34.2	1.70
2100 (1149)	Light brown	5	10.0	16.3	29.3	1.80
2200 (1204)	Red- brown	6	10.0	13.7	25.8	1.88
2300 (1260)	Dark brown	7	15.0	4.9	10.7	2.18
Remarks	/ Other Test	s Should	fire to "SW"	face brick	specifications	at about 2250°F

(1232°C). Good color. Potential use: Building brick. (Also see extrusion test.)

Map Locn. No. Wkr. 67-1, cont.

TUSCALOOSA METALLURGY RESEARCH LABORATORY

Clay Evaluation: Extrusion Tests

Sender's identification: No. 143 (Walker Co.)

Date 1/12/68

Tuscaloosa number: G-9-6

Body composition: Raw clay through 6-mesh: 100%.

Tempering water: 21.5% of dry batch weight.

Vacuum on machine: 28 inches of mercury.

Drying: 24 hours in air; 24 hours at 140°F (60°C).

Drying shrinkage: 3.1%

Modulus of rupture, dry unfired: 250 psi.

Firing:

 Time 24 hours

 Temperature 2230°F (1221°C)

 Cone 8

Total shrinkage: 10.4%

Absorption, 5-hour boiled: 2.3%

Absorption, 24-hour soaked: 2.0%

Saturation coefficient: 0.87

Apparent porosity: 5.4%

Bulk density: 144.1 lb/cu. ft.

Fired modulus of rupture: 4350 psi.

Mohs' hardness: 6

Color: Dark red

Comments: Should be satisfactory for face brick or quarry tile. Good color.

locn. no. Wkr.67-1, cont. Crushing Characteristics (unfired material) -Particle Size -20 mesh. Retention Time 15 min. draw trials (following 3-4 hr. to 1800°F, 982°C). Chemical & Mineralogical Data: Not determined. Chemical Analysis Mineralogy: Weight % Oxide Mineral volume % si02 TiO₂ Quartz A1203 Feldspar Fe203 Carbonate Fe0 Mica MnO Chlorite-MgO vermiculite Ca0 Montmorillonite Na₂0 Others K₂0 P205 S (total) Total (org) C CO_2 H20- $H_{2}^{-}0^{+}$ Ignition loss Total Analyst Date Method _____ Sample Location Data: County Walker. Land Lot _____, Sec. ____, Dist. ____. 7 1/2' topo quad. _____. Lat. ____, Long. ____. Field No. _____, Collected by J.W. Smith (?). Date c. 1966. Sample Method Grab (?). Weathering/alteration -Structural Attitude -Stratigraphic Assignment -Sample Description & Comments No further data available. Compiled by B. J. O'Connor Date 10-20-87

Material Shale (Pennsylvanian).	Compilation Map Location No. Wkr.69-1
County Walker.	Sample NumberG-14-1.
Raw Properties: Lab	& No. <u>USBM</u> , Tuscaloosa, AL.; #G-14-1.
Date Reported <u>March 1969</u> . Cera	mist <u>M. E. Tyrrell, USBM.</u>
Water of Plasticity% Work	ing Properties
Color <u>Medium gray.</u> Drying Shrinkage	% Dry Strength
Slow Firing Tests: Not determined.	

Preliminary Bloating (Quick Firing) Tests: Positive.

Temp. °F	Absorption	Bulk D	ensity	Remarks			
(°C)	%	g/cm3	lb/ft3				
1800 (982)	3.5	2.46	153	No expansion.			
1900 (1038)	6.8	2.17	135	No expansion.			
2000 (1093)	5.8	1.46	91	Slight expansion.			
2100 (1149)	7.4	0.81	51	Good pore structure.			
2200 (1204)	9.1	0.71	44	Fair pore structure.			
2300 (1260)	7.8	0.81	50	Melting.			
Remarks	Data from Hol	lenbeck	and Tvrrell.	(1969, p. 10). Also see Rotary kiln and			

Remarks Data from Hollenbeck and Tyrrell, (1969, p. 10). Also see Rotary kiln and concrete test data.

Map Location No. Wkr.69-1, cont.

TUSCALOOSA METALLURGY RESEARCH LABORATORY

Clay Evaluation: Rotary Kiln Test

Date 1968+ Tuscaloosa No.: G-14-1 Sender's identification: Pottsville Fm. RAW MATERIAL Screen Analysis: (Crushed to pass 3/4" screen) Through Retained on Weight, percent Cummulative, percent 3/4" 1/2" 3/8" 1/2" 3/8" 4 mesh $(100.0)^{++}$ $(100.0)^{++}$ 4 mesh pan Fragment shape: R (= 1 in. x 1 in. round rods - extruded) ** Crushing loss (minus 4-mesh): - (Entire sample crushed to pass 4 mesh for for extrusion due to excessive fine flakes on normal crushing.) ** Firing Data: Pour weight of feed, 1b/ft³: 72.0 Size range of feed: R. Bloating temperature: 2070°F (1132°C) Logging Temperature: 2100°F (1149°C) (nodules sticking together) FIRED MATERIAL (All fired material crushed through roll crusher) *Screen Analysis: (Percentages by weight passing sieves) 3/4" 1/2" 3/8" No. 4 No. 50 No. 8 No. 16 No. 100 Size designation: Fine: (not determined) -94.7 68.3 15.8 5.3 100.0 Coarse: 51.0 **Loose pour weights, 1b/ft3: Fine -Coarse Comments: Absorption: 8.4%. Although this is a suitable raw material for lightweight aggregate, it probably would have to be pelletized because of its crushing characteristics.

The data presented in this report are based on laboratory tests that are preliminary in nature and will not suffice for plant or process design. The data should be compared to appropriate ASTM specifications.

* ASTM Designation C 136-71 ** ASTM Designation C 29-71

+ Hollenbeck and Tyrrell, 1969, p. 11 and 13.

++ Fine ground and extruded due to unfavorable crushing characteristics during initial crushing.

Crushing Characteristics (unfired material) Excessive fines.

Particle Size 1/2 - 3/4 in. Retention Time 15 minutes (Quick Firing Tests).

Chemical & Mineralogical Data: Not determined.

Chemical Analysis	Mineralogy	
Oxide Weight %	Mineral	volume %
Si0 ₂		
TiO ₂	Quartz	
A1203	Feldspar	
Fe203	Carbonate	
FeÖ	Mica	
MnO	Chlorite-	
MgO	vermiculite	
CaO	Montmorillonite	
Na ₂ 0	Others	
K ₂ 0	others	
$P_2 O_5$	The first of 1	
S (total)	Total	· · · · · · · · · · · · · · · · · · ·
C (org)		
^{CO} 2		
H ₂ 0		
H ₂ 0 ⁺		
Ignition		
loss		
Total		
Analyst		
Date		
Method		
Method		
Comple Issertion Deter		
Sample Location Data:		
County Walker. Land Lot,	Sec, Dist	·
7 1/2' topo quad. Dougherty Gap (NW. 1/4).	Lat, Lo	ng
Field No. G-14-1. , Collected by	R. P. Hollenbeck. D	ate 1967 and 1968.
Sample Method Channel (?). Weath	ering/alteration Slig	htly weathered.
Structural Attitude -		
	and the second	taline a second de provincient de la second
Stratigraphic Assignment Pennsylvanian Po	tteville Formation or	possibly Gizzard?
ichnsylvanian io	cesvifie rormacion or	possibly dizzaid.
Sample Description & Comments Hard, medium	anow shale slightly	wanthard (shout 9
feet exposed) overlain by alternate beds of		
side of unpaved road, 0.6 mi. E. of interse		
which is 1.5 mi. N. of Chattooga County li	ne (Hollenbeck and Ty	rrell, 1969, p. 6).
Compiled by B. J. O'Connor Da	te 06-09-88	

Material	Shale (Conasauga).		Compilation Ma	ap Location No	0. <u>Wkr.80-1</u>
County	Walker.			Sample Number	Clay No. 6.	
Raw Prope	rties:		Lab & No	Marazzi Cerami	iche, #M.P. 1	795.
Date Repo	rted <u>Mar</u>	ch 1980.	Ceramist	L. Lorici.		
Water of	Plasticity	-	_% Working Pro	operties <u>Comp</u>	bact.	
Color Yel	lowish-bro			od. % Dry Stre		
Slow Firi	ng Tests:		x 8 mm. press	od. Fluidizin sed tiles.)	ig <u>Good</u> .	
Temp. °F (°C)	Color	Hardness	Linear Shrinkage, %	Absorption %	Appr. Por. %	Other data:
1976 (1080)	-			-		-
(= cycle	1)					
2030 (1110) (= cycle	- 2)	-	5.0	-	7.3	-
1994 (1090) (= cycle	- 3)	-	7.1	-	4.4	-
1						

(DTA & Dilatometric Analyses on file. - unpubl. report.)

Remarks / Other Tests Illitic shale with low percentages of kaolinite and montmorillonite and a high mica content. ("Bl": too refractory for making tile.).

Crushing Characteristics (unfired material) _____

Particle	e Size <40	microns Retenti					
Chemica	& Minera	logical Data:		Cycle 2: Cycle 3:			ciln.
onemica.	u d minera.	logical Data.	-	cycre J.	200-250 11111		
Chemical	Analysis			Mineral	logy		
		eight % (B)		Minera	al	volume %	
SiO ₂	62.58	62.8				(A)	(B)
TiO2	0.5	0.8		Quartz			х
A1203	18.84	19.8		Feldspa			
2 3	7.06	10.0		Carbona			
FeO MnO	-	-			luscovite)) (02)	
MgO	0.00 1.30	-			ce-(+ kaolinit iculite	e) (23)	
CaO	0.22	1.2			illonite		low
Na ₂ 0	0.05	0.2		Illite		(77)	X
K ₂ 0	2.90	3.7		Kaolini		$\langle 11 \rangle$	low
P205	-	-					2011
S (tota		_					
C (org)		-		Total		-	
co2	-	-					
H ₂ 0	-	-			x = present.		
H ₂ 0 ⁺	_	-		((A) = clays an	nd micasd onl	у.
Ignition							
loss	6.38	(6.6)					
Total	99.88	98.5 w/o	LOI				
Analyst		andrum, GA Surve zi Ceramiche.	у.	M. A. T M. Cera	Tadkod, GA Sur miche.	cvey.	
Date Au	ig. & Sept.	1979.		Aug. &	Sept. 1979.		
Method _		Absorption Spectrophotometr	у.	X-ray d	liffraction.		
Sample I	Location Da	ita:					
County _	Walker.	Land Lot	,	Sec.	, Dist		
7 1/2' t	copo quad.	LaFayette (Est	elle) (NE	. cor.).	Lat	, Long.	e
Field No	. 8.	, Co	llected b	у <u>М. А. Т</u>	fadkod. I	Date July 19	79.
Sample N	lethod Gra	ab.	Weat	hering/al	teration We	eathered.	
Structu	al Attitud	le					
Stratig	aphic Assi	gnment <u>Conasa</u>	uga Group	(Cambria	an).		
NE. of 1	LaFayette o	h & Comments <u>Sa</u> sity limits and Hwy. 143 (Tadko	about 1 m	i. E. of	junction of l	J.S. Hwy. 27	
	- cornerry	ing i i i i i i i i i i i i i i i i i i	-, . , , , a				
Compiled	by B.	J. O'Connor	D	ate <u>06-0</u>)9-88	_	

Material Shale (Red Mtn.).			Compilation Ma	p Location No	. <u>Wkr.80-2a</u>	
County	Walker.			Sample Number	C shale.	-
Raw Proper	rties:		Lab & No.	Georgia Tech.,	, #CS.	
Date Repo	rted <u>12-</u>	10-80.	Ceramist	J. F. Benzel,	Georgia Tech.	
Water of 1	Plasticity	-	_% Working Pr	operties	anin'n an o ta a stara	······································
Color			inkage <u>2.04</u> 1oss 16.28	% Dry Stren	ngth (MOR) 162	psi.
Slow Firin	ng Tests:	brying wt.	1055 10.20	/0		
Approx. Temp. °F (°C)	Color		Linear Shrinkage, % (total)	Absorption %	Appr. Por. %	Other data: LOI%
2120 (1160) (Cone 1)	- (3 sam	1946 ples fired)	6.63 (8.67)	2.05	-	4.66

Remarks / Other Tests Exploration test firing for possible substitute in 8" sewer pipe blend 1(see Wkr.80-2b). Low water absorption is very good; but dry strength is very poor.

Material	Shale (b	lend).		Compilation Ma	ap Location No	Wkr.80-2b
County	Walker (+Floyd and	Hancock).	Sample Number	C shale-bler	nd.
Raw Proper	ties:		Lab & No	Georgia Tech.	,# 3C.	
Date Repor	ted <u>12-1</u>	0-80.	Ceramist	J. F. Benzel,	Georgia Tech	
Water of H	Plasticity	-	_% Working Pro	operties		
Color			inkage <u>3.7</u>		ngth (MOR) 292	2 psi.
Slow Firin	ng Tests:	lx1x=9 in	loss 21.4 . bars.)	+/_/o		
Approx. Temp. °F (°C)	Color		Linear Shrinkage, % (total)		Appr. Por. %	Other data: LOI %
2120 (1160) (Cone 1)	- (3 sa	2475 mple bars f	5.20 (8.93) ired)	5.94		5.20

Remarks / Other Tests Experimental blend: 30% C shale (=Wkr. 80-2a) + 35% Floyd Top 1(=F1.80-4a) + 35% Linton shale (Hancock Co., Ga.) +8% grog. May be suitable for 8" sewer pipe blend (good absorption); however, dry strength is low - not as good as x5 blend (=F1.80-4d).

locn. no. <u>Wkr.80-2 (a & b)</u>, cont.

Crushing Characteristics (unfired material)	_
Particle Size Retention Time	_
Chemical & Mineralogical Data: Not determined.	
Chemical Analysis Mineralog Oxide Weight % Mineral	y volume %
sio ₂	
$ \begin{array}{ccc} T10_2 & Quartz \\ A1_20_3 & Feldspar \\ Fe_20_3 & Carbonate \\ Fe0 & Mica \end{array} $	
MnO Chlorite- MgO vermicu CaO Montmoril	
Na ₂ 0 Others K ₂ 0	louite
P_2O_5 S (total) Total C (org) CO_2	
H ₂ 0 ⁻ H ₂ 0+ Ignition	
loss Total	
Analyst	
Date	
Method	
Sample Location Data:	
County Walker. Land Lot, Sec	, Dist
7 1/2' topo quad. <u>Cedar Grove (E. cntr.).</u> Lat.	, Long
Field No. <u>C shale</u> , Collected by <u>O'Connor</u>	and Benzel. Date Aug. 1980.
Sample Method <u>Random grab samples</u> . Weathering/alter	rationWeathered.
Structural Attitude Bedding dips about 30°SE.	
Stratigraphic Assignment <u>Red Mountain Formation (Sil</u>	urian).
Sample Description & Comments <u>Sample from E. side of</u> mi. N. of junction of Hogjowl Creek and Long Hollow C location Wkr.80-3.	
Compiled by B. J. O'Connor Date 10-2	0-87

÷.

۰.

Material <u>Shale (R</u>	ed Mtn.).		Compilation Ma	p Location No	. <u>Wkr.80-3a</u>
County Walker.			Sample Number	D shale.	-
Raw Properties:		Lab & No	Georgia Tech.,	♯ DS.	
Date Reported <u>12-</u>	10-80.	_ Ceramist _	J. F. Benzel,	Georgia Tech.	
Water of Plasticity	-	% Working Pro	perties		
Color		nkage <u>2.6</u> loss 19.0		gth (MOR) _92	psi.
Slow Firing Tests:			<u> </u>		
Approx. Color Temp. °F (°C)	(MOR,	Linear Shrinkage, % (total)	Absorption %	Appr. Por. %	Other data: LOI %
2120 - (1160) (Cone 1) (3 sam	1055 ple bars fir	5.73 (8.35) red)	8.30	_	3.91

Remarks / Other Tests Experimental test firing for possible substitute in 8" sewer pipe blend (see Wkr.80-3b).

Material	Shale (blend).		Compilation Ma	ap Location No	. <u>Wkr.80-3b</u>
County	Walker (+Floyd an	d Hancock).	Sample Number	D shale-blend	1.
Raw Properti	es:	Lab & No(Georgia Tech.,	, #3D.	
Date Reporte	d <u>12-10-80.</u>	Ceramist	J. F. Benzel,	Georgia Tech	•
Water of Pla	sticity	% Working Proj	perties	· · · · · · · · · · · · · · · · · · ·	
Color	- Drying Sh			ngth (MOR) 340) psi.
Slow Firing	Tests: (lxlx=9 i	. loss 21.46 n. bars.)	/o		
Approx. C Temp. °F (°C)	(MOR,	Linear Shrinkage, % (total)		Appr. Por. %	Other data: LOI %
2120 - (1160) (Cone 1)	2738 (3 sample bars fi	5.11 (8.99) red)	6.64		5.08

Remarks / Other Tests Experimental 8" sewer pipe blend: 30% D shale (=Wkr.80-3a) +35% Floyd Top (F1.80-4a) +35% Linton shale (Hancock Co., Ga.) + 8% grog. Not as good as x5 blend (= F1.80-4d).

locn. no. Wkr.80-3 (a & b), cont.

Crushing Characteristics (unfired material)
Particle Size Retention Time
Chemical & Mineralogical Data: Not determined.
Chemical Analysis Mineralogy
Oxide Weight % Mineral volume %
sio ₂
TiO2 Quartz
Al ₂ 0 ₃ Feldspar
Fe ₂ 0 ₃ Carbonate
FeÖ Mica
MnO Chlorite- MgO vermiculite
MgO vermiculite CaO Montmorillonite
Na ₂ 0 Others
K ₂ 0
$P_2 O_5$
S (total) Total
C (org)
CO ₂
H ₂ 0 ⁻
H ₂ 0+
Ignition
loss
Total
Analyst
Date
Method
Sample Location Data:
County Walker. Land Lot, Sec, Dist
7 1/2' topo quad. Cedar Grove (E. cntr.). Lat, Long
Field No. <u>D shale</u> , Collected by <u>O'Connor and Benzel</u> Date <u>Aug. 1980</u> .
Sample Method <u>Random grab samples</u> . Weathering/alteration <u>Weathered</u> .
Structural AttitudeBedding dips SE
Stratigraphic Assignment <u>Red Mountain Formation (Silurian).</u>
Sample Description & Comments <u>Sample from E. side of dirt road (S-1763) about 0.1</u> mi. NE. of Long Hollow Creek and 0.2 mi. SE. of location Wkr.80-2.
Compiled by B. J. O'Connor Date 10-20-87

8

American Society for Testing and Materials, 1974 Annual Book of ASTM Standards:

- C4-62 (Reapproved 1970) Standard specification for clay drain tile, Part 16, p. 1-7.
- C13-69 (Replaced by C700-74) Specifications for standard strength clay sewer pipe, Part 16, p. 409-413.
- C24-72 Pyrometric cone equivalent (PCE) of refractory materials, Part 17, p. 9-14.
- C27-70 Classification of fireclay and high-alumina refractory brick, Part 17, p. 15-17.
- C43-70 Standard definitions of terms relating to structural clay products, Part 16, p. 33-35.
- C62-69 Standard specification for building brick (solid masonry units made from clay or shale), Part 16, p. 121-125.
- C216-71 Standard specification for facing brick (solid masonry units made from clay or shale), Part 16, p. 121-125.
- C410-60 (Reapproved 1972) Standard specification for industrial floor brick, Part 115, p. 217-218.
- C479-72 Standard specification for vitrified clay liner plates, Part 16, p. 283-284.
- C330-69 Specification for lightweight aggregates for structural concrete, Part 14, p. 229-232.
- C315-56 (Reapproved 1972) Standard specification for clay flue linings, Part 16, p. 169-171.
- American Society for Testing and Materials, 1974 Annual Book of ASTM Standards: Part 16, Chemical-resistant nonmetallic materials; clay and concrete pipe and tile; masonry mortars and units; asbestos-cement products.
- Bentley, R.D., 1964, A Geologic Evaluation of the Red Mountain Shales in the vicinity of Kensington, Georgia: Department of Mines, Mining and Geology, unpublished manuscript, 19 p.
- Bergenback, R.E., Wilson, R.L., and Rich, M., 1980, Carboniferous Paleodepositional Environments of the Chattanooga Area: in Frey, R.W., ed., Excursions in Southeastern Geology, vol. I, Field Trip No. 13, p. 259-278, American Geological Institute, Falls Church, Va.
- Butts, C., and Gildersleeve, B., 1948, Geology and Mineral Resources of the Paleozoic Area in Northwest Georgia: Georgia Department of Mines, Mining and Geology Bulletin 54, 176 p.
- Chowns, T. M., editor, 1972, Sedimentary Environments in the Paleozoic Rocks of Northwest Georgia: Georgia Geological Survey Guidebook 11, 102 p.
- _____, editor, 1977, Stratigraphy and Economic Geology of Cambrian and Ordovician Rocks in Bartow and Polk Counties, Georgia: Georgia Geological Survey Guidebook 17, 21 p.

- Chowns, T.M., and McKinney, F.M., 1980, Depositional Facies in Middle-Upper Ordovician and Silurian Rocks of Alabama and Georgia: in Frey, R.W., ed., Excursions in Southeastern Geology, vol. 2, Field Trip No. 16, p. 323-348, American Geological Institute, Falls Church, VA.
- Clews, F. H., 1969, <u>Heavy Clay Technology</u>: 2nd ed., Academic Press, New York, N.Y., 481 p.
- Crawford, T.J., 1983, Pennsylvanian Outliers in Georgia: <u>in</u> Chowns, T.M., ed., "Geology of Paleozoic Rocks in the Vicinity of Rome, Georgia" 18th Annual Field Trip, Georgia Geological Society, p. 30-41.
- Cressler, C. W., 1963, Geology and Ground-water Resources of Catoosa County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 28, 19 p.

_____, 1964a, Geology and Ground-water Resources of the Paleozoic Rock Area, Chattooga County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 27, 14 p.

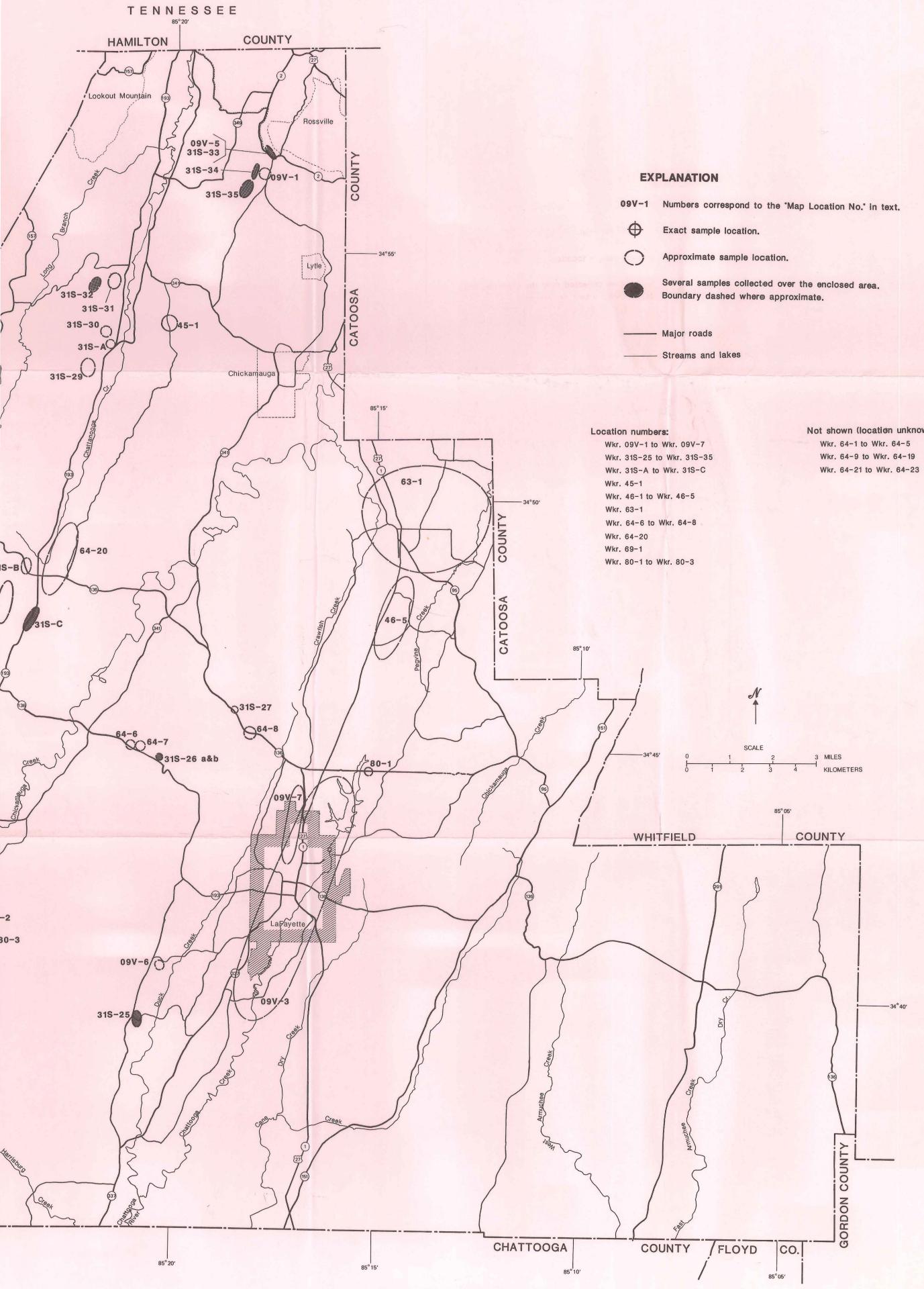
_____, 1964b, Geology and Ground-water Resources of Walker County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 29, 15 p.

, 1970, Geology and Ground-water Resources of Floyd and Polk Counties, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 39, 95 p.

, 1974, Geology and Ground-water Resources of Gordon, Whitfield and Murray Counties, Georgia: Georgia Geological Survey Information Circular 47, 56 p.

- Cressler, C. W., Franklin, M. A., and Hester, W. G., 1976, Availability of Water Supplies in Northwest Georgia: Georgia Geological Survey Bulletin 91, 140 p.
- Cressler, C. W., Blanchard, H. E., Jr., and Hester, W. G., 1979, Geohydrology of Bartow, Cherokee, and Forsyth Counties, Georgia: Georgia Geologic Survey Information Circular 50, 45 p.
- Croft, M. G., 1964, Geology and Ground-water Resources of Dade County, Georgia: Georgia Department of Mines, Mining and Geology Information Circular 26, 17 p.
- Georgia Geological Survey, 1976, Geologic Map of Georgia: Georgia Geological Survey, scale 1:500,000.
- Gillespie, W.H. and Crawford, T.J., in press, Plant Megafossils from the Carboniferous of Georgia, U.S.A.: in 10th International Congress of Carboniferous Stratigraphy and Geology (Madrid), Proceedings.

- Grimshaw, R. W., 1972, The Chemistry and Physics of Clays and Other Ceramic Raw Materials: 4th ed., rev., Wiley-Interscience, New York, N.Y., 1024 p.
- Hollenbeck, R.P., and Tyrrell, M.E., 1969, Raw materials for lightweight aggregate in Appalachian Region, Alabama and Georgia: U.S. Bureau of Mines RI-7244, 21 p.
- Jones, T. J., and Beard, M. T., 1972, Ceramics: Industrial Processing and Testing: Iowa State University Press, Ames, Iowa, 213 p.
- Kelly, K. L. and Judd, D. B., Color. Universal Language and Dictionary of Names: U.S. Dept. of Commerce, NBS Special Publication 440, 158 p.
- Kline, S. W. and O'Connor, B. J., editors, 1981, Mining Directory of Georgia, 18th. ed.: Georgia Geologic Survey Circular 2, 49 p.
- Klinefelter, T. A., and Hamlin, H. P., 1957, Syllabus of Clay Testing: U.S. Bureau of Mines Bulletin 565, 67 p.
- Liles, K. J., and Heystek, H., 1977, The Bureau of Mines Test Program for Clay and Ceramic Raw Materials: U.S. Bureau of Mines IC-8729, 28 p.
- Norton, F. H., 1942, <u>Refractories</u>: 2nd ed., McGraw-Hill Book Co., N.Y., 798 p.
- O'Neill, B. J., Jr., and Barnes, J. H., 1979, Properties and Uses of Shales and Clays, Southwestern Pennsylvania: Pennsylvania Geological Survey Mineral Resources Report 77, 689 p.


, 1981, Properties and Uses of Shales and Clays, South-central Pennsylvania: Pennsylvania Geological Survey Mineral Resource Report 79, 201 p.

- Patterson, S. H., and Murray, H. H., 1983, Clays: in Lefond, S. J., and others, eds., Industrial Minerals and Rocks; 5th ed., American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., New York, p. 585-651.
- Smith, J. W., 1968?, Tests for Clay Products in Northwest Georgia; unpublished manuscript, 47 p. (brief summary in: 1967 Annual Report of the Department of Mines, Mining, and Geology, 1968, p. 17-19).
- Smith, R. W., 1931, Shales and Brick Clays of Georgia: Georgia Geological Survey Bulletin 45, 348 p.
- Spencer, J.W.W., 1893, The Paleozoic Group; The Geology of Ten Counties of Northwestern Georgia: Georgia Geological Survey, 406 p.
- Tadkod, M.A., 1980, Study of Shales from Northwest Georgia: Georgia Geologic Survey, unpublished manuscript, 10 p.

- Thomas, W.A., and Cramer, H.R., 1979, The Mississippian and Pennsylvanian (Carboniferous) Systems in the United States -Georgia: U.S. Geological Survey Professional Paper 1110-H, 37 p.
- Veatch, O., 1909, Second Report on the Clay Deposits of Georgia: Georgia Geological Survey Bulletin 18, 453 p.
- Watson, T. L., 1904, A Preliminary Report on the Bauxite Deposits of Georgia: Georgia Survey Bulletin 11, 169 p.
- White, W. S., Denson, N.M., Dunlap, J.C. and Overstreet, E.F., 1966, Bauxite Deposits of Northwest Georgia: U.S. Geological Survey Bulletin 1199-M, 42 p.

Georgia Geologic Survey **Information Circular 72** Plate 1

CLAY AND SHALE TEST LOCATIONS IN WALKER COUNTY

Not shown (location unknown):